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Abstract

Magnetoencephalography (MEG) is a new non-invasive technique for the

functional imaging of the human brain. It has been widely used in both

research and clinical applications, for it has several superior properties,

including a high-temporal resolution with no interferencefrom the bone

or the head-like fluid to the signal spatial transformation.

In this thesis, we aim to develop a framework for MEG spatial-temporal

current course reconstruction by introducing classical methods from the

pattern recognition theory into medical imaging. These applications pro-

vide a new angle for research in MEG source reconstruction with the so-

lution for source reconstruction at a single point, and improvements of the

reconstruction on spatially and temporally. The whole thesis is based on

three topics, which are designed to be parts of an integratedreconstruction

process, and each of them are interrelated, rather than independent from

each other.

We firstly introduce the source reconstruction method at a single time point

using the basis function extraction. In light of the assumption that the

Laplacian eigenvectors of mesh can be the analogous to the basis func-

tions that represent the cortex mesh; we build a new model to describe the

current source that is distributed on each mesh vertex. Thismodel consists

of analogous basis functions and unknown weighted coefficients. In terms

of experiment results, this algorithm shows good reconstructed property

to the single stimulus, as well as the supercial stimulus on the cortical

surface.

Secondly, with respect to the spatial reconstructed sources by basis func-

tion method from the last topic, we build a new solution for improv-

ing the spatial-resolution of MEG source reconstruction ata single time



point by introducing a classical method ( the Bayesian super-resolution

method) from the pattern recognition theory. Although the approach is de-

signed based on the reconstruction from basis functions, itis also feasible

for other spatial reconstruction methods to improve the spatial-resolution.

From the numerical experiment results, it is apparent that the spatial reso-

lution has been effectively improved.

Then, the MEG measurement system in the temporal field is assumed to

be a linear dynamic system where the classical methods, Kalman filter and

Kalman smoother, are applied as the solution for the estimation of source

in time course. The Kalman filter is used to estimate the dynamic state

while the Kalman smoother is applied for correcting the source distribu-

tion of the hidden state with the EM algorithm. This approachshows supe-

rior performance to solve the inverse problem. It extends the improvement

in source reconstruction using the temporal field.

We construct the synthetic data as well as apply the real MEG data through-

out all the experimental test of my work.

In summary, this thesis builds three algorithms, which aim to reconstruct

the MEG source distribution on spatial and temporal field respectively

aided by methods from pattern recognition. This work provides a new

angle of using the pattern recognition theory for MEG sourcereconstruc-

tion. Meanwhile, we also explore a new direction for applying the theory

of pattern recognition. This work not only provides a good integration

between these two fields, but also encourage future interactions.
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Chapter 1

Introduction

Since it was first introduced by the University of Illinois physicist D. Cohen in 1968,

Magnetoencephalography (MEG) has become a well-established and non-invasive tech-

nique for mapping the brain activity by recording the magnetic fields from the head.

The electrical currents of the human brain generated by the neuronal activities provide

measurements of magnetic eld (which are extremely weak in the range between10−12

and10−15 FT). MEG technique has several superior properties, such asa high tempo-

ral resolution up to severalkHZ (up to1ms). Additionally, it is a non-invasive brain

mapping technique which is not affected by the bone or head-like fluid in the process

of signal spatial transformation. All these advantages render MEG a competitive brain

imaging technique that can be used for scientific research and in clinical application

throughout the whole life of patients (Preissl, 2005).

So far, there are a number of widely applied approaches to address the classical

problem of reconstruction of the current sources in the brain from the limited number of

MEG measurements in this field, including beamforming method and minimum-norm

method. However, since the MEG source reconstruction problem is fundamentally

an ill-posed inverse problem which is technically unsolvable, the existing approaches

may obtain a reasonable reconstruction under some particular circumstances, but such

results by no means may represent the true image at all times.Therefore, it is important

to keep exploring better solutions for the MEG source reconstruction problem.

In our study, we sufficiently utilize the knowledge of pattern recognition in solving

the problem of MEG source reconstruction, and provide a new perspective of solving
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this reconstruction problem. In our research, source reconstruction is based on the cor-

tical surface mesh which is extracted from the corresponding MRI scan. Meanwhile,

instead of assuming dipoles as the conventional sources, weinnovatively assume that

the current sources are distributed on each vertex of the mesh of the cortical surface at

a single time point. In addition to these novel assumptions in spatial field which was

explained previously, we also expanded the solution in temporal field as a linear dy-

namic system. During the process of the research in spatial field, multiple algorithms

from computer graph theory, pattern recognition, and computer vision are applied here,

such asbasis function, super-resolution, normalized cut. In order to obtain the solution

for temporal field, the classical algorithms Kalman filter aswell as Kalman smoother

were used.

The structure of the thesis is shown as follows: firsly, we discuss the basic knowl-

edge of the eld of medical imaging such as where the origin of different technologies

stems from. How they provided the fitting circumstance for the development of MEG

was covered in theChapter 2 Literature review. The MEG development history as well

as the machine properties will be introduced at the same time. Also, the basic proper-

ties of the algorithms used in the later research are introduced in this part. Secondly, in

Chapter 3 Basis Functions Source Model Applied to MEG SourceReconstruction, we

focus on source reconstruction at spatial resolution at a single time point. The assump-

tion that current sources are distributed on the cortical mesh vertices are made firstly.

Following this, the geometry of the mesh is analysed with thebasic functions produced

as the mesh representation. And, a global basis function source reconstruction model

will also be illustrated with a discussion of the relevant results. Thirdly, inChapter

4 Spatial Improvement of MEG source reconstruction with Bayesian Super-resolution,

we apply super-resolution algorithm in order to obtain a high-resolution image from

a set of low-resolution images of the same scene into the MEG source spatial recon-

struction distributed on the interpolated high-resolution cortical mesh. Fourthly, we ex-

panded the reconstruction from spatial field into the temporal field in Chapter 5 MEG

image estimation via Kalman smoother. Assuming that the process of MEG measure-

ment of the brain sources is a dynamic system, the classical solution Kalman filter

as well as the Kalman filter are applied to estimate a hidden high-resolution source

distribution directly from the coil sensors of MEG. And thenthe EM algorithm is in-

troduced to estimate the unknown parameter set of the model.Finally, we will discuss
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the significance of this research, as well as the advantages and disadvantages of the

three designed algorithms inChapter 6 Conclusions. Moreover, the associated future

work will be discussed there.

In summary, the three topics fromChpater 3to Chapter 5are directly relevant to

each other and should not be treated as independent work. In other words, the work in

Chapter 4cannot proceed without the result fromChapter 3, and the work inChapter

5 cannot progress without the result fromChapter 3andChapter 4.
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Chapter 2

Literature review

2.1 Overview of medical imaging

One of the most important tools of modern medicine, brain imaging, in the clinical

context referred asclinical imaging or radiology , are the technique and processes

used for exploring the structure and functional status of part of, or the whole, human

body; for clinical purposes(diagnosis and treatment) and medical research (Udupa and

Herman, 2000), (Hajnal et al., 2001).

2.1.1 Brief introduction of medical imaging

From the view of functional use, current methods of medical imaging can be divided

into two groups: one ismorphologic imagingwhich focuses on imaging the internal

structure of the human body anatomically, e.g. MRI, CT, X-ray, while the other one

is functional imagingwhich is implemented for better understanding and observation

of the functional status and change of human body, such as EEG, MEG, PET, SPECT

and fMRI. In clinical and medical science, thestructural imagingis usually combined

with the functional imagingfor advanced functional observation of human body (Pa-

panicolaou, 2009), (Preissl, 2005), (Yokogawa, 2009), (Simon and Mattson, 1996),

(Haacke et al., 1999).

Forstructural imaging, here is a brief introduction for these specific methods:

• X-ray
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2.1 Overview of medical imaging

Also known asX-radiation, this is one type of medical imaging which actu-

ally uses electromagnetic (EM) radiation and generates 2D images of the human

body. The wavelength of X-ray is in the range of10 ∼ 0.01 nanometers, which

corresponds to frequencies in the range of3 × 1016Hz ∼ 3 × 1019Hz and the

energy in the range of120eV ∼ 120keV . X-ray is a form of ionizing radiation,

this imaging technique poses a health hazards during imaging acquisition. X-ray

is applied in clinics for the pathology of skeletal system, soft tissue for some

disease , gallstones, kidney stones (which are not always visible) etc. The most

notable example of X-ray is chest X-ray, which is very effective in the diagnosis

of diseases of the lung, such as pneumonia, lung cancer or pulmonary edema.

However, for the imaging of soft tissue, X-ray has less advantages than CT and

MRI which only produces a 2D projection of the tissue (Whaites and Roder-

ick, 2002), (Squire and Novelline, 1997), (Charles Hodgman, 1961). Moreover,

X-ray is listed as one kind of carcinogens by American government in 2005

(government, 2005).

• CT

Also referred to asX-ray computed tomographyor computer assisted tomogra-

phy(CAT). CT builds three-dimensional images employing tomographythrough

computer geometric reconstruction based on X-ray techniques (Dictionary, 2009).

Tomography is a technique that employs the penetrating waveto obtain recon-

structed image from the sections, so it is also calledtomographic reconstruction

(Herman, 2009),(Tomography). First, X-rays are used to obtain a large series

of 2D slices with a single axis of rotation. Since the different tissues of the

human body have different radiodensity when the X-ray goes through, a 3D to-

mographic image is reconstructed by CT from the slices. CT was first introduced

in the 1970s (Herman, 2009), (Udupa and Herman, 2000),(Beatles, 2005).

X-ray generates overlapping projective slices with two dimensions, while CT

provides three dimensional tomographic reconstruction ofhuman body so that

the information on the sagittal plane, coronal plane and transverse plane can be

displayed individually. 3D tomographic imaging has a spatial-resolution of up

to 0.5 mm, and shows advantages for detecting structure in the head, chest and

heart. However, for soft tissue contrast, MRI performs better than CT. Also, as
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2.1 Overview of medical imaging

CT is based on X-ray which is ionizing radiation, it is a health hazard. (Udupa

and Herman, 2000), (Brenner et al., 2001), (Nelson, 2009).

• MRI

Magnetic Resonance Imaging(MRI), also referred to NuclearMagnetic Reso-

nance Imaging(NMRI), in contrast to CT and X-ray, is one typeof medical imag-

ing with no ionizing radiation, and is used for visualizing the detailed internal

structure of the human body by implementing the properties of nuclear magnetic

resonance . Basically, around 2/3 of the human body consistsof water in which

each water molecule contains 2 hydrogen atoms(essentiallyprotons). Within a

powerful magnetic field, the nuclear magnetization of the hydrogen atoms in the

human body is aligned along the direction of the magnetic field. Radio Fre-

quency(RF) is used to produce an electromagnetic field whichis able to alter

the nuclear magnetization. In other words, the proton in spin-low state obtains

the appropriate energy from an RF pulse, known as the resonance frequency, to

flip the spin. Turning off the RF, the proton decays from spin-up state to spin-

down state and the difference energy is released as a photon which produces a

signal, this signal can be detected by the scanner. Comparedwith CT, MRI pro-

vides greater contrast of the soft tissue of the body. Moreover, MRI provides

superior features for neurological (brain), musculoskeletal, cardiovascular, and

oncological (cancer) imaging. However, MRI shows no betterresult on imaging

of the lung compared with X-ray. And, CT, also no better result on imaging

of the liver, prostate, pancreas and adrenal gland comparedwith CT. However,

the MRI scanner of it is much more expensive. For clinical use, the magnetic

field of the MRI ranges from 1.5 T(Tesla) to 3T, and can be up to 7T in medical

research. There are some other associated imaging techniques used for medical

imaging based on the imaging theory of MRI, such as Diffusion-MRI, structural

MRI, etc. (Haacke et al., 1999), (Simon and Mattson, 1996), (Adams et al.,

March, 2009), (Squire and Novelline, 1997)

For functional imaging, here is a brief introduction for these specific methods:

• fMRI
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2.1 Overview of medical imaging

Functional MRI is a new kind of functional brain imaging which measures the

hemodynamic response(the change of blood flow and blood oxygenation) re-

lated to neural activity in the brain or spinal cord of the human body. Basically,

the amount of blood oxygen is increased and the consumption of energy from

glucose is increased as the neural cells become active. The increase of blood

flow occurs approximately1 ∼ 5 seconds after the neural cells became active.

The homodynamic response peaks around4 ∼ 5 seconds later. The BOLD

(Blood Oxygen Level Dependence) response is well correlated with changes in

the hemodynamic response. The change of the BOLD signal detected by fMRI is

actually an indirect measure of neural activity. fMRI was first applied to the hu-

man body in the 1990s. It has advantages such as being a non-invasive record of

functional brain signals, high-spatial resolution(up to 1mm) and a superior sig-

nal record from all regions of the brain rather than only fromthe cortical surface.

However, as the BOLD response detection is an indirect measurement of neural

activity , this measurement is susceptible to the influence of non-neural events

in the brain. Moreover, fMRI has poor temporal resolution approximately 5 sec-

onds for a particular response compared with MEG/EEG . It is therefore hard

to distinguish the different neural activities occurring within a short time frame.

(Bandettini et al., 1993), (Logothetis et al., 2001), (Laureys et al., 2009).

• PET

Positron Emission Tomography, is one kind of medical imaging that uses ra-

diation detector to detect pairs of gamma ray which are generated from a ra-

dionuclide. It produces images of functional processes in the body. One kind of

radionuclide, a short-lived isotope which emits positrons, is used as the radioac-

tive tracer and is introduced into the human body as part of a biologically active

molecule(e.g. Fludeoxyglucose (FDG) is commonly used (Fratt, 2003)(et al.,

2005)). After waiting a period after the biologically active molecule is injected

into the human body, the isotope decays and emits the positrons with opposite

charge to the electrons in the body. These positrons encounter electrons and both

of them are annihilated. A PET scanner includes a ring of detector units which

receive gamma rays produced by annihilation events. PET is always applied

along with CT or MRI so both the metabolic and anatomic information can be
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2.1 Overview of medical imaging

detected. Moreover, PET provides body functional imaging in a 3-D spatial field

or even 4-D images with 3D spatial field and time fields (Ter-Pogossian et al.,

1975), (Young et al., 1999), (Young et al., 1999)

PET scaning is widely applied in both clinical practice and research for func-

tional imaging of the human body. For instance, in clinical use, PET is a great

tool in oncology, especially for the imaging of tumors and searches for metasta-

sis. Also, PET is a powerful tool for the research of cardiac and brain function.

However, PET involves the exposure to ionizing radiation toa slightly extent

than chest X-ray and CT. (Ter-Pogossian et al., 1975), (Young et al., 1999).

• SPECT

The full name of SPECT isSingle Photon Emission Computed Tomography. It is

a kind of nuclear tomographic medical imaging using gamma rays. It provides a

3D image of the human body by injection of a radioisotope intothe bloodstream

of the subject. The radioisotope emits gamma rays which can be acquired by

a gamma camera which captured a series of 2D images with multiple angles.

The computed tomography is then applied for the reconstruction of a 3D image

of the human body, which is similar to CT and PET. Furthermore, SPECT is

similar to PET with respect to the application of a radioisotope as a tracer as

well as detection of gamma rays. The difference between themis the SPECT

uses a gamma-emitted radioisotope to detect the gamma rays directly while PET

detects gamma ray indirectly with a positron-emitted radioactive tracer. In prac-

tice, SPECT is widely used to observe biochemical and physiological processes

as well as size and volume organs, e.g. SPECT is used to tumor imaging, bone

imaging, and functional cardiac and brain imaging (Frankle et al., 2005), (Amen

et al., 2008).

• EEG

Defined as Electroencephalograph, measures the electronicfield surrounding

head via a sensitive system of sensors and amplifiers locatedoutside the scalp.

Although methods like EEG and MEG are not designed for producing images

primarily, the data obtained from these technologies is still suitable to be repre-

sented as maps which can be reconstructed as brain images.
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• MEG

MEG is explained carefully in the following part.

Within all the various medical imaging methods currently available , some of them

are able to be used for brain imaging, such as CT, MRI, PET and SPECT. Meanwhile,

some of them are specifically designed for brain imaging, such as fMRI, EEG and

MEG. All these methods permit functional and anatomical studies of the human brain

without opening the skull which provides a powerful tool forclinical and medical

relevant research. MEG, which will be introduced next, has significant advantages

over other methods of brain imaging because if produces moreaccurate functional

information of human brain with much higher temporal domainand is non-invasive.

Meanwhile, the target area of this new magnetic imaging technique has to be expanded

from the brain to other areas of human body, eg, magnetocardiogram (MCG)(Baule

and McFee, 1963) is the technique measures the magnetic fields produced by electrical

activity in the heart. The potential of MEG outlined above may make this magnetic

imaging technique one of most advantageous means of medicalimaging in the future .

2.1.2 MEG vs EEG: similarities and difference

Neural current sources in the brain generate the external magnetic fields and scalp sur-

face potentials. Modern non-invasive technologies, high-resolution electroencephalog-

raphy (EEG) and magnetoencephalography (MEG) techniques allow spatio-temporal

investigation respectively of these magnetic fields and potentials in the human brain.

The principle characteristics of MEG and EEG are quite similar: first, the signals for

MEG and EEG are both caused by the same neurophysiological event but expressed as

different forms; secondly, the temporal resolution of bothMEG and EEG is as high as

a millisecond, and thirdly, measurements of MEG and EEG bothhave linear relation-

ships with the strength of current sources distribution butnon-linear relationships with

the sources location (Wendel et al., 2009) (Baillet et al., 2001).

It is worthy to note that both MEG and EEG models are based on the Maxwell’s

equation i.e. they are based on the relationship between thecurrent source distribution

of interest and the measurement at the sensor array. This problem is described as the

forward problemfor both MEG and EEG, whose linearity can be expressed as the inner
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2.1 Overview of medical imaging

product of theleadfield(which is introduced in the later part:2.2.5. Forward formula

and inverse problem of MEG) and the current source distribution of interest (Tripp,

1983). Since the majority of the inverse methods for MEG and EEG are based on

linear algebraic formulations, the framework for the solution of the forward problem

is a matrix formulation (Baillet et al., 2001) (Dale and Sereno, 1993) (Darvas et al.,

2004) (Hämäläinen et al., 1993).

Although EEG and MEG signals originate from the same neurophysiological pro-

cesses, there are important differences. The scalp surfacematching for MEG and EEG

are different in terms of the different means of sensors locations. For EEG, the sensor

locations can be used instead of the head-shape since the sensors are attached on the

scalp of the subject. For MEG, the sensors are located in the helmet in which each

sensor probably does not exactly match the scalp of the subject. Thus, the head-shape

is first co-registrated on a structural MRI, then the same transformation is applied onto

the sensors. Moreover, distortions exist when the magneticfield and the potentials pass

through the brain to the external surface of the scalp, wherethey can be measured.

Magnetic fields are less distorted than electric fields by theskull and scalp, which re-

sults in a better spatial resolution of MEG. Further, since electric and magnetic fields

are oriented perpendicular to each other, the directions ofhighest sensitivity are or-

thogonal to each other. Whereas scalp EEG is sensitive to both tangential and radial

components of a current source in a spherical volume conductor, MEG detects only

its tangential components. MEG therefore measures activity in the sulci selectively,

whereas scalp EEG measures activity both in the sulci and at the top of the cortical gyri,

but appears to be dominated by radial sources. And, according to the work of Barth

D.S and colleagues, it is notable that scalp EEG is sensitiveto extracellular volume

currents produced by postsynaptic potentials, while MEG primarily detects intracel-

lular currents associated with these synaptic potentials because the field components

generated by volume currents tend to cancel out in a spherical head model (Barth et al.,

1986). Therefore, MEG is more sensitive to superficial cortical activity, which makes

it useful for the study of neocortical epilepsy, since the decay of magnetic fields as

a function of distance is more distinct than for electric fields. Finally, EEG relies on

a reference that makes interpretation of the data difficult to process; while MEG is

reference-free. (Mosher et al., 1999) (Cohen and Cuffin, 1983) (Barth et al., 1986).
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2.2 Introduction of Magnetoencephalography(MEG)

2.2 Introduction of Magnetoencephalography(MEG)

2.2.1 Brief introduction

Magnetoencephalography(MEG) is a new non-invasive tool for functional imaging of

the brain. Compared with other brain imaging techniques, MEG detects the extremely

faint magnetic fields generated in the human brain with no ionizing radiation. Further-

more, MEG provides functional mapping of the whole brain with outstanding temporal

resolution.

The different functional states of brain are represented, in terms of the measure-

ment of changing of magnetic field around the scalp by MEG, . Therefore, the neu-

ronal activities that evoke the magnetic field can be measured directly. In order to

understand the functional brain spatio-temporally, MEG result are co-registered with

the corresponding structural MRI result so that the biological function combines with

anatomical structure. The combination of MEG and structural imaging (eg. MRI) is

known as magnetic source imaging (MSI). It is remarkable that MSI is able to provide

information about the functional brain temporally together with the spatial functional

localization.

Because of the highly sensitive qualification and precisionmanufacturing, the pur-

chase of MEG apparatus and relevant services are very costy.So far, there are three

manufacturers in the world that produce MEG apparatus, theyare CTF-MEG (Canada),

Elekta-Neuromag (Finland) and Yokogawa (Japan).

2.2.1.1 Neural basis of MEG

The human brain consists of two hemispheres which are separated by the longitudi-

nal fissure. Furthermore, the hemispheres are divided into lobes by two deep grooves.

The Rolandic fissure cuts vertically the outer part of both hemispheres, and the Syl-

vian fissure runs almost horizontal. Thus, the cortex is separated with four lobes in

both hemispheres; frontal , parietal, temporal and occipital, respectively(showed in the

Fig 2.1).

Each lobe can be mapped functionally. And, the cortex has thetotal surface area of

approximately2500cm2 which is highly folded to fit in the skull compartment. MEG
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2.2 Introduction of Magnetoencephalography(MEG)

Figure 2.1: The human brain consists of two hemispheres which is separated by the

longitudinal fissure. Furthermore, the hemispheres are divided into lobes by two deep

grooves. The Rolandic fissure cuts vertically the outer partof both hemispheres, and

the Sylvian fissure runs almost horizontal. Thus, the cortexis separated with four lobes

in both hemispheres, frontal , parietal, temporal and occipital, respectively (Picturs

taken from AMA Health Insight: http://www.ama-assn.org)

studies are usually covered with the uppermost layer of the brain. (Hämäläinen et al.,

1993)

The neurons and glial cells are the principle components forbuilding the brain. The

glial cells provide the main physical structure of the brainas well as the transport of the

nutrients between blood vessels and the brain tissue. The large number of1010 − 1011

neurons mainly process the information of the brain. (Phillips, 2000)

The magnetic fields measured by the MEG sensors are contributions from both

the primary current, produced by current flow in apical dendrites in cortical pyrami-

dal neurons and representing theneural and microscopic passive cellular current, and

the volume or secondary current, which is generated from themacroscopic electric

field (Papanicolaou, 2009) (Tripp, 1983). Since the primary current represents the neu-

ral activity with a given cognitive process, it is considered as the sources of interested

in MEG. Therefore, the general concept of MEG source estimation, reconstruction and

localization are based on reconstructing the underlying primary sources. In the con-

text of MEG source reconstruction, the aim of the forward problem and the inverse

problem is both to estimate the primary current sources (Papanicolaou, 2009) (Tripp,
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2.2 Introduction of Magnetoencephalography(MEG)

1983) (Baillet et al., 2001).

Primary current sources generate volume currents. If no primary current exsits,

then no volume current can exist. But here can be closed loop primary currents that

generate no volume currents. It is noteworthy that volume currents tend to cancel out

in a spherical volume conductor, in which case the MEG measurement is only detected

from the primary source(Barth et al., 1986).

Figure 2.2: A neurone consists of three principle parts: thecell body is as the ”pro-

cessor” which contains the nucleus; the dendrites which arelike the thread extensions

are the ”receivers” which receive stimuli from other neurones; and the axon is as the

”transmitter” which is a single long fibre carrying the impulse from the cell body to

others. Primary currents are produced by current flow in apical dendrites in cortical

pyramidal neurons (neu, 1993).

If the primary sources as well as the surrounding conductivity distribution are

known, it is feasible to calculate the magnetic field (by MEG)/electrical field(by EEG)

13

Chapter1/Chapter1Figs/nerve1.eps
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in terms of Maxwell’s equation. This forward problem, specified for MEG, is ex-

plained inChapter 3: Forward problem.

It is noteworthy that there is the special case that the volume current generates the

magnetic field with equal magnitude but opposite direction.For instance, the contribu-

tion of volume currents is then canceled, and the measurement of MEG only contains

the magnetic field caused by primary current(Hämäläinen et al., 1993) (Phillips, 2000).

2.2.1.2 MEG technique introduction

MEG measures the magnetic field surrounding the head via an extremely sensitive

system of sensors and amplifiers located outside scalp, suchas superconducting quan-

tum interference devices (SQUIDs), or magnetometer. (Papanicolaou, 2009), (Preissl,

2005), (Baillet et al., 2001), (Cohen, 1968).

The measured magnetic field is mainly generated by the electrical activity in brain.

MEG source reconstruction from the measured magnetic field localizes 3D pattern

of neuronal activity of the cortex spatio-temporally (Preissl, 2005), (Srikantan et al.,

2006), (Kishida, 2009). However, it is a typically ill-posed inverse problem which

is theoretically insoluble. In term of this feature, the users of MEG face a choice of

various possible inverse solutions which could be used for processing the measured

data. (́’Ozmen et al., 2007),(Preissl, 2005).

For the functional brain imaging, although techniques, such as fMRI, PET, etc.

show outstanding spatial resolution , MEG presents a superior temporal resolution

which complements the weakness of brain imaging temporally(Rodriguez et al., 2003),

(Baryshnikov et al., 2004).

2.2.1.3 Application of MEG

MEG is widely used for both in clinical practice and research. The relevant research

using MEG includes linguistic, visual, auditory and tactile activity. Also, MEG is

involved in the research of connection between visual, auditory activity and cognitive

function along with linguistic study during information processing. In medicine, MEG

is mostly used in the diagnosis of epilepsy and localizationof the epileptic focus before

surgery. MEG is involved in the diagnosis of diseases, such as epilepsy, brain tumor,

stroke, brain trauma, Alzheimer’s disease(AD), and Parkinson’s disease.
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Figure 2.3: The demonstration of structural MRI
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Figure 2.4: A demonstration of an MEG scanner and subject
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2.2.1.4 Comparison of MEG with other medical imaging apparatus

Figure 2.5: Comparison of brain imaging methods

Within the methods of functional brain imaging , there are three main processes for

the description of brain activity, which are the neural signal, blood flow and metabolism.

The neural signal is the most direct and basic and the blood flow and metabolism are

both depended on the neural activity. MEG is a technique which directly measures the

neural signal. fMRI measures the signal related to blood flow, and PET and SPECT

is for measuring metabolism. SPECT is similar to PET in its use of radioactive tracer

material and detection of gamma rays. In contrast with PET, however, the tracer used

in SPECT emits gamma radiation that is measured directly, whereas PET tracer emits

positrons which annihilate with electrons up to a few millimeters away.
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Fig 2.8 provides a table to compare the current brain imaging methods, whilst it

indicates the advantages of MEG compared with any other methods, especially if it is

absolutely non-invasive and has outstanding temporal resolution(up to 1 ms). However,

since methods such as fMRI have high spatial resolution but low temporal resolution,

it is popular to combine the advantages of both methods. Additionally, the technique of

EEG is similar to MEG. The main difference is that the skull and the tissue surrounding

the brain affect the magnetic fields measured by MEG much lessthan they affect the

electrical impulses measured by EEG. The advantage of MEG over EEG is therefore

greater accuracy owing to the minimal distortion of the signal.

2.2.2 Apparatus

2.2.2.1 Recording principle

The neural signal generates a current which induces the magnetic flux surrounding the

cortex.

The flux of the cortical magnetic field can be detected by extremely sensitive sen-

sors surrounding the head surface, shown in Fig3.1. The type of these special sensors

are a set of either magnetometers or gradiometers. Each sensor, for instance , a magne-

tometer, is a loop of wire, or coil, which is located parallelto the head surface. As the

flux lines thread through the coil, the corresponding current is generated by induction

in the coil. This current on the coil is proportional to the flux which can be thought

of as the expression of the magnetic induction from the inside brain. Using a special

amplifier, SQUIDs, the weak induced currents on the coil can be converted into a high-

amplitude voltage. In this way, the scalp magnetic field is recorded by each sensor

every millisecond. Assuming there are a sufficient number ofthe sensors located at

regular interval places surrounding the head, the corresponding neural source distri-

bution can be measured and determined all over the cortex. Since the magnetic field

evoked in the cortex as well as the induced current on the coilof sensor are extremely

feeble, MEG apparatus must be housed in a magnetically shielded room(MSR) to at-

tenuate any noise from the external environment. Furthermore, both the sensor and

the SQUIDs are placed under the condition of superconduction in order to operate

correctly .

18



2.2 Introduction of Magnetoencephalography(MEG)

It is worth noting that any flux line threading through the coil of a sensor can be

divided into two parts, a perpendicular component to the coil plane and a tangential

component to it. Then, the current on the sensors is induced by the perpendicular part

only. This also indicate the flux lines which is perpendicular to the coil plane induce

the strongest current on the sensor does not respond to the other components.(Papani-

colaou, 2009)

2.2.2.2 Industrial structure of MEG

• Special sensors

In any location around the cortex, the magnetic field corresponding to the cortical

neural signal can be thought as the combination of differenttypes of field, eg,

uniform component, first-gradient component, second-gradient component etc.

In practice, there are two types of sensors used for the MEG measurement which

are magnetometers or gradiometers.

a). Magnetometer

2.2.2.3 Comparison of MEG with other medical imaging apparatus

Figure 2.6: Figurea shows the structure of the planar gradiometer; while figureb

shows the structure of the axial gradiometer, (Hämäläinen et al., 1993).
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Each magnetometer (shown in Fig2.6) is placed parallel to the head surface

which detects the total field induced in the located area, including uniform, or

zero-gradient, component, first gradient component, etc.

b). Gradiometer

A gradiometer (shown in Fig2.6) has the outstanding advantage of reducing

noise while detecting MEG measurements. The gradiometers of first-order reject

the uniform component, further the gradiometers of second-gradient reject the

uniform component and first component, and so on. Current MEGsystem uses

the gradiometer of the first order, which normally has two structural types, axial

gradiometer and planar gradiometer.

