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Abstract

In this thesis we investigate some aspects of Quantum Fields on BTZ black

holes in 1+1 and 1+2 dimensions. More specifically, we study how a ground

state in AdS spacetime becomes a thermal state when restricted to the ex-

terior region of the BTZ black hole. This ground state is for the quantum

linear real scalar field which satisfies the Klein-Gordon equation and also, in

the 1+2 dimensional case, for a general QFT satisfying the axioms of Alge-

braic Quantum Field Theory in Curved Spacetime. We also study how these

states map to states on the conformal boundary of AdS spacetime. In or-

der to do this we use Algebraic Holography, Boundary-limit Holography and

Pre-Holography. As a preparation, we give an exposition of AdS spacetime,

we review the principal aspects of the 1+1 and 1+2 dimensional BTZ black

holes and their mapping to the boundary of AdS spacetime. In both cases

they map to part of the boundary of AdS spacetime. In the 1+1 case we find

that the restriction of the equivalent global vacuum or the Poincaré vacuum

on the boundary becomes a thermal state (KMS state) when restricted to

the BTZ black hole. In the 1+2 case we find that the Poincaré vacuum be-

comes a thermal state too when restricted to the exterior of the BTZ black

hole. In both cases the temperature of the state is T = κ
2π

, where κ is the

surface gravity. In 1+2 dimensions we give as a concrete model the quantum

linear real scalar field. When we study these states in the boundary of AdS

spacetime we use standard techniques of Conformal Field Theory. One of

the main conclusions we get from our investigation is that in certain sense

the Hawking effect in the eternal BTZ black hole maps to the Unruh effect

on the boundary of AdS spacetime. In the final part of this thesis we study

the brick wall model for these black holes for the quantum linear real scalar

field. In both cases we obtain the two point function for the vacuum and

thermal states in the bulk and on the boundary. We also study the expecta-

tion value of the renormalized energy-momentum tensor in 1+1 dimensions

for the conformal massless quantum real scalar field. Most of this thesis fits

in the framework of AdS/CFT in QFT which is more limited than AdS/CFT

correspondence in string theory.
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Preface

“I do not know what I may appear to the world, but to myself I

seem to have been only like a boy playing on the seashore, and

diverting myself in now and then finding a smoother pebble or a

prettier shell than ordinary, whilst the great ocean of truth lay

all undiscovered before me.”

Sir Issac Newton1

The present thesis contains essentially all the written work which I carried

out as PhD student in the Department of Mathematics of The University of

York during the last three and a quarter years. In one way or another it

reflects a part of the change that my conception of physics and mathematics

has undergone since I came to York. This change has been produced by ex-

ternal and internal sources. The external sources have been principally from

mathematical physics thinking. While being in York I have been exposed to

more mathematical physics than before. Principally because of the suggested

reading from my supervisor, Dr. Bernard S. Kay, and through conversations

with him. I have no doubt that by following his suggestions and advice I

have grown up a lot as a mathematical physicist.

Along with this formative process, this thesis also reflects the conclu-

sion of a project proposed by my supervisor which grew through interesting

conversations. In order to carry out this task I tried to understand, some

1In D. Brewster, Memoirs of the life, writings and discoveries of Sir Isaac Newton,
Edinburgh: Thomas Constable and Co., Hamilton, Adams and Co., London 1855 (reprint
Johnson Reprint Corporation, New York and London, 1965 Vol. 2, p. 407).
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times with success others without it, part of the theory and applications of

Quantum Field Theory in Curved Spacetime (QFTCS).

In this work the reader will find some applications of QFTCS to BTZ

black holes in 1+1 and 1+2 dimensions. As the reader will see, these ap-

plications lead naturally to studying QFTCS on AdS spacetime and also to

relating quantum fields on BTZ backgrounds to the AdS/CFT correspon-

dence.

Also, the reader could see aspects of the Unruh and Hawking effect treated

in a pedagogical form.

The two first chapters are essentially geometric whereas the rest of the

thesis contain mostly aspects of quantum field theory. In particular Chapter

3 can be considered as the background on quantum field theory to under-

stand this thesis. The results are principally in the last three chapters and

appendices although the Chapter 2 has also some new aspects, especially

the Section 2.3. In Appendix F, we added an essay on the quantization of

the real linear scalar field which could serve as a first reading in algebraic

quantum field theory.

It just remains to say that any errors of any type are completely my

responsibility and that I hope the reader will find this work useful and inter-

esting.
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Introduction

In recent years there has been great interest in the so-called AdS/CFT cor-

respondence. It seems fair to say that the majority of works on this topic

belong to the string theory framework. However, with a more limited scope

than in this framework, in the context of Quantum Field Theory (QFT),

also some approaches to the AdS/CFT correspondence have been proposed.

More precisely, in the context of Algebraic Quantum Field Theory (AQFT)

there appeared Algebraic Holography (AH) [70]. Algebraic Holography re-

lates a covariant quantum field theory in the bulk and a conformally covariant

quantum field theory on the conformal boundary2 of AdS spacetime. In this

sense AH gives an AdS/CFT correspondence too. Also there appeared the

boundary-limit holography [12] where there has been constructed a corre-

spondence between n-point functions of a covariant quantum field theory in

the bulk and a conformally covariant quantum field theory in the boundary

of AdS spacetime. More recently, partly motivated by these works, there

appeared Pre-Holography [57], which studied some aspects of the correspon-

dence between linear field theories in the bulk and in the boundary of AdS

spacetime by using the symplectic structure associated to the phase space

of the Klein-Gordon operator. When we take into account these works, it

is clear that even at the level of QFT there are interesting aspects of the

AdS/CFT correspondence which deserve to be studied. Amongst the aspects

of the AdS/CFT in QFT3 which have been studied so far is, for example,

how the global ground state in the bulk of AdS spacetime maps to a state in

2From here on, instead of writing conformal boundary of AdS spacetime we will just
write boundary of AdS spacetime unless a confusion can arise.

3By AdS/CFT in QFT we mean AH, the boundary-limit holography and Pre-
Holography since all them fit in the QFT framework.
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its boundary [57].

In QFT, besides ground states, equilibrium thermal states are outstanding

elements in the theory. So, after studying the mapping of a ground state it

is very natural to ask how an equilibrium thermal state maps from the bulk

to the boundary of AdS spacetime. This issue is more appealing when one

knows that models of black holes can be obtained from AdS spacetime. In

particular it is known that in 1+2 dimensions there exists a solution to the

Einstein’s field equations which can be considered as a model of a black hole,

the BTZ black hole (BTZbh) [11]. This solution can be obtained directly from

Einstein’s field equations or by making identifications in a proper subset of

AdS spacetime [11].

The main purpose of this work is to study how a ground state in AdS

spacetime in 1+2 dimensions is related to an equilibrium thermal state in the

BTZbh and how it maps to the boundary of AdS spacetime under AdS/CFT

in QFT. One of the main conclusions we obtain from our investigation is

that in a certain sense the Hawking effect for the eternal BTZbh maps to the

Unruh effect in the boundary of AdS spacetime and vice versa.

In order to carry out our objectives, we are faced with the issue of study-

ing quantum fields on BTZ black holes. Apart from the main purpose just

mentioned we have also studied the brick wall model [67] in 1+1 and 1+2

dimensional BTZ black holes for the quantum linear real scalar field. We also

study the expectation value of the renormalized energy-momentum tensor in

the 1+1 dimensional BTZ black hole for the conformal massless quantum

real scalar field. These two aspects of our work are complementary to our

study of thermal states in AdS and BTZ backgrounds and also shed some

light on the thermal properties of a field propagating on these backgrounds.

In our study, the symmetries of AdS spacetime are fundamental. The

principal fact is that the group SO0(2, d) acts in AdS spacetime and in its

conformal boundary. In AdS spacetime it acts as the isometry group and in

its conformal boundary as the global conformal group. This is fundamental

in making AH possible. Also, although indirectly, the Tomita-Takesaki and

Bisognano-Wichmann theorems play a fundamental rôle. These mathemati-

cal aspects are relevant when addressing our problem in the abstract setting.
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When we give a concrete heuristic example of this formalism we use the pro-

cedure given in [12] to obtain a two point function in the boundary of AdS

spacetime from a two point function in its bulk.

This thesis is organized as follows: in Chapter 1, we give a self-contained

introduction to the geometry of AdS spacetime emphasizing the aspects of

AdS spacetime relevant for this work. We also discuss some issues for the par-

ticular cases in 1+1 and 1+2 dimensions. In both cases we introduce global

coordinates and Poincaré coordinates in the 1+2 dimensional case. This

chapter can be used as an introduction to the geometry of AdS spacetime.

In Chapter 2, we discuss the BTZ black hole in 1+1 and 1+2 dimensions giv-

ing the necessary concepts we need in the later chapters. We also introduce

a model for a 1+1 dimensional BTZ black hole by using just the geometry of

AdS spacetime. Also, we explain how the BTZ black hole maps from the bulk

of AdS to its conformal boundary. In Chapter 3, we introduce the necessary

elements of Quantum Field Theory in Curved Spacetime. Especially we give

the basic elements of canonical quantization. We also introduce the concept

of conformal vacuum and the KMS condition. This condition is very relevant

when we study thermal states in the later chapters. In Chapter 4, we give

our principal results. We show that the global vacuum coincides with the

Poincaré vacuum in the one dimensional boundary of AdS spacetime in 1+1

dimensions. We also show how this vacuum becomes a thermal state when

we pass from the global vacuum or Poincaré vacuum to the BTZ coordinates.

This is done by using some results from Pre-Holography [57]. These results

are in agreement with previous work [77] where there has been shown that

the global vacuum and the Poincaré vacuum are equivalent in the bulk of

AdS spacetime in 1+1 dimensions. Later we show how a ground state in

AdS spacetime in 1+2 dimensions maps to a ground state in the boundary

of AdS spacetime. In order to carry this out we use AdS/CFT in QFT. The

principal fact is that when we restrict the Poincaré vacuum to the exterior

of BTZ black hole, it becomes a thermal state. This thermal state maps

to the boundary in a clear way. Roughly speaking, this is tantamount to

saying that the Hawking effect in the eternal BTZ black hole corresponds

to the Unruh effect in the boundary of AdS spacetime. The Unruh effect

13



takes place in the conformal boundary of AdS spacetime. In Chapter 5, we

discuss the brick wall model [67] for the BTZ black hole in 1+1 and in 1+2

dimensions for the quantum linear real scalar field. In both cases we obtain

two point functions in the boundary corresponding to a vacuum and a ther-

mal state. In the 1+1 case the thermal two point function coincides with

the thermal two point function obtained in Chapter 4 when the brick wall is

removed. In Chapter 6, we discuss the expectation value of the renormalized

energy-momentum tensor for the 1+1 dimensional BTZ black hole for the

conformal massless quantum real scalar field. We obtain closed expressions

for its expectation value in the Hartle-Hawking state. In Chapter 7, we give

some final comments, in particular we argue that by restricting the global

vacuum in 1+2 dimensions to the Poincaré chart we do not obtain a ther-

mal state. However the proof of this conjecture is still open. In Chapter

8, we give our conclusions and perspectives. In Appendix A, we discuss the

Unruh effect in 1+1 dimensions for the massless real linear scalar field. In

Appendix B, we calculate the finite transformation of the global conformal

group in 1+1 dimensions. We also introduce the usual complex coordinates

in conformal field theory and give the Lie brackets between the generators of

the AdS group. In Appendix C, we show that AdS spacetime has a Misner

spacetime at infinity in an appropriate parametrization. In Appendix D, we

calculate the two point function in AdS spacetime by using the conformal

vacuum defined with respect to Poincaré time. In Appendix E, we show that

for vanishing boundary condition at infinity there is no superradiance in the

BTZ black hole. In Appendix F, we present an essay on the quantization of

the real linear scalar field.
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Chapter 1

Aspects of AdS spacetime

In this chapter, we introduce AdS spacetime and discuss some aspects of it

relevant for this work. At some point we focus the discussion on the 1+1

and 1+2 dimensional cases due to their relevance for our purposes.

1.1 AdS spacetime in 1+d dimensions

AdS spacetime is a solution of the Einstein’s field equations in vacuum with

negative cosmological constant, Λ,

Rµν − 1

2
Rgµν + Λgµν = 0, (1.1)

where Rµν is the Ricci tensor, R is the scalar curvature and gµν is the

Lorentzian metric of the spacetime [46]. It is a spacetime with constant

negative curvature1. In 1+d dimensions it can be introduced as follows: Let

us consider R2+d endowed with metric

ds2 = ηµνdXµdXν , (1.2)

1See, for example, [79] for a discussion of AdS spacetime in four dimensions.
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X

X
1

X
0

Figure 1.1: Schematic AdS spacetime in 1+d dimensions.

where ηµν = diag(−1,−1, 1, 1, ...); the three dots denote d − 2 entries with

ones. This metric defines the scalar non positive definite inner product

X ·X ′ = ηµνX
µX ′ν (1.3)

between any two elements of R2+d. We are implicitly identifying Tp(R2+d) ∼
R2+d at each point p of R2+d. We denote the resulting non-Euclidian space as

R2,d. AdS spacetime can be identified with the hypersurface in R2,d defined

by

−X02 −X12
+

1+d∑
µ=2

Xµ2 = −l2, (1.4)

where l2 = d(1−d)
2Λ

and with metric induced by the pull back of (1.2) to

(1.4) under the inclusion map. The coordinates X0 and X1 are, let us say,

timelike, whereas the others are spacelike. Note that the equation (1.4) is

invariant under the identification X ↔ −X. AdS spacetime has the topology

of S1 × Rd, see figure 1.1.

In this work we are interested in studying some aspects of AdS spacetime

16



at infinity. Now we explain what we mean by AdS spacetime at infinity. Let

us consider the quadratic equation in R3+d

Q(Y ) = W 2 −X02 −X12
+

1+d∑
µ=2

Xµ2, (1.5)

where Y = (W,X). We introduced the coordinate W in order to make our

calculations more rigorously. Because of the homogeneity of Q, the locus of

points where Q(Y ) = 0 is invariant under Y → λY . In particular we can

always find a λ such that we recover (1.4) for any W . Also on Q(Y ) = 0 we

can fix W and let X → ∞ and at the same time multiply all the equation

by a small λ. In the limit of this procedure we get

X02
+ X12

=
1+d∑
µ=2

Xµ2. (1.6)

We call (1.6) the 2+d-dimensional null cone and denote it by C2+d. This

cone can be considered as the limit of (1.4) when X → ∞ and is the com-

pactification of a d-dimensional Minkowski spacetime. This can easily be

visualized in the 1+2-dimensional case where the hyperboloid of one sheet

defined by (1.4) is asymptotically C2+2 when X →∞. Now we can introduce

a d-dimensional Minkowski spacetime in (1.6), see [42] for the 6-dimensional

case. We define the coordinates of this Minkowski spacetime to be

ξµ =
Xµ

X0 + Xd+1
, µ = 1, 2, ..., d. (1.7)

The metric on this spacetime is given by ηµν with the entries 0 and d + 1

deleted and non positive inner product

ξ · ξ = (X0 + Xd+1)−1(X0 −Xd+1). (1.8)

These coordinates do not cover all the manifold, points at infinity are left out.

The null cone C2+d is also invariant under X ↔ −X, hence AdS spacetime has

a compactified Minkowski spacetime at infinity modulo this identification.
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From (1.6) we can see that the topology of C2+d is the topology of S×Sd−1/±I.

The quadratic equations (1.4) and (1.6) have a common property: they

are both invariant under the group O(2, d). In particular they are invari-

ant under the connected component of this group, namely SO0(2, d). How-

ever the action of this group has a different meaning when acting on these

quadratic equations. On (1.4) it acts as rotations of R2+d which preserve

(1.4), and we will call it AdS group; whereas it acts on (1.6) as the global

conformal group in d-dimensional Minkowski spacetime.

The generators of the AdS group are

J01 = X0∂X1 −X1∂X0 J0µ = X0∂Xµ + Xµ∂X0

Jνµ = Xν∂Xµ −Xµ∂Xν J1µ = X1∂Xµ + Xµ∂X1

(1.9)

where µ, ν = 2, 3, ...1 + d. These generators form a base for the Lie algebra

of the AdS group. The elements of the AdS group can be obtained by ex-

ponentiation of the elements of this algebra [87]. In Appendix B, we do this

explicitly for d = 2. From (1.9) we see that the metric of AdS spacetime in

1 + d dimensions admits (1+d)(1+d+1)
2

killing vectors. Hence AdS spacetime is

a maximally symmetric spacetime [88], [23]. Its Riemann tensor, Ricci tensor

and Ricci scalar are given respectively by

Rµναδ = − 1

l2
(gµαgνδ − gµδgνα) , (1.10)

Rµν = − d

l2
gµν , (1.11)

R = −d(d + 1)

l2
. (1.12)

1.2 AdS spacetime in 1+1 dimensions

In 1+1 dimensions the equation defining AdS spacetime is

−u2 − v2 + x2 = −l2. (1.13)
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We can parameterize this equation as

u = l sec ρ sin λ v = l sec ρ cos λ x = l tan ρ, (1.14)

where λ ∈ [0, 2π) and ρ ∈ (−π/2, π/2). These coordinates are known as

global coordinates. With this parametrization the metric for AdS spacetime

(AdS metric) is given by

ds2 = l2 sec2 ρ
(−dλ2 + dρ2

)
. (1.15)

We can conformally map this metric to the strip ρ ∈ [−π/2, π/2] of the two

dimensional Minkowski spacetime with metric

dŝ2 = Ω2ds2 = −dλ2 + dρ2, (1.16)

where Ω = 1
l
cos ρ. We can draw a Penrose diagram for AdS spacetime in

1+1 dimensions by taking half of the strip ρ ∈ [−π/2, π/2] as shown in figure

1.2.

So far we have not implemented the symmetry X ↔ −X. This sym-

metry can be implemented in global coordinates in AdS as follows. Let

P2 : [−π, π)×[−π/2, π/2] → [−π, π)×[−π/2, π/2] be the operator defined by

P2(λ, ρ) = (λ,−ρ) and T2 : [−π, π)×[−π/2, π/2] → [−π, π)×[−π/2, π/2] the

operator defined by T2(λ, ρ) = (λ−π, ρ) for λ ∈ [0, π) and T2(λ, ρ) = (λ+π, ρ)

for λ ∈ [−π, 0). Then T2P2(λ,−π/2) = P2T2(λ, π/2). Hence under the si-

multaneous action of T2 and P2 we just need to consider the region with

λ ∈ [−π, 0) as AdS/± I.

For further reference we give the Killing vectors for AdS spacetime in 1+1

dimensions in global coordinates

Juv = u∂v − v∂u = −∂λ, (1.17)

Jux = u∂x + x∂u = cos ρ sin λ∂ρ + sin ρ cos λ∂λ, (1.18)

Jvx = v∂x + x∂v = cos ρ cos λ∂ρ − sin ρ sin λ∂λ. (1.19)
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r=0 r=p/2

i
+

i
-

Figure 1.2: Penrose diagram of AdS spacetime. The two disjointed points, i+ and i−,
represent future and past infinity respectively.

These vectors satisfy

[Jµν , Jαβ] = ηναJµβ − ηµαJνβ − ηνβJµα + ηµβJνα (1.20)

where ηuu = ηvv = −ηxx = −1 with all other entries zero.

1.3 AdS spacetime in 1+2 dimensions

The discussion of AdS spacetime in 1+2 dimensions follows similar lines to

the 1+1 dimensional case, however there are some important differences. It

can be identified with the hypersurface in R2,2 defined by

−u2 − v2 + x2 + y2 = −l2. (1.21)

Now let us introduce the global and the Poincaré charts. Global coordi-
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Figure 1.3: AdS spacetime in global coordinates.

nates (λ, ρ, θ) can be defined by

v = l sec ρ cos λ u = l sec ρ sin λ

x = l tan ρ cos θ y = l tan ρ sin θ, (1.22)

where (λ, ρ, θ) ∈ [−π, π)× [0, π/2)× [−π, π). In these coordinates the metric

is

ds2 = l2 sec2 ρ
(−dλ2 + dρ2 + sin2 ρdθ2

)
. (1.23)

In these coordinates we can represent AdS spacetime as a cylinder, see figure

1.3. From (1.22) we see that ρ → π/2 corresponds to infinity. The metric

(1.23) is not defined on this point, however we can define what is usually

called an unphysical metric as ds̃2 = Ω2ds2 with Ω = 1
l
cos ρ and get

ds̃2 = −dλ2 + dρ2 + sin2 ρdθ2. (1.24)

This metric is well defined for ρ ∈ [0, π/2]. When constructing a Penrose
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diagram for AdS spacetime this is the metric most commonly used [46]2.

This is the metric of the Einstein universe, but it cover just half of it since

ρ ∈ [0, π/2]. Using this conformal mapping we can attach a boundary to

AdS spacetime. This boundary is given by ρ = π/2 and its metric is

ds̃2
b = −dλ2 + dθ2. (1.25)

The topology of the boundary is S1 × S1. In order to avoid close timelike

curves it is customary to work with the covering space of AdS spacetime

(CAdS), i.e., by letting λ to vary on R, and then the boundary of CAdS is

an infinitely long cylinder R×S1. It is again an Einstein universe but in 1+1

dimensions.

Poincaré coordinates (T, k, z) can be introduced as follows: define

m ≡ v + x

l2
n ≡ v − x

l2
T ≡ u

lm
k ≡ y

lm
. (1.26)

Then (1.21) takes the form

mnl4 + l2m2
(
T 2 − k2

)
= l2. (1.27)

From (1.26) we have

v =
l2

2
(m + n) . (1.28)

Now, using (1.27) in (1.28) we obtain

v =
1

2m

(
1 + m2

(
l2 + k2 − T 2

))
. (1.29)

Defining z = 1
m

v =
1

2z

(
z2 + l2 + k2 − T 2

)
. (1.30)

Doing analogously for x and using the definition of z in u and y we get

2However there are other possibilities. The interested reader can see [81] and references
therein. For our purposes we attach to (1.24).
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Figure 1.4: A transversal section of the Poincaré chart.

Poincaré coordinates

v =
1

2z

(
z2 + l2 + k2 − T 2

)
u =

lT

z

x =
1

2z

(
l2 − z2 + T 2 − k2

)
y =

lk

z
. (1.31)

In these coordinates the metric is

ds2 =
l2

z2

(−dT 2 + dk2 + dz2
)
, (1.32)

where (T, k, z) ∈ (−∞,∞) × (−∞,∞) × (0,∞). Actually Poincaré coordi-

nates can also be defined for z < 0, in this work we use the chart with z > 0.

From (1.31) we see that z = 0 corresponds to infinity. Hence from (1.32) we

see that the boundary of AdS spacetime covered by Poincaré coordinates is

conformal to a flat spacetime in 1+1 dimensions3. A section of the Poincaré

chart is represented in figure 1.4.

AdS spacetime can be expressed also as a warp product [68]. By making

3From (1.32) we see that for T = const. we have the metric of the Poincaré half-plane
model for the hyperbolic plane. Hence the name of the coordinates (T, k, z).
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z = e−q we have

ds2 = l2e2q
(−dT 2 + dk2

)
+ l2dq2 (1.33)

which is the warp product R×eq R1,1, where R1,1 denotes a 1+1 dimensional

Minkowski spacetime. This Minkowski spacetime is called a fiber or a 2-

brane.

We point out that the exposition given so far in this section can be gen-

eralized to any dimension. See for example [9].

Now let us consider AdS/ ± I. In this case the identification X ↔ −X

can be implemented as follows. Let P3 : [−π, π) × [0, π/2) × [−π, π) →
[−π, π)×[0, π/2)×[−π, π) be the operator defined by P3(λ, ρ, θ) = (λ, ρ, θ−π)

for θ ∈ [0, π) and P3(λ, ρ, θ) = (λ, ρ, θ +π) for θ ∈ [−π, 0). Let T3 : [−π, π)×
[0, π/2)× [−π, π) → [−π, π)× [0, π/2)× [−π, π) be the operator defined by

T3(λ, ρ, θ) = (λ − π, ρ, θ) for λ ∈ [0, π) and T3(λ, ρ, θ) = (λ + π, ρ, θ) for

λ ∈ [−π, 0). These operators can be extended to the boundary ρ = π/2 in

the natural way.

In Poincaré coordinates the symmetry X ↔ −X can be implemented by

changing z for −z. Hence in AdS/ ± I we just need one chart of Poincaré

coordinates to cover the entire manifold.
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Chapter 2

The BTZ Black Hole

In this chapter we give the generalities of the BTZ black hole and explain

how it maps to the boundary of AdS spacetime. We begin with the 1+1

dimensional case and later introduce the 1+2 dimensional case.

2.1 1+1 dimensional BTZ black hole

The BTZ black hole in 1+1 dimensions has been considered before in [4]

in the context of models of gravitational theories in 1+1 dimensions. We

will follow a less ambitious approach and introduce a model of a BTZ black

hole in 1+1 dimensions just by using the geometry of AdS spacetime in 1+1

dimensions. If we parameterize (1.13) by

v = l

(
r2 − r2

+

r2
+

)1/2

sinh κt x = l

(
r2 − r2

+

r2
+

)1/2

cosh κt

u = −l
r

r+

, (2.1)

where κ = r+

l2
, then we have

ds2 = −N2dt2 + N−2dr2, (2.2)
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where

N2 = −M +
r2

l2
(2.3)

and r+ = l
√

M . Using (1.14) and (2.1) we obtain

tanh κt =
cos λ

sin ρ
r = −r+ sec ρ sin λ. (2.4)

If we want to interpret r as a radial coordinate, then we should take λ ∈
(−π, 0) in order to have r > 0. Clearly this region can not touch ρ = 0,

however it approaches it asymptotically. When we conformally map CAdS

in 1+1 dimensions to Minkowski spacetime it covers the interior of the strip

ρ ∈ (−π/2, π/2). Let us figure out which region of this strip is covered by

the coordinates (t, r) given by (2.4). The line ρ = 0 can not be covered, for

example. The lines λ = ρ−π/2 and λ = −ρ−π/2 give r = const. These lines

cross ρ = 0 where t → ±∞. Also when ρ → π/2 then r → ∞ and x → ∞.

