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Abstract
The present thesis is a contribution to a project that is carried out by Michael Rathjen

and Andreas Weiermann to give a general method to study the proof-complexity of Σ0
1-

sentences. This general method uses the generalised ordinal-analysis that was given by

Buchholz, Rüede and Strahm in [5] and [44] as well as the generalised characterisation

of provable-recursive functions of PA + TI(≺ α) that was given by Weiermann in [60].

The present thesis links these two methods by giving an explicit elementary bound for the

proof-complexity increment that occurs after the transition from the theory ÎD
i

ω + TI(≺

α), which was used by Rüede and Strahm, to the theory PA + TI(≺ α), which was

analysed by Weiermann.
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Introduction

The main purpose of the present thesis is to provide a technical lemma for a research

project of Michael Rathjen and Andreas Weiermann that was outlined in Michael

Rathjen’s talk at the Bertinoro International Center for Informatics in 2011. Rathjen’s

and Weiermann’s work on Kruskal’s theorem in [41] foreshadows a general method to

bound the complexity of deductions of Σ0
1-sentences as well as a general method to prove

Π0
2-conservativity for arithmetical theories. Regarding the complexity of deductions of

Σ0
1-sentences, the idea is rather simple:

If the witnesses of a Σ0
1-sentence are very big, then the complexity of its

deduction must lie above a certain limit.

The basic methods to make this precise are well known. In the case of a Σ0
1-sentence σ

that is deducible in a theory T with a deduction of complexity n, in symbols

T `n σ,

one tries to give an ordinal-analysis of T . Under the assumption that this ordinal-analysis

gives the ordinal α one can usually prove that T is Π0
2-conservative over PA+ TI(≺ α):

T ≡Π0
2
PA+ TI(≺ α).

Since the theories PA + TI(≺ α) are well-studied, one can use classical subrecursion

theory to bound the witnesses of σ by a Hardy function Hβn(0), where βn is smaller than

α and depends on the complexity of the deduction of σ in T . Hence, if the witnesses of σ

are bigger than Hβn(0), then the complexity of any deduction of σ must be bigger than n.

Generalising this argument faces two issues even in the case when a natural ordinal

notation system is used in the ordinal-analysis. First, one has to find a recipe to prove

that T ≡Π0
2
PA + TI(≺ α) from an ordinal-analysis that is general enough to draw

general conclusions from it. Here we face the problems that one has to unify the methods
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of formalising an ordinal-analysis and that there are ordinal-analyses in the literature that

include methods that hinder proving conservativity in the standard ways, e.g. the Ω-rule.

Second, one has to find a general approach in subrecursion theory to bound the witnesses

of a deducible Σ0
1-sentence. Here we face the problem that the assignment of fundamental

sequences to an ordinal notation system must be generalised in order to define a version

of the Hardy hierarchy that is independent enough from the particular ordinal notation

system, which was used in the ordinal-analysis, to give meaningful bounds.

Both of these issues have been already resolved. Buchholz discovered in [5] that an

intuitionistic version of the theory of inductive definitions is Π0
2-conservative over PA

and can therefore be used to replace PA in PA + TI(≺ α). Since all infinite deduction

systems that are used in ordinal-analysis are inductively defined, this solves the first

problem for a large number of ordinal-analyses that are present in the literature. In [44]

Rüede and Strahm strengthened Buchholz’s result by showing that Π0
2-conservativity over

PA is preserved, when certain inductive definitions are iterated; hence also the missing

ordinal-analyses, those which include the Ω-rule, are covered as well. The second issue

was solved by Weiermann in [60] by drawing on Buchholz’s, Cichon’s and Weiermann’s

work, which is presented in [7]. Using Cichon’s notion of a norm that can be defined on

all ordinal notation systems which are present in the literature, in [60] Weiermann was

able to generalise the Hardy functions in a way that supports the previously given aims.

However it remained open how these two solutions work together; in order to use

Weiermann’s approach of subrecursion theory in the case of the Π0
2-conservativity that

was proved for Rüede’s and Strahm’s theories of inductive definitions to study the

complexity of deductions of Σ0
1-sentences, one has to ensure that the function Hβn , that

is found by Weiermann’s approach when working directly with PA + TI(≺ α), is not

too far away from Hβm , that is found by Weiermann’s approach when working indirectly

via theories of inductive definitions. In other words: one has to ensure that the proof-

theoretical reduction that Rüede and Strahm used to prove their Π0
2-conservativity result

gives a rather weak speed-up for the theories of inductive definitions over PA+TI(≺ α).
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This is done in the present thesis.

The plan of the thesis is as follows. Chapter 1 has no connection to the rest of the

thesis. It is a philosophical paper that I tried to publish during my PhD. I developed a

method for philosopy inspired by proof theory by following a Carnapian line, in contrast

to American pragmatism. I hoped that it might be a philosophically fruitful alternative

to the contemporary idealists and pragmatists in modern inferentialism. I tried this by

solving a central problem in proof-theoretical semantic by working out the differences

between the requirement for harmony and that for compositionality, and focusing on the

latter without ignoring the former.1 I hoped that a purely syntax-based semantic, that

is also an alternative to the commonly used holistic syntax-based semantic, would show

the community of philosophy of logic that there is a fruitful way of doing philosophy

syntactically without relying on common human behaviour, because common human

behaviour seems to be a bad starting point, when a highly academic field like logic is the

subject of philosophical theorising. For a certain amount of “educational brain-washing”

has to take place before people consider studying logic in a certain manner, which usually

differs from ordinary human behaviour.2

Chapter 2 starts with most of the bookkeeping that has to be done; hence most of the

standard notions that are used in metamathematics are defined. Also the most common

notions of theory reduction are presented and compared. Primarily the notion of proof-

theoretical reduction is introduced and it is emphasised that most of the techniques that

are used in proof-theory, including some other notions of theory reduction, fall under

this notion. Since there was a dispute between Niebergall [35] and Feferman [18] about

such matters, we use this dispute as a narrative for our presentation of proof-theoretical

reduction.

Chapter 3 introduces the technique of ordinal-analysis and emphasises how it can be

1Luckily, therefore my approach is not targeted by Rumfitt’s critique as formulated in [45].
2I was very pleased that Dutilh Novaes realised this point in her book [14] as well, where she argues for

it on a level of scrutiny that I am not yet able to provide.
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used to prove conservativity results of the form

T ≡Π0
2
PA+ TI(≺ α).

Moreover it introduces fix-point free intuitionistic theories of iterated inductive definitions

and presents Rüede’s and Strahm’s proof-theoretical reduction that proves that these

theories are Π0
2-conservative over PA. The chapter finishes with the proof that this Π0

2-

conservativity is preserved when axioms for transfinite induction are present.

Chapter 4 introduces the Ω-rule and sketches how these theories of iterated inductive

definitions can be used to prove Π0
2-conservativity for theories whose ordinal-analysis

uses the Ω-rule. This is done on a particular case that is also an example for a situation

that is discussed in Chapter 5.

Chapter 5 starts by introducing the notions of deduction complexity and speed-up. It

continues by explaining Weiermann’s general approach from subrecursion theory and

applies this approach to the deduction complexity of Σ0
1-sentences.

In Chapter 6 the actual work is done. We analyse the relevant proofs from Chapter 2 and

Chapter 3, which define a proof-theoretical reduction, to how the operations that are in

use in these proofs increase the complexity of certain deductions.

In Appendix A I extend my Master Thesis, which I wrote at the University of Vienna.

Here I show that Gentzen’s method to prove the consistency of PA as presented in [57]

is elementary in one use of an ε0-descent recursion.

Appendix B fails to solve a problem in that I was interested for quite a while: to give

an ordinal-analysis of a weak system like EA. The proofs are correct but the results are

not new. The issue here was that I believed that transfinite induction for ∆0
0-formulas and

elementary-recursive well-foundedness have the same Π0
2-consequences over EA. For

trivial reasons this is not the case, as Arnold Beckmann told me after I submitted my

Thesis for examination. However, Appendix B presents my thoughts about this topic.

Appendix C is just a list of the deduction systems that are used throughout the thesis.
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Chapter 1

Justifying the use of Multi-Conclusion

Sequents

1.1 Introduction

Proof-theoretic semantics goes back to Dag Prawitz’s efforts to clarify Gerhard Gentzen’s

comments on the calculi that were developed from the latter and got its current form by

Dummett’s book The Logical Basis of Metaphysics published in 1991 (see [47]).1 The

original aim of proof-theoretic semantics was to give a theory of meaning for a logical

vocabulary through introduction and elimination rules that were taken from the calculus

of natural deduction, which was viewed as a model of ordinary language use. The least

metaphysically loaded semantics, in these terms, was aimed at serving as a method of

justification for logical inferences to form a logic which does not presuppose the solutions

of great philosophical problems to which it is applied to (see [13]). Dummett’s own

explanatory example is the dispute about quantum mechanical realism. The distributive

law

[ϕ ∧ (ψ1 ∨ ψ2)]↔ [(ϕ ∧ ψ1) ∨ (ϕ ∧ ψ2)]

1The name “proof-theoretic semantics” was introduced by Schroeder-Heister much later.
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is banned from quantum logic, but is used in validity proofs using truth tables to justify

inferences of classical logic. If a quantum mechanical realist refuses to accept the

distributive law, a validity proof using truth tables is of no use for convincing her. For

she could object that, the use of two-valued semantics already presupposes a so-and-so-

being of the world which is in contradiction to the quantum world. But according to

Dummett, if one can justify the distributive law in terms of ordinary language use, then

she has to change her opinion in one way or another.

One can find in the literature on proof-theoretic semantics the view that the character of

intuitionistic logic is related to anti-realism while classical logic shows its own connection

to realism. This is not meant as a statistically significant correlation between an anti-

realistic position and the preference for intuitinistic logic in philosophers’ stances, but

as a inherent claim about those logics. In the context of proof-theoretic semantics the

correlation is based on the possibility of giving intuitionistic logic a proof-theoretic

semantics while for classical logic such an account fails.

“According to Dummett, the logical position of intuitionism corresponds to

the philosophical position of anti-realism. [...] Following Dummett, major

parts of proof-theoretic semantics are associated with anti-realism.” [47]

To count a proof-theoretic semantics as anti-realistic is based on its preference for

syntactically given deduction rules, which are inspired by ordinary language use, to truth

assignments and satisfiability by a model.

Unfortunately the literature is very imprecise in this respect. The proof-theoretic

semanticists do not argue that those two diametrically opposed metaphysical theories

correspond to the logics per se. But they do so, if one favours a compositional meaning

theory, as a proof-theoretical semantics is as well. In Dummett’s own account a logic is

viewed as a set of schematically specified inferences without a presupposed semantics,

since he tries to justify certain inferences by ordinary language use (through stipulated

introduction and elimination rules) without relying on the pictures that are based in a
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metaphysics and usually govern a semantics. Subsequently Dummett diverts the possible

meaning theories for these logics into compositional and holistic ones. In the latter a

justification of a particular inference is not possible, since the meaning of the logical

vocabulary is partly given through the possibility of this inference and not vice versa.

Therefore a compositional character of proof-theoretic semantics is demanded. But, as

Dummett explains in [13, p. 225], if we adopt a holistic meaning theory, an anti-realistic

position that essentially includes classical logic is arguable. However one might grant

that, since the context in which proof-theoretic semanticists argue is justification related

and a holistic position lacks the possibility to justify anyway, such things do not have to

be announced explicitly.

In this paper it will be argued that a compositional meaning theory can be given

through a proof-theoretic semantics which is able to justify all inferences of classical

propositional logic and does not diverge more from ordinary language use than that

given by Dummett himself. By extending an account given by Franz von Kutschera in

1968 using sequents with multiple conclusions, a proof-theoretic semantics for classical

logic will be constructed. An analysis of the general use of free variables in proof-

theoretic approaches to first-order logic will expose that the arguments for a refusal of

using multiple conclusions are disproportionate. For it will be shown that the use of

free variables is as problematic for Dummett’s account as that of sequents with multiple

conclusions. This allows us to extend von Kutschera’s account in such a way that

it justifies classical propositional logic, because a general refusal of free variables is

impossible, when the used inference rules have finitely many premisses.

The argument presented above is essentially different from the justification of sequents

with multiple conclusion which is given by Greg Restall in [42]. Restall gave a pragmatic

interpretation of sequents which is a possible (and maybe better) alternative to Dummett’s,

whereas we are not concerned here with the actual way sequents can be embedded into

or interpreted through a framework of pragmatism. On the contrary we shall not make

an issue of interpretations that might be given by pragmatists. If some connections
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are mentioned, then they are intended to help a hypothetical pragmatist, who reads the

present text, to see how the argument would work after an embedding into his wider view.

Also pragmatic views will only enter the argumentation through the so far established

techniques of proof-theoretic semantics. But since those techniques are in the end

just reasonable formal considerations that are heavily used in proof theory anyway or

merely loosely connected with the particular pragmatic stance without referring to its

conceptual specializations, these techniques can just be seen as syntactic considerations

with an unspecific intuition supporting them.2 The arguments presented here are therefore

independent of the pragmatic stance which is adopted, in particular because of their

technical nature. Moreover a syntactical orientated philosopher may not have to adopt

a pragmatic view at all to follow the argumentation which is presented here.

The main consequence of the consideration given here is that any logic can be seen as

metaphysically neutral, or may be considered as free from it, even for those who demand

a compositional semantics.

1.2 A Gentzen-semantics

The sequent calculi developed by Gerhard Gentzen use sequents as the smallest operative

unit. This separates them from all the other calculi commonly in use, since their

operations are defined over formulas. A sequent is a syntactical object of the form

(ϕ1, ..., ϕn ⇒ ψ), where ϕ1, ...ϕn, ψ are formulas of a presupposed language L while

⇒ is not a primitive symbol of L, but a symbol particularly attached to the calculus.

There are many ways of interpreting a sequent. Here we restrict our self to a reading

which interprets (ϕ1, ..., ϕn ⇒ ψ) as an argument with ϕ1, ..., ϕn as premises and the

conclusion ψ. A sequent calculus can therefore be seen as a meta calculus of another

2For instance, the assertion that in general only finitely many terms can be put into a justification of a

general statement is not in need of a fancy analysis of humans’ use of substantives. Also such intuitions

have been guiding proof-theory from the beginning on without being justified by a theory.
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calculus K in the sense that, if K deduces from the formulas ϕ1, ..., ϕn the formula ψ,

notated as ϕ1, ..., ϕn `K ψ, then the associated sequent calculus deduces the sequent

(ϕ1, ..., ϕn ⇒ ψ). Therefore a sequent can be seen as the syntactic counterpart of the

logical entailment relation ϕ1, ..., ϕn |= ψ that was introduced by Tarski via the notion of

satisfiability in models. This makes a proof-theoretic semantics formulated via sequents

a possible alternative to Tarski’s semantics. Since in this part of the paper we only aim to

give a semantics for propositional logic, we restrict our self to a language of propositional

logic. This collapses Tarski’s notion to assignments of truth values to formulas.

Franz von Kutschera described in his paper from 1968 [30] a semantics, which can

be seen as a proof-theoretic semantics (see [47]). This semantics, which was called

Gentzen-semantics by von Kutschera, suits our purposes of giving a proof-theoretic

semantics for classical logic very well. For it is already formulated via sequents, which

avoids the complications that the common formulations via natural deduction offer to

classical logic.3 Before this semantics can be introduced a language L0 has to be defined,

whose primitive symbols include the propositional constants A0, A1, A2, A3, ... and

finitely many connectives Fm0
0 , ..., Fmn

n , where mi denotes the arity of the connective.

L0 is inductively defined so that any Ai is a formula and, if ϕ1, ..., ϕmi have been

realised as formulas, every Fmi
i (ϕ1, ..., ϕmi) is a formula. The meaning of a connective

is subsequently stipulated through the introduction rules into the left and right side of

the sequent. To make sense of these stipulations one has to clarify how to treat sequents

independently from the connectives. Therefore the following stipulations have to be

made:

3This problems occur through particularities of the formulations for negation rules in natural deduction.
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Initial Sequents: ϕ⇒ ϕ

Weakening Left:
∆⇒ ϕ

∆, ψ ⇒ ϕ

Weakening Right:
∆⇒

∆⇒ ϕ

Cut:
∆⇒ ψ ∆, ψ ⇒ ϕ

∆⇒ ϕ

Exchange:
Γ, ψ, ϕ,∆⇒ σ

Γ, ϕ, ψ,∆⇒ σ

Contraction:
Γ, ϕ, ϕ,⇒ ψ

Γ, ϕ,⇒ ψ

Here ϕ, ψ, σ are formulas of L0 and ∆,Γ are sequences of such formulas. A

sequent of the form (ϕ1, ..., ϕn ⇒) is, in accordance with Hilbert’s generalisation of a

contradictory system as a trivial one and the presence of weakening right, interpreted as

the inconsistency of {ϕ1, ..., ϕn}. Using this as a basis, the meaning of a connective can

be stipulated by the introduction rules. But since we are aiming at a compositional theory

of meaning, some restrictions have to be demanded.

First, one has to demand that there is only one occurrence of a single connective and

no other connective occurs in the schema by which the rule is stipulated. Moreover

every explicitly occurring formula in the schema must be a subformula of the formula in

which the connective occurs. These restrictions ensure that the meanings of connectives

are mutually independent of each other and that the semantics is compositional, i.e. the

meaning of a formula is determined by the meaning of its subformulas and the meaning of

the connectives it is formed of. As it is shown in [30], the initial sequents may therefore

only be formed by propositional constants, and the introduction rules for a F n on the right
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side of a sequent must be of the following form:

(∆,∆11 ⇒ Ω11), ..., (∆,∆1St ⇒ Ω1St)

∆⇒ F n(ϕ1, ..., ϕn)

....
(∆,∆t1 ⇒ Ωt1), ..., (∆,∆tSt ⇒ ΩtSt)

∆⇒ F n(ϕ1, ..., ϕn) .

Here the ∆ij and Ωij include only subformulas of ϕ1, ..., ϕn, with the additional restriction

that Ωij does not enumerate more than one formula.

As a second requirement, von Kutschera demands, by presence of the cut-rule, that the

introduction rules on the left side for F n have to have a form which ensures conservativity

of the system over its fragment which does not include any rule for F n, i.e. every provable

sequent which does not include F n must be provable without using an F n introduction

rule. As shown in [30], this requires the following form of the introduction rules on the

left side:

(∆,∆11 ⇒ Ω), ..., (∆,∆1,S1 ⇒ Ω)

∆, F (ϕ1, ..., ϕn)⇒ Ω....
(∆,∆t1 ⇒ Ω), ..., (∆,∆t,St ⇒ Ω)

∆, F (ϕ1, ..., ϕn)⇒ Ω

As before ∆ij and Ω only include subformulas of ϕ1, ..., ϕn and Ω does not enumerate

more than one formula.

Clearly the second requirement is founded in the required compositional character of

the semantics, since it separates the meaning of the connectives from each other. In a

more modern reading however this requirement ensures an additional one. Since the

introduction rules on the left side correlate with the elimination rules in natural deduction

by the presence of the cut-rule, the second requirement guarantees intrinsic and total

harmony in the sense of Dummett (see [13]). According to Dummett’s harmony criterion
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the verificational and pragmatic aspects of a theory of meaning must be in harmony, i.e.

depending on which is favoured the aspects of the other must be justified in terms of it.

Thereby are the verificational aspects of a theory of meaning which determine when a

sentence can be asserted as true while the pragmatic aspects settle what conclusions can

be drawn from a given sentence. In the case of a theory of meaning that is given through

a proof-theoretic semantics which is built via natural deduction, Dummett assigns the

introduction rules to the verificational and the elimination rules to the pragmatic aspects

of this meaning theory. Since here the interpretation of a sequent as a representation of

an argument is chosen, the harmony criterion becomes the harmony between introduction

rule on the right side to introduction rules on the left side. For, in contrast to Dummett,

a sequent calculus is not understood through a natural deduction calculus (see [13, p.

185, p. 248]) here, but as a metacalculus for any other kind of calculus. Therefore the

pragmatic aspect of a connective in a logic becomes the provability of a sequent where

the connective in question appears on the left side. Hence the part an elimination rule

plays in a proof-theoretic semantics that is formulated via natural deduction correlates to

those of an introduction rule on the left side in a formulation via sequents. Consequently

elimination rules for a sequent style formulation of a proof-theoretic semantics do not

carry any additional meaning. Here intrinsic harmony correlates therefore with the

possibility of justifying the introduction rules on the left side by the previously stipulated

introduction rules on the right side by presence of the cut-rule or vice-versa.

The notion of total harmony is satisfied if the calculus formed by the stipulated rules is

conservative over its parts where exactly one connective is removed (see [13, p. 250]).

As von Kutschera proved in [30], every connective which can be formulated by rules

satisfying the two requirements of the Gentzen-semantics are already explicitly definable

by the connectives ¬,∨,∧ and→ of intuitionistic logic.4 This is founded on the fact that

4The proof uses generalised sequents where the symbol⇒ appears finitely nested, e.g. Γ⇒ (∆⇒ Λ),

but since the proof is not of any interest for our considerations here we will not have a closer look into it.
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the usual introduction rules for ¬,∨,∧ and → are generating intuitionistic logic when

they are restricted to sequents with only one formula on their right side (see [57]), and

satisfy the pre-given Gentzen-semantics, as one can easily see.5

Introduction Right Introduction Left

ϕ,∆⇒
∆⇒ ¬ϕ

∆⇒ ϕ
¬ϕ,∆⇒

∆⇒ ϕ ∆⇒ ψ

∆⇒ ϕ ∧ ψ
ϕ,∆⇒ Ω

ϕ ∧ ψ,∆⇒ Ω

ψ,∆⇒ Ω

ϕ ∧ ψ,∆⇒ Ω

∆⇒ ϕ

∆⇒ ϕ ∨ ψ
ϕ,∆⇒ Ω ψ,∆⇒ Ω

ϕ ∨ ψ,∆⇒ Ω

∆⇒ ψ

∆⇒ ϕ ∨ ψ

ϕ,∆⇒ ψ

∆⇒ ϕ→ ψ

∆⇒ ϕ ψ,∆⇒ Ω

ϕ→ ψ,∆⇒ Ω

Therefore von Kutschera’s result excludes such a semantics for classical logic. Von

Kutschera’s result is however not limited to only giving a division of intuitionistic and

classical logic (this would have been clear according to the conservativity criterion).6

Its importance is exhibited by its characterisation of intuitionistic logic as the maximal

5As explained before, we view intuitionistic logic as the set of all intuitionistically valid formulas.
6If one is choosing the common natural deduction calculus that is equivalent to the previously given one

in sequent style, then extending this calculus by classical negation new ¬-free formulas can be proved. This

is explained in the section about conservativity below.
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logic satisfying the very natural requirements given above. This is of particular interest,

since it characterises intuitionistic logic purely in terms of logic (as a discipline) without

referring to a metaphysical notion of constructivism or to algebraic structures (such as

tree-like ordered models).

If a similar semantics for classical logic, that keeps some compositional character,

is aimed at, then, beside dropping the conservativity claim, the requirements on the

schematic form of the introduction rules have to be changed. The first possibility is to

drop the demand that F n must occur exactly once in the schematic representation of the

rule. This allows us to introduce rules of the form

∆⇒ ¬¬ϕ
∆⇒ ϕ

∆, ϕ⇒ ψ

∆,¬¬ϕ⇒ ψ.

By the Gödel-Gentzen-translation of intuitionistic into classical logic (see [58]) and the

classically valid formula

ϕ↔ ¬¬ϕ,

extending the intuitionistic sequent calculus by those rules would yield classical logic.

However, as Dummett notes in [13], such a move gives double negation a separate

meaning from ordinary ¬, which would disturb our efforts to give a compositional

semantics for the usual connectives. Another possibility is to drop the restriction to

sequents having only one formula on the right side, i.e. allowing sequents of the form

(ϕ1, ..., ϕn ⇒ ψ1, ..., ψm), which are called multi-conclusion sequents in the following.

In this case one has to add the rule of weakening right

∆⇒ Γ
∆⇒ Γ, ϕ

to the calculus as well. Using multi-conclusion sequents has the advantage that

conservativity is still assured and we will have a closer look into it in the following.



Chapter 1. Justifying the use of Multi-Conclusion Sequents 15

1.3 Multi-Conclusion Sequents

Arguments against the use of multi-conclusion sequents in the literature of proof-theoretic

semantics are mostly versions or direct citations of Dummett’s argument in [13, p. 187],

which refers to ordinary language use. According to Dummett, the use of sequents

with only one formula on the right side for purposes of semantics is justified, since

one does not have to have an understanding of a logical connective to understand the

sequent.7 As said before, a sequent (ϕ1, ..., ϕn ⇒ ψ) can be viewed as an argument

with the premises ϕ1, ..., ϕn and conclusion ψ. But such an interpretation is not possible

in cases of multi-conclusion sequents like (ϕ1, ..., ϕn ⇒ ψ1, ..., ψn), because there are

no occurrences of arguments drawing more than one conclusion in ordinary language

use. Consequently such sequents must be interpreted through another sequent of the form

(ϕ1, ..., ϕn ⇒ ψ1 ∨ ... ∨ ψn) and therefore presuppose an understanding of ∨. This is

not symmetric to the use of sequents with multiple premises as Dummett explains. In

terms of valid arguments there is indeed no difference in using ϕ1 ∧ ... ∧ ϕn instead of

ϕ1, ..., ϕn, but by contrast with the case of multi-conclusions one does not have to do

this. For assuming many premises is a primitive part of ordinary language use and can

therefore be stipulated without harm.8

However, even when one is mainly interested in a theory of meaning for propositional

connectives, the methods that are used must be somehow extendible to first-order logic,

if the theory of meaning is aimed at being a proper alternative to those given by a model-

theoretic semantics. But after an extension to some kind of quantification, most syntactic

methods have in common that some syntactic entities enter in a close relationship

7Avoiding a circularity here is crucial for Dummett’s aims, since he wants to give a justification for

logical inferences (see [13]).
8Restall avoids being a target of this argument by changing the interpretation of a inference rule. While

Dummett interprets sequents through the warrant to assert the sentence on the right side in [13], Restall

sees a sequent as a state in a dispute where the ϕ1, ..., ϕn are accepted and the ψ1, ..., ψm are rejected by an

opponent.



Chapter 1. Justifying the use of Multi-Conclusion Sequents 16

(according to their usage) with those quantifiers. Consequently formulas including an

occurrence of such an entity without a related occurrence of one of their associated

quantifiers obstruct, at least partly, an interpretation. For instance if one wants to prove in

a finite calculus K the following

ϕ1, ..., ϕn `K ∀xψ(x),

she has to use a rule of the following form.9

Natural Deduction Sequent Calculus

ϕ(y)

∀xϕ(x)

∆⇒ ϕ(y)

∆⇒ ∀xϕ(x)

Here one has to take some restrictions on the occurrences of y into account. In natural

deduction y must not occur in any open assumption and in the case of a sequent calculus

y must not occur in ∆ ⇒ ∀xϕ(x). By following the approach that introduction and

elimination rules stipulate the meaning of the logical vocabulary and presupposing total

interpretability of every entity in use one faces the problem of not being able to interpret

free variables without presupposing an understanding of the ∀-quantifier. For, since

free variables do not occur in ordinary language use, we are prevented from giving an

obvious interpretation. Also on the basis of the rules which are given so far only the

quantifier rules take free variables into account. Consequently, without a fancy theory

of meaning having been presupposed, one has to interpret (ψ1(x), ..., ψn(x) ⇒ ϕ(x))

through the sequent (∀xψ1(x), ...,∀xψn(x) ⇒ ∀xϕ(x))10 or treat the first sequent as

uninterpreted. In the rest of this section we adopt the so far rather naive view of taking

sequents including free variables as essentially lacking an interpretation. The next section

9A calculus is called finite, when all its rules have finitely many premises.
10Such a treatment is common in formal logic, but presupposes an understanding of the ∀-quantifier.
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will include responses to the obvious objections against such a view.

Dummett does not recognise these difficulties, because he reacts to a consequence of the

problem just described by dividing his justification methods for logical inferences into

three kinds. A proof-theoretic justification of the first kind is to prove a logical principle

from other principles that are seen as more fundamental and therefore treated as axioms. A

proof-theoretic semantics is first used in a justification of the second kind. If the focus lies

on the introduction rules of natural deduction, then the formulas in the logical inference

that are to be justified are analysed according to their assumptions. This is exemplified by

a justification of the inference

(ϕ→ ψ1) ∨ (ϕ→ ψ2)

ϕ→ (ψ1 ∨ ψ2) .

By starting with the premise, the meaning of ∨, which is stipulated by the rules

φ1

φ1 ∨ φ2

φ2

φ1 ∨ φ2,

leads us either to the formula (ϕ → ψ1) or (ϕ → ψ2).11 Since the procedure of the

justification is symmetric for the two cases, we continue with (ϕ → ψ1). According to

the rule
[φ1]....
φ2

φ1 → φ2,

which governs the meaning of→, one gets ϕ.

Next the conclusion comes into focus. Since the main connective is →, again we get

ϕ through the meaning stipulated by the same rule. The conclusion needs the same

assumptions as the premises, therefore the inference is justified by the meaning stipulated
11That one can use the rule for the main connective of a formula here is called the fundamental assumption

in proof-theoretic semantics, i.e. that the rule last used was an introduction rule for the main connective of

the formula (see [13]).
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by the introduction rules. In the case of a formulation via sequents this corresponds with

ending up to a sequent of the form ϕ ⇒ ϕ, because in a formulation with sequents an

inference, which must be justified, it can be expressed as the sequent

(ϕ→ ψ1) ∨ (ϕ→ ψ2)⇒ ϕ→ (ψ1 ∨ ψ2).

As Dummett points out (see [13, p. 259-264]), the justification method cannot work that

way in the case of a ∀-quantifier, since it would justify the inference

∀x[ϕ(x) ∨ ψ(x)]

[∀xϕ(x)] ∨ [∀xψ(x)],

which is generally seen as invalid. The reason for this is connected with the variable

restrictions on the quantification rules. Since the justification goes through a rule from

the conclusion to a premise, the restrictions for free variables, which are top-down

formulated, cannot be taken into account. Dummett is therefore forced to substitute

complex terms for free variables. Consequently if he reaches a ∀xφ(x) he has to proceed

to a φ(t), where t is not a free variable, instead of a ϕ(y) as the rule would say. Dummett

admits this methodological gap by calling quantification-involving proof-theoretic

justifications as of the third kind. Since the methodology has a gap here anyway

according to the justification procedure, the problem of how to interpret formulas or

sequences with free variables is not explicitly addressed.

But the justification method only uses the meaning stipulated by the rules and does not

replace it. Therefore Dummett’s method does not clarify how the possible or actual

occurrence of a sequent including free variables in a rule, that stipulates the meaning of

connectives or quantifiers, can be interpreted. Moreover it does not clarify how this lack

of interpretation is differentiated from the missing primitive interpretation in the case of

multi-conclusion sequents, which he himself described earlier as problematic. Hence he

does not give an answer to the issues identified here.

If we are aiming for a proof-theoretic semantics in terms of rules governing only
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¬,∨,∧,→, ∃ and ∀ for first-order logic, then we cannot avoid the occurrence of syntactic

entities which cannot be interpreted. This undermines the repudiation of multi-conclusion

sequents, since they can be seen as just another artefact lacking an interpretation.

Therefore a rule of the form
∆⇒ ψ1, ψ2

∆⇒ ψ1 ∨ ψ2

is not more problematic than an ∀-quantifier introduction into the right side. This view

correlates with proof-theoretic practice, where sequents are just taken seriously, when

they have only one formula on the right side.12

Also, the extension to multi-conclusion sequents keeps the requirements of a

compositional semantics satisfied in the same sense as von Kutschera formulated them

in [30] and previously explained. For the satisfaction of the first demand can be easily

seen by examination of the rules extended to multi-conclusion sequents. The second

requirement will be explained below in the section about conservativity.

Thus a proof-theoretic semantics for classical logic, which does not differ more from

ordinary language use than Dummett’s, is constructed.

1.4 Comparison with other Positions and Responses to

Objections

The first possible objection we want to scrutinise is that free variables do not need to be

interpreted separately, since they have a primitive interpretation through the possibility

of substituting terms for them. According to the aims of proof-theoretic semantics

this cannot be understood as a closure property for initial sequents or deductions under

substitution, since this would disturb the compositional character of the semantics. For in

this case ∆(x)⇒ Γ(x) can only be understood through the set of all sequents of the form
12If a sequent calculus is used for classical logic, then a provability predicate for a theory T ` ϕ is

defined as the provability of ∆⇒ ϕ, where ∆ ⊂ T , in the sequent calculus used.
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∆(t) ⇒ Γ(t) for any t, which is a significantly big part of the language.13 However, it is

possible to avoid running into holisms by formulating a rule of the form

∆(x)⇒ ϕ(x)

∆(x)[x/t]⇒ ϕ(x)[x/t],

where ϕ(x)[x/t] denotes the formula one gets by substituting t for all occurrences of x

in ϕ. A rule of this form still ensures a compositional character of the semantics, since

ϕ(x)[x/t] is understandable on the basis of ϕ and t. However the rule needs some variable

restrictions to function properly in a setting of logic, which are similar to those governing

∀-quantification. Otherwise one might draw conclusions of the form ∀x[ϕ(x)→ ϕ(f(x))]

from it, which are generally considered as not purely logical.14 Therefore one must

demand in addition that, x does not occur in ∆(x)[x/t]⇒ ϕ(x)[x/t] and no free variable

in t freely occurs in ∆(x)⇒ ϕ(x) either. But similarly as in the case of double negation,

discussed earlier, such a stipulating rule is not just a separate stipulation governing free

variables. The rule
∆(x)⇒ ϕ(x)

∆(x)[x/t]⇒ ϕ(x)[x/t],

together with the variable restrictions discussed above, expresses a meaning of free

variables which is already given through the harmony of the ∀-quantifier rules. For

instance the variable restrictions on the substitution rule allow us to form the following

proof-figure for the special case where x does not occur in ∆, since these restrictions

match those of the ∀-quantifier rule on the right side:

∆⇒ ϕ(x)

∆⇒ ∀yϕ(y)

ϕ(t)⇒ ϕ(t)....
ϕ(t),∆⇒ ϕ(t)

∀yϕ(y),∆⇒ ϕ(t)

∆⇒ ϕ(t)

13Here the term t must be substituted for any occurrence of x. Otherwise one might get from an initial

sequent of the form ϕ(x)⇒ ϕ(x) to one of the form ϕ(f(c1))⇒ ϕ(f(c2)). The latter could be translated

as “If Julia’s father wears a hat, then Bob’s father wears a hat.”, which is generally seen as logically invalid.
14Following the previous example that might be translated as “When ever someone wears a hat, this

person’s father wears a hat too”.
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Moreover, this gives a theoretical basis to the previous mentioned naive view that

variables are artefacts lacking an interpretation differentiable from the meaning of the

∀-quantifier, in the approach of proof-theoretic semantics.

Consequently it seems to be suitable to view substitution as a operation which gets its

necessity through the lack of interpretation for free variables instead of interpreting

variables through their possibility to get substituted.15

An objection similar to the one already discussed may be that free variables are some

how primitive through their use as general or arbitrary names for the object to which the

language is applied. But such a move disposes of a proof-theoretic semantics in favour of

a model theoretical one following Tarski or Kripke. For such an objection presupposes a

theory of meaning that surmounts the credo of proof-theoretic semantics, i.e. stipulating

the meaning of the logical vocabulary through introduction and elimination rules.16 If the

use or meaning of free variables in a theory of meaning which is purely given through

introduction and elimination rules does not differ from a primitive usage of names, then

the inferences which are justifiable in terms of rules formulated via names should not

differ from the set justifiable by rules formulated via free variables. For in proof-theoretic

semantics this is the main demarcation criterion for separating two logics. In case of the

∀-quantifier this would be the indistinguishability of the following formulations according

to the justification procedure.

15In this respect a compositional syntactic approach stands diametrically opposite to a holistic syntactic

approach for which Carnap argues (see [11, pp. 142]).
16Given the close connection that variables have with respect to the quantifies, they should be considered

as part of the logical vocabulary.
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Formulation via free Variables Formulations via Names

ϕ(y)

∀xϕ(x)

ϕ(c) for any c in L
∀xϕ(x)

If a formulation via names has been chosen, the following differences can be found: In

the case when L includes only one name the ∃-quantifier coincides with the ∀-quantifier,

since the inference
∃xϕ(x)

∀xϕ(x)

is justifiable. If L includes more than one but finitely many names c1, ..., cn, then

inferences of the form

∀x1...∀xi...∀xj...∀xn+1ϕ(x1, ..., xn+1)

∀x1...∀xj...∀xi...∀xn+1ϕ(x1, ..., xn+1),

where x1, ..., xn+1 are pairwise disjoint, are not justifiable any more. One might say that

such inferences are in fact justifiable in the formulation with names, if a justification

proceeds from a formula ∀xϕ(x) to a formula ϕ(t), where t is any term, instead to a

ϕ(ci). But according to the fundamental assumption as is explained in [13, pp. 274],

doing so would be covertly using the formulation via free variables. Dummett faces

serious complications, when it comes to a proof-theoretic justification of inferences

including ∀-quantifiers, because he has to talk about an adequate representative sample

t1, ..., tn, from which the t is taken, to make the step from ∀xϕ(x) to a ϕ(t) plausible.

But the notion of an adequate representative sample is very vague and sensitive to

the particularities of an individual case. However in the case of a formulation of

∀-quantification via finitely many names the adequate representative sample is naturally

given through the formulation of the rule itself. This becomes especially crucial in

cases of a very small set of names, say c1, ..., c5, since in such a case the example of

a ∀-quantifier permutation given above is particularly inconvenient while the adequate
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representative sample of c1, ..., c5 is highly natural.

In the case of infinitely (but countably) many names the two formulations coincide.

Since the samples are in both cases potentially unbounded, the justification can be

chosen to proceed identically under both formulations. However, beside the fact that it

barely happens that ordinary language use operates with infinitely many names, it seems

counter-intuitive that logical principles change according to the number of objects one

wants to talk about.

The final objection which is discussed here criticises the actual way a justification must

proceed in the previous given semantics for classical logic. In the case of

¬[∃x¬ϕ(x)]

∀xϕ(x)

a justification would look as follows:

The sequent ¬[∃x¬ϕ(x)] ⇒ ∀xϕ(x) gives ⇒ ∀xϕ(x),∃x¬ϕ(x) through the meaning

of ¬, which is stipulated by the ¬-introduction rule on the right side. The rule of ∃-

introduction gives at least one t such that ⇒ ∀xϕ(x),¬ϕ(t). As Dummett explains in

[13], the fundamental assumption according to ∀-introduction gives ⇒ ϕ(t),¬ϕ(t). By

using the meaning of ¬ again one gets ϕ(t)⇒ ϕ(t), which ends the justification.

The justification just performed necessarily uses multi-conclusion sequents while free

variables do not occur, since one can choose t such that no free variable occurs. But as

explained before, the cases under issue, which proceed from ∆⇒ ∀xϕ(x) to ∆⇒ ϕ(x),

were not excluded for lacking an interpretation, but for justifying an inference which

is generally seen as invalid. Moreover the element stipulating the meaning, the rule, is

necessarily formulated via free variables, which lack an interpretation if one does not

want to interpret them by the ∀-quantifier. This raises the question: Why is the use of

harmless sequents which lack an interpretation forbidden, while harmful ones, which

have the same property, are used in the elements stipulating the meaning of a semantics?

Moreover, since quantification rules appear nested in the rules for connectives during a
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justification, it is not possible to separate principles of first-order from propositional logic

in first-order logic. Therefore an attempt, which tries to separate the use of sequents

with free variables from those using multi-conclusions, to argue against the use of the

latter but keeps the former, must be fruitless. However, in the same manner as for the

fundamental assumption, one might try to establish an assumption, which separates the

justification for first-order principles beforehand in a quantificational and a propositional

part by the midsequent theorem. The midsequent theorem states that, in a calculus for

which cut-elimination17 has been established, the proof of a sequent which includes only

formulas in prenex-normal-form can be transformed into a proof where the propositional

part is done before any quantification takes place (see [57, p. 29]). However finding a

midsequent (or a Herbrand disjunction) is, depending on the formal system that is in use,

a hard task and it is not always clear how crucial the assumption that all formulas are in

prenex-normal-form is. In any case the issue seems to be that in finding such a midsequent

(or Herbrand disjunction) many inferences that one might want to justify are already in

use. Hence one cannot separate first-order logic from proposition logic at the beginning

of building a proof-theoretic semantics for first-order logic.

Following the arguments given earlier, using a sequent calculus in proof-theoretic

semantics seems to be privileged. For an approach which operates on deductive relations,

which are formulated as sequents here, might be distanced enough from ordinary language

use to accept syntactic entities which lack an interpretation, but still close enough to

ordinary language use by the way that introduction rules are formulated. In contrast,

in a natural deduction formulation it might seem unnatural that entities which lack an

interpretation through the occurrence of free variables appear in places where the well

known concept of assuming a sentence is usually taking place.

17A property calculi, which are logical in nature, usually have.
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1.5 Conservativity

As explained before, von Kutschera demands in his Genzen-semantics (given in [30])

conservativity for each individual connective over the others, which forces, together with

the cut-rule, a particular form of the introduction rules on the left side. To explain what

this means, the connection between the introduction rules for ¬ is given in the following.

