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Abstract 

Observational health data are a rich resource that present modelling 

challenges due to data complexity. If inappropriate analytical methods are 

used to make comparisons amongst either patients or healthcare providers, 

inaccurate results may generate misleading interpretations that may affect 

patient care. Traditional approaches cannot fully accommodate the 

complexity of the data; untenable assumptions may be made, bias may be 

introduced, or modelling techniques may be crude and lack generality. 

Latent variable methodologies are proposed to address the data challenges, 

while answering a range of research questions within a single, overarching 

framework. Precise model configurations and parameterisations are 

constructed for each question, and features are utilised that may minimise 

bias and ensure that covariate relationships are appropriately modelled for 

correct inference. Fundamental to the approach is the ability to exploit the 

heterogeneity of the data by partitioning modelling approaches across a 

hierarchy, thus separating modelling for causal inference and for prediction.  

In research question (1), data are modelled to determine the association 

between a health exposure and outcome at the patient level. The latent 

variable approach provides a better interpretation of the data, while 

appropriately modelling complex covariate relationships at the patient level. 

In research questions (2) and (3), data are modelled in order to permit 

performance comparison at the provider level. Differences in patient 

characteristics are constrained to be balanced across provider-level latent 

classes, thus accommodating the ‘casemix’ of patients and ensuring that any 

differences in patient outcome are instead due to organisational factors that 

may influence provider performance.  

Latent variable techniques are thus successfully applied, and can be 

extended to incorporate patient pathways through the healthcare system, 

although observational health datasets may not be the most appropriate 

context within which to develop these methods. 
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Preface 

Prior to commencing this research activity in 2007, I was employed within 

the National Health Service (NHS) as a medical statistician at the Northern 

and Yorkshire Cancer Registry and Information Service (NYCRIS), where I 

was responsible for the provision of specialist statistical input relating to all 

cancer information outputs for the local geographical region. I became 

involved in a project to investigate the changing effect of socioeconomic 

deprivation on colorectal cancer incidence rates, which highlighted concerns 

about the potential introduction or exacerbation of bias when using 

regression techniques to model imprecise or incomplete covariates.  

My honorary contract with the University of Leeds allowed me to collaborate 

with academic statisticians on the exploration and development of statistical 

methodologies, thus I became aware of Latent Class Analysis (LCA) as an 

emerging new method that may be able to address these covariate issues. I 

worked with Professor Mark S. Gilthorpe to assess the utility of LCA to 

model cancer registry data, and initial results were promising, potentially 

showing the approach to be unbiased in estimating the impact of key 

covariates, when compared with regression analysis. 

I commenced my career at the University of Leeds in 2007, but maintained 

links with NYCRIS, as I was keen to continue to explore and develop 

innovative approaches to the analysis of cancer registry data specifically, 

and of routinely collected observational health service data in general. My 

PhD studies have thus allowed me to apply my developing knowledge of 

latent variable modelling approaches in an attempt to provide empirical 

answers to important health service questions, using the cancer registry data 

as an exemplar. Over time, my interest has expanded to consider also the 

latent variable approaches from a methodological perspective, and to reflect 

upon the use of observational datasets as a context within which to develop 

such methods. Chapters 3 and 4 of this thesis contain earlier, application-

based work while Chapter 5 offers a more methodological approach. 
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A list of detailed definitions of key terms, phrases and abbreviations follows, 

to set the scene for their later use within this thesis. They are presented in 

order of their consideration within the abstract and main thesis. 

 

Observational health data. Within this thesis, I classify ‘observational health 

data’ as any set of data that is generated by observing patients as they 

progress through the healthcare system. This progression is termed the 

‘patient journey’ (described in section 2.3.5). These datasets are commonly 

generated by routine data collection i.e. healthcare organisations record 

events (e.g. diagnoses, deaths or treatment received) and these events may 

then be linked together using appropriate identification codes. Thus, 

observational health datasets may be generated from multiple data sources. 

Their structure is inherently complex, as described in section 1.2.1. 

Observational also refers to the healthcare setting or framework, i.e. data 

are not obtained from within a clinical trial setting, where patients are 

typically allocated to treatments based on randomisation; rather, each 

patient receives care specific to their individual circumstances. It is 

anticipated that this care may vary by patient, disease group and / or 

healthcare provider. 

Traditional. I use this term to reflect the type of analyses that are most 

commonly used to examine observational health data within healthcare 

organisations. Typically, for instance, regression analyses are employed 

(see section 3.2.2), which may be single level (see section 1.3.1) or 

multilevel (see section 1.3.2). Traditional strategies are also often utilised to 

accommodate differences in patient characteristics across healthcare 

providers (termed ‘casemix’; see sections 1.2.3 and 1.3.4). Other terms were 

considered (e.g. ‘standard’ or ‘established’), but as none seemed ideal, I 

chose ‘traditional’ as a general term to describe the more conventional 

approach to these type of data evaluation approaches.  

I do not suppose that other analytical methods are not available, feasible, or 

utilised; rather, that ‘traditional’ approaches are those most often employed 

in the healthcare environment, which may thus benefit from comparison with 

less commonly adopted or novel analytical approaches. 
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Methodology. I use this term, defined as “a system of methods and 

principles used in a particular discipline” (Hanks et al., 1986), when referring 

to a broad spectrum of methods. For example, latent variable ‘methodology’ 

or traditional ‘methodology’, may each comprise many possible methods. 

The latent variable ‘methodology’ (also ‘approach’, or ‘technique’) may thus 

refer to any modelling that is performed within a latent variable framework, 

whether with continuous or discrete observed or latent variables. Specific 

methods, such as latent class analysis (LCA) or multilevel modelling (MLM), 

lie within the framework of latent variable methodologies. 

Patient pathway. As part of the ‘patient journey’ (see section 2.3.5), the 

patient pathway reflects the progress of a patient through the healthcare 

system and may include, for example, tests, medication or surgery. This 

pathway may be influenced by characteristics of the patient and / or of the 

disease, and may also be affected by processes within the healthcare 

organisation(s) attended. Therefore, the patient pathway may differ for each 

patient, and may differ for two patients of identical socio-demographic 

backgrounds with identical health conditions when entering the healthcare 

system. 

Causal framework. This term refers to a framework within which modelling 

for causal inference (see section 1.4.2) is performed. As discussed in 

section 1.2.1, questions posed within healthcare research commonly relate 

to causal factors (upon which one might intervene), necessitating a causal 

inference perspective, rather than merely invoking a predictive modelling 

approach. Research questions (1) and (3) (see section 1.2.3) explicitly 

consider causal effects at the patient and provider level respectively. 

Patient casemix. This term refers to differences in patient characteristics 

across healthcare providers. As raised in research question (2) (see section 

1.2.3), patient characteristics may vary geographically and hence may vary 

with respect to circumstances affecting (or even driving) their health status, 

reflecting different patient combinations across providers that are situated in 

different geographical locations. In order to make a fair comparison across 

healthcare providers, patient casemix should be accommodated. Traditional 

approaches to patient casemix adjustment are discussed in section 1.3.4. 
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MLM. As described in section 1.3.2, this term refers to the extension of 

single level regression modelling, where lower-level observations are 

clustered within higher-level groups. This approach is defined initially within 

this thesis as a ‘traditional’ technique, as it is commonly utilised within the 

healthcare environment (see section 3.2.2). It can, however, also be 

considered as a simple example of a latent variable model, as indicated in 

section 1.4.1, with homogeneous subgroups at each level of the hierarchy. 

LCA. As described in section 1.4.3, I use this term to refer to any statistical 

analysis where the model allows for parameters to differ across latent 

subgroups, following the definition offered by Vermunt and Magidson 

(Vermunt and Magidson, 2003). The single level LCA approach is explained 

in detail in section 2.2.1. 

Multilevel latent class (MLLC) analysis. Also described as MLLC modelling, I 

use this term as an extension of LCA, to refer to any statistical analysis 

where discrete latent variables may be incorporated at multiple levels of a 

hierarchy. The MLLC approach is explained in detail in section 2.2.2. 
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Chapter 1 

Introduction 

1.1 Introduction 

This thesis explores the utility of unexploited, novel statistical techniques to 

analyse complex observational health data. Latent variable approaches lie 

within an overarching causal framework, where modelling may be performed 

either to adjust for confounding factors and hence make causal inference 

(i.e. to determine the effect (and magnitude of effect) of an independent 

variable as an assumed cause of a dependent variable), or to account for 

differential selection (i.e. to  accommodate differences in characteristics 

(commonly within patients) and thus improve estimates of effect). There is 

much scope to model complex data configurations, with latent variable 

methodologies able to account for generic data challenges, such as non-

homogeneity, measurement error and causal relationships between 

covariates, while maintaining a framework that may also be utilised to model 

patient pathways through the healthcare system, including treatment effects 

and other institutional characteristics. While traditional methodologies may 

be appropriate to address some of the fundamental challenges within 

observational health data, there is no other current methodology available 

that is able to provide such a comprehensive approach. Further, no other 

applications have, as yet, similarly exploited the capabilities of the 

techniques to be addressed within this thesis (evidenced in section 1.4.5). 

In order to demonstrate the utility of the latent variable approach, three 

research questions are considered, representing questions that may be 

asked about differing aspects of the patient pathway through the healthcare 

system. An example of a clinical dataset is utilised. Multilevel latent class 

(MLLC) models are constructed, with model parameterisations tailored to be 

specific to each research question, yet standard in approach. Where 
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feasible, approaches are contrasted with traditional modelling techniques to 

demonstrate proof of principle and to either illustrate comparable results, or 

generate improved estimates (due, perhaps, to appropriate model 

construction), and hence an enhanced interpretation. 

Chapter 1 introduces all key aspects of the thesis, including background and 

rationale, and establishes the context for the following chapters.  

Section 1.2 examines observational health data, considering its inherent 

structural complexity and generic data challenges. The three research 

questions and the example dataset are introduced. 

Section 1.3 describes the traditional modelling approaches, with a focus on 

regression analysis as the most commonly used method, and the ability of 

these techniques to respond either to the generic data challenges, or to 

account for differential selection. 

Section 1.4 introduces the latent variable methodologies, with consideration 

of their use within causal inference modelling, a brief history of the 

techniques and a literature review. The applicable statistical software is 

introduced. 

Section 1.5 details the content of the following chapters. 
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1.2 Observational health data 

1.2.1 Structural complexity 

Observational health data are a rich resource, commonly collected as part of 

an ongoing process of data collection by a healthcare provider, such as in an 

audit, rather than in a more structured manner as would be seen in a clinical 

trial setting, for example. Sources are numerous: for example, the National 

Health Service (NHS) holds national datasets compiled from records of 

patient care (NHS Digital, 2017), which may be used to support 

commissioning services or service planning, and disease specific datasets 

are available based on registrations (e.g. Cancer Outcomes and Services 

Dataset (COSD) (National Cancer Intelligence Network, 2010)). Much 

related information may be collected together, such as patient 

characteristics, disease onset and progression, treatment and care 

pathways, and attendance at one or more healthcare provider locations for 

diagnosis, treatment or specialist opinion. There are therefore connections 

between the different aspects of information collected, i.e. the patients, the 

treatment or care received, and the healthcare provider attended, and the 

relationships between these aspects may be complex. Figure 1.1 shows how 

these relationships may be perceived graphically. 

 

Figure 1.1 Graphical perceived relationships between patient, treatment and 
healthcare provider 

Condition 
Treatment Patient 

Healthcare 

provider 
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Examples of patient characteristics may be age at diagnosis, sex and stage 

of disease, while examples of treatment characteristics may be the type of 

treatment received, and time from diagnosis to treatment. The holistic 

provision of healthcare means that variation in any part of the patient care 

pathway may impact on patient outcomes. For example, if patients from a 

homogeneous group receive the same treatment for the same condition, 

they may still respond differently if they are attending different healthcare 

providers, possibly due to organisational characteristics such as surgeon 

specialism or available beds. In an observational setting, it is not feasible to 

standardise all aspects of care. Different diseases are also not identically 

managed, therefore there is inherent heterogeneity surrounding patient entry 

to the healthcare system. 

While the assessment of treatment effects is usually the domain of clinical 

trials, many research questions may be asked of observational health data 

that are of interest to the patient (e.g. what factors affect disease survival?), 

or to the healthcare provider (e.g. what constitutes good practice?). Any 

analysis performed must fully accommodate the complexity of the data and 

the healthcare environment in order to ensure correct inference, as 

inappropriate interpretation may have a direct impact on patient care. In an 

observational health framework, these questions may not be set at the start 

of the data collection process, meaning that when they are posed later, there 

may be data challenges in addition to the structural complexity that must be 

addressed prior to, or as part of, the analysis. Challenges generic to many 

observational health datasets are discussed in section 1.2.2. 

“Big data” is becoming widely recognised as an all-encompassing term used 

to describe extremely large and complex datasets that are stored and 

analysed digitally (Boyd and Crawford, 2012), and it has been designated as 

one of the “eight great technologies that support UK science strengths and 

business capabilities” (Department for Business, Innovation and Skills, 

2013). These datasets may be linked, further extending their size and scope. 

Research applications are therefore extensive, with involvement from many 

academic and research institutions, including the University of Leeds 

(University of Leeds, 2017). 
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There is much promise inherent in being able to access and examine such 

expansive data, however these datasets suffer from the same data 

challenges seen in observational health data, and the use of automated 

techniques that do not correctly address these challenges may result in 

results being based on predictive modelling (i.e. predicting the value of a 

dependent variable, based on values of independent variables) rather than 

causal inference. While a predictive modelling approach may be appropriate 

in many research areas, healthcare research is an inherently causal 

framework as questions commonly relate to ‘causes’ either of disease, or of 

relief from disease.  

1.2.2 Generic data challenges 

In addition to structural complexity, observational health data suffer from 

many data challenges generic to routinely collected data. Appropriate 

accommodation of each is essential in order to make correct inference, and 

avoid misleading interpretations, perhaps due to biased results. The generic 

data challenges are introduced here, and the consequences of inappropriate 

modelling with respect to these challenges are examined in section 1.3.3. 

(i) Structure. Observational health data are commonly structured in a 

hierarchical manner, for example, patients living in the same geographical 

area may attend the same clinic or hospital for treatment, and these patients 

may attend multiple times. Therefore, patients can be said to be ‘clustered’ 

within the relevant healthcare provider, and measurements may also be 

‘clustered’ within the patient.  

(ii) Non-homogeneity. There may be differences within the population 

studied at any level of the hierarchy, i.e. samples may be heterogeneous at 

any level. For example, patients may vary in their characteristics (Office for 

National Statistics, 2016b) or in their response to treatment (Roden and 

George Jr, 2002), and healthcare providers may utilise different resources 

dependent on the route of admission (Simmonds et al., 2014), potentially 

leading to differences in the level of care received by the patient.  
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(iii) Measurement error. Measurements may also be imprecise, perhaps 

due to variations within a patient during their care; increased levels of 

anxiety may increase blood pressure (Sheppard et al., 2016), for example. 

Measurements taken by different clinicians (Wallis et al., 2015), or using 

different equipment (Wiesel et al., 2014), may also be interpreted differently.  

(iv) Unmeasured variables. Despite recording a large amount of 

information, there may remain variables that are not included in a dataset, 

perhaps because their association is unknown, but which may affect the 

outcome. Because they are unidentified, any effect due to their exclusion is 

unknown.  

(v) Complex observed relationships. The observed variables collected on 

patients as part of routine data collection, such as age, sex and stage, may 

have complex relationships with each other within a population, and these 

relationships may differ across populations. For any given research question 

where inference of an exposure (independent variable) on an outcome 

(dependent variable) is required, there may be any number of other 

variables that may either confound, mediate, or moderate, this relationship.  

(vi) Missing data. There may be missing data, and the data that are not 

recorded may be related to some quality of the population to be studied. For 

example, basic measurements such as height, weight and blood pressure 

are commonly taken when a patient is admitted to hospital (Evans and Best, 

2014), but if a patient is very ill on admission, it may not be feasible to take 

these measurements. Missing data may therefore be predictive of an 

underlying health state.  

(vii) Area-based measurements. Individual measures of deprivation are 

rarely available, especially when using routine data. Indices of 

socioeconomic status (SES) such as the Townsend Deprivation Index (TDI) 

(Townsend et al., 1987) or the Index of Multiple Deprivation (Noble et al., 

2004) are all that are routinely available. These indices are measured at the 

small-area level, such as electoral ward or super output area (SOA). Their 

use can lead to the ecological fallacy (Robinson, 1950) if area-based 

findings are extrapolated to individuals living within each area. 
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1.2.3 Three research questions 

Three research questions are posed. These questions, although conceived 

to demonstrate the latent variable approach, represent typical enquiries 

commonly made of observational health data. Each question concerns a 

different aspect of the patient journey through the healthcare system. 

(1) What is the relationship between a health exposure and outcome, and 

what other factors affect this relationship? 

This is an example within epidemiology where interest lies in determining the 

association between a health exposure or risk factor (e.g. SES) and an 

outcome (e.g. survival), where it is difficult, if not impossible, to conduct a 

randomised controlled trial. Causal inference is sought within a multilevel 

framework where focus is on the patient level and variation at all other levels 

is effectively ‘nuisance’, i.e. upper-level variation must be accounted for, but 

inference is not required.  

An intractable problem within causal inference modelling is also raised, 

where a potential interaction (e.g. between SES and stage) may be of 

interest, but may introduce bias if not sought carefully. Inappropriate 

adjustment of alleged confounders that may lie on the causal path between 

exposure and outcome can invoke bias (Kirkwood and Sterne, 2003), known 

as the reversal paradox (Stigler, 1999), and this bias has been shown to be 

a potentially serious problem in epidemiology (Hernández-Díaz et al., 2006; 

Tu et al., 2005). A Directed Acyclic Graph (DAG) (Pearl, 2000) is essential to 

assess covariate relationships. 

(2) How does the performance of a healthcare provider vary after 

accommodating patient differences? 

One area of interest in healthcare provision is performance monitoring, 

where indicators are used to measure, and compare, outcomes at an area 

level, for example by NHS Trust (Raleigh et al., 2012; Abel et al., 2014; 

Gomes et al., 2016). Different patient characteristics (e.g. age, sex and 

stage) may, however, lead to different outcomes (e.g. survival from disease), 

therefore these characteristics should be balanced across providers to 
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ensure a fair comparison of performance. Patient population characteristics 

may vary geographically (e.g. by age and sex (Office for National Statistics, 

2016b)), and as patients commonly attend a healthcare provider close to 

their geographical location (Dixon et al., 2010), patient characteristics may 

therefore vary across healthcare providers, which is termed ‘casemix’, and 

thus leads to differential access to care, a form of differential selection.  

This is a major topic of interest, as there are few strategies that can 

overcome the uncertainties associated with patient casemix differences (see 

section 1.3.4). To establish this approach within a framework that can extend 

to accommodate patient pathways (e.g. treatment effects) is challenging, 

and original. Initially, no provider-level covariates are examined in answering 

this question, in order to make comparison to existing methods. This 

extension is possible, however, as explored in research question (3). 

(3) Can causal provider-level covariate effects be identified, after 

accommodating patient differences? 

This is an extension of research question (2), where modelling for prediction 

at the patient level (i.e. accounting for casemix differences), is separated 

from causal inference at the provider level, in order to examine 

organisational factors (e.g. surgeon specialism or available beds) that may 

affect patient outcomes. A deliberate limitation at this stage is not 

considering multivariable DAGs at the provider level in order to first establish 

the principle that a single provider-level causal effect can be recovered. 

This novel application demonstrates the flexibility of a methodological 

framework that must account for a hierarchical data structure, accommodate 

uncertainty due to both measured and unmeasured variables, adjust for 

patient casemix, and exploit the complexity (i.e. heterogeneity) of the data in 

order to partition prediction and causal inference. 

1.2.4 Example dataset 

To investigate the three research questions, an example dataset is utilised, 

containing routinely collected data for patients diagnosed with colorectal 

cancer between 1998 and 2004. The dataset is thoroughly described in 
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Chapter 2. It is an example of a dataset available within observational health 

data, and is utilised here to demonstrate the latent variable techniques; 

many other observational health datasets could be analysed in the same 

manner, with appropriate compensation for data-specific challenges. This 

dataset is utilised to answer research questions (1) and (2), using available 

patient-level covariates.  

For research question (3), however, the example dataset cannot be used as 

it does not contain any provider-level covariates. Furthermore, a real-world 

dataset would not be amenable to evaluation of the effectiveness of the 

proposed techniques, as simulation is ideally required to assess the 

effectiveness of the approach before evaluating the latent variable 

methodology in practice. Simulations are therefore undertaken to explore the 

proof of principle for the inclusion of provider-level covariates, which is 

essential to evaluate the robustness of the proposed strategy of analysis. 

1.2.5 Simplifications 

Certain deliberate simplifications are made to the data for the purposes of 

analysis. They are described here and their implications are explored further 

in Chapter 6. 

Missing data  

Not addressed within any of the research questions is how to accommodate 

missing data. Within the example dataset, stage at diagnosis suffers from 

missing data, with 13.1% of patients having missing values for stage. As 

only a minor concern within this dataset, data are therefore simplified by 

generating a separate category for the missing values; thus all stage data 

are included in the analysis. In general, however, methods to address 

missing data should be employed, which is feasible as a separate extension 

that could then be combined with latent variable modelling approaches. 

There are methodological challenges, however, as the tools are not yet 

available to impute missing values within a multilevel framework. This is not 

the focus of this thesis, and the simplified approach is thus considered 

sufficient to demonstrate proof of principle for each of the research 

questions. Missing data challenges are discussed further in section 6.3.2. 
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Health outcome 

The outcome is selected to be whether or not the patient survives at three 

years following diagnosis, as this is clinically meaningful and facilitates ready 

comparison with other studies. It is, however, a simplification for what is 

potentially a survival measure. While survival analysis may be a desirable 

alternative, it would not be as comparable to other literature, hence the 

binary outcome is selected instead. There are also methodological 

challenges. The methods and associated principles proposed within this 

thesis will extend to a survival analysis context, although only in a different 

statistical software package to that used throughout for the latent variable 

modelling. This extension is discussed further in section 6.3.2. 

Area-based measurements  

SES is measured at the small-area level, but is attributed to individuals, 

which may provoke the ecological fallacy as described in section 1.2.2. For 

this reason, another level should ideally be introduced into any model – the 

small-area level – and this would be cross-classified with healthcare 

providers, i.e. patients from one small area might attend different providers, 

and similarly patients attending one provider may be drawn from different 

small areas of residence. Theoretically, it is possible to conduct a cross-

classified latent variable model, where small areas may also be grouped into 

latent classes, although this is not a currently supported option within the 

statistical software used. 

Of primary interest, however, is the illustration of the latent variable 

methodology, and the primary research questions also pertain to the 

population or sub-population (i.e. latent classes), not individuals. The 

simplified approach of attributing small-area scores of SES to individual 

patients is therefore adopted, omitting the cross-classified small-area level 

completely. Alternative modelling approaches are discussed in section 6.3.2. 
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1.3 Traditional methodologies 

1.3.1 Single level regression analysis 

Traditional modelling techniques, such as regression analysis, are 

commonly used to analyse observational health datasets (see section 3.2.2). 

Regression (linear and logistic) is a well-documented approach (Normand et 

al., 2005) where the relationship between an outcome and one or more 

exposures is modelled, effectively to ‘adjust’ the predicted outcome in 

relation to the likely influences of these factors. For example, the exposures 

may be patient characteristics such as age, sex and stage of disease, while 

the outcome may be survival from a disease. These covariates, however, 

also modify the estimated coefficient effects of each other, which may not 

always be appropriate, dependent on the research question. Regression 

analysis identifies a ‘best-fit’ model where the effect of covariates is the 

same over the whole sample, however individual measurements will vary, 

giving residual error. A linear regression model is traditionally identified using 

the ‘least squares’ approach, where the differences between the regression 

line and each observation are squared and minimised over all observations. 

An equation is then generated for the regression line in the form: 

𝑌 = 𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2 + ⋯ + 𝛽𝑛𝑋𝑛 

where 𝑌 is the outcome, 𝛽0 is the intercept, and 𝛽𝑗 (for j=1 to n) is the slope 

for each of the 𝑋𝑗 model covariates. This equation may be used for 

prediction, to predict the likely outcome for a specific set of observations. In 

a regression model, the intercept and slope parameters are estimated as 

fixed, giving a fixed-effects model.  

1.3.2 Multilevel modelling (MLM) 

Regression modelling is often extended to a multilevel framework in order to 

incorporate differences across healthcare providers (Leyland and Goldstein, 

2001; Leyland and Groenewegen, 2003). This approach is utilised for 

hierarchical data, where lower-level observations (e.g. patients) are 

‘clustered’ within higher-level groups (e.g. healthcare providers). In contrast 
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to single level regression modelling, the ‘best-fit’ model may differ dependent 

on which upper-level group is considered, and so both the intercept and 

slope are allowed to vary across these groups, giving a random-effects 

model. The variations of the intercepts and slopes are assumed to be 

normally distributed about a mean of zero and these variations are also 

assumed to be independent of the variation in the individual measurements. 

1.3.3 Traditional approach to the data challenges 

Neither single level regression analysis nor MLM are able to address all of 

the data challenges inherent within observational health data, as introduced 

in section 1.2.2. Specific challenges that remain unaccounted for by use of 

these techniques are described here. 

Structure and non-homogeneity 

Single level regression analysis does not take into account any hierarchical 

structure of the data, and homogeneity is assumed at the single level. 

Maintenance of the data structure during analysis is important in order to 

correctly estimate standard errors associated with estimates of effect, as 

underestimation of standard errors leads to overestimation of statistical 

significance, i.e. a type I error (Normand et al., 2005). Non-homogeneity 

generates residual error which may also increase standard errors. As both 

challenges are inherent within observational health data, modelling with 

single level regression analysis is not appropriate. 

While MLM does account for a hierarchical data structure, and provides 

improved estimates compared with regression (Cohen et al., 2009; Damman 

et al., 2009), the assumptions of normality and independence may not be 

valid in observational health data, as patients are not randomly assigned to 

healthcare providers, and providers are not randomly allocated 

geographically. MLM also assumes that a study sample is homogeneous at 

every level of the hierarchy, i.e. the same model would be applied to all 

members of the sample and the effects of covariates would be the same 

throughout. This may not be valid in observational health data due to 

differential selection, as raised in section 1.2.3, relating specifically to 

research question (2). 
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Observed and unobserved variation 

Regression techniques only allow for variation in the outcome, not in the 

model covariates, hence they are a poor choice to incorporate uncertainty in 

any of the observed variables, for example due to imprecise measurements. 

Studies have shown that statistical analyses using regression modelling 

(single level or multilevel) may yield biased results where model covariates 

have measurement error (Greenwood, 2012) or missing values (Carroll et 

al., 2006; Fuller, 1987). Furthermore, as regression is performed using 

observed covariates only, no adjustment can be made for unmeasured 

differences across the observations. 

Complex observed relationships 

Within a regression model, statistical adjustment is commonly sought for all 

potential confounders (i.e. variables that may affect both the exposure and 

the outcome) in order to assess the impact of an exposure on an outcome. 

Inclusion of a covariate that is instead an effect mediator (i.e. it potentially 

lies on the causal path between exposure and outcome) may introduce bias 

due to the reversal paradox, however, as introduced in section 1.2.3. For 

confounders that are also potential effect modifiers (i.e. they exhibit an 

interaction with the main exposure), product interaction terms are commonly 

included. If this confounder is also measured with error, however, or has 

missing values, bias may be exacerbated (Greenwood et al., 2006). 

As the use of multiple covariates within regression modelling modifies both 

the predicted outcome and the coefficient effects of these covariates, 

regression is therefore best placed for use within predictive modelling, where 

the focus remains on the predicted outcome. In causal inference modelling, 

where there is a primary exposure of interest, for example to answer 

research question (1), it is the modification of model coefficients that is the 

focus and, in the circumstances just described, traditional regression 

approaches cannot fully model the complex relationships within the data. 
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1.3.4 Casemix adjustment strategies 

There are a number of alternative strategies that adjust for differential 

selection, each effective within their own constraints, but none that are 

adaptable to analysis within an extended modelling framework. 

Measurement uncertainty within observed covariates cannot be 

accommodated, potentially untestable assumptions may be made, and they 

cannot accommodate provider-level variation. Patient variation is 

accommodated through measured covariates only, which is crude, as 

models ought to reflect the uncertainty associated with patient casemix 

characteristics. Further, no casemix-adjustment strategy will eliminate all 

bias, due to unmeasured differences amongst patients (Nicholl, 2007), and 

some procedures increase bias (Deeks et al., 2003).  

Well-established techniques include matching (Rothman et al., 1986), 

stratification (Normand et al., 2005) and regression analysis.  

In matching, pairs of subjects are matched, based on their observed 

characteristics, to generate subgroups for comparison (e.g. by treatment); 

unmatched patients are excluded from analysis. Both identifying and 

recording all factors that are required for matching to be effective is 

challenging, and near impossible in the area of routine data collection. 

Measurement error cannot be accounted for, and differential selection 

cannot be addressed due to the limited variables available. 

With stratification, homogeneous subgroups are identified using strata 

defined from observed covariates. Each patient is assigned to one stratum, 

and no patients are excluded. Distributions of covariates are thus balanced 

across subgroups, and analysis is performed within the defined strata. 

Similar to the challenges described for matching, it is not realistic to expect 

to stratify on all relevant factors. Further, stratification on numerous variables 

can lead to small numbers within strata, which introduces increased 

uncertainty that is not directly compensated for in any way. Bias due to 

differential selection is not explicitly addressed. 

Regression techniques, as described in sections 1.3.1 and 1.3.2, are 

commonly used to model variables relating to patient characteristics (see 
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section 3.2.2), thus adjusting the outcome with respect to these factors. 

Whilst care is required to model appropriately complex relationships in order 

to make causal inference, and to minimise bias due to the reversal paradox, 

no such concern is necessary when modelling for prediction. Viewing 

differential selection as a prediction problem (as indicated in section 1.2.3), 

therefore indicates the utility of regression techniques in casemix 

adjustment. They cannot, however, be used to model together both causal 

inference and purely prediction. 

A balancing score, such as the propensity score (Rosenbaum and Rubin, 

1983; Rosenbaum and Rubin, 1984), may be utilised. Such a score is 

calculated from all observed covariates; patients with the same propensity 

score will thus have approximately the same distributions of their observed 

covariates. It is commonly used in combination with matching, stratification 

or regression to increase precision and produce unbiased estimates 

(Rosenbaum and Rubin, 1983). Within matching, the propensity score may 

be utilised as the matching variable, while for stratification, equal sized 

subgroups may be defined by values of the propensity score (D'Agostino, 

1998). In regression modelling, the propensity score may be modelled alone 

for a more parsimonious model, or in combination with a subset of observed 

covariates (Rubin, 1979). Complete case data are usually required when 

calculating the propensity score, as missing values cannot be included and 

their exclusion may bias the calculated score. The propensity score may 

also not be appropriate for subgroups with very different prediction 

covariates, for example across different disease groups. Fundamentally, 

however, propensity score analysis conflates confounding (i.e. for causal 

inference modelling) and differential selection (i.e. within predictive 

modelling), and there remains the possibility that this technique may actually 

introduce bias in some instances (Pearl, 2009; Pearl, 2011). 

Alternative composite risk scores may be utilised, and disease specific 

scores are commonly available (e.g. Acute Physiology and Chronic Health 

Evaluation II (APACHE II) (Knaus et al., 1981); calculated from age plus 

twelve routine physiological measurements). These scores may also be 

utilised within matching, stratification or regression analysis techniques. 
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Direct or indirect standardisation approaches may also be employed 

(Rothman et al., 1986; Breslow and Day, 1987). These techniques 

essentially adjust the outcome using a reference (standard) population, thus 

enabling direct comparison across populations with differing casemix 

structures. The direct approach uses a population distribution (e.g. an age 

distribution) as the standard, while the indirect approach uses a common set 

of specific rates. Both methods compare the number of expected events 

(e.g. deaths) calculated from the standard population with those observed. 

Indirect standardisation utilises a standardised mortality ratio (SMR), which 

will be considered as the traditional comparison to a latent variable approach 

in Chapter 4. Direct standardisation is widely used (National Cancer 

Institute, 2016; International Agency for Research on Cancer, 2010) as it 

preserves consistency between populations, although it cannot be 

performed if standard population distribution figures are unknown. Indirect 

standardisation may be used without these figures, but the associated 

weightings reflect the casemix of the local population, meaning that it may 

not be appropriate to directly compare populations with very different patient 

casemix.  
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1.4 Introduction to latent variable methodologies 

1.4.1 Latent variable framework 

The latent variable terminology and framework are introduced here, together 

with the key advantages of using these methodologies. Comprehensive 

exploration of the specific modelling approaches and features, suitability of 

the methodologies to address the generic data challenges, and 

parameterisations appropriate to answer the three research questions are 

presented in Chapter 2. 

Latent variable modelling is an inclusive term covering the identification of an 

unobserved (latent) structure within observational data. Underpinning the 

theory is the concept that observations can be grouped within latent 

variables, which may be continuous and distributed as per a standard 

cumulative distribution function (typically assumed to be normal; latent 

variable), discrete (latent classes), or a mixture of both, and that there is a 

mathematical relationship between the observed values and the latent 

structure. Early analyses separated latent variables and latent classes, while 

contemporary modelling allows combinations of both (Vermunt and 

Magidson, 2003). 

As discussed in section 1.3.4, regression methods cannot separate 

modelling for prediction from causal inference, as is ultimately required when 

accounting for both patient casemix and potentially causal factors at the 

provider level. Use of a latent variable approach can separate the prediction 

focus (i.e. accommodation of differential selection) at the patient level, and 

the causal inference focus at the provider level, which serves to overcome 

this potential conflict between two distinctly separate analytical strategies. 

This is a fundamental advantage over traditional techniques, and ensures 

that the overarching methodology can be retained when answering a wide 

range of research questions.  

The traditional MLM is a simple example of a latent variable model, with a 

single, homogeneous group at the lower level and a continuous, normally 

distributed, latent variable at the upper level. Incorporating discrete latent 

classes extends the utility, as described in detail in sections 2.2.1 and 2.2.2. 
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There are a number of features unique to latent variable approaches that 

can be utilised to model appropriately complex observational data. Class 

membership models, introduced in section 2.2.3, allow for variables to be 

modelled separately to the main exposure-outcome relationship, thus 

minimising bias due to measurement error or the reversal paradox, for 

example. Class-dependent and class-independent features, introduced in 

section 2.2.4.3, are vital to ensure precise configuration of the model based 

on context and research question. The overarching approach, however, 

remains unchanged and hence similar in all its merits to address the data 

challenges. 

