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Abstract

Many electronic devices are beginning to include Voice User Interfaces (VUIs)
as an alternative to conventional interfaces. VUIs are especially useful for users
with restricted upper limb mobility, because they cannot use keyboards and mice.
These users, however, often suffer from speech disorders (e.g. dysarthria), mak-
ing Automatic Speech Recognition (ASR) challenging, thus degrading the perfor-
mance of the VUI. Partially Observable Markov Decision Process (POMDP) based
Dialogue Management (DM) has been shown to improve the interaction perfor-
mance in challenging ASR environments, but most of the research in this area has
focused on Spoken Dialogue Systems (SDSs) developed to provide information,
where the users interact with the system only a few times. In contrast, most VUIs
are likely to be used by a single speaker over a long period of time, but very little
research has been carried out on adaptation of DM models to specific speakers.

This thesis explores methods to adapt DM models (in particular dialogue state
tracking models and policy models) to a specific user during a longitudinal in-
teraction. The main differences between personalised VUIs and typical SDSs are
identified and studied. Then, state-of-the-art DM models are modified to be used
in scenarios which are unique to long-term personalised VUIs, such as person-
alised models initialised with data from different speakers or scenarios where
the dialogue environment (e.g. the ASR) changes over time. In addition, several
speaker and environment related features are shown to be useful to improve the
interaction performance. This study is done in the context of homeService, a VUI
developed to help users with dysarthria to control their home devices. The study
shows that personalisation of the POMDP-DM framework can greatly improve the
performance of these interfaces.



Glossary

S Set of dialogue states.

A Set of machine actions.

Q) Set of observations.

s A dialogue state from the set S.

a A machine action from the set A.

w An observation from the set ().

u A user action.

b Belief state, distribution over the set of dialogue states S.
R Reward function, R(b,a) — R.

r Immediate reward given by the reward function, r; = R(b;, a;).
v Discount factor, 0 < v < 1.

¢ Accumulated reward, sum of immediate rewards from timestep i to the end of
the dialogue, discounted by 7, ¢; = Y./_; 1 ~'r;.

Q Q-function, expected c¢; when starting from belief state b;, taking action a4; and

then following policy 7r, Q" (b;, a;) = E[c;]. 7 is usually omitted for clarity.
7t Dialogue policy, t(b) — A.
X Set of observed belief-action points.
Z Set of observed temporal difference points.
U Set of inducing temporal difference points.

x Belief-action point, (b, a).

iii



iv Glossary

z Temporal difference point, two consecutive belief-action points (b;, a;, bi+1, ai+1, vi)-

k Kernel function in the belief action space, computes covariance between two
belief-action points, k; ; = k(x;, x]-).

k% Action kernel function, computes covariance between two action points, k7 i =
K* (ai ,a ]) .

k¥ Belief kernel function, computes covariance between two belief points, k? i =
k (b, bj).

ktd Temporal difference kernel function, computes covariance between two tem-

poral difference points, kff’lj = k' (z;, z;).

K Gram matrix, K’I‘x] matrix of covariances between the set of points I and | com-
puted with the kernel kx.

H Band-diagonal matrix defining the temporal difference relationship between

consecutive belief-action points.
Q Mean of the Q-function when modelled as a Gaussian process.
Q Variance of the Q-function when modelled as a Gaussian process.
Q™ Q-function modelled with a Monte-Carlo approach.
Q" Q-function modelled with a temporal difference approach.

Q¢ Q-function modelled with a temporal difference approach and the determin-

istic training conditional approximation.
s Vector of environment features.

k* Environment kernel function, computes covariance between two environment
s _1bh({e. <.
vectors, kl-,]- = k’(si,s)).

o Dialogue features. Usually composed by an N-best list output plus the last

system action.
o; Environment features used as input to the dialogue state tracker.
o! Value specific dialogue features.

st Value specific environment features.



Acronyms

ADA Adaptation data amount.
APW Accuracy per word.

ASR Automatic Speech Recognition.

DM Dialogue Management.
DST Dialogue State Tracking.
DSTC Dialogue State Tracking Challenge.

DTC Deterministic Training Conditional.
GP Gaussian Process.

hS homeService.

IV [-Vector.

MC Monte-Carlo.

MDP Markov Decision Process.

PO Policy Optimization.

POMDP Partially Observable Markov Decision Process.

RL Reinforcement Learning.

RNN Recurrent Neural Network.

SDS Spoken Dialogue System.

SLU Spoken Language Understanding.
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Acronyms

SU Simulated User.

TD Temporal Difference.

TL Transfer Learning.

VUI Voice User Interface.
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Chapter 1
Introduction

Due to the emergence of “smart” personal devices during the last decade (smart-
phones, smart-TVs, car-control, etc.) the need for functional voice interfaces to
control these devices has become a priority in speech technology research. Pre-
dominantly, these devices will have a single user (or very few) who will interact
many times over a long period of time, in some sense building a “relationship”
with the user. Due to the remarkable advances in Automatic Speech Recognition
(ASR) and speech synthesis, many “personal assistant” applications (Siri, Google
Now, Cortana, Alexa, etc.) have been fielded, but most users still rely on the
more conventional keyboard based interfaces (Pieraccini et al., 2009). This limited
take-up of speech interfaces might be due to the poor performance of the device’s
Spoken Language Understanding (SLU) module, and to the Dialogue Manage-
ment (DM), the module in charge of controlling the interaction (i.e. deciding what
action to take after a user command, etc.). These modules (especially the DM), still
rely mostly on rule-based methods which make them inflexible, costly to main-
tain and difficult to adapt to novel situations. Statistical data-driven SLU and DM
have shown promising behaviour in constrained domains but there are scalability
problems in implementing them in multi-domain systems (Tur and De Mori, 2011,
Young et al., 2013).

Due to the influence of commercial interests, research in speech technologies is
mainly focused on commercial applications like the ones mentioned above. These
interfaces can make the control of smart devices easier for their users, but will not
affect a big change in the user’s lives. However, Voice User Interfaces (VUIs) can
make a life-changing difference to people with disabilities caused by conditions
such as motor neuron disease, cerebral palsy or a stroke. Such people are unable
to use conventional keyboard-screen-mouse interfaces. Functional voice-enabled
environmental control interfaces would allow this group of people to perform ev-
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eryday actions such as controlling home devices (e.g. TV, lights) or browsing the
internet in an easy way. The problem of using state-of-the-art speech technolo-
gies in this area is that physical disabilities and speech disorders often co-occur,
because they have a common underlying cause. For example, people with motor
neuron diseases will often have a speech impairment known as dysarthria, which
will make conventional ASR unusable for them, and subsequently all the modules

of the voice interface which depend on the ASR.

Users with speech disorders have very special speech characteristics which
vary with the severity of the condition. This makes user adaptation a key aspect
when developing voice interfaces for this group of users. Speaker adaptation
has been shown to greatly improve ASR performance both for conventional and
dysarthic users (Christensen et al., 2012a), but very little effort has been devoted
to adapt DM models to a specific user. This is mainly because most DM-related
research has been studied in the context of information gathering Spoken Dialogue
Systems (SDSs) (Raux et al., 2005, Young et al., 2010), which users call to ask for
information about a specific topic (e.g. hotels in a city). In this kind of system,
many different users interact with the same SDS and most of them will do it once
or a few times, so adaptation is not feasible. In contrast to this, both personal
assistants and VUIs for people with disabilities can greatly benefit from adapting

their dialogue models to their individual users.

1.1 Motivations

Reinforcement Learning (RL), in the form of the Partially Observable Markov De-
cision Process (POMDP) framework, has been shown to be a very promising ap-
proach to spoken DM (Young et al., 2013), joining the power for long term plan-
ning of Markov Decision Processes (MDPs) with an increased robustness against
ASR errors. However, very little work has been done up to this date on the adap-
tation of POMDP dialogue models to specific users, even though it is a topic with
many potential applications. The main motivation of this thesis is to explore the
possibility of adapting the dialogue manager of a VUI that interacts with a sin-
gle user over a long period of time, in the context of interfaces designed to assist
disabled people with dysarthria. Adaptation for the models in charge of the two
main tasks of a dialogue manager, Dialogue State Tracking (DST) and Policy Opti-
mization (PO), is studied. In addition, the thesis also aims to identify and address
several issues that arise from applying POMDP-based DM to long-term personal
interaction with assistive VUIs.
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1.2 Research outline

When the POMDP framework is applied to information gathering SDSs, several
assumptions are made. For example, it is assumed that all the dialogue inter-
action data will come from one distribution, even if the data is collected from
several speakers. It is also assumed that the environment dynamics will be stable
and will not change over time. If the POMDP framework is applied to assistive
VUIs for dysarthric speakers, where a single speaker will interact with the system
over a long period of time, these assumptions do not hold. For example, data
coming from two different dysarthric speakers will follow different distributions.
Moreover, if the ASR is adapted online with user specific data collected through
interaction, the environment dynamics will change. Therefore, existing POMDP
models need to be modified to be applied in assistive VUIs.

This thesis researches the development of methods based on existing POMDP
models applicable to assistive VUIs for dysarthric speakers. It also develops meth-
ods to personalise the models to the speakers and to adapt them to the changes
in the environment. The research is done in the context of the homeService (hS)
project, a project carried out at the university of Sheffield, which aims to take state-
of-the-art speech technologies to the users homes, with most of the users suffering
from severe disabilities and dysarthria. The main questions this thesis aims to

answer are the following:

e Can the POMDP dialogue management framework improve the interaction
performance of a VUI developed for dysarthric speakers? If so, what modi-

fications are necessary?

e Can the adaptation of DM models to specific speakers or environments im-

prove the dialogue interaction performance?

e Can the reinforcement learning DM framework be applied in an environ-
ment in which the ASR performance changes over a long period of time?

e Can POMDP models developed for a single dysarthric speaker be trained
with data coming from different dysarthric speakers?

e Can acoustic and environment related information be used to improve the
performance of personalised VUIs? Can this information improve the gen-
eralisation to unseen situations?
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1.3 Contributions

The first and maybe the most important contribution of this thesis is that this is
the first work to address the issue of adaptation of POMDP-based DM systems
to a specific user who interacts with the system over a long period of time. The
trends in speech technology suggest that personal spoken interfaces (in the form of
command based VUIs or natural language based personal assistants) will be a very
important research topic in future years. This thesis analyses the improvement
that can be obtained by using POMDP-based DM in these interfaces, addresses
the issues that might arise because of the differences with typical SDSs used in
DM research and proposes modifications to existing models to make them usable
in long-term personalised environments. In addition, this thesis makes several

more specific contributions to the DM field:

e Analysis of adaptive ASR for dysarthric users and dysarthric user simula-
tion: Interacting with users (especially disabled ones) to get data for training
or evaluation is extremely expensive (Christensen et al., 2015). Simulation of
the user and the ASR environment can reduce the necessary effort to de-
velop and evaluate the systems (Schatzmann et al., 2006). However, the ASR
behaviour with dysarthric speakers can be difficult to simulate, especially if
the acoustic models are adapted with different amounts of speaker specific
data. In this thesis, a simulation environment for hS systems is developed,
composed of a simulation model for the user behaviour and a simulation
model for the ASR. To simulate the ASR, the recognition accuracy of dif-
ferent dysarthric speakers when different amounts of adaptation data are
available are analysed and different speaker-ASR simulation environments

are created.

o Integration of POMDPs in command based VUIs: The POMDP DM frame-
work has been successfully applied to information retrieval SDSs, but it is
not clear if it can benefit simpler systems such as command based VUIs.
However, the robustness against high ASR errors provided by the POMDP
framework, as well as its adaptability, could be of great help when interact-
ing with dysarthric speakers. In this thesis a tractable POMDP framework
for command based environmental control interfaces is developed, showing
that it increases the interaction performance in comparison to the typically

used rule-based dialogue managers.

e Development of the temporal difference kernel framework: State-of-the-

art, model-free, reinforcement learning algorithms such as Gaussian Process
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(GP)-based RL need to use approximation methods to maintain the system
tractability. However, the approximation methods proposed so far do not
allow arbitrary data selection, a necessary requirement for some hS scenar-
ios. To solve this, the GP-RL equations are modified by defining a kernel
function in the temporal difference space. The resulting equations not only
permit a wide range of approximation methods that allow data selection
to be applied, but also simplify the previous equations, making it easier to
understand the model.

e Policy optimization in varying environments: In systems such as hS, the
ASR performance will vary as more acoustic data is collected and the acous-
tic models are adapted. This will lead to a mismatch between training and
evaluation conditions that has to be dealt with. A method to improve the
policy optimization in this scenario is developed, based on the definition of

similarities between different environments.

o Transfer learning between different speakers: Another scenario that is very
likely to be found is the setting up of a system for a new user while only data
from other speakers is available for training. It is shown that initialising a
system with data from different speakers, while defining a similarity metric
between speakers, greatly boosts the dialogue policy performance in a newly
set-up system. In addition, the proposed method permits online adaptation
of the policy model as dialogue data becomes available through interaction

with the user.

e Feature augmented dialogue state tracking: Historically, the features used
as input for DM had to be as low dimensional and uncorrelated as possible
to maintain the tractability of the generative model based DST. Newly pro-
posed discriminative models for DST open up the possibility to use higher
dimensional, possibly correlated, input features. Features extracted from the
acoustics and the ASR are proposed, showing to improve DST generalisation
to unseen speakers and unseen dialogue states.

Although these contributions are evaluated in the context of assistive VUIs for
dysarthric speakers, they are potentially applicable to any kind of personalised
dialogue management application, such as personal assistants or in-car control

systems.
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1.4 Thesis overview

Chapter 2 gives an overview of the state-of-the-art techniques used to model the
components required to build an assistive VUI for dysarthric speakers. Firstly,
existing approaches to voice-enabled assistive control interfaces are briefly intro-
duced. Secondly, automatic speech recognition and understanding is introduced
with a focus on acoustic model adaptation to disordered speech. Then, the state of
the art of the main topic of the thesis is introduced: data-driven statistical dialogue
management, with special emphasis on POMDP-based dialogue management, di-

alogue state tracking and policy optimization algorithms.

Chapter 3 introduces the environment in which the proposed techniques will
be evaluated, the homeService environment, and identifies its differences to typical
SDS environments. The chapter continues by proposing a framework for evalu-
ating POMDP-based dialogue management, developing a simulated hS environ-
ment and proposing a tractable POMDP architecture for this environment. The
chapter ends by evaluating POMDP-based DM in this environment and identi-
fying some necessary modifications needed to operate in long-term, single user,

varying environment VUIs.

Chapter 4 begins by analysing one of the main problems of applying state-of-
the-art model-free POMDP models to long-term personalised VUIs: the impossi-
bility of arbitrary selection and discarding of data in tractable methods. Then, two
methods that deal with this problem are proposed and analysed, showing that
the temporal difference kernel is the most promising of them. This method is then
further evaluated in two scenarios in which data selection is necessary: varying
ASR environments and transfer learning between speakers. A method to weight
the data coming from different environments by defining environment features is

also proposed.

In chapter 5, the environment features which showed to be a promising ap-
proach in the previous chapter are tested as input features for discriminative DSTs.
It is shown how discriminative trackers can get more benefit from these features,
improving the dialogue state tracking generalisation to unseen speakers. A SDS
architecture less restricted than the typical pipeline architecture is also proposed.
A second set of experiments explores how features giving information about the
ASR behaviour, extracted from the phonetic structure of the commands, can im-
prove the generalisation to unseen dialogue states.

Chapter 6 gives the main conclusions and lists the achievements of the thesis.
In the last part of the chapter, the fast changes that have occurred in research in

dialogue management during the last decade are discussed, and an insight of the
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future directions it might take (or is already taking) is given.

1.5 Publications

Most of the work presented in this thesis has been published in international peer-
reviewed conferences. In total, four papers were published as main author and
two more had contributions as second author. In addition, two of the publications
as main author were nominated for best paper awards. The list of publications

obtained while this doctoral work was done is:

e H. Christensen, I. Casanueva, S. Cunningham, P. Green, and T. Hain, Home-
Service: Voice-enabled assistive technology in the home using cloud-based auto-
matic speech recognition, in Proceedings of the 4th Workshop on Speech and
Language Processing for Assistive Technologies (SLPAT), 2013. (Christensen
et al., 2013b)

e I. Casanueva, H. Christensen, T. Hain, and P. Green, Adaptive speech recog-
nition and dialogue management for users with speech disorders, in Proceedings of
INTERSPEECH, 2014. (Nominated for best student paper award) (Casanueva
et al., 2014)

e H. Christensen, I. Casanueva, S. Cunningham, P. Green, and T. Hain, Auto-
matic selection of speakers for improved acoustic modelling: recognition of disordered
speech with sparse data, in 2014 IEEE Spoken Language Technology Workshop
(SLT), 2014. (Christensen et al., 2014)

e I. Casanueva, T. Hain, H. Christensen, Ricard Marxer and P. Green, Know!l-
edge transfer between speakers for personalised dialogue management, in Proceed-
ings of the 16th Annual Meeting of the Special Interest Group on Discourse
and Dialogue (SIGDIAL), 2015. (Nominated for best paper award) (Casanueva
et al., 2015)

e I. Casanueva, T. Hain and P. Green, Improving generalisation to new speak-
ers in spoken dialogue state tracking, in Proceedings of INTERSPEECH, 2016.
(Casanueva et al., 2016a)

e I. Casanueva, T. Hain, M. Nicolao and P. Green, Using phone features to im-
prove dialogue state tracking generalisation to unseen states, in Proceedings of
the 17th Annual Meeting of the Special Interest Group on Discourse and
Dialogue (SIGDIAL), 2016. (Casanueva et al., 2016b)
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A high percentage of the work described in the following chapters is based on
the work presented in these papers. The sections of chapters 2 and 3 describing the
hS project are partially based on the work published in Christensen et al. (2013b)
and Christensen et al. (2014). Most of the sections in chapter 3 are based on the
work published in Casanueva et al. (2014). Several sections presented in chapter 4
are based on the work published in Casanueva et al. (2015). The models presented
in chapter 5 have been published in Casanueva et al. (2016a) and Casanueva et al.
(2016b).



Chapter 2

Data driven methods for assistive
spoken interfaces

Due to the increased ageing of the population (the aged population is currently at
its highest level in human history, and is expected to continue increasing (UN re-
port, 2002)), the demand for technologies to improve the life quality amongst the
elderly and the physically impaired is increasing. Electronic assistive technology
can improve the ability to live independently, especially for users with restricted
upper limb mobility. For this group of users, speech can be a very attractive
input to control these assistive interfaces (Clark and Roemer, 1977, Cohen and
Graupe, 1980, Hawley, 2002, Hawley et al., 2007a,b). The interest in spoken inter-
faces to interact with electronic devices (often called Voice User Interfaces (VUIs)
(Pieraccini and Huerta, 2005) or Spoken Dialogue Systems (SDSs) (Jokinen and
McTear, 2009)), has increased during the last decade, leading to improvements in
the performance of these interfaces. Applying the advances obtained in this field
to spoken electronic assistive technology could greatly improve its performance.

Spoken interfaces in the form of VUIs or SDSs interact with the user using
voice commands or natural language in a turn taking fashion. They are composed
of several modules, shown in figure 2.1, which can be clustered into 3 groups:

o The first group, sometimes called Spoken Understanding System (SUS), has
two main components: The Automatic Speech Recognition (ASR) and the
Spoken Language Understanding (SLU) module. The objective of the SUS is
to process the input (in the form of speech) and convert it into a high level
representation that the machine can “understand”. It could be seen as a front
end or feature extractor, which converts a high dimensional input (speech)

into a lower dimensional one (concepts)

e The second module, known as dialogue manager, is in charge of the inter-

9
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Input processing

Input (Speech) High level
representation

of the input

Decision making

High level
representation

Output (Audio, of the output

video, actions...)
Output processing

Figure 2.1: Diagram showing the main components of an assistive VUI. The arrows
represent the data flow and the rectangles the modules that process the data.

action decisions. It maintains a representation of the dialogue history (all
the information seen so far in the dialogue) called dialogue state. In each di-
alogue turn, this module takes as input the output of the SUS, updates its
dialogue state, and given the new dialogue state decides the next action to
take. This action might require the extraction of information from a database
(e.g. checking the hotels in a certain area). The action taken is outputted in
a high level representation similar to the input of the dialogue manager.

e The third module converts the high level representation of the Dialogue
Management (DM) action into the output signal. This signal is often in the
form of synthetic speech (an answer), but it can also be a physical action
such as showing a document on the screen, turning the lights on, or any

action that a machine can perform.

VUIs and SDSs are often seen as different concepts in the literature. SDSs are
seen as task oriented dialogue systems in where all the interaction is based on
speech and the system can output some piece of information relevant for the user
(e.g. bus schedule information (Raux et al., 2005) or tourist information (Young
et al., 2010)) in the form of synthetic speech. VUIs, on the other hand, are seen
as speech interfaces for substituting the typical keyboard based interfaces of the



Chapter 2. Data driven methods for assistive spoken interfaces 11

electronic devices (Cohen et al., 2004). A VUI can be seen as an instance of a
SDS, where the natural language used for the interaction is easier (even just single
commands) and the answers of the system often come as actions performed by the
controlled devices. In any case, the research done in SDSs can be applied to VUIs
and vice-versa.

However, when applying voice controlled assistive technologies to users with
disabilities, an important problem often arises: disabilities leading to restricted
upper-limb mobility often co-occur with speech disorders such as dysarthria (Duffy,
2013), degrading the performance of the ASR (Borrie et al., 2012, Mengistu and
Rudzicz, 2011). Personalisation of the ASR to the user has been proven to im-
prove the accuracy (Christensen et al., 2012a, Sharma and Hasegawa-Johnson,
2010, 2013). However, to further improve the performance of the interfaces for
these users, the personalisation of the different modules of the VUI could also be
necessary, but this has not been widely studied so far.

In this chapter, the state of the art of the modules necessary to build a data-
driven assistive VUI is reviewed. The first section discusses the current approaches
in voice controlled assistive interfaces. This is followed by a brief review of speech
recognition and understanding along with its adaptation to disordered speech in
sections 2.2 and 2.3. Section 2.4 focuses on reviewing the main topic of this thesis:
dialogue management. Then, the two main components of data-driven dialogue
management, dialogue state tracking and policy optimisation, are reviewed in
sections 2.5 and 2.6 respectively. Finally, section 2.7 reviews the main dialogue
evaluation and user simulation methods.

2.1 Speech technologies for assisted living

Typical interfaces for electronic devices (such as remote controls, keyboards or
mouse devices) can be difficult to use for people with physical disabilities. In
addition, each device uses a different interface, which might be counter intuitive
and require time to learn. Environmental control interfaces allow the use of a
single, easy to use, interface to control several aspects of the home environment
(e.g. TV, radio or lights). Typically, these systems are operated using a switch-
scanning interface which accommodates the limited motor control abilities of the
users, but for severely disabled users, these interfaces involve a lot of effort and
are very time consuming. Speech-enabled interfaces can provide an attractive
alternative way of accessing digital devices, as they would reduce the effort and
time needed (Clark and Roemer, 1977, Cohen and Graupe, 1980, Hawley, 2002).

The success of such interfaces is highly dependent on the recognition accuracy
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that can be achieved at the time of deployment; if the performance is too poor, the
user is likely to lose interest and will not be motivated to use the system.

However, due to their physical disability, a significant proportion of people
requiring electronic assistive technology suffer from the speech disorder known
as dysarthria (Duffy, 2013). Dysarthric speakers suffer a loss of control of the
speech articulators, affecting the quality of their speech production. As a result
of this, inexperienced listeners can find speech from dysarthric speakers difficult
to understand (Borrie et al., 2012, Mengistu and Rudzicz, 2011). In addition, ASR
systems are also affected, making automatic speech recognition infeasible for the
severe cases of dysarthria (Rosen and Yampolsky, 2000, Rudzicz, 2011).

During the last decade, several projects have tried to improve the ASR accuracy
with dysarthric speakers to be used as input for environmental control interfaces
(Christensen et al., 2012b, Hawley et al., 2007a,b). However, most of these systems
were developed in relatively small scale studies with the main focus being on the
observed ASR performance. Porting such systems and set-ups to more “realistic”
scenarios presents a greater challenge, especially because of the larger number
of users involved and the need for a large degree of automation, whilst still ac-
commodating the needs of the individual users for personalisation. Recently, the
homeService (hS) project (Christensen et al., 2013b) developed speech-driven elec-
tronic control interfaces and evaluated them in more realistic scenarios: the users’

homes.

21.1 The homeService project

homeService (hS) is a project developed in the University of Sheffield!, where
dysarthric users with restricted upper limb mobility are provided with a speech-
driven environmental control interface or VUI to give spoken access to other dig-
ital applications. Several dysarthric users have been recruited for a longitudinal
study (Christensen et al., 2015) in which each user is engaged with homeService
for at least 6 months.

In hS, researchers work with the users in a collaborative way; the users effec-
tively become part of the research team. This had been done in previous similar
projects (Christensen et al., 2012b, Hawley et al., 2007a) which included user re-
quirement studies (Schuler and Namioka, 1993). In this process, the users inform
the design and specifications for their personal hS system, such as the devices they
want to control or which commands they want to use to control the devices. In

'homeService was part of the UK EPSRC Project Natural Speech Technology, a col-
laboration between the Universities of Edinburgh, Cambridge and Sheffield. http://www.
natural-speech-technology.org/.
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Figure 2.2: Artistic representation of a homeService system.

addition, the researchers work with the users to close what it has been referred
to as the “virtuous circle” (Christensen et al., 2013b). An initial “operating point”
is established for each user, a task which is sufficiently simple so that good per-
formance from the ASR can be expected and yet sufficiently useful that the user’s
interest is maintained. Practice through interaction with the system improves the
user’s pronunciation consistency and, more importantly, provides more data for
ASR training or adaptation. The data collected can be then used to improve the
ASR acoustic models. When the performance of the system has improved suffi-

ciently, the vocabulary and range of devices homeService controls can be widened.

Another improvement of hS with respect to previous assistive spoken inter-
faces, is that the ASR runs remotely “in-the-cloud” and is connected to the home-
Service users” home by a dedicated broadband link (see figure 2.2). This approach
enables the researchers to collect speech data, change vocabularies, experiment
with adaptation algorithms, train new statistical models, etc. without having to
modify the equipment in the user’s home. This enables rapid system modification
and reduces the amount of researcher time spent travelling to the users” homes.
This permits the new models to be deployed when they are ready and the new
data to be analysed as soon as it is collected.

A central idea of this project is the notion that the user, through interacting

with the system, will provide additional speech data. This data can be used to im-
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prove the acoustic models, which should in turn help motivate the user to use the
system more, collecting more speech data — closing the virtuous circle. Two differ-
ent data collection strategies are employed in hS. Firstly, the initial data collection
phase or enrolment phase, collects data through basic recordings. When sufficient
enrolment data has been collected, this data is used to adapt a set of speaker inde-
pendent models to the speech of the user before the system is deployed. From then
on the data collection takes place as the user interacts with the system. At regular
intervals this data is used to update the models so the system continues to tune
into the particular characteristics of the user’s voice as well as their environment.

However, only the ASR module of the hS VUI is personalised to the user.
Other modules such as the DM follow simple rule-based approaches to control
the interaction. One of the main objectives of this thesis is to introduce state-of-
the-art dialogue managers in hS-like systems and adapt the dialogue models to

the user. This is done in chapters 3, 4 and 5.

2.2 Automatic Speech Recognition

The objective of ASR is to convert an acoustic input (speech) into a sequence of
words (text) (Gales and Young, 2008). Statistical ASR tries to find the probability
of a given sequence of words w given a sequence of acoustic features X, P(w|X).
The sequence of acoustic features X is extracted from the audio input in a pre-
processing step (Davis and Mermelstein, 1980, Hermansky, 1990). Using Bayes’
rule, P(w|X) can be decomposed as:

X|w)P(w)

piw|x) = 2 P00 @.1)

Where P(X|w) is the acoustic likelihood of the acoustic features given the word
sequence and P(w) is the prior probability of the sequence of words. P(X) is the
prior probability of the acoustic features, which is independent of the sequence of
words, becoming a normalisation constant. However, as the number of possible
word sequences that can be found can be very large, often ASRs only do decoding,
finding the most likely sequence of words W as:

W = arg max (P(X|w)P(w)) (2.2)

Equation 2.2 if often considered as the “fundamental equation” of ASR. It shows
the two main components of an ASR system: the acoustic model P(X|w) and
the language model P(w). Both acoustic modelling and language modelling are

important parts of modern statistically-based speech recognition algorithms.
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A language model computes the prior probability of a word sequence. This
is usually approximated by conditioning the probability of each word in the pre-
vious N — 1 words. These are called N-Gram language models (Jurafsky, 2000).
Recently, recurrent neural network based language models (Mikolov et al., 2010)
have improved the performance by increasing the context window on which the
probability of the word is conditioned.

An acoustic model computes the likelihood of an acoustic feature sequence
given the sequence of words. Since speech has temporal structure and can be
encoded as a sequence of spectral vectors spanning the audio frequency range,
hidden Markov models (HMMs) provide a natural framework for constructing
such models. Usually, Gaussian mixture models (GMMs) are used to estimate
the HMM state probabilities. Recently the field has benefited from advances in
deep learning by using deep neural networks to extract more sophisticated feature
vectors (Hermansky and Fousek, 2005) and to directly replace GMMs to model the
observation probabilities of each state (Bourlard and Morgan, 2012, Deng et al.,
2013, Hinton et al., 2012). This has greatly increased the performance of ASR.

As the number of words in a vocabulary of any language can be very high, to
reduce the search space of a speech recogniser, acoustic subunits called “phones”
are used. There are around 40 phones in English. The corresponding acoustic
model is synthesised by concatenating phone models to make words as defined

by a pronunciation dictionary (Richmond et al., 2010).

As both acoustic models and language models are trained from data, the
performance of the speech recognition engine will depend greatly on the diffi-
culty of the task (vocabulary size) and on the amount of in-domain training data.
Speech recognition in under resourced domains such as highly-technical domains
(Fox et al., 2013), under resourced languages (Harper, 2014) or disordered speech
(Deller et al., 1991, Rosen and Yampolsky, 2000) can be challenging.

For some tasks (including DM), it is important not only to estimate the most
likely sequence of words, but also the N-best list of most likely hypotheses with
their corresponding confidence scores (Jiang, 2005). The confidence scores give an
indication of the likelihood that the recogniser attaches to each word sequence.
Ideally, these confidence scores should be the posterior probabilities of each word
sequence, but, as the number possible word sequences can be huge, pruning is
used during decoding to maintain the search to the most likely sequences only.
Therefore, the system only outputs the likelihood of each word sequence. Many
modern ASR systems can output a word lattice (Murveit et al.,, 1994), a directed
graph that efficiently encodes possible word sequences. Word-lattices may be
converted into N-best lists by normalising the likelihoods by the probability mass
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given in all the lattice (Evermann and Woodland, 2000a,b).

2.2.1 Disordered speech recognition

The term dysarthria refers to a range of speech disorders arising from the loss
of control of the speech articulators. It affects 170 per 100,000 of the population,
being the most common speech disorder (Duffy, 2013). The underlying causes can
be acquired neurological conditions as a result of stroke or traumatic brain injury
or congenital conditions such as cerebral palsy. People with severe dysarthria
can be close to unintelligible to unfamiliar listeners, though they can generally
communicate successfully with family and friends (Mengistu and Rudzicz, 2011).
There are established assessment procedures for speech and language therapists
to determine the dysarthria severity (Enderby, 1980).

In cases of low to moderate dysarthria severity, state-of-the-art, speaker inde-
pendent ASR systems can have a reasonable performance. For people with severe
dysarthria, however, these systems have been shown to be less successful (Hawley,
2002, Rosen and Yampolsky, 2000). The first attempts to apply ASR to dysarthric
speech were small scale studies done using conventional ASR techniques (Deller
et al., 1991), not showing very promising results. One of the main issues faced by
these systems was the lack of dysarthric data. Recently, the release of some larger
corpora has enabled the research on applying more sophisticated ASR techniques

to dysarthric speech, such as speaker adaptation.

Dysarthric speech corpora

The increasing performance of speech recognition technology has been directly
related to the use of larger corpora, but until recently only the Nemours database
(Menendez-Pidal et al., 1996) was commonly available for research into dysarthric
ASR. This corpus contains a total of 814 sentences from 11 male speakers with
mild to moderate dysarthria severity. In the last decade, however, the available
dysarthric data has increased with the appearance of the UASpeech (Kim et al.,
2008) and TORGO (Rudzicz et al., 2012) databases. These corpora are still orders
of magnitude below the corpora used in modern ASR; UASpeech has around
18 hours and the TORGO recordings amount to 23 hours, not all of which is
disordered speech. In contrast, it is normal to train ASR systems in hundreds of
hours of normal speech (Carletta et al., 2005), whereas ASRs used in industry can
be trained in thousands of hours (Graves and Jaitly, 2014). Nevertheless UAspeech
and TORGO opened the possibility to apply some modern training and adaptation

techniques to dysarthric speech.
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The limited amount of training data makes researchers and clinical scientists
face several problems when deploying ASR systems for dysarthric users. People
with physical disabilities which also affect their speech often find it difficult to
contribute a sufficient amount of data; for some dysarthric speakers supplying a
few minutes of data can be very tiring and also lead to distress, especially for
people with degenerative illnesses such as Parkinson’s disease. Tools to help with
the collection of data and the deployment of assistive technologies can greatly
help speech professionals. In this context, the CloudCAST initiative (Green et al.,
2015, 2016) was recently launched, trying to make remote adaptive technology
available to professionals who work with speech; such as therapists, educators

and clinicians.

Speaker adaptation

As it has been previously mentioned, standard speaker independent ASR sys-
tems do not have an acceptable performance with severe dysarthric speakers.
Speaker dependent speech recognition has been shown to be more appropriate
for these users. This is because speaker dependent models are trained directly
with the speaker’s utterances rather than assuming their speech is similar to typi-
cal speech. Speaker dependent recognisers have shown a promising performance
with severely dysarthric users in several studies (Hawley et al., 2007a,b), but with
very small input vocabularies, which can limit the potential usefulness of the sys-

tem.

The new corpora of dysarthric speech released in recent years (UASpeech and
TORGO), have enabled researchers to conduct more systematic studies (Chris-
tensen et al., 2012a, 2013a, Sharma and Hasegawa-Johnson, 2010, 2013), comparing
different techniques using reference test sets. In these studies, speaker adaptation
of acoustic models was shown to be a more promising approach than directly
training the models with speaker specific data. Adaptation techniques, such as
Maximum Likelihood Linear Regression (Gales, 1998) and Maximum A Poste-
riori (MAP) (Gauvain and Lee, 1992), have been used in ASR to tune speaker
independent models to the speech of an individual. Using this adaptation tech-
niques speaker dependent systems can be built, but by using only a relatively
small amount of adaptation data. In Christensen et al. (2012a), MAP adaptation
was shown to be a successful way of establishing acoustic models for dysarthric
speakers. This work presented ASR accuracy results on the UASpeech task using

about 40 minutes of data for each speaker employing a vocabulary of 455 words.
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2.3 Spoken Language Understanding

After the acoustic input has been processed by the ASR, the next step is to under-
stand the meaning of the recognised string of words. The SLU module (sometimes
called semantic decoder) (Tur and De Mori, 2011, Wang et al., 2005) performs this
task, extracting the semantics of an utterance given the output of the ASR. To con-
strain the semantics the system can understand, a set of concepts is usually defined.
This set is defined differently in each domain, making SLU a domain specific task.
Many SDSs define the set of concepts using a shallow level of semantics called
dialogue acts (Stolcke et al., 2000, Young, 2007), designed to capture just enough
meaning in an utterance to facilitate a dialogue. In summary, an SLU module

takes a sentence as input and gives a concept (or dialogue act) as output.

Historically, SLU modules used hand-crafted semantic template grammars to
extract semantic concepts and discern the dialogue act (Aust et al., 1995, Ward
and Issar, 1994). This is an effective technique for small scale dialogue systems,
where the semantic space is simple enough to hand-craft the rules to understand
it. This is the case for assistive VUIs, where the rules are often as simple as a
mapping from commands to concepts (Casanueva et al., 2014). In larger scale
dialogue systems, however, multiple iterations of user-testing are needed before
achieving adequate coverage. Data driven SLU approaches can be a better option

in this cases.

