
Runtime Quantitative Verification

of Self-Adaptive Systems

Simos Gerasimou

PhD

University of York

Computer Science

September 2016

Abstract

Software systems used in mission- and business-critical applications in do-
mains including defence, healthcare and finance must comply with strict de-
pendability, performance and other Quality-of-Service (QoS) requirements.
Self-adaptive systems achieve this compliance under changing environmental
conditions, evolving requirements and system failures by using closed-loop
control to modify their behaviour and structure in response to these events.

Runtime quantitative verification (RQV) is a mathematically-based ap-
proach that implements the closed-loop control of self-adaptive systems.
Using runtime observations of a system and its environment, RQV updates
stochastic models whose formal analysis underpins the adaptation decisions
made within the control loop. The approach can identify and, under cer-
tain conditions, predict violation of QoS requirements, and can drive self-
adaptation in ways guaranteed to restore or maintain compliance with these
requirements. Despite its merits, RQV has significant computation and
memory overheads, which restrict its applicability to small systems and to
adaptations affecting only the configuration parameters of the system.

In this thesis, we introduce RQV variants that improve the efficiency
and scalability of the approach, and extend its applicability to larger and
more complex self-adaptive software systems, and to adaptations that mod-
ify the structure of a system. First, we integrate RQV with established
efficiency improvement techniques from other software engineering areas.
We use caching of recent analysis results, limited lookahead to precompute
suitable adaptations for potential future changes, and nearly-optimal re-
configuration to eliminate the need for an exhaustive analysis of the entire
reconfiguration space. Second, we introduce an RQV variant that incorpo-
rates evolutionary algorithms into the RQV process facilitating the efficient
search through large reconfiguration spaces and enabling adaptations that
include structural changes. Third, we propose an RQV-driven approach that
decentralises the control loops in distributed self-adaptive systems. Finally,
we devise an RQV-based methodology for the engineering of trustworthy
self-adaptive systems. We evaluate the proposed RQV variants using pro-
totype self-adaptive systems from several application domains, including an
embedded system for unmanned underwater vehicles and a foreign exchange
service-based system. Our results, subject to the adaptation scenarios used
in the evaluation, demonstrate the effectiveness and generality of the new
RQV variants.

List of Contents

Abstract 3

List of Contents 5

List of Figures 9

List of Tables 13

Acknowledgements 17

Declaration 19

1 Introduction 21

1.1 Self-Adaptive Software Systems . 21
1.2 Runtime Quantitative Verification Overview 23
1.3 Motivation and Research Hypothesis . 24
1.4 Research Scope and Assumptions . 25
1.5 Thesis Contributions . 26
1.6 Thesis Structure . 30

2 Background and Field Review 33

2.1 Quantitative Verification . 33
2.1.1 Markov Models . 35

2.1.1.1 Discrete-Time Markov Chains 36
2.1.1.2 Continuous-Time Markov Chains 40

2.1.2 Probabilistic Temporal Logics 44

5

LIST OF CONTENTS

2.1.2.1 Probabilistic Computation Tree Logic 45
2.1.2.2 Continuous Stochastic Logic 48

2.2 Runtime Quantitative Verification . 51
2.2.1 Self-Adaptation Through Runtime Quantitative Verification . . 51

2.2.1.1 Self-Adaptive Unmanned Underwater Vehicle System . 54
2.2.2 Early Approaches to Runtime Quantitative Verification 57
2.2.3 The Quest for Efficient Runtime Quantitative Verification 58

2.2.3.1 Incremental Verification 60
2.2.3.2 Compositional Verification 61
2.2.3.3 Parametric Verification 63

3 Efficient RQVUsingConventional Software Engineering Techniques 67
3.1 Techniques for Efficient RQV . 69

3.1.1 Caching . 69
3.1.2 Limited Lookahead . 71
3.1.3 Nearly-Optimal Reconfiguration 73

3.2 Implementation . 75
3.3 Evaluation . 76

3.3.1 Research Questions . 76
3.3.2 Experimental Setup . 77
3.3.3 Results and Discussion . 79
3.3.4 Threats to Validity . 86

3.4 Related Work . 86
3.5 Summary . 88

4 Improving RQV Efficiency Using Evolutionary Algorithms 89
4.1 EvoChecker . 91

4.1.1 Modelling Language . 94
4.1.2 Quality-of-Service Attributes . 99
4.1.3 Human-in-the-Loop EvoChecker 101
4.1.4 Automated EvoChecker . 106

4.2 Implementation . 112
4.3 Evaluation . 112

4.3.1 Human-in-the-Loop EvoChecker Evaluation 113
4.3.1.1 Research Questions . 113
4.3.1.2 Experimental Setup . 113

6

LIST OF CONTENTS

4.3.1.3 Evaluation Methodology 114
4.3.1.4 Results and Discussion 117

4.3.2 Automated EvoChecker Evaluation 125
4.3.2.1 Research Questions . 125
4.3.2.2 Experimental Setup . 125
4.3.2.3 Evaluation Methodology 126
4.3.2.4 Results and Discussion 128

4.3.3 Threats to Validity . 134
4.4 Related Work . 136
4.5 Summary . 138

5 Extending RQV With Decentralised Control Loops 139
5.1 DECIDE . 141

5.1.1 Formal Description of a DECIDE System 142
5.1.2 Stage 1: Local capability analysis 145
5.1.3 Stage 2: Receipt of Peer Capability Summaries 151
5.1.4 Stage 3: Selection of Component Contributions 152
5.1.5 Stage 4: Execution of Local Control Loop 156
5.1.6 Stage 5: Major Changes . 157

5.2 Implementation . 158
5.3 Evaluation . 159

5.3.1 Research Questions . 159
5.3.2 Experimental Setup . 160
5.3.3 Results and Discussion . 161
5.3.4 Threats to Validity . 167

5.4 Related Work . 168
5.5 Summary . 171

6 Engineering Trustworthy Self-Adaptive Systems 173
6.1 ENTRUST Methodology . 175

6.1.1 Stage 1: Development of Verifiable Models 178
6.1.2 Stage 2: Verification of Controller Models 182
6.1.3 Stage 3: Controller Enactment 184
6.1.4 Stage 4: Partial Instantiation of Assurance Argument Pattern . . 187
6.1.5 Stage 5: Running the Self-Adaptive System 193
6.1.6 Stage 6: Synthesis of Dynamic Assurance Argument 194

7

LIST OF CONTENTS

6.2 Implementation . 195
6.3 Evaluation . 197

6.3.1 Research Questions . 197
6.3.2 Experimental Setup . 197
6.3.3 Results and Discussion . 199
6.3.4 Threats to Validity . 210

6.4 Related Work . 211
6.5 Summary . 212

7 Conclusion and Future Work 215
7.1 Efficient RQV Using Software Engineering Methods 216

7.1.1 Research Contributions . 216
7.1.2 Further Research Directions . 217

7.2 Improving RQV Efficiency Using Evolutionary Algorithms 218
7.2.1 Research Contributions . 218
7.2.2 Further Research Directions . 218

7.3 Extending RQV With Decentralised Control Loops 219
7.3.1 Research Contributions . 219
7.3.2 Further Research Directions . 220

7.4 Engineering Trustworthy Self-Adaptive Software Systems 220
7.4.1 Research Contributions . 220
7.4.2 Further Research Directions . 221

7.5 Prototype Self-Adaptive Software Systems 222

Appendix A Sequential Strategy Module for the MarketWatch FX Ser-

vice 223

Appendix B Dynamic Power Management System 225

Glossary 229

References 231

8

List of Figures

2.1 Overview of quantitative verification process. 35
2.2 DTMC model of an e-commerce system. 39
2.3 CTMC model of the i-th UUV sensor. 43
2.4 High-level architecture of a self-adaptive system implementing the MAPE-

K closed control loop. 52
2.5 Runtime quantitative verification workflow. 53
2.6 Verification results for the UUV system requirements. 56

3.1 Search tree produced by limited lookahead for the 2-sensor UUV system. 73
3.2 MOOS architecture including our RQV-MOOS component. 76
3.3 Self-adaptive UUV simulator component. 77
3.4 Sample pattern of sensor failures and drops in measurement rates for a

3-sensor system, and the sensor configurations and speed chosen by the
self-adaptive UUV. 80

3.5 Effect of efficient RQV techniques on the average time required to decide
a new configuration during an RQV step and the total number of quan-
titative verification operations over 2000 RQV steps, for a scenario with
low sensor-rate fluctuation during normal operation. 81

3.6 Effect of efficient RQV techniques on the average time required to decide
a new configuration during an RQV step and the total number of quan-
titative verification operations over 2000 RQV steps, for a scenario with
high sensor-rate fluctuation during normal operation. 82

3.7 Effect of efficient RQV verification on the response time for UUV systems
with 3, 4 and 6 sensors, low sensor-rate variation during normal operation
periods, and using different cache sizes. 83

4.1 Workflow of the FX system. 92

9

LIST OF FIGURES

4.2 DTMC model of the FX system. 96
4.3 High-level human-in-the-loop EvoChecker architecture. 104
4.4 High-level automated EvoChecker architecture. 111
4.5 Boxplots for a specific scenario of the DPM system variants from Ta-

ble 4.7, evaluated using the quality indicators Iε, IHV and IIGD. 119
4.6 Boxplots for a specific scenario of the FX system variants from Table 4.7,

evaluated using the quality indicators Iε, IHV and IIGD. 120
4.7 Boxplots for the FX system variants from Table 4.7 across 30 different

adaptation scenarios, evaluated using the quality indicators Iε, IHV and
IIGD. 121

4.8 Typical Pareto front approximations for the DPM system variants and
optimisation objectives R3–R5 from Table B.2. 122

4.9 Typical Pareto front approximations for the FX system variants and op-
timisation objectives R2–R4 from Table 4.4. 123

4.10 Variation in workflow reliability and system cost of the FX_Small variant
due to the changes from Table 4.13 and system adaptation using the
incremental EvoChecker with no archive use (i.e., PGA). 129

4.11 Boxplots for changes in environment state C4, C7, C11, C13 of the
FX_Small system variant using LRGA, LDGA, PGA, CRGA, and RS. . 131

4.12 Boxplots for changes C7, C12 of the UUV_Large system variant using
LRGA, LDGA, PGA, CRGA, and RS. 132

5.1 Decentralised self-adaptation workflow of a DECIDE component. 143
5.2 QoS attributes of a DECIDE component and their roles in defining

system- and local-level QoS requirements. 143
5.3 Environment analysis Env2

i =[1.61, 2.39]×[0,∞] and Env4
i =[1.55, 2.45]×

[3.33, 4.67] for configuration subsets Cfg2
i and Cfg4

i for a two-sensor UUV. 149
5.4 Verification of Φi1 and Φi3 from Table 5.4 150
5.5 RQV of Φi1 – Φi6 from Table 5.4. 157
5.6 MOOS architecture including our DECIDE component. 158
5.7 Self-adaptive multi-UUV system simulator. 159
5.8 Execution of DECIDE stages 1–4 for a particular scenario including ma-

jor changes and local sensor changes. 163
5.9 DECIDE scalability analysis. 167

6.1 Architecture of an ENTRUST self-adaptive system. 175
6.2 ENTRUST self-adaptive system and assurance case methodology. 176

10

LIST OF FIGURES

6.3 Event-triggered MAPE model templates. 179
6.4 Instantiation of UUV MAPE automata based on the event-triggered EN-

TRUST model templates. 179
6.5 Auxiliary sensor, verification engine and effector automata used for veri-

fying the generic controller properties from Table 6.2 for the UUV system.183
6.6 Main GSN elements for constructing an assurance argument. 188
6.7 An example GSN assurance argument. 188
6.8 ENTRUST assurance argument pattern. 190
6.9 Away goal CPsIdentify which shows how application-specific require-

ments are captured by one or more critical properties. 191
6.10 Away goal ErrorCont which indicates that (i) the design process of EN-

TRUST, and the reusable components virtual machine and probabilistic
verification engine do not introduce any errors; and (ii) the identified
critical properties address any failures of the ENTRUST self-adaptive
system. 191

6.11 Partially-instantiated assurance argument for the UUV system. 192
6.12 Verification results for UUV system requirements 193
6.13 Fully-instantiated assurance argument for the UUV system. 196
6.14 Instantiation of FX MAPE automata based on the event-triggered EN-

TRUST model templates. 200
6.15 Auxiliary sensor, verification engine and effector automata used for ver-

ifying the generic controller properties from Table 6.2 for the FX system. 201
6.16 Partially-instantiated assurance argument for the FX system. 203
6.17 Verification results for the FX system requirements. 205
6.18 Fully-instantiated assurance argument for the FX system. 206
6.19 CPU time for the UPPAAL verification of the generic controller proper-

ties in Table 6.2 . 209
6.20 CPU time for the runtime probabilistic model checking of the QoS re-

quirements after changes . 210

A.1 Sequential strategy module for the MarketWatch service used by the FX
system. 223

B.1 Dynamic power management system . 225
B.2 CTMC model of the DPM system. 227

11

List of Tables

2.1 QoS requirements for the train booking system 47

2.2 QoS requirements for the UUV system 50

2.3 Overview of surveyed approaches and comparison to new approaches pro-
poses in this thesis . 59

3.1 Analysed UUV system variants . 78

3.2 Summary of evaluated techniques (compared to standard RQV) 85

4.1 QoS requirements for the FX system. 92

4.2 Types of models supported by EvoChecker 95

4.3 QoS attributes for the FX system . 100

4.4 Formal specification of QoS requirements for the FX system 102

4.5 EvoChecker gene encoding rules . 105

4.6 Formal specification of QoS requirements for the FX system 107

4.7 Analysed system variants for the human-in-the-loop EvoChecker 114

4.8 System variants for which the MOGAs in rows are significantly better
than the MOGAs in columns . 118

4.9 Mean quality indicator values for a specific scenario of the DPM system
variants from Table 4.7 . 119

4.10 Mean quality indicator values for a specific scenario of the FX system
variants from Table 4.7 . 120

4.11 Mean quality indicator values across 30 different adaptation scenarios for
the FX system variants from Table 4.7 121

4.12 Analysed system variants for the incremental EvoChecker 126

4.13 Changes in environment state of system variants used in automated
EvoChecker. 127

13

LIST OF TABLES

4.14 Pairwise comparison of archive selection strategies for various stages of
changes C4 and C11 of the FX variants showing the significantly better
strategy and effect size (in parenthesis) 133

5.1 System-level QoS requirements for the multi-UUV distributed system . . 142
5.2 UUV-level QoS requirements for UUV i from the multi-UUV distributed

system . 142
5.3 Categories of DECIDE system-level QoS requirements from (5.2) 144
5.4 QoS attributes for UUV i, where val ij is the value of Mi(e, c) |=Φij . . . 145
5.5 Characteristics of the three-UUV system 155
5.6 Capability summaries of the three-UUV system 155
5.7 Characteristics of analysed multi-UUV system variants 161
5.8 Characteristics of a specific scenario of a three-UUV system 162
5.9 Mean CPU and communication overheads for a three-UUV mission . . . 165
5.10 Comparison of DECIDE with the “ideal” system 165

6.1 QoS requirements for the UUV self-adaptive system 177
6.2 Generic properties that should be satisfied by an ENTRUST controller . 183
6.3 QoS requirements for the prototype FX self-adaptive system developed

using ENTRUST . 198
6.4 Characteristics of analysed UUV and FX system variants 199
6.5 Characteristics of the third-party service implementations of the FX system204
6.6 Changes in environment state of UUV system with 3 sensors and FX

system with 3 third-party implementations per service 207

B.1 Average service-provider transition times 226
B.2 QoS requirements for the DPM system 226

14

To my grandmother Chionou,
and my grandfather Simos

Acknowledgements

First, I am grateful to my supervisor Dr. Radu Calinescu. He has invested
a great amount of time and effort in providing guidance throughout the
duration of this research project. Without his support, this thesis would
have never materialised.

Special thanks are due to my internal assessor Prof. Richard Paige for his
invaluable feedback and continual encouragement, and Prof. Marin Litoiu
for his suggestions to improve this thesis.

I would like to thank DSTL for supporting this project and Dr. Alec Banks,
our DSTL technical partner, whose valuable insights in several aspects of
our work have shaped and considerably improved this thesis.

I would also like to thank my colleagues and friends in the Enterprise
Systems group, especially Dr. Babajide Ogunyomi, Dr. Yasmin Rafiq,
Dr. Thomas Richardson, Gabriel Costa Silva, Dr. Colin Patterson, Dr.
Konstantinos Barmpis, Dr. Antonio Garcia-Dominguez, Adolfo Sanchez-
Barbudo Herrera, Dr. Ran Wei and Athanasios Zolotas for their support
and for engaging in interesting discussions.

I had the opportunity to collaborate with great researchers and academics,
especially Prof. Tim Kelly, Dr. Ibrahim Habli, Prof. Danny Weyns, Usman
Iftikhar and Dr. Giordano Tamburrelli. Special thanks to you all.

I am very grateful to Christina for her love, encouragement and endless
patience through the ups and downs of this journey. Thank you for your
understanding and for being always by my side.

Finally, I would like to express my warmest gratitude to my family, Pana-
gioti, Tasoula, Andri and Antoni, for their endless love and support, and
for helping me to achieve my goals. Nothing would have ever been possible
without you.

Declaration

Except where stated, all of the work contained in this thesis represents
the original contribution of the author. This work has not previously been
presented for an award at this, or any other, University. All sources are
acknowledged as References.

Chapter 6 is joint work with Prof. Tim Kelly and Dr. Ibrahim Habli from
University of York, UK and with Prof. Danny Weyns and Usman Iftikhar
from Linnaeus University, Sweden. We clarify in Section 1.5 our contribu-
tions for this chapter.

Parts of the research described in this thesis have been previously published
in:

• Simos Gerasimou, Radu Calinescu, Alec Banks. Efficient runtime
quantitative verification using caching, lookahead, and nearly-
optimal reconfiguration. In 9th International Symposium on Soft-
ware Engineering for Adaptive and Self-Managing Systems (SEAMS’14).
pages 115-124, 2014.

• Radu Calinescu, Simos Gerasimou, Alec Banks. Self-adaptive Soft-
ware with Decentralised Control Loops. In 18th International
Conference on Fundamental Approaches to Software Engineering (FASE’15).
pages 235-251, 2015. (Nominated for an ETAPS’15 best paper award).

• Simos Gerasimou, Giordano Tamburrelli, Radu Calinescu. Search-
Based Synthesis of Probabilistic Models for Quality-of-Service
Software Engineering. In 30th International Conference on Auto-
mated Software Engineering (ASE’15). pages 319-330, 2015.

Part of the research described in this thesis is currently under review in:

• Radu Calinescu, Simos Gerasimou, Ibrahim Habli, Usman Iftikhar,
Tim Kelly, DannyWeyns. Engineering Trustworthy Self-Adaptive
Software. Submitted to Transactions on Software Engineering (TSE).

Other publications related to this research:

• Radu Calinescu, Marco Autili, Javier Camara, Antinisca Di Marco,
Simos Gerasimou, Paola Inverardi, Alexander Perucci, Nils Jansen,
Joost-Pieter Katoen, Marta Kwiatkowska, Ole J. Mengshoel, Romina
Spalazzese, Massimo Tivoli. Synthesis and Verification of Self-
aware Computing Systems. Self-Aware Computing Systems. pages
337-373, 2017.

• Radu Calinescu, Simos Gerasimou, Kenneth Johnson, Colin Paterson.
Using Runtime Quantitative Verification to Provide Assur-
ance Evidence for Self-Adaptive Software: Advances, Appli-
cations and Research Challenges. Software Engineering for Self-
Adaptive Systems 3. (in print)

Chapter 1

Introduction

Realistically, such [autonomic] systems will

be very difficult to build and will require

significant exploration of new technologies

and innovations. That’s why we view this as

a Grand Challenge for the entire IT industry.

Paul Horn, Senior Vice President IBM research

Autonomic Computing: IBM’s Perspective on

the State of Information Technology, 2001

1.1 Self-Adaptive Software Systems

The engineering of self-adaptive software systems is an emerging research area [45,
56]. As stated in the autonomic computing manifesto [91, 126, 139], software systems
characterised by well-determined functionality that is fixed at design-time are replaced
by systems resilient to changes and with adaptive capabilities [127, 183]. State-of-
the-art systems have gone beyond simply monitoring themselves, and are increasingly
anticipating changes and discovering deviations from the desired behaviour. Through
a closed control loop [139], and with limited administrator involvement, self-adaptive
systems can modify their behaviour and internal structure in response to changing
environmental conditions, evolving requirements and internal changes [27].

21

1. INTRODUCTION

Since the advent of autonomic computing [91, 126, 139], numerous research projects
have focused on devising methodologies and frameworks for engineering self-adaptive
software systems. Extensive surveys of this area can be found in [127, 143, 183]. Some
of these projects enhance systems with self-adaptation capabilities using intelligent
agents [25, 197], biologically-inspired mechanisms like flocking and foraging [195, 216],
learning [175, 198] or control theoretical techniques [78, 140]. Other approaches reason
about adaptation using architectural [19, 92, 169] or behavioural [15, 96] models, i.e., ab-
stract system representations that include only features of interest and omit unnecessary
structural and behavioural characteristics, and implementation details. Recent research
advocates the use of quantitative verification at runtime to improve the dependability of
self-adaptive software systems [29, 32, 68]. This thesis investigates self-adaptive systems
whose reconfiguration is driven by runtime quantitative verification.

The opportunities for research and innovation in self-adaptive systems are remark-
able. The second Horizon 2020 ICT call alone will provide AC72M of funding for research
on robotics and autonomous systems [70]. Horizon 2020 European research roadmaps
and UK research strategy documents envisage that advances in autonomous and self-
adaptive systems will have a tremendous impact on society, on business and the global
economy [2, 3, 179]. The social benefits in sectors including environment, ambient-
assisted living, energy and transport are expected to be significant, while the potential
economic impact is estimated around AC1 trillion by 2025 [156]. Autonomous and self-
adaptive systems will enhance almost every aspect of our lives and contribute to safer
transportation, efficient manufacturing, secure systems and improved healthcare [179].
In a recent report, the UK Aerospace, Aviation & Defence Knowledge Transfer Net-
work [4] highlights that “If delivered properly, telehealth systems can reduce mortality
rates by up to 45% and reduce the need for admissions to hospital by 20%”.

Driven by these opportunities, the research community has explored the use of self-
adaptive systems in mission- and business-critical applications in domains ranging from
defence and healthcare to finance and robotics [17, 30]. Systems deployed in these
domains are expected to operate predictably and to comply with strict functional and
Quality-of-Service (QoS) requirements. Failing to guarantee predictable behaviour and
correct operation can have catastrophic results, including financial loss, environmental
damage and harm to humans. To avoid such undesired events, self-adaptive software
systems must be capable of verifying their compliance with system QoS requirements
before adopting a reconfiguration plan, timely and without exhausting the available
resources. If this is achieved, dependable system operation will be guaranteed.

22

1.2 Runtime Quantitative Verification Overview

1.2 Runtime Quantitative Verification Overview

Recent research advocates the use of formal methods at runtime as a means of rigor-
ously driving the reconfiguration of self-adaptive systems and supporting dependable
adaptation [36, 208]. Runtime quantitative verification (RQV) is a mathematically-
based approach from this area that implements the closed-loop control of self-adaptive
systems. The approach uses stochastic models of a self-adaptive system and its envi-
ronment, and updates these models using runtime observations (of aspects of interest).
The formal analysis of these models steers adaptation inside the control loop of the sys-
tem [32]. RQV was introduced in [38, 68] and developed further in [33, 39, 76, 130, 154].
Successful applications include dynamic reconfiguration of telehealth service-based sys-
tems [39] and autonomous management of cloud-computing infrastructure [130].

RQV enables adaptation through continual verification of temporal logic formulae
(capturing the QoS requirements of the self-adaptive system) over parametric stochastic
models. These models comprise states and state transitions associated with relevant
states and configurations of the system, and with possible transitions between states,
respectively. The model parameters denote system and environment uncertainty (i.e.,
system or environment behaviour unknown at design-time or evolving at runtime), and
control decisions in the form of alternative system configurations. For instance, given
an unmanned underwater vehicle (UUV) equipped with on-board sensors and deployed
in an environment monitoring mission [94], the approach can drive adaptation so that

• “At least 300 measurements of sufficient accuracy are taken by the active sensors
for every 100m travelled by the UUV”;

• “The energy consumption of the sensors does not exceed 400J for every 100m
travelled by the UUV”.

A self-adaptive software system employs RQV to reverify its compliance with QoS
requirements after environmental, requirement and system changes. Through a contin-
ual monitoring process, the system and its environment are observed at runtime, and
the up-to-date system and environment states are determined. These states are used to
instantiate a concrete model from a family (i.e., parametric) of system models associated
with the different scenarios the system might operate in. The chosen model is analysed
exhaustively using quantitative verification, to identify and/or predict violations of QoS
requirements such as response time, availability and cost. When requirement violations
occur or are predicted, the quantitative verification results enable the synthesis of a ver-
ified reconfiguration plan. The execution of this plan ensures that the system continues
to meet its QoS requirements despite the changes identified in the monitoring step.

23

1. INTRODUCTION

1.3 Motivation and Research Hypothesis

Recent research established RQV as an approach suitable for augmenting software sys-
tems with self-adaptive capabilities and for continually verifying their QoS require-
ments [32, 38, 68, 146]. Notwithstanding its merits, RQV is a model checking approach,
and thus is affected by the state-explosion problem [13, 48], where the size of the model
increases exponentially with the size of the system. Hence, RQV cannot operate with
the low computational and memory overheads required by many realistic self-adaptive
software systems. Even when RQV can analyse a single system reconfiguration effi-
ciently, the need to analyse all possible alternative reconfigurations after each change
renders RQV infeasible with the exception of self-adaptive systems with small configu-
ration spaces. These limitations call for efficient and scalable RQV techniques [32].

Existing research to improve RQV efficiency has introduced variants of the approach
that exploit various aspects of the runtime verification process. These RQV variants,
which we analyse in Section 2.2.3, are (i) compositional, by using assume-guarantee
model checking to verify component-based systems one component at a time [37, 130,
151]; (ii) incremental, by establishing the current verification results from those obtained
in previous verification runs [82, 130, 154]; and (iii) pre-computation-based, by trans-
forming temporal logic formulae into easy-to-evaluate algebraic expressions [76, 79].
These RQV variants reduce the RQV overheads but they are only applicable to discrete-
time models, can support only the simplest structural changes in the verified model,
and make limiting assumptions (e.g., that the model can be partitioned into strongly
connected components each of which is much smaller than the original model).

This thesis presents research that complements and addresses several limitations of
the solutions summarised above by improving the efficiency and scalability of RQV, aim-
ing to extend its applicability to larger and more complex critical self-adaptive systems.
We adapt methods from other software engineering areas, employ evolutionary algo-
rithms, and propose a decentralised RQV variant suitable for distributed self-adaptive
systems. Finally, we devise an RQV-based methodology for engineering trustworthy self-
adaptive systems. The hypothesis underlying the research in this thesis is as follows:

Given the representation of key aspects of a self-adaptive system as Markov
models and a set of QoS requirements defined in suitable probabilistic tem-
poral logics, efficient runtime quantitative verification techniques can pro-
vide guarantees that the system continues to satisfy its QoS requirements
in the presence of changes, for much larger systems and with much lower
overheads than the standard RQV approach.

24

1.4 Research Scope and Assumptions

1.4 Research Scope and Assumptions

Before proceeding with the presentation of our research, we should set its scope. This
will clarify the RQV challenges that the research focuses on and the contributions made
by this thesis. Thus, we discuss other RQV-related challenges that are outside the
scope of this thesis [17, 32, 95]. We also analyse the assumptions that underpin the self-
adaptive systems used for evaluating the techniques and methodologies in Chapters 3–6.

First, RQV is affected by the traditional model checking challenges of deriving the
stochastic models from the actual software systems and formalising QoS requirements in
appropriate temporal logic formulae. Despite the importance of these challenges, they
primarily concern design-time activities, and thus are outside the scope of this thesis.
There is also significant research that addresses these challenges. For the former chal-
lenge, ProProST [104] can transform QoS requirements expressed in natural language
into probabilistic temporal logic formulae. For the latter, stochastic system models can
be developed by domain experts, by analysing the system and its log files [97], or by
using model-to-model transformation techniques [16, 89, 102].

Second, the effectiveness of RQV depends on the accuracy of the models analysed
by the technique. Models that do not capture the actual system and environment be-
haviour may lead to invalid reasoning about the compliance of a system with its QoS
requirements, incorrect decisions and unnecessary or delayed adaptation. Developing
initial accurate models for self-adaptive systems at design time requires significant ex-
pertise. Maintaining, however, these models in sync with changes occurring in the
system and its environment at runtime calls for rigorous online parameter and model
learning techniques. Such techniques can be found in [34, 39, 68, 97, 141]. This is an
equally important challenge for RQV, but it is also outside the scope of this thesis.

Third, RQV uses stochastic models and the corresponding temporal logic formulae
for modelling and verifying QoS requirements of a self-adaptive software system, e.g.,
reliability, performance and cost. Thus, this research deals with self-adaptive systems
whose QoS requirements can be formalised as temporal logic formulae and verified over
stochastic models (that capture the behaviour of the self-adaptive systems).

Fourth, the self-adaptive systems that we consider comprise a managed software
system and a monitor-analyse-plan-execute (MAPE) [139] controller. We assume that
the managed system is already available and its components can execute low-level com-
mands as instructed by the controller during adaptation steps. The controller monitors
the managed system and its environment, analyses stochastic models to identify devia-
tions from the expected behaviour, synthesises an adaptation plan to restore compliance

25

1. INTRODUCTION

with QoS requirements and executes this plan to adapt the managed system.

Fifth, this thesis does not consider self-adaptive systems that operate in a “closed
world”, i.e., systems in which changes can be anticipated fully beforehand. In this sce-
nario, adaptation decisions for each possible system and environment state can be com-
puted at design-time, and a rule-based system would be sufficient to realise adaptations
at runtime. Also, self-adaptive systems with hard real-time requirements and systems
in which reverification must occur several times per second are outside the scope of this
thesis (since the time required by RQV to analyse alternative system configurations will
unavoidably violate these timing requirements).

Finally, unless otherwise stated, we assume that all self-adaptive systems used in
this thesis have a failsafe configuration. If no valid configuration can be found within the
available time or without depleting the available resources, this (system-specific) failsafe
configuration is automatically activated to minimise or prevent any further damage.

1.5 Thesis Contributions

The main contributions of the thesis, described in Chapters 3–6, are summarised below.

Efficient RQV Using Conventional Software Engineering Methods
We establish that caching, limited lookahead and nearly-optimal reconfiguration can
improve the efficiency of RQV. With caching, recent verification results are kept for
some time and are reused when the same environmental changes are encountered again.
The technique is particularly effective when the changes are small and localised. Lim-
ited lookahead uses idle CPU cycles to pre-verify system states deemed likely to occur
in the near future. When system changes arise, if the current system state has already
been verified, it is sufficient to retrieve these verification results. Finally, nearly-optimal
reconfiguration terminates early a reconfiguration step, provided that a valid configu-
ration has been identified and a “near-optimality” criterion is met.

We evaluate these techniques using a simulator for self-adaptive UUVs. The find-
ings provide evidence that all the techniques and their combinations improve the RQV
response time in many realistic scenarios. For each technique, however, there are some
trade-offs. Caching and limited lookahead require additional storage for retaining the
verification results. Limited lookahead also needs extra CPU for the pre-verification
process. On the other hand, nearly-optimal reconfiguration operates with much lower
overheads than standard RQV, at the expense of selecting a sub-optimal configuration.

26

1.5 Thesis Contributions

Improving RQV Efficiency Using Evolutionary Algorithms
We propose EvoChecker, a search-based approach that drives reconfiguration in self-
adaptive systems using evolutionary algorithms. EvoChecker encodes possible system
configurations within a probabilistic model template and specifies QoS requirements as
constraints and optimisation objectives. We develop a human-in-the-loop EvoChecker
that produces the Pareto optimal configurations and asks system experts to validate
adaptation decisions. We also implement an automated EvoChecker that uses a strat-
egy to archive verification results from recent reconfigurations, such that future recon-
figurations are synthesised much faster by starting from the archived historical results.

We evaluate each EvoChecker variant in two case studies from different application
domains and achieve significant reductions in RQV overheads. The human-in-the-loop
EvoChecker generates Pareto optimal configurations and assists system experts with
making informed adaptation decisions. The use of archive updating strategies in the
automated EvoChecker improves the search and identifies effective configurations faster
than strategies that do not make use of the archive.

Extending RQV to Decentralised Control Loops
We introduce DECIDE, the first RQV-based approach for the engineering of decen-
tralised control loops in distributed self-adaptive systems. Each component of a DECIDE-
based system carries out the following steps: (1) RQV-driven local capability analysis to
establish a summary of possible component contributions towards realising the system-
level QoS requirements; (2) receipt of peer QoS capability summaries; (3) decentralised
selection of component contribution-level agreements (CLAs); and (4) RQV-based lo-
cal control loop that guarantees the component’s compliance with its CLA and local
QoS requirements. Infrequently, a component is affected by major changes and executes
steps (1)–(4) again; at all other times, each component runs only step (4) independently.

We evaluate DECIDE using a simulated embedded system from the UUV domain,
showing its efficiency and effectiveness. DECIDE drives reconfiguration with overheads
that are several orders of magnitude lower compared to centralised RQV-based control
loops. DECIDE can also scale with insignificant increase in overheads to systems of
much larger sizes. Finally, DECIDE-based systems withstand component failures and
can continue operating when peer components fail completely (provided that system-
level QoS requirements can be satisfied by the other components).

Engineering Trustworthy Self-Adaptive Software Systems
We explore the provision of assurances in self-adaptive systems. We also show how

27

1. INTRODUCTION

verification results generated by RQV can be used as assurance evidence to confirm
the correctness of adaptation decisions. To this end, we introduce ENTRUST, the first
tool-supported methodology for the end-to-end engineering of trustworthy self-adaptive
software systems. ENTRUST spans both design-time and runtime activities, and sup-
ports the development of formally verifiable controllers whose adaptation decisions are
driven by RQV, the generation of design-time and runtime assurance evidence, and the
runtime instantiation of an assurance argument pattern for self-adaptive systems.

To validate ENTRUST, we apply it to the development of two self-adaptive systems
from different application domains, an embedded system from the UUV domain and a
service-based system from the domain of foreign exchange. Next, through an empirical
evaluation of the two generated self-adaptive systems, we confirm the correct execution
of the ENTRUST controller and the validity of the generated assurance arguments.
Finally, we examine the overheads incurred for the generation of assurance evidence
and confirm that they are acceptable for small-to-medium systems. In larger systems,
ENTRUST can use the efficient RQV variants we introduce in Chapters 3–5 or the
complementary techniques for improving the RQV efficiency reviewed in Section 2.2.3.

ENTRUST is joint work with Prof. Tim Kelly and Dr. Ibrahim Habli from Uni-
versity of York, UK and with Prof. Danny Weyns and Usman Iftikhar from Linnaeus
University, Sweden. The following ENTRUST components correspond to existing re-
search of our collaborators that has been integrated within ENTRUST, or to components
developed collaboratively. First, the formally verifiable models used for instantiating
the ENTRUST controller are developed by specialising application-independent model
templates, adapted from the recent work of de La Iglesia and Weyns [99]. We extended
these templates with elements specific to the ENTRUST controller (e.g. probabilistic
verification engine) and the class of managed systems handled by ENTRUST (e.g., fail-
safe configuration). Second, the trusted MAPE virtual machine that executes the con-
troller models at runtime is developed by Prof. Danny Weyns and Usman Iftikhar [128].
Finally, the assurance argument pattern has been developed in Goal Structuring Nota-
tion [105] in collaboration with Prof. Tim Kelly and Dr. Ibrahim Habli.

The Big Picture
The contributions made in this thesis focus on the application of RQV in self-adaptive
systems and address the following key RQV challenges: (1) state-space explosion; and
(2) managing large configuration spaces. To this end, the thesis introduces a set of RQV
techniques that improve RQV efficiency and scalability, and extend the applicability of
the technique to larger and more complex critical self-adaptive systems. More specifi-

28

1.5 Thesis Contributions

cally, we reduce RQV overheads up to one order of magnitude by extending RQV with
a set of conventional software engineering methods, i.e., caching, limited lookahead and
nearly-optimal reconfiguration (Chapter 3). These methods require limited effort from
an engineer, caching and limited lookahead are optimal and nearly-optimal reconfigura-
tion is guaranteed to complete. With EvoChecker, we reduce RQV overheads by several
orders of magnitude and make RQV applicable to systems with large state and configu-
ration spaces (Chapter 4). As a metaheuristics-based technique, however, EvoChecker
incorporates the drawbacks of these algorithms (e.g., no optimality guarantees, stagna-
tion). It also requires more engineer effort to implement. With DECIDE, we enable
the application of RQV to distributed self-adaptive systems with overheads several or-
ders of magnitude lower compared to centralised RQV-based control loops(Chapter 5).
This technique also requires some engineering effort. Finally, we introduce ENTRUST, a
methodology for engineering trustworthy self-adaptive systems using dynamic assurance
cases (Chapter 6). In this methodology, RQV is used for the verification of stochastic
models of a self-adaptive system and for driving adaptation decisions. The verification
results are used to update the assurance case at runtime. This is an engineer-driven
methodology that spans both design-time and runtime.

Our contributions in Chapters 3–5 reduce the RQV overheads and improve the scal-
ability of the technique. Applying these techniques in a self-adaptive system requires
domain knowledge, i.e., an engineer should examine the type and characteristics of the
system (e.g., centralised or distributed, medium or large configuration space) and deter-
mine the most applicable technique. Some of these techniques could be used in conjunc-
tion (e.g., caching and EvoChecker). On the other hand, the ENTRUST methodology
(Chapter 6) could be applied for the engineering of new self-adaptive systems and our
efficient RQV techniques could undertake the relevant analysis and verification tasks of
the methodology.

Prototype Self-Adaptive Software Systems
We evaluate our new RQV veriants using three self-adaptive systems from different
application domains: (1) a software-controlled dynamic power management system
adapted from [174, 188] and described in Appendix B; (2) an embedded system from the
unmanned underwater vehicle (UUV) domain introduced in Section 2.2.1.1; and (3) a
service-based system from the domain of foreign exchange (FX) presented in Section 4.1.

The UUV and FX systems have been developed as part of this research. For each
system, we describe its operation, define its behavioural and/or architectural aspects of
interest and specify the relevant QoS requirements. We also devise Markov models that

29

1. INTRODUCTION

describe the relevant behavioural aspects of each system and formalise its QoS require-
ments in a suitable variant of probabilistic temporal logic. Finally, we develop prototype
system implementations and use them for evaluating experimentally our contributions.

Depending on the semantics of each proposed approach, we adjust the self-adaptive
systems accordingly. For instance, DECIDE (Chapter 5) deals with distributed self-
adaptive systems. Thus, we extend the single-UUV system to a multi-UUV system and
introduce QoS requirements specific to the distributed version of the system.

We did not use recent case studies or exemplars from the domains of embedded
and service-based systems, either because they were made available subsequently to our
work (e.g., [65, 206]) or because they did not meet the scope of our research introduced
in Section 1.4 (e.g., [201]). Finally, the choice of the UUV system is also driven by our
plan to apply RQV to cyber-physical systems in the future (cf. Chapter 7).

1.6 Thesis Structure

The remainder of this thesis is structured as follows.

Chapter 2 presents background information, an overview of RQV, and a survey of
related work. Sections 2.1.1 and 2.1.2 introduce the Markov models and temporal logic
variants used throughout the thesis, respectively. Section 2.2 reviews RQV, starting
with the principles underpinning its use in self-adaptive systems (Section 2.2.1) and
including an extensive analysis of recent research in the area (Sections 2.2.2 and 2.2.3).

Chapter 3 introduces our work on improving RQV efficiency using conventional
software engineering techniques. Sections 3.1.1–3.1.3 present the integration of caching,
limited lookahead and nearly-optimal reconfiguration with RQV. Section 3.2 describes
the development of these RQV variants within the open-source platform MOOS-IvP
for the implementation of autonomous applications on unmanned marine vehicles [20].
Section 3.3 presents our experimental evaluation and analyses our findings. Sections 3.4
and 3.5 discuss chapter-specific related work and conclude the chapter, respectively.

Chapter 4 describes EvoChecker, our search-based approach that uses evolutionary al-
gorithms within the RQV process. Section 4.1 presents EvoChecker, including its mod-
elling language (Section 4.1.1), and its human-in-the-loop (Section 4.1.3) and automated
(Section 4.1.4) variants. Section 4.2 describes the open-source EvoChecker tool. Sec-
tion 4.3 presents the evaluation of both EvoChecker variants and summarises our results.

30

1.6 Thesis Structure

Sections 4.4 and 4.5 review related work and summarise the chapter, respectively.

Chapter 5 introduces our DECIDE framework for the decentralisation of the control
loops of distributed self-adaptive software. Section 5.1 presents DECIDE, and Sec-
tions 5.1.2– 5.1.6 describe its four steps. Section 5.2 explains the DECIDE implementa-
tion within the open-source platform MOOS-IvP. Section 5.3 reports the experimental
evaluation carried out to assess the effectiveness and scalability of DECIDE. Sections 5.4
and 5.5 discuss chapter-specific related work and conclude DECIDE, respectively.

Chapter 6 introduces our ENTRUST methodology for the engineering of trustworthy
self-adaptive systems. Section 6.1 presents ENTRUST, while details of its various stages
are provided in Sections 6.1.1–6.1.6. Section 6.2 outlines the tool-supported ENTRUST
implementation. Section 6.3 reports the evaluation performed to examine the generality,
correctness and efficiency of ENTRUST. Sections 6.4 and 6.5 overview chapter-specific
related work and summarise the chapter, respectively.

Chapter 7 concludes the thesis by summarising the findings and contributions of
this research, and providing directions for future work.

31

Chapter 2

Background and Field Review

Designing and analysing software systems requires techniques that model and reason
about their behaviour, considering specific aspects of interest while abstracting away
implementation details. In this chapter, we present quantitative verification, a technique
that is particularly suitable for this purpose. Section 2.1 provides basic background
information, terminology and notation used throughout the thesis. In Sections 2.1.1
and 2.1.2, we present the types of probabilistic models and specification formalisms
used in quantitative verification, respectively. In Section 2.2, we survey the area of
runtime quantitative verification. More specifically, in Section 2.2.1 we advocate the use
of runtime quantitative verification to support self-adaptation, while in Sections 2.2.2
and 2.2.3 we summarise early applications of the technique and recent advances aimed
at improving its efficiency, respectively.

2.1 Quantitative Verification

Many software systems are subject to events of stochastic nature including message loss
and component failure. Probability is an important element in defining these stochas-
tic events and, therefore, in designing, analysing and verifying software systems [182].
Probability can be employed to:

• Model system uncertainty. Modern systems are typically deployed in dynamic
and unpredictable environments. Moreover, self-adaptive systems are expected
to operate dependably and to reconfigure themselves in response to unexpected
changes. These uncertainty aspects can be described probabilistically.

33

2. BACKGROUND AND FIELD REVIEW

• Derive efficient algorithms. Randomisation, e.g., in the form of electronic coin
tosses, can break symmetry in distributed co-ordination algorithms. For instance,
randomisation in self-stabilising algorithms [150] ensures that all processes will
eventually reach consensus with probability 1. In the IPv4 Zeroconf Protocol
[147], randomisation minimises IP address collision by requiring devices joining a
network to choose randomly an address from a pool of 65024 available addresses.

• Model system failure. Hardware and software components are both error-
prone and affected by multiple types of failures. Typical examples include hard
disk damage, processor overheat and service degradation. Probability can be used
to define this unreliable behaviour, to reason about the likelihood of an action to
terminate incorrectly or to determine if system failure exceeds a certain threshold.
An example statement for a fault-tolerant system is “the likelihood of a failure
occurring within the first hour is at most 0.001”.

• Model system performance. Probability enables to quantify the performance
of a system and to establish various Quality-of-Service (QoS) properties such as
throughput, average response time, queue length, energy consumption and CPU
utilisation. This performance evaluation supports the identification of flaws in
system design and potential deviation from specification, and can provide insights
into improving the design. A typical QoS property for a server handling requests
is “the expected cost of providing an answer does not exceed 10 time units”.

Quantitative verification (QV) [32, 145] is a mathematically-based technique for
analysing the reliability, performance and other QoS properties of systems exhibiting
stochastic behaviour. The technique uses finite state-transition Markov models (cf.
Def. 2.1) to describe the behaviour of a system. In these models, states represent different
system configurations and edges correspond to available transitions between these states.
Depending on the model type, an edge is annotated with the probability or rate of taking
the associated transition. Also, model states and transitions can be augmented with
cost/reward information, extending the range of properties that can be analysed.

The QoS properties analysed using these models are formally specified in variants
of temporal logic, extended with probabilities and costs/rewards. These specifications
enable reasoning about the likelihood of certain events occurring while a system oper-
ates or about the cost/reward associated with these events. Typical examples of QoS
properties [182] include, “the expected time until a new device entering the network gets
a reply” for the IPv4 Zeroconf Protocol and “the resource usage during the first month
of operation” for a fault-tolerant system.

34

2.1 Quantitative Verification

software
system

QoS
requirements

probablistic
model

probabilistic
temporal logic

probabilistic
model

checking
(e.g., PRISM)

verification
results

P<0.01 [F fail]

result

Figure 2.1: Overview of quantitative verification process.

Given a model and a probabilistic temporal logic formula, QV carries out exhaustive
analysis to establish the value of the property. To this end, the technique can determine
if the property meets a bound (or threshold), and thus answer to questions concerning
the satisfaction of a QoS requirement. Alternatively, verification results in the form of
exact probabilities or rewards associated with the formula can be used to gain insights
into the behaviour of the system and support decision making. A pictorial overview
of the technique is given in Figure 2.1. Methods such as symbolic model checking,
symmetry reduction and counterexamples are used for reachability analysis [13], while
numerical methods like linear algebra and linear programming are used to calculate
the actual probabilities [182]. Probabilistic model checkers automate the process of
quantitative verification. PRISM [149], MRMC [133] and Ymer [214] are among the
most widely used probabilistic model checkers. We refer the interested reader to [1] for
a comprehensive list of available model checkers.

In the remainder of this section, we introduce the Markov models used later in the
thesis (Section 2.1.1) and the probabilistic temporal logics (Section 2.1.2) underpinning
the approaches developed by this thesis.

2.1.1 Markov Models

Given that specific aspects of a software system’s behaviour can be described probabilis-
tically, e.g., uncertainty originating from the deployed environment or users’ interaction,
we can model this behaviour as a stochastic process, i.e., a collection of random variables
indexed by time. Formally, a stochastic process is a function X : T × Ω → S, where
T is a set of time points, Ω is the sample space and S is the state space of X [180]. If

35

2. BACKGROUND AND FIELD REVIEW

time evolves in discrete intervals, i.e., T = N, X is a discrete-time process; otherwise,
i.e., T = [0,∞), X is a continuous-time process. We denote with X(t) the state of the
process at time t ∈ T .

A special class of stochastic processes, called Markov processes, satisfies the Markov
property (Def. 2.1), which specifies the conditional dependence of future on the present
and its independence from the past [182]. Simply stated, evolution in a Markov process
depends only on the present state and not on the history of preceding events.

Definition 2.1. A stochastic process {X(n) | n = 0, 1, 2,} satisfies the Markov

property if

P [X(n) = sn | X(n−1) = sn−1, ..., X(0) = s0] = P [X(n) = sn | X(n−1) = sn−1]

where s0, s1, ..., sk represent successive states of the stochastic process.

All the models described hereafter are variants of Markov processes. Depending on
how time evolves and the aspects of system behaviour modelled, these variants could be
discrete-time Markov chains (DTMCs) and continuous-time Markov chains (CTMCs).

2.1.1.1 Discrete-Time Markov Chains

Discrete-time Markov chains (DTMCs) are the simplest among the probabilistic
models we consider. A DTMC is essentially a state-transition system augmented with
probabilities in which time progresses in discrete intervals. The next state at each point
in time is specified by a discrete probabilistic distribution from source to target states.

Definition 2.2. A discrete-time Markov chain (DTMC) over a set of atomic proposi-

tions AP is a tuple

D = (S, s0,P, L) (2.1)
where:

• S is a finite set of states;

• s0 ∈ S is the initial state;

• P : S × S → [0, 1] is a transition probability matrix such that the exit probability

from any state s ∈ S is
∑

s′∈S P (s, s′) = 1;

36

2.1 Quantitative Verification

• L : S → 2AP is a labelling function which assigns to each state s ∈ S the set

L(s) ⊆ AP of atomic propositions that are valid in that state.

An atomic proposition declares a relevant characteristic of the system under inves-
tigation. In particular, an atomic proposition expresses simple statements associated
with system states that evaluate to true, if they hold, or false, otherwise. Typical ex-
amples of atomic propositions are “the server queue is not full”, “the system invoked its
self-protection mechanism”, and “the energy usage exceeds 100 units”.

For any states s, s′ ∈ S, the entry P(s, s′) of the transition probability matrix P
specifies the probability of moving from s to s′ in a single step. For state s, row
P(s, ·) and column P(·, s) denote the transitions leaving from and entering to state
s, respectively. A state with only an outgoing transition to itself with probability 1
is called an absorbing state. An edge from s to s′ exists if and only if P(s, s′) > 0.
Figure 2.2 shows the graphical representation of a DTMC, in which vertices and edges
represent system states and transitions, respectively. The transition probability matrix
P is shown in Example 2.1.

A path signifies a single execution of a DTMC. Formally, a path is a non-empty
sequence of states π = s0s1s2... where si ∈ S and P(si, si+1) > 0 for all i ≥ 0. A path
is finite if the number of states in the sequence is finite, and has a length denoted as
|π|. The i-th state of the path is denoted by π(i). Given a starting state s, the set of
all paths starting from s, is denoted PathD(s).

In order to analyse the behaviour of a DTMC, we need to evaluate the probability
of taking certain paths through the model. The matrix P induces a probability space
on PathD(s), using the cylinder construction [182]. An observation of a finite path
determines a basic event (cylinder). Assuming a starting state s0 and a finite path
π = s0s1...sn, the probability Prs(π) of reaching state sn is defined as

Prs(π) =

{
1 if n = 0

P(s0, s1) ·P(s1, s2) · ... ·P(sn−1, sn) otherwise
(2.2)

This equation provides the means to find a unique probability Prs on the infinite
paths PathD(s). Generally, for any pair of states s, s′ ∈ S, the probability Prs is equal
to the sum of the probabilities of all the paths starting from s and ending to s′. When
the number of steps is limited to k, the probability is equal to the entry Pk(s, s′). More
details can be found in [13, 182].

37

2. BACKGROUND AND FIELD REVIEW

Extending DTMCs with Rewards

DMTCs can be augmented with cost/reward structures, i.e., functions that map states
and/or transitions to real-valued quantities. Although mathematically there is no dis-
tinction between manipulating and computing costs and rewards, commonly adopted se-
mantics declare that cost should be minimised and reward should be maximised. These
structures can be used to represent additional information regarding the behaviour of
a system modelled by a DTMC. They can have a wide range of interpretations, for
example, elapsed time, power consumption, size of message queue, numbers of messages
successfully delivered, net profit and throughput.

Definition 2.3. A cost/reward structure over a DTMC D = (S, s0,P, L) is a pair of

real-valued functions (ρ, ι) where:

• ρ : S → R≥0 is a state reward function that defines the reward obtained when D

is in state s for one time step;

• ι : S × S → R≥0 is a transition reward function that defines the reward obtained

each time a transition occurs.

Example 2.1. Figure 2.2 depicts the DTMC model of a train booking e-commerce sys-

tem. A customer, after entering the system, can search for and buy train tickets, and

optionally have the tickets delivered using a shipping service, or can select to print the

tickets herself. The customer can then either perform another search or complete the

operation. The model elements are: the set of states S = {s0, s1, ..., s7}, the initial state
s0, the set of atomic propositionsAP = {init, search, buy, shippping, succ, failed_search,

failed_buy, failed_shipping}, and the labelling function L : L(s0) = {init}, L(s1) =

{search}, L(s2) = {buy}, L(s3) = {shipping}, L(s4) = {succ}, L(s5) = {failed_search},
L(s6) = {failed_buy}, L(s7) = {failed_shipping}.

The DTMC is augmented with a state cost structure, shown in the rectangular box,

that associates a cost of 1 each time a search operation is made.

38

2.1 Quantitative Verification

s0

1

{init}

{failed search}

s1

1

s2

{search} {buy}

1s3

{shipping}
s7

{succ}

{failed buy}

{failed shipping}

s5 s6

1

0.01 0.01

0.88

0.29

0.70

0.20

0.10

0.021

0.49

s4

0.30

1

Figure 2.2: DTMC model of an e-commerce system.

The corresponding transition probability matrix P of the system is

P =

0 1 0 0 0 0 0 0

0 0.70 0.29 0 0 0.01 0 0

0 0.20 0 0.79 0 0 0.01 0

0 0.10 0 0 0.88 0 0 0.02

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

Suppose we want to estimate the probability to complete a purchase (i.e., reach state

s4) within k = 3 steps. The expected result is given by entry P3(s0, s4). Since

only path π = s0s1s2s4 can reach the success state within at most k = 3 steps, the

probability Prs is equal to the probability given by path π, i.e., Prs = Prs(π) =

P(s0, s1) ·P(s1, s2) · P (s2, s4) = 0.087.

39

2. BACKGROUND AND FIELD REVIEW

2.1.1.2 Continuous-Time Markov Chains

Continuous-Time Markov Chains (CTMCs) model systems which have discrete
states but where time progresses continuously. Transitions in a CTMC occur in real
time, while delays before making a transition are represented with exponential prob-
ability distributions [12, 148]. CTMCs are suitable for modelling and analysing the
performance and reliability of real-time systems, including transient and steady-state
behaviour, i.e., the state of the system at a particular time instant and in the long-run,
respectively. Typical examples of such systems are queueing networks, financial systems
and biological systems.

Definition 2.4. A continuous-time Markov chain (CTMC) over a set of atomic propo-

sitions AP is a tuple

C = (S, s0,R, L) (2.3)
where:

• S is a finite set of states;

• s0 ∈ S is the initial state;

• R : S × S → R≥0 is a transition rate matrix;

• L : S → 2AP is a labelling function which assigns to each state s ∈ S the set

L(s) ⊆ AP of atomic propositions that are valid in that state.

For any states s, s′ ∈ S such that R(s, s′) > 0, the probability that the CTMC
transitions from state s to state s′ within t time units is given by the negative exponential
distribution 1 − e−R(s,s′)·t. When multiple outgoing transitions can be triggered in s,
that is, |T (s)| > 1 where T (s) = {s′ ∈ S | R(s, s′) > 0}, the behaviour of a CTMC is
the result of a race condition. Each outgoing transition from s can be triggered after
an exponentially distributed delay. The first triggered transition determines the next
model state. Before a transition occurs, the system remains in state s for time t, which
is exponentially distributed with its exit rate

E(s) =
∑
s′∈S

R(s, s′) (2.4)

40

2.1 Quantitative Verification

When leaving state s, the probability to move to state s′ is given by the embedded
DTMC of CTMC, specified in Def. 2.5. The probabilities in the embedded DTMC
are independent of the time at which the transitions occur. Similarly to DTMCs, this
information can be used to determine the probability for the model to be in a given
state after taking n transitions.

Definition 2.5. The embedded DTMC of a CTMC C = (S, s0,R, L) is a tuple

emb(C) = (S, s0,Pemb(C), L) (2.5)

where for any s, s′ ∈ S

Pemb(C)(s, s′) =

R(s, s′)/E(s) ifE(s) 6= 0

1 ifE(s) = 0 and s = s′

0 otherwise

A path through a CTMC is a non-empty sequence s0t0s1t1s2, . . . , tk−1sk where
R(si, si+1) > 0 and ti ∈ R>0 is the time spent in state s, for all 0 ≤ i ≤ k. State
sk is absorbing. We denote with π(i) the i-th state of path π. If i ≤ k and t ≤∑k−1

i=1 ti

we also denote with time(π, i) the amount of time spent in state si and with π@t the
state occupied at time t; otherwise time(π, i) =∞ and π@t = sk. We use the notation
PathC(s) for the set of all finite paths originating from state s.

Analysing the behaviour of a CTMC model requires to reason about the probability
of traversing certain paths in the model. Given a set of non-empty intervals I0, ..., In−1 ∈
R≥0, the cylinder set C(s0, I0, ..., In−1, sn) contains all paths π ∈ PathC(s) such that
π(i) = si for all i ≤ n and time(π, i) ∈ Ii for all i < n. The probability of this cylinder
is defined by

Prs(C(s0, I0, ..., In−1, sn)) =

Prs(C(s0, I0, ..., In−2, sn−1)) · Pemb(C)(sn−1, sn) ·
(
eE(sn−1)·infIn−1 − eE(sn−1)·supIn−1

)
(2.6)

where inf In−1 and supIn−1 are the infimum and supremum of the interval In−1, respec-
tively [148].

The sum of all possible cylinder sets involving states s0, s1, ..., sn and intervals
I0, ..., In−1 ∈ R≥0 gives a unique probability Prs for reaching state sn.

41

2. BACKGROUND AND FIELD REVIEW

Extending CTMCs with Rewards

CTMCs can be annotated with cost/reward structures of the form (ρ, ι), i.e., functions
that assign real-valued quantities to states and transitions. Differently from DTMCs,
state cost/rewards are calculated based on the rate at which they are obtained. Thus,
if the model remains in state s for t ∈ R≥0 time units, a reward of t · ρ(s) is acquired.

Definition 2.6. A cost/reward structure over a CTMC is a pair of real-valued functions

(ρ, ι) where:

• ρ : S → R≥0 is a state reward function that defines the rate at which the reward

is obtained while the CTMC is in state s;

• ι : S × S → R≥0 is a transition reward function that defines the reward obtained

each time a transition occurs.

Example 2.2. Consider the i-th sensor of a system equipped with a set of sensors that

can measure an environment attribute, e.g., temperature, humidity or light intensity.

When used, the sensor takes measurements with rate ri and consumes energy ei for

each measurement. Once a measurement is taken, the sensor carries out the necessary

operations to prepare for the next measurement with rate rprepi . Each measurement is

accurate with probability pi, and this probability depends on various factors including

the sensor’s specification and deployed environment. To save energy, the sensor can be

switched on and off through a configurable parameter xi ∈ {0, 1}; if xi = 1 the sensor

is active, while if xi = 0 the sensor is switched off. However, switching the sensor on

and off consumes an amount of energy given by eoni and eoffi , respectively.

Figure 2.3 depicts the CTMC model of the i-sensor, adapted from [94]. The model

corresponds to a session during which the sensor is either operational (xi = 1) or

switched off (xi = 0). If the sensor is switched off, the model transitions to state s4

with rate roffi and stays there indefinitely. When the sensor is operational, the model

initially moves to starting state s1 with rate roni . The sensor then starts executing

and takes measurements with rate ri. With probability pi the measurement is accurate

and the model transitions to success state s2; otherwise, it transitions to fail state s3.

42

2.1 Quantitative Verification

s0

s1

s4

s2

s3
xi× r

on
i

(1−xi)× r off
i

pi× ri

(1−pi)× ri

rprep
i

rprep
i

eoff
i

eon
i

1

1

ei
{init}

{stop}

{fail}

{start}
{succ}

Figure 2.3: CTMC model of the i-th UUV sensor.

Once this event is completed, the model transitions back to state s1 with rate rprepi and

continues taking measurements for the duration of the session.