The line λ = −π/2 corresponds to t = 0. Taking into account that ρ = 0 can

not be covered by the coordinates (t, r) and the fact that the metric (2.2)

is singular at r = r+ which in (λ, ρ) would corresponds to λ = ρ − π/2 and

λ = −ρ−π/2 then we can conclude that (t, r) cover the region between these

two lines with ρ ∈ (0, π/2) and λ ∈ (−π, 0). From (2.1) we see that we can

introduce a mirror copy of this region with negative x and ρ ∈ (−π/2, 0)

and λ ∈ (−π, 0). Clearly the coordinates (t, r) share the same features with

Schwarzschild coordinates [65] and cover just a portion of CAdS spacetime.

The singularity at r = r+ is a singularity of these coordinates since CAdS

spacetime is well behaved everywhere. When we conformally map CAdS in

1+1 dimensions to the strip (−π/2, π/2) then we can consider the portion

with λ ∈ (−π, 0) as a maximally extended black hole, analogous to the

maximally extended Schwarzschild black hole. The black hole corresponds to

the region between the lines λ = ρ−π/2 and λ = −ρ−π/2 with λ ∈ (−π/2, 0)

and the white hole with λ ∈ (−π,−π/2). See figure 2.1. We can ask ourselves

why we have the right to just consider this portion of AdS spacetime in 1+1

dimensions as a black hole. The answer is given by the geometry. As we

said in the previous chapter, the symmetry X ↔ −X is fundamental when
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Figure 2.1: 1+1 dimensional BTZ black hole.

we want to identify infinity of AdS spacetime with Minkowski spacetime. In

the present case a degenerated Minkowski spacetime of just one temporal

dimension. If we apply this identification in the present case, with reflection

with respect to the line ρ = 0 and antipodal identification in the circle

S1 in the temporal dimension, then in the fundamental region of AdS, i.e.

that with λ ∈ (−π, π) we just need the region in λ ∈ (−π, 0) in order to

make sense of a maximally extended black hole. See figure 2.1. In this way

by cutting out this region of AdS spacetime in 1+1 dimensions we have a

model of 1+1 dimensional black hole. The singularities of this black hole

are located at λ = −π and λ = 0. Clearly these one dimensional regions

are singularities in the sense that every time-like geodesic entering the black

hole can not be extended beyond λ = 0; similarly a past directed time-like

geodesic entering the white hole can not be extended beyond λ = −π. The

region of CAdS spacetime representing the maximally extended black hole

satisfies the requirements of the definition of a maximally analytic extension

for the region which corresponds to the exterior of the black hole. This

definition can be seen for example in [15]. Taking into account this analysis,

the metric (2.2) can be considered a metric for a 1+1 dimensional black hole.

We call it 1+1 dimensional BTZ black hole.
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Let us consider additional geometrical properties of the 1+1 dimensional

case. From figure 3.2 in [57] we can see that ∂t is also the generator of the

horizon. If we express this Killing vector in global coordinates we get

∂t = κ (x∂v + v∂x) = κ cos λ cos ρ∂ρ − κ sin ρ sin λ∂λ. (2.5)

Hence at (−π/2, 0), this Killing vector vanishes. This is the point where

the past and future horizon of the maximally extended BTZ black hole in-

tersect. Then using the definition of bifurcate killing horizon given in [55]

and observing that this point is left invariant under the action of ∂t we con-

clude that ∂t generates this bifurcate killing horizon. This horizon divides

locally the spacetime in four regions, R, L, F and P , following Kay and

Wald notation. In [55] it was introduced a global definition of this regions

for globally hyperbolic spacetimes. In the present case we do not have this

property at hand, since AdS spacetime is not globally hyperbolic. We can

still define these regions globally using the geometry of AdS spacetime as

follows. Because of the identification X ↔ −X we just need to define the

regions above mentioned for half of AdS spacetime, for λ ∈ (−π, 0). This

definition is obvious, for example we can define R as the region invariant

under ∂t, analogously for the others, see figure 2.2. Hence we can see that

the existence of the bifurcate Killing horizon plays a fundamental rôle in the

thermal properties of AdS spacetime and the BTZ black hole.

2.2 The BTZ black hole

It is well known that there exists a solution to the Einstein’s field equations

in 1+2 dimensions which can be considered as a model of a black hole [11],

better known as the BTZ black hole (BTZbh). The metric of this spacetime

is given by

ds2 = −f 2dt2 + f−2dr2 + r2(dφ + Nφdt)2, (2.6)

where

f 2 =

(
−M +

r2

l2
+

J2

4r2

)
, Nφ = − J

2r2
, (2.7)
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Figure 2.2: Penrose diagram of AdS spacetime in 1+1 dimensions where are indicated
the identifications when making the global definitions of R, L, F and P .

with |J | ≤ Ml. We call (t, r, φ) ∈ (−∞,∞) × (0,∞) × [0, 2π) BTZ coor-

dinates. The metric (2.6), which we call BTZ metric, has an inner and an

outer horizon and also an ergosphere region analogously to the Kerr metric,

however it is asymptotically AdS instead of asymptotically flat. This can be

seen by letting r →∞. From (2.6) and (2.7) we see that in this limit

ds2 ∼ r2
(−dt2 + dφ2

)
. (2.8)

Hence the BTZbh is asymptotically R× S1, an infinite long cylinder, as the

boundary of the covering space of AdS spacetime. It is in this sense that the

BTZbh is asymptotically AdS spacetime. The outer and inner horizon are

given respectively by

r2
± =

Ml2

2


1±

(
1−

(
J

Ml

)2
)1/2


 (2.9)

This BTZ metric can be obtained directly from the Einstein’s field equations

by imposing time and axial symmetry [11], or it can be obtained as a quotient

of AdS spacetime by a discrete subgroup of the AdS group. When expressed
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in BTZ coordinates (t, r, φ) the Killing vector which generates this subgroup

turns out to be ∂φ [11]. The second way of obtaining the metric (2.6) is the

more suitable for the purposes of this work.

In terms of BTZ coordinates the three regions of the BTZbh are given by

[11]: For r+ < r

u =
√

B(r) sinh t̃ (t, φ) v =
√

A(r) cosh φ̃ (t, φ)

y =
√

B(r) cosh t̃ (t, φ) x =
√

A(r) sinh φ̃ (t, φ) , (2.10)

For r− < r < r+

u = −
√
−B(r) cosh t̃ (t, φ) v =

√
A(r) cosh φ̃ (t, φ)

y = −
√
−B(r) sinh t̃ (t, φ) x =

√
A(r) sinh φ̃ (t, φ) , (2.11)

For 0 < r < r−

u = −
√
−B(r) cosh t̃ (t, φ) v =

√
−A(r) sinh φ̃ (t, φ)

y = −
√
−B(r) sinh t̃ (t, φ) x =

√
−A(r) cosh φ̃ (t, φ) , (2.12)

where

A(r) = l2
(

r2 − r2
−

r2
+ − r2−

)
, B(r) = l2

(
r2 − r2

+

r2
+ − r2−

)
(2.13)

and

t̃ =
1

l
(r+t/l − r−φ) , φ̃ =

1

l
(r+φ− r−t/l) . (2.14)

In this parametrization the coordinate φ must be 2π-periodic in order to

obtain the usual metric for the BTZbh.

In order to introduce the surface gravity we need to introduce the gener-

ator of the horizon, let us write it down [21]

χ = ∂v −Nφ|r+∂ϕ, (2.15)
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where v and ϕ are Eddington-Finkelstein-like coordinates defined by

dv = dt +
dr

f 2
, dϕ = dφ− Nφ

f 2
dr. (2.16)

Using (2.15), the surface gravity, κ, can be calculated and turns out to

be

κ2 = −1

2
∇µχν∇µχν κ =

r2
+ − r2

−
l2r+

. (2.17)

This quantity will appear later in our study of thermal states in the BTZbh.

Now let us study the global structure of the non-rotating BTZbh. If we

define r∗ by dr∗
dr

= f−2 then the metric (2.6) takes the form

ds2 = f 2(−dt2 + dr∗2) + r2dφ2, (2.18)

where we have made J = 0. If we solve for r∗ we get

r∗ =
l2

2r+

ln
|r − r+|
r + r+

. (2.19)

From this expression we see that1 −∞ < r∗ < 0.

Let us now introduce the analogue of Kruskal coordinates for the BTZbh.

Defining null coordinates

ũ = t− r∗ ṽ = t + r∗ (2.20)

we obtain

ds2 = −f 2dũdṽ + r2dφ2, (2.21)

where r2 = r2 (ũ, ṽ). The relation between r, r∗, ũ and ṽ is given by

r∗ =
l2

2r+

ln
r − r+

r + r+

=
ṽ − ũ

2
. (2.22)

1However the coordinate r∗ also covers 0 ≤ r < r+, it is only singular at r = r+ where
r∗ → ∞. In this work we shall restrict to r > r+, so we shall omit the absolute value
symbol in r∗.
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From this expression we have

f 2 =
r2 − r+

2

l2
=

(r + r+)2

l2
e

r+
l2

(ṽ−ũ). (2.23)

Substituting (2.23) in (2.21) we obtain

ds2 = −
(

r + r+

l

)2

e
r+
l2

(ṽ−ũ)dũdṽ + r2dφ2. (2.24)

Defining

u = −e−
r+

l2
ũ v = e

r+

l2
ṽ (2.25)

we have

ds2 = − l4

r2
+

(
r + r+

l

)2

dudv + r2dφ2

= − 4l2

(1 + uv)2dudv + r2dφ2, (2.26)

where we have used (2.22) and (2.25) to obtain the second equality. The

range of u and v in (2.25) is −∞ < u < 0 and 0 < v < ∞ respectively,

however the metric (2.26) is not singular anymore at r = r+ (uv = 0). Hence

now we can extend both ranges from −∞ to ∞ with the condition (2.28)

which implies uv < −1. Defining u = T −R and v = T + R we have

ds2 =
4l2

(1 + T 2 −R2)2

(−dT 2 + dR2
)

+ r2dφ2. (2.27)

The coordinates (T,R) are analogous to Kruskal coordinates in Schwarzschild

spacetime. It is interesting to note that at r = r+ the metric in Kruskal-like

coordinates is essentially flat resembling the Schwarzschild case. Also we see

that at this surface ∂T becomes a killing vector. This implies that ∂u and

∂v are killing vectors on the past and on the future horizon respectively for

R > 0. If we omit the angular part of the metric (2.27) we can draw a two

dimensional Kruskal-like diagram for the BTZbh. From (2.22) and (2.25) we
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Figure 2.3: Kruskal diagram for the non-rotating BTZ black hole.

have

uv = −r − r+

r + r+

. (2.28)

Hence uv → −1 when r → ∞ and uv → 1 when r → 0 and we obtain the

diagram 2.3. Each point of this diagram represents a circle. We define

RK if u < 0, v > 0 LK if u > 0, v < 0 (2.29)

FK if u > 0, v > 0 PK if u < 0, v < 0 (2.30)

with the appropriate bound given by r = ∞ and r = 0 respectively. If

we foliate the Kruskal diagram with surfaces T =const. then we have an

Einstein-Rosen-like throat bridge connecting two asymptotically AdS regions.

The radius of this throat bridge is zero at T = −1 reaches its maximum at

r = r+ and is zero again at T = 1.

For later reference we express the Kruskal coordinates in terms of t and
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r∗. In RK

T = e
r+
l2

r∗ sinh
(r+

l2
t
)

R = e
r+
l2

r∗ cosh
(r+

l2
t
)

. (2.31)

In LK

T = −e
r+
l2

r∗ sinh
(r+

l2
t
)

R = −e
r+
l2

r∗ cosh
(r+

l2
t
)

. (2.32)

In FK

T = e
r+

l2
r∗ cosh

(r+

l2
t
)

R = e
r+

l2
r∗ sinh

(r+

l2
t
)

. (2.33)

In PK

T = −e
r+

l2
r∗ cosh

(r+

l2
t
)

R = −e
r+

l2
r∗ sinh

(r+

l2
t
)

. (2.34)

From these expressions we see that the (T, R) and (t, r∗) coordinates are

related as the Minkowski and Rindler coordinates in flat spacetime are.

In order to obtain the Penrose diagram we omit the angular part of the

metric (2.27) and define

u = T −R = tan

(
λ− ρ

2

)
v = T + R = tan

(
λ + ρ

2

)
. (2.35)

Then we have

ds2 = l2 sec2 ρ
(−dλ2 + dρ2

)
. (2.36)

Hence, if we multiply (2.36) by the squared conformal factor Ω = l cos ρ which

is zero at the boundary (ρ = ±π/2) we obtain as the unphysical metric

ds̃2 = −dλ2 + dρ2. (2.37)

From (2.28) and (2.35) it follows that

uv =
tan2 λ/2− tan2 ρ/2

1− tan2 λ/2 tan2 ρ/2
= −r − r+

r + r+

. (2.38)

From this equation it follows that infinity, the singularity at r = 0 and the

horizon are mapped to ρ = ±π/2, λ = ±π/2 and λ = ±ρ respectively, see

figure 2.4.

For completeness we give the Penrose diagram for the rotating BTZ black
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Figure 2.4: Penrose diagram for the non-rotating BTZ black hole.

hole [11] in figure 2.5.

2.3 The BTZ black hole in the boundary of

AdS spacetime

We mentioned before that the BTZbh can be obtained by a quotient proce-

dure from AdS spacetime. The quotient is made by a discrete subgroup of

SO0(2, 2). Because we want the resulting spacetime not to have closed time-

like curves it is required the Killing vector which generates this subgroup

be spacelike. It turns out that this criterion is not just necessary but also

sufficient [11]. For the moment let us restrict ourselves to the non-rotating

case. In this case, when expressed in embedding coordinates this generator

turns out to be

∂φ =
r+

l
(x∂v + v∂x) . (2.39)

We are interested in studying quantum field theory on the boundary of AdS

spacetime and consequently of the BTZbh. So it is useful to find out which

regions on the boundary correspond to the covering space of the BTZbh. Be-

cause the maximally extended BTZbh have two exterior regions analogously
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Figure 2.5: Penrose diagram for the rotating BTZ black hole.

to Schwarzschild spacetime, there will be two regions on the boundary which

cover the maximally extended BTZbh. If we want to know what these re-

gions are explicitly we can express ∂φ in global coordinates, take the limit

ρ → π/2, and impose on it the condition of being spacelike in the metric

(1.25).

Using

sin ρ =

(
x2 + y2

u2 + v2

)1/2

tan λ =
u

v
tan θ =

y

x
, (2.40)

we get

l

r+

∂φ = − sin λ sin ρ cos θ∂λ + cos λ cos ρ cos θ∂ρ − cos λ sin θ

sin ρ
∂θ. (2.41)

On the boundary

Jφ ≡ l

r+

∂φ|ρ=π/2 = − sin λ cos θ∂λ − cos λ sin θ∂θ. (2.42)
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Figure 2.6: This figure represents the covering space of BTZ on the boundary of AdS
spacetime in 1+2 dimensions.

Its norm is given by

||Jφ||2 = − sin2 λ cos2 θ + cos2 λ sin2 θ = − sin u sin v, (2.43)

where we have introduced null coordinates

u = λ− θ v = λ + θ. (2.44)

Clearly this vector can be timelike, spacelike or null. The regions where it is

null are given by

u, v = nπ n = 0,±1,±2... (2.45)

Hence the covering space of the exterior BTZ black hole is the region inside

the lines defined by, see figure 2.6,

u = π, 0,−π v = π, 0,−π. (2.46)

Actually we can cover all the boundary of the covering space of AdS space-

time with regions like that defined by (2.46), but for our purposes we just

need to consider one of them. The figure 2.6 has been given before in [2] and

[19].

On the boundary the BTZ coordinates are (t, φ). We have found already

the generator of translations in φ, let us see what the generator of translations

in time is. In embedding coordinates

∂t =
r+

l2
(y∂u + u∂y) . (2.47)
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In global coordinates

l2

r+

∂t = sin λ cos ρ sin θ∂ρ + cos λ sin ρ sin θ∂λ +
sin λ cos θ

sin ρ
∂θ. (2.48)

On the boundary

Jt ≡ l2

r+

∂t|ρ=π/2 = cos λ sin θ∂λ + sin λ cos θ∂θ. (2.49)

Clearly

Jt
µJφµ = 0. (2.50)

The norm of Jt is given by

||Jt||2 = − cos2 λ sin2 θ + sin2 λ cos2 θ = sin u sin v. (2.51)

From (2.51) it follows that when Jφ is spacelike Jt is timelike and viceversa.

Now let us see the region of AdS spacetime covered by the Poincaré chart

defined before. Here we are going to consider just one fundamental region of

CAdS spacetime, λ ∈ [−π, π). From (1.22) and (1.31) it follows that

cos λ =
z2 + l2 + k2 − T 2

√
(z2 + l2 + k2 − T 2)2 + (2lT )2

(2.52)

and

cos θ = − z2 − l2 + k2 − T 2

√
(z2 + l2 + k2 − T 2)2 + (2lT )2 − (2lz)2

. (2.53)

By following the analysis in [9] it can be shown that the equality cos λ =

− cos θ can be satisfied on the surface ρ = π/2 and it corresponds to, let us

say, the boundary of one Poincaré chart on this surface, see figure 2.7. From

this we see that the covering region of the maximally extended BTZ black

hole is half of the Poincaré chart. Let us see what the relation between BTZ

coordinates and Poincaré coordinates is.
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Figure 2.7: This figure shows how the covering space of the BTZbh on the boundary is
related to the Poincaré chart. The big diamond is the Poincaré chart whereas the covering
space of the BTZbh is the A and B small diamonds.

From (1.31) and (2.10) it follows that

u

y
= tanh

(r+

l2
t
) v

x
= coth

(r+

l
φ
)

u

y
=

T

k

v

x
=

z2 + l2 + k2 − T 2

l2 − z2 + T 2 − k2
. (2.54)

From these expressions it follows that at infinity (there is no dependence on

r) z = 0 we have

T

k
= tanh

(r+

l2
t
) l2 + k2 − T 2

−l2 + k2 − T 2
= coth

(
−r+

l
φ
)

. (2.55)

Solving for k and T we obtain

T = le−
r+
l

φ sinh
(r+

l2
t
)

k = le−
r+
l

φ cosh
(r+

l2
t
)

. (2.56)

From (2.56) we can see that the relation between BTZ coordinates and

Poincaré coordinates is analogous to the relation between Rindler and Minkowski

coordinates. This suggests that some kind of Unruh effect is taking place on

the boundary. In the next sections we shall show this is indeed the case.

For completeness, let us now find out the expressions for ∂φ and ∂t for
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the rotating black hole. From (2.10) and (2.14) it follows that

∂φ =
r+

l
(x∂v + v∂x)− r−

l
(y∂u + u∂y) (2.57)

and

∂t =
r+

l2
(y∂u + u∂y)− r−

l2
(x∂v + v∂x) . (2.58)

Now we can use the expressions (2.41) and (2.48), since these were obtained

in general in global coordinates. Hence in global coordinates and at the

boundary

∂φ = −2r+

l
(sin u∂u + sin v∂v)− 2r−

l
(sin u∂u − sin v∂v) (2.59)

and

∂t = −2r+

l2
(sin u∂u − sin v∂v) +

2r−
l2

(sin u∂u + sin v∂v) (2.60)

where we have used the null coordinates u and v.

The vector fields of ∂t and ∂φ for the non-rotating and the rotating case

are given in figure 2.8 and 2.92.

2Similar plots have been given in [2] and [1]
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Figure 2.8: These figures show the vector fields ∂φ and ∂t respectively for the non-
rotating BTZ black hole. These figures were made with Maple 10.

41



v

−3 20 1

u

3

−1

−1

0

−2

−2

1

3

2

−3

v

−3 20 1

u

3

−1

−1

0

−2

−2

1

3

2

−3

Figure 2.9: These figures show the vector fields ∂φ and ∂t for the rotating black hole.
In the plotting we put r+ = 5r−. These figures were made with Maple 10.

42



Chapter 3

Elements of Quantum Field

Theory

In this chapter we give the elements of Quantum Field Theory necessaries for

this work. Our purpose is not to be exhaustive but just to give the necessary

theory to understand the coming chapters.

3.1 Canonical quantization of the real linear

scalar field

We consider the quantization of the real linear scalar field, φ, which obeys

the Klein-Gordon equation

(∇µ∇µ − ξR−m2
)
φ = 0, (3.1)

where ξ is a coupling constant, R is the Ricci scalar and m can be considered

as the mass of the field. This equation can be considered as the generalization

of the Klein-Gordon equation in flat spacetime, i.e. when the second term

does not appear. This term makes the equation conformally invariant when

m = 0 and ξ = 1
4
[(n− 2)/(n− 1)] [13].
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The equation (3.1) is derived from the lagrangian density

L(x) = −1

2
[−g(x)]1/2 [

gµν(x)φ(x),µφ(x),ν +
[
m2 + ξR(x)

]
φ2(x)

]
(3.2)

by using the Euler-Lagrange equations [69]

δS

δφ
=

∂L
∂φ

− ∂µ

(
∂L

∂(φ,µ)

)
, (3.3)

where

S =

∫
Ldnx (3.4)

is the action of the field. In order to carry out the canonical quantization we

need to define the momentum conjugate to φ. It is defined as

π =
∂L

∂(φ,0)
. (3.5)

In the present case it turns out to be

π = (−g)1/2g0µφ,µ. (3.6)

Then we promote φ and π to operators and impose the canonical commuta-

tions relations [69], [36]

[φ(t,x), φ(t,x′)] = 0

[π(t,x), π(t,x′)] = 0

[φ(t,x), π(t,x′)] = iδn−1(x− x′) (3.7)

where the delta function is defined by

∫
dn−1xδn−1(x− x′)f(x) = f(x′). (3.8)

Now we introduce an inner product for solutions to the equation (3.1)

(φ1, φ2) = −i

∫

Σ

(φ1∇µφ
∗
2 − φ∗2∇µφ1)n

µ√γdn−1x, (3.9)
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where Σ is a spacelike hypersurface, nµ the normal to this hypersurface point-

ing to the future and γµν is the metric induced in Σ. This inner product is

independent of the hypersurface Σ if the field vanishes at infinity or van-

ishes on a timelike boundary the spacetime can have at infinity. This is a

consequence of the fact that the covector

jµ = φ1∇µφ
∗
2 − φ∗2∇µφ1 (3.10)

satisfies

∇µjµ = 0 (3.11)

for any two solutions of (3.1). By integrating this equation over a volume V

of spacetime and using Stoke’s theorem we obtain

∫

V

dxn
√
|g|∇µjµ =

∫

∂V

dn−1y
√
|γ|nµj

µ = 0, (3.12)

where g = detgµν and γ = detγµν is the metric of spacetime V and the

boundary ∂V of it respectively. If ∂V consists of two spacelike hypersurfaces

Σ1 and Σ2 plus a hypersurface where the field vanishes then

∫

Σ1

dn−1y
√

γnµj
µ =

∫

Σ2

dn−1y
√

γnµj
µ. (3.13)

From this it follows that the inner product (3.9) does not depend of Σ.

When the spacetime is static, i.e., when the metric is diagonal and the

metric is time independent then we can choose solutions harmonics in time.

In this case the Lie derivative of these solutions is

LKµui = −iωui, (3.14)

where Kµ = (∂t)
µ and t is the time function. The solutions satisfying (3.14)

are called positive frequency modes. These modes can be normalized in such

a way that they satisfy

(ui, uj) = δij. (3.15)

The field operator then can be expanded in terms of these positive frequency
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modes as

φ̂(t, x) =
∑

i

(uiâi + u∗i â
†
i ), (3.16)

where ∗ denotes complex conjugate. Imposing the conditions (3.7) we have

the conditions on â and â† [23]

[âi, âj] = 0 (3.17)

[â†i , â
†
j] = 0 (3.18)

[âi, â
†
j] = δij. (3.19)

The vacuum is defined by

âi|0〉 = 0 ∀ i. (3.20)

One should be careful with the word vacuum because strictly speaking the

vacuum is defined in flat spacetime where we have Poincaré symmetry [41].

It is better to call the vector |0〉 in (3.20) ground state with respect to the

time t. The literature on the quantization of the real scalar field is vast.

Basic references are [43], [49], [56], [32], [51], [52] and [6]. General references

on Quantum Field Theory in Curved Spacetime are [27], [33], [85] and [86].

The creation operators act on the vacuum creating states with certain

number of particles. These states expand what is usually call the Fock space.

