Optimal Detection with Imperfect Channel
Estimation for Wireless Communications

This thesis is submitted in partial fulfilment of the requirements for

Doctor of Philosophy (Ph.D.)

Junruo Zhang

Communications Research Group
Department of Electronics

University of York

September 2009



Abstract

In communication systems transmitting data through unknéading channels, tradi-
tional detection techniques are based on channel estim@ig., by using pilot signals),
and then treating the estimates as perfect in a minimumraistdetector. In this thesis,
we derive and investigate an optimal detector that doesstimhate the channel explicitly
but jointly processes the received pilot and data symbalsdover the data. This optimal
detector outperforms the traditional detectanssinatched detectdrsin order to approx-

imate correlated fading channels, such as fast fading &isramd frequency-selective
fading channels, basis expansion models (BEMs) are usedduglt accuracy and low

complexity.

There are various BEMs used to represent the time-varianhnels, such as
Karhunen-Loeve (KL) functions, discrete prolate spheabi(@®PS) functions, general-
ized complex exponential (GCE) functions, B-splines (BS), thedbthers. We derive the
mean square error (MSE) of a generic BEM-based linear chastiehator with perfect
or imperfect knowledge of the Doppler spread in time-var@rannels. We compare the
performance and complexity of minimum mean square error @&Yland maximum like-
lihood (ML) channel estimators using the four BEMs, for theeavith perfect Doppler
spread. Although all BEM-based MMSE estimators allow adatriesnt of the optimal
performance of the Wiener solution, the complexity of eations using KL and DPS
BEMs is significantly higher than that of estimators using B8 &CE BEMs. We then
investigate the sensitivity of BEM-based estimators to thematched Doppler spread.
All the estimators are sensitive to underestimation of tip@er spread but may be ro-
bust to overestimation. The results show that the traditiaray of estimating the fading
statistics and generating the KL and DPS basis functionsimgihe maximum Doppler
spread will lead to a degradation of the performance. A bgieformance can be ob-
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tained by using an overestimate of the Doppler spread idstéaising the maximum
Doppler spread. For this case, due to the highest robusamesthe lowest complexity,
the best practical choice of BEM is the B-splines.

We derive a general expression for optimal detection fastaksisted transmission
in Rayleigh fading channels with imperfect channel estioratiThe optimal detector is
specified for single-input single-output (SISO) Rayleigtiif@ channels. The slow (time-
invariant) fading channels and fast (time-variant) fadihgnnels following Jakes’ model
are considered. We use the B-splines to approximate the ehgam time variations
and compare the detection performance of the optimal detedth that of different mis-
matched detectors using ML or MMSE channel estimates. Eurtbre, we investigate
the detection performance of an iterative receiver implaimg the optimal detector in
the initial iteration and mismatched detectors in follogviterations in a system transmit-
ting turbo-encoded data. Simulation results show that glienal detection outperforms
the mismatched detection with ML channel estimation. H@vethe improvement in the
detection performance compared to the mismatched detegiib the MMSE channel es-
timation is modest. We then extend the optimal detector émobkls with more unknown
parameters, such as spatially correlated MIMO Rayleighhfadhannels, and compare
the performance of the optimal detector with that of mistattdetectors. Simulation re-
sults show that the benefit in detection performance caugedibg the optimal detector
is not affected by the spatial correlation between anterimagsecomes more significant
when the number of antennas increases.

This optimal detector is extended to the case of orthogaeajuency-division mul-
tiplexing (OFDM) signals in frequency-selective fadingaohels. We compare the per-
formance and complexity of this optimal detector with thetresmatched detectors us-
ing ML and MMSE channel estimates in SISO and MIMO channaisSISO systems,
the performance of the optimal detector is close to that eftiismatched detector with
MMSE channel estimates. However, the optimal detectorifstgntly outperforms the

mismatched detectors in MIMO channels.
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Chapter 1

Introduction

Contents
1.1 OVEIVIEW . . . . o i e e e 1
1.2 Contributions . . . . . . ... 3
1.3 ThesisOutline . ... .. ... ... . . . ... .. 4
1.4 Notations . . . . . . . . . e 6
1.5 PublicationList . .. ... ... ... ... 6

1.1 Overview

Many wireless communication techniques and componentsiree¢gnowledge of the
channel state to achieve their optimal performance. Intecthis knowledge is of-
ten acquired by estimation. The estimation can be perforpiedly by using only un-
known data symbols, but more frequently, it is performechwiite aid of pilot symbols
which are known at the receiver side. Although occupyinggnaission bandwidth and
energy, pilot-based channel estimation and detectionoffdiable performance with a
relatively low complexity, especially for time-variant fsequency-selective fading chan-
nels. Therefore, pilot symbol assisted modulation (PSAdM)idely proposed to detect
data symbols in fading channels by inserting known pilotisglminto data blocks [1-18].
In this thesis, we investigate the channel estimation atalslanbol detection techniques

J. Zhang, Ph.D. Thesis, Department of Electronics, University of York 2009
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CHAPTER 1. INTRODUCTION 2

in PSAM systems in Rayleigh fading channels such as timedsmvaflat fading chan-

nel, time-variant flat fading channel and frequency seledading channel. Specifically,
we define that a time-invariant fading channel is quasiestaty, which indicates that in
each transmission block, the channel coefficients are aoneter all symbols but obey
Rayleigh fading between different blocks.

Accurately estimating time-variant and/or frequencyestVe fading channels is a
challenge and the estimation results affect the systenopeaince. In order to ap-
proximate the channel coefficients at data positions bygupitot symbols, basis ex-
pansion models (BEMs) are widely used, due to their relialeléopmance and lower
complexity than the Wiener filter [19]. For example, with a BE&&timation of a re-
alization of the random process describing the time-vamcaannel is transformed into
estimation of a few time-invariant expansion coefficie@8][ There are different BEMs,
such as complex exponential (CE) model [19, 21-24], gerzedicomplex exponential
(GCE) model [25], B-splines (BS) [26—28], discrete prolateespidal (DPS) basis func-
tions [20, 29, 30] and Karhunen-Loeve (KL) basis functiods, 2] to model correlated
fading channels. In this thesis, the BEM-based channel agins are investigated in
time-variant Rayleigh fading channels following Jakes’ rlodVe derive mean square er-
ror (MSE) of minimum mean square error (MMSE) and maximuralliiftood (ML) chan-
nel estimators based on different BEMs, and compare thefioqpeance and complexity
for the case with perfect and/or inaccurate knowledge oibppler spread. Based on
this comparison, the estimator using B-splines is choserapptied to approximate the

time-variant channel in this thesis.

Due to noise and to the finite number of pilot symbols in a tn@ission block, the
channel estimate is not perfect. In [33, 34], the effectsh@nmel estimation errors on
the detection performance of PSAM systems were evaluatesveler, most of works
in [1-18] consider a traditional minimum distance deteetbich suffers an extra error
on detection performance by treating channel estimategidsqgd. In order to achieve
better detection performance, optimal detection with irfgaet channel estimates in com-
munication systems with PSAM was proposed and investigatg®b, 36]. The optimal
detector does not estimate the channel explicitly, butlypirocesses received pilot and
data symbols to recover the data. The optimal detector ihif38btained for commu-
nication scenarios in channels with uncorrelated fading) &hite Gaussian noise, and

J. Zhang, Ph.D. Thesis, Department of Electronics, University of York 2009



CHAPTER 1. INTRODUCTION 3

its performance is compared with a minimum distance detgatismatched detectpr
using ML channel estimates. In [36], the performance ofroptiand mismatched de-
tectors in single-input single-output (SISO) channeldiine-variant Rayleigh fading
was investigated. In this thesis, we derive a generic optilegector and apply it for dif-
ferent scenarios, i.e., time-variant flat channels obetliegClarke’s model, time invari-
ant frequency-selective channels, and spatially coedlatultiple-input multiple-output
(MIMO) channels, and compare its performance with mismedotietectors using ML,
regularized-ML and MMSE channel estimates. We obtain tpisnwal detector for the
case when the channel gain time variations and channeldreguesponse are approxi-
mated by using BEMSs.

It is well known that the estimation of time variations in 8mariant channels are
very challenging at low signal-to-noise ratio (SNR). Ourusialn is to apply forward
error correcting (FEC) channel codes, such as turbo codegeaative channel estima-
tion/detection schemes by feeding the output informaticth® FEC decoder back to the
channel estimator or detector. In this thesis, we compargydrformance of iterative
receivers applying ML, regularized-ML and MMSE channelraation with soft-input
hard-output and soft-input and soft-output turbo decodicizgemes. We also investigate
the iterative receiver implementing the optimal detecémg compare its bit-error-rate

(BER) performance with that of iterative receivers applyingmmatched detectors.

1.2 Contributions

Major contributions in this thesis can be summed up as falow

e MSE of a generic BEM-based linear channel estimator for taxéant fading chan-
nels has been derived. The MSE performance and complexggtohators using
different BEMs have been compared in cases with perfect aaxturate knowl-
edge of the Doppler spread. The estimators have been shobevery sensitive
to underestimation of the Doppler spread but may have biesitivity to over-
estimation. The estimation using a slight overestimatenef@oppler spread to

calculate the fading statistics and generate the basisidunsacan significantly out-
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perform the estimation using the maximum Doppler spreade B¥splines have
been shown to be the best practical choice for BEM providingdgeerformance

and low complexity.

e The optimal detection has been derived for general coael@ding channels. The
optimal detection is shown to outperform mismatched deteatith ML and reg-
ularized ML channel estimation. In SISO Rayleigh fading atels, when QAM
signals are transmitted, the performance of the mismatdb&zttion with MMSE

estimation is shown to be close to that of the optimal detacti

e It has been proved that the symbol-by-symbol optimal detectf PSK symbols
in spatial uncorrelated SIMO Rayleigh fading channels ishedgent to the mis-
matched detection with the MMSE channel estimation.

e The optimal detector has been specified for MIMO Rayleighrfigaihannels. The
optimal detector has been shown to significantly outperfinismatched detectors

when the number of antennas increases.

e The optimal detection has been specified for orthogonal&aqy division multi-
plexing (OFDM) transmission in SISO and MIMO frequencyesgive fading chan-
nels. The optimal detector has been shown to significantiyestorm mismatched

detectors when the number of antennas increases.

e The performance of an iterative receiver incorporating dpgmal detector with
soft-input soft-output turbo decoder has been investijyatéhe iterative receiver
applying the optimal detector in the initial iteration haeh shown to outperform

iterative receivers applying mismatched detectors inedations.

1.3 Thesis Outline

The rest of the report is separated into following chaptesprding to the different sys-

tems investigated and analyzed.

e Chapter 2: Fundamental Techniques

J. Zhang, Ph.D. Thesis, Department of Electronics, University of York 2009
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In this chapter, fundamental techniques used throughithbsis are introduced.
We firstly compare different simulators of time-variant chals and apply the one
whose statistics match to those of the desired referencé&e®amnodel. We also
describe the basic principles of BEMs, which are used to aqpymatte the fading

channels. Turbo encoder and decoder are also briefly inteatiu

e Chapter 3: Basis expansion model based channel estimationetarying chan-

nels

In this chapter, we investigate the pilot assisted charstehators based on BEMs
in time-variant Rayleigh fading channels. We derive the M$@& generic linear
channel estimator with a linearly independent BEM. We alsoare the perfor-
mance and complexity of ML and MMSE estimators using difféBEMs, such as
KL, DPS, GCE and BS BEMs for the cases with perfect and inaccurai@ledge
of the Doppler spread.

e Chapter 4: Optimal and mismatched detection in SISO frequ#at Rayleigh

fading channels with imperfect channel estimation

This chapter presents the basic principles of the pilotsésgioptimal detection
which does not require estimating the channel explicitly jbintly processes the
received data and pilot symbols to recover the data withmm error. We derive
a generic optimal detector, and compare its performande twét of mismatched
detectors in single-input single output (SISO) time-imaat fading channels. We
then extend the optimal detector to the case of time-vaghatnels and use B-
splines as basis functions to approximate the time vanataf the channel gain.
The comparison of bit-error-rate (BER) and MSE performandevéen iterative

receivers applying optimal detector and mismatched dated also presented.

e Chapter 5: Optimal and mismatched detection in MIMO freqydiat Rayleigh
fading channels with imperfect channel estimation

In this chapter, we firstly specify the optimal detector fpasally correlated MIMO
time-invariant Rayleigh fading channels and investigagehinefit caused by using
the optimal detector. We then extend the optimal detectditdO time-variant
fading channels with temporal fading correlation follog/idakes’ model and com-
pare its detection performance with that of mismatchedatiete. \We also prove
that the optimal symbol-by-symbol detector in spatiallycomelated single-input
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multiple-output (SIMO) channels with PSK modulation is sqlent to the mis-

matched detector with MMSE channel estimates.

e Chapter 6: Optimal and mismatched detection of OFDM signalsvViMO
frequency-selective time-invariant fading channels witiperfect channel estima-
tion
In this chapter, we specify the optimal detector for OFDMnsilg in SISO and
MIMO frequency-selective fading channels and compareatéogpmance with that
of mismatched detectors. We compare the complexity ofd@ffeBEMs and inves-
tigate their performance of approximating the channeldezgy response. We also
investigate the performance of iterative receivers incaapng the optimal detector
in the initial iteration for turbo coded transmission in &18hannels, and compare
the performance of the optimal detector with that of the naisrhed detectors.

1.4 Notations

In this thesis, we use capital and small bold fonts to denat&ioes and vectors, i.eA
anda, respectively. Elements of the matrix and vector are dehasel,,, ,, = [A],,, and
am = [a],,. The symbolj is an imaginary unij = /—1. We denoter{-} and${-}
as the real and imaginary components of a complex numbegrecéeely; (-)* denotes
complex conjugatel, denotes ar) x @ identity matrix; (-)” and(-)¥ denote matrix
transpose and Hermitian transpose, respectivelylenotes the Kronecker produd. |
denotes the smallest integefi{ -} denotes the statistical expectation operator afid tr

denotes the trace operator.
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In this chapter, fundamental techniques used throughasitthiesis are introduced:
simulators of time-variant fading channels, BEMs and turbdes.

2.1 Simulator of time-variant fading channels

In this thesis, we will investigate the channel estimationd aignal detection in time-
variant Rayleigh fading channels. Before comparing the perdoce of different esti-
mation and detection schemes, we should firstly model andlatethe fading channel
accurately. This section introduces a simulator of timaavd Rayleigh fading channels,
which is used in the subsequent chapters.

After 1960's, Clarke’s model [49] and its simplified versioyn bakes [50] are widely

used to simulate time-variant Rayleigh fading channelsh&lgh the simplicity of the

J. Zhang, Ph.D. Thesis, Department of Electronics, University of York 2009
9
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original Jakes’ model makes it popular, there are two defaes that can not be ig-
nored [51]: the original Jakes’ model is a deterministic elahd it is difficult to generate
the multiple independent fading channels, such as frequselective (multipath) fading
and MIMO channels. Various modifications [52-55] and imgments [51,56,57] have
been reported for generating multiple uncorrelated fadvwageforms needed for mod-
eling frequency selective fading and MIMO channels, suclnasrse Discrete Fourier
Transform (IDFT) [58] and the autoregressive approach.[38]s pointed in [60] that
Jakes’ simulator is not wide-sense stationary when avdragess the physical ensem-
ble of fading channels. In [60], an improved simulator, ndrf@p-Beaulieu simulator,
Is applied to remove this stationarity problem by introahgcrandom phase shifts in the
low-frequency oscillators. However, it is shown that theBeaulieu simulator has defi-

ciencies in some of its high-order statistics [57].

Based on the Pop-Beaulieu simulator, novel sum-of-sinusstiatsstical simulation
models with small number of sinusoids are proposed for Raglyléading channels
in [51,57]. These modified models improve the original Jakeslel by introducing ran-
dom path gain, random initial phase and random Doppler &rqy for sinusoids within
these models [57]. The high-order statistical propertiethese novel models, such as
the autocorrelations and cross-correlations of the qtadraomponents, the autocorre-
lation of the complex envelop, and the probability densitlydtions (PDFs) of the fading
envelop, asymptotically approach the desired ones as théeof sinusoids approaches
infinity [51,57].

In this section, we introduce the reference Clarke’s modeheraatically and analyze
the deficiencies of the Jakes’ model and the Pop-Beaulieu Indden, we introduce a
modified model proposed in [51,57] which provides good cogerce of the probability
density functions of the envelope, the level crossing taeaverage fading duration, and
the autocorrelation of the squared fading envelope, eveamuiiie number of sinusoids is
as small as 8 [57]. This modified model is used to generatepreiindependent time-

variant channels in this thesis.
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2.1.1 The reference model and its simplifications

Clarke’s model serves as a mathematical reference modeidoother sum-of-sinusoid

simulation models. This model assumes that the field intidarthe wireless receiver

consists of a number of azimuthal plane waves with arbitcanyiers phases, arbitrary
arrival angles and equal average amplitude [49]. A low-fadsg process can be used
to describe a frequency-flat fading channel contaimihgropagation channels as

N

g(t) - EO Z Cn exp [j(wdt COoS Qv + an)] ) (21)

n=1
whereE) is a constant scaling the fading energy, «,, and¢,, are the random path gain,
arrival angle of incoming waves and initial phase corresiiog to then-th propagation
channelw,; = 27v is the maximum angular Doppler frequency, whelis the maximum
Doppler frequency, which depends on the motion velogityhe carrier frequencyc.

The Doppler frequency can be calculated by

v = vie (2.2)

Co
wherec, is the speed of light. For example, we consider a system bpgrat carrier
frequencyfc = 2GHz, with the user moving with velocity = 30m/s, and symbol
duration10~*s. Based on these parameters, the normalized Doppler spre@d+s 0.02.
The Doppler frequency of the-th propagation channel is calculated by
Vp = U COS Q. (2.3)
Both «,, and ¢,, are uniformly distributed ovej—r, 7) for all » and they are mutually

independent.

In complex form, (2.1) can be decomposed as

9(t) = g:(t) + jgi(t), (2.4)
where N
g-(t) = \/E) Z C,, cos (wgt cos o, + ¢y,) (2.5)
n=1
and N
gi(t) = \/FOZ C,, sin (wgt cos a, + @) - (2.6)
n=1
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WhenN is large g, (t) andg;(t) can be modeled as Gaussian random processes according
to the central limit theorem [50]. The statistics for fadsigiulators, such as autocorrela-

tion, cross-correlation functions and are given by

Ry,q,(7) = E{g:(t)g,(t + 7)} = Jo(war),
Ry,g,(7) = Jo(war),
Ry 4. (T) = Ry, =0, (2.7)
Ryy (1) = 2Jo(war),
Rigp2igpp (1) = 4 + 45 (war),

where Jy(-) is the zero-order Bessel function of the first kind. For sieiplji we set
Ey = v/2andy_) E{C?} = 1. For Clarke’s model, the fading envelofgt)| is Rayleigh
distributed while the phase,(t) = arctan|g,(¢), g:(¢)] is uniformly distributed [49], i.e.

2

figi(z) = weXP(—%), x>0 (2.8)
and
fo,(04) = % 04 € [=m,m). (2.9)

Jakes’ model is well known as a simplified model of the Clarkeclel. If the phase,
amplitude and arrival angle for each incoming propagatioancel are fixed, Clarke’s

model is transformed to Jakes’ model. Specifically, theofelhg parameters are set

1
Cn = T = ’I’L:1,2,. 7Na
VN
2
o :%, n=1,2...N, (2.10)

The normalized low-pass fading processes of this modeliaea dpy

pt) = pe(t) + jpa(t),

pe(t) = \/LN Z a, cos(wpt), (2.12)
n=0

5 M
wi(t) = 7N Z by, cos(wpt),
n=0
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whereN = 4M + 2, and
2 si =0
b, — { V2sinfy, 0 =0, (2.12)

wg, n =20,

wdcos%T”, n=12...,M.

Wnp =

The simplification in (2.10) makes this simulation model edstinistic [52, 53].
In [60], it is shown that the statistical variance of the Jlgmulator fading process is
time variant and therefore, Jakes’ model averaged acresstdemble of physical fading
channels is wide-sense nonstationary. Various approauieespplied to conquer these
deficiencies [54, 55, 58-61]. Among these approaches, tpeBRaulieu simulator in-
troduced in [60] is wide-sense stationary and widely usethadoundation of further
researches on the simulators.

The normalized low-pass fading process of the Pop-Beauleulator is given by

f(t) = f(8) + 3 f:(D), (2.13)
where
9 M
fr(t) = 7N ; ay, cos (wyt + ¢dp) (2.14)
and
9 M
fi(t) = N 7; by, sin (Wit + ¢y, | (2.15)

wherea,, andb,, are the same as those defined in (2.12). It is clear that théBBaplieu
simulator add®,,, a random phase uniformly distributed par, 7), to the original Jakes’
model which assumes that = 0 for all n. The introduction of the random, allows the
Pop-Beaulieu simulator becoming wide-sense stationaryeder, some problems with
high order statistics remain [51].
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The autocorrelation and cross-correlation functions efRbp-Beaulieu simulator are

given by [62]

4 a?
Ry == |3 % cos<wn7>] ,
Ln=0
M
4 [
Rfifi(T) = N Z 5 COS(‘dnT)] )
L n=0
r M
4 anby,
Ry (1) =5 [ 225 cos(wnr)] , (2.16)
L n=0

Ry, (1) = Ry, 1,(7),

Ry(7)(r) = % S 2cos(war) + Cos(wdT)] ,

Ln=0
16(N — 1)

8
Rgpipp(7) = 4+ 2R 1 (7) + 4R j, + - Jo(2wam) + — 75

By comparing (2.16) with (2.7), it is clear that the secondeor statistics
[Ry. 5, (T), R, 1,(T), Ry, 1,(T), Ry, 1. (7)] Of the Pop-Beaulieu simulator approach those of
the desired Clarke’s model only ¥/ is infinite. WhenM is finite, these second-order
statistics will significantly deviate from the desired vedu[51]. Moreover, even if\/

is infinite, the higher-order statistidse;;(7), B2 r2(7)] can not match to the desired
ones [62].

In order to overcome these deficiencies, an improved siioualatodel, whose statisti-
cal properties can perfectly match the desired Clarke’s madmtroduce by Zheng and

Xiao in [51,57], and we will describe this improved model fre thext section.

2.1.2 Animproved simulation model

An improved simulation model proposed in [51, 57] solves dediciencies of Jakes’
model by reintroducing the randomness of the three vasalile o,, and¢,,. The nor-

malized low-pass fading process of the model is defined as

N
h(t) = \/EOZ C,, explj(wat cos dy, + b)), (2.17)

J. Zhang, Ph.D. Thesis, Department of Electronics, University of York 2009



CHAPTER 2. FUNDAMENTAL TECHNIQUES 15

and
G = SPU) s N (2.18)
VN
Gin :%"_—NWM, n=1,2,... N (2.19)

It should be clarified thalv/2 is an integer, and,,, 6, and¢,, are mutually independent
random variables uniformly distributed ¢ar, 7) [51,57]. By substituting (2.18) into

(2.17), we obtain the improved simulation model as

N/2
W E . . R . .
h(t) _ ]\;) E :egwn [ej(wdtcosanJr(bn) + efj(wdtcosan+¢n)} ’ (220)
v n=1

in which e7(watcosantén) represents the waves with Doppler frequencies from theerang
[wg cos(2m/N),wy] to the range[—wqcos(2m/N), —wy], While e=7(watcosante) repre-
sents the waves with Doppler frequencies from the range-of; cos(27/N), —w,] to
[wq cos(2m/N),wq]. The Doppler frequencies are overlapped [51]. Equatio20)2can

be further simplified to be

M
VE A . ,
h(t) — ]\;) { g \/Ee]wn [6](W'nt+¢n) + e_J(wnt+¢n):| } , (221)
v n=1

whereM = N/4, andw,, = wycos a,. A new simulation model can be defined based on
(2.21) as

h(t) = he(t) +jhi(t)

M
he(t) = \/%Z cos(ty,) cos [wat cos(am,) + ¢n) (2.22)

hi(t) = \/%Z sin(ty,) cos [wat cos(a,) + ¢n)

where
_ 2t -7+ 0

AM ’
andd, ¢,, ¢, are statistically independent and uniformly distributed-er, 7). In [51],

n=1,..., M, (2.23)

Qnp

the value ofp,, has been chosen to be the same fonalihich is incorrect. This leads to

a mistake on the probability density function of the timeanant fading envelop where
wg = 0 [20]. Here we follow the corrected version used in [57] anohtreduce the
randomness of,. Therefore;),, and ¢, can be combined together and (2.21) can be

further simplified as

h(t) =

M
v\/% {Z V2 [ej(wnt+xn) + e—j(wnt+><n)] } , (2.24)
n=1
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wherey,, = (¢, + ¢,,) and the PDF of is the convolution of the density functions ©f
andeo.

The statistics of this simulation model are derived in [54] a

Ry, n, (1) = Jo(wat),
R, (1) = Jo(war),
Ry, (1) = Rp,p, =0, (2.25)
R (1) = 2Jo(war),
Ry (1) = 4 + 4J5 (wqr), if M is infinite.

