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Abstract 
 

 

The last British Ice Sheet has been a focus of research for over a century, and yet we have only 

a generalised picture of its extent and internal geometry. This is a remarkable situation 

compared to knowledge of the larger former ice sheets of North America and Fennoscandia. 

The central tenet of this thesis is that the glacial landform record has been neglected as a source 

of spatial information, hindering our attempts to reconstruct the characteristics of the ice sheet.  

This motivated systematic mapping of glacial landforms (subglacial bedforms, moraines, eskers, 

and meltwater channels) for the whole of Britain, yielding the first consistent and countrywide 

glacial maps. Mapping was achieved primarily using a high resolution (5 m horizontal) digital 

elevation model to visualise the landscape. Over 60,000 features were identified and mapped, 

greatly expanding the known distribution and pattern of glacial landforms. Analysis of the 

landform data permitted a country-wide reconstruction of the pattern of ice sheet retreat. A 

database of just over 400 dates, compiled from the literature, was used to arrange the pattern of 

retreat in time. This exercise highlighted various incompatibilities between the presently 

available dates. Examination of landform patterns enabled the elucidation of some pre-deglacial 

configurations of ice divides and flow geometry, including ice streams. This revealed the 

existence of both transient (migrating) and persistent ice divides. In contrast to other and larger 

palaeo-ice sheets, the majority of flow evidence in Britain exhibits a particularly close 

association with topography, indicative of an ice sheet thickness comparable with the amplitude 

of subglacial relief. The retreat pattern, flow geometries and divide configurations that have 

been identified from this research provide a set of evidence-based constraints at ice sheet scale 

for future numerical ice sheet modelling experiments. 
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Chapter 1  
Introduction 

 

1.1 Introduction and rationale 

The last (Late Devensian/Weichselian) British Ice Sheet has been a focus of research for over a 

century, and yet we have only a generalised picture of its extent and internal geometry. This is 

problematic for understanding the role of the ice sheet in, and/or its response to, the climate 

changes of the last glacial cycle. The underlying thesis of this work is that the glacial landform 

record of Britain has been underused in attempts to reconstruct the characteristics of the ice 

sheet. The research presented directly addresses the consequent lack of a spatial framework in 

two ways: 

 Systematic countrywide mapping of glacial landforms to produce the first consistent glacial 

map of England, Scotland and Wales. 

 Extraction of key characteristics of the last British Ice Sheet (retreat pattern and glimpses of 

flow pattern configuration) from the glacial map employing clearly stated assumptions of 

landform production, preservation, and destruction to interpret the distribution and pattern of 

landforms. 

1.1.1 The significance of ice sheets 

Ice sheets are significant components of the global climate system affecting atmospheric and 

oceanic circulation systems, planetary albedo and the hydrological cycle (Clark and Mix, 2002). 

The present day ice sheets of Antarctica and Greenland together contain 27 x 106 km3 of ice, 

which is equivalent to 63.9 m of global sea level (Marshall, 2005; Lemke et al., 2007). The 

response of the polar ice sheets to rising global temperatures is presently uncertain because we 

do not have an adequate understanding of ice sheet dynamics (Lemke et al., 2007). 

 

Marine sediment and ice core records have demonstrated that the Late Quaternary climate has 

been highly unstable  with abrupt climatic and oceanic shifts a characteristic feature of the last 

glacial period (Sarnthein et al., 2000; Hinnov et al., 2002) (figure 1.1). Significant 

demonstrations of this instability are the abrupt and periodic (approximately every 7,000 years) 

increases in the volume of ice-rafted debris (IRD) in North Atlantic marine sediments (Heinrich 

Events). The associated volume of meltwater released to the ocean during these events may 

have been enough to cause a shut down of the thermo-haline circulation, further suppressing 

North Atlantic temperatures. Heinrich Events are indicative of rapid, closely linked changes in 

the hydrosphere, atmosphere and cryosphere (Hemming, 2004). The ultimate cause of Heinrich 

events remains elusive (Hinnov et al., 2002). On shorter timescales (1,000-1,500 years), but 

possibly related to Heinrich Events (Bond et al., 1997), air temperatures also fluctuated during 
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the last glacial cycle. These Dansgaard-Oescheger Events are characterised by abrupt increases 

in temperature succeeded by gradual cooling over 1,000-1,500 years (Broecker, 1994).  

 

Elucidating the histories of former ice sheets, which we know operated under dramatic shifts in 

temperature, is one means by which we can investigate the response and/or role of ice sheets in 

climatic change. Numerical climate models are increasingly used to reconstruct the past, and 

predict future, climate change. The successful application of numerical climate models depends 

on accurate parametisation of the cryosphere, including the dynamics and extent of former ice 

sheets. Reconstructing former ice sheets and their dynamics also provides insights into the 

behaviour of the present day ice sheets in Greenland and Antarctica and may potentially help to 

determine how they will respond to future climate change. 

 

Figure 1.1 Abrupt temperature changes occurred during the last glacial cycle. Graph shows the Greenland 
(GRIP summit) oxygen isotope record (after Dansgaard et al. 1993), which is a proxy for North Atlantic air 
temperature. The timing of peaks in ice rafted debris (Heinrich Events: H0-H6) are placed after Bond et al. (1993). 
Reproduced from Merritt et al. (2003).  
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1.1.2 Approaches to ice sheet reconstruction  

Ice sheets, as exemplified by the present day ice sheets on Antarctica and Greenland, consist of 

one or more ice domes or divides from which ice flows out towards the margins. The flow 

configuration, or geometry, of the ice sheet is thus determined by the location of the ice divides. 

Figure 1.2 shows the key features of the Antarctic Ice Sheet. A central objective of Quaternary 

science is to reconstruct the extent, volume, dynamics and temporal evolution of former ice 

sheets (Andrews, 1982). Determination of the ice configuration and dynamics of former ice 

sheets can provide insight into the location of iceberg seed points, ice discharge history and 

information on the scale of ice sheet oscillations (McCabe et al., 1998). The location of iceberg 

initiation points can be used to assess the provenance of IRD using iceberg trajectory modelling 

(Bigg and Wadley, 2001). Determining the source of IRD in Heinrich Events is an increasingly 

important area of research for understanding the relationships between climate and ice sheets. 

The reconstruction of former ice sheets can provide the initial boundary condition information 

for climate models or can be used to test the accuracy of climate model outputs (Mix et al., 

2001).  

 

There are three main approaches to ice sheet reconstruction: numerical modelling based on 

physical principles of behaviour derived from observations of present day ice sheets; isostatic 

modelling of the rate of crustal deformation due to ice loading; and inversion of the glacial 

geomorphological record using assumptions about glacial landform genesis (Andrews, 1982). 

The present understanding of glaciological and isostatic processes does not permit the 

development of an ice sheet model that is completely compatible with the geological evidence 

(Hagdorn, 2003). For this reason it is necessary to use all three approaches to make up for the 

limitations and restrictions of each. All three approaches have been used in attempts to elucidate 

the history of the British Ice Sheet. This thesis is concerned with the glacial geomorphological 

approach to ice sheet reconstruction (e.g. figures 1.3 and 1.4). Glacial geomorphology and 

geology are the most direct lines of evidence for the reconstruction of former ice masses 

(Kleman et al., 1997). Evidence based reconstructions of former ice sheets from glacial geology 

and geomorphology can be used to constrain ice sheet models or validate their outputs (Mix et 

al., 2001). Therefore, ice sheet reconstructions based on evidence can form an independent 

check on the ability of such models to simulate the three-dimensional behaviour of ice sheets 

(Boulton et al., 2001) and lead to refinement of the model and our understanding of glacial 

processes. Furthermore, the spatial distribution of glacial deposits and landforms is important 

information for land-use planning, the construction, engineering and water resources industries, 

agriculture, mineral resource exploitation, tourism, conservation and education (McMillan, 

2002).   
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Figure 1.2 Ice sheets typically comprise a number of interconnected ice divides from which ice flows out 
towards the ice margin. Ice streams (anomalously fast rivers of ice within the main ice sheet) are most common at the 
ice sheet margin but their tributaries may extend into the interior of the ice sheet. The highest points coincide with the 
ice divide positions. Top image: Surface topography and steady-state flow rates for the Antarctic ice sheet. 
Reproduced from Bamber et al. (2000). Lower image:  Flow configuration of the Antarctic Ice Sheet. Lines show ice 
divides and flow patterns. Reproduced from Anderson et al. (2002).  
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Figure 1.3 Example of the inversion of the glacial landscape to reconstruct the evolution of the Keewatin 
sector of the Laurentide Ice Sheet: a) Glacial Map detailing the distribution and pattern of landforms over the area of 
interest; b) Generalisations of evidence contained within the glacial map in terms of ice flow and retreat pattern. 
Deglacial information from eskers and aligned lineations in yellow, earlier ice flow patterns in pink and green; c) 
time-distance diagram across transect X-Y. Relative chronology derived from landform superimposition of the three 
discrete events identified constrains order within the diagram. Ice sheet geometry (divide locations and margin 
positions) extrapolated from the spatial arrangement of the generalisations. Reproduced from Kleman et al. (2006).  
 

1.1.3 The last British Ice Sheet  

Britain occupies a climatically sensitive position on the edge of the NE Atlantic (Map 1). 

Therefore it is reasonable to expect that the former British Ice Sheet (BIS) was highly dynamic. 

Studies into the delivery of ice–rafted debris to the Barra Fan off NW Scotland have supported 

this, indicating that the BIS may have fluctuated on 1,500 year cycles during the last glacial 

(Knutz et al., 2001). A more detailed understanding of the evolution of the last BIS could 

provide insights into the nature of abrupt climate changes and the dynamics of small maritime 

ice sheets. A number of provenance studies have demonstrated that there is a European 

component to Heinrich Events and that a distinct European-Laurentide-European phasing occurs 

(Scourse et al., 2000). This lack of synchronicity in the response of the ice sheets may reflect 

different response times to external climate forcing due to ice sheet size. It has been further 

postulated that the British Ice Sheet is responding to the 1,500 year climate cycle of Dansgaard-

Oescheger Events in contrast to the approximate 7,000 year Heinrich cycle characteristic of the 

Laurentide Ice Sheet (Knutz et al., 2001). This new marine evidence places greater demands on 

the terrestrial record (Bowen, 1999a). 
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Evolution of the last Fennoscandian Ice Sheet interpreted from an inversionFigure 1.4  of the glacial 

landscape. Reproduced from Kleman et al. (1997).   
 

The British landscape has been sculpted by numerous glaciations and glacial landforms and 

deposits cover a significant proportion of the country (Warren and Horton, 1991). There is 

terrestrial evidence for up to six glacial episodes although the deposits and landforms of the last 

(Late Devensian) ice sheet are the best preserved and most widespread (Bowen et al., 1986). 

Despite over a century of research and interest in the former glaciations of the British Isles there 

is very little information on the flow configuration, other than a ‘generalised flow distribution’ 

(for example see Ballantyne, 1998), the vertical extent, ice divide and ice stream locations and 

the retreat pattern of the BIS. This is in marked contrast to the information available for other 

northern hemisphere palaeo-ice sheets (e.g. figures 1.3 and 1.4). The majority of research into 

the BIS has involved field mapping of landforms and investigation of stratigraphic sections (for 

example see Merritt et al., 1995). Investigations have been on a local to regional scale meaning 
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that synthesis has been difficult and conclusions are limited in scope due to the lack of a 

coherent dataset on which to base ice sheet scale reconstructions. Defining the maximum extent 

of the Late Devensian ice sheet has been the main focus of research, however this may not be 

the most useful information for understanding ice sheet behaviour and relationships with 

climate (Clark et al., 2004a). Numerical and isostatic modelling have been used to investigate 

the last BIS (Boulton et al., 1977; Boulton et al., 1985; Lambeck, 1991; Peltier et al., 2002; 

Shennan et al., 2006b; Boulton and Hagdorn, 2006). Models disagree on the vertical and spatial 

extent of ice and the number and location of ice dispersal centres. Many aspects of the ice sheet 

remain unresolved and controversial, for example the style of glaciation in the Irish Sea (Eyles 

and McCabe, 1989; McCarroll, 2001), a connection with the Scandinavian Ice Sheet across the 

North Sea (Boulton et al., 2001) and the extent of ice in northeast Scotland, (Merritt et al., 

2003).  

 

The BRITICE collaboration between British Geological Survey (BGS) and some university 

academics collated 150 years of published information on the landforms of the last BIS  in a 

Geographic Information System (GIS) and produced the first Glacial Map of Britain (Clark et 

al., 2004b; Evans et al., 2005)  (figure 1.5). The project identified inconsistencies in the 

published record, for example differences in mapping styles and scales between observers and 

restricted spatial coverage. In addition, during 150 years of research, our understanding of the 

genesis of glacial landforms has developed considerably leading to changes in terminology and 

classification schemes (Clark et al., 2004b). A systematic mapping program of British glacial 

geomorphology is therefore necessary before our understanding of the last BIS can attempt to 

approach that of the other Northern hemisphere ice sheets (Evans et al., 2005). This PhD builds 

upon the results of the BRITICE project to produce a comprehensive database of British glacial 

landforms to facilitate a glaciologically plausible reconstruction of the last BIS.  

 

The main obstacles to a detailed understanding of the history of the last BIS are the lack of a 

consistent glacial geomorphological map and a reliable chronology. A comprehensive database 

of the glacial geomorphology of Britain would provide data to constrain models and enable a 

more rigorous assessment of their results. Due to the time and logistical constraints of 

fieldwork, studies based on glacial geomorphology and sedimentology are often limited to 

producing local and regional reconstructions. Understanding the dynamics of a former ice sheet 

is best achieved by a systematic synthesis of information from the whole area covered by the ice 

sheet, as local-scale studies will inevitably reconstruct small scale features of the ice sheet 

system (Clark et al., 2004a). It is not supposed that the (local) detail is incorrect, just that it 

becomes impossible to reconstruct the whole ice sheet from such data; a classic case of ‘not 

seeing the wood for the trees’. This is a classic example of the problem of reductionism in the 

earth sciences (Harrison, 2001). The focus on process-form studies and individual sites in 
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Britain, and the consequent lack of a geomorphological framework on which to base ice sheet 

scale models and provide a context for sedimentological information, has led to controversy 

over the dynamics and form of the last BIS. 

 
Figure 1.5 Glacial Map of Britain (Clark et al. 2004b). Map was compiled from over 150 years of published 
mapping including, journal articles, PhD theses and British Geological Survey map sheets and memoirs. Full details 
of compilation procedure are described in Clark et al. (2004b). The BRITICE assimilation demonstrated the wealth of 
information available for the last British Ice Sheet but also that the existing information suffers from inconsistencies 
and gaps in the record.  
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1.2 Aims and objectives 

This thesis addresses the research problem of the last British Ice Sheet by improving the spatial 

coverage, detail, and consistency of the British glacial landform record by conducting a 

systematic countrywide mapping program. Using a range of assumptions and inferences about 

the genesis of glacial landforms, the geomorphological record provides the basis for deriving 

glimpses of ice sheet behaviour through time from which we can build a reconstruction of ice 

sheet evolution, and move away from locally specific reconstructions and towards explaining 

the palaeoglaciology of the last BIS.  
 

The aim of this thesis is to produce a palaeoglaciological reconstruction of key aspects of the 

BIS based on existing and newly acquired geomorphological evidence. This aim is achieved 

through attainment of the following objectives:  

1.  Countrywide mapping of glacial landforms of the England, Scotland and Wales to 

produce comprehensive and coherent maps of glacial geomorphology. The first step is the 

production of a consistent glacial map of Britain to provide the basis for a reconstruction of key 

aspects of the BIS that remain unresolved, i.e. the retreat pattern, the location of ice divides and 

ice streams, flow configuration, and evolution over time.  Individual GIS layers of the following 

glacial landforms will be produced: bedforms (drumlins and ribbed moraine), meltwater 

channels (subglacial and marginal), moraines, eskers, and bedrock streamlining (e.g. crag and 

tails, scoured bedrock). The aim of mapping is to produce a database which will be useful for a 

reconstruction at the scale of the ice sheet.  

2.  Produce a GIS database of glacial geomorphology for Britain. Primary data, from 

countrywide mapping of glacial landforms (objective 1), is used to augment the BRITICE 

dataset of published information. Secondary data published after the BRITICE census date of 

2002 will be added to the BRITICE database as it is published.  

3.  Reduce the information contained in the glacial map to a manageable number of units 

of glaciological information using the principles set out by Kleman and Borgström (1996). The 

information contained in the glacial map is reduced to flowsets (distinct phases of ice flow) and 

margin positions. Inspection of cross cutting patterns is used to set up a relative chronology of 

ice sheet flow pattern events. These units of glaciological information form the ingredients for 

the reconstruction (objectives 4 and 5).   

4. Reconstruct the flow patterns, ice divide and ice stream locations of the last BIS and 

their evolution. The reconstruction produced is the most appropriate explanation of the 

geomorphological record following the principles of Occam’s Razor (i.e. the simplest). Where 

the conflicting sources of evidence or data gaps preclude a single unequivocal reconstruction a 

number of different scenarios are presented. 

5. Reconstruct the pattern of retreat of the last BIS.  

6. Collate a database of absolute dates and to constrain the build up and retreat of the 

last BIS in absolute time.  
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1.3 Thesis outline 

This thesis consists of eleven chapters which can be broadly organised into four thematic 

sections. The first section includes the introductory chapters (1-3) that detail the motivation and 

philosophical approach. This chapter (1) introduces the topic and outlines the structure of the 

thesis, highlighting the main themes as well as listing the aims and objectives. Chapter 2 sets 

out the research problem through an examination of what we currently know about the last 

British Ice Sheet and what still remains elusive or controversial. Chapter 2 also explores the 

failure of British based glaciologists to maintain a tradition of glacial landform mapping as a 

possible reason for why key features of the ice sheet remain poorly constrained in contrast to 

what we know about other palaeo-ice sheets. Expansion and refinement of the Glacial Map of 

Britain (Clark et al., 2004b) is a major motivation for this research. The philosophical approach 

to ice sheet reconstruction employed is described in detail in chapter 3.  

 

Section two details the research results (chapters 4-6). Chapter 4 describes the methods and 

datasets used to conduct countrywide glacial geomorphological mapping for Britain (objective 

1) and chapter 5 details the resulting glacial maps and the GIS database on which all further 

interpretation is based (objective 2). Chapter 6 describes the first level of interpretation of the 

glacial maps into generalised summaries or nuggets of glaciological information and details the 

resulting flowsets and margin positions (objective 3).  

 

Section three describes the interpretations that have been gleaned from the results (chapters 7-

10). Chapter 7 develops the concepts outlined in chapter 3 and sets up the procedure for 

reconstructing ice sheet elements from the building blocks presented in chapters 5 and 6. 

Chapter 8 shows how the flowsets have been organised into glaciologically plausible ice sheet 

evolution reconstructions at the regional level (objective 4). Chapter 9 presents the 

reconstructed retreat pattern (objective 5). Chapter 10 attempts to attach a chronology to the 

retreat pattern (objective 6). The fourth and final section comprises the discussion and 

conclusions (chapter 11). Chapter 11 examines the implications of the reconstruction, describes 

avenues for further research and presents the thesis conclusions.  

 

The thesis is accompanied by five maps enclosed unbound for ease of use. Maps 2 and 3 are 

split into north and south sheets. Map 1 is a location map listing all of the sites, place names and 

geographic features mentioned in the text. Maps 2 and 3 record the results of the countrywide 

systematic mapping. The interpreted flowsets are shown in Map 4 and Map 5 shows the 

reconstructed pattern of retreat. The appendix contains the collated table of published dates 

relating to the last British Ice Sheet.  



 

Chapter 2  

The last British Ice Sheet: a review  
 

2.1 Introduction 

It is beyond the scope of this thesis to review, in detail, all of the published research papers that 

concern the last British Ice Sheet (BIS). The literature on this topic is vast and expansive 

reflecting nearly two centuries of fascination with the elusive glacial history of England, 

Scotland and Wales. A synthesis of the mapping of glacial geomorphology that has amassed 

over this time, contained in published academic journals, maps, PhD theses, and British 

Geological Survey map sheets and associated memoirs, has already been conducted by Clark et 

al. (2004b) and the research literature contained therein is reviewed by Evans et al. (2005).  As 

such, the purpose of this chapter is to briefly examine using illustrative examples what we 

currently know about the major characteristics of the ice sheet, focussing on identifying what is 

confidently constrained, what is yet to be elucidated, and what aspects remain controversial. 

This review draws heavily upon review papers, book chapters, Quaternary Research Association 

Field Guides and British Geological Survey Memoirs that collectively summarise in much more 

detail the state of knowledge and development of ideas (e.g. Charlesworth, 1957; Price, 1983; 

Sutherland, 1984; Boulton et al., 1991; Ehlers et al., 1991; Gordon and Sutherland, 1993; Benn, 

1997; Gordon, 1997; Delaney, 2003; Ehlers and Gibbard, 2004; Lewis and Richards, 2005; 

Sejrup et al., 2005; Catt et al. 2006; Catt, 2007).  These reviews summarise a wealth of research 

undertaken by generations of glaciologists, geomorphologists, and sedimentologists too 

numerous to mention specifically here. The final part of the chapter will examine some of the 

obstacles that have prevented an evidence based ice sheet scale reconstruction. First, it is useful 

to define what characteristics need to be determined in order to reconstruct a former ice sheet. 

This PhD project is concerned with the glacial record of Britain (England, Scotland and Wales); 

for an up to date review of the literature on the Irish Ice Sheet see Greenwood (2008). 

2.2 What do we want to know about ice sheets?  

There are four principal elements of a former ice sheet of interest to palaeoglaciologists – size, 

form, evolution, and timing (Clark et al., 2006). We want to know:  

 How big was the ice sheet? - spatial and vertical extents, ice volume.  

 What shape was the ice sheet? - flow pattern configuration, ice divide locations, ice stream 

locations.  

 How did the ice sheet evolve? - nucleation centres, configuration changes, retreat pattern.  

 When did the ice sheet exist and how long did it take to build up and retreat?  



  Chapter 2. The last British Ice Sheet: a review 

 

 12

The answers to these questions allow us to calculate how much water was locked up in the ice 

sheet in terms of relative sea levels, and to determine how much of the country was affected by 

glacial processes. The vertical extent of the ice sheet will determine whether it had any effect on 

the atmospheric circulation. Establishing the location of former ice streams helps to identify the 

major discharge points for iceberg calving and thus model the effect of the last BIS on the ocean 

circulation (e.g. Bigg and Wadley, 2001). Knowledge of how the ice sheet evolved during the 

climate changes of the last glacial cycle would further our understanding of ice sheet dynamics 

and ice-climate interaction.  Finally, we want to fix the operation of the ice sheet in time and 

therefore require an absolute chronology to constrain the evolution of the ice sheet. 

2.3 Spatial extent  

Determining the maximum extent of the last (Devensian/Weichselian) BIS has been a major 

focus of debate and controversy. A detailed discussion of the evolution of opinion is given in 

Clark et al. (2004a). Proposed maximum limits have ranged from complete shelf-edge 

glaciation coalescent with Scandinavian ice in the North Sea to a more restricted ice sheet with 

peripheral ice free enclaves in Scotland and no connection to Scandinavian ice. Figure 2.1 

shows some of the various limits that have been suggested. Note that the maximum limit is 

frequently presumed to be equivalent to the Last Glacial Maximum (LGM) limit. The LGM 

defined as the global glacial ice volume peak at 23-21 ka BP (Clark and Mix, 2002). However, 

it has been suggested that the maximum limits of the last BIS were reached earlier than this 

(Bowen et al., 2002). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.1 Some of the limits proposed for the last 
British Ice Sheet. 1 = Bowen et al (2002), 2 = Hall (1997), 3 
= Balson and Jeffrey (1991), 4 = Scourse and Furze (2001), 
5 = proposed readvance limits in the Irish Sea Basin (Isle of 
Man – Dackombe and Thomas (1991), Cumbria – Huddart 
(1991)), 6 = possible western margin of the Scandinavian ice 
sheet at the LGM (Hall, 1997). Reproduced from Boulton 
and Hagdorn (2006). 
 

Most of the maximum terrestrial limits of the last BIS are not marked by significant end 

moraines (Evans et al., 2005) and so the former extent of ice has traditionally been defined by 

the spatial extent of glacial deposits (figure 2.2), and the ‘freshness’ of glacial landforms 

(Bowen et al., 2002). For example, the compilation of Charlesworth (1957) summarised the 
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results of much of this research defining the limit of what he referred to as ‘newer drift’. Where 

this limit has been difficult to find because of little or no geomorphological expression, patchy 

or thin till deposits, or if successive generations of glacial deposits have been derived from the 

same source area and therefore have similar lithological characteristics, there has been debate 

over the precise position of the limit. For example, the ‘Wolverhampton Line’ marking the 

maximum extent in Cheshire and Shropshire has been placed with a disparity of up to 10 km by 

different field workers (Worsley, 2005). 

 

Suggested limits for the Welsh section of the limit vary by as much as 50 km depending on the 

evidence used (Clark et al., 2004a) (figure 2.3). The South Wales End Moraine was first 

delimited by Charlesworth (1929) on the basis of overflow channels, discontinuous moraines 

and postulated ice dammed lake boundaries. Re-examination of the limit based on 

lithostratigraphy now places it further south (Bowen, 1981). The position of the limit in 

Pembrokeshire is based on the occurrence of Irish Sea till (Hambrey et al., 2001).  

 
Figure 2.2 Drift limits related to the last British Ice Sheet. Reproduced from the Glacial Map of Britain and 
BRITICE GIS database. Drift limits in NE Scotland and Lewis have been used to support the existence of ice free 
enclaves during the last glaciation. In Caithness the limit of shelly till is now recognised as representing the junction 
between mainland sourced and Moray Firth sourced ice (Evans et al. 2005).  
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Several positions have been suggested for the limit in the Vale of York (Straw, 2002). 

Charlesworth (1957) places the limit of newer drift at the Escrick Moraine, but other research 

based on sedimentary evidence places the maximum limit south of these moraines, at Wroot, 

invoking surge behaviour of the Vale of York ice lobe into Glacial Lake Humber (Gaunt, 1976; 

Catt, 1991). The limit of onshore flow on the east coast is set at the Horkstow Moraine marking 

the westernmost limit of Skipsea till (Evans et al. 2005) or the feather edge of the Skipsea Till 

on the Wolds dip slope (Catt, 2007). The most southerly limit of ice in the east is marked in NW 

Norfolk by the limit of Hunstanton Till (Hart and Boulton, 1991). The Hunstanton Till is 

correlated with Devensian till found in the southern North Sea, the limit of which is placed at 

the Dogger Bank (Balson and Jeffery, 1991). The limits along the southern margin are thought 

to have dammed several proglacial lakes, e.g. Lake Teifi  in Cardiganshire (Etienne et al., 2006) 

and Lake Sparks in Cambridgeshire (West, 1993).  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.3 Conflicting ice limits 
suggested for Wales. Today ice is recognised 
to have covered all of Wales except 
Pembrokeshire (following the Bowen 1970 
line). Reproduced from Jones and Keen 
(1993). 
 

The southern terrestrial limit in England is well established and is reproduced repeatedly in the 

literature without much debate, although, minor revisions of the order of kilometres continue to 

be made to the limit (e.g. Brand et al., 2002). It is suggested that it is known to a precision of 40 

km although at several points the limit is necessarily interpolated where there is no direct field 

evidence available (Clark et al., 2004a). The accepted limit forms an inverted V shape across the 

country (figures 2.1 and 2.2).  
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The southernmost offshore limit in the Irish Sea Basin has been subject to controversy 

(Hiemstra et al., 2006). Scourse et al. (1991) first produced evidence for a drift limit on the 

Northern Scilly Isles, which has been since augmented with morainic evidence (Hiemstra et al., 

2006) and dates (Scourse, 2006). Scourse and Furze (2001) examined cores from the Celtic Sea 

and suggested that till extends into the Celtic Sea, placing the terminus of the Irish Sea ice lobe 

at about 49°N, much further south than suggested by other studies (Hiemstra et al., 2006) 

(figure 2.2). Scourse and Furze (2001) infer that this is a grounded ice sheet margin as IRD 

beyond the limit contains material that could only have been incorporated from the northern 

Celtic Sea. There is ongoing debate as to the age of the glacial evidence on the Isles of Scilly 

but the ‘balance of evidence’ suggests an MIS 2 age (Hiemstra et al., 2006). The consensus 

view is that the Celtic Sea limit represents a short lived margin position possibly as the result of 

a surge or ice stream event. The placement of the southern ice limit this far south has 

implications for the glacial outcrops on the north coast of southwest England presently viewed 

as Anglian or Elsterian (Scourse and Furze, 2001).  

 

Views of the extent of ice over Scotland and the continental shelf have fluctuated from two 

polarised positions; a restricted ice sheet model with limited offshore expression (Sutherland, 

1984; Bowen et al., 2002), and continental shelf edge glaciation favoured by those investigating 

the offshore record (Stoker et al., 1993; Sejrup et al., 2005). The restricted glaciation model 

suggests that some parts of Scotland were never overwhelmed by ice, Shetland and Orkney 

were not affected by the mainland ice sheet, there was no connection with Scandinavian ice, and 

ice terminated at the Wee Bankie Moraine offshore of Aberdeenshire, and just west of the Outer 

Hebrides. This model was widely accepted until relatively recently, advocated by Sutherland 

(1984), and later by Bowen et al. (2002), and seemingly verified by the isostatic modelling of 

Lambeck (1991).  

 

The existence of ice free enclaves in NW Scotland and the Hebrides is the key motivation for 

the restricted glaciation hypothesis. Ice-free enclaves were initially inferred from the apparent 

lack of glacial deposits of Devensian age in these areas, e.g. ‘moraineless Buchan’ 

(Charlesworth, 1957). Recently derived thermoluminescence dates on glaciofluvial sands 

overlying till ranging from 116 to 72 ka BP also appear to support the ice free hypothesis 

(Gemmell et al., 2008). The restricted glaciation model has been strongly criticised from both 

the terrestrial and offshore points of view. Non-glacial conditions in Buchan during the last 

glaciation are unlikely on the basis of a large integrated network of subglacial meltwater 

channels identified in the region (Clapperton and Sugden, 1975; Merritt et al., 2003). The 

meltwater channels are accompanied by other deglacial features which strongly indicates full 

glaciation of Scotland during the last glacial (Merritt et al., 2003).  New cosmogenic dates in the 
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same area suggest ice free conditions commencing at c. 18 ka BP in conflict with the 

thermoluminescence dates (Phillips et al., 2008). 

 

The restricted glaciation view also fails to account for the significant moraine complexes and 

glacial sediments on the Hebridean and West Shetland shelves (Stoker and Holmes, 1991). 

These are defined, on the basis of marine stratigraphy, to be of Late Devensian age, which 

precludes the presence of low-lying ice free enclaves throughout the glaciation (Evans et al., 

2005). The four major glacial fans; the Barra Fan, Sula Sgeir Fan, and Rona and Foula Wedges, 

also suggest that shelf edge glaciation is likely to have occurred during each main glaciation 

(Sejrup et al., 2005) (figure 2.4). Seismic and borehole evidence suggests that the ice sheet also 

reached the continental shelf south of the Hebrides (Davies et al., 1984). Examination of multi-

beam seismic data from the continental shelf around northern Scotland has led to the discovery 

of a multitude of morainic features (Bradwell et al., 2008b). The clear expression of these 

features on the surface of the present day seabed implies that the moraine ridges are the product 

of the most recent phase of glaciation. 

 

The extent of ice in Scotland is closely tied to debates about glaciation of the North Sea. A 

variety of Late Devensian ice sheet limits have been proposed for the North Sea based on 

various criteria (Carr et al., 2006) (figure 2.5). One of the key questions in the history of 

research on the BIS has been to determine whether the British and Scandinavian Ice Sheets 

(SIS) were coalescent in the North Sea during the last glaciation and the issue continues to be 

somewhat contentious (Evans et al., 2005). The view of an extensive ice sheet was originally 

postulated by Valentin (1957) on the basis of acoustic profiling.  Using the new technique, 

Valentin suggested that the BIS and SIS were confluent at the location of Dogger Bank. Jansen 

(1976) suggested that the central and southern North Sea was ice free but coalescence occurred 

at the latitude of Shetland and Orkney. Ehlers and Wingfield (1991) used the distribution of 

deep channel like incisions evidenced from seismic profiling to determine the offshore limit.   

 

Sedimentological investigations have been used to support both scenarios. In his 1984 review, 

Sutherland described that till extended 20 km offshore to the Wee Bankie Moraine but not 

beyond and, coupled with the concept of ice-free enclaves in Scotland, concluded that the ice 

sheets were never confluent. Cameron et al. (1987) place the eastern boundary of British till at 

approximately 100 km offshore, and state that Scandinavian till does not extend beyond the 

Norwegian trench, thus establishing an ice free corridor between the two ice sheets.  
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The Bosies Bank and Wee Bankie Moraines mark the offshore limit of till and the glaciomarine 

sediments of the Marr Bank Formation beyond have been used to support their status as end 

moraines (Evans et al., 2005). Hall and Bent (1990) and later Hall et al. (2003) reject the 

concept of ice free enclaves in Scotland but accept that there was no connection with the 

Scandinavian Ice Sheet (SIS) in the North Sea at the LGM on the basis of the offshore 

stratigraphy. Their model suggests that the BIS extended as far as the Bosies Bank and Wee 

Bankie Moraines, overwhelmed Shetland and Orkney forming the Otter Bank moraines north of 

Shetland, and deposited the moraine banks to the west of St. Kilda. Others have accepted the 

terrestrial limits in Buchan and on Caithness and accommodated them with the positions of 

offshore ‘end moraines’ and other evidence for extension of the ice sheet into the North Sea 

(Ehlers and Wingfield, 1991). Carr (1999) conducted a detailed examination of the 

micromorphological properties of sediments from cores from the central North Sea and 

advocated a subglacial origin of these sediments thereby supporting a more extensive easterly 

limit. The Boulders Bank Formation and/or the Dogger Bank is usually taken as the limit in the 

southern North Sea (Clark et al., 2004a).  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.5 Some of the proposed ice limits for the North 
Sea The difference in opinion reflects the challenge of defining 
limits from coastal sections and limited marine core and seismic 
evidence. Reproduced from Carr et al. (2006). 
 

Sejrup et al. (1994) conducted sedimentological analysis and radiocarbon dating of three cores 

from Fladen Ground in the central North Sea and found that full glaciation in the North Sea 

occurred prior to the global LGM (23-21 ka BP). They conceive a two-stage glaciation model 

with pre-LGM glaciation of the North Sea followed by retreat and a subsequent but more 

limited readvance of the BIS to correspond with the well constrained Tampen readvance of the 

Scandinavian ice sheet. The concept of a two-stage model for the North Sea has been accepted 

and refined by subsequent researchers (Merritt et al., 2003; Carr, 2004; Carr et al., 2006). The 

two-stage model is consistent with conflicting evidence between the terrestrial and offshore 

records, especially in terms of timing, and the complicated nature of the glacial sediments (Carr, 

2004) (figure 2.6). In this scenario, the Bolders Bank and Wee Bankie moraines off the east 

coast of Scotland become retreat features. Recent work using a 3-D seismic dataset from the 
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Witch Ground area east of the moraines has identified mega-scale glacial lineations running 

broadly NNW-SSE. These lineations rest on top of the Weichselian stratigraphic unit and thus 

imply grounded ice in the North Sea at this time (Graham et al., 2007). Therefore the 

Scandinavian and British Ice Sheets must have been confluent.  

 
Figure 2.6 Schematic of a version of the two-stage model of glaciation of the North Sea. The British and 
Scandinavian Ice Sheets are confluent during an early part of the last glacial (Cape Shore Episode; left image). This is 
followed by retreat to the vicinity of the Wee Bankie and Bolders Bank moraines (dashed lines) and a second stage of 
advance into the North Sea with a lobe of ice emanating out of northern England and Scotland (Bolders Bank 
Episode; right image). Limits are based on correlation of tills in the North Sea. The Bolders Bank Episode model 
adopts some of the previously suggested terrestrial limits for a less extensive ice sheet in Scotland at the LGM. The 
two stage model of the North Sea is supported by dates from the northern North Sea suggesting deglaciation after 25 
cal. ka BP and dates for ice incursion on the eastern English coast after 21 cal. ka BP. Dates on the figure are 
uncalibrated radiocarbon ages.   Reproduced from Carr et al. (2006).  
 

The emerging consensus view of an extensive ice sheet reaching the continental shelf edge and 

confluent with the Scandinavian ice sheet for at least the early part of the last glacial represents 

a return to the picture we had at the turn of the century (Geikie, 1894). The main areas of 

controversy in determination of the spatial extent of the last BIS have been the southernmost 

limit in Wales; terrestrial and offshore limits in and around Scotland; confluence of ice in the 

North Sea; and the offshore limits southern Irish and Celtic Seas. Only the southernmost limit in 

England has persisted relatively unquestioned in the literature with only minor modifications 

being made over time.  

2.4 Vertical extent  

Numerical and isostatic models of the last BIS have produced disparate values for the altitude of 

the ice surface (figure 2.7). Differences between the models are largely a function of the 

different boundary conditions used; for example, the assumed lateral extent and characteristics 

of the bed can have significant implications for the height of ice surface. Boulton et al.’s (1977) 

model postulated heights of 1800 m and 1200 m for central Scotland and North Wales 

respectively. They assumed extensive lateral extent of ice with coalescence in the North Sea and 

a rigid bed. Later models have predicted lower maximum altitudes of 1000 m in central 

Scotland and 500 m in Wales (Boulton et al., 1985; Boulton et al., 1991) assuming a bed of 

deformable sediments and with a more restricted view of maximum lateral extent. There is 

approximately 50% difference in height between the maximum model of Boulton et al. (1977) 
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and the minimum model of Boulton et al. (1985) in NW Scotland (Ballantyne, 1998). A new, 

and arguably more objective model (driven by climate and changes in subglacial parameters), 

published by Boulton and Hagdorn (2006) suggests maximum ice surface heights ranging from 

2,250-1,500 m depending on the boundary conditions. Relevant to the following discussion of 

periglacial trim-lines (see below) they found it difficult to satisfy the required ice sheet surface 

using ‘sensible’ flow parameters.  

 
Figure 2.7 Models of the last British Ice Sheet at its maximum extent. The range of modelled ice surface heights 
is 1800-1000 m. A. Boulton et al. (1977); B. Boulton et al. (1985); C. Boulton et al. (1991); D. Lambeck (1993). 
Surface contours are in metres. Reproduced from Lowe and Walker (1997).  
 

Isostatic models have not produced consistent estimates for the height of the ice surface either. 

Lambeck’s (1991, 1995) models suggested a maximum height of 1,100 m and 1,500 m 
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respectively, but his most recent model suggests a maximum height of just 1000 m (Johnston 

and Lambeck, 2000). Peltier et al.’s (2002) ICE4G model suggests a height of 2,500 m whereas 

Shennan’s model of the same year suggests 1,125 m (Shennan et al., 2002). Models also 

disagree on the location of the greatest vertical extent of ice, for example Lambeck’s (1991) 

model centred the maximum height in the northern Irish Sea. A new isostatic inversion model 

that adheres to the view of confluence of ice in the North Sea suggests a maximum height of 

between 875-1,000 m centred on the Midland Valley and Kintyre (Shennan et al., 2006a) (figure 

2.8).  

 
Figure 2.8 Terrain corrected isostatic model of the British Ice Sheet, 35-10 ka BP. ‘Thick’ and ‘thin’ ice models 
differ 33-21 ka BP in the amount of ice over the North Sea and the continental shelf west of Scotland and Ireland. 
Note that the pattern and extent of ice cover is an input to this type of model, and not a result. Reproduced from 
Shennan et al. (2006a).  
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A series of recent publications summarise work, led by C.K. Ballantyne, identifying palaeo-

nunataks of the last BIS on the basis of periglacial trim-lines (Ballantyne and McCarroll, 1995; 

McCarroll et al., 1995; Dahl et al., 1996; Ballantyne and McCarroll, 1997; Ballantyne et al., 

1997; Ballantyne et al., 1998c; Ballantyne et al., 1998b; Ballantyne, 1999; McCarroll and 

Ballantyne, 2000; Ballantyne and Hallam, 2001). This develops earlier work of J. Geikie in NW 

Scotland and the Hebrides. The papers reassess the possibility of reconstructing the maximum 

possible height of the ice surface and other aspects of ice sheet configuration by mapping the 

altitude of periglacial weathering limits or trim-lines.  It is suggested that the trim-line altitudes 

represent the maximum altitude of the ice surface and hence delimit locations of palaeo-

nunataks. Periglacial trim-lines have been identified in NW Scotland and on the Inner and Outer 

Hebrides (figure 2.9) (McCarroll and Ballantyne, 2000), Snowdonia (Lamb and Ballantyne, 

1998) and the Lake District (Ballantyne, 1997). 

 
 
Figure 2.9 Periglacial trim-line locations identified in NW Scotland and the Outer Hebrides (black). Contours 
show the projected ice surface profiles that satisfy the trim-line heights. Arrows show direction of ice flow. 
Reproduced from Ballantyne et al. (1998c).  
 
Ice surface reconstructions from regional assemblages of trim-lines suggest that the maximum 

altitude of the last ice sheet was 900 m in NW Scotland, 700 m over the Outer Hebrides, 850 m 

in Snowdonia, and 870 m and 800 m in the eastern and western Lake District respectively. 
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Using the periglacial trim-line evidence to create parabolic profiles of the ice surface the lateral 

extent in NW Scotland is projected 7-10 km west of the coast of Lewis (Ballantyne et al. 1997). 

This is more restricted than suggested by the offshore record of glacial moraines (Ballantyne 

and McCarroll, 1995). This conflict lends support to the alternative interpretation of periglacial 

trim-lines as marking the location of an englacial thermal boundary (Ballantyne et al. 1998b). 

None of the criteria used to identify periglacial trim-lines rule out the possibility that the 

difference in erosion above and below the trim-line was the result of a transition from erosive 

warm based ice at lower elevations to protective cold based ice at higher elevations. Ballantyne 

et al. (1998b) argued against this interpretation on the basis that an englacial thermal boundary 

would not exhibit an even decline in altitude from inland to the coast, as observed in NW 

Scotland. However, the identification of periglacial trim-line evidence from summits in northern 

Scotland that must have been subsumed by ice at the LGM indicate it is impossible to 

unequivocally use trim-lines to identify palaeo-nunatak locations, (Ballantyne and Hall, 2008). 

A further problem for the palaeo-nunatak interpretation is the inability of the most recent 

numerical modelling experiments to reproduce the vertical limits suggested by the trim-line 

altitudes (Boulton and Hagdorn, 2007). The vertical extent of the ice sheet is still debated and 

the existence of nunataks remains controversial. It is likely that all summits in the central part of 

the ice sheet were submerged although it is possible that nunataks existed in peripheral regions 

of the ice sheet. 

2.5 Ice sheet configuration 

2.5.1 Flow patterns 

Ice flow patterns have been established on the basis of straie, erratic paths and till lithological 

properties, as well as streamlined bedrock features, subglacial bedform patterns, and till fabric 

analysis (Evans et al., 2005). The main flow patterns of the last BIS have been known since the 

turn of the twentieth century (figure 2.10) (Geikie, 1894). Charlesworth’s (1957) synthesis of 

flow pattern information derived from erratic transport paths and glacially streamlined 

landforms is remarkably similar to the summary produced by Geikie (1894), except in East 

Anglia. The basic flow pattern for the last BIS in Scotland has only been modified slightly since 

the map produced by A. Geikie in 1865 and 1901 (Price, 1983; Hall, 1997) (figure 2.11). The 

key changes are the interpretation of flow patterns over the Outer Hebrides and Shetland. The 

generally accepted pattern is of radial ice flow out of a number of ice centres distributed N-S 

along the western side of the country. Ice in Scotland is drawn down into the topographic 

depressions presented by the major troughs such as the Firth of Forth. Ice from Scotland is 

deflected to the west and south around Ireland and to the north and south in the North Sea.  This 

deflection of ice is usually invoked to support coalescence of British and Scandinavian ice. 

Southward ice flow in the Irish Sea is deflected around Wales to enter the Cheshire Plain and 

flow SW over Anglesey. 
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Offshore pathways have been inferred from the till lithology of coastal sections and the 

distribution of sediment packages on the continental shelf (Holmes, 1997). Concentrated 

delivery of sediment has led to the development of a number of shelf edge fans around the UK 

which imply directed flow of ice throughout numerous glaciations in well defined flow paths 

(Nielsen et al., 2005). Till fabrics from tills containing Scottish erratics record NNE-SSW ice 

flow on the Holderness coast and have been invoked to suggest an ice flow path skimming the 

east coast (Catt, 2007) (figure 2.12).  

 

There are some problems using erratic indicators of flow paths as there is significant potential 

for reworking of material in subsequent glaciations (Evans et al., 2005). Field mapping of 

streamlined landforms, till stratigraphies and straie has led to detailed reconstructions of flow 

patterns in several localities. However, there has not been a systematic accumulation of 

evidence and so the detail of reconstructed flow directions varies widely between areas (Evans 

et al. 2005). Mapping of drumlin distribution and orientation in northern England has refined 

models of flow directions derived from erratic trains (Mitchell and Riley, 2006) suggesting that 

a similar approach should be adopted elsewhere (figure 2.13). To date, the drumlin population 

of the British Isles has been underused in reconstruction of flow patterns of the last BIS and 

several major drumlin fields have not been mapped in detail (Evans et al. 2005).  

 
Greater variability in flow directions is evident at the local scale which is suppressed in the 

national summaries of generalised ice flow directions. Furthermore, the national summaries do 

not take into account the dynamic nature of the ice sheet; all flow pattern evidence is 

shoehorned into a single time period, usually taken to be the LGM. It is apparent that the 

evidence is multi-temporal as in some locations opposing flow direction information occurs 

which cannot have existed contemporaneously (figure 2.14).  

 

2.5.2 Ice divides  

Principal and minor ice divide locations have been established on the basis of divergent erratic 

transport paths and inferred from reconstructed flow patterns. For example the pattern of 

Rannoch granodiorite erratics suggests radial flow out from Rannoch Moor (figure 2.15) (Evans 

et al., 2005), confirming its status as a major ice accumulation centre as also suggested by the 

organisation of glacial troughs surrounding the plateau. Detailed examination of the distribution 

of straie and erratics in the Grampians has further refined the structure of the ‘Rannoch’ ice 

centre as three connected ice domes located on the high ground surrounding the plateau (Thorp, 

1987).  
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Figure 2.11 The general pattern of ice flow in Scotland has remained relatively unchanged over time except on 
the Outer Hebrides and Shetland. Reproduced from Price (1983).  
 
 
 
 

 
Figure 2.12 An ice lobe down the eastern coast of England has been invoked to explain the presence of erratics 
from Scotland and northern England on the east coast in the absence of coalescence of ice in the North Sea. 
Reproduced from Teasdale and Hughes (1999).  
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Figure 2.13 Geomorphological map of the Vale of Eden and Solway lowlands. Interpreted ice flow patterns and 
ice divide locations are shown. Original diagram by Hollingworth (1931) redrawn by Letzer (1978).  
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Figure 2.14 Generalised flow patterns for northern England and southern Scotland. The opposing flow directions 
in the Solway lowlands are glaciologically implausible suggesting that they occurred during two distinct ice flow 
geometries. Reproduced from Boardman and Walden (Boardman and Walden, 1994).  
 
 

The main ice divides are located in the north and west upland regions, i.e. the Scottish 

Highlands, Lake District and Wales (Clark et al., 2004a) (figure 2.10). The principle ice divide 

stretches down through NW and W Highlands from Sutherland to Rannoch (Hall, 1997). 

Secondary divides have been identified in the Southern Uplands, Cairngorms, Southeast 

Grampians, Cheviots, Outer Hebrides, Shetland, Inner Hebridean islands of Mull, Skye and 

Arran, Lake District, Yorkshire Dales and Snowdonia (Evans et al., 2005). Ice flow from more 

dominant ice centres in Scotland appears to have been deflected around secondary ice domes 

centred on the Lake District, Pennines, Wales and the Cheviots. The lack of ‘foreign’ erratics in 

these regions has been used to suggest that these areas supported independent ice caps and were 

never over-run by ice from elsewhere. For example, limited radial flow of erratics out of the 

Cheviots in combination with the evidence for west-east ice flow clockwise around the massif 

in the Tweed suggests that this was a subsidiary ice centre (Clapperton, 1970). These smaller ice 

divides are located predominantly on high ground at the periphery of the ice sheet. There has 

been considerable debate as to whether Shetland and the Outer Hebrides sustained independent 

ice domes or where overwhelmed by North Sea or mainland ice respectively (Evans et al., 2005) 

(figure 2.11). Opinion about the ice flow configuration over Shetland has fluctuated in tune with 

debates about the confluence of ice in the North Sea (overwhelmed by ice from the SE vs. an 

independent ice cap) (Peach and Horne, 1879; Sutherland, 1991b; Golledge et al., 2008).   
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Figure 2.15 Erratics have been used to define centres of ice dispersal in the NW Highlands, Cairngorms, 
Cheviots, western Southern Uplands, Lake District and North Wales. Erratic sources and transport paths and shelly 
till locations. Erratics taken from BRITICE GIS database with additions from Mackintosh (1879). Shelly till locations 
taken from Charlesworth (1957) and Sissons (1976). Granite outcrops are labelled with location.  
 

Most of the ice divides have remained relatively uncontroversial (like the generalised flow 

patterns) since the earliest reconstructions of the configuration of the ice sheet, with their 

location remaining relatively unchallenged (Price, 1983). Numerical and isostatic models 

collectively support ice divide locations in the NW Highlands, southwest Southern Uplands, 

Cumbria and Wales. Only minor changes have been made, for example debates on the relative 
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importance of a Snowdonian versus Menrioneith centred ice divide in North Wales (McCarroll 

and Ballantyne, 2000). What remains to be elucidated is how and whether these ice divides 

moved over time. It is possible that some local and regional centres of ice dispersal have yet to 

be identified, especially if they were transitory features. Thorough mapping of drumlins in the 

western Pennines and Lake District indicates an ice divide stretching from Cumbria over the 

Howgill Fells to the western Pennines (figure 2.12) modifying the reconstruction of an ice dome 

centred on the Lake District suggested by the erratic evidence. Offshore ice divides have also 

been postulated, for example Merritt et al. (2003) postulate the existence of an ice dome in the 

central North Sea during confluence of Scandinavian and British ice.  

2.5.3 Ice streams 

Ice streams are zones or ‘rivers’ of anomalously rapid ice flow within an ice sheet. It is thought 

that they exert a fundamental control on ice sheet dynamics and appear to be an intrinsic feature 

of ice sheet geometry (Marshall, 2005). At present it is not known what factor is ultimately 

responsible for ice stream location (Winsborrow, 2007) and behaviour although it has been 

shown that ice streams produce distinctive landform signatures that permit palaeo-ice streams to 

be identified (Dyke and Morris, 1988; Stokes and Clark, 1999). A number of ice streams have 

been suggested for the last BIS based on evidence of varied quality. Postulated palaeo-ice 

streams include the Irish Sea, the Minch, Vale of York, Vale of Eden, Wensleydale, Tweed, and 

Strathmore Ice Streams (Evans et al., 2005) (figure 2.16 and table 2.1). 

 

There is good evidence in the form of mega-scale glacial lineations (MSGL) observed from 

multi-beam seismic images of the seafloor and detailed onshore field mapping of large elongate 

subparallel landforms termed ‘mega-grooves’ (Bradwell, 2005) to support the existence of a 

palaeo-ice stream in the Minch (Stoker and Bradwell, 2005). This ice stream appears to have 

reached the shelf edge and would have fed the Sula Sgeir shelf edge fan system. Stoker and 

Bradwell (2005) suggest that the ice stream was a feature of repeated glaciations and dominated 

the configuration of the NW Sector of the last BIS. They estimate that it would have drained an 

area of approximately 15,000 km2 if the ice stream existed at the maximum extent of the 

glaciation. Elongate streamlined landforms on the coastal fringes of the Minch suggest that the 

ice stream had up to nine tributaries (Bradwell et al., 2007).  
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Figure 2.16 Proposed ice streams of the last British Ice Sheet. Direction of ice flow is shown by arrow. Trough 
mouth fans are outlined in orange.  Compiled from various sources, see table 2.1.  
 