If the possible set of concepts can be enumerated in a short list, the SLU can
be treated as a multi-class classification task, where a single multi-class classifier
is trained. However, if the concept output has some structure, these classifiers
would need to enumerate all the possible structures, causing sparsity in training
examples. Modern data driven SLU approaches (Henderson et al., 2012, Mairesse
et al., 2009, Mesnil et al., 2013, Vukotic et al., 2015) attempt to exploit the structure
to simplify the classification, in what it is often called slot-filling tasks. These
systems factorise the set of possible output concepts to a set of slots, each of which
can take a value from a set of mutually exclusive values. Then, the system tries
to assign a value to each slot given the ASR output observed. A good example of
slot filling SLU is the ATIS evaluation task (Price, 1990). ATIS is the most popular
resource to investigate data-driven SLU (it has been used for more than 25 years),
providing a corpus in the flight reservation domain. However, this corpus is very
small compared with today’s machine learning standards and only includes single
turn utterances. The French Media corpus (Bonneau-Maynard et al., 2005) provides
a larger corpus in a more challenging hotel reservation domain with multi-turn

interactions. Being in French, however, can be a problem for some research groups
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and has reduced its popularity. Industry research has been able to carry studies in
more challenging SLU domains, but by using corpora that is not publicly available
(Hakkani-Ttr et al., 2016, Liu et al., 2015).

2.4 Data driven spoken Dialogue Management

Dialogue is a decision making process. In each turn, a dialogue system has to
analyse the user’s utterance, and given this utterance and the information it has
already collected through the dialogue, decide which action to take. The ASR and
SLU “analyse” the user utterance converting it to a semantic representation, so
the next step is to use this representation (and all the previous ones) to decide the
action that should be taken next. The Dialogue Manager (DM)! is the module in
charge of this (Young et al., 2013). In other words, the dialogue manager is the
component responsible for the control and flow of the dialogue. In each dialogue
turn, it decides the appropriate output given the dialogue history (all the obser-
vations seen during the interaction so far). The dialogue manager could be seen
as the brain of an SDS: given the inputs it receives from its sensors (the ASR and
SLU), analyses what has happened in the dialogue so far, and decides which is
the best action to take next.

In the previous paragraph, the concept of dialogue history appears a couple of
times. The dialogue history refers to all the information that has been observed
by the DM during all the dialogue. This includes all the information passed to
the DM by the input modules? of the system up to the current turn, as well as
the decisions taken by the DM so far. The dialogue history is usually encoded in
a fixed dimensional stationary representation called the dialogue state, which tries
to collect all the relevant information happened in the dialogue in a compact way
(Young, 2000). However, to cope with the uncertainty coming from possible ASR
errors as well as the inherent uncertainty in natural language, many systems work
with a probability distribution over the dialogue state called the belief state (Roy
et al., 2000). The dialogue manager then uses this representation to decide which
action to take the next turn. The function that maps the dialogue state or belief
state to an action is called the dialogue policy.

Therefore, dialogue management can be divided into two main tasks: Dialogue
State Tracking (DST) and Policy Optimization (PO). DST updates the dialogue

IDepending on the context, the acronym DM can refer to Dialogue Management or to Dialogue
Manager

2The DM usually takes as input the output of the SLU, but some systems can get as input
features extracted from other modules such as the ASR (Henderson et al., 2014c,d) or other feature
extractors (Casanueva et al., 2016a,b).
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state or belief state in each turn. PO models the decision process to decide which
is the optimal! action to take given the current dialogue state.

Most of currently deployed computer based dialogue managers use rule-based
policies following different approaches (Goddeau et al., 1996, Larsson and Traum,
2000, Lucas, 2000, McTear, 1998, Sutton et al., 1996). The main advantage of these
systems is that they can be built without collecting training data; the knowledge of
an expert is enough. These policies are a good approach for small scale SDSs with
good ASR performance, because the number of possible situations (or dialogue
states) to take into account is small, so the set of rules to follow in each situation
can be hand-coded. This approach, however, has several shortcomings: it does not
scale to more complex systems, it has difficulties dealing with noisy ASR systems,
it is not easily adaptable or transferable to other domains, tuning them to new
environments is costly, etc. In addition, these systems require a lot of effort to fine
tune them: after the systems have been built, they need to be tested with users
and then manually adjusted to improve user satisfaction. This process is repeated
iteratively until a suitable level of user satisfaction is reached (Pieraccini et al.,
2009).

Machine learning methods are a more suitable approach for scalable DM. As
DST can be modelled as a sequential classification task, supervised learning tech-
niques have been shown to be a good approach (Henderson, 2015a, Thomson,
2013). For PO, however, supervised learning has several flaws. In principle, su-
pervised learning techniques offer a way of learning the dialogue policy directly
from data when given a large enough dialogue corpus, but, due to the large num-
ber of distinct dialogue states that can occur, even a very large dialogue corpus
would represent only a tiny fraction of the total set of plausible dialogues. Even if
the system’s policy can be learnt in a supervised fashion, it would be restricted to
imitating a particular behaviour at a particular dialogue state. It is not guaranteed
that such behaviour would be the optimal or lead to a successful dialogue (Levin
et al., 2000).

Policy optimization is not a classification problem, it is a decision making prob-
lem, or an optimal control of stochastic dynamic systems problem. The machine learn-
ing response to this problem is the Reinforcement Learning (RL) paradigm (Sutton
and Barto, 1998). RL was proposed for dialogue management almost 20 years ago
(Levin et al., 1998, 2000, Singh et al., 1999, Young, 2000, 2002), and the research
on this approach has continued since then, getting increasingly promising results
(Gasi¢ and Young, 2014, Henderson et al., 2014a, Raux et al., 2005, Williams and

1Optimality in some dialogue domains can be hard to define. In task oriented dialogues, how-
ever, it can be defined as a trade-off between dialogue success rate and time spent. Section 2.7.1
reviews this in more detail.



Chapter 2. Data driven methods for assistive spoken interfaces 21

Young, 2007, Williams et al., 2013, Young et al., 2010). With an RL approach, the
dialogue is modelled as a sequential decision process and the policy is optimised
with respect to an objective measure of dialogue performance. A reward is as-
signed to each turn which depends on the dialogue state and action taken by the
system, and RL tries to maximise the sum of rewards for all the dialogue. In con-
trast to supervised learning approaches, a dialogue manager using reinforcement
learning can explore new (and possibly better) behaviours. It is therefore able
to choose a strategy which optimises the overall performance as defined by the

objective measure!.

24.1 Dialogue management as a Partially Observable Markov Decision
Process

In RL (Sutton and Barto, 1998), an agent learns from interaction with an environ-
ment (which might be unknown), getting feedback from the environment in the
form of immediate rewards. The agent-environment interaction cycle is presented in
figure 2.3. In each discrete time-step ¢, the agent has a perception of the environ-
ment, represented by a state s;. Based on this state, the agent takes an action a4,
which affects the environment changing its state to s;.1 while the agent observes
an immediate reward r;;1. Then the cycle is repeated. The aim is to take the op-
timal sequence of actions to maximise the expected long-term accumulated reward
or return, the sum of rewards for each time-step.

As it was mentioned in the previous section, task oriented spoken dialogue
can be modelled as an RL problem. On one side, the agent is defined as the
dialogue manager. On the other side, the environment is defined as the user plus
the information passing channels: the ASR and the SLU for the input processing,
and the response generation system for the output processing (see figure 2.1).
The state of the environment is defined as the dialogue state and the actions are
defined as the set of machine actions that the agent (dialogue manager) can take
(e.g. questions, database queries, showing documents in the screen, etc.). Each
discrete time step t is set as each dialogue turn, and the immediate rewards are
defined in order to maximise the dialogue success rate whilst minimizing the
dialogue length (the number of turns needed to complete the dialogue).

The state of the agent (the dialogue state) depends on all previously visited
states, as well as the actions it has taken. To reduce the complexity, the state
can be assumed to depend only on the previous state and action, satisfying the

11t is worth to mention though that, recently, supervised learning approaches to policy learning
have been shown to be useful to bootstrap an initial policy, which is later optimised using RL (Fatemi
et al., 2016, Su et al., 2016a).
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Figure 2.3: Diagram showing the reinforcement learning loop.

Markov property. 1If, in addition, the state is considered to be fully observable
(the agent knows in every moment the true state of the environment), the system
can be modelled as a Markov Decision Process (MDP) (Puterman, 2014). MDPs
provide a mathematical framework for modelling decision making in situations
where outcomes are partly random (environment) and partly under the control of
a decision maker (actions). A MDP is defined by the tuple (S, A, T, R, ) where:

e S is the set of states,
o A is the set of actions,

T is the transition function,

R is the reward function,

7 is the discount factor.

At each time step, the environment is in some state s € S. The agent takes an
action a € A, which causes the environment to transition to state s’ with proba-
bility T(s,a,s') = P(s’ = s;11|s = sy,a = a;). Finally, the agent receives a reward
equal to R(s,a) € R. Then the process repeats.

The core problem of MDPs is to find a policy 7t for the decision maker: a
function that specifies the action 71(s) = a that the decision maker will choose
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Figure 2.4: POMDP influence diagram. Circles represent random variables and squares
decisions taken by the policy. Shaded nodes represent unobserved variables and non shaded
circles observed ones. solid lines indicate direct influence and dashed lines that a distribu-
tion of the variable (the belief state) is used.

when in state s. The policy is optimised to maximise some cumulative function
of the random rewards, typically the expected discounted sum over a potentially

infinite horizon:

(o]

=Y 7rin (2.3)
i=0
A discounting factor 1 > 7 > 0 is used to favour policies that generate high
rewards sooner rather than later in the decision process. A discounting factor
equal to 1 can only be used in tasks that are certain to finish in a finite number of
steps, called episodic tasks. Dialogue management is one example of an episodic
task.

The MDP framework, however, assumes that the set of states is fully observ-
able, but this assumption does not hold in dialogue. In the perception that the
dialogue manager has from the environment there is uncertainty coming from
errors in the ASR and the understanding system. There are also inherent ambigu-
ities in the human natural language (e.g. sarcasm). Therefore, the output of the
SLU is a noisy observation of the true user intentions, so the system cannot be
certain about the true dialogue state. The Partially Observable Markov Decision
Process (POMDP) framework (Kaelbling et al., 1998) tackles this issue by assum-

ing that the dialogue state is a latent variable that can be indeed inferred from
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noisy observations seen from the environment (Roy et al., 2000). Therefore, the di-
alogue manager works with the belief state, a probability distribution over the set
of dialogue states (Rapaport, 1986).

Figure 2.4 shows the influence diagram of a POMDP. A POMDP is an extension
of an MDPs defined by the tuple (S, A, T, R, Q, O, ) where:

e (S, A T,R, ) isan MDP
e () is the set of observations,
e O is the observation function,

In each turn, instead of seeing the true dialogue state, the dialogue manager
receives an observation w’ € Q) which depends on the new state of the environ-
ment with probability given by O(«w',s’,a) = P(w' = wii1|a = ai, s’ = s¢y1). The
belief state b needs to be inferred from this observation and the previous belief
state. As the state s is not observable, the dialogue policy becomes a function of
the belief state! 77(b) = a. Therefore, POMDP-based DM can be decomposed into
two steps: The aforementioned step of estimating the optimal policy, named PO,
and the estimation of the belief state, usually called belief update or DST in the
dialogue management community. In the next section, the most successful DST

approaches are described. In section 2.6, dialogue PO algorithms are surveyed.

2.5 Dialogue State Tracking

The dialogue state is a high level representation of all the information observed
so far during the dialogue by the dialogue manager. This information usually
includes user intention information (SLU output) and the actions taken by the
DM so far, but it can be extended to include environment information, speaker
information, ASR information or any information that might be relevant to decide
which is the best action to take next. Due to the uncertainty coming from the
information channels (ASR, SLU...), the dialogue state s is not directly observable.
Instead, in each turn the dialogue manager sees an observation w € (), and uses
this observation and the previous ones (as well as any other information seen dur-
ing the dialogue) to estimate the belief state b, a probability distribution over the
set of states S. The estimation of the belief state is known as DST. DST incorpo-
rates system outputs, user speech, context from previous turns, and other external
information. If the belief state is defined as b = (b(s1),b(s2),-.-,b(s|5)), where

1Technically, a POMDP can be seen as a continuous state MDP in where the continuous state
space lies in a simplex over the original set of states.
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b(s;) represents the probability of the environment being in state s;, then in each
turn ¢
b(s) = P(s = s¢|hy) (24)

where h; is the dialogue history until turn ¢, all the relevant information observed
so far during the dialogue (e.g. h; = (wo, w1, ...y, a9, a1, ..., ai—1) where each w
is an N-best output of the SLU and each a is an action taken by the dialogue
manager. The dialogue history can include more information though).

Therefore, the task of DST is to estimate the distribution over the dialogue
states b in each turn. There has been an increase of interest in DST following the
Dialogue State Tracking Challenges (DSTCs) (Henderson et al., 2014a,b, Kim et al.,
2016, Williams et al., 2013), with a substantial number of papers published on the
subject since 2013.

2.5.1 Dialogue state set design

In the previous sections the dialogue states were defined as a set, S, in which
each state s represents a unique dialogue situation, encoding all the relevant in-
formation seen so far. However, the number of possible different situations that
can occur during a dialogue is immense (typically exponential with respect to the
size of the system (Gasi¢, 2011)). Therefore, the design of dialogue systems re-
quires the (typically hand-crafted) effort of designing a tractable state space. This
design should trade off between creating a set of states that can differentiate be-
tween the most important dialogue situations, whilst maintaining the size of this
set as small as possible. To do so, task oriented SDSs are typically framed in terms
of slots (sometimes called slot-based dialogue systems) (Henderson et al., 2014a,
Williams et al., 2013). The set of slots and possible slot values are derived from an
ontology which defines the systems domain, i.e. the scope of what it can talk about
and the tasks that it can help the user complete. The ontology informs the set of
possible actions the system can take, the possible semantics of the user utterances,
etc. The set of dialogue states is then derived from combining the possible values
for the different slots.

2.5.2 Dialogue State Tracking approaches

Early spoken dialogue systems used hand-crafted rules for DST, keeping a sin-
gle top hypothesis for each slot of the dialogue state (Larsson and Traum, 2000,
Zue et al., 2000). Such systems required no data to implement, and provided an
accessible method for designers to incorporate expert knowledge of the dialogue

domain. However, these systems were unable to make use of the entire SLU N-best
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lists, not accounting for uncertainty in a principled way. More recently, rule-based
approaches able to track multiple hypotheses have also been proposed, using a
small set of hand-crafted rules to compute the belief state given observations from
the SLU (Kadlec et al., 2014, Wang and Lemon, 2013).

The first approaches to use machine learning methods for DST used generative
approaches to model the dialogue state as a dynamic Bayesian network where the
true state s is treated as an unobserved random variable (Thomson, 2013, Williams
et al., 2005). Bayesian inference is then used to give an updated distribution over
s given the system act 4 and a noisy observation of the user intent w. Early
generative approaches used exact inference, enumerating all possible dialogue
states (Horvitz and Paek, 1999, Roy et al., 2000). The belief update equation of
typical POMDP models (Kaelbling et al., 1998) is an example of generative DST:

b(s') =k-O(w',s',a) Y T(s,a,s")b(s) (2.5)
s€S

where O(w',s',a) and T(s,a,s’)) are the observation model and transition model of
the POMDP respectively. k is a normalisation constant. This approach, however,
is quadratic with the number of states, so it is usually intractable as the number of
states can be very large. As a result, two approximations are typically used; either
maintaining a beam of candidate dialogue states (Williams, 2007b, Young et al.,
2010), or assuming conditional independence between components of the dialogue
state (Thomson and Young, 2010, Williams and Young, 2007, Williams et al., 2005).
Generative models, however, have several deficiencies (Williams, 2012). Generative
approaches need to model all the correlations in the input features, so they cannot
easily exploit arbitrary but potentially useful features observed in the dialogue
history. These features would have to be included into the dynamic Bayesian net-
work, requiring the learning or specification of new structures and dependencies.
Many independence assumptions are made by generative models used for DST
in order to make the models tractable. For example, many implementations do
not model ASR and SLU error correlations, instead assuming independence for
simplicity (Henderson, 2015b).

Contrary to generative modes that need to model the joint probability of the
input features and the dialogue states, discriminative models directly model the
conditional probability over dialogue states, given the input features. Therefore,
there is no need to maintain the input feature space as small and uncorrelated
as possible to maintain tractability, letting discriminative models to use larger
and possibly correlated input features. The first attempt to build a discriminative
dialogue state tracker was presented in Bohus and Rudnicky (2006), but it wasn’t
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until the DSTCs were held (Henderson et al., 2014a, Williams et al., 2013) that the
real potential of discriminative state trackers was shown. The DSTCs provided
a common testbed to compare different DST models. The first two DSTCs were
won by discriminative models which used a very large set of engineered features
which captured the dialogue history (Lee, 2013, Williams, 2014). The third DSTC
was won by a Recurrent Neural Network (RNN) based discriminative state tracker
which directly took as input the ASR output. The first three DSTCs mainly showed
the potential of discriminative models over the previously used generative models.
Discriminative methods for DST can be split into two categories: static classifiers
that encode the dialogue history in the input features, and sequence models that
explicitly model dialogue as a sequential process.

In static state trackers, the probability over dialogue states in a given turn is
conditioned on a feature representation of the whole dialogue history up to that
point. Following the DSTCs, Maximum Entropy and neural network classifiers
have been the most popular static models (Henderson et al., 2013, Lee, 2013, Met-
allinou et al., 2013, Ren et al., 2014, Sun et al., 2014, Williams, 2013). In order
to classify arbitrary length sequences of dialogue states, which may change from
turn to turn, static models must design special feature functions to encode the
information seen during the whole sequence in a fixed dimension vector. For
example, Metallinou et al. (2013) used a set of feature functions to summarise dia-
logue history using sums, averages, and other statistics (e.g. the number of times
a hypothesis has appeared at a certain rank or the accumulated SLU confidence
score for a certain value). Another option it to use a sliding window of length
N (Henderson et al., 2013), conditioning the state tracking on the last N dialogue
turns.

Sequential state trackers, in contrast to static classifiers, directly model the se-
quential nature of the problem. Linear-chain Conditional Random Fields have
been used to model arbitrary length dialogues (Kim and Banchs, 2014, Lee and
Eskenazi, 2013). However these models must design discrete feature functions, so
continuous features (such as confidence scores) must be quantised. DST models
based on RNNs, in contrast, have been shown to be able to deal with high dimen-
sional continuous input features (Henderson et al., 2014c,d). They have also been
shown to have a good performance operating directly on the N-best list output of
the ASR, without requiring an SLU system!. This has two key benefits: firstly, it
removes the need for hand-crafted feature design. And secondly, it avoids the en-
gineering task of building a separate SLU model. In the next section, RNN based

sequential discriminative dialogue state trackers are reviewed in more detail.

I This could be seen and modelling jointly the SLU and DST modules.
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Figure 2.5: Basic RNN architecture and an RNN unfolded through time. W represents
the parameters of the model (weights), o the input, m the memory layer or hidden layer
and b the output of the network. t denotes the time-step.

2.5.3 Recurrent Neural Network based DST

An RNN is a class of artificial neural network (Bengio, 2009, Bishop, 2006) in
which connections between units form a directed cycle (Elman, 1990, Jordan, 1997,
Schmidhuber, 2015), letting them make use of sequential information. RNNs have
an internal state (sometimes called “memory”) which encodes information about
the sequence of inputs seen so far, allowing them to exhibit dynamic temporal be-
haviour. Unlike feedforward neural networks, RNNs can use their internal mem-
ory to process arbitrary sequences of inputs, making them suitable for DST.

Figure 2.5 shows the basic structure of an RNN. The right part of the figure
shows an RNN “unfolded” (or unrolled) through time, which can be seen as a
large feedforward neural network in which the parameters of the sub-networks
are shared across all time steps. Unfolding simply means writing the network
for the complete sequence. The basic formulas that govern the computation in an
RNN are as follows:

m; = f(W,m;_1 + Wyo0)

(2.6)
b; = softmax(W,m; + dj)

where o; is the input at time step t (e.g. the N-best output of the SLU plus the last

action taken by the system), m; is the hidden layer or memory, and by is the output
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of the network in each time step (the belief state in each turn in DST). W and d
are the weight matrices and biases of each connection in the RNN. The function f
is usually a non-linearity such as tanh or any logistic function.

Note that the hidden layer m; captures information about what happened in all
the previous time steps by combining its previous value m;_; with the current in-
put o;. Then, the output at step by is calculated solely based on the memory at time
t. This is similar to the approach taken by generative state tracking approaches
(e.g. equation 2.5) which computed the belief state b; based on the previous one
b;_1 and the current input o; = (wy, a;). RNNs, however, discriminatively encode
the dialogue history in a “latent” dialogue state and then use a feedforward layer
to transform this encoding into the actual belief state.

RNNSs are trained in a similar way to traditional Neural Networks. A modifica-
tion of the backpropagation algorithm, called Backpropagation Through Time (BPTT)
is used (Werbos, 1988). However, RNNs trained with BPTT have difficulties learn-
ing long-term dependencies (e.g. dependencies between turns that are far apart)
due to what is called the vanishing/exploding gradient problem (Bengio et al., 1994).
Certain types of RNNs (notably Long-Short Memory Networks (LSTMs) (Hochre-
iter and Schmidhuber, 1997)) implement special layers and gating mechanisms to
deal with this problem.

General dialogue state tracking

In the first two DSTCs, most of the data driven approaches to dialogue state track-
ing learned specific statistics for each slot and value (Bohus and Rudnicky, 2006,
Williams, 2014). In slot-based dialogue systems, however, the set of possible values
for each slot Vs can be very large and some slots may have values that occur very
infrequently (e.g. food-type in the second DSTC). If a discriminative state tracker
models the possible values for each slot as the different output classes, the model
would have problems tracking values seen very infrequently or not seen at all in
the training data. This will also occur when extending the domain of a dialogue
state tracker. Some models addressed this issue by using parameter tying across
slot models (Henderson et al., 2014d, Lee, 2013), assuming that the statistics of
two slots are similar. In the third DSTC, the problem of domain extension was
addressed and therefore state trackers able to generalise to unseen dialogue states
had to be developed.

One of the most successful approaches to general state tracking (Henderson
et al., 2014c) combined the output of two RNNSs: one modelling slot-specific statis-
tics and the other modelling slot-value independent general statistics. The slot-

value independent statistics were modelled using value specific general features (also
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Figure 2.6: General Dialogue State Tracking for a single slot. Each filter is an independent
sequential classifier (e.g. an RNN) associated with a value v. of, represent the value-specific
input features at time-step t. g, is the output of filter v.

called delexicalized features), features present in each value extracted independently
for each value (e.g. the confidence score of that value in the SLU output). Later,
Mrksi¢ et al. (2015) modified this model to be able to track the dialogue state
in completely different domains by using only the general part of the model of
Henderson et al. (2014c). This slot-value independent model (shown in Fig. 2.6)
comprises of a set of binary classifiers or value filters!, one for each slot-value pair,
with parameters shared across all filters. These filters track each value indepen-
dently using the value specific general features. Each slot output distribution in
each turn t is obtained by concatenating the outputs of each value filter ¢/, in V,
followed by applying a softmax function.

The set of filters differ from each other in two aspects: the input composed
by value specific general features of; and the label used during the training. An
RNN-based general state tracker? updates the probability (or belief) of each value

bt in each turn t as follows:
m!, = c(W,o! + W, m, 1 +d,,)

gé = ‘T(ngé + dg)

p o exp(gh)
b = Yoevexp(gl) 27)

Where m! is the hidden state of each filter and W,, W,,, d,;;, w, and d, are the

I Addressed as filters due to their resemblance with convolutional neural networks filters.
2This is a simplified version of the model described in (Mrksi¢ et al., 2015).
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parameters of the model. In summary, these models learn to track each value
independently by learning a value tracking general model, and then combine the
outputs of the independently tracked values. If the model needs to be extended
to track a new value, an extra value filter for the new value would be added to the
model. Therefore, these models work under the assumption that the state tracking
statistics for each value are similar.

2.6 Dialogue Policy Optimization

Once the dialogue state or belief state has been estimated in each turn, the dialogue
manager’s next step is to choose which is the best action to take. In a MDP
model!, decisions on which action to take are determined by a policy, 77(s) = a,
which is a mapping from the states of the system to the possible actions. The
aim of reinforcement learning is to obtain the optimal policy, i.e. the policy that
maximises the long-term accumulated reward. In episodic tasks such as DM, the
accumulated reward, R]Y, for a particular policy 7 is the sum of the discounted
immediate rewards that the policy 7t achieves from time f until the final time step
T:
T

[ = Z’Yi”t+z’+1 (2.8)

i=0
If the state transitions are random and/or the immediate reward is a random
process, then the accumulated reward is also a random process.

RL approaches often model the value function V™ (s) for each state s € S; the
expected accumulated reward R in state s when a system follows policy 7t:

T
V7™(s) = Ex(Rf'[st = 5) = Eﬂ(Z'erHH—l’St = S>, (2.9)

i=0
where the expectation E is calculated over all possible state sequences that can be
generated with policy 7r. In a similar way, the Q-function, Q™ (s, a), for each state
s € § and action a € A is also modelled; the expected discounted return that is
obtained when action 4 is taken in state s and the policy 7 is followed from then

on:

T .
Q™ (s,a) = Ex(R['|st = s,a; = a) = En( Z’y’rt+i+1]st =s,a; = a), (2.10)
i=0

IFor simplicity, some of the policy optimization methods will be explained in the context of
MDPs. However, as POMDPs can be seen as continuous state MDPs, the methods can be easily
applicable to POMDPs.
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where, again, the expectation E; is calculated over all possible state sequences that
can be generated with policy 7.

The aim of RL-based PO is to obtain the optimal policy — i.e., the policy that
maximises the value function. Assuming a finite state space S, the exact solution
to the optimal value function is given by the Bellman optimality equation: (Bellman,
1956):

V(s) = max Y T(s,a,8")(R(s,a) +yV(s)). (2.11)

s'eS

In a similar way, the optimal Q-function is expressed by:

Q(s,a) = ) T(s,a,8")(R(s,a) +ymaxQ(s’,a")). (2.12)
s'eS a

The optimal Q-function Q(s, a) and the optimal value function V (s) are related by

equality
V(s) = max Q(s,a). (2.13)

Then, the optimal policy can be derived either from the optimal value function
n(s) = argmax y_T(s,a,s')(R(a,s) +yV(s)), (2.14)
a S

or from the optimal Q-function
n(s) = argmax Q(s,a), (2.15)
a
by choosing the action that maximises the value function or the Q-function respec-
tively.

POMDP models, however, do not know the true state s. Therefore, the POMDP
policy, t(b) = a, must be a function of the belief state, providing an action a € A
for every possible belief state. Even if the true state is not known, the optimal
value function for each state can be still computed using the observation function
O(w, s, a) and the observations w € ) seen (Kaelbling et al., 1998) as:

V(s) = max Y T(s,a, s’)(R(s,a) + ) O(w,s,a)'yV(s’)) (2.16)

s'eS we)

In a similar way, the optimal Q-function for POMDPs can be computed as:

Q(s,a) = Y_ T(s,a, s')(R(s,a) +max Y O(w,s,a)yQ(s, u’)) (2.17)

s'eS we)

Then, the optimal value function for any possible belief state V(b) can be com-
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puted as the weighted sum over all states using equations 2.6

V(b) =) b(si=s)V(s) (2.18)
seS

Where b(s) is the value of the belief state for the state s. In a similar way, the

optimal Q-function can also be computed as a weighted sum using equation 2.17:

Q(b,a) = Y _ b(sy =5)Q(s,a) (2.19)

seS

In order get the optimal policy by solving equations 2.18 or 2.19 directly, several
assumptions are needed. Firstly, as mentioned before, the Markov property has
to be satisfied. It can be difficult to design a dialogue state set that satisfies the
Markov property while being simple enough to make learning possible. Secondly,
the dynamics of the environment need to be known (the transition, observation
and reward functions). Even if the dialogue state can be approximated, the reward
function can be heuristically defined and the dynamics can be hand-crafted or
estimated from data, obtaining the POMDP solution directly from the Bellman
equation is intractable for large state spaces (Sutton and Barto, 1998).

RL literature proposes two main groups of approaches to compute the (pos-
sibly approximated) policy: Model-based and model-free approaches. Model-based
approaches directly model the POMDP transition and observation functions, pos-
sibly approximating them using other sub-models (Kaelbling et al., 1998). These
are very structured models which try to maintain the original POMDP structure.
Model free approaches, on the contrary, do not make any assumption about the
POMDP structure, modelling the Q-function directly from the observed rewards
(Peters and Schaal, 2008). This gives the model more freedom to learn any un-
derlying structure by itself. When applied to real world sized dialogue systems,
however, existing model-based RL approaches become intractable (Williams and
Young, 2007), and model-free approaches often need an extremely large number
of dialogues to converge to the optimal policy (Jurc¢icek et al., 2010).

Algorithms to learn the optimal POMDP policy can also be divided into off-
policy and on-policy methods. Off-policy methods estimate the optimal policy
from examples obtained following another policy (which may be suboptimal).
This can be useful when there is a corpus of machine-environment interactions
available, obtained with another policy (or with another system) (Daubigney et al.,
2012, Silver et al., 2016). To learn the optimal policy, however, every state action
pair needs to appear in the corpus. On-policy methods, on the other hand, use

the current best estimate of the optimal policy to choose the best action while re-
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estimating the policy at the same time; they can learn on-line by directly interact-
ing with the environment. On-policy methods often use an exploitation-exploration
approach: at each time step, they choose to do exploitation or exploration. If they
choose the former, they will take the optimal action based on their current policy.
If they choose the latter, they will take an action that might be sub-optimal based
on the current policy, but that will help to gather information about the environ-
ment to better estimate the true optimal policy. Using this approach new, and
possibly better, strategies which would not occur following the original policy can
be learnt.

In the next sections, the most popular model-based and model free algorithms

to solve POMDPs in dialogue management are reviewed.

2.6.1 Model-based Policy Optimization

Model-based methods assume that the dynamics of the environment (i.e. the
transition, observation and reward functions) are known. These dynamics can be
either hand-crafted or learned from interactions with the environment. Dynamic
programming (Bellman, 1956) (solving equation 2.14) is an example of a model-
based method, but solving equation 2.14 directly is usually intractable. This equa-
tion, however, can be solved iteratively with the value iteration algorithm (Sutton
and Barto, 1998). This algorithm makes use of the recursive property of the Bell-
man equation (equation 2.11) to relate optimal value function estimates between
two consecutive time steps. If 1-step denotes the time step before the final state,
then the value function in I-step for some policy 7t in state s is the immediate re-
ward R(s,a), where action 4 is determined by the policy 7(s) = a. For any time
step (t-step), the value function of policy 7 in state s is the reward obtained by
taking action a plus the discounted value function in (¢-1)-step of policy 7t in the
next state s’. Due to this recursive relationship and the stationary nature of the
policy!, it is possible to initialise the value function arbitrarily for 1-step and iterate
to update and maximise the value function for each subsequent step. This process
is repeated until the difference between the t-step and the (t-1)-step value functions
falls below a given threshold A. Algorithm 2.1 describes the process in detail.
The POMDP value function, which can be shown to be piecewise linear and
convex (Cassandra et al.,, 1994), can also be obtained using the value iteration
algorithm (Kaelbling et al., 1998). In this case, the value function is composed by a
set of hyperplanes of dimension |S| — 1, where the upper surface of the intersection

of these hyperplanes represents the optimal value function. Each hyperplane has

IThe policy 7t(s) = a is independent of the time step .
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Algorithm 2.1 Value iteration
1: A 4= 00,0 < arbitrary
forall s € S do
V(s) < arbitrary
end for
while A > 6 do
foralls € S do
v+ V(s)
V(s) = max, yes T(s,0,5') [R(s,a) + V()]
A + max (A, |[v =V (s)|)
end for
end while
foralls € S do
7(s) = max, Yyes T(s,a,5")[R(s,a) + vV (s')]
end for

I e S G S
L A e

an action associated to it. Instead of the single update done in each iteration in the
MDP case (line 7 in algorithm 2.1), each iteration of the Value iteration algorithm
for POMDPs consists of two parts: a generation step — updating the value function
at step t + 1 using the hyperplanes on step t, and a pruning step — removing the
hyperplanes that fall under the upper surface of the intersection. This process is
repeated until there is no change in the optimal value function estimation for two
consecutive steps. However, every iteration of the value iteration algorithm for
POMDPs has exponential complexity which makes it intractable even for small
scale problems. Approximate solutions such as in the Point-based value iteration
algorithm (Pineau et al., 2003) exist, but these are still only suitable for relatively

small action/state space problems.

2.6.2 Model free policy optimization

Model-free methods do not make any assumption about the underlying model
of the environment, directly learning the Q-function online through interaction
with the environment. These approaches often use an e-greedy learning approach,
selecting a random action to explore the state space with probability €, or taking
the action according to the best current policy with probability 1 — e:

(s) = {argrglezﬁ( Q"™ (s,a) with prob. (1 —¢) (220)

random a € A with prob. €

Monte-Carlo (MC) methods and Temporal Difference (TD) learning are the most com-
mon model-free methods (Sutton and Barto, 1998).
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Algorithm 2.2 Monte-Carlo control
1: foralls € S,a € Ado
2. Q(s,a) < arbitrary

3. N(s,a) < arbitrary

4:  71(s) ¢ arbitrary

5: end for

6: while not convergence do

7:  Generate an episode with policy 7

8:  for all (s,a) pairs appearing in the episode do
9: R < discounted return following the first occurrence of (s, a)

Q(s,a)N(s,a) + R

10: Q(s,a) «+ N(s,a) 1
11: N(s,a) « N(s,a)+1

122 end for
13:  for all s in the episode do

14: n(s) = argmax, Q(s,a)
15:  end for

16: end while

Episodic tasks (e.g. dialogue) define a start state and a collection of terminal
states. An episode is then defined as a sequence of states from the initial to a ter-
minal state, generated by interaction with the environment. MC methods, such as
the Monte Carlo control algorithm (algorithm 2.2), are the most straight forward
model free approach for episodic tasks. They directly estimate the Q-function
from the observed accumulated rewards seen from each belief-action pair after
each episode. The Monte Carlo control algorithm starts by taking actions ac-
cording to an arbitrary policy and generating episodes, recording the sequence of
states visited and actions taken in each episode. At the end of each episode, the
accumulated reward from each state-action pair is computed and used to update
the corresponding Q(s,a) value. A count of the total number of times, N(s,a),
that each action pair has been visited is maintained to compute the weight of each
Q(s,a) update. In summary, the policy is updated after each episode to select
the actions that have accumulated the highest reward for each state. This algo-
rithm fits particularly well in PO of dialogue managers, where each dialogue is an
episode and the accumulated reward can be given by the user or an independent
evaluator at the end of the dialogue.

Monte-Carlo methods, however, cannot identify which particular state-action
pairs had more influence in the outcome of an episode. Therefore, a larger num-
ber of interactions are needed to converge to the optimal policy (Sutton and Barto,
1998). TD learning addresses this issue by combining the ideas of MC and dy-
namic programming methods. As with Monte Carlo, learning is performed from
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Algorithm 2.3 Sarsa

1: foralls € S,a € Ado
2. Q(s,a) < arbitrary

3: end for

4: for all episode do

5.  Initialise s

6:  Choose a from s using policy derived from Q

7. for all step in the episode do

8: Take action 4, observe 7, s’

9: Choose a from s using policy derived from Q
10: Q(s,a) < Q(s,a) +a[yQ(s',a") — (Qls,a) —7)]
11: s+ sa+a
12:  end for
13: end for

experience, but the Q-value estimates are updated after each step, using the dif-
ference between the obtained and expected rewards — the temporal difference. This
entails a recursive relation similar to the one used in dynamic programming algo-
rithms. Sarsa (algorithm 2.3) is the most popular on-policy TD algorithm, where
the temporal difference is computed as the difference between the discounted
future Q-value estimate, YQ(s’,a’), and the current Q-value estimate minus the
observed immediate reward, Q(s,a) — r (see line 10 in algorithm 2.3).

Even if this algorithm converges faster to the optimal policy than MC methods,
the state-action space must be fully explored in order to optimise the policy. In real
world dialogue systems, this space can be very large and exploring it with e-greedy
policies can be very inefficient. In addition, when this algorithm is applied to
POMDPs models, the belief state must be quantised. A variation of Sarsa based on
Gaussian Processes (GPs), named GP-Sarsa (Engel et al., 2005) solves this issues: it
can directly work in the belief-action space (avoiding quantisation) and computes
the uncertainty of the Q-value prediction for every belief-action pair, which can

lead to a policy that explores more efficiently.

