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Abstract 

Microbial symbionts of insects have been demonstrated to play an important role in the 

nutrition and protection of the host; these include aphids and tsetse.  Studies often use 

antibiotics to eliminate the symbionts but the deleterious impact of using these 

antibiotics is not commonly addressed.  The impact of chlortetracycline treatment on 

Aedes aegypti and Drosophila melanogaster was investigated by assessing life-span, 

fecundity, development time, survival, nutrition and metabolism.  The impact on 

microbial numbers and diversity was also determined. 

With Drosophila, treatment with 50 µg ml-1 and above showed a significant extension in 

development time and life-span, reduction in fecundity and change in nutritional content. 

Microbial numbers were significantly reduced at 50 µg ml-1 and above. Culturable 

techniques and 454 pyrosequencing, demonstrated that the microbial diversity of 

Drosophila was predominantly Acetobacter. Bacterial elimination through egg 

dechorionation yielded some similar results to chlortetracycline treatment.  However, 

fecundity and life-span was not significantly affected.  Microarray analysis established a 

significant reduction in the abundance of transcripts associated with immunity, 

particularly antimicrobial peptides. 

With Aedes aegypti, treatment significantly reduced the survival and also affected the 

life-span and nutrition of the insect.  Microbial numbers of mosquito larvae were reduced 

at 30 and 100 µg ml-1. Colonies grew on plates supplemented with 50 µg ml-1 of 

chlortetracycline, indicating that the larvae bore chlortetracycline-resistant bacteria.  454 

pyrosequencing demonstrated a change in diversity of bacteria found in mosquitoes +/- 

chlortetracycline, switching from Elizabethkingia meningoseptica to Raoultella sp with 

chlortetracycline. 

It is concluded that chlortetracycline significantly impacts the performance of the 2 

insects through bacterial depletion, changes to bacterial diversity and toxicity. 

Nevertheless, different responses were observed with Aedes aegypti and Drosophila 

melanogaster. Moreover, experiments with Drosophila using egg dechorionation, 

emphasised the toxic impact of using antibiotics to eliminate microbes in the insect host.   
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Chapter 1: Introduction 

The role of commensal and mutualistic bacteria have recently become appreciated within 

the scientific community with growing interest in the role of bacteria in humans, with 

models such as mice and Drosophila melanogaster being used (Moran, 2006).  This 

interest has also become widespread within the insect community with research on ants, 

aphids and disease vectors such as Anopheles gambiae (Moran, 2006; Dong et al., 2009).  

Why has there been an increase in interest in bacteria found within these organisms?   In 

this chapter I will outline why the relationship between bacteria and the host are 

important to the host performance in vertebrates but mainly in insect hosts. 

1.1 Commensal bacteria in vertebrate hosts 

The main interest in commensal bacteria in humans is to determine their role in human 

health and disease.  The two groups of bacteria that are dominant in the human gut are 

the Bacteroidetes and Firmicutes (Turnbaugh et al., 2006) and the estimated number of 

bacterial cells within the host outnumbers the cells of the host (Savage,  1977).   

The major question is how do bacteria play a role in protecting the host against immune 

disorders and pathogens?  Several experiments have suggested that the bacteria protect 

the host from allergies and from these results the Hygiene Hypothesis was made.  Where 

it was hypothesised that the presence of bacteria during childhood could educate the 

immune system and prevent the development of an over-active immune system which 

could lead to illnesses such as asthma and hay fever (Lui and Murphy, 2003).  It has also 

been suggested that in children, the exposure to bacterial endotoxins could reduce the 

chance of developing asthma (Lui and Murphy, 2003; Lui, 2002).  Further experiments 

with bacteria have also highlighted the role bacteria can play in the prevention of 

intestinal diseases (Table 1.1). 
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Table: 1.1. Bacteria found to promote health and protection against intestinal diseases. 

Bacteria Name Role in disease 
protection 

How does the bacterium protect? Animal  Key 
reference(s) 

Bifidobacterium 
longum 

Protection against 
Enterohaemorrhagic 
E.coli 

Production of acetate. Mice Fukuda et 
al., 2011 

Bifidobacterium 
bifidum 

Improves intestinal 
integrity and protects 
against enterocolitis 

Reduces inflammation, regulates 
the main components of the 
mucous layer and improves 
intestinal integrity. 

Rat Khailova et 
al., 2009 

Bifidobacterium 
Infantis 

Enhances intestinal 
epithelial cell barrier 
function 

Peptide bioactive factors from this 
bacterium retains biological 
function, normalizes gut 
permeability and improves the 
disease colitis.  Changes in MAPK 
and tight junction proteins.  

Mice Ewaschuk et 
al., 2008 

Lactobacillus 
acidiphilus  

Inhibits murine 
Citrobacter 
rodentum colitis 

Increase TGFβ, IL-10 and decrease 
in TNF-α, IL-6 and IL-12. 
S-layer Protein A of L.plantarum 
NCFM regulates immature 
dendritic cells and T Cell function. 

Mice, 
human 

Chen et al., 
2005 
Konstantino
v et al., 2008 

Lactobacillus 
rhamnosus 

Suppressed barrier 
impairment (Caco-2 
cells) and recovered 
colon length (in mice 
with colitis) 

IL-8 secretion in Caco-2 cells. In 
mice, increased Zolula occludens-1 
and myosin light chain kinase. 

Mice 
and 
human 
cells 

Miyauchi et 
al., 2009 

Lactobacillus 
reuteri 

Inhibits colitis, 
through anti-
inflammatory activity 

Increased NGF levels, inhibits NF-
Κb translocation to the nucleus. 

Human 
cells 

Ma et al., 
2004 

Lactobacillus 
fermentum 

Anti-inflammatory 
effects in Colitis-
induced rats 

Decrease in TNFα, colonic 
myeloperoxidase activity, 
cyclooxygenase 2 expression and 
an induction of NO (Nitric oxide) 
synthase and increase in SCFA 
(Short-chain fatty acids). 

Rats Peran et al., 
2007 

Bacillus 
polyfermenticus 

Increase in survival 
and decrease in 
disease severity of 
colitis in mice 

Decrease in chemokine ligand, 
Intercellular adhesion molecule 
and TNFα.  An increase of IL-10 and 
suppression of apoptosis and 
promoted cell proliferation by PI3K 
and Akt pathway. 

Mice Im et al., 
2009 

Lactobacillus 
casei 

Inhibits E.coli isolated 
from Crohn’s disease 
from invading 
intestinal epithelial 
cells. 

Inhibits the interaction of 
adherent-invasive E.coli with 
intestinal epithelial cells. 

Human 
cells 

Ingrassia et 
al.,2005 

Bifidobacterium 
lactis 

Improved abdominal 
girth and 
gastrointestinal 
transit with decrease 
in IBS symptoms 

Not available. Human Agrawal et 
al., 2008 

Bacteroides 
fragilis 

Protects from colitis 
induced by 
helicobacter 
hepaticus 

Activity of polysaccharide A (PSA). Mice Mazmanian 
et al., 2008 
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Faecalibacterium 
prausnitzii 

A decrease in this 
bacterium led to a 
higher risk of post-
operative 
reoccurrence of ileal 
Crohn’s disease.  

Decrease in IL-12, IFN-γ and IL-10.  
Blocks NF-κB activation and IL-8 
production. 

Human 
cells 
and 
mice 

Sokol et al., 
2008 

 

Symbiotic bacteria have been suggested to play an important role in preventing 

pathogens establishing within the host by competing with bacteria that can cause disease 

(Guarner and Malagelada, 2003) (Table: 1.1).   The species, Bacteroides fragilis has been 

shown by Mazmanian et al (2008) to protect animals from colitis induced by Helicobacter 

hepaticus (an opportunistic pathogen) through the expression of Polysaccharide A (PSA).  

Furthermore, a recent paper in 2011 demonstrated that Bifidobacteria protect the human 

gut against the shiga toxin (produced by Escherichia coli) by the production of acetic acid, 

which has been suggested to improve intestinal defence (Fukuda et al., 2011).  Gut 

bacteria have been shown to aid digestion by degrading nutrients such as fibre (Hooper, 

2009; Savage, 1986). One example is the bacterium Bacteroides thetaiotaomicron, this 

bacterium has a large number of genes associated with polysaccharide utilisation 

compared with other micro-organisms found within the human gut, suggesting that this 

bacterium aids plant carbohydrate digestion (Hooper et al., 2009; Xu et al., 2003).  Gut 

symbionts are well adapted at utilising the nutrients within the gut, however, pathogenic 

bacteria tend not to be as efficient as symbiotic bacteria and therefore invade host tissue 

to obtain nutrients (Hooper et al., 2009; Stecher et al., 2005; Stecher et al., 2007).  

The balance between the two dominant groups of bacteria in the human gut, play a key 

role in disease (Ley et al., 2005).  In the Western World obesity is fast becoming an 

epidemic in areas including North America and the United Kingdom (Seidell, 2000).  

Research into the cause and differences between obese and lean individuals using mice as 

the model organism have demonstrated the role of gut bacteria in obesity (Turnbaugh et 

al., 2006).  A study using obese mice showed that the population of Bacteroidetes was 

reduced and the Firmicutes was increased (Ley et al., 2005).  Firmicutes have the ability to 

breakdown complex polysaccharides intractable to human digestive enzymes and make 

this available as an energy source for the host (Ley et al., 2005).  If there are excessive 

amounts of this group of bacteria, more energy is made available which could potentially 

be stored as fat.  Furthermore, in one particular study Firmicutes were transferred to lean 
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mice and a weight gain was observed (Ley et al., 2005, Turnbaugh et al., 2006).  This 

research does suggest that the gut bacteria play a role in obesity but this may not be the 

major cause of obesity.  Obese individuals may have a different gut microbiota due to the 

diet consumed such as a high fat diet and/or may have a higher population of Firmicutes 

to deal with the influx of such large amounts of certain nutrients (Ley et al., 2005).  What 

this study shows is the importance of gut bacteria, therefore what effects would happen 

if they were eliminated?  One obvious effect would be the loss in ability to gain calories 

from indigestible food, this may be detrimental to individuals experiencing famine but not 

necessarily those that have food aplenty. Furthermore, the balance of the bacterial 

populations of Firmicutes and Bacteroidetes is not only involved in obesity but has been 

shown to be involved in the autoimmune condition Crohn’s disease (Sokol et al., 2008). A 

decrease in the population of Firmicutes has been shown to be associated with 

individuals who have Crohn’s disease (Sokol et al., 2008). 

1.2 Role of bacterial symbionts in insects 

1.2.1 Role of bacteria in insect nutrition and insect performance 

Many publications have concentrated on the importance of the microbes of insects on 

the impact of immunity and protection, but how do these bacteria promote insect 

performance and nutrition?  In this section I will discuss several examples of experiments 

which have shown the importance of bacteria in the performance of a wide range of 

insects. 

Two of the most famous examples of symbiosis are the aphid-Buchnera aphidicola and 

the tsetse-Wigglesworthia glossinidia interactions.  Aphids contain the obligate symbiont 

Buchnera aphidicola which is found within specialised cells in the aphid known as 

bacteriocytes (Buchner, 1965).  If this particular symbiont is eliminated from the aphid, 

the aphids have a reduction in fecundity and are significantly smaller in size (Houk and 

Griffiths, 1980; Mittler, 1971; Sasaki et al., 1991).  Dietary experiments have shown that 

the Buchnera provide the aphid host with essential amino acids (Douglas, 1998; Sasaki et 

al., 1991).  In tsetse flies, the elimination of the Wigglesworthia glossinidia through the 

treatment with antibiotics affected the performance of the tsetse fly by reducing the 

fecundity (Nogge, 1976.)  This deleterious impact on the fecundity could be reversed by 
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supplementing the diet with Vitamin B, suggesting that this symbiont provides the insect 

host with this vitamin (Nogge and Gerresheim, 1982).   Studies of the genome of the 

insect host and bacteria also demonstrate that the symbiont provides the host with 

essential nutrients (Akman et al., 2002; Snyder et al., 2010).  

 

Several papers have been published regarding the role of the gut microbiota in the locust, 

Schistocerca gregaria.  One publication by Charnley et al (1985) did demonstrate that 

although the elimination of bacteria in the locust does not have a major impact on the 

nutrition of the insect, bacteria-free insects did have a higher lipid and lower 

carbohydrate concentration in the hemolymph compared with control insects.  

 

In Western Flower Thrips, the bacterium Erwinia is obtained through feeding.  The 

production of aposymbiotic insects had a different performance compared with control 

insects (De Vries et al., 2004).  In control insects, the time to maturity was significantly 

shorter and had higher oviposition rates compared with aposymbiotic insects (De Vries et 

al., 2004).  An elimination of the gut microbiota of Tenebrio molitor also led to an impact 

on the performance of the insect where bacteria-free larvae experienced a reduction in 

mass and premature pupation of more than half of the larvae (Genta et al., 2006).  

Furthermore, a diet effect was also observed; a combined effect of the presence of 

antibiotic (ampicillin) and saligenin (the aglycone of the plant glucoside salicin) led to 

even greater reduction in larval mass, premature pupation and even mortality (Genta et 

al., 2006).  This combination effect of the antibiotic and saligenin does suggest that the 

gut microbes aid the digestion of secondary plant productions within this host-symbiosis 

system (Genta et al., 2006).    

 

In termites (Reticulitermes flavipes), synthesis of uric acid occurs via purine-nucleoside 

phosphorylase and xanthine dehydrogenase (Potrikus and Breznak, 1981).   However, 

these insects lack uricase, the uric acid degrading enzyme (Potrikus and Breznak, 1981).  

Symbiotic bacteria have been shown to recycle the uric acid nitrogen which has been 

suggested to be important in nitrogen conservation in oligonitrotrophic insects which 

feed on food with a limited amount of nitrogen (Potrikus and Breznak, 1981).  As 

demonstrated with vertebrates, acetate production by symbiotic bacteria also played a 
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role in termite guts but by providing an oxidizable energy source (Breznak and Switzer, 

1986).  

1.2.2 Bacterial symbionts and insect immunity and protection 

The major benefit of the presence of microbes in humans is the protection against 

pathogens and the education of the immune system (Section: 1.1).  Here I will describe 

how this has also been observed in insects and the changes that occur when the microbes 

are removed. 

In aphids, facultative bacterial symbionts have been demonstrated to protect their host 

from the development of the parasitoid, Aphidius ervi (Oliver et al., 2003).  It was initially 

thought that the facultative symbionts conferred resistance to the parasitoid ovipositing 

in the aphid; however experiments showed that the symbionts caused high mortality of 

the parasitoid larvae (Oliver et al., 2003).  This result also suggests that the facultative 

symbionts protect the host from mortality to ensure the spread and persistence of the 

symbiont within populations (Oliver et al., 2003).   

The European Beewolf hunting wasps have a symbiotic relationship with the bacterium 

Streptomyces (Kaltenpoth et al., 2005).  This bacterium has been shown in experiments 

conducted by Kaltenpoth et al (2005) to enhance larval survival and protect the cocoons 

from fungal infections. 

One of the most famous endosymbiont is the Wolbachia species of bacteria which infects 

20% of insects (Klasson et al., 2009; Welchman et al., 2009).  This bacterium is famous for 

being a parasitic organism that manipulates the reproduction of the insect host to 

promote transmission (Welchman et al., 2009).  Wolbachia infections in Drosophila are 

maternally transmitted (mother to offspring) (Werren, 1997; Hoffman et al., 1990).   

Infected females that mate with uninfected males produce offspring; however, 

uninfected females that mate with infected males produce non-viable eggs (O’Neil and 

Karr, 1990; Yen and Barr, 1971; Werren, 1997; Hoffman et al., 1986).  This process is 

known as cytoplasmic incompatability and drives the infection quickly through the insect 

population (O’Neil and Karr, 1990; Yen and Barr, 1971; Werren, 1997; Hoffman et al., 

1986; Turelli and Hoffman, 1991).   Interestingly, this bacterium has been shown to 

protect Drosophila from RNA viruses (Drosophila C virus, Cricket paralysis virus, Nora virus 
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and Flock house virus), with Wolbachia infected flies having greater survival when 

infected with RNA viruses compared with flies without Wolbachia (Hedges et al., 2008; 

Teixiera., 2008).   

In Aedes aegypti substantial progress has been made to infect the mosquito with 

Wolbachia, a bacterium not found naturally in Aedes aegypti.  Aedes aegypti mosquitoes 

have been infected experimentally with Wolbachia, resulting in infected mosquitoes 

having a shorter life-span when compared with uninfected individuals (McMeniman et al., 

2009).  This introduction of the virulent form of Wolbachia into the mosquito population 

could prove successful as cytoplasmic incompatability will ensure spread within the 

population and the life-span shortening will prevent the maturation of the dengue virus in 

the mosquito vector, preventing spread to humans (McMeniman et al., 2009).  

Furthermore, Wolbachia infection has the potential to inhibit replication of the dengue 

virus through the stimulation of the immune system of the insect (Bian et al., 2010). 

Not only have introduced bacteria proven to provide a strategy for controlling pathogen 

transmission but the endogenous gut microbes within Aedes aegypti has been proven to 

have effects on the dengue virus (Xi et al., 2008).  Experiments using aseptic and control 

mosquitoes demonstrated two-times greater viral titre in aseptic mosquitoes in 

comparison with control mosquitoes (Xi et al., 2008).  The process of reducing the viral 

titre was via the stimulation of the insect immune system rather than a direct effect on 

the virus (Xi et al., 2008). 

In the malaria vector Anopheles, studies have also emphasized the role of gut bacteria 

with pathogen transmission.  Dong et al (2009) revealed that the gut microbes had an 

anti-plasmodium effect by stimulating the insect immune system and that the removal of 

the bacteria resulted in an increase in parasite numbers within the insect.  Specifically, 

gram negative bacteria inhibit the sporogonic-stage of the development of Plasmodium 

falciparum and reduce oocyst densities (Pumpuni et al., 1993; Pumpuni et al., 1996; 

Gonzalez-Ceron et al., 2003). 
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1.3 Impact of tetracycline on microbes in insects  

Antibiotics are commonly used to eliminate endosymbionts and symbionts found in 

insects to determine the impact of these bacteria on the insect host (Table: 1.2).  

However, many have not considered the deleterious effects of using such antibiotics on 

the insect performance, therefore creating a result which is the impact of the antibiotic 

and not the result of the depletion of bacteria. 

One antibiotic which has commonly been used to eliminate the symbionts is tetracycline 

with varying concentrations and in a wide range of insects (Table: 1.2).  Tetracycline 

(Figure: 1.1) kills bacteria by inhibiting protein synthesis (Chopra and Roberts, 2001; Speer 

et al., 1992; Goldman et al., 1983).  Specifically, it prevents the attachment of aminoacyl-

tRNA to the ribosomal acceptor site (Chopra and Roberts, 2001).  This antibiotic targets 

both Gram-positive and Gram-negative bacteria (Chopra and Roberts, 2001).  

Mitochondrial ribosomes are very similar to those found in bacteria (Alberts et al., 2002, 

p769-828). Therefore, at high dosage tetracycline may target the mitochondrial 

ribosomes found in animal cells.  

  

    Chlortetracycline                        Tetracycline 

Figure: 1.1.  Structure of chlortetracycline and tetracycline.  The difference between the 

2 molecules is the extra Cl group found on chlortetracycline.  Image taken from Chopra 

and Roberts (2002). 

This antibiotic is commonly used to eliminate the bacterium, Wolbachia from several 

insects including Aedes albopictus, Drosophila melanogaster and Drosophila simulans and 

is commonly used as a repressor molecule for expression systems used in insects as a 

method of controlling the insect population (Table: 1.2).  Furthermore, only a small 

number of papers have identified the impacts of tetracycline on the insect performance.  

Thompson and Sikorowski (1984) investigated the effects of tetracycline hydrochloride on 
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the performance of Heliothis virescens larvae.  During this study tetracycline 

hydrochloride reduced the larval weight, fatty acid and glycogen content of the insect 

with increasing antibiotic treatment of 0.05-0.4 mg per 100 g of diet (Thompson and 

Sikorowski, 1984).  The protein content of the insects showed a linear decrease with 

increasing antibiotic concentration (Thompson and Sikorowski, 1984).  Larval feeding was 

also found to be lower at 3 hours of feeding with increasing concentration of 

chlortetracycline, but there was no difference after 24 hours (Thompson and Sikorowski, 

1984). 

Table: 1.2. Studies conducted using tetracycline, chlortetracycline and tetracycline 

hydrochloride with different species of insects. 

Insect Name Antibiotic Concentration Reference 

Aedes albopictus Tetracycline 0.33 mg ml
-1 

Kambhampati et al., 1993 

Aedes aegypti Tetracycline/Chlortetracycline 30 µg ml
-1 

Phuc et al.,2007  

Drosophila simulans Tetracycline hydrochloride 
Tetracycline 

0.250 mg ml
-1

 
0.3 mg ml

-1
 

O’Neil and Karr, 1990 
Ballard and Melvin, 2007  

Drosophila 
melanogaster 
 

Tetracycline 250 µg ml
-1 

 
0.1-20 µg ml

-1
 

Mair et al., 2005 
 
Thomas et al., 2000 

Thermobia domestica Tetracycline 100-1000 µg ml
-1

 Treves and Martin, 1994 

Sitophilus oryzae Tetracycline 1 mg per g of flour Heddi et al., 1999 

Ostrinia scapulalis Tetracycline 0.06-600 mg kg
-1 

and 2.4 mg ml
-1

 
Kageyama et al., 2003 

Anticarsia gemmatalis Tetracycline 32.25-75.27 µg ml
-1

 Visôtto et al., 2009 

Cadra cautella Tetracycline 400 µg ml
-1

 Sasaki et al., 2002 

Ephestia keuhniella Tetracycline 400 µg ml
-1

 Sasaki et al., 2002 

Glossina morsitans 
morsitans  

Tetracycline 25 µg ml
-1

 Dale and Welburn, 2001 

Ostrinia furnacalis Tetracycline hydrochloride 0.6 mg g
-1

 Kageyama et al., 1998 

Myzus persicae Chlortetracycline 10-1000 µg ml
-1

 Douglas, 1988 

Acyrthosiphon pisum Chlortetracycline 50 µg ml
-1

 Prosser and Douglas, 1991 

Sitophilus oryzae Chlortetracycline 100-500 µg ml
-1

 Baker and Lum, 1973 

1.4 Antibiotic resistance 

The widespread use of chlortetracycline has meant that tetracycline resistant bacteria are 

readily found in the environment and within animals (Kümmerer et al., 2004).  This 

resistance in bacteria is mainly due to the over-use of this antibiotic to treat illnesses in 

humans and livestock, where these antibiotics are released non-metabolised in sewage 

and subsequently found in aquatic environments (Kümmerer et al., 2004).  Antibiotics are 

also widely used to treat fruit, bee-keeping and fish farming, therefore it is not surprising 

that the residues of antibiotics are readily found in waste especially sewage waste with 



28 

 

E.coli being most resistant to the antibiotic, tetracycline (Kümmerer et al., 2004; 

Reinthaler et al., 2003).     Furthermore, an experiment conducted by Nygaard et al (1992) 

has demonstrated that the addition of oxytetracycline to sediments tripled the number of 

bacteria found to be resistant to the antibiotic.  This provides evidence that the addition 

of these antibiotics into the environment results in the development of antibiotic 

resistance.  

Tetracycline resistance can be developed using three different methods (Figure: 1.2): 1) 

preventing access of tetracycline to the ribosome thus preventing attachment and protein 

synthesis inhibition 2) altering the ribosome structure preventing tetracycline binding and 

3) producing tetracycline-inactivating enzymes (Speer et al., 1992; Salyers et al., 1990).  

 

Figure: 1.2. The impact of tetracycline on tetracycline-sensitive cells and mechanisms of 

resistance.  A) The binding of tetracycline to the ribosome preventing protein synthesis. 

B) A resistance method, a cytoplasmic protein pumping tetracycline out of the cell, 

preventing the accumulation of high concentrations of tetracycline within the cell.  C) 

The presence of a cytoplasmic protein that has the ability to protect the ribosome from 

tetracycline binding. D) An enzyme is produced by the bacterium which has the ability 

to modify and inactivate tetracycline. (Speer et al., 1992; Salyers et al., 1990). Image 

taken from Speer et al (1992) and Salyers et al (1990). 
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1.5 RIDL® sterile insect technique – Controlling insect pests 

One technique used to control insect pests is the RIDL® technique, which uses 

tetracycline to control the genetic expression system.  Here I will describe the technique 

and the insects used with the technique. 

The traditional sterile insect technique (SIT) controls insect pests through the sterilisation 

of males by ionizing radiation resulting in chromosomal fragmentation (Horn and 

Wimmer, 2003).  This ionization can have a negative impact on sperm viability (Horn and 

Wimmer, 2003; Mayer et al., 1998).  SIT is effective with insects that mate synchronously 

and in isolated locations without immigration of untreated insects, e.g. the island of 

Zanzibar where the tsetse fly was eradicated in 1997 (Vreysen et al., 2000).  There can be 

problems with SIT.  The first is that the irradiated males suffer a general malaise and do 

not mate readily with the wild females (Horn and Wimmer, 2003).  The second is that if 

the sexing of the insects is inefficient, females are released potentially increasing the pest 

load in the environment.   

RIDL® sterile insect technique (Release of insects with dominant lethal gene) can improve 

SIT in two ways: to eliminate females from the release population if the tetracycline-

repressible expression system is female-specific and secondly, sterilise male insects if the 

tetracycline-repressible expression system is specific to early development resulting in 

the death of progeny (Alphey, 2002).  Therefore, when tetracycline is removed from the 

diets, female insects die and only males remain (Alphey, 2002). RIDL® males that are 

released into the wild, mate with wild females and produce offspring that die during 

development (Phuc et al., 2007; Alphey, 2002; Thomas et al., 2000). 

The RIDL® technique is used with insects including Mediterranean fruit fly and Aedes 

aegypti (Gong et al., 2005; Phuc et al., 2007).  Aedes aegypti is the vector for Dengue 

fever, a major disease burden with 2.5 billion people at risk worldwide. 

(http://www.who.int/mediacentre/factsheets/fs117/en/). The only control methods 

currently available are; the removal of oviposition sites and the use of insecticides 

(fenitrothion, malathion, deltamethrin, tetramethrin, permethrin (used in thermal 

fogging) (Paeporn et al., 2004) and DDT (dichlorodiphenyltrichloroethane) (Inwang et al., 

1967).  However, the unrestricted use of these insecticides has enabled the mosquito to 
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develop resistance (Gilkes et al., 1956; Porter et al., 1961; Sautet et al., 1958; Inwang et 

al., 1967; Paeporn et al., 2004).  Therefore, with no vaccines and emerging resistance to 

insecticides, Aedes aegypti appears to be good candidate for the use of the RIDL® 

technique. 

An example of the RIDL® system with Aedes aegypti is LA513, a late-acting dominant 

lethal genetic system which causes the death of both male and female mosquitoes at L4-

pupal stage (Phuc et al., 2007, Figure: 1.3).  Released LA513A males into the wild mate 

with wild females and any offspring produced will die at L4-pupae stage.  The release of 

enough males over a long enough period of time will result in population reduction. The 

expression system of tTAV is tetracycline repressible; therefore the RIDL insects are 

reared in water supplemented with tetracycline. Oxitec Ltd currently rear LA513A in 

water supplemented with 30 µg ml-1 of chlortetracycline to suppress the expression of 

tTav (Figure: 1.3).   

a)  

(b)                                                                       (c)     

Figure: 1.3. (a) The structure of the LA513 gene inserted into Aedes aegypti.  LA513 uses a non-

autonomous piggyBac-based transposon system to integrate the RIDL system.  Transgenic mosquitoes 

are identified by red fluorescence (DsRed2) expression driven by Actin5C which gives an all over spotty 

red fluorescence (c).  tTAV is a tetracycline-repressible transcriptional activator that binds to tetO. In 

LA513A in the absence of tetracycline small amounts of tTAV expressed from the minimal hsp70 

promoter bind to the tetO sites and enhance expression of more tTAV, this forms a positive feedback 

loop that produces large amounts of tTAV that builds up and eventually damages the cell.  In the 

presence of tetracycline, the tTAV binds to tetracycline making it unable to bind to tetO, this prevents the 

positive feedback loop and the build-up of tTAV.  Aedes aegypti larvae reared with no tetracycline under 

normal light (b) and the same larvae (c) viewed using the filters for red fluorescence (excitation 510-550, 

emission 590LP), both larvae show the expression of DsRed (Phuc et al., 2007). 



31 

 

An example of RIDL® female-specific lethality is OX3604, a repressible female specific 

flightless phenotype (Fu et al., 2010, Figure: 1.4,).  This concept was based on the female-

specific indirect flight muscle Actin4, in which the promoter for this gene was used to sex-

specifically control the expression of tTAV (Fu et al., 2010). The expression of tTAV in the 

absence of tetracycline resulted in a flightless phenotype in female mosquitoes (Fu et al., 

2010). 

 

Figure: 1.4. Structure of the insertion of OX3604 into Aedes aegypti.  Transgenic mosquitoes are 

identified by red fluorescence (DsRed2) expression driven by HR5IE1.  tTAV is a tetracycline-

repressible transcriptional activator which is used as the effector molecule (Fu et al., 2010). In 

the absence of tetracycline tTAV is expressed from the AeAct4 promoter, binds to the tetO sites 

(found within tRE) and enhance expression of more tTAV (Fu et al., 2010). In the presence of 

tetracycline, the tTAV binds to tetracycline making it unable to bind to tetO, this prevents the 

positive feedback loop and the build-up of tTAV (Phuc et al., 2007; Fu et al., 2010).  Image taken 

from Fu et al (2010). 

The potential problem with RIDL® is the possibility that the tetracycline (30-100 µg ml-1) 

used to repress the lethal genes might also eliminate symbiotic bacteria, resulting in 

reduced insect vigour (and hence mating success) and increased susceptibility to 

pathogens in the field.   

1.6 Bacteria in Drosophila melanogaster and Aedes aegypti and the role in 

insect performance  

The RIDL® technique was first developed using Drosophila melanogaster (Thomas et al., 

2000) and is used for controlling one major pest, Aedes aegypti (Phuc et al., 2007).  

Therefore, I will discuss the bacterial diversity in Drosophila melanogaster and Aedes 

aegypti and the implications of removing bacteria on the insect host. 
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1.6.1 Bacterial diversity in Drosophila melanogaster  

One particular investigation into the diversity of bacteria in natural populations of 

Drosophila melanogaster detected members of the phyla Proteobacteria, Bacteroidetes 

and Firmicutes (Corby-Harris et al., 2007).  In laboratory Drosophila (strain Oregon-R), Ren 

et al (2007) discovered both cultured bacteria and non-culturable bacteria (Table: 1.3).  

The bacteria found within lab strains of Drosophila melanogaster were predominantly 

Lactobacillus and Acetobacter (Ren et al., 2007).   

Acetobacter are well adapted in sugar and ethanol rich environments (Crotti et al., 2010).  

This genus of bacteria has been found within Drosophila and on the exterior of the fly 

showing the ability to withstand different conditions (Ren et al., 2007) (Table 1.3).  

Lactobacillus is lactic acid producing bacterium which was also found on the interior and 

exterior of the fly by Ren et al (2007).  Both of these bacterial species were again 

identified by Corby-Harris et al (2007).   

Table 1.3: Bacterial species identified in Drosophila melanogaster (Ren et al., 2007) 

Area of fly Cultured Species Identified by PCR 

Fly Surface Acetobacter aceti Lactobacillus homohiochii 

 Acetobacter tropicalis Acetobacter aceti 

 Acetobacter pasteurianus Lactobacillus fructivorans 

 Lactobacillus plantarum  

Fly Interior Acetobacter pasteurianus Acetobacter tropicalis 

 Lactobacillus sp MR-2 Lactobacillus brevis 

 Acetobacter aceti Lactobacillus plantarum 

 Lactobacillus plantarum Acetobacter pasteurianus 

 Clidosporium sphaerospermum Acetobacter aceti 

1.6.2 Role of commensal bacteria in Drosophila melanogaster 

The two main methods of eliminating bacteria from Drosophila are:  egg 

dechorionation/washing eggs with alcohol and rearing the insects in a sterile 

environment and the second method is to treat the insects with antibiotics. 

As a model organism for humans, there is increasing interest in the interactions between 

Drosophila melanogaster and its resident microbiota, which have been found to enhance 
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life-span (Brummel et al., 2004) (Table: 1.4).   In the experiment conducted by Brummel et 

al (2004), three different antibiotics (ampicillin, tetracycline and rifamycin) were 

administered to the flies to remove the bacteria (Brummel et al., 2004).   The presence of 

bacteria in Drosophila melanogaster enhanced life-span during the first week of adult life 

but could have the potential to reduce life-span later in adulthood (Brummel et al., 2004) 

(Table: 1.4).  An early study conducted by Bakula (1969) identified how Drosophila 

melanogaster become infected with the bacterial symbionts and how the elimination of 

this infection route affects the performance of the fly.   In this study, it was demonstrated 

that Drosophila melanogaster gain the symbionts through the larvae consuming the egg 

chorion which contains the bacteria (Bakula, 1969).  Axenic flies were created by washing 

the eggs with White’s solution (1.8 mM HgCl2, 0.1 M NaCl in 0.05 N HCl solution) to 

surface sterilise the eggs, the resulting flies had an extended development time compared 

with control flies (Bakula, 1969) (Table 1.4).  Recent experiments have further 

demonstrated the role of microbes in Drosophila melanogaster, the removal of the 

symbionts through antibiotic treatment abolished mating preference (Sharon et al., 2010) 

(Table: 1.4).  Reintroduction of these bacterial symbionts through injection preserved 

mating preferences in the flies (Sharon et al., 2010).   

 

Table: 1.4.  The impacts of bacterial depletion in Drosophila melanogaster  

Performance Parameter Result Reference 

Development time Extension  Bakula, 1969 

Life-span Reduction 

No effect 

Brummel et al., 2004 

Ren et al., 2007 

Immune response Decrease in Anti-microbial 

peptides (AMPs) 

Ren et al., 2007 

Mating  Abolishes mating preferences Sharon et al., 2010 

 

One major factor that is involved in the establishment of bacteria is the diet consumed by 

the organism. As nutrition plays an important role in survival, reproduction and fitness of 

Drosophila melanogaster, this would also suggest a link between the diet, bacteria and 

performance of organisms.  Therefore, bacteria could actually promote the performance 

of insects on suboptimal diets and a different response could also be observed with 

axenic flies reared on different diets. 
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Studies have been conducted which have highlighted the effects of nutrition on 

Drosophila melanogaster.  Calorie restriction has been shown to increase life-span, 

reduce reproduction and increase fat content (Piper et al., 2005).  This supports the 

theory that at times of plenty Drosophila investment of energy into reproduction is 

prioritised and during periods of low food availability, energy is invested into preservation 

and survival (Shanley and Kirkwood, 2000; Piper et al., 2005).  However, one paper 

suggested that the protein: carbohydrate ratio within the diet played an important role in 

extending life-span of Drosophila melanogaster rather than the dilution of diets (calorie 

restriction) (Lee et al., 2008).   A high protein diet with low carbohydrate content reduced 

life-span, suggesting that protein at high levels can be toxic and a diet consisting of 1:2 

and 1:1.6 protein-to-carbohydrate ratio was shown to optimize egg laying rate and life-

span, respectively (Lee et al., 2008).   This result was also supported by a paper published 

in 2009 by Ja et al where it was suggested that providing water with the diet abolishes the 

life-span extension with dietary restricted media.  

1.6.3 Bacterial diversity in mosquitoes 

Investigations into the bacterial diversity of mosquitoes have mainly focused on the 

mosquito, Anopheles gambiae to identify the potential use of commensal bacteria in 

controlling the vector of malaria.  Bacteria identified in Anopheles gambiae included; 

Enterobacter asburiae, Microbacterium sp., Sphingomonas sp., Serratia sp. and 

Chryseobacterium meningosepticum (Dong et al., 2009).  Another paper where bacterial 

species were identified in Aedes triseriatus, Culex pipiens and Psorophora columbiae 

discovered there was a huge increase in bacterial numbers in the midgut between larval 

and pupal stage and also in adults after blood-feeding (Demaio et al., 1996). The most 

common bacterial species identified were Serratia marcescens, Klebsiella ozanae, 

Enterobacter agglomerans and Pseudomonas aeruginosa (Demaio et al., 1996). 

Little is known about the importance of the bacterial species present in Aedes aegypti and 

their role in insect performance.  One paper had described how female Aedes aegypti 

preferred to oviposit in water that had bacteria present and that these micro-organisms 

produced oviposition-stimulating kairomones (Ponnusamy et al., 2008). An early paper 

also supported this, with egg hatching being greater in water with bacteria when 

compared with sterile water (Rozeboom, 1934).   
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Within Aedes aegypti, the bacterial diversity has been identified in gut diverticulum 

through 16S rRNA gene analysis, this included Bacillus cereus, Bacillus subtilis and Serratia 

sp (Gusmão et al., 2007).  The Serratia species identified by Gusmão et al (2007) had been 

suggested to play an important role in the metabolism of sugars; therefore it would be 

interesting to discover if bacterial depletion reduces the ability of the mosquito to 

metabolise sugars.   Culture-dependent and culture-independent techniques identified 

the genera Asaia, Bacillus, Enterobacter, Klebsiella and Serratia to be dominant in the 

mid-gut of Aedes aegypti (Gusmão et al., 2010).  The number of CFUs (colony forming 

units) increased from 210 colonies to 2.3 x 107 after 67 hours of being blood-fed (Gusmão 

et al., 2010) indicating the role of these bacteria in metabolism of a blood-meal.   

1.6.4 Role of commensal bacteria in Aedes aegypti 

As with Drosophila melanogaster few experiments have been conducted with Aedes 

aegypti and the cost of removing commensal bacteria from the host.  Lang et al (1972) 

conducted experiments which showed no alteration in growth rates, survival and protein 

content but did observe a change in life-span, lipid and weight.   Research in this area has 

mainly concentrated on the role of bacteria in dengue virus transmission which is 

described in Section: 1.2.2.   

1.7 Thesis Objectives 

To determine the deleterious impact of using chlortetracycline to deplete bacteria and 

during the RIDL® technique, 2 insect systems were assessed; Drosophila melanogaster 

and Aedes aegypti. Drosophila melanogaster was chosen as an ideal system due to the 

low cost, low bacterial diversity and the ability to use egg dechorionation as an 

alternative method to deplete bacteria.  RIDL® is used with Aedes aegypti and was chosen 

to address the impact of chlortetracycline on an insect system which is used for RIDL®.  

Lastly, to gain a greater understanding of the creation of transgenic insects, a female-

specific marker for Aedes aegypti was proposed to provide a method of genetically sexing 

the insects during mass-rearing.   

The three major objectives were:  

1. The impact of chlortetracycline on Drosophila melanogaster and Aedes aegypti 

(Chapter 3 and 5). 
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2. The impact of the depletion of bacteria via egg dechorionation on Drosophila 

melanogaster (Chapter 3 and 4). 

3. The production of a female-specific marker in Aedes aegypti for sex sorting during 

mass rearing (Appendix: 7.6). 
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Chapter 2: Material and Methods 

2.1 Materials 

Unless otherwise stated, chemicals and reagents were supplied by the following 

companies: Sigma Aldrich® U.K and U.S.A (organic compounds, enzymatic assay kits); Bio-

Rad Laboratories (qRT-PCR reagents and protein quantification assay); Fisher (organic 

compounds); Invitrogen™ (PCR reagents). 

2.2 Insect Culture and maintenance 

2.2.1 Drosophila melanogaster rearing and maintenance 

Five strains of Drosophila melanogaster were used:  Oregon-RS (Bloomington Stock 

Centre; Dec 2007), Oregon-RC (Bloomington Stock Centre; Dec 2007), Oregon-RP2 

(Bloomington Stock Centre; Dec 2007), Isogenic (provided by Sean Sweeney, University of 

York, UK; Dec 2007) and Canton-S (provided by Mariana Wolfner Laboratory Department 

of Molecular Biology and Genetics, Cornell University, Ithaca NY; September 2009).   

Drosophila were transferred to fresh diet at least once a week and reared at 25 °C, with a 

12 hour light/dark cycle. 

In preliminary experiments, the performance of the strains was investigated on 5 

different diets: Semi-defined medium; Cormeal, dextrose and yeast medium; General 

media; Ren et al (2007) medium; University of York medium (Table: 2.1).  Of these, the 

University of York diet yielded the most reliable performance, therefore stock flies and 

experiments were conducted using this diet.  The glucose to yeast ratio in the University 

of York diet was 2:1.   

For all experiments the diet was autoclaved and upon cooling to 50 °C, mixed with 

antifungal agents (Nipagin M and CBZ) and chlortetracycline at 0-500 µg ml-1 final 

concentration, prior to transfer to autoclaved vials. 
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Table: 2.1: Components of Drosophila diets 

*Stock solutions of Carbendazim (CBZ) and Nipagin M were made up of 200 mg l
-1

 and 100 g l
-1 

respectively, 

27.57 ml of CBZ and 7.35 ml of Nipagin M were added to 1 litre of medium.  

                                                         Weight (g) per litre 

Ingredients Semi-
defined 
(flystocks
.bio.india
na.edu/) 

Cornmeal, 
dextrose and 
yeast medium 
(flystocks.bio.
indiana.edu/) 
 

General 
medium 
(Ashburner 
et al., 
2005) 

Ren et al 
(2007)  
medium 

University 
of York 
medium 

Cornell 
(High 
nutrient) 
medium 

Low 
nutrient 
medium 

Cornmeal 
(Tesco 
Supermarket) 

 90.9 97.14 50    

Sucrose 30       

Dextrose  147.4 85.71 105    

Glucose 
(Fisher 
Scientific,  
Sigma) 

60    92 80 20 

Yeast 
(Genesee 
Scientific, 
Sigma) 

80  17.14   26 46 80 20 

Yeast Extract 
– yeast cell 
contents 
(Oxoid) 

20       

Peptone 20       

Agar (No.3) 
(Genesee 
Scientific) 

10 5 10.28 7.5 13.79 10.685 10.685 

Magnesium 
sulphate 

0.5       

Calcium 
Chloride 

0.5    0.46   

Ferrous 
sulphate 

    0.46   

Manganous 
chloride 

    0.46   

Sodium 
chloride 

    0.46   

Potassium 
sodium 
tartrate 

    7.35   

Tegosept    8.5    

Nipagin M * 10 ml 16.23 ml 28.6 ml  7.35 ml   

CBZ *     27.57   

Benzyl 
benzoate in 
ethanol 

 22.73      

Propionic acid 6 ml   1.9 ml  3.42 ml 3.42 ml 

Phosphoric 
acid 

     0.34 ml 0.34 ml 
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2.2.2 Aedes aegypti rearing and maintenance 

Asian Aedes aegypti (isolated from Kuala Lumpar, Malaysia in 1975) eggs were hatched 

under a vacuum for 20-60 minutes in distilled water and reared at 28 °C with 60-80% 

humidity.  Larvae were fed with TetraMin tropical fish food (Aquatics Warehouse, UK).  

Emerging pupae were picked daily using a 3ml plastic Pasteur pipette (Scientific Lab 

Supplies) into a small sized weigh boat (7 ml; Fisher Scientific, UK) and placed into a cage 

(15cm x 15 cm x 15 cm) (Talking Plastics Fabs, UK).  Adult mosquitoes were fed on 

defibrinated horse blood (TCS Biosciences, UK) in Hemotek® membrane feeding system 

(Discovery Workshop, UK) for egg laying and fed daily with 10% sugar (Tate and Lyle, UK) 

water plus 14 U ml -1 Penicillin and 14 µg ml -1 streptomycin and filtered through 0.22 µM 

bottle top filters (Corning Inc, U.S.A and VWR, UK). 

2.3 Insect Performance Experiments  

2.3.1 Performance of Drosophila melanogaster Oregon-RS 

Adult females of Drosophila were allowed to oviposit on the University of York medium 

(Table: 2.1) over 24 hours.  The eggs were collected and transferred to the test diets 

under sterile conditions using a fine paintbrush.  The experiment comprised of 10 

replicate vials with 10 eggs on 0, 1, 10, 50, 100, 300, 500 µg ml-1 of chlortetracycline 

supplemented diet.   

The time to the emergence of pupae and flies were recorded.  Once the flies had 

emerged, they were collected, sexed,  placed in liquid nitrogen and stored at -80 °C prior 

to subsequent analysis. 

In a supplementary experiment, the performance was assayed on diets with different 

agar concentrations ranging from 0.9% to 2.5%.  The time to the emergence of pupae and 

flies were recorded. 
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2.3.2 Performance of Drosophila melanogaster Canton-S 

2.3.2.1 Development time and survival experiment with chlortetracycline and 

dechorionation on the high and low nutrient diets. 

Adult female Drosophila were allowed to oviposit over 24 hours.  The eggs were collected 

and transferred to the test diets under sterile conditions using a fine paintbrush.  The 

experiment comprised of 12 replicate vials with 10 eggs with 0, 1, 10, 50, 100, 300, 500 µg 

ml-1 of chlortetracycline on the low and high nutrient diet (Table: 2.1).  One extra 

treatment “dechorionation” was conducted alongside the chlortetracycline treatments.  

Egg dechorionation was conducted by washing in sterile water twice, treating with 10% 

bleach for 5 minutes and rinsing with sterile water 3 times.  The time to the emergence of 

pupae and flies were recorded.   

2.3.2.2 Performance experiments with chlortetracycline and dechorionation on the York 

diet 

Experiments were conducted using glass vials with lids or Falcon tubes, both methods of 

rearing created consistent results.  Adult females were allowed to oviposit on the York 

diet over 24 hours.  The eggs were collected and transferred to treatments under sterile 

conditions.  The experiment comprised of 15 glass vials with 10 “untreated” eggs on the 

diet with 0, 50, 300 µg ml-1of chlortetracycline and 15 glass vials with 10 “treated” eggs 

on the diet with 0, 50, 300 µg ml-1 of chlortetracycline.  The treated eggs were 

dechorionated by washing in sterile water twice, treating with 10% bleach for 5 minutes 

and rinsing with sterile water 3 times.   

The development and emergence of pupae and flies were recorded.  Once the flies had 

emerged they were transferred to fresh diet and allowed to mate for 48-72 hours before 

being sexed.  After mating, male flies were used to determine life-span and females were 

used for bacterial counts and quantification of fecundity. 

Ten mated males were placed individually into the same treatment as for rearing (see 

above).  Fresh diet was provided every 3/4 days and every vial was monitored daily until 

the fly died. 
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Ten mated females were randomly selected for fecundity experiments, individual females 

were placed individually in tubes (Corning Inc), with each diet within the lid to allow for 

egg laying and feeding (Figure: 2.1).  Tubes were placed upside down, lids with fresh diet 

were replaced and eggs were counted daily for 7 days. 

a.                                                                                 b. 

        

Figure 2.1: Diagram of the fecundity experiment: a) a female in the Falcon tube and b) 

eggs laid on the food in the lid of the tube. 

In a supplementary experiment, egg hatching rates were assayed on diets with 0, 50, 

300µg ml-1 of chlortetracycline.  A further egg hatching experiment was conducted with 

dechorionated and control eggs where the diet was supplemented for both treatments 

with amaranth dye (300 µg ml-1) to aid the identification of dechorionated eggs which had 

hatched. 

2.3.3 Performance experiments on Aedes aegypti 

Cages of male and female mosquitoes were blood fed and eggs were collected four days 

later.  Approximately 500 eggs were hatched in a vacuum for one hour in 300 ml at 0, 0.1, 

0.5, 1.0, 10, 30, 100 µg ml-1 of chlortetracycline hydrochloride (BioGene, UK) water.  

Hatched eggs were left overnight.  The following day, 7 replicates of 300 larvae were 

transferred into 500 ml plastic pots (Scientific and Medical Products Ltd, UK) with 150 ml 

of each concentration of chlortetracycline, fed according to Table: 2.2 and maintained at 

28 °C with 80% humidity.  The time to pupation and the number of male and female 

pupae were recorded.  Pupae were transferred to small plastic cages (15cm x 15 cm x 15 
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cm) (Talking Plastics Fabs, UK) and each day the number of emerged adults were 

recorded, collected and stored at -80 °C or used for life-span studies as below. 

Five replicates of 30 male and female pupae were placed separately into cages (Scientific 

and Medical Products Ltd, UK).  The mosquitoes were fed with 0.2 µm filtered 10% sugar 

(Tate and Lyle, UK) supplemented with 0, 0.1, 0.5, 1.0, 10, 30, 100 µg ml-1 of 

chlortetracycline.  Life-span was monitored and fed daily for 50 days.   

The effects of chlortetracycline treatment on Mexican Aedes aegypti (Laura Harrington, 

Cornell University, Ithaca, NY) was tested as above, except that 6 replicates of 150 larvae 

were used and life-span was monitored on 6 replicates of 20 male and female mosquitoes 

until all were dead, Tetramin Fish Food was obtained from Walmart and sugar from 

Wegman, Ithaca, NY.  Mexican Aedes aegypti originated from the Tapachula area (14° 

45’N, 92° 15’W) and had been in the colony since 2006, the strain was augmented yearly 

with wild mosquitoes from the collection site.   

The response of transgenic Asian Aedes aegypti to 0-30 µg ml-1 of chlortetracycline was 

also tested as above except that 6 replicates of 150 larvae were conducted and life-span 

was monitored on 6 replicates of 20 male and female mosquitoes until all were dead and 

fed with 10% sugar water only. 

Table: 2.2. Feeding regime for Asian and Mexican Aedes aegypti fed on tropical fish 

food (Tetramin) (Determined by Irka Bargielowski). 

Day Food (µg) 
per larva 

1 30 

2 - 

3 40 

4 80 

5 160 

6 320 

7 320 

8 320 
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2.4 Microbial Culture  

2.4.1 Culturing microbes in Drosophila melanogaster 

To determine the effect of chlortetracycline on culturable bacteria from Oregon-RS, three 

larvae grown on each concentration of chlortetracycline (0-500 µg ml-1) were sampled, 

surface sterilised with 70% ethanol and homogenised in 0.5 ml of 1X sterile phosphate 

buffer saline solution (pH 7.4).  A sample of the homogenate (0.1 ml) was plated onto 

nutrient agar (Oxoid – 28 g l-1) and plates were incubated for 7 days at 37 °C when the 

number of colonies was recorded. 

To check for culturable bacteria in Canton-S culture medium derived from dechorionated 

eggs (Section 2.3.2.2), food was sampled on Day 14 (after most of adults had emerged) 

and plated onto nutrient agar plates.  These plates were grown at 25 °C for 7 days and 

growth was monitored on Day 1, 3 and 7.  Bacterial counts on females were conducted on 

7-10 day old flies.  Five female flies were randomly selected from each treatment and 

individually homogenised in 250 µl of sterile 1X phosphate buffer saline solution (pH 7.4) 

using a small pestle until pieces of tissue were no longer visible (Ren et al., 2007).  

Samples (100 µl) of the homogenate at X 1, X 1/10, X 1/100 and X1/1000 dilutions were 

plated onto nutrient agar plates (Oxoid – 28gl-1) with +/- 50 µg ml-1 chlortetracycline 

(shown to eliminate chlortetracycline sensitive E.coli cells) using sterile techniques.  The 

homogenate from flies derived from dechorionated eggs were not diluted. 

2.4.2 Culturing microbes in Aedes aegypti 

To determine whether the treatment of mosquitoes with 0 to 100 µg ml-1  of 

chlortetracycline had an effect on the culturable bacteria found in mosquitoes,  mosquito 

larvae were grown on each concentration of chlortetracycline (0-100 µg ml-1) and 

sampled on Day 7.  Three larvae were then surface sterilised with 70% ethanol, 

homogenised in 0.5 ml of sterile 1X phosphate buffer saline solution (pH 7.4) and 0.1 ml 

of the homogenate was plated nutrient agar (Oxoid – 28 g l-1) plates with and without 50 

µg ml-1 chlortetracycline for the identification of chlortetracycline resistant bacteria.  The 

agar plates were incubated for 7 days at 28 ± 1 °C (temperature used for Aedes aegypti 

culture) and the number of colonies was recorded. 
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Five (Asian) and six (Mexican) colonies from each plate were picked at random to 

inoculate 5 ml nutrient broth and placed in a shaking incubator at 28 ± 1 °C overnight.  

DNA was extracted from 1 ml samples in Section 2.8.1. 

2.5 Nutrition Assays 

2.5.1 Wing length and area measurements 

Due to experimental constraints the weight of the insect could not be measured in some 

experiments therefore, the size of the insects was estimated from wing length 

(mosquitoes) or area (Drosophila).  Drosophila wing area was chosen as a suitable 

measure of size according to Shingleton et al., 2005 and wing length (from wing notch to 

tip, Nasci 1990) was measured as a measure of size for mosquitoes (Figure: 2.3). Wings of 

mosquitoes and Drosophila were removed using scissors and forceps and placed onto a 

glass slide.  The wings were either digitally scanned (Canon LiDE 200 colour image 

scanner) or photographed using the Olympus SZX9 stereomicroscope.  Wing length and 

wing area was measured using ImageJ (http://rsbweb.nih.gov/ij/) or using a leaf-area 

measurement machine (LI-COR Portable area meter model: LI-3000A) (Figure: 2.2).   

 

 

Figure: 2.2. a) Mosquito wing length from wing notch to wing tip excluding hairs and b) 

Drosophila wing area measurements indicated with the dashed lines. 

 

 

 

http://rsbweb.nih.gov/ij/
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1a)       1b) 

 

2a)       2b) 

 

 

Figure 2.3: 1) Wing length and weight measurements were made with 20 males (a) and 

females (b) Aedes aegypti.  The linear regression of the weight and wing length was 

calculated.  Regression significantly departed from zero in males (F1, 18 = 4.965, p<0.05) 

and females (F1, 17 = 31.912, p<0.001). These results suggest that wing length is a 

suitable measure of size. 2) Wing area measurements were made with 20 male (a) and 

female (b) Drosophila. The linear regression of the weight and wing area was measured.  

Regression significantly departed from zero in males (F1, 18 = 17.408, p<0.01) and 

females (F1,16 = 8.448, p<0.05). 

2.5.2 Tissue Preparation 

Individual Drosophila and mosquitoes were homogenised in 80 µl and 60 µl of extraction 

buffer, respectively in Tris-EDTA buffer (10mM Tris, 1 mM EDTA, pH 8.0, with 0.1% (v/v) 

Triton-X-100 (Dionne et al., 2006).  Samples were centrifuged for one minute at 17,949 g 

and 4°C and the supernatant was removed and placed in new tube.  Samples were kept 

on ice while assays were conducted to prevent degradation of nutrients. 
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For Drosophila Oregon-RS sample flies were homogenised in 200 µl of Lysis Buffer (150 

mM NaCl, 20 mM Tris (pH 8.0), 2 mM EDTA, 0.5% nonylphenoxypolyethoxylethanol (NP-

40) and protease inhibitors – Roche tablets (Cat no: 1 836 153 1 tablet/10 ml) and 

incubated on ice for 15 minutes.  Samples were then centrifuged at 4 °C at 17,949 rpm for 

10 minutes and the supernatant was placed in a new tube and analysed immediately. 

2.5.3 Protein Assays  

Two assays were used, Pierce for Oregon-RS and Bio-Rad for Canton-S.   

For the Bio-Rad assay, samples were diluted 1 in 5 in TE buffer.  Five micro-litres of the 

sample and Bovine Albumin Serum standards were placed into a 96 well plate.  A Bio-Rad 

(Bio-Rad Laboratories, USA) protein assay was conducted by adding 25 µl of reagent A 

and 200 µl of reagent B (samples were mixed by pipetting) and allowed to incubate for 15 

minutes at room temperature.  The absorbance was measured at 750 nm on a Bio-Rad 

xMarkTM microplate spectrophotometer with 0-2.4 µg BSA (Bovine Serum Albumin). 

For the Pierce Assay, samples were diluted in Lysis buffer. Twenty-five micro-litres of the 

sample and Bovine Albumin Serum standards were placed into a 96 well plate. A Pierce 

BCA (Thermo Scientific) protein assay was conducted by adding 200 µl of BCA reagent 

(made from Reagent A and B at a 50:1 ratio) to each sample/standard and mixed by 

pipetting.  The plate was incubated for 30 minutes at 37 °C and the absorbance measured 

at 544 nm on a BMG Labtech POLARstar OPTIMA spectrophotometer.  

2.5.4 Assay for Glucose, Glycogen and Trehalose  

Five micro-litres of the samples and standards were placed into the wells of a 96 well 

plate.  The glucose assay was conducted by adding 150 µl of enzyme cocktail containing 

500 units of glucose oxidase and 100 units of peroxidase (39.2 ml of Milli-Q water to the 

enzyme tablet and 800 µl of o-Dianisidine reconstituted in 1 ml of Milli-Q water) to each 

well and mixed by pipetting.  The plate was then incubated for 30 minutes at 37 °C.  The 

reaction was terminated by adding 150 µl sulphuric acid (6 M).  The absorbance was 

measured at 544 nm on an xMarkTM microplate spectrophotometer.  
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To assay glycogen and trehalose, samples were pre-treated with amyloglucosidase and 

trehalase respectively.  For glycogen assays, 5 µl of 2 U ml-1 of amyloglucosidase in 10 mM 

acetate buffer was added to each sample and to one of 2 glycogen standard curves. The 

plate was incubated for 1 hour (Aedes aegypti) and overnight (advised for Drosophila 

samples) at 37 °C.   Glucose quantity was then measured using the method described 

above.   

For the trehalose assay, 2 µl of 0.2M sodium citrate and 1 mM of EDTA was added to the 

samples and 1 of 2 trehalose standards.  The plate was incubated at 37 °C for 10 minutes, 

this was followed by the addition of 2.5 µl of trehalase (3.7 U/ml) (converts trehalose to 

glucose) to the samples and 1 of 2 standards. The plate was then incubated for 60 

minutes at 37 °C and the glucose quantity then measured using the method described 

above.  

For both the glycogen and trehalose assays, the quantity of trehalose and glycogen was 

calculated by subtracting the value gained from the glucose assay from the value gained 

from the trehalose/glycogen assay. 

2.5.5 Assay for glycerol and triglyceride Assay  

The glycerol and triglyceride assay were conducted using Sigma Triglyceride Assay Kit.  

This kit quantifies glycerol by the addition of 1.25 U ml-1 of glycerol kinase (converts 

glycerol to glycerol-1-phosphate), 2.5 U ml-1 of glycerol phosphate oxidase (converts 

glycerol-1-phosphate to hydrogen peroxide and dihydroxyacetone phosphate) and 2.5 U 

ml-1 of peroxidase (converts hydrogen peroxide, 4-aminoantipyrine and sodium N-ethyl-

N-[3-sulfopropyl]m-anisidine to Quinoneimine dye).  The triglyceride reagent converts 

triglycerides to glycerol and fatty acids by using 250 U ml-1 of lipoprotein lipase.  

Fifteen micro-litres of the samples and 15 µl of the glycerol standards (0-6.25 ug) were 

placed into a 96 well plate.  The assay was conducted by adding 200 µl of pre-warmed 

glycerol reagent (resuspended in 40 ml Milli-Q water) to each well and mixed by 

pipetting.  The plate was then incubated for 10 minutes at 37 °C.  The absorbance was 

measured at 540 nm using a xMarkTM microplate spectrophotometer.  
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Following the glycerol assay, the triglyceride was quantified.  Fifty micro-litres of pre-

warmed triglyceride reagent (reconstituted in 10 ml of Milli-Q water) was added to the 

plate after the glycerol was quantified and incubated for 10 minutes at 37 °C.  The 

absorbance was measured at 540 nm using an xMarkTM microplate spectrophotometer.    

The triglyceride content was calculated by subtracting the value for free glycerol (first 

reading) from the final absorbance.   

2.5.6 Total Lipid Content 

Total lipid content was measured by drying individual insects (Drosophila and Mexican 

Aedes aegypti) or groups of 20 (Asian Aedes aegypti at Oxitec Ltd to weigh accurately) in 

eppendorf tubes to a constant weight at 50 °C for 48 hours.  After determination of dry 

weight of insect on a microbalance (Drosophila and Mexican Aedes aegypti; Mettler MT5 

microbalance and Asian Aedes aegypti; Mettler Toledo AG104 balance), 1 ml (5 ml for 

Asian Aedes aegypti) of 2:1 methanol/chloroform mix was added to each tube and 

incubated at room temperature for 24 hours.  The methanol/chloroform mix was then 

removed and left in the fume hood for 24 hours to allow the evaporation of the 

methanol/chloroform mix.  The insects were then re-weighed and the change in weight of 

the dried insects after methanol/chloroform treatment was calculated to produce the 

total lipid content per insect (Cockbain, 1962). 

2.6 Respirometry 

The O2 consumption and CO2 production of male and female flies of 7-10 day old 

Drosophila Canton-S was determined by stopped-flow respirometry, with 5 flies per 

replicate.  Flies were transferred to a 5 ml syringe and allowed to acclimate for 30 

minutes prior to analysis.  All experiments were conducted in dim light (0.02 µE m-2 s-1) to 

minimise movement, and the time of experiment was scored.  The input to the 

respirometer was room air with water vapour and CO2 removed by two silica columns and 

one ascarite column respectively. To initiate each experiment, the air in the syringe was 

replaced by 3.2 ml of dried CO2 free air, with airflow at 57 ml min-1.  The CO2 and O2 

content of the syringe was determined at 30 minutes by injecting 3 ml of the syringe 

volume into Sable Systems SS3 Gas Analyzer Sub-sampler with an FCA-10A CO2 analyzer 
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and FC-10 O2 Analyzer (Sable systems, Nevada, USA) respectively.  CO2 and O2 content 

was calibrated with 50 ppm CO2 gas and 20.9% O2 gas. 

CO2 and O2 content were analysed using the Sable System data acquisition software 

(Expedata, Sable Systems, Nevada, USA). 

2.7 Drosophila Gut Dissections 

Adult flies were surface sterilised with three washes in 1 ml 10% sodium hypochlorite, 

followed by three rinses with sterile water.  Drosophila guts were dissected in sterile 

Ringer’s solution (3 mM CaCl2, 182 mM KCl, 46 mM NaCl and Tris 10 mM, pH 7.2) using 

sterilised forceps and scissors. 

2.8 16S rRNA Gene Analysis 

2.8.1 DNA extraction 

Bacteria colonies were cultured from the insects (Section 2.4). 

Three different methods were used to extract DNA.  For bacterial colonies obtained from 

Oregon-RS and for Oregon-RS larvae, DNA was extracted by using a modified method 

from Short Protocols in Molecular Biology 4th Edition.  This involved precipitating the DNA 

in one volume of isopropanol, washing the DNA pellet in 500 µl of 70% ethanol and re-

suspending the dried pellet in 100 µl of sterile water (Ausebel, 1999 page 2-12).   

 

For bacterial colonies obtained from Canton-S and for Canton-S adults (Section: 2.3.2.2), 

DNA was extracted using a modified method from Cenis et al (1993).  This involved a pre-

incubation step in 180 µl enzymatic lysis buffer (20 mM Tris-Cl, 2 mM sodium EDTA, 1.2% 

Trition-X-100 and 20 mg lysozyme per ml) at 37 °C for 45 minutes.  Followed by, bead-

beating with 0.1 mm cell disruption beads (50% volume) using a DisrupterGenie (Scientific 

Industries, Inc).  The samples were incubated for a further 45 minutes at 37 °C.  One 

hundred microlitres of Extraction Buffer (200 mM Tris-HCl, pH 8.5, 250 mM NaCl, 25 mM 

EDTA, 0.5% [W/V] SDS) and 25 µl of proteinase K (20 mg ml-1) was added to each sample.  

The samples were mixed and incubated at 55 °C for 1 hour, followed by the addition of 

150 µl of 3M NaOAc, pH 5.2.  The samples were transferred to -20 °C for 10 minutes and 

centrifuged for 5 minutes at 17,949 g.  The supernatant was transferred to a new tube 
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and 1 volume of 100% freezing isopropanol was added.  The samples were incubated at 

room temperature for 30 minutes, followed by centrifugation at 17,949 g for 30 minutes.  

The supernatant was removed and the pellet was washed in 500 µl of ice cold 70% 

ethanol. The DNA samples were then vortexed, centrifuged at 17,949 g at room 

temperature and the supernatant was discarded.  The dried DNA pellet was re-suspended 

in 100 µl of sterile water.  

 

For liquid microbial cultures obtained from Asian Aedes aegypti, DNA was extracted by 

using Nucleospin® Tissue kit (Clontech) and cultures from Mexican Aedes aegypti DNA 

were extracted by the same method for Canton-S (Cenis et al., 1993).   

2.8.2 PCR Amplification 

The bacteria were identified by 16S rRNA gene PCR using general primers 16SA1 (5’ – 

AGA-GTT-TGA-TCM-TGG-CTC-AG-3’) and 16SB1 (5’ – TAC-GGY-TAC-CTT-GTT-ACG-ACT-T-

3’) from Fukatsu and Nikoh (1998).  PCR amplification was performed in 25 µl of a sterile 

mix containing 1X Taq polymerase buffer, 0.24 mM of each deoxynucleoside 

triphosphate, 2 mM MgCl2, 0.32 µM of each primer, 1 µL of template DNA/colony sample 

and 0.025 U of Platinum Taq.  The PCR mixtures were incubated for 5 minutes at 94 °C, 

followed by one cycle of 1 minute at 55 °C, 72 °C for 2 minutes and 25-30 cycles of 1 

minute at 94 °C, 1 minute at 55 °C and 2 minutes at 72 °C with a final incubation of 8 

minutes at 72 °C.  Negative controls with no DNA addition and a positive control 

(Ochrobactrum anthropi DNA/control fly DNA) were also prepared. 

To certify amplicon size (1.5 kb), a 3 µl aliquot of the PCR product was run on either a 

1.5% agarose gel stained with Sybr Safe (Invitrogen) (Drosophila and Mexican Aedes 

aegypti) or 0.8% gel stained with ethidium bromide (Asian Aedes aegypti) and visualized 

using UV. PCR samples were purified using QIAquick PCR purification kit (Qiagen, 

Valencia, California, USA and Qiagen, Crawley, West Sussex, UK) following the manual 

instructions.  PCR products were then sequenced with 16SA1 and 16SB1 primers using 

Macrogen (Oregon-RS), GATC Biotech, Germany (Asian Aedes aegypti) and with 16SA1 

only at Cornell Life Sciences Core Laboratory Centre, Biotechnology, Cornell University, 

Ithaca, NY (Canton-S and Mexican Aedes aegypti). 
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Sequences were then trimmed using Sequencher 4.10.1 and blasted using NCBI 

nucleotide BLAST tool to identify the closest match for each sequence.  This analysis was 

conducted between November 2010 and February 2011.  

2.8.3 Wolbachia identification in Drosophila melanogaster using PCR 

Wolbachia was identified by 16S rRNA gene PCR using universal primers wsp 81F: 5’ TGG 

TCC AAT AAG TGA TGA AGA AAC and wsp 691R: 5’ AAA AAT TAA ACG CTA CTC CA from 

Zhou et al (1998).  PCR amplification was performed in 20 µl mix containing 1X Taq 

polymerase buffer, 0.40 mM of each deoxynucleoside triphosphate, 2.5 mM MgCl2, 0.32 

µM of each primer, 1 µL template DNA and 0.02 U Platinum Taq.  Negative controls with 

no DNA addition and a positive control (Isogenic strain) were also prepared.  The PCR 

mixtures were incubated for 1 minute at 95 °C, followed by 30 cycles of 1 minute at 95 °C, 

1 minute at 54 °C and 1 minute at 72 °C with a final incubation of 5 minutes at 72 °C. To 

certify amplicon size (590-632 bp), a 8 µl aliquot of the PCR product was run on a 1.5% 

agarose gel stained with Sybr Safe (Invitrogen)   

2.9 454 pyrosequencing 

2.9.1 Sample Preparation and DNA Extraction 

Fifty guts were dissected from the Drosophila (Canton-S, male and female).  For DNA 

extraction the guts were placed in 180 µl enzymatic lysis buffer (20 mM Tris-Cl, 2 mM 

sodium EDTA, 1.2% Trition-X-100 and 20 mg lysozyme per ml). Twenty male adult Aedes 

aegypti treated with 30 µg ml -1 of chlortetracycline, non-chlortetracycline treated male 

adults, non-chlortetracycline treated female adults and non-chlortetracycline treated 

larvae were also placed in 180 µl enzymatic lysis buffer.  The samples were homogenised 

with a pestle and mortar, and incubated at 37 °C for 45 minutes.  Then, 0.1 mm cell 

disruption beads (50% volume) were added to the samples and bead-beating was 

conducted using a DisrupterGenie (Scientific Industries, Inc).  DNA extraction was 

continued using the DNeasy® Blood and Tissue Kit (Qiagen, Valencia, California, USA) 

following the protocol for Gram-Positive DNA and eluted in 30 µL of buffer EB. 
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2.9.2 Amplification of Variable Region 2 (V2) of bacterial 16S rRNA gene (assisted by 

Adam Wong) 

PCR amplification of the Variable Region 2 (V2) of bacterial 16S rRNA gene was conducted 

using the primers 27F (5’ – AGA-GTT-TGA-TCM-TGG-CTC-AG-3’) and 338R (5’ – TGC-TGC-

CTC-CCG-TAG-GAG-T-3’) with a sample-specific 27F primer with a specific multiplex 

identifier (MID) sequence.  All 27F and 338R primers were modified with 5’-Adaptor A and 

5’-Adaptor B sequences, respectively for the pyrosequencing (Roche).  PCR amplification 

was conducted in triplicate on six DNA samples containing 1X Taq polymerase buffer, 0.24 

mM of each deoxynucleoside triphosphate, 2 mM MgCl2, 8 pM each primer, 1 µL 

template DNA and 0.6 U Platinum® Taq DNA polymerase.  The 25 µl PCR mixtures were 

incubated for 10 minutes at 94 °C, followed by 25 cycles of 1 minute at 94 °C, 1 minute at 

58 °C and 1 minute at 72 °C with a final incubation of 8 minutes at 72 °C.   PCR reactions 

(22.5 µl) were purified using Agencourt Ampure® SPRI kit and quantified using the Quant-

iT™ PicoGreen® kit.  Each reaction was diluted to 1 x 109 molecules µl -1.  Equal volumes of 

the three reaction products per sample were mixed together and diluted to 1 x 107 

molecules for emulsion PCR at one copy per bead using only “A” beads for unidirectional 

sequencing.  Beads were subjected to one full plate of the 454 GS-FLX pyrosequencing 

instrument using standard Titanium chemistry (Cornell Life Sciences Core Laboratory 

Centre, Biotechnology, Cornell University, Ithaca, NY).  

2.9.3 Analysis of 454 sequences 

Sequences were checked for quality using Genome Sequencer FLX System Software 

Manual, version 2.3 and clustered at 97% or more identity using Pyrotagger 

(http://pyrotagger.jgi-psf.org/release/; Kunin and Hugenholtz, 2010) (assisted by Adam 

Wong).  Sequences were identified using the NCBI nucleotide Basic Local Alignment 

Search tool (http://blast.ncbi.nlm.nih.gov/Blast.cgi) to identify the closest match for each 

sequence.  This analysis was conducted in December 2010.    

 

 

 

http://pyrotagger.jgi-psf.org/release/
http://blast.ncbi.nlm.nih.gov/Blast.cgi
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2.10 Microarray analysis 

A microarray analysis of Drosophila melanogaster was conducted to gain a global 

overview of the effect of diet and bacteria depleted conditions (flies derived from 

dechorionated eggs) on gene expression.  

2.10.1 Insect rearing 

Drosophila Canton S was reared on the Cornell diet (Table: 2.1).  Flies were transferred 

into egg-laying cages with 1% grape juice agar overnight.  On Day 1, 200 control 

(untreated) and 200 dechorionated eggs (Section: 2.3.2.1) were transferred onto 

autoclaved diets: low nutrient (20 gl-1 of glucose and yeast) and Cornell (High nutrient) 

(80 gl-1 of glucose and yeast).  Both diets were autoclaved at 121°C for 20 minutes.  

Emerged adults were collected and placed onto fresh diet for 3/4 days before being flash 

frozen with liquid nitrogen and stored at -80 °C.   

2.10.2 RNA Extraction and Sample Preparation (Method from John Ramsey) 

RNA extraction was conducted on 10 male flies per replicate, 3 replicates per treatment.  

Flies were placed into chilled tubes on dry ice with 2 metal beads per tube and ground at 

1600 strokes/min, for 95 seconds (2000 Geno/Grinder).  Five hundred micro-litres of 

Trizol® (Invitrogen) was added to each tube and homogenised with a needle and 1 ml 

syringe.  The mix was then centifuged at 10,000 g for 10 minutes.  The supernatant was 

transferred to a new tube and 50 µl of bromochloropropane was added to the sample, 

the sample was mixed by invertion and left for 5 minutes at room temperature.  The 

samples were centrifuged for 10 minutes at 10,000 g at 4 °C, the upper aqueous layer was 

transferred to a new tube and 100 μl of ethanol was added to the sample.  The sample 

was then added to a cartridge (Ambion, Ribopure™ Kit), centrifuged for 30 seconds at 

10,000 g and the eluent discarded.  The cartridge was washed with 500 μl wash buffer 

(Ambion, Ribopure™ Kit), centrifuged for 30 seconds at 10,000 g and the eluent 

discarded. The centrifugation step was repeated and the remaining eluent was discarded. 

The RNA was eluted in 50 μl RNase-free water was added to the cartridge, left for 2 

minutes at room temperature and centrifuged for 1 minute at 10,000 g. The quantity of 

RNA was measured using a Nanodrop and stored at -80 °C. 



54 

 

2.10.3 Microarray 

The microarray used was a Drosophila Single Channel Gene Expression Microarray 

(Agilent, California, USA) with a format of 4 x 44k and 44,000 60-mer drosophila probes.  

RNA sample quality and integrity was evaluated using an Agilent Bioanalyzer. The RNA 

sample was amplified and labelled with Cy3 Amino Allyl MessageAmp™ II aRNA 

Amplification Kit (Ambion/Applied Biosystems) according to instructions, hybridised to 

the 4 x 44k microarray and washed according to manufacturers protocols. The microarray 

was scanned by an Axon 4000B scanner; fluorescent signals were obtained using Agilent 

Feature Extraction software (Cornell Life Sciences Core Laboratory Centre, Biotechnology, 

Cornell University, Ithaca, NY).   

2.10.4 Microarray Analysis 

The data were analysed by Limma (analysis with John Ramsey) and GeneSpring®.   

For the analysis using Limma, the raw data files were imported into R 2.10.1 (cran-r-

project.org/) and analysed with BioConductor (www.bioconductor.com) package Limma. 

