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Abstract 
This thesis is concerned with micro/nano fabrication of polymer materials for organic 

thin film transistor (OTFT) application and crystallization of solution-processable small 

molecule and conjugated polymer thin film. A method has been developed to form self-

assembled arrays of nano/micro wires by controlling solvent evaporation of a solution 

film that is trapped in between a substrate and a structured template. Various solution-

processable materials were successfully patterned by the developed method, with 

particular focus on conjugated polymers materials, such as p-type & n-type 

semiconductor polymers, and conductive polymers. The potential applications of such 

fine patterned materials were demonstrated on both field effect transistors (FET) and 

electrochemical transistors (ECT). The polymer FET measurement results 

demonstrated that the device range of on/off ratio was from 103 to 105 and the range 

of charge carrier mobility was from 10−4 cm2/Vs  to 10−2 cm2/Vs . For the 

electrochemical transistor, the device can work under a small applied gate and drain 

bias (less than 0.5 volts). Pattern formation with complicated geometries, pattern 

transfer processes, and pattern formation dynamics have been investigated. Further, the 

recrystallization mechanism of amorphous small molecule thin film spin-coated on 

different substrate was investigated. It was found that a small molecule film crystallized 

from different substrates can have different preferential orientations caused by a 

different scenario of materials-substrate interaction, and this can dramatically influence 

the conductivity of the crystalline film. The dynamics of recrystallization was studied 

in detail through examination of both growth and nucleation of crystals from their 

amorphous matrix. The results showed that both the activation energy the small 

molecule obtained and the crystal growth preferential orientation on different substrates 

were different during the crystallization process. The study of both the temperature and 

annealing time influences on the conjugated polymer crystalline film property were also 

studied experimentally.
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Chapter 1 

 

Introduction 

 

 

1.1 History of transistor 

1.1.1 Point-contact and bipolar junction transistors 

At the beginning of the 20th century, most of the world’s best scientists were focused 

on the development of radar, with few paying any attention to semiconductor materials. 

During that time, semiconductor materials were not in a good place because of the 

limitations of techniques connected to their purification. It was very difficult to acquire 

material of both high purity and quality; often, the same material fabricated under the 
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same procedure would produce totally different performances. Since all manner of 

impurities are mixed together within semiconductors, properties of the materials were 

decided by the variety and quantity of their contamination rather than their own 

behaviour. This was the general situation until February 1939, when an electrochemist, 

Russell Ohl [1], accidentally found a p-n junction in an experiment, a phenomenon he 

clarified through additional research. In the years that followed, Ohl found that super-

purified germanium might be the focal point for semiconductor devices. In 1942, 

physicist Seymour Benzer [2] found a single crystal of germanium gives an excellent 

performance on a rectifier compared to other semiconductor materials. It was those 

discoveries which made semiconductor devices possible. 

After the Second World War ended in 1945, a solid-state research group was set up in 

Bell Laboratories in the United States. The first mission of this group was to develop a 

new electronic device which could alter a vacuum triode. The triode was widely used 

in telecommunications at that time because not only could the human voice which be 

moderately amplified through it, but the transmission distance was unlimited. However, 

its drawbacks, including big energy consumption and thermal production, meant that it 

was unrealizable. One of the leaders of this group, physicist William Shockley, asked 

researchers to focus on germanium whilst also proposing an idea for a new device, 

where the application of a strong field induces and controls the current flow on the 

surface of semiconductor. This idea looked like water flowing in a rubber hose, where 

people could control its pressure and modify the flow size. In December 1947, John 

Bardeen and his colleague Walter Brattain demonstrated the prototype of this device, 
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the point-contact transistor [3] as shown in Figure 1.1 and Figure 1.2 below. 

 

 

Figure 1.1. Photograph of the prototype of the point-contact transistor that was invented by 

Bardeen and Barttain in December 1947. A strip of gold foil, slit along one edge is pressed down 

into the surface of a germanium slab by a polystyrene wedge, forming two closely spaced contacts 

to this surface [3]. 

 

 

 
Figure 1.2. The schematic diagram of a point-contact transistor 

（acquired from Ref [3]） 
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They called this new device a “transistor”, the portmanteau of the terms “transfer” and 

“resistor”. The inventors explained it as follows: a transistor is a special resistor of an 

electrical signal, which is amplified when transferring through this device. From Figure 

1.1 and Figure 1.2, it can clearly be seen that n-type germanium was deposited on a 

metal slab, and a layer of p-type was formed on it. A polystyrene wedge covered by 

gold foil with a narrow crack of about 50 µm was carefully slit along that edge, and 

using a spring to press it into the germanium surface, two closely space gold contacts 

fully touch the material at the contact point. Although this transistor prototype was 

clumsy and unstable, it was undoubtedly a magnificent breakthrough for semiconductor 

electronic devices.  

As other people focused on trying to enhance the performance of germanium-based 

transistors, another idea started to foment in Shockley’s mind. He was thinking that if 

two types of semiconductor were put together, constituting a sandwich structure such 

as p-n-p or n-p-n, the semiconductor in the middle could yield a depletion layer because 

of a lack of electrons, while both of the sides would have sufficient electrons. By 

modulating the middle layer, the number of electrons in the device could be controlled.  
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Figure 1.3. The two types of p-n junction transistors.  

 

The difference to the point-contact transistor was that in this device the current flowed 

through the inside of the semiconductor, not on the surface. On the 18th February 1948, 

under Shockley’s guidance, his group physicist John Shive performed an experiment. 

Following his report, Shockley realized that his hypothesis was correct. At the same 

time, throughout this experiment John Shive noticed that the middle layer of 

semiconductor must have high purity and be thin enough. Gordon Teal, the best crystal 

expert at Bell Labs, tried to convince Shockley to use single crystal instead of 

polycrystalline materials to fabricate the device, since this would avoid current being 
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diffracted by grain boundaries. This suggestion was rejected. 

It was therefore lucky that Teal’s advice reached Jack Morton, also an engineer at Bell 

Labs, who at the time was leading a group trying to make point-contact transistors a 

commercial reality. He accepted Gordon suggestion. In April 1950, he successfully 

fabricated this junction type transistor using signal crystal germanium with his 

colleague Morgan Sparks [4]. In addition, they were able to prove it had a signal 

amplification function. Based on the contribution of these pioneers, Sparks improved 

the performance of this junction transistor by reducing the thickness of the middle layer 

of the semiconductor. The bipolar transistor compared favourably to the point-contact 

transistor. 

Up until this point, every idea and device had been based on germanium despite the fact 

that a key problem was that germanium-based transistors could not work for many 

consecutive hours and there were still thermal issues. People generally thought that 

silicon-based transistor implementation was still a long way away. Indeed, it was 1954 

before Teal demonstrated three silicon-based transistor prototypes at a wireless 

engineering conference. Following this, nearly all semiconductor companies and 

laboratories realized that replacing germanium with silicon was feasible, and therefore 

began to focus on silicon. As this area of research flourished and developed, scientists 

and engineers began to consider the miniaturization of the size of the transistor, since 

the transistor had to be connected to other electronic elements by wires. Four years later, 

Jack Kilby, a junior engineer working for California Instruments, suddenly had an idea: 

the reason we have to connect all kinds of electronic devices together by wires to 
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achieve functionality is that they were fabricated using different materials – only the 

transistor was made of silicon. He thought that were all the raw materials to be made of 

silicon, more transistors could be produced on a silicon wafer. In this way, the concept 

of the integrated circuit (IC) was born.  

 

1.1.2 Field effect transistor and metal-oxide 

transistor 

In 1959, the Bell Laboratory scientist Martin Atlla, an Egyptian, found that a fine and 

uniform film of silicon dioxide (SiO2) could be formed through thermal oxidation in a 

vacuum system [5]. Shockley had put forward the field effect concept back in 1945, but 

this idea had never been realized. Bipolar transistor use was widespread in electronic 

devices at that time, but the idea of the bipolar transistor originated from triodes. The 

conceptual difference between a bipolar transistor and a field effect transistor is that the 

former depends on transmission through minority charge carriers, while the latter relies 

on majority charge carriers. A year later, Atlla and his colleague, the Korean scientist 

Dawon Kahng, invented a real field effect transistor on Si/SiO2, known as an insulated-

gate field-effect transistor (FET). [6]. Quickly, major semiconductor product 

manufactures transferred their attention to this new device. Based on this, the Paul K. 

Weimer research group in the Radio Corporation of America set up a concept of thin 

film transistor (TFT) in 1961 [7]. They discovered that transistors could be fabricated 

through an evaporated semiconductor on the insulator layer. This method provided the 
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means by which thousands of transistors could be connected in an efficient way which 

was also able to realize different electronic functions on a silicon wafer the size of a 

stamp. In 1962, two young engineers - Steven R. Hofstein and Frederic P. Heiman - 

found that a conduction band, high resistance channel and oxide insulating layer could 

be built up through thermal diffusion and oxidation methods on a silicon wafer. Thus, 

a breakthrough electronic device came into being: a metal-oxide-semiconductor field 

effect transistor (MOSFET). Its structure schematic is presented in the Figure 1.4 below. 

 

           

Figure 1.4. The structure of metal-oxide-semiconductor field effect transistor 

(MOSFET) 

 

This schematic demonstrates a n-type MOS transistor. When a positive voltage between 

source and drain has been applied, electrons in this channel will be attracted to the 

surface between the silicon and insulator, while a positive charge will be repulsed in 

the opposite direction. When these charge carriers are sufficient, the current produced 

will flow from source to drain. The gate controls the intensity of the current. There is 

also a P-type MOS transistors, but because of the speed of the hole transmission is quite 
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slow compared with the electron, this kind of transistor is rarely used. There is no doubt 

that the success of the bipolar junction transistor and the MOS transistor was a huge 

breakthrough in the electronics industry. Many well-known semiconductor and 

computer chip manufacture companies have emerged out of the discovery of these 

transistors, including Shockley Semiconductor Laboratory, Fairchild Semiconductor, 

California Instrument, IBM, Intel and AMD. They are now, all, large and important 

industries across the world. Even today, Intel is still pursuing transistor miniaturization 

in order to integrate as many transistors on a chip as possible in order to enhance the 

speed of operation. 

 

1.2 Moore’s law and challenge 

After the MOS transistor was commercialized, the integrated circuit began to develop 

rapidly. In 1965, about 50 transistors were integrated on each chip. In the same year, 

Gordon Moore, a cofounder of Intel and Farichild Semiconductor, predicted that the 

invention of integrated circuits would result in the density of components in the circuit 

increasing exponentially - or more exactly, they would double - every year. Indeed,  

minimum component costs have increased at a rate of roughly a factor of two per 

year [8]. While, the first commercial microprocesser was realized after six years by the 

Intel corporation. Using 2300 transistor on single wafer, the number of transistors are 

46 times compared with in 1965. It can be calculated that the number of transistors has 

indeed nearly doubled every year. In 1975, Moore modified his prediction, saying that 



 

31 

 

a period of one year was not accurate, and that is should be two.  According though to 

accurate statistics, it seems that a period of 18 months is about right, as seen in the 

Figure 1.5 below.  

 

 

Figure1.5. The number of transistors on silicon chip from (1970 to 2015) 

(acquired from http://www.overclock.net/t/1542835/pc-world-intel-moores-law-will-

continue-through-7nm-chips/30) 

 

Intel’s commercial large-scale industrial production technique has seen them reach 

14 nm (in 2015). As transistor miniaturization on silicon wafer, if the transistor gate 

length reaches 5 nanometer scale, an electron would be able to tunnel from source to 

drain, meaning that the gate was redundant. In 1999 some scientists speculated that 

Moore’s Law would face greater challenges in the future [9]. The discovery of carbon-

tubes seemingly provided a new direction. This new material was discovered by the 

Japanese scientist Iijima Sumio in 1991 [10]. Its properties and nano scale size attracted 

researchers who tried to build up a transistor by using this material. After seven years, 

http://www.overclock.net/t/1542835/pc-world-intel-moores-law-will-continue-through-7nm-chips/30
http://www.overclock.net/t/1542835/pc-world-intel-moores-law-will-continue-through-7nm-chips/30


 

32 

 

the Dutch scientist Cees Dekker created the first nano transistor on a single carbon-tube, 

although the result was unsatisfactory. Meanwhile, other scientists and research groups 

began to consider a single-atom transistor [11] and a graphene transistor[12]. Transistor 

research is continuing, and perhaps one day Moore’s Law will no longer be applicable 

in electronics, or people will find a way of making transistors more effective.   
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1.3 Aim of the PhD work 

Recently in electronics industry development, the orgaince field effect transistor (OTFT) 

has attracted great interest due to its potential capability for integration into products 

ranging from non-volatile memory, radio frequency indetification tag (RFID) to 

switching devices for active matrix display. As a fundamental component, its 

performance to a certain extent determines the device quality. Among all the organic 

semiconductor based electronics devices, taking the organic ferroelectric field effect 

transistor (FTFT) for an example, it has drawn great attention because it has non-

destructive read-out property and is capable of integration with other organic device to 

build a circuit, etc. Although it has so many advantages, there still are some drawbacks 

that hinder it in real applications, such as high fabrication cost and high power 

consumption that occurs during the read operation when the channel of the transistor is 

in the ‘on’ state. Thus, the most important work in my PhD study is looking for a method 

to achieve a material, for both p- and n-type, “all self-alignment process” without mask 

alignment, thereby reducing the cost in the fabrication process and at the same time 

obtaining large-area high resolution with well-ordered material structure. Finally, the 

successful fabricating of both p- and n-type organic field effect transistor and 

combining them to make up an organic complementary circuit (CMOS) if possible. 

Another important goal is to study the texture influences on small molecule organic 

semiconductor material crystal orentation. The crystalline film growth on the both 

chemical treatment and bare substrate illustrate the different structures that have been 

observed and captured by optical micorscope. 
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Last, but not the least, in my PhD work, is the experimental study of polymer materials 

crystallization process on identical substrates with variable anealing time under fixed 

temperature. As we know, the quality of polymer crystalline film is a very important 

factor that can affect performance of devices in real applications. Therefore, making 

sure we understand the material properties and finding an appropriate annealing 

temperature and time are quite useful in device fabrication, even for material 

performance enhancement. The spectrum absorption equipment has been implemented 

in this study by another student at Nanjing University to reveal the relationship between 

temperature and polymer film crystallization degree.  
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1.4  Overview of the Thesis 

Chapter 2 reviews several aspects of organic semiconductor materials from its 

conductivity mechanism, material type, to the realm of industrial applications. This 

chapter also contains a kind of natural phenomenon, which had been analyzed by 

researchers, and can be utilized in device fabrication. In Chapter 3, all of the essential 

faclities for fabrication and the measurement instruments have been described. The 

details of traditional manipulation techniques in manufacturing such as optical 

lithergraphy, thermal evaporation are included. From the Chapter 4, the topic has been 

moved to the specifics about studying the patterning soluble organic semiconductor 

materials technique on well cleaned substrates. It contains all the infromation of 

materials that have been utilized in the following series of experiments, such as material 

chemical structure and properties; Moreover, several patterning techniques with related 

results have also been demonstrated in this chapter. In Chapter 5, following the results 

from Chapter 4, the organic field effect transistor (OFET) and electro-chemical 

transistor (OECT) fabrication by various methods, including patterning transfer and 

lift-off processing, have been described in detail. At the same time, the device 

performance measurement and quality evaluation have been given as well. Chapter 6 is 

the last chapter of the experimental part which contains the study of substrate surface 

texture influences on small molecule organic semiconductor material crystal orentation. 

The crystalline film growth on the both chemical treatment and bare substrate illustrate 

the different structures that have been observed and captured by optical micorscope. 

Another experimental part in this chapter is about the polymer material crystallization 
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degree with different annealing time under a fixed temperature. The spectrum 

absorption measurement has been carried out to evaluate the properties of the material. 

Chapter 7, the last one in this thesis, is the summary and conclusions of the whole work 

in my PhD study with an outline of the work that needs to be done in future. 
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Chapter 2  

 

Literature Review 

 

 

2.1 Introduction 

The Nobel Prize in Chemistry for 2000 was awarded jointly to Alan J. Heeger, Alan G. 

MacDiarmid and Hideki Shirakawa for “the discovery and development of conductive 

polymers”. In 1977, this group found that the electrical conductivity of polyacetylene 

dramatically increased, systematically and continually, by about eleven orders of 

magnitude when doped with iodine vapour, its conductivity reaching 105 S/m [1]. 

This ground-breaking discovery resulted in the overthrow of the traditional view that 

only ordinary polymer materials could be insulators. At the same time, the dominant 
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position of silicon in the manufacture of electronic devices was affected as well, raising 

the possibility of raw material replacement in the semiconductor industry. In the 

decades that followed, a considerable number of scientists and academic institutions 

across the world focussed on organic material development. Compared with the 

traditional inorganic SC materials, organic polymer SC materials have many 

advantages, such as being light and low-cost, and that they can be processed at room 

temperature. They are also soluble and have an easy deposition on the substrate, making 

them competitive with silicon and gallium arsenide in certain respects. Organic 

materials have been widely used in electronic devices, such as organic light-emitting 

diodes (OLED) [2] sensors and organic field effect transistors (OFET) [3]. OFETs are 

one of the most attractive areas for research, and they are an area where there is a huge 

amount of research taking place.  
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2.2 Organic Materials Conductivity Mechanism 

As is commonly known, materials can be classified into conductors, insulators, and 

semiconductors according to their conductive ability. Their material band structure can 

be made clear by the status of each band regarding occupation by electrons; energy 

bands which are fully occupied or unoccupied are non-conductive because the electrons 

cannot move freely if the energy band is fully occupied, and there are no electrons in 

an empty band. For conductors, some of the electrons are in the conductive band (EC), 

whereas for semiconductors and insulators, most electrons are in the valence band (Ev). 

The difference between insulators and semiconductors is the band gap (Eg). This gap 

in semiconductors is quite narrow, approximately 3eV, compared with insulators, where 

it is usually above 5eV. Therefore, under certain conditions, the electrons in their 

located valence band can become excited and move to the conductive band, making the 

material conductive.  

The nature of bonding in organic semiconductors is fundamentally different to their 

inorganic counterpart. As mentioned before, polyacetylene was the first polymer which 

was reported as having a conductivity property in plastic material. In fact, all conductive 

polymers contain two main properties. The first is the presence of conjugated double 

bonds along the backbone of the polymer. In conjugation, the polymers are constructed 

of single and double bonds which alternate between carbon atoms. The classic 

representation of this alternating structure is shown in Figure 2.1 below. The second 

property is that the polymer must be “doped” through an oxidation agent in order to 

remove electrons, or through a reduction agent, so that extra electrons may be inserted 
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into the material. Those holes and extra electrons can make the molecule produce 

electrical conductivity [4].  

 

 

Figure2.1. The chemical structure of polyacetylene  

 

In the single and double bond alternating structure, the single bond is known as a sigma 

(σ) bond, while the double bonds consist of a sigma (σ) bond and a pi (π) bond, which 

is formed when one of the electrons located on a 2s-orbital is excited into Pz-orbitals, 

leading to the occurrence of sp2-hybridization in the carbon atom within the molecule. 

A σ-bond is the strongest type of covalent bond, requiring both atoms to contribute to 

an electron from the s-orbital. Taking H2 as an example of this, which can be seen in 

Figure 2.2 below: 

 

 
Figure 2.2. The theory of σ-bonding and 𝜎∗-antibonding formation    
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The π-bonds directly share a pair of electrons between the Pz-orbitals of the carbon 

atoms. Compared to the σ-bonds which form the backbone of the molecules, the π-bond 

is much weaker since their orbitals are further away from the positive nucleus. 

 

 

Figure 2.3.  The s𝑝2 ℎ𝑦𝑏𝑟𝑖𝑑𝑖𝑧𝑎𝑡𝑖𝑜𝑛 (acquired from 

https://i.ytimg.com/vi/ES5T12WdRpU/maxresdefault.jpg) 

 

Thus, electrons are localized when π-bonds are formed in the molecule. However, in 

conductive materials, the π-orbital can overlap with neighbouring double bonds due to 

conjugation. The result is that electrons can move to another bond or to another 

molecule. In so doing, the electron becomes “delocalized”. Polymer and oligomer 

conduction is the result of the delocalization of these charge carriers along the polymer 

chain. 

As the result, the repeating structure of alternate single and double bonds in a 

conjugated backbone causes bonding and anti-bonding states, and a forbidden energy 

gap forms between spatially delocalized electronic band structures. See Figure 2.4 

below. 

 

https://i.ytimg.com/vi/ES5T12WdRpU/maxresdefault.jpg
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Figure 2.4. The schematic diagram of HOMO and LUMO structure    

 

2.2.1 Energy level 

The molecular energy level is a crucial and not negligible part in the polymer synthesis 

process. Proper orbital energy level adjustment can make a polymer material well 

matched with the metal electrodes work function, providing efficient charge carrier 

(holes or electrons) injection and transport. The highest occupied molecular orbital 

(HOMO) is composed of π-orbitals with filled electrons in a bonding state, similar to 

the valence band in inorganic semiconductors. Correspondingly, the lowest occupied 

molecular orbital (LUMO) is made up of 𝜋∗-orbitals with rare electrons in an anti-

bonding state, equivalent to the conduction band in silicon. For p-type and n-type 

semiconductors, the usual HOMO level is around 5 eV and the LUMO level should be 

between 3 eV and 4 eV respectively. The difference between these two orbitals 

comprises the band gap ( Eg ). See Figure 2.4 above. The value of Eg  can be 

manipulated by the number of repeat units in the chemical structure; generally speaking, 

it decreases with the number of repeat units in the chain [5]. As the number of the same 
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unit increases, sometimes, the chemical stabilization may decrease (e.g. benzene). As 

noted above, the doping process in enhancing the conductivity of materials is very 

important. This essential procedure determines the semiconductor properties, either p- 

or n-type. Generally, an oxidative agent is chosen for polymer doping in order to create 

p-type materials. Electron affinity (or ionization potential) is another important 

parameter which decides the stabilization of material in ambient. 