Sections 1.4.3 and 1.4.4 provide a brief history of the latent variable 

techniques for context, while section 1.4.5 provides a review of the literature 

to determine how these novel modelling approaches are being used in 

practice with observational data. 

1.4.2 Modelling for causal inference 

As indicated in section 1.4.1, latent variable modelling for either prediction or 

causal inference can be partitioned across levels of a hierarchy, which is 

fundamental to the applications addressed within this thesis. The approach 

to causal inference modelling incorporated here is well established within 

epidemiology (Greenland et al., 1999), where causal diagrams are explored 

as a method to identify relationships between modelled variables. The 

concept was formalised by Pearl (2000), in the use of DAGs (introduced in 

section 1.2.3) to display covariate relationships. These diagrams make 

explicit the causal assumptions made between model covariates, thus 

formally identifying confounders and other variables that may either mediate 

or modify the effect of an exposure on an outcome. These features were 

discussed briefly with respect to traditional modelling approaches in section 

1.3.3, and will be explored further within the latent variable framework in 

section 2.2.4.1.  

In more contemporary publications, Vanderweele (2015) emphasises 

methods to define and assess mediation and covariate interactions, while 

Pearl et al. (2016) provide a comprehensive introduction to causality. 
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1.4.3 A brief history of latent variable techniques 

This is not intended to be a systematic, or comprehensive, review of the 

historical literature, but rather a consideration of important publications within 

the subject area, to put the methodology into context. 

Latent variable approaches were first used in the field of social psychology, 

initially with a focus on interpretation rather than on statistical concerns. 

‘Factor analysis’ (Spearman, 1904; Thurstone, 1947) first utilised continuous 

variables for both the observed and latent variables, while ‘latent structure 

analysis’ (Lazarsfeld, 1950; Lazarsfeld, 1959), incorporated discrete classes 

for both. It was hypothesised that, instead of correlations between individual 

responses, the population studied was in fact heterogeneous, with different 

underlying latent groups (Lazarsfeld, 1950). Related approaches, termed 

‘latent trait analysis’ (Lord, 1952) (utilising continuous latent variables with 

discrete observed variables), and ‘latent profile analysis’ (Gibson, 1959) 

(utilising discrete latent classes with continuous observed variables) were 

soon introduced in practice. Latent trait analysis is commonly used in 

educational testing (Lord and Novick, 1968), as ‘item response theory’ (IRT). 

Parameter estimation procedures (commonly using matrix algebra) were 

developed by many, notably Green (1951), Anderson (1954; 1959), Gibson 

(1955; 1962), and Lazarsfeld and Henry (Lazarsfeld and Henry, 1968). 

However, Goodman (1974a; 1974b; 1979) formalised the methodologies by 

his development of the maximum likelihood (ML) parameter estimation 

algorithm, methods to determine whether estimated parameters are 

identifiable, and consideration of how well the models fit the data. Goodman 

also extended the analysis to include nominal observed variables 

(Goodman, 1974b), which was followed by further extensions for ordinal 

observed variables (Muthén, 1984) and for longitudinal data (Hagenaars, 

1990; Vermunt, 1997). 

There was a gradual move towards a more generalised approach, with 

‘mixture modelling’ allowing for models to contain mixtures of both 

continuous and discrete latent variables, explored for example in Anderson 

(1959), Bartholomew (1980), Muthén (1984; 2002), Arminger and Küsters 

(1989), and Skrondal and Rabe-Hesketh (2004). This, together with the 
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availability of more powerful computers towards the end of the 20th Century, 

made the methodologies widely available. Latent class analysis (LCA) 

became known as any statistical analysis where the model allows for 

parameters to differ across latent subgroups (Vermunt and Magidson, 2003), 

regardless of terminology or data type. Extensions to a multilevel framework 

were introduced by Vermunt (Vermunt, 2003; Vermunt, 2008a), which further 

widened the methodological scope, and effectively brings this historical 

summary up to date. 

1.4.4 Structural equation modelling (SEM) 

For completeness, SEM is addressed. This is also a latent variable 

methodology, with SEM itself incorporating many other approaches, such as 

‘confirmatory factor analysis’, ‘canonical correlation analysis’, and ‘latent 

growth curve models’. A full history of this broad methodology is not 

attempted here; two useful sources are Kaplan (2009) and Matsueda (2012), 

with Hox and Bechger (1998) providing a useful non-technical introduction to 

the techniques. There are two components to a SEM: the structural element 

that establishes a causal framework between observed variables, and the 

measurement element that specifies relationships between latent variables. 

Variation due to measurement error, for example, may be incorporated 

within the latent structures, while the causal framework is appropriate to 

address research questions commonly examined within observational health 

data. It may not, however, be as useful when considering differential 

selection i.e. to account for patient casemix, as path diagrams are designed 

to reflect all covariate relationships rather than to separate causal inference 

from prediction. It also becomes increasingly complex in a multilevel 

framework (Hox, 2013). SEM will not be utilised within this thesis. Rather, a 

more comprehensive approach is sought that addresses the generic data 

challenges, while distinguishing between causal inference and prediction 

within an overarching framework. 
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1.4.5 Review of comparable latent variable approaches 

Consideration is also given to the current usage of similar approaches as 

presented within this thesis, i.e. where latent variables (continuous or 

discrete) are used at multiple levels of a hierarchy to account for data 

challenges, such as heterogeneity, while modelling causal relationships 

between covariates at any level. Comparable articles are identified and 

summarised, without full critical appraisal as the primary intent is to 

recognise the scope of the published material, rather than to assess the 

strengths and weaknesses of each application. The strengths and 

weaknesses of latent variable approaches are discussed in Chapter 6. 

There is much differing terminology used across applications, which makes it 

complex to identify similar uses of the latent variable approach; the methods 

have evolved in isolation and terminology has developed independently 

within each context. A broad literature search is therefore performed initially, 

with all abstracts reviewed for their relevance. As applications within the 

social sciences are common, and those within the field of medicine are most 

relevant to the research questions, two databases are utilised: Medline and 

PsycINFO. Full search strategies can be seen in Appendix A. Book chapters 

are excluded as they generally focus on principles, rather than applications. 

The review spans ten years; as the techniques are still adapting, anything 

older than ten years is likely to have been superseded methodologically. 

A total of 174 results are found initially across the two databases. Duplicates 

(N=31) are excluded, together with irrelevant articles (e.g. teaching notes; 

N=16), and single level latent variable approaches (N=20). Two further 

articles are excluded: that detailing the research performed for Chapter 4 of 

this thesis (Gilthorpe et al., 2011), and the methodological-based paper cited 

in section 1.4.3 (Vermunt, 2008a). Four additional articles are sourced from 

other citations, thus a total of 109 results are available for consideration. 

Thirty-four results utilise multilevel factor analysis, for example Bostan et al. 

(2015) and Koch et al. (2016). As introduced in section 1.4.3, factor analysis 

is an early latent variable approach where continuous latent variables are 

used throughout. Although extended to incorporate a multilevel structure, 

latent classes are not permitted and as such, this technique is not 
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comparable to that adopted here. Of note, however, is an article by Varriale 

and Vermunt (2012), where multilevel factor models are extended to 

consider latent classes at the upper level, termed the multilevel mixture 

factor model. Although not discussed in detail here, as continuous latent 

variables remain at the lower level, this article highlights the overlap and 

emerging terminology across latent variable applications.  

A further 32 articles utilise SEM as the primary analytical technique, for 

example Geiser et al. (2015) and Preacher et al. (2016). As explained in 

section 1.4.4, the SEM approach is not appropriate for model extensions to 

include differential selection, for example, so is not considered here. 

Twenty-two results employ analyses to model longitudinal data, including 

investigation of ‘trajectories’, for example Mumford et al. (2013) and 

Sanfelix-Gimeno et al. (2015), and of ‘growth’, for example Tu et al. (2013), 

Smith et al. (2014) and Burns et al. (2015). These are special cases within 

the latent variable methodology; any longitudinal application will inherently 

be multilevel, but it is not analogous to the approach taken within this thesis.  

Three articles discuss the use of latent variables within multiple imputation, 

for example He at al. (2014). 

Of the remaining 18 papers, 10 can be considered to be simpler applications 

of the approach adopted for this thesis. Termed latent class ‘cluster’ 

analysis, this technique involves the profiling of attributes or characteristics 

into latent classes, or clusters, that may have utility. Measurement 

uncertainty is accommodated within the latent framework, while the 

multilevel approach accounts for the complexity of the data. Within these 

articles, the regression part of the model i.e. the relationship between 

exposure(s) and outcome, is not incorporated within the assignment to 

classes. Some employ follow up analysis to determine associations based 

on class membership, but none examine causal inference. There are 

applications in alcohol use (Rindskopf, 2006; van Lettow et al., 2013), with 

the former focusing on individual alcohol use within geographical sites, while 

the latter considers the classification of descriptive terms within groups of 

survey respondents. Van Horn et al. (2008) illustrate the techniques using an 

example in substance use, considering problem behaviours within 
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individuals and schools. Zhang et al. (2012) investigate the proportions of 

individuals who are obese within classes distinguished by individual 

consumption within the fast food environment. Three levels of analysis are 

considered within a study focusing on the family-level subtypes of patients 

with schizophrenia (Derks et al., 2012). There are applications within 

education, considering students’ attitudes within University groups (Mutz and 

Daniel, 2013), or pupils’ examination responses within teaching groups 

(Auer et al., 2016). A hierarchical approach to social exclusion (Pirani, 2013) 

considers classes of both individuals and geographical regions, while the 

perceptions of the causes of poverty within individuals and countries are 

similarly investigated by da Costa and Dias (2014; 2015). 

Finally, 8 papers are identified as containing analysis that can be considered 

comparable to that adopted within this thesis. Three are primarily 

methodological, and are not examined in detail. Two incorporate simulation 

studies; one assesses model selection (Yu and Park, 2014), while the other 

investigates the performance of methods of parameterisation (Finch and 

French, 2014). The third methodological paper explores model specification 

using an illustrative application within education testing (Vermunt, 2008b). 

Thus, 5 articles remain; each focuses on the application of multilevel latent 

variable approaches, using comparable techniques to those employed within 

this thesis, although none adopt exactly the same approach. They span a 

variety of disciplines, covering social science (Kalmijn and Vermunt, 2007), 

healthcare (Downing et al., 2010), behavioural research (Henry and Muthén, 

2010), political science (Morselli and Passini, 2012), and education (Bennink 

et al., 2014). 

In the earliest application, Kalmijn and Vermunt (2007) present an 

application investigating the homogeneity of social networks, where the age 

and marital status of individuals (the ‘ego’ level) are considered as a joint 

dependent variable, and are modelled to identify the association with 

individuals’ network contacts (the ‘alter’ level). A non-parametric 

specification is used at the upper level, i.e. ego-level latent classes are 

identified, and a single latent class is used at the lower level. The principle is 

thus similar to that adopted here, although different in consideration at the 
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lower level, and the context is wildly different. The latent class approach is 

seen to improve model fit and aid interpretation, with network contacts 

identified as more similar than would be expected based on the ego class. 

This finding may be partly explained by the accommodation of uncertainty 

due to unmeasured covariates within the latent constructs. 

In my collaborative work with Downing et al. (2010), a multilevel latent class 

approach is utilised to model the association between socioeconomic 

deprivation and breast cancer survival status at five years. Of primary 

interest is the utility of the approach to model appropriately stage at 

diagnosis, identified as a mediator of the deprivation-survival relationship. A 

continuous latent variable is utilised at the upper level for model fit and 

parsimony, and two patient-level classes are identified. Model fit improves 

when stage is excluded from the regression part of the model, and latent 

classes are clearly distinguished by disease severity. The research 

performed in Chapter 3 advances this work, by consideration of causal 

circularity and the inclusion of discrete latent classes at the upper level. 

Henry and Muthén (2010) identify typologies of adolescent smoking status, 

using data from 10,772 European females within one of 206 rural 

communities. Parametric and non-parametric approaches are investigated, 

with the parametric approach providing the best fit to the data, although the 

non-parametric approach allows community-level classes to be identified. 

The selected outcome variable is latent, rather than observed, and 

covariates are included at both levels. The probability of membership of the 

individual-level classes may vary across the upper-level communities, thus 

allowing for interpretation of upper-level classes by proportions of lower-level 

typologies. No accommodation is made for differential selection, however. 

In an unfamiliar context, that of political science, Morselli and Passini (2012) 

utilise the multilevel latent variable approach to model individuals within 

countries, in order to classify different types of political movement and 

protest. Unusually, the selection of four lower-level classes is based on an a 

priori hypothesis. The model is a good fit to the data, however, and classes 

are highly interpretable, with the inclusion of covariates again allowing 

investigation of class membership by characteristics. A non-parametric 
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approach is adopted at the upper level, and two classes are identified based 

on similarities in the lower-level class distribution. The latent class approach 

thus shows utility in the identification of differing attitudes towards 

democracy across protesters. Cross-country differences, however, are 

defined solely by protester characteristics.  

Finally, in an application to education, Bennink et al. (2014) investigate 

students nested within school groups, with 3,458 students from 60 schools 

classified based on their responses to a 24-item multiple-choice test. Focus 

is on a performance comparison at the school level, with adjustment for 

student ability using a continuous latent variable at the lower level. Both 

continuous and discrete latent variables are utilised at the upper level, and 

classes thus identify a small minority of schools where performance is poor. 

With a single latent variable at the student level, however, no explicit 

accommodation is made for differential selection, as student ability is 

assumed to be homogeneous. With a heterogeneous patient group, as 

considered within this thesis, accommodation for casemix must be modelled 

explicitly. Nevertheless, the mathematical framework is comparable. 

1.4.6 Statistical software 

The software Stata (StataCorp, 2015) is used for all data management 

operations on the example dataset, including data manipulation, summary 

statistics, and the production of tables and charts. It is also used to perform 

the data simulations, collation of results and linear regression analyses for 

the simulated data used in Chapter 5.  

The statistical software Latent GOLD (Vermunt and Magidson, 2005; 

Vermunt and Magidson, 2013) is used for all latent variable models. 

Technical specifications are set at a level where consistent results can be 

achieved without unduly extending analysis time due to computational 

requirements. 

The software R (2010) is used to identify threshold values for covariates in 

the example dataset, discussed specifically in relation to research question 

(2) in Chapter 4. Although Stata could also have been utilised in this 

situation, R was chosen to gain experience of its approach.  



- 26 - 

1.5 Content of following chapters 

The following chapters contain methods, data, results and interpretation that 

demonstrate the utility of the multilevel latent variable approach to answer a 

range of research questions. The overarching methodological framework is 

maintained throughout, while specific strategies and parameterisations are 

explored for each research question. 

Chapter 2 fully explores key aspects of the latent variable methodological 

approaches that may be utilised to model appropriately complex 

observational health data. This includes discrete latent classes, covariate 

modelling based on complex relationships, and model features vital to the 

construction of detailed model configurations. Modelling approaches are 

provided with respect to the research questions. The example dataset is 

described in full, with context specific data challenges identified with 

reference to the generic challenges introduced in section 1.2.2. 

Chapters 3, 4 and 5 contain methods, results and interpretation as required 

to answer research questions (1), (2), and (3) respectively. 

Chapter 3 uses multilevel latent class (MLLC) modelling to answer research 

question (1) using the example dataset, and directly compares results with 

those from a traditional multilevel modelling (MLM) approach. Latent classes 

are identified at both the patient and provider levels, with modelling for 

causal inference at the patient level and adjustment for heterogeneity at the 

provider level. The focus is on patients, and consideration is given to the 

context specific data challenges discussed in section 2.4.2. Provider-level 

classes are also interpreted to contrast the latent class approach with the 

use of a continuous latent variable at the upper level in MLM. 

Chapter 4 uses MLLC modelling to answer research question (2) using the 

example dataset, comparing performance rankings at the provider level with 

those generated by calculation of the standardised mortality ratio (SMR). 

Latent classes are again identified at both the patient and provider levels, 

however modelling techniques are partitioned across levels of the hierarchy, 

with the accommodation of differential selection at the patient level and 

causal inference at the provider level. Provider classes are thus ‘adjusted’ 
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for patient casemix. This approach provides a foundation for the extension of 

MLLC models to incorporate patient pathway and process characteristics. 

Chapter 5 extends the MLLC modelling approach established in Chapter 4 to 

answer research question (3) by incorporating provider-level covariates. The 

utility of the latent variable approach is demonstrated by accounting for 

differential selection at the patient level, while modelling for causal inference 

at the provider level. Data are simulated, including both binary and 

continuous provider-level covariates and both binary and continuous 

outcomes. As there is no appropriate comparison with a traditional 

approach, assessment is made of the ability of the MLLC models to recover 

simulated values of the provider-level covariate. 

Chapter 6 unites the approaches utilised in Chapters 3, 4 and 5. Methods 

are reviewed, and comprehensive suggestions for future development are 

included. 
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Chapter 2 

Latent Variable Methodologies and Example Dataset 

2.1 Introduction 

Chapter 1 introduced complex observational data, exploring the linked 

aspects of patient, treatment and healthcare provider, and also discussed 

the generic data challenges commonly seen in such datasets. Three 

research questions, typical of common enquiries, were posed with 

consideration of their utility in an observational data context, and the 

example dataset was introduced. The traditional methodologies, and their 

limitations, were described with reference to the data challenges, and 

specific strategies were examined that have traditionally been used to 

account for differential selection (i.e. patient casemix).  

The latent variable framework was then introduced as an overarching causal 

framework that allows modelling for both inference and prediction, with 

fundamental advantages over traditional methodologies; latent variable 

features may be used both to address the generic data challenges and to 

account for differential selection, while the framework has the capacity to 

extend beyond the scope of this thesis to incorporate patient pathways 

through the healthcare system. A literature search in section 1.4.5 

demonstrated that there are few other applications utilising the capabilities of 

this in-depth methodology. 

Chapter 2 considers the latent variable methodologies in depth, with focus 

on the use of discrete latent classes and their potential application to 

observational health data. Aspects of the latent variable methodologies are 

explored in detail, including appropriate adjustment for variables that may 

have a complex observed relationship with the exposure or outcome, such 

as those that may confound, modify or mediate the exposure-outcome 

relationship. Specific features that are utilised to precisely configure the 
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modelling approaches are introduced and described in detail, together with 

consideration of errors in classification and a suggested approach to model 

construction. Appropriate modelling approaches for the research questions 

are considered, utilising the overarching causal framework, and exploring 

their utility in addressing the generic data challenges. Broad modelling 

strategies and detailed parameterisations are included. The example dataset 

is described in detail, from source to summary statistics, and specific data 

challenges relevant to the data are included.  

Section 2.2 explores the latent class approaches in detail, introducing class 

membership models, key modelling features, errors in class assignment and 

optimum model construction. 

Section 2.3 revisits the example dataset to describe how the dataset is 

obtained and adapted for use within this research activity.  

Section 2.4 considers the modelling approach in detail, exploring the 

appropriate analytical methods with discussion of the data challenges, broad 

modelling strategies and detailed parameterisations. 

This chapter contains work based on a publication (Harrison et al., 2012). 
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2.2 Methods and features 

2.2.1 Latent Class Analysis (LCA) 

LCA, also known as ‘discrete latent variable modelling’, or ‘mixture 

modelling’ (Goodman, 1974b; Magidson and Vermunt, 2004), is well 

established within single level regression analysis. In LCA, a number of 

discrete latent variables (i.e. latent classes, or subgroups), are identified, the 

optimum choice of which is selected by the researcher, typically informed by 

log-likelihood (LL) statistics. The Bayesian Information Criterion (BIC) 

(Schwarz, 1978), the Akaike Information Criterion (AIC) (Akaike, 1974), and 

changes in LL are commonly used as model-evaluation indicators, though 

models may also be selected on the basis of interpretation (Gilthorpe et al., 

2009). Both the BIC and AIC incorporate a sense of model parsimony by 

accommodating the varying number of model parameters (Vermunt and 

Magidson, 2016), while the LL does not. Model parameters for each latent 

class are determined empirically, along with their contribution to the outcome 

distribution. 

Observations are probabilistically assigned to latent classes, i.e. each 

observation has a probability of belonging to each latent class, which sums 

to one, as each observation must be fully assigned across all classes. This 

assignment is based on similarities in characteristics; latent classes are 

therefore homogeneous, with similar effects of each covariate on 

observations in the same latent class, although covariate effects may differ 

across the classes. The relationship between outcome and associated risk 

factors can thus be determined within each latent class, rather than over all 

observations. As with single level regression, the intercept and slope within 

each class are fixed, so no distributional assumptions are required. 

Uncertainty surrounding class membership is incorporated within the latent 

classes, since observations may belong to all classes, with probabilities 

determined empirically. LCA thus manages the uncertainty associated with 

use of a limited number of predictors when determining subtypes of 

outcomes. Although accommodated implicitly within the latent framework, 

very few analytical research strategies seek clearly to exploit this aspect.  
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2.2.2 Multilevel Latent Class (MLLC) modelling 

MLLC models (Vermunt, 2003; Vermunt, 2008a) are an extension of LCA 

that incorporate discrete latent variables at all levels of a hierarchy. Latent 

classes are thus determined at more than one level, with the choice, as in 

LCA, informed by model-evaluation statistics, or based on interpretation. An 

optimum solution is sought for all classes at all levels simultaneously using 

ML estimation (Goodman, 1974b) obtained by an adapted expectation-

maximisation (EM) algorithm (Vermunt, 2003).  

Observations are probabilistically assigned to latent classes at all levels, i.e. 

they have a probability of belonging to each lower- and upper-level class, 

which sum to one at each level to reflect full assignment of each observation 

across all latent classes at all levels. Assignment to classes at the lower 

level is based on similarities in characteristics (Skrondal and Rabe-Hesketh, 

2004), while latent classes at the upper level may be based on either 

similarities or differences, dependent on model specification and research 

question. Latent classes at the lower level are thus homogeneous, while 

latent classes at the upper level may be either homogeneous or 

heterogeneous. Covariates can be included at any level and, as with single 

level LCA, their effect is the same within each latent class, but may differ 

across the classes (if deemed appropriate). The relationship between 

outcome and associated risk factors is again determined within each latent 

class, rather than over all observations and, if intercepts and slopes are fixed 

within the classes at all levels, no distributional assumptions are required. 

A richer mixture model can thus be represented, with latent classes adopted 

at any or all levels of the hierarchy. As the number of classes at the upper 

level is increased, a MLLC model can also be viewed as the traditional MLM 

but with a relaxation of normality assumptions, i.e. many upper-level latent 

classes can be viewed as a discrete approximation of a continuous latent 

variable that need not necessarily be normally distributed.  

The use of latent classes within a multilevel structure permits several 

complex model configurations, where each configuration may be designed to 

address a specific research question, within a specific context. Each 

parameterisation relates to different assumptions, and leads to different 
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interpretations, with the modelling choices lying with the researcher. Many 

potential models, however, would be meaningless in many instances, as 

some of these parameterisations may not be identifiable, and some 

identifiable models may not be interpretable. Careful consideration must 

therefore be used when specifying the model; decisions regarding model 

configuration must be justified and the implications of each parameterisation 

fully considered. These issues only become more complex in a multilevel 

setting. Analysis within this thesis illustrates how such complexity can be 

exploited to address otherwise challenging or even intractable problems, 

using novel analytical strategies to address a range of research questions. 

2.2.3 Class membership models 

Covariates can be entered into a latent class model as within a traditional 

regression model, i.e. as ‘predictors’ of the outcome variation. The same 

covariates may also enter the model as ‘predictors’ of the latent class 

structure; termed the ‘class membership model’. In either scenario, causality 

should not be inferred. The term ‘predictor’ is unfortunate in that it may 

mislead users to infer causality when it only implies an association between 

outcome variation and the covariate in question. With this in mind, the 

favoured nomenclature within this thesis is that covariates in the regression 

part of the model are referred to as ‘covariates’, whilst the covariates (same 

or different) in the class membership part of the model are referred to as 

‘class predictors’, though causality is not to be inferred. For MLLC models, 

covariates and class predictors may operate at any level. 

If variables are included both as covariates and as class predictors, their 

association with the outcome should not then be allowed to vary across the 

latent classes, as a model where a variable is both predicting class 

membership and where its effect differs across classes would be difficult to 

interpret. If a variable is included only as a class predictor, however, then the 

resultant latent classes at that level will have a graduated outcome 

analogous to that observed for different values of the class predictor, and the 

relationship between the outcome and associated risk factors can thus be 

explored across these classes. 
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2.2.4 Modelling features 

2.2.4.1 Confounding, effect modification and mediation 

Class predictors may be utilised to ‘remove’ variables from the regression 

part of the model, which may improve model precision due to measurement 

error or missing variables, or potentially minimise bias due to the reversal 

paradox. This has been shown explicitly in collaboration undertaken as part 

of my research activities (Downing et al., 2010), and is discussed in section 

1.4.5.  

Modelling a confounder that is also a potential effect modifier (e.g. alcohol 

consumption may modify the effect of smoking on cancer mortality) as a 

class predictor yields an implicit interaction, since the exposure-outcome 

relationship may vary across latent classes. This averts the need to include 

an explicit confounder-exposure product term in the regression part of the 

model, which would otherwise exacerbate any bias introduced if the 

confounder is measured with error or has missing values, as discussed in 

section 1.3.3 with respect to the traditional regression analytical approaches 

to the data challenges. Modelling effect modification this way minimises bias; 

uncertainty associated with confounder values is explicitly accommodated 

via the latent class part of the model. 

If an alleged confounder lies on the causal path between an exposure and 

an outcome, it is termed a ‘mediator’ (e.g. diet may mediate the effect of 

maternal deprivation on birthweight); statistical adjustment that includes a 

mediator as a covariate within a regression model may introduce bias due to 

the reversal paradox, as also discussed in section 1.3.3. It would then be 

wise to discard the mediator as a model covariate. This does not preclude 

the mediator becoming a class predictor however, though some implicit bias 

may remain. Modelling a mediator as a class predictor yields the potential for 

implicit interaction, as before, where the exposure-outcome relationship may 

vary across latent classes. The exposure may cause the mediator, which in 

turn part determines the latent class structure, within which the exposure-

outcome relationship may vary. Circularity thus arises in the causal interplay 

of exposure, mediator and outcome. This can be avoided if the exposure-
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outcome relationship is not allowed to vary across latent classes. In such 

instances, only the intercept varies across each latent class, not the 

exposure-outcome slope. The latent classes generated during modelling will 

then have a gradient that corresponds to specific patient features that can be 

labelled post-hoc according to outcome (e.g. ‘high’ or ‘low’ birthweight) or to 

class predictors (e.g. ‘good’ or ‘poor’ diet). 

2.2.4.2 Inactive covariates 

Covariates may also be included as ‘inactive’ within the model, whereby their 

distribution across the latent classes may be identified and interpreted, but 

they are not allowed to affect either the relationship between exposure and 

outcome, or class membership. This may be useful as a crude solution to 

enable the inclusion of covariates containing substantial amounts of missing 

data (e.g. treatment data where not all patients receive treatment). Their 

inclusion as inactive covariates aids interpretability of the model results, but 

ensures that additional bias is not introduced due to the missing data. 

2.2.4.3 Class-dependent and class-independent features 

Within latent variable models, parameter restrictions may be applied such 

that more (or less) parsimonious models may be estimated as required. This 

is achieved using ‘class-dependent’ or ‘class-independent’ features, thus 

determining how parameters at a lower level are set in relation to class 

structures at higher levels. A different interpretation is seen for each, and the 

choice of configuration is driven by both the context and research question. 

These features are what enables the flexibility that is exploited in the novel 

approaches proposed in this thesis, and their complexity therefore warrants 

a detailed exposition. 

Parameter restrictions may be set for intercepts, covariate effects, class 

sizes and error variances (where there is a continuous outcome); the class-

independent option applies the constraints, while the class-dependent option 

relaxes them. The technical detail is given here, while the practical use of 

these features is explored in section 2.4.4 with specific relevance to latent 

classes at patient and provider levels. 
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Intercepts 

Within a MLLC structure, latent class intercepts at the lower level may vary 

across latent classes at the upper levels. This is very broadly analogous to 

random intercepts within a traditional MLM. Latent class intercepts at a lower 

level, however, may be either class dependent or class independent in 

relation to class structures at higher levels, thus they may exhibit relative 

differences that are either identical or different within each upper-level class. 

In both cases, upper-level classes may differ in their overall outcome. 

Where relative differences are identical, lower-level class intercepts differ by 

the same degree, irrespective of which upper-level class the observations 

are assigned to; intercepts are thus class independent. This configuration 

therefore enables identical contrasts to be made among lower-level classes, 

within each upper-level class.  

Where lower-level class intercepts vary by different degrees across upper-

level classes, the intercepts are class dependent. This configuration 

indicates that lower-level differences can mean different things according to 

which upper-level class is being considered.  

Covariate effects 

Covariate effects can apply at any level of a latent class structure. Similar to 

the concept surrounding intercepts, covariate effects at the lower level may 

be modelled as either class dependent or class independent, in relation to 

the upper-level classes. In traditional MLMs, for example, the lower-level 

covariates could have estimated regression coefficients that remain fixed 

across the upper-level classes (hence the term ‘fixed-effects’). Alternatively, 

these covariates could be allowed to vary randomly across the upper-level 

classes, thereby yielding ‘random-effects’, sometimes referred to as random 

slopes. 

In a MLLC model, each lower-level covariate may be constrained to have 

identical estimated parameter values for each of the upper-level classes. 

This is the class-independent configuration. Alternatively, this constraint may 

be relaxed so that the covariate parameters may have different estimated 

values for each upper-level class. This is the class-dependent configuration. 

This configuration is akin to random slopes in the traditional MLM, but where 
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the random effects (represented by a continuous latent variable) are 

effectively categorised and multiple fixed-effects parameter values are 

estimated for each upper-level latent class. 

Not all covariate effects would necessarily be modelled in this way, so the 

number of lower-level covariates that are upper-level class dependent could 

be fewer than the total number of lower-level covariates. This can be much 

less parsimonious than the traditional MLM, since for the latter, only one 

continuous latent variable variance is estimated per covariate random slope, 

as opposed to multiple fixed-effects parameter values for each upper-level 

class. This is an example of why it becomes necessary to consider carefully 

the pros and cons of class-dependent versus class-independent covariate 

effects.  

Class sizes 

Lower-level class sizes may also be class dependent or class independent, 

with respect to upper-level classes. The number of lower-level classes per 

upper-level class is fixed during modelling, but the proportions of each may 

be either identical (class independent) or different (class dependent) within 

each of the upper-level classes.  

In the class-dependent configuration, some lower-level classes may contain 

no observations at all, indicating that some upper-level classes might 

actually favour fewer lower-level classes. This is a discretised version of the 

traditional MLM approach, with cluster imbalance.  

Alternatively, it is possible to constrain class sizes such that the proportion of 

each lower-level class remains the same for each upper-level class; the 

class-independent configuration. The total number of observations per 

upper-level class can still vary, but this configuration forces the upper-level 

classes to represent the entire spectrum; thus accommodating a structure 

that, in the specific circumstances considered in this thesis, accounts for 

differential selection. 

Error variance 

Appropriate for continuous outcomes only, error variance within lower-level 

classes may also be class dependent or class independent, in relation to 
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upper-level classes. The choice should be based both on the distribution of 

the data used, and on the concepts that are to be explored. 

The class-independent configuration constrains the estimates to be the 

same within each upper-level class, thus ensuring that the variance is held 

constant across all lower-level classes, i.e. homoscedasticity.  

The class-dependent configuration allows for different estimates of the 

variance of the outcome within each upper-level class, hence permitting 

unequal variance across the lower-level classes, i.e. heteroscedasticity. 

2.2.5 Classification error (CE) 

As introduced in sections 2.2.1 and 2.2.2, observations are probabilistically 

assigned to latent classes at all levels; termed ‘probabilistic assignment’. An 

alternative way of assigning observations to latent classes is known as 

‘modal assignment’, where an observation is allocated to a latent class at 

each level according to the highest membership probability. The CE is the 

proportion of observations that are estimated to be misclassified by their 

modal assignment, and this is usually expressed as a percentage. A CE 

value is thus observed at both the lower and upper levels. 

A small CE indicates that the latent classes are more ‘real’, i.e. they 

correspond to groups where upper- or lower-level observations are almost 

entirely assigned to a single class. A smaller CE may be favoured where it 

results in greater interpretability of the latent classes at any level. 

In contrast, a large CE indicates that the latent classes are more ‘virtual’, i.e. 

a construct of probabilistic assignment only, as they differ substantially from 

modal assignment. This may result in the identification of additional latent 

classes that reflect outliers, or unusual but minority (potentially latent) 

features. 

It therefore depends upon the context and purpose of the model as to 

whether or not one worries about CE values, low or high. It is important to be 

mindful of the magnitude of CEs, and in some instances models may be 

preferred where they are not too large, or not too close to zero. 
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2.2.6 The optimum model 

There is no single optimum model; rather the preferred model will differ 

dependent on context and research question. As introduced in section 2.2.1, 

model-evaluation criteria (such as the AIC and BIC) are commonly used to 

aid more parsimonious model selection, as these are penalised versions of 

the log-likelihood (LL) criterion. Lower values indicate better models but 

reflect better parsimony compared to LL. For the analyses described in this 

thesis, all model-evaluation criteria are used for guidance only, with optimum 

model selection based also on interpretability. Modelling the same data for 

different research questions may therefore yield differing optimum models. 

Being able to interpret meaningfully the latent class structure is crucial, as 

latent class model selection should not be determined solely on likelihood-

based statistics. There is, however, a general approach, described here, that 

may be utilised. Optimum model construction is discussed specifically in 

relation to each research question in sections 3.2.5, 4.2.4 and 5.3.4. 

To consider the construction of an optimum MLLC model using an initially 

simple approach, the latent class structures may be considered to be built 

one level at a time. Lower-level observations may first be assigned to latent 

classes, generating an optimum number of lower-level latent classes as 

selected by the researcher. Conditional on belonging to a given lower-level 

class, the upper-level observations may then also be assigned to latent 

classes based on model configuration, as driven by context and research 

question. 

Within the estimation process, there is no sense of ordering in terms of 

which level of latent classes are formed ahead of other levels, because this 

all happens simultaneously. Models are an optimum solution for all classes, 

at all levels, conditional on covariates considered in the model. Estimation 

procedures hence seek to maximise the likelihood function in a single 

process. 

