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Abstract 

Monitoring of gait in daily living allows a quantitative analysis of walking in 

unrestricted conditions, with many potential clinical applications. This thesis aims at 

addressing the limitations that still hinder the wider adoption of this approach in 

clinical practice, providing healthcare professionals and researchers new tools which 

may impact on current gait assessment procedures and improve the treatment of 

many diseases leading to – or generated by – mobility impairments. The thesis 

comprises four experimental sections: 

Accuracy of commercially-available devices. Step detection accuracy in 

currently available physical activity monitors was assessed in healthy individuals. 

The best performing device was then tested in multiple sclerosis patients, showing 

reliability but highly speed-dependent accuracy. These findings suggest that a short 

set of tests performed in controlled conditions could inform researchers before 

starting unsupervised monitoring of gait in patients. 

Differences between laboratory and free-living gait parameters. The study 

assessed the accuracy of two algorithms for gait event detection, and provided 

normative values of gait temporal parameters for healthy subjects in different 

environments and types of walking. 

A pilot study toward clinical application. This pilot study compared laboratory 

based tests with daily living assessment of gait features in multiple sclerosis patients. 

Results provided clear evidence that in this population clinical gait tests might not 

represent typical gait patterns of daily living.  

Analysis of free-living walking in patients with Diabetes. A systematic review 

is presented looking for evidence of the effectiveness of walking as physical activity 

to reduce inflammation. Then, cadence and step duration variability are examined 

during free-living walking in a group of patients with diabetes.  

This thesis systematically highlighted potential and actual limitations in the use 

of wearable sensors for gait monitoring in daily life, providing clear practical 

indications and normative values which are essential for the widespread informed 

and effective clinical adoption of this technology. 
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Chapter 1 

 

Introduction 
 

1.1 Monitoring Gait in Daily Life – General Background 

The important relationship between physical activity and health is known and 

has been recognized by philosophers and physicians as early as in the Hellenistic 

period. Hippocrates, one of the most outstanding figures of medicine in the history, 

stated that a correct amount of physical activity is the ‘safest way to health’. Benefits 

of physical activity include the prevention of several chronic diseases, often 

responsible of premature death, including cardiovascular disease, diabetes, cancer, 

hypertension, obesity, depression and osteoporosis (Warburton et al., 2006). 

For humans, the characteristic mode of locomotion is walking, which is a 

crucial aspect of physical activity. During a whole lifetime, a moderately active 

person living until the age of 80 years will walk a distance of around 180,000 

kilometres, which is equivalent to walking five times around the Earth. 

Our interest in understanding human walking has been significant since 

Aristoteles, centuries before scientific research was born (Baker, 2007). The 

systematic application of scientific methods to the study of human motion started in 

the late 19
th

 century (Marey, 1873), and technological advances throughout the 20
th

 

century allowed to refine systems and improve our understanding, creating a whole 

new area of research, called human movement or gait analysis. Modern gait analysis 

systems considered as the gold standard methodology are based on the use of 

technologies such as stereophotogrammetry and force platforms. They allow the 

detailed evaluation of gait functions by determining the kinematic and kinetic 

parameters of human gait. Gait analysis has been employed extensively in 

orthopaedics, rehabilitation, health diagnostics, and sports (Cappozzo et al., 2005; 

Chiari et al., 2005; Winter, 1995), and can facilitate the assessment of motor capacity 

and performance (Cereatti et al., 2015). According to the World Health 
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Organization, capacity describes what a person can do in a standardized, controlled 

environment, while performance describes what a person actually does do in his/her 

daily environment (World Health Organization, 2006). However, standard gait 

analysis laboratories based on the aforementioned technologies require research 

facilities with sophisticated and expensive equipment. The collection of the gait data 

occurs while the subject performs repeated walking trials in confined conditions over 

limited distances, and are based on the observation of few consecutive gait cycles, 

providing outcomes that may not recreate real-life scenarios (Mulder et al., 2002; 

Shull et al., 2014). Further limitations of standard gait analysis are lengthy set-up 

and processing times (Tao et al., 2012). 

These limitations have led researchers to identify possible alternatives to fixed 

laboratory equipment. Recently, objective methods for the assessment of physical 

activity and gait outcomes based on wearable sensors, often referred to as physical 

activity monitors (PAMs), are becoming commonly used tools in fitness and health 

care, thanks to their ease of use, wearability and low power consumption, allowing 

assessment in free living conditions over prolonged periods of time (Bonomi and 

Westerterp, 2012). Several alternative technologies based on these systems have 

recently been developed, such as pedometers, foot-switches, accelerometers, rate 

gyroscopes, force sensors, and pressure sensors. The sensors are worn directly on the 

body of the participant, such as the foot, shank, waist, or trunk. The advantage of 

these systems is that they allow the analysis of data collected outside the laboratory, 

obtaining information during free-living activities. Accelerometers and inertial 

measurement units are currently the most widely used wearable devices to measure 

and assess physical activity and gait in free-living conditions (Yang and Hsu, 2010). 

Validation studies have shown that a combination of multiple sensors can be 

used in a controlled laboratory environment for quantitative gait analysis including 

gait phase detection and leg segment orientation estimation (Tao et al. 2012; Liu et 

al. 2009), showing similar accuracy to standard gait analysis methods. However, the 

potential ability to objectively quantify clinically relevant outcomes in free living 

conditions has led researchers towards solutions that are minimally cumbersome and 

invasive, often minimizing the instrumentation setup to a single device, which has 

obvious benefits both in terms of comfort, and minimal alteration of the subject’s 

gait. Further advantages of monitoring gait in daily life include walking assessment 

over prolonged time periods, with low environmental and contextual barriers, 
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improving the ecological validity of the tests (Maetzler and Rochester, 2015). 

Furthermore, the widespread availability of these sensors and the relatively 

contained cost make their use for population studies economically feasible. 

Despite the widespread adoption of wearable technology for physical activity 

monitors and fitness tracking devices, testified by the growth of this market in recent 

years (Swan, 2012), clinical use of wearable devices for quantitative assessment of 

motor function in daily life is still uncommon (Maetzler and Rochester, 2015). This 

is due to concerns regarding validity of the measures obtained with these devices in 

conditions of free-living. In research, validity is defined as the extent to which a 

measurement represents the object of interest. To be valid, a measure needs to be 

accurate, precise and reliable. Accuracy describes the closeness of a measurement to 

the true value. Precision is the closeness of agreement among a set of results. 

Reliability is the extent to which a measurement is repeatable under identical 

conditions. Only overcoming existing limitations will allow quantitative monitoring 

in daily life to accurately detect and monitor diseases, which is a critical feature for 

the widespread adoption of this technology in clinical practice. 

1.2 Aim of the Thesis 

Recent advances in miniaturization, battery life and signal processing have 

allowed a new generation of wearable devices to challenge the modality in which 

quantitative gait analysis has been carried out since its development and diffusion in 

the clinics. These monitoring systems have the potential to investigate gait as it 

occurs in daily life. The aim of this thesis is to contribute to the validation of these 

devices in the field of gait monitoring in daily life. This will be achieved by 

assessing criterion-related validity of existing technology, quantifying test-retest 

reliability of error estimates in a patient population, and validating existing 

algorithms in free-living walking. In detail, the following aspects will be addressed 

in this work: 

In chapter 2, a literature review of the main concepts of gait monitoring using 

wearable sensors is presented. This includes an introduction on methods to 

quantitatively measure physical activity, and a description of the existing wearable 

sensor technology. After a brief review of the studies performed on daily life gait 
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monitoring, the chapter ends with a description and critical assessment of the most 

common outcomes of gait analysis using wearable sensors, with the methods and 

algorithms proposed in the literature. 

In chapter 3, the accuracy of state-of-the-art technology in the field of PAMs is 

experimentally tested. Firstly, seven commercially available PAMs are tested in 

healthy individuals and the accuracy of their step detection and posture classification 

algorithms is investigated. Then, the reliability of the best performing device is 

assessed in a group of patients with mobility problems due to multiple sclerosis. The 

relationship between walking speed and sensor accuracy in this population is also 

investigated. 

In chapter 4, a validation study of two algorithms for the detection of gait 

events applied to acceleration and angular velocity signals during indoor and outdoor 

walking in healthy subjects is presented. The second part of the chapter describes an 

experiment which builds on the previous validation work to investigate the influence 

of environment and type of walking on gait parameters. 

In chapter 5 a pilot study on activity monitoring in a group of patients with 

multiple sclerosis is presented. The accuracy of a method for gait event and temporal 

parameter estimation is tested in controlled laboratory conditions, and then used to 

investigate differences between outcomes of walking bouts of different duration and 

frequency collected in daily life and in standard laboratory conditions. 

Chapter 6 presents ongoing work completed within the framework of the 

‘Mission-T2D’ European research project. Evidence for the effectiveness of walking 

as physical activity to reduce chronic inflammation in patients with Type 2 Diabetes 

is reviewed. The second part of the chapter proposes an event-based approach to 

examine cadence and step duration variability in free-living walking in a group of 

patients with Type 1 and Type 2 Diabetes. The chapter ends with future prospects 

and conclusive remarks of this thesis. 
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Chapter 2 

 

Monitoring physical activity and 

walking using wearable sensors – 

State of the art 

2.1 Monitoring of physical activity 

In modern physiology, physical activity is defined as any body movement, 

produced by skeletal muscles, resulting in energy expenditure that is positively 

correlated with physical fitness (Caspersen et al., 1985). According to the World 

Health Organization, “physical inactivity has been identified as the fourth leading 

risk factor for global mortality causing an estimated 3.2 million (annual) deaths 

globally” (World Health Organization, 2016). In the UK, the Department of Health 

estimated that the cost of physical inactivity in England was £8.2 billion for 2004 

(Department of Health of The United Kingdom, 2004). A study concluded that the 

total cost on Canadian health care of physical inactivity was $6.8 billion, 

representing 3.7% of the total health care cost (Janssen, 2012). In a similar study, 

Zhang and Chabaan concluded that the prevalence of the five most prevalent non-

communicable diseases (coronary heart disease, stroke, hypertension, cancer, and 

type 2 diabetes) highly correlated to increased physical inactivity, and that in China 

the costs related to physical inactivity in 2007 reached more than $6.7 billion (Zhang 

and Chaaban, 2013).  

Methodologies to measure physical activity can be broadly classified into 

subjective and objective approaches. Subjective methods include questionnaires, 

activity diaries and direct observation. These approaches are inexpensive and can be 

very useful tools in large-scale studies but can be biased and cannot provide the 

various quantitative aspects necessary to assess physical activity (Bonomi and 

Westerterp, 2012). Objective methods measure physiological quantities such as 

energy expenditure, heart rate, body temperature, or biomechanical outcomes of 
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physical activity like displacement, rotation and acceleration by means of sensors, 

devices capable of converting a physical measure into a signal that is read and 

subsequently processed (Chen et al., 2012).  

The standard reference for the assessment of physical activity is the measure of 

energy expenditure (LaPorte et al., 1985). To facilitate this, physical activities are 

often classified into categories, such as walking, leisure, exercise, sedentary activity, 

or work. Alternatively, physical activity can also be classified by frequency, 

duration, intensity, by contextualizing where the activity is taking place, or by 

position and posture. For an accurate assessment of daily physical activity, the 

techniques that are used need to be necessarily objective and reliable when used in 

free-living conditions. Currently, physical activity components that can be measured 

with various degrees of accuracy using wearable sensors are the following (Butte et 

al., 2012): 

1.3 Prediction of total and physical activity-related energy expenditure 

1.4 Duration, frequency, and intensity of physical activity 

1.5 Sleep time 

1.6 Sedentary, light, moderate, and vigorous levels of physical activity 

1.7 Posture (lying, sitting, standing) 

1.8 Classification of locomotive activities such as walking and running 

The following of this chapter will introduce the working principles of most 

commonly adopted wearable sensors, reviewing the current technology in the field, 

and providing an outlook on their clinical applications, with particular focus on the 

assessment of walking in daily life. The features and parameters that have been used 

to characterize and quantify walking behaviour using wearable sensors will then be 

illustrated, with particular focus on solutions and methods based on inertial 

measurement units (IMUs). 

2.2 Wearable motion sensors for physical activity and 

gait monitoring 

Wearable sensors are placed on various body segments, such as the feet, knees 

or hips, and measure various components of physical activity. This section 

summarizes the different types of sensors which are most frequently used in 
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research, highlighting advantages and disadvantages of each of them, with particular 

focus on the analysis of human gait. 

2.2.1 Pedometers 

Pedometers are activity monitors allowing the detection of steps taken during 

walking. They are very cheap and unobtrusive and have become very popular in 

programs aiming at improving physical activity levels in the wider community, and 

positive motivational effects of their use have been proved in literature (Bravata et 

al., 2007). The pedometer was one of the first instruments used to measure physical 

activity (Lauter, 1926). The first generation of devices used a spring-loaded system, 

but studies showed that these devices significantly undercounted steps by 

approximately 50-90% below 4.5 km/h (Melanson et al., 2004). These pedometers 

further developed to estimate energy expenditure, but have shown over- and under-

prediction limitations (Bassett et al., 2000). Recently developed inertial pedometers, 

based on piezoelectric sensors, are less dependent on subject characteristics and 

placement, but are still inaccurate at slow walking speeds. Insensitivity to non-

ambulatory activities has also limited their use (Crouter et al., 2005). Several 

pedometer models are currently available, and vary in cost, mechanism, data storage, 

and sensitivity (Butte et al., 2012). Although they are often accurate at step counting, 

they are less accurate in the estimation of distance and energy expenditure 

(Schneider et al., 2003). Further weaknesses of pedometers are the absence of upper 

body movement recordings, no sensitivity to variations in gait parameters, such as 

stride length, and difficult comparison between outputs of different models due to 

underlying differences in algorithms and sensor characteristics. 

2.2.2 Footswitches 

Footswitches are able to directly detect the foot contact with the ground during 

a gait cycle, and represent the gold standard technology for the detection of gait 

phases (Taborri et al., 2016). Footswitches detect forces applied on the sole of the 

foot using sensors called force sensitive resistors (Figure 2-1). They are very thin 

transducers (≈1mm), which act as variable resistors using the force-resistance 

relationship to generate a voltage that is proportional to the exerted force (Lowe and 

Ólaighin, 2014). 
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Figure 2-1. Force Sensitive Resistor voltage divider circuit (adapted from Medical 

Engineering & Physics, Vol 36, Issue 2, Lowe & Ólaighin, Monitoring human health 

behaviour in one’s living environment: A technological review, Pages 147-168, Copyright 

(2014), with permission from Elsevier). 

Footswitches are relatively cheap, and do not require heavy signal pre- and 

post-processing. However, they are often used only to validate methods based on 

other types of sensors (Abaid et al., 2013). This is because of several disadvantages, 

such as missing information during the swing phase of walking, accuracy and 

reliability in pathological gait dependent on sensor location, limited system service 

life due to wired connections (Taborri et al., 2015), and impossible separation of the 

detected force into sub-components (Pappas et al., 2004). Footswitches have been 

used to quantify gait activity in varied conditions (Freedson et al., 2008). These 

devices can be mounted on shoes and ankles to record foot acceleration, allowing the 

analysis of patterns of movement, and the estimation of various gait parameters, such 

as stride lengths, frequency, and estimate speed and distance of level walking and 

running. However, these devices have not been consistently tested in habitual 

physical activity contexts (Butte et al., 2012). 

2.2.3 Pressure insoles 

Pedobarography is the study of the pressure acting between the foot and a 

support surface during everyday locomotion (Abdul Razak et al., 2012). There are a 

variety of commercially available plantar pressure measurement systems. For 

brevity, this paragraph will focus on in-shoe systems, which are relevant for this 

thesis. 

The sensors are embedded in the shoes so that the measure reflects the pressure 

occurring at the interface between the shoe and the foot (Figure 2-2). This system 

has higher efficiency, flexibility, mobility and reduced cost in comparison to 
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platform systems, allowing a wider variety of studies (MacWilliams and Armstrong, 

2000). Typical technologies used to manufacture pressure insoles are capacitive, 

resistive, piezoelectric and piezoresistive sensors.  

 

Figure 2-2. Pressure map generated by a pressure insole system during standing. 

Capacitive sensors consist of two conductive electrically charged plates 

separated by a dielectric elastic film. The applied pressure bends the elastic film, 

shortening the distance between the two plates and resulting in a change in voltage 

which is proportional to the applied pressure (Gefen, 2007). Resistive sensors 

contain a conductive polymer that changes resistance with force. When pressure is 

applied, current increases through the sensor due to the interaction of conductive 

particles (Urry, 1999). The strengths and drawbacks of gait analysis methods based 

on foot pressure insoles are comparable to those associated with the use of 

footswitches. However, plantar pressure systems provide a punctual measure since 

they record the contact of the full foot with the ground. This characteristic allows a 

more effective gait phase partitioning (Taborri et al., 2016). 

2.2.4 Micro-Electro-Mechanical systems 

Micro-electro-mechanical systems (MEMS) are electro-mechanical elements 

developed through microfabrication techniques. These structures are usually made of 

silicon and obtained using various techniques typical of integrated circuit 

manufacturing (Ciuti et al., 2015), such as isotropic and anisotropic etching, thin 

film deposition, anodic bonding, masking and doping (Gad-el-Hak, 2001).  
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The origins of the MEMS technology are in the 1950s, when the first paper 

describing a “piezoresistance” effect in silicon was published (Smith, 1954). The 

piezoresistive effect is a phenomenon which causes a change in the electrical 

resistivity of a material due to an applied mechanical strain. Briefly after its 

discovery, researchers realized the potential of replacing the existing cumbersome 

electromechanical sensors with smaller units (Paul and Pearson, 1955). However, the 

first proper MEMS made their appearance in the early 1970s, thanks to 

developments in silicon processing techniques and micromachining (Bogue, 2007). 

At the current time, MEMS-based devices have established as the most successfully 

exploited technology in the physical activity context, with a large range of small, 

highly performing and often cheap sensors. Latest technological advancement in 

information and wireless communication, low power circuits and wireless sensor 

networks has enabled the design of a new generation of compact, high performance, 

low power and low cost MEMS transducers for a wide range of applications (Magno 

et al., 2013).  

Accelerometers, gyroscopes and magnetometers are the most common 

wearable MEMS sensors used in physical activity monitoring and can be combined 

in devices called magneto-inertial measurement units (MIMUs), which are gaining 

increasing popularity in human motion analysis and physical activity monitoring. 

Accelerometers 

Accelerometers sense linear acceleration along one or several axis and are 

composed by a proof mass, also called seismic mass, attached to a mechanically 

suspended reference frame. When the mass is deflected due to a force, the 

acceleration generated can be quantified by measuring the electrical properties of the 

reference frame (Yang and Hsu, 2010). This is often described in terms of a mass-

spring system operating according to the principles of Hooke’s law: 

𝐹 = 𝑘𝑥 

and Newton’s 2
nd

 law of motion: 

𝐹 = 𝑚𝑎 

thus: 

𝐹 =
𝑘𝑥

𝑚
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Accelerometers are the most widespread sensors used in physical activity 

monitoring and ambulatory gait analysis, because they are miniaturized, low 

powered, durable, inexpensive, highly mobile, and readily available (Kavanagh and 

Menz, 2008). Accelerometers can be grouped into three categories, according to the 

sensing technology: piezoresistive, piezoelectric and differential capacitive. 

Piezoresistive accelerometers incorporate cantilever crystal beams, with a test 

mass on the end (Figure 2-3). The base portions have strain gauges arranged in the 

form of a Wheatstone bridge. When the beam is displaced by an external force, the 

resistance changes proportionally, according to the acceleration intensity. The 

change in electrical resistance is translated into a change in voltage, which is 

measured and stored. These sensors, however, are exposed to temperature drifts and 

are sensitive to variations in input voltage (Takeda et al., 2009). 

 

Figure 2-3. MEMS piezoresistive accelerometer developed at the University of California, 

Irvine (Micro and Smart Devices and Systems, MEMS Piezoresistive Accelerometers, 2014, 

pp. 19-34, Figure 1, T. K. Bhattacharyya & A. L. Roy, © Springer India 2014. With 

permission of Springer). 

Piezoelectric accelerometers are sensors made of a mass supported by a spring 

positioned on a piezo crystal (Figure 2-4). These sensors are common in vibration 

analysis applications. The frequency at which the mass vibrates is converted to an 

electrical signal and then transferred for further processing and analysis (Narayanan 

et al., 2010). These sensors excel in linearity and reactivity but are larger than other 

types of MEMS sensors. 
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Figure 2-4. Piezoelectric accelerometer (adapted from PCB Group 2016). 

Differential capacitive accelerometers are widely used in most applications 

(Yang and Hsu, 2010), thanks to their low power consumption, large output level, 

fast response, and low noise level (Takeda et al., 2009), replacing piezoresistive and 

piezoelectric technologies (Lowe and Ólaighin, 2014). The displacement of the 

seismic mass between two electrodes is proportional to the difference in capacitance, 

which indicates the direction and intensity of the acceleration (Figure 2-5). 

 

Figure 2-5. Structure of a MEMS capacitive accelerometer (In these devices, the mass is 

suspended between fixed and floating arms. The change in distance between the arms 

generates a difference in capacitance proportional to acceleration. (adapted from Medical 

Engineering & Physics, Vol 36, Issue 2, Lowe & Ólaighin, Monitoring human health 

behaviour in one’s living environment: A technological review, Pages 147-168, Copyright 

(2014), with permission from Elsevier). 
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To determine the relationship between electric output and accelerations, 

calibration procedures need to be completed. Static calibration involves the 

comparison between the output of a stationary accelerometer with a known constant 

acceleration, typically 1 g. Assuming linearity between raw output and acceleration, 

a number of calibration techniques can be used, including two-point linear 

calibration, zero-span and slope-intercept methods. Periodic calibration requires 

harmonic shaking of the accelerometer to determine the frequency response of the 

device (Sinha, 2005).  

The main characteristics of the accelerometer signal that need to be considered 

when collecting human movement data are sensitivity and frequency response. 

Measurement range should not be of concern, since some accelerometers may reach 

a range of up to 100g, well above the typical values obtained during human everyday 

activity. Concerning the frequency, although accelerations at the foot occurring 

during initial contact can reach up to 60 Hz (Cappozzo, 1982), 99% of the 

acceleration power during walking is concentrated below 15 Hz (Antonsson and 

Mann, 1985). Studies on physiological tremors and impacts, however, may require 

sensing accelerations at up to 25-60 Hz (Mizrahi et al., 2000; Morrison and Newell, 

1999). Besides the linear acceleration, which is the measure of interest, the output of 

a body-mounted accelerometer embeds a static component due to gravity, and noise 

generated by biological or environmental sources. Further sources of errors 

generating signal offset may be due to fluctuations in gain, wear and changes in 

temperature (Luinge and Veltink, 2004). 

Currently there are no standardised procedures for accelerometer-based 

devices for physical activity and gait monitoring, although efforts have been done to 

develop best practices (Freedson et al., 2012). The accurate selection of the place and 

method of fixation might reduce the unwanted contribution of tangential acceleration 

due to rotational motion (Elble, 2005). Waist-placement is often preferred for single 

sensor configurations, because close to the centre of mass of the human body, and 

hence thought to be better representing human motions (Yang and Hsu, 2010). 

Attachment techniques such as elastic bandages and velcro straps have been 

extensively used for body-fixation of accelerometers, however, there is evidence of a 

low-pass filter effect of skin mounted accelerometers with respect to bone-mounted 

devices (Lafortune, 1991). A further consideration to be made when using 

accelerometers is that the post-processing computation load may be elevated 
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(Kavanagh and Menz, 2008) due to factors such as compensation for gravity when 

computing body segment accelerations, dynamical tilt of the sensor during 

movement, and crosstalk between sensing axis. The social impact of wearing a 

sensor has also been the focus of recent research. Issues with physical design and 

aesthetics have also been highlighted and point to a need for further investigations. 

Gender differences in the adoption of these devices have also been understudied 

(Shih et al., 2015). 

Gyroscopes 

Modern gyroscopes all rely on the Coriolis Effect, related to the apparent 

deflection of a moving object when viewed from a moving reference point, to 

measure angular velocity about one or several axes. Modern gyroscopes are 

produced in different forms: vibrating fork, vibrating ring, piezoelectric plate, or 

laser ring, the first being the most common. 

In a vibrating fork gyroscope, two tines of the fork vibrate at high frequencies 

in a given direction as shown in Figure 2-6. When the tines rotate, a force is 

experienced by the tines in opposite directions, which is proportional to the angular 

velocity of the rotation, according to: 

𝐹𝑐 = −2𝑚(𝜔 × 𝑣) 

where Fc is the Coriolis force, ω is the angular velocity, m is the mass of the moving 

object and v is the linear velocity (Lowe and Ólaighin, 2014). 

 

Figure 2-6. Structure of MEMS gyroscope. The tines of the outer frame and the sense 

comb act as the ‘tuning fork’. (adapted from Medical Engineering & Physics, Vol 36, Issue 

2, Lowe & Ólaighin, Monitoring human health behaviour in one’s living environment: A 

technological review, Pages 147-168, Copyright (2014), with permission from Elsevier). 
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Angular velocities measured by a gyroscope are usually in the range of 

hundreds of degrees/s, while bandwidths are typically in the range of several kHz, 

generally adequate for human movement applications (Tong and Granat, 1999).  

Gyroscopes are affected by many of the same sources of errors as accelerometers, 

but are in general more marked, and include constant bias, thermo-mechanical noise, 

bias drift, temperature errors and calibration errors. A number of techniques can be 

used to compensate for these errors. They include the use of on board temperature 

sensors to correct for temperature bias, accurate calibration, and compensation 

algorithms (Lowe and Ólaighin, 2014). Recently, gyroscopes have become available 

at reasonable costs and are often used in combination with accelerometers. 

Magnetometers 

Most magnetometers measure magnetic fields exploiting the principle of the 

Lorentz force, which is the force felt by a current-conducting wire inside a magnetic 

field. This force increases the displacement of a resonating structure (Figure 2-7). 

The displacement of this structure can then be measured with optical, piezoresistive, 

and capacitive sensing techniques (Herrera-May et al., 2009). 

 

Figure 2-7. Resonance Magnetometer (adapted from Medical Engineering & Physics, Vol 

36, Issue 2, Lowe & Ólaighin, Monitoring human health behaviour in one’s living 

environment: A technological review, Pages 147-168, Copyright (2014), with permission 

from Elsevier). 

The most common types of sensor are capacitive resonance magnetometers, 

which are generally composed of a central resonating mass, called shuttle. Crossbars 

are connected to fixed points and conduct a DC current. When a magnetic field is 

sensed, a Lorentz force is felt on the crossbars, which is transferred to the shuttle 

through the beam springs. The resonance of the shuttle is modified accordingly and 

is proportional to the magnetic field. This change in resonance causes a change in 
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capacitance at the arms of the comb structure of the fixed points. This measured 

change is used to calculate the magnetic field (Lowe and Ólaighin, 2014). 

Magnetometers can be used in activity monitoring to identify a person’s orientation 

from the detection of the earth’s magnetic field and as a consequence to gain 

knowledge about its orientation with respect to the surrounding environment 

(Bahreyni and Shafai, 2007). 

Magneto-inertial measurement units 

Magneto-inertial measurement units (MIMUs) are devices integrating triaxial 

MEMS accelerometers, gyroscopes and magnetometers, and are becoming 

increasingly popular in human movement analysis (Picerno et al., 2011; Saber-

Sheikh et al., 2010) thanks to their small size, reduced power consumption and 

wearability (Chen et al., 2012).   

Accelerations, angular velocities and magnetic fields are measured with 

respect to the axes of a local frame, associated with the MIMU. In static conditions, 

the estimation of the orientation of a fixed global frame with respect to the local 

frame is achieved by combining accelerometer and magnetometer readings, while 

more advanced algorithms are needed in dynamic conditions. These methods 

combining data obtained from different sensors are typically implemented into 

fusion algorithms and are often proprietary in commercially available MIMUs.  

A well-established technique makes use of Kalman filters to combine the 

outputs of the sensors in order to obtain an estimate of orientation based on 

quaternions (Sabatini, 2006). Quaternions are an extension of complex numbers, and 

are often preferred to other orientation descriptors, such as Euler angles, because of 

their lower computation time and because they are independent from a conventional 

cardinal order. More recently, studies tackling issues related to sensor orientation 

accuracy have been published (Picerno et al., 2011). These methods, however, will 

not be reviewed in detail because the accurate estimation of sensor orientation is not 

the focus of the present thesis. Common sources of errors in MIMUs are the 

alteration of the sensor calibration parameters (Brodie et al., 2008), shocks, and local 

magnetic field vector distortions due to ferromagnetic disturbances in the proximity 

of the device (Roetenberg et al., 2005; Sabatini, 2006). 
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2.2.5 Other physical activity sensors 

Various other sensors have been designed and tested, mainly for the estimation 

of energy expenditure. The most widespread are heart rate monitors, which generally 

combine standard electrodes for electrocardiography and processing techniques 

including amplification of the electric signal, analog-to-digital conversion and data 

reduction in epochs of different durations to optimize memory consumption. This 

information has been used to predict physical activity levels on the basis of the linear 

relationship existing between heart rate and energy expenditure. However, these 

sensors are poor predictors of low-levels of physical activity. For this reason, they 

have been recently combined with accelerometers to improve accuracy and 

precision, with prediction errors for group means below 3% (Leonard, 2003). 

Other sensors include heat flux, galvanic skin response and skin temperature 

measurement devices, but validation of these systems in free living conditions is 

limited (Bonomi and Westerterp, 2012). Contextual information on someone’s 

location, mode of transportation, and speed of locomotion has also been combined 

with accelerometers and showed promising results (Troped et al., 2008), but the 

disadvantages of complex data collection, processing, analysis, cost, and the 

limitation to outdoor activities are still of concern. 

2.3 The quantification of gait using wearable motion 

sensors 

 The goal of locomotion, and of walking in particular, is to transport the body. 

This is achieved by our neuromotor control system by operating over multiple cost 

functions, including maximising speed, stability and protection of muscles and 

joints. However, implicitly in this goal there is also the aim to minimize energy 

consumption (Kuo, 2007). Depending on the pace, walking can be considered a light 

or moderately intense physical activity (Ainsworth et al., 2011). Evidence 

demonstrates that regular physical activity contributes to the prevention of chronic 

diseases and reduces the risks of premature death (Warburton et al., 2006). As a 

result, the amount of daily walking is indicative for the level of physical activity 

(Zijlstra, 2004). Moreover, the quality of the walking pattern can also provide 

valuable information related to health status, and changes in gait patterns can reveal 
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changes in an individual’s quality of life. Accurate quantification of gait parameters, 

and their monitoring over time, can enable early recognition of diseases and may 

help to find the best treatment (Muro-de-la-Herran et al., 2014). Among activities of 

daily living, gait is a major marker of initial disease manifestation and progression 

(Del Din et al., 2015).  

The systematic study of human locomotion is called gait analysis (Whittle, 

2007). It involves the quantification, description and analysis of variables that 

characterize human locomotion. Standard gait analysis, conducted in controlled 

research facilities, has been employed extensively for performance analysis in sports 

(Watanabe and Hokari, 2006), to monitor patient progression in orthopaedics and 

rehabilitation (Kimmeskamp and Hennig, 2001), and to discriminate between 

asymptomatic subjects and patients in health diagnostics (Turcot et al., 2008). 

2.3.1 Gait cycle and temporal-spatial parameters of walking 

Human walking is a periodic movement which includes cyclic motions 

performed by body segments, to support the erect position and maintain balance 

during human locomotion. A gait cycle is defined as the period of time between the 

initial contact of one foot and the following initial contact of the same foot. 

Depending on the application and the specific interest of the investigation, several 

gait partitioning models have been used to divide the gait cycle into different phases 

(Figure 2-8). Two main phases, stance and swing, are generally always identified, 

although typically a walking gait cycle can be divided into eight parts: initial contact, 

loading response, mid-stance, terminal stance, pre-swing, initial swing, mid-swing, 

and terminal swing (Parry, 1992): 

(1) Initial contact: this phase includes the moment when the foot touches the 

floor. 

(2) Loading response: during this phase the initial double-stance phase takes 

place. The phase begins at initial contact and ends when the alternate foot is 

lifted for swing. During this phase, the knee is flexed for shock absorption 

and the ankle plantar-flexes. 

(3) Mid-stance: this phase corresponds to the first single-limb support interval. 

The limb advances through ankle dorsiflexion, while the knee and hip extend. 

Mid-stance ends when the body weight is aligned over the forefoot. 
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(4) Terminal stance: this phase concludes the single-limb support. It begins with 

the heel rising and terminates at the time of initial contact of the other foot 

with the ground. During this phase the body weight moves ahead of the 

forefoot. 

(5) Pre-swing: during this phase the second double-stance phase takes place. Pre-

swing begins with the initial contact of the opposite foot and ends with the 

ipsilateral toe-off. 

(6) Initial swing: this phase is approximately the first third of the swing period. It 

begins when the foot lifts from the floor and ends when the swinging foot is 

opposite to the stance foot. 

(7) Mid-swing: this phase starts as the swinging limb is opposite to the stance 

limb and ends when the swinging limb is forward and the tibia is vertical. 

(8) Terminal swing: this final phase of swing begins with the vertical tibia and 

ends when the foot strikes the floor. 

 

Figure 2-8. Phases in a normal gait cycle 

The different aspects that characterize human gait and that may be of interest 

vary depending on the field of research (Muro-de-la-Herran et al., 2014). Basic 

temporal parameters, obtained after simple gait segmentation based on the detection 

of initial contacts (IC) and final contacts (FC) are the following (Figure 2-9): 

 Stride duration: Time between two consecutive IC events of the same limb. 

 Step duration: Time between two consecutive IC events of different limbs. 

 Stance duration: Time between IC and FC of the same foot. 

 Swing duration: Time between FC and IC of the same foot. 

 Double support phase: time between right IC and left FC + time between left 

IC and right FC. 
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 Single support phase: time between right FC and right IC + time between left 

FC and left IC. 

Stance, swing and support phases are often also defined as a relative 

percentage value of the whole gait cycle (or stride duration). 

 

Figure 2-9. Gait temporal parameters 

The basic spatial parameters, which are the most frequently investigated in gait 

analysis, are the following: 

 Stride length: the distance between two successive placements of the same 

foot. 

 Step length: the distance that a foot travels in front of the other foot during 

each step. 

 Walking velocity: the product of cadence and stride length. 

Further spatial parameters are foot clearance, turning angles, stride and step 

widths, but the complexity of their estimate using inertial sensors makes them less 

common in gait analysis studies using this technology (Whittle, 2007). 

2.3.2 A brief historical excursus 

Monitoring gait in daily life has been a research interest since sensors capable 

of detecting objective parameters of locomotion have become available. The first 

mention of a quantitative measure related to walking in free-living conditions was 

reported in 1926, when Lauter expressed his surprise when reporting the amount of 

his physical activity measured by a pedometer (Lauter, 1926). In 1949, Larsen used a 

pedometer to report differences in the amount of walking between obese and non-

obese subjects (Larsen, 1949). In a later time, Stunkard measured the daily distance 

walked by subjects for up to twenty-three consecutive days using a mechanical 
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pedometer to study the correlation between physical activity, occupational status, 

emotions and obesity (Stunkard, 1960, 1958). 

In 1959, Schulman and Reisman proposed a modified wristwatch called 

actometer, which measured physical activity, interpreted from the time displayed on 

the watch. The device showed reasonably good correlation with energy expenditure 

(Schulman and Reisman, 1959). 

The first study using accelerometry for the investigation of walking were 

performed by Liberson in the 1930s (Kavanagh and Menz, 2008). He realized that 

accelerations of body segments were powerful tools to understand normal and 

pathological gait (Liberson, 1936). Although electronic accelerometers were 

introduced  in the 1950s, initially they were found to be inferior to methods of 

displacement and velocity integration (Saunders et al., 1953). However, soon they 

were recognized as the most promising movement sensors for the assessment of 

physical activity in real life settings because they could respond to both frequency 

and intensity of movement, while pedometers and actometers would count body 

movement only if a certain threshold was passed (Bouten et al., 1997). Trunk 

acceleration data was investigated by researchers in the 1960s to estimate external 

mechanical work (Cavagna et al., 1963) and rhythmicity of walking patterns (Gage, 

1964). 

It was not before the 1970s that systematic measures of human motion using 

wearable accelerometers started to be carried out. Studies included the investigation 

of lower limb segmental velocities, heel strike, foot flat, heel off and toe off (Morris, 

1973), and the assessment of body movement in psychiatric patients (Colburn et al., 

1976). However, only with the widespread introduction of technology based on 

MEMS, sensors have become miniaturised and inexpensive enough to combine a 

range of sensing technologies in the same device (Lowe and Ólaighin, 2014). The 

first accelerometers based on MEMS technology were reported in 1979 (Roylance 

and Angell, 1979). Accelerometric techniques were extensively used in the 1980s 

and early 1990s by researchers studying the shock transmission aspects of impact 

forces, focusing in particular on tibial shock during walking using skin-mounted 

(Voloshin et al., 1981; Wosk and Voloshin, 1981) and bone-fixed (Lafortune, 1991; 

Light et al., 1980) accelerometers. 