Gaussian Process Reinforcement Learning based Policy Optimization

A GP is a statistical model in which every point in some continuous input space is
associated with a normally distributed random variable (Rasmussen, 2006). More-
over, given a finite collection of n random variables X, (e.g. data points), a joint
multivariate normal distribution of dimension #n can be defined. A GP, denoted
as f(x) ~ GP(m(x),k(x,x")), is fully specified by a covariance or kernel function
k(x,x") and a mean function m(x). The kernel function is a positive semidefi-

nite function that specifies correlations between the random variables x and x’
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(Scholkopf and Smola, 2002). A GP regression model (Rasmussen, 2006) tries to
approximate the unknown function f(x.) = y. for any new point x., given a
set of observed data points X,, with corresponding target values y,. To do so, a
zero-mean Gaussian process is usually defined, f(x) ~ GP((0),k(x,x")). If the
observed points X,, are noisy, however, the true value of the function is unknown
and assumed to be y; = f(x;) + X, where the noise is additive, independent and
Gaussian distributed, ¥ ~ N(0, (72). As the model is assumed to follow a joint
multivariate normal distribution, the joint distribution of the training outputs y,

and the test output f(x.) for any new test input x, can be written as:

[f(y;*)] ~N (0, > (2.21)

where Kx x is the covariance matrix or Gram matrix computed with the kernel

Kx x + a1, Kx «

K*,X k<x*/ X*)

function between each pair of data points in X,,,

k(x1,x1) k(x1,x2) ... k(xq,xn)
k(x2,x k(x, x oo k(x0,x,

Ky x — ( 2. 1) (.2 2) . ( 2. ) 222)
k(xn,x1) k(xp,x2) ... k(Xn,Xn)

and K, x and Kx . are the covariance vectors computed with the kernel function

between the new data point x, and the previously observed ones,

K, x = K;* = [k(x1, %), k(X2,Xs), ., k(X %) ] (2.23)

Then, conditioning the joint Gaussian prior distribution in equation 2.21 on the
observations X, and yj,, the posterior distribution for any new point in the input

space X, can be computed as:

FO) X, yn ~ N (F(x), f(x2))
fx) = Ko x(Kx x + L) "y, (2.24)

N

f(x*) = k(X*,X*) — K*,X<KX,X + Uzln)flKXl*

where f(x.) and f(x.) represent the mean and variance of a single dimensional
normal distribution respectively. A more detailed explanation of the derivation of
equation 2.24 is given in (Rasmussen, 2006).

Recently, Gaussian Process based Reinforcement Learning (GP-RL) (Engel, 2005,
Engel et al., 2003, 2005) has been proposed for dialogue policy optimization in the
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form of the episodic GP-Sarsa algorithm (Gasi¢ and Young, 2014); a model-free!,
TD-based algorithm. This method can work in continuous space MDPs, thus
avoiding the need for discretising the belief space in POMDPs (Gasi¢, 2011). It
also computes the uncertainty of the Q-value estimate, which can be used as a
metric for active learning during RL exploration to speed up the policy learning
(Gasi¢ and Young, 2014, Geist and Pietquin, 2010). These two properties can re-
duce the number of interactions needed to converge to the optimal policy by an
order of magnitude with respect to other POMDP dialogue models, allowing to
learn the policy directly from interacting with real users (Gasi¢ et al., 2011). In
addition, using transfer learning methods (Taylor and Stone, 2009) to initialise the
policy with data gathered from dialogue systems in different domains has been
shown to increase the learning speed of the policy further (Gasi¢ et al., 2013), even
providing an acceptable system performance when domain specific data was not
available. As a non-parametric method, GP-RL is especially appropriate for sys-
tems where the amount of dialogue data begins small but increases as the user

interacts with the system, such as homeService (section 2.1.1).

Recalling equation 2.10, the Q-function defines the expected accumulated re-
ward when the dialogue is in belief state b; and action 4; is taken, following policy
7t. GP-RL can be used to model the value of the Q-function as single dimensional
Gaussian distribution given a set of size t of previously observed belief-action
points X; (the belief-action pairs seen so far in all previous dialogues), with their
respective immediate rewards r;. The mean of this distribution will represent the
expected value of Q and the variance the uncertainty of the expectation. The
following paragraphs briefly explain the modelling of Q as a GP-RL model?.

Each accumulated reward c¢; observed at time—step3 i corresponding to the
belief-action point x; = (b;,4;) is a random variable. These random variables
can be modelled as the sum of a mean Q plus a residual AQ:

ci = Q(bj;, a;) + AQ(b;, a;) (2.25)

Taking a TD approach, equation 2.10 and equation 2.25 can be combined to
write the immediate reward r; recursively as the temporal difference between the

mean Q plus the residual at time i and at time 7 + 1:

IModel-based GP-RL approaches do also exist (Deisenroth et al., 2009, Rasmussen et al., 2003),
but have not been applied to dialogue.

2For a more detailed explanation the reader should refer to (Engel, 2005).

3In the following sections, the index i (and j) is used to refer to any time-step, while the index ¢
is used to refer to the last time step of the set. When used as the subindex of matrices or vectors, t
refers to the size of the matrix or vector.
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ri = Q(bj, a;) + AQ(b;, a;) — ¥iQ(bit1, ait1) — VidQ(bit1, ait1) (2.26)

where, in episodic tasks, ¢; = 0 if 4; is a terminal action, and a normal discount
factor 1 > « > 0 otherwise. Given the set of observed belief-action points X;, with
their respective immediate rewards r;, the set of linear equations arising from

equation 2.6.2 can be represented in matrix form as:

Iy 1= tht + HtAqt (227)
where:

1= [7’1,7’2,..., thl]T
q: = [Q(by,a1), ..., Q(by, ar)]
Aq; = [AQ(by,a1), ..., AQ(by, a)] T

1 =y ... 0 0
0 1 ...0 0
H, =
0 0 ... 1 —7y

If the set of random variables q; is assumed to have a joint Gaussian distribu-
tion with zero mean and the residuals AQ are assumed to be white independent
noise, AQ(b;,a;) ~ N (0,0?)Vi, the set of equations 2.27 can be modelled as a
zero-mean GP (Engel, 2005). To compute the covariance matrix of the GP, a kernel
function must be defined in the belief-action space. This can be done by factorising
the kernel function as a kernel in the belief space k” and a kernel in the action
space k” (Engel et al., 2005):

kl',]' = k((bl, lll'), (b], 11])) = kb<b1’, bj)k“(ai, a]) (228)

In MDP models with discrete action spaces (such as dialogue), the kernel over
the action space is usually defined as the delta kernel (Gasi¢ et al., 2011):

1ifai:a]-

k“(ai, a]) = (S(Ell',{)lj) = { (229)

0 otherwise

After the kernel function has been defined, the posterior distribution of the Q-

function for any new belief action point x, = (b.,a.) given the set of previously
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observed points and immediate rewards can be computed as:

Q(x«) X, 11 ~ N (Q(x.), Q(x+))

Q(x:) = Ky xH] (HiKx xH] +X;) "1y (2.30)
Q(xs) = k(x:,%:) — K, xH (HKx xH/ + Z;) "HKx.,

where Kx x is the Gram matrix (equation 2.22) of the set of belief-action points
X; computed with the kernel in the belief-action space and K, x and Kx . are the
covariance vectors (equation 2.23) between X; and x.. X; = (72HtH;r is the additive
noise term and Q and Q represent the mean and the variance of the Q-function,
respectively.

Note how the difference of the GP-RL model (equation 2.30) with the GP re-
gression model (equation 2.24) arises from the inclusion of the operator H;. This
is because the GP-RL model is estimating the expected accumulated reward (Q-
function) from the observed immediate rewards by using the recurrence defined
by the Bellman equation (equation 2.11). The H; operator defines the temporal dif-
ference relationship between two consecutive belief actions points.

Once the Q posterior for any new belief-action point can be computed using
equation 2.30, the optimal policy 77*(b) = a can be computed as the action a that
maximizes the Q-function from the current belief state b,, or using an e-greedy
policy (equation 2.20). GP-RL, however, computes the uncertainty of the expected
accumulated reward in form of the variance Q, which can be used as a metric for
an active exploration policy 7* (Daubigney et al., 2011) to speed up the learning.
This variation of the e-greedy policy chooses the action with higher uncertainty
in exploration steps, maximising the information about the environment obtained

from taking that action:

argmax Q(b,,a) with prob. (1 —€)
n,u(b — { acA (231)

argmax Q(b.,a) with prob. €
acA

where € controls the exploration rate.

2.7 Dialogue evaluation and user simulation

Contrary to other speech and natural language processing tasks where evalua-
tion methods are well established (Hirschman and Thompson, 1997), evaluation
of spoken dialogue systems is more difficult because it requires interaction. This

difficulty arises from the fact that, contrary to most speech processing tasks, dia-
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logue is a control problem: the actions taken by the user will depend on the actions
taken by the system and vice-versa. Therefore, different dialogue managers will
create different dialogue trajectories' while interacting with the same user in the
exact same conditions. It is thus infeasible to evaluate the performance of the di-
alogue in a independent test set as is done in classification tasks such as ASR and
SLU, as the corpus of test dialogues will be dependent on the dialogue manager
it was collected with.

The direct approach to evaluate dialogues is to test the dialogue manager in-
teracting with humans and let human judges (or the users themselves) rate the
dialogues (Lemon et al., 2006, Singh et al., 2002). However, this approach has two
major flaws: it is very costly and time-consuming, making it infeasible to evalu-
ate all possible dialogues; and it depends on a subjective metric to evaluate the
quality of the dialogue. The first problem can be tackled by creating a Simulated
User (SU), a model of the user (or the whole environment) which can interact
with the system in any number of dialogues (Schatzmann et al., 2006). The second
problem can be tackled by using the RL accumulated reward (equation 2.8) as a
measure of the quality of the dialogue (Levin et al., 2000). This requires, however,
the definition of a good quality reward function. The next section reviews differ-
ent approaches to reward function modelling and section 2.7.2 reviews different

approaches to model SUs.

2.7.1 Reward functions

Reflecting the quality of the whole dialogue in a function depending on the im-
mediate rewards r; = R(s;, ;) can be very challenging for some dialogue systems.
In systems where the objective is to entertain the user, for example, it might be
difficult to measure the “entertainment level” of the user in each turn. In task ori-
ented dialogues, however, measuring the quality of the dialogue is much simpler.
The objective of the dialogue can be summarised as performing the task that the
user requests while spending the least time possible. The reward function can be
then defined as a trade-off between maximising the dialogue success while min-
imising the dialogue length. A dialogue is considered successful when the system
performs the task the user asked for, or when it informs that it cannot perform the
task if the task is beyond the scope of the system (maybe providing alternatives).
Correctly annotating a dialogue as successful, however, is not as trivial as it looks,
and sometimes even the users label their own dialogues as successful when they

are not (Gasi¢ et al., 2011). Anyhow, a simple but effective reward function used

1A dialogue trajectory is defined as the sequence of actions, states, rewards and observations
happening in a dialogue from the initial state until the terminal action.
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in several studies (Casanueva et al., 2014, Jurc¢icek et al., 2010, Williams, 2007a,
Young et al., 2010) gives a small negative reward each turn (to encourage short di-
alogues) and a large positive reward when the dialogue is completed successfully
(to maximise the dialogue success rate). The ratio between these two values sets
how much weight is given to prioritise short dialogues and how much to increase
the success rate.

An alternative approach is to learn the reward function from ratings by human
judges. The PARADISE evaluation framework (Walker et al., 1997) predicts the
user satisfaction ratings using a corpus of dialogues annotated with real user sat-
isfactions and a set of objective measures. This is similar to Inverse Reinforcement
Learning (Abbeel and Ng, 2004, Ng et al., 2000), which learns the local reward
function from a set of human-human dialogues annotated as successful or unsuc-
cessful (El Asri et al., 2012). These approaches, however, still have the same flaw of
supervised learning for DM: they need a large corpus with enough variability to
learn a reward function that can work properly in any dialogue situation. Recent
work has tried to learn to classify dialogues as successful or unsuccessful using a
RNN based model (Su et al., 2015, 2016b), reducing the effort needed to annotate
the dialogues.

2.7.2 Simulated Users

To evaluate a dialogue manager properly, a large amount of interactions with real
users are required. If several different dialogue managers need to be compared,
each one of them needs to be evaluated interacting with the same users for a large
number of dialogues. This is extremely costly and infeasible in several situations,
such as interacting with dysarthric speakers, for whom speaking during a pro-
longed period of time can be very tiring. In the case of online PO methods, the
number of dialogues needed to converge to the optimal solution is often evaluated
— the policy learning speed or rate. The amount of dialogues needed to train each
policy model from scratch to evaluate the learning speed is infeasible for most
studies.

A popular alternative to evaluation with real users is to build a SU, a model
which tries to “mimic” the behaviour of real users interacting in a specific domain.
With SUs, it is possible to generate the necessary number of dialogues. The main
problem with SUs, however, is the potential discrepancy between the real and
simulated behaviour. It is very difficult to model all the potential variability of
real users!, therefore, a good performance with a SU does not necessarily reflect

ltechnically, if the dynamics of the real users (and environment) are known, the dialogue man-
agement problem can be solved with model-based RL methods.
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in a good performance with real users. SUs are, however, a good method to
bootstrap data to train an initial dialogue policy and it is a common practice in
RL-based dialogue management to use a SU to interact with the dialogue manager
during policy optimisation (Jur¢i¢ek et al., 2012, Levin et al., 2000, Scheffler and
Young, 2001, Thomson and Young, 2010). Interacting with the SU can also enable
a wider coverage of dialogue space than interacting with human users. Early SU
approaches only simulated the user behaviour (the utterance of the user in each
turn) (Eckert et al., 1997), but modern approaches also simulate the ASR channel,
being able to test the DM with varying ASR performance (Pietquin and Beaufort,
2005, Pietquin and Renals, 2002, Schatzmann et al., 2007b), or even the whole
environment (the user and the ASR plus the SLU) (Thomson et al., 2012).

Simulated User behaviour

There are two key characteristics needed by SUs: reasonable, goal-directed be-
haviour and variability in the way it interacts with the dialogue manager so that
it can cover a wide part of the dialogue space. Some approaches to user simula-
tion use statistical models with hand-tuned parameters, for example graph-based
(Scheffler and Young, 2001) and agenda-based (Schatzmann et al., 2007a) tech-
niques. There are, however, several methods to learn the parameters of the user
simulation model from a dialogue corpus, such as Bayesian networks (Pietquin
and Dutoit, 2006), N-gram methods (Georgila et al., 2006), cluster-based user sim-
ulation (Rieser and Lemon, 2006) and agenda-based user simulation with parame-
ters estimated from data (Keizer et al., 2010, Schatzmann and Young, 2009). How-
ever, these are all supervised learning methods, so the space of dialogues that can
be generated will be restricted to the original space of the corpus it was trained on.
To create SUs with wider coverage of the dialogue space than real users, mech-
anisms to increase the variability of the generated dialogues while maintaining
the user behaviour coherence are necessary (Schatzmann, 2008, Schatzmann et al.,
2006).

Simulated ASR and SLU

ASR and SLU simulation tries to model the “corruption” effect that these channels
introduce in the true user utterance. It is usually modelled as a mapping from the
real sentence uttered by the user to the output of the ASR (Pietquin and Renals,
2002), the 1-best output of the SLU (Schatzmann et al., 2007b), or an N-best list
of SLU hypotheses (Thomson et al., 2012). Ideally, these models should be learnt

from a corpus of dialogues with the true user sentence and the ASR or SLU output
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annotated, but the large variability of the input and output space makes this diffi-
cult. Several methods simplify the error simulation by just including a probability
to randomly change some part of the output (Pietquin and Beaufort, 2005), which

can be tuned to simulate different ASR or SLU performances.

2.7.3 Dialogue State Tracking evaluation

Even if the quality of a dialogue manager has to be evaluated measuring the over-
all outcome of the dialogue, evaluating the modules that compose an SDS or VUI
independently can be useful — e.g. to compare different models. As DST is a su-
pervised learning task, its performance can be evaluated in an independent test
set of dialogues with annotated dialogue states, simplifying the comparison be-
tween different state trackers. The first DSTC (Williams et al., 2013) defined a
large set of metrics useful to evaluate the DST performance, while the second and
third challenges (Henderson et al., 2014a,b) identified the most useful ones: state
tracking accuracy and L2 measure. State tracking accuracy computes the percentage
of turns in which the top hypothesis of the output of the dialogue state tracker
(the belief state) corresponds to the true dialogue state or user goal. L2 measures
the L? distance between the belief state and a vector of zeros with 1 in the position
of the correct hypothesis, indicating the quality of the full probability distribution
outputted by the tracker.

The DSTCs also defined two possible schemes to annotate the true dialogue
state in each turn, named scheme A and scheme B. Under scheme A, each com-
ponent of the state is defined as the most recently asserted value given by the
user. The “None” value is used to indicate that a value has not been given yet.
In Scheme B, labels are propagated backwards through the dialogue; the label at a
current turn for the dialogue state is considered to be the next value that the user
indicates. This labelling scheme is designed to assess whether a tracker is able to
predict the users intention before it has been stated.

In addition, the DST challenges also define two schedules which are used to
decide which turns to include when computing each metric. Schedule 1 includes
every turn, while Schedule 2 only includes a turn if any SLU hypothesis up to
and including the turn contains some information about the component of the
dialogue state in question, or if the correct label of that slot is None. Schedule
2 aims to evaluate only the dialogue turns in which the user has given enough
evidence to know which the true user intention is.






Chapter 3

Statistical DM for personalised
voice user interfaces

Voice User Interfaces (VUIs) are a very attractive alternative to conventional inter-
faces for people with severe physical disabilities who also suffer from dysarthria,
but the low performance of the ASR poses a challenge when implementing these
interfaces. Even if the adaptation of acoustic models to the user has been shown
to improve the ASR accuracy for dysarthric speakers, the error rate is still high
for users with moderate to severe dysarthria (Christensen et al., 2012a). POMDP
based statistical DM has been shown to improve dialogue interaction performance
in high ASR error rate conditions, making it a very attractive framework for VUIs
developed for dysarthric speakers. Some small scale research has already been
done on applying this framework to interfaces for speakers with mild to moderate
dysarthria (Li et al., 2013).

One of the keys to improving the ASR performance with dysarthric speakers
is the personalisation of the models to the specific speakers and systems. The
acoustic models are adapted using speaker-specific acoustic data and the language
model is restricted so the ASR recognises only the vocabulary of the specific task
(Christensen et al., 2012a). Research in machine learning based DM, however, has
usually focused on user-independent systems. In these systems, it is assumed that
all the users have similar characteristics. Thus, a general model is trained using
data coming from several speakers and this model is used by any speaker. Outside
the work presented in this thesis, very few studies (and only very recently) have
researched user adaptation for policy optimization (Chandramohan et al., 2014,
Genevay and Laroche, 2016). User adaptation of dialogue management models,
however, is a very promising area of research with many potential applications,

such as personal assistants, smart homes and in-car control systems.
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In addition, DM models based on machine learning usually assume a static
environment. This means that the characteristics of the user, ASR and other mod-
ules of the environment do not change over time. However, if the ASR is adapted
online with user-specific acoustic data gathered through interaction with the VUI,
the environment dynamics will change over time and the DM will have to adapt
to these changes. It has also been shown that a user who interacts with a system
during a long period of time can adapt his/her pronunciation and behaviour to
adapt to the system (Christensen et al., 2015), which from the point of view of the
DM will be reflected as a change in the environment dynamics.

Nowadays, most assistive VUIs use rule-based dialogue managers (Christensen
et al., 2013b, Vacher et al., 2011, 2015). However, statistical dialogue management
in the form of POMDP-based models can be a better approach due to its greater
adaptability to the characteristics of each speaker and to changes in the environ-
ment. In addition, the higher adaptability of POMDP dialogue managers can
widen the range of the optimal operating point in a homeService (hS) system (see
section 2.1.1) due to the ability of these models to adapt the policy to the ASR per-
formance. If the ASR error rate is high, the policy will be more conservative — i.e.
the number of grounding questions1 and confirmations will be higher. Then, when
the ASR error rate decreases, the policy will be more straight-forward. However,
there are some important differences between the “typical” DM environment and
a personalised VUI environment, which need to be taken into account to integrate
POMDPs in personalised VUIs.

In this chapter, the characteristics of VUIs environments for assistive technolo-
gies are described, highlighting differences with the typical SDS environments.
In addition, the performance improvement that can be obtained using model-
based POMDP DM is explored, identifying the possible scenarios that can arise
in personal VUIs for assistive technologies which are not seen in typical SDSs.
In the first section, the “homeService environment” is presented and analysed,
the personalised VUI environment in which all the experiments presented in this
thesis are performed and evaluated. In section 3.2, different approaches to repre-
sent the dialogue state in a hS system are proposed and in section 3.3 a tractable
model-based policy optimization is developed. Sections 3.4 presents experiments
performed with the tractable model-based policy, analysing its performance in the
special scenarios that might arise when interacting with personalised VUIs. The
last section presents conclusions and reviews the POMDP-DM aspects that need
to be adapted to personalised VUI scenarios, which will be researched in the next

!Grounding questions are any kind of questions used to disambiguate about any piece of infor-
mation given by the user, such as confirmations or requests to repeat commands.
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chapters.

3.1 The homeService environment

As explained in section 2.1.1, hS is a project where users with disabilities, who
also suffer from speech disorders, are being provided with speech-driven environ-
ment control interfaces and interact with them in a longitudinal study. The users
can interact with these VUIs by speaking single word commands, using them to
control their home devices such as the lights or the TV. The screen of a tablet
provides information about the state of these devices and shows the commands
to control them. Figure 3.1 shows a picture of a hS system and its main compo-
nents set up in a users home. In this project, the users effectively become part
of the research team, discussing about the design and specifications of their per-
sonal system, such as the devices they want to control and the commands they
want to utter to control them. The researchers work with the users to close the
“virtuous circle”, establishing an initial “operating point” for each user depending
on their dysarthria severity: a VUI with a vocabulary small enough that a good
performance can be expected from the ASR and yet sufficiently useful so that the
user’s interest is maintained. Working in an optimal operating point will keep the
user engaged, letting the system collect more acoustic data and thus, letting the
ASR acoustic model be adapted to improve its performance. Once the ASR per-
formance is good enough, the vocabulary can be extended to let the VUI control
more devices. The personalisation to each user (in the commands they use, the
ASR acoustic models and to the dysarthria severity of the user) makes hS the
perfect scenario to study the personalisation of DM models. In the next subsec-
tion, the architecture of a hS system from the point of view of the Reinforcement

Learning (RL) framework is analysed.

3.1.1 hS from a Reinforcement Learning DM perspective

Figure 3.2 shows a schematic representation of the homeService system from an
RL point of view. Following an RL approach, the dialogue manager acts as the RL
agent which interacts with the RL environment, composed by the user plus the rest
of the VUI components. The VUI components that are part of the environment
can be clustered into two modules: the speech understanding system (the ASR)
and the response generator.

Note that, in contrast to other typical SDSs, in hS there is no Spoken Language
Understanding (SLU) system in the environment. For dysarthric speakers, it is
difficult to articulate long sentences (Kim et al., 2008). Thus, the ASR is set up to
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’

Figure 3.1: Picture of a hS system set up in a users home (using rule based DM). The
tablet gives the user feedback about the actual system state and shows the list of commands
that he/she can utter.

recognise only single word commands and to output an N-best list of words with
confidence scores. This configuration improves the accuracy of the decoder as the
space of classes to search from is constrained, making ASR usable for moderate
and severe dysarthric speakers (Christensen et al., 2012a). It can be considered that
the SLU is a one-to-one mapping from keywords appearing in the ASR output to
SLU concepts, because the output of the ASR already lies in the space of concepts
used as input by the state tracker.

The responses generated by the hS environment are also different to the usual
responses of SDSs. The system includes a loudspeaker to output grounding ques-
tions if necessary, but most of the times the actions taken by the system will be
commands to the home devices, which will be reflected in the tablet and in the
actual home devices being controlled. The tablet acts as a personalised visual
interface for the user, displaying a representation of the system state and the op-
tions available for the user (the commands that the system can take as input in
each turn).

The dialogue manager (RL agent) is composed of a dialogue state tracker and
a dialogue policy as in typical SDSs. As previously mentioned, the input to the
state tracker in each dialogue turn is an N-best list of command hypotheses with

associated confidence scores (the ASR output), plus the last action taken by the
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Figure 3.2: Schematic representation of the homeService environment interacting with a
Dialogue Manager (agent) from a Reinforcement Learning perspective. The orange box
shows the modules belonging to the environment and the blue box the modules belonging
to the agent.

DM. The policy can output grounding questions through the loudspeaker, or ac-
tions that change the state of the devices through an infra-red emitter. Possible
dialogue state representations for the dialogue manager are discussed in section
3.2.2.

3.1.2 Adaptive ASR for dysarthric speech

As explained in section 2.2.1, the most promising approach to make ASR usable by
dysarthric speakers is to use speaker-specific data to adapt speaker independent
acoustic models. In Christensen et al. (2012a), a comparison of different adaptation
techniques is presented, showing that Maximum A Posteriori (MAP) adaptation
(Gauvain and Lee, 1992) is one of the most promising approaches for dysarthric
ASR. This study presents accuracy results on the UASpeech task (Kim et al., 2008),
using the whole vocabulary (455 words) and about 40 minutes of acoustic data
from each speaker to adapt the acoustic models. In a hS environment, however,
the amount of speaker-specific data used to adapt the acoustic models varies, in-
creasing as the user interacts with the system and more data is collected. In addi-
tion, the size of the command vocabulary of the system (the amount of words the
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Speaker Speech intelligibility | Dysarthria diagnosis | Data amount
MO04 Very Low (2%) Spastic 13.30
F03 Very Low (6%) Spastic 19.11
M12 Very Low (7.4%) Mixed 16.07
MO1 Very Low (15%) Spastic 10.0
MO07 Low (28%) Spastic 18.69
F02 Low (29%) Spastic 18.84
M16 low (43%) Spastic 16.19
MO05 Mid (58%) Spastic 18.42
F04 Mid (62%) Athetoid (or mixed) 18.57
M11 Mid (62%) Athetoid 16.38
M09 High (86%) Spastic 18.42
M14 High (90.4%) Spastic 19.34
MO8 High (93%) Spastic 18.38
M10 High (93%) Undetermined 19.19
F05 High (95%) Spastic 19.0

Mean Very Low 7.6% Spastic 14.62
Mean Low 33.3% Spastic 17.91
Mean Mid 60.6% Athetoid 17.79
Mean High 91.5% Spastic 18.87

Mean All 47.2% Spastic 17.33

Table 3.1: Statistics of each speaker in the UASpeech database. The intelligibility is the
percentage of words that can be understood by unfamiliar speakers. The data amount
shows the mean repetition count for each word by that speaker (excluding the uncommon
words).

language model is constrained to recognise) will affect the ASR performance too.
In this section, the effect of having access to increasing amounts of speaker specific
data to adapt the acoustic models with different vocabulary sizes is studied. The

UASpeech database is used to perform these experiments.

UASpeech database

UASpeech (Kim et al., 2008) is by far the largest database of dysarthric speech
suitable for training acoustic models for ASR. It contains speech recordings from
15 different speakers (4 female and 11 male). The recordings are composed by 5
groups of single words: 10 digits, 29 NATO alphabet letters, 19 command words
(“back”, ‘shift”, etc.), 100 common words (“that”, “she”, etc.) and 300 uncommon
words chosen to be phonetically rich. In total, the database contains around 70
minutes of speech for each speaker. A detailed description of the statistics of the
database with the description of each speaker is presented in table 3.1 and full
details of the corpora can be found in Kim et al. (2008). The database also con-
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tains some meta-data, such as the gender (first column, “M” or “F” in the speakers
name indicates Male and Female, respectively) or the type of dysarthria of each
speaker (third column). Another important meta-data annotation is a speaker in-
telligibility measure! (second column). These range from 4% to 95%. The speakers
are clustered in four groups depending on their intelligibility measures (shown by
different colors in the table); very low, (2% to 15%, 4 speakers, grey); low, (28%
to 43%, 3 speakers, red); mid, (58% to 62%, 3 speakers, blue) and high, (86% to
95%, 5 speakers, green). The last column in the table shows the amount of data
available per speaker, represented by the mean repetition count for each word in

the vocabulary (excluding the uncommon words).

Effect of the amount of adaptation data and vocabulary size on ASR accuracy

MAP adaptation (Gauvain and Lee, 1992) has been shown to be a successful way
of establishing acoustic models when faced with limited amounts of data from a
given speaker. In Christensen et al. (2012a), MAP was shown to be a very promis-
ing approach to acoustic modelling for dysarthric speech, but it was only evalu-
ated with fixed (large) amounts of adaptation data and fixed vocabulary sizes. In
this section, a set of ASR experiments is performed using the UASpeech database
to evaluate the effect of varying the amount of acoustic data used for MAP adap-
tation and the vocabulary size, using the same ASR configuration as Christensen
et al. (2012a). The data is encoded in a 39 dimensional feature vector of PLP
features with added first and second order time derivatives. The maximum likeli-
hood criterion is used to train the HMMs. State-clustered triphones are used with
Gaussian mixture models with 16 components per state. As the database consists
of single word recordings, a uniform language model containing only the words
in the database vocabulary is used. To study the performance with different vo-
cabulary sizes, the amount of words in the language model is varied; 455 words
(all vocabulary), 155 words (all except the uncommon words), 119 words (com-
mands and uncommon words) and 36 words (digits and NATO vocabulary). For
each of the 15 speakers in the database, a speaker independent model is trained
using data from the other 14 speakers. These speaker independent models are
adapted with different amounts of speaker specific data to simulate the effect of
having access to increasing amounts of data collected through interaction with the
user. The amount of data used to adapt the models is measured in “single word
recordings”, varying for each vocabulary size.

The ASR accuracy results for these experiments are shown in figure 3.3. Four

IThis measure is based on the percentage of correctly transcribed words obtained by five unfa-
miliar listeners.
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Figure 3.3: Effect on accuracy of increasing the amount of data for MAP adaptation for
different vocabulary sizes and for different intelligibility groups. The x axis represents the
amount of word recordings used to adapt the acoustic models.

different plots are presented, each of them showing the results with a different
vocabulary size: 455, 155, 119, and 36. The y axis shows the ASR performance
and the x axis the amount of single word recordings used to adapt the acoustic
models (note that these amounts are different for each vocabulary size). The four
lines plotted show the mean and standard deviation for each of the four intelligi-
bility groups (Very Low, Low, Mid, and High). Analysing the results, three main
observations can be made:

e The performance is highly dependent on the dysarthria severity (or intelligi-
bility). The performance of the Low and Mid speakers is similar, so a further
clustering into three groups can be made: Very Low intelligibility speak-
ers, Low and Mid intelligibility speakers and High intelligibility speakers.
The ASR accuracy for each of these groups is very different from the others,
suggesting that a DM optimised for one group will not be optimal for the
others. The high variance shown by the Very Low and Low-Mid groups also
suggests that the DM should be personalised to each speaker.

e There is a strong correlation between the amount of acoustic data used for
adaptation and the ASR accuracy. When the amount of speaker-specific data
is small (Which would correspond to the initial usage stage of a hS system),
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Figure 3.4: Effect on NCE of increasing the amount of data for MAP adaptation for
different vocabulary sizes and for different intelligibility groups. The x axis represents the
amount of word recordings used to adapt the acoustic models.

the relation is lineal, however, as the amount of data increases, the accuracy
improvement begins to decrease until it converges. This suggests that the
environment will be variable in the initial stages of the usage of a system,
until there is enough data so the ASR accuracy converges.

e The performance is very dependent on the vocabulary size, not only on ac-
curacy but also on the amount of acoustic data required to reach the conver-
gence point.

In addition, the quality of the confidence scores is analysed. To do so, Nor-
malised Cross Entropy (NCE) has been shown to be a good confidence score qual-
ity measure (Thomson et al., 2008). Figure 3.4 shows the NCE results for the
same speakers and vocabularies presented in figure 3.3. It can bee seen that the
NCE scores are very correlated with the ASR accuracy, with a Pearson correlation
coefficient of 0.99. To visualise this correlation more clearly, figure 3.5 plots the
NCE scores versus the accuracy for all the intelligibility groups and vocabularies.
Therefore, the conclusions obtained from the figure showing the ASR accuracy can
also be applied to the confidence scores.

The main conclusion that can be drawn from the experiments in this section
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Figure 3.5: Scatter plot of NCE scores versus the accuracies for the four intelligibility

groups and for the four vocabulary sizes. The Pearson correlation coefficient is 0.99.

is that the optimal vocabulary size depends on the speaker characteristics and on
the amount of acoustic data available for adaptation. This is closely related to
the “optimal operating point” described in the homeService project (section 2.1.1),
suggesting that different speakers will have different optimal operating points.
For the Low-Mid intelligibility group, a 36 command vocabulary seems to be a
good operating point, as it reaches a good convergence performance after collect-
ing only 300 words. The performance when the ASR is not adapted, however,
could be insufficient to maintain the user engaged, which is a key issue in hS
systems. POMDP-based dialogue management, due to its increased robustness in
ASR challenging environments, could help to improve the system performance in
this stage, keeping the user engaged until enough acoustic data has been collected.
Nevertheless, 36 commands are enough to control a simple but useful system and
it would avoid the need to collect large amounts of enrolment data, which may be
infeasible for a dysarthric user. In addition, most of the speakers recruited for the
hS project are within the Low and Mid intelligibility groups (Christensen et al.,
2015). Because of all the aforementioned reasons, the DM experiments presented
in this thesis will be conducted in a 36 command vocabulary simulated hS system.

This system is described in section 3.2.
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3.1.3 Dialoge Management differences with other Spoken Dialogue Sys-
tems

Most of the existing assistive VUIs use rule-based dialogue managers to control the
dialogue flow (Christensen et al., 2013b, Vacher et al., 2011, 2015). The main reason
for this is that the interaction with these systems is simple enough to hand-craft the
set of rules to control them. In the case of VUIs developed for dysarthic speakers,
however, a mechanism to deal with the poor ASR performance can be very useful.
The POMDP dialogue management framework has been shown to improve the
interaction performance in poor ASR conditions (Young et al., 2013), thus it is a
very interesting option to control the dialogue flow in the hS environment.

The POMDP-DM framework, however, has mostly been studied in the context
of SDSs designed to provide information about a specific topic, such as restaurant
information (Young et al., 2010) or bus schedule information (Raux et al., 2005).
The analysis done in section 3.1.2 suggests that, when modelling the DM of home-
Service as a POMDP, some differences with typical SDSs have to be taken into

account:

e There are large differences between the speech characteristics of the users.
Therefore, a dialogue manager that works well with one user might not
work well with another. A framework which is portable for different users

is necessary.

e The environment dynamics vary over time. This means that the DM model

needs to be adapted to the environment changes as they occur.

e The system will be used by a single speaker over a long period of time.
Therefore, larger amounts of user specific dialogue data will be available as
the user interacts with the system. This opens the possibility for online user
adaptation.

In the following sections, a POMDP model suitable to be used in assistive VUIs
is presented, as well as a dialogue framework to test the performance gain that can
be obtained using POMDP dialogue management in a homeService system.

3.2 Dialogue design and evaluation framework for hS en-

vironment

To evaluate the performance of POMDP-based dialogue managers, a framework

in which dialogues with an hS system can be carried out must be developed. In
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this section, a simulated homeService system with a vocabulary of 36 commands
designed to control several devices in a home! is presented. In addition, tractable
dialogue state representations for these kind of systems are proposed and a set of

simulated dysarthric users is developed to interact with the system.

3.2.1 Dialogue ontology

As mentioned in section 2.5.1, an ontology defines the set of devices the system can
control and its functionalities. Figure 3.6 shows the dialogue ontology used by
the hS system presented in this section. The users can control four devices (“tv”,
“light”, “bluray” and “hi-fi”) by selecting the functionalities they want to control
“on”, “guide”, etc.), which sometimes can take specific values (“up”, “five”, etc.).
The possible user goals in this system are defined by the paths to leaf nodes in
figure 3.6 (e.g. “tv-channel-two”, “light-on”, “bluray-menu-right”). There is a total
of 63 goals. Note that many of the values and functionalities are repeated for sev-
eral devices (e.g. “on”, “up”), meaning that the system can perform more actions
(goals) than the number of commands used to control it. The ASR vocabulary also

includes meta-commands such as “yes”, “no” and “back”.