∆′, ϕ⇒
∆′ ⇒ ¬ϕ....
∆⇒ ¬ϕ

∆′′ ⇒ ϕ

¬ϕ,∆′′ ⇒....
¬ϕ,∆⇒

∆⇒

It is easy to see that ∆ ⇒ can be obtained without using any rule for ¬, by using an

application of the cut-rule at an earlier stage. So one can easily translate the given proof

to the following one.
∆′′ ⇒ ϕ....
∆⇒ ϕ

∆′, ϕ⇒....
ϕ,∆⇒

∆⇒ .

Such translations can be found for every connective in a sequent calculus and are

summarised in the so called cut-elimination algorithm.18 Using this algorithm it is

possible to show that, for each connective the calculus formed by the previous given rules

for ¬,∨,∧, and → is conservative over its fragments that are obtained by deleting the

rules for exactly one of the connectives. Since side formulas do not essentially disturb

this process, this property is preserved after extending the calculus by multi-conclusion

sequents. Consequently all criteria for a compositional semantics are satisfied by the

previous given proof-theoretical semantics for classical logic, because a formula can

be fully understood on the basis of its subformulas together with the connective used

18This is a rather unfortunately chosen name, since it covers the syntactic nature of cut-elimination by

constructive aspects. For as mentioned in [58], there are many cut-elimination algorithms in systems where

the cut-rule is dispensable which are not syntactic in nature.
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and the meaning of each connective is strictly separated from those of the others by

the semantics. Moreover local and total harmony, in the sense given above, are fully

established.

However, it was mentioned before that, in some sense, classical negation is not

conservative over the other logical connectives, while intuitionistic negation is. This

will be clarified in the following. The natural deduction calculus formed by the

usual introduction and elimination rules for ∨,∧ and → proves the ¬-free fragment of

intuitionistic logic. If one extends this calculus by ¬-rules giving intuitionistic negation,

then no new ¬-free formulas can be proved in the calculus given by these rules while the

¬-rule that is usually taken as classical can. In this sense classical negation is not in total

harmony with the rest of the connectives according to the proof-theoretic semantics given

through the natural deduction rules. Moreover one might say that, the semantics given

by the natural deduction rules for classical logic is not compositional in nature, by the

lack of conservativity over the other connectives.19 However, the reason for this is the

way functional ¬-rules must be formulated in natural deduction. For in natural deduction

¬-rules, capturing intuitionistic negation is extremely different in their schematic form

from those capturing classical negation. By contrast, in common sequent formulation the

rules are very similar and only differ in allowing side formulas on the right side.

19Dummett explains in [13] that, according to his proof-theoretic semantics, which is given by natural

deduction rules, classical negation refers to the consistency of the logic justifiable by his semantics. One

might say this makes it holistic in nature.
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Intuitionistic Negation Classical Negation

ϕ,∆⇒
∆⇒ ¬ϕ

ϕ,∆⇒ Γ
∆⇒ Γ,¬ϕ

¬ϕ,∆⇒
∆⇒ ϕ

¬ϕ,∆⇒ Γ
∆⇒ Γ, ϕ

However it must be stressed here that conservativity is used differently in these two

cases. Since natural deduction operates on formulas, the conservativity notion is defined

via provability of formulas, while in a sequent formulation it is the conservativity over

deducible sequents, which are interpreted as arguments here.

As Schröder-Heister correctly asserts in [47], the calculus of natural deduction seems to

have a strong connection with intuitionistic logic. This might not be very surprising in

view of the fact that it is operating on formulas. For, this gives a semantics that is highly

focussed on particular sentences rather than on inferential-relations. This circumstance

coincides with the idea of intuitionism as a very rigorous justification system for particular

sentences explained by the Brouwer-Heyting-Kolmogorov-interpretation, or its even more

rigorous formal counterpart, realisability.

1.6 Conclusion

The present paper argues for the possibility of a proof-theoretic semantics for classical

logic that uses multi-conclusion sequents, which is no further from ordinary language

use than the one given by Dummett. Consequently, the correlation of logics with

metaphysical stances is undermined. However, this was made possible by a paradigm

shift; instead of primarily focusing on formulas and their use as such, sentences are

understood through their function in an argument while avoiding a holistic meaning
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theory. For instead of using formulas as smallest operative unit we use sequents.

The appearance of new syntactic objects which lack an interpretation in this process

should not be worrying, because their appearance comes with baggage when a syntactic

approach is systematised.



29

Chapter 2

Theory Reduction

To reduce a theory to another one has been a central concept of modern logic which is

included in many approaches since the very beginning. For Hilbert already gave one

in his Grundlagen der Geometrie from 1903 [27].1 Recently Michael Rathjen used a

reductive approach to formulate a notion of ordinal analysis in [40]. Since the aim of

this thesis is to show that Rathjen’s notion can be made even more convenient without

any metamathematical or foundational costs by using particular theories of inductive

definitions, we take a closer look at the commonly used notions of reduction in this

chapter. Such a survey was already done by Karl-Georg Niebergall in [35], which

therefore seems to be a good starting point. However Niebergall’s aims differ from

ours. For he wants to evaluate the different notions to find “the best”. Also since he

sees his work as a first step towards ontological reduction, his argumentation is flavoured

by a branch of analytic metaphysics.2 Consequently Niebergall’s analysis is based on the

philosophical intuitions of this tradition and phrased in a terminology which is influenced

1It is common in the logic community to view Hilbert’s methods as an early model-theoretic

construction. However Patricia Blanchette convincingly argued for a syntactic reading at the Logic

Colloquium 2014.
2One should indicate here that the field of analytical metaphysics is the target of many objections. See

[20] and T. Mohrmann’s introduction in [12] for an extensive critique.
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by a model-theoretic perspective on logic, as is common for more recent discussions in

analytic philosophy. We therefore give a rather different presentation. We will argue for

our preference of proof-theoretical reduction to interpretability in accordance with the

aims of this thesis.3 We will also have a closer look at realisability. For it is the reduction

method which is heavily used and scrutinised in Chapter 3 and Chapter 6.

2.1 Preliminaries

Before we can talk about theory reductions we have to give some central definitions and

state some important proof theoretical results. Unfortunately the concept of elementary

recursive functions is not as well known as that of primitive recursive functions, therefore

we will give a definition here.

Definition 2.1.1 The class of elementary (recursive) functions ERF is defined as:

1. ERF contains: The constant 0 function, successor S, projection, addition +,

multiplication ·, modified subtraction −̇ and exponentiation 2x.

2. ERF is closed under composition.

3. ERF is closed under limited recursion: Assume that h, g, k ∈ ERF and for all

~x, y

f(~x, 0) = g(~x),

f(~x, y + 1) = h(~x, y, f(~x, y)),

and f(~x, y) ≤ k(~x, y),

then f ∈ ERF .

3Niebergall favours interpretability and is challenged by Feferman in [18].
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The class of primitive recursive functions PR is defined similarly, but without the

bounding condition in the third clause.

By closing off the primitive recursive functions under the µ-operation we get the (partial)

recursive functionsR. That is, if g ∈ R is a k-ary function and

f(x0, ..., xk−1) = µy[g(x0, ...xk−1, y) = 0] (the smallest such y),

then f ∈ R.4

It is possible to code the formation of a recursive k-ary function f into a natural

number ef , by inductively going through Definition 2.1.1, and to give an elementary

predicate5 T k as well as an elementary function U such that f(~n) = m is equivalent to

U(µy[T k(ef , ~n, y)]) = m. The latter is often abbreviated by {ef}k(~n) = m, which is

called the Kleene brackets. For more details see [50].

To fix notation we briefly talk about some standard definitions in logic (for more

details see [16]). If τ is a set of symbols for predicates, functions and constants, then

L(τ) denotes the set of well formed formulas that are generated by τ . We call L(τ)

a language. We generally assume that τ is finite. The terms, formulas and sentences

are defined inductively in the standard way for an nth-order language.6 If we want to

specify the order of a language we denote it by a superscript, e.g. by Ln(τ). If the

superscript is suppressed the order is arbitrary. To denote symbols and expressions we

use the following conventions: We use x, y, z for variables, s, t, t0, t1, ..., tn for terms and

ϕ, ψ, φ, ϕ1, ..., ϕn for formulas. Also we write 〈t0, t1, t2〉 for 〈〈t0, t1〉, t2〉. By a theory

T we mean an elementarily definable set, if not specified otherwise, of formulas (called

4The functions inR are in general not total, since such a y, which is required by the µ-operation, might

not exist.
5We identify predicates with their characteristic functions.
6We use the usual notational conventions concerning to logical connectives, brackets and identity, e.g.

x 6= y means ¬(x = y).
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the axioms) together with a logic. If it is not stated otherwise, the logic is the classical

logic suitable to the order of the language. Other logics are specified by superscripts,

e.g. in the case of intuitionistic logic by an i as in T i.7 The language of a theory T is

denoted by LT and is the L(τ) whose τ contains only those symbols occurring in the

axioms of T . In proofs we usually view the logic as given by a Hilbert or Gentzen system

(see [58] for an introduction and Appendix C for the systems frequently used here). We

denote provability in all contexts by `. In proofs we will frequently switch back and

forth between Hilbert and Gentzen systems. This practice is justified by the following

theorem.

Theorem 2.1.2 Let ϕ ∈ L(τ).

There is an elementary recursive function which assigns to every deduction dH ` ϕ in a

Hilbert system a deduction dG ` ϕ in a Gentzen system.

There is an elementary recursive function which maps every deduction dG ` ϕ in a

Gentzen system to a deduction dH ` ϕ in a Hilbert system.

The deductive closure of a theory T (the set of all formulas provable from T ) is denoted

by T `.

In the following we define important theories and notions that are used throughout in

the text. All the following definitions use the first order language L1
Q := L1({=

,≤, S,+, ·, 0̄}), where S,+ and · are read as successor, addition and multiplication

respectively. We use n̄ to denote the term S(...S(0̄)...) with successor-depth n. A bounded

quantifier is a quantifier in the following context

(∃x ≤ t)ϕ(x, y) :≡ (∃x)(x ≤ y ∧ ϕ(x))

(∀x ≤ t)ϕ(x, y) :≡ (∀x)(x ≤ t→ ϕ(x, y)),

7Since we are only interested in syntactical transformations of deduction systems in which the

deductions of classical logic are a superset of those of other logics in use here, this is the most appropriate

thing to do.
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where x does not occur in t.

Definition 2.1.3 1. The set of Σ0
0 = Π0

0 formulas contains all atomic formulas of a

language L and is the least set that is closed under all logical connectives and

bounded quantification.

2. Σ0
n+1 contains Π0

n and is closed under ∧,∨, bounded quantification and unbounded

∃-quantification.

3. Π0
n+1 contains Σ0

n and is closed under ∧,∨, bounded quantification and unbounded

∀-quantification.

4. Π0
∞ :=

⋃
n∈N Π0

n

5. We say a formula is ∆0
n in a theory T :⇔ It is equivalent to a Σ0

n as well as to a

Π0
n-formula in T .

6. A set is called Σ0
n, when there is a Σ0

n-formula defining it in the standard model.8

We use an analogous notation for Π0
n sets. A set is ∆0

n, if the equivalences of its

definition to a Σ0
n and a Π0

n-formula are both true in the standard model.

Note that being a Π0
n- or Σ0

n-formula is relative to the language in use.

Definition 2.1.4 1. The theory Q contains, besides the usual axioms of identity, the

following axioms:

S(x) 6= 0̄

S(x) = S(y)→ x = y

x 6= 0̄→ (∃y)(x = S(y))

x+ 0̄ = x

8The standard model of L1
Q is 〈N,≤N, SN,+N, ·N, 0̄N〉.
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x+ S(y) = S(x+ y)

x · 0̄ = 0̄

x · S(y) = (x · y) + x

x ≤ y ≡ (∃z)(z + x = y)

2. The theory IΣn is defined as Q together with the restricted induction schema:

ϕ(0) ∧ (∀x)[ϕ(x)→ ϕ(S(x))]→ (∀x)ϕ(x),

where ϕ ∈ Σ0
n.

3. The theory IΠn is defined analogously.

4. Peano Arithmetic is defined as PA :=
⋃
n∈N IΣn.

5. Elementary Arithmetic (EA) is defined as Q together with induction for all Σ0
0

formulas and the following additional axioms (by extending the language by the

function symbol 2)

20̄ = 1

2S(x) = 2x · 2̄.

6. Primitive Recursive Arithmetic (PRA) is defined as Q together with axioms

defining all primitive recursive functions and the schema of induction for atomic

formulas of L1
PRA.

7. Heyting Arithmetic (HA) is defined as PRAi together with induction for all

formulas of L1
PRA.

Remark 2.1.5 In case the reader wonders how all primitive recursive functions can be

introduced, she can consult Definition 6.2.1 and Definition 6.2.2. To improve readability

we avoid those technicalities here. Moreover the exact way in which function symbols are

introduced is only needed in the Lemmata following Definition 6.2.2. Therefore Chapter 6

seems to be the appropriate place.
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Consequently L1
EA and L1

PRA are richer languages than L1
Q. It is a well known fact (see

[26] or [50]) that the graph of any recursive function can be represented in Q by a Σ1

formula, e.g. by coding the Kleene brackets. This motivates the following definition.

Definition 2.1.6 Let T be a theory such that LQ ⊂ LT . We say a function f : Nk → N is

provably recursive in T :⇔ There is a Σ0
1-formula ϕf (~x, y) such that

1. f(~n) = m⇔ ϕf (~̄n, m̄) is true (in the standard model);

2. T ` (∀~x)(∃y)ϕf (~x, y);

3. T ` ϕf (~x, y) ∧ ϕf (~x, y′)→ y = y′.

Remark 2.1.7 It is standard to say that ϕf represents an f , if it satisfies 1. While ϕf is

said to define a function f , if it also satisfies 2 and 3.

The following theorem combines Parsons’ and Parikh’s Theorem, which are proved in

[36] and [9, p. 87] respectively.

Theorem 2.1.8 IΣ1 and PRA prove the same Π0
2 sentences. Therefore the provably

recursive functions of IΣ1 are the primitive recursive functions.

The provably recursive functions of IΣ0 all have polynomial growth rate.

It is obvious that elementary functions have super-polynomial growth rate. Hence to give

a theory that has exactly the elementary recursive functions as provably recursive ones,

it is not sufficient to weaken the induction schema. We also have to add a function of

function of suitable growth rate. In fact it is enough to add the exponentiation function to

IΣ0. Let exp(x, y) be a Σ1 formula defining the graph of exponentiation to the base 2, i.e.

x 7→ 2x. We denote the totality statement for exponentiation by

Exp :≡ (∀x)(∃y)exp(x, y).
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Theorem 2.1.9 The provably recursive functions of IΣ0+Exp andEA are the elementary

recursive functions.

Proof

There is a very nice proof of this result in [50, p. 122].2

It is well known that syntax can be coded by elementary functions (see [50]); we denote

the code of a syntactic object by framing it with two corners, e.g. pϕq in case of a

formula ϕ. Therefore one can give for a theory T in IΣ0 + Exp a standard provability

predicate9 ProvT (x, y) saying that x is a code of a deduction for the formula with the code

y. The formula ProvT (x, y) is Σ0
0, which makes provability PrT (y), which is defined as

(∃x) ProvT (x, y), a Σ1-formula. Consequently unprovability and therefore consistency

is Π0
1. One can just take an appropriate inconsistency10 (⊥) in T and define Con(T ) :≡

(∀x)¬ProvT (x, p⊥q).11 The following lemma states Σ0
1-completeness and formalised

Σ0
1-completeness respectively and has many nice applications.

Lemma 2.1.10 Assume that T is a theory such that L1
Q ⊂ LT . Then

1. Q ` ϕ for any true Σ0
1-sentence ϕ.

2. IΣ1 ` ϕ→ PrT (pϕq) for any Σ0
1-sentence ϕ.

Proof

9By Theorem 2.1.2 we do not care about which deduction system is used and will switch between Hilbert

and sequent style systems.
10If Q ⊂ T we usually take ⊥ to be 0 = 1.
11As Fefermann elaborated in [17], one can get into trouble by not specifying a representation of a

theory when coding syntax. However we always assume that we use a natural representation when defining

ProvT (x, y); in the case of a finite theory just a finite disjunction. But we will never give a statement in a

generality where such problems occur.
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1. By convincing oneself that Q calculates correctly.

2. The only actual proof which I know of can be found in [24, pp. 69-72].

2

It is also possible to partially define truth in IΣ0 + Exp via syntax coding as the next

theorem states. Here we use Feferman’s dot-notation ẋ to denote the function that maps

x to the xth numeral.12

Theorem 2.1.11 For every n ≥ 1 there is a Σ0
n formula TΣn(x) (where x is the only free

variable) such that, if ϕ(y1, ..., ym) is a Σ0
n-formula, then

IΣ1 ` ϕ(y1, ..., ym)↔ TΣ0
n
(pϕ(ẏ1, ..., ẏm)q).

In the case of a Σ0
0-formula ϕ(y1, ..., ym), there is a Σ0

1-formula TΣ0
0
(x) such that

IΣ0 + Exp ` ϕ(y1, ..., ym)↔ TΣ0
0
(pϕ(ẏ1, ..., ẏm)q).13

Analogous statements hold for Π0
n-sentences.

12The dot-notation is closely related to the bar-notation, which is defined in the text above Definition 2.1.3

as

1̄ := S(0̄)

n+ 1 := S(n̄);

note that 0̄ is a primitive symbol of LQ. While the bar-notation is an abbreviation of terms at the meta-level,

the dot-notation is an abbreviation of a formalisation of a function that outputs the codes of these terms, i.e.

ẋ := px̄q.
13Note that this truth-predicate cannot be used in EA, because the additional function symbol 2x

spoils the computational bound, that is required by the truth-predicate, on terms. In fact it is a deeper

metamathematical insight that one either has a truth-predicate with a low syntactical-complexity for a Π2-

axiomatisation (I∆0 + Exp) or has a Π1-axiomatisation (EA) without such a truth-predicate.
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Proof

1. See [26, p.59].

2. See [26, Corollary 5.5, p.365].

2

It is a well known fact that the usual Gentzen system for first order logic satisfies

cut-elimination (see [58]) as well as that theories formulated within a Gentzen system

have partial cut elimination14 (see [9]). As it is shown in [26] (and can also be seen

by the methods developed in Chapter A) the elimination of a single cut can be coded

and carried out by an elementary function and is therefore available in IΣ0 + Exp.

However full cut-elimination cannot be done in IΣ0 + Exp and EA, since EA can

be formulated by Σ0
0-formulas (in LEA) and therefore would be able to prove its own

consistency by using partial cut-elimination together with Theorem 2.1.11. Since the

super-exponential function is primitive recursive and dominates the cut-elimination

procedure, cut-elimination and partial cut-elimination can be fully carried out in IΣ1 and

PRA.

Another important proof-theoretical tool is reflection principles. We will only define the

simplest form here and prove a very simple but handy fact about it. For more information

one may consult [3].

Definition 2.1.12 Assume that ϕ ∈ L1
Q is a sentence. The local reflection schema for a

14Roughly speaking, cut-elimination up to cuts whose cut-formula has not more alternating quantifiers

than the axioms of the theories.
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theory T (in symbols Rfn(T )) such that L1
Q ⊂ L1

T is the schema

PrT (pϕq)→ ϕ.

If the schema is restricted to a set of sentences Γ, then we denote it by RfnΓ(T ).

The following lemma is used when dealing with proof-theoretical reduction.

Lemma 2.1.13 IΣ0 + Exp ` Con(T )↔ RfnΠ0
1
(T )

Proof

“⇒:” Assume that ϕ ∈ Π0
1. Hence ¬ϕ ∈ Σ0

1 and therefore

IΣ0 + Exp ` ¬ϕ→ PrT (p¬ϕq)

by Lemma 2.1.10.15 Consequently the assumption ¬ϕ in IΣ0 + Exp gives PrT (p¬ϕq).

Since we can also assume that Con(T ) holds, we get ¬PrT (pϕq); which leads to

IΣ0 + Exp + Con(T ) ` ¬ϕ→ ¬PrT (pϕq).

And we get the ϕ-instance of RfnΠ0
1
(T ) by contraposition.

“⇐:” Assuming RfnΠ0
1
(T ) and instantiating it by p0 = 1q in IΣ0 + Exp gives by

contraposition and the definition of Con(T )

IΣ0 + Exp + RfnΠ0
1
(T ) ` 0 6= 1→ Con(T ).

Since IΣ0 + Exp ` 0 6= 1, the theorem is proven.2

The notion of theory reduction is closely related to the notion of conservativity. To fix a

notation we will define this well known concept in the following.
15The function defined in [24] is in fact elementary and, hence, the proof of Lemma 2.1.10 proves an

analogous statement about IΣ0 + Exp.
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Definition 2.1.14 Assume that S ⊂ T , LS ⊂ LT and Γ ⊂ LS .

The theory T is Γ-conservative over S (in symbols T ⊆Γ S) :⇔ Any ϕ ∈ Γ that satisfies

T ` ϕ also satisfies S ` ϕ.

Some of the previous results can be reformulated via this notion. The final result of this

section is a very useful conservativity result as well.

Lemma 2.1.15 Assume that T is a theory such that LQ ⊂ LT and I∆0 + Exp ⊂ T `.

Then T ⊆Π0
1
I∆0 + Exp + Con(T ).

Proof

Assume that T ` ϕ for ϕ ∈ Π0
1. Therefore I∆0 + Exp ` PrT (pϕq) by Lemma 2.1.10. By

Lemma 2.1.13 we get

I∆0 + Exp + Con(T ) ` RfnΠ0
1
(T ).

Combining these two results gives I∆0 + Exp + Con(T ) ` ϕ.2

2.2 Some Syntactic Notions of Theory Reduction

As already mentioned above, our interest in theory reduction emerges from our wish to

motivate the general notion of ordinal analysis that is given in [40]. Since some steps in an

ordinal-analysis can be viewed as a syntactic reduction16, we are mainly concerned with

syntax here. However we will sketch some model-theoretical reductions as well, when

they are related to a syntactic one that is under consideration.17

16This will be explained in chapter 3.
17There is no such thing as a semantic reduction that is in opposition to a syntactic reduction. The

correct opposite to a syntactic reduction is a referential or model-theoretical reduction. This is because a
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2.2.1 Interpretability

The notion of interpretability is arguably one of the most common forms of theory

reduction in the logic-related literature. Roughly speaking, it can be viewed as a logic-

preserving translation of the non-logical lexicon of one theory into another. In more

model theoretical terms one can view interpretability as defining a model of one theory in

a second theory. More precisely:

Definition 2.2.1 1. Let L1
1 be a language and T a theory in the language L1

2.18 An

interpretability translation ∗ of L1
1 into T is given by:

(a) A χ(x) ∈ L1
2 such that T ` (∃x)χ(x).

(b) For each constant c of L1
1, a formula ψc(x), with all free variables exhibited,

such that

T ` (∃!x)(χ(x) ∧ ψc(x)).

(c) For each n-ary predicate P of L1
1, a formula ψP (x1, ..., xn) ∈ L1

2 with all free

variables exhibited.

(d) For each n-ary function symbol f of L1
1 a formula ψf (x1, ..., xn, y) ∈ L1

2, with

all free variables exhibited, such that

T `
n∧
i=1

χ(xi)→ (∃!y)(χ(y) ∧ ψf (x1, ..., xn, y)).

The interpretation ϕ∗ is then defined inductively over the definition of terms and

formulas. At the atomic level we use (in the obvious way) the formulas given above

“good syntactic reduction” is good, when semantically explanatory, and syntactic, when lacking referential

concepts. Or, as Quine would put it, the reason why we talk about syntax and reference is because we are

not able to directly grasp “semantic” by a reasonable methodology.
18Note that we assumed at the beginning of this chapter that the non-logical alphabet is finite.
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for predicate, constant and function symbols respectively. During the induction step

∗ distributes over the logical particles as expected:

(¬ϕ)∗ ≡ ¬ϕ∗

(ϕ ◦ ψ)∗ ≡ ϕ∗ ◦ ψ∗ for ◦ ∈ {∧,∨,→}

[(∃x)(ϕ(x))]∗ ≡ (∃x)(χ(x) ∧ ϕ(x)∗)

[(∀x)(ϕ(x))]∗ ≡ (∀x)(χ(x)→ ϕ(x)∗)

2. Assume that S and T are two first-order theories in the languages L1
S and L1

T

respectively.

Then S is interpretable in a theory T (in symbols S � T ) :⇔ There is a relativized

translation ∗ of L1
S in T such that for every axiom ϕ(x1, ..., xn) of S,

T `
n∧
i=1

χ(xi)→ ϕ∗(x1, ..., xn).

3. Let S and T be as before. S is locally interpretable in T (in symbols S �loc T ) :⇔

For each axiom ϕ of S, {ϕ} � T .

This gives the following corollary.

Corollary 2.2.2 If S � T via ∗, then for each ϕ(x1, ..., xn) ∈ L1
S , such that S `

ϕ(x1, ..., xn), T `
∧
χ(xi) → ϕ∗(x1, ..., xn); in particular, for each sentence ϕ ∈ L1

S ,

S ` ϕ implies T ` ϕ∗.

In the case of L1
T ⊂ L1

S and when interpretability can be shown via the trivial translation,

i.e. χ(x) is taken to be x = x and the translation is the identity, one can obtain a

conservativity result. For in such a case ϕ∗ ≡ ϕ.

There are two notions of reduction that are known to be equivalent to interpretability and

are model-theoretical in nature.
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Definition 2.2.3 Let S and T be two first-order theories in the languages L1
S and L1

T

respectively.

S C1 T :⇔ There is an f : L1
S → L1

T which distributes over ¬,∧,∀,∃ (as in

Definition 2.2.1) and for any model A of T there exists a model B of S such that for

any formula ϕ ∈ L1
S it holds that B |= ϕ iff A |= f(ϕ).

The equivalence to interpretability was established by Montague [34] . The other notion

was proved equivalent to interpretability by Benthem and Pearce [4] and is defined as

follows.

Definition 2.2.4 Let S and T be as before. S C2 T :⇔ There is a function F :

Mod(T ) → Mod(S) which respects L1
T -isomorphisms, L1

T -ultraproducts and satisfies

|F (A)| ⊂ |A| for each A ∈ Mod(T ).19

In the following we will give some examples of properties or meta-theorems about

interpretability.

Theorem 2.2.5 For all theories S,T and all formulas ϕ, ψ:

If S � T + ϕ and S � T + ψ, then S � T + (ϕ ∨ ψ).

Proof

See [32, p. 82]2

Another important property is the following. Here S � k includes those elements of S

with a code that is numerically smaller than k.

Theorem 2.2.6 Assume that PA ⊂ T is a theory with a ∆0
1 definition and is formulated

in L1
Q. If S is another theory with a ∆0

1 definition, then the following are equivalent

19By |A| we denote the domain of the model A and Mod(T ) denotes the set of all models of a theory T .
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1. S � T

2. S �loc T

3. For each k, T ` Con(S � k)

Proof

See [26, pp. 169-171]. 2

2.2.2 Proof-Theoretical Reduction

The notion of Proof-Theoretical Reduction was introduced by Fefermann 1988 in [19] to

extend Hilbert’s Program by an approach of relativised consistency. While the consistency

of a system enlarging arithmetic cannot be established from a purely finitistic perspective,

relativised consistency proofs can often be done finitistically. This can be generalised to

a group of questions of the form: can one justify the use of certain principles in terms of

a less questionable set of principles by assuming that the set of those latter principles is

already justified?

An example for such a task would be the justification of impredicative principles by

predicative notions. Here justification of principles means showing that they are at

least consistent with each other. But proof-theoretical reduction is much more than just

consistency. It can be viewed as a strong version of formalised conservativity.

To improve readability of the following definition, we use abbreviations for formulas as

follows. f(x) = z denotes a Σ0
1-formula ϕf (x, z) that represents the graph of a function

f in a natural way (see Remark 2.1.7).20 To express totality we use

f ↓:⇔ (∀x)(∃y)ϕf (x, y).
20If the recursive functions are coded via Definition 2.1.1 and not as Turing-machines, then one can use

Kleene brackets here:

ϕf (x, z) :≡ (∃y)[T (ef , x, y) ∧ U(y) = z].



Chapter 2. Theory Reduction 45

Definition 2.2.7 Let f be a recursive function. Assume that S and T are two theories in

the languages LS and LT respectively such that Q ⊂ T and that there is an elementary

recursive set of formulas Γ ⊂ LS ∩LT .

We say S is proof-theoretically reducible to T according to Γ by f (in symbols f : S ≤Γ

T ) :⇔ There is a representation of f in LT such that

T ` f ↓

T ` (∀x)(∀y)(∃z)[Γ(y) ∧ ProvS(x, y)→ f(x) = z ∧ ProvT (z, y)].

We express the existence of such a function f , such that f : S ≤Γ T , by S ≤Γ T .

If S ≤Γ T and T ≤Γ S holds, then we write S ≡Γ T .

Note both requirements are Π0
2-statements. But together the latter is also ∆0

1 in T , since

U is a function, which makes its output unique.

Corollary 2.2.8 If S and T are as in Definition 2.2.7 and S ≤Γ T where ⊥ ∈ Γ (e.g. S

and T are arithmetical theories and ⊥ is 0 = 1), then

T ` Con(T )→ Con(S).

Proof

Instantiate the second requirement in Definition 2.2.7 with p⊥q for y and take the

contrapositive of this instantiation.2

It goes back to an observation by Kreisel that one can obtain a finitistic21 relative

consistency proof from most proof-theoretical reductions that have been given so far. This

The term “natural” means that we know the function f quite well from an informal-proof and that we have

chosen a representation ϕf (or code ef ) that supports our formalisation of this proof.
21Finitistic means here, following Tait [56], that the proof can be carried out in PRA. But since

Proposition 2.1.8 holds, one can also chose IΣ1.
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is the case when the function from the reduction is primitive recursive (and IΣ1 ⊂ T ).

The following argument is partly taken from [40]:

Assuming that f : S ≤Γ T ,⊥ ∈ Γ and that f is primitive recursive. Hence we can choose

a representation of f such that

IΣ1 ` f ↓

(∗)T ` (∀x)[ProvS(x, p⊥q)→ (∃y)(f(x) = y ∧ ProvT (y, p⊥q))].

Since f(x) = z is a Σ0
1-formula defining a function in T ⊃ IΣ1, the succedent of the

implication above is equivalent to the Π0
1-formula

(∀y)[f(x) = y → ProvT (y, p⊥q)].

Since this makes (∗) equivalent to a Π0
1-sentence, we get (by Lemma 2.1.15)

IΣ1 + Con(T ) ` (∗). Which leads to

IΣ1 + Con(T ) ` Con(T )→ Con(S),

by the provable totality of f in IΣ1 (see Theorem 2.1.8). Hence

IΣ1 ` Con(T )→ Con(S).

Therefore, inspired by Hilbert’s Programme, sometimes logicians use the term proof-

theoretical reduction also in the weaker sense of relative consistency.

Definition 2.2.9 Let S and T be theories. Then:

S CRC T :⇔ IΣ1 ` Con(T )→ Con(S).

The order CRC is therefore transitive. However, to come closer to the idea of the broader

Definition 2.2.7, one may have a closer look at the following.

Definition 2.2.10 Let S and T be theories. Then:

S JRC T :⇔ T ` Con(T )→ Con(S).
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Niebergall gives in [35] a counterexample to the claim that JRC is transitive.

Theorem 2.2.11 There are arithmetical sound recursively enumerable theories S, T, U

such that S JRC T and T JRC U , but not S JRC U .

Proof

Take
S := IΣ1 + Con(IΣ1 + Con(PA))

T := PA

U := IΣ1 + Con(PA)

so we have to prove the following to establish the claim of the theorem.

1. PA ` Con(PA)→ Con(IΣ1 + Con(IΣ1 + Con(PA)))

2. IΣ1 + Con(PA) ` Con(IΣ1 + Con(PA))→ Con(PA)

3. IΣ1 + Con(PA) 6` Con(IΣ1 + Con(PA))→ Con(IΣ1 + Con(IΣ1 + Con(PA))

1. We are working in PA+ Con(PA): Since IΣ1 + Con(IΣ1 + Con(PA)) ⊂ Π0
4, we

have partial cut-elimination down to Π0
4 formulae.

We proceed with a proof by contradiction: Assuming that ¬Con(IΣ1 +Con(IΣ1 +

Con(PA))), then there is a proof p ` p0 = 1q in IΣ1 + Con(IΣ1 + Con(PA)).

Because of partial cut-freeness there is a proof p′ which includes only Π0
4 formulae.

By Theorem 2.1.11 we have a truth predicate such that

(∗)TΠ0
4
(pϕq)⇔ ϕ.

By (∗) we can establish TΠ0
4
(pϕq) for any ϕ that is an axiom of IΣ1 and occurs

in p′. This leaves us to establish the truth of Con(IΣ1 + Con(PA)). Since IΣ1 +

Con(PA) ⊂ Π0
4, we get from the assumption ¬Con(IΣ1 + Con(PA)) a partial

cut-free proof of p0 = 1q. By using the assumption Con(PA) together with the
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truth of all axioms of IΣ1 we get 0 = 1 by (∗) and the truth-preservation of the

proof system. This leads to Con(IΣ1 + Con(PA)) and to its truth by (∗).

Since we know that all axioms of IΣ1 + Con(IΣ1 + Con(PA)) are true and there

are only Π0
4 formulas in p′, we get by the truth preservation of the deduction system

TΠ0
4
(p0 = 1q). Hence (∗) gives 0 = 1, which is the contradiction that we aimed at.

2. IΣ1 + Con(PA) ` Con(PA) implies

IΣ1 + Con(PA) ` ϕ→ Con(PA) for every ϕ.

3. We proceed by a proof by contradiction. Assume that

IΣ1 + Con(PA) `

Con(IΣ1 + Con(PA))→ Con(IΣ1 + Con(IΣ1 + Con(PA)).

Obviously IΣ1 + Con(PA) ` Con(PA). Hence by Lemma 2.1.15 we get

IΣ1 + Con(IΣ1 + Con(PA)) ` Con(PA).

Which gives

IΣ1 + Con(IΣ1 + Con(PA)) `

Con(IΣ1 + Con(PA))→ Con(IΣ1 + Con(IΣ1 + Con(PA)).

But this leads to

IΣ1 + Con(IΣ1 + Con(PA)) ` Con(IΣ1 + Con(IΣ1 + Con(PA)).

Hence we contradict the second incompleteness theorem.

2

The next theorem (taken from [35] as well) transports the intransitivity from JRC to

proof-theoretical reduction. In the following Eq is the set of all closed equations.



Chapter 2. Theory Reduction 49

Theorem 2.2.12 Let S and T be first order theories with Σ0
0 definitions, I∆0 + Exp ⊂ T

and Q ⊂ S. Then

I∆0 + Exp ` Con(T )→ Con(S) implies S ≤Eq T.

Proof
22We work in T .

By I∆0 + Exp ⊂ T we get Con(T ) → Con(S) by the assumption. We distinguish two

cases. In both cases we will construct a T -deduction for a closed equation t1 = t2 from a

given S-deduction.

1. ¬Con(S): In this case also ¬Con(T ). Hence we can construct a T -deduction for

pt1 = t2q uniformly from the contradiction p0 = 1 ∧ 0 6= 1q.

2. Con(S): We assume that there is a S-deduction for pt1 = t2q. Since the

representation of S is Σ0
0, we can prove Q ⊂ S by ∆0-induction. Moreover

Con(S) and the fact that Q proves all true closed equations (see Theorem 2.1.10)

ensures that TEq(pt1 = t2q) holds. Note that the proof of Σ1-completeness (see

Theorem 2.1.10) proceeds by an elementary recursive function in [24, pp. 69-

72].23 Hence this proof-method is available, i.e. provably total, in I∆0 + Exp

by Theorem 2.1.9. Therefore we can construct a T -deduction of pt1 = t2q.

2

By Theorem 2.2.12 we can lift the intransitivity of JRC to proof-theoretical reduction.

22Note this proof also establishes that Con(T ) → Con(S) and formalised Eq-conservativity are

equivalent in I∆0 + Exp.
23The proof inductively proceeds on the length of a formula by a finite case distinction where all cases,

except the atomic case, are schematic in the formulas used, hence can be bounded by a constant. Moreover

the atomic case is about LQ and, hence, its terms can be formally evaluated elementarily.
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Theorem 2.2.13 There are arithmetical sound recursively enumerable theories S, T, U

such that S ≤Eq T and T ≤Eq U , but not S ≤Eq U .

Proof

Take
S := IΣ0 + Exp + Con(IΣ0 + Exp + Con(IΣ1))

T := IΣ1

U := IΣ0 + Exp + Con(IΣ1)

The following statements can be proved like those which are given in the proof of

Theorem 2.2.11.

1. IΣ1 ` Con(IΣ1)→ Con(IΣ0 + Exp + Con(IΣ0 + Exp + Con(IΣ1)))

2. IΣ0 + Exp + Con(IΣ1) ` Con(IΣ0 + Exp + Con(IΣ1))→ Con(IΣ1)

3. IΣ0 + Exp + Con(IΣ1) 6` Con(IΣ0 + Exp + Con(IΣ1)) → Con(IΣ0 + Exp +

Con(IΣ0 + Exp + Con(IΣ1))

Consequently S ≤Eq T and T ≤Eq U can be obtained by 1 and 2 by Theorem 2.2.12.

However, as we have assumed S ≤Eq U , we can contradict 3.2

Therefore, one might change Definition 2.2.7 in order to make it transitive, by restricting

the conditions

T ` f ↓

and

T ` (∀x)(∀y)(∃z)[Γ(y) ∧ ProvS(x, y)→ f(x) = z ∧ ProvT (z, y)]

to

IΣ1 ` f ↓ 24

24That is sufficient to make f primitive recurisve, by Theorem 2.1.8.
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and

IΣ1 ` (∀x)(∀y)(∃z)[Γ(y) ∧ ProvS(x, y)→ f(x) = z ∧ ProvT (z, y)].25

Let’s denote this version by S ≤finΓ T . However this does not change much as the

discussion that was given above Definition 2.2.9 shows.

Theorem 2.2.14 Let S and T be theories that have a Σ0
0 definitions, IΣ1 ⊂ T andQ ⊂ S.

Then the following holds:

f : S ≤Eq T and f is primitive recusive. ⇔ S ≤finEq T.

Proof

“⇒:” Assume that S ≤Eq T . By the argument given above Definition 2.2.9 we get

IΣ1 ` Con(T )→ Con(S).

Which gives S ≤finEq T by Theorem 2.2.12.

“⇐:” This direction follows from the definition, since IΣ1 ⊂ T .2

Consequently transitivity is ensured in cases where the theories include IΣ1 and the

reduction is given in a primitive recursive way. But there is another reason why this lack

of transitivity does not matter much to us. The centre of attention in proof-theoretical

reduction (especially in relation to proof-theoretical ordinals) is the relation S ≤Π0
2
T .

But note that

Con(T )→ Con(S)

as well as

(∀x)(∀y)[ProvS(x, y)→ (∃z)({ef}(x) = z ∧ ProvT (z, y))]

are both equivalent to Π0
2-sentences. Therefore one gets the following theorem, which

ensures transitivity in those cases.
25Here we follow [56] again.
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Theorem 2.2.15 Assume that S, T and U are theories such that Q ⊂ T and Q ⊂ U .

1. S JRC T , T JRC U and T ⊆Π0
2
U

implies S JRC U .

2. S ≤Γ T , T ≤Π0
2
U and Γ ⊂ Π0

2 has a ∆0
1 definition (in T ) implies S ≤Γ U .

2.2.3 Translation

According to Feferman [18] there is no useful general theory of translations which is

different enough from proof-theoretical reduction to be explored.26 But he gives three

minimal assumptions a translation between two theories S and T should satisfy:27

1. f : LS → LT is recursive and total,

2. S ` ϕ⇒ T ` f(ϕ) and

3. f(¬ϕ) = ¬f(ϕ).

It is not possible to assume that f distributes on the other connectives or the quantifiers

as well. For this would exclude translations between theories that are based on different

logics, e.g. the Gödel-Gentzen translations does not satisfy such a notion (see [58]).

Also Gödel’s Dialectica interpretation does not distribute on quantifiers. But there is a

stronger objection against a general approach of translations that supposes distribution on

all logical connectives, as it was shown in [39].

26Most likely, Feferman either means that all cases that appear in the literature can be adequately handled

by proof-theoretical reduction or that one would like to extend a translation to the deduction system and

therefore gets something very close to proof-theoretical reduction.
27In addition several requirements have to be satisfied by the theories that are under consideration.

However we have made them already in previous definitions: the language must be recursive, negation

must be defined for every formula and provability must be given by axioms and rules.
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Theorem 2.2.16 For any consistent and recursively enumerable S that is based on

classical logic, there is a primitive recursive translation f , which distributes with all

logical connectives, into Q.28

Moreover it is sometimes even suitable to drop distributivity with negation as well and

substitute it by

3′. f(⊥S) = ⊥T ,

where ⊥S and ⊥T are suitable atomic inconsistencies in S and T respectively. One may

give the following definition.

Definition 2.2.17 f : S ≤trans T :⇔ f satisfies condition 1, 2 and 3′. We write S ≤trans
T iff there is such an f .

It is easy to see that S ≤trans T insures relative consistency; for suitable f also in the sense

of S JRC T or S CRC T . However one can get closer to proof-theoretical reduction by

making the reasonable assumption that f can be extended to deductions, say to f ∗. So

one may strengthen property 2 by using

2′. d `S ϕ ⇒ f ∗(d) `T f(ϕ).

