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Abstract

In this thesis, we explore several topics in the theory of monoidal and skew
monoidal categories.

In Chapter 3, we give definitions of dual pairs in monoidal categories,
skew monoidal categories, closed skew monoidal categories and closed mon-
oidal categories. In the case of monoidal and closed monoidal categories,
there are multiple well-known definitions of a dual pair. We generalise these
definitions to skew monoidal and closed skew monoidal categories.

In Chapter 4, we introduce semidirect products of skew monoidal cat-
egories. Semidirect products of groups are a well-known and well-studied
algebraic construction. Semidirect products of monoids can be defined anal-
ogously. We provide a categorification of this construction, for semidirect
products of skew monoidal categories. We then discuss semidirect products
of monoidal, closed skew monoidal and closed monoidal categories, in each
case providing sufficient conditions for the semidirect product of two skew
monoidal categories with the given structure to inherit the structure itself.

In Chapter 5, we prove a coherence theorem for monoidal adjunctions
between closed monoidal categories, a fragment of Grothendieck’s ‘six oper-
ations’ formalism.
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2 CHAPTER 1. INTRODUCTION

Dual pairs (also known as exact pairings) are an important part of the
theory of monoidal categories. See, for example, [9]; or [24], §4; or [10],
§XIV.2. The notion of a dual pair in a closed monoidal category plays a
role in Grothendieck’s ‘six operations’ formalism. See, for example, [5]; or
[1], where dualisable objects are referred to as rigid objects. In the theory
of closed monoidal categories, the presence of a closed structure allows for
various alternative, but equivalent, characterisations of a dualisable object.
See, for example, [13], Chapter III, where dualisable objects are referred to
as finite objects. In fact, there are characterisations of a dual pair which do
not require the full structure of a closed monoidal category, or even just a
monoidal category, to state. In Chapter 3, we give such characterisations
of dual pairs in monoidal categories, skew monoidal categories, closed skew
monoidal categories and closed monoidal categories.

Semidirect products of groups give a well-known method of constructing
new examples of groups from smaller ones [23]. In Chapter 4, we introduce
semidirect products of monoidal and skew monoidal categories as a categori-
fication of semidirect products of groups, giving a method of constructing
new examples of monoidal and skew monoidal categories from smaller ones.
We also discuss how this construction interacts with monoidal, closed skew
monoidal and closed monoidal categories, as well as dual pairs within these
categories.

This chapter is based on an article due to be published in Cahiers
de Topologie et Géométrie Différentielle Catégoriques [6]. The article it-
self is a note summarising several results and examples. The main pa-
per, including all proofs and technical details, can be found on the arXiv
(arXiv:1510.08717 [math.CT]).

Coherence theorems form an important part of our understanding of
many categorical structures. In its most general form, the basic question
which we seek to answer with a coherence theorem is as follows: Given a cat-
egorical structure of some sort (e.g. a monoidal category, a closed monoidal
category, a monoidal adjunction between two closed monoidal categories),
how can we tell whether a diagram constructed from the data of such a
structure commutes? More specifically, we wish to describe the free such
categorical structure generated by whichever data is appropriate and pro-
vide a method for determining whether two parallel morphisms in such a
category are equal.

Mac Lane’s original coherence theorem [18] provides, in the case of mon-
oidal categories, the simplest possible answer to this question: that all such
diagrams commute. In other words, in the free monoidal category gener-
ated by a set of objects, there is at most one morphism between any pair of
objects.

Kelly and Mac Lane provided a coherence theorem for closed symmetric
monoidal categories [12], based on earlier work by Lambek [16] [17]. How-
ever, in this case the result is more complicated; by introducing a closed



structure, we make it possible to construct diagrams which do not com-
mute. In order to answer the question of coherence in this setting, the
notion of the ‘graph’ of a morphism is introduced, a concept closely tied to
the extranaturality of the unit and counit for the closed monoidal structure.
The coherence theorem in this case is that, for morphisms between a certain
class of ‘proper’ objects, any pair of parallel morphisms with the same graph
are equal.

Lewis provided a coherence theorem for a lax monoidal functor between
two closed symmetric monoidal categories [21]. In this case the result is once
again more complicated, and two notions of ‘graph’ are required: G-graphs,
which replace the graphs of Kelly and Mac Lane’s coherence theorem and
are related to the closed structure; and D-graphs, which are new and are
related to the lax monoidal functor. The coherence theorem in this case is
that, for morphisms between a certain class of ‘proper’ objects, any pair of
parallel morphisms with the same G-graph and the same D-graph are equal.

Dosen and Petri¢ provided coherence theorems for lax monoidal endo-
functors [2] and lax monoidal monads and comonads [3]. In the absence
of any closed structure, the complications related to extranaturality which
necessitated Kelly and Mac Lane’s original notion of graph and Lewis’s no-
tion of G-graph are avoided. Instead, sets and relations are used to describe
the endofunctors, monads and comonads, in a role analogous to Lewis’s
D-graphs. This is made more complicated by the possibility of iterating
endofunctors, which is the main focus of these theorems.

In Chapter 5, we prove a coherence theorem for monoidal adjunctions
between closed monoidal categories, a fragment of Grothendieck’s ‘six oper-
ations’ formalism. A coherence theorem for monoidal adjunctions between
closed monoidal categories combines both closed structures, with their at-
tendant complications related to extranaturality, and induced lax monoidal
monads and comonads, with their attendant complications related to itera-
tion of endofunctors.
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2.1 Monoidal and Skew Monoidal Categories

Monoidal categories, first introduced by Mac Lane [18], are ubiquitous in
category theory. Examples include cartesian categories, such as the category
of sets and functions or the category of topological spaces and continuous
maps, where the tensor product is given by the cartesian product; cate-
gories of modules, such as the category of vector spaces and linear maps or
the category of abelian groups and group homomorphisms, where the ten-
sor product is given by the usual tensor product of modules; categories of
endofunctors, where the tensor product is given by functor composition; the
list goes on. For an overview of monoidal categories, see Leinster [20], §1.2.

Skew monoidal categories, first introduced by Szlachanyi [25], are like
ordinary monoidal categories, except that the associator and unitors are
not required to be invertible. The main result of [25] is that, for a ring
R, the closed skew monoidal structures on the category ABpg of right R-
modules, with the right-regular R-module as the unit Z, are precisely the
right bialgebroids over R. Skew monoidal categories have subsequently been
studied by others, such as Lack and Street, in other contexts (e.g. [14] [15]).

Definition 2.1.1 (skew monoidal category). We will use the term ‘skew
monoidal category’ to mean what is referred to by Szlachanyi [25] as a ‘right-
monoidal category’. A skew monoidal category C consists of the following
data.

A category C.

An object Z € ob(C.

A functor (—® —): C xC — C.

A natural transformation «, called the associator, with components

aapc: A®(B®C)— (A® B)®C.

A natural transformation A\, called the left unitor, with components

)\A:A—>I®A.

A natural transformation p, called the right unitor, with components

pa: ARQT — A.
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This is subject to the commutativity of the following diagrams.

(A B)® (C® D)

aA7B7C®D XA@B7C,D

A® (B® (C® D)) (A®B)®C)® D
A® Qp.c,D 1OZA,B,C ®D
A B®C D A B®C D
B(BEC)8D) ————— (As(BaC)e -
Qar B,C
T®(B®C) (Z®B)®C
ABaC Ap®C
B C (2.2)
QAT,C
A®(T®C0) (A®T)®C
A® Ao pa®@C
ARC (23)
QA BT
Aw (BoI) (A9 B)®T
A® pp PA®B
A® B (2'4)
A A
)\I Pz
I®T (2.5)

Definition 2.1.2 (monoidal category). A monoidal category is a skew mon-
oidal category in which the associator «, the left unitor A, and the right
unitor p are all invertible.
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Example 2.1.3. Introduced by Szlachdnyi [25], there is a skew monoidal
category ‘represented’ by an oplax monoidal monad, defined as follows. Let
T be an oplax monoidal monad on a monoidal category C; that is, a monad
on C whose underlying endofunctor has an oplax monoidal structure, such
that the unit and multiplication are monoidal natural transformations. See
definition 2.3.3 for the definition of oplax monoidal functor, and 2.3.6 for
the definition of monoidal natural transformation. The objects of this skew
monoidal category represented by T are the objects of C. The monoidal unit
is the monoidal unit of C. The tensor product, denoted (— ®7 —), is defined
in terms of the tensor product in C, denoted (— ® —), as follows.

A®rB=A®T(B)

This example is explored in more detail in Chapter 4, and appears again as
Example 4.3.5.

Example 2.1.4. The category SET of sets and functions is a monoidal
category, with tensor product given by cartesian product and monoidal unit
given by the terminal set {x}.

Example 2.1.5. Choose a field K. The category VECTk of K-vector spaces
and K-linear maps is a monoidal category, with tensor product given by
ordinary tensor product of vector spaces and monoidal unit given by K.

Example 2.1.6. The category SET, of pointed sets and point-preserving
functions is a monoidal category, with tensor product given by smash prod-
uct and monoidal unit given by the two-element set.

(X, 20) ® (Y,90) = (X x Y/((z,90) ~ (z0,9)) (z0,Y0))

Example 2.1.7. The category SET, of pointed sets and point-preserving
functions is a skew monoidal category, with tensor product given by a ‘biased
disjoint union’ and monoidal unit given by the one-element set.

(X,20) @ (Y,90) = (X + Y, 50)

2.2 Additional Structures and Constructions

There are many kinds of additional structure that one may equip a monoidal
category with, such as braidings, symmetries, closed structures, dual pairs,
etc., or various combinations of these (e.g. closed symmetric monoidal struc-
tures). Some of these structures translate easily to skew monoidal catgories,
while some do not. In particular, the definition of a closed skew monoidal
category is straightforward, whereas the definition of a dual pair in a skew
monoidal category is not. In chapter 3, we will give a definition of a dual
pair in a skew monoidal category.
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In order to state the definition of a closed skew monoidal category, we
will need to be familiar with extranatural transformations. Extranatural
transformations, first introduced by Eilenberg and Kelly [4], are a general-
isation of ordinary natural transformations between functors which do not
share the same source and target categories.

For comparison, recall the standard notion of naturality.

Definition 2.2.1 (naturality). Let F': C — D and G: C — D be functors.
A family of morphisms v4: F(A) — G(A) is said to be natural in A if, for
each morphism f: A — B in C, the following naturality square commutes.

F(A) F) F(B)

YA B

G(A G(B
(4) a0 (B)

A family of morphisms which is natural in each variable separately, we call
a natural transformation.

We can now define the notion of extranaturality.

Definition 2.2.2 (extranaturality). Let F: Z — D and G: C°® x C — D
be functors. A family of morphisms v4: F(x) — G(A, A) is said to be
extranatural in A if, for each morphism f: A — B in C, the following
extranaturality square commutes.

F(x)

N

G(A, A) G(B, B)

G(Ak Af, B)

G(A, B)

Let F: C xC°? — D and G: Z — D be functors. A family of morphisms
va: F(A,A) — G(%) is said to be extranatural in A if, for each morphism
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f: A— B in C, the following extranaturality square commutes.

F(A, B)

F(AV \V\(f, B)
(

F(A, A) F(B,B)

NP

G (%)

A family of morphisms which is natural or extranatural, as appropriate, in
each variable separately, we call an extranatural transformation.

Example 2.2.3. Consider the category SET of sets and functions. There
is a functor, which we will denote [—, —]: SET°? x SET — SET, defined so
that [X,Y] is the set of functions from X to Y. There is then a family of
‘evaluation’” morphisms, defined as follows.

eB:Bx[B, Al A  £5(b,¢) = ¢(b)

Since the following diagram commutes for all functions f: A — A’, we say
that € is natural in the variable A.

B x[B, f]

B x[B, Al B x [B, A
e &
A A
f

Since the following diagram commutes for all functions f: B — B’, we say
that e is extranatural in the variable B.

B x [B', A]
B x [f, A] Nf\x B, 4]
B x B, A] B'x [B', A
e4 e
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Since € is natural in A and extranatural in B, we say that € is an extranatural
transformation.

The definition of an extranatural transformation is a key part of the
definition of a closed skew monoidal category.

Definition 2.2.4 (left closed skew monoidal category). We will use the
term ‘left closed skew monoidal category’ to mean what is referred to by
Szlachdnyi [25] as a ‘left closed right-monoidal category’. A left closed skew
monoidal category C consists of the following data.

e A skew monoidal category C.
e A functor (—\—): C°? x C — C.

e An extranatural transformation 7, called the coevaluation, with com-

ponents
nh: A— B\(B® A).

e An extranatural transformation e, called the evaluation, with compo-
nents

e¥: B® (B\A) — A.

This is subject to the commutativity of the following diagrams.

A® B A® B
A®k /A@B
A® (A\(A® B)) 2.
A
A\(A® (A\B)) 2

This provides, for each object A of C, an adjunction of the following form.
(A®—) 4 (A\-)
The unit is given by n? and the counit is given by 4.

Definition 2.2.5 (left closed monoidal category). A left closed monoidal
category is a left closed skew monoidal category in which the associator «,
the left unitor A, and the right unitor p are all invertible.
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Remark. We use the (—\—) notation, used by Lambek [16] [17], instead
of the standard [—, —] notation for the internal hom of a closed monoidal
category. We do this because having an infix symbol is more consistent
with the (— ® —) notation for the tensor product and makes complicated
expressions simpler to read. We will also use the corresponding (—/—)
notation for right closed structures.

Example 2.2.6. Introduced by Szlachanyi [25], there is a skew monoidal
category ‘corepresented’ by a lax monoidal comonad, defined as follows. Let
T be a lax monoidal comonad on a monoidal category C; that is, a comonad
on C whose underlying endofunctor has a lax monoidal structure, such that
the counit and comultiplication are monoidal natural transformations. The
objects of this skew monoidal category corepresented by 71" are the objects
of C. The monoidal unit is the monoidal unit of C. The tensor product,
denoted (— ®7 —), is defined in terms of the tensor product in C, denoted
(— ® —), as follows.
ARrB=T(A)® B

If the skew monoidal category C has a left closed structure, then the skew
monoidal category corepresented by T also has a left closed structure. The
internal hom, denoted (—\7—), is defined in terms of the internal hom in C,
denoted (—\—), as follows.

A\rB = T(A)\B

Example 2.2.7. The category SET of sets and functions is a left closed
monoidal category, with the internal hom X\Y defined to be the set of
functions X — Y. The evaluation and coevaluation morphisms are defined

as follows.
X XX (X\Y) =Y  (z,f)— f(z)

n%:Y—)X\(XXY) y = (x— (z,9))

Example 2.2.8. Choose a field K. The category VECTk of K-vector spaces
and K-linear maps is a left closed (and also right closed) monoidal category,
with the internal hom U\V defined to be the set of K-linear maps U —
V', with pointwise addition and scalar multiplication. The evaluation and
coevaluation morphisms are defined as follows.

VO V\W) =W 0@ fe fu)
m‘//V;W—>V\(V®W) w— (V= VW)

As well as structures within monoidal and skew monoidal categories,
there are constructions that can be made using monoidal and skew mon-
oidal categories. In chapter 4, we introduce semidirect products of monoidal
and skew monoidal categories as a categorification of semidirect products of
monoids (or, perhaps more familiarly, of groups).
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2.3 Functors and Natural Transformations

There are also various notions of functor between monoidal and skew mon-
oidal categories.

Definition 2.3.1 (lax monoidal functor). We will use the term ‘lax mon-
oidal functor’ to mean what is referred to by Szlachanyi as a ‘right-monoidal
functor’ between skew monoidal categories. In the case that the skew mon-
oidal categories are monoidal categories, this reduces to what is referred
to by Leinster [20] as a ‘lax monoidal functor’. A lax monoidal functor
F': C — D between two skew monoidal categories consists of the following
data.

e A functor F': C — D.

e A natural transformation with components

Vi p: F(A)® F(B) = F(A® B).

e A morphism
OF T — F(T).

This is subject to the commutativity of the following diagrams.

QF(A),F(B),F(C)
FA)® (F(B)@ F(C)) —— (F(A)® F(B)) ® F(C)

F(A) @ yf ¢ Vi s ®F(O)
F(A)®@ F(B® () F(A® B)® F(C)
V4 Bec Vieno
F(A® (B () Flonnc) F(A® B)® ()

)\F/ \AA
I®F(A F(I®A)
wF®F\ AA
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F(A)® F(I)
®V %z
I (

F(A)
F(A)® F(A®T)

P FR APA)
F(A)

Example 2.3.2. The forgetful functor U: VECTg — SET which takes each
K-vector space to its underlying set is a lax monoidal functor. The structure
maps are defined as follows.

(2.10)

wg,WZU(V)XU(W)%U(V@)W) (v,w) » VW
WU {5} 5 UK xe 1

Definition 2.3.3 (oplax monoidal functor). We will use the term ‘oplax
monoidal functor’ to mean what is referred to by Szlachdnyi as a ‘right-
opmonoidal functor’ between skew monoidal categories. In the case that the
skew monoidal categories are monoidal categories, this reduces to what is
referred to by Leinster [20] as a ‘colax monoidal functor’. An oplax monoidal
functor is a lax monoidal functor in which the structure maps v and 1& have
their directions reversed. We will usually denote these structure maps as
follows.

oh g F(A® B) = F(A) ® F(B)
ol F(T) 1T

Definition 2.3.4 (strong monoidal functor). A strong monoidal functor is
an oplax monoidal functor in which the structure maps ¢ and ¢ are both
invertible.

Example 2.3.5. The free functor F': SET — VECTK which takes each set
to the K-vector space freely generated by its elements is a strong monoidal
functor. The structure maps are defined as follows.

Py FXxY)2 F(X)@F(Y) (2,9)—z@y
P F{x) =K« 1g

Of course, we also have a definition of the appropriate sort of natural
transformation between these functors.
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Definition 2.3.6 (monoidal natural transformation). Let F': C — D and
G: C — D be lax monoidal functors. A monoidal natural transformation
is a natural transformation v: F' = G such that the following diagrams
comimute.

Fa) e FB) 22278 Ay @ 6(B)
¢£,B T/JAQ,B
FAGB) — —— G(A@ B) o
A
W W
F(Z G(T
@ — @ -

Monoidal natural transformations between oplax and strong monoidal func-
tors are defined analogously.

There is one final definition involving monoidal categories which will be
of interest to us: the monoidal adjunction. First, recall the notion of an
ordinary adjunction.

Definition 2.3.7 (adjunction). Let L: D — C and R: C — D be functors
between categories. An adjunction L 4 R consists of the following data.

e A natural transformation 6, called the unit, with components

p: D — RL(D).

e A natural transformation (, called the counit, with components

(c: LR(C) — C.

This is subject to the commutativity of the following diagrams.

(2.13)
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(2.14)

We can now define the notion of a monoidal adjunction.

Definition 2.3.8 (monoidal adjunction). A monoidal adjunction this con-
sists of a lax monoidal functor L: D — C with a lax monoidal right adjoint
R: C — D, such that the unit # and counit ¢ are monoidal natural transfor-
mations.

However, there is another, equivalent, definition of monoidal adjunction,
which is the one we shall use. For a proof that these definitions are equiva-
lent, see Kelly [11].

Definition 2.3.9 (monoidal adjunction). A monoidal adjunction consists
of a strong monoidal functor L: D — C with a right adjoint R: C — D.

Example 2.3.10. The forgetful functor U: VECTg — SET which takes
each K-vector space to its underlying set is a lax monoidal functor. The
free functor F': SET — VECTK which takes each set to the K-vector space
freely generated by its elements is a strong monoidal functor. These form a
monoidal adjunction ¥ 4 U.

In chapter 5, we prove a coherence theorem for monoidal adjunctions be-
tween closed monoidal categories. This forms a fragment of Grothendieck’s
‘six operations’ formalism. This is a formalisation which generalises the
following scenario from algebraic geometry, for an introduction to which,
see Hartshorne [8], Chapter II. Let f: (X,0x) — (Y,Oy) be a morphism
of ringed spaces. This induces an inverse image—direct image adjunction
between the categories of Ox-modules and Oy-modules.

f*
m
Oy-MOD L Ox-MOD
v

fx

The categories of Ox-modules and Oy-modules are, among other things,
left closed monoidal categories, and the adjunction f* - f, is a monoidal
adjunction.



Chapter 3

Dual Pairs in Skew Monoidal

Categories
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3.1 Introduction

In §3.3, we recall the standard definition of a dual pair (L, R) in a monoidal
category. This definition involves an evaluation morphism and a coevalua-
tion morphism satisfying two relations known as the triangle identities.

ev: LR —T

coev:Z —- R®L

It is known in the literature that, in a monoidal category, a dual pair
(L, R) gives rise to an adjunction (L®—) 4 (R®—) (or, dually, an adjunction
(—® R) 4 (—®L)). See, for example, [9]. We denote the unit and counit
of this adjunction as follows.

04: A— R® (L® A)

(4: L®(R® A) — A

In §3.4, we show that 6 and ( satisfy two conditions, each equivalent to
one of the triangle identities. These conditions ensure that § and { are
defined entirely by their components at the monoidal unit. The morphism
(z: L® (R®Z) — T is essentially the same as ev: L ® R — Z, and the
morphism 07: Z - R® (L ®Z) is essentially the same as coev: Z - R® L,
and so we show that, in a monoidal category, any adjunction of this form
which satisfies these two conditions must come from a dual pair, and we are
therefore justified in taking this as the definition of a dual pair in a monoidal
category. Since this definition does not involve inverting the associator, we
may use it as the definition of a dual pair in a skew monoidal category.

It is known in the literature that, in a closed monoidal category, a dual
pair (L, R) gives rise to a natural isomorphism of the following form.

()= (Ro-)

See, for example, [5]. In §3.5, we show that £ satisfies a condition. By some
standard facts about uniqueness of adjoints, we show that, in a closed skew
monoidal category, any natural isomorphism of this form which satisfies this
condition must come from a dual pair, and we are therefore justified in taking
this as the definition of a dual pair in a closed skew monoidal category.
Just as the two conditions introduced in §3.4 ensure that, in the case of
a monoidal category, 6 and ( are defined entirely by their components at the
monoidal unit, so too does the condition introduced in §3.5 ensure that, in
the case of a closed monoidal category, £ is defined entirely by its component
at the monoidal unit. And, just as there is a definition of a dual pair in a
monoidal category involving morphisms ev and coev corresponding to (7
and 07, so too is there a corresponding definition of a dual pair in a closed
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monoidal category involving an isomorphism 5 : L\Z = R corresponding to
&7. We give this definition in §3.6.

The end result, given in §3.7, is that, in a closed monoidal category, we
have four different, but equivalent, definitions of a dual pair.

3.2 Notation

Before we begin, some notational conventions must be established. We will
make use of string diagrams while working in various strict monoidal cate-
gories of endofunctors. The conventions used are that composition of func-
tors (the monoidal product) is drawn from left to right, while composition
of natural transformations (the usual composition of morphisms) is drawn
from top to bottom. So, for example, the two diagrams below depict the
same natural transformation; the first using a traditional globular diagram,
the second using a string diagram with the conventions we will use.

f ¢ g f g
A w\ ©
c——c h

We will denote the inverse of a morphism w by @, rather than w™!, when
using string diagrams. For example, the inverse of the morphism w, shown
above, would be denoted as follows.

h
[ g

We use the following notation for the endofunctors induced by the tensor
product.

Ar=(A®—-):C—C
Ac=(—®A):CoC

We use the following notation for two natural transformations obtained
by fixing all but one of the variables on which « depends. The third natural
transformation in this sequence, which we would denote a4 p,—, will not be

needed.
(B®O), C, A*

Y
opo= A ea-e= )

B, C, A Oy
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Viewing the objects of 2.1 as functors in the second variable gives the fol-
lowing equivalent condition.

(CoD), A (CeD)A

) /
A* C, D, A* Cy Dy
Remark. While this equation might suggest some topological intuition un-
derlying this graphical calculus, we will neither prove nor make use of any
such result. Instead, we will merely use these diagrams as convenient short-

hand for traditional algebraic manipulations. In all proofs, we will take care
to make explicit the algebraic justification behind each step.

We use the following notation for the right unitor; the left unitor will
not be needed.

=

Viewing the objects of 2.4 as functors in the second variable gives the fol-
lowing equivalent condition.

I, A* I, A*

S5

A*
We use the following notation for the endofunctor induced by the internal

hom.

A'=(A\-):Cc—cC

We use the following notation for the natural transformations obtained by
fixing the variables on which n and ¢ depend extranaturally.

X' X*
0¥ = <= @
xX* X!
Viewing the objects of 2.6 as functors in the natural variable gives the fol-

lowing equivalent condition.
X*

X*
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Viewing the objects of 2.7 as functors in the natural variable gives the fol-
lowing equivalent condition.

3.3 Monoidal Categories

Recall the standard definition of a dual pair in a monoidal category. See,
for example, [9]; or [24], §4; or [10], §XIV.2.

Definition 3.3.1 (dual pair in a monoidal category). A dual pair in a
monoidal category C consists of:

e a pair of objects L, R € ob(,
e an evaluation morphism ev: L ® R — Z, and

e a coevaluation morphism coev: Z — R® L;

such that the following two diagrams commute.

L L
pzl )\El
L®T IT®L
L ® coev ev® L
L®(R®L) o (L®R)® L
L&, (3.1)
R R
)\R PR
I®R R®T
coev® R R®ev
(R®L)®R = R®(L®R)
o
RLER (3.2)

We refer to L as the left dual and R as the right dual.
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Finite-dimensional vector spaces are a prototypical example of objects
with duals. Throughout this chapter, we will use this as a running example.

Example 3.3.2. Choose a field K. The category VECTk of K-vector spaces
and K-linear maps is a closed symmetric monoidal category; in particular, it
is a monoidal category, and the definition introduced in this chapter applies
to it. Let U be a finite-dimensional K-vector space with basis {u; };c;. Then
U has a right dual V of the same dimension as U with basis {v'};c;. The
evaluation and coevaluation morphisms are defined as follows.

. Lo if— i
ev:U®V =K u; @ v = “ ll J
Ox ifi#j

coev: K - VU 1Kb—>Zvi®ui
el

This construction is independent of the choice of basis of U; two different
choices of basis would result in two different constructions for the right dual,
but they would be canonically isomorphic.

3.4 Skew Monoidal Categories

In §3.3, we gave a definition of a dual pair in a monoidal category. In this
section, we will give a definition of a dual pair in a skew monoidal category.
We will show that, in a monoidal category, where both definitions apply,
these definitions agree.

3.4.1 Definition

In a monoidal category, there is a definition of a dual pair, equivalent to the
definition introduced in §3.3, which doesn’t involve the monoidal unit at all,
or inverting the associator.

Proposition 3.4.1. In a monoidal category, if we have a dual pair (L, R)

then we have an adjunction L* 4 R*. The unit and counit of this adjunction
are given as follows.

o=l
0a: AT A Y ReL)®A 2% Re (Le A) (3.3)

Qr,R,A

ev At
Ca: L@ (R A) 24 (Lo R) 0 AL T A i A (3.4)
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Additionally, the following diagrams commute.

A® B
QAy Y@B
® (L ® (A® B)) (R® (L ® A))
R®ahk %L@AB
(L® A)® B) (3.5)
(R®A)® B)
L®ap“7 wR@@AB
®(R® (A® B)) (L®(R® A))
CAA %@B
A® B (36)

Proof. Explicitly, the triangle identities for the adjunction L* 4 R* are that
the following morphisms are identities.

LA Lo Re(LoA) LS LeA (3.7)

R®Ca

RoA T4 Re (Lo (Re A) 24 Re A (3.8)

We must check the two triangle identities 3.7 and 3.8, and the two diagrams
3.5 and 3.6.

To see that the triangle identity 3.7 is satisfied, consider the following
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diagram.
L®A
L® Ay pzl ®A
L®((Z®A) T (L®I)® A
L ® (coev® A) (L ®coev)® A
Lo (ReL)® A) LRl Le®RaL)xA
L®agpy 4
Lo (R®(L®A) aLrL®A
O RL®A
QL®R,L,A
(L®R)®(L® A) (L®R)®L)® A
ev® (L® A) (eve L)® A
Qar,L,A
IT®(L®A) ZI®L)®A

Al®A
L® A

The anticlockwise path is L ® 64 followed by (g4, which we are trying to
show is an identity. The upper triangle commutes by condition 2.3. The
upper square commutes by naturality of «. The pentagon commutes by
condition 2.1. The lower square commutes by naturality of a. The lower
triangle commutes by condition 2.2. The clockwise path is an identity by
the triangle identity 3.1 for the dual pair (L, R).

To see that the triangle identity 3.8 is satisfied, consider the following
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diagram.
R® A
AR@A AR ® A
T® (R A) T (ZoR) ®A
coev® (R® A) (coev® R) ® A
(R®L)® (R®A) p— (R®L)®R)® A
aﬁ}L,R@A
R®(L®(R® A)) gL r®A
R®arra
Re(LeR)ed) —"  (re(LeR)eA
R® (ev® A) (Roev)® A
R&(I® A) LA (RoT)® A

PR ® A

R® A

The anticlockwise path is 8 45 followed by R ® (4, which we are trying to
show is an identity. The upper triangle commutes by condition 2.2. The
upper square commutes by naturality of «. The pentagon commutes by
condition 2.1. The lower square commutes by naturality of «. The lower
triangle commutes by condition 2.3. The clockwise path is an identity by
the triangle identity 3.2 for the dual pair (L, R).
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To see that diagram 3.5 commutes, consider the following diagram.

A®B
)\A®B )\A®B
Z® (A® B) T in (Z®A)®B
coev ®@ (A® B) (coev® A) ® B
(R®L)® (A® B) LD (ReL)® A)®B
ARl asp AR a®B
R®(L®(A® B)) (R (L A)®B
R® QL. AB QR L®A,B

R®(L®A)®B)

The anticlockwise path to R® (L® (A® B)) is 455. The clockwise path to
(R®(L®A))® B is 04 ® B. The triangle commutes by condition 2.2. The

square commutes by naturality of a. The pentagon commutes by condition
2.1.

To see that diagram 3.6 commutes, consider the following diagram.

L®(R®A)®B)

L ®agraB QL ,R®A,B
L®(R®(A® B)) (L®(R®A)eB
OL.RARB ar,rA® B
OL®R,A,B
(L®R)® (A® B) (LoR)®A)®B
ev® (A® B) (ev® A)® B
QT A B
IT®(A® B) (Z®A)®B
Nion M'®B

A®B
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The anticlockwise path from L® (R® (A® B)) is Cagp- The clockwise path
from (L® (R® A)) ® B is (4 ® B. The pentagon commutes by condition
2.1. The square commutes by naturality of . The triangle commutes by
condition 2.2. O

We use the following notation for for the unit and counit of the adjunc-
tion L* 4 R*. -
0= -
L* R* ‘
Viewing the objects of the two triangle identities 3.7 and 3.8 as functors
in the variable A gives the following equivalent conditions.
L* L*
(©)
L* L*
R* R*
()
R* R*
Viewing the vertices of diagrams 3.5 and 3.6 as functors in the variable

A gives the following equivalent conditions.

B, B,

( 2
L* R* B, L* R* B,
B, R* L* B, R* L*

/J

B, B,

We have shown that an adjunction of this form exists whenever we have
a dual pair in the usual sense. Now we must show the converse: that every
such adjunction is of this form. Then we can conclude that the two notions
of dual pair are equivalent.
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Proposition 3.4.2. In a monoidal category, given two objects L and R, if
we have an adjunction L* 4 R* satisfying conditions 3.5 and 3.6, then we
have a dual pair (L, R). The evaluation and coevaluation of this dual pair
are given as follows.

R®pL

coev: I—>R®(L®I)—>R®L (3.9)
ev: Lo R 225, Lo (ReT) 5T (3.10)

Additionally, 8 and ¢ are determined by coev and ev as in equations 3.3 and

3.4.

Proof. We must check the two triangle identities 3.1 and 3.2, and the two
equations 3.3 and 3.4.

To see that the triangle identity 3.1 is satisfied, consider the following
diagram.

®(R® L) (L&R)® L

PR ®L
\ f (L@pp')®L

L,RRT
Lo(ReT) ol e (ReT) oL

L®aRZL (z®L

L®(R®(ZI®L)

(zoL
)\71
/ R® A, L

®(R® L) L
L
® (R® pr) T
L® R® L®I L®T
CLeT
L®T

The path from L to L clockwise around the outside is the morphism 3.1
we wish to show is an identity. The four squares on the right commute
by, from top to bottom: naturality of «, condition 3.6, naturality of {, and
naturality of (. The square on the left commutes by condition 2.3. The
triangle commutes by the triangle identity 3.7 for the adjunction L* - R*.



3.4. SKEW MONOIDAL CATEGORIES 29

To see that the triangle identity 3.2 is satisfied, consider the following
diagram.

-1
AR LR

(R®L)®R R® (L® R)
R®(pr® R
(R®pr)®@ R ( )
a}_21L®ZR
(R (LR®I)®R—R® (L®I)®R)
01 ® R R®arzr
I®R R®(L®(I®R))

O1or
A
f R®(L®/\R\

R R®(L®R)
Or
PR R® (L®pg")
R®T R®(L® (R®T))
OreT
R® (7
R®T

The path from R to R clockwise around the outside is the morphism 3.2 we
wish to show is an identity. The four squares on the left commute by, from
top to bottom: naturality of a, condition 3.5, naturality of , and naturality
of 8. The square on the right commutes by condition 2.3. The triangle
commutes by the triangle identity 3.8 for the adjunction L* 4 R*.
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To see that equation 3.3 holds, consider the following diagram.

0
A A R® (L A)
A R®(L®A4)
0194
TwA © R® (L@ (I® A))
r® A R®arza
(Re(LOT)®A— Re(L®TI)® A)
QAR LeT,A
(RoprL)® A R® (pL® A)
(ROL)® A — R® (L& A)
AR LA

The anticlockwise path around the outside is the morphism 3.3 we wish to
show is an equal to 4. The upper square commutes by naturality of . The
middle square commutes by condition 3.5. The lower square commutes by
naturality of c. The right path is an identity by condition 2.3.

To see that equation 3.4 holds, consider the following diagram.

Lo (R® A) aLpa (LOR)® A
L® (pp ® A) (L@pp')®A
La(ReTD) e A) A e (ReT) e A
L®agh , (z®A
Lo (R®(I®A) o IQA
L (R@A,) ALt
L®(R® A) 2 A

The clockwise path around the outside is the morphism 3.4 we wish to show
is an equal to (4. The upper square commutes by naturality of a. The
middle square commutes by condition 3.6. The lower square commutes by
naturality of . The left path is an identity by condition 2.3. O
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We have shown that, in a monoidal category, an adjunction of the form
L* 4 R* satisfying conditions 3.5 and 3.6 is the same as a dual pair. This
justifies the following definition.

Definition 3.4.3 (dual pair in a skew monoidal category). A dual pair in
a skew monoidal category C consists of:

e a pair of objects L, R € ob(C, and

e an adjunction L* 4 R*;

such that the two diagrams 3.5 and 3.6 commute. We refer to L as the left
dual and R as the right dual.

Recall our running example of finite-dimensional vector spaces.

Example 3.4.4. Choose a field K. The category VECTk of K-vector spaces
and K-linear maps is a closed symmetric monoidal category; in particular,
it is a skew monoidal category, and the definition introduced in this chapter
applies to it. Let U be a finite-dimensional K-vector space with basis {u; }ier-
Then U has a right dual V of the same dimension as U with basis {v*};¢;.
The unit and counit for the adjunction U* 4 V* are defined as follows.

bw: WoVoUaW) w—d 'ouew
i€l
w ifi=j
Ow ifij
This construction is independent of the choice of basis of U; two different

choices of basis would result in two different constructions for the right dual,
but they would be canonically isomorphic.

v U(VeW)—W ui®vj®wl—>{

3.4.2 A Non-Example

In this section, we will give an example showing that the two conditions 3.5
and 3.6 are a necessary part of the definition of a dual pair. We will be in
the setting of the (strict) monoidal category of tangles. In this category, we
will give an example of an adjunction of the form L* 4 R* satisfying neither
condition 3.5 nor condition 3.6. Thus, this will not correspond to a dual
pair (L, R).

Choose L and R to be a dual pair in the usual sense. Then define the
unit and counit of the adjunction L* 4 R* as follows.

A L R A
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This does give an adjunction L* 4 R*. The triangle identities 3.7 and
3.8 correspond to the following tangles being identities, which they are.

L R A

|

/

ol

S S

L A R A

7S

To see that condition 3.5 is not satisfied, note the following.

A B A B
. \ ) s
/ﬂ
/ /

R L A B R L A B

To see that condition 3.6 is not satisfied, note the following.

L R A B L R A B

/ J /
CAgB = \> * =(4®B
S S
A B A B

3.4.3 Invertibility of «

In this section, we will prove a result concerning the associator o and its
interaction with dual pairs in a skew monoidal category.
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Proposition 3.4.5 (invertibility of «). In a skew monoidal category, if we
have a dual pair L* 4 R*, then the natural transformation

ap——: (RO (-0 -))=(R®-)®-)
1s tnvertible.

