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Abstract

Magnetoencephalography (MEG) is a new non-invasive tegtanfor the
functional imaging of the human brain. It has been widelyduseboth
research and clinical applications, for it has several saperoperties,
including a high-temporal resolution with no interfererioem the bone
or the head-like fluid to the signal spatial transformation.

In this thesis, we aim to develop a framework for MEG spatatporal
current course reconstruction by introducing classicalhwes from the
pattern recognition theory into medical imaging. Thesdiapfons pro-
vide a new angle for research in MEG source reconstructiom tive so-
lution for source reconstruction at a single point, and imvpments of the
reconstruction on spatially and temporally. The whole ithesbased on
three topics, which are designed to be parts of an integratahstruction
process, and each of them are interrelated, rather thapendent from
each other.

We firstly introduce the source reconstruction method atglsitime point
using the basis function extraction. In light of the assuoipthat the
Laplacian eigenvectors of mesh can be the analogous to the fosc-

tions that represent the cortex mesh; we build a new modedgoribe the
current source that is distributed on each mesh vertex.rmbdel consists
of analogous basis functions and unknown weighted coefticidn terms
of experiment results, this algorithm shows good recocgtdiproperty
to the single stimulus, as well as the supercial stimulushencortical

surface.

Secondly, with respect to the spatial reconstructed ssugdasis func-
tion method from the last topic, we build a new solution forpnav-
ing the spatial-resolution of MEG source reconstructioa atngle time



point by introducing a classical method ( the Bayesian sogswlution
method) from the pattern recognition theory. Although thpraach is de-
signed based on the reconstruction from basis functiorsalso feasible
for other spatial reconstruction methods to improve theigpegesolution.
From the numerical experiment results, it is apparent thaspatial reso-
lution has been effectively improved.

Then, the MEG measurement system in the temporal field isveesto

be a linear dynamic system where the classical methods,afefifter and

Kalman smoother, are applied as the solution for the estimat source
in time course. The Kalman filter is used to estimate the dyoatate

while the Kalman smoother is applied for correcting the seutistribu-

tion of the hidden state with the EM algorithm. This approslcbws supe-
rior performance to solve the inverse problem. It extendsrtiprovement
in source reconstruction using the temporal field.

We construct the synthetic data as well as apply the real M&&ttirough-
out all the experimental test of my work.

In summary, this thesis builds three algorithms, which ametonstruct
the MEG source distribution on spatial and temporal fielgpeesively
aided by methods from pattern recognition. This work presié new
angle of using the pattern recognition theory for MEG souem®nstruc-
tion. Meanwhile, we also explore a new direction for appdyihe theory
of pattern recognition. This work not only provides a gootegration
between these two fields, but also encourage future intersct
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pattern shows the reconstruction result by the basis fomectiethod.
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basis function method. Based on the synthetic sourceshkdistm,
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2, it is notable that thartificial source (the synthetic source Aare
applied in the first column, the time point(msg 1, 25, 50, 150 of re-
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Chapter 1
Introduction

Since it was first introduced by the University of lllinoisysicist D. Cohen in 1968,
Magnetoencephalography (MEG) has become a well-establehd non-invasive tech-
nigue for mapping the brain activity by recording the magngelds from the head.
The electrical currents of the human brain generated bye¢heamal activities provide
measurements of magnetic eld (which are extremely wealeinahge betweeh) 12
and10~'® FT). MEG technique has several superior properties, suahhégh tempo-
ral resolution up to sever&HZ (up to 1ms). Additionally, it is a non-invasive brain
mapping technique which is not affected by the bone or hi@dilid in the process
of signal spatial transformation. All these advantagedeeMEG a competitive brain
imaging technique that can be used for scientific researdhraanlinical application
throughout the whole life of patient®feiss] 2005.

So far, there are a number of widely applied approaches teeasldhe classical
problem of reconstruction of the current sources in thedraim the limited number of
MEG measurements in this field, including beamforming met#wed minimum-norm
method. However, since the MEG source reconstruction probs fundamentally
an ill-posed inverse problem which is technically unsoleathe existing approaches
may obtain a reasonable reconstruction under some particutumstances, but such
results by no means may represent the true image at all tinhesefore, itis important
to keep exploring better solutions for the MEG source rettangon problem.

In our study, we sufficiently utilize the knowledge of patteecognition in solving
the problem of MEG source reconstruction, and provide a nenspgective of solving



this reconstruction problem. In our research, source ooction is based on the cor-
tical surface mesh which is extracted from the correspanMRlI scan. Meanwhile,
instead of assuming dipoles as the conventional sourcesnegatively assume that
the current sources are distributed on each vertex of thé ofdke cortical surface at
a single time point. In addition to these novel assumptiorspiatial field which was
explained previously, we also expanded the solution in teaidield as a linear dy-
namic system. During the process of the research in spagid| fnultiple algorithms
from computer graph theory, pattern recognition, and cderpusion are applied here,
such adasis functionsuper-resolutionnormalized cutIn order to obtain the solution
for temporal field, the classical algorithms Kalman filtemasdl as Kalman smoother
were used.

The structure of the thesis is shown as follows: firsly, weuks the basic knowl-
edge of the eld of medical imaging such as where the originftgrdnt technologies
stems from. How they provided the fitting circumstance fer development of MEG
was covered in th€hapter 2 Literature reviewlhe MEG development history as well
as the machine properties will be introduced at the same this®, the basic proper-
ties of the algorithms used in the later research are intedlin this part. Secondly, in
Chapter 3 Basis Functions Source Model Applied to MEG SoRessnstructionwe
focus on source reconstruction at spatial resolution atglestime point. The assump-
tion that current sources are distributed on the corticahmertices are made firstly.
Following this, the geometry of the mesh is analysed withidmsc functions produced
as the mesh representation. And, a global basis functiortsa@aconstruction model
will also be illustrated with a discussion of the relevargulés. Thirdly, inChapter
4 Spatial Improvement of MEG source reconstruction withé3&én Super-resolutign
we apply super-resolution algorithm in order to obtain ahkigsolution image from
a set of low-resolution images of the same scene into the Mif(Ece spatial recon-
struction distributed on the interpolated high-resolutortical mesh. Fourthly, we ex-
panded the reconstruction from spatial field into the teralpfeeld in Chapter 5 MEG
image estimation via Kalman smoothéssuming that the process of MEG measure-
ment of the brain sources is a dynamic system, the classibatien Kalman filter
as well as the Kalman filter are applied to estimate a hiddgh-resolution source
distribution directly from the coil sensors of MEG. And thiére EM algorithm is in-
troduced to estimate the unknown parameter set of the mbuhellly, we will discuss



the significance of this research, as well as the advantagksiaadvantages of the
three designed algorithms @hapter 6 ConclusionsMoreover, the associated future
work will be discussed there.

In summary, the three topics fro@hpater 3to Chapter 5Sare directly relevant to
each other and should not be treated as independent worthdnwords, the work in
Chapter 4cannot proceed without the result frabmapter 3 and the work irChapter
5 cannot progress without the result fradhapter 3andChapter 4



Chapter 2

Literature review

2.1 Overview of medical imaging

One of the most important tools of modern medicine, braingimg, in the clinical
context referred aslinical imaging or radiology, are the technique and processes
used for exploring the structure and functional status of gi& or the whole, human
body; for clinical purposes(diagnosis and treatment) aadioal researchdupa and
Herman 2000, (Hajnal et al, 2001).

2.1.1 Brief introduction of medical imaging

From the view of functional use, current methods of medicgging can be divided
into two groups: one isnorphologic imagingvhich focuses on imaging the internal
structure of the human body anatomically, e.g. MRI, CT, ¥-sahile the other one
is functional imagingwhich is implemented for better understanding and observat
of the functional status and change of human body, such as MEEG, PET, SPECT
and fMRI. In clinical and medical science, teuctural imagings usually combined
with the functional imagingor advanced functional observation of human bodg-(
panicolaoy 2009, (Preiss] 2005, (Yokogawa 2009, (Simon and Mattsonl996),
(Haacke et a).1999.

For structural imaging here is a brief introduction for these specific methods:

o X-ray



2.1 Overview of medical imaging

Also known asX-radiation, this is one type of medical imaging which actu-
ally uses electromagnetic (EM) radiation and generates#ges of the human
body. The wavelength of X-ray is in the rangeldf ~ 0.01 nanometers, which
corresponds to frequencies in the rangg of 101Hz ~ 3 x 10 Hz and the
energy in the range df20eV ~ 120keV. X-ray is a form of ionizing radiation,
this imaging technique poses a health hazards during igagiquisition. X-ray
is applied in clinics for the pathology of skeletal systemift sissue for some
disease , gallstones, kidney stones (which are not alwaylsl®@) etc. The most
notable example of X-ray is chest X-ray, which is very effezin the diagnosis
of diseases of the lung, such as pneumonia, lung cancer wopaky edema.
However, for the imaging of soft tissue, X-ray has less athges than CT and
MRI which only produces a 2D projection of the tissu#/Haites and Roder-
ick, 2002, (Squire and Novellinel997), (Charles Hodgmari961). Moreover,
X-ray is listed as one kind of carcinogens by American gowent in 2005
(government2005.

CT

Also referred to a¥-ray computed tomograplor computer assisted tomogra-
phy(CAT) CT builds three-dimensional images employing tomographgugh
computer geometric reconstruction based on X-ray teclasi@ictionary, 2009.
Tomography is a technique that employs the penetrating tawebtain recon-
structed image from the sections, so it is also caitedographic reconstruction
(Herman 2009,(Tomography. First, X-rays are used to obtain a large series
of 2D slices with a single axis of rotation. Since the diffaréissues of the
human body have different radiodensity when the X-ray gbesugh, a 3D to-
mographic image is reconstructed by CT from the slices. C3fwst introduced

in the 1970sKerman 2009, (Udupa and Hermar2000,(Beatles 2005.

X-ray generates overlapping projective slices with two elisions, while CT
provides three dimensional tomographic reconstructionushan body so that
the information on the sagittal plane, coronal plane anastrarse plane can be
displayed individually. 3D tomographic imaging has a sgatesolution of up
to 0.5 mm, and shows advantages for detecting structuresiheld, chest and
heart. However, for soft tissue contrast, MRI performsdyetian CT. Also, as
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CT is based on X-ray which is ionizing radiation, it is a hedlazard. (dupa
and Herman2000, (Brenner et al.2001), (Nelson 2009.

¢ MRI

Magnetic Resonance Imaging(MRI), also referred to NucMagnetic Reso-
nance Imaging(NMRI), in contrastto CT and X-ray, is one tgpmedical imag-
ing with no ionizing radiation, and is used for visualizifgetdetailed internal
structure of the human body by implementing the properti@esiolear magnetic
resonance . Basically, around 2/3 of the human body corsistater in which
each water molecule contains 2 hydrogen atoms(essentialtgns). Within a
powerful magnetic field, the nuclear magnetization of thérbgen atoms in the
human body is aligned along the direction of the magnetid fidkadio Fre-
guency(RF) is used to produce an electromagnetic field wisieble to alter
the nuclear magnetization. In other words, the proton in-$mv state obtains
the appropriate energy from an RF pulse, known as the reserisgquency, to
flip the spin. Turning off the RF, the proton decays from spjnstate to spin-
down state and the difference energy is released as a phdiich wroduces a
signal, this signal can be detected by the scanner. CompaiteCT, MRI pro-
vides greater contrast of the soft tissue of the body. MaedvRI provides
superior features for neurological (brain), musculosieleardiovascular, and
oncological (cancer) imaging. However, MRI shows no betsult on imaging
of the lung compared with X-ray. And, CT, also no better resual imaging
of the liver, prostate, pancreas and adrenal gland compeitedCT. However,
the MRI scanner of it is much more expensive. For clinical, ike magnetic
field of the MRI ranges from 1.5 T(Tesla) to 3T, and can be upltan/medical
research. There are some other associated imaging teelsniged for medical
imaging based on the imaging theory of MRI, such as DiffuguRl, structural
MRI, etc. (Haacke et a.1999, (Simon and Mattsonl996, (Adams et al.
March, 2009, (Squire and Novellingl997)

Forfunctional imaginghere is a brief introduction for these specific methods:

e fMRI
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Functional MRlis a new kind of functional brain imaging which measures the
hemodynamic response(the change of blood flow and bloodematgpn) re-
lated to neural activity in the brain or spinal cord of the tfamiody. Basically,
the amount of blood oxygen is increased and the consumptienergy from
glucose is increased as the neural cells become active. nEhease of blood
flow occurs approximately ~ 5 seconds after the neural cells became active.
The homodynamic response peaks arodnd 5 seconds later. The BOLD
(Blood Oxygen Level Dependence) response is well correéhaiéh changes in
the hemodynamic response. The change of the BOLD signaitéetby fMRI is
actually an indirect measure of neural activity. fMRI wastfeipplied to the hu-
man body in the 1990s. It has advantages such as being avesivrecord of
functional brain signals, high-spatial resolution(up taovth) and a superior sig-
nal record from all regions of the brain rather than only frthr cortical surface.
However, as the BOLD response detection is an indirect nmeasnt of neural
activity , this measurement is susceptible to the influerfagoa-neural events

in the brain. Moreover, fMRI has poor temporal resolutiopr@ximately 5 sec-
onds for a particular response compared with MEG/EEG . Ihésdfore hard

to distinguish the different neural activities occurringhin a short time frame.
(Bandettini et al.1993, (Logothetis et al.2007), (Laureys et al.2009.

PET

Positron Emission Tomography, is one kind of medical imggdimat uses ra-
diation detector to detect pairs of gamma ray which are geeérfrom a ra-
dionuclide. It produces images of functional processelearbbdy. One kind of
radionuclide, a short-lived isotope which emits positrassised as the radioac-
tive tracer and is introduced into the human body as part adladpcally active
molecule(e.g. Fludeoxyglucose (FDG) is commonly udemt{ 2003 (et al,
2005). After waiting a period after the biologically active neclle is injected
into the human body, the isotope decays and emits the positwith opposite
charge to the electrons in the body. These positrons eneoelectrons and both
of them are annihilated. A PET scanner includes a ring ofaieteinits which
receive gamma rays produced by annihilation events. PETwiaya applied
along with CT or MRI so both the metabolic and anatomic infation can be
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detected. Moreover, PET provides body functional imagma 8-D spatial field
or even 4-D images with 3D spatial field and time fielder(Pogossian et al.
1975, (Young et al, 1999, (Young et al, 1999

PET scaning is widely applied in both clinical practice aedaarch for func-
tional imaging of the human body. For instance, in cliniceé UPET is a great
tool in oncology, especially for the imaging of tumors andrsees for metasta-
sis. Also, PET is a powerful tool for the research of cardiag lrain function.

However, PET involves the exposure to ionizing radiatioratslightly extent

than chest X-ray and CTTér-Pogossian et all975, (Young et al, 1999.

SPECT

The full name of SPECT iSingle Photon Emission Computed Tomograptig
a kind of nuclear tomographic medical imaging using gamrga.rt provides a
3D image of the human body by injection of a radioisotope th&obloodstream
of the subject. The radioisotope emits gamma rays which eaaclquired by
a gamma camera which captured a series of 2D images withpieuéingles.
The computed tomography is then applied for the reconstrucf a 3D image
of the human body, which is similar to CT and PET. Furtherm&RECT is
similar to PET with respect to the application of a radioig® as a tracer as
well as detection of gamma rays. The difference between ikdime SPECT
uses a gamma-emitted radioisotope to detect the gammairagdydwhile PET
detects gamma ray indirectly with a positron-emitted radiwe tracer. In prac-
tice, SPECT is widely used to observe biochemical and plygical processes
as well as size and volume organs, e.g. SPECT is used to tumaging, bone
imaging, and functional cardiac and brain imagiRgahkle et al.2005, (Amen
et al, 2008.

EEG

Defined as Electroencephalograph, measures the elecfieluicsurrounding
head via a sensitive system of sensors and amplifiers looatsile the scalp.

Although methods like EEG and MEG are not designed for produmnages
primarily, the data obtained from these technologies Iksstitable to be repre-
sented as maps which can be reconstructed as brain images.
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e MEG

MEG is explained carefully in the following part.

Within all the various medical imaging methods currentlgigable , some of them
are able to be used for brain imaging, such as CT, MRI, PET &&CS. Meanwhile,
some of them are specifically designed for brain imaginghsagfMRI, EEG and
MEG. All these methods permit functional and anatomicadiss of the human brain
without opening the skull which provides a powerful tool fdimical and medical
relevant research. MEG, which will be introduced next, higgsiScant advantages
over other methods of brain imaging because if produces raccarate functional
information of human brain with much higher temporal domana is non-invasive.
Meanwhile, the target area of this new magnetic imagingrtegle has to be expanded
from the brain to other areas of human body, eg, magnetagmain (MCG)Baule
and McFeel963 is the technique measures the magnetic fields producecbiyietl
activity in the heart. The potential of MEG outlined aboveynmaake this magnetic
imaging technique one of most advantageous means of meéaiaging in the future .

2.1.2 MEG vs EEG: similarities and difference

Neural current sources in the brain generate the externgihetie fields and scalp sur-
face potentials. Modern non-invasive technologies, mggelution electroencephalog-
raphy (EEG) and magnetoencephalography (MEG) technidies spatio-temporal
investigation respectively of these magnetic fields an@émals in the human brain.
The principle characteristics of MEG and EEG are quite simifirst, the signals for
MEG and EEG are both caused by the same neurophysiologial but expressed as
different forms; secondly, the temporal resolution of bigBG and EEG is as high as
a millisecond, and thirdly, measurements of MEG and EEG batfe linear relation-
ships with the strength of current sources distributionfaut-linear relationships with
the sources locatioWendel et al.2009 (Baillet et al, 20017).

It is worthy to note that both MEG and EEG models are based emviixwell’s
equation i.e. they are based on the relationship betweesutinent source distribution
of interest and the measurement at the sensor array. THitepnas described as the
forward problenfor both MEG and EEG, whose linearity can be expressed aaiiee i
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product of thdeadfield(which is introduced in the later par2.2.5. Forward formula
and inverse problem of ME@and the current source distribution of intereBtigp,
1983. Since the majority of the inverse methods for MEG and EE& msed on
linear algebraic formulations, the framework for the stof the forward problem
is a matrix formulation Baillet et al, 2001) (Dale and Serendl993 (Darvas et al.
2004 (Hamalainen et a11993.

Although EEG and MEG signals originate from the same newsiplogical pro-
cesses, there are important differences. The scalp surfatmhing for MEG and EEG
are different in terms of the different means of sensorstiona. For EEG, the sensor
locations can be used instead of the head-shape since tha&rsame attached on the
scalp of the subject. For MEG, the sensors are located inghmét in which each
sensor probably does not exactly match the scalp of the ®ufdjbus, the head-shape
is first co-registrated on a structural MRI, then the samesfiamation is applied onto
the sensors. Moreover, distortions exist when the maghelicand the potentials pass
through the brain to the external surface of the scalp, wtieeg can be measured.
Magnetic fields are less distorted than electric fields bysthdl and scalp, which re-
sults in a better spatial resolution of MEG. Further, sinleeteic and magnetic fields
are oriented perpendicular to each other, the directiorfsgifest sensitivity are or-
thogonal to each other. Whereas scalp EEG is sensitive totangential and radial
components of a current source in a spherical volume condudiEG detects only
its tangential components. MEG therefore measures gctivithe sulci selectively,
whereas scalp EEG measures activity both in the sulci ame abdp of the cortical gyri,
but appears to be dominated by radial sources. And, acaptdithe work of Barth
D.S and colleagues, it is notable that scalp EEG is sengiiextracellular volume
currents produced by postsynaptic potentials, while ME@Garily detects intracel-
lular currents associated with these synaptic potentitabise the field components
generated by volume currents tend to cancel out in a sphbaed modelBarth et al,
1986. Therefore, MEG is more sensitive to superficial cortiazivdty, which makes
it useful for the study of neocortical epilepsy, since theajeof magnetic fields as
a function of distance is more distinct than for electricdsel Finally, EEG relies on
a reference that makes interpretation of the data difficufprbcess; while MEG is
reference-free. Mlosher et al.1999 (Cohen and Cuffin1983 (Barth et al, 1986).
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2.2 Introduction of Magnetoencephalography(MEG)

2.2.1 Briefintroduction

Magnetoencephalography(MEG) is a new non-invasive tadiuioctional imaging of
the brain. Compared with other brain imaging techniques@G\uigtects the extremely
faint magnetic fields generated in the human brain with n@iog radiation. Further-
more, MEG provides functional mapping of the whole brairvattstanding temporal
resolution.

The different functional states of brain are representederims of the measure-
ment of changing of magnetic field around the scalp by MEG, er&fore, the neu-
ronal activities that evoke the magnetic field can be medsdimectly. In order to
understand the functional brain spatio-temporally, ME&uheare co-registered with
the corresponding structural MRI result so that the bialabiunction combines with
anatomical structure. The combination of MEG and stru¢tanaging (eg. MRI) is
known as magnetic source imaging (MSI). It is remarkablé M@l is able to provide
information about the functional brain temporally togetivith the spatial functional
localization.

Because of the highly sensitive qualification and precisi@mufacturing, the pur-
chase of MEG apparatus and relevant services are very c®stfar, there are three
manufacturers in the world that produce MEG apparatus,aheeC TF-MEG (Canada),
Elekta-Neuromag (Finland) and Yokogawa (Japan).

2.2.1.1 Neural basis of MEG

The human brain consists of two hemispheres which are depabg the longitudi-
nal fissure. Furthermore, the hemispheres are divided aftes| by two deep grooves.
The Rolandic fissure cuts vertically the outer part of botmispheres, and the Syl-
vian fissure runs almost horizontal. Thus, the cortex is rsdpd with four lobes in
both hemispheres; frontal , parietal, temporal and oaipispectively(showed in the
Fig 2.1).

Each lobe can be mapped functionally. And, the cortex hasothesurface area of
approximately2500cm? which is highly folded to fit in the skull compartment. MEG

11
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Longitudinal
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Figure 2.1: The human brain consists of two hemisphereshwikiseparated by the
longitudinal fissure. Furthermore, the hemispheres ardetivinto lobes by two deep
grooves. The Rolandic fissure cuts vertically the outer pbioth hemispheres, and
the Sylvian fissure runs almost horizontal. Thus, the castseparated with four lobes
in both hemispheres, frontal , parietal, temporal and ot&jprespectively (Picturs
taken from AMA Health Insight: http://www.ama-assn.org)

studies are usually covered with the uppermost layer of thmbHamalainen et al.
1993

The neurons and glial cells are the principle componentsudiding the brain. The
glial cells provide the main physical structure of the bi@srwell as the transport of the
nutrients between blood vessels and the brain tissue. Tie taimber ofl0!® — 10!*
neurons mainly process the information of the brai®hillips, 2000

The magnetic fields measured by the MEG sensors are comnisurom both
the primary current produced by current flow in apical dendrites in corticalgmi-
dal neurons and representing tieural and microscopic passive cellular curreand
the volume or secondary currentwhich is generated from th@acroscopic electric
field (Papanicolaol2009 (Tripp, 1983. Since the primary current represents the neu-
ral activity with a given cognitive process, it is considiees the sources of interested
in MEG. Therefore, the general concept of MEG source esiimateconstruction and
localization are based on reconstructing the underlyimgany sources. In the con-
text of MEG source reconstruction, the aim of the forwardbbeo and the inverse
problem is both to estimate the primary current sour&agpéanicolaot2009 (Tripp,
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1983 (Balillet et al, 2001).

Primary current sources generate volume currents. If nomgm current exsits,
then no volume current can exist. But here can be closed ldapapy currents that
generate no volume currents. It is noteworthy that volunreecuis tend to cancel out
in a spherical volume conductor, in which case the MEG mesgsent is only detected
from the primary sourc&arth et al, 1986.

Figure 2.2: A neurone consists of three principle parts:c#lebody is as the "pro-
cessor” which contains the nucleus; the dendrites whiclilkee¢he thread extensions
are the "receivers” which receive stimuli from other newsnand the axon is as the
"transmitter” which is a single long fibre carrying the impelfrom the cell body to
others. Primary currents are produced by current flow inaaglendrites in cortical
pyramidal neuronsney 1993.

If the primary sources as well as the surrounding condugtigistribution are
known, it is feasible to calculate the magnetic field (by ME&gctrical field(by EEG)
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2.2 Introduction of Magnetoencephalography(MEG)

in terms of Maxwell's equation. This forward problem, spied for MEG, is ex-
plained inChapter 3: Forward problem

It is noteworthy that there is the special case that the velaurrent generates the
magnetic field with equal magnitude but opposite directfeor.instance, the contribu-
tion of volume currents is then canceled, and the measurtesh®EG only contains
the magnetic field caused by primary currététalainen et al1993 (Phillips, 2000.

2.2.1.2 MEG technique introduction

MEG measures the magnetic field surrounding the head via @anealy sensitive
system of sensors and amplifiers located outside scalp,asushperconducting quan-
tum interference devices (SQUIDs), or magnetomeRapéanicolao2009, (Preiss]
2005, (Baillet et al, 2001, (Cohen 1968.

The measured magnetic field is mainly generated by the Ealcactivity in brain.
MEG source reconstruction from the measured magnetic faaddlizes 3D pattern
of neuronal activity of the cortex spatio-temporalBréiss] 2005, (Srikantan et aJ.
20006, (Kishida 2009. However, it is a typically ill-posed inverse problem wihic
is theoretically insoluble. In term of this feature, the ngsef MEG face a choice of
various possible inverse solutions which could be used rfocgssing the measured
data. {(Ozmen et al, 2007),(Preiss) 2005.

For the functional brain imaging, although techniques hsas fMRI, PET, etc.
show outstanding spatial resolution , MEG presents a smp&mporal resolution
which complements the weakness of brain imaging tempaitgriguez et aj 2003,
(Baryshnikov et al.2004).

2.2.1.3 Application of MEG

MEG is widely used for both in clinical practice and researthe relevant research
using MEG includes linguistic, visual, auditory and taetdctivity. Also, MEG is
involved in the research of connection between visual,tangdactivity and cognitive
function along with linguistic study during informationqmessing. In medicine, MEG
is mostly used in the diagnosis of epilepsy and localizatithe epileptic focus before
surgery. MEG is involved in the diagnosis of diseases, ssatpdepsy, brain tumor,
stroke, brain trauma, Alzheimer’s disease(AD), and Paiki's disease.

14
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Figure 2.3: The demonstration of structural MRI
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Figure 2.4: A demonstration of an MEG scanner and subject
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2.2.1.4 Comparison of MEG with other medical imaging apparéus

M;.T:;:i::];m Device Feature
1. measurement with ionizing radiation;
CT . ; .
. 2. high spatial resolution
Morphologic : z 2
biin finaging I, measurement with powerﬁll magnetic field and radio frequency;
MRI | 2. high spatial resolution
3. low temporal resolution
1. non-invasive, natural environment of measurement
Electric MEG | 2. high temporal resolution(up to 1 millisecond);
physiological 3. high spatial resolution(up to 1 cm)
functional 1. non-invasive, natural environment of measurement
brain imaging | EEG | 2. high temporal resolution(up to 1 millisecond);
3. directly marker of brain neural activity;
1. high spatial resolution
fMRI | 2. low temporal resolution
3. record changes in blood flow, indirectly marker of neural activity
1. measurement requires injection of a positron-emitting radioisotope
as tracer,
Metabolic PET | 2. high spatial resolution
functional 3. low temporal resolution
brain imaging 4. record metabolic activity, indirectly marker of brain neural activity;
1. measurement requires injection of a gamma-emitting radioisotope
as tracer,
SPECT | 2. high spatial resolution
3. low temporal resolution
4. record changes in blood flow, indirectly marker of neural activity

Figure 2.5: Comparison of brain imaging methods

Within the methods of functional brain imaging , there are&main processes for
the description of brain activity, which are the neural siigblood flow and metabolism.
The neural signal is the most direct and basic and the bloeddiad metabolism are
both depended on the neural activity. MEG is a technique vtliectly measures the
neural signal. fMRI measures the signal related to blood,feovd PET and SPECT
is for measuring metabolism. SPECT is similar to PET in it osradioactive tracer
material and detection of gamma rays. In contrast with PBWever, the tracer used
in SPECT emits gamma radiation that is measured directlgreds PET tracer emits
positrons which annihilate with electrons up to a few mibiters away.
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Fig 2.8 provides a table to compare the current brain imaging methetilst it
indicates the advantages of MEG compared with any otheradstlrespecially if it is
absolutely non-invasive and has outstanding temporalugsn(up to 1 ms). However,
since methods such as fMRI have high spatial resolutiondsutémporal resolution,
itis popular to combine the advantages of both methods. thxhdilly, the technique of
EEG is similar to MEG. The main difference is that the skull &ime tissue surrounding
the brain affect the magnetic fields measured by MEG muchthessthey affect the
electrical impulses measured by EEG. The advantage of MEEGBEG is therefore
greater accuracy owing to the minimal distortion of the aign

2.2.2 Apparatus
2.2.2.1 Recording principle

The neural signal generates a current which induces the etiadlux surrounding the
cortex.

The flux of the cortical magnetic field can be detected by exélg sensitive sen-
sors surrounding the head surface, shown in3ig The type of these special sensors
are a set of either magnetometers or gradiometers. Eacbrstrsnstance , a magne-
tometer, is a loop of wire, or coil, which is located parattethe head surface. As the
flux lines thread through the coil, the corresponding curi®generated by induction
in the coil. This current on the coil is proportional to thexfiwhich can be thought
of as the expression of the magnetic induction from the abichin. Using a special
amplifier, SQUIDs, the weak induced currents on the coil caodnverted into a high-
amplitude voltage. In this way, the scalp magnetic field =orded by each sensor
every millisecond. Assuming there are a sufficient numbeahefsensors located at
regular interval places surrounding the head, the correipg neural source distri-
bution can be measured and determined all over the cortexce $he magnetic field
evoked in the cortex as well as the induced current on theoEsiénsor are extremely
feeble, MEG apparatus must be housed in a magneticallydgliebom(MSR) to at-
tenuate any noise from the external environment. Furthesptmoth the sensor and
the SQUIDs are placed under the condition of superconducticorder to operate
correctly .
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It is worth noting that any flux line threading through theladia sensor can be
divided into two parts, a perpendicular component to thé mlane and a tangential
component to it. Then, the current on the sensors is indugdabperpendicular part
only. This also indicate the flux lines which is perpendicutathe coil plane induce
the strongest current on the sensor does not respond toiteeatmponentdapani-
colaoy 2009

2.2.2.2 Industrial structure of MEG

e Special sensors

In any location around the cortex, the magnetic field comadng to the cortical
neural signal can be thought as the combination of differgos of field, eg,
uniform component, first-gradient component, secondigrddcomponent etc.
In practice, there are two types of sensors used for the ME&uorement which
are magnetometers or gradiometers.

a). Magnetometer

2.2.2.3 Comparison of MEG with other medical imaging appar#us

(a) (b)

>

zZ

y <D

Figure 2.6: Figurea shows the structure of the planar gradiometer; while figure
shows the structure of the axial gradiometelafnalainen et a11993.
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Each magnetometer (shown in F2y6) is placed parallel to the head surface
which detects the total field induced in the located aredudicg uniform, or
zero-gradient, component, first gradient component, etc.

b). Gradiometer

A gradiometer (shown in Fi@.6) has the outstanding advantage of reducing
noise while detecting MEG measurements. The gradiometérsteorder reject
the uniform component, further the gradiometers of seamadient reject the
uniform component and first component, and so on. Current M§Eem uses
the gradiometer of the first order, which normally has twadurral types, axial
gradiometer and planar gradiometer.

In summary, the magnetometer is good at detecting all typeecsignal while
the gradiometer is good at reducing the noise. This thesislyndiscusses the
MEG system with magnetometers(comparison of the magnetsnaed gra-
diometer comparison of the axial gradiometer and the plgrediometer). In
practice, gradiometer are more widely used as the sensd&Gf rather than
magnetometers.