In practice, however, a continuous latent variable may be adopted initially at 

the upper level as an approximation, while the latent class structure is 

explored for the lower level. Once the optimum number of lower-level 

classes is determined, the continuous latent variable at the upper level may 
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be switched to categorical and the optimum latent class structure determined 

at the upper level. Latent class models are commonly explored where the 

number of latent classes at all levels are sequentially increased from one to 

identify the required optimum model, with reference to model-evaluation 

criteria, parsimony, interpretability and CE.  
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2.3 The example dataset 

2.3.1 Source and extraction 

The colorectal cancer data were extracted from the Northern and Yorkshire 

Cancer Registry and Information Service (NYCRIS) database in November 

2006, using geographical boundaries defined at the 2001 census. Figure 2.1 

shows the boundaries of the regional cancer registries at this time point; 

Northern and Yorkshire marks the boundary for these data. At the 2001 

census, the total NYCRIS population was around 6.7 million, approximately 

12.4% of the total population of England and Wales (NYCRIS, 2007).  

 

Figure 2.1 Locations of the regional cancer registries at the 2001 Census 

ONS Cancer Statistics Registrations: Registrations of cancer diagnosed in 

2001, England. Series MB1 no. 32. © Crown copyright 2004. Contains public 

sector information licensed under the Open Government Licence v3.0. 
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Each regional cancer registry is responsible for collecting data on all cancer 

registrations within their geographical boundary, ensuring data are accurate 

and complete, and analysing and interpreting data for regional reference 

reports. The registration process is complex, with data obtained from 

multiple sources including medical records, tumour registers and death 

certificates, and so there is a time delay between the cancer diagnosis date 

and the availability of complete data. Prior to 2009, cancer registries were 

required to provide their registration data to the Office for National Statistics 

(ONS) within eighteen months following the end of the calendar year (Office 

for National Statistics, 2016a). Therefore, at November 2006, the latest 

available calendar year of registration data was 2004. 

Diagnosed cases of colorectal cancer (10th revision of the International 

Classification of Diseases (ICD-10) (World Health Organisation, 2005) codes 

C18, C19 and C20) were initially identified where the date of diagnosis was 

between 1 January 1991 and 31 December 2004, and the patient was 

resident in the Northern and Yorkshire regions. Due to issues concerning the 

completeness of these data prior to 1998, when NYCRIS merged two 

smaller cancer registries, diagnoses from 1 January 1998 only were 

retained.  

Data extraction and initial processing to obtain a non-identifiable dataset 

were performed in advance of commencement of this research activity and 

are therefore not described here.  

Variables available after initial processing were: age at diagnosis, sex, 

tumour site (either colon (C18), rectosigmoid junction (C19) or rectum 

(C20)), stage at diagnosis (using Dukes classification (Dukes, 1949); ranging 

from stage A (early stage) to stage D (late stage)), lower super output area 

(LSOA) (used to derive SES using the TDI (as described in section 1.2.2), 

recorded at the 2001 census), whether or not the patient was treated 

curatively, which hospital(s) were attended and whether the patient was alive 

or dead at the latest data download date. 

The laterality of the tumour was also determined from the tumour site, with 

rectosigmoid junction and rectal tumours identified on the left side of the 

body, while colon tumours may present on either side of the body. 
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2.3.2 Exclusions 

Figure 2.2 details all exclusions made to the original extracted dataset 

containing diagnosis dates from 1991 to 2004.  

Three years of follow up data are required, as the outcome is survival status 

at three years following diagnosis. A new download of death dates was 

obtained on 30 June 2007, meaning that diagnosis dates only up to 30 June 

2004 could be included. As such, patients who are diagnosed after this date 

are excluded; 1,982 patients are excluded. 

Townsend deprivation scores are imported into the dataset by matching to 

the LSOA of residence of the patient. One patient does not have a recorded 

LSOA, indicating that they are resident outside the NYCRIS area; this 

patient is therefore excluded from the dataset. 

Multiple tumours are excluded. Clinical information is not available in order 

to identify whether an additional recorded tumour for a patient is due to 

spread or recurrence of the original tumour, or if the patient has been 

diagnosed with a multiple primary tumour (MPT). A MPT occurs where more 

than one histologically distinct tumour is found in the same patient, and 

treatment may differ for these differing types of multiple tumour. There are 

540 patients diagnosed with between two and four tumours; 561 multiple 

tumours are therefore excluded.  

Patients with a recorded age at diagnosis of more than one hundred years 

are excluded; 7 patients are excluded. 

Patients identified by death certificate only (DCO) are excluded. This occurs 

where the death certificate has provided the only tumour notification, thus 

there is no information available regarding, for example, hospital visits or 

treatment received. DCO registrations are commonly used to measure data 

completeness (Hill, 1995). Where registration is initially provided by death 

certificate, the cancer registry attempts to add missing information from other 

sources, such as GP or hospital records, but if none can be found, 

registration is classified as DCO. 364 patients are excluded. 

Exclusions related to identification of the diagnostic centre are discussed in 

section 2.3.3. 
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Figure 2.2 Flowchart showing exclusions from the original extracted dataset 

  

Extraction 1991-2004 inclusive 

54,442 patients; 55,457 tumours; 90,599 hospital visits 

Extraction 1998-2004 inclusive 

28,437 patients; 29,046 tumours; 55,981 hospital visits 

Excluding date of diagnosis >30 June 2004 

26,455 patients; 27,016 tumours; 51,913 hospital visits 

Exclude multiple tumours 

26,454 patients and tumours; 50,918 hospital visits 

No recorded LSOA 

26,454 patients; 27,015 tumours; 51,910 hospital visits 

Exclude age > 100 years at diagnosis 

26,447 patients and tumours; 50,911 hospital visits 

Exclude registration by DCO 

26,083 patients and tumours; 50,547 hospital visits 

Identify diagnostic centre 

24,640 patients, tumours and hospital visits 
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2.3.3 Identification of diagnostic centre 

While interest may lie in investigating potential treatment centre 

characteristics associated with colorectal cancer survival, this can be 

complex to assess, as patients may attend multiple hospital visits at different 

hospitals throughout their care, and thus may receive treatment at more than 

one hospital. For these data, patients attend up to seven hospital visits for 

diagnosis, treatment or specialist opinion in total, with 16,549 patients 

(63.4%) attending more than once.  

Table 2.1 shows the number and percentage of hospital visits per patient 

where treatment is recorded; patients attend between zero and five 

treatment visits. Of the 26,083 patients currently in the dataset, most have 

only one treatment visit (14,437; 55.4%), although 7,323 patients (28.1%) 

have more than one treatment visit. Of the 7,323 patients, only 650 (8.9%) 

receive treatment at the same hospital each time, while 6,554 (89.5%) 

receive treatment at two different hospitals, and 119 (1.6%) receive 

treatment at three different hospitals. 4,323 patients (16.6% of the 26,083) 

do not receive curative treatment and would therefore be excluded from any 

analysis using treatment centres. 

Table 2.2 shows the number and percentage of hospital visits per patient 

where diagnosis is recorded. Although patients may also attend multiple 

diagnosis visits, there is less variability, with patients attending between zero 

and three diagnosis visits. Most patients have only one diagnosis visit 

(25,542; 97.9%), 220 patients (0.8%) have no diagnosis visits and 321 

patients (1.2%) have more than one diagnosis visit. Of the 321 patients, 228 

(71.0%) receive diagnosis at the same hospital each time, 92 (28.7%) 

receive diagnosis at two different hospitals and 1 (0.3%) receives diagnosis 

at three different hospitals. Diagnostic centres are therefore used in order to 

include all patients, whether treated or not, and to limit the variability 

introduced by attendance at different hospitals. 

 



 
- 4

6
 - 

Table 2.1 Number and percentage of treatment visits per patient 

No. hospital visits with 

treatment recorded 

No. patients 

(% of total patients) 

No. different hospitals attended per patient 

(% of patients with related number of visits) 

1 2 3 

0 4,323 (16.6%) N/A N/A N/A 

1 14,437 (55.4%) 14,437 (100.0%) N/A N/A 

2-5 7,323 (28.1%) 650 (8.9%) 6,554 (89.5%) 119 (1.6%) 

 26,083  

 

Table 2.2 Number and percentage of diagnosis visits per patient 

No. hospital visits with 

diagnosis recorded 

No. patients 

(% of total patients) 

No. different hospitals attended per patient 

(% of patients with related number of visits) 

1 2 3 

0 220 (0.8%) N/A N/A N/A 

1 25,542 (97.9%) 25,542 (100.0%) N/A N/A 

2-3 321 (1.2%) 228 (71.0%) 92 (28.7%) 1 (0.3%) 

 26,083  
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The diagnostic centre is initially defined as the hospital where the latest 

staging took place. For those 25,542 patients with only one diagnosis visit, 

this is straightforward. For those 321 patients attending more than one 

diagnosis visit, the location of the most recent diagnosis hospital is recorded 

at the diagnostic centre, as this is considered to provide the latest staging 

information. For those 220 patients with no diagnosis visit, the location of 

their first hospital visit is taken as the diagnostic centre. Although they have 

no recorded diagnosis visit, all of these patients have a recorded ICD-10 

diagnosis code of colorectal cancer.  

Each hospital is contained within an NHS Trust, and nineteen Trusts are 

identified in the NYCRIS geographical area. Trust codes are matched to the 

154 hospital codes in order to identify diagnostic centres at the Trust level. 

Of the 21,760 patients who receive treatment (83.4%), 17,598 (80.9%) are 

treated initially within the same hospital as they are diagnosed, with only 

12,879 (59.2%) remaining within this hospital throughout. This contrasts with 

19,368 patients (89.0%) who are treated initially within the same Trust as 

they are diagnosed, with 16,163 (74.3%) remaining within this Trust 

throughout. As the figures at the Trust level show improvement from those at 

the hospital level, the choice is made to analyse by Trust of diagnosis 

instead of by hospital. Increased movement between centres could introduce 

variability of care for the patient and thus mitigate the diagnostic centre 

effect. 

1,443 patients are found to be diagnosed at Trusts external to the NYCRIS 

geographical area and are thus excluded, leaving 24,640 patients available 

for analysis. While the diagnosis visit remains in the dataset, all other Trust 

visits are also excluded, leaving just one Trust visit per tumour, per patient, 

as shown in Figure 2.2. 
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2.3.4 Descriptive statistics 

There are 24,640 patients available in the final dataset for analysis; each 

patient is diagnosed at one of the nineteen NHS Trusts. Due to coding 

updates, there are minor differences in the number of deaths recorded in the 

final datasets adopted for each research question, although this has no 

material impact on the messages of each.  

For analyses in Chapter 3, 12,708 patients (51.6%) died within three years 

of diagnosis, while for analyses in Chapter 4 (which were initially performed 

before the material seen in Chapter 3), 12,856 patients (52.2%) died within 

three years of diagnosis. The number of patients available in the dataset 

remains the same, and the small differences in deaths do not impact on the 

demonstration of the utility of the MLLC analysis. Table 2.3 provides 

summary statistics for all explanatory variables available in the dataset, 

which remain the same across both versions of the dataset. Trusts are 

ordered alphabetically and allocated numbers one to nineteen. Differences 

in values across Trusts demonstrate the heterogeneity of the patient 

casemix. 

All variables contain complete data except for stage at diagnosis. As 

discussed in section 1.2.5, missing values for stage are categorised (overall 

3,223; 13.1% missing (coded ‘X’)). Age at diagnosis is centred on the study 

mean of 71.5 years, to improve model precision. 
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Table 2.3 Summary statistics for all explanatory variables in the final dataset 

Variable 

Overall 
N=24,640 

Trust 1 
N=538 

Trust 2  
N=1,028 

Trust 3  
N=1,280 

Trust 4  
N=648 

Mean (SD) 

Deprivation -0.04 (3.18) -1.46 (2.81) 1.31 (4.25) -0.32 (3.03) -2.32 (1.63) 

Age at diagnosis (years) 71.5 (11.6) 71.8 (11.6) 71.7 (11.9) 72.0 (11.7) 72.8 (11.7) 

Variable Categories Number (%) 

Sex  
Female 10,862 (44.1%) 249 (46.3%) 469 (45.6%) 577 (45.1%) 300 (46.3%) 

Male 13,778 (55.9%) 289 (53.7%) 559 (54.4%) 703 (54.9%) 348 (53.7%) 

Stage at 

diagnosis 

A 2,859 (11.6%) 62 (11.5%) 107 (10.4%) 154 (12.0%) 86 (13.3%) 

B 6,784 (27.5%) 143 (26.6%) 291 (28.3%) 353 (27.6%) 206 (31.8%) 

C 6,173 (25.1%) 174 (32.3%) 279 (27.1%) 271 (21.2%) 179 (27.6%) 

D 5,601 (22.7%) 106 (19.7%) 218 (21.2%) 316 (24.7%) 120 (18.5%) 

Missing (X) 3,223 (13.1%) 53 (9.9%) 133 (12.9%) 186 (14.5%) 57 (8.8%) 

ICD-10  

C18 (colon) 14,510 (58.9%) 312 (58.0%) 596 (58.0%) 701 (54.8%) 388 (59.9%) 

C19 (rectosigmoid junction) 2,585 (10.5%) 43 (8.0%) 137 (13.3%) 130 (10.2%) 75 (11.6%) 

C20 (rectum) 7,545 (30.6%) 183 (34.0%) 295 (28.7%) 449 (35.1%) 185 (28.5%) 

Laterality  

Left 16,261 (66.0%) 367 (68.2%) 673 (65.5%) 883 (69.0%) 443 (68.4%) 

Right 6,727 (27.3%) 137 (25.5%) 300 (29.2%) 343 (26.8%) 180 (27.8%) 

Split 1,652 (6.7%) 34 (6.3%) 55 (5.4%) 54 (4.2%) 25 (3.9%) 

Treated  
Y 20,582 (83.5%) 478 (88.8%) 873 (84.9%) 1,054 (82.3%) 555 (85.6%) 

N 4,058 (16.5%) 60 (11.2%) 155 (15.1%) 226 (17.7%) 93 (14.4%) 

Deprivation (measured using TDI) is inversely related to social status. 
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Table 2.3 continued Summary statistics for all explanatory variables in the final dataset 

Variable 

Trust 5  
N=1,832 

Trust 6  
N=1,187 

Trust 7  
N=2,239 

Trust 8  
N=1,716 

Trust 9  
N=1,193 

Mean (SD) 

Deprivation -0.10 (2.88) -1.77 (2.15) 0.07 (3.25) 0.21 (3.59) -0.64 (2.90) 

Age at diagnosis (years) 71.1 (11.6) 71.6 (11.4) 72.3 (12.1) 71.7 (11.7) 71.7 (11.5) 

Variable Categories Number (%) 

Sex  
Female 794 (43.3%) 508 (42.8%) 1,022 (45.6%) 731 (42.6%) 537 (45.0%) 

Male 1,038 (56.7%) 679 (57.2%) 1,217 (54.4%) 985 (57.4%) 656 (55.0%) 

Stage at 

diagnosis 

A 275 (15.0%) 130 (11.0%) 224 (10.0%) 170 (9.9%) 142 (11.9%) 

B 451 (24.6%) 365 (30.7%) 638 (28.5%) 466 (27.2%) 296 (24.8%) 

C 433 (23.6%) 343 (28.9%) 601 (26.8%) 495 (28.8%) 261 (21.9%) 

D 447 (24.4%) 239 (20.1%) 520 (23.2%) 387 (22.6%) 303 (25.4%) 

Missing (X) 226 (12.3%) 110 (9.3%) 256 (11.4%) 198 (11.5%) 191 (16.0%) 

ICD-10  

C18 (colon) 1,016 (55.5%) 678 (57.1%) 1,363 (60.9%) 1,035 (60.3%) 654 (54.8%) 

C19 (rectosigmoid junction) 247 (13.5%) 138 (11.6%) 245 (10.9%) 91 (5.3%) 99 (8.3%) 

C20 (rectum) 569 (31.1%) 371 (31.3%) 631 (28.2%) 590 (34.4%) 440 (36.9%) 

Laterality  

Left 1,270 (69.3%) 778 (65.5%) 1,471 (65.7%) 1,143 (66.6%) 804 (67.4%) 

Right 490 (26.7%) 353 (29.7%) 643 (28.7%) 492 (28.7%) 332 (27.8%) 

Split 72 (3.9%) 56 (4.7%) 125 (5.6%) 81 (4.7%) 57 (4.8%) 

Treated  
Y 1,535 (83.8%) 1,028 (86.6%) 1,886 (84.2%) 1,480 (86.2%) 979 (82.1%) 

N 297 (16.2%) 159 (13.4%) 353 (15.8%) 236 (13.8%) 214 (17.9%) 

Deprivation (measured using TDI) is inversely related to social status. 
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Table 2.3 continued Summary statistics for all explanatory variables in the final dataset 

Variable 

Trust 10  
N=774 

Trust 11  
N=661 

Trust 12  
N=1,567 

Trust 13  
N=1,937 

Trust 14  
N=1,258 

Mean (SD) 

Deprivation -0.97 (2.10) 2.35 (3.18) -0.03 (3.64) -0.33 (2.55) -0.97 (2.45) 

Age at diagnosis (years) 72.6 (11.7) 72.0 (10.8) 70.9 (11.4) 72.1 (11.4) 71.6 (11.4) 

Variable Categories Number (%) 

Sex  
Female 352 (45.5%) 290 (43.9%) 645 (41.2%) 859 (44.3%) 583 (46.3%) 

Male 422 (54.5%) 371 (56.1%) 922 (58.8%) 1,078 (55.7%) 675 (53.7%) 

Stage at 

diagnosis 

A 86 (11.1%) 88 (13.3%) 190 (12.1%) 210 (10.8%) 155 (12.3%) 

B 244 (31.5%) 187 (28.3%) 409 (26.1%) 594 (30.7%) 351 (27.9%) 

C 158 (20.4%) 155 (23.4%) 419 (26.7%) 458 (23.6%) 293 (23.3%) 

D 156 (20.2%) 155 (23.4%) 354 (22.6%) 387 (20.0%) 287 (22.8%) 

Missing (X) 130 (16.8%) 76 (11.5%) 195 (12.4%) 288 (14.9%) 172 (13.7%) 

ICD-10  

C18 (colon) 481 (62.1%) 374 (56.6%) 883 (56.3%) 1,158 (59.8%) 792 (63.0%) 

C19 (rectosigmoid junction) 88 (11.4%) 90 (13.6%) 183 (11.7%) 239 (12.3%) 131 (10.4%) 

C20 (rectum) 205 (26.5%) 197 (29.8%) 501 (32.0%) 540 (27.9%) 335 (26.6%) 

Laterality  

Left 496 (64.1%) 466 (70.5%) 1,021 (65.2%) 1,292 (66.7%) 808 (64.2%) 

Right 206 (26.6%) 145 (21.9%) 399 (25.5%) 539 (27.8%) 377 (30.0%) 

Split 72 (9.3%) 50 (7.6%) 147 (9.4%) 106 (5.5%) 73 (5.8%) 

Treated  Y 628 (81.1%) 577 (87.3%) 1,307 (83.4%) 1,590 (82.1%) 1,084 (86.2%) 

N 146 (18.9%) 84 (12.7%) 260 (16.6%) 347 (17.9%) 174 (13.8%) 

Deprivation (measured using TDI) is inversely related to social status. 
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Table 2.3 continued Summary statistics for all explanatory variables in the final dataset 

Variable 

Trust 15  
N=1,208 

Trust 16  
N=2,009 

Trust 17  
N=1,255 

Trust 18  
N=771 

Trust 19  
N=1,539 

Mean (SD) 

Deprivation 1.25 (3.12) -0.21 (2.35) 0.65 (3.34) 0.89 (3.05) 0.90 (3.63) 

Age at diagnosis (years) 70.5 (11.0) 70.9 (11.6) 70.3 (11.4) 72.1 (11.3) 71.3 (11.6) 

Variable Categories Number (%) 

Sex  
Female 504 (41.7%) 889 (44.3%) 533 (42.5%) 354 (45.9%) 666 (43.3%) 

Male 704 (58.3%) 1,120 (55.7%) 722 (57.5%) 417 (54.1%) 873 (56.7%) 

Stage at 

diagnosis 

A 127 (10.5%) 214 (10.7%) 171 (13.6%) 74 (9.6%) 194 (12.6%) 

B 291 (24.1%) 547 (27.2%) 302 (24.1%) 212 (27.5%) 438 (28.5%) 

C 324 (26.8%) 478 (23.8%) 334 (26.6%) 167 (21.7%) 351 (22.8%) 

D 287 (23.8%) 459 (22.8%) 301 (24.0%) 193 (25.0%) 366 (23.8%) 

Missing (X) 179 (14.8%) 311 (15.5%) 147 (11.7%) 125 (16.2%) 190 (12.3%) 

ICD-10  

C18 (colon) 713 (59.0%) 1,245 (62.0%) 762 (60.7%) 471 (61.1%) 888 (57.7%) 

C19 (rectosigmoid junction) 137 (11.3%) 155 (7.7%) 106 (8.5%) 72 (9.3%) 179 (11.6%) 

C20 (rectum) 358 (29.6%) 609 (30.3%) 387 (30.8%) 228 (29.6%) 472 (30.7%) 

Laterality  

Left 801 (66.3%) 1,279 (63.7%) 772 (61.5%) 476 (61.7%) 1,018 (66.2%) 

Right 320 (26.5%) 492 (24.5%) 347 (27.6%) 213 (27.6%) 419 (27.2%) 

Split 87 (7.2%) 238 (11.8%) 136 (10.8%) 82 (10.6%) 102 (6.6%) 

Treated  
Y 969 (80.2%) 1,642 (81.7%) 1,031 (82.2%) 624 (80.9%) 1,262 (82.0%) 

N 239 (19.8%) 367 (18.3%) 224 (17.8%) 147 (19.1%) 277 (18.0%) 

Deprivation (measured using TDI) is inversely related to social status. 
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2.3.5 Patient journey 

As defined in the preface to this thesis, the patient journey reflects the 

progression of a patient through the healthcare system, starting from their 

first interaction, including all referrals, and ending with completion of their 

treatment. Figure 2.3 shows a theorised patient journey for patients receiving 

treatment or care for colorectal cancer, with reference to the clinical 

pathways produced by the National Institute for Health and Care Excellence 

(NICE) (NICE, 2017a). Entry points to the healthcare system are outlined in 

red. 

Patients may visit their GP with concern regarding symptoms, and may then 

be referred for a specialist appointment, which is required to take place 

within two weeks (NICE, 2017b). Alternatively, patients may receive a 

positive result following screening. Screening is included to ensure the 

patient journey reflects current experience, although it was not available in 

the United Kingdom until 2006, as discussed in section 3.2.2, thus none of 

the patients in the example dataset described were diagnosed via the 

screening route. Emergency admission of patients with worsening symptoms 

may lead to immediate surgery, which may be a risk factor for poor 

outcomes, as also discussed in section 3.2.2. 

Once diagnosed, patients may undergo further investigation to establish the 

spread of the disease, i.e. to determine the stage of the tumour. Treatment 

options are then discussed, and a combination of different treatments may 

be performed, based on both patient and tumour characteristics. Patients 

are followed up to either monitor tumour recurrence (where curative surgery 

was performed), or to receive palliative care (where the tumour was 

considered inoperable). 

Not all aspects of the illustrated patient journey are reflected in the example 

dataset. In this dataset, patients are identified at their diagnosis visit and 

followed up as they receive specialist advice or treatment. Detailed 

treatment information is not included, nor do the data reflect ongoing 

monitoring or palliative care received. 
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Figure 2.3 Theorised patient journey through the healthcare system for 
patients receiving treatment or care for colorectal cancer; entry points 
outlined in red 

  

Patient visits GP with 

symptoms 
Positive screening result 

Patient referred for specialist 

appointment within 2 weeks 

Further investigation to establish spread of disease (e.g. CT scan) 

Detailed examination and diagnostic investigation (e.g. colonoscopy) 

Discussion of treatment options 

Treatment: combination of surgery (for local cancers) and / or other 

treatments as appropriate (e.g. chemotherapy) 

Follow-up tests to monitor 

potential disease recurrence 

after curative surgery (e.g. CT 

scan, measurement of 

biomarkers) 

Palliative care for incurable 

disease (e.g. pain relief) 

Emergency admission 
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2.4 Modelling approach to the research questions 

2.4.1 Appropriate analytical method 

Three research questions were posed in section 1.2.3, representing 

common enquiries that may be made of observational health data, with each 

question relating to a different aspect of the patient journey within the 

healthcare system. The questions are: 

(1) What is the relationship between a health exposure and outcome, and 

what other factors affect this relationship? 

(2) How does the performance of a healthcare provider vary after 

accommodating patient differences? 

(3) Can causal provider-level covariate effects be identified, after 

accommodating patient differences? 

Two-level MLLC modelling is utilised to answer these questions, with 

patients at the lower level of the hierarchy and healthcare providers (i.e. 

NHS Trusts) at the upper level. Multiple discrete latent classes are therefore 

identified at both levels. MLLC analysis is supported by an overarching latent 

variable framework, as introduced in section 1.4.1, that is inherently causal, 

and that can accommodate the separation of modelling for causal inference 

and modelling for prediction (i.e. differential selection). This comprehensive 

approach can thus be retained to answer all three research questions. As 

introduced in section 2.2.2, patient classes are determined according to 

similarities in characteristics, while Trust classes are determined either 

according to similarities or differences, dependent on the research question. 

This leads to two broad modelling strategies as described in section 2.4.3. 

The use of unique features within latent variable methodologies, as 

described in section 2.2.4.3, can be exploited to ensure a precise model 

configuration is adopted for each research question. Detailed 

parameterisations are described in section 2.4.4.  
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2.4.2 Data challenges 

Generic data challenges inherent within observational health data were 

introduced in section 1.2.2, and the traditional approach to these challenges 

was discussed in section 1.3.3. Unlike traditional regression approaches, 

MLLC analysis is fully able to address these challenges, which are 

discussed here with specific reference to the example dataset. 

Structure and non-homogeneity 

Data complexity is incorporated through a multilevel structure. Within the 

example dataset, different groups of patients attend different diagnostic 

centres (i.e. NHS Trusts), dependent on factors such as their area of 

residence. Patients are thus clustered within Trusts. 

The ability to assign latent classes to subgroups of observations allows for 

non-homogeneity at both levels of a MLLC model. Assumptions of normality 

and independence, as required for MLM, are not necessary when discrete 

latent classes are incorporated in place of continuous latent variables. In the 

example dataset, neither patients nor Trusts are likely to be homogeneous, 

for reasons explored in sections 1.2.2 (considering variability in patient and 

provider characteristics), and 1.2.3 (considering differential selection). 

Observed and unobserved variation 

While traditional regression approaches cannot accommodate uncertainty in 

model covariates, latent variable techniques allow for covariates that may be 

measured with error, or that have missing values, to be modelled as class 

predictors within the class membership part of the model. They may 

therefore be removed from the regression part of the model, thus improving 

precision and minimising bias due to uncertainty or to measurement error. 

Within the example dataset, stage at diagnosis suffers from missing values 

and, although these values are categorised, variation remains due to 

imprecise classification. Variability in the quality of pathology can lead to 

patients being classified incorrectly (Quirke and Morris, 2007); classification 

is thus prone to error. There is also potential bias in the grading of stage as 

the quality of pathology can sometimes lead to patients being ‘understaged’ 

(i.e. incorrectly assigned an earlier stage at diagnosis due to unidentified 
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lymph node metastases) (Morris et al., 2007a). For example, for the tumour 

to be classified at stage C, lymph nodes must be involved. The number of 

lymph nodes retrieved, however, is highly variable and if few nodes are 

available, this limits the likelihood of identifying node involvement, so the 

tumour may instead be classified at stage B. This has an impact on the 

treatment received, as patients diagnosed with a stage B tumour may not 

receive beneficial chemotherapy (Morris et al., 2007b). The recording of 

stage has also changed somewhat over time. If a tumour is initially graded at 

stage C, but clinical evidence of metastatic disease is then found, the policy 

in the NYCRIS region at time of data extraction was to ‘up-stage’ the tumour 

to stage D. This may not have occurred in previous years, leading to 

potential bias. Stage should therefore be included as a class predictor, when 

modelling for causal inference, in order to minimise bias due to 

measurement error. Use of a latent variable modelling approach may help to 

incorporate the additional uncertainty of having a missing stage category.  

Considering unobserved variation, the latent constructs of a MLLC model 

implicitly accommodate unmeasured differences across observations, 

thereby minimising bias due to unmeasured covariates. The example 

dataset contains only a small selection of possible variables that may be 

associated with survival from colorectal cancer. As such, its use within 

traditional modelling techniques may introduce bias if, for example, matching 

was undertaken on limited covariates. The MLLC approach does not have 

this disadvantage. 

Complex observed relationships 

Variables that may either moderate or mediate the main exposure-outcome 

relationship may be modelled as class predictors, thus removing them from 

the regression part of the model and minimising exacerbated bias due to 

measurement error (i.e. interaction terms are not required for effect 

modifiers) or due to the reversal paradox. Traditional regression approaches 

cannot accommodate these complex observed relationships without the risk 

of invoking bias. 

Previous studies investigating the association between survival from 

colorectal cancer and known potential risk factors, such as age, sex and 
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SES, have typically considered stage of disease at diagnosis (where 

available) as a potential confounder, for example Morris et al. (2011) and 

Downing et al. (2013). However, a higher level of socioeconomic deprivation 

may result in patients presenting with a more advanced stage at diagnosis 

(Jones et al., 2008; McPhail et al., 2015), which may also be associated with 

survival (Morris et al., 2011; Downing et al., 2013). SES therefore causally 

precedes stage at diagnosis and consequently stage does not qualify as a 

genuine confounder if causal inference modelling of the SES-survival 

relationship is required; it is a mediator. As such, if modelling for causal 

inference is required, stage should be removed from the regression part of 

the MLLC model. 

Covariate relationships are explored in further detail in sections 3.2.1 and 

3.2.2.  

2.4.3 Broad modelling strategies 

Two broad modelling strategies are sought. They are the basis for the 

construction of detailed modelling configurations that are unique for each 

research question, yet standard in approach.  

(i) Grouping together providers in terms of similar patient characteristics 

This yields provider-level latent classes that are homogeneous with respect 

to patient outcome and its relationship with model covariates. The focus is 

on patients and each provider-level class may contain differing proportions 

of patient classes; heterogeneity is thus accounted for at the provider level. 

This strategy allows for the exposure-outcome relationship to be determined 

at the patient level and is therefore utilised to answer research question (1). 

(ii) Grouping together providers in terms of different patient characteristics 

This yields provider-level latent classes that are heterogeneous with respect 

to patient characteristics. The focus is on providers and each provider-level 

class will contain the same proportions of patient classes, i.e. the provider 

classes are effectively patient casemix ‘adjusted’. These classes must differ 

with respect to non-patient-level characteristics, however, in order to be 
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separate classes; differences will be due to provider-level patient outcome 

differences, which in turn are due to underlying organisational factors. This 

strategy allows the researcher to assess difference in performance across 

providers, based on underlying provider-level factors rather than by patient 

casemix, and is therefore utilised to answer research questions (2) and (3). 

2.4.4 Detailed parameterisations 

Patient-class intercepts, covariates, class sizes and error variances can be 

either provider-class dependent or independent, as discussed in section 

2.2.4.3. An overview of the specific parameterisations necessary to answer 

the research questions is given here, with full consideration within the 

following chapters. 

Intercepts. For all research questions, class-independent intercepts are 

adopted to enable identical contrasts to be made amongst patient classes 

within provider classes, in a relative sense, i.e. the patient classes with ‘best’ 

and ‘worst’ mortality differ in relative terms identically for each provider class. 

If class-dependent intercepts were adopted instead, contrasts in survival 

amongst patient classes in one provider could, relatively speaking, mean 

different things according to which provider class is considered. In both 

instances, provider classes may differ in their overall outcome. It is helpful 

for illustration and ease of interpretation, though not essential, to adopt 

class-independent model intercepts. In other circumstances (especially for 

different datasets), class-dependent intercepts may be more appropriate. 

Covariate effects. Initially, class-dependent covariate effects are adopted, to 

allow for random effects, although this may be switched to class 

independent for parsimony (if there is little evidence that a parameter value 

varies across the classes), or to avoid causal circularity between a covariate, 

mediator and outcome. A combination of configurations is possible; 

parameter estimates may be constrained to take one value over a number of 

classes and another value over the remaining classes. Although technically 

possible, a priori knowledge of how the data are generated is essential 

before utilising such complex model structures. 
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Class sizes. Modelling strategy (i) requires that patient-class sizes are 

provider-class dependent, so that the provider classes are grouped by their 

similarities with respect to patient outcome and its relationship with model 

covariates. Each provider class may therefore be made up of differing 

proportions of patient classes. Modelling strategy (ii) requires that patient-

class sizes are provider-class independent; thus generating heterogeneous 

latent classes at the provider level and so accounting for differential 

selection. 

Error variance. This is not applicable to research questions (1) or (2) as a 

binary outcome only is considered. For research question (3), class-

independent error variances are adopted, based on the choices made during 

the simulation approach (as detailed in section 5.2). Patient classes are thus 

constrained to be homoscedastic, i.e. the variance of the outcome is fixed 

across the patient classes.  

Class-dependent error variances may be more appropriate for other 

datasets, for example when utilising an observational dataset where the 

outcome may be expected to vary differently for different patient subgroups. 
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Chapter 3 

Research Question (1); Focus on Patients  

3.1 Introduction 

Chapters 1 and 2 explored the overarching latent variable approach to 

modelling complex observational health data, making contrasts with 

traditional techniques with respect both to the comprehensive framework 

and to the generic data challenges. Distinctive aspects of the latent variable 

methodology were thoroughly examined, including: the use of discrete latent 

classes at all levels of a hierarchy (e.g. to account for heterogeneity), class 

predictors (e.g. to minimise bias due to effect modifiers or mediators), 

inactive covariates (e.g. to aid interpretability without affecting the primary 

relationship), and class-dependent or class-independent features (e.g. to 

precisely define model parameter requirements). 

Three research questions were presented, reflecting queries commonly 

made within observational health data, with each question concerning a 

different aspect of the patient journey within the healthcare system. MLLC 

modelling was identified to provide a suitable approach to answer all of the 

research questions; rationale (considering the overarching framework and 

generic data challenges), broad modelling strategies and detailed 

parameterisations were presented in Chapter 2, and these specifications will 

be explored further in Chapter 3, with relevance to research question (1): 

(1) What is the relationship between a health exposure and outcome, and 

what other factors affect this relationship? 