However in cases where the language intersects, e.g. in the case of arithmetical theories,

one might be able to define a natural fragment of both languages so that the properties of a

proof-theoretical reduction are satisfied. An example for such a translation is again Gödel-

Gentzen as well as Friedman’s negative translation (see [21]). Both translate PA into

HA in a way which shows that their negative fragment and their provable Π0
2-sentences

coincide. Therefore one gets a proof-theoretical reduction according to these two sets of

formulas.
28The reader should not be confused by this apparently strong statement, because the assumption that S

is consistent allows to use unnatural representations of S in Q that encode various cheap tricks.
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2.2.4 Realisability

Realisability is a method which is heavily used in the analysis of intuitionistic theories.

Its most common form was defined via partial recursive functions by Kleene 1945 as

a syntactic translation based on the intuition that is given by the Brouwer-Heyting-

Kolmogorov-Interpretation (BHK). The idea was to view the BHK of implication and

generalisation as grasped by the notion of partial recursive functions. Before we give a

definition of such a realisability translation we contrast BHK with the idea of realisability.

We are following here A. Troelstra’s book [59] and omit most of the proofs because they

are highly technical and long.

BHK Realisation

A proof of φ∧ ψ is a proof of

φ and ψ.

φ ∧ ψ is realised by a pair of

realisers for φ and ψ, 〈nφ, nψ〉

A proof of φ ∨ ψ is either a

proof of φ or ψ.

φ ∨ ψ is realised by a pair

〈m,n〉 where m entails if the

realizer n realises φ or ψ.

A proof of φ → ψ is

a procedure that transforms

every proof of φ into a proof

of ψ.

φ → ψ is realised by a code

of a partial recursive function

that gives for any realizer of φ

a realizer of ψ.

A proof of (∃y)ψ(y) is a pair

of a witness m and a proof of

ψ(m̄).

(∃y)ψ(y) is realised by a pair

〈m,nφ(m̄)〉 of a witnessm and

a realiser of φ(m̄).
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A proof of (∀y)ψ(y) is a

procedure which gives for

any n an evaluation of ψ(n̄).

(∀y)ψ(y) is realised by the

code of a partial recursive

function which gives for any

n a realiser of ψ(n̄).

By using Kleene brackets one can formulate the implication and the generalisation cases

of realisability in L1
HA. See [59] for details how to formalise T and U in HA. In the

following we consider the easiest case where L1
HA is interpreted in L1

HA. Also we use

p1, p2 to denote the function symbols expressing the projection functions in L1
HA.

Definition 2.2.18 Assume that x is a variable of L1
HA. The realisability translation xr :

L1
HA → L1

HA is defined on the complexity of a ϕ ∈ L1
HA, where ϕ does not contain x free.

1. If ϕ is atomic, then xrϕ :≡ ϕ

2. If ϕ ≡ φ ∧ ψ, then xrϕ :≡ p1(x)rφ ∧ p2(x)rψ

3. If ϕ ≡ φ ∨ ψ, then

xrϕ :≡ [p1(x) = 0→ p2(x)rφ] ∧ [p1(x) 6= 0→ p2(x)rψ]

4. If ϕ ≡ φ→ ψ, then

xrϕ :≡ (∀u)[urφ→ (∃v)[T (x, u, v) ∧ U(v)rψ]]

5. If ϕ ≡ (∃y)ψ(y), then xrϕ :≡ p2(x)rψ(p1(x))

6. If ϕ ≡ (∀y)ψ(y), then xrϕ :≡ (∀y)(∃z)[T (x, y, z) ∧ U(z)rψ(y)]

The next theorem is called the soundness theorem for realisability and is central for the

following investigations. We give the proof of the soundness theorem in full detail, since

we will give an analysis of it in Chapter 6.
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Theorem 2.2.19 Assume that ϕ ∈ L1
HA is a sentence and that T := HA+ Γ, where Γ is

a set of sentences of L1
HA, then:

1. If HA ` ϕ, then there is an n ∈ N such that HA ` n̄rϕ.

2. If for any ψ ∈ Γ, T ` (∃x)(xrψ), then

T ` ϕ⇒ T ` (∃x)(xrϕ).

3. Assume that T ≡Σ0
1
HA and that for any ψ ∈ Γ there is an n ∈ N such that

T ` n̄rψ. Then

T ` ϕ implies that there is an n ∈ N such that T ` n̄rϕ.

Proof

The following proof is taken from [59, pp. 190-192].

1. The proof proceeds by an induction over the length of a HA-deduction of ϕ. To do

so we have to fix a deduction system. Since the realisability translation translates

formulas, a Hilbert-system is favoured. We use a system going back to Gödel,

which is defined in Appendix C. The proof uses p-terms29 in an inessential way to

denote functions whose codes serve as a realiser. Also, to improve readability, we

write trϕ, where t is a p-term, instead of ptqrϕ.

Since the theorem is stated about sentences we have to deal with the occurrence

of free variables in the induction step before the induction hypothesis can be

applied. Therefore we have to treat the free-variable case and the sentence case

in parallel. But since every proof which ends in a formula with a free variable can

be transformed into one ending in a sentence by ∀-introduction, that is a minor

29The set of p-terms is constructed by closing-off the set of terms of LHA by λ-abstraction and Kleene-

brackets. See [59] for details.
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problem. However the constructed deduction for n̄rϕ becomes therefore longer;

which will be an issue in Chapter 6. The following case-distinction follows the

enumeration which is given in Appendix C.

(a) If the instance is a sentence, we take 0r[⊥ → ϕ], otherwise we take the

universal closure and realise it by a constant 0 function with appropriate arity

λ~x.0r(∀~x)[⊥ → ϕ(~x)].

In the following four cases we suppress the case where free variables

occur, since in those the realiser is as well just the dummy-variable version of

the one used in the sentence case.

(b) λx.p2(x)r[ϕ ∨ ϕ→ ϕ]

λx.〈x, x〉r[ϕ→ ϕ ∧ ϕ]

(c) λx.〈0, x〉r[ϕ→ ϕ ∨ ψ]

λx.p1(x)r[ϕ ∧ ψ → ϕ]

(d) λx.〈1−̇p1(x), p2(x)〉r[ϕ ∨ ψ → ψ ∨ ϕ]

λx.〈p2(x), p1(x)〉r[ϕ ∧ ψ → ψ ∧ ϕ]

(e) λy.{y}(t)r[(∀x)ϕ(x)→ ϕ(t)]

(f) λy.〈t, y〉r[ϕ(t)→ (∃x)ϕ(x)]

(g) Assume that there is an application of Modus Ponens with premisses ϕ(~x) and

ϕ(~x)→ ψ(~x). Hence by ∀-introduction we also have proofs of (∀~x)ϕ(~x) and

(∀~x)[ϕ(~x)→ ψ(~x)]. The induction hypothesis gives then an n and an m such

that HA proves

n̄r(∀~x)ϕ(~x)

and

m̄r(∀~x)[ϕ(~x)→ ψ(~x)].
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Therefore Definition 2.2.18 gives

{n}(x)rϕ(x)

and

{m̄}(x)r[ϕ(~x)→ ψ(~x)].

By Modus Ponens and Definition 2.2.18 we therefore obtain

{{m̄}(~x)}({n}(~x))rψ(~x).

Thus λ~x.{{m̄}(~x)}({n̄}(~x))r(∀~x)ψ(~x).

For simplicity we only consider the cases without free variables for the

other rules.

(h) We can assume that there are proofs for n̄r[ϕ → χ] and m̄r[χ → ψ]. With

xrϕ having been assumed, one gets {n̄}(x)rχ and hence {m̄}({n̄}(x))rψ.

By the deduction theorem and Definition 2.2.18 this gives

λx.{m̄}({n̄}(x))r[ϕ→ ψ].

(i) Assume that there is a proof of n̄r[ϕ ∧ ψ → χ]. Also assume that xrϕ and

yrψ, which gives 〈x, y〉r[ϕ ∧ ψ]. Together this gives {n̄}(〈x, y〉)rχ. Hence

we get λxλy.{n̄}(〈x, y〉)r[ϕ→ (ψ → χ)].

(j) Assume that there is a proof of n̄r[ϕ → (ψ → χ)]. To apply the

deduction theorem, assume that xr[ϕ ∧ ψ]. By Definition 2.2.18 and two

applications of Modus Ponens we get {{n̄}(p1(x))}(p2(x))rχ. Therefore

λx.{{n̄}(p1(x))}(p2(x))r[ϕ ∧ ψ → χ] by Definition 2.2.18.

(k) Assume that n̄r[ϕ→ ψ]. To apply the deduction theorem, assume that xr[χ∨

ϕ]. By Definition 2.2.18 we get p1(x) = 0 → (p2(x)rχ) and p1(x) 6= 0 →

(p2(x)rϕ). If p1(x) = 0 is true, then

xr[χ ∨ ψ];
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otherwise we have a proof of {n̄}(p2(x))rψ and therefore get

〈p1(x), {n̄}(p2(x))〉r[χ ∨ ψ].

This gives

λx.[(1−̇p1(x))x+ sgn(p1(x)) · 〈p1(x), {n̄}(p2(x))〉]r[χ ∨ ψ].

(l) Assuming that there is a proof for ψ(~y) → ϕ(x, ~y), then we get a proof for

n̄r(∀~yx)[ψ(~y) → ϕ(x, ~y)] by induction hypothesis. To use the deduction

theorem, assume that zrψ(~y), which leads to {n̄}(~y, x, z)rϕ(x, ~y). Hence we

get

λx.{n̄}(~y, x, z)r(∀x)ϕ(x, y).

Therefore we get by Definition 2.2.18

λ~yλzλx.{n̄}(~y, x, z)r(∀~y)[ψ(~y)→ (∀x)ϕ(x, ~y)].

(m) From a proof of ϕ(x) → ψ we get a proof of n̄r(∀x)[ϕ(x) → ψ]. To use the

deduction theorem we assume that ur(∃x)ϕ(x), which gives p2(u)rϕ(p1(u)).

Therefore we get {n̄}(p1(u), p2(u))rψ, hence we can obtain

λu.{n̄}(p1(u), p2(u))r[(∃x)ϕ(x)→ ψ].

We have completed all logical cases and will consider the axioms of HA in the

following.

(a) We give explicit p-terms for the axioms of identity:

λx.0r(∀x)[x = x]

λxλyλzλu.0r(∀xyz)[x = y ∧ y = z → x = z]

λx1...λxnλu.0r(∀x1, ..., xn)[xi = y → [ϕ(xi)↔ ϕ(y)]]

λxλu.0r(∀x)[S(x) 6= 0]

λxλyλu.0r(∀xy)[S(x) = S(y)→ x = y]
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(b) All axioms for primitive recursive functions are realised by a constant 0

function with same arity.

(c) Assume that ur[ϕ(0)∧ (∀x)[ϕ(x)→ ϕ(S(x))]]. By the recursion theorem we

can find a code for a partial recursive function

f(u, 0) ' p1(u)

f(u, S(x)) ' {p2(u)}(x, f(u, x)).

An easy induction shows that f is total. Hence we can obtain

λuλx.f(u, x)r[ϕ(0) ∧ (∀x)[ϕ(x)→ ϕ(S(x))]→ (∀x)ϕ(x)].

2. Assume that T ` ϕ, where ϕ is a sentence. The deduction theorem gives us

HA ` ψ → ϕ, where ψ is a finite conjunction of sentences of Γ. Hence, by

the assumptions of the theorem and the Modus Ponens step from above, we get the

result.

3. As before the assumption that T ` ϕ, where ϕ is a sentence, gives a ψ such that

HA ` ψ → ϕ. This leads to T ` {n̄}(m̄) ↓ ∧{n̄}(m̄)rϕ. Since {n̄}(m̄) ↓ is a

Σ0
1-sentence, we have HA ` {n̄}(m̄) ↓. By the fact that HA is Σ0

1-correct, there is

a suitable m0 = {n̄}(m̄) such that HA ` m0rϕ.

2

The proof of Theorem 2.2.19 proceeds by constructing in every case a realiser from given

ones. Moreover the proof divides into a finite number of cases. Therefore the proof above

gives a primitive recursive method to find such a realiser. Consequently one can formalise

via primitive recursive functions f1, f2 a version of Theorem 2.2.19 as

HA ` ProvHA(x, pϕq)→ ProvHA(f1(x), pptf2(x)qrϕq).
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However there is no primitive recursive universal realiser. As an diagonalisation (see [59]

p. 192) shows, there are no provable total recursive functions f ′1 and f ′2, in HA, such that

HA ` ProvHA(x, pϕq)→ ProvHA(f1(x), ppλx.t(x)qrϕq),

such that the p-term t defines the function f2.

Realisability does not effect formulas of a particular form (called almost negative

formulas), which makes these formulas particularly interesting for conservativity results.

Definition 2.2.20 An almost negative formula is an element of L1
HA which does not

contain ∨ and a ∃-quantifier can only occur in front of an equation (like (∃x)(t(x) =

s(x))).

Theorem 2.2.21 For any ϕ ∈ L1
HA its realised version xrϕ is logically equivalent to an

almost negative formula.

Proof

See [59, p. 193].2

The proof of the next proposition is given in full detail, because it will be analysed in

Chapter 6.

Theorem 2.2.22 If ϕ is almost negative, then

HA ` (∃x)(xrϕ)↔ ϕ.

Proof

The proof goes by induction on the construction of ϕ.

1. In the case of an atomic ϕ the Lemma trivialises to ϕ↔ ϕ by Definition 2.2.18.
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2. ϕ ≡ (∃y)[t(y) = s(y)] :

“⇒”: We assume that (∃x)(xrϕ), which is

p2(x)r[t(p1(x)) = s(p1(x))].

But this is just t(p1(x)) = s(p1(x)), hence we get (∃y)[t(y) = s(y)].

“⇐”: We assume that (∃y)[t(y) = s(y)]. This is equivalent to

(∃y)[〈y, 0〉r(∃y)[t(y) = s(y)]],

by Definition 2.2.18 and HA ` p1(〈y, 0〉) = y. Hence we get (∃x)[xr(∃y)[t(y) =

s(y)]] and are done.

3. ϕ ≡ ψ1 → ψ2 :

“⇒”: We assume that (∃x)(xrϕ). This is

(∃x)(∀u)[urψ1 → (∃v)[T (x, u, v) ∧ U(v)rψ2]].

The induction hypothesis

(∃w)[wrψ2]→ ψ2

gives us

(∀u)[urψ1 → ψ2].

By induction hypothesis

ψ1 → (∃u)[urψ1],

which gives ψ1 → ψ2.

“⇐”: We assume that ψ1 → ψ2. By assuming urψ1, we get ψ1 by induction

hypothesis, and hence ψ2. The induction hypothesis gives us therefore (∃v)[vrψ2].

Together this gives

urψ1 → (∃v)[vrψ2].

Let ev be the function that gives v for every input u. Hence evr[ψ1 → ψ2] and are

done.
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4. ϕ ≡ (∀y)ψ(y):

“⇒”: We assume that (∃x)(xrϕ). This is

(∃x)(∀u)(∃v)[T (x, u, v) ∧ U(v)rψ(u)]].

By induction hypothesis this gives (∀u)ψ(u). Hence, by renaming of variables, we

are done.

“⇐”: We assume that (∀y)ψ(y). By induction hypothesis we get (∀y)(∃z)[zrψ(y)].

Hence, by choosing a code for the function “y 7→ z” as the realiser, we are done.

5. ϕ ≡ ψ1 ∧ ψ2:

ψ1 ∧ ψ2 ⇔ p1(x)rψ1 ∧ p2(x)rψ2 ⇔ 〈p1(x), p2(x)〉r[ψ1 ∧ ψ2]⇔ xr[ψ1 ∧ ψ2]

2

The last two propositions easily give idempotence.

Theorem 2.2.23

HA ` (∃x)(xr(∃y)(yrϕ))↔ (∃y)(yrϕ)

A classical application of realisability is the analysis of Church’s Thesis. Therefore we

will give two formulations of this thesis in the following.

Definition 2.2.24 Let ϕ be almost negative and not contain y freely. The following

schema is denoted by ECT0 and is called extended Church’s Thesis.

(∀x)[ϕ→ (∃y)ψ(y)]→ (∃u)(∀x)[ϕ→ (∀v)(T (u, x, v) ∧ ϕ(U(v)))]

Here ψ is just any formula of L1
HA.
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By taking ϕ as 0 = 0 one gets a formula equivalent to Church’s Thesis (CT0) itself, which

is

(∀x)(∃y)ψ(y)→ (∃u)(∀x)[(∃v)T (u, x, v) ∧ ψ(U(v))]30.

In order to use Theorem 2.2.19 one has to establish the following lemma.

Lemma 2.2.25 For any universal closure ϕ of an instance ofECT0 there exists an n ∈ N

such that

HA ` n̄rϕ.

Proof

See [59, p. 195]. 2

In terms of ECT0 one can characterise realisability as follows.

Theorem 2.2.26 Assume that T := HA + Γ, where Γ are some sentences of L1
HA, such

that for any ψ ∈ Γ

T ` (∃x)(xrψ).

Then

• T + ECT0 ` ϕ↔ (∃x)(xrϕ)

• T + ECT0 ` ϕ if and only if T ` (∃x)(xrϕ).

Proof

The first statement is shown by induction on the complexity of ϕ. For instance let’s

30This can be read as “If a procedure is total, then there is already a total recursive function which

executes it” or as “Every function is already a total recursive one”.
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assume that ϕ :≡ φ→ ψ;

(φ→ ψ) ↔ (by induction

hypothesis)

((∃x)[xrφ]→ (∃y)[yrψ]) ↔ (by prenexiation)

(∀x)([xrφ]→ (∃y)[yrψ]) ↔ (by ECT0)

(∃z)(∀x)([xrφ]→ (∃v)[T (z, x, v) ∧ U(v)rψ]) ↔ (by the definition

of xr according to

implication)

(∃z)(zr[φ→ ψ])

For the second claim we firstly note that the implication from right to left is given by the

first claim. To prove the implication from left to right we assume that T + ECT0 ` ϕ.

Hence T ` φ → ϕ, for a conjunction φ of universal closures of ECT0-instances. Since

Theorem 2.2.19 shows that T ` ψ implies T ` (∃x)(xrψ), we get T ` (∃x)[xr(φ→ ϕ)].

Also we get T ` (∃x)(xrφ) by Lemma 2.2.25 and HA ⊂ T . By the implication case in

Definition 2.2.18 and Modus Ponens, we conclude T ` (∃x)(xrϕ). 2

Since the proof of Theorem 2.2.26 is done by a uniform proof construction, this gives a

proof-theoretical reduction T + ECT0 ≤alm.neg T for the almost negative fragment of

L1
HA (Theorem 2.2.22).

For the purposes of ordinal analysis it is important to know that transfinite induction does

not disturb Theorem 2.2.26. Therefore we first define this schema.

Definition 2.2.27 Let 〈A,≺〉 be such that A is a primitive recursive set and≺ a primitive

recursive order on A. The schema TI(≺) is then

(∀x)[[A(x) ∧ (∀y ≺ x)ϕ(y)]→ ϕ(x)]→ (∀x)[A(x)→ ϕ(x)]

for ϕ ∈ L1
HA. Here A(x) and x ≺ y are abbreviations for fA(x) = 1 and f≺(x, y) = 1

respectively, where fA, f≺ ∈ L1
HA are the function symbols denoting the characteristic
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functions of the respective sets.

If we want to restrict the schema to a certain set of formulas Γ we denote this by TIΓ(≺).

According to the side conditions on Γ, that are demanded by Theorem 2.2.26, we only

need the following lemma to show that TI(≺) does not change the possibility of giving a

proof-theoretical reduction.

Lemma 2.2.28 For any closed instance ϕ of an TI(≺) it holds that there is an n ∈ N

such that HA+ TI(≺) ` n̄rϕ.

Proof

See [59, p. 199].2

One easily gets the following corollary by putting Lemma 2.2.28 and Theorem 2.2.26

together.

Corollary 2.2.29 For any primitive recursive ≺

HA+ TI(≺) + ECT0 ` ϕ if and only if HA+ TI(≺) ` (∃x)(xrϕ).

Even though the idea behind realisability is to interpret formulas by their computational

content, it seems fair to say that it should be viewed as an ordinary translation and hence

as a proof-theoretical reduction (as explained section 2.2.3).31

31As I said earlier, embracing semantics does not make a methodology less syntactic. On the contrary it

characterises a good syntactic methodology to reveal the semantics without collapsing into a referentialistic

point of view.
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2.3 An axiomatization of Theory Reduction

In [35] Niebergall identifies certain features a good notion of theory reduction should have

and are arguably accepted by most in the community32. He then presents a formalisation

of these features in an unspecified base theory33, that should be as weak as possible. The

following axioms axiomatise the notation SρT (read as “S is reducible to T ”), where

S, T, U,E, F range over theories as formalised objects in the unspecified base theory.

1. ∀S, T (S ⊂ T ⇒ SρT )

2. ∀S, T, U(SρT ∧ TρU ⇒ SρU)

3. ∀S, T (SρT ⇒ (T is consistent ⇒ S is consistent ))

4. ∀S, T (SρT ⇒ ∀ψ ∈ S∃ϕ ∈ T{ψ}`ρ{ϕ}`)

5. ∀E,F finitely axiomatisable

EρF ⇒ IΣ1 ` Con(F )→ Con(E).

The most distinguishing characteristic of the axiomatic approach is, that it does not rest on

the idea that a reduction has to be given by a function.34 This accords with some people’s

view that reduction should not be a term-term, predicate-predicate or formula-formula

relation, as stated in [35].

We do not wish to argue here for the axioms 1-4, in fact we doubt whether 1-3 would

be subject to any objections anyway. Axiom 5 is chosen that way, because provable

32He calls them linguistic intuitions.
33In [35] on page 52 Niebergall explains that, since his reducibility logic (a modal logic like provability

logic) is too weak to distinguish interpretability from proof-theoretical reduction, a “pure” axiomatization

does not seem fruitful.
34Niebergall links the lack of a function to the question whether a reduction should be structure preserving

or not. But, as we said before, we are not interested in this direction of his argumentation.
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consistency-reduction is a wish of the community and the restriction to finite theories

rules out non-standard representations of theories in arithmetic.35 The subtheory relation,

interpretability and local interpretability obviously satisfy the axioms above. Moreover a

very surprising property of this axiom system is that it even almost defines interpretability.

Theorem 2.3.1 If SρT is governed by axiom 1-5, IΣ1 ⊂ T and T is reflexive36, then

• If SρT , then S �loc T .

• If Q ⊂ S, then: SρT ⇒ S ⊆Π0
1
T .

• If S is axiomatisable, then: if SρT , then S � T .

Proof

See [35, p. 41].2

Since S �loc T satisfies axiom 1-5 we get the following corollary.

Corollary 2.3.2 If Q ⊂ S, S is axiomatisable, IΣ1 ⊂ T and T is reflexive, then:

• S �loc T ⇒ S ⊆Π0
1
T and S � T .

• If E is finitely axiomatisable, then: SρT and S ` Con(E) implies T ` Con(E).

Moreover the close relationship with interpretability is preserved when axiom 5 is

weakened to

6. SρT ∧ S ` Con(E)⇒ T ` Con(E),

where E is a finitely axiomatizable theory.

35For in the case ofE = {e0, ..., ek} one can chose the canonical representation x = pe0q∨...∨x = pekq
36A theory T is called reflexive, if it proves the consistency of all its finite fragments.
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Theorem 2.3.3 If SρT is governed by axiom 1-4 and 6, IΣ1 ⊂ T and S is a reflexive

extension of Q, then

• SρT ⇒ S ⊆Π0
1
T

• If SρT and S is axiomatisable, then S � T .

Proof

See [35, p. 42].2

However there are some differences with interpretability. For instance the property of

interpretability given by Theorem 2.2.5 does not hold in general for a relation governed

by axioms 1-5 as shown in [35, p. 44].

More impotently the above axiom system is not satisfied by proof-theoretical reduction,

because proof-theoretical reduction fails to satisfy axiom 4. For instance it is a standard

result of proof-theory that ACA0 ≤ PA. But if ρ is governed by axioms 1-5, then

ACA0 is not ρ-reduceable to PA, which is an easy result from the theorem following the

definition of ACA0.

Definition 2.3.4 ACA0 is formulated in L2({0,=, S,+, ·}) with all axioms ofQ together

with the single second order induction axiom

X(0) ∧ (∀x)[X(x)→ X(S(x))]→ (∀x)(X(x)),

the axiom of extensionality

X = Y ↔ (∀x)(X(x)↔ Y (x))

and arithmetical comprehension

(∃X)(∀x)(X(x)↔ ϕ(x)),

where X and second-order quantification do not occur in ϕ.
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Theorem 2.3.5 1. ACA0 ≤ PA

2. ACA0 6� PA

Proof

ACA0 ≤ PA can be easily seen by working in IΣ1. If ACA0 ` ϕ for a sentence

ϕ ∈ L1
Q, then there is a deduction in a Gentzen system for some sequent Γ ⇒ ϕ, where

Γ ⊂ ACA0. As explained in Section 2.1, cut-elimination can be done in IΣ1, therefore

we have a cut-free deduction of Γ ⇒ ϕ. By the subformula property all second order

variables occurring in the deduction already occur in Γ ⇒ ϕ. Next we substitute for

every second-order variable which occurs in an instance of a comprehension axiom of Γ,

its comprehension formula. The comprehension axioms therefore becomes logical valid

formulas, which can be cut out. For any remaining X(y) we substitute y = 0. Note that

there cannot be any second-order variables left after this procedure. Hence, since PA

embraces induction for any formula of L1
Q, we get a sequent ∆ ⇒ ϕ with ∆ ⊂ PA,

which leads to PA ` ϕ.

It remains to show that ACA0 6� PA. We only defined � for first order theories but

it should be clear how one can extend it to second order. However in the second-order

case Theorem 2.2.6 proceeds in the same way. Towards a contradiction let’s assume

that ACA0 � PA. Then by a version of Theorem 2.2.6 for any finite subtheory of

ACA0, let’s call it E, PA ` Con(E). But as we know from [26, p. 154], ACA0 is

finitely axiomatizable. Therefore PA ` Con(ACA0). But since ACA0 ≤ PA, this gives

PA ` Con(PA).2



Chapter 2. Theory Reduction 71

2.4 Discussion

The disagreement of two notions of theory reduction in the case of natural theories, like

PA andACA0, forces us to make a choice, when the “right”,“best” or most “appropriate”

notion is aimed at. However even though we have to choose as well, our choice is much

easier, because we merely ask for a notion which serves our well defined purposes. We

want a notion that summarises all methods used in ordinal-analysis that have been used so

far in the literature, for example translation, realisation and cut-elimination. Furthermore

one of the most interesting outcomes of an ordinal-analysis is the characterisation of the

provable-total functions of a theory. Therefore Π0
2-conservativity is of particular interest.

As a third point, we want to compare theories based on different logics. The fourth

consideration is in fact a restriction: ordinal-analysts are mainly interested in strong

theories far above PA.37

Hence we prefer proof-theoretical reduction. From a positive perspective, because it

subsumes interlogical translations and therefore allows the comparision of intuitionistic

and classical theories (something interpretabilitiy is lacking). Also from a negative

perspective its lack of transitivity is not much of an issue for us, because Theorem 2.2.14

assures us that transitivity is satisfied, when the methods in use can be done primitively

recursively and the theories are above IΣ1. This is a condition which is easily met

for ordinal-analysis that is done by transfinite cut-elimination (see [33]). Moreover, as

Theorem 2.2.15 shows, even for those cases where the methods are not primitive recursive

our aim for Π0
2-conservativity ensures transitivity.

However I want to say something about the Niebergall-Feferman-dispute. The example

that Niebergall gives in the proof of Theorem 2.2.13 is particularly misleading in view of

the fact that those theories are rather weak. In the case of weak theories, where existence

claims do not play much of a role because of their rather narrow ontological basis, the

37That is not only grounded in the personal interest of ordinal analysts. For weak systems an ordinal

analysis is quite painful and not worth the effort since in most cases other methods work far better.
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question of strength boils down to what a theory can do. Also, since fancy proof-methods

are also missing in weak theories, the intuition behind can do boils down to whether a

theory can perform a certain operation or not. Hence the issue here is the provability of

Π2-sentences. However, since by Theorem 2.2.15 Niebergall’s example does not satisfy

Π0
2-conservativity, one might ask the question how this example is supposed to challenge

our intuition on theory reduction. For it seems reasonable to assume that any reduction-

relation should enjoy Π0
2-conservativity when going up one of its chains in the realm of

weak arithmetical theories.
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Chapter 3

A better Base Theory for

Ordinal-Analysis

The current chapter mainly serves as an introduction to the theories ÎD
i

n and the results

that are given by Buchholz, Rüede and Strahm in [5] and [44]. Our interest in these

theories is based on an account which is given by Buchholz in [5] and concerns the

interaction of intuitionistic logic with inductive definitions. According to Buchholz’s

results, these theories are not stronger than PA but offer an easy and nice definition for

infinite systems that are used in ordinal-analysis. Hence one can substitute ÎD
i

n for PA

as a metatheory for formalised ordinal analysis. This prevents the analyst from drawing

on formalised recursion theory in order to deal with infinite trees and operations upon

them, which makes the actually presented proofs more readable and avoids hand waving.

Since formalised ordinal-analysis is central for some results that one wants to obtain

from an ordinal-analysis, this is a major success in methodology. Moreover there are

ordinal-analyses that never have been formalised, since they use strong metamathematical

principles like the Ω-rule. These can be straightforwardly formalised in ÎD
i

n. Hence these

methodological advantages outline a recipe for an ordinal analysis that is general enough

to draw certain general conclusions from it.
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We will explain the role of formalised ordinal analysis in the first section of this chapter

before we move on to study ÎD
i

n in detail. Moreover the following discussion has a strong

relation to Rathjen’s generalised ordinal-analysis given in [40].

3.1 Ordinal-Analysis and Provable Conservativity

Ordinal-analysis is a proof-theoretical technique which goes back to Gentzen’s work

on the consistency of arithmetic in 1938 (see [23]).1 By giving a reduction method

that transforms a deduction of an inconsistency in PA into a deduction of a very

weak subsystem S of PA, Gentzen’s approach, as presented in [23], is very close to

Definition 2.2.10. Moreover his proof can be extended to prove

PA ⊆Σ1 S

in the metatheory EA+ TIΣ0
0
(≺ε0)2, where ≺ε0 is an elementary recursive well-ordering

of order-type ε0. Here ε0 is defined as

ε0 := sup{ω, ωω, ωωω , ωωω
ω

, ...}

and the ordering 〈ε0,≺ε0〉 is naturally given by a normal-form theorem of ordinal-

arithmetic (for details see [57]). Besides the fact that the ordering is very natural, the

proof has the advantage that it obviously can be done in PRA3 at any step but one. For

the system S is weak enough such that

PRA ` Con(S)

1The following considerations on ordinal analysis are ment to give a unifying framework. For a very

recent recapitulation on ordinal analysis that gives most of the different aspects see [31].
2It should be clear how to adapt Definition 2.2.27 to the systems that are used in this chapter by

substituting the defining formulas of the ordering for the function symbols that are used in Definitin 2.2.27.
3According to Chapter A even in EA, which is less obvious.
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and every step in Gentzen’s transformation can be done primitive recursively. Only to

prove the transformation’s totality one needs TI∆0
0
(≺ε0). Consequently Gentzen’s proof

can be seen in the light of Chapter 2 as showing that

PRA+ TIΣ0
0
(≺ε0) ` Con(S)→ Con(PA),

which leads, together with the provable consistency of S, to

PRA+ TIΣ0
0
(≺ε0) ` Con(PA).

Moreover Gentzen proved that for any proper initial segment of 〈ε0,≺ε0〉 this cannot be

done. Consequently there is no shorter ordering that can prove the consistency in the range

of all orderings provably comparable to 〈ε0,≺ε0〉. This motivates calling ε0 the ordinal

of PA and identifying ε0 with the proof-theoretical strength of PA. The successors of

Gentzen developed longer and more elaborate elementary recursive orderings, which we

will call ordinal notation systems and denote by OT (β), where β is the order type.4 This

motivates the following definition. Here ≺β |α, for α ∈ OT (β), denotes the restriction of

the ordering on OT (β) to those elements of OT (β) that are ≺OT (β)-smaller than α.5

Definition 3.1.1 Let T be a theory as defined in chapter 2 and fix anOT (β). Assume that

there is an α ∈ OT (β) such that

PRA+ TIΣ0
0
(≺β |α) ` Con(T ),

then we call the ≺β-least of this α the proof theoretical ordinal of T and denote it by

‖T‖Con.

4An ordinal notation system in this sense is just an arbitrary elementary recursive set containing strings

of symbols which are well-ordered. We denote these strings by small Greek letters to emphasise their close

connection to ordinal numbers. In most cases we do not distinguish a string from its code, hence in many

cases the elements of an OT (β) are numbers.
5Note that TI(≺β |α) states transfinite induction on α and not just for any ordinal smaller than α.
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Definition 3.1.1 gets its foundational significance in metamathematics by trusting the

well-foundness of a natural ordinal notation systems, like Gentzen’s 〈ε0,≺ε0〉, more

than the consistency of the theory in question. However note that this definition cannot

be generalised by abstracting the preassumed ordinal notation system away, because

there is no known definition of a natural ordinal notation system; and trying to give

Definition 3.1.1 in terms of order types of arbitrary orderings collapses the notion to ω for

every theory, as Kreisel emphasised.6

Another drawback of Definition 3.1.1 is that it obscures the actual benefits of a modern

ordinal-analysis by narrowing it down to a consistency proof. But since the Schütte school

developed their methods in the sixties much more can be achieved. Schütte gave a proof-

theoretical analysis of several systems by using the ω-rule

ϕ(n̄) : n ∈ N
∀xϕ(x)

as a substitute for ∀-introduction and induction axioms. For instance PAω is defined as

the system that embraces all true atomic and negated atomic sentences of L1
PRA as axioms

and is closed-off by the inference rules for ∧,∨,∃, cut and the ω-rule; while negation is

defined on the meta-level. If one views the deductions of PAω as infinite rooted trees and

labels them by elements of an appropriate OT (α) in a suitable way, then cut-elimination

for a subset of PAω’s deductions, which depends on α, can be shown by a transfinite

induction on α. This ensures the subformula property for this fragment of PAω, i.e. every

formula occurring in the deduction is a subformula of the formula which is proved by the

deduction. Moreover the subformula property has many successful applications.

It is an easy fact that restricting the application of the ω-rule in PAω to premisses that are

elementarily recursively enumerable (we denote this system by PAelω ) does not change

the extension of provability, i.e. PAω ≡Π0
∞ PAelω .7 Therefore one can give a provability

predicate of PAω in EA by using codes for the functions enumerating the premisses of
6There is a cheap trick to code the consistency of a theory in an elementary ordering of order type ω.

For details see [29].
7Note that every step in the construction of a reduction tree (see [49, pp. 197-201] for a Definition) for
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the ω-rule (see [51]). By enlarging the deduction system by repetition rules, e.g. rules of

the following form
ϕ
ϕ,

it is possible to do the cut-elimination procedure up to cut-freeness by an elementary

recursive function as Minc shows in [33]. Note this from being not in conflict with

Gödel’s Theorems, because the presence of the repetition rule prohibits that EA is able to

tell whether a particular cut-free object is a deduction or not, since the infinite repetition

of a singular formula opens up the possibility of a correctly formed “proof”-tree that is

not well-founded. However labelling the deductions by ordinals coming from the ordinal

notation systems such that premisses have smaller ordinals than their conclusions ensures

the property of being a deduction. Taking the ordinals into account means using some

instance of a TI(α). The observation that every deduction of PA can be translated into

PAω and that the latter system enjoys cut-freeness ensures consistency. Hence we are

coming back to the view that is given by Definition 3.1.1.

The example of analysing PA via PAω is exemplary for ordinal-analysis in general.

In many cases in the literature, where an ordinal-analysis of a theory T is given, it

is customary to chose an infinite system in which the infinite rules are restricted to

elementary enumerable premisses and some sort of cut-elimination can be done. In the

following we denote such an infinite system for a theory T by T∞. In addition we assume

that the set of the axioms of T∞ are a decidable, consistent and complete subset of the

atomic sentences in the language LT∞ .8

But what do we achieve by this method that is obscured by Definition 3.1.1? The answer

is that we have just given a very uniform way to achieve conservativity results for T with

a formula in LPAω
can be performed elementarily in an evaluation function for terms, which is of course

not elementary, when LPAω
has a symbol for any elementary function. Hence, since PAω enjoys cut-

elimination, every deducible formula has a deduction that is enumerable by function that is elementary in

an evalution function for terms.
8Consistent means that P (~t) and ¬P (~t) are not both axioms, when a negation operator is present. The

requirements on the axioms of T∞ ensure that we can use a “truth predicate” for any theory T .
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Q ⊂ T . For classical theories it proceeds as follows.

First we fix an 〈OT (γ),≺γ〉 and assume that ‖T‖Con = α ∈ OT (γ). We also assume

that the transformation f∞ of T -deductions into T∞ is primitive recursive, since in the

literature this is always the case. Therefore we get

IΣ1 ` {ef∞} ↓

IΣ1 ` ProvT (x, y)→ ProvT∞({ef∞}(x), y).

In the next step we eliminate any rule that might spoil cut-elimination. We assume that

this can be done primitive recursively by a function fr and ignore this step for now.9 Since

Minc’s cut-elimination procedure fc is elementary recursive we also have

IΣ1 ` {efc} ↓

IΣ1 ` ProvT∞(x, y)→ ProvT∞({efc}(x), y).

Informal cut-elimination gives us ‖T‖Con = α, which is the supremum of the ordinal

heights of those T∞ deductions that are relevant for T , i.e. the deductions that were

obtained by cut-elimination on those that had been translated into T∞ from T . Also,

since cut-free deductions have the subformula property, a correctness proof by transfinite

induction on a single deduction with ordinal hight β (for β ≺γ α) can be done by using an

instance of TIΠ0
n
(≺γ |β) for a suitable n.10 This gives for any n ∈ N and any β ∈ OT (γ)

IΣ1 + TIΠ0
n
(≺γ |β) ` π0

n(y) ∧ cutfree(x, β) ∧ ProvT∞(x, y)→ TΠ0
n
(y),

where π0
n(y) and cutfree(x, β) are Σ0

0-formulas formalising the property of being Π0
n and

cut-freeness with ordinal-hight β respectively.

9However this preliminary step to cut-elimination is the point where the hard work of ordinal-analysis

is done. Consequently the assumption that this can be done primitive recursively most certainly excludes

many interesting cases. But to keep our presentation simple we make this assumption.
10Not that in general the truth predicate has the same logical complexity as its grammatical subjects.
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Next we can prove conservativity. To do so assume that T ` ϕ and ϕ ∈ Π0
m for some

m ∈ N. By Lemma 2.1.10 we get

IΣ1 ` π0
m(pϕq) ∧ PrT (pϕq),

which leads to

IΣ1 + TIΠ0
m

(≺γ |β) ` TΠ0
m

(pϕq)

for some β ≺γ α by the results above. Consequently we get

IΣ1 + TIΠ0
m

(≺γ |β) ` ϕ

by Theorem 2.1.11.

Since the proof is uniform and m can be chosen primitive recursively, we get a proof-

theoretical reduction

T ≤ IΣ1 + TI(≺ α),

where TI(≺ α) is the set of all TI(≺γ |β) with β ≺γ α.

Conversely, since T ` TI(≺γ |β) for any β ≺γ α by ordinal analysis, it is obvious that T

proves all consequences of

IΣ1 + TI(≺ α).

Also since the deductions of TI(≺γ |β), that are given by the informal ordinal-analysis,

are usually given uniformly, a proof-theoretical reduction is achieved as well.

By combining these two directions, we get

T ≡ IΣ1 + TI(≺ α).

However, if ω ≺ α, then TI(α) proves all instances of induction. Hence PA + TI(≺

α) ≡ IΣ1 + TI(≺ α) and therefore we do not lose anything by going up to

T ≡ PA+ TI(≺ α).
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An analogous argument gives

T i ≡ HA+ TI(≺ α)

for intuitionistic theories.

For a fixed ordinal notation system OT (β) and an α ∈ OT (β) we denote the theory

T + TI(≺ α) by [T ]α in the following. The hierarchy of all [T ]α is denoted by [T ]OT (β).

Some times we will also write [T ]≺.

The insights that are given above motivate the following definition (see [40]).

Definition 3.1.2 Let T be a classical theory as defined in Chapter 2 and OT (β) an

ordinal notation system. Assume that there is an α ∈ OT (β) such that

T ≡ [PA]α,

then we call α the reductive proof theoretical ordinal of T and denote it by ‖T‖R. If T is

intuitionistic, then we take

T ≡ [HA]α

to be the defining property.

However as Friedman proves in [21] [HA]≺ ≡Π0
2

[PA]≺ for any primitive recursive

ordering ≺. Therefore we can make Definition 3.1.2 smoother.

