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Abstract

In this thesis we examine the construction and characteristics of generalised

reflection matrices, within the a
(1)
1 , a

(1)
2 and a

(2)
2 integrable affine Toda field the-

ories. In doing so, we generalise the existing finite-dimensional reflection ma-

trices because our construction involves the dressing of an integrable boundary

with a defect. Within this framework, an integrable defect’s ability to store an

unlimited amount of topological charge is exploited, therefore all generalised

solutions are intrinsically infinite-dimensional and exhibit interesting features.

Overall, further evidence of the rich interplay between integrable defects and

boundaries is provided. It is hoped that the generalised solutions presented in

this thesis are potential quantum analogues of more general classical integrable

boundary conditions.
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Chapter 1

Aspects of Integrability

In this introductory chapter we aim to provide the necessary background ma-

terial for all subsequent chapters. In the process, we will cover several impor-

tant aspects of quantum integrability, markedly: the Yang-Baxter [1, 2, 3, 4],

boundary Yang-Baxter [6, 7] and transmission Yang-Baxter equations [8, 9,

10], as well as explore their history and significance. The analogous classical

framework of integrable boundaries [11, 12, 13, 14] and defects [15, 16] is also

discussed. As a matter of course, it will become apparent how the ideas and

theories of integrability have grown over the years. Eventually, this will lead us

to the main focus and aim of this thesis: to understand the interplay between

integrable boundaries and defects at the quantum level within the affine Toda

field theories (ATFTs). We will achieve this by dressing integrable boundaries

with an integrable defect. The results of [17], where infinite-dimensional re-

flection matrices were constructed for the sine-Gordon model, are extended by

constructing generalised solutions for the a
(1)
2 and a

(2)
2 affine Toda models in

chapters three and four. In chapter four, the behaviour of infinite-dimensional

solutions suggests that the defect has an intrinsic purpose within the a
(1)
2

model, which is discussed in detail. To further emphasise the fundamental

connections between boundaries and defects, the way in which an integrable

defect fits into an algebraic framework proposed by Delius and MacKay [18]

is documented in chapter two.

13



14 Chapter 1. Aspects of Integrability

1.1 Factorised Scattering and the

Yang-Baxter equation

An excellent starting point within the realm of two-dimensional quantum in-

tegrability is the exact scattering matrix, as to each such matrix there should

correspond an integrable field theory. In two-dimensions the S-matrices pos-

sess the property of factorised scattering [3], which means that it is possible

to reduce many particle scattering processes and simply consider two-particle

processes.

The scattering matrices can be described by an associative algebra, known as

the Faddeev-Zamolodchikov algebra [3, 4]. In this algebraic setting, the par-

ticles of a theory having rapidity, θi, are represented by the non-commutative

symbols Ai(θi). Then one considers the scattering of this particle with an-

other, Aj(θj). Importantly, the products are arranged in terms of decreasing

rapidity to reflect their spatial order. For example, if θi > θj, we arrange

the corresponding in-state as: Ai(θi)Aj(θj). As time evolves the particles will

meet and must scatter, because θi > θj. As a result of this, out-states are

arranged in order of increasing rapidity so that as time continues to evolve the

faster particle continues to move away and there is no further interaction. The

S-matrix describes the processes involved during the particles’ interaction:

Ai(θi)Aj(θj) = Sklij (θi − θj)Ak(θj)Al(θi). (1.1)

From this we see that the subscript indices label incoming particles, while the

superscripts label outgoing particles. By considering the incoming particles,

and respecting the fact that there is no particle production in the integrable

theories [19], one can label each non-zero entry of the scattering matrix. To

find the following: Siiii(θi−θj), for two particles of the same type and different

rapidities, Sjiij (θi − θj) for the process ij → ij and finally Sijij (θi − θj), when

two particles reflect, ij → ji. In algebraic terms, the S-matrix acts as an

intertwining map on the vector spaces associated to each particle in the two-

particle scattering process:

S(θa − θb) : Va ⊗ Vb → Vb ⊗ Va.

A comprehensive introduction to the theory of S-matrices can be found in [19].
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Figure 1.1: Diagrammatic representation of the Yang-Baxter equation.

We will now detail some of the properties of S-matrices. Arguably, the most

important and significant property for integrability is the Yang-Baxter equa-

tion, which ensures consistency between all three-particle scattering processes

[1, 2]:

Sfgab (θa − θb)Shngc (θa − θc)Slmfh (θb − θc) = Shfbc (θb − θc)Slgah(θa − θc)S
mn
gf (θa − θb).

(1.2)

The above equation can be obtained by following the particle trajectories

in figure (1.1), where we sum over repeated indices in the above equation.

Equation (1.2) has a great algebraic significance and deep connections within

quantum groups, many results can be found in [20, 21]. By solving the Yang-

Baxter equation, which is a difficult task, one can obtain the S-matrix entries.

However, the equation does not constrain the S-matrix scalar prefactor, ρ(θ),

as it simply cancels throughout the equation. There exist further properties

that restrict the prefactor, they are unitarity:

Sklij (θi − θj)Smnkl (θj − θi) = δmi δ
n
j , (1.3)

and crossing symmetry:

Sklij (θi − θj) = Slj̄
k̄i

(iπ − (θi − θj)), (1.4)

where the barred indices label the appropriate anti-particle. The relation due

to crossing symmetry is obtained by reversing one particle’s trajectory in the

two-particle scattering process, and considering following the new process.

The S-matrix should also satisfy the bootstrap relation - alluding to soliton

fusing relations that we do not require in this thesis, details are given in [19].
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In due course we will see several S-matrices for various affine Toda models,

which have been studied heavily in the past - for example, in the a
(1)
n affine

Toda models see [22]. Interestingly, a total classification of all solutions to the

Yang-Baxter equation does not yet exist, although particular cases have been

studied providing partial classification [23] - [26]. Our main focus will be the

construction of more general objects, compatible with the S-matrix, that use

the theory of factorisable scattering in the presence of boundaries and defects.

1.2 The Reflection equation

Over the years, as more results surrounding the Yang-Baxter equation and

factorised scattering were discovered, the next logical step was to consider

factorised scattering in the presence of a boundary, and if it is possible to

maintain integrability. The boundary restricts the theory to the half-line

−∞ < x < 0, where scattering far away from the boundary is still described

by the S-matrix. A new object is needed to describe any reflection off the

boundary. Moreover, it must be compatible with the S-matrix, so that the

theory remains integrable. Processes of reflection are characterised by reflec-

tion (R−)matrices and the FZ-algebra can be extended to include them:

Aj(θj)B = Rk
j (θj)Ak(−θj)B, (1.5)

where B denotes the boundary at x = 0 and we assume summation over

repeated indices. Overall, this means an incident particle, Aj, eventually en-

counters the boundary and then reflects as Ak with negative rapidity. From

the above, we see that it is possible for a particle to change during reflec-

tion off the boundary. For example, the particle could reflect as itself, or its

antiparticle:

Rk
j (θj) : Vj → Vj, (1.6)

Rk̄
j (θj) : Vj → Vk̄, (1.7)

where the spaces Vj and Vk̄ correspond to the particle and antiparticle respec-

tively. For the time being, we will deal with the particle preserving case unless

otherwise stated. Processes of reflection and consequently R-matrices are de-

fined by the reflection equation - also known as the boundary Yang-Baxter

equation:
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Figure 1.2: Diagrammatic representation of the reflection equation.

Scdab(θa − θb)Re
d(θa)S

gf
ce (θa + θb)R

h
f (θb)

= Rd
b(θb)S

ec
ad(θa + θb)R

f
c (θa)S

gh
ef (θa − θb).

(1.8)

Equation (1.8) was first introduced by Cherednik [6] and later studied with

regard to the quantum inverse scattering method in integrable theories with

a boundary [7, 11, 12, 27]. Also, one can derive the index equation (1.8) by

following particle trajectories in figure (1.2). Importantly, it is the associativ-

ity condition of the algebra (1.5) and within the vector space description of

the particles, a completely analogous tensor product version of (1.8) exists:

S(θa − θb)R1(θa)S(θa + θb)R2(θb) = R2(θb)S(θa + θb)R1(θa)S(θa − θb). (1.9)

In the above, R1 = R ⊗ 1 and R2 = 1 ⊗ R. As one expects, equations (1.8)

and (1.9) are equivalent. We have seen that the scattering matrix must satisfy

certain properties, and the reflection matrix is no exception. The prefactor

is not restricted by equation (1.8), but is restricted by the boundary cross-

unitarity condition proposed by Ghoshal and Zamolodchikov [13]:

Rj̄
i

(
iπ

2
− θ
)

= Sklji (2θ)R
k̄
l

(
iπ

2
+ θ

)
. (1.10)

Our investigations do not require the use of such prefactors, further details

are found in [13].

The reflection, or boundary Yang-Baxter, equation is a difficult equation to

solve. A popular method is employed in [5, 28, 29] to determine the entries

of the reflection matrix. Firstly, a normalisation is specified - Kim divides
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through by matrix entry 2,2 when considering the three-by-three reflection

matrices of a
(2)
2 [28]. Following this, to tackle the problem of the different

rapidity dependences, the derivative is taken with respect to rapidity θb, after

which θb is set to zero - these quantities then label the free parameters. The

result gives functional equations of the remaining rapidity, θa. An assumption

is then made, the reflection matrix should be proportional to the identity

when θa = 0. This procedure is applied to all equations, that are acquired by

the expansion of indices in (1.8). As the dimension of the matrix increases,

the procedure becomes more difficult.

1.2.1 An Algebraic construction

Some years later, in 2003, Delius and MacKay proposed an algebraic frame-

work relying on an underlying quantum group symmetry. Reflection matrices

are then defined as the solutions of a linear intertwining equation. Conse-

quently, the difficulty of the problem is substantially reduced, although there

is one caveat. We will now detail the method, first outlined in [18].

The construction begins by considering the representations of the particles of

a Uq(g) quantum algebra. The solitons of the particular theory, in multiplet

µ with rapidity θ, span a vector space V µ
θ . The solitons are then described

by appropriate representations πµθ : Uq(g) → End(V µ
θ ). It is then questioned

whether it is possible to regard the reflection matrix - now labelled Kµ(θ) -

as an intertwiner of the representations:

Kµ(θ)πµθ (Q) = πµ̄−θ(Q)Kµ(θ), (1.11)

for all Q ∈ Uq(g). Of course, it is not possible for all generators of Uq(g) be-

cause the boundary breaks the quantum group symmetry. However, a remnant

of the quantum symmetry might survive despite the inclusion of a boundary

within the theory. Therefore, equation (1.11) may hold for all Q ∈ B, where

B is a symmetry-preserving subalgebra of Uq(g). Moreover, the subalgebra,

B, must be a left coideal of Uq(g) meaning that:

∆(Q) ∈ Uq(g)⊗B, ∀Q ∈ B,

hence, the boundary’s processes are encoded in the second slot (as the bound-
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ary is on the right) and the usual bulk theory is described within the first

slot. This is vital because the coproduct, ∆, must represent the action of

multiparticle-states, therefore it must include both Uq(g) and B to ensure

compatibility throughout. The object of interest is now the subalgebra, B,

and its generators. There is an alternative framework where the generators of

the boundary subalgebra are calculated using boundary conformal perturba-

tion theory - the details are found in [18] - but the algebraic method is most

relevant for our purposes. The caveat associated with the construction is that

it requires prior knowledge of a solution of the reflection equation. Supposing

that we do know a particular reflection matrix, we can move on to define the

corresponding L−operators that are compatible with the vector spaces, V µ
θ ,

and Uq(g). The universal R-matrix, R, of Uq(g) is used to define the operators,

full definitions are found in [30, 31]. For our purposes, all we need to know

is that the universal R-matrix is related to the S-matrix that we are familiar

with, as follows [18]:

Sµν(θ − θ′) ∝ PRµν(θ − θ′), Rµν(θ − θ′) = (πµθ ⊗ π
ν
θ′)(R),

where P is the permutation operator, interchanging the tensor factors. The

Lµθ -operators are then defined [32]:

Lµθ = (πµθ ⊗ 1)(R) ∈ End(V µ
θ )⊗ Uq(g),

L̄µ̄−θ = (πµ̄−θ ⊗ 1)(Rop) ∈ End(V µ̄
−θ)⊗ Uq(g),

(1.12)

where Rop is the opposite universal R-matrix that is formed by swapping

the two tensor factors. The generators of the boundary subalgebra are then

constructed as follows [18]:

Bµ
θ = L̄µ̄θ (Kµ(θ)⊗ 1)Lµθ ∈ Hom(V µ

θ , V
µ̄
−θ)⊗ Uq(g),

or equivalently in terms of matrix indices:

(Bµ
θ )ab = (L̄µ̄θ )ac(K

µ(θ))cd(L
µ
θ )db,

assuming the usual sum over repeated indices. Since the construction of the

generators has been detailed, it remains to check if they satisfy the linear
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equation (1.11), together with known reflection matrix, Kµ(θ),

Kν(θ′) ◦ πνθ′((B
µ
θ )ab) = πν̄−θ′((B

µ
θ )ab) ◦Kν(θ′) (1.13)

or equivalently:

(1⊗Kν(θ′)) ◦ (1⊗ πνθ′)(B
µ
θ ) = (1⊗ πν̄−θ′)(B

µ
θ ) ◦ (1⊗Kν(θ′)). (1.14)

The beauty of this construction is that the properties of the universal R-

matrix are exploited to show that equation (1.14) naturally leads to the re-

flection equation. Using the defining properties of the L-operators alongside

the natural properties of the universal R-matrix it is found that [18]:

(1⊗ πνθ′)(L
µ
θ ) = (πµθ ⊗ π

ν
θ′)(R) = Rµν(θ − θ′), (1.15)

(1⊗ πνθ′)(L̄
µ̄
θ ) = (πµ̄−θ ⊗ π

ν
θ′)(R

op) = PRνµ̄(θ + θ′)P, (1.16)

(1⊗ πν̄−θ′)(L
µ
θ ) = (πµθ ⊗ π

ν̄
−θ′)(R) = Rµν̄(θ + θ′), (1.17)

(1⊗ πν̄−θ′)(L̄
µ̄
θ ) = (πµ̄−θ ⊗ π

ν̄
−θ′)(R

op) = PRν̄µ̄(θ − θ′)P. (1.18)

Straightforwardly, by substituting all definitions (of the generators of the

boundary subalgebra and L-operators) into equation (1.14) and identifying S

as PR, one is able to obtain that the reflection equation is satisfied. Chiefly,

this guarantees compatibility between any reflection matrix and the genera-

tors of the boundary subalgebra, providing this construction is adhered to.

Lastly, it remains to show that when the coproduct is applied to the gen-

erators Bµ
θ that the result is left coideal. This must hold as the generators

are assumed to belong to the boundary subalgebra. As before, one simply

follows the defining relations together with the properties that originate from

the R-matrix [18]:

∆(Lµθ ) = Lµθ ⊗ L
µ
θ , ∆(L̄µ̄θ ) = Lµ̄θ ⊗ L

µ̄
θ ,

to discover that:

∆(Bµ
θ ) = L̄µ̄θL

µ
θ ⊗B

µ
θ ,

and so, this does indeed belong to Uq(g)⊗B as required.

In [18] the sine-Gordon is given as an example, and the generators of the
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boundary subalgebra are calculated by means of boundary conformal per-

turbation theory. Nonetheless, solving equation (1.11) is much simpler than

employing the usual method. The boundary subalgebra, for the sine-Gordon

model, contains two generators Q± that are represented as follows:

πθ(Q+) =

(
ε̂+q cx

cx−1 ε̂+q
−1

)
, πθ(Q−) =

(
ε̂−q

−1 cx−1

cx ε̂−q

)
, (1.19)

with x = eθ/γ, γ = β2/(8π − β2) and q = e8π2i/β2
and c =

√
λγ2(q2 − 1)/2πi,

where ε̂± are parameters associated with the boundary condition and λ origi-

nates from the perturbative conformal theory approach used to calculate the

generators. Using this representation Delius and MacKay reproduce the re-

flection matrix first presented in [13]:

K(θ) = k(θ)

(
q−q−1

c
(ε̂+x+ ε̂−x

−1) x2 − x−2

x2 − x−2 q−q−1

c
(ε̂−x+ ε̂+x

−1),

)
(1.20)

where k(θ) is the prefactor restricted by crossing and unitarity.

The problem of fully classifying all solutions to the reflection equation is re-

duced to the classification of boundary subalgebras, which may provide further

insight. Up to this point, our recount of the reflection equation and its the-

ory is finite-dimensional. In particular, its solutions do not depend on the

topological charge. However, it seems natural that charge may be exchanged

with the boundary, thus enabling solutions to become infinite-dimensional. If

charge is included within the reflection matrix entries, it becomes yet more

difficult to solve the reflection equation and even the linear process would re-

quire modification. As a result, one might begin to think that there is room

for generalisation. There is no reason why a solution should not depend on

the topological charge, but its inclusion causes difficulties.

In the physical world, there are many parallels between the classical and

quantum scenarios. In the case of reflection matrices this is no different. To

each reflection matrix there should exist a corresponding classically integrable

boundary condition (IBC) of the specific theory in question. Reasonably, one

might think that the potential to generalise reflection matrices will lead to

more general IBCs. With this, we must now consider the theory of integrable

boundary conditions and finally introduce the integrable models that we will
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work with.

1.3 Classically Integrable Boundary conditions

We have now briefly discussed the aspects of quantum integrability that are

most relevant to the work in this thesis. Let us move on to consider the as-

sociated classical framework. In this thesis we primarily consider the affine

Toda field theories (ATFTs). They are very special, not only because they

are integrable, but because they showcase a great connection between math-

ematics and physics. The connection is that to each affine Dynkin diagram

one can associate a (1 + 1)-dimensional ATFT, hence, a field theory is con-

structed from the root data of a particular algebra [33]. The theory without

a boundary (the bulk) is described by the Lagrangian [34]:

L =
1

2
(ut · ut − ux · ux)− U(u), (1.21)

with potential:

U(u) =
m2

β2

n∑
j=0

nj
(
eβαj ·u − 1

)
, (1.22)

where m concerns the mass scale, β is the coupling constant and n is the rank

of the underlying algebra. The simple roots are labelled by αj, j = 1,. . . , n

and the marks, nj, are a feature of the underlying algebra. The additional

lowest root, α0, is defined:

α0 = −
n∑
j=0

njαj, (1.23)

with the convention n0 = 1. Accordingly, the above Lagrangian describes a

multi-component affine Toda field, u = (u1, . . . , un), existing in the underlying

algebra’s root space. It is the additional root that differentiates between the

massive and massless non-affine Toda field theories. The massive ATFTs are

integrable, and possess the hallmarks of integrability such as: infinitely many

conserved charges and a Lax pair representation, to name just two; more

details are found in [35, 36].

Of particular importance are the a
(1)
n ATFTs. They possess the most symmet-

ric root/weight spaces and many results are known regarding their integrabil-
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ity. The marks of this algebra all take the same value, nj = 1 and the roots

are all of equal length, a conventional choice is |αi| =
√

2. If the coupling

constant, β, is real and the fields are also restricted to be real, then upon

quantisation the ATFT describes n interacting scalars - fundamental Toda

particles, of mass:

ma = 2m sin
(πa
h

)
, a = 1, 2, . . . , n,

with h = n+ 1 the Coxeter number of the algebra. To obtain classical soliton

solutions, within the ATFTs, the fields must be complex [37]. The complex

case is also described by the Lagrangian (1.21) where the coupling constant,

β, is replaced by iβ. In turn, this changes the nature of the potential in the

Lagrangian (1.21). Indeed, it will vanish for particular constant values of the

field, namely when:

u =
2πw

β
, αj · w ∈ Z,

which means that w belongs to the weight lattice of the particular Lie algebra

an. Such values of the field correspond to the stationary points of the affine

Toda potential. The complex soliton solutions smoothly interpolate between

these points along the whole x-axis. The solutions are then characterised by

their topological charge, Q, which is defined:

Q =
β

2π

∫ ∞
−∞

dx ux =
β

2π
(u(∞, t)− u(−∞, t)) .

All of the topological charges belong to the weight lattice of the an Lie algebra.

If it is assumed that u(−∞, t) is zero, one can obtain static solutions where the

remaining contribution belongs to a subset of the weight lattice. Furthermore,

these solutions can be described using the Hirota formalism [37, 38]:

ua =
im2

β

n∑
j=0

αjln(1 + Eaω
aj), (1.24)

Ea = eaax+bat+ξa , (aa, ba) = ma(cosh θ, sinh θ), ω = e2πi/h,

where ξa is a complex constant and θ is the soliton rapidity. Hollowood un-

covered that solutions of this type, even though they are complex, have real

energy and momentum [37]. Furthermore, their masses are proportional to

the mass parameters of the real theory:
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Ma =
2h

β2
ma, a = 1, 2, . . . , n.

In the subsequent chapters we will deal with the a
(1)
n , n = 1, 2 ATFTs - where

a
(1)
1 is the famous sine-Gordon model, and the slightly different a

(2)
2 case.

Previously, we have hinted that the work contained within subsequent chapters

investigates a more general framework for the solitons of these theories. Before

considering the ingredients and mechanism of the generalisation, we must

recount the way in which the ATFTs are modified by a boundary.

If an ATFT is restricted to the half-line −∞ < x < 0 with a boundary at

x = 0, the Lagrangian (1.21) is modified as follows:

L′ = θ(−x)L− δ(x)B, (1.25)

where L is the usual Lagrangian (1.21), δ(x) is the Dirac delta function and B

is a functional of the field u only, this is not totally necessary as it could also

depend on the field’s derivatives, but this restriction simplifies the discussion.

The equations of motion are therefore:

utt − uxx = −m
2

β

n∑
j=0

njαje
βαj ·u, x < 0, (1.26)

ux = −∂B
∂u

, x = 0. (1.27)

The boundary condition must be chosen carefully, so that it satisfies the above

property in an attempt to maintain integrability. For the a, d and e series of

ATFTs, the boundary contribution takes the form [14, 39, 40]:

B(u) =
m

β2

n∑
j=0

Aje
(β/2)αj ·u. (1.28)

The above boundary conditions are very constrained. This is because the

coefficients must take one of two forms, [14, 39, 40] either:

Ai = 0, ∀i = 0, 1, . . . , n or |Ai| = 2
√
ni, ∀i = 0, 1, . . . , n,

to maintain integrability. The only exception is the sine-Gordon model
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(n = 1), where the two coefficients are free. Under these conditions the theory

is shown to be integrable by addressing the conservation of several charges, of

different spin, and also by a Lax pair approach [11, 12, 39].

For the a
(2)
2 ATFT, when the theory is restricted to be real, a similarly con-

strained boundary density occurs. The existing Lagrangian (1.21) is modified

slightly, as it is built from a different root space. Specifically, the a
(2)
2 model

is a member of the non-simply laced theories, which means that all roots do

not have the same length and the potential (1.22) takes the form:

U(u) =
m2

β2

(
e
√

2βu + 2e−βu/
√

2 − 3
)
,

The condition to maintain integrability is given by [39]:

B = A1e
u + A0e

−u/2, (1.29)

after rescaling the field suitably, where the coefficients satisfy

A0(A2
1 − 2) = 0.

Soon after, a new class of integrable boundary conditions for the ATFTs were

calculated by Delius [41]. The discovery was prompted by allowing the ATFT

to be complex and considering a ‘method of mirror images’ that uses parity

reversal [41]. This method pairs a soliton in the region x < 0 with another soli-

ton in region x > 0. The boundary condition is a combination of a Dirichlet

condition on the imaginary component of the field, and a Neumann condition

on the real part:

Im(u)

2π

∣∣∣
x=0
∈ coweight lattice of g, ∂xRe(u)

∣∣∣
x=0

= 0, (1.30)

where the coweight lattice is a set of weights, {l}, such that l · α ∈ Z, for

all roots in the root system of the underlying Lie algebra g [42]. The above

condition still appears restrictive as there are no free parameters. However,

there is increased freedom because the imaginary part of the field can be any

element of the coweight lattice.
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The curious integrable boundary conditions of the ATFTs, from the existing

literature, have been documented. Yet again, one might hope to generalise the

existing situation since they take such a severely restricted form, or at least,

one might hope to uncover the mechanism that prescribes such restrictive

conditions.

We will now consider a reflection matrix and its analogue in the classical

setting, to give further evidence that points to the rich interplay between the

classical and quantum set-ups. Diagonal reflection matrices are of particular

importance for our further work, hence we will examine the sine-Gordon’s

only diagonal reflection factor [13]:

Rd(x) = ρR(θ)

((
1
rx

+ rx
)

0

0 ( r
x

+ x
r
)

)
, (1.31)

where ρR(θ) is the prefactor restricted by crossing and unitarity, it is found

in [13]. We can see that this matrix possesses one free parameter, r. The

diagonal nature of the matrix suggests that the corresponding boundary con-

dition takes a simple form. In fact, reflection matrix (1.31) corresponds to a

soliton preserving Dirichlet condition. Moreover, if the parameter r is set to

unity the boundary condition becomes u(0, t) = 0 and the matrix becomes a

multiple of the identity.

Another interesting case within the sine-Gordon model is the non-diagonal

reflection matrix first calculated by Zamolodchikov and Ghoshal [13]. It was

calculated subsequently via the algebraic technique of Delius and MacKay [18]

and is documented in matrix (1.20). In particular, it contains two parameters

ε̂± that are associated with the boundary condition, this matches the known

real integrable boundary condition which also contains two free parameters.

In fact, the condition is presented as:

ux =
a

β
sin β

(
u− u0

2

) ∣∣∣
x=0

, (1.32)

where a and u0 are arbitrary constants and β is the sine-Gordon coupling.

The above boundary condition is obtained from equation (3.18), in Delius
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and MacKay’s paper [18], by making the equalities:

ε̂+ = aeiβu0/2, ε̂− = ae−iβu0/2,

together with the normalisation that they adopt throughout [18].

We will now move on to recount another aspect of integrability, namely defects.

Later, we will observe how they are used to generalise reflection matrices and

therefore provide possible candidates for more general boundary conditions.

1.4 Integrable Defects

Following the logical progression of ideas, as the vast literature concerning the

Yang-Baxter and reflection equations, as well as integrable boundary condi-

tions developed, it is natural to next consider models with an internal bound-

ary: also known as an impurity or defect. The foundations for defects within

two-dimensional integrable theories were first established by Delfino, Mus-

sardo and Simonetti [8, 9]. Their results showed that theories including a

defect can only remain integrable if the defect is either purely reflecting (an

integrable boundary) or purely transmitting. Alternative frameworks do ex-

ist, whereby an impurity both reflects and transmits particle content. In one

case, the defect must possess internal degrees of freedom [43]. Another alter-

native was investigated by Mintchev et al. [44], however, their results rely on

S-matrices that do not depend on the rapidity difference, S(θa − θb), but on

each rapidity separately, S(θa, θb).

In the real world defects are commonplace. Within a two-dimensional in-

tegrable quantum field theory one can regard defects as a juncture of two

bulk regions. Special defects conditions must hold to ensure that the two

bulk regions are ‘stitched’ together. This will become evident in the follow-

ing section, where we detail the Lagrangian formalism developed by Bowcock,

Corrigan and Zambon [15], first for the sine-Gordon model. The results of the

Lagrangian approach, in the sine-Gordon case, matched Konik and LeClair’s

earlier findings for the quantum sine-Gordon model [10]. For other models we

will see, again, how the classical and quantum theories influence one another.

This work was extended to include a
(1)
n defects in [16]. Later work lead to
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the discovery of another type of defect, supported by the a
(1)
n theories and the

Tzitzéica model - a
(2)
2 affine Toda [45, 46, 47]. The sine-Gordon, a

(1)
2 and a

(2)
2

models are of particular importance for this work.

Furthermore, we will see how the classical framework provides insight into the

quantum scenario, which is most important for the work contained herein,

especially when we begin to investigate the rich interplay between integrable

defects and integrable boundaries. The defect’s intrinsic features are exploited

to generalise a particular type of integrable boundary .

1.4.1 The Classical Picture

Throughout this section, we will detail the classical theory that is relevant to

later work contained in the coming chapters. In particular, we will consider

the a
(1)
n affine Toda models, which includes a

(1)
2 that we will examine in chapter

(4) and it generalises earlier work concerning the sine-Gordon model.

1.4.1.1 Type - I defects

The addition of a defect, at the point x = 0, to a theory is very natural. One

simply needs to account for the two fields, u and v, either side of the defect,

and the defect itself. Therefore, a single defect placed at x = 0 is described

by the Lagrangian [16]:

Ld =θ(−x)Lu + θ(x)Lv

+ δ(x)

(
1

2
(u ·But + u ·Dvt − ut ·Dv + v ·Bvt)−D(u, v)

)
,

(1.33)

where θ(x) is the Heaviside step function, to signify the bulk regions and δ(x)

is the usual delta function, to signify where the defect is defined. The matrix

B i s an anti-symmetric, n by n matrix (where the algebra has rank n) and

the matrix D is defined as: D = 1 − B. The defect potential, D(u, v), is

defined [16]

D(u, v) = −m
β2

n∑
j=0

(
σe

iβ
2
αj ·(DTu+Dv) +

1

σ
e
iβ
2
αj ·D(u−v)

)
, (1.34)

where: m is the usual mass parameter, β is the coupling, αj, j = 1, . . . , n are

the simple roots and α0 is the additional root (1.23) of the particular affine
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Toda model. Importantly, the matrix D, satisfies the constraints:

αk ·Dαj =


2, if k = j,

−2, if k = π(j), D +DT = 2,

0, otherwise.

(1.35)

The matrix D is of central importance, as it depends on a permutation of

the simple roots, π(j). Consequently, there is associated with D a choice of

the clockwise or anti-clockwise permutation. The permutation will specify the

defect and we will see its importance in the quantum setting later in chapter

(4). For now, let us choose the clockwise permutation, following [48],

απ(j) = αj−1, j = 1, . . . , n, απ(0) = αn.

The constraints are satisfied when D is chosen to take the form

D = 2
n∑
i=1

la(la − la+1)T , (1.36)

where the vectors la, a = 1, . . . , n are the fundamental highest weights of the

Lie algebra an. In particular, they satisfy: li · αj = δij for i, j = 1, . . . , n, and

l0 ≡ ln+1 = 0. If the anti-clockwise permutation of simple roots is used, one

simply replaces D, defined in (1.36), with its transpose.

Using the Lagrangian (1.33) we can obtain the equations of motion, as well

as the defect conditions specified at x = 0 [16],

utt − uxx =
im2

β

n∑
j=0

αje
iβαj ·u, x < 0, (1.37)

vtt − vxx =
im2

β

n∑
j=0

αje
iβαj ·v, x > 0, (1.38)

ux −But −Dvt + Du = 0, x = 0, (1.39)

vx −DTut +Bvt −Dv = 0, x = 0. (1.40)

It should be mentioned that the defect conditions in fact take the form of

a Bäcklund transformation that is frozen at x = 0 [16]. This feature is in-

teresting as such transformations are a hallmark of integrability. It is also

reasonable, given that the defect is purely transmitting and solitons usually
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re-emerge from the defect, but it cannot be applied in the usual sense to ob-

tain multi-soliton solutions. Furthermore, the bulk and defect potentials are

both invariant under particular translations of the fields, u and v:

u→ u+
2πb

β
, v → v +

2πc

β
,

for b, c any two elements of the root lattice. As a result of this invariance, one

can obtain other solutions, that have the same energy and momentum. Some

comments regarding energy and momentum, in the presence of the defect are

in order. The energy and momentum contributions from the bulk regions are

given by the usual formulae, respectively:

E =

∫ 0

−∞
dx

(
1

2
(ux · ux) +

1

2
(ut · ut) + U(u)

)

+

∫ ∞
0

dx

(
1

2
(vx · vx) +

1

2
(vt · vt) + V (v)

)
,

P =

∫ 0

−∞
dx(ux · ut) +

∫ ∞
0

dx(vx · vt).