The example dataset was also introduced, and explored in detail in Chapter 

2, including specific data challenges (as examples of the generic data 

challenges discussed in section 1.2.2) that must be addressed within the 

modelling approaches to the research questions: data are hierarchical, with 

non-homogeneous groups at patient and Trust levels, there is variation due 
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to measurement error and unmeasured variables, and covariates have a 

complex observed relationship structure. 

The latent variable approach to this research question is to account for 

heterogeneity at the provider level in order to make causal inference at the 

patient level. Careful assessment of the relationship between model 

covariates is essential to ensure appropriate adjustment for confounders. 

For example, as identified in section 2.4.2, stage at diagnosis is thought to 

be a mediator of the primary exposure-outcome relationship, and is 

measured with error. 

Certain simplifications are implemented, as discussed in section 1.2.5; a 

binary outcome variable is utilised (i.e. whether or not the patient survived at 

three years following diagnosis) instead of a continuous survival measure, 

and the cross-classified effect of the small-area level is ignored. 

Section 3.2 summarises the data and methods relevant to this research 

question, including construction of a DAG, consideration of related literature, 

the modelling approach, parameterisation, and optimum model construction. 

MLM is identified as the traditional comparison; assessment of MLM 

assumptions can also be made. 

Section 3.3 presents all results, starting with the MLM analysis, through 

MLLC model construction to interpretation of the results for the latent 

classes at both patient and Trust levels, making appropriate contrasts with 

MLM.  

Section 3.4 provides a discussion of the methods and results. 

This chapter contains work based on two publications (Harrison et al., 2012; 

Harrison et al., 2013). 
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3.2 Data and methods 

3.2.1 Example Dataset 

The example dataset described in Chapter 2 is utilised, containing data on 

24,640 patients diagnosed with colorectal cancer between 1998 and 2004; 

12,708 patients (51.6%) died within three years of diagnosis. A literature 

search to identify factors that have been shown to impact on survival within 

this disease area is described in section 3.2.2. Interest lies in the association 

between SES (measured in these data using the TDI) and three-year 

mortality; the research question specific to these data is thus: 

(1) What is the relationship between SES and three-year mortality from 

colorectal cancer, and what other factors affect this relationship? 

As identified in section 2.4.2, these data are hierarchical with patients at the 

lower level and NHS Trusts at the upper level, and neither patient nor Trust 

groups are likely to be homogeneous. Stage at diagnosis suffers from 

missing data, imprecise classification, and may also lie on the causal path 

between SES and survival.  

A DAG, as introduced in section 1.2.3, is essential to assess the key 

covariate relationships. There are, however, many ways to construct a DAG, 

based on differing theorised relationships between covariates; thus, a range 

of alternatively specified DAGs are presented in figures 3.1, 3.2 and 3.3.  

Figure 3.1 illustrates a simplified approach. Stage at diagnosis is considered 

to lie on the causal path between SES and survival (represented in these 

data as three-year mortality); stage is therefore operating as a mediator of 

the exposure-outcome relationship. If included as a covariate in the 

regression part of a model, bias may be introduced due to the reversal 

paradox, as discussed in section 1.3.3. Age at diagnosis and sex are shown 

as competing exposures, with stage at diagnosis also potentially mediating 

their relationships with survival.  
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Figure 3.1 DAG (1) showing the inferred causal relationships amongst key 
variables at the population level  

 

Figure 3.2 also includes whether or not the patient receives treatment 

(curative only, in these data), which is dependent upon stage at diagnosis, 

as discussed in section 2.4.2. Treatment may then also affect survival, as 

will be described in section 3.2.2.  

 

Figure 3.2 DAG (2) showing the inferred causal relationships amongst key 
variables at the population level  
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Figure 3.3 additionally shows a causal relationship between age at diagnosis 

and SES. Age at diagnosis is a complex measurement, as it comprises risks 

due both to the time period within which the patient was born and to the 

patient’s age at which the tumour was diagnosed; differences in age at 

diagnosis have been seen to impact upon socioeconomic inequalities in 

colorectal cancer survival (Nur et al., 2015). 

 

Figure 3.3 DAG (3) showing the inferred causal relationships amongst key 
variables at the population level  

 

While any one of many DAGs, including those illustrated, may be 

appropriate for these data, the DAG shown in figure 3.1 is chosen for the 

purposes of this analysis, to simplify the inferred covariate relationships and 

thus demonstrate the utility of the latent variable techniques. 

3.2.2 Literature review 

A literature review is performed to assess risk factors associated with 

survival (or mortality) from colorectal cancer, with specific focus on the 

relationship between socioeconomic deprivation (quantified in these data as 

SES), stage and survival. Much research has been performed within this 

field and this search is not designed to cover it all, but will instead highlight 

the key findings and the methodological approach commonly taken when 

Solid lines indicate causality, while 

dashed lines indicate potential causality 
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answering this sort of research question. There are two parts to the search: 

(i) determination of the risk factors associated with survival from colorectal 

cancer; and (ii) exploration of the specific association between deprivation 

and stage at diagnosis (regardless of health outcome or other risk factors). 

The results are combined and summarised. 

Medline is selected as the most appropriate database, and a combination of 

keyword searching and medical subject headings (MeSH) are used. The full 

literature search strategy can be seen in Appendix B. Consideration of 

colorectal cancer, survival and risk factors yields 17,853 results while focus 

on socioeconomic deprivation and stage at diagnosis yields 343; these are 

combined to yield 18,018 articles. A restriction to UK articles was thus 

applied, and will ensure generalisability to the example dataset. There is no 

expectation that risk factors will differ across countries, although there may 

be differences in how individuals within the countries are affected by these 

factors (Ait Ouakrim et al., 2015). With further limitations to include only 

articles with abstracts, in English, concerning humans and published within 

the last ten years, 263 results were found. Excluding duplications, 247 

articles remain for consideration. Abstracts were initially reviewed for 

relevance, and additional articles were sourced from citations. 

Screening for colorectal cancer was introduced into the United Kingdom in 

2006, with nationwide availability by 2010, and all individuals aged over sixty 

are eligible (over fifty in Scotland). Uptake is around 54%, on average (von 

Wagner et al., 2011); and lower uptake is associated with younger age, male 

sex and a higher level of deprivation (Mansouri et al., 2013). There is also a 

low uptake in ethnically diverse areas (von Wagner et al., 2011), and for 

obese individuals (Beeken et al., 2014). Since its introduction, the screening 

programme has led to earlier stage diagnoses (Morris et al., 2012; Logan et 

al., 2012; Rees and Bevan, 2013), and patients diagnosed with tumours 

detected by screening have been seen to have better overall survival rates 

(Morris et al., 2012; Gill et al., 2014) compared with patients with non-

screen-detected tumours, and after adjustment for stage at diagnosis. 

Further, screen-detected tumours are more likely to be treated curatively 

(Morris et al., 2012). So far, screening is estimated to have reduced mortality 

due to colorectal cancer by 18% (McClements et al., 2012). 
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Diagnosis or treatment centre may have an impact on survival, due to the 

volume of procedures performed, although study findings vary. Overall 

survival rates have been seen to improve when considering larger-volume 

hospitals (Borowski et al., 2010). Some studies observe improved 

postoperative mortality for high-volume surgeons in elective surgery 

(Borowski et al., 2007; Borowski et al., 2010), while others find no 

association (Burns et al., 2013), nor is there an association seen for 

emergency surgery (Borowski et al., 2007; Faiz et al., 2010). 

Specialist surgical treatment improves survival from elective surgery both 

post-operatively (Brewster et al., 2011; Oliphant et al., 2013a; Oliphant et al., 

2014b) and within five years (Oliphant et al., 2013a; Oliphant et al., 2014b), 

with those treated by a specialist more likely to undergo surgery in a high-

volume hospital (Oliphant et al., 2014b). 

Medication may also have an impact, with use of statins (Cardwell et al., 

2014) or aspirin (Walker et al., 2012; McCowan et al., 2013) seen to reduce 

mortality. Vitamin D use is inconclusive (Zgaga et al., 2014; Jeffreys et al., 

2015). 

Regarding socio-demographic factors, there is a clear relationship between 

older age and higher rates of mortality, with older patients more likely to die 

within thirty days of diagnosis (Brewster et al., 2011; Downing et al., 2013; 

McPhail et al., 2013) (especially if they do not undergo an operation 

(Sheridan et al., 2014)), within thirty days of operation (Widdison et al., 2011; 

Faiz et al., 2011; Morris et al., 2011; Ahmed et al., 2014), and longer term 

(Faiz et al., 2011; Ahmed et al., 2014). Elderly patients are also more likely 

to present as an emergency (McPhail et al., 2013; Downing et al., 2013; 

Oliphant et al., 2014a), which is itself a risk factor for death in the early post-

operative period (Brewster et al., 2011; Morris et al., 2011; Oliphant et al., 

2014a; Askari et al., 2015), longer term (Oliphant et al., 2014a), and 

particularly so for an elderly population (Ihedioha et al., 2013). Patients 

presenting as emergencies are also more likely to receive non-specialist 

surgery (Oliphant et al., 2014a). Rates of emergency surgery are also 

decreasing in the screening age group (Hwang et al., 2014). 
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There are gender disparities in survival, with improved survival for younger 

women compared with younger men (Koo et al., 2008; Hendifar et al., 2009), 

and greater post-surgery mortality for males (McArdle et al., 2003). There 

are suggestions that tumour progression may be slowed by exposure to 

oestrogen (Arem et al., 2015), although consideration is also given to the 

discrepancy between male and female participation in screening (Mansouri 

et al., 2013). 

Ethnic minorities have longer diagnostic and referral intervals (Martins et al., 

2013), although referral route itself has not been shown to have an impact 

on survival (Zafar et al., 2012; Schneider et al., 2013). While surgical delays 

may affect survival (Nachiappan et al., 2015), the effect is not linear 

(Redaniel et al., 2014). South Asians, however, are seen to have an overall 

reduced mortality compared with all other ethnicities (Maringe et al., 2015). 

The relationship between socioeconomic deprivation and survival varies. 

Some studies report increasing deprivation as a significant predictor of 

mortality, after adjusting for other factors, post-operatively (Morris et al., 

2011), in the first year following diagnosis (Downing et al., 2013), and longer 

term (Lejeune et al., 2010); others find this effect only in univariable 

analyses (Smith et al., 2006; Bharathan et al., 2011; Brewster et al., 2011; 

Oliphant et al., 2013b; Oliphant et al., 2014a), while others find no effect at 

all (Nur et al., 2008; McMillan and McArdle, 2009; Nicholson et al., 2011). 

Patients living in more deprived areas are more likely to present for 

emergency surgery rather than elective (Bharathan et al., 2011; Oliphant et 

al., 2013b; McPhail et al., 2013) (although they are also more likely to have a 

specialist surgeon (Oliphant et al., 2013b)), to receive palliative treatment 

rather than curative (Bharathan et al., 2011; Oliphant et al., 2013b; Paterson 

et al., 2014), and to present with a more advanced stage at diagnosis (Jones 

et al., 2008; McPhail et al., 2015). Higher levels of socioeconomic 

deprivation are also associated with more adverse comorbidities (Bharathan 

et al., 2011; Oliphant et al., 2013b) and longer lengths of stay in hospital 

(Smith et al., 2006).  

Socioeconomic deprivation may reflect how patients vary in terms of lifestyle 

factors such as diet and smoking (Davy, 2007; Macdonald et al., 2007). 
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Smoking is associated with increased mortality from colorectal cancer for 

males (Morrison et al., 2011), and there is some evidence that a healthy diet 

can improve survival (Norat et al., 2015). Factors such as body mass index 

(BMI), diabetes, blood pressure and physical activity are shown to have no 

effect on survival in a large-scale cohort study on males (Morrison et al., 

2011), nor is an impact seen for BMI in a large-scale cohort study on 

females (Reeves et al., 2007). Diabetes, however, is associated with 

increased all-cause mortality after five years following a diagnosis of colon 

cancer (Walker et al., 2013). 

Worse survival outcomes are seen for a more advanced stage of disease at 

diagnosis, with associations for early deaths following diagnosis (Brewster et 

al., 2011; Downing et al., 2013; McPhail et al., 2013; McPhail et al., 2015), 

particularly within an older population (Sheridan et al., 2014), for longer-term 

mortality (Nur et al., 2008; McMillan and McArdle, 2009), and for post-

operative mortality (Morris et al., 2011; Nicholson et al., 2011; Ihedioha et 

al., 2013). Some studies do not report an effect of stage, however, after 

adjusting for other risk factors (Smith et al., 2006; Bharathan et al., 2011; 

Brewster et al., 2011; Oliphant et al., 2013b; Oliphant et al., 2014a). Late 

stage disease has also been linked to a higher likelihood of emergency 

surgery (McPhail et al., 2013; Askari et al., 2015). Differences in stage at 

diagnosis partly explain international differences in survival rates (Maringe et 

al., 2013). 

Of the studies that account specifically for both socioeconomic deprivation 

and stage, none make explicit mention of, or accommodation for, potential 

mediation. Most include both deprivation and stage (among other variables) 

within a multivariable regression model (Smith et al., 2006; Nur et al., 2008; 

Lejeune et al., 2010; Morris et al., 2011; Bharathan et al., 2011; Brewster et 

al., 2011; Downing et al., 2013; Oliphant et al., 2013b; Oliphant et al., 

2014a), while others exclude deprivation from multivariable analysis due to 

statistical non-significance within univariable analysis (McMillan and 

McArdle, 2009; Nicholson et al., 2011). Smith et al. (2006) recognise that the 

effect of deprivation is mediated on inclusion of tumour grade into the model, 

however no modifications are made to the analysis. Brewster et al. (2011) 

reflect that further research is required to determine any mediating effects 
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between deprivation and early death, but do not consider mediation within 

the analysis. 

Only three of these studies used multilevel analysis (Smith et al., 2006; 

Morris et al., 2011; Downing et al., 2013), considering postcode districts, 

NHS Trusts, or cancer registries as the upper level for analysis. The 

remainder do not account for the potential multilevel structure of the data.  

3.2.3 MLLC approach to the data 

As discussed in section 2.4.1, MLLC modelling is the preferred analytical 

method to answer the research questions. This approach lies within the 

overarching latent variable framework, which allows modelling both for 

causal inference and for prediction at all levels of a hierarchy. For research 

question (1), causal inference is required at the patient level to determine the 

relationship between SES and survival, while variation at the Trust level is 

essentially ‘nuisance’, i.e. heterogeneity must be accounted for, but no 

inference is required. Broad modelling strategy (i), introduced in section 

2.4.3, is therefore utilised. Thus, both patient and Trust classes are grouped 

together in terms of similar patient characteristics, and latent classes at both 

levels are therefore homogeneous with respect to the relationship between 

patient outcome and model covariates. In this manner, the exposure-

outcome relationship may be determined within the patient-level classes, 

while heterogeneity is accommodated at the provider level. 

The variables available for analysis within the example dataset are 

previously summarised in table 2.3, while the theorised covariate 

relationships are shown in the DAG in figure 3.1. Table 3.1 reiterates the 

available variables and specifies which are included, and how they are 

modelled, within the MLLC analytical approach to this research question. 

As shown in table 3.1, the relationship between SES and survival is 

investigated within the regression part of the model, with adjustment for sex 

and age at diagnosis (centred around the study mean of 71.5 years to 

improve model precision). An age-squared term is also included as age is 

found to have a non-linear relationship with survival; the inclusion of age-

squared allows for an adjustment to the linear effect of age and hence 
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additional accommodation of the non-linear relationship of age as a 

competing exposure. 

Table 3.1 Variables included in analysis for research question (1) 

Variables available 

for analysis 

Variables included 

in analysis 

Modelling 

approach 

Deprivation Deprivation Regression 

Sex Sex Regression 

Age at diagnosis 
Age at diagnosis Regression 

Age-squared Regression 

Stage at diagnosis Stage at diagnosis Class predictor 

ICD-10 ICD-10 Inactive covariate 

Laterality Laterality Inactive covariate 

Treated Treated Inactive covariate 

Deprivation is a measure of SES, measured in these data using TDI. 

 

Stage at diagnosis (coded A to D for increasing severity and missing values 

coded X), as a mediator of the primary relationship, is instead included as a 

class predictor. This removes stage from the regression part of the model 

and hence minimises bias due to the reversal paradox. As stage is also 

measured with error, its inclusion as a class predictor, rather than as a 

standard covariate, also avoids any exacerbated bias due to product 

interaction terms. The latent constructs may also incorporate the additional 

uncertainty due to missing data within the stage variable, although as 

discussed in section 1.2.5, methods to address missing data should 

generally be utilised (although not the focus of this thesis). The resultant 

latent classes may thus be identified by categories of stage, for example 

‘early’ or ‘late’ stage disease at diagnosis. 

The ICD-10 diagnosis code for the tumour, its laterality (position in the 

body), and whether or not curative treatment is received are included as 

inactive covariates, in order to examine their correlation with stage of 

disease, but to remove them from the SES-survival relationship. 
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3.2.4 Parameterisation 

Detailed parameterisations, introduced in section 2.4.4, are summarised 

here with respect to research question (1).  

Intercepts. Patient-class intercepts are designated class independent with 

respect to Trust classes; identical contrasts can therefore be made amongst 

patient classes regardless of which Trust class is considered. Therefore, the 

relative difference between patient classes with, for example, the ‘best’ and 

‘worst’ mortality, remains constant across Trust classes. 

Covariate effects. For SES, patient-class effects are designated class 

independent with respect to Trust classes, to avoid the causal circularity that 

may be introduced by means of the relationship between SES, stage at 

diagnosis, and three-year mortality (see section 2.2.4.1). Thus, SES has the 

same parameter value for each Trust class, and hence the SES-survival 

relationship is constrained to be the same within each patient class. 

For all other covariates, this constraint is relaxed initially and thus patient-

class effects are designated class dependent. If, however, parameter values 

are not seen to vary across the patient classes, this may be switched to 

class independent for parsimony. 

Class sizes. Patient-class sizes are designated class dependent with respect 

to Trust classes, as required for modelling strategy (i), thus accommodating 

heterogeneity at the Trust level. Trust classes may therefore comprise 

differing proportions of each patient class. 

Error variance. This is not applicable for a binary outcome. 

3.2.5 Optimum model 

Optimum model construction follows the process suggested in section 2.2.6, 

whereby a continuous latent variable is initially adopted at the Trust level 

while the preferred number of latent classes are identified at the patient 

level. Log-likelihood statistics (LL, BIC and AIC) and CE are assessed for 

guidance, and the optimum number of patient classes is chosen with 

consideration of both parsimony and interpretability. The continuous latent 
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variable at the upper level is then switched to categorical to identify the 

preferred number of latent classes at the Trust level. The same criteria are 

again considered in selection of the optimum number of Trust classes. 

Model-evaluation statistics determined during model construction are 

presented in section 3.3.3. 

3.2.6 Bootstrapping 

Bootstrapping is a sampling technique, where random samples are drawn 

from a population and similarly modelled to assess the variability around an 

estimate. A useful introduction is provided by Efron and Tibshirani (1993). 

200 bootstrapped datasets are generated, with replacement and with 

samples selected from within each Trust. Each is similarly analysed using 

the chosen MLLC model in order to generate 95% confidence intervals (CIs) 

for the model summary statistics and the model class profiles at both the 

patient and the Trust levels. 

Model summary statistics (size and mortality statistics) are calculated for 

each of the bootstrapped datasets, and CIs are generated using percentile 

confidence intervals (2.5% to 97.5%). 

For model class profiles, means or proportions (as appropriate) are 

calculated for each of the model covariates (SES, age at diagnosis and sex) 

and each of the class predictors (stage at diagnosis, whether treated, tumour 

site and laterality), based on their probabilistic assignment to each class. CIs 

are then calculated in the same manner as for the model summary statistics. 

CIs for the model covariates in the regression part of the model at the patient 

level  are determined directly from MLLC analysis of the example dataset. 

3.2.7 Traditional comparison 

MLLC modelling is compared with a traditional MLM approach, introduced in 

section 1.3.2, where hierarchical data are modelled with patients at the lower 

level and Trusts at the upper level. Within MLM, a continuous latent variable 

is incorporated at the Trust level, and parametric assumptions are made: the 

variation surrounding both intercepts and slopes is assumed to be normally 
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distributed, and independent of the variation in the individual measurements. 

As discussed in section 1.3.3, this may not be tenable in observational 

health data as neither patients nor Trusts are randomly assigned. These 

upper-level assumptions may also be evaluated, as model results will 

indicate whether or not a continuous latent variable at the Trust level is 

sufficient to model appropriately these data. 

A single patient class is used within MLM therefore heterogeneity at the 

patient level cannot be incorporated; the same model is therefore applied to 

all patients and to all Trusts. Again, model results will indicate whether or not 

this is sufficient for these data. 

SES, age at diagnosis, age-squared and sex are included as covariates in 

the regression model. Stage at diagnosis cannot be included, for reasons 

explored in section 3.2.3, and MLM does not have the capacity to model 

covariates as class predictors. The direct comparison between methods 

therefore is between use of MLLC modelling, including stage at diagnosis as 

a class predictor, versus use of MLM excluding stage entirely. 

MLM analysis is performed on the original example dataset only, i.e. no 

bootstrapped datasets are reanalysed. Interest lies in the comparison 

between estimates of the effect of model covariates, and CIs are generated 

for the covariate estimates directly from analysis. Bootstrapping would 

provide CIs for the model statistics only in the MLM analysis, and so is not 

performed. 
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3.3 Results 

3.3.1 Outline 

Results are illustrated for both the MLM and MLLC analysis approaches. 

Table 3.2 summarises the variables contained within each model. Within the 

MLM, all variables are included as covariates within the regression model. 

For the MLLC model, variables may be included either as covariates with the 

regression model, as class predictors, or as inactive covariates, as 

discussed in section 3.2.3.   

Table 3.2 Comparison of variables included in MLM and MLLC model 

Variables included in analysis 

MLM MLLC 
MLLC modelling 

approach 

Deprivation Deprivation Regression 

Sex Sex Regression 

Age at diagnosis Age at diagnosis Regression 

Age-squared Age-squared Regression 

- Stage at diagnosis Class predictor 

- ICD-10 Inactive covariate 

- Laterality Inactive covariate 

- Treated Inactive covariate 

Deprivation is a measure of SES, measured in these data using TDI. 

 

3.3.2 MLM analysis 

Table 3.3 shows the results of the traditional MLM analysis, with a single 

patient class and a continuous latent variable at the Trust level. incorporating 

SES (measured in these data using the TDI), sex, age at diagnosis and age-

squared as covariates in a multilevel regression model.  Analysis is 

performed on the example dataset only, hence no CIs are available for 

model statistics. 
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Table 3.3 Results from MLM analysis; odds of death within three years 

Model Statistics Mortality 

Overall 51.6% 

Reference Group 49.3% 

Model Covariates 
OR of death within three years 

(95% CI) 

Deprivation (per SD more) 1.18 (1.15, 1.21) 

Female 0.87 (0.83, 0.92) 

Age (per 5 years older) 1.31 (1.30, 1.33) 

Age squared (per 5 years older) 1.006 (1.005, 1.007) 

OR – Odds Ratio, CI – Confidence Interval, SD – Standard Deviation;  

LL = -16,081; Deprivation (measured using TDI) is inversely related to 

social status. 

Overall 12,708 patients (51.6%) died within three years. The reference group 

comprises males of mean age (71.5 years), diagnosed with stage A 

colorectal cancer and attributed a Townsend deprivation score of zero. 

Substantial and statistically significant associations are found between 

increasing deprivation and increased odds of death (OR=1.18, 95% CI 1.15 

to 1.21 per SD increase in Townsend deprivation score); between female 

gender and decreased odds of death (OR=0.87, 95% CI 0.83 to 0.92); 

between increasing age and increased odds of death (OR=1.31, 95% CI 

1.30 to 1.33 per 5-year increase in age); and between increasing age-

squared and increased odds of death (OR=1.006, 95% CI 1.005 to 1.007). 

All covariates included in the analysis are identified as competing exposures 

as per the DAG described in figure 3.1 of section 3.2.1. 

3.3.3 Building the MLLC model 

As discussed in section 3.2.5, a continuous latent variable is initially adopted 

at the Trust level in order to determine the optimum number of patient-level 

classes. Table 3.4 summarises the model-evaluation criteria for the MLLC 

models with a continuous latent variable at the Trust level. 
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Table 3.4 Model-evaluation criteria for the patient classes in the MLLC 
models with a continuous Trust-level latent variable 

Patient 

Classes 
LL BIC AIC 

No. of 

Parameters 

Patient 

CE 

1 class -16,081 32,213 32,173 5 0.0% 

2 classes -12,122 24,396 24,275 15 8.8% 

3 classes -11,985 24,222 24,019 25 23.2% 

4 classes -11,975 24,305 24,021 35 33.2% 

5 classes -11,966 24,386 21,021 45 32.1% 

LL – Log Likelihood, BIC – Bayesian Information Criterion, AIC – Akaike Information 

Criterion, CE – Classification Error. 

Figure 3.4 displays the change in -2LL as the number of patient classes are 

increased. 

Figure 3.4 -2LL plot to determine the optimum number of patient classes in 
the MLLC modelling approach 

 

This approach suggests that three patient classes are optimum by both the 

BIC and AIC, while the LL shows model fit improving as the number of 

patient classes increase, as would be expected with increased model 

complexity and no penalty to invoke parsimony. After marked improvement 

in the LL from one to two patient classes, there is little further improvement 

for increased numbers of patient classes. Considering all other model-

evaluation criteria and model interpretation (to distinguish patient effects), 

three patient classes are selected. 
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CE at the patient level is 23.2% for the three patient classes, which suggests 

that just under a quarter of observations are split across the classes, when 

considering probabilistic assignment, rather than these patients being 

assigned predominantly to a single patient class. 

The continuous Trust-level latent variable is then switched to categorical in 

order to determine the optimum number of Trust classes; three classes 

remain fixed at the patient level. Table 3.5 summarises the model-evaluation 

criteria for the MLLC models with a categorical latent variable at the Trust 

level, and three latent classes at the patient level.  

Table 3.5 Model-evaluation criteria for the Trust classes in the MLLC models 
with a categorical Trust-level latent variable; three patient-level latent 
classes 

Trust 

Classes 
LL BIC AIC 

No. of 

Parameters 

Patient 

CE 

Trust   

CE 

1 class -11,988 24,209 24,022 23 22.7% 0.0% 

2 classes -11,983 24,240 24,021 27 23.2% 10.6% 

3 classes -11,981 24,275 24,024 31 23.1% 10.1% 

4 classes -11,980 24,313 24,029 35 23.9% 12.9% 

5 classes -11,978 24,351 24,034 39 23.2% 17.8% 

6 classes -11,978 24,390 24,042 43 24.1% 21.4% 

7 classes -11,978 24,431 24,050 47 24.1% 30.5% 

8 classes -11,978 24,471 24,058 51 24.1% 36.5% 

LL – Log Likelihood, BIC – Bayesian Information Criterion, AIC – Akaike Information 

Criterion, CE – Classification Error. 

This approach suggests that one Trust class is optimum by the BIC, while 

two Trust classes are just optimum by the AIC. The LL shows improved 

model fit as the number of Trust classes are increased, as anticipated, 

although this is a more gradual improvement than that seen for the patient 

classes. More than one Trust class is required at the Trust level to explain 

Trust differences therefore further assessment is made of the LL.  

Figure 3.5 displays the change in -2LL as the number of Trust classes are 

increased. The -2LL value continues to improve up to that for five Trust 

classes. 
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Figure 3.5 -2LL plot to determine the optimum number of Trust classes in 
the MLLC modelling approach 

 
 

The traditional MLM approach with a continuous latent variable at the Trust 

level, extended to include three patient classes, shows a LL of -11,985, as 

seen in table 3.4. Results in table 3.5 show that this figure is surpassed by 

using two Trust classes. The -2LL plot, however, shows a gradual 

improvement in model fit with increasing numbers of Trust classes, although 

there is a suggestion that after five Trust classes, the improvement in model 

fit is minimal. Again considering parsimonious model-evaluation criteria and 

model interpretability (to model Trust variability and to improve patient-class 

estimates), the model with five Trust classes is chosen. 

CE at the patient level is unchanged from that seen with a continuous latent 

variable at the Trust level (23.2%), while CE at the Trust level is 17.8%. 

There is little concern regarding the value of the Trust CE, as upper-level 

classes are constructed primarily to account for heterogeneity at the Trust 

level, and thus improve estimates at the patient level. 

3.3.4 Patient classes 

Table 3.6 summarises the model summary statistics for the patient classes 

for the chosen three-patient, five-Trust-class MLLC model, where patients 

are apportioned to one of three groups, labelled post-hoc as ‘good 

prognosis’, ‘reasonable prognosis’, or ‘poor prognosis’.  

23,950

23,955

23,960

23,965

23,970

23,975

23,980

1 2 3 4 5 6 7 8

-2
LL

Number of Trust classes



 
- 8

0
 - 

Table 3.6 Model summary statistics for the patient classes in the three-patient, five-Trust-class MLLC model 

Model Summary Statistics 
Good Prognosis Reasonable Prognosis Poor Prognosis 

% patients (bootstrapped 95% CI) 

Class size 38.2 (30.0, 48.9) 27.6 (20.8, 38.2) 34.2 (23.7, 37.0) 

Overall mortality 9.4 (2.2, 17.4) 58.3 (49.3, 72.9) 93.2 (92.0, 99.6) 

Reference group mortality 8.0 (0.1, 16.5) 57.8 (36.7, 78.6) 94.1 (90.8, 100.0) 

CI – Confidence Interval; the reference group comprises males, aged 71.5 years, classified as Stage A at diagnosis and attributed a Townsend 

deprivation score of zero; CIs from bootstrapping calculated using percentiles. 
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The good prognosis class contains 38.2% of cases of which 9.4% died 

within three years, compared with the reasonable prognosis class with 

27.6% of cases of which 58.3% died within three years, and the poor 

prognosis class with 34.2% of cases of which 93.2% died within three years.  

Tables 3.7 and 3.8 are to be interpreted together. Table 3.7 summarises the 

model covariate results for the patient classes in the same model, while 

table 3.8 summarises the mean (for Townsend deprivation score and age) or 

proportional values (for female gender) by patient class to aid the 

interpretation of covariate relationships with three-year mortality. 

The effect of SES is constrained to take the same value across all patient 

classes, as discussed in section 3.2.4, in order to avoid the causal circularity 

between SES, stage at diagnosis, and three-year mortality. SES is therefore 

clearly associated with increased odds of death (Townsend deprivation 

score OR=1.33, 95% CI 1.26 to 1.41) for all patient classes. Mean 

deprivation scores differ somewhat across the classes, with negative values 

indicating greater affluence while positive values indicate greater 

deprivation. Patients in the poor prognosis class generally live in more 

deprived areas (mean 0.09, 95% CI 0.00 to 0.16), compared with patients in 

the good prognosis class, who generally live in more affluent areas (mean -

0.17, 95% CI -0.23 to -0.10).  

The impact of sex differs substantially across the classes. In the good 

prognosis class, females have significantly decreased odds of death 

compared with males (OR=0.59, 95% CI 0.40 to 0.87), while in the 

reasonable and poor prognosis classes the association is less clear 

(reasonable prognosis OR=0.88, 95% CI 0.64 to 1.21; poor prognosis 

OR=1.05, 95% CI 0.83 to 1.32). The proportions of females differ somewhat 

across the classes, with fewer females in the poor prognosis class (42.7%, 

95% CI 41.1% to 44.1%) compared with the good and reasonable prognosis 

classes (good prognosis 44.0%, 95% CI 43.1% to 44.9%; reasonable 

prognosis 45.9%, 95% CI 44.4% to 47.8%), indicating that the majority of 

females have a decreased risk of death compared with males. 
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Table 3.7 Model covariate results for the patient classes in the three-patient, five-Trust-class MLLC model 

Model Covariates 
Good Prognosis Reasonable Prognosis Poor Prognosis Wald       

p-value OR of death within three years (95% CI) 

Deprivation (per SD more) 1.33 (1.26, 1.41) 1.33 (1.26, 1.41) 1.33 (1.26, 1.41) N/A 

Female 0.59 (0.40, 0.87) 0.88 (0.64, 1.21) 1.05 (0.83, 1.32) 0.031 

Age (per 5 years older) 1.46 (1.33, 1.60) 2.13 (1.69, 2.67) 1.46 (1.32, 1.62) 0.018 

Age squared (per 5 years older) 1.011 (1.007,1.015) 1.009 (1.003,1.015) 1.009 (1.005,1.012) 0.710 

OR – Odds Ratio, CI – Confidence Interval, SD – Standard Deviation; the Wald p-value indicates levels of statistical significance for differences in 

effect across the patient classes; CIs directly from analysis. Deprivation (measured using TDI) is inversely related to social status. 

Table 3.8 Model class profiles for the model covariates by patient class in the three-patient, five-Trust-class MLLC model 

Model Class profiles 
Good Prognosis Reasonable Prognosis Poor Prognosis 

mean (bootstrapped 95% CI) 

Deprivation -0.17 (-0.23, -0.10) -0.03 (-0.11, 0.12) 0.09 (0.00, 0.16) 

Age (years) 70.9 (70.7, 71.2) 72.6 (71.9, 73.5) 71.4 (70.7, 71.8) 

 % patients (bootstrapped 95% CI) 

Mean or proportion (95% CI) 

Mean or proportion (95% CI) 

Female 44.0 (43.1, 44.9) 45.9 (44.4, 47.8) 42.7 (41.1, 44.1) 

CI – Confidence Interval; CIs from bootstrapping calculated using percentiles. Deprivation (measured using TDI) is inversely related to social 

status. 
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Across all classes, older age is substantially and significantly associated with 

increased odds of death (good prognosis OR=1.46, 95% CI 1.33 to 1.60; 

reasonable prognosis OR=2.13, 95% CI 1.69 to 2.67; poor prognosis 

OR=1.46, 95% CI 1.32 to 1.62 per 5-year increase in age). Also across all 

classes, age-squared is substantially associated with increased odds of 

death (good prognosis OR=1.011, 95% CI 1.007 to 1.015; reasonable 

prognosis OR=1.009, 95% CI 1.003 to 1.015; poor prognosis OR=1.009, 

95% CI 1.005 to 1.012 per 5-year increase in age). The mean age (in years) 

also differs across the classes (good prognosis 70.9, 95% CI 70.7 to 71.2; 

reasonable prognosis 72.6, 95% CI 71.9 to 73.5; poor prognosis 71.4, 95% 

CI 70.7 to 71.8), indicating that patients in the reasonable prognosis class 

are, on average, older than the patients in either of the other two classes. 

Table 3.9 summarises the model class profiles for the patient classes in the 

same model.  