Corollary 3.4.6. Let C be a skew monoidal category. If each object of C
has a left dual, then the associator « is invertible.

Proof. The inverse of agr 4 p is the adjunct under the adjunction L* 4 R*
of the following morphism.

Lo (R®A) @ B) 22842 (1o (Re A) e B 225 A0 B
Explicitly, the inverse of ar 4 p is defined as follows.

O(roA)oB
s

R (L®(R®A)®B))

R®ar rea,B
—

O‘]E}A,B: (R A)® B
R®(L®(R® A)® B)

RECa®B), p o (Aw B)

We use the following notation for a natural transformation obtained by fixing
all but one of the variables on which a~! depends.

R* B, R* B,
L Q
al_%,lf,B = T =
B, R* B, R*

To see that a]}’lAB is a right inverse of ar 4 p, note the following.

R* B,

R* B,
AN
> @
)
R* B

*
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R* B,
R* B,
e R* B,
@ @ (®) @ |
R* B,
R* B,
R* B,

Step (1) is the definition of a~!. Step (2) is naturality. Step (3) is condition
3.5. Step (4) is the triangle identity 3.8 for the adjunction L* 4 R*.
To see that a}_zlA g is a left inverse of ag 4 p, note the following.

B, R*
B, R* ¢
/
O Y =
AN
B, R*

B* R*

B, R*
B, R*
@ @ @ @ ]
B, R*

B, R*

B* R*
Step (1) is the definition of a~!. Step (2) is naturality. Step (3) is condition
3.6. Step (4) is the triangle identity 3.8 for the adjunction L* 4 R*. O

3.5 Closed Skew Monoidal Categories

In §3.4, we gave a definition of a dual pair in a skew monoidal category. In
this section, we will give a definition of a dual pair in a closed skew monoidal
category. We will show that, in a closed skew monoidal category, where both
definitions apply, these definitions agree.

3.5.1 Lemmas

Before mentioning dual pairs in closed skew monoidal categories, we will
prove some lemmas which we will need.
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In any closed skew monoidal category, we can define a morphism
VAB,C: (A\B) ®C— A\(B® ()
as the adjunct under the adjunction A* 4 A' of the following morphism.
A

QA A\B,C €
ey

® ((A\B) ® C) (A® (A\B)eC 2% BgC

Explicitly, the morphism v4 g ¢ is defined as follows.

Vape: (A\B)® C TAB5C A\ (4o (A\B)® C))
Aanse \ (A (A\B) ® C)
A\(e48C) A\(B®C)

We use the following notation for a natural transformation obtained by fixing
all but one of the variables on which v depends.

Al O, A O,

Lemma 3.5.1 (v-n Lemma). The following diagram commutes.

B C
773% %@C
\(A® (B®(C)) (A\(A® B))

A\aAA %A@Bc

A\(A® B)®C)

Proof. Viewing the vertices of this diagram as functors in the variable B
gives the following equivalent condition.

C, C,
AN /
A ¢, A A ¢, A
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We can prove this as follows.

A O, A

Step (1) is the definition of v. Step (2) is naturality. Step (3) is the triangle
identity 2.6 for the adjunction A* - A" O

Lemma 3.5.2 (v-¢ Lemma). The following diagram commutes.

((A\B) ® C)

A®VA17 %A\BC

® (A\(B ® C)) (A® (A\B))

ng AQ@C

BC

Proof. Viewing the vertices of this diagram as functors in the variable B
gives the following equivalent condition.

At C, A A C, A*

d-¥
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We can prove this as follows.

At C, A

Ao, oA
\
\ W
o

Step (1) is the definition of v. Step (2) is naturality. Step (3) is the triangle
identity 2.6 for the adjunction A* 4 A'. O

Lemma 3.5.3 («a-v pentagon identity). The following diagram commutes.

(A\B)® C) @ D
aA\y wc*@l?
(A\B) ® (C ® D) (A\(B ® C))

VA B,C®D VA BRC,D

A\(B® (C® D)) Ao A\(B®C)® D)

Proof. Viewing the vertices of this diagram as functors in the variable B
gives the following equivalent condition.

A(CeD), A(CeD),
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We can prove this as follows.

C, D, A C, D, A

Step (1) is the definition of v. Step (2) is naturality. Step (3) is the triangle
identity 2.6 for the adjunction A* 4 A'. Step (4) is condition 2.1. Step (5)
is naturality. Step (6) is the definition of v. O
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Lemma 3.5.4 (p-v triangle identity). The following diagram commutes.

(A\B) ® \(B®1T)
P B

A\\/p

Proof. Viewing the vertices of this diagram as functors in the variable B
gives the following equivalent condition.

AT, Al T,
5/ \ 4)
A A

We can prove this as follows.

5§

Step (1) is the definition of v. Step (2) is naturality. Step (3) is condition 2.4.
Step (4) is naturality. Step (5) is the triangle identity 2.6 for the adjunction

A4 AL =
3.5.2 Uniqueness of Adjoints

Recall some standard facts about uniqueness of adjoints, which we will make
use of later. Let L and R be two objects in a closed skew monoidal category.
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If we have an adjunction L* 4 R*, then there is a natural isomorphism
¢: L' =2 R* between the two right adjoints of L*. The components of this
isomorphism, and of its inverse, are given as follows.

a: VA Y R (Le (V) 224 Re A (3.11)
el Ro AT I\ (Lo (Re 4) 2%, 104 (3.12)

Step (1) is the definitions of ¢~! and &. Step (2) is naturality. Step (3) is
the triangle identity 2.6 for the adjunction L* 4 L'. Step (4) is the triangle
identity 3.8 for the adjunction L* 4 R*.

To see that €71 is a left inverse of £, note the following.

!
L I
W @
|
L!

Step (1) is the definitions of ¢ and ¢!, Step (2) is naturality. Step (3) is
the triangle identity 3.7 for the adjunction L* 4 R*. Step (4) is the triangle
identity 2.7 for the adjunction L* 4 L'.
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Similarly, if we have a natural isomorphism &: L' = R*, then there is an
adjunction L* 4 R*. The unit and counit for this adjunction are given as
follows.

L
0a: AT \(LoA) 224 Re (Lo A) (3.13)
Lee,! ek
Ca: Lo (R A) “245 Do (I\A) 2 A (3.14)
0 = =

I* B L* R
R L~ R* L*
¢ = _

To see that the triangle identity 3.7 holds, note the following.

L*
L*
a <:> @
L*

L*

Step (1) is the definitions of # and (. Step (2) is £~! being a left inverse of
€. Step (3) is the triangle identity 2.6 for the adjunction L* 4 L.
To see that the triangle identity 3.8 holds, note the following.

R R* R*
@) o ERON0
R* R* R*

Step (1) is the definitions of 6 and (. Step (2) is naturality. Step (3) is the
triangle identity 2.7 for the adjunction L* 4 L'. Step (4) is £~! being a right
inverse of &.

It can easily be checked that this gives a one-to-one correspondence be-
tween such adjunctions and such isomorphisms.
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3.5.3 Definition

In a closed skew monoidal category, there is a definition of a dual pair,
equivalent to the definition introduced in §3.4, involving the closed structure.

Proposition 3.5.5. In a closed skew monoidal category, if we have a dual
pair L* 4 R* and a corresponding natural isomorphism &: L' = R*, then the
following diagram commutes.

(I\A)© B —"  \(4e B)
EAa® B aoB
(R A)® B R® (A® B)
OR.A,B (3.15)

Proof. Viewing the vertices of diagram 3.15 as functors in the variable A,
and considering Lemma (3.4.5), gives either of the following two equivalent
conditions.

R* B, R* B,

We can prove the first of these as follows.
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L' B,

!

B,
()
* B,

S

—
=
—~
ot
=

I
FAtE
o

(o) L
(4)
/ R

R* B,

Step (1) is the definition of v and £. Step (2) is naturality. Step (3) is the
triangle identity 2.6 for the adjunction L* 4 L'. Step (4) is condition 3.5.
Step (5) is the definition &. O

We have shown that a natural isomorphism of this sort exists whenever
we have a dual pair. Now we must show the converse: that every such
natural isomorphism is of this form. Then we can conclude that the two
notions of dual pair are equivalent.

Proposition 3.5.6. In a closed skew monoidal category, if we have a natural
isomorphism &: L' = R* satisfying condition 3.15, then the corresponding
adjunction L* 4 R* forms a dual pair.

Proof. We must check conditions 3.5 and 3.6.
To see that condition 3.5 holds if condition 3.15 holds, note the following.

L* R* B,
B,
n B
() . « B,
® w (@ ®
o
L* R* B,
L* R* B,
/
L* R* B,

Step (1) is the definition of 6. Step (2) is naturality. Step (3) is Lemma
3.5.1. Step (4) is condition 3.15. Step (5) is the definition of 6.
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To see that condition 3.6 holds if condition 3.15 holds, note the following.

B, R* L* B, R* L*
B, R* L*

\
)

B, R* L*
A B, R* L*
o) 5) \
g = ¢
K
B,
B,

Step (1) is the definition of ¢. Step (2) is naturality. Step (3) is Lemma
3.5.2. Step (4) is condition 3.15. Step (5) is the definition of (. O

We have shown that, in a closed skew monoidal category, an isomor-
phism satisfying condition 3.15 is the same as a dual pair. This justifies the
following definition.

Definition 3.5.7 (dual pair in a closed skew monoidal category). A dual
pair in a closed skew monoidal category consists of:

e a pair of objects L, R € ob(C, and

e a natural isomorphism ¢: L' & R*;

such that the diagram 3.15 commutes. We refer to L as the left dual and R
as the right dual.

Recall our running example of finite-dimensional vector spaces.

Example 3.5.8. Choose a field K. The category VECTk of K-vector spaces
and K-linear maps is a closed symmetric monoidal category; in particular,
it is a closed skew monoidal category, and the definition introduced in this
chapter applies to it. Let U be a finite-dimensional K-vector space with
basis {u;}icr. Then U has a right dual V' of the same dimension as U with
basis {v'};c;. The natural isomorphism ¢: U' 2 V* is defined as follows.

v U\W=VeW  fo> o' flu)
el
This construction is independent of the choice of basis of U; two different

choices of basis would result in two different constructions for the right dual,
but they would be canonically isomorphic.
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3.5.4 Invertibility of v

In this section, we will prove a result concerning the natural transformation
v and its interaction with dual pairs in a closed skew monoidal category.

Proposition 3.5.9 (invertibility of v). In a closed skew monoidal category,
if we have a dual pair €: L' = R*, then the natural transformation

Vi, ——: (L\=) ® =) = (L\(- ® —))
1s tnvertible.

Corollary 3.5.10. Let C be a closed skew monoidal category. If each object
of C has a right dual, then the natural transformation v is invertible.

Proof. By condition 3.15, the inverse is defined as follows.
vitip I\(A® B) $458, R (A® B)
QR,A,B (Ro A)® B

498 (\A)e B

3.6 Closed Monoidal Categories

In §3.5, we gave a definition of a dual pair in a closed skew monoidal category.
In this section, we will give a definition of a dual pair in a closed monoidal
category. We will show that, in a closed monoidal category, where both
definitions apply, these definitions agree.

3.6.1 Definition

In a closed monoidal category, there is a definition of a dual pair, equivalent
to the definition introduced in §3.5, involving the closed structure and the
monoidal unit.

Proposition 3.6.1. In a closed monoidal category, if we have a dual pair
&: L' = R*, then we have an isomorphism

£ INT 5 RoT %R,

and £ is determined by é, as follows.

1/71 I8
£a: INA 2% D70 4) 24 (D)9 A A Re A (3.16)
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Proof. Consider the following diagram.

L\\ Vi3
I\A W INZ®A4) —2 (\T)eA
&0 A
€A ERA
R® A (RRI)® A

PR ® A

The leftmost square commutes by naturality of £&. The rightmost square
commutes by condition 3.15. The triangle commutes by condition 2.3. [

We have shown that an isomorphism of this sort exists whenever we have
a dual pair. Now we must show the converse: that every such isomorphism
can be extended to a natural isomorphism corresponding to a dual pair.
Then we can conclude that the two notions of dual pair are equivalent. In
order to ensure that &4, as defined in equation 3.16, is an isomorphism, we
must also require that the natural transformation vy 7 _ be invertible. In
fact, in §3.6.2, we will show that it suffices to only assume that the morphism
vr, 7,1, is invertible.

Proposition 3.6.2. In a closed monoidal category, if we have an isomor-
phism &: L\Z = R and if the natural transformation

viz—: (L\T) © =) = (L\(Z ® —))

is invertible, then we have a dual pair &: L' = R*, with & defined by equation
3.16.



3.6. CLOSED MONOIDAL CATEGORIES 47

Proof. To see that condition 3.15 holds, consider the following diagram.

(I\A)® B YLAB I\(A@ B)
(L\\4) @ B I\Au® B) L\ ios
(INT® 4) 08 - IN(T© 4)© gi(gﬁ(z ® (A® B))
VL_,lz,A ® B VL_,lz,A®B
(L\Z)® A)® B R (L\Z) ® (A® B)
E®A)eB £ (A® B)
(R® A)® B T R® (A® B)

The upper square commutes by naturality of v. The triangle commutes by
condition 2.2. The pentagon commutes by Lemma 3.5.3. The lower square
commutes by naturality of a. O

We have shown that, in a closed monoidal category, an isomorphism
&: L\Z = R for an object L for which the natural transformation vy 7z _ is
invertible is the same as a dual pair. This justifies the following definition.

Definition 3.6.3 (dual pair in a closed monoidal category). A dual pair in
a closed monoidal category consists of:

e a pair of objects L, R € ob(C, and
e a isomorphism &: L\T = R;

such that the natural transformation vy 7 _ is invertible. We refer to L as
the left dual and R as the right dual.

Recall our running example of finite-dimensional vector spaces.

Example 3.6.4. Choose a field K. The category VECTk of K-vector spaces
and K-linear maps is a closed symmetric monoidal category; in particular, it
is a closed monoidal category, and the definition introduced in this chapter
applies to it. Let U be a finite-dimensional K-vector space with basis {u; }ier.
Then U has a right dual V of the same dimension as U with basis {v'};c;.
The natural isomorphism £: U\K = V is defined as follows.

EUNK=V [ ) flug)-of

i€l



48 CHAPTER 3. DUAL PAIRS

This construction is independent of the choice of basis of U; two different
choices of basis would result in two different constructions for the right dual,
but they would be canonically isomorphic.

3.6.2 Invertibility of v

We have shown that, in a closed monoidal category, if an object L has a
right dual, then the right dual is always isomorphic to L\Z. Thus, we may,
without loss of generality, assume that the right dual is L\Z.

Furthermore, we will show that we can weaken the condition that the
natural transformation vz 7 _ is invertible to the condition that the mor-
phism vy, 71, is invertible.

Lemma 3.6.5. In a closed monoidal category, if we have an object L for
which the morphism v, 7.1, is invertible, then we have a dual pair (in the
sense introduced in §3.3) (L, L\T), with evaluation and coevaluation mor-
phisms defined as follows.

L
evi L@ (I\T) 5T

—1

Ier INT® L) 225 (I\D) ® L

L\\L

L
coev: T - L\(L ® T) I\L

Proof. To see that condition 3.1 holds, consider the following diagram.

L®T
L®nk
L& (L\(L®1I)) L®T
€LeT
L® (L\pz) oL
L@ (L\L) L
er
L® (L\\r) ALt
Le(INT®L) ———Tel
€I®L
Levpry, e7®L

oLz (L ® (L\T))L

The anticlockwise path around the outside from L to L is the morphism
3.1 we wish to show is an identity. The triangle commutes by the triangle
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identity 2.7 for the adjunction L* 4 L'. The middle two squares commute
by naturality of e. The lower square commutes by Lemma 3.5.2.

To see that condition 3.2 holds, consider the following diagram.

NI iz I\(L @ (I\T))
A\T . L\(L ® Ap\z)
Ten B (e (Te (D)
ng @ (L\T) L\ap 101
(L e D)o () 22 (Lo D) e (I\D)
(L\pr) @ (L\T) L\(pr @ (I\D))
(D)@ (N ——2 (e (1\D)
(I\As) @ (I\T) I\ ® (I\))
(T e D) e (I\T) — 2 (T e L) e (1\D)
VZ}Z,L ® (L\Z)
(I\) ® L) @ (L\T) L\az} 1z
aZ\lz,L,L\I
(I\D) @ (L ® (I\T) ”L’ZTI‘L;;L;:\@ © (L® (I\T)
(I\T) @ :
(D o T 2 (T I>/ LA
PINT
I\T /\Afl L\(L ® (I\T))

The left path is the morphism 3.2 we wish to show is an identity. The
right path is an identity by conditions 2.3 and 2.2. The remaining clockwise
path around the outside is an identity by the triangle identity 2.7 for the
adjunction L* 4 L'. The six squares commute by, from top to bottom:
naturality of 1, Lemma 3.5.1, naturality of v, naturality of v, naturality
of v, and naturality of \. The pentagon commutes by Lemma 3.5.3. The
triangle commutes by Lemma 3.5.4 and condition 2.5. O
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3.7 Conclusion

We have considered definitions of dual pairs in monoidal categories, skew
monoidal categories, closed skew monoidal categories and closed monoidal
categories. Consider the following diagram, where arrows indicate special-
isation; that is, any definition which makes sense in one structure can be
transported along an arrow to a more specific structure, in which it will still
make sense.

SkeW Monoidal
Monoidal .
. Categories
Categories
(53.4) (83.3)
CSIE sed Closed
e‘.N Monoidal
Monoidal .
. Categories
Categories
(53.5) (83.6)

In §3.3, we recalled the definition of a dual pair in a monoidal category.
In §3.4, we gave a definition of a dual pair in a skew monoidal category
and showed that, in any monoidal category, it agrees with the definition
given in §3.3. In §3.5, we gave a definition of a dual pair in a closed skew
monoidal category and showed that, in any closed skew monoidal category,
it agrees with the definition given in §3.4. In §3.6, we gave a definition of
a dual pair in a closed monoidal category and showed that, in any closed
monoidal category, it agrees with the definition given in §3.5. It is known in
the literature that, in a closed monoidal category, the two definitions of dual
pair introduced in §3.3 and §3.6 are equivalent, at least in the symmetric
case. See, for example, [13].

Thus, in a closed monoidal category, the most specific of the four struc-
tures we have considered, in which all four definitions apply, we have shown
that all four definitions agree. This can be summarised with the following
theorem.

Theorem 3.7.1. In a closed monoidal category, given a pair of objects L
and R, the following are equivalent.

e A pair of morphisms

ev: LR —T coev: LT > R®L
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satisyfing conditions 3.1 and 3.2.

e An adjunction
L*4R*

satisfying conditions 3.5 and 3.6.

e A natural isomorphism

L' R
satisfying condition 3.15.

e An isomorphism X
& L\IT=R

and an inverse to the morphism

VLT,L: (L\I) XL — L\(I@ L)

Furthermore, if the above conditions hold, then the natural transformation
vi,——: (L\=) ® =) = (L\(-® -))

1is tnovertible.
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Semidirect Products of Skew
Monoidal Categories
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4.1 Introduction

The main ingredient of a group semidirect product is an action of a group G
on another group K; this can be concisely defined as a group homomorphism
from G to the group of group automorphisms on K. It is straightforward to
generalise this to semidirect products of monoids. In this chapter, we will
categorify semidirect products of monoids to semidirect products of skew
monoidal categories.

In §4.2, we will explain how to categorify the notion of actions of monoids
to actions of skew monoidal categories. Instead of a monoid homomorphism
from a monoid to the endomorphism monoid of another monoid, we use a
monoidal functor from a monoidal category to the endofunctor category of
another monoidal category. Some care must be taken in choosing which sorts
of functors between monoidal categories we wish to consider. The majority
of this section is devoted to examining the coherence data and conditions
involved in this definition.

In §4.3, we will explain how to categorify the notion of semidirect prod-
ucts of monoids to semidirect products of skew monoidal categories. The
majority of this section is devoted to proving the coherence conditions in-
volved in this definition.

In §4.4, §4.5, §4.6 and §4.7, we will give sufficient conditions for a semi-
direct product skew monoidal category to be a monoidal category, be a left
closed skew monoidal category, contain a dual pair, and be a right closed
skew monoidal category, respectively.

Several examples in this chapter will involve generalised metric spaces,
as described by Lawvere [19]. Because of this, we will now give a brief
description of the closed symmetric monoidal category of generalised metric
spaces, which we will denote by MET.

Let [0, 00] denote the set of non-negative real numbers and positive in-
finity.

Definition 4.1.1 (generalised metric space). A generalised metric space M
consists of the following.

e A set ob(M).
e A metric function M : ob(M) x ob(M) — [0, c0].
In addition to this, the metric must satisfy the following conditions.

e For all m € ob(M),
M(m,m) = 0.

e For all my,mg, m3 € ob(M),

M(ml,mg) + M(mg, m3) > M(ml,mg).
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Definition 4.1.2 (morphism of generalised metric spaces). Let M and N
be generalised metric spaces. A morphism f: M — N is a distance-non-
increasing map. Explicitly, this is a function

f: ob(M) — ob(N)
satisfying the condition that, for all mj, mg € ob(M),
M(ma,mz2) > N(f(ma), f(m2)).

Definition 4.1.3 (tensor product of generalised metric spaces). Let M and
N be generalised metric spaces. The tensor product M ® N is defined as
follows.

e An object of M ® N consists of an object of M and an object of V.

ob(M ® N) = ob(M) x ob(N)

e The metric is defined as follows.

(M @ N)((m1,n1), (m2,n2)) = M(m1,m2) + N(n1,n2)

Definition 4.1.4 (internal hom of generalised metric spaces). Let M and N
be generalised metric spaces. The internal hom M\N is defined as follows.

e An object of M\N is a morphism M — N.

ob(M\N) = MET(M, N)

e The metric is defined as follows.

(M\N)(f,9) = sup N(f(m),g(m))

4.2 Actions

In this section, we will explain how to categorify the notion of actions of
monoids to actions of skew monoidal categories. We will then spend some
time going through, in detail, all of the data making up such an action. We
will assume familiarity with the concepts of strong, lax and oplax monoidal
functors, and monoidal natural transformations.

As is often the case when categorifying, there are some choices to be
made as to the direction certain morphisms should take and whether or not
they should be invertible. We will focus on one such choice, which happens
to be convenient for our definition of semidirect products of skew monoidal
categories, and call it simply a weak action.
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Definition 4.2.1 (weak action). Let X and C be skew monoidal categories.
A ‘weak action’ of X on C is a lax monoidal functor I' from X to [C, Cloplax,
the strict monoidal category of oplax monoidal endofunctors on C and mon-
oidal natural transformations between them with tensor product given by
functor composition; i.e. (F ® G)(C) = F(G(C)).

There is quite a bit of data involved in this definition, so we will spend
some time going through the structure maps involved.

Firstly, we have the action of I' on objects. For every object X € X, we
have an oplax monoidal endofunctor on C, denoted as follows.

(-)¥:c—>c

We will denote the structure maps for this oplax monoidal endofunctor as

follows.
epo (BRC)X > BY*eCcY NIV T

The conditions that these must satisfy are that the following three diagrams
must commute.

(apc)®
(A® (B® )X (A B)® C)X
80,)4(,B®c 901)4(®B,C
AX ® (B®O0)X (A® B)X ® cX
AX @ ¥ - QOXB@CX
OéAX’BX cX
cX CX 1%
()‘CV YX Yc,r Y ® GX
(IToC)X I®CcYX (CeI)¥ CXoT
YI,c A ®CX (PCN %
IX ® CX CX

Secondly, we have the action of I' on morphisms. For every morphism
f: X = Y in X, we have a monoidal natural transformation (—)/: (—=)* —
(—)Y. The conditions that this natural transformation must satisfy in order
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to be a monoidal natural transformation are that the following two diagrams
must commute.

(B C)f
(B 0)X (BeC)¥
X v
¢B.C \ /

In addition to this, the functor I itself is lax monoidal. We will denote
the structure maps for I' as follows.

v (CX - oXSY e 0 = OF

The conditions that these must satisfy are that the following three diagrams
must commute. Note that the monoidal category [C,Cloplax, Which is the
target of I', is strict, so some of the edges in these diagrams are identities.

(c?)M* (c7)M*
()X vy
(CY®Z)X (CZ>X®Y
Q/JX Y®RZ wé(@Y,Z
CXe(Y®eZz) Covy oXey)ez
CX (CI)X
oA (%V vt
CX CI®X CX CX®I
&CX ¢g,X \ Crx
(c*)* cX

Finally, the components of the structure maps for I' are morphisms in
[C, Cloplax, which means that they are monoidal natural transformations.
The structure map

¢é(,Y: (CY)X N CX®Y
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being a monoidal natural transformation corresponds to the following two
diagrams commuting.

VBac
(B C)V)X “ (B® 0)XeY Y
(IY)X L IX®Y
(@E c)X
(BY @ CV)X (pg%y (@)X
IX
A X QY
@féy}cy ¢re
o X
(BY)X ® (CY)X T e BX®Y ® CX®Y 2
Vg @Yy’ A
The structure map X
Yo C— CI

being a monoidal natural transformation corresponds to the following two
diagrams commuting.

B®C%(B®C 3
B®C BT g C? \/
V5 @ o

4.3 Skew Monoidal Categories

In this section, we will explain how to categorify the notion of semidirect
products of monoids to semidirect products of skew monoidal categories.

Definition 4.3.1 (semidirect product). Given a weak action of a skew mon-
oidal category X on a skew monoidal category C, we can define a semidirect
product skew monoidal category, C x X. The underlying category of C x X
is C x X, and we will denote an object (C, X) € Cx X by (C, X). The tensor
product is defined as follows.

(B, X)®(C,Y)=(BeCX,X®Y)
The monoidal unit is defined as follows.

T =(I,7)
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In order to define the associator and unitors, it suffices to define their images
under the projection functors 7y and m¢.

CLECxx ™5 X
The associator « is defined as follows. The component
(A X) (B,Y),(C,Z)+ <A7 X> ® <<B’ Y> ® <Ca Z>> - <<Aa X> ® <B7 Y>> ® <Cv Z>

is the morphism whose images under my and m¢ are the following pair of
morphisms, respectively.

XY,z

Xo(Y®2) 2% (XeY)e Z

A®@X
A®w®cﬂX—JﬁiA®wX®wﬂﬂ
ABX(C (A@BX) (CY)X

A BX 5
(A® )®7/’C (A®BX) ®CX®Y

The left unitor M is defined as follows. The component
)‘(C’,X>: <C, X> —I® <C,X>

is the morphism whose images under my and 7¢ are the following pair of
morphisms, respectively.

XX 7TeXx

02 190 I8 16 0T

The right unitor p is defined as follows. The component
PlC,X)+ <C7X> ®L— <CaX>

is the morphism whose images under 7wy and 7e are the following pair of
morphisms, respectively.

X2 X
Y AR AN Ny

In order to show that C x X is a skew monoidal category, we must show
that the pentagon identity 2.1, the three triangle identities 2.2, 2.3 and 2.4,
and the unitor identity 2.5 hold. However, in order to show that a diagram
commutes in C x X, it suffices to show that its images under the projection
functors my and me commute. And, since the images of the associator and
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unitors under the projection functor 7wy are just the associator and unitors in
X, which is a skew monoidal category, the images of the pentagon diagram,
the three triangle diagrams and the unitor diagram under the projection
functor mx do commute. Hence, we only need to show that the images of
the pentagon diagram, the three triangle diagrams and the unitor diagram
under the projection functor m¢ commute.

Lemma 4.3.2. The pentagon identity 2.1 holds.

Proof. We will consider the pentagon identity as it applies to the four objects
(A, W), (B, X), (C,Y) and (D, Z). Throughout this proof, we will denote
tensor products by juxtaposition, for notational convenience. In this case,
the five different bracketings which form the vertices of the pentagon are as
follows.

(A, W)((B, X)((C,Y)(D, Z))) = (A(B(CDY )" ). W(X(Y 2)))
(A, W)(((B, X)(C,Y))(D, Z)) = (A(BCT) DXV, W((XY)Z))
(A, W) (B, X)(C,Y)I(D, Z) = ((ABC)) DY) (W (XY)) Z)
(A, W)(B, X))(C,Y))(D, Z) = (AB")C"*) DWWV (WX)Y)Z)
(A, W)(B, X))((C.,Y)(D, Z)) = (AB")(CDY)VX (WX)(Y 2))

The image under 7¢ of the pentagon diagram is shown in Figure 4.1. ]

Lemma 4.3.3. The triangle identities 2.2, 2.3 and 2.4 hold.

Proof. In the case of the first triangle identity 2.2, the three different brack-
etings which form the vertices of the triangle are as follows.

(Z®(B,Y)®(C,Z2)=((ZT@BH) o™ (IeY)® 2Z)
I® (B, Y)®(C,Z2)={TI®BoCY,Ie (Y ®2Z))
(B,Y)®(C,Z)=(BoCY,Y ® Z)

The image under 7¢ of the first triangle diagram is shown in Figure 4.2.
In the case of the second triangle identity 2.3, the three different brack-
etings which form the vertices of the triangle are as follows.

(A X)RT)®(C,Z)=(ATX) 0 CX®T (X @ T)® Z)
(A, X)®(IT®(C,2)=(A2 (T2 0H)X X o (I® 2))
(A, X)®(C,Z)= (A CX, X @ Z)

The image under m¢ of the second triangle diagram is shown in Figure 4.3.
In the case of the third triangle identity 2.4, the three different bracket-
ings which form the vertices of the triangle are as follows.

(A, X)® (B, Y)®T={(A®BYa@I*®Y (XQY)®1I)
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Te (Be Y —{¢}— e (BT (CY)) —[a}— (ZTo BY) & (CY)F —{ ¢} — (T o BY) © (7Y

o] B B B
(BeCY)? [¢] BT @ (CY)? BT (CY)E 5] BT o (T3Y
o i B
B® (CY)X B&(CY Y 5] B oTeY
d IS
BoCY BeoCY

Figure 4.2: Proof of the first triangle identity in a semidirect product skew monoidal category.
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(A, X)® ((B,Y)®T)=(A® (BRIV)*, X (Y ® 1))
(A, X)®(B,Y)=(A®BX, X®Y)

The image under m¢ of the third triangle diagram is shown in Figure 4.4.

O]

Lemma 4.3.4. The unitor identity 2.5 holds.

Proof. The image under m¢ of the unitor diagram is the following.

7z 7z
)\I Pz
I1®71 I1®7T
I® 1/31 I® @I
I®I*

O]

We will now give some examples of semidirect product skew monoidal
categories.

Example 4.3.5. Let X = {x}, the monoidal category with one object and
one morphism. Let C be a monoidal category. Then a weak action of X
on C endows the endofunctor (—)* with the structure of an oplax monoidal
monad on C; in fact, all oplax monoidal monads are of this form. Given such
a weak action, the resulting semidirect product C x X is a skew monoidal
structure on C x {x} = C, with tensor product defined as follows.

(B,%) ® (C,x) = (B® C*, %)

This is what is referred to by Szlachanyi [25] as the skew monoidal category
‘represented’ by the oplax monoidal monad (—)*.

Example 4.3.6. This example involves generalised metric spaces, as de-
scribed by Lawvere [19]. Let X be [0, 00|, the category whose objects are
the non-negative real numbers and positive infinity, with a unique morphism
x — y if and only if x < y, with min as the tensor product and co as the
monoidal unit. Let C be MET, the closed symmetric monoidal category of
generalised metric spaces. Then there is a weak action of X on C, given by
truncation, in which the underlying set of M® is the same as the underlying
set of M, but with a new truncated metric, defined as follows.

M*(m,m’) = min(z, M (m,m"))
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The structure map ¢ for this action is not invertible; this is a consequence
of the following inequality not being an equality.

min(z, M (m,m') + N(n,n')) < min(z, M (m,m’)) + min(z, N(n,n’))

The resulting semidirect product C x X is a skew monoidal structure on
MET x [0, 00|, with tensor product defined as follows.

(M,z) @ (N,y) = (M ® N min(z,y))
The metric on the generalised metric space M ® N¥ is given as follows.

(M @ N*)((m,n), (m',n")) = M(m,m') + min(z, N(n,n’))

4.4 Monoidal Categories

In this section, we will give a sufficient condition for a semidirect product
skew monoidal category to be a monoidal category.

Definition 4.4.1 (strong action). Let X and C be monoidal categories. A
‘strong action’ of X on C is a weak action of X on C in which all of the
structure maps below are invertible.

epor (BRC)X > BY*eCcY NIV T

oY (CX = XY e 0 = OF

Equivalently, this is the same as a strong monoidal functor I' from X to
[C, Clstrong, the strict monoidal category of strong monoidal endofunctors on
C and monoidal natural transformations between them with tensor product
given by functor composition; i.e. (F ® G)(C) = F(G(C)).

Theorem 4.4.2. Let X and C be monoidal categories. Let there be a strong
action of X on C. Then the semidirect product C x X is a monoidal category.

Proof. In order to show that a skew monoidal category is a monoidal cate-
gory, it suffices to show that the coherence data is invertible. Each coherence
morphism in C x X is a pair of morphisms, whose first component is a com-
posite of coherence data in C and the structure maps of the action, and
whose second component is a single coherence morphism in X. Since all of
these are invertible, it follows that the coherence data in C x X is invertible,
and that C x X is a monoidal category. O

The semidirect products of monoidal categories introduced here are a
special case of the distributive laws for pseudomonads introduced by Mar-
molejo [22]. A monoidal category can be regarded as a pseudomonad in the
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1-object 3-category obtained as the delooping of the cartesian monoidal 2-
category CAT. A strong action of one monoidal category on another is then
a distributive law between these pseudomonads which is partially trivial in
a particular sense.

In a distributive law of this kind, there is not only an action of X on C,
but also an action of C on X. These combine into a single functor of the
form

XxC—=>CxX

which must satisfy some coherence conditions generalising those we have
already defined. The semidirect products of monoidal categories introduced
here can be viewed as distributive laws in which the action of C on X is
trivial.

We will now give some examples of semidirect product monoidal cate-
gories.

Example 4.4.3. Let C be a closed cartesian category. Let X = C°P. Then
there is a strong action of X on C using the internal hom, defined as follows.

cX =X\C

The resulting semidirect product C x X is a monoidal structure on C x C°P,
with tensor product defined as follows.

(B, X)®(C,Y)=(Bx (X\C),X xY)

Example 4.4.4. Let C be a closed cartesian category with finite coproducts.
Let X be C, with binary coproducts as the tensor product and the initial
object as the monoidal unit. Choose an object J in C. Then there is a strong
action of X on C using the internal hom, defined as follows.

cX = (X\J)\C

The resulting semidirect product C x X is a monoidal structure on C x C,
with tensor product defined as follows.

(B,X)®(C,Y)=(Bx((X\J))\C),X+Y)

Example 4.4.5. Choose a category J, and a monoidal category M. Let
X be [T, J], the strict monoidal category of endofunctors of 7 and natural
transformations between them with tensor product given by functor compo-
sition; i.e. (F® G)(J) = G(F(J)). Let C be [J, M]; this category inherits a
monoidal structure from that of M. Then there is a strong action of X on
C given by composition, defined as follows.

CX=CoX

The resulting semidirect product C x X' is a monoidal structure on [J, M] x
[T, J], with tensor product defined as follows.

(C,G)® (B, F) =(C®(BoG),FoG)
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Example 4.4.6. As a specific case of the previous example, let J be a group
G, considered as a 1-object groupoid, and let M be VECT, the category
of vector spaces and linear maps. Then X is a category whose objects are
endomorphisms of G and C is REP(G), the category of linear representations
of G. The resulting semidirect product C x X is a monoidal structure on
REP(G) x [G, G|, with tensor product defined as follows.

U, fHeV.g)={Ue [ (V).gof)

Example 4.4.7. This example involves generalised metric spaces, as de-
scribed by Lawvere [19]. Let & be the strict closed symmetric monoidal
category {F — T} of truth values, with tensor product given by logical
conjuction and internal hom given by logical implication. Let C be MET,
the symmetric monoidal category of generalised metric spaces. Then there
is a strong action of X on C, in which the underlying set of M? is the same
as the underlying set of M, but with a new metric, defined as follows.

MT(m,m’) = M(m,m)

MF () = 0 %fM(m,m’):O
oo if M(m,m') >0

The resulting semidirect product C x X is a monoidal structure on MET X
{F — T}, with tensor product defined as follows.

(M,z) ® (N,y) = (M & N*,x A y)

The metric on the generalised metric space M ® N with underlying set
M x N is given as follows.

(M @ NTY((m,n),(m',n')) = M(m,m') + N(n,n’)
M(m,m') if N(n,n")=0

F oY —
(M &N )((mm),(m’”))—{oo if N(n,n') >0

4.5 Left Closed Structures

In this section, we will give a sufficient condition for a semidirect product
skew monoidal category to be left closed.

We might hope for the following to hold. Compare this to Conjecture
4.7.1.