 

2.2.2 Charge transport in organic materials 

As we known, the crystal lattice vibration can produce phonons. In a traditional 

semiconductor material, the electronic interaction is much stronger than electron-

phonon interaction. Besides, the electron-phonon coupling is generally considered as a 

hindrance in the behaviour of electron transport in the inorganic semiconductor material. 

Different with this, in the organic semiconductor molecular crystal, the electron-phonon 

interactions are comparable to, or even larger than the electronic interaction. In such 

cases, electron-phonon coupling is no longer to be considered as a perturbation [6]. In 

contrast, the phonon provides energy to the electron, assisting it in transiting to an 

adjacent molecule. The electron-phonon coupling can form a kind of quasi-particle, 

called a polaron, in which the electronic charge is dressed with phonon clouds [6]. In 

the conducting polymer, the interaction between molecules is by the Van der Waals 

force. A charge carrier is easy to transport along conjugated chains because of π-orbital 
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overlap, but it is relatively difficult to transport between molecules because firstly, 

substitution chains of the molecules are disordered in crystallization phase. These 

disordered segments often prevent charge transport. The second reason is the charge 

carrier mean free path is even shorter than the distance between two molecules. 

Therefore, charge carriers need to acquire an extra energy to overcome the limitation to 

arrive at the next molecule; This process is commonly described as “hopping”. The 

polaron transport in organic semiconductors is constituted of two distinct parts: inter- 

and intra-molecular vibrations, which corresponding to “nonlocal coupling” and “local 

coupling”, respectively. Both of them can affect the charge transport mechanism. A 

mathematical model, which combines these two parts, has been comprehensively 

described in the Holstein-Peierls system [7]. In this model, two parameters play an 

important role: transfer integral (t) and charge reorganization energy (λ). Among them, 

the “nonlocal coupling” depends on the value of the transfer integral. The electron-

coupling constant (g) can be obtained from Holstein’s one-dimensional model. The 

value of this constant can result in different charge carrier mobility temperature 

dependent relationship which has been fully described in [6].  

 

2.3 Organic Semiconductor and Insulator 

Materials 

In general, organic semiconductors can be broadly classified into two categories: 

conjugated polymers and oligomers (small molecules). Both are now widely used in 
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OFET and related device fabrication. The advantages and disadvantages of their 

material characteristics lead to a major disparity in device performance. Therefore, 

certain impact factors in both these kinds of materials will be discussed in this section, 

as will some of the typical materials used. 

 

2.3.1 Conjugated Polymers 

Given their important role in OFET, the characteristics of conjugated polymer materials, 

molecular packing mode, and intermolecular interaction can decide the charge carrier 

transport in the device. In order to perform well, a good understanding of these issues 

is useful, so as to improve the efficiency of the charge carrier injection and movement 

in a transistor. 

 

2.3.1.1 P-type conjugated polymer 

Positive type conjugated polymer is one of the common organic semiconductors. 

According to the monomer, the corresponding polymer material can be classified into 

several species. 

 

2.3.1.1.1  Polythiophene-based class 

Polythiophene is one of the classic p-type conjugated polymer materials. The function 
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of the first field effect transistor was as an active layer, fabricated by Tsumura and Ando 

in 1987 [9]. Due to the very low film quality and molecular weight (𝑀𝑛 < 3000), the 

charge mobility was only10−5 cm2/Vs. It was also virtually insoluble. Thus, in the 

decades which followed, there were many attempts to improve solubility and film 

quality, and looking for a proper method to synthesise good solubility with high 

regioregularity and molecular weight polythiophene semiconductor material became a 

central issue in the field. Poly (n-alkylthiophene) (P3AT) was a material which appeared 

to be attractive due it is propensity to solubility. Depending on the different substitution 

position of the thiophene ring, this material has three different structures: a high degree 

of head-to-tail (HT) couplings and a low amount of head-to-head (HH) couplings or 

tail-to-tail (TT) couplings as shown in Figure 2.5 below. 

  

 

Figure 2.5 Three different structures of P3AT (acquired from Ref [10]) 

 

Initially, these three structures tended to exist within the same bulk material, resulting 

in a film from solution which had no regioregularity area and was poorly conjugated, 

and where mobility was still very low, only 10−7cm2/Vs. As the derivative from P3AT, 

Poly(3-hexylthiophene) (P3HT) possesses relatively more advantages in terms of 
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regioregularity characteristics. The Henning group [11] demonstrated two different 

orientations of the microcrystalline P3HT domains, with respect to the FET substrate, 

in 1999. This paper demonstrated that high regioregular (>91%) and low molecular 

weight was the preferential orientation of ordered domains. It also argued that thiophene 

rings normal to the substrate and a π-π stacking layer in plane to the substrate, an “edge-

on” stacking mode, was beneficial to charge transport along the conjugated backbone; 

with a π-π stacking orientation, the highest mobility reached was 0.05 − 0.1 cm2/Vs. 

In contrast, with a low regioregular (81%) and high molecular weight, the orientation 

was thiophene rings in-plane to substrate and π-π stacking out-plane to substrate, and 

the charge mobility was only 2 × 10−4 cm2/Vs. These structures are shown in Figure 

2.6 below. 

 

 

 

Figure 2.6. The two growth orientation of P3HT molecules piles up on the substrate. 

(acquired from Ref [12])  

(a) Schematic illustration of the charge transport model in lamellae stacking conjugated 

polymer. (b) Face-on texture of polymeric crystallites; (c) Edge-on stacking texture, the 

π-stacking and the chain to chain packing of polymers  

 

 

javascript:popupOBO('CHEBI:61422','C3PY00131H','http://www.ebi.ac.uk/chebi/searchId.do?chebiId=61422')
javascript:popupOBO('CHEBI:61422','C3PY00131H','http://www.ebi.ac.uk/chebi/searchId.do?chebiId=61422')
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This experiment demonstrated the relationship in molecular packing using the thin film 

deposition method. The casting was better than the spin-coating method for P3HT, and 

in addition, the charge mobility varied with different fabrication methods. Therefore, it 

is crucial to use the appropriate packing mode in order to make it as regular as using 

thin film. This must be considered in device fabrication.  

Although P3HT appears to be heading in the right direction, its fundamental structural 

deficiency means that it has limited applicable performance. An ionization potential (IP) 

of only around 4.8 eV makes it sensitive, and the extra free carrier increases if it is 

exposed to air for a while [13]. The HOMO energy level is determined by the length of 

the π-orbital conjugation extension by reducing the conjugation length to decrease the 

HOMO energy; as such, increasing the material’s air-stable ability has been a common 

approach in polymer chemistry. Based on this notion, Professor Beng [13] and his 

colleagues designed and synthesized a novel thiophene-based semiconductor, poly (3, 

3”-dialky-quaterthiophene) (PQT-12) in 2003. The chemical structure of this material 

is shown in Figure 2.7 below.  

 

 

Figure 2.7. The chemical structure of poly (3, 3”-dialky-quaterthiophene) (PQT-12) 

   (acquired from Ref [14]) 
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They introduced appropriately long alkyl side-chains and positioned them strategically 

on the polythiophene rings. Under this method, the length of π-conjugation was 

effectively shortened because co-planarity deviation in thienylene moieties results from 

the substitution of side-chains. This proper control of the length of the extended π-

conjugation achieves a delicate balance between transistor functionality and oxidative 

doping stability [13]. By utilizing it as an active layer in OFET, the on/off ratio was 

107 and the average mobility 0.07 − 0.12 cm2/Vs after annealing under 140 ℃ in 

ambient condition. The mobility only slightly decreases after being stored under 

ambient conditions in the dark for one month, thereby showing an excellent anti-

oxidative ability. The reason for this is that its ionization potential was increased by 0.1 

eV compared to P3HT, leading to more stabilization in the atmosphere. Another 

characteristic of PQT-12 is its very strong self-assembly ability under appropriate 

treatment conditions since more free volume was created between adjacent alkyl chains. 

This regular geometry contributes to the charge transport in the device.  

However, side-chain substitution is not the only technique which can adjust the length 

of π-conjugation: fused-ring substitution in a thiophene backbone is another common 

mothed. One of the most typical materials is the poly(2,5-bis(3-alkylthiophen-2-

yl)thieno[3,2-b]thiophene) (PBTTT) polymer, which was designed and synthesized by 

Iain McChulloch and colleagues in 2006 [15]. Its chemical structure is illustrated in 

Figure 2.8. 
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Figure 2.8. The chemical structure of poly(2,5-bis(3-alkylthiophen-2-yl)thieno[3,2-

b]thiophene) (PBTTT) (acquired from Ref[16] ) 

 

From this figure, the main difference between PBTTT and PQT-12 can be seen, namely 

that it is a linear conjugated comonomer, which was incorporated to form a fused-ring 

aromatic structure - a thieno[3,2-b]thiophene unit. This unit structure has the ability to 

limit the movement of delocalized electrons into a thiophene backbone due to the larger 

resonance stabilization energy of the fused ring as opposed to the single one [15]. 

Meanwhile, its advanced rotational invariance structure facilitates coplanar conjugation 

in adjacent molecules, which is beneficial for achieving high ordered conformation 

stacking so as to acquire high performance. In addition, the IP was increased by 0.3 eV, 

and it achieved greater air stabilization compared to P3HT. Depending on the different 

lengths of the R side-chain, PBTTT has three structures, the PBTTT-C10, C12, and C14. 

Of these, C14 side-chain PBTTT achieved the highest mobility, which was 

0.72 cm2/Vs with a 5 µm channel length following annealing in a nitrogen atmosphere. 

The on/off ratio was above 106, as can be seen in [15]. In comparison with the C-14 

side-chain replacement, the mobility of the C-10 side-chain PBTTT was 

only 0.3 cm2/Vs. It is clear that nuance in polymer structure will significantly affect 
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the performance of the material.  

In brief, this section looked at three examples of p-type materials, all of which were 

thiophene-based conjugated polymers. 

 

2.3.1.1.2  Polyfluorene-based class 

Fluorene-based conjugated polymers are another significant organic semiconductor 

material, wherein poly(9,9-dioctylfuorene-co-dithiophene) (F8T2) is the most common 

and best-known examples. Their chemical structures can be seen in Figure 2.9 below.  

 

 

Figure 2.9. The chemical structure of poly(9,9-dioctylfuorene-co-dithiophene) (F8T2) 

(acquired from 

http://www.sigmaaldrich.com/catalog/product/aldrich/685070?lang=en&region=GB) 

 

It is based on the simplest unit 9,9-dioctylfuorene (PFO), and its synthetic methods have 

been described in reference [17]. Indeed, most interest has been expressed in their 

electroluminescence characteristic. M. Grell et al. [18] comprehensively investigated 

the characteristics of this materials, specifically the relationship between temperature 

and crystallization, and their alignment properties and optical properties. They found 

that the main characteristic of this kind of material is that they can form a highly-

http://www.sigmaaldrich.com/catalog/product/aldrich/685070?lang=en&region=GB
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ordered nematic liquid crystalline phase through annealing, while the quenching 

process can suppress material crystallization. Furthermore, Henning Sirringhaus et al. 

[19] found that although the quenching step could affect crystallization formation, 

polymer chains are preserved during this phase. Using this aspect, they fabricated a 

field effect transistor by spin coating F8T2 solution on a starched polyimide substrate 

and then annealing at 275℃  - 285℃  for 3-15 minutes within an inert nitrogen 

environment, before finally quenching it. The direction of the backbone and polyimide 

is consistent. The lowest mobility achieved was 0.002 cm2/Vs  and the highest 

0.02 cm2/Vs, where the current flow was, respectively, perpendicular and parallel to 

the alignment direction. 

Finally, the high ionization potential, 5.5 eV, means that it has a greater capability 

against chemical doping by atmospheric oxygen, thus having more value in terms of its 

practical application.  

Based on an understanding of fused-ring substitution in PQT-12, Lim et al. [20], 

replaced thienylene moieties with a thieno[3,2-b]thiophene monomer in the F8T2 

backbone as well. An innovative material with a higher crystallinity and a more ordered 

morphology material, Poly(9,9’-n-dioctylfluorene-alt-thieno[3,2-b]thiophene) (F8TT), 

was developed. The details of synthesis have been introduced in [21] and its chemical 

structure can be seen in Figure 2.10 below.  
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Figure 2.10. The chemical structure of Poly(9,9’-n-dioctylfluorene-alt-thieno[3,2-

b]thiophene) (F8TT) (acquired from Ref [20]) 

 

This sort of organic semiconductor combines two advantages found in the earlier 

materials, that is higher ionization potential, namely 5.38 eV, and reasonable charge 

mobility, 1.1 × 10−3 cm2/Vs, in the field effect transistor. The performance of F8TT 

really depends on temperature treatment, especially in the annealing and cooling steps.  

In summary, several p-type conjugated polymer materials in different classes have here 

been demonstrated, each of which has their own characteristics. A well-organized 

structure which has high charge mobility and atmospheric stabilization has consistently 

been the target of organic polymer synthesis. 

 

2.3.1.2  N-type conjugated polymers 

Depending on the doping material, conjugated polymers can also be designed and 

doped as n-types. Poly(benaimidazolebenzophenanthroline) (BBL) was one of the 

earliest reported n-type conjugated polymer semiconductors. The chemical structure is 

demonstrated in Figure 2.11. 
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Figure 2.11. The chemical structure of Poly(benaimidazolebenzophenanthroline) 

(BBL) (acquired from ref [22])  

 

Their air-stable ability attracted researchers, many of whom concentrated on it for some 

time. The related results concerning BBL and its characteristics have been published by 

Zhenan Bao et al [23] and Amit Babel with Samson A. Jenekhe [22]. In their report, 

BBL has low electron mobility and is insoluble in conventional organic solvents, 

resulting in their narrow application. Another attractive n-type polymer, Poly[N,N'-

bis(2-decyl-tetradecyl)-3,4,9,10-perylene diimide-1,7-diyl]-alt-(dithieno[3,2-b:2',3'-

d]thiophene-2,6-diyl)P(PDI2OD-DD), was synthesized by Xiaowei Zhan et al. [24] in 

2007. This black, solution-processable material exhibits high electron mobility, 

excellent thermal stability, and relatively high electron affinity. Figure 2.12 shows this 

kind of polymer chemical structure.  
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Figure 2.12. The chemical structure of Poly[N,N'-bis(2-decyl-tetradecyl)-3,4,9,10-

perylene diimide-1,7-diyl]-alt-(dithieno[3,2-b:2',3'-d]thiophene-2,6-diyl)}P(PDI2OD-

DD) (acquired from supporting information of Ref [24]) 

 

Under an inert nitrogen environment, the electron mobility is as high as 1.3 ×

10−2 cm2/Vs. Even though the electron affinity is stronger compared with other n-

type counterparts, it is still unable to work in a normal environment. For the purpose of 

air stabilization enhancement, Zhihua Chen and co-workers [25] synthesized an 

excellent polymer, the poly{[N,N′-bis(2-octyldodecyl)-1,4,5,8-

naphthalenedicarboximide-2,6-diyl]-alt-5,5′-(2,2′-bithiophene) (P(NDI2OD-T2) in 

2008. Figure 2.13 shows this kind of polymer chemical structure.  
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Figure 2.13. The chemical structure of poly{[N,N′-bis(2-octyldodecyl)-1,4,5,8-

naphthalenedicarboximide-2,6-diyl]-alt-5,5′-(2,2′-bithiophene)(P(NDI2OD-T2) 

(acquired from Ref [25]) 

 

In contrast, P(NDI2OD-T2) exhibits higher material stabilization due to the fact that 

the electron affinity of the NDIR co-monomer core is much higher than the PDIR 

system, wherein P(PDI2OD-DD) results in a firmer chemical structure.  

Additionally, in comparison with p-type conjugated polymers, the performance of n-

type conjugated polymers is further behind because n-type materials are more sensitive 

to oxygen, and poor stabilization characteristics seriously affect device performance. In 

addition, in terms of source and drain electrodes in the transistor, it is necessary that the 

material, which has a low work function, can match the LUMO energy level in order to 

inject electrons and reduce contact resistance. Due to these harsh limitations, turning 

n-type organic semiconductors into real practical applications is still a challenge. It is 

interesting that replacing a bithiophenen unit with the fused-ring thiophene unit in the 

synthesis process leads to the acquisition of a highly ordered stacking of planes. It 
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seems that substitution depends on the geometry of the backbone. By ameliorating the 

experiment conditions, the mobility of electrons in the OFET had reached 

maximum  0.85 cm2/Vs  with good atmospheric stabilization [26]. At present, the 

application of n-type material is a long way away. However, it remains an important 

element (p-n junction) for constructing logic complementary circuits.  

 

2.3.2  Small Molecules (oligomers) 

Small molecules are another important class of organic semiconductor. As with 

conjugated polymers, it can appear in two different forms, according to whether the 

doping material is p-type or n-type. The difference is that sometimes a small molecule 

semiconductor is insoluble in an organic solvent, usually through vacuum deposition 

on the substrate. However, in general, oligomer mobility is higher than that of 

conjugated polymers. The following section will introduce typical materials of this type.  

 

2.3.2.1 P-type small molecule material 

2.3.2.1.1  Fused ring aromatic hydrocarbons 

A fused ring aromatic hydrocarbon is composed of multiple aromatic benzenes which 

share a pair of carbon atoms closely tied together. This class of compound contains only 

hydrogen and carbon. Depending on the number of benzene rings, the name and 
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chemical characteristics changes. Taking pentacene as an example, all the benzene rings 

are planar and single, and the double bonds alternate regularly, thereby forming 

conjugated double bonds. Its chemical structure can be seen in Figure 2.14.  

 

 

Figure 2.14. The chemical structure of pentacene (acquired from 

http://www.sigmaaldrich.com) 

 

Thus, a Pz-electron can delocalize in the entire molecule. In fact, its semiconductor-

like property was discovered in 1960. It was not until 2003 that the first OFET, with 

pentacene thin film as its active layer, was finally successfully created by the Kelley 

group [27]. The mobility of the holes in the device was above 5 cm2/Vs.  

After this, it became clear that small molecule material had enormous potential in 

organic transistor devices. In 2007, the Palstra group [28] constructed a pentacene 

single-crystal OFET, where the highest mobility was 40 cm2/Vs. From Figure 2.15, 

it can be seen that pentacene is composed of five parallel benzene rings which are 

closely tied together. Compounds composed of two, three and four benzene rings also 

exist, namely naphthalene, anthracene, and tetracene. Their structural diagrams can be 

seen in Figure 2.15.  

 

http://www.sigmaaldrich.com/
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Figure 2.15. The chemical compounds of p-type fused aromatic hydrocarbons  

(a) naphthalene (b) anthracene (c) tetracene 

 (acquired from www.sigmaaldrich.com) 

 

The mobility of all of these compounds is lower than pentacene. The charge carrier 

mobility of anthracene signal crystal is only 0.02 cm2/Vs  under low-temperature 

environment [29], and hole mobility of the thin film and single crystal of tetracene are 

reached at 0.10 cm2/Vs [30] and 1.3 cm2/Vs, [31] respectively. The reason is as the 

number of benzene rings increases, the compound stabilization decreases. Therefore, 

pentacene is the best for parallel fused ring aromatic hydrocarbon organic 

semiconductors. Although pentacene has high hole mobility, its low solubility, and poor 

air stabilization seriously limits its application. In particular, pentacene in position 6 and 

13 react easily with oxygen to form quinone, this kind of impurity results in a π-orbital 

overlap in the active layer and lowering the performance of the device [32]. By using 

this characteristic, the Anthony group considered functional group modification of 

these two positions so as to enhance its soluble ability and hole mobility [33]. In an 

experiment, five different functional groups were added to the pentacene molecule. In 

these pentacene derivatives, TIPS-pentacene demonstrated the best performance, with 

its field effect mobility improving to 0.4 cm2/Vs [34]. 

 

http://www.sigmaaldrich.com/
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2.3.2.1.2  Porphyrin and phthalocyanine macrocyclic molecules 

Porphyrin and phthalocyanine macrocyclic molecules are very special organic 

compounds. Their central empty position provides the opportunity for combination with 

various metallic elements in order to create new materials. Both of their chemical 

structures are shown in Figure 2.16 below. 

 

 

Figure 2.16. The chemical structure of porphyrin and phthalocyanine macrocyclic 

molecules. (a) porphyrin (b) phthalocyanine (acquired from Ref [35]) 

 

Copper phthalocyanine (CuPc) is one such excellent compound. As suggested by the 

name, phthalocyanine’s central position is occupied by a copper atom. The compound 

structure is illustrated in Figure 2.17. 
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Figure 2.17. The chemical structure of Copper phthalocyanine (CuPc) (acquired from 

http://www.sigmaaldrich.com/catalog/product/aldrich/546682?lang=en&region=GB) 

 

In 1996, Bao et al. investigated its field effect mobility dependency on temperature [36]. 