The CTMC is augmented with two cost/reward structures, whose non-zero elements

are shown in Figure 2.3 in rectangular and dashed rectangular boxes, respectively. The

former, “energy” structure associates the energy used to switch the sensor on (i.e., eoni)

and off (i.e., eoffi) and to perform a measurement (i.e., ei) with the CTMC transitions

that model these events. The other cost/reward structure, called “measurement”, asso-

ciates a reward of 1 with the transition corresponding to an accurate measurement.

The model has the following elements: the set of states S = {s0, s1, s2, s3, s4}, the
initial state s0, the set of atomic propositions AP = {init, start, fail, succ, stop}, and
the labelling function L : L(s0) = {init}, L(s1) = {start}, L(s2) = {succ}, L(s3) =

{fail}, L(s4) = {stop}.

The corresponding transition rate matrix R and the embedded DTMC Pemb(C) are

R =

0 xi × roni 0 0 (1− xi)× roffi
0 0 pi × ri (1− pi)× ri 0

0 rprepi 0 0 0

0 rprepi 0 0 0

0 0 0 0 1

43

2. BACKGROUND AND FIELD REVIEW

Pemb(C) =

0
xi×roni

xi×roni +(1−xi)×roffi
0 0

(1−xi)×roffi
xi×roni +(1−xi)×roffi

0 0 pi (1− pi) 0

0 1 0 0 0

0 1 0 0 0

0 0 0 0 1

Finally, suppose that the i-the sensor is active, i.e, xi = 1 and roni = 10. We

want to establish the probability of reaching the start state s1 within 0.2 seconds; thus,

I0 = [0, 0.2]. Using (2.6), the probability is equal to

Prs(C(s0, I0, s1)) = Prs(C(s0)) · Pemb(C)(s0, s1) ·
(
e−E(s0)·infI0 − e−E(s0)·supI0

)
= 1 · xi · (e0 − e−0.2roni)

= 1− e−0.2roni

= 0.8646647

2.1.2 Probabilistic Temporal Logics

Having specified the behaviour of a software system in a Markov model variant (e.g.,
DTMC or CTMC), the interest now is on quantifying several QoS properties for this
system. A property represents a quality aspect of a system, typically quantifiable using
specific metrics through well-defined processes; for example, reliability, response time
and cost. Probabilistic temporal logics is a set of specification languages used for
specifying formally the required QoS properties of a system and for reasoning about
system behaviour over time. Since transitions in Markov models are associated with
a probabilistic choice, we are typically interested in computing the likelihood of an
event occurring, instead of simply determining whether the event holds or not. An
example QoS property for the e-commerce system from Figure 2.2 is “the probability of
a failure ever occurring must be less than 10%”. This section introduces Probabilistic
Computation Tree Logic (PCTL) [22, 111] and Continuous Stochastic Logic (CSL)
[11, 12], the temporal logic variants used to formalise the properties of DTMCs and
CTMCs, respectively.

44

2.1 Quantitative Verification

2.1.2.1 Probabilistic Computation Tree Logic

Probabilistic Computation Tree Logic (PCTL) [22, 111] is a branching-time tem-
poral logic for describing properties of DTMCs. To this end, PCTL extends the non-
probabilistic Computation Tree Logic [13, 182] with a probabilistic operator P. In this
thesis, we use the cost-reward augmented PCTL variant with the syntax from [148], as
detailed below.

Definition 2.7. The syntax of Probabilistic Computation Tree Logic (PCTL) is given

by the following grammar:

Φ ::= true | a | ¬Φ | Φ ∧ Φ | P./p [φ]

φ ::= XΦ | Φ⋃≤k Φ

and the cost/reward augmented PCTL state formulae are defined by the grammar:

R./r[C
≤k] | R./r[I=k] | R./r[F Φ]

where:

• a ∈ AP is an atomic proposition with AP being a set of atomic propositions;

• ./ ∈ {<,≤,≥, >} is a relational operator;

• k ∈ N ∪ {∞};

• p ∈ [0, 1] is a probability bound (or threshold);

• r ∈ R≥0 is a reward bound.

In order to analyse the properties of a DTMC model, PCTL formulae specify con-
ditions over the states of the model. In the definition above, state formulae Φ and path
formulae φ are evaluated over model states and paths, respectively. Note that path
formulae can only occur within the scope of the probabilistic operator P./p [·]. This
operator defines upper or lower bounds on the probability of system evolution. For
instance, a state s satisfies a formula P./p[φ] if the probability of the future system
evolution meets the bound ./ p. For a path π, the “next” formula XΦ holds if Φ is
satisfied in the next state. The “bounded until” formula Φ1

⋃≤k Φ2 holds if before Φ2

becomes true at time step x, where x ≤ k, Φ1 is satisfied continuously at time steps

45

2. BACKGROUND AND FIELD REVIEW

0, 1, . . . , x− 1. If k =∞, the formula is termed “unbounded until”. Finally, P=?[φ] can
be used to quantify the probability of a path formula φ.

Given a state s, the high-level interpretation of the cost/reward operator R is:

• R./r[C≤k] holds, if from state s the expected cumulative reward up to time step
k meets the bound ./ r;

• R./r[I=k] is true if the expected state reward at time step k satisfies ./ r;

• R./r[F Φ] holds, if from state s the expected cumulative reward before reaching a
state that satisfies Φ meets the bound ./ r.

As before, R=?[·] can be used to quantify over states and transitions, and to compute
the expected value of a reward.

Formally, the semantics of PCTL over DTMCs are defined as follows.

Definition 2.8. Let D = (S, s̄,P, L) be a labelled DTMC. For any state s ∈ S, k ∈
N ∪ {∞} and r ∈ R≥0, the satisfaction relation |= is defined inductively by:

s |= true for all s ∈ S
s |= a ⇔ a ∈ L(s)

s |= ¬Φ ⇔ s 6|= Φ

s |= Φ1 ∧ Φ2 ⇔ s |= Φ1 ∧ s |= Φ2

s |= P./p[φ] ⇔ Pr(s |= φ) ./ p

where Pr(s |= φ) = Prs(π ∈ PathD(s)|π |= φ) is the probability that a path

starting from s satisfies φ.

Moreover, for any path π ∈ PathD(s)

π |= P./p[XΦ] ⇔ π(1) |= Φ

π |= P./p[Φ1
⋃≤k Φ2] ⇔ ∃0 ≤ i ≤ k.(π(i) |= Φ2 ∧ ∀0 ≤ j < i.(π(j) |= Φ1))

π |= P./p[Φ1
⋃

Φ2] ⇔ ∃i ≥ 0.(π(i) |= Φ2 ∧ ∀0 ≤ j < i.(π(j) |= Φ1))

Finally, for the cost/reward structures

s |= R./r[C
≤k] ⇔ ExpD(s,XC≤k) ./ r

s |= R./r[I
=k] ⇔ ExpD(s,XI=k) ./ r

s |= R./r[F
Φ] ⇔ ExpD(s,XFΦ) ./ r

where ExpD(s,XΘ) gives the expected reward XΘ over the paths starting at s.

46

2.1 Quantitative Verification

Evaluating a PCTL formula for a DTMC

The algorithm for model checking a PCTL formula takes as inputs a labelled DTMC
D = (S, s0,P, L) and a PCTL state formula Φ. First, the set of states satisfying Φ is
determined. When the question is whether a given state s satisfies Φ, it is sufficient
to check if s is in that set. However, if the focus is on quantitative results of the form
P./p[φ], we need to compute the probability for all states s of the DTMC satisfying
formula φ, and then compare these values to the bound p.

Model checking DTMCs against PCTL formulae involves the combination of graph
traversal algorithms and analytical solution approaches. The former is mainly used for
reachability analysis, for example, to examine whether it is possible from the initial
state to reach a failure state. Computing the likelihood of an event occurring is carried
out by analytical techniques. In particular, formula P./p[XΦ] requires one matrix-
vector multiplication, while the result of formulae specifying bounded until probabilities
Φ1
⋃≤k Φ2, instantaneous rewards R./r[I=k], and cumulative rewards R./r[C≤k] can

be estimated using k matrix-vector multiplications. Finally, computing unbounded
until probabilities P./p[Φ1

⋃
Φ2] and cumulative rewards R./r[F Φ] reduces to solving a

system of linear equations. We refer the interested reader to [148, 182] for a complete
description of the technical details.

Example 2.3. Consider again the e-commerce system with the DTMC model from

Figure 2.2. Table 2.1 shows a set of example QoS requirements, including an informal

description and their formalisation in PCTL.

Table 2.1: QoS requirements for the train booking system

ID Informal description PCTL

R1 (Workflow reliability): “Workflow executions
must complete successfully with probability at
least 90%”

P≥0.9[Fs = s4]

R2 (Buy probability): “A customer is expected to
purchase at least one ticket within the first 7
time steps with probability at least 85%”

P≥0.85[F≤7s = s2]

R3 (No shipping): “At least 75% of the purchased
tickets are printed by customers”

P≥0.75[¬s = s3
⋃
s = s4]

R4 (Search cost): “The expected cost incurred be-
cause of searching for tickets during the first 10
time steps must be less than 10 cents”

R“search”
≤0.10 [C≤10]

47

2. BACKGROUND AND FIELD REVIEW

2.1.2.2 Continuous Stochastic Logic

Continuous Stochastic Logic (CSL) [11, 12] is the counterpart of PCTL for specify-
ing properties for CTMC models. CSL extends the non-probabilistic Computation Tree
Logic with a probabilistic operator P and a steady-state operator S. We define below
the syntax of the cost-reward augmented CSL variant adopted in this thesis [145].

Definition 2.9. The syntax of Continuous Stochastic Logic (CSL) is given by the fol-

lowing grammar:

Φ ::= true | a | ¬Φ | Φ ∧ Φ | P./p [φ] | S./p[Φ]

φ ::= XΦ | Φ⋃I Φ

and the cost/reward augmented CSL state formulae are defined by the grammar:

R./r[C
≤T] | R./r[I=T] | R./r[F Φ] | R./r[S]

where:

• a ∈ AP is an atomic proposition with AP being a set of atomic propositions;

• ./ ∈ {<,≤,≥, >} is a relational operator;

• I ⊆ R≥0 and T ∈ R≥0 are a time interval and a time instant, respectively;

• p ∈ [0, 1] is a probability bound (or threshold);

• r ∈ R≥0 is a reward bound.

CSL formulae are analysed over the states of a CTMCmodel. CSL path formulae are
interpreted as for PCTL, except for the interval I ∈ R≥0 parameter of the “until” opera-
tor U . For completeness, we describe the semantics of CSL formulae. The probabilistic
operator P specifies upper or lower bounds on the probability of system evolution. For
instance, formula P./p[φ] is true if the probability of future system evolution satisfying
φ meets the bound ./ p. For a path π, the “next” formula XΦ holds if Φ is satisfied
in the next state. The “time-bounded until” formula P./p[Φ1

⋃≤I Φ2] holds, if across all
paths, at some time instant in the interval I, Φ2 becomes true and Φ1 holds continuously
before. When I = [0,∞], we obtain an “unbounded until” formula. The steady-state
operator S defines the system behaviour in the long-run. Hence, formula S./p[Φ] holds,

48

2.1 Quantitative Verification

if the steady-state probability of the system being in a state satisfying Φ meets the
bound ./ p. Finally, the formula P=?[φ] establishes the probability of path formula φ.

The high-level meaning of the cost/reward operator R assuming a target state s is:

• R./r[C≤T] is true if the expected cumulative reward up to time T satisfies ./ r;

• R./r[I=T] holds if the expected value of the reward at time instant T satisfies ./ r;

• R./r[FΦ] holds if the expected cumulative reward before reaching a state satisfying
Φ meets bound ./ r;

• R./r[S] is true if the average expected reward in the long-run satisfies ./ r.

Similarly to PCTL, the formula R=?[·] can be used to calculate the expected value
of a reward. The semantics of cost-reward augmented CSL over CTMCs are as follows.

Definition 2.10. Let C = (S, s̄,R, L) be a labelled CTMC. For any state s ∈ S, time

interval I ∈ R≥0, time instant T ∈ R≥0, and reward r ∈ R≥0, the satisfaction relation

|= is defined inductively by:

s |= true for all s ∈ S
s |= a ⇔ a ∈ L(s)

s |= ¬Φ ⇔ s 6|= Φ

s |= Φ1 ∧ Φ2 ⇔ s |= Φ1 ∧ s |= Φ2

s |= P./p[φ] ⇔ Pr(s |= φ) ./ p

where Pr(s |= φ) = Prs(π ∈ PathC(s)|π |= φ) is the probability that a path

originating in s satisfies φ.

Moreover, for any path π ∈ PathC(s)

π |= P./p[XΦ] ⇔ π(1) |= Φ

π |= P./p[Φ1
⋃I Φ2] ⇔ ∃t ∈ I.(π@t |= Φ2 ∧ ∀j ∈ [0, t).(π@j |= Φ1)

Finally, for the cost/reward structures

s |= R./r[C
≤k] ⇔ ExpC(s,XC≤T) ./ r

s |= R./r[I
=k] ⇔ ExpC(s,XI=T) ./ r

s |= R./r[F
Φ] ⇔ ExpC(s,XFΦ) ./ r

s |= R./r[S] ⇔ lim
t→∞

1
t · ExpC(s,XC≤T) ./ r

where ExpC(s,XΘ) denotes the expected reward XΘ over the paths starting at s.

49

2. BACKGROUND AND FIELD REVIEW

Evaluating a CSL formula for a CTMC

The model checking algorithm for a CSL formula Φ takes as input a labelled CTMC and
outputs the set of states satisfying Φ. The algorithm for non-probabilistic formulae, i.e.,
“true”, “a”, ¬Φ, and Φ∧Φ, is similar to PCTL for DTMCs, which proceeds by induction
on the parse tree of Φ. Evaluating properties that involve the probabilistic P or rewardR
operators is achieved through analytical techniques. Untimed properties, i.e., properties
that do not express any of the real time aspects of a CTMC, can be evaluated using the
embedded DTMC (Def. 2.5). As with PCTL, the “next” formula P./p[XΦ] requires one
matrix-vector multiplication. Calculating unbounded until probabilities P./p[Φ1

⋃
Φ2],

steady-state probabilities S./p[Φ], reachability rewards R./r[FΦ], and steady-state re-
wards R./r[S] is done by solving a system of linear equations. For timed properties,
including probabilistic bounded until P./p[Φ1

⋃I Φ2], cumulative R./r[C≤T] and instan-
taneous R./r[I=T] rewards, the problem reduces to calculating the transient probabil-
ities of the CTMC, using efficient iterative numerical methods such as uniformisation
and matrix-vector multiplications. A comprehensive analysis of the techniques used to
quantify each CSL formula is presented in [148, 182].

Example 2.4. Suppose an unmanned underwater vehicle (UUV) travelling with speed

sp is equipped with a set of sensors. The behaviour of each sensor is defined by the

CTMC model in Figure 2.3. Let “accurate” indicate the state in which any of the sensors

performs an accurate measurement. A set of example QoS requirements for the UUV

system is given in Table 2.2. For each requirement, we provide an informal description

and its formalisation in cost/reward augmented CSL.

Table 2.2: QoS requirements for the UUV system

ID Informal description CSL

R1 (Sensor liveness): “The probability that during
the first second of operation, the sensors make
an accurate measurement must be at least 95%”

P≥0.95[true
⋃[0,1] “accurate”]

R2 (Sensor accuracy): “At least 300 measurements
of sufficient accuracy must be taken every 100m
travelled by the UUV”

R“measurement”
≥300 [C≤100/sp]

R3 (Energy consumption): “The energy consump-
tion of the sensor must not exceed 400J per 100m
travelled by the UUV”

R“energy”
≤400 [C≤100/sp]

50

2.2 Runtime Quantitative Verification

2.2 Runtime Quantitative Verification

Quantitative verification has been traditionally used during the off-line stages of a soft-
ware system’s lifecycle. In particular, the technique is used at design time to evaluate
possible system architectures before proceeding to implementation, while during main-
tenance it is used to support system modification as a result of QoS requirements viola-
tion [145]. On the other hand, self-adaptive software and software-controlled systems are
expected to comply throughout their lifetime with strict dependability, performance and
other QoS requirements. To achieve this, self-adaptive systems modify their behaviour
and internal structure in response to changing environmental conditions, evolving re-
quirements and internal changes [45, 56]. Thus, the current form of the technique cannot
manage scenarios encountered by self-adaptive systems in which they are expected to
evolve autonomously while providing service.

To illustrate this scenario, assume that the train booking website from Figure 2.2
uses third-party services for its “buy” and “shipping” operations. These third-party
services are offered by external service providers, typically deployed on a cloud infras-
tructure. Given that the environment is highly dynamic, cloud-deployed services could
experience service degradation for various reasons including datacentre overload and
network congestion. The result of this situation could lead to violation of QoS require-
ments, e.g., workflow reliability is lower than 90% (cf. requirement R1 from Table 2.1).
The self-adaptive system should be able to detect or anticipate this violation and select
from a pool of functionally equivalent services, these services that restore or maintain
compliance with QoS requirements.

We describe next the runtime use of quantitative verification (Section 2.2.1). We
also present the integration of quantitative verification within the runtime adaptation
process and its use to improve the dependability of self-adaptive software systems (Sec-
tion 2.2.2). Finally, we overview recent advances in runtime quantitative verification
focusing on approaches that improve the efficiency of the technique (Section 2.2.3).

2.2.1 Self-Adaptation Through Runtime Quantitative Verification

Self-adaptive systems are typically engineered using feedback control loops [27]. As high-
lighted by the SEfSAS1 research community [27, 45], the MAPE closed control loop is a
suitable feedback mechanism for realising self-adaptation in software systems [91, 139].
A MAPE-based self-adaptive system, depicted in Figure 2.4, comprises a managed el-

1Software Engineering for Self-Adaptive Systems

51

2. BACKGROUND AND FIELD REVIEW

Figure 2.4: High-level architecture of a self-adaptive system implementing the MAPE-K
closed control loop [139].

ement and an autonomic manager (or controller). The manager consists of a set of
sensors, a set of effectors and the monitor-analyse-plan-execute stages. A knowledge
repository, shared across the stages of the MAPE loop, is used to store system require-
ments, events of interest and updated system models. During monitoring, the controller
collects information about the managed element and its environment through sensors,
and updates the knowledge repository. Any issues related to the current system be-
haviour including violation of system requirements are diagnosed during the analysis
stage. When a violation occurs, a planning stage is responsible for devising a plan to
restore compliance with system requirements. Finally, during the execution stage the
plan is implemented to the managed element through effectors.

Runtime quantitative verification (RQV) can drive reconfiguration in self-adaptive
systems by supporting the “analyse” and “plan” stages of the MAPE control loop. More
specifically, the technique can support adaptation decisions through continual verifica-
tion of Markov models (cf. Section 2.1.1). RQV was introduced in [38, 68] and further
refined by recent research in [33, 76, 77, 130]. Despite being a relatively new approach
in the area of self-adaptive systems, RQV has been applied successfully in several appli-
cation domains. Some illustrative examples include QoS optimisation in service-based
systems [33, 34, 77], dynamic reconfiguration of cloud computing infrastructure [38, 130]
and adaptive resource management in embedded and robotic systems [31, 65, 94].

In contrast to its off-line counterpart in which transitions are associated with nu-
meric values, RQV operates on parametric Markov models which allow transitions to

52

2.2 Runtime Quantitative Verification

initial
parametric model

model
updating

learn model
parameters

monitor system
& its environment

QoS
requirements

up-to-date
model

verified
reconfiguration

plan

quantitative
verification

verification
results

new configuration
selection

Figure 2.5: Runtime quantitative verification workflow.

be labelled both with numeric values and parameters. Thus, the transition probabil-
ity matrix P or transition rate matrix R may include any of these. A numeric value
between a pair of states (source → target) is used to specify a known and fixed as-
pect of the system behaviour; e.g., the failure probability of search operation from the
e-commerce DTMC model in Figure 2.2 is 0.01. On the other hand, parameters cor-
respond to aspects of system behaviour that are unknown at design time and/or are
subject to change at runtime, e.g., due to environment uncertainty. For instance, user
behaviour associated with the buy operation might vary depending on the period of the
year (e.g., in Easter and Christmas). The values of these parameters become known
only at runtime. Using control theory terminology, we call these parameters observable.
Another set of parameters, called configurable, represents system variability in the form
of system configurations selectable for adapting a system. For any given evaluation of
all observable and configurable parameters, a nonparametric model is produced which
can then be used to verify QoS system requirements.

Figure 2.5 shows the workflow of quantitative system verification at runtime. The
technique involves monitoring the system and its environment continually to establish
the current environmental parameters and system state. Relevant changes are diag-
nosed and quantified using fast on-line learning techniques. This operation enables the
selection of a suitable concrete model from a family of parametric system models that
correspond to different system scenarios. The selected model is then analysed using

53

2. BACKGROUND AND FIELD REVIEW

quantitative verification to identify (and in some cases to predict) violations of QoS
requirements such as response time, availability and cost. When requirement violations
are identified or predicted, the verification results enable the synthesis of a verified re-
configuration plan. This plan consists of adaptation steps whose execution is guaranteed
to restore or maintain system compliance with its QoS requirements despite the changes
identified in the monitoring stage.

In the following section, we illustrate the application of RQV using an embedded
system from the unmanned underwater vehicle (UUV) domain. We developed (as part
of this project) the description of the system, and the corresponding Markov model and
QoS requirements.

2.2.1.1 Self-Adaptive Unmanned Underwater Vehicle System

UUVs are increasingly used in a wide range of oceanographic and military tasks, in-
cluding oceanic surveillance (e.g., to monitor pollution levels and ecosystems), undersea
mapping, and mine detection. Due to limitations in the environment in which these
vehicles operate (e.g., impossibility to maintain UUV-operator communication during
missions and high frequency of unexpected changes), UUVs are expected to be self-
adaptive [189]. These systems are also safety critical (e.g., when used for mine detection
and surveillance of ecosystems that should not be impacted) and/or business critical,
since UUVs are often expensive equipment that should not be lost during missions.

The self-adaptive UUV system in our study is deployed to carry out a data gather-
ing mission. The UUV is equipped with n ≥ 1 on-board sensors that can measure the
same attribute of the ocean environment (e.g., water current, salinity or thermocline).
The CTMC model of a typical sensor used in this mission has the structure shown in
Figure 2.3. We designed the sensor model based on information for real-world under-
water sensors2. We use the subscript “i” to denote model parameters and transition
rates associated with the i-th sensor; e.g., ri and ei correspond to the measurement
rate and energy consumption of the i-th sensor, respectively. The probability pi that a
measurement is accurate depends on the configurable UUV speed sp ∈ [0, 5m/s] and a
sensor-specific accuracy factor αi ∈ (0, 0.15), and is given by pi = 1− αisp.

In a dynamic environment, the UUV is required to adapt to changes in the measure-
ment rates r1, r2, ..., rn of its n sensors and to sensor failures by continually adjusting:

• the UUV speed sp

2for example, http://www.ashtead-technology.com/rental-equipment/rdi-300khz-navigator

54

http://www.ashtead-technology.com/rental-equipment/rdi-300khz-navigator

2.2 Runtime Quantitative Verification

• the sensor configuration x1, x2, ..., xn (where x1 = 1 if the i-th sensor is on and
xi = 0 otherwise)

so that the UUV complies with the QoS requirements R1-R3 in Table 2.2.

If requirements R1-R3 are satisfied by multiple configurations, the UUV must use a
configuration that maximises the utility function

utility(x1, x2, ..., xn, sp) = w1sp+ w2/E (2.7)

where E is the energy used by the sensors per 100m travelled by the UUV, and w1, w2 >

0 are weighting coefficients that reflect the relative importance of the UUV speed sp

and energy consumption E.

Example 2.5. Given the UUV system description above, the UUV uses quantitative

verification at runtime to achieve compliance with requirements R1–R3 and maximise

utility (2.7) as follows. An initial parametric model M of the entire n-sensor system

is obtained through the parallel composition of CTMC models of the n sensors, i.e.,

M = M1||M2||...||Mn, whereMi corresponds to the i-th sensor CTMC model. The mea-

surement rates r1, r2, ..., rn of the n sensors comprise the set of observable parameters,

while the set of configurable parameters contains the sensor configuration x1, x2, ..., xn

and the UUV speed sp. Recall that, QoS requirements of the UUV system are for-

malised in the appropriate probabilistic temporal logic as shown in the last column in

Table 2.2.

While the UUV system is running, the n sensors are monitored continually to es-

tablish the actual measurement rates r1, r2, ..., rn. This information is then used to

update the model M so that it represents the current behaviour of the sensors. Next,

the updated model and the formalised QoS requirements are used to carry out quan-

titative verification. The outcome of this process is a set of verification results. This

set contains an evaluation for each QoS property associated with a system requirement

for a range of possible instantiations of the configurable parameters. As an example,

Figure 2.6 shows the verification results for a UUV with n = 2 sensors with current

measurement rates r1 = 5s−1 and r2 = 9s−1. These results establish the probability of

55

2. BACKGROUND AND FIELD REVIEW

Sensor configurations: x1=0, x2=1x1=1, x2=0 x1=1, x2=1

(a) (b)

(c) (d)

Figure 2.6: Verification results for (a) requirement R1, (b) requirement R2 and (c)
requirement R3 from Table 2.2, and (d) utility of the valid configurations of a two-sensor
UUV. The configuration associated with the circled results in (a) – (d) is used to reconfigure
the system.

taking an accurate measurement in interval [0,1], and the expected number of accurate

measurements and the sensor energy consumption per 100m travelled by the UUV.

The technique then filters these verification results to select a new configuration and

derive a reconfiguration plan. Any configurations that violate requirements R1, R2 or

R3 are discarded. The shaded areas from Figure 2.6 correspond to such configurations.

Next, the utility of the remaining feasible configurations is computed. Figure 2.6 shows

the utility values associated with the feasible configurations, when using w1 = 1 and

w2 = 200 in the utility (2.7). The configuration that maximises the system utility is

circled in Figure 2.6. This configuration is used to adapt the UUV system.

56

2.2 Runtime Quantitative Verification

2.2.2 Early Approaches to Runtime Quantitative Verification

The very first research efforts at applying RQV focused on augmenting existing or legacy
software systems with self-adaptive capabilities. The proposed approaches realised vari-
ants of the MAPE control loop and were typically developed through integrating existing
software tools and components.

Calinescu and Kwiatkowska [38] propose a user-driven framework that generates self-
adaptive versions of existing software systems. Their framework comprises three stages:
i) generation, which produces a manageability adaptor specifying the autonomic ele-
ments of a system; ii) deployment, in which the adaptor is connected to the software
system; and iii) exploitation, in which user-defined policies expressing system objec-
tives are put into use. Off-the-shelf tools and computer-assisted techniques are used
to facilitate communication and interaction between the framework stages. System be-
haviour is described using Markov models (Section 2.1.1) while system QoS properties
are formalised in probabilistic temporal logics (Section 2.1.2) and quantified using the
probabilistic model checker PRISM [149]. The system is monitored at runtime and once
a change is detected, through specified control structures, the system adapts to meet
its QoS requirements and user-defined policies. The framework has been evaluated in
dynamic power management of disk drives and adaptive control of cluster availability
showing its effectiveness and potential applicability.

The work by Calinescu et al. [33] introduces QoSMOS, a generic architecture for
developing and managing self-adaptive service-based systems. QoSMOS, short for QoS
management and optimisation of service-based systems, is a tool-supported framework
that covers the entire scope of the MAPE control loop, from extracting formal specifi-
cations of QoS requirements to dynamic reconfiguration of a software system and QoS
optimisation. The framework is realised by integrating software components and tools
developed previously by the authors, i.e., ProProST [104], KAMI [68], PRISM [149],
and GPAC [29]. Using ProProST [104], system QoS requirements expressed in natural
language are transformed into formal specifications, i.e., probabilistic temporal logic
formulae (cf. Section 2.1.2). KAMI [68] is responsible for analysing runtime system
data, identifying changes in system behaviour, and updating the Markov models after
revising the model parameters affected by these changes. Quantitative analysis of the
probabilistic formulae over the updated system models is done using PRISM [149]. The
outcome of this analysis is then forwarded to GPAC [29] that selects the optimal system
configuration and adapts the system. Extensive experiments performed on a telehealth
service-based system confirmed that QoSMOS is a suitable framework to support recon-

57

2. BACKGROUND AND FIELD REVIEW

figuration in service-based systems. The authors, however, acknowledge that for large
systems, i.e., those comprising many services, QoSMOS requires a considerable amount
of time or computational power to carry out quantitative verification. Thus, it might
fail to reconfigure the system if time or computational resources are limited.

2.2.3 The Quest for Efficient Runtime Quantitative Verification

RQV drives adaptation in software systems by continually analysing Markov models.
Notwithstanding its strengths, the computation and memory overheads required to
carry out this analysis depends on the size of the model, which in turn depends on the
number of states and the transitions between these states. In fact, the size of the model
increases exponentially with the size of the system. For instance, a system comprising
n processes, each with m states, operating asynchronously in parallel, has a model of
mn states. Each UVV sensor from Example 2.5 consists of 5 states. Thus, the CTMC
model of a UUV equipped with n sensors has 5n states. This is commonly known as the
state explosion problem [13, 48]. When applied to large and/or complex self-adaptive
systems, whose corresponding models are typically huge, RQV has unacceptably high
CPU and memory overheads.

Even if the analysis process can be carried out fast enough for a particular model
instantiation (i.e., a model corresponding to a specific system configuration), this is not
always sufficient. Many real-world self-adaptive systems have very large configuration
spaces, due to the numerous alternative architectures and instantiations of the system
parameters. Therefore, identifying a set of optimal configurations to adapt the system
is also a computation and memory intensive task. This is another major challenge for
RQV, as the technique finds difficulties to meet the strict execution time and resource
usage constraints required by this class of self-adaptive systems.

To address these challenges, recent research introduced RQV variants that operate
with reduced overheads and improved scalability. We present these variants in the fol-
lowing sections. An overview of these approaches is shown in Table 2.3. The ‘Category’
column denotes the mechanism used to improve RQV, i.e., compositional, incremental
or parametric. The columns ‘Model’, ‘Change’ and ‘System Type’ indicate the type
of models (DTMC, CTMC or MDP3), changes (structure or transition) and systems
(monolithic or distributed) supported by these approaches, respectively.

3AMarkov decision process (MDP) extends DTMCs by modelling probabilistic systems that exhibit
nondeterministic behaviour.

58

2.2 Runtime Quantitative Verification

Table 2.3: Overview of surveyed approaches and comparison to new approaches proposes
in this thesis

Research
work Category Model Change System

Type

In
cre
m.

Co
mp

os
.

Pa
ra
m.

DT
M
C

CT
M
C

M
DP

/P
A

St
ru
ct.

Tr
an
s.

M
on
ol.

Di
str
.

Kwiatkowska
et al. [154]

3 3 3 3 3

Forejt et
al. [82]

3 3 3 3 3 3

Bianculli et
al. [24]

3 3 3 3

Meedeniya
et al. [158]

3 3 3 3

Kwiatkowska
et al. [151]

3 3 3 3

Calinescu et
al. [37]

3 3 3 3 3

Johnson et
al. [130]

3 3 3 3 3 3

Daws [54] 3 3 3 3

Hahn et
al. [107, 110]

3 3 3 3

Filieri et al.
[75, 76, 79]

3 3 3 3

Hahn et
al. [108]

3 3 3 3

Our work

Chapter 3
Soft. Eng.

3 3 3 3 3 3

Chapter 4
EvoChecker

3 3 3 3 3 3 3

Chapter 5
DECIDE

3 3 3 3 3 3 3 3

59

2. BACKGROUND AND FIELD REVIEW

2.2.3.1 Incremental Verification

Changes affecting a self-adaptive software system are typically localised, i.e., the impact
of changes is restricted to specific parts of the system [95]. Incremental verification
avoids unnecessary computation by exploiting verification results from previous runs. To
this end, incremental verification-based approaches try to reverify only model elements
associated with the affected system parts and to reuse as much as possible the results
obtained from previous reverification steps.

An interesting approach to incremental verification is proposed by Kwiatkowska et
al. [154]. The key idea is to decompose the underlying graph of an MDP model into
Strongly Connected Components (SCCs)4. Each SCC is individually evaluated using
value iteration, and then SCC-level evaluations are combined to derive system-level
verification results. When changes in transition probabilities occur, the approach uses
the topological ordering of SCCs and through a search algorithm identifies the set of
SCCs directly and indirectly affected by the changes. Next, the approach reverifies
only the affected SCCs and reuses the verification results corresponding to unaffected
SSCs. Furthermore, SCCs-based value iteration is ideal for parallelisation because at
any step an SCC can be processed independently from other SCCs (certain topological
criteria apply). Experimental results on a set of case studies showed significant reduc-
tion in computation time. This work, however, can only manage changes in transition
probabilities of a Markov model whose structure of the model must remain unaltered.

In [82], Forejt et al. extend the incremental verification technique presented in [154]
to both model construction and quantitative verification. Model construction concerns
the development of an MDP model from a high-level modelling language such as the
PRISM language [147]. Incremental model construction pertains to finding the set of
states to be rebuilt after a change, which reduces the set of high-level modelling com-
mands to be evaluated. For quantitative verification, [82] decomposes the system model
into SCCs, as in [154]. However, [82] uses policy iteration to establish the correctness of
a formula, while [154] applies value iteration. The advantage of using policy iteration
incrementally is the capability to reuse policies between verification runs and to specify
the adversary (i.e., resolution of MDP nondeterminism) with which the computation
starts. This could reduce the number of required iterations and lead to faster conver-
gence. Intuitively, a good initial adversary is the optimal adversary from the previous
execution. Unlike [154], the approach supports small changes in the structure of the
analysed model. Experiments performed both for model construction and quantitative

4A Strongly Connected Component is a set of states in which there is a path between any two
states, and which is maximal, i.e., there is no superset that is also strongly connected.

60

2.2 Runtime Quantitative Verification

verification showed promising results. For additional information, see [83].

Bianculli et al. [24] introduce a framework for syntax-driven incremental verification.
In their proposal, the specification of the structure of a software system conforms to
operator precedence grammars. These grammars natively support incremental parsing,
which enables the synthesis of incremental verification procedures. When changes occur,
the approach employs incremental algorithms for traversing and evaluating the part of
the syntax tree affected by the changes. Encouraging results have been obtained after
applying the approach to the quantitative verification of reliability properties, but other
types of important QoS properties are not supported [23].

The ∆ evaluation approach introduced in [158] supports incremental verification
of reliability requirements in component-based systems. The behaviour of the analysed
system is modelled as a DTMC, where each state of the DTMC corresponds to a system
component as suggested in [46]. When a component is in control of the execution, it
can either transfer control to another component (based on a workflow), or transition
to an absorbing state denoting a failed or successful execution. When a single change
occurs in the model, using matrix operations, it is possible to analyse the impact of
the change and re-evaluate the reliability of the system without running a complete re-
evaluation. The approach can cope with scenarios that require the analysis of reliability
requirements of systems affected by a single component change at a time.

An approach similar to ∆ evaluation from the domain of model-driven engineering
is delta modelling [186]. The conceptual idea of delta modelling is to model system
variability by explicitly defining the differences between system variants as deltas. Given
a core system and a set of deltas that specify modifications to the core system, new
system variants can be derived by applying these deltas to the core system. Delta
modelling can also be used to capture the evolution of software systems over time [106].

In contrast to these incremental verification approaches, the complementary RQV
variants we introduce in Chapters 3–5 are applicable to both discrete- and continuous-
time Markov models (cf. Table 2.3). Furthermore, our variants avoid some of the
limiting assumptions of existing approaches, i.e., the need to partition the verified model
into much smaller SCCs. Finally, two of the techniques we developed (presented in
Chapters 4 and 5) can also cope with structural changes in the verified models.

2.2.3.2 Compositional Verification

Using quantitative verification to analyse QoS requirement compliance of large, com-
plex software systems during runtime is challenging. These systems are typically het-

61

2. BACKGROUND AND FIELD REVIEW

erogeneous and distributed, characterised by their size and complexity, and comprise
independent software components that are subject to continuous change [191]. The
monolithic system-level model is derived after the parallel composition of smaller mod-
els describing the behaviour of the constituent components. The authors in [37] report
that a simple three-tier cloud-deployed software service, composed by four server in-
stances, two web-application instances and two database instances, has a system-level
model with 176E+12 states. Thus, using standard RQV to reconfigure these large-scale
systems is intractable due to the huge size of system models.

Compositional verification exploits the component-based structure of large, complex
systems and establishes system-level QoS properties from the properties of their com-
ponents. Techniques within this group perform verification tasks component-wise and
infer global system properties based on assumptions regarding the acceptable behaviour
of system components. A widely used technique is assume-guarantee reasoning [171]
which specifies that the parallel composition of two models M1||M2 satisfies a system
property G if the following premises hold independently: i) M2 satisfies G when the
component modelled by M2 satisfies an assumption A; and ii) M1 satisfies assumption
A under all circumstances. This relationship can be formally expressed using Hoare’s
triple notation [125]:

〈true〉M1〈A〉 〈A〉M2〈G〉
〈true〉M1 ‖M2〈G〉

(2.8)

Kwiatkowska et al. [151] introduced a probabilistic variant of assume-guarantee
reasoning. Probabilistic assume-guarantee is applicable to probabilistic automata, a
class of nondeterministic models that generalise MDPs [187]. The technique establishes
probabilistic safety properties of the form (2.9). Thus, if model M1 satisfies property
A under any circumstances with probability at least p1 and M2 satisfies property G

with probability at least p2 under assumption A, then the system composed by M1

and M2 satisfies property G with probability at least p2. A comprehensive experimen-
tal evaluation involving large systems showed that compositional verification achieved
execution time and memory consumption several orders of magnitude lower than its
non-compositional counterpart. These results enable the application of RQV to much
larger systems than previously possible. It should be noted, through, that manual effort
is required to produce appropriate assumptions. Recent efforts [72, 73] investigate the
use of learning-based techniques for the automatic generation of assumptions.

〈true〉M1〈A〉≥p1
〈A〉≥p1

M2〈G〉≥p2

〈true〉M1 ‖M2〈G〉≥p2

(2.9)

62

2.2 Runtime Quantitative Verification

A hybrid technique that combines incremental verification with probabilistic assume-
guarantee reasoning is proposed by Calinescu et al. [37]. Given the architecture of a
component-based system, the technique specifies dependencies between its components
using a dependency tree and also associates component models with probabilistic safety
properties. When system components are affected by changes, the technique generates
the minimal sequence of reverification steps that need to be carried out to re-establish
the safety properties. This minimal sequence of steps is derived after performing a
depth-first traversal of the dependency tree. Each verification step is carried out using
the results of some or all of the previous steps as assumptions. Experiments performed
on a dynamically changing cloud computing infrastructure showed promising results.

Johnson et al. [130], building on the work presented in [37], introduce an Incremental
Verification Strategy (INVEST) framework for the efficient reverification of component-
based software systems after changes such as additions, removals and modifications.
INVEST comprises three layers: i) a generic incremental verification engine that iden-
tifies the minimal sequence of components requiring reverification after a change; ii) an
assume-guarantee model checker that performs the reverification based on the sequence
received by the engine; and iii) a domain-specific adaptor that connects the framework
to component-based systems and performs incremental verification of their probabilis-
tic safety properties. A prototype INVEST tool was implemented and evaluated in the
context of a cloud-deployed software system. The experimental evaluation showed that
INVEST can establish probabilistic safety properties in 10-60% of the time taken by
other probabilistic assume-guarantee reasoning techniques for a wide range of scenarios.

Despite the potential of the approaches presented in this section, they require signif-
icant expertise to generate suitable assumptions, can handle only minor changes in the
structure of the verified models (e.g., individual states being added to or removed from
the models [130]) and are only applicable to (discrete-time) probabilistic automata. In
contrast, the RQV variants introduced in this thesis do not suffer from these limita-
tions. They are model agnostic and thus can be applied to several types of Markov
models (cf. Table 2.3). Also, the variants presented in Chapters 4 and 5 can cope with
more significant changes in the structure of the verified models (e.g., different system
or component architectures).

2.2.3.3 Parametric Verification

Developing self-adaptive systems typically entails considering uncertainty in system op-
eration due to incomplete system specification at design time and changes occurring

63

2. BACKGROUND AND FIELD REVIEW

in the surrounding environment and the system itself at runtime. Parametric Markov
models provide the means of specifying these uncertain aspects for the system under
consideration. In these models, transition probabilities are not fixed, but are associated
with parameters whose values become known only at runtime and might change dur-
ing the system operation. Parametric model checking [54] is an approach comprising
a design-time step and a runtime step, and enables to reason about the satisfaction of
QoS requirements with low runtime overheads. At design time, through a computation-
ally expensive pre-computation step, QoS requirements are translated into algebraic
expressions. At runtime, once the system is within a concrete environment, these alge-
braic expressions are evaluated by replacing the unknown parameters with the actual
values obtained through system monitoring. This runtime evaluation step takes a frac-
tion of the time required to carry out quantitative verification on the actual system
model. The approaches described in the following paragraph focus on the design-time
pre-computation step, and more specifically, on deriving the algebraic expressions.

In his pioneering work on parametric model checking, Daws [54] introduces a new
language-theoretic approach to symbolic probabilistic model checking of reachability
properties over DTMCs. The approach initially converts a DTMC into a finite state
automaton in which transition probabilities are modelled as letters of an alphabet. This
step is followed by the synthesis of a regular expression that defines the language recog-
nised by the automaton using state elimination algorithms. Subsequently, the derived
regular expression is subject to a recursive evaluation that yields a rational algebraic
expression for the property to evaluate. Despite its originality and its usefulness in
reachability properties, Daw’s approach does not support neither the full PCTL nor
reward properties. Another limitation of the approach is that the length of the regular
expression is affected heavily by the number of model states n, yielding in the worst-case
scenario an expression of length nΘ(logn).

In [107, 110], the authors draw upon the work presented by Daws [54] and present an
effective approach that intertwines state elimination with early evaluation of the rational
function. In each iteration of the approach, a state elimination step is followed by on-the-
fly simplification of the rational function taking advantage of cancellations, symmetries
and simplifications of arithmetic expressions. Compared to [54], the algorithm requires
n3 operations in most cases showing significant improvements in incurred overheads. In
the worst-case scenario, however, the length of the rational function is still nΘ(logn). This
can occur if no rational function can be simplified during the entire process, a rather
uncommon scenario according to the findings [107, 110]. The approach is the core of
the model checker PARAM [109] and has been recently implemented in PRISM [149]

64

2.2 Runtime Quantitative Verification

and PROPhESY [58].
The WorkingMom framework [76] follows the same principles as [54, 107, 110]. Given

a parametric DTMC model of the system and a set of reliability-related QoS require-
ments, this technique generates a set of algebraic expressions. The computation time
depends on the size of the DTMC model, the number of parametric states and the num-
ber of outgoing transitions from these states. Extensive experiments reported in [76] for
the probabilistic model checkers PRISM [149] and MRMC [133] showed that the time
taken by the runtime step of the approach is several orders of magnitude lower than
both probabilistic model checkers. An extension of the approach supporting the deriva-
tion of algebraic formulae for DTMCs augmented with reward structures is presented
in [75]. For an extended version of the works in [76] and [75], see [79].

The work by Hahn et al. [108] takes a different perspective and considers the problem
of parameter synthesis of PCTL formulae for parametric models. Instead of generating
a rational function that represents a reachability requirement, the approach synthesises
the set of parameter values for which the reachability requirement holds. At design
time, applying recursively state space exploration techniques, the parameters space is
partitioned into hyper-rectangles, i.e., regions in the dimension of the model parameters
that represent families of models. Each of these regions provides globally the same
output, that is, the requirement holds (or not) for all the concrete models resulting
from instantiations of the parameters with values in this region. Note that the approach
allows a limited state space area to remain unknown; evaluation in this area is very
complex and is left undecided. When the system undergoes changes at runtime, it
is sufficient to access these hyper-rectangles and instantaneously assess whether the
requirement is still satisfied or not. A preliminary implementation of the approach has
been developed as part of PARAM [109].

The approaches presented in this section achieve significant improvements in runtime
quantitative verification both in terms of computation time and memory consumption.
The computationally expensive model exploration is carried out only once at design
time, while runtime complexity reduces to simply evaluating a set of algebraic expres-
sions in [54, 75, 76, 107, 110] or quickly accessing a lookup table in [108]. Enhancing
further these approaches to deal with a larger number of parametric transitions with
respect to the total number of system transitions as well as structural model changes are
threads of current research. However, these approaches are only applicable to discrete-
time models, and cannot manage structural changes in the analysed model. As shown
in Table 2.3, our RQV variants introduced in the following chapters address these lim-
itations of parametric verification.

65

Chapter 3

Efficient RQV Using Conventional

Software Engineering Techniques

Runtime quantitative verification has been advocated by recent research as a suitable
technique to support adaptation in software systems [32, 38, 68]. This is mainly because
of the capabilities of the technique to deal with environment uncertainty and unexpected
changes to requirements or the system itself. The technique has been successfully ap-
plied in various application domains including QoS optimisation in service-based sys-
tems [33, 68], and dynamic resource management of cloud infrastructure [37, 130].

Despite its capabilities, RQV suffers from the state-explosion problem [48], which
limits the size of models that it can manage at runtime without unacceptable over-
heads. The approaches discussed in Section 2.2.3 are a first step towards reducing these
overheads and extending the use of the technique to larger models. Each of these ap-
proaches achieves reductions in execution time and/or resources required to perform
an RQV step, i.e., to carry out the analysis, to interpret the results, and, if needed,
to assemble and execute a reconfiguration plan. Their applicability, however, is lim-
ited to certain self-adaptation scenarios and to specific types of stochastic models and
properties (see Table 2.3).

To improve RQV efficiency further, we need to consider how the behaviour of a soft-
ware system affects the use of the technique at runtime, and, certainly, how RQV carries
out the analysis of an RQV step (i.e., an adaptation). To illustrate these concepts, we
use the UUV system from Section 2.2.1.1 which is required to adapt to changes in mea-
surement rates of its on-board sensors by adjusting its speed and the configuration of

67

3. EFFICIENT RQVUSINGCONVENTIONAL SOFTWARE ENGINEERING TECHNIQUES

sensors. An RQV step is performed either at frequent intervals (e.g., every 5 seconds) or
when the sensors undergo changes in their measurement rates (e.g., experience service
degradation). When any of these conditions holds, the analysis is executed from the
very beginning, irrespective of the extent of the changes. If these changes are mini-
mal, i.e., little difference exists between the current and previously estimated system
behaviour, it is possible that similar analysis results would have been obtained in the
recent past. Similarly, if the changes affect only a subset of the UUV sensors, i.e., they
are localised [95], we could possibly reuse some of the results already available.

In this chapter, taking into consideration these observations, we introduce a set of
complementary techniques to advance the state-of-the-art in RQV. These techniques are
extensively used in other areas of software engineering; see Section 3.4 for a discussion
of related work. To the best of our knowledge, however, they have not been applied to
improve RQV efficiency previously.

First, we consider the caching of recent verification results. Since changes in real-
world systems are often (though by no means always) localised, there is a possibility
that verification results from recent RQV steps could be reused if retained for some
time. Similar to other applications of caching, the aim is to reduce RQV response time
(i.e., the time required to perform an RQV step) and CPU usage at the expense of using
additional memory.

Second, we augment RQV with limited lookahead, which involves using spare CPU
cycles to pre-verify stochastic models deemed likely to arise in the future. Since some
RQV steps may require the verification of models that were already pre-verified, the
technique has the potential to reduce RQV response time at the expense of increased
use of CPU and memory.

Finally, we combine RQV with nearly-optimal reconfiguration, a technique that ter-
minates an RQV step as soon as (i) a system configuration that satisfies QoS require-
ments is found; and (ii) a stopping criterion is met, e.g., the selected configuration has
a similar utility to the best “utility” encountered over a pre-defined time interval.

The main contribution of this chapter is the integration of RQV with caching, limited
lookahead and nearly-optimal reconfiguration, and combinations thereof. We introduce
these techniques in Section 3.1. Next, in Section 3.2, we present the extension of
the open-source platform MOOS-IvP for the development of autonomous systems with
RQV capabilities and also describe the implementation of the techniques within this
environment. We analyse our findings in Section 3.3. Finally, in Sections 3.4 and 3.5,
we conclude the chapter with a discussion of related work, and with a brief summary
of our contributions in this chapter, respectively.

68

3.1 Techniques for Efficient RQV

3.1 Techniques for Efficient RQV

3.1.1 Caching

Caching is a fundamental technique for performance optimisation in modern computing
systems. A cache is a small memory area, among the multiple storage components used
within these systems. Compared to other auxiliary storage (e.g., hard disk), cache
is much faster, and thus it shortens data access times, reduces latency and improves
input/output. Cache, however, is more expensive than auxiliary storage and therefore
its size is typically a fraction of the size of auxiliary storage [60].

The general idea behind caching is based on locality of reference, i.e., to store data
that might become useful in the near future in a cache memory, so that future requests
to accessing the same data can be executed faster [190]. When a request to obtain
some data arrives, the cache is checked first. If the data exists in cache, a cache hit
occurs, and the data is retrieved immediately. Otherwise, there is a cache miss and
the request is forwarded to the auxiliary storage. In the latter case, upon receiving the
response, the data is also stored in cache for future reference. When the cache is full, a
replacement policy selects which data must be evicted so that new data can be cached.
A general principle defining a good replacement policy is to discard data that will not
be required for the longest time in the future. A commonly used metric for establishing
the efficiency of a replacement policy is the frequency with which the requested data
exists in cache, called hit ratio. Several cache replacement policies exist; e.g., random
replacement, least frequently used, least recently used [172].

Locality is a direct relationship between the changes impacting a software system
and the principle underlying caching. Thus, using a cache is a natural mechanism to
exploit verification results from previous RQV steps. This would potentially reduce
RQV response time and computational overhead, and improve its overall performance.

Our use of caching employs a standard cache using a least frequently used (LRU)
replacement policy. LRU is among the most common and most efficient replacement
policies [159]. When the cache is full, LRU evicts the data used the least in the recent
past assuming that it is less likely to be used again in the near future [172]. Each entry in
cache is in the key-value form 〈(modelParams, propID), (result, timestamp)〉, where:

• modelParams is a set of values where each value corresponds to an evaluation of
an observable/configurable parameter from the parametric model of the system;

• propID is the index of a probabilistic temporal logic formula corresponding to a
QoS property;

69

3. EFFICIENT RQVUSINGCONVENTIONAL SOFTWARE ENGINEERING TECHNIQUES

Algorithm 1 RQV with LRU-replacement caching
1: LRUCache← {}

2: function Verify(modelParams, propID)
3: key ← (modelParams, propID)
4: if LRUCache.containsKey(key) then
5: entry ← LRUCache.get(key)
6: entry.timestamp← NOW
7: result← entry.res
8: else
9: M ← Get_Updated_Model(modelParams)

10: Φ← Get_Property(propID)
11: result← QV(M,Φ)
12: if LRUCache is full then
13: Evict LRUCache entry using LRU policy
14: end if
15: LRUCache.add(key, (result,NOW))
16: end if
17: return result
18: end function

• result represents the result obtained from the quantitative verification of the
property Φ with index propID over the modelM with parametersmodelParams;

• timestamp is the latest time when this entry was used.

Algorithm 1 shows the pseudocode for this cache-enabled version of RQV. Starting
with an empty cache (line 1), the technique uses a Verify function to store new ver-
ification results into the cache. To this end, the technique uses the modelParams and
propID variables to produce an up-to-date model M (line 9) and to derive the property
Φ to be evaluated (line 10), respectively. New results are obtained through the use
of QV(M,Φ) function (line 11), and added to the cache according to the LRU policy
(lines 12–15) for future use (lines 5–7).

Example 3.1. Consider again the UUV example from Section 2.2.1.1. The set of all

modelParams instantiations contains the possible sensor measurement rates r1, r2, ..., rn

(observable parameters), and the sensor configuration x1, x2, ..., xn and the UUV speed

sp (configurable parameters). Concerning the other cache entry elements, propID ∈
{R1, R2, R3}, result is a real number and timestamp is a time-point in milliseconds.

70

3.1 Techniques for Efficient RQV

3.1.2 Limited Lookahead

Limited lookahead is a widely used forward searching technique. It has been applied
in many research areas including decision making and planning; see Section 3.4 for a
discussion of related work. The technique is particularly useful in software systems
whose control decisions have idle times (e.g., periodic execution of an RQV step on a
UUV) and/or in scenarios with discrete decision sets (e.g., the number of available third-
party implementations for operations “buy” and “shipping” of an e-commerce system).

The principle of limited lookahead involves performing a k-step ahead projection
of the behaviour of a software system [47]. Given the current state of the system, the
technique carries out a forward search (or simulation) and generates a search tree of
depth k. This tree corresponds to the set of control decisions the system can make
within this prediction horizon. In its most common form, the decision maximising a
utility function is selected and applied to the system. Although this procedure is useful
when idle times during system operation exist, it is subject to computational abilities.

We modified the technique with the aim to improve RQV efficiency. Our use of
lookahead involves taking advantage of spare computational and memory resources to
pre-compute the quantitative verification results associated with system and environ-
ment states “close” to the current state. Under the assumption that real-world systems
are often (though not always) evolving through small changes [95], this will ensure that
verification results required during an RQV step will sometimes be already available.
This pre-computation can take advantage of idle CPU times or may be delegated to an
external service, e.g., one that is deployed on cloud computing infrastructure. To give a
pictorial view of this technique, this is like creating a “protection zone” around a point
associated with the current state and environment conditions. The effect is a decrease
in the (average) time required to take decisions, at the expense of using additional
computational resources and memory.

The system and environment states correspond to the sets of parameter values
required to produce an up-to-date model from the parametric model of the system. A
subset of these parameters is observable and cannot be modified by the system, while
the others are configurable and are used to adapt the system.

Concerning the observable parameters, to identify states that are “close” to an m-
dimensional state, we calculate the distance between states s = (s1, s2, . . . , sm) and
s′ = (s′1, s

′
2, . . . , s

′
m) using the normalised Chebyshev distance:

L∞(s, s′) = max
1≤i≤m

|si − s′i|
smax
i − smin

i

, (3.1)

71

3. EFFICIENT RQVUSINGCONVENTIONAL SOFTWARE ENGINEERING TECHNIQUES

Algorithm 2 RQV with limited lookahead
1: function Lookahead(modelParams, propID)
2: s← observable parameter values in modelParams
3: Cfg ← cartesian product of cofigurable parameters

4: for all c ∈ Cfg do
5: for all states s′ such that L∞(s, s′) ≤ ε do
6: modelParams′ ← modelParams⊕ s′ ⊕ c
7: key ← (modelParams′, propID)
8: if ¬LRUCache.contains(key) then
9: M ← Get_Updated_Model(modelParams′)

10: Φ← Get_Property(propID)
11: result←QV(M,Φ)
12: if LRUCache is full then
13: Evict LRUCache entry using LRU policy
14: end if
15: LRUCache.add(key, (result,NOW))
16: end if
17: end for
18: end for
19: end function

where the values smin
i and smax

i represent the minimum and maximum values of state
parameter si, respectively. A pair of states s and s′ is “close” if L∞(s, s′) ≤ ε for some
ε > 0. The choice of ε can be subject to the available processing power or memory, or
to the idle time between successive RQV steps.

The pseudocode for our lookahead technique is shown in Algorithm 2. The tech-
nique uses a caching mechanism to store the analysis results obtained from lookahead
search. The Lookahead function is invoked whenever spare CPU resources are avail-
able immediately after the execution of the Verify function from Algorithm 1, and with
the same parameters as Verify. A lookahead search is performed for all configurable
parameters and for all states that are ε-close to the current state (lines 4-18).

Example 3.2. For the 2-sensor UUV system from Example 2.5, the values of the ob-

servable and configurable parameters are of the form s = (r1, r2) and c = (x1, x2, sp),

respectively. Assuming that the current state s = (5, 9) and ε = 0.01, Figure 3.1 shows

an excerpt of the search tree produced by our limited lookahead technique.

72

3.1 Techniques for Efficient RQV

Figure 3.1: Search tree produced by limited lookahead for the 2-sensor UUV system.

3.1.3 Nearly-Optimal Reconfiguration

The task of an RQV-based self-adaptive system can be considered from a different
viewpoint as a combinatorial optimisation problem. In this case, the objective is to
find a system configuration that satisfies a set of constraints and maximises a utility
function. Solving this problem and obtaining an exact solution is typically prohibitively
time consuming, if at all possible. In fact, most large real-world optimisation problems
(e.g., travelling salesman, bin packing) are intractable, because there is no efficient
polynomial-time exact algorithm to solve them.

Given one such problem, a class of algorithms, called approximation algorithms, is
capable of finding a near-optimal solution quickly [204]. These techniques do not provide
any guarantees regarding the optimality of the obtained solution. Good approximation
algorithms, though, can find a feasible solution to a given problem in a reasonable
amount of time (at most polynomial). Furthermore, the obtained solution is of “high
quality”, i.e., close to the optimum.

We devised an approximation algorithm, called nearly-optimal reconfiguration, to
improve the overall RQV performance. Nearly-optimal reconfiguration is capable of
reducing both the response time of RQV steps and their CPU usage. The technique
can be used on its own, in conjunction with caching or with caching and lookahead.

The underlying principle of the technique is to select the first valid configuration
whose utility is sufficiently close to the best utility (associated with a system configu-
ration) encountered over a long period of time. To this end, the technique continually
updates the minimum and maximum utility corresponding to configurations analysed
during self-adaptation. We allow an initial learning period T > 0 during which the
technique is allowed to obtain a good approximation of minimum and maximum utility.
After this period has elapsed, the technique accepts valid configurations whose utility
satisfies the constraint

utility ≥ minUtility + α(maxUtility −minUtility) (3.2)

73

3. EFFICIENT RQVUSINGCONVENTIONAL SOFTWARE ENGINEERING TECHNIQUES

Algorithm 3 RQV with nearly-optimal reconfiguration
1: minCost←∞
2: maxCost← −∞
3: startT ime← −1

4: function NearlyOptimalReconfiguration(utility)
5: if startT ime = −1 then
6: startT ime← NOW
7: end if
8: minUtility ← (utility < minUtility)?utility : minUtility
9: maxUtility ← (utility > maxUtility)?utility : maxUtility

10: if NOW ≥ startT ime+ T then
11: return utility≥minUtility+α(maxUtility−minUtility)
12: else
13: return false
14: end if
15: end function

where 0 < α < 1 is a parameter that reflects the lenience of the technique. As the
lenience parameter approaches its upper bound, i.e., α u 1, the acceptance policy
becomes stricter.

The pseudocode for our nearly-optimal reconfiguration technique is shown in Algo-
rithm 3. The function NearlyOptimalReconfiguration is invoked when a valid
configuration has been identified during an RQV step. If the “learning” period of length
T has not been completed or the utility does not satisfy the constraint (3.2), the con-
figuration is not accepted, and the function returns false. Otherwise, the configuration
associated with that utility is accepted and used to reconfigure the system.

Example 3.3. Consider again the UUV system from Example 2.5. The technique

relaxes the utility (2.7) so that configurations whose utility is nearly optimal are adopted

immediately. Assume a lenience parameter α = 0.9 and an initial learning period

T = 10s, during which we obtained minUtility = 1.5, maxUtility = 5.5. If no change

occurs to the minimum and maximum utility values, any configuration that satisfies

requirements R1–R3 and has utility ≥ 5.1 will be selected to adapt the UUV.

74

3.2 Implementation

3.2 Implementation

To evaluate the proposed RQV variants, we used the UUV case study from Section 2.2.1.
To this end, we implemented a fully-fledged simulator for the self-adaptive UUV system
using the open source MOOS-IvP middleware1 co-developed at MIT and the University
of Oxford. MOOS-IvP is a widely used platform for the implementation of autonomous
applications on unmanned marine vehicles. The platform is typically deployed on the
payload computer of an autonomous vehicle, so as to not interfere with the navigation
and control system running on the main vehicle computer [20, 21].