It is clear that except the autocorrelation function of thieeged envelopR,pnp2(7),

the statistics of this improved model do not depend on theevalf /, and exactly
the same as the desired statistics of Clarke’s model desdchipg?2.7). Furthermore,
the high-order statisti®?, 2 ,2(7) asymptotically approaches the desired autocorrelation
Rjg21412(7) whenM increases. Numerical results in [51] show that a good ajpration

has been observed wheén is as small as 8.

In order to evaluate the improved fading simulator, we camjfita simulation perfor-
mance with analytical results of the corresponding mathiealaeference model. We set
that M = 8, and the normalized Doppler frequencey, = 0.02, whereT is the duration
of a transmitted symbol. The simulation results are baseensemble averages of 100

and 1000 random trials.

Firstly, we consider the case of a time-variant channel.. Eify and Fig. 2.2 show
simulation results for autocorrelations of real and imagyncomponents of the fading,
respectively, and Fig. 2.3 shows the cross-correlatiomefreal and imaginary parts of
the fading. The reference is calculated based on (2.7) é&gptinpose of comparison. Note

that Ry, », is almost the same a9, , therefore, onlyR;,, is shown here.

It is observed that the simulated autocorrelations andsetosrelations match the de-
sired ones closely even whét is as small as 8 and the number of random trials is only
100. A better match can be obtained if more random trials erlopmed.

Multiple mutual uncorrelated fading channels, which acpreed for MIMO channels
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or double selective channels, can also be obtained by ukiagmproved simulation
model. We can usk(t) to denote thé-th Rayleigh fading channel defined by

hk<t> = hr(t) + .]hl<t> )

M
hi, () = \/%Z cos(tn 1) cos(wqat cos(an k) + Gnk) (2.26)
n=1

M
hii(t) =1/ % Z sin(¢n k) cos(wqat cos(an k) + Gnk)
n=1

with
2mn — mw + 0,
4M '

where,, i, ¢, andd,, are mutually independent and randomly distributed ¢ver, )

n=1...,M, (2.27)

A =

for all n andk. Thereforeh(t) is uncorrelated witth,(¢) for £ # 1. In order to show
that the multiple fading channels generated by this modeblacorrelated, we simulate
two independent fading channéls(t) andhy(t) and plot the cross-correlation between
4 quadrature components in Fig. 2.4. The simulation resuttsobtained by perform-
ing 1000 random trials. It is seen that the cross-correiatizetween multipath fading

channels are small.

Based on the discussions and simulations above, we find thahfiroved simulation
model can perfectly match the desired Clarke’s model, fon Botgle time-variant chan-
nel and multiple time-variant channels. Therefore, allinfetvariant Rayleigh fading

channels used in the following chapters are simulated Isynttmdel.

2.2 Basis expansion models

The traditional approach to estimate the time-variantrfgdihannel is based on apply-
ing the Wiener filter for tracking time variations of the chahgain [1]. Although a
high accuracy of estimation can be achieved [26], the Wiéher requires a high com-
putational load [63]. In recent years, the basis expansiodein(BEM) is widely used
for estimating time-variant fading channels, due to itshhégcuracy and low complex-
ity [19, 20,25-32, 64, 65]. With a BEM, estimation of a redliaa of the random process

describing the time-variant channel is transformed intovedion of a few time-invariant
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expansion coefficients [64], and the time-variant chanaellze modeled as
h = Ba, (2.28)

where theM x 1 vectora = [ay,...,ay]’ contains the expansion coefficients, and the

N x M matrixB = [by,...,b,,,...,by] collectsM linearly independent columrs,,.

According to the different ways to generate the maBixthe family of BEMs can be
categorized into two categories. The first category apfiedasis functions whose gen-
eration depends on the physical (e.g. fading rate) or statisnformation of the fading
channel [20, 29-32, 64], while the second group employs plsiseries representation
such as complex exponential or polynomial series [19, 228,64]. In this section, we

will introduce two BEMs for each category:

The widely used BEMs in the first category are Karhunen-Lo&ue (31, 32] and
discrete prolate spheroidal (DPS) [20, 29, 30, 64] BEMs. Tdmegation of KL and DPS
basis functions depends on the knowledge of statisticatimtion of fading. The prob-
lem though is that if the assumed channel statistics defriatethe true ones, e.g., due to
inaccurate information of the maximum velocity of the mebthe performance of these
BEMs may degrade. An alternative approach is to use the sexaiadory of BEMs with
fixed functions. In this category, the generalized compig@oeaential (GCE) and B-spline
(BS) BEMs are widely used.

KL BEM

The KL BEM provides the best performance among these four BE34sg4], since it
assumes that the statistical information of fading is mlfeknown at the receiver side.
The KL basis functions,,(n) are eigenvectors of the fading covariance matrix. For

example, the covariance matrix of Jakes’ fading processfined as
(X, = Jol270(t1 — t2)]. (2.29)

We order the eigenvalues, of Y as: \; > A\, > ... > Ay > 0, and assume that when
m is larger than a fixed valudé/ << N, \,, decreases rapidly and can be neglected [32].

Then, the matrixB of the KL BEM can be represented as

Blom =vm(n), m=1,....M, n=1,...,N. (2.30)
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DPS BEM

Although the modeling error introduced by the KL BEM is indigrant [31, 32], the
covariance matrix of fading is not always available at theeieer side in a practical sce-
nario. Alternatively, a BEM based on DPS functions was predas [20]. The DPS
BEM corresponds to the discrete KL BEM with a rectangular specf20]. The DPS
basis functions are also named Slepian sequences, whitlaadéimited to the Doppler
spread—v, v| and simultaneously most concentrated in the certain titeeval of length
M [66]. DPS sequences are widely used for channel estimattm ib time and fre-
guency domains [20, 30, 67]. Here we will introduce the pplecof DPS sequences
briefly.

The target is to find the sequencés:| which maximize the energy concentration in
the interval with lengthV [20]

)\ = Zogz_ol ’u[n]‘z, (231)
2 n=—oolu[n]]

while being bandlimited to; hence

uln] = / U(v)e*™ dv, (2.32)
where .

Uv) = Z uln]e 72 (2.33)
and0 < A < 1.

The solution of this constrained maximization problem &e DPS sequences [66],

which are the eigenvectors of the following eigenvalue équa

Z Sm(i?qygzé n>>um(Q) = AmUm(n), (2.34)

q=1
whereu,,(n) is themth basis function with lengttv bandlimited to the frequency range
[—v,v|, and \,, is an eigenvalue indicating the fraction of energy contaimethe fre-
quency range—v, v| of the corresponding eigenvector [67].

The DPS sequence[n] is the unique sequence that is bandlimited and most time-
concentrated in a given interval with lenghf, u,[n| is the next sequence having maxi-

mum energy energy concentration among the DPS sequenbeganil tou,[n|, and so
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on. Thus, the DPS sequences are a set of orthogonal sequenicbsare bandlimited
and high (but not complete) time-concentrated in a certatierval with length/V [20].
The eigenvalue3,, are a measure for this energy-concentration and ordergohgtevith
the maximum one a&; > X\, > ... > Ay > 0. Thereforeu,,(n) is themth function
corresponding to thexth most maximum eigenvalu@j should be chosen to provide,
close to 1 whenmn << M and close to 0 whem >> M [29]. The option ofM is
described in [66], as

M =2[vN]| +1, (2.35)

[x] denotes the smallest integer value larger than or equal fthe rigorous proof can
be found in [68]. Then, the matriB containing samples of the DPS basis functions can
be represented as

., N. (2.36)

GCE BEM

The GCE BEM, which is also known as oversampled complex exp@iefCE)

model [25] or non-critically sampled CE model [69], is a maatifimodel of the the CE
BEM. The CE BEM is introduced in [19] to approximate the time a&atifading channels.
Its basis functions are complex exponentials that haveiagegual to the length of the
considered interval. Normally, the channel modeled by CE BEMpresented as [23,70]

M
h(n) = Y a,e’™ Dm=D=M2L -y M n=1,...,N. (237

m=1
Although the CE BEM is widely used to approximate the time-asmtrfading channel [21,
23, 71-74], the modeling error of CE BEM is significant. The @aagular window in
(2.37), which corresponds to critically sampling the Dap@pectrum, results in spectral
leakage, which means, the energy from low frequency CE caaffi leaks to the full
frequency range [20]. This results in a floor in the BER perfamoe for time-variant
channels with Doppler spread as shown in [75].

Since only a limit Doppler range of windowed channel is cdased, the sidelobes
might be significantly eliminated and more samples are takevithin that range [25].

An improved modeling performance is obtained by using the BEEI, which applies a
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set of complex exponentials with the period longer than thelaw length related to the
CE BEM [25, 70]. This corresponds to oversampling the Dopglecsum of windowed
channel. For the GCE BEM, elements of the maBiare given by [25, 70]

Bl = 8 (0 DIm=D=M/2] -y A p=1,...,N, (2.38)

Y )

wherek is a real number larger thdn usually,x = 2 is used [25].

BS BEM

The B-splines have previously been investigated in appdicdd estimating the Clarke’s
model [26—28, 65, 76] since its high approximation accuewy low computational com-
plexity. An optimal spline of ordey, approximating the random proceisg) with zero
mean and variance;, is a spline providing an MSE which is defined as

9 1

ET = ——
2
o, T

/ " B — o}, 2.39)

Wherefz(t) is an approximation af(t) by applying splines, and is the sampling interval.
An optimal spline of ordeg can be represented as

m=0o0

h(t) =) amby(t — mT), (2.40)

—00

whereb,(t) is the B-spline of ordeg, anda,, are spline coefficientsh,(¢) is a(q + 1)

fold convolution of the B-spline of zero degree [77]

1, if[t] <%
bo(t) = § 5, iflt|=7 (2.41)
0, otherwise

where T is the sampling interval. Usually,(¢) are described by the Fourier trans-
form [27]

B,(w) = /00 b(t)e 'dt =T

—00

W q+1
Sm(TT>] . (2.42)

ol
2

The optimal spline approximation can be described by a ‘ipeesampling-postfilter”
scheme which is shown in Fig.2.5 [27] whet&w) and F'(w) are transfer functions of

the prefilter and postfilter, and¢) is the Dirac delta function [78]. The postfilter transfer
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Prefilter Sampling Postfilter
x(t x(1)
Q’ G(o) Flo) —
iS (t—iT)

Figure 2.5: Prefilter-sampling-postfilter scheme deseglspline approximation of the

processe(t),

function F'(w) is the Fourier transform of the B-splinds(w) = B,(w), while the prefilter

has the transform function [27]

-1
wl'o . Wl ]! = (wT —2-2
G(w) = [(7) sm(?)} X LZ@O (7 + mr) . (2.43)
If the the random processt) obeys Clarke’s model, the MSE of the approximation by
applying optimal splines of an arbitrary ordgecan be calculated by [27]

o T By 74 (q 4 1)(2q + 3) Bagya

N R A (PR T, 249
whereB,, are Bernoulli numbers [79], and the sampling factoe 1/(v7).
To build the basis functions, we use the B-spline of ordgi6]
18 a1\ [t g+l \?
B,(t) = a;(—n ( . ) (? + - 2>+, (2.45)

whereT = (N—1)/(M—q) is the sampling interval separating two adjacent BS funstion

and(x), = max{0, z}. In this case, elements of the basis function matrix arengbye

[B]n,m:Bq((n_l)—(m—¥)T), mzl,...,M, nzl,...,N.
(2.46)
The accuracy and complexity of B-spline approximation depen the order; of the

spline.

As shown above, the KL and DPS BEMSs can approximate the timantafading

channel with insignificant modeling error but require thatistics of fading and have to

J. Zhang, Ph.D. Thesis, Department of Electronics, University of York 2009



CHAPTER 2. FUNDAMENTAL TECHNIQUES 25

suffer extra error caused by inaccurate estimation of teesestics. Although the GCE
and BS BEMs do not require the knowledge of the statisticalrmédion of fading by
using a simple series representation as basis functiomgwhl introduce higher model-
ing errors than KL and DPS BEMs. We will compare the perfornesaned complexity of
these four BEMs in Chapter 3 and use the one which can providedggrformance and

affordable complexity to approximate the fading channelthis thesis.

2.3 Turbo codes

Turbo codes were first introduced by Berrou, Glavieux andifiajshima at the Inter-
national Conference on Communication (ICC) in 1993 [80]. In AWdhmnels, the
performance of a half rate turbo code is only 0.7 dB away fram $hannon capacity
limit at BER= 10~5. The remarkable achievement terminates the conventiboalht
that the Shannon limit can only be approached by using extirzarily long codes with
extremely complex decoding processes [81]. As one of thd pmserful error-control
codes, Turbo codes have been developed rapidly and atitastasitial attention in wire-

less communication community due to its outstanding gtuliterror correction [82—88].

Turbo codes are based on two fundamental concepts, coatadiesoding and iterative
decoding, the latter of which is the core of the ‘turbo prptei since it is the method
that allows the outstanding performance of turbo codes.ufsotcodes will be used in
some chapters of this thesis, we will briefly introduce thhectture of the turbo encoder
and main turbo decoding algorithms, i.e., the optimal maxma posteriori(MAP) and
Log-MAP algorithms, and the suboptimal MAX-Log-MAP algthnn. For more detailed
description of turbo codes, readers are referred to [89—91]

2.3.1 Turbo encoder

The structure of the turbo encoder used in this report caxlaieed by its formal name,
parallel concatenated recursive systematic convolutidd8C) code. Fig. 2.6 gives an

example of the structure of a turbo encoder. Two RSC encodersacatenated and

J. Zhang, Ph.D. Thesis, Department of Electronics, University of York 2009



CHAPTER 2. FUNDAMENTAL TECHNIQUES 26

an interleaver is in between them. Comparing with non-syatenconvolutional (NSC)
codes, RSC codes apply a feedback loop (recursive part) andsef the outputs equal
to the input data (systematic part). The structure of a RSGdarand the corresponding
NSC encoder are shown in Fig. 2.7 and Fig. 2.8, respectivady.both encoders, the
code rate id and the constraint length 5 The generator polynomials of the feedback

and output connectivity in the RSC encoder @ré)| in octal notations, respectively.

The working principles of the turbo encoder are describe@.h&\ length N data
sequencel = [d[1],...,d[N]] is encoded by the first RSC encoder, the output of which
is a lengthN coded sequence, = [z,[1],...,z}[N]]. Then, the original data sequence
is interleaved and encoded by the seconde RSC encoder taateaaother lengtiv
coded sequence’ = [22[1],...,22[N]]. Finally,d, x, andx’ are multiplexed together
to generate the final turbo coded sequence. Without pungtuthis results in a code rate

of 1/3. Higher code rates can be obtained by applying a punctudhegrse.

dlk] -
1
RSC x, [k]
Encoder 1 o
y =
= |x,[k]
Interleaver "E
@
>
2 it
- RSC x,[k]
g Encoder 2 g

Figure 2.6: Structure of a Turbo encoder.

The interleaver is a device that simply reorders the inpta daquence, while an dein-
terleaver, which will be used in the decoder to recover thgimal order of the data se-
guence. ltis the joint influence of the interleaver and RS@edacleading to a high code
weight composite codeword for most of the time which is cailito the performance of
turbo code [92]. There are numerous interleavers that carsée in the turbo encoders,
I.e. pseudo-random [93], block [94], and s-random intexes[95-98]. In this report, we

apply the s-random interleaver due to its superior perfocad90]. The output pattern
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'y
\

dlk]

Y

Y
C) » Delay » Delay

Y
\

[y

xpV[k]

Figure 2.7: Example of a Recursive Systematic ConvolutioR8IE) encoder.

of such an interleaver is generated randomly, with the camgtthat any two input bits at

a distance smaller thanbits will be separated by at leasbits after interleaving.

2.3.2 Turbo decoder

Fig. 2.9 illustrates the turbo decoder corresponding teetieder in Fig. 2.6. It is seen
that two RSC decoders are linked by an deinterleaver/iraeele which is similar to that

used in the encoder.

The turbo decoder works iteratively and in each iteratianttho RSC decoders ex-
change the decoded information to help each other. Beforediteg iterations, the re-
ceived signalgy[k] = (yalk], y,[k], y;[k]) from the demodulator are demultiplexed to
sequencesg[k|, y,[k] andy?[k], respectively, wherg,[k] corresponds to the received
systematic codeg,[k] corresponds to the received 1st parity bits, afi#| corresponds
to the received 2nd parity bits. The first RSC decoder appli€g andy, (k| as input
sequences and the second RSC decoder appligsandy’[k]. When the parity bits of a
given RSC encoder are punctured before transmission, thespanding decoder’s inputs
are set to zeros at the punctured positions. In the inigshtton, the first RSC decoder
takes onlyy,[k] andy![k] to generate soft information of the data bits; ; (d[k]). Then

the second RSC decoder can perform decoding with the softniafiion of L ; (d[£])
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x4 [k]
<>
d[k]
. » Delay »| Delay
ﬁ} x;[k]
-

Figure 2.8: Example of a Non-Systematic Convolutional (NSt@peler.

and L, (d[k]) from the first RSC decoder, in addition to the receivg(k] andy.[k].
The output of the second decoder is another soft decodingationL ;5 (d[k]), which
will be deinterleaved to generate,, »(d[k]) and fed back to the first RSC decoder. In
the subsequent iterations, the first RSC decoder takes(d[k]) from the second RSC
decoder in the previous iteration as additional infornmatiwy,[k] andy, k], to generate
Lg1(d[k]). The performance of the turbo decoder improves as the nuofbi@rations
increases. However, the improvement from iteration tatten decreases as the num-
ber of iterations increases. This process is repeatedivesauntil two RSC decoders’s
estimates of the original data bits converge. Eight iteretiare commonly used, as a
compromise between the performance and complexity [81halli the outputa pos-

teriori information L(d[k]) of a data bitd[k] delivered from the second RSC decoder is

deinterleaved and used for the final hard decision.

In general, each RSC decoder performs decoding by usingpta neceived signals
(ya[k] andy; [k],7 = 1,2) and thea priori information (L, ;(d[k]),7 = 1,2) from the other
RSC decoder, and provides the extrinsic informatign;(d[k]) for the other decoder.
Note that the extrinsic information is only exchanged betwdecoders as intermediate
information during the decoding process. The soft inforamagxchanging between two

RSC decoders is the reason why the turbo decoder is callethpoftsoft-output decoder,

J. Zhang, Ph.D. Thesis, Department of Electronics, University of York 2009



CHAPTER 2. FUNDAMENTAL TECHNIQUES 29

Lap,2 (d[k]) . LE,2 (c;’[k])
Deinterleaver |-
Ly, (d[K]) L, (d[k])
> »( Interleaver >
k
yg[ ] » Decoder 1 Decoder 2 L(g[k])
= | lA]
v,lk] o »| Interleaver
—»| T
E Decision
yolk]

Figure 2.9: Structure of a Turbo decoder.

which accepts soft priori information L, ;(d[k]) at one of its inputs from the previous
decoding process and generates soft informatigp(d[k]) as its output. Soft information
means that besides decoded bits, the associated prop#ialitach bit has been decoded
correctly is also provided, usually in the form of log-likedod ratio (LLR). This indicates
that the decoder yields not only the coded bits but also htahbile they are. As its name
implies, the LLR is the logarithm of the ratio of two probatids in the case of binary
transmission, e.g., the outpaiposterioriinformation ((d[k))) is generally given by

P(d[k] = +1]y)

HARD =18 B = 1y

(2.47)

where the numerator and denominator are probabilitieseofrimsmitted bit/[k] = +1
andd[k] = —1 conditioned on the received sequegcdased on (2.47), the more positive

the value ofZ(d[k]) is, the more reliably the transmitted bit was ‘1’, or the mpegative

the value ofLL(d[k]) is, the more likely ‘0’ was transmitted.

In the turbo decoder shown in Fig. 2.9, the output|[k]), a posterioriinformation of

an information bitd[k], is a sum of

L(d[k]) = L(d[k]) + Lap(d[k]) + Le(d[K]) (2.48)
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where L(d[k]) is the channel informationL,,(d[k]) is the a priori information and

Lg(d[k]) is the extrinsic information.

The channel informatior.(d[k]) can be extracted directly from[k] which are the
received signals af[k]. Supposing that[k] are transmitted withF; transmitted energy

per symbol, over an AWGN channel, the received signal is
ylk] = a - d[k] + nlk] | (2.49)

wheren; denotes an AWGN with a variance of, anda is the fading amplitude in a
fading channel or a constant value in an AWGN channel. For autiodel, the channel

information is given by [81]

L(d[k]) = log b (‘ii% (y[k] — a)2>
xXp (_26:% (y[k] + a)2>
= log (exp (2Z§Sy[k])>
- Ferulhl (2.50)

where L. = 2aFE,/d? is the channel reliability factor, which reflects the relidp of
estimating the transmitted signal from the received sighat example /. will be large
if SNR in the channel is high, and we can estimate the tratsasignal from the received
signal correctly with a high probability. In such a case, tbeeived signal will impact
heavily on the final outpua posterioriLLR.

Thea priori informationL,,(d[k]) used here is the deinterleaved extrinsic information
from the other RSC decoder.

The extrinsic informatiorL z(d[k]) is the information that decoder exploits from the
whole received sequence aadriori information, but excludes these of the bits which
are currently being decoded in this iteration. It is only éx¢rinsic information that the
decoders exchange between each other since the same itiforrslaould not be used
more than once at each decoding step.

Taking all these three types of information above into aotothe turbo decoder de-
livers thea posterioriinformation of data bits. The final decision of the decodmbased

on thea posterioriinformation of data bits.

J. Zhang, Ph.D. Thesis, Department of Electronics, University of York 2009



CHAPTER 2. FUNDAMENTAL TECHNIQUES 31

There are 3 typical decoding algorithms applied widely: Ma#igorithm, MAX-Log-
MAP algorithm and Log-MAP algorithm [80,92,99-102]. All tifese algorithm will be

introduced briefly in follows.

The Maximuma Posteriorialgorithm was firstly proposed by Bahl, Cocke, Jelinek
and Raviv in [92] and modified by Berrou, Glavieuv and Thitmagghin [80]. Com-
pared with the conventional maximum likelihood sequentienegion (MLSE) algorithm
which can be efficiently implemented by the Viterbi algomitfil 03], the MAP algorithm
is a symbol-by-symbol detection algorithm based on maxinayposterioriinformation.

It is optimal in the sense of minimizing the probability of y#bol error by takinga
priori information of the coded bits into account and providingt soformation about
estimated bits. The performance of the MAP and MLSE algor#thvould be the same
when there is n@ priori information to be exploited. However, wharpriori informa-
tion is available, for example, in the soft-input soft-auttpurbo decoder exchanging the
extrinsic information between two RSC decoders, the MAPralgm will outperform the

conventional MLSE one [80].

Although the MAP algorithm is the optimal decoding schemes too complicated
to be realized for implementation since the exact reprasent of probabilities used in
the MAP algorithm requires a high dynamic range [81]. Moepthere are many non-
linear functions and numerous multiplications proposethenscheme [81]. Working in
the logarithmic domain instead of the linear domain for thabability used in the MAP

algorithm and invoking the approximation

In(e™ +...+e") ~ Jnax @, (2.51)

the MAX-Log-MAP algorithm reduces the complexity signifitly. However, it is obvi-
ous that the MAX-Log-MAP algorithm is suboptimal since omlypart of information is

exploited due to the approximation.

This approximation can be avoided by applying the Jacologarithm to calculate
x =In(e™ + ...+ e®). The Jacobian logarithm [104, 105] is given by
In(e* + e*2) = max(x1, z3) + In(1 + e le1722)
= max(z1, ¥2) + fe(|z1 — 22|)

= ge(w1,12), (2.52)
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wheref.(|z; — z2|) can be regarded as a correction term. Robertson, Hoeher #ed Vi
brun in [100] proposed a method to show how to use the Jacddmgnithm to calculate
In(e™ + ...+ e") accurately. They supposed= In(e* + ...+ e* ') is known. Then,
they obtained

In(e™ +...+¢e™) =In(e® +e")
= max(x, x,) + fe(|z — z,]). (2.53)

This method is referred to as the Log-MAP algorithm [100]wés also shown that the
correction termy.(|x; — x2|) can be implemented efficiently by an one dimension look-up
table to avoid real time computation, moreover, only a feluesare needed for the table.
By applying the Jacobian logarithm, the Log-MAP algorithrtanes the optimality of the
original MAP algorithm, while preserves the computatiosiatplicity of the MAX-Log-
MAP algorithm. For interested readers, more details aboaitMAP, MAX-Log-MAP
and Log-MAP algorithms can be obtained from [99, 101, 102].
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Figure 2.10: BER performance of turbo codes with rate 1/3a&st 1024 bits, Log-MAP,

over AWGN channels.

Fig. 2.10 shows the BER performance of the turbo codes oveA¥¥&N channels.
A turbo code with ratd /3, 8 states is employed in the simulation. The generator alyn
mials of the RSC encoders g3, 15] in octal for their feedback and output connections
respectively. The length of frame is 1024, giving a suffitieqparameter of 20 for the

s-random interleaver. The turbo decoder applies the Log-MigBrithm and the number
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of decoding iterations are 1, 2, 3, 4, 5, 8 and 10. Simulatesults show that the BER
performance of turbo codes improves but the improvementdest two consecutive it-
erations decreases as the number of iterations increasesn v number of iterations
is larger tharB, the improvement almost decreases to zero. Thus, in thsssthee will

apply 8 turbo decoding iterations in simulations.