Through the use of vacuum deposition film on various temperature substrates, they 

found that mobility was increased when the substrate temperature was elevated in a 

vacuum, with the highest mobility achieved being 0.02 cm2/Vs, where the substrate 

temperature was 150℃. This series of experiments also proved that temperature could 

affect the degree of film crystallization, resulting in changes in orientation and mobility. 

In 2005, Zeis et al. [37] conducted a signal crystal OFET experiment, where the 

mobility achieved was 1 cm2/Vs in darkness and air environment.  

Another macrocyclic, porphyrin, also with a central unfilled structure, can also combine 

with metals to form metalloporphyrin. In addition, under different conditions, benzene 

substitution can occur at the porphyrin four meso-positions, or form porphyrins bearing 

benzene rings fused at the four β-pyrrolic positions. The former is known as 5,10,15,20-

tetraphenylporphyrin (H2TPP) [38, 39] and the latter tetrabenzoporphyrins (TBPs), the 

synthesis process of which is complicated and can be found in [40]. The molecular 

http://www.sigmaaldrich.com/catalog/product/aldrich/546682?lang=en&region=GB
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structures can be seen in Figure 2.18.  

 

  
Figure 2.18. The chemical structure of both of macrocyclic compounds 

(a) 5,10,15,20-tetraphenylporphyrin (H2TPP) (b) tetrabenzoporphyrins (TBPs) 

((a) acquires from http://www.nanoniele.jp/cgi-

bin/nanoniele.cgi?inputsite=abbsearch&keyword=H2TPP and (b) acquires from Ref 

[40]) 

 

G. Conte’s group [41] conducted an experiment. Firstly, the H2TPP was dissolved in 

chloroform, and it was then deposited by the spray method on the substrate to build the 

OFET. The measurement undertaken in a vacuum at room temperature revealed that the 

mobility was  0.012 cm2/Vs . Another macrocyclic, tetrabenzoporphyrins (TBPs), 

which precursor synthesis process can be found in [42]. In my experiment, the TBPs 

precursor centre is occupied by nickel (NTBs). Its molecular structure can be seen in 

Figure 2.19 below, and the related details will be provided in Chapter 6. 

 

http://www.nanoniele.jp/cgi-bin/nanoniele.cgi?inputsite=abbsearch&keyword=H2TPP
http://www.nanoniele.jp/cgi-bin/nanoniele.cgi?inputsite=abbsearch&keyword=H2TPP
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Figure 2.19. The chemical structure of nickel- tetrabenzoporphyrins (NTBs) 

precursor (acquired from Ref [43]) 

 

2.3.2.2  N-type small molecule materials 

In n-type small molecule semiconductor design, one crucial point is material air 

stabilization. Therefore, finding a method to reduce LUMO energy level to eliminate 

air sensitivity, as well as Schottky barrier, thereby making it match with an inert metal 

work function is a possible future direction.  

Bao et al.[44], based on a previous experiment, introduced different metal elements, 

such as copper, zinc, and cobalt in phthalocyanine in order to synthesize different 

metallophthalocyanines, before all hydrogen elements were substituted by halogen 

elements, such as fluorine and chlorine. The result was the formation of n-types, such 

as F16CuPc  perhalogenated metallophthalocyanines organic semiconductor. The 

chemical structure has been illustrated in Figure 2.20 below. 

  



 

65 

 

 

Figure 2.20. The chemical structure of F16CuPc. (acquired from 

http://www.sigmaaldrich.com/catalog/product/aldrich/446653?lang=en&region=GB) 

 

An OFET constructed by vacuum deposition contains small molecules on the same type 

of substrate at different temperatures. These results prove that electron-withdrawing 

groups (fluorine) are able to lower the LUMO energy levels of molecules, elevating the 

air stabilization of n-type materials; at the same time, the field-effect mobility is 

strongly dependent on metal coordination, and the substrate temperature for deposition 

was again verified [44]. 

In 1998, the Suzuki group [45] synthesised perfluoropentacene (C22F14) compound, the 

structure of which can be seen in Figure 2.21 below.  

 

http://www.sigmaaldrich.com/catalog/product/aldrich/446653?lang=en&region=GB
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Figure 2.21. The chemical structure of perfluoropentacene (acquired from 

https://commons.wikimedia.org/wiki/File:Perfluoropentacene.svg) 

 

The thin film active layer was a high vacuum deposition on an OTS-treated substrate at 

various temperatures in OFET transistor fabrication, and the mobility measurements 

were taken at room temperature in a vacuum chamber. A highest mobility of 

0.11 cm2/Vs was observed at a substrate temperature at 50°C. This group also built 

bipolar OFETs by using perfluoropentacene and pentacene together. The field-effect 

mobility for the operations of holes and electrons are, respectively, 0.52 

and 0.022 cm2/Vs [45]. 

In order to well align the small molecule semiconductor LUMO band with metal 

electrodes energy level to get efficient electron injection, the Hu group [46] designed 

an OFET by using asymmetrical electrodes (Au/Ag) with a single crystal instead of thin 

film F16CuPc. The result was a much superior device performance, where the electron 

mobility was 0.2 cm2/Vs with an on/off ratio of over 6 × 104.  

 

 

 

https://commons.wikimedia.org/wiki/File:Perfluoropentacene.svg
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2.4  Organic Polymer Field Effect Transistors  

So far, we have reviewed the conductivity mechanism of an organic semiconductor and 

understood the material can be divided into two classes according to their chemical 

properties. In this section, we will continue recalling, but the focus switch to the organic 

material application in electronics device: organic field effect transistor (OFET). 

 

2.4.1 Device Structures and Theory 

2.4.1.1  Field effect transistor structures  

Depending on the location of the gate deposition, transistor structures can be divided 

into two types: top-gate and bottom-gate. Each contains two types because the source 

and drain electrodes have a different semiconductor layer combination. Therefore, in 

total, there are four structures, all of which are illustrated in Figure 2.22 below.  
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Figure 2.22. Schematic diagrams of the four common transistor architectures with the 

electrodes in pale gray, dielectric in blue, semiconductor in red, and substrate in dark 

gray. 

(a) Top-gate bottom-contact (TGBC)  (b) Top-gate top-contact (TGTC) 

   (c) Bottom-gate top-contact (BGTC)  (d) Bottom-gate bottom-contact (BGBC) 

(acquired from Ref [47] ) 

 

From the device structures presented above, it can be seen that a transistor is 

manipulated by three electrodes: source, drain, and gate. Herein, the semiconductor 

layer always is always in contact with the source and drain, separated from the gate by 

a dielectric layer. At present, the most popular structures are (b) and (c). In both cases, 

the organic semiconductor can be deposited on the insulator layer before the deposition 

of metallic electrodes. This method can effectively improve the quality of the interface 

between the semiconductor and insulator layer. The interface quality is a very important 

factor in device fabrication. Since the organic material grown on different substrates 

will occasionally exhibit different properties, thereby deciding the device performance. 
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In this way, the interface between these two layers is very uniform, reducing the 

probability of the charge carrier trap. In contrast, for the other two structures, the 

molecular crystals have to grow on two kinds of materials (metal and dielectric material) 

at the same time, which will almost certainly result in the structure and properties being 

completely different on these two surfaces, thereby increasing the probability of 

obstructing the charge carrier injection. This would decrease the device performance, 

potentially even resulting in no response at all. 

 

2.4.1.1  Device working theory 

The transistor charge carrier injection mechanism is clarified in Figure 2.23 [48]. The 

LUMO and HOMO bands of the organic semiconductor correspond to two metallic 

electrodes at the Fermi level. To take the n-type as an example, in the case of gate bias, 

it is zero, and even when applying a voltage between the source and drain electrodes, 

there is no current flow because there is no charge carrier movement in the 

semiconductor layer. As the gate bias increases, a large electric field is produced at the 

interface between the semiconductor and dielectric layers. This field causes LUMO 

lever band bending which aligns it with respect to the Fermi level of the metal contact, 

if the gate voltage is large enough, thereby making the LUMO and Fermi level 

resonation (flat band). In addition, negative charges begin to accumulate in the LUMO 

band before applying a small positive voltage, meaning that current can flow from 

source to drain contacts. 
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Figure 2.23. The Charge carrier injection 

(acquired from Ref [48])  

 

For the p-type, once there is a negative bias on the gate, the HOMO band will align and 

resonate with electrodes at the Fermi level when the negative gate voltage is sufficient, 

resulting in holes slowly gathering in the HOMO. A small voltage between the source 

and drain leads to current flow in the semiconductor layer. 
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2.4.2 Fundamental parameters 

Every device has its own standard, which is also true for transistors. Some key 

parameters used to evaluate device performance will be examined in this section, 

specifically charge mobility (μ), on/off ratio, threshold voltage (VT) and subthreshold 

(S). The majority of the time, these parameters can be captured by a transfer curve (ID −

VG) and output curve (ISD − VD). An example of both these types of curves can be seen 

in Figure 2.24. 

 

               

Figure 2.24. The information of working parameters 

(a) Output curve (b) Transfer curve 

(acquired from Ref [48]) 

 

2.4.2.1 Threshold and Sub-threshold 

The threshold voltage is the minimum gate voltage required for accumulating the 

charge carriers at the OSC/insulator interface forming a conducting path between the 

source and the drain [49]. In general, it is hoped that the threshold voltage is as low as 
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possible so that even a small voltage can drive and make a transistor work. The concept 

of threshold has been investigated by Gilles Horowitz’s group [8]. In his concept, the 

threshold voltage can usually be determined from a transfer curve. Its value can be 

acquired by drawing a tangent line from the linear region of Id
1/2 to the VG value on 

the abscissa. The intercept point is the value. In Figure 2.25 (b), in this n-type transistor 

transfer curve, the threshold value is about 10 V. ‘Subthreshold’ is another important 

parameter, which can weigh the speed of current change when the transistor switches 

from on to off. The equation for this is [50]: 

 

                    S = d𝑉𝑔/𝑑 (log Id）                   (1)  

 

The unit of S is mV/dec; a smaller value of S indicates a smaller voltage change 

requirement and the device switches more quickly from “on” to “off”. 

 

2.4.2.2 The on/off ratio  

The on/off ratio actually is the transistor  Isd   ratio between the “on” and “off” 

condition. It is also a significant parameter which can reflect the device switching 

performance under a given gate bias and can usually be calculated using an exponential 

transfer curve. In Figure 2.25 (b), at the point of V0, the transistor is switched on and 

switched off at the linear region. Therefore, the on/off ratio is about 105. In device 

performance evaluation, it is hoped that the ratio is as high as possible. A low ratio 
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indicates that the value of an on and off current is so close that the transistor cannot be 

turned off. Figure 2.25 (b) also illustrates that if the gate bias increases, the ratio’s 

magnitude is affected to some degree, although the effect is limited.  

 

2.4.2.3 Charge carrier mobility 

The key factor that characterizes charge transport is the carrier mobility [8]. This 

parameter reflects hole and electron mobility in organic semiconductor within different 

electric fields. Figure 2.24 (a) is a classic transistor output curve, 𝐼𝑠𝑑  which increases 

with an increase in gate bias. The output contains two parts: the linear regime and 

saturation regime. As such, mobility in these two regions differs. In a review by 

Horowitz [8], the I-V (current-voltage) expression derived for inorganic-based 

transistor in the linear and saturation regimes was shown to be readily applicable to 

organic transistors. The expression in the linear regime is: 

 

 

                     𝐼𝑠𝑑 =
𝑊

𝐿
𝜇𝐶(𝑉𝐺 − 𝑉𝑇)                (2) 

 

In the saturation regime, the formula is: 

 

𝐼𝑠𝑑 =
𝑊

2𝐿
𝜇𝐶(𝑉𝐺 − 𝑉𝑇)2               (3) 
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where, 𝐼𝑠𝑑 is the current between source and drain electrodes. W and L are the length 

and width of the channel, respectively; μ is the charge carrier mobility, C is 

capacitance, 𝑉𝐺  is the gate voltage and 𝑉𝑇 is the threshold voltage. 

 

2.5 The Organic Electro-Chemical Transistor 

(OECT) 

The application of conjugated polymeric materials is not limited to the semiconductor 

level. Depending on the results of synthesis, different doping levels and methods, its 

conductivity can exhibit different ranges, sometimes even rivalling conductors.  

 

2.5.1 Materials and properties 

During the second half of the 1980s, scientists at the Bayer AG research laboratories in 

Germany developed a new polythiophene derivative, poly(3,4-

ethylenedioxythiophene), abbreviated as PEDOT or PEDT [51]. The chemical structure 

of material is shown in Figure 2.25 below.  
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Figure 2.25. (a) The chemical structure of poly(3,4-ethylenedioxythiophene) 

(PEDOT) (b) The oxidation status of PEDOT (acquired from 

https://en.wikipedia.org/wiki/Poly(3,4-ethylenedioxythiophene)) 

 

In the early synthesis stage, PEDOT was a kind of black, insoluble, polymerized from 

EDT monomer, with a high conductivity (300 S/cm) [51]. It is characterized by a thin 

transparent film and the ability to have a strongly oxidized state in the air [52, 53, 54]; 

as such, it quickly attracted the attention of both industry and academia. However, in 

terms of its application, its insolubility was still a major drawback. This solubility defect 

was overcome by blending it with a kind of water-soluble charge-balancing dopant 

polyelectrolyte, poly(styrene sulfonate acid) (PSS), where the chemical structure has 

been illustrated in Figure 2.26 below. 

 

https://en.wikipedia.org/wiki/Poly(3,4-ethylenedioxythiophene))
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Figure 2.26. The chemical structure of poly(styrene sulfonate acid) (PSS) (adapted 

from Ref [55]) 

 

So they could combine to yield a polymeric material, PEDOT/PSS [51, 30].  

 

 

Figure 2.27. The chemical structure of blending PEDOT and PSS acid 

 (acquired from Ref [51])  

 

This kind of polymerization method for EDT is called BAYTRON P and was developed 

at Bayer AG [51 (ref 11,12)]. This polyelectrolyte can be dissolved well in water with 

high conductivity (10 S/cm) and has visible light transmissivity, good film-forming 
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ability and excellent ambient stability properties [51]. The interesting aspect is, after 

drying, the film becomes insoluble in any common solvent [51]. This polymeric 

material has been employed in several different areas, such as chemical sensors [56] 

and light emitting diodes [57].  

There are several techniques for EDOT-based monomer polymerization. Using PSS as 

an oxidative agent is one of the most common and practical methods. Through 

complexing with different oxidative solutions, the result is that polymeric materials 

exhibit different properties. For instance, replacing the PSS with iron(III) tris-p-

toluenesulfonate (FeIII(OTs)3) to form PEDOT-OTs is another option that was invented 

by De Leeuw et al [58] and developed by Bayer AG [59]. Through this development, 

the maximum conductivity exceeds 1000 S/cm. In addition, in recent years, conducting 

polymers have exhibited attractive thermoelectric, even semi-metallic properties. Olga 

et al. have comprehensively studied the relationship between the thermoelectric and 

oxidation level of the material [60] and the semi-metallic features [61]. The 

PEDOT/PSS conductivity could be enhanced by organic solvent treatment. Ouyang 

group [62] found that the PEDOT:PSS film which is soluble in water becomes insoluble 

after treatment with ethylene glycol (EG), and EG treatment can lower the energy 

barrier for charge hopping among the PEDOT chains, lowering the polaron 

concentration in the PEDOT:PSS film by about 50%, and increasing the 

electrochemical activity of the PEDOT:PSS film in NaCl aqueous solution by about 

100%. According to the type of dopant, neutral PEDOT can also be doped to an n-type 

material using a reducer. Ahonen et al. doped n-type PEDOT and confirmed that it is 
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unstable, even in an extremely dry-oxygen-free environment [63], thus making n-type 

PEDOT/PSS hard to use.  

 

2.5.2 The Field Effect Transistors  

Based on these excellent behaviours, PEDOT/PSS can be implemented in several 

applications, in particular, large area flexible logic circuitry design. The Nilsson group 

[56] created a humidity sensor based on an organic electro-chemical PEDOT/PSS 

transistor, where because of its water soluble characteristic, the substrate of the device 

was plastic foil and ordinary paper rather than conventional silicon substrates. 

Touwslager et al. [64] designed and successfully fabricated complex, all-polymer 

integrated circuits by patterning PEDOT/PSS as electrodes on a wafer. This experiment 

broke through the ink-jet printing limitation, providing a good direction on using 

organic materials as electrodes to realize large-area flexible electronics device 

fabrication. In the medical profession, the Biscarini group [65] employed PEDOT/PSS, 

poly(L-lactide-co-glycolide) (PLGA) and electrolyte gate, fabricating an organic 

electrochemical transistor as a prototype in order to build an electrocardiographic (ECG) 

recording device. In the case of an organic electro-chemical transistor (OECT) based 

ECG sensor, the recording occurs by attaching the transistor’s exposed PEDOT:PSS 

channel directly on the skin, which replaced the role of the gate, to measure the cardiac 

rhythm. This state of the art result highlights the feasibility of realizing simple organic 

bioelectric interfaces on implantable bio-scaffolds which would allow the recording of 
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signals from muscular or nervous tissue to monitor health state.   

All of these examples clearly show that PEDOT/PSS can be widely used in practical 

applications due to its superior behaviour.  

 

2.6 The “Coffee-stain” Effect 

2.6.1 The “Coffee-stain” effect phenomenon  

The “coffee-stain” effect is a very common phenomenon in our life. Coffee left 

overnight can form a ring-shaped stain caused by the underside of the cup. This is true 

not only for coffee droplets but also all droplets containing non-volatile solutes drying 

on a solid surface, all of which can leave a high density, ring-like deposition. This 

interesting phenomenon was first analyzed in the pioneering work by Deegan [66]. One 

of the main proposals in his paper was that this form of deposition could be predicted 

and controlled, no matter what the nature of the liquid, solute, and substrate. All that 

would need to be satisfied are the following conditions: that the solution on the substrate 

has a contact angle, that the contact line is pinned on the substrate, and that the solvent 

can evaporate. In the coffee-ring set up process, the contact angle plays a significant 

role. The angle can be determined by the interfacial tensions between the liquid, solid 

and the ambient medium which is usually air [67], as can be seen in Figure 2.28. 

Depending upon the degree of the contact angle when the droplet spreads on the 

substrate and reaches an equilibrium state, its nature will change. If the angle is less 

than 90 degrees (θ < 90°), the substrate surface for the droplet will be hydrophilic; in 
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contrast, if the value is greater than 90 degrees (θ > 90°), it will be hydrophobic.  

 

Figure 2.28. A droplet on a hydrophilic substrate surface  

 

When it is hydrophilic, the contact line can easily be pinned onto the edge of a droplet 

which has a flat surface. In such a case, the droplet radius and shape are fixed and reach 

equilibrium status. A process of sessile droplet evaporation, with three distinct phases, 

has been clearly described by Mampallil [67]. In the first stage, due to the rapid liquid 

molecular motion, the vapour on the surface of a droplet quickly reach saturation and 

diffuses into the air leading to the contact angle (θ) magnitude beginning to decrease. 

At the same time, the droplet height also decreases. When the contact angle decreases 

to a certain level, the contact line begins to slip over the surface. In the second stage, 

the contact angle remains fixed while the droplet size shrinks. The contact line moves 

in a stumbling way. In the final stage, both the droplet radius and the contact angle 

decrease sharply. However, on a highly hydrophilic surface, the second and third stages 

do not, in fact, exist because the contact line was already pinned onto the textured 

surface, and when the liquid contains non-volatile solute particles, it is much stronger.  
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“Coffee-ring” geometry is formed by the aggregation of colloidal particles on the edge 

of a drop when the liquid dries out. According to Deegan, the capillary force was the 

reason that particles finally were pushed and deposited on the vicinity of the contact 

line. The Nagayama group [68] studied the mechanics of this force between colloidal 

particles in detail. 

The capillary force consists of two parts, namely ‘floating force’ and ‘immersion force’, 

where the former is related to particle weight and the latter is determined by the liquid 

thickness of the particle diameter. Snoeijer et al [69], through observation of the 

geometry of the edge of the ring, found that colloidal particle arrangement in the 

“coffee-stain” is not homogeneous, but rather an ‘order-to-disorder’ process. The 

specific sequence of this is square packing, hexagonal packing and then disordered 

packing. Figure 2.30 clearly demonstrates these three phases. It shows that at the initial 

stage, the velocity of the molecules’ thermal motion is slow, meaning that particles have 

sufficient time to arrange themselves through Brownian motion and form an ordered 

structure, while at the final phase, there is insufficient time for molecules to rearrange 

their position and form a disordered structure. 
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Figure 2.29. The order-to-disorder partials arrangement during stain formation 

(acquired from Ref [69]) 

 

Another interesting phenomenon during the evaporation process is that the droplet 

surface engenders a temperature gradient. Its lowest point is located on the highest 

vertical place from the isothermal solid surface to the droplet curved surface because 

this is the farthest distance between them. This gradient causes a difference in droplet 

surface tension. In addition, the droplet inside forms a concentration gradient because 

of the different evaporation rate on the droplet surface. Combining these two factors, a 

Marangoni flow [70] is generated in the sessile droplet [67]. This flow can provide a 

small compensation for the liquid evaporation from the edge, which provides the 

dispersed particles with an assisted flow outward to that point combination. Capillary 

flow, meanwhile, forms the “coffee-ring” at the end of evaporation [67], which can be 

seen in Figure 2.31 below. 
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Figure 2.30. The particles move forward to the edge of the pinned contact line by 

capillary flow at the end of evaporation and finally form the “coffee-ring” 

geometry.   