Observations from high resolution remotely sensed imagery has led to the identification of 

palaeo-ice stream tracks in the Tweed and Strathmore basins (Clapperton, 1970; Everest et al., 

2005; Golledge and Stoker, 2006). Other hypothesised ice streams are less well grounded in 

geomorphological and sedimentological evidence. In the case of the Irish Sea Glacier, the main 

evidence cited to support its status as an ice stream are the converging flow patterns along the 

Irish Sea coasts from Britain and Ireland, typical of ice stream onset zones (Evans and O 



  Chapter 2. The last British Ice Sheet: a review 

 

 32

Cofaigh, 2003), and sediments found in the Celtic Sea that indicate it was a major discharge 

route of the last BIS. Fluctuations in the calving rate are inferred from changes in the deposition 

of ice-rafted debris (Scourse et al., 2000). Moraines on Anglesey and the Lleyn Peninsula have 

some of the characteristics of a lateral shear moraine (Thomas and Chiverrell, 2007). 

 

Mitchell (1994) describes the possibility of an ice stream in Wensleydale. Thorough field 

mapping of drumlins indicates that drumlin length increases to >400 m in central Wensleydale 

and drumlin orientations converge at the head of the valley. Flow convergence identified from 

detailed mapping of drumlins has also been used to postulate an ice stream in Stainmore 

(Letzer, 1987).  Mapping of moraines of the Otter Bank sequence using boreholes and seismic 

stratigraphy indicates that there were preferential pathways for ice flow in the Faroe-Shetland 

channel supplying the shelf-edge fans and it is speculated that these could be the route of small 

ice streams (Bulat and Long, 2005; Stoker et al., 2006). However, the current data does not 

allow for any other of the characteristic criteria for palaeo-ice streams to be identified. The 

existence of ice streams emanating from western Scotland and Ireland supplying the Barra Fan 

sediment system has been speculated but, at present, there is no evidence to support such 

features. Merritt et al. (1995) suggest that there was a major tidewater glacier in the Moray 

Firth, but unequivocal evidence to support ice streaming has not been provided. Surge 

behaviour has been invoked to explain the presence of Devensian age glacial deposits along the 

North Norfolk coast (Eyles et al., 1994). This may have been achieved by an ice stream flowing 

offshore parallel with the east coast. Support for this comes from the identification of mega-

scale glacial lineations in the Tweed, which may have been the inception area of the ice stream 

(Everest et al., 2005). Jansson and Glasser (2004) suggested, on the basis of mapped 

streamlined bedforms in the North Welsh valleys, that Wales experienced ice streams during 

deglaciation.  

 

The most recently published numerical model of the last BIS is able to simulate fast ice flow in 

the Irish Sea, Tweed and a North Sea ice lobe (Boulton and Hagdorn, 2006). The extension of 

ice to the Scilly Isles could be achieved maintaining the position of the southern most limit in 

England. Furthermore, the model required topographically constrained or static ice streams in 

order to generate reasonable ice sheet surface profiles.  

 

Ice stream research is a major driver of new geomorphological mapping in Britain. Several ice 

streams have been suggested for the last BIS but the evidence to support these features is 

variable and in some cases very sparse. Detailed mapping of glacial geomorphology is required 

to distinguish between landform assemblages created by ice stream rather than sheet flow to 

support claims of ice streaming (e.g. Stokes and Clark, 2001). It is likely that the most 

convincing evidence for ice streams in Britain will come from the offshore record in the form of 

high resolution 3-D seismic bathymetry (e.g. Ottesen et al., 2005). There is almost no 
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information for the timing and duration of ice streaming in the UK. Preliminary numerical 

modelling suggests that ice streams were an intrinsic feature of the last BIS. Determining the 

behaviour of ice streams of the last BIS is critical to unravelling interactions with oceans and 

climate. 

 

Table 2.1 Postulated ice streams of the last British Ice Sheet. Margins and dimensions of palaeo ice streams have 
only been suggested for a selection of the proposed ice streams.  
 
Ice stream Dimensions Evidence Reference 
Minch 200 km long 

50 km wide 
Bedform elongation ratios (L/W) >70:1 in Minch, 
>20:1 onshore. Convergent ice flow in up to 9 
tributaries along coastal fringes of Minch.  

Stoker and Bradwell 
(2005)  
Bradwell et al. 
(2007) 

Strathmore 100 km long 
45 km wide 

High elongation ratios <38:1. Convergent ice 
flow. Abrupt margins. Possibly two periods of 
operation, later stage topography of the bed 
influences ice flow. 

Golledge and 
Stoker (2006) 

Tweed 65 km long (onshore) 
40-20 km wide 

Elongation ratios <23:1. Convergent ice flow, 
topographically constrained. Abrupt margins.  

Everest et al (2006) 
Clapperton (1970) 

Irish Sea c. 600 km long 
190 km wide at snout 

Ice flow patterns converge into the Irish Sea from 
Solway, Scotland and Ireland. Ice limit at Scilly’s 
likely to be the result of short lived expansion of 
the ice front. Sedimentary evidence for possible 
lateral shear margin on Lleyn Peninsula (Thomas 
and Chiverrell, 2007).  

McCabe et al. 
(1998)  
Evans and  
O Cofaigh (2003) 

Offshore 
troughs 

- Speculated on the basis of trough mouth fans 
and bathymetric troughs. 

Stoker et al. (2006) 
Nielsen et al. (2005) 

North Sea - Invoked to explain ice flow pattern skimming 
eastern English coastline. Possible surge.  

Eyles et al (1994) 

Wensleydale 70  km long 
10 km wide 

Convergent ice flow into valley. Elongate 
drumlins and streamlining.  

Mitchell (1994) 

Welsh Conwy: 31 km long,  
            15-5 km wide 
Bala: 36 km long,     
         7.5-4 km wide 
Four Crosses:  
32 km long,14 km wide 
Severn:50 km long,  
            18-4 km wide 

Convergent topographically constrained ice flow 
along major valleys. Sharp lateral boundaries, 
high parallel conformity between lineations, 
elongation ratios 10-15:1.  

Jansson and 
Glasser (2004) 

Tyne Gap - - Beaumont (1971) 
c.f. Everest et al. 
(2006) 

Witch 
Ground 

>90  km long 
>30-50 km wide 

Highly attenuated bedforms. High elongation 
ratios and parallel conformity.  

Graham et al. 
(2007) 

Moray Firth - Convergent ice flow into the Moray Firth. Calving 
front during deglaciation.  

Merritt et al. (1995) 

 

2.6 Ice Sheet Evolution  

2.6.1 Ice sheet initiation 

There is very little evidence for the pattern of build up of the last ice sheet, as most evidence 

seems to have been removed or remodelled during deglaciation (Clark et al., 2004a). It is highly 

likely that initiation of the ice sheet occurred in the highlands of Scotland and Wales (Seigert, 

2001). Some authors have suggested that the Loch Lomond Stadial ice cap can be used as an 

analogue for the early stages of ice sheet growth (Price, 1983). Numerical modelling will 

probably be the best method to investigate the build up of the last BIS. In the model simulations 

of Boulton and Hagdorn (2006) the ice sheet initiates and grows out of the NW Highlands, there 

are no other sites of ice sheet nucleation. Section 2.9 considers the timing of the last BIS.  
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2.6.2 Flow configuration evolution  

The last BIS was a polycentric ice sheet with numerous sites of ice accumulation, and it is 

generally accepted that the dominance of different ice divides varied over time as the ice sheet 

configuration responded to climate events (Sutherland, 1984). The flow patterns between the 

two main ice divides in the southern Uplands and Rannoch is particularly complex, reflecting 

the changing dominance of the two ice centres. Superimposed, variable size distributions and 

cross-cutting drumlin patterns which are exhibited by many of the country’s drumlin fields are 

also indicative of changes in the configuration of the ice sheet (Rose and Letzer, 1977; Mitchell, 

1994) (figure 2.13). Conflicting flow pattern information is derived from adjacent drumlin 

fields, e.g. drumlin orientation in the Solway Firth lowlands suggests opposing flow directions 

which is glaciologically unlikely (figure 2.14). Erratics suggest that ice flowed up the Vale of 

Eden and through the Stainmore Gap, whereas drumlins and straie record ice flow in the 

opposite direction down the vale into the Irish Sea (Evans et al., 2005). These ice flow patterns 

must have occurred under different ice sheet configurations. 

 

Lithological variations within till stratigraphies have been used to propose differential ice 

sources. For example on the coast of Holderness the lower Skipsea till containing Southern 

Upland erratics is overlain by the Withernsea till containing erratics from the Lake District 

(Evans et al., 2005) indicating an increase in dominance of the more southerly ice centres as 

glaciation progressed. Changes in till fabrics between superimposed tills also indicate variations 

in ice flow patterns (e.g. Kirby, 1969) and in some locations used to reconstruct a detailed 

picture of ice flow variation. In NE Scotland detailed sedimentological and geomorphological 

mapping has revealed interaction between a Grampian ice mass and lobes from the Moray Firth 

and Strathmore (Peacock and Merritt, 2000; Merritt et al., 2003). Detailed mapping of drumlins 

in the Pennines and Cumbria reveals changes in the position of ice divides in the Yorkshire 

Dales throughout the glacial (Mitchell, 1994). In Wales, mapping of streamlined bedrock from 

satellite imagery suggests at least two phases of ice flow: an early topographically 

unconstrained Welsh ice sheet, followed by ice surface lowering and topographically 

constrained ice flow along major valleys (Jansson and Glasser, 2004) (figure 2.17). Mapping in 

Caithness indicates that local ice became more dominant after the retreat of the Moray Firth 

glacier (Evans et al., 2005).  

 
Although it is known that the ice divides were spatially and temporally variable there is no 

overall picture of the evolution of ice sheet configuration. Specifically we do not know how 

changes in one part of the ice sheet were reflected elsewhere. Detailed histories of flow pattern 

changes exist at the local to regional scales only. A systematic map of bedform patterns would 

facilitate interpretation of the complex assemblage of information and provide valuable insights 

into flow evolution which cannot be gained from erratic transport paths (Evans et al. 2005). 

Detailed mapping of the drumlin fields of the Marchars of Galloway highlights the complexity  
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of information (and potential for determining the detailed flow pattern history of the ice sheet); 

ten different flow phases were identified on the basis of differences in drumlin orientation, 

proximity and size (Salt and Evans, 2005).  

 
Figure 2.17 Ice flow configuration evolution in Northern Wales reconstructed from streamlined lineations 
mapped from satellite imagery: (a) Ice flow configuration prior to confluence with Irish Sea ice and (b) ice flow 
configuration following separation from Irish Sea ice and the development of topographically controlled ice streams. 
Locations of cold-based ice are inferred from ice sheet configuration. Reproduced from Jansson and Glasser (2004).  

2.6.3 Ice sheet retreat pattern 

The pattern of retreat has been reconstructed in detail for many parts of the ice sheet from 

individual valleys to larger areas incorporating several km2. For example, Embleton (1961) 

reconstructed the retreat of ice in the Vale of Conwy from geomorphological and 

sedimentological mapping. Detailed field mapping of the Fortrose area has produced a 

comprehensive deglacial history of the Moray Firth and provided key information on the 

dynamics of the ice lobe (figure 2.18) (Merritt et al., 1995). Evans et al. (2005) review and 

describe in detail the numerous moraines, drift limits, ice contact landforms, meltwater channels 

and lake deposits that have been used to reconstruct the retreat of regional and local sections of 

the last BIS. For other sectors of the ice sheet, the significance in terms of the deglacial pattern 

of moraines and other ice contact features has yet to be resolved. For example, recessional 

moraines have been reported on the islands of the Inner and Outer Hebrides but have yet to be 

understood in terms of regional retreat of ice.  

 

To my knowledge there are only a few published reconstructions of the ice sheet scale retreat 

pattern and most of these are based on numerical and isostatic modelling. A notable exception 

being the highly intricate reconstructions of Charlesworth (1926; 1957) based on a synthesis of 

geomorphological mapping but which are limited to Scotland. Lambeck (1993) used isostatic 
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modelling to reconstruct a time-slice retreat pattern of the last BIS. Ice was found to retreat back 

to centres in the NW Highlands, Southern Uplands and Wales. More recent isostatic models 

concur with this general pattern (figure 2.8) (Shennan et al., 2002; Shennan et al., 2006a). The 

numerical model of Boulton and Hagdorn (2006) reconstructs ice retreat to the NW Highlands 

in a correlative manner to modelled ice sheet build up.  Andersen (1981) used radiocarbon dates 

and the positions of large moraines to reconstruct isochrones of retreat. The ice sheet is shown 

retreating back to Wales, the Lake District, the Highlands of Scotland, Lewis and Shetland 

(figure 2.19). Boulton et al. (1991) reconstructed retreat in Scotland to ice centres in the 

westernmost Southern Uplands, Lewis and the Northwest Highlands by inferring the direction 

of retreat from drumlins, eskers and striation directions (figure 2.20a). In the south, the 

reconstructed pattern of retreat using the same approach is towards the Lake District and Wales 

(Boulton, 1992) (figure 2.20b). This approach presumes that these landforms relate to the most 

recent phase of ice flow and therefore record flow directions immediately behind the retreating 

margin (Boulton et al., 1985). The interpretation of drumlin patterns in this way is now viewed 

as only partially correct (Clark, 1999) and so the retreat patterns should be regarded as 

circumspect. 

 
Figure 2.18 Stages of deglaciation of the Moray Firth reconstructed from detailed geomorphological and 
sedimentological fieldwork. Reproduced from Merritt et al. (1995).  
 

Lateral meltwater channels can be used to reconstruct the three dimensional retreat of ice, for 

example the Forth glacier can be reconstructed from the series of lateral meltwater channels in 

the Ochill Hills (Evans et al., 2005). However, despite the ubiquitous nature of meltwater 

channels in the Scottish landscape only a small percentage have been mapped and there is 

considerable scope for gaining a greater understanding of the retreat of the last BIS using 

meltwater channels (Greenwood et al., 2007). Greenwood et al. (2007) employed the meltwater 
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channel record contained within the Glacial Map of Britain (Clark et al., 2004b) to reconstruct 

the pattern of retreat (figure 2.21). 

 
Figure 2.19 Isochrones of retreat of the last British Ice Sheet reconstructed from radiocarbon dates by Andersen 
(1981).  Reproduced from Lambeck (1991) 

 
 
Figure 2.20 Reconstructed retreat pattern for Scotland (left image) and England (right image). Pattern of retreat is 
based on assumption that flow patterns represent most recent ice flow direction. Ages are attached to ice margin 
positions where possible. Reproduced from Boulton et al. (1991) and Boulton (1990).  
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Figure 2.21 Reconstructed pattern of retreat from lateral meltwater channels contained within the BRITICE 
database. Solid lines indicate palaeomargins delineated with confidence, dashed lines represent margins inferred on 
the basis of topographic context and/or moraine positions contained within BRITICE, and arrows indicate flow 
directions close to the ice terminus. Reproduced from Greenwood et al. (2007). 
 
 
Despite incomplete coverage of mapping across the country several major findings emerged 

(Greenwood et al. 2007):  

- Evidence records a general direction of retreat from the eastern side of the country to the 

west indicating that ice centres were located in the west during deglaciation. 

- The initial direction of retreat was not always towards the nearest high ground. For example, 

the ice lobe occupying the Cheshire Plain retreated to the north into the Irish Sea rather than 

west into North Wales.  

- Deglaciation proceeded by thinning of the ice sheet, so that topography had a major 

influence on the retreat of major ice lobes.   

- Ice retreated to several independent centres which varied in dominance during retreat; North 

Wales, the Howgill Fells, Pennines, westernmost Southern Uplands and Rannoch Plateau. 

- Some of the reconstructed retreat patterns are incompatible suggesting more than one phase 

of retreat in some areas.  
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As demonstrated above, detailed retreat patterns have been reconstructed for individual 

locations by thorough field mapping of geomorphology and stratigraphy but as yet this 

information has not been combined to produce a comprehensive retreat pattern for the whole ice 

sheet. The prevailing consensus view of the maximum and LGM extent of ice has also had a 

major effect on the interpretation of retreat evidence. If the extensive glaciation view is 

favoured then offshore moraines in the North Sea such as the Wee Bankie and Bosies Bank 

Moraines become retreat features. The terrestrial limits of the restricted glaciation hypothesis 

similarly must therefore represent retreat margins. There have also been polarised opinions on 

the style of deglaciation. 

2.6.3.1 Deglaciation of Irish Sea Basin 

The nature and dynamics of the  deglaciation of the Irish Sea has been a subject of ongoing 

controversy between those who favour a retreat in a glaciomarine setting as a result of 

isostatically raised sea levels (Eyles and McCabe, 1989) and those who favour retreat of a 

grounded terrestrial lobe (McCarroll, 2001). Disagreement about the characteristics and nature 

of deglaciation of the ice lobe remains a critical obstacle to understanding the dynamics of the 

last BIS. The majority of investigations based on evidence from the eastern margin of the Irish 

Sea basin do not support retreat in a glaciomarine setting (Harris, 1991; Crimes et al., 1992; 

Harris et al., 1997; Glasser et al., 2001; Hambrey et al., 2001; Scourse and Furze, 2001; 

Hiemstra et al., 2005; Roberts et al., 2006).  

2.6.3.2 Ice sheet readvances 

As with the maximum extent of the former BIS, the nature of deglaciation has been subject to 

fashions within the literature. Views have flickered between active retreat of ice accompanied 

by numerous readvances and still-stands, and in situ wastage of ice. Re-advances interrupting 

deglaciation were suggested primarily on the basis of extensive moraine systems, on the 

assumption that these were not formed by still-stands but by readvances of the ice margin 

(Evans et al., 2005) (figure 2.22).  

 

The Lammermuir-Stranraer readvance was proposed by Charlesworth (1926) to account for the 

extensive belt of glaciofluvial landforms around the Lammermuir and Pentland Hills and 

extending to Stranraer and Galloway. Parts of this grand ‘kame-moraine’ have now been 

reinterpreted as the result of uncoupling of highland and southern upland ice and margin still-

stands during retreat (Evans et al., 2005). In the Aberdeen area, spreads of glaciofluvial sands 

and gravels were used to propose both the Aberdeen-Lammermuir and Dinnet readvances 

(Synge, 1956). The same deposits were interpreted as ice stagnation features in the 1970s 

(Clapperton and Sugden, 1972; Murdoch, 1975; Sugden and Clapperton, 1975; Clapperton and 

Sugden, 1977). Most recently the deposits have been reinterpreted as ice marginal supraglacial 

moraines (Brown, 1993). In the Tay region the association of ice marginal glaciofluvial 
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landforms with a prominent raised shoreline was used to propose the Perth readvance (Simpson, 

1933) but this was rejected by Paterson (1974) and also Sissons (1981) who initially supported 

its status (Sissons, 1963a,b). The debate concerning regional scale readvances of the ice margin 

has been reawakened by the publication of new radiocarbon dates from eastern Scotland 

(McCabe et al., 2007). McCabe et al. (2007) support the Perth readvance and propose an 

additional earlier readvance based on stratigraphic observations at Lunan Bay on the eastern 

coast. This new readvance evidence is contested by Peacock et al. (2007). The only regional 

scale readvance in Scotland that persists in the literature today is the Wester Ross readvance 

(Robinson and Ballantyne, 1979) A major ice margin position is recorded at the mouths of 

Lochs Torridon, Gairloch and Ewe by a series of moraine ridges, drift limits and eskers. The 

readvance status of this moraine system is based solely on its clear morphological expression 

and cross cutting striae either side of the moraine at Redpoint. In the absence of stratigraphic 

evidence the moraine could just represent a still-stand of the ice margin. The age of the 

‘readvance’ position has recently been confirmed by cosmogenic dating as c. 16.5 ka BP 

(Everest et al., 2006). Glaciotectonised outwash at St Bees on the Cumbrian coast and 

correlation of the St Bees moraine with the Bride moraine on the Isle of Man has been used to 

suggest two phases of readvance of Scottish sourced ice in the Irish Sea and Solway lowlands: 

the ‘Gosforth Oscillation’ (Merritt and Auton, 2000) and the ‘Scottish Readvance’ (Huddart, 

1991) (line 5 on figure 2.1). Readvances in the Solway lowlands were suggested as early as 

1929 (Trotter). The ‘Scottish Readvance’ remains controversial and is grounded in 

interpretation of the stratigraphy of the Solway lowlands (Boardman and Walden, 1994). 

 

 
Figure 2.22 Readvance positions postulated in Scotland. Reproduced from Jones and Keen (1993). 
 

There is evidence for local oscillations of the ice margin during retreat. Glaciotectonised 

sediments within the Ardesier Moraine close to Inverness indicate it is a push moraine formed 

by an advance of the Moray Firth ice lobe (Ardesier Oscillation) (Merritt et al., 1995). 



  Chapter 2. The last British Ice Sheet: a review 

 

 41

Proglacial lake development and ice margin oscillations have been described during recession of 

ice in the Cairngorms (Brazier et al., 1998; Golledge, 2002). Oscillations of the Irish Sea glacier 

during retreat are suggested from sedimentological observations from a number of locations 

around the basin. Several phases of ice marginal oscillation during retreat are invoked to explain 

the off lapping stratigraphy of glacial diamicts on the northern Isle of Man (Thomas, 1984; 

Thomas et al., 2004). Sedimentological and stratigraphical evidence from NW and NE Wales 

documents oscillations during the uncoupling of Welsh and Irish Sea ice (Thomas, 1985, 1989) 

and up to 20 oscillations and 11 readvances of the Irish Sea ice front are proposed on the basis 

of new mapping of the moraines and ice contact sediments of Anglesey and the Lleyn Peninsula 

(Thomas and Chiverrell, 2007). Harris et al (1997) identified glaciotectonic structures on the 

North Wales coast and suggested that these sediments represented the remnants of a push 

moraine created during localised advance of the Irish Sea glacier. Landforms close to Loch 

Ryan are described as resembling those of a surge landsystem by Salt (2001).  

 

Still-stands during retreat are also postulated. Topographically controlled still-stands occurred 

during retreat of ice in the Dee (Brown, 1993).  The Otter Ferry Stage is thought to be a period 

of widespread ice marginal stabilisation and is used to explain sea level fluctuations in the Firth 

of Clyde (Sutherland, 1984, 1991a) and Ford-Kilmartin region (Gray and Sutherland, 1977). 

The Oban-Ford Moraine mapped and termed as such by Synge (1966) is thought to represent a 

still-stand but Gray and Sutherland (Gray and Sutherland, 1977) claim that the moraine is not 

isochronous. Benn (1997) supports a widespread stabilisation of the ice margin on the Western 

Islands of Scotland, and dynamic deglaciation with possible localised readvances on Mull, Skye 

and Raasay after retreat of the mainland Scottish ice sheet.  

2.7 Thermal regime 

Very few statements are made on the nature of the bed conditions of the BIS. The nature of the 

bed has significant implications for the thickness of the ice sheet and in terms of its behaviour. 

Numerical modelling suggests that the distribution of cold and warm based ice of the last BIS is 

complex reflecting the varied topography of the bed (Boulton and Hagdorn, 2006). The 

presence of well preserved tors in the Cairngorms suggest cover by sluggish cold based ice 

during the last glacial (Sugden, 1968) and the preservation of preglacial landscapes in Buchan 

can also be explained by a cover of cold-based ice (Hall and Sugden, 1987). The preservation of 

chemically weathered bedrock in the Cheviots suggests that the massif may have supported a 

cold-based ice dome (Mitchell, 2008). Parts of the Welsh ice mass are also thought to have 

supported cold-based ice and deflected ice flow from further afield ice sources (Jansson and 

Glasser, 2004, 2008) (figure 2.17). Periglacial trim-lines identified in Scotland, Wales and the 

Lake District may represent pockets of cold based ice on the high ground in these regions (see 

earlier discussion on vertical extent).  
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2.8 Relationship to climate 

Even at its largest extent, the last BIS was a relatively small ice sheet compared to the 

Scandinavian Ice Sheet and the Laurentide Ice Sheet (LIS) of North America. It has been 

suggested from provenance studies of ice-rafted debris contained in deep ocean sediments that 

the BIS responded on shorter timescales than the larger LIS (Peck et al., 2006). During the last 

glacial cycle the LIS experienced major calving events approximately every 7000 years 

discharging large volumes of meltwater and debris into the North Atlantic, (Heinrich Events) 

(Hemming, 2004). At present it is not known whether these events are caused by an internal ice 

sheet mechanism or by external climatic forcing. One suggestion is that a small sea level rise 

caused by melting of the European ice sheets causes instability in the LIS which leads to 

calving. This is supported by the evidence for European ‘pre-cursor’ events – ice rafted debris 

(IRD) preceding the Heinrich Event 2 debris layer has been traced to the BIS (Scourse et al., 

2000).  The IRD record from the Barra Fan is testament to persistent instability of the last BIS, 

and is indicative of continual readjustment of the ice sheet (Peck et al., 2006). Peaks in the IRD 

in the Barra Fan occur at 16.9 ka BP and 24.1 ka BP (Wilson et al., 2002; Peck et al., 2006). 

This is broadly coincident with the timing of Heinrich Events 1 and 2. These IRD peaks 

coincide with low δ18O values indicating that they represent major meltwater discharge events.  

The last BIS is emerging as a highly dynamic ice sheet that may never have achieved steady-

state conditions. 

2.9 Chronology 

Unfortunately, due to a lack of appropriate material for radiocarbon dating the number of 

reliable dates for the build up and retreat of the last BIS is low (Benn, 1997). Support for a 

dynamic ice sheet and for the timing of major ice sheet discharges has come from IRD 

contained in shelf edge sediments. Development of methods of dating bedrock and boulder 

surfaces with cosmogenic isotopes is starting to provide a partial solution to this problem. In the 

last four years there has been a dramatic increase in the number of cosmogenic date 

determinations for the last BIS (e.g. Ballantyne et al., 1998a; Everest et al., 2006; Everest and 

Kubik, 2006; Phillips et al., 2006 ; Golledge et al.; Bradwell et al., 2008a; Phillips et al., 2008). 

The available dates relating to the last BIS will be discussed further in chapter 10. 

 

At present there is not a clear picture of the volume of ice present on the British Isles 

immediately after the last full interglacial (MIS 5e). Ice rafted debris records from the Barra Fan 

and Celtic margin suggest an ice mass at sea level during MIS 3 and at the continental shelf 

edge by 30 ka BP (Wilson et al., 2002). However, radiocarbon dates from sites across Scotland 

indicate ice free conditions until at least 32 ka BP (Whittington and Hall, 2002). In opposition to 

these dates, Bowen et al. (2002) proposed (largely on the basis of amino acid dating and dates 

from Ireland) that the last BIS was most extensive during MIS 3 and was limited in extent at the 
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LGM. Evans et al. (2005) lists the nine most significant dates that constrain the maximum limits 

of the last BIS. The dates range between 30-17.5 ka BP and are of insufficient density to 

correlate maximum limit positions. The timing of retreat of the last BIS is largely speculative 

due to a lack of age information with which to correlate between margin positions inferred from 

geomorphological evidence. Unfortunately there is very little direct dating of margin positions. 

With the development of cosmogenic dating techniques there is now scope for a direct dating of 

moraines and this promises the possibility of reconstructing a detailed pattern of retreat. A 

recurrent debate is whether Scotland was fully deglaciated prior to the Loch Lomond (Younger 

Dryas) readvance or whether an ice mass persisted during the Windermere interstadial. Recently 

published cosmogenic dates from NW Scotland lend support to the latter position (Bradwell et 

al., 2008a). Attempts to link readvance evidence with climatic changes of the last glacial cycle 

remain largely speculative due to the inadequacies of constraining both the retreat pattern and 

the Heinrich Events of the North Atlantic.  

2.10 Why do we not know more?  

What we know about the last BIS is not comparable with what we know about the Laurentide 

and Scandinavian Ice Sheets. This state of affairs seems remarkable considering the long history 

of research and the relative size of the ice sheet. Clark et al. (2006) identify eight obstacles that 

contribute to the current situation: 

 the large volume of information,  

 the fragmented nature of evidence and reconstructions, with no means to resolve 

contradictions between study sites, 

 ‘theory-laden’ evidence and its propagation,  

 the (false) assumption of contemporaneity of evidence,  

 the lack of firm dating control, 

 incomplete mapping, 

 the need to eliminate reconstructions that are glaciologically implausible based on numerical 

modelling and/or appeal to modern analogues,  

 the need to clearly define reconstruction methodologies, including clear statements of 

assumptions.  

 

The majority of research into the last BIS has involved field mapping of landforms and 

striations, identification of erratic transport paths, and investigation of stratigraphic sections. 

Investigations have generally been on a local to regional scale meaning that synthesis has been 

difficult to achieve due to the differences in methodologies between researchers and the lack of 

a coherent dataset on which to base whole ice sheet reconstructions. The ice sheet is frequently 

divided into components which are investigated independently, for example McCarroll and 

Ballantyne (2000) reconstruct the ‘last ice sheet on Snowdonia’ and numerous authors refer to 
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just the ‘Scottish Ice Sheet’. Some sites have been revisited many times, whereas others remain 

terra incognita. As observations are spatially fragmented and inconsistent, inferences about the 

evolution and dynamics of the ice sheet are restricted in scope. This is problematic when 

attempting to investigate relationships with the climate changes of the last glacial cycle in the 

North Atlantic. Attempts at correlation within and between regions have been conducted, most 

comprehensively on the basis of till stratigraphies (Bowen et al., 1986; Bowen, 1999b). 

However, this information provides only point data which has to be interpolated over large 

areas. The lithostratigraphic approach of correlation is difficult when there is considerable 

variability in till characteristics even on a local scale (Harris and Donnelly, 1991) and regional 

or local nomenclature can make a synthesis daunting. In many areas of Britain debates have 

arisen due to the equivocal nature of the record of glaciation. The glacial histories of the Irish 

Sea Basin and North Sea have been particularly controversial (Eyles and McCabe, 1989; Balson 

and Jeffery, 1991). 

2.10.1 History of glacial landform mapping in Britain 

Arguably, the major stumbling block to reconstructing the ice sheet scale attributes of the last 

BIS and synthesising the wealth of information derived from over 150 years of research is the 

lack of a geomorphological framework. The glacial geomorphological record provides the 

spatial context in which to set point information such as dates and sedimentological 

observations. The glacial record is by nature complex and incomplete and therefore we require 

consistent glacial maps that cover the whole of the former bed of the ice sheet. A glacial map is 

a key part of our toolkit for ice sheet reconstruction. For example, the Glacial Map of Canada 

(Prest et al., 1968) produced from landform mapping from aerial photography is still used as a 

starting point for reconstructions of the flow configuration evolution and retreat pattern of the 

Laurentide Ice Sheet today (Dyke and Prest, 1987; Dyke and Dredge, 2003; Jansson et al., 

2003). We do not have a similar glacial map for Britain (i.e. one based on systematic mapping).  

 

Consideration of the history of landform mapping in Britain presents a possible explanation for 

this. Since Agassiz’s seminal paper (Agassiz, 1841) glacial research has been actively 

undertaken by British based academics, amateur researchers and officers of the British 

Geological Survey. A simple tally of the number of mapping papers produced in each decade 

(based on the information contained within the BRITICE database) reveals the following trends. 

Early work focused on mapping and recording striations and erratics (e.g. Tiddeman, 1872; 

Goodchild, 1875) (figure 2.23). Later the focus switched to landform mapping with the central 

aim of much of this work being to determine ice limits and document the results of geological 

surveys (e.g. Charlesworth, 1929; Trotter, 1929; Raistrick, 1933) (figure 2.24). Much detailed 

information was revealed and recorded in this way but the approach was piecemeal and 

conducted with variable enthusiasm.  
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There was a noticeable peak in map output in the 1970s with a plethora of detailed maps 

published that summarised the results of meticulous fieldwork (e.g. Sissons, 1963c; Clapperton, 

1970; Day, 1970) (figure 2.25). After this point the number of published maps declined. There 

are several possible reasons why mapping did not keep pace: switch in focus to 

sedimentological and process studies, the rising cost of publication and journal size constraints 

and the inaccessibility of aerial photography amongst others, or maybe it just became 

unfashionable in a period when the emphasis was on quantification and reductionism. The effect 

of journal size limits is not insignificant as it leads to the reduction of information to generalised 

summaries often merged with interpretations, meaning that observations fail to stand the test of 

time in light of changing paradigms and theories of landform genesis. 

2.10.2 Glacial Map of Britain and BRITICE GIS database 

The BRITICE collaboration brought together 150 years of published information on the 

landforms of the BIS to create a glacial map for England, Scotland and Wales (Clark et al., 

2004b) (figure 1.5). Landform mapping from British Geological Survey map sheets and 

memoirs, journal articles, books and PhD theses was collated and entered into a Geographic 

Information System (GIS) as thematic layers. The map was published as north and south sheets 

at 1: 625, 000 scale and the GIS layers made available online 

(http://www.shef.ac.uk/geography/staff/clark_chris /britice.html). The evidence contained in the 

BRITICE database is reviewed by Evans et al. (2005). Full details and caveats are given in 

Clark et al. (2004b). BRITICE represents the first attempt to draw together the published 

research on the BIS into a coherent synthesis. The synthesis provided a major service to the 

Quaternary community as now all the data is summarised in one place and it is clear where the 

gaps lie. The completion of the collaborative project also highlighted problems beyond simple 

incompleteness. Because of the large number of ‘contributors’ to the map there are inevitably 

inconsistencies in mapping methods, styles, scales and terminology between areas.  Resolution 

of these issues was a major motivation for this PhD project. 

2.11 Summary  

This chapter has briefly outlined the state of knowledge of the last British Ice Sheet with a focus 

on what is confidently known what remains to be elucidated and what is controversial.  

 

 The maximum spatial extent of the last BIS has been a major focus of research. The spatial 

limits of the ice sheet are broadly known but the quality of supporting evidence varies 

between areas and some contentions remain. From an ice sheet modelling perspective, the 

position of contemporaneous palaeomargins is more important information than the 

maximum extent of ice (Clark et al., 2004a). 
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The offshore limits of the last BIS have remained elusive for many years partly due to the lack 

of appropriate technology and surveying techniques necessary for a detailed investigation of the 

geomorphology and sediments of the sea bed. Increasing coverage of the North Sea basin by 

geophysical survey techniques and detailed sedimentological studies are starting to produce a 

more coherent picture of the offshore limits in the North Sea (Carr et al., 2000), and also on the 

western continental shelves (Davison, 2004; Stoker et al., 2006).  

 

 The broad-scale flow patterns and main ice divide locations of the have been known since 

the turn of the twentieth century. There is evidence for changing flow pattern geometries 

during the last glacial as ice centres competed for primacy. However, this only exists at a 

local-regional scale and so we do not know how different sectors of the ice sheet interacted.  

 

 In the last decade a number of ice streams have been proposed. These are supported by 

evidence of variable quality and some may be purely examples of focused ice flow paths 

rather than true ice streams. The lack of information on ice sheet scale flow configuration 

hampers attempts to understand the role and timing of these ice streams.  

 

 There is a vast amount of recorded evidence for former ice margin positions. However the 

evidence is yet to be synthesised into an overall reconstruction of the retreat pattern of the 

ice sheet. Debate has focused on the recognition and/or dismissal of re-advance stages rather 

than developing a pattern of retreat.  

 

 The ice-rafted debris record from marine cores surrounding the last BIS indicates that the ice 

sheet was sensitive to climate and may never have reached steady-state conditions. 

 

 The currently available chronology for ice build up and retreat is inadequate. 

 

We do not have an evidence-based ice sheet scale reconstruction of the last BIS comparable 

with those for other palaeo-ice sheets. Over 100 years of research and interest in the former 

glaciations of has produced a wealth of information on the ice sheet extent, form and evolution 

but as yet this has not been incorporated into a reconstruction of the ice sheet wide retreat 

pattern and flow configuration evolution. Arguably, the explanation for this failure is the lack of 

a spatial framework in the form of a ‘Glacial Map’ equivalent to that available for Canada 

(Evans et al., 2005).  



 

Chapter 3  

Approach 
 

3.1 Introduction  

The previous chapter reviewed the state of knowledge of the last British Ice Sheet and examined 

potential explanations for our failure, to date, to produce an evidence-based ice sheet 

reconstruction from glacial geomorphology similar to those available for other palaeo-ice sheets 

(e.g. Kleman et al., 1997; Clark et al., 2000; Dyke et al., 2002).  This chapter outlines the 

philosophical approach that underpins the ice sheet reconstruction I will present. 

Methodological procedures and their implementation will be described in the following chapters 

4-10, steadily building towards the final reconstructions. 

3.2 Ice sheet reconstruction  

Reconstruction of palaeo-ice sheets ideally requires a systematic synthesis of geomorphological 

and geological information from the whole area covered by a former ice sheet (Clark, 1997). 

Attempts to use the geomorphological record in ice sheet reconstruction can be split into two 

broad categories; ‘bottom up’ and ‘top down’ (Clark and Meehan, 2001).  

 

The ‘bottom-up’ approach occurs by the incremental accumulation of observations over time. 

This piecemeal approach is often problematic when attempting to reconstruct at the ice sheet 

scale (Clark and Meehan, 2001). It takes a long time to build up sufficient evidence to attempt a 

synthesis during which time interpretative paradigms will have evolved considerably (Clark, 

1997).The spatially fragmented evidence amassed may be incompatible due to differences in the 

mapping methodologies of different observers (McMillan, 2002). The volume of information 

produced is daunting for any researcher attempting a synthesis, especially as there are likely to 

be discrepancies between areas as local-scale studies will inevitably reconstruct local-scale 

features of the ice sheet system (Clark et al., 2004b). All this is exemplified in the current 

situation of evidence-based reconstructions of the last British Ice Sheet (chapter 2). Despite over 

150 years of research key characteristics of the last BIS remain unresolved (Evans et al., 2005). 

Arguably this is, in part, due to the failure to approach the interpretation of the record from the 

perspective of the ice sheet as whole (see Clark et al., 2006). Couple this with sporadic interest 

in glacial landform mapping and we are left with an incomplete record. This was compiled into 

a glacial map by Clark et al. (2004b) and Evans et al. (2005), revealing many blank areas. 

Although the existing geomorphological record has been synthesised by the BRITICE map 

there is no spatial framework in which to set sedimentological and chronological information 

and so it is difficult connect these point observations across space to make meaningful 
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statements about the ice sheet as a whole. The situation also precludes productive comparison of 

numerical model outputs with real-world data stalling our understanding of the dynamics of the 

ice sheet (Shennan et al., 2006a; Boulton and Hagdorn, 2006). 

 

In order to reconstruct the small scale characteristics of the ice sheet a non-reductionist or ‘top-

down’ approach is adopted, where the scale of investigation matches the scale of the ice sheet 

system (Clark and Meehan, 2001). Rather than building a reconstruction from numerous local 

scale studies, this requires widespread mapping of critical glacial landforms (those that provide 

information on flow patterns and margin positions) and clearly defined method and 

interpretative rules. This type of approach has been variously described as palaeoglaciology 

(Boulton et al., 2001) and glaciological inversion modelling (Kleman et al., 2006).  This type of 

reconstruction has never been attempted before for Britain (England, Scotland, and Wales). 

3.3 Interpretative approach 

3.3.1 The glacial inversion concept  

Much geomorphological research is concerned with the genetic problem: determination of the 

formative process involved in the creation of a glacial landscape or individual landform. In ice 

sheet reconstruction, we are concerned with the problem of inversion: the application of genetic 

explanations to the glacial landform assemblage in order to determine form and dynamics of the 

ice sheet (figure 3.1). Kleman and Borgström (1996) set out a formal procedure for decoding 

glaciological information from the fragmentary and complex landform record left behind by the 

former mid latitude ice sheets. This inversion model is a genetically based classification scheme 

which aims to derive glaciological inferences from the landform record (Kleman et al., 2006). 

The purpose of the scheme is to formalise the method of building ice sheet reconstructions, i.e. 

to clearly state the assumptions and interpretative stages involved in converting the pattern and 

distribution of glacial landforms documented in a glacial map into ice sheet configurations 

(Clark, 1999; De Angelis, 2007a).  

 
 
 
 
 
 

Figure 3.1 The conceptual differences 
between the genetic and inversion 
problems in glacial geomorphology and 
associated methodological issues. Ice 
sheet reconstruction is concerned with 
the inversion of the glacial landscape. 
Critical are the assumptions based in 
theories of the formative conditions for 
landform production, destruction, and 
preservation. Reproduced from Kleman 
et al (2006) and Kleman and Borgström 
(1996).  
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Figure 3.2 Four examples of ice sheet scale reconstructions using inversion protocols: a) Boulton et al. (1985); b) 
Dyke and Prest (1987a); c) Boulton and Clark (1990a, b); d) Kleman et al. (1997). Reproduced from Kleman et al. 
(2006).  

 
Figure 3.3 Differences between the four examples of ice sheet scale reconstruction shown in figure 3.3 expressed as 
a time-distance graph through a transect from the ice sheet centre to the margin. Differences in the genetic 
assumptions of each model lead to dramatic differences in the ice sheet reconstructions. Boulton et al. (1985) 
assumed that all lineations are formed close to the ice sheet margin. Dyke and Prest (1987) used published dates and 
lineation patterns to reconstruct the Laurentide Ice Sheet. Boulton and Clark (1990) used lineation patterns to 
reconstruct changes in ice divide locations. Kleman et al (1997) separated out event and deglacial flow patterns to 
reconstruct configuration changes and retreat pattern respectively. Reproduced from Kleman et al (2006).  
 

The inversion approach outlined by Kleman and Borgström (1996) formalised and developed 

methodological approaches taken by Boulton and Clark (1990a, b) and Kleman (1990, 1992, 

1994) (figure 3.2). The approach has been applied in a number of contexts, and refined and 

developed in recognition of recent observations from present day ice sheets (Clark, 1999; 

Stokes and Clark, 1999; Kleman et al., 2006; Kleman and Glasser, 2007).  It is now a well 

established technique exemplified in reconstructions of the Laurentide, Scandinavian, and Irish 

Ice Sheets (e.g. Boulton and Clark, 1990a,b; Kleman et al., 1997; Clark et al., 2000; Clark and 

Meehan, 2001; Jansson et al., 2002; Kleman et al., 2002; Jansson et al., 2003; De Angelis and 
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Kleman, 2005) (figure 3.2). Two main schools of thought have embraced the inversion 

technique resulting in minor differences in the genetic assumptions used and procedural steps 

undertaken. Here, these are informally referred to as the Stockholm and Sheffield schools and 

are exemplified in papers by DeAngelis and Kleman (2005) and Clark and Meehan (2001) 

respectively. The main differences between the two schools are terminological and there is a 

high level of cross-pollination and shared ideas between the two groups. The method of the 

Stockholm School is clearly described in Kleman et al. (2006) and DeAngelis (2007a).  

3.3.2 Assumptions  

In philosophical terms, the inversion approach is a process of abduction (Baker, 1996). As such, 

any inversion is highly dependent on the genetic assumptions used (figures 3.2 and 3.3). 

Assumptions or rules are derived from glaciological theory and empirical observations. For 

example, the inversion model is grounded in theoretical explanations for the genesis and 

subsequent preservation of glacial landforms. No creation, modification, and by implication 

preservation, of existing landforms will occur at points of low basal velocity (ice divides) or 

under frozen bed conditions (Clark, 1999).  Therefore, the distribution of subglacial bedforms 

defines the zones of the ice sheet bed that were warm-based at least once during the lifetime of 

the ice sheet. Successful application of the inversion methodology depends upon a clear 

understanding and definition of the glaciological contexts and processes of landform genesis 

(Clark, 1999).  

 

Kleman and Borgström (1996) Kleman et al. (1997), and Kleman et al. (2006) set out the 

following eight assumptions: 

1. The primary control on landform creation, preservation, and destruction is the location of 

the phase boundary between water and ice at or under the ice sheet base, i.e. the basal 

temperature.  

2. Basal sliding requires a thawed bed.  

3. Lineations can only form when basal sliding occurs.  

4. Lineations (drumlins, flutes, straie) are created in alignment with local flow and 

perpendicular to ice surface contours at time of creation. 

5. Frozen bed conditions inhibit rearrangement of the subglacial landscape. 

6. Regional deglaciation is accompanied by the creation of a spatially coherent but 

metachronous meltwater features, e.g. channels, eskers, and lake shorelines.  

7. Eskers form in a time transgressive fashion behind a retreating ice front. 

8. Lateral meltwater channels will form the major landform record during frozen bed 

deglaciation; eskers are typically lacking in these situations.  
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3.3.3 Implementation/Procedural steps  

Implementation of the inversion model proceeds in a series of interrelated stages: 

1. Glacial Map 

The starting point for any inversion model is a representative glacial map of the former bed of 

the ice sheet in question. The landforms required by the model, and therefore selected for 

inclusion on the maps presented in chapter 5, are listed in table 3.1. The former beds of palaeo-

ice sheets typically cover large areas, incorporating both present day terrestrial and submarine 

landscapes. Ideally, the map will be a consistent representation of the distribution and pattern of 

glacial landforms over the entire bed. The map can be derived from existing work (e.g. Kleman 

et al., 1997) or freshly produced to capture the landscape in a consistent or more appropriate 

style (e.g. Clark and Meehan, 2001). Mapping of glacial landforms can be conducted in two 

main ways: fieldwork and from remotely sensed imagery (e.g. figure 3.4). There are several 

advantages to using remotely sensed data when considering large areas (Clark, 1997) and this is 

the methodological approach adopted by this project in order to produce a consistent basis for  

reconstruction (chapter 4).  

Table 3.1 Palaeoglaciological information provided by the five primary landform types to be mapped. Some 
landforms have uncertain genesis (marked with an *) or are polygenetic. This is an important consideration in the 
palaeoglaciological interpretation of landforms.  
 

Landform type Palaeoglaciological significance 

Drumlins Ice flow direction at time of formation (stoss-end points upstream). Form under 
warm-based ice. Genesis disputed.  

Mega-scale glacial 
lineations, MSGL 

Ice flow direction at time of formation. Form under warm-based ice. One of the 
key criteria for the identification of ice streams (table 3.3).  

Subglacial 
bedforms 

Ribbed moraine Form transverse to ice flow. Genesis uncertain. Stockholm school take the 
distribution to reflect the transition from warm to cold-based ice. Sheffield 
school presume that generated under warm-based conditions, because of the 
uncertain genesis. 

Meltwater channels Ice marginal channels (lateral and proglacial) record margin positions. 
Subglacial channel networks suggest surface slope close to the margin. 

Moraine Lateral or terminal ice margin position.  
Eskers* Orientated parallel to overall ice flow direction. Form behind margin of 

retreating warm-based glacier. 
Streamlined bedrock Ice flow directions. Possibly formed over several glacial cycles. Warm-based 

ice.  
 

2. Generalisation and classification 

The second stage of the inversion scheme proceeds by summarising the complex distribution of 

landforms contained in the glacial map into landscape scale pieces of glaciological information. 

For clarity, this process is explained as a series of steps, but in reality it is not a stepwise process 

but an iterative one. 

 FLOWSETS AND SUMMARY ARROWS 

The basic premise of the inversion scheme is that distinct ice flow phases can be recognised in 

the geomorphological record and used to determine flow behaviour at times during the 

evolution of the ice sheet (Clark and Meehan, 2001). The glacial map will contain a vast number 

of individual landforms. By nature, the glacial geomorphological record is complex, 

fragmentary, and multi-temporal reflecting the cumulative effect of ice sheet erosion, 
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deposition, and preservation processes. The first stage of the inversion procedure is thus to 

reduce the volume of information into a manageable number of units of glaciological 

information via a process of logical reduction or cartographic generalisation. For example, ice 

flow traces (drumlins and other lineations) are grouped into flowsets (called swarms or fans by 

the Stockholm School) (figure 3.5). A flowset is defined as coherent group of geomorphological 

lineations that reflect a systematic pattern related to a distinct phase of ice flow (Clark and 

Meehan, 2001). Identification of flowsets is completed by subjective visual inspection of the 

mapped distribution of lineations, based on a collection of rules including parallel conformity, 

proximity, morphology and spatial arrangement (Clark, 1999) (figure 3.6). Resemblance to a 

glaciologically plausible pattern of ice flow and spatial continuity are also considered (e.g. De 

Angelis, 2007a). Delineation of flowsets is essentially via pattern recognition and conceptual 

models of possible flow patterns are used as an aid to this process (figure 3.7). For example, 

Clark (1997) suggested three possible glaciological contexts to explain cross cutting lineations 

(figure 3.8).  

 
Figure 3.4 Summarised flow patterns of the Laurentide Ice Sheet interpreted from (a) map of Prest et al (1968) 
derived from inspection of aerial photographs and (b) map of lineations mapped from Landsat imagery by Clark 
(1990). The wide area view and resolution of Landsat imagery facilitated recognition of large scale patterns of 
lineations and cross-cutting. Reproduced from Clark (1993).  
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Figure 3.5 Transformation of flow traces (drumlins, lineations, etc) into landscape level flowsets via interpretation of 
flow patterns. Boundaries are drawn aligned or transverse to flow traces. Outline bounds limit of flow traces relating 
to particular fan (flowset). Arrows show interpreted direction of ice flow. Reproduced from Kleman and Borgström 
(1996). 
 

 
Figure 3.6 Schematic diagram to show how mapped lineations are summarised as flow patterns and organised into 
flowsets: a) hypothetical lineation pattern; b) and c) alternative flow pattern summaries. In b) all lineations assumed 
to be the same age and are grouped into a single flow pattern, in c) two separate flow patterns are identified; d) 
lineation morphometry statistics aids discrimination of flow patterns. In this case, the lineations form two populations 
on the basis of length and spacing and so the interpreted flow pattern c) is selected. The inherent assumption is that 
lineations formed under the same flow event will have similar morphometric characteristics. Such morphometric 
considerations aid flowset discriminations and are a useful additional tool to that of discrimination by cross-cutting 
landforms. In this case they also indicate c) as the preferred outcome.  Reproduced from Clark (1997). 
 
 

 
Figure 3.7 Conceptual models of possible flow patterns are used as tool to aid identification of flowsets in the glacial 
map. Coherent flow patterns exhibited by lineations of the Laurentide Ice Sheet: i = divergent, ii = parallel, iii = 
convergent, iv = ‘Venturi’, v = kinked. Reproduced from Clark (1994).  
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Figure 3.8 Scenarios where cross-cutting lineations (drumlins, etc.) might be exp
useful in the interpretation of cross-cutting flow patterns. One further expl
landforms from separate glaciations. Reproduced from Clark (1997).  
 
Fields of ribbed moraine are also translated into a second set of fl

flow. This is achieved in a similar manner to lineation flowsets by su

by lines transverse to the orientation of ridges. The debate on ribbe

and so ridges are solely used to infer ice flow direction, and not to identify the transition zone 

between cold and warm-based ice (Hättestrand and Kleman, 1999). Esker systems are 

summarised by grouping similarly arranged and adjacent eskers into a cartographically simpler 

unit represented by arrows pointing in the interpreted direction of ice flow. Flights of lateral 

meltwater channels and networks of subglacial channels, with reference to topographic context, 

are summarised as arrows in the general direction of meltwater flow (after Hättestrand and 

Clark, 2006a). Ice margin positions are derived from the distribution of moraines using 

topographic setting where appropriate. Streamlined bedrock is summarised by summary arrows 

in the interpreted direction of ice flow. Flowsets and the other cartographic summaries are the 

first level of abstraction from the geomorphological record (De Angelis, 2007a). Figure 3.9 

shows the change in detail of information that occurs at this stage. The process of flowset 

identification, including methodological procedure, will be explored in depth in chapter 6. 
 

 FLOWSET CLASSIFICATION 

Once flowsets have been established a critical stage of the reconstruction is to determine the 

temporal context of formation, i.e. whether the flowset developed over time or was formed ‘at 

an instant’. It is essential to assess the internal synchronicity of flowsets as this has specific 

implications for interpretation of flowsets in terms of ice sheet evolution (Clark et al., 2000). 

The simplest interpretation is that the group of landforms represented by each flowset was 

generated at the same time by a single ice flow event. It follows that the flow pattern delineated 

by the flowset forms part of the ice flow geometry within a single time slice and thus reflects 

actual palaeo-flow lines of the former ice sheet. The alternative, that the composite landforms 

were generated in a time-transgressive fashion, implies that the flowset delineates an amalgam 

of ice flow at more than one point in time. Figure 3.10 illustrates the implications of this 

distinction.  