The median foreground probe intensities were calculated without background 

subtraction, as recommended by Zahurak et al (2007).  The values were then log2 

transformed and normalised using the vsn (Variance Stabilization and Normalization) 

package in R (R2.10.1, cran-r-project.org/).  Variance Stabilization and Normalization 

method is based on the fact that variance of the microarray depends on the signal 

intensity  

Normalisation using the vsn method of analysis is based on three assumptions: 1) The 

variance of the measurements on a probe depends on the mean intensity 2) The 

relationship of measurements between samples is by an affine-linear transformation and 

3) The variance-stabilised intensities per spot are normally distributed (Huber et al., 

2002).  This method is used to preprocess microarray intensity data by an affine 

transformation of each column, followed by a variance-stabilising transformation of the 

whole data (Huber, 2006; Huber, 2010).  The method is summarised by the equation; > e2 

<-vsn(e1) where e1 is the raw intensity measurements and e2 is the calibrated and 

generalised log-transformed data (Huber, 2006). The generalised log-transformed data is 
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a function similar to natural logarithm for large values (large compared to the background 

noise) but is less steep (has a smaller slope) for smaller values (Huber et al., 2003; Huber, 

2006; Huber, 2010).  The difference between the transformed values is the generalised 1 

log-ratio (Huber, 2006; Huber, 2010).  These generalised 1 log-ratios are shrinkage 

estimators of the natural logarithm of the fold change where shrinkage estimators at low 

intensities are smaller than or equal to to the naive log-ratios and become equal at large 

intensities (Huber, 2006; Huber, 2010).  Therefore, they are not affected by the variance 

divergence of the naive log-ratios at the lower intensity which allows the value to 

maintain a significant result when the data are negative or close to zero (Huber, 2006; 

Huber, 2010). This method removes the intensity dependence of the variance (Huber et 

al., 2003). 

For the analysis using GeneSpring® GX Software Version 11 (Agilent), the raw data files 

were imported into GeneSpring® and the data was normalised using Quantile 

Normalisation (reduces variance between arrays).  Quantile normalisation is performed 

by sorting the expression values of each sample into ascending order and placed next to 

each other.  The mean of the sorted order across all samples is taken; therefore each row 

in the matrix has equal variance to the previous mean.  The modified matrix which has 

been obtained is then re-arranged to have the same ordering as the input matrix (Details 

obtained via email contact with Agilent Technologies). 

Differential Expression analysis was performed with both methods at the 0.05 level.   

A comparison of the two methods of analyses (GeneSpring® and Limma) were conducted 

by comparing the number of genes where the expression was significantly changed 

(p<0.05) to determine which analysis was the most conservative.  With the exception of 

the comparison of low nutrient diet dechorionation v high nutrient diet dechorionation 

(Figure: 2.4d), GeneSpring® was shown to be the most conservative with similar number 

of genes as with Limma for the High nutrient diet comparison (Figure: 2.4b) and lower 

genes with the low nutrient (Figure: 2.4a) and control comparison (Figure: 2.4c).  

The gene ontology of each sequences was gained through the use of Blast2GO 

(blast2go.org) and searches using NCBI (http://www.ncbi.nlm.nih.gov/), panther 
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(www.pantherdb.org/), DGI TC Annotator (http://compbio.dfci.harvard.edu) and FlyBase 

(www.flybase.org). 

 a)  Low nutrient diet: Dechorionation V Control                b)   High nutrient diet: Dechorionation V Control 

   

c)  Low nutrient diet control V High nutrient      d) Low nutrient diet dechorionation V High nutrient        

     diet control               diet dechorionation 

  

Figure 2.4:  Comparison of the two different methods of analysis, GeneSpring® and 

Limma with the number of genes where expression is significantly altered; a) low 

nutrient diet: dechorionation V control b) high nutrient diet: dechorionation V control c) 

low nutrient diet control V high nutrient diet control d) low nutrient diet 

dechorionation V high nutrient diet dechorionation. Overlapping numbers represented 

the number of genes shared by both methods; numbers within each circle represents 

the number of genes found to have a significantly altered expression.  The Venn 

diagram was created using an online source produced by Oliveros (2007). 

http://www.pantherdb.org/
http://www.flybase.org/
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2.10.5 Quantitative RT-PCR 

Quantitative RT-PCR (qRT-PCR) was conducted to confirm the results gained from the 

microarray data. 

The samples used for the microarray were treated with DNase (Ambion) to remove 

contaminating DNA from the samples by the addition of 1X DNase I buffer and 1 µl 

rDNase I. The samples were incubated for 30 minutes at 37 °C and the reaction was 

terminated by the addition of 5 µl of inactivation reagent. The samples were then 

centrifuged for 1.5 minutes at 10,000g. 

The cDNA was created by adding 200 ng of random primers (Fisher), 200 ng RNA, 10 

pmole dNTPs and made up in sterile distilled water.  The mixture was heated to 65 °C for 

5 minutes and chilled on ice.  1 X First-Strand Buffer and 0.01M Dithiothreitol were added 

and gently mixed and incubated at 25 °C for 2 minutes. Two hundred units of 

SuperScript™ II RT (Invitrogen) was added and mixed by pipetting.  The sample was then 

incubated at 25 °C for 10 minutes, followed by incubation at 42 °C for 50 minutes and 

heat inactivated for 15 minutes at 70 °C.  The cDNA was stored at -20 °C.   

 Table: 2.3. Primers (designed using Primer-BLAST, NCBI) used for quantifying Diptericin, 

Diptericin B, Fat Body Protein 1, CG31148. Defensin and Phosophoenolpyruvate 

carboxykinase by qRT-PCR with the housekeeping gene RPL32 and Zwischenferment 

gene with no fold change expression across treatments in the microarray analysis. 

 

 The qRT-PCR reactions were performed in 96 well plates using 2 μl cDNA and 19 μl 

master mix, consisting of 1X Power Sybr Green PCR Master mix (Applied Biosystems) and 

Gene name Forward sequence (5’-3’) Reverse sequence (5’-3’) 

DiptericinB TTGGACTGGCTTGTGCCTTCTCG TTGGGAGCATATGCCAGTGGTTCA 

Fat Body Protein 1 GCTGCAGGCCATTAATCCATCCGT TGCCAGTCAGATTCATGCCCATCG 

CG31148 AGCTTGGGATGGACGCCACA TGGTCGAGTGCGGTTCATCATTTT 

Defensin GAAGCGAGCCACATGCGACCT AAACGCAGACGGCCTTGTCGT 

Phosophoenolpyruvate 
carboxykinase 

GCCAAAAACCCTTTCACGCGCA TCCCCCATTGAATGCGTTTCGAGT 

Diptericin GCAGTTCACCATTGCCGTCGC GCAGTTCACCATTGCCGTCGC 

Zwischenferment (control) GCAGTTCACCATTGCCGTCGC ACCGCCGCCTCCCTGAAGAT 

Ribosomal protein L32 
(Housekeeping gene) 

AGATCGTGAAGAAGCGCACCAAG CACCAGGAACTTCTTGAATCCGG 
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2.5 pM of the forward and reverse primers (Table 2.3).  Two negative controls were also 

prepared, the reagent only negative controls which contained sterile distilled water with 

no DNA sample and No RT (Reverse transcriptase) control. The qRT-PCR reactions were 

carried out in a CFX96 Real time system on a C1000 thermal cycler (BioRad) with the 

following thermal profile: 2 minutes at 50 °C, 10 minutes at 95 °C followed by 40 cycles of 

15 seconds at 95 °C and 1 minute at 60 °C. To ensure primer specificity to each gene, a 

melt curve was run for each plate from 65-95 °C with an increment of 0.5°C (Figure: 2.5). 

 

Figure: 2.5. An example of a melt-curve analysis with the primer pairs of 

Zwischenferment (control) with cDNA from replicate 1 of the control flies reared on a 

low nutrient diet. 

The expression level of each gene (Table: 2.2)  was determined by the comparative CT 

value method where the CT value obtained for each gene was normalized to the CT 

values obtained for the housekeeping gene RPL32.  

2.11 Statistical Analysis 

Statistical analyses were conducted using SPSS Inc 16.0 and 17.0 (Dytham, 2003 p66-

199.).  Significance was tested at 95% and above confidence level.  The statistical test was 

selected depending on the data type and distribution. 
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For normally distributed and continuous data with 2 or more sample groups; an analysis 

of variance (ANOVA) was conducted.  For data with a non-normal distribution and 

discontinuous data; a Mann-Whitney U test, a Kruskal-Wallis test and a Scheirer-Ray-Hare 

test was selected according to the number of groups and factors.  Catagorical data was 

analysed using a Chi2 analysis.  

Table: Summary table of statistical tests used in this thesis (Dytham, 2003). 

Samples/Groups Factors Data type Statistical test 

2 1 Catagorical Chi2 test 

Discontinuous Mann-Whitney U test 

Continuous t-test, one-way 
ANOVA 

>2 1 Catagorical Chi2 test 

Discontinuous Kruskal-Wallis test 

Continuous One-way ANOVA  

2+ >1 Discontinuous Scheirer-Ray-Hare test 

Continuous Two-way ANOVA, 
Multi-way ANOVA and 
Analysis of covariance 
(ANCOVA) 
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Chapter 3:  Bacteria and performance of Drosophila melanogaster 

3.1 Introduction 

There is growing interest in the importance of gut microbes in animals and how the 

depletion of these microbes affects the health and performance of the animal.  Several 

scientists have investigated the implications of antibiotics on the gut microbiota; in mice 

antibiotics have been shown to alter the diversity of bacteria found within the gut 

(Antonopoulos et al., 2009).   In control mice the microbes were Firmicutes and 

Bacteroidetes but with antibiotic treatment the gut microbiota was predominantly 

Proteobacteria (Antonopoulos et al., 2009).   

Drosophila melanogaster has been used for decades as one of the most useful model 

organisms when researching human diseases, and now there has been an increase in the 

use of Drosophila melanogaster to enable scientists to gain more insight into the role of 

gut bacteria.  Sharon et al (2010) has shown that commensal bacteria play an important 

role in the mating preferences in Drosophila melanogaster and that diet also determines 

the species diversity in the insects.   In this study it was shown that on a cornmeal-

molasses-yeast diet, the insects have a more diverse population of bacteria in the gut 

compared with the insects on starch diet where only Lactobacillus plantarum was 

identified. 

The importance of symbiotic bacteria to the host has also been demonstrated by several 

other authors (Ren, et al., 2007; Brummel, et al., 2004; Bakula, 1969) with Drosophila 

melanogaster (Chapter 1).  Nevertheless, these studies have been inconsistent and in 

some cases not repeatable due to differences in conditions such as; the  diet, the 

methods used to produce bacteria-free flies (use of antibiotic treatment and egg 

dechorionation) and how bacteria-free flies were characterised (culturable (Bakula, 1969)  

and 16S rRNA gene analysis (Ren, et al., 2007).  Certain authors have used high 

concentrations of antibiotics to deplete the bacteria however they have not considered 

the implication of using such a high dose on the insect performance an example is a study 

by Mair et al (2005) and Fry and Rand (2002) both of  which used 250 µg ml -1 of 

tetracycline. 
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Most papers investigating the importance of Drosophila melanogaster symbionts in the 

host performance concentrate on life-span with only Bakula (1969) measuring 

development time.  One particular aspect which has not been investigated is the role of 

Drosophila symbionts in host nutrition.  Therefore, in this chapter I determine the impact 

of chlortetracycline on two wild-type lab strains: Oregon-RS and Canton-S by treating the 

Drosophila melanogaster with a range of chlortetracycline concentrations (0-500 μg ml-1).  

Survival and development to pupae/adulthood, lifespan, the nutrition and respiration of 

the flies were measured.  The effect of the treatment with chlortetracycline on the 

bacterial content within larvae and adults was also investigated by culturable bacterial 

counts and 454 pyrosequencing to compare the bacterial diversity with chlortetracycline 

and non-chlortetracycline treated adult flies.  Further experiments using Canton-S with 

bacteria depleted flies (derived from egg dechorionation) were also used as a comparison 

with chlortetracycline treated flies, and to determine whether the depletion of bacteria 

or toxicity of the chlortetracycline was responsible for the changes in performance.  

Finally, survival studies with Drosophila melanogaster (Canton-S) using a high nutrient 

(Cornell diet) and low nutrient diet will establish whether different responses are 

observed with different diets when the bacteria are depleted in flies via treatment with 

chlortetracycline and egg dechorionation.  
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3.2 Oregon-RS survival and development 

3.2.1 Oregon-RS survival and sex-ratio 

Initial experiments using the lab strain, Oregon-RS were used to test whether 

chlortetracycline treatment had a significant impact on Drosophila melanogaster. 

Oregon-RS eggs were transferred to the York diet containing different concentrations of 

chlortetracycline up to 500 µg ml-1.  The mean number of individuals that survived to 

pupation varied from 5.1-7.2 out of 10 and did not vary significantly with treatment 

(Kruskal-Wallis: H6 = 5.973, p>0.05) (Figure: 3.1).  Pupal mortality was also low such that 

4.9-6.8 survived to adulthood, again with no significant difference between treatments 

(Kruskal-Wallis: H6 = 6.039, p>0.05) (Figure: 3.1).   At the lower concentrations of 

chlortetracycline (0-10 µg ml-1) the flies had a tendency to stick to the diet upon 

emergence, these were still alive when the numbers were recorded.  The diet appeared 

to be more liquid than diets with a higher concentration of chlortetracycline (100 µg ml-1 

and above).  The “sticking” to the diets could possibly be due to the growth of bacteria on 

the diets as this was not observed with the diets containing 100 µg ml-1 and higher of 

chlortetracycline.  Therefore, the addition of antibiotics could actually prevent this 

process from occurring and the survival data could have been different if the flies that 

were “stuck” on the food had not been removed on the day of their emergence. 

 

Figure: 3.1. Mean percent survival to pupae and adulthood of the 10 vials (10 eggs per 

vial) of each treatment of 0-500 µg ml-1 chlortetracycline (Methods Chapter, Section: 

2.3.1, page 39). 
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The ratio of males and females was also analysed to determine whether chlortetracycline 

had an impact on the number of males and females in the population. The sex ratio did 

not vary significantly with increasing concentration of chlortetracycline.  At 0 µg ml-1, the 

ratio was 26:31 and for 500 µg ml-1 the ratio was 26:37 (males to females) (Table: 3.1).  

The concentration of chlortetracycline where there was quite a variation was at 1, 10 and 

50 µg ml-1 where at 50 µg ml-1 there was double the number of females compared to 

male flies.  Using a goodness of fit chi-square statistical test, the sex ratio was analysed to 

determine whether there is a significant effect on the sex ratio of Drosophila by antibiotic 

treatment.  This analysis revealed no significant difference between the ratios of males 

and females (Χ2
6

 = 8.321, p>0.05) between the different treatments.   

Table: 3.1. Sex ratio of Drosophila treated with 0-500 µg ml-1 chlortetracycline, number 

of replicates = 10 (Methods Chapter, Section: 2.3.1, page 39).  

Concentration of chlortetracycline 
(µg ml

-1
) 

Sex ratio Males:Females (% males) 
 

0 26:31 (45.6%) 

1 27:41(39.7%) 

10 16:30 (34.8%) 

50 18:38 (32.1%) 

100 28:28 (50%) 

300 29:29 (50%) 

500 26:37 (41.3%) 
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3.2.2 Development time to pupae and adulthood 

Development time measurements were also included in this experiment to determine 

whether the removal of the bacteria altered the development time. The development 

time of Oregon-RS to pupation (p<0.001, Table 3.2) and adulthood (p<0.001, Table: 3.2) 

varied significantly with chlortetracycline concentration.  At 0 µg ml-1 of chlortetracycline, 

larvae started to develop into pupae by day 7.  As the concentration of antibiotic 

increased, pupae formation was delayed in 2 steps; firstly, the median development to 

pupae was extended by one day at 1-10 µg ml-1 of chlortetracycline and by 2 days at 50-

500 µg ml-1 of chlortetracycline. This delay in development was also observed in the 

emergence of adults, median development to adulthood was extended from 11 days to 

12 days at 1-10 µg ml-1 and 13 days at 50-500 µg ml-1. 

Table: 3.2. The effect of chlortetracycline on the development time of Drosophila 

melanogaster (Oregon-RS) of 10 vials (10 eggs per vial) of each treatment of 0-500 µg 

ml-1 chlortetracycline (Methods Chapter, Section: 2.3.1, page 39).   

  
Median development time (Days) 

 

Concentration of chlortetracycline µg ml
-1

 to pupae to adulthood 

0 7 11 

1 8 12 

10 8 12 

50 9 13 

100 9 13 

300 9 13 

500 9 13 

                   KW: H6 = 253, p<0.001           KW: H6 = 226, p<0.001 
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3.2.3 Behaviour of larvae on chlortetracycline 

Oregon-RS larvae behaved differently on diet with high a concentration of 

chlortetracycline (100-500 µg ml-1) compared with the larvae reared on the diet with 0-50 

µg ml-1 of chlortetracycline.  Larvae on low concentrations of chlortetracycline were able 

to burrow into the food, but at higher concentrations the larvae had a tendency to 

remain on the surface.  One possible explanation to this observation is that the bacteria 

that grow on the diets with low concentrations of chlortetracycline are softening the diet 

and therefore the larvae have the ability to tunnel through the diet.  At higher 

concentrations of chlortetracycline there is little or no bacterial growth and therefore the 

diet remains solid and harder for the larvae to tunnel into the food.  Another possible 

explanation for this observation could be that the larvae treated with high concentrations 

of chlortetracycline are less vigorous and are not able to penetrate the food as much as 

the larvae treated with 0-50 µg ml-1 of chlortetracycline. 

To test whether the extension of development time was due to a direct effect of 

chlortetracycline rather than a deleterious consequence of feeding on the surface, control 

Oregon-RS was reared on a diet with 0.9-2.5% agar.  This experiment showed that there 

was a significant difference in the median development time (p<0.001. Table: 3.3).  The 

concentration where a difference was observed was at 2% agar where the median 

development time was shortened from 11 days to 9 days, suggesting that this result could 

be an artefact rather than a real result as the reduction in development time was not 

observed at concentrations of agar higher than 2% and no difference was observed 

between the other concentrations (Table: 3.3).   Larvae were also observed to persist on 

the top of the diet at 1.5% and at percentages greater than 1.5%, larvae were found 

within the cracks in the food.  At 0.9-1%, larvae were able to penetrate the food and were 

not observed on the top of the diet. 
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Table:  3.3. The effect of agar percentage in the diet on the development time of control  

Drosophila melanogaster (Oregon-RS) of 10 vials (10 eggs per vial) of each treatment of 

0.9-2.5% agar (Methods Chapter; Section: 2.3.1, page 39).  All data are median. 

Percent agar Median development time adulthood (Days) 

0.9 11 

1 11 

1.25 11 

1.5 11 

2 9 

2.5 11 

KW: H5 = 46.08, p<0.001   

 

3.3 Effects of Chlortetracycline on Oregon-RS size and nutrition  

As described in the introduction, experiments have been conducted with flies which 

included measurements for life-span and survival.  The change in the nutrition of the flies 

has not been considered, therefore in this section I will describe the changes which occur 

with flies treated with chlortetracycline.  

3.3.1 Effects of chlortetracycline on Oregon-RS wing area 

Size of the flies was assessed using wing area which had previously been shown by 

Shingleton et al (2005) and in Chapter 2 to be positively correlated with weight.  The wing 

area was used as a measure of size; wing area was compared between flies treated with 

0-500 µg ml-1.   A 2-way ANOVA was conducted to test whether chlortetracycline affected 

the wing area. There was no significant difference observed between the different 

concentrations of chlortetracycline (F6, 43 = 1.889, p>0.05) (Figure: 3.2). The graph (Figure 

3.2) shows that the wing area did not vary dramatically between the different treatments 

(in males; mean value of 1.368 mm2 at 0 µg ml-1 and 1.357 mm2 at 500 µg ml-1 and in 

females; 1.8 mm2 at 0 µg ml-1 and 1.55 mm2 at 500 µg ml-1).  Female flies have a greater 

wing area than males as they were much larger than the male flies (F1, 43 = 85.988, 

p<0.001). However, there was no significant difference in the effect of chlortetracycline in 

male and female flies (F6, 43  = 0.926, p>0.05). 
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Figure: 3.2. Average wing area of male and female flies treated with 0-500 µg ml-1 of 

chlortetracycline, number of replicates per treatment = 5 (Methods Chapter; Section: 

2.5.1, page 44).   

3.3.2 Effects of chlortetracycline on Oregon-RS protein content 

The average protein content of the flies varied from 157 to 248 µg.  The average protein 

content of female flies was 243.3 µg of protein at 0 µg ml-1, this reduced to 202.2 µg at 

500 µg ml-1 (Figure: 3.3). In male flies the protein content varied from 157 to 190 µg.  

An analysis of covariance (ANCOVA) was conducted to take into account the size of the fly 

using the wing area as a covariate (F1, 54 = 0.110, p>0.05).  This analysis showed that 

protein content varied significantly with chlortetracycline treatment (F6, 54 = 6.598, 

p<0.001) and between sexes (F1, 54 = 46.601, p<0.001).  Yet, the test showed that there 

was a significant difference in response of male and female flies (F6, 54 = 3.534, p<0.01).  

As the statistical test suggested; the response of male and female flies differed, a one-

way ANOVA was conducted separately for the 2 sexes.  This analysis showed wing area 

did not differ in male (F1, 26 = 2.304, p>0.05) and female flies (F1, 27 = 0.238, p>0.05).     

Furthermore, the protein content varied significantly with chlortetracycline treatment in 

females (F1, 27 = 5.524, p<0.01) but not in males (F1, 26 = 2.312, p>0.05). 
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Figure 3.3: The protein content of flies treated with 0-500 µg ml-1 chlortetracycline, 

number of replicates per treatment = 5 (Methods Chapter; Section: 2.5.3, page 46).   

3.3.3 Effects of chlortetracycline on Oregon-RS lipid content 

Lipid content was the second nutrient to be quantified in chlortetracycline treated flies.  

As the dry weight of the flies was measured to calculate the lipid content of the flies, the 

lipid content was normalised to the dry weight of the fly.   

An ANOVA was conducted to determine whether there was a significant impact of 

chlortetracycline treatment on the lipid content of flies.   Chlortetracycline had a 

significant impact on the lipid content of the flies (F6, 54 = 15.086, p<0.001).  This response 

to chlortetracycline treatment was observed in both males and females (F6, 54 = 1.979, 

p>0.05).  However, there was a significant difference in lipid content between sexes, 

generally greater in males than in females (F1, 54 = 27.222, p<0.001).  In females the lipid 

content (per mg of dry weight) increases from 0.302 mg at 0 μg ml-1 to 0.371 mg at 100 

μg ml-1 (Figure 3.4). In males the lipid content increases from 0.294 mg at 0 μg ml-1 to 

0.436 mg at 100 μg ml-1 (Figure: 3.4). 

LSD (Least significant difference) post-hoc statistical test showed that the lipid content of 

the female flies treated with no chlortetracycline was significantly different from the flies 

treated with 100 μg ml-1. The lipid content of females peak at 100 μg ml-1 of 

chlortetracycline.  This result suggests that it could be an artefact, as the same trend was 

not observed at the concentrations of 300-500 μg ml-1.  In males, post-hoc tests suggest 

that 0 μg ml-1 was significantly different from 1, 50-500 μg ml-1 of chlortetracycline. 
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Figure: 3.4: The lipid content of female and male flies treated with 0-500 µg ml-1 of 

chlortetracycline, number of replicates per treatment = 5 (Methods Chapter; Section: 

2.5.6, page 48).   

Analysis of dry weight of the flies showed that the weight of the chlortetracycline treated 

flies was significantly affected by chlortetracycline treatment (F6, 54 = 9.5, p<0.001). There 

was a significant difference between male and female flies (F1, 54 = 224.738, p<0.001).  

The response to chlortetracycline differed in male and female flies (F6, 54 = 2.661, p<0.05).  

LSD post-hoc statistical test showed that the weight was significantly different at 100 μg 

ml-1 of chlortetracycline in both male and female flies (Figure: 3.5). 

  

Figure: 3.5: The average dry weight of male and female flies treated with 0- 500 µg ml-1 

of chlortetracycline, number of replicates per treatment = 5 (Methods Chapter; Section: 

2.5.6, page 48).   
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 3.4 Canton-S survival, development, lifespan and fecundity 

Experiments with chlortetracycline were repeated with Canton-S, to demonstrate that 

the observations made in Oregon-RS can also be observed in another wild-type laboratory 

strain.  Furthermore, another method was used to deplete bacteria in the flies via egg 

dechorionation.  A 2X2 factorial experiment was conducted with control flies and flies 

derived from dechorionated eggs treated with 0, 50 and 300 µg ml-1 of chlortetracycline. 

3.4.1 Survival to pupae and adulthood 

The average survival of the strain Canton-S to pupae and adulthood varied from 39-76%.  

The survival to pupae and adulthood was not significantly affected by chlortetracycline or 

by egg dechorionation (Table: 3.4) (p>0.05), yet it does appear that chlortetracycline and 

dechorionation does improve the survival of Canton-S but not when flies derived from 

dechorionated eggs are treated with chlortetracycline.  In control flies the survival was 

39-47%, this increased to 57-76% with flies derived from dechorionated eggs without 

chlortetracycline and control flies treated with chlortetracycline. In flies derived from 

dechorionation and treated with chlortetracycline the survival was similar to the control 

flies, which could suggest that the dechorionation and chlortetracycline treatment had a 

deleterious effect on survival, however chlortetracycline treatment and dechorionation 

alone improved survival. 

Table: 3.4: Survival to pupae and adulthood of control flies and flies derived from 

dechorionation treated with 0-300 µg ml-1 of chlortetracycline and Scheirer-Ray-Hare 

statistical analysis, number of replicates = 15 (Methods Chapter; Section: 2.3.2.2, page 

40).   

 Concentration of  
chlortetracycline (µg ml

-1
) 

  

Mean survival (%) n=15 

Pupae 
  

Adult 
  

Control Dechorionation Control Dechorionation 

0 47 ± 7 62 ± 4 39 ± 7 57 ± 5 

50 71 ± 4 38 ± 6 66 ± 4 35 ± 6 

300 76 ± 4 47 ± 5 71 ± 4 47 ± 5 

Scheirer-Ray-Hare Test 
Chlortetracycline 
Dechorionation 
Chlortetracycline* Dechorionation 
 

 
F6, 84 = 0.728, p>0.05 
F1, 84 = 0.738, p>0.05 
F1, 84 = 2.025, p>0.05 
 

 
F6, 84 = 0.366, p>0.05 
F1, 84 = 1.541, p>0.05 
F1, 84 = 2.530, p>0.05 
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3.4.2 Development time to pupae and adulthood 

The development time to pupation of the strain Canton-S varied significantly with 

chlortetracycline concentration (p<0.05) (Table: 3.5).  At 0 µg ml-1 chlortetracycline, larvae 

started to develop into pupae by day 7.  Pupae formation was delayed by one day at 50 

and 300 µg ml-1 of chlortetracycline. Egg dechorionation also caused a significant effect 

on development time with an extension of one day (p<0.01, Table: 3.5). This experiment 

was repeated and an extension of development was again observed with treated 

Drosophila.  Furthermore, the result supports the data obtained with Oregon-RS.  It does 

suggest that the extension in development is due to the removal of bacteria and not a 

toxicity issue.   

Table: 3.5: Median development time (Days) of control flies and flies derived from 

dechorionation treated with 0-300 µg ml-1 of chlortetracycline and Scheirer-Ray-Hare 

statistical analysis, number of replicates = 15 (Methods Chapter; Section: 2.3.2.2, page 

40). 

 

 

 

 

 

 

 

 Concentration of chlortetracycline 
(µg ml

-1
) 

  

Median development time (Days) n=15 

Pupae 
  

Adult 
  

Control Dechorionation Control Dechorionation 

0 7 8 11 12 

50 8 8 12 12 

300 8 8 12 12 

Scheirer-Ray-Hare Test 
Chlortetracycline 
Dechorionation 
Chlortetracycline* Dechorionation 
 

F6, 501 = 9.54, p<0.05 
F1, 501 = 64.65, p<0.001 
F2, 501 = 4.64, p>0.05 
 

F6, 469 = 9.54, p<0.05 
F1, 469 = 64.65, p<0.05 
F2,469 = 4.64, p>0.05 
 



72 

 

3.4.3 Life-span of male Canton-S  

To gain an overall understanding about how chlortetracycline treatment and egg 

dechorionation affect Canton-S, lifespan and fecundity experiments were conducted. 

The life-span of male flies varied significantly with chlortetracycline concentration 

(p<0.001), but no significant difference was observed between control and with egg 

dechorionation (p>0.05) and there was no significant difference in response of 

dechorionated and control flies to chlortetracycline treatment (p>0.05) (Table: 3.6).  LSD 

post-hoc tests showed that control male flies on no chlortetracycline had a significantly 

lower life-span (41 days) compared with 60-64 days of control flies treated with 

chlortetracycline (Table: 3.6).  Flies derived from dechorionated eggs and no treatment 

with chlortetracycline had an average life-span of 52 days; however, chlortetracycline 

treatment appears to extend life-span further to 59 and 64 days at 50 and 300 µg ml-1, 

respectively. 

Table: 3.6: Average (mean) male life-span of control flies and flies derived from 

dechorionated eggs treated with 0-300 µg ml-1 of chlortetracycline, number of 

replicates = 10 (Methods Chapter; Section: 2.3.2.2, page 40).   

 

 

 

 

 

 

 

 

 

 

 

 
 
 Average adult life-span (Days) n=10 

Concentration of chlortetracycline (µg 
ml

-1
) Control Dechorionation 

0 41 ± 5.273 (8) 52 ± 3.271 (10) 

50 64 ± 2.805 (10) 59 ± 3.437 (10) 

300 60 ± 5.842 (10) 64 ± 2.389 (9) 

ANOVA 
Dechorionation 
Chlortetracycline 
Chlortetracycline* Dechorionation 

 
 

F1,51 = 1.055, p>0.05 
F2,51 = 9.419, p<0.001 
F2,51 = 1.894, p>0.05 
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3.4.4 Fecundity of Canton-S 

Female flies were used to assess the fecundity of chlortetracycline treated flies and flies 

derived from dechorionated eggs.  A Scheirer-Ray-Hare test was conducted to determine 

whether there was a significant effect on the fecundity of control flies and flies derived 

from dechorionated eggs treated with chlortetracycline.  Chlortetracycline treatment was 

shown to have a significant effect (p≤0.05, Table: 3.7) on egg laying, with the median egg 

laying capacity being 113 eggs for the control flies and 49.5 and 72 eggs for 50 and 300 µg 

ml-1, respectively.  Dechorionation had no significant effect on fecundity (p>0.05, Table: 

3.7).  Flies derived from dechorionated eggs without chlortetracycline treatment were 

shown to have no significant difference compared with controls (112 and 117, 

respectively) (Table: 3.7).  The response to chlortetracycline of control flies and flies 

derived from dechorionated eggs was not significantly different (p>0.05, Table: 3.7).  Flies 

derived from dechorionated eggs treated with 50 and 300 µg ml-1 chlortetracycline 

showed an egg laying capacity of 68 and 104 eggs, respectively.   

This result suggests that bacteria depletion does not have an effect on the fecundity of 

Drosophila, but the presence of chlortetracycline reduces fecundity.  This may be due to 2 

reasons; 1) the toxicity of chlortetracycline causes a reduction in the reproduction 

capacity 2) the females are deterred from ovipositing on the diet containing the 

antibiotic.  

Table: 3.7. Median number of eggs laid over 7 days of control flies and flies derived 

from dechorionated eggs treated with 0-300 µg ml-1 of chlortetracycline and Scheirer-

Ray-Hare statistical analysis, number of replicates = 10 (Methods Chapter; Section: 

2.3.2.2, page 41). 

  

Median number of eggs laid 
over 7 days (n=10) 
  

Concentration of chlortetracycline (µg ml
-1

) Control Dechorionated 

0 113 117 

50 49.5 68 

300 72 104 

Scheirer-Ray-Hare Test 
Chlortetracycline  
Dechorionation 
Chlortetracycline* Dechorionation 

 
F2,53 = 3.69, p<0.05 
F1,53 = 0.36, p>0.05 
F2,53 = 0.35, p>0.05 
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3.4.5 Egg Hatching Experiment 

Bacteria depleted flies where the eggs were dechorionated have been observed to have 

an extended development time to pupae and adulthood when compared with control 

flies.  Johnston and Crickmore (2010) reported that axenic (bacteria-free) Manduca sexta 

showed a delayed development; they suggested that the treatment rather than the 

removal of bacteria had caused the extension.  From this suggestion, egg hatching was 

monitored to determine whether the dechorionation caused the eggs to hatch later than 

controls.  Bacteria depletion did not appear to cause a delay in egg hatching (MWU: Z1 =    

-1.463, p>0.05), with the median egg hatching time 19 hours after treatment (Table: 3.8). 

Table: 3.8. Median egg hatching time (Hours) of control and dechorionated eggs, 

number of replicates = 10 (Methods Chapter; Section: 2.3.2.2, page 41). 

Treatment  Median egg hatching time (Hours) 

Control 19  

Dechorionated 19 

 
Egg hatching was also measured to determine whether a delayed egg hatching is 

responsible for a delay in development time to pupae and adulthood when treated with 

chlortetracycline.  Eggs were transferred to the control diets and diets with 50 and 300 µg 

ml-1 of chlortetracycline.   Number of eggs hatched was counted at the beginning and end 

of each day.  Chlortetracycline treatment appears not to have an effect on the egg 

hatching (H2 = 0.820, p>0.05), with the median time to hatch of 19 hours after transfer to 

chlortetracycline or non-chlortetracycline diet (Table: 3.9).  A Kruskal-Wallis test was 

conducted on the data which was shown to have a distribution which was significantly 

different from normal (p<0.001).   

Table: 3.9. Median egg hatching time (Hours) of eggs transferred to diet supplemented 

with chlortetracycline, number of replicates = 10 (Methods Chapter; Section: 2.3.2.2, 

page 41). 

Concentration of chlortetracycline (µg ml-1) Median egg hatching time (Hours) 

0 19 

50 19 

300 19 

Both of these experiments suggest that the delay development time occurs at the larval 

stage. 
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3.5 Effects of Chlortetracycline on Canton-S size and nutrition  

3.5.1 Effect of chlortetracycline on Canton-S wing area 

The size of the flies was inferred from the wing area of the flies and used for nutritional 

analysis. The wing area of male flies was not significantly affected by either 

chlortetracycline treatment or by egg dechorionation (p>0.05, Table: 3.10). The average 

wing area of female flies was significantly reduced with chlortetracycline treatment and 

the treatment with chlortetracycline and egg dechorionation with the exception of 

dechorionation with treatment of 50 µg ml-1 of chlortetracycline diet (Table: 3.10). 

Table: 3.10. The wing area  of male and female control flies and flies derived from 

dechorionated eggs (Dechorionation) treated with chlortetracycline (0-300 µg ml-1) and 

ANOVA statistical analysis, number of replicates = 5 (Methods Chapter; Section: 2.5.1, 

page 44). 

 

 

 

 

 

 

 

 

 

Chlortetracycline concentration 
(µg ml

-1
) 

Wing area (mm
3
) 

Mean ± s.e. (n=5, except 
 
*n=3) 

Males Females 

Control Dechorionation Control  Dechorionation 

0 1.36 ± 0.04 1.36 ± 0.01   1.84 ± 0.02 1.80 ± 0.01
 

50 1.38 ± 0.01 1.41 ±  0.02   1.75 ± 0.01 1.84 ± 0.02 

300 1.39 ±0.03 1.39 ± 0.004*   1.77 ± 0.01 1.78 ± 0.02* 

ANOVA 
Dechorionation 
Chlortetracycline 
Chlortetracycline*Dechorionation 

 
F1,22= 0.218, p>0.05 
F2,22 = 0.988, p>0.05 
F2,22 = 0.244, p>0.05 

 
F2,22 =  3.750, p>0.05 
F2,22 = 4.107, p<0.05 
F2,22 = 10.637, 0.001<p<0.01 
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3.5.2 Effect of chlortetracycline on Canton-S triglyceride content 

The triglyceride content of the Drosophila melanogaster was quantified in order to 

determine whether bacterial depletion through chlortetracycline treatment and 

dechorionation affected the lipid nutrition of the insect.   Wing area was used as a 

covariate in this analysis to take into account the size differences between samples.  The 

triglyceride content of male flies was not significantly affected by egg dechorionation, 

however treatment with chlortetracycline did.   In males the triglyceride content 

decreases from 13.9 µg at 0 μg ml-1 to 12.2 and 11.5 µg at 50 and 300 μg ml-1 of 

chlortetracycline, respectively (Table: 3.11).  Flies derived from dechorionated eggs and 

reared on 50 μg ml-1 of chlortetracycline actually had a greater triglyceride content (17.2 

µg) compared with control flies (13.9 µg), this result was supported by the significant 

interaction between chlortetracycline and egg dechorionation (p<0.001). In females the 

same pattern was observed, there was no significant effect of egg dechorionation but 

there was a significant reduction in triglyceride content in the presence of 

chlortetracycline (p<0.05). In females, the triglyceride decreases from 23.5 µg at 0 μg ml-1 

to 17.3 and 21.2  µg at 50 and 300 μg ml-1 respectively (Table: 3.11).  The same pattern 

was observed in flies derived from dechorionated eggs treated with chlortetracycline 

(p>0.05).  

Table: 3.11 Triglyceride content of control flies and flies derived from dechorionated 

eggs treated with 0-300 µg ml-1 of chlortetracycline and ANCOVA statistical analysis, 

number of replicates = 5 (Methods Chapter; Section: 2.5.5, page 47). 

Chlortetracycline concentration 
(µg ml

-1
) 

Triglyceride content (µg) per fly 
Mean ± s.e. (n=5, except 

 
*n=3) 

Males Females 

Control Dechorionation Control  Dechorionation 

0 13.9 ± 0.5 12.0 ± 0.5   23.5 ± 0.6 21.1 ± 1.0
 

50 12.2 ± 1.1 17.2 ± 0.5   17.3 ± 1.2 17.7 ± 2.5 

300 11.5 ± 0.5 10.4 ± 1.3*   21.2 ± 1.2 15.8 ± 0.7* 

ANCOVA 
Wing area covariate 
Dechorionation 
Chlortetracycline 
Chlortetracycline*Dechorionation 

 
F1,21= 2.498, p>0.05 
F1,21 = 0.349, p>0.05 
F2,21 = 20.799, p<0.001 
F2,21 = 12.830, p<0.001 

 
F1,22 =  0.206, p>0.05 
F1,22 = 0.521, p>0.05 
F2,22 = 6.294, 0.05>p>0.01 
F2,22 = 1.603, p>0.05 
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3.5.3 Effect of chlortetracycline on Canton-S protein content 

In male flies there was a significant effect of egg dechorionation on the protein content of 

the flies but chlortetracycline treatment alone had no significant effect on the protein 

content (p>0.05) (Table: 3.12). The protein content was significantly reduced in flies with 

egg dechorionation and treatment with chlortetracycline (decreases from 102.8 µg in 0 μg 

ml-1 control to 78.2 µg) (p≤0.05).  In female flies dechorionation has no significant effect 

on the protein content, nevertheless chlortetracycline treatment did;  protein content 

decreases from 165.6 µg at 0 μg ml-1 to 126.6 and 141.5  µg at 50 and 300 μg ml-1, 

respectively (Table: 3.12).  The same pattern was also observed with flies derived from 

dechorionated eggs and exposed to chlortetracycline (138.7 and 121.2 µg at 50 and 300 

μg ml-1, respectively) which is supported by the non significant result for the interaction 

between egg dechorionation and chlortetracycline.  This result observed in the female 

flies suggests that the chlortetracycline could be altering protein metabolism/synthesis 

and not as a result of depleting the bacteria as there was no significant difference with 

egg dechorionation alone.  However, this was not observed in male flies.  The only 

significant reduction was observed in flies with egg dechorionation and treated with 

chlortetracycline, suggesting that there is an interaction between chlortetracycline and 

egg dechorionation. 

Table: 3.12: The protein content of control flies and flies derived from dechorionated 

eggs treated with 0-300 µg ml-1 of chlortetracycline and ANCOVA statistical analysis, 

number of replicates = 5 (Methods Chapter; Section: 2.5.3, page 46). 

 

Chlortetracycline concentration 
(µg ml

-1
) 

Protein content (µg) per fly 
Mean ± s.e. (n=5, except 

 
*n=3) 

Males Females 

Control Dechorionation Control  Dechorionation 

0 102.8 ± 7.3 106.9 ± 4.0   165.6 ± 8.3 152.8 ± 4.6
 

50 108.7 ± 8.6 87.7 ± 5.2   126.6 ± 10.3 138.7 ± 2.5 

300 104.3 ± 6.8 78.2 ± 6.5*   141.5 ± 8.1 121.2 ± 4.8* 

ANCOVA 
Wing area covariate 
Dechorionation 
Chlortetracycline 
Chlortetracycline*Dechorionation 

 
F1,21 = 2.230, p>0.05 
F1,21 = 7.763, p<0.05 
F2,21 = 2.644, p>0.05 
F2,21 = 3.394, p≤0.05 

 
F1,22 =  0.147, p>0.05 
F1,22 = 0.582, p>0.05 
F2,22 = 5.939, 0.01>p>0.001 
F2,22 = 1.583, p>0.05 
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3.5.4 Effect of chlortetracycline on Canton-S glucose content 

The carbohydrate content of the flies were quantified, the carbohydrate sources that 

were analysed were glucose, trehalose and glycogen.  On average, the glucose content of 

the flies ranged from 4-12 µg (Table: 3.13).  The glucose content of male and female flies 

was approximately 60% greater in flies reared with egg dechorionation excluding the flies 

also reared with 300 µg ml-1.  Chlortetracycline also promoted the quantity of free 

glucose; still there was only approximately a 40% increase. This result suggests that in the 

presence of bacteria, free glucose levels are depressed, chlortetracycline does not 

eliminate all of the bacteria and therefore the effect is less pronounced.  The flies with 

dechorionation and reared on 300 µg ml-1 of chlortetracycline did have a lower quantity 

of glucose, but this could be the result of a build-up effect of a high concentration of 

chlortetracycline on a fly with an already depleted gut microbiota.  

Table: 3.13. The glucose content of control flies and flies derived from dechorionated 

eggs treated with 0-300 µg ml-1 of chlortetracycline and ANCOVA statistical analysis, 

number of replicates = 5 (Methods Chapter; Section: 2.5.4, page 46). 

 

 

 

 

 

  

Chlortetracycline concentration 
(µg ml

-1
) 

Glucose content (µg) per fly 
Mean ± s.e. (n=5, except 

 
*n=3 # n=4) 

Males Females 

Control Dechorionation Control  Dechorionation 

0 4.9 ± 0.4 8.3 ± 0.6   7.9 ± 0.5 12.3 ± 0.8#
 

50 5.1 ± 0.3 8.6 ± 0.6   8.1 ± 0.4 13.5 ± 1.3 

300 6.7 ± 0.3 5.0 ± 0.5 *   10.7 ± 1.1 4.9 ± 0.3* 

ANCOVA 
Wing area covariate 
Dechorionation 
Chlortetracycline 
Chlortetracycline*Dechorionation 

 
F1,21 = 0.249, p>0.05 
F1,21 = 18.441, p<0.001 
F2,21 = 1.943, p>0.05 
F2,21 = 15.727, p<0.001 

 
F1,20 =  5.830, p<0.05 
F1,20 = 1.279, p>0.05 
F2,20 = 5.363, p<0.05 
F2,20 = 36.873, p<0.001 
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3.5.5 Effect of chlortetracycline on Canton-S trehalose content 

On average the trehalose content of the flies ranged from 4-14 µg (Table: 3.14).  In male 

flies chlortetracycline treatment appeared to increase the trehalose content of the flies 

by approximately 30 percent.  Again, this supports the theory suggested for the glucose 

data that the bacteria utilise the sugar and therefore deplete levels within the fly.  

However, the same pattern was not observed with egg dechorionation, a reduction was 

actually observed at 0 and 50 µg ml-1 of chlortetracycline.  In female flies the same 

pattern was observed as with male flies.  An increase in free trehalose for the 

chlortetracycline treated flies was demonstrated, this increase was substantial with up to 

a 3 fold change. In female flies with egg dechorionation, an increase was also observed 

and at a similar quantity as the treatment with 300 µg ml-1 (a concentration of antibiotic 

which depletes most of the bacteria). 

Table: 3.14. The trehalose content of control flies and flies derived from dechorionated 

eggs treated with 0-300 µg ml-1 of chlortetracycline and ANCOVA statistical analysis, 

number of replicates = 5 (Methods Chapter; Section: 2.5.4, page 47). 

 

 

 

 

 

 

Chlortetracycline concentration 
(µg ml

-1
) 

Trehalose content (µg) per fly 
Mean ± s.e. (n=5, except 

 
*n=3 # n=4) 

Males Females 

Control Dechorionation Control  Dechorionation 

0 5.5 ± 0.4 4.1 ± 0.7   4.3 ± 0.4 12.1 ± 2.0#
 

50 6.3 ± 0.6 2.0 ± 1.4   7.8 ± 1.3 11.3 ± 1.2 

300 7.2 ± 1.0 6.1 ± 0.7*   11.8 ± 0.8 14.1 ± 1.3* 

ANCOVA 
Wing area covariate 
Dechorionation 
Chlortetracycline 
Chlortetracycline*Dechorionation 

 
F1,21= 0.401, p>0.05 
F1,21 = 9.035, p<0.01 
F2,21 = 3.766, p<0.05 
F2,21 = 2.096, p>0.05 

 
F1,20 =  1.324, p>0.05 
F1,20 = 22.962, p<0.001 
F2,20 = 4.332, p<0.05 
F2,20 = 1.692, p>0.05 
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3.5.6 Effect of chlortetracycline on Canton-S glycogen content 

The final carbohydrate that was quantified was glycogen.  On average the glycogen 

content of the flies was 4-22 µg (Table: 3.15).  In male flies there was no distinct trend, 

there was no significant difference between flies with and without egg dechorionation.  

However, there was a significant difference in glycogen levels of chlortetracycline treated 

flies at 300 µg ml-1 where a 30% increase was observed. The flies without egg 

dechorionation had a greater quantity of glycogen levels compared to the control flies, 

but this was not significant (p>0.05). At 50 µg ml-1 of chlortetracycline with 

dechorionation, the glycogen levels were approximately 50% greater.  This result was 

supported by the statistical significance of the interaction between egg dechorionation 

and chlortetracycline.  In female flies, a more distinct trend was observed where female 

flies on high concentrations of chlortetracycline (300 µg ml-1) and with egg 

dechorionation had a significantly greater quantity of glycogen. A 20-300% increase was 

observed in females treated with chlortetracycline and reared without egg 

dechorionation.  Female flies reared without egg dechorionation and in the presence of 

chlortetracycline had a much greater quantity of glycogen compared with control with 

chlortetracycline; therefore a significant interaction between egg dechorionation and 

chlortetracycline was observed.   

Table: 3.15. The glycogen content of control flies and flies derived from dechorionated 

eggs treated with 0-300 µg ml-1 of chlortetracycline and ANCOVA statistical analysis, 

number of replicates = 5 (Methods Chapter; Section: 2.5.4, page 47). 

Chlortetracycline concentration 
(µg ml

-1
) 

Glycogen content (µg) per fly 
Mean ± s.e. (n=5, except 

 
*n=3 # n=4) 

Males Females 

Control Dechorionation Control  Dechorionation 

0 5.5 ± 0.7 7.0 ± 0.3   7.0 ± 0.3 8.6 ± 1.1*
 

50 4.1 ± 0.3 8.6 ± 1.0 #   6.7 ± 1.1 10.1 ± 0.5# 

300 7.3 ± 1.0 6.9 ± 0.4*   10.2 ± 1.1 22.2 ± 3.9* 

ANOVA 
Wing area covariate 
Dechorionation 
Chlortetracycline 
Chlortetracycline*Dechorionation 

 
F1,20 = 0.205, p>0.05 
F1,20 = 2.603, p>0.05 
F2,20 = 8.274, p<0.01 
F2,20 = 4.113, p<0.05 

 
F1,18 =  0.230, p>0.05 
F1,18 = 14.501, p<0.01 
F2,18 = 10.074, p<0.01 
F2,18 = 5.256, p<0.05 
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3.6 Respirometry analysis with chlortetracycline treatment and egg 

dechorionation reared on the York diet 

Respirometry analysis was conducted with male and female Canton-S reared on the York 

diet, the 2-factor experiment involved; chlorteracycline and dechorionation.  The 

respirometry analysis involved the quantification of oxygen consumption, carbon dioxide 

production and from these values the repiratory quotient (RQ) value (CO2/O2) was 

calculated. 

In male flies the mean oxygen consumption varied from 0.054-0.089 µl per minute with 

the control flies consuming the greatest oxygen volume per minute (Figure: 3.6a). Carbon 

dioxide production varied from 0.08-0.10 µl per minute, again with control flies producing 

the greatest volume (Figure: 3.6a).  The respiratory quotient varied from 1.16-1.77, with 

the greatest RQ value with flies derived from dechorionated eggs treated with 300 µg ml-1 

chlortetracycline (Figure: 3.7a).    

In female flies the oxygen consumption was greater than with male flies which would be 

expcted as female flies were greater in size. As with male flies the greatest oxygen 

consumption was observed with control flies, the oxygen consumption across all 

treatments varied from 0.11-0.18 µl per minute (Figure: 3.6b). Carbon dioxide production 

varied from 0.10-0.16 µl per minute, again with control flies producing the greatest 

volume (Figure: 3.6b).  The respiratory quotient for females, varied from 0.90-1.21 with 

the greatest RQ value with flies derived from dechorionated eggs treated with 50 µg ml-1 

chlortetracycline (Figure: 3.7b). 

Analysis of covariance was conducted with oxygen consumption, carbon dioxide 

production and RQ values with the wing area as the covariate.   

Statistical analysis of the oxygen consumption for male and female flies showed that wing 

area did not differ significantly between the treatments  (F1, 65 = 0.118, p>0.05).  

Chlortetracycline (F6, 65 = 2.219, p>0.05) did not have a significant effect on the oxygen 

consumption but dechorionation did (F1, 65 = 3.894, p=0.05).  Sex did have a significant 

effect on the oxygen consumption values (F1, 65 = 4.240, p<0.05) with females consuming 

more oxygen than male flies.  The interactions of dechorionation*chlortetracycline 

treatment also had a significant effect on the oxygen consumption (F2, 65 = 3.724, p<0.05) 
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with dechorionation and treatment with 50 µg ml-1 chlortetracycline of male flies having a 

greater consumption compared with control flies treated with 50 µg ml-1 

chlortetracycline.   The interactions of sex*chlortetracycline, sex*dechorionation, 

sex*dechorionation*chlortetracycline did not have a significant value (Figure: 3.6). 

The graphs in Figure: 3.6 suggests that oxygen consumption was significantly decreased 

with chlortetracycline treatment in comparison to control flies, therefore a separate 

analysis was conducted with the values gained for chlortetracycline treated and control 

flies only.  An analysis of covariance demonstrate that wing area was not significantly 

different (F1, 40 = 0.442, p>0.05).  Chlortetracycline treatment significantly impacted 

oxygen consumption (F2, 40 = 9.157, p<0.01).  The same observation was made in male and 

female flies (F2, 40 = 1.054, p>0.05), yet there was a significant difference in oxygen 

consumption between the 2 sexes (F1, 40 = 6.370, p<0.05). 

Analysis of carbon dioxide production of male and female flies, showed that wing area did 

not differ significantly between the treatments  (F1, 66 = 2.219, p>0.05).  Chlortetracycline 

(F6, 66 = 1.040, p>0.05) and dechorionation (F1, 66 = 0.816, p>0.05) did not have a significant 

effect on the carbon dioxide production.  Sex also did not have a significant effect on the 

carbon dioxide production values (F1, 66 = 0.097, p>0.05).  As with oxygen consumption the 

interactions of dechorionation*chlortetracycline treatment did also have a significant 

effect on the carbon dioxide production (F2, 66 = 4.244, p<0.05) with dechorionation and 

treatment with 50 µg ml-1 chlortetracycline of female flies having a greater consumption 

than control flies treated with 50 µg ml-1 chlortetracycline.   The interactions of 

sex*chlortetracycline, sex*dechorionation, sex*dechorionation*chlortetracycline did not 

have a significant value (Figure: 3.6). 

Again the graphs in Figure: 3.6 suggests that carbon dioxide production was significantly 

decreased with chlortetracycline treatment in comparison to control flies.  Once again a 

separate analysis was conducted with the values gained for chlortetracycline treated and 

control flies only.  ANCOVA statistical analysis demonstrated that wing area was not 

significantly different (F1, 41 = 1.404, p>0.05).  Chlortetracycline treatment significantly 

impacted carbon dioxide production (F2, 41 = 5.125, p<0.05).  The same observation was 

observed in male and female flies (F2, 41 = 1.269, p>0.05) and there was no significant 

difference between the 2 sexes (F1, 41 = 0.021, p>0.05). 
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For the RQ data for male and female flies, wing area was not significantly different 

between the different treatments (F1, 64 = 1.483, p>0.05).  Chlortetracycline (F6, 64 = 1.208, 

p>0.05) and dechorionation (F1, 64 = 2.239, p>0.05) both did not have a significant effect 

on the RQ values.  However, sex did have a significant effect on the RQ values (F1, 64 = 

4.587, p<0.05) with females having a lower RQ value than male flies.  The interactions of 

dechorionation*sex, dechorionation*chlortetracycline, sex*chlortetracycline and 

sex*dechorionation*chlortetracycline all had significant values exceeding the critical 

value of 0.05 (Figure: 3.7).  
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Variable O2 Consumption CO2 Production 

Wing Area F1, 65 = 0.118, p>0.05 F1, 66 = 2.219, p>0.05 

Chlortetracycline F2, 65 = 2.219, p>0.05 F2, 66 = 1.040, p>0.05 

Dechorionation F1, 65 = 3.894, p=0.05 F1, 66 = 0.816, p>0.05 

Sex F1, 65 = 4.240, p<0.05 F1, 66 = 0.097, p>0.05 

Dechorionation*Chlortetracycline F2, 65 = 3.724, p<0.05 F2, 66 = 4.244, p<0.05 

Sex*Chlortetracycline F2, 65 = 0.347, p>0.05 F2, 66 = 0.139, p>0.05 

Sex*Dechorionation F1, 65 = 0.490, p>0.05 F1, 66 = 0.032, p>0.05 

Sex*Dechorionation*Chlortetracycline F2, 65 = 0.286, p>0.05 F2, 66 = 1.364, p>0.05 

Figure: 3.6. O2 consumption and CO2 production of male (a) and female (b) flies treated 

with chlortetracycline and dechorionation with ANCOVA analysis.  Number of replicates 

= Control male flies: 10 0tet, 8 50tet, 11 300tet; Male flies derived from dechorionated 

eggs: 6 0tet, 7 50tet, 3 300tet; Control female flies: 5 0tet, 3 50tet, 9 300tet; Female flies 

derived from dechorionated eggs: 5 0tet, 4 50tet, 3 300tet. Methods Chapter; Section: 

2.6, page 48. 

a 

b 
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Figure: 3.7. RQ values of male (a) and female (b) flies treated with chlortetracycline and 

dechorionation with ANOVA analysis and ANOVA statistical analysis.  Number of 

replicates = Control male flies: 10 0tet, 8 50tet, 11 300tet; Male flies derived from 

dechorionated eggs: 6 0tet, 7 50tet, 3 300tet; Control female flies: 5 0tet, 3 50tet, 9 

300tet; Female flies derived from dechorionated eggs: 5 0tet, 4 50tet, 3 300tet. 

Methods Chapter; Section: 2.6, page 48. 

a 

b 

  Wing Area          F 1 , 64 
  
= 1.483, p> 0.05   

Dechorionation         F 1, 64 
  
= 2.239 , p>0.05   

Chlortetracycline         F 2 , 64 
  
=  1.208 , p>0.05   

Sex            F 1 , 64 
  
= 4.587, p< 0.05   

Dechorionation *Sex       F 1 , 64 
  
= 0.012 , p>0.05   

Dechorionation*Chlortetracycline     F 2 , 64 
  
= 1.281 , p>0.05   

Sex* Chlortetracycline       F 2 , 64 
  
= 0.529 , p>0.05   

Dechorionation*Sex*Chlortetracycline   F 2 , 64 
  
= 1.259 , p>0.05   
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3.7 The impacts of chlortetracycline and egg dechorionation on Canton-S 

reared on a high and low nutrient diet 

The survival to pupae with flies reared on the high nutrient diet supplemented with 0-500 

µg ml-1 of chlortetracycline ranged from 84-72%, with the survival to pupae not 

significantly affected by the treatment with chlortetracycline (Kruskal-Wallis: H6 = 5.854, 

p>0.05) (Figure: 3.8).   However, the survival to adulthood with flies reared on the high 

nutrient diet supplemented with 0-500 µg ml-1 ranged from 7-57%.  The lowest survival 

was at the high concentrations of chlortetracycline of 300-500 µg ml-1 with a survival of 7-

8%.  This result suggests that the mortality occurred at the pupal stage as the survival to 

pupae was 85-86% at 300-500 µg ml-1 compared to 7-8% survival to adulthood.  

Therefore, 78-79% mortality had occurred at the pupal stage. This difference with 

chlortetracycline treatment on the survival to adulthood was shown to be significantly 

different (Kruskal-Wallis: H6 = 38.204, p<0.001). 

 

Figure: 3.8. Percent survival from egg of Canton-S reared on the high nutrient diet 

supplemented with 0-500 µg ml-1 of chlortetracycline, number of replicates = 12 with 10 

eggs per replicate (Methods Chapter; Section: 2.3.2.1, page 40). 

A different response was observed with flies reared on the low nutrient diet compared 

with those on the high nutrient diet.  The survival of the flies to pupae on a diet 

supplemented with 0-500 µg ml-1 of chlortetracycline varied from 83% to 55%, with a 

significantly lower survival at 100 and 300 µg ml-1 of chlortetracycline of 55% and 56%, 

respectively compared with 75% with control flies (Kruskal-Wallis: H6 = 16.138, p<0.05) 

(Figure: 3.9).  The survival to adulthood ranged from 51-81%, a greater survival compared 
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with the high nutrient diet but still with a significantly lower survival at 100-500 µg ml-1 

chlortetracycline of 48-52% compared with control flies with a 71% survival (Kruskal-

Wallis: H6 = 23.043, p<0.01). 

 

Figure: 3.9. Percent survival from egg of Canton-S reared on the low nutrient diet 

supplemented with 0-500 µg ml-1 of chlortetracycline, number of replicates = 12 with 10 

eggs per replicate (Methods Chapter; Section: 2.3.2.1, page 40). 

 

Alongside the experiment with chlortetracycline treatment, bacteria depletion was also 

conducted via egg dechorionation.  The survival to pupae and adulthood of these flies 

was compared with control flies on the high and low nutrient diets.  The survival to pupae 

of control flies reared on the high nutrient diet was higher than flies derived from 

dechorionated eggs of 84% and 69% respectively, yet this difference was not significant 

(Mann Whitney U: Z1 = -1.267, p>0.05).  The survival to adulthood was lower for both 

treatments, with a 57% and 39% survival for control and dechorionation respectively.  

Again, there was no significant difference between the two treatments (Mann Whitney U: 

Z1 = -1.334, p>0.05) was observed (Figure: 3.10).   
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Figure: 3.10. The percent survival of control and flies derived from egg dechorionation 

on the high nutrient diet, number of replicates = 12 with 10 eggs per replicate (Methods 

Chapter; Section: 2.3.2.1, page 40). 

Flies reared on the low nutrient diet had a lower survival to pupae compared with the 

high nutrient diet but did have a higher survival to adulthood.  The survival to pupae of 

control flies and with dechorionation was 75% and 64% respectively, this difference was 

found not to be significantly different (Mann Whitney U: Z1 = -1.445, p>0.05) (Figure: 

3.11).  The survival of the flies to adulthood was 71% for control flies and 66% with 

dechorionation.  Again, statistical analysis showed that there was no significant difference 

between the survival of control flies and with egg dechorionation (Mann Whitney U: Z1 = -

0.874, p>0.05) (Figure: 3.11). 

 

Figure: 3.11. The percent survival of control and flies derived from egg dechorionation 

on the low nutrient diet, number of replicates = 12 with 10 eggs per replicate (Methods 

Chapter; Section: 2.3.2.1, page 40). 
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3.8 Impact of chlortetracycline on Drosophila microbiota  

3.8.1 Impact of chlortetracycline on Drosophila microbiota (Oregon-RS) 

Antibiotic treatment was shown to have an effect on the development of Drosophila. To 

determine whether this was in fact due to the removal of bacteria in the flies, larvae were 

sampled from each treatment and plated onto nutrient agar plates. 

This experiment showed a clear difference in bacterial content in the larvae treated with 

50-500 µg ml-1 chlortetracycline. Even though there were still bacteria present on these 

plates they were present at a lower number (Table: 3.16). Larvae treated at lower 

concentration of chlortetracycline had a greater number of bacteria present across the 

entire agar plate with the number of colony forming units ml-1 of homogenate ranging 

from 26 to 1632 (Χ2
6 =6393.36, p<0.05)( Table: 3.16). 

Table: 3.16. The Colony Forming Units (CFUs) of the culturable bacteria found in 3rd 

instar larvae reared on 0-500 µg ml-1 chlortetracycline with Chi2 analysis (Methods 

Chapter; Section: 2.4.1, page 43). 

Concentration of chlortetracycline (µg ml
-1

)  Number of colony forming units per 3
rd

 instar 
larva (1-2 replicates per treatment).  
   

0  490 

1  26; 424 

10  1632 

50  0; 8 

100  1; 4 

300  3; 4 

500  0; 11 

Χ2
6 =6393.36, p<0.05 

To determine the culturable species of bacteria present in Oregon-RS, 16S rRNA gene 

sequence analysis was conducted on 10 sampled colonies.  BLAST analysis showed that 

there were several sequences matching the sequence of the 16S rRNA gene of four main 

bacterial species.  These species were Lactobacillus plantarum, Lactobacillus pentosus, 

Acetobacter pasteurianus and Acetobacter pomorum (Table: 3.17).   
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Table: 3.17. The bacterial identification of colonies sampled from Oregon-RS (with 

number of sequences and the % sequence identity) (Methods Chapter; Section: 2.8.2, 

page 49). 

Species Name NCBI Accession Number 

Lactobacillus plantarum strain HDRS1 16S ribosomal RNA gene, partial 
sequence (99%) 
(5 forward sequences) 
Lactobacillus plantarum 16S rRNA gene, clone 6C4 (98-99%) 
(5 reverse sequences) 

DQ141558.2 
 
 
AM157432.1 

Lactobacillus plantarum strain ZDY128 16S ribosomal RNA gene, partial 
sequence (99%)/ Lactobacillus pentosus gene for 16S rRNA, partial sequence, 
strain: NRIC 1837 (99%) (1 sequence) 

EU559599.1/AB362758.1 

Acetobacter pasteurianus gene for 16S ribosomal RNA, complete sequence, 
strain: SKU1108 (96-99%)  
(4 forward/reverse sequences)  
Acetobacter pomorum strain EW816 16S ribosomal RNA gene, partial 
sequence (96-99%) (3 forward/reverse sequences) 

AB499842.1 
 
 
EU096229.1 
 

3.8.2 Identification of Wolbachia in Oregon-R and Canton-S 

Tetracycline is often used to remove Wolbachia in laboratory-reared Drosophila (Fry and 

Rand, 2002).  To identify whether this bacterium was present in the 2 strains of 

Drosophila (Oregon-RS and Canton S), a diagnostic PCR was conducted. 

The results suggest Oregon-RS and Canton-S stains do not have Wolbachia, this is shown 

by the absence of a band at ~600 base pairs (Figure: 3.12).  The Isogenic (ISO) strain was 

known to be infected with Wolbachia and was used as a positive control. 

 

Figure: 3.12. Wolbachia detection using PCR, water was used as a negative control and 

ISO (Isogenic) line as the positive control (band at ~600 bp).    Size detection using 1kb 

plus DNA ladder (Invitrogen). 100ng of DNA added (Methods Chapter; Section: 2.8.3, 

page 51). 

http://www.ncbi.nlm.nih.gov/nucleotide/194442161?report=genbank&log$=nucltop&blast_rank=1&RID=KNT933U901N
http://www.ncbi.nlm.nih.gov/nucleotide/82617073?report=genbank&log$=nucltop&blast_rank=1&RID=KNU4DNDU01N
http://www.ncbi.nlm.nih.gov/nucleotide/157907490?report=genbank&log$=nucltop&blast_rank=2&RID=KP058KAD014
http://www.ncbi.nlm.nih.gov/nucleotide/260590582?report=genbank&log$=nucltop&blast_rank=1&RID=KNVRTHKJ014
http://www.ncbi.nlm.nih.gov/nucleotide/158726392?report=genbank&log$=nucltop&blast_rank=1&RID=KNVM3FT001S
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3.8.3 Impact of chlortetracycline on Drosophila (Canton S) microbiota 

Female adult (7 day old) Drosophila were sampled, these flies were homogenised and 

plated onto nutrient agar.  This experiment showed a clear difference in bacterial content 

in the female Drosophila treated with 50 and 300 µg ml-1 of chlortetracycline (Table: 

3.18). A one-way ANOVA showed that the depletion of bacteria was significant in the 

presence of chlortetracycline (F2, 29 = 53.005, p<0.001).  Bacteria were also present on 

plates with 50 µg ml-1 of chlortetracycline suggesting that a number of bacteria may be 

chlortetracycline resistant.  No culturable bacteria were found in the flies derived from 

dechorionated eggs however, 16S rRNA gene analysis suggests that unculturable bacteria 

were still present in the bacteria depleted flies (presence of a band at 1.5 kb) (Figure: 

3.13).  Furthermore, secondary bands were present which have not been seen before in 

previous PCR reactions, this suggests that the higher prevelance of secondary bands with 

samples of dechorionation/chlortetracycline treatment may have a low number of DNA 

copies in comparison with control flies.  An alteration in the annealing temperature 

should improve the PCR reaction. 

Table: 3.18. The culturable content of control females and females derived from egg 

dechorionation treated with and without chlortetracycline (0-300 µg ml-1) on nutrient 

agar plates supplemented with and without of 50 µg ml-1 of chlortetracycline, number 

of replicates = 10 (Methods Chapter; Section: 2.4.1, page 43). 

 Log10 (CFUs) per fly on non- 
chlortetracycline plates ± s.e (n=10) 

Log10 (CFUs) per fly on plates 
supplemented with 50 µg ml

-1 
of 

chlortetracycline ± s.e (n=10) 

Concentration of 
chlortetracycline (µg 
ml

-1
) 

Control Dechorionated Control Dechorionated 

0 4.326 ± 0.308 0 
 

2.395 ± 0.426 0 

50 2.195 ± 0.304 0 0.749 ± 0.339 0 

300 0.349 ± 0.193 0 0 0 
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Figure: 3.13: Bacterial 16s rRNA gene analysis using PCR.  Separation conditions 1.5% 

agarose gel, 1 X TAE using a separation voltage of 100 and a PCR product of 1.5 kb.  Size 

detection using 1kb plus DNA ladder (Invitrogen). M = ladder; 1-5, 19-23, 36-37 = egg 

dechorionation; 6-10, 24-28 = egg dechorionation with 50 µg ml-1 of chlortetracycline; 

11-15, 29-33, 38-39 = egg dechorionation with 300 µg ml-1 of chlortetracycline; 16, 33, 

40, 43 = positive controls (untreated); 17, 34, 41, 44 = 50 µg ml-1 of chlortetracycline; 18, 

35, 42, 45 = 300 µg ml-1 of chlortetracycline; RC = reagent control; -ve = negative control 

(Methods Chapter; Section: 2.8, page 49). 
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3.8.4 Impact of chlortetracycline on Drosophila (Canton S) microbiota diversity  

The culturable bacterial colonies reared from flies treated with 0 and 50 µg ml-1 of 

chlortetracycline were identified using 16S rRNA gene analysis (Appendix: Table: 7.1, 7.2). 

The culturable bacteria in flies reared with no chlortetracycline showed to have a 

population predominantly Acetobacter pasteurianus, with Acetobacter cerevisiae and 

Acetobacter pomorum also being identified.  Interestingly, the bacterial colonies 

identified in flies reared on food supplemented with 50 µg ml-1 of chlortetracycline had a 

more diverse population with Acetobacter pasteurianus, Acetobacter malorum, 

Acetobacter pomorum, Lactobacillus plantarum, Lactobacillus brevis and Micrococcus 

luteus.  To determine whether the bacterial colonies were chlortetracycline resistant, 

colonies were reared on nutrient agar plates supplemented with 50 µg ml-1 of 

chlortetracycline (Appendix: Table: 7.3).  The bacterial colonies identified in flies reared 

with no chlortetracycline included Acetobacter pasteurianus, Acetobacter malorum, 

Acetobacter pomorum, Lactobacillus plantarum and Lactobacillus pentosis. Similar 

bacterial species were also identified in flies reared with 50 µg ml-1 chlortetracycline with 

the only bacteria which wasn’t identified being Lactobacillus pentosis.   

The food used to rear the flies was also sampled to determine whether the bacterial 

diversity within the food was similar to the bacterial community within the fly (Appendix: 

Table: 7.1, 7.2).  The bacterial colonies identified in food with no chlortetracycline 

included Acetobacter pasteurianus, Acetobacter cerevisiae, Acetobacter pomorum and 

Lactobacillus plantarum. Again, similar species were identified on the diet supplemented 

with 50 µg ml-1 of chlortetracycline but Acetobacter cerevisiae was not identified. 

The 454 analysis showed that Acetobacter cerevisiae and Acetobacter 

pasteurianus/Acetobacter pomorum were the dominant symbionts in both control and 

chlortetracycline treated flies (Appendix: Table 7.4, 7.5; Table: 3.19, Table: 3.20).   Further 

species were identified in control flies; yet these have not been previously identified in 

Drosophila and appear to be contaminants.  An example being Buchnera aphidicola which 

is a symbiont of the pea aphid.  
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Table: 3.19. 454 pyrosequencing analysis of the bacterial species in control flies. The 

species identified with sequences with greater than 100 hits (Methods Chapter; Section: 

2.9, page 51). 

Accession number Bacterial name Percent Identity Number of hits 

CP001161 Buchnera aphidicola str. 5A (Acyrthosiphon 
pisum), complete genome 

100 10909 

HM080051.1 Uncultured Actinomycetales bacterium 
clone E153F02 16S ribosomal RNA gene, 
partial sequence 

100 2717 

NR_025512.1 
 
 
 

Acetobacter cerevisiae strain LMG 1625 16S 
ribosomal RNA, partial sequence 
>gi|23892796|emb|AJ419843.1| 
Acetobacter cerevisiae 16S rRNA gene, 
strain LMG 1625 

100 2020 

GQ477828.1 Uncultured bacterium clone MS-123 16S 
ribosomal RNA gene, partial sequence 

99.6 2020 

HM027569.1 Bacillus subtilis strain zj2008 16S ribosomal 
RNA gene, partial sequence 

100 1715 

AM087199.1 Asticcacaulis benevestitus partial 16S rRNA 
gene, type strain Z-0023T 

99.6 312 

AB461807.1 Acinetobacter sp. M522 gene for 16S rRNA, 
partial sequence, strain: M522 

100 212 

EU096229.1 Acetobacter pomorum strain EW816 16S 
ribosomal RNA gene, partial sequence 

100 186 

AB308058.1 Acetobacter pasteurianus gene for 16S 
ribosomal RNA, complete sequence 

100   

AJ318114.1 Uncultured gamma proteobacterium 16S 
rRNA gene, clone BIci4 

99.6 171 

 

Table: 3.20. 454 pyrosequencing analysis of bacterial species in chlortetracycline 

treated flies. The species identified with sequences with greater than 100 hits, number 

of replicates = 12 with 10 eggs per replicate (Methods Chapter; Section: 2.9, page 51). 

Accession number Bacterial name Percent Identity 
Number of 
hits 

NR_025512.1 

Acetobacter cerevisiae strain LMG 1625 
16S ribosomal RNA, partial sequence 
>gi|23892796|emb|AJ419843.1| 
Acetobacter cerevisiae 16S rRNA gene, 
strain LMG 1625 

100 29544 

EU096229.1 
Acetobacter pomorum strain EW816 16S 
ribosomal RNA gene, partial sequence 

100 314 

AB308058.1 
Acetobacter pasteurianus gene for 16S 
ribosomal RNA, complete sequence 

100 314 
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3.9 Discussion 

The results in this chapter do show the importance in commensal bacteria in Drosophila 

melanogaster but further highlights the implications of using antibiotics as a method of 

removing bacteria.  The different methods of bacterial depletion through 

chlortetracycline (an antibiotic) treatment and dechorionation (surface sterilisation of the 

egg) have enabled a comparison of the results gained through the 2 different treatments 

and to distinguish between the effect of toxicity and bacterial depletion. 

The major impact of chlortetracycline treatment and dechorionation was the extension of 

larval development time in both strains of Drosophila which was determined by 

examining the hatch rates of the treated eggs.   As the same result was observed by egg 

dechorionation and antibiotic treatment and bacterial numbers were significantly 

reduced with chlortetracycline, the extension does appear to be the result of bacterial 

depletion rather than deleterious effects through the toxicity of chlortetracycline.  One 

explanation is that bacterial depletion results in flies taking longer to reach the critical 

weight to allow for pupation which may involve changes in the insulin/insulin-like growth 

factor signalling which has previously been suggested to control the time to pupation and 

to reach the critical weight for pupation (Edgar, 2006; Beadle et al., 1938; Bakker, 1959; 

Robertson, 1963; Moed et al., 1999).  Therefore, microbial symbionts may play a critical 

role in the regulation of this pathway.  Changes in ecdysone levels have also been 

demonstrated to play a significant role in the regulation of the insulin/insulin like growth 

factor signalling; therefore the microbial symbionts could also regulate the levels of these 

hormones (Colombani et al., 2005).  The third reason for the extension could be due to 

the changes in behaviour of the larvae on the treated diets.  As described in Section 3.2.3, 

larvae on treated diet did not appear to penetrate the diet and the diet had a more solid 

consistency compared with control diets.  Therefore, the larvae may have found it more 

difficult to feed and as a consequence taken longer to grow, however, the experiment 

using different concentrations of agar does appear to contradict this theory.  

Chlortetracycline did reduce the fecundity of female flies which could be due to two 

possibilities; 1) the female flies were not as fit when reared on diet with chlortetracycline 

and had a reduced reproductive capacity and 2) the flies were deterred from laying eggs 

on a diet containing chlortetracycline.  Both reasons are plausible, in Canton-S the 
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triglyceride content was reduced with chlortetracycline treatment; lipid content of 

females has been shown to play an important role in reproductive maturation of female 

animals (Chehab et al., 1997; Kennedy and Mitra, 1963) therefore there could be a 

relationship between these results.  Secondly, female flies may detect chemical in the 

food and did not lay on the food as the fitness of the offspring may be compromised.   