3.2.2 Tractable dialogue state representation for hS

One of the most important tasks when implementing a dialogue manager is the
design of the dialogue state representation. This representation is usually derived
from the ontology, which defines all the actions that the dialogue system can per-
form (figure 3.6). Designing the dialogue state representation, however, usually
requires some sort of hand-crafting (Raux et al., 2005, Young et al., 2010). As a
probability distribution over this representation (the belief state) is the input for the
dialogue policy, it has to be precise enough to distinguish between all the different
dialogue situations possible. On the other hand, it also has to be represented in
a structure as compact as possible to maintain the system tractability, because in
some systems the number of different dialogue situations can be extremely large.
In the following subsections two tractable dialogue state representations for hS

systems are proposed.

Slot-based architecture

Slot-based architectures are the most common approach taken by SDSs to repre-
sent the dialogue state (Henderson et al., 2014a, Williams et al., 2013). This repre-

IThe architecture of this system is similar to the architecture of the system described in Chris-
tensen et al. (2013b).
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Figure 3.6: The complete control tree (ontology) of the simulated hS system. The blue
squares represent the devices, the green ones the functionalities of the devices and the red
ones the values these functionalities can take.
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sentation is inspired by slot filling systems (Mesnil et al., 2013, Price, 1990), where,
firstly, a set of slots is defined. Then, a set of mutually exclusive values is defined
for each slot and in each turn, each slot will take a value from its corresponding
set. In slot-based architectures, the value of each slot is usually inferred indepen-
dently in each dialogue turn and the joint dialogue state is defined by combining
the values of the different slots. In other words, the inference of the dialogue state
is factorised into the inference of the value for each of the slots, assuming condi-
tional independence between slots. One advantage of using this representation in
information gathering dialogue systems is that the slots can be easily derived from
the ontology, reducing the amount of hand-crafted effort required in the design of
the dialogue state representation.

In the hS environment, however, it is not straight forward to define the slots,
because of the tree structure of its ontology. One possible way to do it is to define
a slot for each level in the command tree (represented by different colors in figure
3.6) and define the set of values of that slot as all the possible commands in that
level. This approach has a couple of shortcomings: when joining the values of
each slot, the resulting dialogue state might be invalid (e.g. “lamp-channel-on”).
In a state tracker that outputs a probability distribution over values of each slot,
this can be fixed by discarding the invalid joint dialogue states and renormalising.
Another shortcoming arises from the fact that the same command can occur in two
different levels of the tree (e.g. “up”). Contrary to other SLU systems (Henderson
et al., 2012, Mairesse et al., 2009), the ASR N-best output does not specify to which
slot the commands correspond. In this case, the dialogue state tracker must rely
on the dialogue history to infer to which slot each command corresponds.

The slot-based architecture has been shown to be a good state representation
approach for several dialogue managers (Raux et al., 2005, Thomson and Young,
2010). However, model-based POMDP solving algorithms are usually intractable
for real sized systems when following this approach (Williams and Young, 2007).
Therefore, the experiments presented in this chapter (and in chapter 4) will use
the tree-based dialogue state representation presented in the next subsection. The
slot-based approach is the dialogue state representation used for the dialogue state

tracking experiments presented in chapter 5.

Tree architecture

In the rule-based dialogue manager used by the hS systems installed in real users
homes (Christensen et al., 2015), the user can navigate through the system in a
hierarchical fashion. For instance, if the user wants to change the TV channel to
“five”, the sequence of words to utter will be “TV"”, “channel”, “five”. This mode
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Figure 3.7: Example of a hierarchical navigation tree used to control a homeService sys-
tem.

of interaction is known as system initiative, where the system prompts a series of
commands the user can utter thus constraining the number of actions the user
can take. The contrary approach would be mixed initiative systems, where the user
can utter the actions in any order, and the system usually intervenes to ask for
missing information pieces or clarifications. Usually POMDP dialogue systems
are designed to interact in a mixed initiative fashion.

As the most critical issue to deal with in a hS system is the high ASR error rate,
it is possible to sacrifice the mixed initiative capability of the system to reduce the
complexity, while still using the POMDP framework to increase the robustness
against poor ASR performance. To do so, the hierarchical structure of the system
is used to organise the dialogue manager: the control architecture of the system is
organised in a tree setup as shown in figure 3.7. The system is then modelled as
a finite state automaton, where each node represents either a device (e.g. “TV”),
a functionality of that device (e.g. “channel”), or actions that trigger some change
in one of the devices (e.g. “1”, child of “channel”, will change the TV to the first
channel). When the system transitions to one of the terminal nodes, the action
associated with this node is performed, and subsequently the system returns to the
root node. In the remaining nodes, the user may either say one of the commands
available in that node (defined by its children nodes) to transition to them, or
say the meta-command “back” to return to its parent node. Therefore, each non-
terminal node can be considered as an independent sub-dialogue, whose task is
to decide to which node the system will transition to. This idea is similar to
hierarchical RL (Cuayahuitl et al., 2010, Dietterich, 1998), with the difference that
only the decisions taken in the nodes of the hierarchical tree are optimised by RL,

while the navigation through the tree follows simple rules. The idea behind this
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architecture is that the “complex” decisions! taken by hS systems, are related to
accept the last command observed from the user as true or ask for clarifications,
while the decisions related to the navigation through the system tree are simple
once the true user command is known. Following this architecture the interaction
mode will be system initiative, because the number of actions the user can take is
constrained by the commands shown by the system in the tablet.

As mentioned before, the main shortcoming of this approach is that the system
cannot interact in a mixed initiative fashion. However, it considerably reduces the
complexity of the model, as the state space size for each sub-POMDP will be the
number of children of the node plus one? (12 in the worst case). This makes model-
based POMDP algorithms tractable. This approach is used for the experiments
done in this chapter and in chapter 4.

3.2.3 Simulated homeService environment

Deployment and evaluation of spoken dialogue systems is often very costly in
terms of time and resources. When the users suffer from dysarthria and disabili-
ties, the evaluation is even more costly because for these users, speaking requires
a greater effort and they can easily get tired. The development of SDSs requires
many iterations of testing, because hyperparameters of these models need to be
tuned and different DM models need to be compared. This is not a problem in
supervised learning tasks, such as ASR or SLU, because any number of offline
tests can be performed in a held-out evaluation set to compare different models
and settings. However, DM is an optimal control of stochastic dynamic systems task
(Bertsekas, 1995). In such a control task, the actions taken by the user depend on
the actions taken by the system and vice-versa. This means that a dialogue corpus
obtained using a DM model cannot be used to test a different DM model, thus any
new model needs to be evaluated by directly interacting with the environment —
i.e. having dialogues with the user. This is obviously very costly for SDSs® and
it is even more costly if the users have disabilities. An approach often taken in
control tasks for the early deployment of systems and parameter tuning is to cre-
ate a simulated environment, a model that can simulate the signals that would be
observed from the environment by the agent (Asada et al., 1999, Matari¢, 1997). In
the case of SDSs, this environment is often called a Simulated User (SU) (Eckert

1“complex” not only because the dysarthric speech, also because these decisions should be

different depending on the dysarthria severity of the user.

2The extra dialogue state is the state “back”, which denotes the users intention of transitioning
to the parent node.

3Even if, thanks to crowdsourcing tools such as the Amazon mechanical turk, the cost of evaluating
SDSs has been reduced (Jurcicek et al., 2011).
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et al., 1997, Georgila et al., 2006, Schatzmann et al., 2007a, Thomson et al., 2012).

The objective of this chapter is to evaluate to what extent can the POMDP-DM
framework improve the performance of a personalised VUI, as well as making this
framework usable in the scenarios described in section 3.1.3. To do so, the most
appropriate! approach is to develop a simulated environment that can emulate
the dynamics that will be found in the hS scenarios. This environment has to be
able to simulate the interaction with dysarthric speakers with different severities
as well as the interaction with an ASR system whose performance improves over
time (like in figure 3.3). This is equivalent to developing a set of different sim-
ulated environments (corresponding to different speaker-ASR pairs), in contrast to
the usual SDS approach in which a single environment is designed®. Once the
simulated environments have been developed, several POMDP-DM models can
be compared with rule-based dialogue managers and evaluated interacting in the
different environments.

Therefore, a set of speaker specific simulated users (SUs) have been built with
the purpose of testing the system, where each SU simulates a speaker-ASR pair.
15 different dysarthric speakers are simulated (corresponding to the 15 dysarthric
speakers in the UASpeech database) and each speaker interacts with 11 different
ASRs (corresponding to acoustic models adapted with a number of words that
ranges from 0 to 500, with a 50 word increase in each step). This gives a total of
165 speaker-ASR pairs (environments) that can be evaluated.

The simulated environment (shown in figure 3.8) is factored into two models:
The behaviour model and the ASR channel model. The behaviour model simulates the
decisions taken by the user in each dialogue turn, while the ASR channel model
simulates the distortion introduced to the true user action by the ASR channel
(which depends on the dysarthria severity and the amount of data used to adapt
the ASR). More formally, in each dialogue the user has a fixed goal ¢ € G, where
G is the set of possible goals. In each turn ¢, an observation w; is generated by the

simulated environment given the user goal and the user dialogue history h} as:
P(wt|g, hi) = P(us|g, hf) P(wi|us) (3.1)

Where u; is the true user action or command, P(u;|g, h¥) is the behaviour model?,

P(w¢|uy) is the ASR channel model and wy = (@i, ¢;) = (i1, ) B, CtA, ver Co)

! Appropriate because, if every developed model was evaluated with real users, the time spent
doing the evaluations would have been infeasible.

2Although it is usual to simulate these environments in different ASR noise conditions (Thom-
son et al., 2012).

3Note that as the behaviour model is deterministic, P(u|g, h}') will be 1 for one user action and
0 for the rest, thus there is not need to sum over all user actions.
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Simulated environment Agent
Word
N-best list

Belief state

action

System
action

Figure 3.8: Schematic representation of the homeService simulated environment interact-
ing with the dialogue manager.

is an N-best list of command hypotheses with normalised confidence scores of
length n. The user history hy is the sequence of actions taken by the user and the
actions observed from the system up to turn ¢.

In the next section the user behaviour model and the ASR channel model are
explained in more detail. The set of simulated users described in this section is
used in section 3.4 to evaluate several POMDP models and to compare them with
rule-based dialogue managers.

User behaviour model

The user behaviour model, P(u;|g, h}), decides which is the next action u the
user will take given the user goal g and the user dialogue history hf. The user
dialogue history is all the information seen in the dialogue so far from the user’s
point of view, e.g. all the machine actions and true user actions. An agenda-
based simulation approach (Schatzmann et al., 2007a) has been followed to build
this model, with some simplifications. Firstly, it is assumed that the user will not
change his goal during a dialogue: at the beginning of each dialogue, a user goal
g is randomly generated (e.g. TV-Channel-Five) from the set of possible goals G,
and this goal will stay fixed until the dialogue ends. Secondly, the user action is
assumed to depend only on the last system action rather than on all the dialogue
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history. Following these assumptions, the behaviour model is approximated as:
P(ut|g, hy') ~ P(ut|g, ai-1) (3.2)

where a;_1 is the action taken by the system in the previous turn.
The behaviour model is deterministic and the generation of the user action
follows the following set of rules:

o If the system is waiting for a command input, the SU will say one command
of the goal (not previously said) per turn.

o If the system asks the user to repeat his last command, the user will do so.

e If the system has transitioned to a wrong state, the user will say the meta-
command “back”!.

o If the system asks a confirmation question, the user will answer yes/no.

It is assumed that the user knows how the control system works, (i.e. knows
which command to utter in each turn to fulfil his goal) and is fully collaborative
with the system (e.g. if the system asks to repeat his last command, the user
will repeat it, even if it is asked three times to do so). In the following experi-
ments, the behaviour model of each user is assumed to be the same?. The reason
for this is that the research question trying to be answered depends on the user
dysarthria severity and on the amount of data used to adapt the ASR, not in the
user behaviour. In appendix B, the configuration of the user behaviour model is
explained in more detail. The dysarthria and ASR simulation models (the ASR
channel) are explained in the next subsection.

ASR channel simulation model

The true action or intention of the user has to travel through a channel before
reaching the dialogue manager as an observation. This channel is composed by
the user’s speech generation system (which depends on the dysarthria severity)
and the ASR (which depends on the amount of data used to adapt it). The ASR
channel model, P(w;|u;), simulates the noise introduced to the true user action or

user command u; by this channel. In other words, the ASR channel model converts

IThis can only happen if the tree-based dialogue state representation is used.

%In the state tracking experiments performed in section 5, different user expertise levels are
simulated by including a probability for the user to say a wrong command, simulating that the user
does not totally know which commands have to be used to control the system. Refer to appendix B
for a more detailed description.
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the true user action u; into an N-best list of noisy user action recognitions with
confidence scores w;.

A different ASR channel simulation model is trained for each speaker-ASR pair
and its parameters are learnt from the statistics obtained from the speech recog-
nition experiments done in section 3.1.2. The ASR channel model is trained us-
ing half of the N-best outputs obtained in these experiments'. Due to the small
amount of data available for training, directly modelling the distribution of the
N-best lists with confidence scores would be infeasible. To deal with the data
sparsity problem, the ASR channel model is factorised by assuming conditional
independence between the commands of the N-best list and the confidence scores

given the true user action:

n n
P(w|u) = P(1,clu) ~ HP(ﬁi]u) HP(ci\i) (3.3)

i= i=
where i is the position in the N-best list. Following the approach taken by Williams
et al. (2005), two probability distributions for the confidence scores are learnt:
P(cili) = Peor(cili) if i1; = u (if the confidence score corresponds to the true user
action) and P(c;|i) = Piu(ci|i) otherwise. The distribution for the generation of
words in the N-best list P(#;|u) is learnt from the weighted confusion matrix statis-
tics obtained from the experiments in section 3.1.2. However, due to the factorisa-
tion, the model might generate invalid N-best lists (e.g. repeating a command in
two positions of the list). Therefore, after generating w;, the N-best list must be

post-processed to satisfy three constrains:
e Two commands cannot be repeated in the N-best list: @; # @;Vj # i

e Each confidence score must be less or equal than the confidence scores above
it in the N-best list: ¢; > ¢; Vi > j

e The confidence scores must sum to one: Y/ ;¢; <1

A more detailed description of the ASR channel simulation model is given in
appendix B.

Note that the generation of w; is independent of the time step f; the ASR or
the user do not produce different outcomes depending on the dialogue turn. This
is the case in many ASR systems, although some systems are beginning to include
context dependant ASR systems; systems where the ASR decoding depends on
the dialogue state (Jonson, 2006).

IThe other half is used to train the POMDP models used in section 3.3. This is done to maintain
independence between the training and testing data
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Sampled ASR simulation

An alternative approach to sampling w; given the true user action by training a
generative model, is to directly sample from the actual N-best list produced by the
ASR in the experiments of section 3.1.2. This method will generate more realistic
ASR simulations since it does not have to assume independence between the N-
best list and the confidence scores. However, the amount of data available in the
UASpeech database is small, so the variability of the sampled N-best lists will be
too small (the same observations would be sampled again and again). To solve
this, a data augmentation approach can be taken by increasing and decreasing
the speech rate of the recordings by a small amount, generating more (synthetic)
data. This approach has been shown to improve ASR accuracy when used to
increase the amount of training data in low resourced languages (Ragni et al.,
2014). This approach is used in the dialogue state tracking experiments performed
in chapter 5, because some of the experiments also need to sample the phone

posterior probabilities outputted by a neural network feature extractor.

3.3 POMDP-based dialogue management for hS

The main concern when interacting with dysarthric speakers is the low perfor-
mance of the ASR, which is not only worse than the average, but also has a
high variation between different speakers. The POMDP-DM framework has been
shown to improve dialogue interaction robustness when dealing with high error
rate ASR systems (Young et al., 2013), so it naturally fits into dialogue interaction
with dysarthric speakers. It is also a data driven method, meaning that the models
can be learnt from (or adapted with) user specific data, which can deal with the
problem of high variability between speakers. In this section, a tractable model-
based RL method to optimise the policy of a dialogue manager in a command
based VUI is proposed.

Following the tree-based dialogue state representation proposed in section
3.2.2, the scalability (and data sparsity) problems of model-based RL methods
can be solved. To do so, an independent POMDP is defined for each non-terminal

node in the control tree with the following specifications:

e The set of states S is the set of available commands (children) in the node,
plus a state for the meta-command “back”, which denotes that intention of

the user is to transition to the parent node.

e The set of actions A is composed by the actions to transition to each child

node, a “back” action (which performs a transition to the parent node) and
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an “ask” action which requests the user to repeat his last command.

o The set of observations () is the set of commands the ASR is able to recognise
(the command vocabulary).

The main advantage of this DM design, is that it enables the study of the ro-
bustness provided by the POMDP-DM framework against ASR errors, while main-
taining the system tractability. Following this system design, the flexibility given
by mixed initiative systems is sacrificed in order to make the model computation-
ally tractable and to require less data to train the model. Recalling section 2.4.1,
POMDPs are factorized into an observation model O(«w’,s’,a) and a transition
model T(s,a,s’). As it is assumed that the user will not change his goal during a
single dialogue and will collaborate with the system, the transition model is trivial
and can be hand-crafted (Williams and Young, 2007). Therefore, only the obser-
vation model needs to be trained from data. In the next subsections the dialogue

state tracking model and the policy optimization algorithms are explained.

3.3.1 Generative Dialogue State Tracking

If it is assumed that the user does not change his or her goal!, the transition
function in equation 2.5 can be modelled as an identity function: P(s;|s;—1,a;—1) is
equal to 1 if s; = s;_; and 0 otherwise. Then, assuming that the observation wy is
independent of the previous system action and that the commands in the N-best
list are independent between them, P(wy|s;, a;—1) can be approximated as the sum
of the probability of observing the hypothesis ii; when the actual user command?
is s, weighted by the confidence score of that command in the observed N-best list
c(7i;). After these assumptions, the typical belief update equation (equation 2.5)
can now be rewritten as:

b(st) =k-b(si—1) ) P(iis]se)c(ir) (34)

Uy

This approach deals with the tractability problems that many model-based algo-
rithms face in dialogue management, where the number of observations can be
infinite (Gasi¢, 2011, Williams et al., 2005).

lthis is a reasonable assumption in some systems, e.g. (Williams and Young, 2007)
2In this case, the user command corresponds to the true user intention in the dialogue, which is
in turn the dialogue state.
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3.3.2 Model-based Reinforcement Learning policy optimization

If the transition model, the observation model and the reward function have been
defined, the optimal policy can be found by using point-based value iteration RL
algorithms (Pineau et al., 2003, Smith and Simmons, 2012) (see section 2.6.1). The
main shortcoming of these methods is that their complexity grows exponentially
with the number of states of the POMDP, which makes them usually intractable
for DM tasks. Due to the tree-based dialogue state representation, however, the
number of states of each sub-POMDP is small enough to be solved by value itera-

tion methods.

3.4 DM experiments in a simulated hS environment

To evaluate the improvement that can be obtained from using the probabilistic
dialogue management framework presented in section 3.3 in a VUI personalised
to dysarthric speakers, a set of experiments are carried in the simulated hS envi-
ronment presented in section 3.2.3. A rule-based DM approach, similar to the one
being used by the hS systems installed in the users homes, is developed to serve as
baseline. To evaluate the performance of the POMDP framework in different envi-
ronments, the systems are tested with the 15 different simulated dysarthric speak-
ers interacting with the ASR adapted with increasing amounts of data. POMDP
dialogue managers trained with different data configurations (e.g. speaker spe-
cific data only, data from other speakers, data from different ASRs, etc.) are also
compared. These different models are trained to get an insight of the performance
of the POMDP-DM framework in scenarios that are specific to VUIs personalised
to dysarthric speakers.

3.4.1 Experimental setup

The system uses the tree-based dialogue state representation described in section
3.2.2. For the POMDP-based dialogue manager, the state S, action A and observa-
tion () set for each non-terminal node is defined as explained in section 3.3. The
immediate reward function in each node is defined as follows: -1 for the “ask”
action, +10 for any transitioning action if it corresponds to the user goal (correct
terminal action for the node) and -10 otherwise. This is a reward function mod-
elling approach widely used in task oriented dialogue management (Gasi¢, 2011,
Pietquin et al., 2011, Williams and Young, 2007, Young, 2000) which aims to trade-
off between dialogue success rate and dialogue length. The ratio between the
reward for successful dialogue completion and the turn penalty determines the
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Table 3.2: Example homeService dialogue using the tree-based POMDP architecture. The
goal of the dialogue is “TV-Volume-Up”.

Dialogue starts in node “Devices”

Sub-dialogue “Devices”

User TV (Speaks the command “TV”)
System | Node-TV (Dialogue transitions to node “TV”)

Sub-dialogue “TV"
User Channel (Speaks the command “Volume”)
System | Ask (Requests the user to repeat his last command)
User TV (Repeats his last command)
System | Node-Channel (Dialogue transitions to node “TV-Volume”)

Sub-dialogue “Volume”

User One (Speaks the command “Up”)

System | Ask (Requests the user to repeat his last command)
User TV (Repeats his last command)

System | Node-One (Performs action TV-Volume-up)

As an action has been taken in a terminal node, the dialogue ends. As the action
taken in the terminal node matches the goal, it is a successful dialogue.

importance given to each of these dialogue factors. To find the optimal POMDP
policy, the point-based value iteration algorithm is used (Pineau et al., 2003), im-
plemented using the zmdp toolkit!. Table 3.2 shows an example homeService dia-
logue using the tree-based architecture. In appendix A more example homeService

dialogues can be found.

Rule-Based dialogue manager

The objective of the following experiments, is to compare the performance of the
POMDP-based dialogue managers to the rule-based ones —i.e. the dialogue man-
agers used in the hS systems currently installed in users homes. To do so, a
rule-based DM which follows the approach taken by these hS systems is used as
baseline in the following experiments. In each turn, this dialogue manager uses
only information from the local confidence scores to control the dialogue flow. It
performs the top command hypothesis of the observed N-best list if its confidence
score is higher than a threshold, or it asks to repeat the last command otherwise.
This threshold is optimized for each speaker-ASR pair using grid-optimization

Ihttps://github.com/trey0/zmdp
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methods!. If the top hypothesis in the N-best list is not a valid command in
the current node, the system will ask the user to repeat the last command.

POMDP dialogue manager variations

As explained in section 3.3, only the parameters of the observation function of
each sub-POMDP need to be learnt from data. In the following experiments,
these parameters are learnt from the statistics obtained in the speech recognition
experiments presented in section 3.1.2. More precisely, O(«w’,s’,a) = P(w'|s,a)
is assumed to be independent of a and the time-step, becoming P(w|s). This is
a reasonable assumption, because the ASR does not depend on the system action
when it recognises the user command. Then, for each w € Q and s € S, P(w]s) is
defined as the normalised sum of confidence scores obtained for the observation
w when the dialogue state (the true user intention or user goal) was s. In other
words, P(w|s) is defined as the “weighted confusion matrix” whose statistics are
obtained from the experiments presented in section 3.1.2.

In an optimal scenario for personalised DM, these statistics would be learnt
from the speech recognition results of the speaker which will use the system. To
evaluate this scenario, a model trained with data of the speaker which will use
the system, named Speaker Dependant (SD), is tested in the experiments presented
in the next section. However, the scenario where there is enough data from the
user to train the systems is rare, specially in a newly set-up system. A scenario
where there is only data available from other speakers will be more common. To
evaluate this case, a model trained with data from the other 14 speakers, named
Speaker Independent (SI), is also tested. Take into account that the amount of data
used to train the S model is on average 14 times larger than for SD, because data
from 14 speakers is be used instead of from only one?.

In order to analyse more complex scenarios that can arise in a personalised
VU]I, another two training data configurations are also evaluated. To investigate
the effect of the variations in the environment (e.g. ASR improvement over time)
a model is trained with speaker dependent data collected with an non-adapted
ASR. Then, to evaluate the effect of the increasing difference between the training
and test environments, this model is tested interacting with the 11 ASRs adapted
with increasing amounts of data. In the following experiments, this model is
named SD no adaptation. Finally, another scenario likely to happen in hS is also

IThis is because the confidence score distributions are very different for each speaker-ASR pair,
depending on their dysarthria severity.

2The N-best recognition results for half of the recordings in the UASpeech database are used
per speaker, as the other half is used to train the simulated users. Check the statistics in table 3.1 to
see the data amount per speaker.
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evaluated: The DM model is initially trained with speaker independent data (as
in SI), and in every increasing amount of ASR data environment, it is trained
with the same increasing amount of speaker dependent data (plus the speaker
independent data). This model, named SI+SD adaptation, represents an online
adaptation scenario: a scenario where the DM models are adapted as data from
the user becomes available.

Tree-based dialogue manager evaluation

Due to the variable depth tree structure of the spoken dialogue system, the sum
of the accumulated rewards obtained in each sub-dialogue is not a good measure
of the overall system performance. For example, a successful dialogue whose goal
is “TV-Channel-On” would get an accumulated reward of 30 while a dialogue
whose goal is “Light-On” only 20. Using the average accumulated reward in
each dialogue is not a good measure neither, because if the dialogue gets stuck
in a loop going back and forth between two sub-dialogues, the extra amount of
turns spent in this loop would not be reflected in the average of rewards. To
evaluate the dialogue performance in the following experiments, a full dialogue
based approach is taken: the reward obtained is defined as 20 if the dialogue is
successful (or 0 otherwise), minus the number of turns spent to finish the dialogue.
To avoid infinite dialogues, if a dialogue takes more than 30 turns, the dialogue
will stop and it will be considered unsuccessful.

3.4.2 Experimental results

To compare the performance of the different dialogue managers presented in sec-
tion 3.4, a set of experiments has been carried out in the simulated hS environment.
Each speaker-ASR pair is evaluated simulating 5000 dialogues! with each dialogue
manager (including the rule-based baseline) and two metrics are measured: the
dialogue success rate, whereby a dialogue is considered successful if the termi-
nal action carried out by the system matches the user goal?, and the tree-based
dialogue reward defined in the previous section.

Figure presents 3.9 the absolute results in success and reward (with variance),
for four dysarthric speakers corresponding to speakers from different intelligibility
groups (F03, very low, black; F02, low, red; F04, mid, blue; and M08, high, green).

Due to the large number of trials conducted with each dialogue manager, the standard error
of the mean is various orders of magnitude smaller than the difference between the results and
therefore it is not plotted. This is also the case for the experiments in chapters 4 and 5. In some plots,
however, the standard deviation is plotted as it is indicative of the variability between speakers.

%In the tree-based architecture, this means transitioning to the terminal node corresponding to
the user goal.
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Figure 3.9: Reward and success rate for the rule based dialogue manager (baseline),
speaker dependent manager (top right) and speaker independent manager (bottom) for
four speakers. The error bars represent the standard deviation of the reward. The x axis
represents the amount of word recordings used to adapt the acoustic models.
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The x axis represents the number of single-word recordings used to adapt the
ASR. If the results for the different speakers are compared, it can be seen that
the performance differs for each intelligibility group. Firstly, observe how M08
shows an almost perfect performance for any amount of ASR adaptation data.
For the other three speakers, in contrast, it can be seen how the improvement of
the dialogue performance is very correlated with the improvement of the ASR
accuracy shown in figure 3.3, converging after 300 words. After convergence, the
performance for FO2 and F04 becomes very similar to the performance of M0S.
F03, however, shows a performance much lower than the other speakers, with a
very high variance in the reward. In the case of the low and mid speakers, the
high variance behaviour is also observed when the ASR is not adapted, but the

variance decreases as the amount of ASR adaptation data increases.

If the different dialogue managers are compared, it can be seen how the POMDP-
based ones clearly outperform the baseline for the Very Low, Low and Mid speak-
ers. The SD manager also outperforms the SI one, but only by a small margin.
The performance of all the dialogue managers improves as the ASR adaptation
data amount increases, thus the absolute results do not show a clear comparison
of the different managers. The main interest of these experiments is to evaluate
the improvements obtained by each POMDP-based dialogue manager compared
to the baseline in each ASR environment, which can be seen more clearly if the

relative improvement with respect to the baseline is plotted.

Figure 3.10 shows the relative improvement with respect to the baseline of
the SD, SI, SD no adaptation and SI+SD adaptation dialogue management models
(shown in different colors). In order to evaluate the performance of all the speak-
ers, each column shows the mean relative reward and success performance of the
Very Low, Low+Mid and High intelligibility speaker groups respectively. In this
figure, the comparison of the different dialogue managers for the different intelli-
gibility groups interacting with ASRs adapted with different amounts data can be
done more clearly. In the top-left plot (the very low intelligibility speakers) two
different regimes can be observed depending on the amount of ASR adaptation
data. In the first regime (less than 300 adaptation words), the relative performance
is very noisy (specially in the reward), varying abruptly for different ASR adap-
tation amounts and for different models. In the second regime (more than 300
adaptation words) the results are much more stable, showing a high improvement
for all the models except for SI+SD adaptation. For the high intelligibility speak-
ers (the bottom plot), in contrast, the relative performance gain of POMDP-based
models with respect to the baseline is almost none.

The most interesting plot, however, is the one corresponding to the low and
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for the different intelligibility groups and for the four DM variations evaluated. The scale
of the y axis is kept the same for a clearer comparison.
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medium intelligibility speakers (top right), because most of the users recruited for
the hS project are within this intelligibility range (Christensen et al., 2015). The
performance of all the POMDP-based dialogue managers when the amount of
ASR adaptation data is small is much better than the performance of the baseline.
As it was expected, the SD model shows the best performance, but the perfor-
mance of the SI model still outperforms the baseline by a large amount. In the
case of the SI+SD adaptation model, which is a more realistic scenario than the
SD model, its performance is as good as the SD model after collecting only 100
words from the user. Finally, observe that the SD no adaptation model behaves sim-
ilarly to the other dialogue managers when it interacts with a non-adapted ASR,
but its performance quickly falls below the baseline as the ASR is adapted with

increasing amounts of data.

Experiment conclusions

In figure 3.9 it could be seen that the performance of POMDP-based dialogue
managers is very dependent on the speakers” dysarthria severity. On the one hand,
the high intelligibility speaker, M08, showed an almost perfect performance for
any amount of ASR adaptation data. This is because in a 36 word vocabulary, the
ASR accuracy for high intelligibility speakers is high enough to make almost no
mistakes, therefore both rule-based and POMDP-based dialogue managers show
an almost perfect performance. The very low intelligibility speaker (FO3), on the
other hand, showed a performance much lower than the other speakers, with
a very high variance in the reward. The high variability probably means that,
for different user goals, the average length and success of the dialogues is very
different. If the ASR yields very low accuracy for certain commands, which can
often happen for very low intelligibility speakers, the system might get stuck in
some node of the tree-based structure. In a mixed initiative system (e.g. with
a slot-based dialogue representation), the value for the other slots could help to
better track the problematic commands. In the case of the low and mid speakers,
the high variance behaviour observed when the ASR is not adapted is probably
has the same underlying reason.

Figure 3.10 showed a clearer comparison of the POMDP-based models with
the baseline. The very low intelligibility speakers showed a very noisy behaviour
in the regime of small ASR adaptation data amount, but the results became more
stable when the amount of adaptation data became larger. Encouragingly, a large
relative improvement could be observed in both regimes, but, observing the ab-
solute results plotted in figure 3.9, it can be seen that the absolute performance
of the POMDP-based DM is still very poor, especially in the first regime. This
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performance, however, is still better than the performance of the baseline, which
reflects in a very high relative improvement (because the absolute performance of
the baseline is extremely low). It is still encouraging to see that the performance
increase is higher and stable for larger amounts of ASR adaptation data, but it is

not clear if the absolute performance is high enough to make the system useful.

Testing the POMDP-based models with the high intelligibility speakers, on the
other hand, showed almost no performance gain with respect to the baseline. As
explained before, this is due to the fact that the ASR performance is high enough
to have an almost perfect recognition accuracy, so the performance of the rule-
based dialogue manager is almost perfect. The performance improvement that
can be obtained from POMDP-based models is therefore very small.

The most encouraging result is observed for low and mid intelligibility speak-
ers, for which POMDP-based dialogue managers have a much better relative per-
formance when the amount of ASR adaptation data is small. This corresponds to
the initial stages of usage of a system, where it is more important to keep the user
engaged to continue collecting acoustic data (recall the “virtuous circle” in section
2.1.1). The improvements can be observed both in success and reward, but they
are much higher in success (between 50% and 80% relative improvement). There-
fore, when the amount of ASR adaptation data is small, the POMDP framework is
increasing the dialogue success rate of the system at the cost of longer dialogues.
Then, as the ASR performance increases, the POMDP framework adapts the policy

to a more straight forward one.

It is also interesting to see how the performance of the SI model still out-
performs the baseline by a large amount. This suggests that data collected with
different speakers can still be used to train a model for a specific speaker. In the
case of the SI+SD adaptation model, its performance is as good as the SD model
after collecting only 100 words from the user, showing that, initialising the DM
models with data collected from other speakers and adapting these models on-
line as speaker specific data is collected through interaction, is a very promising
approach.

Finally, it could be observed how the performance of SD no adaptation is similar
to the other DMs when it interacts with an non-adapted ASR, but greatly decreases
when the ASR is adapted with increasing amounts of data. This is because of the
mismatch of the data used to train the dialogue models (which comes from an ASR
with a higher error rate) and the data produced by the simulated environment.
This suggests that mechanisms to deal with the variations in the environment

must be used.
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3.5 Conclusions

The main objective of this chapter, was to evaluate performance gain that can be
obtained applying the POMDP-DM framework to VUIs personalised to dysarthric
speakers and to identify the modifications needed to apply this framework to this
kind of systems. In the experiments presented in section 3.4.2, it was shown that
the robustness against poor ASR performance of POMDP-based dialogue man-
agers can greatly improve the performance of these systems, especially in the case
of speakers with low to medium intelligibility. For these speakers, the highest im-
provement was observed when the amount of ASR adaptation data is small, which
correspond to the initial stages of usage of the system, when the ASR performance
is worse. As was stated in section 2.1.1, this is a critical stage of usage of hS sys-
tems, because poor system performance can make the user lose interest in the
system and stop using it. At the cost of longer dialogues, POMDP-based dialogue
managers can make the user keep the interest in the system when the ASR perfor-
mance is worse. Then, when enough acoustic data to get a good ASR performance
has been collected, the policy can be adapted online to a more straight forward
one. This can widen the range of the “optimal operating point” for hS systems
explained in section 2.1.1, as the system can perform better over a wider range of
ASR accuracy, reducing the amount of times the researchers need to extend the
range of devices the system can control.

Another objective of this chapter was to identify and analyse the issues that
may arise from using the POMDP framework in systems different to the typically
studied information gathering SDSs. Two main conclusions can be drawn from

the experiments in section 3.4.2:

e Using data gathered from other speakers to train the models gives a good
performance. This is interesting because this situation might be encountered
several times in hS like scenarios (e.g. a new system is being set up for
a new user and the researchers have data collected from other systems in
other users houses). It was also shown that, initialising a DM model with
data from other users, and then adapting this model online to the specific
user with data gathered through interaction, reduces the amount of speaker
specific data needed to get a “speaker specific” performance. This suggests
that more sophisticated online adaptation techniques could improve the sys-

tem performance further.

e As the environment changes, the improvements obtained from using POMDP-
based DM decrease. However, this improvement reduction is gradual, sug-

gesting that data collected in “similar” environments can still be useful. Due
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to the cost of collecting data with dysarthric speakers, it would not be fea-
sible to collect large amounts of dialogue data each time the environment
changes, so methods to effectively use the data coming from different envi-
ronments should be studied.

To make model-based RL approaches tractable, a tree-based hierarchical di-
alogue state representation and POMDP architecture was developed. However,
several assumptions had to be made and the dialogue manager lost the ability to
interact in a mixed initiative fashion. The assumptions made the dialogue manager
a highly structured model, with only a few parameters to learn. It has been shown
that these assumptions might hold in small scale systems (Williams et al., 2005),
but as the system size increases, more complex structures need to be hand-crafted
(Thomson and Young, 2010). Model-free RL approaches (Gasi¢, 2011) could be a
better option for larger systems, because they would rely on less assumptions to
model the dialogue policy. Slot-based architectures (Henderson, 2015a) could also
let the system interact in a mixed initiative fashion increasing the naturalness of
the dialogue.