In summary, the magnetometer is good at detecting all types of the signal while

the gradiometer is good at reducing the noise. This thesis mainly discusses the

MEG system with magnetometers(comparison of the magnetometer and gra-

diometer comparison of the axial gradiometer and the planargradiometer). In

practice, gradiometer are more widely used as the sensors ofMEG rather than

magnetometers.

Due to the current on the coil of sensors induced by extremelyweak magnetic

flux in the brain, the environmental condition for sensors must be set as su-

perconducting so that they have no resistance. This can be achieved when the

temperature of the coil is reduced close to absolute zero( -273.15 degrees on the

Celsius scale ). In the MEG system, the sensors are placed within a thermal

isolated dewar which is filled with liquid helium. These working conditions can

keep the temperature of coil around 4K(-269.15 degrees on the Celsius scale)

which is sufficient for superconducting. (Papanicolaou, 2009)

• SQUIDs

Since both the magnetic flux of the brain and the induced current on the mag-

netometer( which is proportional to the flux) are extremely weak, an amplifier

must be implemented to detect the signal. Conventional amplifiers are not able

to achieve this task because of their intrinsic thermal noise.

In the late 1960s, the superconductive quantum interference device, so-called

SQUIDs, was co-invented by James.E. Zimmerman. SQUIDs weresoon applied
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to research from airborne submarine sensors to gravitational waves. Then, the

first experiment in applying SQUIDs to measure the magnetocardiogram was

conducted in MIT. It is the use of SQUIDs which makes MEG measurement

practical (Baillet et al., 2001), (Cohen, 1968).

• Magnetically shielded room(MSR)

No matter how strong the magnetic signal evoked from the cortex, are no matter

how accurate the induced current of the magnetometer is converted into the high-

amplitude voltage, all these types of signals in these processes are too weak to

compare with major types of magnetic noises in the outside world , e.g. urban

noise or the earth’s magnetic field. Normally, the magnetic field generated in the

brain is on the order of several tens of femtoTesla( fT, or10−15 Tesla), while the

earth’s magnetic field is around several microTesla(10−6 Tesla). To avoid the

major interference from the external environment, the MEG apparatus is placed

within a magnetically shielded room(MSR) for isolation.

Various types of materials with different magnetic permeability, eg, mu-mental,

aluminum, copper, etc, are used to construct the MSR in successive layers. As

a result of this structure, the MSR is able to shield against the noise withboth

low-frequency-(as low as 0.1Hz by≥ 40 dB)-and high-frequency-(up to 1GHz

at 60 dB-signals)(Papanicolaou, 2009).

2.2.3 History

2.2.3.1 Development of MEG

The first trial of MEG was conducted by University of Illinoisphysicist David Cohen in

1968 who used a copper induction coil as a magnetometer (Cohen, 1972). A shielded

room was used to reduce the measurement noise. However, thismeasurement result

was too poor with too much noise, to be applied into in practice. Later, the invention

of SQUIDs accelerated the development of the MEG technique.In MIT, David Cohen

then built a better shielded room and applied SQUID detectors for MEG measurement

with the cooperation of James E.Zimmerman. The result was asclear as EEG this time

which marked the start of MEG research (Cohen, 1972).
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At the beginning, MEG apparatus was manufactured with a single SQUID detector.

To take measurements, the single SQUIDs detector was successively used for measure

the magnetic field at a number of designated position on the subject’s scalp. This

was very much of inconvenient for making measurements as well as the influence

of the accuracy of measurement. Then, the manufacturers developed the structure of

MEG apparatus by increasing the number of sensors and SQUIDsin a larger thermally

isolated Dewar to cover a larger area of the scalp. The MEG Dewar at present is made

as a helmet-shaped which is almost able to cover the whole scalp of subjects. MEG

systems are currently produced with the number of sensor arrays from 100 to 300, such

as 128-channel, 248-channel and 306-channel. Of course, the more channels it has, the

more accurate information can be obtained from MEG measurements.

The first MEG apparatus in UK was installed at Aston University in 1999 which

started the MEG research in the UK. At present, there are morethan 10 academic

institutes in UK, who own MEG apparatus for research, eg, Aston Brain Centre in

Aston University, York Neuroimaging Centre (YNiC), Cardiff University Brain Re-

pair Imaging Centre (CUBRIC), University of Nottingham, University of Oxford, The

Wellcome Trust Centre for Neuroimaging of UCL , Cognitive Neuroimaging (CCNi)

in University of Glasgow . Further, more and more British academic institutes joined

in cooperation with the institutes above for collaborativeresearch. Because of restric-

tions in the NHS presently, MEG is not able to be applied clinically directly in UK,

and if is only for research use. However, MEG has already beensignificantly applied

in both medically and research legally in some other countries, such as USA, China

and Japan.

2.2.4 Head model of MEG

MEG is concerned with the study of the brain and a number of different head models

are used. The different assumptions of the head models in MEGdirectly reflects the

nature of the geometry and electrical conductivity of brain. The induced internal cur-

rent includes primary currents and secondary currents which both affect the brain at

the same time, and so the application of different head models is important for source

localization. There are some types of head models which are commonly applied in the

analysis, such as the spherical model,the boundary elementmodel(BEM), and finite
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element models(FEM). It is obvious that different head models are designed to have

a focus on different research angles, and approximation is used to decrease computa-

tional complexity. In this case, there are some intrinstic errors which exist within each

head model and affect the design of source model, accuracy ofsource reconstruction

and computation efficiency (Papanicolaou, 2009) (Baillet et al., 2001).

Generally, MEG head models can be divided into two classes, spherical head mod-

els and realistic head models. Finite element models(FEM) and boudary element mod-

els(BEM) are classified as realistic head model. However, the boundary between these

two classes are not absolute, there are plenty of models designed to combine both these

features, such as the spherical BEM model . In the following part, some head models

are introduced (Papanicolaou, 2009).

2.2.4.1 Spherical model

The spherical model assumes the head is a single sphere or multiple concentric spheres.

By using the appropriate structural imaging scan of the subject, the best fit sphere is

found for analysis. Additionally, the sphere is assumed to be homogenous and isotropy.

This indicates the conductivity of each volume in the brain is assumed to be the same,

moreover, the conductivity of each volume is assumed to be independent to the current

direction. This kind of head model is frequently used for clinical studies as it is easy

to generate and efficient to analyse with sufficient accuracy.

The spherical head model shows good accuracy for the focus onthe head area

where the curvature of the local brain surface approximately matches part of a sphere.

However, for regions where the curvature diverges from a sphere, for instance, the

temporal lobe , the results are less satisfactory. (Papanicolaou, 2009)

2.2.4.2 Boundary element model

The boundary element model(BEM) approach is a model which consists of a set of

nested surfaces which are basically composed of three layers, inner skull, outer skull

and scalp surface. BEM assumes homogenous and isotropy for any layers and com-

partment of the layers. However, the constraint of symmetryon the spherical model has

been relaxed. In this case, this model is able to more accurately describe the geometry

of the individual subject. In BEM, the primary current is notconsidered as symmetric
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as in the spherical model. Furthermore, the potential from different layers are com-

puted and added to calculate the internal current. In addition, the volume current is

considered to affect the neural activity and external magnetic field measured by MEG.

Thus, BEM results in a better description of the brain neuralactivity. (Hamalainen

and Sarvas, 1987)

However, since the results of BEM are not a distinct improvement in significance

and accuracy, but are computationally expensive and time consuming for accurate in-

dentification of different boundaries in complex brain tissue, it is more frequently ap-

plied in research rather than in clinical settings. (Papanicolaou, 2009)

2.2.4.3 Finite Element Model(FEM)

The Finite Element Model(FEM) is one type of numeric approach which ”allows the

use of anatomically realistic head models and the increasedcomputational power that

they require has became readily available”(Schimpf et al., May 2002). Since the FEM

presents the realistically complicated non-homogenous head conductor, it is often used

for the forward problem.

The electronic field of the behavior of the neural sources in the brain can be de-

scribed from Poisson equation (Schimpf et al., May 2002) (Plonsey, 1969) :

∇ · σ∇V = ∇ · Ĵi = p (2.1)

whereĴi is the applied current density(A/m2), σ is the conductivity of the volume

(Ωm)ˆ-1, andV is the electric potential. A class of numerical methods use aset of basis

functions to approximately model the potential throughoutthe brain volume. In terms

of the Eqn2.1, the approximation of the potential can be calculated by minimizing a

weighted avaerage of the residual(Schimpf et al., May 2002):

n
∑

i=1

[

∫

Ω

(∇ · σ∇Ni)WjdΩ]ai −

∫

Ω

pWjdΩ = 0 (2.2)

j = 1, 2, ..., n (2.3)

V ≈
n
∑

i=1

Niai (2.4)
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whereWj are the weighting functions,Ni are the basis functions,ai are the degrees

of freedom(DOFs) which are used for fitting these basis functions to the potential. The

dvergence theorem is applied to the integral. The basis function are generally set as

a set of polynomials in 3-space, which are defined locally over subregions as a finite

number ofelements. Also, the weighted function are set as same as the basis functions.

Although as the numeric method, FEM can represent more realistic domain, the

sources in this model are an approximation of theideal dipole. However, the math-

ematical idealization does not exist in practice (Schimpf et al., May 2002) (Wolters,

40).

2.2.5 Forward formula and inverse problem of MEG

Generally, MEG is a type of non-invasive technique reflecting the electromagnetic sta-

tus of the internal brain with high temporal resolution(up to millisecond). The focus of

MEG is detecting the internal current source information, including direction, strength

and locations ,by the measurement of magnetic field on scalp surface.This problem in

MEG research is given a number of names depending on the specific goal, including

’source estimation’, ’source localization’, ’source reconstruction’, or ’source imaging’.

In order to successfully tackle this problem, it is usually necessary to use information

from morphological imaging techniques such as MRI. This combination is named as

Magnetic Source Imaging(MSI).

2.2.5.1 Fundamental equation of MEG

The concept of MEG sensing is to detect currents flowing in thebrain from the mag-

netic flux recorded at a number of superconductive coils placed near the scalp. In the

source spaceΩ′, the magnetic field generated at a locationr on the scalp is given by

the Biot-Savart law (Baillet et al., 2001) (Preissl, 2005) (Papanicolaou, 2009):

B(r) =

∫

Ω′

µ0

4π

j(r′)× (r− r′)

|r− r′|3
dΩ′ (2.5)

here,r is the position where we measure the magnetic field;r
′

is a position in

the source space ;j(r′) is the internal current element which including both primary

current and volume current(Barth et al., 1986); B is the measured magnetic field andµ0
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Figure 2.7: The diagram defining the source spaceΩ′, the position of the sensor array

ri, the position in the source spacer′ and the MEG measurement on the sensori, B.
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is the magnetic constant; Under the spherical head model, the coils are placed radially

around the origin of the coordinate system, and so the normalto coil i is given byri/ri
(shown in Fig2.7). Under this model the problem has a simplified form where the

magnetic flux detected by coili is:

bi =
ri

ri
·B(ri)

=

∫

Ω′

µ0

4π

ri · j(r
′)× (ri − r′)

ri|ri − r′|3
dΩ′

=

∫

Ω′

µ0

4π

(ri − r′)× ri

ri|ri − r′|3
· j(r′)dΩ′

=

∫

Ω′

li(r
′) · j(r′)dΩ′

(2.6)

whereli(·) is the leadfieldof coil i which indicates the connectivity between the

measrement of magneticfield atri and the source locationr:

li((r)
′) =

µ0

4π

(ri − r′)× ri

ri|ri − r′|3
(2.7)

2.2.5.2 Forward and inverse problem

Since the leadfield does not depend on currents or coil responses, MEG source re-

construction can be approached in two different ways which are the so-calledinverse

problemandforward problem. The forward problem involves ’computing the scalp po-

tentials or external magnetic field at a finite set of sensor locations for putative source

configuration’. This problem can be solved by a unique solution, which can also be

said as ’well-posed’ . On the other hand, theinverse problemis based on ’estimat-

ing the configuration of brain sources that account for the recorded magnetic field on

the head surface’. (Mosher et al., 1999) It is practical to estimate the information of

sources, eg, geometrical configuration on a 2D surface from the measured magnetic

field. However, the provided information is not enough to determine the sources on

a 3D cortical surface which may have multiple possibilities. In this case, the inverse

problem of MEG is theoretical unsolvable or ’ill-posed’. Inanother words, it is under-

determined problem.
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In terms of the characteristics of the ill-posed inverse problem of MEG, there are

a number of methods of source estimation which models the internal sources based on

different mathematical algorithms and assumptions, for example, the principle of some

methods is to reduce the number of unknown to be less or lower than the number of

known coil responses, making the problem well-posed. Sinceeach of these methods

are based on different the assumption, it is common that the results from different

methods are different despite using the same set of data. Since the ill-posed inverse

problem is insoluble itself, each method is heavily depend on the assumptions used.

Addtionally, the situation is worse in practice. For instance, when the head model is

assumed to be homogenous in conductivity and approximatelyspherical, the sources

which are oriented radially, produce no magnetic field outside the head. Accordingly,

the sources in the central brain where most directions are approximately radial, as

well as other radial oriented sources in the brain, are not able to be reconstructed

clearly by general MEG source estimation. This is one of the reasons that MEG source

estimation is insensitive to the deep sources. Therefore, the design and application

of various source models appropriately is the important consideration in MEG source

reconstruction (Papanicolaou, 2009), (Preissl, 2005) (’́Ozmen et al., 2007). We now

review some source models from the literature.

2.2.6 MEG source modeling

2.2.6.1 The equivalent current dipole(ECD)

Historically, this was the first inverse solution to be developed for MEG source estima-

tion. Mathmatically, a single ECD (equivalent current dipole) is assumed to be a pair

of current sources with an infinitesimal separation (Papanicolaou, 2009). The stan-

dard method of estimating a single source is to determine theECD (equivalent current

dipole) by a non-linear least-squares research(Tuomisto et al., 1982). The dipole is

assumed to be dynamic and can be adjusted to optimise the goodness-of-fit and find

the unknown direction, strength and location of the dipole at each time point.

Generally, the observed measurment of magnetic field and predicted magnetic field

by the estimated dipole information (eg, direction, strength and location) are incorpo-

rated into a cost function which measures the goodness-of-fit. The goal is then to find

the dipole location which minimizes the cost function. Since the magnetic field has a
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non-linear relationship to the dipole position, it is difficult to find an analytical solu-

tion. Accordingly , numerical and iterative methods are applied to the problem. The

initial setting of the parameters of the dipole sources directly influence the result of

estimation, and may generate local minimum (Scherg and von Cramon, 1986) (Cuffin,

1985). The process of searching for the minimum cost function must be designed to

find the global minimum and avoid the local minima. It is apparent that the global

minimum provides optimal parameter estimation for cost function while the local min-

imums provide the sub-optimum.

In this method, there are usually a small number of dipoles, and the number of

unknown quantities are generally lower than the number of measurements taken. The

ECD is therefore a overdetermined problem. The simplest situation for the ECD is that

only one source is assumed to be in the region of interest at one single time point. The

biggest challenge for the ECD is the difficulty of determining the number of dipoles in

the brain at a single time point. The most popular way is to keep adding dipoles to the

possible regions and observe the change the magnetic field until the solution becomes

stable or there are no more notable changes occur.

Since ECD is the most simple method of MEG source estimation,and has a long

history, the ECD is the principal method used in clinical work (Papanicolaou, 2009).

Specificly, the ECD shows success on ’the localization of interictal spike, the localiza-

tion of language-specific cortical region, presugical localization of the early cortical

evoked response’. (Papanicolaou, 2009)

The algorithm is as follows:

• Noise estimation

Since MEG measures the very weak magnetic field outside of thebrain which is

normally smaller than1
108

of the earth magnetic field, the measurement is easy

to be interfered by different noises. Before building the source model, it is nec-

essary to reduce the noise. Here, some conventional ways areintroduced for

reducing of the MEG measurement. Firstly, using the Magnetically Shielded

room as the noise reducing way. This is a effective way for reduce the general

environmental noise. It is capable to decrease the externalmagnetic field by

100dB at 1Hz. Then, the Reference sensors are used for reducing the noise.
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With this way, there are a set of sensors are particularly used for noise measure-

ment by locating far away from the head of the subject. Some ofthe gradient

field is calculated by detecting the distant environmental noise. Also, using gra-

diometer as the noise reducing way. In terms of the structureand function of the

gradiometer illuminated in the previous part, the sensor takes the difference be-

tween the magnetic fields measured by two consisted coils. Since the magnetic

field generates by the brain is not homogenous, the noises generated from the

long distance effectively reduced by Gradiometers.

Moreover, averaging and filtering are used for noise reduction. It is assumed

that the measurement from different channels are independent so that the noise

from each channel is not correlated with each other. Accordingly, noise covari-

anceΣ = diag(σ1, · · · , σn) whereσi contains both the source noise source and

the environmental noise. For the noise averaging method, the background ac-

tivities are collected and saved before the source measurment so that this can

be set as the average value of noise. Then both the source measurment and

average value of noise can be applied for standard deviation. It is generally

useful, but shows weakness when random inherent noise appears of some inde-

pendent time point forσi. For the filtering method, the typical cut-off frequency

of MEG measurement is0.03− 1.0Hz for the high-pass filter and40− 400Hz

for the low-pass filter. However, the filter is applied in practice for filtering the

measurement before the noise estimation which may bring inaccuracy for noise

estimation(Hämäläinen et al., 1993).

Besides these , there are still several kinds of methods for noise estimation. For

instance, Masaki Kawakatsu developed the ICA approach for MEG noise reduc-

tion which produces many different components and worked effectively to re-

construct the single evoked responses based on the objective criterion(Kawakatsu,

2003).

• Model building

To descirible the fitting between the measurement and the magnetic field gener-
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ated from the predicted sources, the following equation is applied:

g = 1−
n
∑

i=1

(bi − b̂i)
2/

n
∑

i=1

b2i (2.8)

wheren is the number of channels involved in measrement,bi is the noisy mea-

surement of magnetic field on channeli , andb̂i is the corresponding magnetic

field produced by predicted ECDs. If the value ofg = 0 approximately, it in-

dicates the predicted data matches the measurement data. However, if g = 1,

it means the predicted source model of ECD doesn’t describe the measurements

at all and the results are similar to a the generated magneticfield of zero. This

fitting is analogous to the linear regression analysis.

Moreover, theχ -squaredistribution is applied for the test of goodness-of-fit:

χ2
obs =

n
∑

i=1

(bi − b̂i)
2

σ2
i

(2.9)

which assumes Gaussian errors for the measurement data. TheprobabilityPobs

of the observed Chi-squared value directly reflects the goodness-of-fit for the

model. It indicates that ifPobs is close to1, the model well describes the internal

sources and here is no need for adding extra dipoles. In the contrast, ifPobs

alternates between0 ∼ 1, it means the model is not satisfied and the further

approaches need to be applied, such as adding extra dipoles.

It is notable that the small number of sourcesn generally give rise to the quick

and unstable alternating value between0 ∼ 1 whenσ increases. In this case,

if the noise is overall underdetermined, the modell is easily to be affected with

unaccurate results. Underdetermination of the noiseσ passes a more complex

part to modelling which should have been taken by noise, whereas, overdetermi-

nation of noiseσ may lose the possible variation in the detail of the source.

2.2.6.2 Multidipole model

The ECD can be generalized to a multiple dipolar source with spatial separation. In

(Hari et al., 1984), it is shown if the distances of multiple, simultaneously active
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sources are sufficiently large from first and second sematosensory regions,SI and

SII, as well as the source directions favorable , there is less overlapping from the mul-

tiple sources and it is feasible to fit each source distinctlyby the Equivalent Current

Dipole (ECD). Similarly, the sources can be separated clearly with ECD if the sources

change with time. However, if these conditions of sources are not met and the sources

overlap in both the spatial and temporal fields, the ECD must be extended to be the

spatial-temporal multidipole modelas a solution(Hämäläinen et al., 1993).

In contrast to the single equivalent current dipole which deals with the source in

the temporal domain separately, the multiple dipole model models the sources in the

spatio-temporal field together. Basically, the multiple dipolar sources are assumed to

be able to alter the strength but maintain the position, and optionally maintain the di-

rection throughout the time interval of interest. Then, a predicted magnetic field is pro-

duced to match the measurement. The number of multiple dipolar sources(unknown)

are generally lower than the number of measurements of the magnetic field, thus this

multi-dipole model is also an overdetermined problem(Hämäläinen et al., 1993).

Compared with ECD, which depends on the initial guess of the values of the ECDs,

the multidipole model solves the highly complex optimization by selecting the starting

parameters (initial estimate of the solutions) randomly from either the cortical surface

or the grid of brain volume.

The predicted data and measured data of the magnetic field is denoted asBjk and

Mjk. j = 1, ·, n indicates the number of sensors, andk = 1, · · · , m indexes the time

intervalstk. And this multi-dipole model is formulated as follows:

S =‖ M − B(x1, · · · , xq) ‖
2
F (2.10)

Here, the equation is the minimum for the conventional least-square error function

wherex1, · · · , xq indicates the unknown parameters in this model. There arep dipoles

assumed located onrd, whered = 1, . . . , p. Specificly,p1 dipoles are fixed-orientation,

andp2 dipoles are with variable-orientation, wherep = p1 + p2. And, r = p1 + 2p2

dipoles wave forms are retrieved.

Additionally,‖ · ‖2F denotes the square of the Frobenius norm:

‖ A ‖2F=
n
∑

i=1

m
∑

j=1

A2
ij = Tr(ATA) (2.11)
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Furthermore, the magnetic field calculated by predicted multidipoles can be written

as:

B(n×m) = G(n×2p)(r 1, · · · , r p)R(2p×r)Q(r×m) (2.12)

whereG represents theGain matrixcomposed of the unit dipoles as all these vari-

ables are calculated as matrices, the dimension of these matrices are indicated on the

superscripts. These unit dipoles are indicated on the spherical coordinate system with

(eθ, eφ):

Gj,2d−1 = bi(rd, eθ) (2.13)

Gj,2d = bj(rd, eφ) (2.14)

with j = 1, · · · , n, d = 1, · · · , p

wherebj(rd, eθ) andbj(rd, eφ) are the magnetic field produced by the predicted unit

dipole onrd distributed on the different directions ofeθ andeφ.

The firstp1 rows ofQ represents the time series of amplitude attk of the dipoles

with fixed orientations. And, the remaining2p2 rows are the time series of the two

components of these variable-orientation dipoles.

R contains the differentiation between fixed- and variable-orientation dipoles:

R =



























cos β1 0 · · · · · · · · · 0
sin β1 0 · · · · · · · · · 0
0 cos β1 0 · · · · · · 0
0 sin β1 0 · · · · · · 0

. . .
0 · · · · · · 0 cos βp1 0
0 · · · · · · 0 sin βp1 0

0 · · · · · · 0 · · · I (2p2)



























(2.15)

where the fixed dipoles form anglesβk with respect toeθ, k = 1, · · · , p1. And,

I (2p2) is a identity matrix with the size of2p2 × 2p2. If all the multidipoles are with the

variable orientations,r = 2p2 = 2p andR = I (2p)(Hämäläinen et al., 1993).

Before the minimizing of equation2.10,the value ofp1 andp2 need to be chosen for

fixed- and variable-orientation dipoles seperately, and the correct model is selected as
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well. Then, the key problem is to solve the nonlinear optimization forrd, d = 1, · · · , p

(Hämäläinen et al., 1993).

The algorithm for determining the location and orientationof multiple sources

through the highly complex optimization can easily lead to inaccurate solutions if

enough different initial dipole values were not tested (Papanicolaou, 2009). The meth-

ods applied so far are mainly based on heuristic methods, andthe reasonable solutions

depend on both the expertise and physiological intuition(Hämäläinen et al., 1993). The

so-called MUSIC(multiple signal classification) and RAP-MUSIC(recursively applied

and projected MUSIC) are efficient approaches identifying each source seperately

with resursive procedures rather than searching for multiple sources simultaneously

(Mosher and Leahy, 1999). The MUSIC approach is based on indentifying the mul-

tiple local maxima in a single function, while RAP-MUSIC implements a search for

one source as the global maxima with a resursive procedure for the cost functions of

multiple sources (Papanicolaou, 2009).

The above two methods are based on the equvalent current dipole(s) assumption

for source estimation which has limitations in practice: First, there are difficulties in

localizing extended sources with ECDs; secondly, it is difficult to estimate the number

of dipoles in advance; and thirdly, the methods shows insensitivity to dipole time-

courses and errors in dipole location, especially for deep sources.

2.2.6.3 Current-distribution models

In the current distribution models, the whole brain or cortical surface are assumed to

be asource spacecomposed of a large number of elements. A triangular mesh is gen-

erally applied to constitute the source space on the cortical surface, while tetrahedral or

hexahedral lattices are used to represent the interior volumes of the head. Additionally,

a single dipole is located on each vertex of the mesh or the lattice point. Since the num-

ber of unknown sources in source space (generally several thousand) are much more

than the quantity of measurements from sensors, this model is actually aunderdeter-

mined problem, or ill-posed problem. In term of this ill-posed character, the calculation

of the minimum of a cost function which provides the optimal source estimation should

be based upon sufficient priors as constraints. This prior isessentially a model of ex-

pected current distribution. The smoothness of the source distribution (explained as
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variation of sources on the spatial field), is able to be used as one type of prior. The

smaller norm indicates that the sources distributed in source space, while the larger

norm indicates a less smooth source distribution. (Papanicolaou, 2009) (Hämäläinen

et al., 1993).

1. Minimum-norm estimation (MNE)

The minimum-norm method, derives its name from the minimization of the dif-

ference or norm between predicted and actual magnetic field measurement. The

conceptsmallestemphasized here depends on both the condition of measure-

ment and the minimization of cost function.

According to the equation3.2and equation2.5of Biot-Savart Law, there is a lin-

ear relationship between the internal source distributionand the measured mag-

netic field outside of the scalp, which can be explained simply as:

B = LJ (2.16)

whereB is am× 1 matrix representing the magnetic field measurement outside

of head;J is n × 1 source current matrix with fixed locations and orientation;

andL is the leadfield with the size ofm×n, which accounts for the information

of the conductivity distribution of the head as well as the geometry to connectB

andJ. Specifically, each column of leadfieldL provides the forward solution for

a single source to the measurement, in other words, it shows the signal produced

by all the sensors for a single source alone with unit strength (Hauk, 2004).

Thus, B obtained from the sensors’ recording ,L is generally determined by

the head geometry. According to the equation2.16, the principal problem is to

solve the unknown source current distribution based on the ill-posed (or under-

determined) character with a non-unique solution. This presents the possibility

that the sources distributionJ produced current measurement may contain any

primary current distributionJ2 which the measured sensors are not sensitive to,

such as radial sources. This can be explained mathematically as follows (Hauk,

2004):

J = J1 + J2 (2.17)
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LJ 1 = B; LJ 2 = 0 (2.18)

A unique solution for this inverse problem stated in equation 2.16is to consider

both the constraints on the predicted sources as well as the constriaint on the

magnetic field from predicted sources which can be explainedas follows:

For the predicted sources, the constraints for unique solution can be indicated as:

Ĵ = min
J
[(J − Ĵ0)

TCs(J − Ĵ0)] (2.19)

where Ĵ represents the estimated solution,Ĵ0 is a priori approximation of the

source solution, andCs is a weighting matrix which provides the prior informa-

tion with the source space, such as convariance of the sourceor the approximate

estimation of the location.

Meanwhile, the constraint for the magnetic fields predictedfrom the estimated

sources are as follows:

Ĵ = min
J
[(LJ − B)T (LJ − B)] (2.20)

whereLJ are the magnetic field produced by the estimated sources, while B is

the measured magnetic field.

If the matrix Cs is positive definite which is invertible, the solution can bein-

ferred as:

Ĵ = Ĵ0 + C−1
s LT (LC−1

s LT )−1(B − LĴ0) (2.21)

If no prior source estimation is set, the equation can be reduced as follows:

The weighting matrix represents prior information about the source, which can

be incorporated to locate the source accurately. In practice, this prior information

can be obtained with the assisting from other brain imaging mathod, such as

fMRI (AM. et al., 2000). Nevertheless, if there is no location bias for the source,

or the source can be expected at any location in the source space,Cs can be set
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2.2 Introduction of Magnetoencephalography(MEG)

as the identity matrix which means all the location in sourcespace are provided

with equal weight. So that the equation above can be simplified as (Hauk, 2004):

Ĵ = LT (LL T )−1B (2.22)

This is the standard minimum-norm least-square estimate for Ĵ.

2. Regularization method

Since the simple minimum-norm estimation generally favorssurface source es-

timation, the sources in deeper locations requires more power for generating a

measurable signal at the sensor location. In this case, the leadfield normaliza-

tion is applied to the minimum-norm method to improve the estimation for deep

sources.

However, since noise is usually present in the measurement together with the

sources, the constraint equation2.20mentioned above can be written as:

(LĴ − B)TCb(LĴ − B) = ε > 0 (2.23)

whereε represents a part of the data that can not be explained clearly and is due

to the noise. Here,Cb is a positive definite weighting matrix which reflects the

known basic information of sensors or thereliability of the sensors (e.g. by their

standard deviations or covariances).

When ε reaches the optimal valueλ, the requiredregulaization parameteris

obtained asλ. The minimum-norm equation can then be written as:

Ĵ = Ĵ0 + C−1
s LT (LC−1

s LT + λC−1
d )−1(B − Ĵ0) (2.24)

The weighted minimum-norm estimation is derived as the equation above (Hauk,

2004), (Wagner et al., 1996), (Anders et al., 1993), (Phillips et al., 2002). Addi-

tonally, without the priori model̂J0, as well as assumed equal weight to all the

sensors and the source space(bothCd andCs) , the equation can be written as:

Ĵ = LT (LL T + λId)−1B (2.25)
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2.2 Introduction of Magnetoencephalography(MEG)

which is the standard regularized minimum-norm least-squares estimate.