Definition 3.1.3 Let T be a theory as defined in Chapter 2 andOT (β) an ordinal notation

system. Assume that there is an α ∈ OT (β) such that

T ≡Π0
2

[PA]α,

then we call α the Π0
2-proof-theoretical-ordinal of T and denote it by ‖T‖Π0

2
.
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The advantages over Definition 3.1.1 are obvious. First, both Definitions give us provable

conservativity by proof-theoretical reduction, which is relative to a hierarchy of theories

that is uniformly given. [PA]OT (β) can therefore function as a scale. Hence an ordinal-

analysis proves or refutes conservativity results for a large set of theories.11 Moreover,

since Definition 3.1.3 takes Π0
2-conservativity into account and the [PA]OT (β) are well-

studied theories, one gets a characterisation of the provable-total recursive functions of

a theory almost free in therms of subrecursive-hierarchy theory (see Section 5.2.1 and

Section 5.2.2). Second, the link between a proof-theoretical ordinal and proof-theoretical

strength is explicitly given by mentioning the deducability relation in the definition.12

Also we still grant the leading foundational-idea behind ordinal analysis, since [PA]OT (β)

is a very natural hierarchy of theories as far as the ordering ≺β can be considered as

natural. However to invoke Definition 3.1.3 one has to code T∞ into PA or HA, which

might be quite painful and long. Moreover the definitions of operations on these codes of

infinite deductions require formalised versions of the recursion theorem, becouse infinite

rules appear nested in these deductions and the function that enumerates their premisses

must be explictly given by one of its codes when formalising the deduction in arithmetic.13

Consequently, these proofs become very technical and to make them readable, ordinal-

analysts use a lot of hand waving even in very technical and relatively complete texts like

[51] and [38]. Also for some ordinal-analyses such proofs have never been given, e.g. the

11In Chapter 5 we connect an ordinal analysis to a function hierarchy. Therefore, when two theories are

ordinal analiesed, one can extract totality statement (Π0
2-sentences) which are provable in one but not in the

other theory.
12By proof-theoretical strength we mean the strength of the deducibility relation and not necessarily the

consistency strength, which might be different.
13E.g. one might chose to formalise an ω-rule application

ϕ(n̄) : n ∈ N
(∀x)ϕ(x) ,

where the premisses are enumerable by the elementary recursive function f , as 〈ef , p(∀x)ϕ(x)q〉 with

{ef}(n) := pϕ(n̄)q.



Chapter 3. A better Base Theory for Ordinal-Analysis 82

Ω-rule using analysis given in [41]. But, since the T∞ are, as any systems used in proof-

theory, given by an inductive definition, moving on to theories that include this concept

as a primitive notion seems a natural thing to do. We will discuss this possibility in the

next section.

3.2 Theories of Inductive Definitions and Fixed points

In [1] Peter Aczel promoted his idea viewing an inductive definition of a set of natural

numbers X as a set of pairs, called clauses, of the form 〈A, b〉, where the set A ⊂ N and

b ∈ N. Such a clause is read as:

If every a ∈ A is an element of X , then b ∈ X .

Sometimes clauses are written more intuitively as A ⇒ b. We say that a set X satisfies

a set of clauses C, from A ⇒ b ∈ C with A ⊂ X it follows that b ∈ X . Moreover we

say that a set is inductively definable, if it is the least set (under set inclusion) satisfying

such a C. Theories of inductive definitions try to mimic the idea of the clauses by using

certain formulas that are attached to names for a particular inductively definable set. It

will be clear later that these formulas might be used to define a monotonic operator on the

power set of N (denoted by P(N)) whose smallest fixed point (again under set inclusion)

is also the inductively definable set. Therefore the formulas below are called operator

forms. However to define these formulas we have to define the language in use in more

detail than we did in Chapter 2.

Definition 3.2.1 The languageLID is defined as usual as a one sorted and negation free14

first order language including the constant 0̄ (zero), the binary predicate< and a function

symbol for every primitive recursive function in particular S (successor), 〈., .〉 (pairing)

14¬ is not a primitive symbol.
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and (.)1, (.)2 (projection). As variables we use v0, v1, ....

We define LID(Q) as LID with an additional unary predicate symbol Q and LID(Q,P )

by adding the unary predicate symbol P in the same way to LID(Q).

For technical reasons in the following definitions it is convenient to define negation ¬ϕ

as an abbreviation for ϕ → 0̄ = 1̄. Note that LID(Q) and LHA have the same primitive

symbols (up to the way negation is handled). For notational convenience we denote the

objects defined in the following definitions by capital Latin letters.

Definition 3.2.2 The set of strictly positive (in P ) operator forms of LID(Q,P ) is built

up by the following clauses:

1. Every formula of LID(Q) is a strictly positive operator form.

2. For every term t the formula P (t) is a strictly positive operator form.

3. The strictly positive operator forms are closed under ∃,∀,∧ and ∨.

4. If A ∈ LID(Q) and B is a strictly positive operator form, then A→ B is a strictly

positive operator form.

The set of strictly positive operators is the set of those strictly positive operator forms that

contain at most v0 and v1 free.

An accessibility operator is a strictly positive operator that has the form

A ∧ ∀z[B(z)→ P (z)]

with A,B ∈ L(Q). The set of positive operators (forms) is the set of strictly positive

operators (forms) when it is restricted to LID(P ). The set of strong positive operators

(forms) is similarly defined as the set of positive operators (forms) but without including

condition 4 into the definition.
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As suggested before, one idea behind positive operators is that each of them, say A(P, x),

can serve to define a monotone operator

Φ : P(N)→ P(N)

by defining

Φ(S) := {n ∈ N : A(S, n)}

for S ∈ P(N). It is easy to prove monotonicity by using positivity.15 Conversely it is

well known that any monotone operator on P(N) can be defined by a positive operator

form, where the other free variables serve as parameters (see [37] for details). Moreover

it is well known that inductively definable sets coincide with the smallest fixed points of

monotone operators. However it is possible to strengthen this notions by going transfinite;

strictly positive operator forms can serve as a formalisation of transfinite iterations of

inductively definable sets by using Q as a place holder for previously defined sets. In

order to deal with inductively definable sets and their transfinite iterations in a first order

system we have to give them explicit names, which can serve then as predicate constants.

The next definition fixes a name for a set that is defined by an operator of LID(Q,P ).

Definition 3.2.3 The first order language L∗ID(strict) is built from LID by adding for

every strictly positive operator A ∈ LID(Q,P ) a new unary predicate symbol PA to

the primitive symbols of LID. The languages for accessible L∗ID(acc), positive operators

L∗ID(pos) and strong positive operators L∗ID(strong) are defined analogously.

According to the question that arose before about a theory formalising the principles

of inductive definitions one might suggest a theory that formalises all the principles that

have been given in the presentation of inductive definitions above, i.e. formulating axioms

expressing that PA is the least fixed point ofA. This theory is denoted by ID1 and defined

as follows.
15Φ is called monotone, if S1 ⊆ S2 implies Φ(S1) ⊆ Φ(S2).
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Definition 3.2.4 The theory ID1 is formulated in L∗ID(pos) and includes all axioms of

PRA, induction for all formulas of L∗ID(pos) and the following two axioms governing

the predicate symbols that are introduced by Definition 3.2.3:

(∀x)[PA(x)↔ A(PA, x)]

(∀x)[A(ϕ, x)→ ϕ(x)]→ (∀x)[PA(x)→ ϕ(x)],

where A(P, v1) is a positive operator and ϕ any formula of L∗ID(pos) with only one free

variable.16

But it causes problems to choose ID1 as a base theory for a hierarchy, i.e. forming

[ID1]≺ as [PA]≺ was formed above. Even when proof-theorists do not have any more

foundational issues with ID1 as they have with PA, ID1 is far to strong in order to make

[ID1]≺ useful. Since ‖ID1‖R = ψ(εΩ+1)17 (see [38]), the hierarchy [ID1]≺ already starts

at a level where it cannot distinguish many interesting theories from one another.

It was Buchholz who discovered an interesting consequence of the fact that the axiom

of choice is much weaker over intuitionistic logic than it is over classical. Because,

as Buchholz proves in [5], IDi
1 without the second axiom that governs the predicates

denoting inductively defined sets and the first restricted to strong positive operators

(denoted by ÎD
i

1(strong)) is not stronger than HA.

Theorem 3.2.5 ÎD
i

1(strong) is conservative over HA with respect to almost negative

formulas.

The proof in fact gives ÎD
i

1(strong) ≤alm.neg. HA and can be lifted to

ÎD
i

1(strong) + TI(≺) ≤alm.neg. HA+ TI(≺)

16Here A(ϕ, x) and A(PA, x) denote the formulas generated by substituting the formulas ϕ(t), PA(t)

and the variable x for P (t) and v1 respectively in A(P, v1). Obviously, the term t varies from context to

context.
17An ordinal far higher than ε0.
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for a primitive recursive ordering ≺. However, as Rüede and Strahm showed in [44],

this can be strengthened to theories dealing with iterations of inductive definitions up to

ω.18 In order to formulate these theories in a readable way we have to introduce two

conventions. In the following we identify

PA
s (t) with PA(〈t, s〉) and

PA
<s(t) with t = 〈t0, t1〉 ∧ t1 < s ∧ PA(t).

Definition 3.2.6 The theory ÎD
i

n(strict), which is formulated in L∗ID(strict), is based

on intuitionistic logic. It comprises the axioms of HA with induction being extended to

L∗(strict) and includes for every strictly positive A(P,Q, v0, v1) the fixed point axiom:

(∀y < n)(∀x)[PA
y (x)↔ A(PA

y , P
A
<y, x, y)],

where A(PA
y , P

A
<y, x, y) results from A(P,Q, v0, v1) by substituting for P (t) the atom

PA
v1

(t), for Q(t) the formula PA
<v1

(t), for v0 the variable x and for v1 the variable y.19

Also we define ÎD
i

<ω(strict) :=
⋃
n∈N ÎD

i

n(strict).

The theories ÎD
i

<ω(acc) and ÎD
i

n(acc) are the respective subsystems where only

accessibility operators are used.

3.3 Reducing ÎD
i

<ω(strict) to HA

As already suggested before, Rüede and Strahm showed the following theorem in [44].

Theorem 3.3.1 (Rüede and Strahm)

18This obviously is the best possible, since to make sense of transfinite iterations in a theory one has to

add TI(≺) as well.
19in that order
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ÎD
i

<ω(strict) ≤alm.neg. HA

ÎD
i

<ω(strict) ≤Π0
2

HA

While Buchholz’s proof of the special case with n = 1, which is stated in Theorem 3.2.5,

is directly given via a nice coding and a realisability interpretation, Rüede’s and Strahm’s

proof takes a little detour through a bunch of proof-theoretical results that have been

previously given by other logicians. It starts with another result that goes back to

Buchholz and is proved in [6].

Theorem 3.3.2 (Buchholz)

IDi
n(strict) ≤alm.neg. IDi

n(acc)

The proof of this statement shows that the following stronger statement can be proved as

well.

Theorem 3.3.3 ÎD
i

n(strict) ≤alm.neg. ÎD
i

n(acc)

By the results that are stated in [44] one can get rid of the principles of inductive

definitions in deductions by translating them into a second-order systems.

Theorem 3.3.4 (Rüede and Strahm)

ÎDn(acc) ≤LHA ACA−n

The missing links from ACA−n to PA and from PA to HA are straightforward

constructions.20

Since the proofs are important for the result that will be given in Chapter 6, we give them

in full detail.
20The theory ACA−n will be introduced in Definition 3.3.13
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3.3.1 A Proof by Buchholz

The proof of Theorem 3.3.3 is given via a realisability translation that literally follows

Definition 2.2.18. However, since the translation operates on L∗ID(strict), we have to

add how to proceed with the additional predicates PA. This is not easy and already

includes the general proof idea. Moreover we have to take a detour through realisability

on LID(Q,P ) in order to precisely state it. Since LID(Q,P ) has the additional predicates

Q and P , we have to add two respective cases to Definition 2.2.18.

Definition 3.3.5 For every ϕ ∈ LID(Q,P ) we define xrϕ inductively on the complexity

of ϕ as we do in Definition 2.2.18 and add the following two cases:

• If ϕ ≡ P (t), then xrϕ :≡ P (〈t, x〉).

• If ϕ ≡ Q(t), then xrϕ :≡ Q(〈(t)0, (x)1, (t)1〉).

The central observation that is used to prove Theorem 3.3.3 is stated in the following

lemma.

Lemma 3.3.6 For any strictly positive operator form A there is a accessibility operator

form B such that xrA↔ B is an intuitionistically valid tautology.

Proof

We start by defining a set X , which acts like an alternative definition for strictly positive

operator forms, by the following clauses.

1. L(Q) ⊂ X .

2. If ϕ ≡ P (x), then ϕ ∈ X .

3. X is closed under ∧ and ∀.
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4. If ϕ ∈ L(Q) and ψ ∈ X , then ϕ→ ψ ∈ X .

Note that, if a A ∈ L(Q,P ) is a strictly positive operator form, then xrA ∈ X . In the

next step we give for any ϕ ∈ X formulas ψ1, ψ2 ∈ L(Q) such that ϕ is intuitionistically

equivalent to ψ1 ∧ (∀x)[ψ2(x)→ P (x)]. The proof proceeds inductively on the definition

of X .

1. ϕ ∈ L(Q) : We take ϕ to be ψ1 and ⊥ to be ψ2. It is easy to see that

ϕ↔ ϕ ∧ (∀x)[⊥ → P (x)]

is an intuitinistcally valid tautology.

2. ϕ ≡ P (y) : We take 0̄ = 0̄ to be ψ1 and x = y to be ψ2. As before the following

formula is intuitionistically valid.

ϕ↔ 0̄ = 0̄ ∧ (∀x)[x = y → P (x)]

3. ϕ ≡ ϕ1 ∧ ϕ2 : By induction hypothesis we have ψi1, ψi2 ∈ L(Q) for i ∈ {1, 2}

such that

ϕi ↔ ψi1 ∧ (∀x)[ψi2(x)→ P (x)]

is intuitionistically valid. By taking ψ1 as ψ11 ∧ ψ21 and ψ2 as ψ12 ∨ ψ22 we can

show the equivalence as follows.

ϕ↔ ϕ1 ∧ ϕ2

↔ ψ11 ∧ (∀x)[ψ12(x)→ P (x)] ∧ ψ21 ∧ (∀x)[ψ22(x)→ P (x)]

↔ ψ11 ∧ ψ21 ∧ (∀x)[(ψ12 → P (x)) ∧ (ψ22 → P (x))]

↔ ψ11 ∧ ψ21 ∧ (∀x)[ψ12 ∨ ψ22 → P (x))].

4. ϕ ≡ (∀y)χ(y) : By induction hypothesis we have χ1, χ2 ∈ L(Q) such that

χ(y)↔ χ1(y) ∧ (∀x)[χ2(y, x)→ P (x)]

is intuitionistically valid. We take ψ1 as (∀y)χ1(y) and ψ2 as (∃y)χ2(y, x). Hence

we get the following.
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ϕ↔ (∀y)χ(y)

↔ (∀y)[χ1(y) ∧ (∀x)[χ2(y, x)→ P (x)]]

↔ (∀y)χ1(y) ∧ (∀y)(∀x)[χ2(y, x)→ P (x)]

↔ (∀y)χ1(y) ∧ (∀x)[(∃y)χ2(y, x)→ P (x)].

5. ϕ ≡ ϕ1 → ϕ2 : Here ϕ1 ∈ L(Q). By induction hypothesis we have

ϕ2 ↔ ψ21 ∧ (∀x)[ψ22 → P (x)].

We take ψ1 as ϕ1 → ψ21 and ψ2 as ϕ1 ∧ ψ22. Therefore we can proceed as follows:

ϕ↔ ϕ1 → ϕ2

↔ ϕ1 → [ψ21 ∧ (∀x)[ψ22 → P (x)]]

↔ [ϕ1 → ψ21] ∧ [ϕ1 → (∀x)[ψ22 → P (x)]]

↔ [ϕ1 → ψ21] ∧ (∀x)[ϕ1 ∧ ψ22 → P (x)]].

2

Since the construction in the proof above does not change the occurrences of free

variables, one can find for any strictly positive operator an accessibility operator. This

makes the next definition possible.

Definition 3.3.7 If A(P,Q, v0, v1) is a strictly positive operator, then Ar(P,Q, v0, v1) is

the accessibility operator that is constructed from

xrA(P,Q, v0, v1) by the method given in the proof of Lemma 3.3.6.

We are now able to define the realisability translation for L∗ID(strict) as promised above.

Definition 3.3.8 For any ϕ ∈ L∗ID(strict) we inductively define xrϕ on the complexity

of ϕ as we did in Definition 2.2.18 and add the following case.
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• If ϕ ≡ PA(t) for a strictly positive operator A,

then xrϕ :≡ PAr
(〈(t)0, x, (t)1〉).21

It is easy to see that the translation of Definition 3.3.8 is a translation from L∗ID(strict)

into its fragment L∗ID(acc) with the property that x is the only free variable that is added.

The next lemma gives a technical property of the translation. Since the identity that is

stated is an actual identity of formulas (not an equivalence), it does not affect the proof-

complexity considerations in Chapter 6. We can therefore skip the proof.

Lemma 3.3.9 For any ϕ ∈ LID(Q,P ),

xrϕ(PA
y , P

A
<y) = (xrϕ)(PAr

, PAr

<y).

Proof

See [6, p. 231]. 2

We have to clarify one last technical fact before we are able to prove the actual theorem.

Lemma 3.3.10 Assume that ϕ(z) ∈ LID(Q,P ) is a strictly positive operator form and

ψ(z) :≡ {v}(y, w, (z)0, (z)1)rϕ((z)0).

For any strictly positive operator form A ∈ LID(Q,P ), with at most z1, ..., zn free, there

is a realiser (expressed by a p-term22) pA(x, v, w, y, z1, ..., zn) such that

HA ` (xrA)(ψ, PBr

<y)↔ pA(x, v, w, y, z1, ..., zn)rA(ϕ, PB
<y).

21The x has to be in the middle of the triple, since 〈x, y, z〉 = 〈〈x, y〉, z〉 and the conventions we made

by formalising the iteration of inductive definitions.
22The set of p-terms is constructed by closing-off the set of terms of HA by λ-abstraction and Kleene-

brackets.
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Proof

The proof proceeds by induction on the complexity of A and is copied from [6, pp. 231-

232]. In the following we abbreviate pA(x, v, w, y, z1, ..., zn) by pA(x, ¯̄z).

1. A ∈ LID(Q) : In this case (xrA)(ψ, PBr

<y) ≡ xrA(ϕ, PB
<y) and we take x to be

pA(x, ¯̄z).

2. A ≡ P (u) : Then (xrA)(ψ, PBr

<y) ≡ ψ(〈u, x〉) and xrA(ϕ, PB
<y) ≡ ϕ(u). So by

definition,

HA ` ψ(〈u, x〉)↔ {v}(y, w, u, x)rϕ(u).

Therefore we can use {v}(y, w, u, x) as pA(x, ¯̄z).

3. A ≡ A0 ∧ A1 : Then,

(xrA)(ψ, PBr

<y) ≡ ((x)0rA0)(ψ, PBr

<y) ∧ ((x)1rA1)(ψ, PBr

<y).

By induction hypothesis,

HA ` ((x)irAi)(ψ, PBr

<y)↔ pAi((x)i, ¯̄z)rAi(ϕ, PB
<y)

for i ∈ {0, 1}. Hence,

HA ` (xrA)(ψ, PBr

<y)↔ 〈pA0((x)0, ¯̄z), pA1((x)1, ¯̄z)〉rA(ϕ, PB
<y).

4. A ≡ A0 ∨ A1 : In this case (xrA)(ψ, PBr

<y) is

[(x)0 = 0→ [((x)1rA0)(ψ, PBr

<y)]] ∧ [(x)0 6= 0→ [((x)1rA1)(ψ, PBr

<y)]].

By induction hypothesis,

HA ` ((x)1rAi)(ψ, PBr

<y)↔ pAi((x)1, ¯̄z)rAi(ϕ, PB
<y).

Therefore
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HA ` (xrA)(ψ, PBr

<y)↔ [(x)0 = 0→ [pA0((x)1, ¯̄z)rA0(ϕ, PB
<y)]]

∧[(x)0 6= 0→ [pA1((x)1, ¯̄z)rA1(ϕ, PB
<y)]]

↔ 〈(x)0, f((x)0, pA0 , pA1)〉rA(ϕ, PB
<y),

where f is a primitive recursive function that is defined by f(0, y, z) = y and

f(x+ 1, y, z) = z.

5. A ≡ (∀u)C(u) : This gives

(xrA)(ψ, PBr

<y) ≡ (∀u)[({e}(u)rC)(ψ, PBr

<y)].

The induction hypothesis gives

HA ` ({e}(u)rC)(ψ, PBr

<y)↔ pC({e}(u), ¯̄z, u)rC(u)(ϕ, PB
<y).

Hence

HA ` (xrA)(ψ, PBr

<y)↔ (∀u)[pC({e}(u), ¯̄z, u)rC(u, ϕ, PB
<y)]

↔ λu.pC({e}(u), ¯̄z, u)rA(ϕ, PB
<y).

6. A ≡ (∃u)C(u) : Then

(xrA)(ψ, PBr

<y) ≡ ((x)1rC((x)0))(ψ, PBr

<y).

By the induction hypothesis

HA ` ((x)1rC((x)0))(ψ, PBr

<y)↔ pC((x)1, ¯̄z, (x)0)rC((x)0, ϕ, P
B
<y).

Consequently

HA ` (xrA)(ψ, PBr

<y)↔ pC((x)1, ¯̄z, (x)0)rC((x)0, ϕ, P
B
<y)

↔ 〈(x)0, pC((x)1, ¯̄z, (x)0)〉rA(ϕ, PB
<y).
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7. A ≡ C → D : In this case

(xrA)(ψ, PBr

<y) ≡ (∀u)[(urC)(ψ, PBr

<y)→ ({e}(u)rD)(ψ, PBr

<y)].

Since A is a strictly positive operator form, C ∈ LID(Q,P ) and D is a strictly

positive operator form as well. Consequently (urC)(ψ, PBr

<y) ≡ urC(ϕ, PB
<y). Also

the induction hypothesis gives us

HA ` ({e}(u)rD)(ψ, PBr

<y)↔ pD({e}(u), ¯̄z)rD(ϕ, PB
<y).

Which gives

HA ` (xrA)(ψ, PBr

<y)↔ (∀u)[(urC)(ψ, PBr

<y)→ ({e}(u)rD)(ψ, PBr

<y)]

↔ (∀u)[(urC)(ψ, PBr

<y)→ pD({e}(u), ¯̄z)rD(ϕ, PB
<y)]

↔ λu.pD({e}(u), ¯̄z)rA(ϕ, PB
<y).

2

In the following we want to rely on Theorem 2.2.19. Therefore we have to show that

those axioms from ÎD
i

n(strict) that are not axioms of HA are realisable in ÎD
i

n(acc).

Lemma 3.3.11 For any formula ϕ of the form

(∀y < n)(∀x)[PA
y (x)↔ A(PA

y , P
A
<y, x, y)],

where A is a strictly positive operator, there is an m ∈ N such that

ÎD
i

n(acc) ` m̄rϕ.

Proof

Assume that ϕ is of the form (∀y < n)(∀z)[PA
y (z) ↔ A(PA

y , P
A
<y, z, y)] for a strictly

positive operator A. By Lemma 3.3.9

xrA(PA
y , P

A
<y, z, y) = (xrA)(PAr

y , PAr

<y, z, y).
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Therefore

HA ` xrA(PA
y , P

A
<y, z, y)↔ Ar(PAr

y , PAr

<y, x, y)

by Definition 3.3.7. By using this equivalence together with the fixed point axiom in

ÎD
i

n(acc), one gets

ÎD
i

n(acc) ` y < n→ [xrA(PA
y , P

A
<y, z, y)→ PAr

y (〈z, x〉)].

By Definition 3.3.5 this gives

ÎD
i

n(acc) ` y < n→ [xrA(PA
y , P

A
<y, z, y)→ xrPA

y (z)].

Therefore we can take m1 := pλyzx.xq as a realiser. The other direction of the axiom is

proved in almost the same way, but with the antecedent and the succedent inverted. Hence

we obtain an m2 as we obtained m1. Therefore we can take m := 〈m1,m2〉 such that

ÎD
i

n(acc) ` m̄rϕ.

2

Now we are able to prove Theorem 3.3.3.

Proof

(of Theorem 3.3.3) Let’s suppose for a sentence ϕ ∈ L∗ID(strict) that ÎD
i

n(strict) ` ϕ.

By Theorem 2.2.19 together with Lemma 3.3.11 there is an m ∈ N such that ÎD
i

n(acc) `

m̄rϕ.

Which leads to

(∗) ÎD
i

n(acc) ` (∃x)[xrϕ].

Moreover for almost negative ϕ Lemma 2.2.22 gives us

(∗∗) HA ` (∃x)[xrϕ]→ ϕ.

Combining (∗) and (∗∗) by modus ponens, one gets

ÎD
i

n(acc) ` ϕ.



Chapter 3. A better Base Theory for Ordinal-Analysis 96

It should be clear to the reader that this can be done primitive recursively. 2

Corollary 3.3.12 ÎD
i

n(strict) ≤Π0
2
ÎD

i

n(acc)

Proof

Since LHA includes all primitive recursive functions as primitive symbols, any formula

in ∆0 is equivalent to an equation. Therefore any Π0
2 sentence (∀x)(∃y)ϕ is equivalent to

a (∀x)(∃y)[t1 = t2] in HA. The latter however is an almost negative formula according

to Definition 2.2.20. 2

3.3.2 A Proof by Rüede and Strahm

As mentioned above, the aim is to prove that ÎDn(acc) ≤LHA ACA−n . Before this is done

the missing theory ACA−n is defined. Even though ACA−n is viewed as a second order

theory with parameter-free iterated arithmetic comprehension, the following definition

introduces ACA−n as a first order system. However it should be clear that the present

formulation is equivalent to the usual one by an obvious translation.

Definition 3.3.13 The language LACA−n is defined as LID(Q) with an additional Hϕ for

any ϕ(Q, x, y) ∈ LID(Q).23

ACA−n is based on classical logic, includes all axioms ofHA and comprises the following

first order comprehension axioms

(∀y < n)(∀x)[Hϕ
y (x)↔ ϕ(Hϕ

<y, x, y)]

for any formula ϕ(Q, x, y) ∈ LID(Q).24

23Note that LID(Q) is the same as LHA extended by a new predicate symbol Q and that ¬ϕ is defined

as ϕ→ 0 = 1.
24Hϕ

y and Hϕ
<y are defined as before for the theories of inductive definitions.
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In the next step we prove Theorem 3.3.4. Note that Theorem 3.3.4 talks about the classical

versions of the considered theories, which is essential for the diagonalisation taking place

in its proof.

Proof

(of Theorem 3.3.4)

We want to give a translation τ that assigns to a particular PA a Hτ(A) such that the

translations of the fixed point axioms are provable in ACA−n . Let A(P,Q, x, y) be an

accessibility operator. Hence there are ϕ, ψ ∈ LID(Q) such that

A(P,Q, x, y) ≡ ϕ ∧ (∀z)[ψ(z)→ P (z)].

Next we choose an n such that ϕ and ψ are equivalent to a Π0
n(Q) and Σ0

n(Q) formula

respectively.25 We aim for a fixed point construction, therefore we consider a universal

Π0
n(Q)-formula for LID(Q), which is a formula En(Q, u, x, y, z) ∈ Π0

n(Q) such that for

every ϕ ∈ Π0
n(Q)

PA ` En(Q, pϕq, x, y, z)↔ ϕ.

Substituting En(Q, u, u, z, y) for P (z) in A(P,Q, x, y), one gets

A(En(Q, u, u, z, y), Q, x, y).

It is easy to see that A(En, Q, x, y) is equivalent to a Π0
n(Q)-formula. Therefore there is

a k := pA(En, Q, x, y)q such that

ACA−n ` En(Q, k̄, u, x, y)↔ A(En(Q, u, u, z, y), Q, x, y).

Substituting k̄ for u, we get

ACA−n ` En(Q, k̄, k̄, x, y)↔ A(En(Q, k̄, k̄, z, y), Q, x, y).

25The definition of Π0
n(Q) literally follows the usual definition of Π0

n (see Definition 2.1.3) but

additionally considers Q(t) to be a ∆0
0 formula. Σ0

n(Q) is similarly defined.
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We define D(Q, x, y) :≡ En(Q, k̄, k̄, x, y) for notational reasons.

The comprehension axiom gives

ACA−n ` (∀y < n)(∀x)[HD
y (x)↔ D(HD

<y, x, y)↔ En(HD
<y, k̄, k̄, x, y)].

The definition of En gives:

ACA−n `

(∀y < n)(∀x)[En(HD
<y, k̄, k̄, x, y)↔ A(En(HD

<y, k̄, k̄, z, y), HD
<y, x, y)].

Combining the two equivalences,

ACA−n ` (∀y < n)(∀x)[HD
y (x)↔ A(HD

y , H
D
<y, x, y)].

It is therefore possible to reduce IDn(acc) to ACA−n , by relating PA to its HD through

a translation τ as stated at the beginning of the proof. Note that, since this translation is

uniform in the accessibility operators through En, the coding is primitive recursive and

the deductions appearing in this proof are uniform in the accessibility operators through

En, this translation gives a primitive recursive translation of IDn(acc)-deductions into

ACA−n -deductions. Consequently we have a proof-theoretical reduction. 2

It remains to reduce ACA−n to PA and PA to HA.

Theorem 3.3.14 ACA−n ⊂LPA PA

Proof

Let’s assume that the logic is formulated via a sequent calculus. In this case ACA−n ` ψ

means LK ` ∆ ⇒ ψ, where ∆ ⊂ ACA−n . Since LK ` ∆ ⇒ ψ, there is a cut-free

deduction d0 of ∆ ⇒ ψ in LK. Therefore, since ψ ∈ LPA, d0 includes only those

Hϕ which occur in ∆, say Hϕ1 , ..., Hϕk . The only axioms of ACA−n including an Hϕi
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are those falling under the comprehension or induction schema. We temporarily ignore

induction and consider formulas of the form

(∀y < n)(∀x)[Hϕi
y (x)↔ ϕi(H

ϕi
<y, x, y)].

By basic arithmetic these are equivalent to formulas of the form

n∧
j=1

(∀x)[Hϕi
j (x)↔ ϕi(H

ϕi
<j, x, j)].

However, since a sequent
n∧
j=1

χj,Γ⇒ ψ

is equivalent to

χ1, ..., χn,Γ⇒ ψ,

we obtain from d0 a deduction d1 where the conjuncts of the comprehension formulas

occur separately. (We continue to call the conjuncts of a conjunction that is equivalent to

a comprehension formula the conjuncts of this particular comprehension formula.)

We fix an m ≤ n such that

(∀x)[Hϕi
m (x)↔ ϕi(H

ϕi
<m, x, m̄)]

occurs in the sequent which is equivalent to ∆⇒ ψ as explained above. According to the

chosen notation, this gives that

Hϕi
m (t) is the formula Hϕi(〈t, m̄〉)

and

Hϕi
<m(t) is the formula t = 〈t0, t1〉 ∧ t1 < m̄ ∧Hϕi(t).

Basic arithmetic gives for m = 0 the equivalence

PA ` Hϕi
<0(t)↔ 0̄ = 1̄
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and for m > 0 the equivalence

PA ` Hϕi
<m(t)↔ Hϕi(〈t, 0̄〉) ∨ ... ∨Hϕi(〈t,m− 1〉).

This justifies the substitution26

s(Hϕi
<0(t)) :≡ 0̄ = 1̄

s(Hϕi
<m(t)) :≡ Hϕi(〈t, 0̄〉) ∨ ... ∨Hϕi(〈t,m− 1〉)

s(Hϕi
m (t)) :≡ ϕi([s(s(H

ϕi
<m(t)))], x, m̄)

s(ϕ ◦ ψ) :≡ s(ϕ) ◦ s(ψ) ◦ ∈ {∨,∧,→}

s(⊥) :≡ ⊥

s(Qzϕ) :≡ Qzs(ϕ) Q ∈ {∃,∀}

Using this substitution on d1, we obtain a d2 that does not include any occurrence of Hϕi .

Because, since s(ϕi(H
ϕi
<m, x, m̄)) gives literally the same formula as s(Hϕi

m (x)), the end

sequent of d2 contains formulas of the form

(∀x)[χ(x, m̄)↔ χ(x, m̄)]

instead of comprehension axioms. Since these equivalences are valid formulas, they can

be cut out from the final sequent. Consequently, and after substituting t = 0 into the

remaining induction formulas for Hϕi(t), we get a deduction d3 for a sequent ∆′ ⇒ ψ

such that ∆′ ⊂ ∆ ∩ PA and, hence, PA ` ψ. 2

Using the translation Friedman gives in [21], we can easily reduce PA to HA for every

Π0
2-sentence.

26ϕi([χ(t)], x, 0̄) is obtained from ϕi(H
ϕi
<m, x, 0̄) by substituting χ(t) for Hϕi

<m(t).
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3.4 Conclusions

With Theorem 3.3.1 having been established, it is possible to rephrase Definition 3.1.3

without changing the ordering on theories that is induced by it. But before we can do so

we have to ensure that the presence of transfinite induction does not change the situation.

Hence we have to prove the following theorem.

Theorem 3.4.1

[PA]≺ ≡Π0
2

[ÎD
i

<ω(strict)]≺

Theorem 3.4.1 will follow easily from the following lemma.

Lemma 3.4.2 Assume that ≺ is a primitive recursive relation on N and TI(≺) is the

schema that is defined in Definition 2.2.27. For any closure ϕ of an instance of TI(≺)

there is an n ∈ N such that

HA+ TI(≺) ` n̄rϕ.

Proof

As before we follow [59, p. 199] and give the proof in some detail, because we will need

it in Chapter 6. But for simplicity we restrict ourselves to the case of a closed instance of

TI(≺). Also we assume without loss of generality that any natural number is in the range

of ≺; hence ϕ is of the form

(∀x)[(∀y ≺ x)ψ(y)→ ψ(x)]→ (∀x)ψ(x).

We assume that

wr(∀x)[(∀y ≺ x)ψ(y)→ ψ(x)];

hence

(∀x)[{w}(x)r[(∀y ≺ x)ψ(y)→ ψ(x)]]
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by definition. Which expands to

(∀x, z)[zr(∀y ≺ x)ψ(y)→ {w}(x, z)rψ(x)].

Note that zr(∀y ≺ x)ψ(y) implies (∀y ≺ x)[{z}(y, 0)rψ(y)], since y ≺ x is quantifier

free in LHA for a primitive recursive relation ≺. We define

fc(u, x, y) :'

 0 : x � y

u : x ≺ y
.

It is easy to find a partial recursive function f such that

f(v, w, x) ' {w}(x, λyλu.fc({v}(w, y), y, x)).

The recursion theorem assures that there is an n̄ such that

{n̄}(w, x) ' {w}(x, λyλu.fc({n̄}(w, y), y, x)).

Using TI(≺) with respect to x, we can easily prove the totality of {n̄}(w, x) and that

{n̄}(w, x)rψ(x). For instance the latter follows from

(∀x)(∀y ≺ x)[{n̄}(w, y)rψ(y)→ {n̄}(w, x)rψ(x)].

Hence n̄ realises ϕ by Definition 2.2.18.2

With this lemma proved, the proof of Theorem 3.4.1 is almost trivial.

Proof

of Theorem 3.4.1.

The proof proceeds in three steps. To prove

[ÎD
i

n(strict)]≺ ≤alm.neg. [ÎD
i

n(acc)]≺

note that Lemma 3.4.2 provides the same resources for Theorem 3.4.1 as Lemma 3.3.11

provides for Theorem 3.3.3.

To prove

[ÎDn(acc)]≺ ≤LHA [ACA−n ]≺
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note that the proof of Theorem 3.3.4 is given by a translation τ . Hence any translation of

an instance of transfinite induction from LÎDn(acc) is an instance of transfinite induction

from LACA−n .

Since Theorem 3.3.14 is proved by a translation as well, as an analogous argument gives

[ACA−n ]≺ ≤LPA [PA]≺.

Combining these three steps, the theorem is proved. 2

Consequently we can rephrase Definition 3.1.3 as follows.

Definition 3.4.3 Let T be a theory as defined in chapter 2 andOT (β) an ordinal notation

system. If there is an α ∈ OT (β) such that

T ≡Π0
2

[ÎD
i

<ω(strict)]α,

then we call α the Π0
2-proof-theoretical-ordinal of T and denote it by ‖T‖Π0

2
.

The natural way of formalising an ordinal-analysis in [ÎD
i

<ω(strict)]≺, for an appropriate

≺, gives a recipe that is general enough for the purposes that are outlined in Chapter 5.

But before we discuss these, we will justify this claim of naturalness in the very next

chapter for the example of a system that includes the Ω-rule.
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Chapter 4

A formulation of the Ω-Rule in

ÎD
i
2(strict)

As explained in Section 3.1, it is of special interest to formalise the methods of ordinal-

analysis in a theory of arithmetic in order to obtain conservativity results. In several places

proof-theorists give such formalisations for infinite systems, e.g. systems that include the

ω-rule (see [38] and [51]). There are two ways of formalising infinite deductions. The

first is called the local version: the nodes of an infinite deduction-tree are coded as n-

tuples that include a recursive function enumerating the direct predecessors of the node.

The second is called the global version: the infinite deduction-trees are represented in

arithmetic through a code of their characteristic (recursive) function. In both versions

the codes of some recursive functions essentially appear in the representation of the

deduction-trees. Consequently to define an operation upon these representations in an

arithmetical theory one has to alter these codes in a recursive way, i.e. one has to

rely on a formalised version of the recursion theorem that is accessible in this theory.1

Hence the process of formalisation is not trivial and needs a lot of formalised recursion

1The most common non-formalised version of the recursion theorem is the following (see [24]): For any

recursive function f(~x, y) there exists an e such that {e}(~x) ' f(~x, e).
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theory. Moreover it lies in the nature of mathematical texts dealing with such matters

that they include a lot of handwaving in order to make them readable.2 Since the

applications of formalised recursion theory are not trivial, this sometimes causes doubts

in the community. In addition less commonly used concepts like the Ω-rule3, which is

given by Buchholz in [6], have never been properly formalised. This is not the case,

because the formalisation would be to long or painful to write down. Rather in the case

of the Ω-rule it is not clear what a formalisation in PA could look like. However in the

following we show that using ÎD
i

<ω(strict) helps to avoid these issues (as was promised

in Chapter 3). For in this theory the formalisation is straightforward. The present chapter

tries to convince the reader of this claim by giving a formalisation of an infinite system,

that comprises the Ω-rule, in ÎD
i

2(strict). However the claim is not that the formalisation

of ordinal-analysis in ÎD
i

<ω(strict) is less long, complex or painful than in PRA or PA.

The aim of this chapter is to show that a formalisation of the Ω-rule can be given and

that for most of the infinite systems, that are given in the literature, their formalisation

is straightforward; for formalised recursion theory is not needed. The reader may skip

the present chapter, when she autonomously sees how that might be done, because the

content of this chapter is not used in any other part of the present thesis. However we will

draw on the possibility of an Ω-rule formalisation later on.

4.1 A particular system including the Ω-rule

As was mentioned above, we aim to convince the reader that a formalisation of an ordinal-

analysis that uses the Ω-rule can be done in ÎD
i

<ω(strict). This is done by formalising a

provability predicate that includes the Ω-rule and is exemplary for those methods. We will

formalise the one that is given by Rathjen in [41], since it is used in the ordinal-analysis

2However I personally believe that Kleene’s [28] is a very nice piece of logical work. However not many

would agree.
3See Definition 4.1.3 and its following discussion.
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of theories that we will consider in Chapter 5. When this example is followed, it should

be easy to apply the techniques to other systems as well.

Definition 4.1.1 The language L2
T∞ is a second order language which uses ∈ as

an mediator between first-order terms and second order variables. Moreover L2
T∞

distinguishes between bound and free variables of any order and includes the logical

connectives ∨,∧,→ and ¬. Its primitive symbols are the same as those of LPRA. The

atoms are t1 = t2, t ∈ U , ¬(t1 = t2) and ¬(t ∈ U). The formulas are built from the

atoms through∧,∨,∀x,∀X, ∃x and ∃X . Hence we stipulate that formulas are in negation

normal form. Moreover we call formulas arithmetical, Π0
∞-formulas or Π1

0-formulas, if

they do not include bound second order variables. A formula is called weak, if it belongs

to Π1
0 ∪ Π1

1.4

Free second-order variables and bounded second-order variables are denoted by U, V,W

and X, Y, Z respectively on the meta-level. In [41] the complexity of a formula is

measured by the following function.

Definition 4.1.2 1. gr(A) = 0, if A is an atom.5

2. gr(∀XF (X)) = gr(∃XF (X)) = ω, if F (U) is arithmetical.

3. gr(A ∧B) = gr(A ∨B) = max{gr(A), gr(B)}+ 1

4. gr(∀xF (x)) = gr(∃xF (x)) = gr(F (0)) + 1

5. gr(∀XF (X)) = gr(∃XF (X)) = gr(F (U)) + 1, if F (X) is not arithmetical.

The next definition gives the infinite deduction system that we want to formalise. We

denote the system by T∞ to emphasis that the system is related to a theory T from

4The set of Π1
1-formulas includes the Π1

0-formulas and is closed under second-order ∀-quantification.
5Note we defined ¬(t1 = t2) to be atoms as well.
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[41], which is not given here. Also we use the ordinal notation system of [41] merely

like a black-box and denote it by (OT (θ),≺,�), where � is an additional ordering

on OT (θ) that is defined by using ≺. In addition � is entangled with a notion of

fundamental functions. However the actual definitions of � and fundamental functions

are of no interest here. We just simply note that they can be formalised in arithmetic by

an arithmetical formula. The following definition also lacks an explicit formulation of the

logical rules, but these formulations can be found in Appendix C at item 4.

Definition 4.1.3 Assume that α ∈ OT (θ), ρ ≺ ω + ω.

1. If A is a true atomic or negated-atomic sentence and A ∈ Γ, then T∞ `αρ Γ.

2. If Γ contains A(s1, ..., sn) and ¬A(t1, ..., tn) with grade 0 or ω, where si and ti

(1 ≤ i ≤ n) are terms with equal value, then T∞ `αρ Γ.

3. Assume that 〈Γ1, ...,Γn : Γ〉 is an instance of (∧), (∨), (∃1), (∀2) or (cut), where in

the case of a cut the cut-formula is of a grade ≺ ρ, and βi � α for any 1 ≤ i ≤ n.