The male life-span results were unexpected and contradicted the results gained by 

Brummel et al (2004) and Mair et al (2005) but supported the results gained by Ren et al 

(2007).  Control flies had a shorter life-span compared with flies with egg dechorionation 

and chlortetracycline treatment; yet egg dechorionation alone did not significantly affect 

the life-span.   

This extension of lifespan through chlortetracycline treatment could be due to the 

removal of “pathogenic” bacteria but not all the bacteria allowing the fly to live longer.  

Further extension in longevity with chlortetracycline treatment and dechorionation could 

be the result of a combination factors including the removal of bacteria and the chemical 

itself.   This result was interesting as Mair et al (2005) did not find a significant effect of 

tetracycline treatment on life-span. However, this difference could be accounted for as a 

different strain of Drosophila and diet was used.  As Cooper et al (2004) suggested,  the 

shortening of life-span of control flies on a rich diet could be due to the proliferation of 

bacteria within the gut, in antibiotic treated flies the tetracycline would control this 

proliferation resulting in an enhancement in life-span.   

Nutrition analysis demonstrated that female flies had a greater response to 

chlortetracycline treatment and dechorionation due to reasons such as differences in 

metabolism of male and female animals and the requirement for females to lay eggs and 

produce offspring.  In both sexes an alteration in carbohydrate levels with 

chlortetracycline treatment and dechorionation suggest that the bacteria consume some 

of the glucose within the gut of the host.  Bacterial depletion will therefore increase the 

levels of available carbohydrate being absorbed through the gut and resulting in a greater 

pool of carbohydrate as an energy source. 

Oregon-RS and Canton-S female flies had a reduced protein content with 

chlortetracycline treatment but not with dechorionation (Canton-S only), suggesting that 
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chlortetracycline (a protein synthesis inhibitor in prokaryotes) could be targeting 

eukaryotic ribosomes, inhibiting protein synthesis and leading to a reduction in levels of 

protein.   The reduction in triglyceride levels of both sexes with chlortetracycline 

treatment suggests that the toxicity of the antibiotic was responsible for the change and 

not bacteria depletion.  Two reasons for this could be; 1) chlortetracycline may be 

targeting lipid metabolism and 2) the flies consumed less food on the diet supplemented 

with chlortetracycline meaning lower calories were consumed leading to a reduced pool 

of triglycerides.  

Respirometry data showed a significant reduction in respiration rates of flies with 

bacteria depletion.  This result has also been observed in mice and rats (Wostman et al., 

1982 and Levenson et al., 1969).  This change could be due to multiple reasons: the 

removal of bacteria could result in differences in the utilisation of nutrients resulting in a 

decrease in oxygen consumption (Wostman et al., 1982), changes in the morphology of 

the gut due to the absence of bacteria which have been shown to play a role in gut 

development (Wostmann et al., 1982, Shirkey et al.,2006) and in mice and rats it has been 

suggested that bacteria influence hormones such as nor-epinphrine (octopamine in 

insects) which may be linked to an increase in oxygen consumption (Levenson et al., 

1969).    
 

The experiments conducted with the high and low nutrient diets with chlortetracycline 

and dechorionation treatment have further demonstrated that experimental results do 

depend on the diet used.  What is particularly interesting is that survival is significantly 

reduced when the flies were treated with high concentrations of chlortetracycline (100-

500 µg ml-1) on both diets, with the high nutrient diet showing the greatest decrease in 

survival.  The results with the high nutrient diet does suggest that the chlortetracycline 

treatment was toxic affecting the survival to adulthood and causing pupal mortality which 

was greater than observed with the low nutrient diet.  This difference between the 2 diets 

suggests that there may be differences in feeding rates.  If this is the case, the flies reared 

on a high nutrient diet may have consumed more food leading to a greater exposure to 

and consumption of chlortetracycline. 
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The experiments with flies derived from dechorionation did not show a significant 

decrease in survival, therefore, the changes in survival with the chlortetracycline treated 

flies does again suggest a link with toxicity and not with the removal of bacteria.   

 
The microbial diversity gained through the sequences from culturable bacteria suggested 

that chlortetracycline treatment may deplete the population of Acetobacter allowing the 

population of Lactobacillus to increase.  454 pyrosequencing showed that Acetobacter 

was the dominant species in control flies; this bacterium has previously been found in 

Drosophila melanogaster by Corby-Harris et al (2007) and Ren et al (2007).   

3.10 Conclusion 

Experiments with Drosophila melanogaster have highlighted the impact of 

chlortetracycline and egg dechorionation on the insect and have demonstrated that 

bacterial depletion had a significant impact on the carbohydrate levels in flies, respiration 

rates and the development time to pupae/adulthood. This does suggest that the microbes 

play an important role in nutrient acquisition and metabolism of nutrients to allow for 

growth and development. Lastly, this study has highlighted the deleterious impact of 

using antibiotics to deplete bacteria which should be considered when studying the role 

of gut microbes in animal hosts. 
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Chapter 4: The impact of bacterial depletion on Drosophila melanogaster 

gene expression  

4.1 Introduction 

The bacterial symbionts in Drosophila melanogaster have previously been suggested to 

be found on the surface of the egg shell (Bakula, 1969).  Larvae gain the symbionts 

through the ingestion of the food where the eggs are laid and the consumption of the 

chorion of the egg (Bakula, 1969 and observation by myself).  

Experiments have demonstrated that these symbionts are important for the performance 

of Drosophila melanogaster, such as life-span enhancement (Brummel et al., 2004) and 

shortening of development time (as demonstrated in Chapter3, Bakula, 1969).   

Drosophila melanogaster has become a model for investigating the innate immune 

response (Hoffman, 2003).  Drosophila lacks an adaptive immune response and depends 

on the innate response which includes the use of physical barriers, antimicrobial peptides, 

hemocytes and reactive oxidative species for protection against pathogens (Hoffman, 

2003; Lemaitre and Hoffman, 2007).  Two main pathways are involved in the humoral 

response to microorganisms, the Toll pathway which responds to fungi and Gram-positive 

bacteria (Hoffman, 2003; Rutschmann et al., 2002) and IMD pathway which mainly 

responds to Gram-negative bacteria (Hoffman, 2003; Ferrandon et al., 2007) (Figure: 4.1).   

This activation of the TOLL pathway involves the proteolytic cleavage of Spaetzle 

(Morisato and Anderson, 1994; Schneider et al., 1994; Valanne et al., 2011) which binds 

as a dimer to the Toll ectodomain (Hoffman, 2003; Arnot et al., 2010).  The 

intracytoplasmic TIR domain of Toll interacts with three partners, MyD88, Tube and Pelle 

(Horng and Medzhitov, 2001; Tauszig-Delamasure et al., 2002; Sun et al., 2002; Xiao et al., 

1999; Moncrieffe et al., 2008; Valanne et al., 2011). The Toll pathway then activates the 

Dorsal-related immunity factor (DIF)/Dorsal which dissociates from the ankyrin-repeat 

inhibitory protein Cactus through signal-dependent phosphorylation and degradation of 

Cactus (Wu and Anderson, 1998; Hoffman, 2003; Valanne et al., 2011).  The activated 

Dorsal/DIF then directs the expression of antimicrobial peptides in the nucleus (Valanne 

et al., 2011; Hoffman, 2003).  
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The IMD pathway is activated by Gram-negative bacteria which is detected by PGRP-LC 

and involves a signalling cascade of IMD, FADD, DREDD and TAK1 (TGFβ-activated kinase) 

(Gottar et al., 2002; Hoffman, 2003). TAK1 activates the IKK-γ and IKK-β complex which 

phosphorylates and cleaves Relish (Lu et al., 2001; Silverman et al., 2003; Vidal et al., 

2003; Ferrandon et al., 2007).  DREDD (Death-related ced-3/Nedd-2 like protein) and 

FADD (Fas-associated death domain) can also associate with Relish and cleave Relish 

(Leulier et al., 2002; Naitza et al., 2002; Hoffman, 2003; Leulier et al., 2000; Ferrandon et 

al., 2007). The activated Relish can then promote the expression of the antimicrobial 

peptides (Hoffman, 2003; Ferrandon et al., 2007).   Furthermore, TAK1 can activate the 

expression of cytoskeletal proteins in the nucleus (Boutros et al., 2002; Hoffman, 2003; 

Ferrandon et al., 2007). 

  

Figure: 4.1. The Toll and IMD pathways, which are activated by Gram-positive, Gram-

negative bacteria and fungi.  These pathways are induced by peptidoglycan recognition 

proteins (Hoffman, 2003), the activation of these pathways results in the expression of 

antimicrobial peptides including Drosomycin (Toll pathway); Diptericin, Cecropins, 

Attacins and Drosocin (IMD pathway) (Hoffman, 2003). Figure adapted from Hoffman 

(2003). 
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A limited number of studies investigating the changes of gene expression of bacteria 

depleted flies have been performed; studies have mainly concentrated on the response of 

Drosophila immune system to pathogens.  Ren et al (2007) determined the changes in 

AMP (antimicrobial peptide) expression in axenic flies.  In this paper, qRT-PCR and 

northern blots were used to assay the gene expression.  The expression of AMP genes 

were found to be reduced in axenic flies, these AMPs included Diptericin, Defensin, 

Cecropin and Attacin (Ren et al., 2007).  The possible reason for this response was the 

reduced bacterial load in axenic flies which reduced the stimulation of immune response.   

A genome-wide study has not been conducted to explore the alteration in the transcript 

levels in bacteria-depleted flies when derived from dechorionated eggs and how this 

response differs between different diets. Therefore, in this chapter I describe the 

genome-wide response of flies derived from egg dechorionation and how the response 

differs on a high and low nutrient diet using microarray analysis with GeneSpring®. 
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4.2 Microarray study on bacteria-depleted Drosophila 

4.2.1 The impact of egg dechorionation and diet on the gene expression of Drosophila 

A genome wide analysis using Agilent microarray chip was performed with control flies 

and flies derived from dechorionated eggs on a high and low nutrient diet.  The analysis 

involved the comparisons between; dechorionation and control flies on a high nutrient 

diet; dechorionation and control flies on a low nutrient diet; control flies on the 2 diets 

and dechorionation on the 2 diets. The analysis has shown that 88-89% of the genes 

assessed using the microarray had an expression value 2 times greater than the negative 

controls, indicating that these genes were expressed (Table: 4.1).  When the comparisons 

between the treatments were made, less than one percent of the genes assessed in the 

microarray were significantly changed in abundance (Table: 4.2).  The results have 

indicated that fewer transcripts (42) were significantly changed in abundance with 

dechorionation on a low nutrient diet in comparison with dechorionation on the high 

nutrient diet (136 transcripts).  These results demonstrate a difference in response to the 

2 diets, which is supported by the significant differences in the abundance of transcripts 

during the comparison of control flies (89 transcripts) and with dechorionation (212 

transcripts) on the 2 diets. 

Table: 4.1. The number of sequences expressed in the different treatments. 

Treatment Average number of sequences expressed (n=3) 
(Expression = 2X negative controls) ± s.e (% 
sequences expressed) 

Egg dechorionation on the rich diet 39017 ± 51 (89%) 

Egg dechorionation on the poor diet 38794 ± 327 (89%) 

Control on the rich diet 38716 ± 216 (89%) 

Control on the poor diet 38512 ± 195 (88%) 

 

Table: 4.2. The number of transcripts with a significant change in abundance of 2 fold or 

more (p<0.05). 

Comparison Sequences significantly expressed of 2 fold 
or more with p<0.05 (change of >3 fold) 

High nutrient dechorionation versus high nutrient control  136 (36)  (up=47 and down=89) 

Low nutrient dechorionation versus low nutrient control 42( 15) (up=13 and down=29) 

Low nutrient control versus high nutrient control 89( 19) (up=45 and down=44) 

Low nutrient dechorionation versus high nutrient 
dechorionation 

212 (37)  (up=140 and down=72) 
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An analysis was conducted on the number of transcripts which had been identified to be 

significantly altered in abundance and which were shared by the treatments, 

dechorionation on the high nutrient diet (High), dechorionation on the low nutrient diet 

(Low), control flies on the 2 diets (Controls) and dechorionation samples on the 2 diets 

(Dechorion). The Venn diagram (Figure: 4.2) has highlighted that with dechorionation on 

the high diet, a high proportion of transcripts significantly altered in abundance were only 

found within this treatment; 71 down-regulated and 44 up-regulated.  Eleven of the total 

transcripts (1 up-regulated and 10 down-regulated) were shared with dechorionation on 

the low nutrient diet, 7 (5 down-regulated and 2 up-regulated) with the control flies on 

the 2 diets and 1 down-regulated with dechorionation on the 2 diets.   

Low nutrient diet with dechorionation had a lower number of transcripts (22; 13 down-

regulated and 9 up-regulated) which were significantly altered and only found with this 

treatment.  In comparison, dechorionation on a high nutrient diet (104), control flies on 

the 2 diets (62) and dechorionation on the 2 diets (182) all had a greater number of 

transcripts that were only found within each treatment.  No transcripts were shared 

between the dechorionation on the low nutrient diet and the comparison of control 

(control) flies on the 2 diets and only 8 (5 down-regulated and 3 up-regulated) with 

dechorionation on the 2 diets.  The comparisons between the 2 diets with control flies 

and flies derived from egg dechorionation only had 19 (7 down-regulated and 12 up-

regulated) which were shared between the 2 treatments.  No transcripts were shared 

across the treatments. 
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Figure: 4.2. a) Venn diagram showing the comparison of transcripts with a significant decrease 

in abundance in the treatments: dechorionation versus control on the high nutrient diet (High), 

dechorionation versus control on the low nutrient diet (Low), control flies on the 2 diets 

(Controls) and dechorionation samples on the 2 diets (Dechorion) b) Transcripts with a 

significant increase in abundance.  Overlapping numbers show transcripts shared by the 

treatments and the numbers which are not overlapping are found only in that particular 

treatment. The Venn diagram was created using an online source produced by Oliveros (2007).  

4.2.2 Analysis of the function of the transcripts with a significant change in abundance 

Across all comparisons, 40-54% of the sequences with a significant change in abundance 

had no assigned Gene Ontology term/number.  This was due to little experimental 

evidence to identify the function of the gene or that the gene was a short sequence such 

as an expression sequence tag or a tentative consensus sequence associated with a gene 

with no Gene Ontology number.  However, 46-60% of the sequences were identified to 

have a Gene Ontology term with a function which had been experimentally demonstrated 

or that Blast2Go had suggested that the sequence has similar sequence identity to genes 

with known functions.  Dechorionation on the high nutrient diet (Figure: 4.3a) did show 

that the majority of the transcripts assigned a function were metabolic (23%) with 

transcripts associated with the immune system being the second most prominent (12%).  

A lower number of metabolic transcripts were altered in abundance on the low nutrient 

diet; with a total of 12%, the same percent as the immune transcripts.  The greatest 

number of transcripts was associated with binding and transport (22%) (Figure: 4.3b).  

Both the low and high nutrient diets with dechorionation, had the identical proportion of 

transcripts associated with immunity.  For the comparison of control flies reared on the 
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high and low nutrient diets, no immune transcripts were identified to have a significant 

change in abundance.  More than a quarter of the sequences were associated with 

metabolism (28%), and 17% with transport and binding (Figure: 4.3c).  This was also 

observed with the dechorionation with the 2 different diets, where the majority of the 

sequences were metabolic (25%) and binding/transport transcripts (15%).  Immune 

transcripts were also identified to have a significant change in abundance (6%), which was 

not observed when the control flies were compared (Figure: 4.3d).  

In comparison with the major functions of metabolism, immunity and binding/transport, 

a smaller percentage of the transcripts had miscellaneous and DNA/RNA 

replication/transcription functions which were identified across all comparisons (0-8%) 

(Figure: 4.3). 

 

Figure: 4.3.  The proportion of the transcripts with a significant change in abundance of 2 fold or 

more with a Gene Ontology of metabolism (GO:0008152), transport (GO:0006810) and binding 

(GO:0005488), immunity (GO:0006955), DNA/RNA replication (GO:0006260)/transcription 

(GO:0009299), miscellaneous and unknown (a = dechorionation versus comventional on the 

high nutrient diet, b = dechorionation versus control on the low nutrient diet, c = control flies 

on the high and low nutrient diet, d = dechorionation on the high and low nutrient diet. 
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4.2.3 Microarray analysis of transcripts associated with Drosophila melanogaster 

immunity 

This analysis has demonstrated that dechorionation significantly changes transcripts 

associated with the immune response (Table: 4.3; Appendix, Table: 7.6, 7.13, and 7.25).   

The sequences that were significantly changed in abundance on the low nutrient diet 

were also significantly changed on the high nutrient diet.  However, the level of change 

and the number of transcripts altered in abundance associated with the immune system 

differed between the 2 diets.  On the low nutrient diet, only 5 immune related sequences 

were identified to have a significant alteration in expression, on the high nutrient diet 16 

sequences were identified (Table: 4.3; Appendix, Table: 7.13, 7.6).  Furthermore, the 

transcript with the greatest change in abundance differed with diet.  On the low nutrient 

diet, the greatest change was observed with Diptericin (33.96 fold change) and on the 

high nutrient, Cecropin C (51.84 fold change).  The changes in both of these diets shown 

in Table: 4.3 suggest that the major response to bacterial depletion is the decrease in the 

expression of antimicrobial peptides (Diptericin, Attacin C, Cecropin C, Attacin A, 

Defensin), antifungal genes (Toll pathway) and peptidoglycan recognition proteins.   

These antimicrobial peptides are associated with the IMD pathway and target gram-

negative bacteria (Hoffman, 2003).  The remaining sequences were associated with 

phagocytosis and defence against bacteria. 

The comparison between the control flies on the different diets did not show a significant 

difference in the abundance of immune associated sequences. However, dechorionation 

on the low and high nutrient diets did (Table: 4.3; Appendix, Table: 7.25).  The absolute 

fold change in abundance (5.4 to 2.0) of the immune transcripts was not as high as the 

comparison of dechorionation versus control flies (51.8-2.1). Thirteen sequences were 

identified to have a significant change in abundance of 2 fold or more, with the greatest 

change observed with the down regulation of a lysozyme precursor (5.38 fold change), 

and the antimicrobial peptides Diptericin and Defensin (4.96 and 3.86 fold change, 

respectively).  A further 8 transcripts were significantly increased, these included 

functions of phagocytosis and melanization. 
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Table: 4.3 Transcripts associated with immunity and significantly changed in abundance 

of 3 fold or more (NSC=no significant change, SC=significant change, - =down regulated). 

    High 
nutrient 
diet 

Low 
nutrient 
diet 

Low V 
high 
nutrient 
diet 

Low V 
high 
nutrient 
diet 

    Dechori-
onation 
V 
Control 

Dechor-
ionation V 
Control 

Control 
flies 

Dechori-
onation 

Sequence  
No. 

Sequence Name Gene Ontology 
(GO) Numbers 

GO Description Fold 
change 

Fold 
change 

Fold 
change 

Fold 
change 

CG1373 Cecropin c GO:0050832 
GO:0042742  
GO:0005576 
GO:0005615 
GO:0019731 
GO:0050829  
GO:0050830 

Defense response to fungus 
Defense response to bacterium 
Extracellular region 
Extracellular space 
Antibacterial humoral response 
Defense response to Gram-
negative bacterium 
Defense response to Gram-
positive bacterium 

-51.84 NSC NSC NSC 

CG8175 Metchnikowin GO:0019731 
GO:0019732 
GO:0006952 
GO:0050832 
GO:0050829 
GO:0050830 
GO:0005576 

Antibacterial humoral response 
Antifungal humoral response 
Defense response 
Defense response to fungus 
Defense response to Gram-
negative bacterium 
Defense response to Gram-
positive bacterium 
Extracellular region 

-36.11 -15.02 NSC NSC 

CG10146 Attacin A GO:0005615 
GO:0019731 
GO:0050829 

Extracellular space 
Antibacterial humoral response 
Defense response to Gram-
negative bacterium 

-15.85 NSC NSC NSC 

CG10794 Diptericin b GO:0019731 
GO:0005576 

Antibacterial humoral response 
Extracellular region 

-14.94 -13.24 NSC NSC 

BT023384 Defensin GO:0005615 
GO:0019731 
GO:0050830 
GO:0042742 
GO:0006965 

Extracellular space 
Antibacterial humoral response 
Defense response to Gram-
positive bacterium 
Defense response to bacterium 
Positive regulation of 
biosynthetic process of 
antibacterial peptides active 
against Gram-positive bacteria 

-10.64 NSC NSC -3.86-
2.428 

CG12763 Diptericin GO:0019731 
GO:0050829 
GO:0042742 
GO:0045087 
GO:0005576 

Antibacterial humoral response 
Defense response to Gram-
negative bacterium 
Defense response to bacterium 
Innate immune response 
Extracellular region 

-10.24 -33.96 NSC -4.96 

CG4740   Attacin C GO:0019731 
GO:0006952 
GO:0005615 
GO:0042742 
GO:0005576 

Antibacterial humoral response 
Defense response 
Extracellular space 
Defense response to bacterium 
Extracellular region 

-8.29 -5.67 NSC NSC 

CG15678 Poor imd 
response upon 
knock-in 

GO:0009609 
GO:0005515 
GO:0005102 
GO:0050777 
GO:0045824 
GO:0061060 
 

Response to symbiotic 
bacterium 
Protein binding 
Receptor binding 
Negative regulation of immune 
response 
Negative regulation of innate 
immune response 
Negative regulation of 
peptidoglycan recognition 
protein signaling pathway 

-4.43 NSC NSC NSC 

CG16876 Nimrod c4 GO:0043277 
GO:0006911 

Apoptotic cell clearance 
Phagocytosis engulfment 

-3.75 
 

NSC NSC NSC 
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GO:0005886 Plasma membrane 

CG9681 Peptidoglycan 
recognition 
protein sb1 

GO:0006952 
GO:0005576 
GO:0008745 
GO:0005887 
GO:0009253 
GO:0042834 
GO:0005875 
GO:0006955 

Defense response 
Extracellular region 
N-acetylmuramoyl-L-alanine 
amidase activity 
Integral to plasma membrane 
Peptidoglycan catabolic process 
Peptidoglycan binding 
Microtubule associated complex 
Immune response 

-3.34 SC down <-
3 fold 

NSC NSC 

CG31783 Neither 
inactivation nor 
afterpotential d 

GO:0006952  
GO:0007602 
GO:0007603  
GO:0007604  
GO:0016063 
GO:0007155 
GO:0005887  
GO:0046867 
GO:0005044 
GO:0016020 

Defense response 
Phototransduction 
Phototransduction, visible light 
Phototransduction, UV 
Rhodopsin biosynthetic process 
Cell adhesion 
Integral to plasma membrane 
carotenoid transport 
Scavenger receptor activity 
Membrane 

-3.04 NSC NSC SC up <3 
fold 

CG9120 
Lysozyme 
precursor 

GO:0005576 
GO:0004568 
GO:0006952 
GO:0016998 
GO:0019730 
GO:0003796 

Extracellular region 
Chitinase activity 
Defense response 
Cell wall macromolecule 
catabolic process 
Antimicrobial humoral response 
Lysozyme activity 

NSC NSC NSC -5.38 

CG7002 Hemolectin 

GO:0042803 
GO:0042381 
GO:0007599 
GO:0035006  
GO:0042060 
GO:0005576 
GO:0008061 
GO:0005529 
GO:0007155 
GO:0006030 

Protein homodimerization 
activity  
Hemolymph coagulation  
Hemostasis 
Melanization defense response 
Wound healing 
Extracellular region     
Chitin binding 
Sugar binding 
Cell adhesion 
Chitin metabolic process 

NSC NSC NSC 3.08, 
2.43, 
2.34 
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4.2.4 Microarray analysis of transcripts associated with Drosophila melanogaster 

metabolism 

In total, 5 sequences associated with metabolism were significantly altered in abundance 

with dechorionation on the low nutrient diet and only one sequence (Obstructor-G) 

having a 3 or greater fold change (Table: 4.4), this sequence was up-regulated. The 

sequences with a significant change were associated with a range of functions including 

proteolysis, cholesterol transport, oxidation reduction and glutathione metabolism 

(Table: 4.4; Appendix, Table: 7.15) which were all down-regulated except for cholesterol 

transport. 

With dechorionation on the high nutrient diet, 31 metabolic transcripts were significantly 

changed in abundance at 2 fold or more, 8 of which had a fold change greater than 3 

(Table: 4.4; Appendix, Table: 7.8).  The metabolic transcripts were predominantly down-

regulated, 26 out of 31 sequences.   The sequences with a significant change in 

abundance were associated with proteolysis, carbohydrate metabolism, glutathione 

biosynthesis/metabolism, glutathione peroxidase activity, lipid/fatty acid metabolism, 

chitin metabolism and oxidation/reduction. All of which were down-regulated with 

dechorionation.  The gene with the greatest change in abundance was glutamate-cysteine 

ligase catalytic subunit, where a 4.5 fold decrease was observed.  Glutamate-cysteine 

ligase catalytic subunit was also down-regulated with dechorionation on the low nutrient 

diet. 

For the comparison of the control flies reared on the 2 diets, 25 sequences with functions 

associated with metabolism were observed to have a significant change in abundance of 

2 fold or more (Appendix, Table: 7.20; Table: 4.4).  Out of the 25 sequences, 7 had a fold 

change in abundance of 3 or more.  The majority of the transcripts that were significantly 

changed in abundance had functions associated with having nutrient reservoir activity, 

chitin metabolism and serine proteolysis.  The transcripts associated with nutrient 

reservoir and storage activity had the greatest change in abundance (29.11-5.44 fold 

change), and were down-regulated in flies reared on the low nutrient diet.  Chitin 

metabolism was also down-regulated by 7.6-2 fold and serine endopeptidases were 

down-regulated by 2 fold.  Further transcripts were identified to be up-regulated in flies 

on a low nutrient diet.  The gene, phosphoenolpyruvate carboxykinase was increased by 
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3.3 fold in flies on a low nutrient diet, suggesting the use of gluconeogenesis during 

energy metabolism. 

Flies derived from egg dechorionation on the high and low nutrient diet had 54 metabolic 

transcripts with significant changes in abundance (Appendix, Table: 7.27; Table: 4.4).  

Nine transcripts were shown to have a 3-fold or more change in abundance.  Similar to 

the comparison of the control flies on the 2 diets, the major changes occurred with 

transcripts associated with chitin metabolism (CG7017) which was down-regulated in 

both of the comparisons.  Furthermore, the nutrient reservoir transcripts (Fat body 

protein 2, Fat body protein 1, Larval serum protein 1 alpha and Larval serum protein 1 

beta) were identified to be down-regulated by 7-3.2 fold. Several more transcripts have 

been identified to have a significant change in abundance; these transcripts included 

functions of serine proteolysis, glutathione transferase activity and carboxylesterase 

activity which were all down-regulated in flies reared on a low nutrient diet.  The majority 

of metabolic transcripts were up-regulated which included; glucuronosyltransferase 

activity, hexokinase, associations with the tricarboxylic acid cycle, glycerol-3-phosphate 

dehydrogenase activity, glutamine biosynthesis, glycolysis, citrate and transmembrane 

transporter actvity and pyruvate dehydrogenase activity.  The up-regulation of these 

transcripts suggests an increase in glycolysis (leading to an increase in the TCA cycle).   
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Table: 4.4. Metabolic transcripts down or up-regulated by greater than threefold (NSC = 

no significant change, SC = significant change, - = down regulated). 

    High 
nutrient 
diet 

Low 
nutrient 
diet 

Low V 
high 
nutrient 
diet 

Low V 
high 
nutrient 
diet 

    Dechori-
onation 
V 
Control 

Dechor-
ionation 
V 
Control 

Control 
flies 

Dechori-
onation 

Sequence  
No. 

Sequence 
Name 

Gene 
Ontology (GO) 
Numbers 

GO Description Fold 
change 

Fold 
change 

Fold 
change 

Fold 
change 

CG2259 Glutamate-
cysteine 
ligase 
catalytic 
subunit 

GO:0004357 
GO:0005515 
GO:0006750 
GO:0006749 
GO:0006974 
GO:0017109 
GO:0005634 
GO:0048471  

Glutamate-cysteine ligase activity 
Protein binding 
Glutathione biosynthetic process 
Glutathione metabolic process 
Response to DNA damage stimulus 
Glutamate-cysteine ligase complex 
Nucleus 
Perinuclear region of cytoplasm, 

       -4.47 NSC NSC NSC 

CA804468 Protein 
farnesyltran
sferase 
alpha 
subunit 

GO:0008318 
GO:0018346 
GO:0005965 

Protein prenyltransferase activity 
Protein amino acid prenylation 
Protein farnesyltransferase complex 

4.072 NSC NSC NSC 

CG4500 - GO:0001676, 
GO:0007498, 
GO:0004467 

Long-chain fatty acid metabolic 
process 
Mesoderm development 
Long-chain-fatty-acid-CoA ligase 
activity 

-3.99 NSC NSC NSC 

CG14205 - GO:0016747 Transferase activity, transferring 
acyl groups other than amino-acyl 
groups 

-3.61 NSC NSC NSC 

CG7017 -  GO:0005576 
GO:0008061 
 GO:0006030 
GO:0016490 

Extracellular region 
Chitin binding 
Chitin metabolic process 
structural constituent of peritrophic 
membrane 

-3.60 NSC -7.60 -5.15 

CG33926 Transposas
e 

GO:0006139 
GO:0003677 
GO:0034960 

Nucleobase, nucleoside 
Nucleotide and nucleic acid 
metabolic process  
DNA binding 

-3.38 NSC NSC NSC 

CG12224 - 

GO:0055114 
GO:0016491 
GO:0008076 

Oxidation reduction 
Oxidoreductase activity 
Voltage-gated potassium channel 
complex 

-3.30 NSC NSC NSC 

CG12092-

RA 

 

Niemann-
pick c1 

GO:0007417 
GO:0007391 
GO:0030299 
GO:0008158 
GO:0016021 
GO:0005886 
GO:0007422 

Central nervous system 
development 
Dorsal closure 
Intestinal cholesterol absorption 
Hedgehog receptor activity 
Integral to membrane 
Plasma membrane 
peripheral nervous system 
development 

-3.15 NSC NSC NSC 

CG9781 obsructor-G GO:0005576 
GO:0008061  
GO:0006030 
GO:0016490 

Extracellular region 
Chitin binding  
Chitin metabolic process 
Structural constituent of peritrophic 
membrane 

NSC 3.32 NSC NSC 

CG17285 Fat body 
protein 
isoform a 

GO:0005344 
GO:0008565 
GO:0005811 
GO:0015032 

Oxygen transporter activity 
Protein transporter activity 
Lipid particle 
Storage protein import into fat body 

NSC NSC -29.1 NSC 

CG3763 Fat body 
protein 2 

GO:0055114 
GO:0004022  

Oxidation reduction 
Alcohol dehydrogenase (NAD) 

NSC NSC -23.5 -4.79 to -
6.99 
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GO:0045735  
GO:0005488  
GO:0005811  

activity 
Nutrient reservoir activity 
Binding 
Lipid particle 

CG4178 Larval 
serum 
protein 1 
beta 

GO:0005344 
GO:0005616 
GO:0045735 
GO:0005811 
GO:0006810 

Oxygen transporter activity 
Larval serum protein complex 
Nutrient reservoir activity 
Lipid particle 
Transport 

NSC NSC -5.44 -3.62 

CG10140 Isoform a GO:0005576 
GO:0008061 
GO:0006030 

Extracellular region 
Chitin binding 
Chitin metabolic process 

NSC NSC -3.88 NSC 

CG17725 Phosphoen
olpyruvate 
carboxykina
se 

GO:0006094  
GO:0005525 
GO:0016301 
GO:0004613 
GO:0005739 

Gluconeogenesis 
GTP binding 
Kinase activity 
Phosphoenolpyruvate 
carboxykinase (GTP) activity 
Mitochondrion 

NSC NSC 3.31 NSC 

CG33467 CG33467  GO:0004672 
GO:0006468 
GO:0005524 

Protein kinase activity 
Protein amino acid phosphorylation 
ATP binding 

NSC NSC -3.27 NSC 

CG11012 

UDP-
glycosyltran
sferase 
37a1 

GO:0016758 
GO:0008152 
GO:0015020 

Transferase activity, transferring 
hexosyl groups 
Metabolic process 
Glucuronosyltransferase activity 

NSC NSC NSC 3.55 

CG4757 - 
GO:0016787 
GO:0004091 

Hydrolase activity 
Carboxylesterase activity 

NSC NSC NSC 
-3.38 

CG9244 
Aconitase- 
isoform b 

GO:0005811 
GO:0006099 
GO:0051539 
GO:0003994 
GO:0005739 
GO:0006099 

Lipid particle 
Tricarboxylic acid cycle 
4 iron, 4 sulfur cluster binding 
Aconitate hydratase activity 
Mitochondrion 
Tricarboxylic acid cycle 

NSC NSC NSC 

3.06 

CG17285 

Fat body 
protein 
isoform a 

GO:0005344 
GO:0008565 
GO:0005811 
GO:0015032 

Oxygen transporter activity 
Protein transporter activity 
Lipid particle 
Storage protein import into fat body 

NSC NSC NSC 

-7.91 

CG2559 

Larval 
serum 
protein 1 
alpha 

GO:0005344 
GO:0005616 
GO:0045735 
GO:0005811 
GO:0006810 
GO:0005576 

Oxygen transporter activity 
Larval serum protein complex 
Nutrient reservoir activity 
Lipid particle 
Transport 
extracellular region 

NSC NSC NSC 

-3.18 

TC213959 NADPH--
cytochrome 
P450 
reductase 
 
 

GO:0009384 
GO:0001640 
GO:0005515 
GO:0004396 
GO:0001642 
GO:0008237 
GO:0008270 
GO:0004089 
GO:0005516 
GO:0030165 
GO:0004652 
GO:0008761 
GO:0042803 
GO:0004617 
GO:0042169 
GO:0016595 
GO:003042  
GO:000561  
GO:0005737 
GO:0043025 
GO:0042734 
GO:0032279 
GO:0043679 
GO:0048786 
GO:0005791 
GO:0005829 
GO:0005624 
GO:0045202 

N-acylmannosamine kinase activity  
Adenylate cyclase inhibiting 
metabotropic glutamate receptor 
activity 
Protein binding 
Hexokinase activity  
Group III metabotropic glutamate 
receptor activity  
Metallopeptidase activity 
Zinc ion binding 
Carbonate dehydratase activity  
Calmodulin binding 
PDZ domain binding 
Polynucleotide adenylyltransferase 
activity  
UDP-N-acetylglucosamine 2-
epimerase activity  
Protein homodimerization activity 
Phosphoglycerate dehydrogenase 
activity  
SH2 domain binding 
Glutamate binding- 
Dendrite- 
Extracellular space- 
Cytoplasm- 
Cell soma- 
Asymmetric synapse- 
Presynaptic active zone 

NSC NSC NSC 3.16 

http://www.godatabase.org/cgi-bin/amigo/go.cgi?query=GO:0009384
http://www.godatabase.org/cgi-bin/amigo/go.cgi?query=GO:0001640
http://www.godatabase.org/cgi-bin/amigo/go.cgi?query=GO:0005515
http://www.godatabase.org/cgi-bin/amigo/go.cgi?query=GO:0004396
http://www.godatabase.org/cgi-bin/amigo/go.cgi?query=GO:0001642
http://www.godatabase.org/cgi-bin/amigo/go.cgi?query=GO:0008237
http://www.godatabase.org/cgi-bin/amigo/go.cgi?query=GO:0008270
http://www.godatabase.org/cgi-bin/amigo/go.cgi?query=GO:0004089
http://www.godatabase.org/cgi-bin/amigo/go.cgi?query=GO:0005516
http://www.godatabase.org/cgi-bin/amigo/go.cgi?query=GO:0030165
http://www.godatabase.org/cgi-bin/amigo/go.cgi?query=GO:0004652
http://www.godatabase.org/cgi-bin/amigo/go.cgi?query=GO:0008761
http://www.godatabase.org/cgi-bin/amigo/go.cgi?query=GO:0042803
http://www.godatabase.org/cgi-bin/amigo/go.cgi?query=GO:0004617
http://www.godatabase.org/cgi-bin/amigo/go.cgi?query=GO:0042169
http://www.godatabase.org/cgi-bin/amigo/go.cgi?query=GO:0016595
http://www.godatabase.org/cgi-bin/amigo/go.cgi?query=GO:0005737
http://www.godatabase.org/cgi-bin/amigo/go.cgi?query=GO:0043025
http://www.godatabase.org/cgi-bin/amigo/go.cgi?query=GO:0042734
http://www.godatabase.org/cgi-bin/amigo/go.cgi?query=GO:0032279
http://www.godatabase.org/cgi-bin/amigo/go.cgi?query=GO:0043679
http://www.godatabase.org/cgi-bin/amigo/go.cgi?query=GO:0048786
http://www.godatabase.org/cgi-bin/amigo/go.cgi?query=GO:0005791
http://www.godatabase.org/cgi-bin/amigo/go.cgi?query=GO:0005829
http://www.godatabase.org/cgi-bin/amigo/go.cgi?query=GO:0005624
http://www.godatabase.org/cgi-bin/amigo/go.cgi?query=GO:0045202
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4.2.5 Microarray analysis of transcripts associated with transport and binding in 

Drosophila melanogaster  

With dechorionation on the low nutrient diet, 9 had a significant change in abundance 

with 2 having a change of 3 fold or greater (Appendix, Table: 7.14; Table: 4.5).  The 

significant changes were observed with transcripts associated with odorant binding, 

RNA/Nucleic acid binding and ion binding.  With dechorionation on the high nutrient diet, 

8 transcripts also had a significant change in expression of 2 fold and above, these 

included: protein and metal ion binding (Appendix, Table: 7.7; Table: 4.5).  Only 1 of the 8 

transcripts had a change in abundance which was 3 fold or greater, Metallothionein A was 

down-regulated by 3.1 fold.   

As with dechorionation on the low nutrient diet, the comparison between the control 

flies on the high and low nutrient diet demonstrated a difference in abundance of 

transcripts associated with odorant binding and ion transport and binding (Appendix, 

Table: 7.19; Table: 4.5).   Fifteen transcripts were established to have a significant change 

in abundance, with only one transcript having a fold change 3 fold or greater.  The 

transcript with the greatest fold change that was significantly up-regulated by 4.2 fold 

was associated with zinc ion binding.  The analysis of the flies derived from egg 

dechorionation on the 2 diets demonstrated a greater response, with 32 transcripts with 

a significant change in abundance (Appendix, Table: 7.26; Table: 4.5).  The majority of 

transcripts were down-regulated by 3-2 fold and involved in pheromone/odorant binding.   

GO:0030424 
GO:0005634 
GO:0043195 
GO:0043198 
GO:0043234 
GO:0005794 
GO:0006096 
GO:0046380 
GO:0007155 
GO:0006508 
GO:0007196 
GO:0007611 
GO:0014050 
GO:0006054 

Rough endoplasmic reticulum 
Cytosol 
Membrane fraction 
Synapse 
Axon- 
Nucleus 
Terminal button 
Dendritic shaft 
Protein complex 
Golgi apparatus 
Glycolysis 
N-acetylneuraminate biosynthetic 
process- 
Cell adhesion 
Proteolysis 
Metabotropic glutamate receptor, 
adenylate cyclase inhibiting 
pathway 
Learning and/or memory 
Negative regulation of glutamate 
secretion 
N-acetylneuraminate metabolic 
process 

http://www.godatabase.org/cgi-bin/amigo/go.cgi?query=GO:0030424
http://www.godatabase.org/cgi-bin/amigo/go.cgi?query=GO:0005634
http://www.godatabase.org/cgi-bin/amigo/go.cgi?query=GO:0043195
http://www.godatabase.org/cgi-bin/amigo/go.cgi?query=GO:0043198
http://www.godatabase.org/cgi-bin/amigo/go.cgi?query=GO:0043234
http://www.godatabase.org/cgi-bin/amigo/go.cgi?query=GO:0005794
http://www.godatabase.org/cgi-bin/amigo/go.cgi?query=GO:0006096
http://www.godatabase.org/cgi-bin/amigo/go.cgi?query=GO:0046380
http://www.godatabase.org/cgi-bin/amigo/go.cgi?query=GO:0007155
http://www.godatabase.org/cgi-bin/amigo/go.cgi?query=GO:0006508
http://www.godatabase.org/cgi-bin/amigo/go.cgi?query=GO:0007196
http://www.godatabase.org/cgi-bin/amigo/go.cgi?query=GO:0007611
http://www.godatabase.org/cgi-bin/amigo/go.cgi?query=GO:0014050
http://www.godatabase.org/cgi-bin/amigo/go.cgi?query=GO:0006054
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Table: 4.5. Transport and binding transcripts down or up-regulated by greater than 

threefold (NSC = no significant change, SC=significant change, - = down regulated). 

 

 

 

 

    High 
nutrient 
diet 

Low 
nutrient 
diet 

Low V 
high 
nutrient 
diet 

Low V 
high 
nutrient 
diet 

    Dechori-
onation V 
Control 

Dechor-
ionation 
V 
Control 

Control 
flies 

Dechori-
onation 

Sequenc
e  Name 

Sequence Name Gene 
Ontology 
(GO) 
Numbers 

GO Description Fold 
change 

Fold 
change 

Fold 
change 

Fold 
change 

CG9470 Metallothionein A GO:0046872 Metal ion binding -3.10 NSC NSC NSC 

NM_001
015210 

zinc c3hc4 type (ring 
finger) domain 
protein 

GO:0003676 
GO:0008270 
GO:0005515 

Nucleic acid binding 
Zinc ion binding 
protein binding 
 

NSC -3.26 4.20 NSC 

CG11123 mgc69156 protein GO:0003723 RNA binding NSC 3.09 NSC NSC 

CG11123 Mgc69156 protein GO:0003723 RNA binding NSC NSC NSC 4.08 

Obp59a Odorant-binding 
protein 59a 

GO:0006810 
GO:0007606 
GO:0005549 

Transport 
Sensory perception of 
chemical stimulus  
Odorant binding 

NSC NSC NSC -3.27 

CG4950 Carboxypeptidase n 
subunit 2 

GO:0005515 Protein binding SC down 
<3 fold 

NSC NSC 3.24 

CG4139 Karl  GO:0005488 Binding SC down 
<3 fold 

NSC NSC 3.11 

CG6642 Antennal protein 10 GO:0005549 
GO:0005550 
GO:0007606 

Odorant binding 
Pheromone binding 
Sensory perception of 
chemical stimulus 

NSC NSC NSC -2.92 to -
3.19 

CG32975 Nicotinic 
Acetylcholine 
Receptor α 34E 

GO:0042166 
GO:0004889 
GO:0016021 
GO:0005892 
GO:0004889 
GO:0004889 
GO:0006811 
GO:0045211 

Acetylcholine binding 
Nicotinic acetylcholine-
activated cation-
selective channel 
activity 
Integral to membrane 
Nicotinic acetylcholine-
gated receptor-channel 
complex 
Nicotinic acetylcholine-
activated cation-
selective channel 
activity 
Nicotinic acetylcholine-
activated cation-
selective channel 
activity 
Ion transport 
Postsynaptic membrane 

NSC NSC NSC 3.13 
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4.2.6 Microarray analysis of transcripts with miscellaneous and DNA/RNA replication or 

transcription functions in Drosophila melanogaster  

Eight sequences with miscellaneous functions had a significant change in abundance on 

the high nutrient diet with none being identified on the low nutrient diet (Appendix; 

Table: 7.10, Table: 4.6).  Out of the 8 sequences, only 1 had a fold change greater than 3.  

Two of the transcripts were associated with puparial adhesion and were down regulated 

by 2-7 fold, the remaining transcripts had associations with structural properties, 

signalling and hemopoiesis.   

Six transcripts had a significant change in abundance with control flies reared on the 

different diets (Appendix, Table: 7.22; Table: 4.6).  Four transcripts had a change in 

abundance of 3-fold or more.  Two transcripts associated with the structural constituent 

of chitin/cuticle had a 9.1-4.6 fold change in abundance, and were down-regulated in flies 

on a low nutrient diet.  Regulators of growth were up-regulated by 3 fold in flies reared 

on the low nutrient, suggesting differences in the growth rates of the flies reared on the 

different diets. 

Seventeen transcripts were identified to have a significant change in abundance when 

comparing the flies derived from egg dechorionation on the high and low nutrient diet 

(Appendix, Table: 7.29;  Table: 4.6).  The up-regulated transcripts were associated with 

growth regulation, signalling, cell proliferation and hormone activity.  The change in 

expression was less than 3 fold for all the transcripts except TC215525, which was down-

regulated and has a function associated with the structure of chitin and, CG14669 and 

CG33519 with signalling activities which were up-regulated by 3.4-5 fold.  

On the low nutrient diet with dechorionation, only 1 transcript (CG5303) was identified to 

have a major function involved in DNA/RNA replication or transcription this was 

upregulated by 2 fold (Appendix, Table: 7.16).  Four transcripts were identified to have a 

significant change in abundance with dechorionation on the high nutrient diet and only 

one transcript (Cubitus interruptus) with a fold change greater than 3 (Appendix, Table: 

7.9; Table: 4.7). With comparison of control flies on the high and low nutrient diet, 5 

transcripts had a significant change in abundance; none of these transcripts had a fold 

change greater than 3 (Appendix, Table: 7.21; Table: 4.7).  The comparison of the flies 

derived from dechorionation on the low and high nutrient diets had a greater number of 
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transcripts with a significant change in abundance, with 12 transcripts and only 2 with a 

fold change greater than 3 (CG10110-RA and TC219369) (Appendix, Table: 7.28; Table: 

4.7). 

Table: 4.6. Miscellaneous transcripts down or up-regulated by greater than threefold 

(NSC = no significant change, SC = significant change, - = down regulated). 

  

    High 
nutrient 
diet 

Low 
nutrient 
diet 

Low V 
high 
nutrient 
diet 

Low V high 
nutrient 
diet 

    Dechori-
onation V 
Control 

Dechor-
ionation 
V 
Control 

Control 
flies 

Dechor-
ionation 

Sequence   
Number 

Sequence 
Name 

Gene Ontology 
(GO) Numbers 

GO Description Fold 
change 

Fold 
change 

Fold 
change 

Fold 
change 

CG18087 Salivary gland 
secretion 7 

GO:0007594 
GO:0005576 
GO:0005198 

Puparial adhesion 
Extracellular region 
Structural molecule activity 

-7.42 NSC NSC NSC 

CG8502 Cuticular 
protein 
isoform a 

GO:0042302 Structural constituent of 
cuticle 
Structural constituent of 
chitin-based larval cuticle 

NSC NSC -9.11 NSC 

CG7539 Ecdysone-
dependent 
gene 91 

GO:0008011 Structural constituent of 
pupal chitin-based cuticle 
 

NSC NSC -4.60 NSC 

CG11628/ 
BT030162 

Steppke GO:0040018 
GO:0005086 
GO:0032012 
GO:0005622 

Positive regulation of 
multicellular organism 
growth 
ARF guanyl-nucleotide 
exchange factor activity 
Regulation of ARF protein 
signal transduction 
Intracellular     

NSC NSC 3.16 SC up <3 
fold 

CO181664 - GO:0040018 Positive regulation of 
multicellular organism 
growth 

NSC NSC 3.06 NSC 

TC215525  
 

Odorant 
receptor 47a 

GO:0005214 
GO:0008010 

Structural constituent of 
chitin-based cuticle  
Structural constituent of 
chitin-based larval cuticle 

NSC NSC NSC -4.66 

CG14669 CG14669 GO:0003924 
GO:0005525 
GO:0007264 
GO:0016020 

GTPase activity 
GTP binding 
Small GTPase mediated 
signal transduction 
Membrane 

NSC NSC NSC 3.40 

CG33519 Unc-89 GO:0005524 
GO:0004674 
GO:0005089  
GO:0006468 
GO:0035023 
GO:0005622 
GO:0007527 
GO:0045214 

ATP binding  
Protein serine/threonine 
kinase activity  
Rho guanyl-nucleotide 
exchange factor activity 
Protein amino acid 
phosphorylation 
Regulation of Rho protein 
signal transduction 
Intracellular   
Adult somatic muscle 
development 
Sarcomere organization 

NSC NSC NSC 5.022 

http://www.godatabase.org/cgi-bin/amigo/go.cgi?query=GO:0005214
http://www.godatabase.org/cgi-bin/amigo/go.cgi?query=GO:0008010
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Table: 4.7. Transcripts associated with DNA/RNA replication/transcription down or up-

regulated by greater than threefold (NSC = no significant change, SC = significant 

change, - = down regulated). 

    High 
nutrient 
diet 

Low 
nutrient 
diet 

Low V 
high 
nutrient 
diet 

Low V 
high 
nutrient 
diet 

    Dechori-
onation 
V 
Control 

Dechor-
ionation 
V 
Control 

Control 
flies 

Dechori-
onation 

Sequence  
No. 

Sequence Name Gene 
Ontology 
(GO) 
Numbers 

GO Description Fold 
change 

Fold 
change 

Fold 
change 

Fold 
change 

TC219369 Reverse 
transcriptase 

GO:0003723 
GO:0003964 
GO:0006278 

RNA binding  
RNA-directed DNA polymerase 
activity 
RNA-dependent DNA replication 

NSC NSC NSC -4.06 

CG10110-
RA 
 

Cleavage and 
polyadenylation 
specificity 
factor cpsf 

GO:0006378 
GO:0005847 
GO:0003730 
GO:0005515 
GO:0006379 

mRNA polyadenylation mRNA 
cleavage and polyadenylation 
Specificity factor complex 
mRNA 3'-UTR binding,  
Protein binding 
mRNA cleavage 

NSC NSC NSC 3.44 

CG2125 Cubitus 

interruptus (ci) 

GO:0010843 
GO:0005515 
GO:0016563 
GO:0035017 
GO:0048813 
GO:0008544 
GO:0048592 
GO:0035224 
GO:0060914 
GO:0035217 
GO:0048666 
GO:0048666 
GO:0048477 
GO:0030858 
GO:0045750 
GO:0045944 
GO:0007346 
GO:0007367 
GO:0007224 
GO:0035277 
GO:0048100 
GO:0005737 
GO:0035301 
GO:0016020 
GO:0005634 
GO:0043234 
GO:0003704 
GO:0003700 
GO:0016564 
GO:0008270 
GO:0007350 
GO:0000122 
GO:0030707 
GO:0045449 
GO:0007224 
GO:0005634 
 
 
 
 

Promoter binding 
Protein binding 
Transcription activator activity 
Cuticle pattern formation 
Dendrite morphogenesis 
 Epidermis development 
 Eye morphogenesis 
Genital disc anterior/posterior 
pattern formation 
 Heart formation 
 Neuron development, 
Labial disc development 
Oogenesis 
Positive regulation of epithelial 
cell differentiation 
Positive regulation of S phase of 
mitotic cell cycle  
Positive regulation of 
transcription from RNA 
polymerase II promoter 
Regulation of mitotic cell cycle 
Segment polarity determination 
Smoothened signaling pathway 
Spiracle morphogenesis, open 
tracheal system 
Wing disc anterior/posterior 
pattern formation 
Cytoplasm 
Hedgehog signaling complex 
Membrane 
Nucleus 
Protein complex 
Transcription factor activity 
Transcription repressor activity 
Zinc ion binding 
Blastoderm segmentation 
Negative regulation of 
transcription from RNA 
polymerase II promoter 
Ovarian follicle cell development 
Regulation of transcription 
Smoothened signaling pathway 
Nucleus 

-3.81 NSC NSC NSC 
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4.2.7 Microarray analysis of transcripts with no assigned Gene Ontology number 

Overall, 69 sequences were identified to have a significant change in abundance with 

dechorionation on the high nutrient diet (Appendix, Table: 7.11, 7.12; Table: 4.8). 

Fourteen of these transcripts, expression sequence tags and tentative annotative 

sequences with no assigned Gene Ontology number had a change in expression of 3 fold 

or greater (Appendix, Table: 7.11, 7.12; Table: 4.8).  The transcript with the greatest 

change in expression was CG32185 with a very greatest fold change of 118.8. On the low 

nutrient diet with dechorionation, 22 sequences with no assigned gene ontology number 

had a significant change in expression of 2 fold and greater, with 8 having a change in 

abundance of 3 fold or more (Appendix, Table: 7.17, 7.18; Table: 4.8).    As with the high 

nutrient diet, the greatest change was also observed with CG32185 which was down-

regulated by 35 fold.  TC218200 and EC265593 were also down-regulated on both diets 

with dechorionation.  

With the comparison of control flies reared on the high and low nutrient diet, 38 

sequences with no assigned gene ontology number had a change in expression of 2 fold 

and greater (Appendix, Table: 7.23, 7.24; Table: 4.8).  Seven out of the 38 transcripts had 

a change in abundance of 3 fold or higher, the greatest change was observed with 

TC198490.  TC198490 was down-regulated by 17-fold in flies reared on the low nutrient 

diet, and was also down-regulated when the comparison was made between flies derived 

from egg dechorionation on the 2 diets.  A much greater number of sequences were 

identified with dechorionation on the 2 diets; 84 sequences had a significant change in 

abundance, 13 with a fold change of 3 or more (Appendix, Table: 7.30, 7.31; Table: 4.8). 
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Table: 4.8. Sequences with no assigned Gene Ontology number and a fold change of 

three-fold or greater (NSC = no significant change, SC = significant change, - = down 

regulated). 

 

 

  High nutrient diet Low nutrient 
diet 

Low V high 
nutrient diet 

Low V high 
nutrient diet 

  Dechorionation V 
Control 

Dechorionation 
V Control 

Control flies Dechorionation 

Sequence  Number Sequence Description Fold change Fold change Fold change Fold change 

CG32185 - -118.89 -35.34 NSC NSC 
 

EC265593  Expression sequence 
tag 

-40.33 -16.36 NSC 
 

NSC 

TC218200 Tentative consensus 
sequence 

-9.01 -11.09 NSC NSC 
 

CG34143  Ionotropic receptor 
10a 

7.00 NSC NSC NSC 

CG18273-RA - -4.80 NSC 
 

NSC 
 

NSC 
 

CG33553-RF - -4.61 NSC NSC NSC 

TC212147   Tentative consensus 
sequence 

-4.04 NSC -3.76 NSC 
 

CG18273 - 3.81 NSC 
 

NSC 
 

NSC 
 

CG16775 - -3.81 NSC 
 

NSC NSC 

CG31711-RA - -3.59 NSC NSC 
 

NSC 

TC213322   Tentative consensus 
sequence 

-3.50 NSC NSC NSC 
 

CG41233 - -3.41 NSC 
 

NSC NSC 

TC217958  Tentative consensus 
sequence 

3.13 NSC NSC 
 

NSC 

CG12998 - -3.01 NSC NSC NSC 
 

TC215502 Tentative consensus 
sequence 

NSC 
 

-5.67 NSC NSC 

TC210124 Tentative consensus 
sequence 

NSC -5.22 NSC 
 

NSC 

TC218367 Tentative consensus 
sequence 

NSC -4.65 NSC 4.57 

TC213314 Tentative consensus 
sequence 

NSC 
 

-4.21 NSC NSC 

CG13445 - NSC 3.32 SC up <3 Fold NSC 

TC198490   Tentative consensus 
sequence 

NSC NSC -17.05 -4.50 

CG11370 - NSC 
 

NSC 
 

-4.50 NSC 

TC216174  Tentative consensus 
sequence 

NSC NSC 3.86 NSC 
 

CG13962 - NSC NSC -4.31 NSC 

TC212413  Tentative consensus 
sequence 

NSC 
 

NSC 
 

-3.73 NSC 

CG40203 - NSC NSC 3.59 NSC 

TC217285 Tentative consensus 
sequence 

NSC NSC NSC 10.07 

TC201533 Tentative consensus 
sequence 

NSC NSC NSC -4.44 
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TC214613 Tentative consensus 
sequence 

NSC NSC NSC -4.31 

TC219844 Tentative consensus 
sequence 

NSC 
 

NSC 
 

NSC 
 

3.85 

CG4996 - NSC NSC NSC 3.81 

CG34206 - NSC NSC NSC -3.79 

TC212659 Tentative consensus 
sequence 

NSC 
 

NSC 
 

NSC 
 

-3.45 

CG17761-RA - NSC NSC NSC 3.42 

AW944513  Expression sequence 
tag 

NSC NSC NSC -3.35 

TC216377 Tentative consensus 
sequence 

NSC 
 

NSC 
 

NSC 
 

-3.35 

TC201327 Tentative consensus 
sequence 

NSC NSC NSC -3.13 
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4.3 Quantitative RT-PCR of bacteria-depleted flies on a high and low nutrient 

diet 

Quantitative RT-PCR (qRT-PCR) was conducted to verify the results gained from whole-

genome expression profile using microarray analysis.  A small group of transcripts were 

chosen to determine whether the significant difference in abundance of these transcripts 

was also observed with qRT-PCR. 

The qRT-PCR data did support some of the microarray results of flies reared on a high 

nutrient diet with dechorionation (Figure: 4.4). As with the microarray, qRT-PCR showed 

that the gene expression of the antimicrobial protein (AMP) Diptericin and Defensin were 

reduced by 23 and 4 fold, respectively with dechorionation.  Furthermore, Diptericin B 

with an immune-related function was shown to decrease by 18 fold in expression.  The 

gene CG31148, with a role in carbohydrate and lipid metabolism was demonstrated to 

have a decrease by 2 fold in expression with dechorionation.  These were identified to 

change in expression with dechorionation by both the microarray and qRT-PCR, other 

transcripts were shown to have a change in abundance with qRT-PCR and not with the 

microarray.  These were Phosphoenol-pyruvate carboxykinase (PEPCK) and Fat body 

protein 2 with a 2 and 5-fold change, respectively. 

Flies reared on the low nutrient diet showed a change in the immune transcripts, 

Diptericin and Diptericin B with a 23 and 9-fold change in abundance which supports the 

results gained from the microarray (Figure: 4.4).  As with the high nutrient diet, 

Phosphoenol-pyruvate carboxykinase (PEPCK) was shown to have a 3-fold change in 

transcript levels unlike the microarray.  Low levels of change in expression of Defensin, 

Fat body protein 2 and CG31148 were observed, but not with a change of greater than 3-

fold.   An additional control gene, Zwischenferment (involved in glucose-6-phosohate 

dehydrogenase activity) was quantified with all treatments as the expression of this gene 

was not significantly altered by 2 fold or more in any of the comparisons during the 

microarray analysis.  The expression of this gene was not significantly altered by 2 fold or 

more with the high and low nutrient diet when analysed using qRT-PCR (Figure: 4.4). 
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a) 

 

b) 
Gene Name Gene 

Number  
Up/Down 
regulation 

Microarray 
Absolute change in expression 

(n=3) 

High nutrient diet Low nutrient diet 

Dechorionation V 
Control 

Dechorionation V 
Control 

Diptericin B  (DptB) CG10794 Down 14.94 7.39-13.24 
 

Fat body protein 2 (FBP2) CG3763 / NSC NSC 

CG31148 CG31148 Down 2.62 NSC 

Defensin (Def) BT023384 Down 10.64 NSC 

Phosphoenol- pyruvate carboxykinase (PEPCK) CG17725 Down NSC NSC 

Diptericin (Dpt) CG12763 Down 10.24 33.96 

Zwischenferment (ZW) Negative Control CG12529 / NSC NSC 

Figure: 4.4. a) qRT-PCR results of DptB = Diptericin B; Fbp2 = Fat body protein 2; 

CG31148; Def = Defensin; PEPCK = Phosphoenol-pyruvate carboxykinase; Dpt = 

Diptericin; ZW = Zwischenferment. These were selected for the comparison with the 

microarray for the treatments of dechorionation on a high and low nutrient diet  b) 

Microarray results for the genes selected for qRT-PCR (NSC = no significant change). 
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Not only was the impact of dechorionation on the transcript abundance in Drosophila 

analysed but also the impact of diet.  Two comparisons were made with the first 

comparing control flies on the high and low nutrient diets and the second, with the flies 

derived from dechorionated eggs on the 2 diets.  

The qRT-PCR data with control flies reared on the high and low nutrient diet did show 

some support with the microarray results, however some differences were also observed 

(Figure: 4.5). As with the microarray, qRT-PCR showed that the gene expression of Fat 

body protein 2 did decrease in the low nutrient diet, with a 22 fold change.  However, 

Phosphoenol-pyruvate carboxykinase (PEPCK) which had a 3 fold change, was not shown 

to have a significant change with qRT-PCR.  Furthermore, qRT-PCR did show that there 

was a change in expression of Defensin, Diptericin B and Diptericin with a 5, 3 and 3-fold 

change, which was not shown by the microarray.  Both CG31148 and the control gene, Zw 

did not show a fold change of 2 or more. 

The results for dechorionation with the high and low nutrient diet, again showed a 

change in transcript abundance of the immune gene, Diptericin by 4 fold and the 

metabolic gene Fat body protein 2 with a 4 fold change (Figure: 4.5).  However, the gene 

Defensin which was identified by the microarray with a significant change in abundance 

did not show a change of greater than 2 fold.  Diptericin B, CG31148, PEPCK and the 

control gene Zw were all shown not to have a change in expression of 2 fold or greater by 

qRT-PCR and the microarray (Figure: 4.5).   
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a) 

 

b) 
Gene Name Gene 

Number  
Up/Down 
regulation 

Microarray 
Absolute change in expression 

(n=3) 

Control flies Dechorionation 

Diptericin B  
(DptB) 

CG10794 Down NSC NSC 

Fat body protein 2 (FBP2) CG3763 Down 23.54 
 

4.79 
 

CG31148 CG31148 / NSC NSC 

Defensin (Def) BT023384 Down NSC 2.43 
 

Phosphoenol- pyruvate carboxykinase (PEPCK) CG17725 Up 3.31 
 

NSC 

Diptericin (Dpt) CG12763 Down NSC 4.96 
 

Zwischenferment (ZW) Negative Control CG12529 / NSC NSC 

Figure: 4.5. a) qRT-PCR results of DptB = Diptericin B; Fbp2 = Fat Body Protein 2; 

CG31148; Def = Defensin; PEPCK = Phosphoenol- pyruvate carboxykinase; Dpt = 

Diptericin; ZW = Zwischenferment.  These were selected for the comparison with the 

microarray for the treatment, controls on a high and low nutrient diet and 

dechorionation on a high and low nutrient diet b) Microarray results for the genes 

selected for qRT-PCR (NSC = no significant change).  
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4.4 Discussion 

Unlike many genome-wide studies, the results described in this chapter with the 

treatment egg dechorionation, had a small number of genes with a significant change in 

expression. The major observation was the change in abundance of immune transcripts 

which were decreased in flies derived from dechorionated eggs on both the high and low 

nutrient diet.  This change suggests that the depletion of bacteria at the embryo stage has 

resulted in a reduction in immune regulation.   The presence of bacteria would activate 

the immune system and suggests that the bacteria contribute to the regulation of the 

IMD pathway and the Toll pathway.  Furthermore, this result suggests that these 

pathways may be required to control the microbial symbionts found within the gut 

(Reynolds and Rolff, 2008).  This response is supported by Ren et al (2007) where a 

decrease in expression of antimicrobial peptides was observed in axenic flies.   

When dechorionation and control comparisons were made with the low nutrient diet, a 

smaller number of transcripts were identified compared with the high nutrient diet.  This 

suggests that the response to bacterial depletion was not as strong with the low nutrient 

diet as the response on the high nutrient diet.  This demonstrates that diet has an 

important role in the response of Drosophila to treatments and also shows that the 

difference in the response of Drosophila demonstrated by different research labs could 

be due to the use of different diets. 

The greatest change in adundance was observed in transcripts which were associated 

with immunity and not metabolism, suggesting that the dominant response to bacterial 

depletion was immune related and not metabolic.  The metabolic transcripts where the 

expression was significantly altered were part of different metabolic pathways and 

therefore, proved more difficult to discuss compared with the immune transcripts.  A 

decrease in the abundance of transcripts associated with carbohydrate metabolism, lipid 

metabolism, aminoacyl transferase activity and serine proteases have been shown to be 

down-regulated with dechorionation on the high nutrient diet.  This reduction in 

metabolism does suggest that the bacteria do play a role in the metabolism in Drosophila. 

These changes may occur as bacteria have been shown to aid nutrient degradation 

(Hooper, 2009; Savage, 1986) and the reduction in bacteria could result in changes in the 

quantity of nutrients available, leading to changes in metabolism.  
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The comparison between the control flies on a high and low nutrient diet showed that the 

transcripts which had a significant change in expression were mainly metabolic 

transcripts.  One example was the significant reduction in Fat body protein 1 which has a 

function of transporting proteins into the fat body.  The low nutrient diet contained 20 g 

L-1 of yeast but the high nutrient diet contained a much greater content of 80 g L-1 of 

yeast.  Therefore, the reduced availability of protein in the low nutrient diet could have 

resulted in a reduced store of protein and a reduction in the transport of proteins into the 

fat body.  Fat body protein 2 and Larval serum protein 1 beta (both act as a nutrient 

reservoir) also had a reduced abundance which would be expected on a low nutrient diet 

as less nutrients would be available to be stored.  Furthermore, a gene associated with 

the process of gluconeogenesis was increased in abundance in flies reared on the low 

nutrient diet.  The limited supply of carbohydrates in a diet such as the low nutrient diet 

could lead to the gluconeogenesis (a metabolic pathway providing glucose using a non-

carbohydrate, such as pyruvate) and is commonly increased in animals which are starved 

or on a low carbohydrate diet (Berg et al., 2002, p425-463 and Westman et al., 2007).  

However, the change in abundance of phosphoenolpyruvate carboxykinase (involved in 

gluconeogenesis) was not observed with qRT-PCR.  

Unlike the control flies, the comparison of dechorionation with a high and low nutrient 

diet demonstrated a significant difference in the expression of the immune genes 

including; Defensin and Diptericin.  All of which have a reduced transcript abundance with 

flies reared on a low nutrient diet.  This suggests that the immune system has responded 

greater on a high nutrient diet highlighting the role of diet in the response of Drosophila.  

A quarter of all the transcripts with a significant change in abundance were metabolic 

transcripts.  Genes that were identified with the control flies on the 2 diets were also 

identified with the flies derived from dechorionation.  These included the nutrient 

reservoir genes (Fat body protein 2 and Larval serum protein 1 beta) which were also 

identified to be down-regulated by 7-3.2 fold. The transcript levels of several genes 

associated with the tricarboxylic acid cycle were significantly up-regulated suggesting an 

increase in glycolysis in flies without symbionts on the low nutrient diet in comparison 

with the high nutrient diet.  This observation was different to the comparison of the 

control flies on the 2 diets.  The transcript level of Phosphoenolpyruvate carboxykinase 

was significantly changed in control flies using the microarray analysis but was not 
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significantly altered in abundance using qRT-PCR.  Therefore, the changes in glycolysis (all 

3 fold or less) with dechorionation on the 2 diets would need to be confirmed using qRT-

PCR. 

QRT-PCR has been proven to be an important tool to verify the results gained from the 

microarray. Out of 28 reactions, 21 correlated well with the microarray, however 7 did 

not.  The transcripts with large changes in abundance of greater than 4 fold change, did 

correlate well with the results gained through qRT-PCR.  This would suggest that 

transcripts with a fold change close to 2 may produce results that did not correspond as 

well with the results gained through qRT-PCR.  As shown by Morey et al (2006), 

transcripts exhibiting at least a 1.4 fold change and a p-value of 0.0001 or less show a 

strong correlation with microarray data however those with a lower significance should 

be approached with more caution when verifying microarray results using qRT-PCR.  The 

microarray analysis provides an overall overview of the changes in transcript levels 

however, to gain more accurate results qRT-PCR would be a preferred method of 

determining changes in expression. 

4.5 Conclusion 

The microarray has demonstrated that the major result of removing bacterial symbionts 

from Drosophila melanogaster is the depletion in the immune system, particularly 

transcripts associated with the Toll/IMD pathway.  This result suggests that the Toll/IMD 

pathway is involved in controlling the symbionts found within the insect gut.  Lastly, the 

microarray with bacterial depletion on a high and low nutrient diet has demonstrated 

differences in response to different diets.  
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Chapter 5: Minimal chlortetracycline concentrations with the RIDL® 

mosquito, LA513 and the impact of chlortetracycline on wild-type Aedes 

aegypti  

5.1 Introduction 

5.1.1 RIDL® Mosquitoes  

As described in Section 1.5, RIDL® has been used with Aedes aegypti. LA513A is an 

example of a RIDL® mosquito (Aedes aegypti) that has a late-acting dominant lethal 

genetic system which causes the death of both male and female mosquitoes at L4-pupal 

stage (Phuc et al., 2007, Section: 1.5).  This tetracycline-repressible genetic system 

requires the insects to be reared with chlortetracycline, which suppresses the expression 

of the lethal gene and allows rearing of the insects.  Oxitec Ltd currently rear LA513A in 

water supplemented with 30 µg ml-1 of chlortetracycline to suppress the expression of 

tTav.   

In this chapter the minimum concentration of chlortetracycline required to suppress the 

late-acting dominant lethal gene being expressed in LA513A was determined. This was 

conducted by rearing the mosquitoes with a range of chlortetracycline concentrations (0-

30 μg ml-1). The fitness was determined by measuring survival and development time to 

pupae/adulthood and the life-span of the adults. 

This experiment will allow reductions in the cost of chlortetracycline and waste during 

mass-rearing, which will limit the quantities of chlortetracycline being released into the 

environment.  Furthermore, a reduction in the concentration used during rearing of the 

mosquitoes could potentially reduce the impact on beneficial bacteria found within the 

mosquito and promote performance and fitness.  

5.1.2 Wild-type Aedes aegypti and  

To complement the experiments with LA513, studies were made to determine the impact 

of using chlortetracycline on the insect host and its microbiota. As described in Chapter 1, 

little is known about the diversity of the gut microbiota of Aedes aegypti.  Only one 

research group has published data regarding the diversity of the microbes found within 

the gut of Aedes aegypti.   What we do know from the published data is that Bacillus, 
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Asaia, Enterobacter, Klebsiella and Serratia are the dominant genera found in the gut of 

Aedes aegypti (Gusmão et al., 2007; Gusmão et al., 2010).  

The role of these individual gut symbionts to the insect host is still unknown however we 

do know what happens to the performance of the insect when all the bacteria in Aedes 

aegypti are eliminated.  Lang et al (1972) identified the effects of eliminating bacteria on 

the performance of Aedes aegypti.  It was suggested that the removal of bacteria did not 

affect of the development time, survival and protein content. Nevertheless, bacterial 

depletion did impact the lipid content, water content and extended the life-span of the 

insect.  This indicates that the performance of the mosquito was not compromised as 

much as shown in Drosophila melanogaster (Chapter 3) but the nutritional content of the 

insect was affected.  Furthermore, it was shown that bacteria-free mosquitoes had an 

extended life-span which is similar to Drosophila melanogaster where an extension was 

observed with antibiotic treated.   

There have not been any studies that have shown the impacts of chlortetracycline 

treatment on Aedes aegypti and the associated microbes.  Therefore, I determined the 

impacts of chlortetracycline on wild-type Asian Aedes aegypti, a strain which was reared 

at Oxitec Ltd and originally isolated from Malaysia in 1974 and wild-type Mexican Aedes 

aegypti reared at Cornell University since 2006.  The reason for the use of both strains 

was to determine whether there was a difference between a strain that may have had 

prior contact with chlortetracycline in the laboratory and one at Cornell University which 

had not.  Both strains were treated with a range of chlortetracycline concentrations (0-

100 μg ml-1).  Survival and development to pupae and adulthood, lifespan and the 

nutrition of the mosquitoes were measured.  454 pyrosequencing and 16S rRNA gene 

analysis was conducted to gain more insight into the diversity of bacteria within larvae 

and adult Aedes aegypti and to identify the changes in the diversity when the insects 

were treated with chlortetracycline.  
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5.2 LA513 (Bisex-Lethal) performance with varying concentrations of 

chlortetracycline 

5.2.1 Survivorship to pupae and adulthood of LA513 

Survival to pupae and adult stages were measured using 6 replicates of 150 mosquito 

larvae.  The survival to pupae and adulthood varied significantly with chlortetracycline 

concentration: with very high mortality at 0 and 0.01 µg ml-1; and >80% survival at greater 

concentrations (Pupae - KW: H6 = 34.512, p<0.001; Adult - KW: H6 = 37.840, p<0.001) 

(Figure 5.1).  Pupae mortality was observed at 0.1 µg ml-1 with 29% of total pupae failing 

to emerge as adults.  At 0.5 µg ml-1 and above, the percentage that died was smaller, 

ranging from 11-20%.  Survival to adulthood was lower than survival to pupae, 

mosquitoes reared on 0.1 µg ml-1 showed the biggest decrease with only 58% surviving to 

adulthood.  Mosquitoes reared on 0.5 µg ml-1 and above showed a much greater survival 

of 75-91%.  

 

Figure: 5.1. Percent survival to pupae of mosquitoes treated with 0-30 μg ml-1 of 

chlortetracycline, number of replicates = 6 with 150 larvae per replicate (Methods 

Chapter; Section: 2.3.3, page 41-42). 
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5.2.2 Development time of LA513 

Development time to pupae and adulthood was measured for three reasons; 1) 

experiments with Drosophila showed extension of development time when treated with 

chlortetracycline (Chapter 3), 2) development time could be affected by the expression of 

the lethal gene and 3) the development time is important when mass rearing.  Any 

change in development time due to changes in chlortetracycline concentration need to be 

identified so the rearing schedule can be adjusted accordingly. 

The development time to pupae was determined using 6 replicates of 150 larvae and 

analysed using Kruskal-Wallis analysis.  This analysis demonstrated that development 

time to pupae was significantly different in males (KW: H4 = 103.073, p<0.001) and 

females (KW: H4 = 149.947, p<0.001) when treated with different concentrations of 

chlortetracycline. At 0.1 and 1 µg ml-1 the median development was the same for males 

(10 days) and females (11 days). However, at 10 and 30 µg ml-1 the median development 

time was reduced to 9 days in males but in females the development time remained the 

same from 0.1 to 30 µg ml-1 (Figure: 5.2). 

 

Figure: 5.2. Median development time to pupae of LA513 reared with 0.1-30 μg ml-1 of 

chlortetracycline, number of replicates = 6 with 150 larvae per replicate (Methods 

Chapter; Section: 2.3.3, page 41-42). 
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The development time to adulthood was also significantly different in males (KW: H4 = 

121.411, p<0.001 and females (KW: H4 = 130.528, P<0.001) when treated with different 

concentrations of chlortetracycline. At 0.1 µg ml-1 both male and female have the same 

median development time of 12 days, however above this concentration the 

development time reduced to 11 days in males and increased to 13 days in females 

(Figure: 5.3). 