 

 
ected to occur. These concepts are 

anation for cross-cutting is that of 

owsets defining phases of ice 

mmarising ribbed moraine 

d moraine genesis is ongoing 
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lineations mapped by visual interpretation of satellite images of QuebecFigure 3.9 Glacial , Canada (top image); 

Flowsets derived from the distribution of (a) lineations, (b) eskers and ribbed moraine. Reproduced from Clark et al. 
(2000).  
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Figure 3.10 Determination of the internal synchronicity of flowsets is critical to the reliability of the ice sheet 
reconstruction. This is because time-transgressive and isochronous flowsets should be interpreted in different ways. 
Schematic shows implications of designation as isochronous (left) or a type of time-transgressive (right) a) On the left 
lineations are interpreted as formed near instantaneously at a time tn. On the right lineations are interpreted to have 
formed incrementally over three time periods t1 to t3 (or the reverse ta-tc); b) In the case of the isochronous flowset it 
is assumed that the flow pattern represented reflects an actual palaeo-flow line of the ice sheet. In the case of the 
time-transgressive interpretation, the flowset is an amalgamation of several palaeo-flow lines operating at different 
stages of ice sheet geometry. In this case, the time-transgressive nature of the flowset is thought to be a result of 
retreat of the ice margin and so the flowset is interpreted in terms of margin positions. Reproduced from Clark 
(1999).  
 
By consideration of the possible glaciodynamic contexts of lineation generation and 

preservation, and the patterns of lineations that would arise (figure 3.11), Clark (1999) 

presented a series of conceptual tools to aid discrimination of isochronous and time-

transgressive flowsets (table 3.2). In essence, it is expected that a flowset generated 

isochronously will have a ‘rubber stamped’ appearance. Lineations comprising the flowset will 

have a high degree of parallel conformity, any changes in morphometry will be gradual along 

the interpreted flow line, and there will be no instances of cross cutting.  In contrast, lineations 

comprising a time-transgressive flowset will have a ‘smudged’ appearance, exhibiting low 

parallel conformity, instances of cross cutting, and abrupt changes in morphometry along the 

flow line. Spatial coincidence with other landforms can be used as an additional means to 

determine internal synchronicity. Esker ‘flowsets’ will always be time-transgressive, if we 

accept the genetic assumption that eskers are only formed behind a retreating ice margin (table 

3.1). Therefore, alignment with esker systems supports time-transgressive interpretation of the 

lineation flowset (figure 3.12).  
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pothetical ice sheet to illustrate some of the glaciodynamic contexts of glacial Figure 3.11 A hy lineation formation. 

Time-transgressive cases on left and isochronous on right: Reproduced from Clark (1999).  
 

 
Figure 3.12 Predicted characteristics of isochronous (a) and time-transgressive (b) flowsets. Isochronous flowset 
comprise lineations with high parallel conformity, no cross cuts and gradual variations in morphometry. Time-
transgressive flowsets will exhibit low parallel conformity, cross-cuts and abrupt discontinuities in morphometry. 
Moraines and eskers aligned with the flowset support time-transgressive interpretation. Reproduced from Clark 
(1999).  
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Table 3.2 Predicted characteristics that will arise from time-transgressive or isochronous flowset generation. 
Reproduced from Clark et al. (2000) and Clark (1999). Figure 3.12 is a schematic showing these characteristics.  
 

Internal synchrony of flowset Glaciodynamic context Predicted flowset characteristics 
Time-transgressive 
 Flowset built up 

incrementally 

Formed close to ice margins: 
 Thin ice 
 Lobate margin patterns 
 Rapidly varying flow directions 

 Predominately lobate or splaying flow patterns 
 Flow pattern correspondence to local 

topography 
 Low parallel conformity between lineations 
 Spatial variation in lineation morphometry will 

contain abrupt discontinuities 
 Probable landform association with eskers 

and/or end moraines 
Isochronous  
 Flowset generated rapidly, 

‘at an instant’ 

Formed away from ice margins: 
 Range of ice thickness’ 
 Conforms to internal rather 

than marginal flow patterns 
 Greater stability of flow 

directions 

 Predominately parallel flow patterns 
 Little or no flow pattern correspondence to 

local topography 
 No cross-cutting lineations within flow sets 
 High parallel conformity between lineations 
 Spatial variation in lineation morphometry will 

be gradual 
 No landform association with moraines 
 No landform association with eskers 

 

 ICE STREAMS 

Ice streams are now recognised as an intrinsic element of ice sheet configuration and are 

thought to play a disproportionate role in ice sheet dynamics relative to their size (Bennett, 

2003). The identification of palaeo-ice stream tracks is thus an important part of any ice sheet 

reconstruction. Scrutiny of the former beds of palaeo-ice sheets, principally the Laurentide, and 

bolstered by observations from the Antarctic continental shelf in front of present day ice streams 

(Shipp et al., 1999), have led to a set of diagnostic criteria for the discrimination of palaeo-ice 

stream tracks (Stokes and Clark, 2001; Stokes, 2002; Stokes and Clark, 2002; Clark and Stokes, 

2003) (table 3.3). Application of these criteria enables us to identify flowsets that represent 

tracks of palaeo-ice streams. ‘Ice stream’ or ‘non-ice stream’ is therefore an additional 

classification for each flowset in order to flag their ‘special’ status in the ice sheet 

reconstruction. An ice stream flowset may be time-transgressive or isochronous (figure 3.13). 

 

 
Figure 3.13 Schematic palaeo ice stream bed and diagnostic landforms. (a) Rubber stamped imprint. Pattern remains 
unaltered if ice stream switched off and ice retreated without remoulding the landforms. (b) Smudged imprint. Ice 
streaming continued during retreat of the margin. Continual generation of bedforms leaves behind a complex 
assemblage of landforms which may be characterised by instances of cross-cutting. (c) Interpreted flowsets relating to 
successive stages of bedform generation as ice stream retreats.  
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Table 3.3 Geomorphological criteria for identifying former ice streams. Reproduced from Stokes and Clark (1999; 
2001). 
 

Contemporary ice stream characteristics Geomorphological signature 
Characteristic shape and dimensions  Characteristic shape and dimensions (>20km wide and >150km 

long) of distinct flow pattern 
 Highly convergent flow patterns leading to a trunk 

Rapid velocity  Bedform signature of fast flow; mega-scale glacial lineations 
(MSGL) and highly attenuated drumlins (length:width >10:1, 100:1) 

 Boothia-type erratic dispersal trains 
Distinct velocity field (plug flow, downstream 
variation in velocity) 

 Expected spatial variation in MSGL and drumlin elongation ratios 
 Boothia-type erratic dispersal trains 

Sharply delineated shear margin  Abrupt lateral margins (<2km) 
 Ice stream shear margin moraines 

Spatially focused sediment delivery  Submarine till delta or sediment fan 

 
 
A key departure of the implementation procedure of the Sheffield school from the Stockholm 

group is to keep landform types separate at the generalisation stage (figure 3.14). Isochronous 

flowsets are broadly equivalent to the ‘event’ fans of Kleman et al. (2006). However, the 

‘deglacial envelope’ of  Kleman et al. (2006) is analogous to considering the time-transgressive 

flowsets (of the type that delimit continual landform generation behind a retreating ice margin), 

esker ‘flowsets’, lateral meltwater channel ‘flowsets’ and moraine margin positions collectively. 

Identification of ice stream flowsets (swarms) is achieved in the same way by both groups.  

 
Figure 3.14 Practical steps of the inversion scheme as described in Kleman et al (2006) and exemplified in 
DeAngelis (2007). The ‘Stockholm School’ use the whole landform assemblage in order to delineate swarms 
(flowsets) and use preservation of older flow patterns to reconstruct areas of cold based ice. Reproduced from 
DeAngelis (2007). 
 
 RELATIVE CHRONOLOGY 

Integral to the inversion scheme is the observation that the lineations can survive beneath 

subsequent (conflicting) ice flow phases (Clark, 1993) (figure 3.15). The situation enables 

cross-cutting patterns to be used to determine the relative chronology of ice flow phases. Where 

interpreted flowsets overlap, the landform record is investigated for instances of landform cross 

cutting so that flowsets can be placed in a relative age stack. This is a crucial ingredient in order 

to group flowsets into contemporary ice flow geometries and reconstruct the evolution of the ice 

sheet. A key difference between the two schools of thought is the glaciological interpretation of 

palimpsest landscapes. The Stockholm school hold stringently to the idea that preservation of 

landforms will only occur under frozen bed conditions and that warm-based conditions will 

inevitably lead to remoulding of the subglacial landscape. This is taken to the logical extreme to 
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identify locations of cold-based ice (figure 3.14). The Sheffield School differs from this in that 

additional glaciological possibilities for the preservation of landforms are recognised as it is 

thought unlikely that cold-based ice can explain all of the observed instances of preservation 

(Clark, 1993; Clark, 1994; Clark, 1999).  

 
 
 
 
 
 
 
 
 
 
 

Figure 3.15 A possible explanation for the presence of 
palimpsest landscapes is incomplete remoulding by 
subsequent ice flow. Theoretical continuum of 
subglacial modification (a-d) of a lineation 
experiencing over-riding ice flow from another 
direction. Cross cutting or superimposition can occur 
by changes in ice sheet geometry and/or reflect 
multiple glaciations. Clear cross cutting as opposed to 
gradual changes in lineation orientation suggests that 
ice flow phases are either separated by a period of cold-
based ice at the location or reorganisations of ice sheet 
geometry occur rapidly. Both cases preventing 
generation of subglacial lineations. Reproduced from 
Clark (1994) and Clark (1993).  
 
 

3. Reconstruction 

Classified flowsets, generalised arrows and the relative age stack provide the ingredients, or 

analytical components, of the ice sheet reconstruction. The next stage of the inversion model is 

to organise the ingredients, in combination with any reference data, to define the major 

components of the ice sheet, i.e. flow patterns, retreat pattern and the location of ice divides and 

ice streams, and document the evolution of these components through time. This is the second 

level of abstraction from the geomorphological record (DeAngelis, 2007). Reference data are 

any additional sources of information that are used. For example, elevation data from digital 

elevation models can be used to understand the topographic setting of flowsets and meltwater 

channels. Absolute chronological information from published dates is a valuable source of 

reference data. The reconstruction process is analogous to numerical modelling, in that a set of 

rules and assumptions are engaged in order to translate inputs (flowsets and mapping 

generalisations) into a glaciologically plausible ice sheet reconstruction. It is expected that there 

will be conflicting results from different lines of evidence and gaps in the record. In such cases, 

it is necessary to present a number of different scenarios and highlight areas of disagreement for 

future research. Flowsets are organised into plausible scenarios of ice sheet geometry based on 

relative chronology and spatial conformability, following the least complex solution. 

Generalisations of esker, lateral meltwater channel, and moraine distribution in addition to any 
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time-transgressive flowsets that represent a retreating margin, are used to reconstruct successive 

margin positions (figure 3.17). Relative age information is used to organise changes in ice sheet 

geometry over time (figure 3.18). Dates are used to set the relative ice sheet geometry evolution 

in an absolute chronological order (figure 3.19). The reconstruction process and interpretative 

rules employed in this thesis is based on the principles outlined in this chapter with the addition 

of some necessary innovations more fully described in chapter 7.  

 

 

d

 
Figure 3.16 Example of steps involved ice sheet reconstruction using a glacial inversion model. a) Lineations of the 
Fennoscandian Ice Sheet compiled from various published sources by Kleman et al. (1997); b) Fans (flowsets) 
derived from examination of the spatial pattern and distribution of lineations in a) and striae and till fabric data. Fans 
delimited as deglacial or non-deglacial (synchronous) by the presence or absence of aligned glaciofluvial meltwater 
landforms. Relative chronologies based on striae and air photo interpretation; c) Fans grouped into the same ice sheet 
configuration. Ice sheet margins and interpolated from extrapolation of the flow geometry necessary to incorporate 
the flow pattern record by the fan; d) Retreat pattern inferred from arrangement of deglacial fans. Reproduced from 
Kleman et al. (1997).  
 
 
 
 

c

b
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Figure 3.17 Ice sheet geometries are inferred via grouping of flowsets into contemporaneous groups and 
interpolating locations of ice divides necessary to generate such flowsets. Relative chronology is used to organise ice 
sheet geometries into time-slice envelope of ice sheet evolution. In this example ice sheet reconstruction derived from 
an inversion model of part of the Laurentide Ice Sheet. Spatial axes, x and y, and time shown on the z axis. Figure 
reproduced from Clark et al. (2006). 
 

3.4 Summary 

This chapter has described the conceptual/philosophical basis of the glacial inversion scheme 

used in this thesis. The steps involved in the reconstruction presented in this thesis are shown as 

a flow diagram in figure 3.18. The following chapters will describe the implementation of the 

scheme: 

1. Glacial Map (chapters 4 and 5),  

2. Generalisation (chapter 6), 

3. Reconstruction (chapters 7-10). 

This is the first time a glacial geomorphological inversion model has been applied to Britain as 

a whole. A few recent studies have reconstructed flowsets for sectors of the ice sheet but have 

not produced a full inversion model (Jansson and Glasser, 2004; Golledge and Stoker, 2006). 
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Figure 3.18 Flow diagram showing the steps involved in the reconstruction of the last British Ice Sheet detailed in 
this thesis. Steps are labelled with chapter numbers in which results are discussed and presented.  
 

 



 

Chapter 4  

Countrywide mapping of glacial geomorphology 
 

4.1 Introduction  

The principal component necessary for any inversion of the glacial landscape is a glacial map 

covering the whole of the former bed of the ice sheet. To reconstruct ice sheet scale dynamics, 

comprehensive and consistent maps of geomorphology for the former ice sheet bed are required. 

Field mapping over the last one hundred and fifty years has identified the main distribution and 

pattern of glacial landforms produced and preserved by the last British Ice Sheet, and is 

summarised together in the first Glacial Map of Britain and accompanying BRITICE 

Geographic Information System (GIS) database (Clark et al., 2004b; Evans et al., 2005) (figure 

1.5). However, it is apparent from this synthesis that despite considerable detail of mapping in 

some areas, the existing information suffers from inconsistencies in terms of mapping styles and 

scales. Furthermore, whilst some sites have been revisited and remapped many times, other 

significant areas remain unmapped. This precludes the use of the current glacial map in an 

inversion of the glacial landscape as the evidence on which to base and constrain interpretations 

is spatially fragmented and inconsistent (figure 4.1).  The purpose of this chapter is to document 

the approach and methods used to produce a consistent countrywide glacial map that will form a 

more reliable basis for an inversion model for the last British Ice Sheet. This chapter is closely 

coupled with chapter 5 which presents the resulting glacial maps. 

 
Figure 4.1 Detail from part of the Glacial Map of Britain (Clark et al. 2004b) centred on the Vale of Eden 
and Solway lowlands. Meltwater channel distribution demonstrates the ‘edges’ problem of the BRITICE data. 
Channels are mapped in detail for some BGS map sheets but absent from adjacent sheets. Drumlin mapping is patchy 
in the Vale of Eden. It is difficult to believe that the mapped drumlin distribution is a representative sample of the 
total population for this area. Flow patterns reconstructed from this distribution would therefore be incomplete. Grid 
spacing is 20 km, Ordnance Survey co-ordinates.  
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4.2 Mapping approach 

A systematic synthesis of the glacial geomorphological information from the whole area 

covered by a former ice sheet is most easily and rapidly achieved by the use of digital landscape 

data such as satellite imagery and digital elevation models (DEMs) (Clark, 1997). Remote 

sensing data is now an established tool for glacial geomorphological mapping (Boulton and 

Clark, 1990a,b; Clark, 1990, 1993; Punkari, 1993; Clark, 1997; Jordan, 1997, Baily et al., 2003; 

Boulton et al., 2001; Clark and Meehan, 2001; Clark and Stokes, 2001; Jansson et al., 2002; 

Jansson et al., 2003, Smith and Clark, 2005; Stokes and Clark, 2003, Clark et al., 2000; Jansson 

and Glasser, 2004; Jansson, 2005; Jansson and Glasser, 2005; Dunlop and Clark, 2006; 

Hättestrand and Clark, 2006b; De Angelis, 2007b). Using this type of data a single observer can 

apply a well defined set of identification criteria to map large areas many times more quickly 

than would be achieved in the field, and the resulting maps can be directly incorporated into a 

GIS for further analysis (Clark, 1997). The use of GIS facilitates both the synthesis of local 

scale field and stratigraphic observations with ice sheet scale mapping, and the examination of 

the spatial arrangement of landforms and flow patterns for ice sheet reconstruction (Clark, 1997) 

(chapter 6).  

 

Satellite images record variations in the spectral reflectance of a surface. The most widely used 

satellite imagery for geomorphological mapping has been the Landsat series of which ETM+ 

images provide the highest resolution facilitating mapping to a scale of 1: 45 000 (Clark, 1997). 

The wide area view facilitated by remote sensing imagery provides the capability to identify 

large scale features of the landscape that would be hidden at the field scale. For example, Clark 

(1993) first identified evidence for mega scale glacial lineations by using Landsat images to 

map the geomorphic evidence for the LIS. These huge (1000s km long) features could not have 

been identified in the field and are now recognised as reliable indicators of ice streaming 

(Stokes and Clark, 2001). For geomorphological mapping it is preferable to use images 

collected in the northern hemisphere winter as low elevations of sunlight show a greater level of 

detail, however obtaining clear images at high latitudes during the winter can be difficult (Clark, 

1997).   

 

A Digital Elevation Model (DEM) is a computerised three-dimensional model of a land surface. 

Each grid cell or pixel has a height value averaged over the area that the grid cell represents on 

the ground (Clark, 1997). The accuracy of a DEM is dependent on the resolution of the base 

grid and the complexity of terrain and the source data. DEMs have the advantage over satellite 

imagery that they record surface elevation directly rather than surface reflectance. Therefore 

DEMs can be artificially illuminated from numerous directions allowing the landscape to be 

viewed from multiple angles (Smith, 2003). This also circumvents the difficultly of obtaining 

low solar elevation (winter) satellite imagery that is also cloud free (Ford, 1984). Because 



  Chapter 4. Countrywide mapping of glacial geomorphology 

 

 69

DEMs document the full three-dimensions of the land surface they are increasingly used in 

addition to, or instead of, satellite imagery for geomorphological mapping (Clark and Meehan, 

2001; Dunlop and Clark, 2006). In addition, with a DEM it is possible to exaggerate the vertical 

scale so that landforms of shallow height can be seen more clearly in flat areas. 

 

Shaded relief images are the most common way of visualising DEM data (Smith and Clark, 

2005). Artificial illumination of the DEM surface produces a shaded relief image of the 

landscape that replicates the shadows seen in nature, given the same combination of solar 

elevation and sun position. The clarity of features will vary depending on the relationship 

between solar azimuth and the orientation of the feature; landforms perpendicular to the 

illumination direction will be highlighted by the resultant shadows whereas landforms that are 

parallel to the illumination will be obscured (Clark and Meehan, 2001) (figure 4.2). Lidmar-

Bergström et al. (1991) assessed the use of relief maps to recognise and map glacial landforms 

and recommended illumination from two directions to reduce the inherent bias of solar 

illumination from one direction. A detailed discussion of the problems of azimuth biasing and 

solutions for mapping are discussed in Smith and Clark (2005). It is essential to use multiple 

images with different solar positions to obtain an accurate map of the landscape. Mapping from 

an overhead illuminated DEM is recommended for bias free mapping of landform shape (Smith, 

2003). In an ‘overhead’ illuminated image the solar elevation is placed at 90º to the horizontal. 

However, this ‘overhead’ image is less familiar to an untrained eye and the absence of shadows 

can make it difficult to identify features. Therefore in this thesis the method of Clark and 

Meehan (2001) was employed, i.e. a minimum of two orthogonal visualisations and one 

‘overhead’ image were generated for mapping.  

 

The main limitation of DEMs and satellite imagery for geomorphological mapping is that they 

do not provide information on the internal composition of landforms. The critical assumption is 

that landforms can be identified and classified on the basis of their morphology alone. It was not 

feasible within the scope of this PhD to conduct sedimentological investigations of each mapped 

landform to confirm their genesis. In the majority of cases landforms do display a characteristic 

shape and in the majority of cases morphology has not been significantly altered by post-glacial 

processes.  
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Figure 4.2 Demonstration of the azimuth bias problem. Relief-shaded visualisations of part of the Tweed 
basin close to Kelso and the junction between the River Tweed and River Teviot with orthogonal solar azimuth 
directions. In the upper image the area is illuminated from the NE in the lower image from the NW. The SW-NE 
trending lineations are clearly visible in the NW image but virtually absent in the NE image. Mapping conducted 
using only one of the two images would result in wildly different drumlin patterns. Both images have a vertical 
exaggeration of 4X. NEXTMap Britain data from Intermap Technologies, obtained under licence from British 
Geological Survey ©NERC. 
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4.3 Mapping methods 

A systematic procedure for mapping the whole country was developed by conducting pilot 

experiments over two areas (figure 4.3). The Wensleydale pilot was used to examine the 

difference in mapping from DEMs of different horizontal resolution (50 m vs. 5 m). The Solway 

Firth pilot area was chosen to include as many different 

landform types as possible. Both pilots were designed to 

determine the level of detail for mapping that would be 

practicable in the time available and provide the most 

palaeoglaciological information. They also provided the 

opportunity to practice mapping a range of different 

landform types and determine how each should and can be 

mapped. To ensure geometric consistency all mapping and 

datasets were projected as British National Grid. Unless 

stated otherwise all maps and figures in this thesis are 

presented on British National Grid.  

Figure 4.3 Pilot locations. 

4.3.1 Data sources for mapping 

The primary data source for mapping glacial landforms was the NEXTMap Britain elevation 

dataset for England, Wales and Scotland, produced by Intermap Technologies in 2003 (figure 

4.4).  This dataset was purchased in 2004 by the British Geological Survey (BGS) on behalf of 

the Natural Environmental Research Council (NERC). The elevation data was derived from 

airborne Inferometric Synthetic Aperture Radar (IfSAR or InSAR) measurements collected 

from a Lear jet flying at night in 2002 and 2003. For a description of the principles of InSAR 

see Mather (2004: 250-259). The NEXTMap data has a ground resolution (grid size) of 5 m and 

a vertical accuracy of 0.5 m, a major improvement on other national datasets (Smith et al., 

2006). The dataset includes a Digital Surface Model (DSM) and a ‘bare earth’ Digital Terrain 

Model (DTM) which has had vegetation and urban features ‘removed’. This is achieved by a 

combined process of an automatic algorithm followed by a manual check. Initially, the DTM 

was used for mapping, as in the pilot studies, as it was thought that this would be most suitable 

for mapping geomorphology since urban centres and forested areas would not pose a distraction 

to the eye. However, on comparison of the two datasets and discussion with colleagues using 

the NEXTMap data for hydrological modelling, it was observed that there was a significant 

degree of smoothing of topography in the DTM, masking subtle features (figure 4.5). After this 

realisation, mapping progressed using the DSM and areas already mapped using the DTM were 

re-examined with the DSM. Large urban centres continue to be an obstacle, as the overall effect 

of the rough urban landscape is to mask the underlying geomorphology. This is often very 

inconvenient, for example the city of Glasgow irritatingly lies directly above a major drumlin 

field, and so it is difficult to map the geometry of the drumlins precisely (figure 4.5). Overall, 
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the NEXTMap Britain dataset is of very high quality with few of the artefacts and errors seen in 

other elevation datasets. A discussion of the accuracy of the data is given by Dowman et al. 

(2003). The scale limit for the NEXTMap data is around 1: 6,000; from here the data starts to 

become pixelated and unsuitable for mapping (figure 4.6).  

 
Winter cloudless Landsat TM images, available from BGS for the whole of Britain, were used 

to supplement the DEM (figure 4.7). This data has a spatial resolution of 30 m and was mainly 

used to confirm areas of surface bedrock.  The NEXTMap Britain DEM that was available at 

the time of mapping did not include the Isle of Man. Mapping on the Isle of Man therefore was 

based on the Landsat TM imagery and the lower resolution Ordnance Survey (OS) 

LANDFORM PANORAMA DEM. This DEM has a grid size of 50 m and was derived from OS 

contour data.  

          

a b 

Figure 4.4 NEXTMap DEM generation and coverage. a) Principles of InSAR. In the case of the NEXTMap 
data, two antennae (A1 and A2) are mounted on the same platform (Lear Jet), the phase difference between the return 
radar signal received by the two antennae (R1 and R2) from site Z is a function of the elevation (h) above a datum at 
site Z and the distance between the two antennae (B); b) coverage of NEXTMap Britain dataset, at the time of 
mapping the Isle of Man was not covered by the data  
 
For the pilot mapping in Wensleydale, comparison was made between the results of mapping 

from the NEXTMap dataset with that from a lower resolution DEM. This area, approximately 

4,000 km2, contains some classic examples of glacial geomorphology, containing the valleys of 

Wensleydale, Swaledale. Ribblesdale, Eden, Lune and Wharfedale. Figures 4.8a and 4.8b show 

drumlin mapping from the 50 m OS DEM and 5 m NEXTMap DEM respectively. As expected, 

mapping from the lower resolution OS DEM was more difficult and with fewer landforms 

identified. Often a general lineament grain in the landscape could be seen, but this disappeared 

when zooming in to map the break of slope. This could lead to direction and shape errors as 

there is a temptation to impose a traditional ovoid shape on drumlins even when the break-of-

slope cannot be clearly seen. The shape, size, and orientation of drumlins were much more 

readily observed on the NEXTMap data. This information is vital to identifying distinct drumlin 

populations and coherent flowsets (see chapter 6). A 50% increase in the number of mapped 

drumlins was achieved using the NEXTMap data (figure 4.8).  
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Figure 4.5 Appearance of urban area on digital surface model (DSM) and digital terrain model (DTM) a) 
1:50,000 OS map of Kirkintilloch north of Glasgow, b) NW relief-shaded image of DSM, c) NW relief-shaded image 
of DTM. The algorithm used to remove vegetation and cultural features to produce the DTM appears to have a 
smoothing effect on the data and a hint of vegetation and cultural features remain. The railway line is clearly seen on 
the DTM running broadly W-E over the area. Drumlins in the south of the image are clearer on the DSM. Grid 
spacing is 20 km, Ordnance Survey co-ordinates. NEXTMap Britain data from Intermap Technologies, obtained 
under licence from British Geological Survey ©NERC. Ordnance Survey data ©OS copyright/database right. An 
Ordnance Survey/EDINA supplied service.  
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Figure 4.7 Example and comparison of resolution of data sources used for mapping for part of the Solway 
lowlands drumlin field west of Carlisle a)  OS PANORAMA LANDFORM DEM, 50 m resolution derived from 10 
m contour data; b) NEXTMap DTM, 5 m resolution derived from InSAR measurements; and c) Cloud free Landsat 
TM colour composite image, 30 m resolution.  Primary data sources used for mapping is NEXTMap DEM, 
supplemented by Landsat TM. NEXTMap Britain data from Intermap Technologies, obtained under licence from 
British Geological Survey ©NERC. 
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Figure 4.8 Drumlin maps for the Wensleydale pilot derived from (a) 50 m grid resolution OS PANORAMA 
LANDFORM DEM and (b) 5 m resolution NEXTMap DTM. It was much easier to precisely map drumlin outline by 
break-of-slope using the higher resolution data. In some cases although lineations could be identified on the OS DEM 
it was only possible to map crest lines. There was a 50 % increase in the number of mapped drumlins in this area by 
improving the resolution of the DEM data.  
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4.3.2 Mapping procedure 

Processed visualisations of the NEXTMap data, supplemented by winter Landsat imagery, were 

used to conduct countrywide mapping of five principal landform types: subglacial bedforms 

(drumlins and ribbed moraine), moraines, eskers, meltwater channels (lateral and subglacial) 

and streamlined bedrock. These landform types have a clear morphological expression and have 

been used successfully in inversion models of other palaeo-ice sheets (Boulton et al., 2001; 

Clark and Meehan, 2001; Clarhall and Jansson, 2003). Table 4.1 describes the characteristics 

used to identify landforms on the DEM visualisations. Figures 4.9, 4.10 and 4.11 show how 

targeted landform types appear on visualisations of the NEXTMap data.  

 

Table 4.1 Mapped landform types and identification characteristics.  Landform types were selected by the 
requirements of the glacial inversion model: ice directed landforms (glacial lineations, ribbed moraine, and subglacial 
meltwater channels) and ice marginal landforms (eskers, lateral meltwater channels, and moraines). The Glacial Map 
of Canada (Prest et al., 1968) was used as a template to determine choice of mapped landform types and style of 
mapping. Definitions after Hättestrand and Clark (2006b) and De Angelis (2007b).  
 

Landform type Identification characteristics Mapping style 
Drumlins Streamlined hill with long axis aligned in direction of ice flow. 

Commonly composed of till with a stoss and lee end. Generally occur 
in groups or fields. Direction of ice movement determined by the 
position of stoss end. Asymmetric plan form. Drumlins may be 
dissected or partially eroded by postglacial fluvial erosion.  

Break of slope outline 
of individual 
landforms 

Crag and tails Streamlined till tapers away from bedrock bump or crag in direction of 
ice flow. May be dissected or partially eroded by postglacial fluvial 
erosion. Layer also contains larger scale drift tails that follow bedrock 
escarpments as exemplified in figures 4.9 and 4.20. 

Crestline of individual 
features 

Mega-scale glacial 
lineations (MSGL) 

Highly attenuated streamlined landforms. Distinct from drumlins as 
have high elongation ratios and more symmetrical rectilinear plan in 
opposition to the classic ‘basket of eggs’ shape of drumlins. Generally 
long and may be dissected or partially eroded by postglacial fluvial 
erosion.  

Crestline of individual 
features 

Ribbed (rogen) 
moraine 

Groups of regularly spaced ridges composed of glacial sediments. 
Formed transverse to ice flow. Often superimposed by drumlins. 
Ridges maybe dissected by post-glacial fluvial channels. 

Break of slope outline 
of individual ridges 

Eskers Ridges composed of glaciofluvial sediments. Generally have very 
sharp crest and sides. Cross profile has inverted V shape. Commonly 
mildly sinuous and form anatomising networks with tributaries that join 
main ridge at acute angles.  

Crestline of individual 
ridges 

Meltwater channels Dry and/or misfit channels. Channels are distinct from fluvial channels 
as have wide flat bottoms and steep sides. Size of channel 
incongruent with modern catchment size or catchment may be absent 
Subglacial type may form networks and have up and down long 
profiles. Lateral types occur as flights ‘hanging’ on valley sides running 
oblique to contours. No distinction made in terms of size of channel. 
Likely that many small channels exist below the resolution of the DEM.  

Central axis of 
individual channels 

Moraines  Individual ridges with a defined crest or spreads of glacial drift or till. 
May have arcuate plan shape and form at the mouths of valleys. 
Surface roughness or irregular ‘texture’ on DEM (figure 4.10c). 
Oblique area visualisation often useful to aid identification. Steep ice 
contact slope on at least one side of the feature. No distinction is 
made between ice contact features composed of glaciofluvial or glacial 
drift deposits. Spreads can have irregular, flat or multi-crested upper 
surface. May also include hummocky moraine. Use of distribution of 
other features and context to pin point likely locations for  moraines, 
e.g. abrupt ends in drumlin patterns, vegetation changes in satellite 
imagery, and disrupted river patterns. Layer contains all types of 
constructional ice contact landform.  

Large moraines: 
break of slope outline 
of individual features. 
Ridges and small 
moraines: crestline of 
individual ridges. 

Streamlined 
bedrock 

Exposed bedrock surfaces streamlined by ice flow. Includes ‘rock’ 
drumlins and roche moutonées. 

Summary line in same 
orientation of suite of 
features 

Landscape grain Drift material that appears streamlined but impossible to indentify 
individual drumlins. Speculate that these are areas of fluted terrain 
and landforms below the resolution of the DEM.  

Summary line with 
same orientation as 
grain 
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Figure 4.9 Examples of how glacial landforms appear on the NEXTMap DSM data (lineations). a) NE 
relief-shaded visualisation of a drumlin field close to Barrow in Furness; b) overhead relief-shaded image of the same 
drumlin field close to Barrow in Furness; c) NE relief-shaded visualisation of mega-scale glacial lineations in the 
Tweed basin; d) overhead relief-shaded image of the same mega-scale glacial lineations in the Tweed basin; e) NW 
relief-shaded visualisation of streamlining in lee of bedrock bump (mapped as part of crag and tail layer) near 
Applecross, Torridon. Ice flow direction is SSE to NNW. Tails are dissected by meltwater channels at northern tip; f) 
overhead relief-shaded image of the same crag and tails near Applecross, Torridon.  NEXTMap Britain data from 
Intermap Technologies, obtained under licence from British Geological Survey ©NERC. 
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Figure 4.10 Examples of how glacial landforms appear on the NEXTMap DSM data (moraines). a) NE relief-
shaded visualisation of moraines in the Vale of York, moraines are pinpointed by arrows; b) overhead relief-shaded 
image of same moraines. This area is relatively flat and therefore moraines are difficult to see on the overhead image 
alone, although clearly seen on the NE image; c) NE relief-shaded visualisation of kame-moraine at Brampton; d) 
overhead relief-shaded image of same area. Similarly to the above image (b) it is difficult to see the moraine on the 
over head image; e) NW relief-shaded visualisation of moraine ridges close to Aberchirder in NE Scotland; f) 
overhead relief-shaded image of same moraine ridges. These moraines can be seen on both the NE and overhead 
image. Moraine spreads (a and c) can be identified by difference in ‘texture’ of surface in moraine in relation to 
surrounding area. Moraines are more difficult than other landforms to identify using solely the overhead images (b, d, 
and f). Break-of-slope identification using the overhead image in flat areas (b) is difficult. NEXTMap Britain data 
from Intermap Technologies, obtained under licence from British Geological Survey ©NERC. 
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Figure 4.11 Examples of how glacial landforms appear on the NEXTMap DSM data (meltwater channels and 
eskers). a) NW relief-shaded visualisation of flight of lateral meltwater channels northwest of Blairgowrie; b) 
overhead relief-shaded image of the same lateral meltwater channels; c) NE relief-shaded visualisation of subglacial 
meltwater channels close to Edinburgh; d) overhead relief-shaded image of the same subglacial meltwater channels; 
e) NW relief-shaded visualisation of Flemington esker system, arrow highlights line of trees that could be confused 
with esker system, and adjacent patch of woodland clearly stands out because of the sharp rectilinear boundaries; f) 
overhead relief-shaded image of the same esker system.  NEXTMap Britain data from Intermap Technologies, 
obtained under licence from British Geological Survey ©NERC. 
 

Mapping was by manual on-screen digitising directly into GIS vector layers within the 

computer programs Erdas Imagine and ArcGIS. To reduce azimuth bias, a minimum of two 

orthogonal visualisations and one ‘overhead’ image were generated from the NEXTMap data 

(figure 4.12). Different contrast stretching was applied to improve landform detectability. Pilot 
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mapping was used to experiment with and then determine the mapping style for each landform 

type. The second pilot area was adjacent to the first (Wensleydale) centred on Carlisle and the 

Solway Firth lowlands and covering an area of approximately 5,800 km2. This area was chosen 

in order to include a range of glacial landforms and settings, including the flat coastal plain and 

upland areas of Northumberland and the Tyne Gap.  

 

Figures 4.13 and 4.14 show examples of cartographic representation used for mapping each 

landform type. For all landform types except streamlined bedrock and ‘grain’, mapped features 

represent individual landforms. The resolution of the NEXTMap data enabled precise mapping 

of the break of slope outline of drumlins. Although break of slope mapping of drumlins is more 

time-consuming than crestline mapping it captures not only the orientation and length of each 

individual drumlin but also the overall size of the drumlin and a means for estimating the 

elongation ratio (length/width). Elongation ratio is a common statistic in studies of drumlin 

morphometry and useful in the organisation of flowset patterns (chapter 6). Direction of ice 

flow was determined by the orientation of drumlin stoss and lee ends.  

 
Figure 4.12 A minimum of three relief-shaded visualisations were used for mapping. a) Relief-shaded image 
of NEXTMap DSM illuminated from the NE, b) Relief-shaded image of NEXTMap DSM, illuminated from the NW, 
c) ‘Overhead’ relief-shaded image of the NEXTMap DSM, and d) mapped drumlin polygons. NEXTMap Britain data 
from Intermap Technologies, obtained under licence from British Geological Survey ©NERC. 
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Figure 4.13 Examples of style of mapping used for each landform type (drumlins, MSGL, ribbed moraine, 
crag and tails, and streamlined bedrock). Map layers are shown superimposed on relief-shaded visualisations of DEM 
for illustration only. The outline of drumlins and ribbed moraine may not appear to coincide with the break-of-slope 
seen on the relief image. This is due to the azimuth bias problem of viewing from a single illumination direction 
discussed in the main text and exemplified in figure 4.2. Break-of-slope mapping was conducted using the overhead 
image and so is can accurate record of the drumlin shape. Drumlin outline mapped along break-of-slope at the 
drumlin base. In some areas post-glacial deposition will have raised the level of the ground in the inter-drumlin 
hollow above the base of the drumlin. In these cases the break of slope will therefore not match exactly the position 
of the drumlin base. It is assumed that in general postglacial deposition in inter-drumlin hollows will be equally 
distributed around the drumlin and so will only serve to reduce the overall size of the mapped drumlin and not affect 
drumlin shape. The only way to confirm the level of the true drumlin base would be to use ground penetrating radar 
or boreholes to examine the underlying stratigraphy (impractical for this volume of data). The overall advantages of 
mapping break of slope are thought to outweigh the minor anticipated errors due to post-glacial sedimentation. These 
drumlins are close to Barrow in Furness (a), arrow points to erroneous drumlins that are really inter-drumlin hollows. 
The actual drumlin is outlined in black. Positive and negative relief has a similar appearance on the overhead image 
leading to the mapping of inter-drumlin depressions. The majority of these drumlins were removed during repeat pass 
mapping. Mega-scale glacial lineations (MSGL) in the Tweed basin are mapped along crest-lines (b). Ribbed moraine 
ridges are mapped by break-of-slope. These ridges are north of the Forest of Bowland (c). Crag and tails mapped 
along crestline. These are close to Applecross (d). Streamlined bedrock mapping by lines in general direction of 
streamlining, representative of but not individual landforms (e). NEXTMap Britain data from Intermap Technologies, 
obtained under licence from British Geological Survey ©NERC. 
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Figure 4.14 Examples of mapping style for different landform types. Meltwater channels in the Vale of Eden 
(a) mapped along centre-lines, eskers north of the Tweed (also mapped by Evans et al. (2006)) (b) and small moraines 
such as these ridges close to Aberchirder in NE Scotland (d) along crest-lines. Large ‘moraines’ such as this ice 
contact delta in the Solway lowlands by break-of-slope mapping (c). The ‘moraine’ layer contains all types of ice 
contact landform with no distinction between types, for example in this example the feature is an ice contact delta 
rather than a ‘classic’ moraine. Arguably the layer could be more precisely referred to as a layer of ice contact 
landforms. NEXTMap Britain data from Intermap Technologies, obtained under licence from British Geological 
Survey ©NERC. 
 

Mapping progressed across the country by 100 x 100 km OS tile (figure 4.15), landform type by 

landform type. Thus repeated passes of the entire glaciated area were made, and mapping was 

reviewed at each stage. As mapping was conducted by a single observer the resulting maps are 

internally consistent in terms of bias due to skill and experience in landform identification. It 

was inevitable that mapping skill would improve during the period of mapping, therefore by 

mapping landform type by landform type, rather than area by area, differences in quality at the 

start and end of mapping were minimised. Bedforms were mapped first as these were deemed to 

be the most significant in terms of the reconstruction and with the clearest morphological 

expression. The scale of mapping varied with the size of landforms. The same area was mapped 

repeatedly at a range of scales so that all sizes of landforms were captured. Smaller scale 

viewing of the landscape was used for examining landscape contexts as an aide to landform 

identification and to identify large features. Precise mapping of break of slope was conducted at 

a scale of 1:20,000 to 1:10,000. This is comparable with field mapping which is generally 

conducted at a scale of 1:10,000 (Mitchell and Riley, 2006).  The regional overview was often 

invaluable to identify landforms, followed by scrutiny at a larger scale for precise mapping of 

the landform outline. Care was taken to ensure consistency of cartographic representation over 
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different spatial scales. Pilot mapping highlighted the need for an ‘enigmatic’ mapping layer for 

landforms that could not be identified. This layer served to speed up mapping by enabling 

delayed decisions about landform interpretation. Each landform layer was accompanied by a 

corresponding speculative layer for equivocal landforms, e.g. ‘drumlin’ and ‘drumlin spec’. 

Features within these layers were often later incorporated into main layer after consultation with 

reference datasets (section 4.3.3). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.15 Ordnance Survey 100 km x 100 km tile codes. 
Mapping was conducted by systematic scrutiny of all tiles that lie 
within the Devensian drift limit (shaded in light grey). Mapping 
progressed tile by tile. 
 

4.3.3 Ancillary datasets and mapping checks 

Periodically mapping was reviewed in consultation with more experienced geomorphologists at 

the University of Sheffield and British Geological Survey. In the initial stages, when mapping 

skill was developing, mapped features were thoroughly inspected by supervisors and colleagues 

as each 100 x 100 km square was completed, and more frequently during the pilot mapping. 

During the final stages, mapping was shown to colleagues and visiting academics in a series of 

review workshops focussing on difficult areas and enigmatic landforms. In addition to these 

checks reference was made to a number of datasets.  

4.3.3.1 BRITICE+ database and glacial map 

The new mapping presented in this thesis is complementary to, and builds upon, previously 

published and predominantly field based mapping contained within the BRITICE database. As 

already stated, the BRITICE database was compiled from a number of sources spanning several 

decades and therefore contains inconsistencies in terms of mapping styles, scales and landform 

nomenclature. The BRITICE database has a census date of 2002. Mapping published 

subsequent to this date was scanned, geo-corrected, and digitised, in the same manner as used to 

compile the original glacial map (Clark et al., 2004b) and added to the original database to form 

BRITICE+. A list of added mapping sources is given in table 4.2 and the increase in coverage to 

the original glacial map shown in figure 4.16.  
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Table 4.2 Additions made to the BRITICE GIS database 2002-2008. The list is not exhaustive, especially since 
mapping published since January 2008 has not been included. Notable exclusions include lineament mapping in 
South Wales by Jansson and Glasser (2008) and new offshore moraine and meltwater channel mapping by Bradwell 
et al. (2008b). 

 

During mapping the information in the BRITICE database was compared with the DEM 

visualisations. In the majority of cases the relevant features were identified on the DEM and in 

the correct geographic positions. However, some of the features in BRITICE have been 

incorrectly located due to poor geo-referencing in the original source (Clark et al., 2004b). All 

landforms contained within the BRITICE database were remapped using the DEM to ensure 

consistency of mapping style. BRITICE GIS layers were also used as a guide to aid 

identification of landforms. The BRITICE database was especially useful for providing 

examples of the appearance of moraines on the DEM when learning how to recognise moraines. 

The similarity of new mapping with detailed field mapping included in the BRITICE database 

formed a further check on the quality of mapping, demonstrating that mapping conducted 

remotely reproduced mapping conducted in the field (figure 4.17). Where features within the 

BRITICE database appeared absent from the DEM they were considered to relate to features 

below the resolution of the DEM. For example the moraines of Peacock (1984) on Lewis are 

difficult to pick out on the DEM. In a few cases BRITICE information was reinterpreted, for 

example drumlins were reinterpreted as ribbed moraine ridges in OS tile SE (figure 4.18).  

Feature description Location Reference 
Meltwater channels, moraines, moraine 
ridges, and eskers 

NE Scotland coastal region Merritt et al. (2003) 

Meltwater channels Afon Teifi Etienne et al. (2006) and Glasser 
et al. (2004) 

Moraines Hebridean shelf Stoker et al (2006) 
Moraines NW Shetland shelf Davison (2004) 
Meltwater channels Mid Cheshire Ridge Glasser and Sambrook-Smith 

(1999) 
Moraines and drumlins Summer Isles Stoker et al. 2006 
Drumlins and offshore meltwater 
channels 

Strathmore Golledge and Stoker (2006) 

Drumlins  Tweed Everest et al. (2005) 
Moraine ridges, meltwater channels, and 
drumlins 

Wye and Usk Valleys Lewis and Thomas, (2005) 

Lineations (mainly ‘rock drumlins’) Wales Janssen and Glasser (2004) 
 

Moraine ridges, moraines, drumlins, and 
meltwater channels 

Anglesey and Lleyn Peninsula Thomas and Chiverell (2007) 

Glaciolacustrine sediments, meltwater 
channels and moraines 

Rossendale Forest Crofts (2005) 

Mega-scale glacial lineations Minch Stoker and Bradwell (2005) 
Bedrock ‘mega-grooves’ Assynt Bradwell (2005) 
Moraines and moraine ridges  NW continental shelf Stoker et al. (2006) 
Moraine ridges Wester Ross Everest and Kubik (2006) 
Moraine ridge Northern Scilly Isles Hiemstra et al. (2006) 
Moraine ridge, meltwater channels NE Wales Thomas (2005) 
Meltwater channels and eskers Cheshire-Shropshire Plain Worsley (2005) 
Erratic transport paths Scottish, Lake District and Welsh 

erratics in Cheshire Plain 
Mackintosh (1879) 

Offshore  mega-scale glacial lineations  Witch Ground Graham et al. (2007) 
Moraines Herefordshire Richards (2005) 
Moraines Isle of Man Thomas et al. (2004) 
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Figure 4.17 Comparison of new mapping from remote sensing imagery with mapping conducted in the field. 
New mapping shows good agreement with detailed field mapping in terms of overall distribution and pattern. A) Map 
figure reproduced from Smith et al. (2006). Field mapping originally conducted by J. Rose 1965-1970. Drumlin 
outlines, crest-lines and stoss ends are marked. Red boxes enclose drumlins that are missing from the new mapping, 
B) New mapping, shown in same colours as field map (A). Drumlins that concur with field mapping are shown in 
outline. Solid black polygons represent drumlins that are missing from the field map. Crag and tails are shown as 
black arrows in the direction of ice flow. Green arrows pinpoint locations where there is a difference in interpretation 
between field mapping and new mapping; 1 = drumlins reinterpreted as crag and tail features, 2 = In the field, 
mapped as esker, but as thin linear drumlin during mapping from DEM, 3 = groups of drumlins that have opposite 
orientation in field mapping.  
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Figure 4.18 A rare example of conflict between new mapping and that contained within the BRITICE dataset 
for an area west of Skipton; a) NW relief-shaded image of the NEXTMap DSM, b) overlain by BRITICE drumlin 
layer (in this image drumlins are from Raistrick (1933)), c) overlain by new mapping. Drumlins in black, ribbed 
moraine ridges in yellow. The most striking difference between the two datasets is the dramatic increase in mapped 
bedforms for this area. Ribbed moraine ridges are superimposed by drumlins both indicating ice flow towards the SE 
strengthening evidence for NW-SE ice flow. South-westerly trending drumlins from the BRITICE database are 
reinterpreted as ribbed moraine ridges. NEXTMap Britain data from Intermap Technologies, obtained under licence 
from British Geological Survey ©NERC. 
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4.3.3.2 Reference datasets 

British Geological Survey (BGS) bedrock, structural, and superficial (drift) maps, Ordnance 

Survey topographic maps, and aerial photography were employed to check mapping quality. 

There was no time available for fieldwork and therefore checks did not involve detailed 

surveying of the landscape or sedimentological analysis. Limited field visits to part of the 

Solway pilot mapping area at an early stage of mapping were conducted and served to confirm 

mapped landforms and gain an appreciation of the limitations of the remote sensing approach to 

mapping. Bedrock, structural and superficial geology maps were available in digital format 

under licence from BGS at a scale of 1:50,000 and were used for comparison with mapping 

layers within the GIS. Superficial geological maps provide information on the distribution of 

till, glaciofluvial sands and gravels, and bare rock and therefore improved confidence in 

landform classification, especially with respect to eskers and moraines. Bedrock and structural 

geology maps facilitated rejection of bedrock streamlining that is primarily a function of 

underlying geological structure and therefore an unreliable indicator of ice flow directions. BGS 

have developed a drift thickness model for Britain derived from the BGS borehole archive and 

DEM data (figure 4.19). This was a useful additional source of information, particularly to 

differentiate streamlined drift features, such as drumlins, from bedrock streamlining (figure 

4.20). Differentiation of erosional and depostional landforms is important as they have different 

palaeoglaciological implications (table 3.1). Streamlined bedrock is likely to reflect the 

cumulative effect of erosion throughout the last glacial and previous glacial cycles. A key 

assumption in the interpretative framework employed in this thesis (Chapter 3) is that the 

pattern and distribution of drumlins is an accurate record of the ice flow direction at the time of 

drumlin formation, and therefore can be used to determine ice flow directions at a point in time. 

Streamlined bedrock may only record average flow pattern directions and is therefore treated as 

a second order record of ice flow patterns in the inversion scheme. As a further check and to 

supply extra detail in confusing areas, the British Geological Survey aerial photo archive was 

examined where necessary.  

 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.19 Coverage of British Geological Survey 
Advanced Superficial Thickness Model (ASTM). Inset map 
shows distribution of borehole archive from which the model is 
derived. Gaps in the ASTM coverage are due to gaps in the 
superficial geology mapping as not all BGS sheets have been 
mapped for superficial deposits at a scale of 1:50,000. 
Reproduced with the permission of the British Geological 
Survey ©NERC. All rights reserved. 
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Figure 4.20 The British Geological Survey Advanced Superficial Thickness Model (ASTM) was employed to 
ensure that identified drumlins are composed of drift (area north of the Firth of Forth): a) Relief-shaded image of 
NEXTMap DSM. Visualised from the NW with 4X vertical exaggeration; b) relief-shaded image overlain by 
semitransparent ASTM surface viewed as a red-yellow choropleth map where red is greatest distance to rock-head or 
thickest layer of superficial sediments. ‘Holes’ in the ASTM surface show area where bedrock is exposed or covered 
by superficial material less than 1 m thick; c) Mapped drumlins (polygons) and large scale streamlining associated 
with bedrock bump (groove ploughs) mapped within the crag and tails layer (lines) are shown in black. ASTM data is 
reproduced with the permission of the British Geological Survey ©NERC. NEXTMap Britain data from Intermap 
Technologies, obtained under licence from British Geological Survey ©NERC. 
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Topographic Ordnance Survey (OS) maps which are available in digital format at a scale of 

1:50,000, from OS Digimap via EDINA, were used to identify areas of forest and confirm 

locations of urban areas which often have a remaining expression in the DTM, and are present 

in the DSM (figure 4.5, 4.21 and 4.22). In some cases the names of places also confirmed 

landform identification. The blue line network of fluvial drainage marked on OS maps was used 

to check meltwater channel mapping (figure 4.21).  

 
Figure 4.21 Topographic maps aid identification of meltwater channels. The absence of modern drainage 
(demarcated by the blue line network) confirms channel status as meltwater channels relating to drainage of the last 
ice sheet. Contour lines on Ordnance Survey maps also aid classification of channels as marginal or subglacial 
(section 6.7.1). a) relief-shaded visualisation of DEM illuminated from the NE with 4X exaggeration of area east of 
Thornhill in Nithsdale b) overlain with semi-transparent OS map, c) mapped meltwater channels in red, and d) 
meltwater channels on OS map. OS Digimap data © Crown Copyright/database right 2004. An Ordnance 
Survey/EDINA supplied service.  NEXTMap Britain data from Intermap Technologies, obtained under licence from 
British Geological Survey ©NERC. 

4.4 Summary 

A systematic approach to mapping five principal landform types using a high resolution DEM 

was undertaken to produce a series of consistent glacial maps for the whole of the former bed of 

the last British Ice Sheet that presently lies above sea level. This is the first time that such an 

approach has been employed for the whole of Britain. Five principal landform types were 

mapped in accordance with what is required for a glacial geomorphological inversion model of 

the last BIS. The DEM was visualised from a minimum of three solar azimuth directions to 

ensure accuracy of mapping of landform shape. The resulting maps are described in chapter 5 

and enclosed with this thesis as a series of A0 sheets. Confidence in mapping quality is achieved 

by examination of mapping with geological and topographic maps and, where available, high 

quality field mapping. New mapping replicates the existing distribution of features in areas that 

have been subject to detailed field examination.  
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Topographic Ordnance Survey maps were employed to aid interpretation of landforms. BFigure 4.22 y 

overlaying the map over the DEM it is possible to discriminate between true eskers and roads: a) Relief-shaded 
visualisation of DSM illuminated from the NW, 4X exaggeration close to Carstairs; b) OS map overlain on the relief-
shaded image.; and c) mapped eskers overlain on OS map shown in orange. The topographic map clearly shows that 
the sharp crested feature south of the main esker system is a road. OS Digimap data © Crown Copyright/database 
right 2004. An Ordnance Survey/EDINA supplied service.  NEXTMap Britain data from Intermap Technologies, 
obtained under licence from British Geological Survey ©NERC. 



