Factors that Impact the Cloud
Portability of Legacy Web

Applications

Gabriel Costa Silva,
Doctor of Philosophy

University of York

Computer Science

September 2016

mailto:gabriel_costasilva@yahoo.com.br
http://www.york.ac.uk
http://www.cs.york.ac.uk

Abstract

The technological dependency of products or services provided by a par-
ticular cloud platform or provider (i.e. cloud vendor lock-in) leaves cloud
users unprotected against service failures and providers going out of busi-
ness, and unable to modernise their software applications by exploiting new
technologies and cheaper services from alternative clouds. High portability
is key to ensure a smooth migration of software applications between clouds,
reducing the risk of vendor lock-in. This research identifies and models key
factors that impact the portability of legacy web applications in cloud com-
puting. Unlike existing cloud portability studies, we use a combination of
techniques from empirical software engineering, software quality and areas
related to cloud, including service-oriented computing and distributed sys-
tems, to carry out a rigorous experimental study of four factors impacting on
cloud application portability. In addition, we exploit established methods
for software effort prediction to build regression models for predicting the
effort required to increase cloud application portability. Our results show
that software coupling, authentication technology, cloud platform and ser-
vice are statistically significant and scientifically relevant factors for cloud
application portability in the experiments undertaken. Furthermore, the ex-
perimental data enabled the development of fair (mean magnitude of relative
error, MMRE, between 0.493 and 0.875), good (MMRE between 0.386 and
0.493) and excellent (MMRE not exceeding 0.368) regression models for pre-
dicting the effort of increasing the portability of legacy cloud applications.
By providing empirical evidence of factors that impact cloud application
portability and building effort prediction models, our research contributes
to improving decision making when migrating legacy applications between

clouds, and to mitigating the risks associated with cloud vendor lock-in.

Contents

Abstract
Contents
List of Figures i8]
List of Tables 1T
Acknowledgements o7
Declaration
1 Introduction 27
1.1 Motivation o o 21
1.2 Research Overview 22
1.3 Ethics and Ethical Consent 25
1.4 Thesis Structure 20

2 Background 27
2.1 Cloud Computing
2.1.1 Essential Cloud Characteristics 28]

2.1.2 Service and Deployment Models 29

2.1.3 Cloud-Related Research Areas B10]

2.2 Vendor Lock-in 31
2.2.1 Vendor Lock-in Definition 31

2.2.2 Consequences of Vendor Lock-in for Cloud Computing 32]

CONTENTS

2.2.3 Causes of Vendor Lock-in 32
2.2.4 Impact of Vendor Lock-in for Cloud Users and Providers
2.2.5 Existing Solutions for Cloud Lock-in 37
2.3 Software Migration for the Cloud [43]
2.3.1 Migration Process L. 44
2.3.2 Motivation to Migrateo oL 406l
2.3.3 Migration Effort o000 54|
2.3.4 Stakeholders Involved in a Software Migration @7
2.3.5 Re-engineering to Migrate oL 48
2.4 Cloud Portability 5]
2.4.1 Portability as a Software Quality Attribute [49]
2.4.2 Quality Models B0
2.4.3 Portability Overview 531
2.4.4 Cloud Application Portability
2.4.5 Application Migration Scenarios and Their Requirements [E3
2.5 SUMMATY oo e

3 Investigating the Impact of Software Coupling on Cloud Application

Portability 57
3.1 Review of Software Coupling, [HS]
3.2 Review of Message Queuing 59
3.3 Empirical Investigation 60]
3.3.1 Experiment Plan and Execution 6T
332 Results 68]
3.3.3 Discussion 1]
3.3.4 Threats to Validity 4
3.4 Building Prediction Models [76]
3.4.1 Simple OLS Linear Regression Model [7G]
3.4.2 Multiple OLS Linear Regression Model R4
3.4.3 Discussiono 90]
3.5 SUMMAryo [90]

4 Investigating the Impact of Security Systems on Cloud Application

Portability
4.1 Review of Authentication in Distributed Systems [94]
4.2 Empirical Investigation oL

CONTENTS

4.2.1 Experiment Plan and Execution 90l
4.2.2 Characterisation and Feedback of Participants 103
423 Results 108
424 DIiSCussion T4
4.2.5 Threats to Validity
4.3 Building Prediction Models 117
4.3.1 Simple OLS Linear Regression Model 117
4.3.2 Multiple OLS Linear Regression Model 123
4.3.3 Discussion 127
4.4 Summary ... 128

Investigating the Impact of Cloud Platforms and Services on Cloud

Application Portability [129]
5.1 Empirical Investigations L. 130
5.1.1 Experiment Plan and Execution 130
5.1.2 Characterisation of Participants
5.2 Empirical Investigation - Cloud Platform 133
5.2.1 Experiment Plan 34
522 Results 136
5.3 Empirical Investigation - Cloud Service 44
5.3.1 Experiment Plan 144
5.3.2 Results 146
5.4 Discussion & Threats to the Validity of Empirical Investigations 51
54.1 Discussion 151
5.4.2 Threats to Validity
5.5 Building Prediction Models - Cloud Platform
5.5.1 Simple OLS Linear Regression Model
5.5.2 Multiple OLS Linear Regression Model IeTl
5.5.3 Discussiono 164
5.6 Building Prediction Models - Cloud Service 166l
5.6.1 Simple OLS Linear Regression Model 160
5.6.2 DiSCUSSION
5.7 Summary

CONTENTS

6 Conclusion and Future Directions 175]
6.1 Research Objective 176
6.2 Contributions of the Research e
6.3 Directions for Future Research 178

A Research Framework and Methodology I8T]
A.1 Research Framework I8
A.2 The Research Onion Methodology

B Experimentation in Software Engineering 185
B.1 Experiment Preparation and Execution. 187
B.2 Data Analysis 188
B.3 Use of Experimental Results, 189
B.4 Threats to Validity 190

C Software Effort Prediction 19T
C.1 Prediction Approaches 192
C.2 Data Sets, Outliers and Sample Size 193
C.3 Prediction Model Evaluation o4
C.4 Accuracy of Prediction Models for Software Maintainability [195]
C.5 The Regression Approach 198

D Consent Form 207]

References 203]

List of Figures

2.1 Sources and addressed problem areas for the 78 cloud lock-in solutions. . [B§
2.2 Types of solution for cloud lock-in, and their occurrences. 39
2.3 Non-Cloud general migration process. 45]
2.4 Entities in the process of migration to the cloud. 46l
2.5 Cloud application deployment scenarios. 5%

3.1 Tasks performed by participants to replace method calls (MC) with mes-

sage qUeUIng. 61l
3.2 Data point distribution. Some possible outliers can be observed. i)
3.3 Boxplot shows an increasing trend in the medians across OMMIC values. [T1]
3.4 Simple effort prediction model line using OMMIC as a single predictor. . [T7]

3.5 Cook’s distance plot of data points. Only one observation is acknowl-

edged as an outlier though other three are possible candidates. 80
3.6 Diagnostics plots for effort prediction model #2 82
3.7 Simple model line for effort prediction model #1 (continuous line) and

#2 (dashed line). 83
3.8 Cook’s distance plot for the multiple effort prediction model #9. [T
3.9 Diagnostics plots for effort prediction model #9 89

4.1 Division of effort amongst four subtasks for security system modification. 110

4.2 Effort comparison by participant. Note that the scale differs across box-

plots. 112
4.3 Impact analysis of skills on security system modification effort. 113

4.4 Effort prediction model line using security system as a single predictor. . [II8

4.5 Cook’s distance plot of data points. No observation is acknowledged as

an outlier though two observations differ from the rest. 119
4.6 Diagnostics plots for effort prediction model #1 122

LIST OF FIGURES

4.7
4.8

5.1

5.2

5.3

5.4

5.5

5.6
5.7

5.8

5.9
5.10

5.11

5.12

5.13
5.14

5.15
5.16

5.17
5.18

Al

B.1

Cook’s distance plot for the multiple effort prediction model #5. [123
Diagnostics plots for effort prediction model #5 [126]
Data point distribution for the AWS platform. Increasing trend across

group of queues and overlap of data points in the y-axis. @137
Data point distribution for the Azure platform. There is an apparent
linear increase across group of queues and nearly no overlap. 138

Medians and quartiles for AWS platform. Upper and lower quartiles

overlap. 40
Medians and quartiles for Azure platform. Increasing trend across treat-
MENES. . . o o o o e 40
Effort comparison for different treatments. Surprising pattern change
between the first and last two treatments. 41
Deployment effort for the container service. Data points are scattered. . [I47]

Deployment effort for the VM service. First occurrences took more time

than others due to the learning effect. 148
Histogram for container service. Most occurrences took less than 5 min-
utes (75%). . . o oo 149

VM service histogram. Most occurrences took less than 9 minutes (83%). 501
Comparison of medians between two treatments. VM-based deployments
are 66% longer than container-based (p = 0.0001, v = 0.50, Pwr = 0.59). [I51]
Simple effort prediction model line using the cloud platform as a single
predictor. L 156

Cook’s distance plot of data points. Only one observation is acknowl-

edged as an outlier though several others are possible candidates. [I5§]
Diagnostics plots for effort prediction model #1 160
Cook’s distance plot of data points for the multiple effort prediction

model #3. L 163]
Diagnostics plots for effort prediction model #3
Simple effort prediction model line using the cloud service as a single

predictor. 167
Cook’s distance plot of data points. 169
Diagnostics plots for effort prediction model #2 ivdl
The conceptual model of Wazlawick’s research framework. 182]
SE experimentation framework of Wohlin et al. [256].. 1806l

10

List of Tables

2.1

2.2

2.3

3.1

3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9

3.10

3.11

3.12
3.13

3.14
3.15

The common sources of primary studies of solutions for avoiding cloud
lock-in. e
The most cited solutions for avoiding cloud lock-in in our systematic

MapPIng.o

Distribution of cloud lock-in solutions according to CS area.

Criteria for selecting a coupling measure defined in [37], values adopted
for this experiment and reasons underpinning their selection..
Characteristics of software systems used in the experiment.
Candidate Java classes for each software system.
Formal definition of hypotheses.
Cutoff values defined for evaluating the hypotheses, adapted from [70]. .
Summary of statistics and statistical tests in the experiment.
Normality test for the four treatment groups.
Descriptive statistics. Values represent the effort, in minutes.
Results of the Kruskal-Wallis test. P-value is less than the «, indicating
a statistically significant difference between OMMIC groups.
Comparison of low and high coupled classes. The rejection of the null
hypothesis is supported by p-values less than the adjusted
Classifying v obtained in the experiment according to the software engi-
neering research field and standard convention (Cohen’s).
Identification of possible outliers in the simple effort prediction model.

Accuracy and goodness of fit for effort prediction models built. Variables
are identified according to Table[3.14]
Ratio variables in our data set and their correlation with effort.

VIF and tolerance analysis.

11

(9
90

LIST OF TABLES

4.1
4.2

4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11

4.12

4.13
4.14

4.15

5.1
5.2
5.3
5.4

5.5

5.6
5.7

5.8

5.9

5.10
5.11

Measures of size for software applications used in the experiment. O8]

Participants were randomly assigned to objects, apart from the Prototype

application (pretest).o Q9]
Formal definition of hypotheses. o1
Summary of statistics and statistical tests in the experiment.
Cutoff values for evaluating the hypotheses. Table adapted from [70]. . .
Summary of software development background of participants. 104
Summary of professional background of participants.
Summary of experiment-related skills of participants. 106
Comparison of participant’s skills before an after training session. 107
Participant’s responses for the feedback form. 107
Descriptive statistics for treatments. Spring-based applications require

more effort for all statistics analysed. 108
Descriptive statistics for the three applications. Results suggest that the

application also impacts the effort. [109]
Effort comparison by modification subtask. 111
Accuracy and goodness of fit for effort prediction models built. Variables

are identified according to Table[4.15] 120
Ratio variables in our data set and their correlation with effort. 123
Summary of statistics and statistical tests adopted in this study. [I3]

Cutoff values for evaluating the hypotheses. Table adapted from [70)]. . .
Summary of participants’ knowledge on programming and cloud computing.[133]
Summary of participants’ practical experience on programming, cloud
and maintenance. 34
Trials performed and # of queues considered in this experiment. The #
of queues was randomly assigned to trials. 136
Formal definition of hypotheses., 136
Data normality test for both platforms. Apart from one distribution for
AWS platform, all distributions are considered normal. 139

95% confidence intervals calculated by using the bootstrap technique.

The lack of overlap confirms the Wilcozon test. 142]
Summary of descriptive statistics for each trial. 143
Formal definition of hypotheses. [146]

Normality test for container-based and VM-based deployments. Both

distributions are considered non-normal. 143

12

5.12
5.13
5.14

B.1

C.1

C.2

C.3

LIST OF TABLES

Summary of descriptive statistics for both cloud services. 1501
Accuracy and goodness of fit for effort prediction models built. 157
Accuracy and goodness of fit for effort prediction models built. 168
Traditional cutoff values for evaluating hypotheses. Table adapted from

[Z0]. . . . 189
Measures and their variations used in studies. MRE is the de facto stan-
dard measure as it is the basis for Pre(0.30) and Pred(0.25). 196!
Summary of statistics calculated for accuracy measures used in the 252
prediction models found in our review. 197
Accuracy classification system for MMRE. 198

13

To my beloved wife, Josiane, and my precious son, Miguel.

Acknowledgements

I am deeply grateful to:

“Tia Lu”, for giving me this crazy dream of pursuing a PhD; Dr Yandre Mal-
donado e Gomes da Costa, for introducing me to the academic research 12
years ago; Prof. Itana Gimenes, for her advice and support before starting
this journey; Mr Rafael Cassolato, for his technical support during endless
discussions about software architecture, cloud computing and development
frameworks; Prof. Claudete Werner, for her support with organising two
of my experiments; Dr Reginaldo Ré, for his support with organising one
of my experiments; Mr Munif Gebara, for his support with organising one
of my experiments; Universidade Tecnologica Federal do Parana, UNIPAR
and Impact Information Technology, for granting access to their facilities for
my experiments, and for allowing their students to take part in the experi-
ments; Dr Simos Gerasimou, Dr Yasmin Rafiq, Dr Babajide Ogunyomi, Dr
Thomas Richardson, Dr Colin Paterson, Dr Thanasis Zolotas and Mr Adolfo
Sanchez-Barbudo Herrera, for their constant support throughout my PhD;
Prof. Richard Paige, for his kind support throughout my PhD; Dr Louis
Rose, Dr Radu Calinescu and Dr Fiona Polack, for their valuable comments
and advice on this research; and Prof. Dana Petcu, for contributing to this

research with valuable comments during my final assessment.

Declaration

I declare that contents of this thesis are the outcome of my own research
that was conducted between January 2013 and September 2016 under the
supervision of Dr Louis Rose, Dr Radu Calinescu and Dr Fiona Polack. This
thesis has not been submitted for any other award at this or any other insti-

tution. Parts of this thesis have been previously published in the following:

Silva, G. C., Rose, L. M., & Calinescu, R. (2013). A Systematic Review
of Cloud Lock-In Solutions. In 2013 IEEE 5th International Conference
on Cloud Computing Technology and Science (pp. 363-368). Bristol, UK:
IEEE.

Silva, G. C., Rose, L. M., & Calinescu, R. (2013). Towards a Model-Driven
Solution to the Vendor Lock-In Problem in Cloud Computing. In 2013 IEEE
5th International Conference on Cloud Computing Technology and Science
(pp. 711-716). Bristol, UK: IEEE.

Silva, G. C., Rose, L. M., & Calinescu, R. (2014). Cloud DSL: A Language
for Supporting Cloud Portability by Describing Cloud Entities. In MD2P2
2014 - Model-Driven Development Processes and Practices (pp. 18-27).
Valencia, Spain: ACM /IEEE.

Silva, G. C., Rose, L. M., & Calinescu, R. (2014). A Qualitative Study of
Model Transformation Development Approaches: Supporting Novice Devel-
opers. In MD2P2 2014 — Model-Driven Development Processes and Prac-
tices (pp. 18-27). Valencia, Spain: ACM/IEEE.

The four publications presented above are result of my own research, written

by me with the assistance of my supervisors.

Chapter 1

Introduction

1.1 Motivation

The National Institute of Standards and Technology (NIST) defines cloud computing as
“a model for enabling ubiquitous, convenient, on-demand network access to a shared pool
of configurable computing resources (e.g., networks, servers, storage, applications, and
services) that can be rapidly provisioned and released with minimal management effort
or service provider interaction” [I55]. Cloud computing has long been regarded as a
key technology, disruptive to both IT and business. For instance, cloud computing has
featured among the top 10 strategic technologies listed by 2008-2013 Gartner reportsﬂ
Practitioners surveys suggest an ever increasing adoption of cloud computing in public
and private sectors [47, [77, [169]. Academics have also shown much interest in cloud
computing, which has been the subject of multiple systematic literature reviews [311 [79,
107, [144].

However, cloud computing still faces significant challenges, such as ensuring data
confidentiality and privacy [252] 253, 264], other security aspects [109, 261] and high
service availability [22] [63]. Very important among these challenges is overcoming the
vendor lock-in [22] [44) [77), 109] 163, 253]. In cloud computing, vendor lock-in (or cloud
lock-in) is the technological dependency of products or services provided by a particular
cloud platform or provider [4l, 59, 173, 202].

Although vendor lock-in is not a new issue in computer science [59} 253], it is critical
in cloud computing because it renders cloud users unprotected against service failures

[251] and providers going out of business [22], and unable to modernise their software

"http://www.gartner.com/technology/research/top-10-technology-trends/

21

http://www.gartner.com/technology/research/top-10-technology-trends/

1. INTRODUCTION

systems [2106, 238] and to reduce costs by exploiting new technologies [66] and cheaper
services [202] from alternative clouds. High portability is key to ensuring a smooth
migration of software applications between clouds [173, [I85], thus reducing the risk of
vendor lock-in. Portability is defined by the ISO/IEC 2501([] as the “degree of effective-
ness and efficiency with which a system, product or component can be transferred from
one hardware, software or other operational or usage environment to another.”

The differences among the APIs [138] [197], semantics [I47], and technologies [157,
235}, [260] adopted by different cloud platforms and providers have been widely regarded
as responsible for vendor lock-in, as they hinder the migration between clouds and reduce
the portability of cloud resources. Cloud resources include, but are not limited to, data
[35] 146, [191), 208], applications [35, 08| 146, 191, 208, 257|, components |2} 114 [186],
workloads [176], VMs [98, [148], configurations [176], and live deployments [I76]. Overall,
what is considered as a cloud resource varies according to the cloud service [211]. For
instance, for Google Docs, documents (e.g., a spreadsheet) are considered as resources
whereas for DropBox, files are considered as resources.

The portability of cloud resources, or simply cloud portability (Section, has been
addressed by several solutions that aim to mitigating differences in APIs, semantics and
technologies used by cloud platforms and providers [210]. However, these solutions do
not provide the means to fully understand the cloud portability phenomenon. Whereas
most studies for cloud portability concentrate on proposing technological and standard-
isation products (e.g., methods and tools), this thesis concentrates on (i) investigating
factors that impact cloud application portability as a means to mitigate risks associated
to vendor lock-in, and (ii) using these factors to support informed decision making on
cloud application migration. To do so, we combine and exploit sound techniques from
empirical software engineering, software quality and software effort prediction. In ad-
dition, we identify established strategies for dealing with portability issues in related
areas including service-oriented computing and distributed systems, and we extend the

applicability of these strategies to the cloud computing domain.

1.2 Research Overview

We conducted this research project using Wazlawick’s framework for research in com-
puter science [250]. We chose this research framework due to its comprehensive cover-

age of all aspects of a research project and its focus on computer science research. The

"http://is025000.com/index . php/en/iso-25000-standards/iso-25010

22

http://iso25000.com/index.php/en/iso-25000-standards/iso-25010

1.2 Research Overview

terms highlighted in the following description of our research are taken from Wazlawick’s
framework, which is summarised in Appendix

The issue addressed in this research is the migration of legacy web applications
between clouds. The migration addressed in this research does not focus on a partic-
ular service model (Section . This issue is part of the cloud portability subject
in the cloud computing area. Through a literature review (Section , we identify
that application migration in cloud is hindered by the vendor lock-in, which creates
a technological dependence of cloud users on a particular cloud platform due to the
different semantics, technologies and APIs adopted by these platforms. To enable the
migration of resources (e.g., applications, data, virtual machines) between clouds, re-
searchers, practitioners, standardisation bodies and European projects have proposed
several technical solutions for new applications, mainly focusing on means that abstract
cloud differences.

Our literature review identifies four major gaps in the existing cloud portability
research (Sections and . First, the existing cloud portability literature lacks
empirical evidence. Second, existing research disregard existing solutions to similar
problems from related areas (e.g., distributed computing) and socio-technical and busi-
ness challenges. Next, solutions for cloud portability mainly focus on the transference
of resources from one cloud to another although this is only one of several phases in
the migration process. Finally, although real experiences on software migration show
that the engineering effort to carry out a resource migration vary significantly (which
impact on the total migration cost), the migration effort is often overlooked in cloud
portability research.

Our literature review underpinned the definition of the general objective of this
research: to investigate challenges associated with increasing the portability of legacy
web applications in the cloud (i.e., the cloud application portability), focusing on the
migration analysis phase.

By investigating the literature on software migration (Section , software quality
(Section , software effort prediction (Appendix and the literature on cloud-related
fields (i.e., distributed systems, service-oriented computing and outsourcing) (Section
, we defined the following hypothesis:

“Design properties and technologies adopted by an application, along with en-
vironmental aspects, impact cloud application portability and can be used as
indicators for predicting the effort of improving the cloud application porta-
bility.”

23

1. INTRODUCTION

Starting from this hypothesis, we refined our general objective into specific objectives

as follows:

1. To identify factors that impact on cloud application portability; and

2. To devise prediction models for the effort of increasing the cloud portability of

legacy web applications.

As any research, our hypothesis has a well-defined scope (limitations). Firstly,
the only design property investigated is software coupling. Secondly, the technologies
investigated consist of two security authentication mechanisms. Thirdly, cloud platform
and service are the two factors investigated as environmental aspects. Due to the limited
time to conduct this doctoral research, the selection of the four factors investigated in
this research was driven by convenience — they were the first four factors suggesting
some impact on cloud portability that we could identify in the literature.

Our research scope also includes the size of legacy web applications covered in the
research — medium-sized (900 to 40,000 lines of code according to Feigenspan et al. [82])
legacy web information systems. Next, four activities for cloud application migration
are considered: (i) message queuing adoption; (ii) single sign-on adoption; (iii) cloud
service configuration; and (iv) application deployment. The rationale for these activities
are detailed in Chapters [3| [and [} The approach used for building effort prediction
models is point prediction linear regression. Finally, the migration effort is measured in
terms of engineering time.

To achieve the specific objective 1, we carried out four rigorous experiments. It is
important to note that each experiment was carried out within a limited scope due to
research interests and time and budget limitations.

To test the first part of our hypothesis and achieve the specific objective 1, we adopted
the Research Onion methodologyﬂ We summarise this methodology in Appendix .
The Research Onion methodology defines several layers representing different methods
and stances for scientific research. Our research adopts positivism as its philosophical
stance. According to Easterbrook et al. [71], positivism advocates “logical inference from
a set of basic observable facts,” and is often associated with controlled experiments. This
is the dominant stance in computer science [203].

Our investigation uses a deductive approach. According to Sjoberg et al. [213],

in a deductive approach a theory is devised in the theoretical realm, and then oper-

"http://onion.derby.ac.uk

24

http://onion.derby.ac.uk

1.3 Ethics and Ethical Consent

ationalised in a practical environment, e.g. through experimentation. As we try to
identify causal relationships between cloud application portability and a set of factors,
we use experimentation as our research strategy. According to Wohlin et al. [250],
experimentation is an empirical method “that manipulates one factor or variable of the
studied setting.” Appendix [B] provides details about the experimentation framework
used in this research.

Our research is monomethod, as it uses only quantitative methods. According to
Sjgberg, Dyba and Jorgensen [212], quantitative methods “collect numerical data and
analyse it using statistical methods.” From a time horizon viewpoint, our work is cross-
sectional research, which means that our experiments considered participant groups at
a single point in time [126].

Finally, our techniques and procedures for data collection and analysis vary accord-
ing to the experiment carried out, but we mainly used forms for data collection and
non-parametric statistics for data analysis. The rationale for the data analysis choice is
that (i) non-parametric statistics are less sensitive to outliers and (ii) non-parametric
tests make no assumption about the data distribution. Foundation for statistical tests
used in this research can be found in [84] 113, 256].

The methodology for tackling the second part of our hypothesis and achieving the
specific objective 2 is driven by established approaches to software effort prediction that
consist of using a data set, a prediction approach, and an evaluation method. These
approaches are presented in Appendix [C]

This research contributes to (expected outcomes): (i) supporting informed decisions
regarding the cloud migration of software applications, and (ii) mitigating the risks
associated to vendor lock-in. The two major contributions of this research are the
empirical identification of four factors that impact cloud application portability and a set
of regression models for predicting the effort of increasing cloud application portability.
These contributions are important because they increase our understanding of cloud
portability and provide an essential tool to analyse the technical and financial feasibility

of a software migration in the cloud.

1.3 Ethics and Ethical Consent

To conduct the experiments presented in Chapters 3]] and 5], we followed the University
of York guidance on ethics in research [I]. In particular, we (i) gave participants auton-
omy to make decisions regarding the experiment, including the option not to participate;

(ii) informed participants about any known risk of harm from their participation; (iii)

25

1. INTRODUCTION

made clear the purpose and expected benefits of our experiments; and (iv) ensured
the confidentiality of the experimental data and personal information. Appendix
presents the template form used for collecting participant’s consent to participate in

experiments.

1.4 Thesis Structure

The remainder of the thesis is structured as follows. Chapter [2]reviews cloud computing,
vendor lock-in, software migration, and cloud portability concepts and terminology that
are key to understanding this thesis.

Chapter [3] empirically investigates the impact of software coupling on cloud appli-
cation portability in the context of re-engineering legacy three-tier web applications
to decouple application components by adopting a message queuing mechanism. We
exploit the results of this investigation by building prediction models to support de-
cision makers in their analysis of the effort required to increase the cloud portability
of their applications. Additionally, this chapter complements our literature review by
motivating the use and explaining the main concepts of software coupling and message
queuing.

Chapter [4] empirically investigates the impact of the choice of security systems on
cloud application portability. This work is carried out in the context of modifying the
security system of legacy three-tier web applications to enable the use of single sign-on
by adopting implementations of the OpenlD protocol. We exploit the results of this
investigation by building prediction models to support decision makers in their analysis
of the effort required to increase the cloud portability of their applications.

Chapter [5| empirically investigates the impact of the cloud platforms and services on
cloud application portability, in the context of configuring cloud services and deploying
cloud applications. Unlike previous chapters, this investigation required two experi-
ments. We use the results of both investigations to devise prediction models supporting
decision makers in their analysis of the engineering effort required to configure cloud
services and deploy cloud applications.

Chapter 6 concludes the thesis by summarising the main contributions of this re-

search and outlining directions for future work.

26

Chapter 2

Background

This chapter reviews key concepts and terminology needed for understanding this thesis.
Firstly, we present aspects of cloud computing that contribute to vendor lock-in and
briefly introduce existing results from cloud-related areas of computer science that con-
tributes to understanding and tackling vendor lock-in (Section . Next, we explore
the literature on vendor lock-in in cloud computing to identify its consequences, causes
and current solutions (Section . Then, we investigate reports of real experiences
on migration to understand the migration process (Section . Finally, we narrow
down to our perspective on cloud portability, which takes the use of sound techniques
from software quality and cloud-related literature into consideration to improve the

portability of legacy cloud applications in hybrid environments (Section [2.4)).

2.1 Cloud Computing

This section surveys concepts of cloud computing and their impact on the subject in-
vestigated in this research. Firstly, we present five essential cloud characteristics (Sec-
tion . We highlight that although these characteristics lead to benefits for cloud
adopters, legacy web applications need re-engineering to take full advantage of these
benefits. Next, we show two classifications for cloud services - service and deployment
models - that pose challenges for resource migration to or between clouds (Section .
Finally, we summarise relevant results from three areas related to cloud computing -
distributed systems, service-oriented computing and outsourcing. These areas share
several characteristics with cloud computing, and therefore support the understanding

of certain cloud aspects relevant for our research (Section [2.1.3]).

27

2. BACKGROUND

2.1.1 Essential Cloud Characteristics

NIST [I55] presents five essential characteristics of cloud computing. On-demand re-
source provisioning means that cloud resources are available to the cloud user whenever
they are required. This characteristic enables cloud users to acquire and release com-
puting resources like public utilities [44], 261]. For example, water is available just by
opening a tap, and the amount of water varies as the tap is open. This characteristic
leads to benefits such as reduced upfront investment [22] [125] 232], variable cost [63],

and reduced time-to-market [154].

Broad network access is the cornerstone to access cloud resources [147) 193] since
they may be distributed across different data centres [251],261] and possibly geographical
locations [45]. Two benefits of this characteristic are ubiquity and universal access
through different devices [63, 261]. Ubiquity means that cloud resources are available
anywhere since they are offered through the Internet [89, 261]. For example, a cloud
user can access their resources from the closest datacentre. On the other hand, the
heavy network dependency introduces challenges, such as bandwidth limits [253], cost
to transfer data [109], and data security [264]. In addition, as we discuss in Section [2.4.5]
and address in Chapters[3]and [} distributing resources across the Internet requires some

adaptations to enable legacy web applications to take full advantage of cloud benefits.

Resource pooling is an intrinsic characteristic of cloud. To provide resources to
cloud users, the cloud provider maintains a very large infrastructure of hardware and
virtualization technologies, resulting in a pool of resources [253]. These resources are
shared among cloud users using a multi-tenant model [I5]. Cloud platforms and under-
lying technologies, such as hypervisors, are responsible for managing and provisioning
resources to cloud users [261]. This characteristic benefits cloud providers in three
different ways. Firstly, it reduces IT spending [163], and maximise and optimise re-
sources [66] by using idle resources [241]. Secondly, it enables cloud providers to take
advantage of the economy of scale [89]. Finally, virtualization technologies facilitate the

management and maintenance of physical resources [45], 261].

Rapid elasticity allows cloud resources to scale up (e.g., by providing a larger CPU for
a VM) and out (e.g., by increasing the number of web containers serving user requests)
according to the cloud user needs [22, [155]. Elasticity may also refer to costs. Since the
pay-as-you-go model is widely adopted in cloud as the standard billing model [44], the
bill increases with the resource usage. The pay-as-you-go billing model, along with on-
demand provisioning, reduce upfront investments [261], turning fixed costs into variable

costs [63]. Although rapid elasticity is particularly interesting for small and start-up

28

2.1 Cloud Computing

companies [I86], legacy applications require re-engineering to exploit it [I5] 52] [125].

Measured services is a characteristic that enables resource usage monitoring. A
benefit of this characteristic is resource control and optimisation, such as monitoring
unexpected consumption peaks [44, [124], and reducing cloud resource consumption
[54), [114].

2.1.2 Service and Deployment Models

Cloud platforms offer a plethora of services, ranging from web deployment containers to
ready-to-use software systems. These services are grouped into categories called service
models [155), 261] based on the resource provided to the cloud user [240]. NIST defines

three main service models [155]:

e Infrastructure-as-a-Service (IaaS) consists of fundamental computing resources,

such as storage [63];

e Platform-as-a-Service (PaaS) consists of software platforms where cloud applica-

tions run on, such as application servers for web applications [240]; and

e Software-as-a-Service (SaaS) consists of on ready-to-use applications, such as
email (e.g., Gmai]EI) or CRM (e.g., Sales CloudED [261].

Like a conventional computing system which comprises multiple interacting levels,
cloud service models may also support each other [26I]. For example, an email service
(SaaS) might be deployed in an application server service (PaaS), which in turn is hosted
by a VM (IaaS). The service stack may be in the same cloud platform or not.

Whereas cloud service models classify the type of cloud service, the deployment
model distinguishes between different types of users that are the target of these cloud
services [I55]. The three most common deployment models are [66, 261]: (i) public,
which targets the general public (e.g., AmazonEI); (ii) private, which targets a single
organisation; and (iii) hybrid, which consists of a composition of the previous two de-
ployment models. Although hybrid deployments are a growing trendEL cloud platforms
might be heterogeneous [I8, 86, 124, 221]. In this context, heterogeneity means that

cloud platforms may differ, mainly, regarding their underpinning APIs, technologies

"http://www.gmail.com
2http://www.salesforce.com/sales-cloud/overview/
3http://aws.amazon. com
*http://www.northbridge.com/2013-cloud- computing-survey

29

http://www.gmail.com
http://www.salesforce.com/sales-cloud/overview/
http://aws.amazon.com
http://www.northbridge.com/2013-cloud-computing-survey

2. BACKGROUND

and semantics. Cloud platform heterogeneity complicates the management of multiple
clouds, and contributes to the vendor lock-in (Section .

It is important to note that different service and deployment models pose different
challenges when moving applications to the cloud [I5] or between clouds [I184]. As we
explain in Sections [2.3] and migration requirements vary according to the source

or target service and deployment model, and to the resource that is being migrated.

2.1.3 Cloud-Related Research Areas

Cloud computing inherits characteristics and uses techniques from different areas of
computing. Distributed systems, service-oriented computing, and outsourcing are three
cloud-related areas particularly relevant for this research.

According to Tanenbaum & van Steen [228], a distributed system is “a collection
of independent computers that appears to its users as a single coherent system.” Grid
computing is a type of distributed system [227] that shares several characteristics with
cloud [89, 252], such as large scale, geographical distribution, heterogeneity, and resource
sharing. Even some challenges are similar, such as the need for migrating legacy systems
[51], interoperability [259], security [88] and resource management [41] [76]. As in grid
[42, 236, 247], cloud services and applications rely on middleware for their integration
and management. In addition, the resource decentralisation requires specific security
techniques [228]. The use of middleware and specific security techniques is summarised
in Sections and

Service-oriented computing is a paradigm whereby services represent the building
blocks for composing complex applications [I75, [I77]. In this paradigm, a service is a
self-contained, low coupled and language independent software unit that implements a
business function [9) [I75], such as placing an order in an e-commerce system. These
service characteristics enable smooth and transparent interoperation of heterogeneous
systems [I78]. Although the composition of cloud services is expected to work like the
service composition in service-oriented computing [251], the heterogeneous semantics
[147], technologies [196] and interfaces [197] adopted by cloud platforms complicate this
integration. Section [2.2.5| summarises a review of existing solutions for mitigating these
differences in cloud.

Outsourcing is “a situation in which a company employs another organisation to do
some of its work, rather than using its own employees to do it. ’E| Clemons [59] describes

cloud computing as an extreme form of I'T outsourcing. According to Armbrust et al.

"http://dictionary.cambridge.org/dictionary/english/outsourcing

30

http://dictionary.cambridge.org/dictionary/english/outsourcing

2.2 Vendor Lock-in

[22], in this form of IT outsourcing, maintenance and risks related to infrastructure and
provided services are transferred to the cloud provider. On the one hand, outsourcing I'T
assets by adopting cloud computing provides cloud users with benefits such as [44] [63),
77, [154]: focus on core business, cost reduction, quick access to hardware and software
resources, low barrier to innovation, service scalability, reduced upfront investment, and
freedom to select their resource provider. On the other hand, as a type of outsourcing,

cloud computing inherits a known outsourcing risk - the vendor lock-in [59].

2.2 Vendor Lock-in

One of the expected outcomes of this research is mitigating the risks of vendor lock-in
by improving the portability of legacy cloud applications. This section delves into the
vendor lock-in issue, explaining its definition and identifying its main characteristics
(Section , identifying its consequences for the cloud field (Section , sum-
marising its main causes (Section , and underlining its impact on cloud users and
providers (Section . We conclude the section by summarising the findings of a
systematic mapping carried out early in this research to establish the existing solutions
for vendor lock-in in cloud computing (Section [2.2.5).

2.2.1 Vendor Lock-in Definition

Lewis [141] explains that “vendor lock-in refers to a situation in which, once an organ-
isation has selected a cloud provider, either it cannot move to another provider or it
can change providers but only at great cost.” In this thesis, we use the term “vendor
lock-in in cloud computing” to mean the technological dependence of cloud users on a
particular cloud platform or provider.

Weiss [253] observes that vendor dependency was a “significant consideration in the
mainframe era.” Indeed, several studies of legacy systems migration indicate vendor
dependency as a motivation to switch to another technology [23| 136, 216]. In summary,
we could identify several recurring characteristics [6l 18, 22], 35] 48, [611, [66, (67, 86}, 103},
105, 109, 14T, 186, 191, 192), 202} 253, 257]:

e makes the cloud user dependent of their cloud platform or provider;
e hinders resource migration;

e requires some changes, or deep modifications on the when the migrate resource is

an application;

31

2. BACKGROUND

e has a negative effect on the cloud user, usually related to high costs;
e may have a positive effect on the cloud provider.

We discuss these characteristics in more detail the next sections.

2.2.2 Consequences of Vendor Lock-in for Cloud Computing

Although vendor dependency is a recurrent problem in Computer Science [35], it is crit-
ical in cloud computing. Firstly, vendor lock-in has inhibited cloud adoption [98, 103,
147, (169, 180, 191], 202] as potential cloud users are concerned about (i) being unable to
undertake countermeasures against service failures [251] and (ii) losing their data [22],
for example. Secondly, vendor lock-in limits the cloud user freedom to exploit services
from other platforms [67], which negatively affects resource optimisation [66] and im-
pedes the use of new technologies [48]. Next, vendor lock-in creates cloud silos [176, [184].
In this context, a silo is a situation in which the resource (e.g., VM, application) is iso-
lated, restraining its interaction with another application [I09] or infrastructure [163],
or preventing resource sharing [68].

Finally, vendor lock-in negatively impacts the overall cost of cloud services. Lewis
[141] notes that the negotiation power of a cloud user is reduced due to the vendor
lock-in. Furthermore, Hamdaqa, Livogiannis & Tahvildari [103] conclude that vendor

lock-in is a challenge to cost reduction.

2.2.3 Causes of Vendor Lock-in

Several arguments have been made to explain the causes of vendor lock-in in cloud
computing. Some authors argue that the lack of standards is responsible for cloud
vendor lock-in [61], 186], 192]. Others attribute vendor lock-in to the heterogeneity of
the cloud regarding service models [191], functions [83] 10T, [176], environments [13], [192],
billing strategies [0, 207], and architecture [189, 208]. However, as we explain in the next
paragraphs, the use of different APIs, semantics, and technologies by cloud platforms
and providers has been widely accepted as the main cause of cloud vendor lock-in.
APIs play an important role for the programmatic management of cloud services [77].
Therefore, they have a strong influence on vendor lock-in [138], [197]. Even though some
cloud platforms offer APIs based on open standards [197], such as WSDL, or REST, they
lack a single interface [61, 229]. The lack of a single interface is further complicated
by property rights of APIs that prevent cloud providers to adopt homogeneous call

formats [4, 59]. The use of different APIs prevents a smooth application migration to

32

2.2 Vendor Lock-in

another platform [73, 199, 260]. API incompatibility arises even between supposedly
compatible platforms. Flores, Srirama & Paniagua [85] report incompatibilities in their
experience on creating a mobile application to access storage services on both Amazon
S3 and Eucalyptus, although these platforms claim API compatibility. Similarly, Souza
et al. [221I] demonstrated incompatibilities between the Amazon Web Services (AWS)
and the OpenStack, Eucalyptus and OpenNebula APIs for computing service. Hill &
Humphrey [108] observe that these differences in APIs are not only the result of syntax
and semantics differences, but also a result of the different service models and services
provided [167].

Loutas, Kamateri & Tarabanis [149] conclude that API compatibility is not enough
to enable data migration, which also requires semantic interoperability. Semantics refers
to the way in which a cloud platform describes characteristics and components of its
services [147, [164] (e.g., security mechanism, resources, geographical location), mainly
including the entity model [149] and entity names [I52]. Analysing semantic differences
among storage platforms, Kotecha, Bhise & Chaudhary [135] conclude that “Migration
of an application to another cloud requires an application to be re-written and database
to be restructured according to the newly identified cloud service provider’s datastore.”
Loutas et al. [I47] explain that this problem is not limited to data stores, but it is
present in TaaS, PaaS, and SaaS. Hill & Humphrey [108] note that semantic differences
force the cloud user to choose one specific platform. The same position is advocated
by Kotecha, Bhise & Chaudhary [I35], Nelson & Uma [164], and Fortis, Munteanu &
Negru [86].

Finally, cloud providers use different technologies to internally manage their re-
sources and support their services, including hypervisors and VMs, web containers,
and cloud platforms. These technologies also significantly contribute to vendor lock-in
[157, 235], 260]. Rochwerger et al. [I96] observe that cloud technologies were not de-
veloped to be interoperable. Galan et al. [92] emphasise the same idea highlighting
the differences between the Amazon EC2 and GoGrid VM image format. The use of
platform-specific technology is a relevant aspect of vendor lock-in [18] [86] that is more
evident in the packaging technology used by IaaS providers [73],219]. Different technolo-
gies were also a critical issue to enable interoperability in grid computing [119, 249] 259],
an area related to cloud. The differences in technologies also hinder interaction between
different paradigms, such as grid and cloud [157].

Additionally, current development practices and technologies used for application
development may also contribute to the vendor lock-in. Common hindering features

are an application design based on proprietary technologies [191], and a monolithic

33

2. BACKGROUND

application architecture [I06]. Of course, it would be impossible to develop an appli-
cation without any commitment to a particular technology, such as a programming
language. However, the major issue is the development without paying attention to
important concerns, such as portability. Migration cases reported in [23| 216, 230] re-
veal the need for changes to adapt a legacy system to a new technology. In an extreme
case, Lancia, Puccinelli & Lombardi [136] report the need for entirely re-developing a
Cobol/mainframe-based system to take advantage of a new technology. Similar prob-
lems occur in grid computing since applications are hard-coded to use a specific grid
middleware [157, 237, 249].

To illustrate this problem in application development, take into consideration the
case of the PetStore applicationlﬂf a reference application developed to demonstrate the
features of JEE technology. In this particular case, the application is entirely developed
to use a specific technology, limiting its deployment on some cloud platforms. However,
there is a more critical aspect: although the application uses the traditional three-
layered application architecture, the hard-coding of mechanisms used to ensure data
persistence and other common functionality makes difficult and expensive any attempt
to migrate it to a PaaS provider, for instance. The problem affects not only legacy
applications, but also applications specifically developed for the cloud (cloud-native)
[191] and applications migrated to the cloud (cloud-enabled) [15]. In [263], Zhou reports
the need for re-designing the application architecture to comply with a specific cloud
platform. A similar experience was reported in [232] and [52]. These experiences are
evidence that even applications recently migrated to the cloud do not consider flexibility,

portability, and interoperability.

On the other hand, van der Linden [238] emphasises the ease of migrating an ap-
plication designed to be highly portable. Based on their experience with migrating
an application to a cloud platform, Chauhan & Babar [52] conclude that applications
based on stateless RESTful components are easier to migrate than applications based
on other technologies. The authors also highlight the simplicity of migrating persistence
components when the database is used only to store data instead of both data and busi-
ness logic. Finally, the authors advocate, “it is more convenient and cost effective to
evolve an SOA based system to SaaS targeting laaS clouds as compared to PaaS clouds
for which components need to be re-factored according to the API provided by the PaaS
provider.” In addition, Andrikopoulos et al. [15] observe that the migration cost is

associated to the type of migrated components.

"http://www.oracle.com/technetwork/articles/javaee/petstore-137013.html

34

http://www.oracle.com/technetwork/articles/javaee/petstore-137013.html

2.2 Vendor Lock-in

2.2.4 Impact of Vendor Lock-in for Cloud Users and Providers

Vendor lock-in affects both cloud user and cloud provider, although in different ways.
For the cloud user, although cloud providers advertise service availabilities very close
to 100% [83], they can suffer outages [202] — and the literature is full of cased} The
(temporary) unavailability of a cloud provider’s services gives rise to a cascading effect,
affecting cloud users and their customers (application users), and potentially resulting
in business losses for cloud userdZPiE

Secondly, the cloud market is still maturing; in this process some cloud providers
might go out of business [97]. Gonidis, Paraskakis & Kourtesis [97] note the case of
Coghead, a company which offered cloud-based services between 2006 and 2009, and
suddenly announced its closure in February 2009. In a similar case reported by Armbust
et al. [22], the storage service The Linkup went out of business after losing 45% of their
customer data, leaving its 20,000 users in a tricky situation. Finally, another risk to the
cloud user is the violation of Service Level Agreements (SLA) [202], causing problems,
such as data loss [22].

Another effect of vendor lock-in on the cloud user is the increase in the cost asso-
ciated with resource migration [48]. Here, costs refer not only to money, but also to
time and effort. From this perspective, migrating a resource between providers does not
differ from resource migration in more established computing paradigms. Nfila, Dintwe
& Rao [166] and Wilson [254] report two processes of migrating a library system to
a new one (before the cloud era) that took one, and one and half years, respectively.
These experiences can be compared with migrating between SaaS providers since the
application is entirely replaced, and only the data is migrated [97]. Taking this long to
complete a migration would be prohibitive in the case of a provider going out of business.
Even when time is not a problem, the effort to migrate can exceed the expectations.
Satzger et al. [202] analyse, “once an application has been developed based on one par-
ticular provider’s cloud services and using its specific API, that application is bound to
that provider; deploying it on another cloud would usually require completely redesign-
ing and rewriting it.” In addition, migration processes are not free from unexpected

problems. Even with a well-structured process and an experienced team, Teppe [230)]

"http://www.crn.com/slide-shows/cloud /240153188 /6-devastating-cloud-outages-over-the-last-6-
months.htm

2http://www.computerworld.com/article/2495766/social-business/
google-drive-hit-by-three-outages-this-week.html

“http://www.reuters.com/article/net-us-companies-netflix-idUSBRESBOO6H20121226

“http://www.bloomberg.com /news/articles /2012-12-31/amazon-apologizes-for-christmas-eve-
disruption-affecting-netflix

35

http://www.computerworld.com/article/2495766/social-business/google-drive-hit-by-three-outages-this-week.html
http://www.computerworld.com/article/2495766/social-business/google-drive-hit-by-three-outages-this-week.html
http://www.reuters.com/article/net-us-companies-netflix-idUSBRE8BO06H20121226

2. BACKGROUND

reports problems during code migration. Both time and effort impact on the financial
cost 6], [103].

Finally, although the cloud user is still responsible for their resources, the I'T control
is partially transferred to the cloud provider [I09], which introduces challenges [105],
such as integration and resource optimisation [66]. Without the flexibility to switch
provider, the cloud user must agree with business, technological, and socio-technical
decisions taken by a third-party. Another critical aspect of such shared control refers
to the data security, privacy and trust [91]. Furthermore, as the control is partially
transferred to the cloud provider, responsibilities for the service reliability are also
shared. Armbrust et al. [22] cite the case of The Linkup (cloud user) and Nirvanix
(cloud provider), in which a failure in the cloud user service led to a dispute between the
cloud user and the provider to determine the responsibility for the problem. Since new
cloud services have been built on the already complex infrastructure of cloud providers
(e.g., Dropbox, Netflix, and Foursquare on Amazon Web Services), control and division
of responsibility tend to become critical concerns for large companies.

From an economic perspective, vendor lock-in may bring benefits to the cloud
provider [22]. Firstly, vendor lock-in retains users [184) [192], ensuring a permanent
customer base and enabling the cloud provider to predict both the usage of resources
and the revenue. Secondly, the cloud provider has some flexibility to take decisions,
such as raising pricesﬂ Even though the flexibility to change the price is somewhat
limited (otherwise cloud users could abandon the provider despite the migration costs),
the cloud market is different from public utilities, in which governments can control,
pressure, or, at least, question companies about their price increases. In the cloud mar-
ket, big customers can pressure cloud providers [184]; however, the flexibility to decide,
and any concessions that may be available for some of them lies in the cloud provider’s
hands.

Finally, exclusive services (i.e., heterogeneous and provider-specific) may be used
to attract new customers [I84]. For example, Amazon maintains a page dedicated to
report success cases of customers that use their exclusive servicesﬂ Since the problems
between user and provider are rarely disclosed, new customers might be attracted by
the promised advantage of a service.

On the other hand, cloud providers can also suffer because of their heterogeneity —
one of the causes of vendor lock-in. In [2], the authors highlight the case of hybrid clouds,

in which heterogeneity is a problem. In a hybrid cloud, multiple clouds work together

"http://bits.blogs.nytimes.com/2012/10/09/open-vs-closed-the-cloud-wars/?_r=0
2https://aws.amazon.com/solutions/case-studies/

36

http://bits.blogs.nytimes.com/2012/10/09/open-vs-closed-the-cloud-wars/?_r=0
https://aws.amazon.com/solutions/case-studies/

2.2 Vendor Lock-in

coordinated by a broker. To realise such an integration, the authors identified several
requirements, such as common formats for VMs and APIs. Additionally, in [3], the
authors present several scenarios in which seamless integration among cloud providers
could be beneficial, such as bursting, and availability in case of disaster recovery. In
a bursting scenario, a cloud provider can temporarily transfer resources to a cloud
partner in order to deal with an unexpected workload increase [I55]. Extra requests for
resources from cloud users are redirected to the partner, balancing the workload and

ensuring SLAs.

2.2.5 Existing Solutions for Cloud Lock-in

This section summarises a systematic mapping we carried out early in the project to
identify and analyse the existing solutions for cloud lock-in (i.e., the vendor lock-in in
cloud computing). A systematic mapping is a rigorous method for classifying research
results published in a field of interest [I88|. Previously published in [210], our review
is based on a systematic literature mapping of 721 primary studies that describe the
state-of-the-art in managing cloud lock-in, portability and interoperability.