Due to the current on the coil of sensors induced by extrenvelgk magnetic
flux in the brain, the environmental condition for sensorsstre set as su-
perconducting so that they have no resistance. This cantbevad when the
temperature of the coil is reduced close to absolute zeitd.15 degrees on the
Celsius scale ). In the MEG system, the sensors are placédhveitthermal
isolated dewar which is filled with liquid helium. These wimds conditions can
keep the temperature of coil around 4K(-269.15 degrees @rC#isius scale)
which is sufficient for superconducting?#panicolao2009

SQUIDs

Since both the magnetic flux of the brain and the induced nuoe the mag-
netometer( which is proportional to the flux) are extremegak, an amplifier
must be implemented to detect the signal. Conventionalifierglare not able
to achieve this task because of their intrinsic thermalaois

In the late 1960s, the superconductive quantum interferelevice, so-called
SQUIDs, was co-invented by James.E. Zimmerman. SQUIDs sae applied
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to research from airborne submarine sensors to gravitdtiwaves. Then, the
first experiment in applying SQUIDs to measure the magnetiimgram was

conducted in MIT. It is the use of SQUIDs which makes MEG measient

practical Baillet et al, 2007, (Cohen 1968.

e Magnetically shielded room(MSR)

No matter how strong the magnetic signal evoked from theegpdre no matter
how accurate the induced current of the magnetometer isectainto the high-
amplitude voltage, all these types of signals in these [gsE®are too weak to
compare with major types of magnetic noises in the outsidédwyce.g. urban
noise or the earth’s magnetic field. Normally, the magnetidfyenerated in the
brain is on the order of several tens of femtoTesla( fT,mr'> Tesla), while the
earth’s magnetic field is around several microTesl&a( Tesla). To avoid the
major interference from the external environment, the Mp@aaatus is placed
within a magnetically shielded room(MSR) for isolation.

Various types of materials with different magnetic permigheg, mu-mental,
aluminum, copper, etc, are used to construct the MSR in sgoeelayers. As
a result of this structure, the MSR is able to shield agaimstioise withboth
low-frequency-(as low as 0.1Hz by 40 dB)-and high-frequency-(up to 1GHz
at 60 dB-signalsjPapanicolaol2009.

2.2.3 History
2.2.3.1 Development of MEG

The first trial of MEG was conducted by University of Illinggysicist David Cohen in
1968 who used a copper induction coil as a magnetom€tandgn 1972. A shielded
room was used to reduce the measurement noise. Howevemeaisurement result
was too poor with too much noise, to be applied into in practicater, the invention
of SQUIDs accelerated the development of the MEG technibpuiell T, David Cohen
then built a better shielded room and applied SQUID detsdtorMEG measurement
with the cooperation of James E.Zimmerman. The result wakasas EEG this time
which marked the start of MEG researcohen 1972.
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At the beginning, MEG apparatus was manufactured with dsiBQUID detector.
To take measurements, the single SQUIDs detector was Sinelgsised for measure
the magnetic field at a number of designated position on thgsts scalp. This
was very much of inconvenient for making measurements akasgelhe influence
of the accuracy of measurement. Then, the manufacturesapmd the structure of
MEG apparatus by increasing the number of sensors and SQWHIarger thermally
isolated Dewar to cover a larger area of the scalp. The MEGaDatpresent is made
as a helmet-shaped which is almost able to cover the wholp staubjects. MEG
systems are currently produced with the number of sensaysafrom 100 to 300, such
as 128-channel, 248-channel and 306-channel. Of coussedhe channels it has, the
more accurate information can be obtained from MEG measemésn

The first MEG apparatus in UK was installed at Aston Univgrgit1999 which
started the MEG research in the UK. At present, there are riare 10 academic
institutes in UK, who own MEG apparatus for research, egpAdtrain Centre in
Aston University, York Neuroimaging Centre (YNIC), Cafdidniversity Brain Re-
pair Imaging Centre (CUBRIC), University of Nottingham, idersity of Oxford, The
Wellcome Trust Centre for Neuroimaging of UCL , Cognitiveuda@maging (CCNi)
in University of Glasgow . Further, more and more Britishdemic institutes joined
in cooperation with the institutes above for collaboratesearch. Because of restric-
tions in the NHS presently, MEG is not able to be applied chfiy directly in UK,
and if is only for research use. However, MEG has already kagnficantly applied
in both medically and research legally in some other coestrsuch as USA, China
and Japan.

2.2.4 Head model of MEG

MEG is concerned with the study of the brain and a number ééidiht head models
are used. The different assumptions of the head models in BiEgBtly reflects the

nature of the geometry and electrical conductivity of braihe induced internal cur-
rent includes primary currents and secondary currentshwihith affect the brain at
the same time, and so the application of different head nsad@mnportant for source
localization. There are some types of head models whicharemonly applied in the
analysis, such as the spherical model,the boundary elemedé¢l(BEM), and finite
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element models(FEM). It is obvious that different head ni®dee designed to have
a focus on different research angles, and approximatiosad to decrease computa-
tional complexity. In this case, there are some intringtiors which exist within each
head model and affect the design of source model, accurasyuste reconstruction
and computation efficiencyr@panicolao2009 (Baillet et al, 2001).

Generally, MEG head models can be divided into two claspé®rgcal head mod-
els and realistic head models. Finite element models(FEM baudary element mod-
els(BEM) are classified as realistic head model. Howeverbtiundary between these
two classes are not absolute, there are plenty of modelgrissio combine both these
features, such as the spherical BEM model . In the followiad, some head models
are introduced”apanicolao2009.

2.2.4.1 Spherical model

The spherical model assumes the head is a single spheretgrlencbncentric spheres.
By using the appropriate structural imaging scan of theestipjhe best fit sphere is
found for analysis. Additionally, the sphere is assumedtbdmogenous and isotropy.
This indicates the conductivity of each volume in the braiassumed to be the same,
moreover, the conductivity of each volume is assumed to thepandent to the current
direction. This kind of head model is frequently used fonidal studies as it is easy
to generate and efficient to analyse with sufficient accuracy

The spherical head model shows good accuracy for the focubeohead area
where the curvature of the local brain surface approxingateltches part of a sphere.
However, for regions where the curvature diverges from amghfor instance, the
temporal lobe , the results are less satisfactoBap@anicolao2009

2.2.4.2 Boundary element model

The boundary element model(BEM) approach is a model whictsists of a set of
nested surfaces which are basically composed of threeslayerer skull, outer skull
and scalp surface. BEM assumes homogenous and isotropypydayers and com-
partment of the layers. However, the constraint of symnatrghe spherical model has
been relaxed. In this case, this model is able to more aady@dscribe the geometry
of the individual subject. In BEM, the primary current is moinsidered as symmetric
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as in the spherical model. Furthermore, the potential fraferént layers are com-
puted and added to calculate the internal current. In amdithe volume current is
considered to affect the neural activity and external magfield measured by MEG.
Thus, BEM results in a better description of the brain neaddivity. (Hamalainen
and Sarvasl987)

However, since the results of BEM are not a distinct improgetin significance
and accuracy, but are computationally expensive and timswuing for accurate in-
dentification of different boundaries in complex brain tissit is more frequently ap-
plied in research rather than in clinical settingBagpanicolao2009

2.2.4.3 Finite Element Model(FEM)

The Finite Element Model(FEM) is one type of numeric apploatich "allows the
use of anatomically realistic head models and the increesegbutational power that
they require has became readily availabBellimpf et al. May 2003. Since the FEM
presents the realistically complicated non-homogenoad benductor, it is often used
for the forward problem.

The electronic field of the behavior of the neural sourcedqienlirain can be de-
scribed from Poisson equatio&¢himpf et al. May 2002 (Plonsey 1969 :

V-oVV=V-J=p (2.1)

whereJ; is the applied current density(m?), o is the conductivity of the volume
(22m)~-1, andV is the electric potential. A class of numerical methods uset af basis
functions to approximately model the potential throughbetbrain volume. In terms
of the Egn2.1, the approximation of the potential can be calculated byimmizing a
weighted avaerage of the resid@&@aibimpf et al. May 2002:

n

=1 /O Q
j=12..n (2.3)
V&Y Na (2.4)
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wherell/; are the weighting functionsy; are the basis functions, are the degrees
of freedom(DOFs) which are used for fitting these basis fonstto the potential. The
dvergence theorem is applied to the integral. The basidibkmare generally set as
a set of polynomials in 3-space, which are defined locally gubregions as a finite
number ofelementsAlso, the weighted function are set as same as the basisdoac

Although as the numeric method, FEM can represent moresteatiomain, the
sources in this model are an approximation of ideal dipole However, the math-
ematical idealization does not exist in practiS&liimpf et al. May 2002 (Wolters
40).

2.2.5 Forward formula and inverse problem of MEG

Generally, MEG is a type of non-invasive technique reflecthre electromagnetic sta-
tus of the internal brain with high temporal resolution(aprtillisecond). The focus of
MEG is detecting the internal current source informatianluding direction, strength
and locations ,by the measurement of magnetic field on scalace.This problem in
MEG research is given a number of names depending on thefispggaal, including
'source estimation’, 'source localization’, 'source rastruction’, or 'source imaging’.
In order to successfully tackle this problem, it is usuakgessary to use information
from morphological imaging techniques such as MRI. This bration is named as
Magnetic Source Imaging(MSI).

2.2.5.1 Fundamental equation of MEG

The concept of MEG sensing is to detect currents flowing irbtlagn from the mag-

netic flux recorded at a number of superconductive coilsgala®ar the scalp. In the
source spac€’, the magnetic field generated at a locatioon the scalp is given by
the Biot-Savart lawBaillet et al, 200]) (Preiss] 2005 (Papanicolaou2009:

B(r) :/Q UPICORS Gk SOV (2.5)

cAr |r—r']?

here,r is the position where we measure the magnetic fields a position in
the source spacej(r’) is the internal current element which including both priynar
current and volume currerdérth et al, 1986); B is the measured magnetic field gig
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Figure 2.7: The diagram defining the source sgacehe position of the sensor array
r;, the position in the source spaceand the MEG measurement on the seris@.
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2.2 Introduction of Magnetoencephalography(MEG)

is the magnetic constant; Under the spherical head modetdits are placed radially
around the origin of the coordinate system, and so the naail ; is given byr; /r;
(shown in Fig2.7). Under this model the problem has a simplified form where the
magnetic flux detected by cails:

I‘.
"B
A" / __/
po e S0 x (6 1)
o 4m ri|r; — '3

:/ po (ri = 1) X 1 Sj(x')deY
Q

cAr il — 13

(2.6)

- / L) -j(r)d

wherel;(-) is theleadfieldof coil < which indicates the connectivity between the
measrement of magneticfieldigtand the source locatian

L((ry) = Lo Lmx) X n (2.7)

T Pk
2.2.5.2 Forward and inverse problem

Since the leadfield does not depend on currents or coil reggoMEG source re-
construction can be approached in two different ways whieltlze so-calledhverse
problemandforward problem The forward problem involves 'computing the scalp po-
tentials or external magnetic field at a finite set of senswations for putative source
configuration’. This problem can be solved by a unique soiytivhich can also be
said as 'well-posed’ . On the other hand, iheerse problenis based on ’estimat-
ing the configuration of brain sources that account for tltended magnetic field on
the head surface’.Mosher et al.1999 It is practical to estimate the information of
sources, eg, geometrical configuration on a 2D surface fremteasured magnetic
field. However, the provided information is not enough toedeiine the sources on
a 3D cortical surface which may have multiple possibilitigs this case, the inverse
problem of MEG is theoretical unsolvable or ’ill-posed’.dnother words, it is under-
determined problem.
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In terms of the characteristics of the ill-posed inversebfm of MEG, there are
a number of methods of source estimation which models tleeriat sources based on
different mathematical algorithms and assumptions, fangxe, the principle of some
methods is to reduce the number of unknown to be less or Idveer the number of
known coil responses, making the problem well-posed. Séawh of these methods
are based on different the assumption, it is common thatekelts from different
methods are different despite using the same set of datze Hie ill-posed inverse
problem is insoluble itself, each method is heavily dependhe assumptions used.
Addtionally, the situation is worse in practice. For instanwhen the head model is
assumed to be homogenous in conductivity and approximapgigrical, the sources
which are oriented radially, produce no magnetic field algshe head. Accordingly,
the sources in the central brain where most directions goeo&pnately radial, as
well as other radial oriented sources in the brain, are nt@ sbbe reconstructed
clearly by general MEG source estimation. This is one of #fasons that MEG source
estimation is insensitive to the deep sources. Therefoeedesign and application
of various source models appropriately is the importansm®ration in MEG source
reconstruction Papanicolaou2009, (Preiss) 2005 ("Ozmen et al.2007). We now
review some source models from the literature.

2.2.6 MEG source modeling
2.2.6.1 The equivalent current dipole(ECD)

Historically, this was the first inverse solution to be deysld for MEG source estima-
tion. Mathmatically, a single ECD (equivalent current dg)as assumed to be a pair
of current sources with an infinitesimal separati®aganicolaou2009. The stan-
dard method of estimating a single source is to determinE@@ (equivalent current
dipole) by a non-linear least-squares resedngbinisto et al. 1982. The dipole is
assumed to be dynamic and can be adjusted to optimise thengemdf-fit and find
the unknown direction, strength and location of the dipoleseh time point.
Generally, the observed measurment of magnetic field ardigieel magnetic field
by the estimated dipole information (eg, direction, sttarand location) are incorpo-
rated into a cost function which measures the goodness-dike goal is then to find
the dipole location which minimizes the cost function. ®itlce magnetic field has a
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non-linear relationship to the dipole position, it is diffitto find an analytical solu-
tion. Accordingly , numerical and iterative methods arelegopto the problem. The
initial setting of the parameters of the dipole sourcesatliyenfluence the result of
estimation, and may generate local minimuBclierg and von Cramoth986 (Cuffin,
1985. The process of searching for the minimum cost functiontrbesdesigned to
find the global minimum and avoid the local minima. It is amgrdrthat the global
minimum provides optimal parameter estimation for costfiom while the local min-
imums provide the sub-optimum.

In this method, there are usually a small number of dipoled, the number of
unknown quantities are generally lower than the number aisueements taken. The
ECD is therefore a overdetermined problem. The simplasasdn for the ECD is that
only one source is assumed to be in the region of interesteasimigle time point. The
biggest challenge for the ECD is the difficulty of determgnthe number of dipoles in
the brain at a single time point. The most popular way is t@lagding dipoles to the
possible regions and observe the change the magnetic figldhensolution becomes
stable or there are no more notable changes occur.

Since ECD is the most simple method of MEG source estimaéind,has a long
history, the ECD is the principal method used in clinical kw@Papanicolaou2009.
Specificly, the ECD shows success on 'the localization @rintal spike, the localiza-
tion of language-specific cortical region, presugical lizedion of the early cortical
evoked response’Papanicolao2009

The algorithm is as follows:

e Noise estimation

Since MEG measures the very weak magnetic field outside difraa which is
normally smaller thaq% of the earth magnetic field, the measurement is easy
to be interfered by different noises. Before building tharse model, it is nec-
essary to reduce the noise. Here, some conventional wayistewduced for
reducing of the MEG measurement. Firstly, using the Maga#yi Shielded
room as the noise reducing way. This is a effective way foucedhe general
environmental noise. It is capable to decrease the extemaghetic field by

100dB at 1Hz. Then, the Reference sensors are used for reducing the noise
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With this way, there are a set of sensors are particularlgl éenoise measure-
ment by locating far away from the head of the subject. Somtbefgradient
field is calculated by detecting the distant environmentéder Also, using gra-
diometer as the noise reducing way. In terms of the struetmdefunction of the
gradiometer illuminated in the previous part, the sendargdhe difference be-
tween the magnetic fields measured by two consisted coee3he magnetic
field generates by the brain is not homogenous, the noisesaed from the
long distance effectively reduced by Gradiometers.

Moreover, averaging and filtering are used for noise reductilt is assumed
that the measurement from different channels are indep¢sdethat the noise
from each channel is not correlated with each other. Acogigj noise covari-
anceX = diag(oy, - -+, 0,) Whereo; contains both the source noise source and
the environmental noise. For the noise averaging methedp#ckground ac-
tivities are collected and saved before the source meastirsoethat this can
be set as the average value of noise. Then both the sourceimmesd and
average value of noise can be applied for standard deviatibis generally
useful, but shows weakness when random inherent noise rgppfesome inde-
pendent time point fos;. For the filtering method, the typical cut-off frequency
of MEG measurement i8.03 — 1.0H z for the high-pass filter and) — 400H =z
for the low-pass filter. However, the filter is applied in gree for filtering the
measurement before the noise estimation which may bringcuracy for noise
estimationdamalainen et al1993.

Besides these , there are still several kinds of methodsdigerestimation. For
instance, Masaki Kawakatsu developed the ICA approach t6GMoise reduc-
tion which produces many different components and workéetadely to re-
construct the single evoked responses based on the objedterionKawakatsuy
2003.

Model building

To descirible the fitting between the measurement and theetadield gener-
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ated from the predicted sources, the following equatiopgiad:

g=1=> (b;=0)*/> b (2.8)
=1 =1

wheren is the number of channels involved in measremgng the noisy mea-

surement of magnetic field on chanrielandb; is the corresponding magnetic

field produced by predicted ECDs. If the valuegf= 0 approximately, it in-

dicates the predicted data matches the measurement dateevelpifg = 1,

it means the predicted source model of ECD doesn’t desdndbeneasurements

at all and the results are similar to a the generated magingticof zero. This

fitting is analogous to the linear regression analysis.

Moreover, they -squaredistribution is applied for the test of goodness-of-fit:

Xops = D (b —b)” _Qbi> (2.9)

or
=1 v

which assumes Gaussian errors for the measurement datgqrdibebility P,

of the observed Chi-squared value directly reflects the gesstof-fit for the
model. It indicates that iP,;, is close tol, the model well describes the internal
sources and here is no need for adding extra dipoles. In thgasy, if P,
alternates betweet ~ 1, it means the model is not satisfied and the further
approaches need to be applied, such as adding extra dipoles.

It is notable that the small number of soureegenerally give rise to the quick
and unstable alternating value betwéen- 1 wheno increases. In this case,
if the noise is overall underdetermined, the modell is gasilbe affected with
unaccurate results. Underdetermination of the neigasses a more complex
part to modelling which should have been taken by noise, @dsoverdetermi-
nation of noiser may lose the possible variation in the detail of the source.

2.2.6.2 Multidipole model

The ECD can be generalized to a multiple dipolar source wattial separation. In
(Hari et al, 1984, it is shown if the distances of multiple, simultaneousttiae
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sources are sufficiently large from first and second semasosg regions,S/ and
S11, as well as the source directions favorable , there is lesdapping from the mul-
tiple sources and it is feasible to fit each source distingyiyhe Equivalent Current
Dipole (ECD). Similarly, the sources can be separated lgi@ath ECD if the sources
change with time. However, if these conditions of sourceswat met and the sources
overlap in both the spatial and temporal fields, the ECD masétiended to be the
spatial-temporal multidipole modek a solutiorffamalainen et 311993.

In contrast to the single equivalent current dipole whichlglevith the source in
the temporal domain separately, the multiple dipole modadets the sources in the
spatio-temporal field together. Basically, the multiplpalar sources are assumed to
be able to alter the strength but maintain the position, gotoboally maintain the di-
rection throughout the time interval of interest. Then,edicted magnetic field is pro-
duced to match the measurement. The number of multiple aligolurces(unknown)
are generally lower than the number of measurements of tigmetia field, thus this
multi-dipole model is also an overdetermined problei@falainen et 311993.

Compared with ECD, which depends on the initial guess of #tees of the ECDs,
the multidipole model solves the highly complex optimiratby selecting the starting
parameters (initial estimate of the solutions) randomiyrfreither the cortical surface
or the grid of brain volume.

The predicted data and measured data of the magnetic fieehsted as3;;, and
M. j = 1,-,n indicates the number of sensors, dne- 1, - - -, m indexes the time
intervalst,. And this multi-dipole model is formulated as follows:

Here, the equation is the minimum for the conventional lsgsiare error function
wherezy, - - -, z, indicates the unknown parameters in this model. There dipoles
assumed located an, whered = 1, . . ., p. Specificly,p; dipoles are fixed-orientation,
andp, dipoles are with variable-orientation, where= p; + p. And, r = p; + 2ps
dipoles wave forms are retrieved.

- ||% denotes the square of the Frobenius norm:

| A []2= ZZA = Tr(ATA) (2.11)

=1 j=1
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Furthermore, the magnetic field calculated by predictedidipbles can be written
as:

B = G (... r, )REPXIQrm) (2.12)

whereG represents th&ain matrixcomposed of the unit dipoles as all these vari-
ables are calculated as matrices, the dimension of thegeesaare indicated on the
superscripts. These unit dipoles are indicated on the g@ihepordinate system with
(€9, €):
Gjod—1 = bi(rq, &) (2.13)

Gj’gd = bj(rd, e¢) (214)

withj=1,---,n,d=1,---,p

whereb; (r 4, &) andb;(r 4, €;) are the magnetic field produced by the predicted unit
dipole onr; distributed on the different directions af ande,.

The firstp; rows of Q represents the time series of amplitude,adf the dipoles
with fixed orientations. And, the remainirp, rows are the time series of the two
components of these variable-orientation dipoles.

R contains the differentiation between fixed- and variabiergation dipoles:

cos [y 0 0

sin (31 0 0
0 cosfBy 0 0
0 sinf; 0 0

R— ' _ (2.15)

0 0 cosfB,, O
0 0 sing, 0
0 0 | (2p2)

where the fixed dipoles form angles with respect toey, £ = 1, -+, p;. And,
| ?r2) is a identity matrix with the size dfp, x 2p,. If all the multidipoles are with the
variable orientations; = 2p, = 2p andR = |*)(Hamalainen et al1993.

Before the minimizing of equatio& 1Qthe value of; andp, need to be chosen for
fixed- and variable-orientation dipoles seperately, ardctirrect model is selected as
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well. Then, the key problem is to solve the nonlinear optatian forry, d=1,---,p
(Hamalainen et al1993.

The algorithm for determining the location and orientatanmultiple sources
through the highly complex optimization can easily leadriaccurate solutions if
enough different initial dipole values were not testBdganicolaoi2009. The meth-
ods applied so far are mainly based on heuristic methodshengasonable solutions
depend on both the expertise and physiological intuitit@mgalainen et al1993. The
so-called MUSIC(multiple signal classification) and RARJIBIC(recursively applied
and projected MUSIC) are efficient approaches identifyiaghesource seperately
with resursive procedures rather than searching for mel8purces simultaneously
(Mosher and Leahyl999. The MUSIC approach is based on indentifying the mul-
tiple local maxima in a single function, while RAP-MUSIC itements a search for
one source as the global maxima with a resursive procedut@dacost functions of
multiple sourcesRapanicolaow2009.

The above two methods are based on the equvalent curreré@passumption
for source estimation which has limitations in practicersEithere are difficulties in
localizing extended sources with ECDs; secondly, it iscliffito estimate the number
of dipoles in advance; and thirdly, the methods shows ingeitg to dipole time-
courses and errors in dipole location, especially for deepces.

2.2.6.3 Current-distribution models

In the current distribution models, the whole brain or aatisurface are assumed to
be asource spaceomposed of a large number of elements. A triangular meséns g
erally applied to constitute the source space on the costicéace, while tetrahedral or
hexahedral lattices are used to represent the interiomexdLof the head. Additionally,
a single dipole is located on each vertex of the mesh or thedaioint. Since the num-
ber of unknown sources in source space (generally severasdmd) are much more
than the quantity of measurements from sensors, this medeitually aunderdeter-
mined problemorill-posed problemIn term of this ill-posed character, the calculation
of the minimum of a cost function which provides the optin@lce estimation should
be based upon sufficient priors as constraints. This priessentially a model of ex-
pected current distribution. The smoothness of the soustalilition (explained as

34



2.2 Introduction of Magnetoencephalography(MEG)

variation of sources on the spatial field), is able to be usedn® type of prior. The
smaller norm indicates that the sources distributed inc@gpace, while the larger
norm indicates a less smooth source distributidfap@nicolaou2009 (Hamalainen
et al, 1993.

1. Minimum-norm estimation (MNE)

The minimum-norm method, derives its name from the minitezeof the dif-
ference or norm between predicted and actual magnetic fieasorement. The
conceptsmallestemphasized here depends on both the condition of measure-
ment and the minimization of cost function.

According to the equatio®.2and equatio2.5of Biot-Savart Law, there is a lin-
ear relationship between the internal source distribudioshthe measured mag-
netic field outside of the scalp, which can be explained sjrapl

B=LJ (2.16)

whereB is am x 1 matrix representing the magnetic field measurement outside
of head;J is n x 1 source current matrix with fixed locations and orientation;
andL is the leadfield with the size of x n, which accounts for the information

of the conductivity distribution of the head as well as thergetry to connedB
andJ. Specifically, each column of leadfieldprovides the forward solution for

a single source to the measurement, in other words, it sHewsignal produced

by all the sensors for a single source alone with unit stfe(idauk 2004).

Thus, B obtained from the sensors’ recording. ,is generally determined by
the head geometry. According to the equati®drig the principal problem is to
solve the unknown source current distribution based onlitp@sed (or under-
determined) character with a non-unique solution. Thisgmés the possibility
that the sources distributiahproduced current measurement may contain any
primary current distributiod, which the measured sensors are not sensitive to,
such as radial sources. This can be explained mathemwgtasafbllows Hauk
2004):
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L), =B; LJ,=0 (2.18)

A unique solution for this inverse problem stated in equaBd.6is to consider
both the constraints on the predicted sources as well asotir@int on the
magnetic field from predicted sources which can be explaasddllows:

For the predicted sources, the constraints for uniqueisolaan be indicated as:

J= min[(J — J0)TCL (I — Jp)] (2.19)
whereJ represents the estimated solutidp,is a priori approximation of the
source solution, an@, is a weighting matrix which provides the prior informa-
tion with the source space, such as convariance of the southe approximate
estimation of the location.

Meanwhile, the constraint for the magnetic fields predidtedh the estimated
sources are as follows:

J= min[(LJ — B)T(LJ — B)] (2.20)

wherelLJ are the magnetic field produced by the estimated sourcete ®hs
the measured magnetic field.

If the matrix C, is positive definite which is invertible, the solution canihe
ferred as:

J=J+ClLT(LCILT) (B - LIy) (2.21)

If no prior source estimation is set, the equation can beaedlas follows:

The weighting matrix represents prior information abowt source, which can
be incorporated to locate the source accurately. In pedtics prior information
can be obtained with the assisting from other brain imagirghod, such as
fMRI (AM. et al,, 2000. Nevertheless, if there is no location bias for the source,
or the source can be expected at any location in the source $pacan be set
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as the identity matrix which means all the location in sowsjeace are provided
with equal weight. So that the equation above can be simgphbiseHauk 2004):

J=LT1L?h'B (2.22)
This is the standard minimum-norm least-square estimata fo

. Regularization method

Since the simple minimum-norm estimation generally fawndace source es-
timation, the sources in deeper locations requires moreepéov generating a
measurable signal at the sensor location. In this casegttdiéld normaliza-
tion is applied to the minimum-norm method to improve theénestion for deep

sources.

However, since noise is usually present in the measurerogether with the
sources, the constraint equati@d20mentioned above can be written as:

(LI-B)TCy(LI-B)=c>0 (2.23)

wheree represents a part of the data that can not be explainedyckeadlis due
to the noise. HereC, is a positive definite weighting matrix which reflects the
known basic information of sensors or ttediability of the sensors (e.g. by their
standard deviations or covariances).

When e reaches the optimal valug the requiredregulaization parameteis
obtained as\. The minimum-norm equation can then be written as:
J=Jo+CILT(LCILT + AC;H)H(B — Jy) (2.24)

The weighted minimum-norm estimation is derived as the gguabove Hauk
2004, (Wagner et al.1996), (Anders et al.1993, (Phillips et al, 2002. Addi-
tonally, without the priori model,, as well as assumed equal weight to all the
sensors and the source space(l©tfandC;) , the equation can be written as:

J=LTLT + ), 'B (2.25)
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which is the standard regularized minimum-norm least-szgiastimate.

2.2.6.4 Beamformers

e Introduction

A beamformer is a actually a spatial filter that combinesdmgthe output of the
sensors’ array so that the signal of interest can be enhamzkthe background
noise is suppressed. In other words, a beamformer alloveoilree of interest to
pass through each volume-grid node, or cortical surfacéewte non-interested
sources, i.e.noise are rejected. Rapanicolaou2009.(Preiss] 2005 (Singh
et al, 2002

The beamformers are based on the concentration of the tswarces on spe-
cific target locations. The particular parameters of thesdial filters are se-
lected so that certain properties of the current sources) as location, reso-
lution , etc. are properly optimized. A weight is assigneddach sensor as
the scalar of the measured contribution. Based on all thesghts , as well as
the information of predetermined target locations, thersjth and orientations
of sources of interest can be estimatddill€ébrand et al. 2005 (Papanicolaou
2009

Beamformers are actually divided into two types, adaptind aon-adaptive
beamformers. Generally, the non-adaptive beamformers filsed set of weights
to combine the signals from the sensors in the array. For phkaitine location of
the sensors in space and the wave direction of interest amauplly applied. In
contrast, the adaptive beamformers apply the unfixed weiglth combine the
properties information of the signal directly acquirednfrthe array of sensor.
In this case, the rejection of unwanted signals can be efédgtimproved. In
other words, the main feature of the adoptive Beamforminthogeapart from
the non-adaptive method is to adjust its performance tal#terences in its en-
vironment. Papanicolaol009(Preiss) 2005 (Singh et al.2002 (Barry et al,
1988

Compared with the minimum-norm method, beamforming dodsneed the
prior knowledge of the sources of interest, such as locatiand has better spa-
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location

Figure 2.8: Beamforming methods as a spatial filléitlébrand et al. 2005

tial resolution since they provide less overlap for the nstaucted sources, and
are suitable with the estimation of both deep sources anerBaipl sources with
no location bias. However, beamforming shows limitatiothe case that esti-
mated sources are correlated in the temporal field. In otleedsy erroneous
and unstable reconstructed results are generated by agplye beamform-
ing method for estimating the temporally correlated sosir¢Ehis limitation is
downplayed by many investigators who claims it is unlikeyh&ve highly cor-
related brain activities in practice. Therefore, the beaamfng method can be
generally usedapanicolaou2009. However, it indeed causes the inaccuracy
of reconstruction for some estimation of temporally catetl sources, for ex-
ample, 'the highly correlated brain activity involves awdy stimulation and the
bilateral generators of the auditory m100 component, wihebdateral activity
Is expected within milliseconds when stimuli are presented single eariPa-
panicolaou2009.

Filter design

The noisy measurements of magnetic fields on the scalp stiediby the inter-
nal sources can be represented as follows:

B(t) = L J(t) + n(t) (2.26)

whereB(¢) indicates the measurement of magnetic field on time poQifit is
the leadfield,J ¢) represents the current source at time poimi(¢) is the added
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2.3 Kalman filter

noise in the time course assumed as zero-n{édm) = 0). Meanwhile, the
current sources associated with different dipoles arenasduo be uncorrelated,
giving the covariance matrix for measurement of magnetidgién the time
series:

o]l

C(B(t)) = E{[B(t) - B(1)|[B(t) - B(®)|"} (2.27)

Assuming at a single time poirtthe estimated source signal on the specific
voxel k is equivalent to the product of weights and measured magfield as
follows:

Ji(t) = wi B(1) (2.28)

For the weightw, which governs the spatial filter of the spatial figldseg-
mented as volumes, the value of power gain is set as 1 at speaxel k, and
zero elsewhere;

The ideal filter is

|1 for E=k
WkLk—{ 0 For k4 ko ke (2.29)

The power at voxel i$ = w’ Cw which is minimized to subject te, - L;, = 1.
then the beamformer weight can be calculated as:

C 'L,

e A 2.30
LTC 'L, (2:30)

Wi

2.3 Kalman filter

2.3.1 Briefintroduction

Since 1960s, the Kalman filter has been the subject of rdseat application based
on the publication of R.E.Kalmai&iman 1960 on a recursive solution to the discrete-
data linear filtering problem.
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The Kalman filter is a set of mathematical equations progdin effective recur-
sive means for estimating the state of a process by minignttia mean of the square
error. Basically, the Kalman filter is capable to estimatgest in the past, present
and future of the dynamic system with hidden states. Alse Khalman filter can be
applied to the estimation of the missing state, and the neasant of the estima- tion
quality. The origin of the Kalman filter can be explained bwtla probabilistic way
and a computational way respectivelydlch and Bishop2006

Generally, the Kalman filter applied for the state estimatian be divided into two
types, the discrete Kalman filter and the extended Kalma(fitkKF), which are used
for describing the linear system and non-linear systenspeeively. The problem
of interest is to estimate the statec R" of a discrete-time controlled process that
is governed by dinear stochastic difference equation. The discrete Kalman fister
applied in this case. However, the extended Kalman filteKEK applied to the pro-
cess where the relationship between measurement and &stinsanon-linear. Since
the MEG system in my research is assumed as the linear dysgstem, the discrete
Kalman filter is introduced heréelch and Bishop2006 (Brown and Hwang1992)
(Grewal and Andrewsl 993 (Sorensonl1970).