 

Chapter 5  

Mapping results  
 

5.1 Introduction 

Chapter four described the methods used to conduct systematic mapping of glacial 

geomorphology. This chapter presents the results and describes the mapped distribution of 

landforms. The results are presented in four A0 size map sheets contained within the folio 

which accompanies this thesis (and figure 5.1 and 5.2). The landforms have been divided into 

two maps for clarity. Map 2 records the pattern and distribution of subglacial bedforms 

(drumlins, crag and tails, mega-scale glacial lineations, and ribbed moraine) (figure 5.1). Map 3 

records the distribution of meltwater channels, eskers and moraines (figure 5.2). Each map 

comprises a north and south sheet to allow mapping to be presented at a reasonable scale to 

allow scrutiny of individual landforms at A0 size (1: 525,000). The mapped outlines and 

crestlines of individual landforms have not been modified to improve cartographic quality, and 

so the maps are, in effect, hard copies of GIS vector layers. It is envisaged that cartographic 

modifications will be made to improve the appearance of the maps before publication. For 

example, it may be necessary to stylise the meltwater channel mapping to avoid flights of 

closely spaced channels appearing as a solid block of colour. The Glacial Map of Canada and 

the Glacial Map of Britain have been used as templates for the map colours and design. The OS 

PANORAMA DEM provides the topographic background on the map shaded dark-light grey 

with darker shades representing higher ground.  

 

It is notable on both maps that the area covered by the Loch Lomond Stadial ice cap in Scotland 

is virtually devoid of landforms. As described in chapter four, this area was examined as part of 

the systematic mapping across the country and therefore the absence of landforms is a reliable 

reflection of the paucity of identifiable landforms in the area. It is probable that the region 

contains landforms that are below the resolution of the DEM. The entire area is characterised by 

hummocky glacial deposits or moraines. This operates like a screen or mask over the landscape 

obscuring and perhaps erasing landforms created by the larger Late Devensian ice sheet, 

although Golledge (2007) has suggested that older landforms are visible beneath the Loch 

Lomond landforms. Furthermore, it was important not to misappropriate Loch Lomond Stadial 

age features as being part of the assemblage attributable to last major ice sheet. In this regard, 

the lack of a similar database to that of BRITICE for the existing published mapping of 

landforms of Loch Lomond Stadial age was problematic.  
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Figure 5.1 Map 2: Subglacial bedforms of Britain: a) north sheet; b) south sheet. Map 2 is enclosed with this thesis 
in the accompanying folio. There is a very slight offset between the north and south sheets and an overlap of 24.5 km 
between the North and South sheets.  
 



  Chapter 5. Mapping results 
 

 95

 
 
Figure 5.2 Map 3: Moraines, eskers and meltwater channels of Britain: a) north sheet; b) south sheet. Map 3 is 
enclosed with this thesis in the accompanying folio. There is a very slight offset between the north and south sheets 
and an overlap of 24.5 km between the North and South sheets. 
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5.2 Subglacial bedforms (Map 2) 

Map 2 includes the family of glacial landforms that are commonly termed subglacial bedforms: 

lineations (drumlins, crag and tails, and mega-scale glacial lineations) and ribbed moraine 

(figure 5.1). For the reasons discussed in the preceding chapter (including rigorous quality 

control checks against geological maps and comparison with detailed field mapping (where 

available), it is estimated that mapping of subglacial bedforms is 90 % complete.  The map is 

therefore close to a true representation of the distribution and population of subglacial bedforms 

for Britain. The break-of-slope outline of drumlins are shown as filled black, crag and tails are 

shown as grey arrows pointing from crag to tail, mega-scale glacial lineations (MSGL) are black 

crestlines, and ribbed moraine is yellow (filled outlines or ridge crestlines).  As stated in the 

introduction the maps have not been altered to improve cartographic quality and therefore 

outlines and crestlines represent the actual area or length dimensions of individual features. As 

drumlins are shown filled, it is not possible to show on the map where drumlin cross cutting 

occurs.  

5.2.1 Drumlins, crag and tails, mega-scale glacial lineations 

The new map replicates and extends the locations of known drumlin fields in Britain (figure 

5.3) and also provides more detail on drumlin numbers, morphometries and spacing than 

documented by existing maps in most areas.   

 

 
Figure 5.3 Comparison of drumlins contained within BRITICE database (a) and drumlins, crag and tails, and 
mega-scale glacial lineations from new countrywide mapping (b). New countrywide mapping has increased the 
number of known drumlin fields. British National Grid coordinates, interval between tick marks 100 km. 
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It was noted in chapter four that where drumlin mapping has been conducted in detail for a local 

area, the new mapping is successful in reproducing the same level of detail. Both the number 

(i.e. detail) and the overall distribution of drumlin mapping is greatly increased from that 

summarised in the Glacial Map of Britain (figure 5.3), especially in Scotland. In some cases 

(e.g. Anglesey) drumlins are mapped where previously they had only been described in the 

literature. The map contains 5,901 crag and tails, 248 MSGL crestlines, and 36,222 drumlins, as 

opposed to the 5,956 drumlins in BRITICE and 8,552 in BRITICE+. The newly mapped 

distribution and pattern of drumlins generally concurs with previous mapping, if available, and 

adds extra detail. Notable differences occur in Easter Ross where drumlins of Peacock (1984) 

are reinterpreted as crevasse-squeeze ridges, Ayrshire where drumlins are reinterpreted as 

possible moraine ridges (Holden, 1977), the Tweed where drumlin orientation is about 30 

degrees different to that of the drumlins mapped by Clapperton (1970) and in the Yorkshire 

Dales where drumlins are reinterpreted as ribbed moraine (Raistrick, 1933) (figure 4.18).  

 

A striking observation from the map is that the distribution of drumlins clearly outlines the 

distribution of topography (Map 2). Drumlin fields predominantly occur in lowland areas with 

the majority of upland areas free of subglacial landforms, e.g. Southern Uplands, Scottish 

Highlands, Wales, Lake District and northern Pennines. Nevertheless, drumlins do occur at high 

elevations, up to 677 m in the Lune Forest in the Pennines, east of the Vale of Eden (OS ref. NY 

79731 23849). Field mapping by Mitchell (2007) has also uncovered drumlins above 650 m in 

the north Pennines. There are very few drumlins in regions where there is a high variability in 

topography, e.g. Wales, Scotland, Orkney and Shetland. It is likely that this is, in part, a 

function of the distribution of glacial sediment. Other gaps or ‘holes’ in the distribution of 

drumlins are associated with the routes of major rivers (e.g. figure 5.4). It is suggested that 

drumlins close to the river course have been buried by fluvial sedimentation during the 

Holocene. An examination of these areas with ground-penetrating-radar would be useful to test 

this hypothesis. Post glacial modification is also apparent at the scale of individual drumlins; 

meltwater and fluvial erosion results in the modification and/or bisecting of the classic oval 

geometry in some cases. Mapping was conducted to reflect existing drumlin form. By 

qualitative examination, the distribution of drumlins does not appear to be controlled by 

geology since drumlins occur across the country on a number of different rock types.  

 

A variety of drumlin morphometries were identified (figure 5.5 and Map 2). Detailed analysis of 

drumlin morphometry statistics has not been conducted in this thesis. As part of a separate 

project, the length, width, and elongation ratio of British drumlins has been analysed and the 

results are presented in Clark et al. (in press). In this thesis differences in drumlin morphometry 

are used in a purely visual way to aid identification of flow patterns, discussed in chapter 6. 

Drumlins are commonly superimposed on other drumlins and ribbed moraine ridges (figure 
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5.6). There are 133 instances of drumlin superimposition. Drumlin lengths range from 9 m to 

3.5 km, with a mean length of 570 m. The greatest density of drumlins is in the Central Valley 

of Scotland.  

 
Figure 5.4 Drumlin fields in southern Scotland are segmented by the courses of Rivers Clyde and Forth. It is 
suggested that drumlins have been buried and thus obscured by Holocene fluvial sedimentation. Part of subglacial 
bedform map (Map 2) centred on Glasgow, Scotland. Colours are the same as in Map 2. British National Grid 
coordinates, interval between tick marks 50 km.  
 

 
Figure 5.5 A range of morphometries are exhibited by the drumlins of Britain. For example; thin, elongate, 
‘spindle’ shaped drumlins close to Penrith (a), irregular, ‘tadpole’ shaped drumlins in the Marchars of Galloway (b), 
classic ovoid shaped drumlins in the Vale of Eden (c), and area of Caithness with two distinct populations of 
drumlins on the basis of length. British National Grid coordinates. 
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Figure 5.6 Subglacial bedform map with locations of cross-cutting or superimposed landforms marked in red. 
Examples of types of cross-cutting shown in enlargements a) and b) drumlins superimposed on ribbed moraine in 
Ayrshire and Solway lowlands, and c) and d) cross-cutting drumlins. Drumlins shown in outline only so that nature of 
superimposition can be observed. British National Grid coordinates, interval between tick marks 200 km. 
 

MSGL, distinguished from drumlins on the basis of tendency towards a more oblong or 

rectilinear shape (chapter 4; table 4.1) only occur in the Tweed Basin. Long drumlins do occur 

in other areas (e.g. on Easter Ross and Strathmore) but never in the same number, frequency, or 

with the same distinctive rectilinear shape as in the Tweed and are therefore not identified as 

MSGL and remain in the drumlin layer. The Tweed MSGLs are smaller than examples from 
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other palaeo ice sheets such as the Laurentide, ranging from 2 km to 16.5 km long. Crag and 

tails are most common in Scotland and are often associated with drumlin fields. Lengths of drift 

tails ranges from 113 m to 8.2 km. There are a few groups of crag and tail features that stand out 

on the map because they are orientated in an opposite direction to that expected (e.g. onshore) or 

in conflict to the direction of orientation of neighbouring landforms. Interpretation of these 

features is discussed in chapter 6 (table 6.1). During the checking process described in chapter 

4, the drumlin, MSGL, and crag and tail speculative layers were reduced significantly by 

transferring individuals into the main layer, and the speculative layer presently contains only a 

small number of drumlins (n = 2,881) (figure 5.7). 

 
tive layers: a) subglacial bedforms, b) eskers, c) Figure 5.7 Distribution of landforms contained within specula

meltwater channels, and d) moraines. Although identified and digitised during the mapping process these features 
were not incorporated on the main maps because they were not considered reliable enough. British National Grid 
coordinates, interval between tick marks 200 km.  
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5.2.2 Ribbed moraine 

Ribbed moraine occurs in only a few locations (Map 2; figure 5.1) and until recently ribbed 

moraine has rarely been observed in Britain in contrast to discoveries in Ireland and beneath 

other palaeo-ice sheets (Dunlop and Clark, 2006; Finlayson and Bradwell, in press). The only 

considerable area of ribbed moraine in Britain is in Ayrshire, where ribbed moraine covers an 

area of 750 km2. Elsewhere, ribbed moraine exists in discrete patches (e.g. northern Scotland). 

Two main morphometries of ribbed moraine are identified: thin widely spaced ridges that are 

not over printed and occur in valley bottoms (figure 5.8a), and broad flat ridges that are 

typically superimposed by drumlins (figure 5.8b) and generally occur in low lying expansive 

settings. The first type of ribbed moraine appears to be exclusively restricted to Scottish 

locations. The second type occurs mainly in lowland locations and appears pushed up or stacked 

against topographic highs in Ayrshire and Lancashire.  

 

In some areas the location of drumlins that superimpose ribbed moraine ridges appear to be in 

part controlled by the distribution of the underlying ribbed moraine, for example, on the Rhins 

of Galloway (Map 2). This suggests remoulding of the ribbed moraine ridges to form drumlins. 

The map contains a total of 1,868 ribbed moraine ridges grouped in 19 separate patches or 

fields. The ribbed moraine speculative layer contains a potential additional 1950 ribbed moraine 

ridges. The location of these is shown in figure 5.7a. It would be valuable to field check these 

sites to corroborate or reject their status as ribbed moraine fields. 

 
Figure 5.8 Two main types of ribbed moraine observed in Britain: thin widely spaced ridges constrained in bottom 
of valley in northern Scotland (a and b), broad closely spaced ridges superimposed and partly remoulded by drumlins 
in Solway lowlands (c and d). Shaded relief images of NEXTMap DEM (b and d). British National Grid coordinates. 
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5.3 Eskers, meltwater channels and moraines (Map 3) 

Map 3 shows the distribution of eskers, meltwater channels, and moraines. Following the glacial 

map of Canada and the Glacial Map of Britain eskers are red crestlines, meltwater channels are 

blue centrelines, and moraines and moraine ridges are brown outlines or crestlines. A reduced 

version of the map is shown in figure 5.2. 

5.3.1 Eskers 

The greatest density of eskers is within the belt of glaciofluvial material that runs along the 

Central Valley of Scotland between Glasgow and Edinburgh and in the valley of the River Spey 

in Scotland (figure 5.9; Map 3). Prominent esker chains also occur in the Vale of York. Mapped 

eskers in Britain are relatively short in comparison to examples from other ice sheets, including 

the Irish Ice Sheet. Mean esker length for Britain is 744 m. Lengths range from 36 m to 8,586 

m. The map contains a total of 1,792 esker ridges. There are no eskers mapped on Shetland, 

Orkney or the Outer Hebrides and only a few in Wales. Eskers mainly occur at low elevations; 

mean elevation of the mid point of each esker fragment is 165 m, the range of elevations at 

which eskers are found is 2 m to 840 m. Eskers generally occur in valley bottoms although there 

are examples of eskers on higher slopes, such as in the Southern Uplands.  Eskers running 

broadly N-S along the Severn Valley stand out on the map since they are beyond the accepted 

drift limit for the Late Devensian ice sheet (chapter 2). These eskers are also contained within 

the BRITICE database.  

 
Figure 5.9 BRITICE esker layer (a) compared with results of new countrywide esker mapping (b). Circles mark 
eskers that are contained within BRITICE layer but were not observable on the DEM and so are not included in new 
mapping. British National Grid coordinates, interval between tick marks 200 km.  
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In general the new mapping reinforces the existing information on the distribution of eskers in 

Britain (figure 5.9). There are a number of eskers that are contained within the BRITICE 

database that were not distinguishable on the DEM or satellite imagery used for mapping in this 

study (figure 5.9). It may be the case that these eskers are below the resolution of the imagery. It 

is also possible, due to the value of sand and gravel as a resource, that parts of or whole eskers 

may have been removed by quarrying and are therefore no longer present. There are 862 eskers 

contained within the speculative layer (figure 5.7b). Many eskers were rejected in the process of 

discussions with experienced mappers as being reminiscent in form to dissected sheets of 

glaciofluvial outwash. Following this, the cross profiles of eskers were checked to ensure a 

characteristic sharp inverted V shape and eskers orientated with valley long profiles and close to 

present day river courses were treated with caution and placed in the speculative layer. For these 

reasons, it is thought that the mapping under-represents the true number of eskers and the map is 

estimated to be 70% complete. Further mapping using aerial photography and field checking 

would remedy this.  

5.3.2 Meltwater channels 

The map contains a total of 14896 channel fragments and extends the coverage of meltwater 

channels across the country, removing the detailed patch problem inherent in the BRITICE 

dataset and discussed in chapter 2 and Clark et al. (2004b) (figure 5.10). Very few channels 

were identified in western and northern Scotland, the Outer and Inner Hebrides, Orkney, 

Shetland, and the Isle of Man. Meltwater channels therefore appear to be more common on the 

eastern side of the country, although this may reflect the difficulty in identifying meltwater 

channels in highly structured bedrock.  

 

The meltwater channel layer is considered to be 60% complete. Focus was on obtaining a 

representative map of the overall distribution of channels. Mapping was conducted at the 

reconnaissance level rather than attempt to map every individual channel. Small channels in 

particular are likely to have been missed. No differentiation is made between small and large 

channels on the map. A major problem for identification of meltwater channels was the re-use 

of meltwater channels by the present day fluvial drainage network. To avoid the 

misappropriation of fluvial channels that are not reusing meltwater channel courses into the 

map, where the morphometry of a channel led to an equivocal interpretation and the OS 

topographic map indicated the presence of a stream or river, channels were treated with caution 

and excluded. Caution was also observed where dry channels were observed on calcareous 

bedrock, in case the surface terrain reflects not meltwater erosion but underground channel 

systems. In both cases the channels remain in the speculative layer (figure 5.7c) for later field 

and aerial photo checking. There are a total of 10,819 meltwater channel fragments within the 

speculative layer.  
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Figure 5.10 BRITICE meltwater channel layers (undefined = blue and lateral = light blue) (a) and results of new  
countrywide mapping of meltwater channels (b). Coverage of meltwater channel map now extends across the 
country. New mapping has also resolved the patchy nature of the BRITICE compilation, e.g. Vale of Eden (c and d). 
British National Grid coordinates, interval between tick marks 200 km. 
 

Channels were subsequently classified into subglacial, marginal, proglacial, and submarginal 

categories before use in the glacial inversion model. Classification is not shown on Map 3. This 

process is described and the results presented in chapter 6.  

5.3.3 Moraines 

There are a few large arcuate moraines marking the limit of ice in the Vale of York and Welsh-

English borders. However, the majority of mapped moraines are restricted to valley settings or 

occur as large ‘spreads’ of hummocky glacial material, e.g. in the Tees lowlands. The ratio of 

features in the moraine speculative layer to that in the moraine layer is smaller than any other 

landform type (823:1,417) (figure 5.7d). Some of the moraines contained within BRITICE are 

not recognisable on the NEXTMap data (figure 5.11). There are thus more moraines contained 

in the BRITICE and BRITICE+ databases than in the new mapping. Missing from the new map 

in particular are small valley moraines within upland regions, e.g. Dales and Lake District and 

Southern Uplands. Moraine mapping is therefore thought to be only 60% complete.  A total of 

1,417 moraines and moraine ridges are contained on the map.  No distinction is made here on 

the type of the moraine. The moraine layer requires field checking to determine the type of 

moraine that has been mapped and to reduce the size of the speculative layer.  
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Figure 5.11 BRITICE moraine layer (a) and results of new countrywide mapping of moraines (b). Moraines in  
southern Scotland and smaller moraines not observable on the DEM are marked. British National Grid coordinates, 
interval between tick marks 200 km. 

5.4 Streamlined bedrock and landscape grain 

Streamlined bedrock and landscape grain layers are not shown on the accompanying maps. 

Instead, the distribution of this mapping is shown in figure 5.12. Glacially streamlined bedrock 

is highly related to any underlying geological structure and is likely to have been formed over 

several glacial cycles and therefore may not be exclusively a function of the flow configuration 

of the last ice sheet, but rather a cumulative record of flow patterns. Streamlined bedrock is 

therefore regarded as a ‘second order’ indicator of ice flow patterns, but remains useful as it can 

extend flow information into areas where glacial deposits are thin, sparse, or non existent. 

Individual landforms were not mapped; instead a representative line was drawn in the direction 

of streamlining. Caution was exercised in highly structured bedrock terrains to avoid simply 

mapping geological structure, by consultation with BGS tectonic maps. The mapping is 

therefore below the reconnaissance level and is likely to under-represent the true occurrence of 

bedrock streamlining. The distribution of streamlined bedrock is opposite to the drumlin pattern 

as it reflects the location of exposed bedrock, generally in upland locations, thus filling ‘holes’ 

in the drumlin map.  

 

The landscape grain layer was used to record areas of streamlined sediment that could not be 

resolved to the level of individual landforms, i.e. those instances where a streamlined element to 

the landscape could be recognised but the size of the component landforms (presumably 

drumlins or flutes) are below the resolution of the data. It would be interesting to obtain higher 
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resolution data for these areas or make field visits to investigate the reality of the landforms. In a 

similar manner to streamlined bedrock this layer was treated as a second order indicator of flow 

pattern information in subsequent analysis.  

 
Figure 5.12 Map of streamlined bedrock (pink) and landscape grain (grey) distribution in Britain. Landscape grain 
follows direction of streamlining given by landforms below the resolution of the data. British National Grid 
coordinates, interval between tick marks 200 km. 
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5.5 Summary 

The enclosed maps (maps 2 and 3) record the results of the first consistent countrywide 

mapping of glacial geomorphology of Britain. The maps are considered to reflect the true 

distribution and pattern of glacial landforms. Over 60,000 features are contained within the 

maps. The subglacial bedform map is estimated to be 90 % complete and therefore close to an 

accurate representation of the population of subglacial bedforms for Britain. Field work and 

aerial photo mapping is likely to extend the number and distribution of meltwater channels, 

eskers and moraines, as well as being necessary to refine the mapping of these landforms. In 

particular, moraines need to be field checked in order to define the context of deposition. The 

maps provide the first consistent basis for an inversion of the glacial landscape that will be 

discussed in the following chapters. It is anticipated that these maps will be useful beyond the 

glacial inversion model described in this thesis by providing a framework for more detailed 

local scale field mapping and sedimentological observations and to identify fruitful locations for 

future offshore investigations. The maps build upon previous work conducted primarily by field 

investigations over the century of interest in the last British Ice Sheet and contained within the 

Glacial Map of Britain. The maps provide a coherent basis for interpreting spatial patterns in the 

landform record, and enable point information, such as sedimentological observations to be set 

in a broader context.    

 



 

Chapter 6  

Flowset analysis (flowset-ology) 
 

6.1 Introduction 

Now we have a consistent map of glacial geomorphology (chapter 5; Maps 2 and 3) we can 

attempt an ice sheet scale reconstruction. The geomorphological record is both complex and 

fragmentary. Thus, the first stage of the inversion approach to ice sheet reconstruction seeks to 

reduce this multifarious record into a manageable volume of information by grouping landforms 

into summary assemblages. This is a process of rationalisation that presumes that landforms 

with similar characteristics were created under similar conditions. The theoretical basis for this 

process was outlined in chapter 3. This chapter will detail the methodological procedure and 

present the resulting landform summaries. These are the building blocks for the ice sheet 

reconstruction presented in chapters 7-10. The process of deriving cartographic summaries from 

the glacial maps will be described for each landform type in turn. For clarity in this chapter, I 

have imposed a logical stepwise process; in reality it is iterative with changes at one stage 

necessitating return to earlier stages to reject or accept alternative scenarios of flow pattern 

groupings or to revisit flowset delimitation. 

 

 
 

Figure 6.1 A flowset is a cartographic summary of a distinct phase of ice flow: a) Flow patterns are identified 
from the glacial map (drumlins, MSGL, crag and tails, etc) and grouped into landscape level flowsets (swarms/fans); 
b) Flowsets are represented cartographically by summary lines in the direction of ice flow (lineation continuity line) 
are bounded by a box which delimits the spatial extent of the flow traces comprising the flowset. Where flowsets 
intersect the relative age of flowsets can be determined on the basis of cross-cutting flow traces. Reproduced from 
Kleman et al. (2006).  
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6.2 Lineation flowsets 

A flowset defines a coherent group of lineations representing a discrete phase of ice flow (figure 

6.1). Drumlins, crag and tails, and mega-scale glacial lineations are considered together as all 

provide information on flow pattern directions and orientations. Flowsets are identified by 

inspection of the spatial arrangement of these landforms shown on the glacial map (Map 2) with 

consideration of morphometry, i.e. length, elongation ratio (length/width), parallel conformity, 

landform spacing, and orientation. Flowset delineation is a problem of pattern recognition. 

Identification proceeds in a series of steps (figure 6.2): 

1. Reduce lineation mapping to lines summarising ice flow directions (flow lines). Flow lines 

connect lineations of the same orientation and instances of cross cutting are investigated.  

2. Group flow lines into plausible flow patterns. Conceptual models of potential flow pattern 

topologies are used as an aid (figure 3.7). Considerations include the plausible spatial extent 

of flow patterns, the amount of discordance that can be accommodated within the same 

flow pattern, the justification of interpolation over gaps in the landform record to connect 

flow patterns, and the degree of curvature that is deemed glaciologically plausible. Various 

grouping arrangements are explored and recorded as different possible scenarios. 

3. Conduct a morphometry check on flow pattern groups. Groups should contain drumlins of a 

similar length, elongation ratio, etc.  

4. Conduct a direction check on flow pattern groups. Examine whether the composite 

lineations are orientated in the same direction.   

5. Produce map of flowsets from preferred arrangement of flow pattern groups. Steps 3 and 4 

used to make decisions between alternative scenarios.  

 

Steps 1 and 2 were initially conducted on paper. To facilitate visual inspection of the lineation 

record the drumlin, crag and tail and mega-scale glacial lineation mapping was printed out at 

two scales of 1:77,389 and 1:600,000 onto ISO size A0 sheets (figure 6.3). This facilitated a 

wide area view in order to examine spatial patterns. Each area was printed two or three times at 

each scale depending on complexity. This enabled several iterations of the same area to try out 

different organisations of flow lines. At the initial stages, no reference was made to topography 

to aid flow pattern groupings. Later topography was used to direct choice of alternative 

scenarios. Flow patterns were then digitised as GIS layers within the computer programme 

ArcGIS for steps 3 and 4 and to combine flow patterns across areas.  

 
Figure 6.2 Over page. Flowsets are identified from the glacial lineation record through examination of spatial 
distribution and patterns which can be summarised in a series of stages: a) Glacial Map of drumlins (outlines) and 
crag and tails (arrows); b) Drumlins are reduced to flow patterns; c) Flow patterns considered without glacial map 
underneath. In this case there are two main discordant ice flow directions recorded – due NNW and due E; d) 
Morphometry characteristics (such as length) are used to aid grouping of flow patterns; e) parallel conformity of 
drumlins (the degree to which neighbouring drumlins are of a similar orientation) highlights areas of discordance 
between flow patterns; and f) flow patterns are organised into two discrete flow patterns. In this example stages d and 
e are not necessary as the drumlins can be clearly differentiated into two populations at stage a. The stages are 
therefore shown for illustration purposes only. 
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Figure 6.3 To investigate flow patterns recorded in the glacial map, subglacial bedform mapping was printed 
onto ISO size A0 sheets. Initially patterns were examined at a scale of c. 1:80,000 (left) and then at a scale of 
1:160,000 (right). It was necessary to print out at this scale to consider individual drumlins and appreciate the wide 
area view beyond the constraints of a typical 19” computer screen.  
 

Flow patterns were examined using the maps alone. Reference to the relief-shaded images of the 

glaciated landscape was only made in the final stages of flowset identification in order to revisit 

problematic areas. Examination of drumlin morphometry was done on a purely visual basis. 

Lengths and widths of drumlins were calculated using the area and perimeter statistics generated 

automatically in the GIS in order to derive an estimate of the elongation ratio of each drumlin. 

The methodology used is presented in Clark et al. (in press).  In order to quantify parallel 

conformity it was necessary to convert drumlin polygons into lines, so as to derive a value for 

the orientation of each drumlin. A GIS extension was used to identify the longest straight line 

distance across each drumlin polygon (Jenness, 2007).  The tool also produces a shapefile of the 

lines and a value for the azimuth of the line. The longest line is an approximation of the 

crestline of each drumlin. The crestline orientation of 50 randomly selected drumlins was 

measured by hand and compared to the calculated azimuth values. This produced an r2 value of 

0.996 and so the ‘longest-line’ approximation is accepted as appropriate. The orientation values 

were treated as axial data (0-180º) because they had been calculated automatically so there is no 

guarantee that the direction of orientation is correct. Parallel conformity was examined by 

calculating standard deviation of orientations of all drumlins within a 5 km grid square, using a 

standard formula for calculating the standard deviation of vector data (Mardia and Jupp, 2000).  

This gives a value between 0 and 1, with higher values representing similarity between drumlin 
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orientations and hence high levels of parallel conformity. If grid squares contained fewer than 

three drumlins the standard deviation was not measured. 

 

The locations of superimposed drumlins and other subglacial bedforms were recorded in a 

shapefile as two lines representing flow pattern directions. Figure 5.6 in the preceding chapter 

shows the location of cross cutting lineations. This was used to aid flowset differentiation and 

later in flowset classification (section 6.2.2).  

 

Figure 6.4 shows the composite landforms and cartographic summary of fs6 in the Moray Firth. 

This flowset was relatively straightforward to identify because it is not overprinted and exhibits 

a ‘classic’ flow pattern topology of converging ice flow. Lineations are parallel and smoothly 

change in size along the length of the interpreted flow line. In contrast, recurrent or 

multigenerational ice flow with only minor differences in flow direction poses a particular 

identification problem. It is very difficult to tease out distinct events.  In the Vale of Eden there 

are several generations of very similar flow directions, but different drumlin populations are 

indicated by mixture of morphometries and superimposed landforms (figure 6.5). Topography 

appears to have a strong effect on ice flow patterns of the last British Ice Sheet (figures 6.6 and 

6.7).  

 

The interpreted flowsets are presented in table 6.1 and Map 4 (figure 6.8). The flowsets are 

numbered and coloured arbitrarily. A reduced version of the map is shown in figure 6.8. One 

hundred flowsets were identified. It is not possible to describe in detail the delineation of each 

flowset in turn. Instead, the characteristics of each flowset and the security of identification and 

classification (section 6.2.2) are listed in table 6.1. Most problematic areas for flowset 

identification are where there appear to be several recurrent generations of ice flow in broadly 

similar directions e.g. central valley of Scotland.  In the early stages of flowset identification the 

tendency was to separate subtle changes in flow patterns. Later as the flow patterns were 

considered at smaller scales flow patterns were combined and amalgamated. Flowset 

identification was reassessed and revised many times with the initial 145 flowsets rationalised to 

the final total of 100.  It is important to state that the final total of an even century is purely 

happenstance; this was not a target number.  

 

Flowset delineation is a subjective process.  Attempts have been made to automate the 

organisation of lineation patterns into flowsets (e.g. Smith, 2003). However, to date none of 

these has proved an adequate replacement for the human eye. The morphometry and direction 

checks serve to bolster flow pattern groupings although it is acknowledged that different 

observers may produce some differences in flowsets from the same data. Discussion with 

colleagues and other glacial geomorphologists experienced in the delineation of flowsets from 
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former ice sheet beds (‘flowset-ologists’) about flow pattern groupings was conducted in an 

attempt to minimise this. It is reassuring in this regard that the flowset map (Map 4) reproduces 

some of the same major ice flow patterns that have previously been suggested for the last 

British Ice Sheet (figure 2.11) and that in the majority of situations different observers produce 

similar flowsets.  

 
Figure 6.4 Example of interpreted flowset (b) and composite landforms (a). This is fs6 in the Moray Firth 
(green). The flow pattern converges into the mouth of the Firth. There are some minor orientation differences 
between drumlins and crag and tails within the flowset but overall the flowset shows high parallel conformity and is 
classified as an isochronous flowset (see section 6.2.2).  
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Figure 6.8 Map 4 enclosed with this thesis in the accompanying folio. Flowset colours are arbitrarily chosen 

to distinguish flowsets where they overlap. The inset map shows the flowsets coloured up by type.  
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6. 2.1 Flowset classification  

A key piece of information necessary to correctly interpret the glaciological implications of 

flowsets is the temporal component of generation. Flowsets can be formed either 

instantaneously or time-transgressively. Criteria for the differentiation of isochronous (ISO) and 

time-transgressive flowsets (TT) were listed in table 3.2. The ISO and TT categories should be 

considered as end members (Clark et al., 2000). The classification of flowsets as ISO or TT is 

allied to the identification of flowsets from flow patterns and the process may necessitate 

revisions in earlier flow pattern groupings and flowsets; for example, the rationalisation of two 

poorly defined flowsets with similar directions into a single time-transgressive flowset.   

6.2.1.1 Isochronous flowsets 

The simplest interpretation is that the composite lineations of a flowset were all formed at the 

same time, i.e. instantaneously, by the same flow event. Isochronous flowsets are typified by a 

‘rubber stamped’ imprint consisting of highly parallel lineations, abundant flow traces, an 

absence of aligned meltwater landforms and cross cutting lineations, and systematic change in 

elongation ratio along the length of the flow line (Clark, 1999). Isochronous flowsets are a 

snapshot of part of the ice flow pattern configuration at a single point in time. Two types of 

isochronous flowset are recognised in the British context: ice flow independent of topography 

and ice flow deflected by topography (figure 6.9). Of the 100 flowsets identified, 37 are 

classified as isochronous.  

 
Figure 6.9 Two types of isochronous flowset are identified in Britain. ‘Pure’ isochronous flowsets are 

independent of topography; other flowsets contained kinked flow lines which are deflected around topographic 
highs at a local scale. There are no cross-cuts and the kinks are not discordant with the rest of the flow pattern.  
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6.2.1.2 Time transgressive flowsets: TT retreat, TT flow shift, TT thinning 

Ideally, it would be possible to identify all flowsets as isochronous and therefore separate out all 

phases of ice flow. However the record is complex and fragmentary and so it is not always 

possible to do this. Changes in the ice flow configuration lead to remoulding of the subglacial 

landscape and result in ‘smudged’ imprints from several phases of ice flow. Where it is not 

possible to tease out individual ice flow events, the flowsets are described as time-transgressive 

(TT). Chapter 3 described three possible scenarios for cross-cutting or superimposed flow 

patterns (in addition to multiple glaciations). Theoretically all of these situations could lead to a 

smudged lineation imprint. The British context is distinct from Canada and Scandinavia, the 

former beds of the Laurentide and Fennoscandian Ice Sheets where the flowset approach was 

developed, because of the high variability in topography over short distances. The subglacial 

bedform map clearly reflects the distribution of topographic highs (Map 2, chapter 5). In some 

locations smudged flow patterns were observed that did not fit one of the three explanations 

above. When examined with topography a pattern started to emerge and that is consistent with 

what we would expect from ice sheets; topography of the bed will have a greater influence on 

ice flow when the ice is thin Therefore, we can imagine a fourth possible context for cross-

cutting flow patterns and by extension smudged imprints: ice sheet thinning (or thickening) 

(figure 6.10). This is not a novel concept and was called ‘deglacial flow’ by Dyke and Morris 

(1988). In order to explain the flow patterns that have been observed in Britain additional 

conceptual categories are used to classify flowsets. In Britain TT flowsets exemplify three of the 

four possible glaciodynamic contexts (figure 6.11). 

 
 
Figure 6.10 Glaciodynamic scenarios that could result in cross cutting flow patterns (after Clark 1997). An 

additional conceptual model was necessary in order to explain the flow patterns observed in Britain (ice sheet 
thinning). These conceptual models aid separation of discrete flow events from the glacial map. Where it is not 
possible to separate out flow events flowsets are recorded as time-transgressive, i.e. the combined result of two 
or more flow events. All of the above scenarios may be expressed as a smudged imprint.  
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Figure 6.11 Types of time-transgressive (TT) flowset observed in Britain. TT retreat flowsets are a result of 

the bedform generation behind a retreating margin leading to a smudged imprint. This type of TT flowset may 
also be associated with eskers and moraines. TT flow shift are due to smudging of the bedform signature due to 
continual bedform generation during reorganisation of the ice sheet flow patterns. TT thinning flowsets are due 
to the increasing influence of topography on flow patterns as the ice sheet surface declines during deglaciation.   

 

 TT RETREAT 

Clark (1999) and Clark et al. (2000) suggested that TT flowsets represent lineations formed 

incrementally behind a retreating ice margin under thin ice and with rapidly varying flow 

directions. This would produce a smudged signature typified by lobate or splaying flow 

patterns, close accord with topography, cross cutting lineations, low parallel conformity, and 

abrupt and unsystematic variations in lineation morphometry. Here this is termed a TT retreat 

flowset. Such flowsets are usually aligned with meltwater and moraine landforms. Flowset 

number fs29 is an example of a TT retreat flowset (figure 6.11). Of the 100 flowsets, 32 are 

classified as TT retreat. We might expect that this flowset type should be the most common as 

the retreat of the ice sheet will always be the most recent phase of ice flow. The existence of 

older ice flow patterns must therefore be due to either cold-based retreat or rapid retreat without 

remoulding of the subglacial landscape. 

 TT FLOW SHIFT 

Subtle changes in ice sheet geometry during continual bedform generation will lead to a 

smudged or smeared imprint that reflects two (or more) flow patterns. If the change in ice sheet 

geometry was separated by a phase of cold based ice or a temporary pause in bedform 

generation it might be possible to separate out these two flow events but often it is not possible 

to do this. It is for this reason that the new category of TT flow shift is used. Fs1 is an example 
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of this type of TT flowset (figure 6.11). Eight flowsets are classified as TT flow shift. This type 

of smudging was also recognised by DeAngelis and Kleman (2005).  

 TT THINNING/THICKENING 

This type of smudged imprint occurs when the surface of the ice sheet declines so that the 

topography of the bed can have a greater influence on local ice flow patterns. Generally the 

overall flow direction remains the same. Fs11 is an example of a TT thinning flowset (figure 

6.11). Of the 100 flowsets 14 are classified as TT thinning. Fs19 is classified as a TT thinning 

flowset because of the ‘tributaries’ that join the southern half of the flowset obliquely (figure 

6.12). 

 
Figure 6.12 Fs19 in the Firth of Forth has tributary flow patterns that join the main trunk of the flowset  

obliquely and are slightly discordant as they join the main trunk. This flowset is classified as TT thinning 
because of this slight discordancy but would otherwise be an isochronous flowset.  

 
Figure 6.13 shows the distribution of each type of flowset. This is also shown in the inset map 

on Map 4. Of the 100 flowsets, 9 could not be classified. This was typically because the low 
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number of drumlins contained within the flowset was not sufficient to examine the 

differentiation criteria.   

 
Figure 6.13 Map of flowsets classified by type. 

6.2.2 Ice streams 

Identification of the former tracks of palaeo-ice streams has been a major focus of research 

since the recognition of the strong control these anomalously fast flowing ‘rivers’ of ice have on 

the ice sheet mass balance/ablation of the Antarctic and Greenland ice sheets (Bennett, 2003). 

The location of former palaeo-ice streams will determine the major calving locations for 

icebergs and are therefore important in determining the effect of ice sheets on the ocean 
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circulation system. The palaeo-ice stream landsystem (Stokes and Clark, 1999; Clark and 

Stokes, 2003) was used to identify the palaeo-ice streams of the last British Ice Sheet (table 3.3).  

Mega-scale glacial lineations, one of the eight geomorphological criteria, are only present in the 

Tweed basin. Shorter but morphometrically similar drumlins occur in the Solway. Figure 2.19 

shows the locations of the ice streams that have been suggested for the last British Ice Sheet 

from the literature and table 2.1 lists these. Of the terrestrially based ice streams, only some are 

substantiated by the new mapping conducted by the author. The majority of ice streams lie 

offshore and therefore are unlikely to be represented in the terrestrial geomorphological record, 

unless we can identify possible tributaries or heads of ice streams without the main ice stream 

track.  Figure 6.14 shows an example of palaeo-ice stream track from the Laurentide Ice Sheet. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6.14 Landsat image of the Haldane 

palaeo-ice stream imprint. Top image shows 
ice stream extent defined by abrupt lateral 
margins (dashed black). The palaeo-ice stream 
track displays a characteristic broad onset 
zone converging to a narrow trunk. Arrow 
gives direction of ice flow. Bottom image is 
an enlargement of the boxed area to 
demonstrate the characteristic geomorphology 
used to identify palaeo-ice streams. Arrows 
indicate ice stream marginal moraine. 
Reproduced from Winsborrow et al. (2004).  

 
Fs10 in the Tweed valley exhibits similar convergent ice flow patterns, high parallel conformity, 

abrupt margins, and highly elongate lineations (figure 6.15). This flowset is therefore designated 

as ice stream status. It is possible that the ice stream extends offshore. The Tweed Ice Stream, 

which bends south around the Cheviots could be part of the suggested surging lobe of ice in the 

southern North Sea that impinges on the North coast of Norfolk. This is speculation and would 

require additional evidence, and the dimensions of the ice stream appear too small to be capable 

of extending such a distance. The Minch palaeo-ice stream suggested from the identification of 

elongate lineations in the Minch in seismic data and the presence of the Sula Sgeir fan (Stoker 

and Bradwell, 2005) is supported by the highly parallel and convergent flow patterns into the 

Minch exhibited by fs4. Bradwell et al. (2007) also suggest that the lineations and streamlined 

bedrock comprising this flowset are likely tributaries of the Minch Ice Stream. Golledge and 

Stoker (2006) suggested a two phase ice stream in Strathmore. I have interpreted a different 
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arrangement of flowsets in this area but also identify two stages of ice flow. Both flowsets (fs51 

and fs46) are characterised by highly parallel elongate lineations and converging ice flow. Fs46 

is constrained by topography whereas fs51 is not. Fs51 does not have abrupt margins. It is 

possible that the two flowsets represent two stages of ice stream geometry. Fs51 could also be 

part of the Witch Ground ice stream identified in the Fladen Ground of the North Sea (Graham 

et al., 2007). However, in the absence of further evidence to support this, fs51 is not classified 

as an ice stream flowset.  

 
Fs19 in the Firth of Forth exhibits high parallel conformity and convergent flow pattern 

topology and abrupt margins. It is postulated that this is a palaeo ice stream track. This is an 

additional ice stream location to those listed in table 2.1. The Moray Firth has also been 

suggested as the site of a major ice stream of the last BIS (Merritt et al., 1995); Fs6 exhibits 

highly elongate and long drumlins and has a convergent pattern into the mouth of the Firth 

(figure 6.4). The geomorphology therefore supports an ice stream in this location. An ice stream 

has been postulated in the North Channel to feed the Barra Fan system (table 2.1). Fs8 across 

the Mull of Kintyre and Islay is composed of highly parallel and long crag and tails and is in the 

correct location to be part of such an ice stream. Offshore investigation is necessary to confirm 

this.  

 

In Wales similar flowsets were identified to those reported by Jansson and Glasser (2004). 

However, it is the opinion of the author that there is not enough evidence to support the 

contention that these are ice streams. Similarly, fs11 and fs30 constrain highly parallel, elongate 

lineations in the Tyne Gap and Wensleydale respectively which have also been suggested to be 

the sites of palaeo ice streams. Yet fs11 in the Tyne Gap is not convergent and does not have 

abrupt margins. Fs30 in Wensleydale exhibits topographically focused ice flow but the 

lineations are relatively short (<1000 m). Arguably, using the broadest definition of the term ice 

stream, any case of topographically focussed ice flow could be described as such, e.g. 

topographic ice stream (Bennett, 2003). However, in this thesis I take a more conservative view 

of ice stream terminology, only classifying flowsets as ice streams when they fit the criteria of 

Stokes and Clark (1999). Ice stream status for these flowsets therefore not suggested.  

 

Figure 6.16 shows the flowsets that are thought to be palaeo-ice streams. A limitation of this 

project is that new geomorphological mapping is restricted to within the present-day coastline of 

Britain, whereas the ice sheet most likely extended to the continental shelf edge (Sejrup et al., 

2005). It is the opinion of the author that as high resolution seismic datasets become available 

for the ‘offshore’ portion of the ice sheet bed more palaeo-ice stream tracks will be discovered 

(Stoker and Bradwell, 2005; Graham et al., 2007) as has occurred for the continental margin of 

the Scandinavian ice sheet (Ottesen et al., 2005; Ottesen et al., 2008).  
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Figure 6.16 Flowsets of the last British Ice Sheet that have been categorised as ice streams.  
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6.3 Ribbed moraine flowsets 

Ribbed moraine flowsets were generated and cartographically produced in a similar manner to 

lineation flowsets. In Britain no instances of cross cutting ribbed moraine was observed which 

simplified the process. Ribbed moraine fields were summarised by lines in direction of inferred 

ice flow and the flowset drawn to encapsulate the spatial extent (figure 6.17). Fields in close 

proximity and with similar morphometric characteristics were grouped within the same flowset. 

Figure 6.18 shows the distribution of ribbed moraine flowsets numbering 13 in total. In some 

cases, although the orientation of ice flow could be determined the direction of ice flow was 

unclear, and these are marked with an asterisk in figure 6.19. All ribbed moraine flowsets are 

thought to be isochronous. In all cases of association with drumlins, ribbed moraine is 

superimposed by the drumlins. Ribbed moraine flowsets therefore always represent older ice 

flow directions.  

 
Figure 6.17 Process of generalisation of ribbed moraine flowsets: a) ribbed moraine mapping in yellow, 

topographic setting in dark-light grey (high to low ground); b) flow pattern inferred from ribbed moraine field, 
c) cartographic grouping of flow patterns into a single flowset; d) flowset representation of ribbed moraine field. 
This is flowset number rm7 (located in the Solway lowlands close to Carlisle).  
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Figure 6.18 Map of ribbed moraine flowsets. Asterisk marks flowsets whose direction is equivocal. However, 

these ribbed moraine fields are superimposed by drumlins and so the flow pattern direction is taken as the same 
as the direction of the overlying drumlins.  
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6.4 Streamlined bedrock summaries 

Streamlined bedrock is regarded as a second order level of ice flow information in the inversion 

model as it is likely to be a cumulative result of the action of the ice sheet over the entire glacial 

cycle. Streamlined bedrock may reflect consistent ice flow directions throughout the glaciation, 

but this cannot be confirmed as such features are resistant to remoulding unlike lineations 

composed of sediment such as drumlins. Streamlined bedrock grain was summarised as arrows 

in the direction of ice flow (figure 6.19). Figure 6.20 shows a map of the streamlined bedrock 

‘flowsets’. Table 6.1 records which lineation flowsets are supported and/or extended by 

streamlined bedrock distribution (figure 6.21). 

 
 
Figure 6.19 Streamlined bedrock grain mapping around Annandale and Nithsdale (a) is summarised as arrows in 

the inferred direction of ice flow (b).  
 

6.5 Esker generalisation (esker ‘flowsets’) 

Individual and whole systems of eskers are summarised by a single arrow in the inferred 

direction of ice flow (figure 6.22). As it is assumed that eskers are formed behind a retreating 

margin, topography is used as a guide to determine ice flow direction when the form of the 

esker system is ambiguous. At the margins of the ice sheet ice will be thin, therefore subglacial 

topography will have a strong influence on ice surface slope and hence flow direction. Figure 

6.23 shows the summary arrows or esker ‘flowsets’. An asterisk marks eskers where it was 

difficult to infer ice flow direction and reference to other landform elements was necessary. 

Some eskers are very short fragments of former subglacial conduits; these are left out. The 

eskers in OS tile SO (which are also included in BRITICE) are some distance beyond the 

consensus view of the limit of the ice sheet and were excluded from the landform summaries as 

the original reference indicates that their age is uncertain and they may not relate to the last ice 

sheet (Whitehead, 1947; Mitchell, 1962). All esker flowsets are regarded as time-transgressive 

phenomena. 
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Figure 6.20 Map of streamlined bedrock summary arrows.   
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Figure 6.21 Streamlined bedrock flowsets generally support flow patterns derived from lineation flowsets and  

in some cases extend flowsets spatially. Flowsets in colour. Streamlined bedrock summaries in black.  
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Figure 6.22 Individual and groups of eskers (a) are reduced to summary arrows in the direction of ice flow 

(b). This example is from the Vale of York.  
 

6.6 Moraine generalisation 

Moraines and groups of moraines are summarised as margin positions by a single line (figure 

6.24). Topography is used where appropriate to connect moraine fragments, for example to 

connect valley moraine fragments. No differentiation is made between types of moraines, as this 

would require additional sedimentological investigation. Therefore, all moraines are assumed to 

represent former margins or edges of the ice sheet, lateral or terminal. Very small moraines 

within valleys are excluded as they do not provide much information in terms of the ice sheet 

scale retreat pattern. It is already assumed that final retreat of ice will be by valley glaciation.  

 

The moraine summaries are presented in figure 6.25. As discussed in chapter five the BRITICE 

database contains moraines that are missing from the new mapping either because they lie 

offshore beyond the limit of mapping or are below the resolution of the DEM. Margins derived 

solely from BRITICE data are differentiated on the map. Some moraines are identifiable but I 

have interpreted them differently. For example, ‘moraines’ in the Moray Firth are reinterpreted 

as drumlins. Therefore, summary margin positions are not derived from these moraines. In 

general, derivation of margin positions from moraines was straightforward. However, problems 

were experienced deriving margins from spread-like moraines. 



  Chapter 6. Flowset analysis 

 

 141

 
Figure 6.23 Map of esker summary arrows or ‘flowsets’. Asterisk marks eskers where identification of flow  

direction was difficult.  
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Figure 6.24 Moraine mapping (a) is summarised as lines marking ice margin positions (b and c).  Topographic 

context is used to aid connection of moraine fragments. This example shows the York-Escrick moraine system.  
 

6.7 Meltwater channel generalisation 

6.7.1 Meltwater channel classification 

Before meltwater channels can be used in the inversion model it is necessary to determine the 

formative location of each channel; lateral and subglacial channels have specific genetic 

explanations and are thus considered differently (table 3.1). During mapping, channel types 

were not distinguished and so now it is necessary to do so. Greenwood et al. (2007) derived a 

series of diagnostic criteria for the identification of subglacial, lateral, proglacial and 

supraglacial/englacial channels from a review of the literature on meltwater channel 

morphometry (table 6.2). They used these criteria to develop a methodology for the visual 

classification of meltwater channels with reference to a DEM. This was used to classify the 

channels contained within the BRITICE meltwater layers. The classified channels were used to 

reconstruct the retreat pattern of the ice sheet. Classification was based on four primary and 

distinctive observations: setting with respect to topography (valley side or bottom), orientation 

relative to contours, form, and relationship to other channels. The focus was on distinguishing 

lateral and subglacial channels as these are the most useful in terms of palaeoglaciological 

information (figure 6.26) (Greenwood et al., 2007). For a full description of the methodological 

process of classification, the reader is referred to Greenwood et al. (2007).  The same 

methodology was undertaken to classify the newly mapped channels.  
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Figure 6.25 Moraine margins summarised from moraine mapping. Margins that are defined solely on the 

basis of moraines contained within the BRITICE database are shown in black. Margins from new mapping are 
shown in brown.  
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Figure 6.26 Contexts of meltwater channel generation. SG = subglacial, L-M = lateral (marginal) and L-SM = 
lateral (submarginal). Reproduced from Greenwood et al. (2007).  

 

Channels were visually inspected in combination with both the ‘raw’ NEXTMap DEM and 

relief-shaded visualisations. Use of the ‘raw’ DEM enabled an examination of the long profile 

to identify the subglacial channels. The DEM and channels were also viewed in 3-D in order to 

visualise the topographic setting. Two additional fields were added to the attribute table of the 

meltwater layer: type and confidence to record the channel classification and the security of the 

classification respectively. Channels were classed as subglacial, marginal, submarginal, 

proglacial or unknown. The level of confidence (definite, probable or possible) reflects the 

number of criteria exhibited by the channel and is a subjective measure of security of 

classification. Figure 6.27 is a map showing the meltwater channels of Map 3 classified by type. 

Of the 14,914 channel fragments contained in Map 3, 11,997 (80.4%) are subglacial, 1,839 

(12.3%) are marginal, 1,059 (7.1%) are submarginal, 19 (0.1%) are proglacial and there are no 

unknowns. In all cases, it was possible to ascertain a classification. Subglacial meltwater 

channels are found across the country. The largest networks of channels are constrained to wide 

valley bottoms and expansive flat areas, e.g. Vale of Eden and NE Buchan. Lateral channels are 

also spread across the country with the best examples in Scotland. The few proglacial channels 

identified are close to the drift limit in the Cheshire Plain. There are some differences in the 

classifications made in this study and the classifications determined by Greenwood et al (2007) 

(figure 6.28). This can be understood when it is considered that Greenwood et al. (2007) were 

using a lower resolution ‘raw’ DEM and did not consider relief shaded images of the landscape. 

Furthermore there are a number of channels within the BRITICE dataset that were not identified 

in the new mapping, e.g. in the Yorkshire Dales region.  
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Figure 6.27 Meltwater channel mapping from Map 3 classified by type. This figure is repeated at A3 size on 

the following pull out page  
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Table 6.2 Diagnostic criteria for classification of meltwater channels. Lateral channels are divided into two subtypes. 
Marginal = subaerial water flow along the ice margin. Submarginal = lateral position beneath the ice surface. 
Sources: 1Sissons (1961); 2Glasser and Sambrook Smith (1999) 3Sugden et al. (1991); 4Clapperton (1968); 5Sissons 
(1960); 6Kleman and Borgström (1996); 7Price (1960); 8Schytt (1956); 9Dyke (1993); 10Benn and Evans (1998). 
Reproduced from Greenwood et al. (2007). 
 