 

2.6.2 The “Coffee stain” effect in applications 

Transparent conducting electrodes are essential components in some organic device 

fabrication processes, such as organic solar cell (OSC) [71], touch screen [72] and 

organic light emitting diodes (OLEDs) [73]. The conventional electrodes are fabricated 

via photolithography, or e-beam lithography, however, each of them has inherent 

limitations, such as requiring an expensive vacuum system, which is very difficult in 

the commercialization of low-cost large area electrode deposition. As mentioned above, 

non-volatile or colloidal particles flux can be pushed toward the substrate-liquid-air 

contact line and finally self-assemble due to convective flow during the solvent 

evaporation process. Some scientists take advantage of this mechanism to develop 

several inexpensive routes toward obtaining well-ordered material structure on large 

areas.  
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2.6.2.1  Patterning nanoparticle wires, grids by flow coating 

The flow coating technique, used in conjunction with functionalized nanoparticles, is 

ideal for self-assembly and generation of functional objects [74]. The flow coating 

equipment consists of a knife blade which is positioned above a translation stage at a 

certain distance and angle, as shown in Figure 2.31.  

 

 
Figure 2.31. The flow coating apparatus components (acquired from Ref [75])   

 

It depends on the “coffee-ring” effect mechanism, at the stage of horizontal translating, 

the solution can be loaded and trapped between these two plates by capillary force. As 

the solvent evaporates, these non-volatile solutes migrate and are carried to the pinned 

contact line by convective flow. By controlling the intermittent stage stopping time and 

shift distance under a certain velocity, see Figure 2.32 below, this cost-effective 

technique could lead to well-aligned material geometry. 
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Figure 2.32. The stage intermittent moving and stopping at a fixed velocity.  

(acquired from Ref [75]) 

 

In 2010, Crosby et al. [74] reported the spontaneous, controlled formation of striped 

patterns of CdSe-based nanoparticles on underlying substrate by the flow coating 

method. In his work, one kind of material wires was well patterned on the substrate at 

first. Then, the part of nanoparticle (NP) ligands in stripes were cross-linked by UV-

irradiation to enhance the degree of stripes robust, otherwise, these wires are completely 

dissolved on the second wire patterning process. Another sort of CdSe-based 

nanoparticle with different ligands was the second material which was patterned 

successfully either perpendicular or parallel to the first pattern, without any overlying 

or deformation at the junction point on the grid structure. Therefore, he concluded that 

the grid structure cannot be achieved by micro-contact printing (µCP) due to the 

deformation of PDMS during the second time patterning [76]. In addition, he also 

mentioned that this fabrication method was applicable to some other materials, such as 

Au nanoparticles, PMMA, and even polydimethylsiloxane (PDMS) to form well-

ordered stripes geometry with different space size. In the same year, Ressier’s group 

[77] published the capabilities of convective self-assembly (CSA) to fabricate well-

ordered centimetre-long conductive nanoparticles wire arrays from aqueous suspension 
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of 18 nm gold colloids on flat, non-patterned SiO2/Si  substrates. The remarkable 

result of their experiment was that the orientation of wire array growth can be switched 

90°automatically during the drying, changing from parallel to perpendicular to the 

moving meniscus, just by controlling the substrate temperature. Such wire array 

orientation changes due to the temperature decrease were first observed and obtained 

and that phenomenon also revealed that the solution convective flow really depends on 

the substrate temperature. With the lower temperature, these particles cannot acquire 

adequate energy and move slowly to the meniscus because the convective flow inside 

the droplet is slow as well. As a consequence, they cannot protrude the liquid-air 

interface and are not pinned to the substrate, resulting in nanoparticle accumulation at 

the meniscus. When the density reached the critical point, the nanoparticle could pin on 

the substrate, and the tip of the wire protrudes perpendicularly to the meniscus, thus, 

forming a new orientation of the wire array. Such a discovery of a tuneable orientation 

wire array fabrication method provides a new opportunity for nano-device application. 

The flow coating technique seems to provide an effective way for low-cost large area 

electrodes deposition; in addition, the space between electrodes can be flexibly 

controlled compared to the implementation of a lithographic mask. This advantage is 

able to benefit those electrical devices, such as organic solar cell and touch screens, 

which need transparent conducting electrodes component. Five years later, Jeong Ho 

Cho et al [75] introduced and successfully fabricated flexible and transparent metallic 

grid electrodes via flow-coating by directly patterning silver nanoparticles (AgNPs). 

During the patterning with different solution concentration (1-10 mg/ml), the width of 
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lines obviously increases with higher concentration solution. In the electrode 

characterization measurement, the wires are patterned from concentrations below 

5 mg/ml have no conductive due to wire discontinuing. While the wire resistivity 

decreased as the concentration of AgNPs in solution increased until exceeding 7 mg/ml, 

some of the unwanted clusters are formed in patterning procedure. Therefore, from their 

experiment, we could conclude that the solution concentration is another critical point 

that has to be considered in patterning procedure.  

 

2.6.2.2 The limitations of the “coffee stain” effect in 

application  

Actually, the “coffee-stain” effect is a ubiquitous presence in our life. This phenomenon 

can often be a nuisance, or indeed a bottleneck in many industrial applications such as 

microelectronics [78], ink-jet printing [79] and bioassays [80]. The reason for this is 

that once a “coffee-stain” geometry is formed, all materials become a circle, creating a 

heterogeneous pattern. This material ring distribution is very difficult in applications, 

in particular when using ink-jet printing for integrated circuits. This technique can print 

materials, such as organic polymer semiconductors, dielectric materials, and even 

electrodes, thereby dramatically lowering the cost of fabricating electronic devices [81]. 

In recent years, ink-jet printing has been widely used in organic polymer transistors. 

However, the “coffee stain” effect seriously affects the printed material morphology. In 

addition, for organic light emitting diodes (OLEDs) using this technique, to deposit a 
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smooth and uniform film is paramount for achieving uniform emission. In the fields of 

bioassay and chemistry, this effect is also a significant, high-impact factor. It can be 

seen that the act of concentrating samples by evaporation will result in material 

distribution. This would cause huge problems for biologists and chemists since the 

majority of the concentration area could not be confirmed and analyzed.  

For all of these reasons, it is stressed that “coffee-stain” should be suppressed and 

avoided. Based on this consideration, several methods have been created. Pasquali and 

colleagues [82] added ethanol into droplets to induce a strong recirculation in the 

droplet to prevent particles moving forward to the contact line, finally depositing 

uniformly on the substrate. Soltman and Subramanian [83] demonstrated how the 

coffee ring effect can be eliminated by temperature control. Mugele et al. [84] applied 

an AC voltage between an electro-wetting droplet and the ITO substrate, by adjusting 

the AC frequency magnitude to keep the contact line continuously moving, and not 

pinned on the substrate. All of these methods demonstrate that the coffee-stain can be 

eliminated by drying the sessile droplet. The problem of adding chemicals in the liquid 

may potentially affect the properties of the materials and result in bioassay inaccuracy. 

Electrowetting is a simple, common and direct way for the droplet to be placed on the 

hydrophobic dielectric layer [84], meaning that an additional layer has to be added if 

electrodes have hydrophilic behaviour. Whether the device performance is affected by 

it or not is a question. The Yodh group [85] proved that changing the shape of the 

suspended particles inside the droplet can be used to clear the “coffee stain” effect. It 

shows a way by which using the particle’s very nature, clearing this effect is possible.  
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In short, there are many who are trying to find a suitable technique for achieving the 

best possible result. However, if we reverse think about this phenomenon, it can 

potentially be manipulated to do something useful, an idea which will be explored in 

Chapter 4.  
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Chapter 3  

 

The experimental instruments and 

techniques 

 

 

3.1 Introduction 

Due to the development of equipment fabrication and technologies in modern 

manufacturing industries, the size of electronic components is much smaller than 

compared to 50 years ago. As of 2016, the most advanced chip manufacturer in the 

world, Intel, has placed around 7.2 billion transistors on a 456mm2  chip [1]. This 

astonishing achievement has necessitated a series of mature fabrication techniques, 

some of which will be examined in this chapter. 
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3.2 Cleanroom fabrication facilities 

All electronic component fabrication must be done in a cleanroom in order to avoid any 

contamination, for example dust dropping, which might occur during the production 

process. Depending on the requirements, a cleanroom can have different levels of 

cleanliness and equipment. The cleanroom at the University of York is level 100. 

 

3.2.1  The optical lithography 

Optical lithography or photolithography is the central method found in the modern 

semiconductor industry. Engineers are continuously trying to pattern as many 

transistors as possible on a small chip so as to enhance CPU processing and computing 

speed. Therefore, a higher resolution in the exposure process is always required. In fact, 

this technology has gradually improved over the past three decades; indeed, in just the 

last year exposure size went from sub-100nm to 14nm. Two key parameters determine 

the quality of photolithography, namely the light wavelength (λ) and numerical aperture 

(NA). In most cases the common light source is ultraviolet (UV). The relationship 

between the resolution and these two parameters can be expressed by 

 

                 CD =  k1  
λ

NA
                 (4) 

 

where CD is the critical dimension, namely the minimum feature size, and k1  is a 

coefficient. As such, the resolution is proportional to the λ/NA ratio. There are two ways 
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to enhance the resolution, which are to decrease the wavelength or increase the 

numerical aperture. Thus, extreme ultraviolet (EUV) can also be another option for 

illumination. 

There are three different types of optical: contact, proximity and projection. This can 

be seen in Figure 3.1 below.  

 

 

Figure 3.1 Three optical lithography modes: (a) contact mode (b) proximity mode (c) 

projection mode. (acquired from Ref [2])  

 

The contact mode is liable to scrub the photoresist on the wafer, leading to an 

unexpected pattern defect. The proximity mode does not have this problem, but its 

printing resolution is lower than the contact mode because there is a vertical distance 

between the mask and photoresist layer. Both of these two modes have a common 

problem, that is, exposure area limitation. In real manufacturing industry, to realize a 

very-large-scale-integration (VLSI) circuit, one-time optical lithography is more than 

enough. The projection mode has been widely employed in the field of industry because 
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it can cover the whole wafer, meaning that the process can be finished step by step, a 

process which is known as “stepper”.  

Research institutions tend to choose the contact or proximity mode. This economic and 

efficient type is suitable for sample fabrication. The entire optical lithography process 

has several steps: wafer substrate preparation, photoresist coating, baking, exposure, 

development, dry etching (if necessary), hard baking, material deposition and lift-off. 

All of these steps have been comprehensively described in [3]. According to the sample 

geometry requirement, there are two types of photoresist, positive and negative, which 

lead to diametrically opposite results.  

 

 
Figure 3.2 The optical lithography results are demonstrated here. (I) The substrate is 

fully covered by a photoresist with a mask on it. (II) After exposure to UV light, the 

mask covered area is made to vanish by the developer through negative photoresists 

(III) the mask uncovered area is made to vanish by the developer in a positive resist.  
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In my experiment, it was most convenient to use the positive photoresist to form a 

transistor channel structure. The commercial positive resist S-1813G2 developer MF-

319 was used. The result is shown in Figure 3.3 below. 

 

 
Figure 3.3 Optical lithography by using a positive photoresist to form a transistor 

structure. 

 

 

3.2.2  Thermal evaporation  

Thermal evaporation is one of the key fabrication techniques. Through this typical 

method, metal materials can be vaporized by heating a filament or crucible, which 

eventually condense on the substrate to form a thin film in a vacuum environment. The 

quality of the thin film depends upon the condition of a vacuum and the purity of the 

source material. Compared to molecular beam epitaxy (MBE) growth, the vacuum level 

in the thermal evaporator chamber is relatively low, a maximum of 10−6 torr after the 

oil pump has evacuated for one hour. The thickness of the thin film can be monitored 

using a quartz crystal with a material intrinsic parameter, such as density and z-factor, 
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entered into the computer. There are two factors that influence the growth of the thin 

film. One is the material holder, where it is very difficult to deposit thick films on the 

substrate if a filament used for evaporation. One reason why the filament is usually a 

wire is that the shape limits the amount of material holding; the other reason is that once 

the current has been applied for a long time, it is probably blown out. However, such 

problems will not happen if use an evaporation boat and crucible as the materials holder. 

Another factor is the intrinsic property of the materials. Refractory materials require a 

relatively high temperature melting point and it is very difficult to acquire evaporation 

growth because, as the temperature increases, the vacuum level will become unstable 

and even decrease, leading to film deposition which is non-uniform and non-continuous. 

The deposition rate can be controlled by applying a current on the material holder. In 

order to get a high-quality thin film, the rate also has to be considered. 

 

3.2.3  Plasma etching 

Plasma etching is a kind of dry etching methodology which is quite useful in 

eliminating impurities and contaminations on a substrate surface. This effective 

technique can ensure that the substrate is completely clean in the metal electrodes 

deposition process. This theory has been fully described in [3]. In general, the plasma 

is created by using high frequency voltages (typically between kHz and MHz) to ionize 

a low pressure gas to create mixed chemical species, including atoms, radicals and ions 

[3]. In a plasma environment, the atoms in the gas are excited from their normal state 
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to a high state in which photon emission of light occurs. This process is normally called 

“glow”. Depending on the purpose, a single gas or even mixed gases are used in the 

plasma and their colours differ, with the colour of oxygen plasma, for example, being 

blue. As mentioned in Section 3.2.1, after the completion of the development step, some 

photoresist dots still stick to the exposed area, and the continuation of development will 

damage the structure. Thus, dry etching using oxygen plasma is an effective way of 

removing such organic contamination. Otherwise, as in the lift-off step, the metal 

electrodes will probably be peeled off by acetone. Figure 3.4 illustrates this condition.  

 

 

Figure 3.4 Gold electrodes peeled off in the lift-off step 

 

Plasma etching is not only efficient in terms of substrate cleaning, but it is also central 

to many manufacturing processes which use silicon and other thin film devices for 

electronics, display or related applications [4]. In the etching process, the key point is 
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must ensure the material which is etched area can react with plasma and form a kind of 

volatile compound, only in this way can avoid new compound redeposits on the 

material surface. Table 1 displays some commonly used elements, and the volatility of 

their materials and corresponding compounds. 

 

 

Table 1. Common elements and materials with halogen-, hydride-, and methyl-

compound volatility. (acquired from Ref [2]). 

 

Therefore, choosing the right gas to achieve the purpose of the etching is important. 

Once a non-volatile product is produced in the etching process, it can form a layer of 

thin film on the material surface. This unwanted compound will significantly affect the 

etching result. 
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Figure 3.5 The plasma equipment 

 

3.2.4  Glove boxes 

A glove box is a sealed container with a fully-filled inert gas (N2) and a low moisture 

level constant (< 0.1ppm ), providing the best environment for organic electronic 

sample fabrication, especially for n-type semiconductor materials. In this non-oxygen 

and water vapour environment, organic polymer solution preparation and deposition 

are carried out smoothly. Film baking is also carried out in order to avoid material 

oxidation when the crystallization occurs. 
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Figure 3.6 The glove box 

 

3.3 Conventional transistor fabrication 

In traditional OS transistor fabrication, all of the equipment previously described has to 

be employed. Prior to this, one important step which has to be carefully done is substrate 

preparation. After a SiO2/Si wafer is cut into pieces (15mm×15mm), some particles, 

oil stains, and fibers always stuck on the surface. In the essential cleaning step, some 

chemicals can help to resolve and remove these contaminations. Usually, these 

substrates are initially cleaned ultrasonically in surfactant (RBS) liquid, before being 

cleaned by acetone and isopropanol (IPA), with deionized (DI) water being used to 

rinse between each step. Finally, drying using nitrogen blow and soft baking on the 

hotplate ensure that all water is evaporated from the substrate surface.  

The following step is that of optical lithography, which produces the transistor 

geometry on the SiO2/Si substrate. Spin-coating at the appropriate setting time (usually 
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30 seconds) and speed (3000 revolutions per minute) forms a photoresist of about 1 μm 

thickness. At this stage, the proximity mode is chosen. In the exposure and developing 

stages, time control is very important in order to avoid damaging the transistor structure. 

The specific parameters have been detailed in the Appendix and the optical lithography 

and developing steps are demonstrated in Figure 3.7. Following this, O2 plasma is 

used to slightly dry clean the substrate so that we can guarantee that the metal materials 

can be properly deposited in order to form a channel and the electrodes. 

 

 

Figure 3.7 Optical lithography and developing steps: (a) SiO2/Si substrate. (b) spin-

coating photoresist (red) on substrate. (c) Mask covered on photoresist. (d) Result after 

exposure and development. 

Generally speaking, to achieve metal evaporated deposition as a transistor’s electrode, 

the best choice is a good work function and an air stable metal, such as gold. While, 
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gold cannot adhere firmly to the silicon dioxide layer, chromium (Cr) or Titanium (Ti) 

can. Therefore, the solution is to initially deposit a very thin film (about 10 nm thickness) 

of Cr or Ti as a seed layer, on the substrate, as shown in Figure 3.8.  

 

 

Figure 3.8. 10 nm Ti deposition on a substrate 

 

Slowly, a uniform gold layer of about 30 nm is grown. Doing it in this way means that 

the gold film is firmly stuck to the electrodes, as shown in Figure 3.9.  
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Figure 3.9. Gold electrode deposition 

 

In order to form the transistor channel, lift-off is a crucial step after the metal 

evaporation. This involves putting the sample into acetone for some time, until the 

photoresist is totally dissolved, and then using ultrasound to gently peel off the 

unwanted portions. After this we then finally achieve the transistor structure. 

The polymer semiconductor is prepared in a glove box, with spin-coating and baking 

also carried out inside it. Depending on the different materials, the baking temperature 

and baking time differ. When these steps are finished, a dielectric material is spin-

coated onto the active layer. The final step is gate deposition on top of the dielectric 

layer, again in the evaporator, by using a shadow mask. The gate material is generally 

Aluminum (Al), because it has a low melting point and is very cheap. 
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All of the techniques concerning the organic semiconductor field effect transistor have 

now been introduced. The order in which they are done can be flexible according to the 

different structures.  

3.4  Characterization Techniques 

3.4.1  Atomic force microscopy 

3.4.1.1 Working principle 

Atomic force microscopy (AFM) is a surface scanning technique that can acquire a 

high-resolution surface nanostructure image. This image can be obtained by measuring 

the force on a sharp tip (whether insulating or not) which is created by the proximity to 

the surface of the sample. This force is kept small and at a constant level through a 

feedback mechanism [6]. This advanced tool has been employed in a wide range of 

areas, such as semiconductor science and technology, polymer chemistry and physics. 

Figure 3.10 shows a simplified diagram which details each component and imaging 

principle of AFM. During the surface characterization processing, the sample is fixed 

on the sample stage by a carbon sticker. Through tuning a laser beam focused onto the 

AFM cantilever, the light beam reflects on the photodetector. As the tip sweeps the 

sample surface, the height variation between them results in the deflection of the 

cantilever. This interaction results in the reflection of the laser spot position on the four 

quadrant photodetector continuously changing. Finally, the difference between these 

positions is captured by the photodiodes on the detector and is converted into electrical 
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signals. The signal intensity is determined by the deflection displacement of the 

cantilever.  

 

 

Figure 3.10. Schematic diagram of AFM 

(acquired from https://commons.wikimedia.org/wiki/File%3AAFMsetup.jpg) 

 

 

3.4.1.2 Working modes 

According to the variation of the force of interaction between atoms (see figure 3.11), 

the AFM can work according to three modes: contact, intermittent contact and non-

contact. 

Contact mode is when the sharp tip touches the sample surface so as to obtain the profile 

of the structure by using the laser beam reflection displacement on the photodetector, 

caused by the cantilever deflection. Since the tip and specimen surface are physically 

in contact during the scanning motion, the interaction between them is that of a 

https://commons.wikimedia.org/wiki/File%3AAFMsetup.jpg
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repulsive force. The the signal measurement is proportional to noise and drift, meaning 

that it is common to use a relatively high flexibility cantilever to increase tip sensitivity; 

this minimizes the effect of those factors and thus increases the signal intensity. The 

advantage of this mode is high image resolution due to the tip being in contact with the 

surface, although the downside is that it is relatively easy to cause damage to the sample 

and tip.  

Non-contact mode is when there is tip separation from the sample surface, but the 

specimen surface and tip are kept in the attractive force region. In this mode, a stiffness 

cantilever oscillates at a given frequency, which is normally near its resonant frequency 

(100Hz ~ 400Hz) and where it has a small amplitude (i.e. a few nanometers). When the 

tip approaches the sample within a distance of between 1 nm and 10 nm, the strong Van 

der Waals force attracts the tip to a position that will change the cantilever oscillation 

frequency or amplitude, meaning that the tip-surface separation distance is also changed. 