2.4 Conclusions

In this chapter, we have introduced fundamental technicguesh as the simulator of time-
variant channels, BEMs and Turbo codes, which will be usealginout this thesis. After

briefly introducing the reference Clarke’s model and the dafmes of Jakes’ model and
Pop-Beaulieu simulator, we have adopted the model intratibgezheng and Xiao [51,

57] to generate multiple fading channels. We have also geal/simulation results for
second-order statistics of this model, which have shownhtthia model can accurately
match to the desired Clarke’s model. Therefore, all timeavdrchannels considered in

this thesis are generated by using this improved simulatiodel.

We have also introduced BEMs used to approximate the fadiagrais. Advantages
and disadvantages of the most widely used BMESs, such as KL, GEE and BS BEMs,
have been briefly discussed. In the next chapter, we will @mphese four BEMs in
application to time-variant fading channels and will shdattthe BS BEM is the best
practical choice providing good performance and low coxipte

Finally, we have introduced the turbo encoder and decodérdifferent decoding al-
gorithms, such as MAP algorithm, MAX-Log-MAP algorithm ahdg-MAP algorithm.
After describing the advantages and disadvantages of esdohg algorithm, we have
chosen Log-MAP decoding algorithm and will be using it in fubsequent chapters to

realize the soft-input soft-output turbo decoding schemes
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3.1 Introduction

In mobile communications, the Doppler effect causes the tuariant fading. The pa-

rameter used to measure this Doppler effect is the Doppleasp Usually, this fading is
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well described by Jakes’ model [50], or more generally, byk&a model [49, 106]. For
Jakes’ model, the channel gain is a stationary random psagigls a correlation function
described as the zero-order Bessel function of the first kamdrpeterized by the Doppler

spread.

In order to approximate the time-variant fading channelssi® expansion mod-
els (BEMs) are widely used [19, 20, 25-32, 64, 65]. The mostrofised BEMs are
the Karhunen-Loeve (KL) functions [31, 32], discrete ptelapheroidal (DPS) func-
tions [20, 29, 30, 64], generalized complex exponential (@Ections [19, 25, 64], and
B-splines (BS) [26—28,65]. With a BEM, estimation of a reali@aof the random process
describing the time-variant channel is transformed intovedion of a few time-invariant

expansion coefficients [20].

The MSE performance of BEM-based channel estimators is deresd in [20, 32, 64,
69, 107-109]. Analytical results in [32, 107, 108] are basadhe assumption that the
Doppler spread is perfectly known, whereas in practice[Xbppler spread is estimated
with some errors [110]. In [20], instead of assuming thatDioppler spread is perfectly
known, the maximum Doppler spread is used to generate thelaBS functions. This
method is widely used in the works investigating the DPS BEN| 1®9]. Although the
use of the maximum Doppler spread is more practical and ndyceethe complexity of
BEM-based estimators, it may also lead to a significant degi@d in the MSE perfor-

mance.

The Doppler spread can be estimated based on correlationaaiadion of channel
estimates. For example, in [111], the Doppler estimatidreste based on the autocor-
relation of complex channel estimates is described. Idstéaising channel estimates,
the received signal can also be used directly in estimatiogpler spread information.
In [112], the mobile speed is estimated as a function of thveatien of the averaged sig-
nal envelope in flat fading channels. In [110], an efficienppler estimation algorithms
for wireless mobile radio systems is introduced by using dndg@proach relying on a
periodic channel estimation. In [69], the performance of BEded MMSE estimators
using the mismatched Doppler spread has been investigdtmaever, the derivation of
MSE in [69] is limited to the MMSE estimator using BEMs with loogonal basis func-
tions; as a result, it cannot be applied to the BS and GCE BEMSs.
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In this chapter, we derive the MSE of a generic linear chaesémator using lin-
early independent basis functions, and specify the erroMidSE and ML estimators.
The MSE performance of the Wiener solution is consideredus®tl as a lower MSE
bound. We then investigate and compare the MSE performarteanplexity for three
approaches to estimating time-variant channels with pedeinaccurate knowledge of
the Doppler spread:

1) channel estimation using perfect knowledge of the Dapgpeead;

2) channel estimation using the maximum Doppler spreadggested in [20];

3) channel estimation using an estimate of the Doppler sprea

The first approach provides the best MSE performance; hawigwaight be very com-
plicated depending on the BEM used and the assumption of eghgrknown Doppler
spread is impractical. Both the second and third approactedased on inaccurate
knowledge of the Doppler spread; we will investigate whicte @an provide a better
MSE performance and lower complexity. The complexity ofreapproach depends on
the BEM used. Therefore, we will compare the MSE performamzk domplexity of
estimators using different BEMs for each approach, and gipeaatical choice of the
approach and BEM providing the best performance and the taveesplexity.

The remainder of this chapter is organized as follows. IrtiBe@.2, the transmission
model and different BEMs are introduced. Section 3.3 dessrthe MSE derivation for
a generic BEM-based linear channel estimator. The perfocenand complexity of the
first approach using perfect knowledge of the Doppler spagadescribed in Section 3.4.
Then, the MSE performance and complexity of the second aind #pproaches both
based on inaccurate knowledge of the Doppler spread arstigated and compared in
Section 3.5 and Section 3.6, respectively, followed by tgions in Section 3.7.

3.2 Transmission model and BEMs

We consider a PSAM system and assume that a blo¢k pflot symbols is transmitted
and there areV, data symbols transmitted between two neighboring pilottsyls) e.g.

as shown in Fig. 3.1. The received pilot signal can be writtethe time-domain as

2(i) = s(i)h(i) + n(i), i=0,---,N—1, (3.1)
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Figure 3.1: Structure of transmitted block.

where at theth observed instance(:) is the transmitted pilot symbol of a powe(i)|* =
o2, h(i) is the (time variant) channel coefficient ani) is the complex additive white
Gaussian noise (AWGN) with zero mean and variam¢e The matrix form of (3.1) is

given by
z = Sh + n, (3.2)
wherez, h andn areN x 1 vectors with elements(i), i (i) andn(i), respectively, an®

isanN x N diagonal matrix with diagonal element§).

We consider time-variant Rayleigh fading channels follayitakes’ model [50, 51].

The covariance matrix of such a channel isfarx N matrix Y with elements

(Xlii 0o = p(t1 — t2), (3.3)
wheret,,t, = 1,..., N, andp(7) is the autocorrelation function [50]
p(1) = o Jo(2mv7), (3.4)

o7 is the variance of channel coefficients,(-) is the zero-order Bessel function of the

first kind andv is the Doppler spread.

The time-variant fading channel can be represented by a BE&d&line anV x M
matrix B containing samples of basis functions correspondiny teansmitted symbols,

where) is the number of basis functions. The time-variant chanaella= modeled as
h = Ba, (3.5)

where the vectoa = [ay,. .., ay |’ contains the expansion coefficients dné denotes

matrix transpose. The difference betwéeandh is due to a modeling error. By applying
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a BEM, the task of estimatingy time varying channel coefficients is transformed into
estimating onlyM expansion coefficients with usually << N. As mentioned above,
we will consider the following BEMs: KL, DPS, GCE, and BS basisdtions.

KL BEM

The KL BEM is introduced in [32,107] as a BEM with perfect knodgde of the statistical
information of fading channels. The KL basis functiangn) are the eigenvectors of the
covariance matrix of the fadin®’, which is obtained in (3.3). We order the eigenvalues
A, Of Y asA\; > Ny, > ... > Ay > 0. Then, the matriB of the KL BEM can be

represented as

Blom =vm(n), m=1,...,M, n=1,...,N. (3.6)

DPS BEM

The DPS functions are a set of orthogonal functions bant#unio the rangé—v, v|.
We consider)M basis functions,,(n) of length N. Such sequences are defined as the

real-value solution of the following equation [20]

> SR ) = M), =0 N -1 (@)
q=0

where),, andu,, are the eigenvalues and eigenvectors of the matrix

o sin(2rv(i — j))
=)

. dje{l,... N (3.8)

Am indicates the fraction of energy af,(n) contained in the range-v,v] [67]. The
eigenvalues are ordered in the descending okder X\, > ... > Ay > 0. Then, the

matrix B of the DPS BEM can be represented as

Blom =tn(n), m=1,....,M, n=1,...,N. (3.9
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GCE BEM

For the GCE BEM, elements of the matiixare given by [25, 70]

Bl = exn 0 D(m=D=(M=1)/2) 4 M p=1,...,N, (3.10)

wherek is a real number larger than Forx = 1, the GCE BEM becomes the complex
exponential (CE) BEM. However, the CE BEM results in a large madedrror [25, 70].
The GCE BEM introduces a lower modeling error; usually: 2 is used [25].

BS BEM

The B-splines have previously been investigated in appdicdbd estimating the Clarke’s
model [26—28, 65]. To build the basis functions, we use th@lBis of orderg [76]

q+1 q
qg+1 t qg+1 .
5 P 3.11
Bl B < )(T+ 2 Z) ’ (3.11)

+

whereT = (N — 1)/(M — q) is the sampling interval separating two adjacent B-spline
functions, andz), = max{0, z}. In this case, elements of the basis function matrix are

given by

Bl = By ((n—l)— (m—%) T), m=1,....,M, n=1,...,N.
(3.12)
The accuracy and complexity of B-spline approximation depamg, and normally, the
B-spline of order; = 3 is widely used since it provides the trade-off between cexipl
and accuracy [27,76]. Here, we use the cubic BS BEM and comisgperiformance and

complexity with those of the other BEMs. For this case, from{3 we have

%—t—ﬂt% if [t| < T,
By(t)=14 l2-l)’ T < <ot (3.13)
0, otherwise

and (3.12) becomes

Blym =Bs((n—1)—(m—-2)T), m=1,....M, n=1,...,N.  (3.14)
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It is clear that for cubic B-splines, th€ x M matrix B is a sparse matrix, and there are

only 4 nonzero elements in each row alichonzero elements in each column, where
K =[4T] = [4(N = 1)/(M = 3)], (3.15)

and[z] denotes the smallest integer value larger than or equal to

3.3 MSE of a generic linear channel estimator

3.3.1 BEM-based estimator

A BEM-based channel estimate is given by

~

h = Ba, (3.16)

wherea is a vector of estimates of expansion coefficients, the esitm ofh is transfer-
ring to the estimation oh. In this chapter, we consider linear channel estimatorsdas

on BEMSs, i.e., ML channel estimator and MMSE channel estimato

The ML channel estimator has the asymptotic properties wigoenbiased and have
a Gaussian PDF [113]. We consider the case with white Gausw&e with PDF
Nc(0,021y). Under these condition the PDF of received signil [113]

1 1
exp |—= (z — SBa)” (z — SBa) | , (3.17)

p(z;a) = ——7——

therefore, the ML channel estimation@fs found by minimizing
J(a) = (z— SBa)” (z — SBa). (3.18)

Since this is a quadratic function of the elementsaadnd 021 is a positive definite

matrix, differentiation will produce the global minimum2]. Thus, we have

Olnp(z;a)  0J(a) _,0(SBa)

aa aa =0, T(Z — SBa) (319)
By setting (3.19) equal zero we have
SB”(z — SBa) = 0. (3.20)
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Therefore, the ML estimate afis given by [113]

ay. = (BYSYSB)'BS" 3z, (3.21)

The MMSE channel estimator solving the estimation problgminimizing
Ja) = E {(z _SBa)" (z — s3a>} . (3.22)

In (3.22), since the matricésandB and vectorz are perfectly known, the only random
unknown variable is the vectar. Therefore, the expectation in (3.22) is owerWe can
solve the estimation problem by set

dJ(a)
Oa

=0. (3.23)
After some algebra, we obtain the MMSE estimates af [113]
-1
avwse = B{a} + (BYS"SB + o2 (E{aal"}) ) BUS"(z - SBE{a}). (3.24)

Here we consider the Rayleigh fading channels and therefediaveE{a} = 0 and
we define thatF{aa’’} = R, is the covariance matrix of expansion coefficients, and

represented as [65]

R, = (B”B) 'BYYB(B"B) . (3.25)
Then, (3.24) is simplified as [113]
awvse = (B”S"SB + aiRgl)_l B8z, (3.26)

Considering a general expression of a BEM-based linear chastimator, the vector
a can be represented as
a=Az, (3.27)

whereA is a matrix defined by the channel estimation scheme. For MESEnation,
we have
Awvse = (BSHSB + ¢2R; 1) 'BSH. (3.28)

For ML channel estimation, we have

Ay = (BS”SB) 'B”S”, (3.29)
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Here we derive the MSE of a generic BEM-based linear estinmatdrspecify it for

different estimation schemes. The MSE is represented as

MSE — mtr{E [(h—ﬁ) (h—ﬁ)H} } (3.30)

where t{-} denotes the trace operatgr)” denotes the Hermitian transpose af]
denotes the expectation. By substituting (3.16) and (3r&@)(3.30), we obtain

MSE = tr{E [(h—BA(Sh+n)) (h—BA(Sh+n>>H]}

tr{Y}

_ Uletr {E ] - B [h(Sh +n)” A"B"] ~ E[BA (Sh +n) by

+E [BA(Sh + n)(Sh + n)"A"B"]}

1
= St {Y =20 {E [hh"] STATB"} + BAS{E [hh"]} S"ATBY
Oh
+BA {E [nn"]} A"B"}
1
= ot {T+ BASYSYA"BY — 2R {BASY} + 0,BAA"B"}  (3.31)
Oh
wherel{-} denotes the real part. The MSE in (3.31) describes the degrat of a BEM-
based channel estimator and can be easily specified for atigytar channel estimator,
i.e., the MMSE estimator and the ML estimator with perfecinaccurate knowledge of
the Doppler spread.

3.3.2 Wiener solution

To evaluate the MSE performance of the BEM-based estimatoedVISE performance
of the Wiener solution is considered and used as a lower boidating the optimal
performance that can be achieved. The channel coeffidieo#s be estimated by using
the Wiener solution [113]:

hy = (S7S+o2Y 1) ' Sz, (3.32)

The MSE of the Wiener solution is minimum and given by [113]

2
MSEy = Sotr { (878 + o2 ) 7' | (3.33)
h

We will consider MSEy as a lower bound. The Wiener solution relies om&aparameter

model, while a BEM-based estimator exploits/@Rparameter model with/ << N.
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The computational load of the Wiener solution is very highheTmatrix inversion
in (3.32) require(N?3) complex multiplications. This matrix inversion has to bé ca
culated once for the channel coefficient at each data posidnd therefore, there are
O(NyzN*) complex multiplications required to estimate the chanoeffficients over the
whole transmission block wittv N, data symbols. The use of BEMs can significantly
reduce the complexity but may lead to performance loss. énnéxt section, we will
investigate this performance loss and compare the contplekihe BEM-based estima-
tors using perfect knowledge of the Doppler spread. Nogmetinstant envelope signals
are used as pilot symbols and we will assume that PSK piloassgare transmitted, and

thereforeS”S = 21, wherely denotes arV x N identity matrix.

3.4 Approach 1. Channel estimation using perfect

knowledge of the Doppler spread

In this section, we will specify the MSE in (3.31) to MMSE and_Mstimators using
perfect knowledge of the Doppler spread. Then, we will corapae MSE performance

and complexity of estimators applying different BEMs.

3.4.1 BEM-based MMSE estimator

The BEM-based MMSE channel estimator in the first approacivendoy
flMMSE,l = BAwwmsE 12, (3.34)

whereAywse 1 = (02BYB + 02R; 1) 'B#S*. By substitutingA yuse.1 into (3.31), the
MSE of a BEM-based MMSE estimator is represented as

1 o2 o2 4172
MS =——tr{ 2 |1+ 2 (B"BR,
ST N {azpag( "]

2

T, (3.35)

2 -1
+|1-B (BHB + U—gRal) B
o

s
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Figure 3.2: MSE performance of the BEM-based MMSE chann@hesbrs versus the
number of basis functiong//, with perfect knowledge of the Doppler spread,= 100,
SNR =30dBy T, = 0.02.
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Figure 3.3: MSE performance of the BEM-based MMSE chann@hesbrs versus the
number of basis functiongy/, with perfect knowledge of the Doppler spread,= 100,
SNR =30dBy T, = 0.05.
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Fig. 3.2 and Fig. 3.3 show the MSE performance of the BEM-b&EIEE channel
estimators for time-variant channels witl, = 0.02 andvT, = 0.05, respectively. We
set/N = 100 and SNR= 30dB. It can be seen that the MSE of the BEM-based MMSE
estimators decrease when more basis functions are apghddor different BEMs, the
number of basis functions required to achieve the lower daslifferent. The MMSE
estimator using BS BEM requires a larger number of basis fonstthan the others to
provide the same performance. This indicates that the nmgpetror of the BS BEM is
larger than that of the others. However, the MMSE estimatsirsg all BEMs can achieve
the identical lower bound and when the number of basis fanstapproache¥’, there is
no performance loss. Note that these numerical resultsaam®doon (3.35), which match
to the results obtained by simulations in which the MSE oihested are calculated and
averaged over time variant Rayleigh fading channels geseiiay using the improved
simulator (2.22) introduced in Chapter 3.

The complexity of the BEM-based estimators depends on the B&?d.uThe gener-
ation of KL and DPS basis functions requires the knowledgiefoppler spread and
uses the singular value decomposition (SVD) to calculaestgenvectors of th& x N
matrix Y. Therefore, for any, the generation of KL and DPS basis functions requires
O(N?) complex multiplications [114]. Note that the mati¢’ B for KL or DPS BEM

iIsanM x M identity matrix, since the basis functions are orthogonal.

For BS and GCE BEMSs, which do not require the knowledge of the ogpread,
the basis functions can be precalculated and the maff¢c&’B, (BHB)_1 B can be
saved in a memory, and therefore, the complexity of gemaydtasis functions is negli-
gible. Moreover, since the matri® of the BS BEM is a sparse matrix, the complexity of
the MMSE estimator using BS BEM is lower than that of the estimasing GCE BEM

as shown in Table. 3.1.

Table 3.1 shows the number of complex multiplications resglby MMSE estimators
using different BEMs in the first approach, wheres the order of the B-splines and
K = (%1 is the number of non-zero elements in each column of the xBirof
the BS BEM. It can be seen that the complexity of the MMSE estinsaising KL and
DPS BEMs is of the same order. The number of complex multifdioa required by the

MMSE estimator using GCE BEM i®(N?) less than that required by estimators using
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Calculation KL DPS BS GCE
B O(N?) O(N?) - -
R, MN? + M2N | MN? + M2N MN? + M2N MN? + M2N
R;! O(M3) O(M3) O(M?3) O(M?3)

V= (o2BHB +o2R;') o(M?) o(M?) O(M?) o(M?)
Apnmse = VBHSH (M? + M)N (M2 4+ M)N | (g+1)N+(¢g+1)KM | (M?+ M)N
AMMSE.L = AMMSE 12 MN MN MN MN

To estimateN N; channel coefficients MNgN MNgN (q+1)NgN MNgN

Table 3.1: The number of complex multiplications requirgdMMSE estimators using
different BEMs in the first approach using perfect knowledfhe Doppler spread.

KL and DPS BEMs. Wher/ << N, the termO(N?) dominates in the complexity of
the estimators using KL and DPS BEMs. For this case, the codityplef the MMSE
estimator using the GCE BEM is much lower than that of the estirmausing KL and
DPS BEMs. WhenV/ < 5, the complexity of the MMSE estimators using cubic BS
(¢ = 3) and GCE BEMs is close. However, when increases, the complexity of the
MMSE estimator using the GCE BEM is much higher than that of gterator using the
BS BEM.

3.4.2 BEM-based ML estimator

The BEM-based ML channel estimator is given by
flML,1 =BAwL12, (3.36)

where Ay 1 = (BYSHSB)~'B#”S#. By substitutingAy.; into (3.31) and taking
SHS = o2l into account, the MSE of the BEM-based ML estimator is represk
as

2
MSBs = et { (1-B(B"B)'B") T + 2B (B"B) " BH}
h

S

= Ltr{(I - B(B"B) 'B") Y} + 7. M (3.37)
- 0N o202 N '
= O T Ja L (3.38)

whered?, . = —iotr { (1 - B(B"B)™'BY) Y} anddZ,, = 3% = I ands = %o
) i, ’ 050}, On

as the signal-to-noise ratio (SNR). Wh&hincreasesyy, ,,. reduces butz, rises up.
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Figure 3.4: MSE performance of the BEM-based ML channel egbns versus the num-
ber of basis functions)/, with perfect knowledge of the Doppler spredd~ 100, SNR
=30dB,vT, = 0.02.
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Figure 3.5: MSE performance of the BEM-based ML channel egbns versus the num-

ber of basis functions)/, with perfect knowledge of the Doppler spredd~ 100, SNR

=30dB,vT, = 0.05.
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For the case with fixed, T, and SNR, there is a value 8f, below which, the term
53n’ML dominates in MSfg_; and above WhiCIﬁiML dominates in MSk,_ 1. We call this
the optimal number of basis functions, because, for Miishe ML estimator provides
the best performance. The optimal values\offor different BEMs can be identified, as
shown in Fig. 3.4 and Fig. 3.5 for the cases wiil} = 0.02 andvT; = 0.05, respectively.
We setN = 100 and SNR to30dB. Note that these numerical results also match to the
simulation results. By comparing Fig. 3.4 and Fig. 3.5 witlh.FB.2 and Fig. 3.3,
we find that unlike the MMSE estimators, the MSE performarfdda® BEM-based ML
estimators degrades when the number of basis functionsgerlthan the optimal value
of M.

Calculation KL DPS BS GCE
B O(N?) O(N?) - -
Awi = (02BHB) ' BHSH MN+M? | MN+M? | MN+M? | MN+ M?
aml = AmLiz MN MN MN MN
To estimate N, channel coefficientsy M NyN MNyN (g + 1)NyN MN,N

Table 3.2: The number of complex multiplications requirgdiL estimators using dif-
ferent BEMs in the first approach using perfect knowledge eMbppler spread.

We also investigate the complexity of the BEM-based ML estimtsa Table. 3.2
shows the number of complex multiplications required by Mitireators with different
BEMs in the first approach using perfect knowledge of the Depgbread. By comparing
Table. 3.2 with Table. 3.1, we find that for BS and GCE BEMSs, themenrity of the ML
estimator is significantly lower than that of the MMSE estionasince the ML estimators
do not require the matriR,. However, the complexity of the ML estimators using KL
and DPS BEMs is still high due to the computational load resglifor the generation of

basis functions.

The results show that in the first approach, the MMSE estinmaitperforms the ML
estimator but requires more complex multiplications. Wheénincreases, the MMSE
estimators for all BEMs can provide a good performance closthat of the Wiener
solution. The complexity of the estimators using KL and DP3/BEs much higher than
that of the estimators using BS and GCE BEMs. Among all BEM-bas#nhators, the

complexity of the one using BS BEM is the lowest.
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Although the performance of the first approach can be versecto the Wiener solu-
tion, the estimators using KL and DPS are too complicateetioriplemented in practice.
Moreover, the assumption of perfectly known Doppler spilisaaiso impractical. In the
next section, we will investigate the performance and cexipt of the second approach

using the maximum Doppler spread and compare them with thictbe first approach.

3.5 Approach 2: Channel estimation using the maximum

Doppler spread

In practical scenarios, the Doppler spread is not alway#adla. Therefore, in [20], the
maximum Doppler spready.y, IS suggested to generate the DPS basis functions. This
method can also be applied for the KL BEM. For this approach,géneration of KL
and DPS basis functions depends:@ny. Therefore, like the BS and GCE BEMs, the
KL and DPS basis functions can be precalculated and savednmony. This method can
significantly reduce the complexity of the estimators usfihgand DPS BEMs, but may
also lead to degradation of the performance due to the mi$ntetween the maximum
Doppler spread and the real Doppler spread. In this seattenyill investigate the de-
crease in the complexity and degradation in the MSE perfoomaf the second approach

compared to the first approach where the Doppler spreadfisgigrknown.

In the second approach, we can precalculate the mismatcivadance matrixt for
the Doppler spreadya, and save it in memory. Elements ¥fare calculated as

(X]iy0, = p(t1 — t2), (3.39)
where
p(7) = 07 Jo (27 VimanT). (3.40)

The corresponding mismatched covariance matrix of thereipa coefficients is calcu-

lated by

R, = (BYB) 'B/YB(BYB) . (3.41)

For KL and DPS BEMSsB is a matrix containing samples of the basis functions géedra
by usingZmax. For BS and GCE BEMS3 = B.
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By applying matrices oB andR,, the expressions of Wiener solution, MMSE esti-
mator and ML estimators are modified as below.

Mismatched Wiener solution

In the second approach, the mismatched Wiener solutionéndiy

hy, = (UEIN + Uii‘_l)il Sy, (3.42)

o2 -t
(I+—§T*0 }.
O—S

(3.43)

The MSE of the mismatched Wiener solution is represented as

1 o2 o2 _ -1
tr{Y—[2Y - Y (I+ =27 ')(1+22Y"!
oIV { [ ( "o )( "o )

MSEyy, =

BEM-based MMSE estimator

The MMSE channel estimator in the second approach is given by

hymse2 = Amvise 22, (3.44)

whereAyyse2 = (0?BB + aﬁRa)_l B7SH, and the MSE is represented as:

1 2 2 172
MSEwvse 2 = tr{ﬁ [I+&(BHBRG) 1}

oiN | o2 o2
_ _ 0'2 _ -1 _ ?
+|I-B (BHB + —gRa1> B 1} . (3.45)
US
BEM-based ML estimator
The ML estimator using in the second approach is given by
hyiz = Awez, (3.46)

whereAy, » = (azBHB)_l BASH and the MSE in represented as

2
oM
252N
oo N

MSEu . = ——tr {(I- B(BYB) 'B”) Y} + (3.47)

1
U%N
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3.5.1 MSE performance
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Figure 3.6: MSE performance of estimators with all BEMs ughmgmaximum Doppler
spreadpmaxls = 0.05, N = 100, M = 26 and SNR = 30dB.