If T∞ `βiρ Γi, then T∞ `αρ Γ.

4. If T∞ `βρ Γ, F (U) holds for some β � α and ω � gr(F (U)), i.e. F (U) is not

arithmetical, then T∞ `αρ Γ,∃XF (U).

5. If for anym ∈ N, both T∞ `βmρ Γ, A(m̄) and βm�α holds, then T∞ `αρ Γ,∀xA(x).

6. Let f be a fundamental function. Moreover assume that

(a) f(Ω) � α,

(b) T∞ `f(0)
ρ Γ,∀XF (X), where ∀XF (X) ∈ Π1

1, and that

(c) T∞ `β0 ∆, ∀XF (X) implies T∞ `f(β)
0 ∆,Γ for every set of weak formulas ∆

and any β ≺ Ω.

In this case T∞ `αρ Γ holds.
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Clause 6 is called the Ω-rule and was given by Rathjen in [41]. Rathjen himself developed

it from a natural-deduction version of an Ω-rule that is given by Buchholz in [6].

Buchholz justifies or explains the rule in the mode of the Brouwer-Heyting-Kolmogorov-

interpretation (see [6]). In this interpretation the justification of an implication, say A →

B, is viewed as a transformation of a presupposed justification for A into a justification

for B. Most of the contemporary intuitionistic literature identifies “justification” as a

formal deduction in some constructive system. Consequently a deduction of A → B has

to offer the possibility of transforming a deduction of A into a deduction of B, e.g. this is

often considered as the idea behind→-introduction in the calculus of natural deduction.

In this mood, Buchholz argues as follows: one is allowed to conclude an implication

PA(n) → C, where A is a strictly positive operator and C any formula, when one can

constructively find for any deduction of PA(n) a deduction of C. He is therefore allowed

to extend his formal system by the following rule.

Ω-rule: If for each direct6 deduction X of PA(n) the deduction YX proves

C, then one can form the deduction

YX....
C : for any direct deduction X with

X....
PA(n)

PA(n)→ C .

Note the differences between→-introduction and the Ω-rule. While the Ω-rule explicitly

and merely requires that any deduction for PA(n) can be transformed into a deduction of

C, →-introduction implicitly assures this constructibility requirement by presupposing

a logical claim that implies the possibility of a transformation. Consequently the Ω-

rule grasps the constructive character of the Brouwer-Heyting-Kolmogorov-interpretation

more accurately than→-introduction does.7 Moreover the transformation requirement is

6Direct means that a deduction is cut-free or free of local maxima in a sequent calculus or in natural

deduction respectively.
7In other words, if one takes the →-introduction from natural deduction as the explication of the
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enough to ensure the possibility of eliminating local maxima, since the information of

how to return to a deduction of PA(n) is still available.

In Rathjen’s formulation the Ω-rule is a little more. Only the third part of clause 6

represents the actual Ω-rule; the rest extends the rule by a cut and connects it to the

fundamental functions. In order to understand Rathjen’s restriction to Π1
1-formulas, note

that in Buchholz formulation PA(n) can be seen as a Π1
1-formula, when PA is considered

as a free second-order variable. Moreover Rathjen’s inclusion of a cut into clause 6

matches Buchholz’s intentions as well. Since Buchholz wants to eliminate local maxima

in his natural deduction formulation, he has to reduce an Ω-rule that is followed by an→-

elimination. However when one wants to reduce cuts in a sequent calculus, the analogous

case to Buchholz’s is an Ω-rule that is followed by a cut.

The issue of formalising such a rule should now be unravelled. The premiss quantifies

over all deductions of a certain kind; hence the premiss presupposes a previously defined

set whose elements are in the range of its metaquantifier. In other words, Definition 4.1.3

is a singularly iterated inductive definition. This cannot be covered (or at least not in an

obvious way) by a set of infinite trees whose branches are elementarily enumerable as the

deductions whose only infinite rule is the ω-rule can be. Therefore we cannot formalise

Definition 4.1.3 in the language of PA as the literature does with deductions of PAω. But,

since the definition is a singularly iterated inductive definition, the theory ÎD
i

2(strict) is

able to formalise it, as we will show in Section 4.3. In the next section however we

formalise several easy concepts, like “being a formula”, in order to have easy examples

that show how such a formalisation work.

Brouwer-Heyting-Kolmogorov-interpretation, then it strongly undergenerates, i.e. the formal notion given

does not cover everything the Brouwer-Heyting-Kolmogorov-interpretation seems to allow.
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4.2 Working out concepts in ÎD
i

1

The present section shows how finite concepts of proof theory can be formulated

in ÎD
i

1(acc). In ÎD
i

1(acc) inductive definitions are not iterated. Therefore we can

work in the weaker language L(P ) and with operators that have no occurrence of v1.

Consequently we only use fixed point axioms of the following form:

(∀x)[Pϕ(x)↔ ϕ(Pϕ, x)].

Since we have to work in arithmetic, a minimum of coding the syntax is necessary. Let’s

assume that we have already fixed a Gödel numbering. This allows us to express whether

a symbol is a free or bound variable of a certain order (FV 1(x), FV 2(x), BV 1(x), BV 2),

a constant (C(x)) or a function symbol (F (x)). Moreover we are able to define a function

that gives the arity of a symbol ( arity(x)) and to express that a string of symbols is an

atom (At(x)). Since all primitive recursive functions are in the language, there is a length

function for n-tuples lg(x) and a substitution function sub(x, y, z), which substitutes z

for y in x, in the language. The reader should bear in mind that the following formulas

are hard to read because of the special form they have to have. In order to reduce the

number of symbols in a formula, projection onto the i-th entry of a tuple x is denoted by

xi. We start with a formulation for what it means to be a term (Term(P, x)):

FV 1(x) ∨ C(x) ∨ [lg(x) = arity(x0) + 1 ∧ F (x0)

∧∀z((∃i < lg(x))(i 6= 0 ∧ z = xi)→ P (z))].

We denote the fixed point of this formula by P T . Note that this formula is an accessibility

operator.8 In a similar way one can formulate the notion of formula as an accessibility

operator Form(P, x):

[At(x) ∨ (lg(x) = 3 ∧ ((Q(x0) ∧ (BV 1(x1) ∨BV 2(x1))) ∨ PC(x0)]

8Note that the chosen coding cannot view variables and constants as codes for pairs.
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∧∀z[lg(x) = 3 ∧ [(Q(x0) ∧ (∃y < f(lg(x)))(z = sub(x2, x1, y)))

∨(PC(x0) ∧ (z = x1 ∨ z = x2)]→ P (z))].

Here Q(x) is x = p∀q ∨ x = p∃q and PC(x) is x = p∨q ∨ x = p∧q. The variable y can

be bounded by f(lg(x)) for some elementary recursive function f , because the number of

bound variables occurring in x is bounded by lg(x). However, f depends on the coding.

In order to formulate the provability predicate of [41], we need the grade function on

formulas. Therefore we reformulate Form(P, x) so that any formula is a pair containing

the actual formula and its grade. We achieve this by using the ordinal notation system

from [41] as a black box (OT,≺).

[lg(x) = 2 ∧OT (x1) ∧ [[At(x0) ∧ x1 = p0q]∨

[lg(x0) = 3 ∧ [(Q(x0,0) ∧ (BV 1(x0,1) ∨BV 2(x0,1))) ∨ PC(x0,0)]]]∧

∀z[lg(z) = 2 ∧ lg(x0) = 3 ∧ [[Q(x0,0) ∧ (∃y < f(lg(x0)))(z0 = sub(x0,2,0, x0,1, y)∧

[(BV 1(x0,1) ∧ x1 = pz1 + 1q) ∨ (BV 2(x0,1)∧

((z1 ≺ pωq→ x1 = pωq) ∨ (z2 � pωq→ x1 = pz2 + 1q))]∨

[PC(x0,0) ∧ (z0 = x0,1 ∨ z0 = x0,2) ∧ x1 = pmax(x0,1,1, x0,2,1) + 1q]

→ P (z)]

We denote the fixed point of this formula by P F .

4.3 Formulating the Ω-rule

In this section we give a strictly positive operatorD that can be used in a fixed point axiom

and expresses the Ω-rule.

We do not use the predicates that were defined in the previous section here, since every
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use of an inductive definition in another one increases the number of iterations. Instead

we use a ∆1-formula Form(x) which gives formulas as pairs of the actual formula and

their grade. We have to do this in order to keep the iteration of the inductive definitions

below 2. T0(x) denotes the standard truth predicate for atoms; Π1
0(x) and Π1

1(x) are

used to denote formulas which enumerate the codes of Π1
0 and Π1

1 formulas respectively.

Sets of formulas {A1, ..., An} are viewed as sums of the form 2pA0q + ... + 2pAnq.9 We

use FS(x) to denote (∀y)(∀z)[x = 2y + z → Form(y)], which expresses that x is a

set of formulas, and y ∈ x to denote (∃z < x)[x = 2y + z]. Also we use x ∪ y to

denote x + y, when x and y are viewed as sets. In this view, we define set-difference as

x\u :=

 x− u : ∃y < x[x = u+ y]

x : otherwise
.

The dot-notation ẋ denotes the function that gives the x-th numeral, e.g. 3̇ :=

pS(S(S(0̄)))q. We use pAq and pΓq in formulas B(pAq) and B(pΓq) as abbreviations

for the formulas Form(x) ∧ B(x) and FS(x) ∧ B(x) respectively. Also we use this

notation in cases where pAq and pΓq are quantified by an ∃-quantifier. However in

the case of a ∀-quantification we use the implication-analogue.10 When we quantify

over an ordinal α from the notation system, we use pαq in a similar way. We also use

y ≺ gr(pAq) to denote Form(x) ∧ y ≺ (x)1.

We formalise the axioms of T∞ by the following formula Axiom(x)

FS(x) ∧ [(∃y < x)(y ∈ x ∧ At(y) ∧ T0(x)))∨

(∃y, z < x)(y ∈ x ∧ z ∈ x ∧ neg(y) = z ∧ (At(y) ∧ gr(y) = pωq))].

9Note that every natural number can be uniquely viewed as a sum of powers of 2.
10Which are Form(x)→ B(x) and FS(x)→ B(x) respectively. Consequently formulations like

(∀pAq)[...B(pAq)...]

denote formulas like

(∀x)[Form(x)→ ...B(x)...].

Also in some cases, where we build up formulas bit by bit, the actual formula is not specified before we say

how we quantify. However that should not cause any confusion.
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Here neg(pAq) := p¬Aq, which is primitive recursive.11

In the following we define a derivability predicate D(P,Q, x, y) for 5-tuples of the form

〈Γ, α, ρ, RI , A〉 in order to formalise T∞-provability. Here Γ is a set of formulas that is

provable with a cut-rank ρ in α many steps, RI is the inference rule that was used last in

the derivation and has A as its principal formula. Unfortunately, since we have to iterate

the inductive definition, we talk about pairs of this 5-tuples with a natural number that

counts the stage of iteration.

Since D(P,Q, x, y) has to be strictly positive, we have to ensure that no P is in the scope

of a ¬. Also, since the Ω-rule is defined with respect to certain functions, which are not

specified here, the following formulas are schemata in ϕf and Ψ, which act as place-

holders for the functions and their properties respectively.

The formula D(P,Q, x, y) is defined as follows:

x = 〈〈pΓq, pαq, pρq, i, pAq〉, y〉∧

[DAx ∨ D∨ ∨ D∧ ∨ Dcut ∨ D∃1 ∨ D∀2 ∨ D∃2 ∨ Dω ∨ DΩ],

where DΩ is the only formula that includes an occurrence of Q and i is a meta-notation

for a first order variable. Note that, even x is not explicitly shown in the following

metanotations of the subformulas of D, it actually occurs in the formulas; it is covered by

several formulations, e.g. “i =” and “pAq ∈”.12

DAx(x) is

i = RAx ∧ Axiom(pΓq) ∧ pAq ∈ pΓq

D∨(P, x, y) is

i = R∨ ∧ pAq = pB ∨ Cq∧
11Note that this function does not simply place a ¬ in front of the formula, because the formulas of T∞

are given in negation normal form.
12Note that these formulations denote formulas of L(Q,P ), since the pair function is in the language.
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(∃z)[z = 〈〈pΛq, pβq, pγq, j, pFq〉, y〉 ∧ P (z)∧

[pBq ∈ pΛq ∨ pCq ∈ pΛq] ∧ pΛq\p{B,C}q = pΓq∧

pβq� pαq ∧ pρq = pγq].

D∧(P, x, y) is

i = R∧ ∧ pAq = pB ∧ Cq∧

(∃z1, z2)[z1 = 〈〈pΛ1q, pβ1q, pγ1q, j, pF1q〉, y〉∧

z2 = 〈〈pΛ2q, pβ2q, pγ2q, j, pF2q〉, y〉 ∧ P (z1) ∧ P (z2)∧

pBq ∈ pΛ1q ∧ pCq ∈ pΛ2q ∧ p(Λ1 ∪ Λ2)\{B,C}q = pΓq∧

pβ1q� pαq ∧ pρq = pγ1q ∧ pβ2q� pαq ∧ pρq = pγ2q].

D∃1(P, x, y) is

i = R∃1 ∧ pAq = p∃vlB(vl)q∧

(∃z)(∃ptq)[z = 〈〈pΛq, pβq, pγq, j, pFq〉, y〉 ∧ P (z)∧

pB[t/vl]q ∈ pΛq ∧ pΛq\p{B[t/vl]}q = pΓq∧

pβq� pαq ∧ pρq = pγq].

D∀2(P, x, y) is

i = R∀2 ∧ pAq = p∀XB(X)q∧

(∃z)(∃pUq)[z = 〈〈pΛq, pβq, pγq, j, pFq〉, y〉 ∧ P (z)∧

pB[U/X]q ∈ pΛq ∧ pΛq\p{B[U/X]}q = pΓq∧

pβq� pαq ∧ pρq = pγq].

D∃2(P, x, y) is

i = R∃2 ∧ pAq = p∃XB(X)q∧

(∃z)(∃pUq)[z = 〈〈pΛq, pβq, pγq, j, pFq〉, y〉 ∧ P (z)∧
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pB[U/X]q ∈ pΛq ∧ pΛq\p{B[U/X]}q = pΓq∧

pβq� pαq ∧ pρq = pγq].

Dcut(P, x, y) is

i = Rcut ∧ (∃z1, z2)[z1 = 〈〈pΛ1q, pβ1q, pγ1q, j, pF1q〉, y〉∧

z2 = 〈〈pΛ2q, pβ2q, pγ2q, j, pF2q〉, y〉 ∧ P (z1) ∧ P (z2)∧

pAq ∈ pΛ1q ∧ p¬Aq ∈ pΛ2q ∧ p(Λ1 ∪ Λ2)\{A,¬A}q = pΓq∧

pβ1q� pαq ∧ pβ2q� pαq ∧ pρq = pγ1q ∧ pρq = pγ2q ∧ gr(pAq) ≺ pρq].

Dω(P, x, y) is

i = Rω ∧ pAq = p∀vlB(vl)q∧

(∀w)(∃z)[z = 〈〈pΛq, pβq, pγq, j, pFq〉, y〉 ∧ P (z)∧

pB[ẇ/vl]q ∈ pΛq ∧ pΛq\p{B[ẇ/vl]}q = pΓq∧

pβq� pαq ∧ pρq = pγq].

DΩ(Q,P, x, y) is

i = RΩ ∧ pAq = p∀XB(X)q ∧ Π1
1(pAq)∧

(∃ef )[Ψ(ef ) ∧ DΩ,1 ∧ (∃z)[DΩ,2 ∧ DΩ,3]]].

Here Ψ(ef ) is a formula expressing that ef is the code of a recursive function and satisfies

the definition of fundamental.13 In the following we will formulate the subformulas DΩ,1,

DΩ,2 and DΩ,3. Note that only DΩ,3 includes an occurrence of Q.

13The exact definition of fundamental does not concern us here, since it is a technicality of the proofs in

[41]. But it can be found in [41].
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DΩ,1 is

(∃w)[{ef}(pΩq) = w ∧ w � pαq)].

DΩ,2(P, x, y) is

z = 〈〈pΛq, pδq, pγq, j, pFq〉, y〉 ∧ P (z)∧

pγq = pρq ∧ pδq = {ef}(0) ∧ pAq ∈ pΛq∧

pΓq = pΛ\{A}q.

DΩ,3(Q,P, x, y) is

(∀v)(∃w)[[v = 〈〈p∆q, pβq, p0q, j, pFq〉, y〉 ∧Q(v) ∧Weak(p∆q)∧

pAq ∈ p∆q ∧ pβq ≺ pΩq]→

[w = 〈〈pΘq, pµq, p0q, j, pGq〉, y〉 ∧ P (w)∧

pΘq = pΛ ∪∆\{A}q ∧ pµq = {ef}(pβq)]].

As one can easily verify, D(P,Q, x, y) is a formula of LID(Q,P ) which satisfies the

definition of a strict operator form. Moreover the only part including an occurrence of

Q is DΩ. Consequently a system that includes the ω-rule as its only infinite rule can be

formalised in ÎD
i

1(strict).

Note that the Ω-rule cannot occur nested, since the rank of the deduction must be smaller

than Ω in order to apply it and the rank of a deduction jumps above Ω after a single

application. Therefore a single iteration of D(P,Q, x, y) models the notion of T∞ `αρ Γ,

which can be done in ÎD
i

2(strict).

4.4 Conclusion

Since derivability can be formalised in this straightforward way, the formalised proof

follows the informal arguments in [41] almost literally. Hence, arguing in a similar way
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as in Chapter 3, one can establish

T ≡ ÎD
i

2(strict) + TI(≺ α),

for a theory T , whose ordinal-analysis uses the Ω-rule, with α = ‖T‖Π0
2

in the ordinal

notation system that was used in the analysis. Moreover by Theorem 3.4.1 we get all the

benefits of the well-studied theories

PA+ TI(≺ α).

But, before putting these benefits into action in Chapter 5, we repeat the methodological

advantages for any kind of ordinal analysis. The definition of D(P,Q, x, y) shows that

there is no need for fancy formalised recursion theory and complex constructions. For

instance, sinceD(P,Q, x, y) gives the previous step of a deduction through the the axiom

(∀y < n)(∀x)[PDy (x)↔ D(PDy , P
D
<y, x, y)]

by an existential quantifier, there is no need for a function that enumerates the premisses

of an infinite rule. Therefore no enumeration function has to be altered in order to operate

on the derivability predicate.
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Chapter 5

Proof-Complexity and the Deducibility

of Σ0
1-Sentences

The preceding chapters were mainly concerned with methodological considerations; in

this chapter however we will connect the notions developed and explain how these can

be put into action. We will introduce the notion of proof-complexity and connect it with

the previously given notions of proof-theoretical reduction and ordinal analysis. This will

lead to a straightforward method studying the proof-complexity of true Σ0
1-sentences. The

main idea is to connect the magnitude of a witness of a Σ0
1-sentence with the length of its

deduction.

5.1 Proof-Complexity

Kurt Gödel developed the notion of proof-complextiy in 1936 in his paper [25], where he

introduced a notion of proof-complexity that counts the lines of a deduction in a Hilbert-

calculus, to explain that the transition to a higher order system does not merely allow

the deduction of new formulas, but also shortens the deductions of formulas that were
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already deducible in the lower-order system. However the notion of proof-complexity

as deduction-length is from a metatheoretic as well as from a practical point of view

inappropriate, because a short deduction might (in principle) still include monstrous

formulas. Hence we prefer the following definition.

Definition 5.1.1 Assume Σ is a countable set of symbols, which are called the primitive

symbols, and Σ∗ be the set of finite sequences of elements of Σ. A language L is an

inductively defined subset of Σ∗ whose elements are denoted by ϕi for i ∈ N.1 A set

of rules R is a set of finite sequences of elements of L. If r ∈ R has the form r =

〈ϕ1, ..., ϕn〉, then we call ϕ1, ..., ϕn−1 the premisses and ϕn the conclusion; an r = 〈ϕ1〉

is called an axiom. An F = 〈Σ,L,R〉 is called a formal system. The set of F-deductions

DF comprises elements d of the form 〈ϕ1, ..., ϕn〉 such that for any 1 ≤ i ≤ n there is an

r ∈ R and 1 ≤ i1, ..., im < i with r = 〈ϕi1 , ..., ϕim , ϕi〉. Also we use d ` ϕ, if ϕ is the

last entry of d.

If lg is a length function for sequences and d = 〈ϕ1, ..., ϕn〉 in DF , we call lg(d) the

length of a deduction and

|d| :=
lg(d)∑
i=1

lg(ϕi)

its complexity.2 We use F `n ϕ, if F ` ϕ and

min{|d| : d ∈ DF and d ` ϕ} ≤ n.

It is a trivial consequence of this definition that, if max(d) denotes the length of the longest

formula in d, then |d| ≤ lg(d) ·max(d). We will silently use this fact throughout this and

the next chapter; it is the reason why most of the bounds that are given in Chapter 6 are

quadratic.

We can easily connect this notion of complexity with our notion of conservativity
1Note that a ϕi does not have to be a formula in the common sense, but can as well be a sequent of a

Gentzen-calculus. Because the ϕi denote the objects for which a deduction system is defined.
2Hence the complexity of a deduction d is the total number of occurrences of primitive symbols in d.
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(Definition 2.1.14) and therefore with proof-theoretical reduction (Definition 2.2.7) by

the following notion of speed-up, which is a generalisation of those given in [10].

Definition 5.1.2 Let 〈Fα〉α∈τ be a hierarchy of sets of total recursive functions with length

τ such that, if α < β, then Fα ( Fβ .3

Let F and F ′ be two formal systems that satisfy that there is a non-empty Γ ⊂ L ∩ L′

such that for any ϕ ∈ Γ, if F ′ ` ϕ, then F ` ϕ.

F has a Fα-speed-up over F ′ with respect to Γ, if there exists a sequence 〈ϕi〉i∈ω of

formulas from Γ such that, if dF
′

i and dF
′

i are the shortest proofs of ϕi in F and F ′

respectively, then:

1. No Fβ with β < α includes a function f that satisfies |dF ′i | < f(|dFi |) for all i ∈ ω.

2. There is a function f ∈ Fα such that for any i ∈ ω it holds that |dF ′i | < f(|dFi |).

Definition 5.1.2 is only useful, when 〈Fα〉α∈τ stratifies recursive functions in accordance

with their growth rate. We give two examples of speed-ups in the following theorem.

Theorem 5.1.3 1. IΣ1 has a non-elementary speed-up over PRA.

2. RCA has a polynomial speed-up over IΣ1.4

Proof

These are the main results of [10]. 2

A polynomial speed-up is usually seen as an insignificant speed-up. However we consider

an elementary speed-up an insignificant one; why this is the case will become clear from

the rest of this chapter.
3For a ω-long hierarchy see Definition B.4 for the Grzegorczyk Hierarchy. For a transfinite hierarchy

one can use the Hardy Hierarchy, which is given by Definition 5.2.8, in a similar manner as the inducing

functions of the Grzegorczyk Hierarchy.
4RCA is a second order system with comprehension for recursively definable sets and allows Σ1-

induction when second order parameters are present.
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5.2 The Deducibility of Σ0
1-Sentences

As stated in Theorem 2.1.10, any true Σ0
1-sentence can be deduced in Q. However the

complexity of the smallest possible deduction of some Σ0
1-sentence can significantly differ

between two theories extending Q. A good example is the Σ1-sentence Big, which is a

restriction of Kruskal’s Tree Theorem (see [41]) and states the following.

There exists an n ≤ 1 such that, if T1, ..., Tn are finite trees whose vertices are

labelled from {1, ..., 6}, where for all i, |Ti| < i, then there exist i < j ≤ n

such that Ti is label preserving embeddable into Tj .

Note that the only quantifier that is not bounded is the one that states the existence of n.

The rest of the sentence can be easily formulated by a ∆0
0-formula in LQ. In order to

motivate Big further, we would like to introduce the theories Π1
2 −BI and Π1

2 −BI0.

Definition 5.2.1 1. Let 〈A,≺〉 be such that A and ≺ are definable by Π1
0-formulas.

The (second order) formula WF (≺) is

(∀X)[(∀x)[[A(x) ∧ (∀y ≺ x)[y ∈ X]]→ x ∈ X]→ (∀x)[A(x)→ x ∈ X]].

2. The theory Γ − BI0 is formulated in classical second order logic and contains the

axioms of identity, the defining axioms of all primitive recursive functions, second

order induction

(∀X)[0̄ ∈ X ∧ (∀x)[x ∈ X → S(x) ∈ X]→ (∀x)[x ∈ X]]

together with the following schema:

(∃Y )(∀x)[x ∈ Y ↔ ϕ(x)],

where ϕ(x) ∈ Π0
∞, and

WF (≺)→ TIΓ(≺)

for any Π1
0-definable relation ≺.
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3. The theory Γ−BI is the theory Γ−BI0 extended by the schema

ϕ(0) ∧ (∀x)[ϕ(x)→ ϕ(S(x))]→ (∀x)ϕ(x)

for any ϕ ∈ LΓ−BI .

One can quickly deduce Big in Π1
2 − BI . However any deduction of Big in Π1

2 − BI0

has to have a complexity of at least 21
1000 symbols (see [52]).5 How can such a statement

be proved? The connections we drew in Chapter 3 between ordinal-analysis and proof-

theoretical reduction can help here. Let (∃x)ϕ(x) be a Σ0
1-sentence and assume that

‖T‖Π0
2

= α. If T `n (∃x)ϕ(x), then PA + TI(≺ α) `f(n) (∃x)ϕ(x). But the

computational resources of PA+ TI(≺ α) are well studied. Hence we know a hierarchy

of functions 〈Hβ〉β≺α such that, if PA + TI(≺ α) `f(n) (∃x)ϕ(x), then there is a

βf(n) ≺ α and an m < Hβf(n)(0) such that N |= ϕ(m). Hence, arguing indirectly, when

the witnesses of a Σ0
1-sentence are very big, then its deduction must have a certain length.

Since the ordinal notation systems being used in ordinal-analysis differ in the way how

function hierarchies can be defined, i.e. the assignment of fundamental sequences to limit

ordinals differs,6 one has to generalise the proofs of the step from PA + TI(≺ α) to a

〈Hβ〉β≺α uniformly in order to develop a general method of studying the proof-complexity

of Σ0
1-sentences. This is done by Weiermann in [60]; we will present Weiermann’s

methods in the next section.

5.2.1 A general characterisation of the provable recursive functions

of PA+ TI(≺ α)

We follow Weiermann’s approach of dealing with ordinal-notation systems that is given in

[60]. Instead of stating certain conditions that we require from an ordinal notation system

5Here 2x0 := x and 2xy+1 := 22
x
y .

6A fundamental sequence of a limit ordinal λ is a sequence 〈λn〉n∈ω such that λ = limn→∞ λn.



Chapter 5. Proof-Complexity and the Deducibility of Σ0
1-Sentences 124

ON(τ), e.g. Friedman and Sheard developed the notion of an elementary recursive

ordinal notation system (ERONS) in [22], we define a norm N on an actual ordinal τ

and require certain properties that a map

o : N→ τ

has to fulfil with respect to N . Also this saves us from defining ordinal arithmetic. In

addition, as is common in the literature, we trust the assurances of Buchholz, Friedman,

Rathjen and Weiermann that any ordinal notation systemON(τ) that was ever given in the

literature is elementarily recursively definable and induces a function o satisfying these

conditions.

Definition 5.2.2 We say that τ has a norm N : τ → N, if the following conditions are

satisfied:

• τ is an ε-number.7

• N satisfies:

1. N(0) = 0

2. N(α]β) = N(α) +N(β)

3. N(ω̄α) = N(α) + 1, where

ω̄α :=

 ωα+1 : (∃α0 < α)(∃n < ω)[ωα0 = α0 ∧ α = α0 + n]

ωα : otherwise

4. {α < τ : N(α) < k} is finite for any k ∈ N.

• For a variant of the Ackermann function8 Φ : N→ N
7Hence for any α, β ∈ τ , α+ β, αβ, ωα ∈ τ .
8We use the Ackermann function just because we want to ensure that we are able to evaluate any

primitive recursive function. In cases where the language includes fewer function symbols one might use a

function with lower growth-rate.
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1. for any n, 2 ≤ Φ(n) and Φ(n) + Φ(n) + 2 ≤ Φ(n+ 1)

2. for any (n-ary) primitive recursive function f there is a p ∈ N such that

f(k1, ..., kn) < Φ(p+ max{k1, ..., kn})

for all k1, ...kn ∈ N.

• There is a binary primitive recursive relation≺ on a primitive recursively definable

A ⊂ N and a function o : A→ τ such that9

1. for any n,m ∈ N, if n ≺ m, then o(n) < o(m).

2. for any n ∈ N, N(o(n)) ≤ Φ(n) and n ≤ Φ(N(o(n))).

We can use N to define a new ordering on a 〈τ,N〉.

Definition 5.2.3 Assume that 〈τ,N〉 is an ordinal with a norm.

β <1
n α :⇔ β < α and N(β) ≤ Φ(N(α) + n)

<n is the transitive closure of <1
n.

Note that β <1
n α and n ≤ m imply β <1

m α.

Definition 5.2.4 Assume that 〈τ,N〉 is an ordinal with a norm and α, β ∈ τ .

Ψ(α) :=

 0 : α = 0

max{Ψ(β) + 1 : β <1
0 α} : α > 0

Hα(x) := max({x} ∪ {Hβ(x+ 1) : β < α ∧N(β) ≤ 3N(α)+x+1})

Note that, if we take Φ(x) = Hωω(x), then the conditions that are demanded by

Definition 5.2.2 are satisfied.
9〈A,≺〉 plays the role of an ordinal notation system.
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Lemma 5.2.5 Let 〈τ,N〉 be an ordinal with a norm and Φ(x) = Hωω(x). Then:

1. for any m ∈ N Ψ(m) = m

2. β <0 α implies Ψ(β) < Ψ(α)

3. Ψ(α) := max{k : ∃(α1, ..., αk)[αk <
1
0 ... <

1
0 α0 = α]}

4. for any n ∈ N, Ψ(α + n+ 1) < Hωω(α+2)(n).

Proof

See [60, pp. 54-55].2

Note that (3) roughly links the function Ψ to descent recursion from [22]. As section 5.2.2

will show, the following theorem is a general theorem for the several characterisations of

the provable recursive functions of PA + TI(≺ α) that can be found in the literature for

several particular ≺.

Theorem 5.2.6 Assume that 〈τ,N〉 is an ordinal with a norm. Let ≺ be the ordering

that is demanded by Definition 5.2.2 and TI(≺ α) the schema that is defined as in the

discussion above Definition 3.1.2, if we take for α the element n of ≺ such that o(n) =

α = ωωα0 ≤ τ , for α0 > 0. Also let ϕ(x, y) be a ∆0
0-formula of LPA where only x and y

occur freely.

If PA+ TI(≺ α) ` (∀x)(∃y)ϕ(x, y), then

(∃β < α)(∀n ∈ N)(∃k < Ψ(β + n+ 1))[N |= ϕ(n̄, k̄)].

Proof

See [60, p. 59].2
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Corollary 5.2.7 Let ϕ(y) be a ∆0
0-formula of LPA where only y occurs freely. If PA +

TI(≺ α) ` (∃y)ϕ(y), then

(∃β < α)(∃k < Ψ(β + 1))[N |= ϕ(k̄)].

The proof in [60] is constructive, hence such a β can be explicitly given. Also the proof of

Theorem 5.2.6 shows that such a β can be found by using the complexity of the deduction

that deduces (∀x)(∃y)ϕ(x, y) in T , because the complexity of the deduction in PA +

TI(≺ α) depends on the complexity of the deduction in T ; and the complexity of the

deduction in PA + TI(≺ α) gives a good upper bound for the rank of a deduction in

PAω, which is the infinite system from Chapter 3. Using cut-elimination on the latter, we

get an explicit β for (∀x)(∃y)ϕ(x, y).

5.2.2 The classical approach

For a reader who is wondering how Ψ and Hα are related to the classical approach using

fundamental sequences, we discuss the common definition of the Hardy Hierarchy. Also

we prove that Ψ and Hα are provable total in PA in the case of 〈ε0, N〉 for an appropriate

N . We start with the canonical definition of the Hardy Hierarchy.

Definition 5.2.8 Let τ be an ordinal such that (∃τ0 > 0)[τ = ωωτ0] and ·[·] : τ ×N→ τ .

A pair 〈τ, ·[·]〉 is called a Bachmann system if

1. 0[n] = 0

(α + 1)[n] = α

α ∈ Lim⇒ α[n] < α[n+ 1] < α

Such a ·[·] is called an assignment of a fundamental sequence to an ordinal.

2. for any α, β, n,

α[n] < β < α⇒ α[n] ≤ β[0].
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The Hardy Hierarchy 〈H ′α〉α<τ of 〈τ, ·[·]〉 is defined as H ′0(n) := n and H ′α(n) :=

H ′α[n](n+ 1).

The next theorem shows the promised connection with Definition 5.2.4.

Theorem 5.2.9 Assume that 〈τ,N〉 is a normed ordinal and that p : τ → N is a function

such that for any α, N(α) ≤ p(α) + 1 ≤ p(α + 1). If we define ·[·]p by 0[n]p := 0 and

α[n]p := max{β < α : N(β) ≤ p(α + n)}, for α > 0, and take 〈H ′α〉α<τ as its Hardy

Hierarchy, then

1. 〈τ, ·[·]p〉 is a Bachmann system.

2. H ′α = max{H ′β(n+ 1) : β < α ∧N(β) ≤ p(α + n)}, for α > 0.

Proof

See [7, p. 9]. 2

Corollary 5.2.10 Assume that 〈τ,N〉 is a normed ordinal and that 〈τ, ·[·]3N(·)+·+1〉 is

defined as in Theorem 5.2.9. Then for any n ∈ N

Hα(n) = H ′α(n).

It is also proved in [7] that the 〈Hα〉α<ε0 that is induced by 〈ε0, N1〉, where N1 is defined

as N1(0) := 0 and N1(ωα + β) := max{N1(α), N1(β)} + 1, is an elementary variant

of the most common textbook example of a Hardy Hierarchy, which is defined from

〈ε0, ·[·]textbook〉 (see [50, p. 157-158] for a definition). This means that, whenHα is induced

by 〈ε0, N1〉 and H ′α is the hierarchy of 〈ε0, ·[·]textbook〉, then

ERF(Hα) = ERF(H ′α),
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where ERF(f) is the smallest set of functions that comprises all elementary functions,

the function f and is closed under composition.10 Such connections can be generally

deduced, because all these ways of defining a Hardy Hierarchy have strong relations

to naturally definable descent functions by properties like the one that is stated in

Lemma 5.2.5 (3) (see [7, pp. 6-9]).

5.2.3 A bound for the witnesses of Σ0
1-sentences

As we emphasised at the beginning of this section, there is a connection between the

complexity of a deduction of a Σ0
1-sentence and the size of its witnesses. We will make

this precise by defining the following functions.11 It should be easy to see how to adapt

Definition 5.1.1 to the notion of a theory that was adopted in Section 2.1. Note that

Theorem 2.1.2 shows that any theory that has a Hilbert system attached has at most

an elementary speed-up over its version that has a Gentzen system attached and vice

versa. Hence the following definition is invariant in the used deduction-system modulo

elementary recursive speed-ups. Also we assume that for some α0 > 0, α = ωωα0.

Definition 5.2.11 1. For any T ⊃ Q we define

χT (n) := min{k : ϕ ∈ ∆0
0 ∧ T `n (∃y)ϕ(y)⇒ (∃m < k)[N |= ϕ(m̄)]}.

2.

χα(n) := χPA+TI(≺α)(n)

We immediately get the following connections with the notion of a speed-up.
10Note that here the closure under composition implies the closure under limited recursion, since the

bounded-µ-operator is an elementary function. The invariance of these hierarchies shown, when using the

elementary functions as a basis, is the reason for considering an elementary speed-up as an insignificant

one.
11These functions were defined by Michael Rathjen in a talk that was given at the Bertinoro International

Center for Informatics in 2011.
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Lemma 5.2.12 1. χα(n) < Ψ(α)

2. If T ′ ⊂Σ0
1
T and T has a Fα-speed-up over T ′, then there is an f ∈ Fα+1 such that

χT (n) ≤ χT ′(f(n)).

3. Assume T ⊃ Q such that ‖T‖Π0
2

= α and T has at most an elementary speed-up

over PA+ TI(≺ α). Then there is an m0 such that for any n ∈ N

χT (n) ≤ χα(2nm0
).

Proof

1. Assuming that PA+ TI(≺ α) `n (∃y)ϕ(y), where ϕ ∈ ∆0
0, we can conclude

(∃βn < α)(∃m < Ψ(βn + 1))[N |= ϕ(m̄)]

by Corollary 5.2.7. Therefore

Ψ(βn + 1)) ∈ {k : ϕ ∈ ∆0
0 ∧ T `n (∃y)ϕ(y)⇒ (∃m < k)[N |= ϕ(m̄)]}.

Hence, by the minimality of χα(n), we get χα(n) ≤ Ψ(βn + 1)).

Since α and βn came from the cut-elimination that is given in [60], βn + 1 <0 α

and, therefore, Ψ(βn + 1) < Ψ(α).12

2. This is a trivial consequence of Definition 5.2.11.

3. This follows from (2) and the fact that for any elementary function f there is an m0

such that f(n) < 2nm0
for any n ∈ N.

12Note that the infinite system that is defined in [60, p. 55] proceeds over ordinals which are governed by

the relation <0.
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2

However here we face the problems that were raised in Chapter 3 and Chapter 4. As

we said at the beginning of the present chapter, we are interested in the complexity of

deductions in Π1
2 − BI and Π1

2 − BI0, especially for the particular sentence Big. But

the ordinal-analysis of these systems is carried out by using the Ω-rule in [41]; in fact the

infinite system that is used in [41] is as given in Definition 4.1.3 and formalised throughout

Chapter 4. The result of this ordinal-analysis is

‖Π1
2 −BI0‖Π0

2
= θΩω0,

which is also called the Ackermann ordinal or small Veblen ordinal. As was extensively

explained in Chapter 3, for any primitive recursive ≺ on N we have

PA+ TI(≺) ≡Π0
2
ÎD

i

2(strict) + TI(≺).

Hence Ψ and χα, when α is the ordinal-type of ≺, are still meaningful here. However,

since the direction is as follows

Π1
2 −BI0 ⊆Σ0

1
ÎD

i

2(strict) + TI(≺) ⊆Σ0
1
PA+ TI(≺),

the question whether ÎD
i

2(strict)+TI(≺) has an elementary speed-up over PA+TI(≺)

for Π0
2-sentences is of a special interest for the study of the proof-complexity of Big.

Moreover, since we are aiming a general method of studying the proof-complexity of Σ0
1-

sentences, this question is of general interest, as is explained through Lemma 5.2.12 (2)

and (3). We will give a positive answer in the next chapter.
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Chapter 6

ÎD
i
<ω(strict) has at most an elementary

speed-up over PA

In Chapter 2 I described the general framework of theory reduction, and compared

it to associated contexts. Subsequently I used the notions of Chapter 2 to discuss

ordinal-analysis in Chapter 3. There I explained why a “better” base theory for ordinal-

analysis is needed and presented the arguments available in the literature supporting the

theory ÎD
i

<ω(strict). Chapter 4 indicates the benefits of ÎD
i

<ω(strict) when formalising

technically elaborate notions of provability, e.g. those which are constituted by the Ω-rule.

In Chapter 5 I explained Rathjen’s and Weiermann’s idea concerning a general method to

give a lower bound for the complexity of deductions of Σ0
1-sentences. There we were left

with the issue that, in order to make this general method work, an ordinal analysis has to

be given and that in many cases this analysis uses the Ω-rule. Hence the transition from

ÎD
i

<ω(strict) + TI(≺ α) to PA+ TI(≺ α) might increase the finite deduction of a Σ0
1-

sentence and, therefore, the method might pick a function that is higher up in the Hardy

hierarchy than the ordinal α would have suggested. We will settle this issue by proving

that ÎD
i

<ω(strict) + TI(≺ α) has at most an elementary speed-up over PA+ TI(≺ α).

As in Chapter 3 we start by proving that ÎD
i

<ω(strict) has at most an elementary speed-up
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over PA and then show that this result can be easily extended to the cases where axioms

for transfinite induction are present. We show this by bounding the length-increment of

deductions, which is caused by the deduction-transformations that are used in Chapter 3.

6.1 Bounding Buchholz

We start with Buchholz, who heavily used Theorem 2.2.19 (Soundness of Realisability)

in [6], which he took from [59]. The proof of Theorem 2.2.19 that is given in Chapter 2

is a literal copy from [59, pp. 190-192], but, since it relies on many facts from recursion

theory that are not made explicit, it has many gaps which become crucial here. Moreover,

since we are interested in upper bounds of the deduction-length-increment, the precise

way of formalising recursion theory in HA plays a part; we want the facts of recursion

theory to be accessible in full generality, because, if we are able to establish a formula

(∀x)ϕ(x) in c many lines, then the deduction-length for an instance ϕ(n̄) is bounded

by c + 1 and, hence, independent from the particular instance. Therefore we are able

of constructing deductions schematically in the instances. This gives a uniform way to

construct deductions and it is, therefore, easy to extract a bound for their length. The

canonical source for formalised recursion theory is Kleene’s [28], which is the main

reference of the following section.