Lateral 
Subglacial 

Marginal Submarginal 
Proglacial 

Supraglacial/ 
englacial 

Undulating long profile1,2 Gentle gradient1 Steeper gradient1  Low gradient7 

Descent down slope may be 
oblique1,3 Parallel with contemporary contours4,7 

Descent down slope may form 
steep chutes1  Oblique downslope1 

Flows direct 
downslope7  

Forms series of channels parallel to each 
other1,8,9 

Absence of networks4 May form networks1 Complex systems – bifurcating 
and anastomosing3,4 

Parallel for long 
distance1 

Sudden changes in 
direction1 

Occasional 
bifurcation10  

High sinuosity4 Approximately straight4 Regular meander 
bends10 Sinuous7 

Abandoned loops4 

Cavity systems and potholes3 

Ungraded confluences3 
Perched on valley sides10 Crater chains10 

Meander forms 
crescentic valley 
on face of hill1 

May terminate in down slope chutes1,8 

Abrupt beginning and end1,2 

May terminate abruptly10   

Absence of alluvial fans1 

Associated with eskers6 
May be found in isolation from all other glacial 

features6,9   

Variety of size and form within 
the same connected system5  

Large dimensions 
– wide and deep10 

Approximately 
constant width7 

6.7.2 Meltwater channel summaries (meltwater ‘flowsets’) 

Groups of lateral and subglacial channels were generalised by arrows in the inferred direction of 

ice flow after Hättestrand and Clark (2006b) (figure 6.29). Topographic setting was used to 

orientate the arrow. Figure 6.30 shows the distribution of meltwater channel summary arrows or 

‘flowsets’. Flights of lateral meltwater channels are formed time-transgressively as the ice 

surface lowers during deglaciation. It is more difficult to ascertain the temporal formation of 

subglacial meltwater channels, especially when they form networks. It is possible on aerial 

photographs and by thorough field levelling to identify cross-cutting meltwater channels. 

However, this was not possible using the DEM alone and so instances of cross-cutting channels 

have not been examined in this study.   

 
Figure 6.29 Illustration of data reduction to summary arrows. Meltwater channels in Strathallan north of 
Dunblane classified by type (dark blue = subglacial, light blue = marginal, and green = submarginal) (a). Topographic 
context is used to summarise flights of lateral meltwater channels and subglacial networks in the direction of ice flow 
(b). Submarginal channels are not used. Channels classified with only a possible level of certainty are also excluded.  
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Figure 6.30 Distribution of summary meltwater arrows. Dark blue = subglacial, light blue = marginal.  
 



  Chapter 6. Flowset analysis 

 

 149

6.8 Relative chronology  

The final stage of the first abstraction of the glacial maps is to examine the relative chronology 

of events. Where flowsets overlap, the landform record is examined for evidence of cross 

cutting relationships.  The 140 locations of cross cutting drumlins are shown in figure 5.6. At 

each location the direction of the lower and upper lineation flow pattern orientation was 

recorded. Locations of ‘piggy-backing’ drumlins (smaller drumlins superimposed on larger 

drumlins in the same direction) were also recorded. This information was used to determine the 

relative age of intersecting flowsets. There is only one case where more than two drumlins cross 

cut each other. Examination of aerial photographs and the striation record may help to refine the 

relative age relationships but this was not conducted. The relative chronology of flowsets is 

shown on Map 4 and in figure 6.31. In 16 cases it was not possible to ascertain relative age and 

flowsets are therefore regarded as ‘floating’. There are an additional five cases of unclear 

superimposition relationships. These are both listed in table 6.1 and figure 6.32.  Drumlins are 

always superimposed on ribbed moraine and these flowsets are included in the relative age stack 

of flow pattern information in figure 6.32.   

 

It was less straightforward to identify the locations of cross cutting of other landforms. 

Subglacial meltwater channel networks in drumlin fields that dissect occasional drumlins could 

be contemporary or younger than the drumlin field. In the majority of cases eskers are 

superimposed by moraines and superimpose drumlins. There are two important contradictions 

to this on the north coast of Buchan, Scotland (OS NJ 954 245) and in the eastern Solway (OS 

558 753) where eskers appear to superimpose moraines. Moraines superimpose lateral 

meltwater channels at OS NJ 542 596 close to the North coast of Buchan.  

6.9 Summary 

This chapter documented the generalisation of the ‘building blocks’ that will be subsequently 

used in chapters 7-10 to reconstruct the last BIS. One hundred and thirteen subglacial bedform 

flowsets were identified from the bedform map (Map 2) and their relative chronology and 

temporal classification established. Flowsets were classified in terms of their internal 

synchronicity (Map 4a) and whether they recorded the tracks of palaeo-ice streams. Eskers, 

moraines and meltwater channels from Map 3 were also reduced to units of glaciological 

information represented by summary arrows in the inferred direction of ice flow.  

 

It is envisaged that the flow information summarised in this chapter will be useful for ice sheet 

modellers wishing to compare model outputs against flow pattern evidence. Numerical models 

should be able to reproduce the flow patterns delineated by the flowsets.  
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Figure 6.31 Relative chronology table of lineation and ribbed moraine flowsets. Horizontal lines separate 

flowsets that are known to be older of younger than each other. Vertical lines separate flowsets that could be 
contemporaneous. Flowsets can thus ‘slide’ up and down relative to laterally adjacent flowsets. Dotted lines 
indicate insecure flowset relative chronology. This table has been produced by examination of superimposed 
subglacial bedforms using the NEXTMap DEM.  



 

Chapter 7  
Reconstructing the flow geometry and retreat pattern of 
the last British Ice Sheet 

 

7.1 Introduction 

The geomorphological inversion approach adopted by this thesis was outlined in chapter 3. The 

following chapters (7-10) present the second level of interpretation in the geomorphological 

inversion, where the discrete units of glaciological information interpreted from the glacial 

landform record (flowsets and other cartographic summaries) are organised into a reconstruction 

of the ice sheet. Chapter 6 presented the ingredients or building blocks for the reconstruction on 

which the interpretations are based. The interpretations presented in this section (chapters 7-11) 

are therefore highly dependent on the generalisations of the geomorphological record presented 

in chapter 6. Critical aspects include the internal synchrony of each flowset (time-transgressive 

or isochronous) and the relative chronology of flowsets. This chapter documents the rules and 

assumptions used to inform interpretations, and describes the steps undertaken to get from the 

complex flowset information presented in chapter 6 to a reconstruction of the ice sheet flow 

dynamics and retreat pattern. Figure 7.1 is a repeat of the flow diagram originally shown in 

chapter 3 to show how this section fits in the overall scheme. 

7.2 The reconstruction process 

Two primary outputs of any reconstruction are the evolution of flow geometry over time and the 

retreat pattern. These are critical parameters which can be used to validate numerical models 

(e.g. Napieralski et al., 2006; Napieralski et al., 2007). The aim of the reconstruction is to 

capture the characteristics of the ice sheet as a whole and therefore differs in scope to more 

traditional reconstructions built up from the gradual accumulation of observations of the 

geomorphological record. The reconstruction process is more akin to numerical ice sheet 

modelling. Ice sheet modellers define a set of rules and assumptions (e.g. climate drivers and ice 

physics) as inputs from which they produce a reconstruction of ice sheet form and behaviour 

that may, or may not, fit the geological evidence. Here, we rely on mapping (chapter 5) and 

generalisations (chapter 6), augmented with field data from the published literature, to produce a 

reconstruction via a logical methodology. The interpretative rules and assumptions grounded in 

glaciological theory and observations of modern ice sheets are clearly stated (section 7.2.1). We 

do not set out to incorporate all the mapping, and every published source, but to produce the 

simplest model that best explains most of the evidence. As with a reconstruction produced by 

numerical modelling, the approach adopted here may conflict with some of the field evidence 

and therefore serves to highlight locations and topics for further research. 
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Figure 7.1  Flow diagram showing structure of PhD project repeated from chapter 3. Aim is at the top and 
objectives at the bottom. The following section comprises the shaded elements. 
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7.2.1 Interpretative rules and assumptions 

The genetic assumptions for the interpretation of the landform record are described in chapter 3. 

The following additional rules or assumptions inform the organisation of flowsets into scenarios 

of ice sheet geometry, margin summaries into a retreat pattern, and direct the choice of 

alternative scenarios where they arise. 

1. Ice sheet geometry will be similar to modern ice sheets, i.e. tend towards a broadly 

symmetrical plan form, with ice flow radiating out from divides. 

2. Ice sheet geometry will comprise at least one principle ice divide with the possibility of 

secondary and tertiary divides branching off from the main divide. Saddles will occur 

between connected divides. 

3. When ice thickness is great, the location of divides alone will control the flow pattern 

configuration; as the ice thins the topography of the bed will have an increasing influence on 

flow pattern geometry eventually dominating over orientation changes resulting from divide 

migration (cf. Kleman et al., 1999). 

4. Ice streams are likely to have existed, and been integral to the ice sheet geometry (Bennett, 

2003).  They are presumed capable of driving rapid configuration changes. They may also 

briefly cause asymmetric ice sheet form.  

5. Moraines represent still stands of the ice margin during retreat. The common (fashionable) 

interpretation of a moraine as representing a readvance of the ice margin is not adopted. 

This requires further information from the sedimentological and stratigraphical record. 

Large sharp crested arcuate moraines, which could be interpreted as readvance features on 

the basis of morphology alone, are virtually absent from the British terrestrial record, 

therefore this principle, although conservative, is valid for most of the archive in the absence 

of sedimentological information.   

6. Ice is not constrained to the present day terrestrial landmass. Ice may extend out to the 

continental shelf in the North and West, to the Scilly Isles in the southwest, and the southern 

drift limit in England. 

7. The Loch Lomond Stadial ice limit is analogous to the margins of the final stages of retreat 

of the ice mass. 

8. Where complexity arises, the simplest solution is chosen.  

7.2.2 Interpretative steps 

Reconstruction is necessarily an iterative process with many overlaps and revisions between 

stages. For example, reconstruction of the sequence of events in one region will have 

implications for the choice of scenario in adjacent regions, and vice versa; changes made in one 

region may mean that earlier decisions have to be reconsidered. The retreat pattern is dependent, 

in part, on the organisation of the ice sheet geometry immediately prior to the start of 

deglaciation and changes in ice sheet configuration during the deglacial will control how retreat 
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occurs. Thus reconstruction of retreat cannot be entirely severed from the reconstruction of 

earlier flow evolution. For clarity, in this thesis the reconstruction task is divided into a series of 

steps presented in the following chapters.  

 

 One hundred flowsets have been identified for the last British Ice Sheet (chapter 6). The 

organisation of flowsets into contemporaneous groupings that reflect plausible ice sheet 

geometries is analogous to attempting to complete a jigsaw puzzle where half the pieces are 

missing. The preserved record is fragmentary and incomplete by nature and so a degree of 

interpolation is necessary to group flowsets into plausible overall geometries. Potential flowset 

groupings are assessed and rejected or accepted on the basis of spatial conformability and the 

relative chronological rules (figure 7.2).  Where it is not possible to determine the relative age 

relationships between flowsets a greater number of possible permutations can occur.  The 

complexity of the data in chapter 6 demands a regional approach to reduce the number of 

permutations. The teasing out of the flowsets that are part of the deglacial signature of the ice 

sheet can also aid the assessment of possible flowset groupings. Chapter 8 presents 

reconstructed regional flow configurations and examines the phasing of ice streams.  

 

 

 

In trying to understanding the complex flowset patterns a focus on the most recent dynamics, 

i.e. the deglacial signature, appears sensible. Moraines, lateral meltwater channels, eskers, TT 

retreat flowsets, and glacial lake locations are used to reconstruct the retreat pattern of the ice 

sheet. The retreat pattern reconstructed from these lines of evidence is presented in chapter 9.  

 

Constraining the timing of the retreat pattern in absolute time is essential to understand the 

relationship between the last British Ice Sheet and climate of the last glacial cycle. This required 

Figure 7.2 Schematic diagram of flowset groups. In the absence of evidence to the contrary, spatially separate
flowsets 1-3 can be organised into a plausible ice sheet configuration.  
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compilation of all of the absolute dates that relate to the ice sheet. As no database of dates and 

dated sites existed at the time of starting this project it was necessary to compile a database and 

GIS layer of dates in order to assess the timing of the retreat pattern. The details of the 

compilation and the incorporation of the dates with the reconstructed retreat pattern of chapter 9 

are described in chapter 10. 

7.3 Summary 

The following chapters describe and present the results of the second level of interpretation of 

the glacial inversion scheme. The reconstruction process is analogous to that employed by 

numerical models, whereby a series of rules and assumptions are used to interpret the input data 

(flowsets and mapping generalisations) in terms of glaciological theory to produce an ice sheet 

reconstruction. The reconstruction produced does not therefore attempt to explain all of the 

evidence but be the simplest glaciologically plausible explanation of most of it. The 

reconstruction is divided into a series of steps: 

1. Identification of possible regional flow evolution geometries from the isochronous, TT flow 

shift and TT thinning flowsets and their relative chronology (chapter 8). 

2. Reconstruction of the pattern of retreat from moraines, eskers, meltwater channels, TT 

retreat flowsets, and glacial lake locations (chapter 9). 

3. Determine the timing of the pattern of retreat using published absolute dates in order to 

connect up contemporaneous ice sheet margins (chapter 10). 

 



 

Chapter 8  

Regional flow dynamics
 

8.1 Introduction 

The challenge is to assemble flowsets into coherent flow geometry histories of the ice sheet (e.g. 

figure 7.1). Given the number and complexity of the flowsets discovered for the last British Ice 

Sheet (chapter 6; Map 4) this is best achieved by examining each region in turn. Regional case 

studies that reveal key aspects of the ice sheet geometry are presented. Ice streams are a 

fundamental part of ice sheet geometry and so the implications of the palaeo-ice stream flowsets 

indentified in chapter 6 are also considered.  

8.2 Flow pattern evolution 

For the regional subsets the implications of each flowset are considered and flowsets are 

grouped into plausible ice sheet geometries (e.g. figure 7.1). Primary information on the former 

flow geometry of the ice sheet is provided by subglacial lineation flowsets and ribbed moraine 

flowsets. The relative chronology and the temporal component of flowset generation 

(isochronous or time-transgressive) are further rules which must be satisfied in any 

reconstruction of ice sheet flow geometry. Streamlined bedrock and erratic distribution are 

regarded as second order indicators of ice flow patterns as they are likely to be the result of 

multiple ice flow events, and possibly the cumulative effect of several cycles of ice sheet growth 

and retreat. Erratic transport paths contained within the BRITICE database are used as further 

support for reconstructed ice sheet geometries. At the end of each regional assessment the 

interpretations are pulled together into regional models of flow pattern evolution. The 

implications for ice sheet dynamics are considered at this stage.  Interpretations are described in 

this order to illustrate the procedure that took us from flowset map to ice sheet geometry 

evolution. Reference will be made extensively to Map 4 (enclosed as a pull out map for this 

purpose) and the maps of ribbed moraine flowsets (figure 6.18), streamlined bedrock (figure 

6.20) and erratic transport paths (figure 2.16). Reference will also be made to the relative 

chronology stack. This is reproduced with the flowsets coloured up in terms of classification in 

figure 8.1.  

 

The flowsets can be neatly divided into three regions (figure 8.2). The central region comprising 

southern Scotland and England contains over 50% of the flowsets. Due to the nature of 

overlapping of flowsets it is difficult to crisply subdivide this region. However, subdivision was 

necessary in order to reduce complexity and this region is considered in four sub-regions with 

overlapping boundaries (figure 8.2). 
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Figure 8.1 Relative chronology table with flowset numbers coloured in terms of classification: Isochronous 
= black; TT thinning = dark green; TT flow shift = blue; TT retreat = light green; and unknown = orange. As 
expected, TT retreat flowsets are the stratigraphically youngest flowsets.  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 8.2 Boundaries of regions 
used to investigate flowset groupings. The 
spatial distribution of flowsets can be 
divided neatly into three large regions. 
Regions 1 and 3 are considered as a whole. 
Region 2 contains a high density of flowsets 
(over 50% of all identified) and is therefore 
more difficult to consider as a whole. 
Therefore region 2 is divided into 4 
overlapping sub-regions (i-iv). 
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8.2.1 Region 1: Northern Scotland, Shetland and Orkney 

This region incorporates mainland Scotland north of the Grampian Highlands, the Outer 

Hebrides, Orkney and Shetland (figure 8.3).  

 

There are three distinct flowsets on Shetland; fs59, 60 and 61. Streamlined bedrock can be 

invoked to extend fs59 to cover the length of the islands. It is suggested that fs59 is coeval with 

fs1 over northern Scotland on the basis of geometric relationship and similar flow direction. 

Streamlined bedrock orientated SE-NW on Fair Isle support this (Peach and Horne, 1880). As 

the flowsets do not overlap there is no relative age information for the Shetland flowsets. Fs 60 

and 61 indicate flow patterns that were deflected and focused by topography. Therefore, it is 

argued that these flowsets represent a time after the main ice flow pattern (fs1 and fs59).   

 

There is strong evidence for broadly SE-NW orientated ice flow on Orkney and Caithness (fs1). 

Fs1 is a regionally significant ice flow event indicating that the ice was thick and independent of 

topography. Striae on Orkney are consistent with fs1 (Mykura, 1976). The flow pattern 

necessitates an ice divide running broadly WSW-ENE at least as far south as the Moray Firth. 

The presence of shelly till on Orkney and Caithness (figure 8.3) indicates that ice passed over 

marine sediments before reaching the region supporting a starting point of the ice flow south of 

the Moray Firth. The distribution of Scarlet conglomerate from an exposure close to Wick over 

Caithness is also consistent with fs1. In northern Scotland there is a degree of smudging within 

fs1 indicating a shift in ice flow from broadly S-N to SE-NW.  

 

Fs2 is superimposed by fs1, and therefore represents an earlier phase of ice flow towards the 

NE. Rm13 can be grouped with fs2. Granite and unspecified erratics corroborate this north-

easterly ice flow and can be used to extend the flowset over Caithness (figure 8.3). The 

remaining two flowsets on Orkney are more difficult to interpret and both are based on only a 

handful of drumlins. Cross-cutting relationships suggest the flowsets are younger than fs1. It is 

suggested that fs63 was generated during retreat in a southerly direction over Shapinsay. Fs62 

indicates an ice centre to the west of Orkney which is difficult to resolve with any of the other 

flowsets in this region. The relative chronology of this flowset is not secure from the DEM data. 

Aerial photos would be useful to clarify this. In Caithness, fs26 is topographically constrained 

and the youngest flow pattern. It is therefore plausible to consider this flow pattern as part of a 

retreat stage of the ice sheet, when ice had started to retreat from the Moray Firth. 

 

Fs4, adjacent to the Minch, and likely part of the Minch palaeo-ice stream (figure 6.19) (Stoker 

and Bradwell, 2005) is placed in the same geometry stage as fs1. Deflection of the proposed ice 

stream around the tip of Lewis is consistent with the dominant ice flow pattern exhibited by fs1.  
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Figure 8.3 Flow pattern ingredients in northern Scotland: a) Lineation flowsets and streamlined bedro ck 
summary arrows. Lineation flowsets are coloured in terms of temporal component of generation (isochronous or 
time-transgressive); b) Erratic transport paths and source areas from BRITICE database. Locations of shelly till 
deposits from Charlesworth (1957) and Sissons (1976).  
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An ice dome must have been present on the Outer Hebrides at this time in order to prevent 

incursion of ‘mainland’ Scottish ice over the islands. This is consistent with the lack of 

‘mainland’ Scottish erratics on the islands which has been previously used to argue that the 

islands supported an independent ice dome throughout the last glacial (Ballantyne, 1998). There 

is no new evidence in this thesis to argue that the islands were overwhelmed by Scottish ice. Fs5 

and fs3 both suggest that there was an ice divide running N-S along the length of the Northern 

Highlands. However there is not much space for an ice divide between the heads of each 

flowset. Therefore it is likely that the flowsets were inscribed at different times and record a 

slight divide shift. The erratic transport paths can be used to suggest that this ice divide shifted 

approximately 30 km between two extreme positions (figure 8.4). The shaded region 

encapsulates the area that has experienced both easterly and westerly ice flow (figure 8.4a). Fs3 

relates to the first position of the divide (marked in red), fs5 to the second (marked in blue) 

(figure 8.4b). It is postulated that rm1 is coeval with or immediately precedes fs3.  

 

In the Moray Firth region fs34 indicates N-S ice flow and is tentatively coupled with fs1 (figure 

8.3). This is followed by fs3 documenting ice flow to the east from a N-S orientated ice divide. 

Erratic transport of Inchbae augen–gneiss can be used to extend fs3 to the south over Easter 

Ross and the Black Isle (figure 8.5a). Final ice flow, for which there is lineation evidence, is 

recorded by fs6 which details topographically focused ice flow into the mouth of the Firth. 

Streamlined bedrock extends the head of this flowset inland (figure 8.3). East of the Moray 

Firth, flowsets are more complex (figure 8.3). Fs33 is the oldest flowset in this area and is 

correlated with fs2 in northern Scotland on the basis of flow orientation. This is consistent in 

terms of the relative chronology with connecting fs34 and fs1. On the basis of geometric 

arrangement fs72 is connected with fs3 (figure 8.5a). It is suggested that these flowsets 

represent a phase of ice flow from the Highlands that skirts the north Buchan coast. Similarly, it 

is tentatively suggested that fs100 is coeval with fs6 (figure 8.5b). These connections are 

supported by the southerly transport of Netherly diorite, Bin Hill gabbro, Blairspinnoch 

amphibolite and Barra Hill diorite over Buchan (figure 8.5). The SSE ice flow exhibited by fs35 

remains as an unexplained residual flowset that cannot be incorporated into any geometry. 

Similarly, the SW transport of Peterhead granite inland from the eastern coast of Buchan is 

unexplained (figure 8.5b).  
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Figure 8.4 Erratics can be used to suggest relative timing of flowsets and therefore movement of an ice 
divide running broadly N-S over Northern Scotland. Fs3 and 5 both suggest an ice divide running broadly north-south 
along the ridge of the Northwest Highlands (figure 8.2a). However, the heads of these flowsets are too close to have 
been the result of the same ice divide position. There is no relative chronologic information between the flowsets but 
it is possible to use to erratic evidence to separate and group the flowsets. (a) Inchbae Augen Gneiss (light blue) has 
been transported both east and west. Likewise, an unspecified erratic (black) from an outcrop (thick black) running 
the length of the Moine Schist Fault has been transported both east and west at the northernmost tip. Other erratics in 
this area appear to have been transported either to the west (Torridonian Sandstone – orange) or the east (granite – 
light green). The spatial arrangement of erratic source areas enables two lines to be drawn which demarcate the areas 
that have experienced ice flow only towards the east (blue), only towards the west (red), and both west and east 
(shaded area). It is suggested that the shaded area represents the maximum horizontal distance (30 km) between two 
positions of the ice divide (line 1 and line 2). (b) Fs3 and fs4 are compatible with the first position of the divide (red). 
Fs5 and 6 are compatible with the second (blue). This relative timing is also consistent with the relative chronology 
between fs6 and 3 and fs4 and 5. The remaining flowsets in the area are in grey. Erratic colour scheme is the same as 
in figure 8.3.  
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Figure 8.5 Erratics can be used to extend and support geometric grouping of flowsets in Buchan, NE 
Scotland. Fs33 and 34 recording ice flow towards the north and north-northeast respectively are supported by the 
distribution of erratics from the Cairngorms (turquoise), Bin Hill gabbro (purple), Netherly diorite (pink) and 
Blaispinnoch amphibolite (blue).   If the eastward transport of Inchbae augen gneiss (light blue) is taken to extend fs3 
to the south (dotted lines), geometrically fs3 can be connected to fs72 to form one east-west flow line that runs along 
the north coast. This is supported by eastward transport of granite and south easterly transport of Bin Hill gabbro and 
Netherly diorite erratics and dolerite (a).  Fs6 and fs100 can be connected and together can explain the distribution of 
shelly till on the northern coast (b). The south-westward transport of Peterhead granite cannot be explained by the 
lineation flowsets (marked by question mark).  
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The above geometric correlations along with relative chronological evidence are weaved into a 

time slice reconstruction of ice sheet evolution in northernmost Scotland (figure 8.6). From this 

model it is possible to make inferences about the confluence of Scottish and Scandinavian ice. 

Initially Scottish sourced ice extended offshore (fs2 and rm13) (figure 8.6a). The Scottish ice 

then met Scandinavian sourced ice in the North Sea, and was deflected over Orkney and 

Shetland (fs1 and fs59), forcing an ice divide shift from a NW-SE to a SW-NE orientation. At 

this time Shetland and Orkney were overwhelmed by WNW ice flow from the North Sea (figure 

8.6b) documented by the large and significant ice flow pattern recorded by fs1 and fs59. The 

single example of a Scandinavian erratic at Dalsetter (figure 8.3) supports this. If this is 

accepted, flowset relative chronology indicates that the rest of the evidence in the region relates 

to ice sheet flow patterns following break up of ice in the North Sea (figure 8.6c-f).  The Minch 

palaeo ice stream represented by bold flow lines in the figure may have been within this stage 

(figure 8.6b) or slightly later (figure 8.6c). After break up (figure 8.6c), broadly E-W ice flowed 

out of the Highlands (fs3 and rm1) and skirted the north Buchan coastal zone (fs72). Fs62 can 

be incorporated within this stage. This is a 90º change in flow direction and suggests that 

collapse of ice in the North Sea forced a reorganisation of the ice sheet flow patterns with the 

development of a N-S orientated ice divide over the northern highlands. Development of the 

Minch ice stream in conjunction with collapse of ice in the North Sea may have facilitated 

development of the N-S ice divide. In the absence of evidence to the contrary it is assumed that 

the Minch palaeo-ice stream persisted in this configuration with little change to the western side 

of the ice sheet. The reconstructed flowsets do not indicate that Orkney supported an 

autonomous ice dome when connected to the Scottish ice mass. This is followed by a slight 

eastward shift in the N-S ice divide (figure 8.6d). This may have been driven by increased 

vigour of the Minch ice stream.  Fs60 on Shetland is orientated such to suggest an ice divide 

NE-SW over the islands which fits with fs5 and continued connection to the mainland Scottish 

ice.  Ice then retreated towards the Highlands and Grampians and progressed by ice sheet 

thinning exemplified by the topographic focussing of fs5 and fs64 (figure 8.6e-f). At some stage 

ice on Shetland separated from the main Scottish ice sheet (figure 8.6e). The youngest flowsets 

on Shetland suggest that the islands supported an ice cap independent from the rest of the 

British Ice Sheet, with fs61 produced by an outlet glacier into Yell Sound (figure 8.6e). This 

two stage glaciation of Shetland is consistent with models of flow geometry derived from 

striations (Peach and Horne, 1879; Golledge et al., 2008). Ice retreated to final ice centres in 

upland areas (Lewis, NW Highlands and the Grampians) (figure 8.6f). The largest uncertainties 

in the model are the flow patterns in the Little Minch and west of the Outer Hebrides.  
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8.2.2 Region 2: Southern Scotland and England 

Due to the number and complexity of the flowsets region 2 is subdivided into four overlapping 

areas where flow configuration evolution can be resolved. Splitting the area up in this way is not 

ideal but was a necessary initial step to reduce complexity.  

8.2.2.1 Central Scotland 

This region extends from mainland Scotland south of the Grampian Highlands to the northern 

slopes of the Southern Uplands and from the vicinity of Ben Nevis in the west to the Fife 

coastline in the east (figure 8.2 and 8.7). The Midland Valley of Scotland contains the highest 

density of mapped drumlins in the country (chapter 5). The reconstructed flowsets show that the 

main pattern of ice flow was from west to east, with repeated ice flow over the area many times 

with only slight modifications (figure 8.7a). This area presented a challenge to flowset 

identification for this reason (chapter 6). The consistent west – east ice flow suggests 

persistence of an ice divide running broadly NNE-SSW in the vicinity of the Rannoch Plateau.  

 

Fs7 is the stratigraphically oldest flowset indicating initial ice flow towards the SE. Fs19 

documents converging W to E ice flow through the Firth of Forth and extends as far west as 

Coatbridge on the outskirts of Glasgow. Placing the ice divide during this phase of ice flow to 

the west perhaps over Ayrshire, or Arran. Fs19 is classed as a TT thinning flowset on the basis 

of tributaries that join the main trunk of the ice flow path from the Southern Uplands (figure 

6.14). Alternatively the flowset describes TT thickening of the ice sheet or the tributaries relate 

to a later stage of ice flow and should therefore be considered as separate flowsets. The flowset 

also suggests connection of ice from sources in the Highlands and Southern Uplands of 

Scotland. Fs19 could be coincident with fs8 or fs9 on the basis of geometry (region 2ii). The 

relative chronology of fs19 superimposing fs7 is also supported by the erratic transport paths 

(figure 8.7b). Granite and an unspecified erratic are transported SE (fs7) and then end up on the 

eastern Scottish coast, after being transported east by fs19. Fs51 is superimposed on fs19 and 

therefore represents a later stage of ice sheet geometry. On the basis of orientation fs52 is the 

southerly extension of this flowset. If connected the two flowsets suggest an ice divide 

orientated NNE-SSW over the Scottish Highlands.  

 

The youngest flowsets in this area are closely related to topographic obstacles (fs56, 45, and 

28). For example fs45 weaves around the Ochill Hills and Campsie Fells. This is interpreted as 

increasing topographic influence as the ice sheet thins, leading to cold based patches coincident 

with topographic highs. These flowsets are considered to be part of an early phase of the 

deglacial pattern with final deglaciation towards the Loch Lomond Stadial limit detailed by 

fs49, 79, 53, 55, and 54. The relative chronology of the flowsets supports this interpretation. 

Ribbed moraine flowsets rm12 and rm11 are overlain by fs56 and 45 respectively and describe 
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the same ice flow direction as the overlying drumlins. Fs 23 and 28, and fs10 are considered in 

sub region 2ii and 2iii respectively. 

 
Figure 8.7 Flow pattern ingredients in central Scotland. (a) Lineation flowsets and streamlined bedrock summary 
arrows. Lineation flowsets coloured by type. (b) Erratic transport paths and source areas from BRITICE database. 
Erratics and streamlined bedrock patterns support flowsets recording persistent W-E ice flow. Locations of shelly till 
deposits from Charlesworth (1957) and Sissons (1976). 
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Figure 8.8 shows the reconstructed flow pattern model for this part of central Scotland. The 

relentless eastward ice flow reflects a relatively stable ice divide running broadly N-S in the 

vicinity of the Rannoch Plateau with ice deflected eastwards by the obstacle of topography or a 

coeval ice mass on the Southern Uplands.  Changes in flow pattern in this region are testament 

to the relative dominance of Southern Upland and Highland ice. Initially fs7 documents 

expansion of Highland sourced ice into the Firth of Forth (figure 8.8a). Fs19 represents a stage 

where ice from Southern Uplands and Highlands coalesced resulting in a major ice flow path 

into the Firth of Forth (figure 8.8b). The divergence of fs19 at the mouth of the Firth suggests 

that the ice margin was relatively near by and the ice flow path terminated terrestrially, i.e. not 

at a calving margin. Therefore the North Sea east of the Firth of Forth must have been exposed 

as dry land due to low sea level. Alternatively the curvature could imply that there was an 

obstacle (perhaps North Sea ice cover) in the region to cause deflection of Scottish ice. In the 

latter scenario the British and Scandinavian Ice Sheets must have been confluent. In the 

following stage (figure 8.8c) Highland sourced ice is dominant over, but continues to be 

deflected by, ice from the southerly Southern Upland source. This is followed by thinning of the 

ice sheet exemplified by increased topographic influence on flow patterns (figure 8.8d) and a 

decline in power of Highland sourced ice.  Ice then separates from Southern Upland ice and 

retreats towards an ice cap centred over the Highlands (figure 8.8e). Deglaciation progresses by 

ice sheet thinning and topographically controlled retreat.  

8.2.2.2 Western Scotland: the North Channel, Kintyre, Ayrshire and Galloway 

Figure 8.2 shows the boundaries of this regional subset (2ii). The majority of the flowsets in this 

area are isochronous in classification, with only three ascribed to time-transgressive retreat 

(figure 8.9). To the west over the North Channel and Kintyre, fs8 describes a flow pattern over 

the western isles towards the NW (figure 8.9a). This flowset is independent of topography and 

supports an ice divide situated over the westernmost Southern Uplands. The deflection of the 

flowset to the NW suggests the presence of an obstacle to ice flow in the SW over Ireland. 

Erratic transport paths from the Western Highlands support broadly E-W ice flow (figure 8.9b). 

Fs9 is the oldest flowset and is topographically unconstrained extending over Ayrshire and 

Galloway. Fs9 and fs8 do not overlap so fs8 could precede or follow this ice flow. It is possible 

to use the erratic distribution to aid the relative chronological sorting of the flowsets (figure 

8.10). Alisa Crag microgranite is found on the northern coast of Ireland. A scenario can be 

envisaged where Alisa Crag microgranite is first transported south by Scottish ice (fs9) to a 

location in the vicinity of the Rhins of Galloway (figure 8.10a) and then transported for a 

second time to the Irish coast by a southerly extension of fs8 (figure 8.10b). Ribbed moraine 

flowset rm3 describes a similar ice flow direction to fs9 whereas rm4 is in line with fs18 which 

describes southerly ice flow into the Irish Sea (figure 8.9). Fs18 is possibly coeval with fs99 out 

of the Solway Firth (region 2iv) and fs84 on the Isle of Man. Fs18 suggests an ice divide north 

of Ayrshire.  
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Figure 8.10 There is no relative chronological relationship between fs9 and fs8 but erratic transport paths can 
be used to understand the relative timing of the two flowsets. Ailsa Craig microgranite is found on the northern coast 
of Ireland. A situation can be envisaged whereby south-westerly flowing ice (fs9) transports microgranite south-
westward (marked by red arrow) (a). North-easterly ice flow (fs8) then transports the erratic to the Irish coast 
(marked by blue arrow (b). This could also work the opposite way around. Flowsets are shown in grey and erratics 
with the same colour scheme as figure 8.9.  
 

The remaining flowsets in this region all exhibit some affinity with topography (fs39, 24, 40, 

29, 57, 23, 28, 25).  It might be expected that these flowsets are therefore all part of the 

deglacial signature when the ice is thin. Fs24 is superimposed on fs8 and indicates a change in 

flow geometry, when ice flow is deflected around topography, and an ice source is centred to 

the northeast of the region. Fs24 is not considered to represent tributaries of fs8 as the curvature 

of ice flow does not support this interpretation. Fs9 and fs24 exhibit similar orientation but are 

not grouped into the same ice sheet geometry because of different relationships with 

topography. Fs24 flows into a basin and follows topography whereas fs9 is not topographically 

constrained. Fs24 is superimposed on fs8 and indicates a major change in flow geometry, when 

ice flow is deflected around topography, presumably after the North Channel is deglaciated.  

Fs82 is based on only a few drumlins and is likely to be part of the deglacial signature or a 

remnant of earlier ice flow. Fs39, 40 and 57 taken collectively necessitate an ice divide running 

WSW-ENE over the North Channel. The flow pattern of fs25 suggests an ice divide centred 

over the western Southern Uplands in accordance with the erratics from Loch Doon. Fs57 could 

be coeval with this flowset. It is difficult to resolve fs25 with fs39 and 40, all three flowsets are 

taken as part of the deglacial signature; fs25 suggests retreat to an ice dome on the westernmost 

Southern Uplands whereas fs39 and 40 suggest an ice centre over Arran. The relative 

chronology and shape of fs25 is difficult to reconcile with the rest of the flowsets in this area, in 
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particular fs39. For this reason I present four possible scenarios to explain the flow geometry 

changes inscribed in this area. The ice flow direction represented by ribbed moraine flowset rm2 

is uncertain and therefore this flowset is excluded from consideration. 

 

 Scenario 1  

In this model (figure 8.11), the relative chronology of fs25 is disregarded.  

 
Figure 8.11 Scenario 1: Reconstruction of flow geometry of western Scotland region if relative chronology of 
fs25 is disregarded and the flowset is taken to represent the oldest ice flow event. (a) Highland and Southern Upland 
ice is confluent. Unknown position of the ice sheet margin but not coalescent with Irish ice. (b) Highland and 
southern upland ice connected by N-S ice divide and ice flows SW into Ireland. (c) Scottish ice is confluent with Irish 
ice to forma saddle over the North Channel. (d) Development of ice stream in the Irish Sea. (e) Irish Sea is 
deglaciated but ice remains confluent over North Channel. Topographically constrained flowsets suggest thin ice 
sheet. (f) Deglaciation of the ice sheet towards the Highlands and Southern Uplands.  
 

Fs25 and fs57 are grouped together in an early phase of ice sheet geometry composed of 

autonomous ice domes on the Southern Uplands and NW Highlands (figure 8.11a). Fs25 is 

deflected by ice from the Highlands ice centre. The rest of the model adheres to the relative 

chronology presented in figure 8.1. Fs9 documents ice flow from a NNW-SSE orientated ice 

divide running across the Midland Valley of Scotland (figure 8.11b). The ‘invasion’ of Scottish 

ice into Northern Ireland by fs9 is followed by connection between Irish and Scottish ice (figure 

8.11c). From the erratic evidence fs9 is placed into a geometry preceding fs8 and by extension 

confluence with the Irish Ice Sheet. Fs8 is a regionally significant flowset that could have only 

been inscribed during confluence with the Irish Ice Sheet over the North Channel. It is 

hypothesised that the flowset is the onshore expression of part of an ice stream draining the 

central section of the ice sheet towards the Barra Fan. The south-westerly ice flow of fs9 is 
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followed by fs18 (figure 8.11d) which documents ice flow from an ice divide on central 

Galloway deflected by an ice mass on Ireland into the Irish Sea. It is suggested that fs99 out of 

the Solway is contemporary with this ice flow. Together the flowsets relate to a time when the 

British and Irish Ice Sheets were confluent and ice was drawn down into the topographic low 

provided by the dry Irish Sea. By geometry alone fs23 could be connected with fs18 but it 

seems more probable that fs23 is related to a later stage of ice flow geometry. Fs39, 40 and 58 

are grouped together into a phase of ice sheet geometry after deglaciation of the Irish Sea, but 

persistence of connection with Ireland and a saddle over the North Channel (figure 8.11e). Fs23, 

24, 29 and 28 describe the retreat of the ice sheet following break up of the connection between 

Irish and Scottish ice.  

 

 Scenario 2 

In the second scenario (figure 8.12) the relative chronology between fs25 and fs23 is respected.   

 
Figure 8.12 Scenario 2: Reconstruction of flow geometry of western Scotland region if relative chronology of 
fs25 is respected and taken as head of an ice flow event down the Irish Sea. (a) Highland and Southern Upland ice is 
confluent. Unknown position of the ice sheet margin but not coalescent with Irish ice. Ice flows to SW to ‘invade’ 
Ireland. (b) Scottish ice is confluent with Irish ice to form a saddle over the North Channel. (c) Development of ice 
stream in the Irish Sea. Fs23 taken as the head of fs18. Fs23 exhibits smudging which could be due to changes 
occurring as the ice sheet changes from (c) to (d).  (d) Ice sheet thins and separates to a series of autonomous ice 
divides but remains confluent. (e) Irish Sea is deglaciated but ice remains confluent over North Channel. 
Topographically constrained flowsets suggest a thin ice sheet. (f) Deglaciation of the ice sheet towards the Highlands 
and Southern Uplands. 
 

Fs9 represents initial incursion of a Scottish ice sheet into northern Ireland (figure 8.11a). This 

is followed by connection over the North Channel and development of an ice stream in the 

North Channel (fs8) (figure 8.12b). To respect the relative chronology, fs23 is taken as the 
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headward extension of fs18. If fs18 is taken to represent the head of the Irish Sea Ice Stream, 

this reflects a change in dominance between a North Channel ice stream and an Irish Sea ice 

stream and a shift in the ice divide northward. Fs23 is a TT flow shift flowset and the smudging 

may reflect minor changes in flow patterns between the stages represented by figure 8.12c and 

8.12d.  In this scenario, fs57 is placed in a younger geometry than fs18 and therefore fs18 

cannot be grouped with fs99. Ice flow continues down the Irish Sea but the ice sheet thins to 

take more account of topography (figure 8.12d) and Highland and Southern Upland ice separate 

into two autonomous domes. This is followed by an increase in dominance of the Southern 

Upland divide (figure 8.12e) and final retreat (figure 8.12f).  

 

 Scenario 3 

In the third scenario (figure 8.13) the relative chronology between fs25 and fs23 is reversed and 

so fs23 becomes part of the deglacial stages of the ice sheet configuration.  

 
Figure 8.13 Scenario 3: Reconstruction of flow geometry of western Scotland region if relative chronology of 
fs25 to fs23 is reversed and fs23 taken as the youngest flowset. (a) Highland and Southern Upland ice is confluent. 
Unknown position of the ice sheet margin but not coalescent with Irish ice. Ice flows to SW to ‘invade’ Ireland. (b) 
Scottish ice is confluent with Irish ice to form a saddle over the North Channel. Grouping with fs57 places an ice 
divide over Galloway. (c) Development of ice stream in the Irish Sea. (d) Irish Sea is deglaciated but ice remains 
confluent over North Channel. Topographically constrained flowsets suggest thin ice sheet. The ice starts to separate 
into a series of autonomous ice domes (e) Deglaciation of the North Channel and separation of ice divide into 
autonomous domes (f) Deglaciation of the ice sheet towards the Highlands and Southern Uplands.  
 

Stage 1 (figure 8.13a) is the same as in scenario 2. This is followed by fs8 which is grouped 

with fs57 (figure 8.13b). Ice is then topographically focused into the Irish Sea (fs18) (figure 

8.13c). Deglaciation of the Irish Sea occurs and the ice sheet thins, but a saddle persists over the 



  Chapter 8. Regional flow dynamics 

 

 174

North Channel (fs39, 40 and 58) (figure 8.13d). Ice collapses in the North Channel and fs24 and 

fs25 are grouped together suggesting division of the ice sheet into two autonomous ice centres 

(figure 8.13e). Fs23 develops in the transition stage between figure 8.13e and 8.13f. Fs29 

documents final retreat to the two ice centres (figure 8.13f).  

 

 Scenario 4 

In the forth and final scenario (figure 8.14), the relative chronology is preserved but fs39 is 

taken as being younger than fs25. Stages 1 and 2 (figures 8.14a and b) are the same as in 

scenario 3. As in scenario 2, fs23 is grouped with fs18 (figure 8.14c). This is followed by 

deglaciation of the Irish Sea (figure 8.14d) and an ice divide over the North Channel represented 

by fs40 and 58. Fs25 can be incorporated into the deglacial signature of the ice sheet with fs24 

after collapse of ice in the North Channel (figure 8.14e) and fs39 represents a readvance down 

the North Channel after Southern Uplands have deglaciated (figure 8.14f). 

 
Figure 8.14 Scenario 4: Reconstruction of flow geometry of western Scotland region if relative chronology of 
fs25 to fs23 is preserved and fs25 taken as deglacial and followed by a readvance of ice from the newly separated 
Highland ice cap.  (a) Highland and Southern Upland ice is confluent. Unknown position of the ice sheet margin but 
not coalescent with Irish ice. Ice flows to SW to ‘invade’ Ireland. (b) Scottish ice is confluent with Irish ice to form a 
saddle over the North Channel. Grouping with fs57 places an ice divide over Galloway. (c) Development of ice 
stream in the Irish Sea. Fs23 is grouped with fs18. (d) Irish Sea is deglaciated but ice remains confluent over North 
Channel. Topographically constrained flowsets suggest thin ice sheet. (e) Start of deglaciation of the North Channel 
and separation of ice divide into autonomous domes (f) Deglaciation of the Southern Upland ice dome is followed by 
a re-advance of lobes into lowland areas recently deglaciated by retreat of Southern Uplands ice mass.   
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Scenario 3 is the preferred model of ice flow evolution in this sector of the ice sheet. Scenarios 

2 and 4 are less glaciologically plausible and scenario 1 rejects the relative chronology of events 

completely.  

8.2.2.3 The Cheviots and Tyne Gap 

The region incorporates northeast England and the Scottish border region south of the 

Lammermuir Hills (figure 8.15). Fs11 represents a major west to east ice flow over central 

England through Tyne Gap. This flowset could be the eastward extension of fs57 but the 

relative size of the two flowsets seems to suggest that this is unlikely. More importantly, fs57 is 

focused by topography whereas fs11 is not, at least in the initial stages of establishment of the 

ice flow. Furthermore Criffel granite erratics are only found at the eastern most limit of fs11. 

Fs57 is therefore thought to relate to a later (or earlier) stage of ice sheet geometry. Fs11 is 

classed as a TT thinning flowset. It is suggested that a broad W-E ice flow persisted in this area 

until after the initial thinning of the ice sheet during deglaciation. Alternatively fs11 is a TT 

thickening flowset, the early phase of which is coeval with fs57. This is not consistent with the 

cross cutting drumlins observed within fs11. Fs11 places an ice divide running north-south over 

the Lake District and Solway lowlands.  Fs10 also documents broadly east-west ice flow but is 

topographically focused into the Tweed basin. This ice flow is possibly contemporary with the 

later, topographically deflected stage of fs11. It is suggested, in agreement with Everest et al. 

(2005), that fs10 is the imprint of the Tweed palaeo-ice stream (chapter 6).  

 

Fs11 is superimposed by a series of topographically constrained flowsets (fs38, 14, 37, 12) that 

all place an ice divide running E-W over the Southern Uplands.  There are no flowsets that 

record ice flow out of an ice divide centred on the Cheviots. In fact, fs10, 13, 37, 12 and 11 all 

flow around the massif. The restricted extent of Cheviot granite erratics supports this. Fs13 and 

12 document ice flow running along the east coast. Fs10 is deflected south at the present day 

coastline. The explanation for this deflection and the southerly flow of fs13 is equivocal. Ice 

flow could have been deflected by an offshore ice mass east of the Berwick coast, or more 

powerful ice flowing out of the Firth of Forth. Fs13 is composed of two spatially separate parts 

that have been combined into the same flowset on the basis of orientation. It is possible however 

that these are in fact two distinct flow events. Fs12 and fs38 are classed as TT retreat flowsets 

and therefore document retreat back towards the Tweed and around the Cheviots.  

 

A model of the ice flow pattern evolution of this area is shown in figure 8.16. Ice flow is 

initially west-east over the area (figure 8.16a). This is followed by ice flow towards the SE, 

explained by increasing power of an ice divide centred over the Southern Uplands (figure 

8.16b).  It is postulated that the deflection of ice along the east coast is caused by congestion of 

ice in the North Sea. This respects the relative chronology of fs11 and fs13, but not fs13 and 

fs10. The ice sheet then thins and the Tweed Ice Stream (Everest et al., 2005) develops (figure 
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8.16c). This is tentatively grouped with fs99 (region 2iv). Retreat of the ice sheet progresses by 

ice sheet thinning around the topographic bump of the Cheviots (figure 8.16d). The ice retreats 

more rapidly around the Cheviots that out of the Solway lowlands.    

 
Figure 8.15 Flow pattern ingredients in northeast England and the Scottish borders. (a) Lineation flowsets and 
streamlined bedrock summary arrows Lineation flowsets coloured by type (isochronous or time-transgressive). (b) 
Erratic transport paths and source areas from BRITICE database. Locations of shelly till deposits from Charlesworth 
(1957) and Sissons (1976). 
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Figure 8.16 Ice flow patterns in NE England can be organised into a minimum of four stages. Ice is 
increasingly deflected around the Cheviots as the ice sheet thins. (a) Fs11 records a major west-east ice flow that 
supports a N-S running ice divide at least as far west as the Solway Firth. This is grouped with fs19 and so a 
secondary ice divide is placed between the two flowsets. (b) Ice flows from a Southern Uplands ice divide southward 
over the region. (c) The Tweed ice stream (fs10) develops. The ice stream is topographically constrained and it is 
suggested that the ice stream terminated offshore. The cause of the deflection of fs10 to the SE is unknown.. (d) The 
remaining flowsets are part of the deglacial signature. And demonstrate increasing influence of topography and 
retreat around the Cheviots. 

8.2.2.4 The Lake District, Lancashire and the Pennines 

Figure 8.17 shows the boundaries of this region which incorporates the Lake District, Pennines, 

Lancashire and the Yorkshire Dales. Flowsets in this region are nearly all diverted by 

topography (fs30, 15, 99, 66, 65, 43, 78, 89, 73, 69, 32, 41, 71 and 70). It is plausible that the 

ice sheet was relatively thin in this region throughout the last glaciation, being situated close to 

periphery of the ice sheet (only c.100 km from the accepted southern drift limit). Flowsets were 

particularly difficult to define in this area due to the similarities between successive events (see 

discussion of Vale of Eden flowsets in chapter 6).  

 

No flowset records ice flow up the Vale of Eden, but the presence of Scottish erratics indicates 

that there was incursion of Scottish ice into the Solway lowlands (figure 8.17b). The erratic 

evidence suggests that the Lake District was not overwhelmed by Scottish ice and supported an 

ice dome throughout the glacial thus preventing the incursion of ‘foreign’ geologies. It is 

suggested that incursion of ice into the Solway is represented by fs57 (figure 8.9) and/or rm7. 
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There is only evidence for ice flow out the Lake District at the end of the glacial (the youngest 

flowsets fs80 and fs65); otherwise flowsets record ice flow deflected around the Lake District 

massif (e.g. fs99). The radial pattern of ice flow from a Lake District ice source frequently 

discussed in the literature is not borne out by the bedform record of ice flow patterns.  

 
Figure 8.17 Flow pattern ingredients of the Lake District and Pennine region. (a) Lineation flowsets and 
streamlined bedrock summary arrows. Lineation flowsets coloured by type (isochronous or time-transgressive). (b) 
Erratic transport paths and source areas from BRITICE database. Locations of shelly till deposits from Charlesworth 
(1957) and Sissons (1976). 
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Fs15 and the transport path of Shap granite (figure 8.17b) support a major phase of W-E ice 

flow from an ice divide at least as far west as the Lake District. This west to east ice flow 

breaching the Pennines also explains the presence of Lake District and Scottish sourced erratics 

in eastern England. This stage is tentatively correlated with fs11 to the north. Fs30 in 

Wensleydale records topographically focused ice flow along the valley. This flow pattern is 

potentially synchronous with fs15. The proximity to the maximum drift limit and hence a low 

ice surface can help to explain the greater influence of topography on this flow pattern. Fs30 is a 

TT thinning flowset (figure 8.17a) that becomes increasingly topographically focused and so the 

early stage of this ice flow that is independent of topography is correlated with fs15.  Flowsets 

31, 66, 99, 32, 41 and 69 collectively place an ice divide running eastward from the Lake 

District along the Howgill Fells (figure 8.17a). TT thinning flowset fs31 documents N-S ice 

flow that becomes increasingly deflected by the topographic obstacle represented by the Forest 

of Bowland. Rm9 is thought to be coeval with fs31. Fs 70 and fs69 record phases when the 

Forest of Bowland deflected ice to the east and west but are not contemporaneous as they 

overlap in the eastern side of the Forest of Bowland. The relative chronology between fs69 and 

fs70 is debateable. Fs69 is tentatively correlated with fs99 and fs18 representing a period of ice 

drawdown into the Irish Sea. The rest of the flowsets record topographically constrained retreat 

towards the Howgill Fells and Yorkshire Dales. The movement of ice over the northern 

Pennines is unclear due to a lack of information. Flowsets 89, 68, 48 and 78 are presumed to 

relate to the retreat of ice into the Pennines as are all constrained within valleys. Alternatively, 

they document ice flow within a network of cold based ice divides running along the valley 

interfluves. Cold based ice covering the summits of the northern Pennines has also been 

proposed by Mitchell (2007) who conducted field mapping of drumlins in the region around 

Cow Green reservoir. Fs20 records retreat of ice up the Vale of Eden into the Pennines.  

