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Abstract

Accurate survival prediction is critical in the management of cancer pa-
tients’ care and well-being. Previous studies have shown that copy num-
ber alterations (CNA) in some key genes are individually associated with
disease phenotypes and patients’ prognosis. However, in many complex
diseases like cancer, it is expected that a large number of genes with such
an association span the genome. Furthermore, genome-wide CNA pro-
files are person-specific. Each patient has their own profile and any differ-
ences in the profile between patients may help to explain the differences
in the patients’ survival. Hence, extracting the relevant information in
the genome-wide CNA profile is critical in the prediction of cancer pa-
tients’ survival. It is currently a modelling challenge to incorporate the
genome-wide CNA profiles, in addition to the patients’ clinical informa-
tion, to predict cancer patients survival. Therefore, the focus of this thesis
is to establish or develop statistical methods that are able to include CNA
(ultra-high dimensional data) in survival Analysis. In order to address this
objective, we go throw two main parts.

The first part of the thesis concentrates on CNA estimation. CNA can be
estimated using the ratio of a tumour sample to a normal sample. There-
fore, we investigate the approximations of the distribution of the ratio of
two Poisson random variables.

In the second part of the thesis, we extend the Cox proportional hazard
(PH) model for prediction of patients survival probability by incorporating
the genome-wide CNA profiles as random predictors. The patients clinical
information remains as fixed predictors in the model. In this part three
types of distribution of random effect are investigated.



First, the random effects are assumed to be normally distributed with mean
zero and diagonal structure covariance matrix which has equal variances
and covariances of zero. The diagonal structure of covariance matrix is the
simplest possible structure for a variance-covariance matrix. This structure
indicates independence between neighbouring genomic windows. How-
ever, CNAs have dependencies between neighbouring genomic windows,
and spatial characteristics which are ignored with such a covariance struc-
ture.

We address the spatial dependence structure of CNAs. In order to achieve
this, we start first by discussing other structures of variance-covariance
matrices of random effects ( Compound symmetry covariance matrix , and
Inverse of covariance matrix). Then, we impose smoothness using first and
second differences of random effects. Specifically, the random effects are
assumed to be correlated random effects that follow a mixture of two dis-
tributions, normal and Cauchy, for the first or second differences (SCox).
Our approach in these two scenario was a genome-wide approach, in the
sense that we took into account all of the CNA information in the genome.
In this regard, the model does not include a variable selection mechanism.

Third, as the previous methods employ all predictors regardless of their
relevance, which make it difficult to interpret the results, we introduce a
novel algorithm based on Sparse-smoothed Cox model (SSCox) within a
random effects model-frame work to model the survival time using the pa-
tients’ clinical characteristics as fixed effects and CNA profiles as random
effects. We assumed CNA coefficients to be correlated random effects
that follow a mixture of three distributions: normal (to achieve shrinkage
around the mean values), Cauchy for the second-order differences (to gain
smoothness), and Laplace (to achieve sparsity).

We illustrate each method with a real dataset from a lung cancer cohort
as well as simulated data. For the simulation studies, we find that our
SSCox method generally preformed better than the sparse partial least-
square methods in prediction performance. Our estimator had smaller
mean square error, and mean absolute error than its main competitors. For



the real data set, we find that the SSCox model is suitable and has enabled
a survival probability prediction based on the patients clinical informa-
tion and CNA profiles. The results indicate that cancer T- and N-staging
are significant factors in affecting the patients survival, and the estimates
of random effects allow us to examine the contribution to the survival of
some genomic regions across the genome.
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Chapter 1

Introduction

1.1 Overview

Obtaining and interpreting information from many variables measured on patients,
with an intent to predict disease-related outcomes, is becoming an increasingly im-
portant goal in medical research. Statistical methods which allow for censoring are
essential when the outcome of interest is a possibly censored time to event. The ma-
jority of classical statistical methods that yield a relationship between covariates and
outcome rely on the number of covariates p to be less than the number of observations
n. Indeed, for the best results these methods typically need p to be somewhat less than
n.

Collecting very large amounts of covariate information, such as microarray, SNP,
and Copy number alterations (CNA) data via Next Generation Sequencing technology,
has been made a reality through technological advances, whilst still tracking survival
information on patients in clinical studies. Using these technologies, it is usually the
case that the data structure is high-dimensional data, that is p is large relative to n.
Going one step further we get to ultra-high dimensional data, often denoted p >> n,

in which the number of covariates is much larger than the sample size, and in this case
most classical statistical methods must be adapted.

The most commonly used model for analyzing survival data is the Cox proportional
hazards (PH) model introduced by Cox et al. (1972), which will be explained in detail
in Chapter 4. However, this approach may be infeasible in the high-dimensional setting
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1.1 Overview

and, as a result, a number of different strategies have been proposed for modifying this
method to this setting.

Some methods, discussed in Section 1.3.1, proceed by feature selection, in which
only a subset of the covariates are selected for inclusion in the model. There are two
different approaches to feature selection: discrete or shrinkage. Discrete feature se-
lection involves developing a system to determine whether individual features should
enter the model, whereas feature selection by shrinkage works by penalizing the mag-
nitude of the coefficients in the model leading to some coefficients being set identically
to zero (e.g., Tibshirani et al. (1997); Fan & Li (2002); Zhang & Lu (2007); Antoniadis
et al. (2010)). Hybrids of marginal screening and shrinkage, such as sure indepen-
dence screening (SIS), have been proposed to handle ultra-high dimensional survival
data (e.g., Fan et al. (2010); Zhao & Li (2012)).

Another group of approaches, discussed in Section 1.3.2, focus on summarizing
the feature space with a smaller number of derived variables, allowing the number
of features involved in the model to remain unchanged. Constructed covariates are
developed in these methods from the information in the original feature space, thus
allowing all of this information to be summarized by a few constructed covariates
rather than the many original covariates.

In situations where the PH assumption is not satisfied, a wide range of survival
models, such as the accelerated failure time model and the semi parametric transfor-
mation model, have been proposed as useful alternatives. Similarly, methods for fitting
these models have also been augmented to include high-dimensional predictors. How-
ever, for the purposes of this thesis we have restricted ourselves to settings where the
PH assumption does hold.

This chapter is organized as follows. In Section 1.2, we provide the reader with
a brief biological background about the genome and Next Generation Sequencing.
After that, in Section 1.3, we review methods that have been developed for relating
high-dimensional data to survival outcomes. Data set used in this thesis is presented
in Section 1.4. Motivation and contributions of this thesis are given in Section 1.5.
Section 1.6 presents the software development for this thesis. Finally, Section 1.7
gives layout of the thesis.
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1.2 Biological background

1.2 Biological background

1.2.1 Genome

The genome is made up of deoxyribonucleic acid (DNA), which carries the genetic
information in all cellular forms of life (see Alberts, 2008). It consists of long chains
of nucleotides which are themselves made up of three components:

• a nitrogenous base which are cytosine (C), guanine (G), adenine (A) and thymine
(T);

• a five-carbon sugar molecule (deoxyribose);

• a phosphate molecule;

The DNA in the nucleus is split up into a set of different chromosomes (see National
Institutes of Health), and the number of chromosomes can differ from animal to an-
imal. For instance, the human genome (≈ 3.2 × 109 nucleotides) is assigned to 24
chromosomes, whereas the mouse genome consists of just 21 chromosomes. Each
chromosome normally has two copies of DNA, and each of these copies then has two
strands of DNA sequences where the bases are paired (A is paired with T, and C with
G) (see Alberts, 2008). For example, if TAACGT is a DNA sequence in one strand
then the DNA sequence in the same location in the other strand is ATTGCA. For more
details, we refer the reader to Alberts (2008) and National Institutes of Health.

1.2.2 Next Generation Sequencing

With the potential to revolutionize various fields, such as personalized medicine and
genetic diseases, and now a fundamental tool in molecular biology and genetics, Next
Generation Sequencing (NGS) is an incredibly powerful platform which has allowed
the sequencing of thousands to millions of DNA molecules simultaneously. First mar-
keted in 2005, NGS is a young field but now has various technologies such as ILLu-
mina, SOLiD and 454 system. Although these have some different trait, for example
run time, quality and even cost, there all produce the same raw data (see Henson et al.,
2012).
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The NGS process, as shown in Figure 1.1, begins with isolating DNA that is then
chopped into short fragments to build a genomic library. Following this, the fragments
are sequenced and mapped to human reference genome. These mapped sequencings
are then called reads. The result is a quantitative dataset - read count per window across
the genome.

Figure 1.1: Work flow of NGS, which consist of the following main steps, from isolat-
ing DNA to the mapped reads. First, isolating the target DNA. Then, the isolated DNA
is fragmented. After that, sequenced fragments are mapped to a reference genome and
the mapped sequences are called reads. By completing the previous steps, we end up
with a quantitative dataset called read count.

1.3 Literature review

1.3.1 Methods based on feature selection

One strategy to deal with high-dimensionality in the covariate space is to use only a
subset of the features; one may attempt to select k < p features associated with survival
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for inclusion in the model, but of course this is only reasonable if these features are
expected to be predictive of survival. Some major approaches for feature selection
include discrete feature selection and shrinkage-based feature selection.

Discrete feature selection

A basic approach for selecting features is univariate selection, in which variables are
screened individually for association with survival and given some sort of ranking. As
an example, we could perform a univariate Cox score test on each feature, and then
include the top k features based on the ranking of the corresponding p−values. By ad-
justing the tuning parameter k as appropriate, a certain error rate can be achieved such
as the family-wise error rate or the false discovery rate (e.g., Benjamini & Hochberg
(1995)). Although this is easy to implement, there are pitfalls; in settings where co-
variates are correlated, like in CNA data, it may select highly correlated features which
do not lead to a multivariate model that improves over the univariate models.

By including genes sequentially in a multivariate model, the correlation between
genes can be accounted for, yielding an improvement on the univariate selection de-
scribed above. This kind of method would be analogous to forward stepwise selection
linear regression. In detail, this means beginning with the null model (or the model
with clinical covariates alone), then including the feature with the largest score statis-
tic upon computing score statistics for all features. Next, with this feature in the model
we use a score test to determine which of the remaining features should be included
to best improve the model. Continuing in this way until our model includes k genes,
we have an approach which is not only easy to implement but also better accounts for
correlation between genes. However, it leads to a locally optimal model rather than the
best model with k genes.

In Bøvelstad et al. (2007) the performance of these discrete selection methods was
compared with the performance of methods based on shrinkage (ridge and Lasso) and
summary variables (supervised and unsupervised principal components regression and
partial least squares, discussed in Section 1.3.2). They demonstrated that methods
based on shrinkage and derived variables tended to outperform discrete variable selec-
tion.
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Shrinkage methods

As discussed above, discrete feature selection methods may not capture well the joint
effects of multiple genes, resulting in prediction models with possibly low prediction
accuracy. However, if p is not small relative to n then using a joint model with p

features may not be feasible or even stable. To overcome such difficulties, various
regularization procedures, aiming to maximize a penalized log partial likelihood with
a penalty accounting for the model complexity, have been proposed. An L2−penalty
yields the ridge-regularized estimator (e.g., Verweij & Van Houwelingen (1994)). Im-
portantly, this approach does not do feature selection because all components will in
general be non zero.

When a sparse solution is desired, a natural approach is to use an L1−penalty to
regularize log partial likelihood, and this yields the Lasso solution (e.g., Tibshirani
et al. (1997)).

The inconsistency in variable selection and the bias towards zero of the nonzero co-
efficients estimated in finite samples are undesirable features of the standard Lasso, and
these drawbacks motivated the development of methods in which coefficients receive
different amounts of penalization depending on the magnitude of their values. One
such approach, introduced by Zou (2006), is the adaptive Lasso which uses weighted
L1−penalties to apply less penalization to larger coefficients and more penalization to
variables that are potentially non-informative .

Another potential problem with the Lasso is that when two highly correlated fea-
tures are associated with the outcome of interest, the Lasso will tend to identify only
one of the features, which can be undesirable for interpretability and replicability.
To counteract this problem, Zou & Hastie (2005) proposed the elastic net (EN) for
linear regression. The EN adds a ridge-type penalty to the Lasso which improves
Lasso’s ability to identify sets of correlated genes associated with outcome. Engler
& Li (2007) applied EN penalty to the Cox model with an algorithm adapted to the
high-dimensional setting.

1.3.2 Methods based on derived variables

Feature selection is particularly effective when a subset of the features relate to the
outcome of interest, but otherwise an alternative strategy to reduce the complexity of
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the feature space is to project the original space to a lower dimensional subspace and
derive prediction models within the subspace. These methods are principal compo-
nents regression (PCR) (e.g, Massy (1965)) and partial least squares (PLS) (e.g, Lee
et al. (2013)).

One main feature of PC regression is that the dimension reduction is completely
unsupervised - the derived variables are constructed using only information on the pre-
dictors regardless of relationship between them and the outcome. Hence, it is possible
that while the top PCs capture variability in the feature space well, they are not associ-
ated with outcome.

The alternative is the PLS method for constructing derived variables, which has
been previously proposed for linear regression by Wold et al. (1993). For survival anal-
ysis, several approaches have been proposed; for example, Nguyen & Rocke (2002)
suggest employing PLS using the observed time to event T in place of Y regardless of
an individual’s censoring status, but if censoring is extensive or related to covariates
then it is possible that this approach may produce misleading covariates not associ-
ated with survival. Park et al. (2002) reformulate the survival problem using Poisson
regression in a generalized linear model framework.

In Lee et al. (2013), two PLS-based approaches are presented: the Sparse Cox PLS
with L1−penalty (SPLS-L1) and the Sparse Cox PLS with HL penalty (SPLS-HL).
They provide a new formulation of the Sparse PLS (SPLS) procedure for survival data
to allow for sparse variable selection and dimension reduction at the same time. They
showed that that SPLS method performs better than the standard PLS and sparse Cox
regression methods in variable selection and prediction, based on numerical studies.

Therefore, we compared our proposed methods with SPLS as it is the more re-
cent method and shows a better performance by comparing with the standard PLS and
sparse Cox regression methods.

1.4 Data set

Eighty-nine patients with early-stage lung squamous cell carcinoma (SCC) had surgery
at the Department of Thoracic Surgery at Leeds Teaching Hospitals in Leeds, UK
between 1994 and 2003. The information available about these patients included age at
surgery, sex, stage of disease, and grade of cancer. Details of the clinical sample design
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are described in Belvedere et al. (2012). We also have the patients DNA information
which are described in Chapter 2. The summary of clinical information is as follows

• Survival is the response variable which represents the number of days between
surgery and death, the end of the study, or censoring.

• Age is an explanatory numerical variable which identifies the age of the patient
at surgery.

• Status is either censored or uncensored. Their status is censored when infor-
mation on time-to-event is not available because there was no follow-up or the
event did not occur before the experiment ended; uncensored, of course, means
that this information is available.

• Sex variable simply indicates whether each patient is male or female.

• Grade is a categorical variable based on what the cancer cells look like under a
microscope. There are five possible grades: the higher the grade, the faster the
cancer is growing.

• Stage of the cancer is a categorical variable which explains how large the cancer
is and if it has spread. The system used in this study is the TNM staging system.

– T is the size of the tumour; there are three possible levels, with 1 being the
smallest and 3 being the largest.

– N indicates whether cancer cells have spread into the lymph nodes close to
the original site of the cancer; N can be level 0, 1, or 2, where 0 means that
the cancer has not spread.

Table 1.1 shows a summary of these variables.

1.5 Motivation and contribution

As indicated in Sections 1.3.1 and 1.3.2, in the past 10 years survival analysis has
been widely used to deal with high dimensional data sets (p >> n), but they do
have some weaknesses. The feature selection method is easy to implement but selects
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Variable Mean Min .25 .50 .75 Max

Survival (days) 1374 34 361 860 2225 4565
Age 66.7 39 61 68 74 84
Status

Censored (23) Uncensored (66)
Sex

F (26) M (63)
Grade

G1 G2 G3 G4 GX
Frequency 2 46 36 1 4

Stage T
1 (23) 2 (59) 3 (7)

Stage N 3
0 (47) 1 (35) 2 (7)

Stage TNM
1 (44) 2 (35) 3 (10)

Table 1.1: Summary the lung cancer dataset.
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highly correlated features which may result in a poor performance . On the other hand,
PLS methods do not automatically lead to the selection of relevant variables. This
is because PLS construct latent variables that are linear combinations of all original
covariates, so performance is expected to be reduced if a large number of covariates
are in fact unrelated (see Lee et al., 2011).

Moreover, CNA data have dependencies between neighboring genomic windows
and have a spatial characteristic which would have been ignored if we had used the
methods (feature selection and derived variable) described above as explained in Huang
et al. (2009). These methods can be adapted in survival analysis to model gene expres-
sion data; however, they are still unsuitable for CNA data as they ignore its spatial
dependence structure. Moreover, the above methods do not include a variable selec-
tion which will lead to poorer performance if a large number of predictors are in fact
irrelevant. In this thesis, we try to solve all these weaknesses and find an appropriate
method that can deal with the dependencies between neighboring genomic windows
and the spatial characteristic of CNA data as well as allow for sparse solutions.

Our contribution can be summarized as follows:

• The analysis of copy number alterations (CNA) have been investigated and ap-
plied to lung cancer data set.

• We investigated approximations of the distribution of the ratio of two Poisson
random variables because there is no known distribution.

• We applied survival analysis methods (non-parametric and semi-parametric (Cox
PH)) in the clinical data of lung cancer data set.

• We have extended the Cox proportional hazard (PH) model for prediction of
patients survival probability by incorporating the genome-wide CNA profiles as
random predictors. The patients clinical information remains as fixed predictors
in the model.

• We have devised a more efficient and more accurate method to evaluate AIC
using bisection technique or quadratic optimisation technique.
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• We have proposed a new extension of Cox PH model to address the spatial de-
pendence structure of CNAs by using different structures of variance-covariance
matrices of random effects.

• We have introduced a novel algorithm based on a smooth extended Cox model
(SCox) within a random effects model-framework using penalised partial likeli-
hood to model survival time using patients clinical characteristics as fixed effects
and their CNA profiles as random effects. We assumed CNA coefficients b to be
correlated random effects that followed a mixture of two distributions: normal
as in chapter 5 (to achieve shrinkage around the mean values), and Cauchy for
the first- or second-order differences of b (to gain smoothness).

• We have introduced a novel algorithm based on Spars-smoothed Cox model (SS-
Cox) within a random effects model-frame work. We assumed CNA coefficients
to be correlated random effects that follow a mixture of three distributions: nor-
mal (to achieve shrinkage around the mean values), Cauchy for the second-order
differences (to gain smoothness), and Laplace (to achieve sparsity).

• We have presented a full gradient algorithm for maximizing the penalized partial
likelihood . We generalized the idea of Goeman (2010) which follows the gradi-
ent of the likelihood from a given starting value which uses the full gradient at
each step.

• I have written 3 R packages from scratch as explained in Section 1.6.

1.6 Software development

Through our thesis I have written three R package as follows :

1. A CoxCNA package to extend the standard Cox PH model to take into account
cancer patients genome-wide copy number alteration (CNA) profiles. This pack-
age is used in chapter 5.

2. A SCox package for smooth extended Cox PH model (SCox) which is used in
Chapter 6.
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3. A SSCox package for Sparse-smoothed extended Cox PH model which is used
in Chapter 7 .

1.7 Outline of the thesis

The main body of the thesis is organized into two parts. The first part comprises Chap-
ter 2 and 3 which concentrate on copy number alterations (CNA) and the distribution
of the ratio of two Poisson random variables. In the second part, traditional survival
analysis, where we only include the clinical data, is presented in Chapter 4, with exten-
sions of Cox PH model to include the CNA addressed in Chapter 5-7. The extension
in Chapter 5 is based on normal only, while the extension in chapter 6 deals with de-
pendency between CNA. Finally, the extension of Cox PH model in chapter 7 includes
a sparse solution.

Survival Anylsis
of Genomics profiles

Ch2:
Copy Number Alterations

(CNA)

Ch3:
Distribution of the Ratio

of Two Poisson
Random Variables

Ch4:
Traditional Survival Anylsis

(Fixed effects only)

Ch5:
Extending

Cox PH model:
Normal random effects

Ch6:
Extending

Cox PH model:
Dealing with dependency of CNA

Ch7:
Extentding

Cox PH model:
Sparse solution

In Chapter 2 we review recent CNA detection methods based on next-generation
sequencing (NGS). This method, called CNAnorm, was introduced by Gusnanto et al.

(2012). We applied this method in our lung cancer data set (DNA) and the output is a
matrix with dimension 89 × 13968, where 89 is the number of the patients and 13968

is the number genomic windows. We summarise the flow of this method in details in
Chapter 2

In Chapter 2 we discussed the estimation of CNA which can be estimated as the
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ratio of a tumour sample to a normal sample. Therefore, in Chapter 3 we examine the
distribution of the ratio of two Poisson random variables as the number of reads in a
tumour and normal sample assumed to follow Poisson random variables. This chapter
can be consider as a separate chapter from the rest of this thesis. In other words, the
thesis can stand alone without this chapter. The mean reason for including this chapter
is that we advice the main author of CNAnorm to fit a Cauchy−like distribution in
the genome wide normalization step instead of using a normal distribution. Also, we
did not find in the literatures any discussion about the distribution of the ratio of two
Poisson random variables; therefore, we opened the gate for future research.

We start by discussing the approximation of a single Poisson distribution by a nor-
mal distribution. Then, the approximated distribution of the ratio of two Poisson ran-
dom variables by the normal and scaled chi-squared distributions is addressed. simi-
larly, the approximation of the ratio of two Poisson random variables by a Cauchy-like
distribution is considered. Finally, we compare the numerical cumulative distribution
function (CDF) of distribution of the ratio of two Poisson random variables with the
CDF of normal, scaled chi-squared, and the Cauchy-like distributions.

In Chapter 4 we recoup some basic concepts in survival analysis. Then, we describe
non-parametric methods for summarising survival data and for comparing two or more
groups of survival time (long-rank test) along with the results from and discussion of
these methods. The modelling approach is introduced in which the Cox proportional
hazards (PH) model is presented. Since model checking is such an important part of
the the modelling process, we also include methods for checking the adequacy of a
fitted Cox PH model.

In Chapter 5, we propose to extend the Cox proportional hazard (PH) model dis-
cussed in Chapter 3, by including the CNA profiles as random predictors. The (stan-
dard) Cox PH model has traditionally been used extensively in the prediction of pa-
tients survival based on their clinical variables. In this chapter, we extend the model so
that the model can incorporate patients genome-wide CNA profiles, in addition to the
clinical variables.

We start by discussing the extension of Cox PH model to include the copy num-
ber alteration as random effects. CNAs are considered to be random predictors in the
model, and the clinical variables as fixed predictors. Specifically, we assumed that the
random effects b follow a normal distribution b ∼ N(0, D(θ)), and D(θ) = θIq (Iq
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is an identity matrix of size q). The diagonal structure of D(θ) is the simplest possi-
ble structure for a variance-covariance matrix. This structure indicates independence
between neighbouring genomic windows.

Then, the estimation of the unknown parameters of the model is discussed. After
that, we describes some computational issues. Breslow’s estimator of the baseline
cumulative hazard rate and the estimates of survivor function are presented. We then
discuss residuals for the extended Cox PH model. Simulation studies are described
and discussed. Finally, results and evaluation of our lung cancer dataset are presented.

Similar to Chapters 5, in Chapter 6 we propose to extend the Cox proportional
hazard (PH) model and at the same time we address the spatial dependence structure
of CNAs. In order to achieve this, we start by discussing other structures of variance-
covariance matrices of random effects. Then, methods of imposing smoothness using
first and second differences of random effects are presented. After that, we discuss the
mixture of normal and Cauchy distributions for first or second differences of random
effects. We show how to estimate the parameters of the model (fixed effects, random
effects, and tuning parameters). Finally, simulation studies and the results of our lung
cancer dataset are presented.

Similar to Chapters 5 and 6, in chapter 7 we propose to extend the Cox proportional
hazard (PH) model not only to address dependencies between neighboring genomic
windows and a spatial characteristic of CNA but also to be embedded with a variable
selection mechanism.

In this chapter we introduce a novel algorithm based on Spars-smoothed Cox model
(SSCox) within a random effects model-frame work using penalized partial likelihood
to model the survival time using the patients’ clinical characteristics as fixed effects and
CNA profiles as random effects. We assumed CNA coefficients to be correlated ran-
dom effects that follow a mixture of three distributions: normal (to achieve shrinkage
around the mean values), Cauchy for the second-order differences (to gain smooth-
ness), and Laplace (to achieve sparsity).

This chapter presents a full gradient algorithm for maximizing the penalized partial
likelihood . We generalized the idea of Goeman (2010) which follows the gradient of
the likelihood from a given starting value which uses the full gradient at each step.
Furthermore, the algorithm can automatically switch to a NewtonRaphson algorithm
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when it gets close to the optimum to avoid the tendency to slow convergence of gradient
ascent algorithms.

Finally, We compared our proposed method Sparse Smoothed Cox PH (SSCox)
with sparse Cox PLS with L1 penalty (SPLS-L1) and sparse Cox PLS with HL penalty
(SPLS-HL) presented in Lee et al. (2013). We conduct simulations to asses the perfor-
mance of Sparse Smoothed Cox PH (SSCox). We followed the simulation setting of
Bøvelstad et al. (2007), Nygård et al. (2008) and Lee et al. (2013).
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Chapter 2

Analysis of Copy Number Alterations
in Lung Cancer Data

2.1 Introduction

In this chapter, we focus on copy number alterations (CNAs), which are a type of
copy number variation (CNV), or structural variation in the genome (see Redon et al.,
2006). Freeman et al. (2006) refer the CNVs to the duplication or deletion of DNA
segments larger than 1 kbp. According to Gusnanto et al. (2012), cancer cells often
exhibit severe karyotypic alteration: widespread aneuploidy can result from the loss or
gain of an entire chromosome, as well as structured rearrangements such as amplifica-
tions, deletions or translocations. Detecting CNAs of cancer cells is an essential way
to assess the severity of chromosome rearrangement and to locate chromosomal break-
points. Moreover, cancer-related genes can be found through the location of commonly
duplicated or lost regions by comparing CNAs in tumours from a number of patients.
Recently several CNA detection methods based on next-generation sequencing (NGS)
have been developed such as CVN-seq (Xie & Tammi (2009)), FREEC (Boeva et al.

(2011)), ReadDepth (Miller et al. (2011)), CNVnator (Abyzov et al. (2011)), cn.MOPS
(Klambauer et al. (2012)), and JointSLM (Magi et al. (2011)). Duan et al. (2013) com-
pared the previous method and conclude that there are a number of differences between
these methods, including the statistical models and parameters used in each method,
the input, output, and signature formats they use, and the programming language and
operating system each requires.
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2.2 DNA preparation and NGS for copy number analysis

Our analysis will be heavily based on the method called CNAnorm, introduced in
Gusnanto et al. (2012). We summarise the flow of this method, which will be explained
in detail in the next sections, diagrammatically:

raw data→ optimal window size→ ratio data→ Guanine (G)-Cytosine (C)
correction→ smooth segmentation→ genome-wide normalization→ contamination

correction.

The organization of this chapter is as follows. Section 2.2 introduces the DNA
preparation and next-generation sequencing (NGS) of samples for copy number anal-
ysis. Section 2.3 addresses the issue of choosing the optimal window size. Section
2.4 then presents CNAnorm’s notation and its steps and is broken down into four sub-
sections. In Section 2.4.1, the Guanine-Cytosine (GC) bias in NGS is discussed and
resolved. Next, Section 2.4.2 describes the smooth segmentation of the ratio of the
tumour to normal genome. Section 2.4.3 then presents genome-wide normalization .
Finally, Section 2.4.4 discusses contamination correction. The results and evaluation
are contained in Section 2.5.

2.2 DNA preparation and NGS for copy number anal-
ysis

The data for this study were drawn from 89 patients with early-stage lung squamous
cell carcinoma (SCC) who had surgery at the Department of Thoracic Surgery at Leeds
Teaching Hospitals in Leeds, UK between 1994 and 2003. The available patient in-
formation included age at diagnosis, sex, stage of disease, and their grade of cancer.
Details of the clinical sample design are described in Belvedere et al. (2012) and have
been discussed more in Chapter 1.