Fig. 3.6 shows the degradation in the MSE performance ofd¢hersd approach com-
pared with the first approach. We s€t= 100, SNR= 30dB andvn.Is = 0.05. Based
on the results shown in Fig. 3.3, we usé = 26 basis functions to guarantee that all
BEMs provide the best performance fagf.7; = 0.05. In Fig. 3.6, ML, and MMSE
indicate the ML and MMSE estimators in the second approadpectively, and MMSE
denotes the MMSE estimators in the first approach. It can &e t&t, in the second ap-
proach, the MMSE estimators for all BEMs provide a similarffpenance as that of the
mismatched Wiener solution usingay. In the second approach, the ML estimators using
all BEMs provide a similar performance, which is 3.2dB inéerio that of the MMSE

estimators.

Compared with the performance of MMSE estimators in the fipgr@ach, the per-
formance of the MMSE estimator in the second approach degratierv significantly
mismatches withy,.x. For example, when = vy.0s = 0.05, which indicates that there

IS no mismatch, the performance of the MMSE estimator in #e®osd approach is the
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same as that of the MMSE estimators in the first approach. MenehenvT, = 0.01,
the performance of the MMSE estimators usingyZ, = 0.05 is 4.2dB inferior to the

performance of the MMSE estimators in the first approach.

3.5.2 Complexity

Calculation KL DPS BS GCE
B _ _ — —
Ra — _ — —
R;' - - - —

V= (UEBHB +J%Rgl)71 O(M3) O(M3) O(M3) O(M?)
Aymsez = VBHSH (M2 + M)N | (M2 4+ M)N | (M2+ M)N | (M?+ M)N
AMMSE,2 = AMMSE 2Z MN MN MN MN

To estimatelN N, channel coefficients| MNyN MNyN (g + 1)NgN MNyN

Table 3.3: The number of complex multiplications requirgd\iMSE estimators using
different BEMs in the second approach.

Calculation KL DPS BS GCE
B _ _ _ _
Aw 2 = (02BHB) ' BHSH MN + M? | MN+M? | MM+ M? | MN + M?
amL2 = AwuL2z MN MN MN MN
To estimateN N, channel coefficientsy M NyzN MNyN (g +1)NgN MNyN

Table 3.4: The number of complex multiplications requirgd\il. estimators using dif-
ferent BEMs in the second approach.

Now, we will investigate the complexity of BEM-based estioratin the second ap-
proach. Table. 3.3 shows the number of complex multiplicetirequired by MMSE
estimators using different BEMs. The matrid@sY andR,' can be precalculated and
saved in memory. Therefore, the estimators with KL and DPS Bk significantly
simplified. However, for the estimators using BS and GCE BEMs siimplification is
not significant. We also find that the MMSE estimators usih@&Ms require a similar
number of multiplications when/ < 5. For the case witld/ > 5, the complexity of the
estimator using the BS BEM is lower than that of the others.

Table. 3.4 shows the number of complex multiplications negliby ML estimators
using different BEMs in the second approach. By comparing Wahle. 3.2, it can be

seen that the complexity of the ML estimators using KL and BES/s is significantly
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reduced. However, the complexity of the ML estimators u@&gand GCE BEMs is the

same as that of the estimators in the first approach.

The results shown in this section indicate that the use ofiwe@mum Doppler spread
can significantly simplify the estimation when using KL an@®BEMs. However, for
the estimation using BS and GCE BEMs, the simplification is ngificant. Note that
in the second approach, the complexity of the estimatogu8®IBEM is still the lowest.
The MSE performance of the estimators in the second appisaetrse than that of the
estimators in the first approach, especially whgg, >> v. In the next section, we will
investigate the third approach using an estimate of the [Rogpread, and compare its

performance and complexity with those of the second approac

3.6 Approach 3: Channel estimation using an estimate of

the Doppler spread

In this approach, we use an estimate of the Doppler spread, to com@iteand generate
the KL and DPS basis functions. The Doppler spread can be&sd based on corre-
lation and variation of channel estimates. For examplelii], the Doppler estimation
scheme based on the autocorrelation of complex channelass is described. Instead
of using channel estimates, the received signal can alseée directly in estimating
Doppler spread information. In [112], the mobile speed tgesed as a function of the
deviation of the averaged signal envelope in flat fading nbn By using the estimate
of the Doppler spread, elements of the estimated covariaatex, T, can be calculated

by

(Xt = pts — t2), (3.48)

where
p(1) = o Jo(27DT). (3.49)

The estimated covariance matrix of the expansion coeft€isrgiven by

R, = (BYB) BUTB(BB) . (3.50)
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For KL and DPS BEMsB is a matrix containing samples of the basis functions geeera
by using?. For BS and GCE BEM3 = B.

By applying matriced3 andR.,, we obtain the MSE for the mismatched Wiener solu-
tion, as well as the MMSE and ML estimators.

Mismatched Wiener solution

The mismatched Wiener solution in the third approach isrgiwe

~ “ —1
hyys = <o—§1N n afLT_1> Sz, (3.51)
The MSE of the mismatched Wiener solution is represented as
1 o? o? . ! o? . !
MSEys= ——tr{ Y — [2Y - Y I+ 27 ') [T+ 27! I+ 27! :
Stws ozN{ [ (o) (e gir) | ()
(3.52)
BEM-based MMSE estimators
The MMSE channel estimator in the third approach is given by
hymses = Ammse 32, (3.53)

L Nl
whereAyvsez = (agBHB + UZR;) BYS and the MSE is represented as:

M Ll [ry o (grpr,) ]
= 5=tr< — =2 ( a)
Evmse,3 2N o2 [ - = ]
A A A 0'2 A -1 A
+|I-B (BHB+—’;R;1> B 1} . (3.54)
US
BEM-based ML estimator
The ML estimator in the third approach is given by
flML,s = AwmL3z, (3.55)
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N I
whereAy s = (a?BHB> BYS" and the MSE is represented as

o1 N HR\-1HH oM
MSEw 3 = Uthr{<I B(BYB)"'B ) T} oy (3.56)
3.6.1 MSE performance
Generally, an estimate ofcan be represented as
v=v+ Av, (3.57)

whereAvr corresponds to overestimatiod® > 0) or underestimationfv < 0) of the
Doppler spread. The sensitivity of the estimators to ovanadion and underestimation

is different.

Fig. 3.7 shows the MSE performance of the BEM-based MMSE estira in the third
appraoch versudv for the case withV = 100, SNR = 30dB, andvT, = 0.02. We set
M = 13. The mismatched Wiener solution and MMSE estimators usinBEMs are
sensitive to underestimation of the Doppler spread &« 0). In the case of overestima-
tion (Av > 0), the performance of the MMSE estimators using BS and GCE BEMs is
similar and close to that of the mismatched Wiener solutldowever, the performance
of the MMSE estimators using KL and DPS BEMs degrades when tppl@r spread is
significantly overestimated.

Fig. 3.8 shows the MSE performance of the BEM-based ML estireah the third
approach versuAv for the case withV = 100, SNR= 30dB, andvT, = 0.02. We also
setM = 13. Itis seen that the performance of ML estimators using BS a@& BEMs
is not that significantly affected hsxv. However, the performance of the ML estimators
using KL and DPS BEMs degrades significantly whda underestimated or significantly
overestimated. Therefore, the estimators using BS and GCE BEdsiore robust than
the estimators using KL and DPS BEMs.

In Fig. 3.9, we plot the MSE performance of the MMSE and ML restion in the
third approach together and find that the MMSE estimatorsrame sensitive to under-

estimation of the Doppler spread, but provide better paréorce than the ML estimators
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Figure 3.7: MSE performance of MMSE estimators in the thippraach versus the
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Figure 3.8: MSE performance of ML estimators in the thirdr@agh versus the change
of the Doppler spread,T; = 0.02, N = 100, M = 13 and SNR = 30dB.

J. Zhang, Ph.D. Thesis, Department of Electronics, University of York 2009



CHAPTER 3. CHANNEL ESTIMATION OF TIME-VARYING CHANNELS BASED ON BASIS

EXPANSION MODELS 57
0
_5 -
O GCE
-10 * BS 1
A DPS
-15 O KL 1
—MMSE,

8 -20 -V 8

ui

[%)]

s -25 |
_30 -
_35 -
I e et s bt Rl aelels Bomop ooy

_45 | | | | | |
-0.02 -0.015 -0.01 -0.005 0 0.005 0.01 0.015 0.02
AV T
S

Figure 3.9: MSE performance of MMSE and ML estimators in thiedtapproach versus
the change of the Doppler spread;, = 0.02, N = 100, M = 13 and SNR = 30dB.

-10

150~ - - -MMSE,

MSE, dB

10 £5 20 25
SNR, dB

Figure 3.10: MSE performance of the BEM-based MMSE estinsatising all BEMs

with different estimated Doppler spreadé,= 100, M = 26, vmaxls = 0.05, p = 0.1 and

20%v overestimation.
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over the rang® < AvT, < 0.02. Therefore, in the third approach, the Doppler spread is
suggested to be slightly overestimated for the BEM-based EMS&imation. Normally,

a Doppler spread estimator provides an unbiased estimattiihre Doppler spread [110],
which can often be represented as a normal random variakikeawnearv,, = » and
variancep?, wherep = arv anda € [0, 1] characterizes the accuracy of estimating the
Doppler spread. In order to reduce the chance of underdstimave suggest to add a

small positive value20%7 to the unbiased estimate

Now we compare the MSE performance of the MMSE estimatotsdanhird approach
using the suggested overestimate of the Doppler spreadtvatiof the MMSE estimators
in the second approach usinga.. We consider a case withil, = 0.02, N = 100. For
the second approach, we sgtyZ; = 0.05 and M = 26. For the third approach, we set
M = 26, a = 10% and20% overestimation. The performance of the Wiener solution in
the first approach using perfect knowledge a$ considered as a lower MSE bound. The
results are shown in Fig. 3.10; they have been obtained bpgwve over 1000 simulation
trials. 1t can be seen that the performance of the BEM-base®HM&stimators in the third
approach using a sligh2({%72) overestimate of the Doppler spread is only 0.5dB inferior
to the lower bound, and it outperforms that of the BEM-based 3Evestimators in the
second approach using..x!s = 0.05 by 2.3dB for all SNRs.

3.6.2 Complexity

Calculation KL DPS BS GCE
B O(N3) O(N3) - -
R, MN?2 4+ M2N | MN?+ M2N MN? 4 M2N MN?2 4+ M2N
R;! O(M3) O(M3) O(M3) O(M3)
V= (c2BHB ¢ a,%f{;l)_l O(M3) O(M3) O(M?) O(M3)
Apmses = VB SH (M2 + M)N (M2+M)N | (g+1)N+(¢q+1)KM | (M?+ M)N
AVMSE.3 = AMMSEZ MN MN MN MN
To estimateN N, channel coefficients| MNyN MNyN (q+1)NgN MNyN

Table 3.5: The number of complex multiplications requirgd\iMSE estimators using

different BEMs in the third approach using an estimate of tbpfer spread.

The number of complex multiplications required by the MMSte &L estimators
using different BEMs in the third approach is shown in Table5 &nd Table. 3.6,

J. Zhang, Ph.D. Thesis, Department of Electronics, University of York 2009



CHAPTER 3. CHANNEL ESTIMATION OF TIME-VARYING CHANNELS BASED ON BASIS

EXPANSION MODELS 59
Calculation KL DPS BS GCE
B O(N3) O(N3) - -
Aws = <a§BH1§) TIBHSH | MN+M? | MN+ M2 | MN+M? | MN+ M2
amL3 = AmL3z MN MN MN MN
To estimateV N, channel coefficientsy M NyzN MNyN (g+1)NgN MNyN

Table 3.6: The number of complex multiplications requirgdiL estimators using dif-
ferent BEMs in the third approach using an estimate of the [Bompread.

respectively. It is clear that the complexity of the thirdpepach is the same as that of
the first approach. The complexity of the estimators usingaid DPS BEMs in the
third approach is much higher than that of the estimatorsersecond approach. For the
estimation using BS and GCE BEMs in the third approach, the ocexitplis close to that

of the estimation in the second approach.

By comparing the third approach using a slight%2) overestimate of the Doppler
spread with the second approach using the maximum Doppteadpwe find that al-
though the complexity of the second approach is lower, itlop@ance is worse than that
of the third approach. Moreover, the increase of the coniyléx the third approach is
only significant for the estimation using KL and DPS BEMs. Hue estimation using
BS and GCE BEMs, the complexity of the third approach is closéab of the second
approach. It is also worthy to emphasize that the complefithe estimators using BS
BEM is the lowest in all approaches. Therefore, the BS BEM is thstrpractical choice

due to its highest robustness and lowest complexity.

3.7 Conclusions

In this chapter, BEM-based estimators for time-variantrigdthannels have been inves-
tigated. The MSE of a generic linear channel estimator wiithdrly independent BEMs
has been derived. We have investigated and compared the EI$&pance and com-
plexity for three approaches using different BEMs, such asB®S, GCE and BS BEMs
for estimation with perfect or inaccurate knowledge of treppler spread:

1) channel estimation using perfect knowledge of the Dapgpesad;
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2) channel estimation using the maximum Doppler spreadggested in [20];

3) channel estimation with an estimate of the Doppler spread

In the first approach based on the impractical assumptioeidépet knowledge of the
Doppler spread, when the number of basis functions incseadeBEM-based MMSE
estimators can provide a similar performance close to thtteoWiener solution. How-
ever, the performance of the ML estimator degrades afterpiimal number of basis
functions. Although the B-splines require slightly more ibdsinctions than the other
BEMs to achieve the same estimation performance, the comptéxthe estimator using
B-splines is still lower than that of the others.

In the second approach, the maximum Doppler spread is ussldolate the fading
statistics and generate the KL and DPS basis functions.oadth the estimation is sim-
plified with respect to the first approach, the significantmatch between the maximum
Doppler spread and the real Doppler spread leads to degmadathe MSE performance.
Moreover, the decrease of the complexity is only signifidanthe estimation using KL
and DPS BEMs, but not significant for the estimation using BS@G& BEMs.

The third approach uses an estimate of the Doppler spreaartpute the fading statis-
tics and generate the KL and DPS basis functions. In thisoggpr, all estimators are
sensitive to underestimation of the Doppler spread but naag hittle sensitivity to over-
estimation depending on the BEM used. The estimators usingnBSS&€E BEMs are
more robust than the estimators using KL and DPS BEMs. Thenastn in this ap-
proach using a sligh2(0%) overestimate of the Doppler spread outperforms the estima
tion in the second approach using the maximum Doppler sprEael MSE performance
of the MMSE estimation in the third approach is very closehe performance of the
Wiener solution with perfect knowledge of the Doppler spda this approach, the esti-
mation with KL and DPS BEMs is more complicated than those énsicond approach.
However, the increase of complexity for the estimation g% and GCE BEMs in this

approach is close to that in the second approach.

It is also worthy to emphasize that the complexity of themeation using BS BEM
is the lowest in each approach. Therefore, the BS-basedagiimusing a slight (e.g.,

20%) overestimate of the Doppler spread is a good practicalcehproviding a good
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performance, high robustness and low complexity.

In the following chapters, we will investigate the best pemiance that can be obtained
by using the optimal detection with imperfect channel eation. Therefore, we will
assume that the Doppler spread is perfectly known. Moretvercubic BS BEM will be
used to approximate the time-variant channels.
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Optimal and Mismatched Detection in

SISO Frequency-Flat Fading Channels
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4.1 Introduction

In communication systems transmitting data through unknohannels, traditional de-

tection techniques are based on channel estimation (§.gsibg pilot signals), and then
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treating the estimates as perfect in a minimum distancecttgteve call such detectors
mismatchedafter [35]). A better detection performance can be obthinean optimal
detector that does not estimate the channel explicitly dntly processes the received
pilot and data symbols to recover the data [35]. The optiretctor in [35] was obtained
for communication scenarios with space-time coding in aankawith uncorrelated fad-
ing and additive white noise. In this chapter, we consideoaengeneral scenario that is
applicable to channels with correlated fading. We derieegéneric optimal detector and
specify it for frequency-flat fading channels. We then corepts detection performance
with that of mismatched detectors using different chansgh@tion techniques for both

cases of time-invariant and time-variant fading.

In time-variant fading channels, the channel estimatioiffecult, especially in sys-
tems with powerful channel codes, such as turbo codes, gigneperating at low SNR
where pilot-based channel estimates are often of low acgurlierative channel esti-
mation and decoding over flat fading channels has been pedpsimprove the esti-
mates [63, 115]. In this chapter, we will consider represmh of channel gain time
variations by using basis functions. As shown in Chapter &pared with the other
BEMs, the B-splines provide high accuracy of approximatiosh regyuire lower complex-
ity. Therefore, we consider approximation of the chanmaktivariations by B-splines,
and, for this case, investigate the detection performahttgecoptimal detector. We then
investigate iterative receivers that exchange channetiatalestimates in a system trans-
mitting turbo-encoded data. Four channel estimation selseane considered: the ML
estimator, MMSE estimator, regularized ML estimator, anestimator providing statis-

tics for the optimal detector.

This chapter is organized as follows. In Section 4.2, thasim@ssion model is in-
troduced. The generic optimal detection and mismatcheectieh are derived and de-
scribed in Section 4.3 and Section 4.4, respectively. IniG@ed.5, the optimal detector is
specified for time-invariant channels. Section 4.6 spexthe optimal detector for time-
variant fading channels approximated by B-splines and desciterative receivers with
soft-input hard-output and/or soft-input soft-outputbmirdecoding scheme. Numerical

results are given in Section 4.7. Section 4.8 concludestibpter.
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4.2 Transmission model

We assume that the data transmission is split into two pgitts,and data transmission.

For the pilot transmission, the received signal is modeted a
z, = ¥,a+n, (4.1)

wherez, is anN,, x 1 received signal vector andl,, is anN,, x M matrix formed from
pilot symbols (for time-invariant channels) or formed frahe multiplication of pilot
symbols and basis functions (for time-variant channels)e IV, x 1 complex-valued
noise vectom, has a zero mean Gaussian PRE(0, R,,) with covariance matriR,, =
E{n,n/"}. The vectorm = [ay,...,ay]|" isanM x 1 vector of complex-valued channel
gains (for time-invariant channels) or basis coefficiefastfme-invariant channels) with
the Gaussian PDF

f(a) = Ne(0,R,) (4.2)

whereR, = F{aa'’} is an M x M covariance matrix. The functiofi(a) defines a
Rayleigh fading channel. The definition of the vecialdepends on the considered chan-
nel. In time-invariant channelg, contains the channel gains, i.a.,= h, and in time-
variant channelsa contains the expansion coefficients, i&.= [ay,...,a]". Cor-
respondingly, the structure of, and is modified. In time-invariant channeMy,, =

sp = [sp(1),...,5,(4),...,5,(N,)] wheres, (i) is an transmitted pilot symbols. In time-

variant channels¥, and¥, become matrices as
v, =D,B,, (4.3)
whereD,, being a diagonal matrix defined as
D, =diag{s,(t1),...,sp(tn,)}, (4.4)

The matricesB, contain samples of the basis functions at the pilot instaiitse de-
tails will be introduced in section 4.5 and section 4.6.lregponding to time-invariant

channels and time-variant channels, respectively.

The PDF of the received signal vectgyfor a given vectos is

p(zpla) = Ne(P,a,R,). (4.5)
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For the data transmission, the received signal is modeled as
Zy — \dea + ny (46)

wherez, is the receivedV,; x 1 data vector andl,; is an N; x M matrix which de-
pends on a vectod of transmitted data symbols. In time-variant channdls, =
[d(1),...,d(i),...,d(Ng)] whered(i) is an transmitted data symbol, adig, = DBy,
whereD, = diag{d, . .., dy,} andB, contains samples of the basis functions at the data
instants. TheV, x 1 noise vectom, has the Gaussian PDWV:(0, R,) with covariance
matrix R; = F{nsn%}. The PDF of the vectoz, for given vectorsd anda is also

Gaussian:

p(zdld,a) = Ne(¥qa, Ry). (4.7)

The transmission model presented in (4.1) and (4.6) is geiteeral. It can be used to
describe single-input single-output or multi-input mudtitput systems in both frequency-
flat and frequency-selective fading channels or in timenave or variant channels. For
different channels, the structure of matrices or vectofmee above, i.eW,, ¥, z,, zq
anda should be modified. The modifications of these matrices antbx&corresponding

are declared in following chapters corresponding to diffiéichannels considered.

4.3 Generic optimal detection

For the described transmission model, the optimal detéestberived by maximizing the
PDFp(z4|d, z,) of the signak, received at the data stage, conditioned on the transmitted
symbolsd and the signat,, received at the pilot stage, over the data set (alphaket)

dopt = argmax {p(z|d, z,)}
= argmax {In |p(z4|d, z,)]} . (4.8)
In the case of QAM transmission, the alphaleincludes all symbols corresponding to
the QAM constellation points. The PQKz,|d, z,) is obtained from the PDp(z,|d, a)

in (4.7) by integrating out the channel parametenshich are now treated asuisance

parameters
p(zald, 2,) = / p(zald, a)f (alz,)da (4.9)
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where theposterior PDF f(a|z,) of channel parameters is conditioned on the received
pilot signalz,,. Since (4.1) is thayesian general linear modehe PDFf(a|z,) is also
Gaussian (see [113], pp.326),

f(a|zp) = Nc(ma, Sa)v (410)

with meanm, and covarianc8, given by

m, = (I + R, (4.11)
S. = (T, +R;H, (4.12)
where
L, = VIR 'z, (4.13)
r, = /R '¥, (4.14)

If R, = 021y, (i.e., the noise is white with variane€), then we have

L, = 0,°%!z, (4.15)

p

wherely, denotes amV,, x N, identity matrix.

By substituting (4.7) in (4.9), we obtain

padld zy) =y [ 10T )R (@) ) (4.17)
whereX(-) denotes the real part aRxl-) denotes the imaginary part,
1 —szflz
CS:WNd’Rdye a %d > ()

is a constant, anfR,| denotes the determinant of the matRy. By substituting (4.10)
in (4.17) and taking into account (7.3) in Appendix A, we abta

C3

p(z4|d, z,) = z—=——exp {(Ld + Lp)H(I‘d + S, 1) Ly + Lp)} (4.18)
|Saly + L]
-5 exp {2R[LY (Sala + Inr) 'ma) + LY (Salq + Ins) 'SaLa
|Sard + IM|
—mTy(Saly + Iyy) 'm,} (4.19)
where
Ly = UIR 'z, (4.20)
ry, = ViR ', (4.21)
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For the white noise case, we haRg = 021y, and
Ly = 0,°Wlz, (4.22)
I, = o, °0/w, (4.23)
Finally, the optimal detector (4.8) is given by
dopt = arg min {A\(d)}. (4.24)
where the metric\(d) to be minimized is given by
Md) = —(La+Ly)"(Ta+ T, + Ry (La+Ly) + [Ty + T, + RS (4.25)
= In[Saly+ Liy| — 2R[LY (Saly + Iny) 'my] — LY (Saly + Iny) 'SaLy
+mIT (S Ty + Iy) 'm,. (4.26)

The first presentation (4.25) of the optimal methgd) shows how this metric is ex-
pressed in terms of the channel stati$tjc which is a vector of outputs of filters matched
to the pilot signals, and the correlation matkiy of the pilot signals. The second pre-
sentation (4.26) shows how the optimal metric is expresséerms of the meam, and

covariances, of the posterior PDF (a|z,,).

If the perfect channel information (PCI) is available, we gaite m, = a andS, =
0,7, Wwhere0,, isanM x M zero matrix. In this case, the metric (4.26) takes the form

Ad) = —2R(L¥a) + a”Ta. (4.27)

The detector minimizing the metric (4.27) is equivalentte tlassical minimum distance

detector

A _ B )
dpc| = arg min {||zd \Ilda||R;1} : (4.28)

In what follows, we will only consider scenarios with ad@giwhite noise.

4.4 Generic mismatched detection

The vectomm,, in (4.11) is known to be the MMSE estimate of the channel patarsa,

ie.,

aMMSE = M, (4.29)
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and this estimate is unbiased and has the covariance r8gt(#12) [113]. At high SNR,

i.e.,02 — 0, we obtain
f(alz,) — d(a—my,), (4.30)

wherej(a — m,) is an analog of the Dirac delta function for a vector argum&hen the

integration in (4.9) results in

p(zald, z,) — p(z4|d, a = aymsE), (4.31)

and the optimal detector (4.8) becomes a mismatched detebtye the MMSE channel

estimates
aMMSE = (Fp + R;le (4.32)
are treated as perfect when minimizing the Euclidean digtan

dmmse = arg min {(z4 — Caapmse)” (za — Yaammse) | - (4.33)

This motivates us to compare the optimal detector with the 3Evnismatched detec-
tor. The mismatched detector with MMSE channel estimatptoés the same priori
information as the optimal detector, but, in a different walyminimizes the error of
channel estimates, while the optimal detector minimizespitobability of detection er-
rors. Therefore, when comparing the detection performafdbde two detectors, we
expect the optimal detector to outperform the mismatchéectier with MMSE channel

estimates.