(1.41)

In order to contemplate their conservation we must consider their time deriva-

tives. By differentiating the above with respect to time, as well as using the

equations of motion appropriately together with the assumption that the fields

provide no contribution at spatial infinity one finds [49]

Ė = ux · ut |x=0 − vx · vt |x=0, (1.42)

Ṗ =

(
1

2
(ux · ux) +

1

2
(ut · ut)− U(u)

) ∣∣∣∣∣
x=0

−
(

1

2
(vx · vx) +

1

2
(vt · vt)− V (v)

) ∣∣∣∣∣
x=0

.

(1.43)

To enable the exchange of energy and momentum at the defect, the above

quantities must be expressed as time derivatives of functions of the fields at

the defect location. For the conservation of momentum, we can use the defect

conditions (1.39) and (1.40) to eliminate the spatial derivatives of the fields

in the above equation:
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Ṗ =

(
1

2
(But +Dvt −Du)

2 +
1

2
(ut · ut)− U(u)

)

−
(

1

2
(DTut −Bvt + Dv)

2 +
1

2
(vt · vt)− V (v)

)
.

(1.44)

It is readily observed that the above contains only time derivatives of the

fields, as well as the potentials: U(u), V (v), and derivatives of the defect

potential. It is possible to arrange Ṗ as a total time derivative providing

several relations hold:

ut · (1 +BTB −DDT )ut = 0, (1.45)

vt · (1−DTD −BTB)vt = 0, (1.46)

ut · (BTD +DB)vt = 0, (1.47)

1

2
Du ·Du −

1

2
Dv ·Dv = U(u)− V (v). (1.48)

Relations (1.45)-(1.47) are verified easily using the defining properties of the

matrices B and D stated earlier. The final relation is not so easily verified.

In [16], the final relation is verified by running the defect potential through

(1.48), after which the properties of matrix D are again used to rearrange

the result. The matrix D and its connection with the permutation of roots is

crucial to obtain the end result [16]:

Ṗ = U̇, U = −m
β2

n∑
j=0

(
σe

iβ
2
αj ·(DTu+Dv) − 1

σ
e
iβ
2
αj ·D(u−v)

)
, (1.49)

hence, the defect supplies a contribution, U, to the momentum so that the total

momentum, P = P+U, is conserved. Overall, this is result is quite remarkable

because the defect’s construction appears to account for its breaking of the

space translational invariance. However, the defect does not disrupt time

translational invariance and so the defect potential simply contributes to the

total energy. Specifically, the equation (1.42) for Ė becomes equal to Ḋ, which

means the total energy E = E + D is conserved.

In fact, it is shown in [49] that if momentum is conserved the theory with

a defect is classically integrable. A generalised Lax pair is also employed to
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show that the theory including a defect remains integrable. Consequently,

the conservation of momentum is an important facet of the defect theory.

Previously, the constant fields

u =
2πb

β
, v =

2πc

β
,

were mentioned in section (1.3). However, some of their features are modified

when a defect is included within the theory. Usually, the constant fields, where

b and c are weights, belonging to the same representation in this instance, have

zero energy. As we have seen, the defect adds its own contributions of energy

and momentum so that their energy and momentum are now given by [48]:

E0 = −2mh

β2
cosh η, P0 =

2mh

β2
sinh η,

where η is related to the defect parameter σ in the following way: σ = e−η.

This concludes our consideration of energy and momentum. We will now

progress to review the way in which solitons transmit through a defect, so

that we can work towards the quantum picture.

The way in which a soliton transmits through the defect is of greater relevance

to us. The classical behaviour provides insight into the defect transmission

matrices of the quantum setting, which our work relies upon heavily. The

main goal is to understand all possible behaviour exhibited by a right-moving

soliton when it encounters the defect. One can again use Hirota’s formulation

[37, 38], where the a
(1)
n single soliton is given by:

ua =
im2

β

n∑
j=0

αjln(1 + Eaω
aj), (1.50)

where the parameters are defined as before (1.24). Eventually, the soliton will

encounter the defect at x = 0 and it typically emerges; albeit slightly modified

va =
im2

β

n∑
j=0

αjln(1 + zaEaω
aj). (1.51)

The additional factor, za, encodes all possible processes a soliton can undergo

during transmission. It first appeared in [16] where it was calculated for the

anti-clockwise permutation of simple roots. Later, in [48], it was calculated
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for the clockwise permutation by sending the ath soliton of the expression in

[16] to the (h − a)th soliton. Specifically, the soliton is delayed by the defect

and the delay parameter za with the clockwise permutation is:

za =

(
e−(θ−η) + ie−iγa

e−(θ−η) + ieiγa

)
, γa =

πa

h
, (1.52)

where h is the Coxeter number of the particular a
(1)
n theory. Upon quick

inspection we see that the delay is usually complex. However, the exceptions

to this are the self-conjugate solitons where a = h/2 (with n odd), in this case

the delay is real and is equal to the delay experienced by sine-Gordon solitons

[15]:

z =

(
eη−θ + 1

eη−θ − 1

)
= coth

(
η − θ

2

)
. (1.53)

Let us now examine the delays experienced by the solitons. Firstly, consider

the behaviour encoded within (1.53). There are several possible configurations

of the parameters that return interesting results. If the overall argument is

negative: η − θ < 0, then z < 0 and the incoming soliton converts to an

anti-soliton. This occurs when η < 0 < θ and again for η < θ, η > 0. By

anti-soliton we mean a soliton of the same mass, but with opposite topological

charge. Topological charge is described by the imaginary part of ξa appearing

in (1.24). Therefore, for large enough values of θ, enough topological charge

is exchanged with the defect to cause the imaginary part of ξa to change, so

that an anti-soliton re-emerges. If η > 0 and θ < η, the argument remains

positive and the soliton is simply delayed. Interestingly, if θ = η, the argument

becomes zero and the soliton never leaves the defect, it is subsumed by the

defect. The delay expressed in (1.52) acts somewhat differently. Following

[16, 48] it is instructive to consider the argument of the phase delay (1.52):

tan(arg za) = − sin 2γa
e−2(θ−η) + cos 2γa

. (1.54)

The above is very interesting because the phase shift appears able to vary

between zero, provided θ → −∞, and −2γa, provided θ → ∞. Furthermore,

this interval coincides with the separation of the different topological charge

sectors [50], in terms of the parameter ξa appearing in the soliton’s definition

(1.50) - specifically, its imaginary part. Thus, a soliton can convert to one

of its neighbours when the rapidity is sufficiently large. This behaviour is
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most significant, because its repercussions are felt within the quantum theory.

The transmission matrices must mirror the severely restricted processes, and

indeed they do, as some contain zeroes that replicate the restricted process.

The full details are discussed in chapter (4).

One final remark concerning (1.52) is required. Owing to the definition of γa,

one readily observes that the delay diverges for a specific value of the rapidity:

θ = η +
iπ

2

(
1− 2a

h

)
.

Overall, except for the self-conjugate solitons where a = h/2, this means that

the defect cannot absorb any soliton possessing real rapidity. This concludes

our recount of type - I integrable defects. Let us now move on to the yet more

interesting type - II defects.

1.4.1.2 Type - II defects

The fact that the type - I defect conditions, for the a
(1)
n Toda models, take

the form of a Bäcklund transformation frozen at the defect location is en-

tirely consistent with the work of Fordy and Gibbons, where the sine-Gordon

Bäcklund transformation was generalised to encompass the a
(1)
n models [51].

However, the constraints placed on the theory, and appropriate defect poten-

tial, appear too stringent. As a result, it seemed that none of the other affine

Toda models could support a defect.

To make progress, and discover defects in other affine Toda models, a generali-

sation was proposed by Corrigan and Zambon, whereby the defect possesses its

own degree of freedom [47]. The added parameter induces extra freedom and

one can similarly show that both energy and momentum are conserved. How-

ever, energy conservation is no surprise because the time translation invariance

is not violated. On the whole, despite more complicated defect potentials, the

type - II scenario is treated analogously and is shown to be compatible with

the bulk theory. In particular, it is well-defined by the consideration of con-

servation of momentum, reference [47] contains full details. The framework is

sufficiently more general to allow the inclusion of a defect within the Tzitzéica

model. However, one must consider the conservation of different charges to

show that the theory is integrable, as a generalised Lax pair methodology does
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not yet exist in this framework.

The Lagrangian framework is modified to include the defect’s extra degree of

freedom, λ, at x = 0, it takes the form [45, 46, 47]:

LII = θ(−x)Lu + θ(x)Lv + δ(x) (2q · λt −D(u, v, λ)) , (1.55)

with q = (u(0, t) − v(0, t))/2 and as usual the fields u and v are defined on

the left and right of the defect, respectively. The defect degree of freedom is

restricted to x = 0. It is useful to consider the system in terms of:

p =
u+ v

2
, q =

u− v
2

,

then as well as the typical bulk equations of the motion, the Lagrangian (1.55)

supplies the defect conditions [46]:

2qx = −Dp, 2px − 2λt = −Dq, 2qt = −Dλ. (1.56)

Corrigan and Zambon went on to find that the defect potential must satisfy

two further conditions:

D = f(p+ λ, q) + g(p− λ, q),

∇λf · ∇λg −∇λg · ∇qf = U(u)− V (v).
(1.57)

The second constraint above is most powerful, as it links the features of the

defect to the potential difference across the defect. Moreover, the right-hand

side of the second constraint does not contain any dependence on λ, further

signifying its powerful nature.

We will now detail the defect potential for the a
(2)
2 affine Toda model. The

fields u and v are single component scalar fields that have bulk potentials:

U(u) = −m
2

β2

(
eiβu

√
2 + 2e−iβu/

√
2 − 3

)
,

V (v) = −m
2

β2

(
eiβv

√
2 + 2e−iβv

√
2 − 3

)
,

where m represents the mass scale and β is the real coupling constant. The
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associated type - II defect potential, fulfilling conditions (1.57) is [45, 47]:

D(p, q, λ) =

√
2mσ

β2

(
ei(p+λ)β/

√
2 + e−i(p+λ)β/2

√
2
(
eiqβ/

√
2 + e−iqβ/

√
2
))

+

√
2m

2β2σ

(
8e−i(p−λ)β/2

√
2 + ei(p−λ)β/

√
2
(
eiqβ/

√
2 + e−iqβ/

√
2
)2
)
,

(1.58)

and we see that the usual defect parameter σ appears alongside λ that suit-

ably generalises the framework. Again, we would like to consider the soliton’s

transmission through the defect; within the new framework. The Hirota for-

malism [37, 38] is used, again, to express the soliton solutions of the bulk

theory:

eiu =
(1 + E)2

(1− 4E + e2)
, eiv =

(1 + zE)2

(1− 4zE + z2e2)
,

E = eax+bt+c, a =
√

6 cosh θ, b = −
√

6 sinh θ.

(1.59)

where z signifies the delay experienced by the soliton. We have, in this in-

stance, dropped the dependence on the mass scale and coupling. Also, one

must remember that within this model the soliton is complex, and the con-

stant ec is selected such that the expressions for the soliton are non-singular

for all real x and t. Typically, we expect the soliton to exhibit standard be-

haviour when passing through the defect, even in the presence of the defect

‘field’, λ. The delay, of most relevance to us, experienced by a soliton is:

z = coth

(
θ − η

2
− iπ

12

)
coth

(
θ − η

2
+
iπ

12

)
, σ =

√
2e−η. (1.60)

The above is calculated in [47], where the full details are provided. The main

point is that the defect field, λ, must take a particular value when calculating

the possible delays. More importantly, this delay exhibits the same behaviour

as the type - I sine-Gordon defect. Namely, if η is real, thus matching the

rapidity that is always real, the delay is real and positive. In this instance, the

soliton simply transmits through the defect and is delayed. It cannot convert

to its anti-soliton. Finally, for specific choices of complex η, the soliton can

either convert to its anti-soliton or the defect can absorb it. Such behaviour

is important for our purposes, because it helps to lead investigations in the

quantum picture where suitable transmission matrices are calculated. The
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auxiliary field possessed by the defect, in the classical picture, will translate

into the presence of (related) free functions of the topological charge in the

quantum transmission matrix. Consequently, this shows that the type - II

defect can also store an unlimited amount of topological charge.

For completeness, we will now include the classical framework for the type -

II defect in the a
(1)
n theories [45], as we will consider the type - II transmission

matrices of a
(1)
2 in chapter (4). The potentials of the bulk fields u and v are:

U(u) = −m
2

β2

n∑
j=0

(eiβαj ·u − 1), V (v) = −m
2

β2

n∑
j=0

(eiβαj ·v − 1),

and as usual, αj, j=1,. . . , n are the simple roots, where α0 = −
∑n

j=1 αj is

defined as the lowest root. The Lagrangian for this type - II set-up takes the

same form as (1.55). The main difference is that there are two possible defect

potentials, referred to as setting A and setting B in [45]. The defect potential

in setting A is given by:

D(p, q, λ) =
m

β2

n∑
j=0

(
σeiβαj ·(p+λ)/2Aj(q) +

1

σ
eiβαj ·(p−λ)/2Aj+1(q)

)
, (1.61)

with

Aj(q) = γeiβαj ·Gq/2 +
1

γ
e−iβαj ·Gq/2,

where p and q are defined as before. Additionally, the constant matrix, G, is

defined as:

G = 2
n∑
a=1

(ωa − ωa+1)ωTa , αi · ωj = δij, i, j = 1, . . . , n,

where ωi are the fundamental weights of the a
(1)
n Lie algebra, also, σ, γ are

the two defect parameters. To obtain the defect potential in setting B, simply

make the substitutions p→ −p and G→ −G. Let us recall that the classical

type - I defect also contains two possible defect potentials, originating from

a choice of permutation that defines the matrix D: hence, it is unsurprising

that the type - II setting also contains two possibilities. Ultimately, we are

most interested in the type - II behaviour within the quantum framework, and

its impact on the transmission matrices. In the a
(1)
2 case, many parameters
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are included within a type - II T -matrix. Yet more significantly, there is a

definitive relation between the type - I and type - II matrices. Altogether,

this exemplifies the strong relationship between type - I and type - II defects

within the same theory and it makes for interesting behaviour.

Finally, before the quantum setting is reviewed, a comment concerning type

- II defects is required. In the case of the sine-Gordon model, one can view

the type - II defect as two fused type - I defects [46]. If two defects are

fused together, the presence of an auxiliary field within the resulting defect is

entirely natural. The extra freedom could be a result of something formed or

trapped during the fusion process. However, we will view type - II defects in

their own right and do not need to consider the fusion process any further.

1.4.2 The Quantum Picture

In the quantum setting, the defect is described by an exact transmission (T -)

matrix. All information concerning the interaction between soliton and defect

is encoded within the T -matrix. The early results of Delfino, Mussardo and

Simonetti [8, 9] showed that an integrable defect must be purely transmitting.

Furthermore, the defect can be included in the FZ-algebra, where it is repre-

sented by the operator Dα, to denote a defect carrying topological charge α.

The process of a soliton (labelled with the usual operators Ai(θ)) transmitting

through the defect from the left is given by:

Ai(θ)Dα = T jβiα (θ)DβAj(θ).

The role of the T -matrix is clear from the above: the incident right-moving

soliton, labelled subscript i, encounters the defect with initial charge α. Dur-

ing its interaction the soliton can exchange topological charge with the defect,

and potentially convert to another soliton or anti-soliton. Consequently, the

emerging soliton is labelled subscript j and it continues to move away from the

defect, with final charge β. To account for topological charge conservation,

each entry in the T -matrix includes a Kronecker-delta operator-like object:

δβα, δ
β±1
α , δβ±2

α for example. There exists an algebraic framework, developed

by Weston [52, 53], wherein each matrix entry includes appropriate raising

and lowering operators ai, a
†
i satisfying algebraic relations, thus replacing the

Kronecker-deltas. We will now give details of both theories.
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Figure 1.3: Diagrammatic representation of the transmission Yang-Baxter
equation, where the dashed line represents the defect.

1.4.2.1 The Quadratic equation

Ultimately, we see that T -matrices are the crucial component. We will now

consider the ways in which they are defined. In particular, we will describe two

methods by which they are constructed: one involves solving the transmission

Yang-Baxter equation and the other employs quantum groups.

The former ensures that the defect is compatible with the S-matrix, the pro-

cess is illustrated in figure (1.3) and the equation is given by:

Sghab (θa − θb)T dγhα(θa)T
cβ
gγ (θb) = T hγbα (θb)T

gβ
aγ (θa)S

cd
gh(θa − θb), (1.62)

where the repeated indices are summed over. The above index approach is

helpful because the charge dependence of the system is explicit, however one

can reformulate equation (1.62) in terms of tensor products - as in the case of

the reflection equation -

S(θa − θb)T1(θa)T2(θb) = T2(θb)T1(θa)S(θa − θb), (1.63)

where T1 = T ⊗ 1 and T2 = 1 ⊗ T . Of course, the two are equivalent,

and we will use the latter in the subsequent section. The transmission Yang-

Baxter equation does not constrain the T -matrix prefactor, as it simply cancels

throughout the equation. However, the T -matrix must satisfy analogues of

the crossing and unitarity conditions which do constrain the prefactor. For

completeness, it should be noted that the bootstrap procedure also restricts

the prefactor and is considered in [46]. However, the work in this thesis does

not require the transmission matrices’ prefactors, and so we will not discuss

them further. Crossing symmetry imposes the condition
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T b̄γāα(θ) = T aγbα (iπ − θ), (1.64)

where the barred indices represent the anti-particle of the particular soliton.

The unitarity condition is

T bγaα(θ)T̃ cβbγ (−θ) = δcaδ
β
α. (1.65)

The matrix, T̃ , describes the transmission of a soliton from the right to the

left. We expect that it is defined differently, because the defect breaks the

parity invariance of the theory. In fact, it is defined as

T̃ (θ) = T−1(−θ)

and one can rearrange equations (1.62)/(1.63) to obtain its defining equation:

Shgdc (θa − θb)T̃ bβhα(θb)T̃
aβ
gγ (θa) = T̃ hγdα (θa)T̃

gβ
cγ (θb)S

ba
hg(θa − θb).

Equation (1.65) highlights an important feature of any transmission matrix,

namely, it must be invertible. Previously, in [46], it was shown that there

are some solutions to the transmission Yang-Baxter equation that are not in-

vertible - clearly, these solutions are not viable T -matrices as they can never

satisfy (1.65). We will see, throughout the coming chapters, that inversion

is a vital property. Without it, one cannot construct generalised reflection

matrices. Usually, one can construct general formulae for the inverse trans-

mission matrix. They coincide with the standard rules of inversion, but their

constituent matrix entries must be shifted to account for changes in topo-

logical charge. This is most likely a consequence of the underlying quantum

group structure. To give a simple example of this, let us consider a general

sine-Gordon T -matrix

T bβaαSG(θ) =

 T11(α, x)δβα T12(α, x)δβ−2
α

T21(α, x)δβ+2
α T22(α, x)δβα

 . (1.66)

The inverse T -matrix should possess the same Kronecker-deltas, in the same

positions, together with slightly modified entries. The inversion formulae

are readily obtained by forming and rearranging equations resulting from the
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multiplication of (1.66) by a matrix, T−1, whose product returns 1 ·δβα, to find

T bβ
−1

aαSG
(θ) =

 Y11(α,x)
∆(α,x)

δβα
Y12(α,x)
∆(α,x)

δβ−2
α

Y21(α,x)
∆(α−2,x)

δβ+2
α

Y22(α,x)
∆(α−2,x)

δβα

 ,

with entries:

Y11(α, x) = T22(α + 2, x), Y12(α, x) = −T12(α, x),

Y21(α, x) = −T21(α, x), Y22(α, x) = T11(α− 2, x),

(1.67)

and determinant

∆(α, x) := T11(α, x)T22(α + 2, x)− T12(α, x)T21(α + 2, x). (1.68)

Immediately, the parallels between the standard inversion formulae of an ar-

bitrary two-by-two matrix are clear. The determinant must be non-zero to

guarantee that the matrix is invertible. This provides us with the true con-

straint, from which we can invert the matrix and go on to show that it is

satisfies the unitarity condition. However, the determinant seems to depend

upon the topological charge, α. In most cases, the determinant is independent

of the topological charge and we will see several instances of this in chapters

three and four.

The sine-Gordon model possesses the simplest T -matrices. We have seen

that they are easily inverted and contain simple Kronecker-deltas that track

exchanges of topological charge. In particular, if the first row/column is re-

garded as an incoming/outgoing soliton and the second row/column is viewed

as an incoming/outgoing anti-soliton, we see that entries: 1,1 and 2,2 must in-

clude δβα as no charge is exchanged. Therefore, we see that entry 1,2 (incoming

soliton with outgoing anti-soliton) must include δβ−2
α to mirror this process.

In the case of the sine-Gordon, the defect simply counts topological charge

in units of ±2π; thus emulating the fact that a soliton could emerge from

its interaction with the defect as an anti-soliton or vice-versa. However, the

defect does not behave like this for all other models. We will now introduce

the transmission matrices of the sine-Gordon model, which we will use later.

The model is special in that it supports both type - I and type - II defects.

The type - I transmission matrix was first calculated by Konik and LeClair
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[10]. Some years later, their solution was generalised by Corrigan and Zambon

[17]. The new solution includes both the type - I and type - II transmission

factors via a specialisation of its parameters, the solution noted in [17] is:

T bβaα(θ) = ρ(θ)

(
(a+q

−α/2x−1 + a−q
α/2x)δβα µ(α)δβ−2

α

λ(α)δβ+2
α (d+q

−α/2x+ d−q
α/2x−1)δβα

)
,

(1.69)

where the functions µ(α), λ(α) satisfy:

µ(α)λ(α− 2)− µ(α− 2)λ(α) = (q − q−1)(a−d−q
α − a+d+q

−α). (1.70)

The above relation implies the following:

µ(α− 2)λ(α) = a−d−q
α−1 + a+d+q

−α+1 + γ.

A solution to the constraint is given in [46], where the functions are chosen

as follows:

µ(α) = b+q
−α/2 + b−q

α/2, λ(α) = c+q
−α/2 + c−q

α/2, a±d± − b±c± = 0,

for complex constants a±, b±, c±, d±. If we substitute the functions into (1.69)

and set Q = q−1/2, we find:

T bβaα(θ) = ρ(θ)

(
(a+Q

αx−1 + a−Q
−αx)δβα (b+Q

α + b−Q
−α)δβ−2

α

(c+Q
α + c−Q

−α)δβ+2
α (d+Q

αx+ d−Q
−αx−1)δβα

)
. (1.71)

By carefully choosing the parameters in matrix (1.71) we can recover both the

type - I and type - II defects. First, set

a− = d+ = c− = b+ = 0, b− = c+ and extract a factor of (a+d−)1/2x−1,

to recover the type - I transmission matrix [10]:

T bβ
I aα = ρI(θ)

(
ν−1/2Qαδβα εxQ−αδβ−2

α

εxQαδβ+2
α ν1/2Q−αδβα

)
, (1.72)

with the identification, ν1/2 = (d−/a+)1/2, ε = b−(a+d−)−1/2.
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Similarly, by setting,

a+ = 1 = d−, a− = −b−b̄+, d+ = −b+b̄−Q
−4,

c+ = −b̄−Q−4, c− = −b̄+,

as well as extracting a factor of x−1 from (1.71), to ensure the recovery of the

type - II transmission matrix [17, 46]:

T bβ
II aα = ρII(θ)

(
(Qα − b−b̄+Q

−αx2)δβα x(b+Q
α + b−Q

−α)δβ−2
α

−x(b̄−Q
α−4 + b̄+Q

−α)δβ+2
α (Q−α − b+b̄−Q

α−4x2)δβα

)
.

(1.73)

As we are aware, the sine-Gordon model is quite specialised and it is known

that defects within the a
(1)
n , n > 1, ATFTs behave differently. Let us now

document the general structure of an arbitrary a
(1)
2 transmission matrix, we

will work with matrices of this form in chapter (4):

T bβaα =

 T11δ
γ
α T12δ

γ−α1
α T13δ

γ+α0
α

T21δ
γ+α1
α T22δ

γ
α T23δ

γ−α2
α

T31δ
γ−α0
α T32δ

γ+α2
α T33δ

γ
α

 . (1.74)

The topological charge is no longer counted in units of 2π, therefore, ex-

changes of charge are no longer tracked by objects of the form: δβ±jα , j ∈ Z.

The charges are now represented by the weights of the solitonic/anti-solitonic

representations, labelled by α, β, and a soliton can move around the corre-

sponding weight lattice by depositing root-like charges at the defect. Conse-

quently, exchanges of topological charge are described by objects of the form:

δβ±αiα , where α1, α2 are the simple roots of a
(1)
2 and α0 is the additional lowest

root. Such transmission matrices are also invertible, as they should be, and

an infinite-dimensional analogue of Cramer’s rule is easily derived.

1.4.2.2 The Linear equation

Presently, we have only considered T -matrices as solutions to the quadratic

equation (1.62), which is not easily solved. Let us now move on to inspect the

algebraic framework developed by Weston, in [53], where quantum groups are

cleverly utilised. The importance of placing the defect in this larger algebraic

context is to connect its theory with generalised oscillator algebras and Q-

operators [52, 53]. We will now examine and recount the alternative method
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within [53] that reproduces the sine-Gordon type - I and type - II transmission

matrices. In this framework, the S-matrix is replaced by the R′-matrix that

acts as an intertwiner of the finite-dimensional representation Vx of Uq(a
(1)
1 ):

R′(x1/x2) : Vx1 ⊗ Vx2 → Vx1 ⊗ Vx2 ,

satisfying the linear intertwining condition:

R′∆(a) = ∆′(a)R′, (1.75)

for all a, where a is a generator of Uq(a
(1)
1 ). Likewise, the T -matrix is viewed

as a specialisation of a more general intertwiner, L,

L(z/x) : W (r)
z ⊗ Vx → W (r)

z ⊗ Vx.

We can see that L intertwines an infinite-dimensional space, W
(r)
z , and the

finite-dimensional space, Vx. In fact, W
(r)
z is a representation of a Borel sub-

algebra that is parametrised by a complex vector (r) = (r0, r1, r2), and a

rapidity-like parameter, z. The operator, L, satisfies a linear intertwining

condition

L∆(b) = ∆′(b)L, (1.76)

where b is any generator of the Borel subalgebra. In terms of the defect

transmission matrix, (1.76) is now the defining equation to solve. As the result

of the calculation is a more general object, one must choose the parameters

(r) precisely to obtain the sine-Gordon type - I and type - II defects that we

are familiar with.

The main constituents of this construction are the infinite-dimensional Borel

subalgebra and the finite-dimensional representation of the underlying quan-

tum group. To detail the construction we require the defining relations of the

quantum affine algebra Uq(sl2). It is generated by six generators {Ei, Fi, Ki},
i = 0, 1, satisfying the following relations:

[Ei, Fi] = δij
Ki −K−1

i

q − q−1
, (1.77)

KiEiK
−1
i = q2Ei, KiEjK

−1
i = q−2Ej, i 6= j, (1.78)

KiFiK
−1
i = q−2Fi, KiFjK

−1
i = q2Fj, i 6= j, (1.79)
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EiE
3
j − [3]EjEiE

2
j + [3]E2

jEiEj − E3
jEi = 0, i 6= j, (1.80)

FiF
3
j − [3]FjFiF

2
j + [3]F 2

j FiFj − F 3
j Fi = 0, i 6= j, (1.81)

where the notation

[n] =
qn − q−n

q − q−1
,

is used. The construction relies upon the coproduct, ∆, which is defined as:

∆(Ei) = Ei ⊗ 1 +Ki⊗Ei, ∆(Fi) = Fi ⊗K−1
i + 1⊗ Fi,

∆(Ki) = Ki ⊗Ki,
(1.82)

for i = 0, 1. The opposite coproduct, ∆′, is obtained from the above by ap-

plying the permutation operator, P , that interchanges the factors. Following

Weston’s methodology, we will now begin to construct the infinite-dimensional

Borel subalgebra, Uq(b+). It is generated by the elements Ei, Ki i = 0, 1, hence

only relations (1.78) and (1.80) must be satisfied by the subalgebra.

The next step in [53] is to define the generalised oscillator algebra that will be

used to construct the representation of the Borel subalgebra. The generalised

oscillator algebra, O(r1,r2), for complex numbers r1 and r2, is generated by the

operators: a, a†, q±N satisfying relations

qNa†q−N = qa†, qNaq−N = q−1a,

aa† = (r1 + q−2N)(r2 + q2N) = F (N),

a†a = (r1 + q2−2N)(r2 + q2N−2) = F (N − 1).

(1.83)

One can regard the operators: a, a†, as raising and lowering operators that

account for the defect’s ability to store charge. As a result, clearly, there is

no need for a ground state because the defect can store an unlimited amount

of topological charge. In order to realise this the O(r1,r2) module W (r1,r2) =

⊕j∈ZC |j〉 is considered, because it acts on the infinite-dimensional space as

follows:

a |j〉 = |j − 1〉 , a† |j〉 = (r1 + q−2j)(r2 + q2j) |j + 1〉 ,

q±N |j〉 = q±j |j〉 .
(1.84)

By setting either r1 = 0 or r2 = 0 one retrieves the usual q-oscillator algebra
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relations [54]

a†a− q2aa† = (1− q2), when r1 = 0,

aa† − q2a†a = (1− q2), when r2 = 0.

(1.85)

Armed with this knowledge, we must choose the generators of the Borel sub-

algebra such that they mimic the above behaviour and act on the infinite-

dimensional space appropriately. Again, following [53] we will document the

action of the Uq(b+) module, W
(r)
z , where r = (r0, r1, r2) ∈ C3 and the space

is spanned by |j〉 ⊗ zn ∈ W (r1,r2) ⊗ C[[z, z−1]]:

E0(|j〉 ⊗ zn) =
1

(q − q−1)
a† |j〉 ⊗ zn+1,

E1(|j〉 ⊗ zn) =
1

(q − q−1)
a |j〉 ⊗ zn+1,

K1(|j〉 ⊗ zn) = r0q
−2N |j〉 ⊗ zn, K0(|j〉 ⊗ zn) =

1

r0

q2N |j〉 ⊗ zn.

(1.86)

It is easy to verify that this action satisfies the relevant relations (1.78) and

(1.80). Furthermore, in terms of constructing the defect transmission matrix,

it is clear from the relations (1.86) that we should choose the generators of

the infinite-dimensional Borel subalgebra in the following way:

E0 ∝ a†, E1 ∝ a, K0 ∝ q2N , K1 ∝ q−2N . (1.87)

One can include constants and functions of N in the above, provided that

they satisfy the necessary algebraic relations. Any functions and/or constants

included are then constrained by the linear intertwining equation.

Before detailing Weston’s solution to equation (1.76), further comments re-

garding the generalised oscillator algebra are necessary. Looking back at We-

ston’s definitions (1.84) we see that infinite-dimensional space is truncated

for particular values of r1 and r2. For example, let either r1 = −q−2n or

r2 = −q2n for an integer, n, then a† |n〉 = 0. Of course, this is not the only

possible truncation. In [45] Corrigan and Zambon consider a truncation of

the infinite-dimensional space in order to find the scattering matrix, R′, em-

bedded within the T ′-matrix. This was achieved by considering the action of
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the raising and lowering operators on the state space. The work contained

in this thesis does not require a truncation of the infinite-dimensional space,

further details are found in [45, 52, 53].