2.3.2 The discrete Kalman filter

e The estimated process introduction

The Kalman filter is applied to the general problem of tryiog@stimate the state
x € R" of a discrete-time controlled process that is governedilmear stochas-
tic difference equation. In other words, two necessaryalimeodels a dynamic
model and a measurement model) to describe the process atatbuilt as fol-
lows. The dynamic model, equati@iBldescribes the dynamic relationship be-
tween the different process states, while the measuremea¢lrequatior?.32
describes the relationship between the measurement aegdtih@tion. (Velch
and Bishop2006:

T = A.T}k,1 -+ Buk,1 + Wg_q (231)
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2.3 Kalman filter

Here,x; Is the state at step, u;_; is the optional control input to the state,
2 Is the measurement on the stepNote here that we only obserygandz;, is
the hidden state which we would like to estimate it. While ; andv,, are the
noise for the estimation and measurement which are assuntedihdependent
with each other and with normal distributions separately:

p(w) ~N(0,Q) (2.33)

p(v) ~N(0, R) (2.34)

The noise covariana@ of dynamic process and the noise covariaftoef mea-
surement are assumed to be the constant value although tgkiahange with
the time step or the measurement in practice.

Also, A is the weight matrix which relates the state on the previous step

k — 1 and the current time stefpand models the dynamics of the system.

is the weight matrix to relate the optional control inpyt ; with the stater,
and H is the weight matrix which relates the statg and the corresponding
measurement. It is notable thatd and H are assumed to be constant although
they might change with the time step or the measurement ctipea

Following the introduction of \Welch and Bishop2006), the origins of Kalman
filter can be explained in two ways, the computational os@nd the probabilis-
tic origins.

The computational origins of Kalman filter

For the time stef, it is assumed that, € R" is a prior state estimate at step
k, andz, € R" is a posterioristate estimate at the step k with respect to the
measurement,. Then, the estimate errors farprior anda posterioriare set
separately:

e, =T — Ty (2.35)
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In terms of the estimate errors above, ghgrior estimate error covariance is set
as:

P, = Ele; e "] (2.37)
and thea posterioriestimate error covariance is set as:

The a posterioristate estimate, can be represented with a linear combination
of an a prior estimatez, and a weighted difference between an actual mea-
surementz;, and the corresponding predicted measurentéfif which shows

as followingWelch and Bishop20086:

B = 2y + K(z — Hiy) (2.39)

It is notable that the difference, — Hz, is also called theesidualwhich re-
flects the discrepancy between the predicted measurefhentand the actual
measurement,. The larger value of theesidualindicates the larger difference
betweenH z,” andz, in contrast, the zeros of thresidualmeans the two are in
agreement completely.

In equation2.39 weight matrixk is thegainwhich is used for minimizing the
a posteriorierror covarianc.38 and the form of which is given by:

Ky=P, H' (HP;H" + R)™*
P HT (2.40)
 HP HT +R

R and P~ are two components governs the changing trend{of When the
measurement error covarianBetends to be zero, the actual measuremens
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2.3 Kalman filter

more and morérustable while the predicted measureméift, is less and less
trustable In other words, this can be indicated as:

- -1
B!,iglo K,=H (2.41)

And, when thea priori estimate error covariandg, tends to be zeros, the pre-
dicted measuremer{z,  is more and morérustablevhile the actual measure-
mentz; is less and lesgustable This can also be shown as:

lim Ky =0 (2.42)
P,-—0
The Probabilistic Origins of the Filter

From the introduction of the probabilistic origins of the lKan filter in Ja-
cobs 1993 (Maybeck 1979 (Brown and Hwang1992), thea posteriori state
estimatez;, and error covariancg€,, can be written as:

El(zr, — 21)(zp — 21)7] = Py (2.44)

and the state distribution at time pofntan be indicated as:

parlzr) ~ N(Elzg], Bl(ar — &) (zx — 21)"]) = N(ix, Pr) (2.45)

where thea posterioristate estimate; represents the mean of the state dis-
tribution with respect of the conditiob.33and2.34 are satisfied. In addition,
thea posterioriestimate error covariand@, represents the variance of the state
distribution.

The Discrete Kalman Filter Algorithm

In terms of the pre-knowledge of Kalman filter indicates ahathe classical
Kalman filter can be divided into two grougsne updatgart andneasurement
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2.3 Kalman filter

updatepart. There are equations which describes the current atatesrror
covariance estimates to obtain thgriori state estimates for the next step of
time series intime updateart, shown as the following equati@g 2.47

i’]; = Ai’k,1 + Buk,1 (246)

Py = AP, AT +Q (2.47)

while the equations in themeasurement updaggovide the corrected feedback
which obtains an improved posterioriestimate from thea priori estimate,
showed as following equatiorzs48 2.49, 2.50

Ky=P H'(HP;H" + R)™) (2.48)
P, = (I — KxH)P, (2.50)

In the other words, this two groups of Kalman filter can be dbed aspredic-
tion step andcorrectionstep respectively. Both thepeedict-correctalgorithm
which is used for solving problem numerically can be preseais Fig2.9.

One appealing feature of the Kalman filter isriégursive nature The process
is repeated that estimating the nawprior state with respect to the previoas
posterioriestimated state until treeposteriorierror covariance is located on the
acceptable region.
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2.4 Kalman smoother

Measurement updates (Correct).

/Time update (Predfct)\,

1. Compute the Kalman gain.
1. The dynamic state . YK = P;_HT(HP;\,HT + ;R)_l
X, = AX,_ +Bu, _,

Initial estunmation for w

X and « P, ; .
k=1 ° k1 2. Update estimate with measurement.

2. The error covariance « | | 3‘;\. = .?;‘. & K'(.(Zk - H.'\"_;\,)

- T
\Pk = AP k-~ iA + Q/ 3. Update the error covariance.
P, = (I-KH)P,

Figure 2.9: The discrete Kalman filter cycle. Ttime updateindicates the current
state estimate ahead in time. Timeasurement updatedicates the estimation by an
corresponding measurement at that specific time point

2.4 Kalman smoother

The Kalman filter above indicates the solution for the estiomaof the state of the
dynamic system with the Markov property that the state dépem the previous state
but not any others. Based on the Kalman filter, there is no teeeohsider all the states
at previous times , and, for the estimation of the state aedititertainty(covariance)
on specic time point, it is feasible to obtain the solution from only the status on
previous one time point — 1 as well as the noisy observatiofi = z,, z, for the
specic time point. It is notable that the difference betweeandr generally provides
the process with variable uses. For instance, ig equal to the current time point
the process is callefiltering; if 7 is smaller thart, the process is callepredicting
and if 7 is larger than, the process is callesinoothing Here, from the explanation
of Kalman lter presented above, tK@lmansmoother equations are derived which
is capable of predicting the state at the specific time powith better accuracy(less
noisy) by assuming that the state depends on the next statelbas the previous.
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2.4 Kalman smoother

(Kalman 1960, (Jazwinskj1970) . The aim is to calculate the probability:

p(a]27) (2.51)
This probability in Egqn2.51is assumed to be the Gaussian distribution in which
the main problem is focus on the calculation of its me¢amand covariance’; :

T

] = Elxy]27] (2.52)

Py = E[i]i]|%7] (2.53)

wherez] = z; — Z7 indicates the state prediction error.
Also, the Eqr2.52can be written as:

27 = Blry|2"] = Elay|wgq = Tiiq, 7] (2.54)

For calculating the meaf; and covariance’ , firstly, we can write the density
function as:

p(%, Tt41, Zt, Bty >$r)
p(z7)
_ P2, 2| T, 20)p(@ega |, 2)p(ae 2)p(2)
- p(=") (2.55)
(g, 2 p(Tega | )p(x|2")
B p(th, “ 2 |2)

p(wy, 24 41|27) =

Continuously, we can write the following function:

p(xt7xt+1|z7—) (256)
p(ri41|27)
With the calculation and inference fro/lling), the Kalman smoother equations
are obtained as Edm21, Eqrb.22and Eqnb.23:

p(xt‘xtJrla ZT) =

&) =)+ J(3, — 3pp) (2.57)
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2.5 EM algorithm

Jy = PIATIPL ! (2.58)

and

Pl =Pl + J(PL, — Phy)J! (2.59)

The way to applying the Kalman smoother equation is sepdiiate two steps.
Firstly, with the full set of term measurements, the Kalméterfis applied forward
from the state at initial time point till the state at timeis reached (where < 7
). Then, the process is moved backward by applying the Kalenamother equations
until state at the timeis estimated. Since all the state factors, sucka$, &t , P}
andP/™,t = 1---7 are stored in the former step, it is easier for Kalman smaothe
equations to apply them directly in the later stéye(ling).

Comparing with the state estimation by Kalman filter (in tomnier step), the esti-
mated results indicate improved accuracy with less noigetwih so-calledmoothing
since more measurement in the time sequence are appliecbfirgsing. The Kalman
smoother effectively enhances the estimation of the hidiy@amic system.

2.5 EM algorithm

2.5.1 General introduction to the EM algorithm

In the Kalman filter model, there are a group of unknown patarsesuch a§u, ¥,
A, B, R, @], which may need to be estimated for further processing. E)drahm is
generally applied as the method for solving this.

Since its inception in 1977, EM algorithm has been widelyliggpas a general
purpose method for maximum-likelihood estimation(MLE)tive variety ofincom-
plete datgproblems. This name was been given by Dempster, Laird antchRutheir
fundamental paper in 197Démpster et al.1977). The full-name of EM algorithm
is called theExpection-Maximizatiomlgorithm which indicates the two steps of the
method, theexpectation stepr the E-stepand theMaximization stepr the M-step
The missing data is estimated in the former step by fillinguthlenown parameters with
their expectation values. Then, in the latter step the nearpeaters are re-estimated in
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2.5 EM algorithm

terms of the estimation of the missing data of the last stés frocedure is proceeded
iteratively until reaching the convergendddlLachlan and Krishngri996).

2.5.2 Maximume-likelihood estimation (MLE)

The EM algorithm is actually the extensive application & thteractive computation
of maximum likelihood estimation(MLE). In this case, the Mtaum-likelihood esti-
mation(MLE) is introduced here firstly.

Governed by a set of unknown parametérs there is a density functiop(x|©)
describing the distribution of state, for instangeyight be from the family of Gaussian
distribution, and the set of parametébss actually the mean and covariance. There
is a set of the observation data sampled from the distribwtlmove, showed d§ =
x1,- -+, xn Which is with the size ofV , are assumed as independent and identically
distributed with respect to the distributipn Therefore, this density function &f can
be written as following function:

p(X|©) = Hp(xi\@) = £(0]X) (2.60)

This function,£(©|X) is so-called the likelihood function & in which the data
X is xed but the set of parametegsare unknown. The goal of Maximume-likelihood
estimation(MLE) is to estimate the appropriate valu®oihich is able to maximize
the likelihood functionl. This can be presented as following function for estimating
the®* :

O = arg mgXL(@DC) (2.61)

Since the Eqr2.60generally leads to a complicated calculatidy(L(0|X)) is
preferred for the maximization instead for easy analysimp®/ speaking, if the func-
tion p(z|©) is a single Gaussian distribution with the set of param@ter (i, o%) , the
problem can be solved easily by setting the derivation tcebe and estimating the pa-
rameters: ando? directly afterward. however, if the distribution is morengglicated
than the single Gaussian distribution, it is usually to neexte elaborate techniques
rather than the analytical expressioBdres 1998.
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2.5 EM algorithm

2.5.3 EM algorithm

Finding theincomplete datas the key problem for the EM algorithm. In the later
calculation, we assumg&to be the complete data which cannot be fully obseried,
denoted theobservation And Y denotes theinobservable datar missing data The
complete data is therefore represente@ as (X, Y) where the joint density function
of complete data can be indicated as:

p(Z|0) = p(X, ¥[©) = p(Y|X, ©)p(X|O) (2.62)

with respect to the EqR.62 the relevant likelihood function can be defined as:

L£(0]z2) = L(6]X, ) = p(X, ¥[O) (2.63)

which is so-called theomplete-data likelihoadSince the missing information is
assumed to be unknown, but governed by an underlying disititp, the incomplete-
data likelihood function can be referred 480 |X).

The two steps of EM algorithm can be explained as follows:

1. E-step

Calculate the expectation of the complete-data log-iadd £[log p(Z|©)] =
Ellogp(X,Y]©)] given the observatiofl and the parameter estimation in the
current step with respect to the missing data

Q(0,01 V) = E[log £(0]2)]|X,00Y)]
= Eflog p(X,Y|©)|X, 0] (2.64)
:/ FylX, 0 D) log p(X, y|©)dy
yeyY

Here, the density functiofi(y|X, ©¢~) in Eqn2.64above is marginal distribu-
tion of the unobserved data given the observed dagad the parameters in the
current step; andy is the possible space gf. Generally, this density function
can be determined in terms of the current problem. Also ntlmaapplied as the
form of f(y|X,00-Y) = f(y|X,00-Y) f(X]|00~1). Sincef(X|0¢V) is not
depend or®, the density function is actually not affected by this efaetor.
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2.6 Bayesian image super-resolution

2. M-step

Choose paramet&’ to be any value o® € Q) (where) is the parameter space)
that maximize€)(©, ©¢~Y) in the former step(Maximum likelihood):

0 = arg max Q(e,0b) (2.65)

After ©1 is obtained, theE-step and M-step are then carried out again with
0. These two steps are processed iteratively as each iteiatguaranteed to
increase the log-likelihood until the differendd¢Lachlan and Krishnari996:

L(OY —el-1) (2.66)
become convergence.

EM algorithm and its extensions are the standard tools fplyapg the statistical
methods to solve the incomplete data problems currentihadt been widely used
for variable practical implements. For instance, medioaging, regression, robust
statistical modeling , survival analysis, factor analysite mixture analysis, and so on
(Bilmes, 1998, (McLachlan and Krishngr1996.

2.6 Bayesian image super-resolution

2.6.1 Introduction to super-resolution

Super-resolution( also written as superresolution in sartieles) is one of the classi-
cal computer vision methods which has important applicatio the field of remote
sensing, satellite imagery, medical imaging, militarys&iliance and face recognition.
The principle of the method is to reconstruct the high-rnesoh image from a set of
low-resolution images. In other words, it is possible tareate the high-frequency
information of the scene above the Nyquist limit of the indixal source images when
the relevant distorted low-resolution images are provi@iggping and Bishop2007).

In super-resolution, the low-resolution images are assiasaliscretized versions
of a high-resolution image with various distortions in tleguction of the low-resolution
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2.6 Bayesian image super-resolution

images. Further more, there are a number of different heglatution images which
may generate the set of known low-resolution images giveichwbrovides plenty of
possible solutions to the reconstruction. It is importardétermine appropriate forms
of prior regularization, based on the practical situatiem that the optimal solution
can be identified with reasonable parameters of the modek. niddel is applied as
the constraint for the final high-resolution image. Thesgst@ints make the problem
more tractable so that an appropriate solution of hightotiem images are more likely
than all others.

In the problem of super-resolution, information from the/gesolution pixels is
crucial in order to generate an accurate high-resoluti@gen Image registration is re-
quired on the subpixel level. Moreover, since the processrisconstruct the frequency
information above the Nyquist limit of the low-resolutiomages, the pixels of each
low-resolution images should not be located on the samésgricalled co-located)
when there is no prior as the restriction. Otherwise, thellenat be further informa-
tion which can be extracted from these known low-resoluiimages which leads to
poor reconstruction of the high-resolution image. If tisathie case, the best method of
reconstruction is to average the information of the pixelgach low-resolution image
which at least obtains a denoised redddtiton 2004).

Before applying the method of super-resolution, the retel@av-resolution images
can be obtained by either of the following methods. Firgtigy may be generated by
the infinitely high-resolution real world,such as: a hamddhcamera, or a detector
array which is not sufficiently dense to adequately sampesttene with the desired
field of view . Besides, they can be produced from the inndtalii-resolution images
with the known transformation, such as rotation, downsamgnd blur Tipping and
Bishop 2007, (Dalton 2004). The evaluation of the reconstructed result of super-
resolution depends on whether there is reliable relevatt-heésolution image exist-
ing. If the low-resolution images are produced by a sensthheséirst case explained
above, it is impossible to find the original high-resolutiomage for comparison. If
a high-resolution is available, it is reasonable to use ti@w high-resolution image
for testing. By downsampling the low-resolution images aiset of known transfor-
mations , and using the super-resolution to reconstruchigjeresolution image we
can compare with the original high-resolution image. Hosgvethere is still problem
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2.6 Bayesian image super-resolution

here since it is difficult to make sure the downsampling distuaodels the physical
sensor.({rani and Peleg1997).

2.6.2 Previous work on super-resolution

Improvement of image resolution depends on the physicalepties of the sensors,
such as the spatial response, optics and the density of tkeetdes. In the ideal
case, downsampling is the only difference from the low-ismn image to the high-
resolution image. However, the image motions may also keeptesuch as translation,
rotation, or more complex geometric distortions. This mikr to the situation to take
the images continually of the same subject using a handdaghetra so that the distor-
tions, eg, translations, rotations, are produced in thesges. It is worthy of note that
the situation that the scene changes itself is not considegeeTipping and Bishop
2007).

This problem of image reconstruction has been addressednoynder of algo-
rithms. The earlier research on super-resolution datdstoate work of a frequency
domain approach by Tsai and Huardu@ng and Tsail984). Since then, there have
been a number of papers published which the problem.

D. Gross (Gross 1986 estimated the high-resolution image with the assumption
that both the imaging process and precise relative shiftssahput pictures are known.
Then, the interpolation is applied for merging a set of tive-tesolution pictures and
a blurred image is obtained with higher spatial sample ratestoration filter is built
by applying pseudo-inverse techniques to a matrix reptaggthe blur operator. It is
directly used for de-blurring that image to obtain the hrgkelution image (rani and
Peleg 1991).

The imaging process of the super-resolution can be repexsas the following
model Keren et al. 1988):

ge(m,n) = op(h(f(z,y)) + ne(z,y)) (2.67)

whereg, is thek,, observed (low-resolution) imagé,is the original scene which
is the desired image( high-resolutiott);,, v) is representing the pixel coordinate for
the high-resolution image, whilen, n) is representing the pixel on the low-resolution
image after reconstructianjs a blurring operatorg;, is the nonlinear function which
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describe the relation between the high-resolution funciiod low-resolution image in
k:h frame 7 is the added noise;

Peleg and co-workers approacP¢leg et al.1987 (Keren et al. 1988 is based
on the inversion of a transform from a assumed high-resmiuthage to a sequence of
simulated low-resolution images. Specically, the higéetetion image above comes
from an initial guess, while an error function measures tffferénce between simu-
lated low-resolution images and the actual ones observeglrdsults of this approach
shows plausibility and high-sensitivity on the noised-greain practice.

Irani and Peleg [rani and Pelegl991]) described a approach which is inspired from
the reconstruction of computer aided tomography(CAT),clvtiias a resemblance to
superresolution. "In tomography, images are reconstdutttam their projections in
many directions”. This property can be directly appliedhe super-resolution since
the multiple low-resolution images can be assumed as thegtians of the different
images of the same scene and are used for the reconstruttigygheresolution image
via the approach. The low-resolutionimages are regisfastty with the uniform mo-
tion of translation and rotation by a proven method. Theahftigh-resolution image
is guessed with respect of the information above . Additigniais used for simulat-
ing a set of synthetic low-resolution images corresponthrtge actual low-resolution
images with the Point Spread Function(PSF) of the sensouatignmeasured by a
control image. Ideally, if the recovered high-resolutisrcorrect, the simulated low-
resolution images should be as same as the actual low-tespimages. The error
function between these two groups of images is recursivelyrozed to recover the
best high-resolution image. Additionally, this approabbws good results as long as
the image can be divided into regions each of which is subget a uniform motion
(Keren et al.1988.

2.6.3 MAP method of super-resolution

Maximum a posterior(MAP) estimation is popularly used ipauresolution. Firstly,

the initial registration of a set of low-resolution imagssfound and kept fixed in
the process. A probabilistic model describing the higlolson image is generated
and maximum likelihood is applied to find the high-resolatimage. However, some
tricky situations may exist. There is not sufcient highgirency information obtained
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from the low-resolution images if the high-resolution ireagpntains too few pixels,
or it becomes ill-conditioned if the high-resolution imagentains too many pixels. In
this case, the a prior distribution over the high-resoluilmage can be applied as a
regularization term. With these regularization terms,tteximum likelihood solution
Is regularized and the problems above are tachgdgen et al.2001),(Smelyanskiy
et al, 2000, (Capel and SsermaB000,(Hardie and BarnardL997).

2.6.4 Bayesian image super-resolution

Tipping and Bishop Tipping and Bishop 2007 have tried to improve the super-
resolution by applying Bayesian method. Within their wotlke Bayesian super-
resolution shows a resemblance to the MAP approach as batieof are using a
Gaussian prior, moreover, optimizing the registratiorapagters(including the trans-
formation and rotation of the low-resolution images) arg pathe maximization pro-
cess. However, the Bayesian super-resolution method alsdiktinguishing proper-
ties beyond the previous approaches.

Firstly, with this Bayesian treatment of the super-resohtthe image registration
parameters can be estimated in terms of the Bayesian mbzgiman on the unknown
high-resolution image. In this case, the registrationnmfation of the low-resolution
images, such as rotation, transformation and even the dowplshg value, can be
estimated beforehand. Additionally, the unknown pointeggr function (PSF) can
also be estimated before the reconstruction of the higbkugen images. The point
spread function (PSF) is applied as the process to obtaiftotireesolution images
by smoothing the high-resolution image. In previous apginea, PSF is generally
assumed as known in advance. For instance, the PSF is eslimialy by the low-
resolution images and is kept fixed in the imaging proc€spél and SsermaB000
, Or is approximately measured from the simulated processafining and imaging
(Irani and Pelegl99]). Whereas, this assumption does not work realisticallyratp
tice since the PSF is not able to be determined accuratelyouitthe information
of the high-resolution image. The Bayesian marginalizapoovides a coherent and
single framework in which the PSF can be determined alonh thi registration pa-
rameters as well as the high-resolution image. This giveemeasonable estimation
assumptions for the image reconstructidipping and Bishop2003.
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Instead of the registration parameters, PSF and highuggolimage are esti-
mated and optimized in a joint process as MAP super-resoiygerforms, Bayesian
marginalization allows the registration parameters atasdPSF to be estimated in ad-
vance. With the optimizations of them, the high-resolutroage can be reconstructed
with accuracy. Also, Tipping and Bisho@ipping and Bishop2003 presented the
positive results of the Bayesian super-resolution by camgawith super-resolution
via MAP.

In our study, the Bayesian super-resolution has been abfdrethe MEG source
reconstruction distributed on the cortical mesh with hight&l resolution. With re-
spect to the advantages of Bayesian marginalization itabedd above, the relevant
setting and the estimation process of the reconstructiproapgh can be proceeded re-
alistically and accurately, which provides further poggibto improve the quality of
the MEG signal reconstruction.
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Chapter 3

Basis Functions Source Model Applied
to MEG Source Reconstruction

3.1 Briefintroduction

Magnetoencephalography (MEG) is a new and non-invasiventqae for the func-
tional imaging of the human brain that has been widely useboith research and
clinical application, such as intractable epilepsy, sopirenia, depression, Parkin-
son’s and Alzheimers diseases. The principle of the tecknisjto measure the mag-
netic field surrounding head that via the extremely seresgensors located outside the
scalp, i.e. superconducting quantum interference de{®@8J1Ds), which is shown in
Fig 3.1 The measured magnetic field is mainly generated by theretactactivity in
the brain Preiss] 2005 (Kishida 2009 (Srikantan et a.2006. Based on the corre-
sponding MRI scan, MEG produces a spatial-temporal pattethe electronic activity
in the cortex. Although techniques, such as fMRI, show auiding spatial resolution,
MEG provides superior temporal resolution that compleméme weakness of brain
imaging in the time domairRodriguez et a).2003 (Baryshnikov et al.2004).

The MEG source reconstruction from the measured magneliicigi¢ypically an
ill-posed inverse problem that is theoretically insolublghout additional informa-
tion (Preiss] 2005. By now, there are many classical methods exist in this figiath
have been applied widely, such as the beamfroming metBady et al, 1988 (Ro-
driguez et al.2003, and the minimum-norm method. However, there are linotadin
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Figure 3.1: This figure shows the feature of MEG techniquethagrinciple compo-
nents of MEG data processing. The picture on the left ind#te origin of MEG:
The measured magnetic field is mainly generated by the elactactivity in brain.
And MEG is applied to measure the magnetic field surroundesagltvia the extremely
sensitive sensors located outside scalp; The right piatdieates three principle com-
ponents govern the MEG data processing: the measuremegofetic field from sen-
sors, denoted as 'B’, the current source 'J’ inside of thenbnath individual direction
and strength and the leadfield configuration 'L’ which conadlse linear relationship
between’'J and 'B’.
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3.2 Forward problem

the accuracy of data using these classical methods. Fanicestunder the condition
that in certain states of anesthesia, coma, and epilepsypgdamformer formulation
may prove to be in conflict with the actual state of the bréfreiss] 2005. These
algorithms can produce implausible results, which meaasttiere is a gap between
the actual dynamic state of the brain and the result of thetbads, which affects the
reliability of the MEG technique in clinical applications.

Therefore, this topic aims to explore a new solution to ta¢ke accuracy problem
discussed above and attempts to bridge this gap. In thig,papéry to implement the
MEG spatial-temporal source reconstruction through tledal basis function source
model. This chapter has been organized as follows. Firstfdatward model is in-
troduced as well as a general description of the physicdvado All approaches of
MEG signal reconstruction are based on the essential kidgelef the forward for-
mula. Then, we demonstrate the process of cortical meshatixtn based on MRI scan
and discuss the structure of each component of the modeh, Theeintroduce basis
function source model as the solution of source reconstrucEinally, this extended
source model has been implemented to solve the inversegondbl MEG. Moreover,
the robust stability of this MEG reconstruction solutioringestigated in two ways.
One is to compare it with the classical method of minimumamof he other is to ap-
ply the algorithm to signals with varying noise levels. Tlksults show robustness to
noise interference and better performance than minimurmn®his method provides
a new approach to the MEG signal reconstruction.

3.2 Forward problem

The concept of MEG sensing is to detect currents flowing irbtlagn from the mag-
netic flux recorded at a number of superconductive coilsqulatear the scalp. The
magnetic field generated at a locatioan the scalp is given by the Biot-Savart law:

_ [ i) x(x—1)
B(r)_/Q/E PrE 9 (3.1)

Where(' is the volume in which the currents reside. Under the sphkesiensor
model, the coils are placed radially around the origin ofdberdinate system, and so
the normal to coil is given byr;/r;. r; is the position of the coil. It is noticeable that
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3.3 Cortical mesh extraction

'J’ represents the total current (primary currents + volumeents)Barth et al, 1986
As the measurement is assumed on only the radial compon#ém afagnetic field at
single homogeneous spheroid, the majority of contrib@tiohthe volume currents
vanish and the MEG measurement are only from the primary sgrpnoximately in
this case. The magnetic flux detected by ¢asl then:

(3.2)

wherel;(-) is leadfieldof coil i (shown in Fig3.2), with

po (r; —1') xr
Ly = 2 <n|rz~ _>r/|3 (3.3)
The problem is therefore essentially a linear one; the cod i a linear com-
bination of the leadfield components and the currents. Amel |eadfieldl;(r’), the
factor indicates the connectivity between the measremientagneticfield at; and
the source location can be pre-computed with the expression of the product adirad
detectors’ information and the constant permeability eftiiead.

3.3 Cortical mesh extraction

3.3.1 Graph representation of mesh

The discrete structure of cortical surface can be expressedtriangulated mesi/
that can be used to approximate the cortical surface embéddguclidean spack”.
It is composed of a topological pai/ = (V, E, F)) and a geometrical realization
M= (V,EF) (Gabrie| 2007).

The topologyM of the mesh is composed of : - Vertices: this is an abstraatfset
indicesV ~1,..., N,
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3.3 Cortical mesh extraction

Figure 3.2: Each single plot shows the pattern of leadfietdributed on a surface
reconstructed by 248-sensor points for an single meshxefteese 20 plots demon-
strate the leadfield pattern for first 20 vertices of cortexsiméerhe region responding
signal from strong to weak on the color map is representedéycolor from red to

blue.

61


Chapter2/Chapter2Figs/LR_leadfield_first20_map_positive.eps

3.3 Cortical mesh extraction

- Edges: this is a set of pair of verticds C V' x V which is assumed to be
symmetric:

(i,j) EE =i~ j& (ji) € E. (3.4)

- Faces: This is a collection of 3-tuples of verticBsC V' x V' x V with the
relationship between any two of the three:

(i,j,k) € F = (i,7),(j,k), (k,i) € E. (3.5)

with the assumption that no isolated edges exist:
V(i,j) € E, 3k, (i,7,k) € F. (3.6)

The adjacency matriXd can be used to express the connection relationship(if they
connect as a edge) between any two vertices of the mesha large sparse symmetric
matrix whereA,; = 1, if (i,j) € E, andA; ; = 0, otherwise.

Meanwhile, with the information of the vertices and edgemeth above, a undi-
rected graph®d = (V| E) is constructed for the representation of the cortex. The
geometric realizatiodVl is defined through the spacial localization of the set of ver-
tices,V, which in our study is stored as/é@ x 3 matrix. N is the number of vertices
with each row[V; ;,V; 5, V; 5] stores the localization information ah vertex in 3D.
Additionally, the face7 is stored as &/ x 3 matrix whereM is the number of faces
and a row{J; 1, J; 2, F; 3] represents the indices of a fac®; ;, F,, andJ; ; indicate
the indices of the vertices which construct the facéM can be displayed as a 3D
surface on the computer screen. Bi@ shows the 3D display of the cortical mesh,
with a zoom on the faces of the mesh.

3.3.2 Obtain the triangular mesh of grey matter from MRI

The entire 3D brain volume is a large and detailed structadatadifficult to accurately
reconstruct currents within this volume using a small nunabenagnetic fluxes at the
coils. To simplify the problem, we can assume that the ctsriéow only in the cortex,
the outside surface of the brain (the grey matter). In otherds;, This essentially
reduces the problem to a reconstruction problem over thexsurface. The current
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3.3 Cortical mesh extraction

Figure 3.3: Top Left: shows the outside surface of the briia ¢rey matter) and the
sensor set located outside of cortex; Top Right: extracteshnof the cortex from MRI
using FreeSurfer, the resolution of the mesh is: 262,658cest 525,308 faces (the
part with red circle is emphasized for observation); Bottdhese two figures show
the zoomed images of the emphasizing part of the mesh figurepRight.
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3.3 Cortical mesh extraction

sources are assumed to distributed on the whole corticlcgurather than the brain
volumes, and all the current sources occur on the deep vslamgeprojected on the
cortical surface. This approximation simplified the prabjdowever, it may generate
the uncertain inaccuracy when the deep current sources@jected on the cortical

surface. In order to construct a model of the cortex, we nesiduatural scan of the
brain, which is achieved through a magnetic resonance mga@RI) scan. This

scan is usually taken when an MEG scan is conducted sinceiseid to relate MEG

responses to structural brain features.

Extraction of the cortex from an MRI scan is a well studiedgbeon and there are
a number of software tools which can perform this task. WeFuseSurfer(5.0.0 for
this process.

Freesurfer is a set of software tools specifically for recmasion of the brain’s
cortical surface from the structural MRI, as well as embeddhe functional MRI
data onto the reconstructed cortical surface, based orutig sf the cortical and sub-
cortical anatomy. The tools recognize and construct manfdise boundary between
the cortical gray matter, white matter as well as the pidisa. Based on these recon-
structed model, an array of anatomical measures is gedegatg cortical thickness,
surface area, curvature, and surface normal at each poititeocortex Dale et al,
1999. For the better visualization, the surfaces can be inflatedior flattenedHis-
chl et al, 1999. Moreover,a cortical surface-based atlas has been defined based on
average folding patterns mapped to a sphdased on a high-dimentional non-linear
registration, the surfaces can be aligned with this atldse §pherical atlas naturally
forms a coordinate system in which point-to-point corresfsnce between subjects
can be achievedr{schl and Dale2000. Since the MEG research is based on the
large-sized data analysisieesurferis very ideal as its pipeline is automated.