The profile of stage differs across the patient classes. The good prognosis 

class corresponds to early-stage diagnosis with 70.8% (95% CI 66.0% to 

75.1%) of the stage A and B patients compared with 36.3% (95% CI 8.2% to 

44.0%) in the reasonable prognosis class and 6.0% (95% CI 4.2% to 13.1%) 

in the poor prognosis class. The poor prognosis class corresponds to late-

stage diagnosis with 65.4% (95% CI 55.9% to 81.9%) of the stage D patients 

compared with 0.5% (95% CI 0.1% to 17.0%) in the reasonable prognosis 

class and 0.7% (95% CI 0.0% to 2.2%) in the good prognosis class. The 

reasonable prognosis class contains a large proportion of patients with 

missing values for stage (30.5%, 95% CI 20.6% to 47.1%). 

A higher proportion of patients are treated in the good prognosis class 

(98.8%, 95% CI 97.6% to 99.4%) compared to either the reasonable 

prognosis class (81.4%, 68.2% to 86.7%) or the poor prognosis class 

(68.3%, 65.9% to 72.6%), which may be partly due to their stage at 

diagnosis, as early-stage patients are more likely to receive curative 

treatment (National Institute for Clinical Excellence, 2004). 
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Table 3.9 Model class profiles for the patient classes in the three-patient, five-Trust-class MLLC model 

Model Class Profiles 
Good Prognosis Reasonable Prognosis Poor Prognosis 

% patients (bootstrapped 95% CI) 

Stage A 23.2 (21.2, 25.1) 9.9 (0.2, 12.9) 0.0 (0.0, 2.1) 

Stage B 47.6 (44.8, 50.0) 26.4 (8.0, 31.1) 6.0 (4.2, 11.0) 

Stage C 26.5 (23.8, 28.4) 32.6 (26.9, 37.4) 17.2 (8.2, 19.7) 

Stage D 0.7 (0.0, 2.2) 0.5 (0.1, 17.0) 65.4 (55.9, 81.9) 

Missing stage 1.9 (0.0, 4.1) 30.5 (20.6, 47.1) 11.4 (0.2, 15.3) 

Patients receiving treatment 98.8 (97.6, 99.4) 81.4 (68.2, 86.7) 68.3 (65.9, 72.6) 

ICD-10 C18 (colon) 58.5 (57.5, 59.6) 56.0 (54.7, 58.0) 61.7 (60.6, 63.9) 

ICD-10 C19 (rectosigmoid junction) 10.8 (10.2, 11.6) 9.7 (9.2, 10.5) 10.8 (9.9, 11.6) 

ICD-10 C20 (rectum) 30.7 (29.7, 31.5) 34.3 (32.2, 35.7) 27.5 (25.3, 28.5) 

Tumour on left side 68.7 (68.0, 69.5) 68.2 (65.2, 69.0) 61.2 (59.4, 62.4) 

Tumour on right side 28.0 (27.1, 28.7) 25.2 (23.7, 26.7) 28.2 (27.0, 29.6) 

Tumour across both sides 3.3 (2.9, 3.7) 6.6 (5.6, 9.8) 10.6 (9.5, 11.6) 

CI – Confidence Interval; CIs from bootstrapping calculated using percentiles. Stage is modelled as a class predictor; patients receiving treatment, 

ICD-10 diagnosis code and laterality are modelled as inactive covariates. 
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There is some indication that the poor prognosis class contains a higher 

proportion of patients diagnosed with cancer of the colon (61.7%, 95% CI 

60.6% to 63.9%), compared with the good and reasonable prognosis 

classes (good prognosis 58.5%, 95% CI 57.5% to 59.6%; reasonable 

prognosis 56.0%, 95% CI 54.7% to 58.0%), and a lower proportion of 

patients diagnosed with cancer of the rectum (27.5%, 95% CI 25.3% to 

28.5%; versus good prognosis 30.7%, 95% CI 29.7% to 31.5%; and 

reasonable prognosis 34.3%, 95% CI 32.2% to 35.7%). This is also reflected 

in the results for laterality, as, while colon tumours may present on either 

side of the body, rectal tumours occur solely on the left side of the body.  

There is no clinical rationale why the poor prognosis class should contain a 

higher proportion of colon tumours compared with rectal tumours, or those 

split across both sides of the body, compared with left side only; rather the 

difference is likely to be by stage (Lee et al., 2013). 

The results seen for model covariates, in table 3.7, do not differ markedly 

from those obtained when different numbers of Trust classes are 

considered. Table 3.10 summarises the model covariate results for the three 

patient classes when considering between two and six Trust classes, with 

results grouped by model covariate for ease of interpretation. 

SES remains clearly associated with increased odds of death across all 

classes and in all models (Townsend deprivation score OR ranges from 1.33 

(95% CI 1.26 to 1.41, for five Trust classes) to 1.39 (95% CI 1.03 to 1.89, for 

six Trust classes)). 

Females maintain decreased odds of death in the good prognosis class (OR 

ranges from 0.53 (95% CI 0.18 to 1.57, for six Trust classes) to 0.60 (95% CI 

0.41 to 0.86, for three Trust classes)), although this only reaches statistical 

significance when considering three or five Trust classes. The association 

remains less clear, though consistent, in the reasonable and poor prognosis 

classes. 

Older age remains substantially and significantly associated with increased 

odds of death across all classes, which is again consistent across all 

models. Age-squared also remains substantially associated with increased 

odds of death across all classes and all models. 
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Table 3.10 Model covariate results for the patient classes in the three-patient, two- to six-Trust-class MLLC models 

Model Covariate 
No. Trust 

Classes 

Good Prognosis Reasonable Prognosis Poor Prognosis Wald       

p-value OR of death within three years (95% CI) 

Deprivation (per SD 

more) 

2 1.34 (1.16, 1.55) 1.34 (1.16, 1.55) 1.34 (1.16, 1.55) N/A 

3 1.34 (1.27, 1.41) 1.34 (1.27, 1.41) 1.34 (1.27, 1.41) N/A 

4 1.37 (1.12, 1.68) 1.37 (1.12, 1.68) 1.37 (1.12, 1.68) N/A 

5 1.33 (1.26, 1.41) 1.33 (1.26, 1.41) 1.33 (1.26, 1.41) N/A 

6 1.39 (1.03, 1.89) 1.39 (1.03, 1.89) 1.39 (1.03, 1.89) N/A 

Female 

2 0.58 (0.31, 1.10) 0.97 (0.73, 1.28) 1.06 (0.71, 1.58) 0.250 

3 0.60 (0.41, 0.86) 0.88 (0.66, 1.18) 1.05 (0.83, 1.34) 0.046 

4 0.54 (0.24, 1.23) 0.94 (0.70, 1.25) 1.04 (0.53, 2.04) 0.190 

5 0.59 (0.40, 0.87) 0.88 (0.64, 1.21) 1.05 (0.83, 1.32) 0.031 

6 0.53 (0.18, 1.57) 0.92 (0.69, 1.24) 1.02 (0.35, 2.96) 0.220 

OR – Odds Ratio, CI – Confidence Interval, SD – Standard Deviation; the Wald p-value indicates levels of statistical significance for differences in 

effect across the patient classes; CIs directly from analysis. Deprivation (measured using TDI) is inversely related to social status. 
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Table 3.10 continued Model covariate results for the patient classes in the three-patient, two- to six-Trust-class MLLC models 

Model Covariate 
No. Trust 

Classes 

Good Prognosis Reasonable Prognosis Poor Prognosis Wald       

p-value OR of death within three years (95% CI) 

Age (per 5 years older) 

2 1.49 (1.39, 1.60) 2.20 (1.82, 2.66) 1.35 (1.15, 1.59) <0.001 

3 1.47 (1.34, 1.61) 2.17 (1.72, 2.74) 1.45 (1.31, 1.61) 0.008 

4 1.48 (1.28, 1.72) 2.15 (1.74, 2.66) 1.39 (1.11, 1.74) 0.003 

5 1.46 (1.33, 1.60) 2.13 (1.69, 2.67) 1.46 (1.32, 1.62) 0.018 

6 1.49 (1.15, 1.94) 2.21 (1.45, 3.37) 1.41 (1.11, 1.79) 0.008 

Age squared (per 5 

years older) 

2 1.010 (1.001, 1.019) 1.011 (1.007, 1.015) 1.008 (1.002, 1.013) 0.730 

3 1.011 (1.007, 1.015) 1.010 (1.004, 1.015) 1.009 (1.005, 1.012) 0.710 

4 1.011 (1.002, 1.020) 1.010 (1.005, 1.015) 1.007 (0.999, 1.015) 0.870 

5 1.011 (1.007,1.015) 1.009 (1.003,1.015) 1.009 (1.005,1.012) 0.710 

6 1.012 (1.001, 1.023) 1.011 (1.001, 1.021) 1.007 (0.997, 1.017) 0.910 

OR – Odds Ratio, CI – Confidence Interval, SD – Standard Deviation; the Wald p-value indicates levels of statistical significance for differences in 

effect across the patient classes; CIs directly from analysis. 
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3.3.5 Patient-class comparison with MLM 

Interest lies in the comparison between the patient classes identified in the 

MLLC model versus the MLM, with comparison between stage included as a 

class predictor in the MLLC model or excluded entirely in the MLM. Table 

3.11 compares the MLM and MLLC patient-class results from tables 3.3, 3.6 

and 3.7 side by side. 

A single patient class is identified in the MLM with 51.6% of patients dying 

within three years of diagnosis. In contrast, the MLLC model identifies three 

patient classes that are distinct with respect to prognosis, representing 

variability in the patient groups. Proportions of patients dying within three 

years ranges from 9.4% (95% CI 2.2% to 17.4%) in the good prognosis 

class to 93.2% (95% CI 92.0% to 99.6%) in the poor prognosis class. 

Although SES is constrained to be the same across the patient classes in 

the MLLC model, the effect size is greater than that seen in the MLM (MLLC 

OR=1.33, 95% CI 1.26 to 1.41; MLM OR=1.18, 95% CI 1.15 to 1.21; both 

per standard deviation increase). 

For females, the MLM shows reduced odds of death compared with males 

(OR=0.87, 95% CI 0.83 to 0.92). In the MLLC model, this relationship is 

seen in the good prognosis class only (OR=0.59, 95% CI 0.40 to 0.87), 

suggesting an improved effect for females, compared with males, in early-

stage diagnoses only. 

Increased age at diagnosis, and higher values of age-squared, remain 

associated with increased odds of death both in the MLM and across all 

classes of the MLLC model. Effect sizes are greater in the MLLC model, with 

the OR for age ranging from 1.46 in both the good and poor prognosis 

classes (good prognosis 95% CI 1.33 to 1.60; poor prognosis 95% CI 1.32 to 

1.62) to 2.13 in the reasonable prognosis class (95% CI 1.69 to 2.67), 

compared with 1.31 (95% CI 1.30 to 1.33) in the MLM (both per five years 

older). 
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Table 3.11 Comparison of results from MLM and MLLC analyses; odds of death within three years 

Model Summary Statistics MLM 

MLLC 

Good 

Prognosis / Early 

Stage Diagnosis 

Reasonable 

Prognosis / Mid 

Stage Diagnosis 

Poor 

Prognosis / Late 

Stage Diagnosis 

Wald 

p-value 

 % patients (bootstrapped 95% CI for MLLC model) 

Overall mortality 51.6 9.4 (2.2, 17.4) 58.3 (49.3, 72.9) 93.2 (92.0, 99.6) N/A 

Reference group mortality 49.3 8.0 (0.1, 16.5) 57.8 (36.7, 78.6) 94.1 (90.8, 100.0) N/A 

Model Covariates OR of death within three years (95% CI) 

Deprivation (per SD more) 1.18 (1.15, 1.21) 1.33 (1.26, 1.41) 1.33 (1.26, 1.41) 1.33 (1.26, 1.41) N/A 

Female 0.87 (0.83, 0.92) 0.59 (0.40, 0.87) 0.88 (0.64, 1.21) 1.05 (0.83, 1.32) 0.031 

Age (per 5 years older) 1.31 (1.30, 1.33) 1.46 (1.33, 1.60) 2.13 (1.69, 2.67) 1.46 (1.32, 1.62) 0.018 

Age squared (per 5 years older) 1.006 (1.005, 1.007) 1.011 (1.007,1.015) 1.009 (1.003,1.015) 1.009 (1.005,1.012) 0.710 

The reference group comprises males, aged 71.5 years, classified as Stage A at diagnosis and attributed a Townsend deprivation score of zero; 

OR – Odds Ratio, CI – Confidence Interval, SD – Standard Deviation; the Wald p-value indicates levels of statistical significance for differences in 

effect across the MLLC patient classes; CIs directly from analysis unless otherwise stated; LL (MLM) = -16,081, LL (MLLC) = -11,985. Deprivation 

(measured using TDI) is inversely related to social status. 
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3.3.6 Trust classes 

Table 3.12 summarises the model summary statistics for the Trust classes 

from the chosen three-patient, five-Trust-class MLLC model, where Trusts 

are apportioned to one of five groups.  

Trust classes are defined in order to account for heterogeneity at the Trust 

level, however interest lies in their comparison with the traditional MLM. In 

table 3.3, the MLM showed 12,708 patients (51.6%) dying within three years 

of diagnosis. In contrast, the MLLC model distinguishes five Trust classes 

with mean outcome (mortality) varying from 49.6% (95% CI 46.9% to 50.8%) 

to 54.5% (95% CI 52.6% to 59.6%) of patients dying within three years; 

Trust classes are hence labelled post-hoc from ‘best’ to ‘worst’ prognosis. 

Although ordered and labelled by prognosis, this is not to imply that Trusts 

within some classes perform better or worse than Trusts within other 

classes, as Trust classes contain differing profiles of patient characteristics, 

which will be described. 

Class sizes range from 10.4% of patients (95% CI 5.2% to 47.0%; worst 

prognosis class) to 37.3% of patients (95% CI 3.7% to 51.6%; class 4). 

Confidence intervals are wide, indicating that the ordering of the best to 

worst prognosis classes varies considerably across bootstrapped datasets. 

In the example dataset, by modal assignment, the best and worst prognosis 

classes contain only two Trusts each, class 2 contains three Trusts, class 

three contains five Trusts, and class four contains seven Trusts. 

Table 3.13 summarises the model class profiles for the Trust classes from 

the same model. Point values of SES differ somewhat across the Trust 

classes, with Trusts in the best prognosis class receiving patients on 

average from more affluent areas (mean Townsend score -0.39, 95% CI -

1.04 to 1.53), while Trusts in class 2 receive patients on average from more 

deprived areas (mean Townsend score 0.38 (95% CI -1.18 to 1.33). Trusts 

in the worst prognosis class, however, receive the most affluent patients on 

average (mean Townsend score -0.45, 95% CI -1.22 to 0.45). Confidence 

intervals are very wide, however, indicating much variability in the values of 

SES across the bootstrapped datasets. 
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Table 3.12 Model summary statistics for the Trust classes in the three-patient, five-Trust-class MLLC model 

Model Summary Statistics 
Best prognosis Trust Class 2 Trust Class 3 Trust Class 4 Worst prognosis 

% patients (bootstrapped 95% CI) 

Class size 11.1 (6.0, 38.0) 14.3 (6.0, 51.4) 26.9 (6.0, 54.3) 37.3 (3.7, 51.6) 10.4 (5.2, 47.0) 

Mortality 49.6 (46.9, 50.8) 50.7 (48.5, 52.1) 50.9 (49.6, 53.5) 52.1 (50.8, 55.9) 54.5 (52.6, 59.6) 

CI – Confidence Interval; CIs from bootstrapping calculated using percentiles. 

 

Table 3.13 Model class profiles for the Trust classes in the three-patient, five-Trust-class MLLC model 

Model Class Profiles 
Best prognosis Trust Class 2 Trust Class 3 Trust Class 4 Worst prognosis 

mean (bootstrapped 95% CI) 

Mean deprivation -0.39 (-1.04, 1.53) 0.38 (-1.18, 1.33) -0.05 (-1.11, 1.12) 0.05 (-1.49, 0.86) -0.45 (-1.22, 0.45) 

Mean age (years) 71.2 (70.7, 72.6) 71.6 (70.8, 72.5) 71.8 (71.0, 72.3) 71.5 (71.0, 72.5) 71.4 (71.0, 73.1) 

 % patients (bootstrapped 95% CI) 

Female 43.4 (41.1, 47.6) 44.1 (42.1, 47.0) 44.3 (41.8, 47.2) 44.0 (41.6, 47.2) 44.6 (42.2, 47.8) 

CI – Confidence Interval; CIs from bootstrapping calculated using percentiles. Deprivation (measured using TDI) is inversely related to social 

status.
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Table 3.13 continued Model class profiles for the Trust classes in the three-patient, five-Trust-class MLLC model 

Model Class Profiles 
Best prognosis Trust Class 2 Trust Class 3 Trust Class 4 Worst prognosis 

% patients (bootstrapped 95% CI) 

Stage A 12.2 (9.9, 13.7) 11.6 (9.5, 14.4) 11.6 (9.0, 13.6) 11.6 (9.4, 13.6) 10.8 (9.4, 13.3) 

Stage B 26.9 (24.6, 29.7) 26.9 (24.7, 29.5) 27.1 (24.7, 29.4) 28.0 (24.9, 30.6) 28.6 (25.3, 34.2) 

Stage C 25.3 (21.3, 28.2) 24.0 (22.4, 29.2) 26.6 (22.5, 29.8) 24.7 (21.5, 29.5) 22.9 (18.6, 26.7) 

Stage D 22.7 (20.8, 25.2) 23.7 (20.4, 24.6) 23.0 (20.8, 24.7) 22.5 (20.3, 24.3) 22.0 (18.2, 24.2) 

Missing stage 12.9 (9.9, 15.3) 13.8 (10.3, 14.8) 11.7 (10.3, 16.4) 13.2 (10.2, 16.0) 15.7 (11.5, 18.7) 

Patients receiving treatment 84.5 (81.4, 87.7) 82.7 (82.1, 86.8) 84.7 (80.7, 87.5) 83.0 (81.2, 87.0) 81.7 (78.8, 84.6) 

ICD-10 C18 (colon) 59.1 (54.9, 63.8) 57.3 (55.5, 61.5) 58.9 (55.5, 62.5) 58.5 (56.6, 63.1) 61.8 (57.2, 64.7) 

ICD-10 C19 (rectosigmoid junction) 11.1 (8.8, 12.6) 10.9 (7.5, 12.6) 10.2 (5.5, 12.2) 10.9 (5.3, 12.3) 8.9 (7.5, 13.0) 

ICD-10 C20 (rectum) 29.8 (25.4, 34.6) 31.8 (27.6, 33.7) 30.9 (27.9, 34.6) 30.7 (27.9, 35.8) 29.2 (24.3, 32.8) 

Tumour on left side 64.8 (63.3, 70.0) 67.2 (64.1, 69.2) 67.1 (63.4, 69.5) 65.7 (62.3, 68.9) 63.9 (61.7, 67.8) 

Tumour on right side 27.3 (24.7, 30.3) 26.7 (24.7, 29.7) 27.7 (24.5, 29.3) 27.7 (25.1, 29.7) 25.3 (23.5, 29.6) 

Tumour across both sides 7.9 (4.2, 9.8) 6.1 (4.2, 9.4) 5.2 (4.4, 10.2) 6.6 (4.2, 11.1) 10.8 (5.4, 12.0) 

CI – Confidence Interval; CIs from bootstrapping calculated using percentiles. Stage is modelled as a class predictor; patients receiving treatment, 

ICD-10 diagnosis code and laterality are modelled as inactive covariates. 
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Both the mean age of patients and the proportion of females remain 

consistent across the classes. Mean age ranges from 71.2 years (95% CI 

70.7 to 72.6; best prognosis class) to 71.8 years (95% CI 71.0 to 72.3; class 

3), while the proportion of females ranges from 43.4% (95% CI 41.1% to 

47.6%; best prognosis class) to 44.6% (95% CI 42.2% to 47.8%; worst 

prognosis class). 

Proportions of patients within each of the stage categories also remain 

consistent across the classes, although there may be an indication that the 

worst prognosis class contains slightly more patients with missing values for 

stage (15.7%, 95% CI 11.5% to 18.7%) compared with the other classes. 

The worst prognosis class also contains the fewest patients receiving 

curative treatment (81.7%, 95% CI 78.8% to 84.6%). Although not significant 

differences, taken together, there may be an indication that the two Trusts in 

this class are not treating as many early-stage patients as other Trusts. 

Consistency is also predominantly seen across the classes for both the type 

and position of tumour, although there may be an indication that the worst 

prognosis class has the highest proportion of colon tumours (61.8%, 95% CI 

57.2% to 64.7%) and the lowest proportion of tumours of the rectosigmoid 

junction (8.9%, 95% CI 7.5% to 13.0%). With colon tumours presenting 

across both sides of the body, and tumours of the rectosigmoid junction 

presenting entirely on the left side of the body, this may partly explain why 

the worst prognosis class also has the lowest proportion of tumours on the 

right side of the body (25.3%, 95% CI 23.5% to 29.6%) and the highest 

proportion of tumours split across both sides of the body (10.8%, 95% CI 

5.4% to 12.0%). 

 

 

  



- 94 - 

3.4 Discussion 

The MLLC model provided a better interpretation of the data compared with 

the MLM analysis. The MLM found sizeable and significant associations 

between increasing values of the Townsend deprivation score and increased 

odds of death, between being female and decreased odds of death, and 

between older age and increased odds of death. The MLLC analysis 

categorised patients into three latent classes (labelled as good, reasonable 

and poor prognosis), and in all classes, the overall impact of both SES 

(measured in these data using the TDI) and age was found to agree with the 

MLM. For sex, females had decreased odds of death in the good prognosis 

class, but less association in the reasonable and poor prognosis classes, 

thus recognising that the relationship between sex and mortality differs 

somewhat by prognosis. These differences indicate that a single patient 

class, as in the MLM, is not sufficient to model these data, due to 

heterogeneity at the patient level. 

As stage at diagnosis was identified as a mediator of the relationship 

between SES and three-year mortality, its inclusion in a traditional 

regression model would introduce bias due to the reversal paradox; hence, it 

was excluded from the MLM. It was, however, included as a class predictor 

in the MLLC model. This therefore established the contrast between the two 

models as a comparison with and without the inclusion of stage. Good, 

reasonable and poor prognosis classes corresponded to early-, mid- and 

late-stage diagnosis respectively, with the majority of the advanced stage 

patients in the poor prognosis class. Females are seen to have decreased 

odds of death compared with males for early-stage disease.  

The effect of SES was constrained to be the same across all patient classes, 

in order to avoid the causal circularity between SES, stage and survival. 

This, however, may not avoid some degree of residual bias due to the 

reversal paradox, as the exposure-outcome relationship is unlikely to be 

independent of within-class intercepts, which effectively are ‘adjusted’ by the 

consideration of stage as a class predictor. Stage could therefore be 

removed entirely from the MLLC model, and other studies have shown that 

latent classes remain similarly defined whether or not stage is included 
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(Downing et al., 2010). The removal of stage represents a cultural shift in 

approach, however, as it is commonly included in traditional analyses. 

Utilisation of a novel technique in addition to the removal of a covariate 

previously considered to be fundamental when modelling survival 

relationships may take time to be adopted. 

Across all classes, the odds of death for both the Townsend deprivation 

score and age at diagnosis were greater in the MLLC model results, 

compared with the MLM analysis. This is perhaps due in part to the 

appropriate inclusion of stage in the model, and in an improved model fit (LL 

= -16,081 for the MLM versus -11,978 for the three-patient, five-Trust-class 

MLLC model), leading to improved estimates. 

Although models with differing numbers of Trust classes could have been 

chosen, differences in output were minimal and the same patterns of 

association were seen for all model covariates. The five Trust classes 

identified outlying Trusts, indicating that the traditional MLM with a single, 

continuous latent variable at the Trust level, is not sufficient to model these 

data. Patient casemix differences can be seen across the Trust classes (e.g. 

in the different mean values of the Townsend deprivation score) and no 

adjustment has been made for these differences, so there can be no 

inference from this analysis as to the performance of the NHS Trusts 

included in the Trust classes. An alternative approach of grouping Trusts 

according to differences in characteristics is discussed in Chapter 4, where 

differences in survival at the Trust level may be as a result of underlying 

differences in Trust performance, rather than by patient casemix. 
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Chapter 4 

Research Question (2); Casemix Adjustment 

4.1 Introduction 

Chapter 4 examines the second application of the latent variable 

methodological approach introduced in Chapter 1 and further defined in 

Chapter 2. The first application was seen in Chapter 3, where MLLC 

modelling was utilised to investigate the relationship between model 

covariates at the patient level, while accounting for heterogeneity at the 

provider level. Discrete latent classes, class predictors and unique class 

features were used to exactly specify model configurations, while accounting 

for data challenges specific to the example dataset. 

Chapter 4 explores research question (2), again using the example dataset 

(although with minor differences in the number of deaths compared with the 

data used in Chapter 3): 

(2) How does the performance of a healthcare provider vary after 

accommodating patient differences? 

This is an important question within healthcare delivery, where provider 

performance may be assessed and compared in order to identify best 

practice and advocate changes in under-performing institutions. Some 

providers may perform better or worse than others in terms of average 

survival rates, for example, but these differences may reflect the 

characteristics of their patients rather than underlying differences in their 

effectiveness. Section 1.2.3 introduced the concept of patient ‘casemix’ 

leading to differential selection based on patient heterogeneity.  

Results in Chapter 3 included a discussion of differences in prognosis 

across Trust-level latent classes (see section 3.3.6), and it was clear that 
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Trust performance could not be directly compared using patient-outcome 

differences, due to differences in patient-profile characteristics.  

In this chapter, model parameterisation thus differs substantially from that 

seen in Chapter 3, with differential selection (due to patient heterogeneity 

and casemix differences) separated from the potential causal structure of 

factors influencing provider performance. Initially, for simplification, no 

provider-level covariates are considered. This allows for a focus on the 

accommodation of differential selection at the patient level, and enables 

comparison with traditional methodologies. Chapter 5 extends the approach 

to explore the principle of evaluating causal factors operating to influence 

provider performance. 

Section 4.2 summarises the data and methods relevant to this research 

question, including the modelling approach, patient-level covariate 

configuration to account for differential selection, detailed parameterisation, 

optimum model construction and calculation of Trust performance rankings. 

Calculation of the SMR is identified as the traditional comparison.  

Section 4.3 contains all results, including model construction, a summary of 

the composition of both patient and Trust classes, and the comparison of 

performance ranking between the MLLC approach and calculation of SMRs. 

Section 4.4 provides a discussion of the methods and results. 

This chapter contains work based on two publications (Gilthorpe et al., 2011; 

Harrison et al., 2012). 
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4.2 Data and methods 

4.2.1 MLLC approach to the data 

The example dataset described in Chapter 2 is again utilised, containing 

data on 24,640 patients diagnosed with colorectal cancer between 1998 and 

2004; 12,856 patients (52.2%) died within three years of diagnosis, which, 

due to coding differences, slightly differs from the number of deaths seen in 

Chapter 3, as discussed in section 2.3.4. The same covariates are available 

for inclusion as summarised in section 2.3.4, although not all are utilised, as 

explained in section 4.2.2. 

A MLLC approach is preferred to answer the research questions, for reasons 

discussed in section 2.4.1. As identified in section 2.4.2, these data have a 

two-level hierarchical structure with NHS Trust at the upper level, used here 

as an example of an area-level healthcare provider. Other datasets may 

contain different organisational groupings, such as clinical commissioning 

groups (CCGs), for example. There is likely to be heterogeneity at both 

levels; patient groups may differ in their characteristics, leading to differential 

selection, and thus Trusts may differ in their patient casemix. MLLC 

modelling can accommodate the data structure, while maintaining an 

overarching framework that can separate modelling for causal inference and 

for differential selection across different levels of a hierarchy.  

Broad modelling strategy (ii), introduced in section 2.4.3, is utilised. While 

patient classes are constructed based on similarities in patient 

characteristics, Trust classes are instead determined based on differences in 

patient characteristics, and the same proportion of each patient class is 

allocated to each Trust class. Trust classes are therefore generated that are 

identical with respect to patient characteristics, i.e. they are patient casemix 

‘adjusted’. Trust-class outcomes (for example mean three-year mortality), 

may differ, but these differences will then be due to underlying differences in 

Trust performance, due to unmodelled factors (potential covariates) 

operating at the Trust level, rather than patient casemix. 
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4.2.2 Casemix adjustment 

As discussed in section 3.2.1, stage at diagnosis remains an imprecise 

measure, potentially exacerbating bias due to measurement error, 

particularly if interaction terms are considered, and stage contains missing 

data (though categorised for analysis). The DAGs constructed in figures 3.1, 

3.2 and 3.3 demonstrate differing complex theorised relationships between 

covariates at the patient level, with the DAG shown in figure 3.1 also chosen 

for the purposes of analysis within this chapter. Although potential causality 

has been identified between SES, stage and survival, there are no concerns 

regarding bias due to the reversal paradox in this analysis, since there is no 

attempt to seek causal inference or to make any confounder adjustment at 

the patient level. Casemix adjustment can be viewed as purely predictive 

modelling, to maximally explain the outcome with respect to the model 

covariates, with no regard for their causal relationship. 

The variables available for analysis within the example dataset are 

previously summarised in table 2.3. Table 4.1 reiterates the available 

variables and specifies which are included, and how they are modelled, 

within the MLLC analytical approach to this research question. 

Table 4.1 Variables included in analysis for research question (2) 

Variables available 

for analysis 

Variables included 

in analysis 

Modelling 

approach 

Deprivation Deprivation Regression 

Sex Sex Regression 

Age at diagnosis 
Age at diagnosis Regression 

Age-squared Regression 

Stage at diagnosis Stage at diagnosis Regression 

ICD-10 - - 

Laterality - - 

Treated - - 

Deprivation is a measure of SES, measured in these data using TDI. 

Thus, optimum outcome prediction is sought by modelling patient 

characteristics in order to accommodate casemix differences. Consequently, 



- 101 - 

SES (measured in these data using the TDI), sex and age at diagnosis 

(centred around the study mean of 71.5 years) are included in the regression 

part of the model at the patient level, along with stage at diagnosis (coded A 

to D for increasing severity and missing values coded X), because stage 

plays a crucial role in affecting survival outcomes. Uncertainty due to 

measurement error, and to unmeasured covariates, is incorporated through 

the latent constructs. 

An age-squared term is again included, to model appropriately the non-linear 

relationship between age and survival. Patient-level covariates are otherwise 

simplified for inclusion into the casemix-adjusted model, however, as interest 

lies in Trust-level comparisons rather than patient-level relationships. 

Generalised additive models (GAMs) (West, 2012) are used to visually 

identify threshold values for both SES and age, beyond which values 

become uncommon and thus relationships may become atypical. These tails 

of the distributions are then ‘trimmed’; for age, rare values less than -10 

(equivalent to 61.5 years of age) were assigned to equal -10, while for SES, 

rare values greater than 5 were assigned to equal 5. 

No class predictors or inactive covariates are included, as this modelling 

configuration is designed to account for patient-level variation in the 

differentiation of Trust-level outcomes, rather than to investigate patient-

class differences. Therefore, variables previously included as inactive for 

analysis in Chapter 3, i.e. tumour site (using ICD-10 diagnosis code), 

laterality and whether or not the patient received curative treatment, are 

excluded from analysis. 

4.2.3 Parameterisation 

Detailed parameterisations, introduced in section 2.4.4, are summarised 

here with respect to research question (2). 

Intercepts. Class-independent intercepts are set for the patient classes, in 

relation to Trust classes, as also utilised in Chapter 3. Identical contrasts can 

thus be made amongst patient classes, within all Trust classes. Detailed 

interpretation of patient classes is not intended, however, as focus is on the 

Trust classes and their implications on Trust-level outcome differences. 
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Covariate effects. All patient-class covariate effects are initially designated 

Trust-class dependent, thus allowing parameter values to vary across the 

Trust classes and hence, for the relationship between each exposure and 

outcome to differ across the patient classes. Prediction modelling, rather 

than modelling for causal inference, is required at the patient level to 

account for patient casemix, therefore there are no concerns regarding any 

causal circularity between SES, stage and survival. It is not necessary, 

therefore, to constrain the effect of SES across the classes.  

Nevertheless, any of the covariate effects may be constrained to be Trust-

class independent for parsimony, if there is evidence that a relationship does 

not vary across the patient classes. 

Class sizes. In contrast to Chapter 3, patient-class sizes are designated 

class independent with respect to Trust classes, as required for modelling 

strategy (ii). This ensures that each Trust class contains the same proportion 

of each patient class; thus Trust classes each contain the same patient 

casemix. 

Error variance. This is not applicable for a binary outcome. 

4.2.4 Optimum model 

Optimum model construction again follows the process suggested in section 

2.2.6. Initially, a continuous latent variable is adopted at the Trust level while 

the number of patient classes are sequentially increased from one to identify 

the optimum number of patient-level classes based on interpretability, but 

with parsimonious assessment from model-evaluation criteria and CE. The 

continuous latent variable is then switched to categorical to identify the 

optimum Trust-level structure. Log-likelihood statistics, model parsimony and 

CE are again explored, although also with a mind on utility, since a minimum 

of two Trust classes is both necessary and sufficient to exhibit discretised 

Trust-class differences in patient outcomes. Indeed, it may be desirable to 

consider more than two Trust classes to obtain optimal utility from this 

approach, even if model likelihood statistics are not improved by an 

increased number of Trust classes. 
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A description of model construction for the MLLC approach, using the 

example dataset, is presented in section 4.3.2. 

4.2.5 Bootstrapping 

200 bootstrapped datasets are generated, following the same process as 

described in section 3.2.6, both for dataset generation and calculation of 

95% confidence intervals (CI) for the model summary statistics and model 

class profiles, using percentiles (2.5% to 97.5%), with model class profile 

figures based on probabilistic assignment to classes. The chosen MLLC 

model, as constructed in section 4.3.2 is utilised.  

There are no model class profiles at the patient level, as all covariates are 

included in the regression part of the model; CIs for the model covariates are 

determined directly from MLLC analysis of the example dataset. 

The primary utility of the bootstrapped datasets within this chapter, however, 

is in the comparison of Trust performance rankings, as described in sections 

4.2.6 and 4.2.7.  

4.2.6 Trust performance rankings 

In a MLLC analysis, Trust classes will exhibit a graduated patient outcome 

(i.e. three-year mortality), which is used to generate ranks of Trust 

performance. Trusts are ordered based on their probabilistic assignment to 

the best survival Trust class, thus generating a performance ranking for each 

Trust that is comparable across Trusts. Across the nineteen Trusts, a rank of 

one indicates that a Trust has a high probabilistic assignment to the best 

survival Trust class while a rank of nineteen indicates that a Trust has a low 

probabilistic assignment to the best survival Trust class.  

