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Abstract

The Ising and Q-state Potts models are statistical mechanical models of spins

interaction on crystal lattices. We study the partition functions on a range of

lattices, particularly two- and three-dimensional cases. The study aims to investigate

cooperative phenomena − how higher level structure is affected by the detailed

activity of a very large number of lower level structures. We investigate the analytic

properties of the partition functions and their relationship to physical observables in

equilibrium near phase transition. Our study is focussed on describing the partition

function and the distribution of zeros of the partition function in the complex-

temperature plane close to phase transitions. Here we first consider the solved case

of the Ising model on square lattice as a benchmark for checking our method of

computation and analysis. The partition function is computed using a transfer

matrix approach and the zeros are found numerically by Newton-Raphson method.

We extend the study of Q-state Potts models to a more general case called the ZQ-

symmetric model. We evidence the existence of multiple phase transitions for this

model in case Q = 5, 6, and discuss the possible connection to different stages of

disordered state. Given sufficient and efficient coding and computing resources, we

extend many previously studied cases to larger lattice sizes. Our analysis of zeros

distribution close to phase transition point is based on a certain power law relation

which leads to critical exponent of physical observable. We evidence for example,

that our method can be used to give numerical estimates of the specific heat critical

exponent α.
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Introduction

This thesis describes our research in statistical mechanics [30, 48, 65]. Statistical

mechanics is an area where mathematical modelling is used to understand a physical

system. In physics, it is a key problem to predict behaviour of a physical system

[35, 46, 101]. This is useful for many applications [18, 43, 85].

Statistical mechanics models the microscopic properties of individual atom and

molecule of a material that can be observed in nature, and relates them to the

macroscopic or bulk properties [35, 96]. We study the statistical mechanical models

of spin variables on a graph, representing the molecular dipoles on the crystal lattice

of a physical system − such as a bar magnet.

One example of physical phenomena which can benefit from the statistical

mechanical study is the event of phase transition [27, 101]. The study helps in

predicting the critical properties of a phase transition by investigating the inner

activity of molecular dipoles in a physical system.

The model in this thesis is a model of ferromagnetism [41, 44–46, 68] on solid

state material that has a crystalline feature on its atomic scale. From experiment

[28, 71, 91, 97], the crystalline structure shows the constituent particles being stack

together in a regular and repeated pattern in R3. This is formed by the translations

of some kind of basic cell, for example the translation of a cube to a cubic lattice

[31].

1
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In modelling the effective ferromagnetism, the dynamics of the lattice such as

the vibrational and bulk motion are ignored. Instead, the dynamic is restricted to

the molecular dipoles residing at the lattice sites. The molecular dipole centre of

mass remain fixed in its location. We call the model variable represented by the

molecular dipole as a spin variable of the crystal lattice. Here the degree of freedom

is obtained from the spin orientation. The model is restricted to a system with

identical atomic type. The dipole-dipole interactions are short range [4, 41]. Thus in

the model we put a short range interaction between two neighbouring spin variables.

Here the interaction with external magnetic field is excluded for simplicity. Also for

simplicity, two spin variables interact with each other if they are close together. At

larger distance, the interaction is assumed to be negligible.

Let Q ∈ N be the number of spin orientations. For Q = 2 we consider the Ising

model [37, 62] which also called the 2-state Potts model [3, 79]. For Q > 2 we vary

the model in this thesis by the Q-state Potts model and the ZQ-symmetric model

[58, 83].

Figure 1.1: Bar magnet and its magnetic dipoles in cubic lattice.

1.1 The Potts models − definitions

The Q-state Potts model is a representation of ferromagnetism in which spins are

allowed to be oriented from Q possible spin directions.

The physical spins are assumed to sit at a regular collection of points in R3,

called a lattice. For these models, we represent the lattice by a graph [64]. The spin

variable is associated to the vertex of the graph. The graph vertices can be thought
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as the graph embedding to Euclidean space R3. The graph and the Potts model are

defined as below.

Definition 1.1.1 ([19]). A directed graph Λ is a triple Λ = (V,E, f). The V is a

set. The elements v ∈ V are called vertices. The E is also a set. The elements

e ∈ E are called edges. The f is a function f : E → V × V . Given e ∈ E and

v1, v2 ∈ V , the images f(e) = 〈v1, v2〉 gives the ‘source’ and ‘target’ vertex of edge e.

Definition 1.1.2. The distance dΛ(u, v) is the number of edges in the shortest path

from u to v. Two vertices u, v ∈ V are called nearest neighbours if f(e) = 〈u, v〉 for

some e ∈ E i.e. when dΛ(u, v) = 1.

A function σ : V → Q = {1, 2, ..., Q} is called a spin configuration for Q-state

Potts models. The value in set Q is the label representing the Q different spin

orientations.

Let Ω be the set of all possible spin configuration states or microstates for a

Q-state Potts model on a given lattice.

Definition 1.1.3 ([49]). Let A,B be sets. Then Hom(A,B) is the set of functions

f : A→ B.

We have immediately;

Theorem 1.1.1. Let Λ = (V,E, f) be a graph and Q ∈ N. Then the configuration

set on graph Λ is Ω = Hom(V,Q).

Thus, for a system of N vertices with Q possible spin directions, the total number

of microstates |Ω| = Q|V | = QN .

In physics, an observable is any physical property of a system which can be

experimentally measured. In a model with given Ω we have a corresponding

operator:

Definition 1.1.4. Consider a physical system in the form of a set Ω. A function

O : Ω→ R is called an observable of the physical system.
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One possible observable on a system would be the total energy, also known as

H : Ω → R, or Hamiltonian. It is the form of H which determines what kind

of physical system we are modelling. Let J ∈ R be a constant representing the

interaction strength of the nearest neighbour spins. The Hamiltonian of Potts model

is defined as follows. Let σ ∈ Ω.

Definition 1.1.5. The Hamiltonian of Potts model on Λ = (V,E, f) is defined as

HPotts(σ) = −J
∑

〈i,j〉=f(e),
e∈E

δσ(i)σ(j) where the Kronecker delta function,

δσ(i)σ(j) =

1, if σ(i) = σ(j)

0, if σ(i) 6= σ(j)

.

The summation is over all the nearest neighbour interaction in Λ.

If J > 0 the system is in its lowest energy where all spin variables are oriented in

the same direction. This state corresponds to a ferromagnetic state. Conversely, if

J < 0 each spin variable is forced to be oriented anti-align to its nearest neighbours.

This state corresponds to an antiferromagnetic state.

1.2 Partition Function Z

Now we are ready to introduce the main function of this thesis. A partition function

denoted as Z is a special function that relates temperature with the states of a spin

system. It provides important information on thermodynamic properties of the

system [35, 58, 101].

Consider an ensemble of similar systems in a heat bath. The heat bath is a body

which has a huge heat capacity that remains its temperature fixed at all times. The

volume, pressure, number of particles and all other properties are assumed to be

fixed except the energy which is allowed to be transferred to its neighbour. So, any

system in contact with the heat bath will eventually reach a thermal equilibrium at
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the temperature of the heat bath. This ensemble is called a canonical ensemble [10].

The partition function for a system which allows the transfer of energy to its

environment while fixing other properties is called a canonical partition function or

simply a partition function.

Definition 1.2.1. For a given HΛ (which requires given graph Λ), the partition

function is defined as

ZΛ(β) =
∑
σ∈ΩΛ

exp(−βHΛ(σ)) (1.1)

where the summation is over all possible microstates σ of a system and β = 1/(kBT )

is the inverse temperature in which T is absolute temperature and kB is the

Boltzmann’s constant.

The dimension for the physical quantities (β,HΛ and J) in our model are not

restricted to any specific dimension. But we know that the dimension of HΛ that

depends on J must be in inverse relation to β because of the exponent function for

the partition function (1.1). The value of βHΛ must be dimensionless.

Denote the Boltzmann weight x = eβJ and H̃(σ) = −HΛ(σ)/J . For a given

graph Λ, the partition function (1.1) can be written in polynomial form

ZΛ(β) =
∑
σ∈ΩΛ

xH̃(σ). (1.2)

Suppose we have a system A in a particular configuration state σi ∈ Ω with

energy H(σi). The probability of a system A to be in the state σi is then equal to

the ratio of Boltzmann weight of the state σi over the sum of the weight of all possible

configurations. Let p be the Boltzmann probability distribution p : Ω→ [0, 1], then

p(σi) =
exp(−βHΛ(σi))∑

σ∈Ω

exp(−βHΛ(σ))

=
exp(−βHΛ(σi))

ZΛ

(1.3)
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where ∑
i

p(σi) = 1.

The partition function ZΛ as denominator is also called a normalizing constant. For

simplicity we denote the partition function as Z.

1.3 Relation to physical observables

The role of the partition function Z does not stop at being a normalising constant

as in (1.3) but it also leads to thermodynamic properties. In this section, we present

some of the thermodynamic properties derived from Z.

The expectation value of an observable quantity O is given by

〈O〉 :=
∑
σ∈Ω

p(σ)O(σ). (1.4)

From the Boltzmann probability function (1.3), we can obtain the average energy

of a system given by

〈H〉 =
∑
σ∈Ω

p(σ)H(σ)

=
∑
σ∈Ω

e−βH(σ)

Z
H(σ)

= −∂(ln Z)

∂β
. (1.5)

The 〈H〉 is also known as the internal energy [33, 35, 65] of a system. The

internal energy is an energy that is associated with molecular motion. It is the sum

of kinetic energy and potential energy at molecular level. This is a function of state.

By the second law of thermodynamics [10, 94], in real process, there exists a

function of state called entropy [10, 15, 48]. It is a measure of the number of

underlying microstates related to macroscopically measurable state [27]. In other

words, it is the number of ways for a system to be in a specific macroscopic state

[58].
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In canonical ensemble (§ 1.2) of similar systems with constant volume and

temperature, the entropy is expressed by the sum over the probability of every

possible configuration state σ. The entropy S is defined as

S = −kB
∑
σ∈Ω

p(σ) ln(p(σ)). (1.6)

Substituting (1.3) into (1.6), we get this relation:

S =
〈H〉
T

+ kB ln(Z). (1.7)

Similarly, the relation (1.7) can be rewritten as

−kBT ln(Z) = 〈H〉 − TS. (1.8)

From the classical thermodynamic relation, the right hand side corresponds to the

definition of Helmholtz free energy [14]

F = 〈H〉 − TS. (1.9)

This equivalently gives

F = −kBT ln(Z). (1.10)

For a system with constant volume, number of particles and temperature, the

maximum entropy S also means that the Helmholtz free energy is a minimum at

equilibrium.