At the beginning of the 1990s, accelerometry studies were still confined to gait 

analysis laboratories, studying mechanisms of walking from several different 
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perspectives. Measures of gait using an accelerometer on a walkway showed 

correlation between forward velocity change in each step and walking speed (Currie 

et al., 1992), and methods were proposed to calculate joint angles from 

accelerometers mounted on the lower limbs (Willemsen et al., 1991, 1990). A 

growing interest in analysing data in complex environments was testified by a 

number of research studies, looking into stride and force data during obstacle 

negotiation (Patla et al., 1991), or studying gait and walking speed in visually 

impaired subjects walking on different surfaces and in different light conditions 

(Spaulding et al., 1994). Further studies investigated the effects of virtual obstacles 

on step length (Chen et al., 1994), or looked at the influence of approaching fixed 

obstacles on swing and stance gait phases (McFadyen et al., 1993). However, it 

became clear that many of the measurement methods applied in the increasing 

number of established gait laboratories could be regarded as valid only under 

controlled and invariant settings. Despite this fact, research on human walking 

carried out in unconstrained settings outside the laboratory was still scarce, and the 

first study was only published in 1995 (Aminian et al., 1995). New methods for 

improved inertial sensor signal processing were also proposed. Moe-Nilssen 

published an algorithm for the transformation of the linear acceleration data of the 

trunk collected in the local frame of the sensors to a horizontal-vertical global 

coordinate system. This method allowed correcting for the gravity component which 

affects a sensing axis when it deviates from the horizontal plane, due to anatomical 

constraints or inaccurate positioning (Moe-Nilssen, 1998a). New protocols to assess 

balance by trunk accelerometry during walking (Moe-Nilssen, 1998b) and standing 

(Moe-Nilssen, 1998c; Yack and Berger, 1993) were also published, which would 

allow testing in a variety of different environmental conditions, such as uneven 

surfaces, various distances, or obstacle negotiation, improving existing approaches 

based on simple and standardised settings.  

Recent work demonstrated that the analysis of the gait cycle and its parameters 

can be made using data obtained by wearable sensors at free walking speeds (Moe-

Nilssen and Helbostad, 2004). Furthermore, the combination of data derived from 

different sensor types into fusion algorithms allowed to refine and improve the 

determination of important walking features, including stride duration and relative 

stance.  
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A recent review outlining the clinical impact of wearable sensors for gait 

analysis identified 76 articles that satisfied the inclusion criteria, with 70% of the 

papers published in the last 10 years (Shull et al., 2014). 

2.3.3 Activity counts 

In 1978, Reswick and colleagues collected walking data on a large walkway 

using a head-mounted accelerometer. They found that the integral of the absolute 

accelerometer output correlated linearly with energy expenditure and could predict 

oxygen consumption (Reswick et al., 1978). These findings led several research 

groups to hypothesize that the integral of the acceleration, especially in the vertical 

direction, could be used to predict physical activity energy expenditure (Bouten et 

al., 1997). In 1981, a sensor named Caltrac was developed to measure energy 

expenditure (Wong et al., 1981). This waist worn piezo-electric accelerometer 

collected vertical accelerations, which were integrated and summed over predefined 

periods of time to obtain a measure that was defined accelerometer count. The 

accelerometer count is still one of the most common energy expenditure metrics. 

Counts have been generated by applying a set threshold to a filtered accelerometer 

signal and counting the positive transitions of the threshold (Cooper, 1993). Another 

approach is to window the signal into short intervals, typically one second, and to 

define counts as the maximum or average value of the signal within that window 

(Puyau et al., 2004). In the last decades, however, its use has been questioned 

because its definition has become less univocal due to the generation of several 

methods to compute it. 

2.3.4 Energy expenditure 

The gold standard to determine total energy expenditure is currently the doubly 

labeled water technique, while indirect calorimetry, such as oxygen uptake, is the 

reference method for the measure of basal metabolic rate (Byrne et al., 2005). The 

doubly labelled water protocol consists in loading a known amount of water with 

stable isotopes of 
2
H and 

18
O and administering it to the participant. Then, the rate of 

disappearance of the two isotopes is measured by mass spectrometry analysis of 

body fluids such as saliva, blood or urine (Schoeller and van Santen, 1982). 

Limitations of this technique are high cost, relative complexity and the requirement 
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of trained personnel and sophisticated equipment for its correct use (Ainslie et al., 

2003; Pinheiro Volp et al., 2011). For these reasons, the measurement of physical 

activity using doubly labelled water is not feasible in conditions of daily living in for 

population studies. Several alternatives have been proposed, based on observations, 

questionnaires, heart rate recordings, or movement registration (Bouten et al., 1997). 

Accelerometer counts have been used to predict energy expenditure with two 

main techniques: the simplest is to use published equations relating energy 

expenditure at rest (defined as resting metabolic rate) with height, weight and age of 

a person. Examples of these equations have been published by Schofield (Schofield, 

1985). The result is then multiplied by a scaling factor that accounts for the level of 

physical activity, typically measured by a wearable sensor (De Lorenzo et al., 2001; 

Frankenfield et al., 2005). The second method is more accurate and consists in using 

a gold standard to measure energy expenditure and then directly applying regression 

analysis on the sensor output to generate a predictive algorithm. Studies, such as the 

one by Bouten and colleagues demonstrated a significant relationship (r = 0.89) 

between accelerometry and energy expenditure in gait analysis studies (Bouten et al., 

1997). A recent protocol used to validate a triaxial accelerometer consisted in 

identifying a set of standardized tasks to be carried out while energy expenditure was 

measured using a facemask indirect calorimetric technique. The activities were 

chosen to represent different levels of intensity for lying, standing, walking, and 

sitting. The total energy expenditure for each activity was derived from well-known 

relationships (Weir, 1949). The accelerometer raw signals in each of the three axes 

were band-pass filtered using a fourth order Butterworth filter and combined by 

taking the root of the summed squared values to obtain a metric defined movement 

intensity. Then, a best-fit linear equation between movement intensity and active 

energy expenditure was generated for each of the four activities (van Hees et al., 

2009). This method has the disadvantages of needing a large number of participants 

and being expensive to carry out due to the cost of the methods used as reference 

measures (Lowe and Ólaighin, 2014). Successive work by Najafi and colleagues 

showed that other types of inertial sensors, such as gyroscopes, could be used to 

integrate this information with the detection of postural transitions (Najafi et al., 

2002), leading to the use of inertial measurement units (del Rosario et al., 2015). 

Currently, several accelerometer-based physical activity monitors validated against 

doubly labelled water are commercially available (Westerterp, 2013).  
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2.3.5 Step detection and counting 

The first attempts to measure physical activity levels in humans focused on the 

detection of steps, when mechanical pedometers were used to detect impulses 

generated by steps during walking (Stunkard, 1960). Step counting has been used as 

motivational tool within physical activity interventions in various populations: 

systematic reviews of studies in adults showed that they can lead to moderate 

increases in the order of 2-3,000 steps walked per day with respect to controls 

(Bravata et al., 2007; Kang et al., 2009), and increases in the order of 2,000-2,500 

steps/day have been associated with lower waist circumference (Dwyer et al., 2007). 

Data from studies performed in children show that increases in physical activity can 

be in the range of 300-3,000 steps per day (Hardman et al., 2011; Horne et al., 2009; 

Kang and Brinthaupt, 2009). Furthermore, the use of wearable sensors for step 

detection in self-monitoring has been associated with increased levels of physical 

activity in cardiac patients (Butler et al., 2009; Furber et al., 2010; Pinto et al., 2011), 

older adults with chronic stroke (Pang et al., 2005), and individuals with type 2 

diabetes (De Greef et al., 2010). 

Accurate step counting is an essential feature for mobility assessment using 

activity monitoring devices, and its measure using wearable sensors has become one 

of the most widespread methods used to quantitatively measure physical activity. 

Furthermore, current physical activity guidelines often provide step-based 

recommendations: a recent one, for example, indicates 10,000 steps/day as a 

reasonable amount for normative populations (Tudor-Locke et al., 2011b). 

A large amount of literature concerning the development of algorithms for step 

detection and counting has been published in the last decades. The choice of the 

optimal method depends on the type and number of sensors that will be used, the 

body placement of the sensor, the computational cost, and the specific application. 

Step detection has been performed using foot-switches, pressure insoles,  

gyroscopes, magnetometers, and accelerometers (Lowe and Ólaighin, 2014). 

Footswitches and pressure insoles allow to directly detect foot contact with the 

ground corresponding to a step (Jeffrey M. Hausdorff et al., 1995). Angular velocity 

collected using gyroscopes at the shank and thigh have been proven to be viable to 

detect foot strikes (Aminian et al., 2002; Tong and Granat, 1999). Magnetometers 

have also been used to estimate shank angular velocity and count steps using 
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windowing and thresholding  (Raffin et al., 2012). However, among inertial sensors, 

accelerometers have been the most exploited sensors for this purpose, and the most 

common algorithms will be reviewed in this section. 

Common locations for the placement of accelerometers in step detection 

studies are the ankles and thigh (Aminian and Hinckson, 2012; Crouter et al., 2003; 

Ryan et al., 2006), waist (Esliger et al., 2011; Le Masurier and Tudor-Locke, 2003; 

Yang et al., 2011), lower back (Dijkstra et al., 2008), trunk (Zijlstra and Hof, 2003) 

and wrist (Fortune et al., 2014). 

The simplest methods, often based on thresholding, take advantage of well-

known characteristics of the accelerometer signal (Brajdic and Harle, 2013; Najafi et 

al., 2003) (Figure 2-10). For example, the vertical displacement of the pelvis can be 

estimated by double integrating the vertical acceleration measured by an 

accelerometer positioned at the waist. To remove the integration drift, a zero-lag 

high-pass Butterworth filter with a cut-off frequency of 0.1 Hz is then used. Finally, 

steps are detected as peaks in the resulting vertical displacement (Goyal et al., 2011). 

This type of algorithms have been improved by introducing pattern recognition 

techniques that overcome the limitations that arise from the selection of the optimal 

threshold value, which can vary between users, surfaces and shoes (Kim et al., 

2004). 

 

Figure 2-10. Step event detection algorithms. A) Successive peaks with intervals of 0.25–

2.25 s in the discrete wavelet transformed vertical acceleration were chosen as possible 

walking steps (Najafi et al., 2003, Copyright © 2003, IEEE). B) Steps are detected as peaks 

in the vertical displacement of the pelvis (Goyal et al., 2011, Copyright © 2011, IEEE). 

Some algorithms focus instead on the periodicity of the gait cycle. Since 

typical stride frequencies are around 1–2 Hz (Brajdic and Harle, 2013), zero-crossing 

counting on low-pass filtered accelerometer signals have also been used for step 

detection (Beauregard, 2006; Ladetto, 2000). Adaptations of the Pan-Tompkins 
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algorithms for acceleration signals and combined dual-axis methods that are applied 

to global vertical acceleration (Ying et al., 2007) provide better performance 

(Marschollek et al., 2008), but depend on being able to isolate the orthogonal 

accelerations in the global frame. 

Frequency analysis can also be applied: the short-term Fourier transform has 

been used to evaluate the frequency content of successive data windows (Barralon et 

al., 2006). Ichinoseki and colleagues, for example, calculated the power spectrum of 

each sensing axis of a triaxial accelerometer placed on the sternum in the range of 

0.5–3.0 Hz for a temporal window of 4 s. After normalization with the maximum 

power of each window, the power spectrums were composited. Finally, the 

frequency at the maximum power was considered as the cadence, from which the 

number of steps were estimated (Ichinoseki-Sekine et al., 2006) (Figure 2-11). 

However, resolution issues due to windowing have led researchers to methods based 

on wavelet transforms, which repeatedly correlate a ‘mother’ wavelet with the signal 

by compression or dilation (Wang et al., 2012). These techniques, however, are 

computationally more expensive (Figo et al., 2010). 

 

Figure 2-11. Acceleration signals collected at the sternum and respective power spectrums. 

Orthogonal acceleration signals, AccX, AccY, AccZ, and their normalized power spectrum, 

powerX, powerY, and powerZ. The frequency at the maximum power of the composite power 

spectrum, powerC, was used as an estimate of the cadence of each window (Ichinoseki-

Sekine et al., Improving the Accuracy of Pedometer Used by the Elderly with the FFT 

Algorithm, Medicine & Science in Sports & Exercise, Vol. 38, Issue 9, Pages 1674-81). 
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Less demanding alternatives from a computational perspective are auto-

correlation (Yang et al., 2011) and cross-correlation techniques, which detect steps 

directly in the time domain (Marschollek et al., 2008). A disadvantage of these 

algorithms is that movements generating similar periodicity to that of walking many 

act as confounders and generate errors. Dynamic time warping is a technique that 

performs a non-linear mapping between two signals and overcomes these issues 

(Makihara et al., 2011). 

2.3.6 Gait events and temporal parameters 

The analysis of signals collected with inertial sensors for the characterization 

of gait has become a popular field of study in wearable sensors’ research, since this 

technology has shown to allow identifying a higher number of sub-phases of the gait 

cycle, with respect to footswitches or foot pressure insoles (Taborri et al., 2016). 

From the perspective of investigating walking during daily living, it is crucial that 

discomfort is minimized and ease of use is secured. This is generally accomplished 

by using the smallest amount of devices which guarantees the desired accuracy of 

the outcome measure. This section briefly reviews the development of methods for 

the analysis of the gait cycle to obtain gait event timings, limiting its examination to 

the estimation of temporal parameters. 

Multiple MIMUs configuration.  

A typical configuration for the detection of gait events using inertial sensors is 

the one based on two or more devices attached to the lower limbs. One of the first 

methods proposed in the literature (Aminian et al., 1999) used a couple of uniaxial 

accelerometers located on the thigh just above the knee, and measured the tangential 

component of each thigh acceleration in the sagittal plane. The authors gave a 

comprehensive description of the signal during the gait cycle and identified peculiar 

features corresponding to initial and final contact events. In both cases, a sharp 

negative acceleration is observed: when the foot leaves the contact with the floor, the 

negative acceleration is due to a quick backward movement of the hip and knee 

joints, while at the end of the swing phase, the contact of the foot with the ground 

stops the forward movement of the foot generating the negative peak. After a low-

pass filter at 3Hz, the time of global maximum was found for each gait cycle, 

corresponding to mid-swing. Then, local minima of the filtered signal were 
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identified. Finally, the minima of the unfiltered signal were obtained, which were the 

timings of initial and final contact. Results showed a good agreement (r > 0.99) for 

stance duration and gait cycle time between accelerometer and footswitch data. A 

successive study by the same group (Aminian et al., 2002) proposed an original 

method based on wavelet transform to identify gait events and compute gait 

parameters from the angular velocity of the shanks (Figure 2-12). An early example 

of application in a clinical setting was also proposed by the same group, detecting 

gait cycle phases using two accelerometers attached to the lower legs (Aminian et 

al., 1998) for the functional evaluation of gait improvement after arthroplasty in 

patients with unilateral hip osteoarthritis. 

 

Figure 2-12. Raw and filtered thigh acceleration compared with output of FSR sensors 

during two gait cycles. (....) Raw signal, (––) filtered signal. (Medical and Biological 

Engineering and Computing, Temporal feature estimation during walking using miniature 

accelerometers: an analysis of gait improvement after hip arthroplasty, Vol. 37, 1999, pages 

686-691, Aminian et al., "With permission of Springer"). 

In 2004, the same research group proposed a novel algorithm for the detection 

of gait events in patients with Parkinson’s disease treated with deep brain stimulation 

using four gyroscopes attached to the lower limbs. After a high-pass filter, the peak 

angular velocity corresponding to mid-swing was detected, and the nearest local 

minimum after the peak was selected as initial contact. As the negative peak 

associated to the final contact event was generally difficult to detect, the signal was 

additionally low-pass filtered and the minimum prior to the mid-swing peak was 

selected as final contact. Recent studies extended the clinical application of these 

methods. In 2006, a study was published comparing the accuracy of gait event 

estimation in both healthy normal and spinal-cord injured individuals (Jasiewicz et 

al., 2006) by using a system of four sensors positioned on each foot and shank using 

three different algorithms based on foot linear accelerations, or foot sagittal angular 
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velocity, or shank sagittal angular velocity data. The results showed that the three 

algorithms were as accurate as foot switches in estimating initial and final contact 

timings for normal gait, while the estimates based on angular velocities were less 

accurate in spinal-cord injured subject. Another study tested a method based on four 

gyroscopes located on the lower limbs in poliomyelitis patients using adaptive 

thresholds calculation and artefact rejection techniques (Greene et al., 2010). A gait 

phase detection system was also successfully developed using two sensors on the 

upper shanks to replace heel switches used for triggering drop foot stimulators 

(Kotiadis et al., 2010; Veltink et al., 2003). A study by Mariani and colleagues 

further refined previous algorithms by detecting both initial and final contact events, 

and determining stance sub-phases, by using two inertial sensors positioned on the 

forefoot (Mariani et al., 2013). Similar approaches were used to analyse temporal 

parameters in independently walking children with cerebral palsy (Bourgeois et al., 

2014) and post-stroke hemiparetic gait (Yang et al., 2013). Recently, methods for the 

estimation of temporal parameters have also been proposed and tested in wider 

ranges of clinical populations. For example, a method combining angular velocity 

and acceleration signals of the shanks has been tested in elderly, hemiparetic, 

parkinsonian and choreic gait, with high levels of precision and accuracy 

(Trojaniello et al., 2014b). 

Single MIMU configuration.  

A single device positioned on the lower trunk has also been used extensively in 

research studies to propose gait event detection algorithms. Initially, published 

methods explored trunk accelerometry features to assess gait events and temporal 

parameters. Inspections of acceleration signals generated at the lower trunk by 

inertial sensors had already been studied more than two decades ago in order to 

obtain estimates of stride durations based on initial contact detection in healthy 

participants (Evans et al., 1991). A more refined algorithm was proposed by Zijlstra 

and Hof a few years later (Zijlstra and Hof, 1997). Based on the findings of a 

previous article describing the three-dimensional displacement of the pelvis during 

human walking, they designed an algorithm based on the shape of the acceleration 

signal at the lower trunk (Zijlstra and Hof, 2003). According to their model, human 

walking is described as an inverted pendulum movement, where during single 

support, after mid-swing, the body is falling forward and downward, hence 
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accelerating. During foot contact, the forward movement decelerates, which 

corresponds to a change of sign of the forward acceleration of the lower trunk. Based 

on these findings, two similar algorithms were tested in a successive research by the 

same authors. In one algorithm, after low-pass filtering of the anterior-posterior 

acceleration signal with a fourth-order zero-lag Butterworth filter, the change from 

positive to negative was taken as the instant of initial contact. In the second 

algorithm, the peak acceleration preceding the change of sign was taken as initial 

contact (Figure 2-13). The results showed that both methods produced small errors 

when compared to ground reaction force data, although in the zero-crossing method 

the initial contact timing was consistently delayed in comparison to the reference 

method. The methods proposed were later improved by the authors by aligning the 

device to the vertical direction during an upright posture (Zijlstra, 2004). 

 

Figure 2-13. Anterior-posterior trunk acceleration data with foot contact events detected by 

zero-crossing method (black circles) and peak detection method (open circles). Asterisks 

indicate foot contact as detected by ground reaction force (Gait & Posture, Vol 36, Issue 2, 

Zijlstra & Hof, Assessment of spatiotemporal gait parameters from trunk accelerations 

during human walking, Pages 1-10, Copyright (2003), with permission from Elsevier). 

Real-time gait event detection was proposed by a successive study, in which 

the authors created search windows in regions of the signal defined by positive 

values of the filtered anterior-posterior acceleration. Empirical rules were applied to 

select the local maximum identified as initial contact. The final contact was 

identified as the first minimum occurring after the initial contact (González et al., 

2010). Limitations of these methods include incorrect identification of peaks 

corresponding to initial contact, and inability to detect events in case of irregular 

signal patterns (López et al., 2008). Methods based on wavelet transformation of the 

accelerometer signal have also been published, with the purpose of overcoming these 
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issues. McCamley and colleagues (McCamley et al., 2012) applied a Gaussian 

continuous wavelet transformation to the vertical acceleration recorded on the lower 

lumbar spine, and initial contact was identified as the local minimum. After further 

differentiation, the final contact was identified as the instant of maximum of the 

resulting signal. With a similar procedure, a method was proposed to obtain gait 

event timings by processing the acceleration obtained from a wearable sensor 

attached on a subject’s belt reconstructing the signal with the first three levels of 

detail of a stationary wavelet decomposition of the vertical acceleration  (Kose et al., 

2012). As previously proposed by Zijlstra and Hof, distinctive features in the sensor 

signals were matched with the appropriate gait events. Recently, a wearable pendant 

device with a wavelet-based method for the analysis of gait has also been described 

(Brodie et al., 2016). The heel strikes were identified by peaks greater than 0.5 m/s
2
 

in the level 4 and 5 details using of a Daubechies ‘db5’ wavelet decomposition 

(Figure 2-14). 

 

Figure 2-14. Heel strikes identified by peaks greater than 0.5 m/s
2
 in the level 4 and 5 

(mid-pseudo-frequencies 1 and 2 Hz) wavelet details (circles), and a walk by 10 or more 

consecutive steps (thick line). (Medical and Biological Engineering and Computing, 

Wearable pendant device monitoring using new wavelet-based methods shows daily life and 

laboratory gaits are different, Vol. 54, 2016, pages 663-674, Brodie et al., "With permission 

of Springer"). 

2.3.7 Gait spatial parameters 

In one of the first studies aiming at quantifying physical activity by means of 

wearable devices, Stunkard calibrated a mechanical pedometer for the length of the 

strides of walking subjects. Converting impulses into distances, the author claimed to 

measure walked distances with errors of less than 15% (Stunkard, 1960). 
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Currently, the relationship between inertial sensors signals, and spatial gait 

parameters, is mostly achieved by indirect methods. Using a simple symmetric gait 

model, stride length has been estimated using a gyroscope on the thigh (Miyazaki, 

1997). An indirect method (Aminian et al., 1995) developed by Aminian and 

colleagues showed that it was possible to estimate walking speed and incline in 

overground walking based on twenty trunk and heel acceleration parameters, 

combined with the use of artificial neural network. The results showed good 

agreement between actual and predicted values, with a variability of 2.6% for the 

estimated incline, and a 6% variability in speed estimation. A few years later, the 

same author also proposed a double segment model based on wavelet transforms 

using gyroscopes on the shanks and on the right thigh (Aminian et al., 2002). This 

double segment model provided an estimate of walking speed and stride length with 

a root mean square error of 0.06 m/s (6.7%) and 0.07m (7.2%), respectively.  

A subsequent study used a double inverted pendulum model to estimate spatial 

parameters from trunk accelerometry (Zijlstra and Hof, 2003). The model assumed a 

compass gait type, where changes of height of the centre of mass were related to 

variations in step length. However, the method highlighted a systematic 

underestimation of step length and walking speed which was addressed with a fixed 

correction factor of 1.25, later improved by identifying individual correction values 

(Zijlstra, 2004). 

The alternative to indirect methods is the double integration of the 

accelerometric signal. This technique is difficult to implement in practice due to 

uncertain initial conditions of position and velocity, and inaccuracies due to 

orientation of the sensors. In the algorithm he proposed, Moe-Nilssen tried to 

overcome these issues by transforming the signal into a fixed global frame, then 

calculated twice the cumulative sum of data series obtained from trunk 

accelerometry, subtracted the mean and choose a subset of the data to minimize drift 

in the integration process (Moe-Nilssen, 1998a). Results showed a quadratic 

relationship (r
2
=0.99) between acceleration root mean square and walking speed. 

Another study presented a method to estimate right and left stride lengths using a 

single IMU attached to the pelvis by a combination of direct and reverse integrations 

of a filtered acceleration (Kose et al., 2012; Zok et al., 2004). Results showed errors 

in step length of less than 3%, and errors in distance covered of less than 2%. 
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A different approach to overcome the limitations of previous methods is to use 

machine learning techniques. Mannini and Sabatini estimated walking speed using 

Support Vector Machines, a pattern-recognition technique. Features for the 

classifiers were considered the mean values of each of the three measurement axes 

and the Pearson’s correlation coefficients between each pair of them. The results of 

this on-line algorithm were comparable to existing off-line techniques (Mannini and 

Sabatini, 2011). An adaptive algorithm determined step length by using a linear 

combination of walking frequency and acceleration variance (Shin and Park, 2011), 

with a measurement error of 4.8% with respect to the actual walking distance. 

2.3.8 Measures of gait variability and stability 

Close examination of the gait pattern reveals fluctuations even under constant 

environmental conditions. Gait dynamics include the measures of stride-to-stride 

variability as well as other fluctuations in the gait pattern over time (Hausdorff, 

2007). Qualitative indexes of gait unsteadiness were already been introduced into 

clinical scales in the late 1980s (Tinetti, 1986; Wolfson et al., 1990), but quantitative 

research has now demonstrated that the investigation of gait dynamics provides 

useful information about locomotor control and has clinical applications (Hausdorff 

et al., 2003). This section briefly reviews variability and stability metrics, although 

the latter are not the focus of the research presented in this thesis. 

Coefficient of variation. The coefficient of variation (CV) is a standardized 

measure of dispersion of a probability distribution, defined as the ratio of the 

standard deviation to the mean of a frequency distribution. The coefficient of 

variation of many gait parameters has been studied as a measure of variability in 

human walking since the 1980s, when an early quantitative study showed an increase 

in step length variability during a six-meter walk in community-dwelling elderly 

fallers (Guimaraes and Isaacs, 1980) in comparison with healthy individuals. 

However, a systematic approach to the study of the variability of human walking 

started only in the 1990s. A study published in 1992 showed an inverse relationship 

between heart rate variability and stride rate variability (Hausdorff et al., 1992). 

Later studies confirmed that gait variability is related to cardiovascular health. In 

healthy adults, the coefficient of variation of many gait parameters is generally in the 

order of a few percent (Hausdorff et al., 1997a), but is altered in clinically relevant 
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syndromes, such as  Parkinson’s disease (Blin et al., 1990), basal ganglia disorder 

(Hausdorff et al., 1998), amyotrophic lateral sclerosis (Hausdorff et al., 2000), and 

Alzheimer’s disease (Sheridan et al., 2003), while in healthy older adults stride-to-

stride fluctuations appear to be altered only in specific parameters, such as step width 

(Owings and Grabiner, 2004). Gait variability may predict falls in elderly fallers and 

populations at high fall risk (Hausdorff et al., 2001). Improvements in muscle 

function and rehabilitation interventions are associated with better gait variability 

measures (Frenkel-Toledo et al., 2005; Nakamura et al., 1996). 

Detrended fluctuation analysis. Detrended fluctuation analysis is a method to 

determine the statistical self-affinity of a signal. The fractal scaling index obtained 

from gait time series was found to be in the order of 0.75, which testifies the 

presence of long-range correlations (J M Hausdorff et al., 1995). This means that 

there is a dependency in the locomotor system and that fluctuations in the stride 

interval are related to variations in gait cycles which occur hundreds of strides earlier 

in time (Hausdorff, 2007). Studies in neurological disorders suggest that the central 

nervous system mechanisms contribute to these long-term fluctuations (Gates and 

Dingwell, 2007; Hausdorff et al., 1997b). 

Gait stability. Many clinical stability indexes have been proposed, none of 

which has been widely accepted (Hamacher et al., 2011). Recently, some authors 

used methods of nonlinear dynamics system analysis to obtain metrics of gait 

stability. Dynamic orbital stability quantifies discretely the tendency of the system to 

return to its periodic limit cycle orbit after perturbations, and is defined using 

Floquet multipliers (Nayfeh and Holden, 2004). The first description of stability 

indexes explicitly applied to human walking was published over two decades ago 

(Hurmuzlu and Basdogan, 1994). However, as highlighted by a recent review, there 

is still lack of uniformity in the computation of this parameter (Riva et al., 2013a). 

Local dynamic stability is defined by quantifying how a system’s state responds 

continuously to small perturbations. It is calculated by estimating the average rate of 

divergence of neighbouring trajectories in real time. Positive values of the 

divergence exponents indicate local instability (Dingwell and Kang, 2007). Recent 

work has established that these metrics are not influenced by directional changes 

(Riva et al., 2014), and that a minimum number of 130 strides should be used for a 

reliable measure of orbital stability (Riva et al., 2013b). 
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Further metrics that are currently used to quantify stability in gait include 

Recurrence Quantification Analysis, which provides a characterization of 

deterministic and non-stationarity structures (Sylos Labini et al., 2012), Multiscale 

Entropy, which quantifies a time series’ complexity (Costa et al., 2003), Harmonic 

Ratio, a measure associated to whole body balance (Lowry et al., 2009). 

2.4 Wearable MIMU sensors and musculoskeletal 

models 

A recent review has highlighted the extensive research carried out since the 

1990s to develop MIMU systems capable of estimating joint angular kinematics and 

segment orientations (Picerno, 2017), concluding that, overall, the analysed 

approaches were found to be accurate in comparison to standard motion analysis 

techniques. Furthermore, wearable sensor systems capable of assessing lower limb 

kinetics have also been recently developed (Liu et al., 2009; Schepers et al., 2007; 

Zheng et al., 2008) 

These approaches, based on wearable inertial sensors, could benefit from 

current developments in musculoskeletal models such as the AnyBody Modeling 

System (Damsgaard et al., 2006), and OpenSim (Delp et al., 2007). These subject-

specific models are more refined and contain more complex, anatomical, kinematic 

information than sensor fusion algorithms currently used for multiple MIMUs. 

Furthermore, they allow movement between segments and modelled sensor 

positions, for example as a consequence of soft-tissue artefacts. On the other hand, 

musculoskeletal models can be driven by kinematic and kinetic models based on 

MIMUs, allowing dynamic modelling in outdoor environments. An attempt to 

provide an integrated routine to drive musculoskeletal models using MIMU data has 

been recently published (Koning et al., 2013). Further developments of these 

methods would facilitate the use of MIMU-based orientation estimates in existing 

biomechanical models, contributing to the growth of biomechanical analysis applied 

to daily life.  



 

37 
 

2.5 Conclusions 

The growing interest in quantifying physical activity, and specifically walking, 

in an objective manner has generated in the last few decades an exponential increase 

in research, design, and commercialization of wearable devices to measure 

physiological quantities. Improvements in miniaturization, memory and battery life 

has recently allowed their use for prolonged periods of time in conditions of free 

living. The most commonly adopted wearable sensors include footswitches, pressure 

insoles and micro-electro-mechanical systems. Inertial sensors are currently the most 

popular devices thanks to their ease of use and low power consumption. Systematic 

measures of human walking using wearable accelerometers started to be carried out 

in the 1970s, while only two decades later new methods for improved signal 

processing allowed the investigation of walking in free-living conditions. Typical 

outcomes obtainable from inertial sensor-based wearable devices include activity 

counts, energy expenditure, step detection, gait event identification, spatial and 

temporal gait parameter, and metrics of gait dynamics. The potential to investigate 

gait in daily life, however, is still hindered by limited validity and reliability of 

current methods, and lack of knowledge regarding typical walking patterns typical of 

daily living scenarios. The aim of this thesis is to address the limitations that make 

this approach uncommon, and contribute to the development of knowledge in the 

field of gait monitoring in daily life. 
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Chapter 3  

 

Physical Activity Monitors: 

accuracy assessment 
 

An objective and reliable method for the classification and quantification of 

free-living motor activity is a prerequisite for the understanding of the complex 

relationship between health and physical activity. As discussed in detail in the 

previous chapter, the use of physical activity monitors for its estimation has gained 

widespread recognition, and accelerometry is currently the most exploited 

technology in this field (Chen et al., 2012). The study described in this chapter aims 

at assessing the accuracy of state-of-the-art technology in the field of PAMs, in both 

healthy individuals, and in patients with locomotion difficulties due to a neurological 

condition. In the first part of the study, seven commercially available PAMs were 

tested in healthy individuals walking at different gait speeds and performing 

different basic activities of everyday living, and the accuracy of their step detection 

and posture classification algorithms was investigated. In the second part of the 

study, the best performing device was tested in patients with mobility problems due 

to multiple sclerosis, with the aim of proposing a method to reliably assess the 

accuracy of step detection in this population, and investigating the relationship 

between walking speed and sensor accuracy. 

3.1 Accuracy of step detection and activity recognition 

in healthy individuals 

A substantial part of the material presented in section 3.1 has been published in: 

F. A. Storm, B. W. Heller, C. Mazzà, Step detection and activity recognition 

accuracy of seven physical activity monitors. PLoS ONE 10(3): e0118723. 

doi:10.1371/journal.pone.0118723.  

Written permission was obtained from all the co-authors. 
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3.1.1 Introduction  

Physical activity monitors (PAMs) can be classified into research-grade and 

consumer-based devices. Research-grade monitors have generally accepted 

reliability and validity of physical activity measured in free-living conditions, 

achieved through validation against a reference method, such as the doubly labeled 

water for energy expenditure. This scientific evidence allows them to be used in 

research and clinical settings. Consumer-based monitors are often considerably 

cheaper and less cumbersome, include displays for immediate feedback and are 

associated with internet- and/or smartphone-based applications. They can also be 

worn on a larger variety of body locations, such as wrist or neck. Typical metrics of 

both types of sensors are step count, energy expenditure, distance travelled, and 

sleep time. According to a recent market research, the annual 2015 unit sale of 

fitness activity trackers specifically designed and produced for the consumer market 

has grown by 85% with respect to 2014, and demand is rising despite the average 

selling prices of these devices is increasing. Fitbit is the leading brand in 2015, with 

79% of market share. In the U.S. market, nearly 33 million devices are owned (The 

NPD Group, 2016). 

A recent review, focusing on protocol equivalency, emphasized the “emerging 

measurement challenge” caused by the increasing availability of these low cost 

PAMs, along with the chronic difficulty in comparison and standardization of data 

from different models of accelerometry-based sensors (Welk et al., 2012). Activity 

type-specific equations are generally implemented into PAMs to model energy 

expenditure (Brandes et al., 2012). As far as is known to the author, at the time of the 

data collection only one study had investigated consumer-based PAMs (Lee et al., 

2014). The study tested eight consumer-based PAMs in their accuracy for estimating 

energy expenditure during a 69-minute protocol in sixty adults using indirect 

calorimetry as reference. The accuracy results, with the devices ranked based on 

percent error, were as follows: BodyMedia FIT (9.3% error), Fitbit Zip (10.1%), 

Fitbit One (10.4%), Jawbone UP (12.2%), Actigraph GT3X (12.6%), DirectLife 

(12.8%), Nike Fuelband (13%) and Basis BI Band (13.5%). 

More recently, some studies attempted to examine the concurrent validity of 

various outputs of consumer-based PAMs. In one of the most comprehensive, 

Ferguson and colleagues compared seven consumer-level devices against two 
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research-grade monitors in free-living adults, concluding that the consumer-level 

devices showed strong validity for step detection and sleep time, and moderate 

validity for total daily energy expenditure and moderate to vigorous physical activity 

(Ferguson et al., 2015). 

Interestingly, despite the fact that in these devices the application of the 

activity-dependent equations relies on step detection, only a few studies have 

focused specifically on the accuracy of this estimate. Furthermore, the robustness of 

step detection during walking at slow speed is of particular interest in clinical 

research (Harrison et al., 2013). An additional factor that could affect the accuracy of 

step detection is, of course, the walking environment. To our knowledge, however, 

the accuracy of step count in PAMs has never been compared between indoor and 

outdoor settings. The objectives of this study are the following: 

1) Identify appropriate protocols for subject-specific assessment of a PAM’s 

accuracy.  

Step detection is a common feature for PAMs, but its accuracy can be affected 

by the walking environment. Different walking protocols, including indoor and 

outdoor walking at different speeds will be used to test the accuracy of the PAMs. 

The identified protocol could be used in future as a spot check for patient specific 

calibration and reliability assessment, before the PAM is given to a patient for long-

term monitoring. 

2) Validation and comparison of different PAMs. 

The objective of this part of the study is to compare the step count detection 

accuracy of seven different PAMs, covering a range of technologies and prices, in 

healthy adults. Among these monitors, those that allow recognition of common 

everyday tasks will be further tested in their ability to discriminate and classify basic 

activities within more composite motor tasks. The results of this study will provide a 

reference value for the error to be expected when the investigated PAMs are used for 

long-term recording of physical activity. 

3.1.2 Physical activity monitors  

This section describes the technical characteristics of the seven PAMs that 

were assessed in this study. Scientific evidence on the accuracy of their outcomes 

based on work published on peer-reviewed journals is also briefly reviewed, 
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including studies published up to April 2016. Further details for each sensor are 

provided in Table 3-1. 

MoveMonitor 

The MoveMonitor (Mc Roberts, The Hague, The Netherlands) is a research-

grade commercially available PAM, which gives a report with information about the 

performed activities/postures (lying down, sitting, standing, walking and shuffling), 

movement parameters (step count, movement duration, intensity and frequency of 

transitions, e.g. sit-to-stand), and energy expenditure. Its dimensions are 106.6 x 58 x 

11.5 cm and its weight 55 g. The device is worn around the waist using an elastic 

strap, and features a triaxial accelerometer with a selectable full scale of ±2g or ±6g, 

measuring acceleration over a bandwidth of 640 Hz for all axes. The resolution is 

±1mg in the 2g range and ±3mg in the 6g range. The sample frequency is 100Hz. 

The lithium polymer battery allows 204 hours of recording. 

The regression equations used to relate sensor output with energy expenditure 

have been published and improved in the years (Brandes et al., 2012; van Hees et al., 

2009). The MoveMonitor has been validated in an elderly group (Dijkstra et al., 

2009) and in clinical populations: a study looked at the validity of posture 

recognition of the MoveMonitor in Parkinson’s disease (Dijkstra et al., 2010), where 

high agreement was found for lying, sitting at home, and walking, while lower 

values were found for sitting in the laboratory, standing, and shuffling. A further 

study highlighted that accurate information could be gained from a set of postures in 

patients with peripheral arterial disease with intermittent claudication, but shuffling 

and sitting-to-standing transition accuracy was still of concern (Fokkenrood et al., 

2014). The device has also been validated for daytime physical activity in patients 

with chronic obstructive pulmonary disease: the MoveMonitor showed in this 

population significant correlations with active energy expenditure (r=0.70 p<0.0001) 

(Rabinovich et al., 2013; Van Remoortel et al., 2012). The reliability for the step 

count during a set of standardized tasks in able-bodied participants was found to be 

weak to moderate (de Groot and Nieuwenhuizen, 2013). 