The publish-subscribe architecture of the core MOOS software (Figure 3.2) allows
applications to publish messages comprising simple key–value pairs with agreed frequen-
cies. These messages can convey, for instance, information about vehicle components
monitored by individual applications or about changes to mission objectives (received
from a human operator or a peer unmanned vehicle). Any interested “listener” ap-
plications can then act upon these messages, e.g., by adjusting the parameters of the
navigation and control system they are responsible for.

In addition, user-implemented MOOS applications can propose behaviours, i.e., com-
binations of boolean logic constraints and parametrised piecewise-linear utility func-
tions. These parameters refer to the navigation and control of the UUV system, in-
cluding heading, speed or depth. A special component of the platform, the IvP Helm,
is responsible for the periodic collection and integration of these proposed behaviours.
This component uses Interval Programming (IvP) multi-objective optimisation to “rec-
oncile” the behaviours proposed by all contributing applications, and publishes the
optimal solution (i.e., an optimal point in the decision space defined by the constraints
and utility functions) as key–value pairs that the other applications can subscribe to
receive.

For the UUV system, we developed a Runtime Quantitative Verification MOOS
(RQV-MOOS) application (Figure 3.2) that carries out quantitative verification oper-
ations using an embedded instance of the PRISM probabilistic model checker [152].
RQV-MOOS operates by:

(i) listening for messages published by the control software for the n sensors, to obtain
information about the current rates r1, r2, . . . , rn that the sensors operate at;

(ii) carrying out periodic RQV steps, to verify the system compliance with require-
ments R1–R3, and to select new configurations (i.e., new values for the sensor

1 http://oceanai.mit.edu/moos-ivp

75

http://oceanai.mit.edu/moos-ivp

3. EFFICIENT RQVUSINGCONVENTIONAL SOFTWARE ENGINEERING TECHNIQUES

MOOS-DB

IvP HelmMOOS Application

MOOS Application

MOOS Application

MOOS Application

RQV-MOOS

Figure 3.2: MOOS architecture, adapted from [20], including our RQV-MOOS compo-
nent.

on/off parameters x1, x2, . . .xn and for the UUV speed sp) that maximise the
UUV utility (2.7);

(iii) publishing messages that announce the new sensor configurations, so that the
control software for sensor i receives the new xi, 1 ≤ i ≤ n;

(iv) proposing a behaviour that recommends to the IvP Helm the new UUV speed sp.

Figure 3.3 shows a screenshot of a 3-sensor instance of our self-adaptive UUV simu-
lator, at a time moment when sensors 1 and 3 are switched on (i.e., x1 = x3 = 1), sensor
2 is switched off (i.e., x2 = 0), and the UUV speed is sp = 3.6m/s. The open-source
code for our RQV-MOOS application and UUV simulator, the full experimental results
and a video recording of the demo from which we extracted the screenshot in Figure 3.3
are freely available at http://www-users.cs.york.ac.uk/~simos/SEAMS.

3.3 Evaluation

3.3.1 Research Questions

The aim of our experimental evaluation was to answer the following research questions:

RQ1 (Validation): Can RQV support dependable self-adaptation in UUVs?
This is the first research work applying RQV to the UUV domain. Thus, we
wanted to establish the applicability of the technique in this domain and whether
it can achieve this with reasonable overheads.

76

http://www-users.cs.york.ac.uk/~simos/SEAMS

3.3 Evaluation

Figure 3.3: Self-adaptive UUV simulator component.

RQ2 (Comparison): How effective are the RQV variants enhanced with the
proposed conventional software engineering techniques? With this re-
search question we want to investigate the improvement in the overall RQV per-
formance of the newly introduced RQV variants. To this end, we compare RQV
augmented with caching, lookahead, nearly-optimal reconfiguration and combina-
tions thereof against the standard RQV.

RQ3 (Insights): What inferences can be drawn regarding the use of these
RQV variants to reconfigure software systems at runtime? We used this
research question to establish how well the proposed RQV variants can cope with
changes affecting a software system. To this end, we identified the connection be-
tween various adaptation scenarios and the effectiveness, benefits and limitations
of these RQV variants.

3.3.2 Experimental Setup

To evaluate the effectiveness of RQV augmented with caching, lookahead, nearly-optimal
reconfiguration and combinations thereof, we carried out a broad range of experiments
using the self-adaptive UUV system variants shown in Table 3.1. In this table, the
‘Details’ column reports the number of sensors (n) and nominal measurement rate
associated with each sensor r1, r2, ..., rn. The ‘Size’ column reports the size of the con-
figuration space that an exhaustive search would need to explore, assuming two-decimal

77

3. EFFICIENT RQVUSINGCONVENTIONAL SOFTWARE ENGINEERING TECHNIQUES

Table 3.1: Analysed UUV system variants

Variant Details Size

UUV_Small n = 3, r1 = 5Hz, r2 = r3 = 4Hz 2.56E + 11

UUV_Medium n = 4, r1 = r4 = 5Hz, r2 = r3 = 4Hz 2.56E + 14

UUV_Large n = 6, r1 = r4 = 5Hz, r2 = r3 = r5 = r6 = 4Hz 1.63E + 20

precision for the double-valued parameters (i.e., sensors measurement rates and UUV
speed). We evaluated these variants on a test suite comprising 8 scenarios, correspond-
ing to the different combinations of the following mission characteristics:

• mission duration of 250, 500, 1000 and 2000 RQV steps (executed every 5s);

• level of sensor rate fluctuations during periods of normal behaviour—low (up to
2%) and high (up to 10%).

Beyond normal behaviour, the sensors encounter periods of unexpected behaviour where
their rates change dramatically. To simulate this situation, we seeded the scenarios with
patterns of sensor failures and/or significant degradation in measurement rates. These
scenarios comprise a representative set of events (i.e., sensor rate fluctuation, sensor
failure and sensor recovery) that the UUV sensors might encounter during a mission.
We focus on sensor rate variation since this is the observable parameter in the CTMC
model of the i-th UUV sensor (Figure 2.3).

We carried out separate experiments for each scenario and UUV variant using stan-
dard RQV, and RQV augmented with caching, lookahead and caching, nearly-optimal
configuration, and nearly-optimal configuration and caching. For each technique and
combination of techniques that involved the use of caching, we experimented with cache
sizes ranging from 104 to 106 entries. As shown in Table 3.1, the number of possible
configurations per system variant depends on the number of UUV sensors n. For the
smallest variant (i.e., when n = 3), the configuration space size is 2.56E + 11, while for
the largest variant (i.e., when n = 6) its size is 1.63E + 20. Thus, all the cache sizes
are orders of magnitude smaller than the amount of memory required to store the veri-
fication results associated with all possible system configurations. As far as lookahead
is concerned, we set ε to 0.002 and 0.02 for the scenarios with low (2%) and high (10%)
level sensor rate fluctuations, respectively. Using again two-decimal precision for UUV
speed and sensor rates, the upper bound of additional configurations verified after each
RQV step is 40 × 2n × 30n. The pre-computation step is a best-effort operation, i.e.,

78

3.3 Evaluation

lookahead evaluates the maximum number of configurations within the available time.
Finally, for nearly-optimal reconfiguration we allowed an initial learning period T = 10s

and fixed its lenience parameter value α to 0.9. We ran the experiments on an Intel
Core i7-3770 3.40GHZ computer with 8GB of RAM, running Ubuntu 12.04 64-bit.

3.3.3 Results and Discussion

RQ1 (Validation). We start the presentation of our evaluation with a series of results
associated with a 3-sensor self-adaptive UUV. These sensors operate with the rates of
the UUV_Small variant from Table 3.1 and are experiencing the pattern of variation
in measurement rates depicted in Figure 3.4. Active sensors are associated with shaded
areas while areas not shaded indicate switched off sensors. When a sensor suffers from
service degradation, the system checks the sensor at frequent intervals to assess if it has
recovered; these checks are indicated by thin shaded areas. For instance, during mission
period 50−200s the measurement rate of sensor 3 drops to 50% of its nominal rate and
the system periodically probes the sensor to establish its current state. The adaptation
decisions taken by the system for this scenario are explained below. The entries (A) –
(L) refer to the labels in Figure 3.4.

(A) The rate of sensor 3 decreases significantly, and the UUV switches it off and starts
using sensor 2.

(B) As sensor 2 also experiences a decrease in rate, the UUV continues with only
sensor 1, but needs to decrease its speed considerably in order to obtain sufficient
measurements per every 100 metres travelled (cf. requirement R2).

(C-D) Sensor 1 operates with low rate and is switched off; the UUV starts using sensor
3 and reduces its speed.

(E) Sensor 3 recovers and the UUV starts using it along with sensor 1; the speed is
increased accordingly.

(F) Sensors that are switched off due to poor performance are periodically tested to
find out whether they recovered. Since they may not have recovered, none of the
other sensor UUV parameters is modified during these tests.

(G) Sensor 1 operates with decreased rate, so the slightly lower-rate sensor 2 takes
over alongside sensor 3, with a suitable lowering of the UUV speed.

(H) Sensor recovery is not always detected immediately.

79

3. EFFICIENT RQVUSINGCONVENTIONAL SOFTWARE ENGINEERING TECHNIQUES

r1
[s−1]

5
4
3
2
1
4
3
2
1
0
4
3
2
1
0

4.0

3.0
3.5

2.5

r2

r3

[s−1]

[s−1]

s
[m

/s
]

Simulation time [s]
0 500 1000 1500 2000

A

B

C

D

E

F

G H

I J K

L

Figure 3.4: Sample pattern of sensor failures and drops in measurement rates for a 3-
sensor system, and the sensor configurations and speed chosen by the self-adaptive UUV.
Shaded areas correspond to a sensor being switched on, areas not shaded correspond to
the sensor being switched off, and thin shaded areas correspond to the system checking
whether a sensor has recovered after it experienced problems.

(I) Sensor 1 takes over as sensor 2 is experiencing problems.

(J) With both sensors 2 and 3 in a bad state, the UUV speed must be reduced to a
value at which sensor 1 alone can satisfy requirement R1.

(K) The recovery of sensor 2 enables the UUV to continue the mission at higher speed.

(L) When sensor 3 recovers too, it is preferred to sensor 2 as it is more energy efficient.

Given these results, we can safely conclude that RQV successfully managed to drive
reconfiguration of a sensor-equipped UUV in the presence of service degradation or
complete failure of its sensors. Thus, we consider RQV as a suitable technique for
supporting dependable adaptation in UUVs. There are, certainly, other aspects in the
UUV domain in which RQV could be useful, but this is subject of future research.

RQ2 (Comparison). To answer this research question, we compared the proposed
RQV variants, i.e., those augmented with caching, lookahead, nearly-optimal recon-
figuration and combinations thereof, against the standard RQV. Figures 3.5 and 3.6

80

3.3 Evaluation

(a)

(b)

caching lookahead & caching nearly-optimal reconfig. & caching

Figure 3.5: Effect of efficient RQV techniques on (a) the average time required to decide a
new configuration during an RQV step (response times are averaged over 100 RQV steps);
and (b) the total number of quantitative verification operations over 2000 RQV steps, for
a scenario with low (i.e., ≤ 2%) sensor-rate fluctuation during normal operation.

show the RQV response time (i.e., the time to complete all the quantitative verification
operations for an RQV step, averaged over successive sequences of 100 steps) and the
cumulated number of quantitative verification operations for a 10,000s simulation of the
3-sensor self-adaptive UUV. The pattern of sensor-rate variation described in the previ-
ous section (Figure 3.4) corresponds to the first 2,000s of simulated time, and a similar
pattern was applied for the remainder of the simulation. In addition to this pattern,
the sensor rates for the experiments shown in the two diagrams were also varied dur-
ing periods when they appear constant in Figure 3.4, by values drawn from a uniform
distribution between [−2%, 2%] and [−10%, 10%] of the maximum rate for these sen-
sors, respectively. Note that the lookahead quantitative verification operations, which
are carried outside the actual RQV step, are not included in the results reported in
Figures 3.5 and 3.6.

81

3. EFFICIENT RQVUSINGCONVENTIONAL SOFTWARE ENGINEERING TECHNIQUES

(a)

(b)

caching lookahead & caching nearly-optimal reconfig. & caching

Figure 3.6: Effect of efficient RQV techniques on (a) the average time required to decide a
new configuration during an RQV step (response times are averaged over 100 RQV steps);
and (b) the total number of quantitative verification operations over 2000 RQV steps, for
a scenario with high (i.e., ≤ 10%) sensor-rate fluctuation during normal operation.

All three techniques and combinations of techniques presented in Figure 3.5 achieved
significantly better results than standard RQV. In fact, these techniques carried out an
overall number of quantitative verification operations of only 5.2%–7.6% of the number
of operations carried out by standard RQV. Clearly, the low sensor-rate variations dur-
ing periods of normal operation meant that the configurations to be verified were already
available in cache or, for the nearly-optimal reconfiguration and caching technique, were
similar to configurations seen before. The response time was consistently below 17.5%

of the time taken by standard RQV, with the exception of the initial, “learning” period
of the nearly-optimal reconfiguration technique. The technique yielded configurations
that were on average 28.3% more expensive than the optimal configurations generated
by the other approaches. The benefit of a cache larger than 104 entries was marginal.

The cache size did make a difference, however, when the sensor-rate variation during

82

3.3 Evaluation

(a)

(b)

caching lookahead & caching nearly-optimal reconfig. & caching

Figure 3.7: Effect of efficient RQV verification on the response time (averaged over 100
RQV steps) for UUV systems with 3, 4 and 6 sensors, low sensor-rate variation during
normal operation periods, and using (a) a 105-entry cache; and (b) a 106-entry cache.

normal operation was higher (Figure 3.6). In this case, the smaller cache size exam-
ined (i.e., 104 entries) supported the reduction of the overall number of quantitative
verification operations to just 58.6% for the caching, and lookahead and caching tech-
niques. The medium cache size, 105 entries, achieved reductions to 34.4% and 30.1% for
caching, and lookahead and caching, respectively, showing that the cache was insufficient
to support effective lookahead. In contrast, the largest cache size, 106 entries, supports
lookahead, reducing the number of verification operations to only 17.6% when this tech-
nique is used in conjunction with caching, compared to also 34.4% when caching alone
was used. Nearly-optimal reconfiguration continues to work well, providing reductions
to 19–23% of the number of operations for standard RQV, irrespective of cache sizes,
but at the expense of using suboptimal configurations. Unsurprisingly, the same pattern
is observed in the average response times. The medium sized cache is sufficient for the
RQV augmented with caching alone, but not for RQV with lookahead and caching.

83

3. EFFICIENT RQVUSINGCONVENTIONAL SOFTWARE ENGINEERING TECHNIQUES

One final result that we present is an exploration of the scalability of the introduced
techniques. For this purpose, we ran simulations of self-adaptive UUV systems with 3, 4
and 6 sensors, using RQV augmented with the same three techniques and combinations
of techniques as above. The resulting average RQV response times, shown in Figure 3.7,
are given as percentages of the response times for standard RQV. The results show that
very similar benefits are obtained across all system sizes. When caching alone is used,
response times of between 1% and 22% of those for standard RQV are obtained with
a 105-entry cache, and no further improvements are possible when the larger cache is
used. Lookahead, however, can take advantage of the larger, 106-entry cache, to reduce
the response time by a further 6% on average, to between approximately 0.5% and 16%

of the standard RQV response time. Nearly-optimal reconfiguration with caching is
again doing well irrespective of the cache size, although at the expense of an increased
overall cost of 28.3% for n = 3, 29.7% for n = 4 and 34.2% for n = 6.

RQ3 (Insights). We analysed the performance of the evaluated RQV variants with
the aim to identify actionable insights regarding the types of systems and adaptation
scenarios to which these techniques are applicable. The following criteria were consid-
ered: CPU and memory use, response time and solution quality. We present a summary
of our findings in Table 3.2.

First, RQV enhanced with caching reduces both CPU usage and the time required
to perform an RQV step, but requires additional memory to store recent verification
results. The technique is particularly useful in scenarios where a software system ex-
periences low variations in its operating state. In these scenarios, it is possible that
verification results corresponding to the current system state already exist in cache.
The efficiency of caching, however, is subject to the complexity of the generated keys.
As reported in Algorithm 1, a key is partly composed by the values of the parameters
associated with a stochastic model. Therefore, in models involving double-valued pa-
rameters the complexity depends on the parameter granularity used for generating the
keys. As granularity increases, the upper bound of possible keys increases too. As a
result, additional memory is required to store the verification results and maintain the
same hit ratio.

As far as lookahead is concerned, the technique requires additional CPU power and
memory to carry out the pre-computation step and store verification results likely to
occur, respectively. In return, lookahead might reduce RQV response time as verifica-
tion results corresponding to the current system state might have been analysed while
system CPU was idle. The technique can cope with higher variations in observable

84

3.3 Evaluation

Table 3.2: Summary of evaluated techniques (compared to standard RQV)

Criterion Caching Limited
Lookahead

Nearly-Optimal
Reconfiguration

CPU use ↓ ↑ ↓
Memory use ↑ ↑ ↓
Response time ↓ ↓ ↓
Solution quality — — ↓
Applicability Low variations in

system state
Higher variations
than caching, but
infrequent major

changes

High variations and
systems with

different model sizes

system parameters than caching, but it resorts to standard RQV when the system is
affected by major changes. Since lookahead employs a cache-like mechanism to store the
pre-computation results, it also encounters the issues of caching reported above. Fur-
thermore, as a best-effort technique that completes as much as possible of the analysis
during idle CPU periods, it is insufficient to use only a large cache. The ε parame-
ter should also be set to a meaningful value (for the considered system) so that the
technique can extract useful results during the pre-computation step.

Finally, nearly-optimal reconfiguration achieves good performance for systems af-
fected by major changes or experiencing high variation in their observable parameters
during normal operation. In fact, the technique reduces both the CPU and memory
use, and it is capable of reconfiguring a system much faster than the other proposed
RQV variants. These benefits come, of course, at the expense of selecting a subop-
timal configuration. Moreover, the utility values maxUtility and minUtility achieved
during the initial learning period should represent reasonably well the utility bounds
corresponding to the current system state. Nearly-optimal reconfiguration is suitable
in scenarios in which a software system impacted by changes must find quickly a good
solution (according to system objectives) and use it to adapt the system. Selecting
appropriate values for the parameters associated with the technique (cf. Algorithm 3),
i.e., learning period T and leniency policy a, requires careful consideration and some
domain knowledge. Values close to their upper bounds might cause the technique to
operate with increased overheads and reduce its response time, while low values could
drive the technique to select expensive configurations.

85

3. EFFICIENT RQVUSINGCONVENTIONAL SOFTWARE ENGINEERING TECHNIQUES

3.3.4 Threats to Validity

We identified several types of threats that can affect the validity of the study conducted
in this chapter. We classify these threats into construct, internal, and external validity.

Construct validity threats may arise because of the procedure followed when
designing the UUV case study and any assumptions or simplifications we made. To
mitigate this threat, we developed the model of a sensor using information collected from
real-world underwater sensors2. Concerning the implementation of the UUV system,
this is based on MOOS-IvP [20], a widely used platform for developing applications
involving UUVs. The platform is not only used for exploring and analysing the behaviour
of UUVs in simulated environments, but also for deploying UUVs in real missions (e.g
oceanic surveillance and undersea mapping).

Internal validity threats may be due to any bias introduced when obtaining the re-
sults and when establishing the cause-effect relationship between the adaptation events
and the proposed RQV variants. We limit these threats by evaluating the RQV vari-
ants on a test suite comprising several adaptation scenarios of increasing length and
complexity. We also performed experiments using UUV systems of different sizes (i.e.,
number of sensors). Finally, when caching was used, either on its own or in conjunction
with another technique, we ran experiments for different cache sizes.

External validity threats can originate from concerns related to the generalisation
of our findings. These include difficulties to employ any of the proposed RQV variants
as the reconfiguration mechanism in self-adaptive systems. To mitigate this threat, we
developed our techniques on top of the standard RQV. Thus, they can be applied to
any types of systems supported by standard RQV and can be used with a wide range
of probabilistic models and probabilistic temporal logics. Furthermore, our techniques
are general enough so that they can be integrated with other state-of-the-art RQV ap-
proaches (see Section 2.2.3) to produce more sophisticated RQV variants. Nevertheless,
to assess the general applicability of the techniques in other application domains, we
need to carry out additional experiments using software systems from these domains.

3.4 Related Work

Caching, limited lookahead and nearly-optimal reconfiguration techniques have been
around for a few decades and have been widely applied in engineering software systems.
Herein, we are not interested in covering the literature exhaustively. Instead, we aim to

2for instance, http://www.ashtead-technology.com/rental-equipment/rdi-300khz-navigator

86

http://www.ashtead-technology.com/rental-equipment/rdi-300khz-navigator

3.4 Related Work

provide a general overview of the applicability of the techniques used in this chapter.

Caching is a common performance optimization technique and is extensively used
across all areas of software engineering including networks [213], processors [100], web
servers[172], and search engines [90]. Since the early days of computing systems, re-
searchers recognised the advantages of using a small amount of expensive memory to
accelerate a slower but larger and less-expensive memory [60, 190]. In processors, for
instance, caching has been used to reduce processor-memory traffic [100], while modern
multicore computing systems use several levels (L1–L3) of cache memory [43]. Web
caching is used to reduce network bandwidth usage, user perceived-delays and server
workload [172]. Caching in search engines is primarily employed to improve query
throughput and reduce system load [90]. Improving the efficiency of existing replace-
ment policies or developing new policies tailored to an application domain is an active
area of research [90, 159, 172].

Limited lookahead-style techniques, sometimes called forward state-space search
techniques, also have a good track record of successful applications in software sys-
tems, e.g., for dynamic resource provisioning in computer clusters [144] and speech
recognition [170]. Lookahead search in decision-making has been explored to support
real-time planning [164] and strategy synthesis in games [165]. The research projects
in [184] and [161] conduct theoretical analysis of the technique and study the levels
of guarantees that can be obtained for obtaining good solutions in several domains,
including the problems of travelling salesman and 0/1-knapsack.

Variants of suboptimal optimisation/configuration have been widely used in opti-
misation of network traffic [193], malware detection [87], software architecture [209],
trajectory generation [131], and many other areas. The research in [193] proposes a
near-optimal local search heuristic that performs traffic distribution in networks ac-
cording to a set of performance criteria. Similarly, [87] presents an approach and sup-
portive tool that automatically analyses behaviours from malware samples and extracts
optimally discriminative specifications, which can then be used for malware detection.
Finally, [209] introduces an approximation technique, called Filtered Cartesian Flat-
tening, for identifying highly optimal architectural variants that comply with resource
constraints and optimise a set of system properties.

This body of research illustrates the applicability of caching, limited lookahead,
nearly-optimal reconfiguration and combinations thereof in a wide range of applications.
To the best of our knowledge, however, this is the first work that uses these techniques
in the context of runtime quantitative verification of self-adaptive software systems.

Subsequently to our publication of the results presented in this chapter, Moreno

87

3. EFFICIENT RQVUSINGCONVENTIONAL SOFTWARE ENGINEERING TECHNIQUES

et al. [162] proposed a related technique for reconfiguring software systems through
combining lookahead and latency awareness. The role of lookahead is similar to our use
of the technique, i.e., to project how the system is expected to evolve over a limited
horizon. Latency awareness considers the time consumed between making an adaptation
decision and actually realising the decision in the target software system. The authors
compared their technique against a latency-agnostic feed-forward approach that does
not use lookahead. Based on the metrics used, including system utility and response
time, the proposed technique outperformed feed-forward. These findings confirm that
both limited lookahead and latency awareness improve the effectiveness of adaptation.

3.5 Summary

In this chapter, we adapted three widely used software engineering techniques, namely
caching, lookahead and nearly-optimal reconfiguration, to improve the efficiency and
overall performance of runtime quantitative verification. When caching is used, ver-
ification results from recent reconfigurations are kept into a temporary storage area
indexed by a key comprising the observable/configurable parameter values of the para-
metric model and the index associated with a probabilistic temporal logic formula. If
subsequent reconfiguration events involve the verification of a key already in cache, it is
sufficient to retrieve these verification results. Limited lookahead uses idle CPU times
between successive reconfiguration events to pre-verify system states that could arise
in the future. If after a change affecting the system, its current state has already been
verified, the verification results are simply retrieved. Finally, nearly-optimal reconfigu-
ration stops the analysis of system configurations as soon as a configuration satisfying
the QoS requirements has been found and a “near-optimality” criterion is met.

To evaluate the benefits and limitations of these techniques, we developed a self-
adaptive unmanned underwater vehicle (UUV) simulator and carried out experiments
involving a wide range of realistic scenarios. The experimental results show that caching
can improve the RQV efficiency significantly when there are small variations in the state
of the self-adaptive system and its environment during periods of normal operation.
When these variations are more significant, lookahead and caching used together achieve
much better results, but require a larger cache and depend on the availability of spare
computation resources. In contrast, nearly-optimal reconfiguration and caching is less
sensitive to cache sizes, and achieves very good performance irrespective of system size,
even for high variations in the state of the system during periods of normal operation,
at the expense of selecting suboptimal configurations.

88

Chapter 4

Improving RQV Efficiency

Using Evolutionary Algorithms

In the previous chapter, we proposed three conventional software engineering approaches,
namely caching, limited lookahead and nearly-optimal reconfiguration that we showed
could reduce the overheads of RQV and improve the efficiency of the technique. Notwith-
standing the strengths of these approaches, they face difficulties with searching through
large configuration spaces to identify configurations that optimise several, and possibly
conflicting, QoS requirements (e.g., reliability, performance, cost). This is a non-trivial
task whose complexity increases radically with configuration space size and the depen-
dencies/interactions between QoS requirements. Beyond the three proposed techniques,
simple and tedious approaches like exhaustive search, trial-and-error, and heuristics are
inadequate. Exhaustively searching the configuration space to find an optimal configu-
ration is typically intractable. On the other hand, trial-and-error requires manual verifi-
cation of numerous alternative instantiations of the system parameters, while heuristics
do not generalise well and might be biased towards a particular area of the problem
landscape. Even when one of these approaches is in some manner “successful”, the iden-
tified configurations are often unworthy as they do not represent the optimal trade-offs
between the considered QoS requirements.

In this chapter we introduce EvoChecker, a search-based approach that uses evo-
lutionary algorithms (EAs) within the RQV process to address these challenges and
to extend the range and size of systems that can be handled by the technique. EA
approaches have a long track record of efficiently solving software engineering problems

89

4. IMPROVING RQV EFFICIENCY USING EVOLUTIONARY ALGORITHMS

in highly nonlinear and multidimensional search spaces [9, 42, 74, 86, 155]. EvoChecker
exploits the unique abilities of EAs to effectively guide the search towards promising ar-
eas of configuration space, to identify Pareto-optimal configurations, and thus to reduce
significantly the RQV overheads for reconfiguring a self-adaptive system.

Our EvoChecker search-based approach uses as inputs:

• a probabilistic model template that encodes the configuration parameters (e.g.,
alternative architectures, parameter ranges) of the self-adaptive system;

• a set of QoS requirements specifying both constraints (e.g., “At least 95% of the
requests must be processed within 200ms”) and optimisation objectives (e.g., “The
system should minimise energy consumption”).

We developed two EvoChecker variants which target different types of self-adaptive
systems, in terms of human expert involvement and prioritisation of QoS requirements.
First, we developed a human-in-the-loop variant whose control loop involves a human
operator validating adaptation decisions [41]. This variant employs multi-objective
EAs to establish the Pareto front, i.e., the optimal trade-off achievable for the QoS
requirements of interest. Given this Pareto front, the operator selects the desired trade-
off and the corresponding configuration is used to adapt the system. The second variant
is completely automated, but requires a relative prioritisation of the QoS requirements.
When the search finishes, the configuration optimising the predetermined trade-off is
selected to reconfigure the system. To speed up the search, this variant maintains an
archive of configurations used during recent adaptations and “seeds” each EA search for
a new configuration with a specific selection of recent configurations from the archive.
Despite the potential to use a similar archive in the human-in-the-loop EvoChecker,
existing research highlights the main challenges to apply the same principles for multi-
objective optimisation [88, 124, 136]. We analyse these challenges later in Section 4.1.4.
Therefore, we propose this research direction as future work for the human-in-the-loop
EvoChecker (cf. Section 7.2). Finally, it should be noted that the expected adaptation
time could be very different between the two EvoChecker variants, typically much larger
for the human-in-the-loop variant.

The main contribution of this chapter is the EvoChecker search-based approach,
with its human-in-the-loop and automated variants, which we introduce in Section 4.1.
We describe the open-source EvoChecker tool in Section 4.2. Next, in Section 4.3
we present an extensive empirical evaluation of both EvoChecker variants and analyse
our findings. We discuss related work and summarise the EvoChecker approach in
Sections 4.4 and 4.5, respectively.

90

4.1 EvoChecker

4.1 EvoChecker

In line with our work from Chapter 3, EvoChecker uses parametric Markov models to
capture both environment uncertainty and system configurations. Thus, Env corre-
sponds to the set of possible values for the (observable) parameters of the environment,
while Cfg is associated with configurable parameters that can be adjusted through the
control loop of a self-adaptive system. Let c = (c1, c2, ..., ck) ∈ Cfg be a system config-
uration, where ci ∈ Vi, 1 ≤ i ≤ k (i.e., Vi is the value range for the i-th configuration
parameter of the system). Let also e = (e1, e2, ...) ∈ Env be an environment state. We
assume that any instantiation of c ∈ Cfg and e ∈ Env is associated with a valid concrete
probabilistic model which can be used to evaluate QoS system attributes of interest.

Foreign Exchange Self-Adaptive System

We will illustrate our approach using a real-world service-based system from the domain
of foreign exchange trading that is used by a European foreign exchange brokerage
company; for confidentiality reasons we anonymise the system as FX. The FX system,
whose Markov model and QoS requirements have been developed as part of this project,
implements the workflow in Figure 4.1.

An FX trader can use the system to carry out trades in expert or normal mode.
In the expert mode, the trader can provide her objectives or action strategy. FX peri-
odically analyses exchange rates and other market activity, and automatically executes
a trade once the trader’s objectives are satisfied. In particular, a Market watch ser-
vice retrieves real-time exchange rates of selected currency pairs. A Technical analysis
service receives this data, identifies patterns of interest and predicts future activity in
exchange rates. Based on this prediction and if the trader’s objectives are “satisfied”, an
Order service is invoked to carry out a trade; if they are “unsatisfied”, execution control
returns to the Market watch service; and if they are “unsatisfied with high variance”, an
Alarm service is invoked to notify the trader about opportunities not captured by the
trading objectives. In the normal mode, FX assesses the economic outlook of a country
using a Fundamental analysis service that collects, analyses and evaluates information
such as news reports, economic data and political events, and provides an assessment on
the country’s currency. If the trader is satisfied with this assessment, she can sell/buy
currency by invoking the Order service, which in turn triggers a Notification service to
confirm the successful completion of a trade.

The FX system uses ni ≥ 1 functionally equivalent implementations of the i-th
service. The j-th implementation, 1≤j≤ ni is characterised by its reliability rij∈ [0, 1],

91

4. IMPROVING RQV EFFICIENCY USING EVOLUTIONARY ALGORITHMS

Figure 4.1: Workflow of the FX system.

invocation cost cij∈R+ and response time tij∈R+.
FX is required to adapt to changes in the observed service implementations reliability

rij and response time tij , and to complete service failures such that the system satisfies
the QoS requirements from Table 4.1. To this end, FX must select one of two invocation
strategies by means of a configuration parameter stri ∈ {PROB, SEQ}: i) a probabilistic
strategy where one of the implementations is randomly selected based on an FX-specified
discrete probability distribution pi1, pi2, . . . , pini (if stri = PROB); and ii) a sequential
strategy, where the enabled implementations are invoked one after the other based on
an execution order, until a successful response is obtained or all invocations fail (if
stri = SEQ). For the SEQ strategy, a parameter exi ∈ {1, 2, ..., ni!} establishes which
of the ni! permutations of the ni implementations should be used, and a configuration
parameter xij ∈ {0, 1} indicates if implementation j is enabled (xij = 1) or not (xij = 0).

Table 4.1: QoS requirements for the FX system.

ID Informal description

R1 “Workflow executions must complete successfully with probability at least 0.98”
R2 “The total service response time per workflow execution should be minimised”
R3 “The probability of a service failure during a workflow execution should be

minimised”
R4 “The total cost of the third-party services used by a workflow execution should

be minimised”

92

4.1 EvoChecker

We used the FX system for evaluating the human-in-the-loop and automated Evo-
Checker variants (Sections 4.3.1 and 4.3.2). To simulate realistic runtime behaviour,
we developed simple SOAP-based web services, defined patterns of normal operation
and unexpected failures for these services and deployed the services on a single Apache
Tomcat web server.

Example 4.1. Suppose that for the FX system, there are three available implementa-

tions for the MarketWatch service, i.e., n1 = 3. Then, a system configuration c has the

general form
(str1, p11, p12, p13, x11, x12, x13, ex1, . . .) ∈ Cfg (4.1)

where for the MarketWatch service

• str1 ∈ {PROB, SEQ} is the invocation strategy associated with this service;

• p11, p12, p13 ∈ [0, 1] denote the selection probability for the three implementations

when the PROB strategy is used;

• x11, x12, x13 ∈ {0, 1} signify the enabled service implementations (i.e., those for

which xij = 1) when the SEQ strategy is selected;

• ex1 ∈ {1, 2, ..., 6} indicates which of the 3! = 6 permutations of the service imple-

mentations is used with the SEQ invocation strategy.

An environment state e has the form

(r11, t11, r12, t12, r13, t13, ...) ∈ Env (4.2)

where

• r11, r12, r13 ∈ [0, 1] correspond to the (observed) reliability of the three service

implementations;

• t11, t12, t13 ∈ R+ denote their respective response times.

The elements from the system configuration and environment states corresponding

to the other five services adopt the same pattern but are shown as ellipses in (4.1)

and (4.2) for simplicity.

93

4. IMPROVING RQV EFFICIENCY USING EVOLUTIONARY ALGORITHMS

When dealing with complex self-adaptive systems that have a large configuration
space Cfg , computing the optimal configuration or the Pareto-optimal configuration set
is in most cases infeasible [153]. For instance, this is the case with the FX system, whose
configuration space involves real parameters for the probability distributions p11, p12, p13

etc. Due to the nonlinearity of stochastic models [145], discretisation of these parameters
does not help, as a small change in a state transition probability might cause a large
deviation in the values of the QoS attributes. Thus, finding suitable configurations
to adapt the system may require prohibitive computational resources or may take an
unacceptably long time.

EvoChecker addresses these issues and identifies effective configurations using evolu-
tionary algorithms (EAs). Typical EA examples include genetic algorithms, evolution-
ary strategies and differential evolution [50]. EAs solve a search problem by assembling
a set (i.e., population) of solutions (individuals) over a number of iterations, such that
the population contains better individuals after each iteration. Each individual encodes
a candidate solution in the form of a chromosome, i.e., a sequence of genes. A valid can-
didate solution is the result of assigning a value to each gene from its value range. In our
approach, each gene corresponds to a system configuration parameter ci ∈ Vi, 1 ≤ i ≤ k,
so a chromosome has the general form (c1, c2, ..., ck) ∈ V1 × V2 × · · · × Vk = Cfg .

Example 4.2. Consider again the FX system with n1 = 3 MarketWatch service imple-

mentations. A chromosome denoting a possible system configuration has the structure

(str1, p11, p12, p13, x11, x12, x13, ex1, . . .)

where str1, p11, p12, p13, x11, x12, x13, ex1 are the genes associated with the MarketWatch

service of the system. The value range for each of these genes is given in Example 4.1.

The genes representing the remaining services are omitted in the interest of brevity, but

they follow a similar pattern.

4.1.1 Modelling Language

EvoChecker uses the probabilistic model checker PRISM [149] for its verification steps.
Accordingly the probabilistic model template is expressed in an extension of the PRISM
high-level modelling language. This language is based on the Reactive Modules formal-
ism [8], which describes a system as the parallel composition of a set of modules. The
state of a module is encoded by a set of finite-range local variables, and its state tran-

94

4.1 EvoChecker

sitions are defined by probabilistic guarded commands that change these variables, and
have the general form:

[action] guard −> e1 : update1 + . . .+ en : updaten; (4.3)

In this command, guard is a boolean expression over all the variables in the model.
If guard evaluates to true, the arithmetic expression ei, 1 ≤ i ≤ n, gives the probability
(for discrete-time models, cf. Section 2.1.1.1) or rate (for continuous-time models, cf.
Section 2.1.1.2) with which the updatei change of the module variable occurs. The action
is optional; when present, it forces all modules comprising commands with this action
to perform one of these commands simultaneously (i.e., to synchronise). For a detailed
description of the PRISM modelling language, we refer the reader to the PRISM man-
ual available at http://www.prismmodelchecker.org/manual. EvoChecker handles all
types of probabilistic models and probabilistic temporal logics supported by PRISM
and shown in Table 4.2.

Example 4.3. Figure 4.2 shows an excerpt of the DTMC model of the FX system spec-

ified in the PRISM modelling language. The model comprises a WorkflowFX module

encoding the workflow of the system and two modules for each service. These two service

modules correspond to the probabilistic invocation strategy and the sequential invoca-

tion strategy, respectively. Due to limited space, in Figure 4.2 we only show the module

associated with the probabilistic strategy of the MarketWatch service. The local variable

state from the WorkflowFX module (line 3) encodes the state of the system, i.e., which

Table 4.2: Types of models supported by EvoChecker

Type of probabilistic model QoS requirement specification logic

Discrete-time Markov chains PCTLa, LTLb, PCTL*c

Continuous-time Markov chains CSLd

Markov decision processes PCTLa, LTLb, PCTL*c

Probabilistic automata PCTLa, LTLb, PCTL*c

Probabilistic timed automata PCTLa

aProbabilistic Computation Tree Logic [22, 111] bLinear Temporal Logic [171]

cPCTL* is a superset of PCTL and LTL dContinuous Stochastic Logic [11, 14]

95

http://www.prismmodelchecker.org/manual

4. IMPROVING RQV EFFICIENCY USING EVOLUTIONARY ALGORITHMS

1

1

2
3

4
5

6
7
8
9

10
11
12
13
14

15
16
17
18

19
20
21
22

23
24
25
26

27
28
29
30

31
32
33

34

35

36

37
38

39

40

41

42

43

44
45
46
47
48

49

50
51
52

53
54
55
56

evolve distribution p1[0.1..0.3][0.3..0.5][0.2..0.6];

dtmc

module WorkflowFX
state: [0..15] init 0; // FX state

// Start: expert or normal mode
[fxStart] state=0 −> 0.66:(state’=1) + 0.34:(state’=9);

//Service #1: Market Watch
[startMW] state=1 −> 1.0:(state’=2);
[failedMW] state=2 −> 1.0:(state’=5);
[succMW] state=2 −> 1.0:(state’=3);

//Service #2: Technical Analysis
[startTA] state=3 −> 1.0:(state’=4);
[failedTA] state=4 −> 1.0:(state’=5);
[succTA] state=4 −> 1.0:(state’=6);
[resultTA] state=6 −> 0.61 : (state’=1) + 0.28 : (state’=11) + 0.11 : (state’=7);

//Service #3: Alarm
[startAL] state=7 −> 1.0:(state’=8);
[failedAL] state=8 −> 1.0:(state’=5);
[succAL] state=8 −> 1.0:(state’=13);

//Service #4: Fundamental Analysis
[startFA] state=9 −> 1.0:(state’=10);
[failedFA] state=10 −> 1.0:(state’=5);
[succFA] state=10 −> 0.53 : (state’=0) + 0.27 : (state’=11) + 0.20 : (state’=9);

//Service #5: Order
[startOR] state=11 −> 1.0:(state’=12);
[failedOR] state=12 −> 1.0:(state’=5);
[succOR] state=12 −> 1.0:(state’=13);

//Service #6: Notification
[startNOT] state=13 −> 1.0:(state’=4);
[failedNOT] state=14 −> 1.0:(state’=5);
[succNOT] state=14 −> 1.0:(state’=15);

[failedFX] state=5 −> 1.0:(state’=5);
[succFX] state=15 −> 1.0:(state’=15);

endmodule

const double r11 = 0.998;

const double r12 = 0.995;

const double r13 = 0.996;

const int x11 = 1;

const int x12 = 0;

const int x13 = 1;

const int ex1 = 4;

const double p11 = 0.35;

const double p12 = 0.45;

const double p13= 0.20;

// Probabilistic strategy for Service #1: Market Watch
module MarketWatchProbStrategy

mw: [0..5] init 0; // MW state
// Probabilistic service selection
[startMW] mw=0 −> p11 : (mw’=1) + p12 : (mw’=2) + p13 : (mw’=3);

// Run services
[runMW1] mw=1 −> x11 × r11 : (mw’=4) + !x11 || x11 × (1-r11): (mw’=5);
[runMW2] mw=2 −> x12 × r12 : (mw’=4) + !x12 || x12 × (1-r12): (mw’=5);
[runMW3] mw=3 −> x13 × r13 : (mw’=4) + !x13 || x13 × (1-r13): (mw’=5);

// End Market Watch service
[succMW] mw=4 −> 1.0:(mw’=0);
[failedMW] mw=5 −> 1.0:(mw’=0);

endmodule
...

evolve module MarketWatch

Reliability of Market Watch service implementations

3

2

evolve int ex1[1..6];

evolve int x11[0..1];
evolve int x12[0..1];
evolve int x13[0..1];

Figure 4.2: DTMC model of the FX system; ¬–® represent EvoChecker extensions of
the PRISM modelling language.

96

4.1 EvoChecker

service is currently invoked, if a service invocation fails, etc. The local variable mw from

the MarketWatchProbStrategy module (line 46) records the internal state of the service

invocation using the PROB strategy for the MarketWatch service. The WorkflowFX

module synchronises with the service invocation module corresponding to the selected

invocation strategy through the actions start_, failed_ and succ_, which are associated

with scenarios where one or more service implementations are invoked, raise an error

or complete execution successfully, respectively. For instance, synchronisation with the

MarketWatchProbStrategy module occurs through the actions startMW, failedMW and

succMW (lines 7-9). The other FX services operate similarly. Once execution control

is given to the module representing a strategy, a service implementation is selected ac-

cording to the logic of the strategy; e.g., a probabilistic selection is made between the

available MarketWatch service implementations (line 48). Then, the selected service

is invoked (lines 50-52) and, depending on its observed reliability (lines 34-36), fails

to execute (line 55) or completes successfully its task (line 54). In either case, control

of execution returns to the WorkflowFX module. If the service executed successfully,

FX continues its workflow with the remaining services (lines 9,13,14,18,22,26,30) and

concludes its execution (line 32); if a service fails, FX terminates (line 31).

EvoChecker extends the PRISM modelling language with three constructs that sup-
port the specification of the possible system configurations from the set Cfg , within a
probabilistic model template. The three constructs are defined below:

1. Evolvable parameters. EvoChecker uses the syntax

evolve int param [min..max];

evolve double param [min..max];
(4.4)

to declare model parameters of type ‘int’ and ‘double’, respectively, and acceptable
ranges for them. These parameters can be used in any field of command (4.3) other
than action, just like constant model parameters declared using ‘const int’ and ‘const
double’ from the original language.

2. Evolvable probability distributions. The syntax

evolve distribution dist [min1..max1] . . . [minn..maxn]; (4.5)

97

4. IMPROVING RQV EFFICIENCY USING EVOLUTIONARY ALGORITHMS

where [mini,maxi] ⊆ [0, 1] for all 1 ≤ i ≤ n, is used to declare an n-element discrete
probability distribution, and ranges for the n probabilities of the distribution. The name
of the distribution with 1, 2, . . . , n appended as a suffix (i.e., dist1, dist2, etc.) can then
be used instead of expressions e1, e2, . . . , en from an n-element command (4.3).

3. Evolvable modules. EvoChecker uses the syntax

evolve module modName implementation1 endmodule

. . .

evolve module modName implementationn endmodule

(4.6)

to define n ≥ 2 alternative implementations of a module modName.

The interpretation of the three EvoChecker constructs within a probabilistic model
template is described by the following definitions.

Definition 4.1. A valid PRISM probabilistic model augmented with a set of EvoChecker

constructs (4.4)–(4.6) is called a probabilistic model template.

Definition 4.2. A probabilistic model is an instance of a probabilistic model template

T if and only if it can be obtained from T using the following transformations:

• Each evolvable parameter (4.4) is replaced by a ‘const int param = val;’ or ‘const

double param = val;’ declaration (depending on the type of the parameter), where

val ∈ {min, . . . ,max} or val ∈ [min..max], respectively.

• Each evolvable probability distribution (4.5) is removed, and the n occurrences of

its name instead of expressions e1, . . . , en of a command (4.3) are replaced with

values from the ranges [min1..max1], . . . , [minn..maxn], respectively. When using

a discrete-time model, the sum of the n values is 1.0.

• Each set of evolvable modules with the same name is replaced with a single element

from the set, from which the keyword ‘evolve’ was removed.

Definition 4.3. The set of all probabilistic models that are instances of a probabilistic

model template T represent the configuration space Cfg .

98

4.1 EvoChecker

Example 4.4. Figure 4.2 illustrates the three EvoChecker constructs employed to trans-

form the DTMC model of the FX system into a probabilistic model template. The

replacement of the elements from the shaded dashed rectangles with those from the

shaded continuous rectangles show how: ¬ four evolvable parameters are used to spec-

ify the available service implementations for MarketWatch service and their execution

order; an evolvable distribution is used to specify the transition probabilities associ-

ated with the probabilistic selection strategy of the MarketWatchProbStrategy module

(line 45); and ® the module MarketWatch is declared as one of the possible implemen-

tations corresponding to the invocation strategies for this service. Note that at least one

additional implementation of this module needs to be provided in a valid probabilistic

model template. Due to space constraints, the sequential strategy implementation is

not included here, but we make it available in Appendix A.

4.1.2 Quality-of-Service Attributes

EvoChecker considers self-adaptive software systems with n ≥ 1 QoS attributes. An
attribute corresponds to a quality facet of a system, typically quantifiable using specific
metrics through well-defined processes. For example, the attributes of the FX system
that we are interested in comprise the reliability, invocation cost and response time of
a workflow execution. Given a system configuration c ∈ Cfg and an environment state
e ∈ Env , an evaluation of the i-th attribute, 1 ≤ i ≤ n, can be established by

attr i(e, c) = QV (M(e, c),Φi) (4.7)

where:

• M is a probabilistic model parametrised by the environment state and system
configuration;

• Φi is a probabilistic temporal logic formula (Table 4.2) corresponding to the i-th
QoS attribute;

• QV (..., ...) is a function that takes a stochastic modelM of a system and a formula
Φi corresponding to a QoS attribute of the same system, and uses quantitative
verification to establish the value of Φi for the considered model M . This is

99

4. IMPROVING RQV EFFICIENCY USING EVOLUTIONARY ALGORITHMS

an automatic operation typically performed by probabilistic model checkers (e.g.,
PRISM [149] and MRMC [133]).

Example 4.5. Consider again the FX system and its QoS requirements described infor-

mally in Table 4.1. In the parametric DTMC model that we developed for this system

(an excerpt of which is depicted in Figure 4.2), the states in which the workflow execu-

tion completes successfully are annotated with a “success” label, and a “done” label is

associated with the states where the workflow execution terminates (whether success-

fully or not). We also augment the model with two cost/reward structures. The former,

“time” structure associates the time taken by each service implementation to complete

its execution with the states that signify the invocation of the service. Likewise, a “cost”

structure associates the cost incurred by the invocation of each service implementation

with the states modelling these events. Table 4.3 shows how the three QoS attributes

used in the system requirements, i.e., workflow reliability, response time and invocation

cost, can be formally specified as cost/reward augmented probabilistic temporal logic

formulae (Section 2.1.2.1).

Table 4.3: QoS attributes for the FX system

ID Informal description Formula Φi

attr1 Workflow reliability P=?[F“success”]

attr2 Workflow response time R“time”
=? [F“done”]

attr3 Workflow invocation cost R“cost”
=? [F“done”]

In the following sections, we introduce the two EvoChecker variants developed as
part of this thesis. First, we present the human-in-the-loop EvoChecker (Section 4.1.3).
Building on this, we then illustrate the fully-automated (and incremental) EvoChecker
(Section 4.1.4). For each variant, we demonstrate i) how it formalises the system QoS
requirements using the n QoS attributes; ii) how it formalises the problem of extracting
Pareto-optimal configurations; and iii) how it employs EAs within the RQV process to
identify a set of these Pareto-optimal configurations.

100

4.1 EvoChecker

4.1.3 Human-in-the-Loop EvoChecker

Incorporating human input into the control loop of self-adaptive systems has been ad-
vocated by recent research [41]. This could be advantageous when it is difficult to
determine a priori the best trade-off between multiple QoS requirements, when the sys-
tem uses expensive equipment or when the mission undertaken by the system is highly
critical [50]. Once the human-in-the-loop EvoChecker completes the search, it produces
a set of equally good configurations for adapting a system. A human then acts as a
sophisticated system-level decision maker (with better insight regarding the best con-
figuration) who analyses the configurations and selects the most desirable configuration
for adapting the system.

Formalising System QoS Requirements

The human-in-the-loop EvoChecker variant supports the specification of QoS require-
ments for a software system by employing the n ≥ 1 QoS attributes. These requirements
are classified into n1 ≥ 0 constraints and n2 ≥ 1 optimisation objectives. Constraints
define bounds for the acceptable values of some of the n QoS attributes, while optimisa-
tion objectives specify QoS attributes that should be minimised or maximised (subject
to all constraints being satisfied). Without loss of generality, we will assume that the
QoS attributes should be minimised. Formally, a software system considered by this
EvoChecker variant needs to satisfy n1 ≥ 0 constraints of the form

RCi : attr i(e, c) ./i bound i, 0≤ i≤n1, (4.8)

where

• ./i∈ {<,≤,≥, >,=};

• bound i ∈ R is an acceptable bound that must be met by the i-th QoS attribute

and optimise n2 ≥ 1 objectives of the form

ROi : minimise attr i(e, c), n1 + 1≤ i≤n1 + n2 (4.9)

Example 4.6. The QoS requirements of the FX system (Table 4.1) comprise one con-

straint (R1) and three optimisation objectives (R2–R4). Table 4.4 shows the formalisa-

tion of these requirements in terms of the QoS attributes from Table 4.3.

101

4. IMPROVING RQV EFFICIENCY USING EVOLUTIONARY ALGORITHMS

Table 4.4: Formal specification of QoS requirements for the FX system

ID Formal description Type

R1 attr1(e, c) ≥ 0.98 constraint (4.8)

R2 minimise attr2(e, c) objective (4.9)

R3 minimise 1− attr1(e, c) objective (4.9)

R4 minimise attr3(e, c) objective (4.9)

Formalising The Reconfiguration Problem

The human-in-the-loop EvoChecker aims to identify as many as possible of the con-
figurations that capture the optimal trade-offs between the n2 objectives, subject to
satisfying the n1 constraints. To this end, we employ Pareto optimality theory [67] to
establish the Pareto front for the n2 objectives, i.e., the optimal trade-off surface of
these objectives. Once the Pareto front is determined, a system expert (i.e., the human
in the loop) can select the available configuration with the most suitable trade-off and
the corresponding configuration can be used to reconfigure the system. According to the
classification of techniques for solving multiobjective optimisation problems by Coello
et al. [50], this is an a posteriori variant since the searching process occurs before any
preference specification is carried out.

Consider a self-adaptive software system with configuration space Cfg , given by a
probabilistic model template T, and a set of QoS requirements that consists of n1 ≥ 0

constraints and n2 ≥ 1 optimisation objectives. Given the current environment state
e ∈ Env , the reconfiguration problem involves finding the Pareto-optimal set PS of
configurations from Cfg that satisfy the n1 constraints and are non-dominated with
respect to the n2 optimisation objectives:

PS = {c∈Cfg | (∀0≤ i≤n1 • attr i(e, c) ./i bound i)∧ (@c′ ∈ Cfg • c ≺ c′)} (4.10)

with the dominance relation ≺ : Cfg× Cfg→B (assuming minimisation of QoS objec-
tives) defined by

∀c, c′ ∈ Cfg • c ≺ c′ ≡ ∀ n1 + 1 ≤ i ≤ n1 + n2 • attr i(e, c) ≤ attr i(e, c
′) ∧

∃ n1 + 1 ≤ i ≤ n1 + n2 • attr i(e, c) < attr i(e, c
′).

102

4.1 EvoChecker

Finally, given the Pareto-optimal set PS , the Pareto front PF is defined by

PF = {(an1+1, an1+2, . . . , an1+n2) ∈ Rn2 |
∃c ∈ PS • ∀n1 + 1≤ i≤n1 + n2 • ai = attr i(e, c)},

(4.11)

so that the system expert can make informed decisions considering the trade-offs be-
tween QoS objectives (alongside any domain knowledge) when choosing between the
configurations within the set PS.

Approach Description

The human-in-the-loop EvoChecker finds a set of effective configurations that closely
approximates this Pareto-optimal set using evolutionary algorithms for multiobjective
optimisation (e.g., NSGA-II [57], SPEA2 [221], MOCell [166]). The high-level archi-
tecture of our human-in-the-loop EvoChecker approach is depicted in Figure 4.3. We
assume that a system engineer produces a probabilistic model template T that describes
the behaviour of the system and contains instances of the three ‘evolvable’ constructs
(Section 4.1.1). The template is given to a Template parser component that generates a
parametric probabilistic modelM . This model is supplied to aMonitor component used
by our approach. The parser also uses the encoding rules from Table 4.5 to extract the
configuration parameters c1, c2, ..., ck and to construct the configuration space Cfg. Us-
ing the appropriate probabilistic temporal logic (e.g., PCTL described in Section 2.1.2.1
for the FX system), the n QoS system attributes are formalised into mathematical for-
mulae Φ1, ...,Φn. These formulae are used by an Individual analyser component of our
solution. Finally, the n1 constraints and the n2 objectives are specified according to
(4.8) and (4.9), respectively. These elements along with the configuration space Cfg are
used to initialise the Multi-objective evolutionary algorithm component that plays the
main role in our approach.

At runtime, the Monitor obtains the current environment state e ∈ Env through
Sensors, either periodically or after relevant changes. This component produces an
updated modelM ′ in which the parameters associated with the state of the environment
are fixed. The Multi-objective evolutionary algorithm, then, creates a random initial
population and starts the search for Pareto-optimal solutions using a standard EA
approach, as summarised next.

This search involves evaluating different individuals (i.e., potential new system con-
figurations) through invoking an Individual analyser component that takes as inputs an

103

4. IMPROVING RQV EFFICIENCY USING EVOLUTIONARY ALGORITHMS

System
config. c

Multi-objective
evolutionary

algorithm

Individual

QoS attributes
attr1,...,attrn

Individual
analyser

Parametric
model M'

Monitor

Sensors

Model M''
Formula Φi

Environment
state e

QoS constraints (4.8)
and optimisation
 objectives (4.9)

Config. space
Cfg= V1x V 2x ... x V k

Formulae
Φ

1, Φ2, ... , Φn

QoS attribute
attri (eq. (4.7))

Probabilistic
model template T

Quantitative
verification

engine

Template
parser

Parametric
model M

EffectorsPareto front approximation PF,
Pareto-optimal set approximation PS

Config. selection
(human-driven)

Software
system

Figure 4.3: High-level human-in-the-loop EvoChecker architecture.

individual and the updated parametric model M ′. This component combines the two
inputs into a valid probabilistic model M ′′ in which the remaining parameters from M ′

are fixed using the values from the genes of the analysed individual. The Individual
analyser then invokes a Quantitative verification engine to determine the attributes
attr i, 1 ≤ i ≤ n, corresponding to the analysed system configuration. These attributes
are used by the Multi-objective evolutionary algorithm to establish whether the anal-
ysed individual satisfies the n1 QoS constraints. For each individual that satisfies these
constraints, the component determines the values associated with the n2 QoS objectives.

Once all individuals have been evaluated, the Multi-objective evolutionary algorithm
performs an assignment, reproduction and selection step. During assignment, the al-
gorithm establishes the fitness of each individual (e.g., its rank in the population, the
number of individuals that dominate it or the number of individuals which it dominates).
Fit individuals have higher probability to enter a “mating” pool and to be chosen for
reproduction and selection. With reproduction, the algorithm creates new individuals
from the mating pool by means of crossover and mutation. Crossover randomly se-
lects two fit individuals and exchanges genes between them to produce offspring with
potentially higher fitness values. Mutation, on the other hand, introduces variation in
the population by selecting an individual from the pool and creating an offspring by
randomly changing a subset of its genes. Finally, through selection, a subset of the
individuals from the current population and offspring becomes the new population that
will evolve in the next generation.

The Multi-objective evolutionary algorithm uses elitism, a strategy that directly
propagates into the next population a subset of the fittest individuals from the cur-
rent population. This strategy ensures the iterative improvement of the Pareto-optimal
approximation set PS and the Pareto front approximation PF . Elitism also guarantees

104

4.1 EvoChecker

Table 4.5: EvoChecker gene encoding rules

Evolvable feature of the EvoChecker gene(s)
probabilistic model template Type Cardinality Value range Vi

evolve int param[min..max]; int 1 {min,...,max}
evolve double param[min..max]; double 1 [min..max]

evolve distribution dist [min1..max1] . . .
. . . [minn..maxn]; double n

[min1..max1]
. . . [minn..maxn]

evolve module mod implementation1 endmodule
. . .
evolve module mod implementationm endmodule

int 1 {1, 2, ...,m}

convergence, meaning that if the global optimum (e.g., the Pareto front) is discovered,
the population will eventually converge to that optimum. Furthermore, the multi-
objective EAs used by EvoChecker maintain diversity in the population and generate
a Pareto-optimal approximation set spread as uniformly as possible across the search
space. To achieve this, they use algorithm-specific mechanisms suitable for diversity
preservation, e.g., by combining the nondomination level of each evaluated individual
and the population density in its area of the search space, by grouping individuals into
neighbourhoods that share their fitnesses, etc1.

The evolution of fitter individuals continues until one of the following termination
criteria is met: i) the allocated computation time is exhausted; ii) the maximum num-
ber of individual evaluations has been reached; or iii) no improvement in the quality
of the best individuals has been detected over a predetermined number of successive
iterations. When the evolution terminates, the set of nondominated individuals, i.e.,
the first front, is used to construct the Pareto-optimal approximation set PS and the set
of QoS attributes associated with each individual is used to assemble the Pareto front
approximation PF . If the number of optimisation objectives n2 ≤ 3, the Pareto front
approximation PF can be depicted graphically [194]; e.g., Figures 4.8 and 4.9. This
graphical representation enables visual inspection and decision making. In systems
where n2 > 3, visual inspection is possible only after fixing some of these objectives
to specific values. Front analysis can be also performed by presenting the fronts in a
matrix-based format. A system expert can then analyse the PS and PF sets and select
a configuration c ∈ PS to reconfigure the software system.

1 For example, NSGA-II [57] associates a nondominance level of 1 to all nondominated individuals of
a population, a level of 2 to the individuals that are not dominated when level-1 individuals are ignored
etc. Individuals not satisfying problem constraints receive a default level of ∞. SPEA2 [221] evaluates
population density as the inverse of the distance to the k-th nearest neighbour of the individual.

105

4. IMPROVING RQV EFFICIENCY USING EVOLUTIONARY ALGORITHMS

4.1.4 Automated EvoChecker

Similarly to the human-in-the-loop EvoChecker, the automated EvoChecker2 runs within
the closed control loop of an RQV-driven self-adaptive system. However, the incremen-
tal EvoChecker requires a relative prioritisation of the QoS objectives before starting
the search and does not involve human input to reconfigure the system after it starts
executing. This prioritisation can be in the form of a weight (i.e., a nonnegative con-
stant) assigned to each objective, by specifying an ordering for evaluating the objectives
etc. When the system fails to satisfy its QoS requirements or operates poorly, auto-
mated EvoChecker uses this prioritisation to find a new configuration that restores the
compliance and improves the state of the system.