DNA sequencing is the technique used to determine the order of the nucleotide
bases Adenine (A), Guanine (G), Cytosine (C), and Thymine (T) in a DNA molecule.
The DNA samples were sequenced to low coverage of the complete genome with the
aim of estimating the amount of copy number alterations present. Tumour genomic
DNA was prepared from macrodissected of formalin-fixed paraffin-embedded (FFPE)
tissue. Briefly, 4 mm thick sections were cut from each FFPE tumour tissue block and
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2.3 Read counts and optimal window size

stained with haematoxylin and eosin (HE) using a fine-tipped permanent marker; the
most representative tumour areas in each slide were marked. DNA extraction was per-
formed using the QIAamp DNA Mini Kit according to the manufacturer’s instructions.
More details of the DNA preparation are explained in Belvedere et al. (2012).

2.3 Read counts and optimal window size

In order to identify the copy number, the number of reads per fixed-width genomic
region (window) were counted. Choosing the optimal window size is a trade-off prob-
lem. On the one hand, if the window size is too small, for example an average of
only 5-10 reads per window, many of the windows will have zero counts and make
the analysis non-informative; in other words, a pattern cannot be observed. On the
other hand, using a window that is too wide means that any patterns will be smoothed
out. Gusnanto et al. (2014) identify a method to estimate the optimal window size for
analysis of low-coverage NGS data based on Akaike’s information criterion (AIC) and
cross-validation (CV) log-likelihood .

2.4 Copy number alteration

As mentioned before, our analysis will be based on the CNAnorm method introduced
by Gusnanto et al. (2012). Notations and arguments also depend on CNAnorm. To
identify the number of reads in a a tumour and normal sample, let xjk represent the
number of reads observed in a tumour in chromosome j = 1, . . . , h, and window
k = 1, . . . , nj , where nj is the number of windows in chromosome j. For instance, x12
is the observed number of reads from a tumour in the second window of chromosome
1. In addition, let yjk be the observed number of reads in the normal sample. To
identify CNAs in the tumour genome, either as gains or losses, we estimate them as an
observed ratio of the tumour to normal genome in each genomic window:

ρ̂jk = rjk =
xjk
yjk

There are two copies of (outosomole) chromosomes in a normal genome, while a tu-
mour genome may have zero, one, two, three or more duplications. As a result, the
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2.4 Copy number alteration

ratio rjk ideally takes any value from G = {0, 0.5, 1, 1.5, 2, 2.5, . . . } corresponding to
the tumour copy number P = {0, 1, 2, 3, 4, . . . }. In reality, this is not the case, due to
errors, different numbers of reads being recorded, different sizes of tumour and normal
genomes, and contamination of the tumour sample by a normal cell. The estimates ρ̂jk
will thus not necessary belong to G. Also, CNAs corresponding to normal genomic
regions might not be centred to a ratio of one.

The steps taken to estimate CNA, which will be explained in detail in the next
sections, are :

1. The ratio rjk =
xjk
yjk

was calculated and corrected for GC content ( Section 2.4.1
).

2. The ratio rjk after GC correction is smoothed to obtain řjk. The smooth seg-
mentation approach introduced by Huang et al. (2007) is used ( Section 2.4.2
).

3. The distribution of řjk is normalised so that the most common genomic regions
are centred to one. This can be written as

ρ̂ajk = řjkδ̂,

where δ̂ is a genome-wide alignment. This takes care of the different size of
tumour and normal genomes ( Section 2.4.3 ).

4. However, ρ̂ajk does not take into account the tumour sample contamination ex-
plain later in Section 2.4.4. At this stage, the level of contamination ψ̂ is esti-
mated, and the distribution of ρ̂ajk is corrected to obtain the estimate of CNA of
ρ̂jk.

5. At this stage, by using any segmentation tool, the original data can be segmented
and the results are corrected accordingly. In CNAnorm, DNAcopy introduced in
Olshen et al. (2004) is used .
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2.4 Copy number alteration

2.4.1 Guanine (G)-Cytosine (C) correction

The ratio rjk can be influenced by GC content in the window (see Boeva et al., 2011).
While there are many advantages of NGS, this GC bias is a big disadvantage. Indeed,
it is known that on the Illumina system, GC-poor and GC-rich sequences can lead to
uneven or even no coverage of reads across the genome (see Chen et al., 2013). This
problem can be solved by modelling the dependency of the ratio on the GC content
using the local regression model. Gusnanto et al. (2012) use the Loess transformation
with multiplicative correction as follows:

rnorm
jk =

κ

Ajk
rjk,

where κ is the median of rjk, and Ajk is the estimated Loess point-wise mean of rjk.
For simplicity, we drop the superscript norm in rnorm

jk . In other words, henceforth rjk
denotes the ratio with GC correction.

2.4.2 Smooth segmentation

Smoothing is necessary when there is only a small number of reads in each window, as
random variability can bias the normalization and the correction of the ratio distribu-
tion. However, this step can be skipped in the case of a large excess of reads, typically
> 500 per window.

The smooth segmentation used in CNAnorm follows the smoothing approach ex-
plained by Huang et al. (2007). In this approach, the genomic spatial structure is taken
into consideration. Smooth segmentation employs a linear model under the assump-
tion that the second-order difference of the random-effect parameter follows a Cauchy
distribution. The Cauchy distribution is useful for handling jumps in the copy num-
ber pattern, while at the same time allowing smooth transitions. The estimates of the
random effects are the segmented ratio řjk.

To calculate this ratio, Let l1, l2, ...., ln be fixed genomic locations (positions) where
l1 ≤ ... ≤ ln, and let r1, r2, . . . , rn be the observed ratios between test and normal
samples. The adapted model is thus

ri = f(li) + εi, i = 1, ..., n (2.1)
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2.4 Copy number alteration

where f(ri) is the unknown random effect parameter and the error ε ≡ (ε1, ..., εn)

has independent and identically distributed (iid) t-distribution with a location of zero,
unknown variance of σ2, and k degrees of freedom. Also, it is assumed that the error ε
and f(li) are independent. For more detail, we refer the reader to Huang et al. (2007).

2.4.3 Genome-wide normalisation

In order to correct the location of the distribution of the copay number ratio, we have to
estimate δ from the segmented ratio data řjk. Because of systematic gains and losses,
the ratio rjk shows a multi-modal distribution. However, the multi-modality of the
distribution is not clear because of the unwanted random errors. After removing the
unwanted random errors in the smoothing step, the segmented ratio řjk has a clear
multi-modal distribution. Each mode of this distribution indicates the position of the
CNA in G, which corresponds to a different copy number in P . However, these modes
are not yet centered on the expected CNAs in G and thus, in order to estimate δ, we
need to characterise the distribution of řjk.

Because of the multi-modality, a mixture normal distribution is fitted to the distri-
bution of the smoothed ratio řjk

p(řjk) =
M∑
m=1

πmN(řjk : µm, σ
2), (2.2)

where πm are the mixture proportions,
∑M

m=1 πm = 1, 0 ≤ πm, and m = 1, . . . ,M .
µm and σ2 are the mean and variance of each normal distribution. Each of the means
µm corresponds to a value in G that represents the ratio of tumour to normal copy
numbers, which in turn corresponds to a tumour copy number in P . However, the
estimates of the means µm are still biased estimates of CNAs in G. We will use the
estimates of µm in the next steps.

We estimate the mixture component in equation (2.2) using the expectation max-
imisation (EM) algorithm. The number of components in the model M is chosen
according to Akaike’s information criterion (AIC) across different plausible values.

After estimating ∂ = µ̂1, µ̂2, ...., µ̂M , it is important to describe the relationship
between ∂ and the corresponding tumour copy number in P . Therefore, a simple
linear regression is modelled.
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2.4 Copy number alteration

It is important to identify the component V ∈ {1, . . . ,M} in the mixture model
(equation 2.2) that corresponds to the normal ploidy ratio (one in G). It is defined as
the most common component,

V = argmax π̂m.

The V th component is assigned to have a copy number of (V − 1). For instance, the
first component represents a total loss (a copy number of zero ).
The genome-wide normalisation coefficient δ̂ is estimated as:

δ̂ =
1

µ̂v
.

As can be seen from the estimation of δ, the process of genome-wide normalisation
involves identifying the component corresponding to the normal ratio and then shifting
the whole distribution multiplicatively in order to centre the ratio at one.
After estimating δ̂, ρ̂ajk = řjkδ̂ is the estimate of CNAs where contamination is still
present. In order to find estimates of CNAs that are comparable between samples, it is
necessary to characterise any contamination and to make appropriate corrections.

2.4.4 Contamination correction

If there is no contamination, then the smoothed ratio řjk is expected to take a value
in G. However, this is very rarely the case, especially when dealing with tissue from
patients’ tumours. When contamination does appear, the smoothed ratio will shrink
towards a ratio of one (see Gusnanto et al., 2012).

In order to deal with the contamination, Gusnanto et al. (2012) assumed that con-
tamination causes the amount of CNAs to shrink linearly towards a ratio of one. For
instance, if ρjk = 2, then the number of CNAs will shrink to a value between 1 and 2,
while if ρjk = 0.5, then the CNAs will shrink to a value between 0.5 and 1. Since the
normal copy number has been centred at one, we can assume that the estimate of the
CNAs has arisen from shrinkage of the non-contaminated ρjk around a ratio of one.

ρ̂ajk = 1 + (ρ̂jk − 1)× (1− Ψ̂), (2.3)

where 0 ≤ Ψ̂ ≤ 1 is the estimate of the proportion of contamination.
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2.5 Results and Discussion

We estimate Ψ by investigating how the estimates in ∂ have been shrunk towards
µ̂v, which corresponds to the normal copy number. We first normalise the estimates
∂ = (µ̂1, µ̂2, ...., µ̂M) to ∂c = {µ̂cm} = {µ̂mδ̂}, for m = 1, . . . ,M . The estimate of Ψ̂

is given by

Ψ̂ =
1

M − 1

∑
m

{
1− |µ̂

c
m − µ̂cv|
µ̂cv

1

0.5× |P ∗m − Pv ∗ |

}
,

where the summation is taken over m = 1, . . . , v−1, v+1, . . . ,M , and p∗m is the copy
number in P ∗, excluding p∗v. The estimate of CNAs can now be written from equation
(2.3) as:

ρ̂jk = 1 + (ρ̂ajk − 1)× 1

(1− Ψ̂)

. Through Gusnanto et al. (2012)’s work, we now have estimates ρ̂jk of CNA that take
into account variations in read depths, genome sizes and the presence of contamination.
Thus, these estimates can now be compared between pairs of samples.

2.5 Results and Discussion

We applied the CNAnorm method for the data from all 89 of the patients in our study
by using the R package CNAnorm introduced by Gusnanto et al. (2012). Table A.1 in
appendix A shows that there are 82 patients with estimated ploidy equal to 2 (diploid),
and only 7 patients with estimated ploidy equal to 4 (tetraploid). However, for sim-
plicity, we will use only one patient (LS199) to illustrate the methods.

2.5.1 DNA preparation

In this study, the Illumina Genome Analyzer IIx system was used to obtain and se-
quence DNA libraries. DNA sequences were obtained from the tumours of 89 patients
in the study. These sequences have been stored at the European Nucleotide Archive
under accession number ERP000834. The mean read number was 1,030,660 per sam-
ple, ranging from 200,000 to 3,000,000. Sequences were aligned to the human genome
(USCS hg19). Only reads with mapping quality scores ≥ 37 and unique alignments
were used. For each window, the average genomic GC content was calculated. A script
(bam2window.pl) that can read sam/bam and calculate GC content is available on the
CNAnorm website.
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2.5 Results and Discussion

2.5.2 Optimal window size

Our first step was to choose the optimal window size. For patient LS199 and the con-
trol sample, the results of estimating the optimal window size can be seen in Figure 2.1,
based on AIC. For patient LS199, the minimum AIC was achieved with a window size
of 150 kb, equivalent to an average of 50 reads per window, while in the control (nor-
mal) sample, the minimum AIC was achieved at the window size 250 kb, equivalent to
an average of 70 reads per window. Similarly, we chose the optimal window size for
each of the other patients, obtaining a number of different values for optimal window
size. However, we had to set one fixed window size for all of the tumour samples and
the normal sample. We chose to fix the window size at 200 kb for two reasons. First,
most of the tumour samples had an optimal window size around 200 kb. Second, we
needed to guarantee that the average number of reads per window was at least 10 so
that the pattern can be observed.
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Figure 2.1: AIC as a function of different window sizes (bottom axis) and the corre-
sponding average number of reads per window (top axis) in patient LS199 and in the
normal sample. The horizontal axes are in log scale. The vertical dotted lines indicates
the optimal window size (optimal number of reads per window).
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2.5 Results and Discussion

2.5.3 GC correction

After deciding what the optimal window size was, we calculated the ratio of tumour
copy numbers to normal copy numbers in each window. In Figure 2.2, it can be seen
from the left panel that the ratio of rjk shows a dependency on the GC content. The
red line drawn in the figure is the fitted Loess line. The right panel shows the nor-
malised ratio rnorm

jk and the fitted Loess line after the correction. The straight line of the
fitted Loess line indicates that the the dependency of the ratio on GC content has been
removed.

Figure 2.2: The ratio before (left panel) and after (right panel) the GC normalisation
on the data from patient LS199. The solid line is the Loess fit line.

2.5.4 Smooth segmentation

We applied smooth segmentation to patient LS199’s data. Smooth segmentation was
applied to the ratio of tumour to normal sample after GC correction using a 200 kb
window size. Looking at the left side of Figure 2.3, it is hard to see the multi-modality
in the distribution of the ratio rjk, while on the right we can clearly see the multi-
modality in the distribution of the smoothed ratio řjk.
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Figure 2.3: Histogram of original ratio (left panel) and smoothed ratio (right panel) for
the whole genome of patient LS199.

2.5.5 Genome-wide normalisation

The fit of the mixture model (equation 2.2) is applied to the distribution of the smoothed
ratio řjk, as can be seen in Figure 2.4. Based on the AIC, the optimal number of the
component isM = 7. The estimates of the means are µ̂m = (0.90, 1.12, 1.34, 1.56, 1.96, 2.16, 2.60).
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The estimated proportion of common mixture components is π̂3 = 0.35 which
indicates that the third mixture component is the most common one (v = 3). This
implies that the tumour genome is diploid, since (3 − 1 = 2). The estimates µ̂m are
plotted against the copy numbers in the left panel of Figure 2.5. We can see from the
figure that there is a linear relationship between the estimates of the means µ̂m and the
copy number. The fitted linear regression is shown as a dotted line. The fitted line
has a slope equal to 0.258, which is lower than what was expected (represented by the
dashed red line) due to contamination.

We aligned the whole distribution of řjk so that the mixture component correspond-
ing to the normal copy number was centred to a ratio of one as can be seen in right
panel of Figure 2.5. We obtained the estimates µ̂3 = 1.38 and δ̂ = 0.72. After scal-
ing for the diploid component to have a ratio of one, the scaled estimates µ̂cm were
0.65, 0.81, 0.97, 0.12, 1.43, 1.56, and 1.88 . We can see that the diploid value is not
exactly to one because we used the fitted value.
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Figure 2.5: Left panel: relationship between the estimates of the means µ̂m and copy
numbers. Right panel: relationship between the scaled estimates of the means µ̂cm
(before the contamination correction) and copy numbers. The dotted line is the fitted
linear regression line. The red dashed line, which has a slope of 0.5, is the line we
would expect if there were no contamination.
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2.5.6 Contamination correction

After scaling for the diploid component to have a ratio of one, the estimate of con-
tamination is Ψ̂ = 0.41. We corrected the whole distribution of the smoothed ratio,
centred to a ratio of one, so that the mean estimates aligned closely to the expected
distribution as presented in the left panel of Figure 2.6. In the right panel of Figure 2.6,
we can see the histogram of the segmented ratio across the genome after correction for
contamination.
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Figure 2.6: Left panel: relationship between estimates of means µ̂cm ( after correction
for contamination ) and copy number in samples LS199. The dotted line is the fitted
linear regression line. The red dashed line, which has a slope of 0.5, is the line we
would expect if there were no contamination. Right panel : histogram of the segmented
ratio across the genome after correction for contamination.

Finally, Figure 2.7 presents the unnormalised ratio rjk for patient LS199, along
with the smooth-segmented line, and the bottom panel shows the normalised ratio
along with the segmented line (using smooth segmented estimates).
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2.5 Results and Discussion

Figure 2.7: Unnormalised (top panel) and normalised (bottom panel) copy number
ratios along with the smooth-segmented lines across the genome.

To see the estimated in more details in chromosome, Figure 2.8 shows the esti-
mation of the ratio of the proposed method (CNAnorm) on chromosome 2 for patient
LS199.

Figure 2.8: Chromosome 2, before (left) and after (right) the normalisation. The solid
line is the estimate of CNAs.

To sum up, the genome-wide CNA profile from each patient is calculated by ”depth
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of coverage” from their sequences. We estimated that the optimal window size for the
patients in our study was 200 kb. The sequence data across patients are not directly
comparable because inevitably the tumour samples were contaminated with normal
cells to different degrees. To deal with this problem, we performed a normalisation
using the CNAnorm package to obtain the CNA estimates. Examples of CNA esti-
mates for the data from patient LS199 can be seen in Figure 2.9, which contains two
different forms of estimates: (1) the smooth estimate, where CNAs were estimated as
smooth segmented lines as shown in the top panel of Figure 2.9, and (2) the DNACopy
estimate, where CNAs were estimated as circular binary segmented lines, as shown in
the bottom panel of Figure 2.9. With the 200 kb window size, we have 15,490 genomic
windows for each patient. Due to missing data in certain parts of the genome, e.g. cen-
tromeres, we consider estimates of CNAs from 13,968 genomic windows from each
patient in our analysis.

Finally, Table 2.1 shows the output of the CNAnorm method for patient LS199’s
data.
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Figure 2.9: Genome-wide CNAs profile of patient LS199 with smooth segmented es-
timates (top panel) and DNA copy estimates (bottom panel).
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Chr Pos Ratio Ratio.n Ratio.s.n SegMean SegMean.n
1 chr1 1 2.67 6.61 1.56 1.35 1.86
2 chr1 200001 NA NA NA 1.35 1.86
3 chr1 400001 0.84 0.04 1.60 1.35 1.86
4 chr1 600001 0.82 -0.04 1.64 1.35 1.86
5 chr1 800001 1.19 1.30 1.67 1.35 1.86
6 chr1 1000001 1.35 1.88 1.71 1.35 1.86
...

...
...

...
...

...
...

...
15485 chrY 58200001 NA NA NA 0.35 -1.73
15486 chrY 58400001 NA NA NA 0.35 -1.73
15487 chrY 58600001 NA NA NA 0.35 -1.73
15488 chrY 58800001 0.84 0.04 -1.67 0.35 -1.73
15489 chrY 59000001 1.39 2.00 -1.61 0.35 -1.73
15490 chrY 59200001 NA NA NA NA NA

Table 2.1: The output of the CNAnorm method for data from patient LS199.
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Chapter 3

Distribution of the Ratio of Two
Poisson Random Variables

3.1 Introduction

In the previous chapter we discussed the estimation of CNA which can be estimated
as the ratio of a tumour sample to a normal sample. Therefore, it is worthwhile to
examine the distribution of the ratio of two Poisson random variables as the number of
reads in a tumour and normal sample are assumed to follow Poisson random variables.

Let X ∼ Pois(λx) and Y ∼ Pois(λy) such that X and Y are independent. In this
chapter, we are looking for an approximation of the distribution of the random variable
Z = X

Y
, conditional on Y 6= 0. We impose this condition because if Y = 0, then

Z = X
Y

will have some undefined values and so we will not get a proper distribution.
It is well-known that

X + Y ∼ Pois(λx + λy)

and X − Y ∼ Skellam(λx, λy).

However, for the ratio of two Poisson random variables, there is no known distribu-
tion. Therefore, in this chapter we derive an approximate distribution for the ratio of
two Poisson random variables. In Section 3.2, the approximation of a single Poisson
distribution by a normal distribution will be discussed, while in Section 3.3 the distri-
bution of the ratio of two Poisson random variables will be considered as approximated
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by the normal and scaled chi-squared distributions. Then in Section 3.4, the approxi-
mation of the ratio of two Poisson random variables by a Cauchy-like distribution will
be considered. Finally, in Section 3.5, we will compare the numerical cumulative dis-
tribution function (CDF) of Z with the CDF of the Cauchy-like, normal, and scaled
chi-squared distributions.

3.2 Normal approximation of a single Poisson variable

The Poisson distribution X ∼ Pois(λx) can be approximated with the normal dis-
tribution XN ∼ (µ = λx, σ

2 = λx) when λx is large enough. If λx is greater than
10, which is true in our case, the normal distribution is a good approximation if an
appropriate continuity correction is performed, i.e., where P (X ≤ x) is replaced with
P (XN ≤ x+ 0.5) (see Makabe & Morimura, 1955). We use the continuity correction
as an adjustment because the Poisson variable is discrete, but the normal variable is
continuous. The approximation of the CDF of X based on the central limit theorem is

FX(k) ≈ Φ

(
k + 0.5− λx√

λx

)
.

where Φ is the CDF of a standard normal random variable. However, the Wilson-
Hilferty approximation (Lesch & Jeske (2009)) improves on the classical approxima-
tion by using a non-linear transformation of the argument k. This approximation uses

FX(k) ≈ Φ(
c− µ
σ

),

where

c =

(
λx

1 + k

) 1
3

, µ = 1− 1

9k + 9
, and σ =

1

3
√

1 + k
.

3.2.1 Error in approximating CDFs of the Poisson distribution by
the Normal distribution

Here, we look at errors in the normal approximation of the Poisson distribution. Let
X be a Poisson random variable with a mean of λx, and let XN be a normal random
variable with a mean and variance of λx. The CDFs of X and XN are denoted by FX
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3.2 Normal approximation of a single Poisson variable

and FXN , respectively. Now let us look at FX − FXN and investigate the improvement
that the continuity correction and the Wilson-Hilferty approximations make. Figure3.1
shows values for FX(n)− FXN (n) when n = 0, 1, 2, ...., 20.

Figure 3.1: From left to right: first panel, FX(n) − FXN (n); second panel: FX(n) −
FXN (n+1/2); third panel: FX(n)−FXN (n) using the Wilson-Hilferty approximation.
All panels were created using n = 20 and λx = 10.

The Berry−Essen theorem identifies the rate at which this convergence takes place
by giving a boundary for the maximal error of approximation between the normal
distribution and the true distribution of the scaled sample mean; this gives an upper
bound of C√

λ
for all x where C is some constant less than 0.7164 if N ≥ 65 (see

Chen, 2002). Therefore, the Berry−Essen theorem gives an upper bound of 0.7164√
10

=

0.2265 for the approximation error between the normal distribution and the Poisson
distribution . By looking to Figure 3.1, The maximum error ( FX(n)−FXN (n)) without
the continuity correction is 0.083. With the continuity correction, the maximum error
reduces to be 0.021. The maximum error in the Wilson-Hilferty approximation is
0.00049.
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3.3 Approximated distribution of the ratio of two Poison random variables by
the normal and scaled chi-squared distributions

3.3 Approximated distribution of the ratio of two Poi-
son random variables by the normal and scaled chi-
squared distributions

The obvious first choice for an approximation of the ratio of two Poisson variables,
Z = X

Y
, is the normal distribution with a mean equal to the expectation of Z and a

variance equal to the variance of Z.
A second choice for approximating this ratio is the scaled chi-squared distribution

with a scale constant of a and a degree of freedom of v. In order to find a and v, we
have to solve two equations:

E(Z) = av (3.1)

V ar(Z) = 2a2v. (3.2)

By solving these two equations (3.1, 3.2 ), we get:

a =

(
V ar(Z)

2× E(Z)

)

v =

(
2× E(Z)2

V ar(Z)

)
.

3.4 Approximated distribution of the ratio of two Pois-
son random variables by a Cauchy-like distribution

Feller (2008) showed that when XN and YN are independent and have standard normal
distributions, the form of their ratio distribution is a Cauchy distribution. However,
when the two distributions for Poisson random variables have non-zero means, which
is true in our case, then the form for the distribution of the ratio is much more com-
plicated. Hinkley (1969) found a form for this distribution, when cor(XN , YN) = 0

and the probability density function of the ratio Z = XN
YN

of the two normal variables
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3.4 Approximated distribution of the ratio of two Poisson random variables by a
Cauchy-like distribution

XN = N(µx, σ
2
x) and YN = N(µy, σ

2
y) is given by the following expression:

f(z) =
b(z).c(z)

a3(z)

1√
2πσxσy

[
2Φ

(
b(z)

a(z)

)
− 1

]
+

1

a2(z).πσxσy
e
− 1

2

(
µ2x
σ2x

+
µ2y

σ2y

)
, (3.3)

where
a(z) =

√
1
σ2
x
z2 + 1

σ2
y

b(z) = µx
σ2
x
z + µy

σ2
y

c(z) = exp
{

1
2
b2(z)
a2(z)
− 1

2

(
µ2x
σ2
x

+
µ2y
σ2
y

)}
In Section 3.2, we observed that:

X ∼ Pois(λx) can be approximated by the normal distribution XN ∼ (λx, λx).

As we said above, the ratio of two normal distributions is a Cauchy-like distribution.
Therefore, the ratio distribution of two random independent Poisson variables may be
approximately Cauchy-like distribution. We summarise our argument in the following
diagram:

X ∼ Pois(λx)
λx is greater than 10−−−−−−−−−−→

approximated by
X ∼ N(λx, λx)

the ratio of X over Y−−−−−−−−−−→ Cauchy-like distribution

Y ∼ Pois(λy)
λy is greater than 10−−−−−−−−−−→

approximated by
Y ∼ N(λy, λy)

3.4.1 Probability density function and cumulative density function
of the Cauchy-like distribution

Substituting (3.3) for the mean and variance ofX and Y we find that the approximation
of the probability density function (PDF) of the Cauchy-like distribution is:

f(z) =
b(z).c(z)

a3(z)

1√
2π
√
λx
√
λy

[
2Φ

(
b(z)

a(z)

)
− 1

]
+

1

a2(z).π
√
λx
√
λy
e−

1
2
(λx+λy),

where
a(z) =

√
1
λx
z2 + 1

λy

b(z) = z + 1

c(z) = exp
{

1
2
b2(z)
a2(z)
− 1

2
(λx + λy)

}
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3.5 Comparison of numerical CDF with the CDFs of normal, scaled chi-squared,
and Cauchy-like distributions

integrating of the PDF is to hard. However, Hinkley (1969) showed that the CDF of a
Cauchy-like distribution when setting the correlation coefficient to zero is:

F (z) = L

{
λx − λyz√
λx
√
λya(z)

,− λy√
λy

;

√
λyz√

λx
√
λya(z)

}
+L

{
λyz − λx√
λx
√
λya(z)

,
λy√
λy

;

√
λyz√

λx
√
λya(z)

}
,

where

L(h, k; r) =
1

2π
√

1− r2

∞∫
h

∞∫
k

exp

(
x2 − 2rxy + y2

2(1− r2)

)
dxdy

is the standard bivariate normal integral.
Hinkley (1969) identified a simplified approximation of F (Z):

F (Z) ≈ Φ

{
λyz − λx√
λxλya(z)

}
.

3.5 Comparison of numerical CDF with the CDFs of
normal, scaled chi-squared, and Cauchy-like dis-
tributions

In Section 3.4, it was shown that the ratio of of two Poisson random variables can be
approximated by the Cauchy-like distribution. In this Section, we consider this ap-
proximation numerically by comparing the numerical CDF of a ratio of two random
variables (given λx and λy) and the CDF of the Cauchy-like distribution. Then we
continue by comparing the numerical CDF of the ratio with the CDF of the normal and
scaled chi-squared distributions. Then, the difference between the CDF of the true dis-
tribution and the CDF of the approximated distributions is calculated. The steps taken
to produce the comparison of the true (numerical) distribution to the approximated
distributions are as follows:

• p(Z = a/b, b ∈ N+, a ∈ N) =
∑∞

j=1 p(X = aj)p(Y = bj)

• We start by generating x = (0, 1, 2, 3, . . . , 500) and y = (1, 2, 3, . . . , 500) and
then compute the ratioZ = xi

yj
for i = (0, 1, 2, 3, . . . , 500)and j = (1, 2, 3, . . . , 500)

, so Z will have the dimension 501× 501 as can be seen in Table 3.1.
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3.5 Comparison of numerical CDF with the CDFs of normal, scaled chi-squared,
and Cauchy-like distributions

Z = X
y

0 1 2 3 . . . 500

0 0
0
∞ ∞ ∞ . . . ∞

1 0 1 2 3 . . . 500
2 0 1

2
1 3

2
. . . 250

3 0 1
3

3
2

1 . . . 3
2

...
...

...
...

...
...
...
...