The feedback control system tracks the variation, and keeps the cantilever oscillation 

frequency and amplitude constant by adjusting the height. Therefore, the displacement 

on the photodetector is not caused by cantilever deflection, but rather is based on the 

resonant frequency or oscillation amplitude of the cantilever. 

Intermittent contact mode, also sometimes known as tapping mode, is quite a popular 

mode because it combines the advantages of both the previously mentioned modes. 

Similar to the non-contact mode, the cantilever oscillates or vibrates at a given 

frequency but has a large amplitude (from several nanometers to 200 nm) and keeps the 

space between the tip and the sample surface constant so long as there is no interaction 
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with the specimen surface. Since the tip-surface separation distance is located in the 

middle of the whole system, the force of interaction between the tip and surface atoms 

or molecules is alternately, attractive and repulsive. As the tip comes closer to the 

sample, the cantilever oscillation amplitude is truncated as it starts “knocking” the 

surface. Eventually, the feedback control system will adjust the tip and surface distance 

to keep the amplitude constant. The tapping mode can acquire a high lateral resolution 

image from a fairly rough samples, while the scanning speed is slower than in the 

contact mode. 

 
Figure 3.11. The interaction force between the tip of an AFM and the sample surface 

as a function of distance (acquired from 

http://www.nanophys.kth.se/nanophys/facilities/nfl/afm/fast-scan/bruker-

help/Content/SPM%20Training%20Guide/Atomic%20Force%20Microscopy%20(AF

M)/Atomic%20Force%20Microscopy%20(AFM).htm) 

 

 

 

 

http://www.nanophys.kth.se/nanophys/facilities/nfl/afm/fast-scan/bruker-help/Content/SPM%20Training%20Guide/Atomic%20Force%20Microscopy%20(AFM)/Atomic%20Force%20Microscopy%20(AFM).htm)
http://www.nanophys.kth.se/nanophys/facilities/nfl/afm/fast-scan/bruker-help/Content/SPM%20Training%20Guide/Atomic%20Force%20Microscopy%20(AFM)/Atomic%20Force%20Microscopy%20(AFM).htm)
http://www.nanophys.kth.se/nanophys/facilities/nfl/afm/fast-scan/bruker-help/Content/SPM%20Training%20Guide/Atomic%20Force%20Microscopy%20(AFM)/Atomic%20Force%20Microscopy%20(AFM).htm)
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3.4.2 Scanning electron microscopy 

The scanning electron microscope (SEM) uses a focused beam of high-energy electrons 

to generate a variety of signals on the surface of solid specimens. Compared to AFM, 

the SEM is more attractive because it can not only reveal the specimen surface features, 

but can also magnify the 3D image. The important part of the SEM is the electron 

column, which consists of an electron gun and several electron lenses and apertures. 

For acquiring a high resolution images, some electron source parameters, such as 

brightness and lifetime, combine to affect the quality of the image. The structure of an 

SEM is illustrated in figure 3.12 [8]. 
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Figure 3.12. Schematic diagram of the electron column of the SEM  

(acquired from Ref [8]) 

 

In older SEMs, the electron beam is generated by either a tungsten hairpin filament or 

a lanthanum hexaboride crystal (LaB6), with high voltages is applied to the electron 

gun. Only when the filament is heated to a white hot temperature, around 2700K, can 

it produce abundant electrons, which are emitted from the tip to form a beam current. 

These electrons are accelerated by the electron gun by adjusting the lens system. 

Eventually, they arrive in the sample vacuum chamber, and interact with the specimen 

located on the stage. During the beam current production process, the filament 

continues at an extremely high temperature, Therefore, the filament lifetime is a key 
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point of reliability in electron beam generation. Another key parameter, the brightness, 

is also a crucial point in electron source performance, which can determine the image 

quality. Lanthanum hexaboride crystal (LaB6 ) has a smaller size, and has a longer 

lifetime with a lower work function electron source. However, it does provide more 

(about 5 to 10 times more) brightness compared to tungsten, under the same conditions. 

In order to achieve a high quality image, some advanced electron sources, such as the 

field-emission gun (FEG), have been employed instead of filament or crystal.  

 

 
Figure 3.13 Three kinds of conventional electron emission elements with their 

different shapes (acquired from http://li155-

94.members.linode.com/myscope/sem/practice/principles/gun.php). 

 

The shape of these electron sources are provided above in Figure 3.13. It is clear that 

the FEG tip is the sharpest of all of them. This makes it easier for electrons to escape 

from the source. The field emission gun has two classes: the cold cathode type and the 

thermal (thermally assisted) Schottky field emission type. The related parameters, 

which compare different electron sources are displayed in Table 2. 

 

http://li155-94.members.linode.com/myscope/sem/practice/principles/gun.php
http://li155-94.members.linode.com/myscope/sem/practice/principles/gun.php
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Source           Brightness          lifetime           source size 

                 A/cm2sr            (h)                (nm) 

Tungsten          105               40-100          3 × 104 − 105 

LaB6             106              200-1000         5 × (103 − 104)         

Field emission 

Cold cathode       108               >1000                < 5 

Thermal assisted    108               >1000                < 5 

Schottky          108               >1000               15-30 

 

Table 2. Comparison of different electron sources parameters at 20 eK  

(acquired from Ref [8]) 

 

From this table, it can be seen that the field emission electron gun can provide more 

brightness, has a longer lifetime as well as a smaller size of electron beam. The smaller 

source size means that a better electron probe can be achieved on the specimen surface, 

gaining a good resolution in the SEM. In my experiment, a thermal assisted Schottky 

field emission gun has been used to observe and measure the sample geometry. The 

electron emission and acceleration theory is demonstrated in Figure 3.14. The electrons 

are produced by a large electrical field, about 105to 108 V/cm, between the tip and 

first anode (V1 ). The voltage difference between the second anode and the tip (Vo ) 

determines the acceleration of the electron beam [8]. 
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Figure 3.14 Schematic diagram of the field emission source (acquired from Ref [9]) 

 

As mentioned above, the crossover of the electron beam, which is g by FEG, through 

two or three lens focuses and demagnification, finally forms an electron probe of about 

1 nm diameter, with its current impinging on the sample surface [9]. This probe current 

raster over the sample region generates several types of signals through beam-specimen 

interaction, which are capable of carrying information about the specimen composition, 

topography, local fine-scale surface texture and thickness. The major signal is caused 

by secondary electrons (SE) and backscattered electrons (BSE) [10]. 

The secondary electrons are specimen electrons, which receive enough kinetic energy 

from the electron beam. With inelastic collisions they are ejected from the specimen 

atom with energies in the range of 0 to 50 eV. These low-energy electrons are collected 

and accelerated by a detector which is connected to a raster scan generator, through A/D 

conversion to display an image on a computer monitor. This image production relies on 

primary beam raster scans on the sample surface. At the same time, the angle between 

the incident beam and sample determines the amount of secondary electrons which can 

escape and be captured by the detector, thereby affecting the image brightness and 
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resolution. Secondary electrons are the main source of building the sample image in 

SEM. 

Different to secondary electrons, the high-energy backscattered electrons come from 

the electron beams directly. They are reflected or back-scattered electrons which 

emanate from the specimen interaction volume through elastic scattering interactions 

with specimen atoms. The intensity of BSEs depends on the element types in the sample. 

Usually, heavy elements (with a high atomic number) backscatter electrons more 

strongly than light elements (with a low atomic number). Thus, the image contrast in 

this mode is clearer than in the SE mode. In addition, it can be used to study the 

distribution of elements in the sample. 

Figure 3.15 provides an example of a cross-section of the sample which consists of the 

deposition of two kinds of material on a silicon wafer. The first layer is a photoresist 

and the second layer is PMMA. Since PMMA is an insulator material, when the electron 

beam focuses on the sample, the monitor display only shows the electrons drift 

movement on the surface, and there is no generation of SEs or BSEs. Under these 

conditions, the simple deposition of a thin layer (a few nanometers) of a conductive 

layer material, such as Au, can solve this problem. The sample is fixed by a carbon 

sticker onto a special sample holder (at a 45°tilt angle) and through manual adjustment 

of the angle of the electron it is finally brought to focus on this area. 

 

https://en.wikipedia.org/wiki/Elastic_scattering
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Figure 3.15. A cross-section of a sample image by SEM. The first layer is photoresist 

and the second layer is PMMA. 

 

 

3.5  Measurement Techniques 

3.5.1  Probe station 

A probe station is quite useful for acquiring a signal from a semiconductor device, and 

it is also popular in academic research on electronics and material in science subjects. 

It usually contains three or four very fine conductive needles that connect to a 

semiconductor analyzer. In the testing procedure, taking the TGTC transistor as an 

example, the sample is fixed on the stage by a vacuum system, and two needles must 

carefully pierce the dielectric layer to rest on the source and drain electrodes, before 

another needed is placed on the gate. This is shown in Figure 3.16 below. 
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Figure 3.16 Transistor connection with a probe station 

 

Depending on the type of semiconductor, positive or negative voltage will be applied 

on the gate, source and drain electrodes. According to the requirements, the probe 

station can also be refitted and connected to a vacuum system in a low temperature 

environment, providing a good environment for device measurement. Figure 3.17 

illustrates the traditional whole probe station. 
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Figure 3.17 The probe station 

 

3.5.2  Semiconductor analyzer 

In my experiments, the probe station is connected to a semiconductor analyzer (Agilent 

4516C) which can measure the device parameters after setting a proper voltage range 

between the source, drain and gate. The data can be collected and plotted on the screen. 

 



 

124 

 

 
Figure 3.18 The Agilent semiconductor parameter analyzer (Agilent 4516C) 

 

3.6 Summary 

In this chapter, all the experimental instruments with their principles and operation 

method have been introduced. The traditional device fabrication process and techniques 

also have been introduced. 
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Chapter 4  

 

Patterned organic material wires  

 

 

4.1  Introduction 

In this chapter, the details of organic materials solution preparation for several pattern 

techniques will be introduced. The organic materials include both semiconductors and 

insulators. The pattern technique I used here take full advantage of the “coffee-stain” 

effect that most scientists and engineers are always trying to avoid in their experiments.  
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4.2  Organic materials solutions preparation 

In my experiments, six organic materials and four solvents have been used; and each of 

these materials has their own properties, such as colour, molecular weight and solubility, 

etc. As I have mentioned above, solubility is an advantage for organic semiconductors 

in comparison with traditional semiconductors. Therefore, choosing a proper solvent to 

dissolve those solutes and making them form a homogeneous solution is very important 

for device fabrication.  

 

4.2.1 Organic semiconductor materials solution 

preparation 

First of all, I would like to introduce three kinds of organic semiconductor materials in 

my work. They are poly(3,3′′′-didodecylquaterthiophene) (PQT-12), poly(9,9-

dioctylfuorene-co-dithiophene) (F8T2) and poly{[N,N′-bis(2-octyldodecyl)-1,4,5,8-

naphthalenedicarboximide-2,6-diyl]-alt-5,5′-(2,2′- bithiophene) (P[NDI2OD-T2] ). In 

the Chapter 2, the history and characteristics of them have been described.   

PQT-12, a kind of dark red powder, can only be dissolved by 1’2-dichlorobenzene 

(C6H4Cl2) (DBC). The chemical structure of this solvent is illustrated in Figure 4.1. 
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              (a)                                 (b) 

 

Figure 4.1. The chemical structure of 1’2-dichlorobenzene 

(a) The structural formula (b) the model of DCB 

(acquired from https://en.wikipedia.org/wiki/1,2-Dichlorobenzene) 

 

The high boiling point, about 180℃, of this solvent means that its evaporation speed is 

very slow. This feature is of benefit for thin film deposition during spin-coating. The 

PQT-12 is relatively difficult to dissolve in comparison with the other two materials. 

Even when totally dissolved by solvent, the solution exhibits colloidal status under a 

room temperature environment. Thus, before the spin-coating process, the PQT-12 

solution has to be heated on a hot-plate at 50℃ until it becomes a red transparent liquid.  

The F8T2, also called as 2008P, is a kind of yellow, cotton-like polymer semiconductor 

and its corresponding solvent is Toluene (C7H8). See the Figure 4.2 below. 

 

              

                  (a)                     (b) 

Figure 4.2. The chemical structure of Toluene. 
(a) The structural formula (b) the model of Toluene 

(acquired from https://en.wikipedia.org/wiki/Toluene) 

 

https://en.wikipedia.org/wiki/1,2-Dichlorobenzene
https://en.wikipedia.org/wiki/Toluene
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The F8T2 can be dissolved rapidly by this chemical, forming a light yellow transparent 

solution at room temperature and pressure.  

The last polymer material, an n-type organic semiconductor, is P[NDI2OD-T2]. The 

solvent for this dark blue bulk material is the same as for PQT-12, the 1’2-

dichlorobenzene.  

For studying the organic small molecule crystalline orientation characteristic during the 

material recrystallization, the material I used in my experiment is tetrabenzoporphyrin. 

The solvent for this material is chloroform (CHCl₃). The chemical structure is shown 

in figure 4.3 below. 

 

         

(a)                  (b) 

Figure 4.3. The chemical structure of chloroform 

(a) The structural formula (b) the model of chloroform 

(acquired from https://en.wikipedia.org/wiki/Chloroform) 

 

All of the semiconductor solution preparations are operated in a glove box in order to 

isolate water vapour and prevent oxygen interference. The pattern results of material 

with the solution concentration control will be introduced in Section 4.4.1.  

 

 

https://en.wikipedia.org/wiki/Chloroform
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4.2.2 Organic insulation materials preparation 

In the OFET fabrication, the quality of the insulator layer should also be considered 

because the roughness of dielectric layer can affect the carrier movement on the 

interface between these two layers. Therefore, making the dielectric material dissolve 

sufficiently to increase the surface smoothness of the surface during spin-coating from 

solution can reduce the electron trapping probability.  

The first material is named poly(4-vinylphenol) (PVP). This white powder materiel can 

be easily dissolved in isopropyl alcohol (IPA). The solute and solvent structural 

formulae are demonstrated in Figure 4.4. 

 

                

                  (a)                             (b) 

Figure 4.4. The chemical structure for both of materials 

(a) Poly (4-vinylphenol)  (b) Isopropyl alcohol 

(Both images are acquired from 

http://www.sigmaaldrich.com/catalog/substance/poly4vinylphenol123452497970211?

lang=en&region=GB and 

http://www.mpbio.com/product.php?pid=02194006&country=222, respectively) 

 

The second material is poly(methyl methacrylate) (C5O2H8)n (PMMA), also known as 

acrylic glass material. The monomer of PMMA is the result of methacrylic acid 

http://www.sigmaaldrich.com/catalog/substance/poly4vinylphenol123452497970211?lang=en&region=GB
http://www.sigmaaldrich.com/catalog/substance/poly4vinylphenol123452497970211?lang=en&region=GB
http://www.mpbio.com/product.php?pid=02194006&country=222
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and methanol interaction. The German chemist Wilhelm Rudolph Fittig discovered the 

polymerization process that turns methyl methacrylate into poly(methyl methacrylate) 

in 1877. Nowadays, this kind of material is used in lots of fields, such as eyeglasses, 

due to its good impact strength, light weight and excellent visible light transparency.  

In my experiment, the solvent is butyl acetate (C6H12O2). Both of these organic material 

chemical structures are illustrated in Figure 4.5. 

    

              

               (a)                                  (b) 

Figure 4.5. The chemical structure for two kinds of materials 

(a) Poly (methyl methacrylate)  (b) Butyl acetate 

(Both of images are acquired from 

http://www.sigmaaldrich.com/catalog/substance/polymethylmethacrylate1234590111

4711?lang=en&region=GB and 

http://www.sigmaaldrich.com/catalog/substance/butylacetate1161612386411?lang=en

&region=GB, respectively) 

  

The third organic material that I used in experiment is named polystyrene (PS). It is one 

of the most widely used materials in plastic products. The composition of polystyrene 

was first discovered in 1839 by Eduard Simon [1], an apothecary from Berlin. Because 

of the poor isolation ability of oxygen and water vapour, this material cannot be used 

in organic electronic device fabrication. In my experiment, it is used to study the pattern 

theory. The solvent for polystyrene is either DCB or toluene. The chemical structure of 

https://en.wikipedia.org/wiki/Methanol
https://en.wikipedia.org/wiki/Wilhelm_Rudolph_Fittig
http://www.sigmaaldrich.com/catalog/substance/polymethylmethacrylate12345901114711?lang=en&region=GB
http://www.sigmaaldrich.com/catalog/substance/polymethylmethacrylate12345901114711?lang=en&region=GB
http://www.sigmaaldrich.com/catalog/substance/butylacetate1161612386411?lang=en&region=GB
http://www.sigmaaldrich.com/catalog/substance/butylacetate1161612386411?lang=en&region=GB
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polystyrene can be seen in Figure 4.6. 

 

 

Figure 4.6. The chemical structure of polystyrene 

(acquired from 

http://www.sigmaaldrich.com/catalog/product/sial/00926?lang=en&region=GB) 

 

In the organic pattern experiments, all of the organic semiconductor materials and 

PMMA have been involved in electronic device fabrication. PS and PVP are utilized to 

study the features of material pattern geometry in a confined structure.  

 

4.3  The PDMS template preparation 

The features of the PDMS stamp are another important factor for high-resolution 

patterning for solution-processable materials on a silicon wafer. The structured stamp 

template is made by the photo lithography technique using different widtha and 

separations of lines, 10μm/10μm, 20μm/20μm, and 30μm/30μm, on a photomask. The 

PDMS rubber stamp is then duplicated by pouring commercial silicone elastomer 

(Slygard@184, Dow Corning) fully stirred with its cross-linker in a 10:1 mixed ratio, 

to the structured stamp template. Before the annealing, the colloidal liquid must be put 

http://www.sigmaaldrich.com/catalog/product/sial/00926?lang=en&region=GB
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on a flat surface for a period of time until the air bubbles that are in the liquid disappear. 

The purpose is avoiding defects producing during the PDMS stamp formation. The 

annealing is done at 70℃ and lasts for 1 hour. This procedure has been demonstrated 

in Figure 4.7. 

 

 

Figure 4.7. The silicone elastomer annealing on a hotplate  

 

 

From this image, we can see the four structures of the templates are fixed on the bottom 

of a container with silicone elastomer colloidal liquid covering them. Through repeated 

experiments, I determined that the best amount of colloidal liquid is 20 ml in order to 

form about 5 mm thickness stamps which can get good patterning results.     

Under this confined geometry, in the patterning process, the solvent can evaporate 

slowly and finally leave a structure which has been designed by photo lithography.      
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4.4 The theory and results of patterning organic      

materials 

Liquid flow/drying-induced edge deposition from solution/suspension is frequently 

observed in our daily lives. For instance, natural levees that are formed through the 

deposition of sediments along flooded river banks have been utilized for settlement and 

agriculture since ancient civilizations and still remain interesting in modern 

archaeology [2] [3]. As was discussed in Chapter 1, the drying of a solution deposited 

on a solid surface often leaves a dense, ring-like solute deposition along the perimeter, 

which is known as the “coffee-stain effect.” This effect can be used to generate small 

features that normally require digital deposition and strict tuning of the chemical 

properties of both the deposited solution and the substrate surface [4] [5]. 

 

4.4.1 Patterning method  

Patterning of the polymers was performed on a specially fabricated stainless steel 

clamping tool, which allowed proper sample/template alignment and the application of 

controlled pressure. The stainless tool is illustrated in Figure 4.8.  
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Figure 4.8. The stainless steel clamping tool 

 

This whole patterning procedure has been shown in Figure 4.9. The polymer coated 

film was gently brought into contact with the solution-wetted template for about 

5 seconds and was subsequently dried at room temperature for 45 min under a small 

applied pressure (∼5 MPa). Finally, the template was removed, leaving the patterned 

polymer on the substrate. The idea of this work is mainly motivated by groove-pinning 

of a contact line theoretically proposed several decades ago for drying liquid on a 

grooved substrate [6] [7]. In my work the grooves are fabricated on a flexible rubber 

objective which can effectively guide the pattern formation on the substrate and is 

reusable.  
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  Figure 4.9. The procedure of pattern process of soluble organic material 

          (a) Well cleaned Silicon substrate  

          (b) Material deposition by spin-coating 

                (c) PDMS stamp preparation (d) a small drop of solvent onto the stamp 

          (e) Stamp presses on the thin film material with proper pressure 

          (f) Several lines formed after solvent evaporation  

 

During the pattern processing, the material is spin-coated on a substrate. For getting the 

best pattern results, several experiments have been done attempting to get the best 

parameters. From Chapter 2, we have known that solution concentration decides the 

quality of the wire, therefore, I prepared a series of polystyrene (PS) solutions with 

different concentrations (0.6 mg/ml, 10 mg/ml, 30 mg/ml and 50 mg/ml) and patterned 

all of them by using identical PDMS stamps. All the results are displayed in Figure 4.10, 

from which we can easily observe that the wire size grows as the concentration is 

increased; when the solution concentration reached about 50 mg/ml, a separated wire 
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array was very difficult to obtain. Furthermore, a fixed concentration of solution (2.5 

mg/ml) with varied groove sizes in the PDMS stamps (2µm, 10µm, 40µm, 120µm) 

have also been patterned and all of the resulting images are illustrated in Figure 4.11.  