In order to ascertain the variability of the Trust performance rankings, MLLC 

analysis is replicated for each of the 200 bootstrapped datasets, using the 

chosen model as selected in section 4.3.2. Trusts are ranked from one to 

nineteen within each dataset; thus a median rank can be calculated together 

with a credible interval (CI; 2.5% to 97.5%) (Marshall and Spiegelhalter, 

1998) for each Trust, over all datasets. 
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4.2.7 Traditional comparison 

Trust performance ranking using MLLC modelling is compared with 

calculation of the SMR, an indirect standardisation approach introduced in 

section 1.3.4. As an indirect adjustment, a standard population distribution is 

not required; instead, a comparison of rates is utilised. For the SMR, 

comparison is therefore made between the number of observed and 

expected deaths within each Trust (scaled by Trust size), with the observed 

data used to calculate the figures for both the observed and expected 

deaths. 

Logistic regression is first performed across the entire dataset, using the 

same exposure and outcome variables as for the MLLC analysis. The 

probability of death within three years can then be determined for each 

patient, based on (i.e. standardised by) observed values of age, sex, SES 

and stage. The number of expected deaths per Trust is calculated as the 

sum of these probabilities across all patients within a Trust. The number of 

observed deaths within a Trust is straightforward, and available explicitly 

within the example dataset. 

Once numbers of observed and expected deaths are determined for each 

Trust, the SMR can be calculated using the equation: 

𝑆𝑀𝑅 = 𝑛𝑜. 𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑑𝑒𝑎𝑡ℎ𝑠
𝑛𝑜. 𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑑𝑒𝑎𝑡ℎ𝑠⁄  

An SMR value equal to one indicates that the numbers of expected and 

observed deaths are the same, while a figure greater than one indicates a 

higher number of observed deaths than expected and a figure less than one 

indicates a lower number of observed deaths than expected. The difference 

from a SMR value of one is calculated for each Trust, with negative values 

indicating better outcomes and positive values indicating worse outcomes, 

compared with expected figures. 

This SMR difference is scaled by the Trust population size (by dividing by 

the square root of the Trust size), to calculate a scaled value that can be 

used to make direct comparisons across Trusts. Trusts are ranked from one 

to nineteen in increasing order of this scaled difference. Thus, a rank of one 
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is given to the ‘best’ survival Trust, while a rank of nineteen is given to the 

‘worst’. 

As for the MLLC modelling, the same 200 bootstrapped datasets are 

similarly analysed by calculation of the scaled SMR difference, and each 

Trust within each dataset is ranked from one to nineteen as described 

above. Again, the median rank and CI (2.5% to 97.5%) is calculated for each 

Trust, over all datasets.  

Each Trust therefore has a median rank and CI calculated by each 

approach, which can thus be contrasted. 
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4.3 Results 

4.3.1 Outline 

Results are illustrated for the MLLC analysis approach, with comparison 

made in section 4.3.5 between Trust performance ranks generated using 

this approach and by calculation of the SMR. Table 4.2 summarises the 

variables contained within each model. For both approaches, all variables 

are included as covariates within the regression model, as discussed in 

sections 4.2.2 and 4.2.7.  

Table 4.2 Comparison of variables included in MLLC model and calculation 
of SMR 

Variables included in analysis 

MLLC SMR 

Deprivation Deprivation 

Sex Sex 

Age at diagnosis Age at diagnosis 

Age-squared Age-squared 

Stage at diagnosis Stage at diagnosis 

Deprivation is a measure of SES, measured in these data using TDI. 

4.3.2 Building the MLLC model 

As described in section 4.2.4, a continuous latent variable is initially adopted 

at the Trust level in order to ascertain the optimum number of latent classes 

at the patient level. Table 4.3 summarises the model-evaluation criteria for 

the MLLC patient classes in this situation. 

One patient class is seen to be optimum according to the BIC, the statistic 

that favours maximum parsimony, whilst selection of four patient classes 

minimises the value of the AIC, also geared to favour parsimony, although 

less so. As seen in Chapter 3, and as expected due to the lack of 

accommodation for parsimony, the LL shows continual improvement in 

model fit as the number of patient classes are increased, although this 

increase slows beyond two patient classes.  
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Table 4.3 Model-evaluation criteria for the patient classes in the MLLC 
models with a continuous Trust-level latent variable 

 Patient 

Classes 
LL BIC AIC 

No. of 

Parameters 

Patient 

CE 

1 class -12,027 24,156 24,075 10 0.0% 

2 classes -11,976 24,165 23,994 21 34.6% 

3 classes -11,960 24,244 23,984 32 48.1% 

4 classes -11,948 24,330 23,981 43 42.2% 

5 classes -11,937 24,420 23.982 54 54.2% 

LL – Log Likelihood, BIC – Bayesian Information Criterion, AIC – Akaike Information 

Criterion, CE – Classification Error. 

Figure 4.1 displays the change in -2LL for increasing numbers of patient 

classes. 

Figure 4.1 -2LL plot to determine the optimum number of patient classes in 
the MLLC modelling approach 

 

Patient CE also increases with the number of patient classes, with 54.2% for 

five patient classes indicating that the majority of patients are split 

probabilistically across these classes, rather than being assigned mostly to a 

single class; the patient classes thus become generally more ‘virtual’ as the 

number of classes are increased. CE is not a concern, however, when 

modelling for prediction. 
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Considering the model-evaluation criteria for guidance, and recognising that 

more than one patient class is preferred to fully model patient variability, two 

patient classes are chosen. 

Table 4.4 shows the model-evaluation criteria for the Trust classes, when 

the continuous latent variable at the Trust level is switched to categorical. 

Two patient classes remain fixed. 

Table 4.4 Model-evaluation criteria for the Trust classes in the MLLC models 
with a categorical Trust-level latent variable; two patient-level latent 
classes 

Trust 

Classes 
LL BIC AIC 

No. of 

Parameters 

Patient 

CE 

Trust   

CE 

1 class -11,979 24,150 23,996 19 35.0% 0.0% 

2 classes -11,977 24,166 23,995 21 35.4% 18.6% 

3 classes -11,976 24,184 23,998 23 35.6% 22.1% 

4 classes -11,976 24,204 24,002 25 35.6% 24.6% 

5 classes -11,976 24,225 24,006 27 35.6% 25.4% 

LL – Log Likelihood, BIC – Bayesian Information Criterion, AIC – Akaike Information 

Criterion, CE – Classification Error. 

Figure 4.2 displays the change in -2LL for increasing numbers of Trust 

classes. 

Figure 4.2 -2LL plot to determine the optimum number of Trust classes in 
the MLLC modelling approach 
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The BIC shows one Trust class to be optimum, whilst the AIC just prefers 

two. The LL shows some improvement as the number of Trust classes are 

increased, up to three Trust classes, although differences are small and care 

must be taken not to over-interpret within this narrow range of figures. Again, 

the model-evaluation criteria are considered for guidance only. As discussed 

in section 4.2.4, at least two Trust classes are required in order to distinguish 

Trust-class differences, therefore two Trust classes are chosen on this 

occasion. The impact of a greater number of Trust classes is explored 

through simulations in Chapter 5. 

The chosen model therefore contains two patient classes and two Trust 

classes. Patient CE is 35.4% and Trust CE is 18.6%, indicating that the 

patient classes are more ‘virtual’ than the Trust classes, which is acceptable 

for predictive modelling at the patient level. 

4.3.3 Patient classes 

Table 4.5 summarises the patient classes in the two-patient, two-Trust-class 

MLLC model selected in section 4.3.2. 

Patients are assigned to two latent classes of similar size, one labelled ‘best’ 

prognosis (45.7% of cases (95% CI 18.1% to 82.2%), of which 39.3% (95% 

CI 33.3% to 48.2%) died within three years), and one labelled ‘worst’ 

prognosis (54.3% of cases (95% CI 17.8% to 81.9%), of which 63.0% (95% 

CI 54.9% to 84.5%) died within three years). The reference group comprises 

males of mean age (71.5 years), classified as stage A colorectal cancer at 

diagnosis, and attributed a Townsend deprivation score of zero. 

While prognosis classes are categorised by overall mortality, and there are 

two distinct classes (considering the range of the CIs), both class size and 

reference group mortality are more variable. This is due to the variability in 

values within each class, across the bootstrapped datasets, leading to wide 

CIs. 
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Table 4.5 Results for the patient classes in the two-patient, two-Trust-class MLLC model; odds of death within three years 

Model Summary Statistics 
Best prognosis Worst prognosis 

% of patients (bootstrapped 95% CI) 

Class size 45.7 (18.1-82.2) 54.3 (17.8-81.9) 

Overall mortality 39.3 (33.3-48.2) 63.0 (54.9-84.5) 

Reference group mortality 7.0 (0.0-86.2) 23.2 (1.3-69.4) 

Model Covariates OR of death within three years (95% CI) 

Deprivation (per SD more) 1.03 (0.81-1.31) 1.32 (1.21-1.43) 

Female 0.58 (0.38-0.88) 0.94 (0.78-1.14) 

Age (per 5 years older) 2.53 (1.31-4.90) 1.51 (1.42-1.60) 

Age squared (per 5 years older) 0.984 (0.960-1.008) 1.005 (0.997-1.012) 

Stage = B 0.55 (0.21-1.43) 2.40 (1.63-3.54) 

Stage = C 1.74 (0.75-4.06) 7.72 (4.61-12.94) 

Stage = D Infinite† 20.19 (8.88-45.89) 

Stage = X 33.41 (7.93-140.68) 6.30 (1.89-20.97) 

OR – Odds Ratio, CI – Confidence Interval; CIs directly from analysis unless otherwise stated; †The odds ratio cannot be estimated as there were 

zero patients who survived 3 years in this subcategory. Deprivation (measured using TDI) is inversely related to social status. 
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Although patient classes are determined using predictive modelling, i.e. to 

account for differential selection, interest remains regarding any differences 

in covariate effects across the classes. Interpretation is cautious, as, for 

example, stage at diagnosis has not been modelled appropriately for causal 

inference. Thus, it is the differences across the classes that are of interest, 

rather than the overall magnitude of the relationships. 

A significant association is seen between increasing deprivation and 

increased odds of death in the worst prognosis class (Townsend deprivation 

score OR=1.32, 95% CI 1.21 to 1.43), compared with little association in the 

best prognosis class (OR=1.03, 95% CI 0.81 to 1.31). In contrast, a 

significant association is seen between female gender and decreasing odds 

of death in the best prognosis class (OR=0.58, 95% CI 0.38 to 0.88), 

compared with little association in the worst prognosis class (OR=0.94, 95% 

CI 0.78 to 1.14). Substantial and significant associations are seen between 

older age and increased odds of death in both classes (best prognosis 

OR=2.53, 95% CI 1.31 to 4.90; worst prognosis OR=1.51, 95% CI 1.42 to 

1.60). Little association is seen for age-squared in either class (best 

prognosis OR=0.984, 95% CI 0.960 to 1.008; worst prognosis OR=1.005, 

95% CI 0.997 to 1.012), perhaps due to the ‘trimming’ of the tail of the age 

distribution, as described in section 4.2.2. 

Model covariate relationships therefore generally agree with those seen in 

Chapter 3, where both increasing deprivation and older age were associated 

with increased odds of death across three patient classes. Further, females 

were shown to have decreased odds of death compared with males in the 

good prognosis class only, as also seen here. 

The effect of stage at diagnosis also differs across the patient classes; stage 

A (earliest stage) is designated as the comparison group. In the worst 

prognosis class, all other stage categories are associated with increased 

odds of death, and the odds increase as severity increases (stage B 

OR=2.40, 95% CI 1.63 to 3.54; stage C OR=7.72, 95% CI 4.61 to 12.94; 

stage D OR=20.19, 95% CI 8.88 to 45.89). Odds of death are also increased 

for missing values of stage, compared with stage A at diagnosis (OR=6.30, 

95% CI 1.89 to 20.97). In the best prognosis class, the association is not as 
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clear, although there remains a graduation in point values of odds of death 

with increasing severity from early- to late-stage diagnosis. There is little 

association seen, however, either between stage B or C at diagnosis (stage 

B OR=0.55, 95% CI 0.21 to 1.43; stage C OR=1.74, 95% CI 0.75 to 4.06), 

compared with stage A. The association for missing values of stage remains 

evident (OR=33.41, 95% CI 7.93 to 140.68), but the association between 

stage D at diagnosis and three-year mortality cannot be estimated, as all 

patients in this category died. 

There is a noticeable pattern in deaths by stage and prognosis categories, 

as summarised in table 4.6, based on modal class assignment (i.e. by 

allocation of patients to classes according to their largest class probability). 

All patients in the worst prognosis class diagnosed at either stage B or C 

died within three years; in the best prognosis class, all patients diagnosed at 

stage A, B or C survived, while all patients diagnosed at stage D died. This 

difference is anticipated, as stage at diagnosis is an important predictor of 

survival. Thus, while all of the early- and mid-stage patients survived at three 

years in the best prognosis class, most died within three years in the worst 

prognosis class. 
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Table 4.6 Deaths by stage and patient class, for the two-patient, two-Trust-class MLLC model 

Stage at 

Diagnosis 

Modal Class;  

No. (%) of patients died within three years 

Best prognosis Worst prognosis 

Survived Died Total Survived Died Total 

A 1,210 (100.0%) 0 (0.0%) 1,210 1,099 (66.6%) 550 (33.3%) 1,649 

B 4,829 (100.0%) 0 (0.0%) 4,829 0 (0.0%) 1,955 (100.0%) 1,955 

C 3,437 (100.0%) 0 (0.0%) 3,437 0 (0.0%) 2,736 (100.0%) 2,736 

D 0 (0.0%) 1,962 (100.0%) 1,962 437 (12.0%) 3,202 (88.0%) 3,639 

Missing (X) 359 (79.8%) 91 (20.2%) 450 413 (14.9%) 2,360 (85.1%) 2,773 

Total 9,835 (82.7%) 2,053 (17.3%) 11,888 1,949 (15.3%) 10,803 (84.7%) 12,752 
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4.3.4 Trust classes 

Table 4.7 summarises the Trust classes in the two-patient, two-Trust-class 

MLLC model selected in section 4.3.2. 

Trusts are also assigned to two latent classes of similar size, one labelled 

‘best’ prognosis (53.1% of cases (95% CI 25.7% to 92.5%), of which 51.3% 

(95% CI 49.6% to 52.3%) died within three years), and one labelled ‘worst’ 

prognosis (46.9% of cases (95% CI 7.5% to 74.3%), of which 53.2% (95% 

CI 52.6% to 60.0%) died within three years). 

Classes are ordered and labelled by prognosis, and although there is only a 

small difference in overall mortality, classes are again distinct, considering 

the range of the CIs. Class size ranges, however, are again wide, due to 

variability in class size across the bootstrapped datasets. 

Model class profiles are balanced across the Trust classes, as would be 

expected for a casemix-adjusted model. A direct comparison between the 

Trust-class results in table 4.7 and those in tables 3.12 and 3.13, generated 

by means of the three-patient, five-Trust-class MLLC model, would not be 

appropriate due to the substantial differences in model parameterisations. 

While the Trust classes defined in analysis in Chapter 3 deliberately contain 

different proportions of patient classes, leading to differences in patient 

composition across the classes, those in table 4.7 are adjusted for 

differential selection and hence each represents the entire spectrum.  
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Table 4.7 Results for the Trust classes in the two-patient, two-Trust-class MLLC model; odds of death within three years 

Model Summary Statistics Best prognosis Worst prognosis 

 % patients (bootstrapped 95% CI) 

Class Size 53.1 (25.7-92.5) 46.9 (7.5-74.3) 

Mortality 51.3 (49.6-52.3) 53.2 (52.6-60.0) 

Model Class Profiles Mean (bootstrapped 95% CI) 

Mean deprivation -0.13 (-0.48 to 0.00) -0.25 (-1.05 to 0.02) 

Mean age (years) 73.1 (72.9-73.5) 73.0 (72.8-74.3) 

 % patients (bootstrapped 95% CI) 

Female 44.2 (43.3-45.2) 44.0 (42.8-47.1) 

Stage A 11.9 (10.9-12.4) 11.3 (10.1-12.6) 

Stage B 27.2 (26.4-28.6) 28.0 (26.7-33.3) 

Stage C 25.2 (24.2-26.4) 24.9 (19.3-26.3) 

Stage D 23.1 (22.2-23.8) 22.3 (19.0-23.5) 

Missing stage 12.7 (11.7-13.7) 13.5 (11.9-17.3) 

CI – Confidence Interval; CIs from bootstrapping calculated using percentiles. Deprivation (measured using TDI) is inversely related to social 

status. 
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4.3.5 Performance ranking comparison 

Results comparing Trust performance rankings between the MLLC approach 

and the calculation of SMRs are summarised in table 4.8; a low ranking 

value indicates a better survival rate than expected. Trusts are ordered by 

their median probability of belonging to the best survival MLLC Trust class, 

by methods described in section 4.2.6. 

Table 4.8 Trust ranks from the MLLC model and the calculation of Trust 
SMRs 

Trust 

Median probability of 

belonging to best 

survival Trust class 

Median Rank (95% CI) 

MLLC SMR 

1 1.000 1 (1-9.5) 6 (2-11) 

2 0.999 3 (1-11) 4 (1-10.5) 

3 0.997 4 (1-11) 3 (1-10.5) 

4 0.996 4 (1-15) 8 (3-14.5) 

5 0.993 5 (1-12.5) 5 (1-13) 

6 0.956 8 (2-16) 9 (2-17) 

7 0.912 9 (3-17) 5 (1-17) 

8 0.908 9 (2-17) 6 (1-18) 

9 0.897 9 (3-18) 5 (1-18) 

10 0.816 10 (3-17) 8 (1-18) 

11 0.575 11 (3.5-18) 11 (3-17) 

12 0.476 13 (5.5-18) 12.5 (3-18) 

13 0.372 12 (4-18.5) 11.5 (5.5-17) 

14 0.359 12 (3-19) 12 (7-17) 

15 0.152 14 (5.5-19) 15 (4.5-18) 

16 0.070 14 (4-19) 13 (7-18) 

17 0.070 15 (7.5-19) 16 (7.5-18) 

18 0.003 18 (7-19) 15 (10-18) 

19 0.002 18 (13.5-19) 19 (18-19) 

CI – Credible interval (2.5% to 97.5%); point values from interpolation. 
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Figure 4.3 then provides a graphical representation of these results, in order 

of increasing median probability of belonging to the best survival Trust class 

by the MLLC analytical approach. 

 

Figure 4.3 Trust median ranks and 95% CIs, ordered by the MLLC analysis 

 

Differences in the median rank of Trust performance between the MLLC 

approach and the calculation of Trust SMRs are within their estimated CIs, 

which are very wide, indicating a large amount of heterogeneity remaining by 

both methods. The MLLC approach is thus comparable with the traditional 

approach. 
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4.4 Discussion 

The MLLC modelling approach within this chapter incorporates available 

patient-level covariates and models patient-class uncertainty associated with 

unavailable patient-level covariates, to ensure that the resulting Trust-class 

differences in patient outcome are effectively adjusted for casemix. Model 

parameterisation has separated differential selection at the patient level (due 

to patient heterogeneity and casemix differences), from the potential causal 

structure of factors influencing Trust performance. Therefore, while the 

variation in Trust outcomes seen in Chapter 3 was attributable to explicit 

variation due to differential selection, in this chapter, differences are instead 

attributable to residual variation due to the influence of latent factors 

operating at the Trust level. This variation depends upon unmeasured Trust-

level characteristics, for example, differences in healthcare delivery 

processes. This analytical strategy has considerable prognostic utility to 

inform health service providers of disparities within patient care. 

Similar results are seen in Trust rankings across the two approaches, with 

estimates well within the CIs. The same general Trust-rank progression can 

be seen, with both methods broadly identifying the ‘best’ and ‘worst’ NHS 

Trusts based on patient outcome. Results are not identical, however, and 

those from the MLLC model should be preferred, as the method 

demonstrates a more sophisticated approach to the research question by 

accounting for uncertainty due to patient heterogeneity and measurement 

error. Use of the SMR does not fully accommodate patient casemix or 

imprecise measurements. The assumption of patient casemix only to the 

point of entry into the healthcare system is naïve, however, as heterogeneity 

may remain. Section 1.2.1 highlighted the complex relationships between 

the patient, treatment, and healthcare provider, thus the inclusion of 

treatment characteristics may further accommodate heterogeneity and 

narrow the CIs. This information is not available within the example dataset, 

however. 

The probabilities of Trust-class membership in table 4.8 are marked, with 

most Trusts belonging entirely or predominantly to one Trust class, by the 

MLLC approach. This is unsurprising, as there is only a modest difference 
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between the two classes in median survival, and probabilistic assignment 

differentiates between the two, providing a class-weighted combined survival 

rate. It is not feasible, however, for a Trust to be assigned a class-weighted 

survival rate below that of the worst survival class, or above that of the best 

survival class. This is an implicit constraint on the estimated weighted 

survival for Trusts allocated entirely to one of the two Trust classes. To 

alleviate this, more Trust classes could be sought, increasing the number 

until no Trust has a probabilistic assignment of exactly one, for classes at 

the extremities of the range of Trust outcome means. Further inclusion of 

Trust classes is considered through simulations in Chapter 5, but as applied 

here, the estimated ranks are robust. 

This chapter demonstrates an interim solution, extending the latent variable 

approach only as far as is feasible to still be able to make comparisons to a 

traditional approach. This comparison therefore shows proof of principle for 

the novel techniques. While the traditional methodologies cannot develop 

further, however, MLLC analysis offers improvement and extension to 

include both patient pathway adjustment (i.e. treatment differences, where 

available) and provider-level process variables. Further, the causal inference 

that may be investigated at the Trust level is now free from the patient-level 

differential selection issues that may conflate predictive modelling with 

causal inference modelling. 

Chapter 5 explores the principle of evaluating causal factors operating to 

influence Trust performance, while accommodating patient casemix. 
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Chapter 5 

Research Question (3); Provider-level Covariates 

5.1 Introduction 

Chapters 1 and 2 introduced and further defined the latent variable 

methodologies, putting MLLC approaches into context within an overarching 

causal framework. Model aspects and features were fully described, 

demonstrating how to precisely configure modelling approaches. Three 

research questions were posed, together with examination of the example 

dataset and a broad MLLC approach to each question.  

Analysis within Chapter 3 applied this approach to the example dataset to 

investigate covariate effects at the patient level, while accounting for 

heterogeneity at the provider level. Analysis within Chapter 4 applied the 

same approach, with different parameterisation, to investigate performance 

comparison at the provider level, while accounting for differential selection 

(i.e. patient casemix) at the patient level. This analysis was necessarily 

simplified by not considering provider-level covariates. 

Chapter 5 thus extends the investigation commenced in Chapter 4, to 

incorporate covariates at the provider level within a latent variable framework 

that also accounts for differential selection. Incorporation of organisational 

level features (such as surgeon speciality or available beds) can lead to 

improved comparisons and hence a more appropriate assessment of 

differences in levels of patient care. There are, however, no provider-level 

covariates in the example dataset. Data are therefore simulated, with both 

the data structure and the distribution of patient-level covariates based on 

values sourced from the example dataset. 

The research question appropriate to this chapter is therefore: 

(3) Can causal provider-level covariate effects be identified, after 

accommodating patient differences? 
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Use of simulated data allows for proof of principle to be demonstrated by the 

recovery of provider-level covariate effects as designed into the data 

simulations. Both continuous and binary outcome variables are investigated, 

with binary outcomes analogous to those explored in Chapters 3 and 4, i.e. 

three-year mortality. The continuous outcomes, as generated, do not 

represent a true survival outcome but may be considered to represent other 

outcomes, such as cost of care, and as such they are an important 

consideration for this and future research. There is no traditional comparison 

to the MLLC approach to this research question, as traditional techniques 

commonly adjust only for patient characteristics up to the point of entry into 

the healthcare system. 

Both binary and continuous covariate effects are considered, although for 

simplification, they are analysed separately. A further simplification is to 

simulate a homogeneous patient group, such that focus may be placed on 

the accommodation of covariates at the provider level.  

Section 5.2 describes the simulation approach, including consideration of the 

data structure, calculation of patient outcomes and of Trust-level coefficient 

effects. Simulated data combinations are described and the sensitivity of the 

approach is assessed. 

Section 5.3 explores the modelling approach, considering the MLLC 

modelling strategy, adjustment for patient casemix, model parameterisation 

and construction, and the process of recovering the Trust-level coefficient 

values. 

Section 5.4 contains all model results for both continuous and binary 

outcomes, with full interpretation, and further assessment as appropriate for 

each outcome and its findings. 

Section 5.5 provides a discussion of the methods and results. 

The Stata code used for data simulation can be seen in Appendix C. 
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5.2 Simulation approach 

5.2.1 Data structure 

Figure 5.1 graphically displays the overarching simulation approach to the 

patient and Trust levels; 24,640 patients and nineteen Trusts are utilised, to 

correspond to the example dataset. Trust size is allowed to vary, thus 

reflecting differing Trust sizes by geographical area. 

 

μ – mean, σ – standard deviation, N – total number of unique observations at 

patient or Trust level 

Figure 5.1 Overarching simulation approach to the patient and Trust levels 

 

The patient-level covariates sex, SES and age at diagnosis are simulated 

first using a trivariate covariance matrix, and values are drawn from a 

random normal distribution. Sex is defined as either male or female and 

there are approximately equal numbers of each. SES and age are centred 

on zero, with standard deviations as per descriptive statistics of the example 
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dataset (see table 2.3 in Chapter 2: Townsend deprivation score (used to 

measure SES) SD = 3.18, age SD = 11.6). Each patient is then assigned to 

one of nineteen Trusts, and randomisation ensures that no pattern is 

generated in the distribution of either Trusts or Trust-level covariates.  

The binary Trust-level covariate equals approximately ±0.5, and a random 

normal distribution (with a small standard deviation of 0.01) is used to 

introduce some variability around these figures. Values are randomly 

allocated across Trusts, thus allowing for variability in the number of Trusts 

assigned each value within each simulated dataset. While this may widen 

the uncertainty when estimating the covariate effect due to boundary values 

that may not easily be modelled, it is a strength of the simulation to allow for 

a majority one way or the other as this reflects real-world Trust-level effects. 

The continuous Trust-level covariate ranges from -0.5 to +0.5 across the 

nineteen Trusts, using a random uniform distribution to allocate values to 

Trusts. Values are generated without replacement, thus allowing for 

duplication, again to reflect real-world possibilities. 

5.2.2 Patient outcomes 

Patient outcomes are based on a linear predictor, as shown in figure 5.1, 

and calculated using the equation: 

𝐿𝑖𝑛𝑒𝑎𝑟 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑜𝑟 = 𝛽0𝑖 + (𝛽1𝑖 × 𝑠𝑒𝑥) + (𝛽2𝑖 × 𝑆𝐸𝐵) + (𝛽3𝑖 × 𝑎𝑔𝑒) 

+ (𝛽𝑇 × 𝑇𝑟𝑢𝑠𝑡 𝑙𝑒𝑣𝑒𝑙 𝑐𝑜𝑣𝑎𝑟𝑖𝑎𝑡𝑒) 

where 𝛽0𝑖 is a constant term at the patient level 𝑖, 𝛽1𝑖, 𝛽2𝑖 and 𝛽3𝑖 are the 

effects of the patient-level covariates sex, SES and age respectively, and 𝛽𝑇 

is the coefficient effect of the Trust-level covariate (binary or continuous) as 

set during simulation. Values of 𝛽0𝑖, 𝛽1𝑖, 𝛽2𝑖 and 𝛽3𝑖 are log odds values 

taken from the MLM analysis of the example dataset in Chapter 3 (OR can 

be seen in table 3.3), with 𝛽0𝑖 =  −0.0265, 𝛽1𝑖 =  −0.1368, 𝛽2𝑖 = 0.0527 and 

𝛽3𝑖 = 0.0547, and a range of 𝛽𝑇 values (defined in section 5.2.3) are utilised. 

The linear predictor therefore includes the same effect of the patient 

covariates, but a different Trust-level effect dependent on the simulated 

values of the Trust-level covariate and coefficient effect.  
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Two outcomes are then generated for each Trust-level covariate. The 

continuous outcome is equal to the value of the linear predictor plus a 

normally distributed error term; a range of error variances are utilised, as 

described in section 5.2.4. The binary outcome is drawn from a random 

binomial distribution based on the inverse logit of the linear predictor, with a 

fixed error variance of 𝜋2 3⁄  at the patient level (Snijders and Bosker, 1999). 

This fixed binomial error term has implications on the effect of the variance 

structure at other levels, which is discussed further in section 5.5. 

5.2.3 Trust-level coefficient effects 

A range of values are utilised for the coefficient effect at the Trust level (𝛽𝑇), 

to show consistency of recovery from the simulated value and to allow for 

graphical representation of the relationship between simulated and 

recovered values. 

As an informed basis for analysis, patient-level coefficient values are 

selected from previous analyses; the MLM analysis of the example dataset 

performed in Chapter 3 is again utilised, with applicable effects recorded in 

section 5.2.2. For the binary Trust-level covariate, the absolute effect of sex 

is used (0.137) while for the continuous Trust-level covariate, the effect of 

deprivation is used (0.053). Five coefficient values are investigated for each 

Trust-level covariate: the effect of the chosen coefficient, one fifth the effect, 

five times the effect, and two additional values within this range. Table 5.1 

summarises the values used for each Trust-level covariate. 

Table 5.1 Trust-level coefficient values for the binary and continuous 
Trust-level covariates 

𝜷𝑻 Effect 

𝜷𝑻 Coefficient Values 

Binary Trust- 

Level Covariate 

Continuous Trust-

Level Covariate 

One fifth effect 0.027 0.011 

Effect of sex or deprivation 0.137 0.053 

Additional value 0.250 0.120 

Additional value 0.500 0.200 

Five times effect 0.684 0.264 
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5.2.4 Error variance 

Normally distributed error terms are included in the calculation of each 

continuous outcome, as shown in figure 5.1. As the variance of these terms 

is unknown, a range of values are utilised; the error variance is calculated as 

33%, 50% or 67% of the median variance of the outcome, when calculated 

without error. Error terms are therefore generated as normally distributed 

random numbers with mean equal to zero and variance equal to each error 

variance described above, before being added to the linear predictor to 

generate each continuous outcome. Table 5.2 summarises the values of the 

error variance used for each Trust-level covariate. 

Table 5.2 Values of the error variance for the binary and continuous 
Trust-level covariates 

Error variance (%) 

Values of the Error Variance 

Binary Trust- 

Level Covariate 

Continuous Trust-

Level Covariate 

33% 0.150 0.144 

50% 0.225 0.218 

67% 0.300 0.293 

   

5.2.5 Simulated data combinations 

In addition to the five Trust-level coefficient values (𝛽𝑇) described in section 

5.2.3 and the three error variances described in section 5.2.4, three 

simulation seeds are also used to generate unique sets of 100 simulated 

datasets. Thus for the continuous outcome, forty-five sets are simulated, 

while for the binary outcome, fifteen sets are simulated (as there are no 

associated error variances). Table 5.3 summarises the combinations used; 

the same number of sets are required for each of the binary and continuous 

Trust-level covariates. 
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Table 5.3 Summary of combinations used in data simulation for both continuous and binary outcomes 

Simulation seed Error variance 

𝜷𝑻 coefficient 

One fifth effect 
Effect of 

sex or deprivation 
Additional value Additional value Five times effect 

Continuous outcome 

Seed 1 

33% 15 sets of 100 datasets Seed 2 

Seed 3 

Seed 1 

50% 15 sets of 100 datasets Seed 2 

Seed 3 

Seed 1 

67% 15 sets of 100 datasets Seed 2 

Seed 3 

Binary outcome 

Seed 1 

N/A 15 sets of 100 datasets Seed 2 

Seed 3 

𝛽𝑇 coefficient effects differ by Trust-level covariate; sets are thus produced for each covariate. 
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5.2.6 Sensitivity of the simulation approach 

Some of the choices described in the previous sections may have an impact 

on modelling outcomes. The sensitivity of these choices is therefore 

assessed. 

In section 5.2.1, nineteen Trusts are simulated. This relatively small number 

may not give robust results for either fixed or random effects, therefore the 

implication of up to fifty Trusts may also be considered, as appropriate. 

In section 5.2.1, Trust size is allowed to vary. Restricting Trust size to be the 

same throughout has no effect on the modelling outcomes. 

In section 5.2.1, for the binary Trust-level covariate, ±0.5 is selected such 

that, if balanced across Trusts, values would average to zero. On balancing 

these values, there is little difference seen in the modelling outcomes. 

Examination showed that, when values were not balanced across Trusts, the 

smallest number of Trusts to be allocated to one of the binary categories is 

four. Additional uncertainty surrounding covariate effect estimates due to 

boundary values is thus minimised. Alternative values of 0/+1 or -1/0 are 

also considered, and the effect of eliminating the normally distributed 

variation is investigated, however neither option introduces much variability 

into the modelling outcomes obtained. 

In section 5.2.1, for the continuous Trust-level covariate, the range from -0.5 

to +0.5 is also selected such that, across all Trusts, values would average to 

zero. Although duplication of values is allowed, on investigation, all values 

were found to be unique within each simulated dataset. 

In section 5.2.5, sets of 100 simulated datasets are described. Initial 

investigation increased the number to 1,000 (per combination of Trust-level 

coefficient value (𝛽𝑇), error variance and simulation seed) but there is no 

measurable difference in the recovered values of 𝛽𝑇 obtained. Therefore, to 

minimise computational requirements, 100 simulated datasets per 

combination are utilised. 
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5.3 Modelling approach 

5.3.1 MLLC approach to the data 

MLLC analysis is used to analyse the simulated data. While the simulation 

approach starts at the patient level and progresses upwards, modelling 

consideration starts at the Trust level with a latent construct, followed by 

casemix adjustment. There is therefore no direct overlap of simulation to 

analysis, thus allowing a more robust assessment of the analytical strategy. 

These data have a hierarchical structure, with patients at the lower level and 

NHS Trusts at the upper level. Although patients are simulated as a single 

homogeneous group, accommodation is made for differential selection within 

the modelling strategy and parameterisation, and the use of a latent variable 

approach explicitly accommodates uncertainty within the latent structures at 

both levels. This approach may therefore also be utilised for heterogeneous 

patient groups, and thus, heterogeneous Trust groups (due to different 

patient casemix), as both are common within observational health datasets. 