...
500 0 1

500
2

500
2

500
. . . 1

Table 3.1: The ratio Z = xi
yj

• The CDF of Z was calculated numerically by first finding the PDF of Z p(Z =

z) using p(X = x, λx = a) and p(Y = y, λy = b) and then summing up to find
the CDF.

• First we removed∞ and non-applicable values (N/A) from Table 3.1. Then we
normalised f(Z). After that, the expectationE(Z) and the variance var(Z) were
calculated.

• The CDF of the normal approximation was calculated.

• The CDF of the scaled chi-squared approximation with constant a and degree of
freedom v for variable Z

a
was calculated.

• The CDF of the Cauchy-like distribution was calculated.

• After calculating the CDFs of Z by using the normal, scaled chi-squared, and
Cauchy-like distributions, we compared these different CDF with the numerical
CDF for different values of λx, λy, as can be seen in Figure 3.2.
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3.5 Comparison of numerical CDF with the CDFs of normal, scaled chi-squared,
and Cauchy-like distributions

Figure 3.2: The CDFs of the ratio
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3.5 Comparison of numerical CDF with the CDFs of normal, scaled chi-squared,
and Cauchy-like distributions

The differences between the true distribution of the ratio and the approximation
distributions are shown in Figure 3.3.

Figure 3.3: The numerical CDF of the the true distribution minus the CDF of the
Cauchy-like distribution (left panel), normal distribution (middle panel), and scaled
chi-squared distribution (right panel)

To check that we calculated the CDFs correctly, we differentiated the CDF to
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3.5 Comparison of numerical CDF with the CDFs of normal, scaled chi-squared,
and Cauchy-like distributions

obtain the PDF. Then, we multiplied the PDF by Z to get the expectation and the
variance, which should match the E(Z) and V ar(Z). In Table 3.2, we can see
the comparison of the expectation and the variance of the true distribution with
those of the approximated distributions.

λ
E(Z) E(ZN ) E(ZCh) E(ZCl)
Var(Z) Var(ZN ) Var(ZCh) Var(ZCl)

λ = 100
1.010192 1.010166 1.010166, No Moment
0.02094713 0.02094663 0.02094653 Exist

λ = 50
1.020823 1.020799 1.020799 No Moment
0.04400519 0.04400372 0.04400348 Exist

λ = 10
1.129967 1.140104 1.12993 No Moment
0.4128282 0.3849734 0.4127926 Exist

Table 3.2: Comparison of the expectation and the variance of the numerical distribution
(left panel) to the approximated distributions ( ZN : Normal, ZCh: scaled chi-squared,
and ZCl: Cauchy- like distribution.

3.5.1 Estimation of λx and λy via the Cauchy-like distribution

Recall that X ∼ Pois(λx), Y ∼ Pois(λx), and Z = X
Y

, and that we have calculated
the PDF of the Cauchy-like distribution. Using the optimisation method (Broyden-
Fletcher-Goldfarb-Shanno (BFGS) by Head & Zerner (1985)), the parameters (λx, λy)
was estimated via the Cauchy-like distribution. The values (λx, λy) were estimated
100 times and then the average of these estimations was calculated. The optimisation
was carried out using with different values of (λx, λy) and different sample sizes. The
values λx = λy = 100, 50, 10 and sample sizes of 100, 1000, and 10000 were used.
The results can be seen in Figure 3.4.
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3.5 Comparison of numerical CDF with the CDFs of normal, scaled chi-squared,
and Cauchy-like distributions

● ● ● ●

The Sample Size

λ x

● ● ● ●

102.2871 101.1336 101.0203 100.9567

● ● ● ●

52.5531 50.771 50.797 50.9761

● ● ● ●

11.4863 10.948 10.0358 10.2528

100 500 1000 10000

10
50

10
0

● ● ● ●

The Sample Size

λ y

● ● ● ●

102.8667 101.0884 100.9566 100.9686

● ● ● ●

52.3243 50.769 50.8109 50.9944

● ● ● ●

11.4974 10.8989 10.0333 10.255

100 500 1000 10000

10
50

10
0

Figure 3.4: Estimation of (λx, λy) using the optimization method (BFGS)

To see how the estimations of λx and λy vary, a histogram of the 100 optimisations
was plotted with different values for λx and λy in Figure 3.5.
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3.5 Comparison of numerical CDF with the CDFs of normal, scaled chi-squared,
and Cauchy-like distributions

Figure 3.5: Histogram of the estimation of (λx, λy) using the optimisation method

The maximum likelihood estimation obtained using the optimisation method (BFGS)
does not guarantee that the MLE is a global maximum, so there is a possibility that the
MLE is only a local maximum and not a global one. Therefore, we did the contour plot
to make sure the MLE is actually a global maximum. Figure 3.6 shows the contour
plot for λx = λy = 10, 50, 100, for single sample of size 1000.
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3.5 Comparison of numerical CDF with the CDFs of normal, scaled chi-squared,
and Cauchy-like distributions

Figure 3.6: Contour plots of the estimations of (λx, λy) using the optimisation method
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Chapter 4

Survival Analysis

4.1 Introduction

A problem frequently encountered by statisticians is the analysis of time-to-event data.
This data can be found in diverse fields, such as medicine, public health, engineering,
etc. In the course of medical research, such data are mostly referred to as survival data.
To date, there have been a number of books on survival data analysis such as Collett
(2003), and Moeschberger & Klein (2003). Common features of survival data are cen-
soring and skewness, which require special statistical tools for analysis. Survival data
are generally not symmetrically distributed. Their distribution is positively skewed;
that is, the histogram will have a longer tail to the right. Therefore, the survival data
in general cannot be assumed to have a normal distribution. The survival time of an
individual is said to be censored when an event (in this case death) has not been ob-
served or recorded. This censoring may be because the experiment was terminated
while individuals were still alive, or because an individual did not attend a follow-up
before the end of the study. This is called right censoring. There are other types of
censoring (left censoring and interval censoring), but this thesis we will focus only on
right censoring: it is the most common type of censoring, and the survival data that we
have contains right censoring.

The organization of this chapter is as follows. After an introduction of some ba-
sic concepts in survival analysis in Section 4.2, Section 4.3 describes non-parametric
methods for summarising survival data and for comparing two or more groups of sur-
vival time (long-rank test) along with the results from and discussion of these methods
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4.2 Basic concepts in survival analysis

.The modelling approach is introduced in Section 4.4, where the Cox proportional haz-
ards ( PH ) model is presented. Since model checking is such an important part of the
the modelling process, Section 4.4 also includes methods for checking the adequacy of
a fitted Cox model.

4.2 Basic concepts in survival analysis

Survival analysis is the analysis of data representing the time intervals from a well-
defined point of origin until the occurrence of an event or a designated end point. An
important assumption that will be made in the analysis of censored survival data in
general is that the censoring is independent of survival. Therefore, censoring is non-
informative, in the sense that it does not give any additional information about patients’
outcomes or survival times.

Two important functions in survival analysis are survivor and hazard functions.
These functions can be estimated using non-parametric (Kaplan-Meier), semi-parametric
(Cox PH model) or parametric methods. In this chapter we will focus on non-parametric
and semi-parametric estimation methods.

4.2.1 Functions used in survival analysis

In summarising survival data, the survival function and the hazard function are of cen-
tral interest. These functions are therefore defined and discussed here.

Survivor Function

The survival time t of an individual can be regarded as a sample value of a random
variable T ≥ 0 (random survival time). Now, suppose that the random variable T has
a probability distribution with an underlying probability density function f(t). The
distribution function of T is

F (t) = P (T < t) =

∫ t

0

f(u)du.

Note that F (t) is non-decreasing and right-continuous, F (0) = 0, and limt→∞ F (t) =

1.
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4.2 Basic concepts in survival analysis

The survival function S(t) is the probability that the survival time is greater than
or equal to t, and so

S(t) = P (T ≥ t) = 1− F (t).

Note that S(t) is non-increasing, and right-continuous, S(0) = 1, and limt→∞ S(t) =

0. S(t) can therefore be used to represent the probability that an individual survives
from the time origin to some time beyond t.

Hazard Function

The hazard function is commonly used to express the risk (hazard) of death at a given
time. The hazard function is also called the hazard rate, the instantaneous death rate,
or the force of mortality. In general, the hazard function h(t) is defined to be the
probability of death per unit of time (rate) immediately (i.e., in the next instance) after
time t, conditional on the patient having survived to time t. The formal definition of
the hazard function is

h(t) = lim
4t→0

P
[
t ≤ T < t+4t|T ≥ t

]
4t

.

However, the hazard function is often simply interpreted as the risk of death at time t.
If T is a continuous random variable, then

h(t) =
f(t)

S(t)
.

Notify that f(t) = −S ′(t), it then follows that

h(t) = − d

dt
(logS(t)),

so
S(t) = exp(−H(t))

where

H(t) =

∫ t

0

h(u)du.

The function H(t) is called the cumulative hazard function and can be obtained from
the survival function S(t) as follows:

H(t) = − logS(t).
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4.3 Non-parametric methods

In the analysis of survival data, the survival and hazard functions are estimated from
the observed survival times. Methods of estimation that do not require the form of the
probability density function of T to be specified, so-called non-parametric methods, are
described in Section 4.3, while semi-parametric methods which are a mixed of non-
parametric and parametric methods are discussed in Section 4.4. Parametric methods
will not be covered in this thesis.

4.3 Non-parametric methods

An initial step in the analysis of survival data is performing numerical or graphical
summaries of the survival time for individuals in a specific group. Survival data are
summarised through estimates of the survival and hazard functions. Non-parametric
methods that can be used to estimate these functions will be discussed first. The term
non-parametric is used because the method does not require specific assumptions to be
made about the distribution of the survival times. The most common non-parametric
methods to estimate the survival function are the Life-table, Nelson-Aalen and Kaplan-
Meier (K-M) methods. However, we will only discuss the Kaplan-Meier estimate here
as it is the most common non-parametric method and it is used to compare two or more
groups.

A preliminary way to compare the survival of two or more groups is to draw a
Kaplan-Meier plot. For a more precise comparison, numerical hypothesis testing can
be used. There are two non-parametric procedures for comparing two or more groups
of survival times, the log-rank and Wilcoxon tests. Log-rank test is generally the most
appropriate method, while Wilcoxon test is more sensitive when the ratio of hazards is
higher at early survival times than at late ones (see Peto & Peto, 1972). As a result, The
log-rank test is described in Section 4.3.2, while the Wilcoxn test will not be discussed.

4.3.1 Estimating the survival function with the Kaplan-Meier method

Consider n individuals with observed survival times t1, t2, . . . , tn, where some of these
observations may be right-censored. Suppose that there are r death times among the
individuals which can be are arranged in ascending order. The jth death time is denoted
t(j) and so the ordered death times are t(1), t(2), . . . , t(r). The number of individuals who
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4.3 Non-parametric methods

were alive just before time t(j), including those who died at this time, is denoted nj .
The term nj is sometimes referred to as the number of individuals at risk. If we let dj
denote the number of individuals who died at time tj , the Kaplan-Meier estimator of
survival function is

Ŝ(t) =
k∏
j=1

(
nj − dj
nj

)
for t(k) ≤ t < t(k+1), k = 1, 2, . . . , r with Ŝ(t) = 1 for t < t1, where t(r+1) is taken to
be∞.

4.3.2 Comparison of two or more groups using the log-rank test

We start by considering separately each death time in two groups of survival data.

• First we label the groups Group 1 and Group 2. Suppose there are r distinct
death times t1 < t2 < · · · < tr across these groups.

• Then we suppose that at time tj there are d1j deaths in Group 1 and d2j deaths in
Group 2, for j = 1, 2, . . . , r.

• We also suppose that there are n1j individuals at risk of the death in the first
group just before time tj , while there are n2j at risk in the second group.

• Therefore, at time tj there are dj = d1j + d2j deaths in the total out of nj =

n1j +n2j individuals at risk. An explanatory summary can be found in Table 4.1
.

Group Number of Number of Number at risk
deaths at tj surviving beyond tj just before tj

1 d1j n1j − d1j n1j

2 d2j n2j − d2j n2j

Total dj nj − dj nj

Table 4.1: An explanatory summary of long rank test

Now we consider the null hypothesis, which says that there is no difference in the
survival experiences of the individuals in the two groups.
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4.3 Non-parametric methods

H0 : S1(t) = S2(t) for all t ∈ [0,∞)

Ha : S1(t) 6= S2(t)

The log-rank test is a non-parametric test for H0 based on a comparison of the
Kaplan-Meier survival curves Ŝ1(t) and Ŝ2(t).

Suppose that the marginal totals are fixed. If H0 is true, we can therefore regard
d1j as a random variable, which can take any value from 0 to the minimum of dj and
n1j . In fact, d1j has a hypergeometric distribution, according to which the probability
that the random variable associated with the number of deaths in the first group takes
the value d1j is (

dj
d1j

)(
nj−dj
n1j−d1j

)(
nj
n1j

) .

The mean of the hypergeometric random variable d1j is given by

e1j = n1j
dj
nj
.

The next step is to combine the information from the table for each death time
to give an overall measure of the deviation of the observed values for d1j from their
expected values. The clearest way to accomplish this is to sum the differences d1j−e1j
over the total number of death times in the two groups. The test statistic is given by

UL =
r∑
j=1

(d1j − e1j) =
r∑
j=1

(d1j − n1j
dj
nj

) = O1 − E1, (4.1)

Note that under H0 this statistic will have a zero mean (E(UL) = 0), since E(d1j) =

e1j . Moreover, since d1j has a hypergeometric distribution, the variance of d1j is:

V ar(d1j) = v21j =
n1jn2jdj(nj − dj)

n2
j(nj − 1)

.

And since the death numbers d1j are independent from each other, this gives us

V ar(UL) =
r∑
j=1

v21j =
r∑
j=1

n1jn2jdj(nj − dj)
n2
j(nj − 1)

.
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4.3 Non-parametric methods

The distribution of the statistic UL is approximately normal:

UL√
V ar(UL)

∼ N(0, 1).

So, the square of the standard normal random variable is a chi-squared distribution
with one degree of freedom, denoted χ2

1, i.e.,

U2
L

V ar(UL)
∼ χ2

1.

This method of combining information over a number of 2× 2 tables was constructed
by Mantel (1963).

An alternative version of the test using chi-squared is

WL :=
(O1 − E1)

2

E1

+
(O2 − E2)

2

E2

+
(O3 − E3)

2

E3

+ · · ·+ (OK − EK)2

EK
,

where

OK :=
r∑
j=1

dKj(total observed in Group K)

and

EK :=
r∑
j=1

eKj(total expected in Group K).

In general, the degree of freedom equals the number of groups minus the number
of constraints under H0. The distribution of WL is approximated by a chi-squared
distribution with df = K − 1.

H0 is rejected if Wl > k(1−α) = (1− α) quantile of χ2
1.

4.3.3 Results and discussion of the Kaplan-Meier estimator and
log-rank test

The K-M estimator was first calculated for lung cancer data without covariates. The
K-M plot of these calculations is shown in Figure 4.1, while Table 4.2 represents the
numerical summary, where the median of failure time (death) is defined as the time at
which the survival function is equal to 0.5. Note that these CIs are constructed by using
Greenwoods estimate Greenwood et al. (1926), to construct asymptotic confidence
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4.3 Non-parametric methods

intervals for S(t) . From Figure 4.1 and Table 4.2, the median survival time is estimated
to be 860 days, with its 95% confidence interval[669, 1547].
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Figure 4.1: The Kaplan-Meier estimate (solid line) and its 95% confidence intervals
(dotted lines) for lung cancer’s data without covariates (null model)

Records Event Median 0.95LCL 0.95UCL
89 66 860 669 1574

Table 4.2: Summary of K-M estimator for lung cancer’s data without covariates (null
model)

The K-M estimators was then calculated for each covariate. There are five factors
in the data, and each will be discussed in turn. Also, in order to decide the importance
of a factor, the log-rank test was used, which tests whether there is difference between
survival curves for different levels. Recall thatH0 is that there is no difference between
groups. Age is the only continuous variable; however, we will transform it into a
categorical covariate by defining a cut point equal to 65 years, which is the retirement
age, so that we can calculate K-M estimators and log-rank test.

1) Sex

Figure 4.2 shows the K-M estimators for the covariate of Sex, while Table 4.3 shows
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the numerical summary. The log-rank test shows no significant difference between
male and female (p-value = 0.419).
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Figure 4.2: The Kaplan-Meier estimators for covariate of Sex ( Male (red line), Female
(black line)) along with the p-value of the log-rank test to compare these two group.

Records Event Median 0.95LCL 0.95UCL
Sex=F 26 18 1800 667
Sex=M 63 48 752 511 1495

Table 4.3: Summary of K-M estimators of Sex

2) Grade

This factor has four levels, 1−5, with higher grades indicating faster cancer growth. In
our data, five patients’ grades were marked as GX, indicating a missing grade, so they
were removed from the sample. Also, only one patient had a grade of 4, and so grades
3 and 4 were combined. Figure 4.3 shows the K-M estimators data for the Grade

covariates, while Table 4.4 shows the numerical summary. The log-rank test shows no
significant difference between the different levels of the grade (p-value= 0.405).
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Figure 4.3: K-M estimators for the Grade covariate along with the p-value of the log-
rank test

Records Event Median 0.95LCL 0.95UCL
Grade=1 2 2 715 62
Grade=2 46 32 818 498
Grade=3 137 860 703 1966

Table 4.4: Summary of K-M estimators of Grade

3) Stage T

This factor has three levels, 1−3, in increasing order of tumour size. Figure 4.4 shows
the K-M estimators for the covariate Stage T, while Table 4.5 shows the numerical
summary. The log-rank test shows no significant difference between the stages of T
(p-value= 0.283).
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Figure 4.4: K-M estimators for the covariate Stage T along with the p-value of the
log-rank test

Records Event Median 0.95LCL 0.95UCL
Stage T=1 23 18 1445 781
Stage T=2 59 43 752 498 1966
Stage T=3 7 5 179 54

Table 4.5: Summary of K-M estimators of Stage T

4) Stage N

This factor has three levels, 0− 2, indicating the degree to which the cancer cells have
spread into the lymph nodes close to original cancer site. Figure 4.5 shows the K-M
estimators for the covariate Stage N, while Table 4.6 shows the numerical summary.
The log-rank test shows no significant difference between the stages of N (p-value =
0.115).
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Figure 4.5: K-M estimators for the covariate Stage N along with the p-value of the
log-rank test

Records Event Median 0.95LCL 0.95UCL
Stage N=0 47 33 1172 728 3800
Stage N=1 35 27 752 497 2197
Stage N=2 7 6 338 180

Table 4.6: Summary of K-M estimators of Stage N

5) Stage TNM

This factor also has three levels, 1-3, in an increasing order. Figure 4.6 shows the K-
M estimators for this covariate, while Table 4.7 shows the numerical summary. The
log-rank test shows no significant difference between the stages of TNM (p-value =
0.093).

57



4.3 Non-parametric methods

0 1000 2000 3000 4000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Day

E
st

im
at

ed
 S

ur
vi

va
l f

un
ct

io
n

P-value=p=0.093
TNM1
TNM2
TNM3

Figure 4.6: K-M estimators for the covariate Stage TNM along with the p-value of the
log-rank test

Records Event Median 0.95LCL 0.95UCL
Stage TNM=1 44 31 1308 749 3800
Stage TNM=2 35 27 752 497 2197
Stage TNM=3 10 8 260 150

Table 4.7: Summary of K-M estimators of Stage TNM

6) Age

Age is a continuous covariate. However, in order to use K-M estimators, Age was
treated as a categorical variable by using a cut point of 65 years. Many possible cut
points were tried and the log-rank test was applied to each of them. Only for the cut
point of retirement age (65) did the log-rank test show a significant difference between
the patients over and under age 65 (p-value = 0.0438). Figure 4.7 shows the K-M
estimators for the covariate Age, while Table 4.8 shows the numerical summary.
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Figure 4.7: The Kaplan-Meier estimators for the covariate Age ( Age<65 (black line),
Age≥65 (red line) ) along with the p-value of the log-rank test to compare these two
groups.

Records Event Median 0.95LCL 0.95UCL
Age<65 33 20 2197 497
Age≥65 56 46 738 645 1051

Table 4.8: Summary of K-M estimators of Age

After the above analyses, we found that only Age made a statistically significant
contribution to the survival of patients.

4.4 The semi-parametric method and the Cox propor-
tional hazards model

Whilst non-parametric methods provide an easy way to compare the survival experi-
ence of two or more groups, they are limited to testing one covariate at a time. Further-
more, non-parametric methods cannot test continuous variables. Many studies include
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4.4 The semi-parametric method and the Cox proportional hazards model

data from a number variables, both categorical and continuous, and thus more sophis-
ticated methods are needed. One such method is regression analysis, which falls into
two types: fully parametric and semi-parametric. This section will cover one particular
semi-parametric method, the Cox proportional hazard (Cox PH) model .

4.4.1 Model and assumptions

The proportional hazards model was first proposed by Cox et al. (1972), who made
further improvements in Cox (1975). First, we denote δi as the event indicator for the
the ith patient, i = 1, 2, ..., n, where δi = 1 if the survival time of the ith patient, ti, is
uncensored and δi = 0 if the survival time ti is censored. A survival time is censored
if the actual survival time was longer than the observed survival time ti or if the ith
patient died due to some cause other than cancer. We define X to be a matrix of size
n×p, where the columns of X correspond to the different clinical information as fixed
predictors, and the rows of X correspond to the different individuals or patients. We
denote the rows of X as Xi, which is a p vector of fixed predictors for the ith patient.
We also denote h0(t) to be the baseline hazard function, which denotes the baseline
hazard rate for all of the patients in the group across time and does not depend on any
predictors. Cox et al. (1972) proposed that the hazard rate at time t can be modelled as

hi(t|X) = h0(t)c(Xiβ),

where β is a p-vector of the models parameters (fixed effects), and c(Xiβ) is a known
function. This is called a semi-parametric model because a parametric form is as-
sumed only for the covariates’ effects, while the baseline hazard rate is treated non-
parametrically. In this case, hi(t|X) must be positive. As a result, a common model
for c(Xiβ) is exp(Xiβ). This yields

hi(t|X) = h0(t) exp(Xiβ). (4.2)

With this formulation, the ratio of hazard rates between two individuals does not de-
pend on t, but only on the difference in the predictors, hence the term proportional
hazard.

There are two components of this model that need to be estimated. The first is the
unknown coefficient of the risk factor (or explanatory variable) in the linear component
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4.4 The semi-parametric method and the Cox proportional hazards model

of the model β1, β2, . . . , βp. The second is the baseline hazard h0(t), whose estimation
is especially important if we need to make a prediction for new data. If only infer-
ences about the effects of p explanatory variables X1, X2, . . . , Xp on relative hazard
(hj(t)/h0(t)) need to be made, then h0(t) does not need to be estimated. The unknown
β-coefficients in the proportional hazard model can be estimated using the method of
maximum likelihood (or partial likelihood), which will be discussed more in the next
section.

4.4.2 Estimation of model parameters

The full likelihood for the proportional hazard model takes the form

L(β, h0(t)) =
n∏
i=1

h(Ti|Xi)
δiS(Ti|Xi), (4.3)

where h(Ti|Xi) = h0(Ti)
δi [exp(Xiβ)]δi and S(Ti|Xi) = exp

(
−H0(Ti) exp(Xiβ

′)
)

Maximising L(β, h0(t)) jointly with respect to β and h0(t) is difficult, and for the
purpose of estimating β it is preferable to treat h0(t) as a nuisance parameter to be
eliminated from the likelihood. Cox et al. (1972) showed how this could be achieved
by using a partial likelihood for the proportional hazard model. He showed that the
usual maximum likelihood theory would still apply to the estimate of β obtained by
maximising the partial likelihood function.

4.4.3 Partial likelihood for the case of no tied failure times

Suppose that there are n individuals in the study, and let t1 < t2 < · · · < tn be the
ordered, observed follow-up times (either the actual survival time or the time of right-
censoring). Considering the case where only one individual fails at each failure time,
so that there are no tied failure times, let δi be the event indicator (1 if individual i is
observed to fail and 0 otherwise), and let xi be the covariate vector for individual i, for
i = 1, . . . , n. Define the risk set R(ti) just prior to time ti as the set of all individuals
at risk of failure (still alive and under follow-up) at that point in time. In order to
derive the partial likelihood, suppose that ti is a failure time. Then the conditional
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4.4 The semi-parametric method and the Cox proportional hazards model

probability that an individual with covariate vector Xi dies at time ti, given that one of
the individuals in R(ti) dies at this time, is given by:

P [individual with covariate xi dies at ti| exactly one death at ti]

=
P [individual with covariate xi dies at ti]

P [exactly one death at ti]

=
h[ti|Xi]∑

j∈R(ti)
h[ti|Xj]

=
h0(ti)exp[Xiβ]∑

j∈R(ti)
h0(ti)exp[Xjβ]

=
exp[Xiβ]∑

j∈R(ti)
exp[Xjβ]

.

The partial likelihood is formed by the product of these conditional probabilities over
all deaths (uncensored individuals),

L(β) =
r∏
i=1

exp[Xiβ]∑
j∈R(ti)

exp[Xjβ]
,

which can be written as:

L(β) =
n∏
i=1

(
exp[Xiβ]∑

j∈R(ti)
exp[Xjβ]

)δi

.

The log partial likelihood then is

l(β) =
n∑
i=1

δi(Xiβ)−
n∑
i=1

δilog

 ∑
j∈R(ti)

exp(Xjβ)

 . (4.4)

The (partial) maximum likelihood estimates are found by maximising l(β). First the
efficient score equations U(β) are found by taking the partial derivative of l(β) with
respect to each β. The information matrix I(β) is the negative of the matrix of the
second derivative of l(β) with respect to βi.

The (partial) maximum likelihood estimator is then found by solving the set of p
nonlinear equations U(β) = 0, h = 1, . . . , p. This can be done numerically using the
Newton-Raphson technique, which involves iteratively updating β as follows:

β̂(k+1) = β̂(k) + I(β̂(k))−1U(β̂(k)).

Other iterative methods can also be used. The Newton-Raphson technique is discussed
more in Section 4.4.4 below.
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4.4 The semi-parametric method and the Cox proportional hazards model

4.4.4 The Newton-Raphson algorithm

In survival analysis, the Newton-Raphson algorithm is usually used to maximise the
partial likelihood function. However, dealing with the partial log-likelihood function
l(β) ( E.q 4.4 ) is usually easier than dealing with the likelihood function itself. When
β is a parameter vector of dimension p, the Newton-Raphson algorithm to find β̂ that
maximises the l(β) is as follows:

1. Set K = 0.

2. Choose the initial values β̂0.

3. solve β̂k+1 = β̂k + I−1(β̂k)U(β̂k)

4. Increase k by one.

5. Go back to step 3 and repeat until β̂k converges.

The terms U(β̂k) and I−1(β̂k) are defined as:

• U(β) is the p×1 vector of the first derivatives of the log-likelihood function with
respect to β,

U(β) =
∂l(b)

∂β
= δ′X −

n∑
i=1

δi

∑
j∈R(ti)

Xjexp(Xjβ)∑
j∈R(ti)

exp(Xjβ)

, the term U(β) is called the score function.

• I(β) is the p× p matrix of the negative second derivatives of the log-likelihood
function, I(β) is called the information matrix.

In this study, even though, there is a built-in function in R (>coxph), we wrote our own
code to carry out the Newton-Raphson algorithm because it will be easier to extend it
later on. This code consists of four steps. First, the ordered design matrix is generated.
Then the score function is evaluated, followed by the calculation of the information
matrix. Finally, the Newton-Raphson iteration is carried out.

Cox (1975) showed that the β̂ has nice statistical properties. These include:

• Consistency: That is, β̂ will converge to the true value of β which generated the
data as the sample size gets larger.
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4.4 The semi-parametric method and the Cox proportional hazards model

• Asymptotic Normality: β̂ will be approximately normally distributed with mean
βt and a variance which can be estimated from the data. This approximation will
be better as the sample size gets larger. This result is useful in making inference
for the true β.

• Efficiency: Among all other competing estimators for β, the β̂ has the smallest
variance, at least, when the sample size gets larger.