 

 

Figure 4.10. The different concentration of PS solution patterned on silicon substrate 

(a) 0.6 mg/ml (b) 10 mg/ml (c) 30 mg/ml (d) 50 mg/ml 
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Figure 4.11. The fixed concentration of PS solution patterned wires dependent in 

stamp size: (a) 2m (b) 10 m (c) 40 m (d) 120 m 

 

In order to ensure the experimental accuracy, I prepared another organic material, PVP, 

solution with variable concentrations (0.6 mg/ml, 10 mg/ml, 50 mg/ml and 100 mg/ml) 

that were then also used in patterning process. Compared to PS solution, the results 

were quite similar. See the Figure 4.12 below. The fixed concentration (2.5 mg/ml) with 

variable groove size stamps have been done as well. The Figure 4.13 demonstrates these 

patterning results.  
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Figure 4.12. The different concentration of PVP dependent in IPA solution patterned 

wires on silicon substrate 

(a) 0.6 mg/ml (b) 10 mg/ml (c) 50 mg/ml (d) 100 mg/ml 
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  Figure 4.13. The fixed concentration of PVP solution patterned wires dependent in 

stamp groove size: (a) 2.5 m (b) 10 m (c) 20 m (d) 120 m 

 

Finally, the concentration of solution has been chosen at 6 mg/ml in order to control the 

thickness of film below 200 nm; the parameters of spin speed and time were set at 3000 

revolutions per minute and 3 minutes, respectively. The solvent is drop-casted onto a 

micro-structured PDMS stamp surface with controlled volume of about 3 μl/cm2. 

Figure 4.14 demonstrates a large area of PVP pattern.  
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Figure 4.14. The optical image of large-area PVP wires array pattern 
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4.4.2  The theory of patterning   

In order to understand the principles of the patterning process, two types of patterning 

experiment were designed which are schematically illustrated in Figure 4.15 and Figure 

4.16, respectively. In the first experiment a layer of solution is introduced between a 

flexible micro-structured template and a substrate and is dried at an appropriate 

temperature. 

 

 

Figure 4.15. The schematic diagram of spacer-free of patterning 

 

As solvent evaporation progresses, the solution splits in the grooves, and the fresh liquid 

surface migrates towards the sidewalls of the grooves, thus, the solution is patterned 

into liquid bridges held between the substrate and ridges of the template. Because the 

template is well wetted with organic solvent, a tiny amount of solution is trapped in the 

groove corners (indicated by black arrow) [8] [9], and merges into the capillary bridges. 

Thus, the contact line between the liquid bridge and the substrate is also pinned by the 

groove, because a liquid film is always trapped between the template-ridges and 
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substrate when a template is attached to a wet substrate. The template moves down as 

the solvent evaporates, eventually touching the substrate when drying is complete. The 

second condition is when a spacer is applied to suspend the template, as show in Figure 

4.15. As the solvent evaporates further, the capillary bridge splits and is dragged 

towards the groove, whereas the solute is further deposited next to the groove-pinned 

contact line. A spacer with sub-micrometer height can be directly fabricated on the 

template surface to control the gap between the template and the substrate. 

 

 

Figure 4.16. The schematic diagram of spacer-applied between template and substrate 

 

Fabrications “with” and “without” a spacer were performed here, and I denote these 

two cases as “spacer-applied” and “spacer-free” configurations, respectively. Two 

experiments have been designed to prove this principle. The Figure 4.17 shows the 

result of a “spacer-free” experiment using poly(9,9-dioctylfluorene-alt-bithiophene) 

(F8T2), a p-type semiconductor polymer patterned from DCB solution. To further 

confirm the role of liquid bridges, I performed a double patterning in which the first 
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layer of patterned lines acted as a spacer for patterning the second layer. The first 

patterned lines are created by poly-4-vinylphenol (PVP) from IPA solution via the same 

process as used for the F8T2 polymer, and then, the PVP pattern was used as a spacer 

to further pattern polystyrene (PS) from DCB solution. Figure 4.18 shows a grid image 

consisting of perpendicularly orienting PVP and PS lines, which were perfectly jointed 

at cross points. Both types of lines had similar morphologies originating from their 

similar formation mechanisms. Such multilayer fabrication is interesting for creating 

patterns from different functional materials, such as laterally heterojunction structures. 

 

         

Figure 4.17.                                Figure 4.18. 

The SEM image of patterned F8T2 lines       The image of two materials cross joint 

structure   

 

4.4.3  Liquid drying mechanics 

To investigate the drying process an in-situ microscope was used to observe and track 

the pattern formation. Both transmissive and reflective modes were used. Samples were 

clamped in transparent plastic boxes with open holes to allow solvent evaporation. To 

observe the F8T2 pattern-formation using the transmissive mode glass substrates were 
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used, whereas Si substrates were selected to investigate the drying dynamics of PS in 

reflective mode. The schematic diagram is illustrated in Figure 4.19.  

 

 
 

Figure 4.19. 

The schematic diagram of dry processing observation by optical microscope 

 

Taking advantage of the yellow colour of F8T2 polymer semiconductor, the “groove-

pinning” mechanism was evident when the drying was observed under a microscope 

with transmitted light. Figure 4.20 shows an image taken at an earlier stage of drying 

(about2 min after the moment of sample loading) of a sample with the spacer-free 

configuration on a glass substrate, clearly showing the liquid-splitting and migration of 

the newly formed liquid/air interface towards the sidewalls of the grooves (indicated by 

a black arrow).  
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Figure 4.20. The optical image of patterning F8T2 lines 

 

A similar event was noted in the spacer-applied configuration when pre-patterned PVP 

lines were used as the spacer for the F8T2 patterning. A splitting of the liquid film 

underneath the ridges of the template occurred for samples with the spacer-applied 

configuration (red arrow in the inset of Figure 4.20). Figure 4.21 shows an in-situ image 

taken from the same sample as Figure 4.20 at a later stage of drying (about 10 min after 

sample loading), revealing fine 2008P lines deposited next to the sidewalls of the 

grooves. 
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Figure 4.21. The pattern result of F8T2 wires array 

 

The “groove pinning” is the central mechanism needed to achieve such fine patterning, 

although the substrate itself also contributes to the contact line pinning. If the “groove 

pinning” at one side of a template’s ridge is lost, the pinning strength of the 

substrate/solution’s contact line alone is not sufficiently strong to pin the liquid, and the 

solution is dragged into the space under the ridge by capillary forces and eventually 

merges with the liquid that is pinned by the neighbouring groove. This phenomenon 

was occasionally observed in my experiment and was likely caused by the structural 

deformation of the PDMS template resulting from shearing force, which can be avoided 

by optimizing both the mechanical properties of the template materials, such as 
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adjusting the mixture ratio between the silicone elastomer and its cross-linker or 

enhancing the annealing temperature to make stamp more firmly, and the design of the 

experimental system. Figure 4.22 shows the failed patterning of F8T2 with PVP lines 

as the spacer on the Si substrate.  

 

 

Figure 4.22. One of the sidewall depinning during the pattern processing  

 

Fine polymer lines formed before the onset of depinning are clearly evident (indicated 

by a red arrow), indicating that the capillary flow-induced edge deposition in the liquid 

bridge was the dominant mechanism for solute transportation to the contact line. If the 

pattern formation arises because of solution aggregation and condensation onto the 

pinning lines, solute deposition will not occur before depinning, and thus, no such fine 

lines will be seen. Compared with liquid drops on a flat solid surface, the micro-liquid 



 

149 

 

bridge is more favourable for solute transfer to the pinned contact line because the 

evaporation from the top surface is restricted. Thus, the resulting outward flow can 

carry all of the dissolved material to the pinning lines.  

For the template (12 mm×12 mm with 10 mm×10 mm patterned area) used here, 

normally we cannot observe obvious traces that reveal how air is introduced from the 

external environment during drying under an optical microscope. Both externally 

migrated air and air trapped in the PDMS materials can contribute to the solvent 

extraction [10]. When a PDMS template, which is cut in its structured area along the 

direction perpendicular to the grooves, is used, air trapping from the external 

environment can be seen with reflected light under a microscope. To observe the air-

inletting process, PS was dried from a DCB solution on a silicon substrate using both 

the spacer-free and spacer-applied configurations. Figure 4.23 shows the air-inletting 

into the template grooves during drying with the spacer-applied configuration.  

 



 

150 

 

 

Figure 4.23. The air-inletting into the template grooves  

Both the “front” (inset of Figure 4.23) and the “rear” of the mixed region have similar 

concave shapes and move into the sample from the edge with equal speed. In this case, 

the rear of the bright stripe is the region where the liquid splits in the grooves and pattern 

formation begins (an arrow indicates the rear of a mixed region and its moving direction 

in Figure 4.23). Although the air inlet and the liquid patterning process are different 

from those observed using the F8T2 sample without cutting the template (Figure. 4.20), 

the obtained fine patterns were similar. 
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Figure 4.24. The side-view and top-view of solution movement in PDMS channel    

 

Figure 4.24 shows a schematic illustration of the mixed region of air and solution in a 

template groove. The direction of air movement and a wedge-shaped liquid are shown 

in the side-view panel. The shaded area in the top-view panel corresponds to the bright 

stripe observed under the optical microscope. White arrows indicate the advancing 

direction of both the front and rear of the mixed region. Under an optical microscope 

with reflected light the air/liquid interface was highly reflective and appeared to be 

brighter. 

The result of the “space-free” patterning PS experiment with 200 nm feature size has 

been shown in Figure 4.25. During the SEM observation, I also found a set of secondary 

patterns with very high resolution (about 50 nm feature size) decorated on the walls of 

the lines generated above (i.e., the primary pattern). Figure 4.26 and Figure 4.27 show 

these nano-sized stripe patterns on the PS and F8T2 wires generated with the spacer-

free configuration.  
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Figure 4.25. The SEM image of PS line 

 

 

Figure 4.26. The nano-sized stripes in PS wire 
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Figure 4.27. The nano-sized stripes in F8T2 wire 

 

The nano-stripes only appear on the sidewalls that face the template ridges when 

patterning is conducted with the spacer-free configuration. I explain this feature as 

resulting from a repeated pinning-depinning event during the late stage of drying when 

the template-ridges reach the substrate and a tiny amount of solution becomes trapped 

in a wedge-shaped space between a sidewall of a groove and the adjacent newly formed 

primary polymer line. This process has been illustrated in Figure 4.28. The feature size 

of the nano-stripes was two orders of magnitude smaller than that previously observed 

for self-assembled micrometre-sized structures formed from drying solution [11][12].  
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Figure 4.28. The secondary pattern formation on between the sidewall and contact 

line 

 

There is some similarity between the secondary pattern found here and that observed 

from a drying solution confined between spherical/flat surfaces: In both cases, the liquid 

was confined in a wedge-shaped space, and the obtained stripe-distance varied 

gradually [11]. Carefully examining the nano-stripes revealed that the inter-stripe 

distance varied uniformly with about 3-4 nm increment between two neighbouring 

stripes in the PS pattern. See the Figure 4.29 below.  
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Figure 4.29. The variation of inter-stripe distance with stripe number  

 

The Figure 4.30 shows a SEM image of a cross-section of a fabricated PS line. Although 

the morphology was strongly disturbed during sample cleavage, the profile on the 

sidewall can still be seen. 
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Figure 4.30. The SEM image of PS line cross-section  

 

I have also used the “space-free” method to pattern P[NDI2OD-T2] on a silicon 

substrate, Figure 4.31 shows the patterning result with 400 nm feature size under 

SEM observation.  

 

  

Figure 4.31. The SEM image of P[NDI2OD-T2] line 
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4.4.4  Solvent extraction at variable temperatures   

I have chosen DCB and IPA as the solvents in my experiments because a high-boiling 

point solvent allows for sufficient implementation time. Additionally, if drying the 

samples at elevated temperature or using a solvent with a low boiling point, the 

patterning can be achieved in a minute, revealing the potential to scale-up this process. 

This fast pattern formation results from efficient solvent extraction during drying. To 

obtain more information about solvent extraction, I performed an in-situ investigation 

at various temperatures, in which PS was dried from DCB solution on a silicon substrate 

with the spacer-free configuration. A series of samples at different temperatures were 

examined. I measured the advancing speed of the air-front at various temperatures and 

confirmed that the advancing speed of the air-front did not depend on its location; i.e. 

it is constant regardless of its location on the sample (i.e., edge or centre). Taking the 

advancing speed of the air-front at 40℃ degree for example, the original data have been 

displayed in Table 3.  

From this table, the linear relation between the air-front displacement and time revealed 

that the air-font advanced with a constant speed in the grooves. This relationship has 

been illustrated in Figure 4.32 (a) below. The advancing speed at 50℃ and 60℃ has 

also been examined and data are displayed in table 4 and 5, respectively. 
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Distance (µm) 0 7 14 21 28 35 42 49 56 63 70 84 91 98 112 126 140 

Time (s) 0 2 5 9 12 15 18 21 24 27 30 33 36 39 42 45 48 

Table 3. The advancing speed of the air-front at 40℃ 

 

Distance (µm) 0 14 28 36.4 37.8 

Time (s) 0 2 5 10 25 

Table 4. The advancing speed of the air-front at 50℃ 

 

Distance (µm) 0 42 

Time(s) 0 3 

Table 5. The advancing speed of the air-front at 60℃  

 

Ignoring the measurement uncertainty, the speed, V, and drying temperature, T, exhibit 

an exponential relationship:  

    

               𝑉 = 𝑉0 exp(− 𝑄 𝑘𝑇⁄ )               (5) 

                               

where Q and k are the activation energy and Boltzmann constant, respectively. The 

constant speed observed at a giving temperature was unexpected because the advancing 

speed of the air-front should have slowed when it was propelled into the deep side of 
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the sample if the solvent extraction was controlled by vapour diffusion. By fitting my 

experimental V-T curve in Figure 4.32(b) with equation (5) above, through calculation, 

the activation energy Q = 5.96×10-20 (J) and enthalpy of vaporization of the solvent E 

= NaQ = 36000 (J/mol) were determined, where Na is Avogadro’s constant. This value 

is in good agreement with the chemical data sheet value of 39400 J/mol. Thus, the 

drying was controlled by the energy required by a solvent molecule to escape from the 

liquid surface rather than by diffusion. In other words, the solvent vapour can quickly 

be extracted once it leaves the liquid surface. 

 

 

Figure 4.32. (a) Time dependence of displacement of air-front measured at 40 C.  

(b) Smooth interpolation (line) of the advancing speed of air-front at 

measurements (dots) at different temperatures  
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4.4.5  Patterning PVP wire by polymer material stamp 

In the previous experiments, all the material wires were produced by the PDMS stamp 

patterning method. The wire geometry was confined by the PDMS structure. If we want 

to obtain the opposite structure, the plasma etching technique is necessary, but it 

inevitably increases the cost of fabrication. Another kind of polymer material will be 

introduced in this part, and a pattern transfer of the PDMS structure can be obtained by 

it. The specific processing has been demonstrated in Figure 4.33.   
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Figure 4.33. The PDMS structure pattern transfer to UV-glue material on PET substrate. 

           (a) Deposit UV glue on PET substrate (UV glue: NEA 123L)  

           (b) UV Cure under PDMS  

           (c) Peel off PDMS 

 

The full name of NEA 123L is Norland Electronic Adhesive, which is a single 

component adhesive that cures tack free in seconds to a tough, resilient polymer when 

exposed to ultraviolet light. The specific parameters and properties of this material can 

be found on the supplier’s website. The UV-glue solution was drop cast on a well 
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cleaned PET substrate (10mm×10mm), the thickness of the film was about 1 µm. Then, 

a certain pressure was given by the clamping tool on the prepared PDMS stamp until 

the stamp’s grooves were embedded into the material surface. Under the UV light, the 

material cured quickly. The final step was peeling the PDMS off and leaving an opposite 

structure on the PET substrate. The PVP lines have been successful patterned by using 

this new template. The PVP lines patterned by the UV-glue template are demonstrated 

in Figure 4.34.  

 

 

 

 

Figure 4.34. The PVP line array patterned by UV-glue template on a Si substrate 
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Compared to the previous patterning method, this is the first time I used polymer 

material to fabricate the groove structure stamp on a flexible PET substrate. From the 

image of the PVP line array, we can see the quality of wire array is the same as those 

wires which were fabricated by a PDMS stamp. This shows that no matter what kind of 

material is used to make a stamp, as long as the regular groove structure in the stamp is 

formed and the edge of groove is rigidity and sharp enough, in the patterning process, 

the wire array can be easily acquired. 

 

4.6  Summary  

All of the organic semiconductor materials with their effective solvents have been 

introduced in this chapter. In the pattern processing part, the details of both PDMS 

template preparation and optimization of the solution parameters are described, finally 

obtaining well-ordered beautiful organic material wires based on the “coffee-stain” 

phenomenon. The “space-free” and “space-applied” experiments have been done to 

reveal the mechanism of the wire formation during the patterning process. From which, 

we can understand that the core mechanism to achieve the fine wire array patterning is 

“groove pining”. If we want to acquire the best result both sides of the template’ ridges 

must be pinned firmly; losing one of side will result in patterning failure. Besides, the 

PDMS stamp fatigue is another factor that can affect the result. We know that the rubber 

will age if it is used for a long time. Therefore, it is observed that the edge has a concave 

deformation or defects before clamping, the stamp must be replaced. Anyway, the 
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PDMA stamp technique achieves large-area well-ordered organic material stripe array 

patterning compared to the flow coating method, and also obtained grid structures that 

once were thought to be difficult to achieve.     
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Chapter 5  

 

Organic transistor fabrication and 

measurement 

 

 

5.1  Introduction 

In the previous chapter, the principle and method of patterning organic material wires 

have been introduced and the related results also were demonstrated. In this chapter, all 

the detail results of different type OFET fabrication by using these patterned wires and 

the device performance will be presented.    
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5.2 Organic field effect transistor fabrication 

and measurement results 

When these organic polymer semiconductor wires are patterned successfully, the next 

task is transistor fabrication. The specific steps have been introduced in Chapter 3. 

Compared to the conventional fabrication method, the active layer geometry is to have 

a polymer wire array instead of thin films. But the rest of procedures, such as the baking 

and post-baking time, are identical with the conventional method.  

 

5.2.1  The shadow mask preparation 

Because the active materials have been self-assembly deposited on the substrate during 

the patterning process, the electrode fabrication has to be completed by using a shadow 

mask. For the shadow mask preparation, I chose a piece of aluminum as the mask 

template due to its softness. By cutting out a rectangular piece in the middle of the 

aluminum board, one can then fix several 20 μm diameter gold wires on the rectangular 

area. Thus, a “handmade” shadow mask is completed. The whole production process is 

demonstrated in Figure 5.1.  
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Figure 5.1. The handmade shadow mask 

(a) An aluminum board 

                         (b) Cutting out a rectangle piece from the board 

                     (c) Fixing gold wires on the rectangle area 

 

Another kind of special shadow mask was also designed to ensure that electrodes can 

be deposited on both ends of each wire as shown by Figure 5.2. The purpose of 

designing this mask is to measure the single polymer wire characteristics.  

 

 

 

Figure 5.2. The shadow mask for the wire ends 

 

The last part is the photomask. This is a column of transparent square structures in the 

middle of a black glass substrate as shown in Figure 5.3. The specific application of 
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this photomask will be introduced in the following sections.  

 

 

 

Figure 5.3. The photo-lithography mask of holes 

 

In brief, three kinds of masks have been demonstrated here. All of them have been 

employed for different purposes. The details will be discussed in the following 

experiments. 

 

5.2.2 Organic field effect transistor fabrication 

(OFET) and result 

In the device fabrication, all polymer solutions were spin-coated on SiO2(300nm)/Si 

substrate. Before material patterning, the silicon dioxide wafer must be well cleaned to 

ensure there is not any contamination on the surface. The wafers were first immersed 

in acetone and ultrasonically cleaned for 15 minutes. After cleaning, they were rinsed 

repeatedly with isopropyl alcohol for 2 minutes and then rinsed again with deionized 

water for 5 minutes. After been blown with water droplets by a nitrogen gun, the wafers 
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were finally dried at 80℃ on a hotplate for 3 minutes to evaporate the surface thin film 

water and then used immediately. The polymer semiconductor thin film was 

transformed to the wires through the patterning process.   

  

The first device I fabricated was a top-gate field effect transistor (FET) made with an 

array of P(NDI2OD-T2) wires (about 700 nm width) created from DCB solution on a 

substrate. We can see from Figure 5.4 that the purple area is the transistor channel. This 

image was taken before the gate electrode deposition on the channel area, but the 

electrodes deposition was finished and a 20 μm length of channel formed on substrate.  

  

 
 

Figure 5.4. The optical image of top-gate P(NDI2OD-T2) wires array field-effect 

transistor with 20μm of channel length    

 

These wires were annealed at 110C for 4 hours after drying at 80℃ for 10 minutes. 