 

Figure: 5.3. Median development time to adulthood with 0.1-30 μg ml-1 of 

chlortetracycline, number of replicates = 6 with 150 larvae per replicate (Methods 

Chapter; Section: 2.3.3, page 41-42). 
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5.2.3 Observations of DsRed fluorescence in LA513A treated with 0-10 µg ml-1 of 

chlortetracycline 

It has been suggested that the level of DsRed expression is affected by the 

chlortetracycline concentration and that DsRed expression may be enhanced by the 

positive feedback loop of the RIDL® system, linking the fluorescence expression with the 

RIDL® expression. Therefore, fluorescence images were taken to examine the expression 

of DsRed in LA513A.  DsRed expression was continually observed to have a more 

pronounced fluorescence in mosquitoes reared on 0 and 0.01 µg ml-1 of chlortetracycline 

(Table: 5.1). 

Table: 5.1. Fluorescence of LA513 reared on different concentrations of 

chlortetracycline.  

Chlortetracycline 
concentration (µg ml-1) 

Larvae viewed using the 
filters for red fluorescence 
(excitation 510-550, 
emission 590LP) 

Larvae viewed under normal 
light  

0 

  
0.01 

  

0.1 

  

10 
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5.2.4 Life-span of LA513 

Life-span is an important measurement with both male and female LA513.  Male life-span 

needs to be long enough to ensure that the transgenic mosquitoes mate with the female 

mosquitoes in the wild. In addition female mosquitoes need to have a lifespan long 

enough in the mass rearing facility to mate with male mosquitoes and produce sufficient 

eggs for production needs.  Adult lifespan data varied significantly with chlortetracycline 

concentration in females (KW: H4 = 80.778, p<0.001) and in males (KW: H4 = 86.372, 

p<0.001), being shorter on 0.1 µg ml-1 chlortetracycline compared with treatments 0.5 µg 

ml-1 and above.   The difference was more pronounced in males (median lifespan 15 days 

on 0.1 µg ml-1 and 29 days on 0.5 µg ml-1 chlortetracycline) than in females (31 days and 

39 days, respectively) (Figure: 5.4, Figure: 5.5). 

 

Figure: 5.4. Life-span of male LA513 treated with 0.1-30 μg ml-1 of chlortetracycline, 

number of replicates = 6 with 20 adult mosquitoes per replicate (Methods Chapter; 

Section: 2.3.3, page 41-42). 

   

Figure: 5.5. Life-span of female LA513 treated with 0.1-30 μg ml-1 of chlortetracycline, 

number of replicates = 6 with 20 adults per replicate (Methods Chapter; Section: 2.3.3, 

page 41-42). 
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5.3 The impacts of chlortetracycline treatment on WT Aedes aegypti 

The second section of this chapter will determine the impact of chlortetracycline on two 

wild-type strains of Aedes aegypti; Asian Aedes aegypti which was used to create LA513 

at Oxitec Ltd and secondly, Mexican Aedes aegypti.  

5.3.1 Survival of Asian Aedes aegypti treated with 0-100 μg ml-1 of chlortetracycline   

The survival of Asian wild-type (WT) was the first performance parameter to be measured 

using 7 replicates of 300 larvae. The percent survival to pupae and adult mosquitoes 

varied from 69-98% (Figure: 5.6).  Control mosquitoes had a survival to pupae and 

adulthood of 90% and 78% respectively.  Angular transformation of the percentage data 

was conducted and an ANOVA was used to identify the significance of the results; for 

pupae there was no significant effect on survival (F6, 34 = 1.186, p>0.05) between any of 

the chlortetracycline concentrations, this was also observed with adult data (F6, 41 = 1.359, 

p>0.05). 

 

Figure: 5.6. Percent survival to pupae and adulthood of Asian Aedes aegypti treated 

with 0-100 μg ml-1 of chlortetracycline, number of replicates = 7 with 300 larvae per 

replicate (Methods Chapter; Section: 2.3.3, page 41-42). 
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5.3.2 Development time of Asian Aedes aegypti treated with chlortetracycline  

The development time to adulthood was assessed in male and female mosquitoes.  In 

male mosquitoes, control mosquito emergence peaked at 11 days.  Chlortetracycline 

treatments at the concentrations; 0.5, 10, 30 and 100 µg ml-1 also had a peak emergence 

of 11 days.  The treatments of 0.1 and 1 µg ml-1 had a pupation peak a day later at 12 

days (Figure: 5.7).  Statistical analysis showed that the development time was significantly 

different with chlortetracycline treatment for males (Kruskal-Wallis: H6 = 40.451, 

p<0.001).  

 

Figure: 5.7. Development curve to adulthood of male mosquitoes treated with 0-100 μg 

ml-1 of chlortetracycline, number of replicates = 7 with 300 larvae per replicate 

(Methods Chapter; Section: 2.3.3, page 41-42). 

For female mosquitoes pupation curves indicated a peak emergence of 14 days across all 

treatments, however statistical analysis suggested that chlortetracycline did significantly 

impact development time to adulthood (Kruskal-Wallis: H6 = 21.588, p<0.01) (Figure: 5.8).  
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Figure: 5.8. Development curve to adulthood of female mosquitoes treated with 0-100 

μg ml-1 of chlortetracycline, number of replicates = 7 with 300 larvae per replicate 

(Methods Chapter; Section: 2.3.3, page 41-42). 

5.3.3 Life-span of Aedes aegypti 

A Cox’s regression statistical analysis was conducted with life-span data as the experiment 

was performed for a limited time and before all the mosquitoes died (50-55 days). The 

life-span of female mosquitoes was significantly affected by the treatment of 

chlortetracycline, compared with the control treatment of 0 µg ml-1 (p<0.001).  Control 

mosquitoes showed a reduction in life-span (median lifespan of 30 days) compared with 

other treatments (33-38.5 median lifespan) which suggests that chlortetracycline 

treatment could promote life-span (Figure: 5.9. and Table: 5.2.).  The life-span of male 

mosquitoes was not significantly altered with chlortetracycline treatment (median 

lifespan of 23-29 days) (p>0.05)  (Figure: 5.10 and Table: 5.3). 
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Figure: 5.9. Cumulative survival of female Asian Aedes aegypti treated with 0-100  µg 

ml-1 chlortetracycline, number of replicates = 5 with 30 adults per replicate (Methods 

Chapter; Section: 2.3.3, page 41-42). 

Table: 5.2. Results of Cox’s regression analysis of the life-span of female Asian Aedes 

aegypti treated with 0-100 µg ml-1 chlortetracycline.  For each treatment the estimated 

regression coefficient (B), experimental Exp(B), standard error (S.E), degrees of freedom 

(d.f) and Wald-Statistic are given. 

Covariate B Exp(B) S.E Wald 
Statistic 

d.f Significance 

Replicate -0.130 0.878 0.033 16.090 1 <0.001 

Chlortetracycline 
treatment 

   93.529 6 <0.001 

0.1 0.530 1.698 0.132 16.068 1 <0.001 

0.5 -0.323 0.724 0.150 4.672 1 <0.05 

1 -0.263 0.769 0.152 2.996 1 NS 

10 -0.485 0.616 0.132 13.579 1 <0.001 

30 -0.296 0.744 0.134 4.888 1 <0.05 

100 -0.654 0.520 0.141 21.466 1 <0.001 

 



139 

 

 

Figure: 5.10. Cumulative survival of male Asian Aedes aegypti treated with 0-100 µg ml-1 

chlortetracycline, number of replicates = 5 with 30 adults per replicate (Methods 

Chapter; Section: 2.3.3, page 41-42). 

Table: 5.3. Results of Cox’s regression analysis of the life-span of male Asian Aedes 

aegypti treated with 0-100 µ µg ml-1 of chlortetracycline.  For each treatment the 

estimated regression coefficient (B), experimental Exp(B), standard error (S.E), degrees 

of freedom (d.f) and Wald-Statistic are given. 

Covariate B Exp(B) S.E Wald 
Statistic 

d.f Significance 

Replicate 0.054 1.055 0.023 5.431 1 <0.05 

Chlortetracycline 
treatment 

   4.483 6 >0.05 

0.1 -0.111 0.895 0.120 0.862 1 >0.05 

0.5 0.038 1.039 0.124 0.093 1 >0.05 

1 -0.078 0.925 0.123 0.408 1 >0.05 

10 0.052 1.054 0.121 0.189 1 >0.05 

30 -0.145 0.865 0.122 1.411 1 >0.05 

100 -0.066 0.936 0.124 0.285 1 >0.05 
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5.3.4 Total lipid content of Asian Aedes aegypti treated with chlortetracycline 

The lipid content was consistently greater in males compared with female mosquitoes 

and the values ranged from 0.308 and 0.485 mg per mg of dry weight.  Chlortetracycline 

treatment did not have a significant effect on the lipid content of male and female 

mosquitoes (Table: 5.4).  A 2-way ANOVA showed that chlortetracycline does not have a 

significant effect on the lipid content within the mosquitoes (F6, 130 = 1.588, p>0.05) at the 

concentrations of chlortetracycline tested in this study.  This response to chlortetracycline 

treatment was observed in both males and females (F6, 130 = 0.907, p>0.05).  As described 

above, the lipid content between male and female mosquitoes was significantly different 

(F1, 130 = 147.245, p<0.001). 

Table: 5.4. Total lipid content of Asian Aedes aegypti treated with 0-100 μg ml-1 

chlortetracycline, number of replicates = 5 (Methods Chapter; Section: 2.5.6, page 48). 

Concentration 
of chlortetracycline (μg ml

-1
) 

Mean lipid content per mosquito (mg)  per mg
 
of dry weight ± s.e 

(n=10) 

Male Female 

0 0.453 ±0.017 0.319 ±0.015 

0.1 0.412 ±0.023 0.327 ±0.011 

0.5 0.433 ±0.013 0.338 ±0.020 

1 0.485 ±0.027 0.352 ±0.012 

10 0.431 ±0.012 0.335 ±0.017 

30 0.435 ±0.029 0.335 ±0.015 

100 0.449 ±0.010 0.308 ±0.006 

 

The dry weight of the mosquitoes ranged from 0.295 to 0.645 mg, with female 

mosquitoes having the greater weight.  This statistical test (ANOVA) showed a significant 

effect with chlortetracycline treatment (F6, 130 = 6.696, p<0.001) and sex (males smaller 

than females, F1, 130 = 569.426, p<0.001) and also a significant interaction between sex 

and chlortetracycline treatment (F1, 130 = 2.356, 0.05>p>0.01).  LSD (Least significant 

difference) post hoc test revealed that male mosquitoes had a significantly greater dry 

weight when treated with 100 µg ml-1 chlortetracycline than all other treatments.  In 

female mosquitoes the dry weight was significantly increased at 10 μg ml-1 (0.621 µg) and 

100 μg ml-1 (0.645 µg) (Table: 5.5). 
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Table: 5.5. Dry weight of Asian Aedes aegypti treated with 0-100 μg ml-1 of 

chlortetracycline, number of replicates = 5 (Methods Chapter; Section: 2.5.6, page 48). 

Concentration 
of chlortetracycline (μg ml

-1
) 

Average dry weight per mosquito (mg) ± s.e (n=10) 

Male Female 

0 0.302 ± 0.003 0.526 ± 0.022 

0.1 0.299 ± 0.004  0.519 ± 0.026 

0.5 0.299 ± 0.004 0.569 ± 0.028 

1 0.295 ± 0.009 0.561 ± 0.026 

10 0.310 ± 0.010 0.621 ± 0.026 

30 0.310 ± 0.016 0.562 ± 0.030 

100 0.359 ± 0.010 0.645 ± 0.028 

5.3.5 Wing length of Asian Aedes aegypti treated with 0-100 μg ml-1 of chlortetracycline 

Wing length was used as another measure of size (Chapter 2) to compare different 

chlortetracycline treatments. Wing length of male and female mosquitoes ranged from 

1.422 to 2.177 mm, with females having longer wings compared with males (Table: 5.6).  

A 2-way ANOVA showed that the wing length did vary significantly with chlortetracycline 

treatment (F6, 331= 38.038, p<0.001), there was a significant difference between male and 

female mosquitoes (shorter in males than females, F1, 331 = 1.033, p<0.001) with no 

significant interaction between chlortetracycline and sex (F6, 331 = 1.784, p>0.05).  LSD 

post hoc analysis revealed that males reared with 0 and 100 µg ml-1 of chlortetracycline 

had significantly shorter wings (1.42 mm) than males reared with intermediate 

chlortetracycline concentrations.  A difference between treatments was obtained for 

females with a significantly smaller wing length at 0 and 100 μg ml-1 of chlortetracycline 

(Table: 5.6).   

 Table: 5.6. Wing length of Asian Aedes aegypti treated with 0-100 μg ml-1 of 

chlortetracycline, number of replicates = 5 (Methods Chapter; Section: 2.5.1, page 44). 

 

Concentration  
of chlortetracycline (μg ml

-1
) 

Average wing length (mm) ± s.e (n=6) 

Male Female 

0 1.425 ± 0.018 1.843 ± 0.017 

0.1 1.561 ± 0.070 2.083 ± 0.023 

0.5 1.685 ± 0.018 2.177± 0.023 

1 1.615 ± 0.083 1.916 ± 0.085 

10 1.663 ± 0.021 2.050 ± 0.080 

30 1.597 ± 0.023 2.107 ± 0.021 

100 1.422 ± 0.021 1.874 ± 0.035 
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5.4 Chlortetracycline effects on the performance of Mexican Aedes aegypti 

5.4.1 Survival of Mexican Aedes aegypti treated with 0-100 μg ml-1 of chlortetracycline 

The survival to pupae and adulthood was measured for the different chlortetracycline 

treatments, the percent survival to adults ranged from 51-79% (Figure: 5.11). The 

percentage data was angular transformed and an ANOVA was conducted. The statistical 

analysis showed that the mosquitoes were significantly affected by chlortetracycline 

treatment at pupae (F6, 35 = 4.246, p<0.01) and adulthood (F6, 35 = 7.372, p<0.001).  Pupal 

survival was significanty reduced at 0.1 and 100 μg ml-1 of chlortetracycline where 

survival reduced from 75% with control mosquitoes to 67% at 0.1 and 100 μg ml-1.  Adult 

survival showed a greater response to chlortetracycline than pupae, survival was 73% 

with control mosquitoes, however the survival was significantly reduced to 51% at 100 μg 

ml-1 of chlortetracycline.  

 

Figure: 5.11. Percent survival to pupae and adulthood of Mexican Aedes aegypti treated 

with 0-100 μg ml-1 of chlortetracycline, number of replicates = 6 with 150 larvae per 

replicate (Methods Chapter; Section: 2.3.3, page 41-42). 
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5.4.2 Development time to adulthood of Mexican Aedes aegypti treated with 

chlortetracycline  

To assess the impact of chlortetracycline development rates were determined for male 

and female mosquitoes. 

For male mosquitoes, development curves demonstrate that adult emergence peaked at 

11 days for control mosquitoes and at 30-100 μg ml-1 of chlortetracycline.  Peak 

emergence of 0.1-10 μg ml-1 of chlortetracycline was reduced to day 10 (Figure: 5.12).   

Statistical analysis showed that the development time was significantly different with 

chlortetracycline treatment for males (Kruskal-Wallis: H6 = 36.459, p<0.001).  

 

Figure: 5.12. Development curves to adulthood of male mosquitoes treated with 0-100 

μg ml-1 chlortetracycline, number of replicates = 6 with 150 larvae per replicate 

(Methods Chapter; Section: 2.3.3, page 41-42). 

For female mosquitoes, development curves demonstrated an extension in the time to 

emergence in control mosquitoes, with a 12 and 13 day time period for adult emergence 

(Figure: 5.13).  A 12 day period was also observed for 10 and 100 μg ml-1 of 

chlortetracycline and a reduction to 11 days at 0.1, 0.5, 1, 30 μg ml-1 of chlortetracycline 

(Figure: 5.13).  Kruskal-Wallis analysis indicated that the development time was 

significantly different between treatments in female mosquitoes (Kruskal-Wallis: H6 = 

38.372, p<0.01).   
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Figure: 5.13. Development curves to adulthood of female mosquitoes treated with 0-

100 μg ml-1 chlortetracycline, number of replicates = 6 with 150 larvae per replicate 

(Methods Chapter; Section: 2.3.3, page 41-42). 

5.4.3 Life-span of Mexican Aedes aegypti treated with chlortetracycline  

In females, the median life-span varied from 35.5 to 51.5 days (Figure: 5.14).  Statistical 

analysis showed that the life-span of female mosquitoes varied significantly with 

chlortetracycline treatment (KW: H6 = 89.545, p<0.001). With control mosquitoes, the 

median life-span was 51.5 days, however at 100 μg ml-1 the lifespan was significantly 

reduced to 40 days, with the lowest life-span being at 30 μg ml-1 (35.5 days). 

The life-span of male mosquitoes was also measured, the median life-span was similar to 

female mosquitoes of 35-58 days (Figure: 5.15).  A Kolmogorov-Smirnov (KS) test was 

conducted to assess the normality of the data for the male life-span data before the 

statistical analysis was conducted.  The distribution was not significantly different from 

the normal distribution (p>0.05), therefore a one-way ANOVA was conducted to 

determine whether there was a significant effect on the life-span of male mosquitoes. 

The life-span of male mosquitoes varied significantly with chlortetracycline treatment (F6, 

653 =11.382, p<0.001).  With control mosquitoes, the median life-span was 55.5 days, 

however at 100 μg ml-1, the lifespan was significantly reduced to 35 days, with the lowest 

life-span being at 30 and 100 μg ml-1. LSD post-hoc statistical test supported this result 
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and showed that at 0.5 to 100 μg ml-1 of chlortetracycline had a significantly different life-

span than the control treatment. 

 

Figure: 5.14. Median life-span of female Mexican Aedes aegypti treated with 0-100 μg 

ml-1 of chlortetracycline, number of replicates = 6 with 20 adults per replicate (Methods 

Chapter; Section: 2.3.3, page 41-42). 

 

Figure: 5.15. Median life-span of male Mexican Aedes aegypti treated with 0-100 μg ml-

1 of chlortetracycline, number of replicates = 6 with 20 adults per replicate (Methods 

Chapter; Section: 2.3.3, page 41-42). 
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5.5 Nutritional Status of Mexican Aedes aegypti 

The carbohydrate, lipid and protein content of the insect was analysed to determine how 

chlortetracycline treatment affected the nutrition of the insect.  Further measurements 

were conducted, including dry weight and wing length to determine the effects of 

chlortetracycline on the size of the insect. 

5.5.1 Wing length of Mexican Aedes aegypti treated with 0-100 μg ml-1 of 

chlortetracycline. 

The size was inferred from the wing length of the mosquitoes and used for nutritional 

analysis.  The wing length of the mosquitoes varied from 2-2.8 mm, with females having a 

longer wing length (Table: 5.7). An ANOVA demonstrated that chlortetracycline had no 

significant effect on the wing length of either males or females (F6, 56 = 1.070, p>0.05). 

However, there was a significant difference between the sexes (F1, 56 = 198.910, p<0.001).  

The response of male and female mosquitoes to chlortetracycline was not significantly 

different (F6, 56 = 0.636, p>0.05).  

Table: 5.7. Wing length of Mexican Aedes aegypti treated with 0-100 μg ml-1 of 

chlortetracycline, number of replicates = 5 (Methods Chapter; Section: 2.5.1, page 44). 

Concentration  
of chlortetracycline (μg ml

-1
) 

Mean wing length (mm) ± s.e (n=5) 

Male Female 

0 2.094 ± 0.038 2.703 ± 0.026 

0.1 2.104 ± 0.014 2.734 ±0.029 

0.5 2.112 ± 0.043 2.836 ± 0.055 

1 2.115 ± 0.041  2.807 ± 0.037 

10 2.132 ± 0.017 2.810 ± 0.039 

30 2.139 ± 0.049 2.705 ± 0.068 

100 2.151 ± 0.040 2.823 ± 0.039 

 

5.5.2 Glucose content of Mexican Aedes aegypti treated with 0-100 μg ml-1 of 

chlortetracycline. 

The glucose content varied between 1.25 and 3.1 µg, with a greater glucose content 

observed in female mosquitoes (Table: 5.8).  To determine whether there was a 

significant effect of antibiotic treatment on the glucose content of mosquitoes, a 2-way 

ANCOVA was conducted with wing length used a size covariate. The statistical analysis 
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showed that wing length varied significantly (F1, 55 = 7.324, p<0.05).   Chlortetracycline 

appears to have a significant effect on the glucose content within the mosquitoes (F6, 55 = 

4.294, p<0.01), with a greater response in females.  Female glucose content reduced as 

the chlortetracycline concentration increased. There was also a significant difference 

between sexes (F1, 55 = 4.232, p<0.05), a greater content observed in females compared 

with males.  The response to chlortetracycline was shown to be different in male and 

female mosquitoes (F6, 55 = 5.344, p<0.001).  The glucose content of male mosquitoes did 

not significantly alter with treatment of chlortetracycline (F6, 28 = 1.933, p>0.05) (Table: 

5.8).  However, in females, the glucose content was significantly decreased at 30 μg ml-1 

of chlortetracycline where the mean glucose content decreased from 2.53 µg in control 

mosquitoes to 1.61 µg (F6, 28 = 9.416, p>0.001)  (Table: 5.8).   

Table: 5.8. Glucose content of mosquitoes treated with chlortetracycline (0-100 μg ml-1), 

number of replicates = 5 (Methods Chapter; Section: 2.5.4, page 46). 

Concentration  
of chlortetracycline (μg ml

-1
) 

Mean glucose content µg per fly ± s.e (n=5) 

Male Female 

0 1.42 ± 0.13 2.53 ± 0.22 

0.1 1.51 ± 0.09 3.09 ±0.24 

0.5 1.66± 0.13 3.10 ± 0.36 

1 1.75 ± 0.10 2.10 ± 0.21 

10 1.25 ± 0.06 2.44 ± 0.16 

30 1.63 ± 0.08 1.61 ± 0.05 

100 1.74 ± 0.07 2.46 ± 0.12 

 

5.5.3 Glycogen content of Mexican Aedes aegypti treated with 0-100 μg ml-1 of 

chlortetracycline. 

Glycogen was quantified in both male and female mosquitoes, the glycogen content of 

the mosquitoes ranged on average between 2.70 and 5.73 µg (Table: 5.9). Male 

mosquitoes showed a greater content of glycogen compared with female mosquitoes. A 

2-way ANCOVA (wing length as the covariate) showed that wing length was statistically 

significantly different (F1, 54 = 4.202, p≤0.05).  Chlortetracycline concentration appears to 

have no significant effect on the glycogen content within the flies (F6, 54 = 1.752, p>0.05) 

but a significant difference was observed between sexes (F1, 54 = 26.630, p<0.001).  

Furthermore, there was a no significant interaction between chlortetracycline treatment 



148 

 

and sex (F6, 54 = 2.133 p>0.05), showing that the response was the same in both sexes.  

The content of glycogen of male mosquitoes ranged from 4.26 μg in control mosquitoes 

to 5.73 μg at 100 μg ml-1 of chlortetracycline.  Little change was observed in female 

mosquitoes, in control mosquitoes the glycogen content was 3.42 μg and at 100 μg ml-1 of 

chlortetracycline the quantity was 3.53 μg. 

Table: 5.9. Glycogen content of mosquitoes treated with chlortetracycline (0-100   μg 

ml-1), number of replicates = 5 (Methods Chapter; Section: 2.5.4, page 46). 

Concentration  
of chlortetracycline (μg ml

-1
) 

Mean glycogen content µg per fly ± s.e (n=5,*4) 

Male Female 

0 4.26 ±0.30  3.42 ± 0.21 

0.1 5.51 ± 0.18 4.59 ± 0.53 

0.5 5.72 ± 0.53 4.63 ± 0.47 

1 5.38 ± 0.75 3.12 ± 0.30* 

10 5.35 ± 0.59 4.00 ± 0.52 

30 5.60 ± 0.65 2.70 ± 0.32 

100 5.73 ± 0.26 3.53 ± 0.36 

 

5.5.4 Trehalose content of Mexican Aedes aegypti treated with 0-100 μg ml-1 of 

chlortetracycline. 

The trehalose content varied from 1.81 to 5.66 µg, with similar trehalose content in male 

and female mosquitoes (Table: 5.10).   An ANCOVA was conducted to determine whether 

there was a significant impact of antibiotic treatment on the trehalose content of the 

mosquitoes.  Wing length was used as the covariate and was shown to be significantly 

different (F1, 54 = 5.257, p<0.05).  Chlortetracycline appears to have a significant effect on 

the trehalose content within the mosquitoes (F6, 54 = 9.091, p<0.001). There was no 

significant difference between the 2 sexes (F1, 54 = 0.033, p>0.05).  Furthermore, the same 

response to chlortetracycline was observed in both sexes (F6, 54 = 2.074, p>0.05). The 

trehalose content of male mosquitoes ranged from 4.65 μg in control mosquitoes to 3.96 

μg at 100 μg ml-1 of chlortetracycline, the lowest trehalose content was observed at 0.1 

μg ml-1 of chlortetracycline with 1.81 μg.  In control female mosquitoes, the trehalose 

content was 5.70 μg, however at 0.1-30 μg ml-1 of chlortetracycline the trehalose quantity 

was reduced to 3.75-4.14 μg. At 100 μg ml-1 of chlortetracycline the trehalose content 

was 5.66 μg, not significantly different to control mosquitoes.   
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Table: 5.10. Trehalose content of mosquitoes treated with chlortetracycline (0-100 μg 

ml-1), number of replicates = 5 (Methods Chapter; Section: 2.5.4, page 46). 

Concentration  
of chlortetracycline (μg ml

-1
) 

Trehalose content µg per fly ± s.e (n=5,*4) 

Male Female 

0 4.65 ± 0.17 5.70 ± 0.38 

0.1 1.81 ± 0.15 3.75 ± 0.23* 

0.5 2.60 ± 0.17 4.01 ± 0.52 

1 3.30 ± 0.29 4.10 ± 0.28 

10 3.55 ± 0.76 4.04 ± 0.72 

30 4.60 ± 0.23 4.14 ± 0.54 

100 3.96 ± 0.24 5.66 ± 0.35 

 

5.5.5 Total lipid content of Mexican Aedes aegypti treated with 0-100 μg ml-1 of 

chlortetracycline. 

The total lipid content of male and female mosquitoes varied from 0.243 to 0.378 mg, 

with the greatest lipid content being in male mosquitoes (Table: 5.11). Using a 2-way 

ANOVA, chlortetracycline treatment appears to have a significant effect on the lipid 

content within the mosquitoes (F6, 56 = 3.129, p<0.05) with a significant difference 

between sexes (F1, 56 = 220.023, p<0.001).  However, there was a significant difference in 

the response to chlortetracycline by the 2 sexes (F6, 56 = 3.910, p<0.01).  In female 

mosquitoes, the lipid content was significantly different at 1 and 30 μg ml-1 of 

chlortetracycline, where the lipid content increased from 0.246 mg in control mosquitoes 

to 0.278-0.300 mg.  In males, the lipid content was shown to significantly increase from 

0.328 mg in control mosquitoes to 0.363-0.378 mg at 0.5, 10 and 30 μg ml-1 of 

chlortetracycline.  

Table: 5.11. Total lipid content of mosquitoes treated with 0-100 μg ml-1 of 

chlortetracycline, number of replicates = 5 (Methods Chapter; Section: 2.5.6, page 48). 

Concentration  
of chlortetracycline (μg ml

-1
) 

Mean lipid content per mg of dry weight (mg) per fly  ± s.e (n=5)  

Male Female 

0 0.328 ± 0.015 0.246 ± 0.003 

0.1 0.326 ± 0.013 0.249 ± 0.003 

0.5 0.378 ± 0.014 0.243 ± 0.008 

1 0.340 ± 0.015 0.300 ± 0.006 

10 0.363 ± 0.013 0.252 ± 0.017 

30 0.367 ± 0.011 0.278 ± 0.008 

100 0.362 ± 0.009 0.264 ± 0.017 
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5.5.6 Dry weight of Mexican Aedes aegypti treated with 0-100 μg ml-1 of chlortetracycline  

The dry weight of the mosquitoes varied from 0.298 mg to 0.572 mg, with females having 

the greater weight (Table: 5.12).  A 2-way ANOVA showed that chlortetracycline had a 

significant effect on the dry weight of the mosquitoes (F6, 56 = 4.133, p<0.01). There was 

also a significant difference between male and female mosquitoes as described above   

(F1, 56 = 321.540, p<0.001).  However, there was not a significant interaction between 

chlortetracycline treatment and sex (F6, 56 = 1.970, p>0.05), suggesting that the response 

to chlortetracycline was the same in both sexes.  In female mosquitoes, the weight range 

increased to 0.540-0.572 mg compared with control mosquitoes with a weight of 0.456 

mg.  In male mosquitoes, the dry weight also increased to 0.351 mg at 100 μg ml-1 of 

chlortetracycline compared with control mosquitoes with a dry weight of 0.304 mg.   

Table: 5.12. Dry weight of mosquitoes treated with 0-100 μg ml-1 of chlortetracycline, 

number of replicates = 5 (Methods Chapter; Section: 2.5.6, page 48). 

Concentration  
of chlortetracycline  
(μg ml

-1
) 

Mean dry weight (mg) per fly  ± s.e (n=5) 

Male Female 

0 0.304 ± 0.009 0.456 ± 0.015 

0.1 0.298 ± 0.008 0.493 ± 0.007 

0.5 0.374 ± 0.020 0.487 ± 0.033 

1 0.308 ± 0.028 0.544 ± 0.012 

10 0.349 ± 0.017 0.506 ± 0.036 

30 0.337 ± 0.008 0.540 ± 0.028 

100 0.351 ± 0.010 0.572 ± 0.026 

 

5.5.7 Protein content of Mexican Aedes aegypti treated with 0-100 μg ml-1 of 

chlortetracycline 

The protein content was quantified in male and female mosquitoes which varied from 79-

177 µg with females having a larger quantity than males (Table: 5.13).  Wing length was 

used as a size covariate.  The observed difference in protein content between male and 

female was supported by the ANCOVA statistical analysis (F1, 54 = 24.196, p<0.001).  The 

wing length was significantly different (F1, 54 = 11.768, p<0.05). The statistical analysis 

demonstrated that there was a significant effect of chlortetracycline treatment on protein 

content (F6, 54 = 2.792, p<0.05), however different responses were observed with the 2 

sexes (F6, 54 = 7.034, p<0.001).    In female mosquitoes, there does not appear to be a 
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trend with protein content and increasing concentration of chlortetracycline.  However, in 

males a decrease in protein content was observed in treated mosquitoes (1-100 μg ml-1) 

compared with control; the protein content reduced from 113.95 μg to 94.63-78.98 μg.  

Table: 5.13: Protein content of mosquitoes treated with 0-100 μg ml-1 of 

chlortetracycline, number of replicates = 5 (Methods Chapter; Section: 2.5.3, page 46). 

Concentration  
of chlortetracycline (μg ml

-1
) 

Mean protein content µg per fly ± s.e (n=5,*4) 

Male Female 

0 113.95 ± 5.53 124.28 ± 6.95 

0.1 86.55 ± 2.90 140.23 ± 5.09 

0.5 86.84 ± 6.35 157.35 ± 9.06 

1 78.98 ± 4.25 147.22 ± 10.52 

10 91.78 ± 5.31 177.34 ± 7.18* 

30 91.95 ± 5.30  126.15 ± 4.71 

100 94.63 ± 5.52 154.74 ± 6.25 

 

5.6 Impacts of chlortetracycline on the culturable bacterial numbers and 

diversity in WT Aedes aegypti  

The impact of chlortetracycline on the colony forming units and the diversity of the 

bacteria cultured from the larvae and water treated with chlortetracycline was assessed.  

454 pyrosequencing was used to gain an insight into the diversity of culturable and non-

culturable bacteria of larvae, adult male and adult female mosquitoes.  The diversity of 

bacteria within control adult males was also compared with chlortetracycline treated 

males at 30 µg ml-1 of chlortetracycline.  The diversity of the bacteria in chlortetracycline 

treated adult males was chosen rather than female mosquitoes as RIDL® male mosquitoes 

are released into the wild to compete with male mosquitoes in the wild. 

5.6.1 Impacts of chlortetracycline on the culturable bacterial numbers in Asian WT Aedes 

aegypti and the rearing water for Asian WT Aedes aegypti 

To investigate the impact of chlortetracycline treatment on the bacterial numbers in 

Asian WT, larvae reared with 0-100 μg ml-1 of the antibiotic and the rearing water were 

plated onto agar plates (+/- 50 μg ml-1 of chlortetracycline) with 5 dilution factors. The 

number of colony forming units (CFUs) varied from 103 to 108 per larva (Table: 5.14). The 

number of CFUs found in larvae and water at different concentrations of chlortetracycline 

was reduced at 30 and 100 µg ml-1 (100,000 times lower than other treatments).  Colonies 

grew on plates supplemented with 50 µg ml-1 of chlortetracycline indicating that the 
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larvae and water bore chlortetracycline-resistant bacteria. In addition, with larval and 

water samples the number of colonies was reduced by 100-1000 fold on chlortetracycline 

plates relative to chlortetracycline-free plates.  In water and larvae, the number of CFUs 

on antibiotic plates was similar to antibiotic-free plates at high chlortetracycline 

concentrations, 30-100 µg ml-1 (Table: 5.14). 

Table: 5.14. Log10 CFUs of Asian wild-type mosquito larvae and water treated with 0-100 

µg ml-1 of chlortetracycline, number of replicates = 1 (Methods Chapter; Section: 2.4.2, 

page 43). 

 

The culturable bacteria of Asian Aedes aegypti larvae and rearing water were sampled 

from the agar plates (+/- 50 μg ml-1 of chlortetracycline), up to 5 colonies with different 

morphology were identified from each treatment.   

In control larvae the bacteria identified included: Microbacteria (Actinobacteria), 

Chryseobacterium meningosepticum (Bacteroidetes), Serratia marcescens/Pseudomonas 

fluorescens (Proteobacteria) and Leucobacter (Actinobacteria) (Appendix: Table: 7.32, 

7.33).  The Genera/species that were continually identified in the larvae across all 

treatments and in the water samples were; Serratia marcescens (Proteobacteria), 

Leucobacter (Actinobacteria), Chryseobacterium meningosepticum (Bacteroidetes) and 

Microbacteria. Genera/species that were not commonly found in other treatments and 

were only found in water samples were; Bacillus cereus (Firmicutes) in control water and 

Delftia (Proteobacteria) found at 100 μg ml-1 of chlortetracycline rearing water (Appendix: 

Table: 7.32, 7.33).  

Chlortetracycline 
concentration 
(µg ml-1) 

Log10  CFUs per larvae (n=1) Log10  CFUs per ml of water (n=1) 

Minus 
chlortetracycline 

plates 

Plus 
chlortetracycline 

plates 

Minus 
chlortetracycline 

plates 

Plus 
chlortetracycline 

plates 

0 8.346 4.797 8.598 6.659 

0.1 7.226 4.178 8.742 6.483 

0.5 6.705 5.251 8.809 5.699 

1 7.267 6.426 8.812 5.813 

10 6.962 3.828 8.812 6.301 

30 3.951 3.085 6.124 5.494 

100 3.186 3.693 6.556 6.107 
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These results suggest that the bacterial diversity in larvae treated with different 

concentrations of chlortetracycline does not appear to significantly change.  

Nevertheless, the relative total number of bacteria was significantly lowered with 30 and 

100 ug ml-1 treatments of chlortetracycline. Water and larvae showed similar species 

diversity.  The results have demonstrated that Microbacteria (Actinobacteria), 

Leucobacter (Actinobacteria), Serratia marcescens (Proteobacteria) and Chryseobacterium 

meningosepticum (Bacteroidetes) are the dominant culturable species in Asian Aedes 

aegypti larvae and in the rearing water. 

5.6.2 Chlortetracycline effects on the culturable bacterial numbers in Mexican WT Aedes 

aegypti and the rearing water for Mexican WT Aedes aegypti 

During the performance studies with Mexican wild-type mosquitoes, the number of 

colony forming units (CFUs) was quantified in the mosquito larvae.  The number of colony 

forming units (CFUs) varied from 103 to 108 per larva (Table: 5.15), showing a similar 

number of CFUs measured with Asian WT (Table: 5.14). 

Table: 5.15. Log10 CFUs of Mexican wild-type mosquito larvae and water treated with 0-

100 µg ml-1 of chlortetracycline during the performance studies, number of replicates = 

1 (Methods Chapter; Section: 2.4.2, page 43). 

 

A smaller and separate experiment investigating the impact of chlortetracycline on the 

bacterial content in Mexican wild-type larvae was also conducted with replicates to 

confirm the above results.  

A  Kolmogorov-Smirnov (KS) test was performed for the Log10 CFU data of larvae and 

water samples before the statistical analysis was conducted.  The data was significantly 

Chlortetracycline 
concentration 
(µgml

-1
) 

Log10  CFUs per larvae (n=1) Log10  CFUs per ml of water (n=1) 

Minus 
chlortetracycline 

plates 

Plus 
chlortetracycline 

plates 

Minus 
chlortetracycline 

plates 

Plus 
chlortetracycline 

plates 

0 8.028 2.263 8.602 4.283 

0.1 8.150 2.301 7.556 5.134 

0.5 6.368 3.222 6.00 4.477 

1 6.233 2.689 6.862 5.079 

10 4.590 3.699 6.903 5.079 

30 4.146 3.768 5.903 8.795 

100 4.865 4.768 5.326 5.903 
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different from the normal distribution (p<0.05), therefore the data was rank transformed 

before a Three-Way ANOVA was conducted.  It was shown that there was a significant 

effect of chlortetracycline (F6, 28 = 8.148, p<0.001) on the culturable bacterial content of 

mosquitoes and the water, with a significant difference between the presence and 

absence of chlortetracycline in the agar plates (F1, 28 = 184.254, p<0.001) (Table: 5.16).  A 

greater number of CFUs was observed with water samples at higher concentrations of 

chlortetracycline on antibiotic plates, with a 100 fold greater CFUs (Table: 5.16).   

Statistical analysis showed that there was a difference between the water and larvae 

samples (F1, 28 = 48.395, p<0.001).  The response of the water and larvae samples to 

chlortetracycline treatment was significantly different (F6, 28 = 3.337, p<0.05), the number 

of CFUs measured in larvae was reduced by 1000 fold, however, in water it was only 

reduced by 8 fold (Table: 5.16).  On chlortetracycline supplemented agar plates, the CFUs 

observed were significantly reduced to 106 in control samples (F1, 28 = 5.994, p<0.05) 

(Table: 5.16).  Furthermore, the difference between chlortetracycline supplemented agar 

plates and non-supplemented plates was less pronounced with treatments at higher 

concentrations of chlortetracycline (30-100 μg ml-1) with less than a 2 fold difference (F6, 

28 = 22.676, p<0.001).  Statistical analysis also showed that the three-way interaction 

(Treatment*Sample Type*+/-Chlortetracycline on agar plates) was not significantly 

different (H6, 28 = 49.244, p>0.05). 

Table: 5.16. Log10 CFUs of Mexican wild-type mosquito larvae and rearing water treated 

with 0-100 µg ml-1 of chlortetracycline, number of replicates = 2 (Methods Chapter; 

Section: 2.4.2, page 43). 

Chlortetracycline 
concentration 
(µg ml

-1
) 

Mean Log10  CFUs per larvae (n=2) ± s.e Mean Log10 CFUs per ml of water (n=2) 
± s.e 

Minus 
chlortetracycline 

plates 

Plus 
chlortetracycline 

plates 

Minus 
chlortetracycline 

plates 

Plus 
chlortetracycline 

plates 

0 8.199 ± 0.24 1.673 ± 0.15 8.846 ± 0.02 3.628 ± 1.15 

0.1 8.308 ± 0.13 3.184 ± 1.49 8.947 ± 0.07 5.396 ± 0.07 

0.5 7.539 ± 0.21 4.068 ± 0.60 8.375 ± 0.21 4.758 ± 0.06 

1 7.495 ± 0.001 4.885 ± 0.11 8.360 ± 0.34 4.690 ± 0.54 

10 7.689 ± 0.27 7.990 ± 0.06 8.322 ± 0.28 7.789 ± 0.06 

30 5.409 ± 0.56 5.588 ± 1.11 7.288 ± 0.39 6.681 ± 0.10 

100 4.539 ± 0.97 4.518 ± 0.78 7.906 ± 0.01 7.981 ± 0.06 
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The culturable bacteria were also sampled from the agar plates in which the numbers of 

CFUs were counted, up to 6 colonies were identified from each treatment, including both 

samples of water and larvae and on plates supplemented with chlortetracycline.  In 

control larvae the bacteria identified included: Microbacterium laevaniformans 

(Actinobacteria), Elizabethkingia meningoseptica (Bacteroidetes) and Serratia marcescens 

(Proteobacteria) (Appendix: Table: 7.34, 7.35).  The following Genera/species were 

continually identified in all treatments, Elizabethkingia meningoseptica (Bacteroidetes), 

Serratia marcescens (Proteobacteria) and Microbacteria. However, new Genera/species 

including Leucobacter (Actinobacteria) (0.1 μg ml-1 of chlortetracycline), Arthrobacter 

woluwensis (Actinobacteria) (0.5 μg ml-1 of chlortetracycline) and Klebsiella pneumoniae 

(Proteobacteria) (10 and 100 μg ml-1 of chlortetracycline) were also identified in other 

treatments (Appendix: Table: 7.34, 7.35).  In the water samples, the Genera/species that 

were identified were very similar to those identified in the larvae with the only difference 

being the identification of Ochrobactrum (Proteobacteria) and Delftia (Proteobacteria) 

found at 0.5 μg ml-1 of chlortetracycline and Chryseobacterium meningosepticum 

(Bacteroidetes) at 1 μg ml-1 of chlortetracycline (Appendix: Table: 7.34, 7.35). 

5.6.3 454 pyrosequencing analysis of Mexican WT Aedes aegypti 

The 454 pyrosequencing analysis of control Mexican WT larvae showed that the diversity 

of microbes found in the larvae were predominantly Actinobacteria with a low number of 

Proteobacteria (Appendix: Table: 7.36). The member of the phylum, Actinobacteria which 

made up 95% of the population was Microbacterium laevaniformans strain NML, this 

bacterium was also identified during culturable techniques (Appendix: Table: 7.34, 7.35).  

However, in adult male mosquitoes, the diversity was altered; the member of the phylum 

Bacteroidetes made up 93% of the sequence hits showing that the diversity of bacteria 

shifted from Actinobacteria (which was also identified using culturable techniques) to 

Bacteroidetes from larvae to adulthood (Appendix: Table: 7.37).  In adult females, a 

similar observation was observed with a majority of 80% of the reads belonging to the 

phylum Bacteroidetes with 15% belonging to Proteobacteria (Appendix: Table: 7.39).  

When the adult male mosquitoes were treated with chlortetracycline, the dominant 

bacterium present was a member of the phylum Proteobacteria with 76% of the total 

reads and Bacteroidetes having 17% (Appendix: Table: 7.38). 
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5.7 Discussion 

Preliminary experiments with LA513A treated with 0-100 µg ml-1 suggested that LA513 

were able to survive on 0.1 µg ml-1 and above.  The experiment was therefore repeated 

with 0.01-30 µg ml-1 to determine the minimal concentration.  Survival to pupae and 

adulthood suggest that 0.5 µg ml-1 and above of chlortetracycline was required to 

suppress the expression of tTAV.  However, at 0.1 µg ml-1 survival to pupae was high, 29% 

of the pupae failed to emerge as adults, suggesting that the tTAV was still expressed at a 

high enough level to cause lethality.  The fluorescence images of the expression of DsRed 

in the larvae showed a reduction in DsRed fluorescence in the mosquito larvae at 0.1 µg 

ml-1 and above. This may suggest that the level of DsRed expression is affected by the 

chlortetracycline concentration and that the DsRed expression may be enhanced by the 

positive feedback loop of the RIDL® system, which is being expressed in the absence of 

chlortetracycline, linking the fluorescence expression with the RIDL® expression. The link 

with fluorescence and the enhanced DsRed expression with the RIDL® system is also 

supported by the survival data which suggest that at concentrations below 0.1 µg ml-1 of 

chlortetracycline, poor survival is observed suggesting that the lethal gene is being 

expressed. 

As RIDL® mosquitoes will be released into the wild; life-span was considered an important 

performance assay to ensure that the RIDL® males will live long enough to mate with wild 

females.  Life-span results showed that 10 and 30 µg ml-1 of chlortetracycline gave the 

longest life-span.  Interestingly, in males 0.5-1 µg ml-1 of chlortetracycline doubled the life-

span compared with 0.1 µg ml-1.  This result supports the survival data measured during 

this study, where it was demonstrated that at 0.1 µg ml-1 of chlortetracycline the level of 

survival was not as high as at 0.5 µg ml-1 and above of chlortetracycline.  The life-span 

data also suggest that males are more sensitive to chlortetracycline concentration with a 

greater difference between 0.1 and 0.5 µg ml-1 and above compared with females.   

The conclusions made with the life-span data is also supported by the development data 

which showed that the development time of male mosquitoes to pupae and adulthood 

decreased to 9 days with 10-30 µg ml-1 of chlortetracycline and 11 days with 0.5-30 µg ml-

1 of chlortetracycline, respectively.  In females there was no difference in development 

time to pupae however, at 0.5 µg ml-1 and above an increase in development time to 



157 

 

adulthood was observed.  This response was not observed in Asian wild type mosquitoes 

at this concentration, therefore there could be an interaction between the transgene and 

chlortetracycline.   

As with Drosophila melanogaster, experiments with wild-type Aedes aegypti did indicate 

a significant impact on the time to peak emergence with chlortetracycline treatment.  

Experiments with Mexican Aedes aegypti indicated that control and high concentrations 

of chlortetracycline significantly extended peak emergence and low to medium 

concentrations of 0.1-10 µg ml-1 reduced the time to peak emergence in Mexican Aedes 

aegypti. This result suggests that chlortetracycline could promote development rates by 

removing deleterious bacteria.  Extension of peak emergence at high concentrations 

could be the result of the toxic effect of the antibiotic.  Unlike Mexican Aedes aegypti, 

Asian Aedes aegypti peak emergence did not show a trend with chlortetracycline 

treatment.   

The survival data to adulthood differed for Mexican and Asian mosquitoes; there was no 

significant effect of the survival with Asian WT but with Mexican WT a decrease in survival 

was observed at 100 µg ml-1 of chlortetracycline.  This result suggests that Mexican WT 

was more sensitive to chlortetracycline treatment unlike Asian WT which had previous 

exposure to chlortetracycline (through exposure from contaminated trays and water) and 

therefore was more tolerant to the antibiotic. 

Asian WT female mosquitoes had an extended life-span when treated with 

chlortetracycline, which suggests that the antibiotic could eliminate bacteria that are 

deletrious on the performance of the insect, this result is also supported by the findings 

of Lang et al (1972), which showed that the axenic mosquitoes had a greater life-span.  

Nevertheless, Mexican WT mosquitoes had a life-span that was significantly reduced in 

both sexes when treated with chlortetracycline (0.5-100 µg ml-1).   This suggests that the 

shortening of life-span could be due to the depletion of bacteria as the reduction was 

observed at concentrations of chlortetracycline where the bacterial CFUs were reduced 

from 108 to 103-7 in larvae.  Furthermore, the reduction was observed at low 

concentrations of chlortetracycline as well as high concentrations, which could eliminate 

toxicity as the main reason for the reduction.  Another reason for the reduction in life-

span may not necessarily be a due to a decrease in bacterial numbers but it could be due 
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to the change in diversity of the bacteria within the mosquito.  Mexican WT mosquitoes 

were recently isolated from Mexico (2006), therefore the greater sensitivity may be due 

to the fact that this strain has been reared in laboratory conditions for less time in 

comparison to Asian WT.  

Interestingly, wing length was significantly altered with Asian not Mexican mosquitoes.  In 

Asian mosquitoes, wing length was decreased at 100 µg ml-1 which would suggest that 

the high concentration of chlortetracycline had a negative impact on the insect.  

Furthermore, the wing length of control flies was significantly reduced which suggests 

that high bacterial numbers (108 CFUs in larvae) could have had a negative impact on the 

mosquito and the presence of a small amount of chlortetracycline could actually remove 

deleterious bacteria and promote mosquito performance.   

Chlortetracycline was established to have a significant impact on the dry weight of both 

Asian and Mexican mosquitoes.  In both of these strains, it was demonstrated that the 

mosquito dry weight was significantly increased when treated with chlortetracycline 

(Tables: 5.5, 5.12) in both male and female adults upon emergence.  This result was 

unexpected as the quantity of protein (in Mexican WT only) decreased in males with 

chlortetracycline treatment and lipid (Asian WT only) did not significantly alter in both 

male and female mosquitoes.  The reason for the decrease in protein content of male 

Mexican mosquitoes could be due to one or a combination of factors such as the removal 

of bacteria, a change in the diversity of the bacteria and toxicity of chlortetracycline. 

The lipid content of the mosquitoes were not significantly changed in Asian WT, and only 

significantly increased at 1 and 30 µg ml-1 of chlortetracycline with female Mexican WT 

and 0.5, 10 and 30 µg ml-1 of chlortetracycline with male Mexican WT.  The publication by 

Lang et al (1972) suggested that the percent lipid content of pupae was significantly 

reduced in axenic mosquitoes, however this change was not observed in the experiments 

described in this chapter using adult mosquitoes.  Chlortetracycline treatment in this 

study did not eliminate all the bacteria found in the mosquitoes and pupae were not 

sampled, therefore if the mosquitoes were produced axenically and different life-stages 

were sampled then a difference may have been identified.   
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Carbohydrate quantification results for chlortetracycline treated mosquito gave more 

variable results.  With glycogen, there was no significant effect of chlortetracycline 

treatment on the quantities within the insects of either sex.  The reason for this may be 

that chlortetracycline does not eliminate all the bacteria within the mosquitoes and 

experiments with axenic mosquitoes may show a stronger effect.  In general, the 

trehalose concentration was shown to be reduced in male and female mosquitoes when 

treated with chlortetracycline compared with control mosquitoes.  However, in female 

mosquitoes the decrease occurred with all concentrations of chlortetracycline except at 

100 µg ml-1 of chlortetracycline where the trehalose quantity was similar to control 

mosquitoes.  This increase of trehalose at this high chlortetracycline concentrations 

suggest that chlortetracycline itself may be causing the change as it does not follow the 

trend with the other concentrations of chlortetracycline.  The reduction in trehalose could 

also be explained by a change in diversity of the bacteria found within the mosquitoes 

which may not affect the glycogen levels but impact the concentration of trehalose 

circulating in the hemolymph. 

The experiments investigating the impact of the chlortetracycline treatment on the 

microbiota demonstrated that culturable bacteria (CFUs) were still found in Asian and 

Mexican Aedes aegypti even at high concentrations of chlortetracycline treatments.  

Furthermore, colonies grew on plates supplemented with 50 µg ml-1 of chlortetracycline 

suggesting that the larvae and water bore chlortetracycline-resistant bacteria and could 

explain why the impact of chlortetracycline on the mosquitoes was not as great when 

compared with Drosophila melanogaster treated with chlortetracycline. 

The culturable bacterial diversity in larvae in control and chlortetracycline treatment did 

not appear to alter, 454 analysis would provide data to confirm this result.  

Species/Genera such as Microbacteria, Elizabethkingia meningoseptica, Leucobacter and 

Serratia marcescens were continually identified in all samples.  The rearing water also 

contained similar species which does suggest that the mosquitoes gain the bacteria from 

the water.  One possibility is that the bacteria may originate from within the egg or on the 

egg surface and the introduction to water allows growth and replication of the bacteria, 

providing a food source.  Fish food was another possibility, which was fed to the larvae 

and may have provided the symbionts.  One argument against this hypothesis is that 
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similar bacteria have been found by other research groups with mosquitoes obtained 

from the wild and with other species of mosquitoes (Demaio et al., 1996; Gusmão et al., 

2010) suggesting that the fish food may not be solely responsible for the species found 

within the mosquitoes.       

The larval 454 data showed similarities with the data obtained with culturable data, which 

suggests that many of the bacteria found within the mosquitoes are culturable. 

Interestingly, the 454 data analysis with control versus chlortetracycline treated adult 

male mosquitoes demonstrated a change in bacterial diversity.  In control mosquitoes the 

major bacterium was Elizabethkingia meningoseptica and with chlortetracycline 

treatment Raoultella sp. was dominant and Elizabethkingia meningoseptica being the 

second most common species.  This change in diversity may be due to the reduction in 

chlortetracycline sensitive species which allows for the replication and growth of those 

which were resistant.   

The 454 and culturable bacterial analysis has shown that the majority of the microbes 

that inhabit the mosquitoes are common soil and water bacteria.  Klebsiella, Serratia, 

Enterobacter and Arthrobacter are such bacteria (Madigan et al., 2003, p379).  This would 

be expected as mosquitoes develop in rain water fed small pools of water.   

The presence of bacteria at 100 µg ml-1 of chlortetracycline does suggest that the 

microbes are antibiotic resistant.  This was perhaps not surprising with the strain reared 

at Oxitec Ltd, where both transgenic mosquitoes requiring chlortetracycline and wild-type 

mosquitoes were reared in the same room and in the same rearing trays, allowing wild-

type mosquitoes to be exposed to residual chlortetracycline.  In the Mexican WT 

mosquitoes resistant bacteria were also found, which was unexpected.  It has became 

apparent that this was not uncommon and even in areas where waste containing 

antibiotics was rare, such as the Arctic where low levels of Ampicillin resistance was 

observed in bacteria of Polar bear faeces (Glad et al., 2010).  Antibiotic resistance exists 

naturally but the excessive use of chlortetracycline in agriculture in countries such as the 

USA and Europe to promote health and growth of cattle has meant that the selection 

pressure has increased leading to bacterial resistant strains to tetracycline to rise 

(Frappaolo and Guest, 1986; Dibner and Richards, 2005; Allen et al., 2010).  
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5.8 Conclusion 

Aedes aegypti are mainly colonised by bacteria commonly found in soil and water such as 

Klebsiella, Serratia and Arthrobacter (Madigan et al., 2003, p379).  The bacteria found in 

these mosquitoes show chlortetracycline resistance.  However, there does appear to be a 

distinct change in the diversity of the bacteria found in Mexican WT treated with 

chlortetracycline compared with control mosquitoes where the the dominant bacterium 

switched from Elizabethkingia meningoseptica to Raoultella sp with chlortetracycline 

treatment.   

Chlortetracycline affected the survival, life-span and the nutrition of wild-type Aedes 

aegypti. However, the chlortetracycline treatment did not entirely eliminate the 

microbiota and there were still negative impacts on performance.  This could be due to a 

reduction in the bacterial population, a change in diversity and/or due to the direct 

effects of chlortetracycline on the insects.  

The performance experiments with the transgenic line, LA513 demonstrate that these 

mosquitoes can be reared on chlortetracycline at concentrations lower than currently 

used (30 µg ml-1).  The results suggest that concentrations as low as 0.5 µg ml-1 can be 

used to rear LA513 nevertheless, the recommendation for rearing would be a 

concentration of 10 µg ml-1.  This concentration maintains an efficacy margin of more 

than an order of magnitude for error and accounts for chlortetracycline degradation 

(chlortetracycline is light sensitive) and the biodegradation of chlortetracycline by the 

insects.   
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Chapter 6: Discussion 

The research described in this thesis has demonstrated the deleterious impacts of 

chlortetracycline treatment on two dipteran insects; Drosophila melanogaster and Aedes 

aegypti.  Egg dechorionation was also used during this project, an alternative and 

preferable method of removing bacteria from Drosophila as it removes bacteria and does 

not damage the egg.  This method of eliminating bacteria in Drosophila improved the 

understanding of the impact of chlortetracycline and the result of eliminating bacteria. An 

alternative method of bacterial depletion in mosquitoes would also create a greater 

understanding of the role of the microbes found within this insect.   

6.1 The study of insect-microbe interactions in Drosophila melanogaster and 

Aedes aegypti 

The study of microbes within insects has become increasingly popular for several reasons; 

to increase the understanding of the insect-microbe interaction as a tool for the control 

of insect populations, and to increase the understanding of the role of gut microbes in 

humans.  The results gained from the experiments using Drosophila melanogaster and 

Aedes aegypti during this project can be used for different applications.   

Firstly, Drosophila can be used as a model for determining the role of gut microbes in 

humans. The experiments with Drosophila have improved our understanding of the role 

of bacteria in the nutrition and metabolism of the fly.  Drosophila is a suitable model to 

use as it has a very low diversity of bacteria in the gut (with the flies on the York diet 

consisting of mainly Acetobacter species), can be easily manipulated, the environment 

and diet can be tightly controlled, the whole genome has been sequenced (Adams et al., 

2000) and mutant flies can be produced with relative ease compared with other insects.   

In mice, mutants have been created to understand the relationship between the human 

gut and Bacteroides (Salyers and Pajeau 1989) and the role of bacteria in inflammatory 

diseases (Boivin et al., 1997).  Therefore, the creation of Drosophila mutants will: 1) 

identify the relationship between Acetobacter/Lactobacillus and the Drosophila host and 

their role in metabolism and growth and 2) identify the role of microbes in immunity and 

disease.  Mutant Drosophila may be useful in identifying the reason for the extension in 

development time when bacteria are depleted in the gut. This could be the result of 
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changes in the insulin/insulin-like growth factor signalling which has previously been 

shown to control the time to pupation and reach the critical weight for pupation (Edgar, 

2006; Bakker, 1959; Beadle et al., 1938; Moed et al., 1999; Robertson, 1963).  These 

changes can be confirmed using qRT-PCR and microarray data with first instar, second 

instar, third instar, prepupa and pupa.  Mutants could also be used to confirm the role of 

genes through inactivation and comparing the development of wild-type flies.  

Furthermore, the use of mutants could improve the understanding of the relationship 

between the host and gut bacteria and their role in the Drosophila immune system where 

a reduction in antimicrobial peptide gene expression has been demonstrated in this thesis 

and by Ren et al (2007) in bacteria depleted flies. 

Another major advantage of using Drosophila to examine the role of gut microbes is the 

differences in response to diet. The difference was emphasised in this thesis, by Ren et al 

(2007) and Brummel et al (2004).  As aging and metabolic studies using Drosophila have 

shown, diet impacts the fecundity and life-span of the fly (Chapter 1, Piper et al., 2005).  

The ratio of protein and carbohydrates have been demonstrated to be responsible for the 

changes in life-span (1:16 protein:carbohydrate ratio) and fecundity (1:2 

protein:carbohydrate ratio) and not dietary restriction (Lee et al., 2008 and Ja et al., 

2009).  Feeding behaviour was analysed by Ja et al (2009) to eliminate the difference in 

feeding rates for the reason for changes during dietary restriction.  One advantage with 

Drosophila, is that the development of the CAFE (Capillary feeder) assay by Ja et al (2007) 

has enabled the quantification and the monitor of feeding behaviour of the flies.  This 

technique could be used with antibiotic treated and dechorionated flies to determine 

whether the nutrition of the fly and extension in development time is of the result of 

bacterial depletion or changes in feeding behaviour.  The quantification of food intake will 

allow for an approximation of the concentration of chlortetracycline that the flies are 

consuming and not just exposed to. Furthermore, the difference in the response to diet 

by Drosophila will enable the study of microbe and diet interactions. 

With mosquitoes (mainly with Anopheles gambiae), research with bacterial symbionts has 

concentrated on a method of controlling the insect populations rather than using the 

insect as a model for human health.  The increasing interest in using bacteria to control 

insect pests is due to the limitations of other methods for reducing the mosquito 
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populations or prevalence of vector related diseases. An example is to genetically 

engineer resident microbes to express anti-plasmodium factors (Riehle et al., 2007) and 

to identify resident microbes which reduce the susceptibility to plasmodium infection 

(Dong et al., 2009).  

The relative ease (not as easy as Drosophila) to genetically transform Aedes aegypti could 

allow for potential methods to 1) gain increasing knowledge regarding the relationship 

between the mosquito host and the bacterial species found within the host and 2) 

manipulate the insect host to disrupt the beneficial relationship between the host and 

bacteria, allowing for a method of controlling the population of the insect. 

The identification of bacteria found within Aedes aegypti could allow for experiments 

involving the rearing of axenic mosquitoes. Infection studies with the identified bacterial 

species including Serratia have the potential to inform us about the role of bacteria in 

mosquitoes which would allow for manipulation of certain species that may play a key 

role in sugar and blood metabolism.  Targeting these bacteria could limit the metabolism 

of key nutrients, leading to the malaise of the insect host and eventual death, an effective 

method of controlling insect vectors of human diseases. 

6.2 The use of antibiotics and bacterial depletion  

The experiments using chlortetracycline to deplete bacterial communities within 

Drosophila melanogaster and Aedes aegypti have demonstrated that the two insects and 

their symbionts respond differently to the antibiotic treatment.  Drosophila melanogaster 

have been confirmed to not entirely depend on their gut symbionts, this was also 

observed by Brummel et al (2004), Ren et al (2007) and Bakula (1969).  This response is 

very different to aphids, where the elimination of its symbionts significantly reduces the 

size and fecundity of the insect (Houk and Griffiths, 1980; Mittler, 1971; Sasaki et al., 

1991).  In fact, Drosophila appears to have an improved survival and no reduction in 

fecundity and size.   

Unlike Drosophila, chlortetracycline treatment of Aedes aegypti did not eliminate all the 

bacteria within the insect (still containing several thousand colony forming units at 100 µg 

ml-1) suggesting that the use of chlortetracycline may not be a useful method to eliminate 

all the bacterial population within Aedes aegypti. A higher concentration of 
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chlortetracycline may have reduced the numbers further, however, a combination of 

antibiotics or rearing axenically (Lang et al., 1972) are other methods that could be used.  

As deleterious impacts of using an antibiotic have been identified during this project, it 

may be preferable to rear the mosquitoes axenically rather than using a combination of 

antibiotics.  

From this thesis it is demonstrated that chlortetracycline and dechorionation have 

produced different results, with the performance traits including fecundity, life-span and 

metabolism.  A significant impact of dechorionation with immune gene expression was 

observed in this thesis; however, the impact of chlortetracycline on the gene expression 

was not conducted.  This experiment would prove an important tool in explaining the 

differences between the 2 methods of dechorionation and chlortetracycline treatment 

and gain more information regarding the impact of chlortetracycline and an insight into 

the result of using certain methods of bacterial depletion. 

The elimination of entire populations of bacteria within the insect host is a crude method 

of developing our understanding of the role of microbes within the host. There are 

several considerations to be made when planning to eliminate bacteria as described 

previously, total elimination of bacteria can lead to a general malaise of the insect.  

Furthermore, the complete removal of bacteria provides information regarding the 

impact of eliminating the entire community but does not provide information regarding 

the role of each species of bacteria.  Introduction studies with axenic flies and exposure 

to bacterial symbionts such as Acetobacter will develop the understanding of the function 

of individual species within the gut.  Moreover, these experiments could be developed 

further by introducing a mix of bacterial symbionts to determine how certain bacterial 

communities impact the insect host.  Infection studies with symbionts and pathogens 

could also provide information regarding the role of these symbionts in the protection of 

the host against pathogens such as Serratia and Enterococcus (Flyg et al., 1980; Basset et 

al., 2000).  
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6.3 The treatment of insects with chlortetracycline and its implications for 

Oxitec Ltd  

This thesis has emphasized the implications of using antibiotics to deplete bacteria. As 

results have shown, chlortetracycline has a greater deleterious impact on Drosophila 

when compared with dechorionation. This has highlighted the implications of using 

chlortetracycline to conduct experiments where bacterial depletion is required or for the 

use of tetracycline on/off genetic expression systems. Whereas a lower number of 

deleterious impacts of chlortetracycline were observed on the performance of Aedes 

aegypti in comparison with Drosophila, other insects may respond in a similar manner to 

Drosophila.  Therefore, this implication should be acknowledged by companies who 

regularly use antibiotics such as Oxitec Ltd.   

For Oxitec Ltd, it is crucial to ensure that when comparisons between the performance of 

wild-type and transgenic insects are made, that a chlortetracycline treated wild-type and 

transgenic be included in the analysis to differentiate between the deleterious impacts of 

the insertion of a transgene and the treatment with chlortetracycline.  

The treatment of small insects with chlortetracycline by Oxitec Ltd, does need to be at a 

concentration which is high enough to suppress the transgene but low enough to limit the 

deleterious impact on the insect and bacterial symbionts.  As with the experiments 

conducted in this thesis, it was shown that 10 µg ml-1 of chlortetracycline was the advised 

quantity required for LA513 to suppress the bi-sex lethal gene.  This concentration was 

lower than 30-100 µg ml-1 where deleterious impacts were observed on wild-type 

mosquitoes.  One important fitness trait which was addressed was the life-span of the 

insect host when treated with chlortetracycline; this experiment suggested that high 

concentrations (30-100 µg ml-1) significantly reduced the life-span of the mosquitoes 

(Mexican only). 

Life-span is one of the most important performance measurements for Oxitec Ltd as they 

will require the mosquito to live long enough to mate with wild female mosquitoes.  If the 

life-span is significantly reduced then the release of transgenic mosquitoes to control 

mosquito populations will prove to be unsuccessful.  Another important performance 

trait is fecundity, experiments with Drosophila melanogaster did suggest that 
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chlortetracycline did significantly impact the fecundity of female flies. Time limitations 

prevented this experiment to be conducted with mosquitoes, however,  it may prove a 

crucial experiment for the assessment of transgenic mosquitoes.    

On the other hand, the deleterious impact of the antibiotic on the mosquito may have 

been proved to not significantly alter the fitness of the mosquito to the point where it is 

unable to perform as well as mosquitoes in the wild.  The recent successful field studies 

conducted by Oxitec Ltd with LA513 in Grand Cayman did show that the transgenic 

population successfully mated with mosquitoes in the wild and significantly reduced the 

population of the dengue carrying Aedes aegypti (http://www.oxitec.com/wp-

content/uploads/2010/11/Oxitec-MRCU-press-release.pdf, www.newscientist.com).  

Despite the fact that chlortetracycline-resistant bacteria in mosquitoes have limited the 

deleterious impact of the antibiotic on the mosquito, with Drosophila the deleterious 

impact of antibiotic treatment was an example where chlortetracycline could 

substantially impact the insect host.  Oxitec Ltd is also developing RIDL® in other insects 

including the Mediterranean fruit fly, Mexican fruit fly and the olive fly.  The olive fly 

(Bactrocera oleae) has been demonstrated to have a major symbiont, Acetobacter 

(Kounatidis et al., 2009).  This symbiont was also the major symbiont of the Drosophila 

used in the studies described in this thesis, therefore could the treatment of 

chlortetracycline remove the major symbiont of the olive fly and impact the performance 

of the insect? If so, it could prove more difficult for a RIDL® insect to be produced and 

compete successfully with insects in the wild.  In addition, Drosophila melanogaster could 

be used as model for investigating the impact of removing the major symbionts of 

Lactobacillus and Acetobacter from the host.  This research could improve the 

understanding of the role of these symbionts which could provide methods of pest 

control with insects where their major symbionts are Lactobacillus and Acetobacter.  If 

reminiscent of Drosophila, the olive fly could undergo changes in nutrition, metabolism 

and development and these symbionts could be used as a method to control these 

agricultural pests. 

As described previously and during this thesis, a difference in response to 

chlortetracycline was observed with mosquitoes and in Drosophila.  This result should be 

considered by groups including Oxitec Ltd when treating other insects with 
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chlortetracycline, it would be advised to determine the impact of this antibiotic on the 

performance on the insect before continuing with experiments and techniques such as 

RIDL®.  However, bacterial depletion in the 2 insects tested during this project were not 

affected as much as insects with a tight interaction such as aphids and tsetse flies, the use 

of antibiotics should be decided with caution as an insect may be suitable for RIDL® but 

the fitness may be compromised through the use of chlortetracycline. 

If the fitness of the insect was significantly compromised due to bacterial depletion 

through chlortetracycline treatment, the identification and culture of the beneficial 

symbionts could allow for the re-introduction of these symbionts into the insect host.  

Niyazi et al (2004) re-introduced two symbionts (Enterobacter agglomerans and Klebsiella 

pneumoniae) into Mediterranean fruit flies through feeding.  This introduction improved 

their survival and mating numbers, highlighting the importance of the gut microbes in the 

fitness of the host (Niyazi et al., 2004).  This re-introduction with insects used by Oxitec 

Ltd would be difficult as it would not be possible to provide the bacteria in the food which 

is also supplemented with an antibiotic.  However, when rearing transgenic mosquitoes 

such as the strain LA513, chlortetracycline treatment is only required at the larval to 

pupal stage and not at the adult stage. Therefore, bacteria could be re-introduced into 

the adult male populations before they are released into the wild to mate with females.  

6.4 The use of chlortetracycline, antibiotic resistance, the microbial 

community and its implications for Oxitec Ltd  

Species of bacteria were still present within Aedes aegypti treated with 0-100 µg ml-1 of 

chlortetracycline, suggesting the presence of chlortetracycline resistant strains within the 

mosquitoes. To ensure these bacteria were chlortetracycline resistant the bacteria were 

also cultured overnight in nutrient broth +/- chlortetracycline.  Further methods to detect 

chlortetracycline resistance by identifying the presence of different groups of tetracycline 

resistance genes including Tet(A), Tet(M) and Tet(O) using conventional polymerase chain 

reaction or multiplex PCR (Ng et al., 2001) would improve the understanding of the 

prevalence of tetracycline resistance.  

Chlortetracycline resistance was observed in mosquitoes reared at Oxitec Ltd and with a 

population with no prior contact with chlortetracycline in the laboratory.  This suggests 
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that wild populations of mosquitoes may already contain antibiotic resistant strains. The 

exposure to this antibiotic in the laboratory could promote the establishment of a gut 

microbiota dominated by bacterial populations that are already resistant to the antibiotic 

and therefore, treatment could change the overall diversity within the insect gut which 

was observed in adult male mosquitoes in Chapter 5. 

Not only should chlortetracycline be considered as an antibiotic, but also as a signalling 

molecule.  Antibiotics play a role in the communication between bacteria within complex 

bacterial communities (Yim et al., 2007).  The experiments with Aedes aegypti did not 

show a change in the number of bacteria at treatments of low concentrations of 

chlortetracycline. However, the community/diversity may still have altered through the 

introduction of this signalling molecule resulting in changes in the communication 

between bacteria within the insect gut (Yim et al., 2007). The introduction of these 

antibiotics could alter the maintenance of the community (Yim et al., 2007).  Celli and 

Trieu-Cuot (1998) demonstrated that exposure to tetracycline enhanced horizontal gene 

transfer.  Therefore, Oxitec Ltd should consider the environmental impacts when using 

large quantities of chlortetracycline, especially when using chlortetracycline water when 

rearing mosquito larvae.  Such volumes of chlortetracycline rearing water could be 

substantial when mass rearing mosquitoes. As demonstrated through the over-use of 

antibiotics in agriculture (Kümmerer et al., 2004) the release of the chlortetracycline into 

the water systems could increase chlortetracycline resistant bacteria within the 

environment, and the persistence of microbes with chlortetracycline resistance. 

Moreover, high usage of the antibiotic could result in increasing levels of gene transfer 

between bacterial communities and an alteration in the communication between 

bacterial communities found within the environment.   

To limit the release of chlortetracycline into the environment, Oxitec Ltd should consider 

treating the water with UV light and high temperatures, 2 conditions which 

chlortetracycline is sensitive.   In addition, limit the exposure of wild-type mosquitoes at 

Oxitec Ltd.  These insects should be kept separately from the transgenic mosquitoes and 

the rearing equipment should be thoroughly decontaminated to prevent unnecessary 

exposure to chlortetracycline and to chlortetracycline-resistant bacteria found within the 

mosquitoes.   
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Not only should the impact on the host and environment be considered but also the 

employees who work with the insects.  The antibiotic-resistant bacteria could be exposed 

to employees and if an infection was to occur, then treatment with antibiotics could 

prove to be more difficult.  Furthermore, the bacteria carrying chlortetracycline 

resistance genes within the mosquitoes could transfer chlortetracycline resistant genes to 

pathogens.  The development of chlortetracycline resistance could reduce the ability to 

treat infections within animals and humans if exposed to these mosquitoes in the 

laboratory and if/when they are released into the wild.  If Oxitec Ltd were to release 

mosquitoes carrying bacteria with the tetracycline resistance gene, these bacteria could 

be introduced into the environment and create problems with treating infections.   

Bacteria identified in Aedes aegypti have also been implicated in human diseases. One of 

the bacteria identified in Aedes aegypti was Chryseobacterium 

meningosepticum/Elizabethkingia meningiseptica. This continual identification of this 

bacterium by myself and by others (Dong et al., 2009) suggests that it is not a pathogen of 

mosquitoes, however, this bacterium has been documented to cause meningitis and 

sepsis in infants and immunocompromised individuals in Taiwan (Chui et al., 2000).  In 

addition, Serratia marcescens found in Aedes aegypti has been identified as an 

opportunistic pathogen infecting and causing death of individuals during an epidemic and 

also carrying antibiotic resistance (Schaberg et al., 1976).  The presence of pathogens and 

the suggestion that these bacteria are antibiotic resistant highlights the importance of 

ensuring that exposed individuals are prevented from being infected with these bacteria. 

6.5 Overall conclusion 

In conclusion, the work in this thesis has revealed the importance of host-symbiont 

interactions of Drosophila melanogaster and Aedes aegypti.  The deleterious effects of 

chlortetracycline treatment emphasise the implications of using antibiotics to control 

genetic systems for insect pest management and as a method to determine the impact of 

bacterial depletion.  Egg dechorionation with Drosophila melanogaster has provided an 

alternative tool to evaluate bacterial depletion and to determine the impact of 

chlortetracycline treatment.   
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7.0 Appendix 

7.1. Bacterial identification of culturable bacteria in Drosophila treated with 

and without chlortetracycline and the rearing food  

Table: 7.1.  Bacterial identities from 16S rRNA gene analysis in control Drosophila 

melanogaster and the food used to rear the insects. 