Portability and interoperability are two characteristics of software applications that
are often associated with cloud lock-in [173]. According to Petcu [184], “interoperability
is a property referring to the ability of diverse systems and organisations to work together
(inter-operate). In computer world, this property has the concrete meaning of exchanging
information and use of the information that has been exchanged between two or more
systems or components.” We selected 78 of these primary studies for a thorough analysis
of cloud standards, commercial products and academic work related to cloud lock-in.

This review shows that most solutions proposed so far are platforms, APIs or ar-
chitectures addressing infrastructure-as-a-service (IaaS) interoperability. The focus on
these solutions may be driven by the cloud market, which has shown interest in these
topics [77]. The research presented in this thesis addresses three issues identified in this
review: (i) exploiting established solutions from areas that are closely related to cloud
computing; (ii) obtaining rigorous empirical evidence to raise the confidence in existing

solutions; and (iii) addressing socio-technical and business challenges associated with
cloud lock-in (Section |1.2]).

2.2.5.1 Review Findings

Solution Identification, Analysis & Classification From a total of 721 research

papers, white papers and project websites retrieved, 78 (11%) were identified as provid-

37

2. BACKGROUND

references from

other materials
portability

digital
libraries

web searches

(<1%)
interoperability
personal & portability
knowledge interoperability lock-in
(a) sources (b) addressed problem area

Figure 2.1: Sources and addressed problem areas for the 78 cloud lock-in solutions.

ing solutions to problems related to vendor lock-in, portability and/or interoperability
in the cloud. From these solutions, 55 (71%) were published in peer-reviewed jour-
nals and conference proceedings, and 23 (29%) were obtained from alternative sources
such as web sites and white papers. Figure shows the partition of solutions across
different types of sources, and the problem areas targeted by these solutions.

Each solution proposes a way to address one or more issues of vendor lock-in, porta-
bility or interoperability. Solutions were grouped according to their similarities, result-
ing in 26 different kinds of solutions (Figure . The most common type of solution
are platforms, followed by APIs and architectures.

It is important to highlight that, unlike similar reviews [98| [148, [184], we focus on
classifying solutions according to the type of artefact that they propose instead of the
nature of the solution (standard, commercial, and so forth). Thus, although Figure
does not show an entry for standards, they are present, such as the interfaces SNIA
CDM]E| and UCIEL the packaging format DMTF OVFEL and the specification OCC]EL

Similarly, relevant research projects were also present in our review, such as MODA-
Clouds 18], mOSAIC [I86], Cloud4SOAP, TOSCA [33], RESERVOIR [196], and 4CaaStf]
We highlight relevant research projects and standards in our analysis when it is appro-
priate.

Some types of solution address a combination of portability, interoperability and

vendor lock-in issues. For instance, the solution in [I57] focuses on interoperability,

"http://www.snia.org/cdmi
*https://groups.google.com/forum/#! forum/unifiedcloud
Shttps://www.dmtf.org/standards/ovf
“http://occi-wg.org

"http://wuw.cloud4soa. eu

Shttp://www.4caast.eu

38

http://www.snia.org/cdmi
https://groups.google.com/forum/##!forum/unifiedcloud
https://www.dmtf.org/standards/ovf
http://occi-wg.org
http://www.cloud4soa.eu
http://www.4caast.eu

2.2 Vendor Lock-in

Set of Design Requirements
Resource provisioning system
Packaging format

Ontology

Mediator

Graphical User Interface

Design Pattern

Abstract description
Specification

Proxy

Extension

Aggregator

Technique

Model-driven approach
Middleware

Interface

Domain Specific Language

Broker

Abstraction layer
Tool
Approach

Framework
Architecture
API
Platform

(=]
N
S
(=2}

8 10 12

Figure 2.2: Types of solution for cloud lock-in, and their occurrences.

whereas the solution proposed in [I86] focuses on portability, and Apache Nuvenﬂ
focuses on vendor lock-in, although all of them are APIs. Although some solutions were
grouped because they propose the same type of solution, they can deal with different
parts of a problem. For Architectures, for instance, the solutions in [86] and [45] are
general architectures aiming to support interoperability, whereas the solutions in [219],
[119], and [235] also propose architectures, but have more specific goals, such as devising
an architecture for a broker that supports interoperability. In contrast to some solutions
that can be directly understood in context, such as an API or a proxy, other solutions
are unclear, such as a framework or an approach. This is the case with the RESERVOIR
project [196], which is presented on its official website as a framework. Unless the report
that presents the solution makes absolutely clear the type of solution proposed, we used
the name proposed by its author.

Whereas 47 solutions (60%) present a developed artefact, 15 solutions (19%) do not
present any artefact. Some kind of evaluation is carried out only in 16 solutions (21%).
In general, solutions proposed by community, industry and consortiums offer functional

versions of their product although they may be experimental versions.

"https://wiki.apache.org/incubator/Nuvem

39

https://wiki.apache.org/incubator/Nuvem

2. BACKGROUND

Table 2.1: The common sources of primary studies of solutions for avoiding cloud lock-in.

Name ‘ # Studies

IEEE International Conference on Cloud Computing

Technology and Science
International Conference on Cloud Computing and Services Science

Lecture Notes in Computer Science (Journal)
IEEE Intl. Conference on Cloud Computing
Intl. Conf. on Recent Trends In IT

Future Generation Computer Systems (Journal)

N DN W Ot Ot

Most evaluations analyse the performance of the solution, e.g. by measuring through-
put and latency [186], inference and query time [164], schedule time [219], overhead in
a translation process [73], and time to responds to user requests [257]. We also found
solutions for which the cost to the cloud user is being evaluated, namely [182], [45] and
[6]. The most common form of evaluation involves using prototypes, or simulations.
Regarding industrial usage, 5 solutions (6%) are commercial, 11 (14%) have industrial
partners or received support from industry, 8 (10%) have one or more authors from in-
dustry, and 5 (6%) reported having their product running in a company. The remaining
49 solutions (63%) do not clearly state their relation with industry.

Regarding the service model, 26 solutions (33%) are intended for IaaS, whereas 7
(9%) for PaaS and 1 (1%) for SaaS. There are also 12 solutions (15%) that target more
than one of these three service models, and 8 solutions (10%) which target other service
models, such as Data-as-a-Service. It is worth noting that 24 solutions (31%) do not
specify a target service model. Some solutions, such as [85] and [229], show examples
related to SaaS and laaS (respectively), but the authors did not make clear if this is
the target. Other solutions, such as [86] and [I8], have some relation with well-known
solutions. However, we cannot infer the intended service model from the description
of the solution. One interpretation might be that these solutions aim to be generic

approaches that target all service models.

Identification and Analysis of Research Area It is critical to any researcher in a
new area to identify the most relevant sources of material. In addition, writing and pub-
lishing results are commons task in research. To support these activities, we show in the
Table the journals and conferences most targeted by researchers from this area. We
also analysed the relationships between studies, by examining their citations. Our anal-

ysis allows us to reason about the impact of a solution. The OCCI project, for example,

40

2.2 Vendor Lock-in

Table 2.2: The most cited solutions for avoiding cloud lock-in in our systematic mapping.

Name ‘ # Citations
Eucalyptusﬂ 22
Open Virtualization Forma 18
Open Cloud Computing Interfac&ﬂ 17
OpenNebul 15
Reservoir Project [196] 9
Nimbus’ 8
Libclou 7
Delta—Cloudﬂ 7
InterCloud [110] 7
OpenStac 6

is cited as a related work [147], [73], as an example [I86] and as a part of a solution
[199]. Table shows the most cited solutions. Building on well-established solutions
is a potentially promising approach to devising a sound new solution, as evidenced by
recent work [244].

Gap Analysis To assist in identifying gaps in existing work, the solutions were clas-
sified within a Computer Science area, according to the devised artefact, using the 10 of
the 12 categories of the first level of the ACM Computing Classification System (Table
. Two general categories have been disregarded: General and reference and Proper
nouns. Existing solutions cover most of the ACM categories, except for areas such as

Applied Computing and Theory of computation.

2.2.5.2 Discussion

By performing a thorough analysis of the solutions identified in our systematic review,
we made three key observations. Firstly, regardless of the solution, a common ap-
proach is to create an abstraction layer that seeks to hide the differences between cloud
providers. In turn, adapters are used to support the interaction between the abstraction
layer and the target cloud.

Secondly, existing solutions provide alternative ways of tackling the same issue(s).
This is the case for APIs and ontologies, for instance. A prerequisite for proposing an
APIT is the identification of entities that the API will deal with [I86]. Likewise, design-
ing an architecture is a precondition to propose a platform in [I79] and [257]. However,

reusing or extending existing solutions is not common practice, although we have iden-

41

2. BACKGROUND

Table 2.3: Distribution of cloud lock-in solutions according to CS area.

Computer Science Area | (%)
Software and its engineering | 72%
Information systems 18%
Computing methodologies 5%
Social and professional topics | 3%
Human-centered computing 1%
Security and privacy 1%

tified a strong relation between some approaches. An exception is the use of standards.
For example, the OCCI standard is used by other solutions (e.g., OpenNebulaﬂ and
Eucalyptuaﬂ).

Finally, solutions of the same type are very similar, with only slight differences.
For example, analysing three platforms for cloud management (i.e., OpenNebula, Eu-
calyptus, and OpenStackﬂ), we could not identify any particular difference which could
recommend one over another. The main difference in APIs, used to programmatically
access cloud services, is the technology supported: Java (jcloudsﬁ), Python (Libcloudﬂ),
and REST (Deltacloudlﬂ).

From a research point of view, existing solutions on cloud lock-in lack empirical
methods to conduct their studies and empirical evaluation. Empirical evidence is critical
to evidencing the problem as well as to supporting the solution. From the 55 solutions
published in peer-reviewed journals and conferences, only one study [6] presents an
explicit research question and no studies present the method for conducting the study.
This statistic considers only research papers as such information is expected from this
kind of document. In addition, less than one third of the studies included any form of
evaluation. It is common that a solution is proposed based on hypothetical scenarios
or requirements derived from a brief analysis of current cloud providers.

Cloud computing is built on established concepts, such as distributed computing
and virtualization. However, we found that solutions do not take advantage of ap-
proaches previously devised in areas related to cloud computing. Analysing the issues

and solutions for vendor lock-in, portability, and interoperability in areas related to

"http://opennebula.org
*http://www8.hp.com/us/en/cloud/helion-eucalyptus.html
3https://www.openstack.org

“http://jclouds.apache.org

Shttp://libcloud.apache.org
Shttps://deltacloud.apache.org

42

http://opennebula.org
http://www8.hp.com/us/en/cloud/helion-eucalyptus.html
https://www.openstack.org
http://jclouds.apache.org
http://libcloud.apache.org
https://deltacloud.apache.org

2.3 Software Migration for the Cloud

cloud computing might save time and effort, and also support the cloud solutions by
providing a sound foundation for cloud lock-in solutions.

Considering that cloud providers, such as Amazon and Microsoft, are also concerned
about portability and interoperability, much may be gained by increasing collaboration
with industry. In our systematic review, we have identified that 37% of all proposed
solutions have some relation with the industry. IBM and HP have demonstrated their
concerns by recently announcing their support for OpenStack, whereas Amazon and
Microsoft have developed their own strategies for enabling virtual machine portability.

Finally, a further challenge is that solutions should reflect — and be adaptable to — the
social and technical contexts in which they are applied. When migrating applications
(not necessarily to make use of cloud), companies conduct a series of activities, such as
analysis, test, and training (Section . The process is cumbersome, usually taking
a long time to be completed. We believe that the migration process is similar when
migrating applications to the cloud, or migrating cloud applications to a different cloud
platform. Thus, we argue that there is a need for solutions to portability, interoperability

and vendor lock-in issues to also address socio-technical and business challenges.

2.3 Software Migration for the Cloud

Vendor lock-in affects the application migration in cloud [I73]. Therefore, by improving
the portability of cloud applications (i.e., the degree of effectiveness and efficiency of a
migration) we can reduce the risks of cloud lock-in. This section clarifies some decisions
made in this research by analysing reports of real experiences of application, infrastruc-
ture and technology migration in scenarios that involve migration related or not related
to the cloud. In addition, our analysis considers recent studies that provide guidelines
for migration to the cloud.

To select relevant literature, we searched digital libraries covered by the ACM, IEEE,
and Web of Science search engines. From 132 papers retrieved, nine primary studies
reported real software migration experiences. In addition, we analysed the references
of these nine primary studies to select further material. Finally, other relevant studies
identified during this research were also selected for analysis, resulting in a total of 21
primary studies, of which 15 report real software migration experiences and six offer
some guidelines for migration. Our analysis considers five critical issues emphasised in
the primary studies: (i) migration process (Section [2.3.1)); (ii) motivation to migrate

(Section [2.3.2)); (iii) effort (Section [2.3.3)); (iv) involved stakeholders (Section [2.3.4));
and (v) the need for re-engineering (Section [2.3.5). Each of the following sections

43

2. BACKGROUND

presents our findings regarding non-cloud migration studies first, and then studies on

the migration to the cloud.

2.3.1 Migration Process

We identified four main phases for the application migration process in the primary
studies (Figure 2.3): (i) analysis; (ii) pre-migration; (iii) migration; and (iv) post-
migration. The analysis phase is the only phase that is reported in all studies. This
phase involves the analysis of the current application, its requirements, and the migra-
tion target. As different studies report different types of software migration, we use
the terms “source” and “target” to refer to the application, infrastructure, platform or
technology being migrated, prior and after the migration, respectively. In one migra-
tion, a committee was set up to carry out the analysis [I66]. The requirement analysis
comprises both functional [254] and non-functional [23], 230] requirements. Most stud-
ies |23, 166 2106, 230], 238] 254] emphasise the analysis of the migration target, which
suggests that this is essential in this phase.

In the pre-migration phase (Figure , 2), organisations conduct activities such
as contract establishment [254], migration planning [230], and responsibility division
among the stakeholders [254]. Although only two studies report this phase, migration
planning is cited as a success factor for migration [230]. In fact, Suvorov et al. [225]
identified planning and stakeholder engagement as critical factors for success in the mi-
gration of building systems in open source software projects. In addition, developing an
implementation plan is a common activity when migrating software systems to modern
systems in libraries [102]. Hallmark & Garcia [I02] point out that contracts play a
key role in both supporting the relationship between the organisation and its software
provider, and ensuring that the expectations of all parties will be met. These activities
prepare the organisation to conduct the migration in the next phase.

During the migration phase, the application is transferred from its source to its
target. The primary studies provide little information about activities carried out in
this phase. However, three activities are noted (Figure 3): (i) data conversion
[166, 254]; (ii) modifications in the application or business process [166, 216]; and (iii)
testing [23, 230}, 238]. Data conversion is a common activity when migrating from one
system to another, such as in experiences reported by Wilson [254] and Nfila, Dintwe
& Rao [166], and in the migration of legacy systems to new platforms, such as in
experiences described by Teppe [230] and Sneed & Erdoes [216]. Three experiences

[166], 216], 254] report data conversion as a problematic issue, which suggests that it is a

44

2.3 Software Migration for the Cloud

Pre-migration Migration Post-migration
* Currentasset * Contract * Data * Training
* Requirements establishment conversion « Migration of
® Target * Planning * Modifications addit
* Responsability * Test comp
division * Impre
* Managing
relatinship with
vendor
* Contract

(1) (2) (3] <4) monitoring

Figure 2.3: Non-Cloud general migration process.

critical activity. Modification refers to any changes necessary to perform the migration.
Sneed & Erdoes [216] report their experience refactoring the code before starting a
legacy system migration. However, modifications do not refer only to technical, but
also to business aspects. Nfila, Dintwe & Rao [160] report a library system replacement,
whereby some changes in the library process were required.

Tests are reported by three studies that involved: (i) a platform change [23]; (ii)
a legacy system migration [230]; and (iii) an architecture change [238]. Suvorov et al.
[225] underline several problems faced by the KDEEl team, a community of free software
developers, when adopting a new build system, suggesting that they failed due to the
lack of testing before adopting a new technology.

Post-migration is the last phase identified. Although this phase typically comprises
only one activity, staff training, studies point out several other potential post-migration
activities (Figure 4): the migration of related systems [136], improvements or ad-
justments of components [23], and relationship management with vendors [102]. In
addition, in other areas, such as electronic contract [I7], electronic negotiation [57]
and service acquisition [218], contract monitoring is a common post-migration activity.
Nfila, Dintwe & Rao [166] identify adequate training as a success factor for the migra-
tion. Indeed, training is central to supporting system-to-system migration [102], and
legacy system migration [230]. Hallmark & Garcia [102] highlight the importance of
training, advising its inclusion as a clause in the contract. Staff training is also impor-
tant before the migration phase. For Aversano et al. [23], having experienced staff is a
success factor for the migration.

The migration process to the cloud differs from non-cloud migration in that the

former focuses on the entities involved in the migration whereas the latter concentrates

"http://www.kde.org

45

http://www.kde.org

2. BACKGROUND

Cloud

o izati -
rganization Provider

Application

Migration Process

Figure 2.4: Entities in the process of migration to the cloud.

on the migration activities. Studies on the migration to the cloud highlight three main
entities involved in the migration (Figure : organisation, cloud provider, and appli-
cation.

Most studies on migration to the cloud focus on the analysis phase [16] 32] 53] 125,
232, 232, 263]. The emphasis of these studies on the analysis phase suggests that this is
as critical for cloud migration as it is for the non-cloud. The pre-migration phase plays
a key role for the migration to the cloud, especially for studies reported in [19] and
[232]. The purpose of the activities in this phase is to adapt systems and prepare their
users prior to the migration [19]. However, some activities are not mentioned, such as
the contract establishment. This is surprising since the first step to use a cloud provider
is signing a service contract. As Gagliardi & Muscella [91] point out, issues regarding
the data deployed on a cloud must be addressed in a contract.

Beserra et al. [32], Zhou [263], and Chauhan & Babar [53] describe the migration
phase as a single activity. In contrast, Tran et al. [232] present three activities: (i) code
modification, which concentrates on making the required adjustments to the software
to adapt it to the target cloud platform; (ii) migration, which involves system and data
migration; and (iii) testing, which considers integration tests between the application
and the database system, and application functionality tests. Like the non-cloud studies,
little information is provided about this phase. Finally, the last phase, post-migration, is
an evident gap left by the primary studies on migration to the cloud since no information

is provided about any activity after the migration phase.

2.3.2 DMotivation to Migrate

The non-cloud migration reports present a short motivation list. The need for mod-
ernisation is the most cited reason, which is typically due to the benefits of a modern
target [216], 238], or to the deterioration of current technology [230]. The need for imple-
menting new requirements or achieving more flexibility is the second most cited reason,

whereas vendor independence and cost reduction are also often cited. Achieving vendor

46

2.3 Software Migration for the Cloud

independence to reduce costs is a common goal for old technologies (e.g., COBOL and
mainframe based systems) [23], 136, 216].

In contrast to the non-cloud motivation list, the cloud literature lists multiple reasons
for migrating an application to the cloud, including cost reduction, rapid scalability,
and on-demand resource provisioning. Indeed, analysing the cloud literature, it would
be easy to compile a long list of benefits to move to the cloud (see [47] and [169]).
These benefits apply to multiple cloud stakeholders, including cloud users [52], cloud
providers [19], and application users [263]. For example, Khajeh-Hosseini, Greenwood
& Sommerville [123] calculated that their system infrastructure would have cost 37%
less over a five-year period if it had been migrated to the cloud. In fact, cost reduction
is constantly cited in the cloud literature as a benefit for both cloud users and cloud
providers [44], 261].

2.3.3 Migration Effort

The effort to perform non-cloud software migration varies from six weeks [238] to two
years [I36]. System replacement (i.e., an old system is replaced by a new one) took
slightly more than one year to complete [166, 254]. The longest migration process, a
platform migration reported by Lancia, Puccinelli & Lombardi [I36], took two years.
Reports present different strategies to speed up the migration process, such as wrapping
old components [23] and partial re-implementation [238]. We could identify a correlation
between the number of activities (i.e., the process size) and the migration effort in the
primary studies. In addition, unexpected issues during the migration also increase the
effort [166, 254].

Apart from Tran et al. [232], studies on migration to the cloud do not report the
migration effort. Tran et al. [232] took 22.5 hours to prepare a reference application
for migration from an on-premises infrastructure to Windows Azure Cloud Services
(PaaS). In addition, the authors underline that they took extra 36.5 hours to conduct
the migration. However, their experience did not consider any activity in the analysis
phase. Moreover, they migrated a relatively small application (PetShop, amounting to

118 adjusted function points).

2.3.4 Stakeholders Involved in a Software Migration

Non-cloud migration reports show that the migration involves more than one person 23],
166, 230, 254]. The organisation’s staff play roles on strategy implementation [230] [254],

training [166], and system re-engineering [23]. Staff engagement is an important success

47

2. BACKGROUND

factor [166, 225| 230]. Keeping staff well informed during the process is also important.
In [I66], a successful migration experience, the authors underline, “It was important to
iform staff at every stage of the process since they were going to be the implementers
of the system.” Hallmark & Garcia [102] identify different strategies to keep the staff
aware of the process status, including the use of newsletters, verbal communication and
meetings.

In addition to company staff engagement, support and training from third-party
experts also contribute to making the migration process more efficient [23| [166], 2301 254].
Software users were also involved in the process as they were affected by the changes
[23, 254]. For example, Nfila, Dintwe & Rao [166] report the dissatisfaction of users with
the old system (TINLIB). In addition, the authors report that the committee responsible
for the migration analysis carried out interviews with system users, collecting opinions
and suggestions. Finally, to manage people and tasks, companies established managers
[230], a coordinator [23], or dedicated committees [166].

Reports on the migration to the cloud provide little or no information regarding ex-
ternal stakeholders. This may be due to the fact that the reported experiences have been
carried out by researchers as early experiments [52, [263]. The process proposed in [32]
suggests that migration involves developers, responsible for making technical decisions,
and business and financial analysts, liable for defining and evaluating organisational
constraints. Tran et al. [232] indicate that the capabilities of a team — including their
existing knowledge of and experience with cloud providers and technologies — is a factor
that influences the cost of migration. Finally, recent surveys [47, [169] have identified
that decisions related to cloud adoption are not restricted to the I'T department, but

reaches other departments, with significant participation from business stakeholders.

2.3.5 Re-engineering to Migrate

Apart from Nfila, Dintwe & Rao [166], and Wilson [254], who report a system re-
placement rather than a system modification, re-engineering is a common activity for
non-cloud migration experiences. Teppe [230] constantly highlights serious concerns
about changing the functionality of software during migration, and assigns the project
success to the decision of avoiding non-planned software changes.

Migration experiences revealed different re-engineering strategies, such as wrapping
business components [23] and partial re-engineering [238]. Re-engineering activities
were also undertaken in different stages, such as prior to and during the migration

[216], 230]. Several problems are reported during the re-engineering, such as software

48

2.4 Cloud Portability

incompatibility [23] and strong component dependencies [216]. Finally, re-engineering
a software architecture is reported as a problematic activity [L06]. Re-implementation
might be a better alternative when the migration target is a new technology [136].
Andrikopoulos et al. [I5] conclude that migration to the cloud involves different
re-engineering levels depending on the migration type. Tran et al. [232] describe mod-
ifications to adapt the application according to the operating system and back-end
applications (e.g., database and programming language) offered by the cloud provider,
whereas Zhou [263] changed the application to adapt to the cloud provider architecture.
Chauhan & Babar [52] carried out two main modifications: the creation of a persistence

layer, and a controller to manage multiple VM instances.

2.4 Cloud Portability

Unlike previous studies [98, [148] 184, 210], our research addresses cloud portability
from the perspective of software quality (SQ). We consider portability as a quality
attribute (QA) of cloud resources. We took this stance after analysing existing research
on portability in general. We understood that portability concepts and challenges are
similar regardless of the area where portability is required. Therefore, we hypothesised
that our research objectives could be achieved by using accumulated knowledge and
applying established SQ techniques for investigating QAs to cloud computing.

This section reviews concepts of SQ, portability and cloud portability. Firstly, we
highlight the importance of non-functional requirements and explain their relationship
with SQ (Section . Secondly, we present the role of quality models in defining,
assessing and predicting QAs (Section . Next, we provide a definition for porta-
bility and underline the importance of portability as a QA (Section . Then, we
present our definition of cloud applications and list critical activities for application
migration in the cloud (Section . Finally, we present a motivation scenario used
in this research and its requirements (Section .

2.4.1 Portability as a Software Quality Attribute

According to Sommerville [220], software quality management is concerned with “en-
suring that the required level of quality is achieved in a software product.” Sommerville
also adds “quality, simplistically, means that a product should meet its specification.”
Still according to Sommerville, the software specification can refer to functional or non-

functional (NFR) requirements. NFRs are “constraints on the services or functions

49

2. BACKGROUND

offered by the system” [220], such as performance and usability. Because NFRs affect
the whole system [12], they are often considered more important than functional re-
quirements [220]. This research focuses on a technical NFR of cloud applications —
portability.

A survey of 12 organisations shows that performance, usability and security are
considered the most important NFRs for software architects [12]. In this survey, porta-
bility is one of the less cited NFRs, along with scalability, modularity and monitoring.
Surprisingly, these less cited NFRs are critical for cloud computing (Sections and
. The lack of portability, scalability, modularity and monitoring in legacy applica-
tions explains why legacy applications often require re-engineering to take advantage of
cloud benefits [15] 52 125 [186].

Dealing with NFRs is a challenge [12] because NFRs impact software architecture
[29] and adopted technologies [II]. In addition, NFRs conflict not only with each
other [29] 93], but also with functional requirements [220]. Furthermore, as Galster &
Bucherer [93] explain, dealing with NFRs in highly distributed environments is even
more challenging due to the influences of different services and stakeholders. For exam-
ple, ensuring performance is complicated as the overall performance of a task might be
compromised by an external service that suffers from unknown performance issues.

Note that although a NFR typically places a constraint on a QA (e.g., an NFR may
read: “the response time (a QA) must not exceed 500ms”), NFRs and QAs are often
used interchangeably [111, 12 29] 93], 220]. This thesis adopts only the term QA from

this point onward.

2.4.2 Quality Models

Quality Models (QMs) are used to (i) define, (ii) assess and (iii) predict QAs [246]. The
most common definitional QM is the ISO/TEC 912dz| [174], recently replaced by the
ISO/IEC 2501(ﬂ Adopting a definitional QM is essential when working with QAs as
they are often subjective [93] and different stakeholders may have different views for
the same QA [12]. A prediction model is another type of QM [246] that is discussed in
detail in Appendix [C]

To evaluate a QA, an assessment model can be used. Evaluating QAs is critical to
ensure that the application achieves the desired quality level [29]. Assessment models

extend quality definition models (e.g., ISO 25010) by proposing metrics that evaluate

"http://www.iso.org/iso/catalogue_detail .htm?csnumber=22749
2http://is025000.com/index .php/en/iso-25000-standards/iso-25010

50

http://www.iso.org/iso/catalogue_detail.htm?csnumber=22749
http://iso25000.com/index.php/en/iso-25000-standards/iso-25010

2.4 Cloud Portability

QAs [246]. However, a common approach to evaluate QAs is not by using quality def-
inition models, but by testing causal or correlational relationships [40] (i) between the
QA and software characteristics, such as software design properties [201] and develop-
ment paradigm [145], or (ii) between the QA and its related process, such as a software
development or maintenance process task (e.g., testing, fixing bugs) [90].

However, evaluating QAs is difficult because they depend on multiple environmen-
tal factors [62], which substantially increases the set of variables to be analysed. As
an example, software performance cannot be measured without first quantifying the
processor and memory attributes of the computer on which the experiments are carried
out. One strategy to isolate variables and measure the causal relationship between the
variable of interest and the QA is by using experimentation [40].

This strategy has enabled the study of QAs such as maintainability and changeabil-
ity, improving the understanding of the software characteristic under study [21] [112],
and allowing its measurement and prediction [129] [194]. Testing causal relationships
by experimentation is extensively used in Chapters and [5] to identify factors that
impact cloud application portability. For the interested reader, Appendix [B]summarises

basic concepts of experimentation in software engineering.

2.4.3 Portability Overview

Portability is an important QA of software systems [29] defined by the ISO/IEC 25010
as the “degree of effectiveness and efficiency with which a system, product or component
can be transferred from one hardware, software or other operational or usage environ-
ment to another.” In line with the real software migration experiences analysed in
Section 2.3] this definition shows three elements that must be considered to ensure the
success of a software migrationlﬂ: the software to be migrated, and the source and target
environments.

Focusing on code portability, Spinellis [223] points out four main benefits of high
portability:

e Flexibility to select technologies based on quality and price rather than based on

constraints imposed by vendors;
e Ability to modernise software projects by migrating to new technologies;

e Freedom to negotiate for a better price and service with different vendors;

!The term migration is broadly used in the literature of software, APIs and component migration.
Therefore, we prefer this term rather than transfer.

51

2. BACKGROUND

e Reduced risks due to little dependency of proprietary technologies.

It is important to note that these benefits are key to prevent vendor lock-in (Section
. According to Bass, Clements & Kasman [29], software portability can be achieved
by “minimising platform dependencies in the software, isolating dependencies to well-
identified locations, and writing the software to run on a ‘virtual machine’ that encap-
sulates all the platform dependencies within.” In addition, the use of widely adopted
standards can increase portability [36].

Despite its importance and benefits, portability is often overlooked by software archi-
tects [12]. Improving portability quite often requires re-engineering [46, 226]. According
to Chikofsky & Cross [56], re-engineering is the “examination and alteration of a subject
system to reconstitute it in a new form and the subsequent implementation of the new
form.” Re-engineering involves several risks, such as failing to attain quality goals and
performance loss [217]. Furthermore, re-engineering is a difficult process [243] whose
whereby the overall cost depends on the type of changes [220)].

However, improving portability is not just a matter of re-engineering. Like most
QAs, portability might conflict with other QAs [93]. In particular, portability often
conflicts with performance [29]. For example, although adding layers is a common
strategy to improve portability [29], a recent study identified a higher latency when
using this type of solution for cloud portability [ITI]. Therefore, it is critical to analyse
in advance the benefits and trade-offs of improving portability in order to ensure that
its costs pay off.

Despite an extensive search of the research literature, we have found no empirical
studies on portability. To the best of our knowledge, the empirical studies reported in
Chapters [3,] and [5] are the first empirical work addressing portability. To support this
research, we based our studies on portability-related QAs, including changeability [21]
and maintainability [I83] 194, 200]. In addition, we could find preliminary theoreti-
cal work on portability, such as the work of Dhama [65], which correlates portability
with cohesion and coupling, and the work of Bass, Clements & Kasman [29], which

investigates QAs, including portability, from the perspective of software architecture.

2.4.4 Cloud Application Portability

Cloud portability is a QA that measures the portability of cloud resources. As pre-
sented in Section [1.1] examples of cloud resources are data, applications, components,
workloads, VMs, configurations, and live deployments. The management of this QA is

critical in overcoming cloud vendor lock-in. To investigate cloud portability, one should

52

2.4 Cloud Portability

take into consideration [2] [I5 7, 184, [186]: (i) the migrated resource, (ii) migration
goals, and (iii) the source and target environments. In this section we concentrate
on defining cloud applications, presenting a high-level set of activities to migrate cloud
applications and highlighting requirements for the scenario investigated in this research.

We analysed 86 research papers that explicitly deal with cloud applications in our
reference database, but we could not find a clear definition for cloud application. There-
fore, for the purpose of this research, and based on the study of these 86 research papers,
we define a cloud application as a “software system that uses cloud services by interact-
ing with them directly (e.g., by using cloud APIs to retrieve some files from a storage
service) or indirectly (e.g., by being deployed in a VM running within a computing ser-
vice). These systems might be cloud-native or not, and recently developed or legacy.”
Based on this definition, legacy web applications deployed in cloud services are cloud
applications.

As presented in Section migration activities might vary. We could identify the
following critical activities for the migration of cloud applications [15} 53] 97, 134], 185,
242):

Application re-engineering;

Re-creation of resources;

Re-configuration of resources; and

Re-deployment.

It is important to emphasise that some of these activities are not always required

as they vary according to the migration goals.

2.4.5 Application Migration Scenarios and Their Requirements

Focusing on legacy cloud applications, this section presents two deployment scenarios
and discusses requirements to reduce the cloud migration effort by improving cloud
portability. Improving portability of legacy cloud applications when migrating an ap-
plication between the two scenarios is the type of migration investigated in this research.

Figure illustrates the two deployment scenarios (A and B), which are based
on Amazon Web Service reference architectureﬂ and Cloud Computing Use Cases [2].

According to Andrikopoulos et al. [I5], scenario A represents a common deployment

1http ://aws.amazon.com/architecture/?ncl=f_cc

93

http://aws.amazon.com/architecture/?nc1=f_cc

2. BACKGROUND

N .
Deployment Scenario A | Deployment Scenario B
Cloud I Public Cloud

PlatformA Platform A

E ﬁ I ______________ N ——————— N

o ff m————_y e e N emmm--

H [e \ N7

H H 1 Constantly checks a 0y P K

H 1 instances’ health 8 I 0y [J

H e —— >] 1 ¥

I Application "\\ " E Component A : : ;I Component B Customer

H VM 1 _— 1l : data

i | instancen !\ Service Monitor VM 1, W 2 el
H IS & BN L ekt 4 Namamaa- DB Service :
H \ Uses l :
{’ T e A instances’

: H 1 . health H (

H N ! ‘. information | .ot ‘_(5

S 1 Avplication : to forward 5 =

: \ H Y HE]

H B 2 AR \ B N HH ules

H R N\ Tx E l - ¥ - :Vé i S :
: bt < . § :: VM Service :
H . L O,g,é : Service Monitor Load Balancing 7 & H
(7 — Load Balancing : | Independent Service Provider =

H ' Distributes L rnnrrrasssssreessesssereesessnreraeesanaennasnaneeeeeaeenrere,
: : Application 1L incoming I sse.

H B I application

H VM 1 3

h h traffic across

H \\Instancen ’ VM instances

H) Dynamic content Static content)

Y VM Service I (Presentation layer) Jl l(Presentation layer) Public Cloud

[T | Container Service Storage Service gt

Figure 2.5: Cloud application deployment scenarios.

for cloud applications. Each VM instance consists of the entire application stack, which
may or may not include the data tier. A cloud monitoring service is responsible for
checking the health of VM instances, which is used by the load balancing service to
redirect user requests to healthy instances.

Taking into account the architecture of scenario A as both source and target of
a cloud application migration between clouds, the migration effort can be reduced by
using solutions for resource [199] and service configuration [33] portability rather than
application portability. A portable VM image enables the smooth migration of the entire
stack application to another cloud platform. Analogously, a portable cloud service con-
figuration enables the creation of similar cloud resources on the target cloud platform
with minimal effort, but manual or automatic application re-deployment is required for
this case. Some standards, like OVE] and TOSCAP] can be used to increase porta-
bility (i.e., reduce the migration effort) of this migration [I84]. Additionally, either
cloud-specific [83], [199] or general-purpose [170, 222] (DevOps) tools can be used to
automatically re-deploy the application stack on the target platform.

"http://www.dmtf.org/standards/ovE
2https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=tosca

54

http://www.dmtf.org/standards/ovf
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=tosca

2.5 Summary

The need for higher application portability arises when a cloud user wants to take
advantage of specialised cloud services from multiple cloud platforms [I86], e.g., when
migrating an application from scenario A to B (Figure. In the deployment scenario
B, application components are deployed in different services on public and private cloud
platforms. Although the use of multiple cloud platforms (as in scenario B) is a current
trend for cloud users [77], migrating a legacy three-tier web application from scenario A
to B requires the decoupling of its components [T0T], 114} [161] 186l 242]. To carry out the
migration from scenario A to B, the cloud user must be able to migrate a subset of their
application components (rather than the entire application stack) from their current
platform and service to another (possibly multiple) cloud platform and service, which
might include different deployment and service models. Without decoupling application
components, OVF, TOSCA, and most existing standards and technical tools cannot
support this migration.

Unlike recent developed applications that use microservices to decompose applica-
tions into independent and collaborative components that ease portability in hybrid de-
ployments [25] 80, 205], improving the cloud application portability of legacy three-tier
web applications for a scenario with multiple cloud platforms and/or services requires
the adoption of some middleware to decouple application components [I56] and man-
age their interaction [245]. According to Alonso et al. [9], “middleware facilitates the
interaction between applications across heterogeneous computing platforms.”

Although cloud platforms offer their proprietary middleware (exposed by their cloud
APIs) as the main mechanism to interact with their own cloud services [138], these cloud

APIs are not suitable for integrating legacy web applications in the cloud (Section .

2.5 Summary

In this chapter, we reviewed concepts, terminologies and principles of cloud computing,
vendor lock-in, software migration, and cloud portability that are key to understanding

the work presented in the rest of this thesis. In summary:

e We described the characteristics, and the service and deployment models of cloud
computing, and we highlighted their impact on legacy applications and on appli-
cation migration. Thus, we can understand that legacy web applications migrated
to the cloud make limited use of cloud features. We also briefly introduced three
cloud-related areas from which the cloud inherits concepts and trade-offs. These

areas provide useful techniques for supporting cloud portability.

95

2. BACKGROUND

e We discussed that the difference in the APIs, semantics, and technologies adopted
by cloud platforms and providers have been widely accepted as the main causes
of vendor lock-in, although current development practices and technologies also
contribute to cloud vendor lock-in significantly. This discussion, along with real

migration experiences supported the definition of our hypothesis.

e We analysed existing solutions for avoiding cloud lock-in and identified two gaps
addressed in this research: (i) the existing cloud portability literature lacks empir-
ical evidence; (ii) existing research disregard existing solutions to similar problems
from related areas (e.g., distributed computing); and (iii) socio-technical and busi-

ness challenges.

e We examined real migration experiences from which we learnt that the engineer-
ing effort to carry out a resource migration vary significantly (which impact on
the total migration cost). Contrasting these experiences with cloud lock-in so-
lutions, we identified two gaps addressed in this research: (i) solutions for cloud
portability mainly focus on the transference of resources from one cloud to an-
other although planning this transference is also important; and (ii) although real
experiences on software migration show that the engineering effort to carry out a
resource migration vary significantly (which impact on the total migration cost),

the migration effort is often overlooked in cloud portability research.

e We presented concepts of software quality, important activities for migrating cloud
applications and the migration scenario investigated in this research. These con-
cepts, activities and the migration scenario supported the definition of our hy-

pothesis and guided our work.

In the next three chapters, we present a set of experiments carried out to iden-
tify factors that impact on cloud application portability. We use data produced in
these experiments to build prediction models for the effort to improve cloud application
portability. Each of the three chapter starts with its own short background that clarifies

additional concepts used only in the chapter.

56

Chapter 3

Investigating the Impact of
Software Coupling on Cloud
Application Portability

Most information systems developed to run on the web (before cloud) use a three-tier
architecture [58], 05 [186], 228, 262]. Unlike recent developed applications that use mi-
croservices to decompose applications into independent and collaborative components
that ease portability in hybrid deployments [25, 80, 205], legacy three-tier web applica-
tions were not designed for integration across the Internet [9]. Therefore, the portability
of this ubiquitous class of legacy applications in hybrid deployments represents a ma-
jor challenge [I86]. In the software architecture |29 43, [58] and distributed systems
[9, 1775] literature, portability is achieved by decoupling application components, which
is facilitated by loosely coupled components. In addition, theoretical analyses suggest
that coupling may affect portability in general [24, [65], and recent empirical studies
have established causal relationships between coupling and portability-related software
characteristics including changeability [2I] and maintainability [183] [194] 200].
Tanenbaum & van Steen [228] observe that a middleware should be introduced to
enable interapplication communication when decoupling application components of dis-
tributed information systems. Message-Oriented Middleware (MOM) is a type of mid-
dleware that has already been broadly used for integration in service-oriented computing
[9, 175]. Furthermore, MOM is presented by Tanenbaum & van Steen as a solution for

avoiding the tight coupling imposed by other types of middlewares [228]. Moreover,

o7

3. IMPACT OF SOFTWARE COUPLING ON CLOUD PORTABILITY

message queuing, an abstraction of MOM, is advocated in the cloud literature as an
optimal solution to decouple application components and ensure their communication
in distributed environments [186].

However, replacing traditional message calls with message queuing in legacy three-
tier web applications requires substantial architectural re-engineering [122]. Although
re-engineering is a common process to add new quality attributes into software systems
[46], 226], Sommerville [220] points out that distributing centralised systems is difficult
from a technical perspective. Therefore, it is important to investigate whether the
common assumption that low coupling facilitates portability [29, 43| 58] holds true for
cloud application portability when replacing message calls with message queuing for
decoupling application components.

This chapter empirically investigates the impact of coupling on cloud application
portability in the context of re-engineering legacy three-tier web applications to decouple
application components by adopting a message queuing mechanism (Section . We
explore the outcomes of this investigation by building prediction models to support
decision makers when analysing the required effort to increase the cloud portability of
their applications (Section . Additionally, this chapter complements our literature

review by motivating the use and explaining the main concepts of software coupling
(Section [3.1)) and message queuing (Section [3.2)).

3.1 Review of Software Coupling

At the most general level, software coupling is defined as “the degree of interdependence
between parts of a design”; “two objects are coupled if and only if at least one of them
acts upon the other” [55]. Coupling has been shown to influence external QAs such as
maintainability [I83], changeability [21] and modifiability [38]. The use of low-coupled
classes reduces the complexity and increases the efficiency of software [43].

To account for the different uses of software coupling, a plethora of coupling measures
has been proposed over the past two decades, e.g. by [37, 39, 55| [65, 201]. Given the
large number of coupling measures available, we chose a suitable coupling measure for
our study based on the unified framework for coupling measurement introduced in [37].
This framework supports “the comparison and selection of existing coupling measures

with respect to a particular measurement goal” using the following six criteria:

58

3.2 Review of Message Queuing

1. Type of connection considered by the coupling measure;

2. Locus of impact, i.e., whether class ¢; uses class ¢y (client or import coupling) or

c1 is used by co (server or export coupling);

3. Granularity of measure, comprising the domain of the measure (i.e., attribute,
method, class, set of classes or system) and the method used to count the con-
nections from ¢; to ¢z (e.g., counting separately or only once similar connections

such as the invocation of the same ¢y method from c;);

4. Stability of server, which distinguishes between classes that are subject to modi-

fication (unstable) and classes whose development was completed (stable);

5. Direct or indirect coupling, i.e., whether the coupling measure counts only direct
connections (e.g., a method my of co invoked by a method my of ¢1) or it also

counts indirect connections (e.g., methods invoked by ms);

6. Inheritance, i.e., whether coupling through inheritance, polymorphism, etc. are

taken into consideration or not.

As recommended in [37], we use these six criteria to analyse existing coupling mea-
sures and to select a measure appropriate for our study. We present this analysis in
Section In the next section, we motivate the use and explain the main concepts
of message queuing (Section , which is investigated in this chapter as a means to

decouple application components of legacy three-tier web applications.

3.2 Review of Message Queuing

As presented in Section [2.4.5] the use of middleware is key to enabling the interaction
of software applications in heterogeneous environments. Although cloud APIs have
been widely used as a middleware for integrating cloud services [77], integrating cloud
application components requires another type of middleware, such as a Message-Oriented
Middleware (MOM) [I56]. A MOM enables the asynchronous interaction of application
components, which substantially increases the fault-tolerance since messages are not
lost if a consumer/producer service is not available [9 [I156]. Asynchronicity is a key
characteristic for highly distributed and heterogeneous environments [9]. In addition,
MOM has already been broadly used for integration in service-oriented computing [9)
175], which is an area from which cloud inherits key concepts (Section .

99

3. IMPACT OF SOFTWARE COUPLING ON CLOUD PORTABILITY

Message queuing (MQ) is the most common abstraction of MOM [9]. MQ systems
enable that application components exchange data by sending and receiving messages
from specific queues [228]. As Goel, Sharda & Taniar [95] explain, MQs consist of four

main entities:

e (Queue is a recipient that temporarily stores messages sent to one or more con-

sumers;
e Messages encapsulate the user data;
e Producers originally own the data, create and send messages to a particular queue;

e (Consumers represent the target component in an one-to-one or one-to-many com-
ponent interaction. Consumers monitor one or more queues, receive their messages

and use or forward the data encapsulated in them.

Producer and consumer are roles that can be played by the same component in a
distributed environment [228]. Java Message Service (JMS) is a widely used standard for
MQ that is implemented by JEE-compliant application servers [260], such as Glassﬁshﬂ
and J Boseﬂ. However, there are several other implementations of MQs, such as Apache
ActiveMCﬂ RabbitMCﬂ and more recently, cloud implementations such as Amazon
Simple Queue Servicd?| and stormmd®}

3.3 Empirical Investigation

The goal of this experiment is to analyse coupling for the purpose of evaluation with
respect to its impact on the effort to increase cloud application portability from the point
of view of the software engineers in the context of undergraduate students reengineering
legacy three-tier web applications by replacing method calls with message queuing.

We start this section by detailing the experiment protocol and its execution (Section
3.3.1). Next, we show the main results of our experiment (Section . Then, we
analyse the impact of our results in our proposed hypothesis, and discuss the implica-
tions of our findings (Section . Finally, we examine major threats to the validity
of our findings (Section [3.3.4).

"http://glassfish.java.net/
*http://wuw.redhat.com/en/technologies/jboss-middleware/application-platform
3http://activemq.apache.org/

“http://www.rabbitmq.com/

"http://aws.amazon.com/sqs

Shttp://stormmg. com/

60

http://glassfish.java.net/
http://www.redhat.com/en/technologies/jboss-middleware/application-platform
http://activemq.apache.org/
http://www.rabbitmq.com/
http://aws.amazon.com/sqs
http://stormmq.com/

3.3 Empirical Investigation

|dentifying MC Commenting Creating code for
to target MC and related message

subsystem objects consumer

|dentifying
objects
related to MC

Creating code Integrating

code

for message
producer

Figure 3.1: Tasks performed by participants to replace method calls (MC) with message
queuing.

3.3.1 Experiment Plan and Execution

As explained in Section we used guidelines provided in [256] to prepare and conduct
this experiment. The next sections correspond to elements of the experimentation
framework, detailing the protocol for the experiment, and its execution. Terminology
associated with the experimentation framework is highlighted in the main text; this

terminology is explained in Appendix [B]

3.3.1.1 Task

Replacing method calls with message queuing requires a set of tasks for each Java class
that is re-engineered (Figure . In the first and second steps, participants identified
the method calls and objects related to these method calls. This can be achieved by
investigating the source code. The programming environment offers mechanisms to
support this task. In the third step, participants commented out the actual method
calls and their related objects. We encouraged participants to comment out source
code instead of deleting it (so that they could refer to the original code more easily).

Next, participants should create code related to the message producer and consumer.
In a method call, classes can assume the role of a sender and/or a receiver. Message
queuing mechanisms work in the same way, but the sender is called a producer, and
the receiver is called a consumer. Both producer and consumer code might be created
in different ways. For example, new classes can be created to accommodate the new
code or auxiliary methods can be created in the original classes. During the training
sessions, participants were taught these alternatives.

Finally, the new code should be integrated with the rest of the system. This in-
volves replacing method calls with code related to producers and consumers, importing

libraries and instantiating objects. Although the activity diagram in Figure implies

61

3. IMPACT OF SOFTWARE COUPLING ON CLOUD PORTABILITY

a sequence, participants could perform tasks in any appropriate order. No automation
tool was provided to participants other than the development IDE.

Participants were randomly assigned to work on one of two small commercial infor-
mation systems (Section. Within each system, participants selected (at random)
pairs of Java classes to re-engineer. Coupling varied over the pairs of Java classes for
each of the two systems. Participants were asked to change several pairs of classes
while recording the time taken to complete the activity. The time required to set up
the environment and analyse the classes was not considered as part of the activity. All

participants were able to complete the activity within the allotted time.

3.3.1.2 Selection of Variables

Dependent variable Effort is the dependent variable in this experiment. Effort is
measured as the time taken T, in minutes, to replace method calls with message queuing
for each Java class. This variable is measured on a ratio scale, whereby values vary from

0 to the total number of minutes taken to change a given Java class.

Independent variable Coupling is the independent variable in this experiment. There
are several measures of coupling in the literature (Section . As there is no empirical
work on linking any software design property with cloud portability, we investigated the
set of 30 measures presented in [37], and measures adopted in studies that use coupling
to evaluate changeability [2I], modifiability [262] and maintainability [183].

As a single coupling measure is all that is needed for a preliminary demonstra-
tion that coupling can impact on cloud portability, this experiment focuses on a single
coupling measure. To select an appropriate coupling measure, we adopted the unified
framework for coupling measurement, presented in Section [3.1

Table [3.1] lists the six criteria of the unified coupling framework, shows the values
we selected for this experiment, and summarises reasons underpinning our selection.
The Others Method-Method Import Coupling (OMMIC) metric [39] was the coupling
measure used in this experiment because it is the only measure that addresses all values
we selected in the unified coupling framework, in Table [3.1]

OMMIC measures the number of invocations (i.e., ratio scale) that a method m,,
from a class ¢, makes to a public method mgy from a class d, given that ¢ and d only
have visibility of each other’s public interface (i.e., ¢ and d are not the same class, are
not part of the same inheritance hierarchy, and — in Java — are not in the same package).

Thus, the coupling, represented by the OMMIC value, between a class ¢ and a class d,

62

3.3 Empirical Investigation

is the sum of all public method invocations that are made by methods in the class ¢ to

methods in the class d.

Table 3.1: Criteria for selecting a coupling measure defined in [37], values adopted for
this experiment and reasons underpinning their selection.

Criterion Value Reason
Type of connec- Method The activity addressed in this experiment is
tion the replacement of method calls with mes-

sage queuing.
Locus of impact ~ Import coupling ~ When replacing a method call, the change
is made in the class acting as a client.