The modelling configuration is based on broad modelling strategy (ii), 

introduced in section 2.4.3, and demonstrated in Chapter 4, where patients 

are grouped into latent classes based on similarities in characteristics, while 

Trust classes are determined based on differences in patient characteristics. 

Trust classes therefore contain the same mixture of patient characteristics, 

i.e. they are balanced with respect to patient casemix. Differences in patient 

outcome are therefore due to effects operating at the Trust level. These 

effects are simulated within these data and interest thus lies in the 

comparison between simulated and recovered Trust-level coefficient values. 

5.3.2 Casemix adjustment 

Simulated values of sex, SES and age are included in the regression part of 

the model, at the patient level. No higher order terms, class predictors or 

inactive covariates are included. Bias is not a concern, since modelling at 

the patient level is required only to account for heterogeneity due to 

differential selection, and no causal inference will be made. Additional 
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covariates, such as stage at diagnosis, may therefore be included easily if 

available in observational data  

MLLC modelling is utilised to partition modelling for prediction at the patient 

level from modelling for causal inference at the Trust level, although as 

binary and continuous Trust-level covariates are investigated separately, no 

assessment of potential causal relationships between covariates at the 

upper level are required for these data. Any combination of Trust-level 

effects could be incorporated however, with construction of a DAG to model 

relationships at the Trust level. 

5.3.3 Parameterisation 

Parameterisation, as introduced in section 2.4.4, is of a similar set-up to that 

described in section 4.2.3. 

Intercepts. Class-independent intercepts are set such that identical contrasts 

may be made amongst patient classes, regardless of Trust class. 

Covariate effects. Class-dependent covariate effects are set such that 

patient-class parameter values may vary across Trust classes, to allow 

covariate-outcome relationships to vary across the patient classes. 

Class sizes. Class-independent patient-class sizes are required for 

modelling strategy (ii), to balance patient casemix across Trust classes. 

Error variance. For the continuous outcome measure, class-independent 

error variances are adopted. This restricts error variances to be the same 

across the Trust classes, thus patient classes are set to be homoscedastic 

(i.e. the variance of the outcome remains the same within each patient 

class). This is appropriate, as no heteroscedasticity is built in to the 

simulated patient-level data. 

5.3.4 Optimum model 

A range of models are explored to allow for Trust-level variation. Two Trust 

classes are required as a minimum, in order to distinguish outcome 

differences, and this is increased as required to fully model variation at the 

Trust level. Models are not selected on the basis of model-evaluation 
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criteria, parsimony, CE or interpretability; rather, Trust classes are increased 

from two to a point of no further improvement in recovered Trust-level 

coefficient values. 

Patient-level variation is incorporated by a single patient class, as patient-

level data are simulated to be homogeneous. The parameterisation detailed 

in section 5.3.3 details how the patient classes are to be organised within the 

Trust classes and hence, with only one patient class, there is essentially no 

difference between Trust-class dependence or independence. Nevertheless, 

the intent is to model as described, which will appropriately accommodate 

any increase in the number of patient classes utilised in future modelling. 

As Trust classes are increased, the time required to complete the modelling 

also increases. For each outcome and Trust-level covariate, fifteen sets of 

100 datasets are simulated, as described in section 5.2.5, for each 

combination of error variance (continuous outcome only), Trust-level 

coefficient and simulation seed.  

For models using two or three Trust classes, fifteen sets of 100 datasets can 

usually be analysed overnight. For four Trust classes, an additional half a 

day is often required, while for five Trust classes, a further overnight session 

should be allowed. Timings are estimated as they are affected by other 

computational issues such as disk space and system failures. Thus, to 

obtain the results seen in table 5.4, for example, where fifteen sets of 100 

datasets are analysed using three different MLLC models (with two, three 

and four Trust-classes) across three error variances, a minimum of ten days 

may be required. If additional modelling using five Trust-classes is 

necessary, as seen in table 5.5, a further six days may be required. 

There is no measureable difference in time required to perform the modelling 

for either nineteen or fifty Trusts. There is, however, a large increase in time 

required when considering MLLC models with ten Trust classes. To analyse 

just five sets of 100 datasets (considering only one simulation seed), using 

ten Trust classes, may take up to one week. Thus, two weeks are required 

to achieve the results seen in table 5.8. 

These computational requirements necessarily limit the scope and range of 

the models considered within the time available, however sufficient models 
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are conducted and presented within this chapter to assess the utility of the 

methodological approach to recover simulated values of the Trust-level 

coefficient effects. 

5.3.5 Trust-level coefficient recovery 

Each simulated dataset is similarly modelled using the approach described. 

A weighted mean outcome for each Trust is calculated, based on the overall 

weighted mean outcome within each Trust class and the probabilistic 

assignment of each Trust to each Trust class. As highlighted in section 

5.3.1, differences in mean outcome are due to simulated Trust-level 

covariate effects. Recovered values of the Trust-level coefficient (𝛽𝑇) are 

therefore obtained by performing single level regression analysis to regress 

the Trust weighted mean outcome on the relevant binary or continuous 

Trust-level covariate. This process is repeated for each simulated dataset, 

with medians and credible intervals (CIs; 2.5% to 97.5%) calculated over 

each set of 100 datasets, for each combination of MLLC model, simulated 

Trust-level coefficient value, and error variance (where appropriate). 

Recovered values are averaged over the three simulation seeds. 
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5.4 Results 

5.4.1 Continuous outcome 

5.4.1.1 Binary Trust-level covariate 

Table 5.4 shows the results of the analysis using a continuous outcome and 

a binary Trust-level covariate. Results are consistent across simulation 

seeds; models contained one patient class (1P) and up to four (4T) Trust 

classes. 

For all combinations, the simulated values of the Trust-level coefficient (𝛽𝑇) 

are found to be within the credible intervals for each recovered 𝛽𝑇 value, and 

results are very consistent across the different models and error variances. 

In general, as the error variance increases, the credible intervals became 

gradually wider, as would be expected, but the difference is small. For 

example, for simulated 𝛽𝑇 = 0.250, 1P-2T model, the 33% error returns a 

credible interval of 0.239 to 0.259, the 50% error returns 0.237 to 0.261 and 

the 67% error returns 0.235 to 0.263. 

The median recovered 𝛽𝑇 is almost identical to the simulated 𝛽𝑇 for all 

simulated values except the lowest, regardless of error variance or MLLC 

model. There is some suggestion that, for the lowest simulated 𝛽𝑇 = 0.027, 

the recovered 𝛽𝑇 value reduces as the error variance is increased. At the 

33% error variance, recovered 𝛽𝑇 ranges from 0.017 to 0.018 across the 

MLLC models, at 50% it ranges from 0.014 to 0.015 and at 67%, this is 

0.012 to 0.013. For this lowest simulated 𝛽𝑇, it was not possible to combine 

the results from all datasets in order to produce an estimate of the recovered 

𝛽𝑇 value. At the 33% error variance, across the MLLC models and simulation 

seeds, between 0 and 1 datasets are excluded from each set of 100. At the 

50% error variance, this increased to between 0 and 5, and at the 67% error 

variance, to between 4 and 11. As would be expected, there are more 

datasets excluded for higher values of the error variance 
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Table 5.4 Simulated and recovered values of the Trust-level coefficient for 
the continuous outcome and binary Trust-level covariate; nineteen 
simulated Trusts 

Error 

Variance 

Simulated 𝜷𝑻 

Coefficient 

MLLC 

Model 

No. Datasets 

Excluded 

Median Recovered 𝜷𝑻 

Coefficient (CI) 

33%  

(0.150) 

0.027 

1P-2T 0-1 0.017 (0.005-0.030) 

1P-3T 0-1 0.018 (0.005-0.031) 

1P-4T 0-1 0.018 (0.005-0.031) 

0.137 

1P-2T 0 0.137 (0.126-0.146) 

1P-3T 0 0.136 (0.126-0.146) 

1P-4T 0 0.136 (0.126-0.146) 

0.250 

1P-2T 0 0.250 (0.239-0.259) 

1P-3T 0 0.250 (0.239-0.259) 

1P-4T 0 0.250 (0.239-0.259) 

0.500 

1P-2T 0 0.499 (0.489-0.509) 

1P-3T 0 0.499 (0.489-0.509) 

1P-4T 0 0.499 (0.489-0.509) 

0.684 

1P-2T 0 0.683 (0.672-0.693) 

1P-3T 0 0.683 (0.673-0.693) 

1P-4T 0 0.683 (0.673-0.693) 

50%  

(0.225) 

0.027 

1P-2T 0-5 0.014 (0.002-0.029) 

1P-3T 0-5 0.015 (0.003-0.030) 

1P-4T 0-5 0.015 (0.003-0.030) 

0.137 

1P-2T 0 0.136 (0.123-0.148) 

1P-3T 0 0.136 (0.123-0.148) 

1P-4T 0 0.136 (0.123-0.149) 

0.250 

1P-2T 0 0.250 (0.237-0.261) 

1P-3T 0 0.250 (0.237-0.261) 

1P-4T 0 0.250 (0.237-0.261) 

0.500 

1P-2T 0 0.499 (0.486-0.511) 

1P-3T 0 0.499 (0.486-0.511) 

1P-4T 0 0.499 (0.486-0.511) 

0.684 

1P-2T 0 0.683 (0.670-0.695) 

1P-3T 0 0.683 (0.670-0.695) 

1P-4T 0 0.683 (0.670-0.695) 

𝛽𝑇 – Trust-level coefficient value; median averaged over 3 simulation seeds; CI – 

Credible Interval. 



- 135 - 

 

Table 5.4 continued Simulated and recovered values of the Trust-level 
coefficient for the continuous outcome and binary Trust-level covariate; 
nineteen simulated Trusts 

Error 

Variance 

Simulated 𝜷𝑻 

Coefficient 

MLLC 

Model 

No. Datasets 

Excluded 

Median Recovered 𝜷𝑻 

Coefficient (CI) 

67%  

(0.300) 

0.027 

1P-2T 4-10 0.012 (0.002-0.028) 

1P-3T 4-10 0.013 (0.002-0.029) 

1P-4T 4-11 0.013 (0.002-0.029) 

0.137 

1P-2T 0 0.136 (0.119-0.149) 

1P-3T 0 0.136 (0.118-0.150) 

1P-4T 0 0.136 (0.118-0.150) 

0.250 

1P-2T 0 0.250 (0.235-0.263) 

1P-3T 0 0.249 (0.235-0.263) 

1P-4T 0 0.249 (0.235-0.263) 

0.500 

1P-2T 0 0.499 (0.484-0.513) 

1P-3T 0 0.499 (0.484-0.512) 

1P-4T 0 0.499 (0.485-0.513) 

0.684 

1P-2T 0 0.683 (0.668-0.697) 

1P-3T 0 0.683 (0.668-0.696) 

1P-4T 0 0.683 (0.668-0.697) 

𝛽𝑇 – Trust-level coefficient value; median averaged over 3 simulation seeds; CI – 

Credible Interval.  
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The reason for these exclusions is that these datasets, when analysed, 

show exactly the same weighted mean outcome for each Trust class and the 

same probability of class membership for each of the nineteen Trusts. 

Hence, the weighted mean outcome by Trust is also identical for all Trusts 

and so the regression analysis cannot be performed, as the outcome does 

not vary. The 𝛽𝑇 coefficient cannot therefore be recovered. There is 

consistency across the models i.e. no more or less datasets are excluded on 

average for the models using four Trust classes compared to those using 

two Trust classes. All simulated datasets are included in the results for all 

other values of 𝛽𝑇. It is hypothesised that, at very small values of 𝛽𝑇, the 

noise introduced when simulating the data dominates the value of the 𝛽𝑇 

coefficient and hence the modelling process is unable to divide the Trusts 

into identifiably different Trust classes. As the numbers of excluded datasets 

are relatively small, the simulated 𝛽𝑇 = 0.027 value remains included in the 

results, although some bias may remain in the recovered 𝛽𝑇 value. This may 

explain why these recovered 𝛽𝑇 values are seen to reduce as the error 

variance is increased. Given this possibility of bias, it is reassuring that the 

simulated 𝛽𝑇 = 0.027 value remains within the 95% credible intervals of the 

recovered values throughout. 

Figure 5.2 shows the results from table 5.4 plotted by error variance, 

demonstrating that the line of equality (where recovered 𝛽𝑇 equals simulated 

𝛽𝑇) lies almost exactly on the data points and is well within the credible 

intervals. All MLLC models are included and no distinction is made between 

the number of Trust classes. 
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Figure 5.2 Plot showing 𝛽𝑇 relationship for the continuous outcome and binary Trust-level covariate 
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5.4.1.2 Continuous Trust-level covariate 

Table 5.5 shows the results of the analysis using a continuous outcome and 

a continuous Trust-level covariate, for nineteen simulated Trusts. Results 

are again consistent across simulation seeds. Again, just one patient class 

(1P) was used in the modelling, but up to five Trust classes (5T) are initially 

used to reflect the gradual improvement seen as the number of Trust 

classes are increased. 

For all combinations, the median recovered values of the Trust-level 

coefficient (𝛽𝑇) are lower than those simulated, although most simulated 

values are within the credible intervals for each recovered 𝛽𝑇 value, for 

models with three Trust classes or more. As seen when modelling the binary 

Trust-level covariate, credible intervals widen as error variance increases, 

but for the continuous Trust-level covariate models, they also widen as the 

simulated 𝛽𝑇 value is increased.  

Estimates are better for smaller values of the error variance (e.g. for the 

simulated 𝛽𝑇 = 0.120, 1P-2T model: 33% error variance returns 0.090, 50% 

error variance returns 0.087 and 67% error variance returns 0.085), and this 

pattern is seen for all simulated values of 𝛽𝑇 except the lowest. This 

indicates that an increase in simulated error variance may be dominating the 

value of the 𝛽𝑇 coefficient such that the modelling process is less able to 

separate the Trusts into distinct Trust classes. For the larger simulated 𝛽𝑇 

values, estimates also improve as the number of Trust classes are increased 

(e.g. for the simulated 𝛽𝑇 = 0.120, 33% error variance: 1P-2T returns 0.090, 

1P-3T returns 0.105, 1P-4T returns 0.107 and 1P-5T returns 0.109). This 

pattern is seen for all values of the error variance. This relationship is 

expected, as more Trust classes are required in order to fully distinguish 

differences between values of the continuous Trust-level covariate. 
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Table 5.5 Simulated and recovered values of the Trust-level coefficient for 
the continuous outcome and continuous Trust-level covariate; nineteen 
simulated Trusts 

Error 

Variance 

Simulated 𝜷𝑻 

Coefficient 

MLLC 

Model 

No. Datasets 

Excluded 

Median Recovered 𝜷𝑻 

Coefficient (CI) 

33%  

(0.144) 

0.011 

1P-2T 45-53 0.003 (-0.001 to 0.013) 

1P-3T 42-50 0.003 (-0.001 to 0.014) 

1P-4T 43-52 0.003 (-0.001 to 0.014) 

1P-5T 41-47 0.003 (-0.001 to 0.014) 

0.053 

1P-2T 0 0.032 (0.011-0.051) 

1P-3T 0 0.036 (0.012-0.056) 

1P-4T 0 0.036 (0.012-0.056) 

1P-5T 0 0.036 (0.012-0.056) 

0.120 

1P-2T 0 0.090 (0.063-0.113) 

1P-3T 0 0.105 (0.079-0.124) 

1P-4T 0 0.107 (0.084-0.127) 

1P-5T 0 0.109 (0.085-0.127) 

0.200 

1P-2T 0 0.153 (0.113-0.184) 

1P-3T 0 0.182 (0.154-0.201) 

1P-4T 0 0.188 (0.165-0.207) 

1P-5T 0 0.191 (0.168-0.210) 

0.264 

1P-2T 0 0.201 (0.153-0.241) 

1P-3T 0 0.240 (0.207-0.263) 

1P-4T 0 0.250 (0.223-0.269) 

1P-5T 0 0.254 (0.230-0.274) 

𝛽𝑇 – Trust-level coefficient value; median averaged over 3 simulation seeds; CI – 

Credible Interval.  
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Table 5.5 continued Simulated and recovered values of the Trust-level 
coefficient for the continuous outcome and continuous Trust-level 
covariate; nineteen simulated Trusts 

Error 

Variance 

Simulated 𝜷𝑻 

Coefficient 

MLLC 

Model 

No. Datasets 

Excluded 

Median Recovered 𝜷𝑻 

Coefficient (CI) 

50%  

(0.218) 

0.011 

1P-2T 51-57 0.003 (-0.002 to 0.015) 

1P-3T 46-52 0.003 (-0.002 to 0.015) 

1P-4T 47-53 0.003 (-0.002 to 0.015) 

1P-5T 43-50 0.003 (-0.002 to 0.015) 

0.053 

1P-2T 0-4 0.029 (0.008-0.052) 

1P-3T 0-4 0.031 (0.008-0.055) 

1P-4T 0-4 0.032 (0.008-0.055) 

1P-5T 0-3 0.031 (0.007-0.055) 

0.120 

1P-2T 0 0.087 (0.058-0.115) 

1P-3T 0 0.101 (0.071-0.126) 

1P-4T 0 0.103 (0.073-0.126) 

1P-5T 0 0.104 (0.073-0.129) 

0.200 

1P-2T 0 0.152 (0.111-0.185) 

1P-3T 0 0.180 (0.148-0.203) 

1P-4T 0 0.186 (0.159-0.209) 

1P-5T 0 0.188 (0.161-0.210) 

0.264 

1P-2T 0 0.202 (0.149-0.242) 

1P-3T 0 0.240 (0.203-0.264) 

1P-4T 0 0.249 (0.218-0.271) 

1P-5T 0 0.252 (0.225-0.277) 

𝛽𝑇 – Trust-level coefficient value; median averaged over 3 simulation seeds; CI – 

Credible Interval.  
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Table 5.5 continued Simulated and recovered values of the Trust-level 
coefficient for the continuous outcome and continuous Trust-level 
covariate; nineteen simulated Trusts 

Error 

Variance 

Simulated 𝜷𝑻 

Coefficient 

MLLC 

Model 

No. Datasets 

Excluded 

Median Recovered 𝜷𝑻 

Coefficient (CI) 

67%  

(0.293) 

0.011 

1P-2T 53-61 0.003 (-0.003 to 0.017) 

1P-3T 50-58 0.003 (-0.002 to 0.017) 

1P-4T 51-57 0.003 (-0.002 to 0.017) 

1P-5T 46-53 0.004 (-0.003 to 0.017) 

0.053 

1P-2T 3-6 0.027 (0.003-0.052) 

1P-3T 3-6 0.028 (0.004-0.055) 

1P-4T 2-6 0.028 (0.004-0.054) 

1P-5T 2-6 0.028 (0.005-0.054) 

0.120 

1P-2T 0 0.085 (0.054-0.115) 

1P-3T 0 0.098 (0.062-0.126) 

1P-4T 0 0.099 (0.063-0.127) 

1P-5T 0 0.100 (0.063-0.129) 

0.200 

1P-2T 0 0.151 (0.109-0.186) 

1P-3T 0 0.178 (0.143-0.205) 

1P-4T 0 0.183 (0.149-0.209) 

1P-5T 0 0.186 (0.154-0.212) 

0.264 

1P-2T 0 0.202 (0.147-0.243) 

1P-3T 0 0.238 (0.202-0.266) 

1P-4T 0 0.248 (0.213-0.274) 

1P-5T 0 0.251 (0.220-0.277) 

𝛽𝑇 – Trust-level coefficient value; median averaged over 3 simulation seeds; CI – 

Credible Interval.  
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There is less of a pattern seen for the lowest simulated 𝛽𝑇 values. In fact, for 

the lowest simulated 𝛽𝑇 value of 0.011, neither the median returned value 

nor the credible interval show much difference at all across the error 

variances or models. Additionally, for the second lowest simulated 𝛽𝑇 value 

of 0.053, while there is improvement for reduced amounts of error, and initial 

improvement between models containing two and three Trust classes, there 

is no additional improvement as the number of Trust classes are increased 

further. 

As seen in analysis using the binary Trust-level covariate, not all datasets 

are able to be included in calculation of the median recovered 𝛽𝑇 coefficient, 

for the same reasons. There are more datasets excluded here, however, for 

the same reasons as examined in section 5.4.1.1, and these figures can also 

be seen in table 5.5. For the lowest simulated 𝛽𝑇 value of 0.011, between 41 

and 61 datasets are excluded, with more exclusions seen at increased 

values of the error variance. For the second lowest simulated 𝛽𝑇 value of 

0.053, between 0 and 6 datasets are excluded, following the same pattern 

across values of the error variance. Exclusions again remain consistent 

across MLLC models. The lowest simulated 𝛽𝑇 value of 0.011 is therefore 

excluded from further investigation into the relationship between simulated 

and recovered values, as too many datasets have been excluded to rely on 

the results seen. The second lowest value of 0.053 remains included, as 

numbers of exclusions are small, although some bias may remain. It is again 

reassuring that the simulated 𝛽𝑇 = 0.053 value remains within credible 

intervals, for MLLC models with at least three Trust classes. 

Figures 5.3, 5.4 and 5.5 show the results from table 5.5, excluding the 

lowest value of 𝛽𝑇 = 0.011, plotted for 33%, 50% and 67% error variance 

respectively, and showing the gradually improving relationship between the 

simulated and recovered values of the Trust-level coefficient as the number 

of Trust classes are increased.  
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Figure 5.3 Plot showing 𝛽𝑇 relationship for the continuous outcome and continuous Trust-level covariate; 33% error variance 
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Figure 5.4 Plot showing 𝛽𝑇 relationship for the continuous outcome and continuous Trust-level covariate; 50% error variance 
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Figure 5.5 Plot showing 𝛽𝑇 relationship for the continuous outcome and continuous Trust-level covariate; 67% error variance 
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5.4.1.3 Fifty Trusts 

As discussed in section 5.2.6, interest lies in the implication of increasing the 

number of simulated Trusts from nineteen to fifty, to investigate the idea that 

use of a greater number of Trusts may lead to improved results. No other 

changes are made to the simulation process. Only 50% error variance is 

considered, as the intent here is merely to ascertain whether improved 

results are seen, rather than to replicate the entire set of results. 

Table 5.6 shows the results of the analysis for the binary Trust-level 

covariate, while table 5.7 shows the results for the continuous Trust-level 

covariate. The same models are used for fifty Trusts, as were used for 

nineteen Trusts. For the binary Trust-level covariate, therefore, up to four 

(4T) Trust classes are considered, to compare directly to model results in 

table 5.4. For the continuous Trust-level covariate, up to five (5T) Trust 

classes are considered, to compare directly to model results in table 5.5. 

For the binary Trust-level covariate, results are consistent across MLLC 

models, as also seen for nineteen Trusts. Recovered estimates, however, 

are reduced for fifty Trusts, for the lowest 𝛽𝑇 values of 0.027, 0.137 and 

0.250. Whilst, for nineteen Trusts, all simulated 𝛽𝑇 values lie within the 

credible intervals of the recovered values, this is not the case for 𝛽𝑇 = 0.027 

when considering fifty Trusts. At this lowest value of 𝛽𝑇, credible intervals 

are much reduced. The rest of the recovered values lie within credible 

intervals, however. 

For the continuous Trust-level covariate, recovered estimates are reduced 

for fifty Trusts, compared with those seen for nineteen Trusts, across all 

values of 𝛽𝑇. Recovered estimates increase as the number of Trust classes 

are increased, as also seen for nineteen Trusts, for all values of 𝛽𝑇, and 

credible intervals are generally narrower. Whilst, for nineteen Trusts, 

simulated 𝛽𝑇 values lie within the credible intervals of the recovered values 

when considering at least three Trust classes, this is not the case for fifty 

Trusts, where most recovered values lie outside of the credible intervals for 

any number of Trust classes. 
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Table 5.6 Simulated and recovered values of the Trust-level coefficient for 
the continuous outcome and binary Trust-level covariate; fifty simulated 
Trusts 

Error 

Variance 

Simulated 𝜷𝑻 

Coefficient 

MLLC 

Model 

No. Datasets 

Excluded 

Median Recovered 𝜷𝑻 

Coefficient (CI) 

50%  

(0.225) 

0.027 

1P-2T 2-9 0.008 (0.001-0.019) 

1P-3T 2-9 0.008 (0.001-0.019) 

1P-4T 2-9 0.008 (0.001-0.019) 

0.137 

1P-2T 0 0.133 (0.115-0.146) 

1P-3T 0 0.133 (0.118-0.147) 

1P-4T 0 0.133 (0.118-0.147) 

0.250 

1P-2T 0 0.249 (0.235-0.261) 

1P-3T 0 0.249 (0.236-0.262) 

1P-4T 0 0.249 (0.233-0.262) 

0.500 

1P-2T 0 0.499 (0.486-0.512) 

1P-3T 0 0.499 (0.483-0.512) 

1P-4T 0 0.499 (0.485-0.512) 

0.684 

1P-2T 0 0.683 (0.667-0.696) 

1P-3T 0 0.683 (0.669-0.696) 

1P-4T 0 0.683 (0.670-0.696) 

𝛽𝑇 – Trust-level coefficient value; median averaged over 3 simulation seeds; CI – 

Credible Interval; comparison to 19 Trusts in table 5.4. 
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Table 5.7 Simulated and recovered values of the Trust-level coefficient for 
the continuous outcome and continuous Trust-level covariate; fifty 
simulated Trusts 

Error 

Variance 

Simulated 

𝜷𝑻 

Coefficien

t 

MLLC 

Model 

No. Datasets 

Excluded 

Median Recovered 𝜷𝑻 

Coefficient (CI) 

50%  

(0.218) 

0.011 

1P-2T 51-60 0.001 (-0.003 to 0.010) 

1P-3T 47-59 0.002 (-0.003 to 0.010) 

1P-4T 46-58 0.002 (-0.003 to 0.011) 

1P-5T 43-59 0.002 (-0.003 to 0.013) 

0.053 

1P-2T 4-6 0.018 (0.003-0.034) 

1P-3T 4 0.019 (0.003-0.037) 

1P-4T 4 0.019 (0.003-0.038) 

1P-5T 4 0.019 (0.003-0.037) 

0.120 

1P-2T 0 0.076 (0.053-0.099) 

1P-3T 0 0.085 (0.056-0.107) 

1P-4T 0 0.086 (0.058-0.109) 

1P-5T 0 0.086 (0.058-0.109) 

0.200 

1P-2T 0 0.144 (0.116-0.170) 

1P-3T 0 0.169 (0.141-0.190) 

1P-4T 0 0.174 (0.146-0.197) 

1P-5T 0 0.175 (0.146-0.199) 

0.264 

1P-2T 0 0.195 (0.163-0.225) 

1P-3T 0 0.230 (0.202-0.251) 

1P-4T 0 0.239 (0.212-0.262) 

1P-5T 0 0.243 (0.214-0.266) 

𝛽𝑇 – Trust-level coefficient value; median averaged over 3 simulation seeds; CI – 

Credible Interval; comparison to 19 Trusts in table 5.5. 
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5.4.1.4 Apparent 𝜷𝑻 suppression 

Analysis for nineteen Trusts using a continuous outcome and a binary Trust-

level covariate demonstrates consistent results with median recovered 𝛽𝑇 

values seen to be almost identical to the simulated values for all values 

except the lowest. See section 5.4.1.1 and table 5.4 for these results. For a 

continuous outcome and a continuous Trust-level covariate, however, there 

is some attenuation of the effect seen. As indicated in section 5.4.1.2, and 

seen in table 5.5, median recovered 𝛽𝑇 values are lower than those 

simulated throughout, although estimates are generally better both for 

smaller values of the error variance, and for a greater number of Trust 

classes. 

When considering fifty Trusts, further attenuation is seen. For a continuous 

outcome and a binary Trust-level covariate, recovered estimates are 

reduced in comparison those seen for nineteen Trusts, for the lowest 

simulated 𝛽𝑇 values, as indicated in section 5.4.1.3, and seen in table 5.6. 

For a continuous outcome and a continuous Trust-level covariate, recovered 

estimates are again reduced for all simulated values of 𝛽𝑇, when compared 

with those seen for nineteen Trusts, as also indicated in section 5.4.1.3, and 

seen in table 5.7. Similar to the results seen for nineteen Trusts, however, 

estimates are generally better for a greater number of Trust classes. Only a 

50% error variance was used when considering fifty Trusts, so no further 

comment can be made on the effect of different sizes of error variance on 

the recovered estimates. 

This apparent suppression of recovered 𝛽𝑇 values is important when 

performing analyses using this methodological approach. Results showing 

the effect of Trust-level covariates should be interpreted cautiously, with 

consideration that effects seen may be lower than the ‘true’ effects, 

particularly for larger numbers of Trusts, greater values of the error variance, 

and smaller numbers of Trust classes. 
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5.4.1.5 Ten Trust classes 

Tables 5.5 and 5.7 show that, for a continuous outcome and a continuous 

Trust-level covariate, there is a gradual improvement in estimates of the 

recovered value of 𝛽𝑇 as the number of Trust classes are increased. Interest 

lies in whether this improvement continues beyond five Trust classes, for 

either nineteen or fifty Trusts.  

Table 5.8 shows the results of the analysis using a one patient-class (1P), 

ten Trust-class (10T) MLLC model. Due to the computational resources 

required to run these larger models, only a 50% error variance is considered, 

and just one simulation seed is used to generate the simulated datasets. 

Results do not generally show improvement compared to the one patient-

class (1P) five Trust-class (5T) MLLC models for either nineteen or fifty 

Trusts. For nineteen simulated Trusts, all simulated values of 𝛽𝑇 lie within 

the recovered credible intervals for both 5T and 10T models, whilst for fifty 

simulated Trusts, only simulated values of 𝛽𝑇 = 0.011 or 0.264 lie within 

recovered credible intervals for either of the 5T or 10T models. 

Table 5.8 Simulated and recovered values of the Trust-level coefficient for 
the continuous outcome and continuous Trust-level covariate; 1P-10T 
model 

Error 

Variance 

Simulated 

𝜷𝑻 

Coefficien

t 

No. 

Trusts 

No. Datasets 

Excluded 

Median Recovered 𝜷𝑻 

Coefficient (CI) 

50%  

(0.218) 

0.011 
19 48 0.004 (-0.001 to 0.016) 

50 54 0.001 (-0.004 to 0.011) 

0.053 
19 4 0.032 (0.009 to 0.056) 

50 4 0.018 (0.003-0.035) 

0.120 
19 0 0.104 (0.070-0.127) 

50 0 0.086 (0.051-0.109) 

0.200 
19 0 0.190 (0.160-0.211) 

50 0 0.175 (0.144-0.199) 

0.264 
19 0 0.256 (0.226-0.278) 

50 0 0.244 (0.212-0.266) 

𝛽𝑇 – Trust-level coefficient value; simulation seed 1 only; CI – Credible Interval. 
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5.4.2 Binary outcome 

Table 5.9 shows the results of the analysis using a binary outcome and a 

binary Trust-level covariate. Results are again consistent across simulation 

seeds; models contain one patient class (1P) and up to four (4T) Trust 

classes. 

The simulated values of the Trust-level coefficient (𝛽𝑇) are not found within 

the credible intervals for any of the recovered 𝛽𝑇 values, with all recovered 

estimates lying considerably lower than the respective simulated values. 

Results are, however, very consistent across the different models, indicating 

that further modelling with more Trust classes is unlikely to improve the 

estimates. Again, not all datasets are able to be included in calculation of the 

average recovered 𝛽𝑇 coefficient, for the same reasons as explained in 

section 5.4.1.1, with figures also shown in table 5.9. Exclusions again remain 

consistent across MLLC models. Due to the high number of exclusions, the 

lowest simulated value of 𝛽𝑇 = 0.027 is therefore excluded from further 

investigation into the relationship between simulated and recovered values, 

while the second lowest value of 𝛽𝑇 = 0.137 remains included, although 

some bias may be present. 

Figure 5.6 shows the results from table 5.9, excluding the lowest value of 

𝛽𝑇 = 0.027. All MLLC models are included and no distinction is made 

between the number of Trust classes, as results are consistent. A linear 

regression line is added to aid interpretation and to show the pattern of the 

recovered 𝛽𝑇 values compared with those simulated. It is clear that the line 

of equality (where recovered 𝛽𝑇 equals simulated 𝛽𝑇)  does not lie within the 

credible intervals of the recovered 𝛽𝑇 values.  

As yet, the rationale behind this observed relationship is unknown and 

further investigation is required. There may be a scalar effect operating to 

distort the relationship, which may be a function of the intraclass correlation 

coefficient (ICC), or the association may be more complex. Section 5.5 

discusses the ICC, while section 6.5 considers suggestions for further study. 
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Table 5.9 Simulated and recovered values of the Trust-level coefficient for 
the binary outcome and binary Trust-level covariate; nineteen simulated 
Trusts 

Simulated 𝜷𝑻 

Coefficient 

MLLC 

Model 

No. Datasets 

Excluded 

Median Recovered 𝜷𝑻 

Coefficient (CI) 

0.027 

1P-2T 48-60 0.001 (-0.002 to 0.010) 

1P-3T 46-57 0.002 (-0.002 to 0.010) 

1P-4T 46-57 0.002 (-0.002 to 0.010) 

0.137 

1P-2T 1-2 0.018 (0.007 to 0.037) 

1P-3T 1-2 0.018 (0.007 to 0.037) 

1P-4T 1-2 0.018 (0.007 to 0.037) 

0.250 

1P-2T 0 0.051 (0.034 to 0.066) 

1P-3T 0 0.050 (0.034 to 0.066) 

1P-4T 0 0.050 (0.034 to 0.066) 

0.500 

1P-2T 0 0.112 (0.097 to 0.125) 

1P-3T 0 0.112 (0.097 to 0.126) 

1P-4T 0 0.113 (0.097 to 0.126) 

0.684 

1P-2T 0 0.154 (0.140 to 0.167) 

1P-3T 0 0.154 (0.140 to 0.168) 

1P-4T 0 0.154 (0.140 to 0.168) 

𝛽𝑇 – Trust-level coefficient value; median averaged over 3 simulation seeds; CI – 

Credible Interval. 
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Figure 5.6 Plot showing 𝛽𝑇 relationship for the continuous outcome and binary Trust-level covariate 
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5.5 Discussion 

The MLLC modelling approach to the recovery of Trust-level coefficient 

values shows a successful recovery for both a binary and a continuous 

Trust-level covariate, when a continuous outcome is investigated. For the 

binary Trust-level covariate, recovered values are almost equal to the 

simulated values, for all except the lowest value, across MLLC models, 

simulated coefficients and error variances; all simulated values are within 

credible intervals of the recovered values. For the continuous Trust-level 

covariate, median estimates are lower than simulated values throughout, 

showing some attenuation of effect as described in section 5.4.1.4. 