 

Larvae Food 

EU096229.1 - Acetobacter pomorum strain 
EW816 16S ribosomal RNA gene, partial 
sequence (97%) 

EU096229.1 - Acetobacter pomorum strain 
EW816 16S ribosomal RNA gene, partial 
sequence (97%) 

GQ359863.1 - Acetobacter sp. 6-C-2 16S 
ribosomal RNA gene, partial sequence (97%) 

GQ359863.1 - Acetobacter sp. 6-C-2 16S 
ribosomal RNA gene, partial sequence (98%) 

EU096229.1 - Acetobacter pomorum strain 
EW816 16S ribosomal RNA gene, partial 
sequence (98%) 

EU096229.1 - Acetobacter pomorum strain 
EW816 16S ribosomal RNA gene, partial 
sequence (94%) 

FN429068.1 - Acetobacter pasteurianus partial 
16S rRNA gene, strain SX461 (98%) 

FJ227313.1 - Acetobacter pasteurianus strain 
bh12 16S ribosomal RNA gene, partial sequence 
(98%) 

GQ359863.1 - Acetobacter sp. 6-C-2 16S 
ribosomal RNA gene, partial sequence (98%) 
 

FN429074.1 - Acetobacter pasteurianus partial 
16S rRNA gene, strain ZJ362 (99%) 

FN429068.1 - Acetobacter pasteurianus partial 
16S rRNA gene, strain SX461 (98%) 
 

EU807752.1 - Lactobacillus plantarum strain 
ML5-1 16S ribosomal RNA gene, partial 
sequence (98%) 

FN429068.1 - Acetobacter pasteurianus partial 
16S rRNA gene, strain SX461 (97%) 
 

DQ981282.1 - Uncultured bacterium clone 
thom_k16 16S ribosomal RNA gene, partial 
sequence (99%) 

FN429068.1 - Acetobacter pasteurianus partial 
16S rRNA gene, strain SX461 (99%) 

NR_025512.1 - Acetobacter cerevisiae strain 
LMG 1625 16S ribosomal RNA, partial sequence  
(98%) 

EU096229.1 - Acetobacter pomorum strain 
EW816 16S ribosomal RNA gene, partial 
sequence (98%) 

HM562995.1 - Acetobacter cerevisiae strain T0-
PCP23 16S ribosomal RNA gene, partial 
sequence (98%) 

FN429068.1 - Acetobacter pasteurianus partial 
16S rRNA gene, strain SX461 (99%) 
 

FN429068.1 - Acetobacter pasteurianus partial 
16S rRNA gene, strain SX461 (98%) 

GQ359863.1 - Acetobacter sp. 6-C-2 16S 
ribosomal RNA gene, partial sequence (98%) 
 

FN429068.1 - Acetobacter pasteurianus partial 
16S rRNA gene, strain SX461 (98%) 

EU096229.1 - Acetobacter pomorum strain 
EW816 16S ribosomal RNA gene, partial 
sequence (99%) 

FJ227313.1 - Acetobacter pasteurianus strain 
bh12 16S ribosomal RNA gene, partial sequence 
(98%) 

EU096229.1 - Acetobacter pomorum strain 
EW816 16S ribosomal RNA gene, partial 
sequence (98%) 

EU096229.1 - Acetobacter pomorum strain 
EW816 16S ribosomal RNA gene, partial 
sequence (97%) 

FN429068.1 - Acetobacter pasteurianus partial 
16S rRNA gene, strain SX461 (98%) 

GQ359863.1 - Acetobacter sp. 6-C-2 16S 
ribosomal RNA gene, partial sequence (99%) 

EU096229.1 - Acetobacter pomorum strain 
EW816 16S ribosomal RNA gene, partial 
sequence (99%) 

NR_025512.1 - Acetobacter cerevisiae strain LMG 
1625 16S ribosomal RNA, partial sequence (97%) 

FN429068.1 - Acetobacter pasteurianus partial 
16S rRNA gene, strain SX461 (98%) 

DQ981281.1 - Uncultured bacterium clone 
thom_c06 16S ribosomal RNA gene, partial 
sequence (98%) 

http://www.ncbi.nlm.nih.gov/nucleotide/158726392?report=genbank&log$=nucltop&blast_rank=2&RID=E2E40ZUG01S
http://www.ncbi.nlm.nih.gov/nucleotide/158726392?report=genbank&log$=nucltop&blast_rank=3&RID=E2HH2WFN01N
http://www.ncbi.nlm.nih.gov/nucleotide/255760383?report=genbank&log$=nucltop&blast_rank=1&RID=E2E40ZUG01S
http://www.ncbi.nlm.nih.gov/nucleotide/255760383?report=genbank&log$=nucltop&blast_rank=1&RID=E2J995SW01S
http://www.ncbi.nlm.nih.gov/nucleotide/158726392?report=genbank&log$=nucltop&blast_rank=3&RID=E2E40ZUG01S
http://www.ncbi.nlm.nih.gov/nucleotide/158726392?report=genbank&log$=nucltop&blast_rank=3&RID=E2J995SW01S
http://www.ncbi.nlm.nih.gov/nucleotide/251821326?report=genbank&log$=nucltop&blast_rank=1&RID=E2E40ZUG01S
http://www.ncbi.nlm.nih.gov/nucleotide/209401548?report=genbank&log$=nucltop&blast_rank=3&RID=E2J995SW01S
http://www.ncbi.nlm.nih.gov/nucleotide/255760383?report=genbank&log$=nucltop&blast_rank=1&RID=E2E40ZUG01S
http://www.ncbi.nlm.nih.gov/nucleotide/251821332?report=genbank&log$=nucltop&blast_rank=2&RID=E2JJJM7V01S
http://www.ncbi.nlm.nih.gov/nucleotide/251821326?report=genbank&log$=nucltop&blast_rank=1&RID=E2E40ZUG01S
http://www.ncbi.nlm.nih.gov/nucleotide/193299688?report=genbank&log$=nucltop&blast_rank=1&RID=E2K0X0DZ01N
http://www.ncbi.nlm.nih.gov/nucleotide/251821326?report=genbank&log$=nucltop&blast_rank=1&RID=E2E40ZUG01S
http://www.ncbi.nlm.nih.gov/nucleotide/118639398?report=genbank&log$=nucltop&blast_rank=1&RID=E2K0X0DZ01N
http://www.ncbi.nlm.nih.gov/nucleotide/251821326?report=genbank&log$=nucltop&blast_rank=1&RID=E2E40ZUG01S
http://www.ncbi.nlm.nih.gov/nucleotide/219878373?report=genbank&log$=nucltop&blast_rank=1&RID=E2K0X0DZ01N
http://www.ncbi.nlm.nih.gov/nucleotide/301349271?report=genbank&log$=nucltop&blast_rank=1&RID=E2K0X0DZ01N
http://www.ncbi.nlm.nih.gov/nucleotide/251821326?report=genbank&log$=nucltop&blast_rank=1&RID=E2NBW6H901S
http://www.ncbi.nlm.nih.gov/nucleotide/255760383?report=genbank&log$=nucltop&blast_rank=1&RID=E2G7CJ5501S
http://www.ncbi.nlm.nih.gov/nucleotide/251821326?report=genbank&log$=nucltop&blast_rank=1&RID=E2NBW6H901S
http://www.ncbi.nlm.nih.gov/nucleotide/209401548?report=genbank&log$=nucltop&blast_rank=1&RID=E2NBW6H901S
http://www.ncbi.nlm.nih.gov/nucleotide/158726392?report=genbank&log$=nucltop&blast_rank=2&RID=E2NBW6H901S
http://www.ncbi.nlm.nih.gov/nucleotide/251821326?report=genbank&log$=nucltop&blast_rank=2&RID=E2G7CJ5501S
http://www.ncbi.nlm.nih.gov/nucleotide/255760383?report=genbank&log$=nucltop&blast_rank=1&RID=E08GP46101S
http://www.ncbi.nlm.nih.gov/nucleotide/158726392?report=genbank&log$=nucltop&blast_rank=2&RID=E2G7CJ5501S
http://www.ncbi.nlm.nih.gov/nucleotide/219878373?report=genbank&log$=nucltop&blast_rank=1&RID=E2H276R701N
http://www.ncbi.nlm.nih.gov/nucleotide/251821326?report=genbank&log$=nucltop&blast_rank=1&RID=E2H276R701N
http://www.ncbi.nlm.nih.gov/nucleotide/118639397?report=genbank&log$=nucltop&blast_rank=1&RID=E2H276R701N
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FJ227313.1 - Acetobacter pasteurianus strain 
bh12 16S ribosomal RNA gene, partial sequence 
(97%) 

NR_025512.1 - Acetobacter cerevisiae strain LMG 
1625 16S ribosomal RNA, partial sequence  (99%) 

EU096229.1 - Acetobacter pomorum strain 
EW816 16S ribosomal RNA gene, partial 
sequence (98%) 

GQ359863.1 - Acetobacter sp. 6-C-2 16S 
ribosomal RNA gene, partial sequence (98%) 

GQ359863.1 - Acetobacter sp. 6-C-2 16S 
ribosomal RNA gene, partial sequence (99%) 

GQ359863.1 - Acetobacter sp. 6-C-2 16S 
ribosomal RNA gene, partial sequence (99%) 

FN429074.1 - Acetobacter pasteurianus partial 
16S rRNA gene, strain ZJ362 (97%) 

EU096229.1 - Acetobacter pomorum strain 
EW816 16S ribosomal RNA gene, partial 
sequence (97%) 

FJ227313.1 - Acetobacter pasteurianus strain 
bh12 16S ribosomal RNA gene, partial sequence 
(99%) 

GQ359863.1 - Acetobacter sp. 6-C-2 16S 
ribosomal RNA gene, partial sequence (96%) 

GQ359863.1- Acetobacter sp. 6-C-2 16S 
ribosomal RNA gene, partial sequence (99%) 

GQ359863.1- Acetobacter sp. 6-C-2 16S 
ribosomal RNA gene, partial sequence (99%) 

EU096229.1- Acetobacter pomorum strain 
EW816 16S ribosomal RNA gene, partial 
sequence (99%) 

GQ359863.1- Acetobacter sp. 6-C-2 16S 
ribosomal RNA gene, partial sequence (98%) 

GQ359863.1- Acetobacter sp. 6-C-2 16S 
ribosomal RNA gene, partial sequence (99%) 

http://www.ncbi.nlm.nih.gov/nucleotide/209401548?report=genbank&log$=nucltop&blast_rank=1&RID=E2H276R701N
http://www.ncbi.nlm.nih.gov/nucleotide/219878373?report=genbank&log$=nucltop&blast_rank=1&RID=E2H276R701N
http://www.ncbi.nlm.nih.gov/nucleotide/158726392?report=genbank&log$=nucltop&blast_rank=3&RID=E03ZTXRA01S
http://www.ncbi.nlm.nih.gov/nucleotide/255760383?report=genbank&log$=nucltop&blast_rank=1&RID=E03ZTXRA01S
http://www.ncbi.nlm.nih.gov/nucleotide/255760383?report=genbank&log$=nucltop&blast_rank=1&RID=E03ZTXRA01S
http://www.ncbi.nlm.nih.gov/nucleotide/255760383?report=genbank&log$=nucltop&blast_rank=1&RID=E03ZTXRA01S
http://www.ncbi.nlm.nih.gov/nucleotide/251821332?report=genbank&log$=nucltop&blast_rank=2&RID=E03ZTXRA01S
http://www.ncbi.nlm.nih.gov/nucleotide/158726392?report=genbank&log$=nucltop&blast_rank=2&RID=E03ZTXRA01S
http://www.ncbi.nlm.nih.gov/nucleotide/209401548?report=genbank&log$=nucltop&blast_rank=1&RID=E03ZTXRA01S
http://www.ncbi.nlm.nih.gov/nucleotide/255760383?report=genbank&log$=nucltop&blast_rank=1&RID=E04SSS3M014
http://www.ncbi.nlm.nih.gov/nucleotide/255760383?report=genbank&log$=nucltop&blast_rank=1&RID=E04SSS3M014
http://www.ncbi.nlm.nih.gov/nucleotide/255760383?report=genbank&log$=nucltop&blast_rank=1&RID=E07ERGAD014
http://www.ncbi.nlm.nih.gov/nucleotide/158726392?report=genbank&log$=nucltop&blast_rank=2&RID=E07ERGAD014
http://www.ncbi.nlm.nih.gov/nucleotide/255760383?report=genbank&log$=nucltop&blast_rank=1&RID=E07ERGAD014
http://www.ncbi.nlm.nih.gov/nucleotide/255760383?report=genbank&log$=nucltop&blast_rank=1&RID=E07ERGAD014
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Table: 7.2.  Bacterial identities from 16S rRNA gene analysis in Drosophila melanogaster 

and the food used to rear the insects at 50 µg ml-1. 

 

 

Larvae Food 

EU096229.1 - Acetobacter pomorum strain EW816 16S 
ribosomal RNA gene, partial sequence (98%) 

GQ359860.1 - Lactobacillus sp. 0-C-2 16S ribosomal RNA gene, 
partial sequence (96%) 

EU096229.1 - Acetobacter pomorum strain EW816 16S 
ribosomal RNA gene, partial sequence (99%) 

EU096229.1 - Acetobacter pomorum strain EW816 16S ribosomal 
RNA gene, partial sequence (99%) 

EU096229.1 - Acetobacter pomorum strain EW816 16S 
ribosomal RNA gene, partial sequence (98%) 

GQ359863.1 - Acetobacter sp. 6-C-2 16S ribosomal RNA gene, 
partial sequence (97%) 

GQ359863.1 - Acetobacter sp. 6-C-2 16S ribosomal RNA 
gene, partial sequence (97%) 

HM462422.1 - Lactobacillus plantarum strain ChR-I-str20 16S 
ribosomal RNA gene, partial sequence (99%) 

GQ359863.1 - Acetobacter sp. 6-C-2 16S ribosomal RNA 
gene, partial sequence (96%) 

FN429068.1 - Acetobacter pasteurianus partial 16S rRNA gene, 
strain SX461 (98%) 

GQ359863.1 - Acetobacter sp. 6-C-2 16S ribosomal RNA 
gene, partial sequence (98%) 

FJ227313.1 - Acetobacter pasteurianus strain bh12 16S ribosomal 
RNA gene, partial sequence (98%) 

GQ359863.1 - Acetobacter sp. 6-C-2 16S ribosomal RNA 
gene, partial sequence (97%) 

GQ359860.1 - Lactobacillus sp. 0-C-2 16S ribosomal RNA gene, 
partial sequence (99%) 

GQ359863.1 - Acetobacter sp. 6-C-2 16S ribosomal RNA 
gene, partial sequence (98%) 

FN429068.1 - Acetobacter pasteurianus partial 16S rRNA gene, 
strain SX461 (96%) 

FN429068.1 - Acetobacter pasteurianus partial 16S rRNA 
gene, strain SX461 (99%) 

EU096229.1 - Acetobacter pomorum strain EW816 16S ribosomal 
RNA gene, partial sequence (99%) 

EU096229.1 - Acetobacter pomorum strain EW816 16S 
ribosomal RNA gene, partial sequence (97%) 

GQ359863.1 - Acetobacter sp. 6-C-2 16S ribosomal RNA gene, 
partial sequence (98%) 

FJ227313.1 - Acetobacter pasteurianus strain bh12 16S 
ribosomal RNA gene, partial sequence (98%) 

EU096229.1 - Acetobacter pomorum strain EW816 16S ribosomal 
RNA gene, partial sequence (98%) 

FN429068.1 - Acetobacter pasteurianus partial 16S rRNA 
gene, strain SX461 (99%) 

FJ227313.1 - Acetobacter pasteurianus strain bh12 16S ribosomal 
RNA gene, partial sequence (98%) 

GU253891.1 - Lactobacillus pentosus strain N3 16S 
ribosomal RNA gene, partial sequence (98%) 

GQ359860.1 - Lactobacillus sp. 0-C-2 16S ribosomal RNA gene, 
partial sequence (98%) 

HM449702.1 - Micrococcus luteus strain PCSB6 16S 
ribosomal RNA gene, partial sequence (97%) 

GQ359863.1 - Acetobacter sp. 6-C-2 16S ribosomal RNA gene, 
partial sequence (98%) 

GQ359863.1 - Acetobacter sp. 6-C-2 16S ribosomal RNA 
gene, partial sequence (98%) 

FJ227313.1 - Acetobacter pasteurianus strain bh12 16S ribosomal 
RNA gene, partial sequence (97%) 

GQ359863.1 - Acetobacter sp. 6-C-2 16S ribosomal RNA 
gene, partial sequence (98%) 

EU096229.1 - Acetobacter pomorum strain EW816 16S 
ribosomal RNA gene, partial sequence (98%) 

GU369767.1 - Lactobacillus brevis strain JS-7-2 16S 
ribosomal RNA gene, partial sequence (99%) 

EU096229.1 - Acetobacter pomorum strain EW816 16S 
ribosomal RNA gene, partial sequence (98%) 

EU096229.1 - Acetobacter pomorum strain EW816 16S 
ribosomal RNA gene, partial sequence (98%) 

GQ359863.1 - Acetobacter sp. 6-C-2 16S ribosomal RNA 
gene, partial sequence (99%) 

HM218620.1 - Acetobacter malorum strain NM156-4 16S 
ribosomal RNA gene, partial sequence (97%) 

FJ227317.1 - Lactobacillus brevis strain b4 16S ribosomal 
RNA gene, partial sequence (98%) 

GQ359863.1 - Acetobacter sp. 6-C-2 16S ribosomal RNA 
gene, partial sequence (98%) 

GQ359863.1 - Acetobacter sp. 6-C-2 16S ribosomal RNA 
gene, partial sequence (98%) 

AB494721.1 - Lactobacillus plantarum gene for 16S 
ribosomal RNA, partial sequence, strain: KL23 (99%) 

GQ359863.1 - Acetobacter sp. 6-C-2 16S ribosomal RNA 
gene, partial sequence (99%) 

GU253891.1 - Lactobacillus pentosus strain N3 16S 
ribosomal RNA gene, partial sequence (98%) 

GQ359863.1 - Acetobacter sp. 6-C-2 16S ribosomal RNA 
gene, partial sequence (98%) 

EU096229.1 - Acetobacter pomorum strain EW816 16S 
ribosomal RNA gene, partial sequence (97%) 

http://www.ncbi.nlm.nih.gov/nucleotide/158726392?report=genbank&log$=nucltop&blast_rank=5&RID=E2E40ZUG01S
http://www.ncbi.nlm.nih.gov/nucleotide/255760380?report=genbank&log$=nucltop&blast_rank=1&RID=E00D48E501S
http://www.ncbi.nlm.nih.gov/nucleotide/158726392?report=genbank&log$=nucltop&blast_rank=3&RID=E2E40ZUG01S
http://www.ncbi.nlm.nih.gov/nucleotide/158726392?report=genbank&log$=nucltop&blast_rank=3&RID=E2J995SW01S
http://www.ncbi.nlm.nih.gov/nucleotide/158726392?report=genbank&log$=nucltop&blast_rank=3&RID=E2E40ZUG01S
http://www.ncbi.nlm.nih.gov/nucleotide/255760383?report=genbank&log$=nucltop&blast_rank=1&RID=E2J995SW01S
http://www.ncbi.nlm.nih.gov/nucleotide/255760383?report=genbank&log$=nucltop&blast_rank=1&RID=E2E40ZUG01S
http://www.ncbi.nlm.nih.gov/nucleotide/301322401?report=genbank&log$=nucltop&blast_rank=1&RID=E2J995SW01S
http://www.ncbi.nlm.nih.gov/nucleotide/255760383?report=genbank&log$=nucltop&blast_rank=1&RID=E2E40ZUG01S
http://www.ncbi.nlm.nih.gov/nucleotide/251821326?report=genbank&log$=nucltop&blast_rank=1&RID=E2JJJM7V01S
http://www.ncbi.nlm.nih.gov/nucleotide/255760383?report=genbank&log$=nucltop&blast_rank=1&RID=E2E40ZUG01S
http://www.ncbi.nlm.nih.gov/nucleotide/209401548?report=genbank&log$=nucltop&blast_rank=2&RID=E2JJJM7V01S
http://www.ncbi.nlm.nih.gov/nucleotide/255760383?report=genbank&log$=nucltop&blast_rank=1&RID=E2G7CJ5501S
http://www.ncbi.nlm.nih.gov/nucleotide/255760380?report=genbank&log$=nucltop&blast_rank=1&RID=E2JJJM7V01S
http://www.ncbi.nlm.nih.gov/nucleotide/255760383?report=genbank&log$=nucltop&blast_rank=1&RID=E2GPAYJG01N
http://www.ncbi.nlm.nih.gov/nucleotide/251821326?report=genbank&log$=nucltop&blast_rank=1&RID=E2JJJM7V01S
http://www.ncbi.nlm.nih.gov/nucleotide/251821326?report=genbank&log$=nucltop&blast_rank=1&RID=E2HH2WFN01N
http://www.ncbi.nlm.nih.gov/nucleotide/158726392?report=genbank&log$=nucltop&blast_rank=2&RID=E2JJJM7V01S
http://www.ncbi.nlm.nih.gov/nucleotide/158726392?report=genbank&log$=nucltop&blast_rank=3&RID=E2HH2WFN01N
http://www.ncbi.nlm.nih.gov/nucleotide/255760383?report=genbank&log$=nucltop&blast_rank=1&RID=E2K0X0DZ01N
http://www.ncbi.nlm.nih.gov/nucleotide/209401548?report=genbank&log$=nucltop&blast_rank=1&RID=E2MF1SH701S
http://www.ncbi.nlm.nih.gov/nucleotide/158726392?report=genbank&log$=nucltop&blast_rank=3&RID=E2K0X0DZ01N
http://www.ncbi.nlm.nih.gov/nucleotide/251821326?report=genbank&log$=nucltop&blast_rank=1&RID=E2MF1SH701S
http://www.ncbi.nlm.nih.gov/nucleotide/209401548?report=genbank&log$=nucltop&blast_rank=2&RID=E08GP46101S
http://www.ncbi.nlm.nih.gov/nucleotide/283826473?report=genbank&log$=nucltop&blast_rank=2&RID=E2NBW6H901S
http://www.ncbi.nlm.nih.gov/nucleotide/255760380?report=genbank&log$=nucltop&blast_rank=1&RID=E08GP46101S
http://www.ncbi.nlm.nih.gov/nucleotide/302334360?report=genbank&log$=nucltop&blast_rank=1&RID=E2NBW6H901S
http://www.ncbi.nlm.nih.gov/nucleotide/255760383?report=genbank&log$=nucltop&blast_rank=1&RID=E08GP46101S
http://www.ncbi.nlm.nih.gov/nucleotide/255760383?report=genbank&log$=nucltop&blast_rank=1&RID=E03ZTXRA01S
http://www.ncbi.nlm.nih.gov/nucleotide/209401548?report=genbank&log$=nucltop&blast_rank=1&RID=E08GP46101S
http://www.ncbi.nlm.nih.gov/nucleotide/255760383?report=genbank&log$=nucltop&blast_rank=1&RID=E03ZTXRA01S
http://www.ncbi.nlm.nih.gov/nucleotide/158726392?report=genbank&log$=nucltop&blast_rank=2&RID=E04SSS3M014
http://www.ncbi.nlm.nih.gov/nucleotide/288899007?report=genbank&log$=nucltop&blast_rank=1&RID=E04SSS3M014
http://www.ncbi.nlm.nih.gov/nucleotide/158726392?report=genbank&log$=nucltop&blast_rank=2&RID=E04SSS3M014
http://www.ncbi.nlm.nih.gov/nucleotide/158726392?report=genbank&log$=nucltop&blast_rank=2&RID=E04SSS3M014
http://www.ncbi.nlm.nih.gov/nucleotide/255760383?report=genbank&log$=nucltop&blast_rank=1&RID=E04SSS3M014
http://www.ncbi.nlm.nih.gov/nucleotide/307000189?report=genbank&log$=nucltop&blast_rank=1&RID=E04SSS3M014
http://www.ncbi.nlm.nih.gov/nucleotide/209401552?report=genbank&log$=nucltop&blast_rank=1&RID=E04SSS3M014
http://www.ncbi.nlm.nih.gov/nucleotide/255760383?report=genbank&log$=nucltop&blast_rank=1&RID=E07ERGAD014
http://www.ncbi.nlm.nih.gov/nucleotide/255760383?report=genbank&log$=nucltop&blast_rank=1&RID=E07ERGAD014
http://www.ncbi.nlm.nih.gov/nucleotide/292673272?report=genbank&log$=nucltop&blast_rank=1&RID=E08GP46101S
http://www.ncbi.nlm.nih.gov/nucleotide/255760383?report=genbank&log$=nucltop&blast_rank=1&RID=E08GP46101S
http://www.ncbi.nlm.nih.gov/nucleotide/283826473?report=genbank&log$=nucltop&blast_rank=1&RID=E08GP46101S
http://www.ncbi.nlm.nih.gov/nucleotide/255760383?report=genbank&log$=nucltop&blast_rank=1&RID=E0A1P7MD01S
http://www.ncbi.nlm.nih.gov/nucleotide/158726392?report=genbank&log$=nucltop&blast_rank=2&RID=E0A1P7MD01S
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Table: 7.3.  Bacterial identities from 16S rRNA gene analysis in Drosophila melanogaster 

on nutrient agar plates supplemented with 50 µg ml-1. 

Control flies Drosophila treated with 50 µg ml-1 of chlortetracycline 

FJ227313.1 - Acetobacter pasteurianus strain bh12 16S 
ribosomal RNA gene, partial sequence (98%) 

HM218620.1 - Acetobacter malorum strain NM156-4 16S 
ribosomal RNA gene, partial sequence (98%) 

GQ359863.1 - Acetobacter sp. 6-C-2 16S ribosomal RNA 
gene, partial sequence (98%) 

AB510752.1 - Lactobacillus plantarum gene for 16S ribosomal 
RNA, partial sequence, strain: I041715 (97%) 

EU096229.1 - Acetobacter pomorum strain EW816 16S 
ribosomal RNA gene, partial sequence (98%) 

HM218620.1 - Acetobacter malorum strain NM156-4 16S 
ribosomal RNA gene, partial sequence (98%) 

EU096229.1 - Acetobacter pomorum strain EW816 16S 
ribosomal RNA gene, partial sequence (99%) 

GQ359863.1 - Acetobacter sp. 6-C-2 16S ribosomal RNA gene, 
partial sequence (98%) 

GQ359863.1 - Acetobacter sp. 6-C-2 16S ribosomal RNA 
gene, partial sequence (98%) 

GQ359860.1 - Lactobacillus sp. 0-C-2 16S ribosomal RNA gene, 
partial sequence (98%) 

FN429068.1 - Acetobacter pasteurianus partial 16S rRNA 
gene, strain SX461 (97%) 

FJ462692.1 - Lactobacillus sp. strain E-1 16S ribosomal RNA gene, 
partial sequence (99%) 

FN429074.1 - Acetobacter pasteurianus partial 16S rRNA 
gene, strain ZJ362 (96%) 

EU096229.1 - Acetobacter pomorum strain EW816 16S ribosomal 
RNA gene, partial sequence (99%) 

GQ359863.1 - Acetobacter sp. 6-C-2 16S ribosomal RNA 
gene, partial sequence (98%) 

FJ227313.1 - Acetobacter pasteurianus strain bh12 16S ribosomal 
RNA gene, partial sequence (96%) 

FJ751793.1 - Lactobacillus plantarum strain DSPV 354T 16S 
ribosomal RNA gene, partial sequence (99%) 

EU789400.1 - Lactobacillus plantarum strain M01210 16S 
ribosomal RNA gene, partial sequence (97%) 

HM218620.1 - Acetobacter malorum strain NM156-4 16S 
ribosomal RNA gene, partial sequence (99%) 

HQ286594.1 - Lactobacillus plantarum strain H2 16S ribosomal 
RNA gene, partial sequence (98%) 

HM562999.1 - Lactobacillus plantarum strain T30-PCM02 
16S ribosomal RNA gene, partial sequence (99%) 

FJ751793.1 - Lactobacillus plantarum strain DSPV 354T 16S 
ribosomal RNA gene, partial sequence (98%) 

AB368905.1 - Lactobacillus plantarum gene for 16S rRNA, 
partial sequence, strain: T3-10 (99%) 

GQ359863.1 - Acetobacter sp. 6-C-2 16S ribosomal RNA gene, 
partial sequence (99%) 

FJ227313.1 - Acetobacter pasteurianus strain bh12 16S 
ribosomal RNA gene, partial sequence (97%) 

GQ359863.1 - Acetobacter sp. 6-C-2 16S ribosomal RNA gene, 
partial sequence (98%) 

FN429068.1 - Acetobacter pasteurianus partial 16S rRNA 
gene, strain SX461 (99%) 

EU096229.1 - Acetobacter pomorum strain EW816 16S ribosomal 
RNA gene, partial sequence (99%) 

FJ227313.1 - Acetobacter pasteurianus strain bh12 16S 
ribosomal RNA gene, partial sequence (98%) 

EU096229.1 - Acetobacter pomorum strain EW816 16S ribosomal 
RNA gene, partial sequence (99%) 

GQ359863.1 - Acetobacter sp. 6-C-2 16S ribosomal RNA 
gene, partial sequence (99%) 

GQ359863.1 - Acetobacter sp. 6-C-2 16S ribosomal RNA gene, 
partial sequence (98%) 

EU096229.1 - Acetobacter pomorum strain EW816 16S 
ribosomal RNA gene, partial sequence (98%) 

GQ359863.1 - Acetobacter sp. 6-C-2 16S ribosomal RNA gene, 
partial sequence (98%) 

GU253891.1 - Lactobacillus pentosus strain N3 16S 
ribosomal RNA gene, partial sequence (98%) 

GQ359863.1 - Acetobacter sp. 6-C-2 16S ribosomal RNA gene, 
partial sequence (98%) 

GQ359863.1 - Acetobacter sp. 6-C-2 16S ribosomal RNA 
gene, partial sequence (98%) 

EU096229.1 - Acetobacter pomorum strain EW816 16S ribosomal 
RNA gene, partial sequence (97%) 

GQ359863.1 - Acetobacter sp. 6-C-2 16S ribosomal RNA 
gene, partial sequence (98%) 

FJ227313.1 - Acetobacter pasteurianus strain bh12 16S ribosomal 
RNA gene, partial sequence (98%) 

GQ359863.1 - Acetobacter sp. 6-C-2 16S ribosomal RNA 
gene, partial sequence (98%) 

EU096229.1 - Acetobacter pomorum strain EW816 16S ribosomal 
RNA gene, partial sequence (98%) 

GQ359863.1 - Acetobacter sp. 6-C-2 16S ribosomal RNA 
gene, partial sequence (99%) 

EU096229.1 - Acetobacter pomorum strain EW816 16S ribosomal 
RNA gene, partial sequence (98%) 

FN429068.1 - Acetobacter pasteurianus partial 16S rRNA gene, 
strain SX461 (96%) 

EU096229.1 - Acetobacter pomorum strain EW816 16S ribosomal 
RNA gene, partial sequence (98%) 

FJ227313.1 - Acetobacter pasteurianus strain bh12 16S ribosomal 
RNA gene, partial sequence (98%) 

http://www.ncbi.nlm.nih.gov/nucleotide/209401548?report=genbank&log$=nucltop&blast_rank=1&RID=E2GPAYJG01N
http://www.ncbi.nlm.nih.gov/nucleotide/307000189?report=genbank&log$=nucltop&blast_rank=1&RID=E2HH2WFN01N
http://www.ncbi.nlm.nih.gov/nucleotide/255760383?report=genbank&log$=nucltop&blast_rank=1&RID=E2GPAYJG01N
http://www.ncbi.nlm.nih.gov/nucleotide/244539484?report=genbank&log$=nucltop&blast_rank=1&RID=E2HH2WFN01N
http://www.ncbi.nlm.nih.gov/nucleotide/158726392?report=genbank&log$=nucltop&blast_rank=3&RID=E2GPAYJG01N
http://www.ncbi.nlm.nih.gov/nucleotide/307000189?report=genbank&log$=nucltop&blast_rank=1&RID=E2HH2WFN01N
http://www.ncbi.nlm.nih.gov/nucleotide/158726392?report=genbank&log$=nucltop&blast_rank=3&RID=E2GPAYJG01N
http://www.ncbi.nlm.nih.gov/nucleotide/255760383?report=genbank&log$=nucltop&blast_rank=1&RID=E2HH2WFN01N
http://www.ncbi.nlm.nih.gov/nucleotide/255760383?report=genbank&log$=nucltop&blast_rank=1&RID=E2GPAYJG01N
http://www.ncbi.nlm.nih.gov/nucleotide/255760380?report=genbank&log$=nucltop&blast_rank=1&RID=E2HH2WFN01N
http://www.ncbi.nlm.nih.gov/nucleotide/251821326?report=genbank&log$=nucltop&blast_rank=1&RID=E2GPAYJG01N
http://www.ncbi.nlm.nih.gov/nucleotide/216963341?report=genbank&log$=nucltop&blast_rank=1&RID=E2HH2WFN01N
http://www.ncbi.nlm.nih.gov/nucleotide/251821332?report=genbank&log$=nucltop&blast_rank=2&RID=E2GPAYJG01N
http://www.ncbi.nlm.nih.gov/nucleotide/158726392?report=genbank&log$=nucltop&blast_rank=2&RID=E2MF1SH701S
http://www.ncbi.nlm.nih.gov/nucleotide/255760383?report=genbank&log$=nucltop&blast_rank=1&RID=E2H276R701N
http://www.ncbi.nlm.nih.gov/nucleotide/209401548?report=genbank&log$=nucltop&blast_rank=1&RID=E2MF1SH701S
http://www.ncbi.nlm.nih.gov/nucleotide/260401034?report=genbank&log$=nucltop&blast_rank=1&RID=E2H276R701N
http://www.ncbi.nlm.nih.gov/nucleotide/194307385?report=genbank&log$=nucltop&blast_rank=1&RID=E2MF1SH701S
http://www.ncbi.nlm.nih.gov/nucleotide/307000189?report=genbank&log$=nucltop&blast_rank=1&RID=E2H276R701N
http://www.ncbi.nlm.nih.gov/nucleotide/311223458?report=genbank&log$=nucltop&blast_rank=1&RID=E2MF1SH701S
http://www.ncbi.nlm.nih.gov/nucleotide/301349275?report=genbank&log$=nucltop&blast_rank=1&RID=E2MF1SH701S
http://www.ncbi.nlm.nih.gov/nucleotide/260401034?report=genbank&log$=nucltop&blast_rank=1&RID=E03ZTXRA01S
http://www.ncbi.nlm.nih.gov/nucleotide/188528577?report=genbank&log$=nucltop&blast_rank=2&RID=E2MF1SH701S
http://www.ncbi.nlm.nih.gov/nucleotide/255760383?report=genbank&log$=nucltop&blast_rank=1&RID=E03ZTXRA01S
http://www.ncbi.nlm.nih.gov/nucleotide/209401548?report=genbank&log$=nucltop&blast_rank=1&RID=E2MF1SH701S
http://www.ncbi.nlm.nih.gov/nucleotide/255760383?report=genbank&log$=nucltop&blast_rank=1&RID=E03ZTXRA01S
http://www.ncbi.nlm.nih.gov/nucleotide/251821326?report=genbank&log$=nucltop&blast_rank=1&RID=E03ZTXRA01S
http://www.ncbi.nlm.nih.gov/nucleotide/158726392?report=genbank&log$=nucltop&blast_rank=2&RID=E03ZTXRA01S
http://www.ncbi.nlm.nih.gov/nucleotide/209401548?report=genbank&log$=nucltop&blast_rank=1&RID=E03ZTXRA01S
http://www.ncbi.nlm.nih.gov/nucleotide/158726392?report=genbank&log$=nucltop&blast_rank=2&RID=E04SSS3M014
http://www.ncbi.nlm.nih.gov/nucleotide/255760383?report=genbank&log$=nucltop&blast_rank=1&RID=E07ERGAD014
http://www.ncbi.nlm.nih.gov/nucleotide/255760383?report=genbank&log$=nucltop&blast_rank=1&RID=E04SSS3M014
http://www.ncbi.nlm.nih.gov/nucleotide/158726392?report=genbank&log$=nucltop&blast_rank=2&RID=E07ERGAD014
http://www.ncbi.nlm.nih.gov/nucleotide/255760383?report=genbank&log$=nucltop&blast_rank=1&RID=E04SSS3M014
http://www.ncbi.nlm.nih.gov/nucleotide/283826473?report=genbank&log$=nucltop&blast_rank=1&RID=E07ERGAD014
http://www.ncbi.nlm.nih.gov/nucleotide/255760383?report=genbank&log$=nucltop&blast_rank=1&RID=E04SSS3M014
http://www.ncbi.nlm.nih.gov/nucleotide/255760383?report=genbank&log$=nucltop&blast_rank=1&RID=E08GP46101S
http://www.ncbi.nlm.nih.gov/nucleotide/158726392?report=genbank&log$=nucltop&blast_rank=3&RID=E04SSS3M014
http://www.ncbi.nlm.nih.gov/nucleotide/255760383?report=genbank&log$=nucltop&blast_rank=1&RID=E08GP46101S
http://www.ncbi.nlm.nih.gov/nucleotide/209401548?report=genbank&log$=nucltop&blast_rank=1&RID=E07ERGAD014
http://www.ncbi.nlm.nih.gov/nucleotide/255760383?report=genbank&log$=nucltop&blast_rank=1&RID=E08GP46101S
http://www.ncbi.nlm.nih.gov/nucleotide/158726392?report=genbank&log$=nucltop&blast_rank=2&RID=E07ERGAD014
http://www.ncbi.nlm.nih.gov/nucleotide/255760383?report=genbank&log$=nucltop&blast_rank=1&RID=E08GP46101S
http://www.ncbi.nlm.nih.gov/nucleotide/158726392?report=genbank&log$=nucltop&blast_rank=2&RID=E07ERGAD014
http://www.ncbi.nlm.nih.gov/nucleotide/251821326?report=genbank&log$=nucltop&blast_rank=1&RID=E07ERGAD014
http://www.ncbi.nlm.nih.gov/nucleotide/158726392?report=genbank&log$=nucltop&blast_rank=2&RID=E08GP46101S
http://www.ncbi.nlm.nih.gov/nucleotide/209401548?report=genbank&log$=nucltop&blast_rank=2&RID=E0A1P7MD01S
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7.2. Bacterial identification using 454 pyrosequencing of Drosophila guts 

treated with and without chlortetracycline  

 

Table: 7.4. 454 Sequencing results of bacterial identities for control Drosophila guts  

 

Number 
of reads 

% 
Identity 

Accession 
Number 

Identity Lineage 

10909 100 CP001161 Buchnera aphidicola str. 5A 
(Acyrthosiphon pisum), complete genome 

Bacteria; Proteobacteria; 
Gammaproteobacteria; 
Enterobacteriales; Enterobacteriaceae; 
Buchnera. 

2717 100 HM080051 Uncultured Actinomycetales bacterium 
clone E153F02 16S ribosomal RNA gene, 
partial sequence 

Bacteria; Actinobacteria; 
Actinobacteridae; Actinomycetales; 

2020 100 NR_025512 Acetobacter cerevisiae strain LMG 1625 
16S ribosomal RNA, partial sequence 
>gi|23892796|emb|AJ419843.1| 
Acetobacter cerevisiae 16S rRNA gene, 
strain LMG 1625 

Bacteria; Proteobacteria; 
Alphaproteobacteria; Rhodospirillales; 
Acetobacteraceae; Acetobacter. 

2020 99.6 GQ477828 Uncultured bacterium clone MS-123 16S 
ribosomal RNA gene, partial sequence 

Bacteria; environmental samples. 

1715 100 HM027569 Bacillus subtilis strain zj2008 16S 
ribosomal RNA gene, partial sequence 

Bacteria; Firmicutes; Bacillales; 
Bacillaceae; Bacillus. 

312 99.6 AM087199 Asticcacaulis benevestitus partial 16S 
rRNA gene, type strain Z-0023T 

Bacteria; Proteobacteria; 
Alphaproteobacteria;Caulobacterales; 
Caulobacteraceae; Asticcacaulis. 

212 100 AB461807 Acinetobacter sp. M522 gene for 16S 
rRNA, partial sequence, strain: M522 

Bacteria; Proteobacteria; 
Gammaproteobacteria; 
Pseudomonadales; Moraxellaceae; 
Acinetobacter. 

186 100 EU096229 Acetobacter pomorum strain EW816 16S 
ribosomal RNA gene, partial sequence 

Bacteria; Proteobacteria; 
Alphaproteobacteria; Rhodospirillales; 
Acetobacteraceae; Acetobacter. 

  100 AB308058 Acetobacter pasteurianus gene for 16S 
ribosomal RNA, complete sequence 

Bacteria; Proteobacteria; 
Alphaproteobacteria; Rhodospirillales; 
Acetobacteraceae; Acetobacter. 

171 99.6 AJ318114 Uncultured gamma proteobacterium 16S 
rRNA gene, clone BIci4 

Bacteria; Proteobacteria; 
Gammaproteobacteria; environmental 

82 100 AB050446 Spiroplasma sp. YR-2 gene for 16S rRNA, 
partial sequence 

Bacteria; Tenericutes; Mollicutes; 
Entomoplasmatales; Spiroplasmataceae; 
Spiroplasma. 

64 100 HM344691 Uncultured bacterium clone 
ncd1060g01c1 16S ribosomal RNA gene, 
partial sequence 

Bacteria; environmental samples 

63 100 EF433462 Devosia sp. IPL18 16S ribosomal RNA 
gene, partial sequence 

Bacteria; Proteobacteria; 
Alphaproteobacteria;Rhizobiales; 
Hyphomicrobiaceae; Devosia 

57 98.9 AY673373 Streptomycetaceae bacterium Ellin7207 
16S ribosomal RNA gene, partial sequence 

Bacteria; Actinobacteria; 
Actinobacteridae;Actinomycetales; 
Streptomycineae; Streptomycetaceae 

55 96.0 AJ247194 Asticcacaulis excentricus partial 16S rRNA 
gene for 16S ribosomal RNA, strain DSM 
4724(T) 

Bacteria; Proteobacteria; 
Alphaproteobacteria; 
Caulobacterales;Caulobacteraceae; 
Asticcacaulis. 

38 100 HM334791 Uncultured bacterium clone ncd991e01c1 
16S ribosomal RNA gene, partial sequence 

Bacteria; environmental samples. 

34 100 HM337834 Uncultured bacterium clone 
ncd1107h11c1 16S ribosomal RNA gene, 
partial sequence 

Bacteria; environmental samples. 

25 100 HM344642 Uncultured bacterium clone 
ncd1060b08c1 16S ribosomal RNA gene, 
partial sequence 

Bacteria; environmental samples. 
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23 99.6 GQ206310 Wolbachia endosymbiont of Sogatella 
furcifera clone A3H1M1 16S ribosomal 
RNA gene, partial sequence 

Bacteria; Proteobacteria; 
Alphaproteobacteria; 
Rickettsiales;Rickettsiaceae; Wolbachieae; 
Wolbachia 

21 98.9 GQ988635 Uncultured bacterium clone GI_AR_U_G0 
16S ribosomal RNA gene, partial sequence 

Bacteria; environmental samples. 

20 100 AF078368 Grassland soil clone sl2_508 16S 
ribosomal RNA gene, partial sequence 

Bacteria; environmental samples. 

14 100 HM335477 Uncultured bacterium clone 
ncd1004g08c1 16S ribosomal RNA gene, 
partial sequence 

Bacteria; environmental samples. 

14 99.6 HM333436 Uncultured bacterium clone 
ncd1098f07c1 16S ribosomal RNA gene, 
partial sequence 

Bacteria; environmental samples. 

14 100 GU635382 Uncultured bacterium clone RW0038 16S 
ribosomal RNA gene, partial sequence 

Bacteria; environmental samples. 

13 98.9 FJ665195 Uncultured bacterium clone BCSAS2P1C1 
16S ribosomal RNA gene, partial sequence 

Bacteria; environmental samples. 

13 100 FJ436049 Burkholderia vietnamiensis strain SIr-665 
16S ribosomal RNA gene, partial sequence 

Bacteria; Proteobacteria; 
Betaproteobacteria; Burkholderiales; 
Burkholderiaceae; Burkholderia; 
Burkholderia cepacia complex 

12 99.6 HM322590 Uncultured bacterium clone ncd400a04c1 
16S ribosomal RNA gene, partial sequence 

Bacteria; environmental samples. 

12 98.9 HM286801 Uncultured bacterium clone ncd634h05c1 
16S ribosomal RNA gene, partial sequence 

Bacteria; environmental samples. 

11 99.3 HM278405 Uncultured bacterium clone ncd554d11c1 
16S ribosomal RNA gene, partial sequence 

Bacteria; environmental samples. 

10 98.5 AF253413 Acidocella sp. LGS-3 16S ribosomal RNA 
gene, partial sequence 

Bacteria; Proteobacteria; 
Alphaproteobacteria; Rhodospirillales; 
Acetobacteraceae; Acidocella 

8 94.97 DQ413077 Uncultured bacterium clone 18 16S 
ribosomal RNA gene, partial sequence 

Bacteria; environmental samples. 

8 100 GU643701 Uncultured bacterium clone RW8357 16S 
ribosomal RNA gene, partial sequence 

Bacteria; environmental samples. 

8 99.6 HM257287 Uncultured bacterium clone ncd103d11c1 
16S ribosomal RNA gene, partial sequence 

Bacteria; environmental samples. 

8 99.6 EU372971 Kocuria sp. E7 16S ribosomal RNA gene, 
partial sequence 

Bacteria; Actinobacteria; 
Actinobacteridae; Actinomycetales; 
Micrococcineae; Micrococcaceae; Kocuria 

8 99.2 EU776263 Uncultured bacterium clone IR_aaa03d07 
16S ribosomal RNA gene, partial sequence 

Bacteria; environmental samples. 

8 98.8 FJ897521 Pedobacter sp. N1d-b1 16S ribosomal RNA 
gene, partial sequence 

Bacteria; Bacteroidetes; Sphingobacteria; 
Sphingobacteriales;Sphingobacteriaceae; 
Pedobacter 

8 100 GU644300 Uncultured bacterium clone RW8956 16S 
ribosomal RNA gene, partial sequence 

Bacteria; environmental samples. 

7 99.6 AB271048 Microbacterium ginsengisoli gene for 16S 
rRNA, partial sequence 

Bacteria; Actinobacteria; 
Actinobacteridae; Actinomycetales; 
Micrococcineae; Microbacteriaceae; 
Microbacterium 

7 100 EU630302 Uncultured Actinomyces sp. clone 
NST3Q1b12 16S ribosomal RNA gene, 
partial sequence 

Bacteria; Actinobacteria; 
Actinobacteridae; Actinomycetales; 
Actinomycineae; Actinomycetaceae; 
Actinomyces; environmental 
 samples 

7 91.2 AF507713 Uncultured soil bacterium clone S166 16S 
ribosomal RNA gene, partial sequence 

Bacteria; environmental samples. 

7 88.9 FJ916286 Uncultured delta proteobacterium clone 
DE1C1 16S ribosomal RNA gene, partial 
sequence 

Bacteria; Proteobacteria; 
Deltaproteobacteria; environmental 

7 100 HM314555 Uncultured bacterium clone ncd425b11c1 
16S ribosomal RNA gene, partial sequence 

Bacteria; environmental samples. 



177 

 

7 99.3 EF219646 Uncultured beta proteobacterium clone 
AI-1M_A05 16S gene, partial sequence 

Bacteria; Proteobacteria; 
Betaproteobacteria; environmental 

7 97.8 AM400943 Flavobacteriaceae bacterium JJ-2987 
partial 16S rRNA gene, isolate JJ-2987 

Bacteria; Bacteroidetes; Flavobacteria; 
Flavobacteriales;Flavobacteriaceae 

7 100 L33977 Sphaerotilus natans 16S ribosomal RNA 
(16S rRNA) 

Bacteria; Proteobacteria; 
Betaproteobacteria; Burkholderiales; 
Sphaerotilus 

7 100 FJ797394 Comamonas sp. G4 16S ribosomal RNA 
gene, partial sequence 

Bacteria; Proteobacteria; 
Betaproteobacteria;Burkholderiales; 
Comamonadaceae; Comamonas 

6 98.5 AM988902 Chryseobacterium sp. AKB-2008-VA6 
partial 16S rRNA gene, strain AKB-2008-
VA6 

Bacteria; Bacteroidetes; Flavobacteria; 
Flavobacteriales;Flavobacteriaceae; 
Chryseobacterium 

6 100 GQ246690 Janibacter sp. M2T2B13 16S ribosomal 
RNA gene, partial sequence 

Bacteria; Actinobacteria; 
Actinobacteridae; Actinomycetales; 
Micrococcineae; Intrasporangiaceae; 
Janibacter 

6 97.8 AM396913 Carnobacterium sp. NJ-46 16S rRNA gene, 
strain NJ-46 

Bacteria; Firmicutes; Lactobacillales; 
Carnobacteriaceae; Carnobacterium 

6 98.0 AM936584 Uncultured candidate division TM7 
bacterium partial 16S rRNA gene, clone 
EMP2 

Bacteria; candidate division TM7; 
environmental samples 

6 100 AB538964 Methylomonas sp. Fw12E-Y gene for 16S 
rRNA, partial sequence 

Bacteria; Proteobacteria; 
Gammaproteobacteria;Methylococcale; 
Methylococcaceae; Methylomonas 

6 100 HM338449 Uncultured bacterium clone 
ncd1119e03c1 16S ribosomal RNA gene, 
partial sequence 

Bacteria; environmental samples. 

5 97.8 AY332104 Microbacterium sp. GWS-BW-H145 16S 
ribosomal RNA gene, partial sequence 

Bacteria; Actinobacteria; 
Actinobacteridae; Actinomycetales; 
Micrococcineae; Microbacteriaceae; 
Microbacterium 

5 100 EU440980 Sphingopyxis sp. 2PR58-1 16S ribosomal 
RNA gene, partial sequence 

Bacteria; Proteobacteria; 
Alphaproteobacteria; Sphingomonadales; 
Sphingomonadaceae; Sphingopyxis 

5 92.7 HM308241 Uncultured bacterium clone ncd893f05c1 
16S ribosomal RNA gene, partial sequence 

Bacteria; environmental samples. 

5 99.6 GQ891704 Caulobacter leidyia strain W1 16S 
ribosomal RNA gene, partial sequence 

Bacteria; Proteobacteria; 
Alphaproteobacteria; 
Sphingomonadales; 
Sphingomonadaceae 

5 100 FM176596 Uncultured Acidimicrobiales bacterium 
partial 16S rRNA gene, clone CL5.H403 

Bacteria; Actinobacteria; 
Acidimicrobidae; Acidimicrobiales; 

5 99.2 GQ391570 Uncultured organism clone G07-1-PTM2 
16S ribosomal RNA gene, partial sequence 

Bacteria; environmental samples. 

5 100 HM343804 Uncultured bacterium clone 
ncd1051a04c1 16S ribosomal RNA gene, 
partial sequence 

Bacteria; environmental samples. 

5 90.7 FJ475509 Uncultured delta proteobacterium clone 
AhedenP24 16S ribosomal RNA gene, 
partial sequence 

Bacteria; Proteobacteria; 
Deltaproteobacteria; environmental 

5 100 HM079530 Uncultured Lactobacillaceae bacterium 
clone E105G12 16S ribosomal RNA gene, 
partial sequence 

Bacteria; Firmicutes; Lactobacillales; 
Lactobacillaceae 

5 93.0 GQ339139 Uncultured bacterium clone IS-32 16S 
ribosomal RNA gene, partial sequence 

Bacteria; environmental samples. 

5 78.1 EU436157 Anaplasma phagocytophilum genotype 
APV 16S ribosomal RNA gene, partial 
sequence 

Bacteria; Proteobacteria; 
Alphaproteobacteria; Rickettsiales; 
Anaplasmataceae; Anaplasma; 
phagocytophilum group 

5 97.8 HM057788 Uncultured bacterium clone A8W_114 
16S ribosomal RNA gene, partial sequence 

Bacteria; environmental samples. 

5 99.6 EF061026 Uncultured Flavobacteria bacterium clone 
LiUU-22-10 16S ribosomal RNA gene, 
partial sequence 

Bacteria; Bacteroidetes; Flavobacteria; 
environmental samples 
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4 98.9 EU876624 Uncultured Flavisolibacter sp. clone KL2-
18 16S ribosomal RNA gene, partial 
sequence 

Bacteria; Bacteroidetes;Sphingobacteria; 
Sphingobacteriales;Chitinophagaceae; 
Flavisolibacter; environmental samples 

4 99.6 HM340514 Uncultured bacterium clone 
ncd1057b08c1 16S ribosomal RNA gene, 
partial sequence 

Bacteria; environmental samples. 

4 100 EU300429 Uncultured Propionibacteriaceae 
bacterium clone GASP-KC3W1_F10 16S 
ribosomal RNA gene, partial sequence 

Bacteria; Actinobacteria; 
Actinobacteridae; Actinomycetales; 
Propionibacterineae; 
Propionibacteriaceae; environmental 
samples. 

4 90.4 AF047568 Candidate division OP11 clone LGd1 16S 
ribosomal RNA gene, partial sequence 

Unknown classification 

4 98.5 FJ002227 Navicula sp. C21 16S ribosomal RNA gene, 
partial sequence; chloroplast 

Eukaryota; stramenopiles; 
Bacillariophyta;Bacillariophyceae;Bacillari
ophycidae; Naviculales; Naviculaceae; 
Navicula 

4 99.6 GU225981 Uncultured bacterium clone 192 16S 
ribosomal RNA gene, partial sequence 

Bacteria; environmental samples.             

4 100 HM339571 Uncultured bacterium clone 
ncd1008e06c1 16S ribosomal RNA gene, 
partial sequence 

Bacteria; environmental samples. 

4 99.6 AB265906 Uncultured Chloroflexi bacterium gene for 
16S rRNA, partial sequence, clone: UH-12 

Bacteria; Chloroflexi; environmental 
samples 

4 100 GU408433 Leptotrichia sp. oral taxon 215 clone 
HU062 16S ribosomal RNA gene, partial 
sequence 

Bacteria; Fusobacteria; Fusobacteriales; 
Fusobacteriaceae; Leptotrichia 

4 93.4 DQ829135 Uncultured proteobacterium clone 
DOK_NOFERT_clone140 16S ribosomal 
RNA gene, partial sequence 

Bacteria; Proteobacteria; environmental 
samples 

4 98.5 GU473087 Uncultured Janthinobacterium sp. clone 
BfP10 16S ribosomal RNA gene, partial 
sequence 

Bacteria; Proteobacteria; 
Betaproteobacteria; Burkholderiales; 
Oxalobacteraceae; Janthinobacterium; 
environmental samples 

4 97.8 FJ200295 Streptomyces sp. CLS28 16S ribosomal 
RNA gene, partial sequence 

Bacteria; Actinobacteria; 
Actinobacteridae; Actinomycetales; 
Streptomycineae; Streptomycetaceae; 
Streptomyces 

4 82.5 GQ391003 Uncultured organism clone D01-5-410 16S 
ribosomal RNA gene, partial sequence 

Unknown classification 

4 82.3 AM040129 Uncultured delta proteobacterium partial 
16S rRNA gene, clone Sylt 33 

Bacteria; Proteobacteria; 
Deltaproteobacteria; environmental 

4 94.9 FJ598048 Lutibacter sp. S7-2 16S ribosomal RNA 
gene, partial sequence 

Bacteria; Bacteroidetes; Flavobacteria; 
Flavobacteriales;   Flavobacteriaceae; 
Lutibacter. 

4 96.0 AY922021 Uncultured Bacteroidetes bacterium 
clone AKYG467 16S ribosomal RNA gene, 
partial sequence 

Bacteria; Bacteroidetes; environmental 
samples 

4 96.3 FJ542898 Uncultured Microbacteriaceae bacterium 
clone A09-05G 16S ribosomal RNA gene, 
partial sequence 

Bacteria; Actinobacteria; 
Actinobacteridae;Actinomycetales; 
Micrococcineae; Microbacteriaceae; 
environmental samples 

4 99.6 GU415459 Streptococcus anginosus clone WW062 
16S ribosomal RNA gene, partial sequence 

Bacteria; Firmicutes; Lactobacillales; 
Streptococcaceae;Streptococcus; 
Streptococcus anginosus group 

4 99.6 FM176343 Uncultured candidate division SR1 
bacterium partial 16S rRNA gene, clone 
BF.A2 

Bacteria; candidate division SR1; 
environmental samples 

4 99.6 NR_029345 Staphylococcus condimenti strain F-2 16S 
ribosomal RNA, complete sequence 
>gi|2673873|emb|Y15750.1| 
Staphylococcus condimenti 16S rRNA 
gene, strain F-2 T, DSM 11674 T 

Bacteria; Firmicutes; Bacillales; 
Staphylococcus 

4 98.5 FN668139 Uncultured Flavobacterium sp. partial 16S 
rRNA gene, clone ZS-2-61 

Bacteria; Bacteroidetes; Flavobacteria; 
Flavobacteriales;Flavobacteriaceae; 
Flavobacterium; environmental samples 

4 99.6 GQ994674 Uncultured organism clone supp_mic9 
16S ribosomal RNA gene, partial sequence 

Unclassified sequences; environmental 
samples 
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4 98.1 GQ402641 Uncultured bacterium clone PW134 16S 
ribosomal RNA gene, partial sequence 

Bacteria; environmental samples. 

4 98.1 HM308483 Uncultured bacterium clone ncd897d02c1 
16S ribosomal RNA gene, partial sequence 

Bacteria; environmental samples. 

4 94.0 DQ676299 Uncultured Chlorobi bacterium clone 
MVP-23 16S ribosomal RNA gene, partial 
sequence 

Bacteria; Chlorobi; environmental 
samples 

4 84.6 AM943204 Uncultured bacterium partial 16S rRNA 
gene, isolate KA-001.0.36 

Bacteria; environmental samples 

4 95.6 GU643527 Uncultured bacterium clone RW8183 16S 
ribosomal RNA gene, partial sequence 

Bacteria; environmental samples. 

4 98.9 EU982453 Uncultured bacterium clone DYB14 16S 
ribosomal RNA gene, partial sequence 

Bacteria; environmental samples. 

4 98.2 GU929374 Uncultured Cellvibrio sp. clone 45d_B7 
16S ribosomal RNA gene, partial sequence 

Bacteria; Proteobacteria; 
Gammaproteobacteria; 
Pseudomonadales; Pseudomonadaceae; 
Cellvibrio; environmental samples 

4 99.6 AY655732 Cellulomonas parahominis strain W7387 
16S ribosomal RNA gene, partial sequence 

Bacteria; Actinobacteria; 
Actinobacteridae; Actinomycetales; 
Micrococcineae; Cellulomonadaceae; 
Cellulomonas 

4 99.3 FJ859687 Ochrobactrum pseudogrignonense strain 
BIHB 340 16S ribosomal RNA gene, partial 
sequence 

Bacteria; Proteobacteria; 
Alphaproteobacteria;Rhizobiales; 
Brucellaceae; Ochrobactrum 

3 99.3 FM872717 Uncultured bacterium partial 16S rRNA 
gene, clone FB01A04 

Bacteria; environmental samples 

3 97.0 HM307004 Uncultured bacterium clone ncd874f01c1 
16S ribosomal RNA gene, partial sequence 

Bacteria; environmental samples. 

3 99.3 DQ337515 Microbacterium sp. BBDP82 16S 
ribosomal RNA gene, partial sequence 

Bacteria; Actinobacteria; 
Actinobacteridae; Actinomycetales; 
Micrococcineae; Microbacteriaceae; 
Microbacterium 

3 94.85294
1176 

FJ482172 Uncultured candidate division OD1 
bacterium clone Pav-OD9 16S ribosomal 
RNA gene, partial sequence 

Bacteria; candidate division OD1; 
environmental samples 

3 97.8 AM990702 Rhodobacteraceae bacterium MOLA 435 
partial 16S rRNA gene, culture collection 
MOLA:435 

Bacteria; Proteobacteria; 
Alphaproteobacteria; Rhodobacterales; 
Rhodobacteraceae 

3 87.8 FM176343 Uncultured candidate division SR1 
bacterium partial 16S rRNA gene, clone 
BF.A2 

Bacteria; candidate division SR1; 
environmental samples 

3 91.5 EU914095 Uncultured bacterium clone 
D6ENV_87G11 16S ribosomal RNA gene, 
partial sequence 

Bacteria; environmental samples. 

3 96.3 DQ827966 Uncultured Bacteroidetes bacterium 
clone DOK_BIODYN_clone272 16S 
ribosomal RNA gene, partial sequence 

Bacteria; Bacteroidetes; environmental 
samples 

3 99.6 GU429487 Beta proteobacterium oral taxon B96 
clone ST047 16S ribosomal RNA gene, 
partial sequence 

Bacteria; Proteobacteria; 
Betaproteobacteria 

3 99.3 HM270636 Uncultured bacterium clone ncd268g09c1 
16S ribosomal RNA gene, partial sequence 

Bacteria; environmental samples. 

3 100 FM176037 Uncultured Rhodoblastus sp. partial 16S 
rRNA gene, clone CL4.E185 

Bacteria; Proteobacteria; 
Alphaproteobacteria; Rhizobiales; 
Bradyrhizobiaceae; Rhodoblastus; 
environmental samples 

3 100 AY882019 Streptomyces yanglinensis strain 317 16S 
ribosomal RNA gene, partial sequence 

Bacteria; Actinobacteria; 
Actinobacteridae; Actinomycetales; 
Streptomycineae; Streptomycetaceae; 
Streptomyces 

3 96.7 HM125151 Burkholderia sp. CPA4 16S ribosomal RNA 
gene, partial sequence 

Bacteria; Proteobacteria; 
Betaproteobacteria; Burkholderiales; 
Burkholderiaceae; Burkholderia 

3 100 EF668276 Uncultured Geobacteraceae bacterium 
clone M22_1608 16S ribosomal RNA 
gene, partial sequence 

Bacteria; Proteobacteria; 
Deltaproteobacteria; 
Desulfuromonadales; 
Geobacteraceae; environmental samples 

3 80.3 GQ423809 Uncultured bacterium clone R1B24H 16S 
ribosomal RNA gene, partial sequence 

Bacteria; environmental samples. 
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3 100 GU181268 Variovorax sp. SGM1-15 16S ribosomal 
RNA gene, partial sequence 

Bacteria; Proteobacteria; 
Betaproteobacteria; Burkholderiales; 
Comamonadaceae; Variovorax 

3 99.6 EF220978 Uncultured Bacteroidetes bacterium 
clone D04_SGPO01 16S gene, partial 
sequence 

Bacteria; Bacteroidetes; environmental 
samples 

3 100 FJ875714 Uncultured beta proteobacterium clone 
D-08-ClB03 small subunit ribosomal RNA 
gene, partial sequence 

Bacteria; Proteobacteria; 
Betaproteobacteria; environmental 

3 99.3 D84617 Variovorax sp. S23408 gene for 16S 
ribosomal RNA, partial sequence 

Bacteria; Proteobacteria; 
Betaproteobacteria; Burkholderiales; 
Comamonadaceae; Variovorax 

3 87.7 CU922275 Uncultured Acidobacteria bacterium 16S 
rRNA gene from clone QEDR1BF06 

Bacteria; environmental samples. 

3 87.6 GQ263674 Uncultured bacterium clone FW3_65C 16S 
ribosomal RNA gene, partial sequence 

Bacteria; environmental samples. 

3 100 GQ159514 Uncultured bacterium clone 16slp92-
01e03.q1k 16S ribosomal RNA gene, 
partial sequence 

Bacteria; environmental samples. 

3 91.6 FJ694279 Uncultured bacterium clone KL201F02 
16S ribosomal RNA gene, partial sequence 

Bacteria; environmental samples. 

3 100 HM328779 Uncultured bacterium clone ncd499f12c1 
16S ribosomal RNA gene, partial sequence 

Bacteria; environmental samples. 

3 100 EF121241 Microcystis aeruginosa strain SPC 777 16S 
ribosomal RNA gene, partial sequence 

Bacteria; Cyanobacteria; Chroococcales; 
Microcystis 

3 93.4 FJ542953 Uncultured gamma proteobacterium 
clone B02-03F 16S ribosomal RNA gene, 
partial sequence 

Bacteria; Proteobacteria; 
Gammaproteobacteria; environmental 

3 100 GU956686 Uncultured Firmicutes bacterium clone 
LI3-309 16S ribosomal RNA gene, partial 
sequence 

Bacteria; Firmicutes; environmental 
samples 

3 95.1 AM940560 Uncultured alpha proteobacterium partial 
16S rRNA gene, clone A6-42 

Bacteria; Proteobacteria; 
Alphaproteobacteria; environmental 

3 94.9 EF639389 Hymenobacter sp. BSw20462 16S 
ribosomal RNA gene, partial sequence 

Bacteria; Bacteroidetes; Cytophagia; 
Cytophagales; Cytophagaceae; 
Hymenobacter 

3 95.6 FM175743 Uncultured Rickettsia sp. partial 16S rRNA 
gene, clone CL2.C528 

Bacteria; Proteobacteria; 
Alphaproteobacteria; Rickettsiales; 
Rickettsiaceae; Rickettsieae; Rickettsia; 
environmental samples 

3 92.7 AY673182 Actinobacteridae bacterium Ellin7016 16S 
ribosomal RNA gene, partial sequence 

Bacteria; Actinobacteria; Actinobacteridae 

3 99.6 FN554975 Chryseobacterium sp.R4-1A partial 16S 
rRNA gene, type strain R4-1AT 

Bacteria; Bacteroidetes; Flavobacteria; 
Flavobacteriales;Flavobacteriaceae; 
Chryseobacterium 

3 100 AB362615 Lactobacillus brevis gene for 16S rRNA, 
partial sequence, strain: NRIC 0134 

Bacteria; Firmicutes; Lactobacillales; 
Lactobacillaceae; Lactobacillus 

2 92.3 AY193185 Uncultured candidate division OD1 
bacterium clone DA23 16S ribosomal RNA 
gene, partial sequence 

Bacteria; candidate division OD1; 
environmental samples 

2 99.6 GQ404080 Uncultured bacterium clone BD289 16S 
ribosomal RNA gene, partial sequence 

Bacteria; environmental samples. 

2 92.6 DQ190785 Uncultured proteobacterium clone JAB 
NFA1 88 16S ribosomal RNA gene, partial 
sequence 

Bacteria; Proteobacteria; environmental 
samples 

2 100 CU926027 Uncultured Unclassified bacterium 16S 
rRNA gene from clone QEDN7DE10 

Bacteria; environmental samples. 

2 93.4 AY395155 Uncultured actinobacterium clone E07ST 
16S ribosomal RNA gene, partial sequence 

Bacteria; environmental samples. 

2 100 CP000721 Clostridium beijerinckii NCIMB 8052, 
complete genome 

Bacteria; Firmicutes; Clostridia; 
Clostridiales; Clostridiaceae; Clostridium 

2 93.0 FM176368 Uncultured Cystobacteraceae bacterium 
partial 16S rRNA gene, clone CL5.H118 

Bacteria; Proteobacteria; 
Deltaproteobacteria; Myxococcales; 
Cystobacterineae; Cystobacteraceae; 
environmental samples 

2 97.1 GU636726 Uncultured bacterium clone RW1382 16S 
ribosomal RNA gene, partial sequence 

Bacteria; environmental samples. 
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2 99.3 FM176093 Uncultured Pseudorhodobacter sp. partial 
16S rRNA gene, clone CL4.E259 

Bacteria; Proteobacteria; 
Alphaproteobacteria; Rhodobacterales; 
Rhodobacteraceae; Pseudorhodobacter; 
environmental samples 

2 97.3 DQ129127 Uncultured soil bacterium clone CWT 
SM03_G11 16S ribosomal RNA gene, 
partial sequence 

Bacteria; environmental samples. 

2 98.2 GQ397014 Uncultured bacterium clone AK1DE2_05G 
16S ribosomal RNA gene, partial sequence 

Bacteria; environmental samples. 

2 100 GU643321 Uncultured bacterium clone RW7977 16S 
ribosomal RNA gene, partial sequence 

Bacteria; environmental samples. 

2 100 FN563432 Mesorhizobium sp. LSE1 partial 16S rRNA 
gene, strain LSE1 

Bacteria; Proteobacteria; 
Alphaproteobacteria; Rhizobiales; 
Phyllobacteriaceae; Mesorhizobium 

2 100 GU640437 Uncultured bacterium clone RW5093 16S 
ribosomal RNA gene, partial sequence 

Bacteria; environmental samples. 

2 93.0 CU923796 Uncultured Actinobacteria bacterium 16S 
rRNA gene from clone QEDP3BH09 

Bacteria; environmental samples. 

2 100 HM015669 Spiroplasma citri isolate UPM 16S 
ribosomal RNA gene, partial sequence; 
16S-23S ribosomal RNA intergenic spacer, 
complete sequence; and 23S ribosomal 
RNA gene, partial sequence 

Bacteria; Tenericutes; Mollicutes; 
Entomoplasmatales; Spiroplasmataceae; 
Spiroplasma 

2 97.0 GU643071 Uncultured bacterium clone RW7727 16S 
ribosomal RNA gene, partial sequence 

Bacteria; environmental samples. 

2 99.6 FM177077 Uncultured Rhodoferax sp. partial 16S 
rRNA gene, clone CL6-7.L499 

Bacteria; Proteobacteria; 
Betaproteobacteria; Burkholderiales; 
Comamonadaceae; Rhodoferax; 
environmental samples 

2 96.7 CP000675 Legionella pneumophila str. Corby, 
complete genome 

Bacteria; Proteobacteria; 
Gammaproteobacteria; Legionellales; 
Legionellaceae; Legionella 

2 99.6 GU385867 Paenibacillus sp. QT21 16S ribosomal RNA 
gene, partial sequence 

Bacteria; Firmicutes; Bacillales; 
Paenibacillaceae; Paenibacillus 

2 94.5 FM176448 Uncultured Aquiflexum sp. partial 16S 
rRNA gene, clone CL5.H221 

Bacteria; Bacteroidetes; Cytophagia; 
Cytophagales;Cyclobacteriaceae; 
Aquiflexum; environmental samples 

2 96.3 AB365060 Nocardioides oleivorans gene for 16S 
rRNA, partial sequence 

Bacteria; Actinobacteria; 
Actinobacteridae; Actinomycetales; 
Propionibacterineae; Nocardioidaceae; 
Nocardioides 

2 96.7 CP001828 Legionella pneumophila 2300/99 Alcoy, 
complete genome 

Bacteria; Proteobacteria; 
Gammaproteobacteria; Legionellales; 
Legionellaceae; Legionella 

2 98.15498
155 

FM176577 Uncultured Polyangiaceae bacterium 
partial 16S rRNA gene, clone CL5.H380 

Bacteria; Proteobacteria; 
Deltaproteobacteria; Myxococcales; 
Sorangiineae; Polyangiaceae; 
environmental samples 

2 97.4 AJ244650 Brevundimonas-like sp. LMG 11050 16S 
rRNA gene 

Bacteria; Proteobacteria; 
Alphaproteobacteria; Caulobacterales; 
Caulobacteraceae 

2 100 EF612342 Methylobacterium sp. K6-11 16S 
ribosomal RNA gene, partial sequence 

Bacteria; Proteobacteria; 
Alphaproteobacteria; Rhizobiales; 
Methylobacteriaceae; Methylobacterium 

2 99.3 EU558285 Paenibacillus sp. B3a 16S ribosomal RNA 
gene, partial sequence 

Bacteria; Firmicutes; Bacillales; 
Paenibacillaceae; Paenibacillus 

2 90.8 FM176113 Uncultured Desulforegula sp. partial 16S 
rRNA gene, clone CL4.E284 

Bacteria; Proteobacteria; 
Deltaproteobacteria; Desulfobacterales; 
Desulfobacteraceae; Desulforegula; 
environmental samples 

2 97.8 GU643314 Uncultured bacterium clone RW7970 16S 
ribosomal RNA gene, partial sequence 

Bacteria; environmental samples. 

2 99.6 HM345221 Uncultured bacterium clone 
ncd1152d06c1 16S ribosomal RNA gene, 
partial sequence 

Bacteria; environmental samples. 

2 92.9 FJ620939 Uncultured soil bacterium clone 
FACE.R1.EC.C09 small subunit ribosomal 
RNA gene, partial sequence 

Bacteria; environmental samples. 
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2 97.8 AM988899 Chryseobacterium sp. AKB-2008-HE92 
partial 16S rRNA gene, strain AKB-2008-
HE92 

Bacteria; Bacteroidetes; Flavobacteria; 
Flavobacteriales; 
Flavobacteriaceae; Chryseobacterium 

2 90.4 FJ694279 Uncultured bacterium clone KL201F02 
16S ribosomal RNA gene, partial sequence 

Bacteria; environmental samples. 

2 100 AY436793 Methylophilus sp. ECd4 16S ribosomal 
RNA gene, partial sequence 

Bacteria; Proteobacteria; 
Betaproteobacteria; Methylophilales; 
Methylophilaceae; Methylophilus 

2 94.4 FM206085 Uncultured bacterium partial 16S rRNA 
gene, clone GW_7 

Bacteria; environmental samples. 

2 99.6 GQ284336 Arthrobacter nicotinovorans strain 
THWCSN3 16S ribosomal RNA gene, 
partial sequence 

Bacteria; Actinobacteria; 
Actinobacteridae; Actinomycetales; 
Micrococcineae; Micrococcaceae; 
Arthrobacter 

2 100 GU992398 Lactococcus lactis subsp. lactis strain 
RIBB1 16S ribosomal RNA gene, partial 
sequence 

Bacteria; Firmicutes; Lactobacillales; 
Streptococcaceae; 
Lactococcus 

1 99.6 GU902766 Uncultured bacterium clone PP254-b02 
16S ribosomal RNA gene, partial sequence 

Bacteria; environmental samples. 

1 94.8 GQ354973 Uncultured Spirochaetales bacterium 
clone 4-217 16S ribosomal RNA gene, 
partial sequence 

Bacteria; Spirochaetes; Spirochaetales; 
environmental samples 

1 100 HM333401 Uncultured bacterium clone 
ncd1098d02c1 16S ribosomal RNA gene, 
partial sequence 

Bacteria; environmental samples. 

1 80.2 EF663250 Uncultured proteobacterium clone GASP-
MA2W2_F07 16S ribosomal RNA gene, 
partial sequence 

Bacteria; Proteobacteria; environmental 
samples 

1 91.2 DQ294012 Uncultured epsilon proteobacterium 
clone BRIC27 16S ribosomal RNA gene, 
partial sequence 

Bacteria; Proteobacteria; 
Epsilonproteobacteria; environmental 
samples 

1 99.6 FJ827889 Uncultured actinobacterium clone 
ME012E8 16S ribosomal RNA gene, partial 
sequence 

Bacteria; Actinobacteria; environmental 
samples 

1 98.9 AB190066 Comamonas sp. N-31-25-4 gene for 16S 
rRNA, partial sequence 

Bacteria; Proteobacteria; 
Betaproteobacteria; Burkholderiales; 
Comamonadaceae; Comamonas 

1 92.7 GQ339250 Uncultured bacterium clone IS-195 16S 
ribosomal RNA gene, partial sequence 

Bacteria; Proteobacteria; environmental 
samples 

1 90.5 AF069496 Trojanella thessalonices 16s ribosomal 
RNA gene, partial sequence 

Bacteria; Proteobacteria; 
Alphaproteobacteria; Rickettsiales; 
Candidatus Odyssella 

1 100 GQ157139 Uncultured bacterium clone 16slp101-
3h05.p1k 16S ribosomal RNA gene, partial 
sequence 

Bacteria; environmental samples. 