Granularity Class level, Classes are the underlying element of sub-
count individual systems or layers. Each connection is re-
connections placed with message queuing.

Stability of server Unstable classes =~ We are only interested in classes in which
changes are made.

Direct or indirect Direct A method call involves two directly related

coupling classes.

Inheritance Non-inheritance ~ Our focus lies only on classes that are im-
coupling pacted by a change, i.e. the super class.

Although we adopt OMMIC as a coupling measure for this experiment, possible
values for the independent variable are defined in a categorical scale for the hypothesis
testing, varying between low and high coupled classes. This strategy is preferred because
literature related to software development usually adopts a categorical scale when refer-
ring to coupling. For instance, literature on architectural patterns [43], object-oriented
design [137] and modifiability [24] recommends keeping coupling as low as possible,

without making any reference to what is considered low or high.

3.3.1.3 Instrumentation

This section details the instruments used to support the execution of the experiment.
In particular, we present the two software systems that were changed, and the cloud

service used to enable the message queuing implementation.

Software system Two commercial legacy web-based information systems were used
in this experiment, namely Siget and GSCloud. As these are commercial systems, their

code are not available to the general publicﬂ Developed by students as their final

!Their documentation can be provided under request to: claudete@unipar.br

63

3. IMPACT OF SOFTWARE COUPLING ON CLOUD PORTABILITY

project to graduate as Bachelors in Information Systems, these systems are currently
deployed in small companiesﬂ The two systems differ in purpose and size. Whereas
Siget enables sales management of tractor parts, GSCloud enables service management

of a web service provider. Table [3:2] summarises both systems.

Table 3.2: Characteristics of software systems used in the experiment.

Size Metric ‘ Siget ‘ GSCloud
Classes 84 43
Methods 623 287
Method Invocations | 952 315
Configuration Files 12 13
Web pages 60 40
Lines of Code 4,793 1,917

Although there are many open source systems that could be used in this experiment,
they often adopt a set of technologies that are not well understood by participants.
Therefore, they could complicate the experiment. Siget and GSCloud were implemented
using JSP and Servlets only — technologies well-known by participants of the experiment.
In addition, Siget and GSCloud are small and self-contained applications, rather than
large legacy systems that would be difficult for our participants to modify.

The participants were not required to re-engineer the entire system, which would
have required substantially more time than was available for the experiment. Instead,
participants changed only classes within the Control subsystem (source) that called
methods in (i.e., were coupled with) the Business subsystem (target). The rationale for
this choice is that methods that implement associations between these two subsystems
are small and have a well defined purpose, such as adding a new user to the system,
thus minimising the complexity of modifications necessary to the application code. No
refactoring was applied to any of the selected classes.

As shown in Table [3.3] participants had different options for class selection depend-

ing on the software system they were assigned.

Message queuing Adopting message queuing requires a commitment to a particular
technology [245]. There is a variety of technologies providing the message queue mecha-
nism, such as application servers and enterprise service buses [9]. In this experiment, we

adopted a cloud-based technology. Specifically, we adopted the Amazon SQ@ cloud ser-

1Six employees each, according to the software documentation.
2http://aws.amazon.com/sqs/

64

http://aws.amazon.com/sqs/

3.3 Empirical Investigation

Table 3.3: Candidate Java classes for each software system.

System ‘ OMMIC values ‘ # of Java classes in the “Control” subsystem

3 11

4 3

Siget) 1

7 2

8 1

3 2

GSCloud 4 4
5 3

vice, and its API that enables the programmatic management of messages and queues.
Two reasons prompted this choice. Firstly, traditional message queuing technologies
require installing and configuring a software stack, which would complicate this experi-
ment. Secondly, some message queuing technologies are incompatible with some service
models, such as Platform-as-a-Service (PaaS). SQS requires no prior configuration or
software installation other than the SQS API, which is used for sending and receiving

messages, and requires only a few lines of code to be implemented.

3.3.1.4 Participant Selection

A group of nine third-year undergraduate students in computer science took part in this
experiment. They were enrolled at the Universidade Tecnologica Federal do Parana -
Campo Mourao, Brazil. The student selection was driven by convenience, according
to the student interest in participating. Due to the characteristic of the two software
systems used as instruments in this experiment (Section , knowledge of Java
programming was the only mandatory criterion to select students. Students had the
freedom to choose whether or not to participate, without any risk of penalty to their
undergraduate course. Each participant received a gift worth £10 and a certificate of

participation.

3.3.1.5 Definition of Hypotheses

To test whether low coupled classes require less effort to modify for the adoption of a
message queuing mechanism, we compared the coupling of pairs of Java classes. We
identified one pair with high coupled (HC) and another pair with low coupled (LC).

Thus, HC and LC represents the two treatments considered in this experiment. To

65

3. IMPACT OF SOFTWARE COUPLING ON CLOUD PORTABILITY

formulate a formal hypothesis, we let T" be the time, in minutes, taken to re-engineer
the application. Our hypotheses (Table compare the time taken to complete the
migration tasks for HC (ZTyc) and LC (ZTrc) classes. The alternative hypothesis
is based on the assumption that high coupling might lead to code complexity and

modification inefficiency.

Table 3.4: Formal definition of hypotheses.

Null hypothesis zTuc = xTLe
(Ho)
Alternative hypothesis zTuc > zT1c
(Hy)

3.3.1.6 Experiment Design

The experiment consists of one factor (coupling), and two treatments (HC and LC
classes). To assign participants to the different treatments, we adopted a completely
randomised design. The two software systems, adopted as instruments, were randomly
assigned to participants. To perform the activity defined in Section participants
randomly selected classes from the software system assigned to them by choosing classes
from a list. This random selection of classes led to an unbalanced design. Therefore, it
was impossible to define, a priori, the exact number of HC and LC classes that would

constitute the resulting sample (n).

3.3.1.7 Data Analysis

As explained in Section we adopted only non-parametric statistics in this exper-
iment, as summarised in Table whereas cutoffs we used for inferential tests are

summarised in Table 3.5

Table 3.5: Cutoff values defined for evaluating the hypotheses, adapted from [70].

Unknown true state of nature

Ho: TTrc =2T10 Hy: xTrc >xT1c
0.95 0.64
Statistical | Accept Hg 1 - a: Correct B: Type II error
Conclusion (Confidence level)
0.05 0.36
Reject Hg «: Type I error 1 - B: Correct
(Significance criterion) | (Statistical power)

66

3.3 Empirical Investigation

Table 3.6: Summary of statistics and statistical tests in the experiment.

Statistic Type ‘ Statistic/Test ‘ Definition/Config. ‘ Purpose

To identify the middle
Median and | 25%, 50%, 75%, | value and categorise oc-
Descriptive | quartiles 100% currences into quartiles ac-
cording to their values.
Maximum - Mini- | To quantify the data dis-
mum persion.

Range

To test the assumption

Two-tailed, a = that the data is normally

Shapiro-Wilk

1
Inferential 0 distributed.
Wilcoxon To test the statistical sig-
One-tailed nificance of differences be-
rank-sum :
tween two medians.
To test the assumption
kh . _ : :
JTC;Irl;Strzere One-tailed that the higher coupling,

the higher the time spent.
To test the statistical sig-
Kruskal-Wallis | One-tailed nificance of differences be-
tween several medians.

3.3.1.8 Experiment Execution

The experimental design was refined after a pilot study involving an independent set of
participants enrolled at a different university, UNIPAR - Paranavai.

The experiment was carried out in two parts: training and experimentation. Each
part was divided into two four-hour sessions. The first training session focused on
cloud and message queuing concepts and technologies. The second training session
prepared participants to perform the class modification required for this experiment.
A prototype application was used during the training sessions. Both the training and
experimentation sessions were carried out in the same classroom, using Linux desktop
computers, Java EE and Netbeans IDE.

In the first meeting, participants were informed of the purpose of the experiment,
the activities they were to perform, and the benefits of participating. We also required
each participant to complete a consent form and the participant characterisation form
in order for us to determine the participants’ background (such as Java expertise). Data
collected from participants was anonymised. Participants were asked to record the time

taken to complete activities (not including any breaks).

67

3. IMPACT OF SOFTWARE COUPLING ON CLOUD PORTABILITY

During the experiment, participants were free to create new code and update ex-
isting code. No guidelines or reference materials were given to support participants in
the reengineering activity. The experimenter and a monitor observed the experiment
without interfering in tasks performed by participants. It was necessary further expla-
nations to participants during the experiment session due to their lack of experience
with cloud services and message queuing. Participants were strongly advised to not
copy and paste any code, as doing so could significantly reduce the modification time.

Participants completed a feedback form at the end of the experiment, and received
vouchers and participation certificates a few weeks later. For information on ethics in

this experiment, refer to Section [1.3

3.3.2 Results

In this section, we present the results of the experiment to test the hypothesis that

coupling impacts on the effort to increase cloud portability.

3.3.2.1 Sample Distribution

Participants were able to change 63 classes (sample size) representing four out of five
OMMIC values present in the classes changed. Table [3.7 summarises the number of
classes (data points) for each OMMIC value. Classes were not homogeneously selected
by participants. Some participants changed more classes than others. Classes with low
OMMIC values were those that participants most selected. This preference might be due
to the greater number of classes with low OMMIC values, and by the ease of modifying
these classes when compared with classes with high OMMIC values. As each OMMIC
value represents a treatment group in this experiment, we tested the data normality
for each group by applying the Shapiro- Wilk normality test. Whereas for groups 1 and
2 the p-value indicates non-normal distributions (p-value<0.1), for groups 3 and 4 it
indicates normal distributions. As noted in Section we therefore chose to adopt
only non-parametric measures for data analysis.

Figure |3.2| shows the data point distribution along axis of OMMIC value and effort.
The chart shows some possible outliers. For example, a class with OMMIC value of 4
took nearly 85 minutes to change. Some extreme values might be explained by the order
in which classes were selected. Analysing the data set, we note that the first classes
changed took participants longer regardless of the OMMIC value. This is likely to be
because participants take some time to find the optimal way to implement changes. As

we had not planned a data reduction strategy, we opted to retain outlier data points.

68

3.3 Empirical Investigation

Table 3.7: Normality test for the four treatment groups.

. Normality test
Group | OMMIC values | Data points W p-value
1 3 28 0.8814 | 0.0043
2 4 20 0.6955 | <0.001
3 5 11 0.9295 | 0.4058
4 7 04 0.8836 | 0.3541

Table 3.8: Descriptive statistics. Values represent the effort, in minutes.

OMMIC Group

Measures 3 ‘ 4 ‘ 5 ‘ 7

Min 6.0 | 6.0 | 9.0 | 9.0
1st Quartile 10.8 | 13.8 | 25.5 | 28.5
Median 11.0 | 16.5 | 29.0 | 42.5
Mean 14.5 | 22.3 | 36.6 | 36.8
3nd Quartile 18.5 | 21.0 | 44.5 | 50.8
Max 32.0 | 84.0 | 80.0 | 53.0
Std. Deviation | 7.1 | 17.9 | 21.2 | 20.1
Skewness 1.0 | 23 | 0.8 | -0.7
Kurtosis 32 | 82 | 27 | 19

3.3.2.2 Descriptive Statistics

The boxplot in Figure [3.3] enables the analysis of the median time to change classes
taking the four OMMIC values into consideration. Here, the high variation observed
in Figure is quantified. The boxplot also contains six outliers. We can observe
an increasing trend in the medians across OMMIC values, suggesting a relationship
between coupling and effort. Table summarises the descriptive statistics illustrated
by the boxplot.

The median time varies across the OMMIC values. An unexpected result is that the
maximum effort for OMMIC groups 4 and 5 is far greater than the maximum effort for
the other groups. Following further scrutiny of the data, this is probably caused by two
participants who started the experiment by selecting their first classes with OMMIC
values of 4 and 5. As noted before, the first classes that participants re-engineered took

more time to be changed than later classes.

69

3. IMPACT OF SOFTWARE COUPLING ON CLOUD PORTABILITY

LUl 35+

20+
4 A
15 R A A []

10+]

4 5
Coupling (OMMIC values)

Figure 3.2: Data point distribution. Some possible outliers can be observed.

Table 3.9: Results of the Kruskal-Wallis test. P-value is less than the «, indicating a
statistically significant difference between OMMIC groups.

Chi-squared ‘ Degrees of Freedom ‘ P-value

15.1799 3 ‘ 0.001669

3.3.2.3 Inferential Statistics

We started our analysis by applying the Kruskal-Wallis test to identify whether there
is a statistically significant difference of effort between OMMIC groups. Table
summarises the results. As the p-value is less than the significance criterion set up
as the cutoff for this experiment (o = 0.05), the test shows that there is a statistically
significant difference between OMMIC groups. However, this test does not show whether
there is a trend of increasing effort in line with increasing OMMIC values. Therefore,
we applied the Jonckheere-Terpstra test. The result showed a JT = 971, and a p-value
<0.001, which confirms the trend observed in Figure [3.3

Although Jonckheere-Terpstra tests the increasing trend across OMMIC groups, it

70

3.3 Empirical Investigation

4 5
Coupling (OMMIC values)

Figure 3.3: Boxplot shows an increasing trend in the medians across OMMIC values.

does not show independent group comparisons. Therefore, we applied Wilcoxon to test
the statistical significance of differences between group pairs. The OMMIC group with
value equals to 7 was excluded from this comparison as its sample size (i.e., 4) was
below the cutoff defined in Section for an acceptable statistical power. Table
presents the result of OMMIC group comparisons.

As discussed in Section we grouped OMMIC values into groups of two,
representing low and high coupled classes. This resulted in three comparisons. The
sample size (n) corresponds to the sum of data points in each OMMIC group. The
p-value calculated for each group is less than the adjusted a (see Section ,
supporting the rejection of the null hypothesis. The + is higher than that defined in
the a prior: analysis for all groups, and the post hoc power is above the average for SE

experiments|70)] for all comparisons.

3.3.3 Discussion

This section discusses the major implications of the results presented in the previous sec-
tion. We examine the hypotheses and the research question defined for this experiment.

We also discuss a way in which these findings can contribute to building theories.

71

3. IMPACT OF SOFTWARE COUPLING ON CLOUD PORTABILITY

Table 3.10: Comparison of low and high coupled classes. The rejection of the null
hypothesis is supported by p-values less than the adjusted a.

Coupling Wilcoxon Test o 0
Low ‘ High ‘ N W | Povalue Adjusted « Power
1 3 4 48 | 185 | 0.0230 0.05 0.32 | 0.65
4 5 31| 161 | 0.0175 0.03 0.42 | 0.52
3 3 5 39 | 265 | 0.0002 0.01 0.58 | 0.99

3.3.3.1 Hypothesis Testing

In Section we defined the two hypotheses tested in this experiment. Whereas
the null hypothesis states that the time to perform re-engineering to increase cloud
portability does not change, regardless of coupling, the alternative hypothesis states
that the higher the coupling, the higher the time to perform re-engineering. When
different OMMIC values are grouped into low and high coupling, the Wilcozon test
confirms that there is a statistically significant difference between the median effort of
groups (Group 1: p-value = 0.023, a = 0.05, one-sided; Group 2: p-value = 0.0175,
a = 0.03, one-sided; Group 3: p-value <0.001, o = 0.01, one-sided). These tests
confirm a statistical difference between median time (Table . The results support

the rejection of the null hypothesis and the acceptance of the alternative hypothesis.

A common assumption in the software development literature is that lower coupling
is better for portability. We empirically tested whether this assumption could be ob-
served in cloud application portability. Table[3.8]shows that classes with lower OMMIC
values took less time to modify than higher ones. The Kruskal-Wallis test confirms
that there is a statistically significant difference between medians of effort for different
OMMIC values (p-value = 0.001, o = 0.05) whereas Jonckheere-Terpstra test confirms
an increasing trend of medians across increasing OMMIC values (p-value <0.001, «
= 0.05, one-sided). For this experiment, the results confirm the assumption that low
coupling is better for cloud application portability.

Finally, an important aspect of any statistical result is the effect size of statistical
tests. As Kampenes, Dyba & Sjoberg [120] underline, the effect size can be interpreted
by comparison to (i) similar experiments, (ii) results from the research field as a whole,
or (iii) standard conventions. Due to the lack of effect size information in similar
experiments [112] 129, 194, 200], we compare our results with experiments in SE and
Cohen definitions as shown in [70] and [120], respectively.

Kampenes, Dyba & Sjgberg [120] calculated the effect size for 429 tests performed

72

3.3 Empirical Investigation

in 92 SE experiments published between 1993 and 2002 in high impact conferences
and journals. Based on their calculations, they created a classification similar to that
proposed by Cohen. This classification supports the comparison of effect size in SE
experiments by comparing the obtained values in a given experiment with the values
that [120] calculated. The result of this comparison, is a classification into one of the
three possible values: small, medium or large. Table[3.11|shows the effect size calculated
for this experiment and its classification according to common values in the research
field (J120]) and standard convention (Cohen).

Table 3.11: Classifying v obtained in the experiment according to the software engineering
research field and standard convention (Cohen’s).

Effect Size Classification

Coupling Pair | Obtained values of SE experiments ‘ Std convention

1 0.32 Medium Medium
2 0.42 Medium Medium
3 0.58 Large Large

Table [3.11] shows the three pairs of coupling, as previously defined in Table [3.10]
The coupling pairs were defined by taking pairs of different OMMIC values. The second
column shows values obtained in this experiment, and third and fourth columns show
their classification when compared with the research field and standard convention.
The ~ calculated for coupling groups 1 and 2 are considered as medium for both SE
experiments (0.193 < v <0.456) and standard convention (0.30 < <0.50). Similarly,
the 7 calculated for coupling group 3 is considered large for both SE experiments (0.456
< v <0.868) and standard convention (v > 0.50).

3.3.3.2 Research Question

The research question investigated in this experiment is whether software coupling im-
pact cloud application portability. To answer this research question, this experiment
took into consideration one out of several activities necessary to increase cloud porta-
bility. The rationale is that if the effort for performing the activity investigated in this
experiment varies with the coupling, then coupling impacts on cloud portability.

As shown in Table [3:8] descriptive statistics show significant differences between
different coupling values. In addition, inferential statistics confirm the statistical sig-
nificance of coupling differences between low and high coupled classes (Table .

Thus, we can conclude that coupling does impact cloud application portability. Hence,

73

3. IMPACT OF SOFTWARE COUPLING ON CLOUD PORTABILITY

coupling, represented by the OMMIC measure, is an indicator of cloud portability.

3.3.3.3 Devising Theories for Cloud Portability

Supporting the development of theories for cloud portability is one key contribution
of this experiment. A theory explains how and why a phenomenon occurs and en-
ables conceptual predictions of the phenomenon under study [104]. Understanding the
phenomenon brings benefits to both academia and industry [213]. For example, the
development of sound and effective solutions for application migration between clouds
is a benefit of understanding the cloud portability phenomenon.

For example, we advocate that a benefit of understanding cloud portability is .

Shull & Feldmann [209] underline that even a single empirical study can be the first
step towards building theories. Sjgberg et al. [213] present a conceptual framework for

devising theories in SE. The framework consists of four elements:

e (onstructs define basic elements, such as actor, technology, activity and software

system;
e Propositions determine the interaction amongst constructs;
e FEzxplanations provide the rationale for propositions; and

e Scope limits the universe in which the theory is applicable.

Although building a theory is beyond the scope of our objectives, this experiment
provides all of the elements for building a theory for cloud portability. For example,
coupling and time are two constructs. The design of this experiment provides the
proposition whereas the result provides the explanation. Finally, the scope can be defined

by the context of cloud computing, software systems used and activity performed.

3.3.4 Threats to Validity

This section presents some threats to the validity of the results of the experiment.

3.3.4.1 Internal

Internal threats impact on the cause-effect relationship. These threats might lead to an
alternative cause for the effect (known as confound) [215]. In this section, we identify

three internal threats.

74

3.3 Empirical Investigation

Maturation validity threats refer to the reaction of participants as time passes.
As our experiment was longer than many software engineering experiments [215], the
participants might have experienced boredom [I32] leading to the use of disallowed
techniques such as copying and pasting code. To mitigate the effects of maturation, we
used participants who showed high commitment to our study, and we carried out the
experiment over two sessions organised on two consecutive days.

Participant selection threats are related to the use of participants with different
background or level of experience. Although our use of undergraduate students with
similar Java programming skills reduced the participant heterogeneity [256], we could
not ensure that all participants had the same characteristics. However, the most impor-
tant skills for the experiment were acquired during training sessions we organized before
the experiment. During these sessions, we constantly checked that all participants un-
derstood and could achieve similar progress with the re-engineering tasks subsequently
evaluated by the experiment.

Another threat is the use of the effort required to modify inter-component commu-
nication to message queuing as a measure of cloud application portability. Previous
studies confirm that this architectural change: (a) is essential for exploiting the key ca-
pability of cloud platforms to support scalability; and (b) represents a major and costly
re-engineering task. However, we could not rule out the possibility that higher software
coupling eases other major re-engineering tasks that also improve the effectiveness and

efficiency with which applications can be transferred across cloud platforms.

3.3.4.2 External

External threats to validity restrict the result generalisation beyond the scope of the
study [256]. In this section, we identify three external threats.

First, our conclusions may be affected by using time as a measure of effort as in
many other software engineering experiments [64), [168, [I83] might affect the validity of
our conclusions since re-engineering time depends on participant capabilities such as
programming skills, ability to understand existing code and typing speed.

Second, the selection of objects for our study might impact its generality. Thus,
we used only two small commercial information systems and a single cloud queuing
mechanism in our experiment. To reduce the likelihood of this threat, we chose systems
that share key characteristics with a wide range of applications that can benefit from
the change investigated in the experiment, including multi-tier architecture, web-based

front tier, and need for high availability. Also, we used the Amazon SQS service, which

75

3. IMPACT OF SOFTWARE COUPLING ON CLOUD PORTABILITY

is functionally representative of many cloud-based message queuing mechanisms.

Finally, the use of students as participants due to time, budget and partnership
constrains—although similar to many software engineering experiments [215]—may
make our results not generalisable to the target population for this experiment (i.e.,
software engineers).

Pickard, Kitchenham & Jones [190] emphasise that generalisation cannot be achieved
by a single experiment, but by result replication and aggregation across multiple exper-
iments. This is true for our results, which need to be replicated through experiments
conducted with developers and software engineers in an industrial setting, and using ad-
ditional real applications. Nevertheless, our study represents an important step towards

understanding cloud portability and its underpinning factors.

3.4 Building Prediction Models

This section details the exploratory process of building regression models for predicting
the effort of increasing cloud application portability by re-engineering legacy three-tier
web applications to decouple application components by adopting a message queuing
mechanism. By using concepts and techniques explained in Appendix [C|] and results
from the experiment reported in Section [3.3] we built a set of simple and multiple linear
regression models using OLS and, alternatively, robust regression methods. Leave-one-
out cross-validation (LOO-CV) was used to evaluate prediction models. The prediction
model accuracy was assessed by using the MMRE summary measure. Additionally, we
compared the accuracy of our models with maintainability prediction models reported

in Section The rationale for techniques used in this section is detailed in Appendix

3.4.1 Simple OLS Linear Regression Model

The experiment reported in Section suggests that OMMIC can be used as an indica-
tor of cloud portability when replacing method calls with message queuing. Therefore,
we built a simple linear regression model by using OMMIC as a single predictor. Fig-
ure [3.4) shows a jitter plot with all 63 observations and a model line representing the
prediction model. As the plot shows, the data set consists of only a few observations
for OMMIC = 5 and OMMIC = 7, which might compromise the model.

Table [3.13] summarises the accuracy results obtained with LOO-CV, and the good-

ness of fit for this simple model. According to the classification presented in Section [C.4]

76

80+

70+

o
Q

a
Q

Effort (Minutes)

30-

20+

10+

N
Q

Linear Model

5
Coupling (OMMIC)

3.4 Building Prediction Models

Figure 3.4: Simple effort prediction model line using OMMIC as a single predictor.

7

3. IMPACT OF SOFTWARE COUPLING ON CLOUD PORTABILITY

Table 3.12: Identification of possible outliers in the simple effort prediction model.

. Observations
Variables 14 49 43 m
Participant | 4 8 1 1
System GsCloud Siget GsCloud GsCloud
Class Size
(LoC) 58 124 99 108
Class CidadeControle | OsNovaControle| CompraControle| ContratoControle
OMMIC 4 7 5 5
Effort
(Min) 84 9 80 65
Cook’s
Statistics 0.134 0.548 0.181 0.088
Residuals 4.075 -2.564 3.345 2.337

for maintainability prediction models, the simple model #1 achieved a fair accuracy
(0.49 < MMRE < 0.88). Yet according to the accuracy classification, the Pred(0.37)
shows that 41.3% of predictions using this model could be classified as exzcellent. The
goodness of fit, as measured by the R?, is relatively low (R? = 0.224), however.

3.4.1.1 Outlier analysis

As outliers influence the model, we tried to identify possible outliers and quantify their
impact on the model. The plot in Figure suggests three outlier candidates with
Effort > 65 min (Observations 14, 43 and 44). In addition, observation 42 presented an
extremely low effort for OMMIC = 7. In addition to the jitter plot, we also used the
Cook’s distance to identify outlier candidates. As Figure [3.5] shows, only observation
42 was above the cutoff for Cook’s distance (0.190) though observations 14, 43 and 44
are borderline.

We analysed these four observations to check whether they were influential cases for
the model (Table [3.12)). All four observations were heterogeneous when compared to
similar observations in the data set (i.e., same participants, OMMIC values, and so on).
Therefore, we concluded that they were real outliers, and we decided to remove these
four observations. Figure shows the resulting model line.

We can observe a lower intercept (dashed line) and a narrower confidence interval
(green shade), suggesting some improvements in the model fit. Indeed, as Table

summarises, all accuracy and goodness of fit indicators improved considerably (model

78

6.

Table 3.13: Accuracy and goodness of fit for effort prediction models built. Variables are identified according to Table

Accuracy Measures

Goodness of fit

| Prediction Model (Variables) MMRE | MAR | Pred(0.25) | Pred(0.30) | Pred(0.37) | R? | RSE
1 | Simple model (#1) 0.631 | 10.601 | 0.270 0.349 0413 | 0.224 | 15.130
2 | Simple model (#1) w/out outliers 0.477 | 7.470 0.424 0.492 0.593 0.405 | 9.396
3 | Simple Robust model (#1) 0412 | 7.227 | 0.390 0.458 0576 | 0.162 | 6.388
4 | Multiple model (#1+#2) 0.486 | 7.644 | 0.254 0.475 0.576 | 0.407 | 9.463
5 | Multiple model (#1+#3) 0.477 | 7.611 0.322 0.356 0.576 | 0.418 | 9.377
6 | Multiple model (#11#4) 0476 | 7.505 | 0.339 0.441 0.593 | 0.428 | 9.202
7 | Multiple model (#1+#4+#2) 0484 | 7.652 | 0.339 0.424 0.559 | 0.431 | 9.356
8 | Multiple model (#1+#4+#3) 0475 | 7.616 | 0.305 0.407 0.576 | 0.443 | 9.256
g | Multile model (#1+74+#3 +| 50 | 7613 0.339 0.441 0.610 | 0.447 | 9.304
participant.experience.reeng)
o | Multiple model (#1+#4+##3 4 sys- | ygq | 7 74g 0.305 0.407 0.559 | 0.444 | 9.335
tem.id)
Multiple robust model
11 | (#1+#4+#3 + partici- | 0.451 | 7.841 0.390 0.475 0.542 | 0.824 | 8.388
pant.experience.reeng)

S[9POIAl UoIoIpaLd Surp[ing ¢

08

42
0.4+
@
o
c
]
)
N
(@)
1%
X
o}
o
Q021
43
14
44
18
19 24 %8 63
33 1 455
0.0- 1234567809 10111213 151617 212223 2526272820303132> 34353637383940" 45464748%950515253 56 59606162
0 20 40 60

Observations

Figure 3.5: Cook’s distance plot of data points. Only one observation is acknowledged as an outlier though other three are possible

candidates.

ALI'TIAVIHOd dNOTO NO DNITANOD HAVMLAOS 40 LOVdINI °€

3.4 Building Prediction Models

#2). For instance, MMRE was reduced in 24.4% and RSE in 37.8% when compared to
the previous model. This change makes model #2 be classified as good, according to the
classification presented in Section Removing outliers also significantly increased

the percentage of predictions classified as excellent (Pred(0.37) = 0.593).

3.4.1.2 Simple Model Diagnostics

As explained in Section [C.5| meeting some underlying assumptions is a pre-condition to
accurately generalise a model beyond its data set. We tested the extent to which model
#2 meets seven underlying assumptions for simple linear regression models based on

the OLS method. Figure [3.6|shows four plots to visually support the diagnostics.

Sample size. In total, four observations were removed from the original sample, re-
sulting in a reduced sample with 59 observations. As model #2 is based on a single

predictor, the sample-predictor rate is within the acceptable range (i.e., > 10).

Linearity. Figure (a) shows the plot for residuals and fitted values of model #2.
Data points are scattered along the red line (middle), suggesting a homogeneous distri-
bution. The blue line, which supports the recognition of patterns, slightly deviates from
the middle, but we cannot observe any significant pattern. The Rainbow test confirmed

that the linearity assumption was met (Rain = 0.913, p = 0.596).

Independent residual terms (errors). We tested the lack of autocorrelation for
residual terms by using Durbin-Watson test (DW = 1.821, p = 0.205). The DW statis-
tics is close to 2, meaning that errors are independent. The p-value is not significant

for a = 0.05, confirming that model #2 meets this assumption.

Homoscedasticity. To meet this assumption, the variance of residual terms should
be homogeneous. Figure (b) helps to identify the homogeneity of the variance. The
two dashed lines suggest a funnel pattern, which could mean a violation of homoscedas-
ticity (i.e., the presence of heteroscedasticity). However, we should consider that the
sample size is small for OMMIC = 5 and 7, which might contribute to this perspective.
Furthermore, we can observe a homogeneous distribution of data points around the
middle (red line). Finally, the Goldfeld-Quandt test confirmed that model #2 meets
this assumption for a = 0.05 (GQ = 2.494, p = 0.009).

81

3. IMPACT OF SOFTWARE COUPLING ON CLOUD PORTABILITY

20

.
5

Residuals

-20

. 30 40
Fitted values

(a) Linearity

Standardized Residuals

010
Hat values

(¢) Low Leverage

Residuals

05

20

5

20 40

. 30
Fitted values

(b) Homoscedasticity

0.1

0.0

[i
Studentized Residuals

(d) Normality

Figure 3.6: Diagnostics plots for effort prediction model #2

82

€8

50+

S
o

Effort (Minutes)

N
o

10+

Linear Model

w
o

5
Coupling (OMMIC)

Figure 3.7: Simple model line for effort prediction model #1 (continuous line) and #2 (dashed line).

SI9POIA UoIOIPRLd Sulpling g

3. IMPACT OF SOFTWARE COUPLING ON CLOUD PORTABILITY

Low leverage. The plot in Figure (c) suggests no major leverage issues as data
points are centred around zero (y-axis). In addition, only three data points had Hat
values greater than three times the leverage average (0.10). These three data points
correspond to the OMMIC = 7.

No perfect multicollinearity. As Model #2 has only one predictor, there is no risk

of multicollinearity.

Normality. The density plot in Figure (d) shows a positive skew, which sug-
gests deviation from normality. Indeed, as the Shapiro-Wilk test confirmed, model #2
violated the normality assumption (W = 0.936, p = 0.004).

3.4.1.3 Alternative Simple Robust Regression Model

Robust regression is a method less sensitive to outliers and make no assumption regard-
ing the distribution type (Section . This section uses this method to test whether it
can improve the prediction accuracy of our regression model. Additionally, the robust
regression is an alternative to overcome the lack of normality for the simple model #2.

Table shows the accuracy and goodness of fit for the simple robust model #3.
Compared to model #2, the robust regression improved the model in -13.6% (MMRE
= 0.412) though all pred measures decreased. Regarding the goodness of fit, we can
observe an improvement of -32% in the RSE measure (6.388), but a considerable decrease
(60%) in the R? (0.162).

3.4.2 Multiple OLS Linear Regression Model

A multiple linear regression model is similar to a simple model, but it includes more
than one predictor. We built a set of multiple linear models to investigate whether
other variables in our data set could improve the prediction accuracy of our simple
model. Firstly, we analysed possible predictor candidates. Secondly, we applied the
forward stepwise method to identify the impact of predictor candidates in our model.
Next, we analysed the existence of outliers. Then, we checked whether the best multiple
linear model meets underlying assumptions for multiple linear regression models based
on OLS. Finally, a multiple robust regression model was built to evaluate the impact of

this method in the prediction accuracy.

84

3.4 Building Prediction Models

Table 3.14: Ratio variables in our data set and their correlation with effort.

‘ Ratio variables ‘ rho ‘ S ‘ p

1 | OMMIC 0.503 | 16979 | <0.001
2 | system.class.method.return | 0.416 | 19969 | 0.001
3 | system.class.loc 0.349 | 22244 | 0.006
4 | participant.java.knowledge | -0.296 | 44356 | 0.022
5 | system.class.method.void 0.117 | 30188 | 0.374

3.4.2.1 Analysis of Predictor Candidates

As the literature recommends [84, 206], we quantified the correlation between ratio
variables in our data set and our dependent variable (effort) to identify predictor can-
didates. As Table shows, rho values vary from 0.117 (lowest) to 0.503 (highest),
disregarding the signal. To be considered as a predictor candidate, we set rho = 0.193 as
the minimum cutoff. This value represents the minimum value for medium correlations
in SE experiments [120]. Apart from variable #5 that did not meet our cutoff, all other

variables were considered as possible predictors for the forward stepwise method.

3.4.2.2 Forward Stepwise Method

This method was used to define whether a predictor candidate should enter the mul-
tiple regression model. The entry condition was a MMRE <0.477, which was the best
accuracy achieved by the simple OLS regression model. The stepwise method consists
of several iterations. For each iteration, (i) one predictor candidate is added to the
model, (ii) the model accuracy is re-evaluated by applying LOO-CV, and (iii) the entry
criterion is applied to decide whether the predictor candidate should be kept in the
model. As OMMIC is already in the model, we omitted this step and started with the
second predictor candidate (variable #2, according to Table .

Iteration 1 In the first iteration, a second predictor was added to the simple model
#2 as an attempt to improve its prediction accuracy. As Table shows, model
#4 (MMRE = 0.486) achieved a slightly worse (1.9%) prediction accuracy than model
#2 (MMER = 0.477). Thus, variable #2 was removed from the model and a second

iteration was performed.

Iteration 2 For the second iteration, the predictor candidate variable #3 was added
to the simple model #2, resulting in the model #5 (Table|3.13). Although the prediction

85

3. IMPACT OF SOFTWARE COUPLING ON CLOUD PORTABILITY

accuracy did not change, we can observe some improvement in the goodness of fit.

Iteration 3 As variable #3 did not satisfy the criterion for inclusion in the model, it
was removed and a new iteration was performed with the last predictor candidate in our
list, variable #4. Model #6 (Table resulted in a slightly better model (MMER =
0.476) when compared to the model #2 (MMER = 0.477). Although we can observe
a significant improvement in the goodness of fit, some measures of accuracy decreased,
such as Pred(0.25) and Pred(0.30). As the entry condition was met, this variable was

kept in the model and a new iteration was performed.

Iteration 4 and 5 We tried to add a third variable to the model, resulting in models
#7 and #8. As Table shows, model #8 resulted in a better accuracy and goodness
of fit. Therefore, variables #1, #4 and #3 were kept in the model.

Iteration 6 and 7 For these iterations, we forced the entry of two categorical vari-
ables. As Table [3.13] shows, the variable that measured whether participants had pre-
vious experience reengineering legacy applications (participant.experience.reeng),
included in model #9, improved the model accuracy in -1.7% (MMRE = 0.469) when
compared to model #2 (MMRE = 0.477). We can note that this variable also improved
the Pred(0.37) measure. Therefore, this variable was kept in the model. The other
categorical variable (system.id) that controlled the system used in the experiment did

not result in a better model.

3.4.2.3 Outlier analysis

This section tries to identify possible outliers and quantify their impact on the multiple
model #9. As there are multiple predictors in the model, it is no longer possible to
infer outliers just by inspecting the jitter plot. Therefore, we used the Cook’s distance
to identify possible outliers.

Using default values for the cutoff of Cook’s distance, we could not identify any
outlier candidate (Figure. We investigated observations 18, 23 and 54 because they
significantly differ from others, but we could not find any evidence that make them
outlier candidates. For instance, observation 23 is one out of the three observations for
the class br.com.siget.controle.CompraControle. The effort for this observation was
53 min, whereas the other two observations took 35 and 50 min. Thus, we concluded
that model #9 was the best model we could find for this data set using OLS multiple

linear regression.

86

L8

Cook's Distance

0.20-

0.15-

o
[EEN
o

0.05-

0.00+

18
54
23
53 59
14
17 49 51
19 25 50 -
40
48
3132 42 52
1 15 2 30 4
5345678910043 16 52 24 202H&9 3435363 41 a4 54647 56 58

20 40 60

Observations

Figure 3.8: Cook’s distance plot for the multiple effort prediction model #9.

S[9POIAl UoIoIpaLd Surp[ing ¢

3. IMPACT OF SOFTWARE COUPLING ON CLOUD PORTABILITY

3.4.2.4 Multiple Model Diagnostics

As for the simple model, we carried out a set of tests to identify the extent to which the
best multiple model meets seven underlying assumptions for multiple linear regression
models based on the OLS method. As a reference, we used model #9, as it obtained

the best accuracy amongst all multiple models built (Table|3.13). Figure shows four
plots to visually support the diagnostics.

Sample size. Unlike the simple model, the multiple model #9 consists of four predic-
tors. For our reduced sample with 59 observations the sample-predictor rate is 14.75,
which is still greater than the minimum cutoff of 10. Therefore, model #9 meets this

assumption.

Linearity. Figure (a) shows the jitter plot for residuals and fitted values of multiple
model #9. Data points are scattered across the plot around the red line (middle), and
the blue line suggests no pattern at all. To test the assumption that the model has no
linearity issues, we applied the Rainbow test that confirmed that the model met the

linearity assumption (Rain = 1.503, p = 0.154).

Independent residual terms (errors). We tested the lack of autocorrelation for
residual terms by using Durbin-Watson test (DW = 1.742, p = 0.097). Like in the
simple model, the DW statistics is close to 2, meaning that errors are independent. The

p-value is not significant for a = 0.05, confirming that model #9 meets this assumption.

Homoscedasticity. To meet this assumption, the variance of residual terms should
be homogeneous. Figure (b) helps to identify the homogeneity of the variance. Like
for the simple model (Figure (b)) the two dashed lines suggest a funnel pattern,
which could indicate the presence of heteroscedasticity. Although we can observe a
homogeneous distribution of data points along the middle (red line), we applied the
Goldfeld-Quandt to test whether the homoscedasticity assumption was met. The test
result (GQ = 3.095, p = 0.003) is significant for v = 0.05, which confirms that the

assumption is met.

Low leverage. The plot in Figure (c) suggests no major leverage issues as data
points are centred around zero (y-axis). The average leverage for this model is 0.084.

Therefore, the cutoff for analysis is three times this average (0.254). Examining the

88

3.4 Building Prediction Models

Residuals
Residuals

4o 10 20

. 30 . 30
Fitted values Fitted values

(a) Linearity (b) Homoscedasticity

Standardized Residuals

015 - - [i
Hat values Studentized Residuals

(¢) Low Leverage (d) Normality

Figure 3.9: Diagnostics plots for effort prediction model #9

plot, we cannot observe any data point above the cutoff. Therefore, we considered that

model #9 meets the low leverage assumption.

No perfect multicollinearity. Unlike simple model #2, multiple model #9 might
violate the multicollinearity assumption as it has multiple predictors. To test this
assumption, we checked the variance inflation factor (VIF) that indicates whether a
predictor has strong relationship with other predictors. Table shows that the VIF
calculated for all four predictors does not represent major concerns as they are lower
than 10, as recommended in the literature [84]. Furthermore, we also calculated the
tolerance statistics. As Table [3.15] shows, the tolerance is greater than 0.2, which does

not represent an issue. Thus, we considered that the model #9 meets this assumption.

Normality. As for the simple model #2, the density plot in Figure (d) suggests
a positive skew. As confirmed by the Shapiro-Wilk test, model #9 also deviates from
normality (W = 0.942, p = 0.007).

89

3. IMPACT OF SOFTWARE COUPLING ON CLOUD PORTABILITY

Table 3.15: VIF and tolerance analysis.

‘ Predictor ‘ VIF ‘ Tolerance
1 ommic 4.654 0.214
2 | participant.java.knowledge | 1.876 0.533
3 system.class.loc 4.610 0.216
4 | participant.experience.reeng | 1.877 0.532

3.4.2.5 Alternative Multiple Robust Regression Model

As Table shows, the goodness of fit improved significantly for the multiple robust
regression model #11 (R? = 0.824, RSE = 8.388) when compared to the best multiple
model (#9). In addition, the accuracy also improved -3.8% (MMRE = 0.451). However,
it is important to highlight that model #11 does not outperform the accuracy of simple
robust regression model #3 (MMRE = 0.412).

3.4.3 Discussion

From 11 prediction models built in Sections and the simple robust model #3
achieved the best accuracy as measured by the MMRE summary measure (MMRE =
0.412). This model consists of one single predictor, the OMMIC variable (representing
coupling). Although multiple models based on the OLS method presented an improved
accuracy than the simple OLS model, this result did not hold for the robust method.

According to the accuracy classification presented in Section[C.4] model #3 achieved
a good accuracy. In addition, nearly 60% of predictions made by this model achieved
an ezxcellent accuracy (Pred(0.37) = 0.576). Finally, this model is robust to the lack
of normality, presented by the simple OLS model, and meets all other assumptions for
the generalisation of linear regression models. Therefore, we conclude that this model
can be used to predict the effort of increasing cloud application portability within the
context defined in Section [3.3]

3.5 Summary

This chapter represents the first step towards addressing the objectives defined in Sec-
tion [[.2] We empirically investigated a software design property, coupling, to identify
whether it impacts cloud application portability. The result of the experiment in Sec-

tion [3.3] confirmed our hypothesis - coupling does impact cloud application portability

90

3.5 Summary

within the context defined for the experiment. Moreover, the experiment achieved at
least a medium effect size and a considerably high statistical power for all comparisons
made, when taking into consideration SE experiments. Additionally, we used the data
set produced in the experiment to build 11 prediction models by using two different pre-
diction methods for linear regression. Our best model achieved a good accuracy when
compared to other prediction models reported in the related literature (Section .
Moreover, nearly 60% of model predictions could be classified as ezcellent. Our best
model meets seven common assumptions for linear regression models, which enables
its generalisation beyond this data set. Together, these results are aligned with the

outcomes envisaged for this research.

91

Chapter 4

Investigating the Impact of Security
Systems on Cloud Application
Portability

Unlike the previous chapter that investigated a design property, this chapter investigates
the hypothesis that technologies adopted by cloud applications impact cloud application
portability. This hypothesis was inspired by the literature on software migration, grid
computing and migration to the cloud, which suggests that technologies adopted by
software applications can also impact on portability (Section [2.2.3]).

To select a particular technology to investigate, we took into account two aspects.
Firstly, security has been as a top concern for cloud adoption according to both surveys
with practitioners [47, [77, [169] and the cloud literature [3I]. Thus, it makes sense to
investigate technologies that implement security principles. Secondly, the migration
scenario addressed in this research (Figure requires re-engineering legacy three-tier
web applications to enable them as a Distributed System (DS) (Sections[2.1.3and [2.4.5)).
Ideally in a DS, security systems that implement Identity & Access (I&A) management
(i.e., authentication and authorisation, respectively) should enable application users to
authenticate only once and gain access to multiple application components without the
need for re-typing their password (single sign-on) for each component accessed during
a session [50]. Thus, we investigate whether the effort to enable single sign-on varies
with the security system. Security system is a generic term used in this chapter to

refer to a framework (e.g., Spring Security) or a software module (e.g., the container

93

4. IMPACT OF SECURITY SYSTEMS ON CLOUD PORTABILITY

security in Glassfish application serveIED that implements security mechanisms, such as
authentication and authorisation.

In particular, this chapter empirically investigates the impact of the choice of security
systems on cloud application portability in the context of modifying the security system
of legacy three-tier web applications to enable the use of single sign-on by adopting
implementations of the OpenlD protocol (Section. We explore the outcomes of this
investigation by building prediction models to support decision makers when analysing
the required effort to increase the cloud portability of their applications (Section |4.3).
Before presenting these results, we start the chapter by introducing key concepts of
authentication for DS in Section 4.1l

4.1 Review of Authentication in Distributed Systems

Identity & Access are principles of DSs that are mainly enforced by two mechanisms
[228]:

e Authentication is the process of confirming that users are who they claim to be.

This is the first step to grant a user access to protected resources; and

o Authorisation is the process of granting an authenticated user access only to

resources over which they have access right.

Both authentication and authorisation are mechanisms implemented by security
systems [228], such as security services provided by JEE containersE] (Container-based
security) or the Spring Security Frameworkﬂ Due to time and scope limitations, this
research focus only on authentication.

One way to authenticate users in DSs is by adopting Federated Identity (FI) man-
agement systems [50, 139, 228], such as Kerberog!| and Shibboleth’} As Chadwick [50]
explains, a FI system enables users to use their “credentials (authentication and au-
thorisation) from one or more identity providers to gain access to other sites (service
providers) within the federation.” A benefit of FI is the single sign-on (SSO) capability
[50], which enables users to “log-in once and gain access to multiple websites without the

hassle of repeatedly typing their passwords” [248)].

"http://glassfish. java.net
2http://docs.oracle.com/javaee/7/tutorial/security-intro002.htm
3http://projects.spring.io/spring-security/
“http://web.mit.edu/kerberos/

Shttp://shibboleth.net/

94

http://glassfish.java.net
http://docs.oracle.com/javaee/7/tutorial/security-intro002.htm
http://projects.spring.io/spring-security/
http://web.mit.edu/kerberos/
http://shibboleth.net/

4.2 Empirical Investigation

Although FI systems have been there for a long time, SSO has recently gained
popularity thanks to cloud applications [I72] 248|. With the proliferation of services
provided through the internet, the website-specific password-based authentication used
by traditional web applications became unfeasible [81], 139, [150]. SSO has not only
become a requirement of service users [96], but it is also key to a seamless user experience
in cloud [I50, I72]. Therefore, adopting SSO legacy web applications are not only
becoming more cloud portable, but they are also becoming more cloud-like [I72].

OpenlD ConnectE] is a SSO protocol that has been supported by large organisations,
such as Google and Yahoo [30, 150]. The OpenID protocol consists of the following
entities [30]:

e [ind user represents the entity (person or machine) that wants to access a cloud

application or service;

o [dentity provider is a third-party entity responsible for authenticating the end

user;

e Relying party is the security system implemented by the cloud application or

service that receives the authentication response from the identity provider;

The OpenlD foundation maintains a list of certified identity providersﬂ which in-
cludes Google and PayPal, for instance. These identity providers implement the OpenlD
Connect specification, and therefore can be seamlessly used to authenticate end users
[150]. The OpenlID Connect specification must be also implemented by the cloud ap-
plication or service (relying party) to enable that end users are acknowledged as au-
thenticated users [30]. To support relying parties to implement the OpenID Connect
protocol, several libraries, services and tools are currently availableﬂ One interested in
using SSO can adopt one of these libraries, services and tools to enable OpenlD Connect

authentication.

4.2 Empirical Investigation

The goal of this experiment is to analyse two security systems commonly adopted by
legacy web applications. We aim to evaluate these security systems with respect to

their impact on the effort to increase cloud application portability from the point of

"http://openid.net/connect/
*http://openid.net/certification/
3http://openid.net/developers/libraries/

95

http://openid.net/connect/
http://openid.net/certification/
http://openid.net/developers/libraries/

4. IMPACT OF SECURITY SYSTEMS ON CLOUD PORTABILITY

view of the software developers. This evaluation is performed in the context of software
developers modifying configurations and code related to the implementation of security
systems in legacy web applications. The modification aims to enable the use of SSO by
adopting implementations of the OpenID Connect protocol.

We start this section by detailing the experiment protocol and its execution (Section
4.2.1]). Secondly, we present characteristics of participants of this experiment (Section
4.2.2)). Next, we show the main results of our experiment (Section . Then, we
analyse the impact of these results in our proposed hypothesis, and discuss the impli-
cations of our findings (Section . Finally, we examine the main threats to the
validity of our findings (Section .

4.2.1 Experiment Plan and Execution

As explained in Section , we used guidelines provided in [256] to prepare and conduct
this experiment. In addition, this experiment followed recommendations put forward
by Sjoberg et al. [214] to increase the realism of experiments in terms of participants,
tasks and environment. Next subsections correspond to elements of the experimentation
framework, detailing the protocol for the experiment, and its execution. Terminology
associated with the experimentation framework is highlighted in the main text; this

terminology is explained in Appendix [B]

4.2.1.1 Participant Selection and Study Design

To increase both realism and external validity of this experiment [214], we recruited
professional software developers to take part in this experiment. The recruitment and

selection followed guidelines proposed in [131], and basically consist of:

1. Setting up the population of interest. Our focus is software developers that are
responsible for maintaining the application code. In addition, we focused on small

and medium Brazilian software development companies;

2. Defining inclusion criteria. The four inclusion criteria are: (i) more than one-year
of professional experience, (ii) previous experience changing third-party code, (iii)
Java programming skills equals to or more than level 2 in the self-evaluation test,

and (iv) some knowledge on security mechanisms addressed in the experiment;

96

4.2 Empirical Investigation

3. Identifying sources for participant selection. All participants work for a Brazilian
company which we established partnership with for this experiment. Possible

threats to the validity raised by this sample is discussed in Section [4.2.5

4. Defining compensation for participants. We surveyed local companies to identify
the current hourly rate paid for software developers. The hourly rate varies from
R$ 12.00 to RS 25~0(E|7 varying according to the developer experience. Therefore,
we decided to pay the intermediary amount of R$ 18.00, which is equivalent to
US$ 4.50. In addition to the payment, all participants received certificates for the

concepts addressed in this experiment;

5. Performing the recruitment and selection. Once the partnership with the Brazilian
company was established, we contacted the project manager, who took care of
advertising the experiment to their developers. With the inclusion criteria in
mind, the project manager pre-selected those interested in taking part in this

experiment, which resulted in six participants.