To speed up the search for a new configuration, the automated EvoChecker builds on
the principles of incrementality (cf. Section 2.2.3.1) and exploits the fact that changes
in a self-adaptive system are typically localised [95]. As reported in other domains [123,
135], and also discussed in related work (Section 4.4), an effective initialisation of the
EA search can improve its convergence and can yield better-quality solutions. The
key idea is to maintain an archive of effective configurations identified during recent
reconfigurations of the self-adaptive system and to “seed” each EA search for a new
configuration with a subset of these recent configurations, which encode solutions to
potentially similar adverse events that the self-adaptive system experienced in the past.

Integrating the incrementality principles within the human-in-the loop EvoChecker
to generate the Pareto-optimal approximation set and the Pareto front approxima-
tion is a possible extension for this variant. Nevertheless, research in this direction
is limited [135] and the effect of its use in large-scale optimisation problems is open
to dispute [136]. Furthermore, maintaining an archive with several Pareto-optimal ap-
proximation sets from recent reconfigurations requires not only additional memory but
also specific techniques for clustering the individuals and selecting the most suitable for
seeding a new search. Most of the existing work (also discussed later in Section 4.4),
uses as a seed a subset of the Pareto-optimal set such as the corner cases (i.e., individu-
als that ignore all but one optimisation objective) [53, 118] or linear combinations (i.e.,
individuals whose objective values correspond to specific weights) [88, 124]. Despite the
common agreement about the usefulness of seeding, recent research fails to provide solid
justification why this holds for a combination of EA and fitness landscape or to suggest
any practical guidelines [88]. This is an interesting research question and needs further
investigation. Therefore, we propose this research as future work (see Section 7.2).

2As we explain here, we also call this EvoChecker variant “incremental”; the two names are used
interchangeably throughout the thesis.

106

4.1 EvoChecker

Formalising System QoS Requirements

The incremental EvoChecker, like its human-in-the-loop counterpart, uses the n ≥ 1

QoS attributes to formalise the QoS requirements of a software system. From these
requirements, n1 ≥ 0 are constraints. System compliance with the i-th constraint,
0 ≤ i ≤ n1, depends on the value of its i-th QoS attribute, given by (4.8).

The remaining requirements are expressed as a cost. A cost function specifies how
some or all of the n QoS attributes should be optimised. This function captures the
relation between the n QoS attributes and helps differentiating between multiple sys-
tem configurations satisfying the n1 QoS constraints. We define cost as a function
cost : X1 × X2 × . . . × Xn → R+, where Xi, 1 ≤ i ≤ n, is the value range associated
with the i-th attribute. Thus, for any (e, c) ∈ Env × Cfg

cost(attr1(e, c), attr2(e, c), ..., attrn(e, c)) ∈ R+ (4.12)

represents the cost corresponding to the evaluation of the n QoS attributes.
Possible examples of cost functions include lexicographic ordering, criterion-based,

ε-constrained and aggregation-based (e.g., linear and nonlinear) functions [50].

Example 4.7. Consider again the QoS requirements of the FX system from Table 4.1.

Requirement R1 is the only constraint (4.8), while requirements R2–R4 are used to

produce the cost function (4.12). Assuming an environment state e ∈ Env and a

linear aggregating function in which weights w1, w2, w3 > 0 express the desired trade-

off between the three QoS attributes, the constraint and cost functions are formally

specified in Table 4.6.

Table 4.6: Formal specification of QoS requirements for the FX system

ID Formal description Type

R1 attr1(e, c) ≥ 0.98 constraint (4.8)
R2–R4 minimise w1/attr1(e, c) + w2attr2(e, c) + w3attr3(e, c) cost (4.12)

107

4. IMPROVING RQV EFFICIENCY USING EVOLUTIONARY ALGORITHMS

Formalising the Reconfiguration Problem

In incremental EvoChecker, the desired trade-off between the objectives is specified
beforehand using the cost function (4.12). Therefore, the target is to identify the optimal
configuration that satisfies the n1 constraints and minimises the system cost. Depending
on the specification of the cost function and compared to all other solutions identified
during the search, the selected solution is Pareto optimal [50]. Referring again to the
classification of techniques for multiobjective optimisation problems [50], the automated
EvoChecker belongs to the a priori group since the importance of objectives is specified
prior to search.

Let Cfg be the configuration space of a self-adaptive software system, given by
the probabilistic model template T. The system QoS requirements comprise n1 ≥ 0

constraints (4.8) and a cost (4.12). Given the current environment state e ∈ Env , the
reconfiguration problem involves finding a configuration c ∈ Cfg such that

∀ 0 ≤ i ≤ n1 • attr i(e, c) ./i bound i ∧

∀c′ ∈ Cfg • (∀ 0 ≤ i ≤ n1 • attr i(e, c′) ./i bound i) =⇒

cost(attr1(e, c), attr2(e, c), ..., attrn(e, c)) ≤

cost(attr1(e, c′), attr2(e, c′), ..., attrn(e, c′))

(4.13)

Approach Description

Adverse events change the state of the environment and invalidate an existing configu-
ration, triggering the search for a new effective configuration at runtime. Some of these
environment states have similar impact on system components while others are likely to
occur multiple times during system operation [95]. Our incremental EvoChecker aims to
exploit this characteristic of real-world systems, and in particular, to exploit the knowl-
edge that can be gained from recent reconfigurations of a self-adaptive system. To this
end, we maintain an archive of configurations generated during recent adaptations and
use this archive to seed the initial population of a new EA search.

Starting with an empty archive, the incremental EvoChecker iteratively builds the
archive used for the next reconfiguration using an archive updating strategy. This strat-
egy selects configurations from the final EA population associated with the current
event. The configurations within this population are ordered according to a prefer-
ence relation that comprises the following criteria: ¬ an individual that meets all n1

constraints is preferred over an individual that violates one or more constraints;

108

4.1 EvoChecker

for any two individuals that satisfy all constraints, the individual with the lowest cost
is preferred; and ® for any two individuals that both violate at least one constraint,
the individual with the lowest overall violation is preferred. The ordered configuration
set (with the preference relation), the archive and the archive updating strategy σ are
formally described by the following definitions.

Definition 4.4. Let e ∈ Env be an environment state that affected a self-adaptive sys-

tem. Let also violation : Env × Cfg → R+ be a function that quantifies the level of

violation of the n1 QoS constraints for each combination (e, c) ∈ Env × Cfg. Then,

a set of configurations created by an EA in response to state e is a totally ordered set

Ce ⊆ Cfg where

∀c, c′ ∈ Ce • c < c′ ≡
∀1 ≤ i ≤ n1•attr i(e, c) ./i boundsi ∧ ∃1 ≤ i ≤ n1•¬(attr i(e, c

′) ./i boundsi)
∨

¬

∀1 ≤ i ≤ n1 • attr i(e, c) ./i boundsi ∧ attr i(e, c
′) ./i boundsi ∧

cost(attr1(e, c), attr2(e, c), ..., attrn(e, c)) <

cost(attr1(e, c′), attr2(e, c′), ..., attrn(e, c′))
∨

∃1 ≤ i, j ≤ n1 • ¬(attr i(e, c) ./i boundsi) ∧ ¬(attr j(e, c
′) ./j boundsj) ∧

violation(e, c) < violation(e, c′)

®

Definition 4.5. Let Ce ⊆ Cfg be the (ordered) set of configurations created in response

to a change in the environment state e ∈ Env and Arch be the archive before the change.

Then an archive updating strategy is a function σ : Cfg → B such that the archive of

configurations for the next environment state e′ ∈ Env is calculated as the set

Arch ′ = {c ∈ Arch ∪ Ce | σ(c)} (4.14)

Depending on the criteria specified for revising the archive, there are several possible
implementations for the archive updating strategy σ. For instance, a strategy could be:
i) prohibitive, i.e., maintain an empty archive; ii) selective, i.e., use a subset of the best
configurations from the current adaptation step; or iii) complete, i.e., use the entire
set of configurations from the current adaptation step. The general principle, though,
is that a configuration is “worthy” of inclusion in the archive if it could provide extra
knowledge and help to solve faster the reconfiguration problem (4.13).

109

4. IMPROVING RQV EFFICIENCY USING EVOLUTIONARY ALGORITHMS

We formally define below four different archive updating strategies that we used to
evaluate the incremental EvoChecker (Section 4.3). Let position : Ce → {1, 2, . . . , |Ce|}
be a function that indicates the position of a configuration c ∈ Ce, i.e., position(c) =

|c′ ∈ Ce \ {c}|c′ < c|+ 1.

A prohibitive strategy does not retain any configurations in the archive, given by

σ(c) = false, ∀c ∈ Arch ∪ Ce (4.15)

A complete recent strategy uses the entire population of configurations from the
current adaptation step and removes the previous configurations from the archive, given
by

σ(c) =

{
true, if c ∈ Ce
false, otherwise

(4.16)

A limited recent strategy keeps the x, 0 ≤ x ≤ |Ce|, best configurations from the
current adaptation step and removes the previous configurations from the archive, given
by

σ(c) =

{
true, if c ∈ Ce and position(c) ≤ x
false, otherwise

(4.17)

A limited deep strategy accumulates the x, 0 ≤ x ≤ |Ce| best configurations from all
previous adaptation steps, given by

σ(c) =

true, if c ∈ Ce and position(c) ≤ x
true, if c ∈ Arch

false, otherwise
(4.18)

Note that the limited deep strategy yields archives that grow in size after each adap-
tation step. If the archive size exceeds the initial size of the EA population, a subset of
the individuals from the archive must be chosen to seed the new EA search. Possible
methods to deal with this include i) discarding the least recently used individuals (in
which case the individuals must be timestamped); or ii) performing a random selection.

The high-level architecture of the incremental EvoChecker is shown in Figure 4.4.
We briefly present the overall approach but focus on the elements distinct from the
human-in-the-loop EvoChecker. A Template parser uses a probabilistic model template
T and the encoding rules from Table 4.5 to extract the configuration space Cfg and the
parametric modelM . The n QoS attributes are formalised into formulae Φ1,Φ2, . . . ,Φn

110

4.1 EvoChecker

System
config. c

Archive

Individual

QoS attributes
attr1,...,attrn

Individual
analyser

Parametric
model M'

Monitor

Sensors

Model M''
Formula Φi

Environment
state e

QoS constraints (4.8)
and cost (4.12)

Config. space
Cfg= V1x V 2x ... x V k

Formulae
Φ

1, Φ2, ... , Φn

QoS attribute
attri (eq. (4.7))

Probabilistic
model template T

Quantitative
verification

engine

Template
parser

Parametric
model M

Effectors

Software
system

Evolutionary
algorithm with

strategy σ

Figure 4.4: High-level automated EvoChecker architecture.

using the probabilistic temporal logic for model M , while the specifications for the n1

QoS constraints and the system cost conform to (4.8) and (4.12), respectively.

While the system is operating, the current environment state e ∈ Env is provided
to a Monitor component, which in turn updates the parametric model M ′ by assigning
values to the parameters corresponding to the state of the environment. Before starting
the search for a new effective configuration, the Evolutionary algorithm uses the Archive
Arch to create the initial EA population. To this end, configurations within the archive
are imported into the population. If the population is not complete, new individuals
are generated randomly.

The assignment, reproduction and selection steps are similar to the human-in-the-
loop EvoChecker. For each individual, an Individual analyser component extracts its
gene values and produces a valid probabilistic modelM ′′ which is then used to establish
the values of the n QoS attributes. The Evolutionary algorithm uses this information to
identify whether an individual complies with the n1 constraints, and if this holds, the
associated cost is calculated. Next, an offspring is created in two steps: i) an assign-
ment step assigns a fitness value to each individual, which increases the likelihood for
choosing individuals with good fitness; and ii) a reproduction step creates new individ-
uals using crossover and mutation. The elitist Evolutionary algorithm then performs a
selection step through which it generates the new population that will evolve in the next
generation, using a subset of the individuals from the current population and offspring.

When one of the termination criteria is satisfied, the EA stops executing. The best
individual from the final population is the solution to the optimal reconfiguration prob-
lem (4.12) and is used to adapt the software system. Finally, incremental EvoChecker
employs an archive updating strategy σ, e.g., (4.15)–(4.18), to select some configurations
from the last population and build the archive Arch ′ (4.14) for the next EA search.

111

4. IMPROVING RQV EFFICIENCY USING EVOLUTIONARY ALGORITHMS

4.2 Implementation

We automated the EvoChecker approach by implementing a tool that supports both the
human-in-the-loop and the automated EvoChecker variants. To this end, the Quantita-
tive verification engine and the (Multi-objective) Evolutionary algorithm components
integrate the probabilistic model checker PRISM [149] and the Java-based framework
for multi-objective optimization with metaheuristics jMetal [66], respectively. We de-
veloped the remaining components in Java, using the Antlr3 parser generator to build
the Template parser, and implementing the Individual analyser, Monitor, Sensor, and
Effector components specifically for the EvoChecker tool. The open-source code of
EvoChecker, the full experimental results summarised in the following section, addi-
tional information about EvoChecker and the case studies used for its evaluation are
available at http://www-users.cs.york.ac.uk/~simos/EvoChecker.

4.3 Evaluation

We performed extensive experiments to evaluate the effectiveness of the two EvoChecker
variants. Among the techniques comprising the EAs family (e.g., genetic algorithms,
evolution strategies, differential evolution), we used genetic algorithms (GAs) to re-
alise the Evolutionary algorithm component from Figures 4.3 and 4.4. We made this
decision due to the proven competence of GAs in the area of search-based software en-
gineering [9, 175]. See also Section 4.4 for a discussion of related work. As we explain
later in more details, for the human-in-the-loop EvoChecker we use multi-objective ge-
netic algorithms (MOGAs), while for the automated EvoChecker we employ a single
objective (generational) GA. Experimenting with other EA types is outside the scope
of this thesis.

In Sections 4.3.1 and 4.3.2, we describe the evaluation procedure and the results
obtained for the human-in-the-loop and automated EvoChecker, respectively. For each
variant, we introduce the research questions that guided the experimental process, we
describe the experimental setup including the self-adaptive software systems used in
the evaluation, we illustrate the methodology followed for obtaining and analysing the
results, and finally we present and discuss our findings. We conclude the evaluation
with a review of threats to validity (Section 4.3.3).

3http://www.antlr.org

112

http://www-users.cs.york.ac.uk/~simos/EvoChecker
http://www.antlr.org

4.3 Evaluation

4.3.1 Human-in-the-Loop EvoChecker Evaluation

4.3.1.1 Research Questions

The aim of our experimental evaluation was to answer the following research questions.

RQ1 (Validation): How does human-in-the-loop EvoChecker perform com-
pared to random search? We used this research question to establish if this
EvoChecker variant “comfortably outperforms a random search” [116], as expected
of effective search-based software engineering solutions.

RQ2 (Comparison): How do human-in-the-loop EvoChecker instances using
different MOGAs perform compared to each other? Since we devised
human-in-the-loop EvoChecker to work with any MOGA, we examined the results
produced by EvoChecker instances using three established such algorithms (i.e.,
NSGA-II [57], SPEA2 [221], MOCell [166]).

RQ3 (Insights): Can human-in-the-loop EvoChecker provide insights into
the trade-offs between the QoS attributes of alternative software archi-
tectures and configurations? To support system experts in their decision
making, EvoChecker must provide insights into the trade-offs between multiple
QoS objectives. To address this question, we identified a range of decisions sug-
gested by the EvoChecker results for the software systems considered in our eval-
uation.

4.3.1.2 Experimental Setup

The experimental evaluation comprised multiple scenarios associated with two soft-
ware systems from different application domains. We evaluated the human-in-the-
loop EvoChecker on a software-controlled dynamic power management (DPM) system
adapted from [174, 188] and described in Appendix B, and on the foreign exchange
(FX) self-adaptive service-based system described in Section 4.1.

We performed a wide range of experiments using the system instances from Ta-
ble 4.7. The column ‘Details’ reports the capacity of the two request queues (QmaxH
and QmaxL) and the number of power managers available (m = 2) for the DPM system;
and the number of third-party implementations for each service of the FX system4. The

4The n = 8 services used by FX_Large correspond to using two-part composite service implemen-
tations for the Technical analysis and Fundamental analysis services from Figure 4.1

113

4. IMPROVING RQV EFFICIENCY USING EVOLUTIONARY ALGORITHMS

Table 4.7: Analysed system variants for the human-in-the-loop EvoChecker

Variant Details Size Trun[s]

DPM_Small QmaxH,L∈{1, ..., 10}, m=2 2E+14 0.1050

DPM_Medium QmaxH,L∈{1, ..., 15}, m=2 4.5E+14 0.2118

DPM_Large QmaxH,L∈{1, ..., 20}, m=2 8E+14 0.3796

FX_Small n1 = · · · = n4 = 3, n5 = n6 = 1 8.49E+31 0.0858

FX_Medium n1 = · · · = n6 = 4 2.05E+65 0.1695

FX_Large n1 = · · · = n8 = 4 1.21E+87 0.4162

column ‘Size’ lists the configuration space size assuming a two-decimal points discreti-
sation of the real parameters and probability distributions of the probabilistic model
template (cf. Table 4.5). Given the nonlinearity of most probabilistic models, this is
the minimum precision we could assume as an 0.01 increase or decrease in one of these
parameters can have a significant effect in the evaluation of a QoS attribute. Finally,
the column ‘Trun’ shows the average running time per system variant for evaluating a
configuration. Note that the EvoChecker run time depends on the size of model M and
the time consumed by the probabilistic model checker to establish the n1 + n2 QoS
attributes from (4.7) and on the computer used for the evaluation.

We conducted a two-part evaluation for the human-in-the-loop EvoChecker. First, to
assess the stochasticity of this EvoChecker variant when different MOGAs are adopted
and also to eliminate the possibility that any observations may have been obtained by
chance, we used specific scenarios for the system variants from Table 4.7. In these
scenarios, the parameters used for the DPM system variants (power usage, transition
rates etc) correspond to the real-world system [174, 188], while for the FX system
variants we chose realistic values for the reliability, performance and cost of third-party
services implementations. Second, to mitigate further the risk of accidentally choosing
values that biased the EvoChecker evaluation, we defined a set of 30 different adaptation
scenarios per FX system variant with varied services characteristics for each scenario.

4.3.1.3 Evaluation Methodology

We used the following MOGAs to evaluate the human-in-the-loop EvoChecker:

NSGA-II [57]: Given a population of individuals, NSGA-II establishes the fitness of
each individual, then sorts each individual based on Pareto dominance and creates
an offspring by means of mutation and crossover. It then ranks the combined

114

4.3 Evaluation

individuals from the population and offspring to generate sets of nondominated
vectors as follows: all nondominated individuals that belong to the Pareto front are
in rank 1, nondominated individuals after removing those individuals (in rank 1)
comprise rank 2, and so on. Then for each rank, a crowding distance is computed
for all the individuals in that rank. A new population is created using the best
ranks, and if not all individuals from the same rank can be selected, the algorithm
uses the crowding distance to select the most promising (diverse) individuals.

SPEA2 [221]: This is an archive-based algorithm that uses an external archive for
storing nondominated individuals found during the search. The fitness of each
individual is based on a strength metric, i.e., a combination of the number of in-
dividuals it dominates and the number of individuals it is dominated by, and a
density estimation metric which indicates its distance from its k-th nearest neigh-
bour. At the end of each generation, nondominated individuals are propagated
into the archive. If the archive is full, SPEA2 uses an archive truncating opera-
tor to discard the individuals with the minimum distance to another individual
(keeping boundary individuals). If the archive has available spaces, it is filled with
the best dominated individuals (i.e., those with the minimum fitness) from the
population. Next, a subset of individuals from the archive is selected, and after
crossover and mutation, the generated offspring becomes the new population.

MOCell [166]: This is a cellular archive-based (like SPEA2) algorithm in which the
population is structured in a multidimensional grid. The individuals form a set
of overlapping neighbourhoods and an individual can cooperate only with mem-
bers from its neighbourhood. Thus, for each individual an offspring is created by
selecting two parents from its neighbourhood, and applying then crossover and
mutation. That particular individual is replaced by its offspring if the former
is Pareto dominated or if both are nondominated and the individual has lower
crowding distance (in the neighbourhood) than the offspring. Nondominated in-
dividuals can enter the archive only if they have higher crowding distance than at
least one individual from the archive. Finally, through a MOCell-specific feedback
mechanism, a subset of individuals from the archive replace a corresponding sub-
set of randomly selected individuals from the population. The updated population
participates in the next generation.

In line with the standard practice for evaluating the performance of stochastic op-
timisation algorithms [10], we performed multiple (i.e., 30) independent runs for each
system variant from Table 4.7 and each multiobjective optimisation algorithm, i.e.,

115

4. IMPROVING RQV EFFICIENCY USING EVOLUTIONARY ALGORITHMS

NSGA-II, SPEA2, MOCell and random search. Each run comprised 10,000 evaluations,
each using a different initial population of 100 individuals, single-point crossover with
probability pc = 0.9, and single-point mutation with probability pm = 1/np, where
np is the number of configuration parameters for a particular system variant. All the
experiments were run on a CentOS Linux 6.5 64bit server with two 2.6GHz Intel Xeon
E5-2670 processors and 32GB of memory.

Obtaining the actual Pareto front for our system variants is unfeasible because of
their very large configuration spaces. Therefore, we adopted the established practice
[220] of comparing the Pareto front approximations produced by each algorithm with
the reference Pareto front comprising the nondominated solutions from all the runs
carried out for the analysed system variant. For this comparison, we employed the
widely-used Pareto-front quality indicators below, and we will present their means and
box plots as measures of central tendency and distribution, respectively:

Iε (Unary additive epsilon) [223]. This is the minimum additive term by which
the elements of the objective vectors from a Pareto front approximation must be
adjusted in order to dominate the objective vectors from the reference front. This
indicator presents convergence to the reference front and is Pareto compliant5.
Smaller Iε values denote better Pareto front approximations.

IHV (Hypervolume) [222]. This indicator measures the volume in the objective space
covered by a Pareto front approximation with respect to the reference front (or a
reference point). It measures both convergence and diversity, and is strictly Pareto
compliant [219]. Larger IHV values denote better Pareto front approximations.

IIGD (Inverted Generational Distance) [202]. This indicator gives an “error mea-
sure” as the Euclidean distance in the objective space between the reference front
and the Pareto front approximation. IIGD shows both diversity and convergence to
the reference front. Smaller IIGD values signify better Pareto front approximations.

We used inferential statistical tests to compare these quality indicators across the
four algorithms [10, 117]. As is typical of multiobjective optimisation [220], the Shapiro-
Wilk test showed that the quality indicators were not normally distributed, so we used
the Kruskal-Wallis non-parametric test with 95% confidence level (α=0.05) to analyse
the results without making assumptions about the distribution of the data or the homo-
geneity of its variance. We also performed a post-hoc analysis with pairwise comparisons

5Pareto compliant indicators do not “contradict” the order introduced by the Pareto dominance
relation on Pareto front approximations [219].

116

4.3 Evaluation

between the four algorithms using Dunn’s pairwise test, controlling the family-wise error
rate with the Bonferroni correction pcrit=α/k, where k is the number of comparisons.

4.3.1.4 Results and Discussion

RQ1 (Validation). We carried out the experiments described in the previous sec-
tion and we report their results in Tables 4.9–4.11, and Figures 4.5–4.7. To allow for
a fair comparison across the experiments comprising the 30 different FX adaptation
scenarios, in Table 4.11 and Figure 4.7, and to avoid undesired scaling effects, we nor-
malise the results obtained for each quality indicator per experiment within the range
[0,1]. The ‘+’ from the last column of the table entries indicate that the Kruskal-Wallis
test showed significant difference among the four algorithms (p-value<0.05) for all six
system variants and all Pareto-front quality indicators.

For both systems, human-in-the-loop EvoChecker with any MOGA achieved consid-
erably better results than random search, for all quality indicators and system variants.
The post hoc analysis of pairwise comparisons between random search and the MO-
GAs provided statistical evidence about the superiority of the MOGAs for all system
variants and for all quality indicators. The best and, when obtained, the second best
outcomes of this analysis per system variant and quality indicator are shaded and lightly
shaded in the result tables, respectively. This superiority of the results obtained using
EvoChecker with any of the MOGAs over those produced by random search can also
be seen from the boxplots in Figures 4.5–4.7.

We qualitatively support our findings by showing in Figures 4.8 and 4.9 the Pareto
front approximations achieved by EvoChecker with each of the MOGAs and by random
search, for a typical run of the experiment for the DPM and FX system variants, respec-
tively. We observe that irrespective of the MOGA, EvoChecker achieves Pareto front
approximations with more, better spread and higher quality nondominated solutions
than random search.

Considering all these results, we have strong empirical evidence that the human-
in-the-loop EvoChecker significantly outperforms random search, for a range of system
variants from two different domains, and across multiple widely-used MOGAs. This
also confirms the challenging and well-formulated nature of the multi-objective reconfig-
uration problem we introduced in Section 4.1.3.

117

4. IMPROVING RQV EFFICIENCY USING EVOLUTIONARY ALGORITHMS

RQ2 (Comparison). To compare EvoChecker instances based on different MOGAs,
we first observe in Tables 4.9–4.11 that NSGA-II and SPEA2 outperformed MOCell for
all system variant–quality indicator combinations except DPM_Small (IIGD). Between
SPEA2 and NSGA-II, the former achieved slightly better results for the smaller con-
figuration spaces of the DPM system variants (across all indicators) and for the IHV
indicator (across all system variants), whereas NSGA-II yielded Pareto-front approxi-
mations with better Iε and IIGD indicators for the larger configuration spaces of the
FX system variants (except the combination FX_Small (Iε)).

Additionally, we carried out the post-hoc analysis described in Section 4.3.1.3, for
9 system variants (counting separately the FX system variants with chosen services
characteristics and those comprising the adaptation scenarios) × 3 quality indicators =
27 tests. Out of these tests, 22 tests (i.e., a percentage of 81.4%) showed high statistical
significance in the differences between the performance achieved by EvoChecker with
different MOGAs (Table 4.8). The five system variant–quality indicator combinations
for which the tests were unsuccessful are: FX_Medium (Iε), FX_Small_Adapt (Iε),
FX_ Medium_Adapt(Iε), FX_Small(IIGD) and FX_Medium(IIGD).

These results show that, like for any well-formulated optimisation problem, different
algorithms are more suitable in dealing with specific problems. They also confirm
the generality of human-in-the-loop EvoChecker, showing that its functionality can be
realised using multiple established MOGAs.

Table 4.8: System variants for which the MOGAs in rows are significantly better than
the MOGAs in columns

NSGA-II SPEA2 MOCell

1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9

N
S
G
A
-I
I

Iε 3 3 3 3
IHV 3 3 3 3 3 3 3
IIGD 3 3

S
P
E
A
2 Iε 3 3 3 3 3 3 3

IHV 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
IIGD 3 3 3 3 3 3 3 3 3

M
O
C
el
l

Iε
IHV
IIGD 3 3 3

Key: 1:DPM_Small, 2:DPM_Medium, 3:DPM_Large, 4:FX_Small, 5:FX_Medium,
6:FX_Large, 7:FX_Small_Adapt, 8:FX_Medium_Adapt, 9:FX_Large_Adapt

118

4.3 Evaluation

Table 4.9: Mean quality indicator values for a specific scenario of the DPM system
variants from Table 4.7

Variant NSGA-II SPEA2 MOCell Random

Iε (Epsilon)
DPM_Small 0.0209 0.0130 0.0242 0.1403 +
DPM_Medium 0.0225 0.0123 0.0489 0.1996 +
DPM_Large 0.0229 0.0147 0.0884 0.2497 +

IHV (Hypervolume)
DPM_Small 0.4455 0.4458 0.4396 0.4022 +
DPM_Medium 0.4487 0.4499 0.4386 0.3946 +
DPM_Large 0.4528 0.4549 0.4395 0.3947 +

IIGD (Inverted Generational Distance)
DPM_Small 0.00023 0.00018 0.00016 0.00062 +
DPM_Medium 0.00024 0.00019 0.00028 0.00091 +
DPM_Large 0.00024 0.00020 0.00038 0.00109 +

0.00

0.10

0.20

0.30

0.40

0.50

0.40

0.50

NS
GA

-II

SP
EA
2

M
OC

ell

Ra
nd
om

0.000

0.001

0.002

NS
GA

-II

SP
EA
2

M
OC

ell

Ra
nd
om

NS
GA

-II

SP
EA
2

M
OC

ell

Ra
nd
om

DPM_Small DPM_Medium DPM_Large

Iε Iε Iε

IHV IHV IHV

IIGD IIGD IIGD

Figure 4.5: Boxplots for a specific scenario of the DPM system variants from Table 4.7,
evaluated using the quality indicators Iε, IHV and IIGD.

119

4. IMPROVING RQV EFFICIENCY USING EVOLUTIONARY ALGORITHMS

Table 4.10: Mean quality indicator values for a specific scenario of the FX system variants
from Table 4.7

Variant NSGA-II SPEA2 MOCell Random

Iε (Epsilon)
FX_Small 0.6258 0.5083 0.6745 2.2274 +
FX_Medium 1.6379 2.0105 2.0486 6.1529 +
FX_Large 3.8528 5.2777 4.6366 13.0234 +

IHV (Hypervolume)
FX_Small 0.611 0.628 0.608 0.593 +
FX_Medium 0.719 0.725 0.702 0.606 +
FX_Large 0.657 0.675 0.633 0.555 +

IIGD (Inverted Generational Distance)
FX_Small 0.00123 0.00129 0.00125 0.00145 +
FX_Medium 0.00192 0.00207 0.00200 0.00316 +
FX_Large 0.00244 0.00255 0.00272 0.00395 +

0.00
3.00
6.00
9.00
12.00
15.00
18.00

0.50

0.60

0.70

0.80

NS
GA

-II

SP
EA
2

M
OC

ell

Ra
nd
om

0.001

0.002

0.003

0.004

NS
GA

-II

SP
EA
2

M
OC

ell

Ra
nd
om

NS
GA

-II

SP
EA
2

M
OC

ell

Ra
nd
om

FX_Small FX_Medium FX_Large

Iε Iε Iε

IHV IHV IHV

IIGD IIGD IIGD

Figure 4.6: Boxplots for a specific scenario of the FX system variants from Table 4.7,
evaluated using the quality indicators Iε, IHV and IIGD.

120

4.3 Evaluation

Table 4.11: Mean quality indicator values across 30 different adaptation scenarios for the
FX system variants from Table 4.7

Variant NSGA-II SPEA2 MOCell Random

Iε (Epsilon)
FX_Small 0.2212 0.2209 0.2272 0.6200 +
FX_Medium 0.3393 0.3664 0.3645 0.7568 +
FX_Large 0.3396 0.3764 0.3625 0.7970 +

IHV (Hypervolume)
FX_Small 0.9374 0.9914 0.9337 0.9016 +
FX_Medium 0.9514 0.9848 0.9219 0.8138 +
FX_Large 0.9467 0.9804 0.8962 0.7868 +

IIGD (Inverted Generational Distance)
FX_Small 0.6365 0.5348 0.6390 0.8000 +
FX_Medium 0.5919 0.5790 0.6114 0.7957 +
FX_Large 0.5887 0.5622 0.6561 0.8884 +

0.00

0.20

0.40

0.60

0.80

1.00

I ε

0.70

0.80

0.90

1.00

I H
V

NSGA-II

SPEA2

M
OCell

Random

0.20

0.40

0.60

0.80

1.00

I I
G
D

NSGA-II

SPEA2

M
OCell

Random

NSGA-II

SPEA2

M
OCell

Random

FX_Small FX_Medium FX_Large

Figure 4.7: Boxplots for the FX system variants from Table 4.7 across 30 different adap-
tation scenarios, evaluated using the quality indicators Iε, IHV and IIGD.

121

4. IMPROVING RQV EFFICIENCY USING EVOLUTIONARY ALGORITHMS

0.80
1.20

1.60
2.00

0.00
0.03

0.06
0.09

0.12
0.0

2.5

5.0

7.5

Q
u

e
u

e
 l

e
n

g
th

q
H
 +

 q
L

SPEA2

Random

Lost requests Power use [W]

(a) DPM_Small

0.00
0.03

0.06
0.09

0.12
Lost requests

0.80
1.20

1.60
2.00

Power use [W]

0

3

6

9

12 NSGA-II

Random

Q
u

e
u

e
 l

e
n

g
th

q
H
 +

 q
L

(b) DPM_Medium

0.80
1.20

1.60
2.00

Power use [W]

0.00
0.03

0.06
0.09

0.12
Lost requests

0

4

8

12

Q
u

e
u

e
 l

e
n

g
th

q
H
 +

 q
L

NSGA-II

SPEA2

MOCell

Random

(c) DPM_Large

Figure 4.8: Typical Pareto front approximations for the DPM system variants and opti-
misation objectives R3–R5 from Table B.2.

122

4.3 Evaluation

0.96
0.92

1.00

3045607590

16

18

20

22

Relia
bilit

y

Cost

T
im

e
 [

s]
NSGA-II

SPEA2

MOCell

Random

(a) FX_Small

Relia
bilit

y0.96
0.92

1.00

20406080100

16

20

24

28

Cost

T
im

e
 [

s]

NSGA-II

SPEA2

MOCell

Random

(b) FX_Medium

0.96
0.92

1.00

6090120150

30

35

40

25

45

Relia
bilit

y

Cost

T
im

e
 [

s]

NSGA-II

SPEA2

MOCell

Random

(c) FX_Large

Figure 4.9: Typical Pareto front approximations for the FX system variants and optimi-
sation objectives R2–R4 from Table 4.4.

123

4. IMPROVING RQV EFFICIENCY USING EVOLUTIONARY ALGORITHMS

RQ3 (Insights). We performed qualitative analysis of the Pareto front approxima-
tions produced by EvoChecker, in order to identify actionable insights. We present this
for the FX and DPM Pareto front approximations from Figures 4.8 and 4.9, respectively.

First, the EvoChecker results enable the identification of the “point of diminishing
returns” for each system variant. The results from Figure 4.9 show that configura-
tions with costs above approximately 52 for FX_Small, 61 for FX_Medium and 94 for
FX_Large provide only marginal response time and reliability improvements over the
best configurations achievable for these costs. Likewise, the results in Figure 4.8 show
that DPM configurations with power use above 1.7W yield insignificant reductions in
the number of lost requests, whereas configurations with even slightly lower power use
lead to much higher request loss. This key information helps system experts to avoid
unnecessarily expensive solutions.

Second, we note the high density of solutions in the areas with low reliability (below
0.95) for the FX system in Figure 4.9, and with high request loss (above 0.09) for the
DPM system in Figure 4.8. For the FX system, for instance, these correspond to the use
of the probabilistic invocation strategy, for which numerous service combinations can
achieve similar reliability and response time with relatively low, comparable costs. Opt-
ing for a configuration from this area will make the FX system susceptible to failures, as
when the only implementation invoked for an FX service fails, the entire workflow exe-
cution will also fail. In contrast, reliability values above 0.995 correspond to expensive
configurations that use the sequential selection strategy; e.g., FX_Small must use the
sequential strategy for the Market watch and Fundamental analysis services in order to
achieve 0.996 reliability.

Third, the EvoChecker results reveal configuration parameters that QoS attributes
are particularly sensitive to. For the FX system, for example, we noticed a strong
dependency of the workflow reliability on the service invocation strategy and the number
of implementations used for each service. Configurations from high-reliability areas of
the Pareto front not only use the sequential strategy, but also require multiple services
per FX service (e.g., three FX service providers are needed for success rates above 0.99).

Finally, we note EvoChecker’s ability to produce solutions that: i) cover a wide range
of values for the QoS attributes from the optimisation objectives of the FX and DPM
systems; and ii) include alternatives with different trade-offs for fixed values of one of
these attributes. Thus, for 0.99 reliability, the experiment from Figure 4.9 generated
four alternative FX_Large configurations, each with a different cost and execution
time. Similar observations can be made for a specific value of either of the other two
QoS attributes. These results support the system experts in their decision making.

124

4.3 Evaluation

4.3.2 Automated EvoChecker Evaluation

4.3.2.1 Research Questions

We evaluated the automated EvoChecker to answer the research questions below.

RQ4 (Correctness): Can automated EvoChecker support dependable adap-
tation? With this research question we examine whether our approach can iden-
tify new effective configurations at runtime and if it can achieve this efficiently.

RQ5 (Validation): How does automated EvoChecker perform compared to
random search? Following the standard practice in search-based software en-
gineering [117], with this research question we aim to determine whether our
approach “comfortably” outperforms random search.

RQ6 (Insights): How do instances of automated EvoChecker based on dif-
ferent archive updating strategies compare to each other? We used this
research question to analyse the impact of various archive updating strategies in the
performance of an EA. To this end, we study whether specific strategies improve
the quality of an EA search and/or help identifying faster an effective configura-
tion. We also investigate possible relationships between archive updating strategies
and specific adaptation events.

4.3.2.2 Experimental Setup

For the experimental evaluation, we used two self-adaptive software systems from diverse
application domains: i) the embedded UUV system from Section 2.2.1.1; and ii) the
real-world foreign exchange (FX) service-based system from Section 4.1.

To evaluate the incremental EvoChecker for multiple configuration space sizes, we
applied it to each of the system instances from Table 4.12. The column ‘Details’ shows
for the UUV system the number of sensors, their measurement rates and the UUV
speed, while for the FX system the number of third-party implementations for each
service. The column ‘Size’ reports the size of the configuration space that an exhaustive
search would need to explore using two-decimal precision for the real parameters and
probability distributions of the probabilistic model template (cf. Table 4.5). Finally, the
column ‘Trun’ shows the average time required by incremental EvoChecker to evaluate
a configuration on a 2.6GhZ Intel Core i5 Macbook Pro computer with 16GB memory,
running Mac OSX 10.9.

125

4. IMPROVING RQV EFFICIENCY USING EVOLUTIONARY ALGORITHMS

Table 4.12: Analysed system variants for the incremental EvoChecker

Variant Details Size Trun[s]

UUV_Medium n = 5, r1, r2, . . . , r5 ∈ [0Hz, 8Hz], sp ∈ [0, 10m/s] 1.04E+19 0.0076

UUV_Large n = 10, r1, r2, . . . , r10∈ [0Hz, 8Hz], sp∈ [0, 10m/s] 1.09E+35 0.1622

FX_Small n1 = · · · = n4 = 3, n5 = n6 = 1 8.49E+31 0.0312

FX_Medium n1 = · · · = n6 = 4 2.05E+65 0.0953

Moreover, we wanted to assess whether the use of an archive and a corresponding
archive updating strategy has any effect on incremental EvoChecker. To this end, we
performed a preliminary investigation aiming to identify several changes that cause
each UUV and FX variant to adapt. These changes cover a wide range of the possible
values that the observable parameters of each system variant can take (Table 4.13).
Due to these changes, the systems experience problems while providing service (e.g.,
service degradation, violation of QoS requirements) and therefore are forced to adapt.
Sensors in the UUV variants, beyond normal behaviour, encounter periods of unexpected
changes (C1-C12) during which their rates change dramatically, including sensor failures
and recovery from these failures, and significant variation in measurement rates. In
FX, we define 13 changes (C1–C13) comprising sudden minor or significant increase in
response time and decline in reliability of service implementations, and complete failure
or recovery of service implementations.

4.3.2.3 Evaluation Methodology

Given that the optimisation of QoS objectives in the incremental EvoChecker is defined
by a cost function (4.12), we opted for an elitist single objective GA. Recall that an
elitist GA propagates the best individuals to the next generation. With elitism, if the
GA discovers the best solution, then the entire population will eventually converge to
this solution.

To investigate whether different archive updating strategies (cf. Def. 4.5) can im-
prove the efficiency of incremental EvoChecker, we realised the strategies from (4.15)–
(4.18). To this end, we created four different GA variants, each enhanced with one of
the following archive updating strategies:

PGA: a prohibitive strategy (4.15) that does not keep any configurations in the archive.
Thus, a search for a new configuration starts without using any prior knowledge.

126

4.3 Evaluation

Table 4.13: Changes in environment state of system variants used in automated EvoChecker

ID UUV_Medium UUV_Large FX_Small FX_Medium

C1 Nominal Nominal Nominal Nominal

C2 Nominal Nominal Nominal Nominal

C3 r1 ↓, r5 ↓ r1 ↓, r4 ↓ r9 ↓ r11 ↓, r13 ↓ r11 ↓, r13 ↓, r14 ↓
C4 r1↔, r5↔ r1↔, r4↔ r9↔ r11↔, r13↔ r11↔, r13↔, r14↔
C5 r2 ↓, r4 ↓ r2 ↓, r4 ↓, r8 ↓, r10 ↓ r21 ↓, r22 ↓ r21 ↓, r22 ↓, r24 ↓
C6 r2↔, r4↔ r2↔, r4↔, r8↔, r10↔ r21↔, r22↔ r21↔, r22↔, r24↔
C7 r2 ↓ r8 ↓, r10 ↓ r11 ↓, r13 ↓ r11 ↓, r13 ↓, r14 ↓
C8 r2↔ r8↔, r10↔ r11↔, r13↔ r11↔, r13↔, r14↔
C9 r1 ↓, r5 ↓ r1 ↓, r5 ↓ r9 ↓ t41 ↑, t42 ↑ t41 ↑, t42 ↑, t44 ↑
C10 r1↔, r5↔ r1↔, r5↔ r9↔ t41↔, t42↔ t41↔, t42↔, t44↔
C11 r1 ↓, r3 ↓, r5 ↓ r1 ↓, r3 ↓, r5 ↓ r7 ↓, r9 ↓,

r10 ↓
t51 ↑, t52 ↑ t51 ↑, t52 ↑, t53 ↑

C12 r1↔, r3↔, r5↔ r1↔, r3↔, r5↔ r7↔,
r9↔, r10↔

t51↔, t52↔ t51↔, t52↔, t53↔

C13 r11 ↓, r12 ↓, r21 ↓,
r22 ↓, r31 ↓, r33 ↓,
r42 ↓, r43 ↓

r11 ↓, r12 ↓, r13 ↓, r21 ↓,
r22 ↓, r31 ↓, r33 ↓, r43 ↓,
r44 ↓ r51 ↓, r52 ↓, r54 ↓
r62 ↓, r64 ↓

Key

↓: change (decrease) in environment characteristic

↑: change (increase) in environment characteristic

↔: recovery of environment characteristic

CRGA: a complete recent strategy (4.16) that puts in the archive the entire population
from the current adaptation step and discards all previous configurations.

LRGA: a limited recent strategy (4.17) that stores in the archive the two best config-
urations (i.e., x = 2) from the current adaptation step, and removes all the other
configurations from the archive.

LDGA: a limited deep strategy (4.18)that accumulates in the archive the two best
configurations (i.e., x = 2) from all previous adaptation steps. If the archive size
exceeds the initial size of the GA population, then a random selection is carried
out to select the configurations that will comprise the seed for the next search.

127

4. IMPROVING RQV EFFICIENCY USING EVOLUTIONARY ALGORITHMS

We adopted the established procedure in search-based software engineering for the
analysis of optimisation algorithms [10]. Thus, for all system variants from Table 4.12 we
carried out 30 independent runs for each adaptation event per optimisation algorithm.
All algorithms used a population of 50 individuals. The GAs used single-point crossover
with probability pc = 0.9 and single-point mutation with probability pm = 1/nk, where
nk is the number of system configuration parameters from the configuration space Cfg.
Each algorithm was executed for 5000 iterations. After normalisation, we assigned the
maximum cost of 1.00 for each event in which an algorithm failed to find a configuration
satisfying QoS constraints. When no improvement was detected for 1000 successive
iterations (i.e., 20% of the allocated evolution time), the evolution terminated early.
The solution corresponding to the best individual from the last population was used to
reconfigure the system. We use this configuration to compare the performance of the
optimisation algorithms and answer research questions RQ4–RQ6.

Following the standard advice for assessing the performance of optimisation algo-
rithms, we used inferential statistical tests [10, 50]. First, we analysed the normality
of data and confirmed its deviation from the normal distribution using the Shapiro-
Wilk test. Then, we used the non-parametric tests Mann–Whitney and Kruskal-Wallis
with 95% confidence level (α = 0.05) to analyse the results without making assump-
tions about the data distribution or the homogeneity of its variance. Also, to compare
the GA variants, we ran a post-hoc analysis using Dunn’s pairwise test, controlling the
family-wise error rate using the Bonferroni correction pcrit =α/k, where k is the number
of comparisons.

Finally, when statistical significance exists, we establish the practical importance of
the observed effect. Therefore, we used the Varga and Delaney’s effect size measure [10,
203]. When comparing algorithms A and B, this measure returns the probability AAB ∈
[0, 1] that algorithm A will yield better results than algorithm B. For instance, if AAB =

0.5 then the algorithms are equivalent, while if AAB = 0.8 then algorithm A will achieve
better results 80% of the time.

4.3.2.4 Results and Discussion

RQ4 (Correctness). We begin the presentation of our results by examining whether
our approach can identify new effective configurations in response to unexpected en-
vironment and/or system events. To answer this research question we performed two
types of experiments. First, we assessed the effectiveness of the selected configura-
tions compared to those generated by exhaustive search. To make the configuration

128

4.3 Evaluation

0.7

0.8

0.9

1.0

W
o

rk
flo

w
 r

e
lia

b
ili

ty

R1 after adaptation

R1 before adaptation

R1 threshold

0.8

0.9

1.0

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13

Change

C
o

s
t

Cost after adaptation

Cost before adaptation

Figure 4.10: Variation in workflow reliability and system cost of the FX_Small vari-
ant due to the changes from Table 4.13 and system adaptation using the incremental
EvoChecker with no archive use (i.e., PGA).

space size tractable for exhaustive search, we used the smallest system variant, i.e.,
UUV_Medium, and disabled three of its sensors, leaving less than 2.56E+9 possible
configurations. We also disregarded the adaptation time, since it is too large for ex-
haustive search. For the same reason, we performed this assessment on a subset of the
UUV changes (i.e., C1, C3, C4); these changes correspond to a representative sample of
the UUV changes from Table 4.13. For all the events, our approach found configurations
satisfying system QoS requirements with cost less than 9% of the optimal configuration
reported by exhaustive search. Both time and memory overheads incurred by exhaustive
search were approximately two orders of magnitude larger than our approach.

For the second experiment, we analysed how the adverse events in FX_Small system
from Table 4.13 affected its compliance with QoS requirement R1 (i.e., workflow relia-
bility) and varied system cost before (using the current configuration) and after (using
the new configuration) each adaptation. Figure 4.10 depicts a typical run (timeline) of
these changes and the impact of the configurations selected by the no-archive version
of incremental EvoChecker (i.e., PGA) in workflow reliability and system cost.

First, irrespective of the change in environment state, either being a serious decrease
in workflow reliability or a moderate increase in response time, the system always man-
aged to successfully self-adapt. To this end, our approach always identified configu-
rations that met requirement R1 and maintained a balanced system cost of approxi-

129

4. IMPROVING RQV EFFICIENCY USING EVOLUTIONARY ALGORITHMS

mately 0.845. Given that searching exhaustively the configuration space is unfeasible
and that the average running time for evaluating a particular configuration is less than
1s (cf. Table 4.12), these experimental results indicate that our approach can support
system adaptation.

We also analysed changes C3, C5, C7 and C13, in which the system exhibited sig-
nificant decrease in workflow reliability, caused by decrease in reliability of the service
implementations used at various points in time. Due to this abrupt change, the cur-
rently used service implementations failed to meet requirement R1 and the incremental
EvoChecker was invoked to carry out the search for a new configuration. As an example,
for change C13, the system experienced a serious disruption in about 50% of the avail-
able service implementations. As a result, workflow reliability fell to only 72%. The
newly found configuration restored compliance with R1 (i.e., approximately 98.5%),
but increased the probabilities of using more expensive implementations, yielding a
significantly higher expected system cost of 0.935.

Another interesting observation concerns change C10 (cf. Table 4.13) in which two
previously under-performing service implementations (those with increased response
time t41 and t42) recover. Although no requirement violation occurs, i.e., workflow
reliability R1 is not affected by this change, the system cost corresponding to the new
configuration selected by EvoChecker is slightly higher compared to the configuration
before the change. Since for each change PGA starts a new search and does not use
any knowledge gained from previous adaptation steps, this is expected. As we explain
in RQ6, this issue can be addressed using one of the other archive updating strategies
which seed a new GA search with configurations from the archive.

RQ5 (Validation). To answer this research question we compared the no-archive
version of incremental EvoChecker (i.e., PGA) with random search (RS). In order to be
concise, we include a representative sample of reconfiguration events. Thus, Figures 4.11
and 4.12 show the evolution of the algorithms every 500 iterations for the FX_Small
variant for changes C4, C7, C11 and C13, and for the UUV_Large variant for changes
C7 and C12, respectively. When an algorithm terminated early, we propagated the last
cost to the remaining evolution stages (i.e., until the 5000th iteration). An asterisk ∗
next to each algorithm’s boxplot denotes when the algorithm terminated for all 30 runs.

For both variants of the FX and UUV systems and for all 25 events, the incremental
EvoChecker employing PGA identified configurations that met QoS requirements and
achieved better cost than RS. We obtained statistical significance (p-value <0.05) using
the Mann-Whitney test for all system variants and for all events, with the p-value being

130

4.3 Evaluation

0.70

0.71

0.70

0.71

0.72

0.695

0.700

0.705

0.710

0.715

0.7

0.8

0.9

1.0

500 1000 1500 2000 2500 3000 3500 4000 500 1000 1500 2000 2500 3000 3500 4000

500 1000 1500 2000 2500 3000 3500 4000 500 1000 1500 2000 2500 3000 3500 4000

#Iterations

C
o
s
t

LRGA LDGA PGA CRGA RS
Change C4 Change C7

Change C11 Change C13

Figure 4.11: Boxplots for changes in environment state C4, C7, C11, C13 of the
FX_Small system variant using LRGA, LDGA, PGA, CRGA, and RS. The asterisk next
to each algorithm’s boxplot signifies when the algorithm terminated for all 30 runs.

in the range [1.689E-02, 1.669E-11]. In fact, as the size of the system increases, PGA’s
ability to outperform RS becomes more evident.

We also measured the improvement magnitude using the APGA,RS effect size met-
ric [203]. For all evaluated events and evolution stages, the effect size was large with
APGA,RS ∈ [0.696, 1.00]. Thus, PGA achieved better results than RS at least 69.6% of
the time, while in some events, especially for the larger system variants FX_Medium
and UUV_Large, the dominance reached 100%.

Another interesting finding concerns the evolution of the populations of these algo-
rithms. Despite the overall performance difference, at the beginning of the evolution,
i.e., 200-300 iterations, both the p-value and effect size are on the lower end of their
respective value ranges. During these iterations, PGA operates pseudo-randomly and
the impact of its selection and reproduction mechanisms, i.e., crossover and mutation,
are not strong yet. As the evolution progresses, the performance gap between PGA and
RS increases, reaching eventually the upper end of the p-value and effect size ranges.

Considering these results, we conclude that our GA-based approach using a pro-
hibitive selection strategy (PGA) significantly outperforms random search (RS) with

131

4. IMPROVING RQV EFFICIENCY USING EVOLUTIONARY ALGORITHMS

0.75

0.80

0.85

0.90

0.95

1.00

0.75

0.80

0.85

0.90

0.95

1.00

500 1000 1500 2000 2500 3000 3500 4000 500 1000 1500 2000 2500 3000 3500 4000

C
o
s
t

LRGA LDGA PGA CRGA RS

#Iterations

Change C7 Change C12

Figure 4.12: Boxplots for changes C7, C12 of the UUV_Large system variant using
LRGA, LDGA, PGA, CRGA, and RS. The asterisk next to each algorithm’s boxplot sig-
nifies when the algorithm terminated for all 30 runs.

large effect size in all adaptation steps and for all FX and UUV system variants. Thus,
the use of evolutionary search-based approaches produces better quality configurations.

RQ6 (Insights). We analysed the system configurations selected by a GA using the
archive updating strategies: prohibitive (PGA), complete recent (CRGA), limited recent
(LRGA) and limited deep (LDGA) in order to identify actionable insights. Note that
these strategies are used on top of a basic GA and thus have similar overheads (i.e.,
negligible CPU and memory use). Hence, the incurred overheads from the use of these
strategies are not discussed further. In the interest of conciseness we show a subset of
these adaptation steps; similar reasoning applies for the other steps. Table 4.14 shows
an excerpt of the pairwise comparisons carried out to check for significant difference
and, when the difference exists, its effect size in parenthesis.

First, for change C1 (not shown in Table 4.14) and for all FX and UUV variants, all
examined archive updating strategies identified configurations of comparable quality.
No statistical difference was detected in any evolution stage for this event. Since all
algorithms used a randomly generated initial population for change C1, this observation
was not surprising.

Second, we found that GA variants using the archive (LRGA, CRGA, LDGA) per-
formed significantly better than PGA for changes C2–C12 in FX and for most events
in UUV during the majority of the evolution stages. No comparison showed statistical
significance in favour of PGA for any change or evolution stage. As expected, as the
evolution progressed all the GA variants had the opportunity to refine their solutions
and the performance gap between the algorithms decreased. More specifically, there

132

4.3 Evaluation

Table 4.14: Pairwise comparison of archive selection strategies for various stages of
changes C4 and C11 of the FX variants showing the significantly better strategy and
effect size (in parenthesis); Key: S=Small, M=Medium, L=Large

C4 C11
Strategies 1000 2000 3000 4000 1000 2000 3000 4000

FX_Small
RS vs PGA PGA(L) PGA(L) PGA(L) PGA(L) PGA(L) PGA(L) PGA(L) PGA(L)
PGA vs LRGA LRGA(L) LRGA(M) LRGA(M) LRGA(S) LRGA(L) LRGA(L) LRGA(L) LRGA(M)
PGA vs CRGA CRGA(L) CRGA(S) — — — — — —
LRGA vs CRGA — — — — LRGA(L) LRGA(L) LRGA(L) LRGA(L)

FX_Medium
RS vs PGA PGA(L) PGA(L) PGA(L) PGA(L) PGA(L) PGA(L) PGA(L) PGA(L)
PGA vs LRGA LRGA(L) LRGA(M) LRGA(S) — LRGA(L) LRGA(M) LRGA(S) —
PGA vs CRGA CRGA(M)CRGA(S) — — — — — —
LRGA vs CRGA LRGA(S) LRGA(S) LRGA(S) LRGA(S) — — — —

was a distinct performance gap favouring LRGA, CRGA and LDGA at the early evo-
lution stages (p-value ∈ [3.38E-5,1.67E-11]), while PGA was able to find configurations
that achieve similar cost towards the end of evolution (p-value u 0.05 in some cases).
Looking at change C4 in Figure 4.11, for instance, PGA is significantly worse until the
2500th iteration, but it approaches the others after that.

Third, in changes with statistical difference between PGA and the other variants,
we observed a similar declining trend regarding the effect size. At the beginning of the
evolution, the effect size is mostly large ([0.69.0.88] and [0.77,1.0] for UUV and FX,
respectively), at the intermediate stages it changes to medium/small before it becomes
small/negligible towards the end. Given these observations, we can state that using
an archive updating strategy to select configurations from the archive and seed the
initial population produces better configurations and faster, compared to a prohibitive
strategy that ignores the archive. Given sufficient time, however, PGA will potentially
catch up. Thus, archive-based GA variants are useful in the frequently encountered
situations where the reconfiguration time and/or computation resources are limited.

Fourth, the archive-based GA variants (LRGA, CRGA, LDGA) identified config-
urations of similar quality to each other, demonstrating effective use of the archive.
The post-hoc analysis, however, showed a performance difference between the three
variants. In particular, we obtained statistically significant results in favour of LDGA
against LRGA in 202 out of 500 tests (40.4%). For most changes, this difference con-
cerned the first few evolution stages; after that LRGA performed similarly (e.g., C7 and
C11 in Figure 4.11). Furthermore, CRGA failed to produce better configurations than
LDGA for any change and system variant, whereas it was marginally better than LRGA

133

4. IMPROVING RQV EFFICIENCY USING EVOLUTIONARY ALGORITHMS

(6.2%) in changes that had similar characteristics to the preceding change. Like before,
the performance difference involved only the initial stages. On the other hand, both
LRGA and LDGA outperformed CRGA in a range of changes and evolution stages.
We obtained statistical difference favouring LRGA and LDGA in 18.2% (91/500) and
47.8% (239/500) of these tests, respectively. This difference occurs because CRGA’s
population already identified good configurations and/or converged to a particular area
in fitness landscape. Since population variation is achieved only through crossover and
mutation, CRGA finds difficulties to evolve the population in successive generations and
produce better configurations. This leads to stagnation and early termination; see for
instance changes C7 and C11 in Figure 4.11 in which CRGA terminated in the 2500th
and 1500th iteration, respectively. Therefore, reusing the final population from the
current adaptation event does not offer a distinct advantage in producing better config-
urations over the other strategies. However, exploiting a subset of configurations from
previous reconfiguration events (e.g, LDGA) could speed up the search significantly.

Finally, we note the inability of any variant to deal efficiently with disruptive change
C13 affecting FX. For this event, about 50% of the available service implementations
suffered a serious service degradation (cf. Table 4.13). For C13, we did not find any
statistical significance between PGA, CRGA, LRGA and LDGA in any evolution stage
in both FX system variants (Figure 4.11). Moreover, at the early evolution stages,
CRGA had difficulties to select configurations that satisfy QoS requirements; its cost is
close to the maximum value. Hence, when a disruptive change occurs, it does not have
much impact which archive updating strategy is used. Using instead a population that
is not biased towards a particular area (due to previous experience) would facilitate
landscape exploration.

We suppose that a hybrid approach which considers the types of changes in the
system and its environment would be more effective. In this hybrid approach, some of
the initial population would be derived from the archive (to exploit knowledge gained
from previous reconfiguration events) and some would be randomly generated (to enable
exploration of new events). The ratio between exploration and exploitation should be
based on the expected ratio between small changes and radical changes in the environ-
ment. We discuss this idea further, as part of future work, in Section 7.2.

4.3.3 Threats to Validity

Several construct, internal, and external validity threats could affect the validity of the
experiments conducted in this chapter.

134

4.3 Evaluation

Construct validity threats correspond to the methodology adopted when designing
the experimental study and any underpinning assumptions. This includes any assump-
tions and simplifications made when modelling the DPM, FX and UUV systems. To
mitigate this threat, the DPM system, model and requirements are based on a validated
real-world case study taken from the literature [174, 188], which we are familiar with
from our previous work [38]. For the FX system, the model and requirements were
developed in close collaboration with a foreign exchange domain expert, while for the
UUV system, these are based on the specification of a real sensor (and also used in
our work in Chapter 3). Also, the environment changes cover a wide range of system
scenarios that could cause service degradation and/or violation of QoS requirements,
including minor changes and disruptive events.

Internal validity threats might be due to any bias introduced when establishing
the causality between the adaptation steps and the evolutionary algorithms employed in
our study. To mitigate this threat, we followed the established practice in search-based
software engineering [10, 117]. In particular, we reported results over 30 independent
runs of each experiment and used inferential statistical tests to check for significant
difference in the performance of the algorithms. To this end, we evaluated whether the
data conformed to the normal distribution using the Shapiro-Wilk test and used the non-
parametric tests Mann-Whitney and Kruskal-Wallis to check for statistical significance.
We also conducted a post-hoc analysis using Dunn’s pairwise test. All these tests used a
95% confidence level; hence, the probability of committing a Type I error is 0.05, which
is the recommended value in empirical studies in this area. Finally, we employed the
Varga and Delaney’s effect size measure to establish the magnitude of an improvement.