1 99.3 FJ827881 Uncultured actinobacterium clone 
ME011D4 16S ribosomal RNA gene, 
partial sequence 

Bacteria; Actinobacteria; environmental 
samples 

1 97.8 GQ302554 Uncultured Gemmatimonadetes 
bacterium clone sw-xj18 16S ribosomal 
RNA gene, partial sequence 

Bacteria; Gemmatimonadetes; 
environmental samples. 

1 85.8 EU245242 Uncultured organism clone MAT-CR-H4-
F07 16S ribosomal RNA gene, partial 
sequence 

Unclassified; environmental samples. 

1 98.1 DQ453128 Comamonas odontotermitis strain Dant 3-
8 16S ribosomal RNA gene, partial 
sequence 

Bacteria; Proteobacteria; 
Betaproteobacteria; Burkholderiales; 
Comamonadaceae; Comamonas 

1 92.6 FM176882 Uncultured Waddlia sp. partial 16S rRNA 
gene, clone CL6-7.L258 

Bacteria; Chlamydiae; Chlamydiales; 
Waddliaceae; Waddlia; environmental 
samples 

1 87.5 AY988769 Uncultured soil bacterium clone L1A.3D03 
16S ribosomal RNA gene, partial sequence 

Bacteria; environmental samples. 

1 92.7 GQ339243 Uncultured bacterium clone IS-186 16S 
ribosomal RNA gene, partial sequence 

Bacteria; environmental samples 

1 97.8 FJ894731 Uncultured bacterium clone nbt40f08 16S 
ribosomal RNA gene, partial sequence 

Bacteria; environmental samples 

1 95.9 FJ764216 Uncultured beta proteobacterium clone 
EW1-085 16S ribosomal RNA gene, partial 
sequence 

Bacteria; Proteobacteria; 
Betaproteobacteria; environmental 
samples 
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1 93.3 GU305806 Uncultured bacterium clone YHY25 16S 
ribosomal RNA gene, partial sequence 

Bacteria; environmental samples. 

1 90.5 HM269021 Uncultured bacterium clone ncd241g11c1 
16S ribosomal RNA gene, partial sequence 

Bacteria; environmental samples 

1 99.3 AY958085 Staurastrum punctulatum chloroplast, 
complete genome 

Eukaryota; Viridiplantae; Streptophyta; 
Zygnemophyceae; Desmidiales; 
Desmidiaceae; Staurastrum 

1 91.7 HM335512 Uncultured bacterium clone 
ncd1001d03c1 16S ribosomal RNA gene, 
partial sequence 

Bacteria; environmental samples. 

1 91.5 AY532578 Uncultured bacterium clone 1013-28-
CG38 16S ribosomal RNA gene, partial 
sequence 

Bacteria; environmental samples. 

1 84.7 FJ712836 Uncultured Rhizobium sp. clone Cvi12 16S 
ribosomal RNA gene, partial sequence 

Bacteria; Proteobacteria; 
Alphaproteobacteria; Rhizobiales; 
Rhizobiaceae;Rhizobium/Agrobacterium 
group; Rhizobium environmental samples 

1 88.6 EU723941 Aeromonas sp. AE100 16S ribosomal RNA 
gene, partial sequence 

Bacteria; Proteobacteria; 
Gammaproteobacteria;Aeromonadales; 
Aeromonadaceae; Aeromonas 

1 90.1 EU676408 Uncultured bacterium clone 44P1 16S 
ribosomal RNA gene, partial sequence 

Bacteria; environmental samples. 

1 93.9 HM341023 Uncultured bacterium clone 
ncd1005g12c1 16S ribosomal RNA gene, 
partial sequence 

Bacteria; environmental samples. 

1 97.0 FJ517700 Uncultured Bdellovibrionales bacterium 
clone 26-2_8 16S ribosomal RNA gene, 
partial sequence 

Bacteria; Proteobacteria; 
Deltaproteobacteria; Bdellovibrionales; 
environmental samples 

1 100 EU117887 Uncultured actinobacterium clone RC1B2 
16S ribosomal RNA gene, partial sequence 

Bacteria; Actinobacteria; environmental 
samples 

1 94.5 FJ475456 Uncultured Acetobacteraceae bacterium 
clone AhedenP18 16S ribosomal RNA 
gene, partial sequence 

Bacteria; Proteobacteria; 
Alphaproteobacteria; Rhodospirillales; 
Acetobacteraceae; environmental 
samples 

1 97.4 HM269134 Uncultured bacterium clone ncd243e10c1 
16S ribosomal RNA gene, partial sequence 

Bacteria; environmental samples. 

1 85.6 EF018867 Uncultured bacterium clone 
Amb_16S_1350 16S ribosomal RNA gene, 
partial sequence 

Bacteria; environmental samples. 

1 94.9 EU979051 Uncultured delta proteobacterium clone 
g42 16S ribosomal RNA gene, partial 
sequence 

Bacteria; Proteobacteria; 
Deltaproteobacteria; environmental 

1 89.7 DQ532275 Uncultured bacterium clone JSC9-H2 16S 
ribosomal RNA gene, partial sequence 

Bacteria; environmental samples. 

1 88.6 EU723933 Aeromonas sp. AE99 16S ribosomal RNA 
gene, partial sequence 

Bacteria; Proteobacteria; 
Gammaproteobacteria;Aeromonadales; 
Aeromonadaceae; Aeromonas 

1 99.3 EU131002 Sphingomonas sp. BAC318 16S ribosomal 
RNA gene, partial sequence 

Bacteria; Proteobacteria; 
Alphaproteobacteria;Sphingomonadales; 
Sphingomonadaceae; Sphingomonas 

1 97.7 FJ719670 Eutreptia viridis strain SAG1226-1c 16S 
ribosomal RNA gene, partial sequence; 
chloroplast 

Eukaryota; Euglenozoa; Euglenida; 
Eutreptiales; Eutreptia 

1 94.1 GQ859797 Uncultured bacterium clone AA105 16S 
ribosomal RNA gene, partial sequence 

Bacteria; environmental samples. 

1 98.3 EF072459 Uncultured delta proteobacterium clone 
GASP-WA1W3_B08 16S ribosomal RNA 
gene, partial sequence 

Bacteria; Proteobacteria; 
Deltaproteobacteria; environmental 

1 95.6 HM317816 Uncultured bacterium clone ncd328a02c1 
16S ribosomal RNA gene, partial sequence 

Bacteria; environmental samples. 

1 99.6 AB100608 Swingsiella fulva gene for 16S rRNA, 
partial sequence 

Bacteria; Proteobacteria; 
Gammaproteobacteria; 
Xanthomonadales; Xanthomonadaceae; 
Rhodanobacter 

1 94.6 DQ676307 Uncultured candidate division OD1 
bacterium clone MVP-35 16S ribosomal 
RNA gene, partial sequence 

Bacteria; candidate division OD1; 
environmental samples. 
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1 88.3 FM176464 Uncultured Polyangiaceae bacterium 
partial 16S rRNA gene, clone CL5.H245 

Bacteria; Proteobacteria; 
Deltaproteobacteria; Myxococcales; 
Sorangiineae; Polyangiaceae; 
environmental samples 

1 95.2 EU914095 Uncultured bacterium clone 
D6ENV_87G11 16S ribosomal RNA gene, 
partial sequence 

Bacteria; environmental samples 

1 100 NR_025513 Acetobacter malorum strain LMG 1746 
16S ribosomal RNA, partial sequence  

Bacteria; Proteobacteria; 
Alphaproteobacteria; Rhodospirillales; 
Acetobacteraceae; Acetobacter 

1 93.0 AJ867896 uncultured betaproteobacterium partial 
16S rRNA gene, clone A3 

Bacteria; Proteobacteria; 
Betaproteobacteria; environmental 

1 96.3 DQ828676 Uncultured proteobacterium clone 
DOK_CONFYM_clone423 16S ribosomal 
RNA gene, partial sequence 

Bacteria; Proteobacteria; environmental 
samples 

1 99.3 FM173120 Corynebacterium lubricantis partial 16S 
rRNA gene, strain KSS-4Se 

Bacteria; Actinobacteria; 
Actinobacteridae; Actinomycetales; 
Corynebacterineae; Corynebacteriaceae; 
Corynebacterium 

1 99.3 AB264798 Chitinophaga ginsengisegetis gene for 16S 
rRNA, partial sequence 

Bacteria; Bacteroidetes; Sphingobacteria; 
Sphingobacteriales; Chitinophagaceae; 
Chitinophaga 

1 94.8 DQ501318 Uncultured Bacteroidetes bacterium 
clone FSW11-13 16S ribosomal RNA gene, 
partial sequence 

Bacteria; Bacteroidetes; environmental 
samples 

1 95.2 AY673182 Actinobacteridae bacterium Ellin7016 16S 
ribosomal RNA gene, partial sequence 

Bacteria; Actinobacteria; 
Actinobacteridae. 

1 96.7 AY268295 Uncultured bacterium clone A2 16S small 
subunit ribosomal RNA gene, partial 
sequence 

Bacteria; environmental samples 

1 98.4 AY731468 Uncultured Cellulomonadaceae bacterium 
clone mM3 16S ribosomal RNA gene, 
partial sequence 

Bacteria; Actinobacteria; 
Actinobacteridae; Actinomycetales; 
Micrococcineae; Cellulomonadaceae; 
environmental samples 

1 96.0 AM935633 Uncultured Sphingomonas sp. partial 16S 
rRNA gene, clone AMDH2 

Bacteria; Proteobacteria; 
Alphaproteobacteria; Sphingomonadales; 
Sphingomonadaceae; Sphingomonas; 
environmental samples 

1 98.5 EU423300 Nocardioides sp. LnR5-15 16S ribosomal 
RNA gene, partial sequence 

Bacteria; Actinobacteria; 
Actinobacteridae; Actinomycetales; 
Propionibacterineae; Nocardioidaceae; 
Nocardioides 

1 88.7 FJ673881 Uncultured bacterium clone 130-6J1 16S 
ribosomal RNA gene, partial sequence 

Bacteria; environmental samples 

1 99.6 GU642496 Uncultured bacterium clone RW7152 16S 
ribosomal RNA gene, partial sequence 

Bacteria; environmental samples 

1 99.6 FM173386 Flavobacterium sp. CL1.3 partial 16S rRNA 
gene, isolate CL1.3 

Bacteria; Bacteroidetes; Flavobacteria; 
Flavobacteriales; Flavobacteriaceae; 
Flavobacterium 

1 91.6 FJ936832 Uncultured bacterium clone kab115 16S 
ribosomal RNA gene, partial sequence 

Bacteria; environmental samples 

1 97.8 DQ501338 Uncultured beta proteobacterium clone 
ST11-40 16S ribosomal RNA gene, partial 
sequence 

Bacteria; Proteobacteria; 
Betaproteobacteria; environmental 

1 98.1 GU416464 Streptococcus cristatus clone VF065 16S 
ribosomal RNA gene, partial sequence 

Bacteria; Firmicutes; Lactobacillales; 
Streptococcaceae; Streptococcus 

1 92.2 CU922275 Uncultured Acidobacteria bacterium 16S 
rRNA gene from clone QEDR1BF06 

Bacteria; environmental samples 

1 92.3 EU135203 Uncultured bacterium clone FFCH1186 
16S ribosomal RNA gene, partial sequence 

Bacteria; environmental samples 

1 96.0 FM175683 Uncultured Micromonosporineae 
bacterium partial 16S rRNA gene, clone 
CL2.C451 

Bacteria; Actinobacteria; 
Actinobacteridae; Actinomycetales; 
Micromonosporineae; environmental 
samples 

1 94.5 EF540429 Uncultured soil bacterium clone MK27b 
16S ribosomal RNA gene, partial sequence 

Bacteria; environmental samples 

1 94.1 EF470923 Uncultured bacterium clone 156-21F 16S 
ribosomal RNA gene, partial sequence 

Bacteria; environmental samples 
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1 99.3 AM884298 Mycobacterium gordonae partial 16S 
rRNA gene, strain 126/1/03 

Bacteria; Actinobacteria; 
Actinobacteridae; Actinomycetales; 
Corynebacterineae; Mycobacteriaceae; 
Mycobacterium. 

1 96.70329
6703 

FJ793551 Alcaligenes sp. GR24-5 16S ribosomal RNA 
gene, partial sequence 

Bacteria; Proteobacteria; 
Betaproteobacteria; Burkholderiales; 
Alcaligenaceae; Alcaligenes 

1 94.1 EF020290 Uncultured bacterium clone 
Elev_16S_1827 16S ribosomal RNA gene, 
partial sequence 

Bacteria; environmental samples 

1 99.6 GU642018 Uncultured bacterium clone RW6674 16S 
ribosomal RNA gene, partial sequence 

Bacteria; environmental samples 

1 99.6 AF125877 Dehydroabietic acid-degrading bacterium 
DhA-73 16S ribosomal RNA gene, 
complete sequence 

Bacteria; Proteobacteria; 
Betaproteobacteria; Burkholderiales; 
Comamonadaceae 

1 98.1 AB184555 Streptomyces mucoflavus gene for 16S 
rRNA, partial sequence, strain: NBRC 
13973 

Bacteria; Actinobacteria; 
Actinobacteridae; Actinomycetales; 
Streptomycineae; Streptomycetaceae; 
Streptomyces 

1 97.8 DQ521555 Uncultured bacterium clone ANTLV9_C10 
16S ribosomal RNA gene, partial sequence 

Bacteria; environmental samples 

1 100 AB252938 Uncultured Nitrospirae bacterium gene 
for 16S rRNA, partial sequence, clone: 480 

Bacteria; Nitrospirae; environmental 
samples 
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Table: 7.5. 454 Sequencing results of bacterial identities for Drosophila guts treated with 

50 µg ml-1 of chlortetracycline.  

 

 

Number 
of reads 

% 
Identity 

Accession 
Number 

Identity Lineage 

29544 100 NR_025512 Acetobacter cerevisiae strain LMG 
1625 16S ribosomal RNA, partial 
sequence 
>gi|23892796|emb|AJ419843.1| 
Acetobacter cerevisiae 16S rRNA 
gene, strain LMG 1625 

Bacteria; Proteobacteria; Alphaproteobacteria; 
Rhodospirillales; Acetobacteraceae; 
Acetobacter. 

314 100 EU096229 Acetobacter pomorum strain 
EW816 16S ribosomal RNA gene, 
partial sequence 

Bacteria; Proteobacteria; Alphaproteobacteria; 
Rhodospirillales; Acetobacteraceae; 
Acetobacter. 

54 100 CP001161 Buchnera aphidicola str. 5A 
(Acyrthosiphon pisum), complete 
genome 

Bacteria; Proteobacteria; 
Gammaproteobacteria; Enterobacteriales; 
Enterobacteriaceae; Buchnera. 

12 100 HM334791 Uncultured bacterium clone 
ncd991e01c1 16S ribosomal RNA 
gene, partial sequence 

Bacteria; environmental samples. 

2 100 GQ246723 Lactobacillus sp. M3T1B5 16S 
ribosomal RNA gene, partial 
sequence 

Bacteria; Firmicutes; Lactobacillales; 
Lactobacillaceae;Lactobacillus 

2 100 HM344642 Uncultured bacterium clone 
ncd1060b08c1 16S ribosomal RNA 
gene, partial sequence 

Bacteria; environmental samples. 

2 96.3 EF668276 Uncultured Geobacteraceae 
bacterium clone M22_1608 16S 
ribosomal RNA gene, partial 
sequence 

Bacteria; Proteobacteria; Deltaproteobacteria; 
Desulfuromonadales;Geobacteraceae; 
environmental samples 

2 97.4 FJ444721 Uncultured Sinorhizobium sp. clone 
4h-12 16S ribosomal RNA gene, 
partial sequence 

Bacteria; Proteobacteria; Alphaproteobacteria; 
Rhizobiales; Rhizobiaceae; 
Sinorhizobium/Ensifer group; Sinorhizobium; 
 environmental samples 

2 97.4 EU839288 Soil bacterium 05G-03 16S 
ribosomal RNA gene, partial 
sequence 

Soil bacterium 

2 97.0 DQ153941 Brevibacterium sp. SK8B10 16S 
ribosomal RNA gene, partial 
sequence 

Bacteria; Actinobacteria; Actinobacteridae; 
Actinomycetales;Micrococcineae; 
Brevibacteriaceae; Brevibacterium 

2 100 FJ887890 Bacillus malacitensis strain TP12 
16S ribosomal RNA gene, partial 
sequence 

Bacteria; Firmicutes; Bacillales; Bacillaceae; 
Bacillus 

2 98.1 FJ654577 Uncultured alpha proteobacterium 
clone 012_E03_06-017477 16S 
ribosomal RNA gene, partial 
sequence 

Bacteria; Proteobacteria; Alphaproteobacteria; 
environmental 

2 98.9 GU129070 Porphyromonadaceae bacterium 
62bF 16S ribosomal RNA gene, 
partial sequence 

Bacteria; Bacteroidetes; Bacteroidia; 
Bacteroidales;Porphyromonadaceae; 
unclassified Porphyromonadaceae 

2 99.6 HM328284 Uncultured bacterium clone 
ncd491c09c1 16S ribosomal RNA 
gene, partial sequence 

Bacteria; environmental samples. 

1 100 HM027569 Bacillus subtilis strain zj2008 16S 
ribosomal RNA gene, partial 
sequence 

Bacteria; Firmicutes; Bacillales; Bacillaceae; 
Bacillus. 

1 100 GQ246660 Brevundimonas sp. M1T2B6 16S 
ribosomal RNA gene, partial 
sequence 

Bacteria; Proteobacteria; Alphaproteobacteria; 
Caulobacterales;Caulobacteraceae; 
Brevundimonas 

1 91.2 AF507713 Uncultured soil bacterium clone 
S166 16S ribosomal RNA gene, 
partial sequence 

Bacteria; environmental samples. 
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1 100 FJ875714 Uncultured beta proteobacterium 
clone D-08-ClB03 small subunit 
ribosomal RNA gene, partial 
sequence 

Bacteria; Proteobacteria; Betaproteobacteria; 
environmental 

1 98.2 AB252934 Uncultured alpha proteobacterium 
gene for 16S rRNA, partial 
sequence, clone: 225 

Bacteria; Proteobacteria; Alphaproteobacteria; 
environmental 

1 99.3 GU208440 Uncultured prokaryote clone Fr3-5 
16S ribosomal RNA gene, partial 
sequence 

Bacteria; environmental samples. 

1 99.6 GU902766 Uncultured bacterium clone PP254-
b02 16S ribosomal RNA gene, 
partial sequence 

Bacteria; environmental samples. 

1 96.7 NR_025512 Acetobacter cerevisiae strain LMG 
1625 16S ribosomal RNA, partial 
sequence 

Bacteria; Proteobacteria; Alphaproteobacteria; 
Rhodospirillales; Acetobacteraceae; 
Acetobacter. 

1 97.0 GU916225 Uncultured bacterium clone 
F5K2Q4C04IIOUV 16S ribosomal 
RNA gene, partial sequence 

Bacteria; environmental samples. 

1 98.9 EU982453 Uncultured bacterium clone DYB14 
16S ribosomal RNA gene, partial 
sequence 

Bacteria; environmental samples. 

1 100 GU124493 Arthrobacter sp. endosymbiont of 
Nilaparvata lugens clone A300 16S 
ribosomal RNA gene, partial 
sequence 

Bacteria; Actinobacteria; Actinobacteridae; 
Actinomycetales;Micrococcineae; 
Micrococcaceae; Arthrobacter 

1 90 AY988665 Uncultured soil bacterium clone 
L1A.1H04 16S ribosomal RNA gene, 
partial sequence 

Bacteria; environmental samples. 

1 81.4 FM176408 Uncultured candidate division OD1 
bacterium partial 16S rRNA gene, 
clone BF.A2 

Bacteria; candidate division OD1; 
environmental samples 

1 97.8 GU643314 Uncultured bacterium clone 
RW7970 16S ribosomal RNA gene, 
partial sequence 

Bacteria; environmental samples. 

1 100 EU004565 Paenibacillus sp. HM06-03 16S 
ribosomal RNA gene, partial 
sequence 

Bacteria; Firmicutes; Bacillales; 
Paenibacillaceae; Paenibacillus 

1 95.2 GU472572 Uncultured Rhodocyclaceae 
bacterium clone Rh60A4 16S 
ribosomal RNA gene, partial 
sequence 

Bacteria; Proteobacteria; Betaproteobacteria; 
Rhodocyclales;Rhodocyclaceae; environmental 
samples 

1 86.7 EF020290 Uncultured bacterium clone 
Elev_16S_1827 16S ribosomal RNA 
gene, partial sequence 

Bacteria; environmental samples. 

1 100 HM333643 Uncultured bacterium clone 
ncd1107g12c1 16S ribosomal RNA 
gene, partial sequence 

Bacteria; environmental samples. 

1 99.6 HM336914 Uncultured bacterium clone 
ncd1087f06c1 16S ribosomal RNA 
gene, partial sequence 

Bacteria; environmental samples. 

1 95.2 GQ023532 Uncultured bacterium clone 
nbu319g02c1 16S ribosomal RNA 
gene, partial sequence 

Bacteria; environmental samples. 

1 99.6 HM146606 Uncultured bacterium clone SD102-
3_d06 16S ribosomal RNA gene, 
partial sequence 

Bacteria; environmental samples. 

1 99.6 HM332517 Uncultured bacterium clone 
ncd991c11c1 16S ribosomal RNA 
gene, partial sequence 

Bacteria; environmental samples. 

1 93.0 HM099641 Lachnospiraceae bacterium oral 
taxon F15 strain UY038 16S 
ribosomal RNA gene, partial 
sequence 

Bacteria; Firmicutes; Clostridia; Clostridiales; 
Lachnospiraceae 

1 99.3 FN646601 Brachybacterium sp. SS-2009-
PON14 partial 16S rRNA gene, 
strain PON14 

Bacteria; Actinobacteria; Actinobacteridae; 
Actinomycetales;Micrococcineae; 
Dermabacteraceae; Brachybacterium 
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1 89.7 EU803767 Uncultured bacterium clone 
5C231389 16S ribosomal RNA gene, 
partial sequence 

Bacteria; environmental samples. 

1 99.3 FJ482194 Uncultured candidate division OP11 
bacterium clone Pav-OP27 16S 
ribosomal RNA gene, partial 
sequence 

Bacteria; candidate division OP11; 
environmental samples 

1 99.6 EU775345 Uncultured bacterium clone 
gir_aah93g05 16S ribosomal RNA 
gene, partial sequence 

environmental 

1 98.1 AF236006 Beta proteobacterium A0618 16S 
ribosomal RNA gene, partial 
sequence 

Bacteria; Proteobacteria; Betaproteobacteria 

1 99.3 AY876630 Uncultured Gemmatimonadetes 
bacterium clone Nsp8b 16S 
ribosomal RNA gene, partial 
sequence 

Bacteria; Gemmatimonadetes; environmental 
samples 

1 91.6 FJ155589 Methylobacterium sp. SW08-7 16S 
ribosomal RNA gene, partial 
sequence 

Bacteria; Proteobacteria; Alphaproteobacteria; 
Rhizobiales;Methylobacteriaceae; 
Methylobacterium 

1 99.6 NR_025512 Acetobacter cerevisiae strain LMG 
1625 16S ribosomal RNA, partial 
sequence  

Bacteria; Proteobacteria; Alphaproteobacteria; 
Rhodospirillales; Acetobacteraceae; 
Acetobacter. 

1 95.6 AF141504 Uncultured gamma 
proteobacterium clone CRE-PA17 
16S ribosomal RNA gene, partial 
sequence 

Bacteria; Proteobacteria; 
Gammaproteobacteria; environmental 

1 93.1 AB079644 Green non-sulfur bacterium AK-6 
gene for 16S ribosomal RNA, partial 
sequence 

Bacteria; Chloroflexi. 

1 93.1 AB079639 Kouleothrix aurantiaca gene for 16S 
rRNA, partial sequence, 
strain:MYSI-A 

Bacteria; Chloroflexi; Kouleothrix 

1 100 HM329712 Uncultured bacterium clone 
ncd980d04c1 16S ribosomal RNA 
gene, partial sequence 

Bacteria; environmental samples. 
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7.3 Microarray transcripts with 2 fold or more change in abundance (p<0.05) 

Table: 7.6.   Dechorionation on the high nutrient diet: Immune transcripts 

Gene Number Gene Name Up/Down 
regulation 

Absolute 
fold 
change 

Gene Ontology 
(GO) number 

GO term 

CG1373 Cecropin c Down 51.84 GO:0050832 
GO:0042742 
GO:0005576 
GO:0005615 
GO:0019731 
GO:0050829 
GO:0050830 

Defence response to fungus 
Defence response to bacterium 
Extracellular region 
Extracellular space 
Antibacterial humoral response 
Defence response to Gram-negative 
bacterium 
Defence response to Gram-positive 
bacterium 

CG8175 Metchnikowin Down 36.11 GO:0019731 
GO:0019732 
GO:0006952 
GO:0050832 
GO:0050829 
GO:0050830 
GO:0005576 

Antibacterial humoral response 
Antifungal humoral response 
Defence response 
Defence response to fungus 
Defence response to Gram-negative 
bacterium 
Defence response to Gram-positive 
bacterium 
Extracellular region 

CG10146 Attacin A Down 15.85 GO:0005615 
GO:0019731 
GO:0050829 

Extracellular space 
Antibacterial humoral response 
Defence response to Gram-negative 
bacterium 

CG10794 Diptericin b Down 14.94 GO:0019731 
GO:0005576 

Antibacterial humoral response 
Extracellular region 

BT023384 Defensin Down 10.64 GO:0005615 
GO:0019731 
GO:0050830 
GO:0042742 
GO:0006965 

Extracellular space 
Antibacterial humoral response 
Defence response to Gram-positive 
bacterium 
Defence response to bacterium 
Positive regulation of biosynthetic 
process of antibacterial peptides 
active against gram-positive bacteria 

CG12763 Diptericin Down 10.24 GO:0019731 
GO:0050829 
GO:0042742 
GO:0005576 
GO:0045087 
GO:0005576 

Antibacterial humoral response 
Defence response to Gram-negative 
bacterium 
Defence response to bacterium 
Innate immune response 
Extracellular region 

CG4740   Attacin C Down 8.29 GO:0019731 
GO:0006952 
GO:0005615 
GO:0042742 
GO:0005576 

Antibacterial humoral response 
Defence response 
Extracellular space, 
Defence response to bacterium 
Extracellular region 

CG15678 Poor imd 
response upon 
knock-in 

Down 4.43 GO:0009609 
GO:0005515 
GO:0005102 
GO:0050777 
GO:0045824 
GO:0061060 
 

Response to symbiotic bacterium 
Protein binding 
Receptor binding 
Negative regulation of immune 
response 
Negative regulation of innate 
immune response 
Negative regulation of 
peptidoglycan recognition protein 
signalling pathway 

CG16876 Nimrod c4 Down 3.75 
 

GO:0043277 
GO:0006911 
GO:0005886 

Apoptotic cell clearance 
Phagocytosis engulfment 
Plasma membrane 

CG9681 Peptidoglycan 
recognition 
protein sb1 

Down 3.34 GO:0006952 
GO:0005576 
GO:0008745 
GO:0005887 
GO:0009253 
GO:0042834 
GO:0005875 

Defence response 
Extracellular region 
N-acetylmuramoyl-L-alanine 
amidase activity 
Integral to plasma membrane 
Peptidoglycan catabolic process 
Peptidoglycan binding 
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GO:0006955 Microtubule associated complex 
Immune response 

CG31783 Neither 
inactivation nor 
afterpotential d 

Down 3.04 GO:0006952  
GO:0007602 
GO:0007603  
GO:0007604  
GO:0016063 
GO:0007155 
GO:0005887  
GO:0046867 
GO:0005044 
GO:0006952 
GO:0016020 

Defence response,  
Phototransduction, 
Phototransduction, visible light, 
Phototransduction, UV 
Rhodopsin biosynthetic process 
Cell adhesion 
Integral to plasma membrane 
carotenoid transport 
Scavenger receptor activity 
Defence response 
Membrane 

CG9080 Listericin Down 2.97 GO:0050829 
GO:0050830 
GO:0061057 
GO:0061059 
 

Defence response to Gram-negative 
bacterium 
Defence response to Gram-positive 
bacterium 
Peptidoglycan recognition protein 
signalling pathway 
Positive regulation of peptidoglycan 
recognition protein signalling 
pathway 

CG7496 Peptidoglycan 
recognition 
protein sd 

Down 2.57 GO:0005887 
GO:0045087  
GO:0009253  
GO:0005515  
GO:0008745  
GO:0042834  
GO:0005576  
GO:0050830 
GO:0006955 
GO:0006952 

Integral to plasma membrane 
Innate immune response 
Peptidoglycan catabolic process 
Protein binding 
N-acetylmuramoyl-L-alanine 
amidase 
Peptidoglycan binding activity 
Extracellular region  
Defence response to Gram-positive 
bacterium 
Immune response 
Defence response 

CG14704 Peptidoglycan 
recognition 
protein sb2 

Down 2.43 GO:0005515  
GO:0050830  
GO:0005576 
GO:0004040 
GO:0008745 
GO:0042834 
GO:0006952  
GO:0016045 
GO:0006955  
GO:0009253  
GO:0000270   
GO:0005887 

Protein binding, 
Defence response to Gram-positive 
bacterium, 
Extracellular region 
Amidase activity 
N-acetylmuramoyl-L-alanine 
amidase   
Peptidoglycan binding activity 
Defence response 
Detection of bacterium 
Immune response 
Peptidoglycan catabolic process   
Peptidoglycan metabolic process 
Integral to plasma membrane 

SD22390 Cg6124- partial Down 2.29 GO:0006910 
GO:0008367 

Phagocytosis 
Recognition 

CG4099 Scavenger 
receptor class 
C, type I 

Down 2.09 GO:0030247 
GO:0005044  
GO:0006952 
GO:0050829 
GO:0006955 
GO:0006909 
GO:0009617 
GO:0005887 
GO:0016020 
 

Polysaccharide binding  
Scavenger receptor activity 
Defence response 
Defence response to Gram-negative 
bacterium 
Immune response 
Phagocytosis 
response to bacterium 
Integral to plasma membrane 
membrane  
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Table: 7.7.   Dechorionation on the high nutrient diet: Binding and transport transcripts 

Gene 
Number 

Gene Name Up/Down 
regulation 

Absolute fold 
change 

Gene Ontology 
(GO) number 

GO term 

CG9470 Metallothionein 
A 

Down 3.10 GO:0046872 Metal ion binding 

BT022784 Mitochondrial 
dicarboxylate 
carrier 

Up 2.48 GO:0016021 
GO:0005488 
 GO:0006810 

Integral to membrane 
Transport 
Binding 

CG10943 Viral a-type 
inclusion 
protein 

Down 2.39 GO:0005488 Binding 

BT025105 Class vii 
uncontrol 
myosin 

Up 2.35 GO:0016459 
GO:0005524 
GO:0003774 

Myosin complex 
ATP binding 
Motor activity 
 

BT023209 Metallothionein 
c 

Down 2.24 GO:0005507 
GO:0006875 

Copper ion binding 
Cellular metal ion homeostasis 

CG4950 Carboxypeptida
se n subunit 2 

Down 2.14 GO:0005515 Protein binding 

CG33192 Metallothionein 
D 

Down 2.14 GO:0046872 Metal ion binding 

CG4139 Karl (isoform a) Down 2.05 GO:0005488  Binding 

 

Table: 7.8.   Dechorionation on the high nutrient diet: Metabolic transcripts 

Gene 
Number 

Gene Name Up/Down 
regulation 

Absolute fold 
change 

Gene Ontology (GO) 
number 

GO term 

CG2259 Glutamate-
cysteine ligase 
catalytic subunit 

Down 4.47 GO:0004357 
GO:0005515 
GO:0006750 
GO:0006749 
GO:0006974 
GO:0017109 
GO:0005634 
GO:0048471  

Glutamate-cysteine ligase 
activity 
Protein binding 
Glutathione biosynthetic process 
Glutathione metabolic process 
Response to DNA damage 
stimulus 
Glutamate-cysteine ligase 
complex 
Nucleus 
Perinuclear region of cytoplasm,  

CA804468 Protein 
farnesyltransferase 
alpha subunit 

Up 4.07 GO:0008318 
GO:0018346 
GO:0005965 

Protein prenyltransferase 
activity 
Protein amino acid prenylation 
Protein farnesyltransferase 
complex 

CG4500 Bgml_drome ame: 
full=long-chain-
fatty-acid-- ligase 
bubblegum-like 

Down 3.99 GO:0001676 
GO:0007498 
GO:0004467 

Long-chain fatty acid metabolic 
process 
Mesoderm development 
Long-chain-fatty-acid-CoA ligase 
activity 

CG14205 - Down 3.61 GO:0016747 Transferase activity, transferring 
acyl groups other than amino-
acyl groups 

CG7017 - Down 3.60 GO:0005576 
GO:0008061 
 GO:0006030 
GO:0016490 

Extracellular region 
Chitin binding 
Chitin metabolic process 
structural constituent of 
peritrophic membrane 

CG33926 Transposase Down 3.38 GO:0006139 
GO:0003677 
GO:0034960 

Nucleobase, nucleoside 
Nucleotide and nucleic acid 
metabolic process  
DNA binding 

CG12224 - Down 3.30 GO:0055114 
GO:0016491 
GO:0008076 

Oxidation reduction 
Oxidoreductase activity 
Voltage-gated potassium 
channel complex 
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CG12092-RA 

 

Niemann-pick c1 Down 3.15 GO:0007417 
GO:0007391 
GO:0030299 
 GO:0008158 
GO:0016021 
GO:0005886 
GO:0007422 

Central nervous system 
development 
Dorsal closure 
Intestinal cholesterol absorption 
Hedgehog receptor activity 
Integral to membrane 
Plasma membrane 
Peripheral nervous system 
development 

CG11512 Glutathione s 
transferase d4 

Down 2.94 GO:0004602 
GO:0006979 
GO:0004364 

Glutathione peroxidase activity 
Response to oxidative stress 
Glutathione transferase activity 

CG15533 Acid 
sphingomyelinase 

Down 2.93 GO:0004767 
GO:0006685 
GO:0006684 

Sphingomyelin 
phosphodiesterase activity 
Sphingomyelin catabolic process 
Sphingomyelin metabolic 
process 

CG10814 - Down 2.72 GO:0008336  
GO:0055114 

Gamma-butyrobetaine 
dioxygenase activity  
Oxidation reduction 

l(2)k05819 Lethal isoform b Up 2.72 GO:0006754 
GO:0006812 
GO:0016020 
GO:0015662  

ATP biosynthetic process 
Cation transport 
Membrane  
ATPase activity, coupled to 
transmembrane movement of 
ions, phosphorylative 
mechanism 

CG15534 - Down 2.72 GO:0004767 
GO:0006685 

Sphingomyelin 
phosphodiesterase activity 
Sphingomyelin catabolic process 

CG12766 Aldo-keto 
reductase 

Down 2.66 GO:0016491 
GO:0055114 
GO:0004032 

Oxidoreductase activity 
Oxidation reduction 
Aldehyde reductase activity 

CG31148 - Down 2.62 GO:0005975 
GO:0043169 
GO:0006665 
GO:0005764 
GO:0004348 
GO:0007040 

Carbohydrate metabolic process 
Cation binding 
Sphingolipid metabolic process 
Lysosome 
Glucosylceramidase activity 
Lysosome organization 

BT022430 tpa_inf: hdc06756 Down 2.61 GO:0006508 
GO:0004252 

Proteolysis 
Serine-type endopeptidase 
activity 

CG30098 tpa_inf: hdc06756 Down 2.44 GO:0006508 
GO:0004252 

Proteolysis 
Serine-type endopeptidase 
activity 

TC209893 
 

CG9444-PA Up 2.43 GO:0005427 
GO:0004550  
 

Proton-dependent oligopeptide 
secondary active 
transmembrane transporter 
activity 
Nucleoside diphosphate kinase 
activity 

EC216908 Synaptic vesicle 
membrane protein 
vat-1 homolog-like 

Up 2.33 GO:0008270 
GO:0055114 
GO:0016491 

Zinc ion binding 
Oxidation reduction 
Oxidoreductase activity 

CG11459 - Down 2.23 GO:0004197 
GO:0006508 

Cysteine-type endopeptidase 
activity 
Proteolysis 

CG12242 Glutathione s 
transferase d5 

Down 2.22 GO:0004602 
GO:0006979 
GO:0004364 

Glutathione peroxidase activity 
Response to oxidative stress 
Glutathione transferase activity 

CG17234 Serine protease Down 2.20 GO:0006508 
GO:0004252 

Proteolysis 
Serine-type endopeptidase 
activity 

CG30287 Isoform a Down 2.21 GO:0006508 
GO:0004252 

Proteolysis 
Serine-type endopeptidase 
activity 

CG14219 - Down 2.19 GO:0016747 Transferase activity, transferring 
acyl groups other than amino-
acyl groups 

CG34357 CG34357 Down 2.19 GO:0005524 
GO:0004383 

ATP binding 
Guanylate cyclase activity  

http://www.godatabase.org/cgi-bin/amigo/go.cgi?query=GO:0005427
http://www.godatabase.org/cgi-bin/amigo/go.cgi?query=GO:0004550
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GO:0004672 
GO:0006182 
GO:0023034 
GO:0006468 

Protein kinase activity 
cGMP biosynthetic process 
Intracellular signalling pathway 
Protein amino acid 
phosphorylation 

EC216839 Bifunctional purine 
biosynthesis 
protein 

Up 2.13 GO:0004643 
GO:0003937 
GO:0006188 

Phosphoribosylaminoimidazolec
arboxamide formyltransferase 
activity 
IMP cyclohydrolase activity 
IMP biosynthetic process 

CG9989 Mitochondrial 
endonuclease 

Down 2.12 GO:0046872 
GO:0003676 
GO:0016787 

Metal ion binding 
Nucleic acid binding  
Hydrolase activity 

CG8693 Isoform a Down 2.12 GO:0005975 
GO:0043169 
GO:0003824  
GO:0004558 

Carbohydrate metabolic process 
Cation binding 
Catalytic activity, 
alpha-glucosidase activity 

CG7715 - Down 2.09 GO:0008061 
GO:0006030 
GO:0005576 

Chitin binding 
Chitin metabolic process 
Extracellular region 

CG41624 Spookier 
 

Down 2.03 GO:0004497 
GO:0009055 
GO:0020037 
GO:0006697 
GO:0007591 
GO:0055114 

Monooxygenase activity 
Electron carrier activity 
Heme binding 
Ecdysone biosynthetic process 
Molting cycle, chitin-based 
cuticle 
Oxidation-reduction process 

CG2958 Lectin-24Db  Down 2.02 GO:0042806 
GO:0005537 
GO:0005534 

Fucose binding 
Mannose binding 
Galactose binding 

http://amigo.geneontology.org/cgi-bin/amigo/term-details.cgi?term=GO:0004497
http://amigo.geneontology.org/cgi-bin/amigo/term-details.cgi?term=GO:0009055
http://amigo.geneontology.org/cgi-bin/amigo/term-details.cgi?term=GO:0020037
http://amigo.geneontology.org/cgi-bin/amigo/term-details.cgi?term=GO:0006697
http://amigo.geneontology.org/cgi-bin/amigo/term-details.cgi?term=GO:0007591
http://amigo.geneontology.org/cgi-bin/amigo/term-details.cgi?term=GO:0055114
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Table: 7.9.   Dechorionation on the high nutrient diet: DNA/RNA replication/transcription 

transcripts 

Gene 
Number 

Gene Name Up/Down 
regulation 

Absolute 
fold change 

Gene 
Ontology 
(GO) 
number 

GO term 

CG2125 Cubitus 

interruptus 

(ci) 

Down 3.81 GO:0010843 
GO:0005515 
GO:0016563 
GO:0035017 
GO:0048813 
GO:0008544 
GO:0048592 
GO:0035224 
GO:0060914 
GO:0035217 
GO:0048666 
GO:0048666 
GO:0048477 
GO:0030858 
GO:0045750 
GO:0045944 
GO:0007346 
GO:0007367 
GO:0007224 
GO:0035277 
GO:0048100 
GO:0005737 
GO:0035301 
GO:0016020 
GO:0005634 
GO:0043234 
GO:0003704 
GO:0003700 
GO:0016564 
GO:0008270 
GO:0007350 
GO:0000122 
GO:0030707 
GO:0045449 
GO:0007224 
GO:0005634 

Promoter binding 
Protein binding 
Transcription activator activity 
Cuticle pattern formation 
Dendrite morphogenesis 
Epidermis development 
Eye morphogenesis 
Genital disc anterior/posterior pattern formation 
Heart formation 
Neuron development 
Labial disc development 
Oogenesis 
Positive regulation of epithelial cell differentiation 
Positive regulation of S phase of mitotic cell cycle 
Positive regulation of transcription from RNA 
polymerase II promoter 
Regulation of mitotic cell cycle 
Segment polarity determination 
Smoothened signalling pathway 
Spiracle morphogenesis, open tracheal system 
Wing disc anterior/posterior pattern formation 
Cytoplasm 
Hedgehog signalling complex 
Membrane 
Nucleus 
Protein complex 
Transcription factor activity 
Transcription repressor activity 
Zinc ion binding 
Blastoderm segmentation 
Negative regulation of transcription from RNA 
polymerase II promoter 
Ovarian follicle cell development 
Regulation of transcription 
Smoothened signalling pathway 
Nucleus 

EC267473 
(CG1705) 

Methoprene
-tolerant 

Up 2.72 GO:0005500 
GO:0046982 
GO:0042803 
GO:0030528 
GO:0050793 
GO:0006355 
GO:0005634 
GO:0003700 
GO:0004871 
GO:0006355 
GO:0007165 

Juvenile hormone binding 
Protein heterodimerization activity 
Protein homodimerization activity 
Transcription regulator activity 
Regulation of developmental process 
Regulation of transcription, DNA-dependent 
Nucleus 
Sequence-specific DNA binding transcription factor 
activity 
Signal transducer activity 
Regulation of transcription, DNA-dependent 
signal transduction 

TC219913  
 

CG7564-PA Up 2.20 GO:0005685 
GO:0005634 
GO:0000398 
GO:0045843  

snRNP U1-CFB  
Nucleus  
Nuclear mRNA splicing, via spliceosome 
Negative regulation of striated muscle development 
 

CK662469 LD13130p  Up 2.15 GO:0005730 
GO:0000176 
GO:0003676 
GO:0008408 
GO:0005652 
GO:0006396 

Nucleolus 
Nuclear exosome (RNase complex) 
Nucleic acid binding 
3'-5' exonuclease activity 
Nuclear lamina 
RNA processing 

 

 

http://www.godatabase.org/cgi-bin/amigo/go.cgi?query=GO:0005685
http://www.godatabase.org/cgi-bin/amigo/go.cgi?query=GO:0005634
http://www.godatabase.org/cgi-bin/amigo/go.cgi?query=GO:0000398
http://www.godatabase.org/cgi-bin/amigo/go.cgi?query=GO:0045843
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Table: 7.10.   Dechorionation on the high nutrient diet: Miscellaneous transcripts 

Gene 
Number 

Gene Name Up/Down 
regulation 

Absolute 
fold change 

Gene 
Ontology 
(GO) 
number 

GO term 

CG18087 Salivary 
gland 
secretion 7 

Down 7.42 GO:0007594
GO:0005576 
GO:0005198 

Puparial adhesion 
Extracellular region 
Structural molecule activity 

BP553587 
(CG17082) 

- Up 2.93 GO:0007165 
GO:0005622 

Signal transduction 
Intracellular 

CG11720-

RA 

 

Salivary 
gland 
secretion 3 

Down 2.78 GO:0007594
GO:0005576 
GO:0005198 

Puparial adhesion 
Extracellular region 
Structural molecule activity 

CG7548 - Down 2.53 GO:0005214 Structural constituent of chitin-based cuticle 

CO316961 
(CG34341) 

Phosphodies
terase 11 

Down 2.52 GO:0004115 
GO:0047555 
GO:0046058 
GO:0046068 
GO:0007165 

3',5'-cyclic-AMP phosphodiesterase activity 
3',5'-cyclic-GMP phosphodiesterase activity 
cAMP metabolic process 
cGMP metabolic process 
Signal transduction 

AA978453 
(CG14217) 

Tao-1 Up 2.28 GO:0004674 
GO:0006915 
GO:0005886 
GO:0005524 
GO:0004702 
GO:0006468 

Protein serine/threonine kinase activity 
Apoptosis 
Plasma membrane 
ATP binding 
Receptor signaling protein serine/threonine kinase 
activity 
Protein phosphorylation 

CA807003 
(CG9181) 
 

Protein 
tyrosine 
phosphatase 
61F 

Up 2.27 GO:0005515 
GO:0004725 
GO:0007411 
GO:0071456 
GO:0007377 
GO:0071456 
GO:0007377 
GO:0000278 
GO:0050732 
GO:0048477 
GO:0006470 
GO:0032880 
GO:0031647 
GO:0005737 
GO:0005634 
GO:0048471 
GO:0006470 
 

Protein binding 
Protein tyrosine phosphatase activity 
Axon guidance 
Cellular response to hypoxia 
Germ-band extension 
Cellular response to hypoxia 
Germ-band extension 
Mitotic cell cycle 
Negative regulation of peptidyl-tyrosine 
phosphorylation 
Oogenesis 
Protein dephosphorylation 
Regulation of protein localization 
Regulation of protein stability 
Cytoplasm 
Nucleus 
Perinuclear region of cytoplasm 
Protein dephosphorylation 

BT023292 Tetraspanin 
isoform a 

Up 2.14 GO:0016021
GO:0030097 

Integral to membrane 
Hemopoiesis 
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Table: 7.11.   Dechorionation on the high nutrient diet: Tentative consensus sequences 

and Expression Sequence Tags with no assigned gene ontology. 

Sequence Number Sequence description Up/Down regulation Absolute fold change 

EC265593 (CG14322) Expression sequence tag Down 40.33 

TC218200 (Imaginal discs, 
adulthead, larval-pupal stage) 

Tentative consensus sequence Down 9.01 

TC212147 (Head) Tentative consensus sequence Down 4.04 

TC213322 Tentative consensus sequence Down 3.50 

TC217958 (Mixed stage 
embryos, adult heads and 
imaginal discs) 

Tentative consensus sequence Up 3.13 

TC212294 (Adult male and 
female heads) 

Tentative consensus sequence Up 2.91 

TC219398 (Mixed stage 
embryos, adult heads and 
imaginal discs) 

Tentative consensus sequence Up 2.00-2.85 

TC207643 (Larval and early 
pupal stage) 

Tentative consensus sequence Up 2.69 

TC211395 (Head) Tentative consensus sequence Down 2.64 

CO340976  Expression sequence tag Up 2.60 

TC218608 (Mixed stage 
embryos, adult heads and 
imaginal discs) 

Tentative consensus sequence Up 2.52 

TC220267 Tentative consensus sequence Down 2.50 

TC217746 (Mixed stage 
embryos, adult heads and 
imaginal discs) 

Tentative consensus sequence Up 2.49 

TC202144 Tentative consensus sequence Down 2.47 

TC198329 (Mixed stage 
embryos, adult heads and 
imaginal discs) 

Tentative consensus sequence Up 2.39 

EC251496 Expression sequence tag Down 2.37 

TC217470 Tentative consensus sequence Up 2.36 

TC216814 Tentative consensus sequence Down 2.30 

EC251372  Expression sequence tag Up 2.30 

TC214127 (Mixed stage 
embryos, adult heads and 
imaginal discs) 

Tentative consensus sequence Up 2.29 

TC218787 (Mixed stage 
embryos, adult heads and 
imaginal discs) 

Tentative consensus sequence Up 2.29 

TC216582 Tentative consensus sequence Up 2.28 

TC221202 Tentative consensus sequence Up 2.27 

AT28783 Expression sequence tag Down 2.25 

TC215744 Tentative consensus sequence Down 2.24 

TC219887 (Mixed stage 
embryos, adult heads and 
imaginal discs) 

Tentative consensus sequence Up 2.20 

TC217326 (Embryo) Tentative consensus sequence Down 2.20 

TC216236 (Mixed stage 
embryos, adult heads and 
imaginal discs) 

Tentative consensus sequence Down 2.19 

TC204335 (Larval early pupae) 
 

Tentative consensus sequence Down 2.19 

TC201532 Tentative consensus sequence Up 2.18 

TC218281 (Mixed stage 
embryos, adult heads and 
imaginal discs) 

Tentative consensus sequence Up 2.13 

CK133206  Expression sequence tag Up 2.10 

CA806439  Expression sequence tag Up 2.09 

CA805541 (CG43139) Expression sequence tag Up 2.06 

CO335149  Expression sequence tag Down 2.06 

LP20693 Expression sequence tag Down 2.06 

TC214720 Tentative consensus sequence Down 2.05 

TC216455 (Mixed stage 
embryos, adult heads and 
imaginal discs) 

Tentative consensus sequence Up 2.04 
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TC220402 (Embryo) Tentative consensus sequence Up 2.03 

TC215707 (Mixed stage 
embryos, adult heads and 
imaginal discs) 

Tentative consensus sequence Up 2.02 

TC215821  (Mixed stage 
embryos, adult heads and 
imaginal discs) 

Tentative consensus sequence Up 2.02 

EL871925  Expression sequence tag Up 2.01 

EC265111  Expression sequence tag Down 2.00 

CO300471  Expression sequence tag Down 2.00 

 

 

Table: 7.12.   Dechorionation on the high nutrient diet: Sequences with no assigned gene 

ontology. 

Gene/Sequence Number Up/Down regulation Absolute fold change 

CG32185 Down 118.89 

CG34143 (Ionotropic receptor 10a) Up 7.00 

CG18273-RA Down 4.80 

CG18273 Up 3.81 

CG33553-RF Down 4.61 

CG16775 Down 3.82 

CG31711-RA Down 3.59 

CG41233 Down 3.41 

CG12998 Down 3.01 

NM_168143 (CG32408) Down 2.86 

NM_167853 (CG9094) Up 2.86 

CG31410 (Niemann-Pick type C-2e) Down 2.72 

CG33460 Down 2.71 

CG13641 Down 2.65-2.74 

CG18539 Up 2.62 

CG14639 (TwdlF) Down 2.42 

CG31698 Up 2.41 

CG7953 Down 2.28 

CG31554 Up 2.28 

CG7968 Down 2.26 

CG13640 Down 2.15 

NM_144221 Down 2.02 

CG40137 Up 2.01 

CG9616 Down 2.01 
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Table: 7.13.   Dechorionation on the low nutrient diet: Immune transcripts. 

 

 

 

 

 

 

 

 

Gene Number Gene Name Up/Down 
regulation 

Absolute fold 
change 

Gene Ontology 
(GO) number 

GO term 

CG12763 Diptericin Down 33.96 GO:0019731 
GO:0050829 
GO:0042742 
GO:0005576 
GO:0045087 
GO:0005576 

Antibacterial humoral 
response 
Defence response to 
Gram-negative 
bacterium 
Defence response to 
bacterium 
Innate immune response 
Extracellular region 

CG8175 Metchnikowin Down 15.02 GO:0019731 
GO:0019732 
GO:0006952 
GO:0050832 
GO:0050829 
GO:0050830 
GO:0005576 

Antibacterial humoral 
response 
Antifungal humoral 
response 
Defence response 
Defence response to 
fungus 
Defence response to 
Gram-negative 
bacterium 
Defence response to 
Gram-positive bacterium 
Extracellular region 

CG10794 Diptericin b Down 13.24 GO:0019731 
GO:0005576 

Antibacterial humoral 
response 
Extracellular region 

CG4740 Attacin C Down 5.67 GO:0019731 
GO:0006952 
GO:0005615 
GO:0042742 
GO:0005576 

Antibacterial humoral 
response 
Defence response 
Extracellular space 
Defence response to 
bacterium 
Extracellular region 

CG9681 Peptidoglycan 
recognition protein 
sb1 

Down 2.89-2.77 GO:0006952 
GO:0005576 
GO:0008745 
GO:0005887 
GO:0009253 
GO:0042834 
GO:0005875 
GO:0006955 

Defence response 
Extracellular region 
N-acetylmuramoyl-L-
alanine amidase activity 
Integral to plasma 
membrane 
Peptidoglycan catabolic 
process 
Peptidoglycan binding 
Microtubule associated 
complex 
Immune response 
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Table: 7.14.   Dechorionation on the low nutrient diet: Binding and transport transcripts. 

Gene Number Gene Name Up/Down 
regulation 

Absolute fold 
change 

Gene Ontology 
(GO) number 

GO term 

NM_001015210 Zinc c3hc4 type (ring finger) 
domain protein 

Down 3.26 GO:0003676 
GO:0008270 
GO:0005515 

Nucleic acid binding 
Zinc ion binding 
protein binding 

CG11123 Mgc69156 protein Up 3.09 GO:0003723 RNA binding 
 

EC240045 Coatomer subunit alpha Up 2.90 GO:0005515             
GO:0016192 
GO:0006886 
GO:0030126 
GO:0005198 

Protein binding 
Vesicle-mediated 
transport 
Intracellular protein 
transport 
COPI vesicle coat 
Structural molecule 
activity 

CG32704 Glutamate receptor 1 Down 2.78 GO:0016020  
GO:0004970  
GO:0006811  
GO:0005234 

Membrane 
Ionotropic glutamate 
receptor activity  
Ion transport 
Extracellular-
glutamate-gated ion 
channel activity 

CG12754 Odorant receptor 42b Down 2.35 GO:0007608 
GO:0004984  
GO:0005549 
GO:0016021 
GO:0016020  

Sensory perception of 
smell 
Olfactory receptor 
activity 
Odorant binding 
Integral to membrane 
Plasma membrane  
 

CG3250 Os-C  Down 2.09 GO:0005550 Pheromone binding 
 

CG11748 Odorant-binding protein 19a Down 2.09 GO:0005549 
GO:0005576 
GO:0042048 
GO:0019236  
GO:0007606 
GO:0006810 

Odorant binding 
Extracellular region 
Olfactory behaviour 
Response to 
pheromone 
Sensory perception of 
chemical stimulus  
Transport 
 

CG8807 Lush  Down 2.09 GO:0035275  
GO:0042048 
GO:0019236  
GO:0005549 
GO:0045471 
GO:0007606 
GO:0007608 
GO:0005576 
 
GO:0006810 

Dibutyl phthalate 
binding 
Olfactory behaviour 
Response to 
pheromone 
Odorant binding 
Response to ethanol 
Sensory perception of 
chemical stimulus 
Sensory perception of 
smell 
Extracellular region 
Transport 
 

CG6642 Antennal protein 10 Down 2.09-2.20 GO:0005549 
GO:0005550 
GO:0007606 

Odorant binding 
Pheromone binding 
Sensory perception of 
chemical stimulus 
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Table: 7.15.   Dechorionation on the low nutrient diet: Metabolic transcripts. 

Gene Number Gene Name Up/Down 
regulation 

Absolute 
fold change 

Gene 
Ontology 
(GO) number 

GO term 

CG9781 Obstructor-G Up 3.32 GO:0005576 
GO:0008061  
GO:0006030 
GO:0016490 

Extracellular region 
Chitin binding  
Chitin metabolic 
process 
Structural 
constituent of 
peritrophic 
membrane 

CG2259 Glutamate-cysteine ligase 
catalytic subunit 

Down 2.89 GO:0004357 
GO:0005515 
GO:0006750 
GO:0006749 
GO:0006974 
GO:0017109 
GO:0005634 
GO:0048471 
 

Glutamate-cysteine 
ligase activity 
Protein binding 
Glutathione 
biosynthetic 
process 
Glutathione 
metabolic process 
Response to DNA 
damage stimulus 
Glutamate-cysteine 
ligase complex 
Nucleus 
Perinuclear region 
of cytoplasm 

CO334625 Cholesterol transporter 
tart1 

Up 2.74 GO:0017127 Cholesterol 
transporter activity 

CG12224 CG12224 Down 2.34 GO:0016491 
GO:0055114 

Oxidoreductase 
activity 
Oxidation 
reduction 

CG32473 CG32473 Down 2.30 GO:0004177 
GO:0008237 
GO:0008270 
GO:0006508 
 

Aminopeptidase 
activity 
Metallopeptidase 
activity 
Zinc ion binding 
Proteolysis 

 

Table: 7.16.   Dechorionation on the low nutrient diet: DNA/RNA replication/transcription 

transcripts. 

 

Gene Number Gene Name Up/Down 
regulation 

Absolute 
fold 
change 

Gene 
Ontology 
(GO) number 

GO term 

AA440503 
(CG5303) 

Meiotic from via Salaria 332 Up 2.30 GO:0007143 
GO:0007140 
GO:0007062 
GO:0005694 
GO:0000775 
GO:0045132 
GO:0007132 
GO:0007062 
GO:0005634 
 
 

Female meiosis 
Male meiosis 
Sister chromatid 
cohesion 
Chromosome 
Chromosome, 
centromeric region 
Meiotic chromosome 
segregation 
Meiotic metaphase I 
Sister chromatid 
cohesion 
Nucleus 

 

 



201 

 

Table: 7.17.   Dechorionation on the low nutrient diet: Tentative consensus sequences 

and Expression sequence tags with no assigned gene ontology. 

Sequence Number Sequence 
description 

Up/Down regulated Absolute fold change 

EC265593  Expression 
sequence tag 

Down 16.36 

TC218200 ( Larval early pupal) Tentative consensus 
sequence 

Down 11.09 

TC215502 Tentative consensus 
sequence 

Down 4.65 
 

TC210124(BI628134) Tentative consensus 
sequence 

Down 4.21 
 

TC218367 (Embryo) Tentative consensus 
sequence 

Up 3.75 
 

TC213314 (Embryo) Tentative consensus 
sequence 

Down 3.67 

TC203290 (Adult testis) Tentative consensus 
sequence 

Up 2.89 

TC218479 (mixed stage embryos, imaginal 
disks, and adult heads) 
 

Tentative consensus 
sequence 

Down 2.64 

TC221383 Tentative consensus 
sequence 

Up 2.45 

TC196107 (Embryo) Tentative consensus 
sequence 

Down 2.32 

TC217326  (Embryo) Tentative consensus 
sequence 

Down 2.28 

TC220675 Tentative consensus 
sequence 

Up 2.28 

EC235662  Expression 
sequence tag 

Down 2.20 

TC217270 (Male and female adult head) Tentative consensus 
sequence 

Up 2.18 

TC212583 (Embryo) Tentative consensus 
sequence 

Down 2.17 

CK133206  Expression 
sequence tag 

Up 2.11 

TC221392 Tentative consensus 
sequence 

Down 2.07 

TC216434 Tentative consensus 
sequence 

Up 
 

2.00 

 

 

Table: 7.18.   Dechorionation on the low nutrient diet: Sequences with no assigned gene 

ontology. 

Gene/Sequence Number Up/Down regulated Absolute fold change 

CG32185 (BT023614) Down 35.34 

CG13445 Down 3.11 

CG34336 (RT07405p) Up 2.18 

CG15820 Down 2.02 
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Table: 7.19.   Control flies on the high and low nutrient diet: Binding and transport 

transcripts. 

Gene Number Gene Name Up/Down 
regulation 

Absolute 
fold 
change 

Gene Ontology 
(GO) number 

GO term 

CG40343 (NM_001015210) 
 

CG40343 Up 4.20 GO:0003676 
GO:0008270 

Nucleic acid binding 
Zinc ion binding 

CG8585  Ih channel Up 2.96 GO:0005221 
GO:0005244 
GO:0005249 
GO:0006813 
GO:0055085 
GO:0016020 
GO:0005886 

Intracellular cyclic 
nucleotide activated 
Cation channel activity 
Voltage-gated ion 
channel activity 
Voltage-gated 
potassium channel 
activity 
Potassium ion 
transport 
Transmembrane 
transport 
Membrane 
Plasma membrane 

CG7592 Odorant-binding 
protein 99b 

Down 2.94 GO:0005549 
GO:0007606 
GO:0006810 
GO:0035071 
GO:0019236 
GO:0005576 
GO:0042048 
GO:0048102 

Odorant binding 
Sensory perception of 
chemical stimulus  
Transport 
Salivary gland cell 
autophagic cell death 
Response to 
pheromone 
Extracellular region 
Olfactory behaviour 
Autophagic cell death 

CO265995 Secis-binding 
protein 2 

Down 2.70 GO:0046872 Metal ion binding 

CG41087 - Up 2.42 GO:0006457 
GO:0031072 
GO:0051082 

Protein folding 
Heat shock protein 
binding 
Unfolded protein 
binding 

BP557102 (CG10706) 
 

Small 
conductance 
calcium-
activated 
potassium 
channel 

Up 2.33 GO:0015269 
GO:0005516 
GO:0016286 
GO:0006813 
GO:0016021 

Calcium-activated 
potassium channel 
activity 
Calmodulin binding 
Small conductance 
calcium-activated 
potassium channel 
activity 
Potassium ion 
transport 
Integral to membrane 

EL882428 Isoform b Down 2.33 GO:0016021 
GO:0006814 
GO:0005215 

Integral to membrane 
Sodium ion transport 
Transporter activity 

CG32284 CG14957 protein Down 2.24 GO:0005576 
GO:0008061 

Extracellular region 
Chitin binding 

CG8177 - Up 2.11 GO:0015301 
GO:0005452 
GO:0006820 
GO:0016021 
 

Anion:anion antiporter 
activity 
Inorganic anion 
exchanger activity 
Anion transport 
Integral to membrane 

CG12944 Odorant-binding 
protein 47a 

Up 2.09 GO:0006810 
GO:0007606 
GO:0005549 

Transport 
Sensory perception of 
chemical stimulus 
Odorant binding 

CG4465 - Up 2.09 GO:0008513 
GO:0055085 

Secondary active 
organic cation 
transmembrane 
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transporter activity 
Transmembrane 
transport 

CG10293-RC Held out wings Up 2.06 GO:0005634 
GO:0005737 
GO:0030154 
GO:0003729 
GO:0007525 
GO:0045214 
GO:0000381 
GO:0007438 
GO:0007498 
GO:0008078 
GO:0008347 
GO:0009790 
GO:0008366 
GO:0007475 
GO:0003730 

Nucleus 
Cytoplasm 
Cell differentiation 
mRNA binding 
Somatic muscle 
development 
Sarcomere 
organization 
Regulation of 
alternative nuclear 
mRNA splicing, via 
spliceosome 
Oenocyte development 
Mesoderm 
development 
Mesodermal cell 
migration 
Glial cell migration 
Embryonic 
development 
Axon ensheathment 
Apposition of dorsal 
and ventral imaginal 
disc-derived wing 
surfaces 
mRNA 3'-UTR binding 

CG4898 Tropomyosin 1 Up 2.01 GO:0048813 
GO:0045451 
GO:0010591 
GO:0030017 
GO:0003779 
GO:0048813 
GO:0006936 
GO:0048477 
GO:0007315 
GO:0005862 

Dendrite 
morphogenesis 
Poleplasm oskar mRNA 
localization 
Regulation of 
lamellipodium 
assembly 
Sarcomere 
Actin binding 
Dendrite 
morphogenesis 
Muscle contraction 
Oogenesis 
Poleplasm assembly 
Muscle thin filament 
tropomyosin 

AI517949 (CG2520) Like-AP180 Up               
2.01 

GO:0007270 
GO:0042331 
GO:0006898 
GO:0007268 
GO:0048488 
GO:0005905 
GO:0005545 
GO:0030276 
GO:0048268 
GO:0007269 
GO:0016183 
GO:0048489 
GO:0030131 
GO:0030118 
GO:0008021 

Nerve-nerve synaptic 
transmission 
Phototaxis 
Receptor-mediated 
endocytosis 
Synaptic transmission 
Synaptic vesicle 
endocytosis 
coated pit 
1-phosphatidylinositol 
binding 
Clathrin binding 
Clathrin coat assembly 
Neurotransmitter 
secretion 
Synaptic vesicle coating 
Synaptic vesicle 
transport 
Clathrin adaptor 
complex 
Clathrin coat 
Synaptic vesicle 
 

CG11326 Thrombospondin Up 2.00 GO:0008201  
GO:0033627  
GO:0016203 
GO:0007517  

Heparin binding 
Cell adhesion mediated 
by integrin 
Muscle attachment  



204 

 

GO:0031012 
GO:0005927 
GO:0043234 
GO:0005509 

Muscle organ 
development 
Extracellular matrix 
Muscle tendon junction 
Protein complex     
Calcium ion binding 

 

 

Table: 7.20.   Control flies on the high and low nutrient diet: Metabolic transcripts 

Gene 
Number 

Gene Name Up/Down 
regulation 

Absolute 
fold 
change 

Gene Ontology (GO) 
number 

GO term 

CG17285 Fat body protein 1 Down 29.12 GO:0005344 
GO:0008565 
GO:0005811 
GO:0015032 

Oxygen transporter activity 
Protein transporter activity 
Lipid particle 
Storage protein import into fat body 

CG3763 Fat body protein 2 Down 23.54 GO:0055114 
GO:0004022  
GO:0045735 
 GO:0005488  
GO:0005811  

Oxidation reduction 
Alcohol dehydrogenase (NAD) 
activity 
Nutrient reservoir activity 
Binding 
Lipid particle 

CG7017 - Down 7.60 GO:0005576  
GO:0008061  
GO:0006030 
GO:0016490 

Extracellular region 
Chitin binding 
Chitin metabolic process 
structural constituent of peritrophic 
membrane 

CG4178 Larval serum 
protein 1 beta 

Down 5.44 GO:0005344 
GO:0005616 
GO:0045735 
GO:0005811 
GO:0006810 

Oxygen transporter activity 
Larval serum protein complex 
Nutrient reservoir activity 
Lipid particle 
Transport 

CG10140 Isoform a Down 3.88 GO:0005576 
GO:0008061 
GO:0006030 

Extracellular region 
Chitin binding 
Chitin metabolic process 

CG17725 Phosphoenolpyru
vate 
carboxykinase 

Up 3.31 GO:0006094  
GO:0005525  
GO:0016301  
GO:0004613  
GO:0005739 

Gluconeogenesis 
GTP binding 
Kinase activity 
Phosphoenolpyruvate carboxykinase 
(GTP) activity Mitochondrion 

CG33467 - Down 3.27 GO:0004672 
GO:0006468 
GO:0005524 

Protein kinase activity 
Protein amino acid phosphorylation 
ATP binding 

CG32564 - Down 2.87 GO:0009055 
GO:0020037 
GO:0005506 
GO:0004497 

Electron carrier activity 
Heme binding 
Iron ion binding 
Monooxygenase activity 

CG32464 l(3)82Fd Up 2.83 GO:0016998 Cell wall macromolecule catabolic 
process 

TC209631 CG4346-PA Down 2.71 GO:0004623  
GO:0007615  
GO:0008016 
GO:0008355 

Phospholipase A2 activity  
Anesthesia-resistant memory 
Regulation of heart contraction 
Olfactory learning 

CG13744 Serine protease Down 2.54 GO:0006508 
GO:0004252 

Proteolysis 
Serine-type endopeptidase activity 

CG41624 Spookier 
 

Down 2.44 GO:0004497 
GO:0009055 
GO:0020037 
GO:0006697 
GO:0007591 
GO:0055114 

Monooxygenase activity 
Electron carrier activity 
Heme binding 
Ecdysone biosynthetic process 
Molting cycle, chitin-based cuticle 
Oxidation-reduction process 

CG9663 - Up 2.38 GO:0042626 
GO:0005524 
GO:0005215 
GO:0043190 

ATPase activity, coupled to 
transmembrane movement of 
substances 
ATP binding 

http://www.godatabase.org/cgi-bin/amigo/go.cgi?query=GO:0004623
http://www.godatabase.org/cgi-bin/amigo/go.cgi?query=GO:0007615
http://www.godatabase.org/cgi-bin/amigo/go.cgi?query=GO:0008016
http://www.godatabase.org/cgi-bin/amigo/go.cgi?query=GO:0008355
http://amigo.geneontology.org/cgi-bin/amigo/term-details.cgi?term=GO:0004497
http://amigo.geneontology.org/cgi-bin/amigo/term-details.cgi?term=GO:0009055
http://amigo.geneontology.org/cgi-bin/amigo/term-details.cgi?term=GO:0020037
http://amigo.geneontology.org/cgi-bin/amigo/term-details.cgi?term=GO:0006697
http://amigo.geneontology.org/cgi-bin/amigo/term-details.cgi?term=GO:0007591
http://amigo.geneontology.org/cgi-bin/amigo/term-details.cgi?term=GO:0055114
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GO:0016021 Transporter activity 
ATP-binding cassette (ABC) 
transporter complex 
Integral to membrane 

TC207646 - Down 2.38 GO:0051018 
GO:0008104 

Protein kinase A binding  
Protein localization 

CG14957 - Down 2.34 GO:0005576 
GO:0008061  
GO:0006030 

Extracellular region 
Chitin binding 
Chitin metabolic process 

TC209811 Lectin type C Up 2.39 GO:0005534 Galactose binding 

BT025118 Serine protease Down 2.20 GO:0005576  
GO:0005198 
GO:0006508  
GO:0004252 

Extracellular region 
Structural molecule activity 
Proteolysis 
Serine-type endopeptidase activity 

CG30098 tpa_inf: hdc06756 Down 2.28 GO:0006508 
GO:0004252 

Proteolysis 
Serine-type endopeptidase activity 

BT022430 tpa_inf: hdc06756 Down 2.25 GO:0006508 
GO:0004252 

Proteolysis 
Serine-type endopeptidase activity 

EL876446 CG11126-pa Down 2.17 GO:0016787 
GO:0009166 

Hydrolase activity 
Nucleotide catabolic process 

CG8256 Gpo-1 (glycerol-3-
phosphate 
dehydrogenase) 

Up 2.11 GO:0005743 
GO:0007629  
GO:0006072  
GO:0005811  
GO:0006127  
GO:0005509  
GO:0004368  
GO:0009331 

Mitochondrial inner membrane 
Flight behaviour 
Glycerol-3-phosphate metabolic 
process 
Lipid particle 
Glycerophosphate shuttle 
Calcium ion binding 
Glycerol-3-phosphate 
dehydrogenase activity 
Glycerol-3-phosphate 
dehydrogenase complex 

TC209893 CG9444-PA Up 2.08 GO:0005427 
GO:0004550 

Proton-dependent oligopeptide 
secondary active transmembrane 
transporter activity 
Nucleoside diphosphate kinase 
activity 

CG3986 Chitinase 4 Down 2.04 GO:0005576  
GO:0004568  
GO:0008061 
GO:0043169 
GO:0006032 

Extracellular region 
Chitinase activity 
Chitin binding 
Cation binding 
Chitin catabolic process 

CG11771 Oligopeptidase a Up 2.04 GO:0004222 
GO:0006508 

Metalloendopeptidase activity 
Proteolysis 

TC215745 CG5087-PA Up 2.01 GO:0004842 Ubiquitin-protein ligase activity 

 

 

 

 

 

 

 

 

 

http://www.godatabase.org/cgi-bin/amigo/go.cgi?query=GO:0051018
http://www.godatabase.org/cgi-bin/amigo/go.cgi?query=GO:0008104
http://www.godatabase.org/cgi-bin/amigo/go.cgi?query=GO:0005534
http://www.godatabase.org/cgi-bin/amigo/go.cgi?query=GO:0005427
http://www.godatabase.org/cgi-bin/amigo/go.cgi?query=GO:0004550
http://www.godatabase.org/cgi-bin/amigo/go.cgi?query=GO:0004842
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Table: 7.21.   Control flies on the high and low nutrient diet: DNA/RNA 

replication/transcription transcripts. 

Gene 
Number 

Gene Name Up/Down 
regulation 

Absolute 
fold 
change 

Gene Ontology 
(GO) number 

GO term 

CG41130 MIP04163p  Up 2.47 GO:0045449 
GO:0030528 
GO:0005634 

Regulation of transcription 
Transcription regulator activity 
Nucleus 

BG639986 Exosome 
complex 
exonuclease 
rrp45 

Up 2.14 GO:0000176 
 GO:0000175 
 GO:0000177 
GO:0003723 
GO:0006396 

Nuclear exosome (RNase complex) 
3'-5'-exoribonuclease activity 
Cytoplasmic exosome (RNase complex) 
RNA binding 
RNA processing 

CG11518 Pygopus  Up 2.14 GO:0005515 
GO:0016563 
GO:0060232 
GO:0048813 
GO:0009880 
GO:0035214 
GO:0048526 
GO:0030177 
GO:0006351 
GO:0007472 
GO:0016055 
GO:0007223 
GO:0005634 
GO:0008270 
 

Protein binding 
Transcription activator activity 
Delamination 
Dendrite morphogenesis 
Embryonic pattern specification 
Eye-antennal disc development 
Imaginal disc-derived wing expansion 
Positive regulation of Wnt receptor 
signalling pathway 
Transcription, DNA-dependent 
Wing disc morphogenesis 
Wnt receptor signalling pathway 
Wnt receptor signalling pathway, calcium 
modulating pathway 
Nucleus 
Zinc ion binding 
 

Dis3 Mitotic 
control 
protein dis3 

Up 2.10 GO:0004540 
GO:0003723 

Ribonuclease activity 
RNA binding 

CG11491 Broad Up 2.01 GO:0005634 
GO:0005622 
GO:0035070 
GO:0035071 
GO:0006355 
GO:0040034 
GO:0007552 
GO:0035072 
GO:0008219 
GO:0008270 
GO:0003704 
GO:0003700 
GO:0009608 
GO:0035075  
GO:0040034 
GO:0007458  
GO:0048477 
GO:0048747 
GO:0048808 
GO:0035193 
GO:0007562 
GO:0001752 
GO:0006914 
GO:0016566 
GO:0003677 

Nucleus 
Intracellular  
Salivary gland histolysis  
Salivary gland cell autophagic cell death 
Regulation of transcription, DNA-
dependent  
Regulation of development 
Metamorphosis 
Ecdysone-mediated induction of salivary 
gland cell autophagic cell death 
Cell death 
Zinc ion binding 
Specific RNA polymerase II transcription 
factor activity 
Transcription factor activity Response to 
symbiont  
Response to ecdysone  
Regulation of development, heterochronic 
Heterochronic progression of 
morphogenetic furrow involved in 
compound eye morphogenesis  
Oogenesis 
Muscle fiber development  
Male genitalia morphogenesis    
Larval central nervous system 
remodelling 
Eclosion 
Compound eye photoreceptor fate 
commitment   
Autophagy 
Specific transcriptional repressor activity 
DNA binding 
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Table: 7.22.   Control flies on the high and low nutrient diet: Miscellaneous transcripts. 