We are now ready to consider the linear intertwining equation (1.76). To

evaluate, and then substitute, the coproduct into the linear equation one must

also use the fundamental two-dimensional representation of the quantum affine

algebra. The solution given in [53] is:

L(r)(z, q) =

qN + r2z
2q2−N −r0zq

−N+1a†

−zqN+1a r0q
−N + r0r1z

2qN

 . (1.88)

The power of the algebraic approach is clear from the solution. The parame-

ters r0, r1, r2 and z add a lot of freedom, they can be chosen to take certain

values that in turn affect the function F (N), and the space over which the

operators act. If the L-matrix given in (1.88) is related to defect transmission

matrices, then it must satisfy the relevant properties.

First of all, we can calculate the inverse matrix entries using the general

formulae:

L−1
11 (N) =

L22(N − 1)

∆(N − 1, z)
, L−1

12 (N) =
−L12(N)

∆(N − 1, z)
,

L−1
21 (N) =

−L21(N)

∆(N, z)
, L−1

22 (N) =
L11(N + 1)

∆(N, z)
,

where the determinant is defined as:

∆(N, z) := L11(N + 1)L22(N)− L12(N + 1)L21(N)F (N);

hence, the inverse is:

(L(r))−1(z, q) =
1

∆

r0q
−N+1 + r0r1z

2qN−1 r0zq
−N+1a†

zqN+1a qN+1 + r2z
2q1−N

 . (1.89)

Note that we have dropped the N -dependence of the determinant, because it

takes the form:

∆(z) = r0q(z
2 − 1)(r1r2z

2 − 1).
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Therefore, the unitarity property is satisfied. Weston also states that the

L-matrix satisfies the crossing relation [53]:

L−1(−zq, q) =
1

∆(−zq)
(σxL(z)σx)t2 ,

where σx is the Pauli matrix and t2 denotes the transposition of the two-

dimensional space. Finally, the Yang-Baxter relation:

R′(x1/x2)L(z/x2)L(z/x1) = L(z/x1)L(z/x2)R′(x1/x2)

holds, it is a natural consequence of this construction, where both sides of the

equation act on the space W (r)(z)⊗Vx1⊗Vx2 . As the above properties are sat-

isfied, it appears that the general algebraic object, L, fits into the usual defect

framework. However, it is also connected to Baxter’s Q-operator, see [55]-[58]

for details of Baxter’s Q-operator and [52, 53, 59, 60] for details surrounding

the connection. The Q-operator can be identified as an appropriately regu-

larised trace of the L-matrix over the infinite-dimensional space [59], and this

was first proposed by Bazhanov et al. in [60]. The construction of the general

object, L - in both [52, 60] - is slightly different but remains very algebraic. In

a similar fashion to Delius and MacKay, [18], the universal R-matrix is used

together with particular evaluation representations. Bazhanov et al. go on

to define the Q-operator in terms of this regularised trace, because they show

that it satisfies similar functional relations to the Q-operator. On the whole,

the workings required to showcase the connection fully are very involved and

it is not suitable to document them here. Nonetheless, it is important to high-

light that this connection does exist and ties the theory of integrable defects

to a wider algebraic setting. We do not require any further details concerning

this topic, for information please see references [52, 53, 59, 60].

It still remains to recover the sine-Gordon transmission matrices (1.72), (1.73)

from the more general L-matrix. To achieve this one must assign values to all

parameters z and ri, for all i and apply similarity transformations as required.

Firstly, we will retrieve the type - I matrix by adopting the method detailed

in [53]

TISG(θ, η) = ν−1/2UI(ν)L(r0=ν,r1=0,r2=0)(z = ieγ(θ−η), q)U−1
I (ν), (1.90)

where the similarity transformation UI is:



1.4. Integrable Defects 49

UI(ν) =

1 0

0 −ν1/2q−N−1/2

 .

The result of this calculation contains extra factors of i in the off-diagonal

entries. This is a result of the different notations adopted by Corrigan and

Zambon in [46] and Weston in [53]. When executing the substitution of pa-

rameters, one should identify eγ(θ−η) := εx. Interestingly, the type - I special-

isation forces the oscillator algebra’s function F (N) to collapse to unity. This

behaviour is expected, since r0 appears to be the most significant parameter

in the type - I case and it has no bearing on the function F (N).

The recovery of the type - II T -matrix is similar, but more involved because

all available parameters are given a value:

TIISG(θ, b−, b+) = UIIL
(r0=1,r1=b̄−q2/b̄+,r2=b−/q2b+)(z = ieγθ|b+|, q)U−1

II , (1.91)

where the similarity transformation UII is:

UII(b−, b+) =

1 0

0 i
|b+|(b+ + b−q

−2N−2)

 .

Performing this calculation returns a type - II T -matrix of the form:

TIISG(θ, b±) =

 qN − b−b̄+q
−Nx2 −

(
xb+b̄+

b+qN−1+b−q−N−1

)
a†

x(b+q
N+1 + b−q

−N−1)a q−N − b+b̄−x
2qN+2

 , (1.92)

and this does not exactly match the previously documented type - II trans-

mission matrix (1.73), satisfying the quadratic equation, regardless of differing

conventions. However, the off-diagonal entries satisfy a constraint that is sim-

ilar to (1.70):

µ(N)λ(N − 1)− µ(N − 1)λ(N)

=
qx2b+b̄+

b+qN−1 + b−q−N+1
(q − q−1)(b+q

N − b−q−N),
(1.93)

where µ(N) and λ(N) are entries 1,2 and 2,1 respectively. More significantly,
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we find in this limit that the function F (N) becomes

F (N) = 1 +
b−b̄−
b+b̄+

+
b−
b+

q−2N−2 +
b̄−
b̄+

q2N+2

=
b−
b+

(
b̄−
b̄+

+ q−2N−2

)
+
b̄−
b̄+

(
q2N+2 +

b̄+

b̄−

)
.

(1.94)

At this point, the difference between the type - I and type - II defects of the

linear intertwining approach is clear. For the type - I defect, F (N), is merely

a constant. Whereas, for the type - II case, F (N) contains two non-trivial

parameters: b+, b−, thus resulting in a richer transmission matrix. Restricting

the general object, L, is illuminating because of the way that the parameters

are handled. In the type - I case, r0, is the only parameter of interest while

the others, r1, r2, are simply ‘switched off’. As one expects, when dealing

with the type - II defect, r1 and r2 are ‘switched on’, and there is no need

to include the type - I parameter; hence it is ‘switched off’. Moreover, one

should note that this behaviour is expected given the classical setting of the

type - II defect. The extra field associated with the defect translates into the

appearance of more parameters in the T -matrix. Of course, the sine-Gordon

model is quite specialised and it is fortunate enough to admit both type - I

and type - II defects. However, the Tzitzéica model only supports a type -

II defect. If one were to calculate the general L-operator for that model, we

would see that the parameters ri are related and one cannot simply ‘switch

them off’ [45].

Throughout this section and its discussion of the linear intertwining approach

we have adopted Weston’s notation and followed his work closely, [53]. Nev-

ertheless, another notation is perhaps more intuitive, whereby the raising and

lowering operators shift the topological charge in units of ±2, which allows

us to easily recognise the processes concerning the sine-Gordon soliton and

anti-soliton. Indeed, such a change in notational convention is permitted,

providing consistency is maintained ubiquitously. In chapter (2) the type - II

function F (N) will reappear, although with this slightly different convention.

Furthermore, some comments regarding the spaces over which the transmis-

sion matrices act are required. Let us recall that the transmission matrices

defined as intertwiners of the infinite-dimensional Borel subalgebra and finite-
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dimensional representation act over the spaces:

T ′(z/x) : Vz ⊗ Vx → Vz ⊗ Vx,

and satisfy the linear intertwining equation. As a consequence of their con-

struction, they naturally satisfy a transmission Yang-Baxter equation [52, 53]:

R′(x1/x2)T ′(z/x2)T ′(z/x1) = T ′(z/x1)T ′(z/x2)R′(x1/x2).

Both sides of this equation act on the space:

W ′ = Vz ⊗ Vx1 ⊗ Vx2 .

Similarly, if we consider the transmission matrices obtained from the quadratic

equation:

Sghab (θa − θb)T dγhα(θa)T
cβ
gγ (θb) = T hγbα (θb)T

gβ
aγ (θa)S

cd
gh(θa − θb),

we see that this equation acts on the space

W = Vx1 ⊗ Vx2 ⊗ Vz.

On the whole, this simply amounts to monitoring notational convention care-

fully. This does affect generalised reflection matrices slightly, and details are

provided in the coming sections. In particular, we will see the effects of these

considerations in chapter four, when relating transmission matrices from the

two slightly different backgrounds.

We have now explored the two constructions, as well as the features, of trans-

mission matrices. Overall, in the quantum story, it is easier to deal with

the linear intertwining equation (1.76). Due to its linear nature the resulting

equations are more accessible and easier to manipulate than the quadratic

transmission Yang-Baxter relation (1.62); especially, when dealing with type -

II defects and their added complexity. Let us now continue to introduce gen-

eralised reflection matrices, they are realised by dressing a particular type of

reflection matrix. Chiefly, their importance lies in the fact that they combine

the theories of boundaries and defects in such a way to produce interesting

results.
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β

Figure 1.4: Dressing a boundary (represented by the dashed line) with a defect
(represented by the dotted line).

1.5 Generalised Reflection Matrices

In light of our knowledge regarding reflection and transmission matrices, we

can consider the way in which the two are combined to form a more general

object, the generalised reflection matrix, satisfying a suitably generalised re-

flection equation. The new, more general, object describes a new process: one

where an integrable defect is placed near the boundary.

Constructing solutions via the dressing procedure is important for several rea-

sons. Firstly, within this framework one can easily exploit the defect’s ability

to store charge, therefore generalised reflection matrices depend upon the

topological charge and are intrinsically infinite-dimensional. The generalised

matrix is endowed with a transmission matrix-like structure, in that it includes

either the Kronecker-deltas (with appropriate labels) or the raising/lowering

operators ai, a
†
i to track exchanges of topological charge, exemplifying the

infinite-dimensional nature. Introducing the topological charge via the defect

circumvents the additional complexity of including it within the original reflec-

tion equations. Secondly, the defect can add additional parameters: we will

see the importance of these parameters in the coming chapters. Ultimately, it

is hoped that this perspective provides new evidence that may help generalise

existing integrable boundary conditions.

We will now detail the construction of generalised reflection matrices, the

complete process is illustrated in figure (1.4). We have already seen that a

reflection matrix should carry its own charge labels: ᾱ, β̄, denoting the initial

and final charge on the boundary, respectively. When the boundary is dressed
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Figure 1.5: Diagrammatic representation of the generalised reflection equa-
tion. The dotted and dashed lines represent the defect and boundary respec-
tively.

with a defect, we must include a new set of labels that account for the charge

carried on the defect [12, 17, 61]. By consulting figure (1.4) and following the

soliton’s trajectory, it is clear that the soliton transmits through the defect

- from left to right - before reflecting from the boundary and then transmits

through the defect - this time from right to left. Let us now take a diagonal

reflection matrix, Rcβ̄
bᾱ(θ) and dress it with a defect, to obtain the modified

matrix:

R̃dββ̄
aαᾱ = T bγaα(θ)Rcβ̄

bᾱ(θ)T̃ dβcγ (θ), (1.95)

where T̃ (θ) is defined as before: T−1(−θ), to describe the soliton’s transmis-

sion through the defect from right to left. The matrix R̃(θ) satisfies a modified

reflection equation, illustrated in figure (1.5):

Sdcab(θa − θb)R̃
eγγ̄
cαᾱ(θa)S

gf
de (θa + θb)R̃

hββ̄
fγγ̄ (θb)

= R̃dγγ̄
bαᾱ(θb)S

ce
ad(θa + θb)R̃

fββ̄
eγγ̄ (θa)S

gh
cf (θa − θb).

(1.96)

In order to show that equation (1.96) is satisfied by the modified R̃-matrix,

we must use the following facts: the original diagonal matrix, Rd(θ), satisfies

the reflection equation, as well as a unitarity relation, and the T/T̃ -matrices

both satisfy the transmission Yang-Baxter equation. To prove this, it is most

instructive to use the tensor product formulation of the equations, to avoid

confusion involving the indices. Before we move on to the proof, let us detail

one key property of the diagonal reflection matrix that is also exhibited by

the generalised reflection matrix:
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Rd(θ) ·Rd(−θ) = f(θ) · 1, (1.97)

where f(θ) is a scalar function. In order to show that the R̃-matrix possesses

this property we simply substitute the definition of the generalised reflection

matrix and evaluate the products:

R̃(θ) · R̃(−θ) = T (θ)Rd(θ)T
−1(−θ) · T (−θ)Rd(−θ)T−1(θ)

= T (θ)Rd(θ)1Rd(−θ)T−1(θ)

= f(θ) · 1

(1.98)

We will now begin with the generalised reflection equation (1.96) written in

the tensor product language:

S(θa− θb)R̃1(θa)S(θa + θb)R̃2(θb) = R̃2(θb)S(θa + θb)R̃1(θa)S(θa− θb), (1.99)

where, again, R̃1 = R̃ ⊗ 1 and R̃2 = 1⊗ R̃. The next step involves replacing

R̃ with its definition throughout the left hand side of the equation, to find:

S(θa−θb)·T1(θa)Rd1(θa)T
−1
1 (−θa)·S(θa+θb)·T2(θb)Rd2(θb)T

−1
2 (−θb). (1.100)

To make progress, we must now isolate a particular section of the above and

use the transmission Yang-Baxter equation, to find

T−1
1 (−θa)S(θa + θb)T2(θb) = T2(θb)S(θa + θb)T

−1
1 (−θa).

The above relation is readily acquired by reversal of a particle trajectory (as-

sociated with rapidity θa) in figure (1.3), together with the T̃ -matrix that

denotes a soliton’s transmission through the defect from right to left. Follow-

ing this, we place the relation in (1.100) to achieve

S(θa− θb)T1(θa)Rd1(θa)
[
T2(θb)S(θa + θb)T

−1
1 (−θa)

]
Rd2(θb)T

−1
2 (−θb). (1.101)

At this point, it is helpful to remember that Rd is a finite-dimensional diag-

onal matrix, and therefore the tensor products, Rdi , are also diagonal. It is

important that the original diagonal matrix is finite-dimensional. Specifically,

its entries do not contain any dependence on topological charge, hence they

are unaffected by the operators appearing in the transmission matrix. Con-

sequently, the Rdi will commute with all matrices in the product and we can
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make use of this in the above expression (1.101)

S(θa − θb)T1(θa)T2(θb)Rd1(θa)S(θa + θb)Rd2(θb)T
−1
1 (−θa)T−1

2 (−θb). (1.102)

Immediately, we recognise half of the transmission Yang-Baxter equation, and

replace it to find:

T2(θb)T1(θa)
[
S(θa− θb)Rd1(θa)S(θa + θb)Rd2(θb)

]
T−1

1 (−θa)T−1
2 (−θb). (1.103)

After this, we can use the reflection equation to modify the bracketed term to

obtain:

T2(θb)T1(θa)
[
Rd2(θb)S(θa + θb)Rd1(θa)S(θa− θb)

]
T−1

1 (−θa)T−1
2 (−θb). (1.104)

At this moment, we can only use a transmission Yang-Baxter equation to

rearrange the terms on the far right of the above

T2(θb)T1(θa)Rd2(θb)S(θa + θb)Rd1(θa)T
−1
2 (−θb)T−1

1 (−θa)S(θa − θb), (1.105)

and then rearrange the factors of Rdi , as they commute with all matrices,

T2(θb)Rd2(θb)
[
T1(θa)S(θa + θb)T

−1
2 (−θb)

]
Rd1(θa)T

−1
1 (−θa)S(θa− θb). (1.106)

This time, to obtain the bracketed term, we reverse the other particle trajec-

tory - that associated with θb and examine the new process to find:

T2(θb)Rd2(θb)
[
T−1

2 (−θb)S(θa + θb)T1(θa)
]
Rd1(θa)T

−1
1 (−θa)S(θa− θb). (1.107)

Finally, we can identify the generalised reflection matrices to discover the

equality

R̃d2(θb)S(θa+θb)R̃d1(θa)S(θa−θb) = S(θa−θb)R̃1(θa)S(θa+θb)R̃2(θb) (1.108)

which shows that the generalised reflection matrices do indeed satisfy a gen-

eralised reflection equation. As we have noted, a transmission matrix can

track exchanges of topological charge via Kronecker-delta operator-like ob-

jects, or raising/lowering operators associated with an infinite-dimensional

Borel subalgebra. The above procedure specialises to the framework where

Kronecker-deltas are used within the transmission matrix. An analogous pro-

cess exists for the transmission matrix originating from the linear intertwining
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equation. As we are aware, transmission matrices from different defining equa-

tions act over slightly different spaces. We will now consider their effect on

the generalised reflection matrices.

While the general construction works irrespective of the language used to

describe the T -matrices, the generalised reflection matrices are themselves af-

fected by this difference. The upshot is that the generalised solutions act on

slightly different spaces, depending on the construction of the T -matrix. Pre-

viously, we have discussed the slightly different spaces that the transmission

matrices, from the linear and quadratic equation, act over. Let us recall that

any T -matrix calculated from the linear intertwining equation (1.76) acts on

the space

W ′ = Vz ⊗ Vx,

whereas, the T -matrices calculated from the quadratic equation (1.62) act on

W = Vx ⊗ Vz.

And so, when we calculate generalised reflection matrices using a diagonal

(finite-dimensional) reflection matrix, acting on the space:

Rd(x) : Vx → Vx,

they will act over the same space as the transmission matrix that is used in its

calculation. Most importantly, this does not distort or alter our results but

one complication can arise. Namely, when one would like to relate generalised

solutions from the two backgrounds. As the defect has the power to introduce

several parameters of particular significance in their own framework: either

from the representations that are intertwined, or from each matrix entry when

considering the transmission Yang-Baxter equation, it is not clear how the

various parameters are related. This matter is most likely solved by using

similarity transformations, but this is quite a difficult task. In chapter (4) we

will encounter this complication.

To demonstrate the nature and features of generalised reflection matrices we

will examine the well-studied sine-Gordon model, this work was first docu-

mented in [17]. As our starting point, we will take the diagonal reflection
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matrix introduced earlier (1.31) [13]

Rd(x) =

(
R11(x)δβ̄ᾱ 0

0 R22(x)δβ̄ᾱ

)
=

((
1
rx

+ xr
)
δβ̄ᾱ 0

0
(
r
x

+ x
r

)
δβ̄ᾱ

)
. (1.109)

First of all, let us consider the resulting multiplication of the dressing proce-

dure, where any defect of the form:

T γα (x) =

(
T11δ

γ
α T12δ

γ−2
α

T21δ
γ+2
α T22δ

γ
α

)
(1.110)

is used. Of course, the above framework specialises to the sine-Gordon defect

transmission matrices and other cases are considered in the coming chapters.

Furthermore, the general formulae for the inversion of such a matrix were

provided earlier. The T̃ -matrix is labelled in the same fashion:

T̃ γα (x) =

(
T̃11δ

γ
α T̃12δ

γ−2
α

T̃21δ
γ+2
α T̃22δ

γ
α

)
. (1.111)

The corresponding generalised solutions (for the sine-Gordon model) are cal-

culated by evaluating the product (1.95), specifically:

R̃ββ̄
αᾱ(x, α) =

(
R̃11(x, α)δβαδ

β̄
ᾱ R̃12(x, α)δβ−2

α δβ̄ᾱ

R̃21(x, α)δβ+2
α δβ̄ᾱ R̃22(x, α)δβαδ

β̄
ᾱ

)
, (1.112)

with entries:

R̃11(x, α) = T11(α)R11(x)T̃11(γ = α) + T12(α)R22(x)T̃21(γ = α + 2),

R̃12(x, α) = T11(α)R11(x)T̃12(γ = α) + T12(α)R22(x)T̃22(γ = α + 2),

(1.113)

R̃21(x, α) = T21(α)R11(x)T̃11(γ = α− 2) + T22(α)R22(x)T̃21(γ = α),

R̃22(x, α) = T21(α)R11(x)T̃12(γ = α− 2) + T22(α)R22(x)T̃22(γ = α).

(1.114)

In the above, note that, the sum over the charge on the defect is evaluated by

tracking the labels of the Kronecker-deltas. The boundary adds an additional

δβ̄ᾱ, however its presence is optional because there is no exchange of charge at

the boundary and in future work it will be disregarded. Overall, this provides
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a good example of the methodology used to obtain generalised solutions. For

other models, the transmission matrices are typically higher in dimension and

the defects are able to store different quantities of charge; described appropri-

ately, as we will see. We will now detail the sine-Gordon generalised solutions

and examine their characteristics.

As we have documented, the purpose of this construction is to obtain new

solutions to the suitably generalised reflection equation. One might hope that

the resulting solution corresponds to an integrable boundary condition ly-

ing outside of the known results. When considering the sine-Gordon model,

promising results are obtained by dressing the boundary with a type - I trans-

mission matrix (1.72). Primarily, we see that the original diagonal process is

greatly modified. The defect appears to generalise the diagonal boundary pro-

cess (corresponding to a simple Dirichlet condition), returning a generalised

Zamolodchikov-Ghoshal type solution of shape (1.112) with entries:

R̃11(x, α) = x

(
r

Q2
− ε2

r

)
+

1

x

(
1

rQ2
− rε2

)
,

R̃12(x, α) =
ε

rν1/2
Qα

(
x2 − 1

x2

)
,

R̃21(x, α) = rεν1/2Q−α
(
x2 − 1

x2

)
,

R̃22(x, α) = x

(
1

rQ2
− rε2

)
+

1

x

(
r

Q2
− ε2

r

)
.

(1.115)

The results of dressing the simple diagonal matrix with a type - II defect are

yet more striking. Again, the resulting generalised solution was first calculated

in [17], but is expressed differently below. It has the shape (1.112) with entries

R̃11(x, α) =
x

r
b+b̄−Q

2α−2(1− x−4) +
r

x
b−b̄+Q

−2α−2(1− x4)

+Q−2

(
1

rx
+ xr

)(
1 + |b+|2|b−|2

)
+Q−2

(x
r

+
r

x

) (
|b+|2 − |b−|2

)
,

R̃12(x, α) =
x4 − 1

rx2

(
b+ + b−Q

−2α
) (
Q2α + r2b−b̄+

)
,

(1.116)
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R̃21(x, α) = −x
4 − 1

rx2

(
b̄+ + b̄−Q

2α−4
) (
b+b̄−Q

−4 + r2Q−2α
)
,

R̃22(x, α) =
b+b̄−
rx

Q2α−6(1− x4) + xrb−b̄+Q
−2α+2(1− x−4)

+Q−2

(
1

rx
+ xr

)(
|b+|2 − |b−|2

)
+Q−2

(x
r

+
r

x

) (
1 + |b+|2|b−|2

)
.

(1.117)

In this instance, the dressing procedure produces a new type of solution,

lying outside of the Zamolodchikov-Ghoshal class and containing more free

parameters. As we might hope, a generalised reflection matrix that lies outside

the known class of solutions could correspond to a new type of integrable

boundary condition. Corrigan and Zambon proposed a possible Lagrangian

density that might correspond to this more general solution, it takes the form

[17]:

B(u, λ) = eλ/2f(u) + e−λ/2g(u), (1.118)

where the functions f(u) and g(u) satisfy:

f(u)g(u) = h+e
u/2 + h−e

−u/2 + 2
(
eu + e−u

)
+ h0,

the functions can be arranged as:

f(u) = f0 +
√

2
(
beu/2 + b−1e−u/2

)
, g(u) = g0 +

√
2
(
b−1eu/2 + be−u/2

)
.

The density provided above contains more freedom due to the type - II defect’s

auxiliary field, λ, and free constant parameters:

h0 = g0f0, h+ =
√

2
(
f0b
−1 + g0b

)
, h− =

√
2
(
f0b+ g0b

−1
)
.

It appears that this condition is not as heavily restricted, as the original known

boundary conditions.

The sine-Gordon model, despite being the simplest ATFT, exhibits very inter-

esting and pleasing results. It also supplies potential evidence as to how a de-

fect can produce generalised solutions that might correspond to a generalised

boundary condition. Additionally, one would hope that this phenomenon is

exhibited by other ATFTs.
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1.6 In summary

Integrability is a vast and wide-ranging area of research: hopefully, we have

supplied some evidence of this by considering scattering, reflections/boundary

processes and defects. The way in which they all ‘marry’ together, at the

quantum level, is quite clear when one considers generalised reflection matri-

ces. The coming chapters provide further evidence of the interplay between

integrable boundaries and defects.

Firstly, in chapter 2, we will consider how sine-Gordon’s generalised reflection

matrices fit into the algebraic framework of [18]. In particular, we will investi-

gate the way in which boundary subalgebras are modified to include the defect.

The results are promising, given that the modified boundary subalgebra asso-

ciated with the type - I generalised reflection factor appears to generalise the

finite-dimensional case. Parallels between the finite and infinite-dimensional

subalgebras are readily apparent. When a type - II defect is introduced the

resulting subalgebra is yet more general, as one expects. The complex sine-

Gordon model is not considered. A thorough examination of boundaries, de-

fects and dressed boundaries within the complex sine-Gordon is contained in

[62, 63, 64]. The dressing procedure also places an integrable defect near the

boundary, and similar results are obtained; the dressed boundary appears to

generalise the original one parameter boundary condition [62] by adding two

more parameters [64]. All details are found in [62, 63, 64] and the references

contained therein.

In chapter 3, we review the known finite-dimensional reflection matrices of

the quantum a
(2)
2 affine Toda model, as well as the known transmission ma-

trix. We then form several generalised solutions and attempt to relate them

to the known finite-dimensional cases. The generalised solutions appear to

develop the known finite-dimensional results naturally and embody some of

their structures. Unfortunately, due to the complicated nature of the previ-

ously known reflection matrices, it did not prove possible to recover them all

within new generalised reflection factors. However, we must recognise, it is

possible that not all finite-dimensional solutions can be recovered. The origi-

nal boundary that we dress with an integrable defect takes a particular form

and is one that possesses a diagonal reflection factor. And so, it is possible
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that all existing solutions cannot be reached by dressing such a boundary.

In chapter 4, we will discuss the quantum a
(1)
2 affine Toda model. We will re-

view all known results concerning reflection and transmission matrices. As we

are aware, the model admits several type - I defects within the classical picture

and this enriches the quantum setting as it contains several defect transmission

matrices. Several classes of generalised solution are then constructed and pe-

culiar behaviour arises. The generalised solutions contain several patterns of

zeroes, which at first sight seem peculiar. However, when one recalls the strict

selection rule that the defect can impose, the behaviour is not only reasonable

but natural. It is illuminating to describe the new generalised solutions picto-

rially, and several such diagrams are found throughout the chapter. A strange

limiting process is utilised to recover the structures of the finite-dimensional

solutions; all details are found in chapter 4. The more complicated type - II

defect T -matrix is used to construct generalised solutions, which prove to be

the most general in that they do not contain any zero entries.

Chapter 5 summarises the findings contained within this thesis and discusses

some possible areas of future work.

Appendix A contains the remaining diagrams that describe the a
(1)
2 generalised

reflection matrices.

Finally, appendix B contains the defining relations of the determinant for an

a
(1)
2 -transmission matrix that satisfies the linear intertwining equation.





Chapter 2

Coideal Boundary Subalgebras

and Defects

Integrable boundaries accommodate integrable defects naturally, however, the

proof in chapter one (1.108) concerns the reflection equations originating from

the tensor product (and equivalent index) approach. We will now provide fur-

ther evidence: showing that integrable defects are totally consistent in the

coideal boundary subalgebra framework, developed by Delius and MacKay in

2003 [18]. By including a defect, the algebraic framework is generalised to ac-

count for exchanges of topological charge and therefore, generalised reflection

matrices as well. We specialise to the sine-Gordon model, building on Delius

and MacKay’s earlier results, where we will study the algebraic framework

using both type - I and type - II defects. The close interplay between defects,

boundaries and boundary conditions is this chapter’s overriding theme.

2.1 Generalising the Framework using

a Type - I Defect

At this point, we are familiar with the reflection equation and its importance,

as well as its different likenesses: whether that be the tensor product/index

63
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approach or the linear intertwining relation,

Rµ(θ)πµθ (Q) = πµ̄−θ(Q)Rµ(θ), (2.1)

for all Q ∈ B ⊂ Uq(g), where B is the remnant boundary subalgebra of the

quantum group. The above equation enables us to view the reflection matrix

as an intertwiner of the particle representations. The computation in [18]

focusses on the sine-Gordon model and the generators of the boundary subal-

gebra corresponding to the Zamolodchikov-Ghoshal reflection matrix [13]. If a

defect is to be added into this picture, we should be able to take a generalised

reflection matrix containing dependence on the topological charge and calcu-

late its modified representation of the subalgebra. The new representation

will be more general, as it will include dependence on the topological charge.

Once this is known, we can compare it with the known results of Delius and

MacKay to see exactly how the defect has expanded on their results. The

type - I modified representation is similar to that appearing in [18] and it is

apparent how the defect generalises the generators of the boundary subalge-

bra. The type - II case produces a much more complex object. We will now

begin by reviewing the required steps to generalise this particular approach.

Firstly, we will substitute the reflection matrix with a generalised reflection

matrix, of the usual form R̃(θ) = T (θ)Rd(θ)T̃ (θ), into equation (2.1):

T µ(θ)Rµ(θ)T̃ µ(θ)πµθ (Q) = πµ̄−θ(Q)T µ(θ)Rµ(θ)T̃ µ(θ),

noting that the original equation is now changed dramatically. In order to

rectify this imbalance, we must include the defect’s effects on the representa-

tion and specialise to the soliton preserving (SP) case where µ = µ̄, to give

the full equation:

T µ(θ)Rµ
d(θ)T µ

−1

(−θ)T µ(−θ)πµθ (Q)T µ
−1

(−θ)

= T µ(θ)πµ−θ(Q)T µ
−1

(θ)T µ(θ)Rµ
d(θ)T µ

−1

(−θ),
(2.2)

where the definition, T̃ (θ) = T−1(−θ), was used in the above. To demonstrate

how this process generalises Delius and MacKay’s findings we will specialise to

the case of the sine-Gordon model, that has a single two-dimensional soliton

multiplet spanned by the soliton and anti-soliton. As we are considering the

SP case, we will drop the index µ from now on. Consequently, we see that
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the above equation is exactly the same as (2.1) if we multiply by T µ
−1

(θ) on

the left and T µ(−θ) on the right. Let us begin by introducing the type - I

transmission matrix, first calculated in [10], presented in a different form:

TI(θi) = ρI(θ)

(
α
xi
QN βa

βa† 1
αxi
Q−N

)
,

with:

xi = eγθi , q = e
−4π2i

β2 , γ =
4π

β2
− 1, Q−2 = q,

and free parameters α, β. The coefficient ensures that the transmission matrix

satisfies the analogues of crossing and unitarity, but is not required for our

purposes. The Kronecker-deltas have been replaced by the annihilation and

creation operators, acting on the infinite-dimensional space as follows:

a |j〉 = F (j) |j − 2〉 , a† |j〉 = |j + 2〉 , N |j〉 = j |j〉 , j ∈ Z.

One must also recall the way in which the operators multiply together and

act on functions of the number operator:

aa† = F (N + 2), a†a = F (N),

aH(N) = H(N + 2)a, a†H(N) = H(N − 2)a†.