External validity threats might be due to the difficulty of representing a self-
adaptive software system and its QoS requirements as a reconfiguration problem using
EvoChecker constructs (4.4)–(4.6), constraints (4.8) and optimisation objectives (4.9) or
cost (4.12). We limit this threat by specifying EvoChecker probabilistic model templates
in an extended version of the high-level modelling language of PRISM [149], a widely-
used probabilistic model checker. Moreover, given the generality of the EvoChecker
constructs (4.4)–(4.6), other probabilistic modelling languages (e.g., those of the model
checkers MRMC [132, 133] and Ymer [214]) can be naturally supported. Additionally,
EvoChecker supports a wide range of probabilistic models and temporal logics (Ta-
ble 4.2). We also examined various archive updating strategies, but other more sophis-
ticated strategies can be developed. Finally, to further reduce the risk that EvoChecker
might be difficult to use in practice, we validated it through application to several
variants of three realistic software systems with diverse characteristics in terms of ap-

135

4. IMPROVING RQV EFFICIENCY USING EVOLUTIONARY ALGORITHMS

plication domain, size, complexity and requirements. Nevertheless, we are aware that
our findings are by no means conclusive for all types of software systems, and more ex-
periments are needed to confirm the generality of the EvoChecker approach and tool.

4.4 Related Work

Search-Based Software Engineering (SBSE). Search-based techniques [117] have
been successfully used in areas ranging from project management [74, 178, 194] and
testing [9, 86, 114] to effort estimation [160], software repair and evolution [42, 173]
and software product lines [113, 185]. However, as reported in Harman et al.’s recent
SBSE survey [116], this success does not yet extend to model checking and the existing
research focuses on design-time activities. In [129, 134], genetic evolution is applied to
synthesise model checking specifications, while in [5, 6] ant colony optimisation is used
for generating counterexamples in large stochastic models.

While there is increasing interest on dynamic adaptive search-based techniques [112],
their use in reconfiguring software systems based on QoS requirements is rather limited.
Harman et al. [115] report that a combination of machine learning and search-based
techniques will enable software systems to adapt while providing service. Early work in
this direction is presented in [51]. The only other approach that we are aware of in this
area is Plato [175], which employs genetic algorithms in the decision-making process
of a self-adaptive system and generates new configurations that balance functional and
non-functional requirements. However, Plato does not consider environment or system
stochasticity, as EvoChecker does with its probabilistic model template, nor it uses any
knowledge acquired during system operation to speed up the search, as incremental
EvoChecker does with its archive and archive updating strategies.

Our work is also related to research that explores ways to incorporate problem
specific knowledge into an evolutionary algorithm through seeding its initial popula-
tion [103]. If prior knowledge is available or can be generated with reasonable compu-
tational effort, effective seeding may yield better quality solutions and lead to faster
convergence [135]. The effect of various seeding options (between 25%-100% of the pop-
ulation size) was studied in [168] for the travelling salesman and the job-shop scheduling
problems. The authors reported that seeding produced most of the time significantly
better solutions than no seeding, although a 100% seed did not always generate better
results. In the domain of search-based software testing, Fraser and Arcuri [85] assessed
the effectiveness of various seeding strategies for generating test cases in object-oriented
languages. They found that the impact of effective seeding is heavier during the early

136

4.4 Related Work

stages of the search, while weaker seeding strategies or no seeding will perform similarly
from the intermediate stages onwards. These observations are in line with our findings
regarding the impact of the archive updating strategies (4.15)–(4.18).

Stochastic Controller synthesis. EvoChecker also partially overlaps with re-
search carried out in the area of stochastic controller synthesis, in which formally ver-
ified stochastic controllers are used to disable certain (controllable) system behaviours
or to vary the probability with which these behaviours occur.

Draeger et al. [65] propose the synthesis of a multi-strategy controller that enables
a set of actions at any state and which is optimally permissive with respect to a penalty
function. Irrespective of the action carried out, the controller guarantees compliance
with system requirements. However, unlike our work which covers the full PCTL and
CSL, [65] focuses only on probabilistic reachability and expected total rewards.

Moreno et al. [162] propose a controller synthesis approach by combining lookahead
and latency awareness. Lookahead projects the expected system evolution over a limited
horizon, while latency awareness considers the time between making and realising an
adaptation decision. The synthesised controller performs a limited lookahead, but it
ignores any previous knowledge and thus fails to support incremental synthesis.

A complementary approach to incremental controller synthesis is proposed by Ulusoy
et al. [201]. The key idea is based on partitioning the synthesis task into several steps
and refine the controller incrementally. Initially the technique considers a high-level
system model and adds extra details as the synthesis progresses, until a termination
criterion is met (e.g., exhausted computational resources). Unlike EvoChecker, though,
which supports a variety of specification logics (cf. Table 4.2), this work supports only
specifications defined in linear temporal logic.

Runtime Quantitative Verification. Our work is also related to recent advances
in runtime quantitative verification [32]. These advances include compositional, incre-
mental and parametric verification, and are discussed in detail in Section 2.2.3. We
also presented in Chapter 3 how caching, limited lookahead and nearly-optimal recon-
figuration can improve RQV efficiency. Each of these variants reduces the computation
and memory overheads of RQV, but their applicability is limited to particular adap-
tation problems and specific types of Markov models and properties. EvoChecker, on
the other hand, is model and property agnostic. Finally, in Chapter 5, we will present
an approach that extends the applicability of RQV to distributed self-adaptive software
systems.

137

4. IMPROVING RQV EFFICIENCY USING EVOLUTIONARY ALGORITHMS

4.5 Summary

In this chapter we introduced EvoChecker, a tool-supported search-based approach that
improves the efficiency of runtime quantitative verification, especially in systems with
large configuration space sizes. Given as input a probabilistic model template that en-
codes configuration parameters and a set of QoS requirements specifying constraints and
objectives (or a cost) to be optimised, EvoChecker employs evolutionary algorithms to
find effective configuration(s) and to drive adaptation. We developed two EvoChecker
variants. The former, human-in-the-loop EvoChecker, uses multi-objective evolutionary
algorithms to generate the Pareto-optimal configurations and then requests from a sys-
tem expert to validate adaptation decisions (or select new configurations). The other,
incremental EvoChecker, uses single objective evolutionary algorithms, maintains an
archive of configurations from recent adaptations, and uses this archive to seed the ini-
tial population of an evolutionary algorithm before a new search. We also defined several
specialised archive updating strategies and developed prototype implementations.

We evaluated each EvoChecker variant within two case studies from different applica-
tion domains, showing its effectiveness, applicability and flexibility. Our results indicate
that both EvoChecker variants reduce significantly the RQV overheads for reconfigur-
ing a self-adaptive system. Human-in-the-loop EvoChecker can generate Pareto-optimal
approximation sets and help system experts to make informed decisions (e.g., identify
“point of diminishing returns”, find configuration parameters that affect QoS attributes
more). We also found that NSGA-II and SPEA2 performed equally good in both case
studies and for all analysed quality indicators. Hence, any of these algorithms is a
good choice for instantiating the human-in-the-loop EvoChecker. In the incremental
EvoChecker, strategies that make use of the archive can identify effective configurations
much faster than strategies that do not use the archive. Thus, storing configurations
from recent adaptations in an archive and using this archive to seed a new population
can speed up the search, especially if similar environment states are encountered often.

We should note that selecting between the EvoChecker variants depends on the
characteristics of each self-adaptive system including the number of QoS requirements,
the time available for adaptation and whether adaptation decisions must be validated by
a human expert. Finally, the EvoChecker approach (especially the human-in-the-loop
variant) can be also used at design-time for the engineering of software systems (not
necessarily self-adaptive). Thus, EvoChecker can be employed to generate probabilistic
models that meet the QoS requirements of a software system, and then human experts
can select a suitable model and use it as a basis for the system implementation.

138

Chapter 5

Extending RQV With Decentralised

Control Loops

Since its introduction in [32, 38, 68], RQV has attracted the interest of many researchers
from the area of self-adaptive software. Most of their research efforts explore how to
reduce verification overheads and extend the applicability of the technique to larger and
more complex self-adaptive systems. Illustrative examples include the work reviewed
in Section 2.2.3 and our efficient RQV techniques based on conventional software engi-
neering and search-based approaches, introduced in Chapters 3 and 4, respectively.

Despite the advances made by this recent research, the proposed RQV variants
have been used to develop centralised-control self-adaptive software; see Section 5.4
for a discussion of related work. This is feasible only for self-adaptive systems whose
stochastic models are small enough to be analysed fast and with acceptable overheads.
Also, the use of centralised control in distributed systems (e.g., service-based and multi-
agent applications) introduces a single point of failure. If the control component fails,
the entire system will completely lose the ability to adapt to changes and may fail too.

In this chapter, we extend the applicability of RQV to distributed self-adaptive sys-
tems. To this end, we introduce DECIDE, an RQV-driven approach for DEcentralised
Control In Distributed sElf-adaptive software. DECIDE addresses two of the key re-
search objectives identified in a recent research roadmap for self-adaptive systems [56]:

• Decentralisation of control loops. This eliminates the single point of failure created
by the use of a centralised control loop, improves the flexibility of self-adaptive
systems, and is in line with the original autonomic computing vision [139].

139

5. EXTENDING RQV WITH DECENTRALISED CONTROL LOOPS

• Practical runtime verification and validation. DECIDE supports the adoption of
runtime verification in self-adaptive software, by drastically reducing control loop
overheads through replacing the system-level RQV of very large models with the
distributed, component-level RQV of models many orders of magnitude smaller.

To the best of our knowledge, DECIDE is the first approach that uses formal veri-
fication to simultaneously decentralise the control loop of self-adaptive systems, and to
provide guarantees on their compliance with QoS requirements.

DECIDE is applicable to distributed self-adaptive systems whose components share
a set of common system-level QoS requirements and cooperate to achieve these require-
ments. Each component of a DECIDE system executes a decentralised control workflow
comprising the following stages. First, in a local capability analysis stage, local RQV
takes place to calculate a set of possible contributions that the component can make
towards the realisation of the system-level QoS requirements. This stage is executed
infrequently, i.e., when a component joins the system or after major environment and
internal changes (e.g., a significant workload increase or a failure of component parts).
Next, the component shares a capability summary, i.e., a finite set of these possible
contributions, with its peer components. After calculating a new such summary locally
or receiving one from a peer, the component performs a selection of a local contribution-
level agreement (CLA). This CLA is one of the alternative contributions from the ca-
pability summary of the local component. The key advantage of our approach is in this
CLA selection, which is carried out such that the system QoS requirements are provably
met as long as each component achieves or betters its CLA. Most of the time, the execu-
tion of a local control loop is the only DECIDE stage executed by each component. Its
purpose is to ensure compliance with the selected component CLA by performing RQV-
based local adaptation. Infrequently, components are unable to achieve their CLAs due
to major changes. These events trigger a new local capability analysis, the sharing of
capability summary with peers, and the selection of new CLAs.

The main contribution of this chapter is the DECIDE framework for the decentral-
isation of control loops of distributed self-adaptive software. We also propose an RQV
method for devising component QoS capability summaries in distributed self-adaptive
systems and a method for the decentralised selection of component contribution-level
agreements. We describe these contributions in Section 5.1. In Section 5.2 we present
the DECIDE implementation within the open-source platform MOOS-IvP, which was
used to develop a simulated distributed embedded system in the unmanned underwater
vehicles domain. In Section 5.3 we present the findings from our evaluation. We discuss
related work and summarise DECIDE in Sections 5.4 and 5.5, respectively.

140

5.1 DECIDE

5.1 DECIDE

DECIDE is applicable to distributed systems whose components exhibit stochastic be-
haviour, and involves the runtime quantitative verification of stochastic models that
describe the behaviour of these components. Similarly to our work from Chapters 3
and 4, DECIDE uses parametric Markov models to define the uncertainty associated
with the system itself and the environment in which the system operates. Before describ-
ing the theoretical foundation of DECIDE, we introduce the distributed self-adaptive
system that will be used to illustrate the application of DECIDE and for its evaluation.

Distributed Multi-UUV Embedded System

Consider a distributed multi-UUV (unmanned underwater vehicle) embedded system
that extends our single-UUV system from Section 2.2.1.1. The n-UUV system is de-
ployed on a surveillance and data collection mission. The n > 1 UUVs travel within
proximity of each other, and the i-th UUV is equipped with ni > 0 on-board sensors
that can take periodic measurements of a characteristic of the ocean environment (e.g.,
dissolved oxygen, salinity or temperature). The l-th sensor of UUV i operates with
varying rate ril ≥ 0, and the probability pil that one of its measurements is sufficiently
accurate for the purpose of the mission depends on the UUV speed spi ∈ [0, spmax

i]. This
is typical for such devices, e.g., the measurement error of sonars can be approximated
by a normal distribution with zero mean and standard deviation that increases with
speed 1. For each measurement taken, an amount of energy eil is consumed. Finally,
each UUV can switch on and off its sensors individually (e.g., to save battery power
when not required), but each of these operations consumes energy given by eon

il and eoff
il ,

respectively. To complete its mission successfully, the multi-UUV system must meet the
system-level QoS requirements from Table 5.1.

In addition to these system-level QoS requirements, each UUV i must satisfy the
local QoS requirements from Table 5.2. In a dynamic environment (like the ocean
environment), each UUV i should adapt to changes in the operating rates of its sensors
and to sensor failures, by continually adjusting:

• the UUV speed spi;

• the sensor configuration xi1, xi2, ..., xini (where xil = 1 if the l-th sensor is on and
xil = 0 otherwise)

so that the system-level and UUV-level QoS requirements are satisfied at all times.
1for example, http://www.ashtead-technology.com/rental-equipment/rdi-300khz-navigator

141

http://www.ashtead-technology.com/rental-equipment/rdi-300khz-navigator

5. EXTENDING RQV WITH DECENTRALISED CONTROL LOOPS

Table 5.1: System-level QoS requirements for the multi-UUV distributed system

ID Informal description

R1 “The n UUVs should take at least 1000 measurements of sufficient accuracy
per 60 seconds of mission time.”

R2 “At least two UUVs should have switched-on sensors at any time.”
R3 “If requirements R1 and R2 are satisfied by multiple configurations, the system

should use one of these configurations that minimises the energy consumption
(so that the mission can continue for longer)”

Table 5.2: UUV-level QoS requirements for UUV i from the multi-UUV distributed system

ID Informal description

R4 “The energy consumed by the UUV sensors must not exceed emax
i Joules per

60 seconds of mission time.”
R5 “The UUV should use only sensors whose measurements are accurate with

probability at least pmin
i .”

R6 “If requirements R4 and R5 are satisfied by multiple configurations, the UUV
should use one of these configurations that maximises its speed (so that the
mission can complete earlier) and minimises the local energy consumption (so
that the mission can continue for longer), given by the cost function w1ei +
w2sp

−1
i , where w1 and w2 are UUV-specific weights.”

5.1.1 Formal Description of a DECIDE System

DECIDE distributed self-adaptive systems comprise n > 1 components that cooperate
to achieve a set of common objectives. Each component within DECIDE executes the
self-adaptation workflow shown in Figure 5.1. We use Cfg i and Env i to denote the
set of possible configurations and the set of possible environment states for the i-th
component, respectively. Thus Cfg i corresponds to parameters that the local control
loop of component i can modify, and Env i represent parameters that the component
can only observe. Additionally, the i-th component has mi ≥ 1 QoS attributes attr i1 ∈
V1, attr i2 ∈ V2, . . . , attr imi ∈ Vmi , where the value domain Vj of the j-th attribute could
be R,R+,B = {true, false} etc. The mi QoS attributes are classified into the following
types (Figure 5.2): i) system-level QoS requirements; ii) system-level cost; iii) local-
level (i.e., component-specific) QoS requirements; and iv) local-level cost, and satisfy
the following conditions:

142

5.1 DECIDE

1. Local capability analysis
& sharing of capability

summary

2. Receipt of peer
capability summaries

3. Selection of local
contribution-level

agreement

4. Execution of local
control loop

none

major peer change(s)

major local change

major
change?

Figure 5.1: Decentralised self-adaptation workflow of a DECIDE component.

1. For any component i, the value of its j-th QoS attribute depends on the current
configuration c ∈ Cfg i and the current environment state e ∈ Env i, and can be
obtained through the quantitative verification of the following

attr ij(e, c) = fij(e, c,Mi(e, c) |= Φij) (5.1)

where Mi is a Markov model parametrised by the state of the environment the
component operates in and the configuration selected by its local control loop,
Φij is a probabilistic temporal logic formula, and f(·, ·, ·) is a function that can
be evaluated in O(1) time.

2. Attributes attr i1, attr i2, . . . , attr im,m < mi, are associated with the m > 0

system-level QoS requirements of the DECIDE distributed system. Formally,
the j-th system QoS requirement, 1 ≤ j ≤ m, is specified as

expr j(attr1j , attr2j , . . . , attrnj) ./j bound j (5.2)

where a non-exhaustive list of options for the expression exprj , relational operator
./j and bound bound j is shown in Table 5.3.

3. Attribute attr i,m+1 is a measure of the system-level cost associated with the cur-
rent environment state and configuration of component i. Accordingly, Vm+1 =

R+ and the system-level cost
∑n

i=1 = attri,m+1 needs to be minimised subject to

system-level
QoS requirements

system-level
 cost

local QoS
 requirements

local
 cost

Figure 5.2: QoS attributes of a DECIDE component and their roles in defining system-
and local-level QoS requirements.

143

5. EXTENDING RQV WITH DECENTRALISED CONTROL LOOPS

Table 5.3: Categories of DECIDE system-level QoS requirements from (5.2)

Vj expr j(attr1j , attr2j , . . . , attrnj) ./j∈ bound j∈ Types of QoS
requirements

R+

∑n
i=1 wiattr ij , wi > 0 weights {<,≤,≥, >} R+

throughput, energy
usage, response
time

[0, 1]
∏n
i=1 wiattr ij , wi > 0 weights {<,≤,≥, >} [0, 1] reliability, availability

B booleanExpr(attr1j , attr2j , . . . , attrnj) {=, 6=} B liveness, security

the m QoS requirements being satisfied.

4. Attributes attr i,m+2, attr i,m+3, . . . , attr i,mi−1 represent local-level QoS require-
ments. We have Vm+2 = Vm+3 = . . . = Vmi−1 = B, and the local requirements
are satisfied iff

attr ij = true for j = m+ 2,m+ 3, . . . ,mi − 1. (5.3)

5. Attribute attr i,mi ∈ R+ represents local cost associated with the current environ-
ment state and configuration of component i. This value needs to be minimised,
subject to system and local QoS requirements being satisfied.

Example 5.1. The set of configurations for UUV i of our distributed n-UUV system

is Cfg i = Spi × {0, 1}ni , where (spi, xi1, xi2, . . . , xini) ∈ Cfg i give the UUV speed spi

and sensor configurations xi1, xi2, . . . , xini selected by the local control loop. The set of

environment states for UUV i is Env i =Rni
+ , where (ri1, ri2, . . . , rini) ∈ Env i gives the

measurement rates for the ni sensors.

We use the CTMC model in Figure 2.3 to model the l-th sensor of the i-th UUV

and denote this model Mil
2. The Markov model Mi(e, c) used to compute the QoS

attributes of UUV i in (5.1) is obtained through the parallel composition of the ni

sensor models: Mi = Mi1 ‖Mi2 ‖ . . . ‖Mini .

Given the model Mi, the CSL formulae and the functions in Table 5.4 are used in

(5.1) to establish the QoS attributes for requirements R1–R6. The m = 2 system-level

2 The indices of the model parameters from Figuree 2.3 are adjusted accordingly to suit the n-UUV
system; thus, the configurable parameter xi becomes xil, the sensor rate ri becomes ril, etc.

144

5.1 DECIDE

Table 5.4: QoS attributes for UUV i, where val ij is the value of Mi(e, c) |=Φij

j Vj Φij attr ij = fij(e, c, val ij)

1 R+ R“measurement”
=?

[
C≤60

]
val i1

2 B P≥1 [F oni1|oni2| . . . |onini
] val i2

3 R+ R“energy”
=?

[
C≤60

]
val i3

4 B R“energy”
≤emax

i

[
C≤60

]
val i4

5 B
∧ni

l=1

(
readil ⇒ P≥pmin

i
[X accurateil]

)
val i5

6 B R“energy”
=?

[
C≤60

]
w1val i6 + w2sp

−1

requirements, R1 and R2, are given by the following instances of (5.2):

R1:
n∑
i=1

attr i1 ≥ 1000

R2:
∨

1≤i1<i2≤n
(attr i12 ∧ attr i22) = true

(5.4)

5.1.2 Stage 1: Local capability analysis

During this DECIDE stage, each component uses runtime quantitative verification to
assemble a summary of its capabilities, as formally defined below.

Definition 5.1. Given a DECIDE distributed system with the characteristics specified

earlier, a finite set CS i ⊂ V1 × V2 × · · · × Vm+1 is an α-confidence capability summary

for the i-th system component iff for any (ai1, ai2, . . . , ai,m+1) ∈ CS i the local control

loop of the component can ensure that:

(i) attr ij ./j aij, for 1 ≤ j ≤ m

(ii) attr i,m+1 ≤ ai,m+1

(iii) attr ij = true, for m+ 1 < j ≤ mi

with probability at least α ∈ (0, 1).

145

5. EXTENDING RQV WITH DECENTRALISED CONTROL LOOPS

The DECIDE method for calculating the α-confidence capability summary of the
i-th system component, 1 ≤ i ≤ n, involves the local execution of the steps below.

1. Configuration analysis— Select Ni > 0 disjoint configuration subsets Cfg1
i , Cfg

2
i ,

. . . ,CfgNi
i ⊂Cfg i that correspond to different modes of operation for component i.

What constitutes a mode of operation for a component is application dependent.
Possible examples include running different numbers of component instances, or
operating with different degrees of accuracy. As illustrated later in this section,
for the UUV system from our running example, using different sets of sensors
corresponds to different modes of operation for a UUV.

2. Environment analysis— Identify subsets of environment states Env1
i , Env

2
i , . . . ,

EnvNi
i ⊆Env i associated with the Ni configuration subsets, such that the proba-

bility that the actual environment state of the component is in Envki is at least α,
for any 1 ≤ k ≤ Ni. These subsets can be identical. However, in the most general
case, each configuration subset Cfgki may render different areas of the environment
state irrelevant, and DECIDE exploits this as illustrated in Example 5.2.

3. Attribute analysis 1— Check that for any 1 ≤ k ≤ Ni and for any 1 ≤ j ≤ m with
./j∈ {=, 6=}, the QoS attribute attr ij(c, e) has a single value, akij , for all (c, e) ∈
(Cfgki ,Env

k
i). When this is not the case, further partition the configuration set

Cfgki into disjoint subsets that satisfy this constraint. As shown in Table 5.3, one
of the scenarios in which ./j∈ {=, 6=} is when Vj = B. In this case, Cfgki needs
to be partitioned into two subsets. For other scenarios, (e.g., when Vj = R+),
DECIDE can be applied only if this operation partitions Cfgki into a finite (and
usually small) number of subsets. The rationale for this operation is that we
want to associate each configuration set Cfgki with a “bound” akij for each attr ij ,
1 ≤ j ≤ m, and the bounds akij are common values for QoS attributes attr ij with
./j∈{=, 6=}.

4. Attribute analysis 2— For all attributes attr ij , 1 ≤ j ≤ m, with ./j∈{<,≤,≥, >},
and for each configuration set Cfgki , find simultaneous bounds akij ∈ Vj such that

∀e∈Envki • ∃c∈Cfgki • global(c, e) ∧ local(c, e), (5.5)

where
global(c, e) =

∧
1 ≤ j ≤ m
./j /∈{=, 6=}

(
attr ij(c, e) ./j a

k
ij

)

146

5.1 DECIDE

and
local(c, e) =

∧
m+2≤j≤mi−1 attr ij(c, e).

When there is a single system-level QoS attribute attr ij with ./j∈ {<,≤,≥, >},
its associated akij bound can be calculated as

akij =

max
e∈Envk

i

min
c∈Cfgk

i
local(c,e)

attr ij(c, e), if ./j∈ {<,≤}

min
e∈Envk

i

max
c∈Cfgk

i
local(c,e)

attr ij(c, e), otherwise
(5.6)

Otherwise, a multi-objective optimisation technique such as [69, 81] needs to be
used to calculate the akij values.

5. Cost analysis— Calculate the cost upper bound

aki,m+1 = max
e∈Envk

i

min
c∈Cfgk

i ,
global(c,e)∧local(c,e)

attr i,m+1(c, e).

6. Capability summary assembly— Use the akij bounds from steps 3–5 to assemble

CSi = {cs1
i , cs

2
i , . . . , cs

Ni
i }, (5.7)

where cski = (aki1, a
k
i2, . . . , a

k
i,m+1), 1 ≤ k ≤ Ni.

Theorem 1. The set CSi in (5.7) is an α-confidence capability summary for component

i of a DECIDE system.

Proof. We show that for any cski = (aki1, a
k
i2, . . . , a

k
i,m+1) ∈ CSi, the local control loop of

component i can adjust the configuration of the component such that properties (i)–(iii)

from Definition 5.1 are satisfied with probability at least α. For 1≤j≤m, the selection

of akij in Attribute analysis 1–2 ensures that, for any environment state e∈Envki :

• attr ij ./j aij for all configurations in Cfgk if ./j∈{=, 6=};

• there is an environment-dependent configuration c ∈Cfgk (given by (5.5)), such

that attr ij ./j aij simultaneously for the other attr ij attributes.

147

5. EXTENDING RQV WITH DECENTRALISED CONTROL LOOPS

By always selecting this configuration c, the local control loop can ensure that

property (i) is satisfied whenever e ∈ Envki , which happens with probability at least

α (cf. the Environment analysis step). The Cost analysis step ensures that aki,m+1 ≥
attr i,m+1(c, e) for all e∈Envki , so the selection of configuration c also makes property

(ii) satisfied with probability at least α. Finally, c satisfies local(c, e), so using the

configuration c ensures that property (iii) is satisfied with probability at least α too.

At the end of the local capability analysis stage of DECIDE, the local capability
summary (5.7) is shared with the other components within the distributed system.
On distributed systems with reliable and high-bandwidth communication mechanisms,
capability summary sharing is achieved using these mechanisms directly. For distributed
systems with limited and/or unreliable inter-component communication capabilities,
DECIDE uses recently emerged platforms for the engineering of distributed systems
such as Kevoree [84] and DEECo [28]. This is the case for the UUV system from our
running example.

Example 5.2. Suppose that the i-th UUV from our running example has ni = 2 on-

board sensors whose operating rates ri1 and ri2 are normally distributed with mean 2s−1

and standard deviation 0.2s−1, and with mean 4s−1 and standard deviation 0.3s−1,

respectively. The UUVi environment state has the form (ri1, ri2), and the set of all

environment states is Env i = [0,∞]2. Also, assume that the UUV speed spi can be

adjusted in the range [1m/s, 5m/s]. Hence, the UUV configuration set is Cfg i=[1, 5]×
{0, 1}2, where for any configuration (spi, xi1, xi2) ∈ Cfg i, xij = 1 if sensor j is switched

on and xij = 0 otherwise, for j ∈ {1, 2}. Finally, suppose that the bounds for local

QoS requirements R4 and R5 are emax
i = 1000J and pmin

i = 0.9, and that the energy

used by the sensor operations are: ei1 = 3J , eon
i1 = 15J , eoff

i1 = 3J , ei2 = 2J , eon
i2 = 10J ,

eoff
i2 = 2J . The DECIDE instance running on UUVi assembles an (α = 0.95)-confidence

capability summary as follows:

1. Configuration analysis— A UUV mode of operation corresponds to using different

subsets of sensors, so there are four configuration subsets: Cfg1
i ={(spi, 0, 0)|spi∈

[1, 5]}, Cfg2
i = {(spi, 1, 0)|spi ∈ [1, 5]}, Cfg3

i = {(spi, 0, 1)|spi ∈ [1, 5]} and Cfg4
i =

{(spi, 1, 1)|spi∈ [1, 5]}.

148

5.1 DECIDE

Figure 5.3: Environment analysis Env2
i = [1.61, 2.39]× [0,∞] and Env4

i = [1.55, 2.45]×
[3.33, 4.67] for configuration subsets Cfg2i and Cfg4i for a two-sensor UUV.

2. Environment analysis— Assuming that the sensor rates ri1 and ri2 are indepen-

dent of each other, the environment state subsets Envki , 1≤ k≤ 4, are obtained

as the Carthesian product of α1 and α2 confidence intervals for ri1 and ri2, re-

spectively, where α1α2 = α = 0.95. If a sensor is switched off for a configuration

subset Cfgki , the confidence level associated with this sensor (α1 or α2) is set to

1.0 when calculating Envki . This allows the use of a smaller confidence level for

the other sensor, which is potentially active. The result is a narrower confidence

interval for the rate of active sensors, and therefore a capability summary that

reflects better the actual ability of the UUV. Informally, the UUV can “promise” a

stronger contribution to achieving the system requirements for a configuration sub-

set Cfgki if it disregards the state of the sensors switched off for the configurations

in Cfgki . Figure 5.3 summarises the calculation of Env2
i =[1.61, 2.39]×[0,∞] and

Env4
i =[1.55, 2.45]×[3.33, 4.67] for configuration subsets Cfg2

i and Cfg4
i , respectively.

3. Attribute analysis 1— The relational operators for the m = 2 system-level QoS

requirements (5.4) are ./1=‘≥’ and ./2=‘=’, so DECIDE checks that the second

attribute from Table 5.4 takes a single value within each configuration subset Cfgki ,

1≤k≤4. This check is successful because attr i2 = false = a1
i2 for all configurations

in Cfg1
i (since both sensors are switched off) and attr i2 = true = aki2 for all

configurations in Cfgki , 2≤k≤4. Hence, no further partition of any configuration

subset Cfgki is required.

149

5. EXTENDING RQV WITH DECENTRALISED CONTROL LOOPS

(a) (b)

Figure 5.4: Verification of Φi1 and Φi3 from Table 5.4; shaded areas correspond to
configurations that violate local requirement R5.

4. Attribute analysis 2— Requirement R1 in (5.4) is the only system-level require-

ment whose associated relational operator ./1 belongs to the set {<,≤,≥, >}.
Accordingly, DECIDE uses runtime quantitative verification to derive the bounds

aki1 in (5.6) for 1 ≤ k ≤ 4. Figure 5.4(a) illustrates the analysis carried out to

establish a2
i1 using the probabilistic model checker PRISM [149]. The minimum

number of (accurate) measurements attr i1 is obtained for the lowest measurement

rate in Env2
i , i.e., ri1 = 1.61s−1; the bound a2

i1 corresponds to this rate, and to

the most advantageous configuration, i.e., spi = 1m/s.

5. Cost analysis— As shown by the runtime quantitative verification results in Fig-

ure 5.4(b), the cost attrki3 is constant for each environment state in Envki . Hence,

the maximum cost associated with the k-th configuration subset, aki3, corresponds

to the highest sensor rate in Envki , i.e., ri1 = 2.39s−1.

6. Capability summary assembly— The bounds akij , 1 ≤ j ≤ 3, 1 ≤ k ≤ 4, ob-

tained in steps 3–5 are organised into the four-element capability summary CSi=

{(0, false, 5), (93, true, 433), (192, true, 532), (278, true, 984)}. Each summary ele-

ment corresponds to a set of values for the system-level QoS requirements from

Table 5.1. For instance, the element cs2
i = (93, true, 433) specifies that the i-th

UUV using configuration Cfg2
i can do 93 accurate measurements (R1), at least one

of its sensors is switched on (R2) and for this operation it consumes 433J (R3).

These values have been extracted after executing steps 3–5 (see Figure 5.4). The

derivation of the other capability summary elements follows similar reasoning.

150

5.1 DECIDE

5.1.3 Stage 2: Receipt of Peer Capability Summaries

In this DECIDE stage, the α-confidence capability summary (5.7) of a component is
shared with all other components within the distributed system. Major changes, which
are presented formally in Section 5.1.6, occur with a frequency that depends on the
confidence level α. For large α values, capability summaries are highly conservative
and will rarely need updating. Local control loops can achieve any element of such
capability summaries except after severe failures or significant environment changes, and
the frequency with which capability summaries need updating is orders of magnitude
lower than the frequency with which decisions are made by the local control loops. As a
downside, components operate conservatively. Local control loops may overachieve the
agreed CLAs most of the time, and component-level costs may be higher than necessary.
In contrast, the selection of a lower α allows components to operate cost effectively and
closer to their top ability. However, capability summaries are invalidated by smaller
changes, and need to be recalculated with higher frequency. A suitable confidence level
α is one that provides a good trade-off between the two scenarios. We show later in
evaluation (Section 5.3) that what constitutes a good trade-off is system dependent.

Major changes experienced by different components may not be independent of each
other. As an example, the same environment change may affect several components,
leading to multiple major changes within a short time of each other. DECIDE handles
this scenario by using a small time window to group together related capability summary
updates. These time windows are started by the receipt of an update, and a CLA
selection stage for all updates received within the window is triggered when the window
ends. To ensure that updates due to the same major change are handled together with
high likelihood, the width tw of the window is set to

tw ≈ max(tdetect + tCS + tcomm)−min(tdetect + tCS), (5.8)

where tdetect, tCS, tcomm are estimates of the times required for a component to detect
a major change, to recalculate the capability summary, and to communicate it to peer
components, respectively. The second term of (5.8) does not include tcomm because
components affected by a major change “receive” their own capability summaries without
a communication step.

DECIDE does not suggest a new mechanism for sharing the α-confidence peer capa-
bility summaries. This DECIDE stage exploits the data sharing capabilities of recently
emerged platforms for the engineering of distributed systems such as Kevoree [84] and
DEECo [28].

151

5. EXTENDING RQV WITH DECENTRALISED CONTROL LOOPS

5.1.4 Stage 3: Selection of Component Contributions

In this stage of the DECIDE self-adaptation workflow, the system components decide
their contributions to the realisation of the system-level QoS requirements. To this
end, they use their capability summaries CS1, CS2, . . . , CSn to solve the optimisation
problem:

minimise
∑n

i=1 ai,m+1

subject to expr j(a1j , a2j , . . . , anj) ./j bound j , 1 ≤ j ≤ m
and (ai1, ai2, . . . , ai,m+1) ∈ CSi, 1 ≤ i ≤ n

(5.9)

Assuming the problem has a solution, the CLA for the i-th component is given by

clai = (ai1, ai2, . . . , ai,m+1) (5.10)

from this solution, and we say that the i-th system component satisfies its CLA iff the
QoS attributes of the component satisfy for all 1≤j≤m

attr ij ./j aij , if ./j∈ {<,≤,≥, >}
attr ij = aij , otherwise (i.e., if ./j∈ {=, 6=})

, (5.11)

Remember that the local capability analysis stage of DECIDE ensures that compo-
nent configurations that satisfy (5.11) exist with probability at least α.

Theorem 2. Let cla1, cla2, . . . , clan be the CLAs (5.10) of a DECIDE system with

QoS requirements (5.2). If component i satisfies clai for all 1≤ i≤n, then the system

QoS requirements are satisfied.

Proof. Suppose that the n components of a DECIDE system satisfy the CLAs (5.10),

and consider the j-th system-level QoS requirement (5.2), 1≤j≤m. Then attr ij ./j aij

for all components i, 1≤ i≤n. We will prove that the j-th system-level QoS requirement

is satisfied by examining each entry in Table 5.3 individually.

152

5.1 DECIDE

For the first entry, ./j∈ {<,≤,≥, >}, so expr j satisfies

expr j(attr1j , . . . , attrnj) =
∑n

i=1wiattr ij ./j
∑n

i=1wiaij =

= expr j(a1j , . . . , anj) ./j boundj ,

and the j-th QoS requirement is satisfied.

For the second entry, attr ij ∈ [0, 1], so the same reasoning can be applied to show that

the requirement is satisfied:

expr j(attr1j , . . . , attrnj) =
∏n
i=1wiattr ij ./j

∏n
i=1wiaij =

= expr j(a1j , . . . , anj) ./j boundj .

Finally, for the third entry in Table 1, ./j∈ {=, 6=}, so attr ij =aij for all 1≤ i≤n, thus

expr j(attr1j , . . . , attrnj) = expr j(a1j , . . . , anj) ./j boundj ,

which completes the proof.

DECIDE does not prescribe how the optimisation problem (5.9) should be solved,
as this is application specific. Depending on the nature of the DECIDE system and
its requirements, the best way to obtain the component CLAs (5.10) may be by using
an efficient dynamic programming or greedy algorithm, a metaheuristic or, when the
solution space CS1×CS2× . . .×CSn is sufficiently small, using brute-force. The CLA
calculation is performed independently by each system component (using the same
deterministic method). Although DECIDE is sufficiently generic to allow the execution
of this calculation by a “leader” component that would then communicate it to all other
components, the independent calculation is preferred because it avoids a single point of
failure and additional communication between components. This is done, of course, at
the expense of duplicating the CLA selection on all components.

153

5. EXTENDING RQV WITH DECENTRALISED CONTROL LOOPS

Example 5.3. Suppose that the distributed UUV system from our running example

comprises 3 UUVs, i.e., n = 3, each equipped with 2 on-board sensors and the character-

istics shown in Table 5.5. The capability summaries CS after completing the DECIDE

stages described in Sections 5.1.2 and 5.1.3 are shown in Table 5.6. The instance of the

optimisation problem (5.9) solved by the DECIDE module running on each UUV is

minimise
∑n

i=1 ai3

subject to
∑n

i=1 ai1 ≥ 1000

∨
1≤i1<i2≤n (ai12 ∧ ai22) = true

and (ai1, ai2, ai3) ∈ CSi, 1 ≤ i ≤ 3

(5.12)

The optimisation problem for this system corresponds to a multiple-choice knapsack

problem (MCKP) [137]. In this particular problem, however, we deal with the minimi-

sation form of the MCKP, where the optimal solution is given by the minimum value of

the objective function
∑n

i=1 ai3, subject to a set of constraints being satisfied, of which

at least one is upper bounded.

Our implementation of DECIDE described in Section 5.3 solves this problem by first

transforming the minimisation form of MCKP to its equivalent maximisation problem

by calculating for each UUV, the following values:

āi1 = max1≤k≤Ni
aki1

āi3 = max1≤k≤Ni
aki3

(5.13)

and updating each capability summary cski , 1 ≤ i ≤ 3, 1 ≤ k ≤ 4, as follows:

a′i1 = āi1 − aki1

a′i3 = āi3 − aki3

C =
∑n

i=1 āi1 − bound1

(5.14)

154

5.1 DECIDE

Table 5.5: Characteristics of the three-UUV system

UUV i ri1[Hz] ei1[J] eon
i1 [J] eoff

i1 [J] ri2[Hz] ei2[J] eon
i2 [J] eoff

i2 [J]

1 4 1.3 10 2 4.5 1 5 1

2 3.5 1.6 15 3 4 1.3 10 2

3 4.5 1.3 10 2 5 1 5 1

where bound1 is the constraint specified for system-level QoS requirement R1 and C is

the knapsack capacity. Then using an efficient O(n2) dynamic programming algorithm,

adapted from [157], we obtain the optimal solution to the problem solving the following

equation recursively

DP [i][l] = max(l − aki1 ≥ 0?DP [i− 1][l − aki1] + aki3 : −∞) (5.15)

where DP is a suitable data structure of size 4× C, 1 ≤ l ≤ C, and “?:" is the ternary

operator (shortcut for “if...then...else”). Note that DP [0][l], 1 ≤ l ≤ C is an auxiliary

element of dynamic programming paradigm where all entries are 0.

After solving (5.15), the chosen CLAs (i.e., the optimal solution) for the 3-UUVs

are:cla1=(384, true, 647); cla2=(190, true, 270); and cla3 =(441, true, 707). These CLAs

have been established using configuration subsets Cfg4
1, Cfg

3
2, and Cfg4

3, respectively.

Table 5.6: Capability summaries of the three-UUV system

k csk1 csk2 csk3

1 (0, false, 3) (0, false, 5) (0, false, 3)

2 (185, true, 350) (163, true, 392) (213, true, 381)

3 (208, true, 292) (190, true, 270) (236, true, 321)

4 (384, true, 467) (343, true, 667) (441, true, 707)

155

5. EXTENDING RQV WITH DECENTRALISED CONTROL LOOPS

5.1.5 Stage 4: Execution of Local Control Loop

Most of the time, this is the only stage of the DECIDE self-adaptation workflow executed
by the system components. The local control loop of a component ensures that the
component complies with its CLA and local QoS requirements. To this end, DECIDE
local control loops implement the established approach to achieving self-adaptation in
(single control loop) software systems by using RQV. We presented RQV in Section 2.2.1
and used it successfully in our research introduced in Chapters 3 and 4.

For the local control loop of component i, the approach involves the runtime exe-
cution of the verification step (5.1) to establish the value of Mi(e, c) |= Φi,j , i ≤ j ≤
mi, either periodically and/or after events associated with environment or component
changes. The aim is to verify if the QoS attributes of the component continue to satisfy
the component CLA (5.10) and local requirements (5.3), and, if this is not the case, to
identify a new configuration that does. DECIDE local control loops start the search
for such new configurations with the configuration subset Cfgki associated with the cur-
rent component CLA, clai (recall that clai is an element from the capability summary
CSi of component i, and that each CSi element corresponds to a configuration subset
Cfgki ⊂ Cfg i). When no configuration in Cfgki is suitable, the search is extended to
the entire configuration space Cfg i. This could work due to the conservative nature
of capability summaries—configurations in Cfg i \Cfgki may better their α-confidence
capabilities for certain environment states. Finally, if no configuration is available that
satisfies the component CLA and local requirements, we say that component i is affected
by a “major change”, and its capability summary is recalculated (Section 5.1.2).

Example 5.4. Consider our distributed UUV system, and its two-sensor UUVi we

analysed in Example 5.2. Suppose that the CLA selected for UUV2 in the selection

of component contributions stage of DECIDE was (190, true, 270) from the capability

summary established in Example 5.3. Accordingly, its local control loop will adjust the

local configuration in response to changes in the sensor rates r21 and r22 such that the

UUV achieves at least 190 accurate measurements and consumes at most 270J for each

60s of operation. Figure 5.5 depicts the results of the RQV carried out for this purpose

if r22 = 3.68s−1 using only the configurations from the set Cfg3
2 ={(sp2, 0, 1)|sp2∈ [1, 5]}

that is associated with the current CLA; the value of r21 is irrelevant since sensor 1 is

switched off. The energy usage from the local requirement R4 (obtained by verifying Φi3

from Table 5.4), is 224J for all configurations from Cfg3
2. Hence, the CLA is satisfied

156

5.1 DECIDE

Figure 5.5: RQV of Φi1 – Φi6 from Table 5.4.

for multiple configurations in Cfg3
2, and no configuration in Cfg2 \ Cfg3

2 is examined

for this scenario. Given these results, the local control loop selects the configuration

(sp2, x1, x2) = (3.8, 0, 1), which meets the CLA and local requirements, and minimises

the local cost attr26.

5.1.6 Stage 5: Major Changes

Major changes are environment or component changes that require the execution of
other stages of the DECIDE self-adaptation workflow than the local control loop. DE-
CIDE components deal with local and peer major changes.

A local major change occurs within the i-th component when:

(a) The local control loop cannot find a configuration that satisfies the component
CLA and local requirements for the current environment state. This can be due to
the environment state being outside the α-confidence area identified in the local
capability analysis, or due to unexpected environment changes that invalidate this
analysis.

(b) Internal changes such as failures of parts of the component make certain modes
of operation (i.e., configuration subsets Cfgki) unavailable.

(c) The capability summary CSi is overly conservative. This may be due to an
environment that is more favourable than the one considered in the local capability
analysis, or to an extension to the configuration space of the component (e.g., when
a previously failed part becomes operational).

In these scenarios, component i returns to the local capability analysis stage of the

157

5. EXTENDING RQV WITH DECENTRALISED CONTROL LOOPS

DECIDE self-adaptation workflow. This stage is re-executed with updated environment
and/or configuration sets.

A peer major change occurs when another component: (a) joins the system; (b)
undergoes a local major change; or (c) leaves the system. Component i learns about
peer major changes of types (a) and (b) when it receives a new capability summary.
For the last type of peer major change, DECIDE requires that component failures are
identified and announced by the communication and synchronisation platform underpin-
ning the interactions between system components. This capability is already supported
by platforms such as Kevoree [84] and DEECo [28], and can be readily exploited by
DECIDE.

5.2 Implementation

To evaluate DECIDE, we developed a fully-fledged simulator for the multi-UUV self-
adaptive system we introduced in Section 5.1. Like our previous work using a single
UUV (Section 3.2), we used the open-source MOOS-IvP middleware [20].

For the multi-UUV system, we developed a DECIDE MOOS application (Figure 5.6)
that implements the DECIDE stages depicted in Figure 5.1 and described in Sec-
tions 5.1.2 – 5.1.6. Note that the DECIDE local control loop from our new MOOS
application reuses a small amount of code from our existing implementation of single-
UUV self-adaptive system whose centralised control loop is also driven by RQV (Sec-
tion 3.2). Nevertheless, the code for other DECIDE stages—local capability analysis,
receipt of peer capability summaries, selection of component contributions, and ma-
jor change identification within the local control loop—is entirely new. This new code
represents over 90% of our DECIDE MOOS application.

MOOS-DB

IvP HelmMOOS Application

MOOS Application

MOOS Application

MOOS Application

DECIDE

Figure 5.6: MOOS architecture, adapted from [20], including our DECIDE component.

158

5.3 Evaluation

Figure 5.7: Self-adaptive multi-UUV system simulator.

Figure 5.7 shows a screenshot of a three-UUV instance of our self-adaptive UUV sim-
ulator. The screenshot depicts the time moment when the UUV code-named APOLLO
notifies its peer UUVs ZEUS and HERMES that it incurred a major change by send-
ing its new capability summary, and thus initiating a new execution of the DECIDE
stage involving the selection of component contributions. The open-source code for
our DECIDE MOOS application and multi-UUV simulator, the full experimental re-
sults summarised in the following section, additional information about DECIDE and
a video recording of the demo from which we extracted the screenshot in Figure 5.7 are
freely available at http://www-users.cs.york.ac.uk/~simos/DECIDE.

5.3 Evaluation

5.3.1 Research Questions

The aim of our experimental evaluation was to answer the following research questions:

RQ1 (Validation): Can DECIDE enhance distributed systems with self-
adaptive capabilities? This is the first research work that decentralises the
RQV control loop of distributed self-adaptive systems. Therefore, we want to es-
tablish whether DECIDE can support dependable self-adaptation in multi-UUV
systems.

159

http://www-users.cs.york.ac.uk/~simos/DECIDE

5. EXTENDING RQV WITH DECENTRALISED CONTROL LOOPS

RQ2 (Efficiency): How efficiently can DECIDE reconfigure a distributed
self-adaptive software system? With this research question we want to study
the (communication and CPU) overheads incurred by DECIDE when a recon-
figuration of the multi-UUV system is required. We also analyse any “loss” in
efficiency by comparing the CLAs selected by DECIDE (cf. DECIDE stage 3) to
those chosen by an “ideal” system that has perfect knowledge.

RQ3 (Confidence level α): How does the α-confidence level affect the adap-
tation behaviour of DECIDE? We used this research question to study the
impact of the α-confidence level in assembling the capability summaries of system
components. We also investigated any connection points between the α values
and the ability of DECIDE to handle changes locally.

RQ4 (Scalability): How well can DECIDE scale with distributed systems of
different sizes? We used systems comprising up to 32 UUVs to assess whether
DECIDE can cope with systems of different sizes. To this end, we examined the
overheads associated with the various DECIDE stages for these system sizes.

5.3.2 Experimental Setup

To evaluate DECIDE, we carried out a broad range of experiments using the multi-UUV
system implementation and the simulator described in Section 5.2.

Table 5.7 shows the characteristics of the analysed multi-UUV system variants used
for the evaluation. The system characteristics varied in these experiments include the
number of UUVs n and the number of UUV sensors ni, 1 ≤ i ≤ n, as well as the
confidence level α used to assemble the UUV capability summaries in the local capability
analysis stage (Section 5.1.2). To simulate realistic runtime behaviour of the system
and to examine the impact of different types of failure, the experiments were seeded
with failure patterns that consisted of failures of sensors, sudden significant reductions
in sensor measurement rates (i.e., not following the distribution stated in the sensor
specification) and failures of entire UUVs.

All the experiments were carried out using a standard 2.6GhZ Intel Core i5 Macbook
Pro computer with 16GB of memory and running Mac OSX 10.9 64-bit.

160

5.3 Evaluation

Table 5.7: Characteristics of analysed multi-UUV system variants

Type Details

#UUVs n ∈ {1, 2, 3, . . . , 32}
UUV speed spi ∈ [1m/s, 5m/s] 1 ≤ i ≤ n
Sensors per UUV ni ∈ {1, 2, 3} 1 ≤ i ≤ n
Sensor rate ril ∈ [1Hz, 10Hz] 1 ≤ i ≤ n, 1 ≤ l ≤ ni
α-confidence level α ∈ {0.90, 0.95, 0.99}

5.3.3 Results and Discussion

RQ1 (Validation). We start the presentation of our experimental results with the
analysis of a typical mission carried out by the three-UUV system in Figure 5.7, each
UUV being equipped with three sensors. The UUV characteristics for this scenario are
shown in Table 5.8.

The three-UUV system should satisfy the system-level requirements R1–R3, while
each UUV should also satisfy the UUV-level requirements R4–R6, described in Ta-
bles 5.1 and 5.2, respectively. For the purpose of this particular mission, we set the
bound for system-level requirement R1 (i.e., the minimum number of sufficiently ac-
curate measurements every 60 seconds) to 1000, and specify the thresholds for UUV-
specific requirements R4 (i.e., the maximum energy consumed by the sensors on each
UUV every 60 seconds) and R5 (the minimum accuracy probability of each sensor) to
ei = 1000 Joules and pmin

i = 0.9, respectively.
Figure 5.8 depicts the execution of the DECIDE stages by these UUVs over a 5000-

second simulated time period. The circled numbers 1 , 2 , 3 , 4 correspond to the
DECIDE stages 1–4 described in Sections 5.1.2–5.1.5.

Some of the main operations executed by the three UUVs at different time moments
t and the events triggering them are summarised below:

• t ≈ 0s – The local capability analysis, receipt of peer summaries and CLA selection
stages of the DECIDE workflow are carried out by each UUV. The initial CLAs
established as (384, true, 647), (190, true, 270) and (441, true, 707) are selected by
Apollo, Zeus and Hermes, respectively.

• t ≈ 300s – Apollo experiences a significant, but not critical, performance degra-
dation of the currently active sensor 3. To continue satisfying its CLA, Apollo
switches off sensor 2 and starts using sensor 1 in conjunction with sensor 3. Al-

161

5. EXTENDING RQV WITH DECENTRALISED CONTROL LOOPS

Table 5.8: Characteristics of a specific scenario of a three-UUV system

UUV Characteristics

sensor id rate [s−1] failure time interval [s] degradation [%] ∗

(start:finish)

Apollo

r11 5.0

r12 4.0

r13 4.5 300:400, 1000:1100, 4000:4200 55, 20, 55

Hermes

r21 3.5

r22 4.5 2000:2100, 4000:4200 87, 87

r23 4.0

Zeus

r31 5.0

r32 4.5 3000:3100 20

r33 5.0 2000:2100, 4000:4200 80, 65

* degraded rate as a percentage of the nominal rate

though the new configuration consumes more energy, it still satisfies Apollo’s CLA,
and no notification is sent to peers.

• t ≈ 400s – Apollo is affected by a local change where sensor 3 recovers and the
UUV selects sensor 2 instead of sensor 1. Since Apollo’s contribution complies
with its CLA, the UUV continues its operation without any further changes.

• t ≈ 1000s – Apollo undergoes a major local change where the measurement rate
of sensor 3 decreases significantly. As it is unable to meet its CLA, it carries
out a new local capability analysis, and sends to its peers an updated capability
summary. The new CLAs established for the three UUVs are (189, true, 355),
(396, true, 664), (447, true, 715).

• t ≈ 1110s – As sensor 3 on Apollo has recovered, the UUV notifies its peers
that it can resume a stronger contribution by sending them an updated capability
summary, and thus initiates a new CLA re-negotiation which results in the CLAs:
(388, true, 651), (190, true, 270), (447, true, 715).

• t ≈ 2000s – Hermes and Zeus, experience a slight decrease in the measurement
rates of sensor 2 and sensor 3, respectively. To continue complying with their

162

5.3 Evaluation

Apollo

Hermes

Zeus

Time (s)

300
400

2000
2100

5 100 1000
1010

1110
1120

1

2 3

3

2 3

4

4

4

1

2 3

3

2 3

4

4

4

1 2 3

1 2 3

1 2 3

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

System start-up Local change Local control loop Major change
(failure)

Major change
(recovery)

3000
3010

2 34

2 34

1 34

3110
3120

2 34

1 34

2 34

4000

4

4

4

4020
4030

2 34

2 34

1 34

5000

Figure 5.8: Execution of DECIDE stages 1–4 for a particular scenario including major
changes and local sensor changes.

CLAs, both UUVs reduce their speed significantly (from 4 m/s and 3.9 m/s to 2.5
m/s and 3.5 m/s, respectively), while maintaining the current sensor configuration.

• t ≈ 2100s – The sensors on Hermes and Zeus have recovered and the two UUVs
increase their speed accordingly.

• t ≈ 3000s – Sensor 2 on Zeus suffers from a serious degradation of service. The
UUV is unable to fulfil its CLA, and as a result it calculates and shares with
peers its new capability summary (with lower potential contributions). A new
CLA selection takes place which results in the CLA combination (388, true, 651),
(396, true, 664), (240, true, 324).

• t ≈ 3110s – The previously malfunctioning sensor 2 on Hermes becomes oper-
ational, and the UUV determines that its current capability summary is overly
conservative. After sharing with peers the updated capability summary, the UUVs
select the new CLAs (388, true, 651), (190, true, 270), (448, true, 715), according
to which Hermes contributes more in satisfying the system-level QoS requirements.

• t ≈ 4000s – Apollo and Hermes are impacted by local changes and the measure-
ment rate of sensor 3 on both UUVs decreases slightly. To continue satisfying their
CLAs, Apollo switches sensor 2 off and starts using sensors 1 and 3 together, while
Hermes decreases its speed significantly, from 4 m/s to 2.7 m/s.

• t ≈ 4020s – Zeus experiences a major local change due to performance degradation
on sensor 3. The UUV cannot find a configuration to satisfy its CLA and notifies
its peers, sending its new capability summary to reconcile their CLAs, which
results in the solution (388, true, 651), (396, true, 664), (216, true, 386).

163

5. EXTENDING RQV WITH DECENTRALISED CONTROL LOOPS

These results provide evidence that the multi-UUV system using DECIDE is able
to successfully reconfigure itself in the presence of sensor failures, decrease in sensor
measurement rates and total UUV failures. More specifically, if a DECIDE-enhanced
UUV can handle locally sensor failures and find a configuration that meets its CLA
(e.g., t ≈ 2000s), no notification is sent to its peers. Thus, no other UUV is involved in
the adaptation of the multi-UUV system. If, however, the failures are more significant
(e.g., t ≈ 1000s), then its peers are notified and a new CLA selection takes place to
restore compliance with system-level QoS requirements. These observations indicate
that DECIDE can deal effectively with both types of failures affecting a distributed
system and, thus to support dependable adaptation in these systems.

RQ2 (Efficiency). To answer this research question, we carried out several experi-
ments measuring the overheads incurred by the various DECIDE stages, the time taken
to reconfigure the system when a violation occurred and the efficiency of adaptation
decisions.

First, we monitored and analysed the CPU and communication overheads incurred
by the DECIDE stages 1–4. As shown in Table 5.9, the CPU overheads for the RQV-
based local capability analysis, the RQV-based local control loop and the MCKP knap-
sack problem solving in CLA selection, i.e., DECIDE stages 1, 3, and 4, respectively,
are all negligible at under 40ms each, or below 0.4% when the local control loop is
executed every 10s. The communication overheads incurred for sending and receiving a
capability summary, i.e., DECIDE stages 1 and 2, is 71 bytes per peer UUV per major
change3. This overhead is very low too, even for a typical inter-UUV bandwidth of
2.5Kbps [177].

Second, in all the experiments, the system recovered after sensor failures, perfor-
mance drops and complete UUV failures within 800ms from the moment a UUV started
executing the last periodic local control loop, for a typical inter-UUV bandwidth of
2.5Kbps. Hence, if the local control loop runs every 5s, the time to recovery was below
5.8s. This provides evidence that DECIDE can restore compliance with system-level
and component-specific requirements very efficiently, and in fact, it required a fraction
of the time taken by a monolithic approach (see Figure 5.9 later in this section).

Finally, we compared the number of measurements taken and the energy consumed
3 Note that, the upper bound size in bytes of a capability summary transmitted by the i-th UUV is

Comms_Size = Ni× (m+1)× max
1≤k≤Ni∧1≤j≤m+1

getChars(αk
ij) where Ni is the number of configuration

subsets, m + 1 is the number of system-level QoS requirements (including system-level cost), and
getChars(αk

ij) is a function that gives the size in bytes of an RQV-based verification result for the k-th
configuration and j-th system-level QoS requirement.

164

5.3 Evaluation

Table 5.9: Mean CPU and communica-
tion overheads for a three-UUV mission

DECIDE
stage

CPU
use [ms]

bytes
sent

bytes
received

1 38.3 71∗ 0

2 ∼0 0 71∗

3 0.7 0 0

4 25.6 0 0

∗ per peer UUV

Table 5.10: Comparison of DECIDE
with the “ideal” system ∗∗

confidence
level α

additional
energy use

additional
measurements

0.90 +18.26% +12.54%

0.95 +18.30% +12.58%

0.99 +20.62% +9.97%

∗∗ averaged over 10 experiments

by the three-UUV DECIDE system with the values of the same metrics for an “ideal”
system. In this “ideal” system (i) the sensor rates never varied from their nominal val-
ues; (ii) the globally optimal set of sensors satisfying requirements R1–R6 were used
at all times; and (iii) all UUVs travelled with the minimum speed of 1m/s, to max-
imise the fraction of measurements that were accurate. This “ideal” system cannot be
implemented in practice4, but has the useful property that any practical system will
use more measurements and more energy than it does. The results in Table 5.10 show
the excess energy consumed and additional measurements taken by DECIDE, averaged
over 10 experiments. Accordingly, DECIDE successfully decentralised the control loop
of the UUV system with a modest loss in efficiency. In particular, DECIDE required
at most 21% more energy and performed not more than 13% additional measurements,
compared to the “ideal” solution.

RQ3 (Confidence level α). To examine the extent to which the confidence level
α affects the adaptation behaviour of DECIDE, we carried out two sets of exper-
iments with different α-confidence levels. In the first set of experiments, we com-
pared the energy used by the three-UUV system using DECIDE and confidence value
α ∈ {0.90, 0.95, 0.99} with the energy consumed by an “ideal” system (cf. previous re-
search question). As shown in Table 5.10, higher confidence levels make the component
capability summaries (5.7) more conservative, at the expense of increased system-level
cost (e.g., the energy use for our system), and vice-versa. In the most conservative case
however, i.e., when α = 0.99, the energy used by DECIDE exceeds just by 20% the

4The inter-UUV bandwith does not permit the UUVs to exchange state information continuously
as required by the ideal scenario.

165

5. EXTENDING RQV WITH DECENTRALISED CONTROL LOOPS

“ideal” energy consumption.
An interesting observation from Table 5.10, concerns the number of additional mea-

surements associated with the various α-confidence levels. Although the excess in energy
consumption increases as the α-confidence level becomes larger, this is not the case with
the excess in sensor measurements. This occurs because of two reasons. First, the ca-
pability summary sent by a component to its peers (5.7) is a discrete selected subset of
the possible configurations of the component. Second, the system-level cost (i.e., QoS
requirement R3) refers to the energy consumption of the multi-UUV system. Therefore,
this is the objective that DECIDE aims to minimise when establishing the components’
CLAs in (5.9).