Conjecture 4.5.1. Let X and C be left closed skew monoidal categories.
Let there be a weak action of X on C. Then the semidirect product C X X is
a left closed skew monoidal category.
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However, this conjecture is false, as we will now show. Consider Example
4.4.7; we will show that tensoring on the left by (1, F') does not preserve
colimits. Denote by D, the generalised metric space consisting of two points
separated by a distance t in each direction. There is an obvious morphism
Dy — Dy whenever s > t. Consider the following diagram.

<D%,T> — <D%,T> — <D%,T> — <D%,T> —

Since colimits are calculated pointwise, the colimit of this diagram is the
object (Do, T). The image of this diagram under the functor ((1, F) ® —) is
the following diagram.

The colimit of this diagram is the object (Do, F'). Thus, if tensoring on the
left by (1, F') were to preserve colimits, we would expect an isomorphism of
the following form.

(1, F) ® (Do, T) = (Do, F)

However, the left hand side of this equation evaluates as follows.
<17F> ® <D07T> = <D0’F>

Thus, no such isomorphism exists, so tensoring on the left by (1, F') cannot
preserve colimits, and so C x X cannot be left closed. This provides a
counterexample to Conjecture 4.5.1.

However, the following weaker result does hold.

Theorem 4.5.2. Let X and C be left closed skew monoidal categories. Let
there be a weak action of X on C such that each oplaxz monoidal endofunctor
(—)X has a right adjoint, denoted (—)x. Then the semidirect product C x X
1s a left closed skew monoidal category, with internal hom defined as follows.

(4, X\, 2) = (A\C)x, X\2)

Proof. We have the following natural isomorphism of hom sets.

(CxX)(A,X)®(B,Y),(C,Z)=(CxX) (A2 BX, X ®Y),(C, Z))
CA®BYX,C)x X(XQY,Z)
C(BX,A\C) x X(Y,X\2)

C(B, (A\C)x) x X(Y,X\Z)
CxX)((B,Y), (A\C)x, X\Z)))
Cx X)((B,Y), (A, X)\(C, Z)))

Il

12

=(
=
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We will now give an example of a left closed semidirect product monoidal
category.

Example 4.5.3. This example involves generalised metric spaces, as de-
scribed by Lawvere [19]. Let X be [0, 00) the category whose objects are the
non-negative real numbers, with a unique morphism x — y if and only if
x > y. This category has a closed symmetric monoidal structure, with tensor
product given by addition and internal hom given by truncated subtraction,
defined as follows.

r@y=z+y  z\y=max(0,y —z)

Let C be MET, the closed symmetric monoidal category of generalised metric
spaces. Then there is a strong action of X on C, given by scaling, in which
the underlying set of M* is the same as the underlying set of M, but with
a new scaled metric, defined as follows.

M*(m,m') = ¢e* - M(m,m’)

Each functor (—)* has a right adjoint (in fact, an inverse), (—),, in which
the underlying set of M, is the same as the underlying set of M, but with
a new scaled metric, defined as follows.

My(m,m')=e"" - M(m,m')

The resulting semidirect product C x X is a left closed monoidal structure
on MET X [0,00), with tensor product and internal hom defined as follows.

(M,z) @ (N,y) = (M @ N*, x + y)

(M, 2)\(P, z) = (M\P),, max(0, z — x))

The metric on the generalised metric space M ® N with underlying set
M x N is given as follows.

(M @ N*)((m,n), (m',n")) = M(m,m’) +e* - N(n,n’)

The metric on the generalised metric space (M\P), with underlying set
C(M, P) is given as follows.

(M\P),(f,9) =e - sup P(f(m),g(m))

4.6 Dual Pairs

In this section, we will give a sufficient condition for the existence of a dual
pair in a semidirect product skew monoidal category, in the sense introduced
in Chapter 3, §3.4.
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Theorem 4.6.1. Let X and C be skew monoidal categories. Let there be a
weak action of X on C. Assume there are dual pairs

We-)d4Xe-) Ae-)dBo-)
in X and C. Furthermore, assume that there is an adjunction
(Y 4 ()
whose unit and counit are monoidal natural transformations
Oc: C = (CM* (o (CHV = C

such that the following two diagrams commute.

CY
v/ N\
(€)X oxerey)
(e ’W‘\\ %’W/
(CW®Y)X (4. 1)
(CX®Y ) w
(CV Y)W cWaxey)
QTC\ CcY
oY (4.2)

Then there is a dual pair
(A W) —) 4 (BY, X)® )

nCxX.
The unit 0 is defined as follows. The component

Ocyy: (CY) = (BX, X)® (A, W) ® (C,Y))

s the morphism whose images under wx and we are the following pair of
morphisms, respectively.

Hy:Y*)X@(W@Y)
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c ey (o)X
(90W)X

s (B (A CV)X

X
—5A80T, BX @ (A® W)X

The counit ¢ is defined as follows. The component
Goyy: (A W) @ (BY,X) ® (C,Y)) = (C.Y)

is the morphism whose images under wyx and w¢ are the following pair of
morphisms, respectively.

W (XeY)SY

w
A®@BX 7c)(

A® (BX @ cHW A (BHY o (cHW)

A®(C_B®EC) A ® (B ® C)
LCNYe!

Proof. In order to show that this data constitutes a dual pair, we must
show that diagrams 3.5 and 3.6, from Chapter 3, §3.4, commute. However,
in order to show that a diagram commutes in C x X, it suffices to show that
its images under the projection functors my and w¢ commute. And, since
the images of the components of the unit and counit in for the dual pair

(<A7 W) ® _) B (<BX7X> ® _)

in C x X under the projection functor my are just the components of the
unit and counit for the dual pair

We-)4Xe-)

in X, the images of diagrams 3.5 and 3.6 under the projection functor my
do commute. Hence, we only need to show that the images of the diagrams
3.5 and 3.6 under the projection functor m¢ commute.

In the following two diagrams, we will denote tensor products by juxta-
position, for notational convenience. The image under ¢ of diagram 3.5 is
shown in Figure 4.5, and image under 7¢ of diagram 3.6 is shown in Figure
4.6.

O

In the case where we have a semidirect product of two monoidal cate-
gories, this results in the following simple corollary.
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Figure 4.6: Proof that diagram 3.6 commutes in a semidirect product skew monoidal category.
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Corollary 4.6.2. Let X and C be monoidal categories. Let there be a strong
action of X on C. Assume there are dual pairs (W, X) in X and (A, B) in
C. Then there is a dual pair ((A, W), (BX, X)) inC x X.

Proof. Strong monoidal functors preserve duals; see [9] for details. In partic-
ular, the strong monoidal functor I': X — [C, Clstrong preserves duals. This
means that T sends the dual pair (W, X) in X to an adjunction (—)" 4 (—)¥
in [C, Clstrong- The unit and counit for this adjunction are defined as follows.

5o T/A)C T (Cicoev XQW (w_l)é(‘w XA
o: C — C* —— C —— (C?)

w,X ev H=1
Cot (CW)X Lo, gwax €% o1 Yo,

Since these are morphisms in [C,Clstrong, they are monoidal natural trans-
formations.

We must check that the two diagrams 4.1 and 4.2 commute.

To see that diagram 4.1 commutes, consider the following diagram.

oY
Yoy crv
(CY)? o oIy
(CY yeoev ¢ (reoev®Y
(CY )XW e C(XaW)sY
W Ha" ) COxwy
(C)W)X cXeway)

("bg/% Qpé’(,W@Y

(CW®Y)X



76 CHAPTER 4. SEMIDIRECT PRODUCTS

To see that diagram 4.2 commutes, consider the following diagram.

(CX®Y ) w
()W CWR(X®Y)
¢2/§X oW, X,y

y wg/@X,Y

(cr)rex CWex)ey
(CY)eV CeV®Y
7Y
(CY) re cTeY
bow oM
CY

O]

We will now give an example of a dual pair in a semidirect product
monoidal category.

Example 4.6.3. Choose a monoidal category M. Let C be the category
M?Z of integer-indexed collections of objects in M; this category inherits a
monoidal structure from that of M. Given an object C' € ob(C, denote its
constituent objects by C; € obM for i € Z. Let X be Z, considered as
a category whose objects are the integers, with no non-trivial morphisms,
with addition as the tensor product and 0 as the monoidal unit. Then there
is a strong action of X on C given by shifting, defined as follows.

(C")i = Ciya

The resulting semidirect product C x X is a monoidal structure on M?% x Z,
with tensor product defined as follows.

(B,z)® (C,y) = (B® C*, z +y)
The object B ® C* is defined as follows.
(B@C");=B; ®City

Choose an object w € ob X'. Then w has a right dual —w. Choose an object
A € obC such that each object A; € obM has a right dual B; € ob M.
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Then these objects together form an object B € obC, which is right dual to
A. Then the object (A, w) has a right dual (B™*, —w). The object B~ is
defined as follows.

(B™)i = Bi—w

4.7 Right Closed Structures

In this section, we will produce some examples of semidirect product mon-
oidal categories which are right closed but not left closed.

Throughout this section, we will use the term ‘right closed skew monoidal
category’ to mean a skew monoidal category C in which tensoring on the right
has a right adjoint. We will denote the internal hom as follows.

(—/=):CxCP ¢

Note that this is distinct from the internal hom of a left closed skew monoidal
category (—\—); in particular, here the contravariant variable appears on
the right. Using this notation, the hom-tensor adjunction is the following
natural isomorphism of hom sets.

C(A® B,C) = C(A,C/B)

Because of the non-invertibility of the associator «, right closed structures
in skew monoidal categories behave very differently to left closed structures.
For this reason, it should not be surprising that this section proceeds differ-
ently to §4.5, in which we consider left closed structures.

We might hope for the following to hold. Compare this to Conjecture
4.5.1.

Conjecture 4.7.1. Let X and C be right closed skew monoidal categories.
Let there be a weak action of X on C. Then the semidirect product C x X is
a right closed skew monoidal category.

However, this conjecture is false, as we will now show. Consider Example
4.4.7; we will show that tensoring on the right by an arbitrary object (M, z)
does not preserve coproducts. Consider the following coproduct diagram.

(1, F) (0,7

Since colimits are calculated pointwise, the colimit of this diagram is the
object (1,T). The image of this diagram under the functor (— ® (M, x)) is
the following diagram.

(MF.F)y  (0,)

The colimit of this diagram is the object (M* x). Thus, if tensoring on the
right by (M, x) were to preserve colimits, we would expect an isomorphism
of the following form.

(1,T) @ (M, z) = (MF z)
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However, the left hand side of this equation evaluates as follows.
(1,T) @ (M,z) = (M", z)

Thus, no such isomorphism exists, so tensoring on the right by (M, x) cannot
preserve colimits, and so C x X cannot be right closed. This provides a
counterexample to Conjecture 4.7.1.

However, we can describe a class of semidirect product skew monoidal
categories which are right closed.

Theorem 4.7.2. Let X be a right closed skew monoidal category. Let C be
a monoidal category with binary coproducts as the tensor product and the
initial object as the monoidal unit. Let there be a weak action of X on C.
Furthermore, assume that X has finite products and that there is another
functor

(—<—):CxCP?—>X

and a natural isomorphism of hom sets of the following form.
C(B*,C) = X(X,C < B)

Then the skew momnoidal category C X X is right closed, with internal hom

defined as follows.
(C,2)/(B,Y)=(C,(C<aB)x(Z/Y))
Proof. We have the following natural isomorphism of hom sets.

(CxX)(A,X)®(B,Y),(C,Z)=(CxX)(A+B*X,XY),(C,Z))
(A+BX,C)x X(XQY,Z)
(A,C)xC(BX,C)x X(X®Y, Z)
(A,C) x X(X,C < B) x X(X,Z/Y)
(A4,C) x X(X,(C < B) x(2/Y))

= (CxX)((A4,X),(C,(C<B) x (Z]Y)))
= (CxX)((A,X),(C,2)/(B,Y))

e 1l

I

C
C
C
C

12

O]

However, the skew monoidal category C x X is not, in general, left closed,
as we will now show. In any left closed skew monoidal category, tensoring
on the left with a fixed object has a right adjoint, and thus preserves the
initial object. So, if C x X were a left closed skew monoidal category, then
we would necessarily have isomorphisms of the following form.

(C, X) ®0cxx = 0cxx
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Evaluating each side of this equation gives the following.
(C, X ®0x) = (0c,0x)
So, we would necessarily have isomorphisms of the following forms.
C = 0¢ X®0xy =0x

The second may exist, but the first will not, unless C is trivial.
We will now give some examples of semidirect product monoidal cate-
gories which are right closed but not left closed.

Example 4.7.3. Let X be a right closed monoidal category with finite prod-
ucts and finite coproducts, in which the tensor product preserves coproducts
in both variables. Let C be X', with binary coproducts as the tensor product
and the initial object as the monoidal unit. Then there is a strong action of
X on C using the original tensor product, as follows.

BY¥=X®B
Let (— < —) be the original internal hom, as follows.
C<B=C/B
The isomorphism of hom sets
C(BX,C) = X(X,C < B)
is then just the usual hom-tensor adjunction.
X(X®B,C)=X(X,C/B)

The resulting semidirect product C x X is a right closed monoidal structure
on X x X, with tensor product and internal hom defined as follows.

(A, X)®(B,Y)=(A+(X®B),X®Y)
(C,Z)/(B,Y) =(C,(C/B) x (Z]Y))

Example 4.7.4. Let X be SET, the category of sets. Let C be a category
with small coproducts, with binary coproducts as the tensor product and
the initial object as the monoidal unit. Then there is a strong action of X
on C by copowers, as follows.

BX:HB

rzeX
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The notation we have been using so far agrees with the notation usually
used for powers, rather than copowers; this is unfortunate, but hopefully
not too confusing. Let (— < —) be the usual hom-functor, as follows.

C<B=C(C(B,C)
The isomorphism of hom sets
C(BX,C)= X(X,C < B)
is then just the universal property of the copower.
c(J] B.c)= ] ¢(B,C) = Ser(X,C(B,C))
zeX zeX

The resulting semidirect product C x X is a right closed monoidal structure
on C X SET, with tensor product and internal hom defined as follows.

(A, X)®(B,Y)=(A+(]] B),X xY)
rxeX

(C,Z)/(B,Y) =(C,C(B,C) x SET(Y, Z))

Example 4.7.5. As a specific case of the previous example, let C be a
complete lattice, considered as a preorder. In this category, the coproduct
of a and b is their join, or least upper bound, denoted a V b. The resulting
semidirect product C x X is a right closed monoidal structure on C x SET,
with tensor product and internal hom defined as follows.

(aVb,X xY) if X is non-empty

(a,X)®(b,Y) = {(a, 0) if X is empty

(¢, SET(Y, Z)) ifb<c



Chapter 5

Coherence for Monoidal
Adjunctions Between Closed
Monoidal Categories

81



82 CHAPTER 5. COHERENCE

5.1 Introduction

The monoidal adjunctions between closed monoidal categories which we will
be considering in this chapter are a fragment of Grothendieck’s ‘six oper-
ations’ formalism. For an introduction to this, see [5]. In full generality,
Grothendieck’s ‘six operations’ consists of assigning to every suitable ‘space’
a closed symmetric monoidal category and to every suitable morphism of
spaces f a monoidal adjunction f* 4 f, and an adjunction fi 4 f' between
these categories. These four operations, together with the tensor product
and internal hom, constitute the six operations.

There is a large amount of data involved in such a situation: associators
and unitors for the monoidal structures, units and counits for the closed
structures, units and counits for each of the adjunctions f* - f, and fi 4 f,
structure maps for each of the strong monoidal functors f*, and additional
pseudofunctoriality data for the four assignments f — f*, f— fo, f— fi
and f — f'. There are many diagrams which can be constructed from such
data, and various authors have expressed the desire for a coherence theorem
for at least part of this structure (for example, [5] §1 or [7] §6).

The fragment of this which we will consider consists of the monoidal
adjunctions f* - f, between closed monoidal categories. Thus we will not be
considering the symmetry of the tensor product or the adjunctions f - f'.
The general method we use is based on Kelly and Mac Lane’s coherence
theorem for closed symmetric monoidal categories [12].

In §5.2, we will state the coherence theorem. This will involve con-
structing a category, denoted GRg, whose objects are diagrams of monoidal
adjunctions between closed monoidal categories, and describing a notion of
freely generated objects in this category, which we will denote SHPg. Such
freely generated diagrams of monoidal adjunctions between closed monoidal
categories will involve certain closed monoidal categories whose objects we
call shapes and whose morphisms we call allowable morphisms, which we
will denote SHP(C). It is these allowable morphisms which the coherence
theorem will apply to.

In §5.3, we will prove a preliminary coherence theorem involving a certain
class of invertible allowable morphisms, which we call central isomorphisms.

In §5.4, we will describe an alternate characterisation of the allowable
morphisms, via a number of constructions which will turn out to be more
convenient to work with than our original definition.

In §5.5, we will define an object of GRg, which we will denote ZREL, as
well as a morphism of GRg of the following form

Q: SHP; — ZREL
In §5.6, we will prove the main result of this chapter: that the functors

Qc: SHPG(C) — ZREL(C)
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which make up the morphism €2 are all faithful.
In §5.7, we will provide some example applications of the coherence the-
orem.

5.2 Shapes and Allowable Morphisms

In this section, we will define the machinery necessary to formally state the
coherence theorem. We are going to prove a coherence theorem for arbitrary
diagrams of monoidal adjunctions between closed monoidal categories. First,
we will define a category whose objects are such diagrams. Then, we will
describe the free objects of this category; these are the objects which the
coherence theorem will apply to. Finally, we will describe the coherence
theorem which is the main result of this section.

Choose a directed graph, &, which will determine the shape of the dia-
grams we will prove the coherence theorem for. We will describe a category,
which we call the category of ‘Grothendieck contexts’, denoted GReg, pa-
rameterised by &. Informally, an object of GRe is a ®-shaped diagram of
small closed monoidal categories and monoidal adjunctions, and a morphism
of GRg is like a natural transformation whose components are strict closed
monoidal functors.

Definition 5.2.1 (CMC,). We will use the notation CMCp, to refer
to a 2-category whose objects are closed monoidal categories and whose
morphisms are monoidal adjunctions, defined as follows.

o A O-cell C of CMCp, is a small closed monoidal category.

o Al-cell®: C — D of CMCyy, is a monoidal adjunction of the following
form.

e A 2cell v: & — ¥ of CMC,,, is a monoidal natural transformation
O* = U*,

Definition 5.2.2 (GRg). An object X of GRg is a pseudofunctor from the

free category generated by the graph & to CMC,,,. Explicitly, this consists
of the following.

e For each vertex C of &, a small closed monoidal category, X (C).
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e For each path I': C — D in &, a monoidal adjunction of the following
form.

e For each pair of paths I': C — D and A: D — £ in &, an invertible
monoidal natural transformation ™2 : T*A* = (AT)*.

e For each vertex C of &, an invertible monoidal natural transformation
i€ idx(c) = (ide)*, where idy ) is the identity functor on X (C), and
id¢ is the empty path in & starting and ending at C.

This is subject to the commutativity of the following diagrams.

[ A*A* I*A*A*
EF’AA* F*HA’A
(AT)*A* T (AA)*
K;AF,A HF,AA
(AAT) (AAT) 5.1)
T*
idT* (T'id)*
AT Rid,T
id*F* (52)
r*id*
F*I%D Kr,id
I*id (idI)”
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A morphism 2: X — Y of GRg consists of, for each vertex C of &, a
functor Q¢: X(C) — Y(C) which strictly preserves everything. Explicitly,
the following equalities must hold.

e For each vertex C of &,
Qc(T)=1.

e For each vertex C of &, for each pair of objects A and B of X(C),
Qe(A® B) =Qc¢(A) ® Qc(B).
e For each vertex C of &, for each pair of objects A and B of X(C),
Qc(A\B) = Qc(A)\Q(p)-
e For each path I': C — D in &, for each object A of X (D),
QeI (A) =T"Qp(A).
e For each path I': C — D in &, for each object A of X (C),
Qpl'(A) = [ Qc(A).
e For each vertex C of &, for each triple of objects A, B and C' of X(C),
Qe(@a,B,0) = A0c(4).90(B), Qo) -
e For each vertex C of &, for each object A of X(C),
Qe(Ma) = Ao (4)-
e For each vertex C of &, for each object A of X(C),
Qc(pa) = poc(a)-
e For each vertex C of &, for each pair of objects A and B of X (C),

Qc (A
QC(Ué) = 77Q§E3§'

e For each vertex C of &, for each pair of objects A and B of X (C),

Qc(A
Qc@é) = EQzEB))'

e For each vertex C of &, for each pair of morphisms f and g of X(C),

Qc(f®g) =Q(f) ®Qe(g).
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For each vertex C of &, for each pair of morphisms f and g of X(C),
Qc(f\g) = Qe (F)\Qe(g)-

For each path I': C — D in &, for each pair of objects A and B of
X(D),
Qc(Pa,B) = Pop(a).an(B):

For each path I': C — D in &,

For each path I': C — D in &, for each object D of X (D),
Qp(0h) = Ot (-

For each path I': C — D in &, for each object C of X(C),
Qe (CE) = Che(o)-

For each pair of paths I': C — D and A: D — £ in &, for each object
E of X (&),
Qe(rg®) = kgl

= Fae(p)
For each vertex C of &, for each object A of X(C),
Qe (iG) = ’%'gzc(A)-
For each path I': C — D in &, for each morphism f of X (D),
QeI (f) =T Qo (f).
For each path I': C — D in &, for each morphism f of X (C),

Qplu(f) = T8 (f)-

Example 5.2.3. Let & be the graph {C}, then a Grothendieck context
X € ob GRg consists of a small closed monoidal category X (C).

Example 5.2.4. Let & be the graph {C 2, D}, then a Grothendieck context
X € ob GRg consists of small closed monoidal categories X (C) and X (D)
and a monoidal adjunction of the following form.

(p*
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Example 5.2.5. Let & be the graph {C %pL &}, then a Grothendieck
context X € obGRg consists of small closed monoidal categories X (C),
X (D) and X (&) and monoidal adjunctions of the following form.

y* d*
PR PR
X(E) L X(D) L X(C)
~— — ~— —

v, o,

Example 5.2.6. Let & be the disconnected graph {C 2D RN F},
then a Grothendieck context X € ob GRg consists of small closed monoidal
categories X (C), X(D), X(€) and X (F) and monoidal adjunctions of the
following form.

o> o
X(F) L X(&) X(D) L X(C)
v, 5,

Next, we will describe a forgetful functor out of GRg and then construct
a free functor which is left adjoint to this forgetful functor. This will give us
a notion of freely generated Grothendieck contexts in GRg, which are the
objects the coherence theorem will apply to.

Denote by & the set of vertices of the graph &. Consider the category
SETI®!. Anob ject G of SETI® is a collection of sets indexed by the vertices
of &; denote the set corresponding to the vertex C by G(C).

There is a forgetful functor U: GRe — SETI®!. Given a Grothendieck
context X € ob GRg, the image under U of X, denoted Uy, is the &g-
indexed collection of sets of the form ob(X(C)).

Ux(C) = ob(X(C))

Now we will define a left adjoint to the functor U, which we will de-
note SHP: SETI®| — GRg. Given a Gg-indexed collection of sets G €
ob SET!®0l the image under SHP of GG, denoted SHPg, is the freely gener-
ated Grothendieck context in GRg defined as follows.

For each vertex C of &, the objects of the closed monoidal category
SHP;(C) we call C-shapes.

Definition 5.2.7 (shapes). The shapes are defined by the following rules.
type (Z) For each vertex C of &, there is a C-shape

7.
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type (G) For each vertex C of &, for each element X of G(C), there is a
C-shape
X.

type (®) For each vertex C of &, for each pair of C-shapes A and B, there
is a C-shape
A® B.

type (\) For each vertex C of &, for each pair of C-shapes A and B, there
is a C-shape
A\B.

type ((—)*) For each path I': C — D in &, for each D-shape A, there is a
C-shape
r*(A).

type ((—),) For each path I': C — D in &, for each C-shape A, there is a
D-shape
I, (A4).

For each vertex C of &, the morphisms of the closed monoidal category
SHP(C) we call allowable C-morphisms.

Definition 5.2.8 (allowable morphisms). The allowable morphisms are de-
fined by the following rules.

type (id) For each vertex C of &, for each C-shape A, there is an allowable
C-morphism
idy: A— A

type («) For each vertex C of &, for each triple of C-shapes A, B and C,
there is an invertible allowable C-morphism

aaxpc: A®(B®C)—= (A®B)® C.

type (\) For each vertex C of &, for each C-shape A, there is an invertible
allowable C-morphism
A Al A—-T®A.

type (p) For each vertex C of &, for each C-shape A, there is an invertible
allowable C-morphism
pa: ART — A.

type (1) For each vertex C of &, for each pair of C-shapes A and B, there
is an allowable C-morphism

na: B— A\(A® B).
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type (¢) For each vertex C of &, for each pair of C-shapes A and B, there
is an allowable C-morphism

e4: A® (A\B) = B.

type (®) For each vertex C of &, for each pair of allowable C-morphisms
f: A— Band g: C — D, there is an allowable C-morphism

f®g:A®C — B®D.

type (\) For each vertex C of &, for each pair of allowable C-morphisms
f:A— Band g: C — D, there is an allowable C-morphism

f\g: B\C — A\D.

type (p) For each path I': C — D in &, for each pair of D-shapes A and
B, there is an invertible allowable C-morphism

¢hp: T*(A® B) = T*(A) @ T*(B).

type (¢) For each path I': C — D in &, there is an invertible allowable
C-morphism
ot T*(T) —» T.

type (0) For each path I': C — D in &, for each D-shape A, there is an
allowable D-morphism

0 : A — I, T*(A).

type (¢) For each path I': C — D in &, for each C-shape A, there is an
allowable C-morphism

LT (A) = A

type (k) For each pair of paths I': C — D and A: D — & in 6, for each
E-shape A, there is an invertible allowable C-morphism

K2 TFA*(A) — (AD)*(A).

type (k) For each vertex C of &, for each C-shape A, there is an invertible
allowable C-morphism

£G: A — (ide)*(A).
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*

For each path I': C — D in &, for each allowable D-morphism

type ((-)
f: A — B, there is an allowable C-morphism

T*(f): T*(A) — I*(B).

,) For each path I': C — D in &, for each allowable C-morphism

type ((—)
f: A — B, there is an allowable D-morphism

T,(f): T.(A) — T.(B).

type (o) For each vertex C of &, for each pair of allowable C-morphisms
f: A— Band g: B— C, there is an allowable C-morphism

gof:A—)C'.

Definition 5.2.9 (Suprg(C)). For each vertex C of &, the closed monoidal
category SHP;(C) is the category whose objects are C-shapes and whose
morphisms are allowable C-morphisms, quotiented out by all of the necessary
relations:

e associativity and unitality of composition;

functoriality of (— ® —), (—=\—), I'* and I';;
e (extra)naturality of o, A, p, 1, €, ', 67, ¢T, k52 and &€;

LA

e invertibility of a, A, p, ¢, ¢, and iC;

e the identities 2.1, 2.2, 2.3, 2.4 and 2.5 for each SHP(C) being a mon-
oidal categorys;

o the identities 2.6 and 2.7 for each SHP¢(C) being a closed monoidal
category;

e the identities 2.8, 2.9 and 2.10 for each I'* being a strong monoidal
functor;

e the identities 2.11 and 2.12 for each k72 and ¢ being monoidal nat-
ural transformations;

e the triangle identities 2.13 and 2.14 for the adjunctions I'* 4 T',;
e and the identities 5.1, 5.2 and 5.3 for SHP¢ being a pseudofunctor.

Definition 5.2.10 (SHP¢(®)). For each edge ®: C — D of &, the monoidal
adjunction SHPg(®) is defined in the obvious way:
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e The left adjoint, ®*: SHP¢(D) — SHP¢(C), takes each D-shape A to
the C-shape ®*(A) and each allowable D-morphism f: A — B to the
allowable C-morphism ®*(f): ®*(A4) — ®*(B).

e The right adjoint, ®,: SHPG(C) — SHPG (D), takes each C-shape A to
the D-shape ®,(A) and each allowable C-morphism f: A — B to the
allowable D-morphism ®,(f): ®,(A) — ®.(B).

e The unit, 6%: idg o(p) = ©+®*, has components of the form H;Il’.

e The counit, ¢®: &*®, = idgyp,(c), has components of the form {g’.

It should be clear that this defines a left adjoint to the functor U, and
thus that there is a natural isomorphism of hom-sets of the following form.

GRre(SHPG, X) = SETI®(@, Uy)

We should think of an object of SET!®| as providing a set of generating
objects for each vertex of & and the functor SHP as freely generating a
Grothendieck context in GRg from this generating data. Such freely gener-
ated Grothendieck contexts in GRg are the particular $-shaped diagrams of
closed monoidal categories and monoidal adjunctions which the coherence
theorem will apply to.

Explicitly, given a vertex C of &, and a pair of parallel morphisms s and
t in the closed monoidal category SHP(C), we wish to find a simple method
of determining whether s = ¢t. We will do this by constructing another
object of GRg, which we will denote ZREL, and a morphism in GRg of the
following form.

Q: SHP; — ZREL

Such a morphism will have components which are functors between closed
monoidal categories of the following form.

Qc: SHPG(C) — ZREL(C)

The object ZREL will have been chosen in such a way that it is easy to
determine whether Q¢(s) = Q¢(t). Thus, if the functor Q¢ is faithful, we
will have a simple method of determining whether s = t. The coherence
theorem itself is precisely the statement that, for each vertex C of &, the
functor Q¢ is faithful.

5.3 Central Isomorphisms

In this section, we will prove a preliminary coherence theorem, which we will
use extensively in the remaineder of this section. First, we will define a class
of invertible allowable morphisms called the central isomorphisms. Then,
we will prove a coherence theorem for the central isomorphisms. Finally, we
will prove some technical lemmas involving the central isomorphisms.
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5.3.1 Definitions
We will define the central isomorphisms themselves in several stages.

Definition 5.3.1 (primitive central isomorphisms). The primitive central
isomorphisms are defined by the following rules.

(o) For each vertex C of &, for each triple of C-shapes A, B and C,
aapc: A®(BeC)—» (AB)C
is a primitive central C-isomorphism.
(M\) For each vertex C of &, for each C-shape A,
M IeA—A
is a primitive central C-isomorphism.
(p) For each vertex C of &, for each C-shape A,
parARL — A
is a primitive central C-isomorphism.
(\) For each vertex C of &, for each C-shape A,

AT\ A

— z
A T\A 24 T (T\A) 24 A
is a primitive central C-isomorphism.

(®r) For each vertex C of &, for each C-shape C' and each primitive central
C-isomorphism s: A — B,

s@C:A®wC —-BC
is a primitive central C-isomorphism.

(®r) For each vertex C of &, for each C-shape C and each primitive central
C-isomorphism s: A — B,

Cs:CA—-CR®B
is a primitive central C-isomorphism.

(\r) For each vertex C of &, for each C-shape C' and each primitive central
C-isomorphism s: A — B,

C\s: C\A — C\B

is a primitive central C-isomorphism.
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(\r,) For each vertex C of &, for each C-shape C' and each primitive central
C-isomorphism s: A — B,

s7I\C: A\C — B\C

is a primitive central C-isomorphism.

(¢) For each path I': C — D in &, for each pair of D-shapes A and B,
g T(A® B) —» T*(A) @ T*(B)

is a primitive central C-isomorphism.

(¢) For each path I': C — D in &,
QU T*(T) =T
is a primitive central C-isomorphism.

((=)*) For each path I': C — D in &, for each primitive central D-isomor-
phism s: A — B,
I™(s): I"(A) — I'"(B)

is a primitive central C-isomorphism.

(k) For each pair of paths I': C — D and A: D — £ in &, for each E-shape
A,
K2 TFAR(A) — (AT)*(A)

is a primitive central C-isomorphism.
(£) For each vertex C of &, for each C-shape A,
(A5) 7" (ide)*(A) — A
is a primitive central C-isomorphism.
(k) For each vertex C of &, for each C-shape A,

cde

&S
) = (ide)* (de), (4) < A

75 (ide), (A
is a primitive central C-isomorphism.

Definition 5.3.2 (reduced shape). A reduced shape is a shape which is not
the source of any primitive central isomorphism.

Definition 5.3.3 (partial central isomorphisms). A partial central isomor-
phism is a composite of primitive central isomorphisms.

Definition 5.3.4 (central isomorphisms). A central isomorphism is a com-
posite of primitive central isomorphisms and their inverses.
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5.3.2 Coherence

Now, we will prove a coherence theorem for the central isomorphisms. The
method used is based on Mac Lane’s original coherence theorem for monoidal
categories [18].

We will prove the coherence theorem for the central isomorphisms by
induction on a quantity which we call the rank of a shape.

Definition 5.3.5 (rank of a shape). The rank of a shape A, denoted || A||,
is a positive integer, defined as follows.

e For a shape of type (Z),
IZ]| = 1.

For a shape of type (G),
X1 = 1.

For a shape of type (®),

[A® Bl =[Al+1+2-[B].

For a shape of type (\),

[A\BI = 2- Al + 1+ [ B]|

For a shape of type ((—)%),

[T (A =2 - [|A].

For a shape of type ((—),),

I (A = 2- [l A].

The definition of rank has been chosen in such a way that the following
lemma holds.

Lemma 5.3.6. Given a primitive central isomorphism s: P — @Q, it follows
that

1P > QI

Corollary 5.3.7. Given a shape A, it follows that there exists a reduced
shape A, such that there exists a partial central isomorphism s: A — A,.

Proof. We will prove this by induction on the type of the primitive central
isomorphism s.
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e Consider the case where s is of type ().
aapc: A®(B®C)— (A®B)®C
Note the following.

[A@(BeO)|=Al+1+2-[[Bad]|
= Al +1+2- B[ +2+4-[|C]
> A +1+2- B +1+2-[|C]|
=A@ B|l+1+2-|C]|
=[(AeB)e 0]

Consider the case where s is of type ().
MEUTIeA—-A
Note the following.

IZ® Al =[ZI +1+2- |A] = 1 +2- Al > [|A]

Consider the case where s is of type (p).
pai AQT — A
Note the following.

[AQT| = Al +1+2-[Z] = Al + 1 +2- 1> [|A]

Consider the case where s is of type ().

S\A: I\A — A
Note the following.

[I\A[ =2 [IZ]] + T+ [|All = 2- 1+ 1+ [[A] > [|A]

Consider the case where s is of type (®r,).
s®C: A®C = B®C
Note the following.

A=A +1+2-C]| > [[Bl|+1+2-[C| = [|BeC]|
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Consider the case where s is of type (®g).
Cos:Co®A—-C®B
Note the following.

IC@A[=Cl+1+2-[A] > [|C]|+1+2-|B|| = [|C® B

Consider the case where s is of type (\r).
C\s': C\A — C\B
Note the following.

ICA\A[] =2 [[Cf + 1+ [ A > 2 |C]| + 1+ [|B] = [|C\B]

Consider the case where s is of type (\1).
$\C: A\C = B\C
Note the following.

IAC] = 2- A + 1+ [|C] > 2- | Bl + 1+ [|C]| = | B\C]

Consider the case where s is of type (¢).
hp TH(A® B) - I(4) @ T*(B)
Note the following.

IT*(A® B)| =2-|A® B
=2- Al +2+4-|B]
>2-||Al+1+4-|B|
= I (A +1+2-[[T*(B)]|
= [IT*(4) @ T*(B)]|

e Consider the case where s is of type (¢).

Qr:T*I) > T
Note the following.

[T @I =2 - |71 > 7]
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e Consider the case where s is of type ((—)*).
I*(s'): T*(A) — I'*(B)
Note the following.

(A =2 - [|A] > 2-|[B]| = [[T*(B)]

e Consider the case where s is of type (k).
A * A K *
kA" T*AY(A) — (AT)"(A)
Note the following.

[T A (Al =2 A" (A = 4- Al > 2 [|A] = [(AT)"(A)]

e Consider the case where s is of type (k).
(£G) 71 id*(4) — A
Note the following.

[ (A) ]| =2 - Al > [ A]

e Consider the case where s is of type (k).
RKA: id*(A) — A
Note the following.

[ids (AN = 2 - [[A[l > [[A]

O]

The first, and largest, step in proving the coherence theorem for the
central isomorphisms is to prove that every shape is isomorphic to a unique
reduced shape via a unique partial central isomorphism.

Lemma 5.3.8. For any pair of partial central isomorphisms

s: A— B, and t: A— C,,

where By and C, are reduced shapes, it follows that By, = C, and s = t.
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Proof. We will prove this lemma by induction on the rank of A, as follows.
If A is a reduced shape, then B, = A and s =id4 and Cy, = A and t = id 4,
so the result follows. Otherwise, s and t are of the following forms, where sg
and tg are primitive central isomorphisms and s; and t; are partial central
isomorphisms.

to t1

s: A B B, and t: A% C 50,

Our general strategy will be to find a commutative diagram of the following
form, where so and to are partial central isomorphisms.

P
N4

By Corollary 5.3.7, we know that there is a reduced shape D,, and a partial
central isomorphism w: D — D,. By induction, we can conclude that B, =
D, and s; = u o sg, since ||A|| > ||BJ|. Similarly, we can conclude that
Cy = D, and t; = u o tg, since ||A|| > ||C]|. Then we can conclude with the
following equalities.