Then spin-coated poly (methyl methacrylate) (PMMA), thermally evaporated Au 
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(30 nm)/Cr (10 nm) and Al (30 nm) by shadow mask were used as the dielectrics, 

source/drain and gate electrodes. Because the gold cannot stick on the silicon wafer 

firmly, therefore, a 10 nm thick Chromium layer was evaporated on the silicon wafer 

firstly as a seed layer for the Au electrode deposition. This method was also used in 

other devices fabrication. The device was tested by a semiconductor analyzer. Since it 

was an n-type transistor, in the testing process, the drain voltage was set at 30 volts; the 

range of gate voltage was given from -10 volts to 30 volts. The result of the original 

transfer curve has been acquired and demonstrated in Figure 5.5. In this figure, the 

value of the threshold voltage cannot be easily determined. Therefore, usually, I 

expressed the result logarithmically and obtained a corresponding outcome that has 

been displayed in Figure 5.6. From which we can see clearly that the transistor was 

switched “on” when 0 voltage was applied on it and reached saturation state when the 

voltage was 30 volts. The on/off current ratio and the charge carrier mobility of the 

device were about 104 and 1.75 × 10−2cm2/Vs, respectively, which are similar to 

the values we obtained using a device containing a P(NDI2OD-T2) thin film [1]. The 

output curves have been demonstrated Figure 5.7, which also shows that the device 

begins to work at 0 volt.  
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Figure 5.5. The transfer curve of P(NDI2OD-T2) top-gated field effect transistor 

 

 
Figure 5.6. The logarithmic transfer curve of P(NDI2OD-T2) top-gated field effect 
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transistor 

 
Figure 5.7. The outputs curve of P(NDI2OD-T2) top-gated field effect transistor 

 

Figure 5.8 shows the fabrication process of a bottom-gate OFET made from p-type 

poly(3,3‴-didodecylquaterthiophene) (PQT-12) wires. An array of PQT-12 wires with 

800 nm widths was created by drying PQT-12 from a DCB solution on 

SiO2(300nm)/n+-Si substrate. In the annealing step, the PQT-12 wires were dried at 80℃ 

for 10 minutes followed 140℃ for 30 minutes. Au (30 nm)/Cr (10 nm) source/drain 

electrodes were finally deposited by thermal evaporation through a shadow mask. In 

this device, Si was used as the gate electrode. Because the material of substrate is silicon 

and silicon dioxide, the gate fabrication process was very simple; I just used a diamond 

cutter to scratch the silicon dioxide area on the opposite side of the channel until the 

silicon was exposed. The device optical image has been shown in Figure 5.9.  
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Figure 5.8. The fabrication process of bottom-gated PQT-12 FET 

          (a) Substrate preparation  

          (b) Semiconductor wires creation 

          (c) Source and drain electrode deposition  

 

 

 

 

 

Figure 5.9. The optical image of bottom-gate poly(3,3‴-didodecylquaterthiophene) 

(PQT-12) field-effect transistor  

 

The bottom-gate OFET original transfer curve with its corresponding logarithmic 

transfer curve are displayed in Figure 5.10 and Figure 5.11, respectively. Since the 

active layer material in this device was a kind of p-type organic semiconductor, the 

device should work when a negative voltage was applied on the gate electrode. In the 
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testing process, the range of gate voltage value was set from 20 volts to -50 volts. The 

drain voltage was set at -30 volts. In Figure 5.11, we can understand that the minimum 

voltage (threshold voltage) to switch “on” the device was about 0 volt, and the gate was 

“off” when the gate voltage reached at -50 volts. The on/off current ratio was about 

103 . The hole mobility of the device was found to be 1.75 × 10−3 cm2/Vs . The 

outputs with different gate voltages is displayed in Figure 5.12, from which we can find 

that the minimum current was generated when the gate voltage was zero. Both results 

match excellently. 

 

Figure 5.10. The transfer curve of poly(3,3‴-didodecylquaterthiophene) (PQT-12) 

top-gated field effect transistor 
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Figure 5.11. The logarithmic transfer curve of poly(3,3‴-didodecylquaterthiophene) 

(PQT-12) top-gated field effect transistor 

 
Figure 5.12. The outputs curve of poly(3,3‴-didodecylquaterthiophene) (PQT-12) top-

gated field effect transistor 
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So far, the top-gate and bottom-gate OFET fabrication by utilizing different types of 

polymer semiconductor have been presented. Since the active layer geometry was 

changed from thin film to wires, therefore, the charge mobility formula was also 

modified from the original, which has been introduced in Section 2.4.2.3, to fit the 

experiment conditions: 

 

 μ =
2𝜆𝐿𝑑𝐼𝐷

𝑊𝜀𝑟𝜀0𝜉(𝑉𝐺−𝑉𝑇)2                   (6) 

 

where 𝜉  and  are the width and period of the patterned semiconductor wires, 

respectively; W and L are the channel width and length of the electrodes, respectively; 

𝜀𝑟 , d and 𝜀0  are the relative permittivity, thickness of the dielectrics, and vacuum 

permittivity, respectively; and 𝐼𝐷, 𝑉𝐺, and 𝑉𝑇 are the drain current, gate voltage and 

threshold voltage, respectively. The electron and hole mobility in n-type and p-type 

OFET are calculated through this equation, respectively.  

In the polystyrene wire array patterning, the excellent result meets the requirement of 

OFET channel size. From Figure 5.13, through optical microscopy observation, we can 

see that the PS wire size was almost equal and the substrate area where it was uncovered 

by wires are clean. Based on this feature and excellent result, another top-gate p-type 

OFET has been fabricated.    
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Figure 5.13. The optical image of patterning PS wires  

     (×50) on silicon dioxides substrate 

 

This whole fabrication process is shown in Figure 5.14. The PS wires are well patterned 

on the SiO2  substrate surface at first. Different with the previous steps, Au/Cr are 

deposited by thermal evaporation before the polymer semiconductor deposition. Then 

PS wires are dissolved by a solvent in a lift-off step, leaving a very fine, about 1 μm, 

channel for the transistor. The success of this process has been demonstrated by Figure 

5.15. Finally, the p-type F8T2, PMMA and Al were used as the semiconductor layer, 

the dielectric layer and the gate, respectively. 
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Figure 5.14. The top-gated F8T2 OFET fabrication process 

          (a) Pattern PS wires on silicon dioxide substrate 

          (b) Au/Cr deposition by shadow mask 

          (c) Dissolve PS wires by DCB (lift-off) 

          (d) Deposition F8T2 semiconductor, dielectric layer and gate 

 

 

 

 
 

Figure 5.15. The SEM image of the final transistor channel formation after the gold 

electrodes deposition and lift-off step. 
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Figures 5.16 and 5.17 display the device original transfer curve and the logarithmic 

transfer curve, respectively. The active layer material in this device was p-type organic 

semiconductor as well, so the testing method was same as for the PQT-12 OFET; the 

drain bias was set at -30 volts and the range of gate bias value was set from 20 volts to 

60 volts. From Figure 5.17, we can see that the device switched “on” at around 0 volt 

and “off” when the gate voltage was -60 volts. So the on/off current ratio is about 

105 and the hole mobility is 6.9 × 10−4cm2/Vs as calculated by the original charge 

carrier mobility formula which has been introduced in Chapter 2. The device output 

curves with corresponding gradient gate voltages is shown in Figure 5.18. Different 

with pervious device testing results, the output beginning point was shifted from 0 to 

about -5 volts on the drain voltage axis. This means that at the beginning the hole 

injection is in a difficult situation. The reason for this phenomenon was because the 

polymer crystallized on the two types of material, gold and silicon, at the same time. 

As we known, the different materials have different surface energies which can affect 

the polymer crystallization orientation and degree as the initial energy they provide are 

different. Actually, the surface energy of silicon dioxide is lower than Au. In the 

molecule crystallization process, molecular crystals are tending to stand on the 

dielectric material surface, while tiling up on the metal surface. As result, it was difficult 

to keep the orientation of material crystallization consistent on both the Au and silicon 

surfaces during the annealing process, which results in the contact resistance increasing, 

Furthermore, it also increases the difficulty of hole injection into the transistor channel. 

The related study about organic molecule crystallization orientation will be introduced 
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in Chapter 6. 

 
Figure 5.16. The transfer curve of poly(9,9-dioctylfluorene-alt-bithiophene) (F8T2) 

top-gated field effect transistor 

  

 
Figure 5.17. The logarithmic transfer curve of poly(9,9-dioctylfluorene-alt-

bithiophene) (F8T2) top-gated field effect transistor 
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Figure 5.18. The outputs curve of poly(9,9-dioctylfluorene-alt-bithiophene) (F8T2) 

top-gated field effect transistor 

 

5.3 Organic Electro-Chemical Transistor 

(OECT) fabrication 

In Chapter 2, the previous achievements by other scientists and engineers have been 

reviewed. To further demonstrate the potential of our process, we fabricated arrays of 

devices with individually electrically addressed wires of the active materials. Poly(3,4-

ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT:PSS)-based electrochemical 

transistors were chosen because PEDOT:PSS is sufficiently robust to the 

photolithography process, and such a device has promising applications for 

electrophysiological recording [2]. 
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5.3.1  Thin film organic electro-chemical transistor 

PEDOT:PSS films are usually utilized as a hole injection layer in the organic electronic 

device [3]. Different from other organic semiconductor materials, PEDOT:PSS is a 

water-based solution. When the PEDOT:PSS is spin-coated on a substrate, the liquid 

film transfers to the solid as the water is evaporating. When putting the sample into 

water, the whole material film can be peeled off from the substrate. This experiment 

proved that once the PEDOT:PSS material is cross-linked through annealing, it cannot 

be dissolved by water again. Therefore, the patterning method which I previously used 

was unsuitable for PEDOT: PSS because of this unrepeated dissolution property. The 

PEDOT:PSS (Clevios PH-1000) water-based suspension was received from Heraeus 

company. To enhance the conductivity, the aqueous PEDOT:PSS solution is modified 

by adding 20% ethylene glycol (received from Sigma-Aldrich) to improve the 

conductivity. By this method, the conductivity of the film can be increased by more 

than two orders of magnitude [4]. Additionally, 1% Triton-X100 (Sigma-Aldrich) was 

added to reduce the surface tension and to obtain a highly uniform film.  

Nowadays, the FET-based biosensor has attracted great attention because it can capture 

and convert biological signals to electrical or optical signals. Due to PEDOT:PSS’s 

extremely robust and water solubility characteristics, it may be an idea material for 

biotransducer device fabrication. Normally, the biosensor is classified in several types; 

one of them is electrical-chemical biosensor. This kind of sensor also contains three 

electrodes; the structure is almost same as a transistor. The PEDOT:PSS based thin film 
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electro-chemical transistor fabrication process was quite similar to the top-gate F8T2 

transistor. But, there are two differences compared with the top-gate F8T2 transistor: 1) 

The substrate used here is glass (received from Corning Company) and 2) The dielectric 

material is replaced by PBS buffer solution. The specific fabrication process is 

demonstrated in Figure 5.19.  

 

 

 

Figure 5.19. The electro-chemical transistor fabrication process 

                    (a) Gold electrodes deposition 

                    (b) PEDOT:PSS deposition and annealing (140C, 1hour) 

                    (c) Attaching plastic ring  

                    (d) Filling in PBS solution 

 

The full name of PBS is phosphate buffer saline and it is usually employed as a cell 

culture solution. The main positive ion in this solution is 𝑁𝑎+. The purpose of using 

this solution will be explained later. The device measurement method has been 

presented in Figure 5.20. 

 



 

186 

 

 

 

Figure 5.20. The electro-chemical transistor measurement by probe station 

 

During the measurement, the device performance was different from previous devices. 

Through analysis, that was determined to be because the Na ions were found to be 

injected into the PEDOT:PSS thin film and combined with PSS− when a positive gate 

bias was applied. The concept is presented in Figure 5.21. This de-doping process 

decreases the conductivity of the active layer.  
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Figure 5.21. The de-doping process of PEDOT:PSS thin film  

 

The device transconductance and output curves are presented in Figure 5.22 (a) and (b), 

respectively.  

 
Figure 5.22. The PEDOT:PSS based elector-chemical transistor performance   

(a) Transconductance curve; (b) The current output under different voltages 

 

From the results, two advantages can be identified in this device. One is that only a 

small voltage is needed to drive this device; the other is that the device is a highly 

sensitive ion detection. Both of these advantages satisfy the requirements of a biosensor 
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device. 

 

5.3.2 Geranium wires fabrication by patterning 

transfer technique 

We have developed another patterning technique especially for PEDOT:PSS wires 

array fabrication. Preliminary experiments were carried out to prove the feasibility of 

our idea. First, a 100 nm thickness of germanium (Ge) was deposited on well cleaned 

silicon substrate by thermal evaporation. Then, a 50 nm-thick PS film was spin-coated 

onto the germanium film, and the PS line structure was created using our patterning 

method. After dry-etching entirely through the germanium film using CF4 plasma, the 

area which was uncovered by PS wires was removed. The PS wires function are 

equivalent to a mask here. The PS was removed with toluene and finally the array of 

germanium wires were left on the substrate. Figure 5.23 and Figure 5.24 show the SEM 

images of the Ge nanowires. 
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Figure 5.23. The SEM image of a single Ge wire   

 

 

Figure 5.24. The SEM image of a Ge wires array 

 

 

The success of this geometry patterning transfer trial provides a positive basis for the 

PEDOT: PSS based transistor manufacture. 
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5.3.3  The PEDOT:PSS wires array fabrication 

In the device fabrication process, the first step is patterning PEDOT:PSS wires by 

utilizing the above technique. The PEDOT:PSS wires were produced through pattern 

transfer of a line-pattern into PEDOT:PSS film using the generated PS lines as a mask 

through a process similar to that used for the germanium wires fabrication. A 90 nm-

thick PEDOT:PSS film was formed by spin-coating onto SiO2 (300 nm)/Si substrate 

and subsequently annealing it at 140C for 1 hour. A 100 nm PS film was then spun-

coated over the PEDOT:PSS film, and PS lines were created using our developed 

method. After plasma etching using a gas mixture of CF4 and O2 (1:1), the sample 

was rinsed with toluene to remove the PS lines. The PEDOT:PSS wires array was 

created successfully. This whole material patterning transfer process have been 

illustrated in Figure 5.25.  
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Figure 5.25. The material structure transfer patterning process 

                    (a) Substrate preparation 

                    (b) Spin-coating PEDOT:PSS and annealing  

                    (c) Spin-coating PS on PEDOT:PSS thin film 

                    (d) Small droplet of solvent on PDMS template 

                    (e) Patterning PS lines 

                    (f) PS lines array formation 

                    (g) Plasma etching of PEDOT:PSS thin film 

                    (h) Removing PS lines  

 

Figure 5.26 below demonstrates a part of the PEDOTS:PSS wires array.     
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Figure 5.26. The SEM image of PEDOT:PSS wires array 

 

Under SEM observation, the width of a single wire is about 670 nm, nearly half 

micrometer. The array of PEDOT:PSS wires acquired by the patterning transfer 

technique from array of PS lines was a significant achievement in my series of 

experiment.  

 

5.3.4 The Organic Electro-chemical PEDOT:PSS 

field effect transistor fabrication 

Continuing the previous work, the following step was to make gold source and drain 

electrodes by using a mask aligned on the PEDOT:PSS wires and subsequent optical 

lithography and lift-off. Figure 5.27 displays the wires array with electrodes attached 

image.  
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Figure 5.27. The PEDOT:PSS wires array with two gold electrodes touch at both sides 

 

A silver conducting wire and 0.1 M NaCl aqueous solution were used as the gate 

electrode and electrolyte, respectively, during device characterization. A millimetre-

sized PDMS frame was physically attached on the sample surface to confine the 

electrolyte. In the measurement, a small gate and drain bias (less than 0.5 V) was 

applied on the transistor. The device transconductance curve and logarithmic curve are 

shown in Figure 5.28 and Figure 5.29, respectively. 
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Figure 5.28. The transconductance curve of PEDOT:PSS wires array transistor 

 

Figure 5.29. The logarithm of transconductance curve of PEDOT:PSS wires array 

transistor 
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From both figures, we can notice that different with previous organic field-effect 

transistor characteristics, the drain current decreased as the gate voltage increased, i.e., 

working with the depletion model, when a positive bias was applied on the gate 

electrode some of the negatively charged PSS− was balanced by Na+in PEDOT:PSS 

wires. Furthermore, compared to the polymer field-effect transistor, the PEDOT:PSS 

transistor just needs a small voltage, below 1 volt, to drive and control it. In addition, 

the controlling mechanism was through adjusting the concentration of cations in the 

solution, also different with traditional OFETs. A series of output curves along with the 

gate bias variation is shown in Figure 5.30.    

 

Figure 5.30. The output curves of PEDOT:PSS wires array transistor 

 

From this figure, it is clear that the current outputs varied dramatically when the gate 
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bias was gradually decreased. The current changed about one order of magnitude while 

the gate voltages just changed 0.8 volts. The same current variation in polymer-based 

transistor at least needs tens of volts change on gate electrodes. This characteristic 

proofs the PEDOT:PSS-based transistor is more sensitive compared to polymer-based 

transistor. A small voltage changes result in a large current output varies, this advantage 

may be possible to use in biosensor devices because the biological signal variation 

sometimes is quite small and needs a sensitive device to capture it; in addition, the 

signal output of PEDOT: PSS is strong enough to drive and electronic device.   

To better understand the performance of the device, the single wire transistor 

measurement also has been implemented. During the measurement process, the drain 

voltage was 0.3 V as well. Under the same testing circumstance, both transfer curve 

and logarithmic transconductance curve are shown in Figure 5.31 and Figure 5.32, 

respectively. The output curves with different gate biases of a single PEDOT:PSS wire 

transistor are shown in Figure 5.33, from which we found that the output current of the 

single wire transistor was reduced by two orders of magnitudes compared that of to the 

wires array transistor. 
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Figure 5.31. The transconductance of a single PEDOT:PSS wire transistor 

 

 
Figure 5.32. The logarithm transconductance curve of a single PEDOT:PSS wire 
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transistor 

 

Figure 5.33. The output curves of single PEDOT:PSS wire transistor 
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5.3.5  Holes on PEDOT:PSS wires array 

As we known, in cell biology research, the communications between cells depends on 

a bioelectrical signal, or bio-signal, which is sometimes generated by the ion cell 

membrane permeability variation when it receives stimulation. In my previous 

experiment, the PBS solution was used as buffer material in PEDOT:PSS transistor 

device fabrication. This kind of solution can be also employed as a tissue cell culture 

medium. Since the electro-chemical transistor contains several advanced 

characterizations, such small on/off ratio and small voltage drive, it may be possible to 

use it in cell signal detection, especially for cancer cell research. Based on this idea, a 

photoresist film was spin-coated on the PEDOT:PSS wire array and then exposed by 

UV light under a shadow mask which has been introduced in Section 5.2. (Figure 5.3). 

Through development, a series of small holes was finally accurate formed on each 

PEDOT:PSS wire; see Figure 5.34. Those tiny holes on the wire can be used to store 

liquid, such as electrolyte or cell culture medium. In this way, culturing a cell in a hole 

and measuring its signal is possible. Besides, the measurement result in a single-wire 

transistor revealed that the device shows an excellent stability even when doping and 

dedoping occurs in different areas, which is crucial point for high-resolution sensing, 

like bio-recording, where the ion concentration varies in the subcellular domain. Both 

transconductance and logarithmic transconductance curves have been demonstrated in 

Figure 5.35 and 5.36, respectively. The output curves have been displayed in Figure 

5.37. All the measurements were carried out under the same environment as previously 
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and the results were almost the same as those for the single wire transistor in last 

experiment.     

 

 

Figure 5.34. The exposed holes on each of PEDOT:PSS wires   
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Figure 5.35. The transconductance of a single PEDOT:PSS wire transistor 

 

 

 

Figure 5.36. The logarithm transconductance curve of a single PEDOT:PSS wire 

transistor 
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Figure 5.37. The output curves of a single PEDOT:PSS wire transistor 

 

5.4 Summary  

In this chapter, four organic field-effect transistors, one n-type, two p-types and one 

electro-chemical type, have been fabricated successfully, all of these devices are 

working very well. The patterned organic semiconductor wires greatly enhance the 

efficiency of manufacture, in this way, lots of OFET can be fabricated at one time on a 

silicon wafer. Meanwhile, this method avoids the optical photolithography; thereby, the 

reducing the cost. The single PEDOT:PSS wire transistor output current can be tuned 

by a small gate bias in a electrolyte solution; this was a novel achievement in this series 

of experiment. It provides a possible fabrication method for FET-based biosensors. 
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Chapter 6  

 

Organic semiconductor materials 

crystallization and spectrum 

absorption 

 

 

6.1  Introduction 

This chapter reports two experiments. In the previous chapter, the F8T2-based organic 

field-effect output curves attracted my attention due to the fact that the current output 

point drifted. An explanation that I gave at that moment was that because of the different 

material surface energies the molecule crystallization orientation cannot keep consistent 

during the annealing process. To better understand and explain this phenomenon, an 
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experiment of a small organic molecule material crystallization on two different types 

of substrates was carried out in order to observe and investigate the organic 

semiconductor material crystallization characteristic. The reason that I chose a kind of 

organic small molecule semiconductor material instead of polymer material to do this 

experiment was because the former is easier to observe through an optical microscope 

to acquire crystalline geometry images. It is also well known that organic small 

molecule semiconductors have much higher charge carrier mobility than polymer 

semiconductors because the high degree of molecular packing/ordering is favourable 

for charge transportation [1,2]. The investigation results of the organic small molecule 

material crystallization at different annealing temperatures will be presented and the 

related initial activation energy for that crystal growth requirement has been calculated 

and will be introduced in this chapter as well. Another experiment was about polymer 

semiconductor spectrum absorption after both PQT-12 and polyera materials were 

annealed at different temperatures.    
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6.2 The experiment’s purpose and material 

preparation 

The synthesis process of nickel-tetrabenzoporphyrin (NTBP) precursor can be found in 

reference [3]. Usually, for the organic small molecule, the vacuum sublimation process 

has been widely used to deposit thin film materials on the substrate [4,5], however, to 

realize low-cost organic electronic products the vacuum processes have to be replaced 

by solution processes if possible. Thus, the NTBP was prepared in chloroform solution 

at 10 mg/ml. It is well known that if we want to improve a device’s performance, one 

of the key factors we have to think about is acquiring a high-quality semiconductor 

layer. Therefore, in the annealing procedure, choosing a proper temperature and time to 

get the best degree of molecule crystallization is an effective method to enhance the 

active material quality. Here, we report an experimental study on the recrystallization 

of NTBP [6,7] from its amorphous precursor films, deposited by spin-coating on 

different substrates. Tetrabenzoporphyrin is a promising material with high charge 

mobility for application in printed electronics [6]. The dynamic process of 

crystallization of NTBP was investigated at the crystal nucleation and growth stages for 

fabrication of the crystalline thin films with the desired molecule orientation. 