 

The flowsets are corralled into a five stage reconstruction (figure 8.18). Initially an ice divide 

ran broadly N-S over the western Lake District (figure 8.18a). Later on the ice divide ran NW-

SE from the Lake District over the Howgill Fells (figure 8.18b). It is postulated that this 

occurred as an ice stream developed in the Irish Sea which eventually evacuated ice from the 

Solway lowlands (figure 8.18c). The drawdown of ice from the Solway lowlands separated the 

Lake District-Howgill Fells ice divide from the ice divide over the Southern Uplands. Ice 

initially retreated towards this divide (figure 8.18d) but deglaciation subsequently progressed by 

thinning and valley glaciation to numerous sites in the Yorkshire Dales and Lake District (figure 

8.18e). There is an absence of information from the Tees lowlands. 
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8.2.3 Region 3: Wales 

Finally, we consider Wales and the English-Welsh borderland (figure 8.19). There are relatively 

few subglacial bedforms within Wales. Geological structure has a very strong impact on the 

landscape and so flow patterns derived on the basis of streamlined bedrock features alone are 

treated with caution as field checking has not been undertaken. There are 17 flowsets from 

subglacial lineations. Five of these are of uncertain temporal genesis and six are derived on the 

basis of speculative drumlin mapping (chapter 5).  Fs31, 16, and 17 indicate that Irish Sea ice 

was deflected to the east and west around Wales (figure 8.19a). This pattern is replicated in the 

distribution of Scottish and Lake District erratics and shelly till on Anglesey and in the Cheshire 

Plain (figure 8.19b). Irish Sea till is present along the northern coast and in Vales of Conway 

and Clwyd indicating that ice from the Irish sea was able to penetrate at least this far into Wales 

(figure 8.19b).  

 

Fs22 is suggested to be confluent with ice in the Cheshire Plain as drumlins on the western 

Clywddian Range bend sharply towards the SE (Map 2; south sheet). It is postulated that fs31 is 

part of a flow event that extended into the Cheshire Plain and was contemporary with fs22.  The 

distribution of Arenig erratics supports the presence of ice in Wales before the incursion of Irish 

Sea ice into the Cheshire Plain (figure 8.19b). On the assumption of ice sheet symmetry fs22 

was mirrored by an E-W ice flow that was confluent with fs17. The deflection exhibited by fs17 

suggests that Welsh ice occupied part of Cardigan Bay before Irish Sea ice flowed southward. 

Further south, fs76 and fs90 supports broadly W-E ice flow from a divide running N-S along the 

length of Wales. Fs76 is a TT thinning flowset and therefore this ice flow pattern persists as the 

ice surface lowers. Fs90 can be extended to the north and south if streamlined bedrock is taken 

into account (figure 8.19b). Deglaciation of Anglesey and the Cheshire Plain is described by TT 

retreat flowsets 42, 77, and 16. In North Wales fs21 indicates that there was shift in the position 

of the ice divide from an N-S to a NW-SE orientation. TT thinning flowsets fs76 and 21 as well 

as topographically constrained flowsets 75, 87, and 74 suggest that deglaciation of Wales 

progressed by a decline in the ice surface height followed by retreat to separate ice centres 

(fs85, 91, 85, 98). 

 

Flowsets of Wales can be organised into a minimum of three phases of ice sheet geometry 

(figure 8.20). The zone of confluence between Welsh and Irish Sea ice is placed to the east of 

the Clywddian range and over the Lleyn Peninsula (figure 8.20a). The Welsh ice sheet then 

thinned and decoupled from the Irish Sea ice (figure 8.20b). It is possible that the Welsh ice 

sheet expanded outwards following the removal of the buttressing Irish Sea ice lobes. It is 

difficult to explain the direction of fs88. This may suggest that the Welsh ice sheet retreated 

back to a number of ice centres located on the upland areas of the Black Mountains, Brecon 

Beacons and in North Wales.   It is postulated that the Welsh ice sheet was predominantly cold-
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based as an explanation for the general lack of subglacial bedforms and bedform cross-cutting. 

Alternatively, the Welsh Ice Sheet was a relatively stable feature in contrast to elsewhere, and 

all changes due to the coupling and uncoupling with ice from the north or the lack of drift meant 

that no record was preserved. 

 
Figure 8.19 Flow pattern ingredients of Wales and Welsh-English borders region. Lineation flowsets and 
streamlined bedrock summary arrows (upper image).  Erratic transport paths, Irish Sea till drift limit and erratic 
source areas from BRITICE database (lower image).  Locations of shelly till deposits from Charlesworth (1957) and 
Sissons (1976).  
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8.3 Ice streams 

Key information from palaeo-ice sheet reconstructions is the location, size and operation of ice 

streams. Flowsets that define the former tracks of palaeo-ice streams were identified using the 

criteria of Stokes and Clark (1999) and are listed in Chapter 6 (table 6.1, figure 6.19). This 

thesis argues that some of the ice streams presented in the literature are not ice streams in the 

absolute sense (chapter 6). Only those that are corroborated by new mapping and fit the 

landsystem model of Clark and Stokes (2003) are considered to be true ice streams.  

 

On the basis of size and relative chronology of flowsets it is possible to organise the ice streams 

alone into groups representing at least two possible ice flow configurations (figure 8.21). These 

groups do not represent snapshots of the ice sheet geometry at any one time but serve as a 

framework with which to examine ice stream evolution changes over the ice sheet as a whole. 

One grouping is proposed to occur during maximum extent of the ice sheet when confluent with 

ice in North Sea and at the continental shelf edge (figure 8.21a). During this phase ice streams 

occur at the junctions between ice masses, e.g. Scottish and Irish ice in the North Channel and 

mainland Scottish ice and Outer Hebrides ice in the Minch. Additional ice streams from the 

literature that are correlative with this stage are shown on the diagram; Clare and Western Bays 

(Greenwood, 2008), Witch Ground (Graham et al., 2007). Fs51 (Strathmore 1) is tentatively 

correlated with the Witch Ground ice stream of Graham et al. (2007). A separate phase of ice 

streaming suggests development of ice streams along the east coast initiated after break up of 

ice in North Sea e.g. Strathmore 2,. Without reference to chronological information the Minch 

and Irish Sea ice streams may have operated before and/or after break up of ice in the North 

Sea. Fs19 is postulated to be an ice stream flowset. This ice stream would have operated when 

the North Sea was unglaciated but relative chronology of flowsets places it before fs51 and 

therefore before confluence of ice in the North Sea rather than following.  

8.4 Summary 

The complexity of the flowsets revealed by the mapping (chapters 5 and 6), clearly record 

critical glimpses of ice sheet behaviour through time. Their complexity however, presents a 

considerable challenge for any reconstruction of the evolution of the ice sheet as a whole. Given 

this complexity and that we do not currently have the offshore record or have not yet 

incorporated Ireland, I have deliberately not proceeded to a full ice sheet scale reconstruction of 

the flow geometry evolution. The regional analysis presented above provides the essential 

building blocks for the next phase. When further integrated with data from offshore and Ireland 

and with more literature it is anticipated that a full British-Irish Ice Sheet reconstruction will be 

forthcoming. The central part of the ice sheet (region 2) containing 56% of flowsets proved 

especially difficult to untangle and presented the primary obstacle to this.  
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The following chapter will detail the reconstructed retreat pattern. A fruitful next step would be 

to use this retreat pattern to pull out the flowsets that fit within the ice sheet retreat stages in 

order to aid grouping of spatially separate flowsets.   

 

In summary, the regional flow pattern scenarios indicate the following: 

 Flowsets in north Scotland provide evidence to support confluence of ice in the North Sea. 

Ice was deflected over Caithness, Orkney and Shetland. The confluence zone between 

British and Scandinavian ice is not known. The reconstruction presented in this thesis is 

consistent with the placement of the confluence zone between Shetland and Orkney after 

Bradwell et al. (2008b).  

 Break up of ice in the North Sea was accompanied by reorganisation of the ice sheet 

geometry and the establishment of a semi-stable N-S ice divide over northern Scotland that 

persisted until deglaciation.  

 The Midland Valley of Scotland experienced persistent west-east ice flow with changes 

reflecting relative dominance of Highland and Southern Upland sourced ice.  

 The ice sheet comprised a number of interconnected ice divides of variable dominance. The 

Cumbrian Mountains were not a major ice divide location as has previously been assumed. 

 Flow patterns document a signature of ice sheet thinning across the country. In several 

locations, extensive topographically unconstrained ice flow is followed by flowsets that 

reflect the underlying relief suggesting a lowering of the ice sheet surface during the later 

stages of the glaciation. Many flowsets are deflected around topographic obstacles.  For 

example the network of ice flow paths that develops in the Midland Valley before 

deglaciation (figure 8.8e). 

 There is no evidence to suggest that ice overwhelmed Lewis or the Lake District. Lobes of 

ice from primary ice divides were deflected around secondary ice divides e.g. Highland ice 

around the Grampian ice mass (figure 8.6e), Irish Sea ice around the Welsh Ice Sheet, and 

domes on topographic highs of the Lake District (figure 8.18c) and the Cheviots (8.16c).  

 The Welsh Ice Cap was a stable feature exhibiting little change in configuration.  

 Ice streams appear to separate into two groups: large ice streams flowing offshore during 

maximum extent of ice and topographically constrained ice streams that developed after 

break up of ice in the North Sea.  

 

This chapter has presented ice sheet configurations based on plausible and judicious grouping of 

flowsets that reasonably accommodates the flowset geometry, relative chronology and flowset 

classification evidence. An alternative approach would be to use the flowset map in conjunction 

with a numerical ice sheet model. The numerical model should be able to generate a series of 

snapshots of the ice sheet configuration which can be compared with the flowsets and used to 

organise the flowsets as well as providing evidence to test the numerical model outputs.  



 

Chapter 9  

The pattern of ice sheet retreat 

 

9.1 Introduction 

This chapter presents a retreat pattern of the last British Ice Sheet reconstructed from the 

ingredients presented in chapter 6.  Moraines and flights of lateral meltwater channels 

demarcate palaeo-ice margin positions. It is assumed that eskers form behind a warm based 

retreating ice margin, and so they can be used to infer margin positions and the direction of 

retreat. TT retreat flowsets record bedform generation behind a retreating margin, and so these 

flowsets document changes in the position of the ice margin with successive parts of the flowset 

relating to younger dispersal locations (Clark, 1999). Glaciolacustrine sediments indicate the 

locations of former proglacial lakes. The topographic setting of such sediments can be used to 

infer the necessary ice margin positions required to dam normal drainage and create the lake. 

Collectively the cartographic summaries of these landform types are the equivalent of the 

‘deglacial envelope’ assemblage of Kleman et al. (2006) and can be used to define the pattern of 

retreat of the ice. Initially, each line of evidence was considered individually before combining 

the lines of evidence together to produce an overall summary retreat pattern map. The logical 

steps involved in the reconstruction of the retreat pattern of the ice sheet are as follows: 

1. Identification of palaeo-margin positions from moraines and ice contact landforms. 

Inference of palaeo-margin positions from esker, meltwater channel and TT retreat 

flowsets, and ice-dam positions from glaciolacustrine sediment distribution. 

2. Use topography, i.e. setting, in combination with palaeo-margin positions to infer 

successive retreat pattern from each line of evidence. 

3. Examine conflicts and agreements between retreat patterns from each line of evidence 

and combine into overall reconstruction of pattern of retreat.  

4. Use published dates and stratigraphy, where available, to fix pattern of retreat to absolute 

time. This is presented in the next chapter (10). 

9.2 Retreat pattern by landform type 

9.2.1 Retreat pattern from moraines 

Moraines are summarised as ice front positions in figure 6.25. Using topography as a guide the 

distribution of moraines was used to reconstruct an overall pattern of retreat (figure 9.1). In 

some areas it was not possible to derive a retreat pattern as moraines were too sparsely 

distributed for a margin to be drawn. As discussed in chapter 5 and 6 there are relatively few 

really large arcuate moraines in Britain in contrast to the Laurentide and Fennoscandian ice 

sheets, but many smaller cross valley moraines and large ‘spreads’ of morainic topography 
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without a clear crest or ice-contact margin. These latter features probably constitute 

glaciofluvial outwash.  

 
Figure 9.1 Successive retreat pattern derived from mapped and BRITICE+ moraines. Dashed white line 
marks limit of Loch Lomond Stadial ice sheet. Dashed grey line marks maximum southern limit of last British Ice 
Sheet. Margins that are directly supported by moraine evidence are in solid brown. Dotted brown lines connect 
moraines where it was deemed logical to do so, on the basis of topographic context. Boxes show areas shown in more 
detail in figure 9.1 a-f. 



  Chapter 9. The pattern of ice sheet retreat 

 

 189

 

 

F
ig

u
re

 9
.1

 a
-h

 D
et

ai
l o

f 
re

tr
ea

t f
ro

m
 m

or
ai

ne
s 

fo
r 

se
le

ct
ed

 a
re

as
. L

oc
at

io
n 

sh
ow

n 
in

 f
ig

ur
e 

9.
1.

 



  Chapter 9. The pattern of ice sheet retreat 

 

 190

The distribution of moraines can be organised into three broad groups on the basis of size and 

location (figure 9.1): large offshore moraines marking ice front positions on the continental 

shelf; large terrestrial moraines along the Yorkshire and Lincolnshire coast and in Cheshire 

Plain, Vale of York (York and Escrick moraines; figure 9.1g), Tees and Fylde; and smaller 

clusters in association with upland regions (e.g. Cairngorms, figure 9.1d). The following 

observations emerge from the reconstructed pattern: 

 Successive lobate retreat from lowland regions towards northern ice centres. For example 

retreat from the Cheshire Plain towards the Irish Sea, and up the Vale of York back into the 

Yorkshire Dales and Tees estuary (figure 9.1g).  

 During the early stages of recession and contrary to what might be supposed, ice does not 

retreat to the nearest high ground. Moraines in the Cheshire Plain document retreat back into 

the Irish Sea, moraines close to Stranraer indicate retreat towards the North Channel, rather 

than back into the southern Uplands (figure 9.1.f), and moraines on the Holderness coast 

indicate ice presence in the southern North Sea.  

 The final stage of recession is to local ice caps or ice fields in upland regions, indicated by 

clusters of small valley moraines, e.g. in the Cairngorms (figure 9.1d), Yorkshire Dales 

(figure 9.1g), North Uist and Trotternish of Skye (figure 9.1a), and the Black Mountains 

(figure 9.1h). The detail of retreat in these regions is not reconstructed, although it is of 

interest at a local scale, it is less informative at the ice sheet scale. The presence of these 

moraines however does help to determine the overall direction of retreat. 

 Lowland retreat pattern is often guided by topography, perhaps in relation to local ice caps 

and/or emerging nunataks. For example moraines indicate anticlockwise retreat of Tweed 

ice around the Cheviot massif (figure 9.1e), the Irish Sea ice lobe retreats back towards the 

Southern Uplands and around the Lake District (figure 9.1f), and Spey ice retreats around 

Cairngorms (figure 9.1d). 

9.2.2 Margin positions from eskers 

In chapter 6 groups of mapped eskers were summarised as generalised arrows in the direction of 

ice flow (figure 6.23). Palaeo-margin positions perpendicular to the summarised ice flow 

direction were derived from these arrows (figure 9.2). This is based on the assumption that 

eskers form behind a retreating ice margin during warm based deglaciation (e.g. Kleman and 

Borgström, 1996) and their orientation reflects the direction of meltwater flow at the ice margin 

(Benn and Evans, 1998). Along the length of the eastern English coast eskers document retreat 

towards the north and northeast away from high ground (figure 9.2).  

 

An esker close to Flamborough Head records retreat towards the SE from the Yorkshire Wolds. 

The direction of retreat of these eskers requires a North Sea ice presence. Dense esker networks 
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provide a detailed pattern of retreat north up the Vale of York and subsequent valley retreat into 

the Yorkshire Dales along Wensleydale. 

  
Figure 9.2 Successive retreat pattern derived from esker flowsets. Dashed white line marks limit of Loch 
Lomond Stadial ice sheet. Dashed grey line marks maximum southern limit of last British Ice Sheet. Red lines are 
margins inferred from esker flowsets. Arrows indicate direction of retreat. Esker flowsets are shown as feint arrows. 
Dots mark foci that the ice margin is retreating towards: solid dots mark upland locations, empty dots mark lowland 
locations. 
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Esker patterns suggest initial retreat from the maximum ice limit in the Cheshire Plain in a 

NNW direction. In Wales, only a few eskers were found and indicate retreat to local high 

ground. In NW England, eskers record S to N retreat over Lancashire and a semi-radial pattern 

of retreat south into the high ground of the Lake District. In the Solway Firth, ice retreated 

northwards into the Southern Uplands up the Nith valley. Eskers running broadly W-E along the 

northern flanks of the Southern Uplands and within the Tweed basin, indicate retreat from the 

eastern Scottish coast in a westward direction before NW retreat back towards Arran and SW 

retreat into the western half of the Southern Uplands. The broadly westward retreat towards the 

Loch Lomond limit position is documented by eskers in northern and central Scotland with the 

exception of the NE-SW trending eskers running along the coast in the vicinity of Aberdeen.  

9.2.3 Retreat pattern from meltwater channels 

In chapter 6 meltwater channels were classified into genetic categories; subglacial, submarginal, 

lateral and proglacial. The pattern and distribution of groups of subglacial and lateral meltwater 

channel networks was summarised by an arrow in the direction of flow. A flight of meltwater 

channels along a hill slope is taken to document the thinning and recession of cold-based ice, 

with each channel formed at successive margin positions (Hättestrand and Clark, 2006a). 

 

Figure 9.3 shows the pattern of retreat derived from lateral meltwater channels. The 

reconstructed pattern of retreat shows that it was closely related to topography. This is, of 

course, partly due to the nature of the evidence, as lateral channels will only be inscribed when 

ice abuts against a slope. A key observation that emerges from the pattern is that the high 

ground in many parts of the country deglaciated before ice in the lowlands (figure 9.4), 

indicative of a thin ice sheet. For example, ice thinned and retreated around the Forest of 

Bowland in Lancashire as it retreated northwards. Lateral channels running along the Pennine 

escarpment in the Vale of Eden suggest that ice remained in the valley after Pennine summits 

had deglaciated. Likewise lateral channels on the edges of the Cumbrian Mountains suggest that 

Lake District peaks were ice free before the Irish Sea ice had retreated. Ice retreating up the 

Firth of Forth and Tweed basins split around the Lammermuir Hills. Similarly ice retreating 

NW into the Scottish Highlands was diverted around the Campsie Fells and Ochill Hills. In 

northern Scotland, ice retreated along valleys towards ice centres in the southern Grampians, 

and Rannoch. The pattern also indicates the significance of offshore ice. Lateral channels 

running broadly E-W along the Nairnshire-Buchan coast of Scotland indicate the westward 

retreat of a lobe of ice emanating from the Moray Firth, after inland ice from the Grampians had 

retreated away from the coast.  Lateral channels on the southern flanks of the Pennines in 

Derbyshire and Lancashire record thinning of ice in the Cheshire Plain.  
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Figure 9.3 Retreat pattern from lateral meltwater channels. Dotted lines connect margins of presumed same  
age inferred from their relationship with topography. Dark blue arrows indicate ice flow presumed close to the 
margin inferred from subglacial meltwater channels.  
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Figure 9.4 Enlargement of lateral meltwater channel retreat pattern. Retreat pattern from lateral meltwater  
channels in solid dark blue. Dotted lines connect margins of presumed same age inferred from topographic context. 
Dark blue arrows indicate presumed ice flow close to the margin inferred from subglacial meltwater channel flowsets. 
Red lines/patches mark locations that must have become ice free before lateral meltwater channel development. Red 
lines therefore delineate topographic high points that emerged as nunataks before retreat of ice from the associate 
lowland area.   
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9.2.4 Retreat pattern from ice-dammed lakes  

For the Glacial Map of Britain (Clark et al., 2004), ice dam locations were inferred using the 

location of glaciolacustrine sediments and their relation to topography. Additional 1:50,000 

scale maps of superficial sediments from British Geological Survey, in combination with 

topographic information were used to extend the lake dam positions of the glacial map and 

BRITICE database. The ice margin positions necessary to support ice dammed lakes in the areas 

where glaciolacustrine sediments have been described are shown in figure 9.5.  It is possible 

that the lake sediments relate to advance of the ice sheet rather than retreat. The locations of 

several lakes are testament to the persistent influence of offshore ice after deglaciation of inland 

areas. For example, ice along the NE coast creates lakes in the Tees, Wear and Humber, ice in 

the Irish Sea dams lakes in the western Lake District, and lakes are impounded in Buchan in NE 

Scotland by ice at the northern and eastern coasts.  

9.2.5 Retreat pattern from TT retreat flowsets 

As described in chapter 6, lineation patterns that exhibit ‘smudging’ were classified as time-

transgressive. Time-transgressive (TT) flowsets were subclassified in terms of the glaciological 

context under which the smudged imprint is thought to occur; rapidly changing flow patterns 

during marginal retreat (TT retreat flowsets), ice sheet thinning during deglaciation leading to 

increasing accordance with local bed topography (TT thinning), and continual bedform 

development during ice divide migration (TT flow shift). As it is assumed that TT retreat 

flowsets are a reliable indicator of the changing flow patterns experienced close to the ice 

margin they provide information on the position of the margin and ice divide location during 

retreat. A total of c.30 TT retreat flowsets were identified in Chapter 6. In comparison to other 

palaeo-ice sheets this is a relatively small proportion. From analysis of the Laurentide and 

Fennoscandian ice sheets (e.g. Kleman et al., 1997; Jansson et al., 2002) we would expect the 

majority of evidence to relate to the retreat of the ice sheet. This difference could be explained 

in one of two ways, little subglacial bedform generation during retreat or topographically 

controlled retreat precluding the retreat of the ice sheet by spatially extensive lobes.  

 

Figure 9.6 shows the pattern of retreat inferred from TT retreat flowsets. In the majority of 

cases ice retreats back to areas of high ground, e.g. Lewis, Rannoch Plateau, Southern Uplands, 

Lake District, Howgill Fells, Pennines, and the Brecon Beacons. However, TT retreat flowsets 

in NE England, Cheshire Plain, Anglesey, Orkney and Shetland document retreat back the low 

ground of the North Sea, Irish Sea, SW Orkney and SW Shetland respectively. It is highly likely 

that the latter group of TT retreat flowsets record the initial stages of deglaciation involving 

retreat from offshore troughs and the first group the final stages of retreat to upland areas. 
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Figure 9.5 Retreat pattern from inferred ice dam positions. Location of glaciolacustrine sediments from BGS 
mapping in light purple.  Arrows show direction of retreat 
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Figure 9.6 Retreat pattern inferred from time-transgressive retreat flowsets of subglacial lineations. Arrows 
show direction of retreat. Flowsets are shown underneath inferred margins. Dots mark point that ice margin is 
retreating towards: solid dots mark upland locations, empty dots mark lowland locations. 



  Chapter 9. The pattern of ice sheet retreat 

 

 198

 
 
 

 
 
 
 
 
 

F
ig

u
re

 9
.7

 F
iv

e 
in

de
pe

nd
en

t l
in

es
 o

f 
ev

id
en

ce
 u

se
d 

to
 r

ec
on

st
ru

ct
 th

e 
re

tr
ea

t p
at

te
rn

: a
) 

m
el

tw
at

er
 c

ha
nn

el
s;

 b
) 

es
ke

rs
; c

) 
la

ke
 d

am
s;

 d
) 

T
T

 r
et

re
at

 f
lo

w
se

ts
; a

nd
 e

) 
m

or
ai

ne
s.

 M
ap

s 
ar

e 
sh

ow
n 

at
 s

ca
le

 a
pp

ro
pr

ia
te

 to
 e

xt
en

t o
f 

da
ta

. I
t i

s 
st

ri
ki

ng
 a

nd
 r

ea
ss

ur
in

g 
th

at
 th

e 
di

ff
er

en
t l

in
es

 o
f 

ev
id

en
ce

 d
oc

um
en

t v
er

y 
si

m
ila

r 
re

tr
ea

t p
at

te
rn

s.
  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



  Chapter 9. The pattern of ice sheet retreat 

 

 199

9.3 Retreat pattern synthesis 

9.3.1 Procedure for combining evidence 

The five independent lines of evidence described above were combined to build a pattern of 

successive retreat margins. Figure 9.7 shows all the lines of evidence shown next to each other.  

The collective distribution covers most of the country although there is a notable absence of 

information from the south of the Outer and Inner Hebrides and western Scotland.  This is the 

first time the different and independent lines of evidence have been compared and it is 

extremely gratifying to find that they largely describe the same pattern of retreat. This is 

reassuring with regard to the robustness of the retreat pattern. GIS layers of the reconstructed 

margins were placed together on top of a 50 m resolution DEM of Britain. A summary retreat 

pattern was drawn consistent with all layers (e.g. figure 9.8). 

 
Figure 9.8 Example of synthesis of five independent lines of evidence: a) shows the margin positions from 
each line of evidence placed on the same map. Key: Hashes are on ice contact side of line. Bedform TT retreat 
flowsets = green, Lake dam = purple, moraines = brown, esker = orange, lateral meltwater channels = blue; b) Retreat 
pattern synthesis. Arrows show direction of retreat. Solid lines indicate margin positions which are constrained by 
geomorphological evidence. Dashed lines are estimated extension of the pattern based on topographic context. In 
general the evidence is mutually corroborative documenting lobate retreat out of the Cheshire Plain into the Irish Sea 
and retreat by smaller valley constrained lobes into Wales. In the Vale of Clwyd moraines and lake deposits indicate 
retreat of Irish Sea ice northward creating a small enclave. TT retreat flowset suggests final retreat up valley and 
overlaps with the moraine evidence suggesting a minor expansion of ice out of Wales following retreat of Irish Sea 
ice.  
 

At first, margins were considered on a region by region basis then combined for the whole 

country. Synthesis of the retreat pattern from the different lines of evidence was an iterative 

process, with margins reassessed and redrawn as each region was added and different scenarios 
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explored. Where evidence is sparse, and to connect successive margin positions, a judicious use 

of topography was employed to aid the reconstruction. Lines are connected on the basis of 

topographic setting and the principle of maintaining ice sheet symmetry (chapter 7). In areas of 

complex topography and across large distances lacking evidence, lines are left unconnected. In 

the absence of evidence to the contrary, it was assumed that the sectors of the ice sheet resting 

on terrain presently below sea level would retreat first and the ice mass would maintain a 

broadly symmetrical form during retreat. A major assumption is that the Loch Lomond Stadial 

Ice limits in Scotland are analogous to the final stages of the Late Devensian ice sheet. As stated 

in chapter 5 meltwater, esker, and moraine mapping is thought to be approximately 60% 

complete, and so the reconstructed retreat patterns here represent a first attempt at an ice sheet 

scale synthesis. Further mapping using aerial photography and fieldwork should help to fill in 

the gaps in the framework. Any conflicts between lines of evidence were examined on a case by 

case basis and the preferred scenario incorporated into the summary pattern. In general, the 

evidence is mutually corroborative (e.g. figure 9.8) and this is now combined to yield the final 

map (Map 3 enclosed with this thesis, and a smaller version shown in figure 9.9). Minor 

conflicts and contradictions between lines of evidence that do occur are discussed in section 

9.3.3. 

9.3.2 Retreat pattern synthesis result 

The summary retreat pattern obtained by synthesising the five lines of evidence is presented in 

figure 9.9 and Map 3. It is reassuring that the independent lines of evidence reproduce broadly 

the same picture of retreat (figure 9.7; e.g. figure 9.8). The map shows the pattern of retreat, i.e. 

each line does not represent a moraine or still stand position and the linking between areas 

(dashed lines) is achieved by pattern filling rather than geochronology, as temporal information 

is yet to be included. The southern margin in the Celtic Sea is based on the limit of the Melville 

Till after Scourse and McCarroll (2006). The Mellville till on the Celtic Shelf is assumed to be 

coeval with the Late Devensian ice margin on the northern Scilly Isles extending the limit of the 

grounded ice margin (Scourse, 2006). There is limited evidence on the north coast of mainland 

Scotland, the North Channel east of the Rhins of Galloway, the southern side of the Tyne Gap, 

and the most northerly part if the Pennines. The pattern of retreat remains unconstrained in these 

areas. Figure 9.10 shows the location of areas that are discussed in more detail in the following 

text. Enlargements of interesting parts or where a high density of evidence enables a detailed 

reconstruction of the retreat pattern are also shown on Map 5. 
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Figure 9.9 Reconstructed pattern of retreat from synthesis of five independent lines of evidence (moraines,  
eskers, meltwater channels, TT retreat flowsets, and lake dam positions. Arrows show direction of retreat and hence 
point towards approximate location of ice centre. Solid lines indicate margin positions which are constrained by 
geomorphological evidence. Dashed lines are interpolations and extrapolations based on relationship to topography. 
A major assumption is that ice in Scotland retreats back to approximately the Loch Lomond Stadial limit. 
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Figure 9.10 Red boxes show the locations of illustrative figures to follow.   
 

Key observations arising from the reconstructed pattern can be summarised as follows: 

 The ice sheet does not undergo a monolithic retreat but retreats to numerous independent 

locations, with several sites supporting local ice caps (figure 9.11). Moraines close to 

Stranraer indicate that the Irish Sea ice lobe retreated in a NW direction towards the north 

Channel suggesting that the British and Irish ice sheets maintained confluence until full 

deglaciation of the Irish Sea. Valley moraines document final deglaciation to the high ground 

on Hoy, Uist, the Trotternish of Skye, Isle of Arran, the Brecon Beacons, Yorkshire Dales, 

Lake District, Southern Uplands, the Cairngorms (figure 9.12), and Shetland. Final retreat is 

towards the western side of Britain presumably reflecting the distribution of upland areas and 

the general west-east precipitation gradient that exists over the British Isles. This pattern of 
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retreat mirrors the instantaneous glacierization model of ice sheet inception as theoretically 

described by Ives et al. (1975) and Barry et al. (1975). 

 
Figure 9.11 Retreat pattern presented in figure 9.8 with annotations relating to comments made in the text. 
Locations of final retreat are marked by a solid black circle. Delimiting the margins of these has not been attempted 
as they occur in areas of complex topography and modern examples are characterised by variable configurations. 
Solid black areas outlined with a white line mark the Loch Lomond Stadial ice cap limits in Scotland. This is 
assumed to be analogous to the shape of the final stages of the ice sheet in Scotland. ‘Offshore’ ice lobes are marked 
by a blue asterisk, ‘onshore’ by a red asterisk. Green boxes pinpoint locations of ice sheet uncoupling where the ice 
‘unzipped’ into separate masses. 
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Figure 9.12 Example location where valley moraines indicate retreat to a local ice cap. Ice retreats up the 
Spey valley around the Cairngorms ice cap and is followed by a possible minor expansion out of the Cairngorms.  
Lake deposits (Golledge, 2002) indicate that glacial lakes developed between the ice lobe and ice cap during 
deglaciation.  
 

 The overall pattern indicates that the ice sheet uncoupled in the Central Valley of Scotland, 

Solway lowlands, Irish Sea west of Lancashire, Lleyn Peninsula, Cheshire Plain, eastern 

England, Minch, close to Fair Isle, and in the North Channel, retreating to multiple ice 

domes in Wales, northern England, Southern Uplands, mainland Scotland, Outer Hebrides 

and Shetland (figure 9.11). In some uncoupling locations a complex record of retreat 

suggests competition between ice masses during or after separation. For example, the 

assemblage of moraines and other ice contact deposits on the Lleyn Peninsula site this as the 

zone of confluence and subsequent uncoupling of the Irish Sea and Welsh ice masses.  It is 

known from sedimentological investigations that Welsh till overlies Irish Sea till on the St. 

Tudwals Peninsula, consistent with an advance of Welsh ice after retreat of the Irish Sea lobe 

(Walker and McCarroll, 2001). In the Tees-Tyne area a hummocky spread of moraine 

material occurs. This possibly reflects stagnation during separation of the Pennine and North 

Sea ice. Sites of uncoupling of the ice sheet are often characterised by conflicting retreat 

evidence. It is postulated that the conflicting evidence arises due to competition between ice 

masses and minor oscillations of the margin during retreat from these locations. It was not 

always possible to determine the exact location of unzipping of the ice sheet. Figures 9.13 

and 9.14 show examples of uncoupling locations in the Solway lowlands and Midland 

Valley of Scotland.  

 

 Ice lying beyond the present day coastline had a significant influence on the pattern of 

retreat. ‘Offshore’ lobes are indicated by the retreat pattern from the east coast of England, 

Moray Firth, and the Irish Sea (figure 9.11). These ‘offshore’ lobes even persist after 

thinning and retreat inland of ice from peripheral ice centres.  Glaciolacustrine sediments in 

northeast England imply that westward retreat inland must have occurred before retreat of 

ice out to sea. Direction of this latter retreat is equivocal, ice abutting against the coast could 

have retreated either northward back up into the Tweed and Forth, or eastward to an ice 
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centre in the southern North Sea. The stratigraphy of the north east coast has been the subject 

of much debate in an attempt to resolve the relative influence of inland and offshore ice and 

is presently unresolved (Bridgland et al., 1999). Lateral meltwater channels running parallel 

to the north coast in Buchan require early deglaciation inland from the coast. Such a scenario 

can be accommodated if ice blocking drainage at the coast was due to lobes of ice emanating 

from Strathmore and the Moray Firth (figure 9.15). Detailed examination of the tills of NE 

Scotland has enabled a regional stratigraphy of interrelationships of Moray Firth, Grampian, 

and Strathmore sourced ice (Merritt et al., 2000). The Grampian sourced till is overlain at the 

NE tip of Buchan by Moray Firth ice and on eastern coast by till sourced from Strathmore, 

consistent with onshore incursion of ice.  Further testament to the significance of ‘offshore’ 

ice is that the largest, ice sheet scale, moraines occur beyond the present day coastline (figure 

9.1). 

 
Figure 9.13 Uncoupling of ice from the Irish Sea and NW England. Lateral meltwater channels, eskers and 
moraines indicate retreat back into the Cumbrian Mountains accompanied by ice sheet thinning leading to the 
emergence of high ground. Location *1 marks the splitting of Irish Sea ice from ice emanating from the Lake District 
and Howgill Fells. The precise location of unzipping of the Lake District and Scottish ice is unclear. The approximate 
location is marked by *2. The glacial lake sediments in the Solway and Vale of Eden suggest that Scottish ice may 
have expanded south after Lake District ice had retreated, in order for glacial lakes to develop ice must have been 
blocking the drainage route into the Irish Sea at this time. This apparent conflict in evidence is interpreted as 
reflecting oscillations between the two ice masses during uncoupling.  
 

 Ice persists as lowland lobes as the ice sheet thins and higher ground becomes ice free. 

Figure 9.10 show the locations of major ice lobes. Lateral meltwater channels document a 

ice thinning in central Scotland where ice is deflected around the Sidlaw and Ochill Hills and 

the Campsie Fells. Southwest of Edinburgh, westward retreating ice splits around the 

Lammermuir and Pentland Hills, creating ice lobes in the Tweed and Firth of Forth (figure 

9.14). A lateral meltwater channel along the western side of Kintyre suggests lobate retreat 

towards the high ground of Knapdale and the Isle of Bute following the separation of the 

British and Irish ice masses. In Lancashire, moraines, lateral meltwater channels and 
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glaciolacustrine deposits combine to suggest northward retreat of ice around the topographic 

obstacle of the Forest of Bowland (uplands). Lateral meltwater channels on Black Combe 

and glaciolacustrine sediments in the western Lake District suggest that the highest ground 

of the Lake District had emerged before deglaciation of the Irish Sea lobe (figure 9.13). In 

the western Lake District moraines are overlain by till with an Irish Sea provenance (Evans 

et al., 2005) consistent with inland ice retreat before deglaciation of the northern part of the 

Irish Sea. Lateral meltwater channels running along the slopes of the Pennines indicate that 

the Pennines were ice free while ice remained in the Vale of Eden (figure 9.13). Glacial 

lakes formed between the retreating lobe in the Cheshire Plain and the upland area of the 

Rossendale Forest to north of Manchester during retreat, an indication that ice retreated from 

the Rossendale area before retreating from the Cheshire Plain (figure 9.7).  

 
Figure 9.14 Separation of Highland and Southern Upland ice in the Midland Valley of Scotland. Lateral 
meltwater channels, eskers and moraines indicate initial retreat from the Firth of Forth westward. Highland and 
Southern Upland ice appears to have separated around the position marked by a green box. Retreat evidence back into 
the Southern Uplands is sparse. It is speculated that evidence has been erased by a minor expansion of the Highland 
ice as the ice masses uncoupled. Glaciofluvial sediments form a belt running across the Midland Valley; this possibly 
marks the zone of uncoupling of the ice sheet. The direction of ice flow suggested by the esker marked by an asterisk 
was difficult to define, presuming that the ice flow is up the valley, eastward retreat into the Southern Uplands 
occurs. If the esker was interpreted as representing ice flow in the opposite direction, this would suggest retreat 
westward probably at the same time as the retreat pattern just to the north of this location. This would imply a smaller 
ice mass in the Southern Uplands. Black circles mark the locations of final retreat to ice caps; hollow circles retreat to 
a series of valley glaciers 
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Figure 9.15 Detail of retreat pattern in Buchan, NE Scotland: a) Evidence; b) Reconstructed retreat pattern 
included in figure 9.8 and Map 3; and c) Alternative retreat pattern. Lines are variable thickness to indicate oscillation 
of the ice margin. Lateral meltwater channels and ice damned lake positions along the northern coast imply that 
Buchan deglaciated before offshore ice. Retreat in Buchan is to the SW, indicated by eskers and moraines. Well 
defined, ‘fresh’, moraines occur close to Aberchirder in north Buchan (marked with an asterisk). These appear to 
postdate the lateral meltwater channels (offshore ice), and therefore represent a minor readvance of the ice margin. 
These oscillations are present in both scenarios. Along the east coast, there is similar evidence for glacial lake 
damming by offshore ice. In addition to this there is an esker running broadly N-S along the coast. This esker is in the 
literature as well as new mapping and therefore is regarded as reliable. Two explanations can explain this esker and 
the glacial lakes: b) ice retreats from north Buchan only to the vicinity of the blue line. Offshore ice sustained by ice 
from Strathmore and South Buchan then flows onshore. This lobe retreats in a clockwise direction into the Dee valley 
forming the esker and lakes; c) Initial ice retreat from all of Buchan as far as the blue line, forming the moraines and 
esker. Offshore ice then flows onshore and retreats back south into Strathmore forming the glacial lakes.   
 

 Lobes of ice are deflected around local ice caps. For example, Irish Sea ice split into a lobe 

retreating to the NE into Lancashire and a lobe retreating to the NW around the Lake District 

massif (figure 9.13).  Retreat progressed in an anticlockwise direction around the eastern 

flanks of the Cheviots but there is little evidence for retreat towards an ice mass centred on 

the Cheviots (figure 9.16). This is consistent with the field observations of Mitchell (2008) 
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who suggested that the Cheviots supported a cold based ice cap during the last glacial. Irish 

Sea ice is deflected by and retreats around the Welsh Ice Cap. Lobes of the Moray Firth and 

Strathmore are deflected around the eastern Grampians ice mass, only moving onshore after 

retreat of this ice (figure 9.15).  Ice in the Spey valley retreats back towards central Scotland 

bypassing an ice mass on the Cairngorms (figure 9.12).  

 
Figure 9.16 Lakes, moraines, TT retreat flowsets, and eskers combine to describe retreat of a lobe of ice 
anticlockwise around the Cheviot massif and westward up the Tweed valley. Retreat of ice in an anticlockwise 
direction around the Cheviot ice mass.  To the south of the Cheviots lateral channels document ice sheet thinning and 
retreat into the upland region. The question mark marks an area where it is impossible to reconstruct the retreat 
pattern due to a lack of evidence.    
 

 There is some evidence for minor expansion out of local ice centres following retreat of 

lowland lobes. For example, lateral meltwater channels and moraines in the valleys which 

open out into Strathmore document retreat by valley glaciers in a NW direction after retreat 

of the main lobe of Strathmore ice. Welsh ice expansion is suggested following retreat of the 

Irish Sea lobe in the Cheshire Plain as indicated by the TT retreat flowset in the Vale of 

Clwyd and moraines in eastern mid Wales (figure 9.8).  In eastern mid Wales the 

stratigraphy is also consistent with oscillations between Welsh sourced and Irish Sea ice 

sourced ice (Bowen, 1999b; Evans et al., 2005). There are two scenarios for retreat of ice 

back into the Yorkshire Dales on the basis of the arrangement of moraines from the Vale of 

York (figure 9.17). Either a) retreat of ice into Wensleydale from the Vale of York in 

synchrony with retreat of the Vale of York ice lobe or b) once retreat of the Vale of York ice 

is complete, expansion of ice out of Wensleydale into the Vale of York.  Deformation 

structures within ice contact deposits at the junction between Dales ice and the Vale of York 

lobe suggest that Dales ice expanded into the Vale of York prior to advance of the Vale of 

York lobe (Evans et al., 2005) and so the first scenario is accepted (figure 9.17, inset map on 

Map 3). 
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Figure 9.17 Detail of retreat up the Vale of York and into the Yorkshire Dales and southern North Sea. Ice 
uncouples at the head of the Vale of York and retreats by thinning into the Yorkshire Dales. North of the Tees, 
lowland retreat is poorly constrained.  
 

9.3.3 Conflicts/discrepancies between lines of evidence 

In some locations the lines of evidence appear to contradict each other. The preferred (simplest) 

solutions that can explain the conflict that have been incorporated into the overall summary 

(figure 9.9) are described below and sites are flagged as locations for future fieldwork. 

 

9.3.3.1 Opposing retreat evidence – ice front oscillations 

There is no overwhelming evidence for major readvances of the ice sheet on the basis of the 

primarily geomorphological evidence considered here. However, in some locations, overlapping 

evidence for retreat in opposing directions can only be accommodated if an oscillation of the ice 

sheet is invoked. In most cases these imply movements of the ice of the order of hundreds of 

metres and are therefore not taken as indicative as ice sheet scale readvances of the ice front. 

Figure 9.18 shows the locations of possible ice front oscillations. It is interesting that these 

coincide with locations of ice sheet uncoupling, e.g. Midland Valley of Scotland (figure 9.14). It 

is thought that these apparent conflicts arise due to the uncoupling of ice in these areas, where 

opposing ice margins oscillated interrupting gradual successive retreat. For example, in Buchan 

on the north side of the Strath Isla close to Aberchirder there are a series of thin arcuate moraine 

ridges (figure 9.15). These ridges are little modified and are not over printed by the lateral 

meltwater channels running W-E along the coast. These moraines therefore represent an 
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expansion of inland ice following coastal deglaciation (figure 9.15). Till with a Moray Firth 

provenance is overlain by till with a central Grampian or Spey provenance in this area (Merritt 

et al., 2000) consistent with a short readvance of local ice following recession of the Moray 

Firth ice lobe. Interpretations made in this thesis are also consistent with the contention of 

Merritt et al. (1995) for an oscillation of the ice front at Ardesier.  

 

Till stratigraphy in the Solway lowlands has been invoked to support a readvance of ice from 

Scotland (chapter 2). The reality of this oscillation is an ongoing debate (Huddart, 1991). Figure 

9.13 shows the detail of the retreat pattern reconstruction in the Solway lowlands. North of the 

Lake District, lateral meltwater channels, eskers and moraines combine to document retreat 

southward from the Solway lowlands and up the Vale of Eden accompanied by ice thinning. In 

opposition to this, glaciolacustrine sediments in the Vale of Eden suggest ice blocking the 

Solway lowlands and retreat northwards after deglaciation of the Vale of Eden. All of this 

apparently contradictory evidence can be accommodated if Southern Upland sourced ice 

expanded south, into the recently deglaciated area (following retreat of ice southwards) thus 

blocking the drainage route into the Irish Sea to create a proglacial lake. Consistent with an 

expansion of Scottish sourced ice during deglaciation are detailed sedimentological and 

geomorphological observations from the Isle of Man supporting an oscillating Irish Sea ice lobe 

(Thomas et al., 2004) and the location and internal structure of the ice contact delta at Holme St. 

Cuthberts in the Solway lowlands (Livingstone, pers. comm.). 

 

Lateral channels on the coast of Wester Ross indicate a lobe of ice retreating back between Skye 

and mainland Scotland after retreat of ice from the coast (figure 9.19). Well documented 

moraines on Wester Ross have been used to support a major still stand or minor readvance of 

ice during retreat (Robinson and Ballantyne, 1979). The readvance status of this suite of 

moraines has not yet been confirmed by stratigraphical evidence and is based on the extensive 

nature of the moraine across several lochs and cross-cutting striae close to the Redpoint 

moraine. There is no new evidence in this thesis to confirm or reject the readvance status of the 

moraines. The lateral channels on the coast indicating a lobe retreating between Skye and 

mainland Scotland forms a slightly tortuous margin with the Wester Ross moraines if sequential 

retreat out of the Minch is assumed.  An alternative scenario would be for retreat to an 

undefined position on mainland Scotland within the line marked by the Wester Ross moraines, 

followed by an advance to the Wester Ross position. However, the evidence to support the 

readvance status of these moraines is far from unequivocal and in the absence of corroborating 

stratigraphical information, the simpler, if tortuous, retreat scenario is incorporated in the 

overall retreat pattern (figure 9.9; Map 3).  
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Figure 9.18 Retreat pattern presented in figure 9.8 with locations of minor oscillations of the ice margin 
marked by orange circles: Solway lowlands, Ayrshire and Midland Valley, Buchan, Ardesier, Wales, Vale of York 
and Wester Ross. It is important to note that in the absence of dated stratigraphical information all moraines are 
assumed to represent former still stand positions of the ice margin during retreat and not readvance positions. The 
majority of the suggested oscillations occur at sites of ice sheet uncoupling/unzipping. Solid circles mark locations 
where evidence requires oscillation.  Empty circles mark position of locations of more speculative oscillations.   
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9.3.3.2 Coincident lateral meltwater channels and eskers 

In the vast majority of case the ‘rule’ and assumptions (chapters 3 and 7) for interpreting 

landform suites appear to work in that they permit a simple deciphering of complex patterns. 

However, in a few areas eskers and lateral meltwater channels comprise the same pattern of 

retreat (figure 9.7) which contravened our ‘rules’ as eskers are taken as forming during retreat of 

warm-based ice whereas lateral meltwater channels are though to form at the margins of cold-

based ice. There are several possible explanations for this: 

1. The meltwater channels were inscribed during the initial stages of deglaciation when ice 

thinned to reveal high ground, and the margin of the ice front was some distance from the 

area of meltwater channel formation. As deglaciation progressed thermal conditions at the 

base of the ice changed so that as the ice front passed the area retreat was warm-based and 

eskers were formed.  

2. The mapped eskers are not the depositional infill from subglacial conduits but erosional 

remnants of kame terraces formed at the margins of the retreating ice and subsequently 

modified by fluvial erosion.  

3. The lateral channels were not formed during retreat but advance of the ice sheet.   

4. Two discrete retreats of the ice front over the region separated by a readvance of ice in the 

intervening period.  

5. An extreme temperature gradient existed in the glacier, whereby the ice is cold-based at the 

surface of the ice and warm-based close to the bed.  

6. Although the channels exhibit the characteristics of lateral channels they are really 

subglacial in nature and therefore have been misclassified.  

The strong evidence for topographic control on ice flow evident from flowset analysis (chapter 

6) and the multiple examples of coincident lateral channels and eskers leads this thesis to favour 

the first hypothesis in the majority of cases, e.g. for the Vale of Eden and Vale of York. 

 

Close to Inverness, in the Moray Firth, eskers and lateral meltwater channel actually overlap 

(figure 9.20).  This implies thinning of the ice sheet followed by progression of the ice margin 

over an area already deglaciated. In this instance option 6 is favoured as the security of the 

lateral classification is only ‘probable’.  
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Detail of retreat in the Minch. a) Retreat evidence in Wester Ross region; b) successiFigure 9.19 ve retreat 

into Northern Scotland; and c) retreat into northern Scotland to an unknown inland position (thin lines) followed by a 
readvance and second stage of retreat towards the Loch Lomond Stadial limit (thick lines).  Scenario b is included in 
the retreat pattern presented in Map 5 because it is simpler, despite the slightly tortuous margin.  
 

 
Figure 9.20 Esker and lateral meltwater conflict in the Moray Firth: a) Esker and lateral meltwater channels  
are superimposed on each other but describe the same direction of retreat; b) reconstructed retreat pattern in Moray 
Firth. The channels that were originally interpreted as lateral meltwater channels and here overlap with esker are 
reinterpreted as subglacial channels, thus enabling a simple and coherent reconstruction for the area. Not the minor 
readvance (in bold).  
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Figure 9.21 Esker and lateral meltwater conflict in central Scotland: a) eskers describe retreat to the WNW 
and over high topography, whereas lateral meltwater channels describe retreat by thinning and around the 
topographic highs; b) reconstructed retreat pattern for central Scotland. Balance of evidence suggests westward 
retreat and ice thinning. The awkward esker is excluded from reconstruction. Question mark where retreat is 
unconstrained by evidence. 
 

In Aberdeenshire (figure 9.15) eskers, moraines and lateral meltwater channels describe 

thinning and westward retreat from the coast into the Grampians and Cairngorms. 

Glaciolacustrine sediments require ice damming supporting ice retreat eastward, i.e. in an 

offshore direction. As a further complication, NNE-SSW orientated eskers parallel to the coast 

suggest ice retreat towards the south.  The evidence for opposing eastward and westward retreat 

can be accommodated in a scenario of initial retreat inland from the coast, followed by onshore 

incursion of ice to create ice damned lakes and final retreat of this lobe of ice. The NNE-SSW 

trending eskers are either part of the initial inland retreat or suggest that retreat of the offshore 

lobe retreated both eastward and southward. A further alternative is that the eskers were formed 

in the zone of separation of the two ice masses rather than behind a retreating ice margin. The 

eskers are within the BRITICE+ database as well as in the new mapping. Therefore the author is 

confident that they are eskers and not moraine ridges that have been misinterpreted. 

Alternatively, our model of esker genesis is wrong and eskers represent material deposited at 

junction between two separating ice masses. Arguably, this may be the more common scenario. 

 

9.4 Summary 

For the first time a systematic analysis of evidence for the whole of Britain has been conducted 

yielding a pattern of ice retreat. This analysis was based on 5 different lines of evidence 

(moraines, lateral meltwater channels, eskers, glaciolacustrine deposits, and time-transgressive 

retreat flowsets) and the widespread agreement between these provides a corroboratory 

reassurance that the final synthesis is robust. It is clear that ice retreated back to multiple 
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regional ice centres, and final retreat was controlled by topography as the ice sheet thinned and 

topographic highs were exposed. This pattern of retreat is the reversal of the instantaneous 

glacierization model of ice sheet inception (Andrews and Barry, 1978).  

 

Ice often retreated by lowland lobes. Lobes of ice emanating from the primary ice centres of the 

ice sheet were often deflected by second order regional divides or cold based ice domes. The 

retreat pattern presented describes retreat by several large lobes around and towards a number of 

regional ice centres. On the basis of the lack of warm-based retreat evidence (i.e. TT retreat 

flowsets and eskers) in Wales and the Cheviots, it is postulated that these areas supported cold 

based ice during retreat. In general the five lines of evidence are mutually corroborative, 

however some discrepancies do occur. Many of the conflicts described above occur in locations 

between two ice centres. These locations may document the interaction of ice flow out of the 

two divides and changes due to changing relative dominance of the two ice centres during the 

glaciation. In the case of the northern flanks of the Southern Uplands and the NE Buchan coast 

the esker patterns are difficult to integrate with other lines of evidence. This may suggest that 

the reconstruction of margins perpendicular to esker direction is incorrect. Instead eskers may 

occur during unzipping of ice masses. There is no new evidence for large scale readvances of 

the ice margin, only minor oscillations of the margin of the order of 10s km.  

 

The retreat pattern presented in this chapter is based on newly mapped and existing 

geomorphological evidence. The summary retreat pattern is the best explanation that can 

accommodate what we see in the landscape. The reconstruction has been achieved at a 

landscape, or ice sheet scale, and is not intended to replace detailed local scale reconstructions 

of the retreat pattern where they have been achieved. Instead, the reconstruction should serve as 

a framework in which to set such studies. Locations of problematic or conflicting evidence have 

been flagged for further attention (section 9.3.3). There is little insight into the part of the retreat 

pattern that presently lies offshore. This project has focused on the terrestrial glacial evidence. 

Recent examinations of bathymetric data suggests that there is a wealth of information yet to be 

incorporated (Graham, 2007; Bradwell et al., 2008b) The reconstruction presented in Map 5 is 

consistent with the interpretations of Bradwell et al. (2008b). The lack of information on retreat 

from the offshore part of the ice sheet is problematic in the southern North Sea, North Channel 

and Irish Sea. In the case of the southern North Sea, one scenario is that ice retreated from the 

NE coast of England to the NNW towards the Tweed and Southern Scotland. Alternatively, ice 

retreated in a NE direction towards the Southern North Sea.  