The optimal detector and mismatched detector with MMSE obhbestimates require
the knowledge of the fading statistics that are not alwayslavle. Therefore, it is of

interest to consider the mismatched detector with ML chbest@mates
dyL = arg max {(2a — CaamL)" (za — PaamL) } (4.34)
where the ML channel estimates are given by
ayL = (U)'W,) "0z, =T 'L, (4.35)

When comparing (4.32) and (4.35), it is seen that the invdr8eedading covariance ma-
trix R, in (4.32) plays a regularization role. This, however, reggithe fading covariance

to be known. Therefore, we will also consider a mismatchedater

~

_ _ A \H o A
de—argl(lilgf{(zd W,a.)" (24 \Ildae)} (4.36)
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with channel estimates using regularization based on tmgodial loading
a. = (T, +ely) 'L, (4.37)

wheree > 0 is a regularization parameter. Such regularization doesaguire the fading

statistics to be available. Note that fo&= 0, we havea, = ay_.
Thus, we are going to investigate the detection performahte following detectors:
1) optimal detector defined by (4.24) and (4.25);
2) mismatched detector with MMSE channel estimates givef#t38);
3) mismatched detector with ML channel estimates given 344 and
4) mismatched detector withML channel estimates given by (4.36).

The relationship (4.24) describes the optimal detectotiegdde to many communi-
cations scenarios. However, in this chapter we are onlyasted in investigating single-
user systems in SISO frequency-flat time-invariant and-traréant Rayleigh fading chan-

nels.

4.5 Optimal and mismatched detection in time invariant
SISO channels

In this section, we specify the optimal detector for timeainant fading channels with
QAM transmission and show that for signals with constanetpe the mismatched de-

tectors are optimal.

Consider the transmission in a SISO time invariant chanmesiciibed as
z, = hs, +n, (4.38)
Zq = hsy +ny (4.39)

i.e., M =1, a = his a complex-valued scalaR,, = o} = E{|h|*}, and¥, = s, is a

N, x 1 vector of pilot symbols. We consider symbol-by-symbol détm, i.e.,N; = 1
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and¥, = d. We only consider the white noise case, iR, = 02 andR, = o21y,.
Denoten = o7 /07, v, = s}z, andyy = d*z4. Then, from (4.12) and (4.11), we obtain
Sa = 0, (Eyn+ 1)~" andm, = vy, (Epn + 1)7', whereE, = s/'s,, is the energy of the
pilot signal. We also obtaih, = v,0,%, T, = E,0,% Ly = v40,,%, andTy = |d|*c,, 2.

With these notations, from (4.25) we arrive at the optimaéder

5 |d*zd""7p|2 2 1
d = —1 d E - ) 4.40
opt arg%?}f{ag(|d|2+Ep+1/n) G " (4.40)

For signals with constant envelop& = const, such as PSK signals, from (4.40) we

obtain

CZOpt — argimax {%(%’Sw)} =dm = CZMMSE =d.. (4.41)

The data symbol estimate (4.41) is equivalent to the midnmeatcletectors with the fol-

lowing estimates of the channel gain:

amL = Y/ Ep, (4.42)
amMmse = W/ (B, +1/n), (4.43)
ae = 7p/<Ep + 02), (4.44)

correcting the received signal according to these estsrate= ay, zq Or 20 = aypsg?d
orzy = a:zg4), and, finally, deciding on the transmitted symbdly mapping:, to the PSK
constellationA4. Thus, for constant envelope signals (such as PSK signateahree
mismatched detectors are optimal. In other cases of QAMassgthe optimal detector is
given by (4.40).

4.6 Optimal and mismatched detection in SISO time

variant channels

4.6.1 Transmission model

Now we consider single-user transmission in time varia@nciels. We assume that a

data block of N symbols is transmitted)V,, of which are pilot symbols and the other
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D Data symbols @ Pilot  symbols

Figure 4.1: Structure of the transmitted data block.

N4 = N — N, are data symbols as shown in Fig. 4.1. The received signadsjonding
to the pilot and data parts of the data block are modeledentisply, as

Zp(tk) = Sp(tk)h(tk) + n(tk), k= 1, ey Np, (445)
Zd<7_k:) = Sd(Tk)h(Tk) + n(Tk), k? = 1, ey Nd, (446)

wheres,(7;) = dj is a data symbol transmitted at timg, n(t) is the noise, and(t)
states a Rayleigh fading channel following Jakes’ model33, The covariance matrix

of such fading channels is @ x N matrix with elements

[ty = p(t1 — t2), (4.47)

wheret,,t, = 1,..., N, andp(7) is the autocorrelation function of Jakes’ fading process
[50] as shown by (3.4) in Chapter 3

p(T) = op Jo(2mvT), (4.48)

o2 is the variance of the channel coefficienfg(-) is the zero-order Bessel function of
the first kind,v is the Doppler frequency.

As shown in Chapter 3, BEMs can be used to approximate the tariant fading
channels following Jakes’ model. With a BEM, the task of eating N time variant
channel gains transforms to estimating onliy time invariant expansion coefficients,

whereM << N, and the time-varying channel is represented as a series

M
h(t) =) amem(t), t=0,...,N -1, (4.49)
m=1
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where{y,,(t)}*_, are basis functions. In the matrix form, (4.49) can be regmesi by
h = Ba, (4.50)

whereB is an N x M matrix with element$B);,, = ¢,,(t),t = 0,...,N — 1, and

a=/[ay,...,anm,...,ay|T isanM x 1 vector corresponding to the expansion coefficients.

We can represent the received data and pilot signals in ttxrfam (4.1) and (4.6),
respectively, with
v,=D,B, ¥,=D,B,, (4.51)

andD, andD, being diagonal matrices defined as
Dp = diag{sp(tl), cee Sp<th)}, (452)
Dy :diag{db...,de}. (453)

The matricesB, and B, contain samples of the basis functions at the pilot and data

symbol instants, respectively:

[Bolkm = om(te),  [Balkm = ©m(T)- (4.54)

Using these notations, and denoting

By=D}zs, B,=Diz, (4.55)
and
F,=DJ/D,;, F,=D/D,, (4.56)
we obtain:
Ly = 0,”By By, L, =0,’B, B, (4.57)
and
Iy=o0,"B/F,B, T,=0,"BJF,B,. (4.58)

4.6.2 Optimal detection

The optimal detector becomes very complicated for high We want to consider the

simplest case of symbol-by-symbol detection of data sysbola data block. In this
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case, expressions above are simplifi@l; = d, F; = |d|* and3, = d*z; are now
scalarsB, is a(1 x M) vector whose elements are values of the basis functions detia
symbol instantL,; = 0~2d*z,BY; andT'; = ¢72|d|*BY B,. The optimal detector (4.24)

minimizes the metric\(d) which is now given by

1 1
)

H -
MNd) = (BiB,+B.B,)" (|d’BiB;+BIJF,B, +0.R;")

n

x (BYB,+BIB,) +In||d*BIB, + BI'F,B, + 02R;!|. (4.59)

The optimal detector based on modeling time-variant fadisipqg a BEM requires an
explicit expression for the fading covarianBg. To obtainR.,, we can use the transform
(3.25)

R. = (B”B)'BYB(B"B) . (4.60)

If the perfect channel information is available, for the PRR|z,) = N¢(ma, Sa) we
can writem, = a andS, = 0,,. In this case, the optimal metric (4.59) takes the form
Ad) = —2R(L¥a) + afT;a. The detector minimizing this metric is equivalent to the

classical minimum distance detector

. _ B Ho
dpc| = arg min {(zq — W4a)" (zs — Vya)} . (4.61)

4.6.3 Mismatched detection

As introduced above, we will consider the mismatched detsaising MMSE, ML and

e-ML channel estimates and compare their performance wahahthe optimal detector.
Since we have used a BEM to approximate time-variant chameeés and therefore, the
task of the channel estimator becomes to estiméatexpansion coefficients. The MMSE

channel estimates are given by
ammse = (BJ'F,B, + 02R,;")'B//D/'z,. (4.62)

Correspondingly, a mismatched detector that tragigsg as perfect and minimizes the

Euclidean distance is represented as

dvMmsE = arg Idrgg {(z4 — Yaapmse)” (za — Yaammse) | - (4.63)
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The ML channel estimates are given by
ay. = (B'F,B,) 'BI'D"z,,. (4.64)
and a mismatched detector applying the ML channel estinatepresented as

dyL = arg min {(za — WaapL )" (zs — $aamL ) } (4.65)

Thee-ML channel estimates are given by
a. = (BI'F,B, + eo.1y) 'BI'Dl'z,, (4.66)

wheree > 0 is a regularization parameter aligf denotes anV/ x M identity matrix.
Such regularization does not require the fading statistidse available. A mismatched

detector using the-ML estimates is represented as

~

. . . ~ \H . ~
d, —arggg‘l{(zd W,a.)" (zg \Ildae)}. (4.67)

Note that fore = 0, we haveay;. = a.. It can be shown that theML channel estimate

provides the minimum MSE i = o, ?; this value ofe is used in our simulations.

4.6.4 Iterative receivers

Turbo J| Channel QAM | Pilot symbol |
Encoder Interleaver Mapping Insertion

Figure 4.2: Transmitter.

The transmission system with QAM modulation is shown in Big. In the trans-
mitter, information bits are firstly encoded by a turbo ereroof 1/3 rate with generator
polynomials [013,015] in octal notation. The output bitsteé turbo encoder are channel-
interleaved and grouped into QAM symbols. Then, pilot sylmlee inserted periodically

every(P — 1) data symbols as shown in Fig. 4.1.

Fig. 4.3 or Fig. 4.4 show the structure of soft-input hardpot (SIHO) or soft-input
soft-output (SISO) turbo decoders, respectively.
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The receiver applying SIHO turbo decoder (Fig. 4.3) recevke transmitted coded
bits by applying a turbo encoder same as the one used in thamiter to encoding the
hard output of the decoder. The soft metrics output from #teator are de-interleaved
and then passed to a turbo decoder. The SIHO turbo decodeg.indi3 outputs the
decoded bits which are then turbo encoded. This receivepisamplicated for practical
scenarios, and moreover, its performance is much worsethiaaof the iterative receiver

with SISO Turbo decoder as shown in following simulations.

The receiver applying SISO turbo decoder (Fig. 4.4) perfoseveral iterations, in
which channel estimation and decoding are refined. Thewerceses an SISO turbo
decoder. For every bit, = +1 of a received symboli = 1,..., K, thea posteriori
log-likelihood ratio (LLR) is computed as [116,117]

N Paear € Nl Plei)
Ck = 1n _

ZdeA; e MLy Ples)
where thea priori probability P(c;) of a symbol bit is expressed in terms of &gpriori
LLR L(c;) [118]:

, (4.68)

1 1
P(¢;) = 5 ll + ¢; tanh (§L(Cz)):| :
A = {d € Ale,, = £1}, and the metric\(d) depends on the detector used. For the first

iteration, we have

Ae, = In Z e M _1n Z e M), (4.69)

de A deA,
The LLRs )., are de-interleaved and passed to a turbo-decoder thatteuipth a se-
guence of the symbol bit LLRs and decoded bits; the LLRs are titarsformed to re-
cover coded bits by hard decision. After interleaving, QAMpping, and adding the
pilot symbols, the whole recovered sequence of the QAM sysnisoused for channel

estimation in the next iteration.

Actually, this iterative receiver with SISO turbo decodenbt optimal since the hard
decision after the output of turbo decoder leads to a lossfofrformation of coded bits
and causes extra error in the QAM Mapper. A better performaran be obtained by
using the soft mapping scheme to generate the data symis®s loa the soft output of
the turbo decoder directly [119]. However, the complexityhis soft mapping is higher.
In this thesis, we focus on the hard mapping and the perfocenahthe iterative receiver

with soft mapping scheme will be investigated in further kegor
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Received
signal
_,| Channel | Pilot | | QAM |_| Interleaver Turbo
Estimator Insertion Mapping Encoder
Y
Detector » Deinterleaver o STHO Turbo
Decoder |——
Decoded
bits

Figure 4.3: Receiver with soft-input hard-output (SIHOYmHdecoder.

Received
signal
_,| Channel |, Pilot | | QAM |_ | Interleaver 1 Hard
Estimator Insertion | |Mapping Decision
L(c,) LLR
Interleaver
Detector Deinterleaver SISO Turbo
Decoder |—»
Decoded
bits

Figure 4.4: Receiver with soft-input soft-output (SISO YimHdecoder.
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Functions of the channel estimator and detector are alsgngadepending on the

detector used and whether it is the first or a subsequentidera

1) ML-ML receiver: The ML channel estimation is used in all iteragioft the first it-
eration, the channel estimator provides the ML channahedéay,_according to (4.64).
In the following iterations, it provides ML estimates witt-defined matriceB,, andF,,
to include all (pilot and data) symbols; the mati is replaced by the matriB. The
metric A\(d) is calculated as

MNd) = 0, %24 — ad|?, (4.70)

wherea is a channel estimate given by= B,ap -

2) e-ML-e-ML receiver: The receiver is similar to thd_-ML receiver with the channel

estimates given by = B,a..

3) MMSE-MMSEreceiver: The receiver is similar to thdL-ML receiver with the
channel estimates given lay= B apvsE-

4) Opt<-ML receiver: At the first iteration, the channel estimator jtes the vector
L, = 0,,”B/'D/'z, required for the optimal detector. In subsequent iteratidrprovides
e-ML estimates with re-defined matric&s, andF, to include all symbols; the matri3,
is replaced by the matriB. At the firstiteration, the LLR (4.69) with(d) given by (4.59)
is calculated. At other iterations, the LLR (4.68) is caéted withA(d) from (4.70) and

a = Bsa..

5) Opt-MMSEreceiver: The receiver is similar to ti@pt-<-ML receiver with channel

estimates given by = B,apymse-

4.7 Simulation results

We first consider the time-invariant fading channel. Fi¢. shows the BER performance
of the optimal detector in Rayleigh fading channel with 16QAnbdulation. In this
scenario, only one pilot symbol is transmitted,(= 1). In the simulation trials, the pilot

symbol is chosen randomly from the alphabkt It is seen a small gain (less than 0.1
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Figure 4.5: BER performance of the optimal detector in timeariant frequency-flat
Rayleigh fading channel with 16QAM modulatioN,, = 1.

dB) due to the use of the optimal detector with respect to theab MMSE mismatched
detectors. Simulation for other modulation schemes hasislewen a smaller gain. Thus,
in time-invariant fading channels, the optimal detectavidtes little improvement in the

detection performance compared to that of the mismatched es.

Then, we consider a time-variant fading channel with thef@epspread factar’, =
0.01, whereTy is the duration of a symbol. The time variant channel coeffits are
modeled by cubic B-splines with basis functions calculae{r, 120]

oL i<,
p(t) = Bs(t) = L2— Uy i<t <o (4.71)
0 otherwise

whereT" is a sampling interval. For approximation kft) on an intervak € [0, N — 1],
we setl’ = (N — 1)/(M — 3); then the basis functions,,(¢) are given by

om(t) =@t —mT +2T), m=1,..., M. (4.72)

Fig. 4.6 shows the mean squared error (MSE) of approximatidhe fading process
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Figure 4.6: MSE performance of approximation of the fadiagels model by cubic B-
splines; no noise}/ the number of basis function®, — 1 is the number of data symbols
between 2 neighboring pilot symbol&], is the number of pilot symbols in the block and

to Is the position of the first pilot symbol.

h(t) with Jakes’ autocorrelation by cubic BS BEM with spline coediits (4.64) as a
function of the sampling factey = 1/(vT'). These results are obtained by simulation for
the case of no additive noise. The MSE depends on the lekMgihthe data block, the
numberN, and positions,, = ¢, + (n — 1)P of pilot symbols within the block. If all
the symbols are pilots\[, = N), then the MSE is very close to the ‘theoretical’ MSE of
approximation of Jakes’ model by using the optimal splinfesnoarbitrary order [27]

&2 n T2 2 Bogin T2 (g +1)(29 + 3) Bagra
T (g + 1)1y (g +2)2p2es 7

(4.73)

where B,,, are Bernoulli numbers [79]. For the cubic B-splings 3), from (4.73) we
have

9 0.549 17.736
€3~ ~8 10 :

The MSE is still close to the theoretical calculation, ifriaare at least 1.5 pilot symbols

(4.74)

per sampling interval’. If the number of pilot symbols is close to one symbol per sam-

pling interval, the MSE performance becomes sensitive fitjpns of the pilot symbols.
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When comparing two scenaridsy = 500, N, = 23] and[N = 507, N, = 24], it is seen
that there is a significant difference between the MSE perémice of these two cases.
However, even for the worst-case scenario, the MSE is bistéer -20 dB fory > 3 and
better than -36 dB fory > 4. To avoid degradation in the detection performance with
respect to the case of perfect channel information, “thienesion error should be negli-
gible compared to the reciprocal of the signal-to-nois@t§t21]. Thus, in the scenarios
considered, the MSE is low enough for many modulation tesues (operating at SNR
lower than 30 dB), i.e., for these cases, in our derivatiorescan neglect the modeling
error of cubic B-spline approximation of Jakes’ model of tiwaiant fading channels.

Therefore, we set = 4 in all simulations following.

Fig. 4.7 shows simulation results for a scenario with 16QAMdulation in a sys-
tem without coding. It is seen that for BER10~2, the optimal detector outperforms the
mismatched detector with ML channel estimates by about B.@rmt is inferior to the
receiver with perfect channel knowledge by about 2.1 dB. Trsenatched detector with
e-ML channel estimates is inferior to the optimal detectorllfy dB. However, the mis-
matched detector with MMSE channel estimates providedyhde same performance

as the optimal one.
Now, we will consider the iterative receiver with turbo ddea

Firstly, we will consider the upper and lower bound of the M&tformance of chan-
nel estimators in the iterative receiver. Fig. 4.8 showsdépendence of the MSE on
Ey/N, for 16QAM modulation and'T; = 0.01. At the first iteration, the channel estima-
tors only deal with pilot symbols. When the number of pilot §gis is small with respect
to the number of data symbol® (= 22), the ML estimator provides the worst MSE, and
the MMSE estimator provides the best performance, whilethi estimator with the
optimale = ¢, 2 has an intermediate MSE performance. These curves fer22 show
the upper MSE bounds for channel estimation performancedntérative receivers, or,
in other words, they are equivalent to the performance ofeleiver without iterations.
In following iterations, after correcting by the FEC decndecovered data symbols are
also treated as pilot and involved in channel estimatione MISE performance will be
improved and approach the lower bound given by the ¢asel, i.e., when all symbols
are pilot symbols. It is seen that, in this case, the ML aML estimators have similar
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Figure 4.7: BER performance of the optimal and mismatchedotiets in time-variant
frequency-flat Rayleigh fading channel with 16QAM modulatioT; = 0.01, N = 507,
M =23,N,=24,P=22,t; = 1.

MSE performance, whereas, at low SNRs, the MMSE estimatqreoigrms the others.
The curves forP = 1 show the lower bounds for channel estimation performandtlean
iterative performance. We can expect that the MSE perfocamahthe channel estimation

at the initial iteration is the same as the upper bounds apdowves iteration by iteration.

Fig. 4.9 shows the MSE performance of thid&SE-MMSEiterative receiver versus
the number of iterations increases. The SISO turbo decedemplemented here. It can
be seen that the MSE performance of channel estimation iMMS8E-MMSEiterative
receiver does improve and the improvement between two catige iterations reduces
when the number of iterations increases. However, the ivgonent of MSE performance
can't be distinguished after 4 iterations. Therefore, ia thesis, the iterative receiver will
perform 4 iterations at which it can provide acceptableqreniince and require affordable

complexity.

Two iterative receivers with SIHO and SISO turbo decodeescansidered here. Fig.
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Figure 4.8: MSE performance of the ME&ML, and MMSE estimators of Jake’s fading
model; N = 507, M = 23,vT, = 0.01, t; = 1.

4.10 shows the BER performance of the iterative receivers aviSIHO turbo decoder
after 4th iteration in a scenario with 16QAM modulation an@ rate turbo code. The
Optimal-MMSEandOptimal<-ML iterative receivers, i.e., receivers using the optimal de-
tector at the first iteration, significantly outperform ttexative receivers with ML channel
estimation. At BER= 1072, the improvement in the detection performance is about 5.4
dB against théL-ML iterative receiver and about 1.9 dB against¢hiML-¢-ML iterative
receiver. However, thMIMSE-MMSkHterative receiver is only 0.3 dB inferior to the iter-
ative receivers with optimal detection. Fig. 4.11 showsM&E performance of channel
estimation for this scenario. When comparing Fig. 4.11 awd Ei8, it is seen that, at
high SNRs, MSEs of the estimators approach correspondingriMBE bounds shown

in Fig. 4.8. However, it can be seen from Fig. 4.10 that the lgetpveen the detection
performance of receivers with the optimal detector and aivec with perfect channel
information is still significant (about 2.6 dB). This gap cam feduced if a SISO turbo

decoder is used.

Fig. 4.12 shows the BER performance of the iterative recgiwath a SISO turbo
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Figure 4.9: MSE performance of tidMSE-MMSEiterative receiver with a soft-input
soft-output turbo decoder versus /N, with respect to the number of iterations; code
rate/3, vT, = 0.01, N =507, M =23, N, = 24,1, = 1.

decoder in the same scenario. The gap between the deteetionrpance of th®©ptimal-
MMSE receiver and a receiver with PCl is only 0.3 dB at BER=®. The gap between
the Optimal-MMSEand e-ML-¢e-ML receivers is only 1.5 dB. The performance of the
MMSE-MMSHEreceiver is only 0.16 dB to that of ti@ptimal-MMSEreceiver.

Fig. 4.13 shows the MSE performance of channel estimatiothfe scenario. When
comparing Fig. 4.13 with Fig. 4.11, it is seen a significanpiavement in the MSE
performance at low SNRs when using SISO decoder.

From the simulation results, we can conclude that the MMSinhnkl estimation al-
lows the detection performance of the mismatched deteztgproach that of the optimal
detector in both uncoded and coded systems; the differartbe iperformance is at most
0.16 dB. However, both the optimal detector and the mismatcletector with MMSE
channel estimates require the channel covariance matbe tahown. The mismatched

detector with regularized ML channel estimates does nat treeknowledge of the fading
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Figure 4.10: BER performance of the iterative receivers witboft-input hard-output
turbo decoder after 4th iteration in a time-variant frequyefiat Rayleigh fading channel
with 16QAM modulation; code raté/3, vT, = 0.01, N = 507, M = 23, N, = 24,
t; = 1.

statistical characteristics. The payment for thigriori uncertainty is a worse detection

performance. However, the performance degradation isigioifisant.

4.8 Conclusions

We have derived an optimal detector for pilot-assistedsirassion in Rayleigh fad-
ing channels with unknown parameters. The results obtaamedpplicable to a wide
range of communications scenarios, including single4iigmgle-output and multi-input
multi-output systems, single-user and multiuser systenfiequency-flat and frequency-
selective time-invariant and time-variant fading chasn&hey can be used for correlated

fading channels and non-white additive noise.
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Figure 4.11: MSE performance of the iterative receiverdwaitsoft-input hard-output
turbo decoder after 4th iteration in a time-variant frequyefiat Rayleigh fading channel
with 16QAM modulation; code rat¢/3, v7T; = 0.01, N = 507, M = 23, N, = 24,
t, = 1.

In this chapter, we were only interested in investigatiorsiafjle-input single-ouput
systems in frequency-flat fading channels. For slow fadimgnaels, it has been shown
that, in the case of constant-envelope (e.g., PSK) modulathe mismatched detectors
are equivalent to the optimal detector, while, in a geneaakaof QAM modulation, the
optimal detector outperforms the mismatched detectorsmie-variant fading channels,
we have considered B-spline approximation of the channel tjae variations. Simula-
tion results for uncoded data transmission have shownithatich channels, the optimal
detector can significantly improve the detection perforogegompared to that of the mis-
matched detectors exploiting ML channel estimates. Howdke MMSE-mismatched
detector provides nearly optimal detection performance HAve also investigated the
detection performance of iterative receivers that exchamigrmation between a channel
estimator and decoder. It is shown by simulation that thatitee receiver with the op-
timal detector at the first iteration outperforms the reeeivsing ML or regularized ML

channel estimates. However, the use of MMSE channel egsmabkes the detection
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Figure 4.12: BER performance of the iterative receivers witoft-input soft-output
after 4th iteration in a time-variant frequency-flat Raytefgding channel with 16QAM
modulation; code raté/3, v7, = 0.01, N =507, M =23, N, =24, P =22,t; = 1.

performance close to that of the receiver with the optimé&cter at the first iteration.