Due to the limited number of participants, we decided for a within-subject design for
this experiment. In practice, it means that all six participants worked on both control
(CG) and treatment (TG) groups. Although we hired these six developers, we gave
them the chance to decide whether or not to participate. Hence, they could resign from

the experiment if they wanted to. No participant gave up (drop-out = 0).

4.2.1.2 Instrumentation

Software systems, APIs, identity provider, and experiment materials are instruments

used in this experiment, as follows.

Software systems Three Java-based web applications are used in this experiment.
All three applications implement Spring Security Framework. The web applications
consist of one prototype and two commercial information systems. The prototype was
developed for the pretest (Section and consists of a web application that au-
thenticates the user and grants access to a welcome page. The two commercial infor-
mation systems (Siget and NisseiNet) were originally developed by students as their
final project to graduate as Bachelors in Information Systems. As these are commercial

systems, their code and documentation are not available to the general public. These

'Real (R$) is the Brazilian currency. For the time this document was written, one Real was
equivalent to US$ 0.25.

97

4. IMPACT OF SECURITY SYSTEMS ON CLOUD PORTABILITY

Table 4.1: Measures of size for software applications used in the experiment.

Size Metric ‘ Siget ‘ NisseiNet
Classes 84 69
Methods 623 530
Configuration Files 12 12
Web pages 60 57
Lines of Code 4,793 3,237

systems are currently deployed in small Brazilian companies. The main reason to select
these systems is that they are small and self-contained, as opposed to large legacy sys-
tems that would increase the complexity for our participants. Table presents size
measures for the two information systems. Possible threats to validity raised by this
selection are discussed in Section [4.2.5]

To enable the effort comparison of Container-based security (Container) and Spring
Security Framework (Spring) - the two security systems investigated in this experiment
- the author of this thesis re-engineered the two applications to create versions of these
applications that implement Container-based security. This re-engineering was neces-
sary to ensure that objects manipulated in this experiment (i.e., applications) are alike,
and therefore, the only difference is the security system implemented. Possible threats
to validity raised by this approach are discussed in Section [4.2.5]

As a within-subject experiment, participants are randomly assigned to all objects.
The exception is the prototype application. As the purpose of prototype is to be used
as pretest, all participants received the prototype as their first application - though we
randomised the version. Table [I.2 shows the order in which participants received their
objects. This experiment had 24 observationsﬂ (sample size) since six participants mod-
ified two versions of the two commercial information systems (recall that the prototype

was a pretest and therefore, it is not part of our hypothesis testing).

APIs The OpenlD Connect protocol is implemented by several APIsﬂ We investi-
gated some of these APIs to find one that could be applied for security systems adopted

in this experiment, and that offered minimal complexity for learning and using. Two
APIs were used: Scribd?| for Container, and MITREid Connect]] for Spring. Using

!This number disregards observations produced for the Prototype application.
Zhttp://openid.net/developers/libraries/
3http://github.com/scribejava/scribejava
“http://kit.mit.edu/projects/mitreid-connect

98

http://openid.net/developers/libraries/
http://github.com/scribejava/scribejava
http://kit.mit.edu/projects/mitreid-connect

4.2 Empirical Investigation

Table 4.2: Participants were randomly assigned to objects, apart from the Prototype
application (pretest).

Participant Prototype Siget NisseiNet
Container | Spring | Container | Spring | Container | Spring
1 2 1 6 5) 3 4
2 2 1) 6 3 4
3 1 2 6 5 3 4
4 1 2 3 4 5 6
5 1 2 5 6 3 4
6 1 2 4 3 5 6

two different APIs might raise some concerns regarding the validity of this experiment.

These concerns are discussed in Section [4.2.51

Identity provider As explained in Section the OpenID Connect protocol re-
lies on an identity provider. The OpenlD Connect website maintains a list of certified
providers. For this experiment, Google was used as identity provider because it pro-
vides detailed documentation and examples on how to implement its authentication

mechanism (Google Sign-in).

Experiment materials Training material, collection forms and guidelines for per-
forming this experiment were carefully prepared by the experimenter and validated by

two experienced researchers.

4.2.1.3 Task

The task performed in this experiment consists of modifying application code and con-
figuration related to the security system to implement SSO by using OpenlID Connect
protocol implementations and Google as an OpenlD identity provider. The procedure
for modifying the application slightly differs between security systems, and can be per-
formed in different ways even for the same system. Hence, this task can be considered
as non-deterministic, as the randomness involved in how the task is performed might
affect the result of effort, e.g. by using additional libraries.

In summary, the task consists of performing the following steps:

1. Importing the application into the IDE;

2. Adding/updating libraries;

99

4. IMPACT OF SECURITY SYSTEMS ON CLOUD PORTABILITY

3. Analysing application architecture;

4. Modifying application/security system to deal with the OpenID Connect authen-

tication flow;
5. Modifying the login page to support Google Sign-in;
6. Testing the application and correcting possible problems.

Step 4 represents a major difference between Container and Spring because Con-
tainer requires mainly code modification whereas Spring requires only configuration.
This difference is due to the Spring implementation chosen for this experiment.

Spring provides two implementationsﬂ XML-based (Security Namespace Config-
uration) and code-based (Java Configuration). We opted for using the XML-based
implementation because the two commercial systems used in this experiment use the
XML-based implementation of Spring. Possible threats for the validity of this experi-
ment raised by this choice are discussed in Section [£.2.5]

We did not consider authentication configuration on the Google service as part of the
task investigated in this experiment. The experimenter configured the Google service
for each of the six applications used as objects in this experiment. This Google service
configuration is necessary to make the Google service recognise the application as a
relying party. This configuration was not included as part of the task to reduce the
complexity and save time in the experiment execution. Moreover, this configuration is
the same regardless of the security system adopted.

To control the time spent (effort) for changing each application, participants regis-
tered the start and end time on data collection form, along with the step they had to

perform. We classified participants’ steps into four categories (subtasks):

o FEnvironment preparation, which includes importing the project into the IDE and

adding libraries into the project;
e (ode analysis, which consists of getting familiar with the application;
e Change, which represents the necessary changes to fulfil the required task; and

o Test & corrections, which consists of testing the application to check the effective-

ness of changes and making any necessary correction.

This classification enabled us to investigate whether there is any difference across

different subtasks (Section |4.2.3.3]).

"http://docs.spring.io/spring-security/site/docs/4.0.3.RELEASE/reference/htmlsingle/

100

http://docs.spring.io/spring-security/site/docs/4.0.3.RELEASE/reference/htmlsingle/

4.2 Empirical Investigation

Table 4.3: Formal definition of hypotheses.

Null hypothesis(Hg) Z T'spring = T T Container
Alternative hypothesis(H1) | Z T'spring > & T Container

4.2.1.4 Selection of Variables and Definition of Hypotheses

Security systems represent the independent variable, or factor, evaluated in this exper-
iment. Container and Spring are the two possible values (¢reatments), measured on a
categorical scale. These two security systems have several versions. For the Container,
we used the Servlet API version 3.0.1 whereas for the Spring we used the Spring Security
Framework version 4.0.1.

The effort is the dependent variable, measured in the number of minutesﬂ (ratio
scale) to perform the task presented in Section

Two hypotheses were defined for this experiment, as formalised in Table T
is the number of minutes spent to modify an application. Thus, the null hypothesis
states that the median time is the same regardless of the security system whereas the
alternative hypothesis states that Spring takes more time than Container. We chose
this alternative hypothesis rather than different time because our preliminary analysis

indicated that Spring takes more time than Container.

4.2.1.5 Data Analysis

As explained in Section [1.2] we adopted only non-parametric statistics in this exper-
iment, as summarised in Table [{.4] whereas cutoffs we used for inferential tests are
summarised in Table .5l

4.2.1.6 Experiment Execution

A pilot experiment was performed by the author of this document to check the task
complexity, materials for training and experiment, and time required for performing the
task. The result of this pilot prompted some changes in the experiment protocol. In
addition, it provided preliminary guesses on the results. The experiment was undertaken
in five steps: (i) participant selection; (ii) training; (iii) pretest; (iv) experimentation;

and (v) feedback.

1. Participant selection. The process for participant selection was previously de-
scribed in Section After selection, participants received an introduction

"We use the terms effort and time interchangeably throughout this document.

101

4. IMPACT OF SECURITY SYSTEMS ON CLOUD PORTABILITY

Table 4.4: Summary of statistics and statistical tests in the experiment.

Statistic Type

Statistic/Test ‘ Definition/Config. ‘

Purpose

To identify the middle

Median and | 25%, 50%, 75%, | value and categorise oc-
Descriptive | quartiles 100% currences into quartiles ac-
cording to their values.
Maximum - Mini- | To quantify the data dis-
Range .
mum persion.
. To test the assumption
Two-tail =
Shapiro-Wilk Ovlvo tailed, that the data is normally
Inferential ' distributed.
Wilcoxon To test the statistical sig-
One-tailed nificance of differences be-
rank-sum .
tween two medians.
Spearman’s To test the strength of a re-
v . Two-tailed lationship between two nu-
correlation . .
merical variables.
To test the statistical sig-
Kruskal-Wallis | Two-tailed nificance of differences be-

tween several medians.

Table 4.5: Cutoff values for evaluating the hypotheses. Table adapted from [70].

Unknown true state of nature

H0: fTSpring - -’Z'TContainer

Hi: z TSpring >Z T Container

Statistical
Conclusion

Accept Hy

Reject Hg

0.90
1 - a: Correct
(Confidence level)
0.10
a: Type I error
(Significance level)

0.24
B: Type II error

0.76
1 - B: Correct
(Statistical power)

102

4.2 Empirical Investigation

seript. This script provided an overview for the experiment, highlighting its pur-
pose, the task that participants should perform, and benefits of taking part in this
experiment. Those who accepted taking part in the training session were asked to
fill out the participant characterisation form. This form collected information re-
garding the participants’ background, such as professional experience. Questions

on this form were based on guidelines proposed in [82];

2. Training. Although selected participants fulfilled the basic selection criteria, they
had limited knowledge on some topics addressed in this experiment (Section|4.2.2]).
The training session covered concepts related to cloud, security systems, and the
OpenlD Connect protocol. Moreover, it prepared participants to perform the task

evaluated in this experiment. The total training time was two hours;

3. Pretest. The first application assigned to participants was a pretest (the prototype
described in Section . This strategy aimed to reduce the learning effect. It
is common in experiments that participants take more time to perform the first
task as they are getting familiar with the experiment [131]. However, participants
were not informed about the pretest to prevent that they behave differently as

that application would not be analysed;

4. Ezperimentation. The participants were allowed to take short breaks, which were
excluded from the time spent on the tasks. The experimenter observed the exper-
iment execution without interfering in tasks performed by participants. Partici-
pants were strongly advised to not copy and paste any code as it could bias the

result. The experiment was performed in two four-hours sessions; and

5. Feedback. When the experiment had finished, participants were asked to fill a
feedback form, assessing their experience in this experiment. Participants received

their participation certificates a few weeks after submitting the feedback form.

Both training and experiment sessions were performed in the company where the
participants work, using their usual computers and tools. This is an important aspect
to increase the realism of this experiment [214]. For information on ethics in this

experiment, refer to Section [1.3

4.2.2 Characterisation and Feedback of Participants

This section examines responses from the participation characterisation form (Section

4.2.1.6). We have classified responses into four groups related to participants’ back-

103

4. IMPACT OF SECURITY SYSTEMS ON CLOUD PORTABILITY

Table 4.6: Summary of software development background of participants.

| Question Answers

Years/# Languages/Grade | N | (%)
1-2 1 17
1 E?;V iong have you been program- 6- 10 4 67
2 ~10 1] 17
) 2 2| 33

How many programming languages
2 do you have experience with? 3 LT
Y P ' =3 3| 50
How would you grade your current 2 LT
3 development skills in Java? 3 31 90
- : 4 2 | 33
How would you grade your experi- 2 1| 17
4 | ence on Github or any other repos- 3 2 | 33
itory based on Git? 4 3| 50
_ 2 1] 17

How would you grade your skills
5 , 3 3 | 50
with Maven? 4 2 | 33

ground regarding: personal, software development (Table , professional (Table
and experiment-related skills (Table . Responses for self-evaluation questions vary

from zero (lowest) to five (highest).

Regarding the group of personal questions, we identified that participants were 21
(n=1),25(n=1),27 (n = 2),33 (n = 1), 40 (n = 1) years old. All participants hold
a graduate degree, and two of them are postgraduate. All participants are male.

Table summarises responses for the group of software development questions,
which aim to identify participants’ development skills. In this group, participants were
asked about their programming background and to evaluate their development skills
and knowledge on common software development tools. Most participants program
computers for more than 6 years (question 1), are skilled in more than one programming
language (question 2), has medium to high Java skills (question 3), and has some
experience in common development tools (questions 4 and 5). It is worth to note that
questions 2, 3 and 5 are used to infer the overall professional level of our participants. For
instance, Maven and Git are tools often used by software professionals [I53]. Similarly,
experienced professionals tend to know more programming languages due to the variety

of projects they worked on [82].

104

4.2 Empirical Investigation

Table 4.7: Summary of professional background of participants.

Answers

| Question Size/ Years/ Grade ‘

—~
¢
~—

6 Usually, how large are the projects | Medium (900-40,000 LoC) 83
that you take part in? Large (>40,000 LoC) 17
1-2 17
- How long have you been developing 3-5 50
software professionally? 6-10 17
>10 17

How would you grade your current
3 development skills when compared 17

—_
BN |

to the most experienced developer
you have worked with?

ot
)

—_
EN

How would you grade your current
9 | development skills when compared
to your colleagues?

—
-3

R WhHRR[lWRRR,|RRR,WR |~ O 2
ot —
o -~

QU W N | &= W

—
EN |

Table [£.7] summarises responses for the group of professional questions, which aim
to identify important aspects of the professional background of participants. Regarding
the size of projects they are involved in, most participants take part in medium projects
(n = 5). When asked to compare their development skills with experienced developers
(question 8) and their colleagues (question 9), we can observe a slight variation in their

evaluation compared with their skills in Java (question 3).

For question 8, participants 1, 4 and 5 kept the same grade as in the question 3
whereas participants 3 and 6 decreased their grades in one point. Only participant 2
increased his grade from 3 to 4. For question 9, half group kept the same grade as
question 3 (Participants 1, 3 and 6) whereas the other half increased one point. When
compared with question 8, only participants 1 and 2 kept their grades for question 9,
all others increased their grades in one point. This self-evaluation suggests that most

of them consider themselves in a stable position when compared with their workmates.

Table summarises responses for the group of experiment-related skills questions,
which aim to identify participants’ level on skills for this experiment. All participants
had experience changing third-party applications (question 10). Although one par-
ticipant did not have any experience implementing security systems in an application

(question 11, Participant 6), all participants had some skills on both security systems

105

4. IMPACT OF SECURITY SYSTEMS ON CLOUD PORTABILITY

Table 4.8: Summary of experiment-related skills of participants.

. Answers
7 | Question Grade/ Answer | N | (%)
10 Have you ever changed an application devel- Yes 6 | 100
oped by a third party? No 0 0
1 Have you ever partially implemented any secu- Yes 5| 83
rity system in an application? No 1| 17
. 1 2| 33
12 How would you grade your current skills on 9 3 | 50
. . ‘?

Spring security framework? 4 117
13 How would you grade your current skills on 1 4 | 67
container-based security? 4 2| 33
0 3| 50

How would you grade your current knowledge
14 1 1 17
on OpenlD? 3 9 | 133

investigated in this experiment (questions 12 and 13). Half of participants did not have
any knowledge on OpenID (question 14, Participants 2, 3 and 6).

Responses for questions 11 to 14 show some gaps that could negatively impact this
experiment. Therefore, a training session was performed (Section . We eval-
uated the effectiveness of training session by asking some questions with the feedback
form (Section [4.2.1.6)). Table summarises how participants evaluated their skill-
s/knowledge before and after the training session regarding the three main concepts
addressed in this experiment. We can observe that the training was effective to provide
participants the knowledge/skill necessary for the experiment. Moreover, another ques-
tion asked participants to evaluate to what extent the training session provided what
they needed for the experiment. Five out of six participants evaluated this question
with 5, and one participant with 4.

Table summarises further responses for questions asked in the feedback form.
We did our best to increase the realism of this experiment by hiring real developers,
performing the experiment in their usual environment, and giving participants a real
task (Section . As question 15 shows, all participants evaluated the task reality
from medium to high. However, we can note that the task easiness was perceived
differently across participants (question 16). Participants 2 and 3 evaluated this question
with 5 (very easy) whereas participants 1 and 4 evaluated with 2 (not too easy).

Finally, we asked participants to select which security system was easier to work

106

4.2 Empirical Investigation

Table 4.9: Comparison of participant’s skills before an after training session.

How would you grade your current (..)
Participant (..) skills on Spring () . skills—on (..) knowledge on
. container-based
security framework? . OpenlD?
security?
Before ‘ After Before ‘ After Before ‘ After
1 2 3 4 5 1 3
2 2 3 1 3 0 4
3 1 3 1 4 0 4
4 2 3 1 3 3 3
5 4 4 4 4 3 4
6 1 2 1 3 0 2
Table 4.10: Participant’s responses for the feedback form.
) Answers
wt X
| Question Grade/ Mechanism ‘ N ‘ (%)
.. 3 1| 17
15 How much do you agree that the activity 4 4| 66
performed in this experiment is realistic? 5 1 17
) 2 2| 33
In your perspective, how easy was per- 3 11 17
16 | forming activities required by this exper- 4 11 17
1 ?
1ment’? 5 9 33
17 In your perspective, which security sys- Container 4 | 67
tem was easier to work with? Spring 2 | 33
Which security system would you prefer Container 1| 17
18
adopting in your applications? Spring 5 83

107

4. IMPACT OF SECURITY SYSTEMS ON CLOUD PORTABILITY

Table 4.11: Descriptive statistics for treatments. Spring-based applications require more
effort for all statistics analysed.

Statistics ‘ Container ‘ Spring ‘ Difference (%)

Min 10.00 17.00 70.0

1st Quartile 14.75 19.75 33.9
Median 23.00 32.50 41.3
Mean 26.33 46.08 75.0
3rd Quartile 35.00 95.75 99.3
Max 50.00 129.00 158.0
Range 40.00 112.00 180.0

with (question 17). Four out of six participants agreed that the Container system was
easier than Spring. This result is in line with results presented in Section The two
disagreements came from participants 1 and 5 - the two experts. On the other hand,
most participants would prefer Spring than Container in their applications (question

18). Participant 3 was the only one to select Container for this question.

4.2.3 Results

This section reports the experiment results. We start by examining the effort required
by the two security systems. Then, we analyse whether these results hold for individ-
ual applications. Next, we investigate the distribution of effort for different subtasks.

Finally, we examine results by skills of participants.

4.2.3.1 Security System Effort Analysis

Table shows that changing Spring-based applications (Z = 32.5 min) took 41.3%
longer than Container-based ones (Z = 23.0 min). The Wilcoxon test reveals that this
difference is statistically significant at o = 0.10 (p = 0.007, V = 70.5). In practice, it
means that the probability that the difference between treatments was achieved only by
chance is discarded for this experiment. Moreover, the large effect size (y = 0.54) and
high statistical power (Power = 0.89) suggest that the difference between treatments is
significant. Implications of this finding are discussed in Section

The difference between treatments is not limited to medians, but it spans across
other descriptive statistics. For example, the minimum effort for changing Spring-
based applications (17 min) is 70% greater than that for Container-based applications

(10 min). Similarly, the range effort for Spring-based applications (112 min) is 180%

108

4.2 Empirical Investigation

Table 4.12: Descriptive statistics for the three applications. Results suggest that the
application also impacts the effort.

Statistics ‘ NisseiNet | Prototype ‘ Siget

Z Container 23.50 44.00 23.00

Z Spring 41.50 37.00 22.50

Z difference (%) 76.60 -15.90 -2.20
p-value 0.01 0.41 0.10
Wilcoxon V 21 12 17
Effect Size (7) 0.68 -0.23 -0.46
Range - Container 36.00 38.00 38.00

Range - Spring 86.00 56.00 112.00

greater than that for Container-based applications (40 min). These differences support

the hypothesis that Spring requires more effort than Container to modify.

4.2.3.2 Effort Analysis by Applications

Table shows that the difference between medians of the two security systems differ
across the three applications used in this experiment. Note that, for this analysis, we
take the Prototype application (used for pretest) into consideration as we are interested
in observing the extent to which the pretest differs from other applications. Median dif-
ferences between Container and Spring vary from -15.9% to 76.6%. Only the Prototype
difference was not found statistically significant, though Siget is borderline (o = 0.10).

NisseiNet had the largest effect size (v = 0.68), followed by Siget (v = -0.46) and
Prototype (v = -0.23). Effect sizes for Siget and Prototype are negative due to the
order of the comparison, i.e., Container >Spring effort. Regarding the range, effort
keeps larger for Spring than Container regardless of the application. These results
suggest that the application has a fundamental role in the effort. In fact, this was noted
by one of our participants as a comment in the data collection form.

One could argue that these differences are due to the different application sizes
(Table 4.1). However, the task investigated in this experiment does not require major
architectural modifications that would be influenced by size. Perhaps, the application
size could influence in the time to analyse the code but, as Section shows, the
median time for analysis does not present any difference regarding the two treatments.
Therefore, we do not believe that the size alone is the major responsible for these
differences. Investigating security rules in the configuration file, we found that Prototype

had the smallest number of rules, followed by NisseiNet and Siget (largest). Perhaps,

109

4. IMPACT OF SECURITY SYSTEMS ON CLOUD PORTABILITY

Effort Share

8.2%

task

analysis
change
environment

test

Figure 4.1: Division of effort amongst four subtasks for security system modification.

the difference is motivated by a combination of application and configuration size, but

this is a question that needs further investigation.

4.2.3.3 Effort Analysis by Subtask

The effort share chart in Figure[4.I]shows that Change was by far the most time consum-
ing subtask (54.7%) when compared with all others. Test & corrections also consumed
a considerable time percentage in this experiment (26.6%). It is interesting to note that
this subtask nearly had a rate of 1:2 compared with Change. Although this result does
not differ from the maintenance literature [16§|, it might suggest that participants took
a considerable amount of time correcting errors. The other two subtasks, Code analysis
(8.2%) and Environment preparation (10.6%) took similar time share.

We also analysed the difference between the two treatments for each subtask (Table
4.13)). For Change and Environment preparation, Table shows difference in medi-

110

4.2 Empirical Investigation

Table 4.13: Effort comparison by modification subtask.

Statistics Env1ronnE1ent Code Analysis | Change Test & Correc-
Preparation tions
Z Container 3.00 2.00 12.50 | 3.50
Z Spring 4.00 2.00 21.00 | 3.50
Z difference (%) | 33.33 0.00 68.00 | 0.00
Range - Container | 9.00 10.00 17.00 | 20.00
Range - Spring 4.00 10.00 45.00 | 73.00

ans whereas for the other two substasks, medians are alike. For the first time in this
experiment, we could observe a range (Environment preparation) for Container (9 min)
greater than Spring (4 min). It suggests a major variance for preparing the environment
for Container-based applications. This is a surprising result, as Spring required more
libraries and preliminary configuration than Container.

For Test & corrections subtask, we can also observe a large range difference (265%)
between Container (20 min) and Spring (73 min). This significant difference suggests
that participants struggled more for testing and correcting errors in Spring-based ap-
plications than in Container-based. This might be result of the learning effect as Table
shows that the sum of skills (after training) for Container (22) is 22% greater than
Spring (18). Possible implications of this result on the validity of this experiment are
discussed in Section [£.2.5

4.2.3.4 Effort Analysis by Participant

As we had few participants, we could easily analyse individual results (Figure . Pos-
sible implications of the small sample in the validity of this experiment are discussed in
Section Apart from participant 5 (Container = 31.5 min, Spring = 28.5 min, Dif-
ference = -9.5%), Spring took more time than Container to modify for all participants.
Regarding participant 5, he is: an expert among participants, found Spring-based ap-
plications easier to change than Container-based ones, and evaluated his skills (after
training) with a 4 for Spring, Container and OpenID. However, this participant noted
in the data collection form that he found a bug while changing two Container-based
applications. He noted that he unsuccessfully tried to solve this bug. Therefore, he did
a workaround and kept working on the experiment. Unfortunately, we could not isolate
this case as the participant did not identify on the data collection form the time he

spent working on this bug. No other participant reported something alike.

111

4. IMPACT OF SECURITY SYSTEMS ON CLOUD PORTABILITY

Medians & Quartiles
1 2 3

| 130 -
20 - 40~ 120 -
110-

—— - 100 -

| 90-
80 -
20— 70 -
’g 60 -
‘E | | 10 | | 507 I I
= Container Spring Security Container Spring Security Container Spring Security
5 ‘ 10 : i
B == |« —
50—
30-
40-
30—
20- ‘
| I | I 20 I I
Container Spring Security Container Spring Security Container Spring Security

Security Mechanism

Figure 4.2: Effort comparison by participant. Note that the scale differs across boxplots.

Participant 3 had the greatest effort difference between Spring and Container amongst
all participants (137.7%). He also took longer than others to change both Container-
(49 min) and Spring-based (116.5 min) applications. This participant is not the least
or most experienced (Java skills = 3, Skills compared with experienced developer = 2,
Skills compared with their colleagues = 3), but he evaluated his skills (before training)
for Container and Spring with grade 1. Although this participant declared a significant
improvement in his skills after the training (Table , this result suggests that the
training might not have been so effective for him as he declared. Possible implications

of this result in the validity of this experiment are discussed in Section [4.2.5

In fact, the size of differences across participants suggest that their background had
also some impact on the total effort. For example, participant 6 was the less experienced
(youngest, little time as professional, little time programming, few skills in Java). On
the other hand, participant 1 was one of the two most experienced participants. When
we compared both, we observe that the effort difference between Spring and Container

is far greater for participant 6 (116%) than participant 1 (5.7%).

112

4.2 Empirical Investigation

Medians & Quartiles

container spring

130

120

110

Effort (Minutes)
3

40

30

20

10

Java Skill Level

Figure 4.3: Impact analysis of skills on security system modification effort.

4.2.3.5 Effort Analysis by Skill

To investigate the impact of participants’ development skills on the effort, we grouped
results according to participants’ Java skills (Figure . It is important to note that
grades for Java skills and time developing as a professional include the same participants.
Therefore, the result of our analysis would be exactly the same if we had considered the
time developing as a professional rather than Java skills.

Figure shows a clear decreasing trend of effort in function of skills when consid-
ering only Spring-based applications. However, we cannot observe the same trend when
considering only Container-based applications. We applied Spearman’s correlation to
test the correlation between effort and skills. Whereas the correlation was both large
and statistically significant for Spring (rho = -0.67, p = 0.007), it was negligible and no
statistically significant for Container (rho = -0.04, p = 0.43). In addition, we applied
Kruskal-Wallis to test for a statistically significant difference amongst effort medians
for the three skill levels in each treatment. Results confirmed a statistically significant
difference for medians in the Spring group (p = 0.07, chi-squared = 5.26), but not in
the Container group (p = 0.977, chi-squared = 0.04). The causes for these differences

need further investigation.

113

4. IMPACT OF SECURITY SYSTEMS ON CLOUD PORTABILITY

4.2.4 Discussion

This section discusses the impact of our results on the hypothesis testing and on the

research question. We also discuss practical implications of our results.

4.2.4.1 Hypothesis Testing

The null hypothesis investigated in this experiment states that the median time to
modify how the application authenticates the user is the same regardless of the security
system adopted (Section . From the previous section, we can observe that the
median time vary with the security system (Difference = 41.3%, p = 0.007, v = 0.54,
Power = 0.89).

As the p-value is significant at o = 0.10, we reject the null hypothesis and accept
the alternative hypothesis that states that the median time is greater for Spring than
Container. It is important to highlight that even a smaller «, like &« = 0.05 or @ = 0.01,
would not change the null hypothesis rejection for this experiment.

To analyse the relevance of this result, we compare its effect size and power with
that obtained by Software Engineering (SE) experiments. According to the classification
proposed by Kampenes et al. [120], the effect size for this experiment can be considered
large (0.456 <7 <0.868). Moreover, only 30% of experiments in SE achieved such a
large effect (z = 0.34).

For the statistical power, we consider the classification proposed by Dyba, Kampenes
& Sjoberg [70]. For a large ~, like in this experiment, the statistical power achieved in
this experiment is greater than the mean achieved by experiments in SE that used the
Wilcozon test (z = 0.74). Moreover, when compared with all experiments analysed in

[70], only 16% of experiments achieved such a high statistical power (z = 0.63).

4.2.4.2 Research Question

Our research question is whether security systems impact on cloud application porta-
bility. The rejection of the null hypothesis and acceptance of the alternative hypothesis
support the conclusion that, for this experiment, Container-based take less time than
Spring-based applications to be modified. Thus, we can suggest that a cloud migration
that requires similar modification to that performed in this experiment will be more
efficient if the application’s security system is based on Container rather than Spring.
Hence, a Container-based is more portable than a Spring-based application, which an-

swers our research question: security system impacts cloud application portability.

114

4.2 Empirical Investigation

4.2.4.3 Implications

Once confirmed by independent replications, our results have two main implications.
Numerous researchers from industry and academia have sought solutions that enable
or increase cloud portability, typically based on the claim that lock-in is due to the use
of cloud platforms with different semantics, technologies and interfaces [210]. Although
these claims make sense from a practical perspective [211], they lack empirical evidence.
This experiment provides an empirical evidence that the application technology impacts
cloud portability too. This finding shows the need for studies investigating techniques
to make applications more portable in cloud rather than only proposing new solutions
for abstracting cloud differences.

Another practical implication of our findings bears on the recruitment of technical
staff for performing migration activities. Taking into consideration the result reported
in Section a company could save some money by hiring technical staff with
specific characteristics. For instance, for Spring-based applications, the company should
hire experienced developers, as they took one-third of the time (18.5 min) that less
experienced developers (58.5 min), as long as they do not cost three times more. On the
other hand, for Container-based applications, the company should hire less experienced

developers as their effort does not differ significantly from experienced developers.

4.2.5 Threats to Validity

This section discusses the main internal and external threats to the validity of this

experiment.

4.2.5.1 Internal

Internal threats impact on the cause-effect relationship. These threats might lead to an
alternative cause for the effect (known as confound) [2I5]. In this section, we identify
four internal threats.

As Section shows, the software application impacts the effort. As one of the
researchers involved in this study re-engineered the applications for adopting a different
security system, it might have biased our results. To mitigate this threat, we followed
common conventions for adopting the Container security systemﬂ and we were careful to

translate security rules from Spring into Container to keep exactly the same semantics.

"http://docs.oracle.com/javaee/7/tutorial/partsecurity.htm

115

http://docs.oracle.com/javaee/7/tutorial/partsecurity.htm

4. IMPACT OF SECURITY SYSTEMS ON CLOUD PORTABILITY

Adopting two different APIs for implementing OpenID Connect protocol might have
introduced some bias in our results as one API could require more effort than other
(Section . However, this was a necessary risk. The Container API would require
critical and very complex modifications in order to be adopted by Spring, whereas the
Spring-API could not be adopted by Container-based applications as they are specific
for Spring. This might be a confound variable for this experiment, and the complexity
of these APIs should be evaluated in isolation to identify its confounding effect.

Using one XML-based (Spring) and another code-based (Container) security system
is a possible threat because some participants could be more skilled in one technology
than another. In addition, this heterogeneity in our variables can be a confounding
factor. As explained in Section[f.2.1.3] it was necessary due to the version of applications
and the Spring version used. Like the use of different OpenlD Connect APIs, this might
be a confound variable that should be evaluated in isolation to identify its confounding
effect in future studies.

As Section [£.2.3.3] shows, the training session and the pretest might not have been
enough to prepare participants and rule out all learning effects. Although some partic-
ipants had some knowledge on OpenlD, no one had experience in OpenlD implementa-
tions. Therefore, we can assume that all participants learnt at the same time, but we
cannot guarantee that all of them acquired similar skills after training.

Finally, the small sample size could also affect our conclusions. However, it is impor-
tant to emphasise that the experiment achieved a large effect size and a high statistical
power when compared to experiments in Software Engineering (Section . More-
over, Section shows that results do not differ across participants, apart from one
participant. Nevertheless, more participants should be considered for future replications

of the experiment.

4.2.5.2 External

External threats restrict the result generalisation beyond the scope of the study [256].
In this section, we identify two external threats.

Applications used in this experiment are a very small sample of the target objects for
this experiment (Section [4.2.1.2)). This decision was necessary to keep the experiment
simple and possible to execute in the limited amount of time. These applications are
small information systems, and therefore, they limit the generalisation of this result
beyond this category.

However, it is worth to note that these are real commercial applications. Future

116

4.3 Building Prediction Models

replications of this experiment should increase the number and type of applications
analysed to enable wide generalisations.

Using participants from the same company might affect our power to generalise our
results. Although it is not uncommon to limit studies to a single group [94] [195], we
recognise that it can restrict our generalisation. However, from our work experience
with SMEs, we believe that these participants are a good representative of developers

employed by Brazilian software development companies.

4.3 Building Prediction Models

This section details the exploratory process of building regression models for predicting
the effort of increasing cloud application portability by modifying the security system
of legacy three-tier web applications to enable the use of single sign-on by adopting
implementations of the OpenlID Connect protocol. By using concepts and techniques
explained in Appendix [C] and results from the experiment reported in Section [£.2] we
built a set of simple and multiple linear regression models using OLS and, alternatively,
robust regression methods. Leave-one-out cross-validation (LOO-CV) was used to eval-
uate the prediction models. The prediction model accuracy was assessed by using the
MMRE summary measure. Additionally, we compared the accuracy of our models with
maintainability prediction models reported in Section[C.4l The rationale for techniques

used in this section is detailed in Appendix [C]

4.3.1 Simple OLS Linear Regression Model

The experiment reported in Section shows that security system can be used as an
indicator of cloud portability when adoping SSO by using OpenlID Connect implementa-
tions. Therefore, we built a simple linear regression model by using the security system
as a single predictor. Figure [£.4] shows a jitter plot with all 24 observations and a model
line representing the prediction model. Unlike the prediction model reported in Section
the single predictor is a categorical variable with only two values representing the
two security systems evaluated in our experiment.

Table summarises the accuracy obtained with LOO-CV, and the goodness of
fit for this simple model. According to the classification presented in Section [C-4] for
maintainability prediction models, the simple model #1 achieved a fair accuracy (0.49
< MMRE < 0.88). Similar to the simple model in Section the Pred(0.37) shows
that 41.7% of predictions using this model could be classified as excellent.

117

STT

Effort (Minutes)

130+

120+

110+

100+

90+

80-

70+

60+

50+

40-

30+

20+

10+

Linear Model Fit

A
A
A
¢ °
A
)
o ° A
o . e
) o
o
container _ spr'ing
Security System

Figure 4.4: Effort prediction model line using security system as a single predictor.

ALITISVIHOd dNOTO NO SINHLSAS ALTHNODHS 40 LOVdINI ¥

4.3 Building Prediction Models

L R Rl
10

0.4

3

0.3
S
.‘Dﬁ
< 12

00.2
(@)

0.1

2 4 s g a1 1416
0o 1 B 0 5.4 13 15 47 -182021°%2324
0 5 10 15 20 25

Observations

Figure 4.5: Cook’s distance plot of data points. No observation is acknowledged as an
outlier though two observations differ from the rest.

However, the goodness of fit (R? = 0.122; RSE = 27.600) is significantly lower than
that for the simple model in Section (R? = 0.224; RSE = 15.130).

4.3.1.1 Outlier analysis

As outliers can influence the model, we tried to identify possible outliers and quantify
their impact on the model. The plot in Figure [£.4] suggests two outlier candidates with
Effort >100 min (Observations 10 and 12). In addition to the jitter plot, we also used
the Cook’s distance to identify outlier candidates. As Figure shows, no observation
is above the cuttoff for Cook’s distance (0.5) though observations 10 and 12 differ from

most observations.

We analysed observations 10 and 12 to check whether they were influential cases for
the model. These two observations came from participant 3 when modifying the Spring
security system for the two applications used in the experiment. This participant took
the highest amount of effort for Spring applications amongst all participants (Section

4.2.3]). Therefore, these two observations were not considered as outliers.

119

0ct

Table 4.14: Accuracy and goodness of fit for effort prediction models built. Variables are identified according to Table

Accuracy Measures

Goodness of fit

| Prediction Model (Variables) MMRE | MAR | Pred(0.25) | Pred(0.30) | Pred(0.37) | R? | RSE

1 | Simple model (Security System) 0.733 | 21.000 0.250 0.292 0.417 0.122 | 27.600

2 tség’le robust model (Security Sys- | <o) | 1965 | 0167 0.250 0.375 | 0.021 | 17.190

3 Xf)l“ple model (Security System + | o0 | 90191 | 0.125 0.250 0417 | 0.289 | 25.420

4 l;gl)l“ple model (Security System + | oo | o) 147 | (208 0.333 0333 | 0272 | 25.730

5 ﬁ;)lmple model (Security System + | ;10 | 95534 | 299 0.333 0.375 | 0.193 | 27.090

6 xz;mple model (Security System + | o | 911 0.292 0.292 0.333 0.216 | 26.700

7 | Multiple model (Security System + | o /a0 | 50 7y | 59 0.292 0417 | 0.294 | 25.970
#3 + #1)

g | Multiple model (Security System + | o0/ | 59 g9s | 0.208 0.292 0.292 0.272 | 26.360
#3 + #2)

g | Multiple model (Security System + | sor | 51 7y | 950 0.292 0.292 0.216 | 27.360
#3 + #4)

1o | Multiple model (Security System + | o oo | o) w13 | o5 0.292 0.333 | 0.193 | 27.750
#3 -+ app.name)

11 | Multiple model (Security System + | o Zo0 | o7 750 | g.950 0.292 0.292 | 0.216 | 27.360
#3 + time.p.dev)

19 | Multiple robust model (Security | o o | 9010 | 0167 0.250 0.250 | 0.100 | 20.970
System + #3)

ALI'TIAVIHOd dNOTO NO SINHLSAS ALITHNDHAS 40 LOVINI ¥

4.3 Building Prediction Models

4.3.1.2 Simple Model Diagnostics

As explained in Section [C.5] meeting some underlying assumptions is a pre-condition
to accurately generalise a model beyond its data set. We tested the extent to which
model #1 meet seven underlying assumptions for simple linear regression models based

on the OLS method. Figure |4.6| shows four plots to visually support the diagnostics.

Sample size. No observation was removed from the original sample. Therefore, the
simple model was based on the full sample that consists of 24 observations. As only
one predictor was used for building the model, the sample-predictor rate is within the

acceptable range (i.e., > 10).

Linearity. Figure (a) shows the jitter plot for residuals and fitted values of the
simple model. Data points are scattered across the plot around the red line (middle),
suggesting a homogeneous distribution. The blue line, which supports the recognition
of patterns, overlaps the red line in the middle. Additionally, the Rainbow test confirms
the linearity assumption fulfilment (Rain = 0.324, p = 0.965).

Independent residual terms (errors). We tested the lack of autocorrelation for
residual terms by using Durbin-Watson test (DW = 1.172, p = 0.008). The DW statis-
tics is within a critical region, suggesting that errors are not independent. Furthermore,
the p-value is significant for v = 0.05, confirming that the simple model #1 does not

meet this assumption.

Homoscedasticity. To meet the homoscedasticity assumption, the variance of resid-
ual terms should be homogeneous. Figure (b) helps to identify the homogeneity
of the variance. The two dashed lines suggest a funnel pattern, which could mean a
violation of homoscedasticity (i.e., the presence of heteroscedasticity). However, we can
observe a homogeneous distribution of data points around the middle (red line). Finally,
the Goldfeld-Quandt test confirms that the simple model meet this assumption for o =
0.05 (GQ = 7.403, p = 0.001).

Low leverage. The plot in Figure (c) suggests no major leverage issues as data
points are centred around zero (y-axis) and concentrated below the leverage cutoff

(0.25). Therefore, we considered that the simple model meet this assumption.

121

4. IMPACT OF SECURITY SYSTEMS ON CLOUD PORTABILITY

60 5 60

Residuals
@
8
Residuals
@
8

-30 : . = -30
20 30 . 40 50 30 35
Fitted values Fitted values

4o 45

(a) Linearity (b) Homoscedasticity

Standardized Residuals
. N

°

. 0.1
:

-1 H 0.0

04 -1 0

00 i 2
Hat values Studentized Residuals

(¢) Low Leverage (d) Normality

Figure 4.6: Diagnostics plots for effort prediction model #1

No perfect multicollinearity. As the simple model has only one predictor, there is

no risk of multicollinearity.

Normality. The density plot in Figure (d) shows a positive skew, which suggests
deviation from normality. Indeed, as the Shapiro-Wilk test confirms, the simple model

violated the normality assumption (W = 0.851, p = 0.002).

4.3.1.3 Alternative Simple Robust Regression Model

As explained in Section [C.5] robust regression is a method less sensitive to outliers and
make no assumption regarding the distribution type. This section uses this method to
test whether it can improve the prediction accuracy of our regression model. Addition-
ally, for the simple model #1, the robust regression is an alternative to overcome the
lack of normality. Table [£.14] shows the accuracy and goodness of fit for the simple
robust model #2.

122

4.3 Building Prediction Models

Table 4.15: Ratio variables in our data set and their correlation with effort.

‘ Ratio variables ‘ rho ‘ S ‘ p

1 | participant.openid.knowledge | -0.502 | 3456.8 | 0.012
2 | participant.spring.skills -0.496 | 3441.5 | 0.013
3 | participant.java.skills -0.349 | 3104.1 | 0.094
4 | participant.container.skills -0.300 | 2990.8 | 0.153

Although we can observe a significant improvement in the MMRE accuracy (-20.7%)
and RSE goodness of fit (-37.7%) when compared to model #1, Pred measures got worse

as well as the R2.

4.3.2 Multiple OLS Linear Regression Model

A multiple linear regression model is similar to a simple model, but it includes more
than one predictor. We built a set of multiple linear models to investigate whether
other variables in our data set could improve the prediction accuracy of our simple
model. Firstly, we analysed possible predictor candidates. Secondly, we applied the
forward stepwise method to identify the impact of predictor candidates in our model.
Next, we analysed the existence of outliers. Then, we checked whether the best multiple
linear model meet underlying assumptions for multiple linear regression models based
on OLS. Finally, a multiple robust regression model was built to evaluate the impact of

this method in the prediction accuracy.

4.3.2.1 Analysis of Predictor Candidates

As the literature recommends [84, 206], we quantified the correlation between ratio
variables in our data set and our dependent variable (effort) to identify predictor candi-
dates. As Table shows, rho values vary from -0.300 (lowest) to -0.502 (highest). To
be considered as a predictor candidate, we set rho = 0.193 as the minimum cutoff. This
value represents the minimum value for medium correlations in SE experiments [120].
As all variables are above the cutoff, all of them were considered as possible predictors

for the forward stepwise method.

4.3.2.2 Forward Stepwise Method

This method was used to define whether a predictor candidate should enter the mul-

tiple regression model. The entry condition was a MMRE <0.733, which was the best

123

4. IMPACT OF SECURITY SYSTEMS ON CLOUD PORTABILITY

accuracy achieved by the simple OLS regression model. The stepwise method consists
of several iterations. For each iteration, (i) one predictor candidate is added to the
model, (ii) the model accuracy is re-evaluated, and (iii) the entry criterion is applied to
decide whether the predictor candidate should be kept in the model. As the variable
that represents the security system is already in the model, we omitted this step and
started with the second predictor candidate (variable #1 in Table .

Iterations 1, 2, 3 and 4 Prediction models #3-#6 were built in these four iterations
as an attempt to find a second predictor that could improve the accuracy of our simple
model #1. As Tableshows, model #5 (MMRE = 0.719) achieved the best accuracy
amongst all models built in these iterations (-1.9% better than model #1). Thus,
variable #3, which was used to produce model #5, was kept in the model and a new

set of iterations was performed.

Iterations 5, 6 and 7 For the second round of iterations (models #7-#9), we tried
to find a third predictor to improve the prediction accuracy of our model. As Table
shows, no variable could achieve this goal although models in this round presented
a far better R2.

Iterations 8 and 9 The experiment presented in Section shows that the Web
application used in the experiment has some impact on the effort for changing the
security system. The Web application is represented by a categorical variable in our
data set. Therefore, for this set of iterations, we forced the entry of two categorical
variables as an attempt to improve the accuracy. However, models #10 and #11,
produced in these iterations, did not improve the accuracy (Table .

4.3.2.3 Outlier analysis

This section tries to identify possible outliers and quantify their impact on the multiple
model #5. As there are multiple predictors in the model, it is no longer possible to
infer outliers just by inspecting the jitter plot. Therefore, we used the Cook’s distance
to identify possible outliers.

The result of Cook’s distance analysis (Figure does not differ from that of the
simple model (Figure . As no observation was removed from the data set, the cutoff
for Cook’s distance remains the same. No observation was found above the cutoff, and

observations 10 and 12 still differ from most observations. As previously explained in

Section these are not outliers.

124

4.3 Building Prediction Models

0.5 1= = mm e e e e e
0.4
qéos ‘10
8
2
202
&)
12
0.1
23
2 4 5 6 9 -1 <14 16 -1819
00l 1 3 78 213 15 17 202122 24
0 5 10 15 20 25
Observations

Figure 4.7: Cook’s distance plot for the multiple effort prediction model #5.

As a matter of investigation, we removed observations 10 and 12 and re-built model
#5. We noted a significant improvement (-23.7%) in the accuracy (MMRE = 0.548).
We also observed an improvement in the goodness of fit (R? = 0.209, RSE = 14.020).
However, removing these two observations would result in a major change in our data
set as they represent the real effort that one of our participants took to perform the
experiment task. This change would also unbalance the distribution of observations
since these two observations refer to the Spring security system. Therefore, we decided

for keeping these observations in the data set.

4.3.2.4 Multiple Model Diagnostics

As for the simple model, we carried out a set of tests to identify the extent to which the
best multiple model meet seven underlying assumptions for multiple linear regression
models based on the OLS method. As a reference, we used model #5, as it obtained

the best accuracy amongst all models built (Table [4.14)). Figure shows four plots to

support the diagnostics.

Sample size. The multiple model #5 consists of two predictors. Our original sample
consists of 24 observations, which means a sample-predictor rate of 12. As this is greater

than the minimum cutoff of 10, the model #5 meet this assumption.

125

4. IMPACT OF SECURITY SYSTEMS ON CLOUD PORTABILITY

60 60

Residuals
©
8
Residuals
@
8

F

-30-
-30-

20 30 50 60 20 30

40 40
Fitted values Fitted values

(a) Linearity (b) Homoscedasticity

Standardized Residuals

0.09 012

015 i 2
Hat values Studentized Residuals

(¢) Low Leverage (d) Normality

Figure 4.8: Diagnostics plots for effort prediction model #5

Linearity. Figure (a) shows the jitter plot for residuals and fitted values of the
multiple model #5. Data points are scattered across the plot around the red line
(middle) although the blue line suggests a pattern of ups and downs. To test the
assumption that the model has no linearity issues, we applied the Rainbow test that

confirms that model #5 meet the linearity assumption (Rain = 0.278, p = 0.978).

Independent residual terms (errors). We tested the lack of autocorrelation for
residual terms by using Durbin-Watson test (DW = 1.289, p = 0.018). Like in the

simple model, the multiple model also does not meet this assumption.

Homoscedasticity. To meet the homoscedasticity assumption, the variance of resid-
ual terms should be homogeneous. Figure (b) helps to identify the homogeneity of
the variance. Like for the simple model (Figure (b)) the two dashed lines suggest
a funnel pattern, which could indicate the presence of heteroscedasticity. Although we

can observe a homogeneous distribution of data points around the middle (red line), we

126

4.3 Building Prediction Models

applied the Goldfeld-Quandt to test whether the homoscedasticity assumption is met.
The test result (GQ = 6.271, p = 0.005) is significant for v = 0.05, which confirms the

assumption fulfilment.

Low leverage. The average leverage for this model is 0.125. Therefore, the cutoff
for analysis is three times this average (0.375). The plot in Figure (c) suggests no
major leverage issues as data points are centred around zero (y-axis) and we can observe
no data point above the cutoff. Therefore, we considered that model #5 meet the low

leverage assumption.

No perfect multicollinearity. Unlike the simple model #1, the multiple model
#5 might violate the multicollinearity assumption as it has 2 predictors. To test this
assumption, we checked the variance inflation factor (VIF) that indicates whether a
predictor has strong relationship with other predictors. The VIF calculated for both
predictors was equals to 1. Consequently, the tolerance (1/VIF) was also equals to 1.
As the values for the VIF are lower than 10 and the tolerance is greater than 0.2, we

considered that the model #5 meet this assumption.

Normality. As for the simple model #1, the density plot in Figure (d) suggests
a positive skew. As confirmed by the Shapiro-Wilk test, model #5 also deviates from
normality (W = 0.830, p < 0.001).