2.2.6.4 Beamformers

• Introduction

A beamformer is a actually a spatial filter that combines linearly the output of the

sensors’ array so that the signal of interest can be enhancedand the background

noise is suppressed. In other words, a beamformer allows thesource of interest to

pass through each volume-grid node, or cortical surface, while the non-interested

sources, i.e.noise, are rejected. (Papanicolaou, 2009).(Preissl, 2005) (Singh

et al., 2002)

The beamformers are based on the concentration of the current sources on spe-

cific target locations. The particular parameters of these spatial filters are se-

lected so that certain properties of the current sources, such as location, reso-

lution , etc. are properly optimized. A weight is assigned for each sensor as

the scalar of the measured contribution. Based on all these weights , as well as

the information of predetermined target locations, the strength and orientations

of sources of interest can be estimated. (Hillebrand et al., 2005) (Papanicolaou,

2009)

Beamformers are actually divided into two types, adaptive and non-adaptive

beamformers. Generally, the non-adaptive beamformers usea fixed set of weights

to combine the signals from the sensors in the array. For example, the location of

the sensors in space and the wave direction of interest are primarily applied. In

contrast, the adaptive beamformers apply the unfixed weightwhich combine the

properties information of the signal directly acquired from the array of sensor.

In this case, the rejection of unwanted signals can be effectively improved. In

other words, the main feature of the adoptive Beamforming method apart from

the non-adaptive method is to adjust its performance to suitdifferences in its en-

vironment. (Papanicolaou, 2009)(Preissl, 2005) (Singh et al., 2002) (Barry et al.,

1988)

Compared with the minimum-norm method, beamforming does not need the

prior knowledge of the sources of interest, such as locations, and has better spa-
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2.2 Introduction of Magnetoencephalography(MEG)

Figure 2.8: Beamforming methods as a spatial filter (Hillebrand et al., 2005)

.

tial resolution since they provide less overlap for the reconstructed sources, and

are suitable with the estimation of both deep sources and superficial sources with

no location bias. However, beamforming shows limitation inthe case that esti-

mated sources are correlated in the temporal field. In other words, erroneous

and unstable reconstructed results are generated by applying the beamform-

ing method for estimating the temporally correlated sources. This limitation is

downplayed by many investigators who claims it is unlikely to have highly cor-

related brain activities in practice. Therefore, the beamforming method can be

generally used(Papanicolaou, 2009). However, it indeed causes the inaccuracy

of reconstruction for some estimation of temporally correlated sources, for ex-

ample, ’the highly correlated brain activity involves auditory stimulation and the

bilateral generators of the auditory m100 component, whereby bilateral activity

is expected within milliseconds when stimuli are presentedto a single ear’(Pa-

panicolaou, 2009).

• Filter design

The noisy measurements of magnetic fields on the scalp stimulated by the inter-

nal sources can be represented as follows:

B(t) = L J(t) + n(t) (2.26)

whereB(t) indicates the measurement of magnetic field on time pointt; L is

the leadfield,J(t) represents the current source at time pointt. n(t) is the added
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2.3 Kalman filter

noise in the time course assumed as zero-mean(E(n) = 0). Meanwhile, the

current sources associated with different dipoles are assumed to be uncorrelated,

giving the covariance matrix for measurement of magnetic fields in the time

series:

C(B(t)) = E{[B(t)− B̄(t)][B(t)− B̄(t)]T} (2.27)

Assuming at a single time pointt the estimated source signal on the specific

voxel k is equivalent to the product of weights and measured magnetic field as

follows:

Jk(t) = wk B(t) (2.28)

For the weightwk which governs the spatial filter of the spatial fieldΩ seg-

mented as volumes, the value of power gain is set as 1 at specific voxelk0 and

zero elsewhere;

The ideal filter is

wk Lk =

{

1 for k = k0
0 for k 6= k0

k ∈ Ω (2.29)

The power at voxel isS = wTCw which is minimized to subject towk ·Lk = 1.

then the beamformer weight can be calculated as:

wk =
C−1Lk

LT
kC

−1Lk

(2.30)

2.3 Kalman filter

2.3.1 Brief introduction

Since 1960s, the Kalman filter has been the subject of research and application based

on the publication of R.E.Kalman (Kalman, 1960) on a recursive solution to the discrete-

data linear filtering problem.
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2.3 Kalman filter

The Kalman filter is a set of mathematical equations providing an effective recur-

sive means for estimating the state of a process by minimizing the mean of the square

error. Basically, the Kalman filter is capable to estimate states in the past, present

and future of the dynamic system with hidden states. Also, the Kalman filter can be

applied to the estimation of the missing state, and the measurement of the estima- tion

quality. The origin of the Kalman filter can be explained bothin a probabilistic way

and a computational way respectively.(Welch and Bishop, 2006)

Generally, the Kalman filter applied for the state estimation can be divided into two

types, the discrete Kalman filter and the extended Kalman filter(EKF), which are used

for describing the linear system and non-linear systems, respectively. The problem

of interest is to estimate the statex ∈ Rn of a discrete-time controlled process that

is governed by alinear stochastic difference equation. The discrete Kalman filteris

applied in this case. However, the extended Kalman filter(EKF) is applied to the pro-

cess where the relationship between measurement and estimation is non-linear. Since

the MEG system in my research is assumed as the linear dynamicsystem, the discrete

Kalman filter is introduced here(Welch and Bishop, 2006) (Brown and Hwang, 1992.)

(Grewal and Andrews, 1993) (Sorenson, 1970).

2.3.2 The discrete Kalman filter

• The estimated process introduction

The Kalman filter is applied to the general problem of trying to estimate the state

x ∈ Rn of a discrete-time controlled process that is governed by alinear stochas-

tic difference equation. In other words, two necessary linear models a dynamic

model and a measurement model) to describe the process states are built as fol-

lows. The dynamic model, equation2.31describes the dynamic relationship be-

tween the different process states, while the measurement model,equation2.32

describes the relationship between the measurement and theestimation. (Welch

and Bishop, 2006):

xk = Axk−1 +Buk−1 + wk−1 (2.31)

41



2.3 Kalman filter

zk = Hxk + vk (2.32)

Here,xk is the state at stepk, uk−1 is the optional control input to the statexk,

zk is the measurement on the stepk. Note here that we only observezk andxk is

the hidden state which we would like to estimate it. Whilewk−1 andvk are the

noise for the estimation and measurement which are assumed to be independent

with each other and with normal distributions separately:

p(w) ∼ N(0, Q) (2.33)

p(v) ∼ N(0, R) (2.34)

The noise covarianceQ of dynamic process and the noise covarianceR of mea-

surement are assumed to be the constant value although they might change with

the time step or the measurement in practice.

Also, A is the weight matrix which relates the state on the previous time step

k − 1 and the current time stepk and models the dynamics of the system.B

is the weight matrix to relate the optional control inputuk−1 with the statexk

andH is the weight matrix which relates the statexk and the corresponding

measurementzk. It is notable thatA andH are assumed to be constant although

they might change with the time step or the measurement in practice.

Following the introduction of (Welch and Bishop, 2006), the origins of Kalman

filter can be explained in two ways, the computational origins and the probabilis-

tic origins.

• The computational origins of Kalman filter

For the time stepk, it is assumed that̂x−
k ∈ Rn is a prior state estimate at step

k, andx̂k ∈ Rn is a posterioristate estimate at the step k with respect to the

measurementzk. Then, the estimate errors fora prior anda posterioriare set

separately:

e−k ≡ xk − x̂−
k (2.35)
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2.3 Kalman filter

ek ≡ xk − x̂k (2.36)

In terms of the estimate errors above, thea prior estimate error covariance is set

as:

P−
k = E[e−k e

−T
k ] (2.37)

and thea posterioriestimate error covariance is set as:

Pk = E[eke
T
k ]. (2.38)

Thea posterioristate estimatêxk can be represented with a linear combination

of an a prior estimatex̂−
k and a weighted difference between an actual mea-

surementzk and the corresponding predicted measurementHx̂−
k which shows

as following(Welch and Bishop, 2006):

x̂k = x̂−
k +K(zk −Hx̂−

k ) (2.39)

It is notable that the differencezk − Hx̂−
k is also called theresidualwhich re-

flects the discrepancy between the predicted measurementHx̂−
k and the actual

measurementzk. The larger value of theresidualindicates the larger difference

betweenHx̂−
k andzk, in contrast, the zeros of theresidualmeans the two are in

agreement completely.

In equation2.39, weight matrixK is thegain which is used for minimizing the

a posteriorierror covariance2.38, and the form of which is given by:

Kk = P−
k HT (HP−

k HT +R)−1

=
P−
k HT

HP−
k HT +R

(2.40)

R andP− are two components governs the changing trend ofK. When the

measurement error covarianceR tends to be zero, the actual measurementzk is
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more and moretrustable, while the predicted measurementHx̂−
k is less and less

trustable. In other words, this can be indicated as:

lim
Rk→0

Kk = H−1 (2.41)

And, when thea priori estimate error covarianceP−
k tends to be zeros, the pre-

dicted measurementHx̂−
k is more and moretrustablewhile the actual measure-

mentzk is less and lesstrustable. This can also be shown as:

lim
P−

k
→0

Kk = 0 (2.42)

• The Probabilistic Origins of the Filter

From the introduction of the probabilistic origins of the Kalman filter in (Ja-

cobs, 1993) (Maybeck, 1979) (Brown and Hwang, 1992.), thea posteriori state

estimatêxk and error covariancePk can be written as:

E[xk] = x̂k (2.43)

E[(xk − x̂k)(xk − x̂k)
T ] = Pk (2.44)

and the state distribution at time pointk can be indicated as:

p(xk|zk) ∼ N(E[xk], E[(xk − x̂k)(xk − x̂k)
T ]) = N(x̂k, Pk) (2.45)

where thea posterioristate estimatêxk represents the mean of the state dis-

tribution with respect of the condition2.33and2.34are satisfied. In addition,

thea posterioriestimate error covariancePk represents the variance of the state

distribution.

• The Discrete Kalman Filter Algorithm

In terms of the pre-knowledge of Kalman filter indicates above, the classical

Kalman filter can be divided into two groups,time updatepart andmeasurement
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updatepart. There are equations which describes the current stateand error

covariance estimates to obtain thea priori state estimates for the next step of

time series intime updatepart, shown as the following equation2.46, 2.47:

x̂−
k = Ax̂k−1 +Buk−1 (2.46)

P−
k = APk−1A

T +Q (2.47)

while the equations in themeasurement updateprovide the corrected feedback

which obtains an improveda posteriori estimate from thea priori estimate,

showed as following equations2.48, 2.49, 2.50:

Kk = P−
k HT (HP−

k HT +R)−1) (2.48)

x̂k = x̂−
k +Kk(zk −Hx̂−

k ) (2.49)

Pk = (I −KkH)P−
k (2.50)

In the other words, this two groups of Kalman filter can be described aspredic-

tion step andcorrectionstep respectively. Both thesepredict-correctalgorithm

which is used for solving problem numerically can be presented as Fig2.9.

One appealing feature of the Kalman filter is itsrecursive nature. The process

is repeated that estimating the newa prior state with respect to the previousa

posterioriestimated state until thea posteriorierror covariance is located on the

acceptable region.

45



2.4 Kalman smoother

Figure 2.9: The discrete Kalman filter cycle. Thetime updateindicates the current

state estimate ahead in time. Themeasurement updateindicates the estimation by an

corresponding measurement at that specific time point

2.4 Kalman smoother

The Kalman filter above indicates the solution for the estimation of the state of the

dynamic system with the Markov property that the state depends on the previous state

but not any others. Based on the Kalman filter, there is no needto consider all the states

at previous times , and, for the estimation of the state and the uncertainty(covariance)

on specic time pointt, it is feasible to obtain the solution from only the status on

previous one time pointt − 1 as well as the noisy observationxτ = z1, , zτ for the

specic time pointt. It is notable that the difference betweent andτ generally provides

the process with variable uses. For instance, ifτ is equal to the current time pointt,

the process is calledfiltering; if τ is smaller thant, the process is calledpredicting;

and if τ is larger thant, the process is calledsmoothing. Here, from the explanation

of Kalman lter presented above, theKalman smoother equations are derived which

is capable of predicting the state at the specific time pointt with better accuracy(less

noisy) by assuming that the state depends on the next state aswell as the previous.
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2.4 Kalman smoother

(Kalman, 1960), (Jazwinski, 1970,) . The aim is to calculate the probability:

p(xt|z
τ ) (2.51)

This probability in Eqn2.51is assumed to be the Gaussian distribution in which

the main problem is focus on the calculation of its meanx̂τ
t and covarianceP τ

t :

x̂τ
t = E[xt|z

τ ] (2.52)

P τ
t = E[x̃τ

t x̃
τ
t |z

τ ] (2.53)

wherex̃τ
t = xt − x̃τ

t indicates the state prediction error.

Also, the Eqn2.52can be written as:

x̂τ
t = E[xt|z

τ ] = E[xt|xt+1 = x̂τ
t+1, x

τ ] (2.54)

For calculating the mean̂xτ
t and covarianceP τ

t , firstly, we can write the density

function as:

p(xt, xt+1|z
τ ) =

p(xt, xt+1, z
t, zt+1, · · · , xτ )

p(zτ )

=
p(zt+1, · · · , zτ |xt, xt+1, z

t)p(xt+1|xt, z
t)p(xt|z

t)p(zt)

p(zτ )

=
p(zt+1, · · · , zτ )p(xt+1|xt)p(xt|z

t)

p(zt+1, · · · , zτ |zt)

(2.55)

Continuously, we can write the following function:

p(xt|xt+1, z
τ ) =

p(xt, xt+1|z
τ )

p(xt+1|zτ )
(2.56)

With the calculation and inference from (Welling), the Kalman smoother equations

are obtained as Eqn5.21, Eqn5.22and Eqn5.23:

x̂τ
t = x̂t

t + Jt(x̂
τ
t+1 − x̂t

t+1) (2.57)
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Jt = P t
tA

T [P t
t+1]

−1 (2.58)

and

P τ
t = P T

t + Jt(P
τ
t+1 − P t

t+1)J
T
t (2.59)

The way to applying the Kalman smoother equation is separated into two steps.

Firstly, with the full set of term measurements, the Kalman filter is applied forward

from the state at initial time point till the state at timeτ is reached (wheret < τ

). Then, the process is moved backward by applying the Kalmansmoother equations

until state at the timet is estimated. Since all the state factors, such asx̂t+1
x+1, x̂

t
t+1 ,P t+1

t+1

andP t+1
t , t = 1 · · · τ are stored in the former step, it is easier for Kalman smoother

equations to apply them directly in the later step (Welling).

Comparing with the state estimation by Kalman filter (in the former step), the esti-

mated results indicate improved accuracy with less noise which is so-calledsmoothing

since more measurement in the time sequence are applied for processing. The Kalman

smoother effectively enhances the estimation of the hiddendynamic system.

2.5 EM algorithm

2.5.1 General introduction to the EM algorithm

In the Kalman filter model, there are a group of unknown parameters, such as[µ, Σ,

A, B, R, Q], which may need to be estimated for further processing. EM algorithm is

generally applied as the method for solving this.

Since its inception in 1977, EM algorithm has been widely applied as a general

purpose method for maximum-likelihood estimation(MLE) inthe variety ofincom-

plete dataproblems. This name was been given by Dempster, Laird and Rubin in their

fundamental paper in 1977 (Dempster et al., 1977). The full-name of EM algorithm

is called theExpection-Maximizationalgorithm which indicates the two steps of the

method, theexpectation stepor theE-stepand theMaximization stepor theM-step.

The missing data is estimated in the former step by filling theunknown parameters with

their expectation values. Then, in the latter step the new parameters are re-estimated in
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terms of the estimation of the missing data of the last step. This procedure is proceeded

iteratively until reaching the convergence (McLachlan and Krishnan, 1996).

2.5.2 Maximum-likelihood estimation (MLE)

The EM algorithm is actually the extensive application of the interactive computation

of maximum likelihood estimation(MLE). In this case, the Maximum-likelihood esti-

mation(MLE) is introduced here firstly.

Governed by a set of unknown parametersΘ , there is a density functionp(x|Θ)

describing the distribution of state, for instance,pmight be from the family of Gaussian

distribution, and the set of parametersΘ is actually the mean and covariance. There

is a set of the observation data sampled from the distribution above, showed asX =

x1, · · · , xN which is with the size ofN , are assumed as independent and identically

distributed with respect to the distributionp. Therefore, this density function ofX can

be written as following function:

p(X|Θ) =

N
∏

i=1

p(xi|Θ) = L(Θ|X) (2.60)

This function,L(Θ|X) is so-called the likelihood function ofX in which the data

X is xed but the set of parametersΘ are unknown. The goal of Maximum-likelihood

estimation(MLE) is to estimate the appropriate value ofΘ which is able to maximize

the likelihood functionL. This can be presented as following function for estimating

theΘ∗ :

Θ∗ = argmax
Θ

L(Θ|X) (2.61)

Since the Eqn2.60generally leads to a complicated calculation,log(L(Θ|X)) is

preferred for the maximization instead for easy analysis. Simply speaking, if the func-

tionp(x|Θ) is a single Gaussian distribution with the set of parameterΘ = (µ, σ2) , the

problem can be solved easily by setting the derivation to be zero and estimating the pa-

rametersµ andσ2 directly afterward. however, if the distribution is more complicated

than the single Gaussian distribution, it is usually to needmore elaborate techniques

rather than the analytical expressions (Bilmes, 1998).
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2.5.3 EM algorithm

Finding theincomplete datais the key problem for the EM algorithm. In the later

calculation, we assumeZ to be the complete data which cannot be fully observed,X is

denoted theobservation. And Y denotes theunobservable dataor missing data. The

complete data is therefore represented asZ = (X,Y) where the joint density function

of complete data can be indicated as:

p(Z|Θ) = p(X,Y|Θ) = p(Y|X,Θ)p(X|Θ) (2.62)

with respect to the Eqn2.62, the relevant likelihood function can be defined as:

L(Θ|Z) = L(Θ|X,Y) = p(X,Y|Θ) (2.63)

which is so-called thecomplete-data likelihood. Since the missing information is

assumed to be unknown, but governed by an underlying distribution, the incomplete-

data likelihood function can be referred asL(Θ|X).

The two steps of EM algorithm can be explained as follows:

1. E-step

Calculate the expectation of the complete-data log-likelihoodE[log p(Z|Θ)] =

E[log p(X,Y|Θ)] given the observationX and the parameter estimation in the

current step with respect to the missing dataY:

Q(Θ,Θ(i−1)) = E[logL(Θ|Z)|X,Θ(i−1)]

= E[log p(X,Y|Θ)|X,Θ(i−1)]

=

∫

y∈Y

f(y|X,Θ(i−1)) log p(X, y|Θ)dy

(2.64)

Here, the density functionf(y|X,Θ(i−1)) in Eqn2.64above is marginal distribu-

tion of the unobserved data given the observed dataX and the parameters in the

current step; and,Y is the possible space ofy . Generally, this density function

can be determined in terms of the current problem. Also, it can be applied as the

form of f(y|X,Θ(i−1)) = f(y|X,Θ(i−1))f(X|Θ(i−1)). Sincef(X|Θ(i−1)) is not

depend onΘ, the density function is actually not affected by this extrafactor.

50



2.6 Bayesian image super-resolution

2. M-step

Choose parameterΘi to be any value ofΘ ∈ Ω (whereΩ is the parameter space)

that maximizesQ(Θ,Θ(i−1)) in the former step(Maximum likelihood):

Θ(i) = argmax
Θ

Q(Θ,Θ(i−1)) (2.65)

After Θ(i) is obtained, theE-step andM-step are then carried out again with

Θ(i). These two steps are processed iteratively as each iteration is guaranteed to

increase the log-likelihood until the difference (McLachlan and Krishnan, 1996):

L(Θ(i) −Θ(i−1)) (2.66)

become convergence.

EM algorithm and its extensions are the standard tools for applying the statistical

methods to solve the incomplete data problems currently. Ithas been widely used

for variable practical implements. For instance, medical imaging, regression, robust

statistical modeling , survival analysis, factor analysis, nite mixture analysis, and so on

(Bilmes, 1998), (McLachlan and Krishnan, 1996).

2.6 Bayesian image super-resolution

2.6.1 Introduction to super-resolution

Super-resolution( also written as superresolution in somearticles) is one of the classi-

cal computer vision methods which has important applications in the field of remote

sensing, satellite imagery, medical imaging, military surveillance and face recognition.

The principle of the method is to reconstruct the high-resolution image from a set of

low-resolution images. In other words, it is possible to estimate the high-frequency

information of the scene above the Nyquist limit of the individual source images when

the relevant distorted low-resolution images are provided(Tipping and Bishop, 2007).

In super-resolution, the low-resolution images are assumed as discretized versions

of a high-resolution image with various distortions in the production of the low-resolution
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images. Further more, there are a number of different high-resolution images which

may generate the set of known low-resolution images given which provides plenty of

possible solutions to the reconstruction. It is important to determine appropriate forms

of prior regularization, based on the practical situation,so that the optimal solution

can be identified with reasonable parameters of the model . The model is applied as

the constraint for the final high-resolution image. These constraints make the problem

more tractable so that an appropriate solution of high-resolution images are more likely

than all others.

In the problem of super-resolution, information from the low-resolution pixels is

crucial in order to generate an accurate high-resolution image. Image registration is re-

quired on the subpixel level. Moreover, since the process isto reconstruct the frequency

information above the Nyquist limit of the low-resolution images, the pixels of each

low-resolution images should not be located on the same grid(so-called co-located)

when there is no prior as the restriction. Otherwise, there will not be further informa-

tion which can be extracted from these known low-resolutionimages which leads to

poor reconstruction of the high-resolution image. If that is the case, the best method of

reconstruction is to average the information of the pixels on each low-resolution image

which at least obtains a denoised result(Dalton, 2004).

Before applying the method of super-resolution, the relevant low-resolution images

can be obtained by either of the following methods. Firstly,they may be generated by

the infinitely high-resolution real world,such as: a hand-hold camera, or a detector

array which is not sufficiently dense to adequately sample the scene with the desired

field of view . Besides, they can be produced from the innatelyhigh-resolution images

with the known transformation, such as rotation, downsampling and blur (Tipping and

Bishop, 2007), (Dalton, 2004). The evaluation of the reconstructed result of super-

resolution depends on whether there is reliable relevant high-resolution image exist-

ing. If the low-resolution images are produced by a sensor asthe first case explained

above, it is impossible to find the original high-resolutionimage for comparison. If

a high-resolution is available, it is reasonable to use the known high-resolution image

for testing. By downsampling the low-resolution images viaa set of known transfor-

mations , and using the super-resolution to reconstruct thehigh-resolution image we

can compare with the original high-resolution image. However, there is still problem
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here since it is difficult to make sure the downsampling actually models the physical

sensor.(Irani and Peleg, 1991).

2.6.2 Previous work on super-resolution

Improvement of image resolution depends on the physical properties of the sensors,

such as the spatial response, optics and the density of the detectors. In the ideal

case, downsampling is the only difference from the low-resolution image to the high-

resolution image. However, the image motions may also be present, such as translation,

rotation, or more complex geometric distortions. This is similar to the situation to take

the images continually of the same subject using a hand-heldcamera so that the distor-

tions, eg, translations, rotations, are produced in these images. It is worthy of note that

the situation that the scene changes itself is not considered here(Tipping and Bishop,

2007).

This problem of image reconstruction has been addressed by anumber of algo-

rithms. The earlier research on super-resolution dates back to the work of a frequency

domain approach by Tsai and Huang (Huang and Tsai, 1984). Since then, there have

been a number of papers published which the problem.

D. Gross (Gross, 1986) estimated the high-resolution image with the assumption

that both the imaging process and precise relative shifts ofthe input pictures are known.

Then, the interpolation is applied for merging a set of the low-resolution pictures and

a blurred image is obtained with higher spatial sample rate.A restoration filter is built

by applying pseudo-inverse techniques to a matrix representing the blur operator. It is

directly used for de-blurring that image to obtain the high-resolution image (Irani and

Peleg, 1991).

The imaging process of the super-resolution can be represented as the following

model (Keren et al., 1988):

gk(m,n) = σk(h(f(x, y)) + ηk(x, y)) (2.67)

wheregk is thekth observed (low-resolution) image,f is the original scene which

is the desired image( high-resolution),(x, y) is representing the pixel coordinate for

the high-resolution image, while(m,n) is representing the pixel on the low-resolution

image after reconstruction,h is a blurring operator,σk is the nonlinear function which
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2.6 Bayesian image super-resolution

describe the relation between the high-resolution function and low-resolution image in

kth frame ,ηk is the added noise;

Peleg and co-workers approach (Peleg et al., 1987) (Keren et al., 1988) is based

on the inversion of a transform from a assumed high-resolution image to a sequence of

simulated low-resolution images. Specically, the high-resolution image above comes

from an initial guess, while an error function measures the difference between simu-

lated low-resolution images and the actual ones observed. The results of this approach

shows plausibility and high-sensitivity on the noised-images in practice.

Irani and Peleg (Irani and Peleg, 1991) described a approach which is inspired from

the reconstruction of computer aided tomography(CAT), which has a resemblance to

superresolution. ”In tomography, images are reconstructed from their projections in

many directions”. This property can be directly applied to the super-resolution since

the multiple low-resolution images can be assumed as the projections of the different

images of the same scene and are used for the reconstruction of high-resolution image

via the approach. The low-resolution images are registeredfirstly with the uniform mo-

tion of translation and rotation by a proven method. The initial high-resolution image

is guessed with respect of the information above . Additionally, it is used for simulat-

ing a set of synthetic low-resolution images correspondingto the actual low-resolution

images with the Point Spread Function(PSF) of the sensor manually measured by a

control image. Ideally, if the recovered high-resolution is correct, the simulated low-

resolution images should be as same as the actual low-resolution images. The error

function between these two groups of images is recursively optimized to recover the

best high-resolution image. Additionally, this approach shows good results as long as

the image can be divided into regions each of which is subjected to a uniform motion

(Keren et al., 1988).

2.6.3 MAP method of super-resolution

Maximum a posterior(MAP) estimation is popularly used in super-resolution. Firstly,

the initial registration of a set of low-resolution images is found and kept fixed in

the process. A probabilistic model describing the high-resolution image is generated

and maximum likelihood is applied to find the high-resolution image. However, some

tricky situations may exist. There is not sufcient high-frequency information obtained
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2.6 Bayesian image super-resolution

from the low-resolution images if the high-resolution image contains too few pixels,

or it becomes ill-conditioned if the high-resolution imagecontains too many pixels. In

this case, the a prior distribution over the high-resolution image can be applied as a

regularization term. With these regularization terms, themaximum likelihood solution

is regularized and the problems above are tackled(Nguyen et al., 2001),(Smelyanskiy

et al., 2000), (Capel and Sserman, 2000),(Hardie and Barnard, 1997).

2.6.4 Bayesian image super-resolution

Tipping and Bishop (Tipping and Bishop, 2007) have tried to improve the super-

resolution by applying Bayesian method. Within their work,the Bayesian super-

resolution shows a resemblance to the MAP approach as both ofthem are using a

Gaussian prior, moreover, optimizing the registration parameters(including the trans-

formation and rotation of the low-resolution images) are part of the maximization pro-

cess. However, the Bayesian super-resolution method also has distinguishing proper-

ties beyond the previous approaches.

Firstly, with this Bayesian treatment of the super-resolution, the image registration

parameters can be estimated in terms of the Bayesian marginalization on the unknown

high-resolution image. In this case, the registration information of the low-resolution

images, such as rotation, transformation and even the downsampling value, can be

estimated beforehand. Additionally, the unknown point spread function (PSF) can

also be estimated before the reconstruction of the high-resolution images. The point

spread function (PSF) is applied as the process to obtain thelow-resolution images

by smoothing the high-resolution image. In previous approaches, PSF is generally

assumed as known in advance. For instance, the PSF is estimated only by the low-

resolution images and is kept fixed in the imaging process (Capel and Sserman, 2000)

, or is approximately measured from the simulated process ofscanning and imaging

( Irani and Peleg, 1991). Whereas, this assumption does not work realistically in prac-

tice since the PSF is not able to be determined accurately without the information

of the high-resolution image. The Bayesian marginalization provides a coherent and

single framework in which the PSF can be determined along with the registration pa-

rameters as well as the high-resolution image. This gives more reasonable estimation

assumptions for the image reconstruction (Tipping and Bishop, 2003).
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2.6 Bayesian image super-resolution

Instead of the registration parameters, PSF and high-resolution image are esti-

mated and optimized in a joint process as MAP super-resolution performs, Bayesian

marginalization allows the registration parameters as well as PSF to be estimated in ad-

vance. With the optimizations of them, the high-resolutionimage can be reconstructed

with accuracy. Also, Tipping and Bishop (Tipping and Bishop, 2003) presented the

positive results of the Bayesian super-resolution by comparing with super-resolution

via MAP.

In our study, the Bayesian super-resolution has been applied for the MEG source

reconstruction distributed on the cortical mesh with high spatial resolution. With re-

spect to the advantages of Bayesian marginalization illuminated above, the relevant

setting and the estimation process of the reconstruction approach can be proceeded re-

alistically and accurately, which provides further possibility to improve the quality of

the MEG signal reconstruction.
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Chapter 3

Basis Functions Source Model Applied

to MEG Source Reconstruction

3.1 Brief introduction

Magnetoencephalography (MEG) is a new and non-invasive technique for the func-

tional imaging of the human brain that has been widely used inboth research and

clinical application, such as intractable epilepsy, schizophrenia, depression, Parkin-

son’s and Alzheimers diseases. The principle of the technique is to measure the mag-

netic field surrounding head that via the extremely sensitive sensors located outside the

scalp, i.e. superconducting quantum interference devices(SQUIDs), which is shown in

Fig 3.1. The measured magnetic field is mainly generated by the electronic activity in

the brain (Preissl, 2005) (Kishida, 2009) (Srikantan et al., 2006). Based on the corre-

sponding MRI scan, MEG produces a spatial-temporal patternof the electronic activity

in the cortex. Although techniques, such as fMRI, show outstanding spatial resolution,

MEG provides superior temporal resolution that complements the weakness of brain

imaging in the time domain (Rodriguez et al., 2003) (Baryshnikov et al., 2004).