In the next chapter, we will apply this optimal detector toN@ Rayleigh flat fad-
ing channels, and compare its performance with those of iematched detectors. We
expect that the improvement of the performance by usingdpisnal detector will be-
come more obvious. We will focus on the comparison betweerogtimal detector and
the mismatched detector with MMSE channel estimation amesitigate the conditions

under which these two detectors are equivalent.
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Figure 4.13: MSE performance of the iterative receiverdwaitsoft-input soft-output
turbo decoder after 4th iteration in a time-variant freqryefiat Rayleigh fading channel
with 16QAM modulation; code raté/3, v7; = 0.01, N = 507, M = 23, N, = 24,
t, = 1.
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5.1 Introduction

In the previous chapter, we have investigated a pilot assigptimal detector which out-
performs the mismatched detectors in SISO Rayleigh fadiagmoél. The optimal detec-
tor does significantly outperform mismatched detectorsi WML or e-ML channel esti-
mates, but slightly outperforms the one with MMSE channgtrestes even for the case
with turbo code and iterative receiver. Similar conclusi@me also presented in [36].
Simulation results in [36] show that the BER performance @f diptimal detection is
close to that of the mismatched detector with MMSE chanreheses.

We can expect that the use of the optimal detection will bangore significant ben-
efit in channels with a large number of unknown parametersthigichapter, we con-
sider a more general channel, the MIMO channel. After degithe optimal detector for
spatially correlated MIMO Rayleigh time-invariant fadingannels, we then extend the
optimal detector to MIMO Rayleigh time-variant fading chaf®; in particular with the
fading correlation following Jakes’ model [50], and spgéiffor MIMO time-variant fad-
ing channels. The time-variant fading channel is modeleddigg BEMs; specifically,

cubic B-spline functions are used [76].

In [35, 36], the analysis and simulation results show th&I8O channels with PSK
modulation, the symbol-by-symbol optimal detection isieglent to the mismatched de-
tection with MMSE channel estimates. However, this egeineaé is only true for SISO
channels. In this chapter, we consider more general caskprane that in spatially
uncorrelated SIMO channels the optimal symbol-by-symiadéction of PSK signals is
equivalent to the mismatched detection with MMSE chanrtahegion. However, this is

not the case for signals with non-constant envelope andédti-antenna transmission.

The rest of this chapter is structured as follows. In Sedi@)the optimal detector is
specified for spatially correlated MIMO time-invariant Raigh fading channels. Section
5.3 describes the proposed optimal and mismatched deteftioMIMO time-variant
Rayleigh fading channels. The conditions of equivalencevéen the optimal detector
and the mismatched detector with MMSE channel estimatediscassed in Section 5.4.

Simulation results are given in Section 5.5, followed byaosions in Section 5.6.
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5.2 Optimal and mismatched detection in MIMO time

invariant channels

In this section, we consider a system with transmit antennas antl, receive antennas
over MIMO time-invariant Rayleigh fading channels. We 9ef = Iy ® sy, Where
Sq = [s1,---, 8k, ---,SN,] iS@N1 x N; vector, ands; is the data symbol transmitted from
the kth transmit antenna, ardd;, is a/V, x N, identity matrix. Correspondingly, we also
define¥, = Iy, ® S,, whereS,, is anN, x N; matrix with elemen{S,|;; = px(i), and
N, is the number of pilot symbols transmitted from each anteamdp (i) is the pilot
symbol transmitted fromkth transmit antenna at thiéh instance, and = 1,..., N,. ®

denotes the Kronecker product. The received pilot and dgals are given by

z,=¥,h+n,, (5.1)
Zg — \I’dh + ng,, (52)

whereh, an N; N, x 1 vector of channel coefficients, is given by

h=h,,... h,. .. hy]",
by =[Pt Pk B,

)

h. is the channel coefficient between thid transmit antenna andh receive antenna,
andn, andn, are the noise observed at the data symbol and pilot symbdl@us re-
spectively. We consider the scenario where the noise saraptifferent receive antennas
are uncorrelated and assume that the noise temporal covamaatrix,R.,o, which char-
acterizes time-correlation of noise samples for a singteive antenna, is the same for
all receive antennas. We also assume that the variance plathebetween any pair of
transmit and receive antennas is normalized toi%k(: 1). We then define the spatial
correlation matrix of transmit antennas asanx N, symmetric matrixR; with elements
[Ri;; =1and[R,];; = p, ¢ # j, wherei,j =1,..., N, while the spatial correlation
matrix of receive antennas is &) x N, symmetric matrixR,. with elementsR,|;; = 1
and[R,];; = p, ¢ # j, wherei,j =1,...,N,. The joint spatial covariance matrix of
the MIMO channel is given by [122,123]

Y = E{hh"} =R, ® R,. (5.3)
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5.2.1 Optimal detector

By substituting these notations into the general expregdi@4), the optimal detector for

spatial multiplexing signals in MIMO time-invariant fadjrchannels is given by

O

sqEANt

_ -2 H H_ A\ (qH H 2~~—1) "1
= arg S?eli)](\’t {O’n (\Ild zqg+ ¥, Zp) (\Ild v, + v, ¥, +0,T )

X (Ozg+0llz) —In|C]W,+ W, + 02X}, (5.4)

5.2.2 Mismatched detectors

Correspondingly to the notations above, the channel esinmdescribed in the last chap-
ter are also modified. In MIMO time-invariant fading charg)éhe ML channel estimates
are given by

hy, = (T1®,) W, (5.5)

Thee-ML channel estimates become:
h, = (PIW, +eolyy,) Oz, (5.6)

where the regularization parameter 1.

The MMSE channel estimates that take the joint spatial ¢anee matrix of the

MIMO channel fading into account are given by

huvse = (B2, + o2 Y1) Wiy, (5.7)

A mismatched detector uses the minimum distance detechbrttdats the channel
estimates as perfect channel information and decides amnahemitted data symbols by

minimizing the Euclidean distance
~ 112
HZd — ‘Pdh

2 Y
n

(5.8)

Sqmis = arg min
' sqEANt o

whereh = hy, for ML channel estimates (5.5), ér = h, for e-ML channel estimates
(5.6) ora = hywse for MMSE channel estimates (5.7).
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Figure 5.1: Structure of transmitted data blocks trangaiftom all antennas.

5.3 Optimal and mismatched detection in MIMO time

variant channels

5.3.1 Transmission Model

We now consider the transmission o€y x N, MIMO time-variant Rayleigh fading
channels. We assume that a data matrixvok N; symbols is transmittedy, x N, of
which are pilot symbols and the othe¥g x NN, are data symbols, wheré; = N — N,,.

In this chapter, we consider the case that the pilot symvelsansmitted in groups df,
symbols with the group period d? symbols, which is similar to the pattern scheme in-
troduced in [24]. We assume thBf > N,. The structure of data blocks transmitted from
transmit antennas is shown in Fig. 5.1. Note that from déffiérantennas, random pilot
symbols are transmitted at the same time instances. Thesoare other designs of pilot
patterns for estimating MIMO channels, i.e., the optimabtgiment of pilot symbols [124]
and the non-overlapping pilot structure [125]. The perfance of the optimal detection

with these pilot patterns will be investigated in furtherrtioThe received signal at the

J. Zhang, Ph.D. Thesis, Department of Electronics, University of York 2009



CHAPTER 5. OPTIMAL AND MISMATCHED DETECTION IN MIMO FREQUENCY-FLAT
FADING CHANNELS WITH IMPERFECT CHANNEL ESTIMATION 93

rth receive antenna at timiecan be written as:
Nt
2(i) = he(i)sp(i) +n,(i), i=0,-+ N—=1, r=1-- N, (5.9)
k=1

whereh, (i) is the channel coefficient linking thgh transmit antenna to theh receive
antenna;si (i) is a symbol transmitted from theth transmit antenna and, () is the
additive white Gaussian noise observed atittiereceive antenna. We denote a vector
of the received signal as = [z],...,z],...,z} |", wherez, = [z,(0),...,z.(N —
1)]"; a noise vectom = [n{,...,n], ... n} ], wheren, = [n,(0),...,n.(N —
1)]*; a vector of the MIMO channel coefficients = [hy,....h,,... . hy ], h, =
b o Y Y andh) = [ha(i), . he(d), - hew, (8)]; ()T denotes ma-
trix transpose.We also assume that the noise samples atetliffreceive antennas are
uncorrelated and assume th&t, is the same for all receive antenna. Thex N matrix
R, characterizes time-correlation of noise samples for deiggeive antenna. Here we
assume that the noise samples are uncorrelated in timBane 021y, whereo? is the

noise variance. Then the total noise covariance matriwisgbyR,, = Iy, ® R,0.

We consider MIMO time variant channels, which are tempgradirrelated following
Jakes’ model [50,51]. The temporal covariance matrix otitthe-variant fading channel
isaN x N matrix with element$Y ), +, = p(t1 — t2), t1,ta = 1,..., N, wherep(7) is

the autocorrelation function of Jakes’ fading process
p(1) = air’k Jo(2mvT), (5.10)

o; . is the variance of the channel coefficients which is the samalfpaths,J(-) is the
zefo-order Bessel function of the first kind, amds the Doppler frequency. The spatial
correlation matrix of transmit antennasits, and the spatial correlation matrix of receive
antennas iR, as defined in Section 5.2. The joint spatial and temporalrcavee matrix
of the MIMO channel is given by [122]

Y = E{hh”} =R, ® Ty @ R,. (5.11)

Time variations in the MIMO time-variant fading channels egpresented by the cubic

B-splines which is given by

Lo il <T,
p(t) =14 Le-UMyY T < <or (5.12)
0, otherwise
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whereT = (N — 1)/(M — 3) and M is the number of basis functions,,(t) = [t —
(m—2)T], m=1,---, M. These basis functions are used to model the time-variant

fading channel linking théth transmit antenna and théh receive antenna:

M
hor(i) =Y al (i), (5.13)
m=1

whereat") are expansion spline coefficients. An approximation (mpeebr between

h.«(i) andh, (i) can be neglected if the number of basis functidhss large enough [27].

In the matrix form, the series (5.13) is given by

h,, = Ba™, (5.14)
wherea™ = [o\"™" a7 andB is anV x M matrix with elements
Blim =¢m(i), i=0,...,.N—1, m=1,...,M, (5.15)

which are samples of the basis functions at the symbol paositi The matrixB can be
splitinto two parts as follows. Th&,, x M matrix B, contains samples of basis functions
at the pilot symbol instant$B, | ., = ¢.,(7;). The N; x M matrix B, contains samples
of basis functions at the data symbol instan®y|;,, = ¢..(t;). According to these
notations, the received signal can be represented as

z = Wa+n, (5.16)
where
a = [a(l),_ .al), ’a(Nr)}T’
a®  =[atM . ath N
a™ =™, el g,

U = Iy @ Oy, Oy, = O, w® g gk = §B, andS, =
diagsk(0),...,sk(i),...,skg(N —1)]. The received signal corresponding to data and pilot

parts of the transmitted data block are modeled, respégtas
zqg=%Ysa+ng, z,=%¥,a+tn, (5.17)

According to (5.17), the vectarcan be split into a vector of received data symbe)s=

vi, ... vi v |T, wherelv,]; = z,.(t;), and a vector of received pilot symbals =
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uf,...,ul,...,ul ", where[u,]; = z(7;). The noise vecton is also split inton, =
x{,---,x}, -, xn ] where[x!]; = n,(t;) andn, = [w{,--- ,w/,--- ,wi | where

[wl]; = n,.(7;). Correspondingly, the matri¥ can be split into a matrix of transmitted

T

data symbolsb, = Iy, ® ¥, where

e =l el e el =sPB,,

S® — diags(0), ..., sk(t:), ..., sx(Ng— 1)),
and a matrix of transmitted pilot symbols, = Iy, ® \Ilé,vt, where

1 k Ny k k
o=l e e el =SB

Sy = diagls,(0), ..., sk (7:), ..., sk(N, — 1)].

g e ey 3

5.3.2 Optimal detection

The task of the generic optimal detector in (4.8) now becaméiad a data matris, by
maximizing the PDkp(z,|S4, z,,) of the received signal,, conditioned on the transmitted
data symbol$, and the received pilot signa);:

Scl,opt = args HJIAaX {ln[ (Zd|Sdazp)}}

= arg sdIeI,lAE}V}iNt {ln [/p(zd|Sd, a)f(a|zp)da} } .

By taking above notations and after some algebra, we arrive at

Sy opt = arg max {052 (\I’fzd + \I;fzp)H (\I'f\I’d + \I’f\Ilp + JiR;I)fl

SqcANdNt

X (Oizg+0lz,) —In|@]w,+ 0w, + R}, (5.18)

The optimal detection requires the joint spatial-tempa@relation matrixR,, of the

expansion coefficients. The matrixR, is given by
R, = F{aa”} =R, @ R, ® Ay, (5.19)

whereA, = E{a"(a T’f)) }isthe M x M correlation matrix of the expansion coeffi-
cientsa"™® that can be obtained from the fading covariance maftjpdefined by (5.10)
by requiring

BE{h;h2} = E{h,:h} = 1. (5.20)
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This requirement means that the correlation matrix of gptinefficientsA, results in
time correlation of the time-variant fading that is equarglto Y, the time correlation of
Jakes’ model. By substituting (5.14) in (5.20), we obtain

BAB? = 1,. (5.21)

As shown in Chapter 3, by multiplying both sides of (5.21)®y= (B“B)~'B# from

the left and by’ from the right, we arrive at

1

Ao = (BYB) 'BYY,B(B”B) . (5.22)

The optimal detector for MIMO time variant channels is giln(5.18). However, itis
not feasible to solve this optimization problem for a highmer N, /NV; of data symbols
due to extremely high complexity. If QAM modulated symbolghni constellation
points are transmitted, we have to calculate this métre™« times. In order to reduce
the complexity, we only detedV, symbols at once. In this case, the expressions above
are simplified:zq = [21(4), ..., 2.(i),..., zn, (i)]7, \Ilg“) = sx(1)Bg4, andB, becomes a
1 x M vector corresponding to the BS sampleglainstants. Now, we only calculate the
optimal metricN, Kt times to recover allV, N, data symbols.

5.3.3 Mismatched detection

A mismatched detector uses the minimum distance detechbrtribats the channel es-
timates as perfect channel information and decides on #msitnitted data symbols by

minimizing the Euclidean distance

N —W.al?
Simis = arg min {M} (5.23)

SyeANt 0_721

wherea is the estimate of expansion coefficients, and it is dependseapplied estima-

tion schemes. Here we also consider the MML and MMSE channel estimation.

For the ML channel estimation, the vectoe ay, and is given by

aw. = (O1W,) Wiy, (5.24)
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For thee-ML channel estimation, the vectar= a. and is given by
ac= (VIO + co?Lyn,y,) ¥z, (5.25)
For the MMSE channel estimation, the vechioe aywse and is given by

auuse = (¥ ¥, + UfLRgl)71szp. (5.26)

5.4 The equivalence between the optimal detector and
the mismatched detector with MMSE channel esti-

mates in SIMO channels with PSK modulation

In [35,36], the analysis and simulation results show th&I®BO channels with PSK mod-
ulation and white Gaussian noise, the symbol-by-symbah@dtdetection is equivalent
to the mismatched detection with MMSE channel estimatioa find that the equivalence
between the optimal detector and mismatched detector wMSHE channel estimates
can be extended to the SIMO spatially uncorrelated Rayleidm§ channels with white
Gaussian noise. Note that for the case with non-white Ganssvise, this equivalence

does not exist. The proof is given below.

Now, we consider a PSAM system with one transmit & 1) and N, receive anten-

nas, and the received signal in (5.9) becomes:
2e(1) = he(2)s(i) + ne (i), (5.27)

whereh,(i) is the channel coefficient between the transmit antennalancth receive
antennaj(i) is a transmitted symbol and.(7) is the additive white Gaussian noise ob-
served at theth receive antenna. Thus, the vectors and matrices defirféeation 5.3.1

are transformed to

z=1[z{,....z2},....zx |, (5.28)
wherez, = [2,.(0),...,2.(N —1)]7; a noise vector
n=mn,...,n, ... ny|, (5.29)
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wheren, = [n,(0),...,n,.(N — 1)]T; a vector of SIMO channel coefficients as
h=[h,...,h/, ... ,h} |, (5.30)

whereh, = [h,(0),...,h.(i),...,h.(N — 1)]. The matrix of transmitted data symbols
becomes
U, =1y @ ¥y, (5.31)

where
U, =SBy, Sq=diags(n),...,s(n),...,s(m,)],
and the matrix of transmitted pilot symbols becomes
U, =1y, @ ¥y, (5.32)
where
v,=S,B, S,=dags(t1),...,s(t:),...,s(tn,)].

Note that®, and ¥, are equivalent ta\") and¥}" defined in Section 5.3.1.

In SIMO time-variant fading channels, the spatial corielaimatrix of transmit an-
tenna isR; = 1, while the spatial correlation matrix of receive antenrsaanN,. x N,
matrix. We consider channels with no space correlation,Re= Iy, . The joint spatial

and temporal covariance matrix of the SIMO channel is given b

T=R,®Y,. (5.33)

We intend to prove that the optimal symbol-by-symbol deteand the mismatched

detector with MMSE channel estimation are equivalent, loaéiximizing the metric

A(d) = R{zl [In, @ (To(¥FT, + 02 A") O] 2, } . (5.34)
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5.4.1 Mismatched detector with MMSE channel estimates

Firstly, we consider the mismatched detector treating MMB&nhnel estimates as perfect.

Now, the task of the mismatched detector shown in (5.23) éetect one data symbol

|24 — ¥ sammse|” }

deA O-TQL

dmis = arg min {
Hay A N Hay A
= argmax {2R{z] W auvse} — almse P4 W almmse |

(5.35)

where the alphabed includes all symbols corresponding to the PSK constehgtimints.
Note that in (5.35), sincgl| is constant, the term

alse P Waaumse = ayuse(In, @ o)™ (Iy, ® ¥y)amvse
= ayuse In, ® (|d’BYBa)]ammse (5.36)

does not depend o, so it can be removed from (5.35) without affecting the deais

result. Finally, after some algebra, we arrive at

UZmis = arg fgle%i( {%{Zglq’déMMSE}}
H H 21 —1\—1q H
= argmax {R{z] (¥, ¥, +0’R, )Wz, }}
= arg rgleaji( {3‘% {zg(INT ® \ild) [INT ® (\ilf\i!p + O’iAO)_l] - (In, ® \ilf)zp}}
= Ad)}. 5.37
arg max{A(d)} (5.37)

5.4.2 Optimal detector

We now derive the optimal symbol-by-symbol detector of P&hals in SIMO time-
variant fading channels. After some algebra, (5.18) besome

1
= (P2 + W2,)" Y (Olz,+ ¥lz,) —In }Y—l\} , (5.38)

g

n

dgpt = arg max
P sl

whereY = (¢/w, + wliw, + aﬁR;l)_l. Similar to (5.36), sincéd| is constant, we
find that® ¥, does not depend on the transmitted PSK synabdis a result, the term
In Y ~!| can be removed from (5.38) and we obtain

dopt = arg max {29, YW 2, + 2]/ 0, YUz, + 2R {2/ O, YU 2,}} . (5.39)
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The first term in (5.39) does not depend®nThe second term can be transformed into
zHO, YUz, =71y @ U)Y(Iy, @ ¥,) 2,
= |d’z! Iy, ® Ba)Y (Iy, ® By)?z4; (5.40)
it also does not depend aksince|d|? is constant. We can now simplify (5.39) as
7 H H
dopt = arg max {%{zd U, YV zp}}
= argmax {R{z] Iy, @ ¥y) [Ty, @ ¥y)"
X(In, @ ¥g) + (Iy, @ ¥,) " (Iy, @ ©,,)

+oily, @ AT (Iy, © F,) "2, }}
= argmax {R{z] [In, @ (To(TFT,+ Xp)_llilf)] z,}}, (5.41)

whereX,, = \iff\ifp + 02 A", By using the matrix inversion lemma [126], we obtain

R [ _ XA, X1\ _
H -1 d *d H
dopt = arg Iz?e&}é}l{ {éR {Zd Ly, © (lIld(Xp 1 j— @prlif)cI;) i )] Zp}}
- R4 2H -I U, X wH WX, U, X o
S e \ e T g e e )|

A(d)
AR { 1+ [dPB/X; B } ’ (5.42)

As |d|2BdX;1B§ is a constant which does not dependip(b.42) transforms into (5.37).
Thus, we proved that the mismatched detector with MMSE chla@stimates is equiva-
lent to the optimal symbol-by-symbol detector for PSK signa spatially uncorrelated
SIMO Rayleigh fading channels. Note that in spatially catedl channels or with non-

white Gaussian noise, these two detectors are not equivalen

5.5 Simulation results

In this section, numerical results obtained by simulatiom gresented to compare the
performance of the optimal detector and the mismatcheatefor BPSK and 16QAM
uncoded signals. We assume that the average energy of ¢atadmpi data symbol is equal
to E,.
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The average SNR is defined as

_ E{(®a)’Wwa} tr{TR,}
(= tr{R,}  tr{R,}’

(5.43)

wherel' = E{®” W}, For the additive noise uncorrelated at different receiviermnas
we have tfR,,} = N,tr{R,,o} and (5.43) becomes

‘= tr[l'R,]

The matrixR, = Iy, ® Iy, ® Aq is block-diagonal and the noise is white, i.R,,, =

o21y; then takingl' = Iy, ® I’y into account, we obtain

[Lo(In, ® Ao)]

tr
= 5.45
¢ Nz (5.45)

wherel', = E{®X ¥y,} = NE,Iy, ® (B”B). Finally, the average SNR is given by

NtESO-%L &
— ok (5.46)
Un

The average bit energy to noise ratio is defined’gsV, = (/(N;log, K). The simula-

tion results here represent the BER vergiygN,.

5.5.1 MIMO time invariant channels

Firstly we will consider the performance of the optimal anégmatched detectors in
MIMO time-invariant fading channels. We s&};, = 1, N, = N; + 1.

Fig. 5.2 shows the performance of the optimal and mismatcletectors i x 2
MIMO system with BPSK signals. Itis seen that all detectoowjute similar performance
in both spatially uncorrelated (Fig. 5.2.a) and high sfiigt@rrelated (Fig. 5.2.b) MIMO
channels.

Fig. 5.3 and Fig. 5.4 show the performance of the optimal aistnatched detectors
for BPSK signals ir2 x 4 and4 x 4 systems, respectively. It is clear that the improvement
in the performance caused by using the optimal detectoeasas when the number of
antennas in the system increases. However, the spatial&iton between antennas can

not affect this improvement.
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Figure 5.2: BER performance of the optimal and mismatcheeltiets for BPSK signals
in 2 x 2 MIMO time-invariant fading channelsy, = 2, N, = 2, N, = 3; a)p = 0 and b)
p=0.9.
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Figure 5.3: BER performance of the optimal and mismatcheelotiets for BPSK signals
in 2 x 4 MIMO time-invariant fading channelsy, = 2, N, = 4, N, = 3; a)p = 0 and b)
p=0.9.

J. Zhang, Ph.D. Thesis, Department of Electronics, University of York 2009



CHAPTER 5. OPTIMAL AND MISMATCHED DETECTION IN MIMO FREQUENCY-FLAT
FADING CHANNELS WITH IMPERFECT CHANNEL ESTIMATION 103

—©— ML
7 e-ML

A~ MMSE
—&— Optimal
—=—PClI

0 5 10 15

30
E,/N, dB E,/N, dB
a) b)

Figure 5.4: BER performance of the optimal and mismatcheelotiets for BPSK signals
in 4 x 4 MIMO time-invariant fading channelsy, = 4, N, = 4, N, = 5; a) p = 0 and b)
p=20.9.

Fig. 5.5 and Fig. 5.6 for the transmission with 16QAM signasult in a similar
conclusion. Therefore, we will consider the channels withspatial correlation in the
following simulation, i.e.R; = Iy,, R, = I, .

5.5.2 MIMO time variant channels

We now investigate the performance of the optimal and misheat detectors in spatially
uncorrelated MIMO time-variant fading channels. The nundfgilot symbols inserted

into each transmitted block of one transmit antenn&/js= (A + 1)P, and there are

N.P,(M + 1) pilot symbols in total, wheré’, is the length of a group of pilot symbols
as shown in Fig. 5.1. In the simulation we $&t= N;, N = 507, P = 22 andM = 23.

This corresponds to as little a3% overhead due to the use of pilot symbols.

Fig. 5.7 and Fig. 5.8 show the BER performance of the detetwo56QAM signals
in MIMO time-variant Rayleigh fading channels with’, = 0.01, whereT} is a symbol
duration. Fig. 5.7 shows the BER performance in a SISO chaivjek N, = 1) and in
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Figure 5.5: BER performance of the optimal and mismatcheeotiets for 16QAM sig-
nals in2 x 2 MIMO time-invariant fading channelsy, = 2, N, =2, N, = 3;a)p =0
and b)p = 0.9.
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Figure 5.6: BER performance of the optimal and mismatcheéctiets for 16QAM sig-
nals in2 x 4 MIMO time-invariant fading channelsy, = 2, N, =4, N, = 3;a)p =0
and b)p = 0.9.
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Figure 5.7: BER performance of the optimal and mismatcheeatiets for 16QAM sig-
nalsinl x 1 andl x 2 channelsN = 507, P = 22, P, = 1, M = 23.

alx2SIMO channe[ NV, = 1, N, = 2). We setP, = 1 andN,, = 24 in both these cases.
In the SISO channel, at BER& 2, the optimal detector outperforms the mismatched
detector with ML channel estimates by 6.1 dB and w#kIL channel estimates by 1.2
dB. However, the BER performance of the optimal detector aadrtismatched detector
with MMSE channel estimates are similar. These detect@séerior to the minimum
distance detector with perfect channel information (PCIRBYydB. In thel x 2 SIMO
channel, when BERH) 3, the improvement due to the use of the optimal detector in-
creases up to 10 dB compared with the mismatched detectoiviitchannel estimates
and up to 2.1 dB compared withML channel estimates. The BER performance of the
optimal detector and that of the mismatched detector with3BWhannel estimates are
close; the difference in the performance is 0.2 dB. The gawdm the BER curve of
the optimal detector and that of the minimum distance detesith PCI is 2 dB when
BER=10"2.