3.2 Conformal vacuum

As we said in the previous section, when m = 0 and ξ = 1
4
[(n − 2)/(n − 1)]

the Klein-Gordon operator is invariant under conformal transformations of

the metric

g′µν(x) = Ω2(x)gµν(x), (3.21)

where Ω(x) is a scalar function of the spacetime. In this case if φ(x) is a

solution of the Klein-Gordon operator with gµν then φ′(x) = Ω(2−n)/2φ(x) is

a solution of the Klein-Gordon equation with g′µν . If we choose gµν as the
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flat metric ηµν = diag(−1, 1, 1, ...) and write

ηµν = Ω−2gµν , (3.22)

where we have made g′ = g, then φ must satisfy

[¤ +
1

4
(n− 2)R/(n− 1)]φ = 0 (3.23)

and φ̄ = Ω(n−2)/2φ must satisfy

¤φ̄ ≡ ηµν∂µ∂νφ̄ = 0, (3.24)

since R̄ = 0 in Minkowski. The equation (3.24) possesses the usual solutions

ūk(x) = [2ω(2π)n−1]−
1
2 eik·x, k0 = ω. (3.25)

Then the mode expansion for the field in the spacetime with metric gµν is

φ(t, x) = Ω(2−n)/2
∑

i

(akūk + a†kū
∗
k), (3.26)

where ūk is the complete set of ortonormal solutions (3.25) of the Klein-

Gordon operator. The vacuum defined with respect to the anihilation oper-

ators in (3.26) is the so-called conformal vacuum, i.e.

ak|0〉 = 0 ∀ k. (3.27)

3.3 The KMS condition

The KMS condition reads

〈BAt〉 = 〈At−iβB〉, (3.28)

where

〈A〉 ≡ Z−1Tr(e−βHA), (3.29)
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Z = Tre−βH (3.30)

with temperature T = 1/β. This condition is a consequence of the cyclic

properties of the trace and can be seen as follows.

Define

Gβ
+(t, A, B) = 〈AtB〉

= Z−1Tr(e−βHeitHAe−itHB)

= Z−1Tr(ei(t+iβ)HAe−itHB) (3.31)

and

Gβ
−(t, A, B) = 〈BAt〉

= Z−1Tr(e−βHBeitHAe−itH)

= Z−1Tr(BeitHAe−itHe−βH)

= Z−1Tr(BeitHAe−i(t−iβ)H). (3.32)

Then, by making t = t− iβ in (3.31) we have

Gβ
+(t− iβ, A, B) = Gβ

−(t, A, B), (3.33)

or

〈BAt〉 = 〈At−iβB〉. (3.34)

If the system satisfies CT then the KMS condition boils down to [37]

Gβ
+(t− iβ, A,B) = Gβ

+(−t, A, B). (3.35)

3.3.1 The simple quantum harmonic oscillator as an

example

As an example of a system which satisfies the KMS condition we give the

simple quantum harmonic oscillator.
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The position operator is given by [72]

x̂(t) =

√
~

2mω

(
e−iωtâ + eiωtâ†

)
, (3.36)

where â and â† are the anihilation and creation operators respectively. The

anihilation operator satisfies

â|0〉 = 0. (3.37)

The two point function at zero temperature is given by

〈0|x̂(t1)x̂(t2)|0〉 =
~

2mω
e−iω(t1−t2). (3.38)

The two point function at temperature T is given by

〈x̂(t1)x̂(t2)〉β =
1

Z
Tr

(
e−βĤ x̂(t1)x̂(t2)

)
, (3.39)

where

Z =
(
1− e−β~ω)−1

. (3.40)

In order to calculate this two point function we use the fact that

Tr
(
e−βĤ â†â

)
=

e−β~ω

(1− e−β~ω)2 (3.41)

and

[â, â†] = 1. (3.42)

As a consequence of these two expression we have

Tr
(
e−βĤ ââ†

)
=

1

(1− e−β~ω)2 . (3.43)

From (3.36), (3.39), (3.40), (3.41) and (3.43) we have

〈x̂(t1)x̂(t2)〉β =
~

2mω

(
e−iω(t1−t2) + eiω(t1−t2)e−β~ω

1− e−β~ω

)
. (3.44)
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If we consider this expression as a function F of t1 − t2 = ∆t, then we have

F (−∆t) = F (∆t− iβ), (3.45)

i.e., the KMS condition is satisfied.

In the previous characterization of the KMS condition we assumed that

the trace which defines the Gibbs state (3.29) exists, however for infinitely

extended systems this need not to be so. On the other hand, systems where

the KMS condition is very relevant are those on which the thermodynamic

limit is to be taken. These systems usually are infinitely extended. In these

circumstances we face the problem of how to characterize these infinitely

extended systems. It turn out that the KMS condition survives the thermo-

dynamic limit [42] hence allowing us to use an algebraic characterization of

thermal states. In this approach to the KMS condition we do not need to

assume that the trace in (3.29) exists, we define a thermal equilibrium state

as that which satisfies the KMS condition (3.28) in the algebraic definition

of a state. In this case the translation in time is implemented by an auto-

morphism of the algebra which defines time translation. With respect to this

automorphism αt, the thermal equilibrium state, ω, is invariant [42]

ω(αtA) = ω(A), (3.46)

where A is an element of the algebra of observables. The advantage of the

algebraic characterization is that it allows us to talk about the KMS condi-

tions without referring to boxes, which otherwise are necessary in order to

have a discrete spectrum of the hamiltonian.

3.3.2 The Tomita-Takesaki Theorem and the KMS con-

dition

When the KMS condition is considered from a purely algebraic approach a

very interesting connection of it with the theory of von Neumann algebras is

possible. The purpose of this section is to sketch this connection.

In the theory of von Neumann algebras there exists the Tomita-Takesaki
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theorem which says [42]:

Let R be a von Neumann algebra in standard form, Ω a cyclic and sepa-

rating vector and ∆, J , U(t) as defined below. Then

JRJ = R′,

U(t)RU∗(t) = R,

U(t)RU∗(t) = R′

for all real t.

The operators ∆ and J are defined by S = J∆1/2 where S is a closed

operator which satisfies

SAΩ = A∗Ω, A ∈ R.

Here A∗ is the adjoint operator to A. The operator U(t) is defined by

U(t) = ∆it

and R′ is the commutant of R1.

The map σt defined by

σtA ≡ U(t)AU∗(t), A ∈ R

is an automorphism group of R. It is called the group of modular automor-

phisms of the state ω on the algebra R. Correspondingly J is called the

modular conjugation and ∆ the modular operator of (R, Ω).

Putting ∆ = e−K where K is a self adjoint operator we have U(t) = e−itK .

Then it can be shown [42] that the state Ω satisfies

〈Ω| (σtA) B|Ω〉 = 〈Ω|Bσt−iA|Ω〉, (3.47)

i.e., it satisfies the KMS condition with β = −1. Hence it is a thermal state

1For more details about these operators see [42] and [18].
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with respect to the automorphism σt defined on the algebra R. If we put

σt = α−βt, (3.48)

then

〈Ω| (αt′A) B|Ω〉 = 〈Ω|Bσt′+iβA|Ω〉, (3.49)

where t′ = −βt, i.e., Ω satisfies the KMS condition with respect to t′, the time

in statistical mechanics. From the previous discussion we see the beautiful

and powerful connection between mathematics and physics embodied in the

Tomita-Takesaki theorem and its relation with the KMS condition. In the

next section we shall see a consequence of this connection, the Unruh effect.

3.4 The Unruh effect

Quantum Field Theory in flat spacetime of the real linear scalar field is the per

excellence example of a quantum theory of a field. In standard formulations

of the theory the concept of particle plays a prominent rôle. This is done

through the Fock representation. This concept is intimately related with

the splitting into positive and negative frequency modes, see (3.16). The

existence of this splitting is possible because the existence of a Killing vector.

The positive modes are eigenfunctions of the Lie derivative with respect to

this Killing vector. The usual introduction of the particle in field theory is by

using the vector ∂t as the Killing vector, which in no other thing than choosing

translations in time t as the diffeomorphism associated with the symmetry.

This choosing seems to be the more natural in Minkowski spacetime. However

in a spacetime which does not have a natural symmetry this construction

seems to be limited. This is indeed true and can be seen even in Minkowski

spacetime. Let us see this with more detail. In an appropriate subset of

Minkowski spacetime there is other Killing vector which is also natural. The

usual metric in Minkowski spacetime is

ds2 = −dt2 + dx2, (3.50)
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where we have restricted ourselves to the 1+1 dimensional case for simplicity

in the argument. Under the coordinate transformation

t = a−1eaξ sinh aη x = a−1eaξ cosh aη, (3.51)

where a = const. > 0, the metric takes the form

ds2 = e2aξ
(−dη2 + dξ2

)
. (3.52)

Because x > 0 and

x2 − t2 = a−2e2aξ (3.53)

the metric (3.52) is just defined in the region x > |t|, which is a wedge region

in Minkowski spacetime. This region is known as Rindler wedge. From the

form of (3.52) we see that ∂η is also a killing vector in the Rindler wedge.

Also we see that the Rindler metric is conformal to the Minkowski metric,

hence using the conformal vacuum method we can expand the field not just

with respect to Minkowski positive modes which satisfy

∂

∂t
ui = −iωui, (3.54)

but also with respect to positive modes which satisfy

∂

∂η
ũi = −iωũi. (3.55)

Using this alternative positive frequency splitting we can expand the field in

terms of other set of creation and anihilation operators, more concretely we

have

φ̂(t, x) =
∑

i

(ũi
ˆ̃ai + ũ∗i ˆ̃a

†
i ), (3.56)

where now we define a vacuum

ˆ̃ai|0〉 = 0 ∀ i. (3.57)
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This vacuum will not coincide with the vacuum defined with respect to âi

[13]. The Rindler observer will see a thermal state at temperature T = a
2π

.

This temperature can obtained from the analysis in Appendix A for a = 1.

3.4.1 The Bisognano-Wichmann theorem

In this section we shall sketch the Unruh effect in the context of axiomatic

quantum field theory in the spirit of [78]. In order to do this we shall state

the Bisognano-Wichmann theorem which belongs to this realm of quantum

field theory and discuss its relation to the Unruh effect.

The mentioned theorem says [42]:

If R(W ) has a system of affiliated observable fields satisfying the axioms

of axiomatic quantum field theory [78] then the modular conjugation2 for the

vacuum state is

J(W ) = ΘU (R1(π)) ,

the modular operator is3

∆(W ) = e−2πK ,

the modular automorphism σt acts geometrically as the boost

x0(s) = x0 cosh s + x1 sinh s, (3.58)

x1(s) = x0 sinh s + x1 cosh s,

xr = xr for r = 2, 3.

Here xµ are Minkowski coordinates belonging to the wedge W defined by

W = {x ∈ M : x1 > |x0|; x2, x3arbitrary},

where M denotes Minkowski spacetime. Θ is the CPT-operator and U(R1(π))

is the unitary representation of the rotation through an angle π around the

2This name comes from the Tomita-Takesaki theorem; also the name of modular oper-
ator. See section 3.3.2.

3The operator K is called the modular Hamiltonian and is a self adjoint operator
whose spectrum will extend in general from −∞ to ∞ and which has Ω as an eigenvector
to eigenvalue zero. Here Ω is the vacuum vector restricted to the Rindler wedge.
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1-axis, R1(π).

From (3.51) and (3.58) we see that for an observer at ξ = 0 its trajectory

coincides with the boost (3.58) if initially x1 = 1
a
. Hence the trajectory

given by (3.58) for this value of x1 can be interpreted as the trajectory of an

accelerated observer with acceleration a. From the Tomita-Takesaki theorem

and its relation with the KMS condition we know that the vacuum when

restricted to the algebra R(W ) associated with the wedge W is a thermal

state with respect to t at inverse temperature β = −1. Taking into account

that the proper time of the accelerated observer is τ = s/a then we can

conclude that for him the vacuum looks like a thermal state at temperature

T =
a

2π
, (3.59)

which is nothing else than the Unruh effect. We should notice that the time

t for which the inverse temperature is β = −1 and the time τ for which the

temperature is (3.59) are related as τ = −2πt/a. From this discussion is clear

that the Tomita-Takesaki theorem is one of elements of the mathematical

machinery behind the Unruh effect.

3.5 The Hawking effect for an eternal black

hole

One of the main predictions of Quantum Field Theory in curved spacetime is

without doubt the Hawking effect [45]. This effect consists in the emission of

thermal radiation by a black hole. In the more simple setting the black hole

can be taken to be the Schwarzschild black hole formed by the collapse of a

spherical distribution of matter. The story in this setting starts with a field

and the distribution of matter in the past infinity. Then it is supposed that

the matter collapses according to the laws of general relativity. At certain

point during the collapse a black hole forms. Also it is supposed that initially

the quantum field is in the vacuum state. As a consequence of the collapse

particle pair production occurs around the horizon of the black hole. This
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Figure 3.1: Penrose diagram for the Schwarzschild eternal black hole.

particle pair production causes that an observer at future infinity measures a

flux of particles with thermal spectrum. The emission of this flux decreases

the mass of the black hole, this process is known as black hole evaporation4.

Related with black hole evaporation there exists other interesting phe-

nomenon which involves the Schwarzschild black hole, whose metric is [23]

ds2 = −
(

1− 2M

r

)
dt2 +

1(
1− 2M

r

)dr2 + r2dΩ2, (3.60)

where dΩ2 is the metric on the unit two-sphere

dΩ2 = dθ2 + sin2 θdφ2. (3.61)

In Section 2.2 we considered the maximal extension of the non-rotating BTZ

black hole, its Penrose diagram is given in figure 2.4. An analogous maximal

extension of the Schwarzschild black hole can be done and is given by [23]

ds2 =
32M3

r
e
−r
2M

(−dT 2 + dR2
)

+ r2dΩ2 (3.62)

where

T 2 −R2 =
(
1− r

2M

)
e

r
2M . (3.63)

The Penrose diagram in this case is given in figure 3.1.

4The interested reader can see a detailed explanation of this effect in [35].
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Let us consider a real scalar field on this background. Since defining

positive frequency modes with respect to Kruskal time T does not give an

interesting vacuum it is customary to define positive frequency modes with

respect to the null coordinates along the past and future horizon, u = T −R

and v = T + R [66]. The vacuum defined with respect to these modes is

called the Kruskal vacuum or the Hartle-Hawking-Israel state [44], [50]. This

vacuum is regular on the horizon [55] and is defined on all the background.

If we restrict this state to the algebra of observables defined in the region I,

then the resulting state is a thermal state with respect to the automorphisms

of the algebra implementing translations in Schwarzschild time [55]. The

temperature of this state is T = 1
8πM

where M is the mass of the black

hole. This state represents a black hole which is emitting and absorbing

radiation at the same rate and hence it is consistent only if it is placed in

a thermal reservoir at temperature T = 1
8πM

. This phenomenon is what we

call Hawking effect for an eternal black hole.

The Unruh effect is the analogue of the Hawking effect for an eternal

black hole. In this case the vacuum when restricted to the Rindler wedge

becomes a thermal state with respect to translations in Rindler time [14],

[83].

3.6 AdS/CFT in Quantum Field Theory

It is fair to say that most of works on the so called AdS/CFT correspondence

fit into the string theory framework. However, partly motivated by this cor-

respondence, recently have appeared some works, with a more limited scope,

in the context of quantum field theory which address some issues related to

the AdS/CFT correspondence. These works are the work by Rehren [70]

which we call Algebraic Holography; the work of Bertola et al. [12] which

we call Boundary-limit Holography and the work of Kay-Larkin [57] which

we call Pre-Holography. We will refer to these three works as AdS/CFT in

quantum field theory (AdS/CFT in QFT), since all three fit in the QFT

framework. These three works in one sense or another give a correspondence

between quantum field theories in the bulk of AdS spacetime and quantum
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field theories in its conformal boundary.

3.6.1 Algebraic Holography

In Algebraic Holography a correspondence between algebras in the bulk and

the boundary of AdS spacetime is given. This correspondence relays heavily

on the fact that the group SO0(2, d) acts in the bulk and in the boundary.

In the first it acts as the group of isometry whereas in the second it acts as

the global conformal group.

The correspondence between algebras is given as follows [70].

Lemma: Between the set of space-like wedge regions5 in anti-deSitter

space, W ⊂ AdS1,s, and the set of double-cones in its conformal boundary

space, I ⊂ CM1,s, there is a canonical bijection α : W → I = α(W ) preserv-

ing inclusions and causal complements, and interwining the actions of the

anti-deSitter group SO0(2, d) and the conformal group SO0(2, d)

α(g(W )) = ġ(α(W )), α−1(ġ(I)) = g(α−1(I)), (3.64)

where ġ is the restriction of the action of g to the boundary. The double-

cone I = α(W ) associated with a wedge W is the intersection of W with the

boundary.

Given the lemma, the main algebraic result states that bulk observables

localized in a wedge regions are identified with boundary observables localized

in double-cone regions.

Corollary 1: The identification of local observables

B(W ) := A(α(W )), A(I) := B(α−1(I)) (3.65)

give rise to a 1:1 correspondence between isotonous causally covariant nets of

algebras I → A(I) on CM1,s−1 and isotonous causal anti-deSitter covariant

nets of algebras W → B(W ) on AdS1,s.

5A wedge region in AdS spacetime can be defined as the region resulting from the
intersection of the usual wedge region in the embedding spacetime with AdS spacetime.
The wedge region in the embedding spacetime is the region defined by Xi > |Xj | where
Xi is a spatial coordinate and Xj is a timelike coordinate.
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A very important result for our work is the following corollary.

Corollary 2: Under the identification of Corollary 1, a vacuum state

on the net A corresponds to a vacuum state on the net B. Positive-energy

representations on the net A correspond to positive-energy representations on

the net B. The net A satisfies essential Haag duality6 if and only if the net B

does. The modular group and modular conjugation (in the sense of Tomita-

Takesaki) of a wedge algebra B(W ) in a vacuum state act geometrically

(by a subgroup of SO0(2, s) which preserves W and by a CPT reflection,

respectively) if and only if the same holds for the double-cone algebras A(I).

We should note that this Corollary is telling us that if the modular group

acts in the boundary preserving a double-cone, then the correspondent mod-

ular group acts in the wedge which corresponds to this double-cone.

3.6.2 Boundary-limit Holography

The Boundary-limit Holography [12] relates a covariant quantum field theory

in the bulk to a conformally covariant quantum field theory in the boundary

of AdS spacetime. This is done for the real scalar field. This relation is set up

in the rigorous framework of quantum field theory of Wightman formalism.

The basic formalism can be seen in [78]. More explicitly, the Boundary-

limit Holography gives a prescription for obtaining the n-point functions of

a conformal quantum field theory in the boundary of AdS spacetime from

the n-point functions of the covariant quantum field theory in the bulk. The

exposition in [12] is rather technical and here we just will give the neces-

sary information for our purposes. First we express an n-point function in

Poincaré coordinates (T, k, z)

Wn (X1, X2, ...Xn) = Wn (X1(T1, k1, z1), X2(T2, k2, z2), ...Xn(Tn, kn, zn)) ,

where we have taken AdS spacetime in 1 + 2 dimensions for being the case

we are interested in, but this applies to any dimension. Here (T, k, z) are

6Definition: Let O → R(O) be a net of von Neumann algebras on a vacuum Hilbert
space H0. The dual net Rd of R is the assignment O → R(O′)′. Haag duality of R is
equivalent to R = Rd, or R(O′) = R(O)′.
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Poincaré coordinates. Then we restrict the z coordinate to be the same for

all Xi

Wn (X1, X2, ...Xn; z) = Wn (X1(T1, k1, z), X2(T2, k2, z), ...Xn(Tn, kn, z)) .

Finally we take the limit

Wn (Xi(Ti, ki)) = lim
z→0

zn∆Wn (X1, X2, ...Xn; z) , (3.66)

where Xi(Ti, ki) denotes all the n-coordinates and ∆ is called the dimension

scaling factor. In particular for the two point function we have

W2 (X1(T1, k1), X2(T2, k2)) = lim
z→0

z2∆ × (3.67)

× W2 (X1(T1, k1, z), X2(T2, k2, z)) ,

where the two point function on the left is defined in the boundary of AdS

spacetime whereas the two point function in the right is defined in the bulk

of AdS spacetime.

Strictly speaking all these equalities should be understood as equalities

between distributions, however for our purposes we just need the limit pro-

cedure described before in order to obtain our results.

3.6.3 Pre-Holography

In Pre-Holography it was constructed a symplectic map from the classical

solutions of the Klein-Gordon operator in the bulk of AdS spacetime to a

certain space of functions in the boundary of AdS spacetime. Using this

map it was possible to give new examples of Algebraic Holography and under

certain conditions it was posible to make the Boundary-limit Holography a

real duality. This was done for a massive real linear scalar field. It was shown

that when

∆ =
d

2
+

1

2

(
d2 + 4m2

)1/2
(3.68)

is an integer or half-integer then the just mentioned duality holds. Also under

these circumstances Algebraic Holography and the Boundary-limit Hologra-
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phy can be related.

Also it was shown that the global vacuum in the bulk of AdS spacetime

maps to a vacuum in the conformal boundary. Also it was studied some

group theoretical aspects of AdS spacetime. In particular it was given the

expressions for the Killing vectors in AdS spacetime in 1+1 dimensions. This

is important because it was the starting point of our work. We studied how

these killing vectors are related to the thermal properties of the state of the

quantum field.
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Chapter 4

Thermal States in AdS and

BTZ spacetime

4.1 Pre-Holography and Thermal state on the

boundary

In this section we shall use Pre-Holography [57], [60] to show the existence

of a thermal state on the boundary of AdS spacetime in 1+1 dimensions for

the massless real linear scalar field.

In [60], it has been shown that the symplectic map induces a two point

function on the boundary given by

G (λ1, λ2) =
1

2π

1

cos (λ1 − λ2)− 1
, (4.1)

where λ is the global time.

We want to relate this two point function to a two point function in

Poincaré and in BTZ coordinates. Before we proceed, it is necessary to

make some comments on these coordinate charts on AdS spacetime in 1+1

dimensions. The coordinates we are interested in are global (λ, ρ), Poincaré

(T, z) and BTZ coordinates (t, r). These coordinates cover different regions

of AdS spacetime, see figure 4.1. The two point function (4.1) corresponds

to the vacuum defined with respect to global time. We can interpret it as
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D

C

E

Figure 4.1: Regions in AdS spacetime in 1+1 dimensions covered by Poincaré and BTZ
coordinates. The region ABD is covered by Poincaré coordinates whereas the region CED
is covered by BTZ coordinates (exterior region). Global coordinates cover all the manifold.

a vacuum state on the boundary. Now, it has been shown [77] that global

and Poincaré vacuums are the same in the bulk. If the same holds on the

boundary then when we express (4.1) in Poincaré coordinates we expect to

obtain a two point function on the boundary which corresponds to a vacuum

state. Let us show that this is indeed the case. First, let us introduce

Poincaré coordinates. We define

m ≡ v + x

l2
n ≡ v − x

l2
T ≡ u

lm
, (4.2)

where v, u and x are the coordinates in (1.13). Then (1.13) takes the form

−mnl4 −m2T 2l2 = −l2. (4.3)

From (4.2) we have

v =
l2

2
(m + n) . (4.4)
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Now, using (4.3) in (4.4) we obtain

v =
m

2

(
1

m2
+ l2 − T 2

)
. (4.5)

Defining z = 1
m

, the expression for the last equation is

v =
1

2z

(
z2 + l2 − T 2

)
. (4.6)

Doing analogously for x and using the definition of z in u we get

x =
1

2z

(−z2 + l2 + T 2
)

u =
lT

z
. (4.7)

The equations (4.6) and (4.7) define Poincaré coordinates (T, z). z plays the

rôle of spacial coordinate and we can see from

1

z
=

v + x

l2
(4.8)

that there are two charts z > 0 and z < 0, z = 0 belongs to the boundary

[9]. Each chart covers half of AdS spacetime. It is standard to choose z > 0,

we will attach to this convention. In these coordinates the expression for the

metric is

ds2 =
l2

z2

(−dT 2 + dz2
)
. (4.9)

From this equation we see that the conformal boundary belongs to z = 0.

Since we want to express (4.1) in Poincaré coordinates we need the relation

between global time λ and Poincaré time T , let us see what this relation is.

From (1.14) and (4.6)-(4.7) we have

tan λ =
2lT

l2 − T 2
cos λ =

l2 − T 2

l2 + T 2
sin λ =

2lT

l2 + T 2
, (4.10)

where we have made z = 0. The relation between λ and T can be written as

T

l
= tan

(
λ

2

)
. (4.11)
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where we have used the tangent half-angle formula.

Now, expanding out cos (λ1 − λ2) and using (4.10) we obtain

1

2π

1

cos (λ1 − λ2)− 1
= − 1

π

(l2 + T 2
1 ) (l2 + T 2

2 )

4l2 (T1 − T2)
2 . (4.12)

So far we just have made a naive and straight change of coordinates, how-

ever, according to AH [70], to the quantum field on the bulk of AdS space-

time corresponds a conformal quantum field on the boundary, and using

Pre-Holography in [57] it has been given explicit examples of this correspon-

dence. In particular the two point function (4.1) corresponds to a state on

the boundary and from (4.11) it follows that the metric on the boundary in

global and Poincaré coordinates are related by

dλ2 =
4l2

(l2 + T 2)2dT 2. (4.13)

The equation (4.13) expresses the same metric in two different coordinate

systems. Let us do a bit of tensor analysis in order to obtain the relation

between the components of the metric in the two different coordinate systems.