With the application of this software, a mesh descriptiothef cortical surface is
generated in terms of a set of 3D points and and adjacencyxmétich describes
the topology of the surfacé(0.0. The resulting mesh which is assumed to be an
undirected graph are showed in B@.

Finally we must perform an alignment step to bring the mestegastration with
the MEG data. This is achieved using fiducial markers in the kil MEG scans.
The result of this process is an adjacency grapHescribing the cortex topology as
well as geometry, and aligned with the MEG data.
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3.3 Cortical mesh extraction

The resulting mesh defines a discretization over the coftéedorain. In this case,
the neural current sources are assumed located on theegedidhe cortical mesh.
On each vertex, there is one current vector with indepensteangth and direction,
showed as Fi@.4. In the case that no current evoked on that region of contezgh,
the current vector on the vertices there shows zero for botletton and strength. Our
task is then not to find a continuous current distributiort,rather to find an estimate
of the current at each discrete points, i.e. each vertexeofitash. We can therefore
formulate a modified forward problem

b= > L(x,)j(x) (3.7)

neVy
whereVy is the vertex set of the mesh, angl is the position of thex'" vertex. If we
define the leadfield matrix as:

ll,m(rl) ll,x(rN) l1,y(1“1) l1,y(1“N) l1,z(1“1) ll,z(l“N)
L= lz’,m<r1) lz’,m<rN) li,y(r1> li,y(rN> li,z(rl) li,z(rN)

ll,x.(rl) ll,x(.rN) ll,y&rl) ll,y(.rN) ll,z&rl) ll,z(.rN)
(3.8)

together with the cortical distributed current distrilount

J=(,73,J3.)" (3.9)

where the number of sensor arrayd j&nd the number of the mesh verticesvis
We can write the linear forward problem as:

B=LJ (3.10)
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3.4 Geometrical expression of cortex by basis functions

Figure 3.4: This figure indicates the assumption of currestridution. The neural
current sources are assumed discretized on the verticag obttical mesh. On each
vertex, there is one current vector with independent streagd direction. If there are
no current sources evoked in that region, the current veth@re shows zero to both
strength and orientation.

3.4 Geometrical expression of cortex by basis functions

3.4.1 The graph Laplacian

The cortical mesh Laplacian plays important role in our ME@rent source recon-
struction algorithm. As a branch of the mathematics thabrecerned with character-
izing the structural properties of graphs using the eigetore and eigenvalues of the
adjacency or Laplacian matrices, the Laplacian of the ghegshbeen widely studied
by the spectral graph theonCliung 1997, (Cvetkovic et al.1997).

The eigendecomposition of a graph provides us with a segefwalues and eigen-
vectors which describe the structure of the graph. We begoohstructing the Lapla-
cian of the graphGabriel 2007):

L=D—A (3.11)

whereD is the degree matrix, a diagonal matrix represents the abionadegree of
each vertex showing in the diagonal elements), which istAlscombinatorial weights
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Degree matrix. Adjacency matrix- Laplacian matrix.
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Figure 3.5: The figure shows an example to introduce the kcapiamatrix, adjacency
matrix and degree matrix for a graph. A patch of graph (V=6 8 E¥s showed in
the first grid. According to this graph, the associated degnatrix is extracted in the
second grid. It is a diagonal matrix with connection degreeach vertex showing in
the diagonal elements. The corresponding adjacency m&showed in the third grid.
It is a symmetrical matrix and each element indicates thacaaljcy relation between
related two vertices. The corresponding Laplacian masrshiowed in the fourth grid
which is a matrix representation of the graph which is catad by the difference
between degree matrix and adjacency matrix.
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3.4 Geometrical expression of cortex by basis functions

of the mesh depends only on the topolddfy £) of the mesh;

V(i j) € E, wiy =1 ; D =diag(d;), with d; = wy (3.12)
J

while A is the adjacency matrix. The F§5 gives an small example of Lapla-
cian matrix, adjacency matrix and degree matrix of a graple theén compute the
eigendecomposition.

3.4.2 Analogy of basis function for the cortical mesh: Laplaian
eigenvectors corresponding to the smallest eigenvalues

We extend the idea of spatial basis functions to developuheit source model which
represents the neural current arbitrary spatial distobubn the cortex. This model
describes the current distribution using a set of globalklfasctions Partha and Mi-
tra, 2005. In fact, there are various types of basis function which ba applied
for the solution above. In particular, spherical harmorasib function, which apply
to a spherical head moddPdrtha and Mitra2005. Here, we develop basis function
specifically for our non-spherical cortical mesh. In théatigf graph theory, we choose
the eigenvectors corresponding to the smallest eigervasdhe analogous of basis
functions, showed as the E@nl3

L= Ndiod] (3.13)

Here,i is the index of the mesh vertices. The eigenvectors are gotial ¢! ¢; =
1 and naturally form a set of basis functions over the graph. c&retherefore use
these to reconstruct any signal over the surface of the>cofiteere are some of the
benefits of using these basis functions: firstly, they alertl to the cortical surface
mesh; secondly, they are including the information of tip®togy of the cortical mesh;
thirdly, the scale of the basis function set can be seleaeémiding on the eigenvalues
straightforwardly.

The current signal is constructed as three components oang y orientation:

T

Jo(@) = audi(i); (3.14)

t=1
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3.4 Geometrical expression of cortex by basis functions

T
Jy(8) = Z%tﬁbt(i)% (3.15)
(1) = auey(i); (3.16)

whereT' is the number of the Laplacian eigenvectors corresponditiget smallest
eigenvalues s we choose.

According to the Eqr8.14 Egn3.15and Eqn3.16 the currents/ can be written
as:

J = ®a (3.17)
where
D= (D) - Py - D) (3.18)
) ® O O
=1 O & O (3.19)
O 0 &
and
T
a:(a$1“‘a$t"‘a$T ayl...ayt...ayT azl...azt...aZT) (3_20)

The currents] rely on two components, the basis functiehsind the correspond-
ing coefficientsa. It is worthy of note that the basis functiods here represents the
geometrical information of the cortical mesh and the cqoesling coefficient rep-
resents the information of the variety of the current sosidistributed on the cortical
mesh. The solution of the curredtreconstruction problem is then to find the right
coefficientsa in 3-space. This is actually a typicaverse problem

The meshes describing the cortex are generally with a largeer of vertices and
edges. Itis a difficult computational problem to decompasghdarge graphs using
standard eigenanalysis techniques. To solve this probienbegin by partitioning the
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3.5 Basis functions source model for MEG reconstruction

mesh into left and right hemispheres; since these partseofdhtex are largely sep-
arate, there is limited connectivity between the two and we decompose the parts
individually, saving a large amount of computation. Aldme mesh graphs are sparse,
the Lancosz metho®saad 1992 can be used to decompose the graph efficiently. For
reasons explained in the next section, we only require ddoirset number of eigen-
vectors, making this method particularly efficient.

3.5 Basis functions source model for MEG reconstruc-
tion

The inverse problem for MEG is the problem of finding a set afents in the cortex
which give the correct magnetic fluxes at the coils. Sincectirical mesh typically
has several thousands vertices and the the number of MEGrsmedimited(the MEG
machine in our experiment is with 248 sensors), the problémeanstructing the
current at each vertex is severely under-constrained. \Weonly hope to construct
a much lower resolution version of the signal from the codlp@nses, so it does not
make sense to use rapidly varying basis functions in thenstoaction. Furthermore,
the eigenvectors corresponding to the largest eigenveatermainly representing the
variational information on the cortical surface which asated to signal noise. For
this reason, we concentrate on the smoother basis funcfianthe Laplacian, these
are the eigenvectors corresponding to the smallest eiges/aBy choosing the correct
number of basis function§;, we can get an under-constrained problem which we can
fit with least-squares and is resistant to noise. Refer t&tne3.10 Eqn3.17, we can
write the forward problem as:

B=LJ

_ 3.21
= L®a ( )

With respect to the knowh® and the measuremeB, we are trying to compute.
This problem has the same structure as Bt Therefore L® can be assumed as a
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3.5 Basis functions source model for MEG reconstruction

Figure 3.6: This figure shows the pattern of new leadfiéld Each cortical image
indicates leadfield of the case that a single current loaatexhe individual vertex with
the set orientation and strength but the value of curreritibliged on other vertices
show as zero. It also indicates the sensitivity of the sessoio one geometrical point
( eg, the individual vertex of the mesh) on the cortex. The@aofrom red into blue
presents the change of the response from strong to weakfiginie only provides the
leadfield pattern for first 20 vertices of all the verticestod tortical mesh.

new leadfielddenoted a3V = L& (shows in Fig3.6). Then the equation above can
be written as:

B = Wa (3.22)

which is also a typical inverse problem.
We can obtain a numerically stable estimate &y solving the set of linear equa-
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3.6 Results

tions using LU-decomposition.

a=W'B

_ 1) B (3.23)

Choosing the basis functions is crucial to the solution efitiverse problem. If
we are interested in reconstructing the global currentidigion in the brain, then we
need to select large-scale basis functions. These arg éasild as they correspond
to the eigenvectors with the smallest eigenvalues from #gdcian. Since the eigen-
vectors corresponding to the top few largest eigenvaluasrgdly reflect variational
information of the graph , in contrast, the eigenvectorsegponding to the top few
smallest eigenvalues representing the smooth informatioch is required as the gen-
eral information of the geometry of the mesh in our study. @ndther hand, in order
to provide a well-conditioned solution to the inverse pewh) there is also a limit to
the number of basis functions we can select. To avoid thedstermination, the total
number of coefficient§” for each component we can determine must be less than the
number of sensor responses, 248(in the presence of noisep &ch basis function
is used to reconstruat, y andz components, we hav&l” < [ where! is the number
of coils. In this case, we have 248 coils and chobse 82, shows in Fig3.7. This
method of basis functions source model for MEG reconstuds also called as "basis
function method” in the following thesis.

3.6 Results

3.6.1 Toy example

A toy example is applied to test the basis function methodreHmstead of using
the spheroid cortical surface mesh, a surface mesh (verti@®6, faces: 2048 ) of a
sphere is applied firstly, shown as A@.

Two diffused sources distribution are embedded on the sairfeesh of the sphere,
and assumed as the simulated current sources. Accordihg Biat-savart law shown
in Eqn3.1, the measurements of magnetic field are generated seyaratte! without
the Gaussian noised added, shown in Bdh Basis function method is then applied
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3.6 Results

Figure 3.7: The pattern of fir&0 smallest eigenvectors on left-hemisphere of corti-
cal mesh. The basis functions is corresponding to the eggdors with the smallest
eigenvalues from the Laplacian. The color from blue to remlshthe cortex effected
by the corresponding basis function from weak to strong. @dréon with red color of
each image shows the location that the corresponding hasiidn mainly represents
The first color map shows the uniform information of the baokumd, and the rest of
the color maps show the detail geometrical information.
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3.6 Results

Surface mesh of a sphere

flat scene faceted scene

Figure 3.8: This figure shows the surface mesh of a spherefaséuke toy example.
The left shows the flat scene of sphere, and the right showadkéed scene of sphere.

with respect to the geometrical information of the surfacessmas well as the mea-
surements.

From the reconstruction results of this toy example, showiig 3.9, it is explicit
that the reconstructions via basis function method canigecthe correct position of
the simulated current sources.

3.6.2 Synthetic results

For better evaluating the Basis function method, two groofpsimulated current
sources are generated for synthetic experiment, i.e.iartarrent source distribu-
tion and realistic current source distributiomAppendix BFor the former type (called
assynthetic sources)A the fixed current source values are set on 30 particuléicesr
of mesh we choose but the values of current sources on oth@regeare set as zero;
while in the process of generating the later one(calleglyashetic source Bthe cur-
rent source distribution on the cortical mesh are from tmeloan results of previous
current source reconstruction of the real MEG data with camgtimuli on cortical
surface at one time point. The detailed information of th@segroups of simulated
current sources is given lppendix B
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3.6 Results

superposition of sensor set
and sphere surface

source simulation

2D projection of the measurement source reconstruction without
without Gaussian noise added Gaussian noise added

2D projection of the measurement source reconstruction with
with Gaussian noise added Gaussian noise added

Figure 3.9: This figure demonstrates the reconstructionlte®f basis function

method on the sphere mesh. In the first row, the left patteowshhe superposi-
tion of the sensor set and sphere surface, and the right emesghe simulated source
distribution. In the second row, the left pattern demonesdhe 2D projected map
of the coil measurement without the Gaussian distributiddea; and the right pat-
tern shows the reconstruction result by the basis functiethod. In the second row,
the left pattern demonstrates the 2D projected map of tHareasurement with the
Gaussian distribution added; and the right pattern showsdbonstruction result by

the basis function method.
75


Chapter2/Chapter2Figs/combination.eps
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According to the manual of softwaMNE ( (MNE)), the size of cortical surface
mesh of the gray matter is generally se2680 vertices. This mesh can be obtained by
simplifying the realistic head model§2658 vertices) that is generated from a segmen-
tation of a T1 MRI image byreeSurfer (5.0.0 which produces the cortical surface
mesh from the MRI images with high spatial resolutio®.(0(Q). Then, the temporal
and spatial correlations of the activity can be observee figures (FigB.2, Fig B.3,

Fig B.5 and FigB.6) show the maps of cortical activity and the example time sesir
of the MEG measurement.

3.6.2.1 Reconstruction of simulated current sources

Before showing the reconstruction results, we firstly idtroe the Minimum-norm
method which is used for the reconstruction comparison.here

The minimum-norm estimation technique is one of the classiethods used for
MEG signal processing, especially for no reliable a prinformation about current
source generations is available. The unique solution tarerse problem shown
in Egn 3.10 can be found by combining constraints on the solution andtcaimts
on the data it predicts. The following two equations destithese two constraints
separately.

For the solution, the general formulation in a linear fraragws shown as:

(J=IH'Cy(I —T7) =min (3.24)

whereJ is the estimated current sourcE, is an a priori approximation of the
solution andC; is a weighting matrix which provides apriori knowledge abthe
approximate locations or covariances of current sourcegmvhile, the constraints
on the data it predicts, the general formulation is shown as:

(LJ - B)"(LJ — B) = min (3.25)

whereL is the leadfield matrixLJ are the predicted data, aitlare the measured
data. When the matriXCs is positive definite, the estimated current source of this
problem is Hauk 2004):

J=J +C, 'L (LCc,'LY)'B (3.26)
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3.6 Results

We assume no apriori knowledge about the reconstructi@naldporithm can be
described asMenendez et al1998:

J=C,'LY(LC,'L")"'B (3.27)

In this case(C; is the identity matrix. The main difference between the munin-
norm method and our method is that we extract a set of smosth fumctions from the
mesh with respect to the spatial organization of the signdican be used to condition
the result Hauk 2004).

Fig 3.11and Fig3.13show the comparison between the original current souree dis
tribution, as well as the corresponding reconstructedlteby basis function method
and the Minimum-norm method fa@ynthetic data Aand synthetic data Brespec-
tively (Hauk 2004).

3.6.2.2 Noise-robustness evaluation of simulated curresburces

Since one of the most important aspects of the signal recaiiin is the resistance
to random noise which is always present in the MEG signakexobbustness is ap-
plied as an important property to measure the goodness gbathim of MEG source
reconstruction. In our experiment, the goodness of naibestness of basis function
method is observed by comparing with the results of Mininmonm method.

Firstly, we obtained the simplified triangled me&h of the brain which is with
2600 vertices(300 vertices for left hemisphere and00 vertices for right hemisphere)
using an MRI scan of the subject. The coil responses are peatditom an MEG scan
of the same subject from a single epoch and time-slice ofdae.Here, the number of
sensors are assumed todks (for 4-D Neuroimaging 248-channel MEJGWe select
the basis functions via the eigendecomposition of the megdlacian and pick the
eigenvectors corresponding to the first 41 smallest eideesa

Here, we analyze the reconstruction under noisy conditiSnmsce the MEG mea-
surement environment is assumed to be full of different $ygfenoise, the noise type
here is applied as the most general case, zero-mean Gadssidoution. Based on
the synthetic current sources distributi@ynthetic data Aand synthetic data Bthe
environmental noised condition can be simulated by addiagsSian noise with fixed
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Figure 3.10: The figure shows the pipeline of the synthetmeement of the noise-
robustness comparison between the minimum-norm methodhen@asis function
method. Based on the synthetic sources distribusgnthetic data Aand synthetic
data B the environmental noised condition can be simulated byngd@daussian noise
with fixed covariance value to the coil responses beforengicoction. Increasing the
covariance value of noise recursively @¥) iterations. In each iteration, undertaking
the reconstruction with respect to the noised responsedifiérent covariance. The
pattern of the square root of error variance between thenstaection and the original
current sources can be shown for basis function method an@rim-norm method
in figure3.12 figure3.14and figure3.17.

covariance value to the coil responses before reconstruciihe pipeline of the ex-
periment is shown in Fi§.10 In terms of this pipeline, keep increasing the covariance
value of noise recursively a$)0 iterations. With respect to the noised response with
different covariance, undertaking the reconstructionanheiteration. These results
can be used to obtain the patterns of the square root of esir@nce between the re-
construction to the original current source distributidthere, Fig3.12 indicates the
comparison of noise-robustness between basis functiohadetnd Minimum-norm
method forsynthetic data Aand Fig3.14indicates the same comparison §ynthetic
data Bwhich present the noise-robustness evaluation of botls lfasction method
and Minimum-norm method.
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3.6 Results

synthetic _Basis function Minimum-norm
source A method method

Figure 3.11: This figure shows the comparison spatial vizabn of the synthetic
original current sources, reconstruction by basis fumctieethod and the minimum-
norm method. The color from red to blue show the intensityusfent source strength
from strong to weak. The first column illustrates the synthetiginal current source
pattern, the middle column illustrates the reconstrucbgnbasis function method,
and the right column illustrates the reconstruction by mimin-norm method. With
respect to two types of synthetic sources we creat&ppendix 2 it is notable that
the artificial source(the synthetic source Aare applied in the first column, the time
point(inmg 1, 25, 50, 150 of realistic sourceare applied from the first row to the last
row, respectively.
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3.6 Results

Comparison of noise robustness for Synthetic source A on 4 time points
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Figure 3.12: These 4 patterns indicate the comparison serrobustness between the
Minimum-norm method and basis function method for the 4enirsources used in
Fig 3.11 According to the pipeline shown in F§j10 we add 100 increased different
covariance values of zero-mean Gaussian noise (from 0.0Q1 foto the measurement
of the synthetic source A artificial sourcein Appendix 2), and observe the noise
robustness of these two methods. In these 4 patterns, Xshgiss the number of
trials from 1 to 100, Y-axis shows the log square root erraregbnstruction; the dots
in blue show the log square root error of reconstruction &mi®function method, and
the dots in red show the log square root error of reconstrmdr Minimum-norm
method. Left-up,Right-up, Left-bottom and Right-bottore &or the current sources
on time point (inmg: 1, 25, 50 and150, respectively.

80


Chapter2/Chapter2Figs/error_comparison_set_6.eps

3.6 Results

Basis function Minimum-norm
method method

synthetic source B

25 ms

100 ms

200 ms

Figure 3.13: This figure shows the comparison spatial vizabn of the synthetic
original source, reconstruction by basis function methad &he minimum-norm
method. The color from red to blue show the intensity of sewttength from strong
to weak. The first column illustrates the synthetic origioalrent source pattern, the
middle column illustrates the reconstruction by basis fioimcmethod, and the right
column illustrates the reconstruction by minimum-normmoet With respect to two
types of synthetic sources we createAppendix 2 it is notable that thesynthetic
sourcésynthetic source Bare applied in the first column, the time point ¢(mg: 1,
25, 100 and 200 of realistic sourceare applied from the first row to the last row,

respectively.
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3.6 Results

Comparison of noise robustness for synthetic source B on 4 time points
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Figure 3.14: These 4 patterns indicate the comparison serrobustness between the
Minimum-norm method and basis function method for the 4enirsources used in
Fig 3.13 According to the pipeline shown in F§j10 we add 100 increased different
covariance values of zero-mean Gaussian noise (from 0.0Q1 foto the measurement
of the synthetic source B synthetic sourcén Appendix 2), and observe the noise
robustness of these two methods. In these 4 patterns, Xshriss the number of
trials from 1 to 100, Y-axis shows the log square root erraregbnstruction; the dots
in blue show the log square root error of reconstruction &gi®function method, and
the dots in red show the log square root error of reconstmdr Minimum-norm
method. Left-up, Right-up, Left-bottom and Right-bottore &r the current sources
on time point (inmg: 1, 25, 100 and200, respectively.
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3.7 Localizing the source reconstruction into the region ointerest(ROI)

From the reconstruction results shown in Bigland Fig3.13 it indicates that
the basis function method can produce the source recotistias good as Minimum-
norm method although the reconstruction results still tedtistortions and instabil-
ity comparing with the original source patterns. Furthemmdasis function method
shows superior performance on noise robustness ratheMheammum-norm method
in terms of the results shown in F&}12 as well as Fig3.14 However, the basis
function method is not entirely suitable for the currentreeuocalization and the re-
construction of the whole brain, as shown by the resultsgr8Filand Fig3.13 These
unsatisfactory reconstructed results are mainly becdube dasis function method is
basically a ill-posed inverse problem (showed in Be2?). The larger region of corti-
cal surface used for reconstruction leads to more plauaiiddess accurate results.

3.7 Localizing the source reconstruction into the region
of interest(ROI)

Based on the reason above, it is worth to try to reduce thenstaccted region to be
close to the region of interest(ROI) so that the accuracgssiiaed to be increased. In
order to do this, we need to find localized basis function asethe geometrical in-
formation of ROI. Here, the normalized cut method is usedégmentation of cortical
surface mesh to obtain the mesh of ROI.

The normalized cut method has been widely applied for gragmegntation. The
use of the Fiedler vector(eigenvector associated with titesinallest eigenvalue of
the graph Laplacian ) for the purpose of data clustering esafrthe most important
applications of spectral graph theory in image analysis @attern recognition§hi
and Malik 2000, (Belkin and Niyogj 2003, (Sarkar and Boyerl996. In our study,
the normalized cut method is applied to mesh segmentatiooldfi@ining a region of
interest (ROI) with respect to the features of basis fumctithod illustrated above.

By removing the edges of the connection, a gréph (V| F) is easily partitioned
into two disjoint setsA and B, with A|J B = V andA () B = (. Also, the degree of
dissimilarity between these two segments can be calcuésedut Since we do not
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3.7 Localizing the source reconstruction into the region ointerest(ROI)

have the weighted edges in the cortical surface mesh, tabwetght of the removed
edges can be assumed as Adjacency matrix of the mesh in dalepro

cut(A,B) = Ay u € AvEB. (3.28)

The minimum cubf this graphG is the optimal solution of bipartition which is a
well-studied problem with plenty of existing efficient atggbm in graphic research.

However, the normalized cut method is a unbiased measurisagsbciation be-
tween subgroups of a graph and provides a nice property wavolds the unnatu-
ral bias for partitioning out small sets of points which icaties in Wu and Leahy’s
method WWu and Leahy1993.

The idea of normalized cut method is to calculate the cut @sst fraction of the
total edge connections to all the nodes in the graph (thasdiiation is so-called the
normalized cubr Ncui instead of the computation of total edge weight connecting
two partitions. TheNcutcan be showed as:

cut(A, B) cut(A, B)
assoc(A, V)  assoc(B,V)
whereassoc(A,V) = > 4y w(u,t) is the total connection of the nodes.in
to all the nodes in the graph andassoc(B, V') is defined similarly.

Neut(A, B) = (3.29)

Meantime, a measure for total normalized association fave jgartition can be
defined as:

assoc(A, A) (B, B)
assoc(A, V) assoc(B,V)
whereassoc(A, A) andassoc(B, B) are total weights of edges connecting nodes

Nassoc(A, B) =

(3.30)

within A and B separately. This reflects how tightly on average nodes mitie group
are connected to each other which is an unbiased measure.
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3.7 Localizing the source reconstruction into the region ointerest(ROI)

These disassociation and association of a partition cahdrerelated as follows:

cut(A, B) cut(A, B)
assoc(A, V) = assoc(B,V)
assoc(A, V) — assoc(A, A)  assoc(B,V) — assoc(B, B)
assoc(A, V) assoc(B, V) (3.31)
B assoc(A, A)  assoc(B, B)
7 Massoc(A, V) T assoc(B, V))
=2 — Nassoc(A, B).

Ncut(A, B) =

Thus, the optimal solution for the partition is to minimizermalized cut which
directly leads to maximize the normalized association. okding to the Eqr3.31,
these two can be satisfied simultaneously. Shi and Malikithdinated the detail pro-
cess how normalized cut is computed efficiently by solvingaegalized eigenvalue
problem Shi and Malik 2000.

In our study, the normalized cut has been applied by theatig steps with re-
spect to the work of Shi and Malilshi and Malik 2000:

1. The mesh of cortical surface, also assumed as a weighapti Gr= (V, E), is
constructed with the matrices of verticésand edged”. The weights, referred
as the elements of the Adjacency matrix, reflect the conmgdiate between
two vertices of the mesh.

2. Solve for the eigenvectors with the smallest eigenvabfiise system which can
be transformed into a standard eigenvalue problem of :

I

D73(D — Au)D 2z = Az (3.32)
It is worth to note that from the previous work the Laplacidinhe cortical sur-
face £ can be directly introduced here for calculatigh= D — A, (whereD
is degree matrix of the mesh, and,, is the Adjacency matrix ). Additionally,
there are some properties which simplifies the computatfitimosegmentation.
Firstly, the eigensystems must be sparse since the meslyiscally connected;
secondly, our segmentation only needs the eigenvectamspmmding to the first
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3.7 Localizing the source reconstruction into the region ointerest(ROI)

few smallest eigenvectors; moreover, the precision requent for the eigenvec-
tors are low. The Lanczos method is used for solve the eigeemaposition with
these properties;

3. Use the eigenvector with the second smallest eigenvalsegment the graph;

4. Decide if the current segmentation should be partiti@ametido the segmentation
recursively if necessary.

It is notable that the continuous mesh segmentation shatldenmore than 5 times
for a single hemisphere for avoiding the over determinatisimce2® is smaller than
the number of basis function 41 kRftis larger than it, this hierarchical relationship is
shown as Fi@.15 Also. Fig3.16shows the segments of the cortical mesh by 5-level
normalized cut.

The figures, Fig.18and Fig3.19 illustrate the comparison of source reconstruc-
tions between the basis function method for the whole carsigrface and the partition
of ROI by the Normalized cut method for the synthetic soume®ne time point se-
lected fromsynthetic source £at time pointl, refer to Fig3.11) andsynthetic source
B (at time pointl, refer to Fig3.13), respectively. In Fig.18 the current sources are
distributed on both the left and right hemisphere with respe the pre-knowledge.
Therefore, the normalized cut is applied on the whole calrsarface mesh witlevel-

1. And, in Fig3.18 the current sources are distributed on only right hemispinith
respect to the pre-knowledge. The normalized cut is theheappn right hemisphere
with level-1 These results indicate that when the reconstruction medegmented as
close as the region that the current sources actual locate@reconstruction is capa-
ble to obtain the more accurate result. In other words, t@gé of the reconstruction
on the model from the global cortical surface into the loegion based on the ROI
and additional selection of proper local region effect tbeuaacy and goodness of the
result directly. This is a crucial feature when the basicfiom method is applied into
the MEG source reconstruction.

3.7.1 Application to the real data

We use the real MEG data of visual expression basedmpendix 3 Firstly, we
obtained the cortical surface mesh with2658 vertices andb65782 faces from the
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3.7 Localizing the source reconstruction into the region ointerest(ROI)
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Figure 3.15: This figure shows the hierarchy of mesh segrtientavith normalized
cut method. From the top to the bottom, the original cortmatface mesh can be
segmented into 2 partitions in terms of the Fiedler vectuis(is calledlevel-1); and
each partition can be segmented as the same way (calledes?), and so on. To
avoid the over determination, the total number of partitstiould not be more than
the number of basis functions. In our problem, the numberasisfunction istl,
therefore, the partition of normalized cut should not beeartbanlevel-5
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3.7 Localizing the source reconstruction into the region ointerest(ROI)

cortical surface mesh 5-level normalized-cut

Figure 3.16: This figure demonstrates the mesh partitiotiseo€ortical surface mesh
by level-5normalized cut method. With respect to the segmentaticaryhthe number
of the partitions ofevel-5normalized cut i2° = 32 The left pattern shows the corti-
cal surface mesh, and the right pattern shows the meshigastivhere the segments
present in different color indicated the different segradayt normalized cut method.

structural MRI scan of the same subject gesurfe(5.0.0. Since the coordinate
system of MRI cortical surface is different from the MEG cdoiates, the coordinate
registration is processed as the first step(with the spsalation provided by YNIC).
Specifically, thioregistratiorbetween the coordinate of structural MRl and MEG
system should be based on a set of at least 3 points whoseratedare known in
both systems. These points are calfieldicials In terms of theséducials a position
of any point on one of these two spaces can be convert to tlee bgtithe rigid trans-
formation matrices (Rotation and Translation). These falysoints are located in
both scans using special markers introduced on the heawigdilné scanning process.
Meanwhile, the same transformation is applied to the serEmition of MEG as well.
However, the spatial resolution of the mesh obtained froml MRoo large for
the realistic or reasonable solution. The simplified meghesefore generated by the
softwareRemesh (Remesh2008 ). In terms of the mesh resolution selected for
MEG analysis in software MNBEMNE), we apply a spatial resolution for the mesh M
with 2600 vertices and 5192 faces . Secondly, the measutesth®MEG signals are
represented as @ x 248 x 813 matrix, where96 indicates the number of different
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3.7 Localizing the source reconstruction into the region ointerest(ROI)

Comparison for time point 1 of synthetic source A Comparison for time point 1 of synthetic source B
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Figure 3.17: These 2 patterns indicate the comparison sénmobustness between the
Minimum-norm method, basis function method for the wholdical surface and for
the partition of ROI. The left: the comparison for time padlraf synthetic source Ahe
right: the comparison for time 1 gfynthetic source BAccording to the pipeline shown
in Fig 3.10 we add 100 increased different covariance values of zexanrnGaussian
noise (from 0.01 to 0.1 ) to the measurement of the syntheticce, and observe the
noise robustness for these three methods. In these 2 matkeaxis shows the number
of trials from 1 to 100, Y-axis shows the log square root eafreconstruction; the
dots in blue show the log square root error of reconstrud¢tobasis function method,
the dots in red show the log square root error of reconstmdr Minimum-norm
method, and dots in green show the log square root error ohstaiction for localized
basis function method.
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3.7 Localizing the source reconstruction into the region ointerest(ROI)

Normalized Cut

Gloabl basis function Localzed basis function
method method

Synthetic source A

Figure 3.18: The top part in this figure demonstrates theqa®of the normalized cut
method applied on the whole cortical surface mesh Vatiel-1 The bottom part of
the figure shows the comparison of source reconstructiomgela the basis function
method for the whole cortical surface and the partition of Bpthe Normalized cut
method. The left: the original source pattern; the middie:liasis function reconstruc-
tion based on the whole cortical surface; the right: thedasiction reconstruction
on the partition of ROI obtained by normalized cut methode $Shurce distribution at
one time point used here is selected freymthetic source Aat time pointl, refer to
Fig 3.11).
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3.7 Localizing the source reconstruction into the region ointerest(ROI)

Global basis function Localized basis function
method method

Synthetic source B

Figure 3.19: The top part in this figure demonstrates theqa®of the normalized cut
method applied on the whole cortical surface mesh Vetlel-1 The bottom part of
the figure shows the comparison of source reconstructiomgela the basis function
method for the whole cortical surface and the partition ol Bpthe Normalized cut
method. The left: the original source pattern; the middie:lasis function reconstruc-
tion based on the whole cortical surface; the right: thesasiction reconstruction
on the partition of ROI obtained by normalized cut methode $Shurce distribution at
one time point used here is selected freymthetic source Bat time pointl, refer to
Fig 3.13.
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3.8 Discussion

stimuli, 248 indicates the number of sensors &1d indicates the continuous time
instants. The visualization of this measurement matrixi@ased in FigC. 1

For applying the basis function method for spatial recartston, we choose the
measurement of the particular stimulus on particular timetmand process the recon-
struction. In this experiment, we choose the stimuala$ 96, and select the time point
20 ,45, 70,95, 120, 145,170, 195, 220, 245 , 270, 295, 320 , 345,370,395 , 420,
445 , 470 , 495, 520, 545, 570, 595, 620 , 645, 670 , 695, 720 , 745 separately for the
reconstruction. The Fig.20shows the reconstruction results of this trail.