Gene 
Number 

Gene Name Up/Down 
regulation 

Absolute 
fold change 

Gene Ontology 
(GO) number 

GO term 

CG8502 Cuticular 
protein 
isoform 49Ac 

Down 9.11 GO:0042302 Structural constituent of cuticle 
Structural constituent of chitin-based 
larval cuticle 

CG7539 Ecdysone-
dependent 
gene 91 

Down 4.60 GO:0008011 Structural constituent of pupal chitin-
based cuticle 

CG11628 Steppke Up 3.16 GO:0040018 
GO:0005086 
GO:0032012 
GO:0005622 

Positive regulation of multicellular 
organism growth 
ARF guanyl-nucleotide exchange 
factor activity Regulation of ARF 
protein signal transduction 
Intracellular     

CO181664 - Up 3.06 GO:0040018 Positive regulation of multicellular 
organism growth 

TC215268 CG7941-PA Up 2.61 GO:0005214 
GO:0008010 

Structural constituent of chitin-based 
cuticle 
Structural constituent of chitin-based 
larval cuticle 

CG13586 Ion transport 
peptide 

Up 2.05 GO:0005179 
GO:0005184 
GO:0007218 
GO:0005576  

Hormone activity 
Neuropeptide hormone activity 
Neuropeptide signalling pathway 
Extracellular region  

 

Table: 7.23.   Control flies on the high and low nutrient diet: Tentative consensus 

sequences and expression sequence tags with no assigned gene ontology number. 

Sequence Number Sequence description Up/Down 
regulation 

Absolute fold change 

TC198490   Tentative consensus sequence Down 17.05 

TC216174  (Embryo, imaginal 
disks and head) 

Tentative consensus sequence Up 3.86 

TC212147 (Head) Tentative consensus sequence Down 3.76 

TC212413 (Head) Tentative consensus sequence Down 3.73 

TC215541 (Embryo, imaginal 
disks and head) 

Tentative consensus sequence Up 2.86 

TC217270  (Adult head) Tentative consensus sequence Down 2.79 

TC221252 (Embryo, imaginal 
disks and head) 

Tentative consensus sequence Down 2.73 

BI568522  Expression sequence tag Down 2.66 

TC211303 (S2 cell) Tentative consensus sequence Up 2.64 

TC220055 
(Embryo, imaginal disks and 
head) 

Tentative consensus sequence Up 2.63 

CO183923  Expression sequence tag Down 2.49 

CO184327  Expression sequence tag Down 2.41 

TC215981 (Salivary glands) Tentative consensus sequence Up 2.38 

TC216561 (Embryo, imaginal 
disks and head) 

Tentative consensus sequence Up 2.36 

BP553587  Expression sequence tag Up 2.36 

TC219436 Tentative consensus sequence Up 2.35 

TC217125 (Embryo, imaginal 
disks and head) 

Tentative consensus sequence Up 2.27 

TC209931 (Head) Tentative consensus sequence Down 2.20 

TC219340 (Head) Tentative consensus sequence Down 2.19 

TC211084 (Head) Tentative consensus sequence Down 2.17 

http://www.godatabase.org/cgi-bin/amigo/go.cgi?query=GO:0005214
http://www.godatabase.org/cgi-bin/amigo/go.cgi?query=GO:0008010
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TC217379 (Head) Tentative consensus sequence Up 2.15 

TC215879 (Head) Tentative consensus sequence Down 2.10 

TC210443 (Embryo) Tentative consensus sequence Up 2.08 

TC221262 Tentative consensus sequence Down 2.07 

TC217757 Tentative consensus sequence Up 2.04 

AI517949 Expression sequence tag Up 2.01 

TC218077 (Embryo, imaginal 
disks and head) 

Tentative consensus sequence Down 2.01 

 

Table: 7.24.   Control flies on the high and low nutrient diet: Sequences with no assigned 

gene ontology number. 

Gene/Sequence Number Up/Down 
regulation 

Absolute fold change 

CG11370 Down 4.50 

CG13962 Down 4.31 

CG40203 Up 3.59 

CG13445 Up 2.71 

GM04319 Down 2.61 

BT028806 Down 2.37 

AT28783 Down 2.29 

CG14563 Down 2.20 

CG32182 Down 2.18 

CG15212 Up 2.04 

CG30395 Up 2.02 

CG41581 Up 2.00 

 

Table: 7.25.   Dechorionation on the high and low nutrient diet: Immune transcripts. 

Gene Number Gene Name Up/Down 
regulation 

Absolute 
fold 
change 

Gene Ontology 
(GO) number 

GO term 

CG9120 Lysozyme 
precursor 

Down 5.38 GO:0005576 
GO:0004568 
GO:0006952 
GO:0016998 
GO:0019730 
GO:0003796 

Extracellular region 
Chitinase activity 
Defence response 
Cell wall macromolecule catabolic process 
Antimicrobial humoral response 
Lysozyme activity 

CG12763 Diptericin Down 4.96 GO:0019731 
GO:0050829 
GO:0042742 
GO:0005576 
GO:0045087 
GO:0005576 

Antibacterial humoral response 
Defence response to Gram-negative 
bacterium 
Defence response to bacterium 
Innate immune response 
Extracellular region 

BT023384 Defensin Down 3.86-2.43 GO:0005615 
GO:0019731 
GO:0050830 
GO:0042742 
GO:0006965 

Extracellular space 
Antibacterial humoral response 
Defence response to Gram-positive 
bacterium 
Defence response to bacterium 
Positive regulation of biosynthetic process 
of antibacterial peptides active against 
Gram-positive bacteria 

CG15825 Fondue Up 2.71 GO:0042381 
GO:0007552 
GO:0005811 

Hemolymph coagulation 
Metamorphosis 
Lipid particle 

CG31783 Neither Up 2.65 GO:0006952  Defence response 
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inactivation 
nor 
afterpotential 
d 

GO:0007602 
GO:0007603  
GO:0007604  
GO:0016063 
GO:0007155 
GO:0005887   
GO:0046867 
GO:0005044 
GO:0006952 
GO:0016020 

Phototransduction 
Phototransduction, visible light 
Phototransduction, UV 
Rhodopsin biosynthetic process 
Cell adhesion 
Integral to plasma membrane 
carotenoid transport 
Scavenger receptor activity 
Defence response 
Membrane 

CG6124-RA - Up 2.61 GO:0051635 
GO:0006910 

Bacterial cell surface binding 
Phagocytosis, recognition  

SD22390 Cg6124- 
partial 

Up 2.47 GO:0006910 
GO:0008367 

Phagocytosis 
Recognition 

CG7002 Hemolectin Up 2.43, 2.34, 
3.08 

GO:0042803 
GO:0042381 
GO:0007599 
GO:0035006  
GO:0042060 
GO:0005576 
GO:0008061 
GO:0005529 
GO:0007155 
GO:0006030 

Protein homodimerization activity  
Hemolymph coagulation  
Hemostasis 
Melanization defence response 
Wound healing 
Extracellular region     
Chitin binding 
Sugar binding 
Cell adhesion 
Chitin metabolic process 

CG8942 Nimrod c1 Up 2.28 GO:0017147 
GO:0006909 
GO:0016055 

Wnt-protein binding 
 Phagocytosis 
Wnt receptor signalling pathway 

CG33956 Kayak Up 2.21 GO:0019730 
GO:0007298 
GO:0048749 
GO:0007391 
GO:0001736 
GO:0046529 
GO:0007254 
GO:0007297 
GO:0007464 
GO:0031660 
GO:0006355 
GO:0009611 
GO:0016330 
GO:0051124 
GO:0035220 
GO:0042060 
GO:0005737 
GO:0005634 
GO:0003677 
GO:0005515 
GO:0046983 
GO:0046982 
GO:0003702 
GO:0043565 
GO:0003700 
GO:0003704 
GO:0008134 

Antimicrobial humoral response 
Border follicle cell migration 
Compound eye development 
Dorsal closure 
Establishment of planar polarity 
Imaginal disc fusion, thorax closure 
 JNK cascade 
Ovarian follicle cell migration 
R3/R4 cell fate commitment 
Regulation of cyclin-dependent protein 
kinase activity involved in G2/M 
Regulation of transcription, DNA-dependent 
Response to wounding 
Second mitotic wave involved in compound 
eye morphogenesis 
Synaptic growth at neuromuscular junction 
Wing disc development 
Wound healing 
Cytoplasm 
Nucleus 
DNA binding 
Protein binding 
Protein dimerization activity 
Protein heterodimerization activity 
RNA polymerase II transcription factor 
activity Sequence-specific DNA binding 
Sequence-specific DNA binding transcription 
factor activity 
Specific RNA polymerase II transcription 
factor activity 
Transcription factor binding 

CG1106 Gelsolin Up 2.18-2.75 GO:0006911 
GO:0005884 
GO:0005829 
GO:0005576 
GO:0003779 

Phagocytosis, engulfment, 
Actin filament  
Cytosol  
Extracellular region  
Actin binding  

BT030437 Neuroligin 3 Up 2.10 GO:0006911 
GO:0042043 

Phagocytosis, engulfment 
Neurexin binding 

CG4099 Scavenger 
receptor class 
C, type I 

Up 2.04 GO:0030247 
GO:0005044  
GO:0006952 
GO:0050829 
GO:0006955 
GO:0006909 

Polysaccharide binding  
Scavenger receptor activity 
Defence response 
Defence response to Gram-negative 
bacterium 
Immune response 
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GO:0009617 
GO:0005887 
GO:0016020 
 

Phagocytosis 
response to bacterium 
Integral to plasma membrane 
membrane  

 

Table: 7.26.   Dechorionation on the high and low nutrient diet: Transport and binding 

transcripts. 

Gene Number Gene Name Up/Down 
regulation 

Absolute fold 
change 

Gene Ontology 
(GO) number 

GO term 

CG11123 Mgc69156 protein Up 4.082 GO:0003723 RNA binding 

BT024441 
 

Odorant-binding protein 
59a 

Down 3.27 GO:0006810 
GO:0007606 
GO:0005549 

Transport 
Sensory perception of 
chemical stimulus  
Odorant binding 

CG4950 Carboxypeptidase n 
subunit 2 

Up 3.24 GO:0005515 Protein binding 

CG32975 Nicotinic Acetylcholine 
Receptor α 34E 

Up 3.13 GO:0042166 
GO:0004889 
GO:0016021 
GO:0005892 
GO:0006811 
GO:0045211 

Acetylcholine binding 
Nicotinic acetylcholine-
activated cation-selective 
channel activity 
Integral to membrane 
Nicotinic acetylcholine-
gated receptor-channel 
complex 
Ion transport 
Postsynaptic membrane 

CG4139 Karl  Up 3.11 GO:0005488 Binding 

CG6642 Antennal protein 10 Down 2.92 to 3.19 GO:0005549 
GO:0005550 
GO:0007606 

Odorant binding 
Pheromone binding 
Sensory perception of 
chemical stimulus 

U02542 Odorant-binding protein 
83a 

Down 2.90 GO:0005615 
GO:0005550 
GO:0007606 
GO:0008145 
GO:0006810 

Extracellular space 
Pheromone binding 
Sensory perception of 
chemical stimulus 
Phenylalkylamine binding  
Transport 

EL870510 Antennal protein 5 Down 2.89 GO:0000785 
GO:0001745 
GO:0006333 
GO:0008429 
GO:0003682 
GO:0005634 

Chromatin 
Compound eye 
morphogenesis 
Chromatin assembly or 
disassembly 
Phosphatidylethanolamine 
binding  
Chromatin binding 
Nucleus 

CG5430 Phosphatidylethanolamine-
binding protein (A5) 

Down 2.85 GO:0000785 
GO:0001745 
GO:0006333 
GO:0008429 
GO:0003682 
GO:0005634 

Chromatin 
Compound eye 
morphogenesis Chromatin 
assembly or disassembly 
Phosphatidylethanolamine 
binding  
Chromatin binding 
Nucleus 

CG18408 CAP Up 2.82 GO:0005925 
GO:0048190 
GO:0016246 
GO:0008103 
GO:0008360 
GO:0008154 
GO:0016442 
GO:0042052 
GO:0005509 
GO:0008407 
GO:0002168 
GO:0008179 

Focal adhesion 
Wing disc dorsal/ventral 
pattern formation 
RNA interference  
Oocyte  
Microtubule cytoskeleton 
polarization  
Regulation of cell shape 
Cohesin complex   
ATP binding 
ATP-dependent RNA 
helicase activity 
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GO:0008278 
GO:0005524 
GO:0004004 
GO:0007062 
GO:0005811 
GO:0043186 
GO:0007286 
GO:0003676 
GO:0003779 
GO:0017166 

Sister chromatid cohesion 
Lipid particle 
Granule 
Spermatid development  
Nucleic acid binding 
Actin binding 
Adenylate cyclase binding 
Instar larval development 
Bristle morphogenesis 
Calcium ion binding  
Rhabdomere development 
RNA-induced silencing 
complex 
Actin polymerization or 
depolymerization 
Vinculin binding 

CG11748 Odorant-binding protein 
19a 

Down 2.80 GO:0005576  
GO:0042048 
GO:0019236  
GO:0007606  
GO:0005549 
GO:0006810 

Extracellular region 
Olfactory behaviour 
 Response to pheromone 
Sensory perception of 
chemical stimulus 
Odorant binding 
Transport 

CA805378 Odorant-binding protein 
99b 

Down 2.69 GO:0005549 
GO:0007606 
GO:0006810 
GO:0035071 
GO:0019236 
GO:0005576 
GO:0042048 

Odorant binding  
Sensory perception of 
chemical stimulus  
Transport 
Salivary gland cell  
Autophagic cell death 
Response to pheromone 
Extracellular region 
Olfactory behaviour 

CG41087 - Up 2.61 GO:0006457 
GO:0031072 
GO:0051082 

Protein folding 
Heat shock protein 
binding 
Unfolded protein binding 

CG10436 Pheromone-binding 
protein-related protein 1 

Down 2.60-2.57 GO:0005549 
GO:0006810 
GO:0008145 
GO:0005550 
GO:0007606 
GO:0005576 

Odorant binding Transport 
Phenylalkylamine binding 
Pheromone binding 
Sensory perception of 
chemical stimulus 
Extracellular region 

BT029288 Zinc finger protein Down 2.51 GO:0003676 
GO:0005622 
GO:0008270 

Nucleic acid binding 
Zinc ion binding 
Intracellular 

CG3250 Os-C  Down 2.51-2.86 GO:0005550 Pheromone binding 
 

CG11326 Thrombospondin Up 2.49 GO:0008201  
GO:0033627  
GO:0016203 
GO:0007517  
GO:0031012 
GO:0005927 
GO:0043234 
GO:0005509 

Heparin binding 
Cell adhesion mediated by 
integrin 
Muscle attachment  
Muscle organ 
development 
Extracellular matrix 
Muscle tendon junction 
Protein complex     
Calcium ion binding 

CG15279 Sodium shloride 
dependent amino acid 
transporter 

Up 2.43 GO:0005887 
GO:0005328 
GO:0005416 
GO:0005416 
GO:0006836 
GO:0005326 

Integral to plasma 
membrane 
Neurotransmitter:sodium 
symporter activity 
Cation:amino acid 
symporter activity 
Neurotransmitter 
transport 
Neurotransmitter 
transporter activity 

CG7454 Odorant receptor 85a Down 2.34 GO:0007186 
GO:0016021 
GO:0004984 
GO:0050896 

G-protein coupled 
receptor protein signalling 
pathway  
Integral to membrane 



212 

 

GO:0005549 
GO:0005886 
GO:0007608 
GO:0016020 

Olfactory receptor activity 
Response to stimulus 
Odorant binding  
Plasma membrane  
Sensory perception of 
smell 
Membrane 

CG8807 Lush Down 2.30 GO:0035275  
GO:0042048 
GO:0019236  
GO:0005549 
GO:0045471 
GO:0007606 
GO:0007608 
GO:0005576 
GO:0006810 

Dibutyl phthalate binding 
Olfactory behaviour 
Response to pheromone 
Odorant binding  
Response to ethanol 
Sensory perception of 
chemical stimulus 
Sensory perception of 
smell, 
Extracellular region 
Transport 
 

CG5670 Na pump α subunit 
(Atpalpha) 

Up 2.26 GO:0008324 
GO:0005391 
GO:0008344 
GO:0006812 
GO:0008340 
GO:0001700 
GO:0007626 
GO:0050905 
GO:0008360 
GO:0035158 
GO:0009612 
GO:0009266 
GO:0009612 
GO:0019991 
GO:0051124 
GO:0007268 
GO:0001894 
GO:0005634 
GO:0005886 
GO:0005918 
GO:0005886 
GO:0005524 
GO:0005391 
GO:0006754 
GO:0006812 
GO:0015672 
GO:0035152  
GO:0005886 
GO:0005890 

Cation transmembrane 
transporter activity 
Sodium:potassium-
exchanging ATPase 
activity 
Adult locomotory 
behavior 
Cation transport 
Determination of adult 
lifespan 
Embryonic development 
via the syncytial 
blastoderm 
Locomotory behavior 
Neuromuscular process 
Regulation of cell shape 
Regulation of tube 
diameter, open tracheal 
system 
Response to mechanical 
stimulus 
Septate junction assembly  
Synaptic growth at 
neuromuscular junction 
Synaptic transmission 
Tissue homeostasis 
Plasma membrane  
ATP binding 
Sodium:potassium-
exchanging ATPase 
activity 
ATP biosynthetic process  
Cation transport  
Monovalent inorganic 
cation transport  
Regulation of tube 
architecture, open 
tracheal system  
Plasma membrane 
Sodium:potassium-
exchanging ATPase 
complex                 

CG6600-RA Mfs transporter Up 2.24 GO:0006810 
GO:0016021 
GO:0005215 

Transport 
Integral to membrane 
Transporter activity 

CG1176 Pheromone-binding 
protein isoform a 

Down 2.24 GO:0005576 
GO:0005550 
GO:0007606 
GO:0008145 
GO:0005549 
GO:0006810 

Extracellular region  
Pheromone binding 
Sensory perception of 
chemical stimulus  
Phenylalkylamine binding 
Odorant binding 
Transport 
 



213 

 

AA141263 AA141263 Down 2.19 GO:0005515 Protein binding 

CG8497 Rhophilin Up 2.17 GO:0017049 
GO:0007165 
GO:0005622 

GTP-Rho binding  
Signal transduction  
Intracellular 

EL881596 EL881596 Down 2.15 GO:0005267 
GO:0006813 
GO:0016020 

Potassium channel activity 
Potassium ion transport    
Membrane  

CG41520 CG41520 Up 2.14 GO:0005102 
GO:0007165 

Receptor binding 
 Signal transduction  

BT029057 Dpr3  Up 2.09 GO:0007500 
GO:0006468 
GO:0007523 
GO:0007280 
GO:0008360 
GO:0032234 
GO:0048542 
GO:0048747 
GO:0016021 
GO:0007506 
GO:0007419 
GO:0008347 
GO:0007513 
GO:0005007 
GO:0007525 
GO:0008078 
GO:0007431 
GO:0008543 
GO:0007493 
GO:0005886 
GO:0010002 
GO:0005524 

Mesodermal cell fate 
determination 
Protein amino acid 
phosphorylation 
Larval visceral muscle 
development 
Pole cell migration 
Regulation of cell shape  
Regulation of calcium ion 
transport via store-
operated calcium channel 
activity 
Lymph gland development 
Muscle fiber development 
Integral to membrane  
Gonadal mesoderm 
development 
Ventral cord development 
Glial cell migration  
Pericardial cell 
differentiation  
Fibroblast growth factor 
receptor activity  
Somatic muscle 
development 
Mesodermal cell 
migration 
Salivary gland 
development 
Fibroblast growth factor 
receptor signalling 
pathway 
Endodermal cell fate 
determination 
Plasma membrane 
Cardioblast differentiation 
ATP binding 

GH07418 Isoform b Up 2.09 GO:0005743 
GO:0022857 
GO:0005811 
GO:0006839 
GO:0005509 
GO:0016021 

Mitochondrial inner 
membrane 
Transmembrane 
transporter activity  
Lipid particle 
Mitochondrial transport  
Calcium ion binding  
Integral to membrane 

CG12754 Odorant receptor 42b Down 2.08 GO:0007608 
GO:0004984  
GO:0005549 
GO:0016021 
GO:0016020  

Sensory perception of 
smell 
Olfactory receptor activity 
Odorant binding 
Integral to membrane 
Plasma membrane 

CG1915-RA 
 

Sallimus Up 2.07 GO:0003779 
GO:0008307 
GO:0040011 
GO:0007498 
GO:0007076  
GO:0016203 
GO:0007520  
GO:0045214 
GO:0007062 
GO:0007519 
GO:0000794 

Actin binding  
Structural constituent of 
muscle  
Locomotion  
Mesoderm development  
Mitotic chromosome 
condensation 
Muscle attachment    
Myoblast fusion 
Sarcomere organization 
Sister chromatid cohesion  
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GO:0005875 
GO:0030017  
GO:0030018 
GO:0004687 
GO:0005089 
GO:0007517 
GO:0035023 
GO:0004687 

Skeletal muscle tissue 
development  
Condensed nuclear 
chromosome  Microtubule 
associated complex 
Sarcomere  
Z disc 
Rho guanyl-nucleotide 
exchange factor activity 
Muscle organ 
development 
Regulation of Rho protein 
signal transduction  
Myosin light chain kinase 
activity 

CG6641 Pheromone-binding 
protein 5 

Down 2.06 GO:0005576 
GO:0005550 
GO:0007606 
GO:0008145 
GO:0006810 
GO:0005549 

Extracellular region 
Pheromone binding 
Sensory perception of 
chemical stimulus 
Phenylalkylamine binding 
Transport 
Odorant binding 

 

 

Table: 7.27.   Dechorionation on the high and low nutrient diet: Metabolic transcripts. 

 

Gene 
Number 

Gene Name Up/Down 
regulation 

Absolute fold 
change 

Gene Ontology (GO) 
number 

GO term 

CG17285 Fat body 
protein 1 

Down 7.91 GO:0005344 
GO:0008565 
GO:0005811 
GO:0015032 

Oxygen transporter activity 
Protein transporter activity 
Lipid particle 
Storage protein import into 
fat body 

CG7017 - Down 5.15 GO:0005576 
GO:0008061 
 GO:0006030 
GO:0016490 

Extracellular region 
Chitin binding 
Chitin metabolic process 
structural constituent of 
peritrophic membrane 

CG3763 Fat body 
protein 2 

Down 4.79 to 6.99 GO:0055114 
GO:0004022  
GO:0045735  
GO:0005488  
GO:0005811  

Oxidation reduction 
Alcohol dehydrogenase 
(NAD) activity 
Nutrient reservoir activity 
Binding 
Lipid particle 

CG4178 Larval serum 
protein 1 
beta 

Down 3.62 GO:0005344 
GO:0005616 
GO:0045735 
GO:0005811 
GO:0006810 

Oxygen transporter activity 
Larval serum protein 
complex 
Nutrient reservoir activity 
Lipid particle 
Transport 

CG11012-

RA 

 

Idp-
glycosyltransf
erase 37a1 

Up 3.55 GO:0016758 
GO:0008152 
GO:0015020 

Transferase activity, 
transferring hexosyl groups 
Metabolic process 
Glucuronosyltransferase 
activity 

CG4757 - Down 3.38 GO:0016787 
GO:0004091 

Hydrolase activity 
Carboxylesterase activity 

CG2559 Larval serum 
protein 1 
alpha 

Down 3.18 GO:0005344 
GO:0005616 
GO:0045735 
GO:0005811 
GO:0006810 
GO:0005576 

Oxygen transporter activity 
Larval serum protein 
complex Nutrient reservoir 
activity 
Lipid particle 
Transport 
extracellular region 

TC213959 NADPH--
cytochrome 

Up 3.16 GO:0009384 
GO:0001640 

N-acylmannosamine kinase 
activity  

http://www.godatabase.org/cgi-bin/amigo/go.cgi?query=GO:0009384
http://www.godatabase.org/cgi-bin/amigo/go.cgi?query=GO:0001640
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P450 
reductase 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

GO:0005515 
GO:0004396 
GO:0001642 
GO:0008237 
GO:0008270 
GO:0004089 
GO:0005516 
GO:0030165 
GO:0004652 
GO:0008761 
GO:0042803 
GO:0004617 
GO:0042169 
GO:0016595 
GO:003042  
GO:000561  
GO:0005737 
GO:0043025 
GO:0042734 
GO:0032279 
GO:0043679 
GO:0048786 
GO:0005791 
GO:0005829 
GO:0005624 
GO:0045202 
GO:0030424 
GO:0005634 
GO:0043195 
GO:0043198 
GO:0043234 
GO:0005794 
GO:0006096 
GO:0046380 
GO:0007155 
GO:0006508 
GO:0007196 
GO:0007611 
GO:0014050 
GO:0006054 

Adenylate cyclase inhibiting 
metabotropic glutamate 
receptor activity 
Protein binding 
Hexokinase activity  
Group III metabotropic 
glutamate receptor activity 
Metallopeptidase activity 
Zinc ion binding 
Carbonate dehydratase 
activity  
Calmodulin binding 
PDZ domain binding 
Polynucleotide 
adenylyltransferase activity  
UDP-N-acetylglucosamine 2-
epimerase activity  
Protein homodimerization 
activity 
Phosphoglycerate 
dehydrogenase activity  
SH2 domain binding 
Glutamate binding- 
Dendrite- 
Extracellular space- 
Cytoplasm- 
Cell soma- 
Asymmetric synapse- 
Presynaptic active zone 
Rough endoplasmic 
reticulum 
Cytosol 
Membrane fraction 
Synapse 
Axon- 
Nucleus 
Terminal button 
Dendritic shaft 
Protein complex 
Golgi apparatus 
Glycolysis 
N-acetylneuraminate 
biosynthetic process- 
Cell adhesion 
Proteolysis 
Metabotropic glutamate 
receptor, adenylate cyclase 
inhibiting pathway 
Learning and/or memory 
Negative regulation of 
glutamate secretion 
N-acetylneuraminate 
metabolic process 

CG9244 Aconitase Up 3.06 GO:0005811 
GO:0006099 
GO:0051539 
GO:0003994 
GO:0005739 
GO:0006099 

Lipid particle 
Tricarboxylic acid cycle 
4 iron, 4 sulfur cluster 
binding 
Aconitate hydratase activity 
Mitochondrion 
Tricarboxylic acid cycle 

CG10357 Fbn28 protein Down 2.84 GO:0005576 
GO:0003676 
GO:0003824 
GO:0005622 
GO:0008270 
GO:0006629 
GO:0004806 

Extracellular region 
Nucleic acid binding 
Catalytic activity 
Intracellular 
Zinc ion binding 
Lipid metabolic process 
Triglyceride lipase activity 

CG5999 - Up 2.80 GO:0016758 
GO:0008152 
GO:0015020 

Transferase activity 
Transferring hexosyl groups 
Metabolic process 
Glucuronosyltransferase 
activity 

http://www.godatabase.org/cgi-bin/amigo/go.cgi?query=GO:0005515
http://www.godatabase.org/cgi-bin/amigo/go.cgi?query=GO:0004396
http://www.godatabase.org/cgi-bin/amigo/go.cgi?query=GO:0001642
http://www.godatabase.org/cgi-bin/amigo/go.cgi?query=GO:0008237
http://www.godatabase.org/cgi-bin/amigo/go.cgi?query=GO:0008270
http://www.godatabase.org/cgi-bin/amigo/go.cgi?query=GO:0004089
http://www.godatabase.org/cgi-bin/amigo/go.cgi?query=GO:0005516
http://www.godatabase.org/cgi-bin/amigo/go.cgi?query=GO:0030165
http://www.godatabase.org/cgi-bin/amigo/go.cgi?query=GO:0004652
http://www.godatabase.org/cgi-bin/amigo/go.cgi?query=GO:0008761
http://www.godatabase.org/cgi-bin/amigo/go.cgi?query=GO:0042803
http://www.godatabase.org/cgi-bin/amigo/go.cgi?query=GO:0004617
http://www.godatabase.org/cgi-bin/amigo/go.cgi?query=GO:0042169
http://www.godatabase.org/cgi-bin/amigo/go.cgi?query=GO:0016595
http://www.godatabase.org/cgi-bin/amigo/go.cgi?query=GO:0005737
http://www.godatabase.org/cgi-bin/amigo/go.cgi?query=GO:0043025
http://www.godatabase.org/cgi-bin/amigo/go.cgi?query=GO:0042734
http://www.godatabase.org/cgi-bin/amigo/go.cgi?query=GO:0032279
http://www.godatabase.org/cgi-bin/amigo/go.cgi?query=GO:0043679
http://www.godatabase.org/cgi-bin/amigo/go.cgi?query=GO:0048786
http://www.godatabase.org/cgi-bin/amigo/go.cgi?query=GO:0005791
http://www.godatabase.org/cgi-bin/amigo/go.cgi?query=GO:0005829
http://www.godatabase.org/cgi-bin/amigo/go.cgi?query=GO:0005624
http://www.godatabase.org/cgi-bin/amigo/go.cgi?query=GO:0045202
http://www.godatabase.org/cgi-bin/amigo/go.cgi?query=GO:0030424
http://www.godatabase.org/cgi-bin/amigo/go.cgi?query=GO:0005634
http://www.godatabase.org/cgi-bin/amigo/go.cgi?query=GO:0043195
http://www.godatabase.org/cgi-bin/amigo/go.cgi?query=GO:0043198
http://www.godatabase.org/cgi-bin/amigo/go.cgi?query=GO:0043234
http://www.godatabase.org/cgi-bin/amigo/go.cgi?query=GO:0005794
http://www.godatabase.org/cgi-bin/amigo/go.cgi?query=GO:0006096
http://www.godatabase.org/cgi-bin/amigo/go.cgi?query=GO:0046380
http://www.godatabase.org/cgi-bin/amigo/go.cgi?query=GO:0007155
http://www.godatabase.org/cgi-bin/amigo/go.cgi?query=GO:0006508
http://www.godatabase.org/cgi-bin/amigo/go.cgi?query=GO:0007196
http://www.godatabase.org/cgi-bin/amigo/go.cgi?query=GO:0007611
http://www.godatabase.org/cgi-bin/amigo/go.cgi?query=GO:0014050
http://www.godatabase.org/cgi-bin/amigo/go.cgi?query=GO:0006054
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CG33273 Insulin-like 
peptide 5 

Down 2.80 GO:0005576 
GO:0005179 
GO:0008286 
GO:0060180 
GO:0005158 

Extracellular region 
Hormone activity 
Insulin receptor signalling 
pathway 
Female mating behavior 
Insulin receptor binding 

BT030185 Isoform c Up 2.78 GO:0016887 
GO:0005524 
GO:0043190 
GO:0005215 

ATPase activity 
ATP binding 
ATP-binding cassette (ABC) 
transporter complex 
Transporter activity 

CG13643 - Up 2.73 GO:0003777 
GO:0005875 
GO:0008061 
GO:0005524 
GO:0007018 
GO:0005576 
GO:0006030 

Microtubule motor activity 
Microtubule associated 
complex, 
Chitin binding 
ATP binding 
Microtubule-based 
movement, 
Extracellular region 
Chitin metabolic process 

CG11661 Neural 
conserved at 
73EF 

Up 2.72 GO:0005875 
GO:0004591  
GO:0030976  
GO:0006096 
GO:0006099 
GO:0009353  

Microtubule associated 
complex  
Oxoglutarate dehydrogenase 
(succinyl-transferring) 
activity 
Thiamin pyrophosphate 
binding 
Glycolysis, tricarboxylic acid 
cycle 
Mitochondrial oxoglutarate 
dehydrogenase complex    

BT025118 Serine 
protease 

Down 2.66 GO:0005576  
GO:0005198  
GO:0006508  
GO:0004252 

Extracellular region 
Structural molecule activity 
Proteolysis 
Serine-type endopeptidase 
activity 

CG6865 Anionic 
trypsin-2 

Down 2.61 GO:0006508  
GO:0004252 

Proteolysis 
Serine-type endopeptidase 
activity 

CG32304 Obstructor-I  Down 2.57 GO:0005576 
GO:0008061  
GO:0006030 

Extracellular region 
Chitin binding 
Chitin metabolic process 

CG3725  Calcium 
ATPase at 
60A 

Up 2.57 to 2.90 GO:0005515 
GO:0007274 
GO:0051282 
GO:0005783 
GO:0005811 
GO:0005635 
GO:0005524 
GO:0005388 
GO:0006754 
GO:0006816 
GO:0005789 
GO:0016021 
GO:0016529  

Protein binding  
Neuromuscular synaptic 
transmission 
Regulation of sequestering of 
calcium ion 
Endoplasmic reticulum 
Lipid particle 
Nuclear envelope 
ATP binding 
Calcium-transporting ATPase 
activity 
ATP biosynthetic process 
Calcium ion transport 
Endoplasmic reticulum 
membrane 
Integral to membrane 
Sarcoplasmic reticulum           

CG8256 Glycerol-3-
phosphate 
dehydrogena
se 

Up 2.57 GO:0005743 
GO:0007629  
GO:0006072  
GO:0005811  
GO:0006127  
GO:0005509  
GO:0004368  
GO:0009331 

Mitochondrial inner 
membrane 
Flight behaviour 
Glycerol-3-phosphate 
metabolic process 
Lipid particle 
Glycerophosphate shuttle 
Calcium ion binding 
Glycerol-3-phosphate 
dehydrogenase activity 
Glycerol-3-phosphate 
dehydrogenase complex 
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CG30035 Trehalose 
transporter 1-
1 

Up 2.46 GO:0015771 
GO:0016020 
GO:0005355 
GO:0008643 
GO:0055085 
GO:0016021 
 

Trehalose transport 
Membrane 
Glucose transmembrane 
transporter activity 
Carbohydrate transport 
Transmembrane transport 
Integral to membrane 

CG6193 Adenomatous 
polyposis coli 
tumor 
sUppressor 
homolog 2 

Up 2.45 GO:0007411 
GO:0035293 
GO:0008362 
GO:0030720 
GO:0016337 
GO:0007405 
GO:0045892 
GO:0008017 
GO:0030178 
GO:0008258 
GO:0040001 
GO:0032154 
GO:0045179 
GO:0005875 
GO:0016327 
GO:0005912 
GO:0007447 
GO:0005634 
GO:0045862 
GO:0021550 
GO:0035190 
GO:0000910 

Axon guidance 
Chitin-based larval cuticle 
pattern formation 
Chitin-based embryonic 
cuticle biosynthetic process  
Oocyte localization during 
germarium-derived egg 
chamber formation 
Cell-cell adhesion  
Neuroblast proliferation 
Negative regulation of 
transcription 
DNA-dependent  
Microtubule binding 
Negative regulation of Wnt 
receptor signalling pathway 
Head involution 
Establishment of mitotic 
spindle localization 
Cleavage furrow 
Apical cortex 
Microtubule associated 
complex 
Apicolateral plasma 
membrane 
Adherens junction 
Imaginal disc pattern 
formation 
Nucleus 
Positive regulation of 
proteolysis 
Medulla oblongata 
development 
Syncytial nuclear migration 
Cytokinesis 

CG7399 Henna Up 2.42 GO:0006726 
GO:0004505  
GO:0005811  
GO:0005506 
GO:0004510 
GO:0055114  
GO:0016597  
GO:0006911  
GO:0006559 

Eye pigment biosynthetic 
process 
Phenylalanine 4-
monooxygenase activity 
Lipid particle 
Iron ion binding 
Tryptophan 5-
monooxygenase activity 
Oxidation reduction 
Amino acid binding 
Phagocytosis, engulfment, 
L-phenylalanine catabolic 
process 

CG33159 - Down 2.37 GO:0006508 
 GO:0004252 

Proteolysis 
Serine-type endopeptidase 
activity 

CG4067 Pugilist Up 2.36 GO:0004488  
GO:0004477 
GO:0005524  
GO:0008652 
GO:0004329 
GO:0009396 
GO:0005811 
GO:0055114 

Methylenetetrahydrofolate 
dehydrogenase (NADP+) 
activity 
Methenyltetrahydrofolate 
cyclohydrolase activity ATP 
binding 
Cellular amino acid 
biosynthetic process  
Formate-tetrahydrofolate 
ligase activity 
Folic acid and derivative 
biosynthetic process  
Lipid particle 
Oxidation reduction 
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TC206789 CG6865-PA Down 2.34 GO:0004295 
GO:0006508 

Trypsin activity  
Proteolysis 

TC196046 - 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Down 2.34 GO:0009384 
GO:0001640 
GO:0005515 
GO:0004396 
GO:0001642 
GO:0008237 
GO:0008270 
GO:0004089 
GO:0005516 
GO:0030165 
GO:0004652 
GO:0008761 
GO:0042803 
GO:0004617 
GO:0042169 
GO:0016595 
GO:0030425 
GO:0005615 
GO:0005737 
GO:0043025 
GO:0042734 
GO:0032279 
GO:0043679 
GO:0048786 
GO:0005791 
GO:0005829 
GO:0005624 
GO:0045202 
GO:0030424 
GO:0005634 
GO:0043195 
GO:0043198 
GO:0043234 
GO:0005794 
GO:0006096 
GO:0046380 
GO:0007155 
GO:0006508 
GO:0007196 
GO:0007611 
GO:0014050 
GO:0006054 

N-acylmannosamine kinase 
activity  
Adenylate cyclase inhibiting 
metabotropic glutamate 
receptor activity 
Protein binding- 
Hexokinase activity  
Group III metabotropic 
glutamate receptor activity- 
Metallopeptidase activity 
Zinc ion binding- 
Carbonate dehydratase 
activity  
Calmodulin binding 
PDZ domain binding 
Polynucleotide 
adenylyltransferase activity  
UDP-N-acetylglucosamine 2-
epimerase activity  
Protein homodimerization 
activity 
Phosphoglycerate 
dehydrogenase activity  
SH2 domain binding 
Glutamate binding 
Dendrite 
Extracellular space 
Cytoplasm- 
Cell soma 
Presynaptic membrane- 
Asymmetric synapse 
Nerve terminal 
Presynaptic active zone 
Rough endoplasmic 
reticulum 
Cytosol- 
Membrane fraction 
Synapse 
Axon 
Nucleus 
Terminal button 
Dendritic shaft 
Protein complex 
Golgi apparatus 
Glycolysis 
N-acetylneuraminate 
biosynthetic process 
Cell adhesion 
Proteolysis- 
Metabotropic glutamate 
receptor, adenylate cyclase 
inhibiting pathway 
Learning and/or memory 
Negative regulation of 
glutamate secretion 
N-acetylneuraminate 
metabolic process  

CG5887 Desat1 Up 2.30 GO:0006723 
GO:0042811 
GO:0005811 
GO:0004768 
GO:0006633 
GO:0006629 
GO:0055114  

Cuticle hydrocarbon 
biosynthetic process 
Pheromone biosynthetic 
process  
Lipid particle 
Stearoyl-CoA 9-desaturase 
activity 
Fatty acid biosynthetic 
process 
Lipid metabolic process  
Oxidation reduction     

BT022319 Glutathione s 
transferase 

Down 2.29 GO:0004364 Glutathione transferase 
activity 

http://www.godatabase.org/cgi-bin/amigo/go.cgi?query=GO:0004295
http://www.godatabase.org/cgi-bin/amigo/go.cgi?query=GO:0006508
http://www.godatabase.org/cgi-bin/amigo/go.cgi?query=GO:0009384
http://www.godatabase.org/cgi-bin/amigo/go.cgi?query=GO:0001640
http://www.godatabase.org/cgi-bin/amigo/go.cgi?query=GO:0005515
http://www.godatabase.org/cgi-bin/amigo/go.cgi?query=GO:0004396
http://www.godatabase.org/cgi-bin/amigo/go.cgi?query=GO:0001642
http://www.godatabase.org/cgi-bin/amigo/go.cgi?query=GO:0008237
http://www.godatabase.org/cgi-bin/amigo/go.cgi?query=GO:0008270
http://www.godatabase.org/cgi-bin/amigo/go.cgi?query=GO:0004089
http://www.godatabase.org/cgi-bin/amigo/go.cgi?query=GO:0005516
http://www.godatabase.org/cgi-bin/amigo/go.cgi?query=GO:0030165
http://www.godatabase.org/cgi-bin/amigo/go.cgi?query=GO:0004652
http://www.godatabase.org/cgi-bin/amigo/go.cgi?query=GO:0008761
http://www.godatabase.org/cgi-bin/amigo/go.cgi?query=GO:0042803
http://www.godatabase.org/cgi-bin/amigo/go.cgi?query=GO:0004617
http://www.godatabase.org/cgi-bin/amigo/go.cgi?query=GO:0042169
http://www.godatabase.org/cgi-bin/amigo/go.cgi?query=GO:0016595
http://www.godatabase.org/cgi-bin/amigo/go.cgi?query=GO:0030425
http://www.godatabase.org/cgi-bin/amigo/go.cgi?query=GO:0005615
http://www.godatabase.org/cgi-bin/amigo/go.cgi?query=GO:0005737
http://www.godatabase.org/cgi-bin/amigo/go.cgi?query=GO:0043025
http://www.godatabase.org/cgi-bin/amigo/go.cgi?query=GO:0042734
http://www.godatabase.org/cgi-bin/amigo/go.cgi?query=GO:0032279
http://www.godatabase.org/cgi-bin/amigo/go.cgi?query=GO:0043679
http://www.godatabase.org/cgi-bin/amigo/go.cgi?query=GO:0048786
http://www.godatabase.org/cgi-bin/amigo/go.cgi?query=GO:0005791
http://www.godatabase.org/cgi-bin/amigo/go.cgi?query=GO:0005829
http://www.godatabase.org/cgi-bin/amigo/go.cgi?query=GO:0005624
http://www.godatabase.org/cgi-bin/amigo/go.cgi?query=GO:0045202
http://www.godatabase.org/cgi-bin/amigo/go.cgi?query=GO:0030424
http://www.godatabase.org/cgi-bin/amigo/go.cgi?query=GO:0005634
http://www.godatabase.org/cgi-bin/amigo/go.cgi?query=GO:0043195
http://www.godatabase.org/cgi-bin/amigo/go.cgi?query=GO:0043198
http://www.godatabase.org/cgi-bin/amigo/go.cgi?query=GO:0043234
http://www.godatabase.org/cgi-bin/amigo/go.cgi?query=GO:0005794
http://www.godatabase.org/cgi-bin/amigo/go.cgi?query=GO:0006096
http://www.godatabase.org/cgi-bin/amigo/go.cgi?query=GO:0046380
http://www.godatabase.org/cgi-bin/amigo/go.cgi?query=GO:0007155
http://www.godatabase.org/cgi-bin/amigo/go.cgi?query=GO:0006508
http://www.godatabase.org/cgi-bin/amigo/go.cgi?query=GO:0007196
http://www.godatabase.org/cgi-bin/amigo/go.cgi?query=GO:0007611
http://www.godatabase.org/cgi-bin/amigo/go.cgi?query=GO:0014050
http://www.godatabase.org/cgi-bin/amigo/go.cgi?query=GO:0006054
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e4 

CG11391 IP11920p  Down 2.29 GO:0003824 
GO:0008152 

Catalytic activity 
Metabolic process 

CO194525 CG7900  Down 2.28 GO:0016884 Carbon-nitrogen ligase 
activity, with glutamine as 
amido-N-donor 

CG40801 Phosphoribos
ylaminoimida
zole 
carboxylase 

Up 2.27 GO:0004638 
GO:0006189 
GO:0004639 
GO:0009320 
GO:0005524 

Phosphoribosylaminoimidazo
le carboxylase activity 
De novo' IMP biosynthetic 
process 
Phosphoribosylaminoimidazo
lesuccinocarboxamide 
synthase activity 
Phosphoribosylaminoimidazo
le carboxylase complex 
ATP binding 

CG1743 Glutamine 
synthetase 2 
(glutamate-
amonia 
ligase) 

Up 2.22 GO:0005737 
GO:0004356 
GO:0006538 
GO:0007416 
GO:0045213 
GO:0006542 

Cytoplasm 
Glutamate-ammonia ligase 
activity 
Glutamate catabolic process 
Synapse assembly 
Neurotransmitter receptor 
metabolic process Glutamine 
biosynthetic process 

CG17525 Glutathione s 
transferase 
e4 

Down 2.19 GO:0004364 Glutathione transferase 
activity 

CG8424 Juvenile 
hormone 
esterase 
dUplication 

Down 2.18 to 
2.30 

GO:0004091 Carboxylesterase activity 

CG9485 isoform d Up 2.17 GO:0004135 
GO:0005978 
GO:0043169 
GO:0004134 

Amylo-alpha-1,6-glucosidase 
activity 
Glycogen biosynthetic 
process 
Cation binding 
4-alpha-glucanotransferase 
activity 

CG7910 - Up 2.17 GO:0016884 
GO:0017064 

Carbon-nitrogen ligase 
activity, with glutamine as 
amido-N-donor 
Fatty acid amide hydrolase 
activity 

CG4347 UGP Up 2.16 GO:0003983 
GO:0008152 

UTP:glucose-1-phosphate 
uridylyltransferase activity 
Metabolic process  

CG2958 Lectin-24Db  Up 2.16 GO:0042806 
GO:0005537 
GO:0005534 

Fucose binding 
Mannose binding 
Galactose binding 

NM_14122
3 

Isoform a Up 2.15 GO:0006182, 
GO:0006468, 
GO:0007242, 
GO:0004713, 
GO:0005524, 
GO:0004383 

cGMP biosynthetic process 
Protein amino acid 
phosphorylation 
Protein tyrosine kinase 
activity 
ATP binding 
Guanylate cyclase activity 

CG3001 Hexokinase 
(Hex-A) 

Up 2.14 GO:0005524 
GO:0006096 
GO:0004396 

ATP binding 
Glycolysis 
Hexokinase activity 

CG3972 Cyp4g1(cytoc
hrome p450) 

Up 2.12 GO:0020037 
GO:0016020 
GO:0055114 
GO:0004497 
GO:0009055 
GO:0006629 
GO:0005792 

Heme binding 
Membrane 
Oxidation reduction, 
Monooxygenase activity 
Electron carrier activity 
Lipid metabolic process 
Microsome 

CG8808 Pyruvate 
dehydrogena
se kinase 

Up 2.08 GO:0005524 
GO:0004740 
GO:0000155 
GO:0018106  

ATP binding  
Pyruvate dehydrogenase 
(acetyl-transferring) kinase 
activity  
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GO:0006090 
GO:0007165 
GO:0005759 

Two-component sensor 
activity  
Peptidyl-histidine 
phosphorylation  
Pyruvate metabolic process  
Signal transduction  
Mitochondrial matrix  

CG5028 Isocitrate 
dehydrogena
se 

Up 2.08 GO:0005875 
GO:0004449 
GO:0000287 
GO:0051287 
GO:0006099 
GO:0005759 
GO:0005739 

Microtubule associated 
complex 
Isocitrate dehydrogenase 
(NAD+) activity 
Magnesium ion binding 
NAD or NADH binding 
Tricarboxylic acid cycle 
Mitochondrial matrix 
Mitochondrion 

TC216824 Retrotranspo
son-like 
family 
member 
(retr-1)-like 

Up 2.06 GO:0003676 
GO:0044238 
GO:0003824 

Nucleic acid binding 
Primary metabolic process 
Catalytic activity 

CG34357 - Up 2.05 GO:0005524 
GO:0004383 
GO:0004672 
GO:0006182 
GO:0023034 
GO:0006468 

ATP binding  
Guanylate cyclase activity  
Protein kinase activity  
 cGMP biosynthetic process  
Intracellular signalling 
pathway  
Protein amino acid 
phosphorylation  

CG3979 I'm not dead 
yet 

Up            2.05 GO:0015137 
GO:0015141 
GO:0008340 
GO:0010889 
GO:0005886 
GO:0015142 
GO:0006814 
GO:0055085  

Citrate transmembrane 
transporter activity   
Succinate transmembrane 
transporter activity   
Determination of adult 
lifespan 
Regulation of sequestering of 
triglyceride 
Plasma membrane 
Tricarboxylic acid 
transmembrane transporter 
activity  
Sodium ion transport 
 Transmembrane transport       

CG4329 Isoform a Up 2.04 GO:0006754 
GO:0005524 
GO:0016020 
GO:0015662 

ATP biosynthetic process 
ATP binding 
Membrane 
ATPase activity, Coupled to 
transmembrane movement 
of ions, 
phosphorylative mechanism 

CG10924 - Up 2.03 GO:0005525 
GO:0004613 
GO:0006094 
GO:0005739  

GTP binding  
Phosphoenolpyruvate 
carboxykinase (GTP) activity 
Gluconeogenesis  
Mitochondrion  

CG6784 Tissue factor 
pathway 
inhibitor 2 

Down 2.03 GO:0004867 Serine-type endopeptidase 
inhibitor activity 

LD28657 Mlf1-adaptor 
molecule 

Up 2.03 GO:0006468 
GO:0012505 
GO:0005794 
GO:0004672 
GO:0005524 
GO:0006888 
GO:0005829 
GO:0042803 

Protein amino acid 
phosphorylation 
Endomembrane system 
Golgi apparatus 
Protein kinase activity 
ATP binding 
ER to Golgi vesicle-mediated 
transport 
Cytosol 
Protein homodimerization 
activity 

CG33103 Papilin Up 2.02 to 2.23 GO:0005201 
GO:0030198 

Extracellular matrix 
structural constituent  
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GO:0005604  
GO:0004222 
GO:0004867  
GO:0008270 
GO:0005578 

Extracellular matrix 
organization 
Basement membrane  
Metalloendopeptidase 
activity  
Serine-type endopeptidase 
inhibitor activity  
Zinc ion binding  
Proteinaceous extracellular 
matrix  

CG3902 Acyl- 
dehydrogena
se 

Up 2.02 GO:0008152 
GO:0009055 
GO:0003995 
GO:0050660 

Metabolic process 
Electron carrier activity 
Acyl-CoA dehydrogenase 
activity 
FAD binding 

TC201205 CG2790-PA 
 
 

Up 2.00 GO:0008411 
GO:0007163 
GO:0009061 

4-hydroxybutyrate CoA-
transferase activity 
Establishment and/or 
maintenance of cell polarity 
Anaerobic respiration 

 

 

Table: 7.28.   Dechorionation on the high and low nutrient diet: RNA/DNA 

replication/transcription transcripts. 

 

Gene Number Gene Name Up/Down 
regulation 

Absolute fold 
change 

Gene Ontology 
(GO) number 

GO term 

TC219369 Reverse transcriptase Down 4.06 GO:0003723 
GO:0003964 
GO:0006278 

RNA binding  
RNA-directed DNA 
polymerase activity 
RNA-dependent DNA 
replication 

CG10110-RA 
 

Cleavage and 
polyadenylation specificity 
factor cpsf 

Up 3.44 GO:0006378 
GO:0005847 
GO:0003730 
GO:0005515 
GO:0006379 

mRNA polyadenylation 
,mRNA cleavage and 
polyadenylation  
Specificity factor complex 
mRNA 3'-UTR binding,  
Protein binding 
mRNA cleavage 

CG2932 Bteb2 Up 2.83 GO:0003702 
GO:0003676 
GO:0005634 
GO:0008270 
GO:0005622 

RNA polymerase II 
transcription factor 
activity 
Nucleic acid binding 
Nucleus 
Zinc ion binding 
Intracellular 

TC197177 Pol protein Up 2.60 GO:0004519 
GO:0003964 
GO:0003677 
GO:0006278 
GO:0003723 
GO:0015074 

Endonuclease activity 
RNA-directed DNA 
polymerase activity  
DNA binding 
RNA-dependent DNA 
replication 
RNA binding 
DNA integration 

CG32353 CG32353 Up 2.54 GO:0045449 
GO:0030176 
GO:0043565 
GO:0030528 
GO:0003677 
GO:0005634 

Regulation of 
transcription, DNA-
dependent 
Integral to endoplasmic 
reticulum membrane  
Sequence-specific DNA 
binding 
Regulation of 
transcription 
Transcription regulator 
activity 

http://www.godatabase.org/cgi-bin/amigo/go.cgi?query=GO:0008411
http://www.godatabase.org/cgi-bin/amigo/go.cgi?query=GO:0007163
http://www.godatabase.org/cgi-bin/amigo/go.cgi?query=GO:0009061
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DNA binding 
Nucleus 

CG40351 CG40351 Up 2.52 GO:0003676 
GO:0005634 
GO:0000166 
GO:0018024 
GO:0006338 

Nucleic acid binding 
Nucleus 
Nucleotide binding  
Histone-lysine N-
methyltransferase 
activity 
Chromatin remodeling 

CG6269 Unc-4 Down 2.49 GO:0043565 
GO:0003700 
GO:0045449 
GO:0006355 
GO:0005634 
GO:0003700 

Sequence-specific DNA 
binding 
Transcription factor 
activity 
Regulation of 
transcription  
Regulation of 
transcription, DNA-
dependent 
Nucleus   
Transcription factor 
activity 

CG13906 Nervous fingers 1 Down 2.47 GO:0007411 
GO:0006357 
GO:0008270 
GO:0048663 
GO:0048813 
GO:0005634 
GO:0003702 
GO:0048666 
GO:0003676 
GO:0005622 
 

Axon guidance 
Regulation of 
transcription from RNA 
polymerase II promoter 
Zinc ion binding  
Neuron fate commitment  
Dendrite morphogenesis 
Nucleus 
RNA polymerase II 
transcription factor 
activity 
Neuron development 
Nucleic acid binding 
Intracellular 

CG11049 Shaven Up 2.17 GO:0048813 
GO:0007517 
GO:0048666 
GO:0003677 
GO:0003702 
GO:0042676 
GO:0045449 
GO:0005634 
GO:0003700 

Dendrite morphogenesis  
Muscle organ 
development 
Neuron development 
DNA binding 
RNA polymerase II 
transcription factor 
activity 
Compound eye cone cell 
fate commitment 
Regulation of 
transcription 
Nucleus       
Transcription factor 
activity 

CG10293-RC Held out wings Up 2.14 GO:0005634 
GO:0005737 
GO:0030154 
GO:0003729 
GO:0007525 
GO:0045214 
GO:0000381 
GO:0007438 
GO:0007498 
GO:0008078 
GO:0008347 
GO:0009790 
GO:0008366 
GO:0007475 
GO:0003730 

Nucleus 
Cytoplasm 
Cell differentiation 
mRNA binding 
Somatic muscle 
development 
Sarcomere organization 
Regulation of alternative 
nuclear mRNA splicing, 
via spliceosome 
Oenocyte development 
Mesoderm development 
Mesodermal cell 
migration 
Glial cell migration 
Embryonic development 
Axon ensheathment 
Apposition of dorsal and 
ventral imaginal disc-
derived wing surfaces 
mRNA 3'-UTR binding 
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TC194836 - 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Down 2.11 GO:0001584 
GO:0042562 
GO:0003705 
GO:0008188 
GO:0005515 
GO:0003682 
GO:0003700 
GO:0008022 
GO:0008138 
GO:0003677 
GO:0004930 
GO:0030273 
GO:0019182 
GO:0016933 
GO:0019992 
GO:0016500 
GO:0008301 
GO:0016020 
GO:0005737 
GO:0005887 
GO:0019183 
GO:0005667 
GO:0016021 
GO:0005886 
GO:0005575 
GO:0005634 
GO:0007166 
GO:0001756 
GO:0007218 
GO:0048468 
GO:0007193 
GO:0045472 
GO:0006091 
GO:0042475 
GO:0045944 
GO:0007631 
GO:0030534 
GO:0051928 
GO:0009636 
GO:0006357 
GO:0007186 
GO:0007268 
GO:0007204 

Rhodopsin-like receptor 
activity 
Hormone binding 
RNA polymerase II 
transcription factor 
activity, enhancer binding 
Neuropeptide receptor 
activity 
Protein binding 
Chromatin binding 
Transcription factor 
activity 
Protein C-terminus 
binding 
Protein 
tyrosine/serine/threonine 
phosphatase activity  
DNA binding 
G-protein coupled 
receptor activity 
Melanin-concentrating 
hormone receptor 
activity 
Histamine-gated chloride 
channel activity 
Extracellular-glycine-
gated ion channel activity 
Diacylglycerol binding 
Protein-hormone 
receptor activity 
DNA bending activity 
Cytoplasm 
Integral to plasma 
membrane 
Histamine-gated chloride 
channel complex- 
Transcription factor 
complex 
Integral to membrane 
Plasma membrane 
Cellular component 
Nucleus 
Cell surface receptor 
linked signal 
transduction- 
Somitogenesis 
Neuropeptide signalling 
pathway 
Cell development 
G-protein signalling, 
adenylate cyclase 
inhibiting pathway 
Response to ether 
Generation of precursor 
metabolites and energy 
Odontogenesis of 
dentine-containing teeth 
Positive regulation of 
transcription from RNA 
polymerase II promoter 
Feeding behavior 
Adult behaviour 
Positive regulation of 
calcium ion transport 
Response to toxin 
Regulation of 
transcription from RNA 
polymerase II promoter 
G-protein coupled 
receptor protein 
signalling pathway 
Synaptic transmission 

http://www.godatabase.org/cgi-bin/amigo/go.cgi?query=GO:0001584
http://www.godatabase.org/cgi-bin/amigo/go.cgi?query=GO:0042562
http://www.godatabase.org/cgi-bin/amigo/go.cgi?query=GO:0003705
http://www.godatabase.org/cgi-bin/amigo/go.cgi?query=GO:0008188
http://www.godatabase.org/cgi-bin/amigo/go.cgi?query=GO:0005515
http://www.godatabase.org/cgi-bin/amigo/go.cgi?query=GO:0003682
http://www.godatabase.org/cgi-bin/amigo/go.cgi?query=GO:0003700
http://www.godatabase.org/cgi-bin/amigo/go.cgi?query=GO:0008022
http://www.godatabase.org/cgi-bin/amigo/go.cgi?query=GO:0008138
http://www.godatabase.org/cgi-bin/amigo/go.cgi?query=GO:0003677
http://www.godatabase.org/cgi-bin/amigo/go.cgi?query=GO:0004930
http://www.godatabase.org/cgi-bin/amigo/go.cgi?query=GO:0030273
http://www.godatabase.org/cgi-bin/amigo/go.cgi?query=GO:0019182
http://www.godatabase.org/cgi-bin/amigo/go.cgi?query=GO:0016933
http://www.godatabase.org/cgi-bin/amigo/go.cgi?query=GO:0019992
http://www.godatabase.org/cgi-bin/amigo/go.cgi?query=GO:0016500
http://www.godatabase.org/cgi-bin/amigo/go.cgi?query=GO:0008301
http://www.godatabase.org/cgi-bin/amigo/go.cgi?query=GO:0016020
http://www.godatabase.org/cgi-bin/amigo/go.cgi?query=GO:0005737
http://www.godatabase.org/cgi-bin/amigo/go.cgi?query=GO:0005887
http://www.godatabase.org/cgi-bin/amigo/go.cgi?query=GO:0019183
http://www.godatabase.org/cgi-bin/amigo/go.cgi?query=GO:0005667
http://www.godatabase.org/cgi-bin/amigo/go.cgi?query=GO:0016021
http://www.godatabase.org/cgi-bin/amigo/go.cgi?query=GO:0005886
http://www.godatabase.org/cgi-bin/amigo/go.cgi?query=GO:0005575
http://www.godatabase.org/cgi-bin/amigo/go.cgi?query=GO:0005634
http://www.godatabase.org/cgi-bin/amigo/go.cgi?query=GO:0007166
http://www.godatabase.org/cgi-bin/amigo/go.cgi?query=GO:0001756
http://www.godatabase.org/cgi-bin/amigo/go.cgi?query=GO:0007218
http://www.godatabase.org/cgi-bin/amigo/go.cgi?query=GO:0048468
http://www.godatabase.org/cgi-bin/amigo/go.cgi?query=GO:0007193
http://www.godatabase.org/cgi-bin/amigo/go.cgi?query=GO:0045472
http://www.godatabase.org/cgi-bin/amigo/go.cgi?query=GO:0006091
http://www.godatabase.org/cgi-bin/amigo/go.cgi?query=GO:0042475
http://www.godatabase.org/cgi-bin/amigo/go.cgi?query=GO:0045944
http://www.godatabase.org/cgi-bin/amigo/go.cgi?query=GO:0007631
http://www.godatabase.org/cgi-bin/amigo/go.cgi?query=GO:0030534
http://www.godatabase.org/cgi-bin/amigo/go.cgi?query=GO:0051928
http://www.godatabase.org/cgi-bin/amigo/go.cgi?query=GO:0009636
http://www.godatabase.org/cgi-bin/amigo/go.cgi?query=GO:0006357
http://www.godatabase.org/cgi-bin/amigo/go.cgi?query=GO:0007186
http://www.godatabase.org/cgi-bin/amigo/go.cgi?query=GO:0007268
http://www.godatabase.org/cgi-bin/amigo/go.cgi?query=GO:0007204
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Elevation of cytosolic 
calcium ion concentration 

CG6103 Cyclic-AMP response 
element binding protein B 
at 17A 

Up 2.06 GO:0003677 
GO:0003702 
GO:0043565 
GO:0007616 
GO:0072375 
GO:0010552 
GO:0006355 
GO:0030431 
GO:0005634 
GO:0046983 
GO:0003702 
GO:0003700 
GO:0007623 
GO:0007611 
GO:0045475 
GO:0045187 
GO:0007622 
GO:0005634 
 

DNA binding 
RNA polymerase II 
transcription factor 
activity 
Sequence-specific DNA 
binding 
Long-term memory 
Medium-term memory 
Positive regulation of 
gene-specific 
transcription from RNA 
polymerase II promoter 
Regulation of 
transcription, DNA-
dependent 
Sleep 
Nucleus 
Protein dimerization 
activity 
RNA polymerase II 
transcription factor 
activity 
Transcription factor 
activity 
Circadian rhythm 
Learning or memory 
Locomotor rhythm 
Regulation of circadian 
sleep/wake cycle, sleep 
Rhythmic behaviour 
Nucleus 

 

 

Table: 7.29.   Dechorionation on the high and low nutrient diet: Miscellaneous transcripts. 

Gene Number Gene Name Up/Down 
regulation 

Absolute 
fold 
change 

Gene Ontology 
(GO) number 

GO term 

CG33519 Unc-89 Up 5.02 GO:0005524 
GO:0004674 
GO:0005089   
GO:0006468  
GO:0035023  
GO:0005622 
GO:0007527 
GO:0045214 

ATP binding  
Protein serine/threonine 
kinase activity  
Rho guanyl-nucleotide 
exchange factor activity 
Protein amino acid 
phosphorylation 
Regulation of Rho protein 
signal transduction 
Intracellular   
Adult somatic muscle 
development 
Sarcomere organization 

TC215525  
 

Odorant receptor 47 a Down 4.66 GO:0005214 
GO:0008010 

Structural constituent of 
chitin-based cuticle 
Structural constituent of 
chitin-based larval cuticle 

CG14669 - Up 3.40 GO:0003924 
GO:0005525 
GO:0007264 
GO:0016020 

GTPase activity 
GTP binding 
Small GTPase mediated 
signal transduction 
Membrane 

AF254371 Stretchin- isoform d Up 2.74 GO:0005200 
GO:0004683 
GO:0006468 
GO:0004687 
GO:0005524 
GO:0010447 

Structural constituent of 
cytoskeleton 
Calmodulin-dependent 
protein kinase activity 
Protein amino acid 
phosphorylation 

http://www.godatabase.org/cgi-bin/amigo/go.cgi?query=GO:0005214
http://www.godatabase.org/cgi-bin/amigo/go.cgi?query=GO:0008010
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GO:0005021 
GO:0042597 

Myosin light chain kinase 
activity 
ATP binding 
Response to acidity 
Vascular endothelial 
growth factor receptor 
activity 
Periplasmic space 

CG1228-RD 

 

Ptpmeg Up 2.57 GO:0048102 
GO:0048846 
GO:0048036 
GO:0016319 
GO:0035071 
GO:0008092 
GO:0004725 
GO:0006470 
GO:0005737 
GO:0005856 
GO:0019898  

Autophagic cell death  
Axon extension involved in 
axon guidance  
Central complex 
development  
Mushroom body 
development 
Salivary gland cell  
Cytoskeletal protein 
binding  
Protein tyrosine 
phosphatase activity   
Protein amino acid 
dephosphorylation  
Cytoplasm 
Cytoskeleton 
Extrinsic to membrane    

TC219478 - Up 2.48 GO:0005634 Nucleus 

BT030162 

 

Steppke Up 2.45 GO:0040018 
GO:0005086 
GO:0032012 
GO:0005622 

Positive regulation of 
multicellular organism 
growth 
ARF guanyl-nucleotide 
exchange factor activity 
Regulation of ARF protein 
signal transduction 
Intracellular     

TC220202 - 
 
 

Down 2.35 GO:0005634 
GO:0005681 
GO:0000398 
GO:0000381 
GO:0009792 

Nucleus 
Spliceosome 
Nuclear mRNA splicing via 
spliceosome 
Regulation of alternative 
nuclear mRNA splicing, via 
spliceosome 
Embryonic development 
ending in birth or egg 
hatching 
 
 

GH15083 Isoform a Up 2.22 GO:0031410 
GO:0008355 
GO:0042127 
GO:0007611 

Cytoplasmic vesicle 
Olfactory learning 
Regulation of cell 
proliferation 
Learning or memory 

LD02307 Isoform b Up 2.15 GO:0005576 
GO:0008083 

Extracellular region 
Growth factor activity 

CG31004 CG31004 Up 2.10 GO:0007160 Cell-matrix adhesion 

CG33960 CG33960 Up 2.10 GO:0007411 
GO:0005886 

Axon guidance, 
Plasma membrane  

CG7533 Charybde Up 2.09 GO:0008219 
GO:0008258 
GO:0045926 
GO:0009968 
GO:0005737 

Cell death  
Head involution 
Negative regulation of 
growth  
Negative regulation of 
signal transduction  
Cytoplasm  

CG8927 Isoform a Up 2.08 GO:0042302 Structural constituent of 
cuticle 

CG8201-RM Par-1 Up 2.08 GO:0004672 
GO:0050321 
GO:0007015 
GO:0019730 
GO:0009798 

Protein kinase activity 
Tau-protein kinase activity 
Actin filament organization 
Antimicrobial humoral 
response 

http://www.godatabase.org/cgi-bin/amigo/go.cgi?query=GO:0005634
http://www.godatabase.org/cgi-bin/amigo/go.cgi?query=GO:0005634
http://www.godatabase.org/cgi-bin/amigo/go.cgi?query=GO:0005681
http://www.godatabase.org/cgi-bin/amigo/go.cgi?query=GO:0000398
http://www.godatabase.org/cgi-bin/amigo/go.cgi?query=GO:0000381
http://www.godatabase.org/cgi-bin/amigo/go.cgi?query=GO:0009792
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GO:0030709 
GO:0007298 
GO:0001737 
GO:0007276 
GO:0007294 
GO:0000226 
GO:0090176 
GO:0016325 
GO:0051663 
GO:0030707 
GO:0007318 
GO:0008360 
GO:0007317 
GO:0051124 
GO:0016323 
GO:0005938 
GO:0045169 
GO:0045172 
GO:0031594 
GO:0061174 
GO:0005524 
GO:0004674 
GO:0009948 
GO:0007294 
GO:0045185 
GO:0007314 
GO:0009994 
GO:0007314 
GO:0009994 
GO:0016325 
GO:0045451 
GO:0006468 
GO:0030111 

Axis specification 
Border follicle cell 
delamination 
Border follicle cell 
migration 
Establishment of imaginal 
disc-derived wing hair 
orientation 
Gamete generation 
Germarium-derived oocyte 
fate determination 
Microtubule cytoskeleton 
organization 
Microtubule cytoskeleton 
organization involved in 
Establishment of planar 
polarity 
Oocyte microtubule 
cytoskeleton organization 
Oocyte nucleus 
localization involved in 
oocyte Dorsal/ventral axis 
specification 
Ovarian follicle cell 
development 
Pole plasm protein 
localization 
Regulation of cell shape 
Regulation of pole plasm 
oskar mRNA localization 
Synaptic growth at 
neuromuscular junction 
Basolateral plasma 
membrane 
Cell cortex 
Fusome 
Germline ring canal 
Neuromuscular junction 
Type I terminal button 
ATP binding 
Protein serine/threonine 
kinase activity 
Anterior/posterior axis 
specification 
Germarium-derived oocyte 
fate determination 
Maintenance of protein 
location 
Oocyte anterior/posterior 
axis specification 
Oocyte differentiation 
Oocyte microtubule 
cytoskeleton organization 
Pole plasm oskar mRNA 
localization 
Protein amino acid 
phosphorylation 
Regulation of Wnt 
receptor signalling 
pathway 

CG13586 Ion transport peptide Up 2.06 GO:0005179 
GO:0005184 
GO:0007218  
GO:0005576  

Hormone activity 
Neuropeptide hormone 
activity 
Neuropeptide signalling 
pathway 
Extracellular region  

CG18255 Stretchin-Mlck Up 2.00 to 
2.91 

GO:0004683 
GO:0004687 
GO:0005875 
GO:0005524 
GO:0004674 
GO:0005200 

Calmodulin-dependent 
protein kinase activity  
Myosin light chain kinase 
activity 
Microtubule associated 
complex 
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GO:0006468 ATP binding 
Protein serine/threonine 
kinase activity 
Structural constituent of 
cytoskeleton 
Protein amino acid 
phosphorylation   

 

 

Table: 7.30.   Dechorionation on the high and low nutrient diet: Tentative consensus 

sequences and expression sequence tags with no assigned gene ontology. 

Sequence Number Sequence description Up/Down 
regulation 

Absolute fold change 

TC217285 (Embryo) Tentative consensus sequence Up 10.07 

TC218367 (Embryo) Tentative consensus sequence Up 4.57 

TC198490 (Lsp1α-
PA) 

Tentative consensus sequence Down 4.50 

TC201533 Tentative consensus sequence Down 4.44 

TC214613 Tentative consensus sequence Down 4.31 

TC219844 Tentative consensus sequence Up 3.85 

TC212659 (Head) Tentative consensus sequence Down 3.45 

AW944513 
(CG6340) 

Expression sequence tag Down 3.35 

TC216377 (Head) Tentative consensus sequence Down 3.35 

TC201327(CG4757-
RA) 

Tentative consensus sequence Down 3.13 

TC221143 (Embryo) Tentative consensus sequence Up 2.91 

TC218749 (Embryos, 
imaginal disks and 
adults) 

Tentative consensus sequence Up 2.86 

TC215215 (3rd instar 
larvae challenged 
with gram+/- 
bacteria in fat body) 

Tentative consensus sequence Down 2.73 

TC219201 (Embryos, 
imaginal disks and 
adults) 

Tentative consensus sequence Up 2.66 

TC203290 Tentative consensus sequence Up 2.66 

TC213534 (Head) Tentative consensus sequence Up 2.62 

BI568522  Expression sequence tag Down 2.60 

TC215821 (Embryos, 
imaginal disks and 
adults) 

Tentative consensus sequence Down 2.54 

TC213341 (Head) Tentative consensus sequence Up 2.51 

TC214171 (Embryos, 
imaginal disks and 
adults) 

Tentative consensus sequence Up 2.47 

TC216854 (Embryos, 
imaginal disks and 
adults) 

Tentative consensus sequence Up 2.44 

TC213388 (Head) Tentative consensus sequence Up 2.43 

TC217757 Tentative consensus sequence Up 2.42 

TC215541 (Embryos, 
imaginal disks and 
adults) 

Tentative consensus sequence Up 2.34 

CB305266  Expression sequence tag Down 2.33 

TC219559 Tentative consensus sequence Up 2.32 
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TC220354 Tentative consensus sequence Up 2.32 

TC211303 (S2 cells) Tentative consensus sequence Up 2.29 

TC217125 (Embryos, 
imaginal disks and 
adults) 

Tentative consensus sequence Up 2.27 

TC220379 Tentative consensus sequence Up 2.27 

TC216368 Tentative consensus sequence Up 2.24 

TC210404 (Head) Tentative consensus sequence Down 2.22 

TC216551 (Head) Tentative consensus sequence Up 2.20 

CA805541 
(CG43139) 

Expression sequence tag Down 2.20 

TC213188 (Embryo) Tentative consensus sequence Up 2.16 

TC213947 (Salivary 
glands) 

Tentative consensus sequence Down 2.15 

TC219494 Embryo 
and S2 cell culture) 

Tentative consensus sequence Up 2.13 

TC218163 (Ovary) Tentative consensus sequence Up 2.13 

TC218584 Tentative consensus sequence Up 2.12 

TC220906 Tentative consensus sequence Up 2.10 

TC209214 (Head) Tentative consensus sequence Up 2.10 

CO280900  Expression sequence tag Up 2.10 

TC215995 Tentative consensus sequence Up 2.06 

TC217151 (Embryo 
and S2 cell culture) 

Tentative consensus sequence Up 2.05 

TC210032 (Head) Tentative consensus sequence Down 2.05 

TC212461 (Head, 
ovary and embryo) 

Tentative consensus sequence Up 2.05 

TC212954 (Head) Tentative consensus sequence Up 2.03 

TC218875 (Embryos, 
imaginal disks and 
adults) 

Tentative consensus sequence Up 2.02 

TC213630 (Testis) Tentative consensus sequence Down 2.01 
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Table: 7.31.   Dechorionation on the high and low nutrient diet: Sequences with no 

assigned gene ontology. 

Gene/Sequence Number Up/Down regulation Absolute fold change 

CG4996 Up 3.81 

CG34206 Down 3.79 

CG17761-RA Up 3.42 

CG40119-RA Down 2.91 

l(2)01289 Up 2.91 

CG40119 Up 2.80 

CG6544 (Fau) Up 2.79 

CG31008 Up 2.69 

NM_001015169 (CG41063) Up 2.51 

CG15597 Down 2.47 

NR_003123 Down 2.44 

pncr015:3L Down 2.42 

nimB5 Up 2.40 

CG34394 Up 2.37 

CG7502-RA Up 2.37 

CG17944 Down 2.32 

CG41130 Up 2.27 

CG41581 Up 2.26 

CG40626 Up 2.25 

CG11592 Up 2.23 

CG17839 Up 2.21 

CG34383 Up 2.18 

CR42217 Up 2.16 

CG32564 Down 2.16 

CG40137 Down 2.14 

AT10144 Down 2.12 

CG3246 Up 2.12 

CG14406 Up 2.08 

CG14066-RB Up 2.06 

CG31526 Down 2.05 

CG30296 Up 2.05 

BT024213 Up 2.05 

NM_001015218  (CG40159) Up 2.04 

CG41529 Up 2.04 

CG6454 Up 2.01 
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7.4 Bacterial identities of culturable bacteria in Asian and Mexican Aedes 

aegypti larvae and water samples at 0-100 µg ml-1chlortetracycline  

Table: 7.32. Bacterial identities found in Asian Aedes aegypti larvae and water samples at 

the different chlortetracycline concentrations (0-100 µg ml-1) (percent identity). 