If we express the metric in two different coordinate systems xµ and x′µ we

have

g′µν(x
′)dx′µdx′ν = gαβ(x)dxαdxβ. (4.14)

If we use dx′µ = ∂x′µ
∂xα dxα in the left hand side of the last expression we get

g′µν(x
′)

∂x′µ

∂xα

∂x′ν

∂xβ
= gαβ(x). (4.15)

Then on the view of the coordinate transformation (4.11) we have

gTT (T )
dT

dλ

dT

dλ
= gλλ (4.16)

which turns out to be

gλλ =

(
l2 + T 2

2l

)2

gTT (T ). (4.17)
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On the other hand, in Conformal Field Theory (CFT) the starting point is

to look for transformations x → x′ of spacetime which satisfy [34]

g′µν(x
′) = Ω2(x)gµν(x), (4.18)

where x and x′ represent generic points in spacetime and Ω is a smooth func-

tion. Hence the change from global to Poincaré coordinates can be analyzed

in the context of CFT with

Ω =
l2 + T 2

2l
. (4.19)

In order to do this, let us state some basic facts of CFT [34]. For quasi-

primary fields the two point functions under conformal transformations are

related as

〈φ1(x1)φ2(x2)〉 =

∣∣∣∣
∂x′

∂x

∣∣∣∣
∆1
d

∣∣∣∣
∂x′

∂x

∣∣∣∣
∆2
d

〈φ1(x
′
1)φ2(x

′
2)〉, (4.20)

where ∆1 and ∆2 are scaling dimensions. On other hand we have

∣∣∣∣
∂x′

∂x

∣∣∣∣ = Ω−d. (4.21)

Hence from (4.20) and (4.21) we have

〈φ1(x1)φ2(x2)〉 = Ω(x1)
−∆1Ω(x2)

−∆2〈φ1(x
′
1)φ2(x

′
2)〉. (4.22)

If we write (4.12) as

− 1

π

1

(T1 − T2)
2 = Ω−1(T1)Ω

−1(T2)
1

2π

1

cos (λ1 − λ2)− 1
, (4.23)

where ∆1 = ∆2 = 1, then we can read off the two point function in Poincaré

coordinates

G(T1, T2) = − 1

π

1

(T1 − T2)
2 . (4.24)

This two point function has the form, apart from a 1/4 factor, of the two times
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differentiated vacuum two point function restricted to right or left movers1.

Then we can say that also on the boundary the global and Poincaré vacuums

coincide. This just strengthens the fact that (4.1) corresponds to a vacuum

state on the boundary. It is important to remark that this function is defined

on a complete (module identifications) boundary of AdS spacetime. So (4.1)

and (4.24) corresponds to a vacuum defined on the whole boundary. Now let

us consider the two point function expressed in BTZ coordinates.

We have seen that BTZ coordinates cover just half of one of the bound-

aries of AdS spacetime. Then the two point function (4.1) when expressed

in these coordinates will correspond to a state defined on this part of the

boundary. We expect this state to be a thermal state which corresponds to

the state of a field on the BTZ black hole in 1+1 dimensions. We shall show

that this is indeed the case.

Let us express (4.1) in BTZ coordinates. We obtain the same result if

we express (4.24) in BTZ coordinates, however starting from (4.1) is more

logical. From (1.14) and (2.1) it follows that on the boundary global time λ

and BTZ time t are related by

tanh κt = cos λ, (4.25)

where κ = r+

l2
. From this equation it follows that

sin λ =
1

cosh κt
. (4.26)

1One can ask why we compare the two-point function of a one-dimensional theory which
is not differentiated to a twice differentiated two point function of a two-dimensional theory.
The answer is in the similarity or analogy between the geometry and the expressions for the
two point functions in both cases. The coordinate, U , on the null line and the coordinate
u for the boost which leaves invariant the right wedge are related as U = eau, where a
is the acceleration of the Rindler observer, whereas the Poincaré time T and the BTZ
time, t, are related as T = le−κT . Then there is an analogy between the null line in two
dimensional Minkowski spacetime and the timelike boundary of AdS spacetime in 1+1
dimensions. So it is natural to compare the two point functions in both cases.
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Then expanding out cos (λ1 − λ2) we have

cos (λ1 − λ2)− 1 =
1− cosh κ(t1 − t2)

cosh κt1 cosh κt2
= − 2 sinh2 κ

(
t1−t2

2

)

cosh κt1 cosh κt2
. (4.27)

Hence the right side of (4.1) takes the form

1

2π

1

cos (λ1 − λ2)− 1
= − 1

4π

cosh κt1 cosh κt2

sinh2
(
κ t1−t2

2

) . (4.28)

Now, from (4.25) it follows that the metric on the boundary in global and

BTZ coordinates are related by

dλ2 =
κ2

cosh2 κt
dt2. (4.29)

From this equation it follows that

gλλ(λ) =

(
cosh κt

κ

)2

gtt(t) (4.30)

Hence both metrics are conformally related with

Ω(t) =
cosh κt

κ
. (4.31)

We can do the same analysis we did when we passed from global to Poincaré

coordinates. If we write (4.28) as

− 1

4π

κ2

sinh2
(
κ t1−t2

2

) = Ω−1(t1)Ω
−1(t2)

1

2π

1

cos (λ1 − λ2)− 1
, (4.32)

where ∆1 = ∆2 = 1, we can read off the two point function in BTZ coordi-

nates

G(t1, t2) = − 1

4π

κ2

sinh2
(
κ t1−t2

2

) . (4.33)

This two point function has the form of the two times differentiated thermal

two point function restricted to left movers. Then we can conclude that

(4.33) corresponds to a thermal state on the boundary.
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Now let us give an interpretation to what we have obtained so far. We

have said that the Poincaré chart covers all the boundary of AdS spacetime

whereas BTZ coordinates cover just half of it, see figure 4.1. On the other

hand, the state induced on the boundary under the Pre-holography map

has the form of a state at zero temperature, pure state, when expressed in

Poincaré coordinates, whereas it has the form of a thermal or mixed state

when expressed in BTZ coordinates and this chart covers just half of the sys-

tem on the boundary. Hence it is natural to think the field on the boundary

as pure system made of two subsystems, one for each half of the boundary,

which are entangled.

Other interesting aspect of this problem is the, let us say, group theory

aspect. The isometry Lie group of AdS 1+1 is the pseudo-orthogonal group

SO(1,2) generated by

Juv = u∂v − v∂u

Jux = u∂x + x∂u

Jvx = v∂x + x∂v.

(4.34)

The global vacuum is invariant under the action of

Juv = u∂v − v∂u = −∂λ, (4.35)

which acts as translation in λ and indeed leaves invariant (4.1), whereas the

vacuum defined with respect to BTZ time is invariant under the action of

1

κ
∂t = v∂x + x∂v (4.36)

which acts as translation in t and leaves invariant (4.33).

Let us now find out what elements of the global conformal group on the

boundary of AdS spacetime corresponds to the elements generated by (4.34).

First we introduce a representation of (4.34) in R2,1:

Juv =




0 −1 0

1 0 0

0 0 0


 (4.37)
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Jux =




0 0 1

0 0 0

1 0 0


 (4.38)

Jvx =




0 0 0

0 0 1

0 1 0


 (4.39)

Then we introduce a coordinate

ξ =
u

v + x
. (4.40)

Now we introduce the combinations

A = Jux − Juv =




0 1 1

−1 0 0

1 0 0


 (4.41)

and

C = Juv + Jux =




0 −1 1

1 0 0

1 0 0


 . (4.42)

These two matrices satisfy

A3 = C3 = 0. (4.43)

Making the same calculation as in Appendix B we obtain that A generates

translations in ξ and C generates special conformal transformations in time.

Also we have

ξ =
u

v + x
=

T

l
. (4.44)

Hence using (4.41), (4.42) and (4.44) we have that the translations in global

time in the boundary is given as a linear combination of translations in T

and special conformal transformations

∂λ =
1

2
(∂ξ − Sξ), (4.45)
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where Sξ is the generator of special conformal transformation in time. The

generator (4.39) generates a boost in the plane xv, hence when this boost

acts on a point (u, v, x)T we obtain that

ξ → e−sξ, (4.46)

where s is a parameter. Hence ∂t generate dilations in the boundary.

4.2 Wedge regions in AdS spacetime

In the context of Algebraic Holography [70] wedge regions in AdS spacetime

play a prominent rôle. In this section we will show that the exterior of the

BTZbh is a wedge region.

Following [70] we define a wedge region in AdS spacetime as follows. Let

us take two light-like vectors (e, f) in the embedding space R2,2 such that

e · f > 0, then a wedge region in AdS spacetime is defined by

W̃ (e, f) = {x ∈ R2+2 : x2 = −l2, e · x < 0, f · x < 0}. (4.47)

This region has two connected components. One where the resulting vector

by acting on the tangent vector at the point x ∈ W̃ (e, f) with the boost in

the e-f plane is future directed and other where it is past directed. This is a

consequence of the fact that the vector δe,fx = (f · x)e− (e · x)f is time-like,

(δe,fx)2 = −2(e · f)(e · x)(f · x) < 0. The wedge regions are defined in [70]

as these regions modulo the identification x ↔ −x.2 Hence in order to check

that a region in AdS spacetime is a wedge region we just have to verify that

it has these properties. Let us do this for the exterior of the BTZbh.

2It is worth noting that a more primitive definition of a wedge region in AdS spacetime
is to define it as the intersection of AdS spacetime with a wedge region in the embedding
spacetime.
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4.2.1 The exterior of the BTZ black hole is a wedge

region

Let us take e = (1, 0, 0,−1) and f = (−1, 0, 0,−1). These light-like vectors

satisfy e · f > 0. By using the parametrization (2.10) we get

e · x = −
√

B(r)
(
sinh t̃ + cosh t̃

)
< 0 (4.48)

and

f · x =
√

B(r)
(
sinh t̃− cosh t̃

)
< 0. (4.49)

Hence the exterior of the rotating BTZ black hole is a wedge region. It is

also true for the non-rotating case. As explained in [70] this wedge intersects

the boundary in a double cone. In the previous section we have found this

double cone explicitly. These regions are preserved by the action of the

subgroup generated by the Killing vector ∂t. This group acts on the wedge

as a subgroup of the AdS group and as subgroup of the conformal group on

the boundary.

4.2.2 The exterior of BTZ black hole and the Rindler

wedge in Minkowski spacetime

We have found that the exterior of the BTZbh is invariant under the one-

parameter subgroup of the AdS group generated by ∂t. Let us calculate

explicitly this one-parameter subgroup. The generator of this subgroup is

given by (2.47), hence a matrix representation of it on the vector space R2,2

is given by

∂t = κ




0 0 0 1

0 0 0 0

0 0 0 0

1 0 0 0




. (4.50)
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This matrix has the following recurrence properties

(∂t)
2 = κ2




1 0 0 0

0 0 0 0

0 0 0 0

0 0 0 1




(∂t)
3 = κ3∂t, (4.51)

and so on. The matrix (4.50) is an element of the Lie algebra of SO0(2, 2)

and the one-parameter subgroup generated by it is given by

Λ(t) = et∂t =
∞∑

n=0

(t∂t)
n

n!
. (4.52)

Splitting this sum in even and odd parts and using the recurrence properties

(4.51) we obtain

Λ(t) =




cosh κt 0 0 sinh κt

0 1 0 0

0 0 1 0

sinh κt 0 0 cosh κt




. (4.53)

This one-parameter group acts on the vector space R2,2 leaving the exterior

of the BTZbh invariant.

As we said in Section 2, AdS spacetime has a compactified Minkowski

spacetime at infinity. Also we know that SO0(2, 2) acts as the conformal

group on this Minkowski spacetime [42]. Let us see to which element of the

conformal group in 1+1 dimensions the element (4.53) corresponds.

Remembering the definition of the coordinates of Minkowski spacetime

at infinity we have

ξ1 =
u

v + x
ξ2 =

y

v + x
. (4.54)
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If now we let Λ(t) act on xT = (u, v, x, y) we obtain

Λ(t)x =




u cosh κt + y sinh κt

v

x

u sinh κt + y cosh κt




=




u′

v′

x′

y′




. (4.55)

This transformation on the null cone, C4, induces a transformation on ξ1 and

ξ2.

ξ1 → ξ′1 =
u′

v′ + x′
ξ2 → ξ′2 =

y′

v′ + x′
. (4.56)

From (4.55) and (4.56) it follows that

ξ′1 = ξ1 cosh κt + ξ2 sinh κt ξ′2 = ξ1 sinh κt + ξ2 cosh κt. (4.57)

Then the subgroup of the AdS group generated by ∂t corresponds to a Lorentz

boost in the 1+1 dimensional Minkowski spacetime. From this we can see

that the Rindler wedge in this 1+1 dimensional Minkowski spacetime is in-

variant under the action of the subgroup of the global conformal group cor-

responding to the subgroup of the AdS group generated by ∂t.

The correspondence between the others one-parameter subgroups can be

found analogously. For example let us analyze the subgroup generated by

∂φ.

The matrix representation of this generator on the vector space R2,2 is

given by

∂φ = κl




0 0 0 0

0 0 1 0

0 1 0 0

0 0 0 0




. (4.58)

This matrix has also the recurrence properties (4.51). Hence the finite trans-
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formation is given by

Λ(φ) = eφ∂φ =




1 0 0 0

0 cosh κlφ sinh κlφ 0

0 sinh κlφ cosh κlφ 0

0 0 0 1




. (4.59)

If we let this transformation to act on xT = (u, v, x, y) we obtain

Λ(φ)x =




u

v cosh κlφ + x sinh κlφ

v sinh κlφ + x cosh κlφ

y




=




u′

v′

x′

y′




. (4.60)

This transformation induces a transformation on ξ1 and ξ2 given by

ξ′1 = e−κlφξ1 ξ′2 = e−κlφξ1. (4.61)

Then the subgroup of AdS group generated by ∂φ corresponds to the dilation

group on the 1+1 dimensional Minkowski spacetime.

4.3 Thermal state in AdS spacetime and in

the BTZ black hole

In this section we show that there exist an equilibrium thermal state in

AdS spacetime in 1+2 dimensions and discuss its relation to an equilibrium

thermal state in the BTZbh.

In the previous section, we showed that the exterior of the BTZbh is a

wedge region. Now, also the Poincaré chart is likely to be a wedge region.

If so we can associate a net of algebras to these regions. This can be done,

for example, by adapting the formalism introduced in [28] to the present

case. Due to the invariance of these wedge regions under the action of the
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subgroups generated by ∂T and ∂t we have

ω(αT a) = ω(a) a ∈ A(WT ) (4.62)

and

ω(αta) = ω(a) a ∈ A(Wt), (4.63)

where WT and Wt are the wedge regions associated to the Poincaré chart

and the exterior of the BTZbh respectively. The symbol ω denote a state

on these algebras, below we explain more about this state. The symbols αT

and αt denote the automorphisms of the algebras associated to WT and Wt

respectively. We assume that these automorphisms satisfy

αT A(WT ) = A(Λ(T )WT ) (4.64)

and

αtA(Wt) = A(Λ(t)Wt) (4.65)

where Λ(T ) and Λ(t) are the transformations which leave invariant WT and

Wt respectively. The last four expressions deserve some comments. The

existence of Λ(T ) and Λ(t) is a consequence of the existence of the Killing

vectors ∂T and ∂t, which is a geometrical property of AdS spacetime. The

equations (4.64) and (4.65) are part of the assumptions about the structure

of the algebras. The equations (4.62) and (4.63) are a consequence of anal-

ogous expressions in the boundary assuming AH. Hence once we are in AdS

spacetime and its geometry and we postulate the algebraic structure on its

boundary these four equations should be valid. Now let us make some com-

ments about the state ω. As we have said the last four equations have a bulk

and boundary counterpart. In the boundary we have a Minkowski space-

time whereas in the bulk a spacetime with constant curvature. If we want

to make quantum field theory on both and both should be equivalent there

should be no preference for one of these two perspectives a priori. However,

if we take into account that Quantum Field Theory in Minkowski spacetime

has a well establish theory, it seems that we should go from the boundary

to the bulk, because in this way we can use all the formalism at hand for
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QFT in Minkowski spacetime and try to apply it to the bulk of AdS space-

time. It could be possible that some tools for Minkowski spacetime do not

apply to AdS spacetime, however, we will notice this if we get a contradic-

tion or an unphysical result. By taking this philosophy it seems that we

should take the ground state on the boundary defined with respect to ∂ξ1

which coincides with ∂T , see Appendix B, as the vacuum of the theory on

the boundary. If we do this, then in the bulk ω will be our vacuum, i.e., if

we make the GNS construction [42] of this state then the unitary operator

associated with translations in T has a self-adjoint generator operator, HT ,

with spectrum [0,∞]. This hamiltonian satisfies

HT |Ψω〉 = 0, (4.66)

where |Ψω〉 is the cyclic vector associated with ω through the GNS con-

struction. Also we have assumed that the unitary operator implementing

translation in T is strongly continuos with respect to T . Hence in this case

the von Neumann’s theorem [71] assures the existence of HT .

As was proven in [70], once we have set up this scenario we can apply the

well-known theorems of Tomita-Takesaki and Bisognano-Wichmann to the

theory on the boundary. From the previous discussion it is clear that ω is an

equilibrium thermal state when restricted to the exterior of the BTZbh. Put

in other way, it satisfies the KMS condition with respect to t. Let us find

what the temperature of this state is.

From (4.55) we can see that the parameter of the boost is t′ = κt with

κ = r+

l2
. Using theorem 4.1.1 (Bisognano-Wichmann theorem) in [42] we

have that the parameter of the modular group which appears in the Tomita-

Takesaki theorem is given by

τ = − t′

2π
= − κ

2π
t. (4.67)

Using theorem 2.1.1 (Tomita-Takesaki theorem) in [42] it is possible to prove

that the state invariant under the modular group satisfies the KMS condition
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with β = −1 = 1
T
, see [42]

ω ((ατA) B) = ω (B (ατ−iA)) . (4.68)

Hence from (4.67) it follows the temperature of the thermal state with respect

to t is

T =
κ

2π
. (4.69)

This is the so-called temperature of the black hole. The local temperature

measured by an observer at constant radius r is

T(r) =
1

(−g00)1/2

κ

2π
. (4.70)

This is because the proper time of this observer, τ , and the time t are related

as τ = (−g00)
1/2t.

So far we have shown that ω satisfies the KMS condition on the covering

space of one exterior of the BTZbh, however the exterior of the BTZbh is ob-

tained after making φ 2π-periodic. This periodicity introduces new features

because we have a non simply connected spacetime, a cylinder, instead of a

simply connected spacetime, a plane. We shall assume that there is a way

to construct the thermal state on the cylinder from one on the plane alge-

braically. Let us call the state on the covering space of one exterior region

of the BTZbh ωAdS and on the exterior region of the BTZbh ωBTZ .

The state ωBTZ is defined in R1 × S1 which is one exterior region of the

BTZbh whereas ωAdS is defined on R1×R1 which is the covering space of one

exterior region of the BTZbh. Put in this way, the state ωBTZ is a thermal

state on a black hole, i.e., the Hawking effect for an eternal black hole takes

place and corresponds to the Unruh effect on AdS spacetime after making

φ 2π-periodic. Put in this form we can say that the Hawking effect in the

eternal BTZbh has its origin in the Unruh effect in the boundary of AdS

spacetime and in the topological relation between R1 ×R1 and R1 × S1. We

point out that this result is in accordance with previous work on quantum

field theory of the real scalar field in the BTZbh [62].

In the rotating case there is a tiny modification in the analysis. From
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the form of the parametrization of the exterior of BTZ black hole (2.10) we

see that in the rotating case the subgroup of the AdS group which leaves

invariant the wedge W is generated by ∂t̃. Following the analysis of the

previous section, now the parameter of the modular group which appears in

Tomita-Takesaki theorem is related to the time t̃ as

τ = − t̃

2π
. (4.71)

Hence the state is thermal with respect to t̃ at temperature T = 1
2π

. Put in

this form, because the state ω satisfies

ω ((αt̃−2πA) B) = ω (B (αt̃A)) , (4.72)

then there is a periodicity of the state in t and φ given by

(t, φ) → (t− iβ, φ + iΩHβ) β =
1

T
=

2π

κ
. (4.73)

where β = 2π
κ

. Hence again the black hole is hot at temperature T = κ
2π

.

4.3.1 Thermal state for a quantum real linear scalar

field

In this section we show how a thermal state in the bulk of AdS spacetime

maps to a thermal state on its boundary for a quantum real linear scalar

field.

The equation the field satisfies is

(∇µ∇µ − ξR−m2
)
φ = 0, (4.74)

where ξ is a coupling constant, R is the Ricci scalar and m can be considered

as the mass of the field. For the metric of AdS spacetime, R = 6Λ = − 6
l2

.

Hence the last equation can be written as

(∇µ∇µ − m̃2
)
φ = 0, (4.75)
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where m̃2 = m2 − 6ξ
l2

. The operator ∇µ∇µ is given by

∇µ∇µφ =
1√
|g|∂µ

(√
|g|gµν∂νφ

)
, (4.76)

where g = |gµν |. For our purposes it is convenient to use Poincaré coordi-

nates. In these coordinates g = − l6

z6 . Because ∂T and ∂k are Killing vectors

we propose the ansatz φ(T, k, z) ∝ e−iωT einkfωn(z). Then the equation (4.75)

becomes a equation for f(z):

z2d2f

dz2
− z

df

dz
+

(
(ω2 − n2)z2 − l2m̃2

)
f = 0. (4.77)

If we make x = (ω2 − n2)
1
2 z and y = f

z
we obtain

x2 d2y

dx2
+ x

dy

dx
+

(
x2 − 1− l2m̃2

)
y = 0 (4.78)

which is the Bessel equation with p2 = 1 + l2m̃2 [75]. Hence the solution of

(4.77) is fωn(z) = zJp(az) where a = (ω2 − n2)
1
2 and Jp is a Bessel function.

Following the standard procedure of canonical quantization [13] we normalize

the modes φ(T, k, z) with the inner product

(f, g) = −i

∫

T=0

(
fġ∗ − gḟ ∗

) l

z
dkdz, (4.79)

where ˙≡ ∂T and ∗ means complex conjugate. The normalized modes turns

out to be Fna(T, k, z) =
(

a
4lπω

) 1
2 e−iωT einkzJp(az), where we have used

∫ ∞

0

Jp(az)Jp(a
′z)zdz =

1

a
δ(a− a′),

page 648 in [5]. These modes satisfy

(Fna, Fn′a′) = δnn′δ(a− a′). (4.80)
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Now we proceed to define the field operator

φ̂(T, k, z) =

∫ ∞

−∞

∫ ∞

0

(
Fnaâna + F ∗

naâ
†
na

)
dnda, (4.81)

where

âna|0〉 = 0 ∀ n, a (4.82)

defines the Poincaré vacuum. The operator φ̂ acts on the Fock space con-

structed from the one particle Hilbert space spanned by {Fna}.
It follows that the two point function

F (T, k, z; T ′, k′, z′) = 〈0|φ̂(T, k, z)φ̂(T ′, k′, z′)|0〉

is

F (∆T, ∆k; z, z′) =
zz′

2π

∫ ∞

0

dn

{
(4.83)

∫ ∞

0

da
a cos n∆k

(a2 + n2)1/2
e−i(a2+n2)1/2∆T Jp(az)Jp(az′)

}
,

where ∆k = k − k′ and ∆T = T − T ′. By making the integral over n we

obtain

F (∆T, ∆k; z, z′) =
zz′

2π
lim

ε→0+

{
(4.84)

∫ ∞

0

daaK0(a((∆k)2 − (∆T + iε)2)1/2)Jp(az)Jp(az′)

}

where we have used the identity
∫∞
0

dx cos ax
(γ2+x2)1/2 e

−β(γ2+x2)1/2
= K0(γ(a2 +

β2)1/2), equation 3.961 2 in [40], with K0 a zero order modified Bessel func-

81



tion. By integrating the last equation we obtain

F (∆T, ∆k; z, z′) =
(zz′)1+p

2π
lim

ε→0+

{
(4.85)

F4

(
α, α; α, α;− z2

(∆k)2−(∆T+iε)2
,− z′2

(∆k)2−(∆T+iε)2

)

((∆k)2 − (∆T + iε)2)1+p

}

where α = 1 + p, we have used the identity 6.578 2 in [40] and F4 is a

Hypergeometric function of two variables. Following [12], we now make z = z′

and multiply (4.85) by z−2(1+p) and take the limit z → 0. We obtain3

Fb(∆T, ∆k) ≡ lim
z→0

z−2(1+p)F (∆T, ∆k; z, z′)

=
1

2π
lim

ε→0+

1

((∆k)2 − (∆T + iε)2)1+p
. (4.86)

Now let us analyze what happens when we restrict (4.86) to the exterior

of BTZ black hole. By using (2.56) we get

Fb(∆t, ∆φ′) =
1

2π

(2l2e−κ(φ′1+φ′2))−1−p

(cosh κ∆φ′ − cosh(κ∆t + iε))1+p
, (4.87)

where κ = r+/l2, φ′ = lφ, ∆φ′ = φ1 − φ2 and ∆t = t− t′.

From (4.87) it follows that

Fb(−∆t, ∆φ′) = Fb(∆t− iβ, ∆φ′) (4.88)

where β = 1
T

= 2π
κ

. From (4.88) it follows that the restricted two point

function to the exterior of the BTZbh in the boundary satisfies the KMS

condition [37]. Hence (4.85) is a thermal state at temperature T = κ
2π

when

restricted to the exterior of the BTZbh in accordance with [62]. From (4.85)

we see that the thermal property does not change when we take the limit

z → 0, since z = le−κφ′ r+

r
, hence we can say the thermal state in the bulk

of AdS spacetime maps to a thermal state on its boundary, and this state is

3This expression has been obtained before by Dr. Bernard S. Kay by using the Feynman
propagator of the Klein-Gordon operator in Poincaré coordinates, private communication.
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given by (4.87).