4.3.2.5 Alternative Multiple Robust Regression Model

As model #12 in Table shows, the accuracy of our robust model improved -21.6%
when compared to the multiple model #5, reducing the MMRE to 0.561. However, all
Pred measures decreased as well as the R?. It is important to note that the multiple

robust model produced a better accuracy than the simple robust model (MMRE =
0.581), unlike that reported in Section [3.4.2.5

4.3.3 Discussion

From 12 prediction models built in Sections and the multiple robust model
#12 achieved the best accuracy as measured by the MMRE summary measure (MMRE
= 0.561). This model consists of two predictors, the variable that represents security
systems and the Java skills of participants. Although the goodness of fit improved
nearly four times (R? = 0.1) when compared to the simple robust model (R? = 0.021),

127

4. IMPACT OF SECURITY SYSTEMS ON CLOUD PORTABILITY

it is surprisingly low when compared to the multiple robust model built in the previous
chapter (R? = 0.824).

According to the classification presented in Section model #12 achieved a fair
accuracy (0.49 < MMRE < 0.88), a bit lower than that achieved by the best model in
the previous chapter (MMRE = 0.412). In addition, only a quarter of predictions made
by model #12 could be classified as excellent. This result is one-third lower than the
result of multiple OLS model #5, which has the same predictors.

Although model #12 can be used to predict the effort of increasing cloud application
portability within the context defined in Section [4.2] its generalisation beyond this data
set is limited. The robust model is less sensitive to the lack of normality, present in
the multiple OLS models, but it is not robust to the violation of independent errors.
In future studies, machine learning approaches that are robust to this type of violation

can be used to enable the model generalisation beyond this data set.

4.4 Summary

This chapter represents the second step to addressing the objectives defined in Section
We empirically investigated a technology, I&A security systems, to assess whether
it impacts cloud application portability. The result of the experiment in Section [.2]
confirmed our hypothesis - security system does impact cloud application portability
within the context defined for the experiment. In addition, the experiment achieved an
effect size and a statistical power that are among the highest of the SE experiments in the
literature. Moreover, the use of software developers working on their usual environment
and using their usual tools increased significantly the realism of our experiment.

However, this experiment was conducted within a scope and different results could
be obtained if authorisation was used instead of authentication. Similarly, using a tech-
nology other than security systems could lead to different results although we strongly
believe that most technologies would produce similar results. Increasing the generalisa-
tion of our findings is an important future work (Section .

Additionally, we used the data set produced in the experiment to build 12 prediction
models by using two different prediction methods for linear regression. Our best model
achieved a fair accuracy when compared to other prediction models reported in the
related literature (Section|C.4]). However, the ability to generalise our prediction models
beyond this data set is limited due to the violation of independent errors assumption.
Nevertheless, results presented in this chapter can potentially contribute to the outcomes

envisaged for this research.

128

Chapter 5

Investigating the Impact of Cloud
Platforms and Services on Cloud

Application Portability

Cloud platforms and services are two key factors of a cloud migration since they repre-
sent the target environment (Sections and . In addition, as presented in Section
semantics, technologies and APIs used by cloud platforms have been regarded as
the main causes for cloud lock-in, which, in turn, hinders cloud portability. Moreover,
three out of four activities in the cloud migration process involve the cloud platform and
service (Section . Therefore, it makes sense to investigate these two key factors.

This chapter empirically investigates the impact of cloud platforms and services
on cloud application portability in the context of configuring cloud services (Section
and deploying cloud applications (Section . Unlike previous chapters, this
investigation required two experiments to be carried out. Therefore, we present in
Sections [5.1] and common aspects of both experiments. We explore the outcomes
of both investigations by building prediction models to support decision makers when

analysing the required effort to configure cloud services (Section and deploy cloud
applications (Section [5.6]).

129

5. IMPACT OF PLATFORMS AND SERVICES ON PORTABILITY

5.1 Empirical Investigations

As explained in Section , we used guidelines provided in [256] to prepare and conduct
the two experiments. This section details aspects that are common for both experiments
undertaken. Sections and provide further information regarding protocol and
results of each experiment. Terminology associated with the experimentation framework

is highlighted in the main text; this terminology is explained in Appendix

5.1.1 Experiment Plan and Execution

5.1.1.1 Participant Selection and Study Design

Fourth-year undergraduate students of two different universities were invited to take
part in our experiments. Their acceptance was the only criterion considered for their
participation (convenience sampling). The first group of students was enrolled in the
Information Systems course at UNIPAR - Paranavai (UNIPAR) whereas the second
group was enrolled in the Computer Science course at the University of York (UoY).
The former is a Brazilian university whereas the latter is a British university. Partici-

pants were rewarded with vouchers in the equivalent value of £10.00 for the time they

dedicated to this study (about five hours, see Section [5.1.1.3)).

The first group was the control group (CG) whereas the second group was the treat-
ment group (TG). Both groups initially consisted of 12 participants. Therefore, we had
a balanced between-subject design. However, throughout training and experimentation
sessions, some participants gave up taking part in the activities (drop-outs). We ended
up with nine participants in the CG. For the TG, the number of participants varied ac-
cording to the experiment. Whereas for the experiment reported in Section the TG
consisted of four participants, six participants took part in the experiment in Section
These drop-outs impacted on the design, leading us to adopt an unbalanced design.

The impact of drop-outs and sample size on results are discussed in Section [5.4.2

5.1.1.2 Data Analysis

As explained in Section|1.2] we adopted only non-parametric statistics in this experiment
as summarised in Table 5.1l whereas cutoffs we used for inferential tests are summarised
in Table 5.2

130

5.1 Empirical Investigations

Table 5.1: Summary of statistics and statistical tests adopted in this study.

Statistic Statistic/Test Configuration Purpose
Type

Median and quar- 25%, 50%, To identify the middle value

tiles 75%, 100% and categorise occurrences
into quartiles according to
their values.

Descriptive

Range Maximum - To quantify the data disper-

Minimum sion.
Kolmogorov - Two-tailed To test if two distributions
Smirnov come from the same popula-

tion.
Shapiro-Wilk Two-tailed, To test the assumption that
a=0.1 the data is normally dis-

tributed.

Inferential ~ Wilcoxon rank- Two-tailed, To test the statistical signif-
sum one-tailed icance of differences between

two medians.
Fisher’s Exact Test Two-tailed To test the relationship be-
tween two categorical vari-

ables.
Spearman’s corre- Two-tailed To test the strength of a rela-
lation tionship between two numeri-

cal variables.

5.1.1.3 Execution of Experiments

This study was carried out in two parts: training and experimentation. The training
session covered cloud concepts and prepared participants to perform the task required
for each experiment. The total training time was three hours. Subsequently, each
experiment required about 1 hour to be completed.

In our first meeting with the participants, an introduction script was handed out
to all of them. This script provided an overview of each experiment, highlighting their
purpose, the task that participants should perform, and benefits of taking part in this
experiment. Those who accepted taking part in the training session were asked to fill
out the participant characterisation form. This form collected information regarding the
participants’ background, such as previous knowledge on cloud computing. Questions
were based on guidelines proposed in [82].

Just before starting the first experimentation session, participants were asked to sign

131

5. IMPACT OF PLATFORMS AND SERVICES ON PORTABILITY

Table 5.2: Cutoff values for evaluating the hypotheses. Table adapted from [70].

Unknown true state of nature

Hy Hy
0.95 0.70
Statistical | Accept Hg 1 - a: Correct B: Type II error
Conclusion (Confidence level)
0.05 0.30
Reject Hy a: Type I error 1 - 3: Correct
(Significance level) | (Statistical power)

a participant consent form. Next, each participant received a unique ID that was used
to identify them throughout the experiment. This ID bound participants and objects.

During the experiment execution, participants were free to get in and out of the
room, e.g. go to the toilet, as long as this time off was not counted as part of the
task performed in the experiment. The experimenter observed the experiment execu-
tion without interfering in tasks performed by participants. Participants were strongly
advised to not copy and paste any data as it could bias the result.

When the experiment finished, participants were asked to fill a feedback form, re-
porting their experience in this experiment. Participants received their vouchers and
participation certificates in a few weeks. Room and materials used for training and
experiment sessions were prepared by the experimenter before each session. Materials
consisted of computers with Internet connection, slides used during training sessions,
forms used during the experiment and guidelines for performing the experiment. For

information on ethics in this experiment, refer to Section [I.3]

5.1.2 Characterisation of Participants

This section examines the results of participation characterisation form (Section.
We have separated responses into two groups: one relating to self-evaluation and one
relating to prior experience. Tables [5.3] and [5.4 show the frequency of answers for each
question according to the university.

Table [5.3] shows the result of self-evaluation questions. The participants were asked
to evaluate themselves according to three questions. Their evaluation varies from zero
(lowest) to five (highest). Table shows that participants vary in their knowledge of
Java, Java for Web and cloud.

Table [5.4] shows how participants answered questions about their prior experience.

Most participants had neither professional (questions 6 and 10) nor practical experience

132

5.2 Empirical Investigation - Cloud Platform

Table 5.3: Summary of participants’ knowledge on programming and cloud computing.

UNIPAR UoY

| Evaluation Question 0‘1‘2‘3‘4‘5 0‘1‘2‘3‘4‘5

How would you grade
your current knowl-
edge about Java pro-
gramming?

How would you grade
your current knowl-
2 | edge about software |0 |0 | 1|6 |2 [0|[5|1]0|0[0]|0
development for the
Web with Java?
How would you
grade your knowl-
3 | edge about cloud |1 |1 |5 |1 |1]0|1]1|2]|1|1]0
computing BEFORE
this training?

with cloud APIs (question 8) and deployment (question 9). On the other hand, most
of them had used some cloud services (question 7).

These differences between participants from the two universities could raise some
questions about the validity of our design, described in Section Therefore, we
checked the homogeneity of participants by applying Fisher’s Exact Test. In the context
of this study, a relationship between questions and universities means that participants
are heterogeneous (i.e., their profile varies according to the university).

Apart from questions two and three, the test shows an independent relationship be-
tween answers and universities (p >0.05), suggesting that participants are homogeneous
regarding the aspects investigated by questions. Note that questions two and three were
not essential for any conclusion in this study since this study involved no programming
activity and required no previous development knowledge other than that taught during

their undergraduate course.

5.2 Empirical Investigation - Cloud Platform

The goal of this experiment is to analyse two cloud platforms for the purpose of evalu-
ation with respect to their impact on the effort to increase cloud application portabil-

ity from the point of view of the software developers in the context of undergraduate

133

5. IMPACT OF PLATFORMS AND SERVICES ON PORTABILITY

Table 5.4: Summary of participants’ practical experience on programming, cloud and
maintenance.

UNIPAR UoY

Experi t1
4 xperience Question No | Yes | No | Yes

Considering any programming language,

6 | have you ever developed an application | 8 1 4 2
professionally?

7 | Have you ever used any cloud service? 0 9 2 4

8 | Have you ever used any cloud API? 9 0 6 0

Have you ever deployed any application in
a cloud service?
Have you ever changed an application de-

10 veloped by a third party?

students configuring a cloud service by creating message queues in two public cloud
platforms. In the next sections, we detail the experiment protocol (Section [5.2.1]) and
show the main results of our experiment (Section [5.2.2)).

5.2.1 Experiment Plan

This section details specific aspects of this experiment, such as instruments, task, vari-

ables and hypotheses.

5.2.1.1 Instrumentation

In this experiment, two cloud platforms are investigated (treatments): Amazon Web
Services (AWS) and Microsoft Azure (Azure). Participants within the CG were assigned
to AWS and participants within the TG were assigned to Azure. Both platforms provide
types of services that are functionally equivalent, such as VM, storage and message
queuing. A cloud service was used as the object since it is not possible to evaluate
the cloud platform directly [142]. The type of service selected for this experiment is
the message queuing service (object). As explained in Section adopting message
queuing is essential to decouple application components so as to enable their individual
scalability and portability within and across cloud platforms. In addition, the current
focus of our research provided the rationale for this choice (Section[l.2). The two services
used were Amazon Simple Queue Servicd!| for AWS, and Service Bug?| for Azure.

"http://aws.amazon.com/sqgs/
2http://azure.microsoft.com/en-us/services/service-bus/

134

http://aws.amazon.com/sqs/
http://azure.microsoft.com/en-us/services/service-bus/

5.2 Empirical Investigation - Cloud Platform

5.2.1.2 Task

The task performed in this experiment consists of configuring a cloud service by creating
message queues. As explained in Sections [2.4] and [3.2] message queues are critical
to integrate components of distributed systems. The procedure for creating message
queues is slightly different for each service, and can be performed in different ways even
for the same service. Hence, this task can be considered as non-deterministic, as the
randomness involved in how the task is performed might affect the result of effort, e.g.
by using shortcuts provided by the platforms.

In summary, the task consists of performing the following steps:

1. Signing in to the platform;
2. Accessing the service;

3. Creating a single queue by providing a unique name. This step is performed a

number of times;

4. Signing out of the platform.

For the Azure platform, an additional step was required: the creation of a namespace
for a set of queues. This step can be done before or during the third step. Note that
no preferred region or additional configuration was required, such as the size of queues.
Participants registered the start and end time on an online form just before starting the
first step, and after completing the last step. Four trials were performed, each of them
consisted of a set of queues as presented in Table [5.5]

Our previous experience re-engineering applications to adopt message queuing pro-
vided the rationale for the number of queues considered, as follows. A single entity,
like a Customer in a sales management system, needs at least five queues. Each queue
is responsible for the communication of one CRUDH operation. The exception is the
Read operation that requires two queues - one to provide the request and another to
the response. In practice, this number of queues cover small applications varying from
5 to 20 entities. This number is a balance between what we found in small companies,

and what we believed participants would be able to do within the available time.

5.2.1.3 Selection of Variables and Definition of Hypotheses

The cloud platform represents the independent variable, or factor, evaluated in this

experiment. AWS and Azure are the two possible values (treatments), measured on

!Create, Read, Update and Delete

135

5. IMPACT OF PLATFORMS AND SERVICES ON PORTABILITY

Table 5.5: Trials performed and # of queues considered in this experiment. The # of
queues was randomly assigned to trials.

. Number of Queues per Platform
Trial AWS ‘ Azure

1 25 100

2 50 25

3 100 75

4 75 50

a categorical scale. The effort is the dependent variable, measured in the number of
minutesﬂ (ratio scale) to perform the task presented in Section

Two hypothesis were defined for this experiment, as formalised in Table [5.6] T is
the number of minutes spent to create message queues in each trial. Thus, the null
hypothesis states that the median time is the same regardless of the platform whereas

the alternative hypothesis states the contrary.

Table 5.6: Formal definition of hypotheses.

Null hypothesis TT aws = T Azure
(Ho)
Alternative hypothesis T aws # T Azure
(Hy1)

5.2.2 Results

5.2.2.1 Analysis of Individual Platforms

Figures [5.1] and [5.2] show the effort distribution across different groups of queues con-
sidered in this experiment. For the AWS platform (Figure , apart from a single
group of queues (# queues = 75), we can note an increasing trend in the data distri-
bution across the occurrences of different treatments. This difference might have been
motivated by the last trial/task effect [20], which means that participants could be in
a hurry to finish the task, or competing against them to be the first to finish. It could
have motivated participants to apply more effort in this last trial. This is a possible
threat to validity that is addressed in Section [5.4.2]

We can also observe an overlap of several data points from different treatments in

1We use the terms effort and time interchangeably throughout this study.

136

5.2 Empirical Investigation - Cloud Platform

Scatter plot: AWS

22- +
+
20- +
+
18 A i
A

$ 16 A A] b A
5 Queues
c A ® 25
= A 50
—14- + 75
S .o i + 100
L

12 o n n +

° A A [I |
10- [] n
8 ° n
o o o [)
0 5 10 15 20 25 30 35

Occurrences (n)

Figure 5.1: Data point distribution for the AWS platform. Increasing trend across group
of queues and overlap of data points in the y-axis.

the y-axis, in the range from 10 to 14 minutes. This overlap comprises all four treat-
ments, suggesting a non-uniform distribution of effort among treatments. In practice,
it suggests that the effort is not directly related to the number of queues.

Similar to the AWS, the Azure platform (Figure shows an increasing trend of
effort across occurrences of the four treatments. However, unlike the AWS platform,
the data distribution for Azure does not present any overlap between treatments, apart
from two data points in the y-axis, in the range from 10 to 15 minutes. Although we
can note some differences between AWS and Azure graphs, the Kolmogorov-Smirnov
test indicates that both distributions are similar (p = 0.39, D = 0.27).

By analysing the scatter plots, we can also observe the frequency of data distribu-
tions. For example, we can note that effort varies from 7 to 22 minutes (range = 15
min) for the AWS platform. In contrast, the Azure platform had a larger range, varying
from 4 to 30 minutes (range = 26 min). It shows that, considering all treatments, the
effort varied more for Azure than for AWS.

To test whether the data distribution is normal, we applied the Shapiro- Wilk test

137

5. IMPACT OF PLATFORMS AND SERVICES ON PORTABILITY

Scatter plot: Azure

30- +
+
25-
+
+
§ 20-
= Queues
£ e 25
p= A 50
g 0 =75
S
S 15- n + 100
= "
L
A]
10-
A A
A
[]
[] []
5.
[)
3 6 12 15

9
Occurrences (n)

Figure 5.2: Data point distribution for the Azure platform. There is an apparent linear
increase across group of queues and nearly no overlap.

for each treatment for both platforms, as each treatment is an independent distribution.
Table presents W and p values of normality tests. For the AWS platform, apart
from one treatment (# queues = 25), all treatments present normal distributions (p
>0.10). For the Azure platform, all treatments presented normal distributions. Thus,
both parametric and non-parametric tests could be applied to test most data collected.
As defined in Section[5.1.1.2] we concentrate only on non-parametric statistics, however.

Figures and show medians and quartiles for each treatment, for both plat-
forms. These boxplots quantify data points shown in Figures and [5.2] For the AWS
platform, apart from one treatment (# queues = 75), the boxplot shows an increasing
trend of medians, suggesting that the effort varies according to the # of queues. We
can also observe an overlap between lower and upper quartiles among three treatments
(# queues = 25, 50 and 100).

Unlike the AWS platform, the Azure boxplot shows an increasing trend across all
treatments and no overlap among them. Another difference between platforms is that

variances are larger for the AWS than for the Azure when considering treatments in-

138

5.2 Empirical Investigation - Cloud Platform

Table 5.7: Data normality test for both platforms. Apart from one distribution for AWS
platform, all distributions are considered normal.

AWS Azure
Queues W ‘ » ‘ W ‘ »
25 0.77892 | 0.0117 | 0.89495 | 0.4064
50 0.92393 | 0.4257 | 0.8397 | 0.1945
75 0.8798 | 0.1563 | 0.97137 | 0.85
100 0.96663 | 0.8645 | 0.9202 | 0.5381

dependently. This result is the opposite of the result obtained when analysing all
treatments together. For example, the effort for the first group of queues (# queues =
25) varies from 11 to 18 for AWS platform (range = 7 min) whereas it varies from 4 to
7 for Azure (range = 3 min).

To test the correlation between effort and number of queues, we used the Spearman’s
correlation coefficient (rho). The Spearman’s correlation test indicates a large significant
correlation between effort and the number of queues for both data sets (rho >0.5, p
<0.001). However, the Azure platform (rho = 0.96) achieved a correlation far larger
than AWS (rho = 0.53). In practice, it shows that for both platforms, increasing the
number of queues also increases the effort, but this is more evident for Azure than for
AWS platform.

5.2.2.2 Comparison of Platforms

Figure [5.5] summarises medians and quartiles for the four trials performed in this ex-
periment. The first boxplot (25, top-left) shows medians and quartiles for the first
group of queues (# queues = 25). The boxplot shows that the AWS median effort
(z = 8.0) is 33.3% greater than the effort for Azure (z = 6.0). In addition, we can
observe that there is no overlap between medians and quartiles from the two platforms.
The Wilcozon test confirms a significant difference between medians (p = 0.01) and the
effect size test shows a large effect size (v = -0.68). Analogously, the post hoc power of
the test is also large (Power = 0.63).

The second boxplot (50, top-right) shows medians and quartiles for the second group
of queues (# queues = 50). Similar to the first group, the boxplot shows the Azure
effort (z = 9.0) outperforming AWS (z = 15.0). In this trial, the AWS median time was
66.6% greater than Azure. Neither the boxes nor the whiskers from the two platforms

overlap. The Wilcozon test indicates a significant difference between medians (p =

139

5. IMPACT OF PLATFORMS AND SERVICES ON PORTABILITY

AWS: Medians and Quatrtiles

20-

=
(6]

Effort (Minutes)

10-

25 50 75 100
Queues

Figure 5.3: Medians and quartiles for AWS platform. Upper and lower quartiles overlap.

Azure: Medians and Quartiles

Effort (Minutes)
[[[y = N N N N N w
M K @2 ® o M K O @ 9

=
o

;

25 50 75 100
Queues

Figure 5.4: Medians and quartiles for Azure platform. Increasing trend across treatments.

140

5.2 Empirical Investigation - Cloud Platform

Medians and Quartiles for Each Treament
25 50

30+

25+

[N
[¢;] o

|

a1

75 100

Effort (Minutes)
w
o

N
(6]

——

N
o

=
[é)]

$

10+

AWS Az'ure AWS Az'ure
Cloud Platform

Figure 5.5: Effort comparison for different treatments. Surprising pattern change between
the first and last two treatments.

0.01). The effect size is similar to the first group of queues (y = -0.66), and the power
is even higher (Power = 0.88).

Unlike the first two trials, the boxplot of the third group (# queues = 75) shows an
inversion of results (75, bottom-left). Azure and AWS swap positions when compared
with previous trials. The boxplot shows AWS (z = 11.0) outperforming Azure (z =
14.5). In this trial, Azure median time was 31.8% longer than AWS. Likened to the first
two trials, there is no overlap between either boxes or whiskers from the two platforms.
The Wilcoxon test confirms that there is a significant difference between the two medians
(p = 0.04). Similar to previous trials, the effect size is large (v = 0.56), and the post
hoc power test presents a value similar to the first group of queues (Power = 0.62).

Like the previous trial, the boxplot of the last trial (# queues = 100) shows that
the median effort for Azure (z = 25.0) is 38.8% greater than that calculated for AWS
(z = 18.0), as observed in Figure (100, bottom-right). Following on the same result
of previous trials, boxes and whiskers from the two platforms do not overlap. The

difference between medians is significant (p = 0.006). In addition, this group has the

141

5. IMPACT OF PLATFORMS AND SERVICES ON PORTABILITY

highest effect size (7 = 0.74) and power (Power = 0.96) among all four groups of queues.
Table summarises the descriptive statistics presented in this section.

It is important to note that the sample size in this experiment is relatively small.
Therefore, we also calculated the confidence intervals of medians using the bootstrap
technique (Table . This technique can be used to increase the confidence by resam-
pling data [258]. Apart from the third trial (# queues = 75), there is no overlap between
confidence intervals. This result suggests that medians were calculated from different
populations, confirming previous results from Wilcozon tests. For the third trial (#
queues = 75), the AWS upper limit (12) overlaps the Azure lower limit. Nevertheless,
it is not enough to conclude that medians come from the same population, given the

effect size and power of previously applied statistical tests for this trial.

Table 5.8: 95% confidence intervals calculated by using the bootstrap technique. The
lack of overlap confirms the Wilcozon test.

Treatment ‘ Platform ‘ Lower limit | Median ‘ Upper limit
#Quewes =5 | Lol | G0 | a0 | 6o
ramen | S5 W[50 W
FQuenes =1 | Lol | 0 | s | 1
e =100 | S| o5y | a0 | oo

5.2.2.3 Hypothesis Testing

The null hypothesis investigated in this experiment states that the median time to
create message queues is the same regardless of the cloud platform adopted. From the
previous section, we can observe that medians of time vary with platform. For two
trials (# queues = 25 and 50), the AWS platform required more effort than Azure to
create message queues. For other two remaining trials (# queues = 75 and 100), the
Azure platform required more effort than AWS. For all four comparisons, the inferential
statistics confirmed significant differences at « = 0.05. In addition, the effect size
calculated for this experiment can be considered large according to values observed
in Software Engineering (SE) studies, and standard conventions [120], as well as the

statistical power [70]. In addition, 95% confidence interval does not present any major

142

evl

Table 5.9: Summary of descriptive statistics for each trial.

Treatment ‘ Platform ‘ Min ‘ 1st Quartile ‘ Median ‘ Mean ‘ 3rd Quartile ‘ Max
Queues = 25 AWS 7.0 7.0 8.0 94 12.0 13.0
Azure 4.0 5.5 6.0 5.8 6.3 7.0
(%) Variance | -42 -21 -25 -38 -47 -46
AWS 11.0 13.0 15.0 14.4 16.0 18.0
Queues = 50 Azure 8.0 8.8 9.0 9.5 9.8 12.0
(%) Variance | -27 -32 -40 -34 -38 -33
Queues = 75 AWS 8.0 10.0 11.0 11.1 12.0 16.0
Azure 12.0 13.5 14.5 14.3 15.3 16.0
(%) Variance | 50 35 31 28 27 0
AWS 12.0 16.0 18.0 17.6 20.0 22.0
Queues = 100 Azure 23.0 23.8 25.0 25.8 27.0 30.0
(%) Variance | 91 48 38 46 35 36

wrojje[d pnor) - uoryeSiysoauy peotaidwy Z°Q

5. IMPACT OF PLATFORMS AND SERVICES ON PORTABILITY

overlap, confirming the inferential tests. Therefore, for this experiment, taking into
account the experimental design set up, we reject the null hypothesis and accept the
alternative hypothesis that states that the median time to create message queues varies

according to the targeted cloud platform.

5.3 Empirical Investigation - Cloud Service

The goal of this experiment is to analyse cloud services. We aim to evaluate cloud
services with respect to their impact on the effort to increase cloud application porta-
bility from the point of view of the software developers. This evaluation is performed
in the context of undergraduate students deploying cloud applications. To deploy these
applications, our participants used two purpose-equivalent cloud services offered by a
single cloud platform (AWS). In the next sections, we detail the experiment protocol

(Section [5.3.1) and show the main results of our experiment (Section [5.3.2)).

5.3.1 Experiment Plan

This section details specific aspects of this experiment, such as instruments, task, vari-

ables and hypotheses.

5.3.1.1 Instrumentation

The AWS platform was the platform used in this experiment. AWS was chosen because
it is one of the most prominent public cloud platforms [140]. Two purpose-equivalent
services were considered (treatments): Container and Virtual Machine (VM). Whereas
the container service provides limited access to underlying configurations, such as pa-
rameters of the application server, the VM service provides wider access to a range of
different configurations, including operating system parameters.

In this experiment, the container service is represented by Amazon Beanstalk[]
whereas the VM is represented by Amazon ECQE] service. Participants in the CG were
assigned to the container service whereas participants in the TG were assigned to the
VM service. A single war file was used as the object in this experiment. This file rep-
resents the application deployed in the cloud service. The application is a simple web

application that prints a welcome message.

"http://aws.amazon.com/elasticbeanstalk
2http://aws.amazon.com/ec2/

144

http://aws.amazon.com/elasticbeanstalk
http://aws.amazon.com/ec2/

5.3 Empirical Investigation - Cloud Service

5.3.1.2 Task

As explained in Section [2.3] tasks in the software migration process vary significantly
in the literature although an overall process can be identified. The software migra-
tion consists of transferring software components from one cloud to another, therefore,
requiring the re-deployment of original, modified and possibly new application compo-
nents (Section . Therefore, re-deployment is a critical task to realise the scenario
target of this research, as presented in Section

The task consists of deploying a small application (object), representing application
components, a number of times (¢rials) by using the cloud service. The steps to deploy

the application are:

1. Signing in to the platform;

2. Accessing the service;

3. Configuring an instance of the service;
4. Uploading and deploying the war file;

5. Signing out of the platform.

It is important to note that steps three and four vary substantially depending on
the targeted cloud service. For example, for the container service, a new project (Ap-
plication, in the AWS vocabulary) and environment need to be defined. In addition,
uploading and deploying the application is done as a single step. For the VM service,
configuring an instance of the service consists of starting a new VM. It requires that a
set of configurations is defined. In addition, uploading and deploying the application is
done in two separate stepsﬂ As in the first experiment, the aforementioned steps might
vary even for the same service (i.e., the process is non-deterministic).

Participants registered the start and end time on an online form just before start-
ing the first step, and after completing the last step. Note that participants did not
wait until the deployment has finished, i.e., the time the platform took to deploy the
application was not taken into consideration for measuring the deployment effort. Each

participant deployed the same application four times (trials).

LThis process might be addressed in different ways. For example, a tool can be used to upload
and deploy at once. However, our experience with small companies show that these steps are often
addressed as two separated activities, as in this experiment.

145

5. IMPACT OF PLATFORMS AND SERVICES ON PORTABILITY

5.3.1.3 Selection of Variables and Definition of Hypotheses

The cloud service is the independent variable, or factor, evaluated in this experiment.
Container and VM, represented by Amazon Beanstalk and Amazon EC2 services re-
spectively, are the two possible values (treatments), measured in a categorical scale.
The effort is the dependent variable, measured in the number of minutes (ratio scale)
to deploy the application in the cloud service.

Two hypothesis were defined for this experiment, as formalised in Table .10} T
is the number of minutes spent to deploy the application for each trial. The null
hypothesis states that the median time to deploy the application is the same regardless
of the cloud service. Unlike the first experiment, the alternative hypothesis does not
state the contrary, but that the median time for deploying by using the VM service
is greater than that by using the container service. This assumption is based on our

previous experience working with both services.

Table 5.10: Formal definition of hypotheses.

Null hypotheSiS .’,’ETVM — i’TContainer
(Ho)
Alternative hypothesis TTvMm > 2T container
(Hi)

5.3.2 Results

5.3.2.1 Analysis of Individual Services

Figures and show the distribution of deployment effort for container and VM
services, respectively. Data points are scattered across occurrences; some patterns can
be observed. For example, the VM service chart shows a sequence of ups and downs,
varying from 3 to 7 minutes. Investigating the data set, we identified that these oc-
currences are linked to the first occurrences of each participant, which are often longer
than others. We assign this fact to the learning effect. It is common in experiments that
participants take more time to perform the first task as they are getting familiar with
the experiment [I3T]. This is a possible threat to validity that is addressed in Section

Scatter plots suggest that the range of effort for occurrences is similar for both
VM-based and containter-based deployments - most occurrences took <6 minutes. It

is important to note that the sample size differs between two services (n(container) =

146

5.3 Empirical Investigation - Cloud Service

Scatter plot: Container

12+

©

Effort (Minutes)
(2]

0 5 10 15 20 25 30 35
Occurrences (n)

Figure 5.6: Deployment effort for the container service. Data points are scattered.

36, n(VM) = 24). This difference is due to the unexpected drop-outs (Section [5.1.1.1)).

Some outliers can also be observed. For example, for the container service, four
deployments took 9 minutes or more whereas for the VM service, three deployments
took more than 10 minutes. Two aspects might have contributed for these outliers.
Firstly, sometimes, we observed an abnormal response time from the cloud platform.
Secondly, boredom or tiredness might have influenced participants in these few cases.

These threats are addressed in more detail in Section £.4.2]
Figures 5.8 and [5.9) show the frequency of deployment distribution for both con-

tainer and VM service. Histograms show that most container-based deployments (75%)
took less than 5 minutes. In contrast with container-based, only 42% of VM-based
deployments took less than 5 minutes. It suggests that container service was faster to
participants to deploy than VM. In addition, for the container service, the two most
common occurrences of effort were three minutes (n = 11), followed by one minute (n =
8). For the VM service, the two most common occurrences of effort were four minutes (n
= T7), followed by five minutes (n = 5). These two most common occurrences represent
nearly half-percent of all occurrences for both container-based (53%) and VM-based
(50%) deployments.

147

5. IMPACT OF PLATFORMS AND SERVICES ON PORTABILITY

Scatter plot: VM

24-

21-

[uy
[ee]

m
9
S 15-
=
=
N—r
£ 10- A
:g
i}

9- A

A
A A
6- A A
A A A A A
A A A A A A A
3 A A A
0 5 10 15 20

Occurrences (n)

Figure 5.7: Deployment effort for the VM service. First occurrences took more time than
others due to the learning effect.

Both histograms present long right tails, suggesting a non-normal distribution (pos-
itive skewness). We checked the data normality by applying Shapiro- Wilk test (Table
5.11). Both distributions are considered non-normal according to the test (p <0.1).

Table 5.11: Normality test for container-based and VM-based deployments. Both distri-
butions are considered non-normal.

Service Type ‘ W% ‘ P
Container-based | 0.7951 | <0.0001
VM-based 0.64083 | <0.0001

5.3.2.2 Comparison of Services

Figure shows medians and quartiles for container and VM services. The boxplot
shows that the median effort for VM-based deployments (Z = 5 min) is 66.6% greater
than that calculated for the container-based (Z = 3 min). In addition, we can observe an
overlap between the half-percent higher values of container-based and half-percent lower
values of VM-based deployments. This overlap indicates that VM-based deployments

148

5.3 Empirical Investigation - Cloud Service

Histogram: Container

[} ©

Frequency (# of occurrencies)
w

7 8 9 10 11 12 13

1 2 3 4 5 6 7
Effort (Minutes)

Figure 5.8: Histogram for container service. Most occurrences took less than 5 minutes

(75%).

took considerably more time than container-based. For example, whereas 4 minutes
was considered high effort for container service (3rd quartile), for the VM service it was
considered low effort (1st quartile). Table summarises further descriptive statistics.

Figures show that the median effort for VM-based deployments was 66% greater
than container-based. However, this difference is not homogeneously distributed across
quartiles. For example, in the first quartile, the VM service was 100% slower than the

container service. In addition, the range of effort also varies across services.

The range of effort for VM-based deployments (range = 21) is significantly larger
than that calculated for the container-based (range = 12). This larger variation can
be explained by longer human procedures to deploy an application by using the VM
service. These longer procedures are human-dependent, therefore, subject to greater

variance.

We tested the statistical significance of the difference between medians of both data
sets by applying Wilcoxon test. As presented in Section this was a one-tailed test.
The test confirmed that the difference is significant at o = 0.05 (W = 675, p = 0.0001).
Moreover, the effect size and power of this test is high (y = 0.50, Power = 0.90).

149

5. IMPACT OF PLATFORMS AND SERVICES ON PORTABILITY

Histogram: VM

9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Effort (Minutes)

o

Frequency (# of occurrencies)
w

Figure 5.9: VM service histogram. Most occurrences took less than 9 minutes (83%).

Table 5.12: Summary of descriptive statistics for both cloud services.

Service ‘ Min ‘ 1st Quartile ‘ Median ‘ Mean ‘ 3rd Quartile ‘ Max
Container-based | 1.0 2.0 3.0 3.63 4.25 13.0
VM-based 3.0 4.0 5.0 6.75 7.0 24.0
(%) Variance 200 100 66 87 64 84

5.3.2.3 Hypothesis Testing

The null hypothesis states that the median time to deploy an application into a cloud
service is the same regardless of the cloud service adopted. From the previous section,
we can observe that medians of time vary according to the service. In particular, the VM
service took 66% more time to deploy the application than the container service. This
difference was confirmed by a significant difference at o = 0.05. In addition, both the
effect size and statistical power calculated for this experiment can be considered large
according to values observed in SE studies, and standard conventions [I120]. Therefore,
for this experiment, taking into account the experimental design set up, we reject the
null hypothesis and accept the alternative hypothesis that states that the median time

to deploy an application by using a VM service is longer than a container service.

150

5.4 Discussion & Threats to the Validity of Empirical Investigations

Medians & Quartiles

244
22
20+
18-
16
0
]
S 14+
=
glz- .
ud
o
104
i 10
8.
6.
4.
2.
0+ — ,
Container VM

Deployment Service Type

Figure 5.10: Comparison of medians between two treatments. VM-based deployments
are 66% longer than container-based (p = 0.0001, v = 0.50, Pwr = 0.59).

5.4 Discussion & Threats to the Validity of Empirical In-

vestigations

5.4.1 Discussion

5.4.1.1 Research Question

This chapter investigates whether cloud platform and service impact cloud portability.
To do so, two experiments were carried out (Sections and . In both experiments,
the hypothesis testing supported the rejection of the null hypothesis and acceptance of
the alternative hypothesis. This means that, for those tasks evaluated in these two
experiments, the effort differs between treatments. This difference of effort suggests

that cloud platform and service impact on cloud portability.

151

5. IMPACT OF PLATFORMS AND SERVICES ON PORTABILITY

5.4.1.2 The Role of Automation

Service configuration and application deployment were the two tasks investigated in this
chapter. There are some tools available to support these activities. These tools might
be either cloud-specific [83], 199)] or general-purpose [170} 222] tools.

The use of tools can dramatically reduce the effort to configure cloud services and
deploy applications in cloud services [222]. On the other hand, they often require some
time for learning how to use and configure, and they might introduce changes in the
software development process (for examples, see [187] and [83]).

In this study, we opted for manual activities because our practice with small compa-
nies shows that these companies often configure cloud services and deploy applications
manually. However, we believe that benefits and trade-offs of using automated tools to
support these tasks as well as their impact on cloud portability should be investigated.
In this regard, [134] takes a very first step by carrying out a set of automated migrations

and measuring the required steps for each cloud platform.

5.4.2 Threats to Validity

This section discusses the main threats to validity of this study. These threats are

classified into internal and external.

5.4.2.1 Internal

Internal threats impact on the cause-effect relationship. These threats might lead to an
alternative cause for the effect (known as confound) [215]. In this section, we identify

four internal threats.

Outliers and different patterns in the data sets We can observe outliers in both
experiments carried out. An outlier is an observation that is somehow inconsistent with
most of observations in a data set [26]. For example, in Section we assigned
outliers, in the scatter plots in Figures[5.6|and [5.7] to the learning effect [131]. Some un-
expected data patterns were also observed. For instance, in Section [5.2.2.1] we assigned
a different pattern observed in Figure to the last trial/task effect |20].

These possible causes for outliers and different data patterns could be prevented by
adopting pre-task [131] and data reduction [250] techniques. We did not perform any
post hoc data reduction because the size of our sample was small. Removing outliers

could decrease the statistical power of both experiments. However, we must highlight

152

5.4 Discussion & Threats to the Validity of Empirical Investigations

that outliers not always have a negative impact on data analysis [204]. Nevertheless,
adopting pre-tasks and defining clear procedures for data reduction should be adopted

in future replications of this study.

Different background of participants Participants from two different universities
took part in this study in an unbalanced between-subject design (Section . Al-
though this is a valid design for experiments in SE [121I] and the statistical analysis
in Section [5.1.2 shows that participants did not differ regarding the group of questions
used to characterise them, we recognise that it might raise questions about the validity
of findings. For example, a student from a top ranked university could perform the
tasks more efficiently than another student from a non-top ranked university. Whereas
in future replications students in the CG and TG from the same university should be
considered for the matter of comparison, for this study we believe that this fact is ir-
relevant. Tasks performed by participants were very simple and required no previous

knowledge or special skills to be performed, other than those taught in training sessions.

The response time of cloud platform The response time of cloud platforms might
have impacted results of the experiment presented in Section [5.2.2l For two trials,
AWS required more effort than Azure. In contrast, for other two trials, Azure platform
required more effort than AWS. It is essential to underline that the number of queues
to be created was randomly assigned to trials (Section . During the experiment,
participants reported delays in the Azure platform when the number of queues were
higher than 50. No participant reported a similar issue for the AWS platform. However,
it is important to highlight that the effect size was large even for the first two trials.
Therefore, even if the last two trials are disregarded, the acceptance of the alternative

hypothesis remains.

Fatigue The tasks performed in both experiments were repetitive. Therefore, a pos-
sible threat is the fatigue resulting from constant repetition. This can impact on the
time to perform the tasks in different ways. For instance, a bored participant could
copy and paste content to finish the task quicker. To reduce this threat, experimental
tasks were performed in different periods of the day. A training session was performed
between the execution of each experimental task. In addition, we restrained ourselves

to a few trials to keep the experiment execution within about an hour.

153

5. IMPACT OF PLATFORMS AND SERVICES ON PORTABILITY

5.4.2.2 External

External threats restrict the result generalisation beyond the scope of the study [256].

In this section, we identify three external threats.

The use of students as participants A major threat of using students in this study,
rather than developers with experience in cloud platforms and services, is that students
depended exclusively on the training session to learn how to perform the tasks. In
addition, their lack of expertise could have contributed to increasing the average time
to undertake the tasks. Although it reduces our ability to generalise our findings, it
is acceptable for this study as our aim is to obtain early evidence of the phenomenon
under study [49].

Cloud service used for evaluating cloud platforms The experiment in Section
evaluates the impact of cloud platform on cloud portability by using a cloud service
that is less common than VM or storage services - the most prominent services in the
cloud literature [44]. This might lead to the misleading assumption that the result of

this experiment is not valid because top used cloud services should be considered.

It is important to point out that the experiment in Section [5.2] evaluated the cloud
platform, not the cloud service. The cloud service was used as an object as cloud
platforms are not evaluated directly [142]. Both AWS and Azure are leader cloud
platforms that have driven the innovation in the cloud market [I40]. However, we
acknowledge that using only one cloud service to evaluate two cloud platforms restricts
any generalisation beyond this type of cloud service. Different cloud services should be

used as objects in future replications to test whether generalisations are possible.

Sample size In this study, 15 participants took part in two experiments. Compared
with the subset of SE experiments that accounts only for undergraduate students, this is
less than the average (& = 43), but greater than the minimum (n = 10) [215]. The small
sample reduces the statistical power of inferential tests, and limits its generalisation.
Although the bootstrap technique was used to mitigate the effect of a small sample,

future replications of this experiment should consider more participants.

154

5.5 Building Prediction Models - Cloud Platform

5.5 Building Prediction Models - Cloud Platform

This section details the exploratory process of building regression models for predicting
the effort of increasing cloud application portability when configuring cloud services in
different platforms. By using concepts and techniques explained in Appendix [C] and
results from the experiment reported in Section [5.2] we built a set of simple and mul-
tiple linear regression models using OLS and, alternatively, robust regression methods.
Leave-one-out cross-validation (LOO-CV) was used to evaluate prediction models. The
prediction model accuracy was assessed by using the MMRE summary measure. Ad-
ditionally, we compared the accuracy of our models with maintainability prediction
models reported in Section [C.4] The rationale for techniques used in this section is
detailed in Appendix [C]

5.5.1 Simple OLS Linear Regression Model

The experiment reported in Section [5.2] shows that cloud platform can be used as an
indicator of cloud application portability when configuring cloud services in different
platforms. Therefore, we built a simple linear regression model by using the cloud
platform as a single predictor. Figure shows a jitter plot with all 52 observations
and a model line representing the prediction model.

Table summarises the accuracy results obtained with LOO-CV, and the good-
ness of fit for this simple model. According to the classification presented in Section [C.4]
for maintainability prediction models, the simple model #1 (MMRE = 0.415) achieved
a good accuracy (0.37 < MMRE < 0.49). Yet according to the accuracy classification,
the Pred(0.37) shows that 63.5% of predictions using this model could be classified as
excellent. The goodness of fit, as measured by the R2, is very low when compared to

prediction models in previous chapters (R? = 0.003), however.

5.5.1.1 Outlier analysis

As outliers can influence the model, we tried to identify possible outliers and quantify
their impact on the model. The plot in Figure [5.11| suggests four outlier candidates for
Azure platform with effort >20 min (Observations 40, 44, 48 and 52). The plot also
suggests another six outlier candidates (Observations 1, 5, 9, 17, 25 and 35) for AWS
platform (Effort <10 min).

In addition to the jitter plot, we also used the Cook’s distance to identify outlier
candidates. As Figure shows, only observation 48 was above the cuttoff for Cook’s

155

941

30+

Effort (Minutes)

10+

Linear Model Fit

N
o

A
A
A
A
° °
°
°
o °
™
° 4 ° A
®
Py ¢ A
() A
e o — @ O
o 9o L d A A
. o ©® []
o
® o
A A
o' ° AA
@ A A
A
aWs aleJre
Platform

Figure 5.11: Simple effort prediction model line using the cloud platform as a single predictor.

ALITIAVIHOd NO SHOIAHHAS ANV SINHOALV'Id 40 LOVdINI S

LGT

Table 5.13: Accuracy and goodness of fit for effort prediction models built.

Prediction Model (Variables)

Accuracy Measures

Goodness of fit

MMRE | MAR | Pred(0.25) | Pred(0.30) | Pred(0.37) | R* | RSE
Simple model 0.415 | 4.481 0.500 0.538 0.635 | 0.003| 5.562
Simple robust model 0.379 | 4.493 0.462 0.538 0.654 0.016 | 5.274
i\f;ét)lple model (Platform + config | 50, | 33g9 0.500 0.596 0.750 | 0.500 | 3.976
Multiple robust model (Platform + |) oo | 5307 | 509 0.596 0760 | 0.399 | 4.020

config load)

uriogye[d Pno[D - SPPOIN UoIIpaid Suipiing ¢'g

84T

0.3- 48
0.2-

o

(@]

[
8 44
0
()]
_U)
4

o)

o 40
@) 37

0.1- 52

45 49
41
16 46
12 38 42
28
1 45 9 1718 25 35 .
0.0- 23 678 1017 131415 190212223 2627 2930313%3" 36 39 47 5059
0 10 20 30 40 50

Observations

Figure 5.12: Cook’s distance plot of data points. Only one observation is acknowledged as an outlier though several others are

possible candidates.

ALITIAVIHOd NO SHOIAHHAS ANV SINHOALV'Id 40 LOVdINI S

5.5 Building Prediction Models - Cloud Platform

distance (0.23) though several other observations are possible outlier candidates.

We analysed 11 observations (1, 5, 9, 17, 25, 35, 37, 40, 44, 48, 52) to check whether
they were influential cases for the model. Ten participants were responsible for these
11 observations. We identified that four observations with extreme high effort values
for Azure platform (Observations 40, 44, 48 and 52) came from the queue size = 100.
Therefore, they could not be considered as outliers.

Five out of six extreme low effort values for AWS platform were result of the queue
size = 25 and they did not differ significantly from other observations with the same
queue size. Therefore, these five observations (1, 5, 9, 17 and 25) could not be charac-
terised as outliers. Finally, although observation 35 differs from other observations for
queue size = 75, we noted that removing this observation brought no improvement to
the model (MMRE = 0.414; R? = 0.002). Therefore, the original data set was kept.

5.5.1.2 Simple Model Diagnostics

As explained in Section [C.5| meeting some underlying assumptions is a pre-condition to
accurately generalise a model beyond its data set. We tested the extent to which model
#1 meets seven underlying assumptions for simple linear regression models based on
the OLS method. Figure shows four plots to visually support the diagnostics.

Sample size. No observation was removed from the original sample. Therefore, the
simple model was based on the full sample that consists of 52 observations. As model
#1 is based on a single predictor, the sample-predictor rate is within the acceptable

range (i.e., > 10).

Linearity. Figure (a) shows the jitter plot for residuals and fitted values of model
#1. The plot suggests two clusters grouping data points - one for fitted values below
13.5 and another for values above it. In fact, the Rainbow test confirmed that the

linearity assumption is not met (Rain = 3.044, p = 0.003).

Independent residual terms (errors). We tested the lack of autocorrelation for
residual terms by using Durbin-Watson test (DW = 2.424, p = 0.921). The DW statis-
tics is close to 2, meaning that errors are independent. The p-value is not significant

for a = 0.05, confirming that model #1 meets this assumption.

Homoscedasticity. To meet this assumption, the variance of residual terms should
be homogeneous. Figure (b) helps to identify the homogeneity of the variance. The

159

5. IMPACT OF PLATFORMS AND SERVICES ON PORTABILITY

Residuals
Residuals
1

129 132 138 141 133

135 135
Fitted values Fitted values

(a) Linearity (b) Homoscedasticity

N

-

i

Standardized Residuals
o
Density
°
9

005 - - [i
Hat values Studentized Residuals

(¢) Low Leverage (d) Normality

Figure 5.13: Diagnostics plots for effort prediction model #1

two dashed lines suggest a funnel pattern, which could mean a violation of homoscedas-
ticity (i.e., the presence of heteroscedasticity). However, we should consider that our
single variable is dichotomous, which might contribute to this perspective. Furthermore,
we can observe a homogeneous distribution of data points around the middle (red line).
Finally, the Goldfeld-Quandt test confirmed that model #2 meets this assumption for
a = 0.05 (GQ = 2.223, p = 0.027).

Low leverage. The plot in Figure (c) suggests no major leverage issues as data
points are centred around zero (y-axis). The average leverage for this model is 1.019,
therefore the cutoff is three times this value (3.057). As we can observe in Figure

(¢), no observation is above this cutoff. Thus, the model meets this assumption.

No perfect multicollinearity. As Model #1 has only one predictor, there is no risk

of multicollinearity.

160

5.5 Building Prediction Models - Cloud Platform

Normality. The density plot in Figure (d) shows a slightly positive skew, which
suggests deviation from normality. Indeed, as the Shapiro-Wilk test confirmed, model
#1 violated the normality assumption for « = 0.1 (W = 0.960, p = 0.085).

5.5.1.3 Alternative Simple Robust Regression Model

As explained in Section [C.5] robust regression is a method less sensitive to outliers and
make no assumption regarding the distribution type. This section uses this method to
test whether it can improve the prediction accuracy of our regression model. Addition-
ally, for the simple model #1, the robust regression is an alternative to overcome the
lack of normality

Table shows the accuracy and goodness of fit for the simple robust model #2.
Compared to model #1, the robust regression improved the model in -8.6% (MMRE
= 0.379) though all Pred measures decreased. Regarding the goodness of fit, we can

observe a slight improvement of both measures.

5.5.2 Multiple OLS Linear Regression Model

A multiple linear regression model is similar to a simple model, but it includes more
than one predictor. In addition to the variable that defines the cloud platform used,
our data set also has another variable to define the number of queues that was created
during the service configuration in each cloud platform (i.e., the configuration load).
Unlike previous chapters, we used the forced entry method to build a multiple linear
model and investigate whether this variable could improve the prediction accuracy of
our simple model.