§=8108)=U0Sy08)=uotyotg=tjotyg =t

The remainder of the proof will be spent analysing the forms of sy and tg
and, in each possible case, constructing such a commutative diagram.

Consider the type of the shape A. There is no primitive central isomor-
phism whose source is a shape of type (G) or (Z), so A must be of type (®),
(\), ((=)") or ((=).)-

Consider the case where A is of type (®). In this case, each of sy and
to must be of type (a), (), (p), (®1) or (®r). The table below lists all
of the possibilities. We number each possible case, then consider each case
separately. Note that the table is symmetric about its diagonal. The cases
marked with a ‘(!)’ are impossible, due to incompatible source shapes. The
cases marked with a ‘(?)’ we consider in more detail after the other cases
have been analysed.
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a A p QL OR
a |1 2 (O 4 (O
A2 1 3 () 5
p () 3 1 6 ()
@ | 4 () 6 7 9
®r| () 5 () 9 8

1. If s¢p and ty are both of type (a), both of type (\), or both of type
(p), then they are equal. We can then form the following commutative

diagram.

A

N
N A

D

2. Consider the case where sq is of type («) and tg is of type ()).

s0: A=7® (A1 ® AQ) T A1z (I@ Al) ® Ay =
A=t
A1QAg
to: A=I®<A1®A2) — A ® Ay

We can then form the following diagram, which commutes by 2.2.

Z® (A1 ® Ag)
CVIA1V w(@AQ
(Z® A1) ® A A ® Az
A ® Ay

3. Consider the case where s is of type (\) and t is of type (p).

/\—1
s0: A=IT®7T 5T =RB

T A=IeISBT=C
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We can then form the following diagram, which commutes by 2.5.

7N
N\,

4. Consider the case where sq is of type («) and tg is of type (®p).

QT A1, Ay

$0: A=T®R (A ®A) ——= (T®A) R Ay =

tLR(A1RA2)
0—> T

to:A:T®(A1®A2) ,®(A1®A2):C

We can then form the following diagram, which commutes by natural-

ity of a.
T® (A ® Ag)
OzTA17 W (A1 ® Az)
(T® A ® A ® (A1 ® Ag)
%®A1®:>\\ //é;mm
(T'"® A1) ® Ay

5. Consider the case where sg is of type (\) and ¢ is of type (®pg).
A5
so: A=T®B 54 B

I !
t: A=T®B % T@D=C

We can then form the following diagram, which commutes by natural-
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ity of A.
I®B
A5 I®t
B I®D
ty A5
D

6. Consider the case where sq is of type (p) and t is of type (®r). This
case is similar to the case where s is of type () and tg is of type
(®g). We can then form a diagram which commutes by naturality of

p-

7. Consider the case where sy and ¢y are both of type (®r,).

QX
s A=A X 2 pox =B

' RX
A=A X 22 g x =C

By induction, we can find a commutative diagram of the following
form, where s, and t}, are partial central isomorphisms and D) is a
reduced shape, since [|A]| = ||A'@ X|| = [|A||+ 1+ 2 || X]| > |A].

A/

B/ Cl
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We can then form the following commutative diagram.

A e X
%iﬁ// \\éfX
B @ X ' X
sé@k AX)X
D, ®X

8. Consider the case where sy and ty are both of type (®r). This case is
similar to the case where sy and ¢y are both of type (®p).

9. Consider the case where s¢ is of type (®r,) and tg is of type (®g).
L &T
s0: A=S®T 2% &' oT =B

S !
tr A=SoT 220 g1 =C

We can then form the following diagram, which commutes by functo-
riality of ®.
ST

sa®7 Y@ta

ST ST

S’@% %@T’

S’ T

The only other possible remaining case is where sq is of type («) and tg is
of type (®r), to = Ao ® t;. In this case, t{, must be of type (), (), (p),
(®L) or (®r).

e Consider the case where t{, is of type ().

0AG,A1,Ap® A3
—_%

S0 - A2A0®(A1®(A2®A3)) (A0®A1)®(A2®A3) =B

Ao®aay, Ay,

to: A= Ag® (A1 ®(A2® A3)) 2y Ag®((A1 @A) @ A3) = C
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We can then form the following diagram, which commutes by 2.1.

AO X (Al X (A2 X Ag))

Ap ® QAy,A9,A3
QAp,A1,A2QA3

Ay ® ((A1 & AQ) & Ag)
(Ag® A1) ® (A @ A3) Q Ay, A1®A2,A3

(Ap® (A1 ® A2)) ® A3

QA ®A1,As, A3
Qg A1,4, @ A3
(Ao ® A1) ® Ag) @ A3

e Consider the cases where t; is of type (A) or (p). These cases are
similar to the case where sg is of type a and tg is of type A. We can
then form a diagram which commutes by 2.3 or 2.4.

e Consider the cases where ¢ is of type (®) or (®pr). These cases are
similar to the case where sg is of type « and ty is of type ®;. We can
then form a diagram which commutes by naturality of c.

Consider the case where A is of type (\). In this case, each of sy and t
must be of type (M), (\r) or (\1). The table below lists all of the possibilities.
We number each possible case, then consider each case separately. Note that
the table is symmetric about its diagonal. The cases marked with a ‘(!)’ are

impossible, due to incompatible source shapes.

A \r \z
X1 2 ()
\el2 3 5
vl s 4

1. If 5o and tg are both of type (\), then they are equal.

2. Consider the case where sg is of type (\) and tg is of type (\r).
so: A=T\B 2% B

t: A=T\B 2o \p—C

This case is similar to the case where s is of type (A) and tg is of type
(®R). We can then form a diagram which commutes by naturality of

A
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3. Consider the case where sy and ¢y are both of type (\g). This case is
similar to the case where sy and ¢y are both of type (®r).

4. Consider the case where sp and ¢y are both of type (\1). This case is
similar to the case where sy and ¢y are both of type (®r).

5. Consider the case where s is of type (\g) and ¢ty is of type (\r). This
case is similar to the case where sg is of type (®1) and ty is of type
(®Rr). We can then form a diagram which commutes by functoriality
of \.

Consider the case where A is of type ((—)*). In this case, each of sy and
to must be of type (), (@), ((—)*), (k) or (£). The table below lists all
of the possibilities. We number each possible case, then consider each case
separately. Note that the table is symmetric about its diagonal. The cases
marked with a ‘(!)’ are impossible, due to incompatible source shapes. The
cases marked with a ‘(7)” we consider in more detail after the other cases
have been analysed.

¢ ¢ (=) & &

e |1 (O O O 3
e () 1 (0 () 4
=m0 2 (0 5
A OO R () I 9 B W ()
i3 4 5 () 1

1. If sp and to are both of type (¢), both of type (¢), both of type (k),
or both of type (%), then they are equal.

2. Consider the case where sy and tg are both of type ((—)*). This case
is similar to the case where sy and ¢y are both of type (®r).

3. Consider the case where s is of type (k) and t is of type ().

(RSer) ™"

s0: A=id*(S®T) ———— S®T =8

id
to: A=id*(S © T) 22705 id*(S) @ id*(T) = C
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We can then form the following diagram, which commutes by 2.11.

id*(S ©T)
(’%g@T)_l %T
SeT id*(S) @ id*(T)
(kG ® RE) ™!
ST

4. Consider the case where sq is of type (k) and ¢ is of type (¢).

#C)—1
so: A=id*(7) i>I:B

~id
to: A=id*"(Z) L5 T =C

We can then form the following diagram, which commutes by 2.12.
id*(Z

5. Consider the case where sq is of type (#) and tq is of type ((—)%).

iCH—1
so:Azid*(B)%B:B
to: A= id*(B) L i (D) = ¢

We can then form the following diagram, which commutes by natural-
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ity of &C.
id*(B)
(#G) ! Yaa
B id*(D)
to (RG)
D

The only other possible remaining cases are where s is of type (¢) or (k)
and t is of type ((—)).

Consider the case where sg is of type () and g is of type ((—)), to =
I'™*(t(). In this case, we must further consider the type of t.

e Consider the case where t{ is of type ().

‘PAO,Al ®Ag
A

sg: A= F*(AO ® (Al ® AQ)) F*(Ao) ® F*(Al ® Ag) =B

I™(aag,a1,45)

to: A= F*(Ao (%9 (Al (%9 AQ)) F*((AO X Al) (%9 Ag) =C

We can then form the following diagram, which commutes by 2.8.

Ao ® A1 X A2
(PAO,I‘W/ NAOVALI%
*(Ap) @ T*(A; ® Ag) ((Ag® A1) ® Ag)
F*(AO) ® 9051,142 (’050®A1,A2
* F*Al ®F*A2 A0®A1 ®F*A2

QT*(Ag),[* (A1) F*A\ A‘h ® I (As2)

® I* A1 ® I A2
e Consider the case where t{ is of type ().
<pg Al
so: A=T* I ® A =25 T*(T) @ T*(4') =

*(\,/))
to: A=T*ZI o A) —25T1T*A4)=C
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We can then form the following diagram, which commutes by 2.9.

MIzeA)
‘Pg,A'
I*(\4)
I™(Z) @ T*(A")
T (A) [ (4)

ZTRIT*(A)
-1

Ars(an

(A"

e Consider the case where ¢, is of type (p). This is similar to the case
where t(, is of type (A). We can then form a diagram which commutes
by 2.10.

e Consider the case where t{, is of type (®p).

T
s0: A=T*T ® A') 224 IX(T) @ T*(A') =

to: A=T*(T @A) %, prepr g 4y = ¢

We can then form the following diagram, which commutes by natural-

ity of ¢'.
V \\t/ ®A/
)@ T*(A X A,A’
)

I*(T) @ T*(A’

e Consider the case where t{ is of type (®g). This case is similar to
the case where t, is of type (®1). We can then form a diagram which
commutes by naturality of ¢!

Consider the case where s is of type (k) and tg is of type ((—)*), to = T*(t).
In this case, we must further consider the type of t.
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e Consider the case where ¢, is of type (¢).
r,A

s0: A=T*A*(S @ T) 550 (AT (S @ T) = B

F*(@éT)
EE—

to: A=T*A*(S®T) [*(A%(S) @ A*(T)) = C

We can then form the following diagram, which commutes by 2.11.

T*A*(S ® T)
CA F*(SO?,T)
RseT
I*(A%(S) ® AX(T))
(AT)*(S ®T) Pias(5),85(T)

T*A*(S) @ T*A*(T)

AT
ST % rA
ES7 ® KT7

(AT)"(S) @ (AT)*(T)

e Consider the case where t{, is of type (¢).

A

s0: A=T*A%Z) 2 (AD)Y(Z) = B

. Tk AK F*(QéA) * o
to: A=T"AYZ) —=TI*2)=C
We can then form the following diagram, which commutes by 2.12.

T*A*(Z)
my w&)
(AT)*(T) ()
sbA\ %
7

e Consider the case where t{, is of type ((—)).

r,A

so: A =T*A*(S) = (AD)*(S) = B
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T A% (1)
ey

to: A = T*A*(S) T*AX(T) = C

We can then form the following diagram, which commutes by natural-
ity of xI"&

I*A*(S)

FA * A %
Kg RA (to)

(AT)"(S) [*AX(T)

(AF)*(té’\ AA

(AT)*(T)

e Consider the case where t{, is of type (k).

r,A

s0: A= T*A*A*(S) X5 (AT)*A*(S) = B

*(rg™)

I'(k
to: A =T*A*A*(S) — =S T*(AA)Y(S) =C
We can then form the following diagram, which commutes by 5.1.

*A*A*(S
A
KA*/ \
I™( AA

R / AA
s

(AAT)*

e Consider the case where t{, is of type ().

r,id

so: A =T*d*(S) = (idT)*(S) = B

()7
T

to: A = I*id*(5) I'*id(S) = B
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We can then form the following diagram, which commutes by 5.3.

r*id*(.5)
,/ T ((A8)7)
(1dT)*(S) r*id(S)
I=(5)

Consider the case where A is of type ((—), ). In this case, each of sy and
to must be of type (k). In this case, they are equal.

This covers every possible case, and thus ends the proof. O

We can now prove the coherence theorem for the central isomorphisms.

Theorem 5.3.9. For each vertex C of &, for each pair of C-shapes A and B,
for each pair of central C-isomorphisms s,t: A — B, it follows that s = t.

Proof. The central isomorphism s is of the following form, where each s; is
either a primitive central isomorphism or the inverse of a primitive central
isomorphism.

A=8%6 2 .. ml g g =B

The central isomorphism ¢t is of the following form, where each ¢; is either a
primitive central isomorphism or the inverse of a primitive central isomor-
phism.

A=Tp oo by Ity T =B

By Corollary 5.3.7, there is a reduced shape B, and a partial central isomor-
phism v: B — B,. For each shape .5;, there is a partial central isomorphism
S; — C. For each shape T}, there is a partial central isomorphism 7 — C.
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Putting all of this data together, we can form the following diagram.

S92 NN Sp—2

52/

7 \ 7\
RNV
AV

AN i

T+ To—1

tm—2

We claim that each triangle in this diagram commutes. To see this, con-
sider a triangle with vertices S;, S;+1 and B,. If s; is a primitive central
isomorphism, then the triangle describes two partial central isomorphisms
S; — B,; whereas if s; is the inverse of a primitive central isomorphism, then
the triangle describes two partial central isomorphisms S;11 — By. In either
case, the triangle commutes, by Lemma 5.3.8. Therefore, each individual
triangle commutes. Therefore, v o s = v o t. Therefore, since v is invertible,
it follows that s = t. O

5.3.3 Prime Factorisations

Now, we will introduce the notions of prime shapes and prime factorisations
of shapes, and prove some technical lemmas involving them, which we will
make use of later.

A prime shape is a shape which cannot be written, up to central iso-
morphism, as a tensor product of other, simpler shapes, nor as a strong
monoidal functor applied to a another, simpler shape The prime factorisa-
tion of a shape is then a canonical way of writing that shape, up to central
isomorphism, as a tensor product of terms, each of which takes the form of a
strong monoidal functor applied to a prime shape. For example, the shapes

A*((A\B) @ T*((Z\C) ® D)) and A*(A\B) ® (TA)*(C @ idy(D))
are both centrally isomorphic to the following shape.

A*(A\B) ® (TA)*(C) ® (TA)*(D)
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By giving each shape a canonical form like this, we can easily tell whether
two shapes are centrally isomorphic.

Definition 5.3.10 (trivial shape). A shape A is called a trivial shape if
there is a central isomorphism of the form A = 7.

Definition 5.3.11 (prime shape). The prime shapes are defined by the
following rules.

e Let X be an element of G(C). Then the C-shape X of type (G) is a
prime C-shape.

e Let A be a non-trivial C-shape. Let B be a C-shape. Then the C-shape
A\B of type (\) is a prime C-shape.

e Let I': C — D be a non-empty path in &. Let A be a C-shape. Then
the D-shape I',(A) of type ((—),) is a prime D-shape.

Explicitly, the prime factorisation of a C-shape P is an ordered list of
pairs of the form (II;; P;), such that a central isomorphism of the following

form exists.
PI(R) - @ IL5_ (Pyy)

Definition 5.3.12. The prime factorisation of a C-shape P, denoted p(P),
is an ordered list of pairs of the form (II;; F;), with each II;: C — D; a path
in ® and each P; a prime D;-shape, defined as follows.

e For a shape of type (Z),
p(Z) ={}

e For a shape of type (G),
p(X) = {(id; X)}.
e For a shape of type (®),
p(A® B) =p(A) @ p(B),
where the notation used is defined as follows.

{To; 40), -, (Ta—13 4a—1)} ® {(A0; Bo), - - -, (Ap—1; Bp-1)}

= {(To; Ao), - - -, (Ta=15 Aa—1), (Ao; Bo), - - -, (Ap—1; Bp—1) }
e For a shape of type (\),

{(id; A\B)} if A is non-trivial

p(A\B) = {p(B) if A is trivial
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e For a shape of type ((—)%),
p(A"(A)) = A" (p(A4)),
where the notation used is defined as follows.
A*{(To; Ag), ..., (Ta—1; Aa—1)}
={(ToA; Ao), ..., Ta—1A; Aa—1)}

e For a shape of type ((—),),

p(A) it I" is empty

p(Lx(4)) = {

{(id;T«(A))} if I' is non-empty

113

The main result about prime factorisations is that two shapes are cen-
trally isomorphic if and only if they have the same prime factorisations. We
will prove this result (Proposition 5.3.15) using the following two lemmas.

Lemma 5.3.13. Let P be a shape with a prime factorisation of the following

form.
p(P) = {Io; o), -, (Hp—1; Pp—1)}

Then there is a central isomorphism of the following form.

P= () TI(P)

0<i<p

Proof. Consider the type of the shape P.

e Consider the case where P is of type (Z).

P=7

Then P has a prime factorisation of the following form.

p(P) = {}
The result follows.

e Consider the case where P is of type (G).

P=X

Then P has a prime factorisation of the following form.

p(P) = {(id; X)}

The result follows.
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e Consider the case where P is of type (®).

P=A®B
Let A and B have prime factorisations of the following forms.
p(A) = {(To; Ao), - .., (T'o; Aa—1)}
p(B) ={(A0; Bo), - -, (Ao; By-1)}
Then P has a prime factorisation of the following form.
p(P) ={(To;40),...,(To; Aa—1), (Ao; Bp), ..., (Ao; Bp—1)}
By induction, there are central isomorphisms of the following forms.
Az Qi) B Q AlB)
0<i<a 0<i<b
The result follows.
Consider the case where P is of type ().
P=A\B
Let B have a prime factorisation of the following form.

p(B) = {(Ao; Bo), .-, (Ap—1; Bp—1)}

Consider A.

Consider the case where A is trivial. Then P has a prime factorisation
of the following form.

p(P) = {(A0; Bo), - - -, (Ab—1; Bo—1)}
By induction, there is a central isomorphism of the following form.
B = ® A7 (B;)
0<i<b

The following central isomorphism exists.

AB=T\B= B (X) Aj(B)
0<i<d

Consider the case where A is non-trivial. Then P has a prime factori-
sation of the following form.

p(P) = {(id; A\B)}

The result follows.
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e Consider the case where P is of type ((—)").
P =A*(4)
Let A have a prime factorisation of the following form.

p(A) = {(To: Ao),...,(Fa1: Aa—1)}

Then P has a prime factorisation of the following form.
p(P) = {(FOAv AO): SERE) (Fa—lA; Aa—l)}

By induction, there is a central isomorphism of the following form.

A= Q) iA)

0<i<a
The result follows.
e Consider the case where P is of type ((—),).
P =A.(4)
Let A have a prime factorisation of the following form.
p(4) ={To; Ao), - .., (Fa—1; Aa—1)}
Consider A.

Consider the case where A is empty. Then P has a prime factorisation
of the following form.

p(P) ={(To; 40),...,Ta-1;A40-1)}

By induction, there is a central isomorphism of the following form.

A= Q) T;(4)

0<i<a

The following central isomorphism exists.

AdA) =2id(A) = A= Q) T5(A)

0<i<a

Consider the case where A is non-empty. Then P has a prime factori-
sation of the following form.

p(P) = {(id; A+ (4))}

The result follows.
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O]

Lemma 5.3.14. Let P and @ be shapes with prime factorisations of the
following forms.

p(P) = {(To; Fo), .- -, (Mp—15 Pp—1)}
p(Q) = {(EO; QO)a EERE) (Zq—ﬁ Qq—l)}

Let there be a primitive central isomorphism s: P — Q). Then p = q and,
for each i, Il; = ¥; and P; = Q;.

Proof. Consider the type of the primitive central isomorphism s.
e Consider the case where s is of type ().
aapc: P=A®(BeC)—= (AB)@C=Q
Then P and @ have the same prime factors.
p(P)=p(4) @ (p(B)@p(C)) = (p(4) @ p(B)) @ p(C) = p(Q)
The result follows.
e Consider the case where s is of type ().
MU P=IRA—A=Q
Then P and @ have the same prime factors.
p(P) = p(Z) @ p(4) = p(4) = p(Q)
The result follows.
e Consider the case where s is of type (p).
par: P=A®RT - A=Q
Then P and @ have the same prime factors.
p(P) =p(A) @p(Z) = p(4) = p(Q)
The result follows.
e Consider the case where s is of type ().
M:P=T\A— A=Q

Then P and @ have the same prime factors.

The result follows.
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e Consider the case where s is of type (®r,).
§®RC:P=A®C -B®C=Q
Then P and ) have prime factorisations of the following forms.
p(P) =p(A) @p(C)
p(Q) =p(B) @p(C)
By induction, the result follows.
e Consider the case where s is of type (®g).
Ces:P=CA—-C®B=Q
Then P and @ have prime factorisations of the following forms.
p(P) =p(C) @ p(4)
p(Q) = »(C) @ p(B)
By induction, the result follows.
e Consider the case where s is of type (\r).
C\s: P=C\A—C\B=Q

Consider C.

Consider the case where C is trivial. Then P and () have prime fac-
torisations of the following forms.

By induction, the result follows.

Consider the case where C' is non-trivial. Then P and @) have prime
factorisations of the following forms.

p(P) = {(id; C\A)}

p(Q) = {(id; C\B)}

The result follows.
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Consider the case where s is of type (\r).
s§IN\C: P=A\C — B\C=Q

By assumption, A is trivial if and only if B is trivial. Consider A and
B.

Consider the case where A and B are trivial. Then P and @ have the
same prime factors.

The result follows.

Consider the case where A and B are non-trivial. Then P and () have
prime factorisations of the following forms.

p(P) = {(id; A\C)}
p(Q) = {(id; B\C)}

The result follows.
Consider the case where s is of type (p).
g P=T*(A® B) - T*(A) @ I'*(B) = Q
Then P and @ have the same prime factors.
p(P) =T"(p(A) @ p(B)) = T"(p(A)) @ " (p(B)) = p(Q)
The result follows.
Consider the case where s is of type (¢).
QrP=T"I)=T=Q
Then P and @ have the same prime factors.
p(P) =T"(p(Z)) = p(Z) = p(Q)
The result follows.
Consider the case where s is of type ((—)%).
*(s): P=T*(A) - T*(B)=Q
Then P and @) have prime factorisations of the following forms.
p(P) = D" (p(A))
p(@Q) = D' (p(B))

By induction, the result follows.
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e Consider the case where s is of type (k).
K2 P =T*A*(A) = (AT)*(4) = Q
Then P and ) have the same prime factors.
p(P) =T"A%(p(A)) = (AL)"(p(4)) = p(Q)
The result follows.
e Consider the case where s is of type (k).
(K91 P=id*(4) - A=Q
Then P and ) have the same prime factors.
p(P) =id"(p(A)) = p(4) = p(Q)
The result follows.
e Consider the case where s is of type (&).
Fa: P=1id,(A) - A=Q

Then P and @ have the same prime factors.

The result follows.
O

Proposition 5.3.15. Let P and Q be shapes with prime factorisations of
the following forms.

p(P) = {(o; Fy), .., (Mp—15 Bp—1)}
p(Q) = {(X0;Q0), - -, (Bg—15Qq—1) }
The following are equivalent.
o There is a central isomorphism P =2 Q).

e p=gq and, for each i, II; =3; and P, = Q);.

Proof. This follows from Lemma 5.3.13 and Lemma 5.3.14. O

We end this section with some technical lemmas about central isomor-
phisms between shapes of certain forms. Each of these lemmas follows from
Proposition 5.3.15.



120 CHAPTER 5. COHERENCE

Lemma 5.3.16. Let A: C — D be a path in &. Let A and B be D-shapes.
The following are equivalent.

e There is a central D-isomorphism of the following form.

A=B

e There is a central C-isomorphism of the following form.

A*(A) = A*(B)

Proof. Let A and B have prime factorisations of the following forms,
p(A) = {(FO, A0)7 ) (Fafl; Aafl)}

p(B) = {(Ao; Bo), - .-, (Ap—1;By—1)}

By Proposition 5.3.15, there is a central D-isomorphism A = B if and only
if a = b and, for each i, I'; = A; and A; = B;. By Proposition 5.3.15, there
is a central C-isomorphism A*(A) = A*(B) if and only if @ = b and, for each
i, ;A = A;A and A; 2 B;. Since I';, A; and A are paths in a graph, these
conditions are equivalent. O

Lemma 5.3.17. Let': X — C and A: X — D be paths in &. Let A be a
non-trivial C-shape. Let B be a non-trivial D-shape. Let there be a central
X -isomorphism of the following form.

I*(A) = A*(B)

Then, either there is a path A: C — D of & such that A = AT, or there is
a path A: D — C of & such that T' = AA.

Proof. Let A and B have prime factorisations of the following forms.
p<A) = {(FO; A0)7 cey (Fa—l; Aa—l)}

p(B) = {(Ao; Bo), - .-, (Ap—1:By—1)}

By Proposition 5.3.15, for each ¢, I';I' = A;A. Since I';, I, A; and A are
paths in a graph, it must be the case that either there is a A such that
A=Al and I'; = AjA, or thereis a A such that I' = AA and A; =T;A. O

Lemma 5.3.18. Let I': X — C and A: X — D be paths in &. Let A be
a C-shape. Let B be a D-shape with at least one prime factor of the form
(id; B;). Let there be a central X -isomorphism of the following form.

T*(A) = A*(B)

Then there is a path A: C — D in & such that A = AT,
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Proof. Let A and B have prime factorisations of the following forms.
p(A) = {(FO; AO); ey (Fa—l; Aa—l)}

p(B) = {(Ao; Bo), .-, (Ap—1; Bp—1)}

By Proposition 5.3.15, for each i, I';T' = A;A. By assumption, there is some
1 for which A; is empty. Choose A to be T;. ]

Lemma 5.3.19. LetI': X — C and A: X — D be paths in &. Let &: D —
E be a non-empty path in &. Let A be a C-shape. Let B be a D-shape. Let
there be a central X-isomorphism of the following form.

[*(A) = A*3*3,(B)

Then, either there is a path A: C — D in & such that A = A" and A =
AN*®*®,(B) or there is a non-empty path A: D — C and a path ¥: C — &
in & such that ' = AA, & = VA and A = U*,(B).

Proof. Let A have a prime factorisation of the following form.

p(A) = {(To; Ao), - -+ (Ta—15 Aa—1)}

By Proposition 5.3.15, a = 1, T'o\I' = ®A and Ay = ®,(B). Since I'g, I', &
and A are paths in a graph, it must be the case that either there is a A such
that A = AI" and I'g = ®A, or there is a A such that I' = AA and & = I'jA.
If A is empty, then both cases are equivalent, so, without loss of generality,
we may assume that A is non-empty in the second case.

If there is a A such that A = AT" and I'y = ®A, then A = I'§(Ap) =
A*P*D, (B)

If there is a non-empty A such that I' = AA and a ® = I'gA, then, taking
VU to be I'yg, A =T;(Ap) = V*O,(B). O

5.4 Constructible Morphisms

In this section, we will define a class of allowable morphisms called the
constructible morphisms. These will be defined in a way which makes them
more convenient to work with than the allowable morphisms. In particular,
their definition will not explicitly mention composition. This will allow
us to prove results about the constructible morphisms without mentioning
composition.

In fact, we will show that the class of constructible morphisms consists
of all of the allowable morphisms. This will allow us to prove results about
the allowble morphisms without mentioning composition.
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5.4.1 Definitions

First, we will introduce some concise notation for morphisms of certain forms
which will appear frequently throughout this section and the rest of this
chapter. Choose an object X of GRg.

Definition 5.4.1. Let C be a vertex of &. Given a morphism
fiI®A—B

in X(C), we will use the notation (/, f), to denote the following morphism
in X(C).

"y n1e4) N B

Definition 5.4.2. Let I': C — D be a path in &. Given morphisms
f:B—=>C

in X (D) and
g: AQT*(D)® E — F

in X (C), we will use the notation (I', f, g)- to denote the following morphism
in X(C).

(et
A@T*(Bo (C\D) @ E 2098 4 o D)o ES F

Here, we are using the notation EfD to refer to the diagonal of the following

square, which commutes by extranaturality of e.

B® (C\D)

C’\/ \ (f\D)

® (C\D) B® (B\D)

ké
D

Definition 5.4.3. Let ®: C — D be a path in &. Given a morphism

f:®*(A) —» B
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in X(C), we will use the notation (®, f)s to denote the following morphism
in X (D).

) . (f)

3]
PRENE R o, (B)

Definition 5.4.4. Let I': B — C be a path in &. Let &: C — D be a path
in 6. Given a morphism

fiA®RT*(B)®C = D

in X (B), we will use the notation (I', ®, f)¢ to denote the following morphism
in X(B).

f

A *(C2YRC
ATCHEC, f o1 B)o C L D

AT*®*®,(B)® C

Definition 5.4.5. Let I': C — D be a path in &. Given morphisms
f:B—=C
in X (D) and
g: AT*(C)® D - E

in X (C), we will use the notation (I', f, g), to denote the following morphism
in X(C).

ART*(f)®D
—_—

A@T*(B)® D AT*(C)o DL E

With these definitions, we are able to define the constructible morphisms.

Definition 5.4.6 (constructible morphisms). The constructible morphisms
are defined by the following rules.

~Y

type (&) Let C be a vertex of &. Every central C-isomorphism is a con-
structible C-morphism.

type (®) Let C be a vertex of &. Given constructible C-morphisms
ftA—>B and g:C—D

such that B and D are non-trivial C-shapes, and central C-isomor-
phisms
P=ARC and B® D =Q,

the following is a constructible C-morphism.

PrAeci® Bap=q
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type (1) Let C be a vertex of &. Given a constructible C-morphism
f:IeP—A
such that I is a non-trivial C-shape, and a central C-isomorphism
NA=Q,

the following is a constructible C-morphism.
P <Iaf>77 I\A o~ Q

type (¢) Let I': C — D be a path in &. Given a constructible D-morphism
f:B=>C
such that C' is a non-trivial D-shape, a constructible C-morphism
g: ART*(D)® E — Q
and a central C-isomorphism
P AT (B®(C\D))®E,
the following is a constructible C-morphism.

P2 A®T*(Be (C\D) o E 12 ¢

type ((—)*) Let I': C — D be a non-empty path in &. Given a constructible
D-morphism
f:A— B

such that B is a non-trivial D-shape, and central C-isomorphisms
P=T*(A) and I'(B) = Q,
the following is a constructible C-morphism.

pra) T By =@

type (0) Let ®: C — D be a non-empty path in &. Given a constructible
C-morphism
f:9(P)— A

and a central D-isomorphism
(I>*(A) = Q7
the following is a constructible D-morphism.

P <(I)7f>9 (b*(A) ~ Q
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type (() Let I': B — C be a path in &. Let ®: C — D be a non-empty
path in &. Given a constructible B-morphism

[tAT*(B)@C —Q
and a central B-isomorphism
P2 A®T*®*®,(B)®C,
the following is a constructible B-morphism.

<F7(I>7f>C
REMLAAN

P2 ART*®*®,(B)®C Q

5.4.2 Allowable Morphisms

In this section, we will show that the class of constructible morphisms con-
tains all of the allowable morphisms.

Lemma 5.4.7. Let C be a vertex of . Given a constructible C-morphism
s: P—Q
and central C-isomorphisms
P'=p and Q=2qQ,
the following is a constructible C-morphism.

Pr=2p3Q=q

Proof. We will prove this by induction on the type of s.

e Consider the case where s is of type (=). In this case, the result is
clear.

e Consider the case where s is of type (®).

s:P2A0C I BoDx~(

The desired composite is the following constructible morphism.

§:P=2A0C 1% Be D=
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e Consider the case where s is of type (7).

s: P M NA=Q
Consider the following allowable morphism.
fiIeP=IaPta

By induction, f’ is a constructible morphism. The desired composite
is the following constructible morphism.

P/ <A7f/>7] A\C o Ql

Consider the case where s is of type (¢).

s: P2 AgT*(B e (C\D) @ E 1195

Consider the following allowable morphism.
g AT* D) EL Q=qQ

By induction, ¢’ is a constructible morphism. The desired composite
is the following constructible morphism.

D,f.g")e
(T.f.9")

PP2AT"(B® (C\D))®E Q'

Consider the case where s is of type ((—)%).

st PTr(A) —Y) preg
The desired composite is the following constructible morphism.
D,

P'ET(A) (B)=Q

Consider the case where s is of type (0).

<<I)7f>9

p 20 g (1) = q

Consider the following allowable morphism.
forPY=a*(P) L A

By induction, f’ is a constructible morphism. The desired composite
is the following constructible morphism.

Pl <<I>7f,>9 CI)*(A) o Q/



5.4. CONSTRUCTIBLE MORPHISMS 127

e Consider the case where s is of type ().

(0,9, f)¢
RN

P~ A@T*®*®,(B)® C Q

Consider the following allowable morphism.
fiAeT*(B)oc L o=

By induction, f’ is a constructible morphism. The desired composite
is the following constructible morphism.

.,/
P2 A9, (B)w ¢ 2T

Q/
O
Lemma 5.4.8. Let C be a verter of &. Given constructible C-morphisms
fiA—B and g: C—> D,

the following is a constructible C-morphism.

AoC 1% Bg D

Proof. If B and D are non-trivial shapes, then the result follows. Assume
that B is a trivial shape; the case where D is a trivial shape is similar.
Consider the type of the constructible morphism f.

e Consider the case where f is of type ().
f:A=ZB
Then f ® g is the following constructible morphism.
AC=C%D=B®D

e Consider the case where f is of type (®).

f:AgAl(X)AQ@)Bl@BQgB

Then neither By nor Bs is a trivial shape, which means that B cannot
be a trivial shape. This contradicts our assumption.

e Consider the case where f is of type (7).

foa b pnprap

Then I is not a trivial shape, which means that B cannot be a trivial
shape. This contradicts our assumption.
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e Consider the case where f is of type (¢).

<F7f17f2>5

frA= A QT (A ® (A3\A4)) ® A5 B

By induction,

A @T*(A) @ As0C L2 Bo D
is a constructible morphism. Then f ® g is the following constructible
morphism of type (¢).

(T, f1,f209)e

ARC =A@ (A ® (A3\A4)) ® A5 @ C B®D

e Consider the case where f is of type ((—)*).

25 (f)

A (A ®* (B )~ B

Then B’ is not a trivial shape, which means that B cannot be a trivial
shape. This contradicts our assumption.

e Consider the case where f is of type (0).

<q>7fl>0

A ®,(B)~ B

Then @ is not an empty path, which means that B cannot be a trivial
shape. This contradicts our assumption.

e Consider the case where f is of type (().

A A @ TP, (As) ® Ay 2206,

B
By induction,

AT (A) © 4300 L2% Bo D

is a constructible morphism. Then f ® g is the following constructible
morphism of type (().

(7,®,f'®9)
—_—

A®C2 A @T*6*D,(Ay) @ A3 ® C “B@D

O
Lemma 5.4.9. Let C be a vertex of &. Given a constructible C-morphism
fiI®A— B,
the following is a constructible C-morphism.
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Proof. If I is a non-trivial shape, then the result follows. Assume that [ is
a trivial shape. In this case, (I, f), is the following constructible morphism.

A~ToA L B~1\B
O

Lemma 5.4.10. Let A: C — D be a path in &. Given a constructible
D-morphism
f:B—=C

and a constructible C-morphism
g: AQA*(D)® E — F,

the following is a constructible C-morphism.

A® A*(B® (C\D)) ® E 209 p

Proof. If C is a non-trivial shape, then the result follows. Assume that C' is
a trivial shape. Consider the type of the constructible morphism f.

e Consider the case where f is of type ().
B=(C
Then (A, f, g)c is the following constructible morphism.

AN (B (C\D)QE~XAQA*(D)QE % F

e Consider the case where f is of type (®).

BB B M2 0w, >0

Then neither C nor Cs is a trivial shape, which means that C' cannot
be a trivial shape. This contradicts our assumption.

e Consider the case where f is of type (7).

foB L oo

Then I is not a trivial shape, which means that C cannot be a trivial
shape. This contradicts our assumption.
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e Consider the case where f is of type (¢).

<F7f17f2>5

f: B2 By ®T*(B2 ® (B3\By)) ® Bs c

By induction,

A® A*(B, ® T*(By) @ By @ (C\D)) @ E 2029,

is a constructible morphism. Then (A, f,g)c is the following con-
structible morphism of type (¢).

A A*(B® (C\D))® E

A EJE
=A@ A (B ®T*(By® (By\B1) @ Bs © (C\D)) @ E L2020,
e Consider the case where f is of type ((—)").
B=ao(B) X o0y =c

Then C’ is not a trivial shape, which means that C' cannot be a trivial
shape. This contradicts our assumption.

e Consider the case where f is of type (0).

(®,f")e

B o, (CY=C

Then @ is not an empty path, which means that C' cannot be a trivial
shape. This contradicts our assumption.

e Consider the case where f is of type (¢).

<F,<I),f/><
0

BB ® F*q)*‘I)*(BQ) ® Bs C

By induction,

A® A*(By @ T*(By) @ By ® (C\D)) ® E 209,

is a constructible morphism. Then (A, f,g)c is the following con-
structible morphism of type (().