4.4.5 Breslow’s estimator of the baseline cumulative hazard rate

Breslow (1974) starts with the full likelihood equation (Eq. 4.3) with β being replaced
by β̂ in order to obtain the baseline hazards function

L(β, h0(t)) =
n∏
i=1

h0(Ti)
δi [exp(Xiβ)]δi exp

(
−
∫ ti

0

h0(u) exp(Xiβ)du

)
. (4.5)

In the likelihood function (4.5), there are two main components of h0(t). In order
to maximise the second component, exp

(
−
∫ ti
0
h0(u) exp(Xiβ)du

)
, h0(t) should be

made as small as possible. However, the first component h0(Ti)δi indicates that, where
δi = 1, a larger value of h0(ti) will give a larger value of the likelihood function
(4.5). Therefore, this lead to ĥ0(t) = 0 for all t /∈ (t1, . . . , tr). However, values
ĥ0(t1), . . . , ĥ0(tr) that maximise (4.5) will also maximise the log of (4.5):

`(h0(ti)) =
r∑
i=1

[logh0(ti) +Xiβ̂]−
r∑
i=1

h0(ti)
∑

j∈R(ti)

exp[Xjβ̂]. (4.6)

By differentiating (4.6) with respect to h0(ti), setting this to zero and then solving the
resulting equation, it can be seen that the maximum likelihood estimate of h0(ti) is

ĥ0(ti) =
1∑

j∈R(ti)
exp(Xjβ̂)

.

To estimate H0(t), these estimates of ĥ0(ti) need to be combined as follows:

Ĥ0(t) =
∑
ti≤Tj

1∑
j∈R(ti)

exp(Xjβ̂)
.

This is Breslow’s estimator of the baseline cumulative hazard rate (with no tied failure
time).
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Note that Ĥ0(t) is a step function, with jumps at the observed death times. This es-
timator is reduced to the Nelson-Aalen estimator when there are no covariates present

Ĥ(t) =

{
0 if t ≤ t1∑

ti≤t
di
Yi

if t1 ≤ t

}
, where Yi is the number of individuals who are at risk at time tj .

4.4.6 Result of the Cox PH model

Four patients’ records have missing data for the Grade covariate. Therefore, these
four records were discarded and we only used the remaining 85 observations in my
analyses. Also, the factor Stage TNM was discarded because it can be predicted from
Stage T and Stage N. To examine this relationship, an ordinal logistic model of Stage

TNM based on the main effect of Stage T and Stage N, as well as their interaction effect
was fitted. Moreover, a classification tree of Stage TNM based on Stage T and Stage N

was constructed.
Based on the fitted model of Stage TNM on Stage T and Stage N, and the classi-

fication tree, the model fitted 88 out of 89 patients in the true class of Stage TNM, as
we can see in Table 4.9. The only patient which was misclassified into Stage TNM2

instead of Stage TNM3 is the patient coded with 16 .

Stage TNM 1 2 3
True Class 44 35 10

Predicted Class 44 34 11

Table 4.9: Fitted ordinal logistic model of Stage TNM based on Stage T and Stage N

The Cox PH model was first fitted with the covariates Age, Sex, Grade, Stage T,
and Stage N. The results can be seen in Table 4.10.
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coef exp(coef) se(coef) z p
Age 0.05 1.05 0.02 3.33 0.0008

Sex M 0.24 1.27 0.32 0.75 0.46
Grade G2 -1.00 0.37 0.78 -1.28 0.20
Grade G3 -0.80 0.45 0.80 -1.00 0.32
Stage T2 0.23 1.26 0.32 0.70 0.48
Stage T3 1.93 6.89 0.65 2.97 0.0029
Stage N1 0.28 1.32 0.30 0.94 0.35
Stage N2 1.33 3.78 0.50 2.67 0.007

Rsquare = 0.221 (max possible = 0.996)
Likelihood ratio test = 21.28 on 8 df, p=0.00644

Wald test = 21.87 on 8 df, p=0.005167
Score (log-rank) test = 22.56 on 8 df, p=0.003975

Table 4.10: Hazard ratios from the Cox PH model for the lung cancer dataset

For model selection, an automatic variable selection procedure, stepwise selection,
was used. The final model of survival for lung cancer patients after applying the step-
wise selection procedure can be seen in Table 4.11.

coef exp(coef) se(coef) z p
Age 0.0531 1.0545 0.0156 3.4087 0.0007

Stage T2 0.1505 1.1624 0.3016 0.4990 0.6178
Stage T3 1.8004 6.0522 0.5765 3.1230 0.0018
Stage N1 0.3445 1.4113 0.2842 1.2121 0.2255
Stage N2 1.3360 3.8040 0.4776 2.7973 0.0052

Rsquare = 0.201 (max possible= 0.996 )
Likelihood ratio test = 19.1 on 5 df, p=0.00183

Wald test = 20.06 on 5 df, p=0.0012
Score (log-rank) test = 20.65 on 5 df, p=0.00094

Table 4.11: Hazard ratios from the Cox PH model for the lung cancer dataset with the
significant covariates

Based on the stepwise selection, the most significant explanatory variables in this
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4.4 The semi-parametric method and the Cox proportional hazards model

study of the survival rates of lung cancer patients were found to be Age, Stage T, and
Stage N.

The final model for the ith individual can be expressed in the form:

hi(t) =h0(t)exp{0.053 Agei + 0.15 Stage T2i + 1.8 Stage T3i + 0.345 Stage N1i

+ 1.34 Stage N2i },

where i = 1, 2, . . . , 85.
An explanation of this model is given. The estimated log-hazard ratio for an indi-

vidual at stage T2 relative to an individual at stage T1, when both are the same age and
at the same level of stage N, is β̂2 = 0.15. Consequently, the estimated hazard ratio
is e0.15 = 1.16. Similarly, the estimated log-hazard ratio for an individual at stage T3,
relative to an individual at stage T1of the same age and at the same level of stage N, is
β̂3 = 1.8; in this case, the estimated hazard ratio is e1.8 = 6.08.

The hazard ratio for two patients who are the same age and at the same level of
stage T, one at stage N1 and the other at stage N0, is e0.34 = 1.41, while for a patient
at stage N2, relative to one at stage N0, again of the same age and at the same level of
stage T, is e1.34 = 3.8.

Finally, the hazard ratio for an individual at a given level of stages T and N, rel-
ative to another patient at the same levels of stages T and N whose age is one unit
less, is e0.053 = 1.05. Since this is greater than unity, we conclude that, other things
being equal, any given patient has a 5% greater hazard of death than a patient one year
younger.

4.4.7 Residuals for the Cox model (model diagnostic)

To check whether the Cox PH model is suitable for the data, we examine different type
of residuals as explained in next subsections.

Cox-Snell residuals

The residuals given by Cox & Snell (1968) is

rj = Ĥ0(tj)exp
(
Xjβ̂ + Zj b̂

)
; j = 1, 2, . . . , n.
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Here, Ĥ0(t) is an estimate of the baseline cumulative hazard function at time tj . In
practice, the Nelson-Allen estimate is used which is given by

Ĥ0(t) = −log Ŝ0(t) =
k∑
i=1

dj∑
j∈R(t(i))

exp
[∑p

k=1 βkXjk

] .
The Cox-Snell residual can also be expressed as

rj = Ĥj(tj) = −log Ŝj(tj),

where Ĥj(tj) is the estimated cumulative hazard and Ŝj(tj) is the survival function of
the jth individual at tj (based on the model).

If T is a random variable associated with survival time for an individual and S(t)

is the survival function, then the random variable r = −log S(T ) has an exponential
distribution with a mean equal to one, irrespective of the form of S(t). Therefore, if the
model is correct, the Cox-Snell residuals should approximately follow an exponential
distribution with with a mean equal to one, and the cumulative hazard function of the
residuals will be Hr(t) = t. As a result, the plot of the cumulative hazard estimate of
residuals by the Nelson-Aalen versus the Cox-Snell residuals should be a straight line
through the origin (intercept=0) with a slope of 1.

Figure 4.8: Cumulative hazard of Cox-Snell residuals (solid black line) from the Cox
PH model fit, compared to the identity line (grey dashed line).
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Martingale residuals

The Martingale residuals are defined as Cox & Snell (1968)

rMj = δj − rj = δj − Ĥj(tj), (4.7)

where rj is the Cox-Snell residual. The expression (4.7) can be interpreted as the
number of observed deaths minus the number of expected deaths. The Martingale
residuals are different from the Cox-Snell residuals. Not only do they check the model
assumption but they also suggest the form of the covariates in the model. In other
words, the Martingale residuals determine the functional form of a covariate, which
can be seen by plotting the Martingale residuals against the new covariate. The points
are then fitted using some smoothing technique, such as the Lowess method. The
appropriate functional form of the new covariate can be determined by the smoothed
curve.
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Figure 4.9: Plot of the Martingale residuals against age with a smoothed curve (solid
red line).

Deviance residuals

The Martingale residuals are not symmetric, having a maximum value of 1 and a min-
imum value of −∞, which makes plots based on the residuals hard to interpret. The
deviance residual, which was introduced by Therneau et al. (1990) is used to obtain a
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residual that is more symmetrically distributed around zero. The deviance residual is
defined as

Dj = sign[rMj]
[
− 2
(
rMj + δj log(δjrMj)

)] 1
2 ,

where rMj is the Martingale residual for the jth individual.
The deviance residuals can be plotted against the risk scores Ri = Xiβ̂, which

provide information about whether an individual might be expected to survive for a
short or long period of time. Individuals who have large negative risk scores will
have a lower than average risk of death, and visa versa. The deviance residuals whose
absolute values are too large relative the other deviance residuals indicate potential
outliers.

From looking to Figure 4.10, the patients who have the largest deviance residuals
are patient number 45 and number 21, with a deviance of 2.68 and -2.57 respectively.
The first group of patients had a covariate vector of (Age=58, Stage T=2, and Stage

N=1) and died at 36 days, whereas the second group of patients had a covariate vector
of (Age=49, Stage T=3, Stage N=1) and died at 3185 days. Based on the risk profile
of patient 45 (risk score=-0.59), the patient should have had a relatively long survival
time, but he was in fact the shortest-lived patient. On the other hand, based on her risk
profile (risk score=0.73), patient 21 should have had a relatively short survival time,
but she was in fact one of the longest lived patients, and is censored.

Figure 4.10: Plot of the deviance residuals versus the risk scores.

70



4.4 The semi-parametric method and the Cox proportional hazards model

Evaluation of the proportional hazard assumption

The proportional hazard assumption can be evaluated using tests and graphical diag-
nostics based on the scaled Schoenfeld residuals. The tests of the proportional hazard
assumption are calculated for each covariate by correlating the corresponding set of
scaled Schoenfeld residuals with a suitable transformation of time.

rho chisq p
Age -0.0162 0.0201 0.8872

Stage T2 -0.0712 0.3155 0.5743
Stage T3 -0.3609 8.9826 0.0027
Stage N1 0.0869 0.4864 0.4856
Stage N2 0.0060 0.0023 0.9621

GLOBAL 10.4380 0.0637

Table 4.12: Proportional hazard assumption for each covariate along with a global test
for the model as a whole, with the null hypothesis that the Cox proportional hazard
assumption is valid

The three columns of Table 4.12 are rho, chisq, and p. The rho column shows the
Pearson product-moment correlation between the scaled Schoenfeld residuals and the
time for each covariate The chisq column shows the test statistics, and p column gives
the p-value. The last row, Global, gives the global test’s overall covariates.

There is no evidence for nonproportionality, as shown by the p-value of 0.06 for
the global test. All of the covariates, except Stage T3, show strong evidence for pro-
portionality as shown by the p-values in Table 4.12. Stage T3 shows some evidence of
nonproportionality. However, this is not of concern, because Stage T3 represents the
most severe cases, when the size of the tumour is larger than 7 cm.
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Figure 4.11: Plots of scaled Schoenfeld residuals against transformed time for each
covariate in a model of the lung cancer data. The solid line is a smoothing spline fitted
to the plot, with the dotted lines representing a ±2-standard-error band around the fit.
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Chapter 5

Extending Cox PH model : Normal
random effects

5.1 Introduction

Accurate survival prediction is critical in the management of cancer patients’ care and
well-being. Previous studies have shown that copy number alterations (CNA) in some
key genes are individually associated with disease phenotypes and the patient’s prog-
nosis. For example, Haan et al. (2014) investigated CNA in 194 regions in the genome
that are associated with colorectal cancer. The study also showed that there are some
significant differences in patients’ survival probability between those who have gains
and those without gains in some key genes. Chiu et al. (2014) showed there is sig-
nificant difference in melanoma patients’ survival between high and low risk groups
based on the CNA in five marker genes. Gatza et al. (2014) also indicated that CNA
in some key genes essential for cell proliferation significantly affect the survival of
breast cancer patients. Lu et al. (2015) suggested that CNA in MYC and BCL2 is
significantly associated with the survival probability of patients with diffuse B-cell
lymphoma. Mampaey et al. (2015) showed that colon cancer patients who have a loss
in chromosome four have lower survival probability than those without a loss.

All of the above studies suggest that CNA in some key regions in the genome hold
information that is relevant in the estimation of patients survival probability. However,
cancer is a complex disease where the pattern of CNA across the genome exhibits
complex gains and losses. Given the complicated network of genes in the development
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5.2 Cox proportional hazards model

and proliferation of cancer, the whole genome-wide pattern of CNA contains a con-
siderable portion of the genomic information relevant to patients survival. However,
many of these genomic variations are passenger events caused by the disease, rather
than driver events which are influencing the disease. Furthermore, genome-wide CNA
profile is patient-specific and any differences in the profile between patients may help
to explain the differences in the patients survival. Although some of the information in
the genome-wide CNA profile is critical in the prediction of cancer patients survival,
extracting that information from the background noise remains challenging.

In terms of modelling, the main challenge is how to incorporate genome-wide CNA
profiles, in addition to clinical information, to predict cancer patients survival. In this
chapter, we propose to extend the Cox proportional hazard (PH) model discussed in
Chapter 4, by including the CNA profiles as random effects predictors. The (standard)
Cox PH model has been used extensively in the prediction of patients survival based
on their clinical variables. In our thesis, we extend the model to incorporate patients’
genome-wide CNA profiles, in addition to the clinical variables.

The organization of this chapter is as follows. Section 5.2 discusses the extension
of Cox PH model to include the copy number alteration as random effects. In Section
5.3, the estimation of the unknown parameters of the model is discussed. Section
5.4 describes some computational issues. In Section 5.5, Breslow’s estimator of the
baseline cumulative hazard rate and the estimates of survivor function are presented.
Section 5.6 discusses residuals for the extended Cox PH model. Simulation studies are
described and discussed in Section 5.7. Finally, The results and evaluation of the lung
cancer dataset are found in Section 5.8.

5.2 Cox proportional hazards model

In this section, we discuss incorporating genom-wide CNA profiles into the basic Cox
PH model, discussed in Chapter 4, as proposed by Cox et al. (1972). However, the
main challenge lies in the dimension of the matrix of CNA profiles, denoted Z. The
matrix Z is of size n × q with n � q, where q is the number of genomic regions in
the CNA profiles (in our lung cancer cohort, n = 80 and q = 13, 968). It is clear that
incorporating the CNA profiles as fixed predictors as in the original Cox PH model
will make the model parameters β unestimable.
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5.2 Cox proportional hazards model

To deal with this problem, we extend the Cox PH model by including the CNA
profiles as random effects in the original model such that the hazard rate at time t can
be modelled as:

hi(t|X,Z) = h0(t) exp {Xiβ + Zib} (5.1)

where h0(t) is the baseline hazard function, denoting the baseline hazard rate for all
the patients in the group across time and does not depend on any predictors, Xi, which
is i−th row (vector) of X , is a p vector of fixed predictors for the i−th patient. Zi
is the i−th row (vector) of Z (of length q), b is a q−vector of random effects that we
assume to follow a normal distribution b ∼ N(0, D(θ)), and D(θ) = θIq (Iq is an
identity matrix of size q). We consider the approach by Ripatti & Palmgren (2000)
which linked together the likelihood approximation of Breslow & Clayton (1993) and
the penalised likelihood concept, to derive a generalization of the model estimation.
The marginal (integrated) likelihood L(h0(t), β, θ) for model (5.1) is

L(h0(t), β, θ) =

∫ n∏
i=1

hi(t|b)δiSi(t|b)p(b;D(θ))db

=

∫ n∏
i=1

[h0(t) exp(Xiβ + Zib)]
δi exp[−H0(t) exp(Xiβ + Zib)]p(b;D(θ))db,

(5.2)

where the random effects b are integrated out. As b is restricted to follow a multivariate
normal distribution with mean 0 and covariance variance matrix D(θ), the probability
density function (PDF) of this multivariate normal distribution is

p(b;D(θ)) = (2π)−
q
2 |D(θ)|−

1
2 exp{−1

2
b′D(θ)−1b}.

Unfortunately, the above integral Eq. (5.2) is difficult to solve . Therefore, we
follow Breslow & Clayton (1993) in their approach for the GLMM and use a Laplace
approximation for the integral in (5.2).

First, instead of using the marginal likelihood L(h0(t), β, θ) (Eq. (5.2)), we use the
log of the marginal likelihood log(L(h0(t), β, θ)) = `(h0(t), β, θ) which is

`(h0(t), β, θ) =

∫ n∑
i=1

[
δi
[

log(h0(t)) +Xiβ + Zib
]
−H0(t) exp(Xiβ + Zib)

]
− q

2
log(2π) + log |D(θ)|−

1
2 − 1

2
b′D(θ)−1bdb.

(5.3)
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5.2 Cox proportional hazards model

Then, we write Eq. (5.3) in the form :

e`(h0(t),β,θ) ∝ C|D(θ)|−
1
2

∫
e−k(b),

where C are the constant terms that are not related to the parameters. k′ and k′′ denote
the q vector and q×q dimensional matrix of first-and second-order partial derivatives of
k with respect to b. Ignoring the multiplicative constant C, the approximation returns

`(h0(t), β, θ) ≈ −
1

2
log |D(θ)| − 1

2
log |k′′(b̃)| − k(b̃)

where

k(b̃) = −

{[ n∑
i=1

[δi
[

log(h0(t))+Xiβ+Zib̃
]
−H0(t) exp(Xiβ+Zib̃)

]
− 1

2
b̃′D−1(θ)b̃

}

and b̃ = b̃(β, θ) denotes the solution to the partial derivatives of k(b) with respect to b.
i.e., b̃ satisfies

k′(b̃) = −
n∑
i=1

Zi[δi −H0(t) exp(Xiβ + Zib̃)]−D(θ)−1b̃ = 0.

The set of second partial derivative of k(b) with respect to b denoted k′′(b) has the form

k′′(b) =
n∑
i=1

H0(t) exp(Xiβ + Zib̃)ZiZ
′
i +D(θ)−1.

Therefore, as shown above, the approximate marginal log likelihood by using the
Laplace approximation leads to :

`(h0(t), β, θ) ≈ −
1

2
log |D(θ)|

− 1

2
log

∣∣∣∣∣
n∑
i=1

H0(t) exp(Xiβ + Zib̃)ZiZ
′
i −D(θ)−1

∣∣∣∣∣
+

n∑
i=1

[
δi[log(h0(t)) +Xiβ + Zib̃]

−H0(t) exp(Xiβ + Zib̃)

]
− 1

2
b̃′D(θ)−1b̃.

(5.4)

If θ were known and b were considered a fixed effects parameter, the first two
terms are ignored and β can be chosen to maximize the second two terms which is a
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5.3 Parameter Estimation

penalized log likelihood as shown in Green (1987). Thus (β̂, b̂) = (β̂(θ), b̂(θ)), where
b̂(θ) = b̃(β̂(θ)), jointly maximize

n∑
i=1

[
δi[log(h0(t)) +Xiβ + Zib̃]−H0(t) exp(Xiβ + Zib̃)

]
− 1

2
b̃′D(θ)−1b̃. (5.5)

Equation (5.5) is the full log likelihood for Cox model with b as another set of
parameters and penalty term. It turns out that it can be maximized using penalized
fixed effect partial likelihood as Cox showed in Cox et al. (1972):

`P (β, θ, b) =
n∑
i=1

[
δi(Xiβ + Zib)− δilog

( ∑
j∈R(ti)

exp(Xjβ + Zjb)

)]
− 1

2
b′D(θ)−1b,

(5.6)
where 1

2
b′D(θ)−1b is the penalty term penalizing for extreme value of b.

5.3 Parameter Estimation

5.3.1 Estimation of β and b

We can derive an estimation of β and b at fixed θ by partial differentiation of the log
partial likelihood `P (β, b) in Eq. (5.6) with respect to each of β and b. The resulting
estimating equations for β and b, respectively, are

u(β) =
n∑
i=1

δi

[
Xi −

∑
j∈R(ti)

Xjexp(Xjβ + Zjb)∑
j∈R(ti)

exp(Xjβ + Zjb)

]
(5.7)

and

u(b) =
n∑
i=1

δi

[
Zi −

∑
j∈R(ti)

Zjexp(Xjβ + Zjb)∑
j∈R(ti)

exp(Xjβ + Zjb)

]
−D(θ)−1b. (5.8)

The second derivatives with respect to β , required for the information matrix, take
the form

∂2`p
∂βl∂βm

=

∑n
i=1

(∑
j∈R(ti)

xjl exp(Xjβ + Zjb)
)(∑

j∈R(ti)
xjm exp(Xjβ + Zjb)

)(∑
j∈R(ti)

exp(Xjβ + Zjb)
)2

−
∑n

i=1

(∑
j∈R(ti)

exp(Xjβ + Zjb)
)(∑

j∈R(ti)
xjlxjm exp(Xjβ + Zjb)

)(∑
j∈R(ti)

exp(Xjβ + Zjb)
)2 ,
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5.3 Parameter Estimation

and the second derivatives with respect to b take the form

∂2`p
∂bl∂bm

=

∑n
i=1

(∑
j∈R(ti)

zjl exp(Xjβ + Zjb)
)(∑

j∈R(ti)
zjm exp(Xjβ + Zjb)

)(∑
j∈R(ti)

exp(Xjβ + Zjb)
)2

−
∑n

i=1

(∑
j∈R(ti)

exp(Xjβ + Zjb)
)(∑

j∈R(ti)
zjlzjm exp(Xjβ + Zjb)

)(∑
j∈R(ti)

exp(Xjβ + Zjb)
)2

−D(θ)−1.

The information matrix of β and b, respectively, are

I(β) = −`′′P (β) =

[
− ∂2`p
∂βl∂βm

]
,

and
I(b) = −`′′P (b) =

[
− ∂2`p
∂bl∂bm

]
.

For later use we can write I(b) as

I(b) = A+D(θ)−1, (5.9)

where

A =

∑n
i=1

(∑
j∈R(ti)

exp(Xjβ + Zjb)
)(∑

j∈R(ti)
zjlzjm exp(Xjβ + Zjb)

)(∑
j∈R(ti)

exp(Xjβ + Zjb)
)2

−
∑n

i=1

(∑
j∈R(ti)

zjl exp(Xjβ + Zjb)
)(∑

j∈R(ti)
zjm exp(Xjβ + Zjb)

)(∑
j∈R(ti)

exp(Xjβ + Zjb)
)2

The estimates (β̂(θ), b̂(θ)) can be found by alternating between solving (5.7) and (5.8)
at fixed θ using a Newton-Raphson algorithm which is summarized in these steps:

1. Given a value θ

2. Let k = 0

3. Choose the initial values (β̂(0) and b̂(0)).

4. β̂(k+1) = β̂(k) + I−1(β̂(k))u(β̂(k))

and b̂(k+1) = b̂(k) + I−1(b̂(k))u(b̂(k))

5. increase k by one.

6. Go back to step 4 and repeat until convergence.
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5.3 Parameter Estimation

5.3.2 Computational issues: The calculation of the inverse of high
dimensional matrix (I(b))

When we try to apply our method to estimate the parameters (β, b), we need to take
into consideration the time and the memory. Our estimation based on Newton-Raphson
method which require the inverse of information matrix (I(b)) in (E.q (5.9) ) which is
a huge matrix, in our case we need to make an inverse of 13986× 13986. To deal with
this problem, we consider two different ways:

First
The first solution is based in Pawitan (2001). If we can write the information
matrix I(b) in (E.q (5.9) ) in this form,

V = Σ + ZDZ ′,

it can be inverted by :

V −1 = Σ−1 − Σ−1Z(Z ′Σ−1Z +D−1)−1Z ′Σ−1.

Let V = I(b), and Σ = D(θ)−1. Therefore, if we can write A in (E.q (5.9) ) in
this formZ ′DZ, we will end up with inverting 80×80 instead of 139680×13986.

Therefore, we are left with converting A to Z ′DZ; as shown in the next two
points

• We can write A = Z ′DZ by using singular value decomposition and take
the first 80 singular values and the corresponding left and right-singular
vectors. One draw back of this way is the time consumption to calculate
singular value decomposition especially with a big matrix.

• In order to save time and memory we can use the method called (IRLBA)
introduced by Baglama & Reichel which is a fast and memory-efficient
method for computing a few approximate singular values and singular vec-
tors of large matrices.

Second
The second solution is the sparse computation based on Therneau et al. (2003).
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5.3 Parameter Estimation

When we look carefully to the information matrix I(b), we found that the the in-
formation matrix I(b) is a diagonally dominant matrix, where adding the penalty
further increases the dominance of the diagonal. Therefore, using a sparse op-
tion, where only the diagonal of I(b) is retained, should not have a large impact
on the estimation procedure.

Ignoring the off diagonal of I(b) has a number of implications:

1. The speed is increased dramatically and saving in space (we take 13986
elements of diagonal of I(b) instead of 13986*13986)

2. The solution points is identical; ignoring trivial difference due to distinct it-
eration paths; because the score vectorU(b) and likelihood are not changed.

3. The Newton-Raphson iteration may undergo a slight loss of efficiency so
that 1-3 more iteration required

For comparison consideration, we compare the four different methods which differ
in the way that we make the inverse of I(b).

1. The original method with the full information matrix (FULL).

2. The method which used Pawitan hint using default SVD (SVD).

3. The method which used Pawitan hint using IRLBA SVD (IRLAB).

4. The method based in Sparse solution (Sparse).

Next table shows the absolute mean difference between the four methods for θ =

1× 10−5 and number of windows = 5000.

Method mean of absolute difference
FULL -
SVD 7.59e-20

IRLAB 8.66e-20
Sparse 1.638678e-07

Figures 5.1, 5.2, and 5.3 shows the comparison between b̂ across the four methods.
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5.3 Parameter Estimation

Figure 5.1: Left panel is b̂ based on full information matrix VS b̂ based on Pawitan and
SVD; and the right panel is the absolute difference

Figure 5.2: Left panel is b̂ based on full information matrix VS b̂ based on Pawitan and
IRLAB; and the right panel is the absolute difference
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Figure 5.3: Left panel is b̂ based on full information matrix VS b̂ based on sparse
information matrix; and the right panel is the absolute difference

5.3.3 Estimation of θ

To estimate θ, we will require the marginal log likelihood `(h0(t), β, θ) in Eq. (5.3),
where no constant has been dropped. The estimate of θ is then obtained as the one that
minimizes the Akaike’s Information Criterion (AIC)

AIC(θ) = −2× `(h0(t), β, θ) + 2× df (5.10)

across different values of θ evaluated, where `(h0(t), β, θ) is the log of the marginal
likelihood ( E.q (5.4)) and df is the degrees of freedom of fit, which is calculated as
(Gray (1992))

df = q − trace[D−1H−1] (5.11)

where H is the Hessian matrix from the estimation of β and b in Section 5.3.1.
The evaluation of AIC is not the only way to estimate θ; there are other alternatives.

Firstly, Ripatti & Palmgren (2000) obtained an expression for an approximate estimate
of θ based on the log marginal likelihood `(h0(t), β, θ). In other words, this approach
maximizes a profile quasi-likelihood function. The expression, although feasible in
their context with a handful random predictors, is not computationally practical for
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5.4 Computational considerations

large datasets. Secondly, θ can be estimated via cross-validation (van Houwelingen
et al. (2006)) and this will be discussed in details in Chapter 6. We find in our data
that these three methods are equivalent in estimating θ. Also, the simulation results in
Section 5.7 shows that the estimation of the variance component θ is similar among
these approaches. Our choice to use AIC is for practical reasons, since it is somewhat
faster. Moreover, we can speed up this method as described in the next section.

5.4 Computational considerations

The AIC approach above to estimate θ requires us to evaluate AIC (and estimation of β
and b) across a range of θ (grid search). Although we find that this method is still faster
than the estimation proposed in Ripatti & Palmgren (2000), we have found it more
efficient and accurate to minimize AIC using bisection or a quadratic optimization
technique. The latter is found to be the fastest technique to converge to the optimal θ.

The steps in the bisection technique can be briefly describe as follows.