From the free energy, the specific heat CV is defined as the second derivative of

logarithm of the partition function with respect to β, i.e.

CV
kB

= −β2 d
2 lnZ

dβ2
. (1.11)

Further explanation here and elsewhere in physics on other thermodynamic

properties can be found in [10, 35, 58, 101].
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1.4 Physical motivation

1.4.1 Ising and Potts models

Q-state Potts models are statistical mechanical models of ferromagnetism [41, 44–

46, 68] on crystal lattices [85, p. 60]. The case Q = 2 corresponds to Ising model

via 1→ +1 and 2→ −1.

Ising [37] showed that one-dimensional Ising model case manifest no phase

transition. Later, Peierls showed that at sufficiently low temperature, the Ising

model does have ferromagnetism in two or three dimension [12, 70, 78].

One feature of this model is the study of the exact partition function [7, 55] of

square lattice Ising model. Onsager [75] successfully described the exact solution of

Ising model on square lattice. He considered the eigenvalue of a particular matrix

proposed by Kramers and Wannier [44, 45] to find the solution for free energy. Other

version of Onsager’s solution also described by Kaufman in [40].

Kramers and Wannier [44] considered the exact result of transition temperature.

They described the partition function in terms of the largest eigenvalue of certain

matrix. A similar method was used by Montroll [66, 67] which calculated the

problem separately. Kubo in [47] had also described the matrix formulation related

to the degeneracy of largest eigenvalue. Some generalized model with more than two

spins can be found in [3, 58, 79, 98] and in three dimension in [72, 73, 75, 89, 90].

1.4.2 ZQ-symmetric model

The ZQ-symmetric model [58, p. 295] is a general discrete planar model where the

spin takes one of Q possible values distributed around clock-like circle. Detailed

description on this model is described in Chapter 6.

One interesting problem for this model is to determine the cross over point, say

Qc where the spin-wave phase [36] would appear. Elitzur, Pearson and Shigemitsu

in their paper [22] showed that by using the Villain form [93] of Clock model [21]
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the spin-wave phase can be found above Q = 4. The study of the cross over point

between the two-phase region and the three-phase region has suggested a relation

to solvable manifolds of the Andrews-Baxter-Forrester model [2, 36].

The study of the ZQ model further leads to the study of zeros analytic structure

as introduced by Fisher [26]. Martin [57] studied the analytic structure of zeros

of the partition function. The zeros distribution suggests that the complex plane

may manifests the distribution which describes two- and three-phase regions. This

approach explores the cross over point locally for specific value of Q. Martin

presented the zeros distribution of the partition function on Z5- and Z6-symmetric

models in [57, 58].

1.4.3 Onsager’s solution

The Ising model was solved exactly on square lattice restricted to no external field

by Onsager [75]. His work was later on simplified by his student Kaufman [40] using

rotational matrix. The derivation of the Onsager’s partition function is discussed in

§ 4.1 and Appendix §B.

  N

M

Figure 1.2: Square lattices with different system size N by M .

Let a square lattice have N row and M column (shown in Figure 1.2) with T

be the temperature and B = 0 is the zero external magnetic field. We present his

result for free energy (logarithmic of the partition function) [75] as the following,

lim
N→∞

ln(ZN,N(B = 0, T )) = ln(2 cosh(βJ)) +
1

2π

∫ π

0

ln

(
1

2

(
1 +

√
1− κ2 sin2 φ

))
dφ

(1.12)
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where κ = 2 sinh(2βJ)/ cosh2(2βJ), β is the inverse temperature and J is the nearest

neighbour interaction strength. ZN,M is the partition function for graph in Figure

1.2.

Other review on the work of Onsager and Kaufman exact solution can also be

found in [6–8, 35, 58].

1.4.4 What can be computed and what it means

The study of model for ferromagnetism aims to investigate the thermodynamic

properties of a physical system [7, 35]. For the Q-state Potts model and for the

three-dimensional lattices, the exact results are still unknown.

Lee and Yang [50, 99] showed that the equation of states of phase transition is

closely related to the root distribution of the partition function. They proved that

under certain conditions the roots always lie on a circle − also known as Lee-Yang

circle theorem. They proposed the concept of zeros in the complex plane to study

the Ising model in magnetic field.

The thermodynamic properties and the phase transition however can only be

explored through the complete distribution of the zeros of the partition function in

the complex-temperature plane. Although only the real value has physical meaning,

the analytic structure of the distribution surprisingly shows a specific behaviour in

the thermodynamic limit [38, 39, 99]. Since the finite lattice partition function is a

positive polynomial, the zeros will always stay off the real axis. The zeros may only

touch the real axis at the thermodynamic limit. We will show the zeros distribution

in details in later chapters.

The study of complex-temperature zeros of partition function for the Ising model

on square lattice in zero magnetic field was first discussed by Fisher [26], and also

by Abe [1], Katsura [38] and Ono and Suzuki [74]. The singularity of specific heat

of the square lattice Ising model is discussed by observing the zeros distribution for

finite lattice size and the endpoints of the arc in the zeros distribution.

The study of statistical mechanical model could be continued further by
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investigating the model on different system i.e. different crystal lattice structure

[31, 85] such as triangular, hexagonal and cubic lattices. See § 2.1.2 for detail.

Other study on triangular and hexagonal lattices Potts model can be found for

example in [23, 25, 51, 60, 88, 98].

1.4.5 Phase transition − example of physical phenomena

A phase transition [46, p. 103] occurs when there is a thermodynamic change from

one phase of matter to another phase. One of the study on phase transition is

related to the prediction of critical point for a phase transition − for instance the

Curie temperature [41, 43, 48].

The roots of the partition function are used to study the phase transition and

critical properties in finite size system [29]. The phase transition occurs when the

zeros are distributed in a nice pattern [26] consists of subsets of set of zeros. We

called this a locus of zeros. This locus cut the real axis of the complex plane at the

thermodynamic critical point [87].

The order of phase transition is defined by the behaviour of the derivatives of

free energy [58]. It is called first order transition if there is a discontinuity in the

first derivative of free energy. Similarly, for higher order transition, it is called nth

order if the first discontinuity is at the nth derivative.

For example, consider a graph of specific heat in Figure 1.3. This graph shows

the existence of the second order phase transition. Onsager in his square lattice Ising

model showed that the phase transition was observed when there is a singularity in

the graph of specific heat as shown in this figure.

1.5 Objectives and Aims

We study a model known as Potts model that was introduced by Potts [79]. It

is a generalisation of the Ising model that was introduced by Wilhem Lenz to his

student, Ernst Ising for his doctoral thesis [7, 12, 79]. The case of Ising model
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βc

1
/k

B
 C

V

β

Figure 1.3: Specific heat of square lattice Ising model (Onsager’s solution).

on square lattice considered in this thesis serves as a benchmark for checking our

computation. Then we further extend this study to a more general case called the

ZQ-symmetric model.

Our interest is to investigate how macroscopic structure may result from a lower

level activity of a very large number of microscopic structures. The approach in

statistical mechanics can provides prediction when the phase transition of some

material can take place.

The objective is to study the partition functions of these models and their

distribution of zeros of the partition function in the complex plane close to the

phase transition. We aim to investigate the analytic properties of the partition

functions and the relationship between analytic properties and phase transition in

equilibrium statistical mechanics.

In this thesis, we use the transfer matrix [7, 58] approach for computing the

partition function. The partition function is described exactly on the finite lattice

size. The zeros of the partition function are then computed and plotted in the

complex-temperature Argand plane (see the new result of complex-eβ for example

in Figure 1.4).

We study the limiting properties of a physical system by analysing the analytical

behaviour of partition function as the lattice size changes. This is to relate the
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Figure 1.4: 3-state Potts model on 15 by 17 square lattice.

function to the experimental result (see e.g. [7, 35, 101]). With this model, we can

aim to describe physical observable properties for a large system [35, 58].

Outline

The outline of this thesis is as follows. The definitions of Potts model and the

partition function was initially presented in this chapter. This is continued with

the lattice graphs under consideration in Chapter 2. In Chapter 3, the method

of computation of transfer matrix is demonstrated. We show the computation by

simple examples and state the method for finding roots of the partition function.

The results of zeros distribution for the Ising, Q-state Potts and ZQ-symmetric

models will follow in Chapters 4, 5 and 6, respectively. The description of results

starts by considering the solved case of square lattice Ising model in Chapter 4. We

implement the zeros finding approach to the Ising model partition function on square

lattice in this chapter. Chapters 5 and 6 mainly present our investigation for Q-state

Potts and ZQ-symmetric model partition functions and their zeros distributions.

Later, the analysis of the zeros distribution for Ising and Potts models related
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to critical exponent of phase transition is presented in Chapter 7. Finally Chapter

8 will discuss the energy-entropy relation and also discuss the possible existence of

multiple phase transitions in ZQ-symmetric models.
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Models on lattice

This chapter describes other details related to Q-state Potts models. The definitions

of the Q-state Potts [3, 20] model was given in § 1.1.

The main object of the study of each model is the partition function. The models

are studied on crystal lattices [64] which will be shown in section § 2.1. Then the

duality relation on partition function will be introduced.

The modern technology like the X-ray crystallography facility [52, 85, 91, 100]

allows us to see the lattice feature in solid state material. For example, the

lattice arrangement in aluminium and magnesium is given by face-centered cubic

and hexagonal close-packed respectively. This lattice arrangement is following the

classification of lattice system described in the field of crystallography [11, 18, 82, 97].

2.1 Graph of regular lattice

This section will describe the lattice graphs under consideration in this thesis. The

aim is to compute a partition function Z for a specific lattice graph Λ representing

a laboratory size piece of crystal structure. Unfortunately, due to limitation of

computing resources, we are not able to compute the Z on very large lattice size. So

instead, we consider a sequence of finite lattices which in suitable sense (see § 4.3)

extends to contain the laboratory sample.