The need for a fast evaluation framework was also analysed in this chapter.
Because of the cost of evaluating dialogue systems with users with disabilities,
a simulated environment was considered to be more suitable to evaluate the pro-
posed POMDP framework. A framework that simulates users with different sever-
ities of dysarthria interacting with ASRs adapted with different amounts of data
was developed. This framework permitted the comparison of different POMDP
configurations in different scenarios. Even if the results are not as accurate as if
they were evaluated with real users, they can be used as reference to investigate
which of the POMDP configurations tested is more promising.

In summary, this chapter served as a first approach to analyse the suitability of
using the POMDP-DM framework in VUIs personalised to dysarthric speakers. In
addition, the conclusions obtained from this chapter serve as research questions
for the following chapters. In the next chapter, a model-free policy optimization
method is developed. This method is suitable to be used in the scenarios likely to
be encountered in hS and, in addition, these scenarios are studied in more detail.
Then, in chapter 5, slot-based dialogue state tracking models suitable for the hS
scenarios are developed and evaluated.






Chapter 4

Personalised Reinforcement
Learning based Policy

Optimization

As the component that is in charge of the control of the dialogue flow, the policy
model can be considered the core component of a dialogue manager. Historically,
many systems have relied on rule-based models to tackle the Policy Optimiza-
tion (PO) problem. However, due to their low adaptability, these models are not
suitable for long-term personalised DM.

Data driven methods are a more appropriate approach for personalised PO due
to their higher adaptability to different dialogue environments. Supervised learn-
ing methods have been studied for PO (Henderson et al., 2005, Meng et al., 2003),
but these methods simply learn to “mimic” dialogue polices used by human ex-
perts. It is not clear if these policies are optimal, especially in noisy environments
(Levin et al., 2000). The most promising data driven approach to PO is to model
it as an RL problem under the POMDP framework (Williams and Young, 2007,
Young et al., 2010, 2013). However, as it was reviewed in section 2, model-based
RL approaches are intractable for large systems (Williams et al., 2005) and early
proposed model-free RL-based approaches need an infeasibly large number of dia-
logues to be trained (Jurcicek et al., 2012). Recently, methods which need less data
have been developed (Geist and Pietquin, 2010, Pietquin et al., 2011), Gaussian
Process (GP)-based model-free RL Gasi¢ and Young (2014) being one of the most
promising. This approach has shown to reduce the number of dialogues needed
to train a policy by various orders of magnitude (Gasic et al., 2011), making it very
attractive for personalised PO.

However, these methods have only been studied in speaker independent sce-
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narios, trained with data from several different speakers, while assuming that all
the data comes from the same underlying distribution. It is also assumed that the
environment is stable. Thus, data collected at any point in time will follow the
same distribution. This is not the case in VUIs personalised to dysarthric speak-
ers, as the speech characteristics of each speaker will be very different, possibly
related to the type and severity of their dysarthria. If the acoustic models are
adapted with speaker specific data as in hS, the ASR performance will also vary
as more acoustic data is collected (Casanueva et al., 2014) and thus, the environ-
ment will vary. In the best case scenario, when large amounts of data coming from
the “target” user and environment are available to train the policy model, there
is no need for personalisation. However, this is rarely the case. For example, in
a system such as homeService (Christensen et al., 2013b), data collection is very
expensive because interacting through a prolonged period of time can be tiring
for speakers with disabilities (Nicolao et al., 2016). It is much more likely to face a
scenario where data from several “source” speakers (with different characteristics
to the “target” speaker) is available. In addition, if the dialogue environment (e.g.
the ASR) varies over time, there will be a mismatch between the data used to train
the system and the data seen in the working conditions (Casanueva et al., 2014).
All these issues lead to data collected from different (but related) distributions.

In these scenarios, the policy cannot assume that the data collected from differ-
ent speakers, or with different ASRs, follows the same distribution. But it is also
infeasible to collect enough data from the same user or ASR environment. There-
fore, a trade-off between using data from different distributions while accounting
on the differences between them is needed. In the context of speaker specific
acoustic models for users with dysarthria, Christensen et al. (2014) demonstrated
that using a speaker similarity metric to select the data to train the acoustic mod-
els for specific speakers improves ASR performance. Furthermore, using transfer
learning methods (Taylor and Stone, 2009) to initialise the policy with data gath-
ered from dialogue systems in different domains has been shown to increase the
learning speed of the policy (Gasi¢ et al., 2013) and provides an acceptable system
performance when there is no domain-specific data available. In a project such
as hS, several VUIs will be set up in different user’s homes, letting the system
developer collect data from different “source” speakers (Christensen et al., 2015).
This can be considered analogous to having data from different domains. Join-
ing these three ideas, when setting up a new system personalised to a “target”
speaker, data gathered from the other “source” speakers can be used to pre-train
the policy, defining a similarity metric between different speakers based on their

speech characteristics. This metric can be used to select which data from the source
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speakers is used to train the model and to weight the influence of the data from
each speaker in the model. As the user interacts with the system, source data can
be discarded and the policy can be updated with the newly collected target data
in an incremental way. In a scenario where the ASR varies over time, the data
coming from interactions with different ASR performances follows different (but
related) distributions. Thus, the same approach can be taken to select and weight
the data if an ASR-performance metric is defined.

In summary, all the previously mentioned scenarios can be assumed to be
Transfer Learning (TL) scenarios (Pan and Yang, 2010) where the data collected for
training (“source” data) comes from distributions different to the actual “working
condition” distribution (the distribution that needs to be modelled, the “target”
data distribution) (Casanueva et al., 2014, Christensen et al., 2012a). If similarity
metrics can be defined between the environments leading to the different distri-
butions, the PO problem in these scenarios can be defined as a data selection and
weighting problem where a distance based heuristic is used to select and weight
the data. However, as mentioned in section 2, GP-RL soon becomes intractable
as the data amount increases, limiting the amount of data from source speakers
or environments that can be transferred!. Gasi¢ and Young (2014) propose an ap-
proximated tractable method for GP-RL policy optimization, but this method does
not allow to discard and select data.

Hence, to apply GP-RL in varying speaker and environment scenarios, ap-
proximation methods which allow data selection are needed. The main objective
of this chapter is the development and evaluation of these methods. In addition,
the methods should be able to adapt the models online: the methods should be
able to update the models in a tractable way as new dialogue data is collected
through interaction with the target user in the target environment.

This chapter presents several contributions: Firstly, two different GP-based RL
methods, which allow data selection and discarding, are developed. The most
promising method is based on the reformulation of the GP-RL equations pre-
sented in section 2.6.2 by defining a kernel in the temporal difference space. This
not only leads to the possibility of application of several approximation methods
used in GP regression, but also to the simplification of the equations for an easier
understanding of GP-RL methods. Secondly, the new proposed Temporal Differ-
ence (TD) kernel approach is used to personalise dialogue policy models in two
scenarios: in a scenario where the environment (ASR) changes over time and in

a scenario where a policy for a target speaker is trained with data coming from

1t may also be the case, that due to the change of the target distribution, source data collected in
the past which was useful to model previous target distributions is not useful any more and wants
to be discarded
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a set of source speakers with different dysarthria severities. Online adaptation of
the models as target data becomes available through interaction is also studied.
Finally, a set of environment and speaker features are defined. To select and dis-
card the data, heuristics based on similarities between these features are used and

the features are also integrated into the GP kernel to weight the data.

4.1 Tractable GP-RL based policy optimization for person-
alised VUIs

As mentioned in the previous section and in section 2.6.2, the main problem of
using GP-RL models for dialogue PO is their computational complexity. Due to
the inversion of a matrix of size ¢t x t (the transformed Gram matrix), the complex-
ity of computing the Q-function posterior (equation 2.30) in each turn is O(#®) for
each action, where t is the number of data points (the total number of turns in
the case of dialogue management). As the number of interactions increase, this
becomes quickly intractable, especially if the dialogue models are updated online.

One of the most popular GP approximation approaches is the definition of a
representative set of inducing points, U,,, which is used to approximate the in-
verted t x t matrix (Quifionero-Candela and Rasmussen, 2005). In Engel et al.
(2005) and Gasi¢ and Young (2014), a GP-RL approximation method which re-
duces the complexity to O(t x m?) is proposed, where m is the size of the set of
inducing points U,,. However, the complexity reduction of this method is based
on recursive updates of the inverted Gram matrix (Engel et al., 2003, 2004). This
means that if a point needs to be discarded (e.g. because it was gathered a long
time ago and the environment dynamics have changed), the whole GP would have
to be retrained with a computational cost of O(#*). In addition, the set of inducing
points U is created dynamically as new data points are observed, so it is more
difficult to control the size of the set of inducing points. To the knowledge of
the author, this is the only approximation method proposed so far for model-free
GP-RL models. However, in the GP regression literature, there are several approx-
imation methods (sometimes called sparsification methods) which allow arbitrary
data selection and discarding (Quifionero-Candela and Rasmussen, 2005). These
methods are not based on recursive updates, so it is therefore possible to recom-
pute the inverted gram matrix in a tractable way every time new data becomes
available. However, due to the differences between the equations of GP regression
and GP-RL models, these approximation methods are not directly applicable to
GP-RL.

The differences between the posterior equation in GP regression (equation 2.24)
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and GP-RL (equation 2.30) arise from the TD approach taken by the GP-RL mod-
els. This is reflected as the inclusion of the matrix H, which defines the temporal
difference relationship between two consecutive belief-action points. If methods to
rewrite the GP-RL equation without the H operator are developed, sparsification
methods designed for GP regression models would be straightforward to apply
(Quinonero-Candela and Rasmussen, 2005). Two of these methods are proposed

in the following sections.

411 GP-MC approach

Following the Bellman equation (equation 2.12), the GP-RL approach models the
Q-function using the observed immediate rewards and estimates of Q in the next
state (equation 2.30). The H; operator arises from this temporal difference rela-
tionship between two consecutive data points (dialogue turns). If, instead of a TD
RL approach, a Monte-Carlo (MC) RL approach is taken (section 2.6.2), the GP
can be modelled directly using the accumulated rewards c observed at the end
of each dialogue. This approach follows the same idea as algorithm 2.2, with the
difference that the Q-function estimates are not recursively updated.

Given a set of training dialogues, the set of visited belief-action points X;
(where (x; = b;, a;)) with their observed accumulated rewards! ¢; can be defined,
where t is the number of points (number of turns for all dialogues). If each ¢; is
considered a random variable and is modelled dividing the Q-function in a mean

and a residual function as:
C;i = Q(bi, 611') + AQ(bi, ﬂi) (41)

given the set of observed belief-action points X;, with their respective ¢; values
observed at the end of each dialogue, the set of linear equations can be represented
in matrix form as:

¢ = qr + Aq; (4.2)

where:

¢ = [c1, ¢,y ct]T
q: = [Q(by,a1), ..., Q(by, ar)]
Aq: = [AQ(by,a1),...,AQ(by,ap)] "

If the set of random variables q; is assumed to have a joint Gaussian distribu-

IThe accumulated reward for each belief-action point is the reward accumulated from that point
on the dialogue, not for the whole dialogue



86 4.1. Tractable GP-RL based policy optimization for personalised VUIs

tion with zero mean and AQ(b;,a;) ~ N(0,0?), the system can be modelled as
a GP (Rasmussen, 2006). As in the GP-RL framework explained in chapter 2, the
covariance matrix and vectors of the GP is determined by a kernel function defined
independently over the belief and the action space (Engel et al., 2005):

kij = k((b;,a;), (bj,a;)) = k(b;, b;)k (a;, a;) (4.3)

From now on, Ky y is defined as the matrix of size |Y| x |Y’| whose elements are
computed by the kernel function (equation 4.3) between the set of points Y and
Y’, where Y and Y’ are any set of points. Using a MC RL approach, for any new
belief-action point x. = (b, a.), the posterior of the expected accumulated reward
(The Q-function) can be computed using equation 4.2 as:

Q" (x) [ X, € ~ N(Q"(x4), Q™ (x4))
Q"™ (x,) = Ko x(Kxx + 0?It) et (4.4)
Q™ (i) = k(x4 %) — Ko x(Kx x +0%1;) 'Ky«

where X; is the set of size t of all the previously visited (b;, a;) points and * denotes
the set of size 1 composed by the new belief-action point to be evaluated. Q and

Q represent the mean and the variance of Q respectively.

Using this approach, the Q posterior equation 4.4 has the same shape than in
usual GP regression models, making the application of any approximation method
proposed in the GP literature (Quifionero-Candela and Rasmussen, 2005) straight
forward. Furthermore, when the kernel used in the action space is the delta kernel
(equation 2.29), the covariance between two belief-action points x; and x; where
a; # a; is always 0, which can be used to further decrease the computational

complexity of the model.

In equation 4.4, when using the delta kernel (equation 2.29), the elements of the
K, x vector corresponding to a point of the set X; with a different action than a.
will be 0. If the set of training points is rearranged to group the points which have
the same action together, the (Kxx + O'ZIt) matrix will be block-diagonal. This
means that only the belief-action points x; where a; = a, will affect the estimation
of Q" (b,,a,). Taking this into account, an action-GP can be defined for each
action a € A, defining the GP prior using only the subset of the points of X;
where a; = a. Then, when computing the policy for each new belief point b, the
Q-function posterior for each action a € A will be computed with the action-GP

corresponding to that action, denoted as Q(b., a). The active exploration policy
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(equation 2.20) can now be computed as:

arg max Q" (b, a) with prob. (1 —¢)
acA

2 (b,) = { (4.5)

arg max Q" (b, a) with prob. e
acA

and the complexity is reduced to O(£},), where t,, = max,c4(,) and t, is the
number of points that have a as action. This is equivalent to defining an indepen-
dent Q-function for each action, which can significantly reduce the complexity in
a VUI where the size of the action set A is large. For online policy optimization,
each action-GP prior can be updated after each dialogue (instead of after each turn,
as it is possible with TD approaches).

4.1.2 Temporal Difference kernel

As mentioned in section 4.1.1, the H matrix in the GP-RL posterior function (equa-
tion 2.30) defines the TD relationship between two belief-action points consec-
utive in time. Due to this relationship, adjacent points (or dialogue turns) are
co-dependent and cannot be discarded easily. The effect that this matrix has on
the covariance matrices can be seen as performing a transformation of the co-
variance matrices in the belief-action space into the temporal difference space. This
transformation is explained in more detail in the next paragraph.

In equation 2.30, a linear transformation from the belief-action space to the
temporal difference space is applied to the covariance vector K, x and to the co-
variance matrix Kx x by multiplying them by the matrix H;. Deriving the term
HtKX,XHtT, the following matrix is obtained:

H:Kx xH, =
(k11 + 7ikap (k12 + v172k2,3 (kve 1+ Y17e-1kas)
—271k12) —Yakop —1iki3) = 7etkos1 — vikay)
(k12 + 1172k23 : : (4.6)
—Y2kop — v1k13) ' .
(ki1 +71ve-tkar (ko1 4+ 7127e-1k3s (ke—1,0-1 + 771 ke
| —Veotkoi1 — ki) —reakse —vokos) —2%i-1ki-14) |

where k; ; is the kernel function between two belief-action points x; = (b, a;)

and x; = (bj,a;) defined in equation 4.3 and v; = 0 if 4; is a terminal action! or a

In episodic tasks, such as dialogue management, the terminal actions are the machine actions
that close an episode. In non-episodic RL tasks,  will always be the normal discount factor.
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discount factor 0 < ¢ < 1 otherwise. The transformed matrix (equation 4.6) has
the form of a covariance matrix where each element is a sum of kernel functions
ki between belief-action points on time i or i + 1 weighted by the discount factors.
So each element k', ; of this matrix can be defined as a function of temporal dif-
ferences between consecutive belief-action points, or as a function of two temporal
difference points z; = (b;, a;,b;;1,a;11,7:) and z; = (bj,a;,bj11,a;,1,7;) as:

ktdi,j — ktd(zi, Z])
= k"((bj, a;,bis1,ai11,7i), (bj,aj,bj11,8i11,7;)) (4.7)
= (kij +vivikivrje1 — vikivr; — vikiji1)

For the covariance vectors, if the term K, xH,' is derived, the following equation
is obtained:

K, xH =

(4.8)
[(kl,* - ’hkz,*) (kZ,* - ’)’ZkS,*) ve (ktfl,* - ’)’tflkt,*)}

and deriving H;Kx ,:
HtKX,* -

.
[(kl,* —7ikas) (kos —y2kze) oo (ko1 — ')’t—lkt,*)} (4.9)

T
[

which are vectors with each element defined by ktdi,* = (ki — 7vikiz1,+). These
elements can be computed with equation 4.7 by doing the following: redefining
the new belief-action point being evaluated x, = (b.,a.) as a TD point as z, =
(by, a4, bit1, 8441, 7+), with 7, = 0 and b, and a.41 set to any default value.
Then, each element ktdi,* in 4.8 and 4.9 can be calculated with the function defined
in equation 4.7 evaluated between the TD points z; and z,.

Therefore, equation 4.7 is computing covariances between TD points. It is
equivalent to a kernel in the temporal difference space. As this function is pos-
itive definite, satisfies the Mercer condition (Cortes and Vapnik, 1995), making it a
valid kernel for GPs working in the TD space (Rasmussen, 2006). More formally,
the set of belief-action points X; is redefined as the set of TD poin’cs1 Z; where
z; = (b, a;,bi11,a;11,7i), with 7; = 0 and b, 1 and 4,1 set to any default value if

a; is a terminal action, or -; being a normal discount factor 1 < <; < 0 otherwise.

ITake into account that, even if it is not included in the notation, |Z;| = |X;| — 1, as the set of
TD points is composed by all the consecutive pairs of belief-action points.
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Defining

Kig,lz = K. xH/

(4.10)
KY, = HKx,.

as the covariance vectors between the set of TD points and the new TD point z,
being evaluated computed with the TD kernel (equation 4.7) and defining

KY, = HiKx xH/ (4.11)

as the covariance matrix or Gram matrix between the set of observed TD points
computed with the TD kernel, it is possible to rewrite the Q-function posterior

(equation 2.30) for any new TD point as:

Q'"(z.)|Zt, 11 ~ N (Q"(2.), 0" (z.))
Q"(z.) = K", (KY, + Z;) " 'ri (4.12)
Q" (z,) = k' (z,,2,) — Ki’ilz(KtZd,Z + ZLt)_thzd,*

With this notation, as the transformation to the TD space is performed by the
kernel, the operator H; disappears (except from the noise term X;), simplifying
the notation. Furthermore, the redefinition of the set of points and the kernel has
several advantages:

e Redefining the belief-action set of points X; as the set of temporal differ-
ence points Z; simplifies the selection and discarding of data points, because
the dependency between consecutive points is well defined. Therefore, TD
points are independent of each other and can be discarded without breaking
any dependency.

e If it is assumed that AQ(b;,a;) — 7iAQ(bjy1,4i+1) ~ N(0,0?) (as proposed
in Engel et al. (2003)), the noise term becomes X; = 021. Thereafter, the
shape of the equation for the posterior of Q' is the same than the classic
GP regression models (equation 2.24). Thus, it is straightforward to apply a
wide range of well studied GP techniques, such as sparsification methods.

As mentioned in this chapter, the main problem with the approximation method
for GP-RL proposed by Engel et al. (2005) is that the arbitrary selection and dis-
carding of data points is not possible. On the other hand, the GP literature pro-
poses several approximation methods! which select a subset of inducing points Uy,

LA review of these methods can be found in Quifionero-Candela and Rasmussen (2005)
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of size m < t from the set of training points Z;. Due to the shape of equation 4.12,
obtained by using the TD kernel, these methods are straight forward to apply.
Using one of these methods, heuristic approaches! can be used to select the set Z;
and Uy, in each turn, making the online update of the policy model tractable. In
the following experiments, the Deterministic Training Conditional (DTC) (Seeger
et al., 2003) method is used. With this approximation method, once the subset of
points has been selected in each turn, the Q-function posterior can be approxi-
mated with O(t - m?) complexity as:

Q" (z.)|Zs, 111 ~ N (Q"(2.), Q" (2.))
Q" (z.) = o Ky AKY] ;71 (4.13)
Q™ (z.) = K"(z.,2.) — ® + Ky AK(]

where A = (U*ZKﬁ,ZKtZd/U + K{”},u)*l and ® = Ki‘fu(KtL‘f,u)*thL‘fl* (refer to Quifionero-
Candela and Rasmussen (2005) for a more detailed explanation).

Once the posterior for any new belief-action point can be computed with equa-
tion 4.12 or equation 4.13, the policy 7t(b) = a can be computed following an
e-greedy active exploration approach (equation 2.20).

4.2 Transfer Learning between speakers for GP-RL

The introduction of this chapter described some scenarios that can be found when
setting up a personalised VUI, one of them being the scenario where a dialogue
manager has to be trained for a target speaker using data from several different
source speakers. If the speech characteristics of the speakers are very different (e.g.
dysarthric speakers with different severities of dysarthria), the data samples gath-
ered from each source speaker will have been drawn from a different distribution,
which at the same time will be different to the target speaker distribution (the dis-
tribution that needs to be modelled). This scenario, where a statistical model has
to be trained for a specific “target” task, but only data from different but related
“source” tasks is available, is known as transfer learning (Pan and Yang, 2010). In
reinforcement learning, TL has been shown to increase the performance of the sys-
tem in the initial stages of use (called jumpstart) and to speed up policy learning
(Taylor and Stone, 2009). In the context of TL for dialogue policy optimization in
different domains, Gasi¢ et al. (2013) showed a significant reduction on the amount
of target dialogues needed to reach the optimal policy when the model was ini-

IThe proposed data selection heuristics are explained in section 4.2
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tialised with dialogues from other domains. In the context of a personalised DM
trained with data from different speakers, dialogue interactions with each speaker
can be considered different tasks, as the data collected from each speaker will
be coming from a different distribution. The TD kernel approach developed in
section 4.1.2 combined with the DTC approximation method gives an excellent
framework for TL in policy optimisation, as it simplifies the data selection. In this

section, three aspects of applying TL to personalised PO are addressed:

e How to transfer the knowledge: Which transfer learning models are the most
appropriate for personalised policy optimisation?

o Which data to transfer: Which methods or metrics can be used to select the
most relevant data?

e In the case of multiple source speakers, How to weight the relevance of the
different sources: Which methods or metrics have to be used to weight the
data in order to account for the relevance of different sources on the target
model?

421 Knowledge transfer

Several TL approaches to transfer knowledge from source tasks to a target task
exist (Pan and Yang, 2010), each of them performing better in different situations.
This section addresses which is the most appropriate model to transfer the data
from the source speakers to initialise the policy for the target speaker. The most
straightforward way to transfer the data in GP-RL is to initialise the set of tempo-
ral difference points Z; of the GP with the source points (the data points coming
from the source speakers), and then continue updating it with target data points
as they are gathered through interaction!. However, this approach has a few short-
comings. Firstly, as the complexity of GP-RL models increases with the number of
data points, the model might quickly become intractable if it is initialised with too
many source points. Also, after data points from the target speaker are gathered
through interaction, the source points may not improve the performance of the
system, while increasing the model complexity. Secondly, as the computation of
the Q-function posterior variance for a new point (Q in equation 4.13) depends on
the number of similar points already visited, the variance of the new belief-action
points being evaluated will be reduced by the effect of the source points close in

the belief-action space. If the distribution of the source data points is unbalanced,

!1f a sparse approach such as DTC is used, the set of inducing points will also be initialised with
the source data, but this issue is addressed in the next subsection (Transfer data selection).
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the effectiveness of the active exploration policy (equation 2.20) will be affected,
because the variance in the areas of the belief-action space with a high density
of source points will be small and thus, these parts of the space will never be

explored.

To deal with the variance computation problem, Gasi¢ et al. (2013) proposes
to use the source points to train a prior GP! and use the Q posterior of this GP
as the mean function of the GP trained with the target points (instead of using a
zero-mean GP). With this approach, the mean of the posterior in equation 4.12 is
modified as:

Q(z.) = m(z.) + K7 (KY 7 +2) 7 (ri-1 — my) (4.14)

where m(z,) is the mean of the posterior of the Q-function given by the prior GP
and m; = [m(zo),...,m(z;)]". If the DTC approach (equation 4.13) is taken, the

posterior Q-function mean becomes:

Q" (z.) = m(z,) + o K" AKY , (1,1 — my) (4.15)

In other words, this approach uses the mean of the posterior, Q, of a GP trained
with the source points as a “prior distribution” for the GP trained with the target
points. This way, when there are no target data points available, the model uses
the prior GP trained with source points to estimate the Q-function. As target data
points become available, these points will “correct” the prediction given by the
prior GP, until there is enough target data so that the effect of the target points
overcomes the effect of the prior GP in the model?. This approach has the advan-
tage of being computationally cheaper than the former method while modelling
the uncertainty for new target points more accurately, but at the cost of not taking
into account the correlation between source and target points. This might reduce

the performance when the amount of target data is small.

A third approach is to combine the two previous methods, using a portion
of the transfer points to train a GP for the prior mean function, while the rest is
used to initialise the set Z; of the GP that will be updated with target points. This
method is computationally cheaper than initialising Z; with all the source points,
and at the same time increases the performance of the method using equation 4.15

when the amount of target data is small.

Do not confuse with the GP-prior

2The effect of the mean of a GP is decreased as the number of data points increases (Rasmussen,
2006). This is why choosing a zero-mean GP does not affect the performance while simplifying the
computation.
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4.2.2 Transfer data selection

Because GPs are non-parametric models, their complexity increases with the num-
ber of training data points, limiting the amount of source data that can be trans-
ferred. Additionally, if the points come from multiple sources, it is possible that
the data distribution from some sources is more similar to the target speaker than
others, hence transferring data from these sources will increase performance. If
a speaker feature vector' s € R" can be extracted from each speaker in a metric
space where a similarity function f (s, s’) between speakers can be defined, heuris-
tic methods can be used to select which data to transfer based on this similarity.
When setting up a new system for a target speaker, the most straight forward
heuristic for data selection is to transfer the data from the most similar speakers
up to a maximum amount. More advanced selection methods can also be used,
such as heuristics that trade off between selecting the most similar speakers and
covering the belief-action space as uniformly as possible.

When the system is set up and the target speakers begins interacting with it,
target data points will be collected. These points follow the distribution that has to
be modelled, hence they should be included in the model while source points are
discarded. The DTC approximation method (equation 4.13) allows this to be done
in an online fashion while maintaining a tractable model complexity. In addition,
when using the DTC approach, a subset of inducing points U,, must be selected.
The most straightforward way is to select the subset of points most similar to the
target speaker within the transferred points. As the user interacts with the system
and target data points are gathered, these points may be used as inducing points.
This approach acts like another layer of data selection; the reduced complexity
will allow for the transfer of more source points, whereas using the target points
as inducing points will mean that only the source points that lie in the same part

of the belief-action space as the target points have influence on the model.

4.2.3 Transfer data weighting

When the transferred source data comes from multiple speakers, the similarity be-
tween each source speaker and the target speaker might be different. For example,
if the target speaker has mild dysarthria, mild dysarthric source speakers will be
more similar to the target than severe dysarthric ones (Christensen et al., 2014).
Thus the data from a source more similar to the target should have more influence

in the model than less similar ones. The similarities that can be computed with

IThese can also be called environment vectors, as they give information about some part of the
environment (in this case the speaker)
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the speaker feature vectors s proposed in section 4.2.2 can also be used to weight
the data.

In a GP-RL based policy, the kernel can be used to weight the data coming from
different speakers (or environments). The kernel in a GP computes the covariance
between data points, which is a kind of similarity. A large covariance between two
points means that the two points are similar and a small covariance means that
they are different. If the kernel in the belief-action space defined in equation 4.3 is
extended into a kernel in the belief-action-environment space, k°, by factorising the

kernels in the belief, action and environment space as:

ki = k((b;,a;,s;), (bj,aj,s;)) (4.16)
= k(bj, b))k (a;,a;)k (si, s;)

where k°(s;, s;) is any kind of Mercer kernel (Scholkopf and Smola, 2002), the co-
variance values used to compute the Q-function posterior will be also influenced
by the similarity between points in the speaker space (or environment space). There-
fore, points gathered with source speakers which are more similar to the target one
will have more influence in the computation of the Q-function. This approach also
helps to partially deal with the variance computing problem of the first transfer
learning model in section 4.2.1, as the source points will lie on a different part of
the speaker space than the new target points, consequently having less influence
in the variance computation.

Note that the extended kernel is the kernel in the belief-action space. As the
TD kernel defined in equation 4.7 is a function of the kernel in the belief-action
space, after the kernel extension proposed in this section, the TD kernel becomes
a function of the kernel in the belief-action-speaker space (or belief-action-environment
space). The set of TD points is then redefined as z; = (b;, a;,8;, bi+1,4i1+1, Si+1, Vi)-

4.2.4 Speaker similarities

To compute the similarities between speakers, a way to extract a speaker feature
vector s from each speaker must be chosen. The chosen feature vectors should be
based on measurable characteristics of the speakers or the ASR-SLU channel which
have an effect on the environment from the dialogue managers point of view. In
this section three different approaches to extract these features are proposed:

o Intelligibility assessment: Figure 3.3 showed that the ASR performance is
directly related to the dysarthria severity (or intelligibility) of the speaker.
The intelligibility of dysarthric speakers can be assessed by testing the per-
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centage of words understood by unfamiliar listeners (Kim et al., 2008). The
numeric value corresponding to the intelligibility of each speaker can be
used as a single dimensional speaker feature s.

e i-vectors: Martinez et al. (2013) showed that i-vectors (Dehak et al., 2011)
can be used to predict the intelligibility of a dysarthric speaker. Therefore,
the i-vectors are a potentially useful feature to compute similarities between
dysarthric speakers without the need to perform intelligibility assessments.

e ASR accuracy per command: Ultimately, the effect of the full VUI environ-
ment (speaker, ASR and SLU) is reflected in the output of the SLU (or of
the ASR in homeService). A measure of the confusability of the ASR or
SLU output can be a useful feature to estimate similarities between different
speakers (or environments). In a small sized VUI such as hS, if a held out
set of recordings from the user is available, this set can be used to estimate
the average ASR accuracy for each word in the vocabulary. Using these es-
timates, s can be defined as the vector with the size of the ASR vocabulary
(36 in the following experiments) where each element is the average ASR

accuracy of each command.

4.3 Policy Optimization in variable environments

Most of the published research on dialogue policy optimization assumes that all
the data comes from the same distribution. In an agent-environment RL interac-
tion, this assumption implies that the environment dynamics are stable, they do
not change over time. This is not the case in a personal VUI where the ASR perfor-
mance improves as the user interacts with the system and acoustic data is gathered
(as it happens in hS). Interacting with different environments can be considered as
different tasks, therefore, the same TL principles analysed in the previous section
can also be applied in this scenario.

In systems like hS, however, the environment does not change randomly. Ob-
serving figure 3.3, it can be seen how changes of the ASR performance as the
amount of user data increases are smooth. Imagine a system whose ASR is up-
dated every time a minute of acoustic data is gathered. Every time the ASR is
updated, the agent (DM) will be interacting with a different environment. Thus,
the dialogue points gathered will come from different probability distributions.
Lets call these distributions ASRy, ASRy, ASR,, ASR3..., where the sub-index in-
dicates the amount of minutes of acoustic data used to adapt the models. Then,

based on the ASR accuracy behaviour observed in figure 3.3, it can be assumed
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that the distribution ASR3 is more similar to the distribution ASR, than it is to
ASR; and so on.

Based on this assumption, each data point can be assigned with an environment
feature vector s related to the ASR environment where it was collected (e.g. the
amount of data used to train the ASR). These environment feature vectors can be
then used to weight and select the data coming from different ASR environments,

using the same approaches described in sections 4.2.2 and 4.2.3.

4.3.1 Environment metrics

To apply the TL approaches described in section 4.2 to this scenario, a numeric
value s € R" must be assigned to each ASR environment in a metric space where
similarities between environments can be effectively computed. Depending on the
nature of the changes in the environment, this can be a non-trivial task. However,
when the changes in the environment are related to the ASR performance, there
are simple ways to define the “environment vectors” s. Two different ways to

define the environment features are proposed:

e User specific adaptation data amount: As observed in figure 3.3, the ASR
performance is directly related to the amount of user specific data used to
adapt the acoustic models. Therefore, the number of single word recordings
used to adapt the ASR can be used as a single-dimensional environment
feature.

e ASR accuracy per word: As explained in section 4.3, in a small sized VUI a
held out set of recordings from the user can be used to estimate the average
ASR accuracy for each word in the vocabulary. Therefore, s can be defined
as the vector with the size of the ASR vocabulary where each element is the

average ASR accuracy of each command.

4.4 Transfer Learning experiments in the homeService en-

vironment

To evaluate the techniques presented in this chapter, a set of experiments is per-
formed in the simulated hS environment presented in section 3.2.3. This is a
scenario with high variability between the dynamics of the speakers and where an
environment that varies over time can be simulated. Therefore, it is an appropriate
scenario for testing the approaches described in this chapter.

In this section, three different scenarios are evaluated, each one trying to ad-

dress the effectiveness of the proposed methods in specific situations that are likely
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to occur in personalised VUIs. In the first scenario, the two approximate models
presented in section 4.1 are trained from scratch and their performance is com-
pared with a non-approximated GP-RL model. The objective of these experiments
is to identify the most appropriate approximate model for policy optimisation in
VUIs. In the second scenario, an environment where the ASR performance im-
proves over time is simulated, with the objective of testing techniques proposed in
section 4.3. Thirdly, to test the data transfer, selection and weighting techniques
proposed in section 4.2, a transfer learning scenario between speakers is simulated;
for each test speaker, a DM is initialised with the data of the other 14 speakers,
and then the DM is updated online as data from the test speaker becomes available

through interaction.

4.4.1 Experimental set-up

The system is organised in the tree setup described in section 3.2.2 and the same
evaluation metrics are used (-1 for each dialogue turn, +20 if the dialogue is suc-
cessful). The state tracker is a logistic regression classifier (Metallinou et al., 2013),
where classes are the set of states S. The belief state b is computed as the pos-
terior over the states given the last 5 observations (N-best lists with normalised
confidence scores). For each speaker, the state tracker has been trained with data
from the other 14 speakers.

GP models have several hyperparameters (e.g. Gaussian noise variance or kernel
parameters) that need to be tuned. Even if these hyperparameters can be automat-
ically optimised (Chen et al., 2015), most of the published work in GP-RL obtained
better results by hand-tuning the parameters (Engel et al., 2005, Gasi¢ and Young,
2014). In the following experiments, grid optimization methods are used to tune
the hyperparameters. Following this approach, the Gaussian noise variance o2 in
the GP-RL model (equation 4.12) is set to 5. The kernel used over the action space
is the delta kernel (equation 2.29) and the kernel used over the belief space is a
Radial Basis Function (RBF) kernel (a.k.a. Gaussian Kernel) :

2
K (b;, b)) = o7 exp < - m’iz_lzbf”> (4.17)
k
with kernel variance o = 25 and lengthscale I = 0.5.
To remove the variability introduced by the random goal choice of the sim-
ulated user, each experiment has been initialised with five different seeds and
tested over 500 dialogues for each number plotted. In each set of experiments,

the system is tested with six different simulated users trained with data from low
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and medium intelligibility speakers!. This is because, as shown in chapter 3, a 36
command setup statistical DM is most useful for low and medium intelligibility
speakers. For high intelligibility speakers, the ASR accuracy is close to 100%, so
the improvement obtained from DM is small. For very low intelligibility speakers,
the absolute performance is not high enough to make the system useful. These six

speakers will be called the test speakers from now on.

4.4.2 Comparing different approximate models

In this section, the two tractable GP-RL models introduced in section 4.1 (named
GP-MC and DTC-Sarsa) and the original GP-RL model proposed in Gasi¢ and
Young (2014) (GP-Sarsa) are trained from scratch, with the objective of comparing
their policy learning speed and performance. The three models compared and
their respective parameter configuration are the following:

e GP-MC: This approach computes the Q-function with the Monte-Carlo ap-
proach described in equation 4.4 and follows the policy defined in equation
4.5. The Gaussian noise variance and the kernel function with fixed hyper-
parameters described in section 4.4.1 are used. The maximum number of
points to train each GP prior is defined 500 per action.

e GP-Sarsa: This policy, corresponding to the non-approximated GP-RL model,
is used as an upper bound to evaluate the approximation methods. It follows
the active exploration policy approach defined in equation 2.20 computing
the Q-function with equation 4.12. The kernel function k;; inside the TD
kernel (equation 4.7) is the same kernel function used for the GP-MC policy.
The maximum number of points used to train the GP prior is 1200%.

e DTC-Sarsa: This policy uses the combination of the TD kernel approach
with the application of the DTC approximation methods to compute the
Q-function following equation 4.13. It uses an active exploration policy ap-
proach, following equation 2.20. The TD-kernel is the same as in GP-Sarsa.
The maximum number of points is 1200 and the size of the inducing set U
is 300.