The jacobian of (2.56) is

∣∣∣∣
∂(T, k)

∂(t, φ′)

∣∣∣∣ = l2κ2e−2κφ′ . (4.89)

If we consider (2.56) as a conformal transformation then from (4.89) and the

relationship between two conformal metrics

g′µν(x
′) = Ω2(x)gµν(x) (4.90)

it follows that in the present case

Ω(φ′) =
1

lκe−κφ′ . (4.91)

If we want to consider Fb as a correlation function for a conformal field theory

in the boundary of AdS spacetime and take into account that two correlation

functions in a Conformal Field Theory are related by [34]

Ω(x′1)
−∆1Ω(x′2)

−∆2〈φ1(x
′
1)φ2(x

′
2))〉 = 〈φ1(x1)φ2(x2)〉, (4.92)

where ∆1 and ∆2 are the scaling dimension of the field φ1 and φ2 respectively,

then from the equality

1

2π

Ω(φ′1)
−1−pΩ(φ′2)

−1−p

((∆k)2 − (∆T + iε)2)1+p
=

2−1−p

2π

κ2(1+p)

(cosh κ∆φ′ − cosh(κ∆t + iε))1+p

we finally have

Fb(∆t, ∆φ′) ' 1

2π21+p

κ2(1+p)

(cosh κ∆φ′ − cosh(κ∆t + iε))1+p
. (4.93)

According to standard Conformal Field Theory [34] this correlation function

would correspond to a field with scaling dimension ∆ = 1 + p.

From (4.93) we can obtain the two point correlation functions on the

exterior of the BTZbh and its covering space respectively by using the image

method. Let us explain briefly this method. The image sum method relates
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the two point function in a multiple connected and the two point function in

a simply connected spacetime, see [10] or [24]. In this case we could apply

the formula

F ′
b(∆t, ∆φ) =

∑

n∈Z
e2πinαFb(∆t, ∆φ + 2πn), (4.94)

where F ′
b(∆t, ∆φ) is the two point function in the covering space of the

exterior of the BTZbh and α a parameter which is 0 for untwisted and 1
2

for

twisted fields. In this work we are interested in untwisted fields, so we take

α = 0. Applying this method to (4.93) we obtain

F ′
b(∆t, ∆φ) ≡

∑

n∈Z

1

2π21+p
×

× κ2(1+p)

(cosh r+

l
(∆φ + 2πn)− cosh(κ∆t + iε))1+p

. (4.95)

This correlation function would correspond to fields defined on the same

covering space of one exterior region of the BTZbh. However the BTZ black

hole has two exterior regions analogously to the Schwarzschild black hole.

The parametrization of the other exterior region is given by changing the

sign in (2.56). Hence in this case the correlation function is

F ′
b(∆t, ∆φ) ≡

∑

n∈Z

1

2π21+p
×

× κ2(1+p)

(cosh r+

l
(∆φ + 2πn) + cosh(κ∆t + iε))1+p

. (4.96)

From the previous analysis, it is clear that on the boundary we have

a thermal state when we restrict the state defined on the Poincaré chart

to the covering space of one exterior region of the BTZbh. Also because

we have to make φ 2π-periodic then this covering space is a cylinder with

spatial cross section. Now a massless field theory on a cylinder is equivalent

to a 1+1 dimensional Conformal Field Theory [34], hence we can say that

on the boundary of AdS we have two conformal theories related in such

way that when we restrict a vacuum state to one of them it becomes a

thermal state. We point out that the expressions (4.95) and (4.96) have
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been given in [63] and according to it they have been obtained in [59]. In

[59] it was used the proposal given in [90] for the AdS/CFT correspondence.

However we have just obtained them by using AdS/CFT in QFT which

uses both Algebraic Holography and the Boundary-limit Holography. Hence

we can say that the approach [90] and AdS/CFT in QFT are consistent at

least for the present case. In our opinion they are consistent because both

approaches are using in one way or in another techniques from quantum field

theory in curved backgrounds. Taking into account this fact we conjecture

that there are many aspects of the AdS/CFT correspondence which can

be understood at this level and which just reflect the symmetry and group

theoretical aspects of the AdS/CFT correspondence. It would be interesting

to make a bit more realistic the correspondence in AdS/CFT in QFT for

example by putting supersymmetry in it. It can be done for example by

considering a supersymmetric model in BTZ black holes in 1+1 and 1+2

dimensions. Also this could be done in AdS spacetime itself.

So far in this section we have considered the non rotating BTZ black hole.

However similar considerations apply to the rotating case. In the rotating

case the relation between Poincaré and BTZ coordinates is

T = ±l

(
r2 − r2

+

r2 − r2−

)1/2

e−φ̃ sinh t̃ k = ±l

(
r2 − r2

+

r2 − r2−

)1/2

e−φ̃ cosh t̃,

(4.97)

where t̃ and φ̃ are defined in (2.14). Hence in the limit r →∞

T = ±le−φ̃ sinh t̃ k = ±le−φ̃ cosh t̃. (4.98)

The sign + corresponds to one exterior of the BTZbh and the sign − to the

other. Following the analysis for the non-rotating case we have

Fb(−∆t̃, ∆φ̃) = Fb(∆t̃− i2π, ∆φ̃) (4.99)

if

(t, φ) → (t− iβ, φ + iβΩH) (4.100)

where β = 1
T

and ΩH is the angular velocity of the horizon.

85



4.3.2 Further analysis of the thermal state

So far we have used the duality between the theories in the bulk and in

the boundary. In order to do a simpler analysis we could just look at the

boundary theory and try to get some conclusions.

Let us consider a massless real linear scalar free field in the boundary.

The two point function in Poincaré coordinates is given by

〈0|φ(U, V )φ(U ′, V ′)|0〉 = − 1

4π
[ln(U − U ′ − iε) + ln(V − V ′ − iε)] , (4.101)

where U = T − k and V = T + k. Because the divergence of this two point

function, it makes sense just after twice differentiated [54]. If we use (2.56)

to express U and V in BTZ coordinates we obtain

U = −le−κũ V = leκṽ, (4.102)

where ũ = t + φ′ and ṽ = t− φ′ with φ′ = lφ. Hence in terms of ũ and ṽ, the

resulting second derivative of (4.101) with respect, say, ũ and ũ′ is

F (t, φ′) ≡ ∂2

∂ũ∂ũ′
〈0|φ(ũ, ṽ)φ(ũ′, ṽ′)|0〉 = − 1

4π

k2

(
e−κ ũ−ũ′

2 − e−κ ũ′−ũ
2 − iε

)2 ,

(4.103)

which clearly satisfies the KMS condition F (−t) = F (t − iβ) [37], with

β = 1
T

= 2π
κ

. This implies that this twice differentiated two point function

corresponds to a thermal state of the scalar field on the boundary. Now in

order to obtain the covering space of the exterior of BTZ black hole we have

to make the quotient procedure by making φ 2π-periodic. In this context

we can make use of the image sum method again. Because each term in

this sum satisfies the KMS condition then F ′(t, φ′) satisfies it too. Hence,

in accordance with the previos subsection, we have a thermal state living on

one exterior region the black hole.

From the previos discussion we can see that the vacuum state with respect

to Poincaré time looks like a thermal state with respect to an observer moving

along the integral curves of ∂t. One might be worried about the vacuum with
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respect to global time, |0g〉, so let us see how these two vacua are related.

The two point function with respect to global time is

〈0g|φ̂(λ, θ)φ̂(λ′, θ′)|0g〉 = − 1

4π
ln{sin 1

2
(u−u′− iε) sin

1

2
(v−v′− iε)} (4.104)

where u = λ− θ and v = λ + θ. Hence

∂2〈0g|φ̂(u, v)φ̂(u′, v′)|0g〉
∂u∂u′

= − 1

16π

1

sin2 1
2
(u− u′ − iε)

. (4.105)

By using

T − k = l tan
λ− θ

2
T + k = l tan

λ + θ

2
(4.106)

we get

∂2〈0p|φ̂(w, z)φ̂(w′, z′)|0p〉
∂u∂u′

= − 1

16π

1

sin2 1
2
(u− u′ − iε)

(4.107)

where w = T−K and z = T +k. Hence global and Poincaré vacuum could be

considered as the same, modulo some constant which we could be throwing

away when differentiating the two point functions. Later we shall make some

comments about the global and Poincaré vacuum. In figure 4.2, we show the

integral curves of both vector fields, ∂λ and ∂T .

In passing we note that the previous analysis is in accordance with the

classification of the conformal vacuum given in [13] if we identify the bound-

ary of AdS spacetime with the Einstein universe and the Poincaré chart with

Minkowski spacetime.

4.4 The dictionary

It is commonly seen in the AdS/CFT correspondence literature the phrase:

the dictionary. By the dictionary people seems to mean a way to relate

quantities in the bulk and quantities in the boundary of AdS spacetime. The

word quantity in this context seems to be very broad. For example, we have

just given the relation between a thermal state in the bulk and a thermal
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Figure 4.2: These figures show respectively the vector fields ∂λ and ∂T on the boundary.
These figures were made with Maple 10.
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state in the boundary, and as we said in the introduction a relation between

the global ground state in the bulk and in the boundary of AdS spacetime

has been given before in [57]. But even in the context of this work we have a

relation between the mass of the field in the bulk and the scaling dimension,

∆, of the field in the boundary

∆ = 1 + p, (4.108)

where p2 = 1 + m̃2 and m̃2 = m2 − 6ξ
l2

. It is clear that a state and a mass

or scaling dimension have a different physical status, however glossing over

these hierarchy of elements of the theory we can follow the fashion and give

other entry of the dictionary. In [31] it has been shown how to obtain a

field on the boundary of AdS spacetime from a field in its bulk and has been

shown that the field on the boundary is a generalized free field. So to a field

in the bulk corresponds a generalized free field in the boundary.

Another interesting entry in the dictionary could be the energy-momentum

tensor in the bulk and its boundary limit. If we could know this entry then

we could have an idea of how the energy and momentum in the boundary

are distributed in terms of the distributions in the bulk. In quantum field

theory one is not interested in the energy-momentum itself but on its ex-

pectation value on an appropriate state. In AdS/CFT in QFT we would be

interested in this quantity too. It is well known that the calculation of the

expectation value of the energy-momentum tensor is a very delicate problem

and usually a method of regularization and renormalization is required [13].

In the present case we expect that closed expressions would result after these

procedures. This is because AdS spacetime is a maximally symmetric space-

time. In the present work we do not address fully this problem although we

work on it later in Chapter 6. We expect in the near future to work on it by

using functional methods such as the effective action.

We conclude this section by saying that in our AdS/CFT in QFT we can

have a dictionary too. It would be worth exploring more this dictionary with

other models of fields.

89



Chapter 5

The Brick Wall model in BTZ

black holes

In this chapter we shall consider the brick wall model [80] in BTZ black holes

in 1+1 and 1+2 dimensions. It seems to be one of the natural extensions of

the research carried so far. We will calculate states in the exterior of BTZ

black holes and later map them to their boundary. We shall consider states

at zero and non zero temperature. We will show that in both cases we can

obtain states on the boundary of the BTZ black holes.

5.1 Thermal state with the brick wall model

So far we have been considering thermal states as arising from a restriction of

a ground state. However thermal states also arise as heated up states on an

appropriate Fock state representation. For example it is well known that the

Hartle-Hawking state restricted to the exterior of Schwarzschild black hole is

a thermal state with respect to Schwarzschild time, however the heated up

Boulware state coincides with the state previously mentioned. After consid-

ering the arising of thermal states from a restriction of a ground state in AdS

spacetime it seems natural and an instructive exercise to consider heated up

states in a Fock representation. In this section we will do this by considering

the vacuum with respect to BTZ time.
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5.1.1 The brick wall model in 1+1 dimensions

The metric for a 1+1 dimensional BTZ black hole is given by (2.2). This

metric can be written as

ds2 = −N2
(
dt2 − dr∗2

)
, (5.1)

where r∗ = l2

2r+
ln r−r+

r+r+
. We want to solve the massless conformally coupled

real linear scalar field in this geometry. Due to fact that this metric is

conformally flat then we can use standard techniques from quantum field

theory to solve our problem. This can be done by solving the Klein-Gordon

operator with the flat metric in coordinates (t, r∗) and later mapping back

the solutions to the geometry (5.1).

The coordinate r∗ goes from −∞ to 0, since we want to put a brick wall

close to the horizon, let us say at r+ + ε then −B < r∗ < 0, where B =

− l2

2r+
ln ε

2r++ε
. In this conditions our problem reduces to solve the equation

(
− ∂2

∂t2
+

∂2

∂r∗2

)
φ(t, r∗) = 0 (5.2)

with boundary conditions

φ(t,−B) = 0 = φ(t, 0). (5.3)

If we use separation of variables and harmonic dependence in t then the

solutions are

fω(t, r∗) =
1√
Bω

e−iωt sin(ωr∗), (5.4)

where

ω =
nπ

B
n = 1, 2, 3, ... (5.5)

are the frequencies of the modes. At this point we can write the expression

for the field operator

φ̂(t, r∗) =
∑

ω

1√
Bω

(
âωfω + â†ωf ∗ω

)
, (5.6)
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with the vacuum defined by

âω|0〉 = 0 ∀ ω. (5.7)

5.1.2 Two point function on the boundary in 1+1 di-

mensions

In this subsection we obtain the two point function on the boundary for the

vacuum and a thermal state.

The two point function for the vacuum is

〈0|φ̂(t, r∗)φ̂(t′, r∗′)|0〉 =
∑

ω

1

Bω
e−iω(t−t′) sin(ωr∗) sin(ωr∗′). (5.8)

If we multiply (5.8) by 1/r∗r∗′ and take the limit r∗, r∗′ → 0, then we

have

G(t, t′) =
∑

ω

ω

B
e−iω(t−t′), (5.9)

where we have denoted by G(t, t′) the resulting limit. This function can be

thought as a two point function on the boundary, r∗ = 0, corresponding to

the vacuum associated with the modes (5.4).

The two point function for a thermal state is defined as

〈φ(t, r∗)φ(t, r∗′)〉β =
Tr

(
e−βĤφ(t, r∗)φ(t, r∗′)

)

Z
, (5.10)

where Z = Tre−βĤ , Ĥ the hamiltonian of the system and β = 1
T

with T the

temperature. In the present case

〈φ(t, r∗)φ(t, r∗′)〉β =
∑

ω

sin(ωr∗) sin(ωr∗′)
Bω

× (5.11)

×
(

e−iω(t−t′) + eiω(t−t′)e−βω

1− e−βω

)
.

We denote this function by T (∆t; r∗, r∗′) with ∆t = t − t′. Clearly this

function satisfies the KMS condition T (−∆t) = T (∆t − iβ). If we multiply
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T by 1/r∗r∗′ and take again the limit r∗, r∗′ → 0 then we obtain

T (∆t) =
∑

ω

ω

B

(
e−iω(t−t′) + eiω(t−t′)e−βω

1− e−βω

)
. (5.12)

We see that the KMS condition does not change when we take the limit,

hence we can say that the thermal state maps to the boundary. Also we can

see that in both cases where we have taken the limit, it just depends on the

modes and the power for which we multiply the two point function.

The two point function (5.12) would correspond to a thermal state with

the brick wall model and on the boundary. According to [67] the vac-

uum state in the brick wall model corresponds to the Boulware vacuum

for Schwarzschild geometry. We would expect that the same happens in the

present case and that the two point function (5.12) would correspond to the

discrete limit of the two point function we found before (4.33). Now we show

that this is indeed the case.

If we write (5.12) as

T (∆t) =
1

i

d

d∆t

1

B

∑

n 6=0

ei nπ
B

(∆t+iβ)

1− e−βω
(5.13)

then we can approximate this sum by the integral

1

B

∑

n6=0

ei nπ
B

(∆t+iβ)

1− e−βω
' lim

ε+→0

1

πβ

∫ ∞

−∞
dx

e−x(1−ε−i∆t
β

)

1− e−x
(5.14)

where x = βω. Using 3.311 8 in [40], this integral can be evaluated and

finally we obtain

T (∆t) ∼ − 1

4π

κ2

sinh2(κ t−t′
2

)
. (5.15)

The step (5.14) can be understood as taking ∆ω = π
B

infinitely small, which

corresponds to B →∞, i.e., to removing the brick wall.

In this way we recover the expression we had obtained by restricting the

global vacuum in AdS spacetime to the boundary and later to the exterior

region of the BTZbh. So we have shown that the same conclusion obtained
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by [67] applies to the present case. The vacuum in the brick wall corresponds

to the Boulware vacuum.

From the previous calculations we can consider the two point functions

on the boundary (5.9) and (5.12) as two point functions for the brick wall

on the boundary. In some sense these two point functions give us an idea

how the near horizon geometry has an effect on the theory on the conformal

boundary.

5.1.3 The brick wall model in 1+2 dimensions

In 1+2 dimensions the brick wall can be implemented too and an expres-

sion for a thermal state on the boundary can be obtained. The problem

here is that the resulting expression for the frequencies involve implicitly the

Gamma function and are too wild to give closed expressions, however due

to the results in the 1+1 dimensional case we expect that the results can be

interpreted similarly. We now give the expressions just mentioned.

In 1+2 dimensions the Klein-Gordon operator in the BTZ metric can be

reduced to the hypergeometric equation if harmonic dependence in time and

in the angular variable are assumed, see Appendix E. This equation has two

linearly independent solutions around each regular singular point. It turns

out that the three regular singular points of this equation correspond to the

inner, outer horizon and infinity. If we impose vanishing boundary conditions

at infinity just one of the solutions around this point satisfies this condition.

This solution, for the non rotating case, is

fnω(u) = Mα+β(u− 1)αuβ−aF (a, a− c + 1; a− b + 1, u−1), (5.16)

where u = r2

r2
+
, a = α + β + 1

2
(1 + ν), b = α + β + 1

2
(1− ν), c = 2β + 1, ν2 =

1+m̃2l2, α2 = − 1
4M2 (r+ω)2 and β2 = − 1

4M2

(
r+n

l

)2
. Here m̃2 = m2− 6ξ

l2
with

ξ the coupling factor in the Klein-Gordon operator and F is a hypergeometric

function. Hence the positive frequency modes are

Fnω =
1

l

√
2

cr+ω
e−iωteinφfnω, (5.17)
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where c is a normalization constant [58] and n an integer.

In order to obtain the brick wall model we must impose vanishing bound-

ary conditions close to the horizon, let us say at u = 1 + ε. Using the linear

relations between hypergeometric functions we can analytically continue the

hypergeometric function in (5.16) to the horizon. After this continuation and

close to the horizon we obtain

fnω ∝ e−iθ(u− 1)−α + eiθ(u− 1)α, (5.18)

where e2iθ = Γ(−α−β+h+)Γ(−α+β+h+)Γ(2α)
Γ(α+β+h+)Γ(α−β+h+)Γ(−2α)

and h+ = 1
2
(1+ν) with ν =

√
1 + m̃2l2.

Imposing that at the horizon this function should vanish and using that

u = 1 + ε we have that

θ(ω, n) +
ω

2κ
ln ε =

2p + 1

2
π (5.19)

with p an integer. At this point we can expand the field operator as we did

in 1+1 dimensions and define as the vacuum the one associated with the

positive modes (5.17).

5.1.4 Two point function on the boundary in 1+2 di-

mensions

Having solved the brick wall model now we proceed to give the two point

functions for the vacuum and for a thermal state on the boundary.

The two point function for the vacuum state in the bulk is

〈0|φ̂(t, u, φ)φ̂(t′, u′, φ′)|0〉 =
∑
nω

A

ω
e−iω(t−t′)ein(φ−φ′)fnωf ∗nω, (5.20)

where A = 2
cr+l2

. If we multiply this expression by (uu′)∆/2 with ∆ = 1 + ν

and take the limit when u, u′ →∞ we get

〈0|φ̂(t, φ)φ̂(t′, φ′)|0〉b =
∑
nω

A

ω
e−iω(t−t′)ein(φ−φ′), (5.21)
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as the two point function on the boundary.

Using the definition (5.10) for the two point function of the thermal state

we find that

〈φ(t, u, φ)φ(t, u′, φ′)〉β =
∑
nω

A
fnωf ∗nω

ω
ein(φ−φ′) × (5.22)

×
(

e−iω(t−t′) + eiω(t−t′)e−βω

1− e−βω

)
.

If we take the same limit as in the vacuum state we get on the boundary

〈φ(t, u, φ)φ(t, u′, φ′)〉β =
∑
nω

A
ein(φ−φ′)

ω
× (5.23)

×
(

e−iω(t−t′) + eiω(t−t′)e−βω

1− e−βω

)
.

In this case we again see that the thermal state maps from the bulk, inside

the exterior of the BTZbh, to the boundary. We expect that this two point

function on the boundary in the limit in which the brick wall is removed

should coincide with the two point function (4.95). However to proof this we

have to make the sums over n and ω, and since ω depends implicitly on the

Gamma function this can not be done in close form.

We just want to stress that the limits we have been taking when we go

from the interior of AdS spacetime to its conformal boundary in all the cases

so far studied give us two point functions on the boundary. This fact can

be explained because the geometry of AdS spacetime. So in this sense the

correspondence between the bulk and the boundary is just kinematical. We

would expect that if we take for example the Dirac field the same limits can

be taken. Also we expect to have the mapping of thermal states from the

bulk to the boundary.

Other point we want to stress is the fact that by imposing the brick wall

close to the horizon the thermal properties of the field are not modified, the

brick wall just has the effect of making the spectrum discrete.
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5.2 The entropy in the brick wall model in

1+1 dimensions

The principal motivation in [80] to introduce the brick wall model was to

avoid divergences and to obtain a finite expression for the entropy of the

Schwarzschild black hole. It was shown that by imposing vanishing boundary

conditions on the field at a distance from the horizon of the size of the Planck

length the resulting entropy is proportional to the area of the horizon. Later

in [67] it was shown that if we take the entropy close to the horizon then by

choosing adequately a parameter of normalization, which is proportional to

the Planck length, the Bekenstein-Hawking entropy is recovered. Hence we

can say that in this model the entropy of the black hole is distributed around

the horizon. Let us see what happen in our model in 1+1 dimensions.

It is a fairly easy to obtain the entropy in 1+1 dimensions. The partition

function for a gas of photons is

ln Z(T, B) = −
∞∑

r=1

ln[1− exp(−βEr)], (5.24)

where Er is the energy of a photon and β = 1
kT

. We can do the last sum as

an integral by multiplying it for the correct factor B
πc

dω where B is the size

of the one dimensional box. The result is

ln Z(T, B) = −
∫ ∞

0

B

πc
dω ln[1− exp(−βω~)]. (5.25)

In order to calculate the entropy we calculate first the free energy which is

given by

F (T, B) = −kT ln Z

=
Bk2T 2

πc~

∫ ∞

0

dx ln(1− e−x)

= −Bk2T 2

πc~
Γ(2)ζ(2). (5.26)
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The entropy given by S = − (
∂F
∂T

)
B
. The result is

S =
Bk2Tπ

3~c
, (5.27)

where k is the Boltzmann’s constant, ~ the Planck constant and c the speed of

light. In order to obtain (5.27) we have used that Γ(2) = 1 and ζ(2) = π2/6.

If we take T = κ/2π and make the constants equal to one then

S = − 1

12
ln

ε

2r+ + ε
. (5.28)

In obtaining the last expression we have used that κ = r+/l2 and B =

− l2

2r+
ln ε

2r++ε
. If we make r+ = 1 then in order to have an entropy of the order

of 2π we must have ε ∼ 3.42× 10−33cm. This magnitude has the same order

of the Planck length lp = 1.62× 10−33cm. However in 1+1 dimensions we do

not know what the Planck length is, hence this result should be taken with

care. Also we should note that in the present case the entropy is distributed

over all the volume, not just outside the horizon. From this analysis we see

that the brick wall model in 1+1 dimensions give also the correct entropy

however differs physically from its counterpart 1+3 dimensional case1. By

the correct entropy we mean an entropy proportional to 2π gives an ε similar

to the Planck length, hence in this case also the brick wall model reproduces

the features of the 1+3 dimensional case.

1For a calculation of the entropy of the 1+1 dimensional BTZ black hole by using the
asymptotic symmetries of the 1+1 dimensional AdS spacetime and the conformal group
in one dimension, see [20].
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Chapter 6

The Energy-Momentum Tensor

in the 1+1 dimensional BTZ

black hole

It is well-known that the energy-momentum tensor in Quantum Field Theory

in curved spacetime is a subtle issue. This is principally due to the diver-

gences which ocurre when the expectation value of it in a certain state is

calculated, see for example [13] for an extensive discussion. However, since

it contains important physical information of the field it is worth trying to

calculate it. It turns out that in 1+1 dimensions most of the difficulties can

be removed and it is possible to obtain closed expressions for it [26]. In this

chapter we will exploit this fact and will calculate this quantity for the 1+1

dimensional BTZ black hole.