1. Determine the largest and smallest plausible values of θ, say, θa and θb

2. Calculate AIC at θ = θa and θ = θb.

3. Retain θ which give a lower AIC, and replace the other θ by θa+θb
2

4. Repeat steps 2− 3 until convergence to obtain θ̂.

Similarly, the steps taken in quadratic optimization technique are

1. Determine three values for θ, say θS, θM , θL.

2. Calculate AIC for these θs, say AS, AM , AL.

3. Solve a system of three equations with three unknowns (c1, c2, and, c3)

AS = c1 + c2θS + c3θ
2
S

AM = c1 + c2θM + c3θ
2
M

AL = c1 + c2θL + c3θ
2
L
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5.5 Estimation of h0(t) and S(t)

4. Calculate θN = −c2
2c3

.

5. Replace argmaxθ A by θN

6. Repeat steps 2− 5 until convergence.

5.5 Estimation of h0(t) and S(t)

Our main interest in this modelling is to predict the survivor function Ŝ(t) for a patient
with certain clinical characteristics and CNA profile. To do this, we first estimate the
baseline hazard function h0(t) after we obtain β̂ and b̂ by using an extension of the
Breslow (1974)’s estimator by

ĥ0(ti) =
1∑

j∈R(ti)
exp(Xjβ̂ + Zj b̂)

. (5.12)

The cumulative hazard function H0(t) can be similarly estimated as:

Ĥ0(t) =
∑
ti≤Tj

1∑
j∈R(ti)

exp(Xjβ̂ + Zj b̂)
, (5.13)

and the baseline survivor function S0(t) is

Ŝ0(t) = exp{−Ĥ0(t)}. (5.14)

The predicted survivor function for a new patient with a known clinical character-
istic x′ (a p−vector) and CNA alteration profiles z′ (a q−vector) is

Ŝi(t;x, z) = Ŝ0(t)
exp{x′β̂+z′b̂},

where Ŝi(t) are from Eq. (5.14) above with β̂ and b̂ fitted from the (current) data.
In a general context, the quantity Ri = Xiβ̂ + Zib̂ is considered as the i−th indi-

vidual risk score; higher Ri is associated with higher risk or hazard and lower Ri with
lower hazard.

To show that the results of the estimation of the survivor function are consistent,
we follow the approach of Pawitan et al. (2004). We use all data set to estimate the
parameters β̂ and b̂. After that :
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• we compute the risk score for every patient in the data

Ri = Xiβ̂ + Zib̂

• we estimate the survival curve for each patient

Ŝi = {Ŝ0(t)}exp{Ri}

.

Then we divided the data into a high and low risk groups based on the risk score Ri’s.
There are more than one way to choose the cut off point to split the group and the result
would be comparable. To be more specific, we chose the median of risk scoreRi’s to be
the cut off point so the that the number of events is equal in the two groups. Finally, we
compare the Kaplan-Meier survival curves for each group with model-based average
survival function where the average is taken pointwise over time.

5.6 Model diagnostics

To check whether the Cox PH model is suitable for the data, we re-calculated the
residuals for the Cox PH model, discussed in Chapter 4, to include the random ef-
fects estimates. We calculated the Cox-Snell residuals to include the random effects
estimates as

rj = Ĥ0(tj)exp
(
Xjβ̂ + Zj b̂

)
; j = 1, 2, . . . , n.

The Cox Snell residual can also be expressed as

rj = Ĥj(tj) = −log Ŝj(tj),

where Ĥj(tj) is the estimated cumulative hazard and Ŝj(tj) is the estimated survivor
function of the j−th individual at tj .

Also, Martingale residuals are defined as

rMj = δj − rj = δj − Ĥj(tj), (5.15)

where rj is the Cox-Snell residual defined above.
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5.7 Simulation results

We generated a CNA matrix of dimension 85×100 .The first 20 columns have a relation
with patients’ survival times while the rest 80 are similar for all patients.

• For the first 10 columns, we generated the CNA for the patients who exceed the
median survival time from N(6, 1), while the others have CNA from N(2, 1).

• For the columns from 11−20, we generated the CNA for the patients who exceed
the median survival time fromN(2, 1), while the others have CNA fromN(6, 1).

• For the columns from 21 − 100, we generated the CNA for all patients from
N(4, 1)

We applied our method using the AIC (grid search) to find the optimal θ, and b̂. Figure
5.4 shows that the optimal θ is 0.0015 (log(θ) = 6.5) with AIC equal to 502.3207.
However, by using Bisection and Quadratic equations techniques, the optimal θ is
0.0022 with AIC equals to 501.9824. They are more accurate and faster than the grid
search. Quadratic equations techniques is the fastest one to converge.

Moreover, when we used the expression for approximate estimate of θ in Ripatti &
Palmgren (2000), θ converged to a similar value of previous θ = 0.0020. If we start by
θ0 = 0.01 or θ0 = 0.00001, both have converged to θ = 0.00201
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Figure 5.4: AIC for the simulated data.

The estimation of random effects b can be seen in Figure 5.5. As we anticipated,
the first twenty values reveal a signal. The first 10 values have negative signals, while
the values from 11− 20 have positive signals.
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Figure 5.5: Estimation of random effects b based on the optimal θ.
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Finally, we have repeated the simulation 1000 times and Figure 5.6 shows 6 differ-
ent simulations, while Figure 5.7 shows the box-plot in each of 1000 simulations.
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Figure 5.6: Estimation of random effects b for 6 different simulations
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Figure 5.7: box-plot of the estimation of random effects b for 1000 simulations

5.8 Lung cancer dataset analysis

5.8.1 Model fit: estimation of θ

An important parameter to be estimated from (extended) Cox PH model is θ, which is
the variance of the distribution of random effects. This parameter is important in the
interpretation: as θ goes to zero (in limit terms), the estimates of the random effects
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will be zero and no information in CNA are taken into account in the model. Figure 5.8
shows the process of estimating θ, under two different segmentation of CNA profiles
in the data. The figure indicates that AIC (solid line) is not U shaped and decreases as
log(θ) also decreases. The figure also indicates that 2`(h0(t), β, θ) decreases as log(θ)

decreases.
To estimate θ, we use the principle described in Pawitan et al. (2004), by identify-

ing the (one-sided) confidence interval for log(θ). Looking at the value of {2`(h0(t), β, θ)}+
3.84 (95− th percentile of the χ2 distribution), the figure gives a one-sided confidence
interval of log(θ) ≤ 11.5, corresponding to θ ≤ 105. Naturally, we consider maximum
θ in this confidence interval as an optimal θ because a higher value of θ corresponds to
more information in CNA taken into account in the model in terms of degrees of free-
dom of fit. We therefore estimate θ as θ̂ = 105, which corresponds to approximately 4

degrees of freedom of fit for the CNA profiles.
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Figure 5.8: Akaike’s information criterion (AIC, solid line) and 2`(h0(t), β, θ) (dashed
line). The horizontal dotted line indicates min{2`(h0(t), β, θ)} + 3.84 to create 95%

confidence interval for θ
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5.8.2 Model fit: fixed predictors

Using the optimal θ̂ the estimation of the fixed effects and their inference can be seen
in Table 7.3. For comparison, we estimate the fixed effects under both conditions of
with and without the CNA profiles in the model. The table indicates that Age, Stage-
T, and Stage-N are statistically significant ( p-value< 0.05). The estimates indicate
that the hazard ratio increases by about six percent (e0.055 ≈ 1.06) as age-at-operation
increases by one year (everything else being equal). The positive estimates of Stage-
T3 indicate that larger tumour size is associated with significant increase in the hazard
(relative to Stage-T1 as baseline). Similarly, the estimates of Stage-N2 indicates that
a wider spread of cancer cells to the lymph nodes increases significantly the hazard
(relative to the Stage-N0 as baseline).

Predictor Estimate Exp Std.Error z values p-value

(Without CNA profiles)
Age 0.0551 1.06 0.0164 3.37 0.0008
StageT2 0.1818 1.20 0.3215 0.57 0.5700
StageT3 1.7623 5.83 0.6392 2.76 0.0058
StageN1 0.3616 1.44 0.3019 1.20 0.2300
StageN2 1.3653 3.92 0.4824 2.83 0.0047

(With smooth CNA profiles)
Age 0.0565 1.06 0.0164 3.44 0.0006
StageT2 0.1837 1.20 0.3215 0.57 0.5679
StageT3 1.8382 6.28 0.6392 2.88 0.0040
StageN1 0.3521 1.42 0.3019 1.17 0.2435
StageN2 1.3282 3.77 0.4824 2.75 0.0059

(With DNACopy CNA profiles)
Age 0.0568 1.06 0.0164 3.46 0.0005
StageT2 0.1961 1.22 0.3215 0.61 0.5420
StageT3 1.8459 6.33 0.6392 2.89 0.0038
StageN1 0.3487 1.42 0.3019 1.15 0.2480
StageN2 1.3556 3.88 0.4824 2.81 0.0049

Table 5.1: Summary of the fixed predictors (from left to right columns): estimates
β̂, exp(β̂), standard error of β̂, test statistic z( under H0 : β = 0), and p−values.
Stage-T1 and Stage-N0 are part of the baseline
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5.8.3 Model fit: random effects

The random effect estimates b of the full Cox PH model, using CNA profile from
smooth and CBS (DNACopy) segmentation are presented in the top and bottom panel
of Figure 5.9, respectively. The magnitude of the estimates is relatively small (com-
pared to the fixed effects estimates for example). This is due to the shrinkage effect
on the estimation of random effects: 80 observations to estimate almost 14 thousand
variables. Positive estimates of random effect indicate that the relevant windows are
associated with the increase of the hazard, while negative estimates of random effects
indicate the opposite. In this regard, almost all of chromosome 7, for example, are
associated with the increase of hazard, while some regions in chromosome 12 are as-
sociated with a reduction of hazard.

With regard to the inference of the random effects, this is not easy because none
of the individual random effects are statistically significant from zero. This is not to
say that none of the random effects are associated with the hazard, but the limited
number of observations in the data are not able to provide inference for thousands of
parameters. We may still have information from the data, but the information is spread
across all of the windows in the genome, as will be described in the next section.
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Figure 5.9: Random effects estimate b in the full model, using CNA profiles from
smooth and CBS (DNACopy) segmentation (top and bottom panel, respectively). Ge-
nomic windows with missing values (for example in the centromere regions) were
excluded from analysis, hence are not plotted. A more detailed view of the random
effects estimates in each chromosome is presented Figure 5.10 and 5.11.
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Figure 5.10: A more detailed view of the random effects estimates b in each chromo-
some, using CNA profiles from smooth segmentation.
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Figure 5.11: A more detailed view of the random effects estimates b in each chromo-
some, using CNA profiles from CBS (DNACopy) segmentation.
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5.8.4 Cumulative hazard rate and the estimates of survival func-
tion

To show that the Cox PH modelling with CNA profiles is able to distinguish individuals
at different levels of risk, we estimate the survivor functions for three individuals in the
lung cancer dataset. They correspond to low, medium, and high risk individuals based
on their risk scores Ri, corresponding to the 10th, 50th, and 90th percentile of the
distribution of Ri in the dataset.

Figure 5.12 shows the estimated survivor functions for the three individuals using
smooth-segmented and DNAcopy CNA profiles as random predictors ( (a) and (b),
respectively). The figures indicate that the median survival times for the low, medium,
and high risk individuals are approximately 7.5 years, 2.5 years, and 8 months.
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Figure 5.12: Estimated survival function from the extended Cox PH model for three
individuals who are in the 10th, 50th, and 90th percentile of risk set Ri, representing
low, medium, and high risk individuals respectively base on smooth-segmented and
DNAcopy CNA profiles as random predictors ( (a) and (b), respectively).

Figure 5.13 (a) and (b) present a comparison of estimated survivor functions based
on the extended Cox PH model with the Kaplan- Meier estimates, in two groups of
individuals using smooth-segmented and DNAcopy CNA profiles respectively. The
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two groups are the top 10% and bottom 10% of individuals based on their risk scores
Ri, corresponding to high and low risk groups respectively, and the Cox PH model-
based curves are point-wise averages from those individuals. The figure indicates that
the estimated survivor functions based on the model are relatively close to the estimates
based on the Kaplan-Meier estimates although there are some differences.
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Figure 5.13: Comparison of survival function based on Kaplan- Meier estimate (solid
lines) and based on the extended Cox PH model (dashed lines), in the high-risk (black
lines) and low-risk (grey lines) groups. The groups are based on the top and bottom
10% of individuals based on their risk scores Ri. The figure based on the Cox PH
model is pointwise average between individuals within the risk group. The horizontal
dotted line marks the 50% survival probability. Panel (a) is based on smooth CNA
estimates; whereas panel (b) is based on DNAcopy CNA estimates.

5.8.5 Model diagnostics

As part of the model diagnostics, we plot the cumulative hazard of the Cox-Snell resid-
uals from the model fitting based on smooth segmented CNA (a) and DNAcopy CNA
(b) as shown in Figure 5.14 (solid black line). The figure indicates that the cumulative
hazard line is very close to the identity line, which suggests that the extended Cox PH
model is suitable and has a reasonably good fit for the CNA profile data. The cumula-
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tive hazard line near the top right corner of the figure is slightly jagged, as expected,
due to rare event (death) near the upper end of the survival time distribution.

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.
0

0.
5

1.
0

1.
5

2.
0

(a)

Cox−Snell Residuals

E
st

im
at

ed
 C

um
ul

at
iv

e 
H

az
ar

d 
F

un
ct

io
n

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.
0

0.
5

1.
0

1.
5

2.
0

(b)

Cox−Snell Residuals

E
st

im
at

ed
 C

um
ul

at
iv

e 
H

az
ar

d 
F

un
ct

io
n

Figure 5.14: Cumulative hazard of Cox-Snell residuals (solid black line) from the
Cox PH model fit, compared to the identity line (grey dashed line), based on smooth-
segmented CNA (a) and DNAcopy CNA (b) profiles.

The Martingale residuals determine the functional form of a covariate, which can
be seen by plotting the Martingale residuals against the new covariate. Then the points
are fitted by using some smoothing technique such as the Lowess method. The appro-
priate functional form of the new covariate can be determined by the smooth curve.
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Figure 5.15: Martingale residuals based on smooth CNA (a) and DNAcopy CNA (b)
against age with a smoothed curve using the Lowess method. This plot confirms that
the age enters the proportional hazards model linearly.
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5.9 Discussion

We have investigated how an extension of the Cox PH model for survival data is suit-
able to cope with high dimensional copy number alteration profiles, in addition to the
clinical variables as (fixed) predictors. A key parameter in the model is θ which con-
trols the amount of information in CNA profiles used in the model fitting, in terms of
degrees of freedom of fit. We have also discussed computational methods to speed up
the estimation of θ.

It is important to note that we have recoded the data so that the data used are
absolute difference from copy number ratio one. We effectively assume that, given
a genomic window, the hazard or risk of a patient with a total loss is the same as
those who have copy number ratio two. This modelling assumption is reasonable since
the Cox PH model assumes a linear predictor in the risk score Ri. A more relaxed
assumption can be devised by assuming a smooth function. However, this is beyond
the scope of the current research.

Our approach in this study is a genome-wide approach, in the sense that we take
into account the all the CNA information in the genome. In this regard, the model
is not embedded with a variable selection mechanism wich will be discussed later in
Chapter 7. This is an interesting research challenge in its own right since the challenge
in the context of CNA profile is much more complex: the correlation structure between
genomic windows wich will be discussed later in Chapter 6.

It is worthwhile to notice that our proposed method in this chapter and in the next
two chapters rely on Laplace approximation. It is well known in generalized linear
mixed model (GLMM) that this method is called penalized quasi-likelihood (PQL)
which has been introduced by Breslow & Clayton (1993). Pan & Huang (2014) argue
that PQL method is the most commonly used method due to a convenient computation.
However, this method may yield biased estimates of variance components, particularly
for modeling correlated binary data and the true variance component is large Chen
et al. (2015b).

Breslow & Lin (1995) shows that PQL estimators of regression coefficient and
variance component were subject to bias when applied to correlated binary data and
Poisson. Their numerical studies suggest that the biases are minimal for 0 ≤ θ ≤ 0.25
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In our thesis, first we are not working with binary data nor a Poisson model. Also,
it is clear from all results of simulation studies and real data analysis, that the variance
components are very small ( it is around 1× 10−5). Therefore, the results in this thesis
are not suffering from the bias of PQL. Moreover, Our focus on this thesis is to in-
corporate the CNA (random effects) into the survival prediction and we used the most
common method (PQL) to calculate the high dimensional integration in the marginal
likelihood. In other words, our goal is not to compare the relative performance of dif-
ferent competitive estimation approach in estimating the parameter of a model. These
different approaches are discussed in next two paragraphs.

In future research, one can use hierarchical generalized linear models (HL) intro-
duced by Lee & Nelder (2001). However, Lee et al. (2006) claim that HL and PQL
give the same estimator for the fixed effects β and random effects b but the variance
component still suffer from bias especially in the cases where the response is Poisson
or Binomial. The main difference between the two approaches is that the PQL ap-
proach estimate β and b by maximizing a penalized quasi-likelihood function, where
the HL approach maximize the hierarchical likelihood function. To solve the weak-
ness of PQL and HL, Sutradhar (2004) has proposed a generalized quasi-likelihood
(GQL) approach that produces consistent as well as more efficient estimates as shown
in Chowdhury & Sutradhar (2009). However, the GQL does not require any estimates
for the random effects b and we actually are interested in the estimated of random
effects b itself to know what is the effect of CNA in the hazard.

Another popular statistical method to incorporate the CNA in survival prediction is
the numerical technique which is not in the scope of our thesis. This numerical tech-
niques include Bayesian approach with sampling by Karim & Zeger (1992), MCEM
algorithm by Booth & Hobert (1999), Gauss-Hermite quadrature (GHO) by Pan &
Thompson (2003), and Quasi-Monte Carlo (QMC) by Pan & Thompson (2007). One
common drawback in above literature is the time consuming. Newcombe et al. (2014)
shows that the analysis of dataset with 20000 covariates were run about 28 hours, while
it took less than 4 minuets with PQL.

Finally, our computational method and R package in this study can also be used for
CNA profiles from array technology, provided that the (genome-wide) CNA profiles
across individuals can be put in a matrix form. This means that CNA estimates across
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individuals can be made into the same column in the data matrix, for each genomic
region.

In summary, we investigated an extension of the standard Cox proportional hazard
model to take into account cancer patients genome-wide copy number alteration (CNA)
profiles. The genome-wide CNA profiles are considered as random predictors in the
model in addition to the clinical variables as fixed predictors. The model enabled us
to assess the significance of the fixed predictors, and to examine the genomic regions
associated with the patients survival. Post-hoc analysis indicates that the model is
suitable for the data and has a good fit. The model also enables us to estimate individual
patient’s survivor function and distinguish the survivor functions for different groups
of patients at different risk.
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Chapter 6

Extending Cox PH model : Taking
dependences of CNA into account

6.1 Introduction

In Chapter 5, we considered an extension of the standard Cox proportional hazard
model to take into account cancer patients’ CNA profiles, in which CNAs are consid-
ered to be random predictors in the model, and the clinical variables as fixed predic-
tors. Specifically, we assumed that the random effects b follow a normal distribution
b ∼ N(0, D(θ)), with D(θ) = θIq (Iq is the identity matrix of size q). The diagonal
structure of D(θ) is the simplest possible structure for a variance-covariance matrix.
This structure indicates independence between neighbouring genomic windows as a
working assumption. However, CNAs generally have dependencies between neigh-
bouring genomic windows, and have spatial characteristics which would have been
ignored if we had used the method described in Chapter 5, or other methods described
in Chapter 1 such as feature selection (e.g. Benjamini & Hochberg (1995)) or derived
variables (e.g. Bair et al. (2006), Lee et al. (2013) ). Huang et al. (2009) conclude
that these methods can be adapted for survival analysis to model gene expression data;
however, they are not a good match for CNA data as they ignore its spatial dependence
structure.

In this chapter, we specifically address the spatial dependence structure of CNAs.
In order to achieve this, we start in Section 6.2 by discussing other structures of
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variance-covariance matrices of random effects. In Section 6.3, methods of impos-
ing smoothness using first and second differences are presented. Section 6.4 discusses
the mixture of normal and Cauchy distributions for first or second differences of ran-
dom effects. Section 6.5 shows how to estimate the parameters on the model (fixed
effects, random effects, and tuning parameters). Simulation studies are described and
discussed in Section 6.6. Finally, the results of our lung cancer dataset are presented
in Section 6.7.

6.2 Structures of variance-covariance matrices of ran-
dom effects

In Chapter 5, the structure of the variance-covariance matrix was assumed to have a
diagonal structure with equal variances and covariances of zero D(θ) = θIq. Thus,

D(θ) = θ

1 0 . . . 0

0 1 . . . 0

...
...

...
0 0 . . . 1



 , (6.1)

where θ = σ2. This structure is the simplest possible structure for a variance-covariance
matrix which indicates independence between neighboring genomic windows. There-
fore, in the next two subsections (6.2.1 and 6.2.2), we will discuss other, more complex
structures for variance-covariance matrices to take into account the dependences be-
tween neighboring genomic windows.

6.2.1 Compound symmetry covariance matrix

The compound symmetry structure has the form

Σ(θ) = θ

1 ρ . . . ρ

ρ 1 . . . ρ

...
...

...
ρ ρ . . . 1



 (6.2)
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In our study, we used only the first neighbouring structure, where we considered the
first off-diagonal to have a correlation ρ and the remaining off-diagonal values to have 0

correlation. In other words, the structure of the variance-covariance matrix we consider
is

Σ(θ) = θ

1 ρ . . . 0

ρ 1 . . . 0

...
...

0 ρ

0 . . . ρ 1




(6.3)

This structure indicates dependence between the first neighbouring genomic win-
dows; in other words, window 1 is correlated with window 2, and window 2 is corre-
lated with window 3 and so on.

6.2.2 Inverse of covariance matrix

To allow for more neighbouring correlation we assume that the inverse of the variance-
covariance matrix has the form

Σ−1(θ) =
1

θ

1 % . . . 0

% 1 . . . 0

...
...

0 %

0 . . . % 1




(6.4)

Another way to deal with dependencies between neighbouring genomic windows and
spatial characteristics of CNAs is by imposing smoothness in the assumption of ran-
dom effects as will be describe in next sections.

6.3 Imposed smoothing

The assumption of the random effects b depends on the nature of the CNA. If we want
to impose smoothness, we can do so by assuming that the first differences, which are

∆bj = bj − bj−1,
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or that the second differences, which are

∆2bj = bj − 2bj−1 + bj−2,

to have a specific distribution (see Pawitan, 2013). We could use a normal distribu-
tion, but Huang et al. (2009) suggest that as we were dealing with CNAs, we need to
allow for sudden jumps or large spatial changes. To have this flexibility, Huang et al.

(2009) chose a heavy-tailed distribution, the Cauchy distribution, instead of a normal
distribution, because normal distributions tend to convert jumps into gradual changes.

Therefore, in Section 6.3.1, we will discuss the implementation of a Cauchy dis-
tribution as a random effect in the Cox PH model. Then, in Sections 6.3.2 and 6.3.3,
using a Cauchy distribution for the first- and second-order differences of b will be
discussed.

6.3.1 Cauchy distribution

We extend the Cox PH model (by including CNA profiles as random predictors) to:

hi(t|X,Z) = h0(t) exp {Xiβ + Zib}. (6.5)

We assume b to follow a multivariate Cauchy distribution with location 0 and scale
Σ(θ); In other words, b ∼ Cauchy(0,Σ(θ)).

We considered the same approach in Chapter 6, which linked the likelihood ap-
proximation of (Breslow & Clayton (1993)) with the penalised likelihood concept to
derive a generalisation of the model’s estimation. The marginal (integrated) likelihood
L(h0(t), β, θ) for model (6.5 ) is

L(h0(t), β, θ) =

∫ n∏
i=1

hi(t|b)δiSi(t|b)p(b;D(θ))db

=

∫ n∏
i=1

[h0(t) exp(Xiβ + Zib)]
δi exp[−H0(t) exp(Xiβ + Zib)]p(b; Σ(θ))db,

(6.6)

where the random effects b are integrated out. As b is restricted to follow a multivariate
Cauchy distribution with a location 0 and a scale matrix Σ(θ), the probability density
function (PDF) of this multivariate Cauchy distribution is

p(b; Σ(θ))db = Γ(
1 + q

2
)Γ(

1

2
)−1π−

q
2 |Σ(θ)|−

1
2

[
1 + b′Σ(θ)−1b

]− q+1
2 .
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6.3 Imposed smoothing

Unfortunately, the above integral equation, Eq. (6.6) is difficult to compute. There-
fore, we follow Breslow & Clayton (1993) in their approach for the GLMM and use a
Laplace approximation for the integral in (6.6).

First, instead of using the marginal likelihood L(h0(t), β, θ) (Eq. (6.6)), we use the
log of the marginal likelihood log(L(h0(t), β, θ)) = `(h0(t), β, θ), which is

`(h0(t), β, θ) =

∫ n∑
i=1

[
δi
[

log(h0(t)) +Xiβ + Zib
]
−H0(t) exp(Xiβ + Zib)

]
+ log

(
Γ(

1 + q

2
)
)
− log

(
Γ(

1

2
)
)

− q

2
log(π)− log

(
|Σ(θ)|−

1
2

)
− q + 1

2
log
(
1 + b′Σ(θ)b

)
db.

(6.7)

Then, we write Eq. (6.7) in the form:

e`(h0(t),β,θ) ∝ C|Σ(θ)|−
1
2

∫
e−k(b),

where C are constant terms that are not related to the parameters. Let k′ and k′′ denote
the q vector and q × q dimensional matrix of the first- and second-order partial deriva-
tives of k with respect to b. Ignoring the multiplicative constant C, the approximation
returns

`(h0(t), β, θ) ≈ −
1

2
log |Σ(θ)| − 1

2
log |k′′(b̃)| − k(b̃),

where

k(b̃) = −

[[ n∑
i=1

[δi
{

log(h0(t))+Xiβ+Zib̃
}
−H0(t) exp(Xiβ+Zib̃)

]
−q + 1

2
log
(
1+b̃′Σ(θ)−1b̃

)]
,

and b̃ = b̃(β, θ) denotes the solution to the partial derivatives of k(b) with respect to b.
i.e b̃ satisfies

k′(b̃) =
∂k(b̃)

∂b̃
.

The set of second partial derivative of k(b) with respect to b denoted k′′(b) has the form

k′′(b̃) =
∂2k(b̃)

∂b̃∂b̃′
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6.3 Imposed smoothing

Therefore, the approximate marginal log likelihood using the Laplace approxima-
tion leads to:

`(h0(t), β, θ) ≈ −
1

2
log |D(θ)|

− 1

2
log
∣∣∣k′′(b̃)∣∣∣

+
n∑
i=1

[
δi[log(h0(t)) +Xiβ + Zib̃]

−H0(t) exp(Xiβ + Zib̃)

]
− q + 1

2
log
(
1 + b̃′Σ(θ)−1b̃

)
.

(6.8)

if θ were known and b were considered a fixed-effects parameter, then the first two
terms are ignored and β can be chosen to maximise the second two terms, which gives
us a penalised log likelihood. Thus (β̂, b̂) = (β̂(θ), b̂(θ)) where b̂(θ) = b̃(β̂(θ)), jointly
maximise
n∑
i=1

[
δi[log(h0(t))+Xiβ+Zib̃]−H0(t) exp(Xiβ+Zib̃)

]
− q + 1

2
log
(
1+ b̃′Σ(θ)−1b̃

)
.

(6.9)
Equation (6.9) is the full likelihood for a Cox model with b as another set of pa-

rameters and penalty terms. It turns out that the full likelihood can be maximised using
penalised fixed-effect partial likelihood, as Cox showed in Cox et al. (1972):

lp(β, θ, b) =
n∑
i=1

[
δi(Xiβ+Zib)−δilog

( ∑
j∈R(ti)

exp(Xjβ+Zjb)

)]
−q + 1

2
log
(
1+b′Σ(θ)−1b

)
,

(6.10)
where q+1

2
log
(
1 + b′Σ(θ)−1b

)
is the penalty term penalising extreme values of b.

6.3.2 Using a Cauchy distribution for the first differences of b

Here, we assumed first-order differences of b, i.e

∆b ≡


b2 − b1
b3 − b2

...
bq − bq−1
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6.3 Imposed smoothing

to follow a Cauchy distribution with location 0 and a scale θIq−1, where θ = σ2.
Assuming the first differences, ∆b, have a Cauchy distribution with a location 0 and
scale θIq−1 is equivalent to assuming b is Cauchy distribution with location 0 and an
inverse scale matrix

Σ(θ)−1 ≡θ−1R−11 ,

where R−11 ≡∆′∆

=


1 −2 1 0 · · · 0
−1 2 −1 0 · · · 0

0
. . . . . . . . . 0 0

0 · · · 0 −1 2 −1
0 · · · · · · 0 −1 1


(6.11)

((see Pawitan, 2013)).