Since it is impossible to have an absolute correct souraeitm for the good-
ness evaluation of our method in the real MEG experiment,nr@duce the source
reconstruction of the same trial by fMRI and cognition esiiion based on the stim-
ulus knowledge we have. Here, Cindy C. Hagan’s fMRI resulttfe same exper-
iment (Hagan et al.2009 are applied here for the reconstruction result comparison
and checking. It is clear transient visual changes are edauthe posterior superior
temporal sulcus (STS) froH@gan et al.2009. The reconstruction results of our
method, showed in Fig.2Q illustrate the correct source location with respect ts¢éhe
fMRI reconstruction.

3.8 Discussion

Firstly, the basis function method has the weakness on thengstion that all sen-
sors are perfectly set tangentially to the conducting sph8&ince in real data, more
realistic head model (like BEM) is more and more used ancethee no a priori on
the sensor array orientation, meanwhile, the cortical nigsically has several thou-
sands vertices and the the number of MEG sensor are limie®{EG machine in our
experiment is with 248 sensors(in 4D-Imaging 248-sensoGMiiachine), the prob-
lem of reconstructing the current at each vertex is sevenetier-constrained. In this
case, the source reconstruction from the basis functiohedetan be assumed as the
low-resolution version of source reconstruction. Thers drucial to apply some fur-
ther method for the correction and resolution improvemsmth as super-resolution
method and Kalman smoother method illuminated in @mapter 4 and Chapter 5

, as a complement for estimating the source distributionigiidr spatial resolution
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3.8 Discussion

Figure 3.20: Interms of the MEG data of facial expressiorofstd as thé6 x 248 x
813 matrix) ,this figure shows the reconstruction result$ @i 96, and select the time
point (inmg: 20 ,45, 70, 95, 120, 145,170, 195, 220, 245, 270, 295, 320 , 345,
370, 395, 420, 445, 470, 495, 520, 545, 570, 595, 620, 645, 670, 695, 720, 745 for the
reconstruction. First row shows the results20n 45, 70, 95, 120; second row shows
the results ori45, 170, 195, 220, 245; the third row shows the results @0, 295, 320,
345, 370; the fourth row shows the results 8A5, 420, 445, 470, 495; the fifth row
shows the results 0520, 545, 570, 595, 620; the sixth row shows the results 645 ,
670, 695, 720, 745.
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3.9 Conclusion

with better accuracy. In the assumption of super-resatutiethod, the distortions of
reconstruction caused by the assumption that sensors deetpetangential to the
conducting sphere in basis function method are assumedststdd low-resolution
current sources contain insufficient information aboutdhginal current sources.

Secondly, the current experimental configuration is : @ee2(1,8GHz), Linux
system(2.6.34.1)-32bit, matlatd.0( R2009b) x 32 edition , RAM: 4GB. With is con-
figuration, the computational costs of basis function metisdow since we have re-
duced the number of the unknown in this ill-posed inversélam. Specifically, the
backslasHunction of Matlab has been applied the matrices divisioictvieffectively
leads to fast computatioikatlab, 2009.

3.9 Conclusion

The aim of this topic is to explore a new method of the MEG sesgatio-temporal
reconstruction based on modelling the neural current susith extended basis func-
tions. In light of the assumption that the Laplacian eigetwes of mesh can be anal-
ogous to its basis functions that represent the cortex nvestyuild a new model to
describe the current sources distributed on each meshxvartés model consists of
analogous basis functions and unknown weighted coeffieblsing the leadfield,
the weighted coefcients can be calculated according toottveafd formulae of MEG.
The distributed neural current sources on mesh are thenseoeated according to the
basis functions model. Expanding this process from a sitigie point to continu-
ous time stretches, we are able to obtain the spatio-terheraeconstructed current
source that is distributed on cortical mesh vertices. Thisides a smooth and well-
conditioned reconstruction problem that can be solvectyréy an inverse method.
The results are more physically plausible than the mininmomn method while being
resistant to noise. Moreover, in terms of the experimeesllts, this algorithm shows
good reconstructed property in response to the single kisnas well as the supercial
stimulus on the cortical surface. However, it generatesignas and inaccurate re-
sults when the cortical current sources are distributed wwdtiple sites on the brain
or deep in the head. In conclusion, the algorithm is mairfigative for the distributed
and superficial current sources rather than the singleddeaap current sources of the
cortex.
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3.9 Conclusion

The further improvements should be focussed on :

e The basis function algorithm is based on the basis funceatracted from corti-
cal surface mesh and their associated coefficients. The foasitions rely on the
geometry of the cortical surface mesh. It will be interggtimtest the robustness
of the algorithm to the cortical surface mesh with differespatial resolution.

¢ In our work, we apply a part of eigenvectors correspondindpéofirst smallest
eigenvalues as the analogue of basis functions which acefas¢he represen-
tation of the geometry of the cortical mesh. However, theespdenty of other
types of basis functions, e.g. radial basis function(RBpherical harmonic ba-
sis function(SHBF) which can be directly applied in our altfon instead of the
eigenvectors set. It is possible that some type of basigibimcan provide a
superior result for this basis function reconstruction.

e Interms of the weakness of normalized-cut showe®giKin and Niyogj 2003
and Sharma et a).2009), it has been noticed that this does not guarantee good
clusters as the normalized cut is computed recursivelgpeetive of the global
structure of the data in the practical mesh segmentatianight be interesting
to research more on mesh segmentation to find more spediallgerithm so
that the source-distributed mesh can be cut more accunatiyrespect to the
range of stimuli smoothed.
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Chapter 4

Spatial Improvement of MEG
reconstruction with Bayesian
Super-resolution

4.1 Introduction

Super-resolution is one of the classic pattern recognmn@thods that are used for
high-quality image recovery from a set of low-resolutionages. The principle of
the method is to improve the image by the inversion of a t@nsétion from some
unknown high-resolution image into the observed low-nesoh images Tipping and
Bishop 2003. This approach applies a regularization process for Hpoged inverse
problem.

MEG source reconstruction can be achieved by the basisifumotethod pre-
sented in the previous chapter. The reconstructed curoentes at a single time point
is distributed on a triangular mesh of the cortical surfas@imed from the structural
brain imaging, e.g., MRI, for the same subject. The advant@gVIEG over fMRI
scans is that MEG has a high temporal resolution; in othedsjowve can obtain a
rapid sequence of images. The goal here is to use these ireggerses in conjunc-
tion with the previous source reconstruction method, toroue the spatial resolu-
tion of MEG. This problem can be described as obtaining acgodistribution on the
higher-resolution cortical surface mesh from severalioowus current source frames
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4.2 High-resolution mesh extraction

distributed on the original cortical mesh in the temporadlfiechich resembles the con-
cept of super-resolution for image reconstruction. Bayesuper-resolution is able to
provide a reasonable estimation for the spatial resolutiggrovement Tipping and
Bishop 2003 , (Nara et al.2006.

4.2 High-resolution mesh extraction

Since we aim to reconstruct the current source distributea mesh with higher spa-
tial resolution, this new cortical mesh is produced firsije old cortical mesh used
for basis function reconstruction is callémv-resolution mesimere (noted adl), in
contrast, the new mesh with high spatial resolution is datehigh-resolution mesh
(noted asv ™).

The high-resolution meshM™ can be interpolated geometrically from thov-
resolution mesiM. Thelow-resolution meshM, used here is actually the triangular
mesh representing the surface of grey matter extractedtfieriMRI scan of the same
subject withV vertices andr faces. The new mesh] ', is associated witiv but
with higher spatial resolution, can be generated via theagmh of interpolation on
the basis oM by adding one vertex in the center of each mesh triangle akthl it
with the surrounding triangular vertices, shown as iy, specifically. In this case,
each new vertex and associated three edges are construdtgd way. Moreover,
the coordinate of each new-added vertex is the average afoibrelinate of the three
vertices surrounded. Thus, the high-resolution mdshassociated wittM is con-
structed with(V + F') vertices and F' faces are shown as Fg2, where the group of
interpolated new vertices is showed as fhex 3 matrix V;, . In other words, there is
theV x 3 matrix V of the vertices on the low-resolution meghin 3 dimensions,
and the(V + F') x 3 matrix V ; of the vertices on the high-resolution meédh . Al
the structure of the matridd andM ™ are shown as follows:

VLRm
Vir= | Viry (4.1)
VLRZ
VHRJ:
Vir = V) = [ Vi, (4.2)
Vi Viur
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4.3 Revising reconstructed current source on low-resolutin mesh using the
Kalman filter

[

Figure 4.1: This figure shows how to interpolate a new verteligh-resolution mesh

M from the vertices ofow-resolution mesM. Each new vertex is added in the cen-
tre of the triangular face. The location of the new vertexbtamed by averaging the
locations of surroundedl triangular vertices. This figure can also be used to indicate
the averaging process @f. The new element corresponding to the interpolated new
vertex onM™ is obtained by averaging the elementsIhfon surrounded triangular
vertices( which from the low-resolution meat).

In other words, the vertices of high-resolution méétbelong to two groups, the
vertices from the low-resolution mesh and the interpolatea vertices.

4.3 Revising reconstructed current source on low-resoludin
mesh using the Kalman filter

4.3.1 Revision of reconstructed current source

In this Chapter, we aim at improving the spatial resolutibsaurce distribution at one
particular time point (also called darget time poin from the low-resolution mesh
M to high-resolution mesM ™ by the Bayesian super-resolution method. We firstly
need to work out a set of low-resolution source distributara continuous time series
(including thetarget time point. These reconstructions & are implemented by the
basis function method.

The reconstructions on the low-resolution mékhby the basis function method are
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4.3 Revising reconstructed current source on low-resolutin mesh using the
Kalman filter

Figure 4.2: This figure shows thew-resolution meshM on the left (withl” vertices
andF’ faces) and thhigh-resolution mest ™ on the right withl’* = V + F vertices
and F'* = 3F faces.M has2600 vertices and192 faces;M* is with 7792 vertices
and15576 faces.

calculated for each single time point firstly with the digerstate, and then combined
together through the time series as the dynamic system.dBags to provide a series

of predictions for the currents at the target time-pointr{gshe time series), and then
combine these predictions using super-resolution. Theseft is essential to smooth
these current sources over the time sequence to obtain aaocueate prediction of
the signals. This process of smoothness can provide a mboaakprior for the
later reconstruction oiVI™. For estimating the states in the past, present and future,
the Kalman filter can be applied in a straightforward way foe teconstruction and
smoothness of the current sources in time series with regp#dee Markov property.

4.3.2 Kalman filter

From the study of Kalman filter i€hapter 2 the real-time MEG state and measure-
ment can be described as the followiMyglch and Bishop2006):

X = AX;_ +w (4.3)
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4.3 Revising reconstructed current source on low-resolutin mesh using the
Kalman filter

z; = Bx; +v (4.4)

Herex, is the the hidden state amglis the observationA, andB are the relevant
coefficient matrices fok;_; andx;, respectively.w is the state noise , andis the
observation noise.

4.3.2.1 Smoothing the successive source distribution J onesh M

The state vectox, of the 3D reconstructed current source at the single timetpas
given by Eqr4.5as follows:

T
73"
T
Xy = v (t) (4 . 5)

o)

e

whereJ, = (JV, 79, J"), is the estimated current of the single point and
v = (0, 0", v{") is the associated rate of change of the current.
The state matrix is:

I I
A (1) 0o

and the observation matrix is
H = ( 10 ) 4.7)

Q is the covariance matrix of the state process Bnig the covariance matrix of
the observation noise (which is determined from data). Wa tfet the Kalman update
equations as follows:

X, = AX¢_1 (4.8)
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4.3 Revising reconstructed current source on low-resolutin mesh using the

Kalman filter

P, = AP, AT+ Q (4.9)

K, =P ;H"(HP;HT + R)™! (4.10)
P, =(1I-KHK; (4.12)

whereJ; represents the observed current source in specific time (wlivich in-
cludes 3 dimensional data). By applying this process, wainlat noise-reduced set of
estimates, for the current source.

4.3.2.2 Smoothing associated basis function coefficiertof source distribution
J

The Kalman filter method works by smoothing the source digtronJ (size: M x 1,

M is the number of mesh vertices ) &h at the successive time points as a recursive
process. Since the basis function method is used for thesoeconstruction on each
single time point, the coefficients of basis functiican be used for simplifying this
process. In terms of the basis function method explainedshChapter, the source
distributionJ at one single time point is consist of two components showalksving
equation, basis function sét and the corresponding coefficienis(also shown as
Egn3.17in Chapter 3):

J=®a (4.13)

Since the basis function sé are fixed as we choose, the only variable in the
equation above is the associated coefficeefr each basis functions. The structure
of a (size:3T x 1, T is the number of basis function set) for each time point isxsho
as follows (also shown as Eqn20in Chapter 3):

T
a:(a$1"'a$t"'a$T ayl-.-ayt-.-ayT aZl“‘aZt“‘aZT) (4.14)
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With respect to the process of Kalman filter explained abavier the successive
time points can be smoothed to obtain a group of new coeftgiafi‘. Therefore,
Jrev the smoothed source distributions on the successive toimgsp are generated
according to the Eqa.13

As the size ofa is much smaller than the size &f( 37" < M), the approach that
smoothinga via Kalman filter method instead of directly using the soudtsgribution
J reduces the computation complexity effectively with themmeamoothing results.

4.4 Applying Bayesian super-resolution on improving
spatial resolution of MEG source reconstruction

4.4.1 Selecting a prior

In terms of our problem, the prior an important constraimtthe solution. As we dis-
cussed in Chapter 3, the cortical mesh Laplacian can bercetest as followsChung
1997, (Cvetkovic et al.1997:

L=D—-A (4.15)

where A is the adjacency matrix an® is the degree matrix, a diagonal matrix
represents the degree of each vertex shown by in the diagtamaénts.

In the following part,: = 1,---, M denotes the vertex index &fl and; =
1,---, N denotes the vertex index M .

Since both the high resolution mebsh™ and the low resolution mest are ob-
tained previously, the corresponding mesh LaplatiandL * can be generated. The
prior on the high resolution medW ™ is given as a Normal distribution, showed as
Egqn4.16

p(z) = N(z[0,Z,) (4.16)

On the high resolution meW | the covarianc&, of this distribution is assumed
as a heat kernel. The reason for using the heat kernel ishidarnisotropic diffusion
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across the cortical mesh with time for the synthetic sousceaptured by the heat
kernel and this enforce smoothness between adjacent megiese

exp(=Li a) -+ - exp(=Li ya)
Z,— A - (4.17)

exp(—Ly o) -+ -+ exp(—Ly ya)

Note this prior is fixed with a constant priar(which we set as 0.5 in our experi-
ment).

In light of the approach of super resolution used Bipping and Bishop2003 ,
we build a standard mathematical model to describe thegektip between current
sources on the low-resolution mekhand the high-resolution mes¥i ™ ( indicated
as Egn4.18) where the process of generating low resolution frames fiteenhigh
resolution frame can be assumed by applying a time shift (@athe current sources
varying between high-resolution frame at tifgeand high-resolution frames at time
point ¢ ) for convolving with point spread function (PSF) and downgéing to the
lower resolution mesh.

JO = wWOJ+ L O (4.18)

wheree®) is a vector of independent Gaussian random variastﬂb& N(0, 37Y)
with zero mean and precision(inverse variange. )This is used to represent the noise
terms between the generative model and observed taggresents the time of the
frames,J® represents the current source distributed on the low-utisal meshM
at the time point; W is the transformation matrix; Our goal is to estimate thenhhig
resolution frame at a particular time poigf J* .

The transformation matri¥V in Eqn4.18can be defined in the following steps:

w" = sT, (4.19)

The downsampling in Egn4.19is defined in a straightforward way by the heat
kernel:

S=PE, (4.20)
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where

exp(=Liyy) -+ -or exp(=LiyY)
E, = - (4.21)

exp(=Ly,7) -+ oo exp(—=Liy )

So, hereP is a downsampling operator which only picks out the vertiitesn
the low-resolution mesM; E, is the point spread function(so-called PSF), with the
unknown parametey in 3-space. In our case, the PSF describes the limited r&solu
of the low-resolution current distribution with respectfte high resolution distribution
with respect to the geometrical information of the highetason mesh (refer to the
mesh Laplaciai. ™), i.e. the parameterin turn is a measure of the smoothness degree.

The transfer matriX; is used to describe a shift of the high-resolution frame from
thetarget time point, to another time¢. The process for calculatE; is shown as fol-
lows. We firstly get the current sources varyifigon low-resolution frames between
the target timet, and any other time poirttin the time sequence we choose, shown
as Eqn4.22 ThereforeJ,, the current source in each time pointhas a correspond-
ing T; which represents the proportional shift with the currenirse ontarget time
point, J,o. Similar to the averaging process for getting new vertideMa (referr to
Fig4.1), each 3 elements @, that corresponding to the current source located on the
triangular vertices of each face of meghare averaged to obtain the néy, that is
corresponding to the current source located on the newxveeteerated il ™. Then,
for eachJ;", we produce &, with the same size. Diagonalizing the element§ of
into the square matrix with other elements set as zerosemusource varying; is
obtained for the following calculation (shown in E4r25).

T =J,./d
e = e/ . (4.22)
=(Tu T - Tim)
(vr1) (vy2) (vr3)
v T T, T
thn — ( t + t3 + t ) (423)
T,
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Figure 4.3: This figure demonstrates the example facef M for averagingT to
generatel,’" (also refer to Eqa.24). The triangular vertices;, vy, anduv;; are the
vertices fromM. 1V}, is the interpolated new vertex 8+ which is generated from

Vf1, U andvfg.

Ty o o 0
T, = | e (4.25)
0 - - Ty

The transformation matrivv® in Eqn4.19govern by the matri$s (including the
downsampling matri¥?> and point spread function (PSF)) as well as transformation
matrix T; can be finally presented as the normalized form in Bz With the
normalization, thed®) can be ensured to be transformed frémwith the same scale.

Wy =wi S wl) (4.26)
j/
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4.5 Estimation

4.5 Estimation

4.5.1 Posterior estimation

The likelihood of an individual scan (on the low-resolutioesh) is as follows(ipping
and Bishop2003 :

pIO1T ) = (/20 e { = D30 —wOr P} @)

Therefore assuming conditional independence of the soariké low-resolution
mesh) given the high resolution scan, we @giping and Bishop2003 :

p(JHJY, ) = N(p, %) (4.28)
Where, X
1
2= exp(al™) + 8> W<t>TW<t>] (4.29)
t
p=pn>y TIwOT30 (4.30)
t

4 is the optimized current source distributed on the highltggm meshM * which
is equivalent taJ* that we are trying to calculate by the Bayesian super-réisolu
method. For computing this, it is essential to estimate tllexawn parametery .

4.5.2 Energy function of Bayesian super-resolution

According to the theory of Tipping and Bishops papgvping and Bishop2003,
the critical step is to marginalize out the unknown highetegon image from the
known equations, so that the probability of the registrafiarameters and point spread
function(PSF) are assumed to be correct, and the margkedihiood function for low-
resolution images is shown in the form:

p(J sk, Ok}, 7) = N(0, Zy) (4.31)

where

Z,=8""1+WzW" (4.32)
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Here,{s, 0i} is the registration parametergis the parameter of PSH; and IV
are the vector and matrix of the stackEdand W', respectively. With the marginal-
ization shown in Eqrt.31and Eqn4.32 the marginal likelihood can be rewrote as
Egn4.33after somestandard matrix manipulatiorsre performed on it:

log p(y|{sk, Ok },7) = —5 BZ ) WO 24172 fi+log|Z .| — log| = | — K M log ]

(4.33)
Eqn4.34must be optimized to obtain the most likely combination afis&ation
parameters and PSF, therefore, we define an energy functionthe marginal log-
likelihood as:

__1 52 (3o - + G2, i + log|Z, |~ log|S|-K M log 5] (4.34)

However, it is notable that a few differences exist betweaa@npooblem and image
super-resoluion explained previously. In our problem, weveorking with the mesh
and not the image grids. Also, there is no alignment probletwéen the successive
frames here. Instead, we are dealing with the problem tha¢cusources may vary
among the frames in the time series (without rotation andihlthe imaging problem,
which is related to{sy, ;. }) because the current sources are dynamic. In this case,
we only need to estimate the parameter of PSHn the optimization. This will be
explained in the later part of this Chapter.

4.5.3 Parameter optimization

As the Bayesian super-resolution method explained by mg@ind Bishops paper
(Tipping and Bishop2007) , Bayesian marginalization allows the registration param
eters as well as PSF to be estimated in advance so that thedsiglution frame gen-
erated afterward can be estimated with superior accuradiiid case, the parameter
of point spread function (PSF) are estimated firstly by ojziing the energy function
Eqn4.34

()
OF (Z OF aWij> _
— B B Y (4.35)
D)
o oW, v
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/(1)
The calculation oma/f—;j are presented as follows:
According to Eqm4.26 the denominatozj/ VVij/ is a normalization factor which
should be constant regarded less of the choice of paramstettsat we have:

3W-@ aw(t) aW‘(?)
ij iJ

- 4.36
T (420
with
ow 1
L = = (4.37)
owl WY
and
owy
— Y —pL* exp(—LT)T, (4.38)
vy
Meanwhlle —9L - in Eqn4.35can be expanded as the following expression with
multiple factors. "
ok 1 8u
- _ | = ® _\W® N (W® _ w @
)
+2u" exp alL" a’u(t —Tr 2’18—
VVij) aVVZ(]t)
(4.39)
The factors in Eq@.39can be calculated as:
e u;; can be written as:
oy ift=1
(ig)e = { 0 otherwise
e Interms of Eqr4.30 - O ow® can be written as follows:
o _ REI\\SLTIRENG) 8 i (4.40)
® '
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where

[ ift=y
(Jij)t_{ 0 otherwise

and

W ifa=jandb =
Wi if a = jandb # j
W if b= janda # j
0 otherwise

(W’f(t))ab —

v]

The equations above indicate thafsize: NV x 1) reduces the size 1Q:;;); (size:

M x 1) with the rest of the elements are cancellédsize: M x 1) increase the
size to(J};); (size: N x 1) with the new elements set as zeros for the calculation
need; andW (size: M x N) increase the size th}t) (size: N x N) with the
new elements set as zeros, for the calculation need.

e —2=_ can be expanded as :
ow (!

p
0= & = —BEW S (4.41)
oW
With optimized parameter’ for the point spead function(PSF), the high-resolution
frame can be estimated with improved accuracy.

It is worth to emphasize that all the calculations above amglemented in 3
dimensions (components x,y and z).

4.6 Results

In the following part, the simulated data as well as the reBGwata are both applied
for the evaluation of the Bayesian super-resolution methoonproving MEG spatial

resolution. Since we are working on the high-resolutionrseulistribution on mesh
M, the corresponding low-resolution source frames on nidsht the same time
course must be obtained firstly as a prior. The method usedetmmstructing the

low-resolution source frames on successive time pointsh@®asis function method
explained in the last Chapter.
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The experimental configuration (the configuration curseist! InterCore2(1,8GHz),
Linux system(2.6.34.1)-32bit, matlalp.0( R2009b) x 32 edition, RAM: 4GB).

4.6.1 Synthetic results

In the part of simulated experiment, two groups of simulat@aent sources are gen-
erated for synthetic experiment, i.e. artificial sourcdribation and realistic source
distribution inAppendix BFor the former type (called aynthetic sources)Athe fixed
current source values are set on 30 particular vertices shiwe choose but the values
of current sources on other vertices are set as zero; whileiprocess of generating
the later one(called asy/nthetic source Bthe source distribution on the cortical mesh
are from the selected results of previous source recongtnucf the real MEG data
with random stimuli on cortical surface at one time pointeTetailed information of
these two groups of simulated current sources is givéxpendix B

Since we are working on a successive time period, the nunfliene points are
firstly set asT = 31 , and the time poin8 of 31 are set as théarget time point
The basis function method are then applied to3jetow-resolution source frames in
terms ofT. The details of these reconstructions can refer to thetrpau of Chapter
3. The figures, Figd.4 and Fig4.11, show these reconstructions of low-resolution
source frames &l successive time points feynthetic source Andsynthetic source
B, respectively. With respect to the results of the basistfanenethod, the coefficient
matrices of the basis functioasare selected, and smoothed by the Kalman filter along
T time points. The figures, Fig.5and Fig4.6, demonstrate the smoothing process of
3rd element and 12th element of coefficient matriin successive 31 time points by
Kalman filter (in 3-space, with components x, y and z)$gnthetic source Awhile
the figures, Figd.12and Fig4.13 show are the same process $ynthetic source B
respectively. The size of low-resolution current sourcérixa on a single time point
is 7800 x 1 which is much bigger than the size of coefficient mat2ig x 1. Therefore,
the approach that smoothiagnstead of directly smoothing the source distribution
effectively reduces the computation complexity.

After that, we obtain the high-resolution melsh" by geometrically interpolating
from the low-resolution mesM. Each new vertex is added in the centre of the tri-
angular face( referred as Fgl). The new mesiM™ is obtained with 7792 vertices(
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represented as th&92 x 3 matrix, shown in Eqm@t.2) and 15576 faces (represented as
the 15576 x 3 matrix).

After then, using the Laplacian of the mdghandM ™ we extracted, the Bayesian
super-redsolution method is applied for improving theigpegsolution of MEG source
reconstruction. Since all the factors applied in this daltton process are large size
matrices which leads to the much expensive computatione thiee some approaches
applied here:

e Selecting the matrices of the factors contains a numberrokzesuch as trans-
formation matrixT, , and transform them to be the fornsgtarse matrix Thus,
all the relevant calculation of them are transformed to leesgfarse matrix cal-
culationin Matlab with effectively reduce the computation expense rathem tha
the full-matrix computation;

e The calculation is involved into the unaffordable expeastemputation when
calculating the matrix oE which is the inverse of large size matrix(sized2 x
7792) with less sparse. Therefore, the softw&fAl (Grote and Hagemaniis
applied for calculating the approximation of the inversé¢hid large size matrix.

With the optimization process illuminated above, the opted parametety,, v,
and~, for 3-space can be obtained by the analysis on each cocedieptairately. The
figures, Fig4.7, Fig 4.8 and Fig4.9, demonstrate this optimization process 8yn-
thetic source Aon X, y and z component, respectively. And, the figures, &g}
Fig 4.15and Fig4.16 show the same experiment results &ymnthetic source B

With respect to the optimized parametgrthe high-resolution source frame on
thetarget time pointare produced via the Bayesian super-resolution methodfighe
ures, Figd.10and Fig4.17, show the comparison between the high-resolution current
source simulation( referred tAppendix B and the reconstruction by the Bayesian
super-resolution method felynthetic source Andsynthetic source Bseparately.

From the reconstruction results of simulated experimeavepshown in Figt.17
and Fig4.17, the source reconstruction by the estimated parameterdtaeed lead
to the distortion of the location and strength of the origsimulated current source.
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Figure 4.4: This figure demonstrates the reconstruction®wifresolution current
source frames at 31 successive time pointssforthetic source AThe algorithm ap-
plied for these reconstructions are the Basis function otetfihe 1st row: the recon-
structions froml ms to4 ms; the 2nd row: the reconstructions fréhms to8 ms; the
3rd row: the reconstructions frofnms to12 ms; the 4th row: the reconstructions from
13 ms to16 ms; the 5th row: the reconstructions frdmms to20 ms; the 6th row: the
reconstructions from@1 ms to24 ms; the 7th row: the reconstructions fr@&h ms to
28 ms; the 8th row: the reconstructions fr@fims to31 ms.
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Figure 4.5: This figure shows the smoothing process of 3miete of coefficient ma-
trix a in successive 31 time points by Kalman filter(in 3-spacehwimponents X,
y and z) forsynthetic source AThis a is generated for mesiM by the basis func-
tion method over the time sequence to obtain a more accuradécpon of the current
sources. The '* shows the original reconstructionsadfy the basis function method;
the blue line showthe posterior estimate by Kalman filter estimation on eachpo-

nent of 3 dimensions
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Figure 4.6: This figure shows the smoothing process of 1Zment of coefficient
matrix a in successive 31 time points by Kalman filter (in 3-spacehwimponents
X, y and z) forsynthetic source AThis a is generated for mest by the basis func-
tion method over the time sequence to obtain a more accuradiécpon of the current
sources. The "* shows the original reconstructionsadfy the basis function method,;
the blue line showthe posterior estimate by Kalman filter estimation on eachpo-
nent of 3 dimensions
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0% Parameter opimization ¥ in x dimention for synthetic source
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Figure 4.7: This figure shows the optimization resultsfan x dimensions forsyn-
thetic source AWith the optimization calculation explainedRarameter optimization
the minimum values are obtained numerically. The x-axissshihe numerical value
of x, and y-axis shows the approximation®f With y-axis reaches to minimum, the
corresponding value in x-axis are the optimization of x.

115


Chapter3/Chapter3Figs/min_x_synthetic_A.eps

4.6 Results

v Parameter Y optimization in v dimention for synthetic source A
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Figure 4.8: This figure shows the optimization resultsfan y dimensions fosyn-
thetic source AWith the optimization calculation explainediRarameter optimization
the minimum values are obtained numerically. The x-axisxshine numerical value
of y, and y-axis shows the approximation®f With y-axis reaches to minimum, the
corresponding value in x-axis are the optimization of y.
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x 10° Parameter Y optimization in z dimention for synthetic source A
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Figure 4.9: This figure shows the optimization resultsfan z dimensions fosyn-
thetic source AWith the optimization calculation explainedRarameter optimization
the minimum values are obtained numerically. The x-axissshihe numerical value
of z, and y-axis shows the approximationof With y-axis reaches to minimum, the
corresponding value in x-axis are the optimization of z.