15
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2.1.1 Thermodynamic limit

The lattice graph is studied based on the motivation from physics. We consider a

sequence of finite lattice graphs arranged in increasing lattice sizes. Although the

result of physical observable is affected by the finite size effect (explain in § 4.3), at

large enough size, some kinds of observation reach stability. The size dependence

will vanish in a good model, since the bulk observables of a physical system do not

depend strongly on lattice size in the laboratory [87, p. 69].

The study of statistical mechanics aims to predict the bulk behaviour for a

physical system i.e. behaviour which is independent from the size of the system.

In particular, a sequence of lattices all approaching a ‘limit’ lattice in a way that

captures stable limiting behaviour is needed for the study. This sequence of lattices

consists of many lattices of the same type but in different sizes (such as square

lattices in Figure 2.2). Although the exact such sequence is not prescribed, from the

Onsager’s solution [40, 75], we know that the sequence of square lattices does have

a stable limit (thermodynamic limit [35, 58]) for suitable observables.

Given these requirements, we define a sequence of lattices which includes

computable cases and laboratory size cases. Our hope is that limiting behaviour

is already observed in the computable cases. Here, we describe only the first step

i.e. defining the sequence.

2.1.2 Lattice graph

Here the specific sequence of graphs for each Hamiltonian will be presented. In two-

dimensional case, the regular patterns under consideration are the square, triangle

and hexagon. In three-dimensional case, the patterns under consideration are the

cubic, tetrahedron and octahedron. In literature what we refer to as the hexagonal

pattern is often referred to as the honeycomb lattice.

In crystallography, the crystal structure is described in two ways [85, p. 60].

First they are based on seven basic geometry shapes of unit cell in three-dimensional
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space. This type of shape is called the seven crystal systems. The second is related

to the way in which atoms are arranged in a unit cell. The unit cell is the smallest

structure in three-dimensional space which translated itself to form the whole crystal.

This atomic arrangement is called the Bravais lattice [31, 48, 85]. The repetition of

regular lattice shape is the nearest approximation towards many real structure of

crystalline materials.

2.1.2.1 d-dimensional lattice

The lattice graph is constructed under a graph embedding to d-dimensional

Euclidean space Rd [32] consist of a finite set of regularly spaced sites. The vertex

of the graph is associated to the lattice site and the edge of the graph represents the

nearest neighbour interaction between vertices.

Let a 1-dimensional Euclidean space R have collection of point labelled

successively by ui where i = 1, 2, ... ∈ N. Each site ui has exactly one successor.

The nearest neighbour pair is connected by an edge denoted 〈ui, ui+1〉. For a graph

with N vertices, this 1-dimensional lattice graph is a finite graph given by Figure

2.1.

. . .

u
1 3

uu
2

u
N

u
N−1

Figure 2.1: The one-dimensional lattice of N sites.

Figure 2.2: Square lattice N by N for N = 2, 3, 4.

Similar algorithm for construction applies for higher dimension, d > 1. In R2, the

2-dimensional lattice sites can be denoted by vi,j where the indices i, j = 1, 2, · · · ∈ N
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correspond to the row vertices i and the column vertices j.

Let each lattice site vi,j have two successive nearest neighbours that are at i+ 1

given j and j + 1 given i. The nearest neighbour pairs are denoted by 〈vi,j, vi+1,j〉

and 〈vi,j, vi,j+1〉. For N row and M column vertices, the graph forms N by M square

lattice structure shown in Figure 2.2. We shall denote the d-dimensional lattice by

N1 ×N2 × · · · ×Nd for all number of vertices in respective directions, Ni ∈ N.

A triangular lattice in contrary has three successive nearest neighbours at each

lattice site. The nearest neighbours are given by pairs 〈vi,j, vi+1,j〉, 〈vi,j, vi,j+1〉 and

〈vi,j, vi+1,j+1〉.

The hexagonal lattice in addition is constructed as follows. For i, j = 1, 2, · · · ∈

N, if i is odd, the sites will have one successive neighbour, 〈vi,j, vi,j+1〉 when j is

even and two successive neighbours, 〈vi,j, vi,j+1〉 and 〈vi,j, vi+1,j〉 when j is odd.

Conversely if i is even, the sites will have two successive neighbours, 〈vi,j, vi,j+1〉

and 〈vi,j, vi+1,j〉 when j is even and one successive neighbour 〈vi,j, vi,j+1〉 when j is

odd. See illustration in Figure 2.4. For computer program, we can drop the hexagon

shape and compute the partition function by layering the lattice into a rectangular

shape.

Figure 2.3: Triangular lattice.

2.1.2.2 Dense sphere packing

In this thesis we consider two types of dense sphere packing which are the face-

centered cubic (fcc) and the hexagonal close packing (hcp).

The face-centered cubic packing is obtained from a simple cubic geometry. At

each vertex point of a cubic lattice, there exist one spin variable and for each face

of the cubic, there exist another spin variable. Each vertex point is assumed to be
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Figure 2.4: Hexagonal lattice (left) to rectangular graph layering (right) for
computer program.

Figure 2.5: Cubic lattice.

Figure 2.6: Octagonal lattice i.e. face-centered cubic lattice.

Figure 2.7: Tetragonal lattice i.e. hexagonal close-packed lattice.
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a sphere of radius 1. See Figure 2.8. The cubic shape is the unit cell of the lattice.

The dash lines correspond to edges in the lattice graph.

The length of each edge of the cube is
√

8 and the diagonal distance of each face

is 4. In total, there are 4 spheres in the cubic unit cell of this face-centered cubic

lattice.

A crystal lattice has dense sphere packing if it has highest number of atomic

density in a unit cell. The number of atomic density is also called the atomic

packing factor representing the fraction of volume occupied by atoms in a unit cell

over the volume of the same unit cell [85] i.e.

4π(4
3
)

(
√

8)3
=

π√
18
.

Figure 2.8: Structure showing the face-centered cubic lattice point arrangement in
a unit cell.

Likewise, the case of hexagonal close packing has the same density packing i.e.
π√
18

. Their unit cells are occupied by the same number of atoms that is 12 atoms

but are different by their packing sequence.

The packing construction is described based on the pattern of each layer of the

lattice. See Figure 2.9 for illustration. For the face-centered cubic, the packing

structure follows the successive layer with ABC sequence whereas the packing

sequence for the hexagonal close-packed follows the AB pattern. The overline

notation such as in the AB pattern means the repetition of atomic packing sequence

in each lattice layer (first layer in position A, then second layer in position B, then

repeat the position back to A and B and so on). More detailed explanation can be

found in the book by Shackelford [85] and Hales [31].
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We describe the dense sphere packing by the illustration of repeated polyhedra

glued together forming a finite three-dimensional lattice. This choice assists the

computation of the transfer matrix which will be explained in the next chapter. We

call the face-centered cubic and the hexagonal close-packed as the octagonal and

tetragonal lattices respectively.

A

AA

AA

A

A

B

B

B

C

CC

(a) ABC stacking sequence.

Normal to close−packed plane

C

B

A

A

Close−packed planes

(b) Face-centered cubic.

A

AA

AA

A

A

B

B

B

(c) AB stacking sequence.

Close−packed planes

A

B

A

Normal to close−packed planes

(d) Hexagonal close-packed.

Figure 2.9: Face-centered cubic, hexagonal close-packed and their stacking sequence
respectively.

2.1.3 Boundary condition

Consider a finite cubic lattice Nx × Ny × Nz embedded in R3. The rest of the R3

space is left empty (vacuum). The condition separating the vacuum space from the

filled spaced is called the boundary condition. We call the outer sites of the lattice
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as the boundary sites or exterior sites. The inner sites are called interior sites (see

Figure 2.11). In general, each lattice site has 2d nearest neighbours except at the

boundary [17].

The type of boundary condition is related to interaction among the boundary

sites. Figures 2.2 and 2.7 are examples of lattices with open boundary condition

whereas Figure 2.10 is an example of a lattice with periodic boundary condition in

vertical direction.

Figure 2.10: 4 by 2 square lattice with periodic boundary condition in vertical
direction.

In addition to these two types, we can also study many other lattice graphs, for

example, the graph with duality condition [7, 16]. See Figure 2.14 for this example.

A concept of duality will be explain in the next section.

For the finite case, the boundary condition has significant role affecting the result

of the partition function. For N by M lattices, the ratio of the number of vertices

at the boundary over vertices in the whole lattice is given by

r =
2N + 2M − 4

2NM
. (2.1)

The larger the lattice, the smaller this ratio will be. At thermodynamic limit, this

ratio r → 0 as NM → ∞. We are interested in models where the effects of the

boundary conditions vanish in the thermodynamic limit.
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Figure 2.11: Increasing sizes of square lattices. The red sites highlight the spins at
boundary and the black sites are the interior sites.

2.2 Duality

In this section, the concept of duality transformation [83] will be introduced.

Let G = (V,E, f) be a graph defined as in § 1.1.

Definition 2.2.1 ([95]). A curve is the image of a continuous map from [0, 1] to

R3. A polygonal curve is a curve composed of finitely many line segments. It is a

polygonal u, v−curve when it starts at u and ends at v. It has no self crossing with

individual polygonal curve.

Definition 2.2.2 ([95]). A drawing of a graph G is a function f̃ defined on V ∪ E

that assigns each vertex v a point f̃(v) in the plane and assigns each edge with

endpoints u, v a polygonal f̃(u), f̃(v)−curve i.e. f̃ : V → R3 and f̃ : E → f̃(E).

The images of vertices are distinct. A point in f̃(e) ∩ f̃(e′) that is not a common

endpoints is a crossing. The curve cannot have a changing direction at the crossing

point.

Definition 2.2.3 ([95]). Let G = (V,E, f) be a graph. The graph G is planar if it

has a drawing f̃ without crossings. Such drawing is a planar embedding of G. A

plane graph is a particular planar embedding of a planar graph.

For any planar graph G, we can form a related plane graph called its dual. Here

we introduce a notion of face F . A face is a region bounded by edges including the
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outer infinite region. Let FG be the set of faces in G.