6.1.1 Formalised Recursion Theory

To make this section more readable we occasionally use Kleene-brackets as we already

did in Chapter 2. However, in proofs we try to avoid such abbreviations and give the actual

formulas, because it might be easier for the reader to estimate the length of a formula and

the shape of its deduction, when the full structure of the formula is revealed.
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Theorem 6.1.1 (S-m-n Theorem)

For every m and n there is a primitive recursive function snm such that

HA ` (∀x1, ..., xm+n)[{z}(x1, ..., xm+n) = {snm(z, x1, ..., xm)}(xm+1, ..., xm+n)]

Proof

See [28, p. 67]. 2

Here we face our first difficulty. Since the S-m-n Theorem is in fact a set of theorems, i.e.

one theorem for every pair 〈n,m〉, the length of its HA-deductions is a function in n and

m. However the deductions are fairly regular (as it is described in [28, p. 67]) and their

length can therefore be bounded by mcn, where cn is a constant depending on n. Since

we are going to use the S-m-n Theorem only in cases where either n or m is fixed, its

contribution to the length-increment of a deduction is only linear.

By using {e1}(x1) ' {e2}(x2) as a meta-abbreviation for

(∃v)T (e1, x1, v)→ (∃w)T (e2, x2, w)∧

(∀v)(∀w)[T (e1, x1, v) ∧ T (e2, x2, w)→ U(v) = U(w)],

to imitate the notion of equality between two partial recursive functions, we can state the

famous Normal Form Theorem.

Lemma 6.1.2 (Formalised Normal Form Theorem)

There is a e0 ∈ N such that

HA ` (∀x, y)[{ē0}(x, y) ' {x}(y)]
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Proof

See [28, p. 67] and note that {x}(y) is an ordinary p-term in the sense of [28]. 2

Since the S-m-n Theorem can be proved, it is possible to proof a version of the Recursion

Theorem as well in HA.

Theorem 6.1.3 (Formalised Recursion Theorem)

HA ` (∀x)(∃y)(∀z)[{x}(〈y, z〉) ' {y}(z)]

Proof

See [28, p. 68] or [59, p. 27] for a less detailed proof. 2

6.1.2 Deduction-Complexity Increment for Basic Moves in Logic

In [59] Troelstra used Gödel’s Hilbert-style system for intuitionistic logic, which is

described in Appendix C, to prove Theorem 2.2.19. We say that ϕ is deducible with

complexity n in Gödel’s system, in symbols `nG ϕ, if there is a sequence of formulas

containing at most n occurrences of symbols, which is build up in accordance with the

axioms and rules of Gödel’s system, and the formula occurs somewhere in the sequence

(see Definition 5.1.1). However we will also talk about the length of a deduction

as its number of lines, because the length-measurement is in many cases the stronger

requirement for complexity. To extract deduction-complexity bounds from the proof of

Theorem 2.2.19, we have to start by analysing the deduction-complexity increment that is

caused by the usage of meta-theorems in a Hilbert-style system. The following Lemmata

ensure that the deduction-complexity increment that is caused by the Deduction Theorem

and ∀-quantification of free-variables is linearly bounded.
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Lemma 6.1.4 (Deduction Theorem)

There is an cD ∈ N such that,

T, ψ `n ϕ⇒ T `cDn ψ → ϕ

for a ψ not sharing any free variables with ϕ.

Proof

We define cl := max{16, cdis + 8, cass + 4}, where cdis and cass are the length of the

uniform deduction for distributivity and associativity respectively. We assume that there

is a deduction 〈α1, ..., αl〉, where αl = ϕ, with
∑l

i=1 lg(ϕi) ≤ n. The proof proceeds by

induction on l. In every induction step we substitute into the original deduction for every

αi the formula ψ → αi. Then we show that we can fill the gap between ψ → αl−1 and

ψ → αl by less than cl formulas in order to get a deduction that proceeds from ψ → αl−1

to ψ → αl. Since the induction hypothesis ensures that this is possible for any index

which is smaller than l, we establish a deduction of length cll. By taking cD := clcF ,

where cF is the length of the longest schema that is used in the 9 cases below, we get

T `cDn ψ → ϕ (see the remark below Definition 5.1.1).

1. Assume that l = 1. Then ϕ is ψ. Hence ψ → ψ can be deduced as follows.

1. ` ψ → ψ ∧ ψ by (b).

2. ` ψ ∧ ψ → ψ by (c).

3. ` ψ → ψ by (h) from 1 and 3.

Since 3 < cl, we are done.

2. Assume that l = 1 and that ϕ is an axiom of (a)-(f) or a formula in T . Then we can

prove ψ → ϕ as follows.

1. ` ϕ ∧ ψ → ϕ by (c).

2. ` ϕ→ (ψ → ϕ) by (i) from 1.

3. ` ϕ by being an axiom or element of T .

4. ` ψ → ϕ by (g) from 2 and 3.
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Since 4 < cl, we are done.

3. Assume that ϕ is derived by (g) from a γ and a γ → ϕ. By induction hypothesis

we therefore get a deduction of length cl(l − 1) for ψ → γ and ψ → (γ → ϕ). In

the following we show how this deduction can be extended to a deduction ψ → ϕ.

0. ` ψ → γ by I.H.

0’. ` ψ → (γ → ϕ) by I.H.

1. ` ψ ∧ γ → ϕ by (j) from 0’.

2. ` γ ∧ ψ → ψ ∧ γ by (d).

3. ` γ ∧ ψ → ϕ by (h) from 1 and 2.

4. ` γ → (ψ → ϕ) by (i) from 3.

5. ` ψ → (ψ → ϕ) by (h) from 0 and 4.

6. ` ψ ∧ ψ → ϕ by (j) from 5.

7. ` ψ → ψ ∧ ψ by (b).

8. ` ψ → ϕ by (h) from 6 and 7.

Since cl(l − 1) + 8 < cll, we are done.

4. Assume that ϕ is the formula γ → δ and is derived by (h) from γ → χ and χ→ δ.

By induction hypothesis we have a deduction of length cl(l − 1) of ψ → (γ → χ)

and ψ → (χ → δ). This deduction can be enlarged to prove ψ → (γ → δ) in the

following way.
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0. ` ψ → (γ → χ) by I.H.

0’. ` ψ → (χ→ δ) by I.H.

1. ` ψ ∧ γ → χ by (j) from 0.

2. ` ψ ∧ χ→ δ by (j) from 0’.

3. ` χ ∧ ψ → ψ ∧ χ by (d).

4. ` χ ∧ ψ → δ by (h) from 2 and 3.

5. ` χ→ (ψ → δ) by (i) from 4.

6. ` ψ ∧ γ → (ψ → δ) by (h) from 0’ and 5.

7. ` (ψ ∧ γ) ∧ ψ → δ by (j) from 6.

8. ` ψ ∧ (ψ ∧ γ)→ (ψ ∧ γ) ∧ ψ by (d).

9. ` ψ ∧ (ψ ∧ γ)→ δ by (h) from 7 and 8.

10. ` ψ → [(ψ ∧ γ)→ δ] by (i) from 9.

11. ` ψ ∧ γ → ψ by (c).

12. ` ψ ∧ γ → (ψ ∧ γ → δ) by (h) from 10 and 11.

13. ` (ψ ∧ γ) ∧ (ψ ∧ γ)→ δ by (j) from 12.

14. ` ψ ∧ γ → (ψ ∧ γ) ∧ (ψ ∧ γ) by (b).

15. ` ψ ∧ γ → δ by (h) 13 and 14.

16. ` ψ → (γ → δ) by (i) from 15.

Since cl(l − 1) + 16 ≤ cll, we are done.

5. Assume that ϕ is of the form γ → (δ → χ) and is deduced from γ ∧ δ → χ by (i).

By induction hypothesis we have `c(l−1) ψ → (γ ∧ δ → χ). This deduction can be

enlarged to prove ψ → [γ → (δ → χ)] in the following way.
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0. ` ψ → (γ ∧ δ → χ) by I.H.

1. ` ψ ∧ (γ ∧ δ)→ χ by (j) from 0.
...

...
... The uniform deduction of

cass + 1. ` (ψ ∧ γ) ∧ δ → ψ ∧ (γ ∧ δ) associativity in cass many lines.

cass + 2. ` (ψ ∧ γ) ∧ δ → χ by (h) from 1 and cass + 1.

cass + 3. ` ψ ∧ γ → (δ → χ) by (i) from cass + 2.

cass + 4. ` ψ → [γ → (δ → χ)] by (i) from cass + 3.

Since cl(l − 1) + cass + 4 ≤ cll, we are done.

6. Assume that ϕ is of the form γ ∧ δ → χ and deduced from γ → (δ → χ) by (j).

By induction hypothesis we have `c(l−1) ψ → [γ → (δ → χ)].This deduction can

be enlarged to prove ψ → (γ ∧ δ → χ) in the following way.

0. ` ψ → [γ → (δ → χ)] by I.H.

1. ` ψ ∧ γ → (δ → χ) by (j) from 0.

2. ` (ψ ∧ γ) ∧ δ → χ by (j) from 1.
...

...
... The uniform deduction of

cass + 2. ` ψ ∧ (γ ∧ δ)→ (ψ ∧ γ) ∧ δ associativity in cass lines.

cass + 3. ` ψ ∧ (γ ∧ δ)→ χ by (h) from 2 and cass + 2.

cass + 4. ` ψ → (γ ∧ δ → χ) by (i) from cass + 3.

Since cl(l − 1) + cass + 4 ≤ cll, we are done.

7. Assume that ϕ is of the form χ ∨ γ → χ ∨ δ and deduced from γ → δ by (k).

By induction hypothesis, we have `c(l−1) ψ → (γ → δ).This deduction can be

enlarged to prove ψ → (χ ∨ γ → χ ∨ δ) in the following way.
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0. ` ψ → (γ → δ) by I.H.

1. ` ψ ∧ γ → δ by (j) from 0.

2. ` χ ∨ (ψ ∧ γ)→ χ ∨ δ by (k) from 1.
...

...
... The uniform deduction of

cdis + 2. ` (χ ∨ ψ) ∧ (χ ∨ γ)→ χ ∨ (ψ ∧ γ) distributivity in cdis lines.

cdis + 3. ` (χ ∨ ψ) ∧ (χ ∨ γ)→ χ ∨ δ by (h) from 2 and cdis + 2.

cdis + 4. ` χ ∨ ψ → (χ ∨ γ → χ ∨ δ) by (i) from cdis + 3.

cdis + 5. ` ψ → ψ ∨ χ by (c).

cdis + 6. ` ψ ∨ χ→ χ ∨ ψ by (d).

cdis + 7. ` ψ → χ ∨ ψ by (h) from cdis + 5 and cdis + 6.

cdis + 8. ` ψ → (χ ∨ γ → χ ∨ δ) by (h) from cdis + 4 and cdis + 7.

Since cl(l − 1) + cdis + 8 ≤ cll, we are done.

8. Assume that ϕ is γ → (∀x)δ(x) and was deduced from γ → δ(x) by (l). By

induction hypothesis, we have `c(l−1)
G ψ → (γ → δ(x)). In the following we show

how this deduction has to be extended to deduce ψ → [γ → (∀x)δ(x)].

0. ` ψ → [γ → δ(x)] by I.H.

1. ` ψ ∧ γ → δ(x) by (j) from 0.

2. ` ψ ∧ γ → (∀x)δ(x) by (l) from 1. Note that ϕ and

ψ don’t share free variables.

3. ` ψ → [γ → (∀x)δ(x)] by (i) from 2.

Since cl(l − 1) + 3 ≤ cll, we are done.

9. Assume that ϕ is (∃x)γ(x) → δ and deduced from γ(x) → δ by (m). By

induction hypothesis we have `c(l−1)
G ψ → (γ(x) → δ). In the following we

show how this deduction has to be extended to deduce ψ → [(∃x)γ(x) → δ].
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0. ` ψ → [γ(x)→ δ] by I.H.

1. ` ψ ∧ γ(x)→ δ by (j) from 0.

2. ` γ(x) ∧ ψ → ψ ∧ γ(x) by (b).

3. ` γ(x) ∧ ψ → δ by (h) from 1 and 2.

4. ` γ(x)→ (ψ → δ) by (i) from 3.

5. ` (∃x)γ(x)→ (ψ → δ) by (m) from 4. Note that ϕ and

ψ don’t share free variables.

6. ` (∃x)γ(x) ∧ ψ → δ by (j) from 5.

7. ` ψ ∧ (∃x)γ(x)→ (∃x)γ(x) ∧ ψ by (d).

8. ` ψ ∧ (∃x)γ(x)→ δ by (h) from 6 and 7.

9. ` ψ → [(∃x)γ(x)→ δ] by (i) from 8.

Since cl(l − 1) + 9 ≤ cll, we are done.

2

Lemma 6.1.5 (Generalisation)

T `nG ϕ(x)⇒ T `7n
G (∀x)ϕ(x).

Proof

Assume that T `nG ϕ(x), then by (c) and (i) we get T `n+2n
G ϕ(x)→ [(⊥ → ⊥)→ ϕ(x)].

An application of (g) gives T `n+3n
G (⊥ → ⊥) → ϕ(x). By (l) we get

T `n+4n
G (⊥ → ⊥) → (∀x)ϕ(x), which leads to T `n+6n

G (∀x)ϕ(x) by (a) and

(g). 2
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6.1.3 Realisability in HA

The next step is to extract a deduction-complexity-increment bound for realisability from

the proof of Theorem 2.2.19, which is given in Chapter 2. However it would be an

unnecessarily hard task to extract such a bound from the actual formulation, because

Theorem 2.2.19 states that there is an explicitly given natural number which realises a

particular formula and its proof shows how this natural number can be constructed. But

after a closer examination of Buchholz’s proof that is given in Chapter 3 the reader will

recognise that only the existence statement is needed in order to prove Theorem 3.3.3.

We therefore reformulate Theorem 2.2.19 to the weaker existential statement and, hence,

avoid actual calculations in HA. This spares us from giving a complexity-analysis of

basic calculations and the coding-machinery for recursive function.

The proofs of the following lemmata use the fact that the formula-length increment that

is caused by the realisability translation can be linearly bounded:

|xrϕ| ≤ 30|ϕ|,

which can be easily verified by Definition 2.2.18.1

Lemma 6.1.6 Assume that ϕ(~x) ∈ L1
HA and all free variables are shown. Then there is

a c ∈ N such that

HA `mG ϕ(~x)⇒ HA `m2c
G (∃y)[yr(∀~x)ϕ(~x)].

Proof

The numeration of the cases follows Appendix C. In the case of an axiom, we assume

at first that there are no free variables occurring in the formulas. However, after we

1The function |ϕ| gives the total number of symbol occurrences at ϕ. Also note that Definition 2.2.18

expands a formula from the outside and adds only a constant number of symbols in every step. Hence for

any symbol only a constant number of symbols is added; which leads to a linear bound.



Chapter 6. ÎD
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have gone through all the axiom cases, we will show by a general argument how the

presence of free variables affects the deduction-complexity increment. In the following

we only count the lines of the new deduction. The reader however can easily check that

no formula is longer than its respective formula in the original deduction times a constant

cForm. Consequently the constant c can be taken as the product of cForm and the biggest

constant appearing in the deduction-length increment-bound.

(a) The realiser of an axiom of the form ⊥ → ϕ is a code of the constant 0 function of

the same variables as the axiom, which is pλ~x.0q =: e0. Hence we have to find a

deduction in HA of the formula e0r[⊥ → ϕ].

We can deduce

⊥ → 0rϕ

in one line by (a). From this we can deduce in HA the formula

⊥ → (∃v)[T (e0, u, v) ∧ U(v)rϕ].

Since ur⊥ ≡ ⊥, we get

e0r[⊥ → ϕ]

by generalisation in, say, ca many lines.

(b) • The realiser of an axiom with the form ϕ ∨ ϕ→ ϕ is a code of the projection

function that projects to the second variable pλx.p2(x)q =: ep2 . We expand

the realised formula according to Definition 2.2.18:

ep2r[ϕ ∨ ϕ→ ϕ]

(∀u)[urϕ ∨ ϕ→ (∃v)[T (ep2 , u, v) ∧ U(v)rϕ]]

(∀u)[[(p1(u) = 0→ p2(u)rϕ) ∧ (p1(u) 6= 0→ p2(u)rϕ)]→

(∃v)[T (ep2 , u, v) ∧ U(v)rϕ]]
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Since the computation of a single explicitly given elementary function can

be primitive-recursively constructed, there is a primitive recursive function f ,

which is contained in LHA as a function symbol, such that HA ` p2(u) =

U(f(u)).2 This gives us

HA ` (p1(u) = 0→ p2(u)rϕ) ∧ (p1(u) 6= 0→ p2(u)rϕ)→

T (ep2 , u, f(u)) ∧ U(f(u))rϕ,

where the deduction-length corresponds only to the particular coding that is

used to formulate T and U . Therefore the deduction.length is the same for

every realised instance of the axiom schema (b). By logic alone we can

quantify f(u) by an existential quantifier, which gives us the realised version

of the axiom. So let’s say that the deduction is cb1 lines long.

• The realiser of an axiom of the form ϕ → ϕ ∧ ϕ is a code of the pairing

function that has only one input pλx.〈x, x〉q =: e〈,〉. The realiser translates

the formula as follow.

e〈,〉r[ϕ→ ϕ ∧ ϕ]

(∀u)[urϕ→ (∃v)[T (e〈,〉, u, v) ∧ U(v)r[ϕ ∧ ϕ]]

(∀u)[urϕ→ (∃v)[T (e〈,〉, u, v) ∧ p1(U(v))rϕ ∧ p2(U(v))rϕ]]

As before, we can find a primitive recursive function f that outputs the

computation of the pairing function, in accordance with e〈,〉, such that HA `

〈x, x〉 = U(f(x)). However, since u = pi(〈u, u〉) = pi(U(f(u))) this proof is

even relatively simple, because it is essentially an application of (b) through

urϕ → urϕ ∧ urϕ. So the proof-length is therefore uniform in urϕ and has,

say, cb2 lines.

We put those two constants together by taking the maximum cb := max{cb1 , cb2}.
2By a computation of a recursive function f we mean a sequence or a tree that is inductively constructed

by computing through f in accordance with one of its codes.
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(c) • For the axioms ϕ → ϕ ∨ ψ the obvious realiser is a code for the pair-0-

with-x function pλx.〈0, x〉q =: e〈0,〉. As before we expand according to the

translation.

e〈0,〉r[ϕ→ ϕ ∨ ψ]

(∀u)[urϕ→ (∃v)[T (e〈0,〉, u, v) ∧ U(v)r[ϕ ∨ ψ]]

(∀u)[urϕ→ (∃v)[T (e〈0,〉, u, v)∧

(p1(U(v)) = 0→ p2(U(v))rϕ) ∨ (p1(U(v)) 6= 0→ p2(U(v))rψ)]]

Again, since the representation of the function is explicitly given as a code, we

can construct a primitive recursive function f , which is therefore present in the

language as a function symbol, which gives us a computation for a given input,

i.e. HA ` 〈0, x〉 = U(f(x)). Since u = p2(〈0, u〉) = p2(U(f(u))) and 0 =

p1(U(f(u))) are both deducible in HA, we can deduce the realised statement

by taking v as f(u). Note that this deduction works entirely schematically in

urϕ and has therefore a constant number of lines, let’s say cc1 many, for any

ϕ.

• In the case of an axiom ϕ ∧ ψ → ϕ the realiser is a code of the projection

function to the first entry, i.e. pλx.p1(x)q =: ep1 . Moreover the realisation

expands as follows.

ep1r[ϕ ∧ ψ → ϕ]

(∀u)[ur[ϕ ∧ ψ]→ (∃v)[T (ep1 , u, v) ∧ U(v)rϕ]]

(∀u)[[p1(u)rϕ ∧ p2(u)rψ]→ (∃v)[T (ep1 , u, v) ∧ U(v)rϕ]]

As before, by constructing a primitive recursive function from ep1 that gives

the computation of ep1 for an input, we get HA ` p1(x) = U(f(x)). So by
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instantiating v by f(u) we get a proof which is uniform in urϕ, let’s say, in

length cc2 .

By taking the maximum of these two numbers cc := max{cc1 , cc2}, we can bound

the deductions for every use of axiom (c).

(d) • The realiser for an axiom of the form ϕ∨ψ → ψ ∨ϕ is a code of the function

that changes the first entry of a pair from 0 to something else and conversely,

i.e. pλx.〈1−̇p1(x), p2(x)〉q =: e〈1−,〉. This realiser expands the axiom as

follows.

e〈1−,〉r[ϕ ∨ ψ → ψ ∨ ϕ]

(∀u)[ur[ϕ ∨ ψ]→ (∃v)[T (e〈1−,〉, u, v) ∧ U(v)r[ψ ∨ ϕ]]]

(∀u)[(p1(u) = 0→ p2(u)rϕ) ∧ (p1(u) 6= 0→ p2(u)rψ)→

(∃v)[T (e〈1−,〉, u, v)∧

(p1(U(v)) = 0→ p2(U(v))ψ) ∧ (p1(U(v)) 6= 0→ p2(U(v))ϕ)]]

As before we can find a primitive recursive function f that gives the

computation of e〈1−,〉 for a given input x. Therefore we get HA `

〈1−̇p1(x), p2(x)〉 = U(f(x)). As before it is clear that this formula can

be deduced by taking f(u) as v in a way that is schematic in p2(u)rϕ and

p2(u)rψ. Therefore this deduction is constant in length for any substitution of

this formula. Let’s say that it has cd1 many lines.

• A realiser for the axiom ϕ ∧ ψ → ψ ∧ ϕ is a code of the function that

changes the order of the entries in a pair, i.e. pλx.〈p2(x), p1(x)〉q =: eswap. In

according with the realisability translation, the formula expands as follows.

eswapr[ϕ ∧ ψ → ψ ∧ ϕ]

(∀u)[ur[ϕ ∧ ψ]→ (∃v)[T (eswap, u, v) ∧ U(v)r[ψ ∧ ϕ]]
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(∀u)[(p1(u)rϕ ∧ p2(u)rψ)→

(∃v)[T (eswap, u, v) ∧ p1(U(v))rψ ∧ p2(U(v))rϕ]

As before, by defining an appropriate function, the proof is schematic in

p1(u)rϕ and p2(u)rψ and has a length of, say, cd2 many lines.

To combine these two cases we take cd := max{cd1 , cd2}.

(e) The realiser of an axiom which has the form (∀x)ϕ(x) → ϕ(t) is a code, say e{.},

for the function

y 7→ {y}(t).

This gives for

pλy.{y}(t)qr[(∀x)ϕ(x)→ ϕ(t)]

the formula

(∀u)[ur(∀x)ϕ(x)→ (∃v)[T (e{.}, u, v) ∧ U(v)rϕ(t)]].

By using Definition 2.2.18 again, we get

(∀u)[(∀x)(∃z)[T (u, x, z) ∧ U(z)rϕ(x)]→ (∃v)[T (e{.}, u, v) ∧ U(v)rϕ(t)]].

To deduce this formula in HA, we assume that

(∀x)(∃z)[T (u, x, z) ∧ U(z)rϕ(x)].

By an application of (g) and (j) we get

(∃z)[T (u, t, z) ∧ U(z)rϕ(t)].

By Theorem 6.1.2 we get the code e0 for the function

〈x, y〉 7→ {x}(y)
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i

<ω(strict) has at most an elementary speed-up over PA 149

in HA. Since substituting for y the term t into e0 can be done primitive recursively,

we can construct in HA the code e{.} from e0 and ptq such that

(∃v)[T (e{.}, u, v) ∧ U(v)rϕ(t)]

is deducible. By using the deduction theorem and generalisation we get

e0r[(∀x)ϕ(x)→ ϕ(t)]

by a deduction that is schematic in xrϕ. So for every instance of axiom (e) we get

a deduction of

(∃y)[yr[(∀x)ϕ(x)→ ϕ(t)]]

of constant length, say of ce many lines.

(f) In the case of an axiom of the form ϕ(t) → (∃x)ϕ(x) we choose the realiser to be

the code of the pair-with-t function

y 7→ 〈t, y〉.

By Definition 2.2.18 we get that

e〈t,.〉r[ϕ(t)→ (∃x)ϕ(x)]

translates into

(∀u)[urϕ(t)→ (∃v)[T (e〈t,.〉, u, v) ∧ U(v)r[(∃x)ϕ(x)]]].

Using Definition 2.2.18 again, we get

(∀u)[urϕ(t)→ (∃v)[T (e〈t,.〉, u, v) ∧ p1(U(v))rϕ(p2(U(v))]].

However it is clear that

HA ` (∀x, y)[T (e〈t,.〉, x, y)→ p1(U(y)) = t ∧ p2(U(y)) = x].
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So assuming that urϕ(t), we can deduce in HA

(∃v)[T (e〈t,.〉, u, v) ∧ p1(U(v))rϕ(p2(U(v))]

schematically in xrϕ(y). Consequently by using the deduction theorem and

generalisation, we get

e〈t,.〉r[ϕ(t)→ (∃x)ϕ(x)]

in a constant number of lines, say cf many.

We have seen so far that the length of a deduction that deduces a realised version

of a free-variable free instance of any axiom can be bounded by a constant cax :=

max{ca, cb, cc, cd, ce, cf}. In the case of an axiom ϕ(~x) with n free variables x1, ..., xn

we can deduce in the same way that there is an m such that HA ` m̄rϕ(~x) and that the

length of its deduction is bounded by cax. It is not possible to quantify the whole formula

in order to introduce a ∀-quantifier at the right side of the realiser, since (∀x)[m̄rϕ] is not

the same as m̄r(∀x)ϕ. Therefore we have to proceed by the following construction:

First we note that there is a primitive recursive function f such that

HA ` (∀x, y, z)[T (f(z), x, y) ∧ U(y) = z], (∗)

because f only gives the code for the constant-z-function with the additional input

variable x. Also note that in this case HA deduces the totality of this function, since

z is explicitly given. Since (∗) is provable by a fixed deduction, all its instances for z are

deducible in the same number of lines, say cgen many. Consequently we get in cgen lines

(∀x, y)[T (f(m̄), x, y) ∧ U(y) = m̄]. This gives together with n̄rϕ(~x) a deduction for

(∀xn)(∃yn)[T (f(m̄), xn, yn) ∧ U(yn)rϕ(~x)]

in, say, cax + cgen + c′ many lines. This is

f(m̄)r(∀xn)ϕ(~x).
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If we repeat this process n− 1 many times, then we get

f...f(m̄)r(∀~x)ϕ(~x)

in cax + n · (cgen + c′) many lines. Since the existence statement

(∃y)[yr(∀~x)ϕ(~x)]

is only 2 more lines away, we can bound all axiom cases by (n+ 1) · caxiom for

caxiom := max{(cax + 2), (cgen + c′ + 2)}.

Now that we have dealt with all the cases of axioms, we continue with the rules that

constitute the calculus.

(g) Assume that there is an application of Modus Ponens with the premisses ϕ(~x) and

ϕ(~x)→ ψ(~x). We also assume that only nmutually distinct free variables x1, ..., xn

occur in these two formulas. By induction hypothesis we have deductions for

(∃e1)[e1r(∀~x)ϕ(~x)]

(∃e2)[e2r(∀~x)[ϕ(~x)→ ψ(~x)]].

So we can assume that there are such e1 and e2 by adding the formulas

e1r(∀~x)ϕ(~x)

e2r(∀~x)[ϕ(~x)→ ψ(~x)]

to the deduction.

According to Definition 2.2.18 the first formula can be expanded to

(∀x1)(∃y1)[T (e0, x1, y1) ∧ (∀x2)(∃y2)[T (U(y1), x2, y2)∧
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U(y2)r(∀x3, ..., xn)ϕ(~x)]].

Using Kleene brackets, we can write this as

{{e1}(x1)}(x2)r(∀x3, ..., xn)ϕ(~x).

By Theorem 6.1.2 we get

{e0}({e1}(x1), x2)r(∀x3, ..., xn)ϕ(~x).

Since the composition of two codes can be done primitive recursively, there is a

function symbol in the language such that

{f(e0, e1)}(x1, x2)r(∀x3, ..., xn)ϕ(~x).

Since f is a function symbol in LHA and Theorem 6.1.2 is deducible in full

generality in HA, this enlarges the deduction in a constant number of lines; let’s

say in cg1 many. Repeating this process another n − 2 times we get in (n − 1)cg1

lines

{f(e0, ...f(e0, f(e0, e1))...)}(x1, x2, ..., xn)rϕ(~x).

In the following we take t1 to be t1 := f(e0, ...f(e0, f(e0, e1))...). Similarly

proceeding for e2r(∀~x)[ϕ(~x) → ψ(~x)], we get in 2(n − 1)cg1 many lines the

formulas

(∀~x)(∃y)[T (t1, ~x, y) ∧ U(y)rϕ(~x)]

and

(∀~x)(∃y)[T (t2, ~x, y) ∧ U(y)r[ϕ(~x)→ ψ(~x)]].

The latter is
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(∀~x)(∃y)[T (t2, ~x, y) ∧ (∀u)[urϕ(~x)→ (∃v)[T (U(y), u, v) ∧ U(v)rψ(~x)]]].

By a deduction which is uniformly constructed from urϕ(~x) and urψ(~x) these two

formulas yield the formula

(∀~x)(∃y, z)[T (t2, ~x, y) ∧ T (t1, ~x, z) ∧ (∃v)[T (U(y),U(z), v) ∧ U(v)rψ(~x)]].

Using Kleene brackets, we can denote this formula by

{{t2}(~x)}({t1}(~x))rψ(~x).

By Theorem 6.1.2 and the fact that concatenation can be done primitive recursively,

we get

{h(e0, t1, t2)}(~x)rψ(~x)

for some function symbol h. The last moves are schematic in urϕ(~x) and urψ(~x),

hence the deduction is enlarged by a constant number of lines, say cg2 many.

Therefore we reach 2(n − 1)cg1 + cg1 many lines. To quantify at the right side

of the realiser we have to look at

(∀~x)(∃v)[T (h(e0, t1, t2), ~x, v) ∧ U(v)rψ(~x)].

Using the S-m-n theorem, we get

S1
n−1(h(e0, t1, t2), x1, ..., xn−1)r(∀xn)ψ(~x).

Since h, f and S1
n−1 are primitive recursive, we can find a primitive recursive

function h′ such that
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(∀x1, ..., xn−1)(∃v)[T (h′(e0, e1, e2, ef , eh, eS1
n−1

), 〈x1, ..., xn−1〉, v)∧

U(v)r(∀xn)ψ(~x)

can be deduced in cg3 many lines. Repeating this procedure n − 1 times, we get a

term t3(e1, e2) such that

t3(e1, e2)r(∀~x)rψ(~x)

is deducible in 2(n− 1)cg1 + cg2 + n · cg3 many lines.

Hence, by adding two more lines, we get

(∃y)[yr(∀~x)rψ(~x)].

In total we need less than 3ncḡ lines, where

cḡ := max{2, cg1 , cg2 , cg3}.

Using the deduction theorem twice for the two assumptions respectively and some

logic, we get a deduction of

(∃y)[yr(∀~x)rψ(~x)]

with at most 3ncḡc
2
D + cg4 many lines. Taking cg := max{3cḡc2

D, cg4}, we therefore

get an upper bound for this case of

(n+ 1)cg many lines.

(h) By induction hypothesis we have a deduction for (∃e1)[e1r(∀~x)[ϕ(~x) → χ(~x)]]

and (∃e2)[e2r(∀~x)[χ(~x) → ψ(~x)]]. Moreover, in these two formulas, the variables

x1, ..., xn are the only freely occurring variables. We assume that

e1r(∀~x)[ϕ(~x)→ χ(~x)]

and

e2r(∀~x)[χ(~x)→ ψ(~x)].
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By similar constructions as in (g) we get in 2 · (n− 1) · ch1 lines the formulas

(∃v)[T (t1(e1), ~x, v) ∧ U(v)r[ϕ(~x)→ χ(~x)]]

and

(∃w)[T (t2(e2), ~x, w) ∧ U(w)r[χ(~x)→ ψ(~x)]],

which are

(∃v)[T (t1(e1), ~x, v)∧

(∀u)[urϕ(~x)→ (∃v′)[T (U(v), u, v′) ∧ U(v′)rχ(~x)]]]

and

(∃w)[T (t2(e2), ~x, w)∧

(∀u)[urχ(~x)→ (∃w′)[T (U(w), u, w′) ∧ U(w′)rψ(~x)]]].

We enlarge this deduction by yrϕ(~x) and get after several lines

(∃v)(∃v′)[T (t1(e1), ~x, v) ∧ T (U(v), y, v′) ∧ U(v′)rχ(~x)].

Using Theorem 6.1.2 and the fact that composing two codes is primitive recursive,

we get

(∃v)[T (t3(e1), 〈~x, y〉, v) ∧ U(v)rχ(~x)].

Next we perform a similar construction with

(∃w)[T (t2(e2), ~x, w)∧

(∀u)[urχ(~x)→ (∃w′)[T (U(w), u, w′) ∧ U(w′)rψ(~x)]]]

to get

(∃w)[T (t4(e1, e2), 〈~x, y〉, w) ∧ U(w)rψ(~x)].
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Using the S-m-n Theorem, we get

(∃w)[T (t5(e1, e2, ~x), y, w) ∧ U(w)rψ(~x)].

Since the recursion theory needed is available in HA in full generality and the

constructions that have been given so far, are schematic in urϕ, urχ and urψ, we

obtain the last result in a constant number of lines, say ch2 many. Therefore we

reach a length of 2(n − 1)ch1 + ch2 . Using the deduction theorem for yrϕ(~x), we

get

yrϕ(~x)→ (∃w)[T (t5(e1, e2, ~x), y, w) ∧ U(w)rψ(~x)]

by (n− 1)2ch1cD + ch2cD many lines. By generalisation we get

t5(e1, e2, ~x)r[ϕ(~x)→ ψ(~x)]

in (n−1)2ch1cD+ch2cD+4 many lines. Using the constructions that are described

in (g), we get

t6(e1, e2)r(∀~x)ϕ(~x)→ ψ(~x)]

in (n−1)2ch1cD +ch2cD +4+(n−1)ch3 many lines. Using the deduction theorem

twice and some logic, we get

(∃e3)[e3r(∀~x)ϕ(~x)→ ψ(~x)]]

in (n − 1)2ch1c
3
D + ch2c

3
D + 4c2

D + (n − 1)ch3c
2
D + ch4 many lines. Taking ch =

max{4ch1c3
D, 2ch2c

3
D, 8c

2
D, 2ch3c

2
D, 2ch4}, we can bound this case by

(n+ 1)ch many lines.

(i) We assume that there is a deduction of (∃e1)[e1r(∀~x)[ϕ∧ψ → χ]]. We choose such

an e1 by adding the formula e1r(∀~x)[ϕ ∧ ψ → χ] to the deduction. We extend this
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deduction by two lines for yrϕ(~x) and zrψ(~x). Therefore we get 〈y, z〉r[ϕ ∧ ψ].

From e1r(∀~x)[ϕ ∧ ψ → χ] we get by the same procedure as in (g)

(∃v)[T (t1(e1), ~x, v) ∧ U(v)r[ϕ ∧ ψ → χ]]

in (n − 1)ci1 many lines. By a deduction that is schematic in 〈y, z〉r[ϕ ∧ ψ], we

therefore get

(∃v)(∃w)[T (t1(e1), ~x, v) ∧ T (U(v), 〈y, z〉, w) ∧ U(w)rχ(~x)].

As in the earlier cases we get

(∃w)[T (t2(e1), 〈~x, y, z〉, w) ∧ U(w)rχ(~x)].

Using the S-m-n Theorem, we obtain

(∃w)[T (t3(e1, ~x, y), z, w) ∧ U(w)rχ(~x)]

in (n− 1)c′i + (n + 1)ci2 many lines. By using the deduction theorem for zrψ(~x),

we get

t3(e1, ~x, y)r[ψ → χ]

in (n− 1)ci1cD + (n+ 1)ci2cD + 6 many lines. Since t3 is built up by symbols for

primitive recursive functions, we can use Theorem 6.1.2 to get a t4 such that

{t4(e1)}(~x, y)r[ψ → χ].

Hence, using the S-m-n theorem, we get a t5 such that

{t5(e1, ~x)}(y)r[ψ → χ]

is deducible in (n−1)ci1cD + (n+ 1)ci2cD +nci3 many lines. Using the Deduction

Theorem for yrϕ, we can therefore deduce

t5(e1, ~x)r[ϕ→ [ψ → χ]]
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in (n−1)ci1c
2
D+(n+1)ci2c

2
D+nci3cD+6 many lines. By using similar constructions

as in (g), we get in (n− 1)ci1c
2
D + (n+ 1)ci2c

2
D + nci3cD + (n− 1)ci4 many lines

t6(e1)r(∀~x)[ϕ→ [ψ → χ]].

Using the Deduction Theorem for e1r(∀~x)[ϕ ∧ ψ → χ] and some logic, we get

(∃e2)[e2r(∀~x)[ϕ→ [ψ → χ]]

in (n− 1)ci1c
3
D + (n+ 1)ci2c

3
D +nci3c

2
D + (n− 1)ci4cD + ci5 many lines. Choosing

ci in an appropriate way, we therefore get an upper bound of

(n+ 1)ci many lines.

(j) By the induction hypothesis we have a deduction for (∃e1)[e1r(∀~x)[ϕ → (ψ →

χ)]]. We assume that e1 is a witness, by assuming the formula e1r(∀~x)[ϕ→ (ψ →

χ)]. Using the same procedure as in (g), this gives a t1 such that

(∃v)[T (t1(e1), ~x, v) ∧ U(v)r[ϕ→ (ψ → χ)]]]

is deducible in (n−1)cj1 many lines. We also assume that yr[ϕ∧ψ]. Hence p1(y)rϕ

and p2(y)rψ can be proved in a uniform way. From p1(y)rϕ we get

(∃v1)(∃w1)[T (t1(e1), ~x, v1) ∧ T (U(v1), p1(y), w1) ∧ U(w1)r[ψ → χ]].

Moreover Theorem 6.1.2 gives us

(∃w1)[T (t2(e1), 〈~x, p1(y)〉, w1) ∧ U(w1)r[ψ → χ]].

Using p2(y)rψ, we get

(∃w)[T (t3(e1), 〈~x, p1(y), p2(y)〉, w) ∧ U(w)rχ]

by Theorem 6.1.2. Consequently we reach a length of (n− 1)cj1 + cj2 lines.
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Therefore we get

(∃w)[T (t4(e1, ~x), 〈p1(y), p2(y)〉, w) ∧ U(w)rχ]

by the S-m-n Theorem. This leads to

(∃w)[T (t4(e1, ~x), y, w) ∧ U(w)rχ]

by HA ` y = 〈p1(y), p2(y)〉. Since the S-m-n Theorem is used, the deduction has

a length of (n − 1)cj1 + cj2 + ncj3 many lines. Using the Deduction theorem with

yr[ϕ ∧ ψ] and generalisation, we therefore get

t4(e1, ~x)r[ϕ ∧ ψ → χ]

in (n − 1)cj1cD + cj2cD + ncj3cD + 6 many lines. By a similar construction as in

the preceding cases, we get therefore

t5(e1)r(∀~x)[ϕ ∧ ψ → χ]

in (n− 1)cj1cD + cj2cD + ncj3cD + cj4 many lines. Using the Deduction Theorem

with e1r(∀~x)[ϕ→ (ψ → χ)] and some logic, we get

(∃e2)[e2r(∀~x)[ϕ ∧ ψ → χ]]

in (n − 1)cj1c
2
D + cj2c

2
D + ncj3c

2
D + cj4cD + cj5 many lines. If cj is chosen big

enough, then it is possible to bound the deduction by

(n+ 1)cj many lines.

(k) By induction hypothesis we have a deduction for (∃e1)[e1r(∀~x)[ϕ → ψ]]. We

assume that e1 is such a realiser, by assuming the formula e1r(∀~x)[ϕ → ψ]. By a

similar construction as in the previous cases, we get

(∃v)[T (t1(e1), ~x, v) ∧ U(v)r[ϕ→ ψ]]
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in (n − 1)ck1 many lines. In order to use the Deduction Theorem, we start by

assuming that yr[χ ∨ ϕ]. This is

(p1(y) = 0→ p2(y)rχ) ∧ (p2(y) 6= 0→ p2(y)rϕ).

We assume that p1(y) = 0 and get, therefore, in two lines p2(y)rχ. Hence, by a

schematic deduction (we only need logic), we obtain

(p1(y) = 0→ p2(y)rχ) ∧ (p1(y) 6= 0→ p2(y)rψ).

Using the Deduction theorem, we get a deduction of

p1(y) = 0→ (p1(y) = 0→ p2(y)rχ) ∧ (p2(y) 6= 0→ p2(y)rψ),

which is

p1(y) = 0→ yr[χ ∨ ψ].

Therefore the deduction reaches (n1)ck1 + ck2cD many lines.

Next, we assume that p1(y) 6= 0. This gives p2(y)rψ; which together with

(∃v)[T (t1(e1), ~x, v) ∧ U(v)r[ϕ→ ψ]]

the formula

(∃v)(∃w)[T (t1(e1), ~x, v) ∧ T (U(v), p2(y), w) ∧ U(w)rψ].

By Theorem 6.1.2 and primitive recursive operations, we, therefore, get

(∃w)[T (t2(e1), 〈~x, p2(y)〉, w) ∧ U(w)rψ].