The above set-up is simplified for the type - I defect as F (N) = f , where

f is a constant. The type - I transmission matrix satisfies the transmission

Yang-Baxter equation (1.62) with the sine-Gordon S-matrix:

S(Θ) = ρS(Θ)


Q−2x−Q2x−1 0 0 0

0 Q−2 −Q2 x− x−1 0

0 x− x−1 Q−2 −Q2 0

0 0 0 Q−2x−Q2x−1

 ,

all definitions of the above parameters remain the same, where we now define

x = x1/x2. Again, the coefficient ρS ensures that the S-matrix satisfies both

unitarity and crossing properties, but it is not needed in this case. If we are to

form a generalised solution with this transmission matrix we must calculate

T̃ . This is easily done using the following inversion formulae, recall:
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Y11 :=
T22(N + 2, x)

∆(N)
, Y12 = −T12(N, x)

∆(N)
,

Y21 := − T21(N, x)

∆(N − 2)
, Y22 :=

T11(N − 2, x)

∆(N − 2)
,

with determinant

∆(N) := T11(N, x)T22(N + 2, x)− T12(N, x)T21(N + 2, x)F (N + 2),

one quickly observes that the formulae are the standard ones required to invert

a two-by-two matrix, but now they include the necessary shifts. For the TI-

matrix we find the determinant is: ∆ := Q−2x−2 − β2f , and this is simplified

slightly by the following identification β2f = f0 which will be used from now

- one could view this as a particular rescaling of the operators a and a†. With

this information we can calculate the T̃ -matrix:

T̃I(θ) =
ρ̃I(θ)

∆̃

(
x
α
Q−N−2 −βa
−βa† αxQN−2

)
,

where ∆̃(x) = ∆(x−1) and we have dropped the subscript on x for simplic-

ity. Let us now take a diagonal reflection matrix, corresponding to a simple

Dirichlet boundary condition, of the form [13]:

Rd =

((
1
rx

+ rx
)

0

0 ( r
x

+ x
r
)

)
,

where x is still the same rapidity dependent parameter, and r is a free param-

eter. We can now calculate a type - I generalised solution by evaluating the

multiplication (1.95) to obtain:

R̃ =
1

∆

(
kx+ lx−1 βα

r
QN(x2 − x−2)a

rβ
α
Q−N(x2 − x−2)a† lx+ kx−1

)
, (2.3)

with

k =

(
r

Q2
− β2f

r

)
, l =

(
1

rQ2
− β2fr

)
.

The generalised solution (2.3) demonstrates the interplay between defects and

boundary conditions very neatly. The result of dressing a simple diagonal
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reflection matrix (corresponding to a Dirichlet condition in this case) with a

type - I defect is an infinite-dimensional generalisation of a Zamolodchikov-

Ghoshal type reflection matrix containing dependence on topological charge

and defect parameters. The solution can be simplified by setting α = r,

without losing generality, then we see that the defect has added the parameter

f0 := β2f . Returning to our original focus, we wish to see how this more

general Zamolodchikov-Ghoshal (ZG) type solution expands upon the results

of Delius and MacKay. We know that the finite-dimensional ZG solution,

expressed in the language of [18]:

R(θ) = ρR(θ)

(
q−q−1

c
(ε+x+ ε−x

−1) (x2 − x−2)

(x2 − x−2) q−q−1

c
(ε−x+ ε+x

−1)

)
,

was found to possess the following representation of the boundary subalgebra,

B, with generators Q+ and Q− [18]:

πθ(Q±) =

(
ε±q

±1 cx±1

cx∓1 ε±q
∓1

)
, (2.4)

where ε± are parameters associated with the boundary condition and c is a

constant, defined in [18]. The representation is easily broken down into a sum

of generators of the original sine-Gordon algebra,

πθ(Q±) = cx±1

(
0 1

0 0

)
+ cx∓1

(
0 0

1 0

)
+ ε±

(
q±1 0

0 q∓1

)
.

It will be useful to bear this expression in mind as we try to calculate the

analogue of πθ(Q±) for the type - I generalised solution, we will denote it by

π̃θ(Q̃±). To begin, we will use the following ansatz:

Πθ(Q̃±) =

(
A(N, x) B(N, x)a

C(N, x)a† D(N, x)

)
, (2.5)

where Πθ(Q̃±) := T (−θ)π̃θ(Q̃±)T−1(−θ). Substituting this in equation (2.1)

and evaluating the multiplication returns the following four equations:

(kx+ lx−1)A(N, x) +
βα

r
QN(x2 − x−2)fC(N + 2, x)

= A(N, x−1)(kx+ lx−1) +B(N, x−1)
rβ

α
Q−N−2(x2 − x−2)f,

(2.6)
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(kx+ lx−1)B(N, x)a+
βα

r
QN(x2 − x−2)D(N + 2, x)a

= A(N, x−1)
βα

r
QN(x2 − x−2)a+B(N, x−1)(lx+ kx−1),

(2.7)

rβ

α
Q−N(x2 − x−2)A(N − 2, x)a† + (lx+ kx−1)C(N, x)a†

= C(N, x−1)(kx+ lx−1)a† +D(N, x−1)
rβ

α
Q−N(x2 − x−2)a†,

(2.8)

rβ

α
Q−N(x2 − x−2)B(N − 2, x)f + (lx+ kx−1)D(N, x)

= C(N, x−1)
βα

r
QN−2(x2 − x−2)f +D(N, x−1)(lx+ kx−1).

(2.9)

In order to balance the topological charge dependence in equations (2.6) -

(2.9), we will introduce it into the off-diagonal entries as follows:

B(N, x) = QN B̂(x), and C(N, x) = Q−N Ĉ(x),

ensuring that: equations (2.6), (2.9) are independent of the charge, and Q±N

appears as an overall in equations (2.7) and (2.8) respectively. With the equa-

tions appearing more balanced, we now want to determine relations among

the entries. One such relation can be obtained from equations (2.6) and (2.9),

by collecting the functions A(N, x±1) on one side, and then invert x to find:

(lx+ kx−1)(A(N, x−1)− A(N, x))

=
βα

r
Q−2f(x2 − x−2)Ĉ(x−1)− rβ

α
Q−2f(x2 − x−2)B̂(x).

If we perform the same manipulations on equation (2.9), but without inverting

x, we find that we can equate it with the above, resulting in the relation:

D(N, x)−D(N, x−1) = A(N, x−1)− A(N, x).

Continuing in this way, we obtain further identities concerning the diagonal

entries. For instance, similar manoeuvres within the second equation (2.7)

return:

D(N + 2, x)−D(N + 2, x−1) = A(N, x−1)− A(N, x),

and when taken with the first relation we see that D must be independent of

N . Repeating this kind of procedure enables us to find analogous relations

regarding the function A. Ultimately, they again show that A must also be
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independent of N . We must now exercise caution when turning our attention

to the off-diagonal entries, specifically the functions B̂(x), Ĉ(x), because we

must remember that our matrix representation Πθ(Q̃±) is a linear combination

of the generators, therefore, one needs to be able to distinguish the generators

at all times. It is instructive to recall Delius and MacKay’s results: the

off-diagonal entries in their representations are simply proportional to the

rapidity, x±1. Bearing this in mind, as well as the fact that we are dealing

with a linear combination of generators, we will use ansatz of the form:

B̂(x) = b+x+ b−x
−1, Ĉ(x) = c+x+ c−x

−1.

Substituting the above ansatz throughout equations (2.6) - (2.9) provides us

with more insight into the properties of the system. The most helpful relations

come from equations (2.7) and (2.8), which read, respectively:

r

αβ
(kb+ − lb−) = A(x−1)−D(x), and (2.10)

α

rβ
(kc− − lc+) = A(x)−D(x−1). (2.11)

The left hand sides of both (2.10) and (2.11) are independent of x, hence, we

can invert x in the first equation and equate it with the latter, to find that:

c− =
r2

α2
b+, c+ =

r2

α2
b−.

At this point, one could set α = r, without losing generality to neaten the

expressions. Using the above identities in the remaining two equations that

read:

(kx+ lx−1)(A(x)− A(x−1)) =
βr

α
Q−2f(x2 − x−2)(b+x

−1 + b−x)

− βα

r
Q−2f(x2 − x−2)(c+x+ c−x

−1),

(2.12)

(lx+ kx−1)(D(x)−D(x−1)) =
βα

r
Q−2f(x2 − x−2)(c+x

−1 + c−x)

− rβ

α
Q−2f(x2 − x−2)(b+x+ b−x

−1),

(2.13)

enables us to see that they reduce to A(x)−A(x−1) = 0 and D(x)−D(x−1) =

0, meaning that both A and D could be any symmetric Laurent polynomial

satisfying equation (2.10), which is equal to equation (2.11) under the relations
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between b± and c±. Combining all of this information, we see that the object

Πθ(Q̃±) takes the form:

Πθ(Q̃±) =

(
A QN(b+x+ b−x

−1)a
r2

α2Q
−N(b−x+ b+x

−1)a† D

)
, (2.14)

together with the difference relation:

A−D =
r

αβ
(kb+ − lb−). (2.15)

In pursuance of our original goal, to calculate π̃θ(Q̃±), we must now ‘unpick’

Πθ(Q̃±). By unpick, we mean perform the following multiplication, obtained

via the simple rearrangement of the definition of Π:

π̃θ(Q̃±) = T−1(−θ)Πθ(Q̃±)T (−θ),

where T still refers to the type - I defect transmission matrix. When evaluating

the above product it is very important to keep track of the operators and

include any shifts that they induce. Despite the product’s nature, one finds

that it simplifies neatly to give the following matrix:

π̃θ(Q̃±) =

(
A+ βf

α
(b+ − r2b−)

(
x
r

+ r
x

)
r
α2 b+Q

−N−2a(
1
rx

+ rx
)
rb−Q

N−2a† D + βf
α

(r2b− − b+)

)
, (2.16)

where A and D obey the difference relation. It is illuminating to exploit

the difference property (2.15) and make the above matrix traceless. This is

achieved by extracting a multiple of the identity, namely (A + D).1/2. The

result is the matrix:

π̃θ(Q̃±) =

(
π̃11

(
x
r

+ r
x

)
r
α2 b+Q

−N−2a(
1
rx

+ rx
)
rb−Q

N−2a† −π̃11

)
, (2.17)

where

π̃11 :=
1

2

(
r2

αβ
Q−2b+ +

βf

α
b+ −

Q−2

αβ
b− − r2βf

α
b−

)
.

The purpose of the coefficients, b±, is to help us identify the separate genera-

tors within the linear combination, which we now can by expressing the above

as a sum of two pieces with one proportional to b+ and the other b−. We will

need to use this traceless matrix in the next section, when we introduce the

type - II defect. The traceless matrix (2.17) is the original algebraic represen-
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tation that corresponds to the diagonal reflection matrix, Rd. By substituting

the diagonal solution into equation (2.1) we can obtain a very general form of

the representation:

πθ(Q±) =

(
F B̃(x

r
+ r

x
)a

C̃(rx+ 1
xr

)a† G

)
,

where F,G, B̃ and C̃ are all symmetric Laurent polynomials. The matrix

representation of the generators that we have calculated, (2.17), does indeed

fit into this picture. However, the freedom introduced by the many symmetric

Laurent polynomials is lost. Nevertheless, we have shown how the defect is

totally compatible within this framework. Particularly, the manner in which it

transforms the simple initial representation (of the diagonal reflection factor)

into a representation of another more general reflection matrix. This truly

evidences the strong interplay between boundaries and defects. To add further

significance to this body of evidence we will now use the result, (2.17), and

apply the type - II defect transmission matrix. The calculations become more

complex owing to the nature of this transmission matrix and the way its

operators combine. The ensuing formulae do reduce to the type - I case, when

the type - I limit of the type - II matrix is invoked.

2.2 Generalising the Framework using

a Type - II Defect

Equipped with the workings of the previous section, we can now move on to

consider the type - II sine-Gordon defect, first introduced in [46] and later

[17], and its impact on the representation of the algebraic generators. The

type - I case was particularly pleasing, as we know that a type - I generalised

solution corresponds to a generalised Zamolodchikov-Ghoshal like reflection

matrix and in turn, this has been studied extensively over time along with

other integrable boundary conditions. The type - II defect gives an even

more general solution, seemingly removed from the class of known integrable

boundary conditions. Let us recall, from the introductory chapter, the pro-

posed candidate for the boundary density (found in [17]) associated to the

type - II generalised solution. The suggested boundary density is [17]:

B(u, λ) = eλ/2f(u) + e−λ/2g(u), (2.18)
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where the functions f(u) and g(u) satisfy:

f(u)g(u) = h+e
u/2 + h−e

−u/2 + 2
(
eu + e−u

)
+ h0,

and the functions can be arranged as:

f(u) = f0 +
√

2
(
beu/2 + b−1e−u/2

)
, g(u) = g0 +

√
2
(
b−1eu/2 + be−u/2

)
.

This boundary density would lie outside the existing well-known results, due

to the presence of the extra degree of freedom, λ, and free constant parameters:

h0 = g0f0, h+ =
√

2
(
f0b
−1 + g0b

)
, h− =

√
2
(
f0b+ g0b

−1
)
.

We will now examine the type - II generalised solution within the algebraic

framework, hoping to identify similar parameters that could correspond to a

boundary condition of this type.

To proceed let us detail the method that we will employ. Once the type -

II transmission matrix and the corresponding T̃ -matrix are introduced, it is

possible to calculate the associated generalised solution. We can then take

the matrix (2.17), simply apply the type - II defect matrices and generalised

solution to equation (2.2). We do not need to perform the same working as in

the previous section because we have already calculated the representation of

the generators for the diagonal reflection matrix; via the unpicking procedure.

This is sufficient to acquire the representation of the subalgebra generators

in this case. With the help of Maple we can verify that the new object does

indeed satisfy equation (2.2). The determinant of the type - II transmission

matrix plays a key role in achieving this equality, as we will see.

The type - II defect transmission matrix is presented differently in (2.19) to

that of [17, 46], as all Kronecker-deltas are replaced by the raising and lowering

operators. It does satisfy the transmission Yang-Baxter relation (1.62), with

the S-matrix introduced in the previous section and takes the form:

TII(θ) = ρII(θ)

(
a+xQ

−N + a−x
−1QN a

a† d+xQ
N + d−x

−1Q−N

)
, (2.19)

with free parameters a±, d± and F (N) = f0 + a−d+Q
2N−2 + a+d−Q

−2N+2. It



2.2. Generalising the Framework using a Type - II Defect 73

is instantly obvious that this transmission matrix is more general, due to the

extra free parameters and the form that F (N) takes. We will now use the

inversion formulae to invert the matrix, as well as reversing the rapidity to

form the T̃ -matrix:

T̃II(θ) =
ρ̃II(θ)

∆̃(θ)

(
d+x

−1QN+2 + d−xQ
−N−2 −a

−a† a+x
−1Q−N+2 + a−xQ

N−2

)
,

where the determinant is now,

∆̃(x) = ∆(x−1) =
a+d+Q

2

x2
+
a−d−x

2

Q2
− f0.

It is useful to describe the limit of the type - II T -matrix to the type - I T -

matrix, owing to the presence of all type - II objects. Simply prescribe these

particular values to the type - II parameters:

a+ = 0, d+ = 0, a− = α, d− = α−1, and f0 = f, (2.20)

where we have also simplified the type - I matrix by taking β = 1.

Armed with the type - II matrices, we will construct the associated generalised

solution using the same diagonal reflection factor, Rd, returning a solution of

the form:

R̃II =
1

∆(x−1)

(
U(N, x) L(N)(x2 − x−2)a

M(N)(x2 − x−2)a† V (N, x)

)
, (2.21)

with entries and coefficients:

U(N, x) =
r

x
a+d−Q

−2N−2(x4 − 1)− f0

(x
r
− r

x

)
+
x

r
a−d+Q

2N+2(x−4 − 1) + (a+d+Q
2 + a−d−Q

−2)

(
rx+

1

xr

)
,

L(N) =
(a−
r
QN − ra+Q

−N
)
,

M(N) =

(
rd−Q

−N − d+

r
QN

)
,

V (N, x) =
a−d+

rx
Q2N−2(x4 − 1)− f0

(
rx+

1

rx

)
+ rxa+d−Q

−2N+2(x−4 − 1) + (a+d+Q
2 + a−d−Q

−2)
(x
r

+
r

x

)
.

(2.22)
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We have yet more confirmation that a type - II object is manifestly more

general, affirmed by the above generalised solution. Obviously, the algebraic

representation associated with this reflection factor must be very compre-

hensive. Given our knowledge of the original algebraic representation (2.17)

(corresponding to the original reflection factor, that accounts for topological

charge) we can substitute the type - II transmission matrices into the following

Π̃θII (Q̃±) := TII(−θ)π̃θ(Q̃±)T−1
II (−θ).

Yet again, this representation is a linear combination of the generators of the

boundary subalgebra for the generalised R̃II-matrix (2.21). Moreover, it is

clear that it is not necessary to perform the same multiplication for the similar

object appearing on the second line of equation (2.2) because the calculation

is redundant. Simply expanding the above product and inverting the rapidity

returns the required object. As a means of simplifying the calculation and

its result, we have elected to split the traceless matrix (2.17) into the two

separate generators:

π̃θ(Q̃+) = b+

(
π̃11+

(
x
r

+ r
x

)
r
α2Q

−N−2a

0 −π̃11+

)
,

π̃θ(Q̃−) = b−

(
π̃11− 0(

1
rx

+ rx
)
rQN−2a† −π̃11−

)
,

(2.23)

with:

π̃II+ =
1

2α

(
r2

β
Q−2 + βf

)
, π̃II− = − 1

2α

(
Q−2

β
+ r2βf

)
.

Once the matrices are multiplied many parameters will be contained within

each matrix entry. With a view to simplify matters now, we will set β = 1

and α = r, as the type - I parameters are not particularly important. It is

also important to recognise that we can reformulate π̃II± as follows, bearing

in mind the specialisation of type - I parameters:

π̃II+ =
1

2

(
rQ−2 +

f

r

)
=

1

2

(
k +

2f

r

)
,

π̃II− = −1

2

(
Q−2

r
+ fr

)
=

1

2
(l + 2fr) .

(2.24)

The above manipulation is crucial for several reasons: we would like to identify
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new parameters or groups of parameters that the type - II matrix introduces.

It is hoped that they are related to the extra degree of freedom appearing in

the proposed classical boundary density (1.118); also, the parameters k and l

appear linked to the Zamolodchikov-Ghoshal boundary condition. Identifying

them within a type - II setting might possibly discern the way in which they

are modified by a type - II matrix, therefore generalising the original condition.

Moreover, when the representations are expressed in this way, one can quickly

verify that only a diagonal matrix proportional to the original solution, Rd,

commutes with them. With these slight modifications, let us now apply the

type - II T -matrices and state the results. First, let us consider the generator

Q̃+. By evaluating the required product we obtain:

Π̃θII (Q̃+) =
b+

∆II(x−1)

(
Π̃+

11 Π̃+
12a

Π̃+
21a
† Π̃+

22,

)
(2.25)

and entries of the form:

Π̃+
11 =

1

2

(
k +

2f

r

)(
∆II(x

−1) + 2F (N + 2)
)

− Q−N−2

r

(x
r

+
r

x

)(a+

x
Q−N + xa−Q

N
)
F (N + 2),

Π̃+
12 =

(a+

x
Q−N + xa−Q

N
)2 (x

r
+
r

x

) Q−N−2

r
a

−
(
k +

2f

r

)(a+

x
Q−N + xa−Q

N
)
a,

Π̃+
21 =

(
k +

2f

r

)(
d+

x
QN + xd−Q

−N
)
a†

− Q−N

r

(x
r

+
r

x

)
F (N)a†,

Π̃+
22 = −1

2

(
k +

2f

r

)(
∆II(x

−1) + 2F (N)
)

+
Q−N

r

(x
r

+
r

x

)(a+

x
Q−N+2 + xa−Q

N−2
)
F (N),

where ∆II , F (N) are those defined earlier for the type - II T -matrix. The

results for the second generator Q̃− are similar:

Π̃θII (Q̃−) =
b−

∆II(x−1)

(
Π̃−11 Π̃−12a

Π̃−21a
† Π̃−22

)
, (2.26)
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where the entries are now:

Π̃−11 = −1

2
(l + 2fr)

(
∆II(x

−1) + 2F (N + 2)
)

+ rQN

(
1

rx
+ rx

)(
d+

x
QN+2 + xd−Q

−N−2

)
F (N + 2),

Π̃−12 = (l + 2fr)
(a+

x
Q−N + xa−Q

N
)
a

− rQN

(
1

rx
+ rx

)
F (N + 2)a,

Π̃−21 = − (l + 2fr)

(
d+

x
QN + d−xQ

−N
)
a†

+

(
d+

x
QN + d−xQ

−N
)2(

1

rx
+ rx

)
rQN−2a†,

Π̃−22 =
1

2
(l + 2fr)

(
∆II(x

−1) + 2F (N)
)

− rQN−2

(
1

rx
+ rx

)(
d+

x
QN + xd−Q

−N
)
F (N).

(2.27)

Unfortunately, the generators ΠθII (Q̃±) do not factorise neatly, as in the type -

I case where all factors of the determinant cancel. However, when expressed in

this compact form, there are striking similarities between the representations

of the generators. Another striking feature is that the trace is not preserved,

this is due to the operators, a and a†, shifting the entries in a non-trivial way

so that the trace cannot remain zero. Evaluation of the type - II to type - I

limit, (2.20), returns the expected result of Πθ(Q̃±).

To illustrate the role that the determinant plays, in the type - II story, we

will state how one can verify that the representations satisfy equation (2.2).

This exercise was completed with the help of Maple. Begin with the type - II

solution (2.21) and apply ΠθII (Q̃±) on the right. Now, to form the remaining

half of the equation, apply Π−θII (Q̃±) to the left of the same generalised

solution. To simplify matters simply choose either Q̃+ or Q̃−, we will now

specialise to the Q̃+ case. Overall, the four equations read:

U(N, x)Π̃+
11(N, x) + L(N)(x2 − x−2)Π̃+

21(N + 2, x)F (N + 2)

= Π̃+
11(N, x−1)U(N, x) + Π̃+

12(N, x−1)M(N + 2)(x2 − x−2)F (N + 2),
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U(N, x)Π̃+
12(N, x)a+ L(N)(x2 − x−2)Π̃+

22(N + 2, x)a

= Π̃+
11(N, x−1)L(N)(x2 − x−2)a+ Π̃+

12(N, x−1)V (N + 2, x)a,

M(N)(x2 − x−2)Π̃+
11(N − 2, x)a† + V (N, x)Π̃+

21(N, x)a†

= Π̃+
21(N, x−1)U(N − 2, x)a† + Π̃+

22(N, x−1)M(N)(x2 − x−2)a†,

M(N)(x2 − x−2)Π̃+
12(N − 2, x)F (N) + V (N, x)Π̃+

22(N, x)

= Π̃+
21(N, x−1)L(N − 2)(x2 − x−2)F (N) + Π̃+

22(N, x−1)V (N, x).

Any factors multiplying the generalised solutions will cancel throughout the

four equations, however the same is not true for the representations Π̃θII , due

to the inversion of the rapidity parameter, x. The representations are propor-

tional to the type - II determinant, that depends on x and therefore cannot

be cancelled. Effectively, to eliminate all denominators, the first/second line

in each equation above is multiplied by ∆II(x)/∆II(x
−1), respectively. This

ensures that the equations are satisfied. In this case, the determinant is cen-

tral to guarantee that the theory works, which is interesting, because it is not

required in the type - I case where it appears as an overall factor. We know

that T -matrices must be invertible. Therefore, they must have a non-zero de-

terminant, it is one of their defining properties, but the determinant appears

to have a wider significance in this algebraic framework.

2.3 Concluding Remarks

Throughout this chapter, the connection between boundaries and defects has

been explored from an algebraic viewpoint. Existing finite-dimensional re-

sults, [18], have been generalised by including a defect. The defect’s ability

to store topological charge transforms the finite-dimensional to the infinite-

dimensional. This is reflected in the representations of the boundary subalge-

bra by the dependence on the charge, N , and the presence of the operators a

and a†. Interestingly, the known behaviour exhibited by the type - I defect,

whereby a diagonal reflection matrix (corresponding to a Dirichlet boundary

condition) is transformed to a generalised Zamolodchikov-Ghoshal (ZG) type

solution, was explored within this framework. It was evident that the original

freedom enjoyed by the diagonal matrix’s representation was changed dramat-

ically, to a more restricted object (1.14). However, despite the restrictions,
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it did indeed appear to match and develop the results of Delius and MacKay

when they considered the (ZG) solution [18]. And so, because the type - I

case works in this manner, we believe that its associated parameters, α, β and

f are not significant in our quest to generalise the current framework. There-

fore, we look to the type - II scenario where there are more parameters and it

is thought to correspond to a more general boundary density in the classical

Lagrangian description. To remind us, the type - II defect’s parameters are

a±, d± and f0. In the limit (2.20) we have observed that a− and d− are both

related to the type - I parameter α±1 = r±1 and that f0 is related to the

type - I f . Also, f could be rescaled to a simple constant, even unity, by

tweaking the operators a and a†. Consequently, we will not consider this a

valuable parameter. However, parameters a+, d+ must be ‘switched off’ in the

limit and set to zero. As a result of this behaviour, one can think of those

two parameters as an addition, truly adding more generality to the system

consisting of the parameter r. We believe that the three parameters r, a+ and

d+ are the algebraic analogues of the constants: h0, h−, h+, appearing in the

proposed classical boundary density.

Despite constructing the representations of the modified boundary subalge-

bra and verifying that they satisfy the necessary properties, it is not clear

how they are the fundamental objects that one would naturally look to first.

Particularly, in the type - II case where the representation’s entries are com-

plicated and ungainly. Perhaps, the answer lies within the coideal framework.

Unfortunately, we are unsure how these representations fit into that part of

the story and what form the coproduct might take. This would be interesting

to address in the future.

Nonetheless, defects can be introduced into this algebraic approach and they

do generalise known results, as we expect. The results of this chapter show the

versatility of the defect and help us to form a coherent picture of the interplay

between defects and boundaries. As we have examined the generalised solu-

tions of the sine-Gordon model within the algebraic setting, we will now move

on to consider other models and their generalised solutions, investigating their

features and ability to generalise finite-dimensional results.



Chapter 3

Generalised Reflection Matrices of the

a
(2)
2 affine Toda model

As the previous chapter showed the way that generalised reflection matri-

ces fit into an algebraic framework, we will now construct several gener-

alised reflection factors for the a
(2)
2 affine Toda model (also known as the

Tzitzéica, Bullough-Dodd or Mikhailov-Zhiber-Shabat model). Following this,

we will detail their relation to the known finite-dimensional reflection matrices.

Firstly, we will document the known finite-dimensional reflection factors cal-

culated some years ago by Nepomechie and Mezincescu, Kim and Lima-Santos

[27, 28, 29], as well as the type - II transmission matrix calculated by Corrigan

and Zambon [45]. Subsequently, we will follow the construction of the gener-

alised reflection matrices, detailed in chapter one: by evaluating the product

T (θ)Rd(θ)T̃ (θ). We will use all finite-dimensional diagonal reflection matri-

ces, calculated by Nepomechie and Mezincescu [27], to form three generalised

reflection matrices. The generalised solutions of this model are particularly

well-ordered, as their structure naturally incorporates the finite-dimensional

solutions. In this case, one can observe readily the way in which placing a

defect near an integrable boundary develops the existing finite-dimensional

theory.

79
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3.1 Known Results

We will now chronologically detail the work within the literature concerning

a
(2)
2 that has enabled the completion of this work. The literature heavily

relies upon the R-matrix, calculated by Izergin and Korepin [65] in 1981, that

is invariant under the action of the Uq(a
(2)
2 ) algebra. The R-matrix intertwines

between two representations of the algebra, namely:

R(x1/x2, q) : Vx1 ⊗ Vx2 → Vx2 ⊗ Vx1 ,

and is defined as:

R = (x−1 − 1)q3R12 + (1− x)q−3R−1
21 + q−5(q4 − 1)(q6 + 1)P,

where R21 = PR12P , with R12 the constant solution of the Yang-Baxter equa-

tions for the Uq(sl2) spin 1 representation and P is the permutation operator.

Several years later, Smirnov built on this by calculating an appropriate S-

matrix, defined as [66]:

S(Θ) = ρS(Θ)PR(x, q), x =
x1

x2

, xi = q2πθi/ξ, ξ =
2

3

(
πβ2

8π − β2

)
, (3.1)

in the above, R takes the form:

R =



c 0 0 0 0 0 0 0 0

0 b 0 ẽ 0 0 0 0 0

0 0 d 0 g̃ 0 f̃ 0 0

0 e 0 b 0 0 0 0 0

0 0 g 0 a 0 g̃ 0 0

0 0 0 0 0 b 0 ẽ 0

0 0 f 0 g 0 d 0 0

0 0 0 0 0 e 0 b 0

0 0 0 0 0 0 0 0 c


,

a = q−3(1− x) + q3(x−1 − 1)− (q − q−1) + (q5 − q−5),

b = q−3(1− x) + q3(x−1 − 1),

c = q−5(1− x) + q5(x−1 − 1)− (q − q−1) + (q5 − q−5),
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d = q−1(1− x) + q(x−1 − 1),

e = q−1(x− 1)(1− q−4)− (q − q−1) + (q5 − q−5),

ẽ = q(x−1 − 1)(q4 − 1)− (q − q−1) + (q5 − q−5),

f = (x− 1)(1− q−4)(q−1 − q)− (q − q−1) + (q5 − q−5),

f̃ = (x−1 − 1)(q4 − 1)(q − q−1)− (q − q−1) + (q5 − q−5).

The advent of the S-matrix paved the way for others to calculate new and

interesting objects within integrability, such as reflection and transmission ma-

trices. At this point, it is worth noting how the index notation is used in this

setting. The a
(2)
2 -model exhibits a peculiar phenomenon: the quantum setting

contains a fundamental particle that is represented by a three-component soli-

ton, with charges (−1, 0,+1), in contrast to the classical case where only two

components appear. The indices within the reflection equation must account

for all possible particle processes and we will label each charge (−, 0,+) cor-

respondingly. In total, we see that there are nine possible in-going and nine

possible out-going configurations that return eighty one equations upon the

evaluation of indices. All eighty one equations are listed in Kim’s paper [28],

and coincide with our equations following from (1.8) by expansion of indices -

in the finite-dimensional case. As we are aware, when considering generalised

reflection matrices it is important to include the charge dependence within

the reflection matrix, this alters the equations in a very non-trivial fashion.

The first known solution to the reflection equation (1.8), for the Tzitzéica

model, was calculated by Nepomechie and Mezincescu in 1991 [27]. Their pa-

per has a different focus, that of integrable spin chains, therefore they consider

the simplified case of diagonal solutions. They discovered three diagonal solu-

tions: one of which is the identity, the remaining two are non-trivial diagonal

matrices - that only differ by choice of sign - of the form [27]:

Rb
a(x, q) =

(q3x−1 ± i) 0 0

0 (q3x± i) 0

0 0 x(q3 ± ix)

 ,

where the parameters are those defined earlier, except x now labels, x = q2πθ/ξ.

In 1994, Kim developed the theory further by calculating several new reflection

factors [28]. Kim utilised the same approach as Nepomechie and Mezincescu:

whereby one forms functional equations from the original set by differentiating
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with respect to one variable, so to leave dependence on solely one variable [5].