A A*(B® (C\D))® E

DA® (A fg)e
2 AR AY (B @ T"0*®,(By) ® Bs® (C\D))® E ( (Afgede,

O
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Lemma 5.4.11. Let A: C — D be a path in &. Given a constructible
D-morphism

fi A— B,

the following is a constructible C-morphism.

a*(4) =8 a%()

Proof. If B is a non-trivial shape and A is a non-empty path, then the
result follows. Assume that A is an empty path. In this case, A*(f) is the
following constructible morphism.

A*(A)= ALy B~ A%(B)

Assume that B is a trivial shape. Consider the type of the constructible
morphism f.
e Consider the case where f is of type ().
f:AZB
Then A*(f) is the following constructible morphism of type (22).
A*(A) =2 A*(B)

e Consider the case where f is of type (®).

FiA A @4 122 B o B, ~B

Then neither By nor Bs is a trivial shape, which means that B cannot
be a trivial shape. This contradicts our assumption.

e Consider the case where f is of type (7).

If'
foa Ll nprep
Then I is not a trivial shape, which means that B cannot be a trivial
shape. This contradicts our assumption.
e Consider the case where f is of type (¢).

<F7f17f2>5

frAZ A @TH (A ® (A3\A4)) ® As B

By induction,
* * A*(f2) *
A% (A1 @ T*(Ay) ® As) ——> A*(B)
is a constructible morphism. Then A*(f) is the following constructible
morphism of type (g).

(T'A, f1,A%(f2))e

A*(A) = A" (A @ T*(Ay @ (A3\Ay)) ® As) A*(B)
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e Consider the case where f is of type ((—)*).

Az oA XY, o gy~ B

Then B’ is not a trivial shape, which means that B cannot be a trivial
shape. This contradicts our assumption.

Consider the case where f is of type ().

<q>7fl>0

A ®,(B)~ B

Then ® is not an empty path, which means that B cannot be a trivial
shape. This contradicts our assumption.

Consider the case where f is of type (¢).

(L,@,f")¢
RELREL AN

A2 A ® F*(I)*(I)*(AQ) ® As B

By induction,
* * A*(f/) *
A*(A; @ T*(Ay) ® Az) —= A*(B)

is a constructible morphism. Then A*(f) is the following constructible
morphism of type (¢).

A A* ’
(TA,2,8%(f"))¢ A*

A*(A) 2 A% (A @ T** D, (As) ® As3) (B)

O]

Lemma 5.4.12. Let ®: C — D be a path in &. Given a constructible
C-morphism

f: ®*(A) — B,

the following is a constructible D-morphism.

<<D7f>8

A o,(B)

Proof. If ® is a non-empty path, then the result follows. Assume that & is
an empty path. In this case, (®, f)g is the following constructible morphism.

A= (A) L B~ o, (B)
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Lemma 5.4.13. Let I': B — C be a path in &. Let ®: C — D be a path in
&. Given a constructible B-morphism

[t AT*(B)® C — D,
the following is a constructible B-morphism.

(0,2, f)¢
/=

AT*®*®,(B)®C D

Proof. If ® is a non-empty path, then the result follows. Assume that ® is an
empty path. In this case, (I, @, f) is the following constructible morphism.
A@T"0*®,(B) 0o C = AeT*(B)oC L D

O

The biggest challenge in showing that the class of constructible mor-
phisms consists of all of the allowable morphisms is in showing that the
class of constructible morphisms is closed under composition. In order to
do this, we prove the following more general statement.

Lemma 5.4.14. Let A: C — D be a path in &. Given a constructible
D-morphism
s: P—Q

and a constructible C-morphism

t: U A (Q)®V — R,

the following is a constructible C-morphism.

UeA*(P)oV 250 g

Proof. We will prove this by induction on the types of s and t.
e If s or t is of type (=), then the result follows from Lemma 5.4.7.
e Consider the case where s is of type (®).

s:P2AC I Bap=q

t:URA(Q)®V = R
Consider the following constructible morphism.

1 U@ABoD)oV2UAY Q) oV LR
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Consider the following allowable morphism.

A7gzt/ o
( )

wURA(BC)QV R

By induction, w is a constructible morphism. Consider the following
allowable morphism.

<A7f’u> o

Vv URA(ARC)V R

By induction, v is a constructible morphism. The desired composite
is the following constructible morphism.

UA*(P)@V2URA*(A®C)®V S R
Note the following.

(A, 5, 1) = (A, f @ g, 1) = (A, f,{A, g,t)0)0

Consider the case where ¢ is of type (7).
s: P—Q

tUeAQ oV L naxR

Consider the following allowable morphism.

<A757f>0

[ IU A (P)RV A

By induction, f’ is a constructible morphism. The desired composite
is the following constructible morphism of type (7).

Usarp)ov L pax~ g

Note the following.

<Aa 57t>0 = <A78> <Ia f>T]>O = <Iv <A787f>0>71

Consider the case where s is of type (¢).

s: P2 AgT*(B (C\D) ® E 119

t:URQA"(Q)®V — R
Consider the following allowable morphism.

A»7t0
(A,g.t)

wUQA(ARQT*(D)RE)®V R



5.4. CONSTRUCTIBLE MORPHISMS 135

By induction, u is a constructible morphism. The desired composite
is the following constructible morphism of type (¢).

(A, fu)e

UQA*(P)QVE2UQA(AT* (B (C\D)®@E)®V R

Note the following.

<A7 S, t>0 = <A7 <F7 f7 g>57t>0 = <FA, f7 <Aagvt>0>€

e Consider the case where s is of type ((—)*).

s: PTRA) ZY)

I"(B)=Q
t:UA"(Q)®V - R
Consider the following constructible morphism.

1 UQAT*B)@VE2URA Q) ®V SR

Consider the following allowable morphism.

DA, ft')o
(TA,f:t')

w:U®ATHA) @V R

By induction, u is a constructible morphism. The desired composite

is the following constructible morphism.
URAP)VZ2URAT(A) eV SR

Note the following.

(A, s,t)e = (A T*(f), t)o = (TA, f,t)s

e Consider the case where ¢ is of type (6).
s: P—Q
* <<I>7f>8 ~
tURA Q) @V ——= &, (A) =R

Consider the following allowable morphism.

<A(b»87f>o

F 05U @ A (P)® V) A

By induction, f’ is a constructible morphism. The desired composite
is the following constructible morphism of type ().

Uo AP oV 2% ¢ (4)=R
Note the following.
<A7 37t>0 g <A7 37 <(I)7 f>9>0 g <(I)7 <Aq)7 Sa f>0>9
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e Consider the case where s is of type (¢).

(0,9,f)¢
RLLLLI

$: PXAQI"®*d,(B)® C Q
tUQA(Q)®V = R
Consider the following allowable morphism.
. * * <A7f1t>0
wURA(ARI*(B)@(C)V ———= R

By induction, u is a constructible morphism. The desired composite
is the following constructible morphism of type (¢).

(CA,Q,u)¢
RA

URQA*(P)QVEURA(AT"®*®,(B)C)®V R

Note the following.

(A, 5,80 = (AT, D, fe, t)o = (TA, O, (A, f,t)o)¢

Consider the case where s is of type (1) or (f) and ¢ is of type (®).

< <\Ij?l>9

s P ngag o s PN g (n)=q

UM Q) eVE2AcCc 2. Bo DR

In either case, () has a single prime factor. It must be the case that
U, Q, V, A and C have prime factorisations of the following forms,
where A*(X!) = X,,.

v @ X. Q=x; v= Q) X,

0<a<i i<a<n
1= @x o=@ X
0<a<yj j<a<n
Compare ¢ with j.

Consider the case where 0 <17 < j < n.

U A*(Q) 14
—_—————— ~
Xo® - ®Xi1® X; @Xi1®--@X; 10X;® @ Xp—1
A C

Define the following shape.

ANV = ® X,

<a<j
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This shape has been chosen so that the following central isomorphisms
exist.

VEANV)®C
UA*(Q)® (ANV)=A
Consider the following constructible morphism.

FUeAQeANV)=AaL B

Consider the following allowable morphism.

<A)5,f/>o

w: U®A*(P)®(ANV) B

By induction, u is a constructible morphism. The desired composite
is the following constructible morphism of type (®).

U A*(P)@V 22U A (P)®(ANV)2C 2% Bo DR
Note the following.

<A7S7t>0 = <A737f®g>0 = <A757f>0®g

Consider the case where 0 < j <17 < n.

U A*(Q) %4
~ A~
Xo®--@Xj1®0X;® X, 1® X; X410 ® Xy
A C
This case is similar to the case where 0 < 7 < 7 < n. Note the
following.

<A787t>0 = <A737f®g>0 = f® <A787g>0
e Consider the case where s is of type (1) or (#) and t is of type (¢).

<\Il7l>9

s: PP g o s PN w ()=Q

HU®AQ @V = AT (Be (C\D) o E 1195 g

In either case, @ has a single prime factor. It must be the case that
U,Q,V,A B, C\D and E have prime factorisations of the following
forms, where A*(X!) = X, and T*(X/) = X,,.

v @ X, Qz=x; vz X,

0<a<i <a<n
A= ) Xo B= QR X) C\D=X; E= (K X,
0<a<y i<a<k k<a<n

Compare 7 with j and k.
Consider the case where 0 < i < j <k < n.



138

CHAPTER 5. COHERENCE

U A@Q) v
—_— e~
Xo® - ®Xi® X; 9Xi1® X1 0X;0 X109 X @Xp1 @@ Xy

—_——
A

~—
I*(B)  TI*(C\D) E

Define the following shape.

ANV = ® X,

1<a<j

This shape has been chosen so that the following central isomorphisms
exist.

VE(ANV)T*(B® (C\D))® E
UA"(Q)®(ANV)=A
Consider the following constructible morphism.
FUQAQ)@(ANV)RT*(D)RE~AQT* (D)9 E L R
Consider the following allowable morphism.

<A,s,g’>o

wURA(P)@(ANV)I*"(D)® E R

By induction, u is a constructible morphism. The desired composite
is the following constructible morphism of type (¢).

UoA*(P)oV 2 UsA*(P)(ANV)eT*(Be (C\D) o E 15 R
Note the following.

<Av 5’t>0 = <A7 5, <F’ fa g>£>0 = <F7 fv <A, 5u9>0>a

Consider the case where 0 < j <i < k < n.

U A*(Q) v
—~~
Xo® - Xj1®X;® - ®X 10 Xi @Xin1® X109 Xp @Xpp1 ®-- @ Xpn
-~ —
A T(B) r*(C\D) 3

Define the following shapes.

UnB= () X, Qp=X/ BnVv= Q) X/

j<a<i i<a<k

These shapes have been chosen so that the following central isomor-
phisms exist.

U2 AT*(UNB) A*Q)=T*(Qp) V=I"(BNV)®(C\D))®QFE
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(UNB)®Qp®(BNV)=EB

By Lemma 5.3.18, there is a A such that A = AT, since either J\ K or
U, (L) is a prime factor of Q). By Lemma 5.3.16, the following central
isomorphism exists.

A (Q) = QB
Consider the following constructible morphism.
frUnB oM@ eBnV)=BLC
Consider the following allowable morphism.

<A757f/>o

u: (UNB)®@ A (P)®(BNV) C

By induction, u is a constructible morphism. The desired composite
is the following constructible morphism of type (g).

UQA*(P)V
~ A@T*(UNB)@ A(P)® (BNV)® (C\D)) ® E 49
Note the following.
<A7 37t>0 = <AF7 S: <F7 f7 g>6>0 = <F7 <A7 87 f)o;g)e
Consider the case where 0 < j < i =k < n,
U A*(Q) %4
A~
Xo® - ®X; 10X;®@ X, 1® X; Xi11 Q0@ Xp1
~—~
A I'*(B) I'*(C\D) FE

The following central isomorphisms exist.
U= AT (B) AYQ)=T*(C\D) V=E

It must be the case that s is of type (), A=T, J=C and K = D.
Consider the following allowable morphism.

w AQT*(C ® P) @ E 159,

R
By induction, w is a constructible morphism. Consider the following
allowable morphism.

<F’f9u>0

v: AQT*(B® P)® E R
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By induction, v is a constructible morphism. The desired composite
is the following constructible morphism.

v

URA*(P)@VEART*(BRP)®FE = R
Note the following.

<A7 57t>0 = <F7 <J7 k>777 <Fa fa g>€>0 = <F7 f7 <F7 kvg>0>0

Consider the case where 0 < j < k <1i < n.

U A*(Q) 1%

~  —_——
XKo@ Xj1@X;Q - X 1® Xgp ©Xp1®@-- X010 Xy @Xi11 Q-+ Q@ Xy
—~
A “(B)  I'*(C\D) E

This case is similar to the case where 0 < ¢ < j < k < n. Note the
following.

(Ass,t)0 = (A, 5,(L, f,9)e)o = (T, £, (A, 5,9)0)e

Consider the case where s is of type (n) or (f) and ¢ is of type ((—)*).

s: P g2 o s P w)>Q

U@ AQ oV = (A) XY o7 By~ R

In either case, @ has a single prime factor. It must be the case that
U, @,V and A have prime factorisations of the following forms, where
A*(X!) = X, and &*(X)) = X,.

v @ X. Qz=x; vz X,

0<a<i <a<n

Az K X

0<a<n

Define the following shapes.

Uaz= @ X, Q= Q@ X/ Wz Q) X/

0<a<t i<a<j j<a<n

These shapes have been chosen so that the following central isomor-
phisms exist.

U=o*(Us) A* Q)T (Qa) V=" (Vy)

Us@Qa®@Vy=A
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By Lemma 5.3.18, there a A such that A = A®, since either J\K or
U, (L) is a prime factor of Q). By Lemma 5.3.16, the following central
isomorphism exists.

A (Q) = Qa
Consider the following constructible morphism.
FiUsoAQaeVazALl B
Consider the following allowable morphism.

(Ass,f")o

u: Uy @ A*(P)®@ Vy B

By induction, u is a constructible morphism. The desired composite
is the following constructible morphism of type ((—)%).

U® A (P)@V 26" (Us0 A (P) o Vi)~ o*(B) = R
Note the following.
(A, 5,8)0 = (AD, 5, D*(f))o = D*((A, 5, f)o)

e Consider the case where s is of type (1) or (0) and ¢ is of type (¢).

s PP ngag o s PN w (n)=Q
* ~ * Fyx (F,CID,f)C
b U®A Q) 0V = Ao T e, (B) o C 2 R

In either case, @ has a single prime factor. It must be the case that
U, Q,V, A, &,(B) and C have prime factorisations of the following
forms, where A*(X!) = X, and T*®*(X/) = X,,.

v @ X. Q=x; v= Q) X,

0<a<t <a<n
A= Q) Xo B =X] = Q) X
0<a<j j<a<n
Compare 7 with j.

Consider the case where 0 <1 < j < n.
U A*(Q) 1%
—_— A~
Xo® - Xic1® X; X1 ®---0X;10 X; X;11®-- @ Xn1
~—
A I~o*o,(B) C
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Define the following shape.
ANV = X X,
1<a<j
This shape has been chosen so that the following central isomorphisms

exist.

V(ANV)eI*e*0,(B)® C
UA"(Q)®@(ANV)=A
Consider the following constructible morphism.

FURA Q) @ANV)eM*(B) o C2 AT (B)oC L R

Consider the following allowable morphism.

(A,8,f")o

wURA(P)@(ANV)I*(B)®C R

By induction, u is a constructible morphism. The desired composite
is the following constructible morphism of type (¢).

(T, @,u)¢
/s

URA"(P)QV2URA*(P)@ (ANV)@T™d*d,(B)® C R

Note the following.
(A, 5,1)0 = (A, 5, (I, @, flc)o = (L, @, (A, s, flo)¢

Consider the case where 0 < i = j < n.

U A*(Q) %4
—_— A~
Xo®--Xic1® Xi; X411 ®---® Xpn1
—_—  ~~

A T*3°0.(B) C

The following central isomorphisms exist.
U= A A*(Q) 2 T*0*d,(B) V=l

It must be the case that s is of type (), A = ®T', ¥ = & and L = B.
Consider the following allowable morphism.

w: AeT*e*(P) o ¢ Lhey j

By induction, u is a constructible morphism. The desired composite
is the following constructible morphism.

U A*(P)V2AT*®*(P)2C % R
Note the following.
<Aa S, t>0 = <q)Fa <(I)7 l>97 (Fa (I)a f><>0 = (F? l7 f>0

Consider the case where 0 < j <1 < n.
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U A*(Q) \%
=
Xo®--X;1®0 Xj 9Xj®---0Xia® Xi 9Xi1®--® X5
—_—— ~~
A 30, (B) C

This case is similar to the case where 0 < 7 < 7 < n. Note the
following.

<Aa 57t>0 = <A757 <F7(I)7f>c>0 = <F7(I)7 <A7Sa f>O>C

O

Now the proof that every allowable morphism is a constructible mor-
phism is not difficult.

Theorem 5.4.15. Let C be a vertex of . Let s: A — B be an allowable
C-morphism. Then s is a constructible C-morphism.

Proof. We will prove this by induction on the type of s

If s is an allowable morphism of type (id), (a), (A), (p), (¥), (¢), (k)
or (%), then s is a constructible morphism of type ().

If s is an allowable morphism of type (n),

A
B2 A\(A® B),
then s is the following allowable morphism, which is a constructible
morphism, by Lemma 5.4.8 and Lemma 5.4.9.

(A,ARB

B A, 4\ (4w B)

If s is an allowable morphism of type (¢),

A
A® (A\B) =% B,
then s is the following allowable morphism, which is a constructible
morphism, by Lemma 5.4.10.

idvA:B>€
o

A® (A\B) B

If s is an allowable morphism of type (®),

Awc i oD,

then s is the following allowable morphism, which is a constructible
morphism, by Lemma 5.4.8.

AwCc 1% oD,
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e If s is an allowable morphism of type (\),

B\c 2% a\D,

then s is the following allowable morphism, which is a constructible
morphism, by Lemma 5.4.10 and Lemma 5.4.9.

(A,(id, f.g)e
R

B\C Iy A\D

If s is an allowable morphism of type (6),

9<I>
AL ,0%(A),
then s is the following allowable morphism, which is a constructible

morphism, by Lemma 5.4.11 and Lemma 5.4.12.

(@,2%(A))o

A O, 0% (A)

If s is an allowable morphism of type (¢),

C@
*d, (A) -4 A,

then s is the following allowable morphism, which is a constructible
morphism, by Lemma 5.4.13.

o, (A) 22N 4

If s is an allowable morphism of type ((—)),

®*(f)

o*(4) *(B),

then s is the following allowable morphism, which is a constructible
morphism, by Lemma 5.4.11.

*(f): @*(A) = *(B),

If s is an allowable morphism of type ((—),),

. (f) o, (B),

2,(4)
then s is the following allowable morphism, which is a constructible
morphism, by Lemma 5.4.13 and Lemma 5.4.12

(<I>,(id,<1>,f><)9
BRI

D, (A) o, (B)
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e If s is an allowable morphism of type (o),
AL BS ¢

then s is the following allowable morphism, which is a constructible
morphism, by Lemma 5.4.14.

id,£,9)0
(id, f,g)

A C

5.5 A Category of Relations

In this section, we will define a particular closed monoidal category, together
with a collection of monoidal adjunctions indexed by the positive integers.
We will then use this to define a particularly simple object of GRg, which
we will denote ZREL, as well as a morphism of GRg of the following form.

Q: SHPs — ZREL

5.5.1 Notation and Terminology

Throughout this section, we will make use of predicates and relations.

By a predicate on a set A, we mean a function P: A — {T, F'}. Given
such a predicate and an element a € A, we say that P(a) is true if P(a) =T
and that P(a) is false if P(a) = F.

We will denote logical conjunction of P(a) and Q(a) by P(a)Q(a); i.e.
P(a)Q(a) is true if and only if both P(a) and Q(a) are true.

By a relation between two sets A and B, we mean a predicate on the set
A x B. We denote such a relation by R: A --+ B. Given such a relation
and elements a € A and b € B, we will usually denote R(a,b) by Rj.

By the zero predicate on a set A, we mean the predicate on A which is
constant at F'. By the zero relation A --» B, we mean the zero predicate
on the set A x B.

Given a positive integer ®, we will denote the set {0,1,...,® —1} by ®.

At times, it may be helpful to view a relation A --» B as the cor-
responding matrix whose height is the cardinality of A and whose width
is the cardinality of B. For example, the relation R: 3 --+ 4 defined by
R} <= a < b can be represented by the following 3 x 4 matrix.

0<0 0<1 0<L2 0<3 T T
1<0 1<1 12 183 =|F T
2<0 2<1 22 2<3 F F

NSNS

T
T
T
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There is a canonical bijection ® x ¥ = @V given by ordering the ordered
pairs lexicographically. For example, the bijection 2 x 3 = 6 is given by the
following composite of order-preserving bijections.

{0,1} x {0,1,2} = {(0,0),(0,1),(0,2),(1,0),(1,1),(1,2)} ={0,1,2,3,4,5}

We will use this bijection implicitly in order to represent relations with
multiple indices as matrices. For example, the relation R: 2 x 3 --» 3
defined by Rgb <= a+ b < ¢ can be represented by the following 6 x 3
matrix.

[04+0<0 04+0<1 0+0<2]
0+41<0 041<1 04+1<2
0+2<0 042<1 042<2
140<0 140<1 140<2
141<0 1+1<1 1+1<2
142<0 1+2<1 142<2

B IRt ies as
MNmNN
MNNNNN

We will also use this to represent block matrices. For example, given a 2 x 2
matrix M(()), a 2 x 3 matrix M{), a 4 X 2 matrix M(}, and a 4 x 3 matrix Mll,
the 8 x 6 block matrix

MY MY

o
represents the relation R: 2 x 4 --» 2 x 3 defined by R;% — (M;)g The
indices ¢ and j determine the submatrix, the indices a and b determine the
entry within the submatrix.

Given relations R: A --» B and S: B --» (', we denote their composite

relation by Re S: A --» C, defined as follows.

(ReS)* < 3b(RLSY)
Note that this agrees with the usual definition of matrix multiplication.
Given a set A, we will denote the identity relation on A by the Kronecker
delta 6, defined as follows.

: T ifi=j
O =
I F ifi#j

We will typically denote the unique element of a 1-element set by .

5.5.2 Definitions

The closed monoidal category which we will describe in this section is a
strict model of the category of representations of the group of integers under
addition, valued in the category of finite sets and relations. Let Z be the
group of integers under addition, interpreted as a 1-object groupoid. Let
REL be the category of finite sets and relations. Then the category which
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we will describe, and which we will denote by [Z, REL], is equivalent to the
category of functors from Z to REL. For the sake of simplicity, we will
assume that REL is a strict monoidal category, with tensor product given
by cartesian product of sets.

First, we will give an explicit description of the category [Z, REL]. An
object of this category consists of a set Ay with an automorphism (that
is, a bijection A9 — Ap). Given an automorphism A: Ay --+ Ap and an
automorphism B: By --+ By, a morphism A — B is relation R: Ag --+ By
such that Ae R = Re B; we call such relations ‘equivariant’. Composition of
morphisms is defined by composition of relations in the obvious way; given
morphisms R: A — B and S: B — C, the composite R e S constitutes
a morphism A — C. Finally, the identity morphism on A is simply the
identity relation on Ag. It can be easily seen that this composition is both
associative and unital.

Now, we shall describe the strict monoidal structure on [Z, REL], inher-
ited pointwise from the strict monoidal structure on REL.

Given an automorphism A: Ag --» Ag and an automorphism B: By --»
By, their tensor product, A ® B, is the automorphism Ay x By --+ Ay X By
defined as follows.

(A® B)%, «— A%BY

Given a morphism R: A — B and a morphism S: C — D, their tensor
product, R ® S, is the morphism A ® C — B ® D defined as follows.

(R® S)py <= RySy
To see that R ® S is a morphism A ® C' — B ® D, note the following.

(A®C) e (R®9))iS «— Id'd (A2 C)%,(R® S)Lf)
3d'd (A% CSRY SS)

3/ (A Ry )3 (C5S5)

(Ae R)}(C e S)S

(R e B){(S e D)

30 (Ry By )3d (S5 DY )
30'd (R, S5 By DY )

Wd (R Sy (B DY
(R®S)e(B®D))hq

[ I A A

The monoidal unit, Z, is the 1-element set {*} with the identity relation.

Now, we shall describe a pivotal structure on [Z, REL], inherited point-
wise from the pivotal structure on REL; i.e. for each object, we shall con-
struct a simultaneous left and right dual.
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Given an automorphism A: Ag --» Ag, the dual, AV, is A. That is, each
object is self-dual. Note the following identity.

(AL (AV)]) > &
Given an automorphism A: Ag --+ Ag, the evaluation morphism
eva: AR AY - T
is the relation Ag x Ay --+ 1 defined as follows.
(evy)? — 5
To see that ev4 is a morphism A ® AV — Z, note the following.
(A AY) eeva)i = Fjj/((A@ AV) (eva))
35 (A§(AV)58)
3 (45(41)5)
5pr
(eva)
(eva)i'Z:

(eVA [ I)ii/

ftree

Given an automorphism A: Ag --+ Ag, the coevaluation morphism
coevy: T 5 AV® A
is the relation 1 --+ Ag x Ag defined as follows.
* J
(coeva)jy <= &}
To see that coevy is a morphism Z — AY ® A, note the following.

(Z @ coevp)i < Zi(coeva)iy

(coeva)ip

Sy

33 (A7) A7)

357 (6], (AY ). A%)

375" ((coeva)s; (AY @ A)la,)
(coeva e (AY @ A))iw

[ O A

The first triangle identity is that the following morphism is the identity
on A. y y
A id 4 ®coev 4 A®AV®A evA®id 4 A
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To check this, note the following.
((idg ®coevy) e (eva @ ida))in
=355'5"((id 4 ®C0€VA)” r(eva® 1dA),;;,Ij,,)
= 355" ((id ) (coev )}y (eva) (ida)l)
= ajj’j"(é’éﬂ,,y 5k,,)
i,
= (ida)4n
The second triangle identity is that the following morphism is the identity

on AY.
AV coev 4 ®id 4v AV ®A®AV id 4v ®ev 4 AV

To check this, note the following.

((coevy ®@idv) e (id v ®eVA))iN

J]])

3555 (coeva @ idav) s (idgv @evy)

73'J
3545 ((COGVA)j (1dAV) L (idav ) (eva)l ")

Hﬂﬂﬂ

Given a morphism R: A — B, the morphism RY: BY — AV is defined
as follows.

RY. BV 0ASHEY oy g o gy Mav RSy o p o by day Bevs oy
(RV)? < ((coevq ®@idpv) e (idyv @R ®idgv) e (id4v ®evp)?
Evaluating this yields the following.
(R");

a

<~ R}

Given a morphism R: A — B, note that the following two morphisms
are equal; this is extranaturality of ev.

R®idgv
Vv B

A® B Bo BY &8, T

AwBY AR 4o AV A T
(R®idpv) eevp)® «= (R ©idpv)P (evp)?™)
= IV (RE(idpv)b (evp)lY)
= W'Y (RE,)
— R
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((ida ®RV)0eVA)ab < 3d'd'((ida ®Rv)a,a/( va)Te)
= 3d'd((ida) % (RV)} (eva) P ™)
< 3@’&’((53/13‘5 63/)
— Ry

/

We will denote this morphism by evg: A ® BY — T.
Given a morphism R: A — B, note that the following two morphisms
are equal; this is extranaturality of coev.

idA\/ ®R
e

T4 AV e A AV ® B

v V ®i
ICOCBB\/®BR®1dB AV®B

“)

(coev e (idav @R))%, <= Ja'd’((coeva)z,(idav ®R)

ab
— Ja'd ((coev )k, (idav)? RE)
— 3Jd'd' (6%6% RY)
< R}

/

(coevp e (R ®@idp))s, <= 30V ((coevp);, (RV®1dB)
= 30V ((coevp), (R (idgp)Y)
= 3HY (6) RE6Y)
<~ R}

)

We will denote this morphism by coevg: T — AV ® B.
Now, we will define, for each positive integer ®, a strict monoidal endo-
functor, denoted ®*: [Z, REL] — [Z, REL].
The action on objects is given by the following.
o
—
P*(A) =A% =Ae-.-0 A
The action on morphisms is given by ®*(R) = R; note that the underlying
set of ®*(A) is the same as the underlying set of A, so this makes sense. It
can be easily seen that this defines a monoidal endofunctor.
Now, we shall describe, for each positive integer ®, the right adjoint to
®*, denoted @, : [Z, REL] — [Z, REL].
Given an automorphism A: Ay --» Ap, the automorphism ®,(A4): @ x
Ay --+ P x Ag is defined as follows.

A% ifi=0andi = -1
D, (A)i, <= 3% ifi=4+1

0 otherwise
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For example, 4,(A) can be represented by the following block matrix, where
I represents the identity relation on a set of the same size as Ay and 0
represents the zero relation on a set of the same size as Ag.

~ O o o
coc o

O O ~NO
O ~N O O

Hopefully, the general pattern is clear.
Before going any further, we must prove some simple combinatorial prop-
erties involving ®* and ®,.

Lemma 5.5.1. Given an automorphism A: Ay --+ Ag, the following holds,
where |x| denotes the greatest integer less than or equal to = and (n)g
denotes n modulo P,

nyia 1 i'+n a
(B (A, = § @(AL s 1)g,

i'a’ (i"+n)

For example, the first few powers of 4,(A) can be represented by the following
block matrices.

000 A 00 A 0
1 [ 000 2 |00 0 A
4*(’4)_0100 4*(A)_IOOO
00 I 0] 07 0 0
0 A 0 O] A 0 0 0
5 |00 A 0 4 |0 A 0 0
4*<A)_000A 4*(A)_00AO
I 0 0 0 0 0 0 A
0 0 0 A2 [0 0 A2 0
A0 0 0 0 0 0 A2

5 6 __
4*(A)_0A0 0 4*(A)_A0 0 0
0 0 A 0 0 A 0 0

Hopefully, the general pattern is clear.

Proof. We will prove this by induction on n. The ®,(A)° case is clear. The
®,(A)! case follows from the definition. Assume the statement is true for
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O, (A)".

(Du(A)" ) = (24(A) @ O (A)")if,

ra ra
= 3 A (0 (A
i'+n

J) //621 +TL) (A'— P

1

1y
e, (AL

— E'ZH l/( z"”+1) (

5 i’ +n )<1>
= i ini1)s 3" (AL

(' +n)p+1 i'+n
| ety o

= (i nt1)e (A Jar
(%) i dntl ),
— (z‘/+n+1)q>(AL e,

Step (%) follows from the following general equality.

s MR

Corollary 5.5.2. Given an automorphism A: Ay --+ Ag, the following
holds.

[*o*d, (A)i, «— §LT*(A)Y

ra

Corollary 5.5.3. Given an automorphism A: Ay --+ Ag, the following
holds.

Vied (DA = 56

Given a morphism R: A — B, the morphism ®,(R): ®,(A) — ®,(B) is
the relation ®,(R): & x Ay --+ ® x By defined as follows.

D, (R) b= 5ZR“
For example, 4,(R) can be represented by the following block matrix.

R

oo yo
o oo

0
0 0
0 R
0 0

Hopefully, the general pattern is clear. To see that ®,(R) is a morphism



5.5. A CATEGORY OF RELATIONS 153

®,(A) — @,(B), note the following.
(PL(A) 0 B ()i = Fi'd (Pu(A)is Pu(R)T)

. i i1 a i’ da’
Ellla/(é(,iurl)q) (AL & J)a,5j Rb )
i L \q pal
5Ej+1)¢3a’((AV4> DRy
i i+l
Oj41)e (AL
j+1

8{js1)y (Re Bl

8511, 3V (R (B
11050 pa si

Eljb(dj, b’(s(j+1)q>(
Hj’b/(‘P*(R);?b/@*(B)%b/)

(24(R) » 2.(B))};

5.5.1

Ve

~—
t S Q Salst

J

.

h)
v

=)

[ A

%

It

For example, the previous calculation in matrix form, for 4, is the following.

000 AR 0 0 0 0 0 0 AR
100 0[|0 RO O/ |ROO 0
07 00[|00RO/"|0RO O
0071 0/][0 0 0R 00 R 0
0 0 0 RB R 0 0 0]J0 00 A
/R0 o0 0] |0 R OO[|T 00O
0o R o o] |oo0o R O[]0 OO
00 R 0 00 0 RJ[00T 0

To see that &, preserves composition, note the following.
(@+(R) @ B, (9))je <= Tjb(Pu(R)}5P.(S)7,)
< Jjb(6}Ry6]SY)
<~ §i3b(RESY)
< §i(ReS)
<« ®,(ReS)i%
To see that &, preserves identities, note the following.
D, (ida), <= 64 (ida)%
— 5§56,
= (idg, (4))if

The unit 8% for the adjunction ®* 4 @, is defined as follows. Given an
automorphism A: Ay --+ Ag, the morphism

0%: A — @, 0%(A)
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is the relation Ag --» ® x Ay defined as follows.
(0R)50 < (A")
For example, 94A can be represented by the following block matrix.
[I A A? Aﬂ

Hopefully, the general pattern is clear. We will often omit the superscript,
when it is clear from context. To see that #% is a morphism A — ®,®*(A),
note the following.

(Aeba)fy a" (A% (0.4)8)
Ja" (A%, (AT
Ae AT)Y,
Ai/Jrl)a

AW+ Dt [T “J) ,

(
(

(4
(A0 +Ds o 471550y

g

(A('L+1 & .CI)*(A)\_ s
0" ((AGDw)e, (0¥ (A)LF )
A (AT )8l (DH (A

l/ l/

3i"a” ((0.4)5rar 22" (A)irgr )
(04 @ ,07(A))7

IHIIHHIHM

e

IHE

i'a’

For example, the previous calculation in matrix form, for ® = 4, is the
following.

AT A A2 A3 =[A A2 A3 AV =[1 A A2 A%

o O ~NO
O~ O O
~ o O O
o O O

To see that € is a natural transformation, consider a morphism R: A — B,
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and note the following.

3i'al (040 PLO*(R)")
Ji'a' ((A")%0] RY)

3d/ (AL RY)

(Ai o R)j

(Re B}

' (R, (BY)Y)

3V (Ry) (05)%)

(Refp)}

(04 0 ©,07(R))j,

[ A A A

For example, the previous calculation in matrix form, for & = 4, is the
following.

(1 A A2 A% = [R AR A’R A°R]

o oo

0
R
0
0

o o o
o oo

=[R RB RB* RB)|=R[I B B? B
We will denote this morphism by 0r: A — ©,9*(B).
The counit ¢® for the adjunction ®* 4 ®, is defined as follows. Given
an automorphism A: Ay --» A, the morphism
(20", (A) > A
is the relation ® x Ay --» Ag defined as follows.
(Ch)is = G0

For example, Cj can be represented by the following block matrix.

O O O~

Hopefully, the general pattern is clear. We will often omit the superscript,
when it is clear from context. To see that (4 is a morphism ®*®,(A) — A,
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note the following.

(D, (A) @ Ca)it = Fi"a (D@, (A)if 0 (Ca)n™)
3i"a" (81 A% 8% 6%

58 A%,

853a" (6%, A%

30" ((Ca)i A%

(CawA)S

[ A

For example, the previous calculation in matrix form, for & = 4, is the
following.

OO O
[l e N N )
OO O~

A
0
0
0

o oo
o o o
oo oM~

To see that ( is a natural transformation, consider a morphism R: A — B,
and note the following.

(Cao R)i® <« 3d'((Ca)4RY)

3a/ (656% Ry

5i RS

3’0/ (87 Riy 5 0 )

3V (D0 (R) (Cp)s ")
(&*®, (R) ® Cp)ic

[ A

For example, the previous calculation in matrix form, for ® = 4, is the
following.

O O O~

R R
0 0
0 0
0 0

oo o
o oo
Mo oo
S OO M~

We will denote this morphism by (g: ®*®,(A) — B.
The first triangle identity is that the following morphism is the identity
on ®*(A).

Cax(A)
e

o*(4) 2, o, b+ (A) O*(A)
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To see this, note the following.

I 1

(D*(04) @ Car(a))a == Fi"a"(@*(04)30n (Cora))er™ )
— 3i"d"((A")%.08 64"
— (A%
= &Y
— (idgp+(a))

For example, the previous calculation in matrix form, for ® = 4, is the
following.

=17

O O~

[ A 42 A%
0

The second triangle identity is that the following morphism is the identity
on ®,(A).

(Ca)

0
0, (A) 2D g, 0%, (A) 2, 5, ()

To see this, note the following.

NS0 1

(B, ) ® Do (CA))y = 305" (B () jran @x(CaVyr )
= 3""a" (PL(A)" )i, 00 6 00
— (@A),
Ve
= (g, (a))}r
For example, the previous calculation in matrix form, for & = 3, is the
following.