The MEG source reconstruction from the measured magnetic field is typically an

ill-posed inverse problem that is theoretically insolublewithout additional informa-

tion (Preissl, 2005). By now, there are many classical methods exist in this fieldwhich

have been applied widely, such as the beamfroming method (Barry et al., 1988) (Ro-

driguez et al., 2003), and the minimum-norm method. However, there are limitations in
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3.1 Brief introduction

Figure 3.1: This figure shows the feature of MEG technique andthe principle compo-

nents of MEG data processing. The picture on the left indicates the origin of MEG:

The measured magnetic field is mainly generated by the electronic activity in brain.

And MEG is applied to measure the magnetic field surrounding head via the extremely

sensitive sensors located outside scalp; The right pictureindicates three principle com-

ponents govern the MEG data processing: the measurement of magnetic field from sen-

sors, denoted as ’B’, the current source ’J’ inside of the brain with individual direction

and strength and the leadfield configuration ’L’ which connects the linear relationship

between ’J’ and ’B’.
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3.2 Forward problem

the accuracy of data using these classical methods. For instance, ’under the condition

that in certain states of anesthesia, coma, and epilepsy, the beamformer formulation

may prove to be in conflict with the actual state of the brain’ (Preissl, 2005). These

algorithms can produce implausible results, which means that there is a gap between

the actual dynamic state of the brain and the result of these methods, which affects the

reliability of the MEG technique in clinical applications.

Therefore, this topic aims to explore a new solution to tackle the accuracy problem

discussed above and attempts to bridge this gap. In this paper, we try to implement the

MEG spatial-temporal source reconstruction through the global basis function source

model. This chapter has been organized as follows. First, the forward model is in-

troduced as well as a general description of the physics involved. All approaches of

MEG signal reconstruction are based on the essential knowledge of the forward for-

mula. Then, we demonstrate the process of cortical mesh extraction based on MRI scan

and discuss the structure of each component of the model. Then, we introduce basis

function source model as the solution of source reconstruction. Finally, this extended

source model has been implemented to solve the inverse problem for MEG. Moreover,

the robust stability of this MEG reconstruction solution isinvestigated in two ways.

One is to compare it with the classical method of minimum-norm. The other is to ap-

ply the algorithm to signals with varying noise levels. The results show robustness to

noise interference and better performance than minimum-norm. This method provides

a new approach to the MEG signal reconstruction.

3.2 Forward problem

The concept of MEG sensing is to detect currents flowing in thebrain from the mag-

netic flux recorded at a number of superconductive coils placed near the scalp. The

magnetic field generated at a locationr on the scalp is given by the Biot-Savart law:

B(r) =

∫

Ω′

µ0

4π

j(r′)× (r− r′)

|r− r′|3
dΩ′ (3.1)

WhereΩ
′

is the volume in which the currents reside. Under the spherical sensor

model, the coils are placed radially around the origin of thecoordinate system, and so

the normal to coili is given byri/ri. r i is the position of the coil. It is noticeable that
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3.3 Cortical mesh extraction

’J’ represents the total current (primary currents + volumecurrents)(Barth et al., 1986).

As the measurement is assumed on only the radial component ofthe magnetic field at

single homogeneous spheroid, the majority of contributions of the volume currents

vanish and the MEG measurement are only from the primary termapproximately in

this case. The magnetic flux detected by coili is then:

bi =
r

r
·B(r i)

=

∫

Ω′

µ0

4π

r · j(r′)× (r− r′)

ri|r− r′|3
dΩ′

=

∫

Ω′

µ0

4π

(r− r′)× r

r|r− r′|3
· j(r′)dΩ′

=

∫

Ω′

li(r
′) · j(r′)dΩ′

(3.2)

whereli(·) is leadfieldof coil i (shown in Fig3.2), with

li(r)
′ =

µ0

4π

(ri − r′)× ri

ri|ri − r′|3
(3.3)

The problem is therefore essentially a linear one; the coil flux is a linear com-

bination of the leadfield components and the currents. And, the leadfieldli(r′), the

factor indicates the connectivity between the measrement of magneticfield atri and

the source locationr can be pre-computed with the expression of the product of radial

detectors’ information and the constant permeability of the head.

3.3 Cortical mesh extraction

3.3.1 Graph representation of mesh

The discrete structure of cortical surface can be expressedas a triangulated meshM

that can be used to approximate the cortical surface embedded in Euclidean spaceRk.

It is composed of a topological partM = (V,E, F ) and a geometrical realization

M = (V,E,F) (Gabriel, 2007).

The topologyM of the mesh is composed of : - Vertices: this is an abstract setof

indicesV ≃ 1, . . . , N ;

60



3.3 Cortical mesh extraction

Figure 3.2: Each single plot shows the pattern of leadfield distributed on a surface

reconstructed by 248-sensor points for an single mesh vertex. These 20 plots demon-

strate the leadfield pattern for first 20 vertices of cortex mesh. The region responding

signal from strong to weak on the color map is represented by the color from red to

blue.
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3.3 Cortical mesh extraction

- Edges: this is a set of pair of verticesE ⊂ V × V which is assumed to be

symmetric:

(i, j) ∈ E ⇐⇒ i ∼ j ⇔ (j, i) ∈ E. (3.4)

- Faces: This is a collection of 3-tuples of verticesF ⊂ V × V × V with the

relationship between any two of the three:

(i, j, k) ∈ F =⇒ (i, j), (j, k), (k, i) ∈ E. (3.5)

with the assumption that no isolated edges exist:

∀(i, j) ∈ E, ∃k, (i, j, k) ∈ F. (3.6)

The adjacency matrixA can be used to express the connection relationship(if they

connect as a edge) between any two vertices of the mesh.A is a large sparse symmetric

matrix whereAij = 1, if (i, j) ∈ E, andAi,j = 0, otherwise.

Meanwhile, with the information of the vertices and edges ofmesh above, a undi-

rected graphG = (V,E) is constructed for the representation of the cortex. The

geometric realizationM is defined through the spacial localization of the set of ver-

tices,V, which in our study is stored as aN × 3 matrix. N is the number of vertices

with each row[Vi,1,Vi,2,Vi,3] stores the localization information ofith vertex in 3D.

Additionally, the faceF is stored as aM × 3 matrix whereM is the number of faces

and a row[Fj,1,Fj,2,Fj,3] represents the indices of a face.Fj,1, Fj,2 andFj,3 indicate

the indices of the vertices which construct the facej. M can be displayed as a 3D

surface on the computer screen. Fig3.3 shows the 3D display of the cortical mesh,

with a zoom on the faces of the mesh.

3.3.2 Obtain the triangular mesh of grey matter from MRI

The entire 3D brain volume is a large and detailed structure and it difficult to accurately

reconstruct currents within this volume using a small number of magnetic fluxes at the

coils. To simplify the problem, we can assume that the currents flow only in the cortex,

the outside surface of the brain (the grey matter). In other words, This essentially

reduces the problem to a reconstruction problem over the cortex surface. The current

62



3.3 Cortical mesh extraction

Figure 3.3: Top Left: shows the outside surface of the brain (the grey matter) and the

sensor set located outside of cortex; Top Right: extracted mesh of the cortex from MRI

using FreeSurfer, the resolution of the mesh is: 262,658 vertices, 525,308 faces (the

part with red circle is emphasized for observation); Bottom: these two figures show

the zoomed images of the emphasizing part of the mesh figure ofTop Right.
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3.3 Cortical mesh extraction

sources are assumed to distributed on the whole cortical surface rather than the brain

volumes, and all the current sources occur on the deep volumes are projected on the

cortical surface. This approximation simplified the problem, however, it may generate

the uncertain inaccuracy when the deep current sources are projected on the cortical

surface. In order to construct a model of the cortex, we need astructural scan of the

brain, which is achieved through a magnetic resonance imaging (MRI) scan. This

scan is usually taken when an MEG scan is conducted since it isused to relate MEG

responses to structural brain features.

Extraction of the cortex from an MRI scan is a well studied problem and there are

a number of software tools which can perform this task. We useFreeSurfer(5.0.0) for

this process.

Freesurfer is a set of software tools specifically for reconstruction of the brain’s

cortical surface from the structural MRI, as well as embedding the functional MRI

data onto the reconstructed cortical surface, based on the study of the cortical and sub-

cortical anatomy. The tools recognize and construct modelsof the boundary between

the cortical gray matter, white matter as well as the pial surface. Based on these recon-

structed model, an array of anatomical measures is generated, e.g. cortical thickness,

surface area, curvature, and surface normal at each point onthe cortex (Dale et al.,

1999). For the better visualization, the surfaces can be inflatedand/or flattened (Fis-

chl et al., 1999). Moreover,a cortical surface-based atlas has been defined based on

average folding patterns mapped to a sphere. Based on a high-dimentional non-linear

registration, the surfaces can be aligned with this atlas. The spherical atlas naturally

forms a coordinate system in which point-to-point correspondence between subjects

can be achieved (Fischl and Dale, 2000). Since the MEG research is based on the

large-sized data analysis,Freesurferis very ideal as its pipeline is automated.

With the application of this software, a mesh description ofthe cortical surface is

generated in terms of a set of 3D points and and adjacency matrix which describes

the topology of the surface (5.0.0). The resulting mesh which is assumed to be an

undirected graph are showed in Fig3.3.

Finally we must perform an alignment step to bring the mesh inregistration with

the MEG data. This is achieved using fiducial markers in the MRI and MEG scans.

The result of this process is an adjacency graphA describing the cortex topology as

well as geometry, and aligned with the MEG data.
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3.3 Cortical mesh extraction

The resulting mesh defines a discretization over the cortex of the brain. In this case,

the neural current sources are assumed located on the vertices of the cortical mesh.

On each vertex, there is one current vector with independentstrength and direction,

showed as Fig3.4. In the case that no current evoked on that region of corticalmesh,

the current vector on the vertices there shows zero for both direction and strength. Our

task is then not to find a continuous current distribution, but rather to find an estimate

of the current at each discrete points, i.e. each vertex of the mesh. We can therefore

formulate a modified forward problem

bi =
∑

n∈VN

li(xn)j(xn) (3.7)

whereVN is the vertex set of the mesh, andxn is the position of thenth vertex. If we

define the leadfield matrix as:

L =















l1,x(r1) · · · l1,x(rN) l1,y(r1) · · · l1,y(rN) l1,z(r1) · · · l1,z(rN)
... · · ·

...
... · · ·

...
... · · ·

...
li,x(r1) · · · li,x(rN) li,y(r1) · · · li,y(rN) li,z(r1) · · · li,z(rN)

... · · ·
...

... · · ·
...

... · · ·
...

lI,x(r1) · · · lI,x(rN) lI,y(r1) · · · lI,y(rN) lI,z(r1) · · · lI,z(rN)















(3.8)

together with the cortical distributed current distribution:

J = (Jx,Jy,Jz)
T (3.9)

where the number of sensor arrays isI, and the number of the mesh vertices isN .

We can write the linear forward problem as:

B = LJ (3.10)
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3.4 Geometrical expression of cortex by basis functions

Figure 3.4: This figure indicates the assumption of current distribution. The neural

current sources are assumed discretized on the vertices of the cortical mesh. On each

vertex, there is one current vector with independent strength and direction. If there are

no current sources evoked in that region, the current vectors there shows zero to both

strength and orientation.

3.4 Geometrical expression of cortex by basis functions

3.4.1 The graph Laplacian

The cortical mesh Laplacian plays important role in our MEG current source recon-

struction algorithm. As a branch of the mathematics that is concerned with character-

izing the structural properties of graphs using the eigenvectors and eigenvalues of the

adjacency or Laplacian matrices, the Laplacian of the graphhas been widely studied

by the spectral graph theory (Chung, 1997), (Cvetkovic et al., 1997).

The eigendecomposition of a graph provides us with a set of eigenvalues and eigen-

vectors which describe the structure of the graph. We begin by constructing the Lapla-

cian of the graph (Gabriel, 2007):

L = D−A (3.11)

whereD is the degree matrix, a diagonal matrix represents the connection degree of

each vertex showing in the diagonal elements), which is alsothe combinatorial weights

66

Chapter2/Chapter2Figs/current_distribution.eps


3.4 Geometrical expression of cortex by basis functions

Figure 3.5: The figure shows an example to introduce the Laplacian matrix, adjacency

matrix and degree matrix for a graph. A patch of graph (V=6 , E=8 ) is showed in

the first grid. According to this graph, the associated degree matrix is extracted in the

second grid. It is a diagonal matrix with connection degree of each vertex showing in

the diagonal elements. The corresponding adjacency matrixis showed in the third grid.

It is a symmetrical matrix and each element indicates the adjacency relation between

related two vertices. The corresponding Laplacian matrix is showed in the fourth grid

which is a matrix representation of the graph which is calculated by the difference

between degree matrix and adjacency matrix.
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3.4 Geometrical expression of cortex by basis functions

of the mesh depends only on the topology(V,E) of the mesh;

∀(i, j) ∈ E, ωi,j = 1 ; D = diagi(di), with di =
∑

j

wij (3.12)

while A is the adjacency matrix. The Fig3.5 gives an small example of Lapla-

cian matrix, adjacency matrix and degree matrix of a graph. We then compute the

eigendecomposition.

3.4.2 Analogy of basis function for the cortical mesh: Laplacian

eigenvectors corresponding to the smallest eigenvalues

We extend the idea of spatial basis functions to develop the current source model which

represents the neural current arbitrary spatial distribution on the cortex. This model

describes the current distribution using a set of global basis functions (Partha and Mi-

tra, 2005). In fact, there are various types of basis function which can be applied

for the solution above. In particular, spherical harmonic basis function, which apply

to a spherical head model (Partha and Mitra, 2005). Here, we develop basis function

specifically for our non-spherical cortical mesh. In the light of graph theory, we choose

the eigenvectors corresponding to the smallest eigenvalues as the analogous of basis

functions, showed as the Eqn3.13.

L =
∑

i

λiφiφ
T
i (3.13)

Here,i is the index of the mesh vertices. The eigenvectors are orthogonalφT
i φi =

1 and naturally form a set of basis functions over the graph. Wecan therefore use

these to reconstruct any signal over the surface of the cortex. There are some of the

benefits of using these basis functions: firstly, they are tailored to the cortical surface

mesh; secondly, they are including the information of the topology of the cortical mesh;

thirdly, the scale of the basis function set can be selected depending on the eigenvalues

straightforwardly.

The current signal is constructed as three components on x, yand z orientation:

jx(i) =
T
∑

t=1

axtφt(i); (3.14)
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3.4 Geometrical expression of cortex by basis functions

jy(i) =
T
∑

t=1

aytφt(i); (3.15)

jz(i) =
T
∑

t=1

aztφt(i); (3.16)

whereT is the number of the Laplacian eigenvectors corresponding to the smallest

eigenvalues s we choose.

According to the Eqn3.14, Egn3.15and Eqn3.16, the currentsJ can be written

as :

J = Φ̃a (3.17)

where

Φ = (Φ1 · · · Φt · · · ΦT ) (3.18)

Φ̃ =





Φ O O
O Φ O
O O Φ



 (3.19)

and

a =
(

ax1 · · · axt · · · axT ay1 · · · ayt · · · ayT az1 · · · azt · · · azT
)T

(3.20)

The currentsJ rely on two components, the basis functionsΦ and the correspond-

ing coefficientsa. It is worthy of note that the basis functionsΦ here represents the

geometrical information of the cortical mesh and the corresponding coefficienta rep-

resents the information of the variety of the current sources distributed on the cortical

mesh. The solution of the currentJ reconstruction problem is then to find the right

coefficientsa in 3-space. This is actually a typicalinverse problem.

The meshes describing the cortex are generally with a large number of vertices and

edges. It is a difficult computational problem to decompose such large graphs using

standard eigenanalysis techniques. To solve this problem,we begin by partitioning the
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3.5 Basis functions source model for MEG reconstruction

mesh into left and right hemispheres; since these parts of the cortex are largely sep-

arate, there is limited connectivity between the two and we can decompose the parts

individually, saving a large amount of computation. Also, the mesh graphs are sparse,

the Lancosz method (Saad, 1992) can be used to decompose the graph efficiently. For

reasons explained in the next section, we only require a limited set number of eigen-

vectors, making this method particularly efficient.

3.5 Basis functions source model for MEG reconstruc-

tion

The inverse problem for MEG is the problem of finding a set of currents in the cortex

which give the correct magnetic fluxes at the coils. Since thecortical mesh typically

has several thousands vertices and the the number of MEG sensor are limited(the MEG

machine in our experiment is with 248 sensors), the problem of reconstructing the

current at each vertex is severely under-constrained. We can only hope to construct

a much lower resolution version of the signal from the coil responses, so it does not

make sense to use rapidly varying basis functions in the reconstruction. Furthermore,

the eigenvectors corresponding to the largest eigenvectors are mainly representing the

variational information on the cortical surface which associated to signal noise. For

this reason, we concentrate on the smoother basis functions; for the Laplacian, these

are the eigenvectors corresponding to the smallest eigenvalues. By choosing the correct

number of basis functions,T , we can get an under-constrained problem which we can

fit with least-squares and is resistant to noise. Refer to theEqn3.10, Eqn3.17, we can

write the forward problem as:

B = LJ

= LΦ̃a
(3.21)

With respect to the knownLΦ̃ and the measurementB, we are trying to computea.

This problem has the same structure as Eqn3.10. Therefore,LΦ̃ can be assumed as a
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3.5 Basis functions source model for MEG reconstruction

Figure 3.6: This figure shows the pattern of new leadfieldW . Each cortical image

indicates leadfield of the case that a single current locatedon one individual vertex with

the set orientation and strength but the value of current distributed on other vertices

show as zero. It also indicates the sensitivity of the sensorset to one geometrical point

( eg, the individual vertex of the mesh) on the cortex. The colour from red into blue

presents the change of the response from strong to weak. Thisfigure only provides the

leadfield pattern for first 20 vertices of all the vertices of the cortical mesh.

new leadfield, denoted asW = LΦ̃ (shows in Fig3.6). Then the equation above can

be written as:

B = Wa (3.22)

which is also a typical inverse problem.

We can obtain a numerically stable estimate ofa by solving the set of linear equa-

71

Chapter2/Chapter2Figs/LEADFIELD_2.eps


3.6 Results

tions using LU-decomposition.

a = W−1B

= (LΦ̃)−1B
(3.23)

Choosing the basis functions is crucial to the solution of the inverse problem. If

we are interested in reconstructing the global current distribution in the brain, then we

need to select large-scale basis functions. These are easily found as they correspond

to the eigenvectors with the smallest eigenvalues from the Laplacian. Since the eigen-

vectors corresponding to the top few largest eigenvalues generally reflect variational

information of the graph , in contrast, the eigenvectors corresponding to the top few

smallest eigenvalues representing the smooth informationwhich is required as the gen-

eral information of the geometry of the mesh in our study. On the other hand, in order

to provide a well-conditioned solution to the inverse problem, there is also a limit to

the number of basis functions we can select. To avoid the overdetermination, the total

number of coefficientsT for each component we can determine must be less than the

number of sensor responses, 248(in the presence of noise). Since each basis function

is used to reconstructx, y andz components, we have3T < I whereI is the number

of coils. In this case, we have 248 coils and chooseT = 82, shows in Fig3.7. This

method of basis functions source model for MEG reconstruction is also called as ”basis

function method” in the following thesis.

3.6 Results

3.6.1 Toy example

A toy example is applied to test the basis function method. Here, instead of using

the spheroid cortical surface mesh, a surface mesh (vertices: 1026, faces: 2048 ) of a

sphere is applied firstly, shown as Fig3.8.

Two diffused sources distribution are embedded on the surface mesh of the sphere,

and assumed as the simulated current sources. According to the Biot-savart law shown

in Eqn3.1, the measurements of magnetic field are generated separately with/ without

the Gaussian noised added, shown in Eqn3.9. Basis function method is then applied

72



3.6 Results

Figure 3.7: The pattern of first20 smallest eigenvectors on left-hemisphere of corti-

cal mesh. The basis functions is corresponding to the eigenvectors with the smallest

eigenvalues from the Laplacian. The color from blue to red shows the cortex effected

by the corresponding basis function from weak to strong. Theportion with red color of

each image shows the location that the corresponding basis function mainly represents

The first color map shows the uniform information of the background, and the rest of

the color maps show the detail geometrical information.
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3.6 Results

Figure 3.8: This figure shows the surface mesh of a sphere usedfor the toy example.

The left shows the flat scene of sphere, and the right shows thefaceted scene of sphere.

with respect to the geometrical information of the surface mesh as well as the mea-

surements.

From the reconstruction results of this toy example, shown in Fig 3.9, it is explicit

that the reconstructions via basis function method can provide the correct position of

the simulated current sources.

3.6.2 Synthetic results

For better evaluating the Basis function method, two groupsof simulated current

sources are generated for synthetic experiment, i.e. articial current source distribu-

tion and realistic current source distribution inAppendix B. For the former type (called

assynthetic sources A) , the fixed current source values are set on 30 particular vertices

of mesh we choose but the values of current sources on other vertices are set as zero;

while in the process of generating the later one(called assynthetic source B), the cur-

rent source distribution on the cortical mesh are from the random results of previous

current source reconstruction of the real MEG data with random stimuli on cortical

surface at one time point. The detailed information of thesetwo groups of simulated

current sources is given inAppendix B.
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3.6 Results

Figure 3.9: This figure demonstrates the reconstruction results of basis function

method on the sphere mesh. In the first row, the left pattern shows the superposi-

tion of the sensor set and sphere surface, and the right one shows the simulated source

distribution. In the second row, the left pattern demonstrates the 2D projected map

of the coil measurement without the Gaussian distribution added; and the right pat-

tern shows the reconstruction result by the basis function method. In the second row,

the left pattern demonstrates the 2D projected map of the coil measurement with the

Gaussian distribution added; and the right pattern shows the reconstruction result by

the basis function method.
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3.6 Results

According to the manual of softwareMNE ( (MNE)), the size of cortical surface

mesh of the gray matter is generally set as2600 vertices. This mesh can be obtained by

simplifying the realistic head model (262658 vertices) that is generated from a segmen-

tation of a T1 MRI image byFreeSurfer (5.0.0) which produces the cortical surface

mesh from the MRI images with high spatial resolution ( (5.0.0)). Then, the temporal

and spatial correlations of the activity can be observed. The figures (FigB.2, Fig B.3,

Fig B.5 and FigB.6) show the maps of cortical activity and the example time courses

of the MEG measurement.

3.6.2.1 Reconstruction of simulated current sources

Before showing the reconstruction results, we firstly introduce the Minimum-norm

method which is used for the reconstruction comparison here.

The minimum-norm estimation technique is one of the classical methods used for

MEG signal processing, especially for no reliable a priori information about current

source generations is available. The unique solution to theinverse problem shown

in Eqn 3.10 can be found by combining constraints on the solution and constraints

on the data it predicts. The following two equations described these two constraints

separately.

For the solution, the general formulation in a linear framework is shown as:

(J− J−)TCs(J− J−) = min (3.24)

whereJ is the estimated current source,J− is an a priori approximation of the

solution andCs is a weighting matrix which provides apriori knowledge about the

approximate locations or covariances of current sources; meanwhile, the constraints

on the data it predicts, the general formulation is shown as:

(LJ−B)T (LJ−B) = min (3.25)

whereL is the leadfield matrix,LJ are the predicted data, andB are the measured

data. When the matrixCs is positive definite, the estimated current source of this

problem is (Hauk, 2004):

J = J− +Cs
−1LT (LCs

−1LT )−1B (3.26)
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3.6 Results

We assume no apriori knowledge about the reconstruction, the algorithm can be

described as (Menendez et al., 1998):

J = Cs
−1LT (LCs

−1LT )−1B (3.27)

In this case,Cs is the identity matrix. The main difference between the minimum-

norm method and our method is that we extract a set of smooth basis functions from the

mesh with respect to the spatial organization of the signal and can be used to condition

the result (Hauk, 2004).

Fig 3.11and Fig3.13show the comparison between the original current source dis-

tribution, as well as the corresponding reconstructed results by basis function method

and the Minimum-norm method forsynthetic data Aand synthetic data B, respec-

tively (Hauk, 2004).

3.6.2.2 Noise-robustness evaluation of simulated currentsources

Since one of the most important aspects of the signal reconstruction is the resistance

to random noise which is always present in the MEG signal, noise-robustness is ap-

plied as an important property to measure the goodness of a algorithm of MEG source

reconstruction. In our experiment, the goodness of noise-rubustness of basis function

method is observed by comparing with the results of Minimum-norm method.

Firstly, we obtained the simplified triangled meshM of the brain which is with

2600 vertices(1300 vertices for left hemisphere and1300 vertices for right hemisphere)

using an MRI scan of the subject. The coil responses are produced from an MEG scan

of the same subject from a single epoch and time-slice of the scan. Here, the number of

sensors are assumed to be248 (for 4-D Neuroimaging 248-channel MEG). We select

the basis functions via the eigendecomposition of the mesh Laplacian and pick the

eigenvectors corresponding to the first 41 smallest eigenvalues.

Here, we analyze the reconstruction under noisy conditions. Since the MEG mea-

surement environment is assumed to be full of different types of noise, the noise type

here is applied as the most general case, zero-mean Gaussiandistribution. Based on

the synthetic current sources distribution,synthetic data Aandsynthetic data B, the

environmental noised condition can be simulated by adding Gaussian noise with fixed
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3.6 Results

Figure 3.10: The figure shows the pipeline of the synthetic experiment of the noise-

robustness comparison between the minimum-norm method andthe basis function

method. Based on the synthetic sources distribution,synthetic data Aandsynthetic

data B, the environmental noised condition can be simulated by adding Gaussian noise

with fixed covariance value to the coil responses before reconstruction. Increasing the

covariance value of noise recursively as100 iterations. In each iteration, undertaking

the reconstruction with respect to the noised response withdifferent covariance. The

pattern of the square root of error variance between the reconstruction and the original

current sources can be shown for basis function method and Minimum-norm method

in figure3.12, figure3.14and figure3.17.

covariance value to the coil responses before reconstruction. The pipeline of the ex-

periment is shown in Fig3.10. In terms of this pipeline, keep increasing the covariance

value of noise recursively as100 iterations. With respect to the noised response with

different covariance, undertaking the reconstruction in each iteration. These results

can be used to obtain the patterns of the square root of error variance between the re-

construction to the original current source distribution.Here, Fig3.12 indicates the

comparison of noise-robustness between basis function method and Minimum-norm

method forsynthetic data A; and Fig3.14indicates the same comparison forsynthetic

data Bwhich present the noise-robustness evaluation of both basis function method

and Minimum-norm method.
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3.6 Results

Figure 3.11: This figure shows the comparison spatial visualization of the synthetic

original current sources, reconstruction by basis function method and the minimum-

norm method. The color from red to blue show the intensity of current source strength

from strong to weak. The first column illustrates the synthetic original current source

pattern, the middle column illustrates the reconstructionby basis function method,

and the right column illustrates the reconstruction by minimum-norm method. With

respect to two types of synthetic sources we create inAppendix 2, it is notable that

the artificial source(the synthetic source A) are applied in the first column, the time

point(inms) 1, 25, 50, 150 of realistic sourceare applied from the first row to the last

row, respectively.
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3.6 Results

Figure 3.12: These 4 patterns indicate the comparison of noise robustness between the

Minimum-norm method and basis function method for the 4 current sources used in

Fig 3.11. According to the pipeline shown in Fig3.10, we add 100 increased different

covariance values of zero-mean Gaussian noise (from 0.01 to0.1 ) to the measurement

of the synthetic source A( artificial source in Appendix 2), and observe the noise

robustness of these two methods. In these 4 patterns, X-axisshows the number of

trials from 1 to 100, Y-axis shows the log square root error ofreconstruction; the dots

in blue show the log square root error of reconstruction for basis function method, and

the dots in red show the log square root error of reconstruction for Minimum-norm

method. Left-up,Right-up, Left-bottom and Right-bottom are for the current sources

on time point (inms): 1, 25, 50 and150, respectively.
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3.6 Results

Figure 3.13: This figure shows the comparison spatial visualization of the synthetic

original source, reconstruction by basis function method and the minimum-norm

method. The color from red to blue show the intensity of source strength from strong

to weak. The first column illustrates the synthetic originalcurrent source pattern, the

middle column illustrates the reconstruction by basis function method, and the right

column illustrates the reconstruction by minimum-norm method. With respect to two

types of synthetic sources we create inAppendix 2, it is notable that thesynthetic

source(synthetic source B) are applied in the first column, the time point (inms): 1,

25, 100 and 200 of realistic sourceare applied from the first row to the last row,

respectively.
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3.6 Results

Figure 3.14: These 4 patterns indicate the comparison of noise robustness between the

Minimum-norm method and basis function method for the 4 current sources used in

Fig 3.13. According to the pipeline shown in Fig3.10, we add 100 increased different

covariance values of zero-mean Gaussian noise (from 0.01 to0.1 ) to the measurement

of the synthetic source B( synthetic sourcein Appendix 2), and observe the noise

robustness of these two methods. In these 4 patterns, X-axisshows the number of

trials from 1 to 100, Y-axis shows the log square root error ofreconstruction; the dots

in blue show the log square root error of reconstruction for basis function method, and

the dots in red show the log square root error of reconstruction for Minimum-norm

method. Left-up, Right-up, Left-bottom and Right-bottom are for the current sources

on time point (inms): 1, 25, 100 and200, respectively.
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3.7 Localizing the source reconstruction into the region ofinterest(ROI)

From the reconstruction results shown in Fig3.11and Fig3.13, it indicates that

the basis function method can produce the source reconstruction as good as Minimum-

norm method although the reconstruction results still exist distortions and instabil-

ity comparing with the original source patterns. Furthermore, basis function method

shows superior performance on noise robustness rather thanMninimum-norm method

in terms of the results shown in Fig3.12, as well as Fig3.14. However, the basis

function method is not entirely suitable for the current source localization and the re-

construction of the whole brain, as shown by the results in Fig 3.11and Fig3.13. These

unsatisfactory reconstructed results are mainly because of the basis function method is

basically a ill-posed inverse problem (showed in Eqn3.22). The larger region of corti-

cal surface used for reconstruction leads to more plausibleand less accurate results.

3.7 Localizing the source reconstruction into the region

of interest(ROI)

Based on the reason above, it is worth to try to reduce the reconstructed region to be

close to the region of interest(ROI) so that the accuracy is assumed to be increased. In

order to do this, we need to find localized basis function based on the geometrical in-

formation of ROI. Here, the normalized cut method is used forsegmentation of cortical

surface mesh to obtain the mesh of ROI.