6.3.3 Using a Cauchy distribution for the second differences of b

Here, we assumed second-order differences of b,

∆2b ≡


b3 − 2b2 + b1
b4 − 2b3 + b2

...
bq − 2bq−1 + bq−2

 ,

to follow a Cauchy distribution with location 0 and scale θIq−2, where θ = σ2. As-
suming the second differences, ∆2b, have a Cauchy distribution with location 0 and a
scale of θIq−2 is equivalent to assuming b is a Cauchy distribution with location 0 and
an inverse scale matrix

Σ(θ)−1 ≡θ−1R−12 ,

where R−12 ≡(∆2)′∆2

=



1 −2 1 0 · · · · · · 0
−2 5 −4 1 0 · · · 0
1 −4 6 −4 1 · · · 0

. . . . . . . . . . . . . . .
0 · · · 1 −4 6 −4 1
0 · · · 0 1 −4 5 −2
0 · · · · · · 0 1 −2 1


(6.12)

((see Pawitan, 2013)).
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6.4 Mixture of the products of normal and Cauchy distributions for first or
second differences of b

6.4 Mixture of the products of normal and Cauchy dis-
tributions for first or second differences of b

In this section we introduce a novel algorithm based on a smooth extended Cox model
(SCox) within a random effects model framework using penalised partial likelihood
to model survival time using patients clinical characteristics as fixed effects and their
CNA profiles as random effects. We assumed CNA coefficients b to be correlated
random effects that follow a mixture of two distributions: normal as in Chapter 5 (to
achieve shrinkage around the mean values), and Cauchy for the first- or second-order
differences of b as in Section 6.3.2 and 6.3.3 (to gain smoothness). A similar idea was
first discussed in Tibshirani et al. (2005), and later in Huang et al. (2009) in smoothed
logistic regression .

to derive the penalised partial likelihood of the mixture model, we considered the
same approach in Chapter 5 and Section 6.3.1, which linked the likelihood approx-
imation of (Breslow & Clayton (1993)) with the penalised likelihood concept to de-
rive a generalisation of the model estimation. The marginal (integrated) likelihood
L(h0(t), β, θ, w) is

L(h0(t), β, θ, w) =

∫ n∏
i=1

hi(t|b)δiSi(t|b)p(b;D(θ),Σ(θ))db

=

∫ n∏
i=1

[h0(t) exp(Xiβ + Zib)]
δi × exp[−H0(t) exp(Xiβ + Zib)]

× p(b;D(θ),Σ(θ))db,

(6.13)

where the unobserved (b) are integrated out.
Now b is restricted to follow a mixture of the product of a multivariate normal

distribution (with a mean 0 and a variance-covariance matrix D(θ)) and a Cauchy
distribution (with a location 0 and a scale matrix of Σ(θ)). The PDF of this product of
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multivariate normal and Cauchy distributions is

PDF = fm(b;D(θ),Σ(θ))

=
fwn (b;D(θ))× f (1−w)

c (b; Σ(θ))

Cons

=

[
|D(θ)|− 1

2 e−
1
2
b′D(θ)−1b

]w
×
[
|Σ(θ)|− 1

2

[
1 + b′Σ(θ)−1b

]− q+1
2

](1−w)
Cons

,

(6.14)

where Cons is the normalising constant which does not contain any parameters.
As before, the above integral equation, Eq. (6.13), is difficult to evaluate. There-

fore, we follow the same steps explained in the previous section to find the Laplace
approximation for the integral in (6.13).

First, The log of the marginal likelihood (Eq. (6.13)), `(h0(t), β, θ, w) is

`(h0(t), β, θ, w) =

∫ n∑
i=1

[
δi
[

log(h0(t)) +Xiβ + Zib
]
−H0(t) exp(Xiβ + Zib)

]
+ w log

[
|D(θ)|−

1
2 e−

1
2
b′D(θ)−1b

]
+ (1− w) log

[
|Σ(θ)|−

1
2
[
1 + b′Σ(θ)−1b

]− q+1
2

]
− log (Cons)db.

(6.15)

Then, we write Eq. (6.15) in the form:

e`(h0(t),β,θ,w) ∝ C|D(θ)|−
1
2 |Σ(θ)|−

1
2

∫
e−k(b),

where C is a constant terms that are not related to the parameters. Let k′ and k′′ denote
the q vector and q×q dimensional matrix of first- and second-order partial derivatives of
k with respect to b. Ignoring the multiplicative constant C, the approximation returns

`(h0(t), β, θ, w) ≈ −1

2
log(|D(θ)||Σ(θ)|)− 1

2
log |k′′(b̃)| − k(b̃),

where

k(b̃) =−

{[ n∑
i=1

[δi
[

log(h0(t)) +Xiβ + Zib̃
]
−H0(t) exp(Xiβ + Zib̃)

]

−
(1

2
b̃′D−1(θ)b̃+

q + 1

2
log
(
1 + b̃′Σ(θ)−1b̃

))}
,
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and b̃ = b̃(β, θ) denotes the solution to the partial derivatives of k(b) with respect to b.
i.e b̃ satisfies

k′(b̃) =
∂k(b̃)

∂b̃
.

The set of second partial derivative of k(b) with respect to b denoted k′′(b) has the form

k′′(b̃) =
∂2k(b̃)

∂b̃∂b̃′

Therefore, the approximate marginal log likelihood using the Laplace approxima-
tion leads to:

`(h0(t), β, θ, w) ≈ −1

2
log(|D(θ)||Σ(θ)|

− 1

2
log
∣∣∣k′′(b̃)∣∣∣

+
n∑
i=1

[
δi[log(h0(t)) +Xiβ + Zib̃]−H0(t) exp(Xiβ + Zib̃)

]
−
[
w
[1
2
b̃′D(θ)−1b̃

]
+ (1− w)

[q + 1

2
log
(
1 + b̃′Σ(θ)−1b̃

)]]
.

(6.16)

If both θ, w are known and b is considered a fixed-effects parameter, the first two
terms are ignored and β is chosen to maximise the second two terms; this is a penalised
log likelihood. Thus (β̂, b̂) = (β̂(θ, w), b̂(θ, w)), where b̂(θ, w) = b̃(β̂(θ, w)), jointly
maximise

n∑
i=1

[
δi[log(h0(t)) +Xiβ + Zib̃]−H0(t) exp(Xiβ + Zib̃)

]
−
[
w
[1
2
b̃′D(θ)−1b̃

]
+ (1− w)

[q + 1

2
log
(
1 + b̃′Σ(θ)−1b̃

)]]
.

(6.17)

Equation (6.17) is the full likelihood for a Cox model with b as another set of
parameters and penalty terms. It turns out that it can be maximised using penalised
fixed effect partial likelihood, as Cox showed in Cox et al. (1972):

`P (β, θ, w, b) =
n∑
i=1

[
δi(Xiβ + Zib)− δilog

( ∑
j∈R(ti)

exp(Xjβ+Zjb)

)]

−
[
w
[1
2
b′D(θ)−1b

]
+ (1− w)

[q + 1

2
log
(
1 + b′Σ(θ)−1b

)]]
,

(6.18)
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where
[
w
[
1
2
b′D(θ)−1b

]
+ (1 − w)

[
q+1
2

log
(
1 + b′Σ(θ)−1b

)]]
is the penalty term pe-

nalising extreme value of b.

6.5 Parameter estimation

6.5.1 Estimation of β and b

1. To derive an estimation of β and b at fixed values for (θ, ρ) or (θ, %) in Sections
6.2.1 and 6.2.2, we used the same partial differentiate of the log partial likelihood
lP (β, b) as given by Eq. (5.6) from Chapter 5.

2. For the mixture of the products of a normal and a Cauchy distribution for first or
second differences of b (see Section 6.4), we can derive an estimation of β and b
at fixed θ, w by first partially differentiating the penalized partial log-likelihood
`P (β, θ, w, b) from Eq. (6.18) with respect to β and b. The resulting estimation
equations for β and b, respectively, are

u(β) =
n∑
i=1

δi

[
Xi −

∑
j∈R(ti)

Xjexp(Xjβ+Zjb)∑
j∈R(ti)

exp(Xjβ+Zjb)

]
(6.19)

and

u(b) =
n∑
i=1

δi

[
Zi −

∑
j∈R(ti)

Zjexp(Xjβ+Zjb)∑
j∈R(ti)

exp(Xjβ+Zjb)

]
−
(
wn(D(θ)−1b)

+ wc

((q + 1)Σ(θ)−1b

1 + b′Σ(θ)−1b

))
.

(6.20)

Estimates for (β̂(θ, w), b̂(θ, w)) can be found by alternating between solving
(6.19) and (6.20) at a fixed value for (θ, w) using the Newton-Raphson algo-
rithm. The inverse of the minus second partial derivative matrix H−1 (Hessian)
can be used as an approximate covariance matrix. However, using this covari-
ance matrix give a wide confidence interval as we can see in the simulation result.
Gray (1992) suggested the estimate of the covariance to be H−1IPLH−1, where
IPL is the standard Cox PH model information matrix, or the second derivative
matrix of partial log likelihood with respect to β and b.
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6.5 Parameter estimation

We calculate the confidence interval of the random effect as

CI = b̂± 1.96×
√

var(b̂).

Then, we compared the CI by using the previous two formulas of var(b̂) with the
CI by using bootstrap to see which formula was more appropriate. This com-
parison suggests the use of Gray’s formula as we can see later in the simulation
result.

6.5.2 Estimation of tuning parameters K = (θ, ρ, %, w)

To estimate the tuning parameters K = (θ, ρ), K = (θ, %), or K = (θ, w), we used
a cross-validation (CV) criterion, which is based on the unpenalised (standard) log
partial likelihood (`(β,K, b)), as proposed by Verweij & Van Houwelingen (1993).
We could have used different values of θ for the normal and Cauchy distributions,
which would have given us one more tuning parameter. However, for simplicity we set
θ to be the same for both distributions.

We used fivefold CV. For each K,we computed the cross-validated partial likeli-
hood as

CV (K) =
5∑

m=1

l[s]
(
β̂
[−s]
K , b̂

[−s]
K

)
, (6.21)

where l[s]
(
β̂
[−s]
K , b̂

[−s]
K

)
is the the unpenalised (standard) log partial likelihood for the

sth validation set evaluated at (β̂
[−s]
K , b̂

[−s]
K ) (the coefficient estimates from the sth train-

ing sets). We selected a value for K that maximised CV (K) over a fine grid of values.
We can compute standard errors for the CV curve at each tuning parameter value

for K. We computed the sample standard deviation of CV1(K), . . . , CV5(K), and
finally we used

SE(K) = SD(K)/
√

5 (6.22)

for the standard error of CV (K). We chose a value forK where the error is within one
standard error. In other words, we take the model whose error is within one standard
error of the minimal error.
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6.6 Simulation results

We generated CNA , Z, with a dimension of 85 × 100 from a multivariate normal
distribution Z ∼ N(0, τ) , where τ is called the variance-covariance matrix of the
data (the CNAs) as follows:

τ = 1×

1 .5 0 . . . 0 0

.5 1 .5 0

0

... 0

0 .5

0 0 0 .5 1




. (6.23)

Then, to make the CNA (Z) have a signal, we did the following:

1. We separated the patients in our study based on their survival time. The first
group was comprised of the patients whose survival time exceeded the median
of the group we studied, while the second group were the patients whose survival
time was less than the median.

2. In the first 10 (1 − 10) columns of Z,we added 6 to the patients’ CNAs in the
first group, and we added 2 to the patients’ CNAs in the second one. Therefore,
the first group gains more CNA than the second group in the first 10 columns.

3. In the second 10 columns (11− 20), we inverted those processes.

4. For the rest of the windows (21 − 100), we added 4 for all patients.Therefore,
booth groups have the same expected CNA.

6.6.1 Simulation study: compound symmetry covariance matrix
(first neighboring structure)

In Figure 6.1, we can see the effects of choosing different values for ρ when θ = 0.001

on the estimation of random effects b. From the left panel to the right panel, ρ =

0, 0.5, and 0.9, respectively. When ρ = 0, the structure of the variance-covariance
matrix is the diagonal structure explained in the previous chapter (Chapter 5). For all
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setting, the first 20 values reveal a signal as we anticipated. We can see the effect of
including ρ in the estimation of b for neighborhood values.
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Figure 6.1: Estimation of random effects b when θ = 0.001 (ρ = (0, 0.5, and 0.9)

from left to right, respectively)

In order to estimate the optimal tuning parameters for K = (θ, ρ), we used the CV
criterion as explained in Section 6.5.2. Figure 6.2 shows CV for different values of θ
and ρ.
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Figure 6.2: Five-fold CV (E.q (6.21)) for different values of θ and ρ

The estimation of the random effects b, based on the optimal tuning parameters
K = (θ = 0.005, ρ = 0.2), can be seen in Figure 6.3.
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Figure 6.3: Estimation of the random effects b in compound symmetry covariance
matrix (first neighboring structure) model based on optimal tuning parameters

6.6.2 Simulation study: inverse of the covariance matrix

Figure 6.4 shows the effects of choosing different values for % when θ = 0.001 on the
estimation of random effects b. From left to right, % = 0,−0.3, and −0.4 respectively.
When % = 0, the structure of the covariance matrix is the diagonal structure explained
in the previous chapter (Chapter5).
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Figure 6.4: Estimation of random effects b when θ = 0.001 (% = (0,−0.3, and− 0.4)

from left to right, respectively)
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In order to estimate the optimal tuning parameters for K = (θ, %), we again used
the CV criterion as explained in Section 6.5.2. Figure 6.8 shows CV for different
values of θ and %.
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Figure 6.5: Five-fold CV (E.q (6.21)) for different values of θ and %

Estimations of the random effects b, based on the optimal tuning parameters K =

(θ = 0.001, % = −0.4), are shown in Figure 6.9.
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Figure 6.6: Estimation of the random effects b in Inverse of the covariance matrix
model based on optimal tuning parameters
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6.6.3 Simulation study: mixture of the products of normal and
Cauchy distributions for first or second differences of b

Figure 6.7 shows the effects of choosing different weights of w when θ = 0.001 on
the estimation of random effects b can be seen. In this figure, from left to right, w =

1, 0.5, and 0, respectively; the first differences are presented in the top panels, while
the bottom panels show the second differences. When w = 1, the method was reduced
to only a normal distribution, as explained in the previous chapter (Chapter5), and
when w = 0 the method was reduced to a Cauchy distribution for first or second
differences. Choosing a first or second differences of b to be Cauchy alone, as can be
seen on right panels of Figure 6.7, smoothed out the random effects. In other words,
the random effects estimates b are over smoothed.
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Figure 6.7: Top panels show estimations of random effects bwith a Cauchy distribution
for the first differences, and bottom panels show estimations for the second differences;
in both rows θ = 0.001, and from left to right w = (0, 0.5, and1), respectively.

In order to estimate the optimal tuning parameters forK = (θ, w), we also used the
CV criterion as explained in Section 6.5.2. Figure 6.8 shows CV for different values
of θ and w.
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Figure 6.8: Five-fold CV (E.q (6.21)) for different values of θ and w for first and
second differences (top and bottom, respectively)

The estimation of the random effects b, based on the optimal tuning parameters
K = (w = 0.7, θ = 0.01) for the first differences and K = (w = 0.3, θ = 0.005) for
the second differences, can be seen in Figure 6.9 (left and right panels, respectively).
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Figure 6.9: Estimation of the random effects b based on the optimal tuning parameters
for the first and second differences (left and right, respectively)

Finally, we gathered all estimations of the random effects b in Figure 6.10. We
can see that the best model based on CV (greater is better) is the mixture of nor-
mal and Cauchy distributions for the first differences (CV=-75.18). The second-best
model is the the mixture of normal and Cauchy distributions for the second differences
(CV=-75.57). The third-best model is the normal distribution with an inverse of co-
variance matrix (CV=-76.26). The fourth-best model is the normal distribution with
a compound symmetry covariance matrix (first neighbouring structure) (CV=-77.65).
Finally, the worst model is the normal distribution with a diagonal structure of covari-
ance matrix (CV=-77.83).

As we have imposed a correlation between the first neighbouring windows in the
simulation setting, we expect the model with a diagonal structure of covariance matrix
(presented in Chapter 5) to be the worst, because the diagonal structure indicates inde-
pendence. For CNAs, we believe that the mixture of normal and Cauchy distributions
for second-order differences works better; in this simulation, however, the first-order
differences work better than the second-order differences. This is because we only
have two jumps in this simulation, and we imposed a correlation between the first
neighbouring windows. This is not the case for the CNAs; there we have many jumps,
and we have strong serial correlations.
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Figure 6.10: Estimation of the random effects b based on the optimal tuning parameters
for all methods

6.6.4 Simulation study: confidence interval of the random effects

Figure 6.11 shows the estimation of the random effects b for one simulation along
with the confidence interval CI. We use three different way to calculate the CI of b
as explained in Section 6.5. First, we use the var(b̂) to be H−1. Second, we use the
var(b̂) to be H−1IPLH−1. Third, we calculate the CI of b by using bootstrap. For

bootstrap, we resample the data with replacement, and the size of the resample must
be equal to the size of the original data set. We repeat this routine 1000 times.
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Figure 6.11: The estimation of random effects b along with CI. In the left panel,
var(b̂) = H−1, middle panel var(b̂) = H−1IPLH

−1 , and right panel used bootstrap.
The green dotted lines indicates windows which have a signal (1 : 10, 11 : 20)

It is clear from looking to Figure 6.11, that the CI by using Gray’s formula, var(b̂) =

H−1IPLH
−1, is similar to the CI by using bootstrap.

6.7 Real data

In this section, we will only discuss the method where the random effects were as-
sumed to be a mixture of the products of normal and Cauchy distributions for second
differences of b (SCox). The results based on a compound symmetry covariance matrix
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6.7 Real data

(Coxrho) and an inverse of covariance matrix (Coxinv) will be presented in Appendix
B.

6.7.1 Model fit: Estimation of tuning parameters K = (θ, w)

An important parameter to be estimated from the SCox PH model is K = (θ, w).
These parameters are important in the interpretation; as θ goes to zero (in limit terms),
the estimates of the random effects will be zero, and no information on CNAs is taken
into account in the model. Also, w controls the smoothness of the model. We will be
usually interested in models for more than one amount of regularisation. It is possible
to solve a two-dimensional grid of θ and w; however, we found this to be computa-
tionally impractical, and to do a poor job of model selection (similar to Simon et al.’s
(Simon et al. (2011)) finding). Instead, we fixed the mixing parameterw and computed
solutions for a path of θ. We set the mixing parameter w to be 0.5 to give equal weight
to the normal and Cauchy distributions.

Figure 6.12 shows the cross validation partial likelihood (CVPL) (θ) whenw = 0.5.
To estimate θ, we use the principle of CV with the one standard error rule ( Eq. (6.22)).
By applying the one standard error rule, the figure gives a value of log(θ) = −10.105,
corresponding to θ = 4.09× 10−5.
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Figure 6.12: CVPL (θ); the horizontal dotted line indicates one standard error (Eq.
(6.22)) of CVPL(θ)

6.7.2 Model fit: fixed effects

Using the optimal value for θ, the estimates of the fixed effects and their inferences
can be seen in Table 6.1. For comparison, we estimate the fixed effects under both
conditions with and without the CNA profiles in the model. The table indicates that
the variables Age, Stage-T, and Stage-N are statistically significant ( p-value < 0.05).
The estimates indicate that, all else being equal, the hazard ratio increases by about six
percent (e0.055 ≈ 1.06) with each one-year increase in Age-at-operation. The positive
estimates of Stage-T3 indicate that larger tumour size is associated with a significant
increase in the hazard (relative to Stage-T1 as the baseline). Similarly, the estimates of
Stage-N2 indicate that a wider spread of cancer cells to the lymph nodes increases the
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hazard significantly (relative to Stage-N0 as the baseline).

Table 6.1: Summary of fixed predictors

Predictor Estimate Exp Std.Error zvalues p-value

(Without CNA profiles)
Age 0.0551 1.06 0.0164 3.37 0.0008
StageT2 0.1818 1.20 0.3215 0.57 0.5700
StageT3 1.7623 5.83 0.6392 2.76 0.0058
StageN1 0.3616 1.44 0.3019 1.20 0.2300
StageN2 1.3653 3.92 0.4824 2.83 0.0047

(With CNA profiles)
Age 0.0571 1.06 0.0164 3.48 0.0005
StageT2 0.1858 1.20 0.3215 0.58 0.5633
StageT3 1.9010 6.69 0.6392 2.97 0.0029
StageN1 0.3451 1.41 0.3019 1.14 0.2529
StageN2 1.3245 3.76 0.4824 2.74 0.0060

6.7.3 Model fit: random effects

The random effects estimates b of the full SCox PH model, using CNA profile from
smooth segmentation, are presented in Figure 6.13. The magnitude of the estimates is
relatively small (compared to the fixed effects estimates, for example). This is due to
the shrinkage effect on the estimation of random effects: 80 observations were used
to estimate almost 14,000 variables. Positive estimates of random effects indicate that
the relevant windows are associated with an increase of the hazard ratio, while negative
estimates of random effects indicate the opposite.
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6.7 Real data

Figure 6.13: Random effects estimate b in the SCox model, using CNA profiles. Ge-
nomic windows with missing values (e.g. in the centromere regions) were excluded
from analysis, hence these are not plotted. A more detailed view of the random effects
estimates in each chromosome is presented in the next figure.
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Figure 6.14: Detailed views of the random effects estimates b in each chromosome,
using CNA profiles from smooth segmentation

Figure 6.15 shows the random effects estimates b of the full SCox PH model along
with the significant windows, (red dotted lines), in term of CI. In other words, the
windows whose CI does not include zero (1273 out of 13968).
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Figure 6.15: Random effects estimate b in the SCox model, using CNA profiles along
with the significant windows, (red dotted lines), in term of CI. In other words, the
windows whose CI does not include zero (1273 out of 13968).

6.7.4 Cumulative hazard rate and estimates of survival functions

To show that SCox PH modelling with CNA profiles is able to distinguish individuals
at different levels of risk, we estimate the survivor functions for three individuals in the
lung cancer dataset. These individuals correspond to low, medium, and high levels of
risk based on their risk scores Ri, which equate to the 10th, 50th, and 90th percentiles
of the distribution of Ri in the dataset. Figure 6.16 shows the estimated survivor func-
tions for the three individuals using smooth-segmented profiles as random predictors.
The figures indicate that the median survival times for low, medium, and high risk
individuals are approximately 7.6 years, 2.46 years, and 7.3 months, respectively.
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Figure 6.16: Estimated survival functions from SCox PH model for three individuals
in the 10th (low risk), 50th (medium risk), and 90th (high risk) percentiles of risk set
Ri, based on smooth-segmented profiles as random predictors

6.7.5 Model diagnostics

As part of model diagnostics, we plotted the cumulative hazard of the Cox-Snell resid-
uals from the model fitting based on smoothed CNAs as shown in Figure 6.17 (solid
black line). The figure indicates that the cumulative hazard line is very close to the
identity line, which suggests that the SCox PH model is suitable and has a reasonably
good fit for the CNA profile data. The cumulative hazard line near the top right corner
of the figure is slightly jagged, as expected, due to rare events (deaths) near the end of
the survival time distribution.
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Figure 6.17: Cumulative hazard of Cox-Snell residuals (solid black line) from the
SCox PH model fit, in comparison to the identity line (dashed line), based on smooth-
segmented CNA profiles

6.8 Discussion

In this chapter, we have investigated how to deal with dependencies between neigh-
bouring genomic windows and spatial characteristics of CNAs which would have been
ignored if we had used the methods described in the previous chapter. We introduced
three novel algorithms (Coxrho, Coxinv, and SCox) within a random effects model
framework using penalised partial likelihood to model survival time using the patients’
clinical characteristics as fixed effects and their CNA profiles as random effects. A
key parameter in the model is the tuning parameters (K = (θ, ρ), K = (θ, %), or
K = (θ, w)), which controls the amount of information in the CNA profiles used in
the model fitting.

For the tuning parameter estimates K, we used five-fold CV partial likelihood.
The tuning parameters have been recovered in the simulation study because we have
imposed a strong signal in the simulated CNAs. However, for our real data, we used
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6.8 Discussion

the principle of the one standard error rule for the CV curve at each tuning parameter
K by choosing values for K within one standard error.

Our approach in this study was a genome-wide approach, in the sense that we took
into account all of the CNA information in the genome. In this regard, the model was
not embedded with a variable selection mechanism, which will be discussed in the next
chapter. We could use the idea of confidence interval (CI) to do a variable selection;
however we found some genomics windows fall on the border of CI which make it
harder to choose the significant windows.

Finally, our computational method andR package in this study is available, and can
also be used for CNA profiles from array technology, provided that the (genome-wide)
CNA profiles across individuals can be put into matrix form. This means that CNA
estimates across individuals can be made into the same column in the data matrix, for
each genomic region.

To sum up, In modelling cancer patients survival, we described three different esti-
mation procedures using the Cox proportional hazard model to take into account cancer
patients genome-wide CNAs. Unlike the extended Cox method described in the previ-
ous chapter, the new methods deal with dependencies between neighbouring genomic
windows and their spatial characteristics.

The genome-wide CNA profiles are considered random predictors in the model,
and the clinical variables as fixed predictors. We have three different scenarios for the
distribution of CNAs:

1. Normal with mean zero and a compound symmetry covariance matrix (Coxrho),
as described in Section 6.2.1;

2. Normal with mean zero and an inverse covariance matrix (Coxinv), as described
in Section 6.2.2; and

3. Correlated random effects that follow a mixture of two distributions, normal and
Cauchy, for the first or second differences as described in Section 6.3.

These models enabled us to assess the significance of the fixed predictors, and
to examine the genomic regions associated with the patients survival. The models
also enabled us to estimate individual patients’ survivor functions, and distinguish the
survivor functions for different groups of patients at different risk levels.
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Chapter 7

Extending Cox PH model : Sparse
solution

7.1 Introduction

In the previous chapter we addressed dependencies between neighbouring genomic
windows and a particular spatial characteristic of CNAs. However, models based on
the methods explained in the previous chapter are not embedded within a variable
selection mechanism. They employ all predictors regardless of their relevance, which
makes it difficult to interpret the results they produce.

In this chapter, we introduce a novel algorithm based on a sparse-smoothed Cox
(SSCox) model within a random effects-model framework, using penalised partial like-
lihood to model survival time using patients’ clinical characteristics as fixed effects and
CNA profiles as random effects. We assume CNA coefficients to be correlated ran-
dom effects that followed a mixture product of three distributions: normal (to achieve
shrinkage around the mean values ( Chapter 5 )), Cauchy (for the second-order differ-
ences, to gain smoothness ( Chapter 6 )), and Laplace (to achieve sparsity).

This chapter presents a full gradient algorithm for maximising the penalised partial
likelihood. We generalised Goeman (2010)’s idea, which follows the gradient of the
likelihood from a given starting value of b and uses the full gradient at each step.
Furthermore, the algorithm can automatically switch to a Newton-Raphson when it
gets close to the optimum values to avoid the tendency of gradient-ascent algorithms
of slow convergence.
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7.2 SSCox PH model

The organization of this chapter is as follows. Section 7.2 discusses the extension
of Cox PH model to include the copy number alteration as random effects. In Section
7.3 and 7.4, the estimation of the unknown parameters of the model is discussed. Sim-
ulation studies and comparison with previous methods are described and discussed in
Section 7.5. Finally, the results and evaluation of the lung cancer dataset are found in
Section 7.6.

7.2 SSCox PH model

similar to Chapter 5, and 6, we incorporated genome-wide CNA profiles into the orig-
inal Cox PH model (Cox et al. (1972)). To recap the notations, let δi as the event
indicator for the i-th patient, i = 1, 2, . . . , n, where δi = 1 if the survival time of the
i-th patient, ti, is uncensored, and δi = 0 if their survival time, ti, is censored. We
defined X to be a matrix of size n × p, where the columns of X corresponded to the
different pieces of clinical information being used as fixed predictors, and the rows of
X corresponded to different patients. We designated the rows of X as Xi, which is a
p vector of fixed predictors for the i-th patient. The matrix Z is of size n × q, with
n � q, where q is the number of genomic regions in the CNA profiles (in our lung
cancer cohort, n = 80 and q = 13968). We also assigned h0(t) to be the baseline
hazard function, which indicates the baseline hazard rate for all of the patients in the
group across time, and does not depend on any predictor.