[I 0 O]

0 0 0

0 0 0
I 0000 AO0AO0O[]|0TO0 I 00
0 I 01 00O0O0O A0 O0O0=1|0T1F 20
00 I 011 0 I 0 0/]0O00O0 0 0 I

0 0 I

0 0 0

10 0 0]

5.5.3 The Q2 Functors

We can now define a particularly simple object of GRg, which we denote
ZREL, as follows.
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e For each vertex C of &, the closed monoidal category ZREL(C) is
[Z,REL].

e For each edge ®: C — D of &, the monoidal adjunction ®* 4 @, is
any of the previously described adjunctions of the form k* - k, for
any integer k > 2. The choice of k is largely unimportant. A different
k may be used for each edge, or they may all be the same.

Given an object G of SETI®! we have a natural isomorphism of hom-sets
of the following form.

GRe(SHP¢, ZREL) 2 SETI®N(@, Uzgy)
We can construct a morphism G — Uzpg, in SET!®! as follows.

e For each vertex C of &, the component
G(C) = Uzrew(C) = ob([Z, REL))

is any function whose image consists only of automorphisms on sets
with at least 2 elements. The choice of sets and automorphisms is
largely unimportant. A different set and automorphism may be used
for each element of G(C), or they may all be the same.

This then induces a morphism SHPg — ZREL in GRg, which we denote ().
For each vertex C of &, the component ()¢ is a functor of the following form.

Qc: SP¢(C) — ZREL(C) = [Z, REL]

We will often omit the subscript, when it is clear from context.

5.6 The Coherence Theorem

In this section, we will prove the main result of this chapter: that the
functors
Qc: SHPG(C) — ZREL(C) = [Z, REL]

are all faithful.

Before we can prove the coherence theorem, we must first prove four
technical ‘recognition lemmas’, about recognising the form of a constructible
morphism based on the form of its image under 2. We will only state the
four recognition lemmas here; proofs can be found in Appendix A.

Lemma 5.6.1. Let C be a verter of &. Let

s:PRR—-Q®S
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be a constructible C-morphism. If there are morphisms
o: Qe(P) = Qc(Q) 7: Qc(R) — Qc(9)
such that Qc(s) is of the form o®T, then there are constructible C-morphisms
u: P—Q vi:R— S

such that s is of the form u ® v.
Lemma 5.6.2. Let A: C — D be a path in &. Let

s: POA (Q®(R\S)®T —»U
be a constructible C-morphism. If there are morphisms

o: Qp(Q) — Qp(R) T: Qe(PRAY(S)RT) — Qc(U)

such that Q¢ (s) is of the form (A, o,7)e, then there is a constructible D-
morphism

u: @ -+ R
and a constructible C-morphism
v PRA(S)®T - U

such that s is of the form (A, u,v)..
Lemma 5.6.3. Let A: C — D be a path in &. Let

s: A*(P) = A*(Q)
be a constructible C-morphism. If there is a morphism

o: Qp(P) = Qp(Q)

such that Q¢(s) is of the form A*(o), then there is a constructible D-mor-
phism
u: P—Q

such that s is of the form A*(u).
Lemma 5.6.4. Let A: C — D and ®: D — £ be paths in &. Let
s: PR AP, (Q)®@ R — S
be a constructible C-morphism. If there is a morphism
o: Qe(P®A"(Q)® R) = Qc(S)

such that Qc(s) is of the form (A, ®,0)¢, then there is a constructible C-
morphism
u: PRA*(Q)®R— S

such that s is of the form (A, ®,u)¢.
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We will now prove our main theorem.

Theorem 5.6.5. Let C be a vertex of . Let s,t: P — @Q be a pair of
parallel constructible C-morphisms. If Qc(s) = Q¢(t), then s =t.

Proof. We will prove this by induction on the types of the constructible
morphisms s and ¢.

~Y

Consider the case where both s and ¢ are of type (). In this case,
s = t, by Theorem 5.3.9.

Consider the case where at least one of s or ¢, say s, is of type (®).

s:P2AeC % BeD~(

Consider the following constructible morphism.
' AC=2PLQ~B®D
By Lemma 5.6.1, there are constructible morphisms
fl:A—=B g:C—D

such that t’ is of the form f’® ¢’. By induction, f = f" and g = ¢'. Tt
follows that s = t.

Consider the case where at least one of s or t, say s, is of type (7).

s: P -——+<I’f>" NA=Q
Consider the following constructible morphism.
tPLQ~NA

Its adjunct under the adjunction (I ® —) 4 (I\—) is a constructible
morphism

frIeP— A

such that ¢’ is of the form (A, f’),. By induction, f = f’. It follows
that s =t.

Consider the case where at least one of s or ¢, say s, is of type (¢).

s: P2 A®A*(B® (O\D)) o E 209

Consider the following constructible morphism.
AR A*(B® (C\D)®E~P 4 Q
By Lemma 5.6.2, there are constructible morphisms
["B—=C ¢d:AxA"(D)®FE — Q.

such that ¢’ is of the form (A, f/, ¢').. By induction, f = f" and g = ¢'.
It follows that s = t.
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e Consider the case where at least one of s or ¢, say s, is of type ((—)%).

s: PTrA) ZY By~ @

Consider the following constructible morphism.
¢ T*(A) 2 PLQx1r*(B)
By Lemma 5.6.3, there is a constructible morphism
fl:A—B

such that t' is of the form I'*(f’). By induction, f = f’. It follows
that s = t.

e Consider the case where at least one of s or ¢, say s, is of type ().

s: P —><¢”f>9 D, (A)=Q

Consider the following constructible morphism.
P Q=a,A)
Its adjunct under the adjunction ®* 4 ®, is a constructible morphism
flio*(P)— A

such that ¢’ is of the form (®, f')y. By induction, f = f’. It follows
that s =t.

e Consider the case where at least one of s or ¢, say s, is of type (¢).

(A,2,f)¢
—/

$: P2 AR A*®*0,(B)®C Q

Consider the following constructible morphism.
AR A*®*®,(B)e C =P L Q
By Lemma 5.6.4, there is a constructible morphism
A A*(B)®C — Q

such that ¢ is of the form (A, ®, f'). By induction, f = f’. It follows
that s = t.

O
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5.7 Examples

We will end with some examples, illustrating the use of this coherence the-
orem.

5.7.1 Some Pentagons

Let C be a closed monoidal category. We have the natural transformation
Q.
aapc: A®(B®C) = (AB)C

We can also define two other natural transformations v and p, denoted as
follows.

va,c: (A\B)® C = A\(B® C)
pasc: (B®ANC — A\(B\C)

To define the natural transformation v, consider the associator « as a
natural transformation of the following form.

A*oC, = C,0 A"

Using the adjunction A* 4 A', this natural transformation has a mate of the
following form.

C,oA' = A oC,

The component of this natural transformation at the object B is the mor-
phism v4 g c. In the language of constructible morphisms, v4 g ¢ is defined
as follows.

(A, (id, A, B). ® C),: (A\B) ® C' = A\(B® C)

To define the natural transformation p, consider the associator « as a
natural transformation of the following form.

B*o A* = (B® A)*

Using the adjunctions A* 4 A', B* 4 B' and (B® A)* 4 (B® A)', this
natural transformation has a mate of the following form.

(Bo A) = A'o B

The component of this natural transformation at the object C' is the mor-
phism p14 g .c. In the language of constructible morphisms, p14 g ¢ is defined
as follows.

(4, (B, {id, B& A, C)e)n)n: (B@ ANC = A\(B\C)

As a consequence of the strictness of ZREL, the image under €2 of each
of o, v and p is an identity. Therefore, any diagram constructed from these
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morphisms commutes. As examples of such diagrams, consider the following
pentagon diagrams, each similar in form to 2.1.

(A\B) ® (C ® D)
va, By W C,D
® (C ® D)) (A\B)® C) @
A\QB,C,DB vapc ® D
A\((B®C)® D) VABaCD (AA\(B®(C))® D
(B® A)\(C® D)
KA, By W ,.C,D
A\(B\(C ® D)) (B® A)\
A\vg.c.p pa.Bc ®D
AV(B\C) © D) o (A\(B\C)) 9 D
(B ® A)\(C\D)

KA, BC\/ W ,C,D
A\(B\(C\D)) (C® (B A))
A\uB,.c,p ac,B,a\D

A(C®B\D) ————— (C® B) @ A\D

5.7.2 Some Hexagons

Let f*: D — C be a strong monoidal functor between closed monoidal cat-
egories. Let f,: C — D be a right adjoint to f*. We have the natural
transformations «, v, u and .

aapc: A®(B®C)— (A®B)®C

VAB,C: (A\B)@C — A\(B® ()
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pac: (B@ANC — A\(B\C)

pap: [T(A® B) = f*(A)® f*(B)

We can also define two other natural transformations ¥ and x, denoted as
follows.

7/)A,B: f*(A) ® f*(B) — f*(A & B)
XA,B: [«(A\B) = f«(A)\f«(B)
The natural transformation ¢ has components defined as follows.

Gap: F(A) @ f(B) WSO ¢ pn(£(A) @ f.(B))
F(Pre(a), 1 (B)

L L PR © 1 1(B))

f*(cA@CB) f*(A@ B)

In the language of constructible morphisms, 14 g is defined as follows.

¢A,B = <f7 <1da fa <1d7f’ idA®B>C>C>9: f*(A) ® f*(B) — f*(A® B)

Evaluating this yields the following.
(Yap) = 551595

z7zTa

The natural transformation x has components defined as follows.

fx(A)
Fo(A\B) B £ (AN (F(A) @ f.(A\B))

LN, £ (AN (A ® (A\B))
LUNCB, p )\ f,(B)

In the language of constructible morphisms, x 4 p is defined as follows.
<f*(A)7 <f7 <1d7 f7 <1da fv <1d7 idA? idB>€>C>C>9>’W : f*(A\B) - f*(A)\f*<B)
Evaluating this yields the following.
(XAB) iy = 65,5508 5,

We can use this to show that the following hexagon diagrams, similar in
form to 2.8, commute.
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Consider the following diagram, involving «.

Qfi(A),f+(B),f+(C)

f(A) @ (fu(B) @ f.(C)) (f«(A) @ fu(B)) ® f+(C)
idy, (4) @¥B.C Ya,p ®idy, ()
fi(A)® f(BeO) f(A® B)® f.(C)
YA,BoC YA®B,C
[(A® (B C)) Fonnc) (A B)eC)

The clockwise path around this diagram evaluates as follows (ignoring «,
since it becomes an identity).

. bk
((¢A,B ® ldf*(C)) hd wA@B,C)?/LZL/b/cC/
Z’/allb//kllc//

BN IANI] iajb . k
= d"VE  (Ya,8) i (g, (0))kirer (Vaes,c) gy )
- y 17 1 1" i /!
< E'Z”CL”b”k'”C”((5;//5‘;,,(53//521155//(5?//5;/ 5];/ 53/ (52/ 55/ )
= 6,,60,6%6%8085

The anticlockwise path around this diagram evaluates as follows (ignoring
«a, since it becomes an identity).
id iajbkc
((dy, (4) ©¥B.0) @ Ya,BoC) e
3-// " //b// /1 d ia jbke "l Sl
<< 1 az C ((l f*(A))i”(l”(wBac)Z”bNC” (wA7B®C)ZICLIb/C, )
. ; Y 1! " " 1/ /!
< Ell//a//Z//b//C//(52//531/6“;//65// 52//(52//(5;/ 65/ 53/ 52/ (Sgl )
< (5;6;(5];/ g/(sll;/ 2/
Since these are equal, the diagram commutes.
Consider the following diagram, involving v.

Vf*(A)vf*(B)vf*(C)

F(A\(£(B) ® £(C)) (f(ANF(B)) @ £(C)
idy, 4y \¥B,c Xa,B ®idy, c)
FANL(B®C) F(A\B) ® f.(C)
XA,BaC YaB,c
F(A\(B @ C)) £(A\B)®C)

f*(VA,B,C)
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The clockwise path around this diagram evaluates as follows (ignoring v,
since it becomes an identity).

zabkc
(Ya\B,c ® XA,BoC)iiawiy e
VN IANIN
= 3V (P p.0) e (camec) )
-/ " / /1 /1
<~ Elz"a”b"c”((59(55//53//52”52”5; (52/ 53//52/ (55/ )
! /
— 61,6%6%6% 60,05
The anticlockwise path around this diagram evaluates as follows (ignoring
v, since it becomes an identity).

) ) bk
((xa,B ®@1dy, () ® (idy, (1) \¥B.C))iars e
. . . . 1 1 ‘Ilb//kll /!
<> Elllla//]//b”kllcll((XAyB)f/?guj//b//(ldf*(c)>glclc//(ld}/*(A));/a% (wBaC)i’b’C’ ¢ )
O U L O S A S S S A )

— 61,6766 6,65,

22Tz A

Since these are equal, the diagram commutes.
Consider the following diagram, involving pu.

Mf*(A)vf*(B)vf*(C)

FLAN(B\S(C)) (f«(B) @ fi(A)\f+(C)
idy, (1) \xB,C VY,a\idy, )
F(ANS(B\C) f(B® A\f(C)
XA,B\C XBoAC
F(A\(B\C)) e Gianc) f(B©ANC)

The clockwise path around this diagram evaluates as follows (ignoring pu,
since it becomes an identity).

. b
(xa,B\c ® (dy, (a) \XB.C))ia/5b ke

ab '//a// Z”b//CH
/

NIBWIBN AN/ zaoc 1V )

<— Ji"ad"2"b"¢c ((XA,B\C)i/ a”z”b”c”(ldf*(A))i’a’ (XBvc)j/b/k'/C/)
. 1" "o N ) R /A Y )

< ElZ,/CLHZ”bHCH((SZ.//551/53 51) g//(;;// g//éi/éz/ (Sl?//(sg/ )

i ¢j' ¢z ca’ b sc
< 5 /5k’5k’5a 51) 68’

The anticlockwise path around this diagram evaluates as follows (ignoring
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W, since it becomes an identity).

: b

(xBoac ® (VBa\idy, ) ie5m e

AN zabc v "'t k"
<— J2"d"b"k"¢c ((XB®A,C)2”a”b”k”c”(¢B,A)f’a’j’b/ (ldf*(C))k/c/ )

" "o By A VA W A

< Elz"a”b”k”c"((5,‘2/,(5,’2,,53 5b 511(5;//6';//6;//(52// ]]:;/ 52{)

i ¢7' sz ca/ sb sc
= 5k’6k’5k’5a 5b 56’

Since these are equal, the diagram commutes.

5.7.3 The Projection Formula

Let f*: D — C be a strong monoidal functor between closed monoidal cat-
egories. Let f.: C — D be a right adjoint to f*. We have the natural
transformations «, v, u, ¢, ¥ and x.

agBc: A® (BeC) = (A®B)®C
vapc: (A\B)®C — A\(B® ()
pac: (B®A\NC — A\(B\C)
eap: ff(A® B) = [*(A) ® f(B)
Vap: f+(A)® fu(B) = fi(A® B)
xa,B: [o(A\B) = f(A)\f«(B)

We can also define two other natural transformations m and o, which we
denote as follows.

TaB: f+(A) ® B = fi(A® [*(B))
oap: fx(fF(A\B) = A\ f(B)

The natural transformation 7 is known as the ‘projection formula map’ (e.g.
in [5]). The natural transformation o can be thought of as an internal version
of the natural isomorphism of hom-sets defining the adjunction f* - f,.

C(f*(A), B) = D(A, fu(B))
The natural transformation 7 has components defined as follows.

idy, (4) ®9B Ya,f*(B)

TAB: f*(A)®B f*(A)®f*f*(B) f*(A®f*(B))

(ma.8) oy <= ((idy,(a) @0B) ® Ya px(3)) S
B . . . i ‘//b//
— E'Z”Cllljllb”((ldf* (A) );2a” (GB)?”I)” ('l/fA}f* (B) )’;’g’be )
= Fi"d" "V (6%,5%, (BT )67 67, 50 50

— §,6%(B%)}
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The natural transformation o has components defined as follows.

Xp).B, 0a\idy, (B)

oaB: ([T (A\B) ——— ff "(A\[«(B) A\f«(B)

(048l = (xpe(a)5 ® (0a\ids, (5)ew
= 30V (O, 8) e (0™ (i, () )
= 30§ (850507 S (AT )l 5
= 5 (A7)0

We can use this to show that the following hexagon diagrams commute.
Consider the following diagram, involving the interaction between 7 and

VA,f.(B),C

A\(f«(B) @ C) : (A\fi(B))® C
ida\7p,c oaB ®ide
A\f(B ® f*(C)) F(f(A\B) & C
0A,BRf*(C) T+ (A\B,C
F(F(AN\B & f(C))) F((F(A\B) © f*(C))

FeWpsay,B,1+(0))

The clockwise path around this diagram evaluates as follows (ignoring v,
since it becomes an identity).

(T (ANB.C ® TA,Baf(C)) e vy
<~ E!Z” " ”C"((Wf*(A)\B,C) //b// //(O’A B®f*(0))a 1oy ! )
< Ezﬂaﬂbﬂcﬂ(5;/(53”52//(CZ )C”(Sj’ (AZ ) //56”50/)
= 5 (A)Y L (CF)S
The anticlockwise path around this diagram evaluates as follows (ignoring
v, since it becomes an identity).

(04, ®ide) e (ida \TB,0)) 0w
= 3"V (0a,0)H (o) (D)5 (15,00 )
— Ela//j//b//c//( ;//(Az)a 5b//50//5a”6] 6b”(cz )g/ )
— S(A)L o (CT)Y
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Since these are equal, the diagram commutes.
Consider the following diagram, involving 74 pec-

Qg (A),B,C
fo(A)® (B®C) (fs(A)@eB)xC
TA,BRC TA,B ®idc
fH(A® ff(B®(0)) f(A® f*(B))®C
[+(ida ®pBc) TA®f*(B),C
(A (f<(B) @ f*(C))) fH(A® f*(B)) ® f*(C))
felaapm),5+(©)

The clockwise path around this diagram evaluates as follows (ignoring a,
since it becomes an identity).

((ma,B ®idc) ® Tagp(B),C) 2o e
; b . " //bll /!
<~ Hzlla//b//cl,((TI'A,B)?/Z/a//b//(ldC)g//(FA@f*(B)’C)ilaa/b/clc )
= 3"V (60,60 (B V0,656,675 6% 6% (C*))
< 0,00 (B* )Z/(C’Z )
The anticlockwise path around this diagram evaluates as follows (ignoring
a and ¢, since they become identities).

(ma,Bac)daye <= 8204 ((B® C)7 )
— §,6%(B" @ C*),
— §,6%(B")}(C*)
Since these are equal, the diagram commutes.

Consider the following diagram, involving opga,c-

MA7B7f* (C)

A\(B\f+(C)) (B @ A\ f(C)
id\op.c TBRAC
A\f(f*(B)\C) f(f*(B @ ANC)
TAf*(B)\C fe(ep,a\ide)
F(F (AN (BNC)) S((F(B) @ f*(A)\C)

Filgecay,r+B),c)
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The clockwise path around this diagram evaluates as follows (ignoring pu,
since it becomes an identity).

(0ap e ® (1[da\oB,C)) e
= a2V (04502 () (05,0)50S )
— 3"V (67, (A7) 68 6,6%.0% (B )ondS)
= (AL (B?)) 8%

The anticlockwise path around this diagram evaluates as follows (ignoring
w and ¢, since they become identities).

(0BoAC)E e == 0L((B® A2 5
— 04(B* @ A% 68
= 65(A%) (B} 65

Since these are equal, the diagram commutes.
Consider the following diagram, involving magp,c-

Afi(A)f(B),C

f(A)® (fu(B) ® C) (fe(A) ® fu(B)) ® C
idy, 1) ®7B,C Ya,B ®ide
fi(A) ® fu(B @ f*(C)) fH(A®B)&C
YA, Bef*(C) TA®B,C
f(A® (B® f*(C))) f(Ae B) e f*(C))

felaa B )

The clockwise path around this diagram evaluates as follows (ignoring «,
since it becomes an identity).

. iajbc

(Ya,p ®idc) ® TaeB,C)anye
" g g iajb . e !
<— J2"a"'b’¢c ((T/JA7B)Z/}7a//bN(ldo)i”(WA®B,C)§’aC$b’C’C )
: y 1" " 11 ! /!

p— Elz”a”b”c”(5;//5;,(53//(52//(52// j/ Zl 62/ (Cz )2/ )

= §,,8,6465(C7)S

The anticlockwise path around this diagram evaluates as follows (ignoring
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«a, since it becomes an identity).

((idy, 1) ®TB,C) ® VA B f*(C >)mf;f’§/,y
s E]’i//a//Z//bI/C//((idf*( ))z”a”(ﬂ-B C) I/)/b// " (1/},4 B®f*(0))zﬁal/;/ N/b” N)
= """V (618% 8,85, (CF )t 55 89 88 8
= 6.,67,6485(C*)
Since these are equal, the diagram commutes.
Consider the following diagram, involving o4 pec-
VA,fo(B).f+(C)

A\(f«(B) ® f(C)) (A\f+(B)) ® f+(C)
ida\¥B,c oa.B ®idy, (c)
A\f(B® C) S (f*(A\B) ® fu(C)
OA,BC Yp-a0\B,C

S (ANB & 0)) S((f*(A\B) ® C)

feWpea),B,0)

The clockwise path around this diagram evaluates as follows (ignoring v,
since it becomes an identity).

abkc
(Vg (AN\B,C ® TABSC)arzb el
< Elz”a”b” ”((wf* \B C)z”a”b"c”(UA B@C)a/;/g/bé: N)
<~ ElZ”(I”b” ,,(52//5k//5a 5b//(5cl/5z (AZ) //(Sblléc/)

— 0485 (A%)Y 665

The anticlockwise path around this diagram evaluates as follows (ignoring
v, since it becomes an identity).

(04,8 ®@idy, () @ (ida \¥B,0))a e
= 3 VR' (04.8)5m (. 0o (4T (WB.oye )
— Ela"j”b”k:”c”( sz (Az)a 6[]// 5k” 5@//5(1// 5] 5k" (5b”66, )
= 0505 (A7) 508

Since these are equal, the diagram commutes.
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Consider the following diagram, involving m4\ g c-

Vf*(A)vf*(B)’C

F(AN(f«(B)® C) (f(A\f«(B)) ® C
idy, (a) \mB,c XA.B ®ide
F(ANS(B ® f*(C)) f(A\B)© C
XA,Baf*(C) TA\B,C
f(A\(B® f*(C))) s ) f((A\B) ® f*(C))

The clockwise path around this diagram evaluates as follows (ignoring v,
since it becomes an identity).

zabc
(TFA\B,C hd XA,B@f*(C))z"a’z’b’c’

IBNIANIi zabc al' e
< ElZ a C ((WA\B,C)z”a”b”c”(XA,B@f*(C’))i’a’z’b’c’ )

” " A Y A N )
e HZ”(I”bNC”((Sj//(Sg (Sgll(cz )2//5;/5; 52//5;;/ 5((;/ )

— 65,6267 05 (C7)¢

z 7z ra

The anticlockwise path around this diagram evaluates as follows (ignoring
v, since it becomes an identity).

zabc
i'a’Z'b' ¢!

((xa,B ®@idc) e (idy, (4 \7B,C))
< Hi//a”j//bﬁc//((XA7B)Z"ZI?£//j//b// (idc’)g//(idv*(A))glg/” (TerC)Z’If’Cf: )

. . . " -/ ’ s/ /1

< Hzﬂa’/]//b”c”((5;-/,5;//(53 52// 51/57?//53//(5; 52/ (CZ )2/ )
-/ ’ ’

= 6L,6%6% 6% (C7)S

z'7zNra

Since these are equal, the diagram commutes.
Consider the following diagram, involving o4 p\c-

KA, f(B),f+(C)

A\(f(B)\f(C)) (f«(B) @ A\(C)
ida \xB.c mB,4\1dy, ()
A\f(B\C) f(B & f*(A)\f(C)
TA4B\C XB&f*(4).C
S (ANB\C)) f (B & f*(A)\C)

filppecay,B,c)
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The clockwise path around this diagram evaluates as follows (ignoring u,
since it becomes an identity).
(0a,B\c ® (ida \XB7C))§5%W /
<~ El(l//Z”b//C//((O'A,B\C) "b” 7 (ldA) (XB C)
<~ Ha//Z”b/,C”((Sj//(Az)a 5b C//(Sa//&]z:/(sk/ 5b//50 )
— §,67,(A%)7 68 5¢

Z//b//c//

’b’k’c’)

The anticlockwise path around this diagram evaluates as follows (ignoring
i, since it becomes an identity).

(XBas+(a),c ® (TB,4\ idf*(C’)))Zagb’cb’k’c’

= BV (Xpora).0)F e (Th iy (g )
— VK (5500568 8V 55060, (AT 6b 6k 55

= 5067, (A%)Y 6l 56

Since these are equal, the diagram commutes.

5.7.4 Some Non-Examples

Finally, we will provide some simple examples of pairs of parallel allowable
morphisms which are not equal.

Let C be a closed monoidal category. We can define the following natural
transformation.

Ao (A\(A® B) 298 Ag B 98, 4o (A\(Ae B))
(Ao » (ida @0 V0, = 3a"H (Ao p) ()2 @ 1))
= 3" (626%,64,6% 6% 08 )
= 0,05 62 Sy

We also have the identity natural transformation.
id
A® (A\(A® B)) 20198, 4 @ (A\(A® B))

(idA®(A\(A®B)))g;yz’b’ = 050y 6207
These relations are not equal, and so the natural transformations are not
necessarily equal.
Let f*: D — C be a strong monoidal functor between closed monoidal
categories. Let f,.: C — D be a right adjoint to f*. We can define the
following natural transformation.

1*(04)

FLpr(A) L9 pra) L0, g e a)
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"

(Cpe(ay ® [H(04))i == 3a"(Cpria))an FF(Oa)ar)
— §3a" (6% (A"))

— 5 (A",
We also have the identity natural transformation.
id * * *
PP Fef(A) = R (A)

(idf*f*f* (A) )?a’ — (5;/ (53/

These relations are not equal, and so the natural transformations are not
necessarily equal.
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This appendix contains the proofs of the four recognition lemmas from
§5.6. The content of this section is quite technical, repetitive and unen-
lightening. A thorough understanding of these proofs is not necessary to
appreciate the results themselves.

In preparation, §A.1 contains some preliminary results regarding rela-
tions. The remainder of this appendix contains the proofs of the recognition
lemmas themselves. Each of the recognition lemmas is proved by induction,
based on the type of the constructible morphism. We will implicitly prove
the four recognition lemmas by induction at the same time. For example,
when proving a recognition lemma about a constructible morphism of the
form (T, f,g)e, we will assume that each recognition lemma holds for the
constructible morphisms f and g.

A.1 Relation Lemmas

First, we will give explicit descriptions of morphisms of the forms used to
define the constructible morphisms.
Given a morphism «: I ® A — B, we can form the following morphism.

v i id
(Ia)y: A2 Ve T4~ 2% Ve B

Explicitly, this morphism has the following form.

(I, o)), <= ((evi ®ida) e (idpv ®a))d,
— Fiid ((evy ®ida)l,, (idpy @)t
= Fi'd ((evy)s, (ida)2 (idp)E af @)
— Fi'd (658967 ol @)
= aia
Given morphisms o: I — J and f: A® I'*(B) ® C — D, we can form
the following morphism.

B

id 4 ®1"*(c0eva®id3)®idc\ A®F*(B)®C 5 p

(T,a,B)e: AoT*(I0J'©B)@C

Explicitly, this morphism has the following form.

(T, 5>a)3ijbc < ((id4 ®T*(coev, ® idp) @id¢) e B)Zijbc
< 3a't'd((idy ®T*(coev, @ idp) @ idc)zflﬂ)'?ccl g'b/c’)
= 3a'V'¢((ida) (coeva)? (idp)y (ide)Z 85 )
= Ela'b'c’(éaaloéég,5@53’”‘3')

= ajp
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To verify that (T, o, 8). is a morphism AQT*(I® JY® B)®C — D, it can
be shown that the following two identities hold.
(AeT*I®JY @ B)©C)e (T, a,8).)5"
= (T*(I) o T*(a) « T*(J) (AR T*(B)® C) o )3

(0., B)e @ D)7 <= T*(a)j(5 e D)§*
Given a morphism «: ®*(A) — B, we can form the following morphism.

D, (a)

(@, a)9: A 0,0%(A) Y 0,(B)

Explicitly, this morphism has the following form.

(P, )0)iy, <= (040 Pu(a))i
= 3i'd((04)50Px()is")
— 3 ((A)2d] o)
— 3 ((A)5af)
— (A'ea)}

Given a morphism a: A @ I'*(B) ® C — D, we can form the following
morphism.

(T, ®,a)c: AQT*®*®,(B) ® C
Explicitly, this morphism has the following form.
(0, @,0)0)5" <= (([da®I*((p) @ide) @ a)f™
— Ja'b'((ida ®*((p) @ ide) %o, ad’'e)
— 3V ((1da)2T*(Cp)iE (ide)Sad )
= 3aV'd (040000505
— §iadbe

To verify that (I, ®, o)¢ is a morphism A ® I'"®*®,(B) ® C' — D, it can be
shown that the following two identities hold.

(AR T*®*®,(B) @ C) o (T, ®,0))4" = (A T*(B) @ C)ea)i*

(T, @, ) » D)F™ < Sh(as D)

Now, we will give a number of technical lemmas involving relations. We
will use the above results implicitly, where necessary.
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Lemma A.1.1. Given non-zero predicates P, P', Q and Q' such that

P(p)Q(q) < P'(p)Q'(q),

it follows that
P=PF and Q=qQ.

Proof. To see that P = P’ consider an arbitrary p. If P(p) holds, then
choose ¢ such that Q(g) holds and note the following.

P(p)Q(q) = P'(p)Q'(q) = P'(p)

If P'(p) holds, then choose g such that @’(q) holds and note the following.

P'(p)Q'(q) = P(p)Q(q) = P(p)

If neither P(p) nor P’(p) holds, then the claim is true, trivially. Thus,
P = P’. The proof that Q = Q' similar. O

Lemma A.1.2. Given non-zero relations a: A --+» B and 3: C' --+ D such
that

a®pB: ARC --»B® D
is equivariant, it follows that
a:A--» B

and

B5:C--+D
are equivariant.
Proof. The relation a ® 8 being equivariant is equivalent to the following.
(Ao )f(CoB)5 < (e B)(B D)

Thus, by Lemma A.1.1,
Aea=qaeDB

and

Cef3=(eD.
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Lemma A.1.3. Given non-zero relations a: I --» J and f: A T*(B) ®
C --+ D such that

T,a,B)c: AT*I®JY®@B)®C -+ D
1s equivariant, it follows that
I (a): T*(I) --» T*(J)

and

f: AT*(B)®@C --» D
are equivariant.

Proof. The relation (I', a, 8). being equivariant is equivalent to the follow-
ing.

(I*(I) o T*(a) e T*(J™H))5((A@T*(B) ® C) ¢ B)§ <= I'*(a)j(8 e D)§*
Thus, by Lemma A.1.1,
I*(I) o T*(a) « T*(J71) = I*(a)

and
(AT*(B)®@ C)e3=[eD.

Lemma A.1.4. Given a relation a: AQT*(B)® C --+ D such that
(T, ®,0)c: AR T*®*®,(B) @ C --» D
s equivariant, it follows that
a: ART*(B)®@C --» D
18 equivariant.
Proof. The relation (I', ®, a)¢ being equivariant is equivalent to the follow-

ing.

S(ART*(B)®C) e )¢ «— §i(ae D)2
Thus, by Lemma A.1.1,

(AT*(B)@C)ea=caeD.
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Lemma A.1.5. Given non-zero predicates P, @, R and S such that
P(i,j)Q(k,1) <= R(i,k)S(j,1),

there exist non-zero predicates A, B, C and D such that the following hold.

Proof. Choose i, j, k and [ such that P(i, j), Q(k,1), R(i, k) and S(7,1) hold.
Define A, B, C' and D as follows.

A(i) < P(i,j) < R(i,k)
B(j) <= P(i,j) <= S
C(k) <= Q(k,l) = R(i,])
D(l) <= Q(k,l) = S(j,1)
To see that P(i,j) <= A(i)B(j), note the following.

P(i,j) <= P(i,j)Q(k,1) <= R(i,k)S(j,l) <= A(>i)B(j)
To see that Q(k,l) <= C(k)D(l), note the following.

Q(k,l) = P(i,j)Q(k,1) <= R(i,k)S(j,1) < C(j)D(I)
To see that R(i, k) <= A(i)C(k), note the following.

R(i,k) <= R(i,k)S(j,1) <= P(i,5)Q(k,l) = A®)C(k)
To see that S(j,1) <= B(j)D(l), note the following.

S(,1) <= R(i,k)S(j,1) <= P@i,5)Q(k,1) <= B(j)D(I)

Lemma A.1.6. Given non-zero predicates P, Q, R and S such that

P(i,j)Q) <= R(1)S(j,1),
there exists a mon-zero predicate B such that

P(i,j) < R@)B(G)  and  S(,1) < B({)Q).
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Proof. This follows from Lemma A.1.5. O

Lemma A.1.7. Given non-zero morphisms
a:A— B a:CFE—-DR®F

f:A®C = B®D 6: E—F

such that -
aRa=p®B:AQCRE —+B®D®F,

there is a non-zero morphism
v:C—D
such that the following hold.
y@Bf=a:CRQFE—-D®F

a®@y=p:AC - B®D

Proof. Since a ® @ = B ® f, it follows that
ofaf < BB

By Lemma A.1.6, there exists a non-zero relation v: C' --» D such that
Y® B =aand a®y= 4. By Lemma A.1.2, v is a morphism C — D. [

Lemma A.1.8. Given non-zero morphisms
arl—J a: AI"(B)eC®P —-D®Q

B:AxT*I®J' @B)®C—=D [:P—Q
such that

T,a,8). =F@B: AT*"I®J' @B ®C®P = D®Q,
there is a non-zero morphism
v AT*(B)®@ C — D
such that the following hold.
YRF=a: AT*(B) @ C®P - D®Q

T,,Y)e=B: AT*I®J'®B)®C — D
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Proof. Since (T, a, @) = B ® B, it follows that
Ry

By Lemma A.1.6, there exists a non-zero relation v: A® *(B)®C --»D
such that y® 8 = @ and (I', a, 7). = 5. By Lemma A.1.2 or Lemma A.1.3,
«y is a morphism A ® I'*(B) ® C — D. O

Lemma A.1.9. Given non-zero morphisms
a: I —J a: PRAT*(B)oC —-Q®D

B:P—Q B:AxT*I@J'®@B)®C — D
such that

T,a,6): =R B: PRAQT*(I®J'@B)®C - Q®D,
there is a non-zero morphism
v AT*(B)® C — D
such that the following hold.
BRy=a:PRAQT*(B)®C - Q®D

T,,7)e=B: AT*(I®J' @ B)®C — D

Proof. The proof of this lemma is similar to the proof of Lemma A.1.8. [
Lemma A.1.10. Given non-zero morphisms
a: AT (B) @ C®P—-D®Q
B: AT*®*®,(B)® C — D B:P—Q
such that
0,®,a)=f®B: A9T*®*®,(B) C® P - D®Q,
there is a non-zero morphism
v AT*(B)® C — D
such that the following hold.
y@B=a: A" (B)eC®P - D®Q

T, ®,7)c=B: A9 T*®*®,(B)® C — D
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Proof. Since (I', ®, &) = B ® f3, it follows that
Soam? = Bytepr.

By Lemma A.1.6, there exists a non-zero relation v: A I'*(B) ® C --» D

such that v ® 8 = & and (I', ®,7)¢ = 5. By Lemma A.1.2 or Lemma A.1.4,
7 is a morphism A ® I'*(B) ® C' — D. O

Lemma A.1.11. Given non-zero morphisms
a:PRART*(B)9C—Q®D
B:P—Q B: AT*®*®,(B)® C — D
such that
I, @,a);=BRB: PRARI*®* P, (B)®C - Q® D,
there is a non-zero morphism
v AT*(B)®@ C — D

such that the following hold.

fRY=a:PRART*(B)®C - Q®D

(T, ®,7);=p: A@T*®*®,(B)® C — D

Proof. The proof of this lemma is similar to the proof of Lemma A.1.10. O
Lemma A.1.12. Given non-zero morphisms

a:l —J a: ART*(B)@ C @ A*®*d,(D)® E — F

B:ARI*(I®J'®@B) @ CA*(D)®E — F
such that
(T, @)e = (A, ®,B)¢: AT*(I® J' ® B)® C ® A*®*®,(D) @ E — F,
there is a non-zero morphism
v: ART*(B) @ CRA* (D) E — F

such that the following hold.

T,a,7):=B: AT"(I®J" @B) @ CRA*(D)® E — F

(A, D7) =a: ART*(B) @ C @ A*®*0, (D) E — F
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Proof. Since (I', a, @). = (A, @,B)C, it follows that

i ~abckde k paijbede
a;ay > 090 .