The normalized cut method has been widely applied for graph segmentation. The

use of the Fiedler vector(eigenvector associated with the 2nd smallest eigenvalue of

the graph Laplacian ) for the purpose of data clustering is one of the most important

applications of spectral graph theory in image analysis andpattern recognition (Shi

and Malik, 2000), (Belkin and Niyogi, 2003), (Sarkar and Boyer, 1996). In our study,

the normalized cut method is applied to mesh segmentation for obtaining a region of

interest (ROI) with respect to the features of basis function method illustrated above.

By removing the edges of the connection, a graphG = (V,E) is easily partitioned

into two disjoint sets,A andB, with A
⋃

B = V andA
⋂

B = ∅. Also, the degree of

dissimilarity between these two segments can be calculatedas acut. Since we do not
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3.7 Localizing the source reconstruction into the region ofinterest(ROI)

have the weighted edges in the cortical surface mesh, the total weight of the removed

edges can be assumed as Adjacency matrix of the mesh in our problem:

cut(A,B) = Auv; u ∈ A, v ∈ B. (3.28)

Theminimum cutof this graphG is the optimal solution of bipartition which is a

well-studied problem with plenty of existing efficient algorithm in graphic research.

However, the normalized cut method is a unbiased measure of disassociation be-

tween subgroups of a graph and provides a nice property whichavoids the unnatu-

ral bias for partitioning out small sets of points which indicates in Wu and Leahy’s

method (Wu and Leahy, 1993).

The idea of normalized cut method is to calculate the cut costas a fraction of the

total edge connections to all the nodes in the graph (this disassociation is so-called the

normalized cutor Ncut) instead of the computation of total edge weight connecting

two partitions. TheNcutcan be showed as:

Ncut(A,B) =
cut(A,B)

assoc(A, V )
+

cut(A,B)

assoc(B, V )
(3.29)

whereassoc(A, V ) =
∑

u∈A,t∈V ω(u, t) is the total connection of the nodes inA

to all the nodes in the graphG andassoc(B, V ) is defined similarly.

Meantime, a measure for total normalized association for a give partition can be

defined as:

Nassoc(A,B) =
assoc(A,A)

assoc(A, V )
+

(B,B)

assoc(B, V )
(3.30)

whereassoc(A,A) andassoc(B,B) are total weights of edges connecting nodes

within A andB separately. This reflects how tightly on average nodes within the group

are connected to each other which is an unbiased measure.
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3.7 Localizing the source reconstruction into the region ofinterest(ROI)

These disassociation and association of a partition can be then related as follows:

Ncut(A,B) =
cut(A,B)

assoc(A, V )
+

cut(A,B)

assoc(B, V )

=
assoc(A, V )− assoc(A,A)

assoc(A, V )
+

assoc(B, V )− assoc(B,B)

assoc(B, V )

= 2− (
assoc(A,A)

assoc(A, V )
+

assoc(B,B)

assoc(B, V )
)

= 2−Nassoc(A,B).

(3.31)

Thus, the optimal solution for the partition is to minimize normalized cut which

directly leads to maximize the normalized association. According to the Eqn3.31,

these two can be satisfied simultaneously. Shi and Malik thenindicated the detail pro-

cess how normalized cut is computed efficiently by solving a generalized eigenvalue

problem (Shi and Malik, 2000).

In our study, the normalized cut has been applied by the following steps with re-

spect to the work of Shi and Malik (Shi and Malik, 2000):

1. The mesh of cortical surface, also assumed as a weighted graphG = (V,E), is

constructed with the matrices of verticesV and edgesE. The weights, referred

as the elements of the Adjacency matrix, reflect the connecting state between

two vertices of the mesh.

2. Solve for the eigenvectors with the smallest eigenvaluesof the system which can

be transformed into a standard eigenvalue problem of :

D− 1
2 (D − Auv)D

− 1
2x = λx (3.32)

It is worth to note that from the previous work the Laplacian of the cortical sur-

faceL can be directly introduced here for calculation,L = D − Auv (whereD

is degree matrix of the mesh, andAuv is the Adjacency matrix ). Additionally,

there are some properties which simplifies the computation of the segmentation.

Firstly, the eigensystems must be sparse since the mesh is only locally connected;

secondly, our segmentation only needs the eigenvectors corresponding to the first
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3.7 Localizing the source reconstruction into the region ofinterest(ROI)

few smallest eigenvectors; moreover, the precision requirement for the eigenvec-

tors are low. The Lanczos method is used for solve the eigendecomposition with

these properties;

3. Use the eigenvector with the second smallest eigenvalue to segment the graph;

4. Decide if the current segmentation should be partitionedand do the segmentation

recursively if necessary.

It is notable that the continuous mesh segmentation should not be more than 5 times

for a single hemisphere for avoiding the over determination, since25 is smaller than

the number of basis function 41 but26 is larger than it, this hierarchical relationship is

shown as Fig3.15. Also. Fig3.16shows the segments of the cortical mesh by 5-level

normalized cut.

The figures, Fig3.18and Fig3.19, illustrate the comparison of source reconstruc-

tions between the basis function method for the whole cortical surface and the partition

of ROI by the Normalized cut method for the synthetic sourceson one time point se-

lected fromsynthetic source A(at time point1, refer to Fig3.11) andsynthetic source

B (at time point1, refer to Fig3.13), respectively. In Fig3.18, the current sources are

distributed on both the left and right hemisphere with respect to the pre-knowledge.

Therefore, the normalized cut is applied on the whole cortical surface mesh withlevel-

1. And, in Fig3.18, the current sources are distributed on only right hemisphere with

respect to the pre-knowledge. The normalized cut is then applied on right hemisphere

with level-1. These results indicate that when the reconstruction modelis segmented as

close as the region that the current sources actual locate on, the reconstruction is capa-

ble to obtain the more accurate result. In other words, the change of the reconstruction

on the model from the global cortical surface into the local region based on the ROI

and additional selection of proper local region effect the accuracy and goodness of the

result directly. This is a crucial feature when the basis function method is applied into

the MEG source reconstruction.

3.7.1 Application to the real data

We use the real MEG data of visual expression based onAppendix 3. Firstly, we

obtained the cortical surface mesh with262658 vertices and565782 faces from the
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3.7 Localizing the source reconstruction into the region ofinterest(ROI)

Figure 3.15: This figure shows the hierarchy of mesh segmentation with normalized

cut method. From the top to the bottom, the original corticalsurface mesh can be

segmented into 2 partitions in terms of the Fiedler vector (this is calledlevel-1); and

each partition can be segmented as the same way (called aslevel-2), and so on. To

avoid the over determination, the total number of partitionshould not be more than

the number of basis functions. In our problem, the number of basis function is41,

therefore, the partition of normalized cut should not be more thanlevel-5.
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3.7 Localizing the source reconstruction into the region ofinterest(ROI)

Figure 3.16: This figure demonstrates the mesh partitions ofthe cortical surface mesh

by level-5normalized cut method. With respect to the segmentation theory, the number

of the partitions oflevel-5normalized cut is25 = 32 The left pattern shows the corti-

cal surface mesh, and the right pattern shows the mesh partitions where the segments

present in different color indicated the different segments by normalized cut method.

structural MRI scan of the same subject byFreesurfer(5.0.0). Since the coordinate

system of MRI cortical surface is different from the MEG coordinates, the coordinate

registration is processed as the first step(with the specialsolution provided by YNiC).

Specifically, thiscoregistrationbetween the coordinate of structural MRI and MEG

system should be based on a set of at least 3 points whose coordinates are known in

both systems. These points are calledfiducials. In terms of thesefiducials, a position

of any point on one of these two spaces can be convert to the other by the rigid trans-

formation matrices (Rotation and Translation). These fiducial points are located in

both scans using special markers introduced on the head during the scanning process.

Meanwhile, the same transformation is applied to the sensors position of MEG as well.

However, the spatial resolution of the mesh obtained from MRI is too large for

the realistic or reasonable solution. The simplified mesh istherefore generated by the

softwareRemesh( (Remesh, 2008) ). In terms of the mesh resolution selected for

MEG analysis in software MNE (MNE), we apply a spatial resolution for the mesh M

with 2600 vertices and 5192 faces . Secondly, the measurement of MEG signals are

represented as a96 × 248 × 813 matrix, where96 indicates the number of different
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3.7 Localizing the source reconstruction into the region ofinterest(ROI)

Figure 3.17: These 2 patterns indicate the comparison of noise robustness between the

Minimum-norm method, basis function method for the whole cortical surface and for

the partition of ROI. The left: the comparison for time point1 of synthetic source A; the

right: the comparison for time 1 ofsynthetic source B. According to the pipeline shown

in Fig 3.10, we add 100 increased different covariance values of zero-mean Gaussian

noise (from 0.01 to 0.1 ) to the measurement of the synthetic source, and observe the

noise robustness for these three methods. In these 2 patterns, X-axis shows the number

of trials from 1 to 100, Y-axis shows the log square root errorof reconstruction; the

dots in blue show the log square root error of reconstructionfor basis function method,

the dots in red show the log square root error of reconstruction for Minimum-norm

method, and dots in green show the log square root error of reconstruction for localized

basis function method.
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3.7 Localizing the source reconstruction into the region ofinterest(ROI)

Figure 3.18: The top part in this figure demonstrates the process of the normalized cut

method applied on the whole cortical surface mesh withlevel-1. The bottom part of

the figure shows the comparison of source reconstructions between the basis function

method for the whole cortical surface and the partition of ROI by the Normalized cut

method. The left: the original source pattern; the middle: the basis function reconstruc-

tion based on the whole cortical surface; the right: the basis function reconstruction

on the partition of ROI obtained by normalized cut method. The source distribution at

one time point used here is selected fromsynthetic source A( at time point1, refer to

Fig 3.11).
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3.7 Localizing the source reconstruction into the region ofinterest(ROI)

Figure 3.19: The top part in this figure demonstrates the process of the normalized cut

method applied on the whole cortical surface mesh withlevel-1. The bottom part of

the figure shows the comparison of source reconstructions between the basis function

method for the whole cortical surface and the partition of ROI by the Normalized cut

method. The left: the original source pattern; the middle: the basis function reconstruc-

tion based on the whole cortical surface; the right: the basis function reconstruction

on the partition of ROI obtained by normalized cut method. The source distribution at

one time point used here is selected fromsynthetic source B( at time point1, refer to

Fig 3.13).
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3.8 Discussion

stimuli, 248 indicates the number of sensors and813 indicates the continuous time

instants. The visualization of this measurement matrix is showed in FigC.1.

For applying the basis function method for spatial reconstruction, we choose the

measurement of the particular stimulus on particular time point and process the recon-

struction. In this experiment, we choose the stimulus3 of 96, and select the time point

20 ,45 , 70, 95 , 120 , 145 ,170 , 195 , 220 , 245 , 270, 295, 320 , 345,370 ,395 , 420 ,

445 , 470 , 495 , 520, 545 , 570 , 595, 620 , 645, 670 , 695, 720 , 745 separately for the

reconstruction. The Fig3.20shows the reconstruction results of this trail.

Since it is impossible to have an absolute correct sources location for the good-

ness evaluation of our method in the real MEG experiment, we introduce the source

reconstruction of the same trial by fMRI and cognition estimation based on the stim-

ulus knowledge we have. Here, Cindy C. Hagan’s fMRI result for the same exper-

iment (Hagan et al., 2009) are applied here for the reconstruction result comparison

and checking. It is clear transient visual changes are occurs in the posterior superior

temporal sulcus (STS) from(Hagan et al., 2009). The reconstruction results of our

method, showed in Fig3.20, illustrate the correct source location with respect to these

fMRI reconstruction.

3.8 Discussion

Firstly, the basis function method has the weakness on the assumption that all sen-

sors are perfectly set tangentially to the conducting sphere. Since in real data, more

realistic head model (like BEM) is more and more used and there are no a priori on

the sensor array orientation, meanwhile, the cortical meshtypically has several thou-

sands vertices and the the number of MEG sensor are limited(the MEG machine in our

experiment is with 248 sensors(in 4D-Imaging 248-sensor MEG machine), the prob-

lem of reconstructing the current at each vertex is severelyunder-constrained. In this

case, the source reconstruction from the basis function method can be assumed as the

low-resolution version of source reconstruction. Then, itis crucial to apply some fur-

ther method for the correction and resolution improvement,such as super-resolution

method and Kalman smoother method illuminated in theChapter 4 andChapter 5

, as a complement for estimating the source distribution of higher spatial resolution
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Figure 3.20: In terms of the MEG data of facial expression ( showed as the96×248×

813 matrix) ,this figure shows the reconstruction results on3 of 96, and select the time

point (in ms): 20 ,45 , 70, 95 , 120 , 145 ,170 , 195 , 220 , 245 , 270, 295, 320 , 345,

370, 395, 420, 445, 470, 495, 520, 545, 570, 595, 620, 645, 670, 695, 720, 745 for the

reconstruction. First row shows the results on20, 45, 70, 95, 120; second row shows

the results on145, 170, 195, 220, 245; the third row shows the results on270, 295, 320,

345, 370; the fourth row shows the results on395, 420, 445, 470, 495; the fifth row

shows the results on520, 545, 570, 595, 620; the sixth row shows the results on645 ,

670, 695, 720, 745.
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3.9 Conclusion

with better accuracy. In the assumption of super-resolution method, the distortions of

reconstruction caused by the assumption that sensors are perfectly tangential to the

conducting sphere in basis function method are assumed as distorted low-resolution

current sources contain insufficient information about theoriginal current sources.

Secondly, the current experimental configuration is : InterCore2(1,8GHz), Linux

system(2.6.34.1)-32bit, matlab7.9.0(R2009b)× 32 edition , RAM: 4GB. With is con-

figuration, the computational costs of basis function method is low since we have re-

duced the number of the unknown in this ill-posed inverse problem. Specifically, the

backslashfunction of Matlab has been applied the matrices division which effectively

leads to fast computation (Matlab, 2009).

3.9 Conclusion

The aim of this topic is to explore a new method of the MEG source spatio-temporal

reconstruction based on modelling the neural current sources with extended basis func-

tions. In light of the assumption that the Laplacian eigenvectors of mesh can be anal-

ogous to its basis functions that represent the cortex mesh,we build a new model to

describe the current sources distributed on each mesh vertex. This model consists of

analogous basis functions and unknown weighted coefficients. Using the leadfield,

the weighted coefcients can be calculated according to the forward formulae of MEG.

The distributed neural current sources on mesh are then reconstructed according to the

basis functions model. Expanding this process from a singletime point to continu-

ous time stretches, we are able to obtain the spatio-temporal the reconstructed current

source that is distributed on cortical mesh vertices. This provides a smooth and well-

conditioned reconstruction problem that can be solved directly by an inverse method.

The results are more physically plausible than the minimum-norm method while being

resistant to noise. Moreover, in terms of the experimental results, this algorithm shows

good reconstructed property in response to the single stimulus, as well as the supercial

stimulus on the cortical surface. However, it generates ambiguous and inaccurate re-

sults when the cortical current sources are distributed over multiple sites on the brain

or deep in the head. In conclusion, the algorithm is mainly effective for the distributed

and superficial current sources rather than the single or/and deep current sources of the

cortex.
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3.9 Conclusion

The further improvements should be focussed on :

• The basis function algorithm is based on the basis functionsextracted from corti-

cal surface mesh and their associated coefficients. The basis functions rely on the

geometry of the cortical surface mesh. It will be interesting to test the robustness

of the algorithm to the cortical surface mesh with difference spatial resolution.

• In our work, we apply a part of eigenvectors corresponding tothe first smallest

eigenvalues as the analogue of basis functions which are used for the represen-

tation of the geometry of the cortical mesh. However, there are plenty of other

types of basis functions, e.g. radial basis function(RBF),spherical harmonic ba-

sis function(SHBF) which can be directly applied in our algorithm instead of the

eigenvectors set. It is possible that some type of basis function can provide a

superior result for this basis function reconstruction.

• In terms of the weakness of normalized-cut showed in (Belkin and Niyogi, 2003)

and (Sharma et al., 2009), it has been noticed that this does not guarantee good

clusters as the normalized cut is computed recursively irrespective of the global

structure of the data in the practical mesh segmentation. Itmight be interesting

to research more on mesh segmentation to find more specialized algorithm so

that the source-distributed mesh can be cut more accuratelywith respect to the

range of stimuli smoothed.
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Chapter 4

Spatial Improvement of MEG

reconstruction with Bayesian

Super-resolution

4.1 Introduction

Super-resolution is one of the classic pattern recognitionmethods that are used for

high-quality image recovery from a set of low-resolution images. The principle of

the method is to improve the image by the inversion of a transformation from some

unknown high-resolution image into the observed low-resolution images (Tipping and

Bishop, 2003). This approach applies a regularization process for the ill-posed inverse

problem.

MEG source reconstruction can be achieved by the basis function method pre-

sented in the previous chapter. The reconstructed current source at a single time point

is distributed on a triangular mesh of the cortical surface obtained from the structural

brain imaging, e.g., MRI, for the same subject. The advantage of MEG over fMRI

scans is that MEG has a high temporal resolution; in other words, we can obtain a

rapid sequence of images. The goal here is to use these image sequences in conjunc-

tion with the previous source reconstruction method, to improve the spatial resolu-

tion of MEG. This problem can be described as obtaining a source distribution on the

higher-resolution cortical surface mesh from several continuous current source frames
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4.2 High-resolution mesh extraction

distributed on the original cortical mesh in the temporal field, which resembles the con-

cept of super-resolution for image reconstruction. Bayesian super-resolution is able to

provide a reasonable estimation for the spatial resolutionimprovement (Tipping and

Bishop, 2003) , (Nara et al., 2006).

4.2 High-resolution mesh extraction

Since we aim to reconstruct the current source distributed on a mesh with higher spa-

tial resolution, this new cortical mesh is produced firstly.The old cortical mesh used

for basis function reconstruction is calledlow-resolution meshhere (noted asM ), in

contrast, the new mesh with high spatial resolution is called thehigh-resolution mesh

(noted asM+).

The high-resolution mesh, M+ can be interpolated geometrically from thelow-

resolution meshM . The low-resolution mesh, M , used here is actually the triangular

mesh representing the surface of grey matter extracted fromthe MRI scan of the same

subject withV vertices andF faces. The new mesh,M+, is associated withM but

with higher spatial resolution, can be generated via the approach of interpolation on

the basis ofM by adding one vertex in the center of each mesh triangle and linking it

with the surrounding triangular vertices, shown as Fig4.1 , specifically. In this case,

each new vertex and associated three edges are constructed in this way. Moreover,

the coordinate of each new-added vertex is the average of thecoordinate of the three

vertices surrounded. Thus, the high-resolution meshM+ associated withM is con-

structed with(V + F ) vertices and3F faces are shown as Fig4.2, where the group of

interpolated new vertices is showed as theF × 3 matrixVip . In other words, there is

theV × 3 matrixVLR of the vertices on the low-resolution meshM in 3 dimensions,

and the(V +F )× 3 matrixVHR of the vertices on the high-resolution meshM+ . All

the structure of the matrixM andM+ are shown as follows:

VLR =





VLRx

VLRy

VLRz



 (4.1)

VHR =

(

VLR

Vip

)

=





VHRx

VHRy

VHRz



 (4.2)
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4.3 Revising reconstructed current source on low-resolution mesh using the
Kalman filter

Figure 4.1: This figure shows how to interpolate a new vertex on high-resolution mesh

M+ from the vertices onlow-resolution meshM . Each new vertex is added in the cen-

tre of the triangular face. The location of the new vertex is obtained by averaging the

locations of surrounded3 triangular vertices. This figure can also be used to indicate

the averaging process ofT+
t . The new element corresponding to the interpolated new

vertex onM+ is obtained by averaging the elements ofTt on surrounded3 triangular

vertices( which from the low-resolution meshM).

In other words, the vertices of high-resolution meshM belong to two groups, the

vertices from the low-resolution mesh and the interpolatednew vertices.

4.3 Revising reconstructed current source on low-resolution

mesh using the Kalman filter

4.3.1 Revision of reconstructed current source

In this Chapter, we aim at improving the spatial resolution of source distribution at one

particular time point (also called astarget time point) from the low-resolution mesh

M to high-resolution meshM+ by the Bayesian super-resolution method. We firstly

need to work out a set of low-resolution source distributionon a continuous time series

(including thetarget time point). These reconstructions onM are implemented by the

basis function method.

The reconstructions on the low-resolution meshM by the basis function method are
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4.3 Revising reconstructed current source on low-resolution mesh using the
Kalman filter

Figure 4.2: This figure shows thelow-resolution mesh, M on the left (withV vertices

andF faces) and thehigh-resolution mesh, M+ on the right withV + = V +F vertices

andF+ = 3F faces.M has2600 vertices and5192 faces;M+ is with 7792 vertices

and15576 faces.

calculated for each single time point firstly with the discrete state, and then combined

together through the time series as the dynamic system. The idea is to provide a series

of predictions for the currents at the target time-point (using the time series), and then

combine these predictions using super-resolution. Therefore, it is essential to smooth

these current sources over the time sequence to obtain a moreaccurate prediction of

the signals. This process of smoothness can provide a more rational prior for the

later reconstruction onM+. For estimating the states in the past, present and future,

the Kalman filter can be applied in a straightforward way for the reconstruction and

smoothness of the current sources in time series with respect to the Markov property.

4.3.2 Kalman filter

From the study of Kalman filter inChapter 2, the real-time MEG state and measure-

ment can be described as the following (Welch and Bishop, 2006):

xt = Axt−1 + ω (4.3)
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4.3 Revising reconstructed current source on low-resolution mesh using the
Kalman filter

zt = Bxt + υ (4.4)

Herext is the the hidden state andzt is the observation.A, andB are the relevant

coefficient matrices forxt−1 andxt, respectively.ω is the state noise , andυ is the

observation noise.

4.3.2.1 Smoothing the successive source distribution J on mesh M

The state vectorxt of the 3D reconstructed current source at the single time point t is

given by Eqn4.5as follows:

xt =





















J
(t)
x

J
(t)
y

J
(t)
z

v
(t)
x

v
(t)
y

v
(t)
z





















(4.5)

whereJt = (J
(t)
x , J

(t)
y , J

(t)
z ), is the estimated current of the single pointt , and

vt = (v
(t)
x , v

(t)
y , v

(t)
z ) is the associated rate of change of the current.

The state matrix is:

A =

(

I I

0 I

)

(4.6)

and the observation matrix is

H =
(

I 0
)

(4.7)

Q is the covariance matrix of the state process andR is the covariance matrix of

the observation noise (which is determined from data). We then get the Kalman update

equations as follows:

x−
t
= Axt−1 (4.8)
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4.3 Revising reconstructed current source on low-resolution mesh using the
Kalman filter

P−
t
= APt−1A

T +Q (4.9)

Kt = P−
t
HT(HP−

t
HT +R)−1 (4.10)

xt = x−
t
+Kt(Jt −H

x
−

t

) (4.11)

Pt = (I−KtH)K−
t

(4.12)

whereJt represents the observed current source in specific time point (which in-

cludes 3 dimensional data). By applying this process, we obtain a noise-reduced set of

estimatesxt for the current source.

4.3.2.2 Smoothing associated basis function coefficientsa of source distribution

J

The Kalman filter method works by smoothing the source distributionJ (size:M × 1,

M is the number of mesh vertices ) onM at the successive time points as a recursive

process. Since the basis function method is used for the source reconstruction on each

single time point, the coefficients of basis functiona can be used for simplifying this

process. In terms of the basis function method explained in last Chapter, the source

distributionJ at one single time point is consist of two components shown asfollowing

equation, basis function set̃Φ and the corresponding coefficientsa (also shown as

Eqn3.17in Chapter 3):

J = Φ̃a (4.13)

Since the basis function set̃Φ are fixed as we choose, the only variable in the

equation above is the associated coefficienta for each basis functions. The structure

of a (size:3T × 1, T is the number of basis function set) for each time point is shown

as follows (also shown as Eqn3.20in Chapter 3):

a =
(

ax1 · · · axt · · · axT ay1 · · · ayt · · · ayT az1 · · · azt · · · azT
)T

(4.14)
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4.4 Applying Bayesian super-resolution on improving spatial resolution of MEG
source reconstruction

With respect to the process of Kalman filter explained above,a for the successive

time points can be smoothed to obtain a group of new coefficients, anew. Therefore,

Jnew, the smoothed source distributions on the successive time points, are generated

according to the Eqn4.13.

As the size ofa is much smaller than the size ofJ ( 3T ≪ M), the approach that

smoothinga via Kalman filter method instead of directly using the sourcedistribution

J reduces the computation complexity effectively with the same smoothing results.

4.4 Applying Bayesian super-resolution on improving

spatial resolution of MEG source reconstruction

4.4.1 Selecting a prior

In terms of our problem, the prior an important constraint for the solution. As we dis-

cussed in Chapter 3 , the cortical mesh Laplacian can be constructed as follows (Chung,

1997), (Cvetkovic et al., 1997):

L = D−A (4.15)

whereA is the adjacency matrix andD is the degree matrix, a diagonal matrix

represents the degree of each vertex shown by in the diagonalelements.

In the following part, i = 1, · · · ,M denotes the vertex index ofM and j =

1, · · · , N denotes the vertex index ofM+.

Since both the high resolution meshM+ and the low resolution meshM are ob-

tained previously, the corresponding mesh LaplacianL andL+ can be generated. The

prior on the high resolution meshM+ is given as a Normal distribution, showed as

Eqn4.16;

p(x) = N(x|0,Zx) (4.16)

On the high resolution meshM+ , the covarianceZx of this distribution is assumed

as a heat kernel. The reason for using the heat kernel is that the anisotropic diffusion
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4.4 Applying Bayesian super-resolution on improving spatial resolution of MEG
source reconstruction

across the cortical mesh with time for the synthetic source is captured by the heat

kernel and this enforce smoothness between adjacent mesh vertices.

Zx = Â











exp(−L+
1,1α) · · · · · · exp(−L+

1,Nα)
...

. . .
...

...
. . .

...
exp(−L+

N,1α) · · · · · · exp(−L+
M,Mα)











(4.17)

Note this prior is fixed with a constant priorα (which we set as 0.5 in our experi-

ment).

In light of the approach of super resolution used by (Tipping and Bishop, 2003) ,

we build a standard mathematical model to describe the relationship between current

sources on the low-resolution meshM and the high-resolution meshM+ ( indicated

as Eqn4.18 ) where the process of generating low resolution frames fromthe high

resolution frame can be assumed by applying a time shift ( namely the current sources

varying between high-resolution frame at timet0 and high-resolution frames at time

point t ) for convolving with point spread function (PSF) and downsampling to the

lower resolution mesh.

J(t) = W(t)J+ + ǫ(t) (4.18)

whereǫ(t) is a vector of independent Gaussian random variablesǫ
(t)
i ∼ N(0, β−1)

with zero mean and precision(inverse variance )β . This is used to represent the noise

terms between the generative model and observed data;t represents the time of the

frames,J(t) represents the current source distributed on the low-resolution meshM

at the time pointt; W is the transformation matrix; Our goal is to estimate the high-

resolution frame at a particular time pointt0, J+ .

The transformation matrixW in Eqn4.18can be defined in the following steps:

W̃
(t)

= STt (4.19)

The downsamplingS in Eqn4.19is defined in a straightforward way by the heat

kernel:

S= PEγ (4.20)
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4.4 Applying Bayesian super-resolution on improving spatial resolution of MEG
source reconstruction

where

Eγ =











exp(−L+
1,1γ) · · · · · · exp(−L+

1,Nγ)
...

. . .
...

...
. ..

...
exp(−L+

N,1γ) · · · · · · exp(−L+
M,Mγ)











(4.21)

So, hereP is a downsampling operator which only picks out the verticesfrom

the low-resolution meshM ; Eγ is the point spread function(so-called PSF), with the

unknown parameterγ in 3-space. In our case, the PSF describes the limited resolution

of the low-resolution current distribution with respect tothe high resolution distribution

with respect to the geometrical information of the high-resolution mesh (refer to the

mesh LaplacianL+), i.e. the parameterγ in turn is a measure of the smoothness degree.

The transfer matrixTt is used to describe a shift of the high-resolution frame from

thetarget time pointt0 to another timet. The process for calculateTt is shown as fol-

lows. We firstly get the current sources varyingTt on low-resolution frames between

the target timet0 and any other time pointt in the time sequence we choose, shown

as Eqn4.22. Therefore,Jt, the current source in each time pointt, has a correspond-

ing Tt which represents the proportional shift with the current source ontarget time

point,Jt0. Similar to the averaging process for getting new vertices of M+(referr to

Fig 4.1), each 3 elements ofTt that corresponding to the current source located on the

triangular vertices of each face of meshM are averaged to obtain the newTtn that is

corresponding to the current source located on the new vertex generated inM+. Then,

for eachJ+
t , we produce aT+

t with the same size. Diagonalizing the elements ofT+
t

into the square matrix with other elements set as zeros, current source varyingTt is

obtained for the following calculation (shown in Eqn4.25).

Tt = Jt./Jt0

= (Tt1 Tt2 · · · TtM )T
(4.22)

T
vfn
t =

(T
(vf1)
t + T

(vf2)
t + T

(vf3)
t )

3
(4.23)

T+
t =

(

Tt

T
vfn
t

)

(4.24)

104



4.4 Applying Bayesian super-resolution on improving spatial resolution of MEG
source reconstruction

Figure 4.3: This figure demonstrates the example faceF of M for averagingT to

generateTvfn
t (also refer to Eqn4.24). The triangular verticesvf1, vf2 andvf3 are the

vertices fromM . Vfn is the interpolated new vertex ofM+ which is generated from

vf1, vf2 andvf3.

Tt =











Tt1 · · · · · · 0
... Tt2

...
...

. . .
...

0 · · · · · · TtN











(4.25)

The transformation matrixW(t) in Eqn4.19govern by the matrixS (including the

downsampling matrixP and point spread function (PSF)) as well as transformation

matrix Tt can be finally presented as the normalized form in Eqn4.26. With the

normalization, theJ(t) can be ensured to be transformed fromJ+ with the same scale.