IThe data used to train the models in the TL scenario still comes from all the 15 dysarthric
simulated users.

2The maximum number of points for GP-MC and GP-Sarsa is set up differently because GP-MC
defines a GP for each action and thus can accept a larger number of (total) points. However, in the
following experiments the models are trained from scratch; hence, the maximum number of points
has very little effect on the results.



Chapter 4. Personalised Reinforcement Learning based Policy Optimization 99

Experimental results

Fig. 4.1 shows the performance of the six different test speakers interacting with
a total of six ASRs adapted with different amounts of data (0, 50, 100, 150, 300 and
500 words), making a total of 36 speaker-environment pairs. The results presented
are the average dialogue success rate and reward of the 36 pairs, for the three eval-
uated policy models (GP-MC, GP-Sarsa and DTC-Sarsa). The x axis is the number
of dialogues used to train the policy. GP-Sarsa shows the best performance, which
is the expected result taking into account that it is the non-approximated method
used as upper bound. The success rate of DTC-Sarsa, however, is only slightly
lower for any amount of training dialogues. The reward of DTC-Sarsa, however,
decreases with respect to GP-Sarsa as the amount of training dialogues increases,
showing that the policy is taking more turns to complete the dialogues than GP-
Sarsa. GP-MC, in contrast, has a lower success when the amount of training dia-
logues is small but slightly outperforms the other two policies when the amount
of training dialogues increases. In the reward metric, one can observe that GP-
MC has a slower learning rate than DTC-Sarsa, even if after 500 training dialogues
the reward of GP-MC is similar to DTC-Sarsa. To observe the performance of the

| Policy | Reward | Success |

GP-Sarsa 10.65 79.82%
GP-MC 10.19 88.90%
DTC-Sarsa | 10.47 74.97%

Table 4.1: Results for different policies trained until convergence

models when the success rate and reward have converged, the three policy mod-
els were trained until convergence. To do so, each node (sub-dialogue) of the
tree setup structure was trained independently with 900 sub-dialogues!. Table
4.1 shows the performance of the three models trained until convergence. Once
again, GP-Sarsa obtains the best reward and success results. DTC-Sarsa obtains
almost the same reward, but a success rate 5% lower, showing that the tendency
seen in figure 4.1 is reverted and the policy is favouring shorter dialogues. On
the contrary, GP-MC obtains a reward 0.5 lower than the other two models, but
has a success rate 9% higher. This shows that this policy is favouring dialogues
considerably longer than the other two.

! Take into account that this is not equivalent to training the system with 900 dialogues, since
the tree structure of the dialogue state slows down the policy learning of the nodes deeper in the
tree. Training each node independently deals with this problem.
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Figure 4.1: Performance of GP-Sarsa (green), GP-MC (blue) and DTC-Sarsa (red). The
x axis represents the number of training dialogues.
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Experiment conclusions

The objective of these experiments was to identify which policy approximation
model, GP-MC or DTC-Sarsa, is more suitable for a personalised VUL In the ex-
periments it is shown how each model has its advantages and disadvantages.
When the number of training dialogues is small, GP-MC shows a lower learn-
ing rate than DTC-Sarsa. When the models are trained until convergence, GP-MC
showed a higher success rate but a lower reward, meaning that the GP-MC policy
is leading to longer but more successful dialogues. The reason for this might be
the following: as MC-RL methods update the Q-function estimate of each visited
belief-action point after the dialogue is completed, the method cannot distinguish
which of the visited points leaded to a successful or failed dialogue. Therefore,
GP-MC methods rely on successful dialogues to obtain good estimates of the ex-
pected accumulated reward, so the policy learning speed is reduced and the policy
tends to give more importance to the success rate over dialogue length. Even if
this can be useful in scenarios where large amounts of data are available, this is not
the case in personalised VUIs, where the models need to be adapted quickly to the
user and to the changes in the environment. TD-based RL methods, in contrast,
do not have this problem, because the Q-function estimate is updated using the
local reward and the estimate of the Q-function in the next point, thus speeding up
the policy learning. In addition, dialogue length is usually more important than
success rate in home control VUIs, where an unsuccessful dialogue (e.g. chang-
ing the channel to 5 instead of to 4) is not a substantial problem, whereas taking
several turns to change the TV channel might be annoying for the user. In any
case, the ratio between success rate and dialogue length can be modified by tun-
ing the reward function. Overall, the results suggest that, compared to GP-MC,
DTC-Sarsa is a better GP-RL approximation approach for policy optimisation of
personalised VUIs, having a performance comparable to DTC-Sarsa with a much

smaller computational complexity.

4.4.3 Policy Optimization in variable environments

The objective of the next set of experiments is to evaluate the performance of the
DTC-Sarsa policy model in a varying environment scenario, where the ASR perfor-
mance improves as it is adapted with speaker specific data. To do so, the approach
described in section 4.3 will be used. The description of the scenario is the follow-
ing: each test speaker interacts with a set of ASR simulators, adapted with an
increasing amount of acoustic data (from 0 adaptation words to 350, with an in-

crease of 50 words each step). For each step, each speaker-ASR pair interacts with a



102 4.4. Transfer Learning experiments in the homeService environment

Success rate (%)

e—e ADA |

v APW
BE—H base
10 | I I l |
100 200 300 400 500 600 700 800
0 50 100 150 200 250 300 350

Reward

-6 . . a a i i
100 200 300 400 500 600 700 800
0 50 100 150 200 250 300 350
training dialogues-ASR adaptation data amount

Figure 4.2: Performance of DTC-Sarsa in a variable environment for different environ-

ment features. The x axis represents the number of training dialogues and the number of
words used to adapt the ASR.
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dialogue manager trained with 100 dialogues collected in that environment (ASR),
plus 100 dialogues collected in each of the previous environments. For example,
in the first step, the simulated user will interact with an ASR simulator adapted
with 0 words and with a policy trained with 100 dialogues collected in this ASR
environment. In the second step, the user will interact with an ASR simulator
adapted with 50 words and with a policy trained with 100 dialogues collected
in the 50-word ASR environment and 100 dialogues collected in the 0-word ASR
environment. In the next one, the user will interact with an ASR adapted with
100 words and the policy trained with 300 dialogues, 100 collected in the current
environment (100-word), and 200 collected in the 0-word and 50-word environ-
ments, and so on. This setting tries to simulate a scenario representing varying
environment dynamics, where the ASR is improving over time and the training
data has been collected interacting with different ASRs.

The DTC-Sarsa policy model uses the same hyperparameter setting than in sec-
tion 4.4.2. To analyse which environment features s are more useful, the model is
tested using the features proposed in section 4.3: Adaptation data amount (ADA)
and Accuracy per word (APW). The policy using these features is also compared
to a baseline that does not use any environment feature (base). The kernel over the
environment space k° is also a RBF kernel (equation 4.17) with variance ¢;, = 1.
The kernel lengthscale is I, = 500 for the ADA features and I, = 4 for the APW

features.

Experimental results

Figure 4.2 shows the mean dialogue performance of the six test speakers in the
varying environment scenario. The x axis shows two values: the amount of dia-
logues used to train the policy (up) and the amount of data used to adapt the ASR
(down). The y axis represents the dialogue success rate in the top figure and the
dialogue reward in the bottom one.

When the ADA features are used, three different ranges of behaviour can be
observed. In the first range, corresponding to the ASR environments from 0 to
50, the performance of these features is very similar to the baseline. In the second
range, corresponding to the environments from 100 to 250, using ADA features
gives an improvement of up to 0.7 in reward and 2% in success with respect
to the baseline. In the third range, from 300 to 350, the performance is again
very similar to the baseline. Note how the improvement respect to the baseline
increases as the amount of adaptation data increases, reaching its maximum at the
200 environment and then decreasing again. Using the APW features also give

a slight improvement with respect to the baseline, but this improvement is much
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smaller than the one obtained with the ADA features.

Experiment conclusions

The objective of these experiments was to analyse the performance of the approach
proposed in section 4.3 in a varying environment scenario, using two different en-
vironment features. The proposed method using ADA features gave a statistically
significant improvement in the range of ASR environments going from 100 to
250. Observing the ASR behaviour in figure 3.3, it can be seen that the range of
environments in where ADA features gives the highest improvement is also the
range of environments that presents the highest variation between their dynamics.
Therefore, the proposed method performs best when the differences between the
dynamics are varying more, which is a promising result. The reason for the small
improvement in the first environments (from 0 to 100) might be that the model
does not have enough training data to make environment features useful, while in
the later environments (250 to 350) the ASR improvement has already converged
so the variation between environments is very small.

Lastly, note how the improvement obtained by APW is much smaller than the
one obtained by ADA features. This is surprising because APW features should
give a better estimate of the similarities between environments, as they directly
account for the ASR performance. Research on more useful environment features

could improve the performance of this method.

4.4.4 Transfer Learning between speakers

The objective of the experiments presented in this section is to explore the effect of
applying the TL techniques proposed in section 4.2 in a hS environment person-
alised to a speaker. To test the effect of training a personalised policy model trans-
ferring knowledge from other speakers, for each test speaker (the target speaker),
the policy models are initialised with data from the other 14 source speakers.
Then, to test if the policy can be adapted online as the user interacts with the sys-
tem, increasing amounts of target speaker dialogues are included in the training
data. Each test speaker is evaluated in different ASR environments, interacting
with three different ASRs adapted with 0, 150 and 300 user specific words. The
main objective of the experiments is to compare the performance of the different
models, speaker features and data selection heuristics proposed in section 4.2. To

do so, the three different TL models proposed in section 4.2.1 are compared:

e DTC: Equation 4.13 is used to compute the Q posterior for the active explo-

ration policy (equation 2.20) and the set of temporal difference points Z; is
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initialised with the transferred source points.

e Prior: Equation 4.15 is used to compute the Q posterior for the active explo-
ration policy. The prior GP to compute the mean function (m(z) in equation

4.15) is trained with the transferred source points.

e Hybrid: Equation 4.15 is used to compute the Q posterior for the active ex-
ploration policy. The prior GP is trained with half of the source points and

the set of temporal difference points Z; is initialised with the other half.
as well as the two different data selection methods proposed in section 4.2.2

e Close: The data points from the source speakers closest to the target speaker
in the speaker space are selected to be transferred. The set of inducing points
U,, is initialised with the closest points to the target speaker from the trans-

ferred points.

o All: The data points transferred are sampled at random from all the speakers.
The set of inducing points Uy, is initialised with a random subset of the

transferred points.
and the three different speaker features presented in section 4.2.4:

o Int: Intelligibility features. For each speaker, s is defined as a single dimen-
sional feature corresponding to the ineligibility measure provided by the
UASpeech database.

e APW: Accuracy per word features. This is the same feature vector as the one
defined in section 4.2.4. For each speaker, s is defined as the 36 dimensional
vector corresponding to the ASR accuracy of each word in the command

vocabulary.

e [V:I-vector features. For each speaker, s is defined as a 400 dimensional vec-
tor corresponding to the mean i-vector extracted from each utterance from
that speaker. For more information on the i-vector extraction and character-
istics, refer to Martinez et al. (2015).

The kernel over the speaker space k° (equation 4.16), is defined as an RBF
kernel (equation 4.17). This kernel is used both to compute the similarity between
speakers in order to select data (section 4.2.2), and to weight the data from each

source speaker (section 4.2.3). k° has variance (7,%

= 1 and the lengthscale [} varies
depending on the features. For Int features I, = 0.5, for I-Vector (IV) features

I, = 8.0 and for APW features [, = 4.
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Figure 4.3: Comparison of the number of dialogues needed to learn a DTC-Sarsa policy

from scratch (blue) and with transfer learning initialization (green). The x axis represents
the number of training dialogues.
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In the following experiments, the data to initialise each policy is transferred
from a pool of 4200 points' corresponding to 300 points from each speaker in the
UASpeech database (table 3.1) except for the speaker being tested. The size of the
inducing set Uy, is 500 and the maximum size of the TD points set Z; is 1000 (or
2000 in some experiments). For online adaptation, whenever a new data point is
observed from the target speaker, this point is added to the set of inducing points
U, and the first point of the set U, is discarded from the inducing set (which,
due to the ordering done by data selection, corresponds to the least similar source
point or to the oldest target point). Whenever a new data point is observed and
the size of the set of temporal difference points |Z;| = 1000, the first point of this
set is discarded.

Experimental results

Figure 4.3 shows the effect of using data from source speakers to transfer knowl-
edge to a policy model personalised to a target speaker. It compares the mean
results of the six test speakers for a DTC-Sarsa policy model trained from scratch
(DTC-Sarsa from scratch) and initialised with data from the other 14 speakers (DTC-
Sarsa TL). The initialised policy uses the model DTC to transfer the data and does
not use any speaker feature to weight or select the data. The data is transferred
with the All selection method, selecting 1000 points at random from all the source
speakers. As can be seen, transferring the data from source speakers gives a Jump-
start improvement (performance when no target data has been seen) of more than
60% in success and more than 10 in reward. It can be also observed that, after
initialising it with data from source speakers, the policy needs fewer dialogues
(around 300) to converge to a near optimal performance. In contrast, when train-
ing from scratch, after 600 dialogues the policy is still far from converging.

To analyse the performance of the different models presented in section 4.2.1,
figure 4.4 compares the three different policy models proposed (DTC, Prior and
Hybrid), initialised with different amounts of source data points: 1000 (1K) and
2000 (2K). No speaker features are used to weight the data and the data selection
method All is followed, selecting the data to transfer at random from the pool of
source points. Analysing the results, it can be seen that for the three models, trans-
ferring more data points increases their performance when the amount of target
speaker dialogues is small, at the cost of increasing the model complexity. As the
amount of target speaker dialogues increases, however, the performance improve-
ment obtained by transferring more source points decreases. When comparing the

three different models, several observations can be made. When points from the

Each pool is different for each of the different seeds used to initialise the experiments.
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Figure 4.4: Performance of different transfer learning models initialized with different
amounts of source speaker data. The x axis represents the number of training dialogues
and the dashed line that 2000 dialogues are transferred instead of 1000.
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target speaker have not been observed, DTC and Prior have the same performance
(in this case, they are the same model indeed), but the performance of the Hybrid
model is significantly bellow the two others. As data from the target speaker is
included in the training set, the performance of the Prior model improves very
slowly compared with the other two models, being quickly outperformed by the
Hybrid model. The DTC model, has a much faster performance improvement than
Prior as the number of observed target dialogues increases, but at the cost of a
higher computational cost. Actually, the Hybrid model has the quickest perfor-
mance improvement as function of the target speakers, quickly outperforming the
other models in success rate (after 100 target dialogues) and getting a very similar
reward with a large amount of target dialogues (after 400).

To compare the different approaches to compute the speaker similarities for
data selection and weighting presented in section 4.2.4, figure 4.5 shows the per-
formance of the DTC model with 1000 transfer points (named DTC-1K in the
previous figure) using the different speaker features and data selection methods
proposed. Int (blue) denotes that the model uses the intelligibility measure based
features, IV (green) the i-vector features and APW (red) the ASR accuracy per word
based features. Clo (continuous line) denotes that the 1000 transferred data points
are selected from the most similar speakers and All (dashed line) denotes that
the source points are transferred from all the speakers, sampling 1000 points at
random from the pool of 4200 points. None-All is used as the baseline, where no
speaker feature is used to weight the data and the data is transferred sampling at

random from all the speakers.

Analysing the performance of the different speaker features evaluated, IV fea-
tures are shown to outperform the baseline and the other two features, although
APW features have a very similar performance. The better performance of IV fea-
tures is maintained for any number of target speaker dialogues observed. The
performance of Int features, however, is way below the other two metrics, per-
forming even worse than not using any speaker feature to weight and select the
data. If the two different data selection methods (Clo and all) are compared, it is
surprising to see that the performance of All method is better than Clo for any of
the features. This shows that the improvement obtained from using the proposed
speaker features to weight the data is not obtained from using these features to
select the data.

With the objective of analysing which is the best model/feature/selection com-
bination, figure 4.6 plots the three transfer learning models (DTC, Prior and Hybrid)
with the two best performing features (IV and APW) using the best performing
data selection method, All. As it was seen in figure 4.4, the performance of the
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Figure 4.5: Performance of different speaker features and different data selection methods.
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Prior model is worse than the performance of the other two models. Compar-
ing the DTC and Hybrid models, the former model has a much better performance
when there is not target speaker dialogues, but the latter, after a few target speaker
dialogues have been collected, quickly outperforms the other models in reward
and success. Comparing the different features used, it can be seen that IV features
still have the best performance, being generally slightly better than APW features
for any amount of target speaker dialogues.

Experiment conclusions

These experiments have shown how initialising a dialogue policy personalised to
a target speaker with data from other speakers improves the performance of the
policy both in initial performance and in convergence speed to an optimal policy.
In personalised VUIs, where collecting dialogue data from each target speaker is
very costly, this method can give an initial “average” policy that can be quickly
adapted to a near optimal policy as the user interacts with the system.

From the different transfer learning models evaluated, Prior showed worse
performance than DTC and Hybrid in terms of the amount of dialogues needed
to adapt the policy to the target speaker. Even if the computational complexity of
Prior is smaller than DTC?, the convergence speed decrease makes it a less suitable
model for personalised VUIs. If a small amount of target speaker dialogues is
available, the Hybrid model shows to be the best option for personalised VUIs, as
it has a performance similar to DTC with a lower computational complexity.

When the different speaker features were compared, it was seen that IV fea-
tures slightly outperformed APW features. As APW features use information
about the ASR statistics (which is the input for the dialogue manager), it might
be expected that they would outperform the rest, but in this case a purely acous-
tic based measure such as the one computed with IV features works better. The
reason for this might be that these features are not totally correlated to the ASR
performance, and there is hidden information inside IV features that help the
model to find similarities between speakers better than the average ASR statistics.
As these features are not strongly correlated, combining the two features could
give further improvements. The performance of Int features, however, is way be-
low the other two metrics and the baseline, suggesting that the information given
by intelligibility assessments is a weak feature for source speaker selection. As

this metric is computed in evaluations done by humans, it might be very noisy.

Due to computing two parallel GPs, the complexity of Prior is s * n> + t  m? instead of the
complexity of (s +t) * (n + m)? of the DTC model, where s and t is the number of source and target
points respectively and n and m the number of source and target inducing points. The complexity
of the Hybrid model is (s/2) * (1/2)2 + ((s/2) +t) * ((n/2) +m)>.
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Figure 4.6: Comparison of the best performing speaker features, APW (red) and IV
(green), using different transfer learning models: DTC-Sarsa (continuous line), Prior (dot-
ted) and Hybrid (dashed). The x axis represents the number of training dialogues.
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Evaluating the different data selection methods, the performance of All method
was shown to be better than Clo. This suggests that transferring points from more
speakers rather than from just the closest ones is a better strategy. This might
seem counter intuitive, but if the belief-action points of each speaker are clustered
in small regions of the belief-action space, transferring points from less speakers
might lead to having parts of the belief-action space where information is not
available. If the points are selected at random from more speakers, these points
will be distributed more uniformly over the belief-action space. More sophisti-
cated data selection methods that trade-off between filling the belief-action space
while selecting the most similar points could increase the system performance.

Finally, when all the models were compared using the best features and data
selection methods, the DTC model using IV features was shown to be the best
when target speaker data is not available. After a few target speaker dialogues
have been collected, however, the Hybrid model quickly outperformed the other
models in reward and success. This suggests that, if a small amount of target di-
alogues is available, Hybrid combined with IV features is the best model to use in
a personalised VUI, as it outperforms DTC model while having a lower computa-

tional cost.

4.5 Conclusions

Even if assuming that all the dialogues used to train a policy model are drawn
from the same distribution is acceptable in several domains (Raux et al., 2005,
Young et al., 2010), in cases such as personalised VUIs, this assumption may not
be true. Two scenarios likely to occur in personalised VUIs where this assumption
does not hold have been presented: variable environment (ASR) scenarios and sce-
narios where the policy is trained with data from several different speakers. In this
chapter, a state-of-the-art, model-free, dialogue policy optimisation framework ap-
propriate for these scenarios has been developed and evaluated. This framework
is also appropriate for online policy adaptation to specific speakers.

One main requirement of this framework is the ability to arbitrarily select and
discard data points. As online data selection and discarding is not tractable in the
approximate GP-RL methods proposed in the literature (Engel et al., 2005, Gasi¢
et al., 2013), two GP-RL methods that permit online data selection have been de-
veloped. The first one, named GP-MC, is based on modelling the RL problem
with a Monte-Carlo approach, where the Q-function is approximated using the ac-
cumulated rewards instead of the immediate rewards. This method showed good

performance when the amount of training dialogues is large, but the performance
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when the amount of training dialogues is small decreased. As fast learning rate
and adaptability are important requirements for personalised policies, the use-
fulness of this method in hS like systems is reduced. Combining several policy
models, however, has been shown to increase the dialogue performance (Gasi¢
et al., 2015). Therefore, GP-MC can be useful combined with other policies that

perform well with smaller amounts of training data.

The second proposed GP-RL method combined the definition of a kernel func-
tion in the temporal-difference space and the application of the Deterministic Training
Conditional approximation method. Redefining the set of belief-action points into
the TD space, allows to define a kernel function between TD points and rewrite
the GP-RL equations with the same shape as GP regression models. This redefini-
tion, allows to select and discard data points more easily (because the dependence
between two consecutive belief-action points is well defined) and permits the ap-
plication of well studied GP approximation methods such as DTC. This approach,
named DTC-Sarsa, showed results comparable to GP-Sarsa with a computational
cost tractable for online policy optimization, showing to be a very promising ap-

proach for personalised policy optimisation.

This chapter showed how initialising a personalised policy with data from
other speakers can greatly boost the performance of the system when target speaker
data is not available. In addition, once target speaker dialogues are collected
through interaction, this initialisation can greatly speed up the convergence to an
optimal policy. This is a desirable property for personalised dialogue policies,
because a “speaker independent” policy can be trained, which has a performance
good enough to be used by the target speaker. Later, this policy can be adapted on-
line to a personalised optimal policy with only a few dialogues collected through
interaction.

Another contribution of this chapter is a framework to weight the data col-
lected from different probability distributions. To do so, each data point is ex-
tended with an environment feature (ASR environment or speaker environment)
and the kernel in the belief-action space is extended to also compute covariances
in the environment space. Including these extra features showed performance
improvements in the two studied scenarios; variable ASR environment scenario
and transfer learning between speakers scenario. The results, however, depended
on the type of features used in each case, and some features even degraded the
model performance. The two features that improved the results, IV and APW, are
not strongly correlated, so combining them could lead to better results. Further
investigation on more representative environment features, or the application of

techniques that help to find the most representative features, could improve the
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usefulness of the data weighting approach. Different transfer learning models
were also studied, and it was shown that combining a hybrid model with I-vector
features outperforms any other approach after a few target speaker dialogues are
collected.

Due to the redefinition of the set of belief-action points to the set of TD points,
data points can be selected and discarded in an online fashion as more data points
are collected from interaction with the user. In the scenario of transfer learning
between speakers, different ways to select which points to transfer and discard
were studied. It was shown how selecting data points from all the speakers out-
performed selecting data points from the speakers closest in the speaker space.
This is probably because there is more variability in the data points if they are se-
lected from all the speakers, so the belief-action space is covered more uniformly.
More sophisticated heuristics that trade-off between selecting the points closest in
the speaker space and covering the most of the belief-action space could improve
the performance.

In summary, this chapter has presented a tractable online policy optimization
framework suitable for scenarios in where the training data comes from different
distributions. This framework showed an increase in the dialogue performance
in two different scenarios, but there are more potential scenarios in where this
framework can be applied — e.g. dialogues in different noise conditions, dialogues

with different accent speakers, etc.






Chapter 5

Personalised Dialogue State
Tracking

In the research presented in this thesis up to this point, little attention has been
paid to Dialogue State Tracking (DST). In the dialogue community, interest in DST
has been growing since the first Dialogue State Tracking Challenge (DSTC) was
held in 2013 (Williams et al., 2013) and has continued with the following DSTCs
(Henderson et al., 2014a,b, Kim et al., 2016). In DM for VUIs personalised to
dysarthric speakers, dialogue state tracking plays a crucial role in the outcome of
the dialogue, as it is the module in charge of estimating the true user intention or
goal from the noisy observations of the ASR or SLU. The dialogue state tracker
is therefore the module that increases the robustness in challenging ASR envi-
ronments. However, to the author’s knowledge, no research has been conducted
so far in personalisation or user adaptation of dialogue state tracking models to
specific users or environments. In this chapter, two scenarios likely to appear in
personalised VUIs are presented, showing that the use of features related to the
environment can help the dialogue state tracking models to improve the generali-
sation to unseen speakers or dialogue states. These scenarios are described in the

next two subsections.

Environment features for Dialogue State Tracking

In the previous chapter, the concept of personalisation of dialogue policy by ex-
tending the input features with environment features was introduced, giving evi-
dence that it can improve the performance of dialogue policies trained with data
from source speakers. However, the approach taken to introduce the environment
features in the GP-RL model has some shortcomings. First of all, the correlations
between points from different sources depend on a defined kernel with hand-
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tuned hyper-parameters. Even if research has been done in optimising the kernel
hyper-parameters automatically (Chen et al., 2015), the method turned out to be
unstable when employed in the hS environment. Second, as the kernel is fac-
torised into kernels in different spaces, the model cannot represent correlations
between different parts of the belief space and the environment space. Therefore,
the inclusion of the environment features in these models can be summarised as
computing the similarity between the different environment spaces of two points,
and using this similarity as a weighting factor when computing the covariance be-
tween two belief-action points. Discriminative models can make a more efficient
use of the environment features, because they can model the correlations between
individual elements of the environment features with the rest of the input features
(Bishop, 2006, Henderson et al., 2012).

Since the environment features are extracted before the belief state is estimated,
it would seem more reasonable to use them during the DST step. Conveniently,
discriminative models have recently been shown to have the best performance in
DST tasks (Henderson et al., 2014c, Lee, 2013, Williams, 2014), precisely because
of their capacity to use higher dimensional, possibly correlated, input features, by
directly modelling the conditional probability of the dialogue state given the input
features (Lee and Eskenazi, 2013). In section 5.2, a Recurrent Neural Network
(RNN) based dialogue state tracker able to use extended environment features is
presented and evaluated.

Dialogue state tracking generalisation to unseen states

There are other situations where DST techniques can be helpful in a hS environ-
ment. For example, as explained in section 2.1.1, when the ASR performance of a
homeService system has improved until a convergence point, the researchers may
opt for extending the range of devices that the system can control, extending the
ASR vocabulary. This means that, for DST, the researchers will have access to data
collected in the reduced domain, but would need to train a tracker that can under-
stand new concepts. Another possible (and similar) hS scenario is one in which the
user changes one of the devices (e.g. buys a new TV) and thus needs a different set
of commands to control it. The third DSTC (Henderson et al., 2014b) investigated
this same issue, evaluating state trackers in extended domains by including dia-
logue states in the test data not seen during the training. This challenge showed
the difficulty for data-driven approaches to generalise to unseen states, as several
machine learnt trackers were outperformed by the rule-based baseline. Effective
DST generalisation to unseen dialogue states (e.g. changing the dialogue domain

or extending it) remains an issue.
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State trackers using slot-specific models, however, cannot handle dialogue
states not seen in the training data. This is because the model is trained as a
classifier in which the classes are the possible dialogue states. Hence, if a state
is not seen in the training data, the model will never learn to classify it as the
correct one. Therefore, researchers participating in the third DSTC had to develop
state trackers able to generalise to unseen dialogue states, sometimes named gen-
eral dialogue state trackers (Henderson et al., 2014d). One of the most promising
approaches to general DST is to use state trackers that track each state indepen-
dently by using general value-specific features (Henderson et al., 2014c, Mrksi¢
et al., 2015).

However, dialogue states are by definition in a discrete space where similarities
cannot be computed. Thus, a general state tracker has to include a general value-
tracking model that learns the average tracking statistics of all dialogue states.
This strategy assumes that different dialogue states have the same state tracking
behaviour, but such assumption is rarely true. For example, two values, whose
associated concepts have different ASR accuracy, have different state tracking per-
formance. If a general feature which can be used to compute similarities between
dialogue states could be defined, the state tracking generalisation to unseen states
could be improved. The unseen dialogue states could be tracked using statistics
learnt from the most similar states seen in the training data instead of using the
average statistics of all states. In section 5.3, a general dialogue state tracker able
to better generalise to unseen dialogue states by using ASR and phone related

features is presented and evaluated.

Chapter overview

In the rest of the chapter, techniques to improve the generalisation to unseen
speakers and to unseen dialogue states are presented, scenarios that are likely
to be found in hS-style systems. To properly evaluate these two scenarios, how-
ever, it is more convenient to study each of them independently. In addition, a
dialogue corpus of dialogues occurring in these scenarios is needed. The next
section describes the generation and characteristics of the dialogue corpus used to
evaluate the DST experiments performed in this chapter. Then, section 5.2 inves-
tigates techniques aiming to improve generalisation to data from unseen speakers
in an LSTM-based state tracker. The DST input features are extended with speaker
specific features (i-vectors and ASR-related) to help the model to find similarities
between the target and the source speakers. dropout regularization (Srivastava
et al., 2014) is also used, showing that it helps not only to generalize to unseen

speakers, but also to increase the performance improvement of the tracker when
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using the augmented input features. In a further analysis, it is shown that the
effect of these generalization techniques increases when a small amount of target
speaker data is available. Section 5.3 develops a method to use ASR and phone-
related general features to improve the generalisation of a RNN based dialogue
state tracker to unseen states. Several ASR and phone-related features are pro-
posed and evaluated as well as different approaches to encode variable length
phone sequences into fixed length vectors. Finally, section 5.4 draws a conclusion
for the chapter.

5.1 Dialogue state tracking corpus for hS environment

One of the main problems in dialogue management research is the lack of anno-
tated dialogue corpora and the difficulty of using data from one domain to train
a system in a different domain. The corpora released for the first three DSTCs
aimed to mitigate this problem (Henderson et al., 2014a,b, Williams et al., 2013).
However, this data has been collected in a scenario where many different speakers
interact a few times each, thus making adaptation to specific speakers infeasible.
Furthermore, there is no acoustic data available; hence, features extracted from
the acoustics, such as i-vectors or phone posterior probabilities, cannot be used.
For these reasons, the dialogue corpus used in the experiments in this chapter has
been generated with simulated users interacting with a rule-based dialogue man-
ager. The simulated users interact with ASR systems adapted with two different
amounts of speaker specific words: 0 (non adapted) and 300 (fully adapted).

To evaluate techniques to generalise to unseen speakers, data collected from
several dysarthric speakers is needed, whereby each speaker interacts for a large
number of dialogues. To do so, a set of 15 SUs with dysarthria (the same SUs
described in section 3.2.3) is used to interact with a rule-based dialogue man-
ager and the dialogues generated are used as the corpus to train and evaluate
the DST models. The interaction is performed in the simulated hS environment
described in section 3.2.3, using the slot-based dialogue state representation ap-
proach described in section 3.2.2. However, stochastic factors, such as the SUs and
exploratory policies, influence the corpus generation. To reduce the effects intro-
duced by these random components, three different corpora have been generated
by initialising the random components of the users and the policy with different
seeds. Then, 1200 dialogues are collected for each speaker-ASR pair and for each
seed and the results presented in this chapter are the mean results of the tracking
evaluation on the three corpora.

To evaluate techniques that improve the generalisation to unseen states, dia-
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logue data collected in different or extended domains is needed. For the experi-
ments performed in this chapter, data collected in two different domains (corre-
sponding to different hS systems, systems that use a different set of commands to
be controlled) has been generated. Then the data from one domain is used to train
the DST models and the data from the other is used to evaluate the models. This
approach, instead of an extended domain approach as in DSTC 3, is taken for one
main reason: the main interest is to evaluate the performance of a tracker when
tracking unseen states. If both seen and unseen states are included in the test
data, it would not be clear which part of the results correspond to the tracking of
the seen states and which of them correspond to the tracking of the unseen ones.
To generate the corpus, two hS systems are simulated, each controlled with a dif-
ferent vocabulary of 36 commands. To do so, 72 commands selected at random
from the set of 155 most frequent words in the UASpeech database (Kim et al.,
2008) are split into 2 groups, named domain A and domain B. Then, 1000 dialogues
are collected for each speaker-ASR pair in each domain! and used as corpus for
the state tracking experiments in section 5.3. To ensure that the methods are in-
dependent of the set of commands selected, three different 72 word vocabularies
are randomly selected and the results presented in the following section show the
mean results for the three vocabularies.

5.1.1 Slot-based dialogue state representation for homeService

In contrast to the dialogue managers presented in the previous chapters, DST tech-
niques have to be evaluated using more complex dialogue state representations.
In this chapter, the slot-based approach presented in section 3.2.2 is used. The
dialogue state of the system is factorized into three slots, with the values of the
first slot representing the devices to control (“TV”, “light”, “bluray”, etc. blue
commands in figure 3.6), the second slot its functionalities (“channel”, “volume”,
etc. green commands) and the third slot the actions that these functionalities can
perform (“up”, “two”, “off”, etc. red commands). The slots have 4, 17 and 15 val-
ues respectively and the combination of the values of the three slots compose the
joint goal (e.g. “TV-channel-five”, “bluray-volume-up”). In the case of user goals
composed by two values, the third slot takes a special value, “none” (e.g. the goal
“light-on”, will be “light-on-none”). The set of valid? joint goals G has a cardinal-
ity of 63 and the belief state P(g) for each joint goal g° is obtained by multiplying

1200 extra dialogues are collected in domain B for the set of experiments which includes a small
set of in-domain data.

2Take into account that many combination of slot values will not be valid, e.g. light-channel-on.

3The joint goals g are used instead of the dialogue states s to make clear that it does not refer to
the value of a slot. Anyway, a policy could take as input the joint goal distribution or the factorised
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the slot probabilities of each of the individual slot values and normalising:

Pi1(81)Ps2(82)Ps3(g3)
P = 5.1
(&) = s Pu(g]) Pal(8h) Por(3)) G.1)

where Py (gy) is the probability of the value gy in slot sy and g = (g1, $2,$3)-
The slot-based dialogue state tracking corpus is labelled following the annota-
tion scheme B defined in the DST challenges (see section 2.7.3).

5.1.2 Simulated dysarthric users

To generate the dialogue corpora, a set of simulated users has been used. These
SUs are composed by a behaviour simulator and an ASR simulator, following the
same approach as the ones described in section 3.2.3. The dialogues are generated
for the 15 dysarthric speakers in two ASR adaptation regimes (0 and 300), making
a total of 30 speaker-ASR pairs. As in the previous chapter, only the DST perfor-
mance for low and mid intelligibility speakers is evaluated. However, in order to
interact in a mixed initiative environment and to generate the necessary acoustic
features, some modifications of the SUs are needed.

The set of rules to control behaviour simulator is modified to interact in a mixed

initiative slot-based environment. The set of rules is the following;:

e The user will speak the commands corresponding to the user goal in any
random order (e.g. it can say channel-five-TV instead of TV-channel-five).

e If the system asks for the goal, the user will say a command corresponding
to the value of a slot that has not been uttered before, or any command of
the goal if all the values have been said.

o If the system asks for the value of a specific slot, the user will say the value
of that slot.

o If the system asks a confirmation question, the user will answer with yes or

no.

To simulate different levels of expertise by the user, the simulated user can “con-
fuse” the command it has to say: in each turn and depending on the user expertise,
there is a probability of saying a different command or of providing a value for
a different slot than the one requested. Three different expertise levels are used
to generate the corpus to increase its variability. Refer to appendix B for a deeper

explanation of the behaviour simulation model.

distributions for each slot. In the former case, G = S and P(g) = b(s).
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In order to be able to generate acoustic features better correlated with the
N-best lists, the ASR simulator follows the sampled ASR approach explained in
section 3.2.3, in which the ASR N-best output is sampled from the ASR outputs
obtained in the experiments in section 3.1.2. For each command generated by the
behaviour simulator, an N-best list output from one of the recordings of that com-
mand for that speaker-ASR pair is sampled at random. To increase the variability
of the data generated, the time scale of each recording is modified to 10% and 20%
slower and 10% and 20% faster, generating more ASR outputs to sample from.
To generate phone posterior features (used in section 5.3) the approach described
in Christensen et al. (2013a) is used, without the principal component analysis

dimensionality reduction.