In the second set of experiments, we used the same α confidence values and seeded
the runtime behaviour of the three-UUV system with several failure patterns in which
the degradation of service varied between small changes (10%) and more significant
changes (70%) of the nominal sensor rates. We monitored the frequency with which
these changes invalidate the CLAs determined by DECIDE, forcing the UUVs to carry
out local analysis, to share their new capability summaries and to establish new CLAs
(i.e., DECIDE stages 1–3). When using 90%, 95%, and 99% α confidence levels, the
three-UUV system was able to handle these changes locally and to find a configuration
that satisfies its UUV CLAs, 52.4%, 80%, and 83.8% of the times, respectively.

These results indicate that lower confidence levels lead system components to operate
close to their optimal capabilities but make the system susceptible to smaller changes
and the UUVs need to re-establish their CLAs with higher frequency. On the contrary,
higher confidence levels make the system to operate more conservatively. This increases
the system-level cost (e.g., the energy use for our system), but reduces the number of
changes that cannot be handled by the local control loop, as a larger fraction of α of
the control loop checks will find the component operating in an environment state that
can be accommodated through local adaptation. For the three-UUV system, a 95%
confidence level seems an acceptable trade-off between the increase in system-level cost
and the ability of the system to handle changes and adapt locally.

RQ4 (Scalability). We carried out a set of experiments by varying the number of
UUVs, in order to investigate how well DECIDE can scale with systems of different
sizes. We experimented with systems comprising up to 32 UUVs (each equipped with
three sensors) and compared the CPU time taken by each DECIDE stage and by the
adaptation process for a variant of the multi-UUV system running a centralised RQV
control loop.

166

5.3 Evaluation

0 5 10 15 20 25 30
number of UUVs

0.01
0.1

1
10

100
1000

10000
100000

1x1061x1071x1081x1091x10101x1011
CP

U
us

ag
e

(m
s)

Local capability analysis
Local control loop
CLA selection
Centralised contol loop

Figure 5.9: DECIDE scalability analysis.

As shown in Figure 5.9, the two RQV-based DECIDE stages (i.e., the local capability
analysis and the local control loop) use the same small amount of CPU time irrespective
of the size of the n-UUV system. The O(n2) CPU time taken by the CLA selection
stage stays below 200ms for systems of up to 32 UUVs. In contrast, using a centralised
control loop that applies RQV to the entire system model M1 ‖ M2 ‖ . . . ‖ Mn takes
over 4200s for n = 2 and is unfeasible for n > 3. The CPU time shown in Figure 5.9 for
the RQV of a complete model of a three-UUV system (i.e., 983.5 days) is an estimate
we obtained based on the average verification time over a small subset of representative
configurations from the configuration set that would need to be verified by this control
loop.

Considering these results, we can safely state that DECIDE requires a fraction of
the CPU time consumed by a centralised RQV control loop. Furthermore, the number
of components comprising a distributed self-adaptive system has limited effect on the
overheads incurred by DECIDE.

5.3.4 Threats to Validity

We identified several construct, internal and external threats that can influence the
validity of the results presented in this chapter.

Construct validity threats are associated with the assumptions made when im-
plementing the multi-UUV case study, and in the development of the stochastic models
and QoS requirements for the system. To mitigate this threat, the QoS requirements
R1–R6 from Tables 5.1 and 5.2 and the stochastic model are based on a validated
case study from our previous work using a single UUV (Section 3.2). Furthermore, we

167

5. EXTENDING RQV WITH DECENTRALISED CONTROL LOOPS

implemented the multi-UUV system simulator (Section 5.2]) using the well-established
UUV platform MOOS-IvP [20].

Internal validity threats can originate from how the experiments were performed,
and any bias introduced when obtaining and analysing the results. To reduce these
threats, we examined a wide range of scenarios with various characteristics in terms of
number of UUVs, nominal sensors rate and α-confidence level (cf. Table 5.7). Moreover,
the failure patterns used in these scenarios consisted of different types of failures, includ-
ing complete sensor failures and both minor and significant performance degradation
of UUV sensors. Finally, the reported results were collected over multiple independent
runs.

External validity threats can arise because of the difficulties to cast the QoS at-
tributes and requirements of other distributed self-adaptive systems into the pattern
given by (5.1)–(5.3) in Section 5.1.2. To limit this threat, we distilled this pattern from
the growing body of research on RQV-driven self-adaptation in service-based, cloud-
deployed and embedded software systems [32, 33, 35, 38, 68, 76, 94, 130]. Second, for
other systems it may not be possible to identify α-confidence subsets of environment
states. This threat is mitigated by the fact that DECIDE can operate with approxima-
tions of such subsets, which impact only the frequency of major changes. Finally, major
changes may occur too frequently, leading to unacceptable overheads and “jitter” in
component reconfigurations. DECIDE can alleviate this by increasing the α-confidence
level (i.e., being more conservative), but our approach is not intended for systems with
a high churn rate. However, we are aware that we evaluated DECIDE in a single
case study. Therefore, evaluating DECIDE in other types of distributed self-adaptive
software systems is necessary in order to confirm the generality of the approach.

5.4 Related Work

The work we introduce in this chapter touches both areas of decentralised control self-
adaptive systems and runtime quantitative verification. In the following paragraphs we
summarise the most relevant related work from these areas.

Decentralised-Control Self-Adaptive Systems. The subject of decentralised con-
trol in software systems has been studied to a great extent by various research com-
munities, including the software engineering, intelligent systems, robotics, autonomous
and adaptive systems communities. In particular, decentralised control in self-adaptive
software systems has been developed using many approaches, as for example, agent-

168

5.4 Related Work

based [210, 211] and service-based systems [62]. Wooldridge and Jennings [211, p. 116–
118] define an agent-based system as a software system comprising one or multiple
agents that can: (i) act autonomously with limited human interference; (ii) react to
changes in the environment making decisions that allow the system to comply with
design-time requirements; (iii) act pro-actively, if necessary; and (iv) communicate with
other agents and take decisions to satisfy their design-time requirements. Likewise, a
service-based system can dynamically recompose itself by discovering and selecting on-
the-fly services in order to respond to evolving requirements, changes in its environment,
and performance degradation of component services [62].

Tesauro and his colleagues [52, 197] introduced Unity, a decentralised architecture
for self-managing distributed computing systems that enables self-configuration at ini-
tialisation and self-optimisation at runtime. Each system component in Unity is an
autonomic element capable of controlling its own resources to meet its individual re-
quirements as well as delivering services to other autonomic elements. A resource arbiter
maintains a global view of resources demand–availability and is responsible to allocating
the resources to the autonomic elements after evaluating a service-level utility function.

In [93], the authors present an approach for self-organising distributed systems in
which each component maintains a consistent global configuration view using a reliable,
totally ordered broadcast mechanism. After changes in the system, a configuration
manager is responsible for adapting the affected component, provided that user archi-
tectural constraints are satisfied. Sykes et al. [195] propose the use of gossiping among
system components as a solution to the scalability problems faced by [93]. Each com-
ponent keeps a partial view of the system and by making use of a gossip protocol, the
components can agree the adaptation plan (which is identical to a centrally-derived con-
figuration) in logarithmic time with respect to the system size. A gossip-based protocol
is also used in [101] to achieve decentralised and dynamic self-assembly of distributed
services that can satisfy global functional and non-functional requirements.

Decentralised approaches for self-managing agent organisations where the agents
can form coalitions dynamically in order to achieve a global objective are proposed
in [142] and [207]. In [142], each member in the organisation uses only locally stored
information and periodically contacts a subset of its peers in order to determine the
necessary actions to improve the organisation’s performance. In MACODO [207], agents
are organised following a master-slave arrangement, with each master controlling a
different organisation. When necessary, masters can exchange limited information and
cooperate to form coalitions and achieve system-level objectives. This is similar to
DECIDE components sharing their capability summaries in order to select their CLAs.

169

5. EXTENDING RQV WITH DECENTRALISED CONTROL LOOPS

In [163], the authors introduce a decentralised market-based mechanism for enabling
cloud-based service-oriented applications to adapt to changing QoS requirements. They
consider the cloud as a marketplace where providers can offer their services and the
system, using a double-action mechanism, can select dynamically from the pool of
services currently available, those services that satisfy the system QoS requirements and
optimise a utility function. Along the same line, [71] proposes a decentralised market-
based and reputation-guided approach that attempts to minimise QoS violations in
cloud applications by dynamic provisioning of cloud resources.

Despite the promising results presented by these approaches, they take adaptation
decisions using simple heuristics (e.g., gossip-style [101, 195] and market-based [71, 163]
heuristics), or bio-inspired optimisation techniques (e.g., ant and holonic systems [61]
and reinforcement learning [176, 215]). These approaches cannot provide the strong
guarantees required in mission-critical and business-critical application domains, as for
example, in telehealth service-based systems [33], dynamic power management [38],
and unmanned underwater vehicles [94]. DECIDE overcomes these issues and is able
to guarantee that the decentralised-control system meets its QoS requirements in the
presence of changes, recovering from failures whenever feasible.

Clearly, assuring predictable system operation in distributed-self adaptive systems
is an important, but relatively new, area of research. To this end, recent approaches
explored the use of formal methods to guarantee that decentralised-control self-adaptive
systems meet their functional requirements [63, 80, 167]. Our work complements this
research, since DECIDE focuses on the QoS requirements of distributed self-adaptive
systems.

Runtime Quantitative Verification. Recent approaches to improve RQV over-
heads and extend the applicability of the technique to more complex software systems
are extensively reviewed in Section 2.2.3. In Chapter 3 we proposed a set of conventional
software engineering techniques (i.e., caching, limited lookahead and nearly-optimal
reconfiguration) to reduce RQV overheads. Moreover, our EvoChecker approach, in-
troduced in Chapter 4, shows that search-based techniques can improve further RQV
efficiency, especially in software systems with large configuration space sizes.

DECIDE is in line with these approaches as it aims to reduce the RQV control loop
overheads. Our approach can be considered both incremental and compositional ; it is
incremental as it reverifies only the impacted by the changes parts of a system; and
it is compositional as it is capable of providing guarantees for system-level compliance
with QoS requirements without generating the complete, monolithic model of the entire

170

5.5 Summary

system. Furthermore, DECIDE is a generic framework that supports a wide range
of Markov models and system properties, whereas the aforementioned approaches are
applicable only in specific variants of Markov models and/or system properties (cf.
Table 2.3). Additionally, [44, 76, 94, 110, 154] are not capable of handling changes in
the structure of the model, as DECIDE does. Hence, in case of structural changes the
entire process needs to be repeated from the beginning. Compared to [130], DECIDE
generates the CLAs on-thy-fly and without any external coordination, whereas [130]
builds upon the assume-guarantee framework in which the assumptions are generated
manually (although in [72] an effort is made to use machine learning for creating the
assumptions).

Additionally, these approaches use centralised control loops, which restricts the on-
the-fly use of RQV to small system models that can be analysed fast and verified with
acceptable overheads at runtime. DECIDE tackles this challenge since all RQV-based
stages within our approach analyse component models. Hence, DECIDE extends the
applicability of RQV to large component-based models (cf. the scalability results in
Figure 5.9). DECIDE addresses also the single point of failure introduced by centralised
control loops because the control loop of a DECIDE component continues to operate
even if a peer component and its control loop fail.

To the best of our knowledge, DECIDE is the first approach that employs RQV-
based decentralised control loops for providing guarantees regarding the compliance of
a distributed self-adaptive system with its QoS requirements.

5.5 Summary

In this chapter, we presented DECIDE, an approach that enables the engineering of
distributed self-adaptive software systems with RQV-driven decentralised control loops.
To this end, we developed a theoretical framework for the decentralisation of control
loops in this type of systems. This new theoretical framework comprises the following
stages: (1) RQV-driven local capability analysis for calculating component QoS capabil-
ity summaries; (2) receipt of peer QoS capability summaries; (3) decentralised selection
of component contribution-level agreements (CLAs) which assures that system-level
QoS requirements are met; and (4) RQV-based local control loop that guarantees com-
pliance of each component with its CLA and local requirements. DECIDE is also able
to identify when a component is unable to satisfy its CLA through local adaptation.
In this situation a major change occurred and DECIDE triggers the re-execution of
stages (1)–(4) to establish new CLAs and restore compliance with system-level QoS

171

5. EXTENDING RQV WITH DECENTRALISED CONTROL LOOPS

requirements.
We validated our approach and showed its effectiveness using a simulated distributed

embedded system from the unmanned underwater vehicle domain. More specifically,
DECIDE outperforms the current use of centralised RQV-based control loops for provid-
ing assurances in self-adaptive systems (Section 5.4) in several aspects. First, DECIDE
is able to drive reconfiguration with CPU, energy, and memory consumption overheads
that are several orders of magnitude lower. When compared to an “ideal”, but practi-
cally infeasible variant of the self-adaptive system, our approach incurs only a modest
increase in system-level costs (18–21% in our case study). Second, DECIDE can scale
without any significant increase in overheads with systems of much larger sizes (up to
32 in our case study). Finally, distributed self-adaptive systems using DECIDE are not
susceptible to the single point of failure (faced by centralised control loops) as system
components can continue operating when a peer component fails completely, irrespective
of which component this is.

172

Chapter 6

Engineering Trustworthy

Self-Adaptive Systems

Self-adaptive software systems deployed in mission-critical and safety-critical applica-
tion domains, e.g., healthcare, transportation, and finance, are expected to reconfigure
themselves in response to changing environments, evolving requirements and unexpected
system failures. In the previous chapters, we demonstrated how RQV can support self-
adaptation in these systems and how the verification results generated by the technique
can be used as evidence to ascertain the correctness of adaptation decisions. We also
proposed variants of the technique that improve its performance (Chapters 3–4) and
extend its applicability to distributed self-adaptive systems (Chapter 5).

Despite the extensive recent research in engineering self-adaptive systems [127, 143,
183], assurances is an aspect of this process that is still underexplored. Assurances are
defined as the provision of evidence that a software system complies with its functional
and non-functional requirements throughout the system’s lifetime [45]. In conventional
(non self-adaptive) systems such evidence can be obtained at design-time, i.e., during
requirements engineering, system design or implementation. In self-adaptive systems,
however, the high levels of uncertainty during system operation change completely the
setting. Thus, assurances for self-adaptive systems entail not only providing evidence
for requirement compliance at design-time, but also supplying new evidence at runtime,
once an adaptation is performed, to confirm that compliance still holds [205].

The need for assurances was brought into the forefront of self-adaptive systems only
recently [55, 56]. Existing research provides correctness evidence for specific aspects of
the self-adaptive software, but does not consider a picture of the entire system. The

173

6. ENGINEERING TRUSTWORTHY SELF-ADAPTIVE SYSTEMS

assurances are, thus, incomplete, since this correctness evidence is only one component
of the established industry process for the assurance of safety-critical and mission-critical
systems [26, 199]. In systems from these domains, assuring a software system entails the
establishment of an assurance case, which standards such as [200] define as “a structured
argument, supported by a body of evidence, that provides compelling, comprehensible and
valid case that a system is safe for a given application in a given environment”.

Driven by these observations, in this chapter we bridge the gap between the estab-
lished industry process and the current research on assurances for self-adaptive systems.
To this end, we introduce ENTRUST, a tool-supported methodology for the ENgi-
neering of TRUstworthy Self-adaptive sofTware systems1. The ENTRUST methodology
spans both design-time and runtime activities, and integrates work on developing for-
mally verified control loops [128], our work on runtime quantitative verification, and
Goal Structuring Notation (GSN), an industry adopted standard for the formalisation
of assurance arguments [105, 192]. ENTRUST uses formally verifiable models (e.g.,
timed automata) that conform to the MAPE workflow (Figure 2.4) for the development
of the controller of the self-adaptive system. Another set of parametric stochastic mod-
els captures system and environmental uncertainty. The controller models are verified
to produce evidence confirming the controller correctness, and this evidence is used
for the partial instantiation of an assurance argument. The two sets of models are
then combined with reusable ENTRUST components, application-specific sensors and
effectors, and the managed software system to produce a self-adaptive system that is
ready for deployment. Any missing evidence from the assurance argument is continu-
ally generated while the self-adaptive system is running. This new evidence is used to
incrementally update the assurance argument of the ENTRUST system. To the best of
our knowledge, ENTRUST is the first fully-fledged methodology for the engineering of
trustworthy self-adaptive software systems and their associated assurance cases.

The main contribution of this chapter is the ENTRUST methodology for engineer-
ing trustworthy self-adaptive systems, supported by formal assurance cases. We also
propose a formally verifiable controller architecture for self-adaptive systems that inte-
grates RQV into controller modules, and a set of controller properties that ENTRUST
controllers must satisfy. We describe these contributions in Section 6.1. We present
the ENTRUST implementation in Section 6.2. In Section 6.3, we report results from
evaluating ENTRUST to developing self-adaptive systems across application domains.
We review related work in Section 6.4 and summarise ENTRUST in Section 6.5.

1ENTRUST is a joint work with Prof. Tim Kelly and Dr. Ibrahim Habli from University of York,
UK and with Prof. Danny Weyns and Usman Iftikhar from Linnaeus University, Sweden.

174

6.1 ENTRUST Methodology

ENTRUST Controller

Monitor
model

Analyzer
model

Planner
model

Executor
model

Trusted MAPE Virtual machine

Managed software system

Probabilistic
verification

engine

Knowledge repository:
managed system and environment parametric stochastic models;

system requirements; dynamic assurance argument;
adaptation assurance evidence

Sensors Effectors

Figure 6.1: Architecture of an ENTRUST self-adaptive system.

6.1 ENTRUST Methodology

The high-level architecture of an ENTRUST self-adaptive system is based on the MAPE
control loop (Figure 2.4) and is depicted in Figure 6.1. The self-adaptive system com-
prises an external ENTRUST controller, a managed software system and their commu-
nication mechanisms Sensors and Effectors. As always in this thesis, we assume that the
managed software system is already available and its components can execute low-level
commands required for self-adaptation. Thus, the focus of the ENTRUST methodology
is on developing the controller and providing assurances for its correct implementation
at design-time and reliable operation at runtime. The controller comprises: i) a set
of formally verifiable controller models that correspond to the monitor-analyse-plan-
execute steps of the MAPE loop; ii) a knowledge repository that contains the system
requirements to be assured at runtime, the parametric stochastic models of the sys-
tem and its environment, the adaptation assurance evidence and the updated assurance
argument; and iii) the reusable components of our controller, i.e., a trusted MAPE vir-
tual machine (which is developed by our collaborators Prof. Danny Weyns and Usman
Iftikhar) [128] and a probabilistic verification engine (e.g., verification libraries of the
probabilistic model checker PRISM [149]).

The controller models form an application-specific network of interacting timed au-
tomata [7], specified in the modelling language of UPPAAL [18]. At design-time these
models are verified to establish key controller correctness properties, including reach-
ability and liveness. At runtime, the virtual machine directly interprets and executes
these models. The use of this model-driven engineering approach is a major benefit

175

6. ENGINEERING TRUSTWORTHY SELF-ADAPTIVE SYSTEMS

3. Enact
controller Controller

4. Partially
instantiate
assurance

arg.pattern

Partially-
instantiated
assurance
argument
pattern

5. Run
self-adaptive

system

6. Update
assurance
argument

1. Develop
verifiable
models

Controller
evidence

Controller
models

Assurance
argument
pattern

Probabilistic
verififcation

engine

2. Verify
controller
models

MAPE model
templates

Parametric
stochastic

models

Adaptation
assurance
evidence

Assurance
case

Design-time stages Runtime stages

Manual
step

Tool-supported
step

Automated
step

Key:
Trusted

virtual
machine

Evidence
(trusted VM & prob.
verification engine)

Figure 6.2: ENTRUST self-adaptive system and assurance case methodology.

since it does not require any model-to-text transformation of the verified models into
executable code, which is a complex, and potentially error-prone operation. However,
providing assurance evidence for the correct execution of the controller models by the
virtual machine is crucial. This evidence, as we discuss later in Section 6.1.4, is provided
by our collaborators when they developed and verified the virtual machine [128].

The execution of the controller models follows the typical execution of the MAPE
loop (cf. Section 2.2.1). The monitor model collects information about the system and
its environment through sensors. Elements of this information that are relevant to the
behaviour of the system and its environment, and which correspond to the unknowns in
the parametric stochastic models, are used to produce concrete instances of stochastic
models. The analyzer model reverifies the compliance of the self-adaptive system with its
requirements. This continual verification is carried out using the probabilistic verification
engine. In case of a requirement violation, the analyzer uses the verification results to
determine a new system configuration that restores this compliance. The planner model
is responsible for deriving a stepwise plan to realise the new configuration, and this plan
is implemented by the executor model through effectors.

The ENTRUST methodology for developing high assurance self-adaptive systems
and their corresponding assurance cases consists of four design-time and two runtime
stages (Figure 6.2). In Stage 1, the four controller models of the MAPE loop and the
parametric stochastic models of the managed system and its environment are developed.
The controller models are devised by specialising a set of ENTRUST controller model
templates [99] (which contain elements of the MAPE loop common across applications
and placeholders for application-specific functionality). In Stage 2, the controller mod-
els are verified using a trusted model checker to produce evidence that the controller

176

6.1 ENTRUST Methodology

satisfies a set of generic controller properties, e.g., safety and liveness. An instance
of the controller is generated in Stage 3 by integrating the controller and parametric
stochastic models with reusable ENTRUST components (virtual machine and proba-
bilistic verification engine) and application-specific sensors and effectors. In Stage 4,
evidence regarding the controller correctness, generated in Stage 2, is combined with
a generic assurance argument pattern to produce a partially instantiated assurance ar-
gument. This incomplete argument contains placeholders for the assurance evidence
that can be obtained only after the system starts executing, i.e., after the uncertainties
associated with the system and its environment are resolved.

At runtime, the deployed self-adaptive system executes the MAPE loop and dynam-
ically reconfigures itself in response to environmental and internal changes (Stage 5).
This reconfiguration produces adaptation assurance evidence that establishes both the
correctness of the configuration results and the validity of the derived reconfiguration
plan. Stage 6 uses this adaptation assurance evidence to fill in the placeholders from
the partially instantiated assurance argument, and to derive the fully-fledged assurance
argument of the system.

In the following sections we present the stages of the ENTRUST methodology
in more detail. We use the self-adaptive UUV embedded system described in Sec-
tion 2.2.1.1 and the QoS requirements from Table 6.1 as a running example. For each
stage, we provide a general description and we illustrate the application of ENTRUST to
instantiate the UUV controller and to generate the corresponding assurance argument.

Table 6.1: QoS requirements for the UUV self-adaptive system

ID Informal description

R1 “The UUV should take at least 20 measurements of sufficient accuracy for every
10 metres of mission distance.”

R2 “The energy consumption of the sensors should not exceed 120 Joules per 10
surveyed metres.”

R3 “If requirements R1 and R2 are satisfied by multiple configurations, the
UUV should use one of these configurations that minimises the cost function
cost = w1E + w2sp

−1” (w1, w2 > 0 are weights, E is the energy consumed by
sensors per 10 surveyed meters, and sp is the UUV speed)

R4 (failsafe) “If a suitable configuration is not identified within ten seconds after
a sensor rate change, the UUV speed must be reduced to 0m/s. This ensures
that the UUV does not advance more than a certain distance without taking
appropriate measurements, and waits until the controller identifies a suitable
configuration (e.g., after the UUV sensors recover) or new instructions are
provided by a human operator.”

177

6. ENGINEERING TRUSTWORTHY SELF-ADAPTIVE SYSTEMS

6.1.1 Stage 1: Development of Verifiable Models

During the initial stage of the ENTRUST methodology, two sets of formally verifiable
models are developed, i.e., controller models and parametric stochastic models. A
trusted model checker can be used to analyse the controller models and verify their
compliance with a set of key correctness properties (Section 6.1.2).

Controller models. The controller models carry out the tasks of the controller of
the self-adaptive system. Their structure comprises an application-specific network of
interacting timed automata that matches the four steps of the MAPE control loop.
The development of these models is facilitated by specialising application-independent
ENTRUST controller model templates adapted from the recent work of de La Iglesia
and Weyns [99]. These templates are preconfigured with elements of the MAPE loop
common in self-adaptive systems and leave application-specific aspects to be developed
later in the form of placeholders. There are two types of MAPE model templates [99]:

i) event triggered, in which the monitor automaton is activated by a sensor-generated
signal indicating a change in the managed system or its environment;

ii) time triggered, in which the monitor automaton is periodically activated by a an
internal clock;

We extended these templates by adding elements specific to the ENTRUST con-
troller (e.g., probabilistic verification engine) and the type of managed systems handled
by ENTRUST (e.g., failsafe configuration). We define these templates in UPPAAL [18],
since it is a well-regarded modelling language and a mature verification suite.

We depict the event-triggered automaton templates in Figure 6.3. States are anno-
tated with atomic propositions that are true in those states, e.g., ProcessSensorData,
PlanCreated. Transitions are annotated with boolean guards that must hold for the
transition to take place, and actions are executed once transitions are taken. Two au-
tomata can synchronise their transitions (so that they are taken at the same time)
through synchronisation channels, i.e., pairs comprising a ‘ !’-decorated sent signal!
and a ‘?’-decorated received signal? with the same name, e.g., startAnalysis! and
startAnalysis? from the monitor and analyzer automata, respectively. Signals in an-
gle brackets ‘〈〉’ are placeholders for application-specific signal names. Finally, guards
and actions decorated with brackets ‘()’ represent application-specific C-style functions.

To specialise these templates for a self-adaptive system, software engineers need:

i) to replace the signal placeholders with real signal names;

ii) to define the guard and action functions;

178

6.1 ENTRUST Methodology

(a) Monitor

WaitP

plannerCleanup()

Application-
specific
planner

Plan

PlanCreated

startPlanning?

startExecuting!

(c) Planner

executorInit()

executorCleanup()
planExecuted!

Application-
specific
executor

WaitE

Execute

PlanExecuted

startExecuting?

<executorSignal1!>

<executorSignalm!>

… … …

(d) Executor

startAnalysis!

WaitM ProcessSensorData CheckM
process()

�analysisRequired()

monitorCleanup()

<sensorSignal1?>

<sensorSignaln?>

...

MonitorFinished

analysisRequired()

StartAnalysis

Key:

Automaton state
State transition

analysisRequired() Guard

analyse()

startAnalysis!

Action
startAnalysis?

Sent signal
Received signal

Initial state

Atomic propositionPlanCreated

time=0

startPlanning!

startAnalysis?
WaitA

CheckA Analyse

StartVerif

analyse()adaptationRequired()

EndVerif
verify!

verifDone?

�adaptationRequired()

Adapt

analyserCleanup()

AnalysisFinished

(b) Analyzer

WaitVerif
time ≤ MAX_TIME

time > MAX_TIME
useFailsafeConfig()

Figure 6.3: Event-triggered MAPE model templates.

(a) Monitor

(c) Planner (d) Executor

UUV planner

ChangeSpeed

WaitP

plannerCleanup()

Plan

PlanCreated

addStepChangeSpeed()

sensorID==SENSORS-1

ChangeSensorsConfiguration

CheckSpeed
SensorsConfigurationCompleted

changeSensorsConfig() sensorID<SENSORS -1

step==TURN_ON

step==TURN_OFF

step==DO_NOTHING

�changeSpeed()

changeSpeed()

�changeSensorsConfig()

addStepSensorOff(sensorID)

addStepSensorOn(sensorID)

sensorID=0
step=checkConfig(sensorID)

sensorID++

startPlanning?

startExecuting!

UUV executor

WaitE

PlanExecuted

Execute

executorInit()
startExecuting?

executorCleanup()
planExecuted!

�allPlanStepsExecuted()

allPlanStepsExecuted()

planStep=nextPlanStep()
data=nextPlanData()

planStep==SENSOR_ON

planStep==SENSOR_OFF

planStep==CHANGE_SPEED

ExecutePlanStep

SensorOn

SensorOff

ChangeSpeed

sensorID=data

sensorID=data

newSpeed=data
changeSpeed!

sensorOFF!

sensorON!

startAnalysis!

WaitM ProcessSensorData CheckM
process()

�analysisRequired()

monitorCleanup()

newRate?

MonitorFinished

analysisRequired()

StartAnalysis

time=0

startPlanning!

startAnalysis?
WaitA

CheckA Analyse

StartVerif

analyse()adaptationRequired()

EndVerif
verify!

verifDone?

�adaptationRequired()

Adapt

analyserCleanup()

AnalysisFinished

(b) Analyzer

WaitVerif
time ≤ 10

time > 10
useFailsafeConfig()

Figure 6.4: Instantiation of UUV MAPE automata based on the event-triggered EN-
TRUST model templates.

iii) to devise the (shaded) application-specific automaton regions from Figure 6.3.

In the monitor automaton, for instance, the engineers first need to replace the
placeholders 〈sensorSignal1?〉, . . . , 〈sensorSignaln?〉 with sensor signals announcing
relevant changes in the managed system. They must then implement the functions
process(), analysisRequired() and monitorCleanup(), whose roles are to process the sensor
data, to decide if the change specified by this data requires the “invocation” of the

179

6. ENGINEERING TRUSTWORTHY SELF-ADAPTIVE SYSTEMS

analyzer through the startAnalysis! signal, and to carry out any cleanup that may be
required, respectively.

In the analyzer automaton, signals verify! and verifDone? are used to invoke
the probabilistic verification engine and to receive notification once the engine finishes
its execution, respectively. The engineers must then realise the functions useFailsafe-
Config(), analyse() and adaptationRequired(), whose purpose are to force the system
to use the failsafe configuration if a time threshold is exceeded (i.e., the guard time>
MAX_TIME holds), to determine a configuration that satisfies the system QoS require-
ments by analysing the verification results, and to check if an adaptation is needed to
switch to this configuration, respectively. If adaptation is required, the analyzer starts
the planner automaton through the startPlanning! signal. The implementation of
the analyserCleanup() function performs any necessary cleanup.

In the planner automaton, the yellow shaded region should be developed to construct
a stepwise reconfiguration plan that switches the system to the new configuration upon
receiving the startPlanning? signal. Also, the function plannerCleanup() should be
implemented to carry out any required cleanup. The startExecuting! signal invokes
the executor automaton.

In the executor automaton, the engineers should develop the yellow shaded au-
tomaton region in order to realise the reconfiguration plan. Likewise, the placeholders
〈executorSignal1?〉, . . . , 〈executorSignaln?〉 should be replaced with appropriate
executor signals implementing the adaptation decisions in the managed system. Fi-
nally, the functions executorInit() and executorCleanup() should be implemented in order
to initialise the executor automaton and to make any necessary cleanup, respectively.

Example 6.1. We instantiated the ENTRUST model templates for the UUV system,

obtaining the automata shown in Figure 6.4. The signal newRate? is the only sensor

signal that the monitor automaton needs to deal with, by reading a new UUV-sensor

measurement rate (in process()) and checking whether this rate has changed to such

extent that a new analysis is required (in analysisRequired()). If analysis is required,

the analyzer automaton sends a verify! signal to invoke the probabilistic verification

engine, and thus verifies which UUV configurations satisfy requirements R1 and R2

and with what cost . The function analyse() uses the verification results to select a

configuration that satisfies R1 and R2 with minimum cost (cf. requirement R3). If no

such configuration exists or the time limit is exceeded (i.e., the guard time > 10 holds

180

6.1 ENTRUST Methodology

and the useFailsafeConfig() function is executed), a zero-speed configuration is selected

(cf. requirement R4). If the selected configuration is not the one in use, adaptationRe-

quired() returns true and the startPlanning! signal is sent to initiate the execution of

the planner automaton. The planner assembles a stepwise plan for changing to the new

configuration by first switching on any UUV sensors that require activation, then switch-

ing off those that are no longer needed, and finally adjusting the UUV speed. These

reconfiguration steps are carried out by the executor automaton using the sensorON!,

sensorOFF! and changeSpeed! signals handled by the effectors from Figure 6.1.

Parametric stochastic models. The parametric stochastic models capture the be-
haviour of the managed system and the environment in which the system operates. The
parameters represent aspects of the system that are unknown at design time and become
known only through monitoring the managed system at runtime, e.g., the operating rate
of the UUV sensors. These models are defined in the PRISM high-level modelling lan-
guage [149]. We chose PRISM since it is an established suite for modelling and analysing
stochastic systems and we have extensive experience with it. However, other stochastic
modelling languages and tools (e.g., MRMC [133]) could be used. Thus, the models can
be any of the supported PRISMmodels, including DTMCs (Section 2.1.1.1) and CTMCs
(Section 2.1.1.2). Similarly, system QoS requirements are specified in the appropriate
probabilistic temporal logic, e.g., PCTL (Section 2.1.2.1) and CSL (Section 2.1.2.2).

Example 6.2. The CTMC model Mi of the i-th UUV sensor is shown in Figure 2.3

and a description of its operation is given in Example 2.2. The model M of an n-sensor

UUV is given by the parallel composition of the n sensor models: M = M1||...||Mn.

The QoS system requirements from Table 6.1 are specified using CSL as follows:

R1: R“measurement”
≥20 [C≤10/sp]

R2: R“energy”
≤120 [C10/sp]

R3: minimise w1E + w2sp
−1, E = R“energy”

=? [C10/sp]

where 10/sp is the time taken to travel 10m at speed sp.

The failsafe requirement R4 encodes a condition-action policy [127], so it does not need

to be specified using CSL.

181

6. ENGINEERING TRUSTWORTHY SELF-ADAPTIVE SYSTEMS

6.1.2 Stage 2: Verification of Controller Models

During this ENTRUST stage, a trusted model checker is used to manually verify the
controller models developed in the previous stage (Section 6.1.1). This operation pro-
vides assurance evidence that the controller satisfies key correctness properties including
safety and liveness. A non-exhaustive list of such properties is shown in Table 6.2.

In order to carry out this verification and collect the assurance evidence, an end-to-
end functional set of automata is required. This means realising the application-specific
parts of the controller models (e.g., shaded regions in planner and executor automata).
Additionally, automata that simulate the sensors, probabilistic verification engine and
effectors from Figure 6.1 must be defined to enable this verification. The sensors,
verification engine and effectors automata have to synchronise with the relevant monitor,
analyzer and executor signals, respectively. For instance, the auxiliary sensor automaton
must synchronise with the monitor automaton by sending the signal newRate!; this is
the starting signal initiating the execution of the entire MAPE loop. The sensors and
verification automata have to exercise all possible paths through the monitor, analyzer
and planner automata (and indirectly the executor automaton). To this end, they can
nondeterministically populate the knowledge repository with data that satisfies all the
different guard combinations. Alternatively, a finite collection of the two automata can
be used to verify subsets of all possible MAPE paths, as long as the union of all such
subsets covers the entire behaviour space of the MAPE network of automata.

The time and resources required to verify the controller models depend both on the
size of the automata (e.g., Figure 6.4) and the code complexity of the guard and action
(C-style) functions. The larger the automata and the more complex the code, the higher
the overheads for completing the verification. Thus, verifying complex controller models
becomes challenging when the available resources are limited.

Example 6.3. We used the UPPAAL model checker [18] to verify that the network of

MAPE automata of the UUV system (Figure 6.4) satisfies all the correctness properties

from Table 6.2. To achieve this, we defined simple sensors, verification engine and ef-

fectors automata as shown in Figure 6.5. We used a simple one-state sensor automaton

with transition returning to its single state for the outgoing signal newRates!. Simi-

larly, the effector automaton had a single state and its transitions return to that state for

each of the received signals sensorON?, sensorOFF? changeSpeed? and planEx-

ecuted?. The verification engine automaton simulates the probabilistic analysis of the

182

6.1 ENTRUST Methodology

Table 6.2: Generic properties that should be satisfied by an ENTRUST controller

ID Informal description Specification in computation
tree logic [49]

P1 The ENTRUST controller is deadlock free. A� not deadlock
P2 Whenever analysis is required, the Analyser even-

tually carries out this action.
A� (Monitor.StartAnalysis →

A♦ Analyzer.Analyse)
P3 Whenever the system requirements are violated, a

stepwise reconfiguration plan is assembled.
A� (Analyzer.Adapt →

A♦ Planner.PlanCreated)
P4 Whenever a stepwise plan is assembled, the Execu-

tor eventually implements it.
A� (Planner.PlanCreated →

A♦ Executor.PlanExecuted)
P5 Whenever the Monitor starts processing the re-

ceived data, it eventually terminates its execution.
A� (Monitor.ProcessSensorData →

A♦ Monitor.Finished)
P6 Whenever the Analyser begins the analysis, it even-

tually terminates its execution.
A� (Analyzer.Analyse →

A♦ Analyzer.AnalaysisFinished)
P7 A plan is eventually created, each time the Planner

starts planning.
A� (Planner.Plan →

A♦ Planner.PlanCreated)
P8 Whenever the Executor starts executing a plan, the

plan is eventually executed.
A� (Executor.Execute →

A♦ Executor.PlanExecuted)
P9 Whenever adaptation is required, the current con-

figuration and the best configuration differ.
A� (Analyzer.Adapt →

currentConfig != newConfig)

stochastic system models by receiving the signal verify? and transmitting the signal

verifDone! to the analyzer automaton. To exercise all possible paths of the MAPE

automata from Figure 6.4 we defined a finite collection of sensor–verification engine

automata pairs, instrumented with the appropriate inputs. The function prepareVeri-

ficationData() selects randomly verification data from this collection with the purpose

to force the generation of all possible plans in the planner automaton. To this end, we

assessed all possible outcomes of the guards, including those in the application-specific

planner and executor automata (e.g., changeSensorsConfig(), changeSpeed()).

(a) Sensor

newRates!

(b) Verification engine

WaitP PrepareData

prepareVerificationData()

VerificationFinished

verify?

verifDone!

(c) Effector

sensorOff?

sensorOn? changeSpeed?

WaitS WaitEx

planExecuted?

Figure 6.5: Auxiliary sensor, verification engine and effector automata used for verifying
the generic controller properties from Table 6.2 for the UUV system.

183

6. ENGINEERING TRUSTWORTHY SELF-ADAPTIVE SYSTEMS

6.1.3 Stage 3: Controller Enactment

This ENTRUST stage is responsible for assembling the controller of the self-adaptive
system. First, the auxiliary sensor, verification engine and effector automata used
in Stage 2 for verifying the generic controller properties in UPPAAL are replaced by
application-specific components that carry out the designated functionality. In the cur-
rent ENTRUST version we implemented abstract Java classes that provide this func-
tionality, and which must be specialised for each application. Listing 6.1 shows the
Effector abstract class. These abstract classes are available on our Github repository2.
Thus, the specialised sensors and effectors must use the APIs of the managed software
system to observe its state and environment, and to modify its configuration, respec-
tively. The verification engine, which employs the verification libraries of the PRISM
probabilistic model checker [149], must be specialised to perform two tasks. First, it has
to instantiate the parametric stochastic models using the actual values of the managed
system and environment parameters (provided by the sensors). Second, it has to verify
the application-specific QoS requirements for alternative system configurations.

Once these application-specific components are implemented, they are integrated
with the controller and stochastic models devised in Section 6.1.1 and with the trusted
virtual machine. The final outcome is a functional controller, which will be then com-
bined with the managed software system through an application-specific process to
complete the engineering of the self-adaptive system.

Example 6.4. To assemble a fully-fledged ENTRUST controller for the UUV system,

we implemented Java classes that extend the functionality of the abstract Sensor, Effec-

tor and VerificationEngine classes from the ENTRUST distribution. Listing 6.2 shows

the instantiated effector class for the UUV system. The specialised sensors and effectors

synchronise with the monitor and executor automata through the application-specific

signals newRate! and sensorOn?, sensorOff?, changeSpeed?, planExecuted?,

respectively. These classes invoke the relevant API methods of our UUV simulator (de-

veloped using the open source MOOS-IvP middleware [20]). The specialised verifica-

tion engine synchronises with the relevant application-independent signals (verify? and

verifDone!) from the analyzer automaton, instantiates the parametric sensor modelsMi

from Figure 2.3, 1≤ i≤n, and verifies the CSL-encoded requirements from Example 6.2.

2https://github.com/gerasimou/ENTRUST

184

https://github.com/gerasimou/ENTRUST

6.1 ENTRUST Methodology

Listing 6.1: Effector abstract class.
1 package controller;
2

3 import java.util.HashMap;
4 import activforms.engine.ActivFORMSEngine;
5 import activforms.engine.Synchronizer;
6

7 public class Effector extends Synchronizer{
8

9 private ActivFORMSEngine vm; // trusted VM
10 private int executorSignal1, executorSignaln; // signal(s)
11 private Object comm; // comm handle
12

13 /** Constructor: create a new effector */
14 public Effector(ActivFORMSEngine vm, Object comm){
15 //assign handlers
16 this.vm = vm;
17 this.comm = comm;
18

19 //get signal(s) ID
20 executorSignal1 = vm.getChannel("executorSignal1");
21 ...
22 executorSignaln = vm.getChannel("executorSignaln");
23

24 //register signals
25 vm.register(executorSignal1, this, "effectorData");
26 vm.register(executorSignaln, this, "effectorData");
27 }
28

29 /** Executed when receiving one of the registered signals.
30 Upon receiving such a signal, the Effector must realise
31 the appropriate action to the managed system */
32 @Override
33 public void receive(int channelID, HashMap<String, Object> data){
34 if (channelID == executorSignal1){
35 Object action = data.get("effectorData");
36 //realise adaptation action to the managed system
37 //TODO...
38 }
39 else if (channelID == executorSignaln){
40 Object action = data.get("effectorData");
41 //realise adaptation action to the managed system
42 //TODO...
43 }
44 }
45 }
46

185

6. ENGINEERING TRUSTWORTHY SELF-ADAPTIVE SYSTEMS

Listing 6.2: Effector class for the UUV system.
1 package controller;
2

3 import java.util.HashMap;
4 import activforms.engine.ActivFORMSEngine;
5 import activforms.engine.Synchronizer;
6

7 public class Effector extends Synchronizer{
8

9 private ActivFORMSEngine vm; // trusted VM
10 private int sensorOn, sensorOff, changeSpeed, planExecuted; // signal(s)
11 private PrintWriter comm; // comm handle
12

13

14 /** Constructor: create a new effector */
15 public Effector(ActivFORMSEngine vm, Object comm){
16 //assign handlers
17 this.vm = vm;
18 this.comm = (PrintWriter)comm;
19

20 //get signal(s) ID
21 sensorOn = vm.getChannel("sensorOn");
22 sensorOff = vm.getChannel("sensorOff");
23 changeSpeed = vm.getChannel("changeSpeed");
24 planExecuted = vm.getChannel("planExecuted");
25

26 //register signals
27 vm.register(sensorOn, this, "sensorID", "currentConfig");
28 vm.register(sensorOff, this, "sensorID", "currentConfig");
29 vm.register(changeSpeed, this, "sensorID", "currentConfig");
30 vm.register(planExecuted, this, "sensorID", "currentConfig");
31 }
32

33 /** Executed when receiving one of the registered signals....*/
34 @Override
35 public void receive(int channelID, HashMap<String, Object> data){
36 if (channelID == sensorOn){
37 Object sensorData = data.get("sensorId");
38 comm.println(sensorData); comm.flash();
39 }
40 else if (channelID == sensorOff){
41 Object sensorData = data.get("sensorId");
42 comm.println(sensorData); comm.flash();
43 }
44 else if (channelID == changeSpeed){
45 double newSpeed = (Double) data.get("newSpeed");
46 comm.println(newSpeed); comm.flash();
47 }
48 else if (channelID == planExecuted){
49 //TODO: cleanup effector, if needed
50 }
51 }
52 }
53

186

6.1 ENTRUST Methodology

6.1.4 Stage 4: Partial Instantiation of Assurance Argument Pattern

During this ENTRUST stage, engineers use assurance evidence generated in the pre-
vious stages of our methodology and packaged with the external components used by
ENTRUST to partially instantiate an assurance argument pattern, specifically devel-
oped for self-adaptive software systems. The evidence includes the controller assurance
evidence produced in Stage 2 of the ENTRUST methodology, as well as testing evi-
dence3 regarding the correctness of the trusted virtual machine and the probabilistic
model checker PRISM [149]. The outcome of this process is an incomplete (partially-
developed) assurance argument. This argument provides as much evidence as available
at design-time and leaves placeholders for evidence that can only be obtained at runtime,
when the unknowns associated with the self-adaptive system are resolved.

In this work, we use the Goal Structuring Notation (GSN) [138] (a graphical ar-
gument notation) for constructing the assurance arguments. GSN is a community
standard [105] and has been adopted by many companies operating in safety-critical
domains, e.g., aerospace, defence, and healthcare. Recent examples include its use for
structuring the assurance argument for the wheel braking software system of an air-
craft [122] and the control software for a prototype autonomous vehicle [119]. We chose
GSN due to its wide use in industry for establishing the assurance of software systems.
It is also the argument notation with which our collaborators are most familiar with4.

Figure 6.6 shows the basic elements of GSN [138]. These elements can be used
to construct an assurance argument (also termed a “goal structure”) by showing how
assurance-related claims (termed goals) are decomposed into sub-claims using strate-
gies until assurance evidence (solutions) can be provided to support these (sub-)claims.
These elements can be linked together using the supported by linkage or its extensions
multiplicity and optionality, which represent ‘zero or more’ and ‘zero or one’ relation-
ships between GSN elements, respectively. When specifying a claim or strategy it might
be useful to annotate (using the in context of linkage) the context in which it should be
interpreted, any relevant assumptions, or any justifications required to explain why the
claim or strategy is included in the assurance argument. Some goals or strategies can be
left undeveloped, uninstantiated or satisfied through several alternatives (choice). An
AwayGoal is a modular element of GSN that partitions the argument into distinct, but
interrelated modules of arguments. Figure 6.7 depicts an example assurance argument.

3Evidence for the virtual machine and PRISM can be found at https://people.cs.kuleuven.be/
~danny.weyns/software/ActivFORMS and https://github.com/prismmodelchecker, respectively.

4Recall that ENTRUST is a joint work with Prof. Tim Kelly and Dr. Ibrahim Habli from University
of York, UK and with Prof. Danny Weyns and Usman Iftikhar from Linnaeus University, Sweden.

187

https://people.cs.kuleuven.be/~danny.weyns/software/ActivFORMS
https://people.cs.kuleuven.be/~danny.weyns/software/ActivFORMS
https://github.com/prismmodelchecker

6. ENGINEERING TRUSTWORTHY SELF-ADAPTIVE SYSTEMS

	

Away Goal

<Goal Statement>

<Module Identifier>

{Goal Identifier}

<Goal Statement>

{Strategy Identifier}

<Strategy Statement>

{Solution
Identifier}

<Solution
Statement>

{Context Identifier}

<Context Statement>
J

{Justification Identifier}

<Justification Statement>

A

{Assumption Identifier}

<Assumption Statement>

Supported by

In context of Optionality

Multiplicity

Choice

Uninstantiated
Entity

Undeveloped
Entity

	

Away Goal

<Goal Statement>

<Module Identifier>

{Goal Identifier}

<Goal Statement>

{Strategy Identifier}

<Strategy Statement>

{Solution
Identifier}

<Solution
Statement>

{Context Identifier}

<Context Statement>
J

{Justification Identifier}

<Justification Statement>

A

{Assumption Identifier}

<Assumption Statement>

Supported by

In context of Optionality

Multiplicity

Choice

Uninstantiated
Entity

Undeveloped
Entity

	

Away Goal

<Goal Statement>

<Module Identifier>

{Goal Identifier}

<Goal Statement>

{Strategy Identifier}

<Strategy Statement>

{Solution
Identifier}

<Solution
Statement>

{Context Identifier}

<Context Statement>
J

{Justification Identifier}

<Justification Statement>

A

{Assumption Identifier}

<Assumption Statement>

Supported by

In context of Optionality

Multiplicity

Choice

Uninstantiated
Entity

Undeveloped
Entity

	

Away Goal

<Goal Statement>

<Module Identifier>

{Goal Identifier}

<Goal Statement>

{Strategy Identifier}

<Strategy Statement>

{Solution
Identifier}

<Solution
Statement>

{Context Identifier}

<Context Statement>
J

{Justification Identifier}

<Justification Statement>

A

{Assumption Identifier}

<Assumption Statement>

Supported by

In context of Optionality

Multiplicity

Choice

Uninstantiated
Entity

Undeveloped
Entity	

Away Goal

<Goal Statement>

<Module Identifier>

{Goal Identifier}

<Goal Statement>

{Strategy Identifier}

<Strategy Statement>

{Solution
Identifier}

<Solution
Statement>

{Context Identifier}

<Context Statement>
J

{Justification Identifier}

<Justification Statement>

A

{Assumption Identifier}

<Assumption Statement>

Supported by

In context of Optionality

Multiplicity

Choice

Uninstantiated
Entity

Undeveloped
Entity

	

Away Goal

<Goal Statement>

<Module Identifier>

{Goal Identifier}

<Goal Statement>

{Strategy Identifier}

<Strategy Statement>

{Solution
Identifier}

<Solution
Statement>

{Context Identifier}

<Context Statement>
J

{Justification Identifier}

<Justification Statement>

A

{Assumption Identifier}

<Assumption Statement>

Supported by

In context of Optionality

Multiplicity

Choice

Uninstantiated
Entity

Undeveloped
Entity

	

Away Goal

<Goal Statement>

<Module Identifier>

{Goal Identifier}

<Goal Statement>

{Strategy Identifier}

<Strategy Statement>

{Solution
Identifier}

<Solution
Statement>

{Context Identifier}

<Context Statement>
J

{Justification Identifier}

<Justification Statement>

A

{Assumption Identifier}

<Assumption Statement>

Supported by

In context of Optionality

Multiplicity

Choice

Uninstantiated
Entity

Undeveloped
Entity

	

Away Goal

<Goal Statement>

<Module Identifier>

{Goal Identifier}

<Goal Statement>

{Strategy Identifier}

<Strategy Statement>

{Solution
Identifier}

<Solution
Statement>

{Context Identifier}

<Context Statement>
J

{Justification Identifier}

<Justification Statement>

A

{Assumption Identifier}

<Assumption Statement>

Supported by

In context of Optionality

Multiplicity

Choice

Uninstantiated
Entity

Undeveloped
Entity

Figure 6.6: Main GSN elements for constructing an assurance argument.

Figure 6.7: An example GSN assurance argument taken from [105] that shows how goal
G0 is decomposed into goals G1 and G1a using strategy St1, and how evidence Sn1 and
Sn1a is used to establish the truth of the statements in the goals G1 and G1a, respectively.

188

6.1 ENTRUST Methodology

ENTRUST assurance argument pattern

The ENTRUST assurance argument pattern (Figure 6.8) builds on previous work of our
collaborators on software safety assurance [120, 121]. Based on this work, a catalog of
reusable assurance argument patterns is proposed in [119]. Each pattern considers the
contribution made by the software to system hazards for a particular class of systems and
scenarios. The assurance case reasoning is then structured based on the refinement of
software requirements through the various stages of the system’s lifecycle, including re-
quirements engineering, design, implementation, and testing. Nevertheless, system and
environment uncertainty affecting self-adaptive software systems means that, for this
class of systems, the refinement process cannot be completed at design-time (i.e., before
the system starts executing). For self-adaptive systems, this refinement is a continual
process where different design features and code elements are dynamically reconfigured
and executed during self-adaptation [59]. Therefore, claims and supporting evidence for
meeting the application-specific requirements must vary with self-adaptation, and thus
ENTRUST assurance arguments must evolve dynamically at runtime.

In the ENTRUST pattern, the ReqsSatisfied goal states that the application-specific
requirements are always satisfied. Note that in the context of ENTRUST this assurance
pattern concerns only the self-adaptation elements of the system (which conforms to
the architecture from Figure 6.1). The justification of the derivation, validity and
completeness of these application-specific requirements are addressed as part of the
overall system assurance argument (which is outside the scope of the software assurance
argument). ReqSatisfied can be supported by a pair of goals, ReqsConfiguration and
Reconfig, stating that the system satisfies the application-specific requirements through
the current configuration or through a reconfiguration, respectively. That is, the pattern
shows that we are either guaranteeing that the current configuration n (specified in the
context ConfigDef) satisfies the requirements or that the ENTRUST controller will
plan and execute a reconfiguration that will satisfy these requirements (specified in the
justification Reconfig).

The pattern uses the strategy ConfigProps to indicate how the system requirements
are refined into, and covered by, the Critical Properties (CPs). This is specified by the
away goal CPsIdentify (Figure 6.9) which is based on the Identification Software Safety
Argument pattern defined in the existing GSN pattern catalogue [119]. The strat-
egy ConfigProps also justifies how the goal ReqsConfiguration is met by the sub-goals
CPx_Achieved which signify that each of the critical properties are achieved when the
system executes the configuration n. For each goal CPx_Achieved, the pattern provides

189

6. ENGINEERING TRUSTWORTHY SELF-ADAPTIVE SYSTEMS

Goal: ReqsSatisfied

{critical application-
specific requirements}
satisfied

Goal: ReqsConfiguration

{critical application-specific
requirements} achieved
in {configuration n}

Goal: Reconfig

{critical application-specific
requirements} achieved via
reconfiguration

J

Justification: Reconfig
System supports reconfiguration if
current configuration cannot meet
 {critical application-specific
 requirements}

Context: ConfigDef

{configuration n}

Strat: ConfigProps

Argument over
properties identified
for {configuration n}

Context: CPs
Critical Properties
identified for
{configuration n}

CPsIdentify_CP
Identification Argument

CPs have been
appropriately expressed

CP Identification Arg.

ErrorCont_Erroneous
Contribution Argument

Erroneous behaviours are
acceptably managed

Erroneous Contr. Arg.

Goal: CPx_Achieved

{CPx} achieved through
the execution of
{configuration n}

Number of CPs for
{configuration n}

Goal: PropsPreservePlat

{CPx} verified for
{configuration n} is
implemented by controlled
software system

Controlled Soft. Cyst.

Goal: CPxVer

{CPx} verified for
{configuration n}

Figure 6.8: ENTRUST assurance argument pattern.

the goals CPxVer and PropsPreservedPlat which refer to its verification and implemen-
tation by the managed software system, respectively. Finally, a new configuration has
the potential to introduce erroneous behaviours (e.g., deadlocks and stack overflows).
The justification for the absence of these errors is provided via the away goal ErrorCont
(Figure 6.10), which is based on the Hazardous Contribution Software Safety Argument
pattern, also available in the catalogue [119].

The partial instantiation of the assurance argument pattern in the last design-time
stage of ENTRUST produces a partially-developed assurance argument [59]. The argu-
ment includes evidence that is available at design-time, i.e., that system requirements
are appropriately expressed using critical properties (CPsIdentify), that the reusable
components virtual machine and probabilistic verification engine are correct and do
not introduce any errors to the system (ErrorCont), and that the controller models
satisfy key correctness properties. Uninstantiated solutions (e.g., CP_R1Res from the

190

6.1 ENTRUST Methodology

Goal: CPsIdentify

Critical Properties (CPs) have
been appropriately expressed

Context: CASR

Critical application-specific
requirements

Strat: ASReqIdentify

Argument over the application-
specific runtime verification
properties expressed for the
ENTRUST controller design

Goal: ASReqCapture

Runtime verification CPs capture
adequately the intent of the critical
application-specific requirements

Context: ENTRUST_CntSys_
Design
ENTRUST controller and
system design

Context: CPs

Runtime verification CPs

Strat: CPReqCapture

Critical application-specific
requirement

Number of CASRs

Goal: CPExpress

Critical application-specific
requirement {CASR} adequately
captured by one or more critical
properties {CP}

Figure 6.9: Away goal CPsIdentify which shows how application-specific requirements
are captured by one or more critical properties.

Goal: Errors

Implementation (application-
independent) errors are not
introduced in the ENTRUST
controller and system design

Goal: FailModes

Critical Properties (CPs) address
the potential failure modes of
ENTRUST controller and system

Context: designErrors
Implementation errors
addressed by ENTRUST
(e.g., deadlock, liveness)

Goal: SFMident

SFMs correctly identified for
the ENTRUST controller and
system design

at least 1 of 2

Goal: procError

ENTRUST design process
does not introduce errors

Goal: ErrorCont

Erroneous behaviours are
acceptably managed

Goal: desError

ENTRUST controller and
system design does not
contain errors

Goal: CPsDerived

CPs sufficient to address
identified SFMs

Context: SFMs

ENTRUST Controller Software
Failure Modes

Context: reusableComponents
ENTRUST reusable components
(trusted VM, probabilistic
verification engine)

Figure 6.10: Away goal ErrorCont which indicates that (i) the design process of EN-
TRUST, and the reusable components virtual machine and probabilistic verification engine
do not introduce any errors; and (ii) the identified critical properties address any failures
of the ENTRUST self-adaptive system.

191

6. ENGINEERING TRUSTWORTHY SELF-ADAPTIVE SYSTEMS

Goal: ReqsSatisfied

UUV critical requirements
satisfied

Goal: ReqsConfiguration

UUV critical requirements
are achieved in
{configuration n}

J

Justification: Reconfig
System can support reconfiguration
if current configuration cannot meet
 UUV critical requirements

Context: ConfigDef

{configuration n}

Strat: ConfigProps

Argument over
properties identified
for {configuration n}

Context: CPs
Critical Properties
identified for
{configuration n}

CPsIdentify_CP
Identification Argument

CPs have been
appropriately expressed

CP Identification Arg.

ErrorCont_Erroneous
Contribution Argument

Erroneous behaviours are
acceptably managed

Erroneous Contr. Arg.

Goal: CP_R1_Achieved

CP_R1 achieved through
the execution of
{configuration n}

Goal: CP_R1_Ver

CP_R1 verified for
{configuration n}

Goal: Reconfig

UUV critical requirements}
can be achieved via
reconfiguration

Solution:
CP_R1Res

Runtime
verification
result for CP_R1

Goal: CP_R2_Achieved

CP_R2 achieved through
the execution of
{configuration n}

Goal: CP_R3_Achieved

CP_R3 achieved through
the execution of
{configuration n}

Goal: PropsPreservePlat

CP_R1 verified for
{configuration n} is
implemented by controlled
software system

Controlled Soft. Cyst.

Goal: CP_R4_Achieved

CP_R4 achieved through
the execution of
{configuration n}

Goal: CP_R4_Ver

CP_R4 verified for
{configuration n}

Solution:
CP_R4Res

Runtime
result for CP_R4

Goal: PropsPreservePlat

CP_R4 verified for
{configuration n} is
implemented by controlled
software system

Controlled Soft. Cyst.

Figure 6.11: Partially-instantiated assurance argument for the UUV system.

partially-instantiated assurance argument pattern for the self-adaptive UUV system in
Figure 6.11) form the placeholders for evidence that can be produced only based on op-
erational data while the system is running, i.e., runtime verification evidence supporting
the critical properties CPs of an active configuration.

Example 6.5. Figure 6.11 shows the partially-instantiated assurance argument pattern

for the self-adaptive UUV system. For clarity reasons, we only show the expansion for

requirement R1 and failsafe requirement R4. We leave R2 and R3 undeveloped; the

GSN elements for these two requirements are entirely similar to those for R1. Crit-

192

6.1 ENTRUST Methodology

1 2 3 4 5
speed [m/s]

0

40

80

120

160

200

240

280

E
xp

ec
te

d
en

er
gy

 u
sa

ge
 p

er
 1

0m
 [J

]

(a)

1 2 3 4 5
speed [m/s]

0

20

40

60

80

E
xp

ec
te

d
ac

cu
ra

te
 m

ea
su

re
m

en
ts

 p
er

 1
0m

1 2 3 4
speed [m/s]

160

200

240

280

co
st

Key: x1=1, x2=1, x3=1x1=1, x2=0, x3=1x1=0, x2=0, x3=1x1=1, x2=0, x3=0 x1=0, x2=1, x3=0 x1=0, x2=1, x3=1x1=1, x2=1, x3=0

(b) (c)

Figure 6.12: Verification results for requirement (a) R1, (b) R2, and (c) cost of the
feasible configurations. The circled configuration is selected to adapt the system.

ical property CP_R1 is the result of the refinement of R1 in a form appropriate for

runtime verification. The solution placeholders CP_R1Res and CP_R4Res remain

uninstantiated and should constantly be updated by the ENTRUST controller, once

the verification result becomes available and the policy is satisfied, respectively.