 Chlortetracycline 
concentration  (µg 
ml-1) 

Water Larvae 

0 
  
  
  

HQ113217.1 - Microbacterium sp. Z5 16S 

ribosomal RNA gene, partial sequence (98%) 

 

FJ652595.1 - Pseudomonas fluorescens strain PSY-11 
16S ribosomal RNA gene, partial sequence 
AY514432.1 - Serratia marcescens strain N1.8 16S 
ribosomal RNA gene, partial sequence (99%) 

HQ236076.1 - Bacillus cereus strain TBD3-2 
16S ribosomal RNA gene, partial sequence 
(99%) 

AJ704545.1 - Chryseobacterium meningosepticum 
partial 16S rRNA gene, strain ATCC 51720 (99%) 

GQ504012.1 - Leucobacter sp. NAL101 16S 
ribosomal RNA gene, partial sequence (97%) 

GQ504012.1 - Leucobacter sp. NAL101 16S ribosomal 
RNA gene, partial sequence (97%) 

EU346911.1 - Leucobacter chironomi strain 
MM2LB 16S ribosomal RNA gene, partial 
sequence (98%) 

HQ113217.1 - Microbacterium paraoxydans strain 
CL-9.11a 16S ribosomal RNA gene, partial sequence 
(98%) 

HM573359.1 - Bacillus sp. EB353 16S 
ribosomal RNA gene, partial sequence 

GQ504012.1 - Leucobacter sp. NAL101 16S ribosomal 
RNA gene, partial sequence (97%) 

0.1 
  
  

AJ704545.1 - Chryseobacterium 
meningosepticum partial 16S rRNA gene, 
strain ATCC 51720 (99%) 

GQ504012.1 - Leucobacter sp. NAL101 16S ribosomal 
RNA gene, partial sequence (97%) 

HM820111.1 - Uncultured bacterium clone 
nby372d11c1 16S ribosomal RNA gene, 
partial sequence (98%) 

HM171926.1 - Microbacterium sp. Z5 16S ribosomal 
RNA gene, partial sequence (99%) 

HM303366.1 - Uncultured bacterium clone 
ncd819f12c1 16S ribosomal RNA gene, 
partial sequence, Comamonas sp. N19-3 16S 
ribosomal RNA gene, partial sequence (99%) 

EU879962.1 - Microbacterium laevaniformans strain 
NML 16S ribosomal RNA gene, partial sequence 
(98%) 

HM171926.1 - Microbacterium sp. Z5 16S ribosomal 
RNA gene, partial sequence (97%) 

0.5 
  
  

EU346911.1 - Leucobacter chironomi strain 
MM2LB 16S ribosomal RNA gene, partial 
sequence (97-98%) 

HQ113217.1 - Microbacterium paraoxydans strain 
CL-9.11a 16S ribosomal RNA gene, partial sequence 
(98%) 

HQ246280.1 - Enterobacter sp. 7A18S4 16S 
ribosomal RNA gene, partial sequence (97%) 

HM171926.1 - Microbacterium sp. Z5 16S ribosomal 
RNA gene, partial sequence (98%) 

GQ504012.1 - Leucobacter sp. NAL101 16S ribosomal 
RNA gene, partial sequence (99%) 

HM171926.1 - Microbacterium sp. Z5 16S ribosomal 
RNA gene, partial sequence (98%) 

GQ504012.1 - Leucobacter sp. NAL101 16S ribosomal 
RNA gene, partial sequence (96%) 

1 
  
  

HM820111.1 - Uncultured bacterium clone 
nby372d11c1 16S ribosomal RNA gene, 
partial sequence (99%) 
  
  

HM171926.1 - Microbacterium sp. Z5 16S ribosomal 
RNA gene, partial sequence (98%) 

HQ113217.1 - Microbacterium paraoxydans strain 
CL-9.11a 16S ribosomal RNA gene, partial sequence 
(98%) 

EU346911.1 - Leucobacter chironomi strain MM2LB 
16S ribosomal RNA gene, partial sequence (99%) 

10 
  
  

FJ652595.1 - Pseudomonas fluorescens 
strain PSY-11 16S ribosomal RNA gene, 
partial sequence,  
AY514432.1 - Serratia marcescens strain 
N1.8 16S ribosomal RNA gene, partial 
sequence(98%) 

HM171926.1 - Microbacterium sp. Z5 16S ribosomal 
RNA gene, partial sequence (98%) 

AJ704545.1 - Chryseobacterium 
meningosepticum partial 16S rRNA gene, 
strain ATCC 51720  (99%) 

HQ113217.1 - Microbacterium paraoxydans strain 
CL-9.11a 16S ribosomal RNA gene, partial sequence 
(98%) 
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AJ704542.1  - Chryseobacterium 
meningosepticum partial 16S rRNA gene, 
strain ATCC 13255 (100%) 

  

30 
  

EU302858.1 - Serratia marcescens strain 
DAP33 16S ribosomal RNA gene, partial 
sequence (98%) 

GU481093.1 - Chryseobacterium sp. RBT 16S 
ribosomal RNA gene, partial sequence (96%) 

J870662.1  - Chryseobacterium sp. pp2f 16S 
ribosomal RNA gene, partial sequence (99%) 

HQ113217.1 - Microbacterium paraoxydans strain 
CL-9.11a 16S ribosomal RNA gene, partial sequence 
(99%) 

FJ870662.1 - Chryseobacterium sp. pp2f 16S 
ribosomal RNA gene, partial sequence (99%) 

100 
  
  

HM003215.1 - Delftia tsuruhatensis strain 
WYLW2-1 16S ribosomal RNA gene, partial 
sequence (99%) 

EF035134.1 - Serratia marcescens strain N4-5 16S 
ribosomal RNA gene, partial sequence (99%) 

HM003215.1 - Delftia tsuruhatensis strain 
WYLW2-1 16S ribosomal RNA gene, partial 
sequence (99%) 
  

AJ704545.1 - Chryseobacterium meningosepticum 
partial 16S rRNA gene, strain ATCC 51720 (99%) 

EU302852.1 - Serratia marcescens strain DAP27 16S 
ribosomal RNA gene, partial sequence (99%) 

EF035134.1 - Serratia marcescens strain N4-5 16S 
ribosomal RNA gene, partial sequence (98%) 

  AM942043.1 - Ochrobactrum anthropi partial 16S 
rRNA gene, strain PH-03 (99%) 
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Table: 7.33. Bacterial identities found in Asian Aedes aegypti larvae and water samples at 

the different chlortetracycline concentrations (0-100 µg ml-1) and grown on nutrient agar 

supplemented with 50 µg ml-1 of chlortetracycline (percent identity). 

 

 Chlortetracycline 
concentration  (µg 
ml-1) 

Water Larvae 

0 
  
  
  

AJ704545.1 - Chryseobacterium 
meningosepticum partial 16S rRNA gene, 
strain ATCC 51720 (99%) 

AJ704545.1 - Chryseobacterium meningosepticum 
partial 16S rRNA gene, strain ATCC 51720 (98-99%) 

AJ704545.1 - Chryseobacterium 
meningosepticum partial 16S rRNA gene, 
strain ATCC 51720 (99%) 

AJ704545.1 - Chryseobacterium meningosepticum 
partial 16S rRNA gene, strain ATCC 51720 (99%) 

EF426425.1  - Elizabethkingia meningoseptica 
strain 2.5 16S ribosomal RNA gene (99%) 

DQ298759.1  - Bacterium 7C2 16S ribosomal RNA 
gene, partial sequence (99%) 

 EF426425.1 - Chryseobacterium 
meningosepticum partial 16S rRNA gene, 
strain ATCC 51720 (99%) 

AJ704542.1  - Chryseobacterium meningosepticum 
partial 16S rRNA gene, strain ATCC 13255 (100%) 

EF426425.1 - Elizabethkingia meningoseptica 
strain 2.5 16S ribosomal RNA gene, partial 
sequence (99%) 

DQ298759.1  - Bacterium 7C2 16S ribosomal RNA 
gene, partial sequence (100%) 

AJ704542.1 - Chryseobacterium meningosepticum 
partial 16S rRNA gene, strain ATCC 13255 (99%) 

0.1 
  
  

AJ704545.1 - Chryseobacterium 
meningosepticum partial 16S rRNA gene, 
strain ATCC 51720 (99%) 

FJ652595.1 - Pseudomonas fluorescens strain PSY-11 
16S ribosomal RNA gene, partial sequence 
AY514432.1 -  Serratia marcescens strain N1.8 16S 
ribosomal RNA gene, partial sequence (99%) 

FP929040.1 - Enterobacter cloacae subsp. 
cloacae NCTC 9394 draft genome and 
uncultured bacteria (97-98%) 
 

AJ704545.1 - Chryseobacterium meningosepticum 
partial 16S rRNA gene, strain ATCC 51720 (99%) 

FJ816020.1 - Elizabethkingia meningoseptica 
strain G3-1-08 16S ribosomal RNA gene, 
partial sequence (99%) 

HM171926.1 - Microbacterium sp. Z5 16S ribosomal 
RNA gene, partial sequence(98%) 

0.5 
  
  

FJ816020.1 - Elizabethkingia meningoseptica 
strain G3-1-08 16S ribosomal RNA gene, 
partial sequence (99%) 

FJ816020.1 - Elizabethkingia meningoseptica strain 
G3-1-08 16S ribosomal RNA gene, partial sequence 
(99%) 

AB244457.1 -  Enterobacter cloacae gene for 
16S rRNA, partial sequence, strain: An20-1 
(98%) 

GU481093.1 - Chryseobacterium sp. RBT 16S 
ribosomal RNA gene, partial sequence (99%) 

GU481093.1 - Chryseobacterium sp. RBT 16S 
ribosomal RNA gene, partial sequence (99%) 

AJ704545.1 - Chryseobacterium meningosepticum 
partial 16S rRNA gene, strain ATCC 51720 (98%) 

AB244457.1 - Enterobacter cloacae gene for 16S 
rRNA, partial sequence, strain: An20-1 (98%) 

GU481093.1 - Chryseobacterium sp. RBT 16S 
ribosomal RNA gene, partial sequence (98%) 

1 
  
  

AJ704545.1 - Chryseobacterium 
meningosepticum partial 16S rRNA gene, 
strain ATCC 51720 (99%) 

HM171926.1 - Microbacterium sp. Z5 16S ribosomal 
RNA gene, partial sequence (98%) 

AJ704545.1 - Chryseobacterium 
meningosepticum partial 16S rRNA gene, 
strain ATCC 51720 (99%) 

AB244457.1 - Enterobacter cloacae gene for 16S 
rRNA, partial sequence, strain: An20-1 (98%) 

AJ704545.1 - Chryseobacterium 
meningosepticum partial 16S rRNA gene, 
strain ATCC 51720 (98%) 

FJ405359.1- Microbacterium sp. GE1017 16S 
ribosomal RNA gene, partial sequence (97%) 

HM171926.1 - Microbacterium sp. Z5 16S ribosomal 
RNA gene, partial sequence (99%) 

HM171926.1 - Microbacterium sp. Z5 16S ribosomal 
RNA gene, partial sequence (97%) 

10 
  
  

AJ704545.1 - Chryseobacterium 
meningosepticum partial 16S rRNA gene, 
strain ATCC 51720 (99%) 

HM171926.1  - Microbacterium sp. Z5 16S ribosomal 
RNA gene, partial sequence (98%) 

GU180606.1- Elizabethkingia meningoseptica 
strain EKMS1 16S ribosomal RNA gene, partial 
sequence (94%)  

HQ113217.1 - Microbacterium paraoxydans strain 
CL-9.11a 16S ribosomal RNA gene, partial sequence 
(99%) 
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AY335554.1 - Enterobacter aerogenes strain 
HK 20-1 16S ribosomal RNA gene, partial 
sequence (99%) 

HM171926.1  - Microbacterium sp. Z5 16S ribosomal 
RNA gene, partial sequence (98%) 

AJ704545.1 - Chryseobacterium 
meningosepticum partial 16S rRNA gene, 
strain ATCC 51720 (98%) 

HM171926.1  - Microbacterium sp. Z5 16S ribosomal 
RNA gene, partial sequence (99%) 

30 
  

AJ704545.1 - Chryseobacterium 
meningosepticum partial 16S rRNA gene, 
strain ATCC 51720 (99%) 

FJ870662.1 - Chryseobacterium sp. pp2f 16S 
ribosomal RNA gene, partial sequence (97-99%) 

EF035134.1 - Serratia marcescens strain N4-5 16S 
ribosomal RNA gene, partial sequence (98%) 

100 
  

AJ704545.1 - Chryseobacterium 
meningosepticum partial 16S rRNA gene, 
strain ATCC 51720 (99%) 

EF035134.1 - Serratia marcescens strain N4-5 16S 
ribosomal RNA gene, partial sequence (99%) 

AJ704545.1 - Chryseobacterium 
meningosepticum partial 16S rRNA gene, 
strain ATCC 51720 (99%) 

GU481093.1 - Chryseobacterium sp. RBT 16S 
ribosomal RNA gene, partial sequence (98%) 

EF035134.1 - Serratia marcescens strain N4-5 
16S ribosomal RNA gene, partial sequence 
(99%) 

FJ652595.1 - Pseudomonas fluorescens strain PSY-11 
16S ribosomal RNA gene, partial sequence 
EU302856.1 - Serratia marcescens strain DAP31 16S 
ribosomal RNA gene, partial sequence (91%) 

FJ870662.1 - Chryseobacterium sp. pp2f 16S 
ribosomal RNA gene, partial sequence (99%) 

FJ662869.1 - Serratia nematodiphila strain P36 16S 
ribosomal RNA gene, complete sequence 
FJ662868.1 - Serratia marcescens strain P32 16S 
ribosomal RNA gene, complete sequence (99%) 

FJ662869.1 - Serratia nematodiphila strain P36 16S 
ribosomal RNA gene, complete sequence 
FJ662868.1 - Serratia marcescens strain P32 16S 
ribosomal RNA gene, complete sequence (99%) 
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Table: 7.34. Bacterial identities found in Mexican Aedes aegypti larvae and water samples 

at the different chlortetracycline concentrations (0-100 µg ml-1) (percent identity).   

Chlortetracycline 
concentration  (µg ml-1) 

Water Larvae 

0 
  
  
  

EU346911.1 -  Leucobacter chironomi 
strain MM2LB 16S ribosomal RNA gene, 
partial sequence (98%) 

EU879962.1 - Microbacterium laevaniformans strain 
NML 16S ribosomal RNA gene, partial sequence (97%) 

GU180606.1 - Elizabethkingia meningoseptica strain 
EKMS1 16S ribosomal RNA gene, partial sequence 
(98%) 

EF035134.1  - Serratia marcescens strain N4-5 16S 
ribosomal RNA gene, partial sequence (99%) 

EU879962.1  - Microbacterium laevaniformans strain 
NML 16S ribosomal RNA gene, partial sequence (99%) 

GU180606.1 - Elizabethkingia meningoseptica strain 
EKMS1 16S ribosomal RNA gene, partial sequence 
(98%) 

0.1 
  
  

EU302852.1 -  Serratia marcescens strain 
DAP27 16S ribosomal RNA gene, partial 
sequence (99%) 

EU879962.1  - Microbacterium laevaniformans strain 
NML 16S ribosomal RNA gene, partial sequence (98%) 

GU180606.1 -  Elizabethkingia 
meningoseptica strain EKMS1 16S 
ribosomal RNA gene, partial sequence 
(98%) 

EU879962.1  - Microbacterium laevaniformans strain 
NML 16S ribosomal RNA gene, partial sequence (97%) 

AJ704541.1 -  Chryseobacterium 
meningosepticum partial 16S rRNA gene, 
strain ATCC 13254 (99%) 

EU879962.1  - Microbacterium laevaniformans strain 
NML 16S ribosomal RNA gene, partial sequence (97%) 

HM063035.1 -  Microbacterium sp. CRRI-
13 16S ribosomal RNA gene, partial 
sequence (96%) 

EU879962.1  - Microbacterium laevaniformans strain 
NML 16S ribosomal RNA gene, partial sequence (98%) 

EU879962.1  - Microbacterium 
laevaniformans strain NML 16S 
ribosomal RNA gene, partial sequence 
(97%) 

EU346911.1 - Leucobacter chironomi strain MM2LB 
16S ribosomal RNA gene, partial sequence (98%) 

EF035134.1  - Serratia marcescens strain 
N4-5 16S ribosomal RNA gene, partial 
sequence (99%) 

AM040493.1  - Leucobacter iarius 40 16S rRNA gene, 
type strain 40T (99%) 

0.5 
  
  

HM159984.1 -  Ochrobactrum sp. OTU29 
16S ribosomal RNA gene, partial 
sequence (98%) 

EU302852.1 - Serratia marcescens strain DAP27 16S 
ribosomal RNA gene, partial sequence (99%) 

HM587796.1  - Delftia sp. MV01 16S 
ribosomal RNA gene, partial sequence 
(99%) 

AB244483.1 - Arthrobacter woluwensis gene for 16S 
rRNA, partial sequence, strain: limp 5-2 (98%) 

FJ816020.1 - Elizabethkingia 
meningoseptica strain G3-1-08 16S 
ribosomal RNA gene, partial sequence 
(98%) 

GU180606.1 - Elizabethkingia meningoseptica strain 
EKMS1 16S ribosomal RNA gene, partial sequence 
(99%) 

GU180606.1 - Elizabethkingia 
meningoseptica strain EKMS1 16S 
ribosomal RNA gene, partial sequence 
(98%) 

EF035134.1 - Serratia marcescens strain N4-5 16S 
ribosomal RNA gene, partial sequence (99%) 

1 
  
  

HQ436416.1 - Elizabethkingia sp. dS13-
11 16S ribosomal RNA gene, partial 
sequence (98%) 

FJ652595.1 - Pseudomonas fluorescens strain PSY-11 
16S ribosomal RNA gene, partial sequence 
EU302855.1 - Serratia marcescens strain DAP30 16S 
ribosomal RNA gene, partial sequence (98%) 

FJ816020.1  - Elizabethkingia 
meningoseptica strain G3-1-08 16S 
ribosomal RNA gene, partial sequence 
(99%) 

AJ704541.1  - Chryseobacterium meningosepticum 
partial 16S rRNA gene, strain ATCC 13254 (99%) 

FJ816020.1 - Elizabethkingia 
meningoseptica strain G3-1-08 16S 
ribosomal RNA gene, partial sequence 
(99%) 

GQ351502.1 - Serratia marcescens strain N80 16S 
ribosomal RNA gene, partial sequence (99%) 

AJ704541.1 - Chryseobacterium 
meningosepticum partial 16S rRNA gene, 

GQ165511.1 - Bacterium S119(2009) 16S ribosomal 
RNA gene, partial sequence (99%) 
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strain ATCC 13254 (99%) 

AJ704541.1 -  Chryseobacterium 
meningosepticum partial 16S rRNA gene, 
strain ATCC 13254 (99%) 

GU180606.1 -  Elizabethkingia meningoseptica strain 
EKMS1 16S ribosomal RNA gene, partial sequence 
(98%) 

 GU272355.1  - Microbacterium sp. LP2ME 16S 
ribosomal RNA gene, partial sequence (98%) 

 HQ436416.1 -  Elizabethkingia sp. dS13-
11 16S ribosomal RNA gene, partial 
sequence (98%) 

EU931562.1 - Klebsiella pneumoniae subsp. 
pneumoniae strain ZFJ-7 16S ribosomal RNA gene, 
partial sequence (98%) 

10 
  
  

FJ816020.1 -  Elizabethkingia 
meningoseptica strain G3-1-08 16S 
ribosomal RNA gene, partial sequence 
(98%) 

EU302852.1 -  Serratia marcescens strain DAP27 16S 
ribosomal RNA gene, partial sequence (99%) 

GU183606.1 -  Uncultured bacterium 
clone NMG46 16S ribosomal RNA gene, 
partial sequence (97%) 

HQ436416.1 - Elizabethkingia sp. dS13-11 16S 
ribosomal RNA gene, partial sequence (98%) 

GU180606.1 -  Elizabethkingia 
meningoseptica strain EKMS1 16S 
ribosomal RNA gene, partial sequence 
(97%) 

GU180606.1 -  Elizabethkingia meningoseptica strain 
EKMS1 16S ribosomal RNA gene, partial sequence 
(98%) 

AJ704541.1 -  Chryseobacterium 
meningosepticum partial 16S rRNA gene, 
strain ATCC 13254 (98%) 

HQ436416.1 -  Elizabethkingia sp. dS13-11 16S 
ribosomal RNA gene, partial sequence (98%) 

HQ436416.1 -  Elizabethkingia sp. dS13-11 16S 
ribosomal RNA gene, partial sequence (97%) 

30 
  

FJ652595.1 -  Pseudomonas fluorescens 
strain PSY-11 16S ribosomal RNA gene, 
partial sequence  
EU302855.1 -  Serratia marcescens strain 
DAP30 16S ribosomal RNA gene, partial 
sequence (98%) 

EU302852.1 - Serratia marcescens strain DAP27 16S 
ribosomal RNA gene, partial sequence (95%) 

EU302852.1 - Serratia marcescens strain DAP27 16S 
ribosomal RNA gene, partial sequence (97%) 

100 
  
  

GQ351502.1  - Serratia marcescens 
strain N80 16S ribosomal RNA gene, 
partial sequence (97%) 

EU931562.1 -  Klebsiella pneumoniae subsp. 
pneumoniae strain ZFJ-7 16S ribosomal RNA gene, 
partial sequence (99%) 

GQ351502.1  - Serratia marcescens 
strain N80 16S ribosomal RNA gene, 
partial sequence (99%) 

AB548592.1 - Mycobacterium massiliense gene for 16S 
ribosomal RNA, partial sequence, strain: A1 (99%) 

EU879962.1 -  Microbacterium 
laevaniformans strain NML 16S 
ribosomal RNA gene, partial sequence 
(97%) 

EU879962.1  - Microbacterium laevaniformans strain 
NML 16S ribosomal RNA gene, partial sequence (98%) 

EU879962.1  - Microbacterium 
laevaniformans strain NML 16S 
ribosomal RNA gene, partial sequence 
(98%) 

EU879962.1  - Microbacterium laevaniformans strain 
NML 16S ribosomal RNA gene, partial sequence (98%) 

AF287752.1 -  Microbacterium sp. oral 
strain C24KA 16S ribosomal RNA gene, 
partial sequence (97%) 

EU879962.1  - Microbacterium laevaniformans strain 
NML 16S ribosomal RNA gene, partial sequence (99%) 
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Table: 7.35. Bacterial identities found in Mexican Aedes aegypti larvae and water samples 

at the different chlortetracycline concentrations (0-100 µg ml-1) on chlortetracycline 

supplemented agar plates (percent identity).   

 

Chlortetracycline 
concentration  (µg ml-1) 

Water Larvae 

0 
  
  
  

EF035134.1 - Serratia marcescens strain 
N4-5 16S ribosomal RNA gene, partial 
sequence (99%) 

HQ436416.1 -  Elizabethkingia sp. dS13-11 16S 
ribosomal RNA gene, partial sequence (98%) 

EU302852.1 - Serratia marcescens strain 
DAP27 16S ribosomal RNA gene, partial 
sequence (98%) 

HQ436416.1 - Elizabethkingia sp. dS13-11 16S 
ribosomal RNA gene, partial sequence (98%) 

EU302852.1 - Serratia marcescens strain 
DAP27 16S ribosomal RNA gene, partial 
sequence (98%) 

HM130055.1 - Elizabethkingia meningoseptica 
strain S3 16S ribosomal RNA gene, partial sequence 
(99%) 

EF440614.1 - Delftia tsuruhatensis strain 
WXZ-1 16S ribosomal RNA gene, partial 
sequence (96%) 

GQ504012.1 - Leucobacter sp. NAL101 16S 
ribosomal RNA gene, partial sequence (97%) 

EF035134.1 - Serratia marcescens strain 
N4-5 16S ribosomal RNA gene, partial 
sequence (99%) 

EU302852.1 - Serratia marcescens strain DAP27 
16S ribosomal RNA gene, partial sequence (98%) 

EF035134.1 - Serratia marcescens strain 
N4-5 16S ribosomal RNA gene, partial 
sequence (98%) 

EF035134.1 - Serratia marcescens strain N4-5 16S 
ribosomal RNA gene, partial sequence (99%) 

0.1 
  
  

HM771025.1 - Leucobacter sp. 
INBio2553H 16S ribosomal RNA gene, 
partial sequence (99%) 

FJ816020.1 - Elizabethkingia meningoseptica strain 
G3-1-08 16S ribosomal RNA gene, partial sequence 
(98%) 

DQ311007.1 - Agromyces sp. Xb-3 16S ribosomal 
RNA gene, partial sequence (98%) 

AF316618.1 - Mycobacterium fuerth 16S ribosomal 
RNA gene, partial sequence (99%) 

0.5 Samples and PCR completed, sequencing 
did not work 

AF316618.1 - Mycobacterium fuerth 16S ribosomal 
RNA gene, partial sequence (99%) 

 
1 Samples and PCR completed, sequencing 

did not work 
Samples and PCR completed, sequencing did not 
work 

 HQ436416.1 - Elizabethkingia sp. dS13-11 
16S ribosomal RNA gene, partial sequence 
(98%) 

AF535159.1 -  Microbacterium laevaniformans LA 
16S ribosomal RNA gene, complete sequence (92%) 

10 
  
  

EU931562.1 - Klebsiella pneumoniae 
subsp. pneumoniae strain ZFJ-7 16S 
ribosomal RNA gene, partial sequence 
(96%) 

HM159984.1 - Ochrobactrum sp. OTU29 16S 
ribosomal RNA gene, partial sequence (99%) 

FJ816020.1 - Elizabethkingia 
meningoseptica strain G3-1-08 16S 
ribosomal RNA gene, partial sequence 
(99%) 

AB363526.1 - Uncultured bacterium gene for 16S 
ribosomal RNA, partial sequence, clone: 3-4-9 
(95%) 

EU931562.1 - Klebsiella pneumoniae 
subsp. pneumoniae strain ZFJ-7 16S 
ribosomal RNA gene, partial sequence 
(98%) Klebsiella pneumoniae subsp. 
pneumoniae strain ZFJ-7 16S ribosomal 
RNA gene, partial sequence 

  
30 
  

EU302852.1 - Serratia marcescens strain 
N4-5 16S ribosomal RNA gene, partial 
sequence (98%) 

 

EF035134.1 - Serratia marcescens strain 
N1.6 16S ribosomal RNA gene, partial 
sequence (98%) 

EF035134.1 - Serratia marcescens strain 
N1.6 16S ribosomal RNA gene, partial 
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sequence (97%) 

100 
  
  

GQ351502.1 -  Serratia marcescens strain 
N80 16S ribosomal RNA gene, partial 
sequence 
FJ652595.1 - Pseudomonas fluorescens 
strain PSY-11 16S ribosomal RNA gene, 
partial sequence (98%) 

EU536491.1 - Uncultured bacterium clone 
nbt214f11 16S ribosomal RNA gene, partial 
sequence (99%) 

FJ652595.1 -  Pseudomonas fluorescens 
strain PSY-11 16S ribosomal RNA gene, 
partial sequence 
EF035134.1 - Serratia marcescens strain 
N4-5 16S ribosomal RNA gene, partial 
sequence (99%) 

GQ351502.1 - Serratia marcescens strain N80 16S 
ribosomal RNA gene, partial sequence (98%) 

EU302852.1 - Serratia marcescens strain DAP27 
16S ribosomal RNA gene, partial sequence (98%) 

AY514432.1 - Serratia marcescens strain N1.8 16S 
ribosomal RNA gene, partial sequence (98%) 
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7.5. 454 pyrosequencing of bacteria in Mexican Aedes aegypti larvae, female 

adults and male adults with and without 30 µg ml-1chlortetracycline  

Table: 7.36. 454 Sequencing results of bacterial identities for larvae Mexican Aedes 

aegypti 

Number of 
reads 

% Identity Accession 
number 

Identity Lineage 

31731 100.0 EU879962 Microbacterium 
laevaniformans strain 
NML 16S ribosomal RNA 
gene, partial sequence 

Bacteria; Actinobacteria; Actinobacteridae; 
Actinomycetales; Micrococcineae; Microbacteriaceae; 
Microbacterium.  

1101 100.0 EU714377 Microbacterium 
paraoxydans strain 76 
16S ribosomal RNA 
gene, partial sequence 

Bacteria; Actinobacteria; Actinobacteridae; 
Actinomycetales; Micrococcineae; Microbacteriaceae; 
Microbacterium. 

552 100.0 AM040493 Leucobacter iarius 40 
16S rRNA gene, type 
strain 40T 

Bacteria; Actinobacteria; Actinobacteridae; 
Actinomycetales; Micrococcineae; Microbacteriaceae; 
Leucobacter 

59 96.0 EU717745 Microbacteriaceae 
bacterium ACTS123 16S 
ribosomal RNA gene, 
partial sequence 

Bacteria; Actinobacteria; Actinobacteridae; 
Actinomycetales; Micrococcineae; Microbacteriaceae; 
Microbacterium. 

49 97.8 DQ490450 Microbacteriaceae 
bacterium KVD-unk-03 
16S ribosomal RNA 
gene, partial sequence 

Bacteria; Actinobacteria; Actinobacteridae; 
Actinomycetales; Micrococcineae; Microbacteriaceae; 
Microbacterium. 

48 96.3 EU879962 Microbacterium 
laevaniformans strain 
NML 16S ribosomal RNA 
gene, partial sequence 

Bacteria; Actinobacteria; Actinobacteridae; 
Actinomycetales; Micrococcineae; Microbacteriaceae; 
Microbacterium. 

10 97.0 DQ490450 Microbacteriaceae 
bacterium KVD-unk-03 
16S ribosomal RNA 
gene, partial sequence 

Bacteria; Actinobacteria; Actinobacteridae; 
Actinomycetales; Micrococcineae; Microbacteriaceae; 
Microbacterium. 

10 99.6 AB244483 Arthrobacter woluwensis 
gene for 16S rRNA, 
partial sequence, strain: 
limp 5-2 

Bacteria; Actinobacteria; Actinobacteridae; 
Actinomycetales; Micrococcineae; Micrococcaceae; 
Arthrobacter 

1 97.8 AJ247194 Asticcacaulis excentricus 
partial 16S rRNA gene 
for 16S ribosomal RNA, 
strain DSM 4724(T) 

Bacteria; Proteobacteria; Alphaproteobacteria; 
Caulobacterales;Caulobacteraceae; Asticcacaulis 

1 98.9 DQ814374 Uncultured bacterium 
clone aab67f12 16S 
ribosomal RNA gene, 
partial sequence 

Bacteria; environmental samples 

1 100.0 GU428943 Comamonadaceae 
bacterium oral taxon 
A82 clone SV044 16S 
ribosomal RNA gene, 
partial sequence 

Bacteria; Proteobacteria; Betaproteobacteria; 
Burkholderiales; Comamonadaceae 

1 95.6 AB244483 Arthrobacter woluwensis 
gene for 16S rRNA, 
partial sequence, strain: 
limp 5-2 

Bacteria; Actinobacteria; Actinobacteridae; 
Actinomycetales; Micrococcineae; Micrococcaceae; 
Arthrobacter 

1 99.3 AB377177 Peptostreptococcaceae 
bacterium SK031 gene 
for 16S ribosomal RNA, 
partial sequence 

Bacteria; Firmicutes; Clostridia; Clostridiales; 
Peptostreptococcaceae 

 



239 

 

Table: 7.37. 454 Sequencing results of bacterial identities for male adult Mexican Aedes 

aegypti  

Number 
of reads  

% Identity Accession 
number 

Identity Lineage 

26723 100 GU180606 Elizabethkingia meningoseptica strain EKMS1 
16S ribosomal RNA gene, partial sequence 

Bacteria; Bacteroidetes; 
Flavobacteria; Flavobacteriales; 
Flavobacteriaceae; Elizabethkingia 

2024 100 DQ365580 Erwinia persicina strain GS04 16S ribosomal 
RNA gene, partial sequence 

Bacteria; Proteobacteria; 
Gammaproteobacteria; 
Enterobacteriales; 
 Enterobacteriaceae; Erwinia 

14 100 HM342703 Uncultured bacterium clone ncd1034b08c1 
16S ribosomal RNA gene, partial sequence 

Bacteria; environmental samples 

10 98.8 AJ001190 Erwinia persicinus 16S rRNA gene, strain LMG 
2691 

Bacteria; Proteobacteria; 
Gammaproteobacteria; 
Enterobacteriales; 
 Enterobacteriaceae; Erwinia 

5 100 HM057713 Uncultured beta proteobacterium clone 
D8W_30 16S ribosomal RNA gene, partial 
sequence 

Bacteria; Proteobacteria; 
Betaproteobacteria; 
environmental 

5 100 GQ360067 Acinetobacter sp. pp2a 16S ribosomal RNA 
gene, partial sequence 

Bacteria; Proteobacteria; 
Gammaproteobacteria; 
Pseudomonadales; 
Moraxellaceae; Acinetobacter 

3 100 EU714377 Microbacterium paraoxydans strain 76 16S 
ribosomal RNA gene, partial sequence 

Bacteria; Actinobacteria; 
Actinobacteridae; 
Actinomycetales; Micrococcineae; 
Microbacteriaceae; 
Microbacterium 

3 100 NR_025643 Jeotgalicoccus halotolerans strain YKJ-101 16S 
ribosomal RNA, partial sequence  

Bacteria; Firmicutes; Bacillales; 
Jeotgalicoccus 

3 91.2 NR_025917 Acetivibrio cellulolyticus strain CD2 16S 
ribosomal RNA, partial sequence  

Bacteria; Firmicutes; Clostridia; 
Clostridiales; Ruminococcaceae; 
Acetivibrio 

2 100 AM040493 Leucobacter iarius 40 16S rRNA gene, type 
strain 40T 

Bacteria; Actinobacteria; 
Actinobacteridae; 
Actinomycetales;Micrococcineae; 
Microbacteriaceae; Leucobacter 

2 100 HM329229 Uncultured bacterium clone ncd957e02c1 16S 
ribosomal RNA gene, partial sequence 

Bacteria; environmental samples 

2 100 FJ859692 Sphingobacterium spiritivorum strain BIHB 
346 16S ribosomal RNA gene, partial sequence 

Bacteria; Bacteroidetes; 
Sphingobacteria; 
Sphingobacteriales;Sphingobacteri
aceae; Sphingobacterium 

2 99.6 GU429487 Beta proteobacterium oral taxon B96 clone 
ST047 16S ribosomal RNA gene, partial 
sequence 

Bacteria; Proteobacteria; 
Betaproteobacteria 

2 100 FM875873 Leucobacter tardus partial 16S rRNA gene, 
strain B2-50 

Bacteria; Actinobacteria; 
Actinobacteridae; 
Actinomycetales;  
Micrococcineae; 
Microbacteriaceae; Leucobacter 

2 100 HM332804 Uncultured bacterium clone ncd1061e06c1 
16S ribosomal RNA gene, partial sequence 

Bacteria; environmental samples 

2 97.8 AJ247194 Asticcacaulis excentricus partial 16S rRNA 
gene for 16S ribosomal RNA, strain DSM 
4724(T) 

Bacteria; Proteobacteria; 
Alphaproteobacteria; 
Caulobacterales; 
Caulobacteraceae; Asticcacaulis 

2 100 GQ157223 Uncultured bacterium clone 16slp101-
1f11.w2k 16S ribosomal RNA gene, partial 
sequence 

Bacteria; environmental samples 

2 97.4 AY822552 Bacterium PBA-1-4 16S ribosomal RNA gene, 
partial sequence 
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2 99.6 GU642046 Uncultured bacterium clone RW6702 16S 
ribosomal RNA gene, partial sequence 

Bacteria; environmental samples 

2 98.4 DQ365580 Erwinia persicina strain GS04 16S ribosomal 
RNA gene, partial sequence 

Bacteria; Proteobacteria; 
Gammaproteobacteria; 
Enterobacteriales; 
Enterobacteriaceae; Erwinia 

2 94.5 EU305584 Uncultured Pedobacter sp. clone 3-C 16S 
ribosomal RNA gene, partial sequence 

Bacteria; Bacteroidetes; 
Sphingobacteria; 
Sphingobacteriales;Sphingobacteri
aceae; Pedobacter; environmental 
samples 

1 100 EF433462 Devosia sp. IPL18 16S ribosomal RNA gene, 
partial sequence 

Bacteria; Proteobacteria; 
Alphaproteobacteria; Rhizobiales; 
Hyphomicrobiaceae; Devosia 

1 99.6 GQ891705 Caulobacter leidyia strain X 16S ribosomal 
RNA gene, partial sequence 

Bacteria; Proteobacteria; 
Alphaproteobacteria; 
Sphingomonadales; 
Sphingomonadaceae 

1 92.31 AY193185 Uncultured candidate division OD1 bacterium 
clone DA23 16S ribosomal RNA gene, partial 
sequence 

Bacteria; candidate division OD1; 
environmental samples 

1 97.8 DQ801310 Uncultured bacterium clone RL388_aao93g08 
16S ribosomal RNA gene, partial sequence 

Bacteria; environmental samples 

1 93.0 AB480775 Erwinia tasmaniensis gene for 16S ribosomal 
RNA, partial sequence, strain: Acj 211 

Bacteria; Proteobacteria; 
Gammaproteobacteria; 
Enterobacteriales; 
Enterobacteriaceae; Erwinia 

1 97.4 EF667911 Uncultured Bdellovibrionales bacterium clone 
Hv(lab)_1.20 16S ribosomal RNA gene, partial 
sequence 

Bacteria; Proteobacteria; 
Deltaproteobacteria; 
Bdellovibrionales; environmental 
samples 

1 97.0 NR_024786 Delftia tsuruhatensis strain T7 16S ribosomal 
RNA, partial sequence 
>gi|17974274|dbj|AB075017.1| Delftia 
tsuruhatensis gene for 16S rRNA, partial 
sequence 

Bacteria; Proteobacteria; 
Betaproteobacteria; 
Burkholderiales; 
Comamonadaceae; Delftia 

1 98.2 AB271045 Devosia ginsengisoli gene for 16S rRNA, partial 
sequence 

Bacteria; Proteobacteria; 
Alphaproteobacteria; Rhizobiales; 
Hyphomicrobiaceae; Devosia. 

1 99.6 GU727800 Uncultured bacterium clone A196 16S 
ribosomal RNA gene, partial sequence 

Bacteria; environmental samples 

1 97.0 FJ828944 Variovorax sp. enrichment culture clone 13.4 
16S ribosomal RNA gene, partial sequence 

Bacteria; Proteobacteria; 
Betaproteobacteria; 
Burkholderiales;Comamonadacea
e; Variovorax; environmental 
samples 

1 100 HM267307 Uncultured bacterium clone ncd212e06c1 16S 
ribosomal RNA gene, partial sequence 

Bacteria; environmental samples 

1 98.5 AB294175 Alkalibacterium olivapovliticus gene for 16S 
rRNA, partial sequence, strain: NCIMB 13710 

Bacteria; Firmicutes; 
Lactobacillales; 
Carnobacteriaceae;Alkalibacteriu
m 

1 100 HM269911 Uncultured bacterium clone ncd257e09c1 16S 
ribosomal RNA gene, partial sequence 

Bacteria; environmental samples 

1 92.3 GQ250436 Xanthomonas sp. MJ10 16S ribosomal RNA 
gene, partial sequence 

Bacteria; Proteobacteria; 
Gammaproteobacteria; 
Xanthomonadales; 
Xanthomonadaceae; 
Xanthomonas 

1 100 AB195767 Aquatic bacterium R1-B35 gene for 16S 
ribosomal RNA, partial sequence 
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1 100 EF469609 Pseudacidovorax intermedius strain CC-CC21 
16S ribosomal RNA gene, partial sequence 

Bacteria; Proteobacteria; 
Betaproteobacteria; 
Burkholderiales; 
Comamonadaceae; 
Pseudacidovorax 

1 97.4 AY162048 Alpha proteobacterium PI_GH2.1.D7 small 
subunit ribosomal RNA gene, partial sequence 

Bacteria; Proteobacteria; 
Alphaproteobacteria. 

1 89.4 AY468464 Chryseobacterium sp. FRGDSA 4034/97 16S 
ribosomal RNA gene, partial sequence 

Bacteria; Bacteroidetes; 
Flavobacteria; Flavobacteriales; 
Flavobacteriaceae; 
Chryseobacterium 

 

 

Table: 7.38. 454 Sequencing results of bacterial identities for male adult Mexican Aedes 

aegypti treated with 30 µg ml-1 of chlortetracycline 

 

Number of reads  % Identity  Accession Number ID Name  Lineage 

21392 98.9 FJ784637 Raoultella sp. Z2NS-91 16S 
ribosomal RNA gene, 
partial sequence 

Bacteria; Proteobacteria; 
Gammaproteobacteria; 
Enterobacteriales; 
Enterobacteriaceae; Raoultella 

4867 100 GU180606 Elizabethkingia 
meningoseptica strain 
EKMS1 16S ribosomal RNA 
gene, partial sequence 

Bacteria; Bacteroidetes; 
Flavobacteria; Flavobacteriales; 
Flavobacteriaceae; 
Elizabethkingia 

1687 100 HM057713 Uncultured beta 
proteobacterium clone 
D8W_30 16S ribosomal 
RNA gene, partial 
sequence 

Bacteria; Proteobacteria; 
Betaproteobacteria; 
environmental samples 

65 98.4 GQ284560 Serratia marcescens strain 
A2.4bii 16S ribosomal RNA 
gene, partial sequence 

Bacteria; Proteobacteria; 
Gammaproteobacteria; 
Enterobacteriales; 
Enterobacteriaceae; Serratia 

49 91.1 FN297940 Uncultured 
Enterobacteriales 
bacterium partial 16S 
rRNA gene, clone CAR-
W23r-C4 

Bacteria; Proteobacteria; 
Gammaproteobacteria; 
Enterobacteriales; 
environmental samples 

44 98.1 GU640749 Uncultured bacterium 
clone RW5405 16S 
ribosomal RNA gene, 
partial sequence 

Bacteria; environmental samples. 

30 93.7 GU410540 Achromobacter 
xylosoxidans clone FH043 
16S ribosomal RNA gene, 
partial sequence 

Bacteria; Proteobacteria; 
Betaproteobacteria; 
Burkholderiales;Alcaligenaceae; 
Achromobacter 

22 99.5 HM130059 Elizabethkingia 
meningoseptica strain S7 
16S ribosomal RNA gene, 
partial sequence 

Bacteria; Bacteroidetes; 
Flavobacteria; Flavobacteriales; 
Flavobacteriaceae; 
Elizabethkingia 
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19 89.9 FJ184330 Uncultured soil bacterium 
clone B5_4 16S ribosomal 
RNA gene, partial 
sequence 

Bacteria; environmental samples. 

17 96.7 GU180606 Elizabethkingia 
meningoseptica strain 
EKMS1 16S ribosomal RNA 
gene, partial sequence 

Bacteria; Bacteroidetes; 
Flavobacteria; Flavobacteriales; 
Flavobacteriaceae; 
Elizabethkingia 

11 98.8 GU180606 Elizabethkingia 
meningoseptica strain 
EKMS1 16S ribosomal RNA 
gene, partial sequence 

Bacteria; Bacteroidetes; 
Flavobacteria; Flavobacteriales; 
Flavobacteriaceae; 
Elizabethkingia 

6 97.0 FJ607964 Uncultured Serratia sp. 
clone LF8 16S ribosomal 
RNA gene, partial 
sequence 

Bacteria; Proteobacteria; 
Gammaproteobacteria; 
Enterobacteriales; 
Enterobacteriaceae; Serratia; 
environmental samples 

6 95.6 DQ304115 Streptomyces sp. DA01013 
16S ribosomal RNA gene, 
partial sequence 

Bacteria; Actinobacteria; 
Actinobacteridae; 
Actinomycetales; 
 Streptomycineae; 
Streptomycetaceae; 
Streptomyces 

5 92.4 AB274281 Enterobacter sakazakii 
gene for 16S rRNA, partial 
sequence, strain: HT011 

Bacteria; Proteobacteria; 
Gammaproteobacteria; 
Enterobacteriales; 
Enterobacteriaceae;  Cronobacter 

4 100 FJ859692 Sphingobacterium 
spiritivorum strain BIHB 
346 16S ribosomal RNA 
gene, partial sequence 

Bacteria; Bacteroidetes; 
Sphingobacteria; 
Sphingobacteriales; 
Sphingobacteriaceae; 
Sphingobacterium 

2 97.4 GU180606 Elizabethkingia 
meningoseptica strain 
EKMS1 16S ribosomal RNA 
gene, partial sequence 

Bacteria; Bacteroidetes; 
Flavobacteria; Flavobacteriales; 
Flavobacteriaceae; 
Elizabethkingia 

2 88.0 GQ284560 Serratia marcescens strain 
A2.4bii 16S ribosomal RNA 
gene, partial sequence 

Bacteria; Proteobacteria; 
Gammaproteobacteria; 
Enterobacteriales; 
Enterobacteriaceae; Serratia. 

2 92.7 HM130059 Elizabethkingia 
meningoseptica strain S7 
16S ribosomal RNA gene, 
partial sequence 

Bacteria; Bacteroidetes; 
Flavobacteria; Flavobacteriales; 
Flavobacteriaceae; 
Elizabethkingia 

1 95.6 GQ284560 Serratia marcescens strain 
A2.4bii 16S ribosomal RNA 
gene, partial sequence 

Bacteria; Proteobacteria; 
Gammaproteobacteria; 
Enterobacteriales; 
Enterobacteriaceae; Serratia. 

1 95.6 EU834233 Pseudomonas sp. RZ 16S 
ribosomal RNA gene, 
partial sequence 

Bacteria; Proteobacteria; 
Gammaproteobacteria; 
Pseudomonadales; 
Pseudomonadaceae; 
Pseudomonas 
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1 95.6 DQ417330 Pseudomonas fluorescens 
strain 3B 16S ribosomal 
RNA gene, partial 
sequence 

Bacteria; Proteobacteria; 
Gammaproteobacteria; 
Pseudomonadales; 
Pseudomonadaceae; 
Pseudomonas 

 

 

Table: 7.39. 454 Sequencing results of bacterial identities for female adult Mexican Aedes 

aegypti  

 

Number of reads  % Identity   Accession 
Number 

Identity Lineage 

458 100 GU180606 Elizabethkingia meningoseptica 
strain EKMS1 16S ribosomal 
RNA gene, partial sequence 

Bacteria; Bacteroidetes; 
Flavobacteria; 
Flavobacteriales; 
Flavobacteriaceae; 
Elizabethkingia 

44 100 DQ365580 Erwinia persicina strain GS04 
16S ribosomal RNA gene, 
partial sequence 

Bacteria; 
Proteobacteria; 
Gammaproteobacteria; 
Enterobacteriales; 
Enterobacteriaceae; 
Erwinia 

39 98.9 FJ784637 Raoultella sp. Z2NS-91 16S 
ribosomal RNA gene, partial 
sequence 

Bacteria; 
Proteobacteria; 
Gammaproteobacteria; 
Enterobacteriales; 
Enterobacteriaceae; 
Raoultella 

2 100 AB238051 Uncultured bacterium gene for 
16S rRNA, partial sequence, 
clone: 16S-KM-B-42 

Bacteria; environmental 
samples 

2 98.2 GQ500800 Uncultured bacterium clone 
MACA-EFT33 16S ribosomal 
RNA gene, partial sequence 

Bacteria; environmental 
samples 

2 98.2 AB252934 Uncultured alpha 
proteobacterium gene for 16S 
rRNA, partial sequence, clone: 
225 

Bacteria; 
Proteobacteria; 
Alphaproteobacteria; 
environmental samples 

2 98.1 GQ348782 Uncultured alpha 
proteobacterium clone 
SHAB715 16S ribosomal RNA 
gene, partial sequence 

Bacteria; 
Proteobacteria; 
Alphaproteobacteria; 
environmental 

2 92.3 GQ988711 Uncultured bacterium clone 
FW_C02fw20 16S ribosomal 
RNA gene, partial sequence 

Bacteria; environmental 
samples 

2 92.3 GQ988710 Uncultured bacterium clone 
FW_H06fw32 16S ribosomal 
RNA gene, partial sequence 

Bacteria; environmental 
samples 

2 100 AJ536464 Melosira varians chloroplast 
16S rRNA gene, strain p107 

Eukaryota; 
stramenopiles; 
Bacillariophyta; 
Coscinodiscophyceae; 
Coscinodiscophycidae; 
Melosirales; 
Melosiraceae; Melosira 

2 99.3 EF580977 Uncultured bacterium clone 
CM132 16S ribosomal RNA 
gene, partial sequence 

Bacteria; environmental 
samples 



244 

 

2 99.6 EU850384 Uncultured Rhodocyclaceae 
bacterium clone F5 16S 
ribosomal RNA gene, partial 
sequence 

Bacteria; 
Proteobacteria; 
Betaproteobacteria; 
Rhodocyclales; 
Rhodocyclaceae; 
environmental samples 

1 99.6 GU902766 Uncultured bacterium clone 
PP254-b02 16S ribosomal RNA 
gene, partial sequence 

Bacteria; environmental 
samples 

1 100 FN691990 Pseudomonas sp. NR6 partial 
16S rRNA gene, strain NR6 

Bacteria; 
Proteobacteria; 
Gammaproteobacteria; 
Pseudomonadales; 
Pseudomonadaceae; 
Pseudomonas 

1 93.0 GQ339139 Uncultured bacterium clone IS-
32 16S ribosomal RNA gene, 
partial sequence 

Bacteria; environmental 
samples 

1 100 AY957928 Uncultured bacterium clone 
B3NR69D13 16S ribosomal RNA 
gene, partial sequence 

Bacteria; environmental 
samples 

1 100 EU580492 Uncultured bacterium clone 
D44 39 16S ribosomal RNA 
gene, partial sequence 

Bacteria; environmental 
samples 

1 96.0 AY989122 Uncultured soil bacterium 
clone L1A.8D09 16S ribosomal 
RNA gene, partial sequence 

Bacteria; environmental 
samples 

1 100 HM251894 Uncultured bacterium clone 
ncd22a07c1 16S ribosomal RNA 
gene, partial sequence 

Bacteria; environmental 
samples 

1 99.3 AY947930 Uncultured Bacteroidetes 
bacterium clone IRD18D04 16S 
ribosomal RNA gene, partial 
sequence 

Bacteria; Bacteroidetes; 
environmental samples 
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7.6 Application for RIDL® 

7.6.1 Introduction 

The RIDL® technique involves the release of male mosquitoes into the wild.  Successful 

field trials in Grand Cayman involved the release of 3.3 million male mosquitoes into the 

wild over a period of 6 months (www.newscientist.com, http://www.oxitec.com/wp-

content/uploads/2010/11/Oxitec-MRCU-press-release.pdf). Only male mosquitoes are 

released therefore, mosquitoes need to be sexed before release.   

Mosquitoes can be sexed at the pupal stage.  Mosquito pupae differ by the shape of the 

genital lobe or by the size (females tend to be larger than males).  The only methods used 

to sex the pupae are: the use of a light microscope and sexing by hand and secondly, 

using a grid which separates the pupae by size with a 97% success rate (Sharma et al., 

1972).  These methods work well but only to a certain scale of rearing.  For a RIDL® 

control program millions of pupae will have to be sexed and the above methods are far 

too labour intensive for this. Therefore new and faster methods of sorting males from 

females are required. 

A female L4-pupae marker was proposed as a method to sort males and females to allow 

an easy identification of females.  The L4-pupae larvae can then be sorted so that only 

male pupae emerge, potentially saving time on sorting larvae from pupae and then sexing 

the pupae.  

To create a female-specific L4 marker, the female-specific splicing region for the Actin-4 

gene was used.  The Aedes Actin-4 gene was shown to be expressed in only female Aedes 

aegypti (Muñoz et al., 2004; Fu et al., 2010).  The Actin-4 gene is expressed in the indirect 

flight muscles in females (Muñoz et al., 2004).  This female-specific protein is generated 

by sex-specific splicing; the intron found between exons 1 and 2 is completely spliced in 

females (Fu et al., 2010).  However, in males the intron is partially spliced out producing a 

second version that is 244 bp longer (Figure: 7.1) (Fu et al., 2010).  This 244 bp region 

contains stop codons and therefore, prevents the expression of the Actin-4 gene in males 

(Fu et al., 2010).  When the intron is completely removed there are no stop codons 

present and therefore the expression of the Actin-4 continues and the protein is 

produced (Fu et al., 2010).  DsRed was used as the marker with the promoter Hr5IE1 
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(immediate-early promoter) which is a ubiquitous promoter.  Therefore, the DsRed 

fluorescence should be expressed in females only.  Transformed mosquitoes were 

identified by expression of cyan fluorescence in the eyes and anal papillae. 

 

Figure: 7.1. Illustration of the splicing region for the Actin-4 gene.  In males the intron is 

only partially spliced out, whereas in females and in some males the intron is 

completely removed (Fu et al., 2010). 
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7.6.2 Methods: Production and analysis of transgenic mosquitoes – Female-specific 

marker for mass rearing 

A female specific marker (OX4272) was created (designed by Guoliang Fu), for sex 

separation during mass rearing of Aedes aegypti. This plasmid (OX4272) will allow all over 

body DsRed expression in females only at the L4-pupae stage (Figure: 7.2).   

a) 

 

b)

#4272
11926 bp

AmCyan1

DsRed2

bla (amp[R])

Hr5

sex-specific intron

AttP

nls

ATG start

3604dsRedF

ubiquitin

possible male exon

piggyBac 5'

piggyBac 3'

3xP3IE1 promoter

pUC ori

5' ITR

3' ITR

SV40 3'UTR

exon2

nls

 

Figure: 7.2. a) Summary of the DNA produced to create female-specific expression of 

DsRed in wild-type Asian Aedes aegypti.  DsRed expression under the control of the 

HR5IE1 promotor with spliced intron of AeAct4, the plasmid also contains an AmCyan 

fluorescent marker under the control of the 3XP3 promoter resulting in expression in 

the optic nerve b) the plasmid of OX4272. 
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7.6.2.1 Plasmid Construction 

The 3 PCR reactions of DsRed, HR5IE1 and 3xP3AmCyan involved the primers Table: 7.40.  

PCR amplification of DsRed (from OX3604, Figure: 7.3) and HR5IE1 (from OX3778, Figure: 

7.4) was performed in 50 µl of a mix containing 1X Herculase polymerase buffer, 2 mM 

MgCl2, 0.3 mM of each deoxynucleoside triphosphate, 0.33 µM of each primer, 1 µL of 

template DNA and 0.025 U of Herculase II Fusion DNA polymerase (Stratagene, Agilent 

Technologies).  The PCR mixtures were incubated for 70 seconds at 94 °C, followed by 2 

cycles of 30 seconds at 58 °C, 68 °C for 60 seconds, 2 cycles of 10 seconds at 94 °C, 30 

seconds at 55 °C, 68 °C for 60 seconds and 20 cycles of 10 seconds at 94 °C, 30 seconds at 

52 °C and 60 seconds at 68 °C with a final incubation of 6 minutes at 68°C.   The predicted 

sizes were 0.9 and 1.5 kb for DsRed and HR5IE1, respectively. 

PCR amplification of 3xP3AmCyan from OX3604 (Figure: 7.3) was performed in 50 µl of a 

mix containing 1X Taq DNA polymerase buffer, 2 mM MgCl2, 0.3 mM of each 

deoxynucleoside triphosphate, 0.33 µM of each primer, 1 µL of template DNA and 0.025 

U of Taq DNA polymerase (New England Biolabs).  The PCR mixtures were incubated for 

70 seconds at 94 °C, followed by 2 cycles of 30 seconds at 58 °C, 68 °C for 90 seconds, 2 

cycles of 10 seconds at 94 °C, 30 seconds at 55 °C, 68 °C for 90 seconds and 20 cycles of 

10 seconds at 94 °C, 30 seconds at 52 °C and 90 seconds at 68 °C with a final incubation of 

6 minutes at 68 °C.  The predicted size was 1.632kb. 

Table: 7.40. Primers used to amplify the sequences required in the female-specific 

marker. 

Sequence 
(Size of band) 

Forward Primer DNA sequence (5’-3’) Reverse Primer DNA sequence (5’-3’) 

HR5IE1 (1.5 
kb) 

AAATGCTTTACGAGTAGAATTCTACGCGT
AAAACAC 

CGCGTTTGTTTGATCGCACGGTTC 

DsRed (0.9 kb) GTGATGGGAGATCCCACCCCACCCAAGA ATGATCAGTTATCTAGACCCGGTGGATCTTA 

3xP3AmCyan 
(1.6 kb) 

TTGGTCTAGCGTGTTAATTAAGCGGTAA
GATACATTGATGAG 

TGAACATTGTCAGGCCGGCCCGCTCGCCCGGGG
AACTAGTTCAA 
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#3604 PB3xp3ACPB-HrIE-DR-teto14Act4pi-ubi-tTAV2-FRTlox-PB3xp3DRPB
18442 bp

DsRed2

newVP16

AmCyan1

bla (amp[R])

Hr5

GAGA x2

tetOx14

FRT

loxP

TTAA

Scraps Intron

Adh intron

sex-specific intron

AttP

nls

ATG start

ubiquitin

piggyBac 3'

PiggyBac5

piggyBac 5'

piggyBac 3'

TETR

possible male exon

Vp16

SV40 polyA

hsp70 minpro

AeActP

3xP3

3xP3

IE1 promoter

pUC ori

3' ITR

5' ITR

5' ITR

3' ITR

K10 3'UTR approx

SV40 3'UTR

SV40 3'UTR

exon2

exon1

DsRed2

nls

 

Figure: 7.3.  The plasmid of OX3604. 

#3778/9 PB-HrIE-DR-vp16teto14Act4pi-ubi-tTAV2
14519 bp

DsRed2

newVP16

bla (amp[R])

Hr5

GAGA x2

tetOx14

Scraps Intron

Adh intron

sex-specific intron

AttP

nls

ATG start

ubiquitin

TETR

possible male exon

Vp16

piggyBac 5'

piggyBac 3'

SV40 polyA

hsp70 minpro

AeActP

IE1 promoter

pUC ori

5' ITR

3' ITR

exon2

exon1

nls

 

Figure: 7.4.  The plasmid of OX3778. 
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The OX4272 PB(3xP3-AmCyan-HR5-IE1-Actin4intron-DsRed) construct was made by 

modifying OX3778 PB(HRIE-DR-vp16-TetO-Act4Pi-ubi-tTav2) (Figure: 7.4) by removing 

Ttav2.  The Ttav2 was removed using PmlI and XbaI (New England Biolabs), amplified 

DsRed was then inserted into the PmlI/XbaI site to create OX3778 PB(HRIE-DR-vp16-TetO-

AeActPi-ubi-DsRed).  HRIE-DR-VP16-TetO-AeActP was removed from OX3778 PB(HRIE-DR-

vp16-TetO-AeActPi-ubi-DsRed) using PacI and RsrII and HR5IE1 was inserted into the 

PacI/RsrII site to create OX3778 PB(HR5IE1-Act4i-ubi-DsRed).  Amplified 3xP3-AmCyan 

and OX3778 PB(HR5IE1-Act4i-ubi-DsRed) were then digested with PacI and NgomIV and 

3xP3-AmCyan was inserted into the PacI/NgomIV site of OX3778 PB(HR5IE1-Act4i-ubi-

DsRed) to create OX4272 PB(3xP3-AmCyan-HR5IE1-Act4intron-ubi-DsRed). 

All PCR and digest reactions were run on 0.8% agarose gel at 120V for 30 minutes and 

visualized using ethidium bromide under UV light.  Digestion bands and PCR reactions 

were purified using QIAquick Gel extraction kit (Qiagen, Crawley, West Sussex, UK) or 

using QIAquick PCR purification kit (Qiagen, Crawley, West Sussex, UK) eluted in 15 µl and 

30 µl of elution buffer, respectively.   

Products were ligated together using T4 DNA ligase (New England Biolabs) and cloned 

into XL-10-Gold Ultra-competent Cells (Stratagene, Agilent Technologies).  Bacterial 

colonies were PCR screened and individual colonies picked for screening were also used 

to inoculate LB broth with 100 µg ml-1 ampicillin and grown in a shaking incubator for 

several hours at 37 °C.  Six positive colonies were selected, 20 µl of the positive inoculate 

was used to inoculate 3 ml of LB with 100 µg ml-1 ampicillin.  The bacteria were grown 

overnight at 37 °C in a shaking incubator. 

DNA was extracted from 1 ml of the cultures by using the GeneJetTM Plasmid Miniprep kit 

(Fermentas, York, UK) and eluting in 50 µl of elution buffer.  Digestion of the plasmids was 

used to determine the correct insertion.  Positive digestions were sequenced using GATC 

Biotech (Germany). 

Bacteria expressing the final construct were used to inoculate 3 ml of LB with 100 µg ml-1 

of ampicillin.  The cultures were grown for 8 hours at 37 °C at 200 rpm, these cultures 

were then was used to inoculate 250 ml of LB with 100 µg ml-1 of ampicillin and grown 

overnight at 37 °C at 200 rpm.  DNA was extracted from 1 ml of the culture by using the 
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GeneJetTM Plasmid Miniprep kit and eluting in 50 µl of elution buffer and 1 ml was 

removed for a glycerol stock.  DNA was extracted from the remaining bacterial cells using 

the Endofree Plasmid Maxiprep kit (Qiagen, Crawley, West Sussex, UK) and eluting in 50 

µl of endotoxin-free water.  

Data was analysed using VectorNTi (Invitrogen). 

7.6.2.2 Microinjection of Asian WT Aedes aegypti mosquito eggs 

Asian WT Aedes aegypti mosquitoes were reared at 28 °C with 80% humidity.  The 

mosquitoes were blood fed 4 days before egg collection.  On the day of egg collection, 

damp filter papers (FisherBrand) were placed into cages and the cages placed in the dark.  

Eggs were allowed to mature and aligned for preparation for injections.  The eggs were 

then stuck to a cover slip using double sided tape, left to desiccate for 1-2 minutes and 

covered with halocarbon oil.  Eggs were injected (into the syncytial mass) with the 

injection solution (containing the 300 ng µl-1 of plasmid DNA, 700 ng µl-1 of helper mRNA, 

injection buffer [5 mM KCl and 0.1 mM NaH2PO4 pH 6.8] and water) using an Eppendorf 

microinjector.  Injected eggs were placed in water and transferred into a humidity box 

stored at 28 °C with 80% humidity to allow for recovery.  Eggs were hatched under a 

vacuum for 1 hour 3-5 days after injection with 2 droplets of Liquifry No 1 (Aquatics 

Warehouse).  Surviving mosquitoes were back-crossed with Asian WT, females were 

blood fed and the resulting eggs were hatched and screened.   

7.6.2.3 Genomic analysis of Aedes aegypti injected with OX4272 using PCR 

Only the transformation marker (3XP3AmCyan) was observed in the injected mosquitoes, 

therefore molecular analysis was conducted to determine why the transformation marker 

was visualized but not the sex-specific expression of DsRed. 

Two PCR reactions were performed each using 1 μl of genomic DNA (extracted using 

Nucleospin® Tissue kit) from male and female pupae and 24 μl of master mix.   

The master mix for the first PCR reaction consisted of 1X DreamTaq Buffer (Fermentas), 

7.5 pmole of the Act4intronF (5’-GAAGTTCTGATTCAGAACCATCTCTCATG-3’) forward and 

SeqRed2R (5’-CGATGAACTTCACCTTGTAGATGAAG-3’) reverse primer, 0.2 mM of each 

deoxynucleoside triphosphate and 1.5 U of DreamTaq ™ DNA polymerase (Fermentas).  

The second PCR reaction consisted of of 1X DreamTaq Buffer (Fermentas), 7.5 pmole of 
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the Act4intronF (5’-GAAGTTCTGATTCAGAACCATCTCTCATG-3’) primer and Red2midR (5’-

CCGTCCTCGAAGTTCATCACG-3’) reverse primer, 0.2 mM of each deoxynucleoside 

triphosphate and 1.5 U of DreamTaq ™ DNA polymerase (Fermentas). 

Both PCR mixtures were incubated for 60 seconds at 94 °C, followed by 3 cycles of 15 

seconds at 94 °C, 40 seconds at 58 °C, 72 °C for 60 seconds, 3 cycles of 15 seconds at 94 

°C, 40 seconds at 55 °C, 72 °C for 60 seconds and 35 cycles of 15 seconds at 94 °C, 45 

seconds at 52 °C and 60 seconds at 72 ° C with a final incubation of 6 minutes at 72 °C.   

7.6.2.4 Transcript analysis: Production of cDNA from RNA samples using SuperScript™ II 

RT (Invitrogen)  

RNA was extracted from OX3604 and OX4272 (injected 10/2/09 and injected 13/2/09) 

male and female pupae using TRI Reagent® according to the manufacturer’s instructions 

(Applied Biosystems).  Samples were kept at -80 °C.  The samples were treated with 

DNase to remove contaminating DNA from the samples.  After DNase treatment, the 

mixture consisting of 500 μg ml-1 of Oligo (dT), 5 μg of RNA and 12.5 pmole of dNTPs 

(made up in sterile distilled water) was heated to 65 °C for 5 minutes and chilled to 4 °C.  

First-Strand Buffer (1X), 0.01M DTT and RNaseOUT™ (40 U μl-1) were added and gently 

mixed and incubated at 25 °C for 2 minutes. Two hundred units of SuperScript™ II RT was 

added and mixed by pipetting.  The sample was then incubated at 25 °C for 10 minutes, 

followed by incubation at 42 °C for 50 minutes and a heat inactivation step of 15 minutes 

at 70 °C.  The cDNA was stored at -20 °C.   

7.6.2.5. Transcript analysis: Determination of DsRed expression using reverse 

transcriptase PCR and sequencing (assisted by Andrea Miles, Oxitec, Ltd). 

The RT-PCR reactions were performed using 1 μl of cDNA and 24 μl of Master mix.  The 

master mix consisted of 1X DreamTaq Buffer (Fermentas), 7.5 pmole of the ActRsR (5’-

GGTACAGTCGGACCGCCACCATGGAACCGAGGATAACGAGAAG-3’) forward and Red2midR 

(5’-CCGTCCTCGAAGTTCATCACG-3’) reverse primers, 0.2 mM of each deoxynucleoside 

triphosphate and 1.5 U of DreamTaq ™ DNA polymerase (Fermentas).  The PCR mixtures 

were incubated for 60 seconds at 94 °C, followed by 3 cycles of 15 seconds at 94 °C, 40 

seconds at 58 °C, 72 C° for 60 seconds, 3 cycles of 15 seconds at 94 °C, 40 seconds at 55 

°C, 72 C° for 60 seconds and 35 cycles of 15 seconds at 94 °C, 45 seconds at 52 °C and 60 
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seconds at 72 ° C with a final incubation of 6 minutes at 72 °C.  The predicted size was 1.1 

kb.   

Twenty micro litres of the PCR reactions were run on a 0.8% ethidium bromide agarose 

gel at 120V for 30 minutes.   

The correct bands were extracted using Qiagen QIAquick Gel extraction kit and eluted in 

10 µl of Buffer EB (Qiagen, Crawley, West Sussex, UK).  Pjet 1.2/Blunt cloning vector 

(Fermentas) and the PCR product were ligated together using T4 DNA ligase (New England 

Biolabs) at RT for 5 minutes.  The ligated product was then cloned into XL-10-Gold Ultra-

competent Cells (Stratagene, Agilent Technologies).   Bacterial colonies were PCR 

screened using the PjetFP2 (ATCAACTGCTTTAACACTTGTGC) forward primer and PjetRP2 

(AAAGAAGAACATCGATTTTCCATG) reverse primer by randomly removing individual 

colonies and dipping into the PCR mixture consisting of: 1X DreamTaq Buffer, 5 pmole of 

forward and reverse primers, 0.2 mM of each deoxynucleoside triphosphate and 2.5 U of 

DreamTaq ™ DNA polymerase (Fermentas).  The PCR mixtures were incubated for 60 

seconds at 94 °C, followed by 2 cycles of 15 seconds at 94 °C, 45 seconds at 60 °C, 68 °C 

for 90 seconds, 2 cycles of 15 seconds at 94 °C, 45 seconds at 57 °C, 68 °C for 90 seconds 

and 24 cycles of 15 seconds at 94 °C, 45 seconds at 54 °C and 90 seconds at 68 ° C with a 

final incubation of 6 minutes at 68 °C.  The predicted size was 1.3 kb.   

Five micro litres of the PCR reactions were run on a 0.8% ethidium bromide agarose gel at 

120V for 20 minutes. 

Individual colonies picked for screening were also used to inoculate LB broth as described 

in section 7.6.2.1. DNA was extracted from 1 ml of the cultures by using the GeneJetTM 

Plasmid Miniprep kit (Fermentas, York, UK) and eluting in 50 µl of elution buffer. 

Positive digestions were sequenced using the PjetFP2 and PjetRP2 primers using GATC 

Biotech (Germany). 
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7.6.3 Results: Production of a Female-specific Marker in Asian Aedes aegypti 

7.6.3.1 Injection of OX4272  

Two independent transgenic lines were established using the construct OX4272 

(Appendix: 7.6.2, Figure: 7.2).  Approximately, 6000 eggs were injected and ~800 larvae 

hatched.  Approximately 200 male and 500 female mosquitoes survived to adulthood to 

be crossed with wild-type Asian Aedes aegypti.  The progeny (G1) were screened for the 

transformation marker with approximately 300 larvae expressing the 3XP3AmCyan 

marker.  OX4272-1 showed eye and anal papillae expression of Cyan (Figure: 7.5) and 

OX4272-2 showed eye expression only. Expression was monitored daily through to pupae; 

but no female-specific marker expression was seen (Data not shown).  
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a)                                                                     b) 

           

c)                                                                           d)                        

           

   e)                                               f)                                           g) 

       

Figure: 7.5. Expression of 3XP3AmCyan in OX4272-1 a) female pupae under white light 

b) female pupae using the filters for cyan fluorescence one pupa (left) showing the 

expression of 3XP3AmCyan c) male pupae under white light d) male pupae, one pupa 

(left) showing the expression of 3XP3AmCyan e) Larvae under normal view f) Larvae, 

one larva (left) showing the expression of 3XP3AmCyan g) Showing the expression of 

AmCyan in the optic nerve.    *Courtesy of Amandine Collado, Oxitec Ltd* 
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7.6.3.2 Reverse transcriptase PCR analysis of transgenic OX4272 

Molecular analysis of this line was conducted by extracting RNA and genomic DNA of 

pupae explained in Section: 7.6.2.3, 7.6.2.4 and 7.6.2.5.  The genomic PCR amplifying the 

Actin4 intron and DsRed showed that the transgenic line was a real transgenic as the 

same sized band (700 bp) was observed in the original DNA (4272 Maxiprep) used for the 

injections (Figure: 7.6).  However, no DNA was amplified in OX3604 which carried the 

same gene (Actin4 intron-DsRed), the amplified product was also greater than expected 

(700 bp). 

Reverse trancriptase (RT) PCR was also conducted to confirm that Line 1 and 2 did not 

express DsRed.  The sequence containing the splicing region (Actin4 intron) and DsRed 

was amplified.  Two bands were observed when the RT-PCR was conducted, the top band 

(1 kb) was dominant and the bottom band was very faint (Figure: 7.7).  Both these bands 

were cloned and sequenced and confirmed that the top band was the male-specific 

spliced transcript of DsRed and the second faint band was the female-specific transcript.  

Therefore, the DsRed expression was not observed in females as both males and females 

pre-dominantly expressed the male-specific transcript which meant that the DsRed gene 

was not expressed in male and female mosquitoes. 
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Figure:  7.6. Actin4 intron and DsRed detection by PCR using the primers Act4intron-F and 

SeqRed2R (PCR A) and Act4intron-F and Red2MidR (PCR B).  Separation conditions 0.85% 

agarose gel, 1 X TAE using a separation voltage of 120.  Size detection using 1kb DNA ladder 

(SMART).   

 

 

 

Figure: 7.7. DsRed expression detection using agarose gel electrophoresis.  Separation 

conditions 0.85% agarose gel, 1 X TAE using a separation voltage of 120.  Size detection using 

1kb DNA ladder (SMART). Two bands were detected in 4272 (L1) Female after RT-PCR using the 

primers ActRsR and Red2MidR. Both fragments were gel extracted, cloned (pJET) and 

sequenced.  
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7.6.4 Discussion 

The final aim of this thesis was to produce a successful female marker to allow for sex 

sorting during L4-pupae stage, however this proved unsuccessful at the time with 

transgenics only expressing the transformation marker. Unfortunately, the use of a 

female specific splicing region preceding the DsRed marker did not create female-specific 

expression and in fact, the partial splicing which occurs in male mosquitoes dominated. 

This result could be due to that fact that the insertion was incorrect or in the incorrect 

orientation, therefore an increase in the number of injections may increase the 

probability of obtaining a transgenic line which expresses DsRed in females.   

An alternative sex-specific marker was also constructed and tested using the splicing 

region for the Doublesex (dsx) gene, a double-switch gene at the bottom of the sex-

determination cascade that determines the differentiation of sexually dimorphic traits 

(Scali et al., 2005).  These transcripts are sex-specifically spliced in male and females (Scali 

et al., 2005).  This concept was used to create sex specific transcripts with DsRed 

expression under the Hr5IE1 promoter (Immediate early promoter 1) in male Aedes 

aegypti.  While 2000 eggs were injected, no transgenic mosquitoes were produced either 

and no transformation was observed.   

To obtain a suitable marker which will work successfully, alternative methods will need to 

be tested:  an example is the use of the alcohol dehydrogenase gene/aldehyde 

dehydrogenase (Komitopoulou et al., 2004; Robinson and Van Heemart 1981; Robinson et 

al., 1986) to increase the tolerance of one sex to alcohol, the addition of alcohol would 

then eliminate one sex and leave the required sex.    

 This may be more successful if an alternative spicing region is used rather than Doublesex 

(dsx).  This method could prove to be more advantageous when sex sorting if the female 

larvae die and do not require observations using fluorescence to determine the sex of the 

mosquito unlike the female-specific DsRed marker and a testis specific marker associated 

with the β-tubulin promoter (Smith et al., 2007).  However, ethanol exposure may be 

costly and may impact the fitness of the male insects.   
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Until the successful transformation of Aedes aegypti to create a sex-specific marker, the 

only method available is to use a pupal sorter to separate sexes by size (females larger 

than males) (Sharma et al., 1972).    

7.6.5 Conclusion 

The unsuccessful generation of a female-specific marker in Aedes aegypti indicate that 

further attempts or alternative methods are required for sex-separation during mass 

rearing.  
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Abbreviations 

AMPs – Antimicrobial peptides 

ANCOVA - Analysis of covariance 

ANOVA - Analysis of variance 

dsx -Doublesex 

GO- Gene Ontology 

IMD – Immune deficiency 

IL – Interleukin 

KW – Kruskall Wallis test 

MAPK – Mitogen activated protein kinase 

MWU – Mann Whitney U test 

PCR – polymerase chain reaction 

PGRP – Peptidoglycan recognition protein 

PI3K – Phosphoinositide 3 kinase 

qRT-PCR – Quantitative reverse transcriptase polymerase chain reaction 

RT-PCR – Reverse transcriptase PCR 

TGFβ – Tumour growth factor β 

TNFα – Tumour necrosis factor α 

WT – Wild-type 
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