This is the approach that was documented in the introductory chapter to solve

the Yang-Baxter and Reflection equations. Kim successfully obtained three

solutions satisfying the reflection equation. We shall denote them: Case I,

Case II and Case III. Case I is as follows, [28]:

Rb
a(q, x) =

B(q, x) 0 Z(q, x)

0 A(q, x) 0

Z̄(q, x) 0 G(q, x)

 ,

with entries:

Z(q, x) = z1(x2 − 1),

Z̄(q, x) =
b2

1

z1

q2(x2 − 1),

B(q, x) = 2x+ b1(q2 − 1)(1− x),

A(q, x) = 2x+ b1(q2 + x)(1− x),

G(q, x) = 2x+ b1x(1− q2)(1− x),

b1, z1 are two free parameters, they are introduced during the formation of the

functional equations, and the parameters x, q are the same as before. In the

above solution constraints reduce the number of free parameters to two, they

are: g1 = q2b1 and z̄1 = q2b1
2/z1. The Case II solution takes the form, [28]:

Rb
a(q, x) =

B(q, x) X(q, x) Z(q, x)

0 A(q, x) Y (q, x)

0 0 G(q, x)

 ,

with entries:

B(q, x) = q3x−1 ± i,

A(q, x) = q3x± i,

G(q, x) = x(q3 ± ix),

X(q, x) =
x1

2
(q2 ± iq − 1)(q ∓ i)(x2 − 1)x−1,

Y (q, x) =
x1

2
(q2 ± iq − 1)(1± iq)(x2 − 1)q−2,

Z(q, x) =
x2

1(q2 ± iq − 1)2(q ∓ ix)(q ∓ i)(1− x2)q−3x−1

4(q ± i)
,
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this solution contains only one free parameter x1, as all other parameters are

related to it by the constraints:

y1 = q−2x1, z1 = −(q ± i)(q2 ± iq − 1)x2
1/2q

3(q ± i).

The Case III solution takes the following form [28]:

Rb
a(q, x) =

B(q, x) 0 0

X̄(q, x) A(q, x) 0

Z̄(q, x) Ȳ (q, x) G(q, x)

 ,

the entries in the above solution are exactly the same as those of Case II, pro-

viding that x1, y1, z1 are replaced with x̄1, ȳ1, z̄1. With the help of Maple one

can verify that these solutions, despite their appearance, satisfy the relevant

equations together with the S-matrix [65, 66].

In Kim’s paper [28] it is stated that one can uncover a new diagonal solution

from the Case I reflection matrix. Kim achieves this by evaluating a limit

of the free parameters that are present in the solution. Kim asserts that if

b1 → 0 then it follows that g1 → 0 also, which is correct. This then implies that

either z1 → 0 or z̄1 → 0. However, the paper incorrectly assumes that both

z1, z̄1 → 0, which reduces the Case I solution to a diagonal form. Furthermore,

if we try to verify this supposed diagonal solution, we find that it does not

satisfy the relevant equations. Actually, Kim’s limit corresponds to two new

solutions, that we shall denote Case IV:

Rb
a(q, x) =

B(q, x) 0 Z(q, x)

0 A(q, x) 0

0 0 G(q, x)

 ,

Rb
a(q, x) =

B(q, x) 0 0

0 A(q, x) 0

Z̄(q, x) 0 G(q, x)

 ,

where the entries are exactly those of Case I. Again, with the help of Maple

one can verify that these solutions do indeed satisfy the reflection equation

(1.8).

Kim’s initial classification of solutions was extended by Lima-Santos in his
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papers [29]. All existing solutions were recovered, as well as another four so-

lutions. The first two are denoted Case V, each contain a single free parameter

and take the form:

Rb
a(q, x) =

1 0 z1
2

(x− x−1)

0 1 0

0 0 1

 ,

Rb
a(q, x) =

 1 0 0

0 1 0
z̄1
2

(x− x−1) 0 1

 .

The final two solutions, Case VI, are the most general of all the reflection

factors as every matrix entry is non-zero:

Rb
a(q, x) =

R11 R12 R13

R21 R22 R23

R31 R32 R33

 ,

one solution has the following entries:

R11 :=
q + q−1

4x

(√
x

q3
+

q3

√
x

+ i

(√
x− 1√

x

))
+
q3 + q−3

4
√
x

(
2

β12
2

β13 (q3 + q)
+ 4

(
q2 + q−2 − i

(
q − q−1

))−1
)
·(

(q2 + q−2)

4

(√
x

q
+

q√
x

)
− i

2

(
1√
x

+

√
x

2

(
q2 + q−2

)))(√
x− 1√

x

)
,

R12 :=
β21 (x− 1) (x+ 1) (q4 − q2 + 1) (q2 + 1)

2

4q4x3/2
,

R13 := −β13 (x− 1) (q4 − q2 + 1) (x+ 1) (q2 + 1) (−q2 + (x− 1) iq − x)

4q4x3/2
,

R21 :=
β21 (x− 1) (x+ 1) (q4 − q2 + 1) (q2 + 1)

2

4q4x3/2
,
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R22 :=
(q + q−1)

4

(√
xq3 +

1√
xq3
− i
(√

x− 1√
x

))
+

1

16

((√
x

q2
− q2

√
x

)(√
xq +

1√
xq

)
+ i

(√
x

q
+

q√
x

)2
)
·(

2
β12

2

β13 (q3 + q)
+ 4

(
q2 + q−2 − i

(
q − q−1

))−1
)(

q3 + q−3
)(√

x− 1√
x

)
,

R23 :=
iβ12 (x− 1) (q4 − q2 + 1) (x+ 1) (q2 + 1)

2

4q6
√
x

,

R31 := −β21
2β13 (x− 1) (q4 − q2 + 1) (x+ 1) (q2 + 1) (−q2 + (ix− i) q − x)

4β12
2x3/2q4

,

R32 :=
iβ21 (x− 1) (q4 − q2 + 1) (x+ 1) (q2 + 1)

2

4q6
√
x

,

R33 :=
x

4

(
q + q−1

)(√x
q3

+
q3

√
x

+ i

(√
x− 1√

x

))
−
√
x

4

(
q3 + q−3

)(√
x− 1√

x

)(
2

β12
2

β13 (q3 + q)
+ 4

(
q2 + q−2 − i

(
q − q−1

))−1
)
·(

1

4

(
q2 + q−2

)(√x
q

+
q√
x

)
+
i

2

(√
x+

q2 + q−2

2
√
x

))
.

Originally, the above solution contained many free parameters, βij. However,

constraints are used to reduce the number of them significantly and only

β12, β13 remain. The constraints are:

β11 = −iβ
2
12

β13

(
q + q−1 + i

q2(q + q−1)

)
− i

q

(
4− 2(q − q−1)

q + q−1 − i(q2 − q−2)

)
,

β33 = −iβ
2
12

β13

(
q + q−1 − i
q4(q + q−1)

)
− iq

(
4− 2(q − q−1)

q + q−1 − i(q2 − q−2)

)
,

β21 = i
β3

12

β2
13

(
1

q2(q + q−1)

)
− iβ12

β13

(
4− 2(q − q−1)

q + q−1 − i(q2 − q−2)

)
,

β23 = i
β12

q2
, β32 = i

β21

q2
, β31 =

β2
21β13

β2
12

,

and their complicated nature in turn influences the solution, making it difficult

to manipulate. The second solution of this type is similar and differs by several

sign choices within the entries and constraints.
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It may seem surprising that the a
(2)
2 -model possesses this multitude of solu-

tions. However, one can argue this is precisely what we should expect because

of their structure. To illustrate this argument let us examine a reflection ma-

trix where each entry is replaced by its index notation, the index on the

left/right refers to in/out-going particles respectively:

Rb
a =

++ +0 +−
0+ 00 0−
−+ −0 −−

 .

The above matrix highlights the significance of each matrix entry and its

associated boundary process. For example, the Case II (upper-triangular)

solution represents a boundary process where the particles can remain as they

are or lose one or two units of charge, if it is permitted. Similarly, the Case

III (lower-triangular) solution concerns a boundary process where particles

remain the same or gain charge. Collectively, the solutions cover all possible

processes, whether it is Case II: a particle’s charge decreases, or Cases IV

and V, where only even units of charge may exchange. Adding an integrable

defect near the boundary allows us to expand upon the a
(2)
2 story further and

we will now review the details of a defect within a
(2)
2 .

During the time that Kim and Lima-Santos calculated reflection matrices,

interest in integrable defects began to stir. The early results of Delfino, Mus-

sardo and Simonetti were expanded upon by many authors over the last twenty

years, see [10, 45, 46, 47, 61] for example, leading us to 2011 when the a
(2)
2

transmission matrix was calculated in [45]. Before stating the transmission

matrix we will briefly recount the details of the classical story reviewed in

the introductory chapter, presented in [45, 47]. As mentioned in chapter one,

the Tzitzéica model can only support type - II defects. In the Lagrangian

description, this means that the additional defect contribution possesses an

extra degree of freedom - an auxiliary field. The model’s two complex soliton

solutions, regarded as the soliton and anti-soliton, can experience: a delay

when travelling through the defect and retain its particle type or convert to

the anti-soliton, or the defect can absorb the soliton. Of course, the process

taking place depends on the initial conditions of the fields u, v and λ, char-

acterised in chapter one. With knowledge of the classical findings and the

S-matrix one can study the transmission Yang-Baxter equation (1.62), as we
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know, to calculate suitable T -matrices. As we are aware, the transmission

matrices’ entries can be described by an index approach, whereby Kronecker-

deltas keep track of charge or by annihilation and creation operators belonging

to an infinite-dimensional representation of the Borel subalgebra. Throughout

this chapter we will use the most general transmission matrix calculated in

[45], expressed in the Kronecker-delta language for simplicity:

T bβaα(θ) = ρ(θ)

(ε2q2α + q−2ατ 2x)δβα εµ(α)δβ−1
α M(α)δβ−2

α

λ(α)τxδβ+1
α (ετ̃ + τ ε̃x)δβα τ̃µ(α)q−2α−1δβ−1

α

L(α)xδβ+2
α ε̃λ(α)q2α−1xδβ+1

α (ε̃2q2αx+ τ̃ 2q−2α)δβα

 ,

containing the following parameters:

M(α) = µ(α)µ(α + 1)
q−2α−1

1 + q2
, L(α) = λ(α)λ(α− 1)

q2α−1

1 + q2

with constraint

µ(α)λ(α + 1) = (q + q−1)(τ τ̃q−2α−1 + εε̃q2α+1),

The T -matrix contains much freedom, because of the free parameters ε, ε̃, τ, τ̃

and one of the free functions µ(α) or λ(α). Resultantly, the generalised solu-

tions will possess more freedom. The coefficient ρ(θ) ensures that the T -matrix

satisfies the analogues of unitarity and crossing symmetry, it can be found in

[45], but it is not required for our purposes. The summary of known results is

now complete, and charged with this knowledge we can construct generalised

solutions.
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3.2 Generalised Reflection Matrices for the a
(2)
2 affine

Toda model

To form a generalised reflection matrix we must evaluate the product,

T (θ)Rd(θ)T̃ (θ),

where T̃ (θ) := T−1(−θ) and care must be taken when tracking all shifts in

the topological charge. We will dress diagonal solutions with the T -matrix

detailed previously. Therefore, we require the inverse matrix T̃ (θ). As we

have mentioned previously, any transmission matrix must be invertible, it is

one of its vital properties and is most likely a result of the underlining quantum

group structure. Any inversion procedure must account for the presence of the

Kronecker-deltas. Resultantly, the entries of the inverse matrix will contain

various shifts. One can readily obtain the infinite-dimensional analogue of

Cramer’s rule that gives a formula for each entry in the inverse T -matrix.

Those formulae are:

y11(α) =
x22(α + 1)x33(α + 2)− x23(α + 1)x32(α + 2)

det1

, (3.2)

y21(α) =
x31(α + 1)x23(α)− x33(α + 1)x21(α)

det2

, (3.3)

y31(α) =
x32(α)x21(α− 1)− x31(α)x22(α− 1)

det3

, (3.4)

where

det1 = x11(α)[x22(α + 1)x33(α + 2)− x23(α + 1)x32(α + 2)]

+ x12(α)[x23(α + 1)x31(α + 2)− x21(α + 1)x33(α + 2)]

+ x13(α)[x21(α + 1)x32(α + 2)− x22(α + 1)x31(α + 2)],

det2, det3 consist of the same entries but take different arguments,

y12(α) =
x13(α)x32(α + 2)− x12(α)x33(α + 2)

det4

, (3.5)

y22(α) =
x11(α− 1)x33(α + 1)− x13(α− 1)x31(α + 1)

det5

, (3.6)

y32(α) =
x12(α− 2)x31(α)− x11(α− 2)x32(α)

det6

, (3.7)
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y13(α) =
x12(α)x23(α + 1)− x13(α)x22(α + 1)

det7

, (3.8)

y23(α) =
x13(α− 1)x21(α)− x11(α− 1)x23(α)

det8

, (3.9)

y33(α) =
x11(α− 2)x22(α− 1)− x12(α− 2)x21(α− 1)

det9

. (3.10)

Determinants det5 and det9 are formed by expanding the determinant around

the second and third rows respectively. They are related to all other determi-

nants via particular shifts of topological charge, for example:

det1(α) = det5(α + 1), det1(α) = det9(α− 2).

In fact, the determinants are all equal, and this might seem surprising given

the T -matrix’s dependence on the topological charge. However, when calcu-

lating det1, for instance, one finds that the determinant does not depend on

the topological charge. Therefore, all determinants are equal, because they

only differ by various shifts in the charge. Given that the topological charge is

counted in integer units, similar to the sine-Gordon case, we might expect this

behaviour. We can invert both the above matrix and the rapidity to obtain

T̃ (θ), which takes the form:

T̃ bβaα(θ) =
ρ̃(−θ)
∆(−θ)

 T̃11(α)δβα µ(α)τ̃ q−2α−4δβ−1
α −M(α)q−2δβ−2

α

−λ(α)q2αε̃x−1δβ+1
α T̃22(α)δβα εµ(α)q−3δβ−1

α

L(α)x−1δβ+2
α −λ(α)qτx−1δβ+1

α T̃33(α)δβα

 ,

T̃11(α) := (q2α+3ε̃2x−1 − τ̃ 2q−2α−3)q−1,

T̃22(α) := q−4(τ ε̃q6x−1 − ετ̃),

T̃33(α) := q−1(τ 2x−1q−2α+3 − ε2q2α−3),

where the determinant ∆(−θ) = (ε̃τ q2x−1 − ετ̃)(ε̃τx−1 + ετ̃ q−4). With ease

one can invert the rapidity, in the above matrix, and verify that the inverse

works as expected.

At this moment, all necessary components to form a generalised solution are

available. Let us begin by choosing the identity solution, Rd = 13. Evaluating

the product (1.95) returns a generalised reflection matrix of the form:
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R̂bβ
aα(θ) =

 X11δ
β
α X12δ

β−1
α X13δ

β−2
α

X21δ
β+1
α X22δ

β
α X23δ

β−1
α

X31δ
β+2
α X32δ

β+1
α X33δ

β
α,

 ,

with entries:

X11 =
1

∆

[
ε̃2τ 2q2 − εε̃τ τ̃x−1 + εε̃τ τ̃ q−2x−1 − ε2τ̃ 2q−4 − τ 2τ̃ 2q−4α−4(x− x−1)

]
,

X12 =
1

∆

[
µ(α)τ 2τ̃ q−4α−4(x− x−1)

]
,

X13 =
1

∆

[
−M(α)τ 2q−2α−2(x− x−1)

]
,

X21 =
1

∆

[
−λ(α)τ̃ 2τq−2α−2(x− x−1)

]
,

X22 =
1

∆

[
τ 2τ̃ 2q−4α−2(1 + q2)(x− x−1) + εε̃τ τ̃ q−2x− ε2τ̃ 2q−4 + ε̃2τ 2q2 − εε̃τ τ̃x−1

]
,

X23 =
1

∆

[
−µ(α)τ 2τ̃ q−4α−1(x− x−1)

]
,

X31 =
1

∆

[
−L(α)τ̃ 2q−2α(x− x−1)

]
,

X32 =
1

∆

[
λ(α)τ τ̃ 2q−2α+1(x− x−1)

]
,

X33 =
1

∆

[
ε̃2τ 2q2 + εε̃τ τ̃ q−2x− εε̃τ τ̃x− ε2τ̃ 2q−4 − τ 2τ̃ 2q−4α+2(x− x−1)

]
.

The first generalised solution enjoys a seemingly compact form. To access

more complicated solutions we must dress the non-trivial Nepomechie and

Mezincescu diagonal solutions. Let us now dress the following solution with

the defect:
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Rb
a(x, q) =

(q3x−1 + i) 0 0

0 (q3x+ i) 0

0 0 x(q3 + ix)

 .

Evaluating the multiplication provides another solution, that does not contain

any zeroes, with entries:

X11 =
1

∆

[
ε2ε̃2q4α+4(i− qx−1)(x− x−1)− ε2τ̃ 2q−1x−1 + ε̃2τ 2q5x−1

− iε2τ̃ 2q−4 + iε̃2τ 2q2 − εε̃τ τ̃ q3 − iεε̃τ τ̃ q2x−1 − iεε̃τ τ̃x−1

+ iεε̃τ τ̃ q2x+ iεε̃τ τ̃ q−2x+ εε̃τ τ̃ q
]
,

X12 =
1

∆

[
−iεµ(α)q−1(ε̃τ q3 − iετ̃)(x− x−1)

]
,

X13 =
1

∆

[
ε2M(α)q2α(q − ix)(x− x−1)

]
,

X21 =
1

∆

[
−ε̃q2αλ(α)(ε̃τ q3 − iετ̃)(x− x−1)

]
,

X22 =
1

∆

[
εε̃τ τ̃ q + εε̃τ τ̃ q−1 + iεε̃τ τ̃ q−2x+ ε̃2τ 2q5x− ε2τ̃ 2q−1x− εε̃τ τ̃ q−1x2

+ iεε̃τ τ̃ q2x−1 + iε̃2τ 2q2 − iε2τ̃ 2q−4 − εε̃τ τ̃ q3 − iεε̃τ τ̃ q2x− iεε̃τ τ̃x
]
,

X23 =
1

∆

[
εµ(α)q−3x(ε̃τ q3 − iετ̃)(x− x−1)

]
,

X31 =
1

∆

[
ε̃2L(α)q2α(ix− q)(x− x−1)

]
,

X32 =
1

∆

[
−iε̃λ(α)q2α−2x(ε̃τ q3 − iετ̃)(x− x−1)

]
,

X33 =
1

∆

[
− εε̃τ τ̃ q3 − εε̃τ τ̃ q−1 − iεε̃τ τ̃x+ ε2ε̃2q4α−4(q − ix)(x2 − 1)

+ εε̃τ τ̃ q−1x2 + εε̃τ τ̃ qx2 + iεε̃τ τ̃ q−2x+ ε̃2τ 2q5x

− ε2τ̃ 2q−1x+ iε̃2τ 2q2x2 − iε2τ̃ 2q−4x2
]
.
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The above generalised solution is not as simple as the former generalised

reflection factor. This is expected due to the non-trivial diagonal matrix used

in its construction. The third generalised solution, created by dressing the

remaining Nepomechie and Mezincescu diagonal solution (with the negative

sign), is almost identical to the above solution. The two solutions differ by

multiple plus or minus signs within the matrix entries.

At first glance, the arrangement of the free parameters in particular matrix

entries hints at an underlying structure. Almost immediately, one begins to

see how the defect’s ability to store charge, and introduce further degrees of

freedom, generalises the finite-dimensional story. Let us now consider how

they are related the solutions of Kim and Lima-Santos.

3.3 Relation to Existing Solutions

If we cast our eye over the first generalised solution, formed from the dressing

of the identity solution. It becomes clear that if τ = 0 all entries except the

diagonal and entry 3,1 vanish. We believe this particular limit returns the

infinite-dimensional analogue of Lima-Santos’ Case V solution:

R =

 1 0 0

0 1 0
z̄1
2

(x− x−1) 0 1

 .

To illustrate this, take τ = 0 and evaluate all matrix entries, including the

determinant. The identity is now present on the diagonal, as the determinant

cancels the remaining factor of −ε2τ̃ 2q−4, and entry 3,1 can take the above

form if for example:

L(0)→ 1, ε2 → 2q4

z̄1

.

Similarly, when τ̃ = 0, we find the infinite-dimensional analogue of the other

Lima-Santos Case V solution:

R =

1 0 z1
2

(x− x−1)

0 1 0

0 0 1

 .
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When taking this limit we find that there is an overall factor of x2, originating

from ∆τ̃=0 = ε̃2τ 2q2x−2 and if we take, for instance, the following limits we

will obtain the Case V solution exactly:

M(0)→ −1, ε̃2 → 2

q4z1

.

It is not immediately obvious if any other finite-dimensional solutions are

hidden within this generalised solution and so we will now examine the second

more complicated generalised solution.

Despite the appearance of the solution’s entries, and their complicated struc-

ture, they do in fact possess natural upper and lower triangular structures.

Setting ε = 0 will give the solution a lower triangular structure, and similarly,

ε̃ = 0 returns an upper triangular structure. We believe that the above limits

represent the infinite-dimensional analogues of Kim’s finite-dimensional lower

and upper triangular matrices. Let us quickly recall Kim’s upper triangular

solution:

R =

B(x) X(x) Z(x)

0 A(x) Y (x)

0 0 G(x)

 ,

with entries:

B(x) = (q3x−1 + i),

A(x) = (q3x+ i),

G(x) = x2(q3x−1 + i),

X(x) =
x1

2
(q3 + i)(x− x−1),

Y (x) =
x1

2
(1− iq3)(1− x2)q−2,

Z(x) =
x2

1(q2 + iq − 1)(q − ix)(q3 + i)(x−1 − x)

4q3(q + i)
,

the above is presented slightly differently when compared to that of its first in-

troduction in the Known Results section. Some brackets have been expanded

and the uppermost sign was chosen, to achieve simplification and to help us

relate the solutions. The above finite-dimensional solution is realised within

our infinite-dimensional solution by taking the following limits:
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ε̃ = 0, α = 0, µ(0) = 1, τ̃ → 2q3

x1(q3 + i)

with

µ(1)→ (1 + q2)(q2 + iq − 1)

(q3 + i)(q + i)
.

Kim’s lower triangular solution is simply the transpose of his upper triangu-

lar matrix, together with the conjugation of all free parameters. Somewhat

similarly, we can realise the finite lower triangular solution by considering the

following set up:

ε = 0, α = 0, λ(0) = 1, τ → −2q

x̄1(q3 + i)

and

λ(−1)→ q2(1 + q2)(q2 + iq − 1)

(q3 + i)(q + i)
.

The equalities and limits used to realise the finite solutions are not unique

and it is likely that there exists a nicer formulation. However, I believe that

this set up illustrates how the infinite-dimensional solution, containing free

functions of the charge and several free parameters, can collapse to return the

finite-dimensional solutions.

Further scrutiny of the second generalised solution is most revealing, especially

within entries: X12, X21, X23, X32. They all contain the factor (ε̃τ q3− iετ̃) and

so the limit

ε̃τ → iετ̃ q−3

returns a solution of the form:

R̂bβ̃
aα̃(θ) =

 X ′11δ
β̃
α̃ 0 X ′13δ

β̃−2
α̃

0 X ′22δ
β̃
α̃ 0

X ′31δ
˜β+2

α̃ 0 X ′33δ
β̃
α̃,

 ,

where X ′ii and X ′ij represent the entries after implementing the limit. Given

the above solution’s shape, it is most likely an infinite-dimensional analogue

of Kim’s Case I solution. Unfortunately, due to the nature of the remaining

entries, it is not clear how we can identify the free parameters of the finite-

dimensional solution or reduce the solution so that it equals Kim’s reflection

factor exactly. It most likely requires a similarity transformation together

with other specialisations of the leftover parameters.
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Finally, it remains to recover Lima-Santos’ most general solution within one of

the new matrices. Unfortunately, this has escaped us so far. The identification

of his constraints proves to be very difficult. Nevertheless, we believe that it

is possible, because Lima-Santos obtains Kim’s upper and lower triangular

solutions [28] (cases II and III) from the most general solution (case VI) [29].

We know that the defect and boundary work together extremely well. The

defect develops and generalises the simple reflection factor, and the resulting

generalised reflection matrix satisfies a modified reflection equation as we have

proved. Therefore, it is difficult to suppose that one might lose some solutions

during the construction, but it might be the case. To achieve equality, we

imagine that a similarity transformation is required, as well as giving many of

the parameters a specific value. A promising observation is that the rapidity

dependence of most off-diagonal entries appears to match, but this is as far

as we can go at the moment.

The Tzitzéica model exhibits several peculiar features, which we have dis-

cussed. One further peculiarity is the fact that the identity matrix is a bona

fide solution to the reflection equations. The result of dressing this reflection

factor with an integrable defect is a generalised solution that has a compact

form, R̂ = T (θ)T̃ (θ). However, this generalised solution is naturally related

to the most simple non-diagonal Case V reflection matrices. Typically, some

of the remaining (more complicated) solutions are related to the generalised

matrices constructed from the non-trivial diagonal matrix. Moreover, this

neatly shows that we can dress a boundary with a defect to extend the class

of known solutions.
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3.4 Future work concerning a
(2)
2

In the introductory chapter, the important role of integrable defects was de-

scribed: including the conjecture that dressing a particular boundary (one

having a diagonal reflection matrix) with an integrable defect enables the

calculation of more general objects from which all known solutions are recov-

ered. This chapter has focussed on the a
(2)
2 - affine Toda model, which is the

next logical step after the extensive study of the sine-Gordon, and we have

provided generalised solutions that follow this construction. The recovery of

all known solutions was then considered, but remains incomplete. This work

supplies a large amount of support for the conjecture, and with a little more

work, we will hopefully find that the conjecture is true in this case. Some of

the difficulty may be attributed to the unusual phenomenon exhibited by this

model, whereby the classical soliton spectrum does not match the quantum

spectrum. In the future, the generalised solutions presented in this chapter

require further examination. In particular, one should hope to discover their

associated classical integrable boundary conditions. Given their nature, it is

reasonable to expect an increase in the number of degrees of freedom. As a

result, they would lie outside the known class of results (1.30) [41].



Chapter 4

Soliton Preserving Generalised

Reflection Matrices of the a
(1)
2 affine

Toda model

We have seen how defects and their associated generalised solutions fit, pleas-

ingly, into an algebraic framework. In doing this, we also formed generalised

solutions for the sine-Gordon (a
(1)
1 ) model, and commented on their curious

properties. As a matter of course, it was natural to consider the Tzitzéica

model next, where one is able to observe the way in which the defect effort-

lessly generalises the finite-dimensional solutions. It is now useful to study

the a
(1)
2 − affine Toda model that admits both type - I and type - II defects.

In this case, the type - I defect behaves in a very striking yet peculiar manner,

but still generalises the finite-dimensional results of the literature. At the

beginning of this chapter, we will state the known solutions to the reflection

equation - concerning soliton preserving (SP) boundary conditions - as well as

the known type - I transmission matrices. We will then construct the gener-

alised reflection matrices via the dressing procedure and relate these solutions

to the existing finite-dimensional reflection factors. The curious characteris-

tics of the type - I generalised solutions are illustrated in several diagrams,

some are found within this chapter and all others in an appendix. Following

this we can study the type - II defect transmission matrices that build upon

the results of the type - I case.

97
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4.1 Review of Known Results in a
(1)
2

The S-matrix, given by Jimbo [24], enabled many to compute several reflection

and transmission factors over the years and it takes the form:

S(Θ12) = ρS(Θ12)



a 0 0 0 0 0 0 0 0

0 b 0 c+ 0 0 0 0 0

0 0 b 0 0 0 c− 0 0

0 c− 0 b 0 0 0 0 0

0 0 0 0 a 0 0 0 0

0 0 0 0 0 b 0 c+ 0

0 0 c+ 0 0 0 b 0 0

0 0 0 0 0 c− 0 b 0

0 0 0 0 0 0 0 0 a


,

a = qx12 − q−1x−1
12 ,

b = x12 − x−1
12 ,

c± = (q − q−1)x
±1/3
12 ,

Θ12 = θ1 − θ2, xi = e3γθi/2, i = 1, 2; x12 =
x1

x2

; q = −e−iπγ, γ =
4π

β2
− 1.

We will now state the reflection matrices associated with SP boundary con-

ditions, calculated in papers [67, 68, 69], where the diagonal solutions are of

particular importance because we will use them to construct the generalised

reflection matrices. The diagonal solutions are presented in such a way that

they are compatible with the defect transmission matrices, which we will use

to construct generalised solutions.

4.1.1 Reflection Matrices

The first step to classify all SP solutions to the reflection equation (1.8), in

the a
(1)
2 case (actually for all a

(1)
n models, n > 1), was taken by de Vega and

Gonzalez-Ruiz in 1993, [67], where they calculate several diagonal solutions.

They discovered three solutions of two different types: one containing no free

parameters, and the other containing one parameter, υ. The solutions are of
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the form:

Rd0(x) =

1 0 0

0 x4/3 0

0 0 x8/3

 , (4.1)

Rd1(x) =

(x2υ − υ−1) 0 0

0 x4/3(x2υ − υ−1) 0

0 0 x2/3(υ − x2υ−1)

 , (4.2)

and

Rd2(x) =

(x2υ − υ−1) 0 0

0 x−2/3(υ − x2υ−1) 0

0 0 x2/3(υ − x2υ−1)

 , (4.3)

in the above x = e3γθ/2 for a soliton of rapidity θ, and υ = eiπξ where ξ is the

boundary parameter associated to all diagonal matrix entries. Note that the

factors multiplying entries: 2,2 and 3,3, of the diagonal reflection matrices,

are necessary to relate the different gradations of the S-matrix used here and

in papers [67, 69].

Abad and Rios added to the literature by calculating a non-diagonal reflection

matrix in 1995 [68]. Lima-Santos also rediscovered their solution in his 2002

paper [69], it takes the form:

R13(u) =

 f11(u) 0 1
2
β13(e2u − 1)

0 f11(u) + f−21(u) 0
1
2
β31(e2u − 1) 0 e2uf11(−u)

 , (4.4)

f11(u) = β11(eu − 1) + 1, f−21(u) = 1
2
(β22 − β11)(e2u − 1) where the βij

are free parameters associated with the boundary, satisfying the condition

β13β31 = (β22 + β11 − 2)(β22 − β11). Lima-Santos went on to calculate two

more non-diagonal solutions [69]:

R12(u) =

 f11(u) 1
2
β12(e2u − 1) 0

1
2
β21(e2u − 1) e2uf11(−u) 0

0 0 e2uf11(−u) + euf+
31(u)

 , (4.5)

where: f+
31(u) = 1

2
(β33 + β11 − 2)(e2u − 1) together with the constraint
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β12β21 = (β33 − β11 − 2)(β33 + β11 − 2). And finally,

R23(u) =

f22(−u) + e−uf+
21(u) 0 0

0 f22(u) 1
2
β23(e2u − 1)

0 1
2
β32(e2u − 1) e2uf22(−u)

 , (4.6)

with f22(u) = β22(eu − 1) + 1, f+
21(u) = 1

2
(β22 + β11)(e2u − 1) and con-

straint β23β32 = (β11 + β22)(β11 − β22). The non-diagonal solutions contain

free parameters associated to each matrix entry. Specifically, we find that

each non-diagonal solution includes three parameters: two βii parameters, as

well as two βij parameters, which are related via a constraint. In order to

relate the parameters βii, i = 1, 2, 3 to υ we must consider certain limits of

Lima-Santos’ non-diagonal solutions. All limits in this case should reduce

solutions: R13(u), R12(u), R23(u) to diagonal form, without violating the con-

straint equations. The following limits [69]:

R12(u) : β11 = β22 with β13 = 0 = β31,

R13(u) : β33 = −(β11 − 2) with β12 = 0 = β21,

R23(u) : β22 = −β11 with β23 = 0 = β32,

force the non-diagonal solutions to take a diagonal form. Each matrix then

depends on one free parameter that is identified with υ. The limits above

allow us to recover the de Vega and Gonzalez-Ruiz solutions as well as two

more:

Rd3(x) =

(x−2υ − υ−1) 0 0

0 x−8/3(x2υ − υ−1) 0

0 0 x−4/3(x−2υ − υ−1)

 , (4.7)

and

Rd4(x) =

(x2υ − υ−1) 0 0

0 x4/3(x−2υ − υ−1) 0

0 0 x−4/3(x2υ − υ−1)

 , (4.8)

further details regarding limits of the boundary parameters can be found in

Appendix B of [69]. Furthermore, it can be shown that Rd4 is equal to Rd3 , by

performing: x → x−1, extracting a factor of x4/3 and applying the similarity
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transformation 0 0 1

0 1 0

1 0 0

 .