By Lemma A.1.6, there exists a non-zero relation v: A®I*(B)@C®A*(D)®
E --» F such that (I',a,v). = f and (A, ®,v) = & By Lemma A.1.3 or
Lemma A.1.4, v is a morphism AQT*(B)® C ® A*(D)® E — F. O

Lemma A.1.13. Given non-zero morphisms
a: ART*(B)eCA*I®J 9 D)®E — F

B:I—=J B:AT*®*®,(B)eCRA*(D)®E — F
such that

(T, ®,a)c = (A, B,8)e: A@T*®*®,(B)® C®A*(I®J' ® D)® E — F,
there is a non-zero morphism
v: ART*(B)@ C® A*(D)® E — F
such that the following hold.
T, 0,7)=B: A9 T*"®*®,(B) @ CR A*(D)®Q E — F

(A B, Y)e=a: ART*(B) CoA*I®J ®D)®E — F

Proof. The proof of this lemma is similar to the proof of Lemma A.1.12. O
Lemma A.1.14. Given non-zero morphisms

a:l—=J @ AT*(B)CRAK®L'®D)®E — F

B:K—L [:AQQI"I®J'®@B)@CRA*(D)®E — F
such that
T, a,a)e = (A, B,B)e: ART*(I®J'®B)@CRAY(K®LY®D)®E — F,
there is a non-zero morphism

v: AT (B) @ CR A*(D)Q E — F
such that the following hold.
T,a,)e=pB:AT"I®J" @B)@ C2A*(D)® E — F

(A, By =a: AQT*(B)® CROA"K®L'®D)®E — F
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Proof. The proof of this lemma is similar to the proof of Lemma A.1.12. [
Lemma A.1.15. Given non-zero morphisms
a: AI"(B) e C @ A"V, (D) E — F
B: ART*®*®,(B)® CR®A*(D)® E — F
such that
(T, @, &) = (A, 0, 8)¢: A9 T*®*®,(B) ® C @ A*U*V, (D) ® E — F,
there is a non-zero morphism
v: AI*(B)@ C® A*(D)® E — F
such that the following hold.
T,®,7)¢=p: Aa*®*®,(B) CR A*(D)® F — F
(AU, y)=a: A" (B) C A" VU, (D) E — F

Proof. The proof of this lemma is similar to the proof of Lemma A.1.12. [
Lemma A.1.16. Given non-zero morphisms

a:C—D aAQI*"(BAE)FG' @oH)®I —J

B:BRIAY(CRD"®E)QF -G  B:AQTU*(H)®I —J
such that
(TA, o, &) = (I, 3, B)e: AQT*(BRA*(C®DV®E)@FGYQH)®I — J,
there is a non-zero morphism

v:BAYE)®F =G
such that the following hold.
T,7,B)e=a: AQT*(BRAYE)QFG @ H)®I —J
(Aa,7)e=B:BOA(CoD"QE)®F — G

Proof. Since (T'A, a, @), = (T, B, B)e, it follows that

a§ @?befghi — Bgcde f ﬁj{zhi'
By Lemma A.1.6, there exists a non-zero relation v: B® A*(E)® F --» G
such that (I',v,0). = @ and (A,«a,v). = . By Lemma A.1.3, v is a
morphism B ® A*(E)® F — G. O
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Lemma A.1.17. Given non-zero morphisms
a: AT*(BRA*(C)® DR EY®@ F)®@G — H

B: B A*®*®,(C)® D —-E  B:AQI"(F)®G — H
such that

(AT, ®,a) = (I, 3, B)e: ART*(B® A*®*®,(C)® DREY @ F)®G — H,
there is a non-zero morphism
v:BA*(C)® D — E
such that the following hold.
T, 7, B)e=a: AQT*(BQA*(C)®DQEYQF)®G — H

(A, @,7)c=B: B A*®*®,(C)®D — E

Proof. Since (AT, ®,a)¢ = (T, B, B)e, it follows that
5(1‘) O—ézbcdefg — Bgicd Blclbfg'

By Lemma A.1.6, there exists a non-zero relation v: B® A*(C)® D — E
such that (I',v,8). = & and (A, ®,7)¢ = . By Lemma A.14, v is a
morphism B ® A*(C)® D — E. O

Lemma A.1.18. Given non-zero morphisms
a:C— D a: AQT*(BRE)®F —- G

B:BoC — D B: AQT*(E)® F — G
such that

T,o,a). = (I,3,8):: AeT*(BeC®D"®E)® F - G,
there is a non-zero morphism
v:B—1T
such that the following hold.
(I,y,0)e =B: BC — D

T,7,8)=a: AT*(BRE)®F - G
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Proof. Since (T', o, &) = (T, B, B)e, it follows that
ajagtl — Bisy.

By Lemma _A.1.6, there exists a non-zero relation v: B — Z such that
(T',v,a)e = B and (T',v,B)c = @. By Lemma A.1.3, v is a morphism B —
T. O

Lemma A.1.19. Given non-zero morphisms
ap: I'(A) - T™(B) ag: I'*(C) - T'*(D)
f:A®C - B®D
such that

a@ay=T"p):T"(A®C) - T*(B® D),
there are non-zero morphisms
v:A— B v2: C— D
such that the following hold.
["(m) = a1: T7(A) = T™(B)
I"(72) = a: T*(C) = T™(D)
Ny =pAC —-B®D

Proof. Since a1 ® ag = I'*(B), it follows that
(a1)p(a2)g == Biq-
Define v; and v, as follows.
() = (@) (r2)a = (a2)g

To see that I'*(y1) = a1, note the following.

() = (m)s = (@);
To see that I'*(y2) = ag, note the following.

I (72)g = (12)q = (a2)g
To see that 71 ® y2 = 3, note the following.
(11 ®72)5a = (M5 (72)a = (@) (a2)g = Bhd

By Lemma A.1.2, v is a morphism A — B. By Lemma A.1.2, v, is a
morphism C' — D. O
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Lemma A.1.20. Given non-zero morphisms

a:P—Q a:T"(A® A*(B)® C) - I'"(D)

B: A9 A"(P® QY ®B)®C — D
such that
(AT, o, @), =T*(B): T"(A® A*(P® Q¥ ® B) ® C) — I'*(D),
there is a non-zero morphism
v: A A*(B)® C — D
such that the following hold.
I'(y)=a: T"(A® A*(B) ® C) — I'*(D)
(A a,y)e=B: A2 A" (PRQV®B)®C — D

Proof. Since (AT, a, &), = I'*(3), it follows that
abaghe = B,

Define v as follows.
abc —abc

Ta = Qq
To see that I'*(y) = &, note the following.
D) = A = @
To see that (A, a, 7). = 3, note the following.
(A, @, 7)) 7 = by = abag = By

By Lemma A.1.3, 7 is a morphism A ® A*(B) ® C' — D. O

Lemma A.1.21. Given non-zero morphisms
a:T*(A® A*(B)® C) — I'"(D)
B: A® A*®*®,(B)®C — D
such that
(AT, @, &) = T*(B): (A ® A*®*®,(B) ® C) — I'*(D),
there is a non-zero morphism
v: A A*(B)® C — D

such that the following hold.

I'(y)=a: T"(A® A*(B) ® C) — I'"(D)

(A, @,7)¢=B: A® A*®*®,(B)®@ C — D
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Proof. Since (AT, ®, &) = I'*(B), it follows that
Shaghe = psite,

Define v as follows.

abc __ ~a
Ya T Qg

be
To see that ['*(y) = &, note the following.
D)3 = 7 = age
To see that (A, ®, )¢ = 3, note the following.
(8, @,7)0)5™ = sl = dhogh = ag™
By Lemma A.1.4, v is a morphism A ® A*(B) ® C' — D. O
Lemma A.1.22. Given non-zero morphisms

a1: A C — B Bo: CRQFE — F

B1: A—>B®D ar: E—-DRF

such that
M Ray=0RB: ARCRFE —->BRDKF,

there are non-zero morphisms
(51 :C =7

Y1 A— B Y2 E— F
(52: I—D
such that the following hold.

Y1 ®01 = 0 @2 = B2

7 ® o2 =B 02 @ y2 = 2

Proof. Since a1 ® as = 1 ® Ba, it follows that
(a)f(an) <= (BB
By Lemma A.1.5, there exist non-zero relations
61:C-->T

v:A--»B vo: E --» F
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52:1.——-)D

such that
Y1 ®01 = oy 01 ®y2 = (B2

Y1 ® d2 = [ 02 @ y2 = o.

By Lemma A.1.2, §; is a morphism C' — Z. By Lemma A.1.2, v is a
morphism A — B. By Lemma A.1.2, 5 is a morphism £ — F. By Lemma
A.1.2, d9 is a morphism Z — D. O

Lemma A.1.23. Given non-zero morphisms
Br:1I®J— K

a1 AT*(I) - B  an:T*"(JeK'®C)®D — E
fa: ART*(C)® D - B®FE
such that

a1 ®@ag = ([,B1,B)e: ART*(I®@J@K'®C)®D - B®E,
there are non-zero morphisms
01: 1 -1 Yo:J = K

”yl:A—)B 52F*(C)®D—>E
such that the following hold.

0 @y =5
(Fy61,m)e = 1 (T, y2,02)e = a2
Y1 ® 02 = B

Proof. Since ay ® ag = (', B, B2)e, it follows that
(an)§" ()" = (B} (B
By Lemma A.1.5, there exist non-zero relations
01: 1 -1 Yo: J --+ K

mn:A--+B dp: T*(C)® D --» E

such that
M ®y =75

(T, 61,m)e =1 (T, y2,02)e = a2
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Y1 ® O = Po.

By Lemma A.1.2, §; is a morphism I — Z. By Lemma A.1.2, 7 is a
morphism J — K. By Lemma A.1.2 or Lemma A.1.3, 7; is a morphism
A — B. By Lemma A.1.2 or Lemma A.1.3, d2 is a morphism I'*(C) ® D —
E. O

Lemma A.1.24. Given non-zero morphisms
a: BoC—=D Bi: A (CeD'®E)® F -G
Bo: AQT*(A*(B)@H)®I — J  az: AQT*(A*(E)@FoGY@H)®I — J
such that
(AT, a1, a9): = (I, B1, B2)e : AQI*(A*(BRCRDYQE)QF@G'9H)RI — J,
there are non-zero morphisms
01:C — D
m:B—=1T Y2: A (E)® F - G
Sp: AQT*(H)® I — J

such that the following hold.

(id,y1,010e =1 (A, 01,72)e = Bu

(AT, 71, 02) = B2 (T, v2,02)c = 2

Proof. Since (AT, a1, az)e = (I, 1, B2)e, it follows that
(01)if (e2)] T = (B (B2)5"
By Lemma A.1.5, there exist non-zero relations
601: C--»D
vi:B--+1 Yo: A (E)®F --» G

dp: AQT*(H)® I --» J
such that
(id,m,01)e =1 (A, 01,72)e = A1
(AT 71, 02)e = B2 (T, 72, 02)c = aa.
By Lemma A.1.3, §; is a morphism C' — D. By Lemma A.1.3, v is a

morphism B — Z. By Lemma A.1.3, 73 is a morphism A*(F)® F — G. By
Lemma A.1.3, 02 is a morphism AQI*(H)® I — J. O



192 APPENDIX A. RECOGNITION LEMMAS

Lemma A.1.25. Given non-zero morphisms
a1: B A (C)—~T f1:C®D—E
Bo: AQT*(BROA(F)®G - H  ay: AQ(AD)(D®EY®F)®G — H
such that
(T, 01, a2)e = (AT, B1, B2)e: AQT* (B A (C®D®EY®F))®G — H,
there are non-zero morphisms
01:C—=7T

v1:B—=1 vo: D = E

St AR (AD)(F)® G — H
such that the following hold.

(A0, m)e =1 (id,01,72)e = A1

(Ty71,62)e = B2 (AL, v, 02)c = a

Proof. Since (I', aq, ag)e = (AT, 51, B2)e, it follows that

(@1)2(a2) %9 = (B1)c4(Ba)i0.

By Lemma A.1.5, there exist non-zero relations
01: C -1

Yy1: B--+1 Yo: D --» E
dy: A (AD)(F)® G --» H

such that
(A, 01,71)e =1 (id, 81, 72)e = A1

(I, v1,02)e = B2 (AT, 72, 02)c = 2.

By Lemma A.1.3, d; is a morphism C' — Z. By Lemma A.1.3, v is a
morphism B — Z. By Lemma A.1.3, ¥2 is a morphism D — E. By Lemma
A.1.3, 85 is a morphism A ® (AT)*(F)® G — H. O
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Lemma A.1.26. Given non-zero morphisms
ap: A*(C) =T fi:BeC®D —FE
Br: AR (AT (F)®@G - H  az: A9(A)(BRD®E'®F)®G — H
such that
(T, a1, a2): = (AT, B1,B2)e: AR (AT)*(BRC®DXEY®F)®G — H,
there are non-zero morphisms
0:C =1

v:B®D = FE

such that the following hold.
AN () =a;: A*(C) =T
(id,6,7v)e=p1:BC®D = E
(AT, 7, B2)e =a2: AQ (AT)*(B®D®E'®F)® G — H

Proof. Choose ¢ such that (a1)$ holds and @, f, g and h such that (Bg)%fg
holds. Since (I', a1, a2)e = (AT, B1, B2)e, it follows that

()5 (az) %9 s ()b

and )
(BOE (B39 = (ag)y "
Define ¢ as follows.
0y <= ()S

Define « as follows.

P = ()T = ()
To see that A*(§) = a1, note the following.

A (6); = & = (a);
To see that (id, ,v). = f1, note the following.

((id,8,7)0)2 = b = (1) (02) 9 = (B2

To see that (AT, 7, B2): = ag, note the following.
(AT, 5, B2)e )y 17 = 4248231

= (B)P(B)) = (an)P*

By Lemma A.1.3, § is a morphism C' — Z. By Lemma A.1.3, « is a morphism
B® D — E. O
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Lemma A.1.27. Given non-zero morphisms
a1: A*(B) =T az: (AT)*(A® C) — (AT)*(D)
B:A®B®C — D
such that
(T, a1, a2). = (AD)*(8): (AT) (A® B & C) — (AT)*(D),
there are non-zero morphisms
m:B—=1 v9: A®C — D
such that the following hold.
AN(y)=a1: A*(B) =T
(AT)*(32) = az: (AT)*(A ® C) — (AT)*(D)
(id,v1,72)e =8: A BC — D

Proof. Since (T', a1, ). = (AT)*(B), it follows that
()i (a2)f” = B

Define (1) as follows.
()% = ()}
Define (72) as follows.
(v2)a” = (a2)g”
To see that A*(y1) = a1, note the following.
A ()i = ()% = ()l

To see that (AT')*(72) = «, note the following.
(AT)"(12)d" = (12)i° = (a2)g"
To see that (id,vy1,7v2)e = 3, note the following.

((id,71,72)2)8% = (M) (2)§° = () (a2)g® = B

By Lemma A.1.3, 7, is a morphism B — Z. By Lemma A.1.3, 2 is a
morphism A® C — D. O
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Lemma A.1.28. Given non-zero morphisms
a: A B — A 6:C—BxC

such that
a®p=idy®idp ®idc,

the following holds.
B=1

Proof. Since a ® § = id, it follows that

ag?ﬁglcl <~ 63/ (52/ o¢

C/.

Assume B # I; choose by # by € By. To derive a contradiction, note the
following. Since a2t By 5352;55 holds, it follows that a2t holds.

Since angB{; . = 5352;65 holds, it follows that f3f . holds. But, since

aabt Bye (53511:;55 does not hold, this is a contradiction. Thus B =
T O

Lemma A.1.29. Given non-zero morphisms
a:l—=J BAT*(B)®C - A" (I®J' ®B)®C
such that
(T, a, B)e = ida ®idps(p) @ idp«(yv) @ idp+(p) @ idc,

the following hold.

Proof. Since (', a, B)c = id, it follows that

QLB e = 088 E, 800G

a’ %’ ]

Assume I # Z; choose iy # iz € Ip. To derive a contradiction, note the
following. Since o' pabe s fagiLyl 626¢ holds, it follows that a“ holds.

ai1jbe a“i1 g
Since oz;? ﬁgfgcjbc = 635;25; 626¢ holds, it follows that /Bgf;]bc holds But,
since o' ﬁgg’gjbc (535:; 53 6%6¢ does not hold, this is a contradiction. Thus

I =17. Assume J # 7; choose j1 # jo € Jy. To derive a contradiction, note
the following. Since of B¢, = (5“(51(9151’50 holds, it follows that o,

717 aij1be a5
holds. Since o] ﬁgfjgbc = 535255;51750 holds, it follows that ﬁgf]c be holds
But, since aé . gf’;bc S 536;6?; 626¢ does not hold, this is a contradiction.

Thus J = O
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Lemma A.1.30. Given a non-zero morphism
a: A= A

such that
P*(a) = idg+(a),

the following holds.
a =1idy

Proof.
() =id = af =0

Lemma A.1.31. There is no non-zero morphism
a: AT*(B)®C - A0 d,(B)® C

such that
(I, @, Oz>c =ida® idp*@*q)*(B) ®ide

and
D> 1.

Proof. Since (I', ®, )¢ = id, it follows that
560[220/1)/0/ <~ 63/5?/51?/55/.

Choose i1 # i3 € ®. To derive a contradiction, note the following. Since
Soadbe, = 8504 626¢ holds, it follows that &5 holds. Since 6i2als, <=

“ai1be ) aiabe
846;2090¢ holds, it follows that a2’ holds. But, since &'alls, — <=
53(52 626¢ does not hold, this is a contradiction. O]

Lemma A.1.32. There are no non-zero morphisms
w: T*(A*(A) @ B® A*(C)) — (AT)*(D)
a: A® V*(VA),(B)®@ C — D
such that
(T, 9A,w)¢ = (AT)*(a): (AT)*(A® ¥*(VA),(B) ® C) — (AL)*(D)

and
A>1.
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Proof. Since (', WA, w)¢ = (A')*(«), it follows that
Shwibe = qdib,

Since « is a morphism A @ ¥*(¥A),(B) ® C — D, it follows that (A ®
U*(VUA),(B)®C)ea = aeD. Evaluating each side of this expression yields
the following.

(A® W (PA),(B) ® C) e a)g™

= V(A0 ¥ (VA),(B) ® C)iifyaaq )
= 3a'i'V'd (AL (VA),(B)B, CEohws ™)

— Fd'V (AT (WA), (B)E,CGwi )

&, 8% 3a't' ¢ (A% 65, CSws )
— 65,30 (A% Cow ’bC)

Step (x) follows from the fact that ¥ < WA, relying on our assumption that
A>1.

(e D)3 = 3d' (" DY)
— §3d (WD)

Thus, the following holds.
84 3a'd (A% CSwd) — §i3d (wieDY)
This implies that neither of the following holds.
3a'/ (A% CSwS ) Ad (wieDE)
But this contradicts our assumption that w and « are non-zero. O
Lemma A.1.33. There are no non-zero morphisms
W AQT*(A*(B) CoOAN (DR EY®F)®G — H
a: BU*(VA),(C)® D —-E  B:AQ(AD)*(F)@G — H
such that
(T, WA, w)e = (AT, o, B)e: A®(AD)*(BRU*(VA), (C)®DREYQF)®G — H

and
A>1.
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Proof. Choose @, f, g and h such that ﬁgfg holds. Since (I', WA, w) =
(AT, «, B)e, it follows that

bicd
e -

. abed e
56w%cefg = «

Since « is a morphism B ® U*(¥A),(C) ® D — E, it follows that (B ®
U*(TA), (C)®@D)ea = ae E. Evaluating each side of this expression yields
the following.

((B® ¥*(TA),(C) ® D) e a)bicd
— Wi'dd (B U (VA),(C) @ D), ol )
— A (BT (V) (C), DYoo)
= WA (BYT(VA), ()i, Dy <Pl
L 5,30 d (B oG Dt VeI
> 643 d (BY DY eI)
Step () follows from the fact that ¥ < WA, relying on our assumption that
A> 1.

(o B)Ye? = 3e/(aliEY)
= 5636’(wgb6delf IEey

Thus, the following holds.
84,3 d (BY DY 1) = 5i3e (Wit I )

This implies that neither of the following holds.
' d' (B Dt ef7) 3¢/ (it fI g

But this contradicts our assumption that w and « are non-zero. ]

A.2 Proof of Lemma 5.6.1

Proof. Tt must be the case that P, @), R and S have prime factorisations of
the following forms.

0<a<i’ i'<a<n'
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Consider the case where @ is trivial, so that ¢ = 0. In this case, the
result follows from Lemma 5.6.2.

Consider the case where S is trivial, so that 7/ = n/. In this case, the
result follows from Lemma 5.6.2.

Assume that both @ and S are non-trivial, so that 0 < ¢ < n’. We will
prove the result by induction on the type of s. Consider the type of the
constructible morphism s.

e Consider the case where s is of type ().
PRoR=Q®S

By Proposition 5.3.15, it must be the case that n = n’ and, for each
a, X, =2Y,. Compare i with 7.

Consider the case where 0 <14 < ¢/ < n.

P R
Xo® - QX 1Q0Xi® - Xy 19Xy @+ @ Xn—y
Q S
Define the following shape.
QNR= ® X,
i<a<i'

This shape has been chosen so that the following central isomorphisms
exist,.

PR(@QNR)~2Q R=(QNR)®S

By Lemma A.1.28, Q(Q N R) = Z. This contradicts our assumption
that ¢ < 7'.

Consider the case where 0 < i =1 < n.
P R
Xo® - ®Xi10X;®--® Xp1
Q S

By Proposition 5.3.15, the following central isomorphisms exist.

P~Q RS

Define u and v to be these central isomorphisms.

Consider the case where 0 < i < i < n.

P R
Xo® Xy 190Xy @ @X; 10X, @@ Xy

~~

Q S
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This case is similar to the case where 0 < i < i < n.
Consider the case where s is of type (®).
~ f®g ~
PRIREZARC —BD=ZQ®S

It must be the case that A, B, C' and D have prime factorisations of
the following forms.

A%®Xa C%®Xa

0<a<y j<a<n
B @V b= ® %
0<a<y’ j'<a<n'

Compare 7 with j and ¢ with j'.

Consider the case where 0 <7< j<mnand 0 <7 <j <n.

P R
Xo® - 0Xi 10X 0X;10X;® - ®Xn
A C
B D
Yo @Y a®Y/® @Yy 1eY/® - @Yy
Q S

Define the following shapes.
ANR= ) Xo BnS= (X) Ya
i<a<j i'<a<j’

These shapes have been chosen so that the following central isomor-

phisms exist.
R (ANR)®C

PR(ANR)= A
B=Q®(BNS)
(BNS)y@D =S
By Lemma A.1.7, there is a morphism
v QUANR)—QBNS)
such that the following hold.

o5 =Q(f)
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veQ(g) =T

By induction, there are constructible morphisms
u: P—Q ff*ANR—BNS

such that f is of the form u ® f’. Define v to be the following con-
structible morphism.

v:RE(ANR) 0 C L% (BnS)eD=s
Note the following.

RV EuR () 2uef g feg

Consider the case where 0 <i<j<nand 0<j < <n

P R
Xo® X1 ®Xi®  @Xj10X;®  ® Xn1
A C
B D
}/0®~-®Y}/_1®}/j,®'”®}/i’—l®Y;/®"'®Yn'—1
% i I

Define the following shapes.
AnNR= ) Xs @QnD= X) Y,
1<a<jy i’ <a<i’

These shapes have been chosen so that the following central isomor-
phisms exist.
R (ANR)®C

PR(ANR)=A
D2(Q@ND)®S
B®(QND)=Q
By Lemma A.1.22, there are morphisms
70: QANR) — Q7)

o1: Q(P) = Q(B) T1: QC) — Q5)
o0: QZ) —» QQND)
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such that the following hold.
o1 ® 19 = Q(f)
TOX®TL =T
o1 Q®og=0
oo @1 = Qg)
By induction, there are constructible morphisms

fi:P—B forANR—T

such that f is of the form f; ® fo. By induction, there are constructible
morphisms
gL —->QND g:C— S

such that g is of the form gy ® g1. Define u and v to be the following
constructible morphisms.

w:P=2PoT 1% Bo(QnD)=Q

v:R2(ANR) @C ¥ 195~ 3
Note the following.

uRvE(f1®g0)@(fo@a)=(fi®f)@@ea)=fog

Consider the case where 0 < j <i<mand 0 <7 < j' <n

P R
Xo® - ®X;190X;®0 - 0X; 10X, @@ Xp_1
A C
B D
Vi@ @Yy 10V @ @Y 10Y/ @ @Yy
Q S

This case is similar to the case where 0 <i<j<nand 0<j <7 <

n'.

Consider the case where 0 < j <i<mnand 0 < j' < <n.
P R
Xo®  ®X; 10X ® QX 10X ® @ Xp_i
A C
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B D
Yb®~--®Yj/,1®Yj/®-~®Y{'71®Yi/®"'®Yn’fl

Q S

This case is similar to the case where 0 <i<j<nand 0<¢ <j <

n'.

e Consider the case where s is of type (7).

Por L naxges

Then I is non-trivial. By Proposition 5.3.15, either @ = I'\A and
S=7Z or@ =7and S I\A. Either way, this contradicts our
assumption that both () and S are non-trivial.

e Consider the case where s is of type ().

POR= AT (B (C\D) o E 19 0g s

Then C' is non-trivial. It must be the case that A, B, C\D and F
have prime factorisations of the following forms, where I'*(X)) = X,.

A2 @ X, B= QR X, C\D=X;, E= Q) X,

0<a<yjy ji<a<k k<a<n

Compare 7 with j and k.
Consider the case where 0 < < j <k <n.

P R
Xo® 03X 10Xi® - @0X; 10X;0 X 1® X @Xp1®@--@ X1
-~ —
A I'*(B) *(C\D) E

Define the following shape.
ANR= ® X,
1i<a<j

This shape has been chosen so that the following central isomorphisms
exist,.

R~ (ANR)®T*(B® (C\D))® E
P®(ANR)~A

By Lemma A.1.9, there is a morphism

v: QANR)@T*(D) ® E) — Q(S)
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such that the following hold.
oc®v=Q(g)

<F7 Q(f)7 U>€ =T
By induction, there are constructible morphisms
u: P—Q J:(ANR)@T*(D)® E — S

such that g is of the form u ® ¢’. Define v to be the following con-
structible morphism.

v:R= (ANR)®T*(B® (C\D)) @ E 19, g
Note the following.

Consider the case where 0 < j <i <k < n.

P R
X0®~--®Xj,1®Xj®"'®X1‘71®Xi®"’®Xk71® X X1 ®-- @ X5
- —
A I'*(B) I*(C\D) E

Define the following shapes.

PnB= Q) X, BnR= Q) X,

j<a<i i<a<k

These shapes have been chosen so that the following central isomor-
phisms exist.

PXA®I*(PNB) R=T*((BNR)® (C\D))® E
(PNB)® (BNR)=B
By Lemma A.1.23, there are morphisms
oo: UPNB)— QI m: QUBNR)— QC)
o1: Q(A) = Q) T9: Q(I*(D) ® E) — Q(S)
such that the following hold.
oo ® 11 = Q(f)

(I'yoo,01)e =0

<Fa T1, 7—2>5 =T
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01 @712 = Qg)
By induction, there are constructible morphisms

fo:PNB—=7I fi:BNR—C

such that f is of the form fy® f1. By induction, there are constructible
morphisms

g:A—=Q g T"D)®QFE—=S

such that g is of the form g1 ® g2. Define u and v to be the following
constructible morphisms.

w: P2 A@T*((PN B) @ (I\T)) 20, g

v: RET*((BNR)® (C\D)) ® E L1190z, g
Note the following.

UV = <F7f0391>€ ® <Faf1792>8 = <F7f0 ®f17.gl ®g2>8 = <F7f7g>8

Consider the case where 0 < j < k <7 < n.

P R
Xo® - 0X; 10X;0 - @Xp1® X @Xpp1®---0X; 1 0X;0-- @ X
N
)] T°(B)  I*(C\D) 5

This case is similar to the case where 0 <7 < j <k < n.

e Consider the case where s is of type ((—)).

Por=T*4) " B)20es

It must be the case that A and B have prime factorisations of the
following forms, where I'*(X!) = X,,.

A= Q) X,

0<a<n

Bz & Y,

0<a<n’/

Define the following shapes.

Paz QR X, Raz= Q) X,

0<a<t i<a<n

QA§®YG/ Sa = ®Ya/

0<a<i’ i <a<n'
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These shapes have been chosen so that the following central isomor-
phisms exist.

P =T*(Py) R=T*(Ra)
Py®Ra=A
B=Qa® 54
I"(Qa)=Q  T*(Sa)=S
By Lemma A.1.19, there are morphisms
' Q(Pa) = QQ4) 7 Q(RA) = Q(Sa)

such that the following hold.

[*(o)y=0
r“(ry=r
o o1 =Q(f)

By induction, there are constructible morphisms
f1:PA—>QA fQ:RA—>SA

such that f is of the form f; ® fo. Define u and v to be the following
constructible morphisms.

e 1 * ~Y
w: PPy S rr o) =

v: RET*(Ry) ZY2 (5, = 8

Note the following.

u@vZT*(f1) @ T*(f2) ZT*(f1 ® f2) 2 T(f)

Consider the case where s is of type (6).

P®R (Cb,f)g

P, (A)=2Q®S

Then ® is non-empty. By Proposition 5.3.15, either @ = ®,(A) and
S>Z orQ =7 and S = ¥,(A). Either way, this contradicts our
assumption that both () and S are non-trivial.
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e Consider the case where s is of type ().

(0,9, f)¢
s

PR R=AI™0*®,(B)® C R®S

Then ® is non-empty. It must be the case that A, ®,(B) and C have
prime factorisations of the following forms, where I'*®*(X!) = X,,.
A2 Q) X, (B =X; C= Q) X
0<a<j j<a<n
Compare ¢ with j.

Consider the case where 0 <1 < j < n.

P R
Xo® - @Xi1®Xi® X110 Xj X;11®--®Xp
—~ ~
A r~o*o,(B) C

Define the following shape.
ANR= ® X,
i<a<j

This shape has been chosen so that the following central isomorphisms
exist.

R (ANR)@I*®*®,(B)® C

PR(ANR)=A

By Lemma A.1.11, there is a morphism
v: QUANR)@T*(B)® C) — Q(S)
such that the following hold.
o®v=Q(f)

(@), v)c =7

By induction, there are constructible morphisms
u: P—Q fff(ANR)@T*(B)®C — S

such that f is of the form u ® f’. Define v to be the following con-
structible morphism.

(0,2, f")¢
T

v:R=Z (ANR)QI"®*®,(B)@ C S

Note the following.
URUV=EUR <Fa(I)af,>C = <F7q)7u®f/>C = <F,q),f>c

Consider the case where 0 < j <1 < n.
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P R
Xo®-®X;10 Xj X110 X, 10X;® - ® Xp1
—_— =~
A 3+, (B) C

This case is similar to the case where 0 <17 < j < n.

A.3 Proof of Lemma 5.6.2

Proof. It must be the case that P, @, R\S and T" have prime factorisations
of the following forms, where A*(X]) = X,.

r=2 X. Q= X, RS=Q x, T= (K X
0<a<i i<a<j j<a<y’ j'<a<n

If R is trivial, then we may assume that S is also trivial, by replacing T’
with A*(S) ® T otherwise; in this case, j/ = j. If R is non-trivial, then R\S
is a prime shape; in this case j/ = j + 1. In either case, there is no a with
j<a<j.

Consider the case where both Q and R are trivial, so that ¢ = j’. In this
case, we can simply define v and v to be the following central isomorphisms.

u: Q=R
v: POA*(S)@T 2P A (Q® (R\S) T U

Assume that @ are R not both trivial, so that ¢ < j'. We will prove the
result by induction on the type of s. Consider the type of the constructible
morphism s.

e Consider the case where s is of type ().
PRA*(Q® (R\S)®@T=U

By Lemma A.1.29, Q(Q) = Z and Q(R) = Z. This contradicts our
assumption that (Q are R not both trivial.

e Consider the case where s is of type (®).
PRA* Qe (R\S)eT=AC % BeD=>U

It must be the case that A and C have prime factorisations of the

following forms.
1= Q@ x 0= QX

0<a<k k<a<n
Compare i and j with k.
Consider the case where 0 < k<1< j<j < n.
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P A*(Q) A*(R\S) T
Xo®  @Xp 13X ® X, 1@X;® - X;10X; 0 @Xy 1@Xj @@ Xy
A C

Define the following shape.

PNC = ® X,

k<a<i

This shape has been chosen so that the following central isomorphisms
exist.

P=A®((PNC)
(PNC)@AY(Q® (R\S)@T=C

By Lemma A.1.9, there is a morphism
v: Q(PNC)RA*(S)®T) — QD)
such that the following hold.
Qf)y)@v=r1
(A, 0,0)c = Q(g)
By induction, there are constructible morphisms
w@—R ¢ (PNC)YRA*(S)®T — D

such that g is of the form (A, u,¢’).. Define v to be the following
constructible morphism.

VPOA(S)RT 2 A (PNC) o AS)oT 1% BeD=U
Note the following.
(A, u,v)e = <A,u,f®gl>€ gf®<A,u7g’>ng®g

Consider the case where 0 <: < k< j<j' <n.

P A*(Q) A*(R\S) T
Xo®  0Xi1®0X;® X1 9Xp® - 0X;10X;0 -0 Xy 190Xy ®-- ® Xpy
A C

Define the following shapes.

AnQ= Q) x;, Qnc= Q) X,

i<a<k k<a<j
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These shapes have been chosen so that the following central isomor-
phisms exist.

R=(ANQ)®(@NC)
PRA*(ANQ)=A A ((QNC)®(R\S)@T =C
By Lemma A.1.23, there are morphisms
00: QUANQ) = QUT) o1: UQNC) — QR)
m1: Q(P) — Q(B) T QAY(S) @ T) — QD)
such that the following hold.

og®Ro1 =0

(A, 00, 71)e = Qf)
(A 01,72)e = Q(g)
TI®T=T
By induction, there are constructible morphisms

for ANQ =1 fi:P— B

such that f is of the form (A, fo, fi)e. By induction, there are con-
structible morphisms

g: QNC — R g2: A*(S)®@T — D

such that g is of the form (A, g1, g2)e. Define u and v to be the following
constructible morphisms.

wQ=(ANQ®(QNC) L2 To R=R

v PRA (ST 122 Bo DU

Note the following.
<A7U7U>E = <A7f0 ®glvf1 ®92>8 = <Aaf07fl><€ X <A7g1592>€ = f ®g

Consider the case where 0 < i< j < j <k <n.

P AX(Q) A*(R\S) T
Xo® X1 @Xi® X 10X;® Xy 10X;y® X 1 @Xp®- - ® Xpg
A C

This case is similar to the case where 0 < k <i < j < j' <n.



A.3. PROOF OF LEMMA 5.6.2 211

e Consider the case where s is of type (7).

PoA Qe (R\S)eT LI na~y
By induction, there are constructible morphisms
u: @ — R fPIoPA*(S)®T — A

such that f is of the form (A, u, f').. Define v to be the following
constructible morphism.

v: P®A*(S)®TM>I\A§Q
Note the following.
(A, u,0)e = (A u, (1, fhg)e = (A u, fle)y = AL £y
e Consider the case where s is of type (¢).

PoA(Q® (R\S) 9T =AxT*(B® (C\D)) ® E LL9 y

Then C' is non-trivial. It must be the case that A, B, C\D and FE
have prime factorisations of the following forms, where I'*(X/) = X,.

A2 K X. Bz Q@ X, O\D=X' Ez= Q) X,
0<a<k k<a<l I<a<n

Compare ¢ and j with k and .
Consider the case where 0 <i < j </ <k <l <n.

P A%(Q) A*(R\S) T
Xo® - @Xi10X;® - 0X; 10X;0 - @0Xy 10Xy @ X 10X ®--0X 10 X; X111 ® - ®Xn1
~~
A *(B) *(C\D) E

Define the following shape.

ANT = ® X,

i'<a<k

This shape has been chosen so that the following central isomorphisms
exist.

T(ANT)@T*(B® (C\D))® E
PR A Q® (R\S)® (ANT) = A
By Lemma A.1.14, there is a morphism

v: UPRA*(S)® (ANT) @ T*(D)® E) — QU)
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such that the following hold.
(A, 0,v)e = Q(g)

<F7 Q(f)v U)e =T

By induction, there are constructible morphisms
w@Q—R ¢:PRIA(S)QANT)RT*"(D)QE —U

such that g is of the form (A u,¢').. Define v to be the following
constructible morphism.

vi POA'(S)ST = PoA*(S)8(ANT) S (B (C\D)9 E 245 U
Note the following.

<A7 U, U>E = <A7 u, <F7 f7 g/>€>€ = <F> f7 <Aa u, g/>€>€ = <F7 fa g>€

Consider the case where 0 <i <k <j<j <l<n.

P A*(Q) A*(R\S) T
Xo®  @0Xi1@Xi® X 10X ® - ®X;10X;@ X 10X;®--0X10 X X110 @ Xn1
~~
A *(B) I*(C\D) E

Define the following shapes.
AnQ= Q) X, Bo= Q X,

i<a<k k<a<j
Q= X X, BnT= Q) X/
k<a<j’ 7' <ax<l

These shapes have been chosen so that the following central isomor-
phisms exist.