Improvement is seen, however, as the number of Trust classes are 

increased; all simulated values are within credible intervals of the recovered 

values when the number of Trust classes are at least three. This difference 

is anticipated, as more Trust classes are required to fully distinguish 

differences between values of a continuous Trust-level covariate. Additional 

covariates between the binary and continuous could be explored, i.e. three 

or more categories would be simulated, and the same analysis performed. 

Lower simulated values of the Trust-level covariate are not recovered as well 

as higher values. It is possible that the variation introduced during simulation 

dominates the coefficient value such that it is harder to identify within the 

modelling process. The additional variation in the continuous Trust-level 

covariate may also mean that a small simulated value may be even harder 

to identify, thus higher values of the Trust-level covariate are recovered 

more successfully. 

The use of fifty Trusts does not improve estimates when compared to 

nineteen Trusts. Estimates, in fact, are lower, with some simulated values of 

the Trust-level coefficient lying outside recovered credible intervals. Whilst 

simulations with fifty Trusts can support more Trust classes compared with 

those with nineteen Trusts, there is no evidence that this is a solution. An 

increase to ten Trust classes does not improve estimates compared with 

MLLC models with up to five Trust classes, for simulated data with either 

nineteen or fifty Trusts.  
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When investigating a binary outcome, results are not as clear. Consideration 

is given to the possibility of a scalar effect operating to distort the 

relationship between simulated and recovered values of the Trust-level 

coefficient, which may be a function of the ICC, as discussed in section 

5.4.2. In a MLLC model, the binomial error variance at the lower level is fixed 

at a value of 𝜋2 3⁄ , as indicated in section 5.2.2, while the variance at the 

upper level is allowed to vary. The modelling process includes sex, SES and 

age at the lower level, thus explaining some of the variability at this level. 

Since the lower-level variance is fixed, however, this may impact on the 

upper-level variance, creating a scalar effect in the results. The effect of 

𝜋2 3⁄ = 3.290 alone, however, does not appear to explain the relationship 

seen in figure 5.6. Further research is therefore required, which is discussed 

in section 6.5. 

Nevertheless, the MLLC approach as demonstrated here has many 

advantages. Modelling for prediction and for causal inference are partitioned, 

thus performing adjustment for differential selection at the patient level, while 

allowing for a causal inference structure at the provider level. This approach 

is feasible only through use of latent variable methodologies; traditional 

approaches cannot replicate the modelling performed here. Although upper-

level covariates are included individually in this analysis, there is much 

scope to extend by consideration of multiple covariates at the provider level. 

A multivariable DAG could be constructed at this level in order to adjust 

appropriately for multiple provider-level covariates within a single analytical 

framework, and is discussed further in section 6.5. 
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Chapter 6 

Discussion 

6.1 Introduction 

This study set out to explore the utility of unexploited, novel statistical 

techniques in the analysis of complex observational health data. A more 

advanced modelling approach has been demonstrated that lies within an 

overarching causal framework, thus allowing for different modelling 

approaches to be partitioned across levels of a hierarchy, while 

accommodating uncertainty within the model covariates. Through the 

exploration of three research questions, aspects of the patient journey have 

been highlighted for detailed methodological consideration by latent variable 

techniques, and compared (where feasible) with traditional modelling 

approaches. The process was not, however, straightforward. While proof of 

principle has been demonstrated in most of the explored circumstances, 

care must be taken in the interpretation of results, due to inherent limitations 

within the available data. 

Observational health data (as described in the Preface) are commonly 

obtained by routine data collection as patients progress through the 

healthcare system, with events recorded and linked to the patient. Thus, 

data are collected by distinct organisations, for differing purposes 

(Department of Health, 2011). Specifically for cancer registrations, data may 

be recorded such that incidence and mortality statistics can be calculated 

and monitored (The National Cancer Registration and Analysis Service, 

2017), and to assess whether targets, such as the two week wait process 

(NICE, 2017b), are met within a population. As discussed in section 1.2.1, 

data have not been collected in response to a specific research question, 

which raises additional challenges to be addressed during analysis, due to 

the structure and complexity of the available data.  
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Within the field of cancer research, single level regression methods are most 

commonly used to analyse observational health data, as discussed in 

section 3.2.2. Multilevel analysis is not commonly used, as also discussed, 

despite the fact that there are clearly distinct organisations within which 

patients are diagnosed and treated. Stage at diagnosis is frequently included 

in analysis, although its relationship with other covariates may not be 

carefully considered or explored, as indicated in section 3.2.2. When 

accommodation for patient casemix is sought, approaches are commonly 

restricted to the casemix adjustment strategies discussed in section 1.3.4, 

for example, the use of direct or indirect standardisation procedures (Haynes 

et al., 2009; Fidler et al., 2015). MLLC analysis has not often been utilised in 

the context of observational health data, as indicated in section 1.4.5, with 

only one of the five multilevel latent variable approaches considering data 

similar to that described within this thesis. 

It is possible that routinely collected data, such as that utilised here, may not 

be amenable to improved assessment or evaluation. Further, the 

requirements and rationale behind data collection, as described within this 

section, may not promote the production of datasets that benefit from 

sophisticated analytical developments to address service-relevant questions. 

Although this thesis demonstrates that latent variable methods can be 

applied, it should be recognised that observational health datasets may not 

be the most appropriate context within which to test or to develop these 

novel methods of data analysis. 

Section 6.2 summarises the findings from analysis of the three research 

questions. 

Section 6.3 considers the strengths and limitations of the analytical approach 

to the available data. 

Section 6.4 discusses the implications of the study. 

Section 6.5 considers recommendations for future research. 

Section 6.6 offers conclusions to the thesis as a whole, taking into account 

strengths, limitations and future research.  
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6.2 Summary of findings 

6.2.1 Research question (1) 

(1) What is the relationship between a health exposure (SES) and 

outcome (three-year mortality), and what other factors affect this 

relationship? 

For this research question, causal inference was sought at the patient level, 

whilst accommodating variation at the provider level. Use of MLLC analysis 

allowed for the appropriate modelling of patient-level covariates; stage at 

diagnosis was identified as a mediator of the SES-survival relationship, and 

is an imprecise measure, thus stage was removed from the regression part 

of the model and instead included as a class predictor. Bias due to both the 

reversal paradox and measurement error was therefore minimised. A range 

of DAGs demonstrated that alternative models could have been selected, 

which will be addressed in section 6.5. 

MLLC modelling provided a better interpretation of the data, compared with 

the traditional MLM approach, and offered an enhanced interpretation based 

on three latent classes at the patient level. MLM found increasing Townsend 

deprivation score (as a measure of SES) and increasing age to increase the 

odds of death, while female gender decreased the odds. MLLC modelling 

found similar effects (although of a greater magnitude) for deprivation and 

age, while reduced odds of death for females were seen only in the good 

prognosis (early stage) class. 

Five Trust-level latent classes were chosen, identifying outlying Trusts and 

thus indicating that a continuous latent variable at the Trust level (as 

required for MLM), was not sufficient to model these data. Differences in 

prognosis at the Trust level were due primarily to patient casemix 

differences. 

Classification of patients and Trusts was not straightforward, and a different 

number of patient and Trust classes could have been chosen, potentially 

resulting in different results and interpretation. Sensitivity analyses are 

described in section 6.5. 
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6.2.2 Research question (2) 

(2) How does the performance of a healthcare provider vary after 

accommodating patient differences? 

For this research question, accommodation for differential selection was 

sought at the patient level such that differences in patient outcome at the 

provider level were then considered to be due to underlying organisational 

factors, rather than patient casemix. There was no concern regarding bias at 

the patient level, as causal inference was not required. Thus, all modelled 

covariates were included in the regression part of the model. 

In the MLLC approach, two patient classes were chosen to model patient-

level variability, and two Trust classes were identified, which showed a small 

but distinct difference in overall prognosis. A Trust performance ranking was 

allocated to each Trust based on its probability of membership of the best 

survival Trust class. In the traditional comparison, each Trust was assigned 

a rank based on its scaled difference from an SMR of one (where numbers 

of expected deaths equalled those of observed deaths). 

The approaches were shown to be comparable, providing similar results with 

the same general Trust-rank progression. MLLC modelling is preferred, 

however, due to the use of a more sophisticated method that has 

accommodated both heterogeneity and measurement error. Confidence 

intervals were wide, and may be improved by the addition of treatment 

characteristics. This is discussed further in section 6.3.2. 

Again, a different number of patient and Trust classes could have been 

chosen, potentially resulting in different results and interpretation. Sensitivity 

analyses are described in section 6.5. 
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6.2.3 Research question (3) 

(3) Can causal provider-level covariate effects be identified, after 

accommodating patient differences? 

This research question is an extension of research question (2), considering 

covariates at the provider level. Simulation was performed to assess proof of 

principle of the approach to accommodate patient casemix whilst performing 

causal modelling at the provider level. Assessment was made of the ability 

of the MLLC approach to recover simulated values of either a binary or 

continuous provider-level covariate, when combined with either a binary or 

continuous outcome measure. No traditional comparison was available. 

A homogeneous patient group was simulated, hence MLLC models 

incorporated only one patient class. This is discussed further in section 6.5. 

A range of Trust classes were utilised, from two upwards until no further 

improvement was seen in recovered estimates. 

Initial simulations generated nineteen Trusts, comparable to those within the 

example dataset. Consistent results were seen for a continuous outcome 

and a binary Trust-level covariate, with simulated values of the Trust-level 

coefficient within confidence intervals of the recovered values throughout. 

For the same outcome, with a continuous Trust-level covariate, estimates 

were slightly lower than simulated values throughout, showing some 

attenuation of effect, although they improved as the number of Trust classes 

were increased. Simulated values of the Trust-level coefficient were within 

confidence intervals of the recovered values, however, for three or more 

Trust classes. The use of fifty Trusts showed further attenuation of effect, 

which is addressed in section 6.5.   

When considering a binary outcome and a binary Trust-level covariate, 

recovered values of the Trust-level coefficient were considerably lower than 

simulated values throughout. The rationale behind this observed association 

is unknown and thus requires further research, as discussed in section 6.5. 

  



- 162 - 

 

6.3 Strengths and limitations 

6.3.1 Improvements over traditional techniques 

In a traditional multilevel setting, where a continuous latent variable is 

adopted at the upper level, the implicit assumption is that provider-level 

outcomes have an underlying normal distribution (conditional on provider-

level covariates) (see section 1.3.2). Healthcare providers are therefore 

effectively treated as a random sample of a larger (infinite) population. 

Providers are not, however, randomly placed geographically, nor are 

patients randomly assigned to providers (see section 1.2.3). The latent 

variable approach allows for parametric assumptions to be circumvented by 

the inclusion of discrete latent classes at the upper level, although there may 

remain a degree of geographical dependency that is not accounted for.  

The use of latent classes at any level accommodates heterogeneity, with 

covariate relationships identified within each latent class, rather than over all 

observations, as seen in traditional regression approaches. 

Within the latent variable approach, class membership models allow 

covariates to be removed from the regression part of the model, offering the 

capability to model appropriately moderators or mediators of an exposure-

outcome relationship, and thus to minimise bias due to the reversal paradox. 

If imprecisely measured covariates are also included as class predictors, 

interactions are implicit, so exacerbated bias due to measurement error is 

also minimised. This approach was demonstrated for research question (1), 

and other scenarios may also benefit. Traditional approaches do not have 

this capability; all covariates are included within a single model, risking bias. 

Modelling for differential selection can be accommodated at the patient level, 

as demonstrated for research question (2). As an advantage over traditional 

casemix adjustment techniques, latent variable approaches can also 

incorporate modelling for causal inference at the provider level, as 

demonstrated for research question (3). Traditional casemix adjustment 

strategies may increase bias and none can be extended to partition 

modelling approaches in the same manner (see section 1.3.4). 
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6.3.2 Limitations 

Stage at diagnosis contained 13.1% missing data in the example dataset. To 

demonstrate proof of principle for the latent variable approach, this limitation 

was avoided by the inclusion of an additional category for stage, such that all 

observations could be included in analysis. The missing data category was 

therefore interpreted separately. Although considered sufficient for the focus 

of this thesis, generally, missing data techniques should be implemented. 

Techniques such as multiple imputation (MI) or inverse probability weighting 

(IPW) could be employed (Carpenter et al., 2006; Cattle et al., 2011; 

Seaman and White, 2013). Each method requires careful specification of the 

relevant imputation model for each variable with missing data, including 

investigation of parametric assumptions. Further, the congeniality principle 

(Meng, 1994) requires that the imputation models are compatible with the 

analytical model, which becomes more complex when there are interactions 

or non-linear relationships (Sterne et al., 2009; von Hippel, 2009; White et 

al., 2011).  Ideally, latent variable modelling would lie within an integrated 

framework that includes approaches to the problems of missing data, but 

this is not yet resolved for large and complex datasets incorporating 

multilevel data. Methods are in development to (i) perform MI within a 

multilevel framework, and (ii) develop latent class approaches to imputation 

techniques that can be applied to Big Data. Missing data is hence an 

important challenge to be recognised and addressed in other work. 

For research questions (1) and (2), survival was represented by a binary 

outcome of mortality status at three years. This was a necessary 

simplification in order to be comparable to existing research. Survival 

analysis in the standard methodological sense has not been explored within 

the proposed latent variable methodological framework. Results are 

therefore expressed as odds ratios of death within three years. It would be 

common to explore survival as a continuous measure, for example using 

Cox proportional hazards regression (Armitage et al., 2002), which is 

technically feasible within the proposed latent variable methodological 

framework, although more powerful software would be required, e.g. MPlus 

(Muthén and Muthén, 1998-2015), and this extension is left for future work. 
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SES (as a measure of socioeconomic deprivation) is included at the patient 

level, although it is derived at the small-area level (see section 1.2.2). Again, 

this limitation has not been addressed by the methodological approach. This 

can lead to the ecological fallacy, as discussed in section 1.2.2. Thus, strictly 

speaking, interpretation of the relationship between SES and survival should 

be made at the small-area level, while effects may vary for individuals within 

each small area. SES should ideally be considered as a separate level, 

effectively cross-classified with the Trust level, as discussed in section 1.2.5. 

More sophisticated and as yet unavailable alternative software would be 

required to accommodate a latent variable approach with a cross-classified 

level of analysis; MPlus is under development to achieve cross-classified 

Cox proportional hazards regression, thus eventually addressing the 

limitations of both a binary outcome and use of a small-area measure 

simultaneously. Much more complex modelling is possible with MLLC 

analysis, but all models must be thought through and the context in which 

they are interpreted carefully considered.  

Patients were identified as attending the healthcare organisation at which 

they received their latest diagnosis (see section 2.3.3), so that all patients 

could be included in analysis regardless of whether or not they received 

treatment. There may be error introduced, however, due to patients 

attending multiple centres throughout their care. This error is mitigated by 

modelling with Trust of diagnosis at the upper level, rather than by hospital, 

as a higher proportion of patients who are treated remain within their Trust of 

diagnosis throughout their care (74.3%) compared with those who remain 

within their hospital of diagnosis throughout (59.2%). Nevertheless, some 

variability may remain, which could impact upon the CE of the chosen 

models. These inaccuracies could be further addressed by screening each 

patient journey to determine where the majority of interventions take place, 

or by using multilevel multiple membership models (Goldstein, 2011) for 

multiple treatment centres. 

Accommodation for differential selection has thus far considered only patient 

characteristics. Ideally, patient pathways through the healthcare system (e.g. 

treatment effects) would also be included, as introduced in section 1.1, and 

considered with respect to research question (2) in section 4.4. While the 
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latent variable approach will extend to accommodate these, no information 

was available in the example dataset. Thus, their inclusion has not been 

addressed within the analysis, which may impact upon the width of the 

confidence intervals around the Trust ranks in figure 4.3, when comparing 

Trust performance for research question (2). The inclusion of treatment 

effects in the analysis may explain more of the variability in the outcome, 

potentially reducing the confidence intervals, if this information were 

available. Nevertheless, the latent variable approach may still offer an 

improved alternative over traditional techniques when evaluating treatment 

effects in an observational setting. As discussed in section 1.3.4, the 

propensity score is commonly used to accommodate patient differences and 

compare treatment subgroups, but this approach conflates modelling for 

prediction with that for causal inference. 

Additionally, it may be challenging to make the analyses presented within 

this thesis accessible to potential users, such as health service policy 

makers or healthcare providers. The methodological approach applied when 

using the example dataset, i.e. for research questions (1) and (2), was 

unable to entirely address the difficulty in selection of the optimum number of 

both patient and Trust classes, as discussed in sections 6.2.1 and 6.2.2. 

Thus, the results and interpretations presented may be somewhat 

speculative. Discussion of future research in section 6.5 makes 

recommendations as to how best to achieve accessibility to users. 
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6.4 Implications of the study 

This study has shown that latent variable modelling has utility in the analysis 

of a complex, hierarchical dataset, with improved accommodation of the data 

challenges in comparison to traditional techniques, and the ability to 

incorporate both differential selection and causal inference within the same 

modelling approach. It must be noted, however, that observational health 

datasets may not be the most appropriate context within which to explore 

these novel techniques, and that further research is necessary to minimise 

potentially speculative results and interpretation. Nevertheless, a 

generalised framework has been demonstrated, which offers the opportunity 

to utilise the methods in other contexts.  

Potential area-level factors are numerous, and are not limited to known 

subgroups (e.g. communities, healthcare providers or schools); any 

environmental features utilised by groups of individuals may be modelled 

(e.g. access to fast food outlets, opportunities for physical activity or 

availability of green space). Possibilities to assess health outcomes are also 

numerous. For example, both the availability of fast food outlets, and  

opportunities for physical activity may impact on levels of obesity (Coombes 

et al., 2010; Williams et al., 2015). An integrated approach could therefore 

be pursued, considering the interplay between characteristics of both 

individuals and areas within an single analytical framework.  

Further, preliminary investigation of observational data using latent variable 

techniques may inform prospective cluster-randomised trials targeted at 

improving public health outcomes. Trials can then focus on the modification 

of either individual or area characteristics identified by the MLLC approach 

as potential causes of differences in health outcomes. This pertains to 

existing approaches for quality improvement research, and is consistent with 

the principles of the Medical Research Council (MRC) framework for the 

development and evaluation of complex interventions (Craig et al., 2008). 

Latent variable techniques may also be utilised alongside the cluster-

randomised trial approach (e.g. to assess compliance), to minimise the bias 

that may occur when small numbers of clusters are considered (Campbell et 

al., 2007) by accommodating uncertainty within the latent constructs. 
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6.5 Recommendations for future research 

As discussed in sections 6.2.1 and 6.2.2, the selection of both patient and 

Trust classes for research questions (1) and (2) was not straightforward, 

which may lead to differing results and interpretation, and potentially 

speculative results, as discussed in section 6.3.2. In analysis for research 

question (1), the same patterns of association were seen for all model 

covariates when the number of patient classes was fixed at three, and 

different numbers of Trust classes were investigated (see table 3.10). 

Comprehensive sensitivity analyses should, however, be performed with 

respect to both patient and Trust classification. For both these research 

questions, alternative numbers of classes could have been selected, based 

on model-evaluation criteria. Further analyses should therefore be 

performed to investigate the effect of selecting the number of patient classes 

either side of the initial selection. Re-assessment of Trust classes would 

then follow for each new selection of patient classes, with comparisons 

made between the sets of results achieved. Thus, assessment could be 

made regarding the sensitivity of results and interpretation to the 

classification of both patients and Trusts. Further, for research question (2), 

more than two Trust classes may be required at the Trust level to show 

optimal utility from the latent variable approach, even if model likelihood 

statistics are not improved by an increased number of Trust classes. 

In analysis for research question (1), stage at diagnosis was included as a 

class predictor in the MLLC model, while it was excluded entirely in the MLM 

analysis, as MLM does not have the capacity to model covariates as class 

predictors. MLM could, however, be stratified by stage, in order to make a 

more direct comparison between the two analytical methods. It must be 

noted, however, that this amounts to introducing stage at diagnosis explicitly 

as a covariate, which may introduce bias due to the reversal paradox where 

causal interpretation is sought. Equivalent results may be achieved by the 

exclusion of stage entirely in the MLLC analysis (Downing et al., 2010), 

although this approach may not be well received by healthcare organisations 

because, as considered in section 3.4, stage at diagnosis is commonly 

considered to be a key covariate.  
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Discrete latent variables have been utilised at the provider level throughout, 

to avoid the parametric assumptions required when using a continuous 

latent variable. It may be appropriate in some situations to consider both 

continuous and discrete latent variables within a single model approach. 

Studies have shown that use of a continuous latent variable, in place of 

discrete latent classes, may provide a better fit to the data (Downing et al., 

2010; Henry and Muthén, 2010). Continuous and discrete latent variables, if 

combined, may prove more parsimonious, with variation within each 

provider-level class captured by the continuous latent variable, potentially 

leading to fewer provider classes needed to describe overall provider-level 

variation. For research question (2), use of a continuous Trust-level latent 

variable alongside the discrete Trust-level latent variables may alleviate the 

probabilities of Trust-class membership in table 4.8 being so marked, 

although the estimation of Trust survival rates would then become more 

complex. 

In analysis for research question (3), simulated data were modelled in order 

to assess the utility of the latent variable modelling approach to recover 

simulated values of covariates at the Trust level. Nineteen Trusts were 

simulated initially, with an extension to fifty Trusts also considered. Modelling 

for a continuous outcome and a continuous Trust-level covariate showed 

some suppression of recovered values, as described in section 5.4.1.4, with 

increased suppression for fifty Trusts compared with nineteen Trusts. The 

rationale behind this effect is as yet unclear and additional research to 

further investigate simulations that generate larger numbers of Trusts (i.e. 

upper level units) would be beneficial. 

Results seen for research question (3) with respect to the binary outcome 

were inconclusive (see sections 5.4.2 and 5.5). Further investigation is 

required to ascertain the rationale behind the observed association before 

proof of principle can be said to be complete. There are a number of 

potential approaches that could be employed. Much larger simulated values 

of the Trust-level coefficient could be explored to investigate whether or not 

the relationship remains linear over a wider range. Mathematical formulas 

could be studied, to investigate the expected relationship between the 

explained variance at each level of the hierarchy. Further estimation 
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procedures could be performed under controlled situations, perhaps by 

initially simulating very simple models without the inclusion of Trust-level 

covariates. Alternative statistical software could be utilised to reproduce 

models and compare results, or the parameters of the Latent GOLD 

software could be varied. Which method may yield the most useful 

information is, as yet, unknown. 

In simulations for research question (3), analysis incorporated a single latent 

class only at the patient level, as data were simulated for a homogeneous 

patient group. As described in section 5.3.4, this meant that the 

parameterisation used to accommodate patient casemix was essentially 

irrelevant, as there were no multiple patient cases to be organised across 

the Trust classes. Nevertheless, this step was important, as it allowed 

demonstration of recovery of the provider-level covariates. An extension to 

the analysis as performed could be to simulate, and thus model, a 

heterogeneous patient group to assess whether there is any impact on 

Trust-level covariate recovery. 

Analysis for research question (3) incorporated the assessment of individual 

provider-level covariates. Simulation methods can be extended to 

incorporate multiple covariates at the provider level, as indicated in section 

5.3.2, with causal inference modelling supported by the construction of a 

DAG at this level. Thus, many potential provider-level effects may be 

modelled together, including both binary (e.g. whether or not the surgeon is 

a specialist) and continuous (e.g. volume of procedures). Interest may lie in 

the extent to which additional complexities in casemix (e.g. patient pathway 

variables; discussed in section 6.3.2) and multiple provider-level covariates 

(both competing exposures and confounders) may dilute the precision of 

estimates sought for a main provider-level covariate under investigation. 

The utility of DAGs can thus be explored further, and extended to other 

applications or different healthcare contexts. While identification of covariate 

relationships is relatively straightforward for small numbers of variables, 

construction of a DAG becomes more complex if many covariates are 

included, for example in Big Data. As such, a web application ‘DAGitty’ 

(Textor et al., 2011) has been developed, whereby causal diagrams can be 
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produced and analysed. DAGitty can identify sets of covariates that should 

be included in the model in order to minimise bias in the estimate of the main 

exposure-outcome effect, thus aiding identification of appropriate models 

when using larger datasets. Additionally, the R package ‘dagitty’ has been 

developed (Textor et al., 2016), whereby the functionally of the web 

application, and additional capabilities, can be accessed from within the R 

software. 

Finally, as raised in section 6.3.2, there are challenges to be addressed in 

order to make the work within this thesis accessible to potential users within 

healthcare organisations. Although the methodology presented offers a 

novel, integrated approach to the analysis of complex observational health 

data, with improvements seen over traditional techniques, findings remain 

somewhat speculative due to the limitations previously discussed. A guide to 

‘best practice’ in the use of MLLC methodological approaches could assist. 

This guidance document, publishable as a review article, would consider the 

use of multilevel latent variable approaches within health research to 

accommodate patient casemix, aid performance comparison, and thus 

identify potentially causal effects that may affect provider performance. 

Publishing of analyses presented so far has been piecemeal, with modelling 

approaches described independently with reference to data-specific 

research questions (Gilthorpe et al., 2011; Harrison et al., 2012; Harrison et 

al., 2013). It would aid uptake of the methods presented to make explicit the 

integrated analytical approach such that other researchers could utilise the 

same techniques, with adaptation or extension as applicable to their data. It 

remains, however, that observational health datasets may not be the most 

appropriate context within which to explore the methods. 
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6.6 Conclusions 

In conclusion, a generalised multilevel latent framework has been developed 

whereby individual and area characteristics can be modelled appropriately to 

assess their contribution to a health outcome. The research detailed within 

this thesis demonstrates one area of application, in the field of cancer 

survival, showing speculative results and interpretation due to inherent 

limitations within observational health data and the appropriateness of the 

methods within this context. Nevertheless, the framework may offer an 

enhanced analytical approach with extension to accommodate missing data, 

and future research allows opportunities to further extend the capabilities of 

the approach in the area of causal inference modelling. 
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Appendix A 

Literature search strategies for the review of 

comparable latent variable approaches 

Searches performed 16 September 2016; for articles from 1996 to 

September Week 1 2016. 

Index Search Terms 
Results (N) 

Medline PsycINFO 

1 Multilevel OR multi-level 17,416 15,409 

2 MeSH: Multilevel Analysis 1,041 - 

3 1 OR 2 17,416 15,409 

4 Latent variable OR latent class 3,869 4,884 

5 Latent AND (mixture model*) 511 719 

6 4 OR 5 4,095 5,161 

7 3 AND 6 60 220 

8 

Limit 7 to (abstracts AND English 

language AND humans AND 

year=”2006-current” AND journals only)  

52 122 

 TOTAL 174 
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Appendix B 

Literature search strategy for the review of risk 

factors associated with survival (or mortality) from 

colorectal cancer 

Search performed 23 September 2016; for articles from 1996 to September 

Week 2 2016. Medline only. 

Index Search Terms Results (N) 

1 MeSH: Colorectal Neoplasms 61,980 

2 
Cancer AND (colorectal OR colon OR rectum OR 
rectosigmoid OR bowel) 

111,723 

3 1 OR 2 124,273 

4 Survival OR MeSH: survival 718,775 

5 Mortality OR MeSH: mortality 421,963 

6 4 OR 5 1,036,600 

7 
MeSH: (risk factors OR prognosis OR diagnosis-
related groups) 

817,794 

8 Factor* 3,124,064 

9 7 OR 8 3,276,853 

10 
3 AND 6 AND 9 
(i.e. colorectal cancer + survival + risk factors) 

17,853 

11 MeSH: (socioeconomic factors OR poverty) 111,547 

12 

Deprivation OR poverty OR socioeconomic status 
OR socio-economic status OR SES OR 
socioeconomic background OR socio-economic 
background OR SEB 

112,286 

13 11 OR 12 182,657 

14 Stage 415,920 

15 
3 AND 13 AND 14 

(i.e. colorectal cancer + deprivation + stage) 
343 

16 10 OR 15 18,018 

 

Continued on next page  
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Index Search Terms Results (N) 

17 

MeSH: (Great Britain OR United Kingdom OR 

England OR Wales OR Scotland OR Northern 

Ireland) 

192,994 

18 
Great Britain OR United Kingdom OR England OR 
Wales OR Scotland OR Northern Ireland 

227,356 

19 17 OR 18 227,356 

20 16 AND 19 385 

21 
Limit 20 to (abstracts AND English language 

AND humans AND year=”2006-current”)  
263 
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Appendix C 

Stata code for data simulation 

This code is in two parts: code is defined in the first program, and run in a 

loop in the second to generate 100 similarly defined datasets.  

*  or /* preceding text indicates a comment. 

 

1. Define programs 

******************************************************************************* 

* SIMULATE TRUST MEMBERSHIP 

* allocate patients to Trusts by blocks of a random normal variable (p) 

******************************************************************************* 

 
capture program drop hosmembership 

program define hosmembership 

 * generate p = random uniform distribution (by patient) 

 gen p = uniform() 

  
 * generate 19 hospitals, of differing sizes 

 qui gen HosID = . 

 local pstart = 0 

 local bit = -0.04 

 local pend = `pstart' + (1/19) + `bit' 

 * loop to create HosID for values of p 

 forvalues i = 1/19 {        

  qui replace HosID = `i' if p>`pstart' & p<`pend' 

  local bit = `bit'  + (0.08/18) 

  local pstart = `pend' 

  local pend = `pstart' + (1/19) + `bit'  

 } 

  
 * randomise hospitals & generate pT (for continuous outcome) 

 qui sort HosID p 

 qui by HosID: gen oldcode = HosID if _n==1  

 sort oldcode HosID p       

 qui gen flag=uniform() in 1/19 

 sort flag in 1/19 

 qui gen newcode = _n in 1/19 

 qui gen pTcode=uniform() in 1/19 

 sort HosID p 
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 * set HosID = new (randomised) HosID code 

 by HosID: egen newHosID = max(newcode) 

 * generate pT = random uniform distribution (by Trust) 

 by HosID: egen pT = max(pTcode)     

  
 * tidy dataset 

 drop HosID oldcode flag newcode pTcode 

 rename newHosID HosID 

 move HosID p 

end 

 
************************************************************** 

* GENERATE SEX, DEP & AGE VARIABLES 

* uses trivariate covariance matrix 

* deprivation SD=3.18, age SD=11.6 

* draws from a normal distribution, converts sex to 0/1 

************************************************************** 

 
capture program drop demog 

program define demog 

 matrix A = (1,0,0 \ 0,3.18^2,0 \ 0,0,11.6^2) 

 drawnorm sex dep age, cov(A)  

 qui recode sex (min/0 = 0)(nonmiss = 1)  

end 

 
******************************************************************************** 

* BINARY TRUST-LEVEL COVARIATE EFFECT (HGrp) 

* equals 0.5 or -0.5 (centred on zero) with error SD=0.01 

* sets local betas, calculates Trust linear predictor (hlp1) 

* simulates binary outcome (dth_bin) and continuous outcome (oc_bin) 

******************************************************************************** 

 
capture program drop dth_bin   

program define dth_bin 

 * generate blank binary Trust-level covariate 

 qui gen HGrp=. 

 
 * calculate 19 binary Trust-level covariates (SD=0.01) 

 forvalues i = 1/19 { 

  local mult = rnormal(0.5,0.01) - rbinomial(1,0.5) 

  qui replace HGrp = `mult' if HosID == `i' 

 } 

  
 * set local betas (described in section 5.2.2) 

 local b0 = -0.0265     

 local b1 = -0.1368   

 local b2 = 0.0527    

 local b3 = 0.0547   
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 local HBeta = -`b1'  /*Trust-level coefficient effect*/ 

  
 * calculate linear predictor 

 gen hlp1 = `b0' + `b1'*sex + `b2'*dep + `b3'*age + `HBeta'*HGrp  

 * calculate binary outcome 

 gen dth_bin = rbinomial(1,invlogit(hlp1)) 

  
 * set error for continuous outcome (error variance = 0.225 (50%)) 

 gen error=(sqrt(0.225))*invnormal(uniform()) 

 * calculate continuous outcome 

 gen oc_bin=hlp1+error 

  
 * tidy dataset 

 drop hlp1 error 

end 

 
********************************************************************************* 

* CONTINUOUS TRUST-LEVEL COVARIATE EFFECT (HVal) 

* ranges from -0.5 to +0.5 (centred on zero) 

* sets local betas, calculates Trust linear predictor (hlp2) 

* simulates binary outcome (dth_con) and continuous outcome (oc_con) 

********************************************************************************** 

 
capture program drop dth_con 

program define dth_con 

 * generate continuous Trust-level covariate (by Trust, uses pT) 

 gen HVal = 0.5-pT 

  
 * set local betas (described in section 5.2.2) 

 local b0 = -0.0265   

 local b1 = -0.1368   

 local b2 = 0.0527   

 local b3 = 0.0547   

 local HBeta = `b2'  /*Trust-level coefficient effect*/   

  
 * calculate linear predictor 

 gen hlp2 = `b0' + `b1'*sex + `b2'*dep + `b3'*age + `HBeta'*HVal  

 * calculate binary outcome 

 gen dth_con = rbinomial(1,invlogit(hlp2)) 

  
 * set error for continuous outcome (error variance = 0.218 (50%)) 

 gen error=(sqrt(0.218))*invnormal(uniform()) 

 * calculate continuous outcome 

 gen oc_con=hlp2+error 

 
 * tidy dataset 

 drop hlp2 error p pT 

end 
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2. Run programs 

****************************************************************************** 

* RUN PROGRAMS TO SIMULATE DATA FOR MLLC MODELLING 

* stores 100 datasets per run 

****************************************************************************** 

 
version 13.1 

clear 

set more off 

* set working directory 

cd "N:\...\2016 Trust level covars\Data simulation\Datasets\Run 1" 

 
* set and record seeds (use different seed for multiple runs) 

capture log close 

capture log using "seeds.log", replace     

set seed 1073741823 

*set seed 484848484 /*not active for this run*/ 

*set seed 8493829  /*not active for this run*/ 

 
* loop to generate 100 datasets with same specification 

forvalues i = 1/100 {      

 * set up Stata with 24,640 observations (patients)    

 di `i' 

 clear 

 qui set obs 24640 

 gen patID = _n 

 
 * simulate dataset based on defined programs 

 hosmembership 

 demog 

 dth_bin 

 dth_con 

 
 * export to csv 

 qui export delimited using "simulated`i'.csv" 

 
 * increment seed 

 set seed `c(seed)' 

 di c(seed) 

 } 

capture log close 

 

 