Suppose G∗ = (V ∗, E∗, f ∗) be another planar graph that is a dual to G. The

graph G∗ has the following construction. The set of vertices v∗ ∈ V ∗ corresponds to

the face Fi ∈ FG. For each e ∈ E with face Fi on one side and Fj on another side,

the endpoint of edge e∗ ∈ E∗ are the vertices v∗, w∗ ∈ V ∗ that represent the faces

Fi, Fj of G.

Now, we introduce a notion of a body that is region bounded by faces, separating

its inner and outer regions.

Let L = (V,E, f) be a graph defined as in § 1.1. A graph L embedded in

Euclidean space R3 is a 1-to-1 function φ1 : V → R3 and a continuous function

φ2 :

[0,1]e⋃
e∈E

→ R3 that is also 1-to-1 on

[0,1]e⋃
e∈E

such that {φ2(0), φ2(1)} = φ(f(e)). The

[0, 1]e corresponds to the edge in the graph. The embedding of graph L has also a

1-to-1 function φ3 :

([0,1]×[0,1])p⋃
p∈FL

→ R3. The ([0, 1]× [0, 1])p corresponds to the face of

the graph L.

Consider for example, the embedding for a cubic graph L = (V,E, f). The

body of a cubic is bounded by square faces p ∈ FL. Let L∗ = (V ∗, E∗, f ∗) be the

dual graph of L. The graph L∗ has the following construction. The vertex of L

corresponds to the body of L∗. The edge of L is then corresponds to the face of

L∗. Also the face of L corresponds to the edge of L∗ which is perpendicular to the

surface of the face L. Finally the body of L corresponds to the point of L∗ which

located in the center of the cubic L. The dual graph for a cubic graph is again a

cubic graph.

Figure 2.12 present the illustration of a square lattice and its dual, which is a

self-dual up to boundary condition. Figure 2.13 in addition manifests the graph of

hexagonal lattice and its dual graph i.e. the triangular lattice. The case shown in

Figure 2.14 has been studied by Chen, Hu and Wu [16].

A dual of a model is a mapping of a model to another model. For example, a

dual of a 2-dimensional Ising model using a certain transformation, could be exactly
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Figure 2.12: Square lattice and its dual.

rewritten as another 2-dimensional Ising model [42, 83]. The high-temperature

regions of the original Ising model is mapped to the low-temperature regions of its

dual, and vice versa. This is a self-dual model which had been showed by Kramers

and Wannier [44].

Figure 2.13: Hexagonal lattice and its dual, a triangular lattice.

The duality transformation on lattice model is a useful tool for passing

information of one model to its dual. The duality relation for 2-dimensional Q-

state Potts model will be given in § 2.2.2.

2.2.1 Z in dichromatic polynomial

Here we derive the partition function in a dichromatic polynomial form. We rewrite

the partition function which will allow us to express the duality relation in the

partition function. It relates the graph G and its dual graph G∗.
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Figure 2.14: Self-dual square lattice.

With some modification, the partition function can be written in terms of graph

G and its subgraph. Let G′ ⊆ G, VG′ = V and EG′ ⊆ E. Recall x = eβJ . For

simplicity, let the interaction strength J = 1 and introduce a new variable v = x−1.

For writing purposes, we write σ(j) as σj for any j ∈ N.

The partition function (1.1) for Q-state Potts model can be written in terms of

v,

ZG =
∑
σ∈Ω

exp(−βH(σ))

=
∑
σ∈Ω

exp(βJ
∑

〈i,j〉=f(e),
e∈E

δσiσj)

=
∑
σ∈Ω

∏
〈i,j〉=f(e),

e∈E

exp(βδσiσj)

=
∑
σ∈Ω

∏
〈i,j〉=f(e),

e∈E

(1 + vδσiσj) (2.2)

where

(1 + vδσiσj) =

1, if σi 6= σj

x, if σi = σj

.

The expansion of this relation will express Z in terms of a dichromatic polynomial

[5, 56, 58]. One of the possible ways to describe the equation (2.2) is by considering

a power set.
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Definition 2.2.4. Given a set A, the power set P of A is the set of all subsets of

A.

Alternatively, we call the edge in the graph a bond. Let P be the power set of

the set of bonds in E to Z2 = {0, 1}, i.e. P : E → Z2. Then

ZG =
∑
σ∈Ω

∏
〈i,j〉=f(e),

e∈E

(1 + vδσiσj)

=
∑
σ∈Ω

∑
EG′∈P(E)

v|EG′ |
∏

〈i,j〉=f(e),
e∈EG′

(δσiσj). (2.3)

The first summation is over all possible configuration of Ω. The second

summation is over the elements of the power set P of the set of edges. See illustration

in Figure 2.15. The EG′ can be illustrated by bond denoted with 0 and 1; respectively

corresponds to missing bond and filled bond. We call this a bond covering 0 and 1

respectively.

(a)

(b)

Figure 2.15: Set of bonds EG′ can be illustrated by bond 0 and 1.

The expression v|EG′ |
∏

〈i,j〉=f(e),
e∈EG′

(δσiσj) is forced to zero for every configuration

summation which all the spins connected by filled bonds that are not aligned.

Then the dichromatic polynomial is as the following:

ZG =
∑
G′⊆G

v|EG′ |Q|C(G′)| (2.4)
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where |C(G′)| = c is the number of connected clusters in G′, including isolated

vertices. The connected cluster refer to the isolated sublattice with vertices

connected by one or more edges and also the individual vertex (with no edge).

The value of Qc is the total number of configurations in which the filled bonds

form c connected clusters. Refer illustration below for examples.

a) b)

Figure 2.16: Example of connected cluster including its isolated vertices with
a)|C(G′)| = 4 and b)|C(G′)| = 3.

For the 2-state Potts model, let |E| = L be the total number of edges and

|V | = N be the number of vertices. Again by equation (2.2) we take

ZG =
∑
σ∈Ω

∏
〈i,j〉=f(e),

e∈E

(1 + vδσiσj)

=
∑
σ∈Ω

∏
〈i,j〉=f(e),

e∈E

(1 + (eβ − 1)δσiσj)

=
∑
σ∈Ω

∏
〈i,j〉=f(e),

e∈E

(
eβ + 1

2
+
eβ − 1

2
(2δσiσj − 1)

)
. (2.5)

Alternatively, the bond coverings mentioned earlier may be reinterpreted

corresponding to the possible choices of the new summation in the expansion of

the product in equation (2.5). A bond covering corresponds to the number of edges

at each vertex. The lattice graph has even bond covering if each vertex of the

subgraph G′ has even number of edges.
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Factor out the largest term of the product,

ZG =
∑
σ∈Ω

∑
EG′∈P(E)

(
x+ 1

2

)L−|EG′ |(x− 1

2

)|EG′ | ∏
〈i,j〉=f(e),
e∈EG′

(2δσiσj − 1)

=

(
x+ 1

2

)L∑
σ∈Ω

∑
EG′∈P(E)

(
x− 1

x+ 1

)|EG′ | ∏
〈i,j〉=f(e),
e∈EG′

(2δσiσj − 1). (2.6)

(a) (b)

Figure 2.17: Examples of non-even bond covering.

Example 2.2.1. Given a graphG with open boundary condition. For the expression∑
σ∈Ω

∏
〈i,j〉=f(e),
e∈EG′

(2δσiσj − 1) the individual case shown in Figure 2.17a and 2.17b have

value ∑
σ∈Ω

(2δσ1σ2 − 1) = 0∑
σ∈Ω

(2δσ1σ2 − 1)(2δσ2σ3 − 1) = 0.

respectively.

The expression
∑
σ∈Ω

∏
〈i,j〉=f(e),
e∈EG′

(2δσiσj − 1) always equal to 0 when the subgraph G′
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describes the non-even covering of G; i.e.∑
σ∈Ω

∏
〈i,j〉=f(e),
e∈EG′

(2δσiσj − 1) =
∑
σ∈Ω

(2δσiσj − 1)

=
∑
σ∈Ω

2δσiσj −
∑
σ∈Ω

1

= 2
∑
σ∈Ω

δσiσj − 2N

= 2.2N−1 − 2N

= 0. (2.7)

Thus we have,

Z =

(
x+ 1

2

)L
2N

∑
EG′∈P(E),

even covering G′

(
x− 1

x+ 1

)|EG′ |

=

(
x+ 1

2

)L
2N

∑
even covering

(tanh(β/2))|EG′ | (2.8)

The above formulation is another way of writing the function. The partition function

is derived by the bond covering in the dual lattice. See also Martin [56].

2.2.2 Duality relation for partition function

Now, consider a lattice graph D = (VD, ED, fD) as the dual of graph G. For any

subgraph G′ ⊆ G, there exist subgraph D′ ⊆ D such that the ED is the complement

of set E. Then the number of edges in subgraph of dual latticeD′ is |ED′| = L−|EG′|.

Some islands are formed around cluster G′. The partition function of graph D is

ZD = 2x|ED|
∑

island I

x−|l(I)| (2.9)

where l(I) is the circumference of island I.

A 2-dimensional 2-state Potts (Ising) model partition function is invariant up to
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the boundary condition under this transformation [58, §1.5]

x−1 ↔ x− 1

x+ 1
. (2.10)

For arbitrary value of spin state Q, the duality has the following relation:

x↔ x+ (Q− 1)

x− 1
. (2.11)

A model on a square lattice is one simple example of this duality. It has the

self-duality properties which holds up to the boundary.

Example 2.2.2. For the case of 2 by 2 square lattice with Q = 2, the partition

function is

ZG2×2(x) = 2x4 + 12x2 + 2. (2.12)

By equation (2.9), the partition function of the dual graph will be

ZD2×2(x) = 2x4 + 2. (2.13)

Applying the duality relation on ZD2×2 , then

ZD2×2

(
x+ 1

x− 1

)
= 2

(
x+ 1

x− 1

)4

+ 2

=
2

(x− 1)4
ZG2×2 . (2.14)

Now, consider an example of a self-dual polygonal lattice that have 2 vertices

and 2 edges.