Then we extended the Cox PH model to include the CNA profiles as random pre-
dictors,

hi(t|X) = h0(t) exp {Xiβ + Zib}, (7.1)

where b is a q−vector of random effects that we assumed to follow a mixture model
that combined shrinkage, smoothness and sparseness. This mixture model is a mixture
of the product of a multivariate normal distribution, Cauchy distribution for the second
deferences of b (as expained in Chapter 6), and Laplace distribution. In other words,
The PDF of this product of multivariate normal, Cauchy, and Laplace distributions is

f(b) =
fwnn (b;D(θ1))× fwcc (b; Σ(θ2)

−1)× fwll (b,
√
θ3)

C
,
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7.2 SSCox PH model

where C is the normalising constant which does not contain any parameters. The
details of these distributions explain in next paragraphs.

First, to shrink bi so that it varied little around its mean value, we assumed b to be
a normal distribution with mean zero, and covariance variance matrix D(θ1), where
D(θ1) ≡ θ1Iq (Iq is an identity matrix of size q), and θ1 = σ2

1 ( as explained in chapter
5) .

Secondly, Huang et al. (2009) suggest that as we were dealing with CNAs, we
need to allow for sudden jumps or large spatial changes. To ensure this flexibility,
Huang et al. (2009) chose a heavy-tailed distribution, the Cauchy distribution, instead
of a normal distribution, because normal distributions tend to convert jumps into grad-
ual changes. Therefore ( as explained in Chapter 6), to achieve this smoothness, we
assumed second-order differences of b,

∆2b ≡


b3 − 2b2 + b1
b4 − 2b3 + b2

...
bq − 2bq−1 + bq−2


to follow a Cauchy distribution with a location of zero and a scale of θ2In−2, where
θ2 = σ2

2 . In this case, ∆2b Cauchy with a location of zero and a scale of θ2In−2 is
equivalent to b Cauchy with a location of zero and an inverse scale matrix of

Σ(θ)−1 ≡θ−12 R−12 ,

where R−12 ≡(∆2)′∆2

=



1 −2 1 · · · · · · · · · 0
−2 5 −4 1
1 −4 6 −4 1

. . . . . . . . . . . . . . .
1 −4 6 −4 1

1 −4 5 −2
0 1 −2 1


(7.2)

((see Pawitan, 2013)).
Finally, to achieve the sparseness necessary for variable selection, we assume bi to

follow a Laplace distribution with a location of zero and a scale factor of
√
θ3, where

θ3 = σ2
3 .
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7.3 Estimation of β and b for fixed tuning parameters K = (θ, wn, wc, wl)

For simplicity, we set θ1 = θ2 = θ3 so that we would only have to look for one
tuning parameter θ instead of three different values for θs.

The addition of the random predictors Z also extend the log partial likelihood for
β to include the random effect b, as

lp(β, θ, b) =
n∑
i=1

[
δi(Xiβ + Zib)− δilog

( ∑
j∈R(ti)

exp(Xjβ + Zjb)

)]

−
[
wn
[1
2
b′D(θ)−1b

]
+ (wc)

[q + 1

2
log
(
1 + b′Σ(θ)−1b

)]
+

(wl)√
θ

[ q∑
k=1

|bi|
]]
,

(7.3)

where
[
wn
[
1
2
b′D(θ)−1b

]
+ (wc)

[
q+1
2

log
(
1 + b′Σ(θ)−1b

)]
+ (wl)√

θ

[∑q
k=1 |bk|

]]
is the

part of the partial log likelihood that corresponds to the mixture of normal, second-
order difference Cauchy, and Laplace assumptions for b, and R(ti) is a set of patients
who are at risk at time ti (the risk set).

The estimation of the model parameters β and b, and the tuning parameter K =

(θ, wn, wc, wl), is done by first estimating β and b at fixed K, as described in Section
7.3. The estimation of the tuning parameter K is done via five-fold cross-validation
partial likelihood, introduced by Verweij & Van Houwelingen (1993), as described
in Section 7.4. In practice, we alternate the two estimation steps to obtain all of the
estimates.

7.3 Estimation of β and b for fixed tuning parameters
K = (θ, wn, wc, wl)

Estimation of fixed effects β

We derived an estimation of β at a fixed value forK by first partially differentiating the
log partial likelihood lp(β, b) from Eq. (7.3) with respect to β. The resulting estimating
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equation for β is:

n∑
i=1

δi

[
Xi −

∑
j∈R(ti)

Xjexp(Xjβ + Zjb)∑
j∈R(ti)

exp(Xjβ + Zjb)

]
. (7.4)

Estimation of random effects b

To derive an estimation of the random effects b, we could use a standard convex opti-
mizer such as as Broyden-Fletcher-Goldfarb-Shanno (BFGS) method (Head & Zerner
(1985)), conjugate gradient (Møller (1993)), and Nelder-Mead (Lagarias et al. (1998))
or any other standard convex optimizer. However all of these methods suffer from two
general issues. First, they use an approximate solution. Second, they are computation-
ally slow as can bee seen in Table 7.1. In other words, It take too much time to estimate
the random effect. This is become more harm when we include these estimation in the
cross validation method.

Alternatively, we derive an estimation of b by using Gradient Ascent, as proposed
by Goeman (2010), with some modifications. Goeman (2010) chose to use only the
log partial likelihood because only used a Laplace distribution whereas we included
the penalty of the normal and Cauchy distributions in the log partial likelihood. Al-
though we combined the log partial likelihood with the penalty of both distributions,
this combination is still a highly regular function: concave and everywhere at least
twice differentiable. As a result, one case of our method is the same version as Goe-
man (2010)’s method, used when the weights of the normal and Cauchy distributions
are equal to zero.

To understand why gradient ascent is the method of choice for our estimation, it is
worthwhile to look more closely into the penalized log partial likelihood function (7.3)
that is to be optimized. We rewrote the target function of Eq. (7.3) as a sum of two
terms:

lp(β, b) = lpnc −
(wl)√
θ

[ q∑
k=1

|bk|
]

(7.5)

1. The first term, lpnc, which corresponds to the first three terms on the right hand
side of Eq. (7.3), is the log partial likelihood plus the penalty of the normal
and Cauchy parts. In the models we are interested in, this is a highly regular
function: concave and everywhere at least twice differentiable.
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2. The second term, the penalty of the Laplace part, P (b) = (wl)√
θ

[∑q
k=1 |bk|

]
, is

less well behaved: it is concave and continuous, but is only differentiable at
points with bk 6= 0 for all k.

The penalized log partial likelihood (7.5) is not differentiable everywhere because
of the lack of differentiability of the Laplace penalty function. Therefore, The Newton-
Raphson algorithm can not be applied directly. An alternative approach is the gradient
ascent algorithm. A gradient ascent algorithm for the optimization of one coefficient
just calculates the derivative at that point and takes a step in that direction. When the
derivative is zero, it estimates.

Even though the gradient ascent is robust in its simplicity, when a basic gradient
ascent algorithm is applied on the lasso problem, it is not successful. To solve that,
Goeman (2010) defined a directional derivative as

l′p(b; v) = lim
t→0

1

t
{lp(b+ tv)− lp(b)}

for every point b and every direction v ∈ <q. The gradient can then be defined for
every b as the scaled direction of steepest ascent. The algorithm follows the gradient
in the direction vopt which maximizes l′p(b; v) among all v such that ||v|| = 1

The gradient g(b), which is a vector of length q, can be calculated from the unpe-
nalized log partial likelihood gradient with the penalty of normal and Cauchy parts,
(d(b) = ∂lpnc/∂(b) = (d(b1), . . . , d(bq))

′), as

g(bk) =


d(bk)− (wl)√

θ
sign (bk) if bk 6= 0

d(bk)− (wl)√
θ

sign (d(bk)) if bk = 0 and |d(bk)| > (wl)√
θ

0 otherwise,

Where k = (1, 2, . . . , q) and

sign (bk) =


1 if bk > 0

0 if bk = 0

−1 if bk < 0

This gradient is discontinuous at every point where the penalized log likelihood lp is
not differentiable, i.e at every point with bk = 0 for some k.
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Then gradient ascent algorithm is constructed that updates the coefficients b with
step size t until convergence:

b new = b old + tg(b old)

The gradient ascent algorithm from Goeman (2010) also includes Newton-Raphson
steps to include the fast optimization properties of the Newton-Raphson when near the
optimum. Let topt be the optimum and tedge the borders of the sub domain, where a sub
domain is a space that does not include any zero. Where,

tedge = mink

{
− bk
g(bk)

:sign(bk) = −sign{g(bk)} 6= 0

}
,

and
topt = − l

′
p(b; g(b))

l′′p(b; g(b))
.

l′p(b; g(b)) and l′′p(b; g(b)) is the directional first and second derivative, respectively,
for every b and g(b)

l′p(b; g(b)) = g(b).g(b)/||g(b)||

l′′p(b; g(b)) = g(b)′
∂2lpnc

∂b∂b′
g(b).

Calculating the full q × q Hessian matrix of lpnc to calculate the directional second
derivative is hardly and ever necessary because the direction g(b) of interest, which is
the direction of the gradient, will have many zeros.

Then the algorithm is shown below

Algorithm 1 Gradient ascent algorithm for penalized partial log likelihood of Sparse
smoothed Cox with NewtonRaphson.

1: Start with initial values b(0)

2: For steps s = 0, 1, 2, . . . : iterate

b(s+1) =


b(s) + tedgeg(b(s)) if topt ≥ tedge

bs+1
NR if topt < tedge and sign(b

(s+1)
NR ) = sign(bs+)

b(s) + toptg(b(s)) otherwise,

3: End if convergence occurs when g(b) = 0.
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where b+ indicates the set of active variables and bNR is a NewtonRaphson step:

b(s+1) = b(s) − {
∂2lpnc

∂b∂b′
}−1g(b(s)).

7.4 Estimating the tuning parametersK = (θ, wn, wc, wl)
by cross-validation

We use a cross-validation criterion, which was based on the unpenalised log partial
likelihood (standard Cox), proposed by Verweij & Van Houwelingen (1993), to esti-
mate the tuning parameters K = (θ, wn, wc, wl). We used fivefold cross-validation as
explained in Chapter 6, Section 6.5.2

To choose the path of θ for the set of weights (wn, wc, wl), we started from a mini-
mum value of θ, namely θmin = maxi wl

|di(0)| , which yielded the estimate b̂ = 0. We then
set the maximum value of θ to be θmax = θmin/ε, and computed solutions over a grid of
v between θmin and θmax, where θj = θmin(θmax/θmin)

j/v for j = 0, . . . , v.

7.5 Numerical study

We compared our proposed method, the SSCox PH model, with a sparse Cox PLS
having an L1 penalty (SPLS-L1) and a sparse Cox PLS with an HL penalty (SPLS-
HL) (presented in Lee et al. (2013)). All comparisons are based on 100 simulation
datasets. To get a high-dimension setting, we had to set the sample size for n to be
less than the number of predictors q. Therefore, we chose the values of n = 100 and
p = 200, with %30 censoring rate.

7.5.1 Simulation setting

We first conducted simulations to assess the performance of the SSCox PH model. We
followed the simulation setting of Bøvelstad et al. (2007), Nygård et al. (2008), and
Lee et al. (2013). The steps taken to produce this simulation are explained in the next
paragraph.

First, the covariate matrix Z was generated from a multivariate normal distribution
with a zero mean vector and the 200 × 200 covariance matrix Σ. Here we assumed
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Σ = diag{Σc}c=1,....,10,with a 20×20 matrix Σc. Σc has diagonal elements σ2
c = 1 and

off-diagonal elements ρσ2
c for all c = 1, ...., 10. In this simulation, we set ρ equal to

0.9, because it is close to our real data and Lee et al. (2013) argued that their methods
work better with higher correlation.

For i = 1, ...., n, we assumed

ηi =
40∑
j=1

zijbj,

where zij is the (i, j) element of Z. bj = exp(−α(j − 1)) and bj+20 = −bj for
j = 1, ...., 20. This setting indicated that only the first 40 covariates are associated
with survival time among 200 covariates.

The regression parameters were exponentially decaying, and the speed of the decay
was controlled by the parameter α. We used a slow decay, where α = 0.0141, such
that exp(−49α) = 0.5.

Then, we generated the survival time Ti from a Weibull distribution with a haz-
ard rate of h0(ti) = 5t4i , and the censoring time Ci was taken to be uniform (0, 3)

distributed, which gave censoring rates of approximately 35%.

7.5.2 Simulation results: one simulation and computational time
comparison

Figure 7.1 shows the estimation of the random effects b for one random simulation,
with the optimal θ based on the extended Cox PH model presented in Chapter 5 (wn =

1, wc = 0, wl = 0), (wn = 0, wc = 0, wl = 1), (wn = 0.5, wc = 0, wl = 0.5) and
SSCox model (wn = 0.4, wc = 0.2, wl = 0.4).
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Figure 7.1: Estimation of the random effects b based on the extended Cox PH model
presented in Chapter 5 (wn = 1, wc = 0, wl = 0), (wn = 0, wc = 0, wl = 1),
(wn = 0.5, wc = 0, wl = 0.5) and SSCox model (wn = 0.4, wc = 0.2, wl = 0.4), from
left to right

We can see that by setting the wight of Laplace and Cauchy to be equal to zero
(wn = 1, wc = 0, wl = 0), our proposed method SSCox reduces to the extended Cox
PH introduced in Chapter 5 ( Ridge). As we can see from the left panel of Figure 7.1,
none of the estimation of random effects b has been set to be equal to zero because the
ridge penalty (L2−penalty) is used. Moreover, our setting in the simulation indicated
that only the first 40 covariates are associated with survival time among 200 covariates.
The first 40 values reveal a signal as we anticipated, but the rest covariates ( 41-200)
are not equal to zero.

In the second left panel of Figure 7.1, we set the wight of Normal and Cauchy to
be equal to zero (wn = 0, wc = 0, wl = 1); this setting reduces our proposed method
(SSCox) to the Lasso solution (Tibshirani et al. (1997)). It is clear that Lasso tends to
identify only one of the correlated features which are associated with the outcome; this
is a well known potential problem with the Lasso penalty (L1−penalty).

In third left panel of Figure 7.1, we set the wights of Normal and Laplace to be
equal to 0.5 (wn = 0.5, wc = 0, wl = 0.5); this setting reduces our proposed method
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(SSCox) to the the elastic net (EN) proposed by Zou & Hastie (2005) for linear re-
gression and Engler & Li (2007) for survival analysis. This method adds a ridge-type
penalty to the Lasso which improves Lasso’s ability to identify sets of correlated genes
associated with outcome. However, as we can see from the figure that EN method did
not address the spatial dependence structure of CNAs. Therefore, we can see from the
right panel of Figure 7.1 the effect of imposing smoothness by using Cauchy on the
second differences of the random effects (wn = 0.4, wc = 0.2, wl = 0.4).

As we mentioned before that in order to derive an estimation of the random effects
b, we could use a standard convex optimizer such as as BFGS method. However,
it is computationally slow as can bee seen in Table 7.1. Alternatively, we derive an
estimation of b by using gradient Ascent algorithm with and without switching to a
Newton-Raphson algorithm. Table 7.1 shows computation time (in seconds) in our
proposed method SSCox by using standard convex optimizer (BFGS), gradient ascent,
and gradient ascent with Newton-Raphson algorithm for one random simulation. All
convergence criteria and other settings were set equal in the three algorithms.

Table 7.1: Computation time comparison between the standard convex optimizer
(BFGS), and full gradient approach of SSCox with and without without switching to a
NewtonRaphson algorithm for one random simulation , time is calculated by seconds

Method BFGS SSCox (without NR) SSCox(NR)

Lasso 203 11 4
Elastic net 251 15 6
SSCox 441 71 33

Table 7.1 shows that the full gradient algorithm can be much quicker than the stan-
dard convex optimizer (BFGS). This is become more obvious when we include these
estimation in the cross validation method.

7.5.3 Simulation results: comparative study

For each data set, we evaluated the following methods:

• SPLS-L1: sparse Cox PLS with L1 penalty Lee et al. (2013)

• SPLS-HL: sparse Cox PLS with HL penalty Lee et al. (2013)
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• Our proposed method (SSCox)

We evaluated these methods with respect to variable selection and prediction.

1. As a measure of variable selection, following Chun & Keleş (2010), we calcu-
lated the average of the sensitivity and specificity, defined by

• sensitivity: the proportion of nonzero estimates among the true nonzero
elements of b, and

• specificity: the proportion of zero estimates among the true zero elements
of b.

2. As a measure of the methods’ prediction power, following Nygård et al. (2008),
we computed

−2pl = −2l
p
(test)
Cox

(
b̂train

)
, (7.6)

where l
p
(test)
Cox

(
b̂train

)
is the log partial likelihood of standard Cox PH for inde-

pendent test data evaluated at b̂train, which is the estimate of b based on training
set. For comparison purposes, we calculated the difference between the −2PL

of each method and the −2PL of the true model.

3. We also looked at the criteria for prediction performance, because Lee et al.

(2013) argued that Eq. (7.6) might assess it fragmentarily. In the simulation
setting, we actually know the true failure time T (test)

i of the test dataset, and we
can predict that the median survival time T̂mi

(test)
follows,

T̂mi
(test)

= Ĥ0

−1[
− log(1/2) exp

(
− Ztest

i b̂train
)]
,

where Ztest
i are the covariates of the i-th individual in the test data, and Ĥ0(t) is

the estimated cumulative base line hazard function for the test data evaluated at
b̂train.

With T
(test)
i and T̂mi

(test)
, we computed the sum of squared prediction error

(SSPE) and sum of absolute prediction error (SAPE) as the prediction measures,

SSPE =
n∑
i=1

(
T

(test)
i − T̂mi

(test))2
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and

SAPE =
n∑
i=1

|T (test)
i − T̂mi

(test)
|.

The prediction performance was better when −2pl, SSPE, and SAPE were smaller.
Before making the comparison between the competitive methods, it is worth to take

a look to the estimation of random effects b based on each method. Figure 7.2 shows
the estimation of the random effects b for one simulation with the optimal θ also based
extended Cox PH model presented in Chapter 5 (wn = 1, wc = 0, wl = 0), SSCox
(wn = 0.4, wc = 0.2, wl = 0.4), SPLS-L1 method, and SPLS-HL method.
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Figure 7.2: Estimation of the random effects b based on the extended Cox PH model
presented in Chapter 5 (wn = 1, wc = 0, wl = 0), SPLS-L1 method, SPLS-HL
method, and SSCox model (wn = 0.4, wc = 0.2, wl = 0.4), from left to right

It is clear from looking to Figure 7.2 that the extended Cox PH model (left panel)
is the only method that does not do feature selection. Our proposed method (SScox)
is different from SPLS-L1 and, SPLS-HL in the smoothing imposed in the random
effects b.

We summarise the simulation result from the exponential slow decay model with
ρ = 0.9 in Table 7.2 and Figure 7.3.
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Figure 7.3: Box plots of the absolute difference of the −2 unpenalised likelihood from
Eq. (7.6) of a method and the true model (top); the SSPE (middle); and the SAPE
(bottom)

As can be seen from Figure 7.3, the SSCox model generally performed better in
making predictions than SPLS-L1 or SPLS-HL. The SSCox has the smallest -2pl,
MSPE, and MAPE. For the MSPE, the means of 100 simulations are 13.28, 13.42,

and 12.73 for SPLS-L1, SPLS-HL, and SSCox, respectively, while the MAPE values
were 26.09, 26.21, and 25.66.

In terms of sensitivity and specificity, we know that ordinary Cox PLS models and
Cox models with ridge penalties always have a specificity equal to zero. However, as
all methods which were compared here have the idea of sparseness, we can see that the
specificity was not equal to zero. Table 7.2 shows that all methods had a large degree
of sensitivity, and the largest amount of specificity for SSCox. In fact, SSCox had a
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sensitivity equal to 0.976, because the smoothness imposed in our method interacted
with the zero line when the parameters changed their signs.

Table 7.2: Performance measures for variable selection

Method Sensitivity Specificity
SPLS-L1 0.998 0.273
SPLS-HL 0.985 0.575

SSCox 0.976 0.592

7.6 Real data analysis

7.6.1 Model fit: estimating the tuning parameters K

An important parameter to be estimated from the SSCox PH model is the tuning pa-
rameterK = (θ, wn, wc, wl). These parameters are important in the interpretation; as θ
moves towards zero (in limit terms), the estimates of the random effects will be closer
to zero, and no information in CNAs was taken into account in the model. Also wl
controls the sparseness of the model, while wc controls the smoothness of the model.
We would usually be interested in models for more than one amount of regularisa-
tion. One could solve a 3 dimensional grid of θ, wn, and wc; however, we found this
to be computationally impractical, and to do a poor job of model selection similar to
Simon et al. (2011) findings. Instead, we fixed the mixing parameter and computed
solutions for a path of θ values (as regulated the degree of sparsity). We began the path
with θmin, set sufficiently small so that b = 0, and increased θ until we were near the
unregularised solution.

Figure 7.4 shows the CVPL(θ) when wl = 0.5, wn = 0.3, and wc = 0.2. To
estimate θ, we used the principle of cross validated partial likelihood (CVPL) with one
standard error rule (Eq. (6.22)). By applying the one standard error rule, the figure
gives a log(θ) = −6.075, corresponding to θ = 0.0023.
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Figure 7.4: Cross validated partial likelihood (CVPL(θ)); the horizontal dotted line
indicates one standard error (Eq. (6.22)) of CVPL(θ)

7.6.2 Model fit: fixed predictors

Using this value of θ, the estimates of the fixed effects and their inferences can be seen
in Table 7.3. For comparison, we estimated the fixed effects under both conditions
with and without the CNA profiles in the model. The table shows that the variables
of Age, Stage-T, and Stage-N are statistically significant (p < 0.05). The estimates
indicate that the hazard ratio increases by about six percent (e0.055 ≈ 1.06) as age-
at-operation increases by one year (all else being equal). The positive estimates of
Stage-T3 indicate that larger tumour size is associated with a significant increase in the
hazard level (relative to Stage-T1 as the baseline). Similarly, the estimates of Stage-N2
indicate that a wider spread of cancer cells to the lymph nodes significantly increases
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the hazard level (relative to the Stage-N0 as the baseline).

Table 7.3: Summary of fixed predictors

Predictor Estimate Exp Std.Error zvalues p-value

(Without CNA profiles)
Age 0.0551 1.06 0.0164 3.37 0.0008
StageT2 0.1818 1.20 0.3215 0.57 0.5700
StageT3 1.7623 5.83 0.6392 2.76 0.0058
StageN1 0.3616 1.44 0.3019 1.20 0.2300
StageN2 1.3653 3.92 0.4824 2.83 0.0047

(With CNA profiles)
Age 0.0551 1.06 0.0164 3.37 0.0008
StageT2 0.1817 1.20 0.3215 0.57 0.5679
StageT3 1.7622 5.83 0.6392 2.76 0.0058
StageN1 0.3616 1.43 0.3019 1.20 0.2301
StageN2 1.3653 3.92 0.4824 2.83 0.0047

7.6.3 Model fit: random effects

The random effect estimates b of the full Cox PH model, using CNA profiles from
smooth segmentation, are presented in Figure 7.5. The magnitude of the estimates is
relatively small (compared to the fixed effects estimates, for example). This is due to
the effect of shrinkage on the estimation of random effects: 80 observations were used
to estimate almost 14,000 variables.
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Figure 7.5: Random effects estimates b in the full model, using CNA profiles. Genomic
windows with missing values (for example in the centromere regions) were excluded
from analysis, and hence not plotted. A more detailed view of the random effects
estimates in each chromosome is presented in Figure 7.6 .
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Figure 7.6: Estimates of the random effects b̂ in the full model. Genomic windows
with missing values were also removed from this figure.
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Positive estimates of random effects indicated that the relevant windows are as-
sociated with increases in hazard levels, while negative estimates of random effects
indicated the opposite. In this regard, Pelosi et al. (2007), Antoniou et al. (2013),
and Flacco et al. (2015) found that TERC copy number in chromosome 3 gain in
early-stage non-small-cell lung cancer (NSCLC). Moreover, there are many studies
that show the involvement of other chromosomes in NSCLC. For example, researchers
such as Lee et al. (1987), Buckingham et al. (2007), and Kitada & Yamasaki (2008)
have demonstrated the involvement of chromosome 7 in NSCLS. These genes and
more relative genes, which are summarised in Table 7.4, are associated with increases
in hazard levels in NSCLC.

On the other hand, negative estimates of random effects indicated that the relevant
windows are associated with decreases in hazard levels. The negative estimates ap-
peared in chromosome 8 and 12. There are many studies shows the relation of genes in
chromosome 8 in 12 with tumour suppressor (protective). For example, Schemionek
et al. (2016) found that MTSS1 in chromosome 8 decreased clonogenic capacity and
motility of murine myeloid progenitor cells and reduced tumor growth. Also, Yue et al.