ActivPAL 

The ActivPAL (PAL Technologies Ltd., Glasgow, UK) is a PAM with 

dimensions of 53 x 35 x 7 mm and weighing 15 g, which is attached to the anterior 
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aspect of the thigh. The triaxial accelerometer has a range of ±2g, with a sampling 

frequency of 20Hz and a memory of 16MB, allowing a recording period of 10 days. 

The ActivPAL has been validated for the discrimination of sedentary (sitting or 

lying), standing and ambulatory activity, where it showed detection accuracies for 

static and dynamic activities of approximately 98% (Godfrey et al., 2007; Grant et 

al., 2006). Another study found that the absolute percentage error for step cadence 

and step number was 1.11%, regardless of walking speed (Ryan et al., 2006). It has 

also been used in various clinical studies, including back pain (Ryan et al., 2008), 

elderly adults (Grant et al., 2010, 2008), cardiology (Tigbe et al., 2007) stroke 

(Harris et al., 2005) and venous ulceration (Clarke-Moloney et al., 2007). 

Sensewear Mini Armband  

The Sensewear Mini Armband (Bodymedia, Pittsburgh, USA) is a multi-

sensor PAM worn over the triceps of the right arm. It includes a biaxial 

accelerometer, a skin temperature sensor, a near-body temperature sensor, a heat flux 

sensor, and a galvanic skin response sensor. The signals are combined to obtain 

estimates of step count, energy expenditure, and sedentary time. A Naive Bayes 

classifier is used to classify the data to an activity class (walking, running, cycling, 

rest, resistance, and other activities). A different linear regression model for each of 

the sensor classifications is then used to estimate energy expenditure. A validation 

study testing two models of Armband showed that the device had an absolute error 

rate of 8.1% ± 6.8% in estimating energy expenditure in thirty healthy individuals 

under free living conditions during fourteen consecutive days (Johannsen et al., 

2010). A further study evaluated the performance of this device under free-living 

conditions in children using the doubly labelled water method as reference, obtaining 

a mean percentage error over fourteen days of 10.9% (Calabró et al., 2013). The 

Sensewear Armband has also been used in an intervention study looking at weight 

loss in a group of 197 obese adults, where its use showed an improvement of body 

weight and waist circumference with respect to a group of patients receiving 

standard care (Shuger et al., 2011). A study comparing six PAMs with indirect 

calorimetry in patients with chronic obstructive pulmonary disease showed that the 

Sensewear Pro Armband had high correlation in both minute-by-minute and mean 

correlations (r=0.73 and r=0.76, respectively) (Rabinovich et al., 2013; Van 

Remoortel et al., 2012). However, a study comparing the Sensewear Mini Armband 
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with a pedometer (Digiwalker SW701) in the same type of patients and in healthy 

elderly showed that at slow speeds (1.6 ± 0.2 km/h) neither of the two systems was 

adequately accurate (Furlanetto et al., 2010). The device has also been used to study 

depression in chronic obstructive pulmonary disease patients (Venkata et al., 2012), 

pregnant women (Smith et al., 2012) and hyperthyroidism (Ulas et al., 2012). The 

Sensewear Armbands have been discontinued in 2015. 

UP 

The UP (Jawbone, San Francisco, USA) is a wrist-worn accelerometry-based 

device that can assess physical activity and sleep patterns throughout the day. The 

UP can synchronize data to smartphones via a 3.5-mm standard cable. It is water 

resistant up to 1 m and the battery can last for up to 10 days. The UP contains a 

triaxial accelerometer, collecting data at 30 Hz. Proprietary algorithms are used to 

estimate steps, distance walked, type of physical activity, energy expenditure, and 

sleep. Several validation studies have investigated the accuracy of the UP device 

looking at different aspects: for laboratory-based validity studies using step counting 

as the criterion, correlation with steps collected from a reference sensor was 

generally high for treadmill walking (Takacs et al., 2014), running (Diaz et al., 

2015), and elliptical exercise (Stackpool et al., 2015). Neither reliability studies nor 

studies on patient populations have been published using this device. The UP is now 

no longer for sale on the company’s website, and has been updated by the UP2 and 

UP3 devices. 

One 

The One (Fitbit, San Francisco, USA) is a physical activity monitor containing 

a 3-axis accelerometer and an altimeter, with a silicon clip allowing the user to clip it 

to a belt, pocket or bra. The lithium-polymer battery allows 10-14 days of recording, 

while the memory tracks 7 days of minute by minute, and 23 days of daily totals 

data. Measures include walked steps, physical activity, energy expenditure and sleep 

monitoring. In a laboratory-based study investigating step count accuracy, 

correlation with steps from a reference method was >0.80 (Case et al., 2015). 

However, in a free-living study on twenty-one participants wearing the One for two 

days, it generally over-counted steps (Ferguson et al., 2015). Using direct 

observation as criterion, Takacs and colleagues obtained excellent validity (0.97-
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1.00) and inter-device reliability (99% agreement) for step detection accuracy during 

treadmill walking at five different speeds among thirty healthy adults (Takacs et al., 

2014). Finally, a study found less error for the ankle-worn compared to the waist-

worn sensor (Simpson et al., 2015). Fitbit One has only been tested in healthy 

individuals and older adults. 

Nike+ Fuelband 

The Nike+ Fuelband (Nike Inc., Beaverton, OR), released in 2012, is a wrist-

worn PAM allowing users to track physical activity. It includes a three-axial 

accelerometer, and can assess body movement, steps, and distance. A proprietary 

algorithm combining raw accelerometer counts and demographic characteristics also 

allows estimating physical activity energy expenditure. Two lithium polymer 

batteries allow continuous recording for up to four days.  A study reported good 

agreement at the group level in comparison to total energy expenditure measured by 

indirect calorimetry (87% accuracy), however, at individual level the correlation was 

low (0.35), and proportional systematic bias was also reported (Lee et al., 2014). A 

recent study comparing two PAMs and a pedometer in step detection in fifty patients 

with stroke and traumatic brain injury found that the Nike+ Fuelband was the least 

accurate (66% accuracy) during a two minute walk (Fulk et al., 2014). A further 

study tested the step count accuracy of four activity monitors, including the Nike+ 

Fuelband, in seventeen patients with idiopathic normal pressure hydrocephalus, with 

the device resulting the poorest in the results (Gaglani et al., 2015). The Fuelband 

has been discontinued in 2014. 

Tractivity 

The Tractivity (Kineteks Corp., Vancouver, Canada) is a commercially 

available, triaxial accelerometer for use on the foot/ankle. The device allows the self-

monitoring of distance walked, steps, time and energy expenditure during physical 

activities. The only published validation study of the Tractivity examined its 

accuracy in measuring steps across different walking speeds in ten healthy 

participants. The Tractivity explained >99% of the variance in the number of 

observed steps, with no evidence of systematic bias (Warburton et al., 2013). 
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Table 3-1. Details of the PAMs tested in the study (Storm et al., 2015). 

Instrument Sensor Type Location Tested Outputs 
Output Data 

Aggregation 

Data Interface and 

Version 
Price 

DynaPort 

MoveMonitor 

(Mc Roberts) 

Triaxial accelerometer Lower back Time sitting, lying, 

standing, locomotion, 

shuffling, steps 

1s epochs Dyrector Ver. 1.0.7.17 - 

Web based data server 

800 € 

UP (Jawbone) Triaxial accelerometer Wrist 

(right) 

Steps 60s epochs data and 

graphics by day or min 

UP Ver. 2.8.8.3.7.1 - App 114 € 

One (Fitbit) Triaxial accelerometer Waist (left) Steps 60s epochs data and 

graphics by day or 15 min 

aggregation 

Connect Ver. 1.0.0.4022 - 

Web based software 

106 € 

ActivPAL (PAL 

Technologies) 

Triaxial accelerometer Shank 

(right) 

Time sitting and lying, 

standing, stepping, 

steps 

1s epochs ActivPAL Ver. 7.1.18 - PC 

based software 

1,277 € 

Tractivity 

(Kineteks 

Corporations) 

Uniaxial accelerometer Ankle 

(right) 

Steps 60s epochs data and 

graphics by day or hour 

Connect Ver. 2.12 - Web 

based software 

18 € 

Nike+ Fuelband 

(Nike) 

Triaxial accelerometer Wrist (left) Steps 60s epochs data and 

graphics by day or hour 

Nike+ Connect Ver. 3.8 - 

Web based software 

171 € 

Sensewear Mini 

Armband 

(Bodymedia) 

Triaxial accelerometer, 

heat flux, galvanic skin 

response, skin 

temperature 

Upper left 

arm at 

triceps 

Steps 60s epochs data and 

graphics by day or hours 

or minutes 

Sensewear Ver. 7.0.0.2378 

- PC based software 

2,400 € 
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3.1.3 Materials and methods 

Participants 

Sixteen participants were recruited for the study. The sample characteristics are 

shown in Table 3-2. Participants did not report any impairment or morbidity that 

could interfere with the assessment of physical activity. Approval from the 

University of Sheffield Research Ethics Committee was obtained for the study and 

participants were asked to read carefully an information sheet before giving written 

informed consent. 

 

Table 3-2. Sample characteristics of the study group (mean ± SD) (Storm et al., 

2015). 

Characteristic Value 

Men/Women 10/6 

Age (y) 28.9 ± 2.7 

Weight (kg) 72.0 ± 9.2 

Height (m) 1.75 ± 0.09 

BMI (kg/m
2
) 23.5 ± 2.3 

 

Experimental protocol 

After having their anthropometric characteristics recorded, the subjects were 

fitted with the sensors, which were all positioned at the manufacturer’s 

recommended locations (Figure 3-1). The participants were asked to perform two 

protocols, one including different locomotion tasks and one including different 

postural transitions and complex motor activities. 
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Figure 3-1. Sensor placement (adapted from Storm et al. 2015). The figure shows the 

location of the sensors on a subject’s body: MoveMonitor (DP), Up (UP), One (ONE), 

ActivPAL (AP) Tractivity (TR), Nike+ Fuelband (NF), Sensewear Mini Armband (SAM), 

and OPAL sensors used as reference system. 

In addition to the PAMs, two wireless inertial measurement units (OPAL, 

ADPM Inc., Portland, OR, USA) were positioned on the left and right shanks, just 

above the ankle, by means of an elastic strap. Data from the OPAL sensors collecting 

data at a sampling rate of 128 Hz were used as a gold standard for step detection. An 

algorithm using the gyroscopic signals was implemented in Matlab R2013a (The 

Mathworks Inc., USA). This algorithm is directly derived from the one proposed by 

Aminian and colleagues (Aminian et al., 2002), which has been extensively validated 

to detect heel strike and toe off in healthy individuals during straight walking, and 

identifies the maxima of the angular velocity around the mediolateral axis of the 

shank corresponding to the swing phases of the leg from the data (Figure 3-2). Not 

being interested in detecting a specific phase in the gait cycle, we used the maxima 

instead of the heel strike peak used by Aminian et al. as a conservative solution. The 

main feature of the gyroscope signal in the sagittal plane during the swing phase of 

walking is a peak generated by the counter-clockwise rotation of the shank, whose 

maximum occurs approximately at mid-swing (Sabatini et al., 2005). Peaks larger 

than 50°/s (0.9 rad/s) were selected as candidates. The highest peak was selected in 

case of multiple peaks occurring within a maximum distance of 500 ms. This peak 

was retained and taken as the midswing (Aminian et al., 2002; Salarian et al., 2004). 

The sensitivity and the positive prediction value in detecting gait cycles for 

healthy subjects using this method were reported as 100% (Salarian et al., 2004). 
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Nevertheless, the presence of a heel strike between two subsequent strides was 

always verified and the independent information from the sensors on the two ankles 

was used as a cross-check to verify the alternate presence of left and right steps. For 

each session, step counts for left and right shanks were computed and the total 

number of steps (N) was obtained by summing up the number of right and left steps. 

 

 

Figure 3-2. Typical angular velocity signal of the shank in the sagittal plane during 

consecutive steps (adapted from Storm et al. 2015). The figure shows the angular velocity 

signal as measured by one of the shank sensors in the sagittal plane during a portion of an 

arbitrarily selected indoor walking trial. The portion shown includes walking, stopping and 

turning. The maxima detected by the algorithm used to detect single steps are also 

highlighted with dotted vertical lines. 

During the first protocol, which tested the accuracy of the PAMs for step 

detection under different walking conditions, each participant simultaneously wore 

all the seven monitors. The protocol lasted 11-minutes and included the following 

tasks: a) walking along a 20-meter long indoor straight walkway; b) descending 24 

steps (4 flights of 5,12,3 and 4 steps respectively); c) free outdoor walking; d) 

ascending 24 steps and e) free walking in an indoor setting. During the free indoor 

walking the participants were asked to walk inside a 300 m
2
 office space filled with 

lines of desks and separated by rectilinear corridors, without following any 

predefined path (they were free to decide which way to go, provided that they would 

not stop nor make abrupt turns). During the outdoor walking they were instructed to 

walk along a regularly crowded sidewalk, following a pre-defined route that included 

straight paths and turns around blocks. This was repeated three times, with the 

participants being instructed to walk at self-selected natural, slow, and fast speeds. 
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The order of the walking speeds was randomized. A detailed description of the 

protocol is presented in Table 3-3. 

 

Table 3-3. Summary of the activities performed during the step detection protocol, 

their duration and the step count (as obtained by the OPAL sensors) for each walking 

speed (Storm et al., 2015). 

Activity Type – Step 

Detection Protocol 
Duration 

Slow speed 

(N) 

Self-selected 

Speed (N) 
Fast speed (N) 

Indoor walking on a 

straight walkway 
3 min 260 ± 42 313 ± 44 353 ± 37 

Descending 24 steps 1 min 70 ± 11 72 ± 7 66 ± 11 

Outdoor walking 3 min 330 ± 81 378 ± 56 460 ± 69 

Ascending 24 steps 1 min 67 ± 6 65 ± 7 63 ± 7 

Free indoor walking 3 min 267 ± 53 309 ± 38 350 ± 35 

TOTAL 11 mins 986 ± 127 1127 ± 103 1289 ± 115 

 

The number of steps, as estimated by each sensor (Ñ), was recorded at the end 

of each trial and saved for further analysis. An additional analysis was performed in 

order to investigate differences in step count accuracy between the five different 

walking phases of the protocol. This phase analysis was performed on the 

MoveMonitor and the ActivPAL data only, since the outputs of the other PAMs do 

not lend themselves to the extraction of the number of steps in sub-intervals. 

During the second protocol, in addition to the two OPAL sensors, the subjects 

wore the two PAMs (MoveMonitor and ActivPAL) that are able to discriminate 

other activities besides walking. Initially, eleven activities were completed by the 

participants, and their classification into the PAMs categories was expressed as 

percentage of the total duration of each activity. However, since most of the 

investigated activities were difficult to classify accurately into the categories used by 

the PAMs. 

This activity recognition protocol lasted 19 minutes and is described in Table 

3-4. This protocol included motor activities designed to challenge the recognition of 

basic tasks (e.g. introducing upper body movements while sitting or external 

accelerations affecting the entire body). Each activity was completed once and one 



 

50 
 

minute of free indoor walking was performed between them to facilitate their 

classification. The order of the activities was previously randomized. The 

MoveMonitor classifies the activities into five categories (lying, sitting, standing, 

locomotion and shuffling) and the ActivPAL into three categories (sedentary, 

standing and stepping). Using the previously described algorithm, the data from the 

OPAL sensors were used to identify the beginning and end of each activity by 

detecting the walking phases that separated them.  

 

Table 3-4. Summary of the activities performed during the activity recognition 

protocol (adapted from Storm et al., 2015). 

Activity Type – Activity Recognition 

Protocol 
Duration 

Standing 2 min 

Taking the lift 2 min 

Sitting and working at a computer 2 min 

Lying 2 min 

Ascending and descending steps 1 min 

Walking 2 min 

Working in the kitchen 2 min 

Sitting 2 min 

Sweeping 2 min 

Lifting objects from the floor 2 min 

TOTAL 19 mins 

Statistical Analyses 

Data analysis was performed using SPSS Statistics 21.0 (IBM Corporation, 

New York, USA). For the investigation of step detection accuracy in the seven 

PAMs, the mean absolute percentage error
1
 (MPE) for each sensor was computed as: 

100*
N

N-Ñ
MPE  

                                                           
1
 The terminology was chosen consistently with existing literature, although it could also be defined 

as “mean absolute percentage difference”.  
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The Kolmogorov-Smirnov test was used to analyse normality of data. As the 

MPE values of the participants for each sensor were normally distributed, parametric 

tests were used and data were presented as mean and standard deviation (SD). 

Differences in group estimates between sensor outcomes were tested using a mixed-

model ANOVA with a significance level of p=0.05 and post-hoc follow up analysis. 

Bland-Altman plots were used to assess the agreement between the measures and 

evaluate bias between the scores of the PAMs, where the difference (D) and the 

average (A) for each sensor were computed as: 

NÑD   

2

NÑ
M


  

For the activity recognition protocol, the posture classifications given by the 

two PAMs were extracted and expressed as a percentage of the duration as computed 

by the reference signals collected at the shanks. 

3.1.4 Results 

The following results are relative to all walking conditions together, and was 

necessary because five out of seven sensors did not allow a the separate extraction of 

step count by walking phase. The ANOVA showed significant differences in step 

count between the three walking speed conditions (p<0.05, see Table 3-5 for values). 

For all sensors, planned contrasts revealed that the number of steps recorded at the 

self-selected speed was significantly lower than that at slow walking speed (p<0.01) 

and higher than that at fast walking speed (p<0.01). 

There was a significant underestimation of Ñ for the MoveMonitor, One, 

ActivPAL, Nike+ Fuelband and Sensewear Mini Armband, whereas the Tractivity 

significantly overestimated step count. The observed power was 0.99 for the overall 

ANOVA and ranged from 0.83 to 0.99 for the significantly different contrast tests. 

The UP sensor did not show any systematic over- or underestimation. These findings 

were confirmed also when the data were separated by walking speed. Figure 3-3 

summarises mean and SD of the mean percentage error (MPE) at all walking speeds 

for each of the seven PAMs. The best performing device in terms of MPE was the 

MoveMonitor, with MPE<2.0% at every speed, followed by One and ActivPAL, 

with MPE <2.6% and <3.2%, respectively. These three sensors presented also the 
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smallest SD (≤1.7%, ≤2.5% and ≤1.5%, respectively). The total number of steps, and 

MPE values for all the PAMs included in the study, are shown in Table 3-5 and 3-6, 

respectively. 

 

Figure 3-3. Summary of MPE for the 7 PAMs included in the study (Storm et al., 2015). 

The figure shows the mean percentage error (MPE) during slow, self-selected and fast 

walking speed trials for all the sensors included in the study. Error bars are mean ± SD. 

The Bland-Altman plots for the number of steps (Ñ), depicted in Figure 3-4, 

showed an average ± limits of agreement (1.96*SD) underestimation of 15±33, 

15±35,29±20, 16±135, 36±178, 253±331 and 77±127 steps for the MoveMonitor, 

One, ActivPAL, UP, Tractivity,  Nike+ Fuelband and Sensewear Mini Armband, 

respectively. The values of step count over- or underestimation for all the sensors at 

all walking speeds are shown in Table 3-7. The correlation analysis (see regression 

lines on the Bland-Altman plots) highlighted also that for the Nike+ Fuelband and 

the Sensewear Mini Armband the underestimation was affected by the number of 

steps taken: the statistically significant (p<0.05) correlations between D and M were 

r=0.72 and r=0.77, respectively. 



 

53 
 

Table 3-5. Step count for the PAMs and the reference method (Storm et al., 2015). Values are mean ± SD. 

Walking Speed MoveMonitor Up One ActivPAL Tractivity 
Nike+ 

Fuelband 

Sensewear 

Mini Armband  
OPAL 

Slow  968 ± 131 952 ± 197 962 ± 128 955 ± 131 1081 ± 114 644 ± 246 858 ± 197 986 ± 127 

Self-selected 1110 ± 100 1123 ± 107 1119 ± 103 1097 ± 111 1132 ± 108 865 ± 200 1059 ± 111 1127 ± 103 

Fast 1283 ± 117 1280 ± 117 1280 ± 112 1259 ± 120 1299 ± 117 1134 ± 159 1254 ± 119 1289 ± 115 

 

Table 3-6. Mean absolute percentage error (MPE) for the PAMs (Storm et al., 2015). Values are mean ± SD. 

Walking Speed MoveMonitor Up One ActivPAL Tractivity Nike+ Fuelband 
Sensewear Mini 

Armband  

Slow  1.98 ± 1.50 10.08 ± 8.04 2.56 ± 2.53 2.99 ± 1.51 10.92 ± 16.26 35.39 ± 21.17 14.08 ± 11.47 

Self-selected 1.54 ± 1.69 2.51 ± 1.80 1.13 ±0 .65 2.45 ± 1.31 2.07 ± 3.20 23.76 ± 13.75 6.16 ± 2.79 

Fast 0.93 ±0.79 2.10 ± 1.85 1.01 ±0 .59 2.04 ± .88 1.17 ± 1.94 12.22 ± 7.04 2.77 ± 1.34 

 

Table 3-7. Mean over- or underestimation of step count (D) for the PAMs (Storm et al., 2015). Values are mean ± SD. 

Walking Speed MoveMonitor Up One ActivPAL Tractivity Nike+ Fuelband 
Sensewear Mini 

Armband  

Slow  -19 ± 13 -35 ± 110 -25 ± 26 -31 ± 12 95 ± 134 -343 ± 204 -129 ± 86 

Self-selected -17 ± 21 -4 ± 34 -12 ± 10 -29 ± 11 4 ± 40 -262 ± 147 -68 ± 28 

Fast -9 ± 14 -9 ± 34 -9 ± 12 -28 ± 8 10 ± 28 -155 ± 88 -35 ± 17 

Overall -15 ± 17 -16 ± 69 -15 ± 18 -29 ± 10 39 ± 91 -253 ± 169 -77 ± 65 
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Figure 3-4. Bland-Altman plots for step count for the MoveMonitor, ActivPAL and One, 

and for the Up, Tractivity, Nike+ Fuelband and Sensewear Mini Armband (Storm et al., 

2015). The solid lines indicate the mean step count difference between the OPAL sensor and 

each monitor. The dashed lines indicate mean ± limits of agreement (1.96*SD). Regression 

lines, relevant equations and Pearson’s correlation coefficients (r) are shown for the Nike+ 

Fuelband and the Sensewear Mini Armband. 
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The results of the phase analysis performed on MoveMonitor and ActivPAL 

data showed that, for both sensors, the best performance in terms of MPE was 

obtained during the outdoor walking: for the MoveMonitor, MPE values ranged 

between 0.38±0.35% at natural walking speed and 0.54±0.65% at slow walking 

speed; for the ActivPAL, values ranged between 1.0±0.7% at fast walking speed and 

1.4±0.8% at slow walking speed, respectively. The mixed-model ANOVA showed 

that the MoveMonitor sensor was more accurate than the ActivPAL (p<0.05) in 

terms of MPE. The MPE also significantly differed in the five walking phases 

(p<0.001). There was also a significant interaction between speed and phase 

(p<0.01). Planned contrasts revealed that during the first transition phase 

(descending stairs), regardless of the sensor used, accuracy in step detection was 

higher during slow walking than at self-selected speed, while during the second 

transition phase (ascending stairs), MPE was lower at the self-selected speed than at 

slow walking speed, (p<0.05). Equally, accuracy in step detection was higher during 

the first transition phase at self-selected walking speed than at fast speed, while 

during the second transition phase, MPE was lower at the self-selected speed than at 

fast walking speed (p<0.05). 

Finally, Figure 3-5 summarizes the classification of all the activities performed 

by the participants. The accuracy of the ActivPAL monitor in the classification of the 

activities performed during the 19-minutes activity recognition protocol (Table 3-8) 

ranged between 97.1% and 99.6% for standing, taking the lift, siting and working at 

a computer, lying and stair walking. Sitting while working at a computer was mainly 

categorized as sedentary activity (98.7%, excluding one outlier); taking the lift was 

mostly classified as standing (99.6% of the time). Working in the kitchen and 

sweeping were classified mainly as standing, while lifting objects from the floor was 

mainly classified in the stepping category.  The accuracy of the MoveMonitor device 

(Table 3-9) in classifying lying, sitting while working at a computer and stair 

walking ranged between 96.0 and 98.8%. Taking the lift was categorized either as 

standing or shuffling. Standing was categorized correctly only for 10.8% of the time; 

instead, it was mainly classified as sitting (88.4%). Working in the kitchen, sweeping 

and lifting objects from the floor were mainly classified as standing.   
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Table 3-8. Classification of the performed activities for the ActivPAL sensor. Data 

is presented as percentage of the total duration of the activity (mean ± SD) (Storm et 

al., 2015). 

 

ActivPAL Categories 

Activity Sedentary Standing Stepping 

Standing 0.0 ± 0.0 99.6 ± 0.8 0.4 ± 0.8 

Taking the lift 0.0 ± 0.0 97.1 ± 3.2 2.9 ± 3.2 

Sitting and working at a computer 98.7 ± 1.3 0.7 ± 0.6 0.6 ± 1.0 

Lying 98.8 ± 1.6 0.7 ± 0.9 0.5 ± 1.1 

Ascending and descending steps 0.0 ± 0.0 1.4 ± 1.8 98.6 ± 1.8 

Walking 0.4 ± 0.7 2.2 ± 1.5 97.4 ± 1.3 

Working in the kitchen 0.0 ± 0.0 89.8 ± 14.0 10.2 ± 14.0 

Sitting 98.4 ± 1.6 1.0 ± 0.9 0.6 ± 1.1 

Sweeping 0.0 ± 0.0 73.3 ± 25.0 26.7 ± 25.0 

Lifting objects from the floor 17.0 ± 35.4 22.5 ± 13.8 60.5 ± 33.7 

    

Table 3-9. Classification of the performed activities for the MoveMonitor sensor. 

Data is presented as percentage of the total duration of the activity (mean ± SD) 

(Storm et al., 2015). 

 

MoveMonitor Categories 

Activity Standing Sitting Lying Locomotion Shuffling 

Standing 10.8 ± 26.9 88.4 ± 26.6 0.0 ± 0.0 0.7 ± 0.6 0.1 ±0.3 

Taking the lift 80.5 ± 5.8 1.7 ± 6.5 0.0 ± 0.0 3.0 ± 2.0 14.9 ± 3.5 

Sitting and 

working at a 

computer 

0.4 ± 0.5 98.6 ± 1.4 0.0 ± 0.0 0.7 ± 0.8 0.3 ± 0.6 

Lying 0.0 ± 0.0 0.8 ± 1.1 98.8 ± 1.4 0.4 ± 0.6 0.0 ± 0.0 

Ascending and 

descending steps 
0.7 ± 1.0 0.0 ± 0.0 0.0 ± 0.0 99.2 ± 1.3 0.1 ± 0.3 

Walking 3.5 ± 11.0 0.4 ± 0.9 0.0 ± 0.0 95.0 ± 16.4 1.1 ± 4.6 

Working in the 

kitchen 
68.6 ± 21.7 8.2 ± 25.0 0.0 ± 0.0 12.2 ± 12.5 11.1 ± 8.6 

Sitting 0.4 ± 0.7 98.9 ± 1.6 0.0 ± 0.0 0.6 ± 0.9 0.2 ± 0.6 

Sweeping 51.0 ± 23.4 0.6 ± 1.7 0.0 ± 0.0 25.1 ± 25.4 23.2 ± 14.7 

Lifting objects 

from the floor 
47.1 ± 26.1 32.1 ± 30.2 0.0 ± 0.0 6.4 ± 5.7 14.4 ± 13.6 
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3.1.5 Discussion 

It has been recently suggested that in activity monitoring research multiple 

comparison of monitors should be adopted to provide a better understanding of 

advantages or disadvantages of technology on the market (Welk et al., 2012). The 

first aim of this study was to compare step counts of research and consumer-oriented 

physical activity monitors during a short protocol including indoor and outdoor 

walking phases and stair climbing and descending. The second aim was to further 

characterise two of the chosen sensors in their ability to discriminate between simple 

and complex tasks and postures. 

The experimental protocol adopted in this study proved to be suitable to 

investigate the accuracy of PAMs. The chosen 11-minutes duration for the data 

collection allowed the highlighting of differences in the step count throughout the 

three walking speeds. Our experimental design did not include a quantitative 

measure of walking speed, which prevents us from making observations regarding 

the specific relationship between speed and accuracy of the PAMs. This could be of 

interest for applications involving patients or elderly individuals.  

Five out of seven PAMs underestimated the number of steps in all the three 

observed walking speeds (MoveMonitor, One, ActivPAL, Nike+ Fuelband and 

Sensewear Mini Armband). The first three above-mentioned PAMs were also the 

three best performing in terms of MPE. For these three devices, no trend was found 

in the error, whereas for the latter two (Nike+ Fuelband and Sensewear Mini 

Armband), the underestimation was higher at the lower paces. This corroborates 

previous literature findings about the difficulty of step detection at slow walking 

speeds (Furlanetto et al., 2010; Harrison et al., 2013). The reason for the poor 

performance of some PAMs is likely to be due to the fact that the products were 

originally developed for running. Also the UP accelerometer was markedly 

inaccurate at the lowest pace. The Tractivity was the only device that overestimated 

the steps at all walking speeds. The reason for this is not easily identifiable, since not 

enough information is available about the data processing techniques and algorithms, 

a problem also highlighted by Chen and colleagues (Chen et al., 2012). 

The three best performing PAMs included the two devices explicitly designed 

for clinical use (MoveMonitor and ActivPAL). These devices provide also the most 

complex activity reports including the classification of different activities such as 
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lying, walking and standing. The One was the best consumer-based device in terms 

of MPE and might be the best low-cost option for step count monitoring. 

When interpreting data measured from PAMs in real life conditions, careful 

consideration should be paid to the consequences of the bias existing between actual 

and measured steps. Since prolonged physical activity monitoring in clinical trials 

typically lasts up to one week (Motl et al., 2010), small underestimation of the time 

spent in an energy- and movement-demanding activity such as walking may be an 

amplifier for errors. For example, the one-week use of PAMs leading to 

underestimation errors higher than 14%, might translate into errors corresponding to 

ignoring more than one entire day of walking activity out of a seven-days 

observation period. Smaller errors, such as those found for the best performing 

monitors (1-3%), may be clinically irrelevant in the case of research studies 

involving sedentary populations, but might still need to be taken into account when 

investigating physical activity interventions. The phase analysis revealed that the 

best accuracy in step count was obtained during outdoor walking. This result might 

be explained by the fact that during indoor walking the likelihood of miscounting 

steps was higher than outdoor, since the participants had to stop-and-start to turn 

around at the end of the walkway, and the path they followed during free indoor 

walking was generally more tortuous than the one they walked outdoors. 

Nevertheless, the good performance of the sensors is encouraging for applications 

involving prolonged outdoor data collection. 

The ActivPAL and MoveMonitor performances in detecting steps were also 

examined in stair climbing during the two transition phases. Interestingly, for both 

sensors, at slow walking speed MPE was higher when ascending stairs than when 

descending. Conversely, at fast walking speed, MPE was higher when descending 

stairs than when ascending. At self-selected walking speed, the accuracy was not 

affected by whether the participant was ascending or descending stairs. This finding 

is in agreement with a previously reported study using pedometers (Ayabe et al., 

2008) and should be the aim of further investigation to clarify what are the signal 

and software characteristics that might influence such an outcome. 

The activity recognition protocol included all the activities indicated as 

recognisable by the manufacturers of the two tested sensors. Activities such as 

working at a computer or taking the lift were adopted to generate possible significant 

variations in the measured accelerations, so to include features entailing a realistic 
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perturbation to the system. The results of this protocol showed that the position of 

the MoveMonitor on the lower back of the participants leads to a high chance of 

misclassification of the standing posture, often confused with sitting. This problem, 

already highlighted in a previous validity study (de Groot and Nieuwenhuizen, 

2013), is caused by the similar inclination of the accelerometers with respect to the 

gravity line during these two static activities (van Hees et al., 2013). Interestingly, 

despite the MoveMonitor widely misclassified quiet standing, it correctly classified 

taking the lift as standing. Investigating the recognition capabilities of the 

MoveMonitor during short activities (<5s), Dijkstra and colleagues (Dijkstra et al., 

2010) highlighted that short standing periods were well detected. Activity 

recognition methods employed in PAMs often rely on specific features in the signal 

to detect transitions between postures. Rapid and brief deceleration and acceleration 

of the lift may have helped the algorithm employed in the MoveMonitor to correctly 

classify the standing posture during that specific task. Conversely, the location of the 

ActivPAL sensor on the thigh clearly overcomes the problem of static standing 

classification, but doesn’t allow separation of sitting from lying. For both sensors the 

most challenging activity in terms of classification was the one which involved 

lifting objects from the floor. The participants were allowed to choose their preferred 

technique to accomplish this task, and results reflect this, with large variability in the 

classification into each category. Further studies should investigate the classification 

capabilities of these sensors in other groups such as older people or people with 

disability, to investigate how the activity recognition algorithms perform when 

pathologies hinder normal movement patterns.  

PAMs are becoming increasingly available on the market and these devices are 

being used for research purposes in field-based applications and to promote 

population-wide physical activity. Within this framework, the information about the 

absolute error and variability of the output measures provided by this study could be 

used to model errors in PAMs’ data, in order to provide a better estimate of long-

term physical activity, similarly to what was done by Nusser and colleagues, who 

developed a measurement error model to match physical activity recall data based on 

questionnaires with an individual’s usual physical activity (Nusser et al., 2012). In 

addition, end-users aware of the inaccuracy of different PAMs might make better 

informed decision regarding the choice of the device to use for specific applications. 

A similar approach to what has been done in this study, in which the reference step 



 

60 
 

count is performed using protocols including the same tasks but for shorter periods 

than the ones used in this study, could be implemented as a spot check for patient 

specific calibration and reliability assessment of activity monitoring devices, before 

giving them to patients for long-term monitoring. 

3.1.6 Limitations 

The specific proprietary step detection algorithms used in most of the tested 

PAMs is unpublished. As highlighted already in previous reviews on this topic, this 

makes comparison problematic (Kavanagh and Menz, 2008; Rowlands and Stiles, 

2012) and acts as a confounder. Although literature suggests to select monitors 

without proprietary algorithms for use in the field (Freedson et al., 2012), validation 

studies are necessary to compare PAMs outcomes in this category of devices. This 

study is considered as a valuable contribution towards understanding inter-monitor 

differences in step count detection accuracy at different walking speeds. The walking 

speed of the participants was self-selected and not measured. As a consequence, the 

classification into each of the three walking speed ranges (slow, medium, fast) was 

only an indication of the gait speed. However, results showing accuracy differences 

between the categories suggest that an appropriate range of speeds was tested. 

The gold standard used to detect steps was obtained using the method proposed 

by Aminian et al. (2002). This method was developed and tested during straight 

walking, however the protocol used to test the PAMs also included free walking 

(indoor and outdoor). In these conditions, the reliability of the estimates may worsen. 

Further studies are advised to test if the characteristic peak in midswing is retained 

also in more varied walking conditions. The number of extra and missed events 

should also be provided in future studies; however, for most of the investigated PAM 

this information is not easily available due to limitations of the proprietary software. 

Only two sensors allowed the separate analysis of walking phases in the 

protocol. This was due to data aggregation features in most of the PAMs tested. 

Future work could extend the validation of these sensors to investigate their accuracy 

in specific conditions, including stair walking.  
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3.1.7 Conclusions 

The overall step detection error for the seven PAMs included in the study 

ranged between 0.9% (MoveMonitor, fast walking speed) and 36.4% (Nike+ 

Fuelband, slow walking speed). The majority of the sensors underestimated the step 

count and MoveMonitor, ActivPAL and One were the best performing PAMs in step 

count recognition. MoveMonitor was the best performing device overall, but failed 

in the recognition of standing posture, usually misclassified as sitting. ActivPAL 

showed a good accuracy overall, although it is limited in not being able to 

discriminate between sitting and lying. One might be a valid low cost solution for 

monitoring the effect of interventions aiming at increasing the number of steps 

walked per day. Stair ascending and descending significantly affect step recognition 

accuracy, with a speed-dependent effect. 

3.2 Step detection accuracy in patients with multiple 

sclerosis 

3.2.1 Introduction 

Multiple sclerosis (MS) is a chronic autoimmune inflammatory demyelinating 

disease of the central nervous system. According to the Multiple Sclerosis 

International Federation, the estimated number of people with MS has increased 

from 2.1 million in 2008 to 2.3 million in 2013 (Multiple Sclerosis International 

Federation, 2013). The prevalence of morbidity by country is shown in Figure 3-5. 

While the life expectancy for people with MS approaches that of the general 

population, they do suffer from multiple disabilities, including spasticity, weakness, 

tremor, fatigue, cognitive disabilities, bowel problems and difficulties in performing 

daily activities (Schapiro, 2012). Furthermore, patients with MS also suffer from 

mobility problems, with a prevalence around 75%-90% (Hemmett et al., 2004; 

Swingler and Compston, 1992). At 15 years after diagnosis, 40% of MS patients 

require assistance for walking and 25% will be restricted to wheel chair (Myhr et al., 

2001). Among people in early stages of MS, mobility is the most important concern 

(Hobart et al., 2003). Limitation of mobility leads to activity limitation and restricts 
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social participation. It contributes negatively to general health status, quality of life 

and productivity (Zwibel, 2009). 

 

Figure 3-5. Prevalence of Multiple Sclerosis morbidity by country (2013) (adapted from 

The Atlas of MS 2013, Multiple Sclerosis International Federation 2013). 