6.1 The energy-momentum tensor in 1+1 di-

mensions

In 1+1 dimensions the energy-momentum tensor is almost determined by its

trace. In what follows we give the basic formule for calculating this quantity.
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Let us consider the following metric

ds2 = C(−dt2 + dx2) = −Cdudv, (6.1)

where u = t − x and v = t + x. Since every 1+1 dimensional metric is

conformal to a 1+1 dimensional metric in Minkowski spacetime, the metric

(6.1) is very general. The function C in general depends on both variables

in the metric. In these circumstances the expectation value of the trace of

the energy-momentum is [26]

< T µ
µ >= − R

24π
=

1

6π

(
Cuv

C2
− CuCv

C3

)
, (6.2)

where R is the Ricci scalar and Cu = ∂
∂u

C, etc. The last expression holds

for the real scalar field. The expectation value of the components of the

energy-momentum tensor in null coordinates is

〈Tuu〉 = − 1

12π
C1/2∂2

uC
−1/2 + f(u) (6.3)

〈Tvv〉 = − 1

12π
C1/2∂2

vC
−1/2 + g(v) (6.4)

where f and g are arbitrary functions of u and v respectively. These functions

contain information about the state with respect to which the expectation

value is taken. The mixed components are given by

〈Tuv〉 =
CR

96π
. (6.5)

Now let us apply these formule to the 1+1 dimensional BTZ black hole.
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6.1.1 The energy-momentum tensor in the 1+1 dimen-

sional BTZ black hole

In the previos chapter we saw that the metric for the 1+1 dimensional BTZ

black hole can be written in the form (6.1) with

C = N2 =

(
−M +

r2

l2

)
(6.6)

and r = x. This function can be written as function of r∗ or u and v as

follows

C =
M

sinh2 κr∗
=

M

sinh2 κ (v−u)
2

, (6.7)

where κ = r+

l2
is the surface gravity.

Using the previos expression for C we obtain

〈Tuu〉 = − κ2

12π
+ f(u) (6.8)

and

〈Tvv〉 = − κ2

12π
+ g(v). (6.9)

Using that

Ttt = Tuu + 2Tuv + Tvv, (6.10)

Txx = Tuu − 2Tuv + Tvv, (6.11)

and

Ttx = −Tuu + Tvv (6.12)

we obtain

〈Ttt〉 = −κ2

6π
+

CR

48π
+ f(u) + g(v), (6.13)

〈Txx〉 = −κ2

6π
− CR

48π
+ f(u) + g(v) (6.14)

and

〈Ttx〉 = g(v)− f(u). (6.15)
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From the last three expressions it follows that

〈T µ
ν〉 = A + B + D (6.16)

where

A =
κ2

6πC

(
1 0

0 −1

)
(6.17)

B = − R

48π

(
1 0

0 1

)
(6.18)

D =
1

C

(
−f(u)− g(v) f(u)− g(v)

g(v)− f(u) f(u) + g(v)

)
(6.19)

If we choose f(u) = g(v) = 0 we obtain the analogue of the Boulware

state in Schwarzschild spacetime which is singular at the horizon (C = 0).

However we can also obtain the analogous of the Hartle-Hawking state which

is regular in both the future and the past horizons. The value of f(u) and g(v)

can be obtained if we express the energy-momentum tensor in Kruskal like

coordinates, U and V, see (2.25). In these coordinates the energy momentum

tensor is

〈TUU〉 =
1

U2
〈Tuu〉 =

1

U2

(
f(u)

κ2
− 1

12π

)
, (6.20)

〈TV V 〉 =
1

V 2
〈Tvv〉 =

1

V 2

(
g(v)

κ2
− 1

12π

)
, (6.21)

and

〈TUV 〉 = 0. (6.22)

Hence we demand that f(u) = g(v) = κ2

12π
, although it is not the only

possibility. We could choose functions which close to the horizon are have

the values κ2

12π
and a different value far from it. So f and g constants are not

the only possibility. It is worth to point out that there is no natural analogue

of the Unruh vacuum, since these would lead us to have no conservation of

energy-momentum at infinity.

Also it is interesting to write this tensor in an orthonormal frame. This

can be done by introducing two-beins. The appropriate orthonormal frame
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is given by

ea
t = (N, 0) (6.23)

and

eb
r = (0, N), (6.24)

where a and b are indexes associated with the orthonormal frame. In these

circumstances the energy-momentum tensor is given by

〈T ab〉 = E + F + G (6.25)

where

E = − κ2

6πC

(
1 0

0 1

)
(6.26)

F =
R

48π

(
1 0

0 −1

)
(6.27)

G =
1

C

(
f(u) + g(v) f(u)− g(v)

f(u)− g(v) f(u) + g(v)

)
(6.28)

From this expression we see that for the Hartle-Hawking state

〈T ab〉 =
R

48π

(
1 0

0 −1

)
. (6.29)

Since in the present case R = − 2
l2

= 2Λ, then the energy density and the

pressure are given respectively by

ρ =
Λ

24π
(6.30)

and

p = − Λ

24π
. (6.31)

Hence the cosmological constant determines the properties of the field in the

1+1 dimensional BTZ black hole.

It is also interesting to look at the semiclassical Einstein field equations. It

is well known that in 1+1 dimensions the Einstein tensor vanishes identically,
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so there are no Einstein equations. In particular the Einstein field equations

with cosmological constant in vacuum are imposible, however we now show

that a kind of Einstein field equations with cosmological constant make sense

when the right hand side of them is taken to be the expectation value of the

energy-momentum tensor we have found.

If we write the semiclassical Einstein field equations as

Rµν − 1

2
Rgµν + Λgµν = 〈Tµν〉, (6.32)

then in 1+1 dimensions the first two terms of the left hand side vanish iden-

tically and we are left with

Λgµν = 〈Tµν〉. (6.33)

But according to our expressions for the energy-momentum tensor this equal-

ity can be satisfied if and only if

gµν =
C

24π

(
1 0

0 −1

)
(6.34)

which is no other thing than the metric for the BTZ black hole in 1+1

dimensions, scaled by an overall factor and multiplied by minus one. This

could be interpreted as the metric inside the horizon. Hence we could say that

the back reaction shifted the horizon by making it bigger. It is interesting to

note that if the sign would be opposite then there would not be change in the

geometry. Since if we take this metric as the starting point for calculating the

expectation value of the energy-momentum tensor we would find the same

values as previously [8]. In this second scenario the BTZ metric would be

stable under back reaction effects.

The previous discussion should be taken with care and just as an indi-

cation of the possible scenarios, since there is no Einstein equations in 1+1

dimensions. A more natural thing to do would be to plug in the expectation

value of the energy-momentum we have found into a theory of gravity in 1+1

dimensions and see how it is modified.
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Finally, if we consider the field in a box by putting the brick wall then

we can calculate the expectation value of the energy-momentum tensor in a

thermal state very simply. The expressions for the expectation value are the

same plus a Casimir energy term [26]. Then if we want our thermal state to

coincide with the Hartle-Hawking state we must have

〈T µ
ν〉 = − R

48π

(
1 0

0 1

)
− π

6Cd2

(
1 0

0 −1

)
(6.35)

where d is the size of the box corresponding to the brick wall conditions.

The justification for obtaining the last expression is that when we remove

the brick wall then the expectation values of the energy momentum tensor

should be the same as the expectation value in the Hartle-Hawking state.
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Chapter 7

Final Comments

In Section 4.3, in associating an algebra to the bulk of AdS spacetime we

took the algebra associated with the Poincaré chart, however one can ask

why not take the algebra associated to the global chart. Even one can think

that the algebra associated to the global chart is the most natural since it

covers all the spacetime. This property seems to be enough to give priority

to the global chart over the Poincaré chart, however as we said the Poincaré

chart is likely to be a wedge region and when seen from the boundary it is

the natural candidate to work with. Also it is worth remarking that when we

pass from the global chart to the Poincaré chart we are restricting the global

ground state to a state on the Poincaré algebra. In this conditions the issue

of thermalization of this state by restricting it to a subalgebra arises if we

have in mind the Minkowski-Rindler story. However we claim this is not the

case. As we saw in the last section by doing a little calculation we show that

the two times differentiated two point functions coincide in both charts on

the boundary, and then the ground states can differ at most by a constant.

Now from the point of view of the bulk theory although the global chart and

the Poincaré chart do not cover the same region they both share a common

spacelike surface, T = λ = 0, hence the analogy to the Minkowski-Rindler

case is not complete. Also related to this point is that the horizon defined

by the Poincaré chart is not a bifurcate killing horizon as in the Minkowski-

Rindler story. It would be worth while to study how the GNS representations
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of the global ground state and the Poincaré ground state are related. Our

conjecture is that they are not disjoint and that the global ground state is not

thermal when restricted to the Poincaré chart. Finally, we note that we have

to do more work in order to construct rigorously the algebras we are talking

about for example as was done in [28] for the real linear scalar field in a

globally hyperbolic spacetime. The problem we have in our case is that AdS

spacetime is not globally hyperbolic and there are not rigorous proofs on the

existence of fundamental solutions to the Klein-Gordon operator. However

in this work we have shown that by taking vanishing boundary conditions at

infinity it is possible to construct an inner product conserved in time. Hence

it would be worth while to explore this construction more rigorously.
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Chapter 8

Conclusions and Perspectives

In this work we have presented the research we carried out on quantum field

theory on AdS spacetime and on BTZ black holes in 1+1 and 1+2 dimensions.

Also we presented how thermal states in the bulk of AdS spacetime are related

to thermal states of a conformal field theory on the conformal boundary of

AdS spacetime and of the BTZ black holes. In order to do this we used

methods and ideas of Algebraic Holography, the Boundary-limit Holography

and Pre-Holography. We called AdS/CFT in QFT these three approaches

to the AdS/CFT correspondence. This part of the work fits naturally in the

subject of AdS/CFT correspondence where just methods of quantum field

theory are used.

We also studied the brick wall model in 1+1 and 1+2 dimensional BTZ

black holes, and obtained two point functions in the bulk and in the boundary

in both cases. This was done by using the Boundary-limit Holography. The

1+1 case is illustrative since it allowed us to obtain expressions which are

interpreted easily.

While studying the brick wall model we came across the renormalized

energy-momentum tensor. We studied it in the 1+1 dimensional BTZ black

hole and obtained closed expressions for it. This was possible because in 1+1

dimensions the conformal anomaly fixes its form. In the Hartle-Hawking state

the properties of the field are given in terms of the cosmological constant.

In the appendixes we presented complementary material to the body of
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the work.

A summary of the conclusions we have obtained is given now:

• There exist thermal states in the boundary of AdS spacetime in 1+1

and 1+2 dimensions.

• These thermal states result as a restriction of a ground state in the

boundary. In 1+1 dimensions this ground state corresponds to the

global and the Poincaré ground state. In 1+2 dimensions this ground

state corresponds to the Poincaré ground state.

• The thermal properties of these states rely on the geometrical prop-

erties of AdS spacetime. More precisely on the existence of its killing

vectors.

• The Hawking effect for the eternal BTZ black hole is a consequence of

the Unruh effect on the boundary of AdS spacetime, since after making

the identifications in φ the Unruh effect becomes the Hawking effect.

• Algebraic Holography, the Boundary-limit Holography and Witten’s

Holography are consistent when one studies a thermal state on the

BTZ black hole.

• There are interesting aspects of AdS/CFT in QFT which deserve to

be studied and reflects the geometrical and theoretical aspects of AdS

spacetime, and perhaps of the AdS/CFT correspondence in string the-

ory.

• The brick wall model gives a correct approximation for the BTZ black

hole in 1+1 dimensions, however differs in the physical interpretation

from its analogous 1+3 dimensional case. This is because in the 1+1

dimensional case the entropy is distributed in all the volume whereas

in the 1+3 dimensional case the contribution to the entropy come from

the entropy around the horizon and not from all the volume.
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• There is no natural notion of Unruh vacuum on the 1+1 dimensional

BTZ black hole. Also the properties of the field are fixed by the cos-

mological constant.

• There is no superradiance in the BTZ black hole in 1+2 dimensions for

vanishing boundary conditions at infinity.

In general we can say that AdS/CFT in QFT makes sense as a theory

where we ignore supersymmetry and on which the geometrical and theoretical

aspects are fundamental. Our point of view is that AdS/CFT correspondence

in the context of string theory is much more richer and complicated but in

certain limit its predictions coincide with the predictions of AdS/CFT in

QFT. It is worth emphasizing that the Boundary-limit Holography is sup-

posed to be valid for interacting fields not just free fields which have been

treated in this work.

As a future work we would like to explore more AdS/CFT in QFT but

with more realistic models. For instance, we can work with supersymmetrical

models in AdS spacetime in 1+1 and 1+2 dimensions and in BTZ black holes.

Also it would be worth considering interacting fields in these spacetimes too.

Other natural direction would be to generalize the present work to higher

dimensions.

Related with these issues it would be worth exploring how the energy-

momentum tensor around the horizon in the BTZ black holes enters in the

theory in the boundary. In order to carry this out it would be interesting to

use functional methods such as the effective action.
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Appendix A

The Unruh effect in 1+1

dimensions

The Unruh effect can informally be stated as: a constant accelerated observer

in Minkowski spacetime sees a thermal state that with respect to an inertial

observer is a state at zero temperature. The existence of this effect can

be shown by using the mode expansion of the field and the creation and

anihilation operators, this can be seen, for example, in [13]. However there is

another way to show it by using the expressions for the two point function,

see [54]. In the sequel, we will follow the second way.

The Klein-Gordon equation in 1+1 dimensions on a flat background re-

duces to (
− ∂2

∂t2
+

∂2

∂x2

)
φ(t, x) = 0 (A.1)

which is nothing more than the wave equation in 1+1 dimensions. Defining

null coordinates u = t− x and v = t + x we have

∂2

∂u∂v
φ(u, v) = 0. (A.2)

Hence a solution of this equation has the form

φ(u, v) = F (u) + G(v) = F (t− x) + G(t + x). (A.3)

111



It is clear that Fω(t−x) = exp(−iω(t−x)) and Gω(t+x) = exp(−iω(t+x))

are solutions of the wave equation. These solutions are called mode solutions

and satisfy
∂

∂t
Fω = −iωFω, (A.4)

similarly for Gω. This equation shows that the mode solutions are eigen-

functions of the Lie derivative operator associated with the Killing vector ∂t.

The parameter ω is interpreted as the frequency of the mode and the mode

functions are called positive with respect to t when they satisfy (A.4) with

ω positive.

The quantum field operator can be expressed in terms of positive modes

as

φ(u, v) =
1

(2π)1/2

∫ ∞

0

dω

(2ω)1/2

[
auωe−iωu + auω

†eiωu
]

(A.5)

+
1

(2π)1/2

∫ ∞

0

dω

(2ω)1/2

[
avωe−iωv + avω

†eiωv
]

where † means the adjoint operation1. This expression can be found in many

standard texts, for instance [66], where a detailed deduction of this expression

is given by using the Hamiltonian formalism. The operators auω and auω
† are

the standard anihilation and creation operators respectively. The two point

function is given by

〈0|φ(u, v)φ(u′, v′)|0〉 =
1

2π

[∫ ∞

0

dω

2ω
e−iω(u−u′) +

∫ ∞

0

dω

2ω
e−iω(v−v′)

]
. (A.6)

In obtaining (A.6) we have used the definition of the anihilation operator

aω|0〉 = 0 and
[
aω, aω′

†] = δωω′ . In order to make the integration, let us take

just one factor inside the square brackets. Defining z ≡ u− u′, we have the

function

f(z) =

∫ ∞

0

dω

2ω
e−iωz, (A.7)

1It is standard to represent an operator with a letter with a hat on it, for instance Â,
however for sake of simplicity in the notation we shall not use the hat.
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then
∂f

∂z
= − i

2

∫ ∞

0

dωe−iωz. (A.8)

If we write the last expression as

∂f

∂z
= − i

2

∫ ∞

0

dω lim
ε→0

e−iω(z−iε) = − i

2
lim
ε→0

∫ ∞

0

dωe−iω(z−iε), (A.9)

we obtain
∂f

∂z
= −1

2
lim
ε→0

1

z − iε
. (A.10)

Consequently

f(z) = −1

2

∫
lim
ε→0

1

z − iε
= −1

2
lim
ε→0

ln(z − iε) + A, (A.11)

where A is a constant of integration. Using (A.11) in (A.6) we finally obtain

〈0|φ(u, v)φ(u′, v′)|0〉 = − 1

4π

[
lim
ε→0

ln(u− u′ − iε)+

+ lim
ε′→0

ln(v − v′ − iε′)
]
, (A.12)

where we have omitted the constants of integration. It is interesting to note

that the right (u) and left (v) modes do not interact between themselves, they

behave as independent degrees of freedom of the system. Another important

point about this two point function is that it is defined with respect to vacuum

|0〉 which corresponds to the vacuum an inertial observer with proper time

t sees. Actually, this vacuum will correspond also to an inertial observer

related to the first by a Lorentz transformation, invariance of the vacuum

state under Lorentz transformations.

The two point function (A.12) corresponds to a quantum field at zero

temperature. Now, let us calculate the two point function of a quantum field

at temperature different from zero. The state of this field can be described

in the Fock space by

|n〉 ≡ |n1, n2, ...〉 =

[∏
s

(
a†ωs

)ns

√
ns!

]
|0〉. (A.13)
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This vector corresponds to the quantum state in which n1 particles have

frequency ω1, n2 particles have frequency ω2, etc. After a bit long calculation

we obtained

Tr
(
e−βHφ(u, v)φ′(u′, v′)

)

Tr (eβH)
=

∫ ∞

0

dω

1− e−βω

[
e−iω(u−u′) + eiω((u−u′)+iβ)

]

4πω

+

∫ ∞

0

dω

1− e−βω

[
e−iω(v−v′) + eiω((v−v′)+iβ)

]

4πω
(A.14)

where β = 1
T

and T is the temperature. We shall show that this two point

function corresponds to a thermal state, which is a state with finite temper-

ature. A thermal state must satisfy [37]

F (t− iβ) = F (−t), (A.15)

where F (t) is the two point function of the field for constant spatial coordi-

nates. Let us consider the u-part of (A.14). If we keep x fixed and define

τ = t− t′ we have

F (τ) =

∫ ∞

0

dω

4πω

1

1− e−βω

[
e−iωτ + eiω(τ+iβ)

]
. (A.16)

By making τ → −τ in (A.16) we have

F (−τ) =

∫ ∞

0

dω

4πω

1

1− e−βω

[
eiωτ + e−iω(τ−iβ)

]
. (A.17)

Now, by making τ → τ − iβ in (A.16) we have

F (τ − iβ) =

∫ ∞

0

dω

4πω

1

1− e−βω

[
e−iω(τ−iβ) + eiωτ

]
. (A.18)

Similarly for the v-part. Hence the two point function (A.14) corresponds to

a thermal state at temperature β = 1
T
. Let us calculate the integral (A.14).

Let us just take the u-part. Defining z = u− u′ we have the integral

f(z) =

∫ ∞

0

dω

4πω

1

1− e−βω

[
e−iωz + eiω(z+iβ)

]
. (A.19)
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Then
∂f

∂z
=

i

4π

∫ ∞

0

dω
1

1− e−βω

[−e−iωz + eiω(z+iβ)
]
. (A.20)

After some algebra this integral can be written as

∂f

∂z
=

i

4π

∫ ∞

−∞
dω

e−βωeiωz

1− e−βω
. (A.21)

If we define y ≡ βω the we have

∂f

∂z
=

i

4π

1

β

∫ ∞

−∞
dy

e−y(1− iz
β

)

1− e−y
=

i

4π

1

β

∫ ∞

−∞
dy lim

ε→0

e−y(1−ε− iz
β

)

1− e−y
, (A.22)

where in the last equality we have introduced an epsilon in order to use a

known integral. Now, we have (3.311 8 in [40])

∫ ∞

−∞
dx

e−µx

1− e−x
= π cot πµ 0 < Reµ < 1. (A.23)

Hence from (A.22) and (A.23) we obtain

∂f

∂z
=

i

4β
lim
ε→0

cot π

(
1− ε− iz

β

)
=

i

4β
cot π

(
1− iz

β

)
. (A.24)

Finally

f(z) = − 1

4π
ln sin π

(
1− iz

β

)
+ D, (A.25)

where D is a constant of integration. After a bit of algebra and in terms of

u and u′ we obtain

f(u, u′) = − 1

4π

[
ln

(
eπ u−u′

β − e−π u−u′
β

)
+ ln

i

2

]
+ D. (A.26)

If β = 2π = 1
T

we have

f(u, u′) = − 1

4π

[
ln

(
e

u−u′
2 − e−

u−u′
2

)
+ ln

i

2

]
+ D. (A.27)

Hence the two point function (A.14) for β = 2π, modulo constants, is given
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by

Tr
(
e−βHφ(u, v)φ′(u′, v′)

)

Tr (eβH)
= − 1

4π

[
ln

(
e

u−u′
2 − e−

u−u′
2

)
(A.28)

+ ln
(
e

v−v′
2 − e−

v−v′
2

)]

and corresponds to a thermal state at temperature T = 1/2π. For our

purposes we will need the second derivatives of this function, for instance

∂2〈n|φ(u, v)φ(u′, v′)|n〉
∂v∂v′

= − 1

4π

1(
e

v−v′
2 − e−

v−v′
2

)2 . (A.29)

It is well known, see for instance [66], that in the right wedge of Minkowski

spacetime we can introduce Rindler coordinates which correspond to a con-

stant accelerated observer, see figure A.1. Let us call these coordinates (η, ξ).

The relation between Minkowski and Rindler coordinates is given by

t = a−1eaξ sinh aη x = a−1eaξ cosh aη, (A.30)

where a is the magnitude of the acceleration of the Rindler observer. The

null coordinates are given by

u = −e−ũ v = eṽ, (A.31)

where we have made a = 1 and ũ = η− ξ, ṽ = η + ξ are null with respect to

Rindler coordinates. If we take the v-part of (A.12) and substitute (A.31) in

it we obtain

∂2〈0|φ(ũ, ṽ)φ(ũ′, ṽ′)|0〉
∂ṽ∂ṽ′

= − 1

4π

1(
e

ṽ−ṽ′
2 − e−

ṽ−ṽ′
2

)2 , (A.32)

where we have taken the limit ε → 0. Hence the second derivatives of the two

point function 〈0|φ(ũ, ṽ)φ(ũ′, ṽ′)|0〉 when expressed in Rindler coordinates

have the same form as the second derivatives of the two point function of a

thermal state. In conclusion, a constant accelerated observer sees a thermal

116



t

x

u v

x=const.

h=const.

L R

F

P

Figure A.1: 1+1 dimensional Minkowski and Rindler spacetime.

state whereas an inertial observer sees a state with zero temperature. This

is the so-called Unruh effect [83]2.

As a historical curiosity it is interesting to note that the Unruh effect was

discovered in an attempt to understand better the Hawking effect [83], how-

ever the Bisognano-Wichmann theorem was already available when Unruh

made his discovery.

2An excellent review of this effect has recently appeared in [25].
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Appendix B

Global conformal

transformations in 1+1

dimensions

In Section 5, we found explicitly the subgroups of the conformal group in

1+1 dimensions induced by the generators Juy and Jvx. In this appendix we

give the others subgroups of this group.

First let us remember the elements of the Lie algebra of the AdS group.

These elements are

Juv = u∂v − v∂u Jxy = x∂y − y∂x

Jux = u∂x + x∂u Juy = u∂y + y∂u

Jvx = v∂x + x∂v Jvy = v∂y + y∂v

(B.1)

It is well known that in a representation on the vector space R2+2 these

generators can be represented by the matrices

Juv =




0 −1 0 0

1 0 0 0

0 0 0 0

0 0 0 0




Jxy =




0 0 0 0

0 0 0 0

0 0 0 −1

0 0 1 0




(B.2)
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Jux =




0 0 1 0

0 0 0 0

1 0 0 0

0 0 0 0




Juy =




0 0 0 1

0 0 0 0

0 0 0 0

1 0 0 0




(B.3)

Jvx =




0 0 0 0

0 0 1 0

0 1 0 0

0 0 0 0




Jvy =




0 0 0 0

0 0 0 1

0 0 0 0

0 1 0 0




(B.4)

For our purposes the relevant elements of the Lie algebra of the AdS

group are

A = Jux − Juv =




0 1 1 0

−1 0 0 0

1 0 0 0

0 0 0 0




, (B.5)

B = Jxy + Jvy =




0 0 0 0

0 0 0 1

0 0 0 −1

0 1 1 0




, (B.6)

C = Juv + Jux =




0 −1 1 0

1 0 0 0

1 0 0 0

0 0 0 0




, (B.7)

D = Jxy − Jvy =




0 0 0 0

0 0 0 −1

0 0 0 −1

0 −1 1 0




(B.8)
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Let a = (a, b) be a two dimensional vector. Then

Λ(a) = eaA+bB =




1 a a 0

−a 1 + b2−a2

2
b2−a2

2
b

a a2−b2

2
1 + a2−b2

2
−b

0 b b 1




. (B.9)

If we apply this transformation to xT = (u, v, x, y) we get




u′

v′

x′

y′




=




u + av + ax

−au +
(
1 + b2−a2

2

)
v +

(
b2−a2

2

)
x + by

au +
(

a2−b2

2

)
v +

(
1 + a2−b2

2

)
x− by

bv + vx + y




. (B.10)

Using (4.54) we finally get

ξ′1 = ξ1 + a ξ′2 = ξ2 + b. (B.11)

Hence Λ(a) generate the translation subgroup on ξ1 and ξ2. The expressions

(B.11) is true at all orders since it is the finite transformation generated by

the linear combination of (B.5) and (B.6).