W
(t)
ij = W̃

(t)
ij /
∑

j′

W̃
(t)

ij
′ (4.26)
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4.5 Estimation

4.5 Estimation

4.5.1 Posterior estimation

The likelihood of an individual scan (on the low-resolutionmesh) is as follows(Tipping

and Bishop, 2003) :

p(J (t)|J+, γ) = (β/2π)M/2 exp
{

−
β

2
‖J(t) − W(t)J+‖2

}

(4.27)

Therefore assuming conditional independence of the scans(on the low-resolution

mesh) given the high resolution scan, we get(Tipping and Bishop, 2003) :

p(J+|J (t), γ) = N(µ,Σ) (4.28)

Where,

Σ =

[

1

A
exp(αL+) + β

∑

t

W(t)T W(t)

]−1

(4.29)

µ = βΣ
∑

t

TT
t W

(t)TJ(t) (4.30)

µ is the optimized current source distributed on the high resolution meshM+ which

is equivalent toJ+ that we are trying to calculate by the Bayesian super-resolution

method. For computing this, it is essential to estimate the unknown parameterγ .

4.5.2 Energy function of Bayesian super-resolution

According to the theory of Tipping and Bishops paper(Tipping and Bishop, 2003),

the critical step is to marginalize out the unknown high-resolution image from the

known equations, so that the probability of the registration parameters and point spread

function(PSF) are assumed to be correct, and the marginal likelihood function for low-

resolution images is shown in the form:

p(J |{sk, θk}, γ) = N(0,Zy) (4.31)

where

Zy = β−1I+WZxW
T (4.32)
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4.5 Estimation

Here,{sk, θk} is the registration parameters;γ is the parameter of PSF;J andW

are the vector and matrix of the stackedJt andWt, respectively. With the marginal-

ization shown in Eqn4.31 and Eqn4.32, the marginal likelihood can be rewrote as

Eqn4.33after somestandard matrix manipulationsare performed on it:

log p(y|{sk, θk}, γ) = −
1

2
[β
∑

t

(~J(t)−Wt)~µ)2+~µTZ−1
x ~µ+log|Zx|− log|Σ|−KM log β]

(4.33)

Eqn4.34must be optimized to obtain the most likely combination of registration

parameters and PSF, therefore, we define an energy function from the marginal log-

likelihood as:

E = −
1

2
[β
∑

t

(~J(t) − Wt)~µ)2 + ~µTZ−1
x ~µ+ log|Zx|− log|Σ|−KM log β] (4.34)

However, it is notable that a few differences exist between our problem and image

super-resoluion explained previously. In our problem, we are working with the mesh

and not the image grids. Also, there is no alignment problem between the successive

frames here. Instead, we are dealing with the problem that current sources may vary

among the frames in the time series (without rotation and blur in the imaging problem,

which is related to{sk, θk}) because the current sources are dynamic. In this case,

we only need to estimate the parameter of PSF,γ ,in the optimization. This will be

explained in the later part of this Chapter.

4.5.3 Parameter optimization

As the Bayesian super-resolution method explained by Tipping and Bishops paper

(Tipping and Bishop, 2007) , Bayesian marginalization allows the registration param-

eters as well as PSF to be estimated in advance so that the high-resolution frame gen-

erated afterward can be estimated with superior accuracy. In this case, the parameterγ

of point spread function (PSF) are estimated firstly by optimizing the energy function

Eqn4.34.

∂E

∂γ
=

(

∑ ∂E

∂W
(t)
ij

∂W
(t)
ij

∂γ

)

.
= 0 (4.35)
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4.5 Estimation

The calculation of
∂W̃

(t)
ij

∂γ
are presented as follows:

According to Eqn4.26, the denominator
∑

j′ W̃ij
′ is a normalization factor which

should be constant regarded less of the choice of parameters, so that we have:

∂W
(t)
ij

∂γ
=

∂W
(t)
ij

∂W̃
(t)
ij

∂W̃
(t)
ij

∂γ
(4.36)

with

∂W
(t)
ij

∂W̃
(t)
ij

=
1

∑

j′ W̃
(t)

ij′

(4.37)

and

∂W̃
(t)
ij

∂γ
= PL+ exp(−L+γ)Tt (4.38)

Meanwhile, ∂E

∂W
(t)
ij

in Eqn 4.35can be expanded as the following expression with

multiple factors:

∂E

∂W
(t)
ij

= −
1

2

[

− 2β

(

∑

t

(J(t) − W(t)µ)T (W(t) ∂µ

∂W
(t)
ij

)

)

− 2β(J(t) −W(t)µ)Tµ∗
ij

+ 2µT expαL+ ∂µ

∂W
(t)
ij

− Tr

(

Σ−1 ∂Σ

∂W
(t)
ij

)]

(4.39)

The factors in Eqn4.39can be calculated as:

• µ∗
ij can be written as:

(µ∗
ij)t =

{

µj if t = i
0 otherwise

• In terms of Eqn4.30, ∂µ

∂W
(t)
ij

can be written as follows:

∂µ

∂W
(t)
ij

= −βΣW
∗(t)
ij µ+ βΣJ

∗(t)
ij (4.40)
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4.6 Results

where

(J∗
ij)t =

{

Jj if t = j
0 otherwise

and

(W
∗(t)
ij )ab =



















W
(t)
ij if a = j andb = j

W
(t)
ib if a = j andb 6= j

W
(t)
ia if b = j anda 6= j

0 otherwise

The equations above indicate thatµ (size:N×1) reduces the size to(µ∗
ij)t (size:

M × 1) with the rest of the elements are cancelled;J (size:M × 1) increase the

size to(J∗
ij)t (size:N × 1) with the new elements set as zeros for the calculation

need; andW (size:M × N) increase the size toW∗(t)
ij (size:N × N) with the

new elements set as zeros, for the calculation need.

• ∂Σ

∂W
(t)
ij

can be expanded as :

∂Σ

∂W
(t)
ij

= −βΣW
∗(t)
ij Σ (4.41)

With optimized parameter ’γ’ for the point spead function(PSF), the high-resolution

frameµ can be estimated with improved accuracy.

It is worth to emphasize that all the calculations above are implemented in 3

dimensions (components x,y and z).

4.6 Results

In the following part, the simulated data as well as the real MEG data are both applied

for the evaluation of the Bayesian super-resolution methodon improving MEG spatial

resolution. Since we are working on the high-resolution source distribution on mesh

M+, the corresponding low-resolution source frames on meshM at the same time

course must be obtained firstly as a prior. The method used forreconstructing the

low-resolution source frames on successive time points arethe basis function method

explained in the last Chapter.
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4.6 Results

The experimental configuration (the configuration currently is : InterCore2(1,8GHz),

Linux system(2.6.34.1)-32bit, matlab7.9.0(R2009b)× 32 edition, RAM: 4GB).

4.6.1 Synthetic results

In the part of simulated experiment, two groups of simulatedcurrent sources are gen-

erated for synthetic experiment, i.e. artificial source distribution and realistic source

distribution inAppendix B. For the former type (called assynthetic sources A), the fixed

current source values are set on 30 particular vertices of mesh we choose but the values

of current sources on other vertices are set as zero; while inthe process of generating

the later one(called assynthetic source B), the source distribution on the cortical mesh

are from the selected results of previous source reconstruction of the real MEG data

with random stimuli on cortical surface at one time point. The detailed information of

these two groups of simulated current sources is given inAppendix B.

Since we are working on a successive time period, the number of time points are

firstly set asT = 31 , and the time point3 of 31 are set as thetarget time point.

The basis function method are then applied to get31 low-resolution source frames in

terms ofT. The details of these reconstructions can refer to the result part ofChapter

3. The figures, Fig4.4 and Fig4.11, show these reconstructions of low-resolution

source frames at31 successive time points forsynthetic source Aandsynthetic source

B, respectively. With respect to the results of the basis function method, the coefficient

matrices of the basis functionsa are selected, and smoothed by the Kalman filter along

T time points. The figures, Fig4.5and Fig4.6, demonstrate the smoothing process of

3rd element and 12th element of coefficient matrixa in successive 31 time points by

Kalman filter (in 3-space, with components x, y and z) forsynthetic source A; while

the figures, Fig4.12and Fig4.13, show are the same process forsynthetic source B,

respectively. The size of low-resolution current source matrix J on a single time point

is 7800×1 which is much bigger than the size of coefficient matrix,246×1. Therefore,

the approach that smoothinga instead of directly smoothing the source distributionJ

effectively reduces the computation complexity.

After that, we obtain the high-resolution meshM+ by geometrically interpolating

from the low-resolution meshM . Each new vertex is added in the centre of the tri-

angular face( referred as Fig4.1). The new meshM+ is obtained with 7792 vertices(
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represented as the7792×3 matrix, shown in Eqn4.2) and 15576 faces (represented as

the15576× 3 matrix).

After then, using the Laplacian of the meshM andM+ we extracted, the Bayesian

super-redsolution method is applied for improving the spatial resolution of MEG source

reconstruction. Since all the factors applied in this calculation process are large size

matrices which leads to the much expensive computation, there are some approaches

applied here:

• Selecting the matrices of the factors contains a number of zeros, such as trans-

formation matrixTt , and transform them to be the formatsparse matrix. Thus,

all the relevant calculation of them are transformed to be the sparse matrix cal-

culation in Matlab with effectively reduce the computation expense rather than

the full-matrix computation;

• The calculation is involved into the unaffordable expensive computation when

calculating the matrix ofΣ which is the inverse of large size matrix(size7792×

7792) with less sparse. Therefore, the softwareSPAI (Grote and Hagemann) is

applied for calculating the approximation of the inverse ofthis large size matrix.

With the optimization process illuminated above, the optimized parameterγx, γy
andγz for 3-space can be obtained by the analysis on each coordinate separately. The

figures, Fig4.7, Fig 4.8 and Fig4.9, demonstrate this optimization process forSyn-

thetic source Aon x, y and z component, respectively. And, the figures, Fig4.14,

Fig 4.15and Fig4.16, show the same experiment results forSynthetic source B.

With respect to the optimized parameterγ, the high-resolution source frame on

the target time pointare produced via the Bayesian super-resolution method. Thefig-

ures, Fig4.10and Fig4.17, show the comparison between the high-resolution current

source simulation( referred toAppendix B) and the reconstruction by the Bayesian

super-resolution method forsynthetic source Aandsynthetic source B, separately.

From the reconstruction results of simulated experiment above, shown in Fig4.17

and Fig4.17, the source reconstruction by the estimated parameters we obtained lead

to the distortion of the location and strength of the original simulated current source.
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Figure 4.4: This figure demonstrates the reconstructions oflow-resolution current

source frames at 31 successive time points forsynthetic source A. The algorithm ap-

plied for these reconstructions are the Basis function method. The 1st row: the recon-

structions from1 ms to4 ms; the 2nd row: the reconstructions from5 ms to8 ms; the

3rd row: the reconstructions from9 ms to12 ms; the 4th row: the reconstructions from

13 ms to16 ms; the 5th row: the reconstructions from17 ms to20 ms; the 6th row: the

reconstructions from21 ms to24 ms; the 7th row: the reconstructions from25 ms to

28 ms; the 8th row: the reconstructions from29 ms to31 ms.
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Figure 4.5: This figure shows the smoothing process of 3rd element of coefficient ma-

trix a in successive 31 time points by Kalman filter(in 3-space, with components x,

y and z) forsynthetic source A. This a is generated for meshM by the basis func-

tion method over the time sequence to obtain a more accurate prediction of the current

sources. The ’*’ shows the original reconstructions ofa by the basis function method;

the blue line showsthe posterior estimate by Kalman filter estimation on each compo-

nent of 3 dimensions.
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Figure 4.6: This figure shows the smoothing process of 12th element of coefficient

matrix a in successive 31 time points by Kalman filter (in 3-space, with components

x, y and z) forsynthetic source A. Thisa is generated for meshM by the basis func-

tion method over the time sequence to obtain a more accurate prediction of the current

sources. The ’*’ shows the original reconstructions ofa by the basis function method;

the blue line showsthe posterior estimate by Kalman filter estimation on each compo-

nent of 3 dimensions.
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Figure 4.7: This figure shows the optimization results forγ in x dimensions forsyn-

thetic source A. With the optimization calculation explained inParameter optimization,

the minimum values are obtained numerically. The x-axis shows the numerical value

of x, and y-axis shows the approximation ofE. With y-axis reaches to minimum, the

corresponding value in x-axis are the optimization of x.
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Figure 4.8: This figure shows the optimization results forγ in y dimensions forsyn-

thetic source A. With the optimization calculation explained inParameter optimization,

the minimum values are obtained numerically. The x-axis shows the numerical value

of y, and y-axis shows the approximation ofE. With y-axis reaches to minimum, the

corresponding value in x-axis are the optimization of y.
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4.6 Results

Figure 4.9: This figure shows the optimization results forγ in z dimensions forsyn-

thetic source A. With the optimization calculation explained inParameter optimization,

the minimum values are obtained numerically. The x-axis shows the numerical value

of z, and y-axis shows the approximation ofE. With y-axis reaches to minimum, the

corresponding value in x-axis are the optimization of z.
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4.6 Results

Figure 4.10: This figure shows the comparison of the simulated current source pattern

of synthetic source Aon high-resolution meshM+ ( on the left) and the reconstruction

result by the Bayesian super-resolution method (on the right) at thetarget time point.

4.6.2 Application to the real MEG data

We get the real MEG data of visual expression based onAppendix 3. Firstly, we ob-

tained the cortical surface mesh with262658 vertices and565782 faces from the struc-

tural MRI scan of the same subject byFreesurfer(http://surfer.nmr.mgh.harvard.edu/)

(5.0.0). Since the coordinate of MRI cortical surface are different with the MEG coor-

dinate, the coordinate registration is processed as the first step(with the special solution

provided by YNiC). However, the spatial resolution of mesh obtained from MRI is too

large for a realistic or reasonable solution. The simplifiedmesh is therefore generated

by the softwareRemesh( http://remesh.sourceforge.net/). In terms of the mesh reso-

lution selected for MEG analysis in (MNE), we apply the reasonable spatial resolution

for mesh M with 2600 vertices and 5192 faces . Secondly, the measurement of MEG

signals is represented as a96×248×813 matrix, where96 indicates the number of dif-

ferent stimulus,248 indicates the number of sensors and813 indicates the continuous

time instants. The visualization of this measurement matrix is shown in FigC.1.

We choose 30 continuous time points from813 continuous time instants, and70 th

stimulus from96 different stimulus as thetarget time point, then we obtain a248 ×

30 matrixBset which represents the measurement of magnetic field of70th stimulus

during the continuous time points the time point20 ,45 , 70, 95 , 120 , 145 ,170 , 195 ,
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4.6 Results

Figure 4.11: This figure demonstrates the reconstructions of low-resolution current

source frames at 31 successive time points forsynthetic source B. The algorithm ap-

plied for these reconstructions are the Basis function method. The 1st row: the recon-

structions from1 ms to4 ms; the 2nd row: the reconstructions from5 ms to8 ms; the

3rd row: the reconstructions from9 ms to12 ms; the 4th row: the reconstructions from

13 ms to16 ms; the 5th row: the reconstructions from17 ms to20 ms; the 6th row: the

reconstructions from21 ms to24 ms; the 7th row: the reconstructions from25 ms to

28 ms; the 8th row: the reconstructions from29 ms to31 ms.
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Figure 4.12: This figure shows the smoothing process of 3rd element of coefficient

matrix a in successive 31 time points by Kalman filter (in 3-space, with components

x, y and z) forsynthetic source B. Thisa is generated for meshM by the basis func-

tion method over the time sequence to obtain a more accurate prediction of the current

source. The ’*’ shows the original reconstructions ofa by the basis function method;

the blue line showsthe posterior estimate by Kalman filter estimation on each compo-

nent of 3 dimensions.
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Figure 4.13: This figure shows the smoothing process of 12th element of coefficient

matrix a in successive 31 time points by Kalman filter(in 3-space, with components

x, y and z) forsynthetic source B. Thisa is generated for meshM by the basis func-

tion method over the time sequence to obtain a more accurate prediction of the current

source. The ’*’ shows the original reconstructions ofa by the basis function method;

the blue line showsthe posterior estimate by Kalman filter estimation on each compo-

nent of 3 dimensions.
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4.6 Results

Figure 4.14: This figure shows the optimization results forγ in x dimensions forsyn-

thetic source B. With the optimization calculation explained inParameter optimization,

the minimum values are obtained numerically. The x-axis shows the numerical value

of x, and y-axis shows the approximation ofE. With y-axis reaches to minimum, the

corresponding value in x-axis are the optimization of x.
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4.6 Results

Figure 4.15: This figure shows the optimization results forγ in y dimensions forsyn-

thetic source B. With the optimization calculation explained inParameter optimization,

the minimum values are obtained numerically. The x-axis shows the numerical value

of y, and y-axis shows the approximation ofE. With y-axis reaches to minimum, the

corresponding value in x-axis are the optimization of y.
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4.6 Results

Figure 4.16: This figure shows the optimization results forγ in z dimensions forsyn-

thetic source B. With the optimization calculation explained inParameter optimization,

the minimum values are obtained numerically. The x-axis shows the numerical value

of z, and y-axis shows the approximation ofE. With y-axis reaches to minimum, the

corresponding value in x-axis are the optimization of z.
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4.6 Results

Figure 4.17: This figure shows the comparison of the simulated source pattern ofsyn-

thetic source Bon high-resolution meshM+ ( on the left) and the reconstruction result

by the Bayesian super-resolution method (on the right) at the target time point.

220 , 245 , 270, 295, 320 , 345,370 ,395 , 420 , 445 , 470 , 495 , 520, 545 , 570 , 595, 620

, 645, 670 , 695, 720 , 745 for the reconstruction from the MEG data (96 × 248× 813

matrix). Then, the basis function method is applied here forthe source reconstruction

on the low-resoluion mesh forBset so that we get the7800× 1 matrixJreal.

And then, based on the Laplacian of the meshM andM+ extracted fromMatlab,

the Bayesian super-resolution method is applied for improving the spatial resolution

of MEG source reconstruction andj real, the current source distributed on the high-

resolution meshM+, is generated. The real data process has the same calculation dif-

ficulty as the synthetic experiment: the calculation of large size matrices of algorithm

factors leads to the much expensive computation. To solve this problem, a sparse ma-

trix calculation is applied for the faster computation and the softwareSPAI(Grote and

Hagemann) is used for calculating the approximation of the inverse ofthe large-size

covariance matrixΣ, which are the same solutions applied in the synthetic experiment.

Fig 4.18shows the reconstructions by the basis function method of low-resolution

current source frames at31 successive time points; Fig4.19and Fig4.20demonstrates

the smoothing process of 3rd and 12th element of coefficient matrix a in successive

30 time points by Kalman filter (in 3-space, with components x, y and z); Fig4.24

shows the comparison of reconstruction results by the basisfunction method and by

the Bayesian super-resolution method . Both the color pattern and 2D signal pattern

125

Chapter3/Chapter3Figs/comparison_Reconstruction_SR_sB.eps
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of the reconstruction result on thetarget time point. Also, Fig4.25demonstrates the

wave patterns of the reconstructed current sourceJ70 (at the time point 70 of 813) on

M+ in 3-space.

Since it is impossible to have an absolute correct source location for the goodness

evaluation of our method in the real MEG experiment, we referthe reconstruction re-

sults of the same trial by fMRI and cognition estimation based on the stimulus knowl-

edge we have. According to Cindy C. Hagan’s fMRI result for the same experiment

(Hagan et al., 2009), the transient visual changes are occurs in the posterior superior

temporal sulcus (STS) from(Hagan et al., 2009), which approximately match the result

of the basis function method on the low-resolution meshM , however, the reconstruc-

tion by the Bayesian super-resolution method shows the distortion of the current source

location, refer to Fig4.24.

4.7 Discussion

In terms of the reconstruction results of simulated experiment as well as applying to

the real data , shown in Fig4.10, Fig 4.17 and Fig4.24, the estimated parameters

we obtained do not lead to perfect reconstruction results. Here, the possible rea-

son is provided for the incorrect reconstruction. The approximation of inverse of the

large size matrix leads to the inaccurate reconstruction. In terms of the Eqn4.29and

Eqn4.30, covariance matrixΣ need to be calculated for the computation of estimated

high-resolution source frameµ. This computation is to search for the inverse of large

size matrix, which is too expensive to calculate precisely in practice. In this case, an

approximation of the inverse of large-size matrix is applied in this step for the conve-

nience to computation, i.e. softwareSPAI (Grote and Hagemann) is used to generate

the inverse of the large size sparse matrix (given a sparse matrixA the SPAI Al-

gorithm computes a sparse approximate inverseM by minimizing‖AM − I‖ in the

Frobenius norm. The approximate inverse is computed explicitly and can then be ap-

plied as a preconditioner to an iterative method.). The difference produced by this

approximation with the real inverse matrix may lead to the inaccurate result of the

reconstruction.

Also, the main experimental configuration we use is : InterCore2(1,8GHz), Linux

system(2.6.34.1)-32bit, matlab7.9.0(R2009b) × 32 edition , RAM: 4GB. Since there
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Figure 4.18: In terms of the MEG data of facial expression ( showed as the96×248×

813 matrix) ,this figure shows the reconstruction results on low-resolution meshM by

the basis function method at3 of 96, and select the time point ( inms): 20, 45, 70, 95,

120, 145, 170, 195, 220, 245, 270, 295, 320 , 345, 370, 395, 420, 445, 470, 495, 520,

545, 570, 595, 620 , 645, 670, 695, 720, 745 for the reconstruction. First row shows

the results on the time point ( inms): 20, 45, 70, 95, 120; second row shows the results

on the time point ( inms): 145, 170, 195, 220, 245; the third row shows the results on

the time point ( inms): 270, 295, 320, 345, 370; the fourth row shows the results on

the time point ( inms): 395, 420, 445, 470, 495; the fifth row shows the results on the

time point ( inms): 520, 545, 570, 595, 620; the sixth row shows the results on the time

point ( in ms): 645 , 670 , 695, 720 , 745.127
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Figure 4.19: This figure shows the smoothing process of 3rd element of coefficient

matrix a in successive 31 time points by Kalman filter (in 3-space, with components

x, y and z) for the real MEG data of facial expression ( showed as the96× 248× 813

matrix). Thisa is generated for meshM by the basis function method over the time

sequence to obtain a more accurate prediction of the currentsource. The ’*’ shows

the original reconstructions ofa by the basis function method; the blue line showsthe

posterior estimate by Kalman filter estimation on each component of 3 dimensions.
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Figure 4.20: This figure shows the smoothing process of 12th element of coefficient

matrix a in successive 31 time points by Kalman filter (in 3-space, with components

x, y and z) for the real MEG data of facial expression ( showed as the96× 248× 813

matrix). Thisa is generated for meshM by the basis function method over the time

sequence to obtain a more accurate prediction of the currentsource. The ’*’ shows

the original reconstructions ofa by the basis function method; the blue line showsthe

posterior estimate by Kalman filter estimation on each component of 3 dimensions.
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Figure 4.21: This figure shows the optimization results forγ in x dimensions for the

real MEG data of facial expression ( showed as the96 × 248 × 813 matrix). With the

optimization calculation explained inParameter optimization, the minimum values are

obtained numerically. The x-axis shows the numerical valueof x, and y-axis shows

the approximation ofE. With y-axis reaches to minimum, the corresponding value in

x-axis are the optimization of x.
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Figure 4.22: This figure shows the optimization results forγ in y dimensions for the

real MEG data of facial expression ( showed as the96 × 248 × 813 matrix). With the

optimization calculation explained inParameter optimization, the minimum values are

obtained numerically. The x-axis shows the numerical valueof y, and y-axis shows

the approximation ofE. With y-axis reaches to minimum, the corresponding value in

x-axis are the optimization of y.
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Figure 4.23: This figure shows the optimization results forγ in z dimensions for the

real MEG data of facial expression ( showed as the96 × 248 × 813 matrix). With the

optimization calculation explained inParameter optimization, the minimum values are

obtained numerically. The x-axis shows the numerical valueof z, and y-axis shows

the approximation ofE. With y-axis reaches to minimum, the corresponding value in

x-axis are the optimization of z.
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Figure 4.24: This figure demonstrate the comparison of reconstruction results attarget

time point: 70 of 813 by the basis function method onM (on the left) and by the

Bayesian super-resolution method onM+ (on the right).
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Figure 4.25: This figure demonstrate the wave pattern of the reconstructed current

sourceJ70 (at the time point 70 of 813) onM+ in 3-space. From the top to the bottom,

the patterns show the wave pattern ofJ70 in x, y and z dimension, respectively. The

x-axis indicates the index of vertex ofM+, the y-axis indicates the amplitude of the

current source.
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4.8 Conclusion

are plenty of loop calculation associated with the large size matrix calculation (includ-

ing the full matrix and sparse matrix calculation) , the implement of the algorithms are

with huge time and space computation complexity which generates a critical restriction

of the application of the method. In the real application, itis crucial to decrease the

computation cost so that the algorithm can be applied more efficiently and realistically

on the real MEG source reconstruction, e.g. we can upgrade the advanced configura-

tion, as well as explore more reasonable format to store the variables( such as the state

noise covariance matrixQ, instead of storing the full matrices).

4.8 Conclusion

In summary, the main contribution of the algorithm designedin this Chapter is to build

a new solution for improving the spatial-resolution of MEG source reconstruction at a

single time point by introducing a classical method (Bayesian super-resolution method)

from the pattern recognition theory. This approach is applied based on the MEG spatial

reconstruction with basis function method which is elaborated in Chapter 3of the

thesis. However, it could also be applied to other spatial reconstruction methods to

improve the spatial-resolution.

As a competitive brain imaging technique, MEG shows superior temporal resolu-

tion (up to 1 ms). However, one of the weaknesses is that the spatial resolution is

reduced. This method can be applied complemented by the spatial resolution of MEG

source reconstruction using the time series of signals.

The mathematical framework of the method provides sound logic and an adequate

description of the inverse problem of MEG. From the numerical experiment results

of parameter estimation, it is explicit that the spatial resolution has effectively been

improved.

However, instead of analysing the data of image, the method here is used for pro-

cessing the problem of source distribution on the 3D cortical surface mesh that increase

the computation complexity and inaccuracy of the reconstruction results immensely.

This problem is reflected by the results generated from synthetic data as well as real

MEG data.

Moreover, the parameter estimation and the optimization ofhigh-resolution source

distribution contain a number of large matrix calculations. Although some of them can
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be simplied by sparse matrix methods, there are many other factors that require large

and full size matrices, which lead to expensive calculations and an increase in time and

space complexity. Some effective software for matrix calculation can be used, such as

SPAI(Grote and Hagemann) for the inverse problems of large matrix. This limitation

also affects the widely application of the super-resolution algorithm.

Therefore, there are some possible extensions that can be achieved in further work.

Firstly, with respect to the expensive computation mentioned above, it is still feasi-

ble to either upgrade the experimental configuration (the configuration currently is :

InterCore2(1,8GHz), Linux system(2.6.34.1)-32bit, matlab 7.9.0(R2009b) × 32 edi-

tion , RAM: 4GB), or to develop the structure of matrix calculation mathematically to

improve the efficiency of the application of this Bayesian super-resolution method.

Furthermore, the high-resolution meshM+ we applied for the Bayesian super-

resolution method is interpolated from the original meshM and directly used for the

reconstruction process. It will be beneficial if we can create M+ more accurately,

which can better represent the cortical surface realistically as a part if the future work.

Moreover, this smoothing method needs to be carefully designed to decrease the dis-

tortion of the information of cortical surface to the minimum.
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Chapter 5

MEG image estimation via Kalman

smoother

5.1 Brief introduction

In the last two Chapters, we have tackled the MEG source reconstruction problem and

improved the spatial resolution of the reconstruction based on the MEG measurement

using the basis function method and the Bayesian super-resolution method. In this

Chapter we will use the Kalman smoother to provide a direct reconstruction.

Assuming the MEG system as a dynamic system, the Kalman filteris applied

to correct the original frames with low-resolutions in a particular time sequence in

Chapter 4: Spatial Improvement of MEG source reconstruction with Bayesian Super-

resolution. As a classical tool for smoothing the state of a dynamic system, the Kalman

smoother can be applied to the MEG study for improving individual state estimation

in the temporal field, using the data from other time frames.

Since the Kalman filter and the Kalman smoother both are both able to produce

the estimation of the state of a dynamic system, it is feasible to apply the Kalman

smoothing theory into the estimation of event-related dynamics in brain imaging. M.P.

Tarvainen and his colleagues tried to solve the estimation of Nonstationary EEG on

event-Related Synchronization (ERS) with a Kalman smoother approach (Tarvainen

et al., 2004). Also, the Kalman filter and smoother have been successfully used to
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5.2 Noisy linear dynamic system

perform the estimation with high dimensionality as well as to solve the inverse problem

on EEG-fMRI fusion of paradigm-free activity(Deneux and Faugeras, 2010) .

In this Chapter, we present a Kalman smoother approach, utilizing a fixed-interval

smoother, to estimate a high resolution MEG current source in the temporal field. We

use the basis function source model (Chapter 3) which is integrated with the Kalman

filter. However, this estimation still needs smoothing to improve the accuracy in the

temporal field. The mathematical framework of Kalman smoother for measuring mag-

netic field and conditions of dynamic system is developed from the last two Chapters

of (Welling) (Welch and Bishop, 2006). Then, the EM algorithm can be used to es-

timate the parameter set. It is worthy to note that this approach makes it possible to

estimate the hiddenhigh-resolutionimage directly from the coil sensors of MEG.

In the later part of this Chapter, the dynamic system is builtbased on the inte-

gration of the basis function source model and the Kalman filter. The MEG system

is described as a dynamic system, which provides the prior conditions for Kalman

smoothing. Then, the Kalman smoother will be introduced forestimating the current

source frames with high-resolution in the temporal field. Next, the parameter set is

estimated by applying the EM algorithm. Finally, the current source reconstruction

experiments based on the Kalman smoother method were conducted again using syn-

thetic data and real MEG data .

5.2 Noisy linear dynamic system

5.2.1 Noisy linear dynamic model

We have a strong assumption of the cortical distributed current source model for MEG

inverse problem that the current source are embedding on thecortical surface and ori-

ented tangentially to it. The magnetic field generated by thecurrent sources which are

tangential to the cortical surface are decayed. Thus, the MEG measurement from the

sensor set at single time point can be described as a noisy linear dynamic system with

the current source, showed as Eqn5.1.