 



 

Chapter 10  
Dating constraints and application to the reconstructed 
retreat pattern 

 

10.1 Introduction 

The previous chapter presented absolute pattern of retreat reconstructed from glacial landform 

evidence without any reference to chronology. It was noted that it was difficult to join up the 

pattern spatially and across blank areas. To connect the reconstructed margins and relate the 

retreat pattern to climate changes and the behaviour of other ice sheets during the last glacial we 

need to attach an absolute chronology. In order to do this it was first of all necessary to collate a 

database of all of the published absolute dates that relate to the last British Ice Sheet since there 

is no published database of chronological evidence along the lines of the BRITICE database of 

geomorphological evidence. This chapter details the compilation process, presents the resulting 

database, and describes how the dates were incorporated with the retreat pattern synthesis of 

chapter 9, to produce a timed framework of ice sheet deglaciation. All ages referred to in this 

chapter (and thesis) are calendar ages unless documented with the suffix 14C yr BP.  

10.2 Database of published absolute dates  

It is difficult to confidently associate ice sheet events reconstructed from terrestrial 

geomorphology with the high resolution events recorded in marine and ice cores due to our 

inability to date subglacial landforms (figure 10.1b), the imprecision of dating methods, and 

uncertainty regarding the mechanisms controlling interactions between ice sheets and climate. 

Absolute deglaciation dates do however provide a means to correlate spatially distant parts of 

the pattern of retreat of the ice sheet and investigate the phasing of retreat in different sectors of 

the ice sheet. As a result of the dating methods currently available to us, the majority of absolute 

dates relate to ice free conditions, i.e. they are minimum dates for ice sheet retreat or maximum 

dates for ice sheet advance, and thus bracket the time period that the ice sheet existed in any 

particular area (figure 10.1a). Minimum dates for deglaciation of ice in (and maximum dates for 

advance of ice over) a particular area are most commonly derived from radiocarbon dating of 

organic sediments overlying (or underlying) till or moraines. Such dates define a relatively 

crude bracket for glaciation due to the lag time involved between ice melt and vegetation 

succession. Cosmogenic isotope exposure dating has been used to date moraine surfaces and 

luminescence dating has been attempted for glaciofluvial outwash sediments and loess. These 

dates provide a more direct means of dating the ice sheet margin but tend to have high 

associated errors, often of the order of 1000s of years. 
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Conceptual diagrams of how we can incorporate chronological informFigure 10.1 ation into ice sheet 

reconstructions: a) absolute dates from radiocarbon, luminescence, cosmogenic surface exposure and other dating 
methods can only date the absence of ice, i.e. events that occur before ice sheet build up or after ice sheet retreat. We 
can examine the spatial pattern of dates and attempt to attach ages to the reconstructed margin positions; b) relative 
age information from superimposed landforms and sediment stratigraphies. Reproduced in part from Kleman et al. 
(2006).  

10.2.1 Compilation of the database 

A thorough search of the published literature and online lists for dates, relating to the advance 

and retreat of the last British Ice Sheet was undertaken, the results of which are presented in 

table A1 in the appendix. Dates were derived primarily from review papers (Sissons, 1967; 

Andersen, 1981; Sutherland, 1984; Sugden, 1986; Jones and Keen, 1993; Bowen, 1999a; 

Knight, 2001; Bowen et al., 2002; Evans et al., 2005). It is acknowledged that the search was 

not exhaustive and it is likely that some dates will have been missed. The search was extended 

beyond the Quaternary glaciological literature in order to capture a larger number of relevant 

dates. For example, the online date list of the Council for British Archaeology (CBA) 

‘Archaeological Site Index to Radiocarbon Dates for Great Britain and Ireland’ was obtained in 

full from The Archaeology Data Service based in York (CBA, 2000 (updated 2008)). Also used 

was the Oxford University Radiocarbon Laboratory date list (ORAU, 2008), often to check OS 

grid references. A full search of this date list was not undertaken as the structure of the archive 

did not facilitate fast searching for multiple references. The cut off point for collection was 

February 2008, and so dates published after this are not included in the database. During 

collation of this database I have been made aware of two independent attempts to conduct a 

similar collection of dates from the literature (By R. Chiverell, pers. comm. and by R. 

Gyllencreutz, pers. comm.). Neither of these date compilations were available at the time of 

writing. 

 

Where available the OS grid reference, material dated, stratigraphic position of the sample, 

method of dating, and pertinent comments made by the authors were recorded. Unfortunately 

many of the dates derived from the CBA date list contain little or no information on the 

stratigraphic position of the sampled material. Most of these dates are from archaeological 

artefacts and bone found in caves, and therefore constrain the approximate date that the cave 

was occupied. So, although they do not have complete stratigraphical information, where the 
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sites lie within or close to the limit of the glaciated area, they can still provide minimum dates 

for when an area became deglaciated enough to allow human occupation, and maximum dates 

for the onset of glacial conditions that prevented settlement. Errors are presented as published, 

generally to one standard deviation of the mean. Where OS grid references were not given, 

common in review papers, reference was made back to the original source material to obtain the 

OS grid reference. There was some degree of variability in reporting of OS references, 

sometimes full 10 figure references given, but more often 6 figure references. In some cases, 

especially for offshore dates, Lat/Long grid references were provided. In order to turn the dates 

table into a GIS layer of site locations lat/long references were converted into OS grid using the 

online conversion sites: http://www.nearby.org.uk/conversion.cgi and 

http://gps.ordnancesurvey.co.uk/etrs89geo_natgrid.asp.  Manual location of points was 

necessary for dates where no geographic location information was provided or the published 

reference was incorrect. In such instances published maps detailing the location of dated sites 

were scanned, geo-corrected and the location points digitised. This is an imprecise method as it 

is dependent on the scale of the map and the quality of geo-referencing information provided 

with it. It is estimated that the error due to misplacement of dated sites is in the order of 1 km 

and therefore unlikely to be problematic in consideration of reconstruction at the scale of the ice 

sheet.  From over 50 papers and the two databases examined, 426 dates from a total of 198 

locations were found and are enclosed in the database (figure 10.2 and table A1). Dates in table 

A1 are listed in numerical order by site number; with the exception of site 11 and sites 192-198, 

sites are numbered from south to north, i.e. site 1 is on the Scilly Isles and site 191 in the 

northern North Sea. 

10.2.2 Calibration of radiocarbon dates 

Dates are from a variety of dating methods, but primarily radiocarbon analysis. Of 426 dates, 

323 are from radiocarbon dating (both AMS and conventional methods). All radiocarbon dates 

require calibration to calendar ages before they can be considered alongside absolute dates 

derived by other methods. It is beyond the scope of this thesis to go into the detail of 

radiocarbon calibration and the problems and inaccuracies of radiocarbon dating. For an 

examination of the issues the reader is referred to (Guilderson et al., 2005). Calibration to 

12,420 years BP is regarded as being relatively secure on the basis of tree ring data (Reimer et 

al., 2004). Beyond this point there are a variety of calibration curves available to choose from 

derived from a number of different calibration datasets. In general, the intra-curve errors and 

inter-curve discrepancies increase towards the limit of radiocarbon dating at around 50 ka BP. 

Detailed discussion of the differences between the available calibration curves is documented in 

(van der Plicht et al., 2004). 
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Figure 10.2 Sites contained within database of dates relating to the last British Ice Sheet compiled from published  
literature. Full details are given in table A1. All date locations are shown. Solid dots mark locations where dates have 
been used in further analysis. Dots with a white centre show locations where all dates at that site are regarded as 
unreliable or questionable and are therefore not used in subsequent analysis (see table A1 for details). Dots with grey 
centres are regarded as reliable but were not used in further statistical analysis as lie beyond the maximum limits of 
the British Ice Sheet, e.g. 190 and 191 relate to events associated with the Scandinavian Ice Sheet and sites 116, 124 
and 120 on the Barra Fan. These dates provide useful contextual information about the ice sheet chronology. 
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All radiocarbon dates were calibrated using the calibration curve described in Fairbanks et al. 

(2005) and the associated online calibration programme at 

http://radiocarbon.1deo.columbia.edu/research/radiocarbon.htm. This calibration curve extends 

to 55 ka BP and was selected as it enabled the same calibration curve to be used for all the 

radiocarbon dates spanning the growth and decline of the ice sheet, approximately 32-13 cal. ka 

BP. A local marine reservoir correction of 347 years was applied to all marine samples. This 

correction value was obtained as an average for UK waters from the Marine Radiocarbon 

Correction Database at http://calib.qub.ac.uk/marine/ (table 10.1). This is an oversimplification 

as the reservoir effect is known to have varied during the deglaciation (Voelker et al., 1998). 

 

Table 10.1 Reservoir age determinations used to find a mean average local reservoir age value to apply to marine 
radiocarbon samples. Determinations taken from CHRONO Marine Reservoir Database at 
http://calib.qub.ac.uk/marine/index.php (Reimer and Reimer, 2001). 
 
Latitude  Longitude Locality Reference Reservoir 

Age 
Reservoir 
error 

55.97 -3.15 Leith Harkness 1983 396 58 
54.17 -5.00 Isle of Man Harkness 1983 346 47 
54.17 -5.00 Isle of Man Harkness 1983 397 64 
55.83 -6.00 Firth of Clyde Harkness 1983 302 46 
55.83 -6.00 Firth of Clyde Harkness 1983 293 52 
57.83 -5.33 Loch Broom Harkness 1983 372 30 
57.83 -5.33 Loch Broom Harkness 1983 456 35 
59.55 -1.63 Fair Isle Harkness 1983 402 30 
59.55 -1.63 Fair Isle Harkness 1983 449 31 
55.87 -4.93 Skelmorlie Bank Harkness 1983 214 42 
55.87 -4.93 Skelmorlie Bank Harkness 1983 200 54 
55.87 -4.93 Skelmorlie Bank Harkness 1983 297 80 
55.73 -4.88 Hunterston Sands Harkness 1983 395 38 
55.73 -4.88 Hunterston Sands Harkness 1983 409 33 
55.97 -2.92 Seton Sands Harkness 1983 376 32 
55.97 -2.92 Seton Sands Harkness 1983 283 41 
53.25 -4.50 Anglesey Harkness 1983 303 50 
55.00 -5.00 Castle Rock, North Channel Harkness 1983 347 50 
   Mean 347 45 

 

Use of the Fairbanks calibration curve is largely a pragmatic choice. The internationally agreed 

calibration curves INTCAL04 (Reimer et al., 2004) and MARINE04 (Hughen et al., 2004) can 

only calibrate to 26 cal. ka BP. An alternative would have been to calibrate using the 

INTCAL04 and MARINE04 curves, as appropriate for each date, to the limit of these curves at 

c. 26 ka BP and continued with the Fairbanks curve for the remainder, noting the offset at the 

point of change. However, it was decided that the advantages of such an approach were 

outweighed by the benefits of using the same calibration curve for all dates, thus creating an 

internally consistent database. A simple comparison was made to assess the implications of 

using the Fairbanks calibration and online calibration tool as opposed to the INTCAL04 curve 

and the CALIB programme. In general, the calibrated dates were within +/-300 years of each 

other which seems reasonable in comparison to the error margins associated with the dates. The 

Fairbanks calibrated dates were generally younger than the INTCAL04 dates except during the 

period 13-15 14C ka BP, when the largest divergence of the dates also occurred.   
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Seven dates were unable to be calibrated as they were either out of range of the calibration 

curve or no error margins were specified. The calibrated ages and original radiocarbon ages are 

presented in table A1 in the Appendix.  

10.2.3 104BA note on the reliability of dates 

During compilation of the database, no discrimination was made on the quality or reliability of 

dates. However, not all of the dates were used in further analysis. Dates were rejected where the 

author indicates that the age may be unreliable, or where subsequent dating at the same site has 

suggested to subsequent observers that a date is unreliable, and where calibration of radiocarbon 

dates was not possible. Rejected dates and reasons for rejection are documented in table A1. 

Common reasons for rejection were: contamination of radiocarbon dates, incomplete resetting 

of luminescence dates, signal inheritance of cosmogenic surface exposure dates, or 

unreasonably large error margins. Of the 427 dates, 127 are rejected and are therefore not 

considered in further analysis. Of the rejected dates 79 are from radiocarbon dating, 18 from 

luminescence dating, 4 from Uranium series dating, and 20 cosmogenic dates. For simplicity, 

the assumption of zero erosion was taken for cosmogenic dates when there was a choice. 

However, it is acknowledged that this is likely to be an unreasonable assumption in the context 

of a history of glacial erosion and deposition. Where there are multiple dates at a single location, 

it is common in cosmogenic exposure dating to take the oldest date as the most reliable (Phillips 

et al., 2008). However, some studies use a weighted average of the ages especially where ages 

occur in a cluster (Everest and Kubik, 2006).  Each individual date is presented in table A1. A 

further 23 dates in the database were not used in analysis, as they lie beyond the limits of the 

glaciated area. These dates provide a useful context for glacial activity but do not constrain the 

ice sheet directly and are therefore excluded. These sites are 120, 124, and 116 from cores in the 

Barra Fan, 190 and 191 in the northern North Sea, and 14 and 15 from cave sites in South Wales 

(figure 10.2). Figure 10.3 shows the ages plotted against site numbers and coloured to show the 

method of dating. In general dates derived from luminescence and cosmogenic surface exposure 

dating have the largest associated error margins. 

10.2.4 105BClassification of dates 

In order to derive glaciological meaning from the database, dates were classified following the 

procedure of Bryson et al. (1969) into the following categories:  advance, deglacial, margin, 

and ice free. Advance dates indicate that ice cover of the location occurred after this time, 

therefore constraining the advance of the ice sheet. Commonly these are ages derived from 

radiocarbon dating of organic material buried beneath, or incorporated within, glacial deposits. 

Deglacial dates indicate ice free conditions at the location beginning before this time. These are 

commonly ages derived from radiocarbon dating of organic material or post-glacial sediments 

overlying till. Where an age was derived from organics or sand sandwiched between two tills 

the date was classified as an advance date in reference to the upper till as it is the most recent, 
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but it is noted that this date could also be a deglacial date for the lower till. It is also possible 

that such dates constrain an oscillation of the ice margin rather than the initial build up of the ice 

sheet.  

 
Figure 10.3 Dates plotted by site number and coloured to reflect method of dating in order to show the abundance 
of each dating method and differences in associated error margins. The majority of dates are from radiocarbon 
analysis (black). Radiocarbon dates span the full range of the time period of interest (50-10 ka BP). Cosmogenic 
(blue) and luminescence (red) dates have much larger error bars. Cosmogenic dates are surface exposure ages and 
therefore only span the last 22 ka. There are only a few dates from U series analysis (green) and these have large 
associated error bars. 
 

A date from beneath the lower till would be necessary to confirm this. A margin date is where 

there is reason to consider that the ice margin is close by the site at the time. For example, a 
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cosmogenic exposure age of the surface of a boulder on a moraine crest, or a date constraining 

sediment deposition assumed contemporaneous with a till deposition.  Ice free dates are ages for 

ice free (or non-glacial) conditions at the site where there is no stratigraphical information for 

the sample. These are mainly from archaeological samples, the majority of which are from cave 

settings, which indicate ice free conditions by the assumption that viable human or animal 

occupation of a cave will only occur when the cave is some distance from the ice margin. 

Similarly, speleothem growth can only occur when the ground above the cave is unglaciated, so 

speleothem dates are also part of the ice free category. Dates from marine settings documenting 

glaciomarine conditions are also considered to be ice free. Ice free dates bracket the time period 

that a site experienced ice cover.  Categories are listed for all dates regarded as reliable and 

useful in table A1. 

 

Of the 306 classified dates 179 are deglacial, 9 are margin, 53 are ice free, and 65 are advance. 

Figure 10.4a is a histogram of the classified dates to show the distribution of ages over the time 

period of interest (10-50 ka BP). Figure 10.4b shows the histogram with the proportion of ages 

attributed to each category. Figure 10.5 shows the individual histograms and geographical 

distribution of each date category. The distribution of each category is discussed in the 

following section (10.2.5). 

10.2.5 106BInvestigating the database 

Before applying the ages to the reconstructed retreat pattern, it was thought fruitful to examine 

if any spatial patterns could be recognised in the dates alone. Ice free dates neatly frame the 

glacial period as occurring between 26 and 18 ka BP (figures 10.4b and 10.5d). There are very 

few margin dates; one occurring before 22 ka BP and the rest occurring in a cluster between 13-

18 ka BP (figures 10.4b and 10.5b). Deglacial dates are confined to 26-11 ka BP (figure 10.5a). 

Therefore sections of the ice sheet were in retreat before the global LGM (23-21 ka BP). There 

are significant increases in the number of deglacial dates at 18 ka and 15 ka BP. Figure 10.4b 

demonstrates that there is an overlap in time between advance and deglacial dates. Deglaciation 

of some parts of the ice sheet appears to have begun (figure 10.5a) while other parts of the 

country were yet to be glaciated. In a situation of monotonic advance/retreat of ice from a single 

start/end point we would expect a clear separation of deglacial and advance ages. The overlap 

suggests that (a) the maximum spatial extent of the ice sheet was reached at different times at 

different parts of the margin and/or (b) retreat was interrupted by oscillations of the ice sheet 

margin, i.e. some advance dates are really re-advance dates.  



  Chapter 10. Dating constraints and application to the reconstructed retreat pattern 

 

 224

 
Figure 10.4 Histogram of absolute ages relating to the last British Ice Sheet to show distribution (upper figure). 
Unreliable and context dates excluded, see text for details (N = 306). Stacked histogram of dates to show class 
distributions (lower figure). Over half of the dates are classed as deglacial (59 %). The overlap between advance and 
deglacial dates (26-16 ka BP) suggests that the build up and retreat of the ice sheet was spatially variable. Either 
sectors of the ice sheet are in retreat while other areas were yet to be glaciated, or some of the advance dates are 
really re-advance dates. Ice free dates neatly frame the operation of the ice sheet to between 26 and 18 ka BP. It is 
suggested that margin dates older than 23 ka BP relate to maximum limits and the rest to deglacial margin positions. 
The stacked histogram is shown ‘exploded’ in figure 10.5.  
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Figure 10.5 Histograms of absolute ages organised by classification and maps of distribution of dates by type: a) 
deglacial; b) margin; c) advance; and d) ice free 
 
 
In order to examine these two possibilities we need to consider the spatial distribution of dates. 

For clarity, the distribution of dates is shown on two maps; figure 10.6 shows the advance, 

margin and ‘old’ (>26 ka BP) ice free dates and figure 10.7 shows the deglacial, margin and 

‘young’ (<18 ka BP) ice free dates. For radiocarbon dates, only the youngest or oldest date is 

shown on the figures as appropriate, for example the youngest (most recent) age on figure 10.6 

or the oldest date on figure 10.7. For dates derived from other methods all reliable ages are 

shown. 

. 
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Figure 10.6 Distribution of ages relating to advance (build up) of the ice sheet. No clear pattern emerges from the 
dates. Advance (downward pointing triangle), margin (square) and ‘old’ (older than 26 ka BP) ice free dates 
(asterisk). Only the youngest dates are shown where there are multiple radiocarbon dates at a site. Dates are coloured 
by time bracket (see key). There are several anomalously young advance dates that stand out on the map: 20.0 ka on 
the Lleyn Peninsula (site 34), 21.4 ka in the Vale of Clwydd (site 45), 21.7 ka at Dimlington on the east coast (site 
55), 17.5 and 16.6 ka on the Lincolnshire Wolds dip slope (sites 59 and 60), 17 ka BP at St Fergus (site 135) and 19.9 
and 20.5 ka on the eastern coast of Scotland (site 115). These are anomalously young for their location and in 
comparison to neighbouring dates. The significance of this is discussed further in the text. The underlined date from 
northern Scotland is regarded as unreliable by Bradwell et al (2008b).  
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Figure 10.7 Distribution of ages relating to deglaciation of last British Ice Sheet. Deglacial (upward pointing 
triangle), margin (square) and ‘young’ (younger than 18 ka BP) ice free (asterisk) dates. Only the oldest date is 
shown for deglacial dates where there are multiple radiocarbon dates. All determinations are given where a different 
dating method has been used. Dates are coloured up by age bracket (see key). No clear pattern emerges from the 
dates. NE Scotland appears to have been deglaciated as early as 20 ka BP. The Lake District stands out as anomalous 
in comparison with neighbouring areas the dates suggesting ice free conditions as early as 17 ka BP. The northern 
North Sea was the first area to be deglaciated, with the date suggesting that coalescence of the British and 
Scandinavian ice sheets occurred before 25.1 ka BP. According to the dates shown in figure 10.6 this is before ice 
reaches the eastern English coast and the maximum limit in on the Scilly Isles.  
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The majority of dates relate to the absence of ice. If there were a large enough number of dates 

we would expect that the dates constraining ice sheet build up (advance and ‘old’, i.e. >26 ka 

BP ice free ages), bearing in mind their maximum nature, would form an envelope of time 

constraining the nucleation centres of the ice sheet, the oldest dates closest to the site of ice 

sheet build up and the youngest dates closest to the maximum limits. Likewise, if the ice sheet 

retreated back to a single point we would expect that sites furthest from the limit would derive 

the oldest and greatest number of deglaciation dates. Figure 10.8 shows a schematic graph to 

illustrate this concept. To investigate this, it was assumed that the Loch Lomond Stadial limit in 

Scotland is analogous to both the initial stages and final position of the Devensian ice sheet.   

 

 
Figure 10.8 Schematic diagram to show hypothetical distribution of dates from a single nucleation point/retreat 
position. Maximum/minimum dates form a cloud of points that frames the build up/retreat of the ice mass. Margin 
dates (square) plot on the line. Ice free dates (asterisk), advance (downward pointing triangle) and deglacial (upward 
pointing triangle) plot below the line.   
 

The advance, margin, and ‘old’ (>26 ka BP) ice free dates were plotted against distance from 

the Loch Lomond Stadial Limit in Scotland (figure 10.9). Figure 10.9 does not appear to show a 

clear relationship between distance from the Loch Lomond limit and age. Therefore 

advancement of the ice margin does not occur progressively from Highland Scotland. This 

likely supports the concept of multiple ice nucleation centres for the last British Ice Sheet. 

Alternatively, there are too few dates for a pattern to emerge.  The advance dates from two sites 

(115 and 135), circled by a dotted line in figure 10.9a stand out from the rest of the data points 

as anomalously young (20.5, 19.9 and 17.0 ka BP). It is suggested that these dates are re-

advance dates and reflect an oscillation of the ice margin during deglaciation, not the initial 

incursion of ice. The location of these dates within the maximum limits of the last ice sheet 

close to the eastern Scottish coast (figure 10.7c) supports this interpretation. Dates from site 115 

have been used by McCabe et al. (2007) to propose a re-advance of the last British Ice sheet into 

the Tay estuary after 20 ka BP. The margin dates from sites 149, 125 and 128 (marked with a 

circle on figure 10.9a) also appear anomalously young. The location of these ages supports the 

interpretation of these dates as positions during retreat of the ice sheet (figure 10.7c).  
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The other margin dates (sites 1, 2, 13 and 139) are located close to the maximum limits. A third 

group of dates also stands out on the graph as anomalously young (< 25 ka BP) in comparison 

to other dates a similar distance from the Loch Lomond limit (bounded by the solid and dashed 

lines; figure 10.9a). These dates are located in North Wales (sites 45 and 34; 21.4 and 20.0 ka 

BP respectively) and eastern England (sites 59, 60, 55 and 192; 17.5, 16.6, 21.7 and 22.0, and 

23.3 ka BP respectively) (figure 10.9c). If these dates are not taken as re-advance ages they 

imply that the southern limits of the last British Ice Sheet were reached after the maximum 

limits in the north.  

 

Deglacial, margin and ‘young’ (<18 ka BP) ice free dates were also plotted against distance 

from the Loch Lomond Stadial limit (figure 10.10). The dates do not form a cloud of points with 

the oldest dates furthest away. This suggests that the ice sheet did not retreat to a single point 

analogous to the Loch Lomond Stadial limit. On the basis of the time-distance retreat patterns in 

figure 10.8a it is suggested that ice retreated to three locations at a distance of 430, 250 and 0 m 

away from the Loch Lomond limit. This suggests final deglaciation centres in the vicinity of 

central Wales, the Lake District-northern Pennines in addition to the Loch Lomond limit (figure 

10.10c). Deglaciation is completed in all of these areas by c.14 ka BP.  

 

Despite the number of dates and the reasonable distribution of dates across the country it is still 

difficult to draw lines connecting isochrones of ice sheet build up or retreat using figures 10.6 

and 10.7. There are hints from the crude analysis above and the distribution of dates shown in 

figures 10.6 that the build up of the ice sheet was spatially variable and that there were 

oscillations of the ice margin during retreat. The ice sheet appears to have been at its maximum 

limits at different times in different locations. To understand the timing of retreat it is therefore 

necessary to consider the dates in conjunction with the pattern of retreat presented in chapter 9. 

10.2.6 107BContext dates 

Further constraint on the chronology of build up and retreat of the ice sheet is provided by dates 

that lie beyond the ice sheet margin. Figure 10.11 shows additional dates and chronological 

information that provide a context for ice sheet development. A number of marine cores from 

around the western continental margin constrain the timing of ice rafted debris flux from the 

British Ice Sheet. Ice rafted debris is a crude proxy for fluctuations in the ice sheet and the 

proximity of the ice margin. Collectively the ice rafted debris record of these cores frame the 

activity of the last British Ice Sheet to between 30-16 ka BP. Evidence from cores on the Barra 

Fan document peaks in ice rafted debris at 24 and 16.5 ka BP (Wilson et al., 2002). These dates 

from the western continental margin place major deglaciation commencing c. 17 ka BP and 

restriction of the ice sheet to non-marine margins by 16 ka BP.  
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Figure 10.11 Dates that provide contextual information for the last British Ice Sheet. Information derived from 
a number of sources (Kroon et al., 2000; Auffret et al., 2002; Wilson et al., 2002; Carr, 2004; Houmark-Nielsen, 
2004; Laban and van der Meer, 2004; Mangerud, 2004; Graham, 2007; O Cofaigh and Evans, 2007; Greenwood, 
2008). The white line marks the accepted southern limit of ice in England and Wales. 
 

The dated stratigraphy in Norway suggests a two phase glacial history with a re-advance of the 

Scandinavian Ice Sheet c. 21 ka BP (the Tampen readvance). A similar collation of ages for 

Ireland suggests that the Irish Ice Sheet built up around 35 ka BP and decoupled from the 

British Ice Sheet between 17 and 16 ka BP (Greenwood, 2008). 

10.3 55BDating the maximum limits 

The maximum limits of the ice sheet appear to have been reached at different times in different 

locations. Although we are primarily concerned with timing the retreat of ice, before we attempt 
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to attach ages to the reconstructed retreat pattern it is necessary to define the starting points for 

retreat by dating the maximum limits. The youngest ‘build up’ date (figure 10.9) in mainland 

Scotland is 29.5 ka BP (at site 161, Reindeer Cave near Inchnadamph, Assynt). Ice inundated 

the Minch after 27.2 ka BP (site 165, Garrabost, Lewis) presumably converging from the Outer 

Hebrides and Scotland, and was at the western continental margin by at least 26.6 ka BP (site 

139; shelf west of St Kilda). In contrast to these dates, evidence from the Barra Fan (core 

MD95-2006) implies ice at the continental shelf from 30 ka BP (figure 10.11). The reliability of 

the reindeer bone dates from Inchnadamph have been questioned on the basis of contamination 

from the local carbonate geology and revised dates that have been derived from other UK faunal 

remains using new techniques (Bradwell et al., 2008b).  Even if these dates and the date from 

Garrabost are rejected, a collection of dates support widespread ice free conditions in Scotland 

until c. 32 ka BP (figure 10.8; sites 11, 98, and 146) (Whittington and Hall, 2002). That 

confluence of Scandinavian and British Ice Sheets in the northern North Sea occurred before 25 

ka BP is based on the deglacial date from site 171 suggesting commencement of glaciomarine 

conditions at 25.1 ka BP (figure 10.10). This is supported by evidence for fluvial input to the 

ocean from a site off the Celtic continental margin suggesting that the North Sea was ‘blocked’ 

between 34-27 ka BP (Auffret et al., 2002) (figure 10.11). It is assumed that confluence of ice in 

the North Sea was concurrent with shelf edge glaciation and therefore the North Sea date 

provides a minimum age for ice advance to the north-western margin. The starting point for 

deglaciation in the north (the continental shelf edge) is taken as 27-25 ka BP, although ice may 

have reached the continental shelf before this time. If this date is taken as the local maximum 

extent and the dates from central Scotland are accepted, the last British Ice Sheet was confluent 

in the North Sea for a relatively short period of time. 

 

Ice was at the southern Welsh limit at 23 ka BP (site 13; range 25.2-21.2 ka) but may have 

reached the limit in Wales as early as 29.5 ka BP (site 17; range 29.0-29.9 ka) (figure 10.9). 

Advance dates from the Isles of Scilly suggest that the islands were reached after c. 25 ka BP 

(range 26.9-24.6 ka) (figure 10.9). This is consistent with dates from the Celtic Sea placing ice 

advance after 23 ka BP (figure 10.11) (O Cofaigh and Evans, 2007). Loess deposition in the 

south of the islands is dated to 18.6 and 18.8 ka BP (sites 1 and 2) (figure 10.9). The 

stratigraphy of the loess mirrors that of till in the north of the island group, supporting the 

deposition of the till to MIS 2 (Scourse, 2006). The loess dates are classified as margin dates but 

the actual position of the margin could be at any point north of the islands during loess 

deposition. An advance date from the Lleyn Peninsula suggests that Welsh sourced ice 

advanced west after 20 ka BP (site 34). This implies that the Irish Sea glacier had retreated north 

of the Peninsula before this time (figure 10.9). For the rest of the southern margin the picture is 

more complex. The youngest date for advance into the Cheshire Plain suggests that ice 

advanced inland here after 27 ka BP (site 36; range 29-25 ka) (figure 10.9). However, a woolly 
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mammoth bone dated to between 20.0-22.9 ka BP (site 45) lying below Irish Sea till could be 

used to suggest that Irish Sea ice did not advance up the Vale of Clywdd, and potentially the 

Cheshire Plain, until after 21 ka BP (figure 10.9). Although this date is significantly younger 

than the rest of the advance dates in the Cheshire Plain, as maximum ages such a situation is not 

inconsistent with them. Alternatively, initial incursion of ice into the Vale of Clywdd was 

initially prevented by the presence of Welsh sourced ice, the location existed as an ice free 

enclave until 21 ka BP, the bone date is unreliable, or the date reflects an oscillation of the ice 

margin in this region around 21 ka BP.  Ice advanced down the Vale of York after 23.3 ka BP 

(site 192; range 24.8-21.8 ka) but had retreated to north of site 192 by 20.5 ka BP (range 21.7-

19.3) (figures 10.6 and 10.7). Dates from Dimlington on Holderness suggest ice did not reach 

the eastern English coastline until after 22 ka BP (site 55; range 22.5-21.3 ka) and dates from 

inland Lincolnshire suggest ice did not progress inland until after c. 17 ka BP (sites 59 and 60; 

range 19.1-14.9 ka). Ice at this position at this time is consistent with a recently published age 

for a beach deposit (16.6 ka BP, site 192; range 17.8-15.4) related to Glacial Lake Humber, the 

existence of which requires ice damming the Humber Gap (figure 10.9). The new date is 

significantly younger than the previously quoted maximum age for Lake Humber of 26.2 ka BP 

(site 58; range 28.1-24.2 ka). It was suggested earlier that the dates at these sites could reflect 

oscillations of the ice margin (figure 10.7). In the absence of deglacial dates preceding the 

‘young’ advance dates it not possible to confirm or disprove this. If all of the above dates are 

accepted there are two possible interpretations: 

1. Ice did not reach eastern England or the Cheshire Plain until after 17 and 21 ka BP 

respectively. 

2. The dates reflect oscillations of the ice margin within the last glaciation. This implies 

advance into the Cheshire Plain after 27 ka BP. Followed by retreat to an unknown position 

north of Wales before 21 ka BP and a subsequent readvance south after 21 ka BP. This 

could reflect oscillations of the Irish Sea glacier during uncoupling with Welsh ice. In 

eastern England, the dates could be interpreted as advance after 25 ka BP (site 26) followed 

by retreat to an unknown offshore position, followed by a readvance at least as far as 

Dimlington after 22 ka BP, with ice reaching the Lincolnshire Wolds after 17 ka BP. The 

Dimlington date has been invoked to support a contemporaneous readvance of the British 

Ice Sheet with the Tampen readvance of the Scandinavian Ice Sheet (Carr, 2004). 

 

The starting points for retreat from the southern limit are taken as 23-20 ka BP in the Scilly 

Isles, 25-21 ka BP in South Wales and the Cheshire Plain, 23-21 ka BP in the Vale of York and 

19-15 ka BP in along the eastern English coastline. Figure 10.12 shows the reconstructed retreat 

pattern with the maximum limits, or the starting points for retreat, marked with a date or range 

of dates suggested by the build up chronology described above. The northern margin thus 

appears to have been in retreat before advancement of ice to the Scilly Isles and eastern English 
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coastline. The deglaciation of the northern North Sea before 25 ka BP is difficult to resolve with 

the advancement of ice to the eastern English coast after 22 ka BP (figures 10.9 and 10.10). Two 

potential explanations for this are examined in figure 10.13.  

  

 
Figure 10.12 Retreat pattern with maximum limits marked with approximate ages and coloured up to correlate 
similar ages. It appears from the currently available chronology that the maximum limits of the last British Ice Sheet 
were reached at different times. The youngest date for advance date and the oldest date for retreat are used, where 
available, to attach a range of ages to the margin. The southern margin is reached after the northern margin at the 
continental shelf edge.  
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A version of the ‘two stage’ model is presented in figure 10.13a. This was initially proposed by 

Sejrup et al. (1994) and was refined and supported by the micromorphological work of Carr et 

al. (2006). This model suggests collapse of ice in the North Sea and full separation of the 

Scandinavian and British Ice Sheets after 26 ka BP, followed by a readvance of a lobe of ice 

down the NE English coast after 21 ka BP to correlate with the Tampen readvance of the 

Scandinavian ice sheet (Sejrup et al., 1994).  The concept of a lobe of ice down the eastern coast 

has been postulated for some time and persists in the literature in the absence of an alternative 

explanation for the glacial evidence of this coastline (Eyles et al., 1994). In figure 10.12b an 

alternative model is presented. Here only the northern North Sea is deglaciated at 26 ka BP, 

with an ice mass persisting on the higher ground of the southern North Sea. Ice remains close to 

the English coast, and advances a short distance at c.17-22 ka BP to satisfy the dates from 

Dimlington and Lincolnshire. This model has the advantage of not requiring the advance of a 

lobe of ice down the NE English coast. The deflection of this lobe is difficult to explain in the 

absence of an obstacle in the North Sea. The bathymetry of the North Sea does not suggest this 

as a probable course for ice flow, and we regard it as glaciologically implausible. 

10.4 56BApplication of dates to reconstructed retreat pattern 

The low density of dates means that understanding the timing of deglaciation requires appeal to 

the reconstructed pattern of retreat to connect disparate parts of the ice sheet and understand the 

operation of multiple ice centres. The retreat pattern and dates are examined on a region by 

region basis and margins set into a timeframe of operation that is consistent with the local dates 

constraining build up and deglaciation. The ‘dated’ margins are then considered collectively at 

the countrywide, or ice sheet scale, to link spatially separate parts of the retreat pattern and 

examine discrepancies.  

10.4.1 108BRegional assessments of retreat chronology 

Figure 10.14 shows the boundaries for the regional assessments. It is important to note that there 

are considerable parts of the country that are virtually devoid of ages, exacerbating attempts to 

interpret the temporal evolution of these parts of the retreat pattern; for example, the Southern 

Uplands, and a broad stretch from Edinburgh to the Tyne. In the following enlarged figures of 

sections of the retreat pattern (figures 10.13 a-n), the reconstructed margins have been assigned 

an age value where possible. If the age is followed by a plus sign (+) the margin is at least that 

age and could be older, a negative sign (-) following the age indicates that the margin is no older 

than that age, and probably younger. A range is given when the margin is known to fall between 

two dates. 
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Figure 10.14 The reconstructed retreat pattern is many times more detailed than the density of the 
chronological constraints. Note that there is a lack of dates constraining the retreat pattern in NE England and 
southern Scotland. Retreat pattern, date locations and boundaries of enlargements shown in detail in figures 10.14a-n 
are shown.  Dates coloured up by time bracket. Symbol delimits classification of date. Advance = down triangle, 
deglacial = up triangle, margin = square, ice free = asterisk.  Notation and colour scheme for dates is the same as in 
figures 10.6 and 10.7. 
 

10.4.1.1 129BShetland Islands 

Deglaciation of Shetland is constrained by dates from two terrestrial locations and several 

offshore locations east of the islands (figure 10.14a). The terrestrial ages indicate that the coast 

of Shetland was deglaciated before 14.0 ka BP (site 182; range 15.0-13.0). It is postulated that 

the reconstructed margin of an ice cap around Shetland occurs c. 15 ka BP. This is consistent 

with offshore dates east of the islands indicating ice free conditions for this part of the North 

Sea commencing c.18.7 ka BP (site 189).  The earlier retreat margin positions are therefore 

suggested to be between 18.7 and 15 ka BP and the outermost margin at the continental shelf 

must be older than 18.7 ka BP. This is consistent with figure 10.12 which sets this margin as 27-

26 ka BP.  
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 Figure 10.14a Retreat pattern and dates on Shetland 
and adjacent seas. It is postulated that Shetland was ice 
free before 14 ka BP. An age or age range has been 
attached to ice margin positions where possible 
(black). A positive sign following the value denotes a 
minimum age (the margin is at least this old); a 
negative sign a maximum age (the margin is younger 
than this).  
 

10.4.1.2 130BOrkney and Caithness 

Several cosmogenic surface exposure dates from Orkney (figure 10.14b) collectively suggest 

that the islands of Orkney were ice free by at least 14.8 ka BP (sites 179 and178). These dates 

have large associated error bars (up to +/- 2400) but collectively support commencement of ice 

free conditions c. 14-15 ka BP. Two dates on Orkney are older than this (17.0 and 17.9 ka BP; 

sites 177 and 178) suggesting ice free conditions from c.18 ka BP. Phillips et al. (2008) 

suggested, on the basis that the older dates are from higher elevations, that the difference in ages 

indicates that deglaciation progressed by ice sheet thinning. Dates from Caithness show a 

similar affinity to elevation, with initial thinning of the ice sheet to expose higher ground at c. 

18 ka BP and ice retreating inland after 16 ka BP (sites 166-168 and 176) (Phillips et al.  2008). 

On figure 10.13b a range is given to the retreat margin positions between the two groups of 

ages. Ice is at the north coastline of Caithness by 15.3 ka BP (site 176).  

 
 
 
 
 
 Figure 10.14b Retreat pattern and dates from Caithness and Orkney. 
Cosmogenic surface exposure ages demonstrate a range of derived ages  
at each site. It is suggested, on the basis of site elevations, that the older 
dates 18-17 ka BP reflect initial deglaciation of high ground by ice 
sheet thinning  with lowlands deglaciated around 15-16 ka BP (Phillips 
et al, 2008). An age or age range has been attached to ice margin 
positions where possible (black). A positive sign following the value 
denotes a minimum age (the margin is at least this old); a negative sign 
a maximum age (the margin is younger than this).  
 

10.4.1.3 131BNorthwest Scotland and the Outer Hebrides 

An age of 26.6 ka BP for the moraine banks west of Uist (figure 10.14c) is consistent with 

placing the start of deglaciation from the continental margin at 27 ka BP (figure 10.12). In 

Northwest Scotland and the Outer Hebrides the majority of dates are from cosmogenic isotope 

exposure dating, with many dates initially obtained for the purpose of investigating the 



  Chapter 10. Dating constraints and application to the reconstructed retreat pattern 

 

 240

existence of nunataks during the last glacial (Ballantyne, 1998, 1999). The dates are therefore 

mainly from high elevations. Collectively dates on Uist and Lewis indicate that the island 

summits were ice free by 14 ka BP, with deglaciation commencing c. 17 ka BP (sites 164, 158-

156, 152-154). Dates on Skye indicate this island’s summits were also ice free around 17 ka BP 

(site 143). On mainland Scotland, the weighted mean of the three cosmogenic dates from the 

Gairloch moraine date the limit on Wester Ross to 16.5 ka BP, (Everest and Kubik, 2006); 

although the dates range from 17.9-15.5 ka BP (site 149). These dates are consistent with 

separation of mainland Scottish from Outer Hebrides ice at around 17 ka BP coincident with 

thinning of the ice sheet.  Dates from Cam Loch and Loch Droma place the start of the late 

glacial sedimentation in the area at 15 ka BP (sites 148 and 160). In the absence of unequivocal 

evidence for a readvance in this area this thesis assumes regular retreat from the coast (see 

chapter 9) with the area becoming ice free by 15 ka BP. In conflict with this interpretation, a 

series of recently published cosmogenic dates imply an ice mass in the Wester Ross region 

throughout the late glacial (Bradwell et al., 2008a). These new dates are in conflict with the loch 

dates and Bradwell et al. (2008a) question the reliability of the Loch Droma date (14.9 ka BP) in 

particular. These dates were published after the cut off point for collation of the database. 

  
 
Figure 10.14c Retreat pattern and dates for Outer 
Hebrides and Northwest Scotland. An age or age 
range has been attached to ice margin positions where 
possible (black). A positive sign following the value 
denotes a minimum age (the margin is at least this 
old); a negative sign a maximum age (the margin is 
younger than this). It is suggested that the Outer 
Hebrides ice cap split from the mainland ice sheet 
around 17 ka BP. Although, like in Orkney and 
Caithness, the dates on Skye and Lewis suggesting 
this are surface exposure ages from high elevations 
and may therefore record the thinning of the ice sheet 
rather than full deglaciation of these areas. The Minch 
may therefore have been deglaciated slightly earlier, 
possibly around 16 ka BP.  
 

10.4.1.4 132BNorthern North Sea  

Dates derived from glaciomarine sediments in the Witch Ground area of the North Sea suggest 

ice free conditions commencing at this location before 25.1 ka BP (figure 10.14d). Extension of 

the inner retreat position to the south enables us to attach a minimum date of 15.3 ka BP to this 

position. It is noted that new seismic and core evidence, including radiocarbon dates, have been 

used to suggest that ice advanced over this part of the North Sea (core GS140-14GC; figure 

10.11) from the NW on two separate occasions close to 17 and c.16 ka BP (Sejrup, H. P and  

Nygard, A., pers comm.). This has interesting implications in respect of the national synthesis to 

follow (section 10.4.2).  
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 Figure 10.14d Retreat pattern and dates for the northern North Sea. An 
age or age range has been attached to ice margin positions where possible 
(black). A positive sign following the value denotes a minimum age (the 
margin is at least this old); a negative sign a maximum age (the margin is 
younger than this). Ice must have retreated as far west as the inner margin 
position before 15.3 ka BP.  
 

10.4.1.5 133BMoray Firth and Cairngorms 

Deglaciation of the Moray Firth is constrained by a single date (figure 10.14e) to before 14.4 ka 

BP (site 147). Consistent with this, dates from Loch Etteridge further south suggest that the 

Spey valley was ice free by 15 ka BP (site 122). Deltaic sediments presumed to indicate the 

development of glacial lakes between ice in the Spey valley and the Cairngorms suggest 

decoupling of ice at 16.7 ka BP (sites 126 and 127; range 17.2-16.1 ka) (Everest and Kubik, 

2006).  Moraines close to these lake sediments have been dated to 14.4 ka BP and 13.8 ka BP 

(sites 125 and 128) (Everest and Golledge, 2004). This, in addition to a deglacial date of 13.8 ka 

BP and a margin date of 13.6 ka BP in the north and south Cairngorms respectively, indicate 

that ice persisted in this upland region for approximately 1000 years after retreat of Spey ice. 

Recently published cosmogenic exposure dates on rock glaciers, not included in the database, 

suggest that the Cairngorms were ice free before 15 ka BP (Phillips et al., 2008) contradicting 

the moraine dates but consistent with the retreat of ice from the Spey.  The readvance of ice 

postulated at Ardesier (chapter 9), on the basis of the time bracket attached to the reconstructed 

retreat margins, occurred close to 15 ka BP consistent with the interpretation of Merritt et al. 

(1995). 

 
 
 
 
 
 
 
 Figure 10.14e Retreat pattern and dates for Moray Firth 
and Cairngorms. An age or age range has been attached to 
ice margin positions where possible (black). A positive sign 
following the value denotes a minimum age (the margin is at 
least this old); a negative sign a maximum age (the margin is 
younger than this). The ice sheet was thin and Spey ice 
separated from Cairngorms ice around 17 ka BP. The Spey 
valley was ice free by 15 ka BP.  
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10.4.1.6 134BBuchan 

Three radiocarbon determinations date marine silts sandwiched between tills at St Fergus to 

17.0-18.0 ka BP (site 135) (figure 10.14f). These dates support deglaciation inland from the 

coast at or before 18 ka BP, followed by incursion of ice after c.17 ka BP. This is consistent 

with the geomorphological reconstruction of the incursion of lobes of ice inland after initial 

recession of ice required to support ice dammed lakes during recession of ice in this area 

(chapter 9). Support for early inland retreat of ice towards the Grampian Highlands is also 

supported by deglacial dates of 18.5 and 20.0 ka BP c.20 km inland (sites 145, 130 and 132).  

These dates are considered to represent ice sheet thinning commencing c. 20 ka BP by Phillips 

et al. (2008) rather than full deglaciation. It is significant to note that the dates have high 

associated error margins (up to +/-2,900 years). It is assumed that the reconstructed lobes of ice 

from the W and SW into the Buchan coastal lowlands are contemporaneous, although the 

southern lobe could have occurred any time after 20 ka BP, if the dates are accepted. Only the 

lobe emanating from the Moray Firth is constrained by the St. Fergus dates. The advance of the 

ice margin close to Aberchirder must have occurred after recession of the Moray Firth lobe, 

therefore after 17 ka BP.   

 
 
 
 
 
 
 
 
 
 Figure 10.14f Retreat pattern and dates for Buchan. Dates 
support reconstruction of initial inland retreat followed by 
advance of two lobes from the north and south on to the 
deglaciated lowland area. An age or age range has been 
attached to ice margin positions where possible (black). A 
positive sign following the value denotes a minimum age 
(the margin is at least this old); a negative sign a maximum 
age (the margin is younger than this).  
 

A series of optically stimulated luminescence dates from NE Buchan do not fit with this 

scenario (sites 133, 136, 129, 138, 140, 141 and 144). These dates are included in table A1 for 

reference but were rejected as unreliable and are therefore not shown on figure 10.14f. The 

stratigraphic position of the dates above till, and not overlain by till, imply that the area was not 

glaciated during the Devensian (Gemmell et al., 2008). An ice free enclave in this area is a 

persistent concept in the literature (Chapter 2). However, the balance of evidence suggests that 

the area was glaciated. A possible explanation for the apparent lack of sediment relating to the 

last glacial phase and the old ages is that the area was under predominantly cold based 

conditions with minimal erosion. It is significant in this respect that the luminescence dates are 

all from glaciofluvial sediments, and therefore incomplete bleaching could explain the 

apparently old ages (Gemmell et al., 2008). 
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10.4.1.7 135BEast-central Scotland 

Dates in east central Scotland, suggest that ice had retreated from the coast before 16.4 ka BP 

and the margin was west of Ochill Hills before 16.1 ka BP (figure 10.14g). Retreat of valley 

glaciers into the eastern Grampians before 14 ka BP is consistent with this. Dates are mainly 

derived from marine shells contained within glaciomarine sediments known collectively as the 

‘Errol beds’ (Peacock, 1999). Recently published radiocarbon dates from Lunan Bay in the 

north of the region adds further complexity to the pattern (McCabe et al., 2007). These dates are 

derived from marine sediments underlying what are described as ice contact deposits. This 

stratigraphy implies that ice had retreated to an unknown western position by approximately 

20.5 ka BP before re-advancing over the location. This oscillation of the ice margin can be 

incorporated with the rest of the dates in this region but suggests relatively early deglaciation of 

this part of Scotland and by association the central sector of the North Sea. It is not clear how 

far the ice re-advanced following initial retreat.  The reliability of the dates as well as the 

stratigraphic interpretation is questioned by Peacock et al. (2007). 

 
 
 
 
 
 
 
 Figure 10.14g Retreat pattern and dates for south-central 
Scotland. An age or age range has been attached to ice margin 
positions where possible (black). A positive sign following the 
value denotes a minimum age (the margin is at least this old); a 
negative sign a maximum age (the margin is younger than this). 
Two dates from glaciomarine sediments below ice contact 
deposits suggest that the coast was ice free after c. 20 ka BP. 
This appears anomalous with the rest of the dates for 
glaciomarine sediments in the region (16-13 ka BP).  
 

10.4.1.8 136BCentral Scotland 

To the west, a dense network of dates around the margins of the Loch Lomond Stadial ice cap 

constrain the start of late glacial sedimentation and hence deglaciation of the Devensian ice 

sheet (figure 10.14h). The pattern of dates reflects retreat back to the vicinity of the Loch 

Lomond Stadial position by 14.5 ka BP. On the basis of the dates and the reconstructed pattern 

of retreat, Highland ice had separated from Southern Upland ice by 15.1 ka BP (site 83).  

 
 
 
 
 
 
Figure 10.14h Retreat pattern and dates for central Scotland. 
An age or age range has been attached to ice margin positions 
where possible (black). A positive sign following the value 
denotes a minimum age (the margin is at least this old); a 
negative sign a maximum age (the margin is younger than 
this). The dates are compatible and suggest that the ice sheet 
was in the vicinity of the Loch Lomond Stadial position by 14 
ka BP.  
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10.4.1.9 137BNortheast Irish Sea Basin and Isle of Man 

Organic material on the surface of the St. Bees moraine on the Cumbrian coast constrains the 

deposition to before 14.5 ka BP (figure 10.14i; sites 70 and 69). The St Bees moraine is often 

correlated with the Bride moraine on the northern tip of the Isle of Man. Organics from kettle 

holes on the northwest coast of the Isle of Man dated to 14.5-15 ka BP support this (site 79). 

Older dates from the kettle holes suggesting deglaciation on the Isle of Man around 22-18 ka BP 

have been rejected as too old due to contamination (see table A1). The dates suggest that the ice 

margin was north of the Irish Sea by 15 ka BP. 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 10.14i Retreat pattern and dates for Irish Sea and Isle of 
Man. An age or age range has been attached to ice margin 
positions where possible (black). A positive sign following the 
value denotes a minimum age (the margin is at least this old); a 
negative sign a maximum age (the margin is younger than this). 
The Irish Sea is deglaciated before 15 ka BP. 
 

10.4.1.10 138BNorthwest England 

A group of dates for the start of organic sedimentation from four sites close to Lake 

Windermere suggest that the southern Lake District was ice free before 17 ka BP (figure 10.14j; 

sites 71-74). By extension, on the basis of the reconstructed pattern of retreat towards the 

Cumbrian Mountains, the Howgill Fells and Lancashire lowlands were also deglaciated before 

17 ka BP. Organics from lake mud and an elk bone at Poulton-on-the-Flyde dated to c.14 ka BP 

are consistent with this. It is also likely that the Yorkshire Dales were ice free by this time 

although the presence of small valley glaciers cannot be rejected. The lateral channels running 

down the western slopes of the Pennine escarpment support initial deglaciation by ice sheet 

thinning. Radiocarbon dates of bones indicate that human occupation of caves in the Pennines 

was established by 13 ka BP (sites 64-66). Basal peat at Redkirk Point indicates that the 

northern Solway lowlands were deglaciated before 14 ka BP (site 81). These dates indicate that 

the suggested minor re-advance (chapter 9) of ice from the north into the deglaciated Solway 

lowlands occurred between 17-14.2 ka BP.  
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Figure 10.14j Retreat pattern and dates for northwest England. 
An age or age range has been attached to ice margin positions 
where possible (black). A positive sign following the value 
denotes a minimum age (the margin is at least this old); a 
negative sign a maximum age (the margin is younger than this). 
Four dates from close to Lake Windermere indicate that the 
lake and by extension the Cumbrian Mountains were ice free by 
17 ka BP.  
 