The special conformal transformations can be obtained in a similar way.

Let c = (c, d) be a two dimensional vector. Then

Λ(c) = ecC+dD =




1 −c c 0

c 1 + d2−c2

2
c2−d2

2
−d

c d2−c2

2
1 + c2−d2

2
−d

0 −d d 1




. (B.12)
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Applying this transformation to xT = (u, v, x, y) we get




u′

v′

x′

y′




=




u− cv + cx

cu +
(
1 + d2−c2

2

)
v +

(
c2−d2

2

)
x− dy

cu +
(

d2−c2

2

)
v +

(
1 + c2−d2

2

)
x− dy

−dv + dx + y




. (B.13)

Using again (4.54) we get

ξ′1 =
ξ1 − c (ξ · ξ)

1− 2 (ξ · c) + (c · c) (ξ · ξ) ξ′2 =
ξ2 − d (ξ · ξ)

1− 2 (ξ · c) + (c · c) (ξ · ξ) ,

where the inner product is with respect to the metric diag = (−1, 1). Hence

Λ(c) generate the special conformal subgroup on ξ1 and ξ2.

For completeness let us write down the relationship between the metric

expressed in ξ1, ξ2, and in global and Poincaré coordinates. On the boundary

ξ1 =
sin λ

cos λ + cos θ
ξ2 =

sin θ

cos λ + cos θ
. (B.14)

Hence

−dξ12
+ dξ22

=
1

(cos λ + cos θ)2

(−dλ2 + dθ2
)
. (B.15)

Also we have

ξ1 =
T

l
ξ2 =

k

l
. (B.16)

Then

−dξ12
+ dξ22

=
1

l2
(−dT 2 + dk2

)
. (B.17)

Before finishing this section let us see how are related the three generators

of translation in time on the boundary, ∂λ, ∂T and ∂ξ1 . We have chosen

∂λ = Jvu. (B.18)

This can be seen from the expression for Jvu and the parametrization of AdS

121



(1.22). By using (B.5) and (B.7) we obtain that

∂λ =
1

2
(∂ξ1 − Sξ1) , (B.19)

where Sξ1 denotes the generator of special conformal transformations in time

(B.7). The last expression is obtained by solving for Jvu from (B.5) and (B.7)

and taking into account that the first generates translations in time and the

second special conformal transformation in time. We also have

∂T =
1

l
∂ξ1 . (B.20)

B.1 Conformal field theory on the complex

plane

In this section we will transform the coordinates ξ1 and ξ2 to complex coor-

dinates on C2. From (B.14) we have

ξ1 + ξ2 = tan

(
λ + θ

2

)
ξ1 − ξ2 = tan

(
λ− θ

2

)
. (B.21)

If we define

z1 ≡ 1 + i(ξ1 + ξ2)

1− i(ξ1 + ξ2)
z2 ≡ 1 + i(ξ1 − ξ2)

1− i(ξ1 − ξ2)
, (B.22)

then

z1 = ei(λ−θ) z2 = ei(λ+θ). (B.23)

If now we make τ = iλ then

z1 = e−τe−iθ z2 = e−τeiθ. (B.24)

We can consider z1 and z2 as complex conjugate of each other and defined on

the complex plane. However following the usual approach to Conformal Field

Theory they can be considered as independent complex variables and define

C2. At this point we could apply the standard Conformal Field Theory to
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our problem by using z1 and z2 as our complex variables.

B.2 Commutators for the Lie generators

For completeness we now give the Lie brackets for the Lie generators (B.1).

These commutators are

[Juv, Jxy] = 0 [Jux, Juy] = −Jxy [Juv, Juy] = Jvy (B.25)

[Juv, Jvy] = −Juy [Jux, Jxy] = −Juy [Jux, Jvy] = 0 (B.26)

[Jvx, Jxy] = −Jvy [Jvx, Juy] = 0 [Jvx, Jvy] = −Jxy (B.27)

[Juv, Jux] = Jvx [Juv, Jvx] = −Jux [Jux, Jvx] = −Juv (B.28)

[Jxy, Juy] = −Jux [Jxy, Jvy] = −Jvx [Juy, Jvy] = Juv (B.29)
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Appendix C

Misner space on the boundary

We shall show there is a Misner space on the boundary of AdS spacetime.

Let us parametrize a region of AdS spacetime as

v =
√

B(r) sinh
r+

l2
t u =

√
A(r) cosh

r+

l
φ

x = −
√

B(r) cosh
r+

l2
t y =

√
A(r) sinh

r+

l
φ (C.1)

where A(r) and B(r) are given as in (2.13) with r− = 0. From (1.31) and

(C.1) we get

T = le
r+
l2

t cosh
(r+

l
φ
)

k = le
r+
l2

t sinh
(r+

l
φ
)

. (C.2)

From (C.2) it follows that the metric on the boundary in Poincaré and

BTZ coordinates is given by

ds2 = −dT 2 + dk2 =
r2
+

l2
e

2r+t

l2
(−dt2 + l2dφ2

)
, (C.3)

where we have introduced the surface gravity κ = r+/l2. The right side of

this equation can be considered as the metric on the boundary of this region

of AdS spacetime, which we will refer to as ds2
M . Putting y = e2κt and after

rescaling it by 1
4l2κ2 we get

ds2
M = l4k2

(−y−1dy2 + ydα2
)

(C.4)
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where α = 2lκφ. When α is 2π-periodic we have the Misner space metric

[46]. It is important to note that the manifold and the Hausdorff property

are still preserved after making the quotient [46] when 0 < y < ∞.

Now we will show there is a thermal state with respect to t. First let us

relate the M metric to a Rindler type metric. This can be done as follows

ds2
M = e2κt

(−dt2 + dφ′2
)

= e2κ(t−φ′)ds2
Rindler, (C.5)

where

ds2
Rindler = e2κφ′ (−dt2 + dφ′2

)
(C.6)

and φ′ = lφ. By defining

x0 =
1

κ
eκt cosh κφ′ x1 =

1

κ
eκt sinh κφ′ (C.7)

we obtain

ds2
M = −dx2

0 + dx2
1. (C.8)

Similarly, by defining

x′0 =
1

κ
eκφ′ sinh κt x′1 =

1

κ
eκφ′ cosh κt (C.9)

we obtain

ds2
Rindler = −dx′20 + dx′21 . (C.10)

Hence if we consider xµ and x′µ with µ = 0, 1 as charts covering 1+1 dimen-

sional Minkowski spacetime we see that the M chart covers, F , the inside

of the future light cone from the origin whereas the Rindler chart covers, as

should be, the right wedge, R.

Now, ∂t is a Killing vector of (C.6) and a conformal Killing vector [84] of

(C.5) since it satisfies

L(∂t)αgµν = 2κgµν , (C.11)

where L(∂t)α is the Lie derivative with respect to (∂t)
α. This can be checked

by using the Christoffel symbols Γt
tt = Γφ

φt = κ associated with the metric

(C.5).
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At this point we can use standard techniques [13] and write down the

mode expansion for a field living on M spacetime

φ(t, φ′) =
∑

k

(
akuk + a†ku

∗
k

)
, (C.12)

where the normalized modes are given by

uk(t, φ
′) =

1

(4ωπ)
1
2

e−ik·x ω = |kR| −∞ < kR < ∞ (C.13)

and xµ = (t, φ′). There is no factor before the sum because in general this

factor should be Ω(n−2)/2 which is one in this case. The vacuum defined by

ak|0M〉 = 0 ∀ k (C.14)

is the conformal vacuum which in this case coincides with the Rindler vac-

uum. Hence the vacuum with respect to positive Poincaré modes will be a

thermal state with respect to positive modes with respect to t. The temper-

ature of the state will be T = κ
2π

too [13].
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Appendix D

Conformal vacuum on AdS

spacetime

As an exercise, in this appendix we will calculate the two point function

associated with the conformal vacuum on AdS spacetime by starting with a

set of normalized solutions of the Klein-Gordon operator with metric

ds2 = −dT 2 + dk2 + dz2, (D.1)

where the coordinates have the same range as Poincaré coordinates. One set

of such solutions is

F ′
ωna(T, k, z) =

1

(2πω)1/2
e−iωT eink sin(az), (D.2)

where ω = (n2 + a2)
1/2

, −∞ < n < ∞ and a > 0. By choosing the coupling

constant ξ = 1
8

then a set of solutions of the Klein-Gordon operator on AdS

spacetime in Poincaré coordinates is

Fωna(T, k, z) =
l

z1/2

1

(2πω)1/2
e−iωT eink sin(az). (D.3)

Then a real linear scalar field on AdS spacetime can be expanded as

φ̂(T, k, z) =

∫ ∞

−∞

∫ ∞

0

(
Fnaâna + F ∗

naâ
†
na

)
dnda, (D.4)
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where the conformal vacuum is defined by

âna|0〉 = 0 ∀ n, a. (D.5)

From (D.4) and (D.5) it follows the two point function is given by

〈0|φ̂(T, k, z)φ̂(T ′, k′, z′)|0〉 =
l2

π(zz′)1/2

∫ ∞

0

∫ ∞

0

dadn

(a2 + n2)1/2
× (D.6)

× sin(az) sin(az′) cos(n∆k)e−i(a2+n2)1/2∆T ,

where ∆T = T − T ′ and ∆k = k − k′. After doing the integral over n we

obtain

〈0|φ̂(T, k, z)φ̂(T ′, k′, z′)|0〉 =
l2

(zz′)1/2π
lim

ε+→0

∫ ∞

0

da× (D.7)

× K0(a
(
(∆k)2 − (∆T + iε)2

)1/2
) sin(az) sin(az′),

where we have used 3.961 2 in [40]. We can integrate this equation and obtain

〈0|φ̂(T, k, z)φ̂(T ′, k′, z′)|0〉 =
l2

4(zz′)1/2
×

× lim
ε+→0

(
1

((∆k)2 − (∆T + iε)2 + (z − z′)2)1/2
−

− 1

((∆k)2 − (∆T + iε)2 + (z + z′)2)1/2

)
, (D.8)

where we have used that 2 sin(az) sin(az′) = cos(a(z − z′)) − cos(a(z + z′))

and the identity 6.671 6 in [40]. From this expression we see that we can not

obtain a two point function on the boundary just by multiplying by some

power of zz′ and taking the limit z, z′ → 0. Hence our attempt to obtain a

two point function on the boundary by using conformal techniques does not

give a correct answer, however the dependence in T and k is quite similar to

the correct one.
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Appendix E

Superradiance

The superradiance phenomenon takes place when a wave is partially reflected

and partially transmitted. It can be roughly defined by saying that: the re-

flected part has a bigger amplitude than the incident one. This phenomenon

can be possible because energy is being taken from a source which might be

for example a electrostatic field [64]. It turns out that this phenomenon also

occurs on black hole geometries, particularly on the Kerr metric. However,

in this metric the real scalar field present superradiance whereas a fermionic

field not, see for example [82], [61]. As it has been said before, the BTZ

metric has some similarities with the Kerr metric. Hence it seems natural to

investigate what happen in the BTZ metric regarding superradiance. Apart

from the interest in its own right, superradiance is closely related to quantum

effects on black holes, for instance, pair particle creation.

Naively, we could expect that superradiance must occur on the BTZ met-

ric for the scalar field whereas must be absent for the Dirac field. See for

example [22] where it is argued that superradiance exist in the BTZ black

hole for the scalar field. However, as we will show below, there is no super-

radiance for vanishing boundary conditions at infinity.

In order to achieve our goal we will use the known exact solutions of the

Klein-Gordon operator in the BTZbh, [48] and [59]. Before doing this we

will analyze some properties of the asymptotic solutions of the Klein-Gordon

operator which shed some light on the peculiarities of the problem under
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consideration. We will do this by using some techniques borrowed from [27].

We shall assume that the scalar field ϕ satisfies the equation

(∇µ∇µ − ξR−m2
)
ϕ = 0, (E.1)

where ξ is a coupling constant, R is the Ricci scalar and m can be considered

as the mass of the field. For the BTZ metric

ds2 = −f 2dt2 + f−2dr2 + r2(dφ + Nφdt)2, (E.2)

where

f 2 =

(
−M +

r2

l2
+

J2

4r2

)
=

(
r2 − r2

+

) (
r2 − r2

−
)

l2r2
(E.3)

and

Nφ = − J

2r2
= −r+r−

lr2
(E.4)

where

r2
± =

Ml2

2


1±

(
1−

(
J

Ml

)2
)1/2


 , (E.5)

with |J | ≤ Ml, the Ricci scalar is R = 6Λ = − 6
l2

. Hence the last equation

can be written as (∇µ∇µ − m̃2
)
ϕ = 0, (E.6)

where m̃2 = m2− 6ξ
l2

. Here m̃2 can be negative since we assume m2 ≥ 0. The

operator ∇µ∇µ is given by

∇µ∇µϕ =
1√
|g|∂µ

(√
|g|gµν∂νϕ

)
, (E.7)

where g = |gµν |. For the BTZ metric with J 6= 0 we have g = −r2, then

|g| = r2.

After a direct calculation, using (E.7) in (E.6), it is obtained

d2R

dr∗2
+ {(ω + nNφ

)2 − f 2[
n2

r2
+ m̃2 +

r1/2

2

d

dr

(
f 2

r3/2

)
+

f 2

2r2
]}R = 0, (E.8)
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where it has been made the ansatz ϕ(r, t, φ) = e−iωteinφ R(r)√
r

and r = r (r∗).

This equation has been written in [47]. However, there is a typo in the

expression given in this reference, the factor r1/2 in the third term in the

square bracket is missing.

If (E.8) is rewritten as

d2R

dr∗2
+ V (r∗) R = 0, (E.9)

where

V (r∗) =
(
ω + nNφ

)2 − f 2[
n2

r2
+ m̃2 +

r1/2

2

d

dr

(
f 2

r3/2

)
+

f 2

2r2
], (E.10)

then
d

dr∗

(
R1

dR2

dr∗
−R2

dR1

dr∗

)
= 0, (E.11)

where R1 and R2 are solutions of (E.9). Hence

R1
dR2

dr∗
−R2

dR1

dr∗
= const. (E.12)

The equation (E.9) is valid for all the region “outside”the horizon where r∗

goes from −∞ to 0. In analyzing superradiance in Kerr metric, the equation

(E.12) is the starting point [27]. The idea is to use this equation for two

asymptotic solutions of (E.9) where in the asymptotic regions the potential

V is finite. In the present case at the horizon, N = 0

d2R

dr∗2
+ ω̃2R = 0, (E.13)

where ω̃ = ω + nNφ. From the last equation it follows that at the horizon

the behavior of R is

R ∝ e−iω̃r∗ R ∝ eiω̃r∗ . (E.14)

However, V (r∗) goes to ∞ when r∗(r) goes to 0 (∞). This is because at in-

finity the BTZbh is asymptotically AdS. So it seems that we can not proceed

further in the analysis by this method. However from (E.9) it follows that if
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V were finite at infinity then we would have

R ∝ e−iω′r∗ R ∝ eiω′r∗ (E.15)

for some ω′. In this case we could analyze the superradiance phenomenon in

the same lines as in the Kerr case. It turns out that V is finite at infinity

when

m̃2 +
3

4l2
= 0. (E.16)

Hence, in this case (E.15) is true with

ω′ =

√
ω2 − 1

l2

(
n2 +

M

4

)
. (E.17)

If at infinity there is a incident and a reflected wave R∞ ∝ e−iωr∗+Aeiωr∗ with

A a complex constant, and at the horizon an incident wave RH ∝ Be−iω̃r∗

with B also a complex constant, then after substituting this solution and its

complex conjugate in (E.12) it is obtained

1− |A|2 =
ω̃

ω
|B|2. (E.18)

From this equation it follows that if ω̃ < 0 or ω < nΩH with ΩH = −Nφ, the

angular velocity of the horizon, then the reflected wave has a bigger amplitude

than the incident one. At this stage it seems to exist superradiance when

(E.16) is satisfied. However because of (E.17), it must be satisfied

ω >
1

l

√
n2 +

M

4
. (E.19)

Also because ω < nΩH , it must be satisfied

ω <
nJ

2Ml2
, (E.20)

where we have used ΩH = J
2r2

+
and r+ = l

√
M . Because |J | ≤ lM and ω > 0

both inequalities can not be satisfied at the same time. Hence the fact that
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ω < nΩH could happen does not imply that superradiance exists. In the next

section we will show that it does not exist for vanishing boundary conditions

at infinity. We point out that these boundary conditions are between the

more natural ones since the BTZbh is asymptotically AdS spacetime, and it

has been shown [7] that a well defined quantization scheme can be set up in

AdS spacetime with these boundary conditions. Also related with this issue

is the fact that in four dimensions in the Kerr-AdS black hole the existence

of superradiance depends on the boundary conditions at infinity [89]. So it

is expected that in the present case something analogous is happening.

E.1 No superradiance in the BTZ black hole

The discussion of this section follows closely the discussion in [48] and [59],

however in those works no mention to superradiance is made.

If we assume harmonic dependence in t and φ, then the operator (E.7)

reads

∇µ∇µϕ = − 1

f 2r2

(
−ω2r2 + n2

(
r2

l2
−M

)
+ nωJ

)
+

1

r
∂r

(
rf 2∂r

)
. (E.21)

Hence the equation (E.6) reduces to an equation in r for fωn

[
− 1

f 2r2

(
−ω2r2 + n2

(
r2

l2
−M

)
+ nωJ

)
+

1

r

d

dr

(
rf 2 d

dr

)
− m̃2

]
fωn(r) = 0.

If we make v = r2

l2
, then after some algebra we get

(
d2

dv2
+

∆′

∆

d

dv
+

1

4∆2

(
n (Mn− Jω)− m̃2l2∆− (

n2 − ω2l2
)
v
))

fnω(v) = 0,

where ∆ = (v − v+) (v − v−) and ′ ≡ d
dv

. If now we let

fnω = (v − v+)α (v − v−)β gnω (E.22)
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we get

u(1− u)g′′nω(u) + (c− (a + b + 1)) g′nω(u)− abgnω(u) = 0, (E.23)

where u = v−v−
v+−v−

, a = α+β+ 1
2
(1 + ν), b = α+β+ 1

2
(1− ν), c = 2β+1, ν2 =

1 + m̃2l2, α2 = − 1
4(v+−v−)2

(
r+ω − r−n

l

)2
and β2 = − 1

4(v+−v−)2

(
r−ω − r+n

l

)2
.

The equation for gnω is the hypergeometric differential equation, its solutions

are well known. This equation has three (regular) singular points at 0, 1,

∞ and two linear independent solutions in a neighborhood of these points.

Any of these solutions can be analytically continued to another by using

the so-called linear transformation formulas, we will use this property later.

The solutions are divided in several cases depending on the values of some

combinations of the coefficients a, b and c. Let us consider the case when

none of c, c− a− b, a− b is a integer.

The points u = 0, 1,∞ correspond to the inner horizon, outer horizon

and infinity respectively. Because of the timelike boundary of the BTZbh at

infinity, we are interested in solutions which allows us to have predictability.

Let us consider the two solutions at infinity. These solutions are given by

gnω = u−aF (a, a− c + 1; a− b + 1; u−1) (E.24)

and

gnω = u−bF (b, b− c + 1; b− a + 1; u−1), (E.25)

where F (a, b; c; z) is the hypergeometric function with coefficients a, b and c.

If we write (E.22) as a function of u we have

fnω(u) = (v+ − v−)α+β (u− 1)α uβgnω(u). (E.26)

Using (E.26) in (E.24) and (E.25) we have two functions at infinity given by

fnω(u) = (v+ − v−)α+β (u− 1)α uβ−aF (a, a− c + 1; a− b + 1; u−1) (E.27)
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and

fnω(u) = (v+ − v−)α+β (u− 1)α uβ−bF (b, b− c + 1; b− a + 1; u−1). (E.28)

The last two equations can be approximated as

fnω(u) ∼ (v+ − v−)α+β u−h+F (a, a− c + 1; a− b + 1; u−1) (E.29)

and

fnω(u) ∼ (v+ − v−)α+β u−h−F (b, b− c + 1; b− a + 1; u−1), (E.30)

where h+ = 1
2
(1 + ν), h− = 1

2
(1 − ν) with ν = ±√1 + m̃2l2. If we take

the positive square root then the first solution converges for any value of ν

and the second solution converges for 0 ≤ ν < 1 and diverges for ν ≥ 1. If

we take the negative square root the situation is inverted. Let us take the

positive square root and just the first solution. We can analytically continue

this solution to a neighborhood of u = 1 using the following linear relation

[3]

F (a, b; c; u) =
Γ(c)Γ(a + b− c)

Γ(a)Γ(b)
(1− u)c−a−bua−c ×

× F (c− a, 1− a; c− a− b + 1; 1− 1/u) (E.31)

+
Γ(c)Γ(c− a− b)

Γ(c− a)Γ(c− b)
u−a ×

× F (a, a− c + 1; a + b− c + 1; 1− 1/u),

where Γ(x) is the gamma function. By letting u = 1
u
, a = a, b = a − c + 1

and c = a− b + 1 in the last equation we have

F (a, a− c + 1; a− b + 1;
1

u
) =

Γ(a− b + 1)Γ(a + b− c)

Γ(a)Γ(a− c + 1)

(
u− 1

u

)c−a−b

×

× u1−bF (1− b, 1− a; c− a− b + 1; 1− u)

+
Γ(a− b + 1)Γ(c− a− b)

Γ(1− b)Γ(c− b)
ua × (E.32)

× F (a, b; a + b− c + 1; 1− u).
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Inserting (E.32) in (E.29), close the outer horizon, we have

fnω ∼ Γ(a− b + 1)Γ(a + b− c)

Γ(a)Γ(a− c + 1)
(u− 1)−α u−β ×

× F (1− b, 1− a;−2α + 1; 1− u) (E.33)

+
Γ(a− b + 1)Γ(c− a− b)

Γ(1− b)Γ(c− b)
(u− 1)α uβF (a, b; 2α + 1; 1− u).

The expression (E.33) can be expressed as

fnω ∼ Γ(1 + ν)Γ(2α)

Γ(α + β + h+)Γ(α− β + h+)
(u− 1)−αu−β ×

× F (−α− β + h+,−α− β + h−;−2α + 1; 1− u) +

+
Γ(1 + ν)Γ(−2α)

Γ(−α− β + h+)Γ(−α + β + h+)
(u− 1)αuβ ×

× F (α + β + h+, α + β + h−; 2α + 1; 1− u) (E.34)

From this expression we can see that the two coefficients in both terms are

conjugate one of each other. Hence near u = 1 we can write the last expres-

sion as

fnω ∼ eiθ(u− 1)α + e−iθ(u− 1)−α (E.35)

where e2iθ = Γ(−α−β+h+)Γ(−α+β+h+)Γ(2α)
Γ(α+β+h+)Γ(α−β+h+)Γ(−2α)

. We would like to write the last

expression as a sum of two wave modes. In order to do this we introduce

another variable [59]. First we notice that

α = ± i

4πT
(ω − Ωn), (E.36)

where T =
r2
+−r2

−
2πl2r+

and Ω = r−
lr+

. We now define x = 1
4πT

ln(u− 1). With this

definition the equation (E.35) becomes

fnω ∼ eiθeix(ω−Ωn) + e−iθe−ix(ω−Ωn). (E.37)

From here we conclude that the solution to the Klein-Gordon operator near
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the outer horizon goes like

ϕ ∼ e−iωteinφ
(
eiθeix(ω−Ωn) + e−iθe−ix(ω−Ωn)

)
. (E.38)

From this expression we see that the mode near the outer horizon is a super-

position of an ingoing and an outgoing wave, both with the same amplitude,

hence cancelling each other. This is what we expected since at infinity this

mode vanishes, hence the superradiance phenomenon does not appear.

It would be interesting to explore superradiance with other fields, for

example, the Dirac field. Also with the real scalar field it would be interesting

to study other boundary conditions and see what happen.

137



Appendix F

On the quantization of the real

linear scalar field

The quantization of a classical field in a curved spacetime is a key issue in

understanding fundamental processes in nature. The par excellence example

of quantization of a classical field is the quantization of the real linear scalar

field. The general (canonical) formalism for quantizing the real linear scalar

field is the topic of this essay.

Basic elements in the quantization of a classical sys-

tem

A classical field represents a physical system with infinite degrees of free-

dom. Hence it is natural to consider the quantization of this field as the

generalization of the quantization of a classical system with finite degrees of

freedom. Let us review the basic ideas in the canonical quantization1 of a

system with finite degrees of freedom. In the canonical quantization of this

system one starts with the phase space of the system, which is the space of

states of the system. Each point in this space represents a state of the system.