Rule-based state tracker

To generate the corpus, the simulated users described in the previous section in-
teract with a rule-based dialogue manager. The dialogue state tracker of this di-
alogue manager is one of the state trackers used as baseline (Wang and Lemon,
2013) in the second DSTC. This tracker follows simple rules to compute the belief
state as the accumulated evidence seen in the SLU output (or ASR output in this
case) during all the dialogue history. This tracker performed competitively in the
DSTCs, proving the difficulty for data driven trackers when the training and test
data are mismatched. The state tracking accuracy of this tracker is also used as
the baseline in the following experiments.

Rule-based dialogue policy

The dialogue policy employed to generate the corpus is an improved version of the
rule-based policy used as baseline in the experiments in section 3.4. This policy is
modified to include mixed initiative interaction strategies. It follows simple rules

to decide which action to take in each turn:

e For each slot, if the maximum belief of that slot is below a threshold, t,, the

system will ask for that slot’s value.

o If the belief is above the threshold t, but bellow a second one, t;, the system

will ask a confirmation question for the value.

o If the maximum beliefs of all slots are above the threshold t;, the system
will take the action corresponding to the top ranked joint goal (the joint goal
with the highest probability).
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The values for the thresholds f, and t, are optimized to each speaker-ASR
pair by grid search to maximize the dialogue reward. In addition, the policy
implements a stochastic behaviour to induce variability among the collected data;
choosing an action at random with probability p. and requesting the values of the
slots in a random order. To increase the variability of the corpus, the dialogues are

generated using two different values for p.: 0 and 0.2.

5.2 DST feature extension for improved generalisation to

unseen speakers

Recalling section 2.5, the component in charge of inferring the dialogue state in
each turn is called the dialogue state tracker. This module takes the dialogue history
as input (the collection of ASR-SLU observations, machine actions, etc. up to the
current turn) and uses it to estimate the distribution over the dialogue states — the
belief state.

Historically, machine learning approaches to DST used generative models,
which need to model all the correlations in the input features (Thomson and
Young, 2010, Williams and Young, 2007). This forced the generative models to
make many conditional independence assumptions in order to maintain tractabil-
ity. In addition, to keep the input features as lower dimensional and uncorrelated
as possible, only the dialogue features (the SLU output plus last system action) were
used as input features

The resulting SDSs used a typical “pipeline” architecture with very defined
data flow (shown in figure 5.1 as the continuous line). The data flow in this
architecture started with the user utterance (acoustic signal), being transformed to
a string of words by the ASR and to a set of concepts by the SLU, then being feed
to the state tracker of the dialogue manager and so on. In this architecture, each
module reduces the data dimensionality, trying to keep only the key information
needed to infer the dialogue state. However, some useful information could be
lost in each step.

In the recently held DSTCs (Henderson et al., 2014a,b, Williams et al., 2013),
it was shown how discriminative models outperform generative models in DST,
because of their capability to incorporate a rich set of features without worry-
ing about their dependencies on one another. Most models used very high di-
mensional input features generated from the whole dialogue history (Lee, 2013,
Williams, 2014) while others even extracted the features directly from the ASR
output (Henderson et al., 2014d). Discriminative models open up the possibility

to extend the tracker’s input features with features extracted in previous modules
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of the dialogue system.

In chapter 4, environment features such as i-vectors and ASR performance re-
lated features were shown to improve the generalisation of a dialogue policy to
unseen dysarthric speakers. However, the ability of discriminative models to han-
dle high dimensional input features suggests that the information obtained from
these environment features could be more efficiently processed in the DST step
instead of in the PO step. For example, in personalised dialogue management,
the dialogue features can be extended with the user specific features described in
section 4.2.4 — i-vectors and ASR performance related features (APW). These fea-
tures give information that represent a certain type of speaker behaviour, which
allows the state tracker to relate it to the behaviour observed on “similar” source
speakers when inferring the dialogue state. Using the environment features pro-
posed in chapter 4 with discriminative model based dialogue state trackers can
have several advantages:

e The deviations in the estimation of the belief state in each turn due to the
mismatch between the training and testing data can be “corrected”: the state
tracker can use the information included in the environment features to com-
pensate the “noise” introduced by differences between the speakers or en-
vironments. Therefore, the policy optimization step will work with an “en-
vironment corrected” input, meaning that it can be considered that all the
input data for the policy (the belief state) comes from the same distribution,
thus the same policy can be trained with data from several (possibly very

different) speakers or from different ASRs.

e Discriminative models can model the correlations between the individual
elements of the environment features and the DST input features. For exam-
ple, a discriminative model can find that a specific dimension of an i-vector
is correlated with the accuracy of a specific command in the N-best output
of the SLU.

e Discriminative models (e.g. RNNs) can learn their weights automatically
with gradient descent methods. This means that fewer model parameters
have to be hand-tuned and that the model has more flexibility to learn the
true distribution of the data.

Therefore, to improve the DST generalisation to unseen speakers, the usual
dialogue data flow can be modified to include features extracted directly from the
acoustic signal and from the ASR (shown in figure 5.1 as the dashed line), such as

the the speaker features explained in section 4.2.4. More formally, in each turn ¢,
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Figure 5.1: Typical dialogue data flow (continuous line) and proposed extended dialogue
data flow (dashed line).

the dialogue features o; can be extended by concatenating them with the speaker
features os;. Following this approach, the input of a (sequential) state tracker in
each turn will be the concatenation of these two features, o; P os.

5.2.1 Experimental set-up

This section presents a framework to evaluate if including speaker features in the
input of the state tracker can improve the DST generalization to speakers not seen
in the training data. To do so, the methods proposed in section 5.2 are tested
on a set of slot-specific LSTM-RNN (Hochreiter and Schmidhuber, 1997) based
state trackers. These trackers follow the slot-based dialogue state representation
described in section 5.1.1. To evaluate the setting up of a system where dialogue
data from the target speaker is not available (the same TL set-up presented in the
experiments in section 4.4.4), the tracker for each speaker is trained on data from
the remaining 14 source speakers. A second set of experiments tries to evaluate the
performance of the trackers as target speaker data becomes available by including
increasing amounts of target speaker dialogues the training data. The performance
of the state trackers is evaluated on the six SUs corresponding to the low and mid
intelligibility speakers in the UASpeech database, the test speakers.

RNN-LSTM model parameters

To train the state tracking models, 1200 dialogues are used for each source speaker
(with a 0.9-0.1 train-validation split) and 1200 target speaker dialogues are used
for testing. In the second set of experiments, increasing amounts of target speaker

dialogues are used to train the model, including 200 extra target dialogues in
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each step!. The RNN-LSTM models are trained for 100 iterations with stochastic
gradient descent with a learning rate of 0.001.

As the data gathered from the source speakers used for training will follow
a different distribution than the target speaker data, the tracker might overfit
to the source data. To address this issue, strong regularisation techniques are
needed. Since model combination was shown to be important in the performance
of the best performing trackers in the three DST challenges (Henderson et al., 2013,
2014b, Williams, 2014), the outputs of the five models corresponding to the five it-
erations performing best in the validation set are combined to get the slot output
distribution. However, model combination might not be enough in scenarios with
very big data mismatch. Dropout regularization (Srivastava et al., 2014) has been
proven to be a powerful regularization technique for artificial neural networks,
greatly improving the performance in several machine learning tasks (Krizhevsky
et al., 2012, Zaremba et al., 2014). Dropout randomly “deactivates” a percentage
of neurons in each layer at every training iteration, forcing neurons to learn activa-
tion functions independent of other neurons. It can be considered a very extreme
instance of model combination, where each training iteration is done with a differ-
ent model. However, RNNs and especially LSTMs are difficult to train, so dropout
can make it more complicated to learn long term dependencies (Bayer et al., 2013).
To avoid this issue, dropout is only applied in the non-recurrent connections be-
tween layers as proposed by Zaremba et al. (2014). The dropout rate is set to 0.2
in the input connections and 0.5 in the remaining non-recurrent connections.

The state trackers are modelled as slot-specific trackers; for each slot an RNN-
LSTM classifier is defined, in which the classes correspond to the possible values
of the slot. The topology of the network is shown in figure 5.2. The input in each
turn for each slot is composed by the dialogue features o; (ASR N-best output plus
the machine action) concatenated with the speaker features o (if any). The input
is fed into a linear projection layer that in turn feeds into a recurrent LSTM layer.
The output of the LSTM layer is the input to a softmax layer with a size equal to
the number of slot values. Two different linear-LSTM layer sizes have been tested:
25-75 (SML) and 75-150 (LRG)?. Each model is evaluated with and without using
dropout in training, with dropout rates of 20% in the input connections and 50%
in the rest. This defines a total of four RNN-LSTM based trackers evaluated in
section 5.2.3, named SML, SML-DO, LRG and LRG-DO respectively.

I The target speaker dialogues used for training are independent of the target speaker dialogues
used for testing.

2The reason to compare LSTMs with different sizes is because dropout reduces the effective size
of the network (Srivastava et al., 2014), thus optimal network sizes might vary depending on the
dropout rate. Several network sizes have been tested and the two with better performance with and
without using dropout are presented.
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Figure 5.2: Topology of the LSTM-based tracker. o; and o, represent the dialogue features
and the speaker features, respectively.

5.2.2 Extended input features

The standard input features of the tracker in each turn o; are the dialogue features,
i.e. the N-best list of commands outputted by the ASR plus the machine action in
turn t. In section 4.4.4, it was shown that i-vectors and ASR performance related
features could improve the performance of a policy trained with data from other
speakers. Therefore, these features were used as speaker features in the following
experiments. The DST models are evaluated concatenating the dialogue features

o; with the following speaker features o;:

e [V: Martinez et al. (2013) showed that i-vectors (Dehak et al., 2011) can be
used to predict the intelligibility of a dysarthric speaker. Therefore, they
are a potentially useful feature to relate similar speakers. For each speaker
s, 0s is defined as a 50 dimensional vector corresponding to the mean i-
vector extracted from each (test) utterance from that speaker in the UASpeech
database. For more information on the i-vector extraction, refer to Martinez
et al. (2015).

e APW: As explained in section 4.2.4, the statistics of the ASR can be used
as speaker features. For the following experiments, the accuracy per word
(command) is used, defining os; as a 36 dimensional vector in which each

element is the ASR accuracy for each of the 36 commands.

o J[V+APW: As is was discussed in section 4.5, IV and APW features are not
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Speaker features

Tracker no feat. IV APW | IV+APW
Baseline | 2<C 64.8%" - - -
L2 0.66 - - -
SML acc. || 66.9% | 65.2% | 66.6% 67.1%
L2 0.482 0.501 0.484 0.483
acc. || 67.3% | 68.7%" | 70.1%" | 70.6%"
SML-DO L2 0.451 0.427 0.418 0.408
LRG acc. || 66.1% | 66.2% | 66.5% | 68.6%"
L2 0.497 0.505 0.489 0.464
acc. || 674% | 69.7%" | 69.7%" | 70.0%"
LRG-DO L2 0.459 0.427 0.424 0.417

Table 5.1: State tracking accuracy and L2 results for the different trackers using different
speaker features. SML (25-75) and LRG (75-150) is the size of the layers and DO indicates
that dropout is used. IV are i-vectors and APW accuracy per word features. +/- indicates
statistically significantly better/worse than the SML tracker (p < 0.01), computed with a
two-proportion z-test (Lehmann and Romano, 2006).

strongly correlated. Therefore, defining o, as the concatenation of APW and
1V can further improve the performance of DST.

5.2.3 Experimental results

To show the performance of including speaker features when there is no target
speaker data available, table 5.1 shows the state tracking accuracy and L2 mean
results for the six test speakers, when the trackers are trained with data from the
source speakers only. The dialogue state tracker used as baseline (first row) is the
best baseline state tracker used in the second and third DSTCs (this is the same
rule-based state tracker used to collect the corpus in section 5.1, refer to Wang and
Lemon (2013) for more details). The remaining four rows present the results for the
four RNN-LSTM based trackers presented in section 5.2.1 — SML, SML-DO, LRG
and LRG-DO. The columns denote the speaker features o, that are concatenated
to the dialogue features o; in the tracker’s input (the features presented in section
5.2.2), while no feat. denotes that only the dialogue features are used as input.
First of all, note that the accuracy and L2 results are very strongly correlated
in all the models (for L2, a lower value denotes better performance). Therefore,
the analysis done in this section will focus only on the accuracy results, but it
is applicable to the L2 results as well. When the RNN-LSTM based trackers do
not use speaker features or dropout (SML-no feat. and LRG-no feat.), the absolute
accuracy increase with respect to the baseline is only 2.1% and 1.3%, respectively.
When dropout regularisation is included (SML-DO-no feat. and LRG-DO-no feat.),
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Figure 5.3: Accuracy for SML tracker, using different amounts of target speaker dialogues
in the training data. DO indicates that dropout reqularization is applied and IV+APW
indicate that the concatenation of IV and APW features is used.

the accuracy improvement increases to 2.5% and 2.6%, respectively. When APW
and IV features are included independently and dropout is not used, the results
vary between the different models. For SML, the performance with respect to not
using any speaker feature is degraded, while for LRG the performance slightly
increases. When the concatenation of both features is used, however, the accuracy
of SML-IV+APW slightly increases and the accuracy of SML-IV+APW increases
by more than 2.5%. Including dropout regularization improves the accuracy of
all the models, but the performance increase is considerably larger when APW or
IV features are used, with improvements between 1.5% and 3% absolute. Using
the concatenation of both features plus dropout (SML-DO-IV+APW and LRG-DO-
IV+APW) results in the largest accuracy improvement with respect to the baseline,
5.7% and 5.1% respectively. These models also give the best accuracy improvement
with respect to the “baseline” RNN-LSTM trackers (SML-no feat. and LRG-no feat.),
3.6% and 2.6% respectively.

To evaluate the performance of the trackers in an online adaptation scenario,
figure 5.3 shows the accuracy of the SML-no feat., SML-DO-no feat., SML-IV+APW
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and SML-DO-IV+APW trackers when different amounts of user specific dialogues
are included in the training set. The results show that the accuracy improve-
ment obtained from including speaker features increases as more target speaker
dialogues are included in the training set, obtaining more than 4% absolute im-
provement compared with not using speaker features for any amount above 400
dialogues. When a small number of target speaker dialogues is included in the
training set, however, the gain obtained from the combination of speaker specific
features and dropout regularization (SML-DO-IV+APW) is significantly higher
than any of these approaches alone (e.g. 3% with 200 dialogues). As more target
speaker data is included in the training set, the gain obtained from the IV+APW
features increases with respect to the gain obtained from dropout, even if SML-
DO-IV+APW still performs around 1% better.

Experiment conclusions

These experiments show how including speaker specific features as input for the
state tracker can improve the performance in conditions of mismatch between the
training and the test data. It can be seen that the accuracy of the baseline tracker
is only around 2% below the performance of all the RNN-LSTM trackers when
speaker specific features are not used, even if dropout regularisation is applied.
This shows the difficulties faced by machine learnt models in mismatched train-
test data conditions. Including IV or APW features independently without using
dropout, degraded the performance in some cases and slightly increased it in
others. When the results were analysed speaker by speaker, it was observed that,
using APW and IV features independently degraded the performance for some
speakers and improved it for others. This suggests that for some speakers the best
speaker similarity measure is computed using APW features and for others, IV
features work better. By combining both, the RNN-LSTM tracker is able to learn
which features work best for a certain type of speaker.

The best results were obtained when dropout regularisation was used in com-
bination with the different speaker features. The cause of this is probably that
extending the input increases the chance of the networks to overfit, because neu-
rons learn co-adaptations to detect fine patterns that only occur in the training
data. By using dropout, these co-adaptations cannot be learnt because the pres-
ence of any particular input is unreliable. Therefore, when dropout is used, the
trackers are forced to learn the key information appearing in the speaker features
while the “noise” is discarded.

When the results were analysed including increasing amounts of target speaker

data in the training set, it was shown how the improvement given by applying
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dropout to the models using speaker features decreased as more target dialogues
were included in the training data. The reason for this is that dropout is more
useful when the mismatch between training and test data is greater. As more
target dialogues are included in the training data, the model is able to use the
speaker features to relate the state tracking statistics of different speakers without

the need of a strong regulariser.

5.3 DST feature extension for improved generalisation to

unseen states

When a dialogue state tracker is modelled as a slot-specific tracker (e.g. the track-
ers in the experiments in section 5.2), the output classes of the classifier of each
slot define the values that the slot can take. However, if a specific value for a slot
does not appear in the training data or appears very few times, the model will
not be able to learn to track it properly. Therefore, data driven state trackers with
slot-specific models are not able to generalise to unseen dialogue states!, because
they learn the specific statistics of each slot and value. If a value is never seen in
the training data, the model will learn that the statistics of that value say that it
is never the true class. To handle this issue, general state trackers were proposed
(Henderson et al., 2014d, Mrksi¢ et al., 2015), which track each value indepen-
dently using general value-specific features (see section 2.5.3 for a more detailed
review). These trackers define a set of binary classifiers or value filters for each
slot-value pair, with all the value filters sharing the same parameters. The only
difference between the value filters is the input, which is composed by value spe-
cific features o, (e.g. the confidence score of the concept associated to that value
in the SLU output). To compute the output distribution of each slot, the outputs
of each independent value filter for that slot g/, are concatenated and normalised
using a softmax function (see figure 2.6).

5.3.1 Similarities between different dialogue states

The main problem faced by general state trackers is that dialogue states are by
definition in a discrete space where similarities cannot be computed. Therefore, a
general state tracker has to include a general value-tracking model learnt from the
average statistics of all the dialogue states. This strategy assumes that different

dialogue states have the same state tracking behaviour, but such assumption is

IIn a slot-based dialogue system, the dialogue states are defined as the set of possible value
combinations for each slot. However, in this section the term dialogue states will be used to refer to
the set of slot-value pairs and joint dialogue states to the actual dialogue states.
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rarely true. For example, in a SDS for tourist information, it seems reasonable to
assume that the state tracking statistics of the state “search-restaurant-italian” will
be more similar to the state “search-restaurant-indian” than to the state “book-
hotel-tonight”. The statistics learnt from the “italian” dialogue state could be used
to generalise to the “indian” one. In the context of VUIs developed for dysarthric
speakers, two values whose associated concepts have different ASR accuracy, will
have different state tracking performance. For example, if the command “TV” is
recognised correctly 90% of the times and the command “radio” only 30% of the
times, the state tracking statistics of the dialogue states related to these commands
will be very different. If a value-specific feature able to compute similarities be-
tween dialogue states , s, can be defined, this feature could be used to track
new dialogue states using statistics learnt from the most similar states seen in the

training data, improving the generalisation to unseen states.

5.3.2 Value specific features for dialogue state similarity computation

The model explained in section 2.5.3 works with value-specific general features o/,
which do not help to relate dialogue states with similar state tracking behaviour.
In a VUI such as hS, however, different values whose related concepts have similar
ASR performance can also have similar DST behaviour. Therefore, features that
give information about the ASR performance of each value can help to generalise
to unseen dialogue states.

The following two subsections present two approaches to extract these fea-
tures, s!. Firstly, it is proposed to use a held out set of recording to estimate the
ASR accuracy related to each value (a similar approach to the one taken to com-
pute the APW features in section 5.2.2). Secondly, as a held out set of recordings
can be costly to obtain when the domain of the system is extended, it is proposed

to extract these features directly from the phonetic structure of the commands.

ASR value accuracy features

Under the assumption that dialogue states with similar ASR or SLU accuracy will
have similar state tracking behaviour, one of the best possible features to compute
dialogue state similarities is an estimation of the actual ASR or SLU accuracy. Even
if the accuracy can be difficult to estimate in many SDSs, in a command-based
VUI such as homeService it is possible. As in hS the user interacts with the system
using single word commands, the output of the ASR is an N-best list of commands,
where each of the commands is associated with a value in the slot-value ontology.

If recordings of the commands related to the unseen dialogue states are available
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(e.g. the enrolment data in hS), these recordings can be used to estimate the ASR
performance of these commands. Then, the value specific features for each value
filter, o, can be extended by concatenating the ASR accuracy of the command
associated to that value, s!. When the tracker faces a value not seen in the training
data, it can improve the estimation of the probability of that value by using the

statistics learnt form values with similar ASR performance.

Phone related features

The accuracy estimates proposed as features in the previous subsection need to
be inferred from a held out set of word recordings. In some cases, however, this
held out set may not be available. In hS, the enrolment data is collected when the
system is newly set up and the system may be extended without collection of new
enrolment data (see section 2.1.1). In order to avoid this requirement, the phonetic
structure of the commands can be used to find similarities between dialogue states.
If it is assumed that phonetically similar commands will have similar recognition
rates, general features extracted from the phonetic structure of the commands can
help to relate similar dialogue states. For example, the ASR can find “problematic
phones” —i.e. words that contain phones or phone sequences that, due to the
poor pronunciation of the user, are consistently misrecognised. Therefore, the
state tracker can learn to detect such problematic phones and adapt its dialogue
state inference to the presence of these phones. If an unseen dialogue state that
contains these phone patterns is tracked, the state tracker can infer the probability
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of that state more accurately. Using the phonetic structure of the commands as
additional feature for state tracking can be interpreted as moving from performing
state tracking in the “command space”, where similarities between dialogue states
cannot be computed, to performing state tracking with the help of the “phone
space”, where those similarities can be estimated. In other words, the phonetic
structure of the commands can be interpreted as a space composed by subunits of
the commands, where similarities between states can be computed.

Phone related features can be extracted in several ways. For example, a deep
neural network trained jointly with the ASR can be used to extract a sequence of
phone posterior features, one vector per speech frame (Christensen et al., 2013a).
Another way is to use a pronunciation dictionary (Richmond et al., 2010) to de-
compose the output of the ASR into sequences of phones. The latter method can
also be used to extract a “phonetic fingerprint” of the associated value for each
filter. For example, a filter which is tracking the value “RADIO”, would have the
sequence of phones [rerdion] as phonetic fingerprint.

In each dialogue turn, these phonetic features will be composed by sequences
of different length. In the case of the ASR phone posteriors, the sequence length
is equal to the number of speech frames. If a pronunciation dictionary is used, the
length of the sequence will be equal to the number of phones in the command. In
each dialogue turn, however, the input of the tracker needs to be a fixed length
vector. Therefore, a method to transform these sequences into fixed length vec-
tors is needed. A straightforward method is to compute the mean vector of the
sequence, thereby losing the phone order information. In addition, the number of
phones that the sequence has would affect the value of each phone in the mean
vector. Conveniently, RNN encoders (Cho et al., 2014) have been recently shown
to be able to efficiently encode sequences of arbitrary length in several machine
learning tasks (Sutskever et al., 2014, Wen et al., 2016). Therefore, to compress the
phone sequences in fixed length vectors while maintaining the ordering and the
phone length information of the sequence, the use of an RNN encoder is proposed.
In the next two subsections, two different ways to train this encoder are proposed,

jointly with the model and trained in an independent pronunciation dictionary.

Joint RNN phone encoder

The state of an RNN in each step is a vector representation of all the previous
sequence inputs seen by the model. Therefore, the final state after processing
a sequence can be interpreted as a fixed length encoding of the sequence. If this
encoding is put to the filters of the state tracker, the tracker and the encoder can be
trained jointly, using back-propagation. Using this approach, the encoding of the
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Figure 5.5: Seq2seq phone encoder. The double-lined rectangle represents the last state of
the encoder, which corresponds to the phone feature vector s.,.

phonetic sequence in each turn s, is concatenated with the value specific features
o, for each filter as shown in figure 5.4. This defines a structure with two stacked
RNNSs, one encoding the phonetic sequences per turn and the other processing the

sequence of dialogue turns.

Seq2seq phone encoder

Encoding the phone sequences into fixed length “dense” representations allows
the computation of similarities which resemble the computing of word embed-
dings (Mikolov et al., 2010), where words are mapped into a continuous space in
which similarities between them can be computed. The difference lies in the fact
that word embeddings transform one-hot encodings! of words into dense vectors,
while the creation of phone-based features for DST requires the transformation
of sequences of one-hot encodings of phones into dense vectors. Sequence to se-
quence models (a.k.a. seg2seq models, RNN encoder-decoders), can be used to
perform such a task. These models (shown in figure 5.5) consist of two RNNs:
an encoder, which processes the input sequence into a fixed length vector (the fi-
nal RNN state) and a decoder, which “unrolls” the encoded state into an output
sequence. Therefore, once this model has been trained, the features s!, can be de-
fined as the final state of the encoder (the double-lined block in figure 5.5). To
train the seq2seq model, a similar approach to auto-encoders (Vincent et al., 2008) is
taken. Following this approach, the input and target sequences used during train-
ing are the same, forcing the model to learn to encode the input sequence into a
fixed length vector and then use this vector to reconstruct the original sequence.
For the experiments presented in this section, the combilex pronunciation dic-
tionary (Richmond et al., 2010) has been used to train the model. The encoder

!One-hot encoding is a technique used to encode categorical discrete features into numerical
vectors, where the size of the vectors is equal to the number of categories and each vector is com-
posed by zeroes except for a one in the position of its corresponding category.
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Figure 5.6: Cosine distance in the phone encoding space between different words of the
UASpeech database.

and decoder RNNSs of the seq2seqg model are composed by two stacked layers of 20
LSTM units each. When this model is trained in two thirds of the phone sequences
of the combilex dictionary, it is able to reconstruct more than 95% of the remaining
third of phone sequences correctly. When this same model (trained in combilex
data) is used in the dysarthric pronunciation dictionary composed by words of
the UASpeech database (Christensen et al., 2012a), the model is able to reconstruct
more than 90% of these phone sequences. This means that the model is able to
compress sequences of one-hot vectors of size 45 (the number of phones in US
English) into vectors of size 20 which contain most of the key information of the
original phone sequence. To show if the mappings done by this model effectively
relate similar phone sequences, figure 5.6 shows the cosine distance between the
dense phone representations of two sets of words of the UASpeech database. The
results observed in this figure illustrate that in most of the cases these encodings
are able to effectively relate words with similar phone composition. For example,
the dense representation of the word “their” is close to words such as “them”,

“there” and “that”, and far from “she”, “can” and “line”.
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5.3.3 Experimental setup

To evaluate the methods proposed in section 5.3.2 to improve generalization to un-
seen states, these methods are tested in a RNN-LSTM based general state tracker
using different value specific features. To simulate the scenario in which a user
changes the devices to control at home, data is collected in two simulated home-
Service environments which use a different set of commands to control the de-
vices, named domain A and domain B (see section 5.1). Then, the trackers are
trained with dialogues collected in domain A and tested in dialogues from do-
main B. To evaluate the ability of these features to generalise to infrequently seen
states, a small amount of dialogues from domain B is included in the training data

in a second set of experiments.

General RNN-LSTM based state tracker parameters

For each of the 12 speaker-ASR pairs (corresponding to the low and mid intelli-
gibility speakers in the UASpeech database interacting with a non-adapted and
adapted ASR), a general dialogue state tracker based on the model described in
section 2.5.3 has been trained. Each value filter is composed by a linear feedfor-
ward layer of size 20 and an LSTM layer of size 30. In order to reduce overfitting,
dropout regularisation is used, with a dropout rate of 0.2 in the input connections
and 0.5 in the remaining non-recurrent connections. The models are trained for 60
iterations with stochastic gradient descent. For each of the 12 speaker-ASR pairs,
each state tracker is trained on 1000 dialogues from that speaker, collected in do-
main A (with a 0.8-0.2 train-validation split) and is evaluated on 1000 dialogues
from that speaker, collected in domain B. The validation set is used to choose the
parameter set corresponding to the best iteration. Model combination is also used
to avoid overfitting. Every model is trained with three different seeds and five
different parameter sets are saved for each seed, one for the best iteration in the
first 20 and then another for the best iteration in each interval of 10 iterations. This
approach is taken because, depending on the features s!, used, the models tend to
overfit after a different number of iterations. By combining the best parameter sets
of each interval, the risk of selecting similar parameter sets, all corresponding to

overfitted models, is reduced.

ASR and phone related general features

In each turn ¢, each value-specific state tracker (filter) takes as input the value-

specific features. In the hS system evaluated in this section, these features o, are

composed by the concatenation of the following elements:
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e The confidence score of the command related to the value v seen in the ASR
N-best output.

e The confidence scores of the meta-commands “yes” and “no”.

e A (value-specific') one-hot encoding of the last system action.

In addition, the models are evaluated concatenating the value specific features

o! with the following ASR and phone related general features s!:

e ValAcc: As mentioned in section 5.3.2, the ASR performance estimation of
the command corresponding to the value of the filter can be used as general
feature. In the following experiments, the accuracy per command is used,

defining s! as the ASR accuracy of the value v estimated in a held out set.

e PhSeq: As explained in section 5.3.2, a weighted sequence of phones can be
generated from the ASR output (N-best list of commands), using a pronun-
ciation dictionary. The pronunciation dictionary for words of the UASpeech
database described in Christensen et al. (2012a) is used to translate each com-
mand into a sequence of one-hot encodings of phones (the size of the one-hot
encoding is 45, like the number of phones in US English). Each of these en-
codings is weighted by the confidence score of its corresponding command
in the N-best list. The sum of these weighted sequences is then fed into an
RNN encoder (figure 5.4) and s!, is defined as the vector corresponding to
the final state of this RNN. The RNN is composed by a single GRU (Chung
et al., 2014) layer of size 15.

e PostSeq: As previously mentioned in section 5.3.2, a deep neural network
can be used to extract the posterior probabilities of the phones during the
ASR step. For the following experiments, a sequence of vectors (one vec-
tor per speech frame) with monophone-state level posterior probabilities are
extracted from the output layers of a deep neural network trained on the
UASpeech corpus (this approach is taken from Christensen et al. (2013a)).
The extracted vectors contain the posteriors of each of the three states (ini-
tial, central, and final) for the 45 phones of US English. To reduce the di-
mensionality of the vectors, the posteriors of the three states of each phone
are merged by summing them. To reduce the length of the sequence, the
mean of each group of 10 speech frames is taken. This produces a sequence
of vectors of size 45 and maximum length of 20, which is fed into an RNN

encoder in the same way as PhSeq features to obtain s

IFor actions related to specific values, e.g. “confirm:TV”, this encoding indicates if the value
being confirmed is the value of the filter.
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Joint Slot 1 Slot 2 Slot 3 Mean
Baseline 50.5%~ | 81.0% | 51.5%~ | 55.7%~ | 62.7%"
General 68.8% 87.5% 66.5% 67.6% 73.9%
ValAcc 741%" | 88.9%T | 72.1%" | 66.5% | 75.8%"
PhSeq 68.3% 89.30/o+ 66.2% 67.7% 74.4%
PostSeq 67.9% | 89.2%" | 65.9% | 67.6% | 74.2%
ValPhEnc 57.9% | 77.9% | 61.5% | 59.3%~ | 66.2%~
PhSeq-ValPhEnc || 58.5% | 79.8%~ | 62.0% | 58.9% | 66.9%

Table 5.2: Joint, mean and per slot state tracking accuracy (columns) of the trackers
trained on domain A and tested on domain B for trackers using different features (rows).
+/- indicates statistically significantly better/worse than the General tracker (p < 0.01),
computed with a two-proportion z-test.

e ValPhEnc: As also explained in section 5.3.2, a “value fingerprint” can be
extracted for each value using a pronunciation dictionary. For each value
filter, s, is defined as the 20 dimensional encoding of the sequence of phones
of the command associated with the value v extracted from the seg2seq model
defined in section 5.3.2. The encoder and decoder RNNs of the seq2seq
model are composed of two layers of 20 LSTM units. The model is trained
on the combilex dictionary (Richmond et al., 2010).

Note that two different kinds of features can be distinguished: value identity
features and ASR output features. Value identity features (ValAcc and ValPhEnc)
give information about the value tracked by each filter. These features are different
for each filter (as each filter has a different associated value), but are time invariant
(they do not change over turns). These features can be used to relate dialogue
states similar in the phone space. ASR output features (PhSeq and PostSeq), on the
other hand, give information about the ASR output observed. They are the same
for each filter but change in each dialogue turn. These features can be used to

detect phone patterns occurring in the ASR output (e.g. problematic phones).

5.3.4 Experimental results

In this section, the results obtained from the state tracking experiments, when
using the different general augmented features proposed in section 5.3.3, are pre-
sented. To be sure that the proposed features work independently of the set of
commands selected, different models are trained and tested using the three ran-
domly selected vocabularies of 72 words (see section 5.1). For each of the three
vocabularies and for each of the 12 speaker-ASR pairs (corresponding to the six
test speakers interacting with a non adapted and a fully adapted ASR), a general
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state tracker is trained with data collected from that speaker-ASR pair using that
vocabulary. Each presented result shows the mean for the three vocabularies and
for the 12 speaker-ASR pairs. For each evaluated augmented feature, the joint state
tracking accuracy, the accuracy of each individual slot and the mean accuracy of
the three slots is presented. These five values are presented because it was found
that the relation between the mean slot accuracy and the joint accuracy is highly
non-linear, due to the high dependency on the ontology of the joint goals. When
joining the slot outputs (equation 5.1), the “invalid goals” are discarded, but the
cost optimised is related to the mean accuracy of the slots. Therefore, the joint
accuracy metric does not reflect the cost that the models are minimising. Future
work should explore methods to join the slot outputs more efficiently or to train

the models to maximise the joint accuracy.

Table 5.2 presents the state tracking accuracy results for the model described
in section 5.3.3, using only value specific general features (General) and using the
different augmented features proposed in section 5.3.3. To evaluate the general-
isation to unseen dialogue states, the models are trained on data from domain A
and evaluated in data from domain B. Baseline presents the state tracking accu-
racy for the same rule-based state tracker used in section 5.2.3 as baseline. First,
observe that the machine learnt state trackers perform considerably better than
rule-based ones, with General outperforming Baseline by more than 10% in mean
slot accuracy. Including the ASR accuracy estimates (ValAcc), outperforms all the
other approaches, performing 5.2% better than General in the joint goal accuracy
and 1.9% better in the mean slot accuracy. Including PhSeq or PhSeq features
slightly degrades the performance in the joint goal but outperforms the General
features in the mean slot accuracy by 0.5% and 0.3% respectively. ValPhEnc and
PhSeq-ValPhEnc features, however, perform much worse than the other features.
A detailed examination of the training results showed that, compared to General
features, these features were performing about 10% better in the validation set (do-
main A), while getting 10% worse results in the test set (domain B). This suggests
that the model is overfitting to the training data.

In order to evaluate if these features can help to generalise to infrequently
seen dialogue states, table 5.3 shows the accuracy results when a small number
of dialogues from domain B (200 dialogues) are included in the training data. The
mean accuracy gain obtained by including these dialogues in the training data is
very small for General and PhSeq features, performing 0.6% and 0.2% better re-
spectively. ValPhEnc features, however, show a large improvement, outperforming
General features by 4% in the joint goal and by more than 5.4% in the mean slot

accuracy. This improvement is seen in all the slots individually. To ensure that



142 5.3. DST feature extension for improved generalisation to unseen states

Joint Slot 1 Slot 2 Slot 3 Mean
General 68.9% 87.8% 66.9% 67.5% 74.0%
ValAcc 74.6%" | 89.6% " | 72.7% " | 67.2% | 76.5%"
PhSeq 69.2% | 89.5%" | 66.1% 68.2% 74.6%
ValPhEnc 72.9%" | 89.8%" | 72.8% " | 75.6% " | 79.4%"
PhSeq-ValPhEnc || 73.4%" | 91.6%" | 74.0%" | 77.2%" | 80.9%*
Valld 60.8% | 86.3%" | 66.9% | 75.0%" | 76.1%™"

Table 5.3: Joint, mean and per-slot state tracking accuracy (columns) of the trackers when
including 200 dialogues from domain B in the training data for trackers using different fea-
tures (rows). +/- indicates statistically significantly better/worse than the General tracker
(p < 0.01), computed with a two-proportion z-test.

the model is not just using the ValPhEnc features to learn the identities of the
words, Valld features extend the value specific features o, by concatenating a one-
hot encoding of the value identity to them. Including these features improves the
mean slot accuracy with respect to General by 2% (even if the performance in the
joint goal decreases). The performance using these features, however, is still more
than 3% below the ValPhEnc features. If the concatenation of PhSeq and ValPhEnc
features is used, the mean slot accuracy outperforms all the other features, per-
forming 6.9% better than General and 4.4% better than ValAcc features.