We applied the forced entry method to identify the impact of the configuration load
(i.e., the additional variable) in our model. Next, we analysed the existence of outliers.
Then, we checked whether the multiple linear model meets underlying assumptions for
multiple linear regression models based on OLS. Finally, a multiple robust regression

model was built to evaluate the impact of this method in the prediction accuracy.

5.5.2.1 Forced Entry Method

As we had only one additional variable, this method was used rather than the forward
stepwise method. As result, model #3 consists of two variables. As Table [5.13] shows,
the second variable significantly improved the model (MMRE = 0.284) when compared

161

5. IMPACT OF PLATFORMS AND SERVICES ON PORTABILITY

to the simple OLS model (-31.5%) and also the simple robust model (-25%). The
goodness of fit also increased considerably (R? = 0.5; RSE = 3.976).

5.5.2.2 Outlier analysis

This section tries to identify possible outliers and quantify their impact on the multiple
model #3. As there are multiple predictors in the model, it is no longer possible to
infer outliers just by inspecting the jitter plot. Therefore, we used the Cook’s distance
to identify possible outliers.

Using default values for the cutoff of Cook’s distance, the plot in Figure [5.14] high-
lights the same observation presented in the simple model (48). As discussed in Section

[5.5.1.1] this is not an outlier. Therefore, no change was made to the original data set.

5.5.2.3 Multiple Model Diagnostics

As for the simple model, we carried out a set of tests to identify the extent to which
the best multiple model #3 meets seven underlying assumptions for multiple linear
regression models based on the OLS method. Figure [5.15] shows four plots to visually
support the diagnostics.

Sample size. Unlike the simple model, the multiple model #3 consists of two pre-
dictors. As no observation was removed from the original sample, the sample-predictor
rate is 26, which is still greater than the minimum cutoff of 10. Therefore, model #3

meets this assumption.

Linearity. Figure (a) shows the jitter plot for residuals and fitted values of mul-
tiple model #3. The blue line suggests that data points follow a pattern. To test the
assumption that the model has no linearity issues, we applied the Rainbow test that

confirmed that the model meets the linearity assumption (Rain = 1.618, p = 0.123).

Independent residual terms (errors). We tested the lack of autocorrelation for
residual terms by using Durbin-Watson test (DW = 2.057, p = 0.532). Like in the
simple model, the DW statistics is close to 2, meaning that errors are independent. The

p-value is not significant for a = 0.05, confirming that model #3 meets this assumption.

Homoscedasticity. To meet this assumption, the variance of residual terms should be
homogeneous. Like for the simple model (Figure (b)) the two dashed lines in Figure

162

€91

Cook's Distance

0.3 18
0.2+
a4
0.1+
40
36,
29 33 4 52
13 18 oo 46
16 34 39
3 7 10 15 2122, 38 42 45 49

0.0- 12 456 9 17 242526 3031 43 47 505

0 10 20 30 40 50

Observations

Figure 5.14: Cook’s distance plot of data points for the multiple effort prediction model #3.

uriogye[d Pno[D - SPPOIN UoIIpaid Suipiing ¢'g

5. IMPACT OF PLATFORMS AND SERVICES ON PORTABILITY

5.15|(b) suggest a funnel pattern, which could indicate the presence of heteroscedasticity.
As the Goldfeld-Quandt test confirms (GQ = 1.857; p = 0.072), the homoscedasticity

assumption is not met for o = 0.05.

Low leverage. The average leverage for this model is 2.019, therefore the cutoff is
three times this value (6.057). As we can observe in Figure (¢), no observation lies
above this cutoff. In fact, the largest Hat value is 0.10. Thus, we considered that the

model #3 meets this assumption.

No perfect multicollinearity. Unlike simple model #1, multiple model #3 might
violate the multicollinearity assumption as it has multiple predictors. To test this
assumption, we checked the variance inflation factor (VIF) that indicates whether a
predictor has strong relationship with other predictors. The VIF calculated for both
predictors was equals to 1. Consequently, the tolerance (1/VIF) was also equals to 1.
As the values for the VIF are lower than 10 and the tolerance is greater than 0.2, we

considered that the model #3 meets this assumption.

Normality. As for the simple model #1, the density plot in Figure (d) suggests
a slightly positive skew, which might means deviation from normality. However, as
confirmed by the Shapiro-Wilk test, model #3 meets the normality assumption for «
= 0.1 (W = 0.966, p = 0.150).

5.5.2.4 Alternative Multiple Robust Regression Model

As Table shows, the robust method improved the multiple model in -2.1% (MMRE
= 0.278). This is also the best accuracy achieved amongst all four prediction models
built. Additionally, the Pred(0.37) shows that 76.9% of predictions made by this model

achieved an excellent accuracy, according to the classification presented in Section [C.4]

5.5.3 Discussion

From 4 prediction models built in Sections [5.5.1] and [5.5.2] the multiple robust model
#4 achieved the best accuracy as measured by the MMRE summary measure (MMRE

= 0.278). This was the best accuracy obtained so far for all prediction models reported
in this document. Taking into consideration the accuracy classification proposed in
Section this prediction model achieved an ezcellent prediction (MMRE < 0.368).

Moreover, only one quarter of predictions made by this model could not be classified

164

991

Residuals

Standardized Residuals

135
Fitted values

(a) Linearity

0.6
Hat values

(¢) Low Leverage

© R [R R
R
3
3
©
5 -L
75 100 135 175
Fitted values
(b) Homoscedasticity
03
202
@
g
a
01
00
2 4 I |

0 i
Studentized Residuals

(d) Normality

Figure 5.15: Diagnostics plots for effort prediction model #3

uriogye[d Pno[D - SPPOIN UoIIpaid Suipiing ¢'g

5. IMPACT OF PLATFORMS AND SERVICES ON PORTABILITY

as excellent (Pred(0.37) = 0.769). The goodness of fit (R? = 0.399) is better than that
obtained by the best multiple robust model built in Section [£.3] but it is still lower
than that achieved by the best model in Section [3.4] Finally, as the robust method
is less sensitive to the heteroscedasticity presented by the multiple OLS model #3, we
conclude that this model can be used to predict the effort of increasing cloud application
portability within the context defined in Section

5.6 Building Prediction Models - Cloud Service

This section details the exploratory process of building regression models for predicting
the effort of increasing cloud application portability when deploying cloud applications
in a cloud service. Unlike prediction models built in previous chapters, our data set
consisted of one single variable - the cloud service used. Therefore, we were able to
build only simple models. By using concepts and techniques explained in Appendix [C]
and results from the experiment reported in Section we built a set of simple linear
regression models using OLS and, alternatively, robust regression methods. Leave-one-
out cross-validation (LOO-CV) was used to evaluate prediction models. The prediction
model accuracy was assessed by using the MMRE summary measure. Additionally, we
compared the accuracy of our models with maintainability prediction models reported

in Section The rationale for techniques used in this section is detailed in Appendix

5.6.1 Simple OLS Linear Regression Model

The experiment reported in Section shows that the cloud service can be used as
an indicator of cloud application portability when deploying cloud applications during
a cloud migration. Therefore, we built a simple linear regression model by using the
deployment service (i.e., container or VM) as a single predictor.

Figure shows a plot with all 60 observations and a model line representing the
prediction model. As the plot suggests, the model line is influenced by outlier candidates
for the VM service (Effort >10 min), which might have impacted the model fit.

Table summarises the accuracy results obtained with LOO-CV, and the good-
ness of fit for this simple model. According to the classification presented in Section [C.4]
for maintainability prediction models, the simple model #1 (MMRE = 0.755) achieved
a fair accuracy (0.49 < MMRE < 0.88). Yet according to the accuracy classification,
the Pred(0.37) shows that half of predictions using this model could be classified as

166

5.6 Building Prediction Models - Cloud Service

Linear Model Fit

A
A

20+
n
Q
S
=}
=
2 A
=
o

10+
i A

A
A A
A
A
ﬂ‘: AA A,
A A
O.

container vm
Platform

Figure 5.16: Simple effort prediction model line using the cloud service as a single pre-
dictor.

excellent (Pred(0.37) = 0.517). The goodness of fit, as measured by the R?, is relatively
low (R? = 0.132), however.

5.6.1.1 Outlier analysis

As outliers can influence the model, we tried to identify possible outliers and quantify
their impact on the model. The plot in Figure [5.16| suggests three outlier candidates
with Effort >10 min for the VM service (Observations 53, 55 and 57). Additionally,
observations 1 and 29 presented an extreme high effort for Container service (Effort >
10 min). In addition to the jitter plot, we also used the Cook’s distance to identify
outlier candidates. As Figure[5.17]shows, observations 53 and 57 were above the cuttoff
for Cook’s distance (0.2). We can also observe that the Cook’s distance statistics for
data points 1, 29 and 55 differ from most observations.

We analysed these six observations identified in the jitter and Cook’s distance plot
to check whether they were influential cases for the model. Four participants were
responsible for the six outlier candidates. We identified that most of these observations

were result of the first attempt to deploy the application. Therefore, they might have

167

Table 5.14: Accuracy and goodness of fit for effort prediction models built.

891

. . Accuracy Measures Goodness of fit
Prediction Model (Variables) MMRE | MAR | Pred(0.25) | Pred(0.30) | Pred(0.37) | R? | RSE
Simple model 0.755 | 2.607 0.333 0.433 0.517 0.132 | 3.967

2 | Simple model w/out outliers 0.561 | 1.398 0.400 0.564 0.564 0.189 | 1.868
Simple robust model 0.527 | 2.263 0.300 0.417 0.517 0.856 | 1.813

ALITIAVIHOd NO SHOIAHHAS ANV SINHOALV'Id 40 LOVdINI S

691

0.4+

o
[

Cook's Distance
o
N

0.1-

0.0+

57

53
1
29 55
e a0 ©? 56 50
23456789 10123,496 19pP2P2PER8 3EEABESGEAE U2 4zé THSPL 5, 0 2%,
0 20 _ 40 60
Observations

Figure 5.17: Cook’s distance plot of data points.

901AIOg PNO[D - S[PPOIN UOIIIPald Surping 9°g

5. IMPACT OF PLATFORMS AND SERVICES ON PORTABILITY

been impacted by the learning effect (Section [5.3.2.1]).

As result, we concluded that these six observations were real outliers, and we decided
to remove them from our data set. Table [5.14] shows the resulting model #2. The
accuracy of the model #2 (MMRE = 0.561) improved -25% when compared to the
previous model. We can also observe some improvement in all other accuracy and

goodness of fit measures.

5.6.1.2 Simple Model Diagnostics

As explained in Section meeting some underlying assumptions is a pre-condition to
accurately generalise a model beyond its data set. We tested the extent to which model
#2 meets seven underlying assumptions for simple linear regression models based on

the OLS method. Figure [5.1§ shows four plots to visually support the diagnostics.

Sample size. In total, six observations were removed from the original sample, re-
sulting in a reduced sample with 54 observations. As model #2 is based on a single

predictor, the sample-predictor rate is within the acceptable range (i.e., > 10).

Linearity. Figure (a) shows the jitter plot for residuals and fitted values of model
#2. Data points are scattered across the plot around the red line (middle), suggesting
a homogeneous distribution. The blue line is straight, supporting the assumption that
residuals follow no pattern. The Rainbow test confirmed that the linearity assumption
was met (Rain = 0.758, p = 0.761).

Independent residual terms (errors). We tested the lack of autocorrelation for
residual terms by using Durbin-Watson test (DW = 1.482, p = 0.017). The DW statis-
tics is close to 1, meaning that errors are not independent. The p-value is significant

for a = 0.05, confirming that model #2 does not meet this assumption.

Homoscedasticity. To meet this assumption, the variance of residual terms should be
homogeneous. The two dashed lines in Figure (b) suggest no pattern. Additionally,
we can observe a homogeneous distribution of data points around the middle (red line).
However, the Goldfeld-Quandt test shows that model #2 does not meet this assumption
for « = 0.05 (GQ = 0.455, p = 0.974).

170

5.6 Building Prediction Models - Cloud Service

Residuals
Residuals

a5 50

2 40
Fitted values Fitted values

(a) Linearity (b) Homoscedasticity

1§ e
2
. ko]
. 2
a
02
L

Standardized Residuals

0.030 0.035 0.045 1

0.040 i
Hat values Studentized Residuals

(¢) Low Leverage (d) Normality

Figure 5.18: Diagnostics plots for effort prediction model #2

Low leverage. The plot in Figure (c) suggests no major leverage issues as data
points are centred around zero (y-axis). The average leverage for this model is 1.018,
therefore the cutoff is three times this value (3.055). As we can observe in Figure
(c), no observation is above this cutoff. Thus, we considered that the model #2 meets

this assumption.

No perfect multicollinearity. As Model #2 has only one predictor, there is no risk

of multicollinearity.

Normality. The density plot in Figure (d) shows a positive skew, which sug-
gests deviation from normality. Indeed, as the Shapiro-Wilk test confirmed, model #2
violated the normality assumption (W = 0.881, p <0.001).

171

5. IMPACT OF PLATFORMS AND SERVICES ON PORTABILITY

5.6.1.3 Alternative Simple Robust Regression Model

As explained in Section robust regression is a method less sensitive to outliers and
make no assumption regarding the distribution type. This section uses this method
to test whether it can increase the prediction accuracy of our regression model. Addi-
tionally, for the simple model #2, the robust regression is an alternative to the lack of
normality and heteroscedasticity.

Table shows the accuracy and goodness of fit for the simple robust model
#3. Compared to model #2, the robust regression slightly improved (-6%) the model
(MMRE = 0.527) though all Pred measures decreased. Regarding the goodness of fit,
the R? of model #3 (0.856) increased more than 3 times the value of model #2 (0.189).

5.6.2 Discussion

From 3 prediction models built in Section the simple robust model #3 achieved
the best accuracy as measured by the MMRE summary measure (MMRE = 0.527).
This model consists of one predictor — the variable that represents the cloud service
used for deployment. The robust method also significantly improved the goodness of fit
(R? = 0.856) when compared to the OLS models.

According to the classification presented in Section [C.4]for maintainability prediction
models, model #3 achieved a fair accuracy (0.49 < MMRE < 0.88), which is within
the accuracy range obtained by most models presented in this document. In addition,
half of predictions made by model #3 could be classified as excellent.

Although model #3 can be used to predict the effort of increasing cloud application
portability within the context defined in Section [5.3] its generalisation beyond this
data set is limited. The robust model is less sensitive to the lack of normality and
heteroscedasticity, but it is not robust to the violation of independent errors. In future
studies, machine learning approaches that are robust to this type of violation can be

used to enable the model generalisation beyond this data set.

5.7 Summary

This chapter describes our final contributions to the objectives defined in Section [1.2
We empirically investigated environmental aspects of cloud migration, cloud platforms
and services, to identify whether they impact cloud application portability. The result
of the two experiments in Sections[5.2)and [5.3] confirmed our hypothesis - cloud platform

and service do impact cloud application portability within the context defined for the

172

5.7 Summary

experiments. In addition, both experiments achieved a large effect size and a high
statistical power when taking into consideration SE experiments.

Prediction models built in this chapter achieved ezcellent (MMRE = 0.278) and
fair (MMRE = 0.527) prediction accuracy when compared to other prediction models
reported in the related literature (Section . The model built for predicting the
effort of configuring cloud services in different platforms meet assumptions required for
regression model generalisation, whereas the model built for predicting the effort of

deploying cloud applications in a cloud service does not.

173

Chapter 6

Conclusion and Future Directions

This research (i) establishes four important factors that impact cloud portability as a
means to mitigate risk associated to vendor lock-in, and (ii) uses the experimental results
from assessment of these factors to devise prediction models for the effort to increase the
cloud portability of legacy web applications. To do so, we combined and exploited sound
techniques from empirical software engineering, software quality and software effort
prediction. In addition, we identified established strategies for dealing with portability
issues in related areas including service-oriented computing and distributed systems,
and we extended the applicability of these strategies to the cloud computing domain.

The first part of the hypothesis examined in this thesis (Section [1.2) states, “de-
sign properties and technologies adopted by the application, along with environmental
aspects, impact cloud application portability (...).” Software coupling (design property),
security systems (technology), and cloud platform and service (environmental aspects)
were found statistically significant and scientifically relevant factors that impact cloud
application portability in experiments presented in Sections and[5.3] Within
the limitations of our experiments, these findings provide empirical evidence to accept
the first part of our hypothesis.

The second part of the hypothesis examined in this thesis (Section|1.2) states, “(...)
and [design properties and technologies adopted by the application, along with environ-
mental aspects| can be used as indicators for predicting the effort of improving the cloud
application portability.” Using results from experiments in Sections [3.3] .2} [5.2] and
we built 30 regression models (Sections , and to predict the effort
of improving cloud application portability regarding (i) application re-engineering to

replace method calls with message queuing, (ii) application re-engineering to modify

175

6. CONCLUSION AND FUTURE DIRECTIONS

configuration and code related to security systems to enable single sign-on by using
implementations of OpenID Connect protocol, (iii) cloud configuration to create mes-
sage queues in public cloud platforms, and (iv) application deployment to deploy cloud
applications by using purpose-equivalent cloud services.

Regression models were evaluated using MRE, the “de facto” standard measure for
prediction models, and leave-one-out cross-validation, a widely used evaluation proce-
dure. To assess the accuracy of our regression models and test the second part of our
hypothesis, we carried out a systematic literature review to identify the accuracy of
prediction models for maintainability. Maintainability was chosen because we could not
find any prediction model for portability in the literature, and because maintainability
is a quality attribute closely related to portability.

Comparing the accuracy of our prediction models with the accuracy of prediction
models for maintainability, our prediction models produced ezcellent (MMRE < 0.368),
good (0.368 <MMRE < 0.493) and fair (0.493 <MMRE < 0.875) predictions. There-
fore, we accept the second part of our hypothesis as we conclude that factors identified
in experiments reported in Sections 3.3] [£-2] 5.2 and [5.3] can be used as indicators for
predicting the effort of improving cloud application portability.

The next sections summarise this thesis.

6.1 Research Objective

As presented in Section the research presented in this thesis investigates challenges
associated with increasing the portability of legacy web applications in cloud, focusing
on the migration analysis phase. Increasing application portability is important to
mitigating the risks of vendor lock-in, such as service failures and providers going out
of business. The rationale is that a highly portable cloud application (or a subset of
its components) can be migrated between clouds with minimal effort whenever it is
needed. Therefore, the cloud user is less dependent on the cloud platform or provider.
As vendor lock-in is an inhibitor of cloud adoption, mitigating its risks contributes to
increase the cloud adoption.

Unlike recently developed applications that use microservices to decompose applica-
tions into independent and collaborative components to enable deployment in multiple
clouds, service and deployment models, legacy web applications (that were migrated to
the cloud) were not developed to be distributed across the Internet. Therefore, migrat-
ing these important applications to another cloud requires a major effort in terms of

engineering time and financial cost. It is important to increase the cloud portability of

176

6.2 Contributions of the Research

legacy web applications so as to reduce the effort of future migrations not only to other
clouds, but also to other environments.

A well-managed application migration starts with an analysis, in which the cloud
users explore the migration feasibility. We focus on this analysis as it is regarded as
critical in real software migration experiences reported in the literature. In contrast,
the cloud portability literature focuses on proposing technical solutions and standards
as means for supporting the migration phase. It is important to focus on the analysis to
provide instruments that support the decision making process regarding the cloud ap-

plication migration before starting the process of transferring resources between clouds.

6.2 Contributions of the Research

The two major contributions of this research are the empirical identification of four
factors that impact cloud application portability and the rigorous development of a set
of regression models for predicting the effort of increasing cloud application portability.
These contributions are important because they increase our understanding of cloud
portability in general. For instance, our findings make clear the importance of the
application in reducing the migration effort. Whereas cloud portability solutions offer
a rapid, possibly short-term, solution for mitigating differences in APIs, semantics and
technologies adopted by cloud platforms and providers as a means of increasing or
enabling cloud portability, our findings enable the development of theories that can
support long-term and evidence-based decisions.

Furthermore, the research contributions of this thesis address four gaps in the ex-
isting cloud portability research by (i) providing empirical evidence for the importance
of different factors of portability; (ii) showing that established techniques from other
areas can significantly contribute to cloud portability research; (iii) providing predic-
tion models to analyse the technical and financial feasibility of a software migration in
the cloud; and (iv) identifying measurable factors that impact on the migration effort.
Together, our contributions support informed decisions regarding the cloud migration
of software applications, and mitigate the risks associated with vendor lock-in.

The novelty of our contributions can be explained from the perspective of both cloud
portability and software quality. From the perspective of cloud portability, we adopt
a different stance by understanding cloud portability as a quality attribute of cloud
applications (Novelty 1). This unique stance enabled us to use established techniques
from software quality and empirical software engineering to investigate cloud applica-

tion portability. Second, we carry out rigorous empirical investigations rather than a

177

6. CONCLUSION AND FUTURE DIRECTIONS

solution development (Novelty 2). These empirical investigations significantly increase
the understanding of cloud portability. Unlike most existing studies on cloud porta-
bility that propose solutions which mitigate differences between APIs, semantics and
technologies adopted by cloud providers and platforms, we provide empirical evidence
showing that cloud portability can be achieved by increasing the application portability
(Novelty 3). This finding shifts the focus from cloud platforms and providers to cloud
applications and enable cloud users to become active agents in mitigating the risks of
vendor lock-in.

The novelty of this thesis spans beyond cloud portability and covers also software
quality. To the best of our knowledge, this thesis provides the first empirical evidence
of factors that impact any type of portability (Novelty 4). Our findings confirm the
common assumption that coupling impacts portability. Additionally, by analysing our
empirical findings and empirical studies in the software quality literature, we observe
that similar factors impact both maintainability and portability. This shows the close
relationship between maintainability and portability, opening the opportunity for the
use of results from maintainability studies in portability research. This include, for
instance, studies on software architectural differences [20] and on the use of quality

guidelines for object-oriented applications [3§].

6.3 Directions for Future Research

Our experiments provide empirical evidence that design properties, technologies and
environmental aspects impact cloud application portability. However, the scope of
empirical work is necessarily limited [250]. As is typical with empirical studies, our
experiments reported in Sections 3.3} [£.2] [5.2] and [5.3] constitute a single piece of evi-
dence rather than a definitive proof [209]. It would be unrealistic to expect that a single
experiment could enable wide generalisations [28]. Therefore, independent replications
are necessary to increase the confidence in these results and enable their generalisation
[159] beyond the scope of this research.

On the other hand, single studies have been used as the first step to build theories
[209] and estimation models [7,[94], and to shed light on possible trade-offs of even widely
adopted technologies [I11] and methods [20, [38]. Although we consider our findings as
preliminary, the rigorous methodology we applied, along with the statistically significant
and scientifically relevant results we obtained are sufficient to generalise our findings to
similar scenarios.

We tested the generalisation of regression models reported in Sections

178

6.3 Directions for Future Research

and by checking seven assumptions for OLS-based regression models. Taking into
account only models with the best accuracy, two models meet all assumptions (reported
in Sections and whereas two other models do not (reported in Sections and
. These two models that do not meet all assumptions might yield incorrect results
when applied to other data sets.

Increasing the generalisation of our findings, using them to developing supportive
tools for cloud migration, and testing different techniques for effort prediction represent
important directions of future work. Firstly, our experiments need to be rigorously and
independently replicated to increase the confidence in our findings. In particular, finding
contradictory results would shed light on the importance of possible threats that our
experiments did not cover. These experiments would enable the use of meta-analysis to
synthesise results and obtain more consistent conclusions.

Secondly, other factors related to software design properties and technologies, and
environmental aspects need to be investigated. This would enable the generalisation
of our findings to a wide range of factors. Next, our empirical findings can be used
to build tools that support cloud application portability. These tools can be used
to decrease application coupling, for instance. Diagnostic tools can give a preview
of costs on increasing portability whereas model-based tools can automate code re-
engineering. Different machine learning techniques, such as neural networks and fuzzy
systems, can be used in an effort to improve our predictions of the effort to increase
cloud portability. These techniques have a track record of successful application in
predicting the effort associated with other software engineering tasks |8, [10] 75, 231].
Finally, decision support systems could be developed to facilitate the use of prediction
models by non-experts.

Two other topics that deserve attention in future research are the current trend
towards the use of microservices, and the adoption of cloud standards. Microservices
is an architecture whereby business functions are implemented in small code units,
packaged and deployed as self-contained software units, including their own independent
database [165]. In addition, microservices can be combined with unikernels to isolate
the software unit in a portable sandbox. Unikernels are small virtual machines with no
division between user and kernel memory spaces [I81]. Thus, these software units can
be deployed in different cloud platforms and moved from one cloud platform to another
with minimal effort [25] [72].

Indeed, based on the results of our experiments in this thesis, we could easily argue
that microservices may be the definitive solution for cloud portability because it lowers

the coupling between application components and reduces technological dependencies,

179

6. CONCLUSION AND FUTURE DIRECTIONS

e.g., by creating one database for each software unit. Whereas new applications can
benefit from using microservices, legacy applications still need re-engineering to adopt
this new architecture, however. Because architectural re-engineering costs are often high
[220], future research should evaluate current techniques for architectural migration and
their feasibility when migrating legacy systems to microservices. Furthermore, future
research should also devise techniques and tools to predict and reduce migration costs,
including automated migration tools.

Finally, although several standards have been proposed for cloud over the past few
years [98], only a few have been considered really useful [78]. TOSCAH is a promising
standard for cloud application portability [33] that consists of an language for specifying
cloud application components and their dependencies with cloud services, and a run-
time platform [34]. The runtime platform receives the specification and the packaged
application as inputs to deploy the cloud application and to provision cloud resources
in the target cloud platform. This is also the goal of some DevOps tools, like puppelﬂ
and cheﬂ DevOps is a set of practices and tools that aim to integrate development
and operation teams [72]. Although TOSCA could be a way to standardise DevOps
tools [5], it is essential to investigate the extent with which TOSCA cover functionalities

implemented by leader DevOps tools and the effort necessary to adopt TOSCA.

"https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=tosca
*http://puppet.com
3http://www.chef.io

180

https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=tosca
http://puppet.com
http://www.chef.io

Appendix A

Research Framework and

Methodology

This appendix briefly summarises Wazlawick’s research framework [250] and the re-
search onion methodologyﬂ Whereas the former was used to structure the research
presented in this thesis, the latter was used to structure the investigation of factors

impacting on cloud application portability.

A.1 Research Framework

Figure uses the UML class notation to show a conceptual model comprising entities
and their relationship as covered by the Wazlawick’s framework. A research is concen-
trated on a particular Area, such as cloud computing or software engineering. An Area
consists of several Subjects, such as configuration management and agile methods. For
each Subject there might be several open Issues, such as vendor lock-in.

A Literature Review identifies open Issues and covers Related Work addressing the
same [ssue. The research Objective addresses the Issue and improves the current state-
of-the-art, represented by the Related Work. The Objective is specialised in General
and Specific. Whereas the former represents the research overall contribution, the latter
represents sub-products yielded as part of the general solution, such as a tool.

Since the Objective is achieved, some benefits should be expected (Ezpected Out-

comes), such as “increasing the adoption of cloud computing in small companies.” The

"http://onion.derby.ac.uk

181

http://onion.derby.ac.uk

A. RESEARCH FRAMEWORK AND METHODOLOGY

1..%
Expected Outcome |5 leads to
[~ Specific General Limitation
| ‘ i]; has
Area & Objective covers/based on Hypothesis
has
addregses improve
] steps to achieve steps to test
Methodology)
Subject Related Work > 1.
has N
Justification
ml—
53 N
Argumentation |
addressep generates
coyers —
Empirical Study | |
Comparison Evidence
consists of
Issue Literature Review
identifies

Figure A.1: The conceptual model of Wazlawick’s research framework.

Objective has a Justification that consists of some Fvidence, such as Literature Review
and Empirical Study. The Objective covers or is based on a Hypothesis. For example,
for the Objective “reducing the effort to develop web applications”, a possible Hypothesis
could be “Model-Driven Engineering reduces the effort to develop web applications by
automating the generation of artefacts.”

The Hypothesis has a set of Justification and Limitation. A Limitation might be
related to time, budget, or research interest, for instance. Both Objective and Hypoth-
esis are achieved through a Methodology that is a set of methods addressing different
aspects of a research, such as philosophical stance and research techniques. Finally, the

identification of each entity in the framework is guided by research questions.

A.2 The Research Onion Methodology

The research onion methodology defines several layers representing different methods

and stances for scientific researc}E]. The first layer is the philosophical stance. Defining

"http://onion.derby.ac.uk

182

http://onion.derby.ac.uk

A.2 The Research Onion Methodology

a philosophical stance at the beginning of a research is important to explicit what is
considered as acceptable evidence [71]. Examples of philosophical stances are positivism,
realism and constructivism. The second layer is the approach used to devise a theory,
which might be from practice to theory (inductive) or the opposite (deductive) [213].

The third layer refers to the strategy to investigate the hypothesis. Several empirical
methods can be used, such as experiment, survey and case study [212]. It is important
that the strategy choice is driven by the research objective and other research onion
layers [71]. For instance, experiments are the common strategy for positivism using a
deductive approach. The fourth layer is the choice regarding the methods to be used.
Whereas quantitative methods use numerical data and statistical methods to analyse
findings, qualitative methods use raw data (e.g., text and images) and do not rely on
precise measures to draw conclusions [212].

The next layer refers to time horizons. They vary according to time of study,
which might be short-term (cross-sectional) or long (longitudinal). Whereas in the
former groups are evaluated at the same point in time, in the latter different groups are
evaluated along the time [126]. Finally, the sixth layer covers techniques and procedures
for data collection (e.g., forms) and analysis (e.g., non-parametric statistics). These

techniques and procedures vary significantly according to the previous choices [256].

183

Appendix B

Experimentation in Software

Engineering

This appendix briefly summarises fundamental concepts of experimentation in Software
Engineering (SE). These concepts are extensively used in Chapters 7 and |5 to ad-
dress the research objectives presented in Section A (controlled) experiment is
an empirical method to determine whether a cause-effect relationship exists [71]. A
quasi-experiment is an experiment whereby treatments are not randomly assigned to
participants [121]. As Section explains, experimentation is a common strategy
to identify factors that impact a particular QA [7, 21, [38, 40, 112]. Therefore, this
is the strategy used in this research to identify factors impacting on cloud application
portability.

There are several guidelines for conducting and reporting experiments in SE [I18],
128, 131, 214]. This research used the framework proposed by Wohlin et al. [256] as it
covers the experiment preparation, execution and result analysis in the depth required
by this research. In addition, we use the Goal/Question/Metric (GQM) template of
Basili & Rombach [27] to define the goal of each experiment. Figure illustrates the

main elements of the experimentation framework of Wohlin et al..

An experiment investigates a Hypothesis that defines a causal relationship between
Dependent and Independent variables. Usually, an independent variable (also called
Factor) consists of two or more values, called Treatments. For example, stating that
a Java application (Treatment 1) is easier to debug (Dependent variable) than a C++
application (Treatment 2) is a valid Hypothesis.

185

B. EXPERIMENTATION IN SOFTWARE ENGINEERING

Null Alternative
Variable Hypothesis evaluates Data Analysis
defines relationship
[ﬁ tested with uses
1..*
Independent Dependent Task Data
produces
Las performs
Treatment Instrument Participant Object
uses manipulates

Figure B.1: SE experimentation framework of Wohlin et al. [256].

A Variable must be measurable. There are different types of measures, but the most
common are categorical and ratio. In our example, our Independent variable is measured
in a categorical scale since we have two possible values: Java and C++. Although the
Dependent variable is informally specified (“easier to debug”), at some point it must be
formally specified. For instance, let’s assume that the ease of debugging an application
is measured in terms of the amount of time that a developer takes to debug a particular
problem. “Amount of time” is a data type that varies from zero to a number, which
means that this is a ratio variable. Thus, one can objectively compare the time for

debugging the two applications.
A Hypothesis can be classified into Null or Alternative. Usually, the Null Hypothesis

states that there is no difference between Treatments whereas the Alternative Hypothesis
states that there is some difference. For instance, the Null Hypothesis could state that
the amount of time that a developer takes to debug a Java application is equals to a C++
application whereas the Alternative Hypothesis could state that the Java application
takes less time. Note that the Alternative Hypothesis is what we are trying to show,
according to the initial hypothesis defined in the previous paragraph. This is the case

in most experiments.

Some Data Analysis techniques are used to evaluate the Null Hypothesis and define
whether it should be rejected or accepted. In the case of the Null Hypothesis rejection,
the Alternative Hypothesis is accepted as truth. The Data Analysis uses Data produced
during the execution of a Task. The Task is used to test the Null Hypothesis. For

186

B.1 Experiment Preparation and Execution

instance, identifying the causes of incorrect results in an classification algorithm is an
example of debugging task that can be used to test the anecdotal hypothesis introduced
in this section. In this case, the Data could be the time that each Participant took to
debug Java and C++ applications.

Participant is the individual that perform a Task in an experiment. Along with the
Task, Participant is an important element to increase the realism of SE experiments
[214]. For instance, using professional software developers rather than students could
increase the realism of the debugging experiment although using students is quite com-
mon in SE experiments [215]. Participant uses some Instruments to perform a particular
Task, such as tools for software debugging. Training material and data analysis tools
can also be considered as Instruments. Finally, Object is manipulated by Participant
during the Task execution. For instance, the Java and C++ application used in our

anecdotal experiment are example of Objects.

B.1 Experiment Preparation and Execution

Ideally, an experiment is carried out in four steps [118] [128] 214] 256]. Firstly, a protocol
that details the experiment plan and execution is written. Secondly, the experiment is
executed and data is collected. Thirdly, data is analysed and conclusions are drawn.
Finally, results are reported and made available to the research community.

Preparing an experimental protocol consists of:

Devising research questions and hypotheses;

e Identifying treatments;

e Identifying, investigating and selecting instruments and objects;
e Defining the strategy for recruiting participants;

e Preparing training and experimental material;

e Carrying out a pilot experiment to test assumptions and experiment material;

and,
e Writing down the protocol.

The experiment execution consists of instantiating decisions defined in the experi-
mental protocol. Ko, LaToza & Burnett [131] define eight steps for executing an exper-

iment in SE. They can be summarised into:

187

B. EXPERIMENTATION IN SOFTWARE ENGINEERING

Recruiting, selecting, informing and characterising participants;

Assigning participants to treatments;

Training participants;

Performing experiment tasks; and

Debriefing, receiving feedback and compensating participants.

B.2 Data Analysis

Descriptive and inferential statistics are used for data analysis of experiment results.
Descriptive statistics describe and present measures of a data set, such as median,
minimum and range, whereas inferential statistics are used for drawing conclusions
based on the comparison of descriptive statistics [198, 256]. Additionally, charts such
as boxplots, scatterplots and histograms can be used to support data analysis and
visualisation [84].

Statistics can be classified into parametric or non-parametric. Whereas the former
is based on some assumptions, such as a normally distributed population, the latter is
relaxed regarding these assumptions and less sensitive to outliers [256]. Outliers are ob-
servations that significantly differ from the others [204]. Identifying and understanding
outliers is important to prevent misleading conclusions [84].

Experiment design and research goals must be taken into consideration to select a set
of appropriate descriptive and inferential statistics and prevent misleading conclusions
[198]. Guidelines and frameworks proposed by Andrews et al. [14], Wohlin et al. [256]
and Field, Miles & Field [84] are broadly used in this research to select appropriate
statistics.

For drawing conclusions using inferential statistics, some cutoffs must be set, as
exemplified in Table The type I error, also known as significance level (o), is
the probability of falsely rejecting the null hypothesis [256]. The traditional « value is
0.05 [I58], which leads to a confidence level of 0.95 when accepting the null hypothesis.
Setting up the type II error () and the statistical power require some further analysis.

The statistical power is the probability of correctly rejecting the null hypothesis
[256]. The statistical power is influenced by the «, the sample size and the effect size
(7) [70]. Usually, the sample size is well-defined at the beginning of the experiment.

However, determining the v requires investigating similar experiments [120].

188

B.3 Use of Experimental Results

Table B.1: Traditional cutoff values for evaluating hypotheses. Table adapted from [70].

Unknown true state of nature

Ho: Null Hypothesis | Hy: Alternative Hypothesis
0.95 0.30
Statistical | Accept Hg 1 - a: Correct B: Type II error
Conclusion (Confidence level)
0.05 0.70
Reject Hy a: Type I error 1 - 3: Correct
(Significance level) (Statistical power)

The v is important because it measures the presence of a phenomenon in the pop-
ulation and indicates the scientific importance of empirical findings [160]. However,
similar experiments are not always available. Therefore, an alternative is using com-
mon conventions, such as those calculated by Kampenes et al. for SE experiments
[120.

Once that the value of v is defined, one can calculate the statistical power by fol-
lowing guidelines provided by Dyba et al. [70]. The last cutoff to define is the type IT
error. The type II error (f) is the probability of falsely accepting the null hypothesis
[256]. It is related to the statistical power (1—f). Therefore, given the statistical power
set up in Table (0.70), the value for the type II error is 0.30.

Additionally, one can calculate the relative seriousness of type I to type II error
(B/a) |160]. For example, a relative seriousness of 6 (30/0.05) means that the false
rejection of the null hypothesis is about 6 times “more serious than erroneously accepting
it.”

Several statistical software packages can be used for automating the calculation of
descriptive and inferential statistics, such as Matlab and Octave. This research uses the
R statistical SoftvvareE] for performing data analysis. R is an open source and powerful

environment that provides libraries to address analyses required for this research.

B.3 Use of Experimental Results

An experiment constitutes a single piece of evidence rather than a definitive proof
[209]. It would be unrealistic to expect that a single experiment could enable wide
generalisations [28]. As Dyba, Sjoberg & Cruzes [69] explain, the context of an empirical

study (i.e., participants, environment, tools and tasks) is key to define whom, where,

"http://www.r-project.org

189

http://www.r-project.org

B. EXPERIMENTATION IN SOFTWARE ENGINEERING

when and why the research result aim to. Therefore, independent replications are
necessary to increase the confidence in empirical results and enable their generalisation
beyond their initial context [159].

On the other hand, as Shull, Singer & Sjgberg [209] advocate, even a single empirical
study can be used as the first step to building theories. In addition, single studies have
been used to build estimation models [7, [94] and shed some light on possible trade-offs
of even widely adopted technologies [111] and methods [20], 38].

B.4 Threats to Validity

Results of an experiment must be valid to the population of interest [256]. Although
mitigating threats is important to increase the validity of empirical results, it is not al-
ways possible [215]. Nevertheless, identifying and discussing possible threats to validity
when reporting an experiment is important to highlight its limitations [128§].

Threats can be classified into internal or external. Internal threats impact the
cause-effect relationship. These threats might lead to an alternative cause for the effect
(confound variable) [215], such as systematic differences between treatments, different
instruments used for tasks, and participants with different knowledge levels. FExternal
threats restrict the result generalisation [250]. Examples of external threats include the
use of students when the target population is professionals and the use of sample sizes

that are not representative of all sizes encountered in practice.

190

Appendix C

Software Effort Prediction

Effort prediction is key to deliver software on schedule and within the budget [234]. Poor
predictions can lead to severe consequences, such as business opportunity losses and
increased risk of project failure [100} 116]. As Myrtveit, Stensrud & Shepperd [162] and
Mair & Shepperd [151] explain, a prediction approach is used to create prediction models
that predict the effort of some software maintenance or development task. Prediction
models have an effort factor, such as time, and one or more predictors that influence the
effort factor, such as developer skill level or project size. The prediction model accuracy
is measured using accuracy measures, and evaluated using a measuring procedure, such

as cross-validation.

The emphasis in the text above represent elementary concepts of software effort pre-
diction that are presented and discussed in this chapter. Firstly, we present an overview
of literature on prediction approaches and show results of empirical work investigating
the myth of the best prediction approach (Section . Secondly, we present results of
an empirical study on using cross-company data sets for effort prediction, and briefly
discuss two common problems in software engineering data sets: outliers and small sam-
ple size (Section . Next, we explain the evaluation process of a prediction model
(Section [C.3)). Section shows preliminary results of a systematic literature review
we carried out to identify the accuracy of prediction models for software maintainabil-
ity. Finally, we introduce the regression approach, which is used in this research for
predicting the effort of increasing cloud application portability (Section .

191

C. SOFTWARE EFFORT PREDICTION

C.1 Prediction Approaches

As Trendowicz, Miinch & Jeffery [234] summarise, prediction approaches mainly differ
in the input (e.g., data sets or personal experience) they require and the output (i.e.,
prediction model) they produce. For instance, regression approaches are data-intensive
whereas expert judgement does not require any data as input. In a systematic literature
review, Jorgensen & Shepperd identify more than 11 prediction approaches in 304 papers
published from 1989 to 2004 in 76 high quality journals [117]. The top 3 prediction
approaches they identified (and the frequency they appear) are:

1. Regression (49%) is a simple and easy approach whereby data is fitted to a pre-

specified model consisting of dependent and independent variables [I51];
2. Function point (22%) is an approach that measures system functionalities [233];

3. Ezpert judgement (15%) is an approach performed by an (set of) expert(s) on a

task; most of the prediction process is based on intuition [115].

Other common approaches that Jgrgensen & Shepperd identified are analogy (10%),
neural networks (7%) and bayesian (2%). The top 3 approaches identified by Jgrgensen
& Shepperd slightly differs from a survey of most used approaches by practitioners
performed by Trendowicz, Miinch & Jeffery [234], whereby expert judgement appears at
the first position (80%), followed by regression (70%). It is worth to note that the survey
was performed from 2005 and 2008 with 10 companies mainly focused on developing
applications for the finance sector. Although these studies reveal approaches more
investigated by academics or more used by practitioners, Trendowicz, Miinch & Jeffery
[234] highlight that no prediction approach comply with all requirements expected by
companies for prediction approaches, such as flexibility, robustness, comprehensiveness
and reliability.

Many studies about prediction approaches aim to identify “the best” approach [116],
such as [8] [74], 143] 231], 239, 265]. These studies often present contradictory results
[115, 151]. Low study quality, small sample size, and flawed measurement process
are pointed out by Myrtveit, Stensrud & Shepperd [162] as reasons for contradictory
results. Jorgensen [116] concludes that there is no such “best” prediction approach or
model, and Gray & MacDonell [99] explain that modelling capabilities of prediction
approaches should be taken into account when selecting a prediction approach. Finally,

Mair & Shepperd [151] suggest using more than one approach to reduce risks.

192

C.2 Data Sets, Outliers and Sample Size

C.2 Data Sets, Outliers and Sample Size

Usually, data sets, used by data-intensive approaches to build prediction models, consist
of observations from an experiment [94], historical data from past projects [116], or open
available industrial data sets [204, 224]. One question that arises when using data sets
from other companies (cross-company) rather than within-company projects is whether

the source of the data set impacts the accuracy of prediction models.

To investigate this question, Kitchenham, Mendes & Travassos [130] carried out a
systematic literature review whereby they analyse ten studies that empirically compare
the prediction accuracy of prediction models using cross-company and within-company
data sets. Kitchenham, Mendes & Travassos conclude that their review is inconclusive
since (i) only seven out of ten studies were independently undertaken, (ii) three studies
show significant difference between models with different data sets whereas four studies
show that cross-company models lead to worse predictions than within-models, and (iii)
Kitchenham, Mendes & Travassos observed some trends in these studies that might have

biased conclusions drawn by experimenters.

Software engineering data sets often suffer from several problems [99], such as out-
liers and small sample size. Barret & Lewis [26] define outlier as “a data point that
appears to be inconsistent with the rest of the data set.” When detecting an outlier, it is
important to investigate whether it really is an inconsistency [84]. Several methods for
outlier elimination exist [204], such as boxplots and Cook’s distance. Whereas boxplots
visually highlight hidden patterns, Cook’s distance measures the extent with which an

observation (outlier) impacts the residuals of a regression equation [84].

Although the presence of outliers in a data set might affect the prediction accuracy,
Seo & Bae |204] found no significant difference of prediction accuracy between data sets
with and without outliers in their empirical study. Nevertheless, Seo & Bae strongly rec-
ommend removing outliers before carrying out any analysis. Robust methods for effort
prediction are less sensitive to outliers [84]. Therefore, they are a feasible alternative
on the suspicious of outliers in a data set [99].

The number of data points in a data set (i.e., sample size) is also important for
the prediction model accuracy although software engineering data sets quite often are
small [99, 130, 162]. Indeed, some data sets broadly used in the literature consists
of less than 40 data points [8, 94, 143, 224]. In an empirical study, Stensrud et al.
[224] identified a negative correlation between project size and accuracy for the MRE
accuracy measure. Therefore, large data sets could lead to better accuracy as MRE is

the most used accuracy measure [127].

193

C. SOFTWARE EFFORT PREDICTION

C.3 Prediction Model Evaluation

As Myrtveit, Stensrud & Shepperd [162] explain, a common design for evaluating a pre-
diction model is using a data set, an accuracy measure and a cross-validation technique.
There are several accuracy measures [87], such as Magnitude of Relative Error (MRE)
and Balanced Relative Error (BRE). The accuracy measure is computed for each data
point in a data set. As data sets consist of several data points, the statistic produced
by the accuracy measure is summarised by using mean or median, which leads to the
mean of MRE (MMRE) or median of MRE (MdMRE), for example [162].

MRE is the most used accuracy measure in the literature, along with Pred(m)
measures [87, 127, 224]. Whereas MRE is defined as the absolute value of the difference
between actual and predicted effort, divided by the actual effort, Pred(m) is defined as
the percentage of predictions with MRE < m.

However, several concerns have been raised regarding the use of MRE. For instance,
Foss et al. [87] found that MRE is unreliable, tending to underestimate the actual value
whereas Stensrud et al. [224] found that MRE is dependent of project size. Whereas
reporting more than one accuracy measure is a common alternative to mitigate risks
[162], Foss et al. [87] concludes, “at present, we do not have any universal replacement

for MRE.”

Cross-validation is a measuring procedure used to evaluate the prediction model
accuracy [162]. The cross-validation procedure splits the data set into n groups that
are used to train and test the prediction model [I33]. As James et al. [I13] explain,
Leave-One-Out (LOO-CV) is a cross-validation technique whereby one data point is
removed from the data set to be used as a test set. Remaining data points in the data
set are used for training (i.e., building) the prediction model. Then, the test set is
used to test the accuracy of the prediction model by using an accuracy measure (e.g.
MRE). This entire process is repeated for each data point in the data set. The summary

statistic of all predictions (e.g., MMRE) represents the prediction model accuracy.

Although there are different cross-validation techniques, Kocaguneli & Menzies [133]
recommend using LOO-CV for increasing reproducibility. In addition, Myrtveit, Sten-
srud & Shepperd [162] explains that LOO-CV is a technique close to a realistic situation

whereby a data set of previous projects is used for predicting a single new project.

194

C.4 Accuracy of Prediction Models for Software Maintainability

C.4 Accuracy of Prediction Models for Software Maintain-
ability

Conte, Dunsmore & Shen [60] recommend MMRE < 0.25 and Pred(0.25) > 0.75 as
accuracy references for a good prediction model. Although these references are broadly
used in the literature of software effort prediction [127, [204], they date back to 1986, and
several researchers have emphasised that they are far from achievable |8 [74] 171, 239
265]. Using recent and achievable accuracy references is central to support researchers
and practitioners when evaluating the efficiency of their prediction models regarding

prediction accuracy.

This section reports preliminary results of a systematic literature review carried
out to synthesise the accuracy of prediction models for software maintainability. This
research focus on software portability, but the literature review concentrates on software
maintainability because: (i) we could not identify any prediction model for software
portability in the literature; (ii) software maintainability is a quality attribute closely
related to portability; and (iii) prediction models for software maintainability have been

widely studied in the literature.

Our literature review consists of 16 primary studies published between 1993 and
2015, reporting 252 maintainability prediction models. To find relevant studies, we
used the snowballing method [255] that uses a set of primary studies as source for
identifying additional studies. References (backward snowballing) and citations (for-
ward snowballing) of included studies are investigated to find additional studies. This

procedure is repeated till no additional study is identified.

Our review found eight measures used to evaluate the accuracy of maintainability
prediction models (Table . The number of studies adopting these eight measures
varies from 1 to 8. Table[C.Ilshows that researchers used different variations of measures
to evaluate the accuracy of their models, such as MMRE (mean of MRE) and Mdn AR
(median of AR). Pred(0.30) (n = 8), Pred(0.25) (n = 7), and MRE (n = 6) were the
most used accuracy measures. Although MRE lies in the third position in the rank of
most used accuracy measures, it is the underlying measure to calculate both Pred(0.30)
and Pred(0.25), which highlights its importance in the field. In fact, MRE is the de

facto standard for measuring the accuracy of software prediction models [162].

Table sumiarises statistics for 17 variations of measures used to evaluate the
accuracy of 252 maintainability prediction models found in our review. This summary

provides a rigorous way to evaluate the accuracy efficiency of maintainability prediction

195

C. SOFTWARE EFFORT PREDICTION

Table C.1: Measures and their variations used in studies. MRE is the de facto standard
measure as it is the basis for Pre(0.30) and Pred(0.25).

‘ Name ‘ Variations ‘ # of Occurrencies
1 | Pred (0.30) 8
2 | Pred (0.25) 7
First /Second
quartile of
. : MRE, Max
3 | Magnitude of Relative Error (MRE) MRE, MdMRE, 6
MMRE,
StdMRE
: MAR, Mdn AR,
4 | Absolute Residual (AR) Sum AR 4
Adjusted I-
5 | R-squared squared, I- 3
squared
6 | Correlation (actual-prediction) Spea.r fnans ot 3
relation
7 | Mean Square Error (MSE) MSE, NRMSE 2
8 | Standard Error of Mean (SEM) 1

196

L61

Table C.2: Summary of statistics calculated for accuracy measures used in the 252 prediction models found in our review.