Fig. 5.8 shows simulation results foRa< 2 MIMO channel(V, = N, = 2); here, we
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Figure 5.8: BER performance of the optimal and mismatcheeatiets for 16QAM sig-
nals in a2 x 2 channel ;N = 507, P = 22, P, = 2, M = 23.

setP, = 2andN, = 47. The optimal detector outperforms the mismatched deteatbr
ML channel estimates by 13 dB at BER=?; it outperforms the mismatched detector
with e-ML channel estimates by 4.8 dB at BER>=3; it also outperforms the mismatched
detector with MMSE channel estimates by 2.2 dB when BER2. From this figure, we
find that the optimal detector provides better BER perforredhan mismatched detectors
which treat channel estimates as perfect for 16QAM sigmald,the improvement in the

BER performance is increased when the number of antennaases.

Fig. 5.9 and Fig. 5.10 show the BER performance of the optimmtdator and mis-
matched detectors for BPSK signals. As shown in Fig. 5.9, ilSOShannel, when
BER=10"2, the optimal detector outperforms the mismatched detedtbrML channel
estimates by 5.5 dB and the one wéML channel estimates by 0.5 dB. Similar to the
case of 16QAM signals in Fig. 5.7, the BER curves for the optoetector and the mis-
matched detector with MMSE channel estimates are closel k2e5IMO channel, when
BER=10"%, the benefit due to the use of the optimal detector is 7.4 dBoaned with the

mismatched detector with ML channel estimates. Compardativet mismatched detec-
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Figure 5.9: BER performance of the optimal and mismatcheeoti@ts for BPSK signals
in1 x 1andl x 2 channels)N =507, P =22, P, = 1, M = 23.

tor with e-ML channel estimates, this benefitis 1.1 dB. It can be sedrtttbgperformance
of the optimal detector is similar with that of the mismatdketector with MMSE chan-
nel estimates, and it is inferior to the performance of theimum distance detector with
PCl by 1.6 dB when BER 10~

Fig. 5.10 shows simulation results ikax 2 and2 x 4 MIMO channels. In the x 2
MIMO channel, the mismatched detector with ML estimatevjoles significantly worse
performance compared with others. The optimal detectasighes significantly better per-
formance than the mismatched detector wHWL channel estimates and it outperforms
the mismatched detector with MMSE channel estimates by 3 HBAVBER=075. In
the2 x 4 MIMO channels, the optimal detector significantly outpemis the mismatched
detectors withk-ML channel estimates. It also outperforms the mismatchetelaor with
MMSE channel estimates by 5.7 dB when BER=°.
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Figure 5.10: BER performance of the optimal and mismatchéztter's for BPSK signals
in2 x 2and2 x 4 channelsN = 507, P = 22, P, = 2, M = 23.

5.6 Conclusions

We have proposed and investigated an optimal detector féivPSystems in MIMO
Rayleigh fading channels. In MIMO time-invariant Rayleiglifeg channels, comparing
with mismatched detectors, the benefit on performance ddusesing the optimal detec-
tor becomes significant when the number of antennas in@ebigsvever, the simulation
results show that the spatial correlation between antedoas not influence upon the
difference between the performance of the optimal detewtdrthat of mismatched de-
tectors. We have also extended the optimal detector toatlyatncorrelated MIMO time-
variant fading channels, the time variation of which is meddy BS basis functions. We
have investigated the optimal detector and compared ifenpeaince with that of tradi-
tional mismatched detectors with ML, regularized ML or MM8Eannel estimates and
compared their performance in MIMO time-variant fading mh@ls with 16QAM and
BPSK modulation. Among these mismatched detectors, thexpieieng MMSE chan-

nel estimates provides the best performance and its pesfarenis close to that of the
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optimal detector in SISO time-variant fading channels w&M signals are transmit-
ted. However, the optimal detector significantly outparferthe mismatched detectors
in spatially uncorrelated MIMO time-variant fading chatenehen the number of anten-
nas increases. In this chapter, we have also shown that 8Iti®© channel is spatially
uncorrelated, the optimal symbol-by-symbol detector oKRBfjnals is equivalent to the
mismatched detector with MMSE channel estimates. Noteith#iie general case of

QAM symbols, the ternY will depend ond and these two detectors are not equivalent.
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6.1 Introduction

In previous chapters, we have investigated the optimalctateand compared it with
mismatched detectors in frequency-flat Rayleigh fading obEn The optimal detector
can also be used to detect OFDM signals in frequency-se¢efading channels. In this

chapter, we derive and investigate the optimal detectiddFIDM signals.
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In OFDM systems, channel estimation is usually performedebyploying pilot
tones [17,21,24,127-138]. Then, the channel estimatdseated as perfect in the tradi-
tional minimum distance detector. Motivated by the benefitsed by using the optimal
detector as shown in previous chapters, we derive an optietattor for OFDM signals
and specify it for spatially uncorrelated MIMO frequenalective fading channels. We
compare the BER performance of this detector with that of ratshied detectors with
ML, regularized ML ¢-ML) or MMSE channel estimates for uncoded transmission. We
also investigate the performance of iterative receiversnporating the optimal detector.
Specifically, four iterative receivers are consideredengrs with mismatched detectors
using ML, e—ML or MMSE channel estimates, and a receiver with optimakedetr at
the first iteration and the mismatched detector based on MbifalEnel estimates in sub-

sequent iterations.

In order to approximate the channel frequency responsetatmsitions by using
channel estimates at positions of pilot symbols, many cblestimation schemes for
OFDM systems have been proposed in the literature [21, 70,28~131]. In [129], a
low rank approximation to the frequency domain linear MMStammnel estimator was
proposed by using singular value decomposition. In [13, Wiener filter has been
investigated, and a robust MMSE channel estimator exptpitiorrelation in both time
and frequency domains was proposed in [131]. In this chapteralso use channel
estimation based on BEMs, such as CE model [19, 21-24], GCE nj@sleIB-spline
functions [26—-28], Slepian sequences [20, 29, 30] or KL $éanctions [31, 32] to ap-
proximate correlated fading channels. After comparingM8E performance of MMSE
channel estimators corresponding to these BEMs in Rayleggfuéncy-selective fading
channels, we use the cubic B-splines to represent the chixagakncy response.

The rest of this chapter is structured as follows. In Sedi@the transmission model
and communication scenarios are introduced. Different BE&sl to represent the chan-
nel frequency response are specified for frequency domairogination in Section 6.3.
Section 6.4 describes the proposed optimal detector andatebed detectors with dif-
ferent channel estimation schemes, and Section 6.5 desdlib iterative receivers. Sim-

ulation results are given in Section 6.6, followed by cosmuas in Section 6.7.
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6.2 Transmission model

We consider an MIMO OFDM system witly subcarriers N, transmit andV, receive
antennas. We assume that a data matri’ok N; symbols is transmittedy, x N, of
which are pilot symbols and the othe¥g x NN, are data symbols, wheré;, = N — N,,.
The duration of an OFDM symbol without a cyclic prefix (CPYis= 1/A f, whereA f
is the space between two neighboring subcarriers. In fremyugomain, the pilot symbols
are inserted in groups d@f, symbols with the group period @f symbols to construct an
OFDM symbol transmitted from one antenna as shown in Fig. Bdre we follow the
the design of group pilot insertion in [24] and guarantge> N,. This OFDM symbol is

inverse Fourier transformed and a CP is added before thenrssisn.

N Symbols

A
v

§& & & Fn Gy

Iy o fes 1

L
|:| Data symbols g Pilot symbols

pd

Figure 6.1: Structure of an OFDM symbol transmitted from traasmit antenna.

We consider transmission over MIMO time invariant frequeselective fading chan-
nels with L path components, and assume that the inter-symbol int@der(ISI) between
consecutive OFDM symbols is eliminated by using a CP of lerdgtkI" chosen to be
longer than the maximum channel delay, whé&re= 7,/N. The channel from théth
transmit antenna to theth receive antenna can be represented by the channel impulse

response
L—-1
9ok (T) =D (DT — 1(D)), (6.1)
=0

whered(7) is the Dirac delta functions,(I) anda,.(1) are, respectively, the delay and

complex amplitude of thé&h path in the channel. The channel frequency response at the
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ith subcarrier from théth transmit antenna to theh receive antenna is given by

L-1

how(i) =) g (1)e 7278 7). (6.2)
=0

We denote aiV x 1 vectorh,, = [h,4(0), ..., hi(i),. .., hp(N—1)]T and anV; N, M x 1
vector of the MIMO channel frequency respotise: [hy,. .., h,,... hy |7, whereh, =
m, .. Y Y Yisal x N row vectorh!” = [ho (i), ..., hei(i), ..., By, (4)]
isal x N, row vector.

The path amplitudesy, (/) are independent zero-mean complex Gaussian random

variables with exponential power delay profile given by [[L29
W(r) = e 7/, (6.3)

wherer s is the root-mean square width @f). The probability density function (PDF)

of a random delay,, is uniform and given by

b= W nad) 7€ 0, LT, 6.4)

0, otherwise

With these definitions, elements of the covariance mafiix= E{h,;h } of the fading
in the frequency domain can be represented as [129]

1 — e~ Lma[(1/7me)+32m A f (m—n)]
T (1= e Lmad/mms) (1 + 270 A f(m — 1) Tims)
wheren andm denote two subcarriers of the OFDM symbol. Therefore, tingedision
of Yyis N x N.

The spatial correlation matrix of transmit antennas ivas N, symmetric matrixR,
while the spatial correlation matrix of receive antennaansv, x N, symmetric matrix
R.. We consider channels with no spatial correlation, Ry.,.= In,,R, = Iy , where
Is is an$S x S identity matrix. The joint spatial and frequency covariameatrix of the
MIMO channel is given by

YT =FE{hh"} =R, ® To®R.. (6.6)

Note that the fading channel described above is only an ebeauged in our simula-
tion. The results obtained below for the optimal detectian lbe applied to the case of an

arbitrary fading covariance matriX,.
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At the receiver side, the CP is removed and the received sigralurier transformed.
In the frequency domain, the received OFDM symbol atsttereceive antenna can be

written as:
Ny

2(i) = he(i)sk(i) +np(i), r=1,--- Ny, (6.7)

k=1
wheresy (i) is a symbol transmitted at théh subcarrier from théth transmit antenna

andn,.(i) is the additive white Gaussian noise observed atthaeceive antenna. We

denote anV N, x 1 vector of the received signal as= [z{,...,z],...,z} ]”, where
z, = [2:(0),...,2.(N — 1)]T isanN x 1 vector; anN N, x 1 noise vector is given by
n=[n],...,n" ... n} ]", wheren, = [n,(0),...,n.(N—1)]"isanN x 1 vector. We

consider scenarios where the noise samples at differegiveesantennas are uncorrelated
and assume that in the frequency domain, the noise covariaatrixR,, = F{n,n}

is the same for all receive antennas. THie< N matrix R,,o characterizes correlation of

noise samples for a single receive antenna. Here we assamnth¢hnoise samples are
uncorrelated in frequency domain aRd, = 021, wheres? is the noise variance. Then

the total noise covariance matrix in frequency domain iegibyR,, = Iy, ® R,.

6.3 BEM of channel frequency response

A channel frequency responiéf) can be represented by a BEM as

W)= h(f) =) amB(f,m), (6.8)

whereB(f, m) are basis functions,, are expansion coefficients, aid is the number

of basis functions. The BEM allows transforming the nonpatim estimation problem

to a parametric one: we need to estimafeunknown expansion coefficients instead of
estimatingh(f) as a function off. The difference betweeh(f) andh(f) represents a
modeling error, which can be made negligible by choogifitarge enough [20,27]; then,
we can assume that f) = h(f). However, depending on an estimation technique, a large
M may also resultin a high noise error (as opposed to the nmagetror) [26]. Moreover,

a largeM will lead to high complexity of the receiver. Therefore simportant to choose

an appropriaté// to guarantee that the receiver provides a high estimatidionpeance

and requires a low computational load.
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We denoteB as anV x M matrix B containing samples of basis functions at subcarrier
frequencies. The channel frequency response betweeltthiiteansmit antenna and the

rth receive antenna is then modeled as

h,;, = Ba™), (6.9)

where theM x 1 vectora™) = [a([k), . ,ag\rf)]:” represents the BEM coefficients be-

tween thekth transmit antenna and théh receive antenna, and these coefficients are
constant over an OFDM symbol. The matBxcan be split into two parts as follows. The
N, x M matrix B, contains samples of basis functions at subcarriers ocdupyigilot
symbols:[B,]; ., = [Bl¢, . The N; x M matrix B, contains samples of basis functions
at subcarriers occupied by data symbdBy); ., = [B].». With these notations, the

received signal can be represented as

z = Wa+n, (6.10)
where ) ) ) )
a(l) a(rl)
a=| a® | a®=| atm |
a(NT) a(TNi)

and¥ = Iy, ® Wy, isanNN, x MN,N, matrix, ¥y, = [0 . @k g)]ijs
anN x MN, matrix, #*) = S, B where theN x N matrixS;, is given by

S = dlag[sk(O), RN Sk(i), RN Sk(N — 1)] (611)

The received signal corresponding to subcarriers occupyatata and pilot symbols

are modeled, respectively, as
zq=Ysa+ny, z,=%¥,a+n, (6.12)

According to (6.12), theV V,. x 1 vectorz is split into a vector of received data symbols:

zqg=[vi,...,vl, ... v} ]TisanNyN, x 1 vector, wherév,]; = z.(f;), and anV, N, x 1
vector of received pilot symbols, = [u],...,u!,... u} ]*, where[u,]; = z.(&;). Sim-
ilarly, the noise vecton is split into anN,N, x 1 vectorn, = [x{,--- ,x},--- x} |7,
where[x!], = n,(f;) and anN,N, x 1 vectorn, = [w{,--- ,w;,--- ,wy ]’, where
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(wT]; = n,(&). Correspondingly, the matri¥ is split into a matrix of transmitted data

symbols¥, = Iy @ ¥’ where
o) =l el e e =SB,
S® = diags(0), ..., sk(fi), ..., sp(Ng—1)],
and a matrix of transmitted pilot symbols, = Iy, ® ¥, where
wNe= e e e el = sVB,,
S = diag(s,(0), ..., s1(&), .., sp(N, — 1)].

For different BEMs, the calculation of the matdX and the vectoa are different. In
this chapter, we consider the following BEMs: CE BEM, GCE BEM, cubBisplines,

Slepian sequences and KL basis functions.

6.3.1 CE basis functions

The CE BEM is widely used [19, 21-23], but it can result in largedeling errors. For
the CE model, elements of the matixare given by [21]

M

Blom = eIImAMm=3) gy =1, ...

M, n=1,...,N. (6.13)

?

6.3.2 GCE basis functions

An improved modeling performance is obtained by using the ®EM applying a set
of complex exponentials with the period longer than the windength related to the CE
BEM [25, 70]. For the GCE model, elements of the maBivare given by [25, 70]

Afn

Bl = €727 % m=)

, m=1,....M, n=1,... N, (6.14)

wherek is a real number which is larger thanusually,x = 2 is used [25].

Note that there is another ways to build the generalized t@ngxponential functions,

ie.,

Bl = e 2P (=D D52E oy M, n=1,...,N.  (6.15)

Y
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By using (6.15), we assume that the considered channel g&eguivalent to a multipath

channel

M-1
Gor(r) = D" an(m)3 (7 = T LT ) (6.16)
m=0

and the task of the estimator becomes to estimateorrespondingy,,. It indicates that
the number of basis functions does not dependvoanymore. In this chapter, we just
consider the GCE defined in (6.14), and the details of the pedoce of the modified

GCE as (6.15) can be found in our previous publications [41].

6.3.3 Cubic B-splines functions

Cubic B-splines have previously been used for estimatinghbarel frequency response
in the underwater acoustic channel [139]. To build basictions, we use the cubic
B-splines [76]

p(f) =14 -y ifF<|f<2F, (6.17)
0, otherwise

wherel' = (N — 1)Af/(M — 3) and the basis functions are given by, (f) = ¢[f —
(m —2)Af], wherem = 1,..., M. Elements of the matriB are given by

Blom =¢mn—1), m=1,....M, n=1,...,N. (6.18)

6.3.4 Slepian sequences

Slepian sequences are a set of orthogonal functions wheclvigiely used for channel
estimation both in time and frequency domains [20, 30, 6 &t donsiderM Slepian se-
quences,, (n) with length N bandlimited to the frequency ran@e%Tmafo, éfmafo].
Such sequences are the eigenvectors of the following @guati

Z sin ﬂTmafo (g — n))um(q) = AU (1), (6.19)

p (g —n)

where \,, is an eigenvalue indicating the fraction of energy contdiimethe frequency

range[—%fmafo, %Tmafo] of the corresponding eigenvector [67]. The eigenvalues are
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ordered starting with the maximum ong; > Ay, > ... > Ay > 0. Thereforeu,,(n) is
the mth most concentrated Slepian sequence. According to [29h&uild be chosen to
provide \,, close to 1 whenn < M and close to 0 whem > M. We intend to use the
Slepian sequences over the frequency rdfige..xA f]. Then, the basis functions can be

represented as

[Blym = tp(n)ed™m>A gy =1 M, n=1,...,N. (6.20)

6.3.5 KL BEM

The KL BEM is optimal in terms of the mean square error (MSE), B, which is a
reduced-rank decomposition of channels whose statistié@amation is known at the
receiver side. The KL basis functiong,(n) are eigenvectors of the fading covariance
matrix. Specifically, the covariance matrix of the fadinghe frequency domain i¥,
which is obtained in (6.5). We also order the eigenvalug®f Yoas:A\; > Xy > ... >

Ay > 0, and assume that when is larger than a fixed valug/ << N, \,, decreases

rapidly and can be neglected [32]. Then, the KL basis funstican be represented as

Blym =vm(n), m=1,...,M, n=1...,N. (6.21)

6.4 Optimal and mismatched detectors

6.4.1 Optimal detection

We now derive an optimal detector by maximizing the PE,|S,, z,) of the received

signalz, and the received pilot signa), conditioned on the transmitted data syml)s

Sd,opt = arngglL‘e}v)gNt {p(24|S4,2,)}

= arg max_ {Aopi(Sa)}, (6.22)

S eANaN

where the metric\,,(S,) is given by

Aopt(Sa) = In [p(z4[Sa, 7,)] , (6.23)

J. Zhang, Ph.D. Thesis, Department of Electronics, University of York 2009



CHAPTER 6. OPTIMAL DETECTION OF OFDM SIGNALS IN FREQUENCY-SELECTIVE
FADING CHANNELS WITH IMPERFECT CHANNEL ESTIMATION 119

and the alphabetl includes symbols corresponding to all constellation mifithe PDF
p(z4|S4, 2z,) can be obtained from the PDKz,|S,, a) of the received signal vectay
conditioned on the transmitted d&8aand channel parameters (expansion coefficients)

by integrating out the channel parametemshich are treated asuisance parameters

peslSaz) = [ plolSa )i (ala,)ida (6.24)
wherep(z,|S,, a) is given by
1 ||Zd — \I’daH2
p(za|Sa; @) = WNdJTQLeXp{—J—g : (6.25)

The posterior PDF f(a|z,) of the expansion coefficients subject to the received pi-
lot signalsz, is Gaussian with the mean vectob' ¥, + aﬁR;l)*llllfzp and covari-
ance matrix(®/'¥, + o2R;"') [113], where the covariance matriR, is given by
R, = E{aa”} = R, ® R, ® A, andM x M matrix Ag = E {(a"®)"7a"®} is the
covariance matrix of the expansion coefficieat®) for the frequency response between
the kth transmit antenna and thth receive antenna. The mati, can be obtained from

the fading covariance matriX, by requiring that
E{h,;h%} = E{h,;hi} = Y,. (6.26)

This requirement means that the correlation maigxesults in fading correlatiof in
the frequency domain. By substituting (6.9) in (6.26), weagibt

BAB? = 1,. (6.27)

Multiplying both sides of (6.27) b§2 = (BB)~!B from the left and by2 from the
right, we arrive at
Ay = QY Q. (6.28)

The optimal detector finds a data mat8y that maximizes the metric (6.23) which
is obtained by substituting the Gaussian PPfa|z,) in (6.24) and then the result of

integration - in (6.23). After some algebra, we arrive at

Sdppt = arg max {ln {/p(zd|Sd,a)f(a|zp)da}}

SdG.ANdNt

= arg max {ln {/ 3052[2%(3H‘1’5Zd)—aH‘1’5‘1'da]f(a\zp)da} }
SdGANdNt
= arg max {052 (\I’fzd + \Iffzp)H (\I’f‘l’d + \I’f\Ilp + OELR:)_l

SdGANdNt

X (Olzg+9lz,) —In |0, +©Iw, + R}, (6.29)
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However, it is unfeasible to solve this optimization prabléor a high N, due to ex-
tremely high computational complexity. If QAM symbols witt constellation points
are transmitted, we have to calculate the me2fi¢’+" times. In order to reduce the
computational load, we separate the data into groups of gsigngach containing' data
symbols. We repeat the detectidf /G times to recover all the symbols. In this case, the
optimal metric should be calculatégzKNtG times, which can be significantly smaller

compared withp X NalVe,

As the simplest case, we considér= 1, which indicates that the optimal symbol-
by-symbol detection scheme is applied, and we only detgctata symbols at once. In
this case, the expressions above are simplified= [z (fi),...,z.(f;),- .., 25, (f)]7,
\Ifg“) = si(fi)B4, and B, becomes d x M vector corresponding to samples of ba-
sis functions at theth subcarrier frequency. Although the computational loaade-
duced, the detection performance will be degraded. Thexefoe also consider the
optimal detection withl < G < N, to trade off the complexity and detection perfor-
mance. In this case, expressions above are modifige: [v],...,v},..., v} |" and
v, = [2:(f), -, 2(fizc_1)]"; By becomes aii x M matrix corresponding to samples
of basis functions at thé-th to (f; + G — 1)-th subcarriers. Investigating the improve-
ment of BER performance due to using the optimal detector emetpwith traditional
mismatched detectors is the main target of this chapternatitiods to analyze the com-
plexity and reduce the computational load of this optimaked®r will be discussed in

further works.

6.4.2 Mismatched detection

Now, we consider mismatched detectors applying threerdiftechannel estimators: ML,

e-ML or MMSE estimators. The ML channel estimate is given by
. = (O1W,) " Wl (6.30)

The performance of the ML channel estimator is significadégraded in noisy scenarios.
A better performance is obtained when using regularized ki&noel estimation based

on the diagonal loading:

ac = (TIW, + co?Tyn,y,) Oz, (6.31)
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wheree is a positive regularization parameter and in our simutati@ usec = 1. We
also consider the MMSE channel estimation that takes thistatal information of the

channel fading into account,

auuse = (¥ ¥, + 02R;1)71szp. (6.32)

A mismatched detector uses the minimum distance detecaébrtrbats the channel
estimates as perfect channel information and decides amnahemitted data symbols by
minimizing the Euclidean distance

Sd,mis = arg min {)\mis(sd)}a

SaeANt

—v.all?
= arg min {M}, (6.33)

SgeANt 0-7%

wherea = ay_ for ML channel estimates (6.30), ar= a, for e-ML channel estimates
(6.31) ora = ayuse for MMSE channel estimates (6.32).

6.4.3 Complexity analysis

Now, we analyze the complexity of the optimal detector witinbol-by-symbol detection
scheme ¢ = 1) for SISO systems. In this case, quantities in (6.29) araifstgntly
simplified: S; = d, whered is a data symbolz, = z(f;); ¥, = dBy, whereB,

becomes d& x M vector. Accordingly, we can simplify (6.29) as

7 _ 2 ( H H_\H 2RH H 2p-1)"1
dopt = argrggic{an (d*zaBy +¥'z,)" (|d’BYBy+ ¥ ¥, + 0’R,")

x (d*zqBY +¥l'z,) —In||d’BfB, + ©/'¥, + 0R; |}
= argmax {0,%d]?|za"BaYBY + 20, *R{d=;B,Y ¥ z,}
€
+0,%2 0, YU 7, + In|Y|}, (6.34)

whereY = (|d’BfB;+ ¢¥, + aﬁR;l)_l is an M x M matrix and(-)* denotes
complex conjugate. If we assume that (i) the same pilot sysnds@ inserted into every
OFDM symbol @, is the same for all OFDM symbols); (ii) the covariance matfx
fading R, andc? are constant ovelN, OFDM symbols and known at the receiver side,

the matrix’Y will depend only on the possible magnitudes of data symbdlspilot
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symbols and BEM sampleB,; andB,. The pilot symbols and all possible values of
|d|* (we denote this number &3) are known to the receiver. Moreovd, andB, are

also available, since positions of data and pilot symbadsfixed. Therefore, we can
precompute scalats |Y| for all possible|d|. This precomputation requirgd(1/3N,D)
complex multiplications. E.g., for 16QAM modulation, thember of possibled| is

D = 4; thus the number of scalars|Y| is 4N,. The scalaB,YBY in the first term of
(6.34),1 x N, vectorB,Y ¥, in the second term of (6.34) ad, x N, matrix ¥,Y ¥

in the third term of (6.34) can also be precomputed foZalossible|d|. In total, there
are(Ng + N, + N4)D complex numbers to be kept in memory. To precompute these
numbers require® (M3 N,D) complex multiplications. These complex numbers can be

used for detecting allv. OFDM symbols. Therefore, the average number of complex
M3D+N,M?+N2M
Ne

multiplications for all the precomputation 3 ( > per one data symbol.