Example 2.2.3. The drawing of the 2-gon is as below:



32 Chapter 2

The partition functions are

ZG2-gon(x) = ZD2−gon(x) = 2x2 + 2,

ZD2-gon

(
x+ 1

x− 1

)
= 2

(
x+ 1

x− 1

)2

+ 2

=
2

(x− 1)2
ZG2-gon .

Applying the transformation twice will reproduce the original equation. We can

see for example in the duality transformation graph later in § 4.4 that the zeros of

these two polynomial partition functions are invariant in some regions of the graph.

In general, we write these two polynomials of a graph and their duals as follows.

Let P be some polynomial in ZG, then

ZG(x) = 2N
(
x+ 1

2

)|E(G)|

P

(
x− 1

x+ 1

)
,

ZD(x) = 2x|E(D)|P

(
1

x

)
.

The duality concept is a useful tool for validating any result found using our

calculation. This validation is done by reproducing and comparing the zeros

distribution of a specific lattice with the known result from previous study [35, 101].

We have described the lattice graph under study for this thesis. The duality

relation has also been introduced here. Next chapter is devoted to present the

computation technique for the partition function.
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Computation for partition

function

In this chapter we present the computation of a transfer matrix [7, 58] for

the partition function on finite lattice. We begin with an example of model

configurations on lattice in the first section. Then it is followed by the description

of the partition vector and transfer matrix. The final section will briefly stated the

zeros finding for the partition function.

Initially a brute-force approach [81] is used for computation where the

Hamiltonian is directly substituted into the partition function (1.1). This approach

requires long period of time and requires many calculations as the lattice size

increases. The number of configuration states increases exponentially with respect

to number of vertices on graph.

For this reason, a better approach is needed to reduce the number of calculations

for the partition function. For that we use a transfer matrix approach.

3.1 Models on lattice − example

In this chapter, we consider the Q-state Potts model on a square lattice. Let a

square lattice have discrete variables called vertices with associated spin which can

33
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take any value Q = {1, 2, ..., Q} representing the spin directions.

Recall Definition 1.1.1 of a graph. Let Γ = (V,E, f) be a square lattice graph.

Then |V | is the number of vertices in the lattice. The total number of configuration

states is given by |Ω| = Q|V |. The state σ = {σi|i is indexed for location of the

spin} ∈ Ω. Each spin variable interacts with its nearest neighbours will gives value

1 if the pair spins in the same direction and 0 otherwise.

Figure 3.1 shows all possible microstates for 2 by 2 square lattice. The spin

up denoted as ‘+’ and down as ‘−’ correspond to spin 1 and 2 respectively. For a

2-state Potts model on 2 by 2 square lattice, Ω is given by

Ω = {(1, 1, 1, 1), (1, 1, 1, 2), (1, 1, 2, 1), (1, 1, 2, 2),

(1, 2, 1, 1), (1, 2, 1, 2), (1, 2, 2, 1), (1, 2, 2, 2),

(2, 1, 1, 1), (2, 1, 1, 2), (2, 1, 2, 1), (2, 1, 2, 2),

(2, 2, 1, 1), (2, 2, 1, 2), (2, 2, 2, 1), (2, 2, 2, 2)} (3.1)

|Ω| = 24 = 16 .
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Figure 3.1: 2 by 2 square lattices.

Recall Definition 1.1.5 of the Q-state Potts model Hamiltonian. For any σ(i) =
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(σ1, σ2, σ3, σ4) ∈ Ω, if σ(1) = (1, 1, 1, 1) and σ(2) = (1, 2, 1, 2), we have Hamiltonian

H(σ(1)) = −J(δσ1σ2 + δσ2σ4 + δσ1σ3 + δσ3σ4)

= −J(1 + 1 + 1 + 1) = −4J

and

H(σ(2)) = −J(δσ1σ2 + δσ2σ4 + δσ1σ3 + δσ3σ4)

= −J(0 + 1 + 1 + 0) = −2J.

Computing the Hamiltonian for all its microstates and x = eβJ gives partition

function

Z = 2e4βJ + 12e2βJ + 2

= 2x4 + 12x2 + 2.

This is the result we see in equation (2.12).

3.2 Partition Vector and Transfer Matrix

This section will describe the approach used to expedite the computation of the

partition function. For this purpose, we use the partition vector and transfer matrix

approach.

The Hamiltonian information on the lattice model is arranged into a vector in the

space of all configurations of the boundary spin variables. We call this a partition

vector. We describe in details as follows.

For any lattice graph, we denote {c} as the set of all exterior sites. The set

of microstate of graph G is denoted ΩG. Let VG be all vertices in a graph G.

The V ′ ⊆ VG is the set of exterior on the graph with set of state ΩV ′ . Denote

σB ∈ ΩV ′ as the spin configurations at boundary. A set of microstates given fixed

spin configurations at boundary is denoted as ΩVG |σB ⊂ ΩG.
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Example 3.2.1. Let Γ = (VΓ, EΓ, f) be a graph of 2 by 2 square lattice for 2-states

Potts model shown in Figure 3.1. Denote VΓ = {σ1, σ2, σ3, σ4} and V ′ = {σ3, σ4} ⊂

VΓ. The set of all configuration states ΩΓ is given by (3.1). Let spin configurations

at boundary given by ΩV ′ , i.e.

ΩV ′ = {(1, 1), (1, 2), (2, 1), (2, 2)}.

So if σB1 = (1, 1) and σB2 = (2, 1), we have

ΩΓ|(1,1) = {(1, 1, 1, 1), (1, 2, 1, 1), (2, 1, 1, 1), (2, 2, 1, 1)}

ΩΓ|(2,1) = {(1, 1, 2, 1), (1, 2, 2, 1), (2, 1, 2, 1), (2, 2, 2, 1)}.

The partition function with the fixed spin configurations at σB is given by

ZV ′

Γ |σB :=
∑

σ∈ΩΓ|σB

exp(−βH(σ)).

Definition 3.2.1. The partition vector ZV ′

G is the vector arrangement in space of

all fixed boundary or exterior sites of a lattice system. For σB ∈ ΩV ′, we have

ZV ′

G = {ZV ′

G |σ1 , Z
V ′

G |σ2 , ...}.

The full partition function is then defined as

ZG =
∑

σB∈ΩV ′

ZV ′

G |σB . (3.2)

This vector arrangement can produce a partition function for two combined

lattice graphs. A bigger lattice can be formed by combining two lattices through a

vector multiplication.

Definition 3.2.2. Let G,G′ be two lattice graphs. For the union of two graphs

G ∪G′ we have

VG∪G′ = VG ∪ VG′

EG∪G′ = EG ∪ EG′ .
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The E is the set of edges and EG ∩ EG′ = ∅.

The partition function of the new graph GG′ is given by a summation of the

product of partition vectors for graph G and G′ (as in Definition 3.2.1). This is

given by

ZGG′ =
∑
σ∈ΩV ′

(ZV ′

G |σ)(ZV ′

G′ |σ). (3.3)

This equation is given by the Chapman-Kolmogorov theorem [76]. See Figure 3.3

for example of a combined graph.

Theorem 3.2.1 (Chapman-Kolmogorov [76]). Let G and G′ be graphs such that

EG ∩ EG′ = ∅. Let GG′ denote G ∪G′ and V ′ = VG ∩ VG′. Then

ZGG′ =
∑
σ∈ΩV ′

(ZV ′

G |σ)(ZV ′

G′ |σ) = ZV ′

G Z
V ′

G′ . (3.4)

Proof. Recall partition function (1.1). For graph GG′ = G ∪G′, we have

ZGG′ =
∑

σ∈ΩVGG′

exp(βHGG′(σ)). (3.5)

For EG ∩ EG′ = ∅ and σ ∈ ΩVGG′
,

HGG′(σ) = HG(σ) +HG′(σ).

For V ′ = VG ∩ VG′ , we have

ZGG′ =
∑

σ∈ΩVGG′

(exp(βHG(σ))) (exp(βHG′(σ)))

=
∑
σ̃∈ΩV

 ∑
σ∈ΩVG|σ̃

exp(βHG(σ))

 ∑
σ∈ΩVG′ |σ̃

exp(βHG′(σ))


=

∑
σ̃∈ΩV

(
ZV ′

G |σ̃
) (

ZV ′

G′ |σ̃
)
. (3.6)
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3.2.1 Transfer matrix

We describe the transfer matrix formulation in this section. Note that the partition

function has a property that allows it to be presented as a product of matrices. It

can be arranged into product of terms each depending only on nearest neighbour

pairs [7].

Recall the partition vector ZV ′

G . The vector is now reorganised into a matrix

denoted as T . Two column configurations are fixed as incoming and outgoing sites

denoted as VI and VO respectively such that V = VI ∪ VO. The entries in matrix

T are indexed and the row and column matrix are associated with the set of all

possible configuration states ΩVI and ΩVO respectively. Each entry at i-th row and

j-th column is given by

Tij = ZV
G |σi∈ΩVI ,σj∈ΩV0

. (3.7)

The T is called a transfer matrix.

Refer Figure 3.1. Each configuration can be written as the entry in a matrix

T where the row matrix corresponds to two left vertices and the column matrix

corresponds to two right vertices.

Example 3.2.2. For a square lattice as in Figure 3.2, we have

(σ1, σ2) = (σ3, σ4) = {(1, 1), (1, 2), (2, 1), (2, 2)}

1

2

3

4

σ

σ

σ

σ

Figure 3.2: 2 by 2 square lattice.
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and the transfer matrix

T =



(1, 1) (1, 2) (2, 1) (2, 2)

(1, 1) e4βJ e2βJ e2βJ e2βJ

(1, 2) e2βJ e2βJ 1 e2βJ

(2, 1) e2βJ 1 e2βJ e2βJ

(2, 2) e2βJ e2βJ e2βJ e4βJ

 =


x4 x2 x2 x2

x2 x2 1 x2

x2 1 x2 x2

x2 x2 x2 x4

 .

Consider a lemma which related to Theorem 3.2.1 as follows. Denote V \ V ′ as

the set of all elements in V that are not in V ′.