6.1.5 Stage 5: Running the Self-Adaptive System

During this ENTRUST stage, the deployed self-adaptive system is dynamically adjust-
ing its configuration in response to the observed internal and environmental changes.
To this end, the controller executes a MAPE loop (cf. Figure 2.4) through which it:
i) monitors the system and its environment through sensors and produces concrete
system and environment stochastic models; ii) analyses these models using the proba-
bilistic verification engine to check the compliance of the system with its requirements;
iii) plans reconfiguration steps if this compliance is violated; and iv) executes this plan
to achieve the new configuration of the managed system through effectors.

The use of continual verification within the ENTRUST control loop produces assur-
ance evidence that underpins the dynamic synthesis of assurance arguments in the next
stage of ENTRUST.

Example 6.6. Suppose that the UUV system from our running example comprises

n = 3 sensors with: measurement rates r1 = 5, r2 = 4, r3 = 4; energy consumed per

193

6. ENGINEERING TRUSTWORTHY SELF-ADAPTIVE SYSTEMS

measurement e1 =3, e2 =2.4, e3 =2.1; and energy used for switching a sensor on and off

eon
1 =10, eon

2 =8, eon3 =5 and eoff
1 =2, eoff

2 =1.5, eoff
3 =1, respectively.

Also, suppose that the current UUV configuration is (x1, x2, x3, sp) = (0, 1, 1, 2.8),

and that sensor 3 experiences a degradation such that rnew
3 = 1. The ENTRUST con-

troller gets this new measurement rate through the monitor model. As the sensor rates

differ from those in the knowledge repository, the guard analysisRequired() returns true

and the startAnalysis! signal is sent. The analyser model receives this signal and in-

vokes the probabilistic verification engine, whose analysis results for requirements R1–R3

are depicted in Figure 6.12. The analyse() action filters the results as follows: config-

urations that violate requirements R1 or R2, i.e., those from the shaded areas from

Figure 6.12a and Figure 6.12b, respectively, are discarded. The remaining configura-

tions are feasible, so their cost (R3) is computed for w1 = 1 and w2 = 200 (i.e., UUV

speed is given higher priority that energy consumption of the sensors). The configura-

tion minimising the cost (i.e., (x1, x2, x3, sp)=(1, 1, 0, 3.2) – circled in Figures 6.12a-c)

is selected as the best configuration. Since the best and the current configurations dif-

fer, the analyzer invokes the planner to assemble a stepwise reconfiguration plan with

which i) sensor 2 is switched on; ii) next, sensor 3 is switched off; and iii) finally the

speed is adjusted to 3.2m/s. Once the plan is assembled, the executor is enforcing this

plan to the UUV system. The adaptation results from Figure 6.12 provide the evidence

required to update the assurance argument as described in the following section.

6.1.6 Stage 6: Synthesis of Dynamic Assurance Argument

In the final stage of ENTRUST, the assurance argument evolves as a result of the re-
configuration occurring in the self-adaptive system. When the system needs to adapt
in response to a requirement violation or a significant change in the system or its envi-
ronment, the argument is backtracked to ReqsSatisfied. Since ENTRUST self-adaptive
systems can reconfigure themselves (justified by the goal Reconfig), a new goal Reqs-
Configuration is instantiated as follows: either the controller selects a configuration
that satisfies the QoS requirements associated with the normal system operation, or
the controller selects a configuration that meets the failsafe requirement. In either case,
the adaptation evidence produced in Stage 5 is used to fill in the corresponding place-

194

6.2 Implementation

holders from the partially-instantiated assurance argument assembled in Stage 4. In
the end, a fully-fledged GSN assurance argument is synthesised. For each new system
configuration and adaptation evidence, an updated version of the assurance argument is
assembled. This information is stored in the Knowledge repository (Figure 6.1) so that
decision makers and auditors can understand and assess the current and past versions
of the assurance argument.

Example 6.7. Consider again the partially-instantiated assurance argument pattern

for our UUV system shown in Figure 6.11. In Example 6.6 we have seen that the cur-

rently used UUV configuration (x1, x2, x3, sp) = (0, 1, 1, 2.8) was unable to satisfy the

system requirements due to changes in the measurement rate of its sensor rnew
3 = 1.

At that point, the critical property CP_R1 is violated (i.e. CP_R1Ver is falsified)

and the argument is backtracked to ReqsSatisfied, requesting the creation of a new

version of the assurance argument. Since the controller found a new configuration

(x1, x2, x3, sp) = (1, 1, 0, 3.2) that satisfies the requirements R1–R3, the goal ReqsCon-

figuration is instantiated with evidence produced from the quantitative analysis of the

new configuration. Figure 6.13 depicts the complete assurance argument corresponding

to this scenario.

6.2 Implementation

We adopted the ENTRUST methodology (Figure 6.2) and used several components for
the development of an ENTRUST self-adaptive system (Figure 6.1). The trusted vir-
tual machine is based on ActivForms [128], an approach for creating executable formal
models, developed by our collaborators Prof. Danny Weyns and Usman Iftikhar. The
probabilistic verification engine employs the verification libraries of the probabilistic
model checker PRISM [149]. The UPPAAL model checker [18] is used for the devel-
opment and verification of controller models in Stages 1 and 2. The Goal Structuring
Notation [105] is used for the partial instantiation of the assurance argument pattern
and its dynamic synthesis in Stages 4 and 6. We developed the components required
for realising Stages 3 and 5 in Java, i.e., the Sensors and Effectors, and the interface for
storing the assurance evidence and the updated assurance argument into the Knowledge
repository. The open-source code and the full evaluation results presented in the next
section are available at http://www-users.cs.york.ac.uk/~simos/ENTRUST.

195

http://www-users.cs.york.ac.uk/~simos/ENTRUST

6. ENGINEERING TRUSTWORTHY SELF-ADAPTIVE SYSTEMS

Goal: ReqsSatisfied

UUV critical requirements
satisfied

Goal: ReqsConfiguration

UUV critical requirements
are achieved in
configuration 1

J

Justification: Reconfig
System can support reconfiguration
if current configuration cannot meet
 UUV critical requirements

Context: ConfigDef

configuration 1 (1,1,0,3.2)

Strat: ConfigProps

Argument over
properties identified
for configuration 1

Context: CPs
Critical Properties found
for configuration 1
(CP_R1, CP_R2, CP_R3)

CPsIdentify_CP
Identification Argument

CPs have been
appropriately expressed

CP Identification Arg.

ErrorCont_Erroneous
Contribution Argument

Erroneous behaviours are
acceptably managed

Erroneous Contr. Arg.

Goal: CP_R1_Achieved

CP_R1 achieved through
the execution of
configuration 1

Goal: CP_R1_Ver

CP_R1 verified for
configuration 1

Goal: Reconfig

UUV critical requirements}
can be achieved via
reconfiguration

Solution:
CP_R1Res

Runtime verification
result for CP_R1
 (measurements:
 21)

Goal: CP_R2_Achieved

CP_R2 achieved through
the execution of
configuration 1

Goal: CP_R3_Achieved

CP_R3 achieved through
the execution of
configuration 1

Goal: PropsPreservePlat

CP_R1 verified for
configuration 1 is
implemented by controlled
software system

Controlled Soft. Cyst.

Goal: CP_R2_Ver

CP_R2 verified for
configuration 1

Solution:
CP_R2Res

Runtime verification
result for CP_R2
 (energy:
 90.84J)

Goal: PropsPreservePlat

CP_R2 verified for
configuration 1 is
implemented by controlled
software system

Controlled Soft. Cyst.

Goal: CP_R3_Ver

CP_R3 verified for
configuration 1

Solution:
CP_R3Res

Runtime verification
result for CP_R3
 (cost:
 153.34)

Goal: PropsPreservePlat

CP_R3 verified for
configuration 1 is
implemented by controlled
software system

Controlled Soft. Cyst.

Figure 6.13: Fully-instantiated assurance argument for the UUV system. The shaded
GSN elements correspond to the new configuration (1, 1, 0, 3.2) selected by the ENTRUST
controller (context ConfigDef); the link between this configuration and critical properties
CP_R1, CP_R2 and CP_R3 (context CPs); and the verification evidence associated with
this configuration (solutions CP_R1Res, CP_R2Res and CP_R3Res).

196

6.3 Evaluation

6.3 Evaluation

6.3.1 Research Questions

The aim of our experimental evaluation was to answer the following research questions:

RQ1 (Generality): Does ENTRUST support the development of high-integrity
self-adaptive systems and dynamic assurance cases across application
domains? Since we deal with self-adaptive systems from the safety-critical and
mission-critical domains (e.g., UUV), ENTRUST is expected to support the devel-
opment of systems from these domains. To establish the generality of ENTRUST
we used it for the engineering of two self-adaptive software systems from different
application domains.

RQ2 (Correctness): Are ENTRUST self-adaptive systems making the right
adaptation decisions and generating valid assurance arguments? With
this research question we examine whether controllers produced as part of the
ENTRUST methodology reconfigure correctly the managed system. We also want
to establish whether the adaptation evidence generated due to this reconfiguration
is sufficient for synthesising a complete assurance argument.

RQ3 (Efficiency): Does ENTRUST provide design-time and runtime assur-
ance evidence with acceptable overheads for realistic system sizes? We
used this research question to investigate whether ENTRUST can scale with self-
adaptive systems of varying sizes and complexity. To this end, we examined the
overheads associated with various ENTRUST stages for these system sizes.

6.3.2 Experimental Setup

To evaluate ENTRUST and answer research questions RQ1–RQ3, we used the EN-
TRUST methodology (Figure 6.2) to engineer two prototype self-adaptive systems: i)
the embedded UUV system used as a running example earlier in this chapter and ii) a
foreign exchange (FX) service-based system with the description from Section 4.1 and
the QoS requirements from Table 6.3. To assess ENTRUST for systems of increas-
ing complexity, we applied it to UUV and FX system variants with the characteristics
shown in Table 6.4. For the UUV system we varied the number of sensors. For the FX
system we varied the number of implementations per service; we also assume that that
only one third-party implementation is used at a time for each service.

197

6. ENGINEERING TRUSTWORTHY SELF-ADAPTIVE SYSTEMS

Table 6.3: QoS requirements for the prototype FX self-adaptive system developed using
ENTRUST

ID Informal description

R1 “Workflow executions must complete successfully with probability at least 0.9.”

R2 “The total service response time per workflow execution must not exceed 5s.”

R3 “If requirements R1–R2 are satisfied by multiple configurations, the FX should
use one of these configurations that minimises the function cost = w1C+w2T ”,
(C and T are the cost and response time per workflow execution, respectively.)

R4 (failsafe) “If a suitable configuration is not identified within four seconds after
a change in third-party service implementations is detected, the Order service
invocation is disabled, so that the FX system does not carry out any trade
using obsolete data (e.g., old exchange rates)”.

For each case study, we initially developed the managed software system (without
any self-adaptive capabilities). For the UUV system, as in our previous work (Chapters 3
and 4), we implemented a fully-fledged simulator using the open-source MOOS-IvP
middleware [20], a widely used C++ platform for the implementation of autonomous
applications on unmanned marine vehicles. For the FX system, we developed simple
SOAP-based web services5 and deployed these service on an Apache Tomcat web server6.
Next, we implemented in Java the service-based system with the architecture shown
in Figure 4.1. Afterwards, we applied the ENTRUST methodology to implement a
controller and a partially-instantiated assurance argument pattern for each of the two
considered managed systems (Stages 1–4). We then assembled the self-adaptive system
by integrating the controller with the managed system.

We deployed each ENTRUST self-adaptive system in a realistic environment seeded
with simulated changes specific to each domain. For the UUV system, changes included
unexpected minor (up to 2%) and major (up to 10%) degradation in sensor measure-
ment rates, complete sensor failures and recoveries from these problems. For the FX
system, we considered small (up to 2%) and significant (up to 50%) patterns of increased
response time and/or decreased reliability of third-party service implementations.

We analysed the adaptation decisions and the assurance arguments produced by
ENTRUST in response to each of these unexpected events (Stages 5–6). All the exper-
iments were carried out using a standard 2.6GhZ Intel Core i5 Macbook Pro computer
with 16GB of memory and running Mac OSX 10.9 64-bit.

5https://www.w3.org/TR/soap
6http://tomcat.apache.org

198

https://www.w3.org/TR/soap
http://tomcat.apache.org

6.3 Evaluation

Table 6.4: Characteristics of analysed UUV and FX system variants

Type Details

UUV speed sp ∈ [1m/s, 5m/s]

UUV Sensors n ∈ {3, 4, 5, 6}
Sensor rate ri ∈ [1Hz, 10Hz] 1 ≤ i ≤ n

FX alternative implementations per service ni ∈ {2, 3, 4, 5}
Service implementation reliability rij ∈ [0, 1] 1 ≤ j ≤ ni
Service implementation response time tij ∈ [0, 10s] 1 ≤ j ≤ ni

6.3.3 Results and Discussion

RQ1 (Generality). To answer the first research question, we applied the ENTRUST
methodology for the development of the UUV embedded system and the FX service-
based system. The application of the ENTRUST methodology to the engineering of
the UUV self-adaptive system is described in Sections 6.1.1– 6.1.6. Therefore, the
remainder of this section focuses on the application of our methodology to developing
the FX service-based system.

Development of the FX Service-Based System Using ENTRUST

Stage 1: Development of Verifiable Models
For developing the controller models, we specialised the ENTRUST event triggered
MAPE model templates (Figure 6.3) and developed the models shown in Figure 6.14.
The signal newServiceCharacteristics? is received by the monitor automaton from
a sensor responsible for detecting changes in reliability and response time of third-party
service implementations currently used by the managed system. When such change
is significant, the guard analysisRequired() returns true and the analyzer automaton
sends a verify! signal to the probabilistic verification engine. The engine carries out
quantitative analysis and establishes which FX configurations meet requirements R1 and
R2 and with what cost (cf. requirement R3). The analyzer automaton then filters the
verification results and selects a configuration that satisfies R1 and R2 with minimum
cost. If no such configuration can be found or the time threshold is exceeded, the
Order service is disabled (cf. requirement R4). If the chosen configuration is not the
same as the currently used configuration, the guard adaptationRequired() holds and the
startPlanning! signal is sent to the planner automaton. The planner synthesises a

199

6. ENGINEERING TRUSTWORTHY SELF-ADAPTIVE SYSTEMS

(a) Monitor

(d) Executor(c) Planner

FX planner

WaitP

plannerCleanup()

Plan

PlanCreated

startPlanning?

startExecuting!

�������� �
�	��

sType==MAX_TYPE

step==DO_NOTHING
addStep(NOTIFICATION, serviceID)
step==CHANGE_NOTIFICATION

addStep(ALARM, serviceID)
step==CHANGE_ALARM

addStep(FUNDAMENTAL_ANALYSIS, serviceID)
step==CHANGE_FUNDAMENTAL_ANALYSIS

addStep(ORDER, serviceID)
step==CHANGE_ORDER

addStep(TECHNICAL_ANALYSIS, serviceID)
step==CHANGE_TECHNICAL_ANALYSIS

addStep(MARKET_WATCH, serviceID)
step==CHANGE_MARKET_WATCH

step = checkConfig() sType++

FX Executor

WaitE

PlanExecuted

Execute

executePlan()
startExecuting?

executorCleanup()
planExecuted!

allPlanStepsExecuted()

�allPlanStepsExecuted()

ChangeNotification
Service

ChangeAlarm
Service

ChangeOrder
Service

ChangeTechnical
AnalysisService

ChangeFundamental
AnalysisService

ChangeMarket
WatchService

changeService!

planStep=nextPlanStep()
serviceType=nextPlanServiceType()
serviceID=nextPlanServiceID()

planStep==
ORDER

planStep==
FUNDAMENTAL_ANALYSIS

planStep==
TECHNICAL_ANALSYSIS

planStep==
MARKET_WATCH

planStep==
ALARM

planStep==
NOTIFICATION

startAnalysis!

WaitM ProcessSensorData CheckM
process()

�analysisRequired()

monitorCleanup()

newServicesCharacteristics?

MonitorFinished

analysisRequired()

StartAnalysis

time=0

startPlanning!

startAnalysis?
WaitA

CheckA Analyse

StartVerif

analyse()adaptationRequired()

EndVerif
verify!

verifDone?

�adaptationRequired()

Adapt

analyserCleanup()

AnalysisFinished

(b) Analyzer

WaitVerif
time ≤ 4

time > 4
useFailsafeConfig()

Figure 6.14: Instantiation of FX MAPE automata based on the event-triggered EN-
TRUST model templates.

stepwise reconfiguration plan for switching to the new configuration by first activating
the new third-party implementations for each service and then deactivating those that
are no longer needed (as soon as the last request sent to them has been handled). This
stepwise plan is implemented by the executor automaton, which communicates with the
effector through the changeService! signal.

We model the behaviour of the FX system as a discrete-time Markov chain. The
QoS requirements are formalised in PCTL as follows:

R1: P≥0.9[F“success”]

R2: R“time”
≤5 [F“done”]

R3: minimise w1C + w2T

where C = R“cost”
=? [F“done”] and T = R“time”

=? [F“done”].
Since the failsafe requirement R4 encodes a condition-action policy [127], it is not

formalised in PCTL.

200

6.3 Evaluation

Stage 2: Verification of Controller Models
We used the UPPAAL model checker [18] to verify that the FX MAPE automata (Fig-
ure 6.14), satisfy all the correctness properties from Table 6.2. Following the recom-
mended practice for this ENTRUST stage, we defined simple sensor, verification engine
and effector automata (Figure 6.15). The sensor automaton has only one transition
through which it sends the signal newServicesCharacteristics!, indicating changes
in the behaviour of some service implementations. The effector automaton has also
a single state and its transitions return to that state for each of the received signals
changeService? and planExecuted?. The purpose of the verification engine au-
tomaton is to simulate: i) the quantitative analysis carried out when a change in the
system is identified; and ii) the communication with the analyzer automaton through
the signals verify? and verifDone!. As for the UUV, we specified a finite collection
of appropriately instrumented sensor-verification engine automata in order to check all
possible paths of the MAPE automata. Thus, we exercised all possible outcomes of the
guards by simulating distinct and multiple changes to all services of the FX system.

(a) Sensor

newServicesCharacteristics!

(b) Verification engine

WaitP PrepareData

prepareVerificationData()

VerificationFinished

verify?

verifDone!

(c) Effector

changeService?

WaitS WaitEx

planExecuted?

Figure 6.15: Auxiliary sensor, verification engine and effector automata used for verifying
the generic controller properties from Table 6.2 for the FX system.

Stage 3: Controller Enactment
We instantiated the ENTRUST controller for the FX system by implementing the func-
tionality of the abstract Sensor, Effector and VerificationEngine classes from the EN-
TRUST distribution. The sensor and effector classes synchronise with the monitor and
analyzer automata through the signals newServicesCharacteristics!, and change-
Service? and planExecuted?, respectively. The communication with the managed
system is made through using the relevant API methods of our FX simulator. The spe-
cialised effector class is shown in Listing 6.3. After receiving the verify? signal from the
analyzer, the verification engine instantiates the parametric DTMC model and verifies
the PCTL formulae associated with requirements R1 – R3. Once the engine completes
its execution, it notifies the analyzer automaton through the verifDone! signal.

201

6. ENGINEERING TRUSTWORTHY SELF-ADAPTIVE SYSTEMS

Listing 6.3: Effector class for the FX system.
1 package controller;
2

3 import java.util.HashMap;
4 import activforms.engine.ActivFORMSEngine;
5 import activforms.engine.Synchronizer;
6

7 public class Effector extends Synchronizer{
8

9 private ActivFORMSEngine vm; // trusted VM
10 private int changeService, planExecuted; // signal(s)
11 private PrintWriter comm; // comm handle
12

13

14 /** Constructor: create a new effector */
15 public Effector(ActivFORMSEngine vm, Object comm){
16 //assign handlers
17 this.vm = vm;
18 this.comm = (PrintWriter)comm;
19

20 //get signal(s) ID
21 changeService = vm.getChannel("changeService");
22 planExecuted = vm.getChannel("planExecuted");
23

24 //register signals
25 vm.register(changeService, this, "serviceType", "serviceID",
26 "newConfig");
27 vm.register(planExecuted, this, "newConfig");
28 }
29

30 /** Executed when receiving one of the registered signals....*/
31 @Override
32 public void receive(int channelID, HashMap<String, Object> data){
33 if (channelID == changeService){
34 Object serviceID = data.get("serviceID");
35 Object serviceType = data.get("serviceType");
36 comm.println(serviceID, serviceType);
37 comm.flash();
38 }
39 else if (channelID == planExecuted){
40 //TODO: cleanup effector, if needed
41 }
42 }
43 }
44

202

6.3 Evaluation

Stage 4: Partial Instantiation of Assurance Argument Pattern
We developed a partial instance of the assurance argument pattern (Figure 6.8) for the
self-adaptive FX system. For simplicity, the partially-instantiated assurance argument
pattern in Figure 6.16 shows the details for requirement R2 and (failsafe) requirement
R4. Similar reasoning applies for requirements R1 and R3. The outcome of formalising
R2 into a form suitable for quantitative analysis is critical property CP_R2. The
solutions CP_R2Res and CP_R4Res are uninstantiated and form placeholders that
will be filled in with relevant evidence at runtime by the controller.

Goal: ReqsSatisfied

FX critical requirements
satisfied

Goal: ReqsConfiguration

FX critical requirements are
achieved in {configuration
n}

J

Justification: Reconfig
System can support reconfiguration
if current configuration cannot meet
 FX critical requirements

Context: ConfigDef

{configuration n}

Strat: ConfigProps

Argument over
properties identified
for {configuration n}

Context: CPs
Critical Properties
identified for
{configuration n}

CPsIdentify_CP
Identification Argument

CPs have been
appropriately expressed

CP Identification Arg.

ErrorCont_Erroneous
Contribution Argument

Erroneous behaviours are
acceptably managed

Erroneous Contr. Arg.

Goal: CP_R2_Achieved

CP_R2 achieved through
the execution of
{configuration n}

Goal: CP_R2_Ver

CP_R2 verified for
{configuration n}

Goal: Reconfig

FX critical requirements}
can be achieved via
reconfiguration

Solution:
CP_R2Res

Runtime
verification
result for CP_R2

Goal: CP_R1_Achieved

CP_R1 achieved through
the execution of
{configuration n}

Goal: CP_R3_Achieved

CP_R3 achieved through
the execution of
{configuration n}

Goal: PropsPreservePlat

CP_R2 verified for
{configuration n} is
implemented by controlled
software system

Controlled Soft. Cyst.

Goal: CP_R4_Achieved

CP_R4 achieved through
the execution of
{configuration n}

Goal: CP_R4_Ver

CP_R4 verified for
{configuration n}

Solution:
CP_R4Res

Runtime
result for CP_R4

Goal: PropsPreservePlat

CP_R4 verified for
{configuration n} is
implemented by controlled
software system

Controlled Soft. Cyst.

Figure 6.16: Partially-instantiated assurance argument for the FX system.

203

6. ENGINEERING TRUSTWORTHY SELF-ADAPTIVE SYSTEMS

Stage 5: Running the Self-Adaptive System
We illustrate the adaptation decisions made by the ENTRUST controller using an
unexpected event in which one of the selected service implementations experiences a
significant degradation in its reliability. Suppose that there are three third-party im-
plementations for each of the six FX services, and that these implementations have the
characteristics shown in Table 6.5. Also, suppose that the current configuration of active
service implementations is (MW,TA,FA,AL,OR,NOT) = (MW1, TA3, FA3, AL3,

OR1, NOT3) and MW1 experiences a significant service degradation.

The ENTRUST controller receives these updated services characteristics (reliability
and response time) through the monitor model. Since the services characteristics are
different from those in the Knowledge repository, the guard analysisRequired() holds
and the startAnalysis! signal is sent. The analyser model, upon receiving the sig-
nal, invokes the probabilistic verification engine, whose results for requirements R1–R3
are depicted in Figure 6.17. Using the analyse() function, configurations that violate
requirements R1 or R2, i.e., those from the shaded areas from the figure, are discarded.
The remaining configurations are feasible, so their cost is computed for w1 = 1 and
w2 = 2 (i.e., workflow response time has twice the priority of workflow cost). The con-
figuration (MW,TA,FA,AL,OR,NOT) = (MW2, TA1, FA3, AL3, OR3, NOT3) has
the minimum cost and, thus, it is selected as the best system configuration; this con-

Table 6.5: Characteristics of the third-party service implementations of the FX system

ServiceID Reliability Time(s) Cost(p) ServiceID Reliability Time(s) Cost(p)

MW1 0.976 5 0.5 OR1 0.995 25 0.6

MW2 0.995 10 0.5 OR2 0.95 20 1.3

MW3 0.996 10 1.5 OR3 0.95 10 1.4

TA1 0.998 6 0.6 AL1 0.915 15 0.6

TA2 0.990 18 1.3 AL2 0.990 9 0.9

TA3 0.985 14 1.0 AL3 0.990 6 1.2

FA1 0.998 23 1.6 NOT1 0.990 5 1.8

FA2 0.990 25 0.7 NOT2 0.990 8 0.5

FA3 0.990 8 1.2 NOT3 0.995 13 0.7

MW*:Market Watch, TA*: Technical Analysis, FA*: Fundamental Analysis

OR*: Order, AL*: Alarm, NOT*: Notification

204

6.3 Evaluation

(a) (b) (c)

0 100 200 300 400 500 600 700
Configuration Index

0.4

0.5

0.6

0.7

0.8

0.9

1

R
e

lia
b

ili
ty

0 100 200 300 400 500 600 700
Configuration Index

2

4

6

8

10

R
e

s
p

o
n

s
e

T
im

e
[s

]

300 350 400 450
Configuration Index

125

130

135

140

145

150

155

c
o

s
t

Figure 6.17: Verification results for requirement (a) R1, (b) R2, and (c) cost of the
feasible configurations. The shaded areas in (a) and (b) denote configurations that violate
R1 and R2, respectively. The circled configuration is selected to adapt the system.

figuration is circled in Figure 6.17. Given that the best and the current configurations
are not the same, the adaptationRequired() guard holds and the planner is started by
the analyzer using the startPlanning! signal. The planner then produces a stepwise
reconfiguration plan with which i) MW2 replaces MW1; ii) TA1 replaces TA3; and
iii) OR1 replaces OR3. When the plan is available, the executor receives the startEx-
ecuting? signal and is realising this plan to the FX system through sending the signal
changeService! to effectors.

Stage 6: Synthesis of Dynamic Assurance Argument
Following the adaptation decision made in the previous ENTRUST stage, the con-
troller must now use this assurance evidence to produce a new complete and valid
assurance argument. Initially, the argument is backtracked to ReqsSatisfied due to the
change observed in the service characteristics. The controller then re-instantiates the
goal ReqsConfiguration using the evidence generated from the quantitative analysis of
configuration (MW,TA,FA,AL,OR,NOT) = (MW2, TA1, FA3, AL3, OR3, NOT3).
The new assurance argument after the adaptation is shown in Figure 6.18.

We used ENTRUST to develop an embedded mission-critical system from the un-
manned vehicle domain, and a service-based business-critical system from the exchange
trade domain. Self-adaptation within these systems is underpinned by the verification
of continuous- and discrete-time Markov chains, respectively. Although evaluation in
additional domains is needed, these results suggest that ENTRUST can be used across
application domains.

205

6. ENGINEERING TRUSTWORTHY SELF-ADAPTIVE SYSTEMS

Goal: ReqsSatisfied

FX critical requirements
satisfied

Goal: ReqsConfiguration

FX critical requirements
are achieved in
configuration 2

J

Justification: Reconfig
System can support reconfiguration
if current configuration cannot meet
 FX critical requirements

Context: ConfigDef
configuration 2
(MW2, TA1, FA3,
AL3, OR3, NOT3)

Strat: ConfigProps

Argument over
properties identified
for configuration 2

Context: CPs
Critical Properties found
for configuration 2
(CP_R1, CP_R2, CP_R3)

CPsIdentify_CP
Identification Argument

CPs have been
appropriately expressed

CP Identification Arg.

ErrorCont_Erroneous
Contribution Argument

Erroneous behaviours are
acceptably managed

Erroneous Contr. Arg.

Goal: CP_R1_Achieved

CP_R1 achieved through
the execution of
configuration 2

Goal: CP_R1_Ver

CP_R1 verified for
configuration 2

Goal: Reconfig

FX critical requirements}
can be achieved via
reconfiguration

Solution:
CP_R1Res

Runtime verification
result for CP_R1
 (reliability:
 0.9352)

Goal: CP_R2_Achieved

CP_R2 achieved through
the execution of
configuration 2

Goal: CP_R3_Achieved

CP_R3 achieved through
the execution of
configuration 2

Goal: PropsPreservePlat

CP_R1 verified for
configuration 2 is
implemented by controlled
software system

Controlled Soft. Cyst.

Goal: CP_R2_Ver

CP_R2 verified for
configuration 2

Solution:
CP_R2Res

Runtime verification
result for CP_R2
 (response time:
 4.998s)

Goal: PropsPreservePlat

CP_R2 verified for
configuration 2 is
implemented by controlled
software system

Controlled Soft. Cyst.

Goal: CP_R3_Ver

CP_R3 verified for
configuration 2

Solution:
CP_R3Res

Runtime verification
result for CP_R3
 (cost:
 123.39)

Goal: PropsPreservePlat

CP_R3 verified for
configuration 2 is
implemented by controlled
software system

Controlled Soft. Cyst.

Figure 6.18: Fully-instantiated assurance argument for the FX system. The shaded GSN
elements denote the new configuration (MW2, TA1, FA3, AL3, OR3, NOT3) selected by
the ENTRUST controller (context ConfigDef); the link between this configuration and crit-
ical properties CP_R1, CP_R2 and CP_R3 (context CPs); and the verification evidence
associated with this configuration (solutions CP_R1Res, CP_R2Res and CP_R3Res).

206

6.3 Evaluation

RQ2 (Correctness). To answer this research question, we carried out a range of ex-
periments that involved injecting into the prototype UUV and FX systems unexpected
changes specific to each domain. For each system, we defined a concrete scenario in-
volving seven changes each, shown in Table 6.6. For the UUV system we used the
variant with n = 3 sensors, while for the FX system with used the variant with three
third-party implementations per service. We assessed the adaptation decisions and the
assurance arguments produced by the system in response to these events by performing
two types of analysis.

For the former assessment, we established that the ENTRUST controller operated
correctly. To this end, we verified that the sensors accurately identified and reported
the changes leading to a correct monitor notification. Then, we confirmed that the new
information was appropriately processed by the monitor which led the analyser to select
a new configuration by carrying out the quantitative analysis using the probabilistic ver-
ification engine and filtering the results based on system QoS requirements. Finally, we
validated that the planner assembled a correct plan for the new configuration and that
this plan was implemented by the executor through effectors to the managed systems.

For the latter assessment, we determined the suitability of the ENTRUST assurance
arguments. We started from the guidelines set by safety and assurance standards, which
highlight the importance of demonstrating, using available evidence, that an assurance
argument is compelling, structured and valid [200]. Also, we considered the fact that

Table 6.6: Changes in environment state of UUV system with 3 sensors and FX system
with 3 third-party implementations per service

ID UUV FX

C1 Nominal Nominal

C2 r3 ↓ r11 ↓, r13 ↓
C3 r3↔ r11↔, r13↔
C4 r2 ↓ r21 ↓, r22 ↓
C5 r2↔ r21↔, r22↔
C6 r2 ↓, r3 ↓ t41 ↑, t42 ↑
C7 r2↔, r3↔ t41↔, t42↔

Key
↓: change (decrease) in environment characteristic

↑: change (increase) in environment characteristic

↔: recovery of environment characteristic

207

6. ENGINEERING TRUSTWORTHY SELF-ADAPTIVE SYSTEMS

ENTRUST has been examined experimentally but has not been tested in real-world
scenarios to produce the industrial evidence necessary before approaching the relevant
regulator. However, our preliminary results show, based on formal design-time and
runtime evidence, that the primary claim of ENTRUST assurance cases is supported
by a direct and robust argument. Firstly, the argument assures the achievement of the
critical requirements either based on a particular active configuration or through recon-
figuration, while maintaining a failsafe mechanism. Secondly, the argument and patterns
are well-structured and conform to the GSN standard [105]. Thirdly, ENTRUST pro-
vides rigorous assessments of validity not only at design time but also through-life, by
means of monitoring and continuous verification that assess and challenge the validity
of the assurance argument based on actual operational data. This continuous validity
assessment is a core requirement for safety standards (e.g., for medical devices [181]).

In conclusion, subject to the limitations described above, our experiments provide
strong empirical evidence that ENTRUST self-adaptive systems make the right adap-
tation decisions and generate valid assurance cases.

RQ3 (Efficiency). To assess the efficiency and scalability of ENTRUST we studied
the overheads incurred by its design-time and runtime stages.

First, we analysed the CPU time taken to verify the controller properties from
Table 6.2. in the second ENTRUST stage (Section 6.1.2). For each considered UUV
and FX variant, we measured the time taken by the UPPAAL model checker [18] to
verify these properties. We performed 10 independent measurements for each property.
Figure 6.19 shows the time taken to verify these generic controller properties for a three-
sensor UUV system, and for an FX system comprising two third-party implementations
for each workflow service. For the UUV system, the CPU time consumed for most
properties is below 2 minutes and the maximum time taken for verifying properties P1
and P2 does not exceed 4 minutes. The total time to verify all controller properties
did not exceed 20 minutes. For the FX system, the verification of each property took
between three and 12 minutes, and under 60 minutes in total. Since this is a design-
time activity, the overheads for the verification of all controller properties are entirely
acceptable.

Second, we examined the CPU time taken by the probabilistic verification engine
to carry out the quantitative analysis during the ENTRUST self-adaptation stage (Sec-
tion 6.1.5). For each system, and for change C2 from Table 6.6, we measured the time
required for the probabilistic model checking of the QoS requirements for the possible
system configurations. Figure 6.20 shows our results based on 10 independent runs. For

208

6.3 Evaluation

100

140

180

220

P1 P2 P3 P4 P5 P6 P7 P8 P9
ENTRUST controller generic properties

C
PU

 T
im

e
[s

]

300

400

500

600

700

P1 P2 P3 P4 P5 P6 P7 P8 P9

ENTRUST controller generic properties

C
P

U
 T

im
e

[s
]

(a) UUV system (b) FX system

Figure 6.19: CPU time for the UPPAAL verification of the generic controller properties
in Table 6.2 (box plots based on 10 independent runs)

the three-sensor UUV system and the FX system with two implementations per service,
for instance, the CPU times have mean values below 10s and 3s, respectively. Although
these runtime overheads limit the applicability of ENTRUST to systems in which recon-
figurations are infrequent (i.e., changes are not in the order of seconds), many real-world
systems meet this condition. Furthermore, these critical systems have failsafe config-
urations that they can temporarily realise during the infrequent reverifications of the
ENTRUST stochastic models.

Finally, we ran experiments to assess the scalability of ENTRUST by measuring
the increase in runtime overheads with the system size and with the number of alter-
native configurations. The UUV and FX variants used in these additional experiments
comprised up to six sensors and up to five implementations per service, respectively.
We used the nominal values for the environment state of these variants (i.e., change
C1 from Table 6.6). Figure 6.20 shows the box plots for these system variants based
again on 10 independent runs. We observed that the CPU time increases exponentially
with these system characteristics, a typical problem for model checking known as state
explosion [48]. This makes our current realisation of ENTRUST suitable for small to
medium-sized systems. Recent advances in the area (Section 2.2.3) and our recent work
presented in Chapters 3 – 5 can be integrated with ENTRUST to extend its applicability
to larger system sizes.

209

6. ENGINEERING TRUSTWORTHY SELF-ADAPTIVE SYSTEMS

101

101.5

102

102.5

3 4 5 6

of sensors on UUV

C
P

U
 T

im
e

[s
]

100.5

101

101.5

102

102.5

2 3 4 5

of implementations per service

C
P

U
 T

im
e

[s
]

(a) UUV system (b) FX system

Figure 6.20: CPU time for the runtime probabilistic model checking of the QoS require-
ments after changes (box plots based on 10 system runs)

6.3.4 Threats to Validity

Construct validity threats may be due to the assumptions made when implementing
the prototype UUV and FX systems, and in the development of the stochastic models
and requirements for these systems. To mitigate these threats, we implemented the two
systems using the well-established UUV software platform MOOS-IvP and (for FX)
standard Java web services deployed in Tomcat/Axis. The model and requirements for
the UUV system are based on a validated case study that we are familiar with from
previous work (Chapter 3), and those for the FX system were developed in close collab-
oration with a foreign exchange expert and also used in our previous work (Chapter 4).

Internal validity threats can originate from how the experiments were performed,
and due to researcher subjectivity when interpreting the results. To address these
threats, we reported results over multiple independent runs; we worked with a team com-
prising experts in all the key areas of ENTRUST(self-adaptation, formal verification and
assurance cases); and we made all experimental results publicly available to enable repli-
cation on the project webpage http://www-users.cs.york.ac.uk/~simos/ENTRUST.

External validity threats may be due to the use of only two software systems in
our evaluation. To reduce this threat, we selected these systems from different domains
with different characteristics. The evaluation results provide evidence that ENTRUST
supports the development of high-integrity self-adaptive solutions with assurance cases

210

http://www-users.cs.york.ac.uk/~simos/ENTRUST

6.4 Related Work

for the two different settings. Nevertheless, additional evaluation is required to confirm
generality for domains with characteristics that differ from those in our evaluation (e.g.,
different timing patterns and types of requirements and disturbances).

6.4 Related Work

The provision of evidence that self-adaptive software systems comply with strict QoS
requirements is an area of active research [196, 208]. Nevertheless, assurance has be-
come a vital element concerning the entire lifecycle of self-adaptive systems only re-
cently [40, 55, 56, 205]. As such, most of the existing approaches are confined to pro-
viding correctness evidence for specific aspects of the self-adaptive system. ENTRUST
is the first tool-supported and fully-fledged methodology, spanning across design-time
and runtime, for the engineering of high-integrity self-adaptive software systems. In the
following paragraphs we review existing illustrative approaches to providing evidence for
self-adaptive software. We also explain how ENTRUST employs and extends previous
work done by the ENTRUST team.

Assurance approaches. Formal proof is a technique used to develop theorems to
establish key properties (e.g., safety, liveness, deadlock freeness) of a self-adaptive soft-
ware system, including its controller and its processes after reconfiguration [64, 218]. For
example, theorems have been used to assure the atomicity of business processes [212],
and safety and liveness properties of self-adaptive systems [218]. Although formal proof
is a possible type of evidence within the ENTRUST assurance argument, existing for-
mal proof approaches require complete specifications of the system and its environment.
Thus, they cannot be applied in systems in which these elements become known only
at runtime.

Model checking [63, 64, 217] and runtime quantitative verification [38, 68, 98] have
been used to produce assurance evidence for various aspects of the self-adaptation pro-
cess. We provided a comprehensive review of techniques using RQV in Section 2.2.3.
ENTRUST, as described in Section 6.1, builds upon these techniques to establish key
correctness properties of the MAPE controller at design-time, and to obtain adaptation
assurance evidence at runtime.

Control theoretical approaches have been used to develop controllers at runtime and
provide control theoretical evidence for several system properties including stability and
robustness [78, 140]. This is an interesting research direction and despite the promising
early results, its applicability to real-world (or realistic) self-adaptive software systems

211

6. ENGINEERING TRUSTWORTHY SELF-ADAPTIVE SYSTEMS

remains an open question. In contrast, ENTRUST employs established techniques for
modelling and analysing software systems and assuring their required properties.

ENTRUST Foundation. ENTRUST builds on our and our collaborators’ previous
work on: formally verified control loops [99, 128], runtime quantitative verification [32,
38] and dynamic safety cases [59]. We integrated and enhanced this research with the
necessary features to develop a fully-fledged methodology for engineering trustworthy
self-adaptive systems. The novel contributions of ENTRUST include:

1) a formally verifiable controller architecture for self-adaptive software that inte-
grates RQV [32, 38] into the controller modules [99, 128];

2) a set of generic correctness properties that ENTRUST controllers must satisfy;

3) a realisation of dynamic assurance arguments proposed in our preliminary work [59];

4) a methodology for the development of trustworthy self-adaptive software under-
pinned by formal assurance cases;

5) an extensive evaluation using two case studies from different application domains.

6.5 Summary

In this chapter we introduced ENTRUST, the first end-to-end tool-supported method-
ology for the engineering of trustworthy self-adaptive software systems. The ENTRUST
methodology supports the entire lifecycle of a self-adaptive system, and includes meth-
ods for the development of verifiable controllers for self-adaptive systems, for the gener-
ation of design-time and runtime assurance evidence and for the runtime instantiation of
an assurance argument pattern that we specifically developed for these systems. Engi-
neers that adopt the ENTRUST methodology to implement self-adaptive systems must:
(1) develop verifiable models for the controller of the system and parametric stochastic
models that capture the uncertainty associated with the managed system and the envi-
ronment in which it operates; (2) verify that the controller models operate as expected
by establishing their compliance with a set of key correctness properties; (3) enact the
controller by integrating the models developed earlier with ENTRUST reusable com-
ponents (i.e., the trusted virtual machine and the probabilistic verification engine); (4)
instantiate partially the assurance argument pattern using the evidence developed from
stage 2, leaving placeholders for assurance goals that can only be resolved at runtime;

212

6.5 Summary

(5) deploy and run the self-adaptive system; and (6) enable the system to dynamically
update the assurance argument using evidence produced during adaptation.

We evaluated ENTRUST using two self-adaptive systems, an embedded system
for unmanned underwater vehicles and a foreign exchange service-based system. We
assessed the generality, correctness, and efficiency of ENTRUST. Our results provide
evidence that the ENTRUST methodology is suitable for the engineering of trustworthy
self-adaptive system from different application domains. Through extensive experiments
that involved deploying the two prototype self-adaptive systems in scenarios seeded with
failure patterns specific to each domain, we established (1) the correct execution of the
ENTRUST controller; and (2) the validity of the generated assurance arguments. Fi-
nally, we examined the overheads associated with the ENTRUST stages responsible for
generating assurance evidence. We determined that the overheads for the design-time
verification of controller properties and the runtime quantitative analysis of possible sys-
tem configurations are acceptable for small-to-medium self-adaptive systems. For larger
systems, our approach is affected by the state explosion problem [48]. However, recent
advances in model checking and runtime quantitative verification (cf. Section 2.2.3) and
the RQV variants we introduced earlier in the thesis reduce the overheads for this class
of systems and enable its adoption in runtime settings.

213

Chapter 7

Conclusion and Future Work

This thesis addressed major limitations of runtime quantitative verification (RQV), a
formal approach to implementing the closed-loop control of self-adaptive systems. RQV
uses quantitative model checking of stochastic models describing the behaviour of a self-
adaptive system and its environment, to rigorously identify or predict violations of QoS
requirements, and to drive adaptation towards restoring or maintaining compliance with
these requirements, respectively.

Despite its strengths, the approach is affected by state explosion, a common model
checking problem where the size of the model increases exponentially with the size of
the modelled system. This makes the computation and memory overheads of RQV
unacceptable for large self-adaptive systems. Even when RQV can analyse fast enough
the model associated with a specific system configuration, the extremely large configu-
ration spaces of many typical self-adaptive systems render the analysis of all alternative
system configurations infeasible. Considering these challenges, we defined the following
research hypothesis:

Given the representation of key aspects of a self-adaptive system as Markov
models and a set of QoS requirements defined in suitable probabilistic tem-
poral logics, efficient runtime quantitative verification techniques can pro-
vide guarantees that the system continues to satisfy its QoS requirements
in the presence of changes, for much larger systems and with much lower
overheads than the standard RQV approach.

215

7. CONCLUSION AND FUTURE WORK

The new RQV variants and methodology that we devised as part of this thesis
support the research hypothesis and reduce the RQV overheads by several orders of
magnitude. Our contributions improve the efficiency and scalability of RQV and ex-
tend its applicability to large, more complex and distributed software systems. We
have shown that adapting methods from other software engineering areas (Chapter 3)
and employing evolutionary algorithms (Chapter 4) can reduce the RQV overheads sig-
nificantly. Also, we proposed a decentralised RQV variant that makes the technique
suitable for distributed self-adaptive systems (Chapter 5). Finally, we defined an RQV-
based methodology for engineering trustworthy self-adaptive systems (Chapter 6).

Notwithstanding the RQV advances achieved by this thesis (Chapters 3–6) and re-
cent research (Section 2.2.3), our findings showed that the suitability of an RQV variant
depends on the characteristics of each self-adaptive software system (e.g., centralised or
distributed, size of configuration space, available resources). Thus, none RQV variant is
a “silver bullet”, i.e., no single RQV variant can handle all types of self-adaptive systems.
There are still ample opportunities for research to improve the efficiency of RQV and
to extend its applicability to other types of self-adaptive systems (e.g., self-interested
distributed systems) and stochastic models (e.g., Markov decision processes, interval
Markov chains). We envisage the development of a collection of RQV-based techniques
which can be combined or used interchangeably depending on the self-adaptive sys-
tem’s characteristics, the type of stochastic model, the deployment platform, and the
reconfiguration needs. Finally, the RQV-based methodology for engineering trustworthy
self-adaptive systems can be extended with other approaches for the provision of assur-
ances (e.g., formal proofs, model checking, testing). We anticipate that the methodology
can form the basis of a standardised framework for the engineering of trustworthy self-
adaptive systems.

In the following sections, we summarise our contributions, explain how each contri-
bution supports the research hypothesis, and highlight directions for future research.

7.1 Efficient RQV Using Software Engineering Methods

7.1.1 Research Contributions

We integrated RQV with adapted versions of three efficiency improvement techniques
previously used in other areas of software engineering (cf. Section 3.1). Firstly, we
integrated RQV with caching which involves the storage of recent RQV analysis results
and their reuse if the same environmental changes occur again in the future. Secondly,

216

7.1 Efficient RQV Using Software Engineering Methods

RQV enhanced with limited lookahead uses spare CPU cycles between adaptation steps
to pre-verify states of the system that are likely to arise in the future. When a change
occurs, if the current system state has already been verified, the verification results
are simply retrieved and no further RQV analysis takes place. Finally, nearly-optimal
reconfiguration stops early the search for the next configuration as soon as a valid
configuration has been found and a “near optimality” stopping criterion is satisfied.

The evaluation of these three RQV variants described in Section 3.3 indicates that all
the variants improve the response time of RQV, but each has some trade-offs. Caching
and limited lookahead consume extra memory for storing the recent verification results.
The latter technique also needs additional CPU for the pre-verification process. Nearly-
optimal reconfiguration, however, is very lightweight (compared to standard RQV), but
its stopping criterion might cause the selection of sub-optimal configurations.

7.1.2 Further Research Directions

Two further research directions are worth exploring in order to improve the effectiveness
of the RQV variants described above:

• Use of more sophisticated variants of the proposed techniques. For caching this in-
cludes using other cache replacement policies (e.g., adaptive replacement cache [172]).
Alternative functions for the identification of “nearby” states (e.g., Manhattan dis-
tance) could be used for limited lookahead. For nearly-optimal reconfiguration it
is worth investigating whether configurations that are closer to the optimal con-
figuration could be obtained by using adaptive lenience policies which take into
consideration the state of the environment, or the time and/or resources available
for completing a reconfiguration.

• The RQV variants described in Section 3.1 could be integrated with composi-
tional and incremental quantitative verification (Sections 2.2.3.1 and 2.2.3.2), so
as to improve the RQV efficiency beyond what each of these classes of techniques
can achieve on its own. Furthermore, these RQV variants could be combined
into a collection of adaptive techniques, which could be used interchangeably or
depending on the reconfiguration needs and the available resources.

217

7. CONCLUSION AND FUTURE WORK

7.2 Improving RQV Efficiency Using Evolutionary

Algorithms

7.2.1 Research Contributions

We introduced EvoChecker, a search-based approach that improves the efficiency of
RQV and extends the range of systems that RQV can handle by incorporating evolu-
tionary algorithms into the verification process. More specifically, EvoChecker uses a
probabilistic model template to encode the configuration parameters of a self-adaptive
system (cf. Section 4.1.1), specifies QoS requirements as constraints and optimisation
objectives, and searches the configuration space to find effective system configurations.
We developed a human-in-the-loop EvoChecker (cf. Section 4.1.3) that is capable of
identifying Pareto optimal configurations and adapts a system after the new configura-
tions are validated by system experts. We also devised an automated EvoChecker (cf.
Section 4.1.4) that can find configurations which optimise a predetermined trade-off
between the objectives, employs an external archive to store recent verification results
that are used to seed the search for a new configuration and updates the archive using
suitable strategies.

We evaluated each EvoChecker variant using two case studies from different applica-
tion domains (cf. Section 4.3). Our findings demonstrate the effectiveness, applicability
and flexibility of each variant. The human-in-the-loop EvoChecker identifies Pareto op-
timal configurations and helps system experts to make informed adaptation decisions.
In the automated EvoChecker, we found that combining the external archive with a suit-
able updating strategy helps this EvoChecker variant to achieve significant reductions
in RQV overheads and to find effective system configurations very fast.

7.2.2 Further Research Directions

Several research directions are worth exploring:

• The applicability of EvoChecker could be extended to other modelling formalisms
and verification logics by exploiting other established quantitative model checkers
such as UPPAAL [18] and MRMC [133].

• It would be interesting to enhance EvoChecker with other evolutionary and natured-
inspired multi-objective optimisation algorithms like evolutionary strategies, par-
ticle swarm optimisation and ant-colony optimisation.

218

7.3 Extending RQV With Decentralised Control Loops

• Evaluating further the performance of EvoChecker using a broader range of system
changes, and assessing its applicability in other domains (e.g., robotics, cloud
computing) is also an interesting research direction.

• The performance of the human-in-the-loop EvoChecker could be improved using
an archive and suitable updating strategies (e.g., clustering and classification).
We highlighted the potential of this idea and the limited research in this direction
in Section 4.1.4.

• The integration of the EvoChecker approach with recent RQV advances (Sec-
tion 2.2.3) and/or our approaches from Chapter 3 could improve further its per-
formance.

7.3 Extending RQV With Decentralised Control Loops

7.3.1 Research Contributions

We introduced DECIDE, an RQV-driven approach that decentralises the control loops
in distributed self-adaptive software systems (cf. Section 5.1). Each component within
a DECIDE-based system uses RQV locally to analyse its capabilities and establish a
summary of contributions it can make to help satisfying system-level QoS requirements.
This QoS capability summary is shared with peer components. Next, the component
carries out a decentralised selection of component contribution-level agreements (CLAs)
which establishes the compliance with system-level QoS requirements. Finally, the
component uses an RQV-driven local control loop to assure that it meets its CLA and
local QoS requirements. Infrequently, the component is unable to achieve its CLA due
to major changes. These events trigger a new local analysis, sharing of contributions
summary with peers, and selection of new local CLAs.

We validated DECIDE using a simulated embedded system from the unmanned
underwater vehicle domain and demonstrated its efficiency, effectiveness and scalability
(cf. Section 5.3). Compared to centralised RQV-driven control loops, DECIDE is able
to reconfigure a distributed self-adaptive system with overheads that are several orders
of magnitude lower. DECIDE can also scale with insignificant increase in overheads to
systems of much larger sizes (up to 32 UUVs in our case study), without introducing
a single point of failure, and with reasonable increase in system-level costs (18-21% in
our case study).

219

7. CONCLUSION AND FUTURE WORK

7.3.2 Further Research Directions

Several research directions deserve further exploration:

• DECIDE could be extended to support interface models as component QoS at-
tributes, using assume-guarantee verification to verify system QoS properties [130].

• It would be interesting to assess the effectiveness and scalability of DECIDE in
other types of distributed systems, including service-based and cloud-deployed
software systems with heterogeneous components, and systems with larger com-
ponent models (e.g., UUV systems with more sensors per UUV).

• Exploring the extension of DECIDE to competitive distributed self-adaptive sys-
tems is another dimension worth exploring. Systems from this category share
common system-level requirements but at the same time have conflicting ob-
jectives. This aspect introduces additional complexity for the establishment of
component-level agreements.

• Given that DECIDE is a generic approach, the development of a DECIDE library
and an associated application programming interface will help the DECIDE in-
tegration with other distributed self-adaptive systems with minimal development
effort.

• DECIDE could be integrated with Kevoree [84] or DEECo [28] to provide a com-
plete platform for the engineering of distributed self-adaptive systems.

7.4 Engineering Trustworthy Self-Adaptive

Software Systems

7.4.1 Research Contributions

We devised ENTRUST, the first end-to-end methodology for the engineering of trust-
worthy self-adaptive software systems (in which adaptation decisions are driven by
RQV) and the dynamic generation of their assurance cases (cf. Section 6.1). EN-
TRUST spans across the entire lifecycle of a self-adaptive system. At design-time,
system experts develop parametric stochastic models of the managed system and its en-
vironment. Models of the controller of the self-adaptive system are also developed and

220

7.4 Engineering Trustworthy Self-Adaptive Software Systems

verified to establish their compliance with key correctness properties. Next, the con-
troller is enacted by integrating the controller models with the parametric stochastic
models and the reusable ENTRUST components (i.e., probabilistic verification engine
and trusted MAPE virtual machine). Any assurance evidence available at design-time
is used for the partial instantiation of an assurance argument pattern. This includes ev-
idence generated from the verification of the controller models and correctness evidence
for the ENTRUST reusable components. The self-adaptive system is then deployed
and dynamically reconfigures itself when environmental or system changes occur. The
assurance evidence produced due to system adaptation is used to fill in the placeholders
from the partially instantiated assurance argument and to derive the complete assurance
argument of the self-adaptive system.

We established the applicability of ENTRUST by applying it for the development
of two self-adaptive systems, an embedded UUV system and a foreign exchange service-
based system (cf. Section 6.3). We also carried out extensive experiments to evaluate
the correctness and efficiency of ENTRUST. Our findings confirm the validity of the gen-
erated assurance arguments, and the capability of ENTRUST controllers to reconfigure
self-adaptive systems and execute the correct adaptation decisions. Finally, we analysed
the overheads associated with the design-time and runtime stages generating assurance
evidence and confirmed that these overheads are acceptable for small-to-medium self-
adaptive systems. In larger systems, ENTRUST can employ recent RQV efficiency
improvement techniques (Section 2.2.3) or our contributions described in Chapters 3–5.

7.4.2 Further Research Directions

Future research directions include:

• It would be interesting to evaluate the applicability of ENTRUST to other sys-
tems and application domains that include different features than the systems
in our evaluation (e.g., different timing patterns and types of requirements and
disturbances).

• ENTRUST could be extended to support runtime verification of both QoS re-
quirements and functional requirements.

• The runtime overheads of ENTRUST could be reduced by exploiting recent ad-
vances in RQV (Section 2.2.3) or our contributions presented in Chapters 3–5.

221

7. CONCLUSION AND FUTURE WORK

7.5 Prototype Self-Adaptive Software Systems

We developed two prototype self-adaptive software systems as part of this research
project. The former, described in Section 2.2.1.1, is a simulator of unmanned underwater
vehicles (UUVs) from the domain of embedded and robotic systems. We built the
simulator using MOOS-IvP [20], an open-source middleware for the implementation of
autonomous applications on unmanned marine vehicles. The latter system, introduced
in Section 4.1, is a service-based system from the domain of foreign exchange (FX)
trading. We developed this system in collaboration with a European foreign exchange
brokerage company. For each system, we have provided a general description, specified
the observable and configurable system characteristics of interest (e.g., behaviour or
architecture) and listed its QoS requirements. Based on this information, we have built a
stochastic model of the system (in an appropriate Markov model variant) and formalised
its QoS requirements using a suitable probabilistic temporal logic variant. Finally, we
have developed a prototype implementation and employed it for the evaluation of our
contributions.

In the future, these self-adaptive systems could be evolved further by extending the
range of their observable and configurable characteristics, and by specifying additional
requirements for verification. It is also worth improving the usability of these prototypes
(e.g., providing APIs) so that other techniques and approaches can be examined with
minimal development effort. We envisage that the FX and UUV systems could be used
as exemplars1 by other researchers in the area of self-adaptive systems.

1https://www.hpi.uni-potsdam.de/giese/public/selfadapt/

222

https://www.hpi.uni-potsdam.de/giese/public/selfadapt/

Appendix A

Sequential Strategy Module for the

MarketWatch FX Service

1

2
3

4
5
6
7

8
9

10
11

12
13
14

15
16
17

18

19
20
21

22
23

24
25

26
27
28
29

const int STEPMAX = 4;

// Sequential strategy for Service #1: Market Watch
module MarketWatchSeqStrategy
mw: [0..6] init 0;// MW state
step: [1..4] init 1;// step
// Start MW
[startMW] mw=0 −> 1.0: (mw’=1);

// Check services
[checkMW1] mw=1 & step=1 −> (ex1=1 | ex1=2)?1:0 : mw=2 +

(ex1=3 | ex1=4)?1:0 : mw=3 +
(ex1=5 | ex1=6)?1:0 : mw=4;

[checkMW2] mw=1 & step=2 −> (ex1=3 | ex1=5)?1:0 : mw=2 +
(ex1=1 | ex1=6)?1:0 : mw=3 +
(ex1=2 | ex1=4)?1:0 : mw=4;

[checkMW3] mw=1 & step=3 −> (ex1=4 | ex1=6)?1:0 : mw=2 +
(ex1=2 | ex1=5)?1:0 : mw=3 +
(ex1=1 | ex1=3)?1:0 : mw=4;

[checkMW4] mw=1 & step>3 −> 1.0: (mw’=5);

// Run services
[runMW1] mw=2 −> x11 × r11 : (mw’=6) +

x11=1?1-r11:1.0 (mw’=1) & step’=min(STEPMAX,step+1);

[runMW2] mw=3 −> x12 × r12 : (mw’=6) +
x12=1?1-r12:1.0 (mw’=1) & step’=min(STEPMAX,step+1);

[runMW1] mw=3 −> x13 × r13 : (mw’=6) +
x13=1?1-r13:1.0 (mw’=1) & step’=min(STEPMAX,step+1);

// End Market Watch service
[failedMW] mw=5 −> 1.0:(mw’=0);
[succMW] mw=6 −> 1.0:(mw’=0);

endmodule

Figure A.1: Sequential strategy module for the MarketWatch service used by the FX
system.

223

Appendix B

Dynamic Power Management

System

We use the software-controlled dynamic power management (DPM) system with the
architecture shown in Figure B.1, adapted from [174, 188]. The system consists of a
service provider that handles requests generated by a service requester and stored in
two request queues of different priorities. The service provider has four states associated
with different power usage, i.e., busy, idle, standby and sleep. Figure B.1 depicts the
power usage of each state (in watts), the possible transitions between states, and the
energy consumed by each transition (in joules). These values are taken from [174], and
correspond to a Fujitsu disk drive.