Physical activity provides considerable benefits for symptom management and 

rehabilitation of functions in individuals with MS (Carter et al., 2014; Garrett and 

Coote, 2009), and behavioural interventions addressing physical activity patterns are 

hence gaining popularity (Motl and Pilutti, 2012). In parallel, as in other 

musculoskeletal patient populations, measures of physical activity are increasingly 

being used as outcomes for assessing the effectiveness of these interventions (Saxton 

et al., 2013), and there is a broad consensus in the research community that wearable 

PAMs are very promising tools in this context. Although the validation of PAMs is 

often based on their ability to estimate energy expenditure, using gold standard 

techniques such as doubly labelled water indirect calorimetry (Rabinovich et al., 

2013) or average oxygen uptake (de Groot and Nieuwenhuizen, 2013), these 

methods are cumbersome and not typically available in a clinical setting. Alternative 

metrics of physical activity have been recently explored in literature. In a cross-

sectional study, 26 patients with MS were asked to wear a PAM for seven days. The 

accelerometer counts correlated significantly with both self-reported and objective 

markers of mobility, such as the Multiple Sclerosis Walking Scale-12 (r=-0.68, 

p=0.001), the Patient Determined Disease Steps scale (r=-0.61, p=0.001), the 6-

minutes walking distance (r=0.52, p=0.003), and oxygen cost of walking (r=-0.54, 

p=0.002) (Motl et al., 2010).  

A few recent studies have also specifically examined the accuracy in step 

detection of PAMs in people with MS. One reported an accuracy of 98.1% for an 

ankle-worn PAM measuring the number of strides along a 15m indoor walkway in 
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20 persons with Parkinson’s disease and MS (Schmidt et al., 2011). A second study 

tested the performance of a wrist-worn PAM on 24 adults with mild MS walking on 

a treadmill at different speeds, obtaining accuracy rates for step count of 99.7%, 

99.8% and 95.9% at 4.8, 4.0 and 3.2 km/h, respectively (Motl et al., 2011). A third 

study directly compared two accelerometers, worn at the waist and at the ankle, in 63 

patients with MS during three six-minute walk tests at different walking speeds, 

reporting highly accurate measurements of steps for both sensors only at fast and 

comfortable walking speeds (Sandroff et al., 2014). These findings clearly indicate 

the presence of a relationship between step count accuracy in PAMs and walking 

speed in patient with MS. Precautions should be taken to minimize errors during data 

collections using PAMs, and a possible approach would be the definition of a 

method to easily and reliably quantify these errors and establish whether a given 

PAM might be accurate enough for a given patient. As a first step in this direction, 

the aim of this study is to provide additional insight into validity and reliability of 

PAMs within a population whose gait characteristics may challenge the step 

detection features of these sensors. The objectives of this study are the following: 

1) To test the reliability of a method for the assessment of patient-specific 

step detection accuracy of a commercially available PAM in a group of 

patients with MS. 

2) To test the accuracy of the PAM under controlled conditions and to 

investigate its relationship with walking speed of the patients. 

3.2.2 Materials and methods 

Recruitment and data collection took place at the Gait Laboratory, Northern 

General Hospital, Sheffield, UK. Inclusion criteria for the participation in the study 

were: diagnosis of MS using McDonald’s criteria (Polman et al., 2011), three months 

since last relapse, and ability to independently walk for 10 meters. A convenience 

sample of twenty participants was originally recruited, of which seventeen (eight 

men and nine women, age: 54.8 ± 11.0 years) completed the study, while one  

withdrew due to the discomfort in long-term wear of the monitor, for one participant 

the reasons for abandoning the study are unknown, and for one participant the PAM 

data was not collected due to technical issues. Written informed consent was 
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obtained from the participants, and ethical approval was obtained from NRES 

Committees - North of Scotland. 

The severity of MS was measured using Expanded Disability Status Scale 

(EDSS) (Kurtzke, 1983). For three participants, the EDSS score was not measured 

due to lack of clinical staff. Physical activity was measured using the DynaPort 

MoveMonitor (Version 2.8.1, Mc Roberts, The Hague, The Netherlands). Although 

no published research in MS has used this particular device, it has been validated in 

clinical practice in patients with chronic obstructive pulmonary disease (Rabinovich 

et al., 2013; Van Remoortel et al., 2012), and its high accuracy in step detection in 

healthy participants was proved previously in this chapter (see par. 3.1). The PAM 

was positioned on the lower back of the participants using an elastic strap as 

suggested by the manufacturer. Two MIMUs (Opal, APDM Inc., Portland, OR, 

USA) were attached to the left and right shank, just above the ankles, by means of an 

elastic strap. The participants were asked to walk four times along a predefined 15m 

straight walkway at their normal, comfortable speed, while two light-gates recorded 

their walking speed. Then, they were asked to freely walk for one minute in a 100 m
2
 

empty room, without following any predefined path. The same protocol was repeated 

after seven days.  

During both the straight walking and the free walking tasks, the number of 

steps recorded by the PAM (NPAM) was collected. An algorithm using the gyroscopic 

signals of the MIMU sensors was created using Matlab (Version R2013a, 

Mathworks, Natick, MA, USA), based on the work of Aminian et al. (2002). This 

algorithm identified the maximum angular velocity around the mediolateral axis of 

the shank corresponding to the swing phases of the leg and was used as reference 

step count (NREF). Since this algorithm has not been previously specifically validated 

for patients with MS, the total number of steps was also counted through visual 

observation of two independent observers (the author of this work and an 

experienced physiotherapist). The two data coincided for all patients. The statistical 

analysis was conducted using SPSS (Version 21; SPSS Inc., Portsmouth, UK). For 

the investigation of step detection accuracy, the mean absolute percentage error 

(MPE) for each patient and each condition (controlled straight and free walking) was 

computed as: 

100*
||

REF

REFPAM

N

NN
MPE


  
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A Shapiro–Wilk test was performed to check for data normality. A Mauchly’s 

Test of Sphericity was also performed. As the assumptions were not violated, 

parametric tests were used and data were presented as mean and SD. A paired t-test 

was performed to detect differences in walking speed between sessions, with a 

significance level of p=0.05. 

The reliability of the MPE between the two sessions was calculated using the 

Intraclass Correlation Coefficient, ICC(3.1) (Rankin and Stokes, 1998). The ICC 

was interpreted as 0.90-1.00 = very high correlation, 0.70-0.89 = high correlation, 

0.50-0.69 = moderate correlation (Munro, 2005). The relationship between walking 

speed and the MPE was also investigated using a correlation analysis. 

3.2.3 Results 

All participants took part in the two sessions. Only twelve patients managed to 

complete the free walking tests. The EDSS score ranged between 5.0 (person able to 

walk without aid or rest for 200m) and 6.5 (person requiring two walking aids to 

walk 20m without resting), with a median value of 6.0. A summary of the number of 

steps recorded by the PAM (NPAM) and the reference MIMUs (NREF), as well as the 

mean absolute percentage error (MPE) are shown in Table 3-10 for each session and 

each walking condition. 

 

Table 3-10. Summary of step count (mean ± SD) measured by the PAM (NPAM), the 

reference MIMUs (NREF), and the resulting mean percentage error (MPE). 

 

 

 

 

 

The t-test performed on the walking speed measured during the controlled 

straight walking condition highlighted that the participants walked faster during the 

second session (mean ± SD of 0.79 ± 0.37 m/s and 0.83 ± 0.37 m/s for sessions 1 and 

2, respectively; p<0.001, Cohen’s d: 0.92). The test-retest reliability values for MPE 

were high for both controlled straight walking (ICC=0.80) and free walking 

(ICC=0.89). The relationship between walking speed and MPE during the controlled 

 SESSION 1 SESSION 2 

Measure 

Controlled 

Walking 

Free 

Walking 

Controlled 

Walking 

Free 

Walking 

NREF [steps] 80 ± 21 79 ± 27 65 ± 37 78 ± 24 

NPAM [steps] 65 ± 37 65 ± 40 58 ± 31 61 ± 42 

MPE [%] 20.1 ± 34.6 28.7 ± 35.3 23.4 ± 31.3 30.9 ± 39.5 
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straight and the free walking phases is shown in Figure 3-6. The power trendline 

used to best fit the data showed a Pearson’s r=0.44 for free walking and r=0.51 for 

controlled straight walking, respectively. 

 

 

Figure 3-6. Relationship between MPE and walking speed during free (A) and controlled 

straight (B) walking. The dashed line is the power trendline used to best fit the data. 

Relevant equations and Pearson’s correlation coefficients (r) are shown on the graph. 

3.2.4 Discussion 

This study aimed at proposing a method for the reliable assessment of patient-

specific step detection accuracy when using a PAM during walking in laboratory 

conditions. The method has been tested in patients with moderate to severe 
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ambulatory impairment due to MS and it has been shown that it was possible to 

reliably quantify a patient-specific error in step count.  

The MPE did not vary significantly between walking conditions and the most 

impaired patients managed to complete only the straight walking task, suggesting 

that this task might be sufficiently informative in future applications. In addition, due 

to patients’ ambulatory restrictions, the majority of the free walking activity data 

were collected for a limited period (1 minute) during both sessions. The high ICC 

values suggested that this factor did not affect the reliability of the error estimate and 

a longer period of walking might even improve this measure. On the other hand, 

cumulative errors from longer trials might not be suitable for correcting short 

walking bouts, which are those most likely to be walked by patients with limited 

mobility. Further studies are needed to verify this assumption. 

The relationship between the walking speed of the participants and the MPE 

was investigated using walking speed-MPE plots for each session and walking 

condition. Despite one outlier, the results indicated high errors in step detection for 

patients walking at 0.5 m/s or slower using the PAM adopted in the study. Stansfield 

and colleagues recently demonstrated that for the ActivPAL sensor in healthy 

individuals a similar reduction in performance below 0.5m/s walking speed exists 

(Stansfield et al., 2015). This may suggest that important changes in walking style 

occur below this speed which prevents algorithms to work. Overall, the power 

trendline fitted well the data collected, showing that a non-linear, inverse 

relationship exists between the two variables during both walking conditions. The 

walking speed recorded by the light-gate during the straight walking condition was 

higher during the second session of data collection. A likely explanation for this is 

familiarisation of the participants to the environment and the setting of the data 

collection. However, the increase in walking speed was only marginal, with an 

average value of 0.04 m/s, not marked enough to influence the accuracy of the PAM, 

as shown by the high ICC values reported for the MPE.  

3.2.5 Limitations 

Due to mobility limitations, participants only completed four straight walking 

trails and one minute of continuous walking. Although the reliability of the step 

detection accuracy was high in both walking conditions, and similar numbers of gait 
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cycles have been reported in the literature to be sufficient for reliable measures of 

gait temporal parameters (Hollman et al., 2011), future studies could test if longer 

walking trials would improve the reliability. 

The method used to detect steps was derived from Aminian et al. (2002). Since 

it has not been tested in patient with multiple sclerosis, the total number of steps was 

also counted through visual observation of two independent observers. 

The analysis of the free and fixed walking used different populations. This 

may have biased the results as those with higher disability may have not completed 

the free walking, meaning that the reliability was representative of the most able 

walkers only. A comparison of outcomes using a consistent group would allow more 

insight into relative performance in the two walking tests. 

The ICC metric used in this study only evaluated “consistency”. Better 

interpretation of reliability could be achieved by evaluating also “absolute 

agreement”, for example calculating the standard error of the mean and the 

coefficient of repeatability (Dahlgren et al., 2010). 

3.2.6 Conclusions 

The method presented in this study was used to assess the reliability of step 

detection accuracy of the MoveMonitor PAM in patients with MS. High ICC values 

were obtained for both straight and free walking sessions. Reported results suggest 

that extreme care should be used when interpreting outcomes of this PAM obtained 

from patients walking at significantly reduced speed, since patients walking at 0.5 

m/s or slower are likely to be associated to high step detection error. In the future, 

the outcome of short controlled tests such as the one here proposed, easy to be 

adopted in both research and clinical settings, may also be used to model errors of 

long-term physical activity monitoring in this and other patient populations. 
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Chapter 4 

 

Analysis of the differences in gait 

parameters obtained from scripted 

and free walking 
 

The interest in objective daily monitoring of physical activity in habitual 

environments is growing for both clinical and research purposes. Among activities of 

daily living, gait is a major marker of disease progression (Del Din et al., 2015), and 

the step-by-step determination of gait parameters is required for the analysis and 

characterization of quasi-periodic motions (Kavanagh and Menz, 2008), both in 

terms of absolute values and of their variability (Hausdorff, 2007).  

To avoid altering a subject’s natural movement, a necessary requirement 

during daily physical activity monitoring is that the smallest number of sensors 

should be positioned in minimally cumbersome locations. Thanks to recent 

technological advances, wearable sensors based on inertial measurement units have 

become an ideal choice to capture continuous gait data, playing a crucial role in the 

transition of gait analysis from traditional assessment carried out in specialised gait 

laboratories to daily life monitoring (Lowe and Ólaighin, 2014). Some researchers 

have also recently questioned the assumption that laboratory gait data obtained in 

controlled steady-state walking conditions reproduces real life behaviour. 

This chapter will present a study divided into 2 parts: the first part investigates 

the accuracy of two algorithms for gait event detection applied to acceleration and 

angular velocity signals, respectively. The second part of the study will focus on 

using the most accurate among these two methods to establish the influence of 

environment (indoor vs outdoor) and type of walking (scripted versus free) on gait 

parameters. Data were collected with inertial sensors during walking of healthy 

individuals in different experimental conditions, including free-living walking. 
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4.1 Accuracy of algorithms for the detection of gait 

events in free-living walking 

A substantial part of the material presented in this section has been included in: 

F. A. Storm, C. Buckley, C. Mazzà, Gait event detection in laboratory and real life 

settings: Accuracy of ankle and waist sensor based methods. Gait and Posture 

50:42-46, doi:10.1016/j.gaitpost.2016.08.012. 

Written permission was obtained from all the co-authors. 

4.1.1 Introduction 

To determine temporal gait parameters, the accurate detection of two gait 

events, initial foot contact (IC) and final foot contact (FC), is required. Generally, the 

closer the sensor is to the impact point, the higher are the chances of correctly 

detecting the GEs (Alvarez et al., 2012). Hence, methods to obtain IC and FC 

timings from two synchronized inertial measurement units (IMUs) on the lower 

limbs have been proposed in both normal and pathologic gait. The shanks are the 

most popular location because they allow firm attachment of the sensor (Catalfamo 

et al., 2010), and the recorded signals are less variable than those from foot-worn 

IMUs (Wu, 1995). The method proposed by Trojaniello and colleagues (Trojaniello 

et al., 2014b, 2013) was applied to young healthy, elderly, hemiparetic, parkinsonian, 

and choreic gait. The results showed that it was extremely robust to variations in gait 

speed and that both missed and extra gait events were avoided. Furthermore, the 

temporal parameters estimates errors were smaller than those reported in previous 

studies. In order to minimize the number of devices used, several authors have also 

proposed the use of a single IMU positioned on the lower trunk. This position is 

close to the centre of mass during walking and contains information about the 

movement of both limbs (Zijlstra and Hof, 2003). The method proposed by 

McCamley and colleagues (McCamley et al., 2012) was originally tested on eighteen 

young healthy individuals and its accuracy was compared with two other methods 

(González et al., 2010; Zijlstra and Hof, 2003). Results showed that the newly 

proposed algorithm identified the timings of initial and final contacts with the 

ground, with the smallest average error. A later study comparing five methods based 

on lower trunk accelerations on fourteen healthy subjects showed that the same 
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method showed the highest robustness for both stride and step duration (Trojaniello 

et al., 2014a). Finally, the same research group tested this algorithm on groups of 

elderly, post-stroke, Parkinson’s disease and Huntington’s disease subjects 

(Trojaniello et al., 2015). The results were comparable between the tested methods in 

all patient populations. However, the selected method was the only capable of 

detecting both initial and final contact events. 

Summary tables have been created listing the existing algorithms for GE 

detection for shank-worn (Table 4-1) and waist-worn (Table 4-2) sensors. The 

validity of these methods has generally been tested in laboratory settings, during 

straight walking, and against references such as instrumented mats (McCamley et al., 

2012), force platforms (Zijlstra and Hof, 2003), and motion capture systems 

(Trojaniello et al., 2014b), often relying on a limited number of consecutive strides. 

Currently it is not known whether the acceleration and angular velocity patterns 

generated during real life behaviour can affect the accuracy of algorithms tested in 

controlled laboratory conditions. Walking strategies may be affected by different 

experimental conditions, and this might reflect into different patterns of the signals 

used to estimate IC and FC event. However, the accuracy of the estimates of both IC 

and FC events in free living gait, i.e. carried out in an urban environment has not 

been yet assessed. 

The aim of this part of the study was to test the performance of two different 

IMU-based methods for gait temporal parameters estimation during gait in free 

living conditions. One method is based on the use of two shank-worn IMUs 

(Trojaniello et al., 2014b), and the other on a single waist-worn IMU (McCamley et 

al., 2012). These algorithms were selected for their previously reported robustness to 

changes in IMU attachments and to an individual’s gait speed, and for their reported 

high accuracy (Trojaniello et al., 2015). The algorithms were applied to gait data 

from ten healthy subjects walking in different daily life environments, both indoor 

and outdoor, and completing protocols that entailed both straight and free walking, 

and their outputs were compared to data obtained from pressure insoles. 
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Table 4-1. Published algorithms for GE detection for two sensors positioned on the shanks (Acc=accelerometer; Gyro=gyroscope). 

Authors Sensor type Sensor position Algorithm type Population Reference system Tested conditions 

Mariani et al. 2013 Acc Feet/Shoes Features of foot 

kinematic patterns 

42 subjects (healthy and patients before 

and after surgical treatments for ankle 

osteoarthritis) 

Pressure insoles  50-m walking trials 

Mannini, Sabatini. 

2012 

Gyro Feet/Shoes hidden Markov 

model 

Six healthy, young subjects Motion analysis  Treadmill walking and jogging 

at five different speeds 

Veltink et al 2003 Acc + Gyro  Feet/Shoes Features of foot 

kinematic patterns 

One male stroke patient Footswitches Straight indoor walking 

Sabatini et al. 2005 Gyro Feet/Shoes Features of foot 

kinematic patterns 

Five healthy adult males Footswitches Treadmill walking at different 

speeds and inclinations 

Catalfamo et al. 

2010 

Gyro Shanks Features of foot 

kinematic patterns 

One unimpaired subject and one subject 

with cerebral palsy (children) 

Pressure insoles Level ground and incline 

overground walking 

Greene et al. 2010 Gyro Shanks Adaptive threshold 

calculation and 

artefact rejection 

Nine healthy adult subjects and one 

poliomyelitis patient 

Optical motion 

analysis 

15-m walkway in a motion 

analysis laboratory 

Trojaniello et al. 

2014 

Acc + Gyro Shanks Features of foot 

kinematic patterns 

Ten hemiparetic subjects, ten subjects 

with a choreic movement disorder, ten 

subjects with Parkinson’s disease and ten 

healthy elderly. 

Instrumented mat 12-m walkway with an 

instrumented mat 

Hanlon, Anderson. 

2009 

Acc Shanks Features of foot 

kinematic patterns 

Twelve healthy subjects Force platform 8-m walking in normal, slow, 

and reduced knee ROM walking 

Salarian et al. 2004 Gyro Shanks Features of foot 

kinematic patterns 

Ten Parkinson’s disease patients with 

subthalamic nucleus deep brain 

stimulation and ten age-matched controls. 

Force platform 20-m walkway 

Shimada et al. 

2005 

Acc Thighs Neural Network 

machine learning. 

Five healthy males and three stroke 

patients. 

Footswitches Laboratory floor 
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Authors Sensor type Sensor position Algorithm type Population Reference system Tested conditions 

Lau, Tong. 2008 Acc + Gyro Shank and thighs Threshold 

detection 

Three non-impaired subjects and ten 

hemiparetic patients with dropped foot 

following stroke. 

Footswitches 10-m long pathway at a self-

determined comfortable speed 

Aminian et al. 

2002 

Gyro Shank and thighs Wavelet transform Nine young and eleven elderly subjects. Footswitches Treadmill and 30-m long 

walkway 

 

Table 4-2. Published algorithms for GE detection for one sensor positioned at the waist. (Acc=accelerometer; Gyro=gyroscope). 

Authors Sensor type Sensor position Algorithm type Population Reference system Tested conditions 

Zijlstra, Hof. 

2003 

Acc S2 Features of waist 

kinematic patterns 

Fifteen healthy subjects. Force platform Treadmill walking and 25-m 

overground walking. 

Gonzalez et al. 

2010 

Acc + Gyro L3 Features of waist 

kinematic patterns 

Eleven healthy subjects. Force platform 25-m in a straight flat corridor. 

Shin, Park. 2011 Acc Waist Zero-crossing method One healthy subject. Not reported 70-m straight walking 

McCamley et al. 

2012 

Acc L5 Wavelet transform Eighteen healthy subjects. Instrumented mat 12-m walkway with 4-m instrumented 

mat. 

Kose et al. 2012 Acc + Gyro Right side waist Kalman filter Nine healthy subjects. Optical motion 

analysis 

4-m straight walking 
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4.1.2 Materials and methods 

Ten healthy volunteers (3 females, 7 males, age 28 ± 3 y.o.) were recruited for 

the study. Ethical approval from the University of Sheffield’s Research Ethics 

Committee was obtained, and the research was conducted according to the 

declaration of Helsinki. All participants provided informed written consent. 

Each participant was asked to wear three IMUs (Opal, APDM; weight 22 g, 

size 48.5 mm x 36.5 mm x 13.5 mm) containing a 3-axis accelerometer, a 3-axis 

gyroscope, and a 3-axis magnetometer. One IMU was positioned on the lower trunk 

on the fifth lumbar vertebra (McCamley et al., 2012), with its sensing axes X, Y and 

Z pointing downward, to the left, and forward, respectively. The other two IMUs 

were positioned at each ankle, just above the malleoli (Trojaniello et al., 2014b), 

with X, Y and Z pointing downward, to the right, and backward, respectively. The 

devices measured accelerations and angular velocities at a sampling frequency of 

128 Hz, and the accelerometer range was set at ±6g. Two pressure-sensing insoles 

(F-Scan 3000E, Tekscan) were used to obtain IC and FC reference timings. The 

insoles were cut to fit tightly into each participant’s shoe. They were calibrated using 

a step calibration technique according to manufacturer instructions. Sampling 

frequency was set at 128Hz and the gait events were obtained using the ground 

reaction force, with a 10 N threshold (Ghoussayni et al., 2004). A vertical jump was 

used as a synchronizing event between the IMUs and the insoles in order to realign 

the two signals coming from both instruments at the beginning of each trial. The 

equivalency of the nominal sampling frequency of the two instruments was verified 

on three separate 20-minute recordings, where at 1 minute intervals a series of 

impacts clearly detected by both instruments were generated, and showed a 

consistent mismatch between signals of one sample each two minutes recording (7.8 

ms). This mismatch was corrected for in the 15-minutes free outdoor walking data by 

realigning the signals each two minutes. This procedure was not needed in the other 

walking conditions, which lasted less than two minutes. 

Figure 4-1 shows typical signals collected at the shank and pelvis, and the 

corresponding IC and FC instants for worst case scenarios of both methods used to 

compute the temporal gait parameters. In the shank-based method (SHANK), the 

peak in the angular velocity signals in the sagittal plane during mid-swing is used to 
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identify windows in the signal where no gait events can occur. When coupled with 

the alternate shank, these intervals allow the identification of search windows for IC 

and FC events. The IC is identified as the instant of minimum angular velocity in the 

sagittal plane between the beginning of the IC search window and the instant of 

maximum anterior-posterior acceleration. The FC is identified as the instant of 

minimum anterior-posterior acceleration in the FC search window (Trojaniello et al., 

2014b). In the present study, the data were additionally segmented in separate 

walking events using an empirically determined threshold of 1 second as maximum 

time delay between consecutive mid-swing peaks. For the waist-based method 

(WAIST), data is collected from a single IMU positioned on the lower trunk at L5 

level. A first Gaussian continuous wavelet transformation is applied to the vertical 

acceleration signal, and the minima are identified as the IC timings. The resulting 

signal is then differentiated and the FC timings are identified as the instants of its 

maxima (McCamley et al., 2012). Only the walking portions of the data, segmented 

into separate walking events as described previously, were processed for the WAIST 

method. This was considered necessary because the WAIST method relies on 

minima and maxima of the transformed acceleration signal to obtain gait event 

timings which may occur also during non-gait portions of the test. 



 

76 
 

 

Figure 4-1. Gait event detection for the tested algorithms. (a) Anterior-posterior 

acceleration signal of the shank (AP acc, solid blue line), with corresponding IC timings 

(SHANK IC, dashed blue vertical line). Wavelet-filtered pelvis acceleration signal in the 

vertical axis (V-CWT acc, solid red line), with corresponding IC timings (WAIST IC, red 

dashed vertical line). Reference IC timings are also shown (REF IC, black dashed vertical 

line). (b) Anterior-posterior acceleration signal of the shank (AP acc, solid blue line), with 

corresponding FC timings (SHANK FC, blue dashed vertical line). Derivative of the 

wavelet-filtered pelvis acceleration signal in the vertical axis (V-CWT-Diff acc, solid red 

line), with corresponding FC timings (WAIST FC, red vertical lines). Reference FC timings 

are also shown (REF FC, black dashed vertical line) (Storm et al., 2016). 

Subjects completed four walking tasks in the conditions detailed in Table 4-3, 

and the IMU and pressure insoles data were collected during each task. A stopwatch 

was used to measure walking time and compute average walking speed during the 

indoor and outdoor straight walking conditions.  

For the outdoor free walking task, participants were instructed to walk freely in 

the city centre without any restrictions regarding route or walking speed, and 
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avoiding stairs. Both the indoor free walking and outdoor free walking conditions 

had the potential of recording the participant’s turns in addition to straight line 

walking, both of which were included in the analysis. On the contrary, data recorded 

during resting or transitory periods, where no continuous walking occurred, were 

excluded from the analysis. These were defined as time intervals where no steps 

were recorded for > 1s, and could also include slow turnings without stepping. For 

the scripted walking conditions, transitory periods at the start and end of each 

repetition were removed. 

 

Table 4-3. Summary of the walking conditions performed during the experimental 

protocol, with acronym, description, and duration or repetition (Storm et al., 2016). 

Condition Acronym Description Duration/Repetitions 

Indoor scripted 

walking 

ISW Walking at preferred speed 

along a 20.0m long walkway. 

Eight repetitions. 

Outdoor 

scripted walking 

OSW Walking at preferred speed 

along a 50.0m long walkway. 

Six repetitions. 

Indoor free 

walking 

IFW Walking along corridors within 

a university building. 

Two minutes. 

Outdoor free 

walking 

(Short) 

OFWS Walking along footpaths open to 

the public in the city centre 

without any restrictions in route 

or walking speed, avoiding 

stairs. 

Two minutes selected 

from a fifteen minute 

walk. 

Outdoor free 

walking 

(Long) 

OFWL Walking along footpaths open to 

the public in the city centre 

without any restrictions in route 

or walking speed, avoiding 

stairs. 

Fifteen minutes. 

 

For each condition and method, the IC and FC timings were obtained from the 

IMUs, and used to compute stride, step and stance durations. Mean values and their 

coefficient of variation (CV) were computed. The coefficient of variation is a 

standardized measure of dispersion and is the ratio of the standard deviation to the 

mean for each temporal parameter. 

For the statistical analysis, the outdoor free walking data was split into two 

datasets. To allow a comparable amount of strides and a fair comparison with the 

other tested walking conditions, the OFWS data included two minutes of arbitrarily 

selected outdoor free walking data. This analysis period was chosen for each 

participant by selecting an interval of two consecutive minutes starting from a 

randomly identified sampled instant of time between the beginning of the trial and 
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the end of the 13th minute of test. Missing and extra gait events were also counted 

and included in the study. For each method, the absolute error for each estimated 

parameter (IC, FC, stride duration (mean and CV), step duration (mean and CV), and 

swing duration (mean and CV)) was determined as follows: 

rppE   

where pr is the reference value of the parameter p. Descriptive statistics for |E| (mean 

and standard deviation values) were determined for each subject, and the resulting 

group averages and standard deviations were finally computed. 

A Shapiro–Wilk test was performed to check for data normality. For each 

method and each parameter a Friedman Test for non-normal distribution was then 

used to compare the |E| values obtained in the different walking conditions, with a 

significance level of 0.05. Post-hoc tests with Bonferroni correction were also 

performed to test if there were significant differences between indoor controlled 

walking (ICW) and the remaining walking conditions. 

4.1.3 Results 

The total number of gait cycles analysed in the ISW, OSW, IFW, OFWS, and 

OFWL conditions were 94 ± 17, 121 ± 11, 188 ± 16, 132 ± 40, and 767 ± 119, 

respectively. The participants completed a median of 120 consecutive strides during 

the OFWL condition, while during the indoor free walking task, the median number 

of consecutive strides was 30. The SHANK method detected 100% of both IC and 

FC events. The WAIST method showed 29 missing IC events in each of both OFWS 

and IFW condition, corresponding to 1.3% of the total number of analysed steps. In 

the OFWL condition, a total number of 124 missing IC events over the 10 

participants were detected, corresponding to 0.7% of the total analysed steps. The 

missing events were evenly distributed across participants, with the exception of one 

outlier, adding up 58 missing IC events. No missing events were found in the OSW 

and ISW conditions. Furthermore, no missing FC events were found for the WAIST 

method in any of the investigated walking conditions. Average recorded walking 

speeds during indoor and outdoor scripted walking were 1.44 ± 0.10 m/s and 1.51 ± 

0.11 m/s, respectively. The descriptive statistics for stride, step and stance duration 

as estimated by the pressure insoles used as reference are shown in Table 4-4.  
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Table 4-4. Mean and SD values of temporal gait parameters for all walking 

conditions (Storm et al., 2016). 

Parameter ISW IFW OSW OFWS OFWL 

Stride Duration (s) 1.05±0.06 1.06±0.06 1.03±0.05 1.05±0.07 1.06±0.08 

Step Duration (s) 0.53±0.03 0.53±0.03 0.52±0.02 0.52±0.03 0.53±0.04 

Stance Duration (s) 0.64±0.05 0.64±0.05 0.63±0.04 0.64±0.05 0.64±0.06 

Stride Duration CV (%) 1.54±0.37 2.88±1.08 2.21±0.30 3.02±0.95 3.99±1.21 

Step Duration CV (%) 2.58±0.91 3.87±1.40 3.21±0.57 4.32±1.09 5.11±1.33 

Stance Duration CV (%) 2.44±0.84 3.58±1.29 2.91±0.44 3.94±1.27 4.99±1.31 

 

Descriptive statistics (mean and SD) for gait events (IC and FC) and temporal 

parameters absolute error (|E|) are listed in Table 4-5. For the SHANK method, the 

Friedman test showed that the absolute errors associated with FC timing, stride 

duration, step duration and stance duration were significantly different between 

conditions (p<0.05). Pairwise comparisons showed that |E| were significantly smaller 

during indoor scripted walking (ISW) than those obtained in the outdoor free 

condition for stride duration (both OFWS and OSWL) and step duration (only 

OSWS). For FC timing and stance duration, errors were significantly larger in the 

indoor scripted condition (ISW) than those obtained in the outdoor scripted condition 

(OSWS). In addition, stance duration absolute error during indoor scripted walking 

(ISW) was also significantly larger than during outdoor free walking (OSWS). There 

were no statistically significant differences in CV absolute errors between walking 

conditions for any of the temporal parameters investigated. 

For the WAIST method, the Friedman test showed that the absolute errors 

associated with stride duration and step duration were significantly different between 

conditions (p<0.05). Both parameters were significantly smaller during indoor 

scripted walking (ISW) than during outdoor free walking (OFWS and OFWL). In 

addition, step duration error in the indoor scripted condition (ISW) was smaller than 

during indoor free walking (IFW). For gait variability measures, the |E| associated 

with stride duration CV was found to be significantly different between the ISW and 

the OFWS condition.  

 



 

80 
 

Table 4-5. Mean (±SD) values of the absolute error |E| for IC timing, FC timing, and temporal parameters (mean and CV) of both methods 

(SHANK and WAIST). *Statistically significant difference between walking conditions (p<0.05) (Storm et al., 2016). 
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4.1.4 Discussion 

This study aimed to evaluate the accuracy of two IMU-based algorithms for 

the detection of gait events during free living gait, which is a necessary step towards 

the implementation of these methods for prolonged physical activity monitoring. 

Two methods were selected, named the SHANK, which was applied to data from 

shank-worn sensors, and the WAIST, which was applied to data form a waist-worn 

IMU. The SHANK method resulted more accurate than the WAIST method for both 

IC and FC timings. This was an expected finding since sensors that are in closer 

proximity to the foot-ground contact point have been already shown to be facilitated 

in gait events detection (Trojaniello et al., 2014b).  

The results for the SHANK method across all the walking conditions provided 

further evidence for the robustness of this algorithm in limiting the risks of extra or 

missed events. In contrast to a previously published validation study in healthy 

subjects (Trojaniello et al., 2015), including only straight walking conditions, the 

WAIST method showed some missed gait events during the free walking conditions. 

This confirms that attention should be paid when interpreting data collected from just 

one sensor on the pelvis to quantify the number of steps walked over a certain period 

of time (Storm et al., 2015), with an error of about 1% to be expected if using the 

method here investigated.  

For the SHANK method, the FC timings were less accurate than the IC timings 

throughout all the tested conditions. This has previously been reported in literature 

for the indoor controlled conditions, and is likely due to the smoother movement 

occurring during FC making the gait event less apparent to detect (Trojaniello et al., 

2014b). For the WAIST method, IC and FC absolute errors were similar: this is 

likely to be due to stricter filtering applied to the signal in this algorithm. 

The accuracy of the SHANK method in estimating IC timings was similar to 

that reported by the authors who proposed it during scripted straight walking 

(Trojaniello et al., 2014b), however FC timings in the present study were relatively 

less accurate in all the walking conditions. Accuracy estimates of the WAIST 

method were poorer than those reported by the original paper (McCamley et al., 

2012) for both IC timings and FC timings, obtained during indoor scripted walking, 

but similar to those reported in a subsequent validation study (Trojaniello et al., 
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2014a). Possible reasons for these inconsistencies include the use of different 

measurement instruments, different reference methods, different path lengths 

between protocols, and population characteristics. Overall, stride and step duration 

absolute errors for both methods were limited to absolute error values between 6 ms 

and 14 ms, while stance duration error increased to up to 44 ms (SHANK) and 32 ms 

(WAIST). These results suggest that stride and step durations were reasonably 

accurate, while stance duration should be interpreted with more caution. For the 

WAIST method, stride duration and step duration absolute error estimates were less 

accurate during outdoor free walking (OFWS and OFWL). Although these 

differences were consistent and resulted to be statistically significant, they generated 

only a small increase in absolute error (6 ms to 11 ms for stride duration, 9 ms to 13 

ms for step duration). This outcome suggests that the accuracy of the algorithm is 

affected by the walking conditions tested. However, it is encouraging to note that the 

increase in gait event timing and relevant temporal parameter errors were only 

moderate and should not prevent the use of this method to collect data during 

prolonged free living gait. Similar to the WAIST method, the stride and step duration 

absolute errors recorded using the SHANK method were higher during outdoor free 

walking (OFWS and OFWL), but generated only a small increase in percentage error 

(6 ms to 9 ms for stride duration, and 9 ms to 14 ms for step duration). Surprisingly, 

the errors generated for FC timings and stance durations were significantly higher 

during indoor than during outdoor straight walking. The delayed detection of FC 

events (as shown in Figure 1) increased in the ISW task as a consequence of a 

delayed appearance of the minimum in the anterior-posterior acceleration identified 

as the instant of FC. If confirmed by further studies, this finding may suggest that the 

environment plays a role in generating different walking patterns and signals, 

influencing the accuracy of the FC detection. 

The absolute errors generated in the computation of CV values for both 

methods were acceptable and similar across walking conditions, with maximum |E| 

of 0.13% and 0.31% in stride duration CV, 0.89% and 0.64% in step duration CV, 

and 0.54 and 0.46% in stance duration CV (values are for SHANK and WAIST 

methods, respectively). In terms of accuracy in estimating variability of the 

investigated temporal parameters, generally the two methods appeared to perform 

similarly. Previous studies have shown that small errors in gait event detection may 

affect variability measures more than mean values (Beijer et al., 2013). The fact that 
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no significant differences in accuracy were found between walking conditions for the 

SHANK method is encouraging and provides evidence for the appropriateness of its 

use in free-living studies. 

The results of this study might represent a normative reference for future 

investigations of real life gait monitoring in healthy adults. However, if aiming at 

different applications, such as those involving patient populations, these results 

cannot be generalised and the accuracy of the algorithms should be specifically 

tested to account for possible additional errors. 

4.1.5 Limitations 

Only the signal portions characterized by consecutive strides, automatically 

detected, were used for the analysis. In order to obtain the walking bouts to analyse, 

the peaks in the angular velocity corresponding to the swing phase of a gait cycle 

were used to detect the first step of a walking bout. All the following steps were then 

included in the analysis as part of the same walking bout until when the time 

distance between subsequent steps was lower than 1s (arbitrary threshold). This 

approach limits the evaluation of extra and missing events only to walking portions 

of the signal. However, the aim of the study was to validate two methods for gait 

events and temporal parameter estimation in free-living walking, disregarding the 

performance of the two methods in classifying activities into walking/no walking 

portions.  

The study was performed in healthy young individuals, which means that 

additional data are required if these methods intend to be used in the future for a 

particular clinical population. However, the main limitation of existing validation 

studies is the lack of accuracy assessment of the tested algorithms in free-living 

settings, and the author believes that the validation of these methods in varied 

conditions is necessary, and will serve as reference for future studies investigating 

specific patient populations in controlled and free-living settings. 