‘ Name ‘ n ‘ Min 25th Percentile | Median | 75th Percentile | Max
1 | MSE 132 0.015 0.027 0.031 0.043 0.064
2 | MMRE 79 | 0.00007 0.368 0.493 0.875 4.950
3 | Pred (0.30) 54 0.100 0.285 0.455 0.590 0.958
4 | Pred (0.25) 43 0.100 0.275 0.370 0.515 0.862
5 | NRMSE 30 0.007 0.131 0.192 0.399 0.886
6 | Correlation 28 0.059 0.544 0.664 0.713 0.858
7 | MAMRE 21 0.079 0.170 0.313 0.420 0.680
8 | Max MRE 19 | 0.000014 1.970 4.820 12.260 24.570
9 | SAAR 19 8.418 20.080 46.650 54.390 63.470
10 | Sum AR 19 22.0 520.1 1153.0 1548.0 2397.0
11 | MdAR 18 9.260 11.630 16.210 17.520 29.540
12 | StdMRE 14 0.320 0.582 1.565 2.305 4.430
13 | 1st Quartile MRE 9 0.048 0.060 0.080 0.192 0.240
14 | R-squared 9 0.471 0.560 0.630 0.711 0.740
15 | 2nd Quartile MRE | 9 0.189 0.192 0.220 0.630 0.876
16 | SEM 8 0.013 0.018 0.023 0.031 0.052
17 | MAR 8 0.083 0.127 0.133 0.149 0.155

AjI[Iqeurejure]y] 9I1emljos J0j S[OPOJA] UOIIIPaIJ JO AJRINddY §°D

C. SOFTWARE EFFORT PREDICTION

Table C.3: Accuracy classification system for MMRE.

+# ‘ Classification Range

1 | Excellent MMRE < 0.368

2 | Good 0.368 <MMRE < 0.493
3 | Fair 0.493 <MMRE < 0.875
4 | Negligible MMRE >0.875

models. When using this summary to compare the efficiency of accuracy of prediction
models, it is important to take two aspects into consideration. First, the number of
models used to calculate the summary in Table varies. Second, the number of
studies using a particular type of measure also varies (Table .

Therefore, combining the results of these two tables might increse the confidence for a
comparison. For example, Table[C.2]shows that MMRE was calculated for 79 prediction
models (31.3%). In addition, Table shows that this measure was used in 6 different
studies (37.5%). On the other hand, MSE was calculated for 132 models (52.3%), but
this measure was present in only two studies (12.5%). It shows that although MSE was
used in a greater number of models, using its summary is less reliable than MMRE that
was used by a greater number of independent researchers.

To give a reference for accuracy of prediction models built in this research, we
created an accuracy classification system as presented in Table We used the 25th
percentile in Table as the reference for the best classification (excellent). Accuracy
values between the 25th percentile and median are considered good whereas accuracy
values between median and the 75th percentile are considered fair. Finally, any MMRE

value greater than the 75th percentile is considered negligible.

C.5 The Regression Approach

Regression is recognised as the “de facto” approach for software effort prediction [99) 117,
I51]. As Field, Miles & Field [84] explain, “Regression analysis is a way of predicting
an outcome variable from one predictor variable (simple regression) or several predictor
variables (multiple regression).” The regression model is based on a line that best fits the
data set [I13]. As a result, the regression model accuracy is evaluated by the goodness
with which the line fits the data set. Usually, the goodness of fit is measured by the R?
or Residual Standard Error (RSE) measures [84], [I13]. However, it is worth to note that

these measures are specific to regression models and therefore they are not appropriate

198

C.5 The Regression Approach

for comparing prediction models built with different approaches.

To find the best line, several lines are drawn trying to minimise the distance between
data points and lines [84]. The most common method to fit a line to the data (i.e., build
the regression model) is the ordinary least squares (OLS). Robust regression is another
method to fit a line to the data set that is more resilient to outlying data points [258].
Gray & MacDonell [99] advocate the use of robust regression as software data sets very
often are small and subject to outliers.

A data set might include several predictor variables. The literature recommends
to quantify the correlation between predictor variables and dependent variable (effort
factor) to identify predictor candidates [84, 206]. Forward stepwise is a method to
add predictor candidates to a model. An entry condition is defined and several iter-
ations are performed. For each iteration, (i) one predictor candidate is added to the
model, (ii) the model accuracy is re-evaluated by applying an evaluation method (e.g.,
cross-validation), and (iii) the entry criterion is applied to decide whether the predic-
tor candidate should be kept in the model [I13]. Forced entry is another method that
simply add predictors direct to the model [84].

Gray & MacDonell [99] highlight that generalisability is an important concern when
building prediction models. A high generalisable model enables that conclusions are
drawn to the entire population from which the data was collected [84]. Generalisability
of OLS-based regression models depends on the fulfilment of the following assumptions
84, [113):

e Sample size impacts on the strength of the relationship one want to measure.
Ideally, the sample size should be between 10 to 20 data points per predictor on
average. Thus, for a model with 3 predictors, the data set should have between
30 to 60 data points in total;

e Linearity is a requirement of regression models as the prediction model is based on
a line that best fits the model. Therefore the relationship between predictor and
effort factor must be linear. Linearity might be evaluated using jitter /scatter plots
and statistical tests, such as the Rainbow test. The Rainbow test evaluates the
hypothesis that the relationship between variables is linear. Therefore, a p-value

less than 0.05 means that the model does not meet the linearity assumption;

e Independence of residual terms (errors) or lack of autocorrelation is important to
achieve accurate confidence and prediction intervals. A common way to test for

this assumption is using the Durbin-Watson test that evaluates the null hypothesis

199

C. SOFTWARE EFFORT PREDICTION

that there is no autocorrelation. The Durbin-Watson test statistics varies from 0
to 4, whereby a value close to 2 means that the independence of residual terms is
met. Field, Miles & Field [84] point out that values less than 1 and greater than

3 are real reason for concern;

e Homoscedasticity means an homogeneous variance of residual terms. Homoscedas-
ticity might be evaluated using charts and statistical tests, such as Goldfeld-
Quandt. The Goldfeld-Quandt test evaluates the null hypothesis that there is

heteroscedasticity (i.e., the homoscedasticity assumption is not met);

e Low leverage means that data points do not have unusual values in the x-axis.
High leverage data points are those that present a hat value greater than a cutoff.
An usual cutoff is three times the average leverage for the data set, calculated
as: 3(k+1)/n, in which k is the number of predictors and n is the number of

observations;

e No perfect multicollinearity means that there is no perfect linear relationship be-
tween predictors. To test this assumption, the variance inflation factor (VIF)
might be used. A VIF value greater than 10 is an indication for multicollinear-
ity to be present. Another measure to test for multicollinearity is the tolerance
(1/VIF) that should be greater than 0.1 to consider that the assumption of no

multicollinearity is met;

e Normality is expected for the distribution of residuals. Normality can be evaluated
by a density plot or statistical tests, such as Shapiro-Wilk. The Shapiro-Wilk test
evaluates the null hypothesis that the distribution is normally distributed.

Field, Miles & Field [84] highlight that a regression model can be used to drawn
conclusions even if assumptions are violated. However, when assumptions are violated,

conclusions are limited to the data set only.

200

Appendix D

Consent Form

Your participation in this experiment is entirely voluntary. You will get paid for the
total of X hours, including training and experiment sessions. The payment is not
associated to your performance in this experiment, but to the completion of tasks. All
data gathered from the experiment will be treated in a confidential fashion: It will be
archived in a secure location and will be interpreted only for purposes of this evaluation.
When your data are reported or described, all identifying information will be removed.
There are no known risks to participation in this experiment. Please feel free to ask the
researcher if you have any other questions; otherwise, if you are willing to participate,
please sign this consent form and proceed with the experiment.

Date:

Signature:

Researcher’s contact details:

Name: Gabriel Costa Silva

Address: RCH/207, Ron Cook Hub, Heslington East, University of York, York, UK
Email : gabriel@cs.york.ac.uk

Supervisors’ contact details:

Name: Louis Rose

Address: RCH/102A, Ron Cook Hub, Heslington East, University of York, York, UK

Email: louis.rose@york.ac.uk

201

D. CONSENT FORM

Name: Radu Calinescu
Address: RCH/102B, Ron Cook Hub, Heslington East, University of York, York, UK

Email: radu.calinescu@york.ac.uk

202

References

1]

2]

3]

4]

[5]

(6]

7]

8]

Becoming an Effective Researcher - Part 2 - Ethics: A Practical View for Researchers.

Technical report, University of York, York. 25
Cloud Computing Use Cases, 2010. URL http://cloudusecases.org/.

Use Cases and Functional Requirements for Inter-Cloud Computing, 2010. URL http:
//www.gictf.jp/doc/GICTF{_}Whitepaper{_}20100809.pdf. [37]

Toward an Open Cloud Standard. IEEFE Internet Computing, 16(4):15-25, jul 2012. ISSN
1089-7801. doi: 10.1109/MIC.2012.65.

Streamlining devops automation for cloud applications using {TOSCA} as standardized
metamodel. Future Generation Computer Systems, 56:317 — 332, 2016. ISSN 0167-739X.
doi: http://dx.doi.org/10.1016/j.future.2015.07.017.

Hussam Abu-Libdeh, Lonnie Princehouse, and Hakim Weatherspoon. RACS: a case for
cloud storage diversity. In Proceedings of the 1st ACM symposium on Cloud comput-
ing - SoCC 10, pages 229-240, New York, New York, USA, 2010. ACM Press. ISBN

9781450300360. doi: 10.1145/1807128.1807165.

Jehad Al Dallal. Object-oriented class maintainability prediction using internal quality
attributes. Information and Software Technology, 55(11):2028-2048, November 2013.
ISSN 09505849. doi: 10.1016/j.infsof.2013.07.005.

Hamdi A. Al-Jamimi and Moataz A. Ahmed. Machine learning approaches for predicting
software maintainability: a fuzzy-based transparent model. IET Software, 7(6):317-326,
December 2013. ISSN 1751-8806. doi: 10.1049/iet-sen.2013.0046. [179]

203

http://cloudusecases.org/
http://www.gictf.jp/doc/GICTF{_}Whitepaper{_}20100809.pdf
http://www.gictf.jp/doc/GICTF{_}Whitepaper{_}20100809.pdf

REFERENCES

19]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

Gustavo Alonso, Fabio Casati, Harumi Kuno, and Vijay Machiraju. Web Services.

Springer Berlin Heidelberg, Berlin, Heidelberg, 2004. ISBN 978-3-642-07888-0. doi:
10.1007/978-3-662-10876-5.

Mohammad Alshayeb, Yagoub Eisa, and Moataz A. Ahmed. Object-Oriented Class Sta-
bility Prediction: A Comparison Between Artificial Neural Network and Support Vector
Machine. Arabian Journal for Science and Engineering, 39(11):7865-7876, nov 2014.
ISSN 1319-8025. doi: 10.1007/s13369-014-1372-4. [L79]

David Ameller, Xavier Franch, and Jordi Cabot. Dealing with Non-Functional Require-
ments in Model-Driven Development. In 2010 18th IEEE International Requirements
Engineering Conference, pages 189-198, Sydney, NSW, 2010. IEEE. ISBN 978-1-4244-
8022-7. doi: 10.1109/RE.2010.32.

David Ameller, Claudia Ayala, Jordi Cabot, and Xavier Franch. How do software archi-
tects consider non-functional requirements: An exploratory study. In 2012 20th IEEE In-
ternational Requirements Engineering Conference (RE), pages 41-50, Chicago, IL, 2012.
IEEE. ISBN 978-1-4673-2785-5. doi: 10.1109/RE.2012.6345838.

Muhammad Bilal Amin, Wajahat Ali Khan, Ammar Ahmad Awan, and Sungyoung Lee.
Intercloud message exchange middleware. In Proceedings of the 6th International Confer-
ence on Ubiquitous Information Management and Communication - ICUIMC ’12, pages
Article 79 , 7 pages, New York, New York, USA, 2012. ACM Press. ISBN 9781450311724.
doi: 10.1145/2184751.2184845.

Frank M. Andrews, Laura Klem, Terrence N. Davidson, Patrick M. O’Malley, and
Willard L. Rodgers. A Guide for selecting statistical techniques for analyzing social sci-
ence data. Survey Research Center, Institute for Social Research, University of Michigan,

Michigan, 2nd edition, 1981. ISBN 9780879442743. [18§]

Vasilios Andrikopoulos, Tobias Binz, Frank Leymann, and Steve Strauch. How to Adapt
Applications for the Cloud Environment. Computing, Springer, 95(6):493-535, 2013. doi:

10.1007/s00607-012-0248-2.

Vasilios Andrikopoulos, Zhe Song, and Frank Leymann. Supporting the Migration of
Applications to the Cloud through a Decision Support System. In Proceedings of the

204

[17]

[18]

[19]

[20]

[21]

[22]

[23]

REFERENCES

IEEE Sixth International Conference on Cloud Computing, pages 565572, Santa Clara
Marriott, CA, 2013. IEEE. [16]

Samuil Angelov and Paul Grefen. An e-contracting reference architecture. Journal of
Systems and Software, 81(11):1816-1844, November 2008. ISSN 01641212. doi: 10.1016/
1.j55.2008.02.023. 7]

Danilo Ardagna, Elisabetta Di Nitto, Parastoo Mohagheghi, Sebastien Mosser, Cyril Bal-
lagny, Francesco D’Andria, Giuliano Casale, Peter Matthews, Cosmin-Septimiu Nechifor,
Dana Petcu, Anke Gericke, and Craig Sheridan. MODAC]louds: A model-driven approach
for the design and execution of applications on multiple Clouds. In 2012 /th International
Workshop on Modeling in Software Engineering (MISE), pages 50-56, Zurich, June 2012.
IEEE. ISBN 978-1-4673-1757-3. doi: 10.1109/MISE.2012.6226014.

Yuji Arimura and Masako Ito. Cloud Computing for Software Development Environment
- In-house Deployment at Numazu Software Development Cloud Center. Fujitsu Scientific

and Technical Journal, 47(3):325-334, 2011.

E. Arisholm and D.I.LK. Sjgberg. Evaluating the effect of a delegated versus centralized
control style on the maintainability of object-oriented software. IEEE Transactions on

Software Engineering, 30(8):521-534, 2004. ISSN 0098-5589. doi: 10.1109/TSE.2004.43.

(136} [152, [178] [190]

Erik Arisholm. Empirical assessment of the impact of structural properties on the change-

ability of object-oriented software. Information and Software Technology, 48(11):1046—

1055, 2006. ISSN 09505849. doi: 10.1016/j.infsof.2006.01.002.

Michael Armbrust, Ion Stoica, Matei Zaharia, Armando Fox, Rean Griffith, Anthony D.
Joseph, Randy Katz, Andy Konwinski, Gunho Lee, David Patterson, and Ariel Rabkin.
A view of cloud computing. Communications of the ACM, 53(4):50-58, 2010. ISSN

00010782. doi: 10.1145/1721654.1721672.

L. Aversano, G. Canfora, A. Cimitile, and A. De Lucia. Migrating legacy systems to
the Web: an experience report. In Proceedings Fifth Furopean Conference on Software

Maintenance and Reengineering, pages 148-157, Lisbon, 2001. IEEE Comput. Soc. ISBN
0-7695-1028-0. doi: 10.1109/.2001.914979.

205

REFERENCES

24]

[25]

[26]

27]

(28]

29]

(30]

31]

32]

Felix Bachmann, Len Bass, and Robert Nord. Modifiability tactics. Technical Re-
port CMU/SEI-2007-TR-002, Software Engineering Institute, Carnegie Mellon University,
Pittsburgh, PA, 2007. URL http://resources.sei.cmu.edu/library/asset-view.
cfm?AssetID=8299, [57} [63]

Armin Balalaie, Abbas Heydarnoori, and Pooyan Jamshidi. Microservices Architecture
Enables DevOps: Migration to a Cloud-Native Architecture. IEEE Software, 33(3):42-52,
May 2016. ISSN 0740-7459. doi: 10.1109/MS.2016.64.

V Barret and T Lewis. Qutliers in statistical data. Wiley, New York, 3rd edition, 1994.

52, [193]

V. R. Basili and H. D. Rombach. The TAME project: Towards improvement-oriented
software environments. IEEE Trans. Softw. Eng., 14(6):758-773, 1988. ISSN 0098-5589.
doi: 10.1109/32.6156. URL http://dx.doi.org/10.1109/32.6156!

V.R. Basili, F. Shull, and F. Lanubile. Building knowledge through families of experi-
ments. IEEE Transactions on Software Engineering, 25(4):456-473, 1999. ISSN 00985589.

doi: 10.1109,/32.799939.

Len Bass, Paul Clements, and Rick Kazman. Software Architecture in Practice. Addison-

Wesley, Boston, Massachusetts, 3rd edition, 2013. (0} 51} 52} 7] [58]

Jacob Bellamy-McIntyre, Christof Luterroth, and Gerald Weber. OpenlD and the Enter-
prise: A Model-Based Analysis of Single Sign-On Authentication. In 2011 IEEFE 15th In-
ternational Enterprise Distributed Object Computing Conference, pages 129-138, Helsinki,
2011. IEEE. ISBN 978-1-4577-0362-1. doi: 10.1109/EDOC.2011.26.

Younes Benslimane, Michel Plaisent, Prosper Bernard, and Bouchaib Bahli. Key Chal-
lenges and Opportunities in Cloud Computing and Implications on Service Requirements:
Evidence from a Systematic Literature Review. In 201 IEEFE 6th International Confer-
ence on Cloud Computing Technology and Science, pages 114-121, Singapore, 2014. IEEE.
ISBN 978-1-4799-4093-6. doi: 10.1109/CloudCom.2014.115.

Patricia V. Beserra, Alessandro Camara, Rafael Ximenes, Adriano B. Albuquerque, and
Nabor C. Mendonca. Cloudstep: A step-by-step decision process to support legacy
application migration to the cloud. In 2012 IEEE 6th International Workshop on the

206

http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=8299
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=8299
http://dx.doi.org/10.1109/32.6156

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

REFERENCES

Maintenance and Evolution of Service-Oriented and Cloud-Based Systems (MESOCA),
pages 7-16, Trento, Italy, September 2012. IEEE. ISBN 978-1-4673-3001-5. doi:
10.1109/MESOCA .2012.6392602.

Tobias Binz, G. Breiter, Frank Leymann, and T. Spatzier. Portable Cloud Services
Using TOSCA. IEEE Internet Computing, 16(3):80-85, May 2012. ISSN 1089-7801. doi:

10.1109/MIC.2012.43.

Tobias Binz, Uwe Breitenbiicher, Oliver Kopp, and Frank Leymann. TOSCA: Portable
Automated Deployment and Management of Cloud Applications. In Advanced Web Ser-
vices, pages 527-549. Springer, New York, 2014. doi: 10.1007/978-1-4614-7535-4 22.
LSO

Jean Bozman and Gary Chen. Cloud Computing: The Need for Portability and Inter-
operability. Technical report, Red Hat, Inc. and IDC Go-to-Market Services, 2011. URL
http://www.redhat.com/resourcelibrary/whitepapers/idc-1001-1.

Marco Brambilla, Jordi Cabot, and Manuel Wimmer. Model-Driven Software Engineering

in Practice. Morgan & Claypool Publishers, 2012. ISBN 978-1608458820. [52]

L.C. Briand, J.W. Daly, and J.K. Wust. A unified framework for coupling measurement
in object-oriented systems. IEEE Transactions on Software Engineering, 25(1):91-121,

1999. ISSN 00985589. doi: 10.1109,/32.748920.

L.C. Briand, C. Bunse, and J.W. Daly. A controlled experiment for evaluating quality
guidelines on the maintainability of object-oriented designs. IEEE Transactions on Soft-

ware Engineering, 27(6):513-530, 2001. ISSN 00985589. doi: 10.1109/32.926174. 178|

L85} [190]

Lionel Briand, Prem Devanbu, and Walcelio Melo. An investigation into coupling mea-
sures for C+—+. In Proceedings of the 19th International Conference on Software Engi-
neering - ICSE ’97, pages 412-421, New York, New York, USA, 1997. ACM Press. ISBN
0897919149. doi: 10.1145,/253228.253367.

Lionel C. Briand and Jiirgen Wiist. Empirical Studies of Quality Models in Object-
Oriented Systems. Advances in Computers, 56:97-166, 2002. doi: 10.1016/S0065-2458(02)

80005-5. [T}, [T85]

207

http://www.redhat.com/resourcelibrary/whitepapers/idc-1001-1

REFERENCES

[41]

42]

[43]

[44]

[45]

[46]

[47]

John Brooke, Donal Fellows, Kevin Garwood, and Carole Goble. Semantic Matching
of Grid Resource Descriptions. In Marios D. Dikaiakos, editor, Grid Computing (Second
European AcrossGrids Conference, AxGrids 2004, Nicosia, Cyprus, January 28-30, 2004.
Revised Papers), pages 240-249. Springer Berlin Heidelberg, Nicosia, Cyprus, 2004. ISBN
978-3-540-22888-2. doi: 10.1007,/978-3-540-28642-4\ 28.

S. Brunett, K. Czajkowski, S. Fitzgerald, I. Foster, A. Johnson, C. Kesselman, J. Leigh,
and S. Tuecke. Application experiences with the Globus toolkit. In Proceedings. The
Seventh International Symposium on High Performance Distributed Computing (Cat.
No.98TB100244), pages 81-88, Chicago, IL. IEEE Comput. Soc. ISBN 0-8186-8579-4.
doi: 10.1109/HPDC.1998.709959.

Frank Buschmann, Regine Meunier, Hans Rohnert, Peter Sommerlad, and Michael Stal.
Pattern-oriented Software Architecture: A System of Patterns. John Wiley & Sons, Inc.,
New York, NY, USA, 1996. ISBN 0-471-95869-7. [57] [58] [63]

Rajkumar Buyya, Chee Shin Yeo, Srikumar Venugopal, James Broberg, and Ivona
Brandic. Cloud computing and emerging IT platforms: Vision, hype, and reality for
delivering computing as the 5th utility. Future Generation Computer Systems, 25(6):
599-616, 2009. ISSN 0167-739X. doi: 10.1016/j.future.2008.12.001.
154

Rajkumar Buyya, Rajiv Ranjan, and RodrigoN. Calheiros. InterCloud: Utility-Oriented
Federation of Cloud Computing Environments for Scaling of Application Services. In
Ching-Hsien Hsu, LaurenceT. Yang, JongHyuk Park, and Sang-Soo Yeo, editors, Algo-
rithms and Architectures for Parallel Processing, volume 6081 of Lecture Notes in Com-
puter Science, pages 13-31. Springer Berlin Heidelberg, Busan, Korea, 2010. ISBN 978-
3-642-13118-9. doi: 10.1007/978-3-642-13119-6\ _2.

E.J. Byrne. A conceptual foundation for software re-engineering. In Proceedings Confer-
ence on Software Maintenance 1992, pages 226-235, Orlando, FL, 1992. IEEE Comput.
Soc. Press. ISBN 0-8186-2980-0. doi: 10.1109/ICSM.1992.242539.

Capgemini. Business Cloud: The State of Play Shifts Rapidly. Tech-
nical report, Capgemini, 2012. URL |http://www.in.capgemini.com/
business-cloud-the-state-of-play-shifts-rapidly. 21} [47] 8] 03]

208

http://www.in.capgemini.com/business-cloud-the-state-of-play-shifts-rapidly
http://www.in.capgemini.com/business-cloud-the-state-of-play-shifts-rapidly

48]

[49]

[50]

[51]

[52]

[53]

[54]

REFERENCES

Emanuele Carlini, Massimo Coppola, Patrizio Dazzi, Laura Ricci, and Giacomo Righetti.
Cloud Federations in Contrail. In Michael Alexander, Pasqua D’Ambra, Adam Bel-
loum, George Bosilca, Mario Cannataro, Marco Danelutto, Beniamino Martino, Michael
Gerndt, Emmanuel Jeannot, Raymond Namyst, Jean Roman, StephenL. Scott, Jesper-
Larsson Traff, Geoffroy Vallée, and Josef Weidendorfer, editors, Furo-Par 2011: Parallel
Processing Workshops, volume 7155 of Lecture Notes in Computer Science, pages 159—

168. Springer Berlin Heidelberg, Bordeaux, France, 2012. ISBN 978-3-642-29736-6. doi:
10.1007/978-3-642-29737-3 _19.

J. Carver, L. Jaccheri, S. Morasca, and F. Shull. Issues in using students in empirical
studies in software engineering education. In Proceedings. 5th International Workshop on
Enterprise Networking and Computing in Healthcare Industry, pages 239-249, Sydney,
2003. IEEE Comput. Soc. ISBN 0-7695-1987-3. doi: 10.1109/METRIC.2003.1232471.
154

David W. Chadwick. Federated Identity Management. In Foundations of Security
Analysis and Design V, pages 96-120. Springer Berlin Heidelberg, Berlin, 2009. doi:
10.1007/978-3-642-03829-7\ 3.

Anirban Chakrabarti, Shubhashis Sengupta, Adarsh Upadhyay, and Anish Damodaran.
A Systematic Approach for Application Migration in a Grid Computing Environment. In
2006 IEEE Asia-Pacific Conference on Services Computing (APSCC’06), pages 512-519,
Guangzhou, Guangdong, 2006. IEEE. ISBN 0-7695-2751-5. doi: 10.1109/APSCC.2006.18.
Ul

Muhammad Aufeef Chauhan and Muhammad Ali Babar. Migrating Service-Oriented
System to Cloud Computing: An Experience Report. In 2011 IEEE jth International
Conference on Cloud Computing, pages 404—411, Washington, DC, 2011. IEEE. ISBN

978-1-4577-0836-7. doi: 10.1109/CLOUD.2011.46.

Muhammad Aufeef Chauhan and Muhammad Ali Babar. Towards Process Support for
Migrating Applications to Cloud Computing. In 2012 International Conference on Cloud
and Service Computing, pages 80-87, Shanghai, November 2012. IEEE. ISBN 978-1-4673-
4724-2. doi: 10.1109/CSC.2012.20.

Nitin Singh Chauhan and Ashutosh Saxena. A Green Software Development Life Cycle

209

REFERENCES

[55]

[56]

[57]

58]

[59]

(60]

[61]

(62]

for Cloud Computing. IT Professional, 15(1):28-34, 2013. ISSN 1520-9202. doi: 10.1109/
MITP.2013.6.

S.R. Chidamber and C.F. Kemerer. A metrics suite for object oriented design. IEEE
Transactions on Software Engineering, 20(6):476-493, 1994. ISSN 00985589. doi: 10.
1109/32.295895.

E.J. Chikofsky and J.H. Cross. Reverse engineering and design recovery: a taxonomy.

IEEE Software, 7(1):13-17, January 1990. ISSN 0740-7459. doi: 10.1109,/52.43044.

Dickson K.W. Chiu, S.C. Cheung, Patrick C.K. Hung, Sherina Y.Y. Chiu, and An-
driy K.K. Chung. Developing e-Negotiation support with a meta-modeling approach
in a Web services environment. Decision Support Systems, 40(1):51-69, July 2005. ISSN
01679236. doi: 10.1016/j.dss.2004.04.004.

P Clements, Felix Bachmann, Len Bass, David Garlan, James Ivers, Reed Little, Paulo
Merson, Robert Nord, and Judith A. Stafford. Documenting Software Architectures:
Views and Beyond. SEI series in software engineering. Addison-Wesley, 2003. ISBN
9780201703726. 57} B8

Eric K Clemons. Making the Decision to Contract for Cloud Services: Managing the Risk
of an Extreme Form of IT Outsourcing. In 2011 44th Hawaii International Conference

on System Sciences, pages 1-10, Kauai, HI, 2011. IEEE. ISBN 978-1-4244-9618-1. doi:
10.1109/HICSS.2011.292.

S D Conte, H E Dunsmore, and V'Y Shen. Software Engineering Metrics and Models.
Benjamin-Cummings Publishing Co., Inc., Redwood City, CA, USA, 1986. ISBN 0-8053-
2162-4.

Bruno Costa, Miguel Matos, and Antonio Sousa. Capi: Cloud Computing API. In Luis
Rodrigues and Rui Lopes, editors, Actas do INForum - Simpdsio de Informdtica 2009,
pages 499-502, Lisboa, Portugal, 2009. Faculdade de Ciéncias da Universidade de Lisboa.

doi: 10455/3168.

G. Costagliola, F. Ferrucci, G. Tortora, and G. Vitiello. Class point: an approach for the
size estimation of object-oriented systems. IFEE Transactions on Software Engineering,

31(1):52-74, 2005. ISSN 0098-5589. doi: 10.1109/TSE.2005.5.

210

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

REFERENCES

M. Creeger. Cloud Computing: An Overview. Queue, 7(5):2:3—2:4, 2009. ISSN 1542-
7730. doi: 10.1145/1551644.1554608.

Andrea De Lucia, Eugenio Pompella, and Silvio Stefanucci. Effort estimation for cor-
rective software maintenance. In Proceedings of the 14th International Conference on
Software Engineering and Knowledge Engineering - SEKFE ’02, page 409, New York, New
York, USA, 2002. ACM Press. ISBN 1581135564. doi: 10.1145/568760.568831.

Harpal Dhama. Quantitative models of cohesion and coupling in software. Journal of

Systems and Software, 29(1):65-74, 1995. ISSN 01641212. doi: 10.1016/0164-1212(94)

00128-A. F2, 571 B8

Tharam Dillon, Chen Wu, and Elizabeth Chang. Cloud Computing: Issues and Chal-
lenges. In 2010 2/th IEEE International Conference on Advanced Information Networking
and Applications, pages 27-33, Perth, WA, 2010. IEEE. ISBN 978-1-4244-6695-5. doi:

10.1109/AINA.2010.187.

Fred Douglis. Staring at Clouds. IEEFE Internet Computing, 13(3):4-6, May 2009. ISSN
1089-7801. doi: 10.1109/MIC.2009.70.

Scott Dowell, Albert Barreto, James Bret Michael, and Man-Tak Shing. Cloud to cloud
interoperability. In 2011 6th International Conference on System of Systems Engineering,
pages 258-263, Albuquerque, NM, June 2011. IEEE. ISBN 978-1-61284-783-2. doi: 10.
1109/SYSOSE.2011.5966607.

Tore Dyba, Dag LK. Sjgberg, and Daniela S. Cruzes. What works for whom, where,
when, and why? In Proceedings of the ACM-IEEFE International Symposium on Empirical
Software Engineering and Measurement - ESEM ’12, page 19, New York, New York, USA,
2012. ACM Press. ISBN 9781450310567. doi: 10.1145/2372251.2372256.

Tore Dybéa, Vigdis By Kampenes, and Dag I.LK. Sjgberg. A systematic review of statistical

power in software engineering experiments. Information and Software Technology, 48(8):

745 755, 2006. ISSN 09505849.

Steve Easterbrook, Janice Singer, Margaret-Anne Storey, and Daniela Damian. Selecting
Empirical Methods for Software Engineering Research. In Forrest Shull, Janice Singer,

and Dag I. K. Sjg berg, editors, Selecting Empirical Methods for Software Engineering

211

REFERENCES

[72]

[73]

[74]

[75]

[76]

[77]

[78]

[79]

(80]

Research, chapter 11, pages 285-311. Springer London, London, 1 edition, 2008. doi:

10.1007/978-1-84800-044-5\ 11. [24] [183]

Christof Ebert, Gorka Gallardo, Josune Hernantes, and Nicolas Serrano. DevOps. IEEFE
Software, 33(3):94-100, may 2016. ISSN 0740-7459. doi: 10.1109/MS.2016.68.

Jorge Ejarque, Javier Alvarez, Raul Sirvent, and Rosa M. Badia. A Rule-based Approach
for Infrastructure Providers’ Interoperability. In 2011 IEEFE Third International Con-
ference on Cloud Computing Technology and Science, pages 272-279, Athens, November
2011. IEEE. ISBN 978-1-4673-0090-2. doi: 10.1109,/CloudCom.2011.44.

Mahmoud O. Elish and Karim O. Elish. Application of TreeNet in Predicting Object-
Oriented Software Maintainability: A Comparative Study. In 2009 15th European Con-

ference on Software Maintenance and Reengineering, pages 69-78, Kaiserslautern, 2009.

IEEE. ISBN 978-1-4244-3755-9. doi: 10.1109/CSMR.2009.57.

Mahmoud O. Elish, Hamoud Aljamaan, and Irfan Ahmad. Three empirical studies on
predicting software maintainability using ensemble methods. Soft Computing, 19(9):2511—
2524, September 2015. ISSN 1432-7643. doi: 10.1007/s00500-014-1576-2.

E. Elmroth and J. Tordsson. An Interoperable, Standards-Based Grid Resource Broker
and Job Submission Service. In First International Conference on e-Science and Grid
Computing (e-Science’05), pages 212-220, Melbourne, 2005. IEEE. ISBN 0-7695-2448-6.
doi: 10.1109/E-SCIENCE.2005.17.

Joe Masters Emison. State of Cloud Survey. Technical report, InformationWeek, 2014.

21} BT} 32} 87, 55 B9 O3]

Joe Masters Emison. Cloud Convergence: 6 Standards That Matter. Technical report,

InformationWeek, 2014. [I80]

Patricia Takako Endo, Glauco Estacio Goncalves, Djamel Fawzi Hadj Sadok, and Judith
Kelner. A Survey on Open-source Cloud Computing Solutions. In Simpdsio Brasileiro de
Redes de Computadores e Sistemas Distribuidos, pages 3-16, Gramado, 2010. Sociedade
Brasileira de Computagao (SBC).

Tilen Faganel and Matjaz B. Juric. KumuluzEE: Building Microservices with Java EE.
Java magazine, pages 80-88, 2016. [55] [57]

212

[81]

[82]

[83]

[84]

[85]

[36]

[87]

[38]

[89]

REFERENCES

Stephen Farrell. API Keys to the Kingdom. IEEE Internet Computing, 13(5):91-93,
2009. ISSN 1089-7801. doi: 10.1109/MIC.2009.100.

Janet Feigenspan, Christian Kastner, Jorg Liebig, Sven Apel, and Stefan Hanenberg.
Measuring programming experience. In 2012 20th IEEE International Conference on

Program Comprehension (ICPC), pages 73-82, Passau, 2012. IEEE. ISBN 978-1-4673-
1216-5. doi: 10.1109/ICPC.2012.6240511. [24] [103]

Nicolas Ferry, Alessandro Rossini, Franck Chauvel, Brice Morin, and Arnor Solberg.
Towards model-driven provisioning, deployment, monitoring, and adaptation of multi-
cloud systems. In Proceedings of the IEEE Sixth International Conference on Cloud
Computing, pages 887-894, Santa Clara Marriott, CA, 2013. IEEE. doi: 10.1109/CLOUD.

2013.133. B2} 85 B4} 152

A. Field, J. Miles, and Z. Field. Discovering Statistics Using R. SAGE Publications,
2012. ISBN 9781446200469. [200]

Huber Flores, Satish Narayana Srirama, and Carlos Paniagua. A generic middleware
framework for handling process intensive hybrid cloud services from mobiles. In Proceed-
ings of the 9th International Conference on Advances in Mobile Computing and Multi-
media - MoMM ’11, pages 87-94, New York, New York, USA, 2011. ACM Press. ISBN
9781450307857. doi: 10.1145/2095697.2095715.

Teodor-Florin Fortis, Victor Ion Munteanu, and Viorel Negru. Towards an Ontology
for Cloud Services. In 2012 Sizth International Conference on Complex, Intelligent, and

Software Intensive Systems, pages 787-792, Palermo, July 2012. IEEE. ISBN 978-1-4673-
1233-2. doi: 10.1109/CISIS.2012.138.

T. Foss, E. Stensrud, B. Kitchenham, and I. Myrtveit. A simulation study of the model
evaluation criterion mmre. IEEE Transactions on Software Engineering, 29(11):985-995,

nov 2003. ISSN 0098-5589. doi: 10.1109/TSE.2003.1245300.

I. Foster, C. Kesselman, and S. Tuecke. The Anatomy of the Grid: Enabling Scalable Vir-
tual Organizations. International Journal of High Performance Computing Applications,

15(3):200-222, 2001. ISSN 1094-3420. doi: 10.1177/109434200101500302.

Tan Foster, Yong Zhao, Ioan Raicu, and Shiyong Lu. Cloud Computing and Grid Comput-
ing 360-Degree Compared. In 2008 Grid Computing Environments Workshop, pages 1-10,

213

REFERENCES

[90]

[91]

92]

(93]

94]

[95]

196]

Austin, TX, 2008. IEEE. ISBN 978-1-4244-2860-1. doi: 10.1109/GCE.2008.4738445.
300

Gordon L. Freeman and Stephen R. Schach. The task-dependent nature of the mainte-
nance of object-oriented programs. Journal of Systems and Software, 76(2):195-206, May
2005. ISSN 01641212. doi: 10.1016/;.jss.2004.05.010.

Fabrizio Gagliardi and Silvana Muscella. Cloud Computing — Data Confidentiality and
Interoperability Challenges. In Nick Antonopoulos and Lee Gillam, editors, Cloud Com-
puting, volume 0 of Computer Communications and Networks, pages 257-270. Springer

London, London, 2010. ISBN 978-1-84996-240-7. doi: 10.1007/978-1-84996-241-4\ _15.

36} 9]

Fermin Galan, Americo Sampaio, Luis Rodero-Merino, Irit Loy, Victor Gil, and Luis M.
Vaquero. Service specification in cloud environments based on extensions to open stan-
dards. In Proceedings of the Fourth International ICST Conference on COMmunication
System softWAre and middlewaRE - COMSWARE 09, page 1. ACM Press, 2009. ISBN
9781605583532. doi: 10.1145/1621890.1621915.

Matthias Galster and Eva Bucherer. A Taxonomy for Identifying and Specifying Non-
Functional Requirements in Service-Oriented Development. In 2008 IEEE Congress on
Services - Part I, pages 345-352, Honolulu, HI, 2008. IEEE. ISBN 978-0-7695-3286-8.
doi: 10.1109/SERVICES-1.2008.51.

M. Genero, M. Piattini, E. Manso, and G. Cantone. Building UML class diagram main-
tainability prediction models based on early metrics. In Ninth International Software

Metrics Symposium, 2003, pages 263-275, Sydney, 2003. IEEE Comput. Soc. ISBN 0-
7695-1987-3. doi: 10.1109/METRIC.2003.1232473. [117]

Sushant Goel, Hema Sharda, and David Taniar. Message-Oriented-Middleware in a Dis-
tributed Environment. In Thomas Béhme, Gerhard Heyer, and Herwig Unger, editors,
Innovative Internet Community Systems, pages 93—103. Springer Berlin Heidelberg, 2003.
doi: 10.1007/978-3-540-39884-4\ 8.

Kelsey Goings and Paul Abel. Consumer Perceptions of Online
Registration and Social Login. Technical report, Blue Research,
2012. URL http://janrain.com/resources/industry-research/

214

http://janrain.com/resources/industry-research/2011-consumer-research-perceptions-of-online-registration-and-social-login/
http://janrain.com/resources/industry-research/2011-consumer-research-perceptions-of-online-registration-and-social-login/

REFERENCES

2011-consumer-research-perceptions-of-online-registration-and-social-login/.

[97] F. Gonidis, I. Paraskakis, and D. Kourtesis. Addressing the Challenge of Application
Portability in Cloud Platforms. In Proceedings of the 7th South Fast Furopean Doctoral
Student Conference (DSC 2012), pages 565576, Thessaloniki, Greece, 2012. RELATE
FP7 Marie Curie ITN.

[98] Anand Govindarajan and Lakshmanan. Overview of Cloud Standards. In Nick
Antonopoulos and Lee Gillam, editors, Cloud Computing, volume 0 of Computer Com-

munications and Networks, pages 77-89. Springer London, London, 2010. ISBN 978-1-
84996-240-7. doi: 10.1007/978-1-84996-241-4_5.

[99] Andrew R. Gray and Stephen G. MacDonell. A comparison of techniques for developing
predictive models of software metrics. Information and Software Technology, 39(6):425—
437, January 1997. ISSN 09505849. doi: 10.1016/S0950-5849(96)00006-7. 1198]
L99)

[100] Stein Grimstad, Magne Jgrgensen, and Kjetil Molpkken-Ostvold. Software effort esti-
mation terminology: The tower of Babel. Information and Software Technology, 48(4):
302-310, April 2006. ISSN 09505849. doi: 10.1016/j.infsof.2005.04.004.

[101] J.a Guillén, J.b Miranda, and J.M.b Murillo. Decoupling cloud applications from the
source: A framework for developing cloud agnostic software. In CLOSER 2012 - Pro-
ceedings of the 2nd International Conference on Cloud Computing and Services Science,

pages 70-75, Porto, 2012. SciTePress. [32] 55|

[102] Julie Hallmark and C. Rebecca Garcia. System Migration: Experiences from the Field,

1992. [}, [15} {18

[103] M Hamdaqa, T Livogiannis, and L Tahvildari. A reference model for developing cloud
applications. In CLOSER 2011 - Proceedings of the 1st International Conference on Cloud
Computing and Services Science, pages 98-103. SciTePress, 2011.

[104] Jo Hannay, Dag Sjoberg, and Tore Dyba. A Systematic Review of Theory Use in Software
Engineering Experiments. IEEE Transactions on Software Engineering, 33(2):87-107,
February 2007. ISSN 0098-5589. doi: 10.1109/TSE.2007.12.

215

http://janrain.com/resources/industry-research/2011-consumer-research-perceptions-of-online-registration-and-social-login/
http://janrain.com/resources/industry-research/2011-consumer-research-perceptions-of-online-registration-and-social-login/

REFERENCES

[105]

[106]

[107]

[108]

[109]

[110]

[111]

[112]

Piyush Harsh, Florian Dudouet, Roberto G Cascella, Yvon Jégou, and Christine Morin.
Using Open Standards for Interoperability - Issues, Solutions, and Challenges facing Cloud
Computing. CoRR (6th International DMTFE Academic Alliance Workshop on Systems
and Virtualization Management: Standards and the Cloud (2012)), abs/1207.5, 2012.

W. Hasselbring, R. Reussner, H. Jaekel, J. Schlegelmilch, T. Teschke, and S. Krieghoff.
The Dublo architecture pattern for smooth migration of business information systems: an
experience report. In Proceedings. 26th International Conference on Software Engineering,
pages 117-126, Scotland, UK, 2004. IEEE Computer Society. ISBN 0-7695-2163-0. doi:
10.1109/ICSE.2004.1317434.

Leonard Heilig and Stefan VoB. A Scientometric Analysis of Cloud Computing Literature.
IEEE Transactions on Cloud Computing, PP(99):1-1, 2014. ISSN 2168-7161. doi: 10.
1109/TCC.2014.2321168.

Zach Hill and Marty Humphrey. CSAL: A Cloud Storage Abstraction Layer to Enable
Portable Cloud Applications. In 2010 IEEE Second International Conference on Cloud
Computing Technology and Science, pages 504-511, Indianapolis, nov 2010. IEEE. ISBN
978-1-4244-9405-7. doi: 10.1109/CloudCom.2010.88.

Paul Hofmann and Dan Woods. Cloud Computing: The Limits of Public Clouds for
Business Applications. IEEE Internet Computing, 14(6):90-93, 2010. ISSN 1089-7801.

doi: 10.1109/MIC.2010.136.

IEEE. Draft Standard for Intercloud Interoperability and Federation (SIIF). Technical
report, 2012. URL https://www.oasis-open.org/committees/download.php/46205/
p2302-12-0002-00-DRFT-1intercloud-p2302-draft-0-2.pdf. @

Marcelo Alexandre da Cruz Ismael, Cesar Alberto da Silva, Gabriel Costa Silva, and
Reginaldo Re. An Empirical Study for Evaluating the Performance of jclouds. In
2015 IEEE 7th International Conference on Cloud Computing Technology and Science
(CloudCom), pages 115-122, Vancouver, 2015. IEEE. ISBN 978-1-4673-9560-1. doi:

10.1109/CloudCom.2015.61.

Ronald Jabangwe, Jiirgen Borstler, Darja Smite, and Claes Wohlin. Empirical evidence on

the link between object-oriented measures and external quality attributes: a systematic

216

https://www.oasis-open.org/committees/download.php/46205/p2302-12-0002-00-DRFT-intercloud-p2302-draft-0-2.pdf
https://www.oasis-open.org/committees/download.php/46205/p2302-12-0002-00-DRFT-intercloud-p2302-draft-0-2.pdf

[113]

[114]

[115]

[116]

[117]

[118]

[119]

[120]

REFERENCES

literature review. Empirical Software Engineering, 20(3):640-693, March 2014. ISSN
1382-3256. doi: 10.1007/s10664-013-9291-7.

Gareth James, Daniela Witten, Trevor Hastie, and Robert Tibshirani. An Introduction
to Statistical Learning, volume 103 of Springer Texts in Statistics. Springer New York,
New York, NY, 2013. ISBN 978-1-4614-7137-0. doi: 10.1007/978-1-4614-7138-7. 1194]

(198} [199]

M Jonnalagedda, M C Jaeger, U Hohenstein, and G Kaefer. Application portability
for public and private clouds. In CLOSER 2011 - Proceedings of the 1st International

Conference on Cloud Computing and Services Science, pages 484-493, Noordwijkerhout,

2011. SciTePress. 22} 29] B3]

M. Jgrgensen. A review of studies on expert estimation of software development effort.
Journal of Systems and Software, 70(1-2):37-60, feb 2004. ISSN 01641212. doi: 10.1016/
S0164-1212(02)00156-5. [192]

Magne Jgrgensen. What We Do and Don’t Know about Software Development Effort
Estimation. IFEE Software, 31(2):37-40, 2014. ISSN 0740-7459. doi: 10.1109/MS.2014.

49. 197}, 192} [193]

Magne Jorgensen and Martin Shepperd. A Systematic Review of Software Development
Cost Estimation Studies. IEEE Transactions on Software Engineering, 33(1):33-53, Jan-
uary 2007. ISSN 0098-5589. doi: 10.1109/TSE.2007.256943.

Magne Jgrgensen, Tore Dyba, Knut Liestg 1, and Dag I.K. Sjgberg. Incorrect results in
software engineering experiments: How to improve research practices. Journal of Systems

and Software, March 2015. ISSN 01641212. doi: 10.1016/j.jss.2015.03.065.

F Jrad, Jie Tao, and A Streit. SLA based service brokering in intercloud environments.
In CLOSER 2012 - Proceedings of the 2nd International Conference on Cloud Computing
and Services Science, pages 76-81, Porto, 2012. SciTePress. [33] [39]

Vigdis By Kampenes, Tore Dyba, Jo E. Hannay, and Dag I.LK. Sjgberg. A systematic
review of effect size in software engineering experiments. Information and Software Tech-

nology, 49(11-12):1073-1086, 2007. ISSN 09505849. doi: 10.1016//j.infsof.2007.02.015.
[73} B5} 114} [123) [T42} [T50} [I88] [139]

217

REFERENCES

[121]

[122]

[123]

[124]

[125]

[126]

[127]

[128]

Vigdis By Kampenes, Tore Dyba, Jo E. Hannay, and Dag I. Dag. A systematic review of
quasi-experiments in software engineering. Information and Software Technology, 51(1):

71-82, 2009. ISSN 09505849. doi: 10.1016/j.infsof.2008.04.006.

R. Kazman, S.G. Woods, and S.J. Carriere. Requirements for integrating software archi-
tecture and reengineering models: CORUM II. In Proceedings Fifth Working Conference
on Reverse Engineering, pages 154-163, Honolulu, HI, 1998. IEEE Comput. Soc. ISBN
0-8186-8967-6. doi: 10.1109/WCRE.1998.723185.

Ali Khajeh-Hosseini, David Greenwood, and Ian Sommerville. Cloud Migration: A Case
Study of Migrating an Enterprise IT System to laaS. In 2010 IEEFE 3rd International
Conference on Cloud Computing, pages 450—457, Miami, FL, July 2010. IEEE. ISBN
978-1-4244-8207-8. doi: 10.1109/CLOUD.2010.37.

Ali Khajeh-Hosseini, Ian Sommerville, and Ilango Sriram. Research Challenges for En-

terprise Cloud Computing. CoRR, abs/1001.3, 2010.

Ali Khajeh-Hosseini, David Greenwood, James W. Smith, and Ian Sommerville. The
Cloud Adoption Toolkit: supporting cloud adoption decisions in the enterprise. Software:

Practice and Ezperience, 42(4):447-465, 2012. ISSN 00380644. doi: 10.1002/spe.1072.

28} 29} 6} [50

B.A. Kitchenham and S.L. Pfleeger. Personal Opinion Surveys. In Forrest Shull, Janice
Singer, and Dagl.K. Sjgberg, editors, Guide to Advanced Empirical Software Engineering,
pages 63-92. Springer London, London, 2008. ISBN 978-1-84800-043-8. doi: 10.1007/
978-1-84800-044-5_ 3. [25] [I83]

B.A. Kitchenham, L.M. Pickard, S.G. MacDonell, and M.J. Shepperd. What accuracy
statistics really measure. IEE Proceedings - Software, 148(3):81, 2001. ISSN 14625970.

doi: 10.1049 /ip-sen:20010506.

B.A. Kitchenham, S.L. Pfleeger, L.M. Pickard, P.W. Jones, D.C. Hoaglin, K. El Emam,
and J. Rosenberg. Preliminary guidelines for empirical research in software engineering.

IEEE Transactions on Software Engineering, 28(8):721-734, 2002. ISSN 0098-5589. doi:
10.1109/TSE.2002.1027796. [185] [187]

218

[129]

[130]

[131]

[132]

[133]

[134]

[135]

[136]

REFERENCES

Barbara Kitchenham. What’s up with software metrics? — A preliminary mapping study.
Journal of Systems and Software, 83(1):37-51, 2010. ISSN 01641212. doi: 10.1016/j.jss.
2009.06.041. b1} [72]

Barbara A. Kitchenham, Emilia Mendes, and Guilherme H. Travassos. Cross versus
Within-Company Cost Estimation Studies: A Systematic Review. IEEFE Transactions
on Software Engineering, 33(5):316-329, May 2007. ISSN 0098-5589. doi: 10.1109/TSE.
2007.1001.