Power manager

High-priority
request queue

Low-priority
request queue

busy
2.15W

idle
0.95W

standby
0.35W

sleep
0.13W

Service

5.1J

0.006J

7J 0.067J2J0.001J

0J0J

state
information

state-transition
commands

qL
QmaxL

qH
QmaxH

Dynamic power
management

system

provider

Service
requester

Figure B.1: Dynamic power management system

225

B. DYNAMIC POWER MANAGEMENT SYSTEM

Table B.1: Average service-provider transition times

State Average State Average
transition time (s) transition time

(s)

idle → standby 0.4 standby → idle 1.2
idle → sleep 0.67 sleep → idle 1.6
standby → sleep 0.3 sleep → standby 0.6

When the service provider is in the busy state, it processes requests as follows. If the
high-priority queue contains qH > 0 requests, then a high-priority request is processed.
Otherwise, if the low-priority queue contains requests (i.e., if qL > 0), a low-priority
request is handled. After handling the last request (i.e., when both queues become
empty), the service provider automatically transitions to the idle state. The transitions
from idle to busy are also automatic, and occur whenever the empty-queue DPM system
receives a new request. In contrast, all the other transitions are controlled by a software
power manager that aims to reduce power use while maintaining an acceptable service
level for the system. We use the real values from [174] for the state transition times
(Table B.1) and the request service rate (i.e., 125s−1). Figure B.2 shows an excerpt of
the CTMC model of the DPM system specified in the PRISM modelling language.

The DPM system is required to adapt to changes in the arrival rates of the high-
priority and low-priority requests so that the QoS requirements in Table B.2 are satisfied.
To this end, DPMmust select i) the capacity of the request queues, QmaxH andQmaxL;
ii) one of two alternative power managers; and iii) the parameters associated with the
selected power manager.

Table B.2: QoS requirements for the DPM system

ID Description

R1 The steady-state utilisation of the high-priority queue should be less than 90%
R2 The steady-state utilisation of the low-priority queue should be less than 90%
R3 The system should operate with minimum steady-state power utilisation
R4 The number of requests lost at the steady state should be minimised
R5 The capacity of both queues should be minimised

226

1

2

evolve module PowerManager

3

1

2

3

4

5
6
7
8
9

10

11

12
13
14
15
16
17

18
19

20
21
22
23
24

25
26
27
28
29

30
31
32
33
34
35
36
37

38
39
40
41
42
43

44
45
46

47
48
49

50
51
52
53

54
55
56
57
58
59

evolve int QmaxH [3..15];

evolve int QmaxL [5..30];

evolve distribution x[0.1..0.3][0.7..0.9];
evolve distribution y[0.3..0.6][0.4..0.7];

ctmc

const double reqH = 0.05;

const double reqL = 0.15;

const int QmaxH = 4;

module HighPriorityRequestQueue
qH: [0..QmaxH] init 0;
[requestH] qH<QmaxH −> 0.05:(qH’=qH+1);
[dropH] qH=QmaxH −> 0.05:(qH’=qH);
[serveH] qH>0 −> (qH’=qH-1);

endmodule

const int QmaxL = 12;

module LowPriorityRequestQueue
qL: [0..QmaxL] init 0;
[requestL] qL<QmaxL −> 0.05:(qL’=qL+1);
[dropL] qL=QmaxL −> 0.05:(qL’=qL);
[serveL] qL>0 −> (qL’=qL-1);

endmodule

module ServiceProvider
sp:[0..3] init 0; // 0=busy, 1=idle, 2=standby, 3=sleep

// Process requests with rate 125s−1

[serveH] sp=0 & qH>0 & qH+qL>1 −> 125:(sp’=0);
[serveH] sp=0 & qH=1 & qL=0 −> 125:(sp’=1);
[serveL] sp=0 & qH=0 & qL>1 −> 125:(sp’=0);
[serveL] sp=0 & qH=0 & qL=1 −> 125:(sp’=1);

// Automatic transition from idle to busy
[requestH] sp=1 −> (sp’=0);
[requestH] sp!=1 −> (sp’=sp);
[requestL] sp=1 −> (sp’=0);
[requestL] sp!=1 −> (sp’=sp);

// Transitions controlled by the power manager
[idle2standby] sp=1 & qH+qL=0 −> 1/0.4:(sp’=2);
[idle2sleep] sp=1 & qH+qL=0 −> 1/0.67:(sp’=3);
[standby2idle] sp=2 & qH+qL>0 −> 1/1.2:(sp’=0);
[sleep2idle] sp=3 & qH+qL>0 −> 1/1.6:(sp’=0);
[sleep2standby] sp=3 −> 1/0.6:(sp’=2);
[standby2sleep] sp=2 −> 1/0.3:(sp’=3);

endmodule

const double x1 = 0.2;
const double x2 = 0.8;
const double y1 = 0.35;
const double y2 = 0.65;

module PowerManager
p: [0..1] init 0; // 0=loop, 1=sleep to standby

// Disable idle ↔ sleep transitions
[idle2sleep] false −> (p’=p);
[sleep2idle] false −> (p’=p);

// Deactivate
[idle2standby] true −> (p’=p); // always enabled
[standby2sleep] qH=0 & qL<2 −> (p’=p);

// Activate
[standby2idle] qH>0 | qL>1 −> (p’=p);
[sleep2standby] qH>1 | (qH=1 & qL>0) −> (p’=p);
[sleep2standby] p=1 −> (p’=0);

// Probabilistic control of sleep-to-standby transition
[requestH] qL+qH=0 & sp=3 −> x1 : (p’=1) + x2 : (p’=0);
[requestH] !(qL+qH=0 & sp=3) −> (p’=p);
[requestL] qH=0 & qL=3 & sp=3 −> y1 : (p’=1) + y2 : (p’=0);
[requestL] !(qH=0 & qL=3 & sp=3) −> (p’=p);

endmodule

Request rate of low and high
priority queue

Figure B.2: CTMC model of the DPM system; ¬–® represent EvoChecker extensions of
the PRISM modelling language

227

Glossary

Adaptive system An open-loop system in which adaptation is manual and typ-
ically initiated by a human operator (as in the context of
traditional software maintenance).

Self-adaptive system A close-loop system capable of assessing the state of the en-
vironment and the system itself, and modifying its architec-
ture or configuration when it detects a deviation from the
expected behaviour, or when better functionality or perfor-
mance is possible.

Managed software
system

A component of a self-adaptive system that is responsible
for the execution of the system’s main functionality.

Controller A component of a self-adaptive system that implements the
MAPE-K control loop. The controller monitors the man-
aged system and its environment and adapts the architecture
or configuration of the managed system after environmental
and internal changes.

229

References

[1] PRISM probabilistic model checker web site. http://www.prismmodelchecker.org/

other-tools.php.

[2] Future Internet Assembly. Research Roadmap Towards Framework 8: Research Priorities for the

Future Internet. http://fisa.future-internet.eu/images/0/00/FINAL_COMBINED_ROADMAP_

VERSION_2.0.pdf, July 2012.

[3] Networked European Software and Service Initiative. Strategic Research and Innovation Agenda.

http://www.nessi-europe.com/Files/Private/NESSI_SRIA_Final.pdf, April 2013.

[4] Aerospace, Aviation and Defence Knowledge Transfer Network. Autonomous systems: Opportu-

nities and challenges for the UK. http://digital-library.theiet.org/content/conferences/

10.1049/ic.2013.0067, 2013.

[5] E. Alba and F. Chicano. Finding safety errors with ACO. In 9th International Conference on

Genetic and Evolutionary Computation (GECCO’07), pages 1066–1073, 2007.

[6] E. Alba and F. Chicano. Searching for liveness property violations in concurrent systems with

ACO. In 10th International Conference on Genetic and Evolutionary Computation (GECCO’08),

pages 1727–1734, 2008.

[7] R. Alur and D. L. Dill. A theory of timed automata. Theoretical Computer Science, 126(2), 1994.

[8] R. Alur and T. A. Henzinger. Reactive modules. Formal Methods in System Design, 15(1):7–48,

1999.

[9] J. Andrews, T. Menzies, and F. Li. Genetic algorithms for randomized unit testing. IEEE

Transactions on Software Engineering, 37(1):80–94, 2011.

[10] A. Arcuri and L. Briand. A practical guide for using statistical tests to assess randomized

algorithms in software engineering. In 33rd International Conference on Software Engineering

(ICSE’11), pages 1–10, 2011.

231

http://www.prismmodelchecker.org/other-tools.php
http://www.prismmodelchecker.org/other-tools.php
http://fisa.future-internet.eu/images/0/00/FINAL_COMBINED_ROADMAP_VERSION_2.0.pdf
http://fisa.future-internet.eu/images/0/00/FINAL_COMBINED_ROADMAP_VERSION_2.0.pdf
http://www.nessi-europe.com/Files/Private/NESSI_SRIA_Final.pdf
http://digital-library.theiet.org/content/conferences/10.1049/ic.2013.0067
http://digital-library.theiet.org/content/conferences/10.1049/ic.2013.0067

REFERENCES

[11] A. Aziz, K. Sanwal, V. Singhal, and R. Brayton. Model checking continuous-time Markov chains.

ACM Transactions on Computational Logic, 1(1):162–170, 2000.

[12] C. Baier, B. Haverkort, H. Hermanns, and J. Katoen. Model checking algorithms for continuous-

time Markov chains. IEEE Transactions on Software Engineering, 29(6):524–541, 2003.

[13] C. Baier and J.-P. Katoen. Principles of Model Checking. MIT Press, 2008.

[14] C. Baier, J.-P. Katoen, and H. Hermanns. Approximate symbolic model checking of continuous-

time markov chains. In 10th International Conference on Concurrency Theory (CONCUR’99),

pages 146–161, 1999.

[15] C. Ballagny, N. Hameurlain, and F. Barbier. Mocas: A state-based component model for

self-adaptation. In 3rd International Conference on Self-Adaptive and Self-Organizing Systems

(SASO’09), pages 206–215, 2009.

[16] S. Balsamo, A. D. Marco, P. Inverardi, and M. Simeoni. Model-based performance prediction

in software development: a survey. IEEE Transactions on Software Engineering, 30(5):295–310,

2004.

[17] L. Baresi and C. Ghezzi. The disappearing boundary between development-time and run-time. In

Proceedings of the FSE/SDP workshop on Future of software engineering research (FoSER’10),

pages 17–22, 2010.

[18] G. Behrmann, A. David, K. G. Larsen, J. Hakansson, P. Petterson, W. Yi, and M. Hen-

driks. UPPAAL 4.0. In 3rd International Conference on the Quantitative Evaluation of Systems

(QEST’06), pages 125–126, 2006.

[19] N. Bencomo and G. Blair. Using architecture models to support the generation and operation

of component-based adaptive systems. In Software Engineering for Self-Adaptive Systems, pages

183–200. 2009.

[20] M. Benjamin, H. Schmidt, P. Newman, and J. Leonard. Autonomy for unmanned marine vehicles

with moos-ivp. In Marine Robot Autonomy, pages 47–90. 2013.

[21] M. R. Benjamin, H. Schmidt, P. M. Newman, and J. J. Leonard. Nested Autonomy for Unmanned

Marine Vehicles with MOOS-IvP. Journal of Field Robotics, 27(6):834–875, 2010.

[22] A. Bianco and L. Alfaro. Model checking of probabilistic and nondeterministic systems. In

Foundations of Software Technology and Theoretical Computer Science, volume 1026 of LNCS,

pages 499–513. Springer, 1995.

232

REFERENCES

[23] D. Bianculli, A. Filieri, C. Ghezzi, and D. Mandrioli. A syntactic-semantic approach to incre-

mental verification. CoRR, abs/1304.8034, 2013.

[24] D. Bianculli, A. Filieri, C. Ghezzi, and D. Mandrioli. Syntactic-semantic incrementality for agile

verification. Science of Computer Programming, 97, Part 1(0):47 – 54, 2015.

[25] J. P. Bigus, D. A. Schlosnagle, J. R. Pilgrim, W. N. Mills, and Y. Diao. Able: A toolkit for

building multiagent autonomic systems. IBM Systems Journal, 41(3):350–371, July 2002.

[26] R. Bloomfield and P. Bishop. Safety and assurance cases: Past, present and possible future —

an Adelard perspective. In Making Systems Safer, pages 51–67. 2010.

[27] Y. Brun, G. Marzo Serugendo, C. Gacek, H. Giese, H. Kienle, M. Litoiu, H. Müller, M. Pezzè,

and M. Shaw. Engineering self-adaptive systems through feedback loops. In Software Engineering

for Self-Adaptive Systems, pages 48–70. 2009.

[28] T. Bures, I. Gerostathopoulos, P. Hnetynka, J. Keznikl, M. Kit, and F. Plasil. Deeco: An

ensemble-based component system. In 16th International Symposium on Component-based Soft-

ware Engineering (CBSE ’13), pages 81–90, 2013.

[29] R. Calinescu. General-purpose autonomic computing. In Autonomic Computing and Networking,

pages 3–30. 2009.

[30] R. Calinescu. Emerging techniques for the engineering of self-adaptive high-integrity software.

In Assurances for Self-Adaptive Systems, volume 7740 of LNCS, pages 297–310. 2013.

[31] R. Calinescu, S. Gerasimou, and A. Banks. Self-adaptive software with decentralised control

loops. In 18th International Conference on Fundamental Approaches to Software Engineering

(FASE’15), pages 235–251, 2015.

[32] R. Calinescu, C. Ghezzi, M. Kwiatkowska, and R. Mirandola. Self-adaptive software needs quan-

titative verification at runtime. Communications of the ACM, 55(9):69–77, 2012.

[33] R. Calinescu, L. Grunske, M. Kwiatkowska, R. Mirandola, and G. Tamburrelli. Dynamic QoS

management and optimization in service-based systems. IEEE Transactions on Software Engi-

neering, 37(3):387–409, 2011.

[34] R. Calinescu, K. Johnson, and Y. Rafiq. Using observation ageing to improve Markovian model

learning in QoS engineering. In 2nd International Conference on Performance Engineering

(ICPE’11), pages 505–510, 2011.

233

REFERENCES

[35] R. Calinescu, K. Johnson, and Y. Rafiq. Developing self-verifying service-based systems. In 28th

International Conference on Automated Software Engineering (ASE’13), pages 734–737, 2013.

[36] R. Calinescu and S. Kikuchi. Formal methods @ runtime. In 16th Monterey Conference on

Foundations of Computer Software: Modeling, Development, and Verification of Adaptive Sys-

tems (FOCS’10), volume 6662 of LNCS, pages 122–135. 2011.

[37] R. Calinescu, S. Kikuchi, and K. Johnson. Compositional reverification of probabilistic safety

properties for large-scale complex it systems. In Large-Scale Complex IT Systems. Development,

Operation and Management, volume 7539 of LNCS, pages 303–329. 2012.

[38] R. Calinescu and M. Kwiatkowska. Using quantitative analysis to implement autonomic IT

systems. In 31st International Conference on Software Engineering (ICSE’09), pages 100–110,

2009.

[39] R. Calinescu, Y. Rafiq, K. Johnson, and M. E. Bakir. Adaptive model learning for continual verifi-

cation of non-functional properties. In 5th International Conference on Performance Engineering

(ICPE’14), pages 87–98, 2014.

[40] J. Cámara, R. de Lemos, C. Ghezzi, and A. Lopes, editors. Assurances for Self-Adaptive Systems

- Principles, Models, and Techniques, volume 7740 of LNCS. Springer, 2013.

[41] J. Cámara, G. A. Moreno, and D. Garlan. Reasoning about human participation in self-adaptive

systems. In 10th International Symposium on Software Engineering for Adaptive and Self-

Managing Systems (SEAMS’15), pages 146–156, 2015.

[42] G. Canfora, M. Di Penta, R. Esposito, and M. L. Villani. An approach for QoS-aware ser-

vice composition based on genetic algorithms. In 7th International Conference on Genetic and

Evolutionary Computation (GECCO’05), pages 1069–1075, 2005.

[43] J. Chang and G. S. Sohi. Cooperative caching for chip multiprocessors. In 33rd International

Symposium on Computer Architecture (ISCA’06), pages 264–276, 2006.

[44] T. Chen, E. M. Hahn, T. Han, M. Kwiatkowska, H. Qu, and L. Zhang. Model repair for markov

decision processes. In 7th International Symposium on Theoretical Aspects of Software Engineer-

ing (TASE’13), pages 85–92, 2013.

[45] B. H. Cheng, R. Lemos, H. Giese, P. Inverardi, J. Magee, J. Andersson, B. Becker, N. Ben-

como, Y. Brun, B. Cukic, G. Marzo Serugendo, S. Dustdar, A. Finkelstein, C. Gacek, K. Geihs,

V. Grassi, G. Karsai, H. M. Kienle, J. Kramer, M. Litoiu, S. Malek, R. Mirandola, H. A. Müller,

234

REFERENCES

S. Park, M. Shaw, M. Tichy, M. Tivoli, D. Weyns, and J. Whittle. Software engineering for

self-adaptive systems: A research roadmap. pages 1–26. 2009.

[46] R. Cheung. A user-oriented software reliability model. IEEE Transactions on Software Engi-

neering, SE-6(2):118–125, March 1980.

[47] S. L. Chung, S. Lafortune, and F. Lin. Limited lookahead policies in supervisory control of

discrete event systems. IEEE Transactions on Automatic Control, 37:1921–1935, 1992.

[48] E. Clarke, W. Klieber, M. Novacek, and P. Zuliani. Model checking and the state explosion

problem. In Tools for Practical Software Verification, volume 7682 of LNCS, pages 1–30. Springer,

2012.

[49] E. M. Clarke, E. A. Emerson, and A. P. Sistla. Automatic verification of finite-state concurrent

systems using temporal logic specifications. ACM Transactions on Programming Languages and

Systems, 8(2):244–263, Apr. 1986.

[50] C. A. C. Coello, G. B. Lamont, and D. A. V. Veldhuizen. Evolutionary Algorithms for Solving

Multi-Objective Problems (Genetic and Evolutionary Computation). 2006.

[51] Z. Coker, D. Garlan, and C. Le Goues. SASS: Self-adaptation using stochastic search. In

10th International Symposium on Software Engineering for Adaptive and Self- Managing Systems

(SEAMS’15), pages 168–174, 2015.

[52] R. Das, J. O. Kephart, C. Lefurgy, G. Tesauro, D. W. Levine, and H. Chan. Autonomic multi-

agent management of power and performance in data centers. In 7th International Joint Con-

ference on Autonomous Agents and Multiagent Systems (AAMAS’08), 2008.

[53] D. Dasgupta, G. Hernandez, A. Romero, D. Garrett, A. Kaushal, and J. Simien. On the use of

informed initialization and extreme solutions sub-population in multi-objective evolutionary al-

gorithms. In IEEE Symposium on Computational Intelligence in Multi-Criteria Decision-Making

(MCDM’09), pages 58–65, 2009.

[54] C. Daws. Symbolic and parametric model checking of discrete-time markov chains. In First In-

ternational Conference on Theoretical Aspects of Computing (ICTAC’04), volume 3407 of LNCS,

pages 280–294. 2004.

[55] R. de Lemos, D. Garlan, C. Ghezzi, and H. Giese. Software Engineering for Self-Adaptive Systems:

Assurances (Dagstuhl Seminar 13511). Dagstuhl Reports, 3(12):67–96, 2014.

235

REFERENCES

[56] R. de Lemos, H. Giese, H. A. Müller, M. Shaw, J. Andersson, L. Baresi, B. Becker, N. Ben-

como, Y. Brun, B. Cukic, R. Desmarais, S. Dustdar, G. Engels, K. Geihs, K. M. Goeschka,

A. Gorla, V. Grassi, P. Inverardi, G. Karsai, J. Kramer, M. Litoiu, A. Lopes, J. Magee, S. Malek,

S. Mankovskii, R. Mirandola, J. Mylopoulos, O. Nierstrasz, M. Pezzè, C. Prehofer, W. Schäfer,

R. Schlichting, B. Schmerl, D. B. Smith, J. P. Sousa, G. Tamura, L. Tahvildari, N. M. Villegas,

T. Vogel, D. Weyns, K. Wong, and J. Wuttke. Software engineering for self-adaptive systems: A

second research roadmap. In Software Engineering for Self-Adaptive Systems II, volume 7475 of

LNCS, pages 1–32. 2013.

[57] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan. A fast and elitist multiobjective genetic

algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation, 6(2):182–197, 2002.

[58] C. Dehnert, S. Junges, N. Jansen, F. Corzilius, M. Volk, H. Bruintjes, J. P. Katoen, and

E. Ábrahám. PROPhESY: A PRObabilistic ParamEter SYnthesis Tool. In 27th International

Conference on Computer Aided Verification (CAV’15), pages 214–231. Springer, 2015.

[59] E. Denney, I. Habli, and G. Pai. Dynamic safety cases for through-life safety assurance. In 37th

International Conference on Software Engineering (ICSE’15), pages 587–590, 2015.

[60] P. J. Denning. Virtual memory. ACM Computing Surveys, 2(3):153–189, 1970.

[61] G. Di Marzo Serugendo, M.-P. Gleizes, and A. Karageorgos. Self-organization in multi-agent

systems. The Knowledge Engineering Review, 20(2):165–189, June 2005.

[62] E. Di Nitto, C. Ghezzi, A. Metzger, M. Papazoglou, and K. Pohl. A journey to highly dynamic,

self-adaptive service-based applications. Automated Software Engineering, 15(3-4):313–341, 2008.

[63] N. D’Ippolito, V. Braberman, J. Kramer, J. Magee, D. Sykes, and S. Uchitel. Hope for the best,

prepare for the worst: Multi-tier control for adaptive systems. In 36th International Conference

on Software Engineering (ICSE’14), pages 688–699, 2014.

[64] N. R. D’Ippolito, V. Braberman, N. Piterman, and S. Uchitel. Synthesis of live behaviour models.

In 18th International Symposium on Foundations of Software Engineering (FSE’10), pages 77–86,

2010.

[65] K. Draeger, V. Forejt, M. Kwiatkowska, D. Parker, and M. Ujma. Permissive controller synthesis

for probabilistic systems. In 20th International Conference on Tools and Algorithms for the

Construction and Analysis of Systems (TACAS’14), volume 8413 of LNCS, pages 531–546. 2014.

[66] J. J. Durillo and A. J. Nebro. jMetal: A Java framework for multi-objective optimization.

Advances in Engineering Software, 42:760–771, 2011.

236

REFERENCES

[67] M. Ehrgott. Multicriteria Optimization. 2005.

[68] I. Epifani, C. Ghezzi, R. Mirandola, and G. Tamburrelli. Model evolution by run-time parameter

adaptation. In 31st International Conference on Software Engineering (ICSE’09), pages 111–121,

2009.

[69] K. Etessami, M. Kwiatkowska, M. Vardi, and M. Yannakakis. Multi-objective model checking

of Markov decision processes. In 13th International Conference on Tools and Algorithms for the

Construction and Analysis of Systems (TACAS’07), volume 4424 of LNCS, pages 50–65, 2007.

[70] European Commission. Horizon 2020: Work Programme 2016 - 2017. http://ec.europa.eu/

research/participants/data/ref/h2020/wp/2016_2017/main/h2020-wp1617-leit-ict_en.

pdf, July 2016.

[71] F. Faniyi and R. Bahsoon. Self-managing SLA compliance in cloud architectures: A market-

based approach. In 3rd International Symposium on Architecting Critical Systems, pages 61–70,

2012.

[72] L. Feng, M. Kwiatkowska, and D. Parker. Compositional verification of probabilistic systems

using learning. In 7th International Conference on Quantitative Evaluation of Sysems (QEST’10),

pages 133–142, 2010.

[73] L. Feng, M. Kwiatkowska, and D. Parker. Automated learning of probabilistic assumptions

for compositional reasoning. In Fundamental Approaches to Software Engineering (FASE’11),

volume 6603 of LNCS, pages 2–17. Springer, 2011.

[74] F. Ferrucci, M. Harman, J. Ren, and F. Sarro. Not going to take this anymore: Multi-objective

overtime planning for software engineering projects. In 35th International Conference on Software

Engineering (ICSE’13), pages 462–471, 2013.

[75] A. Filieri and C. Ghezzi. Further steps towards efficient runtime verification: Handling probabilis-

tic cost models. In First International Workshop on Formal Methods in Software Engineering:

Rigorous and Agile Approaches (FormSERA’12), pages 2–8, 2012.

[76] A. Filieri, C. Ghezzi, and G. Tamburrelli. Run-time efficient probabilistic model checking. In

33rd International Conference on Software Engineering (ICSE’11), pages 341–350, 2011.

[77] A. Filieri, C. Ghezzi, and G. Tamburrelli. A formal approach to adaptive software: continuous

assurance of non-functional requirements. Formal Aspects of Computing, 24(2):163–186, 2012.

237

http://ec.europa.eu/research/participants/data/ref/h2020/wp/2016_2017/main/h2020-wp1617-leit-ict_en.pdf
http://ec.europa.eu/research/participants/data/ref/h2020/wp/2016_2017/main/h2020-wp1617-leit-ict_en.pdf
http://ec.europa.eu/research/participants/data/ref/h2020/wp/2016_2017/main/h2020-wp1617-leit-ict_en.pdf

REFERENCES

[78] A. Filieri, H. Hoffmann, and M. Maggio. Automated design of self-adaptive software with

control- theoretical formal guarantees. In 36th International Conference on Software Engineering

(ICSE’14), pages 299–310, 2014.

[79] A. Filieri and G. Tamburrelli. Probabilistic verification at runtime for self-adaptive systems. In

Assurances for Self-Adaptive Systems, volume 7740 of LNCS, pages 30–59. 2013.

[80] M. Fisher, L. Dennis, and M. Webster. Verifying autonomous systems. Communications of the

ACM, 56(9):84–93, Sept. 2013.

[81] V. Forejt, M. Kwiatkowska, G. Norman, D. Parker, and H. Qu. Quantitative multi-objective

verification for probabilistic systems. In 17th International Conference on Tools and Algorithms

for the Construction and Analysis of Systems (TACAS’11), volume 6605 of LNCS, pages 112–127,

2011.

[82] V. Forejt, M. Kwiatkowska, D. Parker, H. Qu, and M. Ujma. Incremental runtime verification of

probabilistic systems. In 3rd International Conference on Runtime Verification (RV’12), volume

7687 of LNCS, pages 314–319. Springer, 2012.

[83] V. Forejt, M. Kwiatkowska, D. Parker, H. Qu, and M. Ujma. Incremental runtime verification of

probabilistic systems. Technical Report RR-12-05, Department of Computer Science, University

of Oxford, 2012.

[84] F. Fouquet, G. Nain, B. Morin, E. Daubert, O. Barais, N. Plouzeau, and J.-M. Jézéquel.

Kevoree modeling framework (KMF): Efficient modeling techniques for runtime use. CoRR,

abs/1405.6817, 2014.

[85] G. Fraser and A. Arcuri. The seed is strong: Seeding strategies in search-based software testing.

In Fifth International Conference on Software Testing, Verification and Validation (ICST’12),

pages 121–130, 2012.

[86] G. Fraser and A. Arcuri. Whole test suite generation. IEEE Transactions on Software Engineer-

ing, 39(2):276–291, 2013.

[87] M. Fredrikson, S. Jha, M. Christodorescu, R. Sailer, and X. Yan. Synthesizing near-optimal

malware specifications from suspicious behaviors. In 31st International Symposium on Security

and Privacy (SP’10), pages 45–60, 2010.

[88] T. Friedrich and M. Wagner. Seeding the initial population of multi-objective evolutionary

algorithms: A computational study. Applied Soft Computing, 33:223 – 230, 2015.

238

REFERENCES

[89] S. Gallotti, C. Ghezzi, R. Mirandola, and G. Tamburrelli. Quality prediction of service com-

positions through probabilistic model checking. In 4th International Conference on Quality of

Software-Architectures: Models and Architectures (QoSA’08), volume 5281 of LNCS, pages 119–

134. 2008.

[90] Q. Gan and T. Suel. Improved techniques for result caching in web search engines. In 18th

International Conference on World Wide Web (WWW ’09), pages 431–440, 2009.

[91] A. Ganek and T. A. Corbi. The dawning of the autonomic computing era. IBM Systems Journal,

42(1):5–18, 2003.

[92] D. Garlan, S.-W. Cheng, A.-C. Huang, B. Schmerl, and P. Steenkiste. Rainbow: architecture-

based self-adaptation with reusable infrastructure. Computer, 37(10):46–54, Oct 2004.

[93] I. Georgiadis, J. Magee, and J. Kramer. Self-organising software architectures for distributed

systems. In First Workshop on Self-healing Systems (WOSS ’02), pages 33–38, 2002.

[94] S. Gerasimou, R. Calinescu, and A. Banks. Efficient runtime quantitative verification using

caching, lookahead, and nearly-optimal reconfiguration. In 9th International Symposium on Soft-

ware Engineering for Adaptive and Self-Managing Systems (SEAMS’14), pages 115–124, 2014.

[95] C. Ghezzi. Evolution, adaptation, and the quest for incrementality. In Large-Scale Complex IT

Systems. Development, Operation and Management, volume 7539 of LNCS, pages 369–379. 2012.

[96] C. Ghezzi, A. Mocci, and M. Monga. Synthesizing intensional behavior models by graph trans-

formation. In 31st International Conference on Software Engineering (ICSE’09), pages 430–440,

2009.

[97] C. Ghezzi, M. Pezzè, M. Sama, and G. Tamburrelli. Mining behavior models from user-intensive

web applications. In 36th International Conference on Software Engineering (ICSE’14), pages

277–287, 2014.

[98] C. Ghezzi, L. S. Pinto, P. Spoletini, and G. Tamburrelli. Managing non-functional uncertainty via

model-driven adaptivity. In 35th International Conference on Software Engineering (ICSE’13),

pages 33–42, 2013.

[99] D. Gil de La Iglesia and D. Weyns. MAPE-K formal templates to rigorously design behaviors

for self-adaptive systems. ACM Transactions on Autonomous and Adaptive Systems, 2015.

[100] J. R. Goodman. Using cache memory to reduce processor-memory traffic. In 10th International

Symposium on Computer Architecture (ISCA’83), pages 124–131, 1983.

239

REFERENCES

[101] V. Grassi, M. Marzolla, and R. Mirandola. Qos-aware fully decentralized service assembly. In

8th International Symposium on Software Engineering for Adaptive and Self-Managing Systems

(SEAMS’13), pages 53–62, 2013.

[102] V. Grassi, R. Mirandola, and A. Sabetta. Filling the gap between design and performance/reli-

ability models of component-based systems: A model-driven approach. Journal of Systems and

Software, 80(4):528 – 558, 2007.

[103] J. J. Grefenstette. Incorporating problem specific knowledge into genetic algorithms. Genetic

algorithms and simulated annealing, pages 42–60, 1987.

[104] L. Grunske. Specification patterns for probabilistic quality properties. In 30th International

Conference on Software Engineering (ICSE’08), pages 31–40, 2008.

[105] GSN Working Group Online. Goal structuring notation standard, version 1, November 2011.

[106] A. Haber, H. Rendel, B. Rumpe, and I. Schaefer. Evolving delta-oriented software product line

architectures. In Large-Scale Complex IT Systems. Development, Operation and Management:

17th Monterey Workshop, pages 183–208, 2012.

[107] E. Hahn, H. Hermanns, and L. Zhang. Probabilistic reachability for parametric markov models.

International Journal on Software Tools for Technology Transfer, 13(1):3–19, 2011.

[108] E. M. Hahn, T. Han, and L. Zhang. Synthesis for PCTL in parametric Markov decision processes.

In 3rd international conference on NASA Formal methods (NFM’11), pages 146–161, 2011.

[109] E. M. Hahn, H. Hermanns, B. Wachter, and L. Zhang. PARAM: A model checker for parametric

Markov models. In 22nd International Conference on Computer Aided Verification (CAV’10),

volume 6174 of LNCS, pages 660–664. 2010.

[110] E. M. Hahn, H. Hermanns, and L. Zhang. Probabilistic reachability for parametric Markov

models. In 16th International SPIN Workshop on Model Checking Software (SPIN’09), pages

88–106, 2009.

[111] H. Hansson and B. Jonsson. A logic for reasoning about time and reliability. Formal Aspects of

Computing, 6(5):512–535, 1994.

[112] M. Harman, E. Burke, J. Clark, and X. Yao. Dynamic adaptive search based software engi-

neering. In 6th International Symposium on Empirical Software Engineering and Measurement

(ESEM’12), pages 1–8, 2012.

240

REFERENCES

[113] M. Harman, Y. Jia, J. Krinke, W. B. Langdon, J. Petke, and Y. Zhang. Search based software

engineering for software product line engineering: A survey and directions for future work. In

18th International Software Product Line Conference, pages 5–18, 2014.

[114] M. Harman, Y. Jia, and W. B. Langdon. Strong higher order mutation-based test data genera-

tion. In 19th ACM SIGSOFT Symposium and the 13th European Conference on Foundations of

Software Engineering (ESEC/FSE’11), pages 212–222, 2011.

[115] M. Harman, Y. Jia, W. B. Langdon, J. Petke, I. H. Moghadam, S. Yoo, and F. Wu. Genetic

improvement for adaptive software engineering. In 9th International Symposium on Software

Engineering for Adaptive and Self-Managing Systems (SEAMS’14), pages 1–4, 2014.

[116] M. Harman, S. A. Mansouri, and Y. Zhang. Search-based software engineering: Trends, tech-

niques and applications. ACM Computing Surveys, 45(1):11:1–11:61, 2012.

[117] M. Harman, P. McMinn, J. de Souza, and S. Yoo. Search based software engineering: Techniques,

taxonomy, tutorial. In Empirical Software Engineering and Verification, volume 7007 of LNCS,

pages 1–59. 2012.

[118] I. Hatzakis and D. Wallace. Dynamic multi-objective optimization with evolutionary algorithms:

A forward-looking approach. In 8th International Conference on Genetic and Evolutionary Com-

putation (GECCO’06), pages 1201–1208, 2006.

[119] R. Hawkins, K. Clegg, R. Alexander, and T. Kelly. Using a software safety argument pattern

catalogue: Two case studies. In Computer Safety, Reliability, and Security, pages 185–198. 2011.

[120] R. Hawkins, I. Habli, and T. Kelly. Principled construction of software safety cases. In SAFE-

COMP 2013-SASSUR Workshop, 2013.

[121] R. Hawkins, I. Habli, and T. Kelly. The principles of software safety assurance. In 31st Interna-

tional System Safety Conference, 2013.

[122] R. Hawkins, I. Habli, T. Kelly, and J. McDermid. Assurance cases and prescriptive software

safety certification: A comparative study. Safety Science, 59:55–71, 2013.

[123] S. Helwig and R. Wanka. Theoretical analysis of initial particle swarm behavior. In 10th Inter-

national Conference on Parallel Problem Solving from Nature (PPSN’08), pages 889–898, 2008.

[124] A. G. Hernandez-Diaz, C. A. C. Coello, F. Perez, R. Caballero, J. Molina, and L. V. Santana-

Quintero. Seeding the initial population of a multi-objective evolutionary algorithm using

gradient-based information. In IEEE Congress on Evolutionary Computation, pages 1617–1624,

2008.

241

REFERENCES

[125] C. A. R. Hoare. An axiomatic basis for computer programming. Commununications of the ACM,

12(10):576–580, Oct. 1969.

[126] P. Horn. Autonomic computing: IBM’s perspective on the state of information technology, 2001.

[127] M. C. Huebscher and J. A. McCann. A survey of autonomic computing-degrees, models, and

applications. ACM Computunig Surveys, 40(3):7:1–7:28, Aug. 2008.

[128] M. U. Iftikhar and D. Weyns. Activforms: Active formal models for self-adaptation. In

9th International Symposium on Software Engineering for Adaptive and Self-Managing Systems

(SEAMS’14), pages 125–134, 2014.

[129] C. Johnson. Genetic programming with fitness based on model checking. InGenetic Programming,

volume 4445 of LNCS, pages 114–124. 2007.

[130] K. Johnson, R. Calinescu, and S. Kikuchi. An incremental verification framework for component-

based software systems. In 16th International Symposium on Component-based Software Engi-

neering (CBSE’13), pages 33–42, 2013.

[131] T. Kalmar-Nagy, R. D’Andrea, and P. Ganguly. Near-optimal dynamic trajectory generation and

control of an omnidirectional vehicle. Robotics and Autonomous Systems, 46(1):47 – 64, 2004.

[132] J. P. Katoen, M. Khattri, and I. S. Zapreev. A Markov reward model checker. In 2nd International

Conference on Quantitative Evaluation of Systems (QEST’05), pages 243–244, 2005.

[133] J. P. Katoen, I. S. Zapreev, E. M. Hahn, H. Hermanns, and D. N. Jansen. The ins and outs of

the probabilistic model checker MRMC. Performance Evaluation, 68(2):90 – 104, 2011.

[134] G. Katz and D. Peled. Synthesis of parametric programs using genetic programming and model

checking. In 15th International Workshop on Verification of Infinite-State Systems (INFIN-

ITY’13), pages 70–84, 2013.

[135] B. Kazimipour, X. Li, and A. K. Qin. A review of population initialization techniques for

evolutionary algorithms. In IEEE Congress on Evolutionary Computation (CEC’14), pages 2585–

2592, 2014.

[136] B. Kazimipour, X. Li, and A. K. Qin. Why advanced population initialization techniques perform

poorly in high dimension? In 10th International Conference on Simulated Evolution and Learning,

pages 479–490, 2014.

[137] H. Kellerer, U. Pferschy, and D. Pisinger. The multiple-choice knapsack problem. In Knapsack

Problems, pages 317–347. 2004.

242

REFERENCES

[138] T. Kelly and R. Weaver. The Goal Structuring Notation – a safety argument notation. In

Assurance Cases Workshop, 2004.

[139] J. Kephart and D. Chess. The vision of autonomic computing. Computer, 36(1):41–50, 2003.

[140] C. Klein, M. Maggio, K.-E. Arzén, and F. Hernández-Rodriguez. Brownout: Building more

robust cloud applications. In 36th International Conference on Software Engineering (ICSE’14),

pages 700–711, 2014.

[141] A. Komuravelli, C. S. Pasareanu, and E. M. Clarke. Learning probabilistic systems from tree

samples. In 27th International Symposium on Logic in Computer Science (LICS’12), pages 441–

450, 2012.

[142] R. Kota, N. Gibbins, and N. R. Jennings. Decentralized approaches for self-adaptation in agent

organizations. ACM Transactions on Autonomous and Adaptive Systems, 7(1):1:1–1:28, May

2012.

[143] C. Krupitzer, F. M. Roth, S. VanSyckel, G. Schiele, and C. Becker. A survey on engineering

approaches for self-adaptive systems. Pervasive and Mobile Computing, 17(PB):184–206, Feb.

2015.

[144] D. Kusic, J. O. Kephart, J. E. Hanson, N. Kandasamy, and G. Jiang. Power and performance

management of virtualized computing environments via lookahead control. In 5th International

Conference on Autonomic Computing (ICAC’08), pages 3–12, 2008.

[145] M. Kwiatkowska. Quantitative verification: models, techniques and tools. In 6th Joint Meet-

ing on European Software Engineering Conference and the ACM SIGSOFT Symposium on the

Foundations of Software Engineering: Companion Papers (ESEC-FSE’07), pages 449–458, 2007.

[146] M. Kwiatkowska. From software verification to ‘everyware’ verification. Computer Science -

Research and Development, pages 295–310, 2013.

[147] M. Kwiatkowska, G. Norman, and D. Parker. Quantitative analysis with the probabilistic model

checker PRISM. Electronic Notes in Theoretical Computer Science, 153(2):5 – 31, 2006.

[148] M. Kwiatkowska, G. Norman, and D. Parker. Stochastic model checking. In Formal Methods

for the Design of Computer, Communication and Software Systems: Performance Evaluation

(SFM’07), pages 220–270. Springer, 2007.

[149] M. Kwiatkowska, G. Norman, and D. Parker. PRISM 4.0: verification of probabilistic real-time

systems. In 23rd International Conference on Computer Aided Verification (CAV’11), pages

585–591. Springer, 2011.

243

REFERENCES

[150] M. Kwiatkowska, G. Norman, and D. Parker. Probabilistic verification of Herman’s self-

stabilisation algorithm. Formal Aspects of Computing, 24(4-6):661–670, 2012.

[151] M. Kwiatkowska, G. Norman, D. Parker, and H. Qu. Assume-guarantee verification for proba-

bilistic systems. In 16th International Conference on Tools and Algorithms for the Construction

and Analysis of Systems (TACAS’10), volume 6015 of LNCS, pages 23–37. 2010.

[152] M. Kwiatkowska, G. Norman, and R. Segala. Automated verification of a randomized distributed

consensus protocol using Cadence SMV and PRISM. In 13th International Conference on Com-

puter Aided Verification (CAV’01), volume 2102 of LNCS, pages 194–206. 2001.

[153] M. Kwiatkowska and D. Parker. Automated verification and strategy synthesis for probabilistic

systems. In 11th International Symposium on Automated Technology for Verification and Analysis

(ATVA’13), volume 8172 of LNCS, pages 5–22, 2013.

[154] M. Kwiatkowska, D. Parker, and H. Qu. Incremental quantitative verification for Markov decision

processes. In 41st International Conference on Dependable Systems Networks (DSN’11), pages

359–370, 2011.

[155] C. Le Goues, T. Nguyen, S. Forrest, and W. Weimer. Genprog: A generic method for automatic

software repair. IEEE Transactions on Software Engineering, 38(1):54–72, 2012.

[156] J. Manyika, M. Chui, J. Bughin, R. Dobbs, P. Bisson, and A. Marrs. Disrup-

tive technologies: Advances that will transform life, business, and the global econ-

omy. http://www.mckinsey.com/business-functions/business-technology/our-insights/

disruptive-technologies, May 2013.

[157] S. Martello and P. Toth. Knapsack Problems: Algorithms and Computer Implementations. John

Wiley & Sons, Inc., 1990.

[158] I. Meedeniya and L. Grunske. An efficient method for architecture-based reliability evaluation

for evolving systems with changing parameters. In 21st International Symposium on Software

Reliability Engineering (ISSRE’10), pages 229–238, 2010.

[159] N. Megiddo and D. S. Modha. Outperforming LRU with an adaptive replacement cache algorithm.

Computer, 37(4):58–65, 2004.

[160] L. L. Minku and X. Yao. Software effort estimation as a multiobjective learning problem. ACM

Transactions on Software Engineering and Methodology, 22(4):35:1–35:32, 2013.

244

http://www.mckinsey.com/business-functions/business-technology/our-insights/disruptive-technologies
http://www.mckinsey.com/business-functions/business-technology/our-insights/disruptive-technologies

REFERENCES

[161] V. Mirrokni, N. Thain, and A. Vetta. A theoretical examination of practical game playing:

Lookahead search. In 5th International Conference on Algorithmic Game Theory (SAGT’12),

pages 251–262, 2012.

[162] G. A. Moreno, J. Cámara, D. Garlan, and B. Schmerl. Proactive self-adaptation under uncer-

tainty: A probabilistic model checking approach. In 10th Joint Meeting on European Software

Engineering Conference and the ACM SIGSOFT Symposium on the Foundations of Software

Engineering (ESEC/FSE’15), pages 1–12, 2015.

[163] V. Nallur and R. Bahsoon. A decentralized self-adaptation mechanism for service-based applica-

tions in the cloud. IEEE Transactions on Software Engineering, 39(5):591–612, 2013.

[164] D. S. Nau. Decision quality as a function of search depth on game trees. Journal of the ACM,

30(4):687–708, 1983.

[165] D. S. Nau, M. Lustrek, A. Parker, I. Bratko, and M. Gams. When is it better not to look ahead?

Artificial Intelligence, 174(16-17):1323 – 1338, 2010.

[166] A. J. Nebro, J. J. Durillo, F. Luna, B. Dorronsoro, and E. Alba. MOCell: A cellular genetic al-

gorithm for multiobjective optimization. International Journal of Intelligent Systems, 24(7):726–

746, 2009.

[167] N. Nostro, R. Spalazzese, F. D. Giandomenico, and P. Inverardi. Achieving functional and non

functional interoperability through synthesized connectors. Journal of Systems and Software,

111(C):185–199, Jan. 2016.

[168] S. Oman and P. Cunningham. Using case retrieval to seed genetic algorithms. International

Journal of Computational Intelligence and Applications, 01(01):71–82, 2001.

[169] P. Oreizy, M. Gorlick, R. Taylor, D. Heimhigner, G. Johnson, N. Medvidovic, A. Quilici, D. Rosen-

blum, and A. Wolf. An architecture-based approach to self-adaptive software. Intelligent Systems

and their Applications, 14(3):54–62, 1999.

[170] S. Ortmanns, H. Ney, and A. Eiden. Language-model look-ahead for large vocabulary speech

recognition. In 4th International Conference on Spoken Language (ICSLP’96), volume 4, pages

2095–2098 vol.4, 1996.

[171] A. Pnueli. In transition from global to modular temporal reasoning about programs. In Logics

and Models of Concurrent Systems, volume 13 of NATO ASI Series, pages 123–144. Springer,

1985.

245

REFERENCES

[172] S. Podlipnig and L. Böszörmenyi. A survey of web cache replacement strategies. ACM Computing

Surveys, 35(4):374–398, 2003.

[173] K. Praditwong, M. Harman, and X. Yao. Software module clustering as a multi-objective search

problem. IEEE Transactions on Software Engineering, 37(2):264–282, March 2011.

[174] Q. Qiu, Q. Qu, and M. Pedram. Stochastic modeling of a power-managed system-construction

and optimization. IEEE Transactions on Computer-Aided Design of Integrated Circuits and

Systems, 20(10):1200–1217, 2001.

[175] A. Ramirez, D. Knoester, B. Cheng, and P. McKinley. Plato: a genetic algorithm approach to

run-time reconfiguration in autonomic computing systems. Cluster Computing, 14(3):229–244,

2011.

[176] J. Rao, X. Bu, C.-Z. Xu, and K. Wang. A distributed self-learning approach for elastic provi-

sioning of virtualized cloud resources. In 19th International Symposium on Modeling, Analysis

Simulation of Computer and Telecommunication Systems (MASCOTS’11), pages 45–54, 2011.

[177] S. Redfield. Cooperation between underwater vehicles. In Marine Robot Autonomy, pages 257–

286. 2013.

[178] J. Ren, M. Harman, and M. Di Penta. Cooperative co-evolutionary optimization of software

project staff assignments and job scheduling. In 3rd International Symposium on Search Based

Software Engineering (SSBSE’11), volume 6956 of LNCS, pages 127–141. 2011.

[179] Robotics & Autonomous Systems Special Interest Group. RAS 2020: Robotics and Autonomous

Systems. https://connect.innovateuk.org/documents/2903012/16074728/RASUKStrategy,

July 2014.

[180] S. M. Ross. Stochastic Processes. Wiley, 2 edition, 1995.

[181] Royal Academy of Engineering. Establishing High-Level Evidence for the Safety and Efficacy of

Medical Devices and Systems, January 2013.

[182] J. Rutten, M. Kwiatkowska, G. Norman, and D. Parker. Mathematical Techniques for Ana-

lyzing Concurrent and Probabilistic Systems, volume 23 of CRM Monograph Series. American

Mathematical Society, 2004.

[183] M. Salehie and L. Tahvildari. Self-adaptive software: Landscape and research challenges. ACM

Transactions on Autonomous and Adaptive Systems, 4(2):14:1–14:42, 2009.

246

https://connect.innovateuk.org/documents/2903012/16074728/RAS UK Strategy

REFERENCES

[184] U. K. Sarkar, P. P. Chakrabarti, S. Ghose, and S. C. DeSarkar. Improving greedy algorithms by

lookahead-search. Journal of Algorithms, 16(1):1–23, 1994.

[185] A. Sayyad, J. Ingram, T. Menzies, and H. Ammar. Scalable product line configuration: A straw

to break the camel’s back. In 28th International Conference on Automated Software Engineering

(ASE’13), pages 465–474, 2013.

[186] I. Schaefer, L. Bettini, V. Bono, F. Damiani, and N. Tanzarella. Delta-oriented programming of

software product lines. In 14th International Conference on Software Product Lines (SPLC’10),

pages 77–91, 2010.

[187] R. Segala and N. Lynch. Probabilistic simulations for probabilistic processes. Nordic Journal of

Computing, 2(2):250–273, 1995.

[188] A. Sesic, S. Dautovic, and V. Malbasa. Dynamic power management of a system with a two-

priority request queue using probabilistic-model checking. IEEE Transactions on Computer-Aided

Design of Integrated Circuits and Systems, 27(2):403–407, 2008.

[189] M. Seto, L. Paull, and S. Saeedi. Introduction to autonomy for marine robots. In Marine Robot

Autonomy, pages 1–46. 2013.

[190] A. J. Smith. Cache memories. ACM Computing Surveys, 14(3):473–530, 1982.

[191] I. Sommerville, D. Cliff, R. Calinescu, J. Keen, T. Kelly, M. Kwiatkowska, J. Mcdermid, and

R. Paige. Large-Scale Complex IT Systems. Communications of the ACM, 55(7):71–77, July

2012.

[192] J. Spriggs. GSN – The Goal Structuring Notation. A Structured Approach to Presenting Argu-

ments. Springer, 2012.

[193] A. Sridharan, R. Guérin, and C. Diot. Achieving near-optimal traffic engineering solutions for

current OSPF/IS-IS networks. IEEE/ACM Transactions on Networking, 13(2):234–247, 2005.

[194] C. Stylianou, S. Gerasimou, and A. Andreou. A novel prototype tool for intelligent software

project scheduling and staffing enhanced with personality factors. In 24th International Confer-

ence on Tools with Artificial Intelligence (ICTAI’12), pages 277–284, 2012.

[195] D. Sykes, J. Magee, and J. Kramer. Flashmob: Distributed adaptive self-assembly. In 6th

International Symposium on Software Engineering for Adaptive and Self-Managing Systems

(SEAMS’11), pages 100–109, 2011.

247

REFERENCES

[196] G. Tamura and et al. Towards practical runtime verification and validation of self-adaptive

software systems. In Software Engineering for Self-Adaptive Systems II, volume 7475 of LNCS.

2013.

[197] G. Tesauro, D. M. Chess, W. E. Walsh, R. Das, A. Segal, I. Whalley, J. O. Kephart, and S. R.

White. A multi-agent systems approach to autonomic computing. In 3rd International Conference

on Autonomous Agents and Multiagent Systems (AAMAS’04), pages 464–471, 2004.

[198] G. Tesauro, N. K. Jong, R. Das, and M. N. Bennani. A hybrid reinforcement learning approach

to autonomic resource allocation. In 3rd International Conference on Autonomic Computing

(ICAC’06), pages 65–73, June 2006.

[199] UK Health & Safety Commission. The use of computers in safety-critical applications, 1998.

[200] UK Ministry of Defence. Defence Standard 00-56, Issue 4: Safety Management Requirements for

Defence Systems, June 2007.

[201] A. Ulusoy, T. Wongpiromsarn, and C. Belta. Incremental controller synthesis in probabilis-

tic environments with temporal logic constraints. International Journal on Robotic Research,

33(8):1130–1144, 2014.

[202] D. A. Van Veldhuizen. Multiobjective Evolutionary Algorithms: Classifications, Analyses, and

New Innovations. PhD thesis, 1999.

[203] A. Vargha and H. D. Delaney. A Critique and Improvement of the CL Common Language

Effect Size Statistics of McGraw and Wong. Journal on Educational and Behavioral Statistics,

25(2):101–132, 2000.

[204] V. V. Vazirani. Approximation Algorithms. Springer, New York, USA, 2001.

[205] D. Weyns, N. Bencomo, R. Calinescu, J. Cámara, C. Ghezzi, V. Grassi, L. Grunske, P. Inverardi,

J.-M. Jezequel, S. Malek, R. Mirandola, M. Mori, and G. Tamburrelli. Perpetual assurances in

self-adaptive systems. In Software Engineering for Self-Adaptive Systems IV, LNCS. Springer,

2016.

[206] D. Weyns and R. Calinescu. Tele assistance: A self-adaptive service-based system exemplar. In

10th International Symposium on Software Engineering for Adaptive and Self-Managing Systems

(SEAMS’15), pages 88–92, May 2015.

[207] D. Weyns, R. Haesevoets, A. Helleboogh, T. Holvoet, and W. Joosen. The MACODO middleware

for context-driven dynamic agent organizations. ACM Transactions on Autonomous and Adaptive

Systes, 5(1):3:1–3:28, 2010.

248

REFERENCES

[208] D. Weyns, M. U. Iftikhar, D. G. de la Iglesia, and T. Ahmad. A survey of formal methods in

self-adaptive systems. In 5th International C* Conference on Computer Science and Software

Engineering (C3S2E’12), pages 67–79, 2012.

[209] J. White, B. Dougherty, and D. C. Schmidt. Selecting highly optimal architectural feature sets

with filtered Cartesian flattening. Journal of Systems and Software, 82(8):1268–1284, 2009.

[210] M. Wooldridge. An introduction to multiagent systems. John Wiley & Sons, 2009.

[211] M. Wooldridge and N. R. Jennings. Intelligent agents: theory and practice. The Knowledge

Engineering Review, 10:115–152, 6 1995.

[212] C. Ye, S. Cheung, and W. Chan. Process evolution with atomicity consistency. In 2nd

International Symposium on Software Engineering for Adaptive and Self-Managing Systems

(SEAMS’07), pages 19–19, 2007.

[213] L. Yin and G. Cao. Supporting cooperative caching in ad hoc networks. IEEE Transactions on

Mobile Computing, 5(1):77–89, 2006.

[214] H. L. S. Younes. Ymer: A statistical model checker. In 17th International Conference on

Computer Aided Verification (CAV’05), volume 3576 of LNCS, pages 429–433. 2005.

[215] C.-H. Yu. Biologically-inspired Control for Self-adaptive Multiagent Systems. PhD thesis, Harvard

University, Cambridge, MA, USA, 2010. AAI3415434.

[216] F. Zambonelli and M. Viroli. A survey on nature-inspired metaphors for pervasive service ecosys-

tems. International Journal of Pervasive Computing and Communications, 7(3):186–204, 2011.

[217] J. Zhang and B. H. Cheng. Model-based development of dynamically adaptive software. In 28th

International Conference on Software Engineering (ICSE’06), pages 371–380, 2006.

[218] J. Zhang and B. H. Cheng. Using temporal logic to specify adaptive program semantics. Journal

of Systems and Software, 79(10):1361 – 1369, 2006.

[219] E. Zitzler, D. Brockhoff, and L. Thiele. The hypervolume indicator revisited: On the design

of Pareto-compliant indicators via weighted integration. In 4th International Conference on

Evolutionary Multi-criterion Optimization (EMO’07), pages 862–876, 2007.

[220] E. Zitzler, J. Knowles, and L. Thiele. Quality assessment of Pareto set approximations. In

Multiobjective Optimization, volume 5252 of LNCS, pages 373–404. 2008.

249

REFERENCES

[221] E. Zitzler, M. Laumanns, and L. Thiele. SPEA2: Improving the strength Pareto evolutionary

algorithm. In Evolutionary Methods for Design Optimization and Control with Applications to

Industrial Problems (EUROGEN’01), pages 95–100, 2001.

[222] E. Zitzler and L. Thiele. Multiobjective evolutionary algorithms: a comparative case study and

the strength pareto approach. IEEE Transactions on Evolutionary Computation, 3(4):257–271,

1999.

[223] E. Zitzler, L. Thiele, M. Laumanns, C. Fonseca, and V. da Fonseca. Performance assessment of

multiobjective optimizers: an analysis and review. IEEE Transactions on Evolutionary Compu-

tation, 7(2):117–132, 2003.

250

	Abstract
	List of Contents
	List of Figures
	List of Tables
	Acknowledgements
	Declaration
	1 Introduction
	1.1 Self-Adaptive Software Systems
	1.2 Runtime Quantitative Verification Overview
	1.3 Motivation and Research Hypothesis
	1.4 Research Scope and Assumptions
	1.5 Thesis Contributions
	1.6 Thesis Structure

	2 Background and Field Review
	2.1 Quantitative Verification
	2.1.1 Markov Models
	2.1.1.1 Discrete-Time Markov Chains
	2.1.1.2 Continuous-Time Markov Chains

	2.1.2 Probabilistic Temporal Logics
	2.1.2.1 Probabilistic Computation Tree Logic
	2.1.2.2 Continuous Stochastic Logic

	2.2 Runtime Quantitative Verification
	2.2.1 Self-Adaptation Through Runtime Quantitative Verification
	2.2.1.1 Self-Adaptive Unmanned Underwater Vehicle System

	2.2.2 Early Approaches to Runtime Quantitative Verification
	2.2.3 The Quest for Efficient Runtime Quantitative Verification
	2.2.3.1 Incremental Verification
	2.2.3.2 Compositional Verification
	2.2.3.3 Parametric Verification

	3 Efficient RQV Using Conventional Software Engineering Techniques
	3.1 Techniques for Efficient RQV
	3.1.1 Caching
	3.1.2 Limited Lookahead
	3.1.3 Nearly-Optimal Reconfiguration

	3.2 Implementation
	3.3 Evaluation
	3.3.1 Research Questions
	3.3.2 Experimental Setup
	3.3.3 Results and Discussion
	3.3.4 Threats to Validity

	3.4 Related Work
	3.5 Summary

	4 Improving RQV Efficiency Using Evolutionary Algorithms
	4.1 EvoChecker
	4.1.1 Modelling Language
	4.1.2 Quality-of-Service Attributes
	4.1.3 Human-in-the-Loop EvoChecker
	4.1.4 Automated EvoChecker

	4.2 Implementation
	4.3 Evaluation
	4.3.1 Human-in-the-Loop EvoChecker Evaluation
	4.3.1.1 Research Questions
	4.3.1.2 Experimental Setup
	4.3.1.3 Evaluation Methodology
	4.3.1.4 Results and Discussion

	4.3.2 Automated EvoChecker Evaluation
	4.3.2.1 Research Questions
	4.3.2.2 Experimental Setup
	4.3.2.3 Evaluation Methodology
	4.3.2.4 Results and Discussion

	4.3.3 Threats to Validity

	4.4 Related Work
	4.5 Summary

	5 Extending RQV With Decentralised Control Loops
	5.1 DECIDE
	5.1.1 Formal Description of a DECIDE System
	5.1.2 Stage 1: Local capability analysis
	5.1.3 Stage 2: Receipt of Peer Capability Summaries
	5.1.4 Stage 3: Selection of Component Contributions
	5.1.5 Stage 4: Execution of Local Control Loop
	5.1.6 Stage 5: Major Changes

	5.2 Implementation
	5.3 Evaluation
	5.3.1 Research Questions
	5.3.2 Experimental Setup
	5.3.3 Results and Discussion
	5.3.4 Threats to Validity

	5.4 Related Work
	5.5 Summary

	6 Engineering Trustworthy Self-Adaptive Systems
	6.1 ENTRUST Methodology
	6.1.1 Stage 1: Development of Verifiable Models
	6.1.2 Stage 2: Verification of Controller Models
	6.1.3 Stage 3: Controller Enactment
	6.1.4 Stage 4: Partial Instantiation of Assurance Argument Pattern
	6.1.5 Stage 5: Running the Self-Adaptive System
	6.1.6 Stage 6: Synthesis of Dynamic Assurance Argument

	6.2 Implementation
	6.3 Evaluation
	6.3.1 Research Questions
	6.3.2 Experimental Setup
	6.3.3 Results and Discussion
	6.3.4 Threats to Validity

	6.4 Related Work
	6.5 Summary

	7 Conclusion and Future Work
	7.1 Efficient RQV Using Software Engineering Methods
	7.1.1 Research Contributions
	7.1.2 Further Research Directions

	7.2 Improving RQV Efficiency Using Evolutionary Algorithms
	7.2.1 Research Contributions
	7.2.2 Further Research Directions

	7.3 Extending RQV With Decentralised Control Loops
	7.3.1 Research Contributions
	7.3.2 Further Research Directions

	7.4 Engineering Trustworthy Self-Adaptive Software Systems
	7.4.1 Research Contributions
	7.4.2 Further Research Directions

	7.5 Prototype Self-Adaptive Software Systems

	Appendix A Sequential Strategy Module for the MarketWatch FX Service
	Appendix B Dynamic Power Management System
	Glossary
	References