4.1.6 Conclusions 

Overall, both methods tested in the present study showed small differences in 

accuracy of gait event timings and temporal parameter estimation, for both mean and 
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variability measures, between different environments and different walking 

protocols. This is encouraging for the application of these methods to free living gait. 

During outdoor free walking, the SHANK method showed very accurate initial 

contact timing detection, leading to low errors for stride duration and step duration. 

Relative to the IC timing, the final contact timing was less accurate. The WAIST 

method performed worse than the SHANK method in both step detection and in 

initial and final contact detection; however, these errors only marginally affected the 

temporal parameter estimation during outdoor free walking. 

4.2 Influence of environment and walking conditions on 

gait parameters 

4.2.1 Introduction 

In recent years, a much debated question is whether laboratory gait data 

obtained in controlled steady-state walking conditions reproduces real life locomotor 

behaviour, and current gait analysis research is investigating the influence of the 

environment on quantitative outcomes of gait using wearable devices, trying to 

establish to what extent laboratory gait is an ecologically valid representation of real-

life scenarios. However, as highlighted by a recent review (Del Din et al., 2016b), 

there is no fully validated system capable of monitoring physical activities and 

clinical outcomes in free-living environments. 

In studies on healthy participants using wearable sensors, Najafi and 

colleagues observed that the variability of stride velocity and gait cycle time during 

scripted straight walking was higher over longer (>20 m) than shorter (<10 m) 

distances (Najafi et al., 2009), and that the increase in gait speed was due to 

increasing walking distance, and not to the fact that subjects were walking outside of 

a gait lab (Najafi et al., 2011). A study in healthy young females walking on an 

instrumented mat in a gait laboratory also showed that repeated straight walking 

trials generated lower variability in gait parameters with respect to continuous 

overground walking (Paterson et al., 2009). Results of a study investigating 

prolonged (thirty minutes) walking in healthy individuals using the ActivPAL sensor 

showed that participants walked at higher cadence in a park than in an urban 

environment (Sellers et al., 2012). These findings were confirmed by a recent study 
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using a wearable accelerometry-based pendant, showing that variability of step 

duration during activities of daily living performed in a semi-controlled 

environment, validated with video observation, was higher and did not correlate with 

laboratory gait in older people (Brodie et al., 2016). A study looking at the 

performance of a laboratory-calibrated algorithm for the discrimination of physical 

activity classes showed that when the algorithm was applied to data collected in free-

living conditions its performance decreased for several activities, and a recalibration 

using free-living data was required (Bastian et al., 2015).  

Some studies have also been carried out in clinical populations. In stroke 

patients, for example, a study showed that a clinic-based 10-m walk test predicted 

walking speed in the community for patients walking at 0.8 m/s or faster, but was 

likely to overestimate walking velocity in the patients walking slower than 0.8 m/s 

(Taylor et al., 2006). In another randomized comparison study, the influence of 

environment on gait parameters of a group of stroke survivors was assessed using a 

PAM (StepWatch Step Activity Monitor). The participants completed a six-minute 

walk test in each setting (a clinic environment, a suburban street and a shopping 

mall). Results showed that gait speed was slower and step length smaller in the mall, 

faster and larger in the street, and intermediate in the clinic, but the magnitude of the 

differences was small (Donovan et al., 2008). In a study aiming at quantifying the 

true cadence of free-living walking, Granat and colleagues investigated a population 

with intermittent claudication and a healthy matched control group. Their findings 

suggested that cadence variability was higher in an urban environment due to 

external stimuli which forced the participants to alter their preferred cadence (Granat 

et al., 2015). A study using wearable sensors found association between in-clinic and 

in-home gait parameters in healthy participants, but not in a group with Parkinson’s 

Disease (Toosizadeh et al., 2015). Finally, a recent study investigating the impact of 

environment and length of walking bouts on fourteen gait characteristics in patients 

with Parkinson’s disease and matched controls using a single waist-worn sensor 

showed that both groups walked with slower pace and higher variability, rhythm and 

asymmetry compared to laboratory gait (Del Din et al., 2016a). 

These recent findings provide evidence for differences in temporal gait 

parameters between controlled steady-state straight walking conditions that are 

obtained in a laboratory, and real life behaviour. However, limitations of previous 

studies include the use of systems which may alter natural walking patterns, and the 
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investigation of a limited number of consecutive strides (Najafi et al., 2009). 

Moreover, all the above studies focused only on step and stride cadence and did not 

separately investigate the various phases of the gait cycle (stance, swing, and single 

support phases). The aim of this study was to determine if gait temporal parameters 

are influenced by the environment (indoor or outdoor), by the type of walking 

experiment (scripted or free), and by the type of investigated walking bouts (regular 

or irregular walking), using a set of unobtrusive inertial-based wearable sensors in a 

group of healthy volunteers. 

4.2.2 Materials and methods 

A convenience sample of nineteen healthy volunteers (5 females, 14 males, age 

28 ± 3 y.o.) was recruited for the study. Ethical approval was obtained from the 

University of Sheffield’s Research Ethics Committee, and the research was 

conducted according to the declaration of Helsinki. All participants provided 

informed written consent. The experimental protocol was the same described in 

section 4.1.2, and subjects completed the four walking tasks as detailed in Table 4-3. 

On the contrary, data recorded during resting or transitory periods, where no 

continuous walking occurred, were excluded from the analysis. These were defined 

as time intervals were no steps were recorded for > 1s. The SHANK method 

(Trojaniello et al., 2014b) was selected to determine the timings of IC and FC, due to 

its higher level of accuracy in comparison to the WAIST method (see Section 4.1.3) 

in all walking conditions. Then, for each participant and each walking condition, the 

GEs were used to compute a mean and a CV value for stride, step, stance duration 

and single support phase, which were finally pooled together across participants to 

obtain average values for each walking condition. 

Effects of environment and protocol 

The computed gait parameters were tested for normality through the Shapiro-

Wilk test (Shapiro and Wilk, 1965). Successively, the effects of environment 

(indoor, outdoor) and type of walking experiment (scripted, free) on gait temporal 

parameters were investigated using a two-way repeated measures ANOVA design 

(factors: environment and protocol, two levels each). Statistical significance was set 

at p=0.05, and a Bonferroni’s test for multiple comparisons was performed when 

significant differences were found. The statistical analysis was performed using 
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SPSS Statistics 21.0 (IBM Corporation, New York, USA). For each test, the effect 

sizes were calculated to determine the importance of the statistical differences, with 

0.2 defined as a small effect, 0.5 as a medium effect, and 0.8 as a large effect 

(Cohen, 1988). 

Effects of environment and type of walking bout 

As a second step, the free walking datasets were divided into bouts of 

“regular” and “irregular” walking, using an approach which has already been 

proposed for the detection and quantification of turns in instrumented clinical tests 

(Salarian et al., 2010). The yaw angular velocity was collected from the sensor 

positioned at the waist. The signal was numerically integrated to obtain the relative 

waist angle in the horizontal plane, and was then de-drifted applying a linear drift 

correction (Sabatini et al., 2005). The only purpose of this procedure was to highlight 

the transitions in the signal due to rotations of the trunk, without aiming at an 

accurate estimate of the horizontal rotation angle, which would need further post-

processing steps, including adjustment for accelerometer tilt and step-by-step drift 

correction. The resulting signal was then low-pass filtered using a 4th order 

Butterworth filter with a low cutoff frequency (0.38 Hz), to remove the movements 

of the trunk due to walking (Salarian et al., 2007). Using a sliding window, stable 

periods were identified as intervals in which the relative waist angle was within an 

empirically determined range of ±5° of its mean value, and regular walking intervals 

were identified as stable periods lasting at least 40 s. Irregular walking intervals were 

identified as periods lasting at least 40s in which the relative waist angle exceeded 

the ±5° range. The procedure to obtain these intervals is presented in Figure 4-2. 

Then, the effects of environment (indoor, outdoor) and type of walking behaviour 

(regular and irregular) on stride duration, step duration, stance duration, single 

support phase, and the respective coefficients of variation were investigated using 

two-way repeated measures ANOVA (factors: environment and type of walking 

bout, two levels each). Statistical significance was set at p=0.05, and a Bonferroni’s 

test for multiple comparisons was performed when significant differences were 

found, and the effect sizes were calculated. 
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Figure 4-2. Procedure for the detection of regular and irregular walking intervals 

during free walking. A) Angular velocity around the vertical axis (yaw) collected from the 

sensor positioned at the waist. B) Relative waist angle obtained by numerical integration of 

the angular velocity. C) Relative waist angle after linear drift correction. D) De-drifted 

relative waist angle (blue) with superimposed low-pass filtered signal. E) Filtered relative 

waist angle and identified regular walking intervals (black vertical dashed lines and 

brackets). F) Filtered relative waist angle and identified irregular walking intervals (red 

vertical dashed lines and brackets). 

4.2.3 Results 

Effects of environment and protocol 

The results for the mean temporal parameters across all walking conditions are 

summarized in Table 4-6, and the results of the ANOVA test are summarized in 

Table 4-7. No interaction effects between environment and protocol were observed. 

There was a significant main effect of environment for all the investigated mean 

temporal parameters, with lower stride duration (-1.9%), step duration (-1.9%) and 

stance duration (-3.2%) observed during outdoor walking, and larger single support 
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phase (+2.4%) during outdoor walking. None of the observed parameters was 

influenced by the protocol. The results for the variability showed that there was a 

statistically significant interaction between environment and protocol for all the 

investigated parameters. The analysis of the simple main effects showed that the 

CVs of all investigated parameters were statistically significantly lower in controlled 

walking compared to free walking when the participants were walking in the indoor 

environment, with differences ranging from 1.1% (stride duration CV) to 0.3% 

(single support phase), while during outdoor walking only the single support phase 

variability was statistically significantly different between protocols (0.8% higher in 

free walking with respect to controlled). 

 

Table 4-6. Effects of environment and protocol. Mean values and variability for all 

the investigated temporal parameters. 

 MEANS 

 Environment: Indoor Environment: Outdoor 

 Protocol: 

Controlled 

Protocol:  

Free 

Protocol: 

Controlled 

Protocol: 

Free 

Stride duration (s) 1.06 ± 0.05 1.06 ± 0.05 1.03 ± 0.05 1.05 ± 0.07 

Step duration (s) 0.53 ± 0.03 0.53 ± 0.03 0.52 ± 0.02 0.53 ± 0.03 

Stance duration (s) 0.68 ± 0.04 0.69 ± 0.05 0.65 ± 0.04 0.67 ± 0.05 

Single support phase (%) 71.4 ± 2.2 71.3 ± 2.4 73.1 ± 1.8 73.2 ± 2.6 

 VARIABILITY (CV ± SD) 

Stride duration (%) 2.2 ± 0.6 3.3 ± 1.1 2.7 ± 0.7 2.6 ± 0.9 

Step duration (%) 2.7 ± 0.6 3.8 ± 1.3 3.2 ± 0.7 3.5 ± 1.0 

Stance duration (%) 3.1 ± 0.7 4.2 ± 1.1 3.6 ± 0.8 3.7 ± 1.0 

Single support phase (%) 2.2 ± 0.7 2.5 ± 0.8 2.4 ± 0.7 3.16 ± 1.1 

 

Table 4-7. Effects of environment and protocol. Results of the two-way repeated 

measures ANOVA. Statistically significant differences are highlighted in red. 

 MEANS 

 Environment Protocol Interaction 

 P-Value Effect Size P-Value Effect Size P-Value 

Stride duration <0.01 0.42 0.08 0.16 0.54 

Step duration <0.01 0.42 0.07 0.17 0.55 

Stance duration <0.001 0.55 0.10 0.14 0.59 

Single support phase <0.001 0.69 0.91 0.01 0.75 

 VARIABILITY (CV) 

Stride duration 0.60 0.02 0.01 0.23 <0.01 

Step duration 0.75 0.01 <0.01 0.44 0.03 

Stance duration 0.82 0.01 <0.01 0.38 <0.01 

Single support phase 0.01 0.29 <0.001 0.66 <0.01 

 



 

90 
 

Effects of environment and type of walking bout 

The results for the mean temporal parameters across all walking conditions are 

summarized in Table 4-8, and the results of the ANOVA test are summarized in 

Table 4-9. Interaction effects between environment and type of walking bout were 

observed for stride duration, step duration and stance duration. Therefore, simple 

main effects were run. Stride duration and step duration were statistically 

significantly lower during regular walking compared to irregular walking during 

both indoor and outdoor gait, and were also statistically significantly higher in the 

indoor environment compared to outdoor during irregular walking. Stance duration 

was statistically significantly lower during regular walking compared to irregular 

walking during indoor walking, but not outdoor walking, and was statistically 

significantly lower during outdoor walking compared to indoor walking during both 

regular and irregular walking. There was a significant main effect of environment for 

single support phase, which was smaller during indoor walking. 

The results for the variability analysis showed that there was no statistically 

significant interaction between environment and type of walking. A significant main 

effect of type of walking bout was observed for all the investigated temporal 

parameters, with larger coefficients of variation during irregular walking. There was 

also a significant main effect of environment for all parameters except stride 

duration, with larger coefficients of variation during outdoor walking. 

 

Table 4-8. Effects of environment and type of walking bout. Mean values and 

variability for all the investigated temporal parameters. 

 MEANS  

 Environment: Indoor Environment:  Outdoor 

 Type of 

walking: 

Regular 

Type of 

walking: 

Irregular 

Type of 

walking: 

Regular 

Type of 

walking: 

Irregular 

Stride duration (s) 1.06 ± 0.05 1.08 ± 0.05 1.04 ± 0.06 1.05 ± 0.06 

Step duration (s) 0.53 ± 0.03 0.54 ± 0.02 0.52 ± 0.03 0.53 ± 0.03 

Stance duration (s) 0.68 ± 0.05 0.69 ± 0.04 0.66 ± 0.05 0.67 ± 0.05 

Single support phase (%) 71.3 ± 2.6 71.2 ± 2.2 72.9 ± 2.3 73.2 ± 2.4 

 VARIABILITY (CV ± SD)  

Stride duration (s) 1.4 ± 0.4 2.8 ± 1.3 1.8 ± 0.3 2.9 ± 0.6 

Step duration (s) 1.7 ± 0.5 3.4 ± 1.7 2.5 ± 0.5 3.8 ± 1.6 

Stance duration (s) 2.1 ± 0.7 3.8 ± 1.6 2.8 ± 0.7 4.1 ± 0.9 

Single support phase (%) 1.7 ± 0.8 2.3 ± 1.0 2.2 ± 0.9 2.8 ± 0.9 
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Table 4-9. Effects of environment and type of walking bout. Results of the two-way 

repeated measures ANOVA. Statistically significant differences are highlighted in 

red. 

 MEANS 

 Environment Type of walking Interaction 

 P-Value Effect Size P-Value Effect Size P-Value 

Stride duration 0.04 0.21 <0.001 0.68 0.02 

Step duration 0.04 0.21 <0.001 0.69 0.02 

Stance duration <0.01 0.38 <0.001 0.65 0.02 

Single support phase <0.001 0.70 0.43 0.04 0.15 

 VARIABILITY (CV) 

Stride duration 0.16 0.11 <0.001 0.81 0.29 

Step duration 0.02 0.27 <0.001 0.77 0.33 

Stance duration 0.02 0.26 <0.001 0.79 0.41 

Single support phase <0.001 0.67 <0.001 0.76 0.90 

4.2.4 Discussion 

Recent evidence is suggesting that people walk differently in gait labs with 

respect to uncontrolled environments. This research extends our knowledge of the 

influence of environment, protocol and type of walking bout on gait temporal 

parameters of healthy individuals using wearable inertial measurement units, 

performing an innovative investigation by testing a combination of indoor and 

outdoor settings during free and controlled walking, and analysing regular and 

irregular walking bouts.  

The analysis of environment and protocol showed that participants walked 

with shorter stride, step and stance durations during outdoor walking than during 

indoor walking, with medium to small effect sizes. The variations, in the order of 2-

3%, indicated that participants walked slightly faster outdoors. This result is in 

agreement with the findings of Donovan and colleagues, reporting a not significant 

increase of 1.7% in gait speed in a group of stroke survivors when walking in a street 

in comparison to a clinical environment (Donovan et al., 2008). This confirms that 

environment plays a significant role in altering mean gait parameters in both healthy 

participants and people with locomotion difficulties. 

In terms of variability, the analysis showed a significant increase in CV values 

from controlled to free walking in the indoor environment, while these differences 

were not significant when walking outdoor. This interaction between environment 

and protocol highlighted a levelling effect of the outdoor environment for all the 

variability parameters. The complexity of outdoor environments, possible 
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disturbances and external perturbations might all play a role in reducing differences 

between protocols. The walking condition which showed the lowest levels of 

variability in the investigated parameters was the indoor controlled bout. This result 

might support the idea that gait parameters assessed in controlled environments 

reflect motor capacity rather than performance. 

Previous findings highlighted that increases in gait variability during repeated 

straight walking trials may be due to the frequent stoppages in the walking protocol 

(Paterson et al., 2009). On the contrary, in this study, the variability of the temporal 

parameters was lower during the controlled straight compared to the free walking 

protocol. This possible increase in variability might have been mitigated by the 

removal from the data analysis of the transitory walking sections at the start and end 

of the scripted walking bouts. 

Stride duration variability of controlled walking was higher in the outdoor 

environment. A possible factor influencing this outcome is the different straight 

walking distance in the two conditions (20-m indoors, and 50-m outdoors). This 

finding would be in agreement with a previous study reporting a not statistically 

significant reduction of 1% in gait cycle time variability between short (<10 m) and 

long (>20 m) walking distances (Najafi et al., 2009). 

Between 20-50% of steps performed during daily activities are reported to be 

turns (Glaister et al., 2007; Segal et al., 2008). When comparing intervals of regular 

straight walking and irregular walking intervals which included turns, similarly to 

the first analysis, the mean temporal parameters varied between indoor and outdoor 

walking, with medium effect sizes, while only stride and step durations were 

significantly different between regular and irregular walking, with small effect sizes. 

The analysis of the CV values showed no interaction effect, with variability being 

influenced by the type of walking but not by the environment. These results suggest 

that the irregular walking intervals are the walking phases that have the largest 

influence on gait variability, and might be the most informative for real life gait 

monitoring. 

4.2.5 Limitations 

In daily life, about sixty percent of all walking bouts last 30s or less (Orendurff 

et al., 2008). However, in this study the walking bouts during the free walking 
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condition lasted more than 40s. Future protocols might therefore also consider 

validating short walks of a few steps inter-dispersed with postural transfers.  

The algorithm used to classify regular and irregular walking periods depends 

on empirically determined thresholds. Although a similar approach has already been 

proposed for the detection and quantification of turns in instrumented clinical tests 

(Salarian et al., 2010), the method might need additional validation for walking in 

different environments and conditions. 

Due to the small sample size, these results should be confirmed in a larger 

sample of healthy adults. Furthermore, the gait parameters were relatively 

homogeneous and thus might not represent the whole range of healthy population. 

4.2.6 Conclusions 

In conclusion, this study found that participants walked at shorter stride, step, 

and stance durations during outdoor walking compared to indoor walking. Outdoor 

walking had a levelling effect on differences between controlled and free walking, 

particularly in terms of variability of temporal parameters. As values obtained from 

different settings cannot be used interchangeably, a need for normative values in a 

variety of specific environments and conditions is needed. This is a crucial step in 

order to propose free-living gait variables as biomarkers, especially in pathological 

populations, where these differences may be exacerbated.  
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Chapter 5 

 

A pilot study toward clinical 

application 

 

The use of wearable devices for physical activity monitoring is still uncommon 

in clinical applications, and mainly limited to research level, although increasing 

evidence suggests the potential benefits of objectively assessing clinically relevant 

characteristics of movement and locomotion in patients (Maetzler and Rochester, 

2015). Building on the work previously presented in this thesis, this chapter 

describes a pilot study on a group of patients with multiple sclerosis. The accuracy of 

a method for gait event and temporal parameter estimation was tested in controlled 

laboratory conditions, and then used to investigate differences between outcomes of 

walking bouts collected in standard gait analysis conditions and daily life. 

5.1 Introduction 

The consequences which multiple sclerosis (MS) has on mobility and physical 

activity have been described in detail in section 3.2.1 of this thesis. Patients with MS 

suffer from mobility problems with a very high prevalence (Swingler and Compston, 

1992), restricting 25% of patients at 15 years after diagnosis to wheel chair (Myhr et 

al., 2001), and contributing negatively to their quality of life (Zwibel, 2009). 

Physical activity has been shown to be very beneficial for this population, and in the 

last decades, objective methods to quantify physical activity using wearable sensors 

have been developed and used for rehabilitation (Carter et al., 2014; Garrett and 

Coote, 2009), and to assess the effectiveness of behavioural interventions (Saxton et 

al., 2013). 

Previous studies examining free-living walking behaviour of patients with 

multiple sclerosis have investigated the relationship between steps/day and risks of 
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falls (Sebastião et al., 2016), and compared levels of physical activity intensity with 

compliance to public health guidelines (Klaren et al., 2016). However, these studies 

only classified activity based on overall metrics of activity (activity intensity, 

steps/day, or energy expenditure), rather than investigating in detail duration and 

characteristics of activity periods, such as walking bouts. In a recent work, this 

event-based approach to free-living locomotion was tackled in a systematic way 

(Granat et al. 2015) to characterise a population with intermittent claudication and a 

group of matched controls. Cadence, number of steps and duration of individual 

walking bouts were extracted from an accelerometry-based PAM, and the 

relationship of these outcomes with each other was investigated and compared 

between the two groups. In this type of approach, the signals from the sensors were 

pre-processed by proprietary algorithms, and the outputs were used to obtain 

quantitative outcomes to be compared between groups. In general, as the walking 

bouts became longer, the cadence increased, but the inter-bout variability decreased, 

suggesting that participants might walk at their preferred cadence during walking 

bouts which are longer than a set duration. These bouts were defined “purposeful 

walking”, and occurred at a higher cadence than the average. The study also showed 

statistically significant differences between the two groups, characterized with the 

newly proposed outcomes. 

Patients with MS typically present altered gait temporal parameters with 

respect to healthy individuals (Cameron and Wagner, 2011) and a degree of gait 

variability that increases early in the pathology progression (Socie and Sosnoff, 

2013). Recent studies have examined and shown a  relationship between gait 

variability and fall risks, using an electronic walkway (Socie et al., 2013), and by 

instrumenting with accelerometer-based sensors a group of patients performing a 6-

minute walk test (Moon et al., 2015). However, a limitation of the mentioned studies 

is that they were all carried out in controlled laboratory settings. The results of the 

validation study presented in chapter 4 (see par. 4.3) showed that existing methods 

for gait event detection might be used to evaluate differences between temporal 

parameters of walking performed in controlled conditions and unrestricted free 

walking. In healthy individuals, results showed that the environment and the type of 

walking have an influence on variability of gait temporal parameters. Furthermore, 

the work presented in chapter 3 (see par 3.2) showed that commercially available 

wearable sensors for physical activity monitoring should be used with caution in 
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patients with multiple sclerosis due to the strong relationship found between walking 

speed and accuracy of the sensor outcomes. However, short controlled tests 

performed in laboratory conditions may provide a reliable accuracy assessment of 

these devices, before prolonged gait monitoring in unsupervised settings takes place. 

The aim of this pilot study was to compare temporal parameters associated to 

walking bouts performed during a one week of unsupervised physical activity 

monitoring with parameters of bouts obtained in a clinical gait laboratory in a group 

of patients with MS..  

5.2  Materials and methods 

5.2.1 Experimental protocol 

Recruitment and data collection took place at the Gait Laboratory, Northern 

General Hospital, Sheffield, UK. Written informed consent was obtained from the 

participants, and ethical approval was obtained from NRES Committees - North of 

Scotland. The data used for this pilot study was collected during two successive 

visits of the patients to the clinic, and details of recruitment, inclusion criteria and 

patient characteristics have already been reported in detail in chapter 3 (see par. 

3.2.2). The severity of MS was measured using Expanded Disability Status Scale 

(EDSS) (Kurtzke, 1983). The MoveMonitor PAM (Version 2.8.1, Mc Roberts, The 

Hague, The Netherlands) was positioned on the lower back of each participant by 

means of an elastic strap. In addition, during the tests performed in the clinical gait 

lab, two magneto-inertial measurement units (Opal, APDM Inc., Portland, OR, 

USA) were attached to each shank. Data of fourteen participants were included in 

this pilot study. During each visit, the participants completed a straight walking and 

the free walking task. During each visit, the participants walked four times along a 

predefined 15m straight walkway at their normal, comfortable speed, while two 

light-gates recorded their walking speed. Then, they were asked to freely walk for 

one minute in a 100 m
2
 empty room, without following any predefined path. 

Between the two sessions, the PAM was given to the participants for one week 

of continuous recording of their physical activity. They were asked to wear the 

device during the day and, if comfortable, also overnight. A valid day of wear time 

was defined as having ten or more hours of recorded data (Troiano et al., 2008). 
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5.2.2 Data processing 

Analysis of walking bouts performed in the clinics 

Data from the straight and free walking bouts performed in the clinics were 

processed as follows. The data from the PAM were extracted and the number of 

steps extracted as estimated by the proprietary algorithm. Step detection accuracy of 

the PAM was evaluated by calculating the mean percentage error (MPE), using the 

SHANK method as reference for step count (N): 

100*
N

N-Ñ
MPE  

Participants for which the MPE value was above the value of 6% in any of the 

two conditions tested in the clinics (straight or free walking) were regarded as 

unsuitable for prolonged assessment of walking in daily living conditions and were 

excluded from further analysis, although it is important to highlight te fact that the 

SHANK method has been validated only during straight walking in pathological 

populations. 

The total number, and the timings of the initial contact (IC) and final contact 

(FC) gait events were extracted from the raw accelerations and angular velocity 

signals using the WAIST (McCamley et al., 2012) and SHANK (Trojaniello et al., 

2014b) algorithms, previously tested in free walking conditions (see Chapter 4, par. 

4.2).  

Stride duration, step duration, stance phase percentage, single support phase 

percentage, and the respective coefficients of variations (CVs) were computed for 

each gait cycle, and then pooled to obtain mean values for each parameter and each 

walking condition. A paired-samples t-test was performed to test for differences 

between the temporal parameters calculated with the WAIST and the SHANK 

methods. 

Comparison between free-living and gait lab walking bouts 

After the seven consecutive days of physical activity monitoring, data from the 

PAM was downloaded and the walking bouts were extracted using the McRoberts 

proprietary online processing platform (MyMcRoberts, accessible at 

http://www.mcroberts.nl). Triaxial raw accelerometry data were extracted for all 

walking bouts longer than or equal to five steps, together with relevant start time, 
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duration, and number of steps, as calculated by the proprietary algorithm. Data 

corresponding to walking bouts shorter than five steps were discarded to avoid 

misinterpretation of intermittent stepping (Dall et al., 2013; Stansfield et al., 2015). 

For each bout, IC and FC events were extracted using the WAIST algorithm 

(McCamley et al. 2012, par. 4.2.2) and mean, standard deviation and CV values of 

stride, step, stance and single support phase durations were calculated. The walking 

bouts were then classified according to the number of consecutive steps, and mean 

and CV values of each parameter were finally calculated for each of the following 

four identified groups:  

 S5-8 = Bouts where the patient performed between 5 and 8 consecutive steps.  

 S20 = Bouts where the patient performed between 9 and 20 consecutive 

steps. 

 S200 = Bouts where the patient performed between 21 and 200 consecutive 

steps. 

 LW = Bouts where the patient performed more than 200 consecutive steps.  

A repeated measures ANOVA design with a significance level of p=0.05 and 

post-hoc follow up analysis was used to compare the data from the different walking 

bouts. 

5.3 Results 

5.3.1 Analysis of walking bouts performed in the clinics 

The mean absolute percentage error (MPE) associated to the PAM is shown in 

Figure 5-1. Nine participants had a MPE below 6% in both walking conditions, and 

these were the only ones included in further analysis. For this group, the average 

(±SD) MPE values in the straight and free walking conditions were 3.5% (±2.6%) 

and 2.9% (±2.2%), respectively. 
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Figure 5-1. Results of the step detection accuracy for the PAM in the clinical walking 

bouts. Mean percentage errors are shown for each participant. The horizontal dashed purple 

lines indicate the threshold for inclusion/exclusion of the participants in the free-living 

analysis. The black squares in the straight walking chart (A) indicate the walking speed of 

the participants. The orange squares in the free walking chart (B) correspond to the EDSS 

score of each participant. Participants are ordered by increasing EDSS score. 

Descriptive statistics of the temporal parameters calculated on the basis of the 

IC and FC timings obtained from the WAIST and the SHANK method in the two 

walking conditions are shown in Tables 5-1 and 5-2, respectively. No statistically 

significant differences were found between the SHANK and WAIST methods in the 

estimation of stride and step durations. However, a statistically significant difference 

(p<0.05) between methods was found in stance phase and single support phase, with 

8.5%-9.0% longer stance phase, and 13%-18% shorter single support phase 

measured by the SHANK method. No statistically significant differences were found 

between methods in any of the variability measures.  
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Table 5-1. Mean values for all the investigated temporal parameters. Statistically 

significant differences between methods are highlighted in brackets. Values are 

mean ± SD.  

 

 

Table 5-2. Coefficient of variation values for all the investigated temporal 

parameters. Statistically significant differences between methods are highlighted in 

brackets. Values are mean ± SD.  

 
STRAIGHT 

 

FREE 

 Parameter SHANK WAIST SHANK WAIST 

Stride duration (%) 5.2 ± 2.2 7.1 ± 2.5  7.5 ± 1.6 7.5 ± 1.8 

Step duration (%) 13.4 ± 6.3 13.5 ± 6.5 12.8 ± 4.0 10.9 ± 2.6 

Stance phase (%) 8.3 ± 3.8 7.5 ± 6.0 7.2 ± 2.3 6.8 ± 2.8 

Single support phase (%) 4.6 ± 3.1 3.8 ± 2.3 5.2 ± 2.0 4.4 ± 1.7 

5.3.2 Comparison between free-living and gait lab walking bouts 

The descriptive statistics of the temporal parameters characterizing the 

investigated walking bouts, and the statistically significant differences are 

summarized in Figure 5-2. As highlighted in the figure, stride and step durations 

were between 8% and 13% smaller during straight lab walking in comparison to 

daily living walking bouts, while no differences in stance phase or single support 

phase were found between conditions. The variability analysis showed that the stride 

duration CV of straight and free controlled walking were up to 46% smaller in 

comparison to daily living walking bouts. Variability of step duration showed similar 

results, with straight and free controlled walking bouts displaying between 5% and 

55% smaller CV than daily living walking bouts. The stance phase variability of the 

S5-8 walking bout was significantly larger than most of the other walking 

conditions, with differences of up to 56%. 
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Figure 5-2. Descriptive statistics for stride, stance and single support phase for all the 

walking groups investigated in the study. Statistically significant differences (p<0.05) 

between walking bouts are highlighted by black brackets. Corresponding percentage 

differences are shown above each bracket. S5-8= 5 to 8 consecutive steps; S20=9 to 20 

consecutive steps; S200= 21 to 200 consecutive steps; LW=more than 200 consecutive 

steps; STR=straight walking in controlled lab conditions; FREE=free walking in controlled 

lab conditions. 

5.4 Discussion 

Since the identification of the daily living walking bouts relied on the 

classification performed by the PAM, the results of its step detection accuracy were 
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examined. All the participants with an MPE value for the WAIST method above 6% 

during the tests performed in the clinics were excluded from further analysis. This 

applied threshold was more restrictive than the value reported in chapter 4, where a 

MPE value of 20% was highlighted as a possible threshold to identify two groups of 

participants from the MPE-walking speed relationship (see par. 3.2.3). This 

reduction was imposed for improved accuracy. Furthermore, this study was designed 

as a pilot test to demonstrate the potential of the method, and improvements of the 

algorithms should be the objective of further research. After excluding unsuitable 

patients from the analysis, the sample size, initially of fourteen subjects, was reduced 

to nine for the comparison between clinical tests and free-living walking. Therefore, 

further studies on a larger population are needed to confirm the findings of this pilot 

study. 

Since the WAIST method has not yet been validated in patients with MS, for 

additional verification the temporal parameters estimated during the controlled lab 

tests using this method were compared with those obtained from the SHANK 

method. It is worth noting, however, that although the SHANK method has shown 

high accuracy in a number of populations (Trojaniello et al., 2014b), including 

healthy elderly, hemiparetic patients, people with Parkinson’s disease, and subjects 

with a choreic movement disorder, it has not been validated specifically in a 

population with MS walking in a protocol which includes non-straight sections. 

Typical characteristics of gait in MS include decreased distance and speed of 

walking, stride length and limited joints range of motion (Crenshaw et al., 2006; 

Kelleher et al., 2010). These gait impairments may limit clearance of the foot, and 

therefore the ability of this method to identify the windows in the signal necessary to 

determine the gait events, limiting its accuracy. Furthermore, the coefficient of 

variability has been shown to be more sensitive to errors in gait event timing 

estimation (Beijer et al., 2013) in comparison to mean values of the temporal 

parameters. Nonetheless, the comparison between the SHANK and the WAIST 

clearly showed an equivalence between the two methods in determining the metrics 

relying on the correct identification of IC events (stride and step duration), while 

differences were highlighted in the stance and single support phases estimations, 

where a correct identification of the FC events is also needed, suggesting that its 

determination might be critical in MS patients. This suggests that the latter metrics 
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should be considered with caution and further studies are recommended to establish 

the cause of these differences.  

The possible source of inaccuracy in the WAIST method might be due to 

inherent weakness of methods based on wavelet transforms to rely on the periodicity 

of walking (Brajdic and Harle, 2013). In fact, the gait events identified by the 

WAIST method correspond to local minima and maxima of the wavelet-transformed 

signals. When the participants walk at slower paces the periodicity of the signal 

becomes weaker, increasing the probability of double peaks which lead to extra 

event detection. However, for the less compromised patients, the method’s 

performance deviated only marginally from the step detection error obtained from 

the algorithm embedded in the PAM device. 

Free-living walking bouts of different length and frequencies were selected and 

compared with gait performed in laboratory settings. As expected, the most 

frequently occurring walking bouts corresponded to the shortest included in the 

analysis, namely 5 to 8 consecutive steps. This is in agreement with previous studies 

reporting incidental or sporadic stepping as the most frequent during free-living 

activity monitoring (Tudor-Locke et al., 2011a). 

The potential risk of the inaccuracy of the WAIST method acting as a potential 

confounder was excluded when inspecting differences between walking bouts as the 

magnitude of these differences was generally much larger. The participants walked 

with shorter stride and step duration during the controlled straight walking bouts 

performed in the lab. The faster gait pace performed in indoor controlled laboratory 

conditions has already been reported in previous studies (Taylor et al., 2006), and 

similar findings have been reported in chapter 4 (see par. 4.3.3) for healthy 

participants. Interestingly, the free walking bout performed in the clinic appears to 

better mimic the mean temporal parameters obtained during daily living walking. 

The directional changes and longer walking distance may contribute to the 

generation of a walking pattern that better resembles everyday gait.  

The coefficient of variation has been extensively used as a descriptor of gait 

variability (Hausdorff, 2007), and was selected as a metric for this pilot study. 

Unsurprisingly, the variability of the parameters associated to the S5-8 bout, showed 

that sporadic stepping generates higher variability than walking in controlled 

laboratory condition. Interestingly, differences in gait variability were also evident 

and statistically significant for stride duration, step duration and stance phase when 
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comparing straight walking with bouts of similar length (S20) performed in daily 

living. The CV values corresponding to the S200 and LW groups were the most 

similar to those obtained in controlled laboratory conditions. However, although not 

statistically significant, CV values were still higher than in the clinics. These 

findings provide preliminary evidence that controlled clinical conditions are likely to 

represent ‘best-case’ scenarios, where the performance of a patient population is 

likely to represent the ‘best’ achievable performance (Brodie et al., 2016). This 

translates into gait patterns characterized by faster walking and smaller variability 

with respect to usual performances.  

5.5 Conclusions 

This pilot study showed that an algorithm to estimate gait events during 

walking from accelerations of the lower trunk, can be used to estimate temporal 

parameters in a population with multiple sclerosis, and investigate differences in gait 

temporal parameters between walking bouts performed in controlled laboratory 

conditions and locomotion in daily living. The study showed that the performance of 

the participants during the tests in the clinic might be characterised by shorter stride 

and step duration and smaller variability, and do not match with the typical temporal 

parameters obtained in free living during walking bouts of similar length. However, 

they are comparable with the longest walking bouts completed during daily living, 

providing evidence that clinical gait analysis tests are likely to represent the 

performance of a subject during prolonged purposeful walking performed in daily 

living conditions. 
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Chapter 6 

 

Ongoing and future work 

6.1 Analysis of free living walking in patients with Type 

1 and Type 2 Diabetes 

Most of the work presented in this chapter has been carried out in the 

framework of the European project 'Mission-T2D: Multiscale Immune System 

Simulator for the Onset of Type 2 Diabetes Integrating Genetic, Metabolic and 

Nutritional Data', which aimed at developing and validating an integrated, multilevel 

patient-specific model for the simulation and prediction of metabolic and 

inflammatory processes in the onset and progress of type 2 diabetes (T2D), in order 

to identify early diagnostic parameters for T2D. Firstly, a systematic review of the 

literature was completed, looking for evidence of the effectiveness of walking as 

physical activity to reduce inflammation. In this chapter, the attention will be 

focused on those studies that used an objective monitoring of the gait. The second 

part of the chapter presents preliminary data of an ongoing feasibility study, 

proposing an event-based approach to examine cadence and step duration variability 

in free-living walking in a group of patients with type 1 and type 2 diabetes. 