The coordinates of this space are the canonical coordinates and comprise the

(configuration) coordinates {qi} and the associated canonical conjugate mo-

1It is important to have in mind that there are other approaches to quantization of a
classical system, for example, path integral quantization.
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mentums {pi}. For a system of 6N degrees of freedom the phase space is a

6N -dimensional manifold M. The classical observables are represented by

functions from this manifold to the real line, O : M −→ R. On the other

hand the states of a quantum system are elements of a Hilbert space H and

the observables Ô are represented by Hermitian operators which act upon

these states, Ô : H −→ H. The problem of the quantization of a classical

system then is that we need to find an appropriate Hilbert space and a map

̂ from classical observables to quantum observables,̂: O −→ Ô which allows

the passage from the classical system to the quantum system. It is apparent

that both mathematical structures (classical v.s. quantum) are completely

different. However there is a similar algebraic structure which allows to make

the desired transition for linear systems2. The algebraic classical structure

is the Poisson bracket of two functions on M defined by

{f, g} =
∑

i

(
∂f

∂qi

∂g

∂pi

− ∂f

∂pi

∂g

∂qi

)
, (F.1)

while the algebraic quantum structure is the commutator of two operators

defined by

[Â, B̂] = ÂB̂ − B̂Â. (F.2)

We demand the map ̂ to satisfy3

{̂f, g} = i[f̂ , ĝ]. (F.3)

It turns out that when the phase space is the cotangent bundle, M = TQ∗,

then it is possible to choose a Hilbert space H and the map ̂ such that the

2In this work we just consider linear systems. A linear system is a system which
satisfy: 1) The phase space has the structure of a vector space and 2) The Hamiltonian is
a quadratic function on M, and then the equations of motion are linear in the canonical
coordinates. In this case the space of solutions has the structure of vector space. For more
details see [85] and [73]. The quantization of non-linear systems seems to be much more
complicated.

3The problem of finding the correct map ̂ is known as the Dirac problem. See [51] for
a discussion of this issue.
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canonical coordinates satisfy [85]

[q̂µ, q̂ν ] = 0, [p̂µ, p̂ν ] = 0, (F.4)

[q̂µ, p̂ν ] = i ̂{qµ, pν} = iδµνI. (F.5)

It is well-known that on M a symplectic form can be defined [73]

Ω = dqi ∧ dpi. (F.6)

Furthermore, when the system is linear, M and its tangent space can be

identified, i.e., there is an isomorphism between M and its tangent space on

each point of M. Then in this case M can be thought of as a symplectic

vector space equipped with a symplectic form Ω : M×M−→ R. Also it is

well-known that on the integral curves of Hamilton equations, i.e., along the

canonical flows, the symplectic inner product is conserved

d

dt
Ω (Y1(t), Y2(t)) = 0, (F.7)

where Y1(t) and Y2(t) are solutions of the Hamilton equations [73]. In classical

mechanics, this property of the symplectic inner product is used to define

conserved quantities. We shall see that in the quantum theory of the real

linear scalar field a symplectic inner product can also be defined together

with a conserved current.

Because of the uniqueness of the solution of the Hamilton equations and

the conservation of the symplectic inner product we can identify each point on

M with a solution. Hence the basic structure on which the theory relays can

be taken as (S, Ω), i.e., the space of solutions S equipped with a symplectic

structure. In terms of Ω, the Poisson brackets for the canonical coordinates

can be written as

{Ω(Y1, ), Ω(Y2, )} = −Ω(Y1, Y2) (F.8)
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and the corresponding quantum commutator as

[Ω̂(Y1, ), Ω̂(Y2, )] = −Ω(Y1, Y2)I. (F.9)

This form of the quantum commutator is very important in the formal for-

mulation of Quantum Field Theory in Curved Spacetime (QFTCS) [85].

Basic elements in the quantization of the real linear

scalar field

Let us now proceed to sketch the general formalism for the quantization

of the real linear scalar field in curved spacetime. In QFTCS a quantum

field which propagates on a fixed classical spacetime is studied4. This theory

is expected to be valid at scales where the expected quantum nature of the

spacetime, whatever it could be, is not relevant for the phenomenon in con-

sideration. In particular, it is expected to be valid on scales above Planck

length.

The spacetime is modelled as a manifold M equipped with a pseudo-

Riemannian metric gµν . We shall assume that this manifold is well-behaved

(smooth, paracompact, Hausdorff, etc.). Let us suppose we have a classical

field ϕ defined on M which satisfies

Fϕ = 0, (F.10)

where F is a linear partial differential operator. The first step in the quan-

tization of this system is to solve this equation. The field in (F.10) can be

bosonic or fermionic. Let us consider a real scalar field, i.e., a bosonic field.

In this case we have

F = ¤−m2 − ξR, (F.11)

where ¤ ≡ gµν∇µ∂ν(= (|det(g)|)− 1
2 ∂µ((|det(g)|) 1

2 gµν∂ν)) is the Laplace-Beltrami

4In the back reaction problem the spacetime has dynamics but it is studied after the
quantum field is known.
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operator, m is a parameter of the theory and can be taken as a smooth func-

tion of spacetime5, ξ is a coupling constant and R is the scalar curvature.

Two particular choices of ξ are of interest: the minimal coupling ξ = 0 and

the conformal coupling ξ = 1
4
[(n−2)/(n−1)]6. The equation can be obtained

from the variation of the lagrangian density L with respect to ϕ where L is

given by

L = −1

2
[−g]

1
2 {gµνϕ,µ ϕ,ν +[m2 + ξR]ϕ2}. (F.12)

In the quantization of the classical system with finite degrees of freedom

we identified the space of solutions with the phase space. In the quantiza-

tion of ϕ we would like to do the same, even though, in this case the phase

space concept is less intuitive. The aforementioned identification was pos-

sible because the existence and uniqueness of the solution of the dynamical

equations. Hence in the present case it is natural to demand that (F.10)

has this property too. This is known as the well-posed initial value problem.

It turns out that (F.10) has a well-posed initial value problem when M is

globally hyperbolic [84]. A globally hyperbolic spacetime is one which has a

Cauchy surface, which is a closed achronal set Σ with D(Σ) = M where D(Σ)

means the domain of dependence of Σ. The domain of dependence represents

the complete set of events for which all conditions should be determined by

the knowledge of conditions on7 Σ. Therefore if we know the initial data,

position and momentum of the field, on a Cauchy surface, we can predict

deterministically its behavior.

There is a theorem which states that in a globally hyperbolic spacetime

a global time function f can be chosen such that each surface of constant f

is a Cauchy surface and consequently M can be foliated by Cauchy surfaces

and the topology of M is R × Σ, where Σ denotes any Cauchy surface [84].

Let us denote the global time coordinate by t and each Cauchy surface of

constant t as Σt. Let nµ be the unit normal vector field to Σt. The metric

5In flat spacetime this parameter corresponds to the mass of the field [49].
6For more details on the conformal coupling and conformal transformations see [13],

sections 3.1 and 3.2.
7For an illustrative discussion of the importance of the hyperbolicity of the manifold

in quantum field theory see [49], section 2.
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gµν induces a metric hµν on each Σt by the formula8

hµν = gµν + nµnν . (F.13)

Let tµ be a vector field on M satisfying tµ∇µt = 1 and decompose it into a

part tangential to Σt and a part tangential to nµ. We write it as

tµ = Nnµ + Nµ, (F.14)

where N and Nµ are known as the lapse and the shift function respectively.

We may interpret the vector field tµ as representing the flow of time through-

out the spacetime. Then the 4-volume element is given by [65]

d4x = Nh1/2dtd3x, (F.15)

where d3x is the 3-volume element and h is the determinant of hµν . The

action defined by

S =

∫
Ld4x (F.16)

then takes the form

S =

∫
L′dt (F.17)

with

L′ =
1

2

∫

Σt

{(nµ∇µϕ)2 − hµν∇µϕ∇νϕ− [m2 + ξR]ϕ2}Nh1/2d3x. (F.18)

As we said before we want to associate a phase space to the real linear

scalar field. We can take ϕ as the coordinate in the configuration space, but

we need to construct the canonical momentum. It is defined by

π =
δS

δϕ̇
. (F.19)

8In a fancier language, hµν is the pull back of gµν from M to Σt. See, for example,
[23].
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With the lagrangian density (F.18), the canonical momentum is

π = (nµ∇µϕ) h1/2. (F.20)

Then a point in the phase space is defined by giving the values of ϕ and π on

a Cauchy surface, say Σ0. Furthermore, there is a theorem [84] which states

that the equation (F.10) with the operator (F.11) has a well-posed initial value

problem in a hyperbolic spacetime. More precisely, given arbitrary smooth

initial data on a Cauchy surface there exists a unique solution to (F.10) with

the operator (F.11). Using this theorem and noting that we are considering

linear fields, then we can make the same identification we did in the case of

a system of finite degrees of freedom between the set of solutions9 S and the

phase space M. Additionally, in order that all structures be mathematically

well defined we should demand that ϕ and π have compact support, i.e., both

belong to C∞0 (M).

The symplectic structure, Ω, on M is given by

Ω([ϕ1, π1], [ϕ2, π2]) =

∫

Σ

(π1ϕ2 − π2ϕ1) d3x. (F.21)

The symplectic product (F.21) is conserved, i.e., if Σ1 and Σ2 are two different

Cauchy surfaces then

Ω([ϕ1, π1], [ϕ2, π2])Σ1 = Ω([ϕ1, π1], [ϕ2, π2])Σ2 . (F.22)

To prove this equation the four dimensional version of Gauss’ law and the

equation of motion are used [33]. Also it can be seen as consequence of the

current conservation, ∇µj
µ = 0, with

jµ = ϕ1
←→∇ µϕ2 = ϕ2n

µ∇µϕ1 − ϕ1n
µ∇µϕ2. (F.23)

where ϕ1 and ϕ2 are two solutions. As in the case of finite degrees of freedom

9We shall use the same notation as in the case of the system with finite degrees of
freedom.
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we can define the Poisson bracket

{Ω([ϕ1, π1], ·), Ω([ϕ2, π2], ·)} = −Ω([ϕ1, π1], [ϕ2, π2]) (F.24)

and the quantum commutator

[Ω̂([ϕ1, π1], ·), Ω̂([ϕ2, π2], ·)] = −iΩ([ϕ1, π1], [ϕ2, π2])I. (F.25)

Let µ be a positive, symmetric, bilinear map µ : S × S −→ R and let us

demand that

1

2
|Ω (ϕ1, ϕ2) | ≤ [µ (ϕ1, ϕ1)]

1/2[µ (ϕ2, ϕ2)]
1/2, (F.26)

for all ϕ1, ϕ2 ∈ S. There is a theorem [55] that states: for any real vector

space S on which are defined both a bilinear symplectic form, Ω, and a bilinear

positive symmetric form, µ, satisfying (F.26), one can always find a complex

Hilbert space H together with a real-linear map K : S −→ H such that

(i) the complexified range of K, (i.e., KS + iKS) is dense in H,

(ii) µ (ϕ1, ϕ2) = Re〈Kϕ1,Kϕ2〉H ∀ ϕ1, ϕ2 ∈ S,

(iii) Ω (ϕ1, ϕ2) = 2Im〈Kϕ1,Kϕ2〉H ∀ ϕ1, ϕ2 ∈ S.

Moreover, the pair (K,H) will be uniquely determined up to a unitary

transformation.

Hence it is possible to construct a Hilbert space using the space of solu-

tions. Now we can proceed to define the anihilation operator, a, and creation

operator, a†, on the Fock space F(H). We define the operator associated with

Ω(ϕ, ·) by

Ω̂(ϕ, ·) = ia
(Kϕ

)− ia† (Kϕ) . (F.27)

With the Fock space F (H) we could try to associate particles, however

there is an ambiguity in the particle concept associated in this way since

the product µ is arbitrary up to (F.26). Then there is an ambiguity in the

particle concept in a curved spacetime, at least with this association through
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the Fock space construction, but probably it could be possible to find another

construct which allows a well defined particle concept in a curved spacetime.

It seems that, as far as we know, in the present status of the theory there is

not such construct.

The operator (F.27) is in the, let us say, Schrödinger representation. We

can introduce the Heisenberg operator through the evolution of the solution

ϕ:

Ω̂H(ϕ, ·) = ia(Kϕt)− ia† (Kϕt) , (F.28)

where ϕt is the solution whose initial data at time t is the same as the initial

data of ϕ at t = 0. Using the advanced, EA, and retarded, ER, fundamental

solutions of the operator (F.11) we can write (F.28) as

ϕ̂(f) := Ω̂(Ef, ·) = ia(K(Ef))− ia† (K(Ef)) , (F.29)

where E := EA − ER is a map from the C∞
0 (M) to S. This operator is the

Heisenberg operator smeared over all spacetime with the function f . This

operator can be obtained from the corresponding operator in the heuristic

approach integrating the latter over all spacetime with the weight function

f .

Even though there is an ambiguity in the particle concept in a curved

spacetime, there are cases when the particle concept has an unambiguous

meaning. These are the static and the stationary spacetime. The Minkowski

spacetime is the simplest static type, where as is well known, and every

day verified, the particle concept is well defined. Another (curved) static

spacetime could be one in which the shift vector Nµ is zero (see (F.14)) and

hence we have an hypersurface orthogonal timelike killing vector. In such

a spacetime it is always possible to construct an unambiguous Fock space

and associate with each state of the field particles with determined energy

and momentum. In the stationary case we no longer have an hypersurface

orthogonal timelike Killing vector but just a globally timelike Killing vector10,

10The rigorous mathematical analysis for a stationary spacetime has been given in [6]
and [52].
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Kµ. However in this case it is also always possible to give a particle meaning.

In this case the mode decomposition of the field is given with respect to the

time coordinate chosen along the integral curves of Kµ. In this case we have11

LKµui = −iωui, (F.30)

and

LKµu∗i = iωu∗i , (F.31)

where LKµ denote the Lie derivative, {ui, u
∗
i } is a complete set of solutions12

and ω > 0; the vacuum state, |0〉, is defined by

a|0〉 = 0. (F.32)

Some comments on the Energy-momentum tensor

A fundamental element in the theory we are dealing with is the energy-

momentum tensor T µν . Its importance is clear from a physical point of view.

It contains the information about energy and momentum of the field. If we

want to treat interacting fields then the currents formed with this tensor take

a relevant role in the formalism, besides it is a fundamental element in the

study of the back reaction problem through the semiclassical Einstein field

equations

Gµν = 〈Tµν〉, (F.33)

where 〈Tµν〉 means the expectation value of the energy-momentum tensor

operator with respect to the state 〉. The energy-momentum tensor is defined

11See, for example, [27].
12In this case the field can be written as ϕ =

∑
i[aiui+a†iu

∗
i ]. This expansion is identical

to the expansion of the displacement function of a string in classical mechanics where the
corresponding modes satisfy the harmonic oscillator equation, and hence the continuous
system can be thought as an infinite collection of decoupled harmonic oscillators. In the
case we are dealing with we can give the same meaning to this expansion. The modes ui

are called positive modes and u∗j negative modes.
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by

T µν =
2

[−g]
1
2

δS

δgµν
, (F.34)

the factor (−g)−
1
2 is introduced to give a tensor rather than a tensor density13.

For the minimally coupled massless scalar field it is given by

Tµν = ϕ;µϕ;ν − 1

2
gµνg

ρσϕ;ρϕ;σ. (F.35)

In order to calculate the expectation value of this tensor we can just make it

an operator and make the usual sandwich procedure, however, for example,

the expectation with respect to the vacuum state is given by14

〈0|Tµν |0〉 =
∑

k

Tµν [uk, u
∗
k], (F.36)

which diverges. In flat Minkowski spacetime this divergence corresponds

to the sum of the zero-point energies of the infinite collection of harmonic

oscillators which form the field. Let us see another particular case of this di-

vergence. Let us take as the spacetime a cylinder, which is locally isomorphic

to the two dimensional Minkowski spacetime but topologically different. In

this spacetime the expectation value of the energy density is

〈0|Ttt|0〉 = (2π/L2)
∞∑

n=0

n (F.37)

where L is the period in the compactified spacial dimension of the cylinder.

This expression clearly diverges. Then it is necessary to find a procedure

which allows us to obtain a finite energy density. In this case a heuristic

careful subtraction of the infinite energy of the Minkowski is enough to cure

this disease15, however in a curved spacetime this is not enough and some

regularization and renormalization techniques must be used16. It turns out

that the expression (F.33) can not be given meaning for all states, but just

13[13], p. 87.
14Tµν [ϕ,ϕ] denotes the bilinear expression (F.35).
15For a conceptual and illuminating discussion of this example see [53].
16See, for example, [13] for an introduction to these techniques.
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for some, say, the physical ones. These states are the Hadamard states [55],

[85].

Basic elements in the Algebraic Approach to QFTCS

We have seen that the specification of the map µ allows the construction

of a Hilbert space on which the operators act. It turns out that in a general

globally hyperbolic spacetime for different µ’s the resulting quantum field

structures are not unitary equivalents and then we have a problem: what is

the correct one? It is worth mentioning that in a system with finite degrees of

freedom the Stone-von Neumann theorem saves us from this problem, how-

ever this theorem does not hold in the case we are considering. It could seem

that we can not develop further QFTCS consistently. Fortunately it is not

so, and there is a formalism which allows us to circumvent this problem and

formulate QFTCS in an unambiguous mathematical setting. This formalism

is based on the algebraic structure generated by the field operators,17 and we

shall refer to it as Algebraic Approach to Quantum Field Theory in Curved

Spacetime (AAQFTCS).

Let us see the basic elements of this algebraic approach. Let us consider

the fields (F.27) and the Hilbert space where they act. We define the unitary

operators18

Ŵ (ϕ) = exp[iΩ̂(ϕ, ·)], (F.38)

which satisfy

Ŵ (ϕ1)Ŵ (ϕ2) = exp[−iΩ(ϕ1, ϕ2)/2]Ŵ (ϕ1, ϕ2), (F.39)

and

Ŵ †(ϕ) = Ŵ (−ϕ). (F.40)

These relations are known as Weyl’s relations and a system (S, Ω,W ) is

known as Weyl system [17]. To the algebra generated by the Weyl operators

17This formalism can be thought as a generalization of the Segal’s approach to Quantum
Mechanics, see [74].

18It is also possible to work with the symplectically smeared field operator Ω(ϕ̂, ϕ) [55].
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can be given the structure of a C∗-algebra19. In the formulation of the

AAQFTCS this C∗-algebra (Weyl algebra) is taken as the minimal algebra of

observables A. We say minimal algebra because there are other observables

which do not belong to it, for instance the energy-momentum tensor. There

are proposals to incorporate this tensor as part of the algebra20, however it

seems that most authors do not consider it as an element ofA. A fundamental

property of the Weyl algebra is that even though two inner products µ1 and

µ2 may give two inequivalent quantum field theories, the algebras A1 and A2

which arise are isomorphic.

The states are defined as positive linear functionals on A, ω : A −→ C
which satisfy21

ω(I) = 1. (F.41)

Positive means

ω(A∗A) ≥ 0 ∀ A ∈ A. (F.42)

The two point function is defined by

λ(ϕ1, ϕ2) = − ∂2

∂s∂t
{ω[W (sϕ1 + tϕ2)]e

−istσ(ϕ1,ϕ2)/2}s,t=0. (F.43)

The function in curled brackets is called the generating functional22. The

other n-point functions are defined similarly.

There is a subclass of states known as quasifree states. These are specified

as

ωµ[W (ϕ)] = exp[−µ(ϕ, ϕ)/2]. (F.44)

For these states the two point function is given by23

λ(ϕ1, ϕ2) = µ(ϕ1, ϕ2) +
1

2
iσ(ϕ1, ϕ1). (F.45)

19See [38] for a definition of a C∗-algebra.
20See [86], p.12.
21A more detailed discussion of this issue can be seen in [41].
22See [17]. A complementary discussion of the generating functional concept can be seen

in [43].
23For more details see [55].

150



It is interesting that the inner product µ is just the real part of the two point

function.

The relation between the state in the algebraic approach and the familiar

notion of a state as an element in a Hilbert space can be seen as follows:

every vector or density matrix in H can be realized as an algebraic state

when the expectation value of an operator is taken, which corresponds to the

representation of an element of the algebra A. Conversely, for each algebraic

state ω we can obtain by the GNS construction a representation π of A on a

Hilbert space H with a cyclic vector Ξ such that

ω[A] = 〈Ξ, π(A)Ξ〉 ∀A ∈ A. (F.46)

A vector Ξ is cyclic if π(A)Ξ is dense in H [55]24.

Any quasifree state can be represented as a vacuum state

aΞF = 0, (F.47)

where ΞF is the vacuum state in the Fock space constructed with the inner

product µ. In this case an element of the Weyl algebra is represented as

πµ[W (ϕ)] = exp{−[a†(Kϕ)− a(Kϕ)]}, (F.48)

where the bar means the closure of the operator. Then for all A ∈ A we have

ωµ(A) = 〈ΞF , πµ(A)ΞF〉. (F.49)

The last expression shows that to any quasifree state corresponds a vacuum

state. It is worth mentioning that when the GNS representation is irreducible

then ωµ is a pure state [76]25. A state ω is said to be mixed if it can be

expressed in the form

ω = c1ω1 + c2ω2 (F.50)

24For the detail of this construction see, for example, [76].
25An irreducible representation, by definition, just leaves invariant the hole space and

the identity element.
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where c1, c2 > 0, otherwise the state is said to be pure.

The dynamics in the algebraic setting can be introduced as follows26. As

we have seen the symplectic product is conserved. This is equivalent to the

existence of a symplectic map, T : S −→ S which satisfies

Ω (Tϕ1, Tϕ2) = Ω (ϕ1, ϕ2) . (F.51)

This symplectic map induces a ∗-automorphism αT on the Weyl algebra such

that [17]

αT (W (ϕ)) = W (Tϕ) . (F.52)

This ∗-automorphism sometimes is called Bogoliubov transformation. Ex-

plicitly, the last equation is

W (Tϕ) = V (t)W (ϕ)V (−t), (F.53)

with

V (t)Ξ = Ξ. (F.54)

The unitary group V (t) is generated by the Hamiltonian of the system [52].

The equation (F.53) gives the evolution of W in the Heisenberg picture.

In addition to the symplectic map arising from the equation of motion

there is a symplectic map which arises from the one-parameter group of

isometries generated by a Killing vector. Let us denote this map as τt :

M −→ M with t ∈ R. This group of isometries acts on the space of solutions

S through the map Υ(t) : S −→ S as follows

(Υ(t)ϕ)(x) = ϕ(τt(x)). (F.55)

The symplectic form is invariant under this action and because of the group

structure of Υ(t), which is inherited from the group structure of τt, then Υ(t)

is a one-parameter group of symplectic transformations. Hence as before we

26A careful discussion of the introduction of the dynamics in the algebra can be seen in
[43].
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have an automorphism on the algebra A:

α(t)[W (ϕ)] = W (Υ(t)ϕ). (F.56)

Sometimes one is interested in states which satisfy

ω[α(t)A] = ω(A) ∀A ∈ A. (F.57)

For example, for a quasifree state ωµ this will be satisfied if and only if27

µ(Υ(t)ϕ1, Υ(t)ϕ2) = µ(ϕ1, ϕ2) ∀t ∈ R, ∀ϕ1, ϕ2 ∈ S. (F.58)

In addition to the algebraic setting sketched above there is a slightly

different approach28 where to each bounded open region B of the spacetime

it is associated an algebra A(B), generated by the operators defined on B.

These algebras are called local algebras and must satisfy certain axioms [?].

Perhaps between these axioms the two more outstanding for their apparent

connection with the causality principle29 are: if B′ ⊂ B then A′ ⊂ A; and

if B′ and B are spacelike separated, then A′ and A commute.30 In this

approach no reference is made at the outset to the Hilbert space concept and

operators defined on it, however this construct can be recovered by the GNS

construction [56].

Some comments on the quantization of the Dirac field

In order to quantize the Dirac field on a globally hyperbolic spacetime

we could follow similar lines to the quantization of the scalar field, although

there are some physical and mathematical differences which must be taken

into account. The principal physical differences are the additional degree of

27For more details see [43] and [55].
28The basic reference for this approach is [28]. This algebraic approach seems to be a

generalization to curved manifolds of the formalism introduced by Haag and Kastler [?]
for Minkowski spacetime.

29We must remember that one of the cornerstones of modern physics is the locality
principle which somehow is incorporated by the field concept.

30See, for example, [56].
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freedom of the system: the spin and that fermion fields anti-commute. The

spin gives a richer geometric structure and makes the mathematics somewhat

harder. Let us consider some relevant mathematical elements which arise in

a fermionic system31.

The basic elements in a fermionic system are: a real Hilbert space, H,

with an inner product, V , together with an orthogonal transformation, T ,

which leaves invariant this product, and a C∗-algebra A over H. In the

quantization of the Dirac field in an electromagnetic field, H is constructed

with solutions to the Dirac equation, hence in the case we are discussing we

could do the same, since we know the initial value problem is well-posed for

the Dirac equation in the spacetime we are considering [29]. The orthogonal

transformation can be constructed using that the Hamiltonian is self-adjoint

and the Stone theorem, as in the case of the electromagnetic field. This

transformation can be used to introduce the dynamics in the algebra, as in

the bosonic case. In the construction of the vacuum additional care must be

taken since the Hamiltonian is not positive. It is worth noting that in this

case we do not need to use the Weyl algebra since the operators (generators)

are bounded. As an alternative procedure we can use the formalism given

by Dimock [29] in terms of local algebras.

31For a further discussion see [16] and [17].
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Springer, 1997.

[35] , V. P. Frolov and I. D. Novikov, Black Hole Physics: Basic Concepts

and New Developments, Kluwer Academic Publishers, 1998.

[36] S. A. Fulling, Aspects of Quantum Field Theory in Curved Space-Time,

Cambridge, 1989.

[37] S. A. Fulling and S. N. M. Ruijsenaars, Temperature, periodicity and

horizons, Phys. Rep., 152, 135 (1987).

[38] R. Geroch, Mathematical Physics, Chicago, Chicago, 1985.

[39] P. A. Ginsparg, Applied Conformal Field Theory, Fields, Strings and

Critical Phenomena, (Les Houches, Session XLIX, 1988) ed. by E. Brézin
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