Q=(ANQ)® Bg T=T*(BNT)® (C\D))® E
PRA*(ANQ)=A Qp®(BNT)=RB

A*(Be ® (R\S)) =T"(@p)

If Bop ® (R\S) is trivial, then this contradicts our assumption that
k < j. If Bg is non-trivial, then, by Lemma 5.3.17, either there is a
A such that A = AT or there is a A such that I' = AA. If R\S is
non-trivial, then, by Lemma 5.3.18, there is a A such that A = AT.

Consider the case where there is a A such that A = AT". By Lemma
5.3.16, the following central isomorphism exists.

A" (Bg® (R\S)) = Q5
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By Lemma A.1.24, there are morphisms
o1: Q(Bg) = QR)
00: UANQ) — QT) T1: QA*(S) @ (BNT)) = QC)
T: UPRT*(D)® E) — QU)
such that the following hold.
(id, 00,01)e = 0
(A, o1,11)e = Q(f)
(AT, 00, T2)e = Q(g)
(D, 71, m2)e =T
By induction, there are constructible morphisms

flzBQ—>R fQIA*(S)®(BﬂT)—>C
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such that f is of the form (A, fi, f2).. By induction, there are con-

structible morphisms

Jgo: ANQ —>T g1: PT*(D)®@ E —-U

such that g is of the form (A, go, g1).. Define v and v to be the following

constructible morphisms.

w: Q= (AN Q) ® By el p

v POAYS)®T = PRT*(A(S)® (BNT)® (C\D))® B 22290, 7

Note the following.
<A7 u, U>€ = <AF7 <1da 90, f1>87 <F7 f27 gl>€>€

= <F7 <A7f17f2>67 <AF790791>5>5 = <F,f, g>6

Consider the case where R\S is trivial and there is a A such that
I' = AA. By Lemma 5.3.16, the following central isomorphism exists.

B = A*(Qs)
By Lemma A.1.25, there are morphisms
o1: Q(QB) — Q(I)

o2: QANQ) — QT) m:QUBNT)— QC)
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T2: Q(P® (AA)(D) ® E) — Q(U)
such that the following hold.

(A o1,02)e =0

(id, o1, 1) = Q(f)
<A70277—2>€ = Q(g)
(AA T, To)e =T

By induction, there are constructible morphisms
fi: Q=1 fo: BNT —=C

such that f is of the form (id, f1, f2)c. By induction, there are con-
structible morphisms

go: ANQ —T g1: P (AA)* (D)@ E—U

such that g is of the form (A, gg, g1)e. Define v and v to be the following
constructible morphisms.

u: Q= (ANQ)® A" (Qp) “HNS T2 R

(AA, f2,91)e
R LN

v: PRA*(S)@T 2P (AN ((BNT)® (C\D))® E U

Note the following.
<A7 u, U>€ = <A7 <A7 flv gO>67 <AA7 f2a gl>€>€

= <AA7 <id> f17 f2>67 <A7 gO7gl>6>6 = <F7 f7 g>e

Consider the case where 0 <k <i<j<j <l <n.

P A*(Q) A*(R\S) T
Xo® @ Xp 1 @Xp® X1 ®X;® - ®X;0X;0 00X 10Xy ® - @X1® X; @Xj411® - ® Xp1
~~
A I*(B) I*(C\D) E

Define the following shapes.

PnB= Q) x! Qs= Q& x; BnT= Q) X/

k<a<i i<a<j’ j'<a<l

These shapes have been chosen so that the following central isomor-
phisms exist.

P2 A®T*(PNB) TT*(BNT)® (C\D))® E

(PNB)®Qp®(BNT)=B
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AY(Q @ (R\S)) =T"(@n)

If Q®(R\S) is trivial, then this contradicts our assumption that i < j'.
If Q is non-trivial, then, by Lemma 5.3.17, either there is a A such that
A = AT or there is a A such that I' = AA. If R\S is non-trivial, then,
by Lemma 5.3.18, there is a A such that A = AT

Consider the case where R\S is trivial and there is a A such that
I' = AA. By Lemma 5.3.16, the following central isomorphism exists.

Q= A (Qp)
By Lemma A.1.26, there are morphisms
o'+ Q(Qp) = AUI)
™:Q(PNB)® (BNT)) = QC)
such that the following hold.
AN () =0
(id, o', 7')e = Q(f)
(T, Qg))e =7
By induction, there are constructible morphisms
fo: Qe —=Z  fi: (PNB)®(BNT)—C

such that f is of the form (id, fo, f1)c. Define u and v to be the
following constructible morphism.

u Q2 AQp) 2V Av 1) = R

<F7f17g>£

v: PRA*(S)RT 2 AT*((PNB)®(BNT)®(C\D))® FE U

Note the following.
<A7 u, U>E = <A7 A*(fO)a <AA7 f1> g>E>E

= (AA, (id, fo, f1)e, 9)e =T, f,9)e

Consider the case where there is a A such that A = AT". By Lemma
5.3.16, the following central isomorphism exists.

A (Q® (R\S)) =B
By Lemma A.1.16, there is a morphism

v: QPN B)® A (S)® (BNT)) = QC)
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such that the following hold.
(T, 0,9g))e = 7

(A,0,0)c = Q(f)

By induction, there are constructible morphisms
u:@Q — R " (PNB)@A(S)®(BNT) = C

such that f is of the form (A, u, f').. Define v to be the following
constructible morphism.

v: PQA*(S)®T
X ARQT*(PNB)@A*(S)®(BNT)® (C\D))® E (T.f",9)e U
Note the following.

(A u,v)e = (AT, u, (T, f, g)e)e = (T, (A, u, f)e, 9)e = (T, £, 9)e

Consider the case where 0 <i<k<j=1<7j <n.

P A*(Q) A*(R\S) T
Xo® X 10Xi®  0Xp 1 @Xp @ RX; 1 0X; @ QX 1@ Xp @ @ Xpy
A I*(B) T*(C\D) E

The following central isomorphisms exist.
P A" Q)= AxT™(B) A*(R\S) 2 T*(C\D) T=FE

It must be the case that R = C, S = D and A = I'. Define the
following shape.

AnQ= ) X,

i<a<k

This shape has been chosen so that the following central isomorphisms
exist.

Q=(ANQ)®B
PRA(ANQ)=A
By Lemma A.1.18, there is a morphism

v: QUANQ) — Q2)
such that the following hold.

<id7 v, Q(f)>5 =0
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<F7 Uv T>€ = Q(g)
By induction, there are constructible morphisms
Jg:ANQ =T v:PI*"(D)eT —U

such that g is of the form (I',¢’,v).. Define u to be the following
constructible morphism.

(id,g',f)<

wQ=(ANQ)® B C=R

Note the following.

<A7 u, U>€ = <A7 <1d7 g/a f>67 U>6 = <F7 f7 <F7 9/7 'l)>5>5 = <F7 fv g>6

Consider the case where 0 < k<i<j=1<j <n.

P AX(Q) A*(R\S) T
Xo® X 10X ® X1 0Xi® - @0X;10X;® Xy 10Xy @ ® Xy
A I'*(B) I*(C\D) E

The following central isomorphisms exist.
P A Q)= AxT™*(B) A*(R\S) 2 T*(C\D) T=F

It must be the case that R = C, S = D and A = I'. Define the
following shape.
PnB= (X X/

k<a<i

This shape has been chosen so that the following central isomorphisms
exist.

P2 A®T*(PNB)
(PNB)®Q =B
By Lemma A.1.18, there is a morphism
v: QUPNB)— QL)
such that the following hold.
(id,v,0)c = Q(f)
(A, 0,9(9))e =7
By induction, there are constructible morphisms

f'PNB—T u: @ > R
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such that f is of the form (id, f’,u).. Define v to be the following
constructible morphism.

T, .9)e
(T,f".9)

v PRANS)RT X ART*((PNB)® D)® E U

Note the following.
<A, u, 'U>z-: = <A7 u, <F7 f,79>€>5 = (Fa <id> f,> U>sag>s = <F7 f, g>€

Consider the case where 0 <i <k <l<j<j <n.

P AX(Q) A*(R\S) T
Xo®  @0Xi1®Xi®@ X 10X ® X110 Xj X411 ® QX 10X;0 Xy 10Xy ® @ Xny
~~
A T*(B) I*(C\D) B

Define the following shapes.
AnQ= Q) X, Bo= QR X, QnE= (X X,
i<a<k k<a<l I<a<j

These shapes have been chosen so that the following central isomor-
phisms exist.
Q=(ANQ)®Bu® (QNE)
PoAY(ANQ)=A  AY((QNE)®(R\S))oT=E
A*(Bq) =T"(B ® (C\D))

By Lemma 5.3.18, there is a A such that I' = AA. By Lemma 5.3.16,
the following central isomorphism exists.

Bg = A*(B® (C\D))
By Lemma A.1.16, there is a morphism
v: QANQ)@A*(D)® (QNE)) — QR)

such that the following hold.

(A, v0,7)e = Qg)

(A, Q(f), v)e = 0
By induction, there are constructible morphisms

d:(ANQ)® A (D)®(QNE)— R v: PRAY(S)@T - U

such that g is of the form (A ¢’ ,v).. Define u to be the following
constructible morphism.

) (A f.g')e

wQQE(ANQ)RIA (B (C\D)®(QNE R

Note the following.
<A7 U, U>6 g <A7 <A7 f7 g/>67 U>8 g <AA7 f7 <A7 g/7 U>E>E ”i’ <F7 f7 g>8

Consider the case where 0 < k<1 <1< j <75 <n.
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P A*(Q) A*(R\S) T
Xo® @Xp1 @Xp® X1 ®Xi® - ®X1® Xj X411 ®@ - ®X;10X;®@ Xy 10Xy @+ ®@Xpy
~~
A T*(B) I*(C\D) E

Define the following shapes.

PnB= Q) X, Qz= Q) X/

k<a<i i<a<l
Bo= @ X, QnE= Q) X,
1<a<l I<a<j

These shapes have been chosen so that the following central isomor-
phisms exist.

P2 A®T*(PNB) Q=By®(QNE)
(PNB)®Qp=B A ((QNE)® (R\S)®T=FE

A*(Bg) =T"(@p ® (C\D))

By Lemma 5.3.18, there is a A such that I' = AA. By Lemma 5.3.16,
the following central isomorphism exists.

Bq = A (Qp ® (C\D))
By Lemma A.1.24, there are morphisms
o1: UQp) — Q(C)
oo0: QPNB)— Q7I) 71: QA (D)@ (QNE)) = QR)
To: QAR AX(S)RT) — QU)
such that the following hold.
(id, 09, 01)e = Q(f)
(Ao, m1)e =0
(AAJop, T2)e =T
(A, 11, 72)e = Q(g)
By induction, there are constructible morphisms
fo:rPNB—T1 fi:Qp—C

such that f is of the form (id, fo, f1)e. By induction, there are con-
structible morphisms

g: N*(D)® (QNE)— R G AQA(S)®T - U
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such that g is of the form (A, g1, g2)-. Define u and v to be the following
constructible morphisms.

) (A, f1,91)e

u: Q=N (Qp®(C\D)®(QNE R

v: POA(S)®T = A® A*(A"(PNB)® S) @ T L2000

Note the following.
<A7 U, U>E = <A7 <A7 fla gl>67 <AA7 an 92>€>€
= <AA7 <1d7 f07 f1>67 <A7 91792>6>6 = <F7 fa g>6

Consider the case where 0 < k<l <i<j<j <n.

P A*(Q) A*(R\S) T
Xo®  @Xp1®@Xp® - ®X10® Xj @X411®®Xi1®Xi® - QX;10X;0 - @Xy 1 @Xy® @ Xn1
~~
A I*(B) *(C\D) E

This case is similar to the case where 0 <1< j < j/ <k <l <n.
Consider the case where s is of type ((—)%).

(/) *

PoAYQ® (R\S)) ® T = I*(A) (B)~=U

It must be the case that A has prime factorisation of the following
form, where I'*(X/) = X,,.

4= @ v
0<a<n
Define the following shapes.
PEQX =@ X L= Q@ N
0<a<i i<a<jy’ j'<a<n

These shapes have been chosen so that the following central isomor-
phisms exist.

P=T*(Py) AY(Q®(R\S) =T (Qa) T =T*(Ty)

Pi@Qa®Ts=A

If Q®(R\S) is trivial, then this contradicts our assumption that i < j’.
If @ is non-trivial, then, by Lemma 5.3.17, either there is a A such that
A = AT or there is a A such that I' = AA. If R\S is non-trivial, then,
by Lemma 5.3.18, there is a A such that A = AT.
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Consider the case where there is a A such that A = AI' By Lemma
5.3.16, the following central isomorphism exists.

A(Q® (R\S)) = Qa
By Lemma A.1.20, there is a morphism
v: QPy @ AN (S)®Ty) — QB)

such that the following hold.

w)=r1

(A0 = )
By induction, there are constructible morphisms
u:Q—=R PN (S)®@Ts — B

such that f is of the form (A, u, f').. Define v to be the following
constructible morphism.

v P@AYS)®T = TPy @ A*(S) @ Ta) Y r(By=~U
Note the following.

(A u,v)e 2 (AT, u, T*(f"))e X T ((A,u, f)e) 2 T*(f)

Consider the case where R\S is trivial and there is a A such that
I' = AA By Lemma 5.3.16, the following central isomorphism exists.

Q=A(Qa)
By Lemma A.1.27, there are morphisms
o' QQa) = QT) 7 Q(Pa®Ty) — Q(B)
such that the following hold.
AN(o)=0c
(AA* (T =7

<id7 OJ, T/>E = Q(f)

By induction, there are constructible morphisms

forQa—T1 fi: PA®T4— B
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such that f is of the form (id, fo, fi)e. Define u and v to be the
following constructible morphisms.

w: Q= A (Qa) L ATy = R

(AA)*(f1)

v: PRA*(S)® T = (AA) (P ® Ta) (AAY(B) = U

Note the following.
(A, 0)e 2 (AN (fo), (AA)*(f1))e
=~ (AAY*((id, fo, f1)-) = (AA)*(f)
e Consider the case where s is of type (6).

PoA* Q@ (R\S)oT 2% ¢ (4)=U

By induction, there are constructible morphisms
uwQ—>R  fP(PRA(S)RT)— A

such that f is of the form (A®, u, f’).. Define v to be the following
constructible morphism.

<(I>’fl>9

12

v: PQA*(S)®T o, (A4)=Q

Note the following.
<A7 u, U)E = <A7 u, <<I>7 f/>9>€ = <(I)7 <A<I>7 u, f,>5>0 = <q)7 f)@

e Consider the case where s is of type (¢).

PO Qe RS) BT Ao T e e, B o0 P15y

Then @ is non-empty. It must be the case that A, ®,(B) and C have
prime factorisations of the following forms, where I'*®*(X//) = X,,.

A= R Xo 2.(B)=X; C= Q) X
0<a<k k<a<n
Compare i and j with k.
Consider the case where 0 < k<1< j<j < n.

P A*(Q) A*(R\S) T

Xo® - Xp1® X ®Xk+1®"'®X7;71®Xi®"'®XJ;]®X]‘®"'®Xj'71®Xj/@"'@Xn,]
—_—
A I*®*®,(B) C
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Define the following shape.

PNC = ® X,

k<a<i

This shape has been chosen so that the following central isomorphisms
exist.

P2 AT*®*0,(B)® (PNC)
(PNC)@ A" (Q® (R\S)e@T=C
By Lemma A.1.13, there is a morphism

v: QART(B)@(PNC)RA*(S)®T) — QU)
such that the following hold.
(I'®,v)e =71

(A, 0,0)e =Q(f)
By induction, there are constructible morphisms
w@Q—-R fiAQT*B)@(PNC)@A*(S)®T - U

such that f is of the form (A, u, f').. Define v to be the following
constructible morphism.

r,o,f
v: POAYNS) 0T = AeT**d,(B)@ (PNC) @ A*(S) @ T =28, 7
Note the following.
(A u,v)e = (A u, (T, ®, f)e)e = (T, @, (A u, fHe)e = (T, P, f)¢

Consider the case where 0 <i <k < j <j <n.

P AX(Q) A*(R\S) T
Xo® X1 90Xi®  0X1® Xp @Xp1 @ QX 0X;® Xy Xy @ ® Xy

A r*zb?{:(B) c

Define the following shapes.

AnQ= ) X, Be=X; QnCc= R X,

i<a<k k<a<j

These shapes have been chosen so that the following central isomor-
phisms exist.

RQ=(ANQ)®Be®(QNC)
POAANQ)=ZA  A(QNC)®(R\S)@T=C
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A*(Bg) 2 T*9*d,(B)
By Lemma 5.3.19, either there is a A such that I' = AA and By =

A*®*P,(B), or there are a non-empty A and a ¥ such that A = AT,
® = VA and By = V*d,(B).

Consider the case where there is a A such that I' = AA and Bg =
A*®*®, (B). By Lemma 5.3.16, the following central isomorphism ex-
ists.

Bg = N*®*9,(B)
By Lemma A.1.17, there is a morphism

v: QUANQ)RA*(B)® (QNC)) = QR)

such that the following hold.

(A, 0,7) = Q)

(A, ®,v)e =0
By induction, there are constructible morphisms
f(ANQ)@A (B)@(QNC)—- R  v:PRA*(S)®T —-U

such that f is of the form (A, f’,v).. Define u to be the following
constructible morphism.

W Q= (ANQ) ® N0 0, (B) @ (Qn C) Ll

Note the following.
<A7 u, U>€ = <A7 <A7 (I)a f/>C7 U>€ = <AA7 CI)v <A7 fla U>E>C = <F7 <I>7 f>€

R

Consider the case where there is a non-empty A and a ¥ such that
A =Al', ® = YA and Bg = V*®,(B). By Lemma A.1.33, A is empty,
which is a contradiction.

Consider the case where 0 < i< j=k < j < n.

P A*(Q) A*(R\S) T
Xo® 0Xis1®X,0 X 10X;0 Xy 10 X; @@ Xn1
A I*¢*0, (B) C

This case cannot occur, since the following is impossible.
A*(R\S) =T"®*®,(B)

Consider the case where 0 < i <7< 5 <k <n.

P AX(Q) A*(R\S) T
Xo®  ®Xi10X;i® X 10X;® Xy 10Xy ® - 0Xpm1® X @Xpy1 @@ X1
~ —
A I*®*d,(B) C

This case is similar to the case where 0 < k <i < j < j <n.
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A.4 Proof of Lemma 5.6.3

Proof. It must be the case that P and () have prime factorisations of the
following forms, where A*(X!) = X, and A*(Y)) =Y.

Pz ) X,

0<a<n

Q= X Y,

0<a<n/

Consider the case where A is empty. In this case, we can simply define
u to be the following constructible morphism.

u: P = A*(P) 3 A*(Q)=Q

Consider the case where Q) is trivial, so that n’ = 0. In this case, the
result follows from Lemma 5.6.2.

Assume that A is non-empty and () is non-trivial, so that n’ > 0. We
will prove the result by induction on the type of s. Consider the type of the
constructible morphism s.

e Consider the case where s is of type ().
A*(P) = AY(Q)
By Lemma 5.3.16, the following central isomorphism exists.
P=Q
Define u to be this central isomorphism.
e Consider the case where s is of type (®).
A*(P)= Ao C 125 Bo D= AYQ)

It must be the case that A, B, C and D have prime factorisations of
the following forms.

0<a<i i<a<n
B2 QY. D= @ Y
0<a<i’ i'<a<n’

Ap = ®X; Cp = ® X!

0<a<i i<a<n
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Bo= @ Y, Doz Q Vi

0<a<i’ i <a<n'

These shapes have been chosen so that the following central isomor-
phisms exist.
P2 Ap®Cp

A*(Ap) = A A*(Cp)=C
C = A*(Cp) D = A*(Dp)
Bo® Dg = Q
By Lemma A.1.19, there are morphisms
vi: Q(Ap) = Q(Bg) va: Q(Cp) = QUDg)
such that the following hold.
A*(v1) = Q(f)
A*(v2) = Q(g)
v QU =0
By induction, there is a constructible morphism
i Ap = Bg

such that f is of the form A*(f’). By induction, there is a constructible
morphism
g/: Cp— DQ

such that g is of the form A*(g’). Define u to be the following con-
structible morphism.

u: PgAP®CPM>BQ®DQgQ
Note the following.
A(u) = A (f'od)= A (f) oA ()= fayg
Consider the case where s is of type (7).

A*(p) L p A= A Q)

Then [ is non-trivial. By assumption, A is non-empty. In this case,
there is no central isomorphism of the following form.

NA=A*(Q)
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e Consider the case where s is of type ().

A*(P) = A T*(B @ (C\D)) @ E 194 Ax(Q)

Then C' is non-trivial. It must be the case that A, B, C\D and F
have prime factorisations of the following forms, where I'*(X/) = X/.

A2 Q) X, B= R X, CD=X] E= Q) X,

0<a<i i<a<j j<a<n

Define the following shapes.

Ap= Q) X, Bp= Q) X, Epx= Q) X,

0<a<i i<a<j j<a<n

These shapes have been chosen so that the following central isomor-
phisms exist.
P~ Ap® Bp® Ep

A*(Ap)= A  A*(Bp)=T*(B®(C\D)) AYEp)~E

By Lemma 5.3.18, there is a A such that I' = AA. By Lemma 5.3.16,
the following central isomorphism exists.

Bp = A*(B ® (C\D))
By Lemma A.1.20, there is a morphism
v: Q(Ap @ A*(D) ® Ep) — Q(Q)

such that the following hold.

(M, Qf),v)e=0
By induction, there is a constructible morphism
g Ap @ A*(D)® Ep — Q

such that g is of the form A*(¢’). Define u to be the following con-
structible morphism.

Af.q')e
(Af.9")

u: P2 Ap @ A" (B® (C\D))® Ep Q

Note the following.

A*(u) = A*((A, f.g')e) = (A, fA%(g))e = (T, £ 9)e
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e Consider the case where s is of type ((—)*).

™ (f)

A(P) =T7(A) I"(B) = A%(Q)

By Lemma 5.3.17, either there is a A such that I' = AA or there is a
A such that A = AT.

Consider the case where there is a A such that I' = AA. By Lemma
5.3.16, the following central isomorphism exists.

P=A*(A) A(B)=Q
Define u to be the following constructible morphism.
w: P2 AR(A) 20 g5 By =
Note the following.

A*(u) = (AA)*(f) =T*(f)

Consider the case where there is a A such that A = AT". By Lemma
5.3.16, the following central isomorphism exists.

A (P)=A B = A*(Q)
By induction, there is a constructible morphism
u: P—Q
such that f is of the form A*(u). Note the following.

A% (u) = (AD)"(u) = T(f)

e Consider the case where s is of type (6).

(®.1)e

A*(P) 9,(4) = A%(Q)

Then @ is non-empty. By assumption, A is non-empty. In this case,
there is no central isomorphism of the following form.

D, (A) =2 A*(Q)

e Consider the case where s is of type ().

<F7¢7f>
R

A*(P) 2 A®T*®*®,(B)® C S A%Q)
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Then @ is non-empty. It must be the case that A, ®,(B) and C have
prime factorisations of the following forms, where T*®*(X/) = X.

A ® X, ®B)=X! (= ® X,
0<a<t i<a<n
Define the following shapes.
Ap= Q) X, Bp=X] Cp= X X,
0<a<t <a<n

These shapes have been chosen so that the following central isomor-
phisms exist.
P> Ap® Bp® Ep

A*(Ap) = A A*(Bp) =T*'0*d,(B) A*(Cp)=C

By Lemma 5.3.19, either there is a A such that I' = AA and Bp =
A*®*®, (B), or there is a non-empty A and a ¥ such that A = AT,
® = VA and Bp =2 V*®,(B).

Consider the case where there is a A such that I' = AA and Bp =
A*®*®,(B). By Lemma 5.3.16, the following central isomorphism ex-

ists.
Bp =2 A*®*®,(B)

By Lemma A.1.21, there is a morphism
v: Q(Ap ® A*(B) ® Cp) — Q(Q)
such that the following hold.

(A, @,v)c =0
By induction, there is a constructible morphism
fliAp A" (B)®@Cp — Q
such that f is of the form A*(f"). Define u to be the following con-
structible morphism.

(M2, f")¢
e

u: PgAPQ@A*(I)*(I)*(B)@CP Q

Note the following.
A%(u) =2 A((A @, f)¢) = (AA, @, A% (f')¢ = (T, @, f)¢

Consider the case where there is a non-empty A and a ¥ such that
A = AT, ® = VA and Bp = ¥*®,(B). By Lemma A.1.32, A is empty,
which is a contradiction.

O
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A.5 Proof of Lemma 5.6.4

Proof. Consider the case where ® is empty. In this case, we can simply
define u to be the following constructible morphism.

u: PO A*(Q)® RZ PR A*®*®,(Q)@ R > S

Assume that ® is non-empty. It must be the case that P, ®,(Q) and R
have prime factorisations of the following forms, where A*®*(X!) = X,.

P~ Q) X. Q=X;, R= (X X,

0<a<i i<a<n

We will prove the result by induction on the type of s. Consider the type
of the constructible morphism s.

e Consider the case where s is of type ().
PI"o*d,(Q) @ RS

By Lemma A.1.31, ® is empty. This contradicts our assumption that
® is non-empty.

e Consider the case where s is of type (®).

PR A3, (Q@R=2A2C IS BeaD=S

It must be the case that A and C have prime factorisations of the
following forms.

1= Q@K o=@ X
0<a<j j<a<n
Compare i with j.

Consider the case where 0 <17 < j < n.

P A*3*D, (Q) R
—_—— A~
Xo®--@Xia® Xy @Xin®--0X; 190X;0-- X
A c

Define the following shape.
ANR= ® X,
i<a<j

This shape has been chosen so that the following central isomorphisms
exist.

RE(ANR)®C



A.5. PROOF OF LEMMA 5.6.4 231

PRA PP (Q)@(ANR) = A
By Lemma A.1.10, there is a morphism

v: QP RA(Q)®(ANR)) = Q(B)
such that the following hold.
veQg) =0
(A, @,v)c = Q(f)

By induction, there is a constructible morphism
[P A"(Q)®(ANR)— B

such that f is of the form (A, ®, f')s. Define u to be the following
constructible morphism.

wPOAQOREPOA(Q) ®(ANR 0 C L% BeDx~g
Note the following.

(AP, u)e (AP, f@g)c=(AD,fe®g=fRy

Consider the case where 0 < j <i < n.

P A*D*D, (Q) R
Xo® - @X;10X;0--0X,10 X; X411 Q- ®Xp1
A C

This case is similar to the case where 0 < i < j < n.
e Consider the case where s is of type (7).

P& A DD, (Q)® R I nax~ s

By induction, there is a constructible morphism
" IoP A" (Q)®R— A

such that f is of the form (A, ®, f')c. Define u to be the following
constructible morphism.

u: P®A*(Q)®RMI\A%Q
Note the following.

(A, @,u)e = (A, @, (L, fy)e = (1A, @, )y = AT, iy
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e Consider the case where s is of type (¢).

PR A*®*®,(Q)@ RZAT*(B® (C\D))® E (Lof9)e, g

Then C' is non-trivial. It must be the case that A, B, C\D and E
have prime factorisations of the following forms, where I'*(X/) = X,.

A= Q) X, B= X X/ C\D=X; E= ) X
0<a<y 71<a<k k<a<n

Compare ¢ with 5 and k.
Consider the case where 0 < i< j <k <n.

P AD,(Q) R
—_—~~—— =
Xo® - 0Xi1® X; @Xi®- 20X, 10X;0- X, 10 X @Xp1®-- @ X1
~ @ ———
A *(B)  I*(C\D) E

Define the following shape.
ANR= ® X,

1<a<j

This shape has been chosen so that the following central isomorphisms
exist.

RE(ANR)®I"(B® (C\D))® E
PR AP0, (Q)®@(ANR)= A
By Lemma A.1.13, there is a morphism

v: QP ®AYQ)® (AN R)®T*(D) ® E) — Q(S)
such that the following hold.
(A, @,v)¢ = Q(g)
(I,Q(f),v)e =0

By induction, there is a constructible morphism
d:PRA(Q)®@(ANR)@T*"(D)® E — S

such that g is of the form (A, ®,¢')¢. Define u to be the following
constructible morphism.

w: POA*(Q)®R = PeANQ)@(ANR)eT* (Be(C\D)oE 1% g
Note the following.

(A, @, u) = (A, (T, f,g)e)c = (T, f,(A, @,9")¢)e = (T, f,9)e

Consider the case where 0 < j <i < k < n.
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P A*P*D,(Q) R
—~~
X0®~~~®X]'_1®Xj®"'®Xi—1® Xi ®Xi1® 03X, 1 ® X X1 ®--- X,
_~ —
) T(B) r*(C\D) J5

Define the following shapes.

PnB= () X! Qp=X/ BnR= Q) X,
j<a<i i<a<k

These shapes have been chosen so that the following central isomor-
phisms exist.

P> A®T*(PNB) R=T*((BNR)® (C\D))® E
(PNB)®Qp®(BNR)=B
A PP, (Q) = T*(Qp)
By Lemma 5.3.19, either there is a A such that A = AI' and Qp =

A*®*D, (Q), or there is a non-empty A and a ¥ such that I' = AA,
® = UA and Qp = V0, (Q).

Consider the case where there is a A such that A = AT' and Qp =
A*®*P, (Q). By Lemma 5.3.16, the following central isomorphism ex-
ists.

A" P,(Q) = Qp
By Lemma A.1.17, there is a morphism

v: Q(PNB)®A*(Q)® (BNR)) — QC)
such that the following hold.
<Fa v, Q(g>>€ =0

<A> o, U>C = Q(f)

By induction, there is a constructible morphism
" (PNB)@ A (Q)®(BNR)—C

such that f is of the form (A, ®, f')¢. Define u to be the following
constructible morphism.

u: PR A (Q)® R
~ A@T*((PN B) @ A*(Q) @ (BN R) ® (C\D)) @ E 129 g
Note the following.

<Av <I>,u>< = <AF7 (1)7 <Fa flag>5>C = <F7 <A7 (I), f,>Cag>s = <F, fa g>s
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Consider the case where there is a non-empty A and a ¥ such that
I'=AA, & =VAand Qp = ¥*d,(Q). By Lemma A.1.33, A is empty,
which is a contradiction.

Consider the case where ¢ = k. This case cannot occur, since the
following is impossible.

A*®*®,(Q) = I*(C\D)

Consider the case where 0 < j <k <1 < n.

P A*D*D,(Q) R
~~ ———f
Xo® QX 1QX;® X 1® Xy 9Xpp1®---0X,10 Xj @Xip1 ®--- QX
~—
1 r*(B)  TI*(C\D) E

This case is similar to the case where 0 <17 < j <k < n.
Consider the case where s is of type ((—)%).

P oA, (Q) o R=T*(A) “Y r By~ 5

It must be the case that A has prime factorisation of the following
form, where I'"(X!) = X,,.

A= Q) X/

0<a<n

Define the following shapes.

Paz QR X! Qa=X! Raz= Q) X/

0<a<i <a<n

These shapes have been chosen so that the following central isomor-
phisms exist.

P2T*(Py)  A*®,(Q)2T*(Qa) R2T*(Ra)

PirQa® Ry = A

By Lemma 5.3.19, either there is a A such that A = AI' and Q4 =
A*P*P,(Q), or there is a non-empty A and a ¥ such that I' = AA,
® = WA and Q4 = U P, (Q).

Consider the case where there is a A such that A = AI' and Q4 =
A*®*P,(Q). By Lemma 5.3.16, the following central isomorphism ex-
ists.

A" P, (Q) = Qa
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By Lemma A.1.21, there is a morphism
v: Q(Py @ A*(Q) @ Ra) — Q(B)
such that the following hold.
Iv)=o0

<A’ o, U>C = Q(f)

By induction, there is a constructible morphism
f/: Py ®A*(Q) Q® Ry — B

such that f is of the form (A, ®, f')¢. Define u to be the following
constructible morphism.

wi P@AYQ) @ R=TH(Py® A*(Q)® Ra) —Y 1By~ 5
Note the following.

(A, P, u>€ = <AP7 o, F*(fl)>C = P*(<A7 P, fI>C) = P*(f)

Consider the case where there is a non-empty A and a ¥ such that
I=AA & =VAand Q4 = V*d,(Q). By Lemma A.1.32, A is empty,
which is a contradiction.

e Consider the case where s is of type (6).

P®A* D, (Q)® R 2% g, (4)~ 5

By induction, there is a constructible morphism
[T UV(PRA(Q)®R) — A

such that f is of the form (AW, ®, f’)¢. Define u to be the following
constructible morphism.

<\Ijvf >9

Il

u: P A*(Q)® R U, (A)=Q

Note the following.

<Aa @,u>< = <Av o, <\II7 f/>9>C = <\Ij7 <A\IJ7 D, f/>C>9 = <\I’a f>0
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e Consider the case where s is of type ().

P® A0, (Q)® R Ae UM, (B) o ¢ 200 g

Then ¥ is non-empty. It must be the case that A, ¥, (B) and C have
prime factorisations of the following forms, where I'*U* (X)) = X,.
A= R X, V.(B)=X] C= (K X,
0<a<y j<a<n
Compare ¢ and j.

Consider the case where 0 <17 < j < n.

P A*D*D, (Q) R
—_— o~
Xo® - @X;i1® X X1 ®--0X;10 X; X1 Q@ X,
—
A U0, (B) )8

Define the following shape.
ANR= ® X,
i<a<j

This shape has been chosen so that the following central isomorphisms
exist.

R (ANR)I™"V*'V,(B)® C

PR AP0, (Q)®@(ANR)= A
By Lemma A.1.15, there is a morphism

V: QAPRIA(Q)® (ANR)@T*(B)® C) — Q(S)
such that the following hold.
(A, @, v)¢ = Q(f)
(W, v)e =0
By induction, there is a constructible morphism
f"PRA Q)@ (ANR) @I (B)oC — S

such that f is of the form (A, ®, f').. Define u to be the following
constructible morphism.

T, f")¢
T

u: PRA*(Q)®R = POA*(Q)R(ANR)QT* U U, (B)®C S

Note the following.
(A, @, u)e Z (A, @, (T, 0, fe)e Z (T, 0, (A, @, fe)e = (T, 9, f)e

Consider the case where 0 < i =j < n.
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P A**D,(Q) R
—_— o~
Xo® 90X ® X; X1 Q- QX1
—_—  —~

A U0, (B) C

The following central isomorphisms exist.
P=A A DD, (Q) =X T V"W, (B) R=C

It must be the case that Q = B, ® = ¥ and A =TI'. Define u to be
the following constructible morphism.

w: POAY Q)@ R AxT*(B)oC L 8

Consider the case where 0 < j <1 < n.

P A*D*D,(Q) R
—~~
Xo® - 0X;m10 X; 9Xj®-0X,10 X; @Xip1 @+ ® Xp
N N
A Ir*®o*o, (B) C

This case is similar to the case where 0 < i < j < n.
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alpha The symbol « is used for the associator in a skew monoidal category.

aapc:A®(BoC)— (A®B)oC

epsilon The symbol ¢ is used for the counit in a closed skew monoidal
category.
en: A® (A\B) — A

zeta The symbol ( is used for the counit of various adjunctions.
(2. 0", (A) = A
Ca: L@ (R A) — A
eta The symbol 7 is used for the unit in a closed skew monoidal category.

na: B— A\(A® B)

theta The symbol 8 is used for the unit of various adjunctions.
6%: A — &, 0%(A)
0a: A— R®(L®A)

kappa The symbol  is used for the structure maps for a pseudofunctor,
and a related natural transformation.

KLY TFAR(A) = (AD)*(A) /G : A — (ide)*(A)
7S : (ide), (A) — A

lambda The symbol A is used for the left unitor in a skew monoidal cate-
gory, and a related natural transformation.

MASTIRA
S\A:I\A%A

mu The symbol p is used for the following natural transformation, similar
in form to the associator «, in a closed skew monoidal category.

papc: (B ANC — A\(B\C)

nu The symbol v is used for the following natural transformation, similar
in form to the associator «, in a closed skew monoidal category.

VA B,C: (A\B) QR C — A\(B &® C)
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xi The symbol £ is used for the following natural transformation, used in
the definition of dual pairs in closed skew monoidal categories.

fA: L\A%R@A

pi The symbol 7 is used for the projection map for a monoidal adjunction.

map: O (A)® B — &,(A® 3 (B))

rho The symbol p is used for the right unitor in a skew monoidal category.

pa: ART — A

sigma The symbol o is used for the following internal version of a monoidal
adjunction between closed categories.

oap: Bu(@*(A)\B) — A\D,(B)

phi The symbol ¢ is used for the structure maps for various oplax monoidal
functors.

ohp P(A®B) > d*(A)®@*(B) $*: ¥ (I) 1T
P O S (CX)Y g T O
chi The symbol yx is used for the following natural transformation, similar

in form to the structure map ¥®, for a lax monoidal functor between
closed categories.

X451 Pu(A\B) — ©.(A)\.(B)

psi The symbol % is used for the structure maps for various lax monoidal
functors.

Ui gt u(A) ® Bu(B) - @ (A®B) %I — &.(T)

vipt AX@BY -5 (AeB)X 5T T
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