We now denotep = B,YB, w = B,Y¥,, andE = ¥, Y¥/'. Then, the equation

(6.34) is transformed to
czopt = argmax {a;2|d|2|zd|2p + 20,2 R{d=wz,} + a;zz,szp +1In |Y|}(6.35)
S

For each OFDM symbol, in (6.35), the scalars, andz,=z, can be computed once and
reused for detecting all data symbols. Thus, drly|z4|? in the first term andiz}; in the
second term require to be computed symbol-by-symbol. Toexewith the precomputa-
tion as explained above, the average number of complexptictions required to detect

2
one data symbol iév%]j”“ + 2K + D.

Now, we analyze the complexity of a mismatched detectotitrgahe MMSE chan-
nel estimates as perfect. For a fixefl, we can precompute th&/ x N, matrix
(O, + aﬁR;l)_I\Iff in (6.32) and keep it in memory; the number of complex mul-
tiplications required for this precomputationd A* + N,M?). This matrix can also
be calculated once and reused to deteciValDFDM symbols as well, for channels with
fixed R, ando?. Therefore, the number of complex multiplications for thiecompu-
tation isO (W;—W> per one data symbol. The number of complex multiplications

required by a minimum distance detector (6.33)48%. Table. 1 shows the complexity

of the optimal and mismatched detectors.

It is seen that whenV, is large, which indicates that the channel statistics chang

slowly (R, ando? keep constant for numerous OFDM symbols), to detect onesyata
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Algorithms Optimal detector Mismatched detector
Number of complex numbers saved (N + N, + Ng)D N,M
in memory
3 2 2
Number of complex multiplications © (M D+N’]’VAf +NPM> o (Wg—]]\’vilW)
required for the precomputation per
a data symbol
2
Number of complex multiplications My 2Notd L oK 4 D M2k

Ng

required for detecting a data symbol

Table 6.1: Complexity of the optimal detector and the misimadicdetector with MMSE

channel estimates.

bol, the number of complex multiplications required by tipdimal detector is compara-
ble to that required by the mismatched detector. Howevérgithannel statistics change
faster (V. is small), all precomputed matrices, vectors and scalare kabe updated
frequently and the complexity of the optimal detector digantly increases compared
with the mismatched detector. For example, if the chanmgissics change between two
neighboring OFDM symbolsX. = 1), for the optimal detector, the number of complex
multiplications required for the precomputation becor®3/° D), which is much larger
than the number required by the mismatched deteﬁ<ﬁm+fw>, for a largeN,.

6.5 lterative receiver

We are also interested in the performance of an iterativ@vecincorporating the optimal
detector for coded transmission in SISO frequency-setectannels. The structures of
the transmitter and iterative receiver are shown in Fig.a®@ Fig. 6.3, respectively. If
the optimal detection is used, the channel estimator arettietin Fig. 6.3 are replaced
by the optimal detector. In the receiver, the CP is removedthadeceived signal is
Fourier transformed before the first iteration. Channehestidrs use the vectogs and

s, to estimate the channel frequency response in the firstigdarand the vectog and
recovered OFDM symbd, in subsequential iterations. The channel estimates ark use

in the detector to calculate the soft metki¢ for coded bits. For every bit, = +1 of a
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Figure 6.2: Block-diagram of the transmitter with turbo eteoand channel interleaver
for SISO channels.
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Figure 6.3: Block-diagram of the iterative receiver for SI&@nnels.

received symbolk = 1, ..., K, thea posteriorilog-likelihood ratio (LLR) is computed

as

> gear €M [Tz Plei)
Ack:m[ deAy 7 , (6.36)

ZdeA; e MOy Ples)
where thea priori probability P(c;) of a symbol bit is expressed in terms of &gpriori
LLR L(c;) [118]:

Ple;) = - [1 4 ¢; tanh (h(@)} |
2 2
A = {d € Ale;, = £1}, and the metric\(d) depends on the detector used. For the first

iteration, we have

Ae, = In Z e M _1n Z e M), (6.37)

deAf deA,

After being de-interleaved, LLRS., are decoded by a soft-input soft-output turbo
decoder. The hard decisions of the LLRs of decoded bits aegléaved and mapped
to the QAM constellation to rebuild the data symbols. Thetpdymbols are inserted
to recover the OFDM symbol in the frequency domain. The recedd OFDM symbol
is feedback to the channel estimator or to the optimal detedthe channel estimates,
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LLRs of coded bits and LLRs of decoded bits are refined once peatibn by treating
all recovered data symbols as pilot symbols. Since the aiastimator and detector
applied at the first iteration and those applied in the foifmnterations can be different,
the schemes used at the receiver are correspondingly ntbdifepending on the detector
used and whether it is the first or a subsequent iteratiom,dibierent iterative receivers

are considered:

1. ML-ML receiver: The ML channel estimator is used in all iteratioAs the first
iteration, the ML estimator (6.30) is used to estimate thenciel frequency response
based on transmitted pilot symbols. In the following (thigerations, the number of input
pilot symbols used to obtain the frequency response estshai = Bayw, is extended
from N, to N, all recovered symbols are used as pilot symbols to refinechiagnel
estimation and signal detection, and consequently,B,, z, in (6.30) are replaced by
¥, B andz, respectively.

2. e-ML-e-ML receiver: This receiver is similar to tiML-ML receiver with replace-

mentay, by a, according to (6.31).

3. MMSEMMSEreceiver: The receiver is similar to titL-ML receiver with re-

placementy, by aywsg according to (6.32).

4. OptimatMMSEreceiver: The optimal detector is used at the first iteraf\WMSE
channel estimation and minimum distance detector are wstkifollowing three itera-

tions.

6.6 Simulation Results

In this section, numerical results obtained by simulatioa presented. We consider
frequency-selective fading channels with= 6 paths, and selmax = 10, P, = Ny,

N = 461, P = 20 and M = 23. Firstly, we compare the performance of the MMSE
channel estimators corresponding to different BEMs for Si8@tipath channels with
differentrns. Then, the performance of the optimal detector with grouptsyl detection

(G > 1) in SISO channels is also considered. As the improvementeoBtER perfor-
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mance is not significant even @ = 7, in the following simulation scenarios, we only
considerG = 1. We then compare the BER performance of four iterative recsifor
turbo coded transmission in SISO multipath channels. Binale consider the trans-
mission with 16QAM and BPSK modulation in MIMO channels and@entrate on the
comparison between the BER performance of the optimal detectd that of the mis-
matched detector with MMSE channel estimates for uncodatimission. The average

SNR is given by
. NtESO'}QL

¢ oz (6.38)

where E is the average energy of data symbols atjds the variance of channel fre-

guency response between a pair of transmit and receiveragemhe average bit energy
to noise ratio is defined ak,/N, = (/(N.K). Simulation results below represent the
MSE or BER versug?,/Nj.

Firstly, we compare the MSE performance of the mismatcheectm with MMSE
channel estimates based on different BEMs. The MSE in ondaiiomi trial is calculated

as
N, N, N-—1 . 2 .
T t ! hr _ h'r 2
MSE: ZT:I Z]Vf=1 Ntz:() |N_7]1‘3(Z) : 7§(Z)| . (639)
Dort1 Dk i=0 e (0)]
Then these MSEs are averaged over all simulation trials.@&#shows the MSE perfor-
mance of the MMSE channel estimators in SISO channels#yith= 57". The CE BEM

shows a poor performance compared to the other BEMs, whilkltH&EM provides the

best MSE performance. The other BEMs show the performanatasito that of the KL
BEM. We have also considered a channel withy = 7°; the simulation results show a
similar performance. However, both the Slepian and KL BEMpiine the knowledge of
statistical characteristics of the fading, which is notgtical for ML ande-ML channel
estimation. The cubic B-splines provide performance closledt of the KL BEM in most
scenarios. However, as B-splines have a finite support teagngicantly smaller thav,
as seen from (6.17) and (6.18), the complexity of estimaisirsg B-splines can be sig-
nificantly lower than that of the other BEMs. Moreover, the pterity of the minimum
distance detector applying B-splines channel estimatesvisrithan that of the minimum
distance detector applying other BEMs channel estimatesedas (6.33), in order to
detect allN,; data symbols, the number of complex multiplications respliny the mini-
mum distance detector applying other BEMs channel estingt@s) N,2K), while the

number of required complex multiplications for cubic B-sgl is onlyO(4N,2%), as
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Figure 6.4: MSE performance of MMSE channel estimators witferent BEMs for
BPSK signals in SISO channels,= 6, Lyax = 10, N = 461, P = 20, P, = 1, M = 23,
Trms == 5T

seen from (6.17). For these reasons, we use B-splines adinasti®ns in the following

simulations.

Simulation results for transmission of BPSK signals in SI$@mmels with different
G are shown in Fig. 6.5. For BER 103, the optimal detector witl: = 1 is inferior to
the minimum distance detector with perfect channel infdiomaby 1.7 dB. ForG = 3,
this is reduced to 1.4 dB, and fé¥ = 7 it is reduced to 1 dB. Thus, the performance
of the optimal detector is slightly improved if the numbeisgfbols in detection groups
increases. However, compared with the symbol-by-symbigatien G = 1), the com-
plexity is also significantly increased. In the followingrgilation, we will only consider
the caser = 1.

We investigate the performance of the optimal and mismatdwtectors for coded

transmission of 16QAM symboldy = 4) in SISO channels. The iterative receivers and
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Figure 6.5: BER performance of the optimal detector agaih&ir the transmission of
BPSK signals in SISO channel$; = 6, Lmax = 10, Tims = 57, N = 461, P = 20,
P,=1,M =23.

rate—é turbo code with generating polynomiall 3, 015] are used to improve the BER and
MSE performance. Fig. 6.6 shows the BER performance of thatite receivers after

4 iterations. The receiver using the optimal detection atfitst iteration significantly
outperforms receivers using mismatched detectors with MlcaML channel estimates.

At BER = 1073, the improvement in the detection performance.is dB against the
ML-ML receiver and2.0 dB against the-ML-e-ML receiver. Both theMMSEMMSE
receiver and th®©ptimatMMSEreceiver provide the BER performance close to the case
of perfect channel information; the gap between the BER auof¢heOptimatMMSE
receiver and that of theIMSEMMSE receiver is approximately 0.6 dB at BER>3.

We now compare the performance of the optimal detector fooded symbols with
that of mismatched detectors in MIMO channels. Fig. 6.7 shihe BER performance of
the detectors for 16QAM signals in MIMO channels. Fig. 6)&aows the BER perfor-
mance in SISO channel&V, = N, = 1) and inl x 2 SIMO channelg NV, = 1, N, = 2).
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Figure 6.6: BER performance of iterative receivers applypgmal and/or mismatched
detection for 16QAM signals in SISO channels, rate 1/3 twdae, 4 iterations = 6,
LmaX:10,7—rms:5T,N:461,P:20, szl,M:23.

We setP, = 1 and N, = 24 in both these cases. Inx 1 SISO channels, at BER§?,
the optimal detector outperforms the mismatched deteatbrML channel estimates by
13 dB and withe-ML channel estimates by 1.2 dB. However, the BER performahtieeo
optimal detector and the mismatched detector with MMSE ohbestimates are similar.
These detectors are inferior to the minimum distance detedgth perfect channel infor-
mation (PCI) by 2 dB. Iri x 2 SIMO channels, the mismatched detector with ML channel
estimates is inferior to other detectors significantly. BER=10"2, the improvement due
to the use of the optimal detector increases up to 18 dB cadpaith the mismatched
detector with ML channel estimates and for BER=*, the improvement is up to 2 dB
compared with the mismatched detector using:tL channel estimates. The BER per-
formance of the optimal detector is close to that of the mishead detector with MMSE
channel estimates; the difference in the performance isoappately 0.2 dB. The gap
between the BER curve of the optimal detector and that of timémaim distance detector
with PCl is 2 dB at BER*0 3.
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Fig. 6.7(b) shows simulation results farx 2 MIMO channels(N; = N, = 2);
here, we sef’, = 2 and N, = 47. It can be seen that using the mismatched detector
with ML channel estimates does not allow achieving goodqrerdnce. The optimal
detector outperforms the mismatched detector wAllL channel estimates by 4.3 dB at
BER=10"?; it also outperforms the mismatched detector with MMSE clehestimates
by 4 dB at BER=%02. From Fig. 6.7(a) and Fig. 6.7(b), it is seen that the impnoswst

is increased when the number of antennas increases.

Fig. 6.8 shows the BER performance of the optimal and misredtaletectors for
MIMO systems with BPSK signals. As seen in Fig. 6.8(a), in aCsi&hannel, for
BER=10"2, the optimal detector outperforms the mismatched detawtibr ML chan-
nel estimates by 13.5 dB and the one witML channel estimates by 0.7 dB. Similar
to the case of 16QAM signals in Fig. 6.7(a), the BER curves lier dptimal detector
and the mismatched detector with MMSE channel estimateslase. In al x 2 SIMO
channel, for BER*02, the benefit due to the use of the optimal detector is 15.6 dB
compared with the mismatched detector with ML channel egts1 Compared with the
mismatched detector withML channel estimates, this benefit is 1.1 dB at BER=.
The performance of the optimal detector is the same as thtieahismatched detector
with MMSE channel estimates, and it is inferior to the minimdistance detector with
PCl by 1.6 dB when BER 10

Fig. 6.8(b) shows simulation results for larger MIMO sysgerim2 x 2 MIMO chan-
nels, the optimal detector provides significantly bettefgrenance than the mismatched
detectors with ML and-ML channel estimates and it outperforms the mismatcheebdet
tor with MMSE channel estimates by 3 dB at BER=". In 2x 4 MIMO channels, the op-
timal detector significantly outperforms all the mismattletectors, e.g., it outperforms
the mismatched detector with MMSE channel estimates by B.atdBER= x 107°.
Thus, as the number of antennas in a MIMO system increasegethefit of using the

optimal detector becomes more significant.
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6.7 Conclusions

We have proposed and investigated an optimal detector faMD§ignals with PSAM in
spatially uncorrelated MIMO frequency-selective Raylefigting channels. The optimal
detector does not estimate the channel explicitly but lpiptocesses the received data
and pilot symbols to recover the data. After comparing théopemance of the MMSE
estimators of the channel frequency response with difteB&tMs for SISO channels
and choosing B-splines, which provide good performance agdire low computational
load, we investigated the optimal detector and comparqekformance with that of tra-
ditional mismatched detectors with ML, regularized ML or N8 channel estimates for
16QAM and BPSK modulation for uncoded OFDM symbols. Among¢hmismatched
detectors, the one exploiting MMSE channel estimates gesvihe best performance and
in SISO channels its performance is close to that of the @tilatector. We have also in-
vestigated the detection performance of iterative recgitreat exchange soft information
between a turbo decoder and the optimal or mismatched detentSISO channels. The
simulation results show that in SISO channels, althoughtérative receiver using the
optimal detector at the first iteration outperforms iteratieceivers applying mismatched
detectors in all iterations, the improvement of the detectierformance is not significant
compared with the iterative receiver using the mismatcregdador with MMSE channel
estimates in all iterations. However, for transmissiorhvatrger number of antennas, the
optimal detector significantly outperforms the mismatctietectors in spatially uncorre-
lated MIMO frequency selective fading channels. We can eixgieat the improvement
will become more significant for coded transmission withidatere receivers in MIMO

channels, and we will consider this in our further work.
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Figure 6.7: BER performance of the optimal and mismatcheeatiets for 16QAM sig-
nals in MIMO channelsL = 6, Lyax = 10, 7ims = 57, N = 461, P = 20, P, = Nj,
M =23;(a)1 x 1 andl x 2 MIMO channels, and (b} x 2 MIMO channels.
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Figure 6.8: BER performance of the optimal and mismatcheeltiets for BPSK signals
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This thesis investigated the optimal detection in différecenarios of wireless com-
munications with imperfect knowledge of the channel statermation. We have inves-
tigated the MSE of BEM-based ML and MMSE channel estimatodssamsitivity of the
estimators to the mismatched Doppler spread (Chapter 3). alke dherived an optimal
detector which does not estimate the channel explicitlyjdiatly processes the received
pilot and data symbols to recover the data and specify it &SIme-invariant and time-
variant channels (Chapter 4). We have extended this optietaictbr to MIMO time-
variant Rayleigh fading channels (Chapter 5) and investibigedetection performance.
Finally, we have specified the optimal detector for scesawigh OFDM transmission
and investigated the performance and complexity of thisnggdtdetector in SISO and
MIMO frequency selective channels (Chapter 6).

7.1 Conclusions

Chapter 1 has briefly introduced the whole work, and Chapters2phasented funda-
mental techniques including simulators of time-variaulifig channels, BEMs and turbo
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codes, which are used throughout the rest of the thesis.

In Chapter 3, we have derived the MSE of a generic BEM-basedrlctgannel estima-
tor with perfect or imperfect knowledge of the Doppler spr@atime-variant channels.
We have compared the performance and complexity of lingamators based on various
BEMs including Karhunen-Loeve (KL), discrete prolate smigal (DPS), generalized
complex exponential (GCE) and B-spline BEMs, for the case wditigat or inaccurate
knowledge of the Doppler spread. For the case with perfectvletdge of the Doppler
spread, when the number of basis functions increases, all-B&é¢d MMSE estimators
allow achievement of the optimal performance of the Wiemdutgon. We have also in-
vestigated the sensitivity of the BEM-based ML and MMSE eators to the mismatched
Doppler spread. The BEM-based estimators are very sentitirederestimation of the
Doppler spread but may have little sensitivity to overeation. The estimators using
BS and GCE BEMs are more robust to the Doppler spread mismatoctirteastimators
using KL and DPS BEMs. Although using the maximum Doppler agr® calculate the
fading statistics and KL and DPS basis functions can simié estimation, it also leads
to degradation in the MSE performance. The estimation usisiight overestimation of
the Doppler spread outperforms the estimation using tharmax Doppler spread. It is
worthy to emphasize that the complexity of the estimationgi8S BEM is the lowest
among all these 4 BEMs. Therefore, the estimation using Bwsplwith a slight (e.g.,
20%) overestimate of the Doppler spread is a good practicalcehproviding a good

performance, high robustness and low complexity.

In Chapter 4, we have proposed a pilot assisted optimal detebich does not require
estimating the channel explicitly but jointly processesiceived data and pilot symbols
to recover the data with a minimum error. This optimal detebis been derived in the
general case, i.e., time-variant channels, frequen®@ctet fading channels and MIMO
channels. It outperforms the traditional detectors (hameanatchejltreating channel
estimates as perfect in systems applying QAM modulatioesas. However, we have
found that the optimal detector cannot improve the perfoicean a system applying PSK
modulation scheme in SISO channels. This optimal dete@srideen then specified to
the SISO frequency-flat time-variant channels modeled kgslanodel. We have com-
pared performance of the optimal detector with that of themmaitched detectors applying
ML, regularized ML or MMSE channel estimates. The simulatiesults have shown that
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the optimal detector outperforms the mismatched deteaing) ML and regularized ML
estimates in the time-variant fading channel. Howeverptismatched detector applying
MMSE channel estimates provides nearly optimal detectesfopmance. Due to the dif-
ficulty of estimating time-variant channels with high acy at low SNR, we have also
investigated the detection performance of iterative kexsithat exchange information
between a channel estimator and turbo decoder. It has beam $ly simulation that the
iterative receiver with the optimal detector at the firstateon outperforms the receiver
using the ML or regularized ML channel estimates. Howeve,use of MMSE channel
estimates makes the detection performance close to thaeoéteiver with the optimal

detector at the first iteration.

In Chapter 5, the optimal detector has been specified for MIM@dRgh frequency-
flat fading channels. We have investigated the optimal detend also compared its
performance with that of traditional mismatched detecteits ML, regularized ML or
MMSE channel estimation and compared their performancelM®time-invariant and
time-variant flat fading channels with 16QAM and BPSK moduolat Simulation results
for time-invariant fading channels have shown that the fieoie the performance caused
by using the optimal detector becomes more significant whemtmber of antennas in-
creases, but does not depend on the spatial correlatiorebrtantennas. We have then
specified the optimal detector to spatially uncorrelatetVkaltime-variant channels. The
optimal detector significantly outperforms the mismatcdetkctors in spatially uncor-
related MIMO time-variant channels when the number of amisrnincreases. We have
proved that if the SIMO channel is spatially uncorrelatée, dptimal symbol-by-symbol
detector of PSK signals is equivalent to the mismatchedctatevith MMSE channel

estimation.

In Chapter 6, we have specified the optimal detector for OFDyhads in MIMO
frequency-selective Rayleigh fading channels. We have eoetpthe performance of
the MMSE channel estimators with different BEMs for SISO aielas and have chosen
B-splines as basis functions to represent the channel fneguesponse. We have inves-
tigated the optimal detector and compared its performaritie that of traditional mis-
matched detectors with ML, regularized ML or MMSE channeineation for 16QAM
and BPSK modulation for uncoded OFDM transmission. We hase iavestigated the
detection performance of iterative receivers that exchaswft information between a

J. Zhang, Ph.D. Thesis, Department of Electronics, University of York 2009



CHAPTER 7. CONCLUSIONS AND FURTHER WORK 137

turbo decoder and the optimal or mismatched detectors i©® $t&nnels. The simula-
tion results have shown that in SISO channels, althoughténative receiver using the
optimal detector at the first iteration outperforms itematieceivers applying mismatched
detectors in all iterations, the improvement of the detecgierformance is not significant
compared with the iterative receiver using the mismatcregdaior with MMSE channel

estimates in all iterations. However, for transmissiorhvetlarger number of antennas,
the optimal detector significantly outperforms the misrhatt detectors in spatially un-

correlated MIMO frequency-selective fading channels.

7.2 Further Work

Some suggestions for further work based on this thesis aes ¢pelow:

1. In this thesis, we have derived the optimal detector ingdeeral case and com-
pared its performance with that of the mismatched detectoMIMO frequency-flat
time-variant or frequency-selective time-invariant faglchannels. Although this optimal
detector outperforms the mismatched detectors for thessscthe improvement that can
be obtained by using this optimal detector in doubly selectading channels has not
been investigated. We can expect that a more significanfibear be obtained by using
this optimal detector in MIMO doubly selective fading chatsy which require a large

number of unknown parameters to be estimated.

2. We have applied iterative receiver that exchanges irdtion between a channel
estimator and turbo decoder in SISO channels. We found #uag the optimal detector
only in the initial iteration can provide some improvemeanthe performance. A more
significant benefit can be obtained by using iterative reasiwith the optimal detector

in MIMO channels. The challenge here is the significant iasesin the complexity.

3. In this thesis, we have investigated the sensitivity efMMSE channel estimator
to the mismatched Doppler spread. However, we consideeedgtimal detector for the
only case of perfect knowledge of statistical informatidh@ fading. The sensitivity of
the optimal detector to the mismatched estimation of thenéasitatistics is not clear. We

can assume that the optimal detector is more robust to theatihied fading statistics
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than the mismatched detector with MMSE channel estimalionthis assumption needs

to be proved by further research.

4. The optimal detector investigated in this thesis is basethe independence be-
tween received pilot and data symbols, and therefore, #tisctbr cannot be extended
directly to the transmission with superimposed traininge Mélieve that an optimal de-
tector for the transmission with superimposed trainingsdeest, but the expression of
this detector needs to be derived based on dependence et#iead pilot and data sym-

bols.
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Appendix A

Let x andv be complex) -dimensional vectors an@ be anM x M positive definite

Hermitian matrix; then we have
/ (PRI C g s 1y ] — MG Y (7.1)

To prove (7.1), consider the probability densitix) of a complex Gaussian vectar
p(x) = N¢(u, C) with meanu and covariance matri€C. From [ p(x)dR[x]dS([x] = 1
and(x — u)?C1(x —u) = xC1x — 2R(xC~1u) + uf!C~1u, it follows

1

/ 2R C ] C g1 1 [x] = M| Cle* C e, (7.2)

Using the substitutionr = C~'u and the equalityy”? C~'u = v# Cv, we finally obtain
(7.1).

Let f(a|z,) = Nc(m,, Sa) be a PDF of @/ x 1 random vectoa with meanm, and

covariances,. Then, from (7.1) it follows that

[ e g, a3
1

—mfS; 'ma+W
= ¢~ MaPa Ma 7.3
|Sal'g + L] (7:3)
where
W = (La+ Sy 'ma) " (Tg + S.1) 7 (La + S, 'ma). (7.4)
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