Hence we are able to obtain

(∃w)[T (t2(e1), 〈~x, p2(y)〉, w)∧

(p1(y) = 0→ U(w)rχ) ∧ (p1(y) 6= 0→ U(w)rψ)].
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Because, since we have assumed that p1(y) 6= 0 holds, (p1(y) = 0 → U(w)rχ)

is deducible and (p1(y) 6= 0 → U(w)rψ) is just a weakening of U(w)rψ. By

Definition 2.2.18 and facts about the 〈., .〉 function, we therefore get

(∃w)[T (t2(e1), 〈~x, p2(y)〉, w) ∧ 〈p1(y),U(w)〉r[χ ∨ ψ]]

in (n−1)ck1+ck2cD+ck3 many lines. Using the Deduction Theorem with p1(y) 6= 0,

we get a deduction of

p1(y) 6= 0→ (∃w)[T (t2(e1), 〈~x, p2(y)〉, w) ∧ 〈p1(y),U(w)〉r[χ ∨ ψ]],

in (n− 1)ck1 + ck2cD + ck3cD many lines. Consequently both formulas,

p1(x) = 0→ yr[χ ∨ ψ]

and

p1(x) 6= 0→ (∃w)[T (t2(e1), 〈~x, p2(y)〉, w) ∧ 〈p1(y),U(w)〉r[χ ∨ ψ]],

are included in one deduction of length (n−1)ck1 +ck2cD+ck3cD. It is well known

that arithmetic can combine logical connectives between two equations into one

equation. Therefore we get a deduction for

(∃w)[T (t2(e1), 〈~x, p2(y)〉, w) ∧ tr[χ ∨ ψ]],

where t = (1−̇p1(y))y + sgn(p1(y))) · 〈p1(y),U(w)〉. Since the composition of a

recursive function with finitely many primitive recursive ones can be done primitive

recursively, there is a function symbol f such that

HA ` (∀~x, y, z)[(T (f(e1), 〈~x, y〉, z)→

(∃w)[T (t2(e1), 〈~x, p2(y)〉, w) ∧ U(w) = t(y,U(z))]].

Therefore we get

(∃w)[T (f(e1), 〈~x, y〉, w) ∧ U(w)r[χ ∨ ψ]]
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in (n− 1)ck1 + ck2cD + ck3cD + ck4 many lines. Using the S-m-n Theorem, we can

obtain

(∃w)[T (t3(e1, ~x), y, w) ∧ U(w)r[χ ∨ ψ]]

in (n − 1)ck1 + ck2cD + ck3cD + ck4 + nck5 many lines. By using the deduction

theorem for yr[χ∨ϕ] and generalisation, we therefore get in (n−1)ck1cD+ck2c
2
D+

ck3c
2
D + ck4cD + nck5cD + 6 many lines

t3(e1, ~x)r[χ ∨ ϕ→ χ ∨ ψ].

As in (g), we get from this

t4(e1)r(∀~x)[χ ∨ ϕ→ χ ∨ ψ]

in (n − 1)ck1cD + ck2c
2
D + ck3c

2
D + ck4cD + nck5cD + 6 + (n − 1)ck6 many lines.

Using the deduction theorem with e1r[ϕ→ ψ], we obtain

(∃e2)[e2r(∀~x)[χ ∨ ϕ→ χ ∨ ψ]

in (n − 1)ck1cD + ck2c
2
D + ck3c

2
D + ck4cD + nck5cD + 6 + (n − 1)ck6 + ck7 many

lines. Choosing ck big enough, we obtain a bound for this case of

(n+ 1)ck.

(l) To stay in line with the notation that is used in the rest of the present proof, let’s

use y to denote the free variable that is quantified by the rule (l). Assume that

we have a deduction for (∃e1)[e1r[(∀~x, y)(ψ → ϕ(y))]]. Hence we assume that

e1r[(∀~x, y)(ψ → ϕ(y))], which gives the formula

(∀y)(∃z)[T (t1(e1), 〈~x, y〉, z) ∧ (∀u)[urψ → (∃v)[T (U(z), u, v) ∧ U(v)rϕ(y)]]

by the same constructions as in (g) and Definition 2.2.18. Using Theorem 6.1.2

and the fact that concatenation can be done primitive recursively, we get a primitive

recursive function f1 such that

(∀~x, y, u)[urψ → (∃v)[T (f1(e0, t1(e1)), 〈~x, y, u〉, v) ∧ U(v)rϕ(y)]].
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Hence the deduction reaches (n − 1)cl1 + cl2 many lines. As in previous cases,

we want to use the deduction theorem and assume therefore that zrψ. We can then

conclude

(∀~x, y)(∃v)[T (f1(e0, t1(e1)), 〈~x, y, z〉, v) ∧ U(v)rϕ(y)].

Using the formalised S-m-n theorem, we get

(∀y)(∃v)[T (t2(e1, ~x, z), y, v) ∧ U(v)rϕ(y)]

in (n− 1)cl1 + cl2 + ncl3 many lines. This is

t2(e1, ~x, z)r[(∀y)ϕ(y)].

Since t2 is built up by function symbols for primitive recursive function, we can

find a primitive recursive f2 such that

HA ` (∀~x, y, z)[T (f2(e1, ~x), y, z)→ t2(e1, ~x, y) = U(z)]

and

HA ` (∀~x, y)(∃z)T (f2(e1, ~x), y, z).

Hence we get

(∃v)[T (f2(e1, ~x), z, v) ∧ U(v)r[(∀y)ϕ(y)]].

The construction of this deduction is schematic in xrϕ(x) and uses formalised

recursion theory which is provable in full generality in HA. Consequently this

extension of the deduction is bounded by (n − 1)cl1 + cl2 + ncl3 + cl4 many lines.

Using the deduction theorem (with zrψ) and generalisation, we get

f2(e1, ~x)r[ψ → (∀y)ϕ(y)].

Hence, using similar constructions as in the other cases, we get in (n−1)cl1 + cl2 +

ncl3 + cl4 + (n− 1)cl5 many lines the formula

t3(e1)r(∀~x)[ψ → (∀y)ϕ(y)].
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Using the deduction theorem with e1r(∀~x, y)[ψ → ϕ(y)] and combining this with

the induction hypothesis, we get

(∃e2)[e2r(∀~x)[ψ → (∀y)ϕ(y)]]

in (n− 1)cl1cD + cl2cD +ncl3cD + cl4cD + (n− 1)cl5cD + cl6 many lines. Choosing

cl big enough, we can bound this case by

(n+ 1)cl.

(m) By the induction hypothesis we have a deduction of

(∃e1)[e1r[(∀~x, y)(ϕ(~x, y)→ ψ(~x))]].

So we assume that e1 is such a witness by assuming the formula

e1r[(∀~x, y)(ϕ(y)→ ψ)].

This formula is, according to Definition 2.2.18 and by similar constructions as in

(g), equal to the formula

(∀y)(∃z)[T (t1(e1), 〈~x, y〉, z) ∧ (∀u)[urϕ(y)→ (∃v)[T (U(z), u, v) ∧ U(v)rψ]]].

This leads to a deduction-length increment of (n − 1)cm1 many lines. Using the

same construction as in case (l), we get

(∀y, u)[urϕ(y)→ (∃v)[T (f(e1), 〈~x, u, y〉, v) ∧ U(v)rψ]].

In order to prove the conclusion of (m), we assume that ur(∃y)ϕ(y). This is,

according to Definition 2.2.18, equal to the formula p1(u)rϕ(p2(u)). Consequently

we can deduce

(∃v)[T (f(e1), 〈~x, 〈p1(u), p2(u)〉, y〉, v) ∧ U(v)rψ]].

This leads to

(∃v)[T (f(e1), 〈~x, u, y〉, v) ∧ U(v)rψ]]
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by using that

HA ` (∀x)[〈p1(x), p2(x)〉 = x].

Using the Deduction Theorem, similar constructions as in (g) and generalisation,

we get

t2(e1, ~x)r[(∃y)ϕ(y)→ ψ]

in (n− 1)cm1cD + cm2 many lines. Using Theorem 6.1.2 n− 1 many times, we get

a deduction for

t3(e1)r(∀~x)[(∃y)ϕ(y)→ ψ]

after (n− 1)cm1cD + cm2 + (n− 1)cm3 many lines. Using the Deduction Theorem

and some logic, we obtain

(∃e2)[e2r(∀~x)[(∃y)ϕ(y)→ ψ]]

by a deduction of length (n + 1)cm for a suitable cm, which was chosen as in

previous cases.

This finishes the logical part of a HA-deduction. In the following cases we continue with

the arithmetical part.

(n) (We exceptionally assume that we have m free variables, since unfortunately this is

case (n).) Note that all axioms defining a primitive recursive function and the first

identity-axiom (x = x) are of the form

t(~x) = s(~x),

i.e. they are atoms. Therefore they are their own realisations. Consequently, using

for an m-ary function-axiom the code for the m-ary constant-0-function, we can

deduce {e0}(~x)rt(~x) = s(~x) in one line. Using the same constructions as we did

for the logical axioms, we get

(∃e1)[e1r(∀~x)t(~x) = s(~x)]
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in mcn + cn = (m+ 1)cn many lines.

(o) The next group of axioms is realised by a constant-0-function with appropriate arity.

x = y ∧ y = z → x = z

S(x) 6= 0

S(x) = S(y)→ x = y

These are three axioms with at most three variables. Hence the deduction of their

realised versions can be bounded by the number co. The axiom schema

xi = y → [ϕ(x1, ..., xi, ..., xn)↔ ϕ(x1, ..., y, ..., xn)]

has n free variables. Hence we choose co big enough such that nco bounds the

length of this axiom’s deduction.

(p) The last step is the case of an induction axiom. To deduce the realised version of an

induction axiom in HA, we assume that

ur[ϕ(0, ~x) ∧ (∀y)[ϕ(y, ~x)→ ϕ(S(y), ~x)]].

As is explained in the proof of Theorem 2.2.19, we can use the Formalised

Recursion Theorem to obtain a realiser for (∀y)ϕ(y) that is also total. The length of

the deduction that establishes totality is independent from ϕ, since it depends only

on the realiser’s construction by the Formalised Recursion Theorem. Consequently

we get a t1 such that

t1(~x)r[[ϕ(0, ~x) ∧ (∀y)[ϕ(y, ~x)→ ϕ(S(y), ~x)]]→ (∀y)ϕ(y, ~x)]

is deducible in cp many lines. Using a similar construction as in previous cases, we

therefore get a deduction of

t2r(∀~x)[ϕ(0, ~x) ∧ (∀y)[ϕ(y, ~x)→ ϕ(S(y), ~x)]]→ (∀y)ϕ(y, ~x)],

with a constant term t2, that has ncp many lines.
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We finish the proof by noting that the total number of occurrences of free variables in the

deduction is bounded by m. 2

At this stage the reader should recapitulate the extension of the realisability translation

for LHA to the language LID(Q,P ), which is given by Definition 3.3.5. We continue our

investigation by having a closer look at the complexity of deductions that are given by

Lemma 3.3.6. In order to do this, we define a complexity function that ignores the length

of formulas from LID(Q).

`(ϕ) :=


1 : ϕ ∈ LID(Q) or ϕ ≡ P (x)

`(ψ1) + `(ψ2) + 1 : ϕ ≡ ψ1 ◦ ψ2 for ◦ ∈ {∧,∨,→}

`(ψ) + 1 : ϕ ≡ ∀yψ(y)

Note that ` grows linearly in the the code of ϕ.

In the following every constant that is used in the estimation of a deduction-complexity

is denoted by c. Of course this c is always a different c. If we refer to previous results in

a proof, then c always denotes the product of all constants that have been introduced so

far.3 With this convention we try to prevent an overuse of indices.

Lemma 6.1.7 For any strictly positive operator form A there is a accessibility operator

B and a c ∈ N such that

``(xrA)2c
G xrA↔ B.

Proof

Since the proof of Lemma 3.3.6 uses only logic, the length increment in every case is

bounded by a constant (the constructions are very similar to those that were used to prove

Theorem 4.1.3). By taking c as the maximum of these constants, we can bound the length

3By using the product rather than the maximum, we take into account that the length of a deduction

times the length of its longest formula bounds this deduction’s complexity.
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of the deductions by `(xrA)c, because the proof goes by induction on `(xrA). However,

in addition the length of the schemata, which are used in the deductions, are constant in

every case. Hence we can bound them by `(xrA)c as well.4 2

Before we are able to extend Lemma 6.1.6 to LID(strict), we have to ensure that some

technicalities, which are proved in Lemma 3.3.10, do not enlarge the length of the

deductions to much.

Lemma 6.1.8 Assume that ϕ(z) ∈ LID(Q,P ) is a strictly positive operator form and

that

ψ(z) :≡ {v}(y, w, (z)0, (z)1)rϕ((z)0).

There is a c such that for any strictly positive operator form A ∈ LID(Q,P ), where

z1, ..., zn are the only freely occurring variables, there is a realizer (which is expressed by

a p-term) pA(x, v, w, y, z1, ..., zn) such that

HA ``(A)c (xrA)(ψ, PBr

<y)↔ pA(x, v, w, y, z1, ..., zn)rA(ϕ, PB
<y).

5

Proof

First notice that pA(x, v, w, y, z1, ..., zn)rA(ϕ, PB
<y) is neither a formula nor a translation

of one by itself. It is an abbreviation which denotes a realised formula that might include

an occurrence of the T formula, which is used in the coding of recursive functions.

The proof proceeds on the inductive definition of strictly positive operator forms. The

cases are enumerated in accordance with the proof of Lemma 3.3.10. The cases 1-4 and 6

include only logic, identity axioms and general facts about primitive recursive functions

4We distinguish the length of the schema and the length of the formula that is an instance of this schema,

e.g. ([(ϕ∧ψ)∧ (ϕ∧ψ)]→ (ϕ∧ψ)) has a length of 21 as a formula but a length of 9 as an instance of the

schema ((ϕ ∧ ϕ)→ ϕ).
5The set of p-terms is constructed by closing the set of terms of HA by λ-abstraction and Kleene-

brackets.
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(like pairing, projection and the function f of case 4). Therefore these cases are schematic

in ϕ, which makes the deductions that are given by these cases uniformly constructible.

Hence the lengths of these deductions are obviously bounded by a constant. The only

cases which remain problematic, because of they involve formalised recursion theory, are

5 and 7.

However the only problematic step in case 5 is the construction of a deduction for

(∀u)[pC({e}(u), ¯̄z, u)rC(u, ϕ, PB
<y)]↔ λu.pC({e}(u), ¯̄z, u)rA(ϕ, PB

<y).

But note that this is equivalent to

pC({e}(u), ¯̄z, u)rC(u, ϕ, PB
<y)↔ λu.pC({e}(u), ¯̄z, u)rA(ϕ, PB

<y),

which is just a generalisation at the right side of r. This can be done by a similar

construction as in the proof of Lemma 6.1.6. Since all the resources of formalized

recursion theory that are needed here are provable in full generality, the deductions given

thus are length-bounded by a constant.

In case 7 the situation is simpler. The only problematic step here is

(∀u)[(urC)(ψ, PBr

<y)→ pD({e}(u), ¯̄z)rD(ϕ, PB
<y)]↔ λu.pD({e}(u), ¯̄z)rA(ϕ, PB

<y).

This can be done by the S-m-n Theorem (for a fixm and n) and the fact that concatenation

of two recursive functions can be done primitive recursively. Hence this case’s length-

increment is bounded by a constant as well.

Since the proof proceeds by an induction on `(A), we can bound the length-increment

by `(A)c, where c is the the maximum of all constants that are used in the present proof.

To bound the formulas in the deductions we have a similar situation. In all cases the

formulas are bounded by `(A)c as well. 2

Lemma 6.1.9 There is a c such that for any formula ϕ following under the schema

(∀y < n)(∀x)[PA
y (x)↔ A(PA

y , P
A
<y, x, y)],
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where A is a strictly positive operator, there is an m ∈ N such that

ÎD
i

n(acc) ``(A)2c m̄rϕ.

Proof

Assume that ϕ is of the form (∀y < n)(∀x)[PA
y (x) ↔ A(PA

y , P
A
<y, x, y)] for a strictly

positive operator A. First notice that, since A is a strictly positive operator, ϕ is a

sentence. By Lemma 3.3.9 we know that xrA(PA
y , P

A
<y, z, y) and (xrA)(PAr

y , PAr

<y, z, y)

are identical formulas. Therefore we get

HA ``(xrA)2c xrA(PA
y , P

A
<y, z, y)↔ Ar(PAr

y , PAr

<y, 〈z, x〉, y)

by Definition 3.3.7 and Lemma 6.1.7. Using this equivalence together with the fixed point

axiom in ÎD
i

n(acc), one gets

ÎD
i

n(acc) ` y < n→ [xrA(PA
y , P

A
<y, z, y)→ PAr

y (〈z, x〉)].

The deduction is bounded by `(xrA)2c+`(xrA)2c1, because this step is only using logical

moves, which are schematic in the formulas used. By Definition 3.3.5 this gives

ÎD
i

n(acc) ` y < n→ [xrA(PA
y , P

A
<y, z, y)→ xrPA

y (z)].

Therefore we can take m1 := pλuyzx.xq and use it as a realiser. To prove

m1r[y < n→ [A(PA
y , P

A
<y, z, y)→ PA

y (z)]]

from this result one only needs a constant numbers of steps. For the deduction is uniform

in A and A includes not more than three free variables. Note that the variable u appearing

in m1 comes from the fact that

m1r[y < n→ [A(PA
y , P

A
<y, z, y)→ PA

y (z)]]

is

(∀u)[ur(y < n)→ {m}(u)r[A(PA
y , P

A
<y, z, y)→ PA

y (z)]].
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This does not cause a problem, since ur(y < n) is identical to y < n by the Definition of

realisability.

The other direction of the axiom is provable in almost the same way, but with the

antecedent and the succedent permuted. So we can take m2 as the same as m1. Since

we can rely on the established equivalence

xrA(PA
y , P

A
<y, z, y)↔ Ar(PAr

y , PAr

<y, 〈z, x〉, y),

which was given in the previously shown direction, in a Hilbert-system, this needs only

a constant number of steps. Hence by taking m := 〈m1,m2〉 we can deduce m̄rϕ in

2(`(xrA)2c + `(xrA)2c2) many steps in ÎD
i

n(acc). Moreover we know that there is a

constant c3 such that `(xrA) ≤ c3`(A). Therefore we get a bound for the complexity of

the deduction by `(A)2c4, where c4 is our new c. 2

Before we are able to use those facts to extract a bound from the proof of Theorem 3.3.3

we have to go back to Chapter 2 one last time to have a closer look of Proposition 2.2.22.

Lemma 6.1.10 If ϕ is almost negative, then there is a c such that

HA `c·|ϕ|2 (∃x)(xrϕ)↔ ϕ.

Proof

The proof follows that of Proposition 2.2.22. It should not be hard to see that all cases

lead to a uniformly constructed deduction and, hence, can be bounded by a constant. So

by choosing the maximum of these constants we have found our c. As before we can

bound the formulas by a linear function as well and therefore reach a quadratic bound. 2

Remark 6.1.11 Note that the bound given in Lemma 6.1.10 is possible, because case 2

in the proof of Proposition 2.2.22 is rather ambiguous. Usually one would want to give
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a uniform function which chooses the minimum of the y, whose existence is assumed (as

is done in [59, p.193]). However choosing the minimum involves a computation of the

terms t and s involved. Therefore the deduction cannot be uniformly constructed. Here

the uniformity of choosing an instance is in tension with the uniformity of constructing a

deduction for which this instance satisfies the formula.

Theorem 6.1.12 There is a constant c such that for any almost negative sentence ϕ ∈

LHA
ÎD

i

n(strict) `m ϕ⇒ ÎD
i

n(acc) `(m+1)12c ϕ.

Proof

Assume that ϕ ∈ LHA is an almost negative sentence with ÎD
i

n(strict) `m1 ϕ. Also

assume that the deduction of ϕ includes only k many instances of the fixed point axiom

ψ1, ..., ψk and that the biggest formula includes not more than l many symbols. Therefore

k, l < m and

HA ` ψ1 → ...→ ψk → ϕ

in m2cD many steps, by k applications of the Deduction Theorem with formulas whose

length is bounded by (m+ 1)m. Using Lemma 6.1.6, we get

HA `((m+1)4cD)2c (∃x)[xr[ψ1 → ...→ ψk → ϕ]].

By Lemma 6.1.9 we get

ÎD
i

n(acc) `m2c m̄1rψ1

...

ÎD
i

n(acc) `m2c m̄krψk.

After combining these deductions we can apply a Modus Ponens construction as in case

(g) from the proof of Lemma 6.1.6 and get

ÎD
i

n(acc) `((m+1)4cD)2c+2km2c (∃x)[{x}(m̄1, ..., m̄k)rϕ],
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where the term 2km2c emerges from k deductions of length m2c and m applications

of the modus ponens construction, which is bounded by c as defined in the proof of

Lemma 6.1.6. Taking c2 big enough so that c2
Dc + c + c1 < c2, where c1 is the length of

the logical deduction that is needed to introduce (∃y),6 we get

ÎD
i

n(acc) `2((m+1)4)3c2 (∃y)[yrϕ].

By Lemma 6.1.10 we get

HA `m2c2 (∃y)[yrϕ]→ ϕ.

This leads to

ÎD
i

n(acc) `3(m+1)12c2 ϕ.

Hence, by taking 3c2 as our new c, we are done. 2

6.2 Bounding Rüede Strahm

Since we gave a bound for ÎD
i

n(strict) ≤Π0
2
ÎD

i

n(acc), the next step is to give a bound

for ÎD
i

n(acc) ≤Π0
2
ACA−n ≤Π0

∞ PA. As is described in Chapter 3 we give a translation

τ : L∗ID → LACAn ,

which is induced by a mapping

PA 7→ Hτ(A)

for every accessibility operator A. From the proof of Theorem 3.3.4 we can extract a

bound for the proof-theoretic reductions given above. However, as the reader might

have already noted, the proof of Theorem 3.3.4 includes the use of a formalised truth

predicate for Π0
n-formulas of LID(Q). To make this notion precise we have to alter

6This inequality is ensured by the definition of c. Note that c was defined by adding such constructions

to some multiples of cD by the arguments in this chapter.



Chapter 6. ÎD
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Definition 2.1.3 and the Truth-predicate given in Theorem 2.1.11. Definition 2.1.3 is

extended to the language with includes all primitive recursive functions, i.e. equations

with terms including function symbols for primitive recursive functions are viewed as ∆0-

formulas, and we add the clause that Q(t) is viewed as a ∆0-formula. Since we want to

keep the possibility of talking about Πn-formulas in the original sense of Definition 2.1.3,

we call this new notion the Πn(Q)-formulas. Before we avoided the definition of a truth

predicate by citing Theorem 2.1.11. Here however we have to describe the truth predicate

that is in use in order to analyse how it acts in a formal deduction. Hence we sketch its

definition in a way that allows us to estimate how many lines are needed to deduce basic

properties of the truth predicate in our Hilbert-style system. It is possible to define an

evaluation function that evaluates every term of LID(Q) by a ∆1-formula ϕev. The ∆1-

formula ϕev states the existence of a formal computation of the term in question. Here,

again, we have to use the so called dot-notation for free variables, where ẋ denotes the xth

numeral. Hence, for a term t(x), the evaluation function is formulated as ϕev(pt(ẋ)q, y),

which is a formula where only x and y occur freely.

We can use the evaluation function to formulate a truth predicate for Πn(Q)-formulas.

According to the definition of Πn(Q)-formulas, the atomic case is divided into the

following two cases:

Tid(pt1 = t2q) ≡ (∀x, y)[ϕev(pt1q, x) ∧ ϕev(pt2q, y)→ x = y],

which is in fact a ∆1-formula, since ϕev defines a function, and

TQ(pQ(t)q) ≡ Q(t),

becauseQ is a predicate symbol that is not given a meaning by the axioms. Then Tatom(x)

can be built up from Tid(x) and TQ(x) in the obvious way.

In the following considerations it will be necessary to measure the deduction-length of

deductions establishing the equivalence

TΠn(Q)(pϕq)↔ ϕ.
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For the atomic case the complexity of terms occurring in the formula will govern

the length-increment of these deductions. It is therefore necessary to specify how all

primitive recursive functions can be introduced by definitions like Definition 2.1.4 and

Definition 3.2.1. For the following proofs it is convenient to introduce primitive recursive

functions by axioms governing complex function symbols, i.e. the function symbols have

a structure that reflects the axioms which govern them.

Definition 6.2.1 The set of primitive recursive function symbols (p.r.f.s) is inductively

defined as follows:

1. The symbol for the successor function S is a symbol for a p.r.f.s of arity 1.

2. The symbol for the constant-0-function of arity n, Cn, is a p.r.f.s of arity n.

3. The symbol for the projection into the k-th input out of n inputs, P n
k , is a p.r.f.s of

arity n.

4. If fn1
1 , ..., f

nn1+1

n1+1 are p.r.f.s with their arities shown, then [Sub(fn1
1 , ..., f

nn1+1

n1+1 )]n,

where n := max{n2, ..., nn1+1}, is a p.r.f.s of arity n.7

5. If fn1
1 , fn2

2 are p.r.f.s with their arities shown, then [Rec(fn1
1 , fn2

2 )]n, where n :=

max{n1 + 1, n2}, is a p.r.f.s of arity n.

Definition 6.2.1 determines the way that the p.r.f.s have to be introduced into a theory,

e.g. the theories that are defined in Definition 2.1.4 and Definition 3.2.1.

Definition 6.2.2 The axioms of the p.r.f.s are the universal closures of the following

formulas.

7Note that n1 function symbols have to be substituted into a function symbol with arity n1.
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1. For S:

¬S(x) = 0̄

S(x) = S(y)→ x = y

2. For a Cn:

Cn(x1, ..., xn) = 0̄

3. For a P n
k :

P n
k (x1, ..., xn) = xk

4. For a fn ≡ [Sub(fn1
1 , ..., f

nn1+1

n1+1 )]n:

fn(x1, ..., xn) = fn1
1 (fn2

2 (x1, ..., xn2), ..., f
nn1+1

n1+1 (x1, ..., xnn1+1))

5. For a fn ≡ [Rec(fn1
1 , fn2

2 )]n:

fn(0, x1, ..., xn−1) = fn1
1 (x1, ..., xn1)

fn(S(y), x1, ..., xn−1) = fn2
2 (fn(y, x2, ..., xn−1), y, x3, ..., xn2)

Note that in the axioms of case 4 and 5 the right term’s function symbols are less complex

than those of the left term. However the depth of the right is less than the left term’s. To

deal with this in the proof of the next lemma, we introduce two complexity notions.

Definition 6.2.3 Assume that f is a p.r.f.s. The degree of f , in symbols dg(f), is defined

as follows:

1. If f is S,Cn or P n
k , then dg(f) = 1.

2. If f ≡ [Sub(fn1
1 , ..., f

nn1+1

n1+1 )]n, then

dg(f) =

n1+1∑
i=0

dg(fi) + 1.
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3. If f ≡ [Rec(fn1
1 , fn2

2 )]n, then

dg(f) = dg(f1) + dg(f2) + 1.

The degree of a term t ∈ LID(Q) is defined as the maximum of the degrees of all p.r.f.s

occurring in t.

The rank of t, rk(t), is defined as follows.

1. If t ≡ x or t ≡ 0̄, then rk(t) = 0.

2. If t ≡ f(t1, ..., tn), then rk(t) = n(max{rk(ti)|1 ≤ i ≤ n}+ 1).

The next lemma bounds the deduction-length of deductions whose existence is stated in

Lemma 2.1.11 for the atomic case.

Lemma 6.2.4 8 If ϕ is an atomic formula of LID(Q), then

PA `c·2(2d+6)r

Tatom(Q, pϕq)↔ ϕ,

where r := rk(ϕ) and d := dg(ϕ).

Proof

In the case of ϕ ≡ Q(t), there is a constant c→Q bounding all deductions independently

8In the first version of my thesis, which was handed in for examination, this lemma demanded a super-

exponential growth rate and was proven by a double induction on the rank and degree of a term. But I

blocked the super-exponential growth rate by restricting the language to functions with a degree smaller

than 4. However the external examiner, Georg Moser, realised that the induction basis of this double

induction was not matching the induction step and announced his feelings that an exponential bound might

be possible. When I tried to fix the mismatch, I realised that no induction on the rank is needed and came

up with the proof that is given below. This also smoothens the rest of this chapter, because I do not have to

discuss the super-exponential growth rate away.
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from t.

In the case where ϕ is t1(~x) = t2(~x), we proceed by induction on

dg(ϕ) := dg(t1) + dg(t2)

.

• Induction base: Assume dg(ϕ) = 0. Hence ϕ is x1 = x2, 0̄ = x, x = 0̄ or 0̄ = 0̄.

We only check the case where x1 = x2; the others are entirely analogous. The

assumption Tatom(pẋ1 = ẋ2q) gives

(∀x, y)[ϕev(ẋ1, x) ∧ ϕev(ẋ2, y)→ x = y].

Therefore a very short deduction gives x1 = x2. The other direction follows easily

from the fact that

PA ` ϕev(ẋ, x)

for every x by the definition of ϕev.

Bound: All four cases are schematic in the variables and can therefore be bounded

by a constant c. Also the maximal length of the formulas is bounded by a c.

• Induction step: Before we start with the argument we note that PA proves the

following sentences

(∀x)Tatom(pẋ = ẋq)

(∀x, y)[Tatom(pẋ = ẏq)→ Tatom(pẏ = ẋq)]

(∀x, y, z)[Tatom(pẋ = ẏq) ∧ Tatom(pẏ = żq)→ Tatom(pẋ = żq)].

Assume that dg(ϕ) > 0. In the proof we construct ψ1, ...ψm with dg(ψi) < dg(ϕ)

for any 1 ≤ i ≤ m on which the induction hypothesis can be applied. We know

that either dg(t1) ≤ dg(t2) or dg(t2) ≤ dg(t1), and we pick the term with the

higher degree (or t1, when they have the same). Without loss of generality we

pick t1, which can be assumed to be of the form f(s1, ..., sn). In the next step
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we introduce new variables x1, ..., xn, y and reformulate the problem through the

following equations

f(x1, ..., xn) = y

xi = si for any 1 ≤ i ≤ n

y = t2.

We continue to do that until all formulas have the form g(~x) = y. If such a ψi has

dg(ψi) < dg(f), then we apply the induction hypothesis. For the rest we proceed

as follows. According to Definition 6.2.1 we have to consider five cases:

1. f is S1: This case is trivial and bounded by a constant, because S(ẋ) and ˙S(x)

give the same output.

2. f is a Cn: Here we note that dg(0̄ = y) < dg(f(~x) = y). Hence

Tatom(p0̄ = yq)↔ 0̄ = y,

by the induction hypothesis. Using the definition of ϕev, we get

Tatom(pCn(~x) = yq)↔ Tatom(p0̄ = yq).

Using the axioms governing Cn and identity, we get a deduction for

Cn(~x) = y ↔ 0̄ = y.

Combining this by logic, we get the desired implications.

Bound: Here the length increment is bounded by a constant.

3. f is a P n
k : This case is analogous to the case for Cn.

4. f is a [Sub(fn1
1 , ..., f

nn1+1

n1+1 )]n: Using the definition of ϕev and the axioms

governing Sub, we get deductions that are schematic in the terms and function

symbols in f(~x) = y for the following formulas; for readability we abbreviate

fn1
1 (fn2

2 (x1, ..., xn2), ..., f
nn1+1

n1+1 (x1, ..., xnn1+1)) by t.

Tatom(p[Sub(fn1
1 , ..., f

nn1+1

n1+1 )]n(x1, ...xn) = yq)↔ Tatom(t = yq)
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[Sub(fn1
1 , ..., f

nn1+1

n1+1 )]n(x1, ...xn) = y ↔ t = y.

Note that

dg(t) < dg([Sub(fn1
1 , ..., f

nn1+1

n1+1 )]n(x1, ...xn)).

Hence

Tatom(pt = yq)↔ t = y

by the induction hypothesis for dg, which fills the gap.

Bound: Here the length increment is bounded by a constant as in the cases

before, but we get n < r many new formulas of the form zi = fnii (x1, ..., xni)

on which the induction hypothesis is applied.

5. f is a [Rec(fn1
1 , fn2

2 )]n: In this case we know that the first subterm of t1 (which

we denoted by s1) is of the form S(...S(0)...) (denoted by Sm(0)). From the

definition of Tatom and the assumption

Tatom(pf(Sm(0), x2, ..., xn) = yq),

we get in a deduction of length mc the formulas:

Tatom(pfn2
2 (fn(Sm−1(0), x2, ..., xn−1), Sm−1(0), x3, ..., xn2) = yq)

Tatom(pfn(Sm−1(0), x2, ..., xn−1) =

fn2
2 (fn(Sm−2(0), x2, ..., xn−1), Sm−2(0), x3, ..., xn2)q)

...

Tatom(pfn(S(0), x2, ..., xn−1) = fn2
2 (fn1

1 (x1, x2, ..., xn−1), 0, x3, ..., xn2)q).

The degree of all the formulas is smaller than that dg(f), therefore we can

deduce their appropriate equivalences by the induction hypothesis for dg.

Then we can combine these equivalences in a deduction of a length that is

linear in m to establish the equivalence for f(~x) = y; and we are done.

Bound: Note that m < r hence we have a bound on the length increment of

c · r2 (m deduction with a length of at most m · c lines).
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Now we summarise the restrictions on the bound. According to the preparation

step that splits the formulas to those of the form f(~x) = y, we have at most r many

formulas on which the induction hypothesis is applied to. In the five cases above

the number of applications of the induction hypothesis is bounded by r. Hence the

total number of applications is bounded by 2r. In addition any of the five cases

above adds at most c · r2 many lines to the deduction. Hence the length-bound is

given by the following recursion

h(d+ 1) = 2r · h(d) + r2 · c.

Calculations lead to

h(d) < c · (2r)d+3.

In order to bound the formulas, it should be clear that the length of the deduction

grows stronger than the length of the formulas, because all formulas introduced

are shorter than the previously given and substituted into schematic deductions.

Hence by squaring the deduction length and choosing a new constant c we have a

complexity bound of c · r2d+6, which can be bounded by c · 2(2d+6)r.

2

Lemma 6.2.5 If ϕ is any Π0
n-formula of LID(Q) whose function symbols do not have a

degree bigger than g, then there is a truth-predicate Tn such that

PA `c·|ϕ|2·2(2g+6)·|ϕ|
Tn(Q, pϕq)↔ ϕ.

Proof

The proof uses the previous lemmata together with the fact that a standard truth predicate

is inductively defined on the construction of a formula. Hence the bound for the

deduction-length is obtained from the bound of the atomic case, which may appear |ϕ|
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many times, and a linear factor that respects the complexity of the formula. In the same

way the formula-length is bounded linearly as well. Also note that the rank of the term is

bounded by the total length of the term and therefore by the total length of the formula. 2

Lemma 6.2.6 For any ϕ ∈ LID(Q) there is an n ∈ N and a π ∈ Π0
n(Q) such that

PA `c·|ϕ|2 ϕ↔ π.

Proof

Reduction to prenex form is well known. The proof goes in both directions of the

implication by induction on the construction of ϕ. According to the main connectives

and the quantifiers there are several different cases. One of them has the longest

deduction-length increment and another the longest formula-length increment; which

therefore gives a constant. 2

Lemma 6.2.7 There is polynomial in natural coefficients P [X] such that the length of

a ACA−n -deduction for the translations of the fixed point axioms for the accessibility

operator A, which only contains function symbols of degree smaller than g, can be

bounded by P [2(2g+6)·|A|].

Proof

We work in ACA−n and follow the proof of Theorem 3.3.4. Assume that A(P,Q, x, y) is

an accessibility operator. Hence there are ϕ, ψ ∈ LID(Q) such that

A(P,Q, x, y) ≡ ϕ ∧ (∀z)[ψ(z)→ P (z)].

We also assume that the degree of all functions occurring in these formulas is bounded

by g. Then we choose an n such that ϕ and ψ are equivalent to a Πn(Q)-formula (ϕ̄)
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and a Σn(Q)-formula (ψ̄) respectively. As in the proof of Theorem 3.3.4, we replace

P (z) in A(P,Q, x, y) by a truth-predicate and therefore get a formula equivalent to a

Πn(Q)-formula. We denote this Π2(Q)-formula by Ā and can deduce its equivalence to

the original one with a c · |A|2-complex deduction. Ā has a Gödel number k̄ and we can

therefore prove by a deduction of complexity

|Ā|2 · c · [2(2g+6)·|Ā| + 1]2

the equivalence

Tn(Q, k̄, u, x, y)↔ Ā(Tn(Q, u, u, z, y), Q, x, y).

Adding a constant c to the already reached complexity, we can substitute u by k̄ to get

Tn(Q, k̄, k̄, x, y)↔ Ā(Tn(Q, k̄, k̄, z, y), Q, x, y).

For notational reasons we abbreviate En(Q, k̄, k̄, x, y) by D(Q, x, y). Hence we get

(∀y < n)(∀x)[HD
y (x)↔ D(HD

<y, x, y)]

in one line by the comprehension Axiom with a formula of length |Ā|+ c.

Moreover, from the formula

Tn(Q, k̄, k̄, x, y)↔ Ā(Tn(Q, k̄, k̄, z, y), Q, x, y),

we can deduce

(∀y < n)(∀x)[Tn(Q, k̄, k̄, x, y)↔ Ā(Tn(Q, k̄, k̄, z, y), Q, x, y)]

in a constant number of lines. Hence we have reached a complexity of

|Ā|2 · c · [2(2g+6)·|Ā| + 1]2 + 2c2 · |Ā|.

Note, since we are only talking about implications, the length-increment of formulas can

be linearly bounded. Combining these two equivalences by another schematic deduction

we get

(∀y < n)(∀x)[HD
y (x)↔ Ā(Tn(Q, k̄, k̄, z, y), Q, x, y)]
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in a deduction with complexity

|Ā|2 · c · [2(2g+6)·|Ā| + 1]2 + 3c · |A|.

However in order to arrive at the version with A instead of Ā, we have to add the

equivalence of these two formulas plus a schematic deduction which puts them together.

Therefore we reach a complexity of

|Ā|2 · c · [2(2g+6)·|Ā| + 1]2 + |A|2 · c+ 4c2 · |Ā|.

To finish the proof note that |Ā| ≤ c · |A| by reduction to prenex form. 2

Now we are able to bound the proof-theoretical reduction given by Theorem 3.3.4. For

readability we introduce the notation `mg , which means that there is a deduction of

complexity m in which only function symbols occur that have a degree less than g.

Theorem 6.2.8 There is a polynomial in natural coefficients P [X] such that

ÎDn(acc) `mg ⇒ ACA−n `P [2(2g+6)m]
g ϕ.

Proof

The theorem follows easily by the previous Lemma and the fact that ACA−n and

ÎDn(acc) differ only in one axiom schema. 2

The next lemma gives the next link to the end-result.

Lemma 6.2.9 There is a polynomial in natural coefficients P [X] such that for any

formula ϕ ∈ LPA

ACA−n `mg ϕ⇒ PA `P [m]
g ϕ.
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Proof

To prove the statement we use the substitution defined in the proof of Theorem 3.3.14.

However we do not proceed as in that proof, because the proof of Chapter 3 uses

cut-elimination which has super-exponential length increment. Instead we proceed

inductively on the length of the deduction. Since the logic and most of the axioms are

the same, the only interesting case is the basis case of a comprehension axiom

(∀y < n)(∀x)[Hϕ
y (x)↔ ϕ(Hϕ

<y, x, y)],

which is equivalent to
n−1∧
k=0

(∀x)[Hϕ
k (x)↔ ϕ(Hϕ

<k, x, k̄)]

over basic arithmetic. However that might cost a deduction-length increment of c · n and

an increment of formula-length of m · n.

Then we can use s from the proof of Theorem 3.3.14, which trivialises these formulas to

tautologies and adds c · n many lines to the deduction in order to deduce them. However

the formula-length increment after applying s to one of the sides of the equivalence is

(k + 1)! · (|ϕ| · 3)k+1, which we will prove next.9 However this is still only a polynomial

formula-length increment. For (n + 1)! is only a constant for a particular theory ACA−n

and k < n. We prove the bound by induction on k.

Induction Base: The formula s(Hϕ
0 (t)) is ϕ([0̄ = 1̄], x, 0̄). Which gives

|s(Hϕ
0 (t))| ≤ |ϕ| · |0̄ = 1̄| ≤ 1! · (|ϕ| · 3)1.

Since s(Hϕ
0 (t)) ≡ s(ϕ(Hϕ

<0, x, 0̄)), we are done with the base case.

Induction Step: As before we note that s(Hϕ
k+1(t)) and s(ϕ(Hϕ

<k+1, x, 0̄)) give the same

formula. Therefore it is enough to take a closer look at only one of these formulas.

s(Hϕ
k+1(t)) ≡ ϕ([s(s(Hϕ

<k+1(t)))], x, k̄)

≡ ϕ([s(Hϕ
0 (t) ∨ ... ∨Hϕ

k (t))], x, k̄)

≡ ϕ([s(Hϕ
0 (t)) ∨ ... ∨ s(Hϕ

k (t))], x, k̄)

9The function n! is defined by 1! := 1 and (n+ 1)! := (n+ 1) · n!.
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And for this formula we can see that

|ϕ([s(Hϕ
0 (t)) ∨ ... ∨ s(Hϕ

k (t))], x, k̄)| ≤ |ϕ| · k · (k + 1)! · (|ϕ| · 3)k+1

≤ (k + 2)!(|ϕ| · 3)k+2.

2

The last step is to translate PA into HA.

Lemma 6.2.10 There is a polynomial in natural coefficients P [X] such that for any Π0
2-

sentence ϕ

PA `mg ϕ⇒ HA `P [m]
g ϕ

Proof

See the trick Friedman uses in [21], which is schematic in the formula that is in use,

and can therefore be constructed uniformly. Since the proof relies on a logical trick, the

deductions can be bounded by a polynomial. 2

6.3 Sticking together and Conclusion

Sticking together Theorem 6.2.8, Lemma 6.2.10 and Lemma 6.2.9 gives the final result

of this chapter.