The chapter ends with an overview of future prospects and conclusive remarks 

of this thesis. 

6.1.1 Diabetes 

The American Diabetes Association defines Diabetes mellitus as “a group of 

metabolic diseases characterized by hyperglycaemia resulting from defects in insulin 

secretion, insulin action, or both”. As shown in Figure 6-1, in the first case the 

diabetes mellitus is of type 1 (T1D), in the second case it is type 2 (T2D). The 

prolonged alteration in glucose levels due to diabetes is associated with long-term 

damage, of eyes, kidneys, nerves, heart, and blood vessels (American Diabetes 
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Association, 2004). According to the 2015 diabetes atlas 382 million people in the 

world have diabetes and by 2035 this number will increase by 55% (International 

Diabetes Federation, 2015).  

 

Figure 6-1. Glucose intake mechanism in normal, T1D and T2D situations (Diabetes Atlas 
2015, International Diabetes Federation). 

The metabolic dysfunctions determined by Type 2 Diabetes (T2D) are 

associated with changes in the immune system. The altered plasma levels of specific 

pro-inflammatory proteins leads to a phenomenon known as “systemic low grade 

inflammation”, which is typical for T2D (Duncan et al., 2003; Hotamisligil, 2006; 

Kolb and Mandrup-Poulsen, 2005; Schmidt et al., 1999). Investigating patients with 

T2D, several prospective and cross-sectional studies have described high levels of 

proteins involved in acute-phase inflammation response, sialic acid, cytokines and 

chemokines (Herder et al., 2009, 2005; Pickup, 2004; Spranger et al., 2003). 

Furthermore, elevated levels of interleukin-1β, interleukin-6 and C-reactive protein 

have been found to be predictive of T2D (Pradhan et al., 2001; Spranger et al., 

2003). Serum concentrations of IL-1 receptor antagonist (IL-1RA) are also elevated 

in obesity and prediabetes (Meier et al., 2002), with an accelerated increase in IL-

1RA levels before the onset of T2D (Carstensen et al., 2010; Herder et al., 2009; 

Marculescu et al., 2002). For this reason T2D has been classified as an inflammatory 

disease (Donath and Shoelson, 2011; Pradhan et al., 2001) (Figure 6-2). 
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Figure 6-2. Development of inflammation in type 2 diabetes. Reprinted by permission from 

Macmillan Publishers Ltd: Nature Reviews Immunology (Donath and Shoelson, 2011), 

copyright (2011). 

6.1.2 Diabetes and physical activity 

The role of exercise and physical activity in the prevention and control of 

insulin resistance, pre-diabetes, diabetes related health complications and chronic 

inflammation is widely recognized. A randomized clinical trial in 557 individuals 

with impaired glucose tolerance showed a reduction in risk of developing diabetes 

when subjects were assigned to diet, exercise, or diet-plus-exercise intervention 

groups (Pan et al., 1997). Intensive lifestyle interventions in a group of 522 middle-

aged and overweight adults with impaired glucose tolerance showed higher weight 

reductions and better measures of glycaemia and lipemia after three years in the 

intervention group compared to the control group (Lindström et al., 2003). Further 

evidence suggests that the prescription of as little as 30 min/day of moderate-

intensity activity reduces the risk of contracting T2D, thanks to protective 

mechanisms which are triggered, such as regulation of body weight, and reduction of 

hypertension and insulin resistance (Bassuk and Manson, 2005). These individuals 

have up to 30-50% lower risk of contracting T2D (Skerrett and Manson, 2002). 

Typically, public health initiatives have promoted increases in physical activity, with 

intervention studies in T2D recommending patients to walk at least 10,000 steps/day 

(Tudor-Locke et al., 2011b).  

http://www.nature.com/nri/index.html
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6.1.3 The effects of walking on low-grade inflammation and Type 2 

Diabetes – A systematic review 

A substantial part of the material presented in this section has been published in: 

M. Morettini, F. A. Storm, M. Sacchetti, A. Cappozzo, C. Mazzà, Effects of 

walking on low-grade inflammation and their implications for Type 2 Diabetes. 

Preventive Medicine Reports 2 (2015) 538–547 

Written permission was obtained from all the co-authors. The author of this thesis 

contributed to the selection of the search criteria, the acquisition and analysis of 

suitable papers, the draft and critical revision of the manuscript, and the approval of 

the final version. 

Among types of physical activity, walking has been shown to be suitable in 

preventing many risk factors for T2D, improving body mass index, diastolic and 

systolic blood pressure, and high-density or low-density lipoprotein cholesterol 

levels (Murtagh et al., 2015; Qiu et al., 2014). However, although there is extensive 

evidence of the positive influence of exercise on markers of low-grade inflammation 

associated with T2D, there has been little attempt to establish the effects that walking 

can have on inflammation. For this reason, within the framework of the European 

project 'Mission-T2D', a systematic review was performed on PubMed, Scopus and 

ISI Web of Science, with the aim of reviewing current evidence on the effect that 

walking can have on inflammation, and to systematize the existing knowledge on the 

effectiveness of walking in the reduction of the inflammatory status associated to 

T2D. A combination of the following keywords was used: inflammation mediators, 

cytokines, motor activities, locomotor activity, physical activity, walking, and 

ambulatory activity. Randomized clinical trials, experimental and cross-sectional 

studies up to December 2014 were included in the search, and the primary markers 

included in the study were C-reactive protein (CRP), Interleukin 6 (IL-6) and tumour 

necrosis factor alpha (TNF-α), due to their relevance in the inflammatory process 

(Pickup, 2004; Shoelson et al., 2006). Thirty-two studies were found matching the 

inclusion criteria, five looking at acute effects of walking, and twenty-seven focusing 

on chronic effects, of which twenty-one were interventional studies and six 

observational studies. 

Acute effects. Only one study on acute effects showed statistically significant 

variations in at least one marker of inflammation. A significant increase of IL-6 was 
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observed after 1 h of an intervention consisting in 30-minute of treadmill walking at 

60-65% VO2 max in a group of fifteen non-obese women (Nieman et al., 2005). The 

remaining four studies did not show any statistically significant changes in the levels 

of the investigated markers (Davis et al., 2008; Markovitch et al., 2008; Murtagh and 

Boreham, 2005; Nelson and Horowitz, 2014). 

Chronic effects. Eighteen of the twenty-seven papers investigating chronic 

effects were carried out in free-living conditions. To quantify physical activity, four 

used self-reporting assessment tools, five used a pedometer, two used an 

accelerometer and one a heart rate monitor, while the remaining used a combination 

of self-reporting and objective measurement techniques. Table 5-1 shows only those 

studies where quantitative monitoring has been used.  

Only eight interventional studies produced statistically significant variations in 

at least one of the investigated inflammatory markers. Sixty minutes of treadmill 

walking or jogging at 60% VO2 max induced an IL-6 concentration decrease of 52%, 

32% and 17% in groups of T2D, lean and obese participants, respectively (Dekker et 

al., 2007). A second study also showed a significant IL-6 decrease of 33% after an 

eight-week exercise programme consisting in walking 10,000 steps/day for at least 3 

days a week (Yakeu et al., 2010). A statistically significant decrease in CRP levels 

was found in a 24-week walking intervention in a group of 176 patients with 

metabolic syndrome (Di Raimondo et al., 2013). Other two studies showed 

significant improvements in CRP values, one in a group of 33 women assigned to a 

14-weeks programme combining diet and exercise (Giannopoulou et al., 2016), and 

the second in a 12-week treadmill intervention in 20 elderly women (Taghian et al., 

2012). Three studies showed an improvement in TNF-α level after the intervention. 

Ho and colleagues showed that after a 12-week moderate intensity treadmill walking 

programme the levels of TNF-α decreased significantly in overweight and obese 

individuals (Ho et al., 2012). The level also decreased in 32 post-menopausal women 

performing 13 weeks of walking training at moderate intensity (Izzicupo et al., 

2013), and in a randomized controlled trial on 41 sedentary individuals after 16 

weeks of internet delivered physical activity (Smith et al., 2009). 

All the six observational studies showed some correlation between physical 

activity and markers of inflammation: participants reporting at least 30 min of 

walking 5 days a week had lower concentrations of CRP, IL-6 and TNF-α than the 

group reporting lower walking activity (Yates et al., 2008). Multiple linear 
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regressions also showed that time spent walking was inversely related to TNF-α 

levels (Hamer and Steptoe, 2008). When classifying a group of 327 individuals with 

T2D in four groups based on steps/day, a study showed a significant inverse 

relationship between steps/day and CRP and IL-6 levels (Jennersjö et al., 2012). In a 

study measuring physical activity by means of an accelerometer in 1838 middle-aged 

individuals, step count was inversely associated with TNF-α (Nishida et al., 2014). A 

further cross-sectional study showed that 30 active T2D patients had significantly 

lower CRP levels than 53 inactive patients (Neuparth et al., 2014). A cohort study 

also found that adding 10 minutes of walking per day to habitual physical activity 

can trigger a significant reduction of CRP levels (Klenk et al., 2013). 

Overall, these results showed that a decrease in body weight was often 

associated with a reduction in THF-α, and that the most effective studies where those 

in which the walking activity was performed at a moderate-intensity level, and where 

physical activity was supervised or quantified objectively by means of sensors. 

However, due to the limited amount of studies showing statistically significant 

changes in inflammation status, although the potential benefits of walking to reduce 

chronic inflammation cannot be excluded, no definitive conclusion regarding its 

efficacy can be drawn. Future studies should focus on a quantitative objective 

monitoring of physical activity to answer this question.  

 



 

111 
 

Table 6-1. Chronic effect studies using quantitative physical activity monitoring: study design, type (interventional or observational), methods, 

data analysis details and outcomes (adapted from Morettini et al. 2015). 

Author/year Study design Type Method Data analysis Outcome related to inflammation 

Di Raimondo et 

al. (2013) 

176 patients affected by metabolic 

syndrome (95 M and 81 F, mean age 59 ± 7 

years; BMI 32 ± 5 kg/m
2
) completed a 24-

week walking intervention (1 hour/day, 5 

days/week) at a walking velocity higher 

than the comfortable one. 

Interventional Pedometers Blood concentration of 

CRP before and after 

the intervention  

↓ BMI 

↓ Waist circumference. 

↓ CRP 

Dixon et al. 

(2013) 

9 active lean (age 52 ± 1 years; BMI 24 ± 1 

kg/m
2
;
 
waist circumference <84cm) and 9 

active central overweight men (age 49 ± 1 

years; BMI 29 ± 1; waist circumference 

>94cm) reduced their walking activity to 

less than 4000 steps/day for one week. 

Interventional Pedometers Blood concentration of 

TNF-α, IL-6 and CRP 

before and after the 

intervention 

↔ TNF-α 

↔ IL-6 

↔ CRP 

Gano et al. (2011) 11 middle-aged/older adults (5 M and 6 F, 

age 57–70 years; BMI 26 ± 1 kg/m
2
) 

completed a 2-months brisk walking 

intervention (6 days/week, 50 minutes/day) 

at 70% HRmax.  

Interventional Diaries + HR 

monitors 

Blood concentrations 

of TNF-α, IL-6 and 

CRP before and after 

the intervention 

↔ TNF-α 

↔ IL-6 

↔ CRP 

↓ BMI 

↓ total body fat 

Gray et al. (2009) Randomized controlled trial. Control group 

(6 M, 18 F; age 51 ± 8 years; BMI 29 ± 6 

kg/m
2
), intervention group (5 M, 19 F; age 

48 ± 9 years; BMI 28 ± 5 kg/m
2
). 12 weeks 

pedometer-based walking program. 

Intervention is designed to increase mean 

daily step count by 3,000 steps/day on at 

least 5 days of the week program 

Interventional Pedometers Blood concentrations at 

baseline and after 12 

weeks of TNF-α, CRP, 

IL-6 

↔ TNF-α, CRP, IL-6 

↔ BMI, body fat percentage 
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Author/year Study design Type Method Data analysis Outcome related to inflammation 

Hamer et al. 

(2008) 

Cross sectional analysis including 185 

healthy participants (107 M, 78 F) aged 45 

- 59 years 

Observational Questionnaires 

and weekly 

minutes of 

walking 

Blood concentrations 

of TNF-α and IL-6 

↓ Time spent walking inversely 

related to TNF-α. 

↘ Trend observed for IL-6 to 

decrease. 

Izzicupo et al. 

(2013) 

Non randomized trial. 32 post-menopausal 

women (age 56.4 ± 4.3 years; BMI 26.9 ± 

4.3 kg/m
2
) performed 13 weeks of walking 

training  at moderate intensity (40-50 min, 

4 days/week) 

Interventional Activity monitors 

+ diaries 

Plasma concentrations 

of TNF-α and CRP 

↓ TNF-α  

↔ CRP 

↔BMI, waist circumference and 

fat mass percentage. 

Jennersjo et al. 

(2012) 

Observational cross-sectional analysis 

including 327 individuals with T2D (224 

M, 103 F; age 54 - 66 years). Individuals 

wore the pedometer for 3 days. 

Classification of physical activity in 4 

groups 

Observational Pedometers and 

diaries 

Blood concentrations 

of CRP and IL-6 

Steps/day significantly associated 

with lower levels of CRP and IL-6. 

When adjusted for waist 

circumference, the association 

between steps and IL-6 remains 

statistically significant but the 

association between steps and 

CRP does not. 

Klenk et al. 

(2013) 

Population-based cohort study. 

Community-dwelling individuals aged over 

65 underwent a baseline assessment. 710 M 

and 543 F (mean age 76 ± 7 years) 

Observational Accelerometer (1 

week) to 

determine average 

duration of daily 

walking 

Blood concentration of 

CRP at baseline 

↔ For CRP quartiles 1 and 2, no 

significant difference was present 

followed by a dose response 

association 
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Author/year Study design Type Method Data analysis Outcome related to inflammation 

Krause et al. 

(2014) 

Randomized controlled trial. Twenty-five 

sedentary, obese (BMI > 30 kg/m
2
) males 

(52.8 ± 7.2 years); 12 controls versus 13 

T2D subjects were randomly allocated to 

four groups that exercised for 16 weeks. 

Exercise consisted in 30 min/day, three 

times per week either at low (30 – 40 % 

𝑉̇𝑂2max) or moderate (55 – 65 % 𝑉̇𝑂2max) 

intensity. 

Interventional HR monitors Blood concentrations 

of CRP, TNF-α and IL-

6 at baseline and after 

16 weeks of 

intervention 

↔ CRP, TNF-α, IL-6 

Krogh-Madsen et 

al. (2010) 

Clinical trial. Ten healthy human males 

(mean age 24 ± 2 years; BMI 22 ± 1 

kg/m
2
). None of the participants walked 

less than 3,500 steps/day. Decrease the 

number of daily steps to 1,500 for 14 days 

Interventional Pedometer Blood concentrations 

of TNF-α and IL-6 at 

baseline and after 2 

weeks 

↔ TNF-α, IL-6  

↓ Total body mass reduced. 

McNeilly et al. 

(2012) 

Eleven participants (6 M and 5 F; age 49 ± 

9 years; BMI 32 ± 7 kg/m
2
) with impaired 

glucose tolerance, completed a 12-week 

brisk walking intervention (30 minutes/day, 

five days/week at 65% of HRmax) 

Interventional HR monitors + 

diaries 

Blood concentration of 

CRP 

↔ CRP 

↔ Dietary intake. 

↓ BMI and total body fat. 

Nishida et al. 

(2014) 

Cross-sectional study. 737 middle-aged 

male subjects (age 57 ±8 years; BMI 24 ± 3 

kg/m
2
) and 1838 middle-aged female 

subjects (age 56 ±8 years; BMI 23 ± 3 

kg/m
2
) were monitored for 10 days to 

determine their physical activity level. 

Observational Accelerometers Blood concentrations 

of TNF-α and IL-6 

↓ Number of steps was inversely 

associated with TNF-α even after 

adjusting for BMI. ↔ IL-6 

Puglisi et al. 

(2008) 

Randomized controlled trial. 12 out of 34 

subjects (6 M and 6 F; age 55 ± 4 years, 

BMI 28 ± 4 kg/m
2
) assigned to a walk 

group for 6 week.  

Interventional Pedometers Blood concentration of 

TNF-α. 

↑ Daily steps for 6 week from 

6,000 to 11,000 steps/day. 

↔ TNF-α. 

↔ Body mass and waist 

circumference.  
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Author/year Study design Type Method Data analysis Outcome related to inflammation 

Smith et al. 

(2008) 

Randomized controlled trial involving 41 

sedentary adults (8 M, 33 F). 2 groups: 1) 

16 weeks of internet delivered physical 

activity intervention (age 40 ± 2 years; BMI 

31 ± 1 kg/m
2
); 2) usual care (age 47 ± 1 

years; BMI 31 ± 1 kg/m
2
).  

Interventional Pedometer and 

questionnaires 

Blood concentration of 

TNF-α and CRP 

↑ Increased mean number of 

steps/day by 1,404 in intervention 

group. 

↔ CRP. 

↓ TNF-α in the intervention group 

after adjustment for baseline group 

differences. 

↓ waist circumference in the 

intervention group after 

controlling for age and baseline 

differences. 

Yates et al. (2010) Randomized controlled trial including 74 

participants (age 65 ± 8 years) with 

impaired glucose tolerance and BMI over 

25.  

3 groups: 1) pedometer; 2) without 

pedometer; 3) usual care. 12 months 

Interventional Pedometer and 

questionnaire 

Blood concentrations 

of IL-6 and CRP at 

baseline and after 12 

months 

↔ IL-6 and CRP  

Ambulatory activity was 

significantly and inversely 

associated with IL-6 after 

adjustment for potential 

confounders (age, ethnicity, sex, 

group, medication status, 

baseline and change in BMI).  

Abbreviations: M: male; F: female; T2D: Type 2 Diabetes; CRP: C-Reactive Protein; TNF-α: Tumour Necrosis Factor α; IL-6: Interleukin 6; 𝑉̇𝑂2max: Maximal Oxygen 

Uptake; BMI: Body Mass Index. 

Symbols: ↑ Significant increase; ↗ Trend to increase (not significant); ↔ No variation; ↘ Trend to decrease (not significant); ↓ Significant decrease. 
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6.1.4  Objective monitoring of free-living walking in Type 1 and 

Type 2 Diabetes: preliminary data from an ongoing feasibility 

study 

Introduction 

The recent development of wearable technology, the publication of guidelines 

for field-based research using accelerometers (Trost et al., 2005), and the 

development of common strategies to treat this type of data (Wijndaele et al., 2015) 

have generated an increase of studies designed to objectively quantify physical 

activity in patients with type 2 diabetes (T2D), mostly to discriminate between levels 

of physical activity. Public health recommendations usually suggest participation in 

moderate-intensity physical activity to reduce risks in developing T2D (Haskell et 

al., 2007; Pate et al., 1995). However, emerging evidence suggests that behaviours 

such as prolonged inactivity and absence of whole body movement are correlated to 

risk of chronic diseases (Hamilton et al., 2007). For example, a cross-sectional study 

in 168 participants with T2D used an accelerometer to measure sedentary time, 

providing evidence of the importance of breaks in prolonged sedentary time in order 

to decrease metabolic risk (Healy et al., 2008). A subsequent study investigating 

levels of physical activity in 878 participants at risk of contracting T2D showed that 

outcomes such as breaks in sedentary time, total physical activity and moderate to 

vigorous physical activity were directly associated with decrease in body mass index 

(Henson et al., 2013). Furthermore, Manohar and colleagues used the correlation of 

acceleration signals with prolonged glucose monitoring to explore the feasibility of 

including PAMs data as input for an artificial endocrine pancreas for T1D treatment 

(Manohar et al., 2013). 

In recent years, physical activity monitoring is experiencing a shift from 

classification based on overall metrics of activity (counts, movement indexes, or 

energy expenditure), to devices capable of robust posture classification, addressing 

the need of determining with accuracy sedentary behaviour and durations of activity 

periods (Granat, 2012). In a recent work, this event-based approach to free-living 

walking events was proposed in a systematic way (Granat et al., 2015). The study 

characterised a population with intermittent claudication and a group of matched 

controls (n=30). Cadence, number of steps and duration of individual walking events 
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were extracted from an accelerometry-based PAM, and the relationship of these 

outcomes with each other was investigated and compared between the two groups. In 

general, as the walking events became longer, the cadence increased, but the inter-

event variability decreased, suggesting that participants might walk at their preferred 

cadence during walking events which are longer than a set duration. These events 

were defined “purposeful walking”, and occurred at a higher cadence than the 

average. The study also showed statistically significant differences between the two 

groups, characterized with the newly proposed outcomes. In this type of approach, 

the signals from the sensors were pre-processed by proprietary algorithms, and the 

outputs were used to obtain quantitative outcomes to be compared between groups. 

No assessment was performed on the robustness of these outputs, which needs to be 

validated separately. 

The data analysed in this section originates from the study STH18049 

“Validation and Feasibility Study of Physical Activity Monitors in Diabetes”, 

sponsored by the Sheffield Teaching Hospitals NHS Foundation Trust. The aim of 

this study is to examine the utility and feasibility of PAM to assist and facilitate 

patients in daily living and healthcare professionals in routine diabetes care. Specific 

aims of this study are: 1) to determine the precision and accuracy of activity 

monitors in patients with diabetes. This will be performed in two distinct settings: 

initial laboratory validation (physical performance tests and six-minute walking test 

under strict experimental conditions) followed by field observational studies (where 

laboratory findings will be tested in the real-world); 2) to establish the mutual 

relationships existing between PA and insulin sensitivity, endothelial function and 

inflammation. 

Preliminary data on a subset of patients was used in the present work with the 

aim of testing if a refined event-based approach allows describing patterns of daily 

living walking activity. The relationship between cadence, variability of step 

duration, and duration of daily living walking bouts was investigated in a small 

group of T1D and T2D participants. 

Methods 

Experimental procedure. Preliminary data on a subset of nine patients (five 

patients with T1D and four patients with T2D) was analysed. Patients were recruited 

from the diabetes outpatient clinic at the Royal Hallamshire Hospital, Sheffield, UK. 
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Ethical approval was obtained from the Research Department of the Sheffield 

Teaching Hospital NHS Foundation Trust. Exclusion criteria were: chronic illness 

other than diabetes, unstable angina, recent myocardial infarction (within 3 months), 

severe ischaemic heart disease (unstable angina or exertion angina), chronic painful 

condition or physical disability restricting physical activity or mobility, uncontrolled 

diabetes with glycated haemoglobin (HbA1c>11%), alcohol consumption (>3 

units/day for men and >2 units/day for women), current smokers, patients with T2D 

on insulin therapy. 

Data collection took place at the Diabetes Research Facility, Royal 

Hallamshire Hospital, Sheffield, UK. The participants were asked to wear a waist-

worn PAM (DynaPort MoveMonitor, Version 2.8.1, Mc Roberts, The Hague, The 

Netherlands), and two ankle-worn MIMUs (Opal, APDM Inc., Portland, OR, USA), 

attached to the left and right shank, just above the ankles, by means of an elastic 

strap. The participants completed a 6-minutes walking test (6MWT). In the 6MWT 

the patient is asked to walk as far as possible in six minutes on a hard, flat surface. 

The patient is allowed to self-pace and rest as needed while traversing back and forth 

along a marked walkway. At the end of the visit, patients were provided with the 

PAM, and instructed on how to use it. They were asked to wear the instrument every 

day for seven consecutive days but not to wear it whilst bathing or swimming. 

Patients were instructed not to alter their normal weekly routine. 

Data analysis. Data from the 6MWT was processed as follows. The timings of 

the initial contact (IC) gait events were extracted from the raw accelerations and 

angular velocity signals using the WAIST (McCamley et al., 2012) and the SHANK 

algorithms (Trojaniello et al., 2014b) previously tested in healthy individuals (see 

Chapter 4) and in patients with multiple sclerosis (see Chapter 5). Similarly to the 

procedure outlined in par. 5.2.2.1, the accuracy of the WAIST method and the PAM 

in the detection of steps was assessed in controlled conditions by calculating the 

mean percentage error (MPE) using the SHANK data as reference. Using the IC 

timings, cadence and step duration variability, measured using the coefficient of 

variation (CV), were finally computed for each participant and each method. The 

number of steps detected by the PAM during each 6MWT was also obtained. 

Walking speed of the participants was calculated by dividing the distance walked by 

the time (6 minutes). 
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After the seven days of consecutive physical activity monitoring, data from the 

PAM was downloaded and the walking bouts were extracted using the same 

procedure used for the data presented in Chapter 5 (see par. 5.2.2). Briefly, all 

walking bouts were extracted together with start time, duration, and number of steps. 

In addition, the triaxial raw accelerometry data corresponding to each walking event 

lasting 10 seconds or more was extracted. The threshold was chosen to reduce the 

possible inaccuracies of PAM data corresponding to very short walking bouts (Dall 

et al., 2013; Stansfield et al., 2015). The timings of the initial contact events 

occurring during each walking bout were extracted using the WAIST algorithm. 

From the IC timings, each individual step duration was estimated and pooled within 

each walking event to obtain mean cadence and step duration coefficient of variation 

(CV). 

The distribution of mean cadence by walking bout was calculated. Each bout 

was also allocated to cadence and step variability bands according to the 

corresponding mean cadence and CV value. This allows to examine the distribution 

of walking bout durations at each cadence and variability band (Granat et al., 2015). 

The accumulation of walking by increasing cadence and step duration 

variability was also examined. For each participant, all walking bouts were ordered 

by cadence, from lowest to highest, and the cumulative sum of the steps taken was 

calculated. The plot of steps taken was then standardised to 100% of all steps taken, 

to allow comparison between participants. The same procedure was applied to 

produce accumulation curves of walking by step duration variability. 

Preliminary results 

The group did not have any major reported mobility limitations. Detailed 

group characteristics, mean cadence and step duration variability values obtained 

from the 6MWT performed during the visit are shown in Table 6-2. The MPE values 

(mean ± sd) for the WAIST algorithm and the PAM for step detection in the 6MWT 

across the cohort were 3.5% ± 2.2% and 1.0% ± 0.8%. Complete six days recordings 

were obtained from all participants. 
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Table 6-2. Patient groups characteristics and 6-Minutes Walking Test outcomes. 

Group characteristics Parameter Value 

  Age (years) 48.4 ± 13.5 

 
Height (m) 176.8 ± 7.9 

 
Weight (kg) 90.8 ± 17.0 

  BMI (kg/m
2
) 29.1 ± 5.4 

6-Minutes Walking Test Parameter Value 

  Cadence (steps/min) 119.3 ± 10.4 

 
Step time CV (%) 2.07 ± 0.5 

  Walking speed (m/s) 1.6 ± 0.2 

 

The plots of walking bout length against cadence showed that for short 

walking bouts there was a wide spread of cadences, but for longer walking bouts the 

range decreased markedly (Figure 6-3A). When plotting the walking bout length 

against the step duration variability, the plots showed a high concentration of 

walking bouts with CV values below 20%, with a wide range of CVs for shorter 

walking bouts (Figure 6-3B). When the walking events were pooled into cadence 

bands, the plots showed that for walking bouts of longer duration, the frequency 

occurrence of the bouts was smaller and the range of cadence was narrower.  
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Figure 6-3. Cadence (A) and step duration variability (B) of a walking bout against the 

number of consecutive steps of that bout, for all walking bouts. 

When pooling the walking bouts into bands of CV values, as the number of 

bouts decreased the CV range was smaller as the walking bout length increased 

(Figure 6-4). The accumulation curves for cadence and step duration variability are 

shown in Figure 6-5. 
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Figure 6-4. Cadence (A) and step duration variability (B) against walking bout length and 

number of bouts in predefined bands. The cadence bands were defined by cadences from 20 

to 140 steps/min in increments of 10 steps/min. The step duration variability bands were 

defined by CV values from 5 to 100 % in increments of 5%. 
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Figure 6-5. Cadence (A) and step duration variability (B) accumulation curves of steps. 

The curves show the normalized accumulation of steps for each individual. 

Discussion 

The aim of this work is to present preliminary data of an ongoing feasibility 

study examining the utility and feasibility of PAMs to assist patients with diabetes. 

For this purpose, an accurate and detailed quantification of daily living walking is 

necessary. Free living walking was quantified both in terms of cadence and step 

duration variability during continuous walking periods in a subset T1D and T2D 

patients. The small sample size of the two groups is due to the ongoing nature of the 

study. Since recruitment is not under the control of the author, it will be beyond 

reasonable time to wait until the whole cohort of patients (20 with T1D and 20 with 

T2D) takes part in the study. The pilot data analysed in this section is used to 

demonstrate the potential of the methodology adopted, and its usefulness for the 

investigation of free-living gait. 

The results of the 6MWT performed in the clinics showed that the both the 

WAIST algorithm and the PAM performed well for this cohort, with errors in step 

detection accuracy lower than those reported in chapter 5 for the MS patients (see 

par. 5.3.1), and similar to those obtained for healthy participants (see chapter 4). The 

walking speed of the participants was well above the threshold of 0.5 m/s identified 

for the MS group as critical for the accuracy of the PAM (see par. 3.2.3). For these 

reasons, this pilot data may suggest that no participant will need to be excluded from 

the analysis of daily living data. The variability of step duration during free living 

walking bouts was larger than during the 6MWT. This held true also for the longest 

walking bouts, which general show smaller variability. This may provide further 
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evidence that outcomes of walking typically seen in controlled environment are 

likely to be not realistic in free-living conditions. 

The plots associating the cadence/variability with the walking bout, and the 

classification into bands will allow comparing the frequency of these predefined 

cadence or variability bands between groups. Defined outcomes generated from the 

accumulation curves could be the percentage of steps taken above a given 

cadence/variability, and the cadence/variability below which a set percentage of 

steps was taken. The present work expands existing similar approaches (Granat et 

al., 2015) because the use of step-by-step values allows the analysis of the intra-

event variability, in this case of step duration, for each walking bout. 

6.2 Future work 

Some of the limitations which have been brought up within the context of each 

chapter are the ground basis for further developments that were not accomplished in 

this thesis. In addition, the following recommendations may be the focus of future 

research. 

The recent tendency toward sensor fusion approaches in research-grade 

monitors is now extending also to the areas of consumer-based fitness trackers. The 

increasing complexity and interest of the general public in this area is testified by 

discussions in media and specialized press regarding accuracy claims of the 

companies producing these devices, some of which have eventually generated class 

actions and legal suits (Lamkin, 2016a, 2016b; Steinberg, 2016). This increased 

awareness may challenge wearable sensor makers to provide strong evidence for 

their claims by supporting and funding evidence-based research grounded on strong 

methodological bases. In this context, the work presented in chapter 3 represents a 

starting point to further develop validation protocols. 

In chapter 4, the algorithm for the detection was successfully used to 

discriminate between regular and irregular walking bouts. However, further tests in 

varied walking conditions may be beneficial to potentially extending its use, for 

example to detect the type of walking performed during shorter walks than those 

assessed in the presented study. The longer term aim would be to use it for specific 

patient populations in data collected during daily-living walking. Further research is 
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also needed in order to establish if the separate analysis of regular and irregular 

walking intervals during real-life gait monitoring can provide additional information 

on daily life walking. 

Chapter 5 presented pilot data to propose a novel approach to analyse walking 

in daily living in a group of patients with multiple sclerosis. The investigation should 

be extended to larger sample sizes. Furthermore, the methodology should be tested in 

patient populations with different gait characteristics, but could also be extended to 

check for differences between this diabetic population, only mildly affected by 

mobility problems, and healthy volunteers. The investigation could also be extended 

to gait spatial parameters; however, the method may need additional tuning to make 

their estimate accurate in patient populations. 

6.3 Conclusive remarks 

In the last decades, technological advances in wearable sensor technology, and 

the increasing interest in the quantitative assessment of physical activity and 

walking, have facilitated the development of a novel field of research, aiming at 

providing clinicians and researchers with a new generation of wearable devices and 

methodologies capable of shifting clinical gait analysis from controlled, standardized 

environments to free living conditions. The aim of this thesis was to contribute to the 

progress in this area by addressing several aspects of validation, algorithm 

development, and data analysis, in both healthy participants and clinical populations.  

A significant contribution of this thesis has been that of proving that the 

accuracy of physical activity monitors currently available on the market depends on 

a subjects’ walking speed, even in healthy participants. These devices should hence 

be experimentally tested on every patient before being used for unsupervised 

monitoring of their gait. This could be obtained by using a short battery of controlled 

tests performed in controlled conditions, which can provide a reliable assessment of 

the errors of such devices, even on patient populations with mobility limitations. 

This information should be used to avoid monitoring patients for which the data can 

be expected to be inaccurate and to further improve the interpretation of real-life gait 

data. 
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This thesis also showed, for the first time, that current approaches to detect gait 

event timings and temporal parameters in controlled settings are suitable for the 

investigation of walking in daily life, at least in healthy individuals, objectively and 

quantitatively showing that wearable sensors are indeed suitable tools to overcome 

the limitations of confined laboratory tests and investigate walking in everyday life. 

In addition, by investigating the influence of environment and type of walking on 

gait temporal parameters, differences between controlled and free walking were 

quantified, providing a normative reference that could be used by the scientific 

community for interpreting differences eventually observed in patients. 

Finally, this thesis also provided original and unique results for what concerns 

the comparison between laboratory based and daily living assessment of gait features 

in both healthy individuals and patients with multiple sclerosis. It was shown, in 

particular, that the quantitative outcomes of gait observed during walking bouts 

performed in controlled gait lab tests do not represent the typical walking pattern of 

daily living, but more likely represent a subject’s top performance. 



 

126 
 

Bibliography 

Abaid, N., Cappa, P., Palermo, E., Petrarca, M., Porfiri, M., 2013. Gait Detection in 

Children with and without Hemiplegia Using Single-Axis Wearable Gyroscopes. PLoS 

One 8. 

Abdul Razak, A.H., Zayegh, A., Begg, R.K., Wahab, Y., 2012. Foot plantar pressure 

measurement system: A review. Sensors (Switzerland) 12, 9884–9912. 

Ainslie, P.N., Reilly, T., Westerterp, K.R., 2003. Estimating human energy expenditure: A 

review of techniques with particular reference to doubly labelled water. Sport. Med. 

Ainsworth, B.E., Haskell, W.L., Herrmann, S.D., Meckes, N., Bassett, D.R., Tudor-Locke, 

C., Greer, J.L., Vezina, J., Whitt-Glover, M.C., Leon, A.S., 2011. 2011 compendium of 

physical activities: A second update of codes and MET values. Med. Sci. Sports Exerc. 

43, 1575–1581. 

Alvarez, J.C., Álvarez, D., López, A., González, R.C., 2012. Pedestrian Navigation Based on 

a Waist-Worn Inertial Sensor. Sensors 12, 10536–10549. 

American Diabetes Association, 2004. Diagnosis and Classification of Diabetes Mellitus. 

Diabetes Care 27, S5–S10. 

Aminian, K., Najafi, B., Büla, C., Leyvraz, P., Robert, P., 2002. Spatio-temporal parameters 

of gait measured by an ambulatory system using miniature gyroscopes. J. Biomech. 35, 

689–699. 

Aminian, K., Rezakhanlou, K., De Andres, E., Fritsch, C., Leyvraz, P.F., Robert, P., 1999. 

Temporal feature estimation during walking using miniature accelerometers: an 

analysis of gait improvement after hip arthroplasty. Med. Biol. Eng. Comput. 37, 686–

691. 

Aminian, K., Robert, P., Jequier, E., Schutz, Y., 1995. Incline, speed, and distance 

assessment during unconstrained walking. Med. Sci. Sports Exerc. 

Aminian, S., Hinckson, E.A., 2012. Examining the validity of the ActivPAL monitor in 

measuring posture and ambulatory movement in children. Int. J. Behav. Nutr. Phys. 

Act. 9. 

Antonsson, E.K., Mann, R.W., 1985. The frequency content of gait. J. Biomech. 18, 39–47. 

Ayabe, M., Aoki, J., Ishii, K., Takayama, K., Tanaka, H., 2008. Pedometer accuracy during 

stair climbing and bench stepping exercises. J. Sports Sci. Med. 7, 249–54. 

Bahreyni, B., Shafai, C., 2007. A resonant micromachined magnetic field sensor. IEEE Sens. 

J. 7, 1326–1334. 

Baker, R., 2007. The history of gait analysis before the advent of modern computers. Gait 

Posture. 

Barralon, P., Vuillerme, N., Noury, N., 2006. Walk detection with a kinematic sensor: 

Frequency and wavelet comparison. In: Annual International Conference of the IEEE 

Engineering in Medicine and Biology - Proceedings. pp. 1711–1714. 

Bassett, D.R., Ainsworth, B.E., Swartz, A.M., Strath, S.J., O’Brien, W.L., King, G.A., 2000. 

Validity of four motion sensors in measuring moderate intensity physical activity. Med. 



 

127 
 

Sci. Sports Exerc. 32, S471–S480. 

Bassuk, S.S., Manson, J.E., 2005. Epidemiological evidence for the role of physical activity 

in reducing risk of type 2 diabetes and cardiovascular disease. J. Appl. Physiol. 99, 

1193–1204. 

Bastian, T., Maire, A., Dugas, J., Ataya, A., Villars, C., Gris, F., Perrin, E., Caritu, Y., 

Doron, M., Blanc, S., Jallon, P., Simon, C., 2015. Automatic identification of physical 

activity types and sedentary behaviors from triaxial accelerometer: laboratory-based 

calibrations are not enough. J. Appl. Physiol. 118, 716–22. 

Beauregard, S., 2006. A helmet-mounted pedestrian dead reckoning system. Appl. Wearable 

Comput. 1–11. 

Beijer, T.R., Lord, S.R., Brodie, M.A.D., 2013. Comparison of handheld video camera and 

GAITRite measurement of gait impairment in people with early stage Parkinson’s 

disease: A pilot study. J. Parkinsons. Dis. 3, 199–203. 