10.4.1.11 139BNortheast England 

Deglaciation of northeast England (figure 10.14k) is indicated by deglacial dates north of the 

Cleveland Hills of 15.2 ka BP (site 76) and 12.7 ka BP (site 78). The Tees estuary was therefore 

ice free before 15.2 ka BP. Deglacial dates clustering around 13 ka BP in the Vale of York are 

consistent with this. Recently published dates from the southwest of the Vale of York constrain 

advance of ice to the maximum limit occurring after c. 23 ka BP, and deglaciation from this 

point commencing at c. 20.5 ka BP (site 192). A further date from the same site constrains the 

existence of Glacial Lake Humber to approximately 16.6 ka BP. For this lake to exist drainage 

must have been prevented by ice blocking the Humber Gap and the ice margin in the Vale of 

York must have been somewhere between the Tees and site 192.  Along the east coast of 

Lincolnshire, the advance of ice on land is dated to after 22 and 17 ka BP at Dimlington and on 

the Wolds dip slope respectively (sites 55, 59 and 60). These dates are consistent with the new 

luminescence date for the age of Glacial Lake Humber. Ice had retreated from the east coast by 

15.2 ka BP consistent with the dates in the Tees estuary.  

 
 
 
 
 
 
 
 
 Figure 10.14k Retreat pattern and dates for NE England. 
An age or age range has been attached to ice margin 
positions where possible (black). A positive sign following 
the value denotes a minimum age (the margin is at least this 
old); a negative sign a maximum age (the margin is 
younger than this). The dates are consistent with older 
deglacial dates further south in the Vale of York. Advance 
dates on the east coast constrain the build up of ice to after 
21.7 ka BP, and advancement to the Lincolnshire Wolds 
after 16.6 ka BP. This is consistent with the date for the 
existence of glacial Lake Humber at 16.7 ka BP (Bateman 
et al. 2008). 
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10.4.1.12 140BNorth Wales 

Figure 10.14l shows the chronological evidence and retreat pattern in North Wales and the 

Welsh-English borders. Discussion of the anomalously young date in the Vale of Clywdd was 

made in section 10.3; retreat from the maximum limit is taken as occurring before 21 ka BP. 

Caves in the Southern Pennines were occupied around 13 ka BP suggesting retreat before this 

time. Basal organic deposits overlying glaciofluvial gravels and within kettle holes at Condover 

(site 23), Church Street (site 22), and Stafford (site 32) indicate that the Cheshire Plain lobe 

retreated from the Welsh borders before 16 ka BP. Welsh ice did not retreat from the border 

until c.14 ka BP (site 27). In the west, an infilled kettle hole at Glanllynnau indicates that Welsh 

and Irish Sea ice uncoupled and the Irish Sea lobe retreated from the Lleyn Peninsula before 17 

ka BP. Dates framing the formation of the Bryncir moraine in this area between 20 and 12 ka 

BP (site 34) suggest that Irish Sea ice had retreated north before 20 ka BP and Welsh ice 

expanded westward after removal of the buttressing effect of Irish Sea ice (Foster, 1968).  In 

this context, the interpretation of the Vale of Clywdd date as due to an oscillation of the Irish 

Sea ice lobe during decoupling from the Welsh ice sheet seems reasonable. An infilled lake 

basin in Snowdonia suggests that ice had retreated from upland NW Wales before 16 ka BP.  

 
 
 
Figure 10.14l Retreat pattern and dates for North 
Wales. An age or age range has been attached to 
ice margin positions where possible (black). A 
positive sign following the value denotes a 
minimum age (the margin is at least this old); a 
negative sign a maximum age (the margin is 
younger than this). An advance date from the 
Lleyn Peninsula suggests that Welsh ice advanced 
into Cardigan Bay after 20 ka BP. This suggests 
that Irish Sea ice had retreated north before 20 ka 
BP.  
 

10.4.1.13 141BSouth Wales 

In South Wales, late glacial sediments in the Brecon Beacons indicate that the ice cap here 

melted before 13.5 ka BP (figure 10.14m). Cosmogenic exposure dates indicate that retreat from 

the maximum limit in South Wales commenced around 22.8 ka BP (site 12; range 24.8-20.8 ka). 

There are no dates constraining retreat of ice from the northern Pembrokeshire coast. The 

Southern Irish Sea was ice free before 14 ka BP. 

 

 

 Figure 10.14m Retreat pattern and dates for 
South Wales. An age or age range has been 
attached to ice margin positions where 
possible (black). A positive sign following 
the value denotes a minimum age (the 
margin is at least this old); a negative sign a 
maximum age (the margin is younger than 
this). The ages are sparse but consistent.  
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10.4.1.14 142BScilly Isles 

There are no deglacial dates from the Scilly Isles (figure 10.14n). Ages for deposition of the 

Old Man sandloess in the southern islands range between 15.9 and 22.5 ka BP. If this event is 

taken as contemporaneous with the deposition of till in the north, the maximum limit in the Irish 

Sea must have occurred within this time frame. Loess deposition could have occurred when the 

margin was north of the islands. It is suggested that the Irish Sea lobe reaching the islands was a 

short-lived event with the recently deglaciated bed of the Irish Sea providing the material for 

loess deposition. A minimum age for ice advance to the Scilly Isles of 19.8 ka BP has been 

derived from cosmogenic dating of the Shipman Head Boulder Moraine on Bryher (McCarroll 

et al. 2006). This date was described as preliminary and so not included in the database (table 

A1) but is consistent with the ages derived from the Old Man Sandloess. 

 
 
 
 
 
 
 
Figure 10.14n Retreat pattern and dates for Scilly Isles. An age 
range has been attached to ice margin positions where possible 
(black). A positive sign following the value denotes a minimum 
age (the margin is at least this old); a negative sign a maximum age 
(the margin is younger than this). 
 

10.4.2 109BSynthesis of dated margins 

Figure 10.15 shows the pattern of retreat with the ages from the above regional assessments 

attached. In general the ages are consistent across regions. For example, the deglaciation of the 

Lake District before 17.4 ka BP is consistent with the dates for retreat from the Cheshire Plain 

before 15.7 and 14 ka BP. However, the map also highlights discrepancies between some dates. 

For example, dates for the decoupling of ice in the Spey valley with ice in the Cairngorms at c. 

16.7 ka BP (Everest and Golledge, 2004) appears inconsistent with an ice margin position 

across the Humber Gap necessary to dam glacial Lake Humber recently dated to 16.6 ka BP 

(Bateman et al. 2008).   

 

Two syntheses that attempt to accommodate all of the dates discussed above are presented in 

figures 10.16 and 10.17. The difference between the two is the choice of scenario for the North 

Sea; lobate readvance down the east coast or a southern North Sea ice mass (as hypothesised in 

figure 10.12). Otherwise the scenarios are the same. In the absence of detailed information for 

Ireland, ice is presumed to retreat back monotonically to the centre of the island from a 

maximum at 27 ka BP separating from the British Ice Sheet between 17-16 ka BP (figure 

10.11).  
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Figure 10.15 The reconstructed pattern of retreat with ages and/or age ranges attached to each margin where 
possible. Positive signs following ages indicate that the age is a minimum one for the margin. Negative signs indicate 
that the age is a maximum one. Following this, the majority of discrepancies between regions can be accommodated.  
 

 Scenario 1: lobate readvance following break up of ice in the North Sea 

At 27 ka BP ice is at the western continental shelf edge. The position in the south is undefined. 

A judicious consideration of the likely positions places the 27 ka BP margin across the whole of 

Ireland, pinned between southeast Ireland and Pembrokeshire in the Irish Sea, at the Welsh 

maximum limit, half-way down the Cheshire Plain and across the northern part of the Vale of 

York, connecting across the southern North Sea with the Main Stationary Line in Denmark at 
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approximately 56ºN (figure 10.16). In this synthesis ice collapses over the whole of the North 

Sea around 26 ka BP, and thus the 25 ka isochron runs north-south from east of Shetland to the 

Tees estuary. At 25 ka BP ice is at the maximum limit in the Cheshire Plain, South Wales, and 

is still pinned across the Irish Sea. At 23 ka BP ice advances down the Vale of York and to the 

Scilly Isles and remains at the Welsh limit. The 23 ka BP position is placed half way up the 

Cheshire Plain in sympathy with the drawdown of ice to the limit in the Scillys. The 21 ka BP 

margin is placed along the Holderness coast but this margin could remain close to the 23 ka BP 

position. The figure shows the most extreme version of events that the dates can support. Ice 

retreats from the Scilly Isles and the Cheshire Plain and Welsh ice starts to decouple at 21 ka 

BP. By 20 ka BP ice has retreated to the Lleyn Peninsula and Welsh ice expands slightly as the 

buttressing effect of the Irish Sea ice lobe is removed. For symmetry the ice limit at 20 ka BP is 

placed at the Cheshire coast. Ice retreats a short distance up the Vale of York. In order to 

accommodate the re-advance date in eastern Scotland (site 115) the 20 ka BP margin is placed 

close to the Scottish coast. The early deglaciation of this area is consistent with the oldest dates 

derived from cosmogenic surface exposure dating in Caithness (Phillips et al. 2008). These 

dates were interpreted by Phillips et al (2008) as due to ice sheet thinning but in conjunction 

with the dates from Lunan Bay support ‘early’ deglaciation of this part of eastern Scotland. The 

18 ka BP limit is largely speculative and placed close to the 20 ka BP position except in the 

Irish Sea. To satisfy the Lincolnshire dates, a major ice advance down the east coast at c.17 ka 

BP is invoked. The glaciological plausibility of a lobe in the southern North Sea emanating 

from the British Ice Sheet as late as 17 ka BP is further questioned considering deglaciation of 

most of northern England before this time, as indicated by the deglacial dates close to Lake 

Windermere and the pattern of retreat to this point (figure 10.16). The eastern English lobe is 

correlated with advances out of the Moray Firth and Strathmore into the Buchan lowlands. By 

16 ka BP the mainland ice sheet had decoupled from the Irish Ice Sheet, and ice caps on 

Shetland and the Outer Hebrides. Highland ice separated from Southern Upland ice before 15 ka 

BP.  

 Scenario 2: a southern North Sea ice mass 

Figure 10.17 shows the alternative North Sea scenario. The positions of the isochrones are the 

same as in figure 10.16 on the western side of the country. In this scenario, an embayment 

opens up in the northern North Sea after 26 ka BP and ice persists as an ice dome in the 

southern North Sea. The early deglaciation of northeast Scotland is still accommodated by 

unzipping of the British Ice Sheet from the North Sea dome along the Aberdeenshire coastline. 

All of the activity along the eastern English coast is a function of changes in the southern 

margins of the North Sea ice dome. Although controversial, this scenario has the advantage that 

the relatively small 17 ka BP British Ice Sheet does not need to contribute to a large ice lobe 

down the east coast. In this respect the Lake District dates are easier to reconcile with the 

existence of Lake Humber as late as 16.6 ka BP.  
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Figure 10.16 Dated retreat pattern option 1 (all dates accommodated): ‘Two stage’ model of North Sea 
glaciation (collapse followed by advance of lobe(s) down the east coast). Simplified isochrones are shown overlain on 
top of reconstructed pattern of retreat. The isochrones frame the time period in which the underlying retreat margin 
positions existed. The isochrones are necessarily coarser than the retreat pattern due to the lower density of dates 
compared to geomorphological evidence. In this scenario, ice collapses in the southern North Sea at the same time as 
ice collapse in the northern North Sea (c. 26 ka BP) and the ‘late’ advance onto the eastern English coast is explained 
solely by expansion out of the British Ice Sheet. In the scenario above two separate phases of ice advance down the 
east coast at 21 and 17 ka BP are hypothesised to explain the Dimlington dates and damming of Lake Humber at c.17 
ka BP. These dates could be accommodated by a single advance at c. 17 ka BP. In which case, the position of the 21 
ka BP isochron in the North Sea would be between the 23 and 20 isochrones. Full details are given in the text. The 20 
ka BP isochron is placed along the east coast to accommodate the date from Lunan Bay. The lobe down the east coast 
at 17 ka BP is difficult to accept in terms of glaciological plausibility as northern England is fully deglaciated by this 
time and the lobe does not appear to follow the bathymetry of the southern North Sea. Solid lines where dates 
constrain the ice margin, dashed lines are estimated position of margins connecting these points. Lines are colour-
coded by age to aid differentiation of readvance positions.  
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Figure 10.17 Dated retreat pattern option 2 (all dates accommodated): Ice mass in the southern North Sea until 
17 ka BP. Simplified isochrones are shown overlain on top of reconstructed pattern of retreat. The isochrones frame 
the time period in which the retreat margin positions existed. The isochrones are necessarily coarser than the retreat 
pattern due to the lower density of dates compared to geomorphological evidence. In this scenario, an ice mass is 
present in the southern North Sea after break up of ice in the northern North Sea at 26 ka BP to explain the ‘late’ 
advancement of ice along the eastern English coast and the existence of glacial lake Humber at c. 17 ka BP when 
northern England was ice free. Ice hovers just off the coast of England until 20 ka BP. Ice collapses rapidly in the 
southern North Sea after 17 ka BP.  
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In both of the scenarios that accommodate all of the dates, the ice sheet experiences rapid retreat 

between 17-16 ka BP. There is some evidence to suggest peaks in the contribution of ice rafted 

debris to the Barra Fan and Celtic shelf at this time, which would be consistent with, but does 

not necessarily provide conclusive support for, a major ice sheet destabilisation at this time.  

Neither of the timed retreat patterns that accommodate all of the dates produces what we 

consider to be plausible ice sheet configurations. Although apparently consistent with the break 

up of ice in the North Sea at 26 ka BP, the ‘early’ deglaciation of the eastern coast of Scotland 

at c.20 ka BP is difficult to resolve with dates from NE England which suggests that ice did not 

advance onto the Holderness coast until after 21 and/or as late as 17 ka BP. In the first scenario, 

if all these dates are accepted, to maintain the principle of ice sheet symmetry, ice advanced 

onto the Holderness coast at 21 ka BP, followed by retreat to an unknown position, and a second 

advance of ice down the eastern coast at around 17 ka BP (figure 10.16). These are dramatic 

changes in the ice sheet margin.  

 

The lobe at 17 ka BP must have been very short lived as it is difficult to reconcile a large ice 

lobe emanating from Scotland  (if the dates from Lake Windermere are accepted northern 

England is ice free by this time) with the inland margin positions suggested for the Grampians 

and Midland Valley at 16 ka BP. In the alternative scenario, the deglaciation of northern 

England, is easier to reconcile with the existence of an ice mass along the eastern English coast 

as the hypothesised southern North Sea ice mass can solely contribute to this ice position. 

However, the presence of an ice mass in the southern North Sea is controversial and goes 

against the emerging consensus view of exposed land in the Southern North Sea after 26 ka BP 

based on the dates from mollusc and forams from deposits interpreted as glaciomarine by Sejrup 

et al. (1994) (site 171). 

 

An alternative to the above two scenarios (which accommodate all dates but, perhaps, with 

some glaciological contrivance) is to selectively ignore one or more problematic dates and build 

a more plausible ice sheet. A southern North Sea ice mass with a broadly radial flow pattern 

geometry, as envisaged in figure 10.13b, is in opposition to micromorphological observations of 

sediments from the southern North Sea, close to the Dogger Bank (54-55ºN and 2-4ºE), are 

interpreted to indicate grounded ice but with a flow direction from the NW and not the NE-E 

(Carr, 1999). It seems arbitrary however, to reject one or more dates to resolve these apparent 

inconsistencies. In the absence of additional information to support or refute specific dates we 

take a conservative position and attempt to include all of the dates and flag those that are 

difficult to resolve:  

1. Site 115 at Lunan Bay. Glaciomarine sediments underlying till dated to approximately 20 ka 

BP. The date has been questioned as being too old by Peacock et al. (2007). If these dates 

were rejected the 20 ka BP isochron would not have to be placed inland of the coast in the 
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Tay. The cosmogenic dates from Buchan, Caithness and Orkney can be taken as 

representative of ice sheet thinning commencing at 18-19 ka BP. The NE coast of Buchan 

must have been deglaciated before 17 ka BP however, in order to account for the damming 

of proglacial lakes by a lobe of ice from the Moray Firth and the dates from glaciomarine 

silts at St. Fergus.  

2. Dates along the eastern English coast (sites 59, 60 and 55). The date at site 55 has long been 

used as the type site for the stratigraphic demarcation of the Dimlington Stadial in Britain, 

although its reliability has been questioned by Hall et al. (2003). The consistency between 

the loess dates and the new dates for glacial Lake Humber provides mutual support for the 

reliability of these dates so they are difficult to ignore.   

3. If the date from the northern North Sea is false, coalescence between the British and 

Scandinavian ice sheets may have persisted until 17-22 ka BP. This is not consistent with 

the Scandinavian chronology which supports the two stage model of glaciation of the North 

Sea. Furthermore, open water conditions are implied by the presence of iceberg scour marks 

in the Witch Ground region of the North Sea identified in seismic imagery and dated to 16.2 

to 14 P

14
PC ka BP (approximately 18-16 cal ka BP) (Graham, 2007). It would be advantageous 

to derive additional dates from the North Sea. As yet unpublished dates from the Fladen 

Ground support an ice margin positions in this part of the North Sea as late as 17.5 and 16.5 

(Sejrup/Nygard, pers. comm.). These margins in the North Sea appear more consistent with 

the 17 ka BP ice margin along the eastern English coast but are still difficult to resolve with 

dates suggesting proglacial lake development in the Cairngorms at 16.7 ka BP.  

4. The dates from close to Lake Windermere in the Lake District may be erroneous. These 

dates appear inconsistent if the dates for glacial Lake Humber are believed.   

 

At present the dates reveal a complex picture. It is possible that the ice sheet experienced 

dramatic changes in the position of the ice margin around 17 ka BP but more dates are 

necessary to reveal this. The hope is that more dates will lead to a clearer picture, although thus 

far additional dates has led to more confusion as the complexity of the pattern has increased. All 

of the dates mentioned in the discussion above would benefit from repeat measurements.  Focus 

should be on improving the chronology of the east coast of Britain, southern and northern North 

Sea, and filling in the gap in dates in the Southern Uplands. The analysis of dates in this chapter 

is dependent on the stratigraphical and sedimentological interpretations of the papers in which 

the dates were published.  
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10.5 57BSummary 

A thorough search of the Quaternary and archaeological literature was undertaken to amass a 

database of dates relating to the build up and retreat of the last British Ice Sheet. This database 

is presented in table A1 and figure 10.2. Over 400 dates were collated and 306 regarded as 

reliable. Dates were classified on the basis of stratigraphic setting in order to simplify 

interpretations and derive glaciological meaning from the dates. There did not appear to be a 

spatial pattern in the dates when examined without reference to topography or knowledge about 

the ice sheet geometry. Dates were applied to the reconstructed retreat pattern of chapter 9.  

 

If the ice simply retreated back to Rannoch Moor, then the dates would show this. The fact that 

they do not suggests that the ice sheet retreated to multiple points and did not experience 

monotonic retreat. Minor oscillations also occurred during retreat. The most dramatic changes in 

size of the ice sheet appear to have occurred between 17-16 ka BP. The dates suggest that the 

maximum limits of the ice sheet were reached at different times and that the North Sea ice had 

collapsed prior to advancement to the southern margins. This creates problems for resolving the 

dates into a sensible ice sheet configuration that does not require long distance movement of the 

ice margin with a diminished source area. For the first time the pattern of glaciation has been 

brought together with a presumed near complete database of dates to yield the pattern and 

timing of retreat of the ice sheet. It is obvious that the chronology of the last British Ice Sheet 

requires further attention. More dates are necessary to constrain the timing of the retreat pattern 

and assess support for long distance movement of the ice margins during deglaciation. It would 

be beneficial to conduct repeat dating in areas that have been flagged as problematic and also to 

expand chronological constraint into the areas where little information is available.  

 

The retreat pattern is yet to be integrated with the flow evolution information to build snapshots 

of ice sheet geometry. Incorporation of this information and the relative chronological 

information held therein may serve to solve some of the issues raised in this attempt to attach 

absolute dates to the retreat pattern and vice versa. This may also enable us to more confidently 

ascertain which dates are truly problematic and should be rejected or revisited.  

 



 

Chapter 11  
Discussion and conclusion  

 

11.1 58BIntroduction  

For the first time a holistic approach has been applied to the analysis of the glacial landform 

record of Britain in order to develop our understanding of the last British Ice Sheet (BIS). This 

required systematic mapping of glacial geomorphology to produce the first fully comprehensive 

and consistent glacial maps. The landform data were interpreted using a set of clearly stated 

assumptions to tease out individual ice flow events, ice stream locations and margin positions. 

These building blocks were used to reconstruct glimpses of regional flow configuration 

evolution and the pattern of retreat. Published absolute dates relating to the growth and decline 

of the last BIS were compiled and used to fix the pattern of retreat in time. This concluding 

chapter is in four parts: a discussion of the implications of the main results and interpretations 

for knowledge of the last British Ice Sheet, an assessment of the limitations of the research, 

suggested directions for future work, followed by a summary of achievements and the thesis 

conclusions.   

11.2 59BDiscussion 

11.2.1 110BIce sheet extent 

As discussed in chapter two, debates about the spatial extent of ice in Scotland have fluctuated 

between two extreme positions. Part of the argument for a restricted spatial extent rests on the 

existence of ice free enclaves (e.g. ‘moraineless’ Buchan) throughout the last glaciation.   The 

new mapping which includes drumlins, moraines, eskers and meltwater channels across Buchan 

(chapter 5; Maps 3 and 4) directly negates the existence of an ice free enclave in this area and 

confirms and replicates the conclusions of Clapperton and Sugden (1977) and Merritt et al. 

(2003)  who also reject an ice free enclave in Buchan.  The existence of any ice free enclaves is 

regarded as highly improbable in the context of the growing evidence for shelf edge glaciation. 

The second dimension to the debate on spatial extent is the question of British and Scandinavian 

ice sheet confluence in the North Sea. Two coherent, but spatially separate, flowsets are 

identified in northern Scotland, Orkney and Shetland (fs1 and fs59; chapter 6). These are 

grouped into a single phase of ice sheet geometry (chapter 8).  This regionally widespread (c. 

55,000 kmP

2
P) and topographically unconstrained ice flow pattern records a major ice flow event. 

The orientation of ice flow is best explained by the convergence of British and Scandinavian ice 

in the North Sea resulting in the deflection of British ice towards the northwest (chapter 8). The 

flow geometry is consistent with the orientation of mega-scale lineations (MSGL) identified in 

the Fladen Ground of the North Sea, the existence of which supports the presence of grounded 
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ice east of the Moray Firth and Orkney at this time (Graham et al., 2007). The MSGL have been 

attributed to an ice stream emanating from the Scandinavian Ice Sheet (the Witch Ground Ice 

Stream). I speculate that the ice stream developed at the zone of convergence of the two ice 

sheets. Taken together with recently published evidence for an extensive suite of moraines on 

the continental shelf surrounding Scotland it is highly probable that the ice sheet reached the 

continental shelf during this stage (Bradwell et al., 2008b).  

11.2.2 111BFlow patterns  

Whilst on a superficial level the interpreted flow patterns (Map 4) bear some resemblance to the 

generalised patterns known since Geikie (1894), the key distinction is that we now recognise the 

subglacial bedform record as a palimpsest of several flow configurations and not a snapshot. 

The process of systematic mapping, followed by careful analysis of the pattern and distribution 

of landforms has untangled the cumulative record of flow events. Cross-cutting flowsets 

indicate changes in the flow geometry of the ice sheet over time and made possible the sorting 

of flowsets into a relative age stack. Overall, the flow patterns are indicative of a multi-dome ice 

sheet. The complexity of the flowsets in the central sector of the ice sheet (chapter 8) reflects the 

changing relative dominance and interaction of different ice domes. For example cross-cutting 

flowsets in east-central Scotland document variations in the relative vigour of Highland and 

Southern Upland ice centres (chapter 8). Grouping of flowsets into glaciologically plausible 

snapshots of flow configuration (chapter 8) revealed that some ice divides are persistent features 

recurring in successive flow geometries whilst others are more transient. For example, the 

Welsh ice divide appears to have been a relatively stable feature with only minor changes in 

position. Whereas in northern England predominantly east-west ice flow patterns initially record 

ice flow breaching the Pennine escarpment from an ice divide centred on, or west of, the 

Cumbrian Mountains. This configuration is followed by the development of an ice divide 

running from the Cumbrian Mountains to the Howgill Fells and orientated WSW to ESE which 

conflicts with the view of a permanent ice dome centred on the Lake District. The latter ice 

configuration is consistent with the observations based on field mapping of drumlins in east 

Cumbria (Letzer, 1978). In western Scotland an ice centre over Galloway, suggested by erratic 

evidence, only existed during the later stages of the ice sheet configuration. This finding that the 

western Southern Uplands did not support an ice divide throughout the glacial, in contrast to the 

traditional view (figure 2.10), is consistent with the conclusions of Salt and Evans (2005) who 

conducted subglacial lineation mapping over just Carrick and Galloway.  

11.2.3 112BIce streams  

With the exception of ‘Strathmore 1’ (fs51) (which has only tentative ice stream status), all of 

the palaeo-ice stream tracks are topographically constrained or aligned with offshore troughs. It 

is notable that the ice streams identified for the last British Ice Sheet are an order of magnitude 

smaller that those of the Laurentide and Fennoscandian ice sheets, but are comparable in size to 
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the Siple Coast ice streams of the Antarctic Ice Sheet (figure 11.1). This reflects the smaller size 

of the BIS, and the fact that this thesis has only been concerned with the terrestrial record. If we 

assume ice streams are most likely to operate during maximum ice sheet conditions or just after, 

when the ice reached the shelf edge, then the majority of evidence will be offshore. Mapping of 

the Norwegian continental shelf has identified numerous palaeo ice stream tracks that 

commence immediately offshore of the present day coastline (Ottesen, 2006; Ottesen et al., 

2008). It is proposed that fs8 represents the vestigial terrestrial imprint of an ice stream in the 

North Channel draining out towards the Barra Fan. It is somewhat disappointing that more 

evidence relating to an ice stream in this location has not been found. Both the size of the Barra 

Fan and the prominence of the bathymetric trough in the North Channel lead us to suspect that 

this was an important ice flow path for the last BIS.  

 
Figure 11.1 British Ice Sheet ice stream imprints (red) are generally at the lower end of the dimension 
spectrum of ice stream imprints of the Laurentide Ice Sheet. The only ice stream with comparable dimensions is the 
Irish Sea Ice Stream (c. 650 x 160 m). This may, in part, be due to the fact that we are only capturing part of the ice 
stream signatures and therefore not recording the true lengths. The widths are similar to those of the Siple Coast ice 
streams in Antarctica however. The Norwegian Channel Ice Stream (blue) is closer to the larger end of the spectrum. 
Modified from Winsborrow (2007).  

11.2.4 113BRetreat pattern 

Deglaciation clearly progresses by ice surface lowering and retreat to multiple western and 

northern ice centres (figure 11.2). This confirms that the ice sheet comprised multiple ice 

divides, at least during the deglaciation. There has been much debate in the literature over 

possible readvances of the ice margin during deglaciation (see chapter 2). The reconstructed 

retreat pattern does not support nor require large scale readvances of the ice margin. However, 

minor oscillations of the margin do occur at sites of uncoupling where ice retreats in opposite 

directions towards different ice centres. Bringing together the reconstructed pattern of retreat 

with the dating database was something of a challenge. The synthesis, if slavishly followed (i.e. 

all dates are correct), leads to the proposal of a late-surviving ice dome over the southern North 

Sea (chapter 10; figure 10.17). This is a radical reconstruction; especially as I provide no new 

evidence for it, other than it is the most plausible scenario to satisfy all the dates. It is regarded 
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as more plausible than the alternative – a lobe of ice advancing down the east coast from an ice 

sheet of restricted size (figure 10.16). A less radical reconstruction, that does not require either 

of the suggested scenarios, could be produced if some or all of the awkward dates (advance of 

ice at Lunan Bay (site 115) after 20 ka BP, ‘young’ advance dates from the Eastern English 

coast (sites 59, 60 and 55), deglaciation of the North Sea before 25 ka BP (site 171), and ‘old’ 

deglacial dates from the central Lake District (sites 71-7)) are ignored. The pattern of retreat 

presented in chapter 9 is considered robust because of the consistency between the five 

independent lines of evidence. Therefore, I consider that at least some of the flagged dates are 

unreliable.  

 
 

Figure 11.2 Schematic cross section through an ice sheet to show deglaciation by thinning and retreat to 
multiple points. The ice sheet surface lowers from position 1 to 4 as deglaciation progresses. Lowland lobes of ice 
retreat fastest leaving behind independent ice caps. This is essentially the reverse of the instantaneous glacierization 
model for ice sheet build up. 
 
A crude estimate of the speed of ice sheet retreat can be obtained from the less disputed parts of 

the dated retreat pattern (figure 11.3). The maximum speed of retreat is achieved in the Irish 

Sea: 87 maP

-1
P. For the rest of transects, the speed of retreat ranges from 10 ma P

-1 
P(North Sea to 

Shetland, following separation of the British and Scandinavian Ice Sheets) to 4 maP

-1
P 

(southernmost Welsh margin to the Black Mountains). Thus, different sectors of the ice sheet 

retreated at different rates, with lowland lobes exhibiting the fastest rates of retreat.  These 

retreat rates are at the lower end of the ranges calculated for other palaeo-ice sheets, e.g. 260-10 

maP

-1
P for the Laurentide Ice Sheet (Andrews, 1973). The grounding line position of the West 

Antarctic Ice Sheet in the Ross Sea retreated at a rate of c. 120 maP

-1
P during the Holocene 

(Conway et al., 1999).  

11.2.5 114BIce sheet evolution 

A major revelation from the flowset map (Map 4) is the close relationship of ice flow patterns 

with topography. Whilst earlier in the analysis I classified flowsets in terms of their generation 

time (i.e. isochronous vs. time-transgressive) (chapter 6), I now subdivide the flowsets on the 

basis of correspondence to topography (figure 11.4). For other palaeo-ice sheet reconstructions 

it has been relatively straightforward to distinguish the deglacial (TT retreat) flow patterns from 

the non deglacial (isochronous) and correspondence to topography has rarely been examined. 

However, relatively few TT retreat flowsets were observed in Britain. For the small BIS resting 
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on a bed with large variations in relief over short distances it is a useful division. The logic is 

that those flowsets that ignore topographic variations are produced when the ice is thick and ice 

flow directions are primarily controlled by the ice surface slope. Flowsets that are constrained 

by topography are generated when the ice is thin and variations in the subglacial relief have an 

increased influence over flow patterns. The majority of flowsets exhibit at least some accord 

with topographic variations (figure 11.4b). On the basis of the relative age information these are 

also the youngest flowsets. There is however a modest number of topographically unconstrained 

flowsets (figure 11.4a).  

 
Figure 11.3 Transects used to calculate average speeds of retreat. AB (Irish Sea) 87 maP

-1
P, CD (Western 

Shetland) 8 ma P

-1
P, EF (South Wales) 4 ma P

-1
P, GH (Western Outer Hebrides) 8 maP

-1
P, IJ), IJ (Eastern Shetland) 10 ma P

-1
P. 

Estimates assume steady retreat from the age of the maximum margin. 
 
The topographically unconstrained flowsets are interpreted as a record of the pre-deglacial ice 

sheet configurations. As such they provide a glimpse of the ice sheet geometry during build up 

and maximum extent.  Using this interpretation, it is possible to sketch out the form of the ice 

sheet at its maximum using some the flowsets in figure 11.4a (figure 11.5). Not all, as the 

relative chronology indicates that they cannot all be contemporary. The principle ice divide runs 

from the Scottish Highlands to the Lake District, with a secondary divide forking out over the 

Grampians. Wales and the Outer Hebrides support peripheral autonomous ice domes. The ice 

sheet is confluent with the Scandinavian and the Irish Ice sheets. Saddles are formed over the 

North Channel and North Sea.  
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Figure 11.5 Hypothesised ice sheet form during confluence of ice in the North Sea (on the basis of currently 
available dates c.27-25 ka BP). Ice reaches the continental shelf edge. Ice divides are simple with a saddle forming 
over the North Channel. Flow patterns in Ireland are speculative and are therefore shown by dashed lines. From the 
dating database (chapter 10) the precise position of the southern limit is uncertain so is also shown by dashed lines. 
On the basis of the currently available dates for the deglaciation of the northern North Sea, ice does not reach the 
maximum southern limit in the Celtic Sea until after break up of ice in the North Sea (c.23 ka BP). Saddles are 
marked with an ‘S’ and divides are marked with a ‘D’ 
 
The flow pattern configuration during this stage of confluence of British and Scandinavian ice is 

remarkably similar to that produced by Geikie in 1894. There are also glimpses of build up of 

ice. Southwest ice flow from the Southern Uplands (fs9) documents expansion of ice from 

Scotland into Ireland uninhibited by Irish ice, suggesting that the Irish Ice Sheet was not 

substantial enough at this stage to deflect Scottish ice. In contrast, the deflection of ice around 
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Wales (fs17) implies that this ice cap existed prior to advance of Scottish ice down the Irish Sea. 

The latter finding is in agreement with the conclusion of Jansson and Glasser (2008) but the 

evidence contrasts with the results of the numerical modelling of Boulton and Hagdorn (2006) 

that shows ice expansion from a single Scottish ice mass invading both Ireland and Wales.  

 
 
Figure 11.6 Retreat of an ice sheet that maintains its thickness during deglaciation (a) and retreat of an ice 
sheet that thins as it retreats (b). The last British Ice Sheet retreated following ice sheet thinning so that the variability 
in relief was close to the thickness of the ice at the periphery. Nunataks were revealed prior to retreat of the ice 
margin position and flow patterns were controlled by subglacial relief variations rather than ice surface slope.   
 
The remaining flowsets are regarded as documenting the changing geometry of the ice sheet 

during deglaciation (figure 11.6). This interpretation is supported by their sympathy with the 

reconstructed pattern of retreat. The retreat pattern and flow patterns record a signature of ice 

sheet thinning. For example, lateral meltwater channels document lobes of ice retreating around 

the topographic obstacle of the Forest of Bowland towards the Howgill Fells (figure 9.3). This is 

consistent with the flow pattern information which records a change from ice flow overriding 

the topographic bump (fs31) to being deflected around it (fs69, fs70 and fs73) (figure 8.18). 

This pattern of deflection followed by retreat around topographic obstacles is repeated around 

the country at various scales. For example, ice is deflected by and retreats around the Cheviots; 

the Moray Firth and Strathmore ice lobes retreat around the Eastern Grampians. The Irish Sea 

lobe is deflected by and retreats around the Welsh Ice Cap and Scottish Ice is deflected by and 

retreats around the Outer Hebrides Ice Cap. The picture that emerges is of a dominant ice mass 

from western Scotland that encompasses (by lateral flow around, rather than overriding) satellite 

English and Welsh ice caps and peripheral ice caps in eastern Scotland. This conception of the 
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ice sheet form explains the limited extension of erratics out of the Lake District and Cheviots 

and the lack of foreign geologies within these regions. Similar ice sheet configurations 

incorporating ‘multiple domes and lobes’ have been proposed for the Innuitian Ice Sheet 

(England et al., 2006) and the deglacial stages of the Scandinavian ice sheet on Denmark (Kjaer 

et al., 2003). The dominance of the western side of the ice sheet is also reflected in the 

combined observation from the retreat pattern, flow patterns and dates that the confluence of 

British and Irish ice in the North Channel persisted until after deglaciation of the Irish Sea. 

Based on the currently available dates separation of the two ice masses occurred between 17 and 

16 ka BP; this follows retreat of ice from northern England and the NE corner of Buchan. 

During the later stages of deglaciation, the ice sheet thus resembled an elongated ellipse 

straddling the western upland areas of the British Isles from Shetland across Orkney and the 

NW Highlands to Northern Ireland. Such an orientation reflects the dominant west-east 

precipitation gradient over the British Isles (Chandler and Gregory, 1976).  

 

It is tentatively proposed that break up of ice in the North Sea resulted in a reorganisation of the 

ice sheet; from a relatively thick ice sheet reaching the shelf edge with a central ice divide 

running broadly north to south (figure 11.5) to a thin ice sheet comprising multiple ice centres. 

We saw in chapter 8, how ice streams can be divided into a minimum of two phases of ice sheet 

configuration (figure 8.21). It is proposed that the initiation of ice streams along the east coast 

initiated lowering of the ice sheet surface and the development of a multi-domed ice sheet. The 

ice sheet then retreated from this position.  

 

A question that arises from of the discovery of an ice sheet comprising local domes 

encompassed by far-travelled lobes, is whether some of the peripheral ice domes were cold-

based. This could explain their limited expansion and the deflection of ice flow around them. 

Jansson and Glasser (2004; 2008) suggest that the Welsh ice cap was cold-based for much of 

the last glaciation particularly when coupled to the Irish Sea ice lobe, Mitchell (2008; 2007) 

describes evidence for cold-based ice on the Cheviots and the northern Pennines, and the 

landscape of the Cairngorms has for a long time been ascribed to the distribution of cold-based 

ice at the bed of the ice sheet (Sugden, 1968; Hall and Glasser, 2003). The presence of cold-

based ice close to the periphery of the ice sheet has implications for the position of the 

southernmost limit in England. For example, cold-based ice could explain the apparent absence 

of glacial deposits and landforms on the Cleveland Hills and Peak District and therefore support 

a more southerly ice limit incorporating these areas. Approximately 40% of the mapped area 

contains landform patterns. There are surprisingly few gaps and those that do exist generally 

coincide with upland locations. The largest absences of information are in Wales and within the 

Loch Lomond Stadial ice cap limits in Scotland. Reasons for the latter gap are discussed in 

chapter 5 – the favoured explanation being that the hummocky moraine characteristic deposited 
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by the Loch Lomond Ice Cap masks any pre-existing evidence. It is difficult to make firm 

conclusions from the absence of information in Wales; the paucity of landforms could reflect 

the lack of drift or represent regions of cold-based ice.  There is a growing literature on the 

landscape characteristics that typify cold-based zones (Kleman and Stroeven, 1997; Hättestrand 

and Stroeven, 2002; Stroeven et al., 2006; Kleman and Glasser, 2007; Goodfellow et al., 2008). 

I did not attempt to map these areas and so it is not possible to make firm conclusions about the 

thermal regime of the last British Ice Sheet. This could be a fruitful avenue for further research. 

11.3 60BLimitations 

The research presented in this thesis is restricted to the terrestrial part of the ice sheet bed, i.e. 

that which currently lies above sea level. Furthermore, mapping was limited to England, 

Scotland and Wales, thus excluding Ireland. This thesis therefore only considers approximately 

one third of the former bed of the ice sheet (figure 11.7). However, this is still a major piece of 

the jigsaw and this thesis represents a major step forward in the collation of evidence of the last 

British Ice Sheet. Extrapolation and interpolation, and the scraps of offshore evidence contained 

within the BRITICE database are used to make statements beyond the British coastline. A 

geomorphological reconstruction of the Irish sector of the last British-Irish Ice Sheet was 

undertaken by a separate, but contemporary, PhD thesis (Greenwood, 2008). Our respective 

results are yet to be combined.  

 
Figure 11.7 Map of the British Isles coloured up to demonstrate the land area available for the last British Ice 
Sheet: a) the grey line marks the -120 m contour, the dashed line the maximum limit of the ice sheet. Approximately 
57% of the former ice sheet bed presently lies offshore; b) Shorelines as reconstructed from calculated eustatic fall in 
sea level by Lambeck et al. (2002). No account is taken of isostatic adjustments and so this gives only an approximate 
picture. Shoreline position at 22 P

14
PC ka BP (c. 25 ka BP) (blue), 18 ka P

14
PC ka BP (c. 22 ka BP) (green), 16  P

14
PC   ka 

BP (c. 18 ka BP) (orange) and 14 P

14
PC  ka BP (c. 16 ka BP) (red) 
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The reconstructed retreat pattern and regional flow configurations (chapters 8 and 9) are based 

on newly mapped and existing geomorphological evidence. They are the most parsimonious 

explanations that can accommodate what we see in the landscape. Deliberately, and to keep 

interpretations as objective as possible, no systematic attempt was made to incorporate  

interpretations from the literature, although in the case of a few equivocal scenarios, reference 

was made to corroborating sources. The mapping on which all interpretations are based was 

conducted remotely from DEM and satellite imagery and was not accompanied by a systematic 

field campaign to ‘ground truth’ observations. The lack of ‘ground truthing’ is not regarded as a 

significant weakness. The resolution of the principal data source (the NEXTMap DEM) is very 

high relative to the size of the majority of target landforms which therefore have a clear 

expression in the data. The rigorous quality control checks (detailed in chapter 4) and 

favourable comparison to detailed field observations, where available, substantiate the reliability 

of the final maps. Furthermore, the use of earth observation data is the only way to conduct 

rapid consistent mapping of the whole of the glaciated area. This approach to data collection 

was chosen specifically to resolve the restrictions of previous field based research. Now we 

have a synoptic view we can add detail from local scale field investigations. For this purpose, 

locations of problematic or conflicting evidence have been flagged for further attention. 

 

The reconstructions of ice sheet flow geometry and retreat pattern are dependent on the accurate 

abstraction of the geomorphological evidence (e.g. flowsets and margin positions). The process 

of abstraction (flowset-ology) cannot be entirely objective. Attempts have been made to 

automate the identification of flowsets to reduce subjectivity although at present no method is 

an adequate substitute for the human eye (Smith, 2003). It is therefore possible that others may 

reconstruct different flowsets from the maps. For this reason there has been a deliberate and 

clear separation of data (mapping results) from interpretations (flowsets, summaries and then 

reconstructions) in this thesis. The mapping will be published and available for future workers 

who may interpret the maps in new and different ways based on our evolving knowledge of ice 

sheet glaciology.  

 

The strong association of flowsets and topography presented challenges to the flowset approach. 

It was necessary to introduce an additional conceptual model for interpreting smudged imprints 

to accurately capture the landform record (TT thinning). Unlike the Laurentide and 

Scandinavian ice sheets, where the flowset approach was developed, the bed of the former 

British Ice Sheet has a high variability of relief over short distances. The flowsets produced for 

the BIS are numerous and complex (compare 100 flowsets in Britain to 10 for the Labrador 

sector of the Laurentide Ice Sheet, which is four times the size of Britain (Clark et al. 2000)). In 

Britain flowsets are also spatially fragmented, increasing the number of possible permutations 

of flow configurations that satisfy the relative chronology. The concept of networks of ice flow 
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around cold based patches may be a useful concept for flowset identification in the British 

context (Kleman and Glasser, 2007). It would be interesting to see if these principles would lead 

to a different reconstruction of the ice sheet geometry.  

11.4 61BDirections for future research 

An obvious next step is to combine the retreat pattern (chapter 9) with the flow pattern 

geometries (chapter 10) to reconstruct the time-slice evolution of the ice sheet. Combining the 

observations from this thesis with the results of a parallel investigation into the Irish landform 

record (Greenwood, 2008) is also a priority.  

 

It is expected that the mapping contained within this thesis will serve as a framework for 

sedimentological and stratigraphical information as well as a starting point for field based 

geomorphological mapping efforts. In particular, the moraine mapping would benefit from field 

investigations to determine the type of moraines. In addition, it is hoped that there will be a 

drive to obtain high resolution and three-dimensional seismic data from the offshore portion of 

the ice sheet in the near future. Recently published work has demonstrated the wealth of 

information that may exist (Bradwell et al., 2008b; Graham et al., 2007). Obtaining bathymetric 

data is expensive; it is expected that the new mapping in this thesis will serve to identify 

locations for targeted investigations.  The mouths of ice stream imprints, the Irish Sea basin, the 

North Channel, and the southern North Sea, (in particular along the eastern English coast) 

should be a priority.   

 

The work in chapter 10 to attach a chronology to the retreat pattern highlighted inconsistencies 

within the presently available dates for the last British Ice Sheet. There is also an absence of 

information for large areas, e.g. the Southern Uplands. It is necessary for dating experts to re-

examine the presently available dates to reject those that may be erroneous as well as conduct 

additional dating.    

 

Numerical modelling is also the only way we can investigate the reasons for the dynamic 

behaviour of the ice sheet (Boulton et al., 2001). Numerical modelling can use the results of this 

research in two ways:  

1. The new mapping and identified flowsets and margin positions can be used to validate 

model outputs. The flowset map (Map 4) should be invaluable to numerical modellers as it 

assimilates the subglacial lineation evidence into flow pattern units that are of a comparable 

size to the resolution of most models (e.g. Napieralski et al., 2006; Li et al., 2007; 

Napieralski et al., 2007).  

2. Models can be employed to test the glaciological plausibility of the regional scenarios of 

flow pattern evolution (e.g. Naslund et al., 2003).  
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It would be interesting to compare the reconstructed retreat pattern with the sea level positions 

of the last glacial (figure 11.7). This would serve to identify the sites of calving margins. This 

information can be used to model the trajectories of icebergs to examine the possible effect of 

ablation from the BIS on the ocean circulation of the North Atlantic (e.g. Death et al., 2006).  

11.5 62BConclusion 

11.5.1 115BSummary of achievements 

This thesis makes several contributions to both knowledge of the glacial landform record of 

Britain and our understanding of the last British Ice Sheet. The results are summarised in order 

of significance.  

 The first map of subglacial bedforms for England, Scotland and Wales (Map2). The map is 

thought to be near complete and a reliable representation of the true population and 

distribution of British drumlins, mega-scale glacial lineations, crag and tails, and ribbed 

moraine. The map considerably extends and adds detail to the previously known distribution 

and pattern of subglacial bedforms.  

 The first countrywide map of moraines, eskers and meltwater channels (Map 3). This map 

summarises reconnaissance level mapping of these landforms and is likely to be improved 

by future fieldwork and reference to aerial photographs. In addition to the paper maps, both 

maps (Maps 2 and 3) exist digitally as GIS vector layers. This enables rapid comparison 

with digital versions of topographic and geological maps.  

 The first attempt at a fully comprehensive geomorphological inversion model of the last 

British Ice Sheet. The spatial distribution of landforms has been investigated and the 

essential patterns summarised into flowsets and margin positions. Instances of cross-cutting 

were used to organise the flowsets into a relative age stack in order to examine flow pattern 

evolution. These summaries will be invaluable in validating numerical models of the ice 

sheet (e.g. Napieralski et al., 2006; Li et al., 2007; Napieralski et al., 2007). 

 Identification and confirmation of the locations of ice streams of the last British Ice Sheet. 

The criteria of Stokes and Clark (1999) were used to identify those flowsets delineating ice 

stream imprints. The new mapping does not support all of the proposed palaeo-ice streams 

in the literature but does confirm that ice streams operated in the Minch, Moray Firth, 

Strathmore, Tweed, and Irish Sea. There is additional evidence for an ice stream in the Firth 

of Forth as hypothesised by Golledge and Stoker (2006) and suggested by numerical 

modelling (Boulton and Hagdorn, 2006). Future models of the ice sheet need to be able to 

simulate ice streams in these locations.  

 Synthesis of deglacial evidence to reconstruct the pattern of retreat of the last British Ice 

Sheet. Five independent lines of evidence were used to build a picture of the pattern of 

retreat of the last British Ice Sheet. In general, the evidence is corroborative. The ice sheet 

retreated to multiple centres, and not necessarily the nearest high ground. Deglaciation by 
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thinning of lobes of ice to expose peripheral high ground before final retreat of the ice front 

is a common feature across the country. Initial retreat was generally towards the west and 

the North Channel indicating that connection with the Irish Ice Sheet was maintained during 

deglaciation of the Irish Sea. Following separation from the Irish ice mass ice retreated 

towards the Scottish Highlands.  

 Regional flow pattern evolution. Flowsets have been organised into regional level 

reconstructions of flow pattern evolution. The Welsh Ice Sheet appears to have been a 

relatively stable feature throughout the glaciation. Other ice divides are more transient. 

Complex flowsets in inter-divide areas suggest competition between ice centres during 

retreat. There is evidence for confluence of British ice and Scandinavian ice in the North 

Sea, followed reorganisation of the ice sheet after break up of the North Sea ice. The 

majority of flowsets relate to the deglacial stages and indicate a multi-domed ice sheet.  

 A large consistent dataset of drumlin dimensions. Research into the formation mechanism 

behind drumlins is ongoing and high resolution maps of drumlin shape are essential for 

hypothesis testing. Robust statistical analysis of drumlin morphometry requires large 

sample sizes such as provided by the new mapping presented in this thesis. Lengths, widths, 

and elongation ratios of the database of 36,222 drumlins, has been analysed and published 

elsewhere (Clark et al., in press).  

 A database and map of dates relating to the last British Ice Sheet. A thorough search of the 

Quaternary and archaeological literature was conducted in order to compile a list of dates 

relating to the last glaciation of Britain. Date locations were digitised and the dates now 

exist as a GIS vector layer (n = 426) and accompanying table.  

 A method for comprehensive mapping of formerly glaciated areas using digital data 

sources. A method for systematic mapping of subglacial bedforms from digital elevation 

data (Clark and Meehan, 2001) was applied to the NEXTMap Britain (5 m horizontal 

resolution) digital elevation model. This facilitated precise mapping of landform shape and 

avoided the problems of azimuth bias that can reduce the reliability of mapping from 

satellite imagery which is illuminated from a single solar position. The method was 

extended to map moraines, eskers and meltwater channels. Other digital datasets (e.g. 

geological maps) were used to check interpretations. 

 Revision of the protocol for flowset classification to reflect the peculiarities of the British 

landscape. An additional conceptual model for lineation cross cutting was used to capture 

the observed ‘smudging’ of lineation patterns around topographic obstacles.  

 An up to date (to December 2007) version of the BRITICE GIS database. The BRITICE 

project and glacial map did a great service to the palaeo-glaciological community in Britain 

by summarising the 170 years of published maps of British glacial landforms in one place 

(Clark et al 2004; Evans et al 2005).  The census date of the compilation was 2002. 

Throughout the life-time of this PhD research, following publication of the map in 2004, 
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there has been an upsurge in published maps of glacial landforms. Much of the new 

mapping has been digitised and added to a working copy of the BRITICE dataset. This will 

facilitate publication of BRITICE version 2 in the near future. Once published, Maps 2 and 

3 can also be entered into the updated BRITICE.  

11.5.2 116BPalaeoglaciology of the last British Ice Sheet 

The central aim of this thesis has been to reconstruct the ice sheet scale characteristics of the last 

British Ice Sheet based on existing and newly acquired geomorphological evidence.  In an ideal 

reconstruction, glimpses of flow pattern evolution would extend over the whole of the former 

ice sheet bed and be integrated with the reconstructed retreat pattern to produce a time-slice 

stack of snapshots of ice sheet configuration, with stratigraphic evidence and absolute 

chronological information used to frame the operation of the ice sheet. Given the quantity of 

information this involves (including dates and already published literature), it is a large task. 

Within this thesis I have focused on producing high quality mapping for the whole of the 

accessible area of the former bed (i.e. land presently above sea level) and constraining the 

pattern of retreat. This thesis represents a major step forward in bringing together the necessary 

geomorphological (mapping and flowsets) and chronological (database of dates) evidence 

towards the goal of a full ice sheet scale reconstruction. 

 

From the preceding discussion (section 11.4) we can make several conclusions about the form 

and dynamics of the last British Ice Sheet. It is evident that the British glacial landform record is 

a palimpsest. In light of this it is inaccurate to reduce drumlin patterns, in particular, into 

generalised ice flow patterns.  It is essential that any future research also examines the detailed 

distribution and pattern of drumlins to tease out flow pattern information. A total of 100 

flowsets were identified by careful examination of the lineation mapping. The fact that many of 

these cross cut each other is testament to changing configuration of the last BIS during the 

glacial cycle. Grouping of flowsets into plausible ice sheet geometries suggests that some ice 

divides were persistent features (e.g. Wales and NW Highlands) whereas others were more 

transitory (e.g. the ice dome over the western Southern Uplands). Unlike other ice sheets, the 

majority of flowsets exhibit a close relationship to subglacial relief. During deglaciation, the ice 

sheet was thin relative to variations of the bed and comprised a dominant Scottish centred ice 

mass, lobes of which radiated out to encompass peripheral ice masses in England and Wales. 

The ice retreated to multiple sites coincident with the westernmost upland regions. It is 

proposed that the majority of geomorphological evidence relates to the deglacial stages of the 

ice sheet. However, there is some vestigial evidence for an earlier ice flow configuration during 

confluence of British and Scandinavian ice and shelf edge glaciation.  
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