Consequently, we will not use Rd4 in the dressing procedure.

The notation, Rij, adopted by Lima-Santos to label reflection matrices has

an exact meaning. Essentially, it reflects his starting point and embodies a

relation he observed within the reflection equations. In [69] it is noted that

the relation:

βijrji(u) = βjirij(u), ∀i 6= j, (4.9)

(rij label the entries of the reflection matrix) solves nine of the reflection

equations. Specifically, the equations that correspond to processes where the

in-going solitons are equal to the out-going solitons. These particular equa-

tions are obtained by equating the following indices: a = g and b = h. This

allowed Lima-Santos to choose a particular entry, rij, and assume that it is

non-zero. Therefore, by the above condition rji is also non-zero. With this

knowledge, one can then express the remaining entries of the reflection ma-

trix in terms of this non-zero element. This is permitted providing further

constraints hold [69]:

rpq(u) =

eu
βpq
βij
rij(u), if p > i and q > j,

βpq
βij
rij(u), if p > i and q < j,

(4.10)

valid for p 6= q. By combining the above relations, Lima-Santos arrives at a

very restrictive relation for the matrix entries rij:

rpq(u) 6= 0 =⇒

rpj(u) = 0, for p 6= i,

riq(u) = 0, for q 6= j.
(4.11)

This is in fact why all three solutions R12, R13, R23 have four zero entries. In

section 4.2 we will see how the diagonal solutions Rdi , i = 1, 2, 3 are used to

construct several new generalised reflection matrices that are characteristically

different to R12, R13, R23, because they appear to violate the constraint (4.9).
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4.1.2 Transmission Matrices

A comprehensive account of the a
(1)
2 transmission matrices is detailed in [48]

and in this article we will use the transmission matrices documented in Ap-

pendix B of [48] that satisfy the Transmission Yang-Baxter equation:

Smnab (θa − θb)T tβnα(θa)T
sγ
mβ(θb) = T nβbα (θb)T

mγ
aβ (θa)S

st
mn(θa − θb).

As we know, all transmission matrices are infinite-dimensional and this mirrors

the defect’s ability to store the topological charge of solitons. The story for a
(1)
2

is slightly different, as the soliton and anti-soliton correspond to two different

(though conjugate) representations: the solitonic representation consists of

fundamental weights

l1 =
1

3
(2α1 + α2), l2 = −1

3
(α1 − α2), l3 = −1

3
(α1 + 2α2),

where α1, α2 are the two simple roots of the a
(1)
2 root system. The anti-

solitonic representation has weights −l1,−l2,−l3, all of which label the topo-

logical charges. When a soliton (anti-soliton) passes through the defect its

topological charge can either remain the same, β for example, or it could

become γ, another weight within the solitonic (anti-solitonic) representation.

Consequently, the defect will not change the boundary condition: if a SP diag-

onal reflection matrix is used then the resulting generalised reflection matrix

should correspond to another SP boundary condition. The generalised solu-

tions will possess some curious features, because the defect allows movement

within the weight space.

Before we state the transmission matrices of the a
(1)
2 - model some remarks are

required. In the classical picture there exist different defect Lagrangians. The

difference originates from the choice of either a clockwise or anti-clockwise

permutation of the extended simple roots, which includes the lowest root α0.

The permutation alters a matrix within the defect Lagrangian, thus to each

permutation corresponds a different Lagrangian. In the quantum setting sim-

ilar results appear. Transmission matrices can be calculated using either the

solitonic or anti-solitonic representation and so we would expect at least two

such matrices. However, we can also choose the clockwise or anti-clockwise

permutation of the extended simple roots. Consequently, there are four trans-



4.1. Review of Known Results in a
(1)
2 103

mission matrices corresponding to the solitonic/anti-solitonic representation

with either choice of permutation [48].

We will now list the transmission matrices as they appear in [48]. The trans-

mission matrix corresponding to the solitonic representation with the clock-

wise permutation is:

TI =

 t11q
−α·l1δγα

t13t32

t33
x4/3δγ−α1

α t13x
2/3qα·l2δγ+α0

α

t21x
2/3qα·l3δγ+α1

α t22q
−α·l2δγα

t21t13

t11
x4/3δγ−α2

α

t32t21

t22
x4/3δγ−α0

α t32x
2/3qα·l1δγ+α2

α t33q
−α·l3δγα

 , (4.12)

The following T -matrix corresponds to the anti-solitonic representation with

the anti-clockwise permutation:

TII =

 qα·l1δγα t12x
−2/3q−α·l3δγ−α1

α
t12t23

t22
x−4/3δγ+α0

α

t23t31

t33
x−4/3δγ+α1

α t22q
α·l2δγα t23x

−2/3q−α·l1δγ−α2
α

t31x
−2/3q−α·l2δγ−α0

α t31t12x
−4/3δγ+α2

α t33q
α·l3δγα

 .

(4.13)

The solitonic representation together with the anti-clockwise permutation re-

turns a T -matrix of form:

TIII =

 q−α·l1δγα 0 t13x
2/3δγ+α0

α

t21x
2/3δγ+α1

α t22q
−α·l2δγα 0

0 t32x
2/3δγ+α2

α t33q
−α·l3δγα

 . (4.14)

Finally, the anti-solitonic T -matrix with the clockwise permutation is:

TIV =

 qα·l1δγα t12x
−2/3δγ−α1

α 0

0 t22q
α·l2δγα t23x

−2/3δγ−α2
α

t31x
−2/3δγ−α0

α 0 t33q
α·l3δγα

 . (4.15)

Note that the Kronecker-deltas again allow us to track any exchange of charge

during the soliton’s interaction with the defect; albeit with slightly different

labels: α, γ refer to the a
(1)
2 weights and α1, α2, α0 refer to the extended simple

roots of a
(1)
2 with the lowest root α0 = −(α1 +α2). It is helpful to rewrite the

roots α0, α1, α2 and fundamental weights in terms of the standard orthonormal

base vectors, {ei}, i = 1, 2, 3, satisfying ei · ej = δij:

l1 =
1

3
(2e1 − e2 − e3), l2 =

1

3
(2e2 − e1 − e3), l3 =

1

3
(2e3 − e1 − e2),
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this allows us to evaluate any dot product of the simple roots easily, due to

the constraint on the components (γ1, γ2, γ3) of the weights: γ1 + γ2 + γ3 =

0, γ · li = γi. These relations are very useful and ensure that we obtain

compact expressions for the generalised reflection matrices, which we will see

later.

4.1.3 Pictorial Representations of known Reflection

and Transmission matrices

It is instructive to associate a pictorial representation to each known reflection

and transmission matrix. In the following section, this allows us to observe

the importance of the defect, and elucidate the generalised solutions. We

have already detailed the way that transmission matrices track exchanges of

topological charge and we will now view the boundary in a similar manner.

l1l2

l3

Figure 4.1: Pictorial representation of reflection matrix R12.

l1l2

l3

Figure 4.2: Pictorial representation of reflection matrix R13.

As incoming solitons must reflect from the boundary as solitons, we see that

the soliton can only remain as it is, or change to another weight within that

same representation. The zeroes appearing in the reflection and transmis-

sion matrices represent the fact that movement between the weights of the

solitonic/anti-solitonic representation is restricted. Figures (4.1), (4.2) and

(4.3) illustrate this behaviour.

An example of this phenomenon is the TIII-matrix, it is illustrated in figure

(4.4). However, some transmission matrices do not contain zeroes. In this
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l1l2

l3

Figure 4.3: Pictorial representation of reflection matrix R23.

l1l2

l3

Figure 4.4: Pictorial representation of transmission matrix TIII .

case, the soliton possesses maximum freedom, one such example is the TI-

matrix and this is illustrated in figure (4.5). We will see the importance of

these illustrations in the next section.

4.2 Construction of Type - I Generalised Reflection

Matrices

We are now familiar with the construction of generalised reflection matrices.

However, the solutions in this case appear different, because the topological

charges are the fundamental weights: l1, l2 and l3. The transmission matri-

ces’ dependence upon the topological charge, now denoted by the weights,

is the crucial ingredient that transforms the diagonal reflection factor to an

infinite-dimensional object. In this section, we will see that the generalised

objects possess a different structure to the reflection matrices introduced in

section 4.1.1. By using specific limits of the defect parameters, it is possi-

ble to reduce the generalised solutions so that the possess same shape as the

finite-dimensional cases.

l1l2

l3

l2

Figure 4.5: Pictorial representation of transmission matrix TI .



106 Chapter 4. Soliton Preserving Generalised Solutions in a
(1)
2

In order to construct the new solutions we need to calculate the T̃ -matrices,

which requires the inversion of all matrices TI , TII , TIII , TIV . Inversion formu-

lae are easily derived and they are very similar to the a
(2)
2 case, except the

entries are now shifted by the extended simple roots. The T̃ -matrices are as

follows:

T̃I(θ) =
Σ1(x−1)

∆(x−1)

 T̃11δ
β
γ 0 T̃13δ

β+α0
γ

T̃21δ
β+α1
γ T̃22δ

β
γ 0

0 T̃32δ
β+α2
γ T̃33δ

β
γ

 , (4.16)

with determinant ∆(x) := q2

t11t22t33
(t11t22t33 − t13t32t21x

2q−1)
2
, coefficient

Σ1(x) := (t11t22t33 − t13t32t21x
2q−1), and entries:

T̃11 =
qγ·l1+2

t11

, T̃13 = − t13

t11t33

x−2/3q, T̃21 = − t21

t11t22

x−2/3q,

T̃22 =
qγ·l2+2

t22

, T̃32 = − t32

t22t33

x−2/3q, T̃33 =
qγ·l3+2

t33

.

T̃II(θ) =
Σ2(x−1)

∆(x−1)

 T̃11δ
β
γ T̃12δ

β−α1
γ 0

0 T̃22δ
β
γ T̃23δ

β−α2
γ

T̃31δ
β−α0
γ 0 T̃33δ

β
γ

 , (4.17)

with the determinant ∆(x) := q−2

t22t33
(t22t33 − t12t23t31x

−2q)
2
, coefficient

Σ2(x) := (t22t33 − t12t23t31x
−2q), and entries

T̃11 = q−γ·l1−2, T̃12 = −t12

t22

x2/3q−1, T̃22 =
q−γ·l2−2

t22

,

T̃23 = − t23

t22t33

x2/3q−1, T̃31 = −t31

t33

x2/3q−1, T̃33 =
q−γ·l3−2

t33

.

T̃III(θ) =
1

∆(x−1)

 T̃11δ
β
γ T̃12δ

β−α1
γ T̃13δ

β+α0
γ

T̃21δ
β+α1
γ T̃22δ

β
γ T̃23δ

β−α2
γ

T̃31δ
β−α0
γ T̃32δ

β+α2
γ T̃33δ

β
γ

 , (4.18)

with determinant ∆(x) := t22t33q
2 + t13t32t21x

2, and entries:

T̃11 = t22t33q
γ·l1+2, T̃12 = t13t32x

−4/3, T̃13 = −t22t13x
−2/3q−γ·l2+1,

T̃21 = −t33t21x
−2/3q−γ·l3+1, T̃22 = t33q

γ·l2+2, T̃23 = t21t13x
−4/3,
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T̃31 = t32t21x
−4/3, T̃32 = −t32x

−2/3q−α·l1+1, T̃33 = t22q
γ·l3+2.

T̃IV (θ) =
1

∆(x−1)

 T̃11δ
β
γ T̃12δ

β−α1
γ T̃13δ

β+α0
γ

T̃21δ
β+α1
γ T̃22δ

β
γ T̃23δ

β−α2
γ

T̃31δ
β−α0
γ T̃32δ

β+α2
γ T̃33δ

β
γ

 , (4.19)

with determinant ∆(x) := t22t33q
−2 + t12t23t31x

−2 and entries:

T̃11 = t22t33q
−γ·l1−2, T̃12 = −t33t12x

2/3qγ·l3−1, T̃13 = t12t23x
4/3,

T̃21 = t23t31x
4/3, T̃22 = t33q

−γ·l2−2, T̃23 = −t23x
2/3qγ·l1−1,

T̃31 = −t31t22x
2/3qγ·l2−1, T̃32 = t31t12x

4/3, T̃33 = t22q
−γ·l3−2.

The transmission matrices are now used to dress the first diagonal reflection

matrix, Rd0 . The generalised solutions are very peculiar, but the defect’s

significance is readily observed. We will label the most simple generalised

solutions R̂i, i = I, II, III, IV, to denote the transmission matrices used in

their construction. The solutions are as follows:

R̂I =

r̂11δ
β
α 0 r̂13δ

β+α0
α

0 r̂22δ
β
α r̂23δ

β−α2
α

0 0 r̂33δ
β
α

 , (4.20)

with entries:

r̂11 =
1

Σ1(x−1)

(
t11t22t33 − t13t32t21x

2q−1
)
,

r̂13 =
1

Σ1(x−1)

(
t11t22t13x

−2/3qα·l1−1(x4 − 1)
)
,

(4.21)

r̂22 =
1

Σ1(x−1)

(
x4/3

(
t11t22t33 − t13t32t21x

2q−1
))
,

r̂23 =
1

Σ1(x−1)

(
t22t21t13q

α·l3−1(x4 − 1)
)
,

r̂33 =
1

Σ1(x−1)

(
x2/3

(
t11t22t33x

2 − t13t32t21q
−1
))
,

(4.22)
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R̂II =

 r̂11δ
β
α 0 0

r̂21δ
β+α1
α r̂22δ

β
α 0

r̂31δ
β−α0
α 0 r̂33δ

β
α

 , (4.23)

with entries:

r̂11 =
1

Σ2(x−1)

(
t22t33 − t12t23t31x

2q
)
,

r̂21 = − 1

Σ2(x−1)

(
t22t23t31x

−4/3q−α·l1+1(x4 − 1)
)
,

r̂22 =
1

Σ2(x−1)

(
x−2/3

(
t22t33x

2 − t12t23t31q
))
,

r̂31 = − 1

Σ2(x−1)

(
t22t33t31x

−2/3qα·l3+1(x4 − 1)
)
,

r̂33 =
1

Σ2(x−1)

(
x2/3

(
t22t33x

2 − t12t23t31q
))
,

(4.24)

R̂III =

r̂11δ
β
α r̂12δ

β−α1
α r̂13δ

β+α0
α

0 r̂22δ
β
α 0

0 0 r̂33δ
β
α

 , (4.25)

with entries:

r̂11 =
1

∆(x−1)

(
t22t33q

2 + t13t32t21x
2
)
,

r̂12 = − 1

∆(x−1)

(
t13t32x

−4/3q−α·l1(x4 − 1)
)
,

r̂13 =
1

∆(x−1)

(
t22t13x

−2/3qα·l3+1(x4 − 1)
)
,

r̂22 =
1

∆(x−1)

(
x−2/3

(
t22t33q

2x2 − t21t13t32

))
,

r̂33 =
1

∆(x−1)

(
x2/3

(
t22t33q

2x2 + t32t21t13q
))
,

(4.26)

R̂IV =

 r̂11δ
β
α 0 0

0 r̂22δ
β
α 0

r̂31δ
β−α0
α r̂32δ

β+α2
α r̂33δ

β
α

 , (4.27)

with entries:
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r̂11 =
1

∆(x−1)

(
t22t33q

−2 + t12t23t31x
2
)
,

r̂22 =
1

∆(x−1)

(
x4/3

(
t22t33q

−2 − t23t31t12x
2
))
,

r̂31 = − 1

∆(x−1)

(
t22t33t31x

−2/3q−α·l2−1(x4 − 1)
)
,

r̂32 =
1

∆(x−1)

(
t33t31t12q

α·l3(x4 − 1)
)
,

r̂33 =
1

∆(x−1)

(
x2/3

(
t22t33q

−2x2 + t31t12t23

))
.

(4.28)

Despite the very strange appearance of the above solutions, R̂i, an interesting

pattern arises. If we label each entry of the generalised reflection matrix as

follows:

R̂i =

++ +0 +−
0+ 00 0−
−+ −0 −−

 ,

where + corresponds to weight l1, 0 corresponds to weight l2, and so forth.

The defect appears to modify a diagonal reflection factor, with no associated

free parameter, by allowing the soliton to convert to a limited selection of the

adjacent weights. Furthermore, note the similarity between R̂I , R̂IV , the first

is built from the TI matrix (solitonic representation with clockwise permuta-

tion), the second is built from the TIV matrix (anti-solitonic representation

with clockwise permutation). From the classical type - I set-up, we expect

that the soliton and anti-soliton interact with the defect differently. Clearly,

Second TransmissionS-P BoundaryFirst Transmission Overall Process

l1l2l1l2

l3

l2

l3

l1l2

l3 l3

l2 l1

Figure 4.6: Pictorial representation of generalised solution R̂I .
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this is an exhibition of that feature in the quantum theory. As always, the

permutation specifies the defect, but the soliton and anti-soliton still interact

with the defect differently. It is readily observed that R̂I details a process

where the incident solitons of charges: l1 and l2, can convert to their neigh-

bour; of charge l3. However, R̂IV details a process where the incident soliton

of charge l3 can convert to either of the adjacent solitons. Similarly, for R̂II ,

any incident soliton is able to convert to its neighbour of charge l1. And for

R̂III , the incident soliton of charge l1 is free to convert to either neighbour.

Note that none of the solutions concern the soliton of charge l2 - the classically

forbidden particle. The first generalised solution is represented in figure (4.6),

the remaining three are found in appendix (A).

We will now repeat the process for the diagonal reflection factors containing

a boundary parameter, observing yet more interesting behaviour. Beginning

with Rd1 (4.2) and dressing it with the TI-matrices, we find a solution of the

form:

R̃I(θ) =

r̃11δ
β
α r̃12δ

β−α1
α r̃13δ

β+α0
α

0 r̃22δ
β
α r̃23δ

β−α2
α

0 r̃32δ
β+α2
α r̃33δ

β
α

 , (4.29)

with entries:

r̃11 =
1

Σ1(x−1)

(
(x2υ − υ−1)(t11t22t33 − t13t32t21x

2q−1)
)
,

r̃12 =
1

Σ1(x−1)

(
υt11t13t32x

2/3qα·l2−1(x4 − 1)
)
,

r̃13 =
1

Σ1(x−1)

(
υ−1t11t13t22x

−2/3q−α·l1−1(1− x4)
)
,

r̃22 =
1

Σ1(x−1)

(
x4/3

(
t11t22t33(x2υ − υ−1)− t21t13t32(υ − x2υ−1)q−1

))
,

r̃23 =
1

Σ1(x−1)

(
υ−1t22t21t13q

α·l3−1(1− x4)
)
,

r̃32 =
1

Σ1(x−1)

(
υt11t33t32q

−α·l3−1(x4 − 1)
)
,

r̃33 =
1

Σ1(x−1)

(
x2/3

(
t11t22t33(υ − x2υ−1)− t13t32t21(x2υ − υ−1)q−1

))
,

with Σ1(x−1) := (t11t22t33 − t13t32t21x
−2q−1).
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Secondly, if we dress Rd1 with the TII-matrices we obtain a different solution,

R̃II(θ) =

 r̃11δ
β
α 0 r̃13δ

β+α0
α

r̃21δ
β+α1
α r̃22δ

β
α r̃23δ

β−α2
α

r̃31δ
β−α0
α 0 r̃33δ

β
α

 , (4.30)

the entries are:

r̃11 =
1

Σ2(x−1)

(
(x2υ − υ−1)t22t33 − t12t23t31q(υ − x2υ−1)

)
,

r̃13 =
1

Σ2(x−1)

(
υt12t23x

−2/3q−α·l3+1(1− x4)
)
,

r̃21 =
1

Σ2(x−1)

(
υ−1t22t23t31x

−4/3q−α·l1+1(x4 − 1)
)
,

r̃22 =
1

Σ2(x−1)

(
x4/3(x2υ − υ−1)(t22t33 − t12t23t31x

−2q)
)
,

r̃23 =
1

Σ2(x−1)

(
υt22t23q

α·l2+1(1− x4)
)
,

r̃31 =
1

Σ2(x−1)

(
υ−1t22t33t31x

−2/3qα·l3+1(x4 − 1)
)
,

r̃33 =
1

Σ2(x−1)

(
x2/3

(
t22t33(υ − x2υ−1)− t12t23t31(x2υ − υ−1)q

))
,

with Σ2(x−1) := (t22t33 − t12t23t31x
2q).

Thirdly, by evaluating the multiplication (1.95) with the TIII-matrices we

again discover a new solution with different characteristics:

R̃III(θ) =

 r̃11δ
β
α r̃12δ

β−α1
α r̃13δ

β+α0
α

0 r̃22δ
β
α 0

r̃31δ
β−α0
α r̃32δ

β+α2
α r̃33δ

β
α

 , (4.31)

the entries are:

r̃11 =
1

∆(x−1)

(
(x2υ − υ−1)t22t33q

2 + t13t32t21(υ − x2υ−1)
)
,

r̃12 =
1

∆(x−1)

(
υ−1t13t32x

−4/3q−α·l1(x4 − 1)
)
,

r̃13 =
1

∆(x−1)

(
υ−1t13t22x

−2/3qα·l3+1(1− x4)
)
,

r̃22 =
1

∆(x−1)

(
x4/3(x2υ − υ−1)(t22t33q

2 + t13t32t21x
−2)
)
,
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r̃31 =
1

∆(x−1)

(
υt33t32t21x

−2/3q−α·l3(1− x4)
)
,

r̃32 =
1

∆(x−1)

(
υt33t32q

α·l2+1(x4 − 1)
)
,

r̃33 =
1

∆(x−1)

(
x2/3

(
t22t33q

2(υ − x2υ−1) + t13t32t21(x2υ − υ−1)
))
.

Continuing in this fashion, now using the TIV -matrices we find another new

solution:

R̃IV (θ) =

 r̃11δ
β
α 0 0

r̃21δ
β+α1
α r̃22δ

β
α r̃23δ

β−α2
α

r̃31δ
β−α0
α r̃32δ

β+α2
α r̃33δ

β
α

 , (4.32)

with entries:

r̃11 =
1

∆(x−1)

(
(x2υ − υ−1)(t22t33q

−2 + t12t23t31x
2
)
,

r̃21 =
1

∆(x−1)

(
υt22t23t31x

2/3qα·l2(x4 − 1)
)
,

r̃22 =
1

∆(x−1)

(
x4/3

(
t22t33q

−2(x2υ − υ−1) + t23t31t12(υ − x2υ−1)
))
,

r̃23 =
1

∆(x−1)

(
υt22t23q

−α·l3−1(1− x4)
)
,

r̃31 =
1

∆(x−1)

(
υ−1t22t33t31x

−2/3q−α·l1−1(x4 − 1)
)
,

r̃32 =
1

∆(x−1)

(
υ−1t33t31t12q

α·l3(1− x4)
)
,

r̃33 =
1

∆(x−1)

(
x2/3

(
t22t33q

−2(υ − x2υ−1) + t23t31t12(x2υ − υ−1)
))
.

We will now form another collection of generalised solutions by dressing Rd2

with all T -matrices. The combination of the second diagonal solution and the

TI-matrices returns a solution, R̃V , of the same shape as R̃II , with entries:

r̃11 =
1

Σ1(x−1)

(
t11t22t33(x2υ − υ−1)− t13t32t21q

−1(υ − x2υ−1)
)
,

r̃13 =
1

Σ1(x−1)

(
υ−1t11t13t22x

−2/3q−α·l1−1(1− x4)
)
,

r̃21 =
1

Σ1(x−1)

(
υt22t33t21x

−4/3q−α·l2−1(x4 − 1)
)
,

r̃22 =
1

Σ1(x−1)

(
x−2/3

(
υ − x2υ−1

) (
t11t22t33 − t21t13t32x

2q−1
))
,
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r̃23 =
1

Σ1(x−1)

(
υ−1t22t21t13q

α·l3−1(1− x4)
)
,

r̃31 =
1

Σ1(x−1)

(
υt33t32t21x

−2/3qα·l1−1(x4 − 1)
)
,

r̃33 =
1

Σ1(x−1)

(
x2/3

(
t11t22t33(υ − x2υ−1)− t13t32t21(x2υ − υ−1)q−1

))
.

Another type of solution is uncovered when dressing Rd2 with the TII-matrices,

it has shape:

R̃V I(θ) =

 r̃11δ
β
α r̃12δ

β−α1
α 0

r̃21δ
β+α1
α r̃22δ

β
α 0

r̃31δ
β−α0
α r̃32δ

β+α2
α r̃33δ

β
α

 , (4.33)

and entries:

r̃11 =
1

Σ2(x−1)

((
t22t33(x2υ − υ−1)− t31t12t23q(υ − x2υ−1

))
,

r̃12 =
1

Σ2(x−1)

(
υt33t12x

−4/3qα·l1+1(1− x4)
)
,

r̃21 =
1

Σ2(x−1)

(
υ−1t22t23t31x

−4/3q−α·l1+1(x4 − 1)
)
,

r̃22 =
1

Σ2(x−1)

(
x−2/3

(
t22t33(υ − x2υ−1)− t12t23t31q(x

2υ − υ−1)
))
,

r̃31 =
1

Σ2(x−1)

(
υ−1t22t33t31x

−2/3qα·l3+1(x4 − 1)
)
,

r̃32 =
1

Σ2(x−1)

(
υt33t12t31x

−2q−α·l2+1(1− x4)
)
,

r̃33 =
1

Σ2(x−1)

(
x−4/3(υ − x2υ−1)

(
t22t33x

2 − t12t23t31q
))
.

Yet another new variety of solution, RV II , is discovered by dressing Rd2 with

the TIII-matrices:

R̃V II(θ) =

 r̃11δ
β
α r̃12δ

β−α1
α r̃13δ

β+α0
α

r̃21δ
β+α1
α r̃22δ

β
α r̃23δ

β−α2
α

0 0 r̃33δ
β
α

 , (4.34)

its entries are:

r̃11 =
1

∆(x−1)

(
t22t33q

2(x2υ − υ−1) + t13t32t21(υ − x2υ−1)
)
,
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r̃12 =
1

∆(x−1)

(
υ−1t13t32x

−4/3q−α·l1(x4 − 1)
)
,

r̃13 =
1

∆(x−1)

(
υ−1t13t22x

−2/3qα·l3+1(1− x4)
)
,

r̃21 =
1

∆(x−1)

(
υt22t21t33x

−4/3qα·l1+1(x4 − 1)
)
,

r̃22 =
1

∆(x−1)

(
x−2/3

(
t22t33q

2(υ − x2υ−1) + t21t13t32(x2υ − υ−1)
))
,

r̃23 =
1

∆(x−1)

(
υt22t21t13x

−2q−α·l2(1− x4)
)
,

r̃33 =
1

∆(x−1)

(
x−4/3(υ − x2υ−1)(t22t33x

2q2 + t21t13t32)
)
.

It now remains to dress Rd2 with the TIV -matrices. The resulting solution,

R̃V III has the same shape as R̃III with entries:

r̃11 =
1

∆(x−1)

(
t22t33q

−2(x2υ − υ−1) + t12t23t31(υ − x2υ−1)
)
,

r̃12 =
1

∆(x−1)

(
υt33t12x

−4/3q−α·l2−1(1− x4)
)
,

r̃13 =
1

∆(x−1)

(
υt12t23x

−2/3qα·l1(x4 − 1)
)
,

r̃22 =
1

∆(x−1)

(
x−2/3(υ − x2υ−1)

(
t22t33q

−2 + t12t23t31x
2
))
,

r̃31 =
1

∆(x−1)

(
υ−1t31t22t33x

−2/3q−α·l1−1(x4 − 1)
)
,

r̃32 =
1

∆(x−1)

(
υ−1t33t31t12q

α·l3(1− x4)
)
,

r̃33 =
1

∆(x−1)

(
x2/3

(
t22t33q

−2(υ − x2υ−1) + t12t23t31(x2υ − υ−1)
))
.

We will now document the generalised solutions calculated by dressing the

Lima-Santos diagonal solution, Rd3 . No new varieties of generalised reflection

matrix are found, in fact we find that each structure: R̃I , R̃II , R̃III , R̃IV , R̃V I , R̃V II

appears twice. Dressing Rd3 with the TI-matrices produces a generalised so-

lution, R̃IX , that has the same structure as R̃V I , and entries:

r̃11 =
1

Σ1(x−1)

(
t11t22t33(x−2υ − υ−1)− t13t32t21q

−1(υ − x−2υ−1)
)
,

r̃12 =
1

Σ1(x−1)

(
υt11t13t32x

−10/3qα·l2−1(x4 − 1)
)
,
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r̃21 =
1

Σ1(x−1)

(
υ−1t21t22t33x

−10/3q−α·l2−1(1− x4)
)
,

r̃22 =
1

Σ1(x−1)

(
x−8/3

(
t11t22t33(x2υ − υ−1)− t13t32t21q

−1(υ − x2υ−1)
))
,

r̃31 =
1

Σ1(x−1)

(
υ−1t33t32t21x

−8/3qα·l1−1(1− x4)
)
,

r̃32 =
1

Σ1(x−1)

(
υt11t33t32x

−4q−α·l3−1(x4 − 1)
)
,

r̃33 =
1

Σ1(x−1)

(
x−4/3

(
(x−2υ − υ−1)(t11t22t33 − t13t32t21x

2q−1)
))
.

Applying the TII-matrices to Rd3 gives another solution, R̃X , with structure

R̃I and entries:

r̃11 =
1

Σ2(x−1)

(
(x−2υ − υ−1)(t22t33 − t12t23t31qx

−2)
)
,

r̃12 =
1

Σ2(x−1)

(
υ−1t12t33x

−10/3qα·l1+1(x4 − 1)
)
,

r̃13 =
1

Σ2(x−1)

(
υt12t23x

−14/3q−α·l3+1(1− x4)
)
,

r̃22 =
1

Σ2(x−1)

(
x−8/3

(
t22t33(x2υ − υ−1)− t23t31t12x

2q(x−2υ − υ−1)
))
,

r̃23 =
1

Σ2(x−1)

(
υt22t23x

−4qα·l2+1(1− x4)
)
,

r̃32 =
1

Σ2(x−1)

(
υ−1t33t31t12x

−4q−α·l2+1(x4 − 1)
)
,

r̃33 =
1

Σ2(x−1)

(
x−4/3

(
t22t33(x−2υ − υ−1)− t31t12t23qx

−2(x2υ − υ−1)
))
.

Similarly, dressing Rd3 with the TIII-matrices we find a solution, R̃XI with

the same shape as R̃IV and entries:

r̃11 =
1

∆(x−1)

(
(x−2υ − υ−1)(t22t33q

2 + t13t32t21x
−2
)
,

r̃21 =
1

∆(x−1)

(
υ−1t22t33t21x

−10/3qα·l1+1(1− x4)
)
,

r̃22 =
x−8/3

∆(x−1)

(
t22t33q

2(x2υ − υ−1) + t21t13t32x
2(x−2υ − υ−1)

)
,

r̃23 =
1

∆(x−1)

(
υ−1t22t21t13x

−4q−α·l2(x4 − 1)
)
,

r̃31 =
1

∆(x−1)

(
υt33t32t21x

−14/3q−α·l3(1− x4)
)
,
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r̃32 =
1

∆(x−1)

(
υt33t32x

−4qα·l2+1(x4 − 1)
)
,

r̃33 =
x−4/3

∆(x−1)

(
t22t33q

2(x−2υ − υ−1) + t32t21t13x
−2(x2υ − υ−1)

)
.