117


Chapter3/Chapter3Figs/min_z_synthetic_A.eps

4.6 Results

Synthetic source A (on target time point) Bayesian super-resolution reconstruction

Figure 4.10: This figure shows the comparison of the simdlaterent source pattern
of synthetic source An high-resolution mesM* ( on the left) and the reconstruction
result by the Bayesian super-resolution method (on thé)ragtthetarget time point

4.6.2 Application to the real MEG data

We get the real MEG data of visual expression basedmpendix 3 Firstly, we ob-
tained the cortical surface mesh witb2658 vertices and65782 faces from the struc-
tural MRI scan of the same subject Byeesurfer(http://surfer.nmr.mgh.harvard.edu/)
(5.0.0. Since the coordinate of MRI cortical surface are difféngith the MEG coor-
dinate, the coordinate registration is processed as thesti@g(with the special solution
provided by YNIC). However, the spatial resolution of mestained from MRI is too
large for a realistic or reasonable solution. The simplifirezsh is therefore generated
by the softwardRemesif http://remesh.sourceforge.nej}/ In terms of the mesh reso-
lution selected for MEG analysis iMNE), we apply the reasonable spatial resolution
for mesh M with 2600 vertices and 5192 faces . Secondly, the measuteoshBEG
signals is represented aS@x 248 x 813 matrix, whered6 indicates the number of dif-
ferent stimulus248 indicates the number of sensors &1@ indicates the continuous
time instants. The visualization of this measurement ma&rshown in FigC.1

We choose 30 continuous time points fréi8 continuous time instants, arffd th
stimulus from96 different stimulus as th&arget time pointthen we obtain 248 x
30 matrix B*¢* which represents the measurement of magnetic fieldhthf stimulus
during the continuous time points the time patat,45 , 70, 95, 120, 145,170, 195,
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Figure 4.11: This figure demonstrates the reconstructidrievaresolution current
source frames at 31 successive time pointssforthetic source BThe algorithm ap-
plied for these reconstructions are the Basis function otetfihe 1st row: the recon-
structions froml ms to4 ms; the 2nd row: the reconstructions fréhms to8 ms; the
3rd row: the reconstructions frofnms to12 ms; the 4th row: the reconstructions from
13 ms to16 ms; the 5th row: the reconstructions frdmms to20 ms; the 6th row: the
reconstructions from@1 ms to24 ms; the 7th row: the reconstructions fr@&h ms to
28 ms; the 8th row: the reconstructions fr@fims to31 ms.
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Figure 4.12: This figure shows the smoothing process of 3¥thent of coefficient
matrix a in successive 31 time points by Kalman filter (in 3-spacehwimponents
X, y and z) forsynthetic source BThis a is generated for mest by the basis func-
tion method over the time sequence to obtain a more accuradiécpon of the current
source. The ™ shows the original reconstructionsadby the basis function method;
the blue line showthe posterior estimate by Kalman filter estimation on eachpo-

nent of 3 dimensions
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Figure 4.13: This figure shows the smoothing process of 1l2inent of coefficient
matrix a in successive 31 time points by Kalman filter(in 3-spacehwimponents
X, y and z) forsynthetic source BThis a is generated for mest by the basis func-
tion method over the time sequence to obtain a more accuradécpon of the current
source. The ™ shows the original reconstructionsadby the basis function method;
the blue line showthe posterior estimate by Kalman filter estimation on eachpo-
nent of 3 dimensions
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1= Parameter ¥ optimization in x dimention for synthetic source B
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Figure 4.14: This figure shows the optimization resultsyfan x dimensions fosyn-
thetic source BWith the optimization calculation explainedRarameter optimization
the minimum values are obtained numerically. The x-axissshihe numerical value
of x, and y-axis shows the approximation®f With y-axis reaches to minimum, the
corresponding value in x-axis are the optimization of x.
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Figure 4.15: This figure shows the optimization resultsyfan y dimensions fosyn-
thetic source BWith the optimization calculation explainedRarameter optimization
the minimum values are obtained numerically. The x-axissshihe numerical value
of y, and y-axis shows the approximationBf With y-axis reaches to minimum, the
corresponding value in x-axis are the optimization of y.
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Parameter y optimization in z dimention for synthetic source B
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Figure 4.16: This figure shows the optimization resultsyfan z dimensions fosyn-
thetic source BWith the optimization calculation explainedRarameter optimization
the minimum values are obtained numerically. The x-axissshihe numerical value
of z, and y-axis shows the approximation/of With y-axis reaches to minimum, the
corresponding value in x-axis are the optimization of z.
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Synthetic source B (at target time point) Bayesian super-resolution reconstruction

Figure 4.17: This figure shows the comparison of the simdlateirce pattern afyn-
thetic source Bon high-resolution meskl * ( on the left) and the reconstruction result
by the Bayesian super-resolution method (on the right)estiatyet time point

220,245,270, 295, 320, 345,370,395 , 420 , 445,470 , 495 , 520, 545, 570 , 595, 620

, 645, 670 , 695, 720 , 745 for the reconstruction from the MEG dat@6(x 248 x 813
matrix). Then, the basis function method is applied herealersource reconstruction
on the low-resoluion mesh fdg**! so that we get th&s00 x 1 matrix J e,

And then, based on the Laplacian of the mdslandM * extracted fromMatlab,
the Bayesian super-resolution method is applied for impigpthe spatial resolution
of MEG source reconstruction an&f®, the current source distributed on the high-
resolution mesiM ™, is generated. The real data process has the same calowlitio
ficulty as the synthetic experiment: the calculation of éasgze matrices of algorithm
factors leads to the much expensive computation. To solsgtbblem, a sparse ma-
trix calculation is applied for the faster computation ané softwareSPAI(Grote and
Hagemanhis used for calculating the approximation of the inversehef large-size
covariance matrix:, which are the same solutions applied in the synthetic éxyet.

Fig 4.18shows the reconstructions by the basis function methodwté&solution
current source frames at successive time points; Fg19and Fig4.20demonstrates
the smoothing process of 3rd and 12th element of coefficiaitixna in successive
30 time points by Kalman filter (in 3-space, with componenty and z); Fig4.24
shows the comparison of reconstruction results by the as@ion method and by
the Bayesian super-resolution method . Both the color patad 2D signal pattern
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4.7 Discussion

of the reconstruction result on tharget time point Also, Fig4.25demonstrates the
wave patterns of the reconstructed current sodrgdat the time point 70 of 813) on
M in 3-space.

Since it is impossible to have an absolute correct sourcitot for the goodness
evaluation of our method in the real MEG experiment, we réferreconstruction re-
sults of the same trial by fMRI and cognition estimation faase the stimulus knowl-
edge we have. According to Cindy C. Hagan’s fMRI result fa fame experiment
(Hagan et a].2009), the transient visual changes are occurs in the posterfmersr
temporal sulcus (STS) frorHagan et al.2009, which approximately match the result
of the basis function method on the low-resolution miesthowever, the reconstruc-
tion by the Bayesian super-resolution method shows thertlist of the current source
location, refer to Figt.24

4.7 Discussion

In terms of the reconstruction results of simulated expenitras well as applying to
the real data , shown in Fig.10 Fig 4.17 and Fig4.24 the estimated parameters
we obtained do not lead to perfect reconstruction resultereHthe possible rea-
son is provided for the incorrect reconstruction. The agipnation of inverse of the
large size matrix leads to the inaccurate reconstructiortedims of the Eq@.29and
Eqgn4.30Q covariance matrixX: need to be calculated for the computation of estimated
high-resolution source frame This computation is to search for the inverse of large
size matrix, which is too expensive to calculate preciselpractice. In this case, an
approximation of the inverse of large-size matrix is applethis step for the conve-
nience to computation, i.e. softwa&Al (Grote and Hagemanrs used to generate
the inverse of the large size sparse matrixiyen a sparse matrid the SPAI Al-
gorithm computes a sparse approximate invdvs®&y minimizing||AM — I|| in the
Frobenius norm. The approximate inverse is computed etpland can then be ap-
plied as a preconditioner to an iterative methad. The difference produced by this
approximation with the real inverse matrix may lead to th&courate result of the
reconstruction.

Also, the main experimental configuration we use is : InteeQ@l,8GHz), Linux
system(2.6.34.1)-32bit, matlabd.0( R2009b) x 32 edition , RAM: 4GB. Since there
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4.7 Discussion

Figure 4.18: Interms of the MEG data of facial expressiorofstd as thé6 x 248 x
813 matrix) ,this figure shows the reconstruction results ontesolution mesiv by
the basis function method atof 96, and select the time point (img: 20, 45, 70, 95,
120, 145, 170, 195, 220, 245, 270, 295, 320 , 345, 370, 395, 420, 445, 470, 495, 520,
545, 570, 595, 620 , 645, 670, 695, 720, 745 for the reconstruction. First row shows
the results on the time point (im9: 20, 45, 70, 95, 120; second row shows the results
on the time point (irm9: 145, 170, 195, 220, 245; the third row shows the results on
the time point ( inmg: 270, 295, 320, 345, 370; the fourth row shows the results on
the time point (inm9: 395, 420, 445, 470, 495; the fifth row shows the results on the
time point (inm9: 520, 545, 570, 595, 620; the sixth row shows the results on the time
point (inmg: 645, 670, 695, 720 , 745. 127
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4.7 Discussion

T

Figure 4.19: This figure shows the smoothing process of Zhent of coefficient
matrix a in successive 31 time points by Kalman filter (in 3-spacehwdmponents
X, y and z) for the real MEG data of facial expression ( showethad6 x 248 x 813
matrix). Thisa is generated for meskl by the basis function method over the time
sequence to obtain a more accurate prediction of the cusaente. The '* shows
the original reconstructions afby the basis function method; the blue line shothe
posterior estimate by Kalman filter estimation on each camepb of 3 dimensions.
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4.7 Discussion

Figure 4.20: This figure shows the smoothing process of 12tnent of coefficient
matrix a in successive 31 time points by Kalman filter (in 3-spacehwdmponents
X, y and z) for the real MEG data of facial expression ( showethad6 x 248 x 813
matrix). Thisa is generated for meskl by the basis function method over the time
sequence to obtain a more accurate prediction of the cusaente. The '* shows
the original reconstructions afby the basis function method; the blue line shothe
posterior estimate by Kalman filter estimation on each camepb of 3 dimensions.
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. 10‘1 Parameter ¥ optimization in x dimention form real data
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Figure 4.21: This figure shows the optimization resultsyfan x dimensions for the
real MEG data of facial expression ( showed asdtiex 248 x 813 matrix). With the
optimization calculation explained Parameter optimizatiorthe minimum values are
obtained numerically. The x-axis shows the numerical vale, and y-axis shows
the approximation ofy. With y-axis reaches to minimum, the corresponding value in
x-axis are the optimization of x.
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% 10" Parameter ¥ optimization in v dimention for real data
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Figure 4.22: This figure shows the optimization resultsyfon y dimensions for the
real MEG data of facial expression ( showed asdtiex 248 x 813 matrix). With the
optimization calculation explained Parameter optimizatiorthe minimum values are
obtained numerically. The x-axis shows the numerical valug and y-axis shows
the approximation ofy. With y-axis reaches to minimum, the corresponding value in
x-axis are the optimization of y.
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10¢ Parameter ¥ optimization in z dimention for real data
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Figure 4.23: This figure shows the optimization resultssfon z dimensions for the
real MEG data of facial expression ( showed asdtiex 248 x 813 matrix). With the
optimization calculation explained Parameter optimizatiorthe minimum values are
obtained numerically. The x-axis shows the numerical vallue, and y-axis shows
the approximation ofy. With y-axis reaches to minimum, the corresponding value in
x-axis are the optimization of z.
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4.7 Discussion

Global basis function reconstruction Bayesian super-resolution reconstruction

Figure 4.24: This figure demonstrate the comparison of r&coction results aarget
time point: 70 of 813 by the basis function method dvl (on the left) and by the
Bayesian super-resolution methodMri (on the right).
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Figure 4.25: This figure demonstrate the wave pattern of ¢ésenstructed current

sourceJ, (at the time point 70 of 813) okl ™ in 3-space. From the top to the bottom,
the patterns show the wave patternJef in X, y and z dimension, respectively. The
x-axis indicates the index of vertex df *, the y-axis indicates the amplitude of the

current source.
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4.8 Conclusion

are plenty of loop calculation associated with the large siatrix calculation (includ-
ing the full matrix and sparse matrix calculation) , the ierpknt of the algorithms are
with huge time and space computation complexity which geesra critical restriction
of the application of the method. In the real applicationsitrucial to decrease the
computation cost so that the algorithm can be applied mdicezftly and realistically
on the real MEG source reconstruction, e.g. we can upgradadiranced configura-
tion, as well as explore more reasonable format to storedhiahles( such as the state
noise covariance matri&, instead of storing the full matrices).

4.8 Conclusion

In summary, the main contribution of the algorithm desigimetthis Chapter is to build
a new solution for improving the spatial-resolution of ME@usce reconstruction at a
single time point by introducing a classical method (Bagesiuper-resolution method)
from the pattern recognition theory. This approach is aojttiased on the MEG spatial
reconstruction with basis function method which is elabmitan Chapter 3of the
thesis. However, it could also be applied to other spatiemstruction methods to
improve the spatial-resolution.

As a competitive brain imaging technique, MEG shows supeeimporal resolu-
tion (up to 1 ms). However, one of the weaknesses is that thgaspesolution is
reduced. This method can be applied complemented by thialsgestolution of MEG
source reconstruction using the time series of signals.

The mathematical framework of the method provides sounid lxgd an adequate
description of the inverse problem of MEG. From the numermgeriment results
of parameter estimation, it is explicit that the spatialotegon has effectively been
improved.

However, instead of analysing the data of image, the metleoel is used for pro-
cessing the problem of source distribution on the 3D cdrsicflace mesh that increase
the computation complexity and inaccuracy of the recorsitva results immensely.
This problem is reflected by the results generated from syittdata as well as real
MEG data.

Moreover, the parameter estimation and the optimizatidngif-resolution source
distribution contain a number of large matrix calculatioAkhough some of them can
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4.8 Conclusion

be simplied by sparse matrix methods, there are many otb&rsthat require large
and full size matrices, which lead to expensive calculat&md an increase in time and
space complexity. Some effective software for matrix cialiton can be used, such as
SPAI(Grote and Hagemanrior the inverse problems of large matrix. This limitation
also affects the widely application of the super-resoluitgorithm.

Therefore, there are some possible extensions that carhleved in further work.
Firstly, with respect to the expensive computation memtbabove, it is still feasi-
ble to either upgrade the experimental configuration (thdigaration currently is :
InterCore2(1,8GHz), Linux system(2.6.34.1)-32bit, ralbtl.9.0( R2009b) x 32 edi-
tion , RAM: 4GB), or to develop the structure of matrix caktibn mathematically to
improve the efficiency of the application of this Bayesiapeuresolution method.

Furthermore, the high-resolution mealit we applied for the Bayesian super-
resolution method is interpolated from the original m&4hand directly used for the
reconstruction process. It will be beneficial if we can cedsf™ more accurately,
which can better represent the cortical surface realistiaa a part if the future work.
Moreover, this smoothing method needs to be carefully desigo decrease the dis-
tortion of the information of cortical surface to the minimu
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Chapter 5

MEG image estimation via Kalman
smoother

5.1 Briefintroduction

In the last two Chapters, we have tackled the MEG source staartion problem and
improved the spatial resolution of the reconstruction dasethe MEG measurement
using the basis function method and the Bayesian supelutesomethod. In this
Chapter we will use the Kalman smoother to provide a direzdmstruction.

Assuming the MEG system as a dynamic system, the Kalman idtapplied
to correct the original frames with low-resolutions in atgadar time sequence in
Chapter 4: Spatial Improvement of MEG source reconstructiith Bayesian Super-
resolution As a classical tool for smoothing the state of a dynamicesysthe Kalman
smoother can be applied to the MEG study for improving irdinal state estimation
in the temporal field, using the data from other time frames.

Since the Kalman filter and the Kalman smoother both are blolh ta@ produce
the estimation of the state of a dynamic system, it is feasiblapply the Kalman
smoothing theory into the estimation of event-related dyica in brain imaging. M.P.
Tarvainen and his colleagues tried to solve the estimatiddomstationary EEG on
event-Related Synchronization (ERS) with a Kalman smaoadipproach Tarvainen
et al, 2004. Also, the Kalman filter and smoother have been succegsiisiéd to
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5.2 Noisy linear dynamic system

perform the estimation with high dimensionality as well@asalve the inverse problem
on EEG-fMRI fusion of paradigm-free activiipeneux and Faugeraz010 .

In this Chapter, we present a Kalman smoother approaclzingjla fixed-interval
smoother, to estimate a high resolution MEG current sourt¢lkea temporal field. We
use the basis function source model (Chapter 3) which igiated with the Kalman
filter. However, this estimation still needs smoothing te@mve the accuracy in the
temporal field. The mathematical framework of Kalman smepfar measuring mag-
netic field and conditions of dynamic system is developenhftbe last two Chapters
of (Welling) (Welch and Bishop2006. Then, the EM algorithm can be used to es-
timate the parameter set. It is worthy to note that this agginanakes it possible to
estimate the hiddehigh-resolutionmage directly from the coil sensors of MEG.

In the later part of this Chapter, the dynamic system is lhaked on the inte-
gration of the basis function source model and the KalmaerfilThe MEG system
is described as a dynamic system, which provides the prinditions for Kalman
smoothing. Then, the Kalman smoother will be introducedefsirmating the current
source frames with high-resolution in the temporal field.xiNéhe parameter set is
estimated by applying the EM algorithm. Finally, the cutreaurce reconstruction
experiments based on the Kalman smoother method were daadagain using syn-
thetic data and real MEG data .

5.2 Noisy linear dynamic system

5.2.1 Noisy linear dynamic model

We have a strong assumption of the cortical distributedecuiisource model for MEG
inverse problem that the current source are embedding orottieal surface and ori-
ented tangentially to it. The magnetic field generated byctireent sources which are
tangential to the cortical surface are decayed. Thus, th& MEasurement from the
sensor set at single time point can be described as a nog&gr ldynamic system with
the current source, showed as Exjfh.

B(t) =L J(t) + n(t) (5.1)
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5.2 Noisy linear dynamic system

whereB(t) indicates the measurement of magnetic field on time poihtis the
leadfield,J¢) represents the current source at time paini(t) is the added noise in
the time course assumed as zero-mgam) = 0)(Olivier et al, 2001).

Also, as MEG has a high temporal-resolution(up to 1 ms), veu@e that the
current sources are linked between frames and can be mo@slle dynamic system.
Therefore, the Kalman filter and Kalman smoother are consttas the conventional
solution for estimating as well as smoothing the state af tfyinamic system in the
temporal field.

Before we start the design of the algorithm, the following must be set firstly
as the conditional assumptions of dynamic system for latecgssing of Kalman
smoothing. The measured signals are modeled as an outpuparfaenetric model
with time-varying parameterdérvainen et a.2004.

5.2.2 Prior setting of dynamic process

From the study of Kalman filter i€hapter 2 the real-time MEG state and measure-
ment can be described as the following:

X = AX;_1 +w (5.2)

z; = Bx; +v (5.3)

Herex, is the the hidden state amglis the observationA, andB are the relevant
coefficient matrices fok;_; andx;, respectively.w is the state noise , andis the
observation noise. Both of them are assumed as the zero-Gesssian distribution:

w ~ N(0,Q) (5.4)

v~ N(0,R) (5.5)

whereQ is the2n x 2n covariance matrix of the state noise.is the number of
vertices of cortical mesh. The structure@fs shown in Eqrb.10 andR is them xm
covariance matrix of the observation noiseis the number of sensors.
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5.2 Noisy linear dynamic system

In the context of our problem, we would like to find the infortnoa of currentx;
which includes not only currerji, but also theate-of-changev; of the current in the
time course:

SORE
Vi

here,j; = [j=+ Ju J-«|* representsurrents embedding on the cortical surface at
time pointt on 3 dimensions, respectively, = [v., vy, v.]’ representgurrents
rate of change at time poirton 3 dimensions, respectivel®f course, we observe the
coil response which represents as following equation:

Zi — bt (57)

The state transition matriA just gives ug; = j,_1 + v;_1 andv, = v,_1, SO

A:<;}) (5.8)

And the observation matrik; gives the coil responses from a particular current
distribution at time point. In the simplest form this is the leadfield matrix operation
onj; ,so

b, = Lj; + v (5.9)

There are two types of noise present which are the covariaratex Q of the
state noise and the covariance maRixf the observation noise. We assume that Q is
smoothed over our mesh and can be modelled as with respéet ébetment matrif,,
in Eqn4.21

(5.10)
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5.2 Noisy linear dynamic system

where

exp(=Li,a) -+ - exp(=Li ya)
Eo = h (5.11)

exp(—=Li a) -+ -oo exp(=Ljy )

In terms of Eqrb.10 there are two parametesisand 5 which directly govern the
trend of Q. Q is the same noise covariance matrix as we used in the supdEtien
method and based on the mesh heat kernel (refer todELif). Therefore,5 is the
Gaussian constant for the covariance ma@ixvhich has the linear relationship with
Q. The larger value off leads to the larger values of the elementdfand vice
versa. Thex is the constant prior of the heat kernel; the heat kernel tsdte local
interactions between neighbouring elements of the meslke. |arger the value of,
the larger the scale of correlations on the mesh. Therefloeeproblem of searching
for unknown paramete® andQ is transformed into searching f&, « andg in the
later part of this Chapter.

The basis set algorithm of MEG source reconstruction(emethin Chapter 3) is
used for re-writing the dynamic state in following way:

jo = ®a,, j, = Pa,, j. = Pa, (5.12)
We can do the same for our rates-of-change:
v, = ®c,, v, = ®c,, v, = Pc, (5.13)

As this process is supposed to be a linear transform, we tiamegs the parameters
directly:

xpew = | 2 (5.14)
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5.2 Noisy linear dynamic system

with A unchanged. However, the noise will change in this nepresentation of
the problem where each componexrp(—L*«) will be transformed into:

&7 exp(—LTa)® = exp(—Aa) (5.15)

where A is a diagonal matrix of the eigenvalues of the high-resotutortical
meshM *:

)\171 O
A= A2 (5.16)
0 v o Aum
With respect to the equations above, we can write the r@Qias follows:
exp(—A«) 0
exp(—Aa)
B exp(—Aaq)
Q=5 exp(—Aa)
exp(—Aa)
0 exp(—A«)
= fexp(—Asa)
(5.17)
where
A 0
A
A = A A (5.18)
A
0 A
and
eXp(_Al,la) .. . e 0
exp(—Aa) = exp(—Az20) . (5.19)
O ... o .. eXp(_)\J\/j7Ma>
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5.3 Application of Kalman smoother

Finally, according to the basis set algorithm in Chapteh®, dbservation model
can be represented as follows:

)] 0 a,
b, =L o a, | +v (5.20)
0 P a,

It is worthy noting that the number of basis functions here ba considerably
larger than before. The inaccuracy generated by the oversdaed can be corrected
by applying Kalman smoother for the estimation later.

5.3 Application of Kalman smoother

5.3.1 Briefintroduction of Kalman smoother

As we discussed i@hapter 1 : Application of Kalman smoothéine Kalman smoother
can be used to estimate the hidden state of a Gaussian pr@aesd on the Markov
property of Kalman filter, the state depends on the previtate $ut not any others.
However, for the estimation of the state and the uncert@otyariance) at a specific
time pointt, it is feasible to obtain the solution from only the statuspoevious one
time pointt — 1 as well as the noisy observatian = z,, - - -, z, for the specic time
pointt. It is notable that the difference betweeandr generally provides the process
with variable uses. For instance,sifis equal to the current time point the process
is called filtering; if 7 is smaller than, the process is callepredicting and if 7 is
larger thant, the process is callesimoothing In other words, if the measured data
is not processed in real time or if a small lag in the processrallowed, the future
observations can also be used in the state estimation. Bioemeasurement in the
time sequence are applied for processing in this case, @asonable to expect the
estimates to be more accurate. This is called a smodttaém@n 1960, (Jazwinskj
1970), (Deneux and Faugeraz010.

With the calculation and inference fromglling), the Kalman smoother equations
are obtained as Edn21, Eqrb.22and Eqnb.23:

X =%+ Ju(X], — %i,0) (5.21)
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5.3 Application of Kalman smoother

Figure 5.1: This figure shows the relationship between tisenled statesand source

statex in the time course. The current sousces assumed to be the hidden state which
depends both on the state at time 1 and¢ + 1 and the observed statedepends on
the hidden stat& only. Since there is on state afterit, is assumed to be the final
state which only depends on the state; before it.

J,=PIATPL ! (5.22)

P} =P+ J,(P],; — Pyyy)J/ (5.23)

The way to apply the Kalman smoother equation is separatetio steps. Firstly,
with the full set of term measurements, the Kalman filter igligol forward from the
state at initial time point till the state at timtas reached (wheré < 7). Then, the
process is moved backward by applying the Kalman smootheatems until state at
the timet is estimated. Since all the state factors, suck{as$, x; ., , P;{] andP!,,

t =1-.-7 are stored in the former step, it is easier for Kalman smoaheations to
apply them directly in the later stejelling).

5.3.2 Application of Kalman smoother

The process can be represented as graphical model showgdbriFThe unobserved
statex; depends both on the state at time1 andt + 1 and the observed state depends
on the hidden state only.
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5.3 Application of Kalman smoother

Here, we consider the expression of the states with finad staand earlier state
x;, respectively.

Firstly, it is noticeable that the final state only depends on the state before it,
T — 1, since there is no state after it, so

(%, {z1,22,...,2:}) = p(z:|%,)p(x,: {21, 22, . . ., Zr—1}) /P({Z1, 22, .. ., Z+_1})
(5.24)
This is identical to the Kalman filter, so we can fird using the normal Kalman
filter equations:

x, = Ax; (5.25)

P, = AP, AT+ Q (5.26)

K, =P;B(BP,;B” + R)! (5.27)
x: =x; + Kyi(z; — Bx;) (5.28)
P, = (I- K,B)P; (5.29)

Then, for a timg earlier in the sequence, we can write

plaeza {2,020 = p({ae,e o 2 {2, 2d)
x p({z1,- -, 2} x|z p(ee{z1, - -, 2 })
= p{{z, .z ol {2,z (e, o 2 ))
= p({ze41,.., 2} Topr|2)p(@{21, ..o, 2 })

= p({zer1, - 2o )p(@ee)p(@{z1, ... 2e})
(5.30)

According to Eqnb.30Q it is apparent that the distribution af depends on three
components p({zi11, - - -, zr Hwer1); p(xeer|z) @andp(xy|{z1, . . ., z:}). The first com-
ponentp({zi41, ..., 2z H|z:r1) comes from the measuremepty,|{z1, ...,z }) can be
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5.4 Parameter estimation

found from the Kalman filter; ang(z,.1|x;) which we can find from the state transi-
tionx, = Ax;_1 +w. We now usex to denote the best estimate. We haye= x,.

J,=P,AT[P; ]! (5.31)
X: = X; + Jt(X:Jrl — X;rl) (532)
P: =P+ ']t( :+1 - Pt_—l—l)J,ir—l (5.33)

5.4 Parameter estimation

Following the work presented previoushSi{umway and Stoffel982 , (Shumway
and Stoffey 1992, (Welling), (Ghahramani and Hintgri996, the EM algorithm is
applied to find the parameters of the method. For the EM algoriwe consider the
statesx, as hidden variables, whiléz,,z,,...,z,} are the observation. The joint
probability of the complete data is showed as:

p({Z}I{X}I) = p({zlv Z2, . .. 7ZT}7 {X17 X2y 7XT}) = p(Xl) Hp(xt‘xt*ﬁ Hp(Zt‘Xt)
o " (5.34)
and we know that
p(z¢|x;) = N(Bxy, R) (5.35)
pxilxi 1) = N(Ax, 1, Q) (5.36)
p(x1) = N(p, %) (5.37)

We proceed to estimate the parame{d®s Q } by determining the log likelihood of
the expectation of the joint probability density functipdf) over the posterior density
1/51
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5.4 Parameter estimation

L = Ellog(p({z1, 22, .- .,2,},{X1,X2,...,%:}))]
= logdet X + (7 — 1) logdet Q + Tlogdet R + [(x; — )" X7 (x1 — p)

+) (k= Ax1)"Q 7 (% — Axy 1) + ) (2 — Bxy) 'R (2 — Bxy))]
_ t=1

(5.38)

We now describe the process of parameters estimation bi-atepand M-step
respectively. First we find the log-likelihood by computihg expectation in Eq5.38
and then maximize the log-likelihood to find the best paramset

e The E-step

Since the probability(x;|{z}]) is assumed to be Gaussian, we are usifig
to denote the state estimafigx,|{z}7] that depends on thgast and future ob-
servationg for the Kalman smoother) , anéd; to denote covariance estimate

E(x]x]|{z}]) wherex; represents the state prediction error between the state

and its estimate. Then, the objective function ExyB8 contains a number of
terms need to be calculatedHastep (Shumway and Stoffel 982 , (Shumway
and Stoffer 1992, (Ghahramani and Hintgri996):

Ex{z}]|=x{=x t=1,---,7 (5.39)
Exx;{z}]) =P =P; t=1,---,7 (5.40)
Exx/{z}]| =P +x;x{ =M;; t=1---,7 (5.41)

Elxx,1{z}1] = PtTt XX =My t=2,--+,7 (5.42)

We can obtain the following Kalman filter forward recursig¢@hahramani and
Hinton, 1996:

xi7t = Ax!T] (5.43)
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5.4 Parameter estimation

P71 = APITIAT 4 Q (5.44)

K, =P 'B'(BP/"'B+R)! (5.45)
xt = x!"' + Ky (z; — Bx!™) (5.46)
P! =P/! - K,BP!! (5.47)

= (I-KB)P;!

Following (Shumway and Stoffell982), the items in Eqrb.39Eqgn5.40and
Eqgn5.41can be calculated by a set of backward recursions of Kalmaotrar:

Jio1 =P AP (5.48)
X[, =% +Ja(x] — Ax{T)) (5.49)
P, =Pt +J,_,(P] -P"HIL, (5.50)

The quantity in Egrb.42is so-called théag-one covariance smoothexhich is
given by the following recursiorShumway and Stoffed 982, (Welling):

Pl 2= PijJtT—z + ']t—l(P;,t—l - APij)JtT—z (5.51)
which is initialized by:
P7_,=(I-K.B)AP| (5.52)
Also, there is the relation betwedd,_, ; andM, ;_; showed as followsghumway

and Stoffer 1982, (Welling):

M1 = Mzt,l (5.53)
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5.4 Parameter estimation

Moreover, when we observe the log-likelihood function Eg88 it is notable
that £ £ contains the typical term,Q~'x, which can be replaced as follows:

ExQ 'x,] = E[Z Qi iz
]
= Z Qz’_le[xtixtj]

= Tr(Q 'M,,)

(5.54)

So, taking the expectation value (and omitting terms witli@@andR. which do
not interest us), we get:

L = (71— 1) logdet Q + Tlogdet R
+ Z [Tr(Q 'M,,) + Tr(ATQ 'AM, 1, ;) — Tr(ATQ 'M,_y,)
- TT(Q FAM,, )]
+ Z [Tr(B"R'BM,,) + Tr(R'z,z]) — Tr(B"R'x/z])

— Tr(R 'Bz,x;")] (5.55)

e The M-step

The parameter§R, Q} are estimated in the M-step by taking the corresponding
partial derivative of the log-likelikhood functiofi which is equivalent to zero

for the optimal value. All the matrix calculation in the folling are referred to
the Appendix A

Firstly, for finding the covariance matrix of the observatimwisev, we have:

dg .
R —7R + tz; BMtTtBT + 22! — Bz, x;T —xz/ B" =0 (5.56)

1 T
R*Y = = Z BMMBT + ztzf — thx;‘ — X, Z, gT (5.57)
T

t=1
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5.4 Parameter estimation

Then, for finding the covariance matrix of the state noiseve have:

dg d
ﬁ =—(r-1)Q" + Z[Mt,t + AMt—l,t—lAT - Mt—l,tAT —AM,;,; 4] =0
=2

(5.58)

T

Q" =1/(tr—1) M, + AMtfl,tflAT — Mtfl,tAT — AM,,; 4] (5.59)

t=2

Moreover, in terms of the Egi17, the covariance matri§ of state noise contains
two unknown parameterss, «). Applying the following process of calculation, it is
feasible to estimate the optimized values , respectively.

If we let Q, = Q/f = exp[—aA/] and then we have

logdet Q = log Bexp[—a > \j] =log 8 — aTr(Ay) (5.60)
Tr(Q 'My) = A Tr(Q; M) (5.61)

dQ.' -
= AsQL! (5.62)

So the differentials of the log-likelihood are:

dg 1 —

@ = (t-1)/B8- E Z[Tr(leMt,t) + Tr(ATleAMt—l,t—l)
t=2
- Tr(ATlei\/It_u) - Tr(leAMt,t—l)]

= (-1/B-5 Tr(Q,'M) (5.63)
Where

M=) My +AM, 1, AT - M, , AT — AM,,_,] (5.64)

t=2

and
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5.4 Parameter estimation

[Tr(Q'AyM, ) + Tr(ATQ P A AM, 1, 1)
t=2

— Tr(ATQ'AfM; 1) — Tr(Q'AfAM, 4y1)]

= —(1— 1) Tr(Ay) + % Tr(Q,'A;M)

% = —(7—1)Tr(Ay) +

| =

(5.65)

We have to solve the two equations:
de =0 (5.66)

da

and dc
= = 5.67
a5 =" (5.67)

According to Eqn5.66 and Eqn5.67, Eqn5.63 and Eqn5.64 can be written as
following two equations:

% — (7 — 1) Te(A,)/Tr(Q; A, M) (5.68)

Tr(Af) Tr(Q,'M) = Tr(Q, ' AM) (5.69)

Since the factofr(Q_'M) can be written as according to previously setting, then
we have the new representationaf Q. ' M):

Tr(Q. M) = Tr(% exp(aA¢M) (5.70)

1 ~
=3 Tr(exp oA M)

Then , with respect to the Edn70Q, the Eqn5.69can be written as follows:

Tr(Af)% Tr(exp(aAy)M) = Tr(Q, ' A;M) (5.71)

= Tr(% exp(aAs)A M)

The left-side and right-side of the E&n71can be written as :
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Left-side = Tr(Ay) Tr( exp(aAy) M)

mon m - (5.72)
i g i
and
Right-side = Tr(exp(aAf) K,,)
m - 573
= Z /\i,iMi,i eXp(a/\i,i) ( )
where
)\1,1]\2[1,1 ~ 0
oo Mo o
K, = (5.74)
0 /\m,mMm,m

From the above inference of Egn71and Eqn5.68 the unknown parameters set
(cr, B) can be estimated numerically.