Lemma 3.2.2. Let G1 and G2 be two graphs such that EG1 ∩EG2 = ∅. Let G1G2 =

G1 ∪G2 and V = VG1 ∩ VG2 and V ′ ⊆ VG1G2. Then

ZV ′

G1G2
|c′ =

∑
c∈ΩV \V ′

(
ZV
G1
|c′,c
) (
ZV
G2
|c′,c
)
. (3.8)

Here c′, c is the configuration associated to V ′ and then to V .

The proof of Lemma 3.2.2 is similar to the proof of Theorem 3.2.1 (cf. Chapman-

Kolmogorov equation [76]).

G’ GG’G

V V V
VV  = V

V
o

o
o

o
i

i
i

V
GG

i
G’ G’

G’G

Figure 3.3: Lattice graphs G,G′ and GG′ where G and G′ connected to form GG′.
The dot circles represent the incoming and outgoing spins, for example, ViG and VOG
respectively.

If TG and TG′ are the transfer matrices associated to graph G and G′ and EG ∩

EG′ = ∅, now we could use these transfer matrices to combine to graph. The
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incoming and outgoing spins are denoted as ViG and VOG respectively for graph G

and ViG′ and VOG′ respectively for graph G′.

Similar to partition vector multiplication, we can now combine two graphs by a

matrix multiplication. By equation (3.7) and Lemma 3.2.2, the transfer matrix of

two combined graph is given by matrix product

TGG′ = TG TG′

where ViGG′ = ViG and VOGG′ = VOG′ .

The partition function of the new graph is given by

ZGG′ =
d∑
i=1

d∑
j=1

(TGG′)i,j (3.9)

where i, j is the index of matrix TGG′ and d is the dimension of the matrix.

This combining process is restricted to the incoming and outgoing spins. Once

combined the outgoing spins of G and incoming spins of G′ become the interior spin

variables of graph GG′, or VOG = ViG′ .

Example 3.2.3. Let graph G ∪ G′ given by Figure 3.3. The transfer matrices of

individual graph are given by TG and TG′ , i.e.

TG =


x4 x2 x2 x2

x2 x2 1 x2

x2 1 x2 x2

x2 x2 x2 x4

 and TG′ =


x3 x x x

x2 x2 1 x2

x2 1 x2 x2

x x x x3

.

A combination of graph G and G
′

gives

TGG′ = TG TG′

=


x7 + 2x4 + x3 x5 + x4 + x3 + x2 x5 + x4 + x3 + x2 2x5 + 2x4

x5 + x4 + x3 + x2 x4 + 2x3 + 1 2x3 + 2x2 x5 + x4 + x3 + x2

x5 + x4 + x3 + x2 2x3 + 2x2 x4 + 2x3 + 1 x5 + x4 + x3 + x2

2x5 + 2x4 x5 + x4 + x3 + x2 x5 + x4 + x3 + x2 x7 + 2x4 + x3

 .
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And finally the partition function for GG′ is given by

ZGG′ = 2x7 + 12x5 + 18x4 + 18x3 + 12x2 + 2.

3.2.2 Boundary Condition

Here we present two types of boundary condition that we consider in this thesis.

The boundary conditions are called open and periodic boundary conditions (we refer

to § 2.1.3 and also [58]).

We say a lattice has an open boundary condition when there is no connecting

edge between two exterior vertices. Otherwise, it is a periodic boundary condition.

u u'

Figure 3.4: 5 by 5 square lattice with periodic boundary in vertical direction.

Figure 3.4 shows a 5 by 5 square lattice with both types of boundary condition.

The grey coloured particles correspond to the exterior sites of the lattice. The

disconnected dashed lines correspond to edges connecting the first and the lowest

rows whereas there is no edge connecting the first and the last column. The latter

shows an open boundary condition in horizontal direction and the former refers to

the periodicity in vertical direction. We had assumed an open boundary condition

for all previous examples.

For N,M ∈ N, let N by M be the size of any square lattice graph Γ with N row

and M column vertices. Let T be the transfer matrix. The partition function for
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lattices with open horizontal boundary conditions is defined as [58].

Zopen =
∑
ij

(T M)ij (3.10)

The partition function for a lattice with periodic boundary condition in all directions

eventually becomes a trace of the matrix.

Zperiodic =
∑
ii

(T M)ii = tr(T M). (3.11)

3.2.3 Symmetry on graph

Here we present some available symmetries in some lattices which will further speed

up the calculation for partition function [58].

The implementation of the symmetries in the computation is as follows. We

classify all the configurations σ ∈ Ω into some subsets of Ω. We call them a symmetry

class where its elements are the result of the translation, spin, reflection and rotation

symmetries.

All the microstates that are related to each other by these symmetries are

categorised into the same subset. Here only one configuration is chosen as the

class representative. The transfer matrix is then represented by this representative

configuration from each symmetry class. This matrix is a ‘reduced’ transfer matrix

and is used for numerical computation.

For Q = 2, the spin symmetry is obvious with only 1 choice of permutation

between spin 1 and 2. For Q > 2, we describe the spins permutation by symmetric

group.

Definition 3.2.3 (Symmetric group [63]). Let n ∈ N be a positive integer. The

group of all permutations of a set A with n elements is called the symmetric group

on n symbols and will be denoted as Sn.

One way to describe the role of representative configuration is by the construction

of a representative vector from the reduced transfer matrix. Let Ωi ⊂ ΩNM be a set
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of configuration for a symmetry class i and ΩNM is the set of all configurations for

N by M lattice. The reduced transfer matrix TS has entries denoted as (TS)ij with

row index i and column index j.

We denote a representative vector of symmetry class as R with each its entry

Ri is associated with the symmetry class i. Let R = {R1,R2, ...}, we take

Ri =
∑
j

(TS)ij .

Each entry in TS corresponded to a specific representative element in R (based on

which Ωi the column configuration belongs to. See example 3.2.4). The number of

elements in each class i is given by |Ωi| = Mi where
∑
i

|Ωi| = |ΩNM |.

Here we are working with matrix-vector multiplication to build M lattice layers.

Each multiplication gives new representative vector R. Here we add another

notation as in R(m)
i to indicate the recurrence relation (eg. m = 2 means second

multiplication which build the third layer) where m = 1, 2, ...,M − 2 and M > 2.

Let R(1)
i = Ri, each matrix-vector multiplication gives new entries for R, i.e.

R(m+1)
i =

∑
j

(TS)ijR(m)
k (3.12)

where R(m)
k when k = 1, 2, ... is the representative class associated with element Tij.

Then the partition function for N by M lattice is given by

Z =
∑
i

MiR(M−1)
i (3.13)

where Mi is the number of elements in each class i. For an example of symmetry

class, consider example 3.2.4.

Example 3.2.4. Consider a 4 by 2 square lattice of 2-states Potts model with open

and periodic boundary condition in horizontal and vertical direction respectively as

shown in Figure 3.5.

Let Ωi ⊂ Ω be the configurations in the first column with Ωi =
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Figure 3.5: 4 by 2 square lattice with periodic boundary condition in vertical
direction.

{(a1, a2, a3, a4)|ai = 1 or 2}. We have a list of symmetry class for the first column

of the lattice as follows.

Ω1 = {(1, 1, 1, 1), (2, 2, 2, 2)}

Ω2 = {(1, 1, 1, 2), (2, 1, 1, 1), (1, 2, 1, 1), (1, 1, 2, 1),

(2, 2, 2, 1), (1, 2, 2, 2), (2, 1, 2, 2), (2, 2, 1, 2)}

Ω3 = {(1, 1, 2, 2), (2, 1, 1, 2), (2, 2, 1, 1), (1, 2, 2, 1),

Ω4 = {(1, 2, 1, 2), (2, 1, 2, 1)}

|Ω| = 24 = |Ω1|+ |Ω2|+ |Ω3|+ |Ω4| = 16.

Then the reduced transfer matrix is

TS =


x8 x7 x7 x6 x7 x6 x6 x5 x7 x6 x6 x5 x6 x5 x5 x4

x5 x6 x4 x5 x4 x5 x3 x4 x4 x5 x3 x4 x3 x4 x2 x3

x4 x5 x5 x6 x3 x4 x4 x5 x3 x4 x4 x5 x2 x3 x3 x4

x2 x3 x1 x2 x3 x4 x2 x3 x1 x2 x0 x1 x2 x3 x1 x2


(3.14)

and the partition function for this 4 by 2 lattice case is

Z =
∑
i

∑
j

|Ωi|(TS)ij

= 2x8 + 8x7 + 24x6 + 56x5 + 76x4 + 56x3 + 24x2 + 8x+ 2.

The space and spin symmetries are very useful in reducing the number of

computations for the transfer matrix multiplication.
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3.3 Zeros of partition function

We study the analytical properties of partition function by setting Z = 0 [53, 80].

Here we state the numerical method used for zeros finding approximation. Consider

the fundamental theorem of algebra below.

Theorem 3.3.1 (Fundamental Theorem of Algebra). Given any positive n ≥ 1

and any choice of complex numbers a0, a1, ..., an, such that an 6= 0, the polynomial

equation anz
n + ...+ a1z + a0 = 0 has at least one solution z ∈ C.

See [53, p. 151] for the proof.

The fundamental theorem of algebra states that every non-constant single-

variable polynomial with complex coefficients has at least one complex root. This

includes polynomials with real coefficients.

In this study, we use a Newton-Raphson (NR) method [81] to find the complex

root of the partition function. All programs use a C++ programming language.

This method is described in Appendix §A.

We have shown the computational approaches used for the study on partition

function in this chapter. The zeros of partition function for specific models are

discussed in the next three chapters. We begin by presenting the case of Ising model,

followed by Q-state Potts models and then continue with ZQ-symmetric models.
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Square lattice Ising model

partition function zeros

This chapter is focused on the study of Ising model partition function on finite size

square lattice. We derive the partition function of the Onsager’s Ising model [40, 75]

in the first section. Then the partition function for finite size square lattice and its

zeros are computed in the next section. The zeros are plotted into the complex-e2β

Argand plane.

A function σI : V → {1,−1} is called a spin configuration for Ising model. We

call the σI spin up for value +1 and spin down for −1. For a given graph Λ and Ω,

we define the Hamiltonian function for Ising model as follows.