The final generalised reflection matrix, R̃XII , is constructed by dressing Rd3

with the TIV -matrices. In this case we find the solution has the same shape

as R̃V II and entries:

r̃11 =
1

∆(x−1)

(
t22t33q

−2(x−2υ − υ−1) + t12t23t31x
−2(x2υ − υ−1)

)
,

r̃12 =
1

∆(x−1)

(
υ−1t12t33x

−10/3q−α·l2−1(x4 − 1)
)
,

r̃13 =
1

∆(x−1)

(
υ−1t12t23x

−8/3qα·l1(1− x4)
)
,

r̃21 =
1

∆(x−1)

(
υt22t23t31x

−10/3qα·l2(x4 − 1)
)
,

r̃22 =
x−8/3

∆(x−1)

(
t22t33q

−2(x2υ − υ−1) + t23t31t12x
2(x−2υ − υ−1)

)
,

r̃23 =
1

∆(x−1)

(
υt22t23x

−4q−α·l3−1(1− x4)
)
,

r̃33 =
x−4/3

∆(x−1)

(
(x−2υ − υ−1)(t22t33q

−2 + t31t12t23x
2)
)
.

Essentially, we have calculated six varieties of solution each containing two

zeroes, which is in contrast to Lima-Santos’ findings: three solutions each

with four zeroes. The difference originates from the fact that our construction

does not impose any conditions upon the entries of the reflection matrix at

any stage. One can easily verify that Lima-Santos’ constraint (4.9) does work

for the same in-going and out-going processes, in the suitable generalisation

of the reflection equation. However, this is because no overall shift in the

charge occurs. Difficulties arise when one tries to express the remaining matrix

elements in terms of a particular generalised reflection matrix entry, due to

the shifts in the arguments of those entries. Factors are not easily extracted

throughout all of the generalised reflection equations, and consequently the

very restricting constraint (4.11) does not apply. However, in the limit x→ 1,

all generalised solutions exhibit the same characteristics as the three finite-

dimensional solutions. This limit reduces all generalised solutions to a multiple

of the identity matrix.
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Figure 4.7: Pictorial representation of generalised solutions R̃I,X .

Let us now scrutinise the generalised solutions and reason why they possess

such a curious structure. Consider the shape of generalised solution R̃I , and

therefore R̃X as well. If we look at the processes involved in their creation -

transmission, reflection and a second transmission - and inspect the pictorial

representation, a pattern seems to emerge. Figure (4.7) depicts the processes

that characterise this type of solution. Solutions of this form are a gener-

alisation of R23, depicted in figure (4.3) and the details are given in section

four, figure (4.7) displays this very well. It appears that the defect adds extra

freedom, allowing a soliton of weight l1 to convert to either adjacent charge,

indicated by the green dotted lines. Furthermore, a transmission matrix with

the opposite permutation has the effect of reversing the direction of the new

channels opened by the defect. For the opposite process see the illustrations of

solutions R̃IV and R̃XI in appendix A - where all other diagrams are present.

In the next section we will investigate the way in which generalised solutions

are related to the existing ones, where we will see the importance of the

clockwise/anti-clockwise permutation and explain the behaviour exhibited by

the new solutions.
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4.3 Relation to existing Solutions

A simple limiting procedure is adopted to give the new solutions the same

structure (number of zeroes) as the three finite-dimensional solutions. We can

then recognise the new solutions as a generalisation of the finite-dimensional

reflection factors. Additional, previously unseen, solutions having the same

structure as the a
(2)
2 reflection matrices [28, 29] are also found when certain

defect parameters, tij, are set to zero. Some of the solutions gained in this

way contain more than four zeroes and this is again because the constraint

(4.9) no longer applies, details are supplied in the next section.

Ultimately, this shows that dressing a diagonal reflection factor with an inte-

grable defect allows us to uncover many more reflection matrices, as well as

revealing their potential power to help us classify the solutions to the reflec-

tion equation (1.8). Let us begin by considering generalised solution, R̃I . To

ensure that it has the same structure as the finite-dimensional solution, R23,

we require entries:

r̃12, r̃13 → 0.

After examining these entries we find that their only common parameter is:

t13 and if this becomes zero entry r̃23 will also vanish. To counteract this limit

we relabel t21 as well. Now, we can relabel the necessary parameters in the

following way:

t13 = p, and t21 =
A

p
,

such that when p → 0 only entries r̃12, r̃13 vanish, for finite A. This limit,

despite its strange appearance, works because the parameters involved also

appear in other matrix entries as a product. Typcially, when parameters

appear as a product, the limit does not harm them as it simply replaces them

with a finite constant; A in the above case. Consequently, we can regard R̃I

as an infinite-dimensional analogue of R23. This procedure can be repeated

for all remaining generalised reflection matrices. The parameters involved in

the limit always appear elsewhere as a product, but providing the constants:

A,B,C and others, remain finite we will obtain the required zeroes.

Solution R̃II is an infinite-dimensional generalisation of R13 after relabelling

the following parameters:
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t23 = r, and t12 =
C

r
, for finite C,

and then take the limit r → 0, to gain the required zeroes. Solution R̃III is

an infinite-dimensional analogue of R13 also, after relabelling parameters:

t32 = r̄, and t21 =
D

r̄
, for finite D,

and taking the limit r̄ → 0. Solution R̃IV is another generalisation of R23,

upon relabelling:

t31 = p̄, and t12 =
F

p̄
, for finite F,

and taking the limit p̄ → 0. Solution R̃V is another infinite-dimensional

analogue of R13, via the procedure:

t21 = s and t32 =
G

s
, for finite G,

and allowing s → 0. Solution R̃V I is an infinite-dimensional version of R12,

realised by relabelling:

t31 = v and t23 =
H

v
, for finite H,

together with the limit v → 0. Solution R̃V II is also another infinite-dimensional

generalisation of R12, via:

t13 = v̄ and t32 =
J

v̄
, for finite J,

together with v̄ → 0. Solution R̃V III is another generalisation of R13, shown

by relabelling:

t12 = s̄ and t23 =
K

s̄
, for finite K,

and allowing s̄→ s. Solution R̃IX is yet another generalisation of R12, realised

by taking:

t32 = v and t13 =
L

v
, for finite L,

along with the limit v → 0. Solution R̃X is another generalisation of R23,

acquired by relabelling:

t12 = x and t31 =
M

x
, for finite M,
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and evaluating the limit x→ 0. Solution R̃XI is another infinite-dimensional

version of R23, obtained by setting:

t21 = x̄ and t13 =
N

x̄
, for finite N,

and taking the limit x̄ → 0. Finally, solution R̃XII is another generalisation

of R12, realised similarly by taking:

t23 = v̄ and t31 =
Q

v̄
, for finite Q,

and the limit v̄ → 0.

Let us now discuss the importance of the permutation and its implications.

For example, consider R̃I and R̃IV , they are calculated from the matrices

TI and TIV , both corresponding to the solitonic/anti-solitonic representations

with the clockwise permutation. Any generalised solution constructed from

these transmission matrices reduces to the same finite-dimensional reflection

matrix. Curiously, note the relation between the parameters involved in the

limits above. They appear to be related by the swapping of indices, remi-

niscent of a conjugation relation. Likewise, any generalised matrix calculated

using TII and TIII will reduce to the same finite-dimensional reflection ma-

trix. In this case, the matrices come from different representations but possess

the anti-clockwise permutation. It seems that the permutation is responsible

for this structure and the reason why we have twelve generalised reflection

factors of six different varieties. We can also group the generalised solutions

according to their structure, for example, R̃II and R̃V both have zeroes in

the same place. The first, R̃II , is constructed from the TII and T̃II matri-

ces and they themselves correspond to the anti-solitonic representation with

anti-clockwise and clockwise permutations respectively. The latter, R̃V , is

built from matrices TI and T̃I , that correspond to the solitonic representa-

tion with clockwise and anti-clockwise permutations respectively. If we label

transmission matrices in ‘conjugate pairs’, whereby a T -matrix constructed

from the solitonic representation with clockwise permutation has a conjugate

constructed from the anti-solitonic representation with anti-clockwise permu-

tation, then one observes that conjugate pairs return a generalised solution of

the same structure, albeit with different entries.
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One caveat concerning the limiting procedures: whatever limit is used must

not reduce the determinant of the transmission matrix to zero. Such a limit

would prevent the inversion of a transmission matrix, thus violating one of

its crucial properties, as well as rendering the construction of generalised re-

flection matrices impossible. Moreover, the determinant is vital to ensure the

correct function of the type - II defect generalisation of Delius and MacKay’s

algebraic framework, similarly any limit taking the determinant to zero de-

stroys the construction.

4.4 Remarks concerning a
(1)
2 and the Type - I Defect

In this chapter we have calculated sixteen generalised reflection matrices (of

ten different varieties) for the a
(1)
2 - affine Toda model by dressing all four

diagonal reflection factors with defect transmission matrices. In doing so, we

have provided further evidence that a defect placed near the boundary does

indeed produce more general solutions to the suitably generalised reflection

equation. Within the a
(1)
2 case, we see that the addition of a defect produces

unexpected results. We believe that they originate from the extra choice

associated with the clockwise/anti-clockwise permutation, which specifies the

defect within the a
(1)
2 framework. Describing the solutions pictorially provided

us with added insight. In particular, we can view the total process in terms

of the weights of the solitonic/anti-solitonic representations and track the

possible exchanges of topological charge. The non-diagonal finite-dimensional

solutions appear to restrict the possible processes at the boundary, in that a

soliton cannot convert to all of its neighbouring charges. When a defect is

introduced, we find a multitude of new solutions and the dressed boundary is

able to deal more effectively with the weights.

Interestingly, it is possible to obtain more solutions by ‘switching off’ different

defect parameters within the type - I generalised solutions. Consequently, one

can obtain matrices that have the same shape as the a
(2)
2 reflection matrices

[28, 29]:

Case I =

r̃11δ
β
α 0 r̃13δ

β+α0
α

0 r̃22δ
β
α 0

0 0 r̃33δ
β
α

 , (4.35)
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Case II =

 r̃11δ
β
α 0 0

0 r̃22δ
β
α 0

r̃31δ
β−α0
α 0 r̃33δ

β
α

 , (4.36)

Case III =

r̃11δ
β
α r̃12δ

β−α1
α r̃13δ

β+α0
α

0 r̃22δ
β
α r̃23δ

β−α2
α

0 0 r̃33δ
β
α

 , (4.37)

Case IV =

 r̃11δ
β
α 0 0

r̃21δ
β+α1
α r̃22δ

β
α 0

r̃31δ
β−α0
α r̃32δ

β+α2
α r̃33δ

β
α

 . (4.38)

The case I solutions are found in: R̂I , when t21 = 0, R̂III when t32 = 0, R̃III ,

when t32 = 0 and R̃V , when t21 = 0 and also in R̃V II , when t33 = 0.

Solutions that have the same structure as case II are found in: R̂II , when

t23 = 0, R̂IV , when t12 = 0, R̃II , when t23 = 0, R̃V , when t22 = 0 and in

R̃V III , when t12 = 0.

The solutions sharing the case III structure are: R̃I , when t33 = 0 and R̃V II ,

when t33 = 0 and also R̃X , when t31 = 0.

Finally, the solutions sharing the case IV structure are: R̃IX , when t13 = 0

and R̃XI , when t13 = 0 and also R̃XII , when t31 = 0.

As always, particular care must be taken to ensure that the ‘switching off’

of defect parameters does not cause the determinant to become zero. The

above behaviour is not surprising given the root spaces of a
(1)
2 and a

(2)
2 , since

the former can be projected onto the latter. Overall, this again shows that

generalised reflection matrices enjoy more freedom and are not as heavily

constrained as the finite-dimensional solutions of Lima-Santos [69].

For this model, the type - I quantum setting has proved to be very fruitful so
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far. Especially, when we compare our findings of this chapter to those of the

a
(2)
2 - model, where the type - II defect naturally includes the finite-dimensional

solutions in a clear cut fashion. We must now go on to consider the type - II

defect, and investigate exactly how it develops the theory further.

4.5 Type - II Generalised solutions within a
(1)
2

We will now develop the a
(1)
2 case even further by using type - II defects to

construct generalised solutions. Previous results indicate that the type - II

defect will return more general solutions. In particular, we expect that the

generalised solutions will not contain any zero entries, which means that the

solitons are able to deposit charge freely. And so, after its interaction with

the defect and boundary, it can possess any weight-like charge of the repre-

sentation. In this section, a different notational convention is used, namely

that of [45]. This allows us to state the type - II defect presented in [45], but

we must alter the diagonal reflection factors (Rd0 , Rd1 , Rd2 , Rd3) accordingly.

Before stating the type - II T ′-matrix, we will detail the alterations introduced

by the change of notation that concerns the way in which the generators and

consequently, the matrices R′ and T ′ act on ‘in’-states [45]. Earlier results,

including the type - I transmission matrices, are based on the S-matrix pro-

vided in section (4.1). In [45] the scattering matrix, R′ labelled (5.5), satisfies

the linear intertwining relation R′∆(a) = ∆′(a)R′ where a is any generator of

the Uq(a
(1)
2 ) algebra and is related to the R-matrix of [48], labelled (3.5), in

the following way:

R′T (q, x) = R(q2, x).

To mirror this relation, q in the S-matrix of section (4.1) is replaced by q2 and

the transpose is taken. Consequently, all four diagonal reflection matrices are

modified:

Rd0(x) =

1 0 0

0 x−4/3 0

0 0 x−8/3

 , (4.39)

Rd1(x) =

(x2υ − υ−1) 0 0

0 x−4/3(x2υ − υ−1) 0

0 0 x−2/3(υ − x2υ−1)

 , (4.40)
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Rd2(x) =

(x2υ − υ−1) 0 0

0 x2/3(υ − x2υ−1) 0

0 0 x−2/3(υ − x2υ−1)

 , (4.41)

Rd3(x) =

(x−2υ − υ−1) 0 0

0 x8/3(x2υ − υ−1) 0

0 0 x4/3(x−2υ − υ−1)

 . (4.42)

We can now move on to detail the theory surrounding the type - II trans-

mission matrices. Throughout this section, we will see the parallels between

the Kronecker-deltas appearing in earlier transmission matrices satisfying the

transmission Yang-Baxter equations and the raising/lowering operators of the

infinite-dimensional Borel subalgebra, where transmission matrices satisfy the

linear intertwining equation:

T ′∆(b) = ∆′(b)T ′,

where b is any generator of the Borel subalgebra. Specifically, there are two

type - II T ′-matrices that are each related to two type - I transmission matrices.

Both are presented in the operator language. Despite the use of raising and

lowering operators, the importance of the permutation is still apparent and

this is used to relate the new solutions to the type - I solutions. As we

know, any T ′-matrix satisfying the linear equation acts as an intertwiner of

the infinite-dimensional representation of space, Vz, and the three-dimensional

representation of space Vx:

T (z/x) : Vz ⊗ Vx → Vz ⊗ Vx.

The representations must satisfy the Uq(a
(1)
2 ) algebra, consisting of nine gen-

erators, {X±i , Ki}, i = 1, 2, 3; with relations [70]:

[Ki, Kj] = 0, [X±i , X
∓
j ] = 0, [X+, X−i ] =

K2
i −K−2

i

q2 − q−2
,

KiK
−1
i = K−1

i Ki = 1, KiX
±
i K

−1
i = q±2X±i , KiX

±
j K

−1
i = q∓1X±j ,

for all i, j = 1, 2, 3. The coproducts ∆,∆′ are defined as follows:

∆(Ki) = Ki ⊗Ki, ∆(X±i ) = X±i ⊗K−1
i +Ki ⊗X±i ,
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∆′(Ki) = ∆(Ki), ∆′(X±i ) = K−1
i ⊗X±i +X±i ⊗Ki,

for all i, j = 1, 2, 3. As we are working within a
(1)
2 , we must again differentiate

the soliton from the anti-soliton. The three-dimensional soliton (first funda-

mental) representation was used to calculate the first type - II T ′-matrix (5.10

in [45]):

K1 =

q 0 0

0 q−1 0

0 0 1

 , K2 =

1 0 0

0 q 0

0 0 q−1

 , K3 =

q
−1 0 0

0 1 0

0 0 q

 ,

X+
1 = (X−1 )

T
=

0 1 0

0 0 0

0 0 0

 , X+
2 = (X−2 )

T
=

0 0 0

0 0 1

0 0 0

 ,

X+
3 = (X−3 )

T
=

0 0 0

0 0 0

1 0 0

 .

(4.43)

The representation is studied in the spin gradation, consequently certain gen-

erators are modified,

Ei = x2/3X+
i , Fi = x−2/3X−i , i = 1, 2, 3.

Within the three-dimensional space the weight vectors are:

λ1 =

1

0

0

 , λ2 =

0

1

0

 , λ3 =

0

0

1

 ,

and with respect to the above representation λ1 is the highest weight vector.

Like before, these vectors match the topological charges defined previously:

l1 =
1

3
(2α1 + α2), l2 = −1

3
(α1 − α2), l3 = −1

3
(α1 + 2α2),

expressed in terms of the simple roots of the a
(1)
2 algebra. Corrigan and Zam-

bon use the following infinite-dimensional representation of the Borel subal-

gebra, which is most suitable for calculating the first type - II defect matrix

[45]:

Ki = κiq
Ni−Ni+1 , X+

i = a†iai+1, i = 1, 2, 3. (4.44)
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The spin gradation affects the infinite-dimensional generators, X+
i , in the

following way:

E+
i = z2/3X+

i , i = 1, 2, 3.

The operators ai, a
†
i are three independent sets of lowering and raising op-

erators. All operators act in a direction given by one of the unit vectors

{e1, e2, e3}, therefore the way in which the operators model the exchange of

charge and the soliton’s movement within the weight lattice is evident. Of

course, the choice of representation is not unique and others satisfying the al-

gebraic relations could be used. Let us now detail the action of the operators

on the infinite-dimensional space:

ai |ji〉 = gi(ji) |ji − 1〉 , a†i |ji〉 = fi(ji) |ji + 1〉 , Ni |ji〉 = ji |ji〉 ,

with

aia
†
i = Fi(ji) |ji〉 = fi(ji)gi(ji + 1) |ji〉 ,

a†iai = Fi(ji − 1) |ji〉 = fi(ji − 1)gi(ji) |ji〉 , i = 1, 2, 3.

where the number functions are required to take the form:

Fi(Ni) = (f+
i )2q2Ni − (f−i )2q−2Ni .

This is realised by choosing the auxiliary functions:

fi(Ni) = (f+
i q

Ni + f−i q
−Ni), gi(Ni) = (f+

i q
Ni−1 − f−i q−Ni+1), i = 1, 2, 3.

In fact, the type - II nature of the transmission matrix is signalled by the

presence of both f+
i and f−i . This is exemplified when considering limits from

the type - II to type - I matrices. Using the above representations, Corrigan

and Zambon calculated a type - II T ′-matrix [45]:

T ′ =

A(N1, N2, N3) kq−N3a1a
†
2 vqN2a1a

†
3

jqN3a2a
†
1 B(N1, N2, N3) mq−N1a2a

†
3

wq−N2a3a
†
1 lqN1a3a

†
2 C(N1, N2, N3)

 , (4.45)

with diagonal entries

A(N1, N2, N3) = a′q−N1+N2+N3+1 + a′′qN1−N2−N3−1,
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B(N1, N2, N3) = b′qN1−N2+N3+1 + b′′q−N1+N2−N3−1,

C(N1, N2, N3) = c′qN1+N2−N3+1 + c′′q−N1−N2+N3−1,

and coefficients

a′ =
(x
z

)4/3 κ3

(1− q4)2
, a′′ =

(z
x

)2/3

κ3(1− q4)(f+
1 f
−
2 f
−
3 )2,

b′ =
(x
z

)4/3 κ1

κ2(1− q4)2
, b′′ =

(z
x

)2/3κ1

κ2

(1− q4)(f−1 f
+
2 f
−
3 )2,

c′ =
(x
z

)4/3 1

κ3(1− q4)2
, c′′ =

(z
x

)2/3 (1− q4)

κ3

(f−1 f
−
2 f

+
3 )2,

w = −(f−2 )2, k = −(f−3 )2

κ2

, m = −κ1(f−1 )2,

v =
(x
z

)2/3 1

(1− q4)
, j =

(x
z

)2/3 1

κ2(1− q4)
, l =

(x
z

)2/3 κ1

(1− q4)
.

The constants, κi, satisfy the condition (κ1κ2κ3)2 = 1 and in order to obtain

the above solution it is assumed that κ1κ2κ3 = 1.

The second type - II T ′-matrix is built from the following finite and infinite-

dimensional representations of the Uq(a
(1)
2 ) algebra and Borel subalgebra, re-

spectively:

K1 =

q
−1 0 0

0 q 0

0 0 1

 , K2 =

1 0 0

0 q−1 0

0 0 q

 , K3 =

q 0 0

0 1 0

0 0 q−1

 ,

X+
1 = (X−1 )

T
=

0 0 0

1 0 0

0 0 0

 , X+
2 = (X−2 )

T
=

0 0 0

0 0 0

0 1 0

 ,

X+
3 = (X−3 )

T
=

0 0 1

0 0 0

0 0 0



(4.46)

and

Ki = κiq
−Ni+Ni+1 , X+

i = aia
†
i+1, i = 1, 2, 3. (4.47)

However, in this case, the spectral parameters are added to the two represen-

tations in the following way:

Ei = x−2/3X+
i , Fi = x2/3X−i , i = 1, 2, 3.
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The second type - II transmission matrix is obtained by combining the above

representations with the action of the operators defined previously, it has the

form:

T ′ =

U(N1, N2, N3) rqN3a1a
†
2 gq−N2a1a

†
3

pq−N3a2a
†
1 V (N1, N2, N3) tqN1a2a

†
3

hqN2a3a
†
1 sq−N1a3a

†
2 W (N1, N2, N3)

 , (4.48)

with diagonal entries:

U(N1, N2, N3) = u′q−N1+N2+N3+1 + u′′qN1−N2−N3−1,

V (N1, N2, N3) = v′qN1−N2+N3+1 + v′′q−N1+N2−N3−1,

W (N1, N2, N3) = w′qN1+N2−N3+1 + w′′q−N1−N2+N3−1,

and coefficients

u′ =
(z
x

)4/3 1

κ3(1− q4)2
, u′′ =

(x
z

)2/3 (1− q4)

κ3

(f+
1 f
−
2 f
−
3 )2,

v′ =
(z
x

)4/3 κ2

κ1(1− q4)2
, v′′ =

(x
z

)2/3κ2

κ1

(1− q4)(f−1 f
+
2 f
−
3 )2,

w′ =
(z
x

)4/3 κ3

(1− q4)2
, w′′ =

(x
z

)2/3

κ3(1− q4)(f−1 f
−
2 f

+
3 )2,

p = −(f−3 )2κ2, s = −(f−1 )2

κ1

, g = −(f−2 )2,

h =
(z
x

)2/3 1

(1− q4)
, r =

(z
x

)2/3 κ2

(1− q4)
, t =

(z
x

)2/3 1

κ1(1− q4)
.

The constants, κi, remain constrained by (κ1κ2κ3)2 = 1, and to ensure that

the above solution satisfies the linear intertwining equation it is again assumed

that κ1κ2κ3 = 1.

We readily observe that the type - II transmission matrices also contain nine

parameters: κi, f
+
i , f

−
i , i = 1, 2, 3. However, the nine parameters, tij, appear-

ing in the type - I T -matrix and the above type - II parameters do not share

the same origin. The tij are a result of the transmission Yang-Baxter equa-

tion, where each matrix entry is assigned its own parameter and by solving the

equations certain relations emerge. The type - II parameters are due to the

infinite-dimensional representation that is used to construct the T ′-matrix, to-

gether with the associated action of the operators. Consequently, the limiting
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process from type - II to type - I is somewhat intricate, and we will now move

on to consider these limits before constructing type - II generalised reflection

matrices.

4.5.1 Limits: From Type - II to Type - I

We will now delve into the details concerning the limits of type - II T ′-matrices

to type - I T -matrices. Following this, we will use some of their features to

recover the structures of the earlier generalised solutions. In this section, we

will also expand upon previous comments regarding the differences between

type - II and type - I defect parameters.

An important aspect of these limits is the matching of raising/lowering op-

erators to the Kronecker-deltas. We must bear in mind the essence of the

operators, fundamentally they describe movement around the weight lattice

(describing exchanges of charge) as each operator is associated with one of

the orthonormal basis vectors, ei. However, the states that the operators act

on are restricted because any topological charge deposited on the defect must

belong to the weight lattice [45]. If we express any weight, j, in terms of the

orthonormal basis:

j = j1e1 + j2e2 + j3e3,

then the following must hold:

j1 + j2 + j3 = 0.

In light of this, during any limit from type - II to type - I, we will equate

Ni with ji and evaluate the above constraint. In the type - I case, li, are

the fundamental weights and α, γ label the weights that obey the constraint

γ · li = γi, where γ1 + γ2 + γ3 = 0. Before we investigate the limits, it is

necessary to make one final remark. As explained earlier, in section (4.5), the

notation adopted in the type - II case corresponds to a different action of the

T ′-matrix on the in-states. We have also observed earlier how the transmission

Yang-Baxter equation and its analogue in the linear intertwining framework

act on slightly different spaces. Consequently, we expect the following relation

to hold between the type - II, T ′, and type - I, T :

T ′T (q, x) = T (q−2, x).
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Curiously, the transposition of the T ′-matrix causes unusual behaviour. It

is evident when considering the limits of the type - II generalised solutions,

which we will detail in due course, but firstly let us specify the workings of

the limits.

The first T ′-matrix (4.45) is related to both TII and TIV type - I matrices. As

noted earlier, the appearance of both parameters f+
i and f−i indicates that

the T ′-matrix is type - II. Therefore, to return to the type - I matrices we

must ‘switch off’ either f+
i or f−i (for all i = 1, 2, 3). Switching off either set

of parameters will return different structures, for instance, when f−i = 0 we

obtain three zeroes. Subsequently, one expects that this limit concerns the

TIV type - I matrix. Likewise, if f+
i = 0, no zeroes appear and so we expect

this limit to return the matrix TII .

To obtain the type - I matrix, TII , from (4.45) begin by setting: f+
i = 0,

κi = 1, Ni = ji and evaluate j1 + j2 + j3 = 0. Following this, extract a factor

q(1− q4)−2(x/z)4/3 =: A and take the transpose to find:

T ′→II = A

 q−2j1δkj ωqj3−1δk−α1
j −Ω2q

−j2−1δk+α0
j

−Ω3q
−j3−1δk+α1

j q−2j2δkj ωqj1−1δk−α1
j

ωqj2−1δk−α0
j −Ω1q

−j1−1δk+α2
j q−2j3δkj

 , (4.49)

with coefficients:

ω =
(z
x

)2/3

(1− q4), Ωi =
(z
x

)4/3

(f−i )2(1− q4)2, for all i = 1, 2, 3.

Next, apply the following similarity transformation:

U = diag(q−j1 , qj2 , q−2j1−j3),

and set (f−i )2 = −q2ji−1 - to ensure the powers of q match those of the type

- I matrix. Finally, make the identification ε = z2/3(1− q4)q−1 and send q to

q−1/2 to find the matrix:

T̂II = A

 qj1δkj εx−2/3q−j3δk−α1
j ε2x−4/3δk+α0

j

ε2x−4/3δk+α1
j qj2 εx−2/3q−j1δk−α2

j

εx−2/3q−j2δk−α0
j ε2x−4/3δk+α2

j qj3δkj

 .

The above matrix coincides with TII when the following equalities are made:
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αi ≡ ji, tii = 1 and t12 = t23 = t31 = ε.

To obtain TIV a similar procedure is adopted, this time set f−i = 0, while f+
i

is non-zero for all i = 1, 2, 3. As before, equate κi = 1, Ni = ji and evaluate

j1 +j2 +j3 = 0, extract the factor A and take the transpose so that the matrix

becomes:

T ′→IV = A

 q−2j1δkj ωqj3−1δk−α1
j 0

0 q−2j2δkj ωqj1−1δk−α1
j

ωqj2−1δk−α0
j 0 q−2j3δkj

 ,

with ω as defined previously. Then, apply a slightly different similarity trans-

formation:

U = diag(qj1 , q−j2 , q2j1+j3),

to remove all powers of q in the off-diagonal entries and identify ε in the same

way. Finally, send q to q−1/2 to acquire the matrix:

T̂IV = A

 qj1δkj εx−2/3δk−α1
j 0

0 qj2δkj εx−2/3δk−α1
j

εx−2/3δk−α0
j 0 qj3δkj

 ,

which coincides with TIV after setting αi ≡ ji, tii = 1 and t12 = t23 = t31 = ε.

To obtain the remaining type - I T -matrices, we follow very similar procedures.

We can manipulate matrix (4.48) so that it resembles both TI and TIII type

- I matrices. We will begin with the TI limit of (4.48), where we make the

following equalities for all i = 1, 2, 3: f+
i = 0, κi = 1, Ni = −ji and evaluate

j1 + j2 + j3 = 0. Now, extract a factor q(1− q4)−2(z/x)4/3 =: B and take the

transpose to find:

T ′→I = B

 q2j1δkj −Ω′3q
j3−1δk−α1

j ω′q−j2−1δk+α0
j

ω′q−j3−1δk+α1
j q2j2δkj Ω′1q

j1−1δk−α1
j

Ω′2q
j2−1δk−α0

j ω′q−j1−1δk+α2
j q−2j3δkj

 , (4.50)

this time with slightly modified coefficients:

ω′ =
(x
z

)2/3

(1− q4), Ω′i =
(x
z

)4/3

(f−i )2(1− q4)2, for all i = 1, 2, 3.
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Again, we require a similarity transformation to adjust the powers of q ac-

cordingly. In this case, we use the transformation:

U = diag(qj1 , qj1−j3 , q−j3),

and then set (f−i )2 = −q−2ji−1, identify ε = z−2/3(1− q4)q−1 and finally send

q to q−1/2 to achieve:

T̂I = B

 q−j1δkj ε2x4/3δk−α1
j εx2/3qj2δk+α0

j

εx2/3qj3δk+α1
j q−j2 ε2x4/3q−j1δk−α2

j

ε2x4/3q−j2δk−α0
j εx2/3qj1δk+α2

j q−j3δkj

 .

The above matrix coincides with TI when the following equalities are made

αi ≡ ji, tii = 1 and t13 = t21 = t32 = ε.

The final limit will reproduce the type - I matrix, TIII and we start this time by

setting: f−i = 0, κi = 1, Ni = −ji and evaluate the constraint j1 + j2 + j3 = 0.

As before, extract the factor B and take the transpose to discover:

T ′→III = B

 q2j1δkj 0 ω′q−j2−1δk+α0
j

ω′q−j3−1δk+α1
j q2j2δkj 0

0 ω′q−j1−1δk+α2
j q−2j3δkj

 . (4.51)

To ensure that the powers of q match the type - I case, we use the similarity

transformation:

U = diag(q−j1 , q−j1+j3 , q+j3).

Then, as usual, identify ε = z−2/3(1− q4)q−1 and lastly send q to q−1/2 so that

the matrix becomes:

T̂III = B

 q−j1δkj 0 εx2/3δk+α0
j

εx2/3δk+α1
j q−j2 0

0 εx2/3δk+α2
j q−j3δkj

 .

This matrix does indeed concur with TIII when αi ≡ ji, tii = 1 and

t13 = t21 = t32 = ε.

We can extract more information about the type - I matrices from these

limits. In particular, the parameter f+
i appears to be associated most closely

to the type - I case. We know that the presence of both f±i signals that a
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transmission matrix is of type - II, and we have seen how they collapse in

different ways. However, for the type - I case, one would expect that either

f+
i or f−i is present and the limits illustrate this fact because whenever f−i is

non-zero a further condition is required to guarantee that the type - II matrix

collapses as it should. Furthermore, the limits also highlight how difficult it

is to recover type - I parameters, tij, within type - II parameters. A suitably

elaborate similarity transformation might allow us to recover all parameters,

but the limits noted here provide sufficient justification. In the next section,

generalised reflection matrices are constructed using the intricate type - II

matrices. Later, we will use certain aspects of the limits that will reveal the

importance of transposition in the limiting process.