(2012) showed that ZHX2 overexpression significantly reduced the growth of tumor in
mice. Li et al. (2015) showed that NDUFB9 was a suppressor of breast cancer cell
proliferation, migration and invasion, and Cheng et al. (2016) found that FAM84B
significantly reduced vitro cell growth, migration and invasion. In chromosome 12,
KRAS, YEATS4, FRS2, SLCO1B3, and LGR5 have tumour-suppressive activity as
Zhang et al. (2001), Pikor et al. (2013), Valencia et al. (2011), Wu et al. (2014), and
Lee et al. (2008) , respectively, showed in there studies.
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Table 7.4: Genes related to NSCLC

Gene Chromosome Reference
TERC 3 Flacco et al. (2015), Antoniou et al. (2013) Pelosi et al. (2007)
SKIL 3 Pelosi et al. (2007)

ECT2L 3 Justilien et al. (2011)
TNFSF10 3 Lee et al. (2014)
TWIST1 7 Avasarala et al. (2015)

IL6 7 Zhou et al. (2015)
MACC1 7 Wang et al. (2015b)
HOXA1 7 Xiao et al. (2014)
HOXA4 7 Kang (2013)
HOXA5 7 Wang et al. (2015a)
FSCN1 7 Luo et al. (2015)

HOXA11 7 Hwang et al. (2013)
GUSB 7 Zhang et al. (2010)
CAV1 7 Tian et al. (2015)
CAV2 7 Kettunen et al. (2004)
MET 7 Domblides et al. (2015)
CFTR 7 Son et al. (2011)

PPP1R3 7 Huang et al. (2013)
CALU 7 Turacli et al. (2015)
MEST 7 HIROFUMINAKANISHI et al. (2004)
VIPR2 7 Moody et al. (2000)
XRCC2 7 Butkiewicz et al. (2011), Sullivan et al. (2014)
CDK5 7 Lockwood et al. (2008), Choi et al. (2009)

ARHGEF5 7 He et al. (2013)
CASP2 7 Muppani et al. (2011)
BRAF 7 Sereno et al. (2015)
EPHB6 7 Bulk et al. (2012)

AKR1B10 7 Kang et al. (2011)
EGFR 7 Boukakis et al. (2010)
MMP1 11 Bi et al. (2015)
MMP3 11 Zhao et al. (2015)
MMP7 11 Lopez-Ayllon et al. (2015)
MMP8 11 Bi et al. (2015)

MMP10 11 Zhang et al. (2014)
MMP12 11 Tian et al. (2015)
CADM1 11 Jang et al. (2015), Gyhorffy et al. (2013)

CEACAM1 19 Fiori et al. (2012)
CEACAM3 19 Beauchemin & Arabzadeh (2013)
CEACAM5 19 Chen et al. (2015c)
CEACAM6 19 Han et al. (2014)
CEACAM7 19 Beauchemin & Arabzadeh (2013)

TGFB1 19 Vizoso et al. (2015)
AKT2 19 Chen et al. (2015a)

LGALS4 19 Selamat et al. (2012)
PCNA 20 Huang et al. (2015a)
BMP2 20 Tan & Chen (2014)
BMP7 20 Lazar et al. (2013)

Table 7.5 shows some genes with nonzero regression coefficients that we found
in our analysis, though we did not locate any studies showing a relationship between
these genes and lung cancer. There is, however, evidence that these genes are related
to other types of cancer.
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Table 7.5: Genes with nonzero regression coefficients that are related to cancers other
than lung cancer

Gene Chromosome Related Cancer Reference
PDCD10 3 Prostate Fu et al. (2016)
ABCB5 7 Breast and skin Lal et al. (2016)
SBDS 7 Leukemia Aalbers et al. (2013)
TES 7 Breast and colorectal Li et al. (2016)
ST7 7 Breast and prostate Hooi et al. (2006)

POT1 7 Breast Motevalli et al. (2014)
FLNC 7 Breast and prostate
SMO 7 Pancreatic Guo et al. (2013)

TRIM24 7 Breast and liver Chambon et al. (2011)
CUL1 7 Breast Bai et al. (2013)
ING3 7 Liver and prostate Almami et al. (2016)
YAP1 11 Breast and liver Yu et al. (2013)
BIRC2 11 Cervical and leukemia Mak et al. (2014)
BIRC3 11 Breast and pancreatic Gan et al. (2016)

ARHGEF1 19 Breast and Colorectal Huang et al. (2015b)
CD79A 19 Leukemia Palanca-Wessels et al. (2015)
ZFP36 19 Liver and prostate Zhu et al. (2015)

RASSF2 20 Cervical and breast Perez-Janices et al. (2015)

Table 7.6 shows some genes with nonzero regression coefficients that we found
in our analyses. In contrast to those shown in Table 7.5 above, though, we found no
prior studies showing evidence of any relationship between these genes and any type
of cancer.
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Table 7.6: Genes with nonzero regression coefficients but no known relationship to any
type of cancer

genes

(Chromosome 3)
ZBBX WDR49 SERPINI2 GOLIM4 LRC31 ACTR3 MYNN SAMD7
SEC62 PHC3 SIC7A14 SIC2A2 TINK TMEM212 PLD1 NCEH1
NLGN1 NCEH1 NLGN1 SPATA16

(Chromosome 7)
TMEM196 RPL21P75 ITGBB SP8 CDCA7L RAPGEF5 STEAPIB STK31
TOMM7 KLHL7 NUPL2 GPNMB TRA2A CCDC126 MPP6 DFNA5
OSBL3 CYCS NPVF SNX10 SKAP2 CBX3 PRR15 ZNF736

ASL TPST1 CRCP KCTD7 TYW1 IMMP2l LRRN3 DOCK4
ZNF277 CAPZA2 IFRD1 LSMEM1 TMEM168 GBR85 FOXP2 ASZ1
CTTNBP MDF1C LSM8 TFEC SPAM1 GBR37 CCDC136 GRM8
ZNF800 GCC! ARF5 PAX4 ZC3HC1 SND1 LRRC4 RBM28
OPNISW IMPDH1 HILPDA STRIP2 METTL28 FAM71F2 KCD ATP6VIF

IRF5 TNP03 TSPAN33 AHCY12 SMKR1 NRF1 KIHDC10 TMEM209
SSMEM1 CEP41 COPG2 MKLN! TSGA13 CPA2 EXOC4 CNOT4
TBXAS1 NOBOX GALNT15 DGKI PDIA4 OR2FI WDR91 SIC13A4

SSPO ABCF2 CHRM2 KDM7A AOC1 STRA8 PTN KLF14
MGAM2 ABCBB AGBL3 TRPV6 TRIM24 TMUB1 TMEM213 ATG98

CNTNAP2 OR9A2 TC26 NUP205 TCAF2 PIP MGAM FASTIK
(Chromosome 8)

SNTB1 ATAD2 DERLI FBX03 TBC1D31 FAM83A SQLE TMEM65
C8 WPYHV1 FER1LS FAM9IAI KLHL38 ANXA13 TRMT12 TATDN1

(Chromosome 11)
CNTN5 ARHGAP42 TMEM133 PGR TRPC6 CEP126 ANGPTL5 C11

TMEM123 DCUN1D5 DYNC2H1 DDT1
(Chromosome 12)

PDE3A SPX TBCID15 TPH2 TRHDE IAPP PYROXD1 GYS2
LPHB ABCC9 ST8SIAI C2CD5 ETNK1 LYRM5 BCAT1 C12
LRMB RASSF8 CASC1 TSPAN11 LMNTD1 TIPR2 HLHE41 ARNTL2
SSPN FGFR10P2 SMCO2 MANCS4 PPFIBP1 ASUN TM7SF3 CCDC91

MED21 STK38L REP15 FAR2 ERGC2 OVCH1 TMTC1 IPO8
CAPRIN2 SYT10 METTL20 PKP2 DDX11 BICD1 OVOS2 FAM60A

AMN1 KIAA1551 FGD4 LLPH TMPIM4 IRAK3 HEIB GRIP1
CAND1 DYRK2 IFNG IL26 IL22 MDM1 RAP18 NUP107

CPM SLC35E3 MDM2 CPSF6 RAP1B LYZ BEST3 CCT2
RAP3IP LRRC10 KCNMP4 CNOT2 MYRF1 PTPRB PTPRR TSPAN8
RAB21 TRHDE ZFC3H1 THAP2 TMEM19

(Chromosome 19)
GRAMD1A SCN1B HPN FXYD3 LG14 FXYD1 FXYD7 FXUD5
FAM187B LSR USF2 HAMP MAG CD22 FFAR1 FFAR3

GPR42 KRTDAP DMKN SBSN TMEM147 ATP4A PSENEN LIN37
HSPB6 PROSER3 ARHGAP33 PRODH2 NPHS1 TYROBP APLP1 UPK1A
LRFN3 FFAR2 THAPS HAUS5 KMT2B GAPDHS ETV2 COX6B1

KIRREL2 RBM42 SDHAF1 WDR62 ZBTB32 U2AFIL4 IGFLR1 ALKBH6
NFKBID HCST TBCB COX7A1 ZNF565 CLIP3 ZNF146
ZNF420 HKR1 ZNF850 CAPNS1 OVOL3 POLR21 ZFP14 SIPA1L3

DPF1 SPINT2 PPPIR14A KCNK6 WDR78 C19 ACTN4 ECH1
MAP4K1 CAPN12 EIF3K HNRNPL RYR1 IFNL3 TTC9B PLD3
BLVRB PRX SHKBP1 EGLN2 GRIK5 MAP3K10 CYP2A6 BCKDHA
DEDD2 RPS19 B3GNT8 AXL MIA ITRKC CCDC79 TMEM91
B9D2 ERICH4 EXOC5 POU2F2

(Chromosome 20)
PRNP PRND SLC23A2 TMEM230 CDS2 GPCPD1 CRLS1 PROKR2
C20 GHGB LRRN4 FERMT1 MCM8 TRMT6 TMX4 HAO1

PICBL HA01 PICB1 PLCB4 PAK7 LAMP5 ANKEF1 SNAP25
MKKS SLX41P BTBD3

Finally, Figure 7.7 presents the random effects estimates b̂ paths for the SSCox PH
model for our lung cancer dataset.
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Figure 7.7: Random effects estimates b̂ paths for the SSCox PH model for our lung
cancer dataset

Each curve in Figure 7.7 corresponds to a variable (CNAs’ Window). It shows
the path of its coefficient against the the penalty (wl/

√
θ) of the whole coefficient

vector. The top x-axis indicates the number of nonzero coefficients (active) at the
current penalty ((wl/

√
θ)). The vertical dotted line indicates the optimal θ that we

have chosen for our lung cancer data set. In our R package users may also wish to
annotate the curves; this can be done by setting (label = TRUE) in the plot command.
We do not plot the annotation here as we have 1295 variables.

7.6.4 Cumulative hazard rate and estimates of survival function

To show that the Cox PH modelling with CNA profiles is able to distinguish individuals
at different levels of risk, we estimated the survivor functions for three individuals in
the lung cancer dataset. These three individuals had low, medium, and high levels
of risk, based on their risk scores Ri, which corresponded respectively with the 10th,
50th, and 90th percentiles of the distribution of Ri in our dataset.

Figure 7.8 shows the estimated survivor functions for these three individuals us-
ing smooth-segmented CNA profiles as random predictors. The figure shows that the
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7.6 Real data analysis

median survival times for the low-, medium-, and high-risk individuals were approxi-
mately 7.5 years, 2.5 years, and 8 months, respectively.
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Figure 7.8: Estimated survival functions from the extended Cox PH model for three
individuals in the 10th, 50th, and 90th percentiles of risk set Ri , representing low-,
medium-, and high-risk individuals respectively. The horizontal dotted line marks the
50% survival probability level.

7.6.5 Model diagnostics

As part of model diagnostics, we plotted the cumulative hazard of the Cox-Snell resid-
uals from the model fitting as shown in Figure 7.9 (solid black line). As can be seen
in that figure, the cumulative hazard line is very close to the identity line, which sug-
gests that the extended Cox PH model is suitable and has a reasonably good fit for our
CNA profile data. The cumulative hazard line near the top right corner of the figure is
slightly jagged, as expected, due to rare events (deaths) near the far end of the survival
time distribution.
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Figure 7.9: Cumulative hazard of Cox-Snell residuals (solid black line) from the Cox
PH model fit, compared to the identity line (grey dashed line), based on CNA profiles

7.6.6 The assessment of the prediction performance of SSCox PH
by comparing with Cox PH model ( fixed effects only)

Concordance Statistics ( C-statistic) are estimated to assess the prediction performance
of any model using the approach proposed in Uno et al. (2011). A C-statistic is a
measure of the concordance between an estimated risk score and the survival times
(Harrell et al. (1996)). Let R be the the risk score calculated from a model (e.g.,
Ri = Xiβ̂ + Zib̂ for SSCox PH, and Ri = Xiβ̂ for Cox PH with fixed effects only.),
then C-statistic is

Pr(R1 > R2|T2 > T1),

which captures how well the ordering of the survival times matches the ordering of the
estimated risk scores. The estimate C-statistics for Cox PH model with fixed effects
only ( Age+StageT+StageN) is 0.67, while the estimate C-statistic for SSCox PH is
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7.6 Real data analysis

0.72. This result shows that by including the CNA into the model ( SSCox PH), we
obtain a better prediction performance.

Another measure to asses the prediction performance of SSCox is receiver operat-
ing characteristic (ROC curve) and area under the curve (AUC). In survival analysis,
prognostic ROC curve is a graphical approach to show the discriminative capacity of
the marker: a receiver operating characteristic (ROC) curve by plotting 1 minus the
survival in the high-risk group versus 1 minus the survival in the low risk group. Also,
AUC represents the probability that a patient in the low- risk group has a longer life-
time than a patient in the high-risk group. To calculate the Prognostic ROC curve
for the two models (Cox PH with fixed effects only and SSCox PH), we estimate the
survival curve for each patient

Ŝi = { ˆS0(t)}exp{Ri}.

Then we divided the data into a high and low risk groups based on the risk score Ri’s.
There are more than one way to choose the cut off point to split the group and the result
would be comparable. To be more specific, we chose the median of risk score Ri’s to
be the cut off point so the that the number of events is equal in the two groups. Finally,
we compare the the two groups with model-based average survival function where the
average is taken pointwise over time.

Figure 7.10 shows prognostic ROC curve for the two models (fixed effects only and
fixed with CNA) which indicates that by including the CNA, we get better prediction
accuracy. The AUC for the model with fix only is 0.70, while the AUC for the model
with fix and CNA is 0.73, which also suggest that by adding CNA, we will get better
prediction accuracy.
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Figure 7.10: Prognostic ROC curve for the two models (fixed effects only and fixed
with CNA (SSCox PH) ).

7.7 Discussion

In this chapter, we have investigated how the SSCox PH model for survival data is
suitable for coping with the high dimensional CNA profiles, in addition to the clinical
variables as (fixed) predictors. The SSCox model allows for sparse variable selection,
smoothness, and dimension reduction at the same time. A key parameter in the model
is K = (θ, wn, wc, wl), which controlled the amount of information from the CNA
profiles that was used in the model fitting.

We have also compared our proposed method with two other methods, SPLS-LI
and SPLS-HL, recently presented by Lee et al. (2013). Our proposed method, the
SSCox model, was found to perform better than the SPLS-L1 or SPLS-HL in making
predictions, as it has the lowest -2pl, MSPE, and MAPE.

Also, we compared the SSCox PH model with Cox PH model (Fixed effects only)
and we found that by adding CNA, we will get better prediction accuracy. Not only
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7.7 Discussion

that but also we identified some relative genes associated with NSCLC. Some of these
genes have been found in previous studies as shown in Table 7.4. Also we found new
genes with no prior studies showing evidence of any relationship between these genes
and any type of cancer. These genes need to be investigated more in a clinical trial.

Even though we used different assumption in the random effects in Chapter 5− 7,
the median survival times for the low-, medium-, and high-risk individuals were similar
in these different models; it was approximately 7.5 years, 2.5 years, and 8 months,
respectively. This finding are consistent with clinicians views as shown in Molina
et al. (2008).

Finally, our computational method and R package in this study can also be used
for CNA profiles from an array of technology, provided that the (genome-wide) CNA
profiles across individuals can be put into matrix form. This means that CNA estimates
across individuals can be entered into the same column in the data matrix, for each
genomic region.

To sum up, we described a new sparse-smoothed estimation procedure in Cox pro-
portional hazard modelling that takes into account cancer patients genome-wide CNA
profiles. Unlike the standard Cox PLS and Cox with ridge penalty methods, our new
method automatically selects relevant variables without sacrificing prediction perfor-
mance. Not only that, we also imposed smoothness to deal with the spatial structure
of CNAs.

Genome-wide CNA profiles are considered as random predictors in our model, in
addition to using the clinical variables as fixed predictors. We assumed CNA coeffi-
cients to be correlated random effects that followed a mixture of three distributions:
normal, Cauchy (for second-order differences, to achieve smoothness), and Laplace
(to achieve sparsity).
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Chapter 8

Conclusion and further work

The objective of our thesis was to establish or develop statistical methods that are able
to include the CNA (ultra-high dimensional data) in survival analysis. There are al-
ready established approaches to include high dimensional data in survival prediction.
These approach can be classified into two classes: feature selection and derived vari-
ables (feature extraction). Even though these two approaches have been widely used
to deal with high dimensional data, they suffer from major drawbacks. For the feature
selection method, it is easy to implement, but it will select highly correlated features
which may lead to a poor performance. On the other hand, derived variable methods do
not automatically lead to selection of relevant variables. This is because they construct
latent variables that are linear combination of all original covariates, so performance is
expected to be reduced if a large number of covariates are in fact unrelated. Both ap-
proaches can be adapted for survival analysis to model gene expression data; however,
they are not a good match for CNA data as they ignore its spatial dependence structure
and do not accommodate serial correlation that exists in the CNA.

We addressed our objective by achieving the following :

• In Chapter 2, we prepared and estimated the CNA of our lung cancer data set.
We end up with a matrix with dimension 89× 13968, where 89 is the number of
the patients and 13968 is the number of genomic windows.

• CNA can be estimated as the ratio of a tumour sample to a normal sample. There-
fore, in chapter 3 we investigated the approximations of the distribution of the
ratio of two Poisson random variables. In other words, if X ∼ Pois(λx) and
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Y ∼ Pois(λy) with X and Y are independent; then approximations of the dis-
tribution Z = X

Y
, conditional on Y 6= 0 is examined.

• In Chapter 4, we reviewed some concept of survival analysis, and we applied
non-parametric and semi-parametric methods in the clinical part (fixed effects
only) of lung cancer data set.

• In Chapter 5, we investigated an extension of the standard Cox proportional haz-
ard model to take into account cancer patients genome-wide CNA profiles. The
genome-wide CNA profiles are considered as random predictors in the model
in addition to the clinical variables as fixed predictors. the random effects are
assumed to be normal distribution with mean zero and diagonal structure covari-
ance matrix which has equal variances and covariances of zero.

• In Chapter 6, we described three different estimation procedures using the Cox
proportional hazard model to take into account CNAs. Unlike the extended
Cox method described in the Chapter 5, these methods deal with dependencies
between neighboring genomic windows and their spatial characteristics. The
genome-wide CNA profiles are considered as random predictors in the model,
and the clinical variables as fixed predictors. We have three different scenarios
for the distribution of the random effects:

1. Normal with mean zero and a compound symmetry covariance matrix (Coxrho).

2. Normal with mean zero and an inverse covariance matrix (Coxinv).

3. Correlated random effects that follow a mixture of two distributions, nor-
mal and Cauchy, for the first or second differences (SCox).

• In Chapter 7, we described a new sparse smoothed estimation procedure in Cox
proportional hazard model (SSCox) to take into account cancer patients CNAs.
We assumed CNA coefficients to be correlated random effect that follow a mix-
ture of three distribution:Normal, Cauchy for the second differences to achieve
smoothness, and Laplace to achieve sparsity.

In epidemiological research, it is not always the case that the response variable
(outcome) is time to event data. The response can be normal or nonnormal distribution
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such as the binary (Y is 1 with probability p and 0 with probability 1−p) and the Pois-
son. For instance, the binary distribution is useful when the outcome of an experiment
is category with 2 levels such as being classified into two different clinical groups .
As a working example, suppose that we want to model tumour histological subtypes
based on the patients’ clinical data and their CNA profiles.

In order to deal with these different type of response, for further research, it could
be interesting to adapt the idea of including the CNA as a random predictor in the
generalized linear model. The only part will change is the likelihood part, instead
of using the log partial likelihood, we will use the log likelihood of the model either
normal, Poisson or logistic. I have started writing the code in R for the generalized
linear model, however, this is beyond the scope of this thesis.

Also, In future research, one could penalize the variance of the random effects
instead of penalizing the random effects itself. This setting indicates that if the variance
is zero, its corresponding random effects is no longer random and is actually a constant,
which can be absorbed by fixed effects. This idea was discussed in Pan & Huang
(2014) for GLMM and it could be generalized to be used in survival analysis.
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Appendix A

Number of ploidy for the 89 patents
along with the estimated
contamination and the number of
reads

Patient number of ploidy method contamination number of reads
LS168 2 Mixture 71.13 1820403
LS169 2 Mixture 49.79 2017296
LS170 2 Mixture 86.49 1877104
LS171 2 Mixture 72.15 3141892
LS172 2 Mixture 74.6 1926593
LS173 2 Mixture 79.82 3217576
LS174 2 Mixture 87.27 2434153
LS182 2 Mixture 78.43 275944
LS187 2 Mixture 57.81 99541
LS188 2 Mixture 75.91 680068
LS189 2 Mixture 89.99 613568
LS192 2 Mixture 79.11 934719
LS193 2 Mixture 92.331 394880
LS194 2 Density 42.4 1054930
LS195 2 Mixture 31.17 528435
LS197 2 Mixture 86.25 1011972
LS199 2 Mixture 60.02 1159264
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LS200 2 Mixture 75.85 888820
LS202 2 Mixture 79.72 496917
LS203 4 Density 34.1 1145927
LS204 2 Density 63.65 427771
LS206 2 Density 86.1 275195
LS238 2 Mixture 59.92 1084707
LS243 2 Mixture 38.18 1211597
LS244 2 Mixture 81.69 1065651
LS245 2 Mixture 51.36 1128509
LS246 2 Mixture 78.57 1069590
LS249 2 Mixture 75.21 679410
LS251 2 Mixture 82.3 616019
LS254 2 Mixture 81.6 1062136
LS255 2 Mixture 77.24 700787
LS256 2 Mixture 84.89 771187
LS257 2 Mixture 72.62 1294166
LS258 2 Mixture 86.23 1147664
LS259 2 Mixture,density 70.42 976499
LS260 2 Mixture 93.652 983376
LS262 2 Density 71.7 1008864
LS264 2 Mixture 83.34 389219
LS265 2 Mixture 76.81 98367
LS266 2 Mixture,density 61.38 541334
LS270 4 Density 67.8 1687135
LS272 2 Mixture 89.13 961265
LS273 4 Mixture 90.43 1071641
LS274 2 Mixture 83.62 300947
LS277 2 Mixture 80.92 1873814
LS281 2 Mixture 91.6 1051811
LS282 4 Mixture 92.533 1061886
LS283 2 Mixture 91.72 1602892
LS286 2 Mixture 87.55 2312598
LS287 2 Mixture 78.22 1224020
LS289 2 Mixture 82.94 468956
LS290 2 Mixture 63.78 1545591
LS291 2 Mixture 58.04 2202839
LS292 2 Mixture 81.4 778032
LS293 2 Mixture 54.49 964380
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LS294 2 Mixture 83.74 1162422
LS295 2 Mixture 82.84 16563
LS296 2 Mixture 56.23 1586895
LS297 2 Mixture 88.02 587496
LS298 2 Density 68.7 1193645
LS299 2 Mixture 69.65 821277
LS300 4 Mixture 88.91 1455529
LS302 2 Mixture 78.61 325607
LS303 4 Mixture 88.12 1523161
LS304 2 density 71.04 1278349
LS306 2 Mixture 85.42 1514125
LS307 2 Mixture 85.4 1394593
LS352 2 Mixture 82.16 1001953
LS353 2 Density 63 1500452
LS354 2 Mixture 85.7 850667
LS355 2 Mixture 60.83 1991428
LS357 2 Mixture 80.08 271962
LS359 2 Mixture 74.17 1624446
LS360 2 Mixture 73.43 1479857
LS362 2 Mixture 73.43 1563365
LS364 2 Mixture 61.62 1862728
LS366 2 Density 41.4 131644
LS367 2 Mixture 72.92 1107864
LS369 2 Mixture 39.17 507639
LS370 2 Mixture 88.29 306645
LS375 2 Mixture 65.56 1252654
LS376 2 Mixture 78.75 878661
LS378 2 Mixture 83.8 718320
LS379 2 Mixture 66.54 552071
LS382 2 Mixture 78.33 1554592
LS383 2 Mixture 36.83 1429903
LS384 2 Mixture 86 418423
LS387 2 Mixture 66.1 2143304
LS388 4 Mixture 75.12 749250

Table A.1: Number of ploidy for the 89 patents along with the estimated contamination
and the number of reads
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Appendix B

Additional Figures for Chapter 6

Figure B.1, shows the random effect estimates b based on Coxrho, while Figure B.1
shows the random effect estimates b based on Coxinv.

Figure B.1: Random effects estimate b in the Coxrho model, using CNA profiles.
Genomic windows with missing values (e.g. in the centromere regions) were excluded
from analysis, hence these are not plotted. A more detailed view of the random effects
estimates in each chromosome is presented in the next figure.
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Figure B.2: Detailed views of the random effects estimates b in the Coxrho model,
using CNA profiles from smooth segmentation
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Figure B.3: Random effects estimate b in the Coxinv model, using CNA profiles. Ge-
nomic windows with missing values (e.g. in the centromere regions) were excluded
from analysis, hence these are not plotted. A more detailed view of the random effects
estimates in each chromosome is presented in the next figure.
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Figure B.4: Detailed views of the random effects estimates b in the Coxinv model,
using CNA profiles from smooth segmentation
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SanitÃ, 48, 161–171. 151

FLACCO, A., LUDOVINI, V., BIANCONI, F., RAGUSA, M., BELLEZZA, G., TO-
FANETTI, F.R., PISTOLA, L., SIGGILLINO, A., VANNUCCI, J., CAGINI, L. et al.

(2015). MYC and Human Telomerase gene (TERC) Copy Number Gain in Early-
stage Non–small Cell lung Cancer. American Journal of Clinical Oncology, 38, 152–
158. 150, 151

FREEMAN, J.L., PERRY, G.H., FEUK, L., REDON, R., MCCARROLL, S.A., ALT-
SHULER, D.M., ABURATANI, H., JONES, K.W., TYLER-SMITH, C., HURLES,
M.E. et al. (2006). Copy number variation: new insights in genome diversity.
Genome Research, 16, 949–961. 16

FU, X., ZHANG, W., SU, Y., LU, L., WANG, D. & WANG, H. (2016). MicroRNA-
103 suppresses tumor cell proliferation by targeting PDCD10 in prostate cancer. The

Prostate. 152

GAN, H., LIU, H., ZHANG, H., LI, Y., XU, X., XU, X. & XU, J. (2016). SHh-
Gli1 signaling pathway promotes cell survival by mediating baculoviral IAP repeat-
containing 3 (BIRC3) gene in pancreatic cancer cells. Tumor Biology, 1–8. 152

175



REFERENCES

GATZA, M.L., SILVA, G.O., PARKER, J.S., FAN, C. & PEROU, C.M. (2014). An
integrated genomics approach identifies drivers of proliferation in luminal-subtype
human breast cancer. Nature Genetics, 46, 1051–1059. 73

GOEMAN, J.J. (2010). L1 penalized estimation in the Cox proportional hazards model.
Biometrical Journal, 52, 70–84. 11, 14, 131, 135, 136, 137

GRAY, R.J. (1992). Flexible methods for analyzing survival data using splines, with
applications to breast cancer prognosis. Journal of the American Statistical Associ-

ation, 87, 942–951. 82, 111

GREEN, P.J. (1987). Penalized likelihood for general semi-parametric regression mod-
els. International Statistical Review/Revue Internationale de Statistique, 245–259.
77

GREENWOOD, M. et al. (1926). A report on the natural duration of cancer. A Report

on the Natural Duration of Cancer.. 52

GUO, J., GAO, J., LI, Z., GONG, Y., MAN, X., JIN, J. & WU, H. (2013). Adenovirus
vector-mediated Gli1 siRNA induces growth inhibition and apoptosis in human pan-
creatic cancer with Smo-dependent or Smo-independent Hh pathway activation in
vitro and in vivo. Cancer Letters, 339, 185–194. 152

GUSNANTO, A., WOOD, H.M., PAWITAN, Y., RABBITTS, P. & BERRI, S. (2012).
Correcting for cancer genome size and tumour cell content enables better estimation
of copy number alterations from next-generation sequence data. Bioinformatics, 28,
40–47. 12, 16, 17, 18, 20, 22, 23

GUSNANTO, A., TAYLOR, C.C., NAFISAH, I., WOOD, H.M., RABBITTS, P. &
BERRI, S. (2014). Estimating optimal window size for analysis of low-coverage
next-generation sequence data. Bioinformatics, 30, 1823–1829. 18

GYHORFFY, B., SUROWIAK, P., BUDCZIES, J. & LANCZKY, A. (2013). Online sur-
vival analysis software to assess the prognostic value of biomarkers using transcrip-
tomic data in non-small-cell lung cancer. PloS One, 8, e82241. 151

176



REFERENCES

HAAN, J.C., LABOTS, M., RAUSCH, C., KOOPMAN, M., TOL, J., MEKENKAMP,
L.J., VAN DE WIEL, M.A., ISRAELI, D., VAN ESSEN, H.F., VAN GRIEKEN, N.C.
et al. (2014). Genomic landscape of metastatic colorectal cancer. Nature Communi-

cations, 5. 73

HAN, H.S., SON, S.M., YUN, J., JO, Y.N. & LEE, O.J. (2014). MicroRNA-29a
suppresses the growth, migration, and invasion of lung adenocarcinoma cells by
targeting carcinoembryonic antigen-related cell adhesion molecule 6. FEBS Letters,
588, 3744–3750. 151

HARRELL, F.E., LEE, K.L. & MARK, D.B. (1996). Tutorial in biostatistics multi-
variable prognostic models: issues in developing models, evaluating assumptions
and adequacy, and measuring and reducing errors. Statistics in Medicine, 15, 361–
387. 156

HE, P., WU, W., WANG, H., LIAO, K., ZHANG, W., XIONG, G., WU, F., MENG,
G. & YANG, K. (2013). Co-expression of Rho guanine nucleotide exchange factor
5 and Src associates with poor prognosis of patients with resected non-small cell
lung cancer. Oncology Reports, 30, 2864–2870. 151

HEAD, J.D. & ZERNER, M.C. (1985). A Broyden, Fletcher, Goldfarb, Shanno opti-
mization procedure for molecular geometries. Chemical Physics Letters, 122, 264–
270. 42, 135

HENSON, J., TISCHLER, G. & NING, Z. (2012). Next-generation sequencing and
large genome assemblies. Pharmacogenomics, 13, 901–915. 3

HINKLEY, D.V. (1969). On the ratio of two correlated normal random variables.
Biometrika, 56, 635–639. 36, 38

HIROFUMINAKANISHI, T.S., KATOH, M., WATANABE, A., IGISHI, T.,
MASAHIROKODANI, S., NAKAMOTO, M. & SHIGEOKA, Y. (2004). Loss
of imprinting of PEG1/MEST in lung cancer cell lines. Oncology Reports, 12, 1273–
1278. 151

177



REFERENCES

HOOI, C.F., BLANCHER, C., QIU, W., REVET, I., WILLIAMS, L., CIAVARELLA,
M., ANDERSON, R., THOMPSON, E., CONNOR, A., PHILLIPS, W. et al. (2006).
ST7-mediated suppression of tumorigenicity of prostate cancer cells is characterized
by remodeling of the extracellular matrix. Oncogene, 25, 3924–3933. 152

HUANG, J., GUSNANTO, A., O’SULLIVAN, K., STAAF, J., BORG, Å. & PAWI-
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