55 Results

In the following part, the simulated data as well as the re&G/data are both ap-
plied for the evaluation of the Kalman smoother method to Md&@rce reconstruc-
tion on high-resolution mesh*. Since this method is based on a successive time
sequence, we choose the measurement on the time perio@@snt1, - - -, ¢,---, 1)
with the length ofr. In terms of the experimental configuration we have( the expe
mental configuration is : Inter Core 2(1,8GHz), Linux sys{2r.34.1)-32bit, matlab
7.9.0(R2009b) x 32 edition, RAM: 4GB), we defined = 16. The source distribution
on time pointt is what we try to reconstruct by the Kalman smoother methad.he
The initial current source distribution on 1st time poingafmely.J;;) is come from the
reconstruction result by the Bayesian super-resolutiotihhateon corresponding time
point (refer to the last Chapter). Moreover, the interpadatigh-resolution meshl
generated in last Chapter is directly used here.
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5.5 Results

5.5.1 Synthetic results

In this simulated experiment, we applied two groups of sated current sources as
well as the corresponding measurement as same as last twe@ha.e. artificial
source distribution and realistic source distributiodppendix Byhich are also called
assynthetic source Andsynthetic source Bt is worth to note that the current sources
in successive 16 time points we selected are as same as thendast Chapter. The
only difference is only the first 16 of 31 time points are stddcbecause of the re-
striction of experimental configuration. And, tterget time poinis 3 of 16 for both
synthetic source Andsynthetic source B

The whole process of simulation experiment is based on #madrof EM algo-
rithm. Starting with thée-step the high-resolution current source frames in successive
15 time points are estimatéorward with the initial guess of the state noise covariance
Q and observation noise covariari@gn terms of the theory of Kalman filter. The cor-
responding factors of the Kalman filter, are calculatedhsas¥X;, P! andx!. Then,
the Kalman smoother is applied for thackwardestimation based on all of these fac-
tors calculated above. Then, according to the previousosedhe observation noise
covarianceR and the state noise covarianQeare estimated in thl-step. The entire
process is recursive and continues untill the estimatidR ahdQ tend to be conver-
gent. Furthermore, the unknown parametercsahd 8 which are associated witQ
are optimized numerically in terms of the best estimation,o6hown in Fig5.3 and
Fig 5.6 for synthetic source Aandsynthetic source Brespectively. Thenj can be
calculated with respect to the optimized refer to EqQn5.68 In terms of the above
results as well as the known parameter get and 3, we applied for the synthetic
current source generation, Tallel shows the comparison of the setting parameters
and the reconstructed parameters $gnthetic source Andsynthetic source BTla-
ble 5.1 indicates that the instability still exists in parameteramstruction of Kalman
smoother method, where the param&ean be provided with satisfied reconstruction
while reconstruction ofv and 5 exist errors to the original parameters.

The figures, Figh.2 and Fig5.5 demonstrate the overlapping pattern of MEG
measurement on the selected 16 successive time pointyfbhetic source Aand
synthetic source Bespectively. The line in different color indicates theas@rement
on individual time point. The figures, Fi§.4 and Fig5.7, indicates the comparison
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5.5 Results

Table 5.1: Reconstructed parameters results

Parameter type synthetic original feynthetic source A for synthetic source B
Frobenius Norm oR 1 1 1
« 0.5 8.2 1.6
8 1 0.7314 1.013

of the simulated current source pattern on high-resolut@shM™ ( on the left)
and the reconstruction result by the Kalman filter methodtf@nright) at thetarget
time pointfor the synthetic source And thesynthetic source Bseparately. Fid.4
does not show the exactly correct location of iyathetic source AVhereas, Fi¢p.4
indeed reconstruct the main location of gyathetic source Blthough the strength of
the current source is lower than the original current sauiidee Table5.2 shows the
comparison of logarithm of RMS (root mean square) error fier Kalman smoother
method and the Super-resolution method tosyrehetic source Andsynthetic source
B at thetarget time pointrespectively. From the table, it is clear that the recartsiton
results by the Kalman smoother method is superior than thersesolution method.

Table 5.2: Logarithm of RMS error results

data type for the Kalman smoother method for the superuésalmethod
for synthetic source A 3.2576 7.9077
for synthetic source B 7.7807 32.3870

5.5.2 Application to the real MEG data

We get the real MEG data of visual expression basedmpendix 3 Firstly, we ob-
tained the cortical surface mesh witb2658 vertices and65782 faces from the struc-
tural MRI scan of the same subject Byeesurfer(http://surfer.nmr.mgh.harvard.edu/)
(5.0.0. Since the coordinate of MRI cortical surface are difféngith the MEG coor-
dinate, the coordinate registration is processed as thsti@g(with the special solution
provided by YNIC). However, the spatial resolution of mestained from MRI is too
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5.5 Results

Optimized estimation of parameter «a for the synthetic source A
35 T T

y-axis: Optimizaton value

28? ?'5 : ey

x-axis: o value

Figure 5.3: This figure shows the optimized estimation ofnovin parametes for
synthetic source AThe x-axis represents the variable range ond the y-axis repre-
sents the logarithm ogﬁ (refer to Eqrb.69. With the minimum on the y-axis, we can
obtain the optimized on the corresponding x-axis.
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5.5 Results

=

- M W & o om - oW

Synthetic source A(at target time point) Kalman smoother reconstruction

Figure 5.4: This figure shows the comparison of the simulatecent source pattern
of synthetic source An high-resolution mesNI™ ( on the left) and the reconstruction
result by the Kalman smoother method (on the right) atainget time point

large for the realistic or reasonable solution. The singalifmesh is therefore gener-
ated by the softwarBemesl{ http://remesh.sourceforge.nej/ In terms of the mesh
resolution selected for MEG analysis MNE), we apply the reasonable spatial reso-
lution for mesh M is with 2600 vertices and 5192 faces . Secondly, the measuem
of MEG signals are represented aStax 248 x 813 matrix, where96 indicates the
number of different stimulu48 indicates the number of sensors &81d indicates
the sequence of time instants. The visualization of thissmesament matrix is showed
in FigC.1

The experiment process of the MEG real data is similar wighsynthetic exper-
iment we illuminated above but just implementing with thal®IEG data instead of
the synthetic ones. We also choose 16 successive time gainish are as same as
the first 16 time points of 31 in th&pplication to the real MEG datan Chapter 3
from 813 time instants, and0 th stimulus from96 different stimulus, then we obtain
a 248 x 813 matrix B"*. The framework of Kalman smoother is then constructed
and EM algorithm is used for the parameter optimization.h\ilile proper parameter
estimation with EM algorithm, the optimized estimation afient source distributed
on the high-resolution med¥ *, 7792 x 3 matrix is produced finally.

sreal
J new?
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5.5 Results
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Figure 5.5: This figure demonstrates 2D projected patteME® sensor measurement
on the selected 16 successive time points{ghfor synthetic source B
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Optimized estimation of parameter a for synthetic source B
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Figure 5.6: This figure shows the optimized estimation ofnovin parametes for
synthetic source Blhe x-axis represents the variable range ond the y-axis repre-
sents the logarithm ogﬁ (refer to Eqrb.69. With the minimum on the y-axis, we can
obtain the optimized on the corresponding x-axis.
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Synthetic source B (at target time point) Kalman smoother reconstruction

Figure 5.7: This figure shows the comparison of the simulatetent source pattern
of synthetic source Bn high-resolution mesNI* (on the left) and the reconstruction
result by the Kalman smoother method (on the right) atainget time point

5.6 Discussion

The reconstructions shown in Fig4, Fig 5.7 and Fig5.10do not show the satisfied
results. This is possibly caused by the reason that the mésha integration of the
Kalman smoother and the Basis function source model. Thicagipn of this method
may affected by any inaccuracy caused by the basis funatiarce model to the MEG
source reconstruction at the initial time point. In the eomtof this reason, it is fea-
sible that to apply the reconstructed results via othert&wis as the initial estimation
for the Kalman smoother method in the future work. Additibnavith respect to
Egn 5.6, the velocity of the source variation in the temporal fieldis assumed as
the same value. It might not adaptable in practice. Thisrapfion of current source
variation with uniform velocity may also produce the ina@my of the reconstruction.
However, based on the current simulation results, it isliletdat the reconstruction of
synthetic source Bhows better performance rather than the resudiyathetic source
A, where the source distribution is mainly reconstructedhatcorrect location. From
this performance, we can also conclude that the algorithsnm@e effective and sen-
sitive to the distributed and supercial current sourceeratiian the single or/and deep
current source of the cortex.

Since the Kalman smoother method is designed for the higblugon current
source frames, there are a number of larger size matrixledilcn in the method. This
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time point 1(in ms) time point 2(in ms) time point 3(in ms) time point 4(in ms)

il 2
. o o “ -

P
time point 12(in mss)

Figure 5.8: This figure demonstrates 2D projected pattetiB& sensor measure-
ment on the selected 16 successive time points@nfor the real MEG data of facial
expression (showed as the x 248 x 813 matrix).
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Optimized estimation of parameter « for the real data
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Figure 5.9: This figure shows the optimized estimation ofnovin parametes for
the real MEG data of facial expression ( showed asdthe 248 x 813 matrix). The
x-axis represents the variable rangexpfind the y-axis represents the Iogarithnggf
(refer to Eqn5.69. With the minimum on the y-axis, we can obtain the optimized
on the corresponding x-axis.
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N T I )

Basis function reconstruction Kalman smoother reconstruction

Figure 5.10: This figure demonstrate the comparison of rgtcoction results garget
time point: 70 of 813 by the basis function method dvl (on the left) and by the
Kalman smoother method dvi ™ (on the right).

leads to expensive computation complexity. These problaag affect the accuracy
of the result as well as the application of the method in tla werld. Also, during
the session of unknown parameters estimation, the unknewangeterss anda are
applied for determining covariance matfixof the state noise (refer to Eqnb.2and
Egn5.10. By applying EM algorithm to the expectation of the joinbpability den-
sity function (pdf)£L (refer to Eqrb.38), the optimized estimated andj are obtained

in turn. Since we are using numerical analysis to estimaegtimizedx as well as

[ so that to obtain the minimization &f (refer to Eqn5.66and Eqnb.67), it is worth

to be careful about the selection of possible range @fhich is the difficult part in
this step. If the possible range @fwe select is not large enough, it is possible that the
obtained estimation is corresponding to the local minitndraeof £, so that generates
the incorrect estimation af, and then affects the accuracy of estimateth practical,
the solution is to select the possible rangev@s large as possible with respect to the
experimental circumstance so that to avoid this inacciastienation.
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Figure 5.11: This figure demonstrate the wave pattern of ¢ésenstructed current
sourcel ;o (at the time point 70 of 813) oMl * in 3D by the Kalman smoother method.
From the top to the bottom, the patterns show the wave pattedr, in x, y and z
dimension, respectively. The x-axis indicates the indexasfex ofM ", the y-axis
indicates the amplitude of the current source.
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5.7 Conclusion

In this Chapter, the Kalman Iter and Kalman smoother areiegpbr correcting the
reconstruction in the temporal eld with assuming that MEGew is a linear dynamic
system. Here, we summarize the novelties of the algorithdrtlae contribution to the
MEG source reconstruction.

We sufficiently utilize the forward model of MEG system andwase it as a linear
dynamic system to design an approach based on previous Wdtk.respect to the
reconstruction from the last chapter, the transformatiatrixLeadfieldon the high-
resolution mesiv™ , as well as the measurement of the magnetic field from MEG, are
directly used for the estimation of the source distribuasra continuous time series.

We assume there is an unknown hidden cortical activity ia tlyinamic process.
The Kalman filter is used to estimate the dynamic state whieektalman smoother
is applied for correcting the source distribution of thed®ad state with EM algo-
rithm. From the intrinsic property of the Kalman filter as ad the framework of this
method, it is apparent that this approach is advantageaa\e the inverse problem.
Based on the source reconstruction results, the Kalmantsimomethod shows supe-
rior performance for MEG source reconstruction, as showngrb.7. However, it still
shows instability and inaccuracy of reconstruction onedléht types of current source,
shown in Figh.4and Fig5.10 These may be related to the following limitations when
the method is applied in practice. As our algorithm is basedhe assumption of a
linear dynamic system, it does not cope well with the stromglinearity in the model.
In other words, the non-linear signals may not be reconstduproperly using this
method. Additionally, the computational complexity in #rand space remains high.
A number of large full-matrix and sparse matrix calculasaiecrease the efficiency of
the method. It is possible to either upgrade the experinheatayuration or to develop
the structure of matrix calculation mathematically to opsie the calculation in future
work. Moreover, with the advanced conguration, the estwnatcan be extended to
more than 10 time points which can effectively improve thneation accuracy.
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Chapter 6

Conclusions and future work

In this chapter, we summarize the main contributions of besis, as well as discuss
the possible directions of the work that can be improved aftiture. Especially,

the novel ideas of our work on MEG spatial-temporal sourcemstruction are em-

phasized. Then, we discuss the advantages and limitatfaihe dheoretical models

we design and their related applications in real MEG souecenstruction experi-

ment, i.e. the basis function reconstruction algorithne, Bayesian super-resolution
algorithm and the Kalman smoother estimation algorithm. rédwger, applying our

approaches into the real-world MEG application, we furésg¢end our findings.

6.1 Contributions

6.1.1 Novel idea combined both pattern recognition and MEG

source reconstruction

The novel idea of the thesis is to introduce classical pattecognition methods,
e.g. basis function extraction, super-resolution methwtlkgalman filter, to solve the
problem of MEG source reconstruction, in other words, usimgw angle of pattern-
recognition as the solution to reconstruct the MEG currentaes. The whole design
of this thesis work is based on the MEG spatial reconstrodioa single time point.
Rather than applying the classical source distributiog, €ipoles or current source
volumes of the brain, we assume that the 3D source distdbutesach vertex of the
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6.1 Contributions

original cortical surface mesh( generated from the MRI sohthe subject). Then,
the basis function algorithm is applied to spatially re¢oucs the source distribution
at the specific time point. Subsequently, another methau fsattern-recognition, a
super-resolution algorithm, is introduced to expand tlvemstructed source distribu-
tion from the original mesh into the interpolated high-leson mesh, through the
process of which the spatial resolution of the reconstoncts developed. Further-
more, as the MEG measuring system is assumed to be a lineamitysystem, one of
the classical solutions, Kalman smoother, is finally useidijarove the temporal res-
olution of this source reconstruction based on the higtelu#i®n mesh. In summary,
the thesis combines the use of both some classical methgustefn recognition and
the MEG spatial-temproal source reconstruction in ordexctueve a highly sensitive
spatial and temporal reconstruction. The design of thedhams to bring together
the three related topic€hapter3, 4 and 5) together and present them as an integrated
process rather than independent topics.

6.1.2 Spatial source reconstruction by Basis function

Specifically, for the basis function algorithm elaboratedChapter 3 we explore a
new method of MEG source reconstruction based on modelagutrent source with
extended basis functions. This algorithm shows a good pitisgito reconstruct the
source using the basis functions set and the correspondefgients rather than the
classical Beamforming or minimum-norm methods. This atpor provides a smooth
and well-conditioned reconstruction problem which can dleesd directly by an in-
verse method. The results are more physically plausibla tha minimum-norm
method and are resistant to noise. Big shows the comparison of source recon-
structions between the basis function method for the whotéaal surface and the
partition of ROI by the Normalized cut method at one paracaime-point.

Moreover, corresponding the smallest eigenvectors ishrbhly basis function
set for this basis function algorithm. It would be interegtto try other types of basis
functions and evaluate the efficiency of each type of basistions as part of the future
work.
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B0

50
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Figure 6.1: The figure shows the comparison of source reeaigins between the
basis function method for the whole cortical surface andpiition of ROI by the
Normalized cut method at one particular time-point for stic source A. The color
from red to blue show the intensity of source strength frorargg to weak. The left:
the original source pattern; the middle: the basis funatemonstruction based on the
whole cortical surface; the right: the basis function restarction on the partition of
ROI obtained by normalized cut method. The source disiobuat one time point

used here is selected frasgnthetic source Aat time pointl, refer to Fig3.11).
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6.1.3 Spatial resolution improvement with Bayesian superesolution

For the Bayesian super-resolution algorithm elaboratedhapter 4 a new solution
Is constructed for improving the spatial-resolution of ME@urce reconstruction at a
single time point by introducing a classical method (Bagesiuper-resolution method)
from pattern-recognition theory. This approach is appbaded on the MEG spatial
reconstruction with basis function method elaborate@hapter 3of thesis.

The results from synthetic data as well as the real MEG daie sbasonable es-
timation of the parameters which restrict the assumptiorthensource distribution
on high-resolution cortical mesh. From the quantitativeeginental results, it is ap-
parent that the spatial resolution has been effectivelyravgd. However, since the
parameter estimation as well as the optimization of higdoltgion source distribution
contain a number of large matrix calculations. Although safithem can be simplied
by sparse matrix calculation, there remain many other fdtrioes that lead to ex-
pensive calculations in terms of temporal and spatial cexipl. Fig 6.2indicates the
high-resolution mesM * interpolated from the low-resolution mebh, as well as the
comparison between the original synthetic source didiohwon low resolution mesh
M and the source reconstruction on the high-resolution nhshat one particular
time-point.

6.1.4 Temporal source reconstruction by Kalman smoother

For the Kalman smoother algorithm elaborateCimapter 5 we applied the Kalman
Iter and Kalman smoother to correct the reconstruction teally, keeping in mind
the assumption that MEG system is a linear dynamic system.

Based on previous work, the forward model of MEG system aedagsumption
of a linear dynamic system are sufficiently utilized to desige approach. We as-
sume that there is an unknown and hidden cortical activitthie dynamic process.
The Kalman filter and Kalman smoother are applied respdygtive the state estimat-
ing forward and the state correcting backward. The MEG nreasent of magnetic
field are directly used for the source reconstruction in &megoral field here. Fi§.3
shows the comparison between the original synthetic salistebution and the source
reconstruction on the high-resolution medh at one particular time-point.
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6.1 Contributions

Figure 6.2: The top part of the figure shows the-resolution meshM on the left
(with V' vertices andF faces) and thénigh-resolution meshM™ on the right with
V*t = V + F vertices andr'™ = 3F faces. M has2600 vertices and>192 faces;
M is with 7792 vertices andl5576 faces; the bottom part shows the comparison of
the simulated source pattern $fnthetic source Bn high-resolution mesM ™ ( on

the left) and the reconstruction result by the Bayesianstgsolution method (on the
right) at thetarget time poinfor synthetic source A. The color from red to blue show

the intensity of source strength from strong to weak.
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6.1 Contributions

Figure 6.3: The figure shows the comparison of the simuladedcg pattern oyn-
thetic source An high-resolution mesNI* ( on the left) and the reconstruction result

by the Kalman filter method (on the right) at ttagget time point

However, the computational complexity in time and spaceaiamhigh for this
algorithm to be practically applicable. Also, since we assuhat the MEG system
as a linear dynamic system, this leads to the insensitiith® reconstruction of the
current sources with nonlinear relationship, in other v8pttde non-linear signals may
not be reconstructed properly using this method.

6.1.5 Summary

The main contribution of this thesis can be summarized medallowing three points:

Firstly, the thesis makes the connection between the fiefghtiern recognition,
graph theory and medical imaging (specifically on MEG souem®nstruction). The
research process of pattern recognition and MEG sourcensecation share great
similarity between each other, and specifically it is to neathtically build and opti-
mize the research target by applying specific algorithm&é¢oobserved information.
On one hand, pattern recognition is a well-developed rekesea that fully contains
a variety of algorithms. On the other hand, MEG source reicoaison is a research
field with full potential for the further research is findinget solution of the method-
ology. The combination of these two fields in the thesis ogensw window for the
MEG source reconstruction problem from a novel angle.
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6.1 Contributions

Secondly, our work provides new possibilities for the ferttMEG research on
solving the reconstruction problem. MEG source reconsitnds an ill-posed in-
verse problem, which is theoretically unsolvable. The@&urmethodologies of MEG
source reconstruction, such as Minimum-norm method, Beanihg method and the
equivalent current dipole (ECD) method, have their inidmgeaknesses. For instance,
Minimum-norm method requires obtaining prior informatwithe current source dis-
tribution, which is difficult in practice. Beamforming meith is not sensitive to the
current sources, which have high temporal correlationsl #anthe equivalent current
dipole (ECD) method, it is quite difficult to estimate the riuen of dipoles in ad-
vance, meanwhile, ECD method shows insensitivity to thallpation to deep source
(Preiss]2005. All these intrinsic weaknesses provide room for improeeiin such a
research field and the possibility of exploring new soluwsiby applying the knowledge
of the new research field, such as pattern recognition.

Thirdly, we have made the contribution specifically on appiythe basis function
method, super-resolution method and Kalman smoother rdetito MEG source re-
construction. Instead of concentrating on the currentcwariation in a conventional
way, the novel idea of the basis function method is to focuthergeometrical infor-
mation of the cortical surface which are described by a séiasfs functions (mesh
Laplacian eigenvectors corresponding to the smalleshealees), while the variable
information of the current source is defined as the corredipgncoefficients. This
design combines the MEG source reconstruction with theiemn of basis func-
tions. Meanwhile, the graph theory is fully applied in thisxbination. Then, the idea
of Bayesian super-resolution is borrowed from the imagegssing into the MEG
source estimation on the high-resolution cortical messtelad of working on the grids
of multiple same-scene images(with low/high resolutianly, research is based on the
MEG source frames(with low/high resolution cortical meahgifferent time points.
This application to MEG source reconstruction provideseagsimilarity to the pro-
cess of image estimation by Bayesian super-resolutiors iSkanother good example
of combination of MEG source reconstructions and the atasgiattern recognition.

Furthermore, in the application of Kalman smoother intoMeG source recon-
struction, the signal processing of MEG system can be irgged as a dynamic system
over the course of time. The property of dynamic system,Markov property, can
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be directly applied into the detailed analysis. With thiplagation, MEG source re-
construction can be implemented in a straightforward mabgeutilizing the MEG
measurement of the magnetic field.

6.2 Discussion

In summary, three methods of MEG source reconstruction baes designed and
evaluated in the thesis, which are the Basis function methiuel Bayesian super-
resolution method and the Kalman smoother method. Sincefdlis research is
aimed at application to real MEG analysis, it is worth conmathese three methods
from the viewpoint of intrinsic features efficiency. Althgluthe basis function method
is limited for the reconstruction of the whole cortical ¢, it presents the superior
advantage of the simplicity of the process as well as the easyputation complexity.
With the proper localization of the region of interest(RQt)s feasible that the basis
function method can be more competitive than any other twihaws in the real MEG
application. The Bayesian super-resolution method isgthesi for MEG source re-
construction in light of the super-resolution method agbkio image processing. The
mathematical framework of the method provides a frameworltife inverse problem
of MEG. Instead of analyzing image data, the method hereed & processing the
problem of source distribution on the 3D cortical surfaceshm&hich highly increases
the computation complexity of the reconstruction resulthis feature of expensive
computation with unstable result make the Bayesian swgsatution method less ef-
fective than other two methods. Additionally, the Kalmanosither method is based
on the assumption of a linear dynamic system and directignasts the source frame
in a successive time points with respect to the measurembatKalman filter is used
for estimating the dynamic state while the Kalman smoothepiplied for correcting
the source distribution of the hidden state with the EM atbar. The properties of
the Kalman filter makes this approach advantageous forrgplie inverse problem.
However, non-linear signals may not be reconstructed plppbg it. Moreover, the
method still contains a number of large matrix calculatidrichi affects the accuracy
and efficiency of its application in the real world. Since thathematical framework,
as well as its calculation are not as complex as the Bayesersesolution method,
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the Kalman smoother method presents advantages in praaties than the Bayesian
super-resolution method.

6.3 Future work

In the theoretical design of the thesis, 'J’ representsdted turrent (primary currents
+ volume currentsgarth et al, 1986. In our assumption, as the measurement is
assumed on only the radial component of the magnetic fielthgteshomogeneous
spheroid, the majority of contributions of the volume cuatsevanish and the MEG
measurement are only from the primary term approximatelgis case. However,
for the more accurate reconstruction with more realistigagion, the volume current
cannot be disregarded. The further source modeling with pdtnary currents and
volume currents is one of the future work | would like to comicate on.

Additionally, during the whole experiment process of thesis work , the expen-
sive computation in both space and time complexity stands signicant problem
which affects the application efficiency.

One possible solution is to decrease the computation caste $here are plenty
of loop calculation associated with the large size matrigudation (including the full
matrix and sparse matrix calculation) , the implement ofalg®rithms leads to huge
time and space computation complexity. It is crucial to dase the computation cost
so that the algorithm can applied more efciently and reedily in real MEG source
reconstructions; The main experimental conguration weisisknterCore2(1,8GHz),
Linux system(2.6.34.1)-32bit, matlab 7.9.0(R2009b) 38@d, RAM: 4GB. Itis pos-
sible that we can upgrade to an advanced conguration foehggdmputational power.
Alternatively, it is feasible to explore a more reasonablerfat to store the variables,
e.g. the state noise covariance matrix Q, instead of stonedull matrices.

Another solution is to combine the experimental model wehl rphysiological
models. The thesis work is based on synthetic experimesiigand of applying real
MEG data on facial emotion for the evaluation due to limitedearch time and re-
sources. It is signicant to apply the algorithm with mordedtént types of real cortical
stimulus, such as random spatiotemporally smooth actygtgad over the cortex , the
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deep source inside of the cortex, single source distribatethe cortex surface. The
efciency of algorithm in practice can therefore be evaldatere close to reality.
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Appendix A

Matrix calculus reference

The following part indicates the reference of some matrifedentials and calculus for
the matrix calculation in thesis:

dlogdet X _ x-1

- (A.1)
% _ g7 (A.2)
% _ ATRT (A.3)
%}t{(){k)) _xX-T (A.4)
dlog (Zeytg(X1) _x-T (A.5)
Ctr(X) = tr(CX) (A.6)
w(A) =N, (A7)
det(exp(A)) = exp(tr(A)) (A-8)
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dexptX

e XexptX (A.9)

(BA) = 1A (A.10)

tr(AB) = tr(BA) (A.11)

tr(ABC) = tr(BCA) = tr(CAB) (A.12)
dir(A(y)B) _  AQ)

e =ty B (A.13)
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Appendix B

Synthetic source generation

The synthetic source generation actually combines theadstand results frol@hap-
ter 3 Basis Functions Source Model Applied to MEG Source Ratnaction Chapter

4 Spatial Improvement of MEG source reconstruction withé3gn Super- resolu-
tion andChapter 5 MEG image estimation via Kalman smoothéhas been used
within simulated experiments for all these three chaptdiserefore, when the syn-
thetic source is firstly been applied @hapter 3 there are several pieces of work in
the source generation process which need to be referred to.

B.1 Initial simulated source set

The first step the synthetic source generation is to creaténttial synthetic source
distributed on the interpolated high-resolution meslefréd Fig4.1 and Fig4.2) be-
fore expanding it in the temporal field. In our research, waegate two types of initial
synthetic sources distribution, i.e. artificial sourcerisition and realistic source dis-
tribution. In the process of generating the former one, tkedfisource values are set
on 30 particular vertices of mesh we choose but the valueswtss on other vertices
are set as zero; while in the process of generating the latertbe source distribution
on the cortical mesh are from the results of previous sowcenstruction of the real
MEG data with from stimuli on cortical surface at one timergoil' he reason of doing
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B.1 Initial simulated source set

these different types of simulation is that we can clearly tb& goodness of source
reconstruction of our algorithms theoretically from thenthetic experimental result
of the former source, since this type of source is based onsiemple case. However,
it does not describe the MEG source distribution realifific&ince for the real MEG
data analysis, it is impossible that we can do the compam$dhe reconstruction
results by our algorithms and the known absolute correaicgo herefore, it is desir-
able if we could simulate the synthetic source realistiched the difference between
the real-world-like sources and the reconstruction by ¢tgorghms can be observed.

B.1.1 Initial artificial source generation

Firstly, we define the number of the interpolated high-reoh mesh( so-called/™
) vertices asVy i, While the original mesh used MEG analysis from the corragpay
T1 MRI scan hasV, ; vertices ( so-called/). The number of the sensorsis,.

Then, we try to generate3aV,,z x 1 matrix j,o, the initial artificial source on the
interpolated high-resolution mesh:

[
=1 i, (B.1)
i

We determine ten particular vertices/ofrertices on the cortical mesh. The single
3D source value we create on this vertex is sé§jas jr, Jjkr.]. Thus, for the source
value in the matrix,o, the elements are set as follows and other elements are set as
zeros (showed in Fig.1, Fig B.2 and FigB.3).

Jao(1:10,1) = jre  Jao(k+1:k410,1) = jiy  Jao(2k+1:2k410,1) = ji.
(B.2)

B.1.2 Initial realistic source generation

Additionally, as we explained above, we try to create thgahsource distribution on
M which is more realistic so that the difference between ocomstruction and the
real-world-like source are able to be observed clearly.choeve this aim, we apply the
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B.2 Dynamic system generation

previous experimental result of reconstruction which dasethe real MEG measure-
ment. Specifically, within the previously research experis on MEG source recon-
struction with basis function method, super-resolutioriad and Kalman-smoother
method which are illuminated o@hapter 3 Chapter 4and Chapter 5 a set of real
MEG measurement with several spontaneous stimulus on tlieatsurface has been
applied to produce a set of reconstructed source. We raryddrmbse one source dis-
tribution onM™ at a single time point which can be assumed as the initiaistezal
synthetic sourcg,, (as @3Ny x 1 matrix) (The sources showed in A4, Fig B.5
and FigB.6).

B.2 Dynamic system generation

In our simulation, the activity consists of the output of thedeling dynamic system,
which has the relation as follows:

% =A% + @ (B.3)

7, = Bx, + 0 (B.4)

As we have obtain the initial sources distributed on the {nggolution cortical
mesh as above, we are using K&man filterto generate the sources in the temporal
field. According to the knowledge d¢alman filterandKalman smootheshowed in
Chapter 4and Chapter 5 we simulate the sources in the following way. Firstly, as
showed in Eqrb.6, we set the velocity of the dynamic system as a fixed vectile
can obtain the dynamic stakeby combiningv with instant source:

¢ Following Eqn5.2and Egnb.3, we set the state noise(matrix size is as same
asx, 2Nggr x 1) and the measurement noisgmatrix size is as same as the
measurement at single time poinf, x 1) are both set as zero mean multivariate

179



B.2 Dynamic system generation

Gaussian distribution, where the covariadgef state noise anf of measure-
ment noise are set as fixed matrices, respectively:

@ ~ N(0,R) (B.6)

o ~N(0,Q) (B.7)

Specifically, the parametefsanda are both set as fixed value, whetre= 1 and
o = 0.5 (refer to Eqrb.17), andR are set as the identity matrix.

e Define thdeadfieldfrom the forward model a8/, x 6 Ngyr measurement trans-
form matrixB.

e Since the velocity of the dynamic systeims set as fixed, th6 Nz x 6 Nyr
state transition matrid just gives ug; = j,_; + v,_; andv, = v;_,, SO

A:<;}) (B.8)

wherel are the identity matrix with the siz&Vyr x 3Ngg.

e Combining with the initial source set introduced previgusk well as all other
items set above, Kalman filter is used to obtain the genehnatengatrixb (with
the sizeM, x T) as follows which contains a set of measurement of magnetic
field of the synthetic source in the sampled time pdin{Welch and Bishop
20006:

X, = Az, (B.9)
P; = AP, AT +Q (B.10)
K, = P;BT(BP;B" +R)! (B.11)
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B.3 Mesh downsampling

%, =%, + K (z, — Bx,) (B.12)

P, =(1-KB)P; (B.13)

B.3 Mesh downsampling

With respect to the synthetic sources generation on thepiolEted high-resolution
mesh, the source simulation on the correspondiigcan be also produced by the
product of source on tieI* and a particular downsampling mati#x In terms of the
structure of interpolated high-resolution mesh indicateEqn 4.2, the 3Ny rtimes1
matrix, the sourcg,, distributed onM™* at time pointk, can be rewrite as & * 3
matrixj}C with the different dimensional components on each colunireréfore, the
corresponding source distributed on médhcan be down-sampled by the following
equation:

=P j, (B.14)

where

P =, 0 (B.15)

thenj-% is transformed back to &,z x 1 matrix j-%. Thus, thej/” can be
distributed on the mesNI and get the color-map as Hgy2, Fig B.5.
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B.3 Mesh downsampling

Figure B.1: Simulated data ofartificial source generationspatial visualization
on high-resolution mesM ™. The cortical surfaces display the data at different in-
stants: time point (up’left),25 (up-right),50 (middle-left),100 (middle-right),150
(bottom-left) and200 (bottom-right), respectively. In this trail, only 30 cunts are
put artificially on 30 continuous vertices on right hemisggheThen, the noise with

multivariable Gaussian distribution are added in time seur
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B.3 Mesh downsampling

Figure B.2: Simulated data otirtificial source generationspatial visualization on
low-resolution mesiM. The cortical surfaces display the data at different irtstan
time point1 (up-left), 25 (up-right), 50 (middle-left), 100 (middle-right), 150
(bottom-left) and200 (bottom-right), respectively. In this trail, only 30 cunts are
put artificially on 30 continuous vertices on right hemisggheThen, the noise with

multivariable Gaussian distribution are added in time seur
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B.3 Mesh downsampling
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Figure B.3: Simulated data o#rtificial source generation temporal visualization
on 248 sensors for time poin{up-left), 25(up-right), 50(middle-left), 100(middle-
right), 150(bottom-left) and200(bottom-right), respectively. X-axis shows the number

of sensors, Y-axis shows the amplitude of the magnetic field.
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B.3 Mesh downsampling

Figure B.4: Simulated data ofealistic source generatignspatial visualization on
high-resolution mesM . The cortical surfaces display the data at different irtstan
time point25 (up-left), 50 (up-right), 75 (middle-left), 100 (middle-right), 150
(bottom-left) and200 (bottom-right), respectively. In this trial, we use thealistic
source generatioexplained beforehand. Then, the noise with multivarialde$zian

distribution are added in time course.
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B.3 Mesh downsampling

Figure B.5: Simulated data ofealistic source generatigrspatial visualization on
low-resolution mesiM. The cortical surfaces display the data at different irtstan
time point25 (upleft), 50 (up-right), 75 (middle-left), 100 (middle-right), 150
(bottom-left) and200 (bottom-right), respectively. In this trail, we use thealistic
source generatioexplained beforehand. Then, the noise with multivarialde$zian

distribution are added in time course.
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B.3 Mesh downsampling
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Figure B.6: Simulated data ofealistic source generation temporal visualization

on 248 sensors for time poigt(up-left), 50(up-right), 75(middle-left), 100(middle-

right), 150(bottom-left) and200(bottom-right), respectively. X-axis shows the number

of sensors, Y-axis shows the amplitude of the magnetic field.
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Appendix C

MEG real data acquisition

The set of MEG measurement was kindly provided by the Yorkrbienaging Centre
(YNIC). Participants were shown emotionally congruent gad minimally congruent
neutral face stimuli, and responses were recorded as deddwy Hagan et al.2009.