Bhattacharyya, T.K., Roy, A.L., 2014. MEMS Piezoresistive Accelerometers. Springer 

India, pp. 19–34. 

Blin, O., Ferrandez, A.M., Serratrice, G., 1990. Quantitative analysis of gait in Parkinson 

patients: increased variability of stride length. J. Neurol. Sci. 98, 91–7. 

Bogue, R., 2007. MEMS sensors: past, present and future. Sens. Rev. 27, 7–13. 

Bonomi,  a G., Westerterp, K.R., 2012. Advances in physical activity monitoring and 

lifestyle interventions in obesity: a review. Int. J. Obes. (Lond). 36, 167–77. 

Bourgeois, B. a, Mariani, B., Aminian, K., Zambelli, P.Y., Newman, C.J., 2014. Spatio-

temporal gait analysis in children with cerebral palsy using, foot-worn inertial sensors. 

Gait Posture 39, 436–42. 

Bouten, C. V, Koekkoek, K.T., Verduin, M., Kodde, R., Janssen, J.D., 1997. A triaxial 

accelerometer and portable data processing unit for the assessment of daily physical 

activity. IEEE Trans. Biomed. Eng. 44, 136–47. 

Brajdic, A., Harle, R., 2013. Walk Detection and Step Counting on Unconstrained 

Smartphones. In: SIGCHI Conference Proceedings. 

Brandes, M., VAN Hees, V.T., Hannöver, V., Brage, S., 2012. Estimating energy 

expenditure from raw accelerometry in three types of locomotion. Med. Sci. Sports 

Exerc. 44, 2235–42. 

Bravata, D.M., Smith-Spangler, C., Sundaram, V., Gienger, A.L., Lin, N., Lewis, R., Stave, 

C.D., Olkin, I., Sirard, J.R., 2007. Using pedometers to increase physical activity and 

improve health: a systematic review. JAMA 298, 2296–2304. 

Brodie, M., Coppens, M., Lord, S.R., Lovell, N.H., Gschwind, Y.J., Redmond, S.J., Del 

Rosario, M.B., Wang, K., Sturnieks, D.L., Persiani, M., Delbaere, K., 2016. Wearable 

pendant device monitoring using new wavelet-based methods shows daily life and 

laboratory gaits are different. Med. Biol. Eng. Comput. 54, 663–74. 

Brodie, M., Walmsley, A., Page, W., 2008. The static accuracy and calibration of inertial 

measurement units for 3D orientation. Comput. Methods Biomech. Biomed. Engin. 11, 

641–648. 

Butler, L., Furber, S., Phongsavan, P., Mark, A., Bauman, A., 2009. Effects of a pedometer-



 

128 
 

based intervention on physical activity levels after cardiac rehabilitation: a randomized 

controlled trial. J. Cardiopulm. Rehabil. Prev. 29, 105–14. 

Butte, N.F., Ekelund, U., Westerterp, K.R., 2012. Assessing physical activity using wearable 

monitors: measures of physical activity. Med. Sci. Sports Exerc. 44, S5-12. 

Byrne, N.M., Hills, A.P., Hunter, G.R., Weinsier, R.L., Schutz, Y., 2005. Metabolic 

equivalent: one size does not fit all. J. Appl. Physiol. 99, 1112–9. 

Calabró, M.A., Stewart, J.M., Welk, G.J., 2013. Validation of pattern-recognition monitors 

in children using doubly labeled water. Med. Sci. Sports Exerc. 45, 1313–1322. 

Cameron, M.H., Wagner, J.M., 2011. Gait abnormalities in multiple sclerosis: Pathogenesis, 

evaluation, and advances in treatment. Curr. Neurol. Neurosci. Rep. 11, 507–515. 

Cappozzo, A., 1982. Low frequency self-generated vibration during ambulation in normal 

men. J. Biomech. 15, 599–609. 

Cappozzo, A., Della Croce, U., Leardini, A., Chiari, L., 2005. Human movement analysis 

using stereophotogrammetry. Part 1: theoretical background. Gait Posture 21, 186–196. 

Carstensen, M., Herder, C., Kivimä Ki, M., Jokela, M., Roden, M., Shipley, M.J., Witte, 

D.R., Brunner, E.J., Tabá K, A.G., 2010. Accelerated Increase in Serum Interleukin-1 

Receptor Antagonist Starts 6 Years Before Diagnosis of Type 2 Diabetes Whitehall II 

Prospective Cohort Study. Diabetes 59, 1222–1227. 

Carter,  a, Daley,  a, Humphreys, L., Snowdon, N., Woodroofe, N., Petty, J., Roalfe,  a, 

Tosh, J., Sharrack, B., Saxton, J., 2014. Pragmatic intervention for increasing self-

directed exercise behaviour and improving important health outcomes in people with 

multiple sclerosis: a randomised controlled trial. Mult. Scler. 20, 1112–1122. 

Case, M.A., Burwick, H.A., Volpp, K.G., Patel, M.S., 2015. Accuracy of Smartphone 

Applications and Wearable Devices for Tracking Physical Activity Data. J. Am. Med. 

Assoc. 313, 625. 

Caspersen, C.J., Powell, K.E., Christenson, G.M., 1985. Physical activity, exercise, and 

physical fitness: definitions and distinctions for health-related research. Public Health 

Rep. 100, 126–31. 

Catalfamo, P., Ghoussayni, S., Ewins, D., 2010. Gait event detection on level ground and 

incline walking using a rate gyroscope. Sensors (Basel). 10, 5683–702. 

Cavagna, G., Saibene, F.P., Margaria, R., 1963. External work in walking. J. Appl. Physiol. 

18, 1–9. 

Cereatti, A., Trojaniello, D., Croce, U. Della, 2015. Accurately measuring human movement 

using magneto-inertial sensors: Techniques and challenges. In: 2nd IEEE International 

Symposium on Inertial Sensors and Systems, IEEE ISISS 2015 - Proceedings. Institute 

of Electrical and Electronics Engineers Inc. 

Chen, H.C., Ashton-Miller, J., Alexander, N., Schultz, A., 1994. Age effects on strategies 

used to avoid obstacles. Gait Posture 2, 139–146. 

Chen, K.Y., Janz, K.F., Zhu, W., Brychta, R.J., 2012. Redefining the roles of sensors in 

objective physical activity monitoring. Med. Sci. Sports Exerc. 44, S13-23. 

Chiari, L., Della Croce, U., Leardini, A., Cappozzo, A., 2005. Human movement analysis 

using stereophotogrammetry. Part 2: Instrumental errors. Gait Posture. 



 

129 
 

Ciuti, G., Ricotti, L., Menciassi, A., Dario, P., 2015. MEMS sensor technologies for human 

centred applications in healthcare, physical activities, safety and environmental 

sensing: A review on research activities in Italy. Sensors (Switzerland) 15, 6441–6468. 

Clarke-Moloney, M., Godfrey, A., O’Connor, V., Meagher, H., Burke, P.E., Kavanagh, 

E.G., Grace, P.A., Lyons, G.M., 2007. Mobility in patients with venous leg ulceration. 

Eur. J. Vasc. Endovasc. Surg. 33, 488–93. 

Cohen, J., 1988. Statistical power analysis for the behavioral sciences. Stat. Power Anal. 

Behav. Sci. 

Colburn, T.R., Smith, B.M., Guarini, J.J., Simmons, N.N., 1976. An ambulatory activity 

monitor with solid state memory. Biomed. Sci. Instrum. 12, 117–122. 

Cooper, D., 1993. Comparison of Activity Sensors and Algorithms for Rate Responsive 

Pacemakers Using Ambulatory Monitoring. Proc. Comput. Cardiol. 851–854. 

Costa, M., Peng, C.K., Goldberger, A.L., Hausdorff, J.M., 2003. Multiscale entropy analysis 

of human gait dynamics. In: Physica A: Statistical Mechanics and Its Applications. pp. 

53–60. 

Crenshaw, S.J., Royer, T.D., Richards, J.G., Hudson, D.J., 2006. Gait variability in people 

with multiple sclerosis. Mult. Scler. 12, 613–619. 

Crouter, S.E., Schneider, P.L., Bassett, D.R., 2005. Spring-levered versus piezo-electric 

pedometer accuracy in overweight and obese adults. Med. Sci. Sports Exerc. 37, 1673–

1679. 

Crouter, S.E., Schneider, P.L., Karabulut, M., Bassett, D.R., 2003. Validity of 10 electronic 

pedometers for measuring steps, distance, and energy cost. Med. Sci. Sports Exerc. 35, 

1455–1460. 

Currie, G., Rafferty, D., Duncan, G., Bell, F., Evans, A.L., 1992. Measurement of gait by 

accelerometer and walkway: A comparison study. Med. Biol. Eng. Comput. 30, 669–

670. 

Dahlgren, G., Carlsson, D., Moorhead, A., Häger-Ross, C., McDonough, S.M., 2010. Test-

retest reliability of step counts with the ActivPAL
TM

 device in common daily activities. 

Gait Posture 32, 386–90. 

Dall, P.M., McCrorie, P.R.W., Granat, M.H., Stansfield, B.W., 2013. Step accumulation per 

minute epoch is not the same as cadence for free-living adults. Med. Sci. Sports Exerc. 

45, 1995–2001. 

Damsgaard, M., Rasmussen, J., Christensen, S.T., Surma, E., de Zee, M., 2006. Analysis of 

musculoskeletal systems in the AnyBody Modeling System. Simul. Model. Pract. 

Theory 14, 1100–1111. 

Davis, J., Murphy, M., Trinick, T., Duly, E., Nevill, A., Davison, G., 2008. Acute effects of 

walking on inflammatory and cardiovascular risk in sedentary post-menopausal 

women. J. Sports Sci. 26, 303–9. 

De Greef, K., Deforche, B., Tudor-Locke, C., De Bourdeaudhuij, I., 2010. A cognitive-

behavioural pedometer-based group intervention on physical activity and sedentary 

behaviour in individuals with type 2 diabetes. Health Educ. Res. 25, 724–36. 

de Groot, S., Nieuwenhuizen, M.G., 2013. Validity and reliability of measuring activities, 

movement intensity and energy expenditure with the DynaPort MoveMonitor. Med. 



 

130 
 

Eng. Phys. 35, 1499–505. 

De Lorenzo, A., Tagliabue, A., Andreoli, A., Testolin, G., Comelli, M., Deurenberg, P., 

2001. Measured and predicted resting metabolic rate in Italian males and females, aged 

18-59 y. Eur. J. Clin. Nutr. 55, 208–14. 

Dekker, M.J., Lee, S., Hudson, R., Kilpatrick, K., Graham, T.E., Ross, R., Robinson, L.E., 

2007. An exercise intervention without weight loss decreases circulating interleukin-6 

in lean and obese men with and without type 2 diabetes mellitus. Metabolism. 56, 332–

338. 

Del Din, S., Godfrey, A., Galna, B., Lord, S., Rochester, L., 2016a. Free-living gait 

characteristics in ageing and Parkinson’s disease: impact of environment and 

ambulatory bout length. J. Neuroeng. Rehabil. 13, 46. 

Del Din, S., Godfrey, A., Mazzà, C., Lord, S., Rochester, L., 2016b. Free-living monitoring 

of Parkinson’s disease: Lessons from the field. Mov. Disord. 

Del Din, S., Godfrey, A., Rochester, L., 2015. Validation of an accelerometer to quantify a 

comprehensive battery of gait characteristics in healthy older adults and Parkinson’s 

disease: toward clinical and at home use. IEEE J. Biomed. Heal. informatics 2194, 1–

10. 

del Rosario, M.B., Redmond, S.J., Lovell, N.H., 2015. Tracking the Evolution of 

Smartphone Sensing for Monitoring Human Movement. Sensors (Basel). 15, 18901–

33. 

Delp, S.L., Anderson, F.C., Arnold, A.S., Loan, P., Habib, A., John, C.T., Guendelman, E., 

Thelen, D.G., 2007. OpenSim: Open-Source Software to Create and Analyze Dynamic 

Simulations of Movement. IEEE Trans. Biomed. Eng. 54, 1940–1950. 

Department of Health of The United Kingdom, 2004. Publications policy and guidance: at 

least five weeks: evidence on the impact of physical activity and its relationship to 

health [WWW Document]. 

Di Raimondo, D., Tuttolomondo, A., Buttà, C., Casuccio, A., Giarrusso, L., Miceli, G., 

Licata, G., Pinto, A., 2013. Metabolic and anti-inflammatory effects of a home-based 

programme of aerobic physical exercise. Int. J. Clin. Pract. 67, 1247–1253. 

Diaz, K.M., Krupka, D.J., Chang, M.J., Peacock, J., Ma, Y., Goldsmith, J., Schwartz, J.E., 

Davidson, K.W., 2015. Fitbit: An accurate and reliable device for wireless physical 

activity tracking. Int. J. Cardiol. 

Dijkstra, B., Kamsma, Y., Zijlstra, W., 2009. Detection of gait and postures using a 

miniaturised triaxial accelerometer-based system: Accuracy in community-dwelling 

older adults. Age Ageing 39, 259–262. 

Dijkstra, B., Kamsma, Y.P., Zijlstra, W., 2010. Detection of gait and postures using a 

miniaturized triaxial accelerometer-based system: accuracy in patients with mild to 

moderate Parkinson’s disease. Arch. Phys. Med. Rehabil. 91, 1272–7. 

Dijkstra, B., Zijlstra, W., Scherder, E., Kamsma, Y., 2008. Detection of walking periods and 

number of steps in older adults and patients with Parkinson’s disease: accuracy of a 

pedometer and an accelerometry-based method. Age Ageing 37, 436–41. 

Dingwell, J.B., Kang, H.G., 2007. Differences between local and orbital dynamic stability 

during human walking. J. Biomech. Eng. 129, 586–593. 



 

131 
 

Dixon, N.C., Hurst, T.L., Talbot, D.C.S., Tyrrell, R.M., Thompson, D., 2013. Effect of 

short-term reduced physical activity on cardiovascular risk factors in active lean and 

overweight middle-aged men. Metabolism. 62, 361–368. 

Donath, M.Y., Shoelson, S.E., 2011. Type 2 diabetes as an inflammatory disease. Nat. Rev. 

Immunol. 11, 98–107. 

Donovan, K., Lord, S.E., McNaughton, H.K., Weatherall, M., 2008. Mobility beyond the 

clinic: the effect of environment on gait and its measurement in community-ambulant 

stroke survivors. Clin. Rehabil. 22, 556–563. 

Duncan, B.B., Schmidt, M.I., Pankow, J.S., Ballantyne, C.M., Couper, D., Vigo,  a., 

Hoogeveen, R., Folsom,  a. R., Heiss, G., 2003. Low-Grade Systemic Inflammation 

and the Development of Type 2 Diabetes: The Atherosclerosis Risk in Communities 

Study. Diabetes 52, 1799–1805. 

Dwyer, T., Hosmer, D., Hosmer, T., Venn, A.J., Blizzard, C.L., Granger, R.H., Cochrane, 

J.A., Blair, S.N., Shaw, J.E., Zimmet, P.Z., Dunstan, D., 2007. The inverse relationship 

between number of steps per day and obesity in a population-based sample: the 

AusDiab study. Int. J. Obes. (Lond). 31, 797–804. 

Elble, R.J., 2005. Gravitational artifact in accelerometric measurements of tremor. Clin. 

Neurophysiol. 116, 1638–1643. 

Esliger, D.W., Rowlands, A. V., Hurst, T.L., Catt, M., Murray, P., Eston, R.G., 2011. 

Validation of the GENEA accelerometer. Med. Sci. Sports Exerc. 43, 1085–1093. 

Evans, A.L., Duncan, G., Gilchrist, W., 1991. Recording accelerations in body movements. 

Med. Biol. Eng. Comput. 29, 102–104. 

Ferguson, T., Rowlands, A. V, Olds, T., Maher, C., 2015. The validity of consumer-level, 

activity monitors in healthy adults worn in free-living conditions: a cross-sectional 

study. Int. J. Behav. Nutr. Phys. Act. 12, 42. 

Figo, D., Diniz, P.C., Ferreira, D.R., Cardoso, J.M.P., 2010. Preprocessing techniques for 

context recognition from accelerometer data. Pers. Ubiquitous Comput. 14, 645–662. 

Fokkenrood, H.J.P., Verhofstad, N., van den Houten, M.M.L., Lauret, G.J., Wittens, C., 

Scheltinga, M.R.M., Teijink, J.A.W., 2014. Physical Activity Monitoring in Patients 

with Peripheral Arterial Disease: Validation of an Activity Monitor. Eur. J. Vasc. 

Endovasc. Surg. 

Fortune, E., Lugade, V., Morrow, M., Kaufman, K., 2014. Validity of using tri-axial 

accelerometers to measure human movement - Part II: Step counts at a wide range of 

gait velocities. Med. Eng. Phys. 36, 659–69. 

Frankenfield, D., Roth-Yousey, L., Compher, C., 2005. Comparison of predictive equations 

for resting metabolic rate in healthy nonobese and obese adults: a systematic review. J. 

Am. Diet. Assoc. 105, 775–89. 

Freedson, P., Bowles, H.R., Troiano, R., Haskell, W., 2012. Assessment of physical activity 

using wearable monitors: recommendations for monitor calibration and use in the field. 

Med. Sci. Sports Exerc. 44, S1-4. 

Freedson, P.S., Brendley, K., Ainsworth, B.E., Kohl, H.W., Leslie, E., Owen, N., 2008. New 

techniques and issues in assessing walking behavior and its contexts. Med. Sci. Sports 

Exerc. 



 

132 
 

Frenkel-Toledo, S., Giladi, N., Peretz, C., Herman, T., Gruendlinger, L., Hausdorff, J.M., 

2005. Treadmill walking as an external pacemaker to improve gait rhythm and stability 

in Parkinson’s disease. Mov. Disord. 20, 1109–14. 

Fulk, G.D., Combs, S.A., Danks, K.A., Nirider, C.D., Raja, B., Reisman, D.S., 2014. 

Accuracy of 2 Activity Monitors in Detecting Steps in People With Stroke and 

Traumatic Brain Injury. Phys. Ther. 94, 222–229. 

Furber, S., Butler, L., Phongsavan, P., Mark, A., Bauman, A., 2010. Randomised controlled 

trial of a pedometer-based telephone intervention to increase physical activity among 

cardiac patients not attending cardiac rehabilitation. Patient Educ. Couns. 80, 212–8. 

Furlanetto, K.C., Bisca, G.W., Oldemberg, N., Sant’anna, T.J., Morakami, F.K., Camillo, C. 

a, Cavalheri, V., Hernandes, N. a, Probst, V.S., Ramos, E.M., Brunetto, A.F., Pitta, F., 

2010. Step counting and energy expenditure estimation in patients with chronic 

obstructive pulmonary disease and healthy elderly: accuracy of 2 motion sensors. Arch. 

Phys. Med. Rehabil. 91, 261–7. 

Gad-el-Hak, M., 2001. The MEMS Handbook, Mechanics of Composite Materials. 

Gage, H., 1964. Accelerographic analysis of human gait. Am. Soc. Mech. Eng. 1–12. 

Gaglani, S., Moore, J., Haynes, M.R., Hoffberger, J.B., Rigamonti, D., 2015. Using 

Commercial Activity Monitors to Measure Gait in Patients with Suspected iNPH: 

Implications for Ambulatory Monitoring. Curēus 7, e382. 

Gano, L.B., Donato, A.J., Pierce, G.L., Pasha, H.M., Magerko, K. a, Roeca, C., Seals, D.R., 

2011. Increased proinflammatory and oxidant gene expression in circulating 

mononuclear cells in older adults: amelioration by habitual exercise. Physiol. 

Genomics 43, 895–902. 

Garrett, M., Coote, S., 2009. Multiple sclerosis and exercise in people with minimal gait 

impairment – a review. Phys. Ther. Rev. 

Gates, D.H., Dingwell, J.B., 2007. Peripheral neuropathy does not alter the fractal dynamics 

of stride intervals of gait. J. Appl. Physiol. 102, 965–71. 

Gefen, A., 2007. Pressure-Sensing Devices for Assessment of Soft Tissue Loading Under 

Bony Prominences: Technological Concepts and Clinical Utilization. Wounds 19, 350–

362. 

Ghoussayni, S., Stevens, C., Durham, S., Ewins, D., 2004. Assessment and validation of a 

simple automated method for the detection of gait events and intervals. Gait Posture 

20, 266–272. 

Giannopoulou, I., Fernhall, B., Carhart, R., Weinstock, R.S., Baynard, T., Figueroa, A., 

Kanaley, J.A., 2016. Effects of diet and/or exercise on the adipocytokine and 

inflammatory cytokine levels of postmenopausal women with type 2 diabetes. Metab. - 

Clin. Exp. 54, 866–875. 

Glaister, B.C., Bernatz, G.C., Klute, G.K., Orendurff, M.S., 2007. Video task analysis of 

turning during activities of daily living. Gait Posture 25, 289–294. 

Godfrey, A., Culhane, K.M., Lyons, G.M., 2007. Comparison of the performance of the 

activPAL Professional physical activity logger to a discrete accelerometer-based 

activity monitor. Med. Eng. Phys. 29, 930–4. 

González, R.C., López, A.M., Rodriguez-Uría, J., Álvarez, D., Alvarez, J.C., 2010. Real-



 

133 
 

time gait event detection for normal subjects from lower trunk accelerations. Gait 

Posture 31, 322–325. 

Goyal, P., Ribeiro, V.J., Saran, H., Kumar, A., 2011. Strap-Down Pedestrian Dead-

Reckoning System 21–23. 

Granat, M., Clarke, C., Holdsworth, R., Stansfield, B., Dall, P., 2015. Quantifying the 

cadence of free-living walking using event-based analysis. Gait Posture 42, 85–90. 

Granat, M.H., 2012. Event-based analysis of free-living behaviour. Physiol. Meas. 33, 1785–

1800. 

Grant, P.M., Dall, P.M., Mitchell, S.L., Granat, M.H., 2008. Activity-monitor accuracy in 

measuring step number and cadence in community-dwelling older adults. J. Aging 

Phys. Act. 16, 201–14. 

Grant, P.M., Granat, M.H., Thow, M.K., Maclaren, W.M., 2010. Analyzing Free-Living 

Physical Activity of Older Adults in Different Environments Using Body-Worn 

Activity Monitors. J. Aging Phys. Act. 18, 171–184. 

Grant, P.M., Ryan, C.G., Tigbe, W.W., Granat, M.H., 2006. The validation of a novel 

activity monitor in the measurement of posture and motion during everyday activities. 

Br. J. Sports Med. 40, 992–997. 

Gray, S.R., Baker, G., Wright, A., Fitzsimons, C.F., Mutrie, N., Nimmo, M.A., 2009. The 

effect of a 12??week walking intervention on markers of insulin resistance and 

systemic inflammation. Prev. Med. (Baltim). 48, 39–44. 

Greene, B.R., McGrath, D., O’Neill, R., O’Donovan, K.J., Burns, A., Caulfield, B., 2010. 

An adaptive gyroscope-based algorithm for temporal gait analysis. Med. Biol. Eng. 

Comput. 48, 1251–1260. 

Guimaraes, R.M., Isaacs, B., 1980. Characteristics of the gait in old people who fall. Int. 

Rehabil. Med. 2, 177–80. 

Hamacher, D., Singh, N.B., Van Dieen, J.H., Heller, M.O., Taylor, W.R., 2011. Kinematic 

measures for assessing gait stability in elderly individuals: a systematic review. J. R. 

Soc. Interface 8, 1682–1698. 

Hamer, M., Steptoe, A., 2008. Walking, vigorous physical activity, and markers of 

hemostasis and inflammation in healthy men and women. Scand. J. Med. Sci. Sport. 

18, 736–741. 

Hamilton, M., Hamilton, D., Zderic, T., 2007. Role of low energy expenditure and sitting in 

obesity, metabolic syndrome, type 2 diabetes, and cardiovascular disease. Diabetes 56, 

2655–2667. 

Hardman, C. a, Horne, P.J., Fergus Lowe, C., 2011. Effects of rewards, peer-modelling and 

pedometer targets on children’s physical activity: a school-based intervention study. 

Psychol. Health 26, 3–21. 

Harris, N., Britton, E., Turton, A., 2005. Evaluation of a single axis accelerometry system 

for monitoring sit to stand activity in stroke patients. In: Proceedings of the Society for 

Research in Rehabilitation (SSR) Summer Meeting. 

Harrison, S.L., Horton, E.J., Smith, R., Sandland, C.J., Steiner, M.C., Morgan, M.D.L., 

Singh, S.J., 2013. Physical activity monitoring: Addressing the difficulties of 

accurately detecting slow walking speeds. Heart Lung 42, 361–364.e1. 



 

134 
 

Haskell, W.L., Lee, I.-M., Pate, R.R., Powell, K.E., Blair, S.N., Franklin, B. a, Macera, C. a, 

Heath, G.W., Thompson, P.D., Bauman, A., 2007. Physical activity and public health: 

updated recommendation for adults from the American College of Sports Medicine and 

the American Heart Association. Circulation 116, 1081–93. 

Hausdorff, J.M., 2007. Gait dynamics, fractals and falls: Finding meaning in the stride-to-

stride fluctuations of human walking. Hum. Mov. Sci. 26, 555–589. 

Hausdorff, J.M., Cudkowicz, M.E., Firtion, R., Wei, J.Y., Goldberger, A.L., 1998. Gait 

variability and basal ganglia disorders: Stride-to-stride variations of gait cycle timing in 

Parkinson’s disease and Huntington’s disease. Mov. Disord. 13, 428–437. 

Hausdorff, J.M., Edelberg, H.K., Mitchell, S.L., Goldberger, A.L., Wei, J.Y., 1997a. 

Increased gait unsteadiness in community-dwelling elderly fallers. Arch. Phys. Med. 

Rehabil. 78, 278–283. 

Hausdorff, J.M., Forman, D.E., Pilgrim, D.M., Rigney, D.R., Wei, J.Y., 1992. A new 

technique for simultaneous monitoring of electrocardiogram and walking cadence. Am. 

J. Cardiol. 70, 1064–1071. 

Hausdorff, J.M., Herman, T., Baltadjieva, R., Gurevich, T., Giladi, N., 2003. Balance and 

Gait in Older Adults With Systemic Hypertension. Am. J. Cardiol. 91, 643–645. 

Hausdorff, J.M., Ladin, Z., Wei, J.Y., 1995. Footswitch system for measurement of the 

temporal parameters of gait. J. Biomech. 28, 347–351. 

Hausdorff, J.M., Lertratanakul,  a, Cudkowicz, M.E., Peterson,  a L., Kaliton, D., 

Goldberger,  a L., 2000. Dynamic markers of altered gait rhythm in amyotrophic lateral 

sclerosis. J. Appl. Physiol. 88, 2045–2053. 

Hausdorff, J.M., Mitchell, S.L., Firtion, R., Peng, C.K., Cudkowicz, M.E., Wei, J.Y., 

Goldberger,  a L., 1997b. Altered fractal dynamics of gait: reduced stride-interval 

correlations with aging and Huntington’s disease. J. Appl. Physiol. 82, 262–269. 

Hausdorff, J.M., Peng, C.K., Ladin, Z., Wei, J.Y., Goldberger, A.L., 1995. Is walking a 

random walk? Evidence for long-range correlations in stride interval of human gait. J. 

Appl. Physiol. 78, 349–58. 

Hausdorff, J.M., Rios, D.A., Edelberg, H.K., 2001. Gait variability and fall risk in 

community-living older adults: a 1-year prospective study. Arch. Phys. Med. Rehabil. 

82, 1050–6. 

Healy, G., Dunstan, D.W., Salmon, J., Cerin, E., Shaw, J., Zimmet, P., Owen, N., 2008. 

Beneficial associations with metabolic risk. Diabetes Care 31, 661–666. 

Hemmett, L., Holmes, J., Barnes, M., Russell, N., 2004. What drives quality of life in 

multiple sclerosis? QJM - Mon. J. Assoc. Physicians 97, 671–676. 

Henson, J., Yates, T., Biddle, S.J.H., Edwardson, C.L., Khunti, K., Wilmot, E.G., Gray, L.J., 

Gorely, T., Nimmo, M.A., Davies, M.J., 2013. Associations of objectively measured 

sedentary behaviour and physical activity with markers of cardiometabolic health. 

Diabetologia 56, 1012–1020. 

Herder, C., Brunner, E.J., Rathmann, W., Strassburger, K., Tab??k, A.G., Schloot, N.C., 

Witte, D.R., 2009. Elevated levels of the anti-inflammatory interleukin-1 receptor 

antagonist precede the onset of type 2 diabetes: The whitehall II study. Diabetes Care 

32, 421–423. 



 

135 
 

Herder, C., Illig, T., Rathmann, W., Martin, S., Haastert, B., M??ller-Scholze, S., Holle, R., 

Thorand, B., Koenig, W., Wichmann, H.E., Kolb, H., 2005. Inflammation and type 2 

diabetes: Results from KORA Augsburg. Gesundheitswesen. 

Herrera-May, A.L., Aguilera-Cortés, L.A., García-Ramírez, P.J., Manjarrez, E., 2009. 

Resonant magnetic field sensors based on MEMS technology. Sensors 9, 7785–7813. 

Ho, S.S., Dhaliwal, S.S., Hills, A.P., Pal, S., 2012. Effects of Chronic Exercise Training on 

Inflammatory Markers in Australian Overweight and Obese Individuals in a 

Randomized Controlled Trial. Inflammation. 

Hobart, J.C., Riazi, A., Lamping, D.L., Fitzpatrick, R., Thompson, A.J., 2003. Measuring the 

impact of MS on walking ability: the 12-Item MS Walking Scale (MSWS-12). 

Neurology 60, 31–36. 

Hollman, J.H., McDade, E.M., Petersen, R.C., 2011. Normative spatiotemporal gait 

parameters in older adults. Gait Posture 34, 111–118. 

Horne, P.J., Hardman, C. a, Lowe, C.F., Rowlands,  a V, 2009. Increasing children’s 

physical activity: a peer modelling, rewards and pedometer-based intervention. Eur. J. 

Clin. Nutr. 63, 191–198. 

Hotamisligil, G.S., 2006. Inflammation and metabolic disorders 1. Nature 444, 860–867. 

Hurmuzlu, Y., Basdogan, C., 1994. On the measurement of dynamic stability of human 

locomotion. J. Biomech. Eng. 116, 30–36. 

Ichinoseki-Sekine, N., Kuwae, Y., Higashi, Y., Fujimoto, T., Sekine, M., Tamura, T., 2006. 

Improving the accuracy of pedometer used by the elderly with the FFT algorithm. Med. 

Sci. Sports Exerc. 38, 1674–81. 

International Diabetes Federation, 2015. Idf Diabetes Atlas, Idf Diabetes Atlas. 

Izzicupo, P., D’Amico, M.A., Bascelli, A., Di Fonso, A., D’Angelo, E., Di Blasio, A., Bucci, 

I., Napolitano, G., Gallina, S., Di Baldassarre, A., 2013. Walking training affects 

dehydroepiandrosterone sulfate and inflammation independent of changes in 

spontaneous physical activity. Menopause 20, 455–63. 

Janssen, I., 2012. Health care costs of physical inactivity in Canadian adults. Appl. Physiol. 

Nutr. Metab. 37, 803–806. 

Jasiewicz, J.M., Allum, J.H.J., Middleton, J.W., Barriskill, A., Condie, P., Purcell, B., Li, 

R.C.T., 2006. Gait event detection using linear accelerometers or angular velocity 

transducers in able-bodied and spinal-cord injured individuals. Gait Posture 24, 502–

509. 

Jennersjö, P., Ludvigsson, J., Länne, T., Nystrom, F.H., Ernerudh, J., Östgren, C.J., 2012. 

Pedometer-determined physical activity is linked to low systemic inflammation and 

low arterial stiffness in Type 2 diabetes. Diabet. Med. 29, 1119–1125. 

Jiang, Y., Larson, J.L., 2013. IDEEA activity monitor: validity of activity recognition for 

lying, reclining, sitting and standing. Front. Med. 7, 126–31. 

Johannsen, D.L., Calabro, M.A., Stewart, J., Franke, W., Rood, J.C., Welk, G.J., 2010. 

Accuracy of armband monitors for measuring daily energy expenditure in healthy 

adults. Med. Sci. Sports Exerc. 42, 2134–40. 

Kang, M., Brinthaupt, T.M., 2009. Effects of group and individual-based step goals on 



 

136 
 

children’s physical activity levels in school. Pediatr. Exerc. Sci. 21, 148–158. 

Kang, M., Marshall, S.J., Barreira, T. V, Lee, J.-O., 2009. Effect of pedometer-based 

physical activity interventions: a meta-analysis. Res. Q. Exerc. Sport 80, 648–655. 

Kavanagh, J.J., Menz, H.B., 2008. Accelerometry: A technique for quantifying movement 

patterns during walking. Gait Posture. 

Kelleher, K.J., Spence, W., Solomonidis, S., Apatsidis, D., 2010. The characterisation of gait 

patterns of people with multiple sclerosis. Disabil. Rehabil. 32, 1242–1250. 

Kim, J.W., Jang, H.J., Hwang, D.-H., Park, C., 2004. A Step, Stride and Heading 

Determination for the Pedestrian Navigation System. J. Glob. Position. Syst. 3, 273–

279. 

Kimmeskamp, S., Hennig, E.M., 2001. Heel to toe motion characteristics in Parkinson 

patients during free walking. Clin. Biomech. 16, 806–812. 

Klaren, R.E., Sebastiao, E., Chiu, C.-Y., Kinnett-Hopkins, D., McAuley, E., Motl, R.W., 

2016. Levels and Rates of Physical Activity in Older Adults with Multiple Sclerosis. 

Aging Dis. 7, 278–284. 

Klenk, J., Denkinger, M., Nikolaus, T., Peter, R., Rothenbacher, D., Koenig, W., 2013. 

Association of objectively measured physical activity with established and novel 

cardiovascular biomarkers in elderly subjects: every step counts. J. Epidemiol. 

Community Health 67, 194–7. 

Kolb, H., Mandrup-Poulsen, T., 2005. An immune origin of type 2 diabetes? Diabetologia. 

Koning, B.H.W., van der Krogt, M.M., Baten, C.T.M., Koopman, B.F.J.M., 2013. Driving a 

musculoskeletal model with inertial and magnetic measurement units. Comput. 

Methods Biomech. Biomed. Engin. 5842, 37–41. 

Kose, A., Cereatti, A., Della Croce, U., 2012. Bilateral step length estimation using a single 

inertial measurement unit attached to the pelvis. J. Neuroeng. Rehabil. 9, 9. 

Kotiadis, D., Hermens, H.J., Veltink, P.H., 2010. Inertial Gait Phase Detection for control of 

a drop foot stimulator. Inertial sensing for gait phase detection. Med. Eng. Phys. 32, 

287–297. 

Krause, M., Rodrigues-Krause, J., O’Hagan, C., Medlow, P., Davison, G., Susta, D., 

Boreham, C., Newsholme, P., O’Donnell, M., Murphy, C., De Vito, G., 2014. The 

effects of aerobic exercise training at two different intensities in obesity and type 2 

diabetes: Implications for oxidative stress, low-grade inflammation and nitric oxide 

production. Eur. J. Appl. Physiol. 114, 251–260. 

Krogh-Madsen, R., Thyfault, J.P., Broholm, C., Mortensen, O.H., Olsen, R.H., Mounier, R., 

Plomgaard, P., van Hall, G., Booth, F.W., Pedersen, B.K., 2010. A 2-wk reduction of 

ambulatory activity attenuates peripheral insulin sensitivity. J. Appl. Physiol. 108, 

1034–1040. 

Kuo, A.D., 2007. The six determinants of gait and the inverted pendulum analogy: A 

dynamic walking perspective. Hum. Mov. Sci. 26, 617–56. 

Kurtzke, J.F., 1983. Rating neurologic impairment in multiple sclerosis: an expanded 

disability status scale (EDSS). Neurology 33, 1444–1452. 

Ladetto, Q., 2000. On foot navigation : continuous step calibration using both 



 

137 
 

complementary recursive prediction and adaptive Kalman filtering. Ion Gps 2000, 

1735–1740. 

Lafortune, M.A., 1991. Three-dimensional acceleration of the tibia during walking and 

running. J. Biomech. 24. 

Lamkin, P., 2016a. Fitbit heart rate tech “puts consumers at risk” according to lawsuit 

scientist. Wareable. 

Lamkin, P., 2016b. MyZone boss: Step-counting fitness trackers� days are numbered. 

Wareable. 

LaPorte, R.E., Montoye, H.J., Caspersen, C.J., 1985. Assessment of physical activity in 

epidemiologic research: problems and prospects. Public Health Rep. 100, 131–46. 

Larsen, G., 1949. Behandling av adipositas. Tidsskr. Nor. laegefor. 17. 

Lauter, S., 1926. Zur Genese der Fettsucht [The genesis of obesity]. Dtsch. Arch. Klin. Med. 

315–365. 

Le Masurier, G.C., Tudor-Locke, C., 2003. Comparison of pedometer and accelerometer 

accuracy under controlled conditions. Med. Sci. Sports Exerc. 35, 867–871. 

Lee, J.-M., Kim, Y., Welk, G.J., 2014. Validity of Consumer-Based Physical Activity 

Monitors. Med. Sci. Sports Exerc. 1840–1848. 

Leonard, W.R., 2003. Measuring human energy expenditure: What have we learned from the 

flex-heart rate method? Am. J. Hum. Biol. 

Liberson, W.T., 1936. Une nouvelle application du quartz piézoélectrique: 

piézoélectrographie de la marche et des mouvements volontaires [WWW Document]. 