B(t) = L J(t) + n(t) (5.1)
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5.2 Noisy linear dynamic system

whereB(t) indicates the measurement of magnetic field on time pointt; L is the

leadfield,J(t) represents the current source at time pointt. n(t) is the added noise in

the time course assumed as zero-mean(E(n) = 0)(Olivier et al., 2001).

Also, as MEG has a high temporal-resolution(up to 1 ms), we assume that the

current sources are linked between frames and can be modelled as a dynamic system.

Therefore, the Kalman filter and Kalman smoother are considered as the conventional

solution for estimating as well as smoothing the state of this dynamic system in the

temporal field.

Before we start the design of the algorithm, the following priors must be set firstly

as the conditional assumptions of dynamic system for later processing of Kalman

smoothing. The measured signals are modeled as an output of aparametric model

with time-varying parameters (Tarvainen et al., 2004).

5.2.2 Prior setting of dynamic process

From the study of Kalman filter inChapter 2, the real-time MEG state and measure-

ment can be described as the following:

xt = Axt−1 + ω (5.2)

zt = Bxt + υ (5.3)

Herext is the the hidden state andzt is the observation.A, andB are the relevant

coefficient matrices forxt−1 andxt, respectively.ω is the state noise , andυ is the

observation noise. Both of them are assumed as the zero-meanGaussian distribution:

ω ∼ N(0,Q) (5.4)

υ ∼ N(0,R) (5.5)

whereQ is the2n × 2n covariance matrix of the state noise.n is the number of

vertices of cortical mesh. The structure ofQ is shown in Eqn5.10; andR is them×m

covariance matrix of the observation noise.m is the number of sensors.
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5.2 Noisy linear dynamic system

In the context of our problem, we would like to find the information of currentxt

which includes not only currentjx but also therate-of-changevt of the current in the

time course:

xt =

(

jt
vt

)

=

















jxt
jyt
jzt
vxt

vyt

vzt

















(5.6)

here,jt = [jxt jyt jzt]
T representscurrents embedding on the cortical surface at

time pointt on 3 dimensions, respectively; vt = [vxt,vyt,vzt]
T representscurrents

rate of change at time pointt on 3 dimensions, respectively. Of course, we observe the

coil response which represents as following equation:

zt = bt (5.7)

The state transition matrixA just gives usjt = jt−1 + vt−1 andvt = vt−1, so

A =

(

I I

0 I

)

(5.8)

And the observation matrixbt gives the coil responses from a particular current

distribution at time pointt. In the simplest form this is the leadfield matrix operation

on jt ,so

bt = Ljt + υ (5.9)

There are two types of noise present which are the covariancematrix Q of the

state noise and the covariance matrixR of the observation noise. We assume that Q is

smoothed over our mesh and can be modelled as with respect to the element matrixEγ

in Eqn4.21:

Q = β

















Eα 0
Eα

Eα

Eα

Eα

0 Eα

















(5.10)
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5.2 Noisy linear dynamic system

where

Eα =











exp(−L+
1,1α) · · · · · · exp(−L+

1,Nα)
...

. . .
...

...
. . .

...
exp(−L+

N,1α) · · · · · · exp(−L+
M,Mα)











(5.11)

In terms of Eqn5.10, there are two parametersα andβ which directly govern the

trend ofQ. Q is the same noise covariance matrix as we used in the super-resolution

method and based on the mesh heat kernel (refer to Eqn4.17). Therefore,β is the

Gaussian constant for the covariance matrixQ which has the linear relationship with

Q. The larger value ofβ leads to the larger values of the elements ofQ; and vice

versa. Theα is the constant prior of the heat kernel; the heat kernel models the local

interactions between neighbouring elements of the mesh. The larger the value ofα,

the larger the scale of correlations on the mesh. Therefore,the problem of searching

for unknown parametersR andQ is transformed into searching forR, α andβ in the

later part of this Chapter.

The basis set algorithm of MEG source reconstruction(explained in Chapter 3) is

used for re-writing the dynamic state in following way:

jx = Φax, jy = Φay, jz = Φaz (5.12)

We can do the same for our rates-of-change:

vx = Φcx, vy = Φcy, vz = Φcz (5.13)

As this process is supposed to be a linear transform, we can estimate the parameters

directly:

xnew
t =

















axt

ayt

azt

cxt
cyt
czt

















(5.14)
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5.2 Noisy linear dynamic system

with A unchanged. However, the noise will change in this new representation of

the problem where each componentexp(−L+α) will be transformed into:

ΦT exp(−L+α)Φ = exp(−Λα) (5.15)

whereΛ is a diagonal matrix of the eigenvalues of the high-resolution cortical

meshM+:

Λ =











λ1,1 · · · · · · 0
... λ2,2

...
...

. . .
...

0 · · · · · · λM,M











(5.16)

With respect to the equations above, we can write the noiseQ as follows:

Q = β

















exp(−Λα) 0
exp(−Λα)

exp(−Λα)
exp(−Λα)

exp(−Λα)
0 exp(−Λα)

















= β exp(−Λfα)

(5.17)

where

Λf =

















Λ 0
Λ

Λ

Λ

Λ

0 Λ

















(5.18)

and

exp(−Λα) =











exp(−λ1,1α) · · · · · · 0
... exp(−λ2,2α)

...
...

. . .
...

0 · · · · · · exp(−λM,Mα)











(5.19)
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Finally, according to the basis set algorithm in Chapter 3, the observation model

can be represented as follows:

bt = L





Φ 0

Φ

0 Φ









ax

ay

az



 + υ (5.20)

It is worthy noting that the number of basis functions here can be considerably

larger than before. The inaccuracy generated by the over-determined can be corrected

by applying Kalman smoother for the estimation later.

5.3 Application of Kalman smoother

5.3.1 Brief introduction of Kalman smoother

As we discussed inChapter 1 : Application of Kalman smoother, the Kalman smoother

can be used to estimate the hidden state of a Gaussian process. Based on the Markov

property of Kalman filter, the state depends on the previous state but not any others.

However, for the estimation of the state and the uncertainty(covariance) at a specific

time pointt, it is feasible to obtain the solution from only the status onprevious one

time pointt − 1 as well as the noisy observationxτ = z1, · · · , zτ for the specic time

point t. It is notable that the difference betweent andτ generally provides the process

with variable uses. For instance, ifτ is equal to the current time pointt, the process

is called filtering; if τ is smaller thant, the process is calledpredicting; and if τ is

larger thant, the process is calledsmoothing. In other words, if the measured data

is not processed in real time or if a small lag in the processing is allowed, the future

observations can also be used in the state estimation. Sincemore measurement in the

time sequence are applied for processing in this case, it is reasonable to expect the

estimates to be more accurate. This is called a smoother (Kalman, 1960), (Jazwinski,

1970,), (Deneux and Faugeras, 2010).

With the calculation and inference from (Welling), the Kalman smoother equations

are obtained as Eqn5.21, Eqn5.22and Eqn5.23:

x̂τ
t = x̂t

t + Jt(x̂
τ
t+1 − x̂t

t+1) (5.21)
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5.3 Application of Kalman smoother

Figure 5.1: This figure shows the relationship between the observed statesz and source

statex in the time course. The current sourcex is assumed to be the hidden state which

depends both on the state at timet − 1 andt + 1 and the observed statez depends on

the hidden statex only. Since there is on state after it,xτ is assumed to be the final

state which only depends on the statexτ−1 before it.

Jt = Pt
tA

T [Pt
t+1]

−1 (5.22)

Pτ
t = Pt

t + Jt(P
τ
t+1 −Pt

t+1)J
T
t (5.23)

The way to apply the Kalman smoother equation is separated into two steps. Firstly,

with the full set of term measurements, the Kalman filter is applied forward from the

state at initial time point till the state at timet is reached (wheret < τ ). Then, the

process is moved backward by applying the Kalman smoother equations until state at

the timet is estimated. Since all the state factors, such asx̂t+1
t+1, x̂

t
t+1 , Pt+1

t+1 andPt
t+1,

t = 1 · · · τ are stored in the former step, it is easier for Kalman smoother equations to

apply them directly in the later step (Welling).

5.3.2 Application of Kalman smoother

The process can be represented as graphical model showed in Fig 5.1. The unobserved

statext depends both on the state at timet−1 andt+1 and the observed state depends

on the hidden state only.
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5.3 Application of Kalman smoother

Here, we consider the expression of the states with final statexτ and earlier state

xt, respectively.

Firstly, it is noticeable that the final statexτ only depends on the state before it,

τ − 1, since there is no state after it, so

p(xτ |{z1, z2, . . . , zτ}) = p(zτ |xτ )p(xτ |{z1, z2, . . . , zτ−1})/p({z1, z2, . . . , zτ−1})

(5.24)

This is identical to the Kalman filter, so we can findxτ using the normal Kalman

filter equations:

x−
t = Axt−1 (5.25)

P−
t = APt−1A

T +Q (5.26)

Kt = P−
t B

T (BP−
t B

T +R)−1 (5.27)

xt = x−
t +Kt(zt −Bx−

t ) (5.28)

Pt = (I−KtB)P−
t (5.29)

Then, for a timet earlier in the sequence, we can write

p(xt, xt+1, {z1, . . . , zτ}) = p({zt+1,...,zτ}|xt, xt+1, {z1, . . . , zt})

× p({z1, . . . , zt}, xt+1|xt)p(xt|{z1, . . . , zt})

= p({z1, . . . , zτ}, xt+1|xt, {z1, . . . , zt})p(xt|{z1, . . . , zt})

= p({zt+1,...,zτ}, xt+1|xt)p(xt|{z1, . . . , zt})

= p({zt+1, . . . , zτ}|xt+1)p(xt+1|xt)p(xt|{z1, . . . , zt})

(5.30)

According to Eqn5.30, it is apparent that the distribution ofxt depends on three

components :p({zt+1, . . . , zτ}|xt+1); p(xt+1|xt) andp(xt|{z1, . . . , zt}). The first com-

ponentp({zt+1, . . . , zτ}|xt+1) comes from the measurement;p(xt|{z1, . . . , zt}) can be
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5.4 Parameter estimation

found from the Kalman filter; andp(xt+1|xt) which we can find from the state transi-

tion xt = Axt−1 + ω. We now use∗ to denote the best estimate. We havex∗
τ = xτ .

Jt = PtA
T [P−

t ]
−1 (5.31)

x∗
t = xt + Jt(x

∗
t+1 − x−

t+1) (5.32)

P∗
t = Pt + Jt(P

∗
t+1 −P−

t+1)J
T
t−1 (5.33)

5.4 Parameter estimation

Following the work presented previously (Shumway and Stoffer, 1982) , (Shumway

and Stoffer, 1992), (Welling), (Ghahramani and Hinton, 1996), the EM algorithm is

applied to find the parameters of the method. For the EM algorithm, we consider the

statesxt as hidden variables, while{z1, z2, . . . , zτ} are the observation. The joint

probability of the complete data is showed as:

p({z}τ1{x}
τ
1) ≡ p({z1, z2, . . . , zτ}, {x1,x2, . . . ,xτ}) = p(x1)

τ
∏

t=2

p(xt|xt−1)

τ
∏

t=1

p(zt|xt)

(5.34)

and we know that

p(zt|xt) = N(Bxt,R) (5.35)

p(xt|xt−1) = N(Axt−1,Q) (5.36)

p(x1) = N(µ,Σ) (5.37)

We proceed to estimate the parameters{R,Q} by determining the log likelihood of

the expectation of the joint probability density function(pdf) over the posterior density

’L’
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5.4 Parameter estimation

L = E[log(p({z1, z2, . . . , zτ}, {x1,x2, . . . ,xτ}))]

= log detΣ+ (τ − 1) log detQ+ τ log detR+ [(x1 − µ)TΣ−1(x1 − µ)

+
τ
∑

t=2

(xt −Axt−1)
TQ−1(xt −Axt−1) +

τ
∑

t=1

(zt −Bxt)
TR−1(zt −Bxt)]

(5.38)

We now describe the process of parameters estimation by anE-stepand M-step,

respectively. First we find the log-likelihood by computingthe expectation in Eqn5.38,

and then maximize the log-likelihood to find the best parameters.

• The E-step

Since the probabilityp(xt|{z}
τ
1) is assumed to be Gaussian, we are usingxτ

t

to denote the state estimateE[xt|{z}
τ
1] that depends on thepast and future ob-

servations( for the Kalman smoother) , andPτ
t to denote covariance estimate

E(x̃τ
t x̃

τ
t |{z}

τ
1) wherex̃t represents the state prediction error between the state

and its estimate. Then, the objective function Eqn5.38 contains a number of

terms need to be calculated inE-step (Shumway and Stoffer, 1982) , (Shumway

and Stoffer, 1992), (Ghahramani and Hinton, 1996):

E[xt|{z}
τ
1] = xτ

t ≡ x∗
t t = 1, · · · , τ (5.39)

E(x̃τ
t x̃

τ
t |{z}

τ
1) = Pτ

t ≡ P∗
t t = 1, · · · , τ (5.40)

E[xtxt|{z}
τ
1] = Pτ

t + xτ
tx

τ
t ≡ Mt,t t = 1, · · · , τ (5.41)

E[xtxt−1|{z}
τ
1] = Pτ

t,t−1 + xτ
t x

τ
t−1 ≡ Mt,t−1 t = 2, · · · , τ (5.42)

We can obtain the following Kalman filter forward recursions(Ghahramani and

Hinton, 1996):

xt−1
t = Axt−1

t−1 (5.43)
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Pt−1
t = APt−1

t−1A
T +Q (5.44)

Kt = Pt−1
t BT (BPt−1

t B+R)−1 (5.45)

xt
t = xt−1

t +Kt(zt −Bxt−1
t ) (5.46)

(5.47)Pt
t = Pt−1

t −KtBPt−1
t

= (I−KtB)Pt−1
t

Following (Shumway and Stoffer, 1982), the items in Eqn5.39Eqn 5.40and

Eqn5.41can be calculated by a set of backward recursions of Kalman smoother:

Jt−1 = Pt−1
t−1A(Pt−1

t )−1 (5.48)

xτ
t−1 = xt−1

t−1 + Jt−1(x
τ
t −Axt−1

t−1) (5.49)

Pτ
t−1 = Pt−1

t−1 + Jt−1(P
τ
t −Pt−1

t )JT
t−1 (5.50)

The quantity in Eqn5.42is so-called thelag-one covariance smoother, which is

given by the following recursion (Shumway and Stoffer, 1982), (Welling):

Pτ
t−1,t−2 = Pt−1

t−1J
T
t−2 + Jt−1(P

τ
t,t−1 −APt−1

t−1)J
T
t−2 (5.51)

which is initialized by:

Pτ
τ,τ−1 = (I−KτB)APτ−1

τ−1 (5.52)

Also, there is the relation betweenMt−1,t andMt,t−1 showed as follows (Shumway

and Stoffer, 1982), (Welling):

Mt−1,t = MT
t,t−1 (5.53)

147



5.4 Parameter estimation

Moreover, when we observe the log-likelihood function Eqn5.38, it is notable

thatLL contains the typical termxtQ
−1xt which can be replaced as follows:

(5.54)

E[xtQ
−1xt] = E[

∑

ij

Q−1
ij xtixtj ]

=
∑

ij

Q−1
ij E[xtixtj ]

= Tr(Q−1Mt,t)

So, taking the expectation value (and omitting terms without Q andR which do

not interest us), we get:

L = (τ − 1) log detQ + τ log detR

+

τ
∑

t=2

[Tr(Q−1Mt,t) + Tr(ATQ−1AMt−1,t−1)− Tr(ATQ−1Mt−1,t)

− Tr(Q−1AMt,t−1)]

+

τ
∑

t=1

[Tr(BTR−1BMt,t) + Tr(R−1ztz
T
t )− Tr(BTR−1x∗

tz
T
t )

− Tr(R−1Bztx
∗T
t )] (5.55)

• The M-step

The parameters{R,Q} are estimated in the M-step by taking the corresponding

partial derivative of the log-likelikhood functionL which is equivalent to zero

for the optimal value. All the matrix calculation in the following are referred to

theAppendix A.

Firstly, for finding the covariance matrix of the observation noiseυ, we have:

dL
dR

= −τR +
τ
∑

t=1

BMT
t,tB

T + ztz
T
t −Bztx

∗T
t − x∗

tz
T
t B

T = 0 (5.56)

Rnew =
1

τ

τ
∑

t=1

BMt,tB
T + ztz

T
t −Bztx

∗T
t − x∗

tz
T
t B

T (5.57)
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Then, for finding the covariance matrix of the state noiseω, we have:

dL
dQ

= −(τ − 1)QT +

τ
∑

t=2

[Mt,t +AMt−1,t−1A
T −Mt−1,tA

T −AMt,t−1] = 0

(5.58)

Qnew = 1/(τ − 1)

τ
∑

t=2

[Mt,t +AMt−1,t−1A
T −Mt−1,tA

T −AMt,t−1] (5.59)

Moreover, in terms of the Eqn5.17, the covariance matrixQ of state noise contains

two unknown parameters(β, α). Applying the following process of calculation, it is

feasible to estimate the optimized values , respectively.

If we let Qα = Q/β = exp[−αΛf ] and then we have

log detQ = log β exp[−α
∑

i

λi] = log β − αTr(Λf) (5.60)

Tr(Q−1Mt,t) = β Tr(Q−1
α Mt,t) (5.61)

dQ−1
α

dα
= ΛfQ

−1
α (5.62)

So the differentials of the log-likelihood are:

dL
dβ

= (τ − 1)/β −
1

β2

τ
∑

t=2

[Tr(Q−1
α Mt,t) + Tr(ATQ−1

α AMt−1,t−1)

− Tr(ATQ−1
α Mt−1,t)− Tr(Q−1

α AMt,t−1)]

= (τ − 1)/β −
1

β2
Tr(Q−1

α M̃) (5.63)

Where

M̃ =
τ
∑

t=2

[Mt,t +AMt−1,t−1A
T −Mt−1,tA

T −AMt,t−1] (5.64)

and
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dL
α

= −(τ − 1) Tr(Λf ) +
1

β

τ
∑

t=2

[Tr(Q−1
α ΛfMt,t) + Tr(ATQ−1

α ΛfAMt−1,t−1)

− Tr(ATQ−1
α ΛfMt−1,t)− Tr(Q−1

α ΛfAMt,t+1)]

= −(τ − 1) Tr(Λf ) +
1

β
Tr(Q−1

α ΛfM̃)

(5.65)

We have to solve the two equations:

dL
dα

= 0 (5.66)

and
dL
dβ

= 0 (5.67)

According to Eqn5.66 and Eqn5.67, Eqn 5.63 and Eqn5.64 can be written as

following two equations:

1

β
= (τ − 1) Tr(Λf )/Tr(Q

−1
α Λf M̃) (5.68)

Tr(Λf) Tr(Q
−1
α M̃) = Tr(Q−1

α ΛfM̃) (5.69)

Since the factorTr(Q−1
α M̃) can be written as according to previously setting, then

we have the new representation ofTr(Q−1
α M̃):

(5.70)
Tr(Q−1

α M̃) = Tr(
1

β
exp(αΛfM̃)

=
1

β
Tr(expαΛfM̃)

Then , with respect to the Eqn5.70, the Eqn5.69can be written as follows:

(5.71)
Tr(Λf )

1

β
Tr(exp(αΛf)M̃) = Tr(Q−1

α ΛfM̃)

= Tr(
1

β
exp(αΛf)ΛfM̃)

The left-side and right-side of the Eqn5.71can be written as :
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(5.72)

Left-side = Tr(Λf ) Tr( exp(αΛf) M̃ )

= Tr(Λf )
[

m
∑

i

m
∑

j

M̃ij +

m
∑

i

(exp(αλi,i)− 1)M̃i,i

]

and

(5.73)

Right-side = Tr(exp(αΛf) Km)

=
m
∑

i

λi,iM̃i,i exp(αλi,i)

where

Km =















λ1,1M̃1,1 0

λ2,2M̃2,2

. . .

0 λm,mM̃m,m















(5.74)

From the above inference of Eqn5.71and Eqn5.68, the unknown parameters set

(α, β) can be estimated numerically.

5.5 Results

In the following part, the simulated data as well as the real MEG data are both ap-

plied for the evaluation of the Kalman smoother method to MEGsource reconstruc-

tion on high-resolution meshM+. Since this method is based on a successive time

sequence, we choose the measurement on the time period of interest:(1, · · · , t, · · · , τ)

with the length ofτ . In terms of the experimental configuration we have( the experi-

mental configuration is : Inter Core 2(1,8GHz), Linux system(2.6.34.1)-32bit, matlab

7.9.0(R2009b)× 32 edition, RAM: 4GB), we definedτ = 16. The source distribution

on time pointt is what we try to reconstruct by the Kalman smoother method here.

The initial current source distribution on 1st time point ( namelyJt1) is come from the

reconstruction result by the Bayesian super-resolution method on corresponding time

point (refer to the last Chapter). Moreover, the interpolated high-resolution meshM+

generated in last Chapter is directly used here.
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5.5.1 Synthetic results

In this simulated experiment, we applied two groups of simulated current sources as

well as the corresponding measurement as same as last two Chapters, i.e. artificial

source distribution and realistic source distribution inAppendix Bwhich are also called

assynthetic source Aandsynthetic source B. It is worth to note that the current sources

in successive 16 time points we selected are as same as the ones in last Chapter. The

only difference is only the first 16 of 31 time points are selected because of the re-

striction of experimental configuration. And, thetarget time pointis 3 of 16 for both

synthetic source Aandsynthetic source B.

The whole process of simulation experiment is based on the frame of EM algo-

rithm. Starting with theE-step, the high-resolution current source frames in successive

15 time points are estimatedforwardwith the initial guess of the state noise covariance

Q and observation noise covarianceR in terms of the theory of Kalman filter. The cor-

responding factors of the Kalman filter, are calculated, such asKt, Pt
t andxt

t. Then,

the Kalman smoother is applied for thebackwardestimation based on all of these fac-

tors calculated above. Then, according to the previous section, the observation noise

covarianceR and the state noise covarianceQ are estimated in theM-step. The entire

process is recursive and continues untill the estimation ofR andQ tend to be conver-

gent. Furthermore, the unknown parameter setα andβ which are associated withQ

are optimized numerically in terms of the best estimation ofα, shown in Fig5.3 and

Fig 5.6 for synthetic source Aandsynthetic source B, respectively. Then,β can be

calculated with respect to the optimizedα, refer to Eqn5.68. In terms of the above

results as well as the known parameter set:R, α andβ, we applied for the synthetic

current source generation, Table5.1 shows the comparison of the setting parameters

and the reconstructed parameters forsynthetic source Aandsynthetic source B. Ta-

ble 5.1 indicates that the instability still exists in parameter reconstruction of Kalman

smoother method, where the parameterR can be provided with satisfied reconstruction

while reconstruction ofα andβ exist errors to the original parameters.

The figures, Fig5.2 and Fig5.5, demonstrate the overlapping pattern of MEG

measurement on the selected 16 successive time points forsynthetic source Aand

synthetic source B, respectively. The line in different color indicates the measurement

on individual time point. The figures, Fig5.4 and Fig5.7, indicates the comparison
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Table 5.1: Reconstructed parameters results

Parameter type synthetic original forsynthetic source A for synthetic source B

Frobenius Norm ofR 1 1 1

α 0.5 8.2 1.6

β 1 0.7314 1.013

of the simulated current source pattern on high-resolutionmeshM+ ( on the left)

and the reconstruction result by the Kalman filter method (onthe right) at thetarget

time pointfor the synthetic source Aand thesynthetic source B, separately. Fig5.4

does not show the exactly correct location of thesynthetic source A. Whereas, Fig5.4

indeed reconstruct the main location of thesynthetic source Balthough the strength of

the current source is lower than the original current source. The Table5.2 shows the

comparison of logarithm of RMS (root mean square) error for the Kalman smoother

method and the Super-resolution method to thesynthetic source Aandsynthetic source

B at thetarget time point, respectively. From the table, it is clear that the reconstruction

results by the Kalman smoother method is superior than the super-resolution method.

Table 5.2: Logarithm of RMS error results

data type for the Kalman smoother method for the super-resolution method

for synthetic source A 3.2576 7.9077

for synthetic source B 7.7807 32.3870

5.5.2 Application to the real MEG data

We get the real MEG data of visual expression based onAppendix 3. Firstly, we ob-

tained the cortical surface mesh with262658 vertices and565782 faces from the struc-

tural MRI scan of the same subject byFreesurfer(http://surfer.nmr.mgh.harvard.edu/)

(5.0.0). Since the coordinate of MRI cortical surface are different with the MEG coor-

dinate, the coordinate registration is processed as the first step(with the special solution

provided by YNiC). However, the spatial resolution of mesh obtained from MRI is too
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Figure 5.2: This figure demonstrates 2D projected pattern ofMEG sensor measurement

on the selected 16 successive time points(inms) for synthetic source A.
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5.5 Results

Figure 5.3: This figure shows the optimized estimation of unknown parameterα for

synthetic source A. The x-axis represents the variable range ofα, and the y-axis repre-

sents the logarithm ofdL

dα
(refer to Eqn5.69). With the minimum on the y-axis, we can

obtain the optimizedα on the corresponding x-axis.
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Figure 5.4: This figure shows the comparison of the simulatedcurrent source pattern

of synthetic source Aon high-resolution meshM+ ( on the left) and the reconstruction

result by the Kalman smoother method (on the right) at thetarget time point.

large for the realistic or reasonable solution. The simplified mesh is therefore gener-

ated by the softwareRemesh( http://remesh.sourceforge.net/). In terms of the mesh

resolution selected for MEG analysis in (MNE), we apply the reasonable spatial reso-

lution for meshM is with 2600 vertices and 5192 faces . Secondly, the measurement

of MEG signals are represented as a96 × 248 × 813 matrix, where96 indicates the

number of different stimulus,248 indicates the number of sensors and813 indicates

the sequence of time instants. The visualization of this measurement matrix is showed

in Fig C.1.

The experiment process of the MEG real data is similar with the synthetic exper-

iment we illuminated above but just implementing with the real MEG data instead of

the synthetic ones. We also choose 16 successive time points(which are as same as

the first 16 time points of 31 in theApplication to the real MEG datain Chapter 3)

from 813 time instants, and70 th stimulus from96 different stimulus, then we obtain

a 248 × 813 matrix Breal. The framework of Kalman smoother is then constructed

and EM algorithm is used for the parameter optimization. With the proper parameter

estimation with EM algorithm, the optimized estimation of current source distributed

on the high-resolution meshM+, 7792× 3 matrix j realnew, is produced finally.
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Figure 5.5: This figure demonstrates 2D projected pattern ofMEG sensor measurement

on the selected 16 successive time points(inms) for synthetic source B.
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Figure 5.6: This figure shows the optimized estimation of unknown parameterα for

synthetic source B. The x-axis represents the variable range ofα, and the y-axis repre-

sents the logarithm ofdL

dα
(refer to Eqn5.69). With the minimum on the y-axis, we can

obtain the optimizedα on the corresponding x-axis.
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Figure 5.7: This figure shows the comparison of the simulatedcurrent source pattern

of synthetic source Bon high-resolution meshM+ ( on the left) and the reconstruction

result by the Kalman smoother method (on the right) at thetarget time point.

5.6 Discussion

The reconstructions shown in Fig5.4, Fig 5.7 and Fig5.10do not show the satisfied

results. This is possibly caused by the reason that the method is a integration of the

Kalman smoother and the Basis function source model. The application of this method

may affected by any inaccuracy caused by the basis function source model to the MEG

source reconstruction at the initial time point. In the context of this reason, it is fea-

sible that to apply the reconstructed results via other solutions as the initial estimation

for the Kalman smoother method in the future work. Additionally, with respect to

Eqn 5.6, the velocity of the source variation in the temporal fieldvt is assumed as

the same value. It might not adaptable in practice. This assumption of current source

variation with uniform velocity may also produce the inaccuracy of the reconstruction.

However, based on the current simulation results, it is notable that the reconstruction of

synthetic source Bshows better performance rather than the result ofsynthetic source

A, where the source distribution is mainly reconstructed at the correct location. From

this performance, we can also conclude that the algorithm may more effective and sen-

sitive to the distributed and supercial current source rather than the single or/and deep

current source of the cortex.

Since the Kalman smoother method is designed for the high-resolution current

source frames, there are a number of larger size matrix calculation in the method. This
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Figure 5.8: This figure demonstrates 2D projected pattern ofMEG sensor measure-

ment on the selected 16 successive time points(inms) for the real MEG data of facial

expression (showed as the96× 248× 813 matrix).
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5.6 Discussion

Figure 5.9: This figure shows the optimized estimation of unknown parameterα for

the real MEG data of facial expression ( showed as the96 × 248 × 813 matrix). The

x-axis represents the variable range ofα, and the y-axis represents the logarithm ofdL

dα

(refer to Eqn5.69). With the minimum on the y-axis, we can obtain the optimizedα

on the corresponding x-axis.
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Figure 5.10: This figure demonstrate the comparison of reconstruction results attarget

time point: 70 of 813 by the basis function method onM (on the left) and by the

Kalman smoother method onM+ (on the right).

leads to expensive computation complexity. These problemsmay affect the accuracy

of the result as well as the application of the method in the real world. Also, during

the session of unknown parameters estimation, the unknown parametersβ andα are

applied for determining covariance matrixQ of the state noiseω (refer to Eqn5.2and

Eqn5.10). By applying EM algorithm to the expectation of the joint probability den-

sity function (pdf)L (refer to Eqn5.38), the optimized estimatedα andβ are obtained

in turn. Since we are using numerical analysis to estimate the optimizedα as well as

β so that to obtain the minimization ofL (refer to Eqn5.66and Eqn5.67), it is worth

to be careful about the selection of possible range ofα which is the difficult part in

this step. If the possible range ofα we select is not large enough, it is possible that the

obtained estimation is corresponding to the local minimization of L, so that generates

the incorrect estimation ofα, and then affects the accuracy of estimatedβ. In practical,

the solution is to select the possible range ofα as large as possible with respect to the

experimental circumstance so that to avoid this inaccurateestimation.
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Figure 5.11: This figure demonstrate the wave pattern of the reconstructed current

sourceJ70 (at the time point 70 of 813) onM+ in 3D by the Kalman smoother method.