C.1 The participants of the experiment

Twenty-eight healthy participants were recruited fromthmeversity of York and they
were offered a stipend for participation in the study. Edhiapproval was granted
jointly by the Department of Psychology at the Universityyofk and the York Neu-
roimaging Centre. All participants are right-handed, anthwormal hearing and
normal or corrected-to-normal vision, and were without stdry of neurological in-
juries. Nine sets of data were excluded due to scanner pnshlexcessive head move-
ments, or electrical noise in the background, which leawesteen data sets in the
final data analysis (Males: 10, Females: 9, mean age: 2434 (&3) years, range
19.22 ~ 33.41 years).
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C.2 Introduction of the MEG experiment

C.2 Introduction of the MEG experiment

Visual stimuli of fearful and neutral facial expressionsdi this study were selected
from Ekman and Friesen Facial effect seri&suyng et al, 2002. The expressions
came from two actors and two actresses whom were represastéti WF, MF, and
SW. All faces were presented in grey scale and hair was rednfoeen each face so
that the contrast differences between stimuli were mingahiz In order to produce
more discernible fearful stimuli, facial expressions wprecessed in some cases, for
example, the female fear faces (MF) were half caricatured

To attempt to maintain the central fixation during each ttia¢ participants were
asked to attend to the face experiments of all four actoraatrdsses. We includ®g
additional trials in which a response (such as raising tlgefirwas requested from the
participant. On such occasions, either the letter B or ttierl® appeared in the centre
of the screen directly after stimulus offset. The letter a@mad on the screen f@h0
ms and was followed by a solid gray screenfod50 ms directly after the letter offset.
Response trials were followed by a dummy trigéh for both conditions, pseudoran-
domly chosen and counterbalanced between conditions) niyumnals were discarded
in the overall analysis of data because of potential mospaase contamination Cindy
(Hagan et a].2009.

All trials began with a black fixation cros8 & 3 cm) in the centre of the screen
against a solid grey background, which was presentetidms. Next a visual stim-
ulus appeared for00 ms, immediately followed by the stimulus offset, a solidygre
screen, which lastet 300 ms.

C.3 MEG Data Acquisition

MEG data were acquired at the York Neuroimaging Centre us¥g-channel Magnes
3600 whole-scalp recording system (4-D Neuroimaging) with sapeducting quan-
tum interference device-based first-order magnetometeyosg. A Polhemus stylus
digitizer (Polhemus Isotrak) was used to digitize the heade and eye orbit shapes
of each participant before data acquisition to facilitateusate co-registration with
MRI data. Coils were placed in front of the left and right earsl at three equally
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C.3 MEG Data Acquisition

spaced locations across the forehead to monitor head grogitior to and following
data acquisition. Data from four participants with head eroent values of 0.75 cm
or greater at two or more coils were excluded from both seasdisource-space anal-
yses. Participants were seated during the experiment. &&agbrain activity was
digitized continuously in all three runs.

Images were projected onto a screen at a viewing distarreer6fcm and subtend-
ing a viewing angle of 8 degrees for face stimulus and 0.3ek=gfor letters. Faces
were presented in small siz& & 9 cm) to help minimize participant eye saccades.
During response trials, the letters displayed weren cm in size to ensure that the
central fixation was maintained throughout all stimuluspreations. Auditory stimuli
were presented at a comfortably audible level via Etymotisdarch ER30 earphones.
Participants were monitored throughout the scan using eovamera situated in a
magnetic shielded room.

All data were filtered using an online direct current (DCxfiland were sampled at
arate of 678.17 Hz (bandwidth 200 Hz). Standard structuil stans were obtained
for co-registration with MEG. Images were acquired usinglstanner (HD Excite;
General Electric) with a whole-head coil (8-channel highe3elution brain array).
The scanner uses a 3-T 60-cm magnet. To maximize magneticHarhogeneity,
an automatic shim was applied before scanning. In order vercihe whole brain,
176 parallel 1-mm 3-D sagittal planes were imaged, usindRaprepared fast spoiled
gradient recalled pulse sequence (repetition time 6.6 oig) 8Bme 2.8 ms, flip angle
20, and an inversion time of 450 ms). The field of view W88 x 290 mm, and the
matrix size wa56 x 256, which results in an in-plane spatial resolution of 1.13 mm.
Localizer and calibration scans were performed beforeopaihg a high resolution
T1 volume with voxel dimensions df x 1.13 x 1.13 mm. For better elimination of
distortion and improved co-registration of MRI and MEG d&é& gradient warping
corrections and edge-enhancement filters were applieddataepattern is showed in
FigC.1
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Figure C.1: This figure shows the example of the measurenienagnetic field from
MEG for the real visual expression data. The original MEGadat obtained is a
96 x 248 x 813 matrix which indicateshe MEG measurement on 248 sensors for 96
different stimulus within 813 continuous time instan{Bhis is a overlapping pattern
for the time courses of measurement on particular singlesémere we choose sensor

30, 60, 90, 120 and150) for the stimulus3.

191


Appendix3/MEG_B.eps

References

Ramon y Cajal 1888 from Hamalainen et &eviews of Modern Physics, 1998, 13

M. Irani and S. Peleg. Improving resolution by image regtstn. Graphical Models
and Image Provessing3:231-239, 199153, 54, 55

S. Peleg, D. Keren, and L. Schweitzer. Improving image tegswl using subpixel
motion. Pattern Recognition Letter$:223—-226, 198754

Freesurfer 5.0.0. (http://surfer.nmr.mgh.harvard.@duffechnical report, Martinos
Center for Biomedical Imagings4, 76, 88, 118 153

Ralph W. Adams, Juan A. Aguilar, Kevin D. Atkinson, MichaeCbwley, Paul I. P. EI-
liott, Simon B. Duckett, Gary G. R. Green, Iman G. Khazal,glda Lpez-Serrano,
and David C. Williamson. Reversible interactions with payarogen enhance nmr
sensitivity by polarization transfeScience323:1708 — 1711, March, 2008.

Dale AM., AK. Liu, BR. Fischl, RL. Buckner, JW. Belliveau, JDewine, and E. Hal-
gren. Dynamic statistical parametric mapping: combinimgi fand meg for high-
resolution imaging of cortical activityNeuron 26:55-67, 200036

D.G. Amen, C. Hanks, and J . Prunella. Predicting positive aegative treatment
responses to stimulants with brain spect imagifaurnal of psychoactive drug40
(2):131, 20088

M. Dale. Anders, Martin I. Sereno, and J. Cogn. Improvedli@aton of cortical
activity by combining eeg and meg with mri cortical surfaeeanstruction: A linear
approachNeuroscj 5:162 — 175, 199337

192



REFERENCES

Sylvain. Baillet, John C. Mosher, and Richard M. Leahy. E®magnetic brain map-
ping. Signal Processing Magazine, IEEH8:14-30, 20019, 10, 13, 14, 21, 23,
25

P.A. Bandettini, A. Jesmanowicz, E.C. Wong, and J.S. Hydecdssing strategies for
time-course data sets in functional mri of the human briagnetic Resonance in
Medicine 30 (2):161-173, 19931

D. Barry, B. Van Veen, and Kevin. M.. Buckley. BeamformingvArsatile approach
to spatial filtering.IEEE Signal Processing Magazing(2):4—-24, 198838, 57

D.S. Barth, W.W. Sutherling, and J. Beatty. Intracellularents of interictal penicillin
spikes: evidence from neuromagnetic mappiBgain Res, 368:36—48., 198610,
13 25,60, 173

B. Baryshnikov, B.D. Van Veen, and R.T. Wakai. Maximum likelod estimation of
low rank signals for multiepoch meg/eeg analyH<EE Transactions on Biomedical
Engineering51:1981-1993, 200414, 57

G.M. Baule and R. McFee. Detection of the magnetic field oftibart. American
Heart Journal 66:95-96., 19639

The Beatles.”The Beatles greatest gift... is to science”. Whittingtoodgpital NHS
Trust. Retrieved 2007-05-Q2005.5

M. Belkin and P. Niyogi. Laplacian eigenmaps for dimentiigaeduction and data
representationNeural Comput15(6):1373—-1396, 20083, 95

Jeff. A. Bilmes. A gentle tutorial of the em algorithm andajgsplication to parameter
estimation for gaussian mixture and hidden markov modedshiiical report, Inter-
national Computer Science Institute and Computer Sciemgsidn, Department of
Electrical Engineering and Computer Science, U.C. Beykdl@98.49, 51

D. Brenner, C. Elliston, E. Hall, and W. Berdon. Estimateksiof radiation-induced
fatal cancer from pediatric ctAmerican Journal of Roentgenologyl 76:289-296,
2001.6

193



REFERENCES

R. G. Brown and P. Y. C. Hwandntroduction to Random Signals and Applied Kalman
Filtering, Second EditionJohn Wiley & Sons, Inc., 19921, 44

A. D. Capel and ZI. Sserman. Super-resolution enhancenfiéeitamage sequences.
15th International Conference on Pattern Recognition,2@oceedings,,1:600—
605, 2000.55

Ed. Charles HodgmanCRC Handbook of Chemistry and Physics, 44th BdSA:
Chemical Rubber Co., 1965.

F.R.K. Chung. Spectral Graph Theory American Mathematical Society, 19986,
102

D. Cohen. Magnetoencephalography: Evidence of magnelicgr@duced by alpha
rhythm current.Science161:784—-786, 196814, 21

D. Cohen. Magnetoencephalography: Detection of the lz&il@ctrical activity with
a superconducting magnetometscience175:664-666, 19721

D. Cohen and B.N. Cuffin. Demonstration of useful differenbetween the magne-
toencephalogram and electroencephalogr&tectroencephalogr Clin Neurophys-
iol, 56:38-51, 198310

BN. Cuffin. A comparison of moving dipole inverse solutiorsng eeg’s and meg’s.
IEEE Transactions on Biomedical Engineer;ji32:905-910, 198529

D. Cvetkovic, M. Doob, and H. Sach&pectra of Graphs: Theory and Applications
Academic Press, 19956, 102

A. M. Dale and M. I. Sereno. Improved localization of cortiaativity by combining
eeg and meg with mri cortical surface reconstruction: aalirepproach.J. Cogn.
Neurosci, 5:162 — 176., 199310

A. M. Dale, 1. B. Fischl, and M. I. Sereno. Cortical surfa@séd analysis: I. segmen-
tation and surface reconstructiddeurolmage9:179-194, 1999%4

Tom Dalton. Bayesian image superresolution - meng projdester’s thesis, Univer-
sity of York, UK, 2004.52

194



REFERENCES

F. Darvas, D. Pantazis, E. Kucukaltun-Yildirim, and R.M.abg. Mapping human
brain function with meg and eeg: methods and validatideurolmage 23:5289—
S299., 200410

A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likeldubfrom incomplete
data via the em algorithmJOURNAL OF THE ROYAL STATISTICAL SOCIETY,
SERIES B39(1):1-38, 197748

T. Deneux and O. Faugeras. Eeg-fmri fusion of paradigm-diaevity using kalman
filtering. Neural Comput.22(4):906-948., 20137, 142

Webster Online Dictionary. "computed tomographytdefontifrom the merriam-
webster online dictionary”. retrieved 2009-08-18., 08 200

Drake et al.Gray’s Anatomy for Student005.7

B. Fischl and A. M. Dale. Measuring the thickness of the huicenebral cortex from
magnetic resonance imagé&oc Natl Acad Sci U S A20:11050-5, 200064

B. Fischl, M. I. Sereno, and A. M. Dale. Cortical surfacedzhanalysis: li: Inflation,
flattening, and a surface-based coordinate systé&marolmage9:195-207, 1999.
64

Slifstein Mark. Frankle, W. Gordon, Peter S. Talbot, and ¢l&aruelle. Neurore-
ceptor imaging in psychiatry: Theory and applicationisternational Review of
Neurobiology, 67:385 440, 20058

L. Fratt. Radiation testing and pet minding the radiopha®n#ical store.Medical
Imaging 2003.7

P. Gabriel. Numerical mesh processing. Technical rep6@7260, 66

Zoubin. Ghahramani and Geoffrey E. Hinton. Parameter esitom for linear dynam-
ical systems. Technical report, University of Toronto, 89945, 146

American government. 11th report on carcinogens. 2605.

M. S. Grewal and A. P. Andrew&alman Filtering Theory and Practicé&lpper Saddle
River, NJ USA, Prentice Hall., 19931

195



REFERENCES

D. Gross. Super-resolution from subpixel sifted picturd&aster’s thesis, Tel-Aviv
University, 1986.53

M. Grote and M. Hagemann. Spai-3.2. Technical report, 1.dtepent of Mathemat-
ics, University of Basel; 2. Department of Computer Sciendeiversity of Basel.
111,125 126 135

E. M. Haacke, R. F. Brown, M. Thompson, and R Venkateddagnetic resonance
imaging: Physical principles and sequence desidiew York: J. Wiley & Sons.
ISBN 0-471-35128-8., 1999, 6

C. C. Hagan, W. Woods, S. Johnson, A. J. Calder, G. G. R. GaeaghA. W. Young.
Meg demonstrates a supra-additive response to facial azal gmotion in the right
superior temporal sulcusPsychological and Cognitive Sciences, Neuroscignce
106(47):20010-20015, 20092, 126, 188 189

J. V. Hajnal, D. J. Hawkes, and D. L. HilMedical Image RegistrationCRC Press,
2001.4

M. Hamalainen, R. Hari, R. J. lImoniemi, J. Knuutila, a@ V. Lounasmaa.
Magnetoencephalography-theory, instrumentation, amplicgtion to noninvasive
studies of the working human braiRReviews of Modern Pysic65:2, 1993.x, 10,
12,14, 19, 30, 32, 33,34, 35

M.S. Hamalainen and J. Sarvas. Feasibility of the homogenbead model in the
interpretation of neuromagnetic field8hysics in Medicine and Biolog$2:91-98,
1987.24

K. A. E. Hardie and R. C. Barnard. Joint map registration aigth-nesolution image
estimation using a sequence of undersampled imdg&E Transactions on Image
Processing,, 6(12)6(12):1621-1633, 19955

Reinikainen K Hari, R, E Kaukoranta, M. Hamalainen, Rmdiniemi, A. Penttinen,
J. Salminen, and D. Teszner. Somatosensory evoked ceregaletic fields from
si and sii in manElectroencephalogr Clin Neurophysis7:254—63, 198431

196



REFERENCES

Olaf Hauk. Keep it simple: a case for using classical minirmorm estimation in the
analysis of eeg and meg dafdeurolmage21:1612-1621, 200485, 37, 76, 77

G. T. HermanFundamentals of computerized tomography: Image recoastmifrom
projection, 2nd editionSpringer, 20095

A. Hillebrand, KD. Singh, IE. Holliday, PL. Furlong, and GBarnes. A new ap-
proach to neuroimaging with magnetoencephalograpdyman Brain Mapping
25(2):199-211, 200%«, 38, 39

T.S. Huang and R.Y. Tsai. Multi-frame image restoration @egistrationin Advances
in Computer Vision and Image Processjig317-399, 198453

O.L.R. JacobslIntroduction to Control Theory, 2nd EditioOxford University Press,
1993.44

A. H. Jazwinski. Stochastic Processes and Filtering Theo(iNew York: Academic
Press), 197047, 142

R. E. Kalman. A new approach to linearfilteringand preditpooblemsTransactions
of the ASME-Journal of Basic Engineerir&® (Series D):35-45, 196@0, 47, 142

Masaki Kawakatsu. Application of ica to meg noise reductiéth International Sym-
posium on independent component analysis and blind sigparation (ICA2003)
2003.30

D. Keren, S. Peleg, and R. Brada. Image sequence enhancesimagpisub-pixel dis-
placements. In IEEE Conference on Computer Vision and Pattern Recagniti
pages 742-746, 19883, 54

Kuniharu. Kishida. Evoked magnetic fields of magnetoena&mgraphy and their sta-
tistical property.PHYSICAL REVIEW79:011922, 200914, 57

S. Laureys, M. Boly, and G. Tononi. The neurology of conssimss: Cognitive
neuroscience and neuropathologgademic Press-Elsevigrages 31-42, 2009.

197



REFERENCES

NK. Logothetis, J. Pauls, M. Augath, T. Trinath, and A. Oettann. Neurophysiolog-
ical investigation of the basis of the fmri signélature 412 (6843):150-157, 2001.
7

Matlab. Matlab7.9.0(r2009b). Technical report, httpwiwmathworks.com/, 2009.
94

Peter S MaybeckStochastic Models, Estimation, and Control, VolumeAtademic
Press, Inc, 197%4

G. J. McLachlan and T. Krishnan.The EM Algorithm and Extensions Wiley-
Interscience; 1 edition, 199@9, 51

P Menendez, G.d, R Gonzalez, and S. Andino. Distributecceauiodels: standard so-
lutions and new development&nalysis of Neurophysiological Brain Functioning.
pages 176 — 201, 19987

MNE. Mne software user guide version 2.7. Technical rept8t88, 118 156

JC. Mosher and RM. Leahy. Source localization using recelgiapplied and pro-
jected (rap)musiclEEE Transactions on Signal Processing Magazine, |EBE;
332-340, 199934

John C. Mosher, Richard. M. Leahy, and Paul S. Lewis. Eeg agl forward solu-
tions for inverse method$EEE transactions on biomadical engineerjr:NO:3,
1999.10, 27

T. Nara, J. Oohama, and S. Ando. Super-resolution for megysion -reconstruction
from the partial boundary measuremer8ICE-ICASE, 2006. International Joint
Conferencepages 3543-3547, 20087

Roxanne Nelson. Thousands of new cancers predicted duereased use of ct.
Medscapge2009.6

N. Nguyen, P. Milanfar, and G. Golub. A computationally eéfitt superresolution
image reconstruction algorithmlEEE Transactions on Image Processiri(4):
573-583, 200155

198



REFERENCES

David. Olivier, Garnero. Line, and J. Varela. Francisco.edrapproach to the meg/eeg
inverse problem for the recovery of cortical phase-syneardPMI 2001, pages
272-285, 2001138

N. ‘Ozmen, F. Yerlikaya, and D Garsoy. The inverse problem afjnetoencephalog-
raphy: Source localization and the shape of a &M NewsVolume 40, Number
2,2007.14,28

Andrew C. Papanicolaou.Clinical magnetoencephalography and magnetic source
imaging Cambridge university press, 2009, 12, 14, 19, 20, 21, 23, 24, 25,
28, 29, 34, 35, 38, 39

P. Partha and H.Maniar Mitra. Local basis expansions for smgce localization.
IJBEM, 7(2):30-33, 200568

C. Phillips. Source estimation in EEGPhD thesis, University de Liege, Belgium,,
2000.12 14

C. Phillips, M.D. Rugg, and K.J. Friston. Anatomically imfeed basis functions for
eeg source localisation: Combining functional and anatahgonstraints. Neu-
rolmage 16:678— 695, 200237

R. PlonseyBioeletric Phenomena\ew York: McGraw Hill, 1969.24

Hubert Preissl, editoMagnetoencephalographycademic Press, 2008, 4, 14, 25,
28,38,57,59, 171

Remesh. http://remesh.sourceforge.net/features.hifechnical report, Remsh2.0,
2008.88

A. Rodriguez, B. Van Veen, and R. Wakai. Statistical perfance analysis of signal
variance based dipole models for meg/eeg source localizatid detectionlEEE
Transactions on Biomedical Engineerirg):137-149, 200314, 57

Yousef Saad.Numerical Methods for Large Eigenvalue ProblemManchester Uni-
versity Press, 199270

199



REFERENCES

S. Sarkar and K. Boyer. Quantitative measures of changellmaséeature orgniza-
tion: eigenvalues and eigenvectoPsoceeding of the IEEE conference on computer
vision and pattern recognitigpage 478, 199633

M. Scherg and D. von Cramon. Evoked dipole source poterdfdtee human auditory
cortex. Electroencephalogr Clin Neurophisi@5:344-360, 198629

H.Paul . Schimpf, Ceon . Ramon, and Jens. Haueisen. Dipafieiméor the eeg and
meg.|[EEE TRANSACTIONS ON BIOMEDICAL ENGINEERINIG:5, May 2002.
24,25

Avinash. Sharma, Radu. Horaud, David. Knossow, and EtieoneLavante. Mesh
segmentation using laplacian eigenvectors and gaussnnes. Fall Symposium
on Manifold Learning and its Applicationpages 50-56., 20095

Jianbo. Shi and Jitendra. Malik. Normalized cuts and imaggrentation. IEEE
TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGEREZE
888-905, 200083, 85

R.H. Shumway and D.S. Stoffer. An approach to time serieosinireg and forecasting
using the em algorithmlournal of Time Series Analysz.253-264, 1982145, 146,
147

R.H. Shumway and D.S. Stoffer. Dynamic linear models witltawng. Journal of
the American Statistical AssociatioB6:763—769., 1992145 146

Merrill. Simon and James. Mattsofhe pioneers of NMR and magnetic resonance in
medicine: The story of MRIRamat Gan, Israel: Bar-llan University Press. ISBN
0-9619243-1-4., 19964, 6

K.D. Singh, G.R. Barnes, A. Hillebrand, E.M. Forde, and ANilliams. Task-related
changes in cortical synchronization are spatially coiastdvith the hemodynamic
responseNeuroimage16(1):103-114, 200238

V. N. Smelyanskiy, D. A. Maluf P. Cheeseman, and R. D. MorBsayesian super-
resolved surface reconstruction from imag&$&E Conference on Computer Vision
and Pattern Recognition, 2000. Proceedinds375—-382, 200065

200



REFERENCES

H. W. Sorenson. Least-squares estimation: from gauss toakalIEEE Spectrum,
vol. 7,:63-68, 197041

LF. Squire and RA. NovellineSquire’s fundamentals of radiology (5th ediarvard
University Press. ISBN 0-674-83339-2., 19%/6

S. Nagarajan. Srikantan, T. Hagai, and K. E. H. K. S. AttiasapgBical model for es-
timating stimulus-evoked brain responses from magnet@maography data with
large background brain activity neuroimagsdeurolmage 30(no.2):400-16, 2006.
14, 57

MP. Tarvainen, JK. Hiltunen, PO. Ranta-aho, and PA. Kanala Estimation of non-
stationary eeg with kalman smoother approach: an apmitéd event-related syn-
chronization (ers)IEEE Trans Biomed Eng1(3):516-524., 2004136, 138

M.M. Ter-Pogossian, M.E. Phelps, E.J. Hoffman, and N.A. lshil. A positron-
emission transaxial tomograph for nuclear imaging (ge&diology 114 (1):89-98.,
1975.8

E. Tipping, Michael and Christopher M. Bishop. Bayesian gmauper-resolution.
Machine Learning for Signal Processing, 2007 IEEE Works®{29:181-186,
2007.51, 52, 53, 55, 107

M. E. Tipping and C. M. Bishop. Bayesian image super-regmuAdvances in Neural
Information Processing Systeppages 1303-1310, 20035, 56, 96, 97, 103 106

Tomography. "tomography - Definition from the Merriam-Webster Online cBi
tionary”. http://www.merriam-webster.com/dictionargimography. Retrieved 2009-
08-12.5

J Tripp. Physical concepts and mathematical models, in Biomagne#s Interdisci-
plinary Approach New York: Plenum,, 198310, 12

T. Tuomisto, R. Hari, T. Katila, T. Poutanen, and T. Varpuldtudies of auditory
evoked magnetic and electric responses: modality spegifiod modellingNuovo
Cimento D 22:471-483, 198228

201



REFERENCES

J.K. Udupa and G. T. Hermar3D Imaging in Medicine, 2nd EditionCRC Press,
2000.4,5,6

M. Wagner, M. Fush, HA. Wischanman, K. ottenberg, and O. BelesSmooth re-
construction of cortical source from eeg or meg recordiNgurolmaging 3:1996,
1996.37

Greg Welch and Gary. Bishop. An introduction to the kalmaerfil2006.41, 42, 43,
99, 137,180

Max Welling. The kalman filter. Technical report, Califoarinstitute of Technology.
47,48, 137,142 143 145 147

Katrina. Wendel, Outi. Vaisanen, Jaakko. Malmivuo, Nen@. Gencer, Bart. Vanrum-
ste, Piotr. Durka, Ratko. Magjarevic, Selma. Supek, Milaitian. Pascu, Hugues.
Fontenelle, de. Peralta. Grave, and Rolando. Menendez/mggsource imag-
ing: Methods, challenges, and open issuesmputational intelligence and neuro-
sciencepages 1687-5265, 2009.

Eric. Whaites and Cawson. Roderick. Essentials of dendibgaaphy and radiology.
Elsevier Health Sciencegpages 15-20., 2003.

C.H. Wolters. The finite element method is eeg/meg sourclsieaSIAM News2:
2007, 40.25

Z.Wu and R. Leahy. An optimal graph theoretic approach ta daistering: theory
and its application to image segmentatidpattern Analysis and Machine Intelli-
gence, IEEE Transactions ph5(11):1101-1113, 19984

Yokogawa. http://www.yokogawa.com/me/index.htm. Tachhreport, Yokogawa
Electric Corporation, 200%

A. Young, D. Perrett, A. Calder, R. Sprengelmeyer, and P EkrRacial Expressions
of Emotion: Stimuli and Tests (FEES2P02.189

H. Young, R. Baum, and U. Cremerius. Measurement of cliracel subclinical tu-
mour response using [18f]-fluorodeoxyglucose and pos#raission tomography:

202



REFERENCES

review and 1999 eortc recommendationSuropean Journal of Cancei35(13):
1773-1782., 19998

203



	List of figures
	1 Introduction
	2 Literature review
	2.1 Overview of medical imaging
	2.1.1 Brief introduction of medical imaging
	2.1.2 MEG vs EEG: similarities and difference 

	2.2 Introduction of Magnetoencephalography(MEG)
	2.2.1 Brief introduction
	2.2.1.1 Neural basis of MEG
	2.2.1.2 MEG technique introduction
	2.2.1.3 Application of MEG
	2.2.1.4  Comparison of MEG with other medical imaging apparatus

	2.2.2 Apparatus 
	2.2.2.1 Recording principle
	2.2.2.2 Industrial structure of MEG 
	2.2.2.3  Comparison of MEG with other medical imaging apparatus

	2.2.3 History
	2.2.3.1 Development of MEG 

	2.2.4 Head model of MEG
	2.2.4.1 Spherical model
	2.2.4.2 Boundary element model
	2.2.4.3 Finite Element Model(FEM)

	2.2.5 Forward formula and inverse problem of MEG 
	2.2.5.1 Fundamental equation of MEG
	2.2.5.2 Forward and inverse problem

	2.2.6 MEG source modeling 
	2.2.6.1 The equivalent current dipole(ECD)
	2.2.6.2 Multidipole model
	2.2.6.3 Current-distribution models 
	2.2.6.4 Beamformers


	2.3 Kalman filter
	2.3.1 Brief introduction
	2.3.2 The discrete Kalman filter

	2.4 Kalman smoother
	2.5 EM algorithm
	2.5.1 General introduction to the EM algorithm
	2.5.2 Maximum-likelihood estimation (MLE) 
	2.5.3 EM algorithm

	2.6 Bayesian image super-resolution 
	2.6.1 Introduction to super-resolution 
	2.6.2 Previous work on super-resolution
	2.6.3 MAP method of super-resolution 
	2.6.4 Bayesian image super-resolution 


	3  Basis Functions Source Model Applied to MEG Source Reconstruction
	3.1 Brief introduction
	3.2 Forward problem
	3.3 Cortical mesh extraction
	3.3.1 Graph representation of mesh
	3.3.2 Obtain the triangular mesh of grey matter from MRI

	3.4 Geometrical expression of cortex by basis functions
	3.4.1 The graph Laplacian
	3.4.2 Analogy of basis function for the cortical mesh: Laplacian eigenvectors corresponding to the smallest eigenvalues 

	3.5 Basis functions source model for MEG reconstruction
	3.6 Results
	3.6.1 Toy example 
	3.6.2 Synthetic results
	3.6.2.1 Reconstruction of simulated current sources 
	3.6.2.2 Noise-robustness evaluation of simulated current sources 


	3.7 Localizing the source reconstruction into the region of interest(ROI)
	3.7.1 Application to the real data

	3.8 Discussion
	3.9 Conclusion 

	4 Spatial Improvement of MEG reconstruction with Bayesian Super-resolution 
	4.1 Introduction
	4.2 High-resolution mesh extraction
	4.3 Revising reconstructed current source on low-resolution mesh using the Kalman filter
	4.3.1 Revision of reconstructed current source
	4.3.2 Kalman filter 
	4.3.2.1 Smoothing the successive source distribution J on mesh M
	4.3.2.2 Smoothing associated basis function coefficients a of source distribution J 


	4.4 Applying Bayesian super-resolution on improving spatial resolution of MEG source reconstruction 
	4.4.1 Selecting a prior

	4.5 Estimation
	4.5.1 Posterior estimation
	4.5.2 Energy function of Bayesian super-resolution 
	4.5.3 Parameter optimization

	4.6 Results
	4.6.1 Synthetic results
	4.6.2 Application to the real MEG data 

	4.7 Discussion
	4.8 Conclusion

	5  MEG image estimation via Kalman smoother 
	5.1 Brief introduction
	5.2  Noisy linear dynamic system
	5.2.1  Noisy linear dynamic model
	5.2.2  Prior setting of dynamic process

	5.3 Application of Kalman smoother 
	5.3.1 Brief introduction of Kalman smoother
	5.3.2 Application of Kalman smoother

	5.4 Parameter estimation
	5.5 Results
	5.5.1  Synthetic results 
	5.5.2  Application to the real MEG data 

	5.6 Discussion
	5.7 Conclusion

	6 Conclusions and future work
	6.1 Contributions
	6.1.1  Novel idea combined both pattern recognition and MEG source reconstruction
	6.1.2  Spatial source reconstruction by Basis function
	6.1.3 Spatial resolution improvement with Bayesian super-resolution
	6.1.4 Temporal source reconstruction by Kalman smoother 
	6.1.5 Summary

	6.2 Discussion
	6.3 Future work

	A Matrix calculus reference
	B Synthetic source generation
	B.1 Initial simulated source set
	B.1.1 Initial artificial source generation
	B.1.2 Initial realistic source generation

	B.2 Dynamic system generation
	B.3 Mesh downsampling

	C MEG real data acquisition
	C.1 The participants of the experiment
	C.2 Introduction of the MEG experiment 
	C.3 MEG Data Acquisition

	references