For the spectrum absorption experiments, the PQT-12 and N2200 were chosen and their 

solution preparation methods have been presented in Chapter 4.  
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6.3 The nickel-tetrabenzoporphyrin (NTBP) 

recrystallization  

During the thermal treatment, the precursor film converts the amorphous precursor into 

crystalline NTBP. This procedure is demonstrated in Figure 6.1 below. 

 

   

Figure 6.1. The crystallization of solution processable amorphous 

tetrabenzoporphyrin films  

 

 

6.3.1 Recrystallization on bare glass and polyimide    

layer glass substrate 

The precursor films were formed by spin-coating from a chloroform solution onto a 

bare glass substrate and subsequently baking at 60 °C for 30 min. The substrate was 

treated with oxygen plasma after sequential cleaning with acetone and isopropanol to 

remove any organic contamination. For all samples in this study, the precursor film 

thickness was about 50 nm. The structural change was monitored by optical microscope 
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because the optical contrast is excellent between the film crystalline and amorphous 

phases. A digitally controlled heating system was connected to the microscope and 

optical images were taken from the top side of the transparent samples. The heating 

ramp was 30°C/min and the time counting started immediately when the programmed 

annealing temperature was reached. Other techniques we also have used, like atomic 

force microscope (AFM), but it did not give clear information due to the poor contrast 

of the morphologies in such thin films. Figure 6.2 (left) shows the recorded sequential 

images of the crystal nucleation and growth process under 205°C annealing on the glass 

with the change of time. The irregular disk-like crystallites grew on the glass substrate 

under this time-dependent annealing procedure and finally formed “mosaic” crystalline 

structures on the glass.  

For comparison of the material’s preferential orientation during the crystallization 

process, a layer of 1 μm thickness polyimide film on glass substrates was deposited by 

spin-coating from N-methyl-2-pyrrolidone (NMP) solution (referred as PI substrate) 

and baked at 250°C for 30 min.  

Then, the NTBP solution was spin-coated on the PI substrate. The time counting and 

observation began when the temperature reached 200℃. Different with the 

crystallization on a glass substrate, the crystallites appear to be in ellipsoidal form and 

gradually evolve to a leaf-like shape due to the developed fractal growth in the late 

stage of crystallization as illustrated in Figure 6.2 (right).  
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Figure 6.2. Evolution of the crystal nucleation and growth of NTBP on the glass 

substrate at 205 °C (left) and on the PI substrate at 200 °C (right). 

 

The images of both “leaf”-like structures on PI substrate and the “mosaic” crystalline 

structures on glass are illustrated in Figure 6.3 below. 
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Figure 6.3. The optical images of the “leaf”-like and “mosaic” crystalline structures 

on (a) the glass and (b) PI substrates. 

 

The variation of the individual crystal size formation with time on these two substrates 

was measured during the annealing. Figure 6.4 (a) and (c) shows the results taken from 

the crystals grown on the glass substrate under 205°C and the PI substrate under 200°C, 

respectively. Average radius was measured for the disk-like crystals, while half the 

length of the axis (HLA) for both major and minor axes were measured for the ellipsoids. 

The growth speed (slope of the line) of the crystals on the glass substrate does not 

change, while on the PI substrate it changes on both axes of the ellipsoids after an 

initiation stage (as indicated by the arrows). For all the samples observed under a 

constant annealing temperature the measured speed of crystal growth is constant 

regardless of which crystal was chosen. The difference in the initiation time of 

nucleation only causes a line shift as shown in Figure 6.4 (a) and (c). The growing speed 

of the crystal (V) for different annealing temperatures (T) from 190 °C to 220 °C was 
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measured.  

 

Figure 6.4. Time dependence of crystal sizes and loge V ~ 1/T plot taken from the 

samples on a glass substrate under 205 °C [(a) and (b)] and a PI substrate under 

200 °C [(c) and (d)], respectively. 

 

Here, equation (5) in Chapter 4 can be utilized again to show the relationship between 

the crystal growth speed and temperature elevation. An activation energy Q can be 

obtained by plotting loge V against 1/T according to this equation. Figure 6.4 (b) and 

(d) shows the experimental loge V against 1/T plots from the two types of samples. The 

obtained activation energy from the samples on the glass substrates is 𝐸𝐺= 1.27 eV, 

while for the PI substrates they are E𝑎
𝑃 = 0.99 eV and E𝑏

𝑃 =0.94 eV for the major and 

minor axes of ellipsoid, respectively, with an average of 𝐸𝑝 =0.965 eV. For evaluating 
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E𝑎
𝑃  and E𝑏

𝑃  only the linear part as shown in Figure 6.4 (c) was used. The sudden 

change for the crystal growth speed in Figure 6.4 (c) can be explained by the facet-

roughing Kosterlitz–Thouless (KT) transition as observed previously [8]. The reason 

of the observed KT transition here is not clear. It might be caused by a tensile stress 

induced by a volume reduction of the crystalline phase in comparison to its amorphous 

precursor. In order to understand the crystalline structure, Jerzy Kanicki’s group [6] 

have had measured the crystallized film by X-ray diffraction (XRD) analysis. The 

measurement result has been shown in Figure 6.5. The crystallographic structure of the 

NTBP is monoclinic with unit cell parameters are a= 1.236 nm, b= 0.6578 nm, c= 1.519 

nm, and β = 100.62°. Numerous diffraction peaks from the samples on the glass 

substrate indicate that the film displays no preferential crystal orientation. On the other 

hand, the film on the PI substrate shows a preferential crystal orientation with (001) lies 

in the film plane. The broad “hump” characteristic of the spectrum is caused by the 

underlying PI film. The broad “hump” from θ=5° to 30° agrees well with result obtained 

from amorphous polyimide film in literature [9]. The random nature of the microcrystals 

observed on the samples on the glass substrates is similar to that observed for TBP 

crystallized on silicon substrate [6]. 

A close look at the crystal formed at the initial stage of crystallization (i.e. the primary 

crystal) on a PI substrate is shown in Figure 6.6 (a) and a schematic drawing of it is 

given in Figure 6.6 (b). The well-defined flat facets of the primary crystals support the  

existence of a KT transition. The preferential orientation of NTBP film on the PI 

substrate can be understood if a local polymer chain order as shown in Figure 6.6 (c) 
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exists on the PI film surface which provides a template for initiating the nucleation of 

NTBP.  

 

Figure 6.5. The X-ray diffraction (XRD) patterns of the crystalline films on glass 

(top) and PI (bottom) substrates 

 

The PI surface molecules may also favour the NTBP molecule transfer at the interface 

of amorphous/crystal phases to promote the crystal growth as the obtained activation 

energy (about 0.965 eV) there is lower than that on the glass substrate (about 1.27 eV). 

Figure 6.6 (d) shows a schematic projection view of the b–c plane of the NTBP crystal 

where one can see that the molecules are piled up in the film plane which is favourable 

for the in-plane charge transportation as the charge hopping between molecules is a 

dominant mechanism of conduction in organic semiconductors. While, in the polyimide 

film X-ray diffraction analysis which was done by Kenji Okuyama’s group [10], the 

polyimide molecules tend to form a structure with unit cell dimensions a* = 0.79 nm, 

b* = 0.63 nm, c* = 2.5 nm (molecule axis) and β = 90°. If the surface molecules of 

polyimide are in the b*–c* (or a*–c*) plane and NTBP/polyimide satisfies relations a 

parallels to c* and b parallels to b* on the interface, the two types of lattices are well 

matched (i.e. 2|a| ≈ |c*| and |b| ≈ |b*|).  
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Figure 6.6. (a) A primary crystal of NTBP on polyimide. (b) Its schematic drawing by 

referring its XRD result. (c) A schematic drawing of molecule ordering on polyamide 

surface which induces a preferential orientation of NTBP crystal. (d) Schematic 

illustration of molecule packing when a film is crystallized with (001) lies in the plane 

of PI substrate. (e) I–V curves of crystalline NTBP films on the glass and PI substrates, 

respectively.  

 

The result of an electro-transport measurement carried out by an Agilent 4156C 

Semiconductor Parameter Analyzer in a dry nitrogen ambient on the samples for both 

glass and PI substrates have been shown in Figure 6.5 (e). The Au (50 nm)/ Ti (2nm) 

contact electrodes were thermally evaporated through a shadow mask onto the 

crystalline film. The gap between the electrodes was 20 μm and the width of electrodes 

was 1 mm, respectively. The conductivity of the film on the PI substrate is σ𝑃=39 Ω/m 

which is one order of magnitude higher than that of the film on the glass substrate, σ𝐺= 

2.2 Ω/m. The film thickness “t” was measured using a Dektak profilometer and the film 

conductance was calculated by formula below: 
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σ = L/WRt                     (7) 

 

where the width of electrode W = 1 mm, the distance between two electrodes L = 20 μm, 

and the film thickness t is about 50 nm. The resistance R was taken from the measured 

I–V curves. Although the contact resistance may play a certain role in the measured 

conductivities it is not a dominant effect because: (i) the electrode deposition was 

carried out under identical conditions (same batch of deposition) for the two types of 

samples, and (ii) the work function of Au electrode (5.1 eV) and the highest occupied 

molecule orbital (HOMO) level of tetrabenzoporphyrin (5.2 eV) [11] are well aligned 

to ensure an optimized hole injection, as indicated by the good linear behaviour of the 

I-V curves at low voltages. 
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6.4 Organic polymer materials spectrum   

absorption 

In this part, the crystallization of conjugated polymer for both PQT-12 and N2200 

annealing under fixed temperature with different times have been investigated. In order 

to get information about film structure, atomic force microscopy (AFM) and spectrum 

absorption instruments were employed in this experiment.  

The PQT-12 films were formed by spin-coating from 1’2-dichlorobenzene (DBC) 

solution (0.6mg/ml) onto well-cleaned quartz substrates that were subsequently baked 

in the glove box at 80 °C for 30 min. These were then annealed at 140 °C for 10 min, 

20 mins, and 30 mins. Figure 6.6 demonstrates the atomic force microscopy scan on 

sample surfaces. 

 

 

Figure 6.6. The high-resolution AFM images of PQT-12 thin film   

(a) Dry at 80 °C for 30 min (b) annealing in glove box at 140 °C for 20min 

 

From these two images, we can understand that the PQT-12 material surface is 

obviously different by annealing. This is because the 1’2-dichlorobenzene’s boiling 
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point is about 180 °C, the rest of the solvent in the material film was slowly evaporated 

during the annealing process. This is conducive to molecule reorganization, thereby 

forming a well-ordered packing structure. The spectrum absorption measurement 

reveals that absorption peak shift was minimal in the post-annealing treatment from 10 

mins to 30 mins. That means molecular crystallization was finished in the first 10 mins. 

The PQT-12 spectrum absorption curves have been displayed in Figure 6.7.   

 

Figure 6.7. The normalized spectrum absorption of the spin-coated PQT-12 film 

under a fixed temperature with different annealing times.  

 

In order to compare the annealing temperature influences on PQT-12 film, we decreased 

the annealing temperature to 130°C and 120°C. The spectrum absorption results have 

been displayed in Figure 6.8. We notice that the absorption peak was shifted 

dramatically, and when the temperature was 120°C, the film was not formed as an 

ordered crystalline film. As the temperature increased, the molecule began to reorganize 



 

218 

 

and form a crystalline structure. From this experiment, we confirmed that the 

temperature is a significant parameter which can affect the molecular crystallization.  

 

 

Figure 6.8. The normalized absorption spectrum of PQT-12 film annealed under a 

fixed time with different temperatures. 

 

Similar analysis methods were also used with an n-type material. The N2200 film was 

deposited by spin-coating from Toluene solution, the concentration is the same as for 

the PQT-12 solution. Under an identical procedure, we have obtained the AFM image 

of N2200 thin film both dried at 80°C in a glove box for 30 min and annealing at 110°C 

for 4 hours. Figure 6.9 have illustrated these images.  
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Figure 6.9. The high-resolution of N2200 AFM images  

(a) Dry at 80 °C for 30 min (b) annealing in glove box at 110 °C for 4h 

 

The image in Figure 6.9 (a) demonstrates that the film was already crystallized after 

drying at 80 °C for 30 minutes in a glove box. By comparison of these two images, we 

found that the film surface textures are quite similar. In order to investigate and 

understand the molecules crystallization degree in each hour, we prepared four N2200 

thin film samples and post-annealed them at 110°C for 1 hour, 2 hours, 3 hours and 4 

hours. The spectrum absorption measurement result has been displayed in Figure 6.10 

below.   
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Figure 6.10. The normalized absorption spectrum of N2200 film annealed at a fixed 

temperature for different times. 

 

The absorption peak is stable almost at 700 nm for these four samples which confirms 

that during an hour of annealing the film has been crystallized. That is because the 

Toluene’ boiling point is 111°C, the solvent has been totally evaporated during the first 

period of annealing time. The following annealing may only reduce the grain boundary 

mismatch and crystal defects.  
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6.5  Summary 

In this chapter, a comparison of tetrabenzoporphyrin crystalline film growth on both 

bare glass and PI substrates has been investigated. The result was that the material 

crystallization from its precursor shows obvious preferential crystal orientation on the 

PI substrate. In addition, the electrical conductivity also dramatically increased 

compared to crystallization on a bare glass substrate. This preferential orientation 

caused by the PI surface molecules provides a favourable nucleation template and 

required lower activation energy for NTBP crystal growth. This experiment has proved 

that the material substrate can affect the organic semiconductor crystallization. The 

annealing temperature influences on both n-type and p-type conjugated polymer 

semiconductor crystallization have also been evaluated. Through linear spectrum 

absorption measurement, it can be confirmed that the degree of PQT-12 crystallization 

was dramatically affected by temperature. Compared to PQT-12, the N2200 film 

crystallization was formed after drying. Future annealing only reduces the defects of 

the film. 
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Chapter 7  

 

Conclusion and future work 

 

 

7.1 Introduction 

So far, all the experiments have been presented in previous chapters. Developing a 

novel fabrication technique to achieve organic polymer semiconductor self-assembly 

under a confined structure is the highlight and the most important achievement in my 

study. In this chapter, I will review and summarize all of the experiments undertaken 

and provide overall conclusions from my studies. In addition, I can be noted that organic 

semiconductor materials are not limited to application in transistors; they also can be 

applied in multiple fields of electronics, such as biosensors. In my future work I hope 

to go on to explore these potentials.  
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7.2 Conclusion 

Scientists general consider that the “coffee stain” effect should be avoided in fabrication 

processes, especially in inkjet printing and device fabrication. But now, I have 

developed it as a patterning method, demonstrating that it is possible to use it in organic 

electronic device fabrication. In a series of experiments, various solution-processable 

organic materials, both p-type and n-type, have been successfully patterned to a wire 

array geometry. Furthermore, the wire dimension can be manipulated to sizes in the 

range of a few micro- to a few nano-meters by only adjusting the solution concentration 

if the proper size of template is chosen. The minimum size of wire that we have 

patterned was a 250 nm polystyrene line (see the Figure 4.25). We have shown that 

“groove pinning” is the central mechanism for fine line patterning and it was also 

revealed that the capillary flow-induced edge deposition in the liquid bridge dominates 

the solute transportation and deposition to the contact line. In the grid structure 

formation, we have found that on the secondary patterning process, if one of the 

sidewalls did not firmly pin on the substrate, the solute in the groove was dragged 

toward to the neighbouring sidewall and finally deposited there. In this way, the fine 

wire array cannot be obtained. In addition, an interesting phenomenon that there are 

several nano-sized sub-stripes (about 50 nm in size) inside a single wire has been 

observed in the “space-applied” patterning result. We have determined that the reason 

for this is that during the secondary patterning process, a tiny amount of solution was 

trapped between the sidewall and primary line and the pinning-depinning event 

continued occurring until the solvent totally evaporated.  
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To observe how the solution moves in the groove, a series of wire array patterning 

experiments under the different temperatures have been carried out. Depending on the 

colour of the solution, both transmissive and reflective modes have been used for the 

in-situ microscopic observation. Through data recording and calculation, we have 

confirmed that the solution drying process under the groove was controlled by the 

energy that a solvent molecule required to escape from the liquid surface rather than by 

diffusion. Compared to the traditional device manufacture method, the PDMS template 

patterning technique can make solution-processable organic semiconductor via self-

assembly under a confined structure to form a high-resolution wire array. In this way, 

we can fabricate tens of OFETs at one time on a substrate, avoiding the 

photolithography procedure to produce the transistor channel. This further reduces the 

cost of device fabrication. For insoluble materials, such as PEDOT:PSS, a patterning 

transfer combined with plasma etching method has been employed for the wire array 

fabrication. The size of PEDOT:PSS wire was determined by the primary wire 

dimension that patterned on the PEDOT:PSS thin film. Finally, for polymer electronic 

devices, both organic field effect transistors (OFET) and organic electro-chemical 

transistor (OECT) have been fabricated. Through measurement, all of the devices have 

been shown to be working very well. The n-type transistor on/off ratio was about 104 

with the electron mobility of about 1.75 × 10−2cm2/Vs. The PQT-12 based transistor 

on /off ratio was about 103  and the hole mobility was to be found about 1.75 ×

10−3cm2/Vs . Furthermore, for the F8T2-base transistor, the on/off ratio reached at 

about 105 , which was a very good result compared to others. However, the point of 
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its current output was shifted from 0 volts to about -7.5 volts and the hole mobility was 

only about 6.9 × 10−4cm2/Vs, this was thought to be because the organic material 

crystallization growth on different substrates has different orientations, resulting in 

difficulty with the charge carrier injection. Therefore, experiments were undertaken to 

investigate the crystallization mechanism of the organic material on different substrates. 

The results of the crystallization experiments revealed that the characteristics of the 

substrate surface have a huge impact on a small molecule’s preferential orientation on 

crystallization since the activation energy requirement on each substrate was different. 

Besides, the obtained preferential orientation dramatically increases the electrical 

conductivity of the film in comparison with that on a glass substrate, which does not 

show any preferential orientation. The preferential orientation of NTBP on the PI 

substrate is believed to be caused by a local order of the PI surface-molecules, which 

can provide a favourable nucleation template for the growth of NTBP crystals.  

The influence of temperature on the crystallization of organic conjugated polymer 

semiconductors has been studied as well. From the results we conclude that post 

annealing the material under different temperatures leads to different performance 

properties. If the temperature cannot reach the material crystallization point, then even 

post baking for more time, the result of crystallization will not be ideal. In addition, the 

choice of solvent is another point to be considered. It was found that high boiling point 

solvents, which evaporate relatively slowly, are favourable for forming ordered 

structures and obtaining high performance devices.  
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7.3 Future work  

The transistor is a fundamental component in electronics and has a very wide range of 

applications. One of the important applications is in logic circuits. Depending on the 

various combinations, transistors can be used to make up three devices, they are: an 

inverter, a negative-and gate and a nor gate. All of these gate circuits can then be used 

to build up more complicated logic circuits. Taking an inverter as an example, it has 

two types: One is made up from two n-type transistors, and the other is called 

(Complementary Metal–Oxide–Semiconductor) COMS, which is made from one n-

type and one p-type transistor. The manufacturing technology of silicon-based 

complementary circuits is very mature, but for circuits which are built from organic 

transistors it is just the beginning. Therefore, one of the aims of future work is to 

develop the current technique to patterning both n- and p-type organic semiconductor 

to fabricate gate circuits. If we can find a method to realize material phase separation 

according to the solvent’s hydrophilic and hydrophobic characteristics, maybe this idea 

can be achieved. Another future target is continuing my work in Chapter 5. As I 

mentioned before, the PEDOT:PSS based electro-chemical transistor has low drive 

voltage and high sensitivity characteristics; therefore it maybe use it to design a 

biotranducer to detect bio-signal transmission. The cell can be cultured in those holes 

where I have fabricated by the optical lithography technique on the PEDOT:PSS wires. 

The biological agent can then tune the condition of the ion channel and a corresponding 

signal variation can be detected. This could have potential application in the cancer cell 

research.  