Trav. Hum. URL 

http://search.proquest.com/openview/d7f33a8bf2623eaa050452275853c330/1?pq-

origsite=gscholar (accessed 3.18.16). 

Light, L.H., McLellan, G.E., Klenerman, L., 1980. Skeletal transients on heel strike in 

normal walking with different footwear. J. Biomech. 13, 477–480. 

Lindström, J., Louheranta, A., Mannelin, M., Rastas, M., Salminen, V., Eriksson, J., 

Uusitupa, M., Tuomilehto, J., 2003. The Finnish Diabetes Prevention Study (DPS): 

Lifestyle intervention and 3-year results on diet and physical activity., Diabetes care. 

Liu, T., Inoue, Y., Shibata, K., 2009. Development of a wearable sensor system for 

quantitative gait analysis. Meas. J. Int. Meas. Confed. 42, 978–988. 

López, A.M., Álvarez, D., González, R.C., Alvarez, J.C., 2008. Validity of four gait models 

to estimate walked distance from vertical COG acceleration. J. Appl. Biomech. 24, 

360–367. 

Lowe, S. a, Ólaighin, G., 2014. Monitoring human health behaviour in one’s living 

environment: a technological review. Med. Eng. Phys. 36, 147–68. 

Lowry, K.A., Smiley-Oyen, A.L., Carrel, A.J., Kerr, J.P., 2009. Walking stability using 

harmonic ratios in Parkinson’s disease. Mov. Disord. 24, 261–267. 

Luinge, H.J., Veltink, P.H., 2004. Inclination measurement of human movement using a 3-D 

accelerometer with autocalibration. IEEE Trans. Neural Syst. Rehabil. Eng. 12, 112–

121. 



 

138 
 

MacWilliams, B.A., Armstrong, P.F., 2000. Clinical applications of plantar pressure 

measurement in pediatric orthopedics, Pediatric Gait A New Millennium in Clinical 

Care and Motion Analysis Technology. 

Maetzler, W., Rochester, L., 2015. Body-worn sensors--the brave new world of clinical 

measurement? Mov. Disord. 30, 1203–5. 

Magno, M., Benini, L., Spagnol, C., Popovici, E., 2013. Wearable low power dry surface 

wireless sensor node for healthcare monitoring application. In: International 

Conference on Wireless and Mobile Computing, Networking and Communications. pp. 

189–195. 

Makihara, Y., Trung, N.T., Nagahara, H., Sagawa, R., Mukaigawa, Y., Yagi, Y., 2011. 

Phase registration of a single quasi-periodic signal using self dynamic time warping. 

Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes 

Bioinformatics) 6494 LNCS, 667–678. 

Mannini, A., Sabatini, A.M., 2011. On-line classification of human activity and estimation 

of walk-run speed from acceleration data using support vector machines. Proc. Annu. 

Int. Conf. IEEE Eng. Med. Biol. Soc. EMBS 3302–3305. 

Manohar, C., O’Keeffe, D.T., Hinshaw, L., Lingineni, R., McCrady-Spitzer, S.K., Levine, 

J.A., Carter, R.E., Basu, A., Kudva, Y.C., 2013. Comparison of Physical Activity 

Sensors and Heart Rate Monitoring for Real-Time Activity Detection in Type 1 

Diabetes and Control Subjects. Diabetes Technol. Ther. 15, 751–757. 

Marculescu, R., Endler, G., Schillinger, M., Iordanova, N., Exner, M., Hayden, E., Huber, 

K., Wagner, O., Mannhalter, C., 2002. Interleukin-1 receptor antagonist genotype is 

associated with coronary atherosclerosis in patients with type 2 diabetes. Diabetes 51, 

3582–3585. 

Marey, E.-J., 1873. La machine animale, locomotion terrestre et aérienne. G. Baillie, Paris. 

Mariani, B., Rouhani, H., Crevoisier, X., Aminian, K., 2013. Quantitative estimation of foot-

flat and stance phase of gait using foot-worn inertial sensors. Gait Posture 37, 229–234. 

Markovitch, D., Tyrrell, R.M., Thompson, D., 2008. Acute moderate-intensity exercise in 

middle-aged men has neither an anti- nor proinflammatory effect. J Appl Physiol 105, 

260–265. 

Marschollek, M., Goevercin, M., Wolf, K.-H., Song, B., Gietzelt, M., Haux, R., Steinhagen-

Thiessen, E., 2008. A performance comparison of accelerometry-based step detection 

algorithms on a large, non-laboratory sample of healthy and mobility-impaired persons. 

Conf. Proc.  ... Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. IEEE Eng. Med. Biol. Soc. 

Annu. Conf. 2008, 1319–22. 

McCamley, J., Donati, M., Grimpampi, E., Mazzà, C., 2012. An enhanced estimate of initial 

contact and final contact instants of time using lower trunk inertial sensor data. Gait 

Posture 36, 316–318. 

McFadyen, B.J., Magnan, G.A., Boucher, J.P., 1993. Anticipatory locomotor adjustments for 

avoiding visible, fixed obstacles of varying proximity. Hum. Mov. Sci. 12, 259–272. 

McNeilly, A.M., McClean, C., Murphy, M., McEneny, J., Trinick, T., Burke, G., Duly, E., 

McLaughlin, J., Davison, G., 2012. Exercise training and impaired glucose tolerance in 

obese humans. J. Sports Sci. 30, 725–32. 



 

139 
 

Meier, C.A., Bobbioni, E., Gabay, C., Assimacopoulos-Jeannet, F., Golay, A., Dayer, J.-M., 

2002. IL-1 receptor antagonist serum levels are increased in human obesity: a possible 

link to the resistance to leptin? J. Clin. Endocrinol. Metab. 87, 1184–8. 

Melanson, E.L., Knoll, J.R., Bell, M.L., Donahoo, W.T., Hill, J.O., Nysse, L.J., 

Lanningham-Foster, L., Peters, J.C., Levine, J.A., 2004. Commercially available 

pedometers: Considerations for accurate step counting. Prev. Med. (Baltim). 39, 361–

368. 

Miyazaki, S., 1997. Long-term unrestrained measurement of stride length and walking 

velocity utilizing a piezoelectric gyroscope. IEEE Trans. Biomed. Eng. 

Mizrahi, J., Verbitsky, O., Isakov, E., 2000. Shock accelerations and attenuation in downhill 

and level running. Clin. Biomech. 15, 15–20. 

Moe-Nilssen, R., 1998a. A new method for evaluating motor control in gait under real-life 

environmental conditions. Part 1: The Instrument. Clin. Biomech. 13, 328–335. 

Moe-Nilssen, R., 1998b. A new method for evaluating motor control in gait under real-life 

environmental conditions. Part 2: Gait analysis. Clin. Biomech. (Bristol, Avon) 13, 

328–335. 

Moe-Nilssen, R., 1998c. Test-retest reliability of trunk accelerometry during standing and 

walking. Arch. Phys. Med. Rehabil. 79, 1377–1385. 

Moe-Nilssen, R., Helbostad, J.L., 2004. Estimation of gait cycle characteristics by trunk 

accelerometry. J. Biomech. 37, 121–126. 

Moon, Y., Wajda, D.A., Motl, R.W., Sosnoff, J.J., 2015. Stride-Time Variability and Fall 

Risk in Persons with Multiple Sclerosis. Mult. Scler. Int. 2015, 964790. 

Morettini, M., Storm, F., Sacchetti, M., Cappozzo, A., Mazzà, C., 2015. Effects of walking 

on low-grade inflammation and their implications for Type 2 Diabetes. Prev. Med. 

Reports 2, 538–547. 

Morris, J.R.W., 1973. Accelerometry—A technique for the measurement of human body 

movements. J. Biomech. 6, 729–736. 

Morrison, S., Newell, K.M., 1999. Bilateral organization of physiological tremor in the 

upper limb. Eur. J. Appl. Physiol. Occup. Physiol. 80, 564–574. 

Motl, R.W., Dlugonski, D., Suh, Y., Weikert, M., Fernhall, B., Goldman, M., 2010. 

Accelerometry and its association with objective markers of walking limitations in 

ambulatory adults with multiple sclerosis. Arch. Phys. Med. Rehabil. 91, 1942–1947. 

Motl, R.W., Pilutti, L.A., 2012. The benefits of exercise training in multiple sclerosis. Nat. 

Rev. Neurol. 

Motl, R.W., Snook, E.M., Agiovlasitis, S., 2011. Does an accelerometer accurately measure 

steps taken under controlled conditions in adults with mild multiple sclerosis? Disabil. 

Health J. 4, 52–57. 

Mulder, T., Zijlstra, W., Geurts, A., 2002. Assessment of motor recovery and decline. Gait 

Posture 16, 198–210. 

Multiple Sclerosis International Federation, 2013. Atlas of MS 2013. 

Munro, B.H., 2005. Statistical Methods for Health Care Research. Lippincott Williams & 



 

140 
 

Wilkins. 

Muro-de-la-Herran, A., García-Zapirain, B., Méndez-Zorrilla, A., 2014. Gait analysis 

methods: An overview of wearable and non-wearable systems, highlighting clinical 

applications. Sensors (Switzerland) 14, 3362–3394. 

Murtagh, E., Boreham, C., 2005. Acute responses of inflammatory markers of 

cardiovascular disease risk to a single walking session. J. Phys. … 324–332. 

Murtagh, E.M., Nichols, L., Mohammed, M.A., Holder, R., Nevill, A.M., Murphy, M.H., 

2015. The effect of walking on risk factors for cardiovascular disease: An updated 

systematic review and meta-analysis of randomised control trials. Prev. Med. (Baltim). 

Myhr, K.M., Riise, T., Vedeler, C., Nortvedt, M.W., Grønning, R., Midgard, R., Nyland, 

H.I., 2001. Disability and prognosis in multiple sclerosis: demographic and clinical 

variables important for the ability to walk and awarding of disability pension. Mult. 

Scler. 7, 59–65. 

Najafi, B., Aminian, K., Loew, F., Blanc, Y., Robert, P. a, Member, S., 2002. Measurement 

of Stand – Sit and Sit – Stand Transitions Using a Miniature Gyroscope and Its 

Application in Fall Risk Evaluation in the Elderly. IEEE Trans. Biomed. Eng. 49, 843–

851. 

Najafi, B., Aminian, K., Paraschiv-Ionescu, A., Loew, F., B??la, C.J., Robert, P., 2003. 

Ambulatory system for human motion analysis using a kinematic sensor: Monitoring of 

daily physical activity in the elderly. IEEE Trans. Biomed. Eng. 50, 711–723. 

Najafi, B., Helbostad, J.L., Moe-Nilssen, R., Zijlstra, W., Aminian, K., 2009. Does walking 

strategy in older people change as a function of walking distance? Gait Posture 29, 

261–266. 

Najafi, B., Khan, T., Wrobel, J., 2011. Laboratory in a box: Wearable sensors and its 

advantages for gait analysis. Proc. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. EMBS 

6507–6510. 

Nakamura, T., Meguro, K., Sasaki, H., 1996. Relationship between falls and stride length 

variability in senile dementia of the Alzheimer type. Gerontology 42, 108–113. 

Narayanan, M.R., Redmond, S.J., Scalzi, M.E., Lord, S.R., Celler, B.G., Lovell, N.H., 2010. 

Longitudinal falls-risk estimation using triaxial accelerometry. IEEE Trans. Biomed. 

Eng. 57, 534–541. 

Nayfeh, A.H., Holden, A. V., 2004. Applied Nonlinear Dynamics: Analytical, 

Computational, and Experimental Methods. Methods 685. 

Nelson, R.K., Horowitz, J.F., 2014. Acute exercise ameliorates differences in insulin 

resistance between physically active and sedentary overweight adults. Appl. Physiol. 

Nutr. Metab. 39, 811–818. 

Neuparth, M.J., Proença, J.B., Santos-Silva, A., Coimbra, S., 2014. The positive effect of 

moderate walking exercise on chemerin levels in Portuguese patients with type 2 

diabetes mellitus. J. Investig. Med. 62, 350–3. 

Nieman, D.C., Henson, D.A., Austin, M.D., Brown, V.A., 2005. Immune response to a 30-

minute walk. Med. Sci. Sports Exerc. 37, 57–62. 

Nishida, Y., Higaki, Y., Taguchi, N., Hara, M., Nakamura, K., Nanri, H., Imaizumi, T., 

Sakamoto, T., Horita, M., Shinchi, K., Tanaka, K., 2014. Objectively measured 



 

141 
 

physical activity and inflammatory cytokine levels in middle-aged japanese people. 

Prev. Med. (Baltim). 64, 81–87. 

Nusser, S.M., Beyler, N.K., Welk, G.J., Carriquiry, A.L., Fuller, W.A., King, B.M., 2012. 

Modeling errors in physical activity recall data. J. Phys. Act. Heal. 9 Suppl 1, S56-67. 

Orendurff, M.S., Schoen, J.A., Bernatz, G.C., Segal, A.D., Klute, G.K., 2008. How humans 

walk: bout duration, steps per bout, and rest duration. J. Rehabil. Res. Dev. 45, 1077–

1089. 

Owings, T.M., Grabiner, M.D., 2004. Step width variability, but not step length variability 

or step time variability, discriminates gait of healthy young and older adults during 

treadmill locomotion. J. Biomech. 37, 935–938. 

Pan, X.R., Li, G.W., Hu, Y.H., Wang, J.X., Yang, W.Y., An, Z.X., Hu, Z.X., Lin, J., Xiao, 

J.Z., Cao, H.B., Liu, P.A., Jiang, X.G., Jiang, Y.Y., Wang, J.P., Zheng, H., Zhang, H., 

Bennett, P.H., Howard, B. V, 1997. Effects of diet and exercise in preventing NIDDM 

in people with impaired glucose tolerance. The Da Qing IGT and Diabetes Study., 

Diabetes care. 

Pang, M.Y.C., Eng, J.J., Dawson, A.S., McKay, H.A., Harris, J.E., 2005. A community-

based fitness and mobility exercise program for older adults with chronic stroke: a 

randomized, controlled trial. J. Am. Geriatr. Soc. 53, 1667–74. 

Pappas, I.P.I., Keller, T., Mangold, S., Popovic, M.R., Dietz, V., Morari, M., 2004. A 

Reliable Gyroscope-Based Gait-Phase Detection Sensor Embedded in a Shoe Insole. 

IEEE Sens. J. 4, 268–274. 

Parry, J., 1992. Gait Analysis Normal and Pathological Function. Slack Incorporated, 

Thorofare, NJ, USA. 

Pate, R.R., Pratt, M., Blair, S.N., Haskell, W.L., Macera, C. a, Bouchard, C., Buchner, D., 

Ettinger, W., Heath, G.W., King,  a C., 1995. Physical activity and public health. A 

recommendation from the Centers for Disease Control and Prevention and the 

American College of Sports Medicine. JAMA. 

Paterson, K.L., Lythgo, N.D., Hill, K.D., 2009. Gait variability in younger and older adult 

women is altered by overground walking protocol. Age Ageing 38, 745–8. 

Patla, A.E., Prentice, S.D., Robinson, C., Neufeld, J., 1991. Visual control of locomotion: 

strategies for changing direction and for going over obstacles. J. Exp. Psychol. Hum. 

Percept. Perform. 17, 603–634. 

Paul, W., Pearson, G.L., 1955. Pressure dependence of the resistivity of silicon. Phys. Rev. 

98, 1755–1757. 

PCB Group, 2016. Introduction to PCB Accelerometers [WWW Document]. URL 

http://www.pcb.com/techsupport/tech_accel (accessed 3.3.16). 

Picerno, P., 2017. 25 years of lower limb joint kinematics by using inertial and magnetic 

sensors: A review of methodological approaches. Gait Posture 51, 239–246. 

Picerno, P., Cereatti, A., Cappozzo, A., 2011. A spot check for assessing static orientation 

consistency of inertial and magnetic sensing units. Gait Posture 33, 373–378. 

Pickup, J.C., 2004. Inflammation and activated innate immunity in the pathogenesis of type 

2 diabetes. Diabetes Care 27, 813–823. 



 

142 
 

Pinheiro Volp,  a C., Esteves de Oliveira, F.C., Duarte Moreira Alves, R., Esteves, E. a, 

Bressan, J., 2011. Energy expenditure: components and evaluation methods. Nutr. 

Hosp. 26, 430–440. 

Pinto, B.M., Goldstein, M.G., Papandonatos, G.D., Farrell, N., Tilkemeier, P., Marcus, B.H., 

Todaro, J.F., 2011. Maintenance of exercise after phase II cardiac rehabilitation: a 

randomized controlled trial. Am. J. Prev. Med. 41, 274–83. 

Polman, C.H., Reingold, S.C., Banwell, B., Clanet, M., Cohen, J.A., Filippi, M., Fujihara, 

K., Havrdova, E., Hutchinson, M., Kappos, L., Lublin, F.D., Montalban, X., O’Connor, 

P., Sandberg-Wollheim, M., Thompson, A.J., Waubant, E., Weinshenker, B., 

Wolinsky, J.S., 2011. Diagnostic criteria for multiple sclerosis: 2010 Revisions to the 

McDonald criteria. Ann. Neurol. 69, 292–302. 

Pradhan,  a D., Manson, J.E., Rifai, N., Buring, J.E., Ridker, P.M., 2001. C-reactive protein, 

interleukin 6, and risk of developing type 2 diabetes mellitus. Jama 286, 327–34. 

Puglisi, M.J., Vaishnav, U., Shrestha, S., Torres-Gonzalez, M., Wood, R.J., Volek, J.S., 

Fernandez, M.L., 2008. Raisins and additional walking have distinct effects on plasma 

lipids and inflammatory cytokines. Lipids Health Dis. 7, 14. 

Puyau, M.R., Adolph, A.L., Vohra, F.A., Zakeri, I., Butte, N.F., 2004. Prediction of activity 

energy expenditure using accelerometers in children. Med. Sci. Sports Exerc. 36, 

1625–1631. 

Qiu, S., Cai, X., Schumann, U., Velders, M., Sun, Z., Steinacker, J.M., 2014. Impact of 

walking on glycemic control and other cardiovascular risk factors in type 2 diabetes: A 

meta-analysis. PLoS One 9. 

Rabinovich, R. a, Louvaris, Z., Raste, Y., Langer, D., Remoortel, H. Van, Giavedoni, S., 

Burtin, C., Regueiro, E.M.G., Vogiatzis, I., Hopkinson, N.S., Polkey, M.I., Wilson, 

F.J., Macnee, W., Westerterp, K.R., Troosters, T., 2013. Validity of physical activity 

monitors during daily life in patients with COPD. Eur. Respir. J.  Off. J. Eur. Soc. Clin. 

Respir. Physiol. 

Raffin, E., Bonnet, S., Giraux, P., 2012. Concurrent validation of a magnetometer-based step 

counter in various walking surfaces. Gait Posture 35, 18–22. 

Rankin, G., Stokes, M., 1998. Reliability of assessment tools in rehabilitation: an illustration 

of appropriate statistical analyses. Clin. Rehabil. 12, 187–199. 

Reswick, J., Perry, J., Antonelli, D., Su, N., Freeborn, C., 1978. Preliminary evaluation of 

the vertical acceleration gait analyzer (VAGA). In: Proc. 6th Annu. Symp. External 

Control Extremities. Dubrovnik, pp. 305–314. 

Riva, F., Bisi, M.C., Stagni, R., 2013a. Orbital stability analysis in biomechanics: A 

systematic review of a nonlinear technique to detect instability of motor tasks. Gait 

Posture 37, 1–11. 

Riva, F., Bisi, M.C., Stagni, R., 2013b. Influence of input parameters on dynamic orbital 

stability of walking: In-silico and experimental evaluation. PLoS One 8, 1–7. 

Riva, F., Grimpampi, E., Mazzà, C., Stagni, R., 2014. Are gait variability and stability 

measures influenced by directional changes? Biomed. Eng. Online 13, 56. 

Roetenberg, D., Luinge, H.J., Baten, C.T.M., Veltink, P.H., 2005. Compensation of 

magnetic disturbances improves inertial and magnetic sensing of human body segment 



 

143 
 

orientation. IEEE Trans. Neural Syst. Rehabil. Eng. 13, 395–405. 

Rowlands, A. V., Stiles, V.H., 2012. Accelerometer counts and raw acceleration output in 

relation to mechanical loading. J. Biomech. 45, 448–454. 

Roylance, L.M., Angell, J.B., 1979. A batch-fabricated silicon accelerometer. IEEE Trans. 

Electron Devices 26, 1911–1917. 

Ryan, C., Gray, H., Newton, M., Granat, M., 2008. The convergent validity of free-living 

physical activity monitoring as an outcome measure of functional ability in people with 

chronic low back pain. J. Back Musculoskelet. Rehabil. 21, 137–142. 

Ryan, C.G., Grant, P.M., Tigbe, W.W., Granat, M.H., 2006. The validity and reliability of a 

novel activity monitor as a measure of walking. Br. J. Sports Med. 40, 779–84. 

Sabatini, A.M., 2006. Quaternion-based extended Kalman filter for determining orientation 

by inertial and magnetic sensing. IEEE Trans. Biomed. Eng. 53, 1346–1356. 

Sabatini, A.M., Martelloni, C., Scapellato, S., Cavallo, F., 2005. Assessment of walking 

features from foot inertial sensing. IEEE Trans. Biomed. Eng. 52, 486–494. 

Saber-Sheikh, K., Bryant, E.C., Glazzard, C., Hamel, A., Lee, R.Y.W., 2010. Feasibility of 

using inertial sensors to assess human movement. Man. Ther. 15, 122–125. 

Salarian, A., Horak, F., Zampieri, C., Carlson-kuhta, P., Nutt, J.G., Aminian, K., 2010. 

iTUG, a Sensitive and Reliable Measure of Mobility. IEEE Trans. Neural Syst. 

Rehabil. Eng. 18, 303–310. 

Salarian, A., Russmann, H., Vingerhoets, F.J.G., Burkhard, P.R., Aminian, K., 2007. 

Ambulatory Monitoring of Physical Activities in Patients With Parkinson’s Disease. 

IEEE Trans. Biomed. Eng. 54, 2296–2299. 

Salarian, A., Russmann, H., Vingerhoets, F.J.G., Dehollain, C., Blanc, Y., Burkhard, P.R., 

Aminian, K., 2004. Gait assessment in Parkinson’s disease: Toward an ambulatory 

system for long-term monitoring. IEEE Trans. Biomed. Eng. 51, 1434–1443. 

Sandroff, B.M., Motl, R.W., Pilutti, L. a, Learmonth, Y.C., Ensari, I., Dlugonski, D., Klaren, 

R.E., Balantrapu, S., Riskin, B.J., 2014. Accuracy of StepWatch
TM

 and ActiGraph 

accelerometers for measuring steps taken among persons with multiple sclerosis. PLoS 

One 9, e93511. 

Saunders, J.B.M., Inman, V.T., Eberhart, H.D., 1953. the Major Determinants in Normal and 

Pathological Gait. J. Bone Joint Surg. Am. 35–A, 543–558. 

Saxton, J.M., Carter,  a., Daley,  a. J., Snowdon, N., Woodroofe, M.N., Petty, J., Roalfe,  a., 

Tosh, J., Sharrack, B., 2013. Pragmatic exercise intervention for people with multiple 

sclerosis (ExIMS Trial): Study protocol for a randomised controlled trial. Contemp. 

Clin. Trials 34, 205–211. 

Schapiro, R.T., 2012. Managing the Symptoms of Multiple Sclerosis, Fifth Edit. ed. Demos 

Medical Publishing. 

Schepers, H.M., Koopman, H.F.J.M., Veltink, P.H., 2007. Ambulatory assessment of ankle 

and foot dynamics. IEEE Trans. Biomed. Eng. 54, 895–902. 

Schmidt, A.L., Pennypacker, M.L., Thrush, A.H., Leiper, C.I., Craik, R.L., 2011. Validity of 

the StepWatch Step Activity Monitor: preliminary findings for use in persons with 

Parkinson disease and multiple sclerosis. J. Geriatr. Phys. Ther. 34, 41–5. 



 

144 
 

Schmidt, M.I., Duncan, B.B., Sharrett, A.R., Lindberg, G., Savage, P.J., Offenbacher, S., 

Azambuja, M.I., Tracy, R.P., Heiss, G., 1999. Markers of inflammation and prediction 

of diabetes mellitus in adults (Atherosclerosis Risk in Communities study): a cohort 

study. Lancet (London, England) 353, 1649–52. 

Schneider, P.L., Crouter, S.E., Lukajic, O., Bassett, D.R., 2003. Accuracy and reliability of 

10 pedometers for measuring steps over a 400-m walk. Med. Sci. Sports Exerc. 35, 

1779–1784. 

Schoeller, D.A., van Santen, E., 1982. Measurement of energy expenditure in humans by 

doubly labeled water method. J Appl Physiol 53, 955–959. 

Schofield, W.N., 1985. Predicting basal metabolic rate, new standards and review of 

previous work. Hum. Nutr. Clin. Nutr. 39 Suppl 1, 5–41. 

Schulman, J.L., Reisman, J.M., 1959. An objective measure of hyperactivity. Amer. J. Ment. 

Dejic. 64, 455–456. 

Sebastião, E., Sandroff, B.M., Learmonth, Y.C., Motl, R.W., 2016. Free-living Walking 

Behavior in Persons with Multiple Sclerosis at Increased and Normal Fall Risk. Med. 

Sci. Sports Exerc. 48, 233. 

Segal, A.D., Orendurff, M.S., Czerniecki, J.M., Shofer, J.B., Klute, G.K., 2008. Local 

dynamic stability in turning and straight-line gait. J. Biomech. 41, 1486–1493. 

Sellers, C.E., Grant, P.M., Ryan, C.G., O’Kane, C., Raw, K., Conn, D., 2012. Take a walk in 

the park? A cross-over pilot trial comparing brisk walking in two different 

environments: Park and urban. Prev. Med. (Baltim). 55, 438–443. 

Shapiro, S.S., Wilk, M.B., 1965. An analysis of variance test for normality (complete 

samples). Biometrika 52, 591–611. 

Sheridan, P.L., Solomont, J., Kowall, N., Hausdorff, J.M., 2003. Influence of Executive 

Function on Locomotor Function: Divided Attention Increases Gait Variability in 

Alzheimer’s Disease. J. Am. Geriatr. Soc. 51, 1633–1637. 

Shih, P.C., Rosson, M.B., Carroll, J.M., 2015. Use and Adoption Challenges of Wearable 

Activity Trackers. In: iConference. Newport Beach. 

Shin, S.H., Park, C.G., 2011. Adaptive step length estimation algorithm using optimal 

parameters and movement status awareness. Med. Eng. Phys. 33, 1064–1071. 

Shoelson, S.E., Lee, J., Goldfine, A.B., 2006. Inflammation and insulin resistance. J Clin 

Invest 116, 1793–1801. 

Shuger, S.L., Barry, V.W., Sui, X., McClain, A., Hand, G.A., Wilcox, S., Meriwether, R.A., 

Hardin, J.W., Blair, S.N., 2011. Electronic feedback in a diet- and physical activity-

based lifestyle intervention for weight loss: a randomized controlled trial. Int. J. Behav. 

Nutr. Phys. Act. 8, 41. 

Shull, P.B., Jirattigalachote, W., Hunt, M.A., Cutkosky, M.R., Delp, S.L., 2014. Quantified 

self and human movement : A review on the clinical impact of wearable sensing and 

feedback for gait analysis and intervention. Gait Posture 40, 11–19. 

Simpson, L.A., Eng, J.J., Klassen, T.D., Lim, S.B., Louie, D.R., Parappilly, B., Sakakibara, 

B.M., Zbogar, D., 2015. Capturing step counts at slow walking speeds in older adults: 

comparison of ankle and waist placement of measuring device. J. Rehabil. Med. 47, 

830–5. 



 

145 
 

Sinha, J.K., 2005. On standardisation of calibration procedure for accelerometer. J. Sound 

Vib. 286, 417–427. 

Skerrett, P., Manson, J., 2002. Reduction in risk of coronary heart disease and diabetes. In: 

Ruderman, N., Devlin, J., Schneider, S., Kriska, A. (Eds.), Handbook of Exercise in 

Diabetes. American Diabetes Association, Alexandria, VA. 

Smith, C.S., 1954. Piezoresistance effect in germanium and silicon. Phys. Rev. 94, 42–49. 

Smith, D.T., Carr, L.J., Dorozynski, C., Gomashe, C., 2009. Internet-delivered lifestyle 

physical activity intervention: limited inflammation and antioxidant capacity efficacy 

in overweight adults. J. Appl. Physiol. 106, 49–56. 

Smith, K.M., Lanningham-Foster, L.M., Welk, G.J., Campbell, C.G., 2012. Validity of the 

SenseWear?? armband to predict energy expenditure in pregnant women. Med. Sci. 

Sports Exerc. 44, 2001–2008. 

Socie, M.J., Sandroff, B.M., Pula, J.H., Hsiao-Wecksler, E.T., Motl, R.W., Sosnoff, J.J., 

2013. Footfall placement variability and falls in multiple sclerosis. Ann. Biomed. Eng. 

41, 1740–1747. 

Socie, M.J., Sosnoff, J., 2013. Gait variability and multiple sclerosis. Mult. Scler. Int. 2013, 

645197. 

Spaulding, S.J., Patla, A.E., Elliott, D.B., Flanagan, J., Rietdyk, S., Brown, S., 1994. 

Waterloo Vision and Mobility Study: gait adaptations to altered surfaces in individuals 

with age-related maculopathy. Optom. Vis. Sci. 71, 770–7. 

Spranger, J., Kroke, A., Mohlig, M., Hoffmann, K., Bergmann, M.M., Ristow, M., Boeing, 

H., Pfeiffer, A.F.H., 2003. Inflammatory Cytokines and the Risk to Develop Type 2 

Diabetes: Results of the Prospective Population-Based European Prospective 

Investigation into Cancer and Nutrition (EPIC)-Potsdam Study. Diabetes 52, 812–817. 

Stackpool, C.M., Porcari, J.P., Mikat, R.P., Gillette, C., Foster, C., 2015. The accuracy of 

various activity trackers in estimating steps taken and energy expenditure. J. Fit. Res. 

3. 

Stansfield, B., Hajarnis, M., Sudarshan, R., 2015. Characteristics of very slow stepping in 

healthy adults and validity of the activPAL3
TM

 activity monitor in detecting these 

steps. Med. Eng. Phys. 37, 42–7. 

Steinberg, J.A., 2016. Fitbit Sleep-Tracker Suit Survives Dismissal Bid. Bloom. Law. 

Storm, F.A., Buckley, C., Mazzà, C., 2016. Gait event detection in laboratory and real life 

settings: Accuracy of ankle and waist sensor based methods. Gait Posture 50, 42–46. 

Storm, F.A., Heller, B.W., Mazzà, C., 2015. Step Detection and Activity Recognition 

Accuracy of Seven Physical Activity Monitors. PLoS One 10, e0118723. 

Stunkard, A., 1958. Physical activity, emotions and human obesity. Psychosom. Med. 20. 

Stunkard, A., 1960. A Method of Studying Physical Activity in Man. Am. J. Clin. Nutr. 8. 

Swan, M., 2012. Sensor Mania! The Internet of Things, Wearable Computing, Objective 

Metrics, and the Quantified Self 2.0. J. Sens. Actuator Networks 1, 217–253. 

Swingler, R.J., Compston, D.A., 1992. The morbidity of multiple sclerosis. Q. J. Med. 83, 

325–337. 



 

146 
 

Sylos Labini, F., Meli, A., Ivanenko, Y.P., Tufarelli, D., 2012. Recurrence quantification 

analysis of gait in normal and hypovestibular subjects. Gait Posture 35, 48–55. 

Taborri, J., Palermo, E., Rossi, S., Cappa, P., 2016. Gait Partitioning Methods : A Systematic 

Review. Sensors 40–42. 

Taborri, J., Scalona, E., Palermo, E., Rossi, S., Cappa, P., 2015. Validation of Inter-Subject 

Training for Hidden Markov Models Applied to Gait Phase Detection in Children with 

Cerebral Palsy. Sensors (Basel). 15, 24514–29. 

Taghian, F., Rahnama, N., Esfarjani, F., Sharifi, G.R., 2012. Does aerobic exercise effect on 

the levels of interlukin-6, TNF-α and plasma CRP in the elderly women? Gazz. Med. 

Ital. Arch. Sci. Med. 171, 767–773. 

Takacs, J., Pollock, C.L., Guenther, J.R., Bahar, M., Napier, C., Hunt, M.A., 2014. 

Validation of the Fitbit One activity monitor device during treadmill walking. J. Sci. 

Med. Sport 17, 496–500. 

Takeda, R., Tadano, S., Todoh, M., Morikawa, M., Nakayasu, M., Yoshinari, S., 2009. Gait 

analysis using gravitational acceleration measured by wearable sensors. J. Biomech. 

42, 223–233. 

Tao, W., Liu, T., Zheng, R., Feng, H., 2012. Gait analysis using wearable sensors. Sensors 

(Basel). 12, 2255–83. 

Taylor, D., Stretton, C.M., Mudge, S., Garrett, N., 2006. Does clinic-measured gait speed 

differ from gait speed measured in the community in people with stroke? Clin. Rehabil. 

20, 438–444. 

The NPD Group, 2016. Year-Over-Year Wearables Spending Doubles [WWW Document]. 

URL https://www.npd.com/wps/portal/npd/us/news/press-releases/2016/year-over-

year-wearables-spending-doubles-according-to-

npd/?utm_source=twitter&utm_medium=social&utm_content=Oktopost-twitter-

profile&utm_campaign=Oktopost-Press+Releases (accessed 5.12.16). 

Tigbe, W., Lean, M., Granat, M., 2007. The objective assessment of free-living physical 

activity in determining cardiovascular risk factors. In: Proceedings of the 15th 

European Congress on Obesity (EASO). 

Tinetti, M.E., 1986. Performance-oriented assessment of mobility problems in elderly 

patients. J. Am. Geriatr. Soc. 34, 119–126. 

Tong, K., Granat, M.H., 1999. A practical gait analysis system using gyroscopes. Med. Eng. 

Phys. 21, 87–94. 

Toosizadeh, N., Mohler, J., Lei, H., Parvaneh, S., Sherman, S., Najafi, B., 2015. Motor 

Performance Assessment in Parkinson’s Disease: Association between Objective In-

Clinic, Objective In-Home, and Subjective/Semi-Objective Measures. PLoS One 10, 

e0124763. 

Troiano, R.P., Berrigan, D., Dodd, K.W., Mâsse, L.C., Tilert, T., Mcdowell, M., 2008. 

Physical activity in the United States measured by accelerometer. Med. Sci. Sports 

Exerc. 40, 181–188. 

Trojaniello, D., Cereatti, A., Della Croce, U., 2014a. Accuracy, sensitivity and robustness of 

five different methods for the estimation of gait temporal parameters using a single 

inertial sensor mounted on the lower trunk. Gait Posture 40, 487–492. 



 

147 
 

Trojaniello, D., Cereatti, A., Paolini, G., Ravaschio, A., Croce, U. Della, 2013. Temporal 

gait parameters determination from shank-worn MIMU signals recorded during healthy 

and pathological gait. In: XXIV Congress of the International Society of 

Biomechanics. pp. 1–2. 

Trojaniello, D., Cereatti, A., Pelosin, E., Avanzino, L., Mirelman, A., Hausdorff, J.M., Della 

Croce, U., 2014b. Estimation of step-by-step spatio-temporal parameters of normal and 

impaired gait using shank-mounted magneto-inertial sensors : application to elderly , 

hemiparetic , parkinsonian and choreic gait. J. Neuroeng. Rehabil. 11, 152. 

Trojaniello, D., Ravaschio, A., Hausdorff, J.M., Cereatti, A., 2015. Comparative assessment 

of different methods for the estimation of gait temporal parameters using a single 

inertial sensor: application to elderly, post-stroke, Parkinson’s disease and 

Huntington’s disease subjects. Gait Posture 42, 310–316. 

Troped, P.J., Oliveira, M.S., Matthews, C.E., Cromley, E.K., Melly, S.J., Craig, B.A., 2008. 

Prediction of activity mode with global positioning system and accelerometer data. 

Med. Sci. Sports Exerc. 40, 972–978. 

Trost, S.G., Mciver, K.L., Pate, R.R., 2005. Conducting accelerometer-based activity 

assessments in field-based research. Med. Sci. Sports Exerc. 37, 531–543. 

Tudor-Locke, C., Camhi, S.M., Leonardi, C., Johnson, W.D., Katzmarzyk, P.T., Earnest, 

C.P., Church, T.S., 2011a. Patterns of adult stepping cadence in the 2005-2006 

NHANES. Prev. Med. (Baltim). 53, 178–181. 

Tudor-Locke, C., Craig, C.L., Brown, W.J., Clemes, S.A., De Cocker, K., Giles-Corti, B., 

Hatano, Y., Inoue, S., Matsudo, S.M., Mutrie, N., Oppert, J.-M., Rowe, D.A., Schmidt, 

M.D., Schofield, G.M., Spence, J.C., Teixeira, P.J., Tully, M.A., Blair, S.N., 2011b. 

How many steps/day are enough? for adults. Int. J. Behav. Nutr. Phys. Act. 

Turcot, K., Aissaoui, R., Boivin, K., Pelletier, M., Hagemeister, N., De Guise, J.A., 2008. 

New accelerometric method to discriminate between asymptomatic subjects and 

patients with medial knee osteoarthritis during 3-D gait. IEEE Trans. Biomed. Eng. 55, 

1415–1422. 

Ulas, T., Buyukhatipoglu, H., Eren, M.A., Dal, M.S., Torun, A., Aydogan, T., Demir, M.E., 

Turan, M.N., 2012. Evaluation of sleeping energy expenditure using the SenseWear 

Armband in patients with overt and subclinical hypothyroidism. Clin. Investig. Med. 
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