Experiment conclusions

Several conclusions can be drawn from the results presented above. First, it can
be seen that the baseline tracker is outperformed by more than 10% by the General
tracker. This baseline tracker is the same one used in the experiments presented
in section 5.2.3, where it had performed much better. However, the ASR accu-
racy in the experiments done in this section is lower, because the size of the ASR
vocabulary is 72 instead of 36. This suggests that the baseline tracker does not
perform well in environments with a more challenging ASR. In addition, the vo-
cabulary changed, so the baseline tracker might be dependent on the vocabulary
used. On the other hand, note that the performance of the machine learnt trackers
presented in this section is better than the ones presented in section 5.2.3. This
might seem counter intuitive, but the trackers in that section were trained with
data from other speakers while the trackers in this section are trained with data
from the same speaker, and the vocabularies used in each section are different, so
the results are not directly comparable.

As it was expected, including the accuracy estimates (ValAcc) outperformed all

the other approaches, especially for the joint goal. This is because, if the assump-
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tion that values with similar ASR accuracy have similar state tracking performance
is true, these features are the best estimate to compute similarities between states.
The improvement obtained from PhSeq features, however, was smaller. Comparing
the slot by slot results, it can be seen that the accuracy increase comes from slot 1,
where PhSeq features outperform General features by almost 2%. In the other two
slots, the accuracy is similar. This suggests that the performance of these features
could be related to the values of the slots. Analysing the performance of PostSeq
features, it can be seen that is very similar to the performance of PhSeq, suggesting
that these two features carry very similar information.

In contrast to the other augmented features, using ValPhEnc degraded the per-
formance of the tracker, due to strong overfitting to the training data. This might
be caused by the size of the vocabulary (36 words in each domain), which is
not large enough for the model to find similarities between the phone encod-
ing vectors. In other words, there is not enough overlap between the phones in
the different domains; therefore, these feature vectors mostly carry meaningless
information. However, when a small number of dialogues from domain B was
included in the training data, using ValPhEnc features and especially the concate-
nation of ValPhEnc and PhSeq features, increased the tracker’s performance by a
large amount. These features performed even 4.4% better than ValAcc features,
which suggests that they carry more useful information than just the ASR accu-
racy estimate. These features were compared with Valld features to show that the
model is not just learning the identity of each value. Therefore, the results suggest
that ValPhEnc features are effectively correlating the state tracking performance of
values similar in the phone encoding space to help to generalise to infrequently
seen states. Using a larger corpus with more phone variability to train the models
could make these features useful to generalise to unseen states too.

5.4 Conclusions

This chapter has investigated how augmenting the dialogue features typically
used by a dialogue state tracker, can improve the generalisation in scenarios of
mismatched training and evaluation data. In an RNN-LSTM based state tracker
personalised to a target speaker, speaker specific features extracted from the raw
acoustics and from the ASR showed an improvement in generalisation when the
model was trained with data from other source speakers. It was also shown that
the improvement obtained with speaker features is larger when small amounts
of data from the target speaker become available, suggesting that the approach
is useful to generalise to unseen and infrequently seen speakers. In the case of
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a general state tracker evaluated on a different domain, extending the value spe-
cific features with ASR accuracy estimates showed to improve the state tracking
accuracy. The performance when using dense representations of phone sequences
encoded with a seg2seq model decreased due to strong overfitting to the training
data. The most probable reason is the small variability of the command vocabu-
lary (36 commands in each domain), which is not large enough for the model to
find useful correlations between phone encodings. However, when a small amount
of data from the unseen domain was included into the training data, phone en-
codings greatly increased DST accuracy. This suggests that phone encodings are
useful as dense representations of the phonetic structure of the command, help-
ing the model correlate state tracking performance of values close in the phonetic

encoding space.

The experiments performed in this chapter showed that, feature-rich discrim-
inative DST, opens up the possibility of using numerous different features which
can give more information than the information present in the SLU output. In this
chapter, only a small amount of the possible useful extended features have been
studied and only in two different scenarios. The speaker generalisation features
have been tested in a VUI designed for dysarthric speakers, but these features
have the potential to be used with normal speakers too. For example, speaker
features can help to relate speakers with similar accents. In addition, these fea-
tures seem to work better when used with larger corpora. When working with
“normal” speakers, having access to data from more source speakers would be
possible, which could in turn increase the chance of finding speakers “similar” to
the target. This would increase the effectiveness of the features. In addition, DST
input feature augmentation could be potentially applied to many other domains
where mismatch between the training and testing conditions exist. For example, a
model could be used to extract a feature indicating the amount and type of envi-
ronment noise present during a dialogue. Then, the state tracker could use these

features to learn to infer the dialogue state in different noise conditions.

In the case of features that help to generalise to unseen states, the proposed
approach has been tested on a single-word command-based environmental control
interface, where slot-value accuracies can easily be estimated. In addition, in this
domain, the sequences of phonetic features are usually short. However, the same
approach can be adapted to larger spoken dialogue systems by estimating the
concept error rate of the SLU output of the concepts related to each slot-value
pair. Longer phonetic feature sequences can also be used to detect “problematic
phones”, or to correlate sentences with similar phonetic composition. The main

problem faced by these features was overfitting, mostly due to the small variability
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of the training dataset. As the size of datasets used to train machine learning
models is increasing in almost every field, the release of larger dialogue corpora
could increase the effectiveness of these features.

It is also worth mentioning that figure 5.6 showed that, in a similar way to
word embeddings, a seg2seq model can be used to map sequences of phones into
a vector space. In this space, cosine distances effectively computed similarities
between phone sequences of possibly different lengths. Using this approach to
create “phone sequence embeddings” could have potential applications in other
domains, such as language modelling or named entity recognition.

In general, it is reasonable to think that the typical pipeline-based dialogue sys-
tem architecture will gradually include more and more co-dependencies between
modules. As well as the dialogue state tracker can benefit from having access to
features coming from the ASR, the ASR and SLU modules can benefit from having
access to the dialogue context in the form of the belief state (Jonson, 2006). For
example, it is more likely to recognise the word “thai” than the word “they” if the
dialogue system just asked about the type of food you are interested in. As the
size of the corpora and the computing capability increase, it is possible that these
codependencies between the modules will eventually lead to end-to-end spoken
dialogue systems: systems composed by a single module that takes an acoustic

signal as input and produce a synthesised spoken answer as output.






Chapter 6

Conclusions

The emergence of voice user interfaces to control personal devices such as smart-
phones, suggests that the personalisation of these interfaces will be an important
research topic in the following years. Before the work done in this thesis, however,
very little attention has been paid to dialogue management adaptation to specific
speakers or environments, especially for POMDP-based dialogue managers. This
thesis has identified and addressed the problems that have to be taken into ac-
count when a POMDP-based dialogue manager is used by a single user over a
long period of time, in the context of VUIs developed for users with speech dis-
orders. Several modifications to state-of-the-art POMDP models and algorithms
have been developed, showing that they can improve the performance of VUIs per-
sonalised to dysarthric speakers working in varying environments. The techniques
developed, however, are not specific to dysarthic speakers and can be potentially
applied to any kind of personal dialogue manager.

DM is a very wide research topic in where many different modules work to-
gether to control the dialogue flow (e.g. state tracker, policy, reward modelling,
turn taking...). As investigating the personalisation of every element of a dialogue
manager is infeasible, this thesis has only explored the personalisation of the two
key DM modules — the dialogue policy and the dialogue state tracker. As none or
very little research has been done on this topic before, the techniques can probably
be improved, but the main contribution of this thesis is to show that the person-
alisation of DM models can improve the dialogue performance, establishing a

research topic with a lot of potential.

147
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6.1 Thesis summary and achievements

Adaptation of POMDP-based dialogue management models to specific speakers
or environments can be considered a very immature topic. This thesis has iden-
tified several problems that will be encountered when developing a personalised
POMDP-based dialogue manager and proposed solutions for these problems.

Chapter 3 explored the performance of the POMDP DM framework applied
to a dialogue domain different from the habitually studied ones — VUISs for users
with speech disorders. Spoken interfaces can have a great impact in the life qual-
ity of users with restricted upper limb mobility, but if these users also suffer from
dysarthria, the poor ASR performance of the speaker independent interfaces re-
duces the utility of the system. Personalisation of the DM models of these inter-
faces can greatly improve the interaction performance. Even if severe dysarthric
speakers cannot be understood by unfamiliar speakers, their family and carers
learn to understand them by interacting with them, adapting to their communica-
tion characteristics. The carers learn to understand the dysarthric speakers grad-
ually: they go through an adaptation and learning process, where the carer learns
to understand the speaker by trial and error, until the carer is able to communi-
cate efficiently with the speaker. This learning strategy resembles the reinforce-
ment learning framework, suggesting that POMDP-based DM is a very suitable
framework for these kind of interfaces. Systems developed for severely dysarthric
speakers need to be easy to personalise and highly adaptive, and the POMDP

framework provides those characteristics.

Chapter 3 continued by developing a VUI environment based on the home-
Service system (Christensen et al., 2013b), as well as a set of simulated dysarthric
users to evaluate it. A tree-based dialogue state representation for these interfaces
was proposed, making the application of model-based reinforcement learning al-
gorithms tractable. This tree-based representation used the POMDP framework to
increase the robustness against high ASR error rate, while sacrificing the mixed
initiative interaction ability to maintain tractability. In section 3.4.2, it was shown
that the POMDP framework can increase the interaction performance in VUIs for
dysarthric speakers, especially when the ASR is not adapted or adapted with a
small amount of data. In addition, the experiments done in sections 3.1.2 and
3.4.2 identified two main differences between long-term personal interaction with
a SDS and short term interaction based SDSs: the variability between different
speakers and the environment change over time (in the form of an ASR adapted
with increasing amounts of data). It was concluded that to deal with these two
aspects, existing POMDP models needed to be adapted.
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In chapter 4, the two aspects identified in chapter 3 were analysed in greater
depth, identifying both of them as RL problems where the training data comes
from different (but possibly related) distributions. Then, in section 4.1, two RL
models able to work in these situations were developed. These models are based
on state-of-the-art, model-free, GP-RL models ((Gasi¢ and Young, 2014)), which
are tractable for real-world sized SDSs but do not have a practical mechanism
to deal with data coming from different distributions. The most promising of
the two GP-RL model variations developed is based on a temporal difference ker-
nel. This approach applies the temporal difference operation inside the kernel
of a GP, defining the co-dependencies between consecutive dialogue turns more
strongly. In addition, the TD kernel framework “normalises” the GP-RL equa-
tions to the same shape as the equations of GP regression models, simplifying the
understanding of the GP-RL framework and opening the possibility of easily ap-
plying techniques used in GP regression (e.g. sparsification (Quifionero-Candela
and Rasmussen, 2005), hyperparameter optimization (Rasmussen, 2006), GPLVM
(Lawrence, 2004)). This framework was shown to be applicable to transfer learning
scenarios likely to be found in hS systems: a variable environment scenario; and

the initialisation of a personalised dialogue policy with data from other speakers.

In addition, in sections 4.2.4 and 4.3.1 a set of “environment” features were
proposed for each of these two scenarios, giving information about the different
environments (distributions) in which each data point was collected. In figures
4.2 and 4.6, the combination of the TD kernel based model with the environment
features was shown to improve the dialogue interaction performance in these two
scenarios. In the case of initialising a personalised dialogue policy with data from
other speakers, the TD model was shown to be suitable for online policy optimi-
sation. In figure 4.3 it was demonstrated that, using this model, initialising the
policy with data from other speakers greatly increases the initial performance of
the policy and needs far fewer interactions to achieve a near-optimal performance.

In chapter 5 personalisation techniques were investigated for dialogue state
tracking, a research area never explored before. Due to the ability of discrimi-
native dialogue state trackers to use high dimensional, possibly correlated, input
features, the environment features proposed in chapter 4 were found to have more
potential to be used in the DST step. A dialogue architecture alternative to the typ-
ical “pipeline” architecture was proposed, including information extracted from
the acoustics and from the ASR into the DST step. In table 5.1, it was shown
that using speaker related environmental features can help discriminative state
trackers to better generalise to speakers not seen in the training data, obtaining an
absolute improvement of more than 3.6% in dialogue state tracking accuracy. Do-
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main extension for personalised dialogue state trackers was also studied in section
5.3, proposing to use ASR and phone related features to find similarities between
dialogue states. The results presented in tables 5.2 and 5.3 showed that the use of
these features improves the generalisation to unseen or infrequently seen states.
In addition, this chapter showed the potential of using recurrent neural network
encoders as feature extractors. The research done in this chapter showed that in-
cluding richer and more “raw” features in the DM step of a SDS improves the
performance, and could gradually lead to less dependence on the typical pipeline

architecture, eventually leading to end-to-end SDSs.

6.2 Limitations and future work

Even if the methods developed in this thesis define a new state of the art in per-
sonalised POMDP-based dialogue management, the work has some limitations
which should be mentioned. Future work related to this thesis should take these
limitations into account and try to overcome them.

Firstly, SDSs or VUIs are very complex systems composed of several modules
that work together in order to control the dialogue flow. All these modules are
co-dependant; the performance of each module depends on the performance of
the rest. However, each module is usually researched independently, and specific
evaluation metrics have been developed to test the performance of each of them.
Following this approach, in this thesis, most of the techniques proposed are eval-
uated in “isolated” environments. For example, in chapter 4, the environment
features are either tested in ASR-changing environments or in speaker dependent
environments, but the techniques are not tested in the combination of these two
environments. In chapter 5, the performance increase obtained in the DST is not
tested in a whole dialogue system to see its impact in the overall dialogue perfor-
mance. As the techniques developed in chapters 4 and 5 can be complementary, in
future work it would be interesting to evaluate these techniques working together
in a full scale VUL

In a similar way, chapter 3 presented a tractable tree architecture representation
for the dialogue state. This is a very interesting approach, taking advantage of the
knowledge about the structure of the VUI to reduce the number of parameters that
need to be learnt. In order to use this dialogue representation, however, several as-
sumptions had to be made. Following the trend that research in machine learning
is taking, where larger and larger datasets are being used to train the models, the
limitations imposed by this structure and its related assumptions could decrease

the utility of the tree-based dialogue representation when larger datasets are used
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for training. In the future, it would be interesting to evaluate the models proposed
in chapter 4 in a slot-based dialogue state representation architecture.

In addition, another limitation of this thesis is that it has not tested the devel-
oped models with real users. However, due to the novelty of the research done
(in two aspects: personalised dialogue management and POMDP framework for
dysarthric users), most of the approaches had to be developed almost from scratch,
with no other models to compare with. In the homeService project, where apart
from the ASR, the rest of the modules follow simple hand-crafted rules, the cost of
testing the systems with dysarthric users turned out to be extremely high (Nicolao
et al., 2016). Developing more complex statistical interaction models requires a lot
of evaluation, model variations, hyperparameter tuning, etc. Therefore, the cost of
testing these models with real dysarthric users would have been impractical. Fur-
thermore, the main objective of this thesis was to establish whether the POMDP-
DM framework is a suitable approach for personalised VUIs for dysarthric speak-
ers. Even if simulated users cannot perfectly evaluate the performance of this
framework, they can give an estimate of the performance and compare the most
promising models. In low-resourced domains such as dialogue with dysarthric
users, the development of more sophisticated and accurate simulated users could

greatly help academic research and future work should focus on that.

Finally, chapter 4 and 5 showed the potential of using extended input features
to control the dialogue flow. GP-RL based models, however, could not make use
of all the potential information included in these features. Moreover, discrimi-
native trackers could model the correlations between different dimensions of the
extended input features better, but the models are optimised with respect to the
dialogue state classification accuracy, instead of using the actual dialogue perfor-
mance (e.g. the dialogue reward). Therefore, the dialogue state representation
needs to be designed manually and a training corpus of dialogues with annotated
states is required. Recently, policy gradient methods (Fatemi et al., 2016, Su et al.,
2016a, Sutton et al., 1999) have been shown to be a promising neural network
based approach to policy optimization. Interestingly, the gradient used to opti-
mise these models can be back-propagated through the DST network, allowing
the state tracker and the policy being learnt jointly (Mnih et al., 2015, Silver et al.,
2016). Using this joint framework in combination with the proposed environment
features (or any other environment feature) would give the model more freedom
to learn the correlations between the input features, leading to a better overall

dialogue performance.
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6.3 Future directions in personalised dialogue management

Spoken dialogue management is a rapidly developing research area. Ten years
ago, dialogue management models that scaled to real world sized SDSs were de-
veloped (Jurcicek et al., 2010, Thomson and Young, 2010, Williams and Young,
2007). These models, however, needed thousands of dialogues to learn a useful
policy. Hence, a lot of the research was focused on building good simulated users
to be able to train reinforcement learning models (Georgila et al., 2005, Schatz-
mann et al., 2006, 2007a). Five years ago, the main research focus shifted to find-
ing reinforcement learning algorithms that could learn dialogue policies in the
least possible interactions, to be able to be trained by directly interacting with real
users (Gasic¢ et al., 2011, Geist and Pietquin, 2010). In 2013 the DST challenges
began (Henderson et al., 2014a,b, Williams et al., 2013), which gave a test-bed for
comparison of different models in a easier way than interacting with real users.
Thus, most of the research focus on dialogue management shifted to dialogue state
tracking (Henderson et al., 2014c, Lee, 2013, Williams, 2014). Nowadays, building
systems that can be trained and work in multiple different domains (a.k.a. multi-
domain systems) are attracting a lot of attention (Gasic et al., 2015, Hakkani-Ttir
et al., 2016, Mrksi¢ et al., 2015). The interest in neural network based policy mod-
els is also increasing (Fatemi et al., 2016, Su et al., 2016a). Ironically, these models
need large amounts of data to be trained and are thus contradicting the research
trends from five years ago, when models which needed the least amount of data
to be trained were researched. Using network based policies, it is also possible to
back-propagate the errors from the rewards to the state tracker, thus opening the
possibility of developing end-to-end dialogue managers which would not need to
design and train a state tracking model (because the network itself can learn the
shape and weights of the state tracker automatically from raw inputs (Mnih et al.,
2015, Silver et al., 2016)).

What most of the speech technology community seems to agree on, is that the
next challenge for artificial intelligence and machine learning is to build systems
that are able to understand human language and communicate with them in a
human-like way. It seems reasonable to think that research in spoken dialogue
management will play a crucial role in this challenge!. It is still not clear whether
the POMDP dialogue management framework is the most suitable one for this
task, since even though it was proposed almost 20 years ago, commercial dialogue

systems still rely on rule-based frameworks to manage the dialogue interaction.

!t is also worth mentioning that, even if this thesis has focused only on spoken dialogue man-
agement, the interest in text based dialogue management is also rapidly increasing in the form of
chat-bots or conversational agents.



Chapter 6. Conclusions 153

Nevertheless, the reinforcement learning framework highly resembles the way hu-
mans learn to interact, suggesting that it is a good theoretical basis for statistical
dialogue management modelling. It is possible that the lack of success in imple-
menting real world systems obtained by the POMDP framework so far is related
to the difficulty and expense of collecting dialogue data, and the difficulties faced
by current models to use data collected in different dialogue domains.

Nevertheless, some of the most important tech companies (e.g. Google, Apple,
Amazon...) are investing a lot of resources' in dialogue management and lan-
guage understanding research, and several startups have been created related to
these topics. The main commercial interest of these companies is the development
of general purpose, high performance, personal assistants. These assistants aim
to change the way users interact with machines, possibly removing the typical
physical interfaces (e.g. touchscreen or mouse) or making the users less reliant
on them. Personal assistants can change the way users shop, study, communicate
with friends, plan their agendas, etc. These assistants can also improve the search
for information on the web, letting users navigate the web by asking sequences of
questions to the personal assistants. As these assistants will be likely used by a
single user for a prolonged period of time, it is reasonable to think that dialogue
management personalisation will be a very important part of research on personal
assistants.

After the remarkable success obtained by deep neural networks in supervised
learning tasks (Bengio, 2009, Hinton et al., 2012, Krizhevsky et al., 2012, Mesnil
et al., 2013), building reinforcement learning methods based on deep neural net-
works seems to be the next challenge faced by machine learning?. The reinforce-
ment learning framework is more similar to the way that humans learn, so it could
be considered closer to “true” artificial intelligence. While, supervised learning
resembles a student learning about a specific topic from a teacher, reinforcement
learning resembles the way humans (and other species) learn by direct interaction
with their surroundings. Deep reinforcement learning has already achieved some
remarkable successes such as playing Atari games on an human expertise level
(Mnih et al., 2015) or beating the word champion of the game Go (Silver et al.,
2016), a task previously believed to be too complex to be performed by a com-
puter. These tasks, however, are still defined in very narrow domains, where the
computer can be exposed to thousands or even millions of interactions with the

1The Amazon Alexa Prize competition (https://developer.amazon.com/alexaprize) is an ex-
ample of the resources invested by tech companies on dialogue management, giving a total of two
and a half million dollars in prizes to the teams building the dialogue systems able to interact in the
most human-like way.

2For example, Facebook Al research has developed a “wild” environment, where algorithms
that learn from raw information signals (streams of bits) can be evaluated (Sukhbaatar et al., 2015).
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environment at almost no cost. When the system interacts with a more realistic
environment (e.g. the real world), the number of possible interactions will be con-
strained by the laws of physics, so the amount of data the system has access to
will be reduced. However, if a large number of agents are able to interact with the
real environment at the same time, these agents could share the knowledge they
obtain to speed up the learning process. This could be seen as a kind of “collective

intelligence”.

All these research directions and the achievements obtained in deep reinforce-
ment learning are leading the DM field towards building end-to-end dialogue
managers. End-to-end dialogue managers are not factorised into a dialogue state
tracker and a policy model. They take the output of the spoken language under-
standing system (and any other auxiliary features) as input, and output a machine
action. Because policy gradient methods can back-propagate the error up to the
input of the dialogue manager, a model that does state tracking and policy opti-
misation could be trained jointly. The advantages of this approach are several: the
need to define the labels of the state tracker would not exist, thus requiring less
annotated data; the state tracker optimization would be done properly, using the
reward signals instead of maximising the state classification rate; and there would
not even be the need to define an ontology based dialogue state representation, be-
cause a neural network would be able to learn the structure by itself. Eventually,
the SLU could also be integrated into this structure, learning jointly the policy,
state tracker and SLU modules (Henderson et al., 2014d). In the end, end-to-end
spoken dialogue systems, where the system directly takes the raw acoustic signal
as input and outputs the machine action (in the form of a synthesised answer or in
any other way), seems to be the probable direction that spoken dialogue systems
will take.

End-to-end models, however, will need very large amounts of data to be trained,
which possibly posses a challenge for academic research. The lack of data is al-
ready a problem in academic research on dialogue management because cheap
ways to train and evaluate the models by interacting with real users do not exist.
The Amazon mechanical turk has reduced the cost of interactions with real users
(Jurcicek et al., 2011), but it is still expensive compared to training and evaluating
supervised learning tasks, which can be done with a data corpus. On the other
hand, companies have access to very large amounts of dialogue data, either be-
cause they invest a substantial amount of money to obtain it or because they collect
the data through interaction of the users with their products. In the case of dia-
logue management for specific groups (such as dysarthric speakers), the problem

is greater, as there is less available data and obtaining it is more expensive.
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Even if the interest in simulated users decreased some years ago!, direct re-
search with real users and real data seems to be in the reach of companies with
enormous resources only. The main flaw of the currently existing simulated users
is that, if they are trained from data, they are just able to learn how to interact in
the dialogue situations seen in the training data. To account for more variability,
mechanisms to increase the dialogue situations where the simulated users can in-
teract must be implemented, but this can be difficult to do while maintaining the
coherence of the dialogue. In other areas such as speech recognition and artificial
vision, however, using data augmentation techniques to increase the amount of
training data has shown to improve the results, especially in low resourced do-
mains (Ragni et al., 2014). More intense research on more realistic simulated users

would greatly reduce the costs of research in dialogue management.

11t was argued that, if a perfectly real model of the user was known, the dialogue management
model could be inferred from it without the need of interactions between the simulated user and
the dialogue manager.






Appendix A

Example homeService dialogues

For a more detailed understanding of the types of dialogues that can occur in
the homeService environment, this appendix presents several dialogue examples.
The example dialogues are divided in two categories, dialogues interacting with
the system using the hierarchical tree-based architecture presented in section 3.2.2
and the slot-based architecture presented in section 3.2.2. The examples present
different dialogue situations, such as failed dialogues or recovery strategies taken
by the DM. In each example dialogue, the second column represents the actions

taken either by the user (user commands) or by the system (machine actions).

A.1 Dialogues in the tree-based dialogue state representa-

tion architecture

This section presents three different example dialogues using the tree-based dia-
logue state representation architecture. The first dialogue is an example of suc-
cessful dialogue, the second is and example of failed dialogue and the third an
example in where the dialogue manager is able to recover from a misunderstand-

ing error.
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Dialogue 1: Goal = TV-Channel-One
Dialogue starts in node “Devices”

Sub-dialogue “Devices”
User TV (Speaks the command “TV”)
System | Ask (Requests the user to repeat his last command)
User TV (Repeats his last command)
System | Node-TV (Dialogue transitions to node “TV”)

Sub-dialogue “TV”
User Channel (Speaks the command “Channel”)
System | Node-Channel (Dialogue transitions to node “TV-Channel”)

Sub-dialogue “Channel”

User One (Speaks the command “One”)
System | Node-One (Performs action TV-Channel-One)

As an action has been taken in a terminal node, the dialogue ends. As the
action taken in the terminal node matches the goal, it is a successful dialogue.

Dialogue 2: Goal = Bluray-On
Dialogue starts in node “Devices”

Sub-dialogue “Devices”

User Bluray (Speaks the command “Bluray”)
System | Node-Bluray (Dialogue transitions to node Bluray)

Sub-dialogue “Bluray”
User On (Speaks the command “On”)
System | Ask (Requests the user to repeat his last command)
User On (Repeats his last command)
System | Node-Off (Performs action Bluray-Off)

As the action taken in the terminal node does not match the goal, the dia-
logue ends as a failed dialogue.
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Dialogue 3: Goal = TV-Volume-Up
Dialogue starts in node “Devices”

Sub-dialogue “Devices”

User

TV (Speaks the command “TV”)

System

Node-Light (Dialogue transitions to node Light)

Sub-dialogue “Light”

User

Back (Requests to go to the previous node)

System

Node-Back (Dialogue transitions to node Devices)

Sub-dialogue “Devices”

User TV (Command “TV”)

System | Ask (Requests the user to repeat his last command)
User TV (Repeats his last command)

System | Node-TV (Dialogue transitions to node TV)

Sub-dialogue “TV"”

User

Volume (Speaks the command “Volume”)

System

Node-Volume (Dialogue transitions to node TV-Volume)

Sub-dialogue “TV-Volume”

User

Up (Speaks the command “Up”)

System

Node-Up (Performs action TV-Volume-Up)

As the action taken in the terminal node matches the goal, the dialogue ends as a
successful dialogue. The system was able to recover from the misunderstanding
when transitioning to the node “Light”.
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A.2 Dialogues in the slot-based dialogue state representa-

tion architecture

This section presents two different example dialogues using the slot-based dia-
logue state representation architecture. To increase the naturalness of the dia-
logues, the dialogue acts outputted by the dialogue manager are translated into
natural language. The first dialogue is an example of successful dialogue and the
second is and example of failed dialogue. Note how the slot based architecture
gives more flexibility to the flow of the dialogue, letting the manager to choose
the questions needed to collect the necessary information in any order. This might
lead to faster dialogues (e.g. If the system is unsure about the slot 2 value, it can
ask for the slot 1 value and use this information to disambiguate on the value of
the second slot).

Dialogue 4: Goal = TV-Channel-Two

User Channel (Speaks the command “Channel”)

System | Ask slot 1 (Asks: What is the device you want to control?)
User TV (Speaks the command “TV”)

System | Confirm slot 2 (Asks: Do you want to change the volume?)
User No (Speaks the command “No”)

System | Ask slot 2 (Asks: What functionality do you want to control?)

User Channel (Speaks the command “Channel”)
System | Confirm slot 2 (Asks: Do you want to change the channel?)

User Yes (Speaks the command “Yes”)

System | Ask slot 3 (Asks: What channel do you want?)

User Two (Speaks the command “Two”)

System | Confirm goal (Asks: Do you want to change the TV to channel two?)

User Yes (Speaks the command “Yes”)
System | Perform top hypothesis (Performs action: TV-Channel-Two)

As the action performed matches the goal, the dialogue ends as a success-
ful dialogue.
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Dialogue 4: Goal = Light-Off

User Light (Speaks the command “Light”)

System | Ask slot 1 (Asks: What is the device you want to control?)
User Light (Speaks the command “Light”)

System | Confirm slot 1 (Asks: Do you want to control the bluray?)
User No (Speaks the command “No”)

System | Ask slot 2 (Asks: What functionality do you want to control?)
User Off (Speaks the command “Oft”)

System | Confirm goal (Asks: Do you want to turn the TV off?)

User No (Speaks the command “No”)

System | Ask slot 1 (Asks: What device do you want to control?)

User Light (Speaks the command “Light”)
System | Perform top hypothesis (Performs action: Hifi-off)

As the action performed does not match the goal, the dialogue ends as a
failed dialogue. Note how the system struggles to understand the command
“Light” and tries to infer it from the value of the second slot. However, the value
of this slot is “Off”, which is a value common to all devices, so it does not help.
It also tries to confirm the value of the first slot twice, but finally it chooses the
wrong action. Even if the dialogue fails, this dialogue shows the higher flexibility
of slot-based architectures compared to tree-based ones.






Appendix B

User simulation

In this appendix, the parameter configurations of the simulated users used in
chapters 3, 4 and 5 are explained in more detail. In the first section, the con-
figuration of the behaviour models is explained and in the second section, the

configuration of the generative ASR simulation model.

B.1 Behaviour model

The behaviour models (equation 3.1) used vary depending on the dialogue state
representation architecture used. In chapters 3 and 4, a behaviour model able to
interact with the tree-based architecture is used, and in chapter 5, a behaviour

model able to interact with the slot-based architecture.

B.1.1 Tree-based architecture

This section describes the parameter configuration of the user behaviour model
used in chapters 3 and 4. When the system uses the tree-based dialogue state
representation (see section 3.2.2), the dialogue structure imposed by this represen-
tation makes the set of rules to follow by the user behaviour model very simple.
Firstly, at the beginning of each dialogue, the simulated user has to choose one
goal. In this simulated user configuration, the goal is chosen at random from the
set of possible goals of the system (defined by the ontology presented in figure
3.7), following an uniformly random distribution. If it is assumed that the user
fully understands the system functionalities (i.e. knows every command he/she
has to say to reach the goal in each node of the tree) and does not change his/her

goal, the set of rules that the user follows is:
e Case 1: The system is in a (correct) tree node waiting for an user command
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— The user will say the command of the goal corresponding to the tree node

it is in.

e Case 2: The system asks the user to repeat his last command — The user

will repeat his last command.

e Case 3: The system has transitioned to a wrong tree node and is waiting for

an user command — The user will say the meta-command “Back”.

B.1.2 Slot-based architecture

This section describes the parameter configuration of the user behaviour model
used in chapter 5. This behaviour model is more complex than the one described
in the previous section, as it needs to interact in a mixed initiative environment,
thus has to be able to handle more dialogue situations. In addition, this behaviour
model does not assume that the user fully understands the system functionalities,
implementing a mechanism to simulate user errors. Different user error rates are
implemented to simulate different user expertise levels. In addition, the user goal
in each dialogue is not drawn from an uniform distribution, introducing small
variations in the probability of choosing each goal.
The set of parameters that control the user behaviour are the following:

e Ggep: Goal distribution standard deviation — standard deviation (before

normalising) of the probability to chose each goal.

e C.: Command confusion rate — the probability to confuse (change) a com-
mand by the user.

e C,40p: Command confusion standard deviation — standard deviation of the

probability to confuse a command by the user.

e C;: Command confusion limit — the size of the set of commands that can

replace the original in case of confusion.

When the behaviour model is instantiated, the goal distributions and com-
mand confusion rates are randomly sampled using the set of parameters described
above. To sample the goal distribution, the model starts with a uniform mul-
timodal distribution. Then, each category (goal) in this distribution is deviated
by an amount sampled by the standard deviation defined by G4.,. Finally, the
distribution is renormalised to sum to one.

To create the command confusion rates, a similar approach is taken. The mod-

els starts with a uniform multimodal distribution in which the categories are the
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possible user commands (36 in this case) and each command has a probability C.
to be changed by other. Then, each category (command) in this distribution is
deviated by an amount sampled by the standard deviation defined by Csz.,. In
addition, for each command, a list of commands of length C; is randomly sam-
pled. Whenever a command is confused, it will be interchanged by a command
included in its corresponding list.

To generate the dialogue corpus described in section 5.1, three different pa-
rameter configurations are used, simulating three different user expertise levels:

novice, intermediate and expert.

e novice — Gy, = 0.05, C. = 0.1, Cgypp = 0.05 and C; = 5.
e intermediate — Ggg., = 0.05, C. = 0.05, Cs4,, = 0.05 and C; = 5.

o expert = Gggep = 0.05, C. = 0.0, G4, = 0.0 and C; = 0.

In each dialogue, the user behaviour model will chose one goal sampled at
random from the goal distribution. Then, the set of rules that the user follows in

each turn is:

e Case 1: The system is waiting for a user action — The user will say the value
of one of the slots corresponding to the goal. The slot whose value is said is
chosen at random.

e Case 2: The system asks the user for the value of a slot — The user will say
the value of that slot.

e Case 3: The system asks a confirmation question for the value of a slot —

The user will answer “yes” or “no”.
y

e Case 4: The system asks the user to repeat his last command — The user

will repeat his last command.

e Case 5: The system asks a confirmation question for the whole goal — The
user will answer “yes” or “no”, depending on if the full goal is correct or no.

B.2 Generative ASR simulation model

The generative ASR simulation model used in chapters 3 and 41 simulates the

noise introduced to the true user action by the ASR channel, converting a user

IThe experiments in chapter 5 use the sampled ASR simulation model presented in section 3.2.3.
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command into an N-best list of commands with associated confidence scores (see
section 3.2.3). This model is approximated as:

P(wlu) = P(@,c|u) ~ ﬁp(ﬁi|u) ﬁP(cih’) (B.1)

i=

This equation depends on two different probability distributions: the com-
mand confusion model P(il;|u) and the confidence score model P(c;|i).

The command confusion model, P(i7;|u), models the probability of a command
il appearing in the position i of the N-best list when the true user command is
u. A different command confusion model is learnt for each speaker-ASR pair.
Therefore, for each (speaker, amount, u, i) tuple, a multinomial distribution has to
be learnt, where the classes are the possible values of i (the set of 36 commands).
These probabilities are learnt from the statistics! obtained in the experiments in
section 3.1.2.

To learn the confidence score model, the same approach taken by Williams
et al. (2005) is taken, where different probability distributions are learnt depend-
ing only on if the N-best hypothesis in that position is correct or not (the con-
fidence scores do not depend on the actual command u). Therefore, P(c;|i) =
Peor(cili) if il; = u (if the confidence score corresponds to the true user action) and
P(ci|i) = Piuc(cili) otherwise. As for the command confusion model, P, (c;|i) and
Pinc(cili) are learnt from the statistics obtained from the experiments in section
3.1.2, estimating the probability density function using a Gaussian kernel density
estimator?.

Finally, the generated N-best list with confidence scores must be post-processed
to satisfy the following three constrains:

e Two commands cannot be repeated in the N-best list: #; # @;VVj # i

e Each confidence score must be less or equal than the confidence scores above
it in the N-best list: ¢; > ¢; Vi > j

e The confidence scores must sum to one: } ;' ;¢; <1

To do so, the command hypotheses i; are sampled one by one, from #; to 7,.
Then, whenever a hypothesis 7; is sampled, if that hypothesis already exists in the
N-best list, it is sampled again, until a hypothesis which is not in the N-best list
is generated. In the same way, each time a confidence score c; is sampled, if it is

1Only the statistics of half of the UASpeech recordings are used to train this model, as the other
half are used to train the POMDP models.

2Using the python library Scikit-learn, https://docs.scipy.org/doc/scipy-0.18.1/
reference/generated/scipy.stats.gaussian_kde.html.


https://docs.scipy.org/doc/scipy-0.18.1/reference/generated/scipy.stats.gaussian_kde.html
https://docs.scipy.org/doc/scipy-0.18.1/reference/generated/scipy.stats.gaussian_kde.html
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greater than c;_, then it is set equal to it, c; = c;_1. Finally, if the confidence scores
sum less than one, the remaining probability mass is assigned to the commands
not in the N-best list. If the confidence scores sum more than one, the confidence

scores are normalised to sum to one.
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