Theorem 6.3.1 There is a polynomial in natural coefficients P [X] such that for any Π0
2-

sentence ϕ

ÎD
i

n(acc) `mg ϕ⇒ HA `P [2(2g+6)m]
g ϕ
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Obviously this result confirms the claim from the beginning of this chapter that the

proof-theoretic reduction gives at most an elementary speed-up for ÎD
i

n(acc) over PA

and HA. But in order to be useful for our aims we have to extended this result to

cases where axioms for transfinite induction are present. However Theorem 6.3.1 can

be easily extended to the cases with axioms for transfinite induction, because the proof

of Lemma 3.4.2 uses the same constructions as the proof of Theorem 2.2.19 does and

gives, therefore, also only a polynomial complexity increment; and Theorem 3.4.1 can

be complexity-analysed in the same way as Theorem 3.3.1 was. For, following the

proof of Theorem 3.4.1, in the realisability-step it makes no difference for an appeal to

Theorem 6.1.6 what logical form a realisable axiom has. Also in the case of a step that

uses one of Rüede’s and Strahm’s translations a one line deduction for a TI(≺ α) axiom

in one language is translated into a one line deduction of a TI(≺ α) axiom in another

language. Moreover Lemma 6.2.10 can be easily extended to the cases with transfinite

induction so that they only give a polynomial deduction-complexity increment (as can be

easily seen from [21]). Hence, using Theorem 6.3.1, we get the following theorem.

Theorem 6.3.2 Assume that ≺ is a primitive recursive relation whose characteristic

function is in LPA. Also assume that α is an element in the domain of ≺. Then there

is a polynomial in natural coefficients P [X] such that for any Π0
2-sentence ϕ

ÎD
i

n(acc) + TI(≺ α) `mg ϕ⇒ HA+ TI(≺ α) `P [2(2g+6)m] ϕ.
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Appendices

A Gentzen’s Method can be done Elementarily

As explained in Chapter 3, ordinal-analysis usually uses infinitary systems to establish

cut-elimination. As Mint proved in [33], this cut-elimination can be done elementary-

recursively. This raises the question whether those part of Gentzen’s method that do not

use the well-foundness of the ordinal-notation system OT (ε0) can be done elementarily

as well. Or in other words whether Gentzen’s method, which is usually viewed as

establishing

PRA+ PRWO(≺ε0) ` Con(PA),

can also be used to prove

EA+ ERWO(≺ε0) ` Con(PA).

The answer to this questions is yes and we will show this in the present appendix.10 A

similar result was given by Hajek and Pudlak in their book [26, pp. 373-375]. However

the proof of the result is less explicit by its shorter presentation.

10The schema PRWO(≺ε0) is the set of all formulas of the form

(∀~x)(∃y)[f(~x, y) �ε0 f(~x, y + 1) ∨ “f(~x, y) is not an element of OT (ε0)′′],

where f is a function symbol of LPRA. ERWO(≺ε0) is similarly defined as PRWO(≺ε0) but is

formulated with the defining formulas of elementary recursive functions.
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The following presentation of Gentzen’s method follows almost entirely that given in

[57]. The crucial point in the reduction method that is given there is that, if one tags the

proofs with ordinals in a certain way, the output of the reduction has a smaller ordinal

than the input had. But, since we are not interested in the consistency proof itself, we skip

the ordinal part entirely.11 This has the disadvantage that we cannot emphasise why the

reduction method is useful. Moreover we are not able to formulate the statement about

the reduction as it is formulated in [57]. Instead we refer to the indicated lemma in [57]

and define the reduction algorithms in the actual proof of its elementariness. This saves

us from writing the definition of the reduction twice.

The consistence proof of PA operates on a sequent calculus (with a division of bounded

and free variables as two separate sets of symbols) in the ordinary language of arithmetic

with rules for all propositional connectives and both quantifiers (see [57, p. 9]). The meta-

logical vocabulary for sequent calculi, which includes primary and auxiliary formulas, is

defined as usual (see [57]). The logical axioms are of the form A ⇒ A for atomic A and

the mathematical axioms include the usual ones for equality as well as the following:

S(t1) = S(t2)⇒ t1 = t2

S(t) = 0⇒

⇒ t+ 0 = t

⇒ t1 + S(t2) = S(t1 + t2)

⇒ t · 0 = 0

⇒ t1 · S(t2) = (t1 · t2) + t1.

The crucial point is the reformulation of the induction axiom as a rule:

ϕ(a),Γ⇒ ∆, ϕ(S(a))

ϕ(0),Γ⇒ ∆, ϕ(t)
IND

11We can do that, because it is folklore that the standard ordinal notation systhemOT (ε0) is elementarily

definable.
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where t is an arbitrary term and a a free variable.

Note: All axioms are atoms, since induction is formulated as a rule.

In order to define the reduction method we have to give a bunch of definitions. It

should be clear that these notions can be defined elementarily by using some sort of

standard coding (like the one described later in this appendix).

Definition A.1 1. Fix a deduction D. The successor of a formula ϕ is defined as

follows:

(a) If ϕ is a cut formula, then ϕ has no successor.

(b) If ϕ is an auxiliary formula of an deduction rule other than a cut or exchange,

then the principal formula is the successor of ϕ.

(c) If ϕ is an auxiliary formula of exchange then in the lower sequent of exchange

ϕ is the successor of ϕ.

(d) If ϕ is the k-th formula of Γ,Π,∆ or Λ in the upper sequence, then the k-th

formula of Γ,Π,∆ or Λ in the lower sequent is the successor of ϕ.

2. A sequence of sequents will be called a thread in a deduction D if the following

properties are satisfied:

(a) The sequence begin with an (logical or mathematical) axiom and ends with

the end-sequent of D.

(b) Every sequent in the sequence except the last is an upper sequent of an

inference, and is immediately followed by the lower sequent of this inference.

3. Assume that S1,S2 and S3 are sequents in a deduction D. The sequent S1 is above

S2 (or S2 is below S1) iff there is a thread containing S1 and S2 and S1 appears
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before S2. The sequent S3 is between S1 and S2 iff S1 is above S3 and S2 is below

S3.

4. An inference is below a sequent S iff the lower sequent of the inference is below S.

5. Let D be a deduction and S a sequent in D. We call D′ the subdeduction of S in

D iff D′ is a deduction and contains exactly those sequents, which appear, in every

thread of D, above S.

6. A formula ϕ is called an axiom-formula or end-formula of D iff ϕ is contained in

an axiom or the end-sequent of D.

7. A sequence of formulas is called a bundle iff it satisfies the following conditions:

(a) The sequence begins with an axiom-formula or weakening-formula.

(b) The sequence ends with an end-formula or cut-formula.

(c) Every formula except the last in the sequence is immediately followed by its

successor.

8. Assume that ϕ and ψ are formulas. The formula ϕ is called the ancestor of ψ and

ψ is called the descendant of ϕ iff there is a bundle containing ϕ and ψ in which ϕ

appears before ψ.

9. The notation of implicit and explicit:

(a) A bundle is called explicit iff the the last formula in the bundle is an end-

formula.

(b) A bundle is called implicit iff the the last formula in the bundle is an cut-

formula.

(c) A formula in a deduction is called implicit or explicit iff the bundle which

contains the formula is implicit or explicit.



Appendices 193

(d) A sequent in a deduction is called implicit or explicit iff the sequent contains

a formula which is implicit or explicit.

(e) A logical inference is called implicit or explicit iff the principal formula of the

logical inference is implicit or explicit.

10. A part E of a deduction D is called the end-piece of D if it satisfied the following

properties:

(a) The end-sequent is in E.

(b) The upper sequent of an inference other than an implicit logical inference is

contained in E iff the lower sequent of the inference is in E.

(c) The upper sequent of an implicit logical inference is not in E.

Or for short: An sequent in a deduction is in the end-piece iff there is no implicit

logical inference below this sequent.

11. An inference I is in the end-piece of a deduction iff the lower sequent of I is in the

end-piece.

12. An inference I is a boundary iff the lower sequent of I is in the end-piece and the

upper is not.

13. A cut in the end-piece is called suitable iff each cut formula of the cut has an

ancestor which is the principal formula of a boundary.

Definition A.2 A deduction D is called regular iff D satisfies:

1. All eigenvariables in D are distinct.

2. If a is a free variable which occurs as a eigenvariable in a sequent S of D, then a

occurs just in sequents above S.
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In the following we define a coding and prove some facts about it. We have to scrutinise a

particular coding, since the main result will be proved by analysing the numerical growth

of codes under syntactical operations.

According to this task, we choose to code numbers and sequences by taking a detour over

firstly translating these into finite 0-1-strings as in [9]. Consequently we can take the

corresponding natural number of a basis-2-representation number-systhem as the code of

this string. In the following we sketch how this idea proceeds. The details that are not

mentioned here can be found in [9, pp. 89-94].

We start by defining functions, which allow us to deal with 0-1-strings in number theory:

|x| := dlog2(x+ 1)e

LenBit(y, x) := bx/ycmod 2

Bit(i, x) := LenBit(2i, x).

Here |x| serves as a length function for the binary representation of a natural number,

since it gives the least n such that 2n is bigger than x. The function Bit(i, x) serves as a

decoding function. Because, in the case where y = 2i is satisfied, LenBit(y, x) gives the

i−th bit in the binary expansion of x. Here the least significant bit is by convention the

zeroth bit. Consequently Bit(i, x) gives the i−th bit of the 0-1-string that is coded by x.

Also LenBit(y, x) and Bit(i, x) are polynomial bounded.

To code sequences of natural numbers, we identify their entries with their binary

representation. Consequently sequences can be viewed as strings of the symbols “0”, “1”

and “,”. To code those we translate them to a full 0-1-string by the following translation

rules:

, 7→ 01

0 7→ 10

1 7→ 11.
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For example the sequence 〈3, 0, 4〉 is viewed as , 11, , 100 (we add a comma at the

beginning to separate numbers form sequences). Hence, using the translation rules, we

get 0111110101111010, which represents the number 32122. Consequently 32122 is the

code of 〈3, 0, 4〉. We use p〈a0, ..., an〉q to denote the code of 〈a0, ..., an〉.

Using the functions that are defined so far, we can define the usual properties and, using

a trick, also a decoding and length function

β(i, 〈a0, ..., an〉) = ai for i ≤ n

Lg(〈a0, ..., an〉) = n+ 1,

which are polynomial bounded. But, since we are primarily interested in elementary

functions and substitution is necessarily exponential (as Proposition A.4 will show), we

skip the definitions and refer to [9] instead.

The next proposition gives the crucial fact of our coding.

Theorem A.3 For every sequence 〈a0, ..., an〉 it holds that

p〈a0, ..., an〉q ≤ 22·(Σni=0|ai|+n+1)

and

p〈a0, ..., an〉q ≤ 22n·(max(|ai|)+2).

Proof

Take an arbitrary sequence ā = 〈a0, ..., an〉. According to our coding the binary

representation of ā is build up by the binary representation of the ai and n + 1 commas.

By the translation rules for comma, 0 and 1 the length doubles. Consequently we get

|p〈a0, ..., an〉q| = 2 · (Σn
i=0|ai| + n + 1). Since n ≤ 2|n| for any n ∈ N, the first result

follows. The second statement is an easy consequence of the first. 2
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An interesting and (of course) well known result is that metamathematics cannot be

done with a class of functions that is properly contained in the elementary functions,

presupposing some natural closure properties.

Theorem A.4 The function Sub(〈a0, ..., an〉, a, b), which gives the sequence that is

obtained from 〈a0, ..., an〉 by substituting for every occurrence of a the number b, is

elementary and grows super-polynomially.

Proof

That the definition can be carried out primitive recursively with elementary functions is

easy to see, but it is also quite long to write down. Elementarity and super-polynomiality

can be shown in one step by showing that this application of primitive recursion can be

bounded by an elementary function.

Take a sequence ā = 〈a0, ..., an〉 and assume that it has m occurrences of a. By

the definition of our coding it is easy to see that |ā| changes to |ā| − 2m|a| + 2m|b|

after substituting b for a. Without loss of generality we can assume that |ā| ≤ |b|.

Consequently we get |Sub(ā, a, b)| ≤ |b|2. Finally, using Proposition A.3, we get

Sub(ā, a, b) ≤ 2|Sub(ā,a,b)| ≤ 2|b|
2
. Since that is obviously the best one can do and 2|b|

2 is

elementary, we are done.2

From [9] by some results of [50] it is easy to see that all the usual syntactical operations

on proofs and formulae are elementary; we will therefore take these results as given in

the following. The following theorem shows that the additional operations, that Takeuti

presents in [57], do not lead out of the realm of elementary functions. To show this we will

use an argument that is similar to the proof of Proposition A.4. It will give an elementary

bound on Takeuti’s transformations, which is formulated with elementary functions.

Since the functions used are elementary and it can be seen that the methods, which are

described in the proof, can be defined by a single application of primitive recursion,
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the bound shows that the transformation is elementary according to Definition 2.1.1.

Moreover Proposition A.4 shows that this is the best possible result according to the

classes that are usually used in subrecursive hierarchy theory.

Theorem A.5 The function Φ defined in the proof of [57, Lemma 12.8, p. 105] can be

carried out elementarily.

Proof

In the following we will proceed as in the proof of [57, Lemma 12.8, p. 105]. We

iteratively define Φ on the codes of proofs. But instead of giving an analysis of how Φ

lowers the ordinal rank, we estimate the numerical output of Φ. This will show that the

function is dominated by an elementary function. Since Φ can be defined via elementary

functions by primitive recursion, it follows from Definition 2.1.1 that Φ is elementary.

For this purpose we code a proof as a sequence of sequents. Consequently the length of a

deduction D, which is denoted by Lg(D), can be defined as the length of a sequence as

was mentioned above. The rank of a formula, which is denoted by rk(ϕ), is the number

of logical symbols in ϕ.

Φ operates on deductions D of a contradiction (denoted by D `⇒) and gives a new

deduction D′ of a contradiction; we define Φ which outputs 0 for all the other deductions.

Since being a deduction of a contradiction is an elementary predicate, we do not leave

the realm of elementary functions.

Assume that D is a deduction of a contradiction. We can also assume that D is regular,

since making a proof regular is an elementary operation by Proposition A.4. In the

following we describe the function iteratively. Here it is important to note that Φ includes

a case distinction of four cases. These four cases are described in step 2 to 5, while step 1

is only a preparation for step 2. We call the functions into which Φ is divided by the case

distinction Φ1,Φ2,Φ3 and Φ4. If one of the Φi is divided by a case distinction as well,

then we emphasis the distinction by an additional index, e.g. we use Φ3,1.
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Step 1: Assume that D contains a free variable a that is not used as an eigenvariable.

Replace a by the constant 0. This step applies as many times as possible.

Arbitrarily iterative substitution is not elementary; but here the length does not change

anyway. Because 0 is a single symbol.

Step 2:(Φ1) Assume that the end-piece of D contains some inferences that are

applications of IND. Assume that the lowest one is I and that it is of the form

....
ϕ(a),Γ⇒ ∆, ϕ(S(a))

ϕ(0),Γ⇒ ∆, ϕ(t)
IND

....⇒ .

We denote the part of the subproof above I by P (a). When step 1 has been performed, t

is closed. Assume that the evaluation of t is n.12 Next we replace the subdeduction P (a)

by another deduction P ′ for ϕ(0),Γ ⇒ ∆, ϕ(t). We construct deductions P ′n inductively

(on n) of ϕ(0),Γ⇒ ∆, ϕ(n).

n = 0: Here we replace P (a) by a deduction for ϕ(0),Γ⇒ ∆, ϕ(0). It is easy to see that

this can be deduced by a purely logical deduction of length ≤ 4 · rk(ϕ(0))2 + Lg(Γ) +

Lg(∆). Hence the deduction P ′0 satisfies

Lg(P ′0) ≤ 4 · rk(ϕ(0))2 + Lg(Γ) + Lg(∆) + Lg(D)− Lg(P (a)).

We call this bound p0.

n→ n+ 1: Assume that we already have a deduction P ′n. Then we can combine it with

P (n) by a cut in order to get P ′n+1 as follows:

P ′n....
ϕ(0),Γ⇒ ∆, ϕ(n)

P (n)....
ϕ(n),Γ⇒ ∆, ϕ(S(n))

ϕ(0),Γ⇒ ∆, ϕ(S(n))
Cut

.

12Note that t is formulated in LQ. Hence the evaluation function can be chosen as elementary.
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An easy induction ensures the following:

Lg(P ′n) ≤ max{(Lg(P (0)) + n) · n, p0}.

In order to get the conclusion of I one has to deduce ϕ(n),Γ⇒ ∆, ϕ(t). It can be easily

seen that one can do that by a deduction of length≤ 4·rk(ϕ(n))2+Lg(Γ)+Lg(∆)+f(ptq)

(which we call pt) for some uninteresting elementary function f . Hence, combining these

deductions with P ′n as follows

P ′n....
ϕ(0),Γ⇒ ∆, ϕ(n)

....
ϕ(n),Γ⇒ ∆, ϕ(t)

ϕ(0),Γ⇒ ∆, ϕ(t)
Cut

.

one gets the conclusion of I. We call this deduction P ′. Substituting P ′ for P (a) and I

into D, one gets the required D′. Since Lg(P (a)) ≤ Lg(D), p0 ≤ pt and because of the

fact that below ϕ(0),Γ⇒ ∆, ϕ(t) the deductions D′ and D are identical, we get

Lg(D′) ≤ max{(Lg(D) + 1 + n) · n, pt},

where n is the evaluation of t from the original application of IND.

Since no sequent in D′ has a code that is numerically bigger than the biggest in D, an

application of Proposition A.3 gives

pD′q = Φ1(pDq) ≤ 22·max{(d+1+n)·n,pt}·(dmax+2)

where d = Lg(D), dmax is the code of the maximal sequent in D and n, t are as before.

From now on we assume that there is no IND in D.

Step 3:(Φ2) Assume that the end-piece of D contains a logical axiom, say ϕ⇒ ϕ. Since

D `⇒ and there are no logical inferences in an end-piece, ϕ has to be cut out on both
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sides.

Case 1: The ϕ from the antecedent is cut out first.

Consider the subdeduction D0 that ends with the cut

Γ⇒ ∆, ϕ ϕ,Π⇒ Λ
Γ,Π⇒ ∆,Λ

where ϕ (from the succedent) is in Λ. So we can deduce Γ,Π⇒ ∆,Λ (we call it S) from

Γ ⇒ ∆, ϕ, using weakening and exchange, and get a new deduction for S that is called

D′0. Replacing D0 by D′0 in D, leads to a deduction D′.

Note that the sequent with the biggest code in D, say dmax, also dominates all the codes

of sequents in D′. Consequently we get

pD′q = Φ2,1(pDq) ≤ 22·(Lg(D)+Lg(Π)+Lg(Λ))·(dmax+2)

by Proposition A.3.

Case 2: In the case where ϕ from the succedent is cut out first the argument is analogous.

Therefore we can assume that there is no application of IND and no logical axiom in the

end-piece of D.

Step 4:(Φ3) Assume that there is a weakening in the end-piece and letR be the lowest of

these. Since D `⇒, there must be a cut C below R such that the principal formula of R

is the cut formula of C, because the descendent of a formula has to be the formula itself

in the end-piece of any deduction that ends in the empty sequence. So a part of D has the

form:

Γ⇒ ∆, ϕ

Π′ ⇒ Λ′

ϕ,Π′ ⇒ Λ′
R

....
ϕ,Π⇒ Λ

Γ,Π⇒ ∆,Λ
C
.
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Case 1: If no contraction is applied to ϕ between R and C, then reduce D to D′ by

replacing the considered part of D by the following:

Π′ ⇒ Λ′....
Π⇒ Λ

weakenings and exchanges
Γ,Π⇒ ∆,Λ .

Since the part from Π′ ⇒ Λ′ to Π ⇒ Λ is as long as the corresponding part in D and the

number of weakenings is bounded by the number of added formulas, we get

pD′q = Φ3,1(pDq) ≤ 22·(Lg(D)+Lg(Γ)+Lg(∆))·(dmax+2),

where dmax is again the code of the sequent with the biggest code. Note that the biggest

sequent of D and D′ is the same object.

Case 2: Assume that case 1 does not hold. Then we consider the uppermost application

of contraction in the range between R and C and replace it as described below to get a

deduction D′ from D.

D D′

Π′ ⇒ Λ′

ϕ,Π′ ⇒ Λ′ Π′ ⇒ Λ′
....

ϕ, ϕ,Π′′ ⇒ Λ′′

ϕ,Π′′ ⇒ Λ′′

....
ϕ,Π′′ ⇒ Λ′′

....
ϕ,Π⇒ Λ

....
ϕ,Π⇒ Λ

Obviously

pD′q = Φ3,2(pDq) ≤ 22·Lg(D)·(dmax+2),

where dmax is the sequent with the biggest code in D.
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From now on we assume that there is no application of weakening in the end-piece of D.

Step 5:(Φ4) Assume that there is a suitable cut in the end-piece of D. In fact one can

prove that there is allays one, which shows that the case distinction is complete, but we

do not pay attention to this here. The lowermost of these cuts, called C, will be reduced.

Case 1: The cut formula of C has the form φ ∧ ψ, so D has the form

....
Γ′ ⇒ Θ′, ϕ

....
Γ′ ⇒ Θ′, ψ

Γ′ ⇒ Θ′, ϕ ∧ ψ R1

....
Γ⇒ Θ, ϕ ∧ ψ

....
ϕ,Π′ ⇒ Λ′

ϕ ∧ ψ,Π′ ⇒ Λ′
R2

....
ϕ ∧ ψ,Π⇒ Λ

Γ,Π⇒ Θ,Λ
C

....
∆⇒ Ξ....⇒

where ∆ ⇒ Ξ is a sequent whose ordinal-tag satisfies some properties. Since there is an

elementary ε0 representation, ∆⇒ Ξ can be found elementarily and this search does not

affect the argument.

Consider the following deductions:

D′1:
....

Γ′ ⇒ Θ′, ϕ

Γ′ ⇒ ϕ,Θ′

Γ′ ⇒ ϕ,Θ′, ϕ ∧ ψ weakening
....

Γ⇒ ϕ,Θ, ϕ ∧ ψ

....
ϕ ∧ ψ,Π⇒ Λ

Γ,Π⇒ ϕ,Θ,Λ
R31

....
∆⇒ ϕ,Ξ

∆⇒ Ξ, ϕ



Appendices 203

D′2:

....
Γ⇒ Θ, ϕ ∧ ψ

....
ϕ,Π′ ⇒ Λ′

Π′, ϕ⇒ Λ′

ϕ ∧ ψ,Π′, ϕ⇒ Λ′
weakening

....
ϕ ∧ ψ,Π, ϕ⇒ Λ

Γ,Π, ϕ⇒ Θ,Λ
R32

....
∆, ϕ⇒ Ξ

ϕ,∆⇒ Ξ

Now D′ is constructed from D′1 and D′2 by sticking them together using a cut, and this

follows from ∆⇒ Ξ as in D̂.

D′1
∆⇒ Ξ, ϕ

D′2
ϕ,∆⇒ Ξ

∆⇒ Ξ....⇒ .

To bound this function we denote the subproof of D that proves ∆⇒ Ξ by P and the one

ending inR1 by R.

Note that the subproof of D′1 that ends with the new weakening has length ≤ Lg(R) +

Lg(Θ′). Consequently

Lg(D′1) ≤ Lg(P ) + Lg(Θ′) + Lg(Ξ).

Analogously

Lg(D′2) ≤ Lg(P ) + Lg(Θ′) + Lg(∆).

Since Lg(P ) ≤ Lg(D) and the new cut introduces 2 lines we get

Lg(D′) ≤ 2 · Lg(D) + Lg(Θ′) + Lg(∆) + Lg(Ξ) + 2.

In the following we will call this bound h(D).

Unlike the cases so far, the codes of the sequents in D′ are in general not bounded by the
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biggest of D (denoted by dmax). Since the only formulas that are added to the sequents

are ϕ, ϕ∧ψ and concatenations of (old) formulas with these two, we get that all sequents

in D′ are bounded by dmax ∗ pϕq ∗ pϕ ∧ ψq. The ∗ means concatenation, which is an

elementary function as well.

Applying Proposition A.3 as before we get

pD′q = Φ4,1(pDq) ≤ 22·h(D)·(dmax∗pϕq∗pϕ∧ψq+2).

Case 2: The cut formula of C has the form ∀xϕ(x), so D has the form

....
Γ′ ⇒ Θ′, ϕ(a)

Γ′ ⇒ Θ′, ∀xϕ(x)
R1

....
Γ⇒ Θ,∀xϕ(x)

....
ϕ(s),Π′ ⇒ Λ′

∀xϕ(x),Π′ ⇒ Λ′
R2

....
∀xϕ(x),Π⇒ Λ

Γ,Π⇒ Θ,Λ
C

....
∆⇒ Ξ....⇒ .

As in case 1 D′ is constructed from two deductions D′1 and D′2 defined as follows.

D′1 :
....

Γ′ ⇒ Θ′, ϕ(s)

Γ′ ⇒ ϕ(s),Θ′

Γ′ ⇒ ϕ(s),Θ′,∀xϕ(x)
weakening

....
Γ⇒ ϕ(s),Θ,∀xϕ(x)

....
∀xϕ(x),Π⇒ Λ

Γ,Π⇒ ϕ(s),Θ,Λ....
∆⇒ ϕ(s),Ξ

∆⇒ Ξ, ϕ(s)

where the deduction of Γ′ ⇒ Θ′, ϕ(s) comes from the deduction of

Γ′ ⇒ Θ′, ϕ(a) by substitution.
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D′2 :

....
Γ⇒ Θ,∀xϕ(x)

....
ϕ(s),Π′ ⇒ Λ′

Π′, ϕ(s)⇒ Λ′

∀xϕ(x),Π′, ϕ(s)⇒ Λ′
weakening

....
∀xϕ(x),Π, ϕ(s)⇒ Λ

Γ,Π, ϕ(s)⇒ Θ,Λ....
∆, ϕ(s)⇒ Ξ

ϕ(s),∆⇒ Ξ

From these two deductions, D′ is defined as follows:

D′1
∆⇒ Ξ, ϕ(s)

D′2
ϕ(s),∆⇒ Ξ

∆⇒ Ξ....⇒ .

The boundary can be found analogously to case 1.

For the rest of the cases the proof is very similar to the two which have been given.

Since any Φi for 1 ≤ i ≤ 4, which build the case distinction of Φ, can be bounded by an

elementary function, Φ is bounded by the sum of these bounds. Consequently Φ ∈ ERF

by Definition 2.1.1. 2
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B The Proof-Theoretic Ordinal of EA

The theory EA comprises the following axioms

1. (∀x)[S(x) 6= 0]

2. (∀x, y)[S(x) = S(y)→ x = y]

3. (∀x)[x+ 0 = x]

4. (∀x, y)[x+ S(y) = S(x+ y)]

5. (∀x)[x ∗ 0 = 0]

6. (∀x, y)[x ∗ S(y) = (x ∗ y) + x]

7. 20 = S(0)

8. (∀x)[2S(x) = 2x + 2x]

9. (∀x)[x ≤ 0↔ x = 0]

10. (∀x, y)[x ≤ S(y)↔ [x ≤ y ∨ x = S(y)]]

11. together with

ϕ(0) ∧ (∀x)[ϕ(x)→ ϕ(S(x))]→ (∀x)ϕ(x),

for every ϕ(x) ∈ ∆0
0 (for LEA).

We analyse EA in accordance to the following definition of proof-theoretic ordinal.

Definition B.1 Let T be a theory and OT (ε0) the natural ordinal notation system for

ordinals smaller than ε0 (see [57]). Assume that there are some ordinals α, β ∈ OT (ε0)

such that

T ` ERWF (α),
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but

T 6` ERWF (β).

Then we call the≺ε0-least of the β the bounded proof-theoretical ordinal of T and denote

it by ‖T‖min.

Here ERWF (α) is the set of all formulas of the form

(∀~x)(∃y)[f(~x, y + 1) 6≺ f(~x, y) ∨ f(~x, y) 6≺ α]

where f is an elementary recursive function.13

Remark B.2 One might want to define ‖T‖min via TI∆0
0
(α) instead. I was sure that this

should be equivalent, because I expected that

EA+ {TI∆0
0
(β)|β ≺ α} ≡Π0

2
EA+ {ERWF (β)|β ≺ α}

and TI∆0
0
(α) is a Π0

2-sentence. However this is not the case, because Sommer proved in

[54]

EA+ TI∆0
0
(ω2) ≡ IΣ1.

But IΣ1 proves ERWF (β) for any β < ωω (see [22]).

The proof-theoretic ordinal of EA will turn out to be ω3 and the proof uses mainly

recursion theoretic techniques; it only uses proof-theory through the back-door by

referring to Theorem 2.1.9.14 We will use results about the well known Grzegorczyk

Hierarchy, which is defined by using the following functions.

13Our formulation of the schema is of course an abbreviation, since we do not have all elementary

functions as function symbols in the language. f(y) = γ is used as an abbreviation of the natural Σ0
1-

formula that represents the graph of the function f in LEA.
14In fact I tried to give an ordinal-analysis by proof-theoretic methods and failed, because logical-

complexity is too rough a measure below IΣ1.
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Definition B.3 We define a sequence of primitive recursive functions 〈En〉n∈N as follows.

E0(x, y) := x+ y

E1(x) := x2 + 2

En+2(0) := 2

En+2(x+ 1) := En+1(En+2(x))

By using this function we can define the Grzegorczyk Hierarchy.

Definition B.4 The set of primitive recursive functions E0 includes the successor function

S, the constant zero function 0 and for any n andm the projection function pnm. In addition

E0 is closed under composition and limited recursion.

En+1 is a superset of En, includes En and is closed under composition and limited

recursion.

In the following ERF and PRF are the sets of elementary and primitive recursive

functions respectively. We can prove the following facts about the Grzegorczyk

Hierarchy.

Theorem B.5 1. For any n ∈ N, En ( En+1.

2. E3 = ERF

3.
⋃
n∈ω En = PRF

Proof

1. Easy.

2. See [43, p. 33].

3. See [43, p. 35].
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2

The following definition regulates the connections between these sets and an ordering.

Definition B.6 A function θ is called a predecessor function for an ordering 〈N,≺〉, if it

satisfies the following conditions:

θ(0) = 0

x > 0 implies θ(x) ≺ x.

We say that f is defined from g and h by recursion on ≺, if

f(~x, y) :=

 g(~x) : y = 0

h(~x, y, f(~x, θ(~x, y))) : y > 0

The following theorem is the main recursion-theoretic result for the ordinal analysis which

follows.

Theorem B.7 Assume that 〈N,≺〉 is a well-founded ordering with order-type ωn. Let f

be a function that is definable by functions from En by recursion on ≺. Then f ∈ En+1.

Proof

See [43, p. 59, Theorem 1.2]. 2

By these two theorems we can easily conclude the following corollary.

Corollary B.8

‖EA‖min � ω3

Proof

To prove the corollary we have to ensure that

EA 6` ERWF (ω3).
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We will proceed indirectly. So lets assume that

EA ` ERWF (ω3).

Theorem 2.1.9 and Theorem B.5 (2) ensure that we can define all functions of E3 in

EA. Consequently, using ERWF (ω3), we can deduce the totality of any function f

that is definable by elementary functions along the well-ordering ≺ε0 |ω3 . But the order

type of ≺ε0 |ω3 is ω3. Hence f is in E4 by Theorem B.7; which is a contradiction to

Theorem 2.1.9. 2

In order to give an ordinal-analysis it remains to prove that

ω3 � ‖EA‖min.

However we start by showing that ω2 ≺ ‖EA‖min.

Lemma B.9

EA ` ERWO(ω2)

Proof

Assume f is an elementary recursive function. Then the function

g(~x) := µy[f(~x, y + 1) 6≺ f(~x, y)]

is defined in terms of elementary recursive functions. However the µ-operator is not

elementary, but the bounded-µ-operator is. Hence, finding an elementary t(~x) such that

g(~x) := µy < t(~x)[f(~x, y + 1) 6≺ f(~x, y)],

we can prove that g is elementary and can proceed as follows. Since g is elementarily, its

totality can be deduced inEA by Theorem 2.1.9. ConsequentlyERWO(ω2) is witnessed

by g; and we are done.



Appendices 211

Hence we have to find such a t(~x). To keep the following readable, we skip the free

variables. Note that all the ordinals below ω2 have the form ωk1+k2 and are usually coded

as (or at least their codes are elementary transformable to) 〈k1, k2〉. Hence, assuming the

range of f is bounded by ω2, the descending sequence that is defined by f looks like this:

ωkf(0) + k′f(0) � ωkf(1) + k′f(1)... � ωkf(n) + k′f(n)...

If kf(n) stays the same, then there are only k′f(n) many possibilities to be strictly smaller.

However there are only kf(0) many possibilities for strictly smaller kf(n). Hence

y <

p1(f(0))∑
i=0

(

p2(f(i))∑
j=0

j).

Since elementary functions are closed under bounded sums, projection is elementary and

f is elementary by assumption, we have found our t. 2

Theorem B.10 For any n,m ∈ N,

EA ` ERWF (ωm)→ ERWF (ωmn).

Proof

We prove the theorem by metainduction on n.

n = 1: The induction basis is equivalent to an instance of the tautology ψ → ψ.

n⇒ n+ 1: We work in EA and assume the two formulas

ERWF (ωmn)

ERWF (ωm).

The first gives a number z for counting down an f along ωmn and the latter gives a number

w for counting down ωm. Note that ordinal addition is (or is elementarily recursively

transformable to)

α + β := {〈x, γ〉|[x = 0→ γ ≺ α] ∧ [x = 1→ γ ≺ β]},
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when it is ordered lexicographically. Using the same line of argument as in Lemma B.9,

we can therefore bound y in a

(∀~x)(∃y)[f(~x, y + 1) 6≺ f(~x, y) ∨ f(~x, y) 6≺ ωmn+ ωm]

by z + w + 1, which is an elementary bound. Moreover this is equivalent to

ERWF (ωm(n+ 1)). Hence we are done.

2

This leads to the following corollary.

Corollary B.11

ω3 � ‖EA‖min

Hence the following theorem can be proved.

Theorem B.12

‖EA‖min = ω3

Proof

By Corollary B.11 and Corollary B.8, we get

ω3 � ‖EA‖min � ω3.

2

Remark B.13 One might suspect that Takeuti’s note in [57, p.29] that cut-elimination

can be proved by ω2-induction together with Minc’s elementary cut-elimination from [33]

implies cut-elimination in EA. This is not the case. It is true that a deduction in LK with
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cut-rank r and deduction height h can be seen as being labelled by ωr + h. However

there is an important difference between formalised finite and infinite cut-elimination.

In continuous cut-elimination one has to decorate the well-formed quasi-deductions by

ordinal labels in order to formally prove that they are in fact deductions; one has to

ensure that all their branches end in an axiom and not in an infinite chain of repetition

rules. Whether labelling is done during the cut-elimination procedure or afterwards is

inessential. The labelling starts by labelling the formal deduction by the estimated result,

which is taken from the informal proof. For instance, in the ordinal analysis of PA (see

Chapter 3), a cut-elimination starting from `αr ϕ would assign to the end-formula of the

resulting cut-free deduction the ordinal ωαr and then rebuild the deduction accordingly.

This can be done elementarily because the operation on the ordinal notation system

(α, β) 7→ ωαβ

is elementary (in this ordinal notation system). However in the finite case, labelling

LK `hr Γ ⇒ ∆ by ωr + h, Minc’s cut-elimination has to assign 2hr to the resulting cut-

free deduction in order to have enough room to construct a well-formed cut-free quasi-

deduction. But

(n,m) 7→ 2nm,

which is a function on numbers and not on ordinal terms, is not elementary. This problem

does not occur in the finite fragment of the infinite system that is used in the ordinal-

analysis of PA, because a finite deduction in this infinite system cannot include the ω-

rule and, hence, its end-formula must be a Σ0
1-formula. Consequently the cut-rank can be

bounded in these cases.
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C Deduction Systems

The following systems are all logical in nature and implicitly or explicitly used in the

present thesis in various places.

1. Gödel’s system for intuitionistic logic is a Hilbert style system defined by the

following schemata for an arbitrary first-order language.

(a) ⊥ → ϕ

(b) ϕ ∨ ϕ→ ϕ and ϕ→ ϕ ∧ ϕ

(c) ϕ→ ϕ ∨ ψ and ϕ ∧ ψ → ϕ

(d) ϕ ∨ ψ → ψ ∨ ϕ and ϕ ∧ ψ → ψ ∧ ϕ

(e) (∀x)ϕ(x)→ ϕ(t)

(f) ϕ(t)→ (∃x)ϕ(x)

(g)
ϕ ϕ→ ψ

ψ

(h)
ϕ→ χ χ→ ψ

ϕ→ ψ

(i)
ϕ ∧ ψ → χ

ϕ→ (ψ → χ)

(j)
ϕ→ (ψ → χ)

ϕ ∧ ψ → χ

(k)
ϕ→ ψ

χ ∨ ϕ→ χ ∨ ψ
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(l)
ψ → ϕ(x)

ψ → (∀x)ϕ(x),

where x does not occur freely in ψ.

(m)
ϕ(x)→ ψ

(∃x)ϕ(x)→ ψ,

where x does not occur freely in ψ.

2. The sequent calculus LK for classical logic is defined as follows.

(a) Logical Axioms:

ϕ⇒ ϕ

for every atomic ϕ ∈ L(τ).

(b) Structural rules:

i. Weakening:
Γ⇒ ∆
ϕ,Γ⇒ ∆

(left) Γ⇒ ∆
Γ⇒ ∆, ϕ

(right)

The formula ϕ is called the weakening-formula.

ii. Contraction:

ϕ, ϕ,Γ⇒ ∆
ϕ,Γ⇒ ∆

(left)
Γ⇒ ∆, ϕ, ϕ
Γ⇒ ∆, ϕ

(right)

iii. Exchange:

Γ, ψ, ϕ,Π⇒ ∆

Γ, ϕ, ψ,Π⇒ ∆
(left)

Γ⇒ ∆, ψ, ϕ,Λ

Γ⇒ ∆, ϕ, ψ,Λ
(right)

iv. Cut:
Γ⇒ ∆, ϕ ϕ,Π⇒ Λ

Γ,Π⇒ ∆,Λ

The formula ϕ is called the cut-formula. The rules (a)-(c) are called weak

structural rules.
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(c) Logical Rules:

i. Negation:

(¬ϕ),Γ⇒ ∆

Γ⇒ ∆, ϕ
(¬-left)

Γ⇒ ∆, (¬ϕ)

ϕ,Γ⇒ ∆
(¬-right)

ii. Conjunction:

ϕ,Γ⇒ ∆

(ϕ ∧ ψ),Γ⇒ ∆
(∧-left1)

ϕ,Γ⇒ ∆

(ψ ∧ ϕ),Γ⇒ ∆
(∧-left2)

and
Γ⇒ ∆, ϕ Γ⇒ ∆, ψ

Γ⇒ ∆, (ϕ ∧ ψ)
(∧-right)

iii. Disjunction:
ϕ,Γ⇒ ∆ ψ,Γ⇒ ∆

(ϕ ∨ ψ),Γ⇒ ∆
(∨-left)

Γ⇒ ∆, ϕ

Γ⇒ ∆, (ϕ ∨ ψ)
(∨-right1)

and
Γ⇒ ∆, ψ

Γ⇒ ∆, (ϕ ∨ ψ)
(∨-right2)

iv. Implication:

Γ⇒ ∆, ϕ ψ,Π⇒ Λ

(ϕ→ ψ),Γ,Π⇒ ∆,Λ
(→ -left)

ϕ,Γ⇒ ∆, ψ

Γ⇒ ∆, (ϕ→ ψ)
(→ -right)

v. Generalisation:

ϕ(t),Γ⇒ ∆

∀xϕ(x),Γ⇒ ∆
(∀-left)

Γ⇒ ∆, ϕ(a)

Γ⇒ ∆, ∀xϕ(x)
(∀-right)

where t is a term and a is a free variable not occurring in the lower

sequent, which is called the eigenvariable.

vi. Existence:

ϕ(a),Γ⇒ ∆

∃xϕ(x),Γ⇒ ∆
(∃-left)

Γ⇒ ∆, ϕ(t)

Γ⇒ ∆, ∃xϕ(x)
(∃-right)

where t is a term and a is a free variable not occurring in the lower

sequent, which is called the eigenvariable.
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The Rules (a)-(d) are called propositional rules and (d) and (h) quantifier

rules. ∀-right and ∃-left are called strong the other cases weak quantifier rules.

The formulas in the upper sequents that are used in the rule are called auxiliary

formulas (a.f.) the formulas in the lower sequent that are modified are called

principal formulas (p.f.) and formulas which are not used are called side formulas

(s.f.).

3. LJ is defined as LK where the sequents that are in use are restricted to those which

do not have more than one formula on the right side.

4. The system that is used in [41] is defined as follows.

(∧) ` Γ, A and ` Γ, B ⇒ ` Γ, A ∧B

(∨) ` Γ, Ai and i ∈ {1, 2} ⇒ ` Γ, A1 ∨ A2

(∀1) ` Γ, F (a) ⇒ ` Γ, ∀xF (x)

(∃1) ` Γ, F (t) ⇒ ` Γ, ∃xF (x)

(∀2) ` Γ, F (U) ⇒ ` Γ,∀XF (X)

(∃2) ` Γ, F (U) ⇒ ` Γ,∃XF (X)

(cut) ` Γ, A and ` Γ,¬A ⇒ ` Γ
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