From the top to the bottom, the patterns show the wave patternof J70 in x, y and z

dimension, respectively. The x-axis indicates the index ofvertex ofM+, the y-axis

indicates the amplitude of the current source.
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5.7 Conclusion

In this Chapter, the Kalman lter and Kalman smoother are applied for correcting the

reconstruction in the temporal eld with assuming that MEG system is a linear dynamic

system. Here, we summarize the novelties of the algorithm and the contribution to the

MEG source reconstruction.

We sufficiently utilize the forward model of MEG system and assume it as a linear

dynamic system to design an approach based on previous work.With respect to the

reconstruction from the last chapter, the transformation matrix Leadfieldon the high-

resolution meshM+ , as well as the measurement of the magnetic field from MEG, are

directly used for the estimation of the source distributionas a continuous time series.

We assume there is an unknown hidden cortical activity in this dynamic process.

The Kalman filter is used to estimate the dynamic state while the Kalman smoother

is applied for correcting the source distribution of the hidden state with EM algo-

rithm. From the intrinsic property of the Kalman filter as well as the framework of this

method, it is apparent that this approach is advantageous tosolve the inverse problem.

Based on the source reconstruction results, the Kalman smoother method shows supe-

rior performance for MEG source reconstruction, as shown inFig 5.7. However, it still

shows instability and inaccuracy of reconstruction on different types of current source,

shown in Fig5.4and Fig5.10. These may be related to the following limitations when

the method is applied in practice. As our algorithm is based on the assumption of a

linear dynamic system, it does not cope well with the strong nonlinearity in the model.

In other words, the non-linear signals may not be reconstructed properly using this

method. Additionally, the computational complexity in time and space remains high.

A number of large full-matrix and sparse matrix calculations decrease the efficiency of

the method. It is possible to either upgrade the experimental conguration or to develop

the structure of matrix calculation mathematically to optimize the calculation in future

work. Moreover, with the advanced conguration, the estimations can be extended to

more than 10 time points which can effectively improve the estimation accuracy.
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Chapter 6

Conclusions and future work

In this chapter, we summarize the main contributions of the thesis, as well as discuss

the possible directions of the work that can be improved in the future. Especially,

the novel ideas of our work on MEG spatial-temporal source reconstruction are em-

phasized. Then, we discuss the advantages and limitations of the theoretical models

we design and their related applications in real MEG source reconstruction experi-

ment, i.e. the basis function reconstruction algorithm, the Bayesian super-resolution

algorithm and the Kalman smoother estimation algorithm. Moreover, applying our

approaches into the real-world MEG application, we furtherextend our findings.

6.1 Contributions

6.1.1 Novel idea combined both pattern recognition and MEG

source reconstruction

The novel idea of the thesis is to introduce classical pattern recognition methods,

e.g. basis function extraction, super-resolution method and Kalman filter, to solve the

problem of MEG source reconstruction, in other words, usinga new angle of pattern-

recognition as the solution to reconstruct the MEG current sources. The whole design

of this thesis work is based on the MEG spatial reconstruction at a single time point.

Rather than applying the classical source distribution, e.g. dipoles or current source

volumes of the brain, we assume that the 3D source distributed on each vertex of the
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original cortical surface mesh( generated from the MRI scanof the subject). Then,

the basis function algorithm is applied to spatially reconstruct the source distribution

at the specific time point. Subsequently, another method from pattern-recognition, a

super-resolution algorithm, is introduced to expand the reconstructed source distribu-

tion from the original mesh into the interpolated high-resolution mesh, through the

process of which the spatial resolution of the reconstruction is developed. Further-

more, as the MEG measuring system is assumed to be a linear dynamic system, one of

the classical solutions, Kalman smoother, is finally used toimprove the temporal res-

olution of this source reconstruction based on the high- resolution mesh. In summary,

the thesis combines the use of both some classical methods ofpattern recognition and

the MEG spatial-temproal source reconstruction in order toachieve a highly sensitive

spatial and temporal reconstruction. The design of the thesis aims to bring together

the three related topics (Chapter3, 4 and 5) together and present them as an integrated

process rather than independent topics.

6.1.2 Spatial source reconstruction by Basis function

Specifically, for the basis function algorithm elaborated in Chapter 3, we explore a

new method of MEG source reconstruction based on modeling the current source with

extended basis functions. This algorithm shows a good possibility to reconstruct the

source using the basis functions set and the corresponding coefcients rather than the

classical Beamforming or minimum-norm methods. This algorithm provides a smooth

and well-conditioned reconstruction problem which can be solved directly by an in-

verse method. The results are more physically plausible than the minimum-norm

method and are resistant to noise. Fig6.1 shows the comparison of source recon-

structions between the basis function method for the whole cortical surface and the

partition of ROI by the Normalized cut method at one particular time-point.

Moreover, corresponding the smallest eigenvectors is not the only basis function

set for this basis function algorithm. It would be interesting to try other types of basis

functions and evaluate the efficiency of each type of basis functions as part of the future

work.
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Figure 6.1: The figure shows the comparison of source reconstructions between the

basis function method for the whole cortical surface and thepartition of ROI by the

Normalized cut method at one particular time-point for synthetic source A. The color

from red to blue show the intensity of source strength from strong to weak. The left:

the original source pattern; the middle: the basis functionreconstruction based on the

whole cortical surface; the right: the basis function reconstruction on the partition of

ROI obtained by normalized cut method. The source distribution at one time point

used here is selected fromsynthetic source A( at time point1, refer to Fig3.11).
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6.1.3 Spatial resolution improvement with Bayesian super-resolution

For the Bayesian super-resolution algorithm elaborated inChapter 4, a new solution

is constructed for improving the spatial-resolution of MEGsource reconstruction at a

single time point by introducing a classical method (Bayesian super-resolution method)

from pattern-recognition theory. This approach is appliedbased on the MEG spatial

reconstruction with basis function method elaborated inChapter 3of thesis.

The results from synthetic data as well as the real MEG data show reasonable es-

timation of the parameters which restrict the assumption onthe source distribution

on high-resolution cortical mesh. From the quantitative experimental results, it is ap-

parent that the spatial resolution has been effectively improved. However, since the

parameter estimation as well as the optimization of high-resolution source distribution

contain a number of large matrix calculations. Although some of them can be simplied

by sparse matrix calculation, there remain many other full matrices that lead to ex-

pensive calculations in terms of temporal and spatial complexity. Fig6.2indicates the

high-resolution meshM+ interpolated from the low-resolution meshM , as well as the

comparison between the original synthetic source distribution on low resolution mesh

M and the source reconstruction on the high-resolution meshM+ at one particular

time-point.

6.1.4 Temporal source reconstruction by Kalman smoother

For the Kalman smoother algorithm elaborated inChapter 5, we applied the Kalman

lter and Kalman smoother to correct the reconstruction temporally, keeping in mind

the assumption that MEG system is a linear dynamic system.

Based on previous work, the forward model of MEG system and the assumption

of a linear dynamic system are sufficiently utilized to design the approach. We as-

sume that there is an unknown and hidden cortical activity inthis dynamic process.

The Kalman filter and Kalman smoother are applied respectively for the state estimat-

ing forward and the state correcting backward. The MEG measurement of magnetic

field are directly used for the source reconstruction in the temporal field here. Fig6.3

shows the comparison between the original synthetic sourcedistribution and the source

reconstruction on the high-resolution meshM+ at one particular time-point.
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Figure 6.2: The top part of the figure shows thelow-resolution mesh, M on the left

(with V vertices andF faces) and thehigh-resolution mesh, M+ on the right with

V + = V + F vertices andF+ = 3F faces. M has2600 vertices and5192 faces;

M+ is with 7792 vertices and15576 faces; the bottom part shows the comparison of

the simulated source pattern ofsynthetic source Bon high-resolution meshM+ ( on

the left) and the reconstruction result by the Bayesian super-resolution method (on the

right) at thetarget time pointfor synthetic source A. The color from red to blue show

the intensity of source strength from strong to weak.
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Figure 6.3: The figure shows the comparison of the simulated source pattern ofsyn-

thetic source Aon high-resolution meshM+ ( on the left) and the reconstruction result

by the Kalman filter method (on the right) at thetarget time point.

However, the computational complexity in time and space remains high for this

algorithm to be practically applicable. Also, since we assume that the MEG system

as a linear dynamic system, this leads to the insensitivity of the reconstruction of the

current sources with nonlinear relationship, in other words, the non-linear signals may

not be reconstructed properly using this method.

6.1.5 Summary

The main contribution of this thesis can be summarized into the following three points:

Firstly, the thesis makes the connection between the field ofpattern recognition,

graph theory and medical imaging (specifically on MEG sourcereconstruction). The

research process of pattern recognition and MEG source reconstruction share great

similarity between each other, and specifically it is to mathematically build and opti-

mize the research target by applying specific algorithms to the observed information.

On one hand, pattern recognition is a well-developed research area that fully contains

a variety of algorithms. On the other hand, MEG source reconstruction is a research

field with full potential for the further research is finding the solution of the method-

ology. The combination of these two fields in the thesis opensa new window for the

MEG source reconstruction problem from a novel angle.
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Secondly, our work provides new possibilities for the further MEG research on

solving the reconstruction problem. MEG source reconstruction is an ill-posed in-

verse problem, which is theoretically unsolvable. The current methodologies of MEG

source reconstruction, such as Minimum-norm method, Beamforming method and the

equivalent current dipole (ECD) method, have their intrinsic weaknesses. For instance,

Minimum-norm method requires obtaining prior informationof the current source dis-

tribution, which is difficult in practice. Beamforming method is not sensitive to the

current sources, which have high temporal correlations. And for the equivalent current

dipole (ECD) method, it is quite difficult to estimate the number of dipoles in ad-

vance, meanwhile, ECD method shows insensitivity to the localization to deep source

(Preissl, 2005). All these intrinsic weaknesses provide room for improvement in such a

research field and the possibility of exploring new solutions by applying the knowledge

of the new research field, such as pattern recognition.

Thirdly, we have made the contribution specifically on applying the basis function

method, super-resolution method and Kalman smoother method into MEG source re-

construction. Instead of concentrating on the current source variation in a conventional

way, the novel idea of the basis function method is to focus onthe geometrical infor-

mation of the cortical surface which are described by a set ofbasis functions (mesh

Laplacian eigenvectors corresponding to the smallest eigenvalues), while the variable

information of the current source is defined as the corresponding coefficients. This

design combines the MEG source reconstruction with the application of basis func-

tions. Meanwhile, the graph theory is fully applied in this combination. Then, the idea

of Bayesian super-resolution is borrowed from the image processing into the MEG

source estimation on the high-resolution cortical mesh. Instead of working on the grids

of multiple same-scene images(with low/high resolution),our research is based on the

MEG source frames(with low/high resolution cortical mesh)at different time points.

This application to MEG source reconstruction provides a great similarity to the pro-

cess of image estimation by Bayesian super-resolution. This is another good example

of combination of MEG source reconstructions and the classical pattern recognition.

Furthermore, in the application of Kalman smoother into theMEG source recon-

struction, the signal processing of MEG system can be interpreted as a dynamic system

over the course of time. The property of dynamic system, i.e.Markov property, can
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be directly applied into the detailed analysis. With this application, MEG source re-

construction can be implemented in a straightforward manner by utilizing the MEG

measurement of the magnetic field.

6.2 Discussion

In summary, three methods of MEG source reconstruction havebeen designed and

evaluated in the thesis, which are the Basis function method, the Bayesian super-

resolution method and the Kalman smoother method. Since allof this research is

aimed at application to real MEG analysis, it is worth comparing these three methods

from the viewpoint of intrinsic features efficiency. Although the basis function method

is limited for the reconstruction of the whole cortical surface, it presents the superior

advantage of the simplicity of the process as well as the easycomputation complexity.

With the proper localization of the region of interest(ROI), it is feasible that the basis

function method can be more competitive than any other two methods in the real MEG

application. The Bayesian super-resolution method is designed for MEG source re-

construction in light of the super-resolution method applied to image processing. The

mathematical framework of the method provides a framework for the inverse problem

of MEG. Instead of analyzing image data, the method here is used for processing the

problem of source distribution on the 3D cortical surface mesh which highly increases

the computation complexity of the reconstruction results.This feature of expensive

computation with unstable result make the Bayesian super-resolution method less ef-

fective than other two methods. Additionally, the Kalman smoother method is based

on the assumption of a linear dynamic system and directly estimates the source frame

in a successive time points with respect to the measurement.The Kalman filter is used

for estimating the dynamic state while the Kalman smoother is applied for correcting

the source distribution of the hidden state with the EM algorithm. The properties of

the Kalman filter makes this approach advantageous for solving the inverse problem.

However, non-linear signals may not be reconstructed properly by it. Moreover, the

method still contains a number of large matrix calculation which affects the accuracy

and efficiency of its application in the real world. Since themathematical framework,

as well as its calculation are not as complex as the Bayesian super-resolution method,
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the Kalman smoother method presents advantages in practicerather than the Bayesian

super-resolution method.

6.3 Future work

In the theoretical design of the thesis, ’J’ represents the total current (primary currents

+ volume currents)(Barth et al., 1986). In our assumption, as the measurement is

assumed on only the radial component of the magnetic field at single homogeneous

spheroid, the majority of contributions of the volume currents vanish and the MEG

measurement are only from the primary term approximately inthis case. However,

for the more accurate reconstruction with more realistic situation, the volume current

cannot be disregarded. The further source modeling with both primary currents and

volume currents is one of the future work I would like to concentrate on.

Additionally, during the whole experiment process of the thesis work , the expen-

sive computation in both space and time complexity stands asa signicant problem

which affects the application efficiency.

One possible solution is to decrease the computation cost. Since there are plenty

of loop calculation associated with the large size matrix calculation (including the full

matrix and sparse matrix calculation) , the implement of thealgorithms leads to huge

time and space computation complexity. It is crucial to decrease the computation cost

so that the algorithm can applied more efciently and realistically in real MEG source

reconstructions; The main experimental conguration we useis: InterCore2(1,8GHz),

Linux system(2.6.34.1)-32bit, matlab 7.9.0(R2009b) 32 edition , RAM: 4GB. It is pos-

sible that we can upgrade to an advanced conguration for higher computational power.

Alternatively, it is feasible to explore a more reasonable format to store the variables,

e.g. the state noise covariance matrix Q, instead of storingthe full matrices.

Another solution is to combine the experimental model with real physiological

models. The thesis work is based on synthetic experiment, instead of applying real

MEG data on facial emotion for the evaluation due to limited research time and re-

sources. It is signicant to apply the algorithm with more different types of real cortical

stimulus, such as random spatiotemporally smooth activityspread over the cortex , the
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deep source inside of the cortex, single source distributedon the cortex surface. The

efciency of algorithm in practice can therefore be evaluated more close to reality.
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Appendix A

Matrix calculus reference

The following part indicates the reference of some matrix differentials and calculus for

the matrix calculation in thesis:

d log detX
dX

= X−1 (A.1)

dTr(AB)

dA
= BT (A.2)

dTr(AXB)

dX
= ATBT (A.3)

d In(det(Xk))

dX
= kX−T (A.4)

d log det(X−1)

dX
= X−T (A.5)

C tr(X) = tr(CX) (A.6)

tr(A) =
∑

i=1

λi (A.7)

det(exp(A)) = exp(tr(A)) (A.8)
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dexp tX
dt

= X exp tX (A.9)

(βA)−1 = β−1A−1 (A.10)

tr(AB) = tr(BA) (A.11)

tr(ABC) = tr(BCA) = tr(CAB) (A.12)

dtr(A(γ)B)

dγ
= tr (

A(γ)

dγ
B) (A.13)
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Appendix B

Synthetic source generation

The synthetic source generation actually combines the methods and results fromChap-

ter 3 Basis Functions Source Model Applied to MEG Source Reconstruction, Chapter

4 Spatial Improvement of MEG source reconstruction with Bayesian Super- resolu-

tion andChapter 5 MEG image estimation via Kalman smoother. It has been used

within simulated experiments for all these three chapters.Therefore, when the syn-

thetic source is firstly been applied inChapter 3, there are several pieces of work in

the source generation process which need to be referred to.

B.1 Initial simulated source set

The first step the synthetic source generation is to create the initial synthetic source

distributed on the interpolated high-resolution mesh(refer to Fig4.1 and Fig4.2) be-

fore expanding it in the temporal field. In our research, we generate two types of initial

synthetic sources distribution, i.e. artificial source distribution and realistic source dis-

tribution. In the process of generating the former one, the fixed source values are set

on 30 particular vertices of mesh we choose but the values of sources on other vertices

are set as zero; while in the process of generating the later one, the source distribution

on the cortical mesh are from the results of previous source reconstruction of the real

MEG data with from stimuli on cortical surface at one time point. The reason of doing
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B.1 Initial simulated source set

these different types of simulation is that we can clearly see the goodness of source

reconstruction of our algorithms theoretically from the synthetic experimental result

of the former source, since this type of source is based on very simple case. However,

it does not describe the MEG source distribution realistically. Since for the real MEG

data analysis, it is impossible that we can do the comparisonof the reconstruction

results by our algorithms and the known absolute correct source. Therefore, it is desir-

able if we could simulate the synthetic source realistic so that the difference between

the real-world-like sources and the reconstruction by our algorithms can be observed.

B.1.1 Initial artificial source generation

Firstly, we define the number of the interpolated high-resolution mesh( so-calledM+

) vertices asNHR, while the original mesh used MEG analysis from the corresponding

T1 MRI scan hasNLR vertices ( so-calledM). The number of the sensors isMs.

Then, we try to generate a3NHR × 1 matrix j̃a0, the initial artificial source on the

interpolated high-resolution mesh:

j̃a0 =





j̃a0x
j̃a0y
j̃a0z



 (B.1)

We determine ten particular vertices ofk vertices on the cortical mesh. The single

3D source value we create on this vertex is set as[jkx jky jkz]. Thus, for the source

value in the matrix̃ja0, the elements are set as follows and other elements are set as

zeros (showed in FigB.1, Fig B.2 and FigB.3).

j̃a0(1 : 10, 1) = jkx j̃a0(k+1 : k+10, 1) = jky j̃a0(2k+1 : 2k+10, 1) = jkz

(B.2)

B.1.2 Initial realistic source generation

Additionally, as we explained above, we try to create the initial source distribution on

M+ which is more realistic so that the difference between our reconstruction and the

real-world-like source are able to be observed clearly. To achieve this aim, we apply the
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B.2 Dynamic system generation

previous experimental result of reconstruction which based on the real MEG measure-

ment. Specifically, within the previously research experiments on MEG source recon-

struction with basis function method, super-resolution method and Kalman-smoother

method which are illuminated onChapter 3, Chapter 4andChapter 5, a set of real

MEG measurement with several spontaneous stimulus on the cortical surface has been

applied to produce a set of reconstructed source. We randomly choose one source dis-

tribution onM+ at a single time point which can be assumed as the initial realistic

synthetic sourcẽja0 (as a3NHR × 1 matrix) (The sources showed in FigB.4, Fig B.5

and FigB.6 ).

B.2 Dynamic system generation

In our simulation, the activity consists of the output of themodeling dynamic system,

which has the relation as follows:

x̃t = Ãx̃t−1 + ω̃ (B.3)

z̃t = B̃x̃t + υ̃ (B.4)

As we have obtain the initial sources distributed on the high-resolution cortical

mesh as above, we are using theKalman filterto generate the sources in the temporal

field. According to the knowledge ofKalman filterandKalman smoothershowed in

Chapter 4andChapter 5, we simulate the sources in the following way. Firstly, as

showed in Eqn5.6, we set the velocity of the dynamic system as a fixed vectorṽ. We

can obtain the dynamic statẽx by combiningṽ with instant sourcẽv:

x̃t =

(

j̃t
ṽt

)

(B.5)

• Following Eqn5.2and Eqn5.3, we set the state noisẽω (matrix size is as same

as x̃, 2NHR × 1) and the measurement noiseυ̃ (matrix size is as same as the

measurement at single time point,Ms×1) are both set as zero mean multivariate
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B.2 Dynamic system generation

Gaussian distribution, where the covarianceQ̃ of state noise and̃R of measure-

ment noise are set as fixed matrices, respectively:

ω̃ ∼ N(0, R̃) (B.6)

υ̃ ∼ N(0, Q̃) (B.7)

Specifically, the parametersβ andα are both set as fixed value, whereβ = 1 and

α = 0.5 (refer to Eqn5.17), andR̃ are set as the identity matrix.

• Define theleadfieldfrom the forward model asMs × 6NHR measurement trans-

form matrixB̃.

• Since the velocity of the dynamic system̃v is set as fixed, the6NHR × 6NHR

state transition matrix̃A just gives us̃jt = j̃t−1 + ṽt−1 andṽt = ṽt−1, so

Ã =

(

I I

0 I

)

(B.8)

whereI are the identity matrix with the size3NHR × 3NHR.

• Combining with the initial source set introduced previously, as well as all other

items set above, Kalman filter is used to obtain the generate the matrixb̃ (with

the sizeMs × T ) as follows which contains a set of measurement of magnetic

field of the synthetic source in the sampled time pointT (Welch and Bishop,

2006):

x̃−
t = Ãx̃t−1 (B.9)

P̃−
t = ÃP̃t−1Ã

T + Q̃ (B.10)

K̃t = P̃−
t B̃

T (B̃P̃−
t B̃

T + R̃)−1 (B.11)
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B.3 Mesh downsampling

x̃t = x̃−
t + K̃t(z̃t − B̃x̃−

t ) (B.12)

P̃t = (Ĩ− K̃tB̃)P−
t (B.13)

B.3 Mesh downsampling

With respect to the synthetic sources generation on the interpolated high-resolution

mesh, the source simulation on the correspondingM can be also produced by the

product of source on theM+ and a particular downsampling matrix̃P. In terms of the

structure of interpolated high-resolution mesh indicatedin Eqn4.2, the3NHRtimes1

matrix, the sourcẽjk distributed onM+ at time pointk, can be rewrite as aNHR ∗ 3

matrix j̃
′

k with the different dimensional components on each column. Therefore, the

corresponding source distributed on meshM can be down-sampled by the following

equation:

j̃LR
′

k = P̃ j̃
′

k (B.14)

where

P̃ = [IM 0] (B.15)

then j̃LR
′

k is transformed back to aNLR × 1 matrix j̃LRk . Thus, thẽjLRk can be

distributed on the meshM and get the color-map as FigB.2, Fig B.5.
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B.3 Mesh downsampling

Figure B.1: Simulated data ofartificial source generation, spatial visualization

on high-resolution meshM+. The cortical surfaces display the data at different in-

stants: time point1 (up˙left),25 (up-right),50 (middle-left),100 (middle-right),150

(bottom-left) and200 (bottom-right), respectively. In this trail, only 30 currents are

put artificially on 30 continuous vertices on right hemisphere. Then, the noise with

multivariable Gaussian distribution are added in time course.
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B.3 Mesh downsampling

Figure B.2: Simulated data ofartificial source generation, spatial visualization on

low-resolution meshM . The cortical surfaces display the data at different instants:

time point 1 (up-left), 25 (up-right), 50 (middle-left), 100 (middle-right), 150

(bottom-left) and200 (bottom-right), respectively. In this trail, only 30 currents are

put artificially on 30 continuous vertices on right hemisphere. Then, the noise with

multivariable Gaussian distribution are added in time course.
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B.3 Mesh downsampling

Figure B.3: Simulated data ofartificial source generation, temporal visualization

on 248 sensors for time point1(up-left), 25(up-right), 50(middle-left), 100(middle-

right), 150(bottom-left) and200(bottom-right), respectively. X-axis shows the number

of sensors, Y-axis shows the amplitude of the magnetic field.
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B.3 Mesh downsampling

Figure B.4: Simulated data ofrealistic source generation, spatial visualization on

high-resolution meshM+. The cortical surfaces display the data at different instants:

time point 25 (up-left), 50 (up-right), 75 (middle-left), 100 (middle-right), 150

(bottom-left) and200 (bottom-right), respectively. In this trial, we use therealistic

source generationexplained beforehand. Then, the noise with multivariable Gaussian

distribution are added in time course.
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B.3 Mesh downsampling

Figure B.5: Simulated data ofrealistic source generation, spatial visualization on

low-resolution meshM . The cortical surfaces display the data at different instants:

time point 25 (up˙left), 50 (up-right), 75 (middle-left), 100 (middle-right), 150

(bottom-left) and200 (bottom-right), respectively. In this trail, we use therealistic

source generationexplained beforehand. Then, the noise with multivariable Gaussian

distribution are added in time course.
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B.3 Mesh downsampling

Figure B.6: Simulated data ofrealistic source generation, temporal visualization

on 248 sensors for time point25(up-left), 50(up-right),75(middle-left),100(middle-

right), 150(bottom-left) and200(bottom-right), respectively. X-axis shows the number

of sensors, Y-axis shows the amplitude of the magnetic field.
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Appendix C

MEG real data acquisition

The set of MEG measurement was kindly provided by the York Neuroimaging Centre

(YNiC). Participants were shown emotionally congruent fear and minimally congruent

neutral face stimuli, and responses were recorded as described by (Hagan et al., 2009).

C.1 The participants of the experiment

Twenty-eight healthy participants were recruited from theUniversity of York and they

were offered a stipend for participation in the study. Ethical approval was granted

jointly by the Department of Psychology at the University ofYork and the York Neu-

roimaging Centre. All participants are right-handed, and with normal hearing and

normal or corrected-to-normal vision, and were without a history of neurological in-

juries. Nine sets of data were excluded due to scanner problems, excessive head move-

ments, or electrical noise in the background, which leaves nineteen data sets in the

final data analysis (Males: 10, Females: 9, mean age: 24.44 (SD 4.23) years, range

19.22 ∼ 33.41 years).
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C.2 Introduction of the MEG experiment

C.2 Introduction of the MEG experiment

Visual stimuli of fearful and neutral facial expressions used in this study were selected

from Ekman and Friesen Facial effect series (Young et al., 2002). The expressions

came from two actors and two actresses whom were representedas JJ, WF, MF, and

SW. All faces were presented in grey scale and hair was removed from each face so

that the contrast differences between stimuli were minimized. In order to produce

more discernible fearful stimuli, facial expressions wereprocessed in some cases, for

example, the female fear faces (MF) were half caricatured

To attempt to maintain the central fixation during each trial, the participants were

asked to attend to the face experiments of all four actors andactresses. We included96

additional trials in which a response (such as raising the finger) was requested from the

participant. On such occasions, either the letter B or the letter R appeared in the centre

of the screen directly after stimulus offset. The letter remained on the screen for250

ms and was followed by a solid gray screen for1, 050 ms directly after the letter offset.

Response trials were followed by a dummy trial (16 for both conditions, pseudoran-

domly chosen and counterbalanced between conditions). Dummy trials were discarded

in the overall analysis of data because of potential motor response contamination Cindy

(Hagan et al., 2009).

All trials began with a black fixation cross (3 × 3 cm) in the centre of the screen

against a solid grey background, which was presented for500 ms. Next a visual stim-

ulus appeared for700 ms, immediately followed by the stimulus offset, a solid grey

screen, which lasted1, 300 ms.

C.3 MEG Data Acquisition

MEG data were acquired at the York Neuroimaging Centre usinga248-channel Magnes

3600 whole-scalp recording system (4-D Neuroimaging) with superconducting quan-

tum interference device-based first-order magnetometer sensors. A Polhemus stylus

digitizer (Polhemus Isotrak) was used to digitize the head,nose and eye orbit shapes

of each participant before data acquisition to facilitate accurate co-registration with

MRI data. Coils were placed in front of the left and right earsand at three equally
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C.3 MEG Data Acquisition

spaced locations across the forehead to monitor head position prior to and following

data acquisition. Data from four participants with head movement values of 0.75 cm

or greater at two or more coils were excluded from both sensorand source-space anal-

yses. Participants were seated during the experiment. Magnetic brain activity was

digitized continuously in all three runs.

Images were projected onto a screen at a viewing distance of≈ 70 cm and subtend-

ing a viewing angle of 8 degrees for face stimulus and 0.3 degrees for letters. Faces

were presented in small size (5 × 9 cm) to help minimize participant eye saccades.

During response trials, the letters displayed were5mm cm in size to ensure that the

central fixation was maintained throughout all stimulus presentations. Auditory stimuli

were presented at a comfortably audible level via Etymotic Research ER30 earphones.

Participants were monitored throughout the scan using a video camera situated in a

magnetic shielded room.

All data were filtered using an online direct current (DC) filter and were sampled at

a rate of 678.17 Hz (bandwidth 200 Hz). Standard structural MRI scans were obtained

for co-registration with MEG. Images were acquired using a 3-T scanner (HD Excite;

General Electric) with a whole-head coil (8-channel high T-resolution brain array).

The scanner uses a 3-T 60-cm magnet. To maximize magnetic field homogeneity,

an automatic shim was applied before scanning. In order to cover the whole brain,

176 parallel 1-mm 3-D sagittal planes were imaged, using an IR-prepared fast spoiled

gradient recalled pulse sequence (repetition time 6.6 ms, echo time 2.8 ms, flip angle

20, and an inversion time of 450 ms). The field of view was290 × 290 mm, and the

matrix size was256× 256, which results in an in-plane spatial resolution of 1.13 mm.

Localizer and calibration scans were performed before performing a high resolution

T1 volume with voxel dimensions of1 × 1.13 × 1.13 mm. For better elimination of

distortion and improved co-registration of MRI and MEG data, 3-D gradient warping

corrections and edge-enhancement filters were applied. Thedata pattern is showed in

Fig C.1.
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C.3 MEG Data Acquisition

0 100 200 300 400 500 600 700 800 900
−2

−1.5

−1

−0.5

0

0.5

1

1.5
x 10

−12

Figure C.1: This figure shows the example of the measurement of magnetic field from

MEG for the real visual expression data. The original MEG data we obtained is a

96 × 248 × 813 matrix which indicatesthe MEG measurement on 248 sensors for 96

different stimulus within 813 continuous time instants. This is a overlapping pattern

for the time courses of measurement on particular single sensor(here we choose sensor

30, 60, 90, 120 and150) for the stimulus3.
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