Definition 4.0.1. The Hamiltonian of Ising model on graph Λ = (V,E, f) is defined

as HIsing(σI) = −J
∑

〈i,j〉=f(e),
e∈E

σI(i)σI(j).

For writing purposes, we write σI(j) as σj for any j ∈ N. The Ising and Potts

models are related to each other by this relation:

σiσj + 1

2
= δσiσj (4.1)

i.e. when σi, σj = {1,−1}.

47
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4.1 Exact solution − the Onsager’s solution

Here we present the partition function of Onsager’s exact solution on square lattice

Ising model.

Let N,M ∈ N be the number of vertices in vertical and horizontal directions

respectively. Let the partition function Z be produced by multiplication of transfer

matrices (as explained in § 3.2). Recall (3.11) that for spins on N by M square

lattice with periodic boundary condition in all directions, the partition function is

given by

Z = tr(T M)

where T is the transfer matrix.

Alternatively, a lattice graph can be built locally by adding a single local bond

or edge at a time. We could work on the local transfer matrix for each bond to

construct the transfer matrix. We introduce them here.

Let ti be a matrix representing a horizontal edge interaction in i-th row and ti(i+1)

be a matrix representing a vertical edge interaction in i-th and (i+ 1)-th rows. Let

12 denote a 2× 2 identity matrix and for k ∈ N,

1
⊗k
2 := 12 ⊗ 12 ⊗ · · · ⊗ 12︸ ︷︷ ︸

k

is a 2k × 2k identity matrix. We add layer of lattice graph locally by these local

transfer matrices.

Recall x = eβJ . For N ×M lattice, ti and ti(i+1) can be written as

ti = 1
⊗i−1
2 ⊗

 x x−1

x−1 x

⊗ 1
⊗N−i
2
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and

ti(i+1) = 1
⊗i−1
2 ⊗


x 0 0 0

0 x−1 0 0

0 0 x−1 0

0 0 0 x

⊗ 1
⊗N−(i+1)
2 .

1 1'

2 2'

Figure 4.1: Square lattice with local bond construction.

Consider a square lattice as in Figure 4.1. For the local transfer matrix below

(t1, t2, and t1(2)), each edge is added depending only on the vertices 1 and 2. These

vertices are the outgoing vertices for this example. Other vertices are not involve

with this addition. The matrix for the interaction between vertices 1 and 1′ is then

given by

t1 =


x 0 x−1 0

0 x 0 x−1

x−1 0 x 0

0 x−1 0 x


and the matrix for the interaction between 2 and 2′ is given by

t2 =


x x−1 0 0

x−1 x 0 0

0 0 x x−1

0 0 x−1 x

 .



50 Chapter 4

The matrix interaction between 1′ and 2′ is then given by

t1(2) =


x 0 0 0

0 x−1 0 0

0 0 x−1 0

0 0 0 x

 .

The above matrices are called local transfer matrices.

We can express a transfer matrix in this form,

T = V1 V2

=

(
N∏
i=1

ti

)(
N∏
i=1

ti(i+1)

)
(4.2)

where tN(N+1) = tN(1) for a periodic boundary condition in vertical direction.

Example 4.1.1. Let N = 5, then the transfer matrix is given by

T = t1t2t3t4t5t1(2)t2(3)t3(4)t4(5)t5(1).

Theorem 4.1.1 (Perron-Frobenius theorem). Let A be a d-dimensional positive

matrix. Then there exist a unique largest magnitude eigenvalue λ which is itself

positive. The associated eigenvector can be chosen to be positive.

See [69] for the proof.

Suppose that a transfer matrix T has dimension d with real value β. The matrix

T is symmetric and positive since it is associated with real and positive Hamiltonian

function. This allow us to diagonalise matrix T by similarity transformation [13,

p. 549]. For any matrix T , there exist a matrix S such that a diagonal matrix

T̃ = ST S−1. This transform

T −→ ST S−1.

By this similarity transformation, for any M ∈ N,

T M = S−1ST S−1ST S−1S · · ·
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with

T̃ = ST S−1 =


λ1 0 · · · 0

0 λ2 · · · 0
...

...
. . .

...

0 0 · · · λd

 (4.3)

where {λi} are the eigenvalues of the matrix T . This gives

T M = S−1


λM1 0 · · · 0

0 λM2 · · · 0
...

...
. . .

...

0 0 · · · λMd

S . (4.4)

Recall the eigenvalue and eigenvector relation T v = λ v. The ket-vector |i >

has relation T |i >= λi |i > and the bra-vector < j| has relation < j| T =< j|λj,

such that

< i|j >= δij and |i >< j| = 1d

for any i, j = 1, 2, . . . , d and 1d is the d-dimensional identity matrix.

Example 4.1.2. Let T be the transfer matrix and ai, bi ∈ R are associated to any

basis vectors |i > and < j|. For some ai and bi we could have a basis vector given

by equation below. (
1 1 · · · 1

)ᵀ
=

d−1∑
i=0

ai |i >

and (
1 1 · · · 1

)
=

d−1∑
j=0

bj < j| .

By induction,

T |i > = λi |i >,

T 2 |i > = λi T |i >

= λ2
i |i > .
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Then,

T M−1 |i > = λM−2
i T |i >

= λM−2
i λi T |i >

= λM−1
i |i > .

Hence

T M |i > = λMi |i > .

Then we may have a partition function given by

Z =
(

1 1 · · · 1
)
T M

(
1 1 · · · 1

)ᵀ
=

d−1∑
j=0

bj < j| T M
d−1∑
i=0

ai |i >

=
d−1∑
j=0

bj < j|
d−1∑
i=0

aiλ
M
i |i >

=
d−1∑
i,j=0

aibjλ
M
i < j|i >

=
d−1∑
i,j=0

aibjλ
M
i δij

=
d−1∑
i=0

aibiλ
M
i .

By Perron-Frobenius theorem 4.1.1 there exist a unique largest eigenvalue for

any positive matrix. Denote λ0 as the largest eigenvalue, we have

Z = a0b0λ
M
0 +

d−1∑
i=1

aibiλ
M
i (4.5)

= λM0

(
a0b0 +

d−1∑
i=1

aibi

(
λi
λ0

)M)
. (4.6)

Let {λi} be the eigenvalues of T , equivalently, for N by M lattice, the partition
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function

Z = tr(T M) (4.7)

=
d−1∑
i=0

λMi (4.8)

= λM0

(
1 +

d−1∑
i=1

(
λi
λ0

)M)
. (4.9)

For M →∞, the other eigenvalues give only small contribution which leads to

Z ∼ λM0 .

One approach for this exact solution was studied by Kaufman [40]. Kaufman

describes the relation between a transfer matrix problem with a rotational matrix.

Both matrices are linked by matrix algebra. From this relation, the eigenvalue of

a suitable rotational matrix is equal to the eigenvalue of a transfer matrix. See

formulation of this relationship in detail in [92, p. 70 – 86].

We briefly present parts of the derivation of the eigenvalue λ in Appendix §B.

This derivation gives

λM =
N∏
k=1

M∏
r=1

(
K − 2(cos(2πk/N) + cos(2πr/M))

)
(4.10)

where

K =
(1 + e−4β)2

e−2β(1− e−4β)
. (4.11)

Then we have,

ZNM ∼ λM

=
N∏
k=1

M∏
r=1

(
K − 2(cos(2πk/N) + cos(2πr/M))

)
. (4.12)

For y = e2β and C = cos(2πk/N)+cos(2πr/M), each factor in (4.12) can be written
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in a polynomial form when Z = 0. We can find the zeros for each factor where

K − 2(cos(2πk/N) + cos(2πr/M) = 0

e−8β + 2Ce−6β + 2e−4β − 2Ce−2β + 1 = 0

y−4 + 2Cy−3 + 2y−2 − 2Cy−1 + 1 = 0

y4 − 2Cy3 + 2y2 + 2Cy + 1 = 0 (4.13)

for any N by M square lattice with k = 1, 2, ..., N and r = 1, 2, ...,M .

4.2 Ising model on finite lattice case

In this section the zeros of the partition function are plotted in the complex-e2β

Argand plane for Ising model on square lattice. The zeros are computed by the

Newton-Raphson method [81]. The Onsager’s square lattice Ising model has a

periodic boundary condition in the vertical and horizontal directions.

The partition function is derived from equation (4.13) (we refer to Appendix

§B). Since the size is finite, the partition function has positive coefficients. Its zeros

will always lie off the real axis. The closest zeros to the real axis (we call endpoints)

move closer to the real axis as the size increases.

Figures 4.2 to 4.5 show the zeros distributions for Ising model on square lattices

with N = M = 14, 90, 99, 100. Figure 4.3b for example is the enlargement for

N = 90 zeros distribution near the ferromagnetic region (explained later in § 4.5).

We can see that the zeros are very close to the real axis. These zeros distributions

form a pattern of two circles as we increase the lattice sizes. Each distribution has

subsets of points with zeros located exactly on two circles. These two circles are the

loci of the zeros for the square lattice Ising model [50, 99].

At thermodynamic limit, the zeros distribution is manifested by the two circles

shown in Figure 4.6. One of the circles cut the real axis at the critical point 1 +
√

2.
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Figure 4.2: Zeros plane for 14 by 14 square lattice, a) complete distribution and b)
a blow up picture near real axis.
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Figure 4.3: Zeros plane for 90 by 90 square lattice, a) complete distribution and b)
a blow up picture near real axis.
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Figure 4.4: Zeros plane for 99 by 99 square lattice, a) complete distribution and b)
a blow up picture near real axis.
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Figure 4.5: Zeros plane for 100 by 100 square lattice, a) complete distribution and
b) a blow up picture near real axis.
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Figure 4.6: ∞×∞ square lattice Ising model.
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4.3 Finite size effect

The list of zeros distribution of Ising model in previous section (§ 4.2) gives the

evidence that the lattice size has significant effect on the zeros distribution especially

in determining the analytic structure of the zeros distribution. We will see variety of

analytic structure of the finite case with respect to the specific boundary condition

explained later in § 5.1.

Here we consider a simple function for visualising the finite size effect on the

locus of zeros in the complex plane. For example, consider a toy model [58] where

N ∈ N and

Z = xN + 1. (4.14)

The partition function can be written in its zeros form [86] i.e.