Andrew J. Ko, Thomas D. LaToza, and Margaret M. Burnett. A practical guide to con-
trolled experiments of software engineering tools with human participants. Empirical Soft-

ware Engineering, 20(1):110-141, 2013. ISSN 1382-3256. doi: 10.1007/s10664-013-9279-3.
96} (03} [146} [152] [185} [187)

AndrewJ. Ko, ThomasD. LaToza, and MargaretM. Burnett. A practical guide to con-
trolled experiments of software engineering tools with human participants. Empirical Soft-
ware Engineering, 20(1):110-141, 2015. ISSN 1382-3256. doi: 10.1007/s10664-013-9279-3.

Ekrem Kocaguneli and Tim Menzies. Software effort models should be assessed via leave-
one-out validation. Journal of Systems and Software, 86(7):1879-1890, July 2013. ISSN
01641212. doi: 10.1016/j.jss.2013.02.053.

Stefan Kolb, Jorg Lenhard, and Guido Wirtz. Application migration effort in the cloud
- the case of cloud platforms. In 2015 IEEE 8th International Conference on Cloud
Computing, pages 41-48, New York City, NY, June 2015. IEEE. ISBN 978-1-4673-7287-
9. doi: 10.1109/CLOUD.2015.16.

Shyam Kotecha, Minal Bhise, and Sanjay Chaudhary. Query translation for cloud
databases. In 2011 Nirma University International Conference on Engineering, pages
1-4, Ahmedabad, Gujarat, December 2011. IEEE. ISBN 978-1-4577-2168-7. doi:
10.1109/NUiConE.2011.6153249.

Maurizio Lancia, Roberto Puccinelli, and Flavio Lombardi. Feasibility and benefits of
migrating towards JEE. In Proceedings of the 5th International Symposium on Principles

and Practice of Programming in Java - PPPJ °07, page 13, New York, New York, USA,

219

REFERENCES

[137]

[138]

[139]

[140]

[141]

[142]

[143]

[144]

2007. ACM Press. ISBN 9781595936721. doi: 10.1145/1294325.1294328.
9]

C. Larman. Applying UML and Patterns: An Introduction to Object-oriented Analysis
and Design and the Unified Process. Prentice Hall PTR, 2002. ISBN 9780130925695. [63]

Bu Sung Lee, Shixing Yan, Ding Ma, and Guopeng Zhao. Aggregating [aaS Service. In
2011 Annual SRII Global Conference, pages 335-338, San Jose, CA, March 2011. IEEE.
ISBN 978-1-61284-415-2. doi: 10.1109/SRIL.2011.44.

Barry Leiba. OAuth Web Authorization Protocol. IEEE Internet Computing, 16(1):
74-77, 2012. ISSN 1089-7801. doi: 10.1109/MIC.2012.11.

Lydia Leong, Douglas Toombs, Bob Gill, Gregor Petri, and Tiny Haynes. Magic Quadrant
for Cloud Infrastructure as a Service. Technical report, Gartner, Inc, 2013. URL http:
//www .gartner.com/technology/reprints.do?id=1-1IMDMZ5&ct=130819&st=sb. [I44]
154

Grace Lewis. The Role of Standards in Cloud-Computing Interoperability. Technical re-
port, Software Engineering Institute, Carnegie Mellon University, Pittsburgh, Pennsylva-

nia, 2012. URL http://www.sei.cmu.edu/library/abstracts/reports/12tn012.cfm.

BI B2

Ang Li, Xiaowei Yang, Srikanth Kandula, and Ming Zhang. CloudCmp: comparing public
cloud providers. In Proceedings of the 10th Annual Conference on Internet Measurement
- IMC ’10, pages 1-14, Melbourne, Australia, 2010. ACM Press. ISBN 9781450304832.
doi: 10.1145/1879141.1879143.

Y. F. Li, M. Xie, and T. N. Goh. Bayesian Inference Approach for Probabilistic Analogy
Based Software Maintenance Effort Estimation. In 2008 14th IEEE Pacific Rim Inter-
national Symposium on Dependable Computing, pages 176-183, Taipei, December 2008.

IEEE. doi: 10.1109/PRDC.2008.21.

Zheng Li, Liam O’Brien, He Zhang, and Rainbow Cai. On a Catalogue of Metrics for
Evaluating Commercial Cloud Services. In 2012 ACM/IEEE 13th International Confer-
ence on Grid Computing, pages 164—173, Beijing, 2012. IEEE. ISBN 978-1-4673-2901-9.
doi: 10.1109/Grid.2012.15.

220

http://www.gartner.com/technology/reprints.do?id=1-1IMDMZ5&ct=130819&st=sb
http://www.gartner.com/technology/reprints.do?id=1-1IMDMZ5&ct=130819&st=sb
http://www.sei.cmu.edu/library/abstracts/reports/12tn012.cfm

[145]

[146]

[147]

[148]

[149]

[150]

[151]

[152]

REFERENCES

Joa Sang Lim, Seung Ryul Jeong, and Stephen R. Schach. An empirical investigation of
the impact of the object-oriented paradigm on the maintainability of real-world mission-
critical software. Journal of Systems and Software, 77(2):131-138, 2005. ISSN 01641212.
doi: 10.1016/j.j5s.2004.11.004.

Fang Liu, Jin Tong, Jian Mao, Robert B. Bohn, John V. Messina, Mark L. Badger,
and Dawn M. Leaf. NIST Cloud Computing Reference Architecture. Technical report,
National Institute of Standards and Technology (NIST), 2011. URL http://www.nist.
gov/manuscript-publication-search.cfm?pub{_}id=909505.

Nikolaos Loutas, Vassilios Peristeras, Thanassis Bouras, Eleni Kamateri, Dimitrios Zegi-
nis, and Konstantinos Tarabanis. Towards a Reference Architecture for Semantically
Interoperable Clouds. In 2010 IEEE Second International Conference on Cloud Comput-
ing Technology and Science, pages 143-150, Indianapolis, November 2010. IEEE. ISBN

978-1-4244-9405-7. doi: 10.1109/CloudCom.2010.38.

Nikolaos Loutas, Eleni Kamateri, Filippo Bosi, and Konstantinos Tarabanis. Cloud Com-
puting Interoperability: The State of Play. In 2011 IEEE Third International Conference
on Cloud Computing Technology and Science, pages 752-757, Athens, November 2011.
IEEE. ISBN 978-1-4673-0090-2. doi: 10.1109/CloudCom.2011.116.

Nikolaos Loutas, Eleni Kamateri, and Konstantinos Tarabanis. A Semantic Interoper-
ability Framework for Cloud Platform as a Service. In 2011 IEEE Third International
Conference on Cloud Computing Technology and Science, pages 280-287, Athens, nov
2011. IEEE. ISBN 978-1-4673-0090-2. doi: 10.1109/CloudCom.2011.45.

L. Lynch. Inside the Identity Management Game. IEEFE Internet Computing, 15(5):
78-82, 2011. ISSN 1089-7801. doi: 10.1109/MIC.2011.119.

C. Mair and M. Shepperd. The consistency of empirical comparisons of regression and
analogy-based software project cost prediction. In 2005 International Symposium on
Empirical Software Engineering, 2005., pages 491-500, Noosa Heads, 2005. IEEE. ISBN
0-7803-9507-7. doi: 10.1109/ISESE.2005.1541858.

Giuliano Manno, Waleed W. Smari, and Luca Spalazzi. FCFA: A semantic-based fed-

erated cloud framework architecture. In 2012 International Conference on High Perfor-

221

http://www.nist.gov/manuscript-publication-search.cfm?pub{_}id=909505
http://www.nist.gov/manuscript-publication-search.cfm?pub{_}id=909505

REFERENCES

[153]

[154]

[155]

[156]

[157]

[158]

[159]

[160]

mance Computing & Simulation (HPCS), pages 42-52, Madrid, July 2012. IEEE. ISBN
978-1-4673-2362-8. doi: 10.1109/HPCSim.2012.6266889.

Simon Maple. Java Tools and Technologies Landscape 2016. Technical report, Re-
bellabs by ZeroTurnaround, 2016. URL http://zeroturnaround.com/rebellabs/
java-tools-and-technologies-landscape-2016/.

Sean Marston, Zhi Li, Subhajyoti Bandyopadhyay, Juheng Zhang, and Anand Ghalsasi.
Cloud computing — The business perspective. Decision Support Systems, 51(1):176-189,
2011. ISSN 01679236. doi: 10.1016/j.dss.2010.12.006.

Peter Mell and Timoty Grance. NIST Definition of Cloud Computing. Technical report,
National Institute of Standards and Technology (Special Publication 800-145), Gaithers-
burg, 2011. URL http://www.nist.gov/customcf/get_pdf.cfm?pub_id=909616.

28, 29 BT

D.A. Menasce. MOM vs. RPC: Communication Models for Distributed Applications.
IEEE Internet Computing, 9(2):90-93, March 2005. ISSN 1089-7801. doi: 10.1109/MIC.

2005.42. 55} B9

Andre Merzky, Katerina Stamou, and Shantenu Jha. Application Level Interoperability
between Clouds and Grids. In 2009 Workshops at the Grid and Pervasive Computing
Conference, pages 143-150, Geneva, May 2009. IEEE. ISBN 978-0-7695-3677-4. doi:

10.1109/GPC.2009.17.

James Miller. Statistical significance testing — a panacea for software technology experi-
ments? Journal of Systems and Software, 73(2):183-192, October 2004. ISSN 01641212.
doi: 10.1016/j.jss.2003.12.019.

James Miller. Replicating software engineering experiments: a poisoned chalice or the
Holy Grail. Information and Software Technology, 47(4):233-244, mar 2005. ISSN
09505849. doi: 10.1016/j.infsof.2004.08.005.

James Miller, John Daly, Murray Wood, Marc Roper, and Andrew Brooks. Statistical
power and its subcomponents — missing and misunderstood concepts in empirical software
engineering research. Information and Software Technology, 39(4):285-295, 1997. ISSN
09505849. doi: 10.1016/S0950-5849(96)01139-1.

222

http://zeroturnaround.com/rebellabs/java-tools-and-technologies-landscape-2016/
http://zeroturnaround.com/rebellabs/java-tools-and-technologies-landscape-2016/
http://www.nist.gov/customcf/get_pdf.cfm?pub_id=909616

[161]

[162]

[163]

[164]

[165]

[166]

[167]

[168]

REFERENCES

Javier Miranda, Juan Manuel Murillo, Joaquin Guillén, and Carlos Canal. Identify-
ing adaptation needs to avoid the vendor lock-in effect in the deployment of cloud
SBAs. In Proceedings of the 2nd International Workshop on Adaptive Services for the
Future Internet and 6th International Workshop on Web APIs and Service Mashups on
- WAS/FI-Mashups 12, page 12, New York, New York, USA, 2012. ACM Press. ISBN
9781450315661. doi: 10.1145/2377836.2377841.

I. Myrtveit, E. Stensrud, and M. Shepperd. Reliability and validity in comparative studies
of software prediction models. IEEE Transactions on Software Engineering, 31(5):380—

391, May 2005. ISSN 0098-5589. doi: 10.1109/TSE.2005.58.

Balakrishna Narasimhan and Ryan Nichols. State of Cloud Applications and Platforms:
The Cloud Adopters’ View. Computer, 44(3):24-28, March 2011. ISSN 0018-9162. doi:

10.1109/MC.2011.66.

V. Nelson and V. Uma. Semantic based Resource Provisioning and scheduling in inter-
cloud environment. In 2012 International Conference on Recent Trends in Information
Technology, pages 250-254, Chennai, Tamil Nadu, April 2012. IEEE. ISBN 978-1-4673-
1601-9. doi: 10.1109/ICRTIT.2012.6206823.

Sam Newman. Building Microservices. O’Reilly Media, Inc., 1st edition, 2015. ISBN
1491950358, 9781491950357. [I79]

Reason Baathuli Nfila, Motumi Nini Dintwe, and K.N. Rao. Experience of systems
migration at the University of Botswana Library: a case study. Program: elec-

tronic library and information systems, 39(3):248-256, 2005. ISSN 0033-0337. doi:
10.1108/00330330510610582.

BinhMinh Nguyen, Viet Tran, and Ladislav Hluchy. High-Level Abstraction Layers for
Development and Deployment of Cloud Services. In Rachid Benlamri, editor, Networked
Digital Technologies, volume 293 of Communications in Computer and Information Sci-
ence, pages 208-219. Springer Berlin Heidelberg, Dubai, 2012. ISBN 978-3-642-30506-1.
doi: 10.1007/978-3-642-30507-8 19.

Vu Nguyen, Barry Boehm, and Phongphan Danphitsanuphan. A controlled experiment
in assessing and estimating software maintenance tasks. Information and Software Tech-

nology, 53(6):682-691, 2011. ISSN 09505849. doi: 10.1016//j.infsof.2010.11.003.

223

REFERENCES

[169]

[170]

[171]

[172]

[173]

[174]

[175]

[176]

[177]

NorthBridge and GigaOM. 2013 Future of Cloud Computing 3rd Annual Survey Results,
2013. URL http://www.northbridge.com/2013-cloud-computing-survey. B2 (7]

E8} O3]

Harshad Oak. Build with NetBeans IDE, Deploy to Oracle Java Cloud Service. Java
magazine, pages 67-72, 2014. URL http://oracle.com/javamagazine.

Sunday Olusanya Olatunji and Ali Selamat. Type-2 Fuzzy Logic Based Prediction Model
of Object Oriented Software Maintainability. In Hamido Fujita and Ali Selamat, edi-
tors, Intelligent Software Methodologies, Tools and Techniques, pages 329-342. Springer
International Publishing, 2015. doi: 10.1007/978-3-319-17530-0_23.

Eric Olden. Architecting a Cloud-Scale Identity Fabric. Computer, 44(3):52-59, March
2011. ISSN 0018-9162. doi: 10.1109/MC.2011.60.

Justice Opara-Martins, Reza Sahandi, and Feng Tian. Critical analysis of vendor lock-in
and its impact on cloud computing migration: a business perspective. Journal of Cloud

Computing, 5(1):4, December 2016. ISSN 2192-113X. doi: 10.1186/s13677-016-0054-z.

21} 22} 37 [43

Sofia Ouhbi, Ali Idri, Jose Luis Fernandez Aleman, and Ambrosio Toval. Evaluating
Software Product Quality: A Systematic Mapping Study. In 2014 Joint Conference of
the International Workshop on Software Measurement and the International Conference
on Software Process and Product Measurement, pages 141-151, Rotterdam, October 2014.
IEEE. doi: 10.1109/TWSM.Mensura.2014.30.

Michael Papazoglou. Web Services: Principles and Technology. Pearson-Prentice Hall,

Harlow, 1 edition, 2007. ISBN 978-0321155559. [30] 57} [59]

Michael Papazoglou. Cloud Blueprints for Integrating and Managing Cloud Federations.
In Maritta Heisel, editor, Software Service and Application Engineering, volume 7365 of
Lecture Notes in Computer Science, pages 102-119. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2012. ISBN 978-3-642-30834-5. doi: 10.1007/978-3-642-30835-2.

Michael P. Papazoglou and Benedikt Kratz. Web services technology in support of busi-
ness transactions. Service Oriented Computing and Applications, 1(1):51-63, 2007. ISSN
1863-2386. doi: 10.1007/s11761-007-0002-3.

224

http://www.northbridge.com/2013-cloud-computing-survey
http://oracle.com/javamagazine

[178]

[179]

[180]

[181]

[182]

[183)]

[184]

[185)

[186]

REFERENCES

Michael P. Papazoglou, Paolo Traverso, Schahram Dustdar, and Frank Leymann. Service-
Oriented Computing: State of the Art and Research Challenges. Computer, 40(11):38-45,
2007. ISSN 0018-9162. doi: 10.1109/MC.2007.400.

Fawaz Paraiso, Nicolas Haderer, Philippe Merle, Romain Rouvoy, and Lionel Seinturier. A
Federated Multi-cloud PaaS Infrastructure. In 2012 IEEE Fifth International Conference
on Cloud Computing, pages 392-399, Honolulu, HI, 2012. IEEE. ISBN 978-1-4673-2892-0.
doi: 10.1109/CLOUD.2012.79.

A.V. Parameswaran and A. Chaddha. Cloud Interoperability and Standardization. In-
fosys Technology Limited/SETLabs Briefings, 7(7):19-26, 2009.

Russell Pavlicek. Unikernels. O’Reilly Media, Inc., 1st edition, 2016. ISBN
9781491959244.

Przemyslaw Pawluk, Bradley Simmons, Michael Smit, Marin Litoiu, and Serge
Mankovski. Introducing STRATOS: A Cloud Broker Service. In 2012 IEEE Fifth In-
ternational Conference on Cloud Computing, pages 891-898, Honolulu, HI, June 2012.
IEEE. ISBN 978-1-4673-2892-0. doi: 10.1109/CLOUD.2012.24.

Mikhail Perepletchikov and Caspar Ryan. A Controlled Experiment for Evaluating
the Impact of Coupling on the Maintainability of Service-Oriented Software. IEEE
Transactions on Software Engineering, 37(4):449-465, 2011. ISSN 0098-5589. doi:

10.1109/TSE.2010.61.

Dana Petcu. Portability and interoperability between clouds: Challenges and case

study. Towards a Service-Based Internet, 6994 LNCS:62-74, 2011. doi: 10.1007/
978-3-642-24755-2\ 6.

Dana Petcu and Athanasios V. Vasilakos. Portability in clouds: approaches and research
opportunities. Scalable Computing: Practice and Experience, 15(3):251-270, October
2014. ISSN 1895-1767. doi: 10.12694/scpe.v15i3.1019.

Dana Petcu, Georgiana Macariu, Silviu Panica, and Ciprian Craciun. Portable Cloud

applications — From theory to practice. Future Generation Computer Systems, 29(6):

1417-1430, 2012. ISSN 0167739X. doi: 10.1016/j.future.2012.01.009.
B9 B0 BT} B9 53} B9 b7 B3

225

REFERENCES

[187]

188

[189]

[190]

[191]

[192]

193]

[194]

Dana Petcu, Beniamino Di Martino, Salvatore Venticinque, Massimiliano Rak, Tamés
Mahr, Gorka Esnal Lopez, Fabrice Brito, Roberto Cossu, Miha Stopar, Svatopluk gperka,
and Vlado Stankovski. Experiences in building a mOSAIC of clouds. Journal of Cloud
Computing, 2(1):1-22, 2013. doi: 10.1186,/2192-113X-2-12. [T52]

Kai Petersen, Robert Feldt, Shahid Mujtaba, and Michael Mattsson. Systematic Mapping
Studies in Software Engineering. In Proceedings of the 12th International Conference on

Evaluation and Assessment in Software Engineering, EASE’08, pages 6877, Swinton,
UK, UK, 2008. British Computer Society. [37]

Madhukara Phatak and V.N Kamalesh. On cloud computing deployment architecture. In
2010 International Conference on Advances in ICT for Emerging Regions (ICTer), pages
11-14, Colombo, September 2010. IEEE. ISBN 978-1-4244-9041-7. doi: 10.1109/ICTER.
2010.5643276.

Lesley M. Pickard, Barbara A. Kitchenham, and Peter W. Jones. Combining empirical
results in software engineering. Information and Software Technology, 40(14):811-821,
1998. ISSN 09505849. doi: 10.1016,/S0950-5849(98)00101-3.

Ajith Ranabahu and Amit P. Sheth. Semantics Centric Solutions for Application and
Data Portability in Cloud Computing. In 2010 IEEE Second International Conference

on Cloud Computing Technology and Science, pages 234—241, Indianapolis, 2010. IEEE.
ISBN 978-1-4244-9405-7. doi: 10.1109/CloudCom.2010.48.

Ajith Ranabahu, Eugene Michael Maximilien, Amit P. Sheth, and Krishnaprasad
Thirunarayan. A domain specific language for enterprise grade cloud-mobile hybrid ap-
plications. In Proceedings of the compilation of the co-located workshops on DSM’11,
TMC’11, AGERE!’11, AOOPES’11, NEAT’11, & VMIL’11 - SPLASH ’11 Workshops,
pages 77-84, New York, New York, USA, oct 2011. ACM Press. ISBN 9781450311830.

doi: 10.1145/2095050.2095064.

M. A. Rappa. The utility business model and the future of computing services. IBM
Systems Journal, 43(1):32-42, 2004. ISSN 0018-8670. doi: 10.1147/sj.431.0032.

Mehwish Riaz, Emilia Mendes, and Ewan Tempero. A systematic review of software
maintainability prediction and metrics. In 2009 3rd International Symposium on Em-

pirical Software Engineering and Measurement, ESEM 2009, pages 367-377, Lake Buena

226

[195]

[196]

[197]

[198]

[199]

[200]

[201]

REFERENCES

Vista, FL, 2009. IEEE. ISBN 9781424448418. doi: 10.1109/ESEM.2009.5314233.

BT 72

Martin P. Robillard. What Makes APIs Hard to Learn? Answers from Developers. IEEE
Software, 26(6):27-34, 2009. ISSN 0740-7459. doi: 10.1109/MS.2009.193.

B. Rochwerger, D. Breitgand, E. Levy, A. Galis, K. Nagin, Ignacio M. Llorente, Rubén S.
Montero, Y. Wolfsthal, Erik Elmroth, J. Caceres, M. Ben-Yehuda, W. Emmerich, and
Fermin Galan. The Reservoir model and architecture for open federated cloud computing.

IBM Journal of Research and Development, 53(4):4:1-4:11, 2009. ISSN 0018-8646. doi:
10.1147/JRD.2009.5429058.

Luis Rodero-Merino, Luis M. Vaquero, Victor Gil, Fermin Galan, Javier Fontan, Rubén S.
Montero, and Ignacio M. Llorente. From infrastructure delivery to service management
in clouds. Future Generation Computer Systems, 26(8):1226-1240, October 2010. ISSN
0167739X. doi: 10.1016/j.future.2010.02.013.

Jarrett Rosenberg. Statistical Methods and Measurement. In Forrest Shull, Janice Singer,
and Dag I. K. Sjgberg, editors, Guide to Advanced Empirical Software Engineering, pages
155-184. Springer London, London, 2008. ISBN 978-1-84800-043-8. [I8§]

Americo Sampaio and Nabor Mendonga. Uni4Cloud: An approach based on open stan-
dards for deployment and management of multi-cloud applications. In Proceeding of the
2nd International Workshop on Software Engineering for Cloud Computing - SECLOUD
’11, page 15, New York, New York, USA, May 2011. ACM Press. ISBN 9781450305822.

doi: 10.1145/1985500.1985504.

Juliana Saraiva. A roadmap for software maintainability measurement. In 2013 35th In-
ternational Conference on Software Engineering (ICSE), pages 1453-1455, San Francisco,
CA, May 2013. IEEE. ISBN 978-1-4673-3076-3. doi: 10.1109/ICSE.2013.6606742.

Juliana de A.G. Saraiva, Micael S. de Franga, Sérgio C.B. Soares, Fernando J.C.L. Filho,
and Renata M.C.R. de Souza. Classifying Metrics for Assessing Object-Oriented Software
Maintainability: A Family of Metrics’ Catalogs. Journal of Systems and Software, 103:
85-101, 2015. ISSN 01641212. doi: 10.1016/j.jss.2015.01.014.

227

REFERENCES

202]

203]

[204]

[205]

[206]

[207]

208

[209]

Benjamin Satzger, Waldemar Hummer, Christian Inzinger, Philipp Leitner, and
Schahram Dustdar. Winds of Change: From Vendor Lock-In to the Meta Cloud. IEEE
Internet Computing, 17(1):69-73, 2013. ISSN 1089-7801. doi: 10.1109/MIC.2013.19.

22} B} 32} 3

Carolyn B. Seaman. Qualitative Methods. In Forrest Shull, Janice Singer, and Dag I. K.
Sjeberg, editors, Guide to Advanced Empirical Software Engineering, chapter Section I,
pages 35—62. Springer London, 2008. doi: 10.1007/978-1-84800-044-5 2.

Yeong-Seok Seo and Doo-Hwan Bae. On the value of outlier elimination on software

effort estimation research. Empirical Software Engineering, 18(4):659-698, 2013. ISSN
1382-3256. doi: 10.1007 /s10664-012-9207-y. [153]

Sam Sepassi. Scalable Microservices Using Modern Java-
Based Frameworks, 2016. URL https://dzone.com/articles/
scalable-microservices-using-kumuluz-ee-framework?edition=
201745{&}utm{_}source=Spotlight{&}utm{_}medium=email{&}utm{_}campaign=
integration2016-08-25. [55] [57]

W R Shadish, T D Cook, and D T Campbell. Ezperimental and Quasi-experimental
Designs for Generalized Causal Inference. Houghton Mifflin, Boston, 2002. ISBN

9780395615560. [85] 123} [T99]

Chen Shan, Chang Heng, and Zou Xianjun. Inter-cloud operations via NGSON. [FEE
Communications Magazine, 50(1):82-89, 2012. ISSN 0163-6804. doi: 10.1109/MCOM.
2012.6122536.

Mahdi Negahi Shirazi, Ho Chin Kuan, and Hossein Dolatabadi. Design Patterns to Enable
Data Portability between Clouds’ Databases. In 2012 12th International Conference on
Computational Science and Its Applications, pages 117-120, Salvador, June 2012. IEEE.
ISBN 978-1-4673-1691-0. doi: 10.1109/ICCSA.2012.29.

Forrest Shull and Raimund L. Feldmann. Building Theories from Multiple Evidence
Sources. In Forrest Shull, Janice Singer, and Dag I. K. Sjgberg, editors, Guide to Advanced
Empirical Software Engineering, chapter 13, pages 337-364. Springer London, London, 1

edition, 2008. doi: 10.1007/978-1-84800-044-5\ _13.

228

https://dzone.com/articles/scalable-microservices-using-kumuluz-ee-framework?edition=201745{&}utm{_}source=Spotlight{&}utm{_}medium=email{&}utm{_}campaign=integration 2016-08-25
https://dzone.com/articles/scalable-microservices-using-kumuluz-ee-framework?edition=201745{&}utm{_}source=Spotlight{&}utm{_}medium=email{&}utm{_}campaign=integration 2016-08-25
https://dzone.com/articles/scalable-microservices-using-kumuluz-ee-framework?edition=201745{&}utm{_}source=Spotlight{&}utm{_}medium=email{&}utm{_}campaign=integration 2016-08-25
https://dzone.com/articles/scalable-microservices-using-kumuluz-ee-framework?edition=201745{&}utm{_}source=Spotlight{&}utm{_}medium=email{&}utm{_}campaign=integration 2016-08-25

[210]

[211]

[212]

[213]

[214]

[215]

[216]

REFERENCES

Gabriel Costa Silva, Louis M. Rose, and Radu Calinescu. A Systematic Review of Cloud
Lock-In Solutions. In 2013 IEEE 5th International Conference on Cloud Computing
Technology and Science, pages 363-368, Bristol, UK, 2013. IEEE. ISBN 978-0-7695-5095-

4. doi: 10.1109/CloudCom.2013.130.

Gabriel Costa Silva, Louis M. Rose, and Radu Calinescu. Cloud DSL: A Language for
Supporting Cloud Portability by Describing Cloud Entities. In Richard Paige, Jordi
Cabot, Marco Brambilla, Louis Rose, and James H. Hil, editors, Proceedings of the 2nd
International Workshop on Model-Driven Engineering on and for the Cloud, pages 36—45,

Valencia, Spain, 2014.

Dag I. K. Sjgberg, Tore Dyba, and Magne Jgrgensen. The Future of Empirical Methods
in Software Engineering Research. In Future of Software Engineering (FOSE ’07), pages
358-378, Minneapolis, MN, May 2007. IEEE. ISBN 0-7695-2829-5. doi: 10.1109/FOSE.

2007.30. [Z5} [T83]

Dag I. K. Sjgberg, Tore Dybé, Bente C. D. Anda, and Jo E. Hannay. Building Theories
in Software Engineering. In Forrest Shull, Janice Singer, and Dag I. K. Sjgberg, editors,

Guide to Advanced Empirical Software Engineering, chapter 12, pages 312-336. Springer
London, London, 1 edition, 2008. doi: 10.1007/978-1-84800-044-5\ 12.

D.I.LK. Sjoberg, B. Anda, E. Arisholm, T. Dyba, M. Jgrgensen, A. Karahasanovic, E.F.
Koren, and M. Vokac. Conducting realistic experiments in software engineering. In
Proceedings International Symposium on Empirical Software Engineering, pages 17-26,

Nara, 2002. IEEE Comput. Soc. ISBN 0-7695-1796-X. doi: 10.1109/ISESE.2002.1166921.

[96}, [T03}, [T85}, [187)

D.I.LK. Sjgberg, J.E. Hannay, O. Hansen, V.B. Kampenes, A. Karahasanovic, N.-K. Li-
borg, and A.C. Rekdal. A survey of controlled experiments in software engineering.

IEEFE Transactions on Software Engineering, 31(9):733-753, 2005. ISSN 0098-5589. doi:
10.1109/TSE.2005.97.

Harry M. Sneed and Katalin Erdoes. Migrating AS400-COBOL to Java: A Report from
the Field. In 2013 17th European Conference on Software Maintenance and Reengineering,
pages 231-240, Genova, mar 2013. IEEE. ISBN 978-0-7695-4948-4. doi: 10.1109/CSMR.

2013.32. [22} 31} 34} [14} |15 6} [17), [18} [19]

229

REFERENCES

[217]

[218]

[219]

[220]

[221]

[222]

[223]

[224]

[225]

H.M. Sneed. Risks involved in reengineering projects. In Sizth Working Conference
on Reverse Engineering (Cat. No.PR00303), pages 204-211, Atlanta, GA, 1999. IEEE
Computer Society. ISBN 0-7695-0303-9. doi: 10.1109/WCRE.1999.806961.

Associagao para Promocao da Exceléncia do Software Brasileiro SOFTEX. MPS.BR-
Guia de Aquisi¢ao. Associagao para Promocao da Exceléncia do Software Brasileiro —

SOFTEX, 2009. ISBN 978-85-99334-14-0. URL http://www.softex.br, [45

Thamarai Selvi Somasundaram, Kannan Govindarajan, M.r Rajagopalan, and S. Mad-
husudhana Rao. An architectural framework to solve the interoperability issue between
private clouds using semantic technology. In 2012 International Conference on Recent
Trends in Information Technology, pages 162-167, Chennai, Tamil Nadu, April 2012.
IEEE. ISBN 978-1-4673-1601-9. doi: 10.1109/ICRTIT.2012.6206764.

Tan Sommerville. Software Engineering. Addison-Wesley, Harlow, 8th edition, 2007. ISBN

0321313798. [9} [50} 52} 58} [T80]

Arthur E. C. da Silva Souza, José A. Medeiros de Lima, Renato Gondim, Thomas Diniz,
Nelio Cacho, Frederico Lopes, and Thais Batista. Avaliando o Aprisionamento entre

Varias Plataformas de Computagao em Nuvem. In 81 Simpdsio Brasileiro de Redes de

Computadores e Sistemas Distribuidos, pages 775-788, Brasilia, 2013. 29}

Bruno Souza and Edson Yanaga. 7 Open Source Tools for Java Deployment. Java

magazine, pages 05-13, 2014. URL http://oracle.com/javamagazine.

Diomidis Spinellis. Portability: Goodies vs. the Hair Shirt. IEEE Software, 30(4):22-23,
July 2013. ISSN 0740-7459. doi: 10.1109/MS.2013.82.

E. Stensrud, T. Foss, B. Kitchenham, and I. Myrtveit. An empirical validation of the
relationship between the magnitude of relative error and project size. In Proceedings
Eighth IEEE Symposium on Software Metrics, pages 3—12, Ottawa, Canada, 2002. IEEE
Comput. Soc. ISBN 0-7695-1339-5. doi: 10.1109/METRIC.2002.1011320.

Roman Suvorov, Meiyappan Nagappan, Ahmed E. Hassan, Ying Zou, and Bram Adams.
An empirical study of build system migrations in practice: Case studies on KDE and
the Linux kernel. In 2012 28th IEEE International Conference on Software Maintenance
(ICSM), pages 160-169, Trento, September 2012. IEEE. ISBN 978-1-4673-2312-3. doi:
10.1109/ICSM.2012.6405267.

230

http://www.softex.br
http://oracle.com/javamagazine

[226]

[227]

[228]

[229]

[230]

[231]

[232]

[233)]

[234]

REFERENCES

Ladan Tahvildari, Kostas Kontogiannis, and John Mylopoulos. Quality-driven software
re-engineering. Journal of Systems and Software, 66(3):225-239, 2003. ISSN 01641212.
doi: 10.1016/S0164-1212(02)00082-1.

D. Talia. The Open Grid Services Architecture: where the grid meets the Web. [IEEE
Internet Computing, 6(6):67—71, 2002. ISSN 1089-7801. doi: 10.1109/MIC.2002.1067739.
o0l

A.S. Tanenbaum and M. van Steen. Distributed Systems: Principles and Paradigms.

Pearson Prentice Hall, 2007. ISBN 9780132392273. [30} [60] 4]

Jie Tao, Holger Marten, David Kramer, and Wolfgang Karl. An Intuitive Framework
for Accessing Computing Clouds. Procedia Computer Science, 4(1):2049-2057, January
2011. ISSN 18770509. doi: 10.1016/j.procs.2011.04.224.

Werner Teppe. The ARNO Project: Challenges and Experiences in a Large-Scale In-
dustrial Software Migration Project. In 2009 13th Furopean Conference on Software
Maintenance and Reengineering, pages 149-158, Kaiserslautern, 2009. IEEE. ISBN 978-

1-4244-3755-9. doi: 10.1109/CSMR.2009.64.

Mie Mie Thet Thwin and Tong-Seng Quah. Application of neural networks for software
quality prediction using object-oriented metrics. Journal of Systems and Software, 76(2):

147-156, May 2005. ISSN 01641212. doi: 10.1016/j.jss.2004.05.001. {179}

Van Tran, Jacky Keung, Anna Liu, and Alan Fekete. Application migration to cloud:
A Taxonomy of Critical Factors. In Proceeding of the 2nd International Workshop on
Software Engineering for Cloud Computing - SECLOUD ’11, pages 22-28, New York,
New York, USA, 2011. ACM Press. ISBN 9781450305822. doi: 10.1145/1985500.1985505.

28, 34} {46} {17} [18) F9]

Van T.K. Tran, Kevin Lee, Alan Fekete, Anna Liu, and Jacky Keung. Size Estimation
of Cloud Migration Projects with Cloud Migration Point (CMP). In 2011 International
Symposium on Empirical Software Engineering and Measurement, pages 265—274, Banff,

AB, September 2011. IEEE. ISBN 978-1-4577-2203-5. doi: 10.1109/ESEM.2011.35. m

Adam Trendowicz, Jiirgen Miinch, and Ross Jeffery. State of the Practice in Software

Effort Estimation: A Survey and Literature Review. In Zbigniew Huzar, Radek Koci,

231

REFERENCES

[235]

[236]

[237]

23]

[239]

[240]

[241]

[242]

Bertrand Meyer, Bartosz Walter, and Jaroslav Zendulka, editors, Software Engineering
Techniques, pages 232-245. Springer Berlin Heidelberg, Berlin, 2011. ISBN 978-3-642-
22385-3. doi: 10.1007/978-3-642-22386-0_18.

Wei-Tek Tsai, Xin Sun, and Janaka Balasooriya. Service-Oriented Cloud Computing
Architecture. In 2010 Seventh International Conference on Information Technology: New

Generations, pages 684-689, Las Vegas, NV, 2010. IEEE. ISBN 978-1-4244-6270-4. doi:
10.1109/ITNG.2010.214.

Milan K. Vachhani and Kishor H. Atkotiya. Globus Toolkit 5 (GT5): Introduction of
a tool to develop Grid Application and Middleware. International Journal of Emerging

Technology and Advanced Engineering, 2(7):174-178, 2012.

S.S. Vadhiyar and J.J. Dongarra. A performance oriented migration framework for the
grid. In CCGrid 2003. 3rd IEEE/ACM International Symposium on Cluster Computing
and the Grid, 2003. Proceedings., pages 130-137, Tokyo, Japan, 2003. IEEE. ISBN 0-
7695-1919-9. doi: 10.1109/CCGRID.2003.1199361.

Frank van der Linden. Porting NetBSD to the AMD x86-641: a case study in OS porta-
bility. In Proceedings of the BSDCon ’02 Conference on File and Storage Technologies,
pages 1-10, San Francisco, California, 2002. USENIX, the Advanced Computing Systems

Association. [44 [46} [47]

C. van Koten and A.R. Gray. An application of Bayesian network for predicting object-
oriented software maintainability. Information and Software Technology, 48(1):59-67,
January 2006. ISSN 09505849. doi: 10.1016/.infsof.2005.03.002. 192}

Luis M Vaquero, Luis Rodero-Merino, Juan Caceres, and Maik Lindner. A break in
the clouds. ACM SIGCOMM Computer Communication Review, 39(1):50, 2008. ISSN
01464833. doi: 10.1145/1496091.1496100.

Jinesh Varia. Cloud Architectures. Technical report, Amazon Web Services, Inc., 2008.

URL http://media.amazonwebservices.com/AWS_Cloud_Architectures.pdf.

Jinesh Varia. Architecting for the Cloud: Best Practices. Technical report, Amazon Web

Services, Inc., 2011. URL http://media.amazonwebservices.com/AWS_Cloud_Best_

Practices.pdfl [53] [55]

232

http://media.amazonwebservices.com/AWS_Cloud_Architectures.pdf
http://media.amazonwebservices.com/AWS_Cloud_Best_Practices.pdf
http://media.amazonwebservices.com/AWS_Cloud_Best_Practices.pdf

243

[244]

[245]

[246]

[247]

[248]

[249]

[250]

[251]

REFERENCES

C. Verhoef and A.A. Terekhov. The realities of language conversions. IFEFE Software, 17
(6):111-124, 2000. ISSN 07407459. doi: 10.1109/52.895180.

Gil Vernik, Alexandra Shulman-Peleg, Sebastian Dippl, Ciro Formisano, Michael C.
Jaeger, Elliot K. Kolodner, and Massimo Villari. Data On-boarding in Federated Storage
Clouds. In Proceedings of the IEEE Sizth International Conference on Cloud Computing,
pages 244-251, Santa Clara Marriott, CA, 2013. IEEE. [A]]

S. Vinoski. Where is middleware. IEEE Internet Computing, 6(2):83-85, 2002. ISSN
10897801. doi: 10.1109,/4236.991448.

Stefan Wagner. Quality Models. In Software Product Quality Control, pages 29-89.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2013. ISBN 978-3-642-38570-4. doi: 10.
1007/978-3-642-38571-1\ 2.

Dong Wang, Jinlei Jiang, Yongwei Wu, and Guangwen Yang. CampusWare: An Easy-
to-Use, Efficient and Portable Grid Middleware for Compute-Intensive Applications. In
2009 Fourth ChinaGrid Annual Conference, pages 3643, Yantai, Shandong, 2009. IEEE.
ISBN 978-0-7695-3818-1. doi: 10.1109/ChinaGrid.2009.25.

Rui Wang, Shuo Chen, and XiaoFeng Wang. Signing Me onto Your Accounts through
Facebook and Google: A Traffic-Guided Security Study of Commercially Deployed Single-
Sign-On Web Services. In 2012 IEEE Symposium on Security and Privacy, pages 365-379,
San Francisco, CA, May 2012. IEEE. ISBN 978-1-4673-1244-8. doi: 10.1109/SP.2012.30.

04, 03]

Yongjian Wang, D’Ippolito Roberto, Mike Boniface, Depei Qian, Degang Cui, and
Jiyun Jiang. Cross-Domain Middlewares Interoperability for Distributed Aircraft De-
sign Optimization. In 2008 IEEE Fourth International Conference on eScience, pages
485-492, Indianapolis, IN, December 2008. IEEE. ISBN 978-1-4244-3380-3. doi:
10.1109/eScience.2008.176.

Raul Sidnei Wazlawick. Metodologia de pesquisa para ciéncia da computacdo. Elsevier,

Rio de Janeiro, RJ, 2009. 22] [I78] [I87]

Yi Wei and M. Brian Blake. Service-Oriented Computing and Cloud Computing: Chal-
lenges and Opportunities. IEEE Internet Computing, 14(6):72-75, 2010. ISSN 1089-7801.

doi: 10.1109/MIC.2010.147.

233

REFERENCES

[252]

253

[254]

255

256

[257]

258

[259]

Christof Weinhardt, Arun Anandasivam, Benjamin Blau, Nikolay Borissov, Thomas
Meinl, Wibke Michalk, and Jochen Stofer. Cloud Computing - A Classification, Business
Models, and Research Directions. Business & Information Systems Engineering, 1(5):

391-399, 2009. ISSN 1867-0202. doi: 10.1007/s12599-009-0071-2.

Aaron Weiss. Computing in the clouds. netWorker, 11(4):16-25, 2007. ISSN
10913556. doi: 10.1145/1327512.1327513. URL http://dx.doi.org/10.1007/
s11576-009-0192-8http://portal.acm.org/citation.cfm?doid=1327512.1327513.

21} 28 BT

Maurice Wilson. Talis at Nene: an experience in migration in a college library. Program:

electronic library and information systems, 28(3):239-251, 1994. ISSN 0033-0337. doi:
10.1108 /eb047170.

Claes Wohlin. Guidelines for snowballing in systematic literature studies and a replication
in software engineering. In Proceedings of the 18th International Conference on Fvaluation
and Assessment in Software Engineering - FASE ’14, pages 1-10, New York, New York,
USA, 2014. ACM Press. ISBN 9781450324762. doi: 10.1145/2601248.2601268.

Claes Wohlin, Per Runeson, Martin Host, Magnus C. Ohlsson, Bjorn Regnell, and Anders
Wesslén. Ezperimentation in Software Engineering. Springer Berlin Heidelberg, Berlin,

Heidelberg, 2012. ISBN 978-3-642-29043-5. doi: 10.1007/978-3-642-29044-2.
[75} 06, [L16} [L30} [[52} [154} [I83} [I85} [186] [187 [I88) 189 [190)

Andreas Wolke and Gerhard Meixner. TwoSpot: A Cloud Platform for Scaling Out Web
Applications Dynamically. In Elisabetta Nitto and Ramin Yahyapour, editors, Towards
a Service-Based Internet, volume 6481 of Lecture Notes in Computer Science, pages 13—

24. Springer Berlin Heidelberg, Ghent, Belgium, 2010. ISBN 978-3-642-17693-7. doi:
10.1007/978-3-642-17694-4_ 2.

Daniel Wright, Andy Field, and Kamala London. Using Bootstrap Estimation and the
Plug-in Principle for Clinical Psychology Data. Journal of Experimental Psychopathology,
2(2):252-270, May 2011. ISSN 20438087. doi: 10.5127 /jep.013611. [142]

Bingheng Yan, Zhongxin Wu, Dongbo Yang, and Depei Qian. Experiences with the
EUChinaGrid Project - Implementing Interoperation between gLite and GOS. In The
2nd IEEE Asia-Pacific Service Computing Conference (APSCC 2007), pages 224231,

234

http://dx.doi.org/10.1007/s11576-009-0192-8 http://portal.acm.org/citation.cfm?doid=1327512.1327513
http://dx.doi.org/10.1007/s11576-009-0192-8 http://portal.acm.org/citation.cfm?doid=1327512.1327513

[260]

[261]

262]

263

[264]

[265]

[266]

REFERENCES

Tsukuba Science City, 2007. IEEE. ISBN 0-7695-3051-6. doi: 10.1109/APSCC.2007.15.

B0} B3]

S.a b Yangui and S.a Tata. PaaS elements for hosting service-based applications. In
CLOSER 2012 - Proceedings of the 2nd International Conference on Cloud Computing
and Services Science, pages 476—479, Porto, 2012. SciTePress.

Qi Zhang, Lu Cheng, and Raouf Boutaba. Cloud computing: state-of-the-art and research
challenges. Journal of Internet Services and Applications, 1(1):7-18, 2010. ISSN 1867-

4828. doi: 10.1007/s13174-010-0007-6.

Xulin Zhao, Foutse Khomh, and Ying Zou. Improving the Modifiability of the Ar-
chitecture of Business Applications. In 2011 11th International Conference on Qual-

ity Software, pages 176-185, Madrid, 2011. TEEE. ISBN 978-1-4577-0754-4. doi:
10.1109/QSIC.2011.36.

Liang Zhou. CloudFTP: A Case Study of Migrating Traditional Applications to the Cloud.
In 2018 Third International Conference on Intelligent System Design and Engineering
Applications, pages 436—440, Hong Kong, January 2013. IEEE. ISBN 978-1-4673-4893-5.

doi: 10.1109/ISDEA.2012.108.

Mingi Zhou, Rong Zhang, Dadan Zeng, and Weining Qian. Services in the Cloud Com-
puting era: A survey. 2010 4th International Universal Communication Symposium, 51

(5):40-46, October 2010. ISSN 0937-6429. doi: 10.1109/IUCS.2010.5666772.

Yuming Zhou and Hareton Leung. Predicting object-oriented software maintainability
using multivariate adaptive regression splines. Journal of Systems and Software, 80(8):

1349-1361, August 2007. ISSN 01641212. doi: 10.1016/j.jss.2006.10.049.

Zhenyun Zhuang and Yao-Min Chen. Optimizing JMS Performance for Cloud-Based
Application Servers. In 2012 IEEE Fifth International Conference on Cloud Com-
puting, pages 828-835, Homnolulu, HI, 2012. IEEE. ISBN 978-1-4673-2892-0. doi:
10.1109/CLOUD.2012.136.

235

	Abstract
	Contents
	List of Figures
	List of Tables
	Acknowledgements
	Declaration
	1 Introduction
	1.1 Motivation
	1.2 Research Overview
	1.3 Ethics and Ethical Consent
	1.4 Thesis Structure

	2 Background
	2.1 Cloud Computing
	2.1.1 Essential Cloud Characteristics
	2.1.2 Service and Deployment Models
	2.1.3 Cloud-Related Research Areas

	2.2 Vendor Lock-in
	2.2.1 Vendor Lock-in Definition
	2.2.2 Consequences of Vendor Lock-in for Cloud Computing
	2.2.3 Causes of Vendor Lock-in
	2.2.4 Impact of Vendor Lock-in for Cloud Users and Providers
	2.2.5 Existing Solutions for Cloud Lock-in

	2.3 Software Migration for the Cloud
	2.3.1 Migration Process
	2.3.2 Motivation to Migrate
	2.3.3 Migration Effort
	2.3.4 Stakeholders Involved in a Software Migration
	2.3.5 Re-engineering to Migrate

	2.4 Cloud Portability
	2.4.1 Portability as a Software Quality Attribute
	2.4.2 Quality Models
	2.4.3 Portability Overview
	2.4.4 Cloud Application Portability
	2.4.5 Application Migration Scenarios and Their Requirements

	2.5 Summary

	3 Investigating the Impact of Software Coupling on Cloud Application Portability
	3.1 Review of Software Coupling
	3.2 Review of Message Queuing
	3.3 Empirical Investigation
	3.3.1 Experiment Plan and Execution
	3.3.2 Results
	3.3.3 Discussion
	3.3.4 Threats to Validity

	3.4 Building Prediction Models
	3.4.1 Simple OLS Linear Regression Model
	3.4.2 Multiple OLS Linear Regression Model
	3.4.3 Discussion

	3.5 Summary

	4 Investigating the Impact of Security Systems on Cloud Application Portability
	4.1 Review of Authentication in Distributed Systems
	4.2 Empirical Investigation
	4.2.1 Experiment Plan and Execution
	4.2.2 Characterisation and Feedback of Participants
	4.2.3 Results
	4.2.4 Discussion
	4.2.5 Threats to Validity

	4.3 Building Prediction Models
	4.3.1 Simple OLS Linear Regression Model
	4.3.2 Multiple OLS Linear Regression Model
	4.3.3 Discussion

	4.4 Summary

	5 Investigating the Impact of Cloud Platforms and Services on Cloud Application Portability
	5.1 Empirical Investigations
	5.1.1 Experiment Plan and Execution
	5.1.2 Characterisation of Participants

	5.2 Empirical Investigation - Cloud Platform
	5.2.1 Experiment Plan
	5.2.2 Results

	5.3 Empirical Investigation - Cloud Service
	5.3.1 Experiment Plan
	5.3.2 Results

	5.4 Discussion & Threats to the Validity of Empirical Investigations
	5.4.1 Discussion
	5.4.2 Threats to Validity

	5.5 Building Prediction Models - Cloud Platform
	5.5.1 Simple OLS Linear Regression Model
	5.5.2 Multiple OLS Linear Regression Model
	5.5.3 Discussion

	5.6 Building Prediction Models - Cloud Service
	5.6.1 Simple OLS Linear Regression Model
	5.6.2 Discussion

	5.7 Summary

	6 Conclusion and Future Directions
	6.1 Research Objective
	6.2 Contributions of the Research
	6.3 Directions for Future Research

	A Research Framework and Methodology
	A.1 Research Framework
	A.2 The Research Onion Methodology

	B Experimentation in Software Engineering
	B.1 Experiment Preparation and Execution
	B.2 Data Analysis
	B.3 Use of Experimental Results
	B.4 Threats to Validity

	C Software Effort Prediction
	C.1 Prediction Approaches
	C.2 Data Sets, Outliers and Sample Size
	C.3 Prediction Model Evaluation
	C.4 Accuracy of Prediction Models for Software Maintainability
	C.5 The Regression Approach

	D Consent Form
	References