4.5.2 Construction of Type - II Generalised Solutions

As we are aware, generalised reflection matrices require the inversion of the

transmission matrix and because the type - II matrices are expressed in terms

of raising and lowering operators we must calculate new general formulae for

the inverse matrix. It is indeed possible to invert the type - II matrix, but

there is one very striking feature: a determinant is associated to each set of

(independent) operators ai, a
†
i , which is dependent on Ni. This is in contrast

to earlier examples, where the determinant does not contain any dependence

on the topological charge. Ultimately, we will see that this is not a problem

as they are all related via shifts in the Ni.

The inverse of a transmission matrix possessing the same structure as (4.45)

and (4.48), takes the form:

T ′
−1

=


T−1

11 (N1,N2,N3)

∆1(N1,N2,N3)

T−1
12 (N1,N2,N3)

∆2(N1+1,N2−1,N3)
a1a

†
2

T−1
13 (N1,N2,N3)

∆3(N1+1,N2,N3−1)
a1a

†
3

T−1
21 (N1,N2,N3)

∆1(N1−1,N2+1,N3−1)
a2a

†
1

T−1
22 (N1,N2,N3)

∆2(N1,N2,N3)

T−1
23 (N1,N2,N3)

∆3(N1,N2+1,N3−1)
a2a

†
3

T−1
31 (N1,N2,N3)

∆1(N1−1,N2,N3+1)
a3a

†
1

T−1
32 (N1,N2,N3)

∆2(N1,N2−1,N3+1)
a3a

†
2

T−1
33 (N1,N2,N3)

∆3(N1,N2,N3)

 ,

with coefficients:

T−1
11 (N1, N2, N3) =

[
T22(N1 + 1, N2 − 1, N3)T33(N1 + 1, N2, N3 − 1)

− T23(N1 + 1, N2 − 1, N3)T32(N1 + 1, N2, N3 − 1)F2(N2 − 1)F3(N3 − 1)
]
,
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T−1
12 (N1, N2, N3) =

[
T13(N1, N2, N3)T32(N1 + 1, N2, N3 − 1)F3(N3 − 1)

− T12(N1, N2, N3)T33(N1 + 1, N2, N3 − 1)
]
,

T−1
13 (N1, N2, N3) =

[
T12(N1, N2, N3)T23(N1 + 1, N2 − 1, N3)F2(N2 − 1)

− T13(N1, N2, N3)T22(N1 + 1, N2 − 1, N3)
]
,

T−1
21 (N1, N2, N3) =

[
T23(N1, N2, N3)T31(N1, N2 + 1, N3 − 1)F3(N3 − 1)

− T21(N1, N2, N3)T33(N1, N2 + 1, N3 − 1)
]
,

T−1
22 (N1, N2, N3) =

[
T11(N1 − 1, N2 + 1, N3)T33(N1, N2 + 1, N3 − 1)

− T13(N1 − 1, N2 + 1, N3)T31(N1, N2 + 1, N3 − 1)F1(N1 − 1)F3(N3 − 1)
]
,

T−1
23 (N1, N2, N3) =

[
T13(N1 − 1, N2 + 1, N3)T21(N1, N2, N3)F1(N1 − 1)

− T11(N1 − 1, N2 + 1, N3)T23(N1, N2, N3)
]
,

T−1
31 (N1, N2, N3) =

[
T21(N1, N2 − 1, N3 + 1)T32(N1, N2, N3)F2(N2 − 1)

− T22(N1, N2 − 1, N3 + 1)T31(N1, N2, N3)
]
,

T−1
32 (N1, N2, N3) =

[
T12(N1 − 1, N2, N3 + 1)T31(N1, N2, N3)F1(N1 − 1)

− T11(N1 − 1, N2, N3 + 1)T32(N1, N2, N3)
]
,

T−1
33 (N1, N2, N3) =

[
T11(N1 − 1, N2, N3 + 1)T22(N1, N2 − 1, N3 + 1)

− T12(N1 − 1, N2, N3 + 1)T21(N1, N2 − 1, N3 + 1)F1(N1 − 1)F2(N2 − 1)
]
.

(4.52)

The above formulae, despite their complex appearance, are an infinite gener-

alisation of Cramer’s rule that account for the presence of the operators. The

defining relations for all determinants: ∆1,∆2,∆3 are found in Appendix (B).

We will now state the inverse matrix entries for (4.45), whereupon inversion

of the rapidity we will have all components necessary to construct the first

four generalised solutions. The inverse of matrix (4.1) has diagonal entries:
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T ′
−1
11 =

(x
z

)2/3 κ2
1(f−1 )2

(1− q4)
F2(N2 − 1)F3(N3 − 1) +

[(x
z

)4/3 κ1q
N1−N2+N3+3

κ2(1− q4)2

+
(z
x

)2/3 κ1(f−1 f
+
2 f
−
3 )2

κ2

(1− q4)q−N1+N2−N3−3

]
·
[(x

z

)4/3 qN1+N2−N3+3

κ3(1− q4)2

+
(z
x

)2/3 (f−1 f
−
2 f

+
3 )2

κ3

(1− q4)q−N1−N2+N3−3

]
,

T ′
−1
22 =

(x
z

)2/3 κ2
3(f−2 )2

(1− q4)
F1(N1 − 1)F3(N3 − 1) +

[(x
z

)4/3 κ3q
−N1+N2+N3+3

(1− q4)2

+
(z
x

)2/3

(f+
1 f
−
2 f
−
3 )2κ3(1− q4)qN1−N2−N3−3

]
·
[(x

z

)4/3 qN1+N2−N3+3

κ3(1− q4)2

+
(z
x

)2/3 (f−1 f
−
2 f

+
3 )2

κ3

(1− q4)q−N1−N2+N3−3

]
,

T ′
−1
33 =

(x
z

)2/3 (f−3 )2

κ2
2(1− q4)

F1(N1 − 1)F2(N2 − 1) +

[(x
z

)4/3 κ3q
−N1+N2+N3+3

(1− q4)2

+
(z
x

)2/3

κ3(f+
1 f
−
2 f
−
3 )2(1− q4)qN1−N2−N3−3

]
·
[(x

z

)4/3 κ1q
N1−N2+N3+3

κ2(1− q4)2

+
(z
x

)2/3 κ1

κ2

(f−1 f
+
2 f
−
3 )2(1− q4)q−N1+N2−N3−3

]
.

Unfortunately, the above expressions do not factorise neatly, however the off-

diagonal entries are less cumbersome:

T ′
−1
12 = κ1

(x
z

)4/3 qN1+N2−1

(1− q4)2

(
κ3(f+

3 )2q2N3 − (f−3 )2(κ3 − 1)q−2N3+4
)

+ κ1

(z
x

)2/3

(f−1 f
−
2 f
−
3 )2(f+

3 )2(1− q4)q−N1−N2−3,

T ′
−1
13 = −κ1κ3

κ2

(x
z

)2 qN1+N3+3

(1− q4)3
− κ1

κ2

(f−1 f
−
2 f
−
3 )2q−N1−2N2−N3+1

+
κ1

κ2

(1− κ3)(f−1 f
+
2 f
−
3 )2q−N1+2N2−N3−3,

T ′
−1
21 = κ1(f−1 f

−
2 )2q−N1−N2−3

(
(κ3 − 1)(f+

3 )2q2N3 − κ3(f−3 )2q2N3+4
)

− κ1

(x
z

)2 qN1+N2+3

(1− q4)3
,
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T ′
−1
23 =

(x
z

)4/3 qN2+N3−1

κ2(1− q4)2

(
κ3(f+

1 )2qN1 + (f−1 )2q−2N1+4(1− κ3)
)

+
(z
x

)2/3 (f−1 f
−
2 f
−
3 )2

κ2

(f+
1 )2(1− q4)q−N2−N3−3,

T ′
−1
31 =

κ1

κ2

(x
z

)4/3 qN1+N3−1

(1− q4)2

(
(f+

2 )2q2N2 + (f−2 )2q−2N2+4(κ3 − 1)
)

+
κ1κ3

κ2

(z
x

)2/3

(f−1 f
−
2 f
−
3 )2(f+

2 )2(1− q4)q−N1−N3−3,

T ′
−1
32 =

κ3

κ2

(f−2 f
−
3 )2q−N2−N3−3

(
(f+

1 )2q2N1 − (f−1 )2q−2N1+4
)

−
(x
z

)2 qN2+N3+3

κ2(1− q4)3
− (f+

1 f
−
2 f
−
3 )2

κ2

q2N1−N2−N3−3.

When a type - I limit is applied the way in which the inverse matrix collapses

is very clear. In particular, we see that when f−i = 0 and κ1κ2κ3 = 1 for

all i=1,2,3, no zeroes appear, which is what we expect upon comparison with

T̃IV . If f+
i = 0 and κ1κ2κ3 = 1, for all i=1,2,3, it is clear that entries: 1,2;

2,3; 3,1 become zero and once the transpose is taken we see that the modified

matrix has the same structure as T̃II .

The inverse of type - II matrix (4.48) is like the above and its entries are:

T ′
−1
11 =

(z
x

)2/3 (f−1 )2

κ2
1(1− q4)

F2(N2 − 1)F3(N3 − 1) +

[(z
x

)4/3 κ2q
N1−N2+N3+3

κ1(1− q4)2

+
(x
z

)2/3 κ2(f−1 f
+
2 f
−
3 )2

κ1

(1− q4)q−N1+N2−N3−3

]
·
[(z

x

)4/3 κ3q
N1+N2−N3+3

(1− q4)2

+
(x
z

)2/3

κ3(f−1 f
−
2 f

+
3 )2(1− q4)q−N1−N2+N3−3

]
,

T ′
−1
22 =

(z
x

)2/3 (f−2 )2

(1− q4)
F1(N1 − 1)F3(N3 − 1) +

[(z
x

)4/3 q−N1+N2+N3+3

κ3(1− q4)2

+
(x
z

)2/3 (f+
1 f
−
2 f
−
3 )2

κ3

(1− q4)qN1−N2−N3−3

]
·
[(z

x

)4/3 κ3q
N1+N2−N3+3

(1− q4)2

+
(x
z

)2/3

κ3(f−1 f
−
2 f

+
3 )2(1− q4)q−N1−N2+N3−3

]
,
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T ′
−1
33 =

(z
x

)2/3 κ2
2(f−3 )2

(1− q4)
F1(N1 − 1)F2(N2 − 1) +

[(z
x

)4/3 q−N1+N2+N3+3

κ3(1− q4)2

+
(x
z

)2/3 (f+
1 f
−
2 f
−
3 )2

κ3

(1− q4)qN1−N2−N3−3

]
·
[(z

x

)4/3 κ2q
N1−N2+N3+3

κ1(1− q4)2

+
(x
z

)2/3 κ2(f−1 f
+
2 f
−
3 )2

κ1

(1− q4)q−N1+N2−N3−3

]
.

The above expressions denoting the diagonal entries do not factorise nicely,

however the off-diagonal entries are more manageable:

T ′
−1
12 = −

(z
x

)2 qN1+N2+3

κ1(1− q4)3
− (f−1 f

−
2 f
−
3 )2

κ1

q−N1−N2−2N3+1,

T ′
−1
13 =

(z
x

)4/3 κ2(f+
2 )2

κ1(1− q4)2
qN1+2N2+N3−1

−
(x
z

)2/3 κ2

κ1

(f−1 f
−
2 f
−
3 )2(f+

2 )2(1− q4)q−N1−N3−3,

T ′
−1
21 =

(z
x

)4/3 (f+
3 )2

κ1(1− q4)2
qN1+N2+2N3−1

+
(x
z

)2/3 (f−1 f
−
2 f
−
3 )2

κ1

(f+
3 )2(1− q4)q−N1−N2−3,

T ′
−1
23 = −κ2

(z
x

)2 qN2+N3+3

(1− q4)3
− κ2(f−1 f

−
2 f
−
3 )2q−2N1−N2−N3+1,

T ′
−1
31 = −

(z
x

)2 κ2q
N1+N3+3

κ1(1− q4)3
− κ2(f−1 f

−
2 f
−
3 )2

κ1

q−N1−2N2−N3+1,

T ′
−1
32 = κ2

(z
x

)4/3 (f+
1 )2

(1− q4)2
q2N1+N2+N3−1

+ κ2

(x
z

)2/3

(f−1 f
−
2 f
−
3 )2(f+

1 )2(1− q4)q−N2−N2−3.

In this case, different entries become zero in the various limits, but they display

the desired characteristics. The non-diagonal entries have been simplified by

using the constraint κ1κ2κ3 = 1. Again, there are no zero entries when the

limit requires f−i = 0, and this matches the structure of T̃III . In contrast, if

the limit requires f−i = 0 then three zeroes emerge in entries: 1,3; 2,1; 3,2 and

by taking the transpose we find that the inverse matrix has the same shape

as T̃I .

Now, equipped with the inverse matrices we can invert their rapidities (to form
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T̃ ′) and evaluate the product to obtain type - II generalised solutions. As a

result of the involved nature of the transmission matrices it is more instructive

to document the symbolic multiplication, where the action of the operators is

most vivid, instead of listing all eight generalised solutions. In an attempt to

maintain perspicuity, any label Tij or T̃ij now represents Tij/T̃ij(N1, N2, N3)

and only shifted variables are presented in the formulae. The generalised

solutions’ entries are obtained by substituting the relevant components into

the following formulae:

R̃11 = T11Rdi11
T̃11 + T12Rdi22

T̃21(N1 + 1, N2 − 1)F1(N1)F2(N2 − 1)

+ T13Rdi33
T̃31(N1 + 1, N3 − 1)F1(N1)F3(N3 − 1),

R̃12 = T11Rdi11
T̃12 + T12Rdi22

T̃22(N1 + 1, N2 − 1)

+ T13Rdi33
T̃31(N1 + 1, N3 − 1)F3(N3 − 1),

R̃13 = T11Rdi11
T̃13 + T12Rdi22

T̃23(N1 + 1, N2 − 1)F2(N2 − 1)

+ T13Rdi33
T̃33(N1 + 1, N3 − 1),

R̃21 = T21Rdi11
T̃11(N1 − 1, N2 + 1) + T22Rdi22

T̃21

+ T23Rdi33
T̃31(N2 + 1, N3 − 1)F3(N3 − 1),

R̃22 = T21Rdi11
T̃12(N1 − 1, N2 + 1)F2(N2)F1(N1 − 1) + T22Rdi22

T̃22

+ T23Rdi33
T̃32(N2 + 1, N3 − 1)F2(N2)F3(N3 − 1),

R̃23 = T21Rdi11
T̃13(N1 − 1, N2 + 1)F1(N1 − 1) + T22Rdi22

T̃23

+ T23Rdi33
T̃33(N2 + 1, N3 − 1),

R̃31 = T31Rdi11
T̃11(N1 − 1, N3 + 1) + T32Rdi22

T̃21(N2 − 1, N3 + 1)F2(N2 − 1)

+ T33Rdi33
T̃31,

R̃32 = T31Rdi11
T̃12(N1 − 1, N3 + 1)F1(N1 − 1) + T32Rdi22

T̃22(N2 − 1, N3 + 1)

+ T33Rdi33
T̃32,

R̃33 = T31Rdi11
T̃13(N1 − 1, N3 + 1)F1(N1 − 1)F3(N3)

+ T32Rdi22
T̃23(N2 − 1, N3 + 1)F2(N2 − 1)F3(N3) + T33Rdi33

T̃33,

where Rdijj
denotes each entry of the diagonal reflection matrices. At this

point, we must remember to include the determinants that appear throughout

the inverse matrix. For our purposes, we will consider the first row of the

generalised reflection matrix where each entry depends upon (reading from
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entry 1,1 to 1,3):

∆−1
1 (N1, N2, N3), ∆−1

2 (N1 + 1, N2 − 1, N3), ∆−1
3 (N1 + 1, N2, N3 − 1).

The second row depends upon the same determinants with the shifts:

N1 → N1 − 1, N2 → N2 + 1 and the third row is shifted in the following way:

N1 → N1− 1, N3 → N3 + 1. Initially, this seems somewhat unusual but when

Maple is used to calculate the shifted determinants we find several equalities:

∆1(N1, N2, N3) = ∆2(N1 + 1, N2 − 1, N3) = ∆3(N1 + 1, N2 − 1, N3).

And so, one quickly observes that each row contains the same overall factor,

therefore it can be extracted via row operations. Furthermore, whenever a

limit from type - II to type - I is applied, the determinants, ∆i, collapse to

achieve equality. And so, we can progress to consider all type - II generalised

solutions, knowing that the determinants do not damage or further complicate

the workings.

Unsurprisingly, all eight type - II generalised solutions do not contain any zero

entries. Subsequently, this suggests that the type - II defect provides ultimate

freedom within the system: by which we mean that any root like charge

can be deposited at the defect, therefore generalising the type - I framework.

However, we have not yet provided any details to explain how the type - II

defect selects either the clockwise or anti-clockwise permutation of extended

simple roots. Presently, the type - I limits of type - II defect matrices are

known and through them we know that each matrix (4.48) and (4.45) is related

to the solitonic/anti-solitonic representation respectively. As a consequence of

the limits, one reasonably expects that type - II solutions should break down

to reproduce the structure of a type - I solution. Undeniably, this does take

place, but the emerging pattern leads us to connect the transposition of the

solution with the permutation. Let us consider any generalised constructed

from matrix (4.45) and apply the limit where f−i = 0. Due to the nature of this

limit, matrix (4.45) will share the same structure as TIV , we predict that zeroes

will appear to give the solutions the same shape as: R̂IV , R̃IV , R̃V III , R̃XII .

Actually, when f−i = 0 and the transpose is taken, we find the structures of

solutions: R̂II , R̃II , R̃V I , R̃X . Upon reflection, this discovery is not so shocking
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because we have taken the transpose of a product, specifically:(
T ′→IVRdiT̃

′
→IV

)T
=
(
T̃ ′→IV

)T
Rdi

(
T ′→IV

)T
.

If we now recognise the transposed matrices’ structure, we actually have an

object most like: (
T̃ ′→IV

)T
Rdi

(
T ′→IV

)T ≈ T̂IIRdi
ˆ̃TII ,

thus explaining why the other type - I structures appear. We can apply this

argument to all limited type - II generalised solutions, to explain why they

appear as they do. Therefore, we can reason that transposition of the solution

is connected to the permutation of simple roots. All calculations of this sort,

concerning the type - II defect matrices, were evaluated in Maple that can han-

dle the elaborate matrix multiplication and impose limits easily. Furthermore,

the pleasing behaviour exhibited by type - II limited solutions highlights the

important relation between the a
(1)
2 type - I transmission matrices and their

inverses.

Overall, we must remember that the defect does not change the original

boundary condition. The diagonal reflection matrices used in this chapter

are ‘Soliton Preserving’ (SP). We postulate that the new solutions correspond

to a generalisation of that particular type of boundary condition (1.30). Such

a generalisation might contain an extra free parameter, for example, which em-

bodies the soliton’s added freedom to exchange charge with the defect freely.



Chapter 5

Conclusions and Outlook

The main theme of this thesis concerns the generalisation of finite-dimensional

reflection matrices and its associated mechanisms. The construction of gen-

eralised reflection matrices is known to provide new solutions to a suitably

generalised reflection equation (1.96). In the case of the sine-Gordon model,

the most general solution of this type lies outside the known classes of solution

and is thought to correspond to a more general integrable boundary condition

[17].

In chapter two, the role of sine-Gordon’s generalised reflection matrices within

the algebraic framework of [18] was documented. It was shown that the asso-

ciated boundary subalgebra of a generalised type - I solution not only agrees

with the results of Delius and MacKay, but generalises them by accounting

for the topological charge at the boundary. As we already know, type - I

generalised solutions are constructed from a diagonal reflection matrix that

corresponds to an integrable Dirichlet boundary. The resulting solution has

the same underlying structure as a Zamolodchikov-Ghoshal solution (2.3), but

is infinite-dimensional due to dependence on the topological charge. The way

in which the defect modifies the original boundary subalgbera of the diagonal

reflection matrix is readily apparent. Calculations of this type might aid the

classification of integrable boundary conditions, as each boundary condition

possesses its own boundary subalgebra. Perhaps, in the future, other gener-

alised solutions should be compared in the same way to discover if the new
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solution does indeed correspond to a more general boundary condition. How-

ever, when the same calculation is performed with the type - II defect, the

resulting boundary subalgebra lies outside the known class of results. In this

case, the determinant of the type - II T -matrix plays an important role, as

it does not cancel throughout. Its presence guarantees that the construction

works. Potentially, this might allude to some hidden algebraic significance, or

it simply demonstrates the importance of transmission matrix inversion.

In chapters three and four, generalised solutions were calculated for the a
(2)
2

and a
(1)
2 ATFTs respectively. In both cases, the new solutions naturally gen-

eralise the finite-dimensional cases. Unfortunately, the results concerning the

a
(2)
2 affine Toda model are incomplete, as it was not possible to recover the

most general solution within a generalised solution, which we have discussed.

For the a
(1)
2 theory, several intriguing results arise. However, this behaviour

is unsurprising when the classical behaviour of the defect is considered. The

specific way that solitons transmit through the defect clearly comes into play,

and the significance of the original boundary parameter also becomes clear.

Solutions constructed from a diagonal reflection factor that does not possess

a free parameter, R̂, mimicked the defect’s selective behaviour - although, in

a slightly different fashion. The behaviour is documented in several diagrams

that explicitly illustrate the extra freedom added by a defect. The presence

of a boundary parameter, υ, allowed further freedom within the solutions, R̃,

and similar diagrams illustrate their processes. However, it still remains to

associate these generalised solutions to integrable boundary conditions. We

imagine that they generalise conditions of the form (1.30), whereby extra pa-

rameters may be included to describe the added movement around the weight

lattice. In the future, it would be natural to investigate the a
(1)
3 affine Toda

model to see if the same behaviour arises. If it does, then one might be able

to generalise the framework to include all a
(1)
n generalised reflection matrices.

Ultimately, the generalised solutions that we have calculated and presented in

this thesis show the strong relationship between defects and boundaries. For

example, they naturally accommodate one another and generalised reflection

matrices naturally satisfy a generalised reflection equation. Unfortunately, a

full classification of solutions still escapes us, but generalised solutions defi-

nitely do generalise the finite-dimensional framework.

With the classification of solutions weighing heavily on our minds, we will
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briefly mention a recent classification of particular reflection matrices pro-

vided by Regelskis and Vlaar, [71]. The framework and classification that

they propose associates a Satake diagram to every trigonometric reflection

matrix corresponding to particular coideal subalgebras that are described by

admissable pairs, the theory of which was developed by Letzter and Kolb

[72, 73]. Their results also rely on the theory of quantum symmetric pairs,

many properties of the quantum group and its subalgebras [72, 73]. However,

their classification concerns only finite-dimensional solutions. It is natural to

expect that a defect and its associated generalised solutions can be included

in an appropriate infinite-dimensional framework. If this is possible, the clas-

sification of generalised solutions might become more simple and this could

lead to advances regarding integrable boundary conditions.

Recently, Lima-Santos and Vieira obtained reflection matrices for the D
(2)
n+1

affine algebra [74]. This model appears to exhibit many interesting reflection

factors, several of which possess different structures. In particular, several

patterns of zeroes arise; much like the a
(1)
2 case. As defects and boundaries

appear to marry together so naturally, one wonders whether the structure of

the reflection matrices could indicate certain behaviours concerning a defect

of the theory.

Finally, in chapter four, only soliton preserving solutions were considered.

In the literature, concerning a
(1)
2 , there exist several soliton non-preserving

solutions, calculated by Gandenberger [75, 76]. If one allows a soliton to

convert to an anti-soliton at the boundary, and change multiplet, the reflection

matrix must act over the spaces:

Rb̄
a(θ) : Va → Vb̄,

Rb
ā(θ) : Vā → Vb,

where the barred indices refer to anti-soliton and unbarred indices refer to

the soliton. Such reflection matrices satisfy a reflection equation of the form

[75, 76]:

Sklij (θi − θj)Rm̄
l (θi)S

p̄n
km̄(θi + θj)R

r̄
n(θj)

= Rk̄
j (θj)S

l̄m
ik̄ (θ + θ′)Rn̄

m(θi)S
p̄r̄

l̄n̄
(θ − θ′).

(5.1)
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In the above equation one can use crossing symmetry, as follows:

S k̄lij̄ (θ) = Sljki(iπ − θ), S k̄l̄īj̄ (θ) = Sjilk(θ),

to simplify equation (5.1). Unfortunately, when crossing symmetry is used and

the indices are permuted, some of the resulting equations become unbalanced.

As an example consider the following process,

incoming: i = +, j = −
outgoing: p = +, r = −

that returns the equation:

S+−
+−(θi − θj)R+

−(θi)S
++
++(θi + θj)R

−
+(θj)

+ S−+
+−(θi − θj)R+

+(θi)S
−+
+−(θi + θj)R

−
−(θj)

+ S−+
+−(θi − θj)R−+(θi)S

+−
+−(θi + θj)R

−
+(θj)

= R+
−(θj)S

++
++(iπ − (θi + θj))R

−
+(θi)S

−+
−+(θi − θj)

+R+
−(θj)S

−+
−+(iπ − (θi + θj))R

+
−(θi)S

+−
−+(θi − θj)

+R−−(θj)S
+−
−+(iπ − (θi + θj))R

+
+(θi)S

+−
−+(θi − θj).

(5.2)

The solutions that Gandenberger supplies do indeed satisfy all eighty one

equations [75, 76]. However, when one attempts to construct a generalised

solution there is an immediate problem. Usually, the Kronecker-deltas and

raising/lowering operators describing the exchange of topological charge ap-

pear unanimously throughout the whole equation. In the above, this is not the

case. Four terms are proportional to δβα but the remaining two contain δβ+α0
α

and δβ−α0
α , hence they will not cancel. Further investigation is required. How-

ever, one possible explanation is that the construction breaks down because

one of the necessary steps in the proof (1.108) is violated. On the whole, this

is strange because we know that the a
(1)
2 T -matrices are compatible with the

bootstrap [48]. In the future, this problem should be addressed and perhaps

the bootstrap can remedy the issues appearing here.

To conclude, several classes of generalised reflection matrix have been calcu-

lated and presented in this thesis. It is hoped that they offer some insight

into potentially new integrable boundary conditions. Nevertheless, this is an
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exciting time within integrability, as new interest has been revived in quantum

symmetric pairs [71, 72, 73] and the surrounding theory might provide further

insight into outstanding problems. The author would like to thank the reader

for their time and patience while reading this thesis, and also wishes them

every success with their own mathematical endeavours.





Appendix A

Depiction of a
(1)
2 Generalised solutions

In this appendix all remaining diagrammatic representations of the generalised

solutions can be found. The additional freedom added by the defect is shown

by the dotted grey lines for all R̂ solutions, where the diagonal reflection

matrix contains no boundary parameter, represented by dashed lines. For

the R̃ solutions, the dotted green lines denote the freedom added by the

defect, when the original reflection matrix contains a boundary parameter,

υ. As we have remarked earlier, the processes that the diagrams represent

are one way of classifying the generalised solutions. It is not necessary to

form similar diagrams for the type - II solutions, because the corresponding

solutions possess ultimate freedom - the solitons can freely interact with the

defect, depositing any allowable charge. Therefore, after this interaction the

soliton’s charge can convert to either neighbouring weight.
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Figure A.1: Pictorial representation of generalised solution R̂II .
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Figure A.2: Pictorial representation of generalised solution R̂III .
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Figure A.3: Pictorial representation of generalised solution R̂IV .
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Figure A.4: Pictorial representation of generalised solutions R̃IV,XI .
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Figure A.5: Pictorial representation of generalised solutions R̃II,V .
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Figure A.6: Pictorial representation of generalised solutions R̃III,V III .
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Figure A.7: Pictorial representation of generalised solutions R̃V I,IX .
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Figure A.8: Pictorial representation of generalised solutions R̃V II,XII .
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Determinant Formulae for the a
(1)
2

Transmission Matrix

Previously, several equalities among the determinants, ∆1,∆2,∆3, were stated

and now we will present their defining equations. Yet again, we see that the

formulae are an infinite-dimensional generalisation of the usual formulae to

calculate a three-by-three matrix determinant, they are listed below where

∆i := ∆i(N1, N2, N3) for now:

∆1 := T11(N1, N2, N3)
[
T22(N1 + 1, N2 − 1, N3)T33(N1 + 1, N2, N3 − 1)

− T23(N1 + 1, N2 − 1, N3)T32(N1 + 1, N2, N3 − 1)F2(N2 − 1)F3(N3 − 1)
]

+ T12(N1, N2, N3)F1(N1)F2(N2 − 1)·[
T23(N1 + 1, N2 − 1, N3)T31(N1 + 1, N2, N3 − 1)F3(N3 − 1)

− T21(N1 + 1, N2 − 1, N3)T33(N1 + 1, N2, N3 − 1)
]

+ T13(N1, N2, N3)F1(N1)F3(N3 − 1)·[
T21(N1 + 1, N2 − 1, N3)T32(N1 + 1, N2, N3 − 1)F2(N2 − 1)

− T22(N1 + 1, N2 − 1, N3)T31(N1 + 1, N2, N3 − 1)
]
,

(B.1)

151



152 Appendix B. Determinant Formulae for the a
(1)
2 Transmission Matrix

∆2 := T21(N1, N2, N3)F2(N2)F1(N1 − 1)·[
T13(N1 − 1, N2 + 1, N3)T32(N1, N2 + 1, N3 − 1)F3(N3 − 1)

− T12(N1 − 1, N2 + 1, N3)T33(N1, N2 + 1, N3 − 1)
]

+ T22(N1, N2, N3)
[
T11(N1 − 1, N2 + 1, N3)T33(N1, N2 + 1, N3 − 1)

− T13(N1 − 1, N2 + 1, N3)T31(N1, N2 + 1, N3 − 1)F1(N1 − 1)F3(N3 − 1)
]

+ T23(N1, N2, N3)F2(N2)F3(N3 − 1)·[
T12(N1 − 1, N2 + 1, N3)T31(N1, N2 + 1, N3 − 1)F1(N1 − 1)

− T11(N1 − 1, N2 + 1, N3)T32(N1, N2 + 1, N3 − 1)
]
,

(B.2)

and finally,

∆3 := T31(N1, N2, N3)F3(N3)F1(N1 − 1)·[
T12(N1 − 1, N2, N3 + 1)T23(N1, N2 − 1, N3 + 1)F2(N2 − 1)

− T13(N1 − 1, N2, N3 + 1)T22(N1, N2 − 1, N3 + 1)
]

+ T32(N1, N2, N3)F3(N3)F2(N2 − 1)·[
T13(N1 − 1, N2, N3 + 1)T21(N1, N2 − 1, N3 + 1)F1(N1 − 1)

− T11(N1 − 1, N2, N3 + 1)T23(N1, N2 − 1, N3 + 1)
]

+ T33(N1, N2, N3)
[
T11(N1 − 1, N2, N3 + 1)T22(N1, N2 − 1, N3 + 1)

− T12(N1 − 1, N2, N3 + 1)T21(N1, N2 − 1, N3 + 1)F1(N1 − 1)F2(N2 − 1)
]
.

(B.3)

The equalities:

∆1(N1, N2, N3) = ∆2(N1 + 1, N2 − 1, N3) = ∆3(N1 + 1, N2 − 1, N3),

are checked easily by shifting all Ni appropriately and identifying the like

terms within the formulae.
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