Z =
N−1∏
r=0

(
x− e

iπ
N

(1+2r)
)
.

Example 4.3.1. Suppose N = 4, then

Z = xN + 1

= x4 + 1.

The zeros of Z is given by

x4 + 1 = 0

x = 4
√
−1

∼ {e
iπ
4

(1+2r)}; r = {0, 1, 2, 3}.

Similarly, suppose N = 10, then

x10 + 1 = 0

x = 10
√
−1

∼ {e
iπ
10

(1+2r)}; r = {0, 1, 2, ..., 9}.
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Figure 4.7: Zeros plane for N = 10, 20, 50 and 70.

Figure 4.7 shows the zeros distributions for different value of N from equation

(4.14). The zeros are equally distributed in this plane and the gap between two

zeros is decreases as N increases. This distribution has locus of a unit circle where

the zeros cut the real axis at Re(x) = ±1.

The zeros distribution for the Ising model shows similar behaviour as suggested

by the example in Figure 4.7. The zeros for different value of N are distributed in

a specific pattern and become denser as N increases. The endpoints of the zeros

move closer to the real axis.

We show in Figures 4.8 and 4.9 the distributions for the Ising model on square and

cubic lattices in some value of N . Both figures are called the overlay distributions

where we plot the result from two different cases in one complex plane. Note well

here, though, that these results follow a very careful and special choice of boundary

conditions without which the locus of zeros will also experience finite size effect.
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Figure 4.8: Overlay distributions on square lattices with different system size N .
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4.4 Duality relation

We discuss a duality relation for the Ising model in this section. Recall y = e2β

and the duality transformation [58] of the Ising model described in § 2.2 is given by

relation
1

y
→ y − 1

y + 1
.

We can study this relation and see the change in the locus of the zeros. For

a, b ∈ R, y = a+ bi, let
1

y
=
ȳ − 1

ȳ + 1
(4.15)

where y is a complex number and ȳ is its complex conjugate. Then

1

a+ bi
=

a− bi− 1

a− bi+ 1

a− bi+ 1 = (a− bi− 1)(a+ bi)

a2 − 2a+ b2 − 1 = 0

b = ±
√

2a− a2 + 1. (4.16)

Recall that the exact solution has locus of two circles where one of the

interception points is at 1 +
√

2. Plotting relation (4.16) will give a structure which

is the same with one of the circles in the exact solution. At real axis when b = 0,

we have a = 1 +
√

2 that is equal to the point in the exact solution.

From the above observation, the circle in the exact solution that has interception

point at 1 +
√

2 is invariant under a duality transformation. The zeros which are

fixed under the duality transformation (4.15) are just a complex conjugates of one

another. The duality circle has radius
√

2 centered at (1,0) in the complex plane.

An overlay plot of (4.16) with the zeros from specific case of square lattice will

highlight the invariance property. The majority of zeros lie in part of the plane,

exactly on an arc of a circle but not all of the zeros are confined to the circle. Figure

4.10 plot the dual case of a 14 by 14 Ising square lattice together with the complex

conjugation circle (4.16). The zeros are computed directly from relation (4.15).
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Figure 4.10: Distribution of dual zeros for 14 by 14 Ising square lattice and the circle
(4.16).

4.5 Ferromagnetic and antiferromagnetic regions

Here we explain the relation between the complex plane of the zeros distribution

and the ferromagnetic and antiferromagnetic states [41, 46, 68] in a physical system.

The ferromagnetic (ferro) state corresponds to the state where all the molecular

dipoles point in the same direction. Conversely an antiferromagnetic (antiferro)

state corresponds to the state where each molecular dipole tends to point in the

different direction from its neighbours.

Note that the interaction energy J is assumed to be the same for every dipole-

dipole nearest neighbour interaction and x = eβJ . If J > 0, the Hamiltonian function

will be in its lowest energy where all spin variables spin in the same direction. The

system is said to be in the ferromagnetic state. Otherwise, if J < 0, the negative

coupling constant J will force the variables to be anti-align to its neighbour. This

is the antiferromagnetic state.

Since temperature T > 0 gives β > 0, when J > 0, the (0, 1)-region is not

physical i.e. eβJH = 1 for β = 0. Hence the (1,∞)-region corresponds to the

physical state of ferromagnetism. But if J < 0, the e−JβH > 0. Hence the (0, 1)-

region can be interpreted as the antiferro region.
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From this chapter, we see that the study of zeros of the partition function allow

us to study the limiting behaviour of the zeros in the complex plane. The zeros

distribution may suggest the limiting behaviour of a bulk system at large enough

lattice size.

For comparison, we describe the result for the 2-state Potts model in different

boundary conditions. We present their zeros distributions and observe any zeros

structure in the next chapter.
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The Q-state Potts model partition

function zeros

This chapter presents the zeros for the Q-state Potts model partition function for

several lattice types and Q = 2, 3, 4, 5, 6. Recall that the partition function for a

given lattice Λ = (V,E, f) and Q is defined as

ZPotts =
∑

σ∈Hom(V,Q)

exp(−βHPotts(σ))

whereHPotts is as in Definition 1.1.5. We consider two- and three-dimensional lattice

graphs as described in Chapter 2.

The zeros are plotted in a complex-eβ Argand plane for observation. The zeros

distributions for a given lattice type are arranged in increasing sizes.

As discussed in § 2.1.1 and § 4.2, we may search for the convergence sequence

of analytic structure from the zeros distribution. We search for the structure or

pattern formed by the collection of zeros in the complex plane.

The partition function calculation for lattices bigger than the previously studied

case [9, 23, 58, 60, 77] will be one new finding in this thesis. In § 2.1.1 we explained

why results for larger finite lattice sizes of a given type are valuable.

Recall in Chapter 4, we showed the emergence of pattern of zeros structure

63
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as we change the lattice size. Then we relate them to the critical point in the

thermodynamic limit in the example of square lattice Ising model [40].

x

y

Figure 5.1: Number of row vertices denoted y (also we denote this y = N) and
column vertices denoted x (also we denote this x = M).

Main results

Table 5.1: Largest sizes for all considered lattice types including the new results
(highlighted in grey).

Q 2 3 4 5 6

Square
20x20’ 13x13’ 10x10’ 8x9’ 8x9’

14x14’ 11x13’ 9x9’ 9x9’
15x17’ 12x13’ 10x13’

Triangular

13x13’ 13x13’ 7x7’ 7x7’
14x14’ 14x17’ 8x8’ 8x8’
15x15’ 9x9’

10x10’
11x13’

Hexagonal 18x18’ 12x12’ 10x13’
Cubic 5x5x5’ 3x4x10’ 3x3x10’ 3x3x5’ 3x3x6’

Tetragonal (hcp)
3x3x7’ 3x3x7’
3x4x7’ 3x4x7’
4x4x7’

Octagonal (fcc)
3x3x7’ 3x3x7’
3x4x7’ 3x4x7’
4x4x7’

First we give the notation for specifying a graph Λ in the case of square or

cubic lattice type. Let Nx, Ny, Nz correspond to the number of vertices in the three
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directions x, y and z. We write Nx × Ny × Nz for periodic boundary conditions in

each direction. A notation with prime such as N ′z for z direction represents the open

boundary condition. Note that Ny ×Nx and Nx ×Ny ×Nz represent the two- and

three-dimensional case respectively. We write (Ny × Nx) for the dual lattice and

(Ny ×Nx)
′ corresponds to the self-dual lattice as defined in § 2.2.

Table 5.1 summarises the lattices considered in this thesis for Q-state Potts

models. Each result of zeros distribution for different lattice graph is discussed in

separate section.

Three new results extending the existing literature such as in [59, 92] for the

3-state Potts model on square lattice are produced for N = 13, 14, 15. We have also

produced new results for the triangular lattice for 2-, 3-, 4- and 5-state Potts model.

The octagonal and tetragonal lattices are another new cases we have considered for

this thesis.

We have considered all computable cases up to specific lattice sizes (based on our

current computing resources). For cubic lattice however, we could not produce a new

result due to computing limitation. The number of configurations in one layer of the

5× 6× 5′ for example, contains 30 vertices (5 column in z-axis and 6 row in y-axis).

This equivalent to 230 configuration states. This huge number of states however,

exceed the maximum value of the standard integer in the computer. For comparison,

each 1 step expansion in the square lattice involves only an increment of Q2N . This

number of configurations is much smaller than the lattice layer configuration state

for cubic lattice i.e. for Q2N2

.

Each case except for the 2-state Potts model has periodic vertical and open

horizontal boundary conditions. We consider this type of boundary condition since

we could produce a zeros distribution that is not fuzzy especially in the ferromagnetic

region. This boundary condition also has translation symmetry in the vertical

direction which is essential to reduce the number of computations. The computer

program for computing the partition function in this thesis is designed to use a

matrix-vector multiplication. This strategy is implemented to reduced the memory
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usage in the computing resources.

Previous results

The Onsager’s partition function for square lattice Ising model allows us to find the

zeros distribution for any square lattice size (but in general for boundary conditions

different from ours − as given in Chapter 4). The paper by Chen, Hu and Wu [16] is

another example for the study on square lattice with self-dual boundary conditions.

The previous largest result for the 3-state Potts model on square lattice was due

to Martin [59] where he produced 12 × 13′ square lattice. Similar to this, Valani

also considered the 3-state Potts model on a (12 × 16)′ self-dual square lattice. In

addition to this, Matveev and Shrock [61] in the earlier paper showed the result for

10 by 8 lattice for several boundary conditions. Valani in his thesis [92] produced

the zeros distributions for state Q = 2, 3, 4, 5, 6 for different boundary conditions.

Furthermore, the Ising model on hexagonal lattice had been previously studied

by Feldman, Shrock and Tsai [25] on 24 by 18 and also 20 by 20 lattice sizes.

They also considered for the Q = 3, 4 on hexagonal lattice particularly for 12× 16′

lattice. By duality transformation, Feldman, Guttmann, Jensen, Shrock and Tsai

[24] plotted the zeros distribution for triangular lattice up to boundary condition

similar to 12 × 9′ and 10 × 10′ for Q = 2 and 6 × 8′ for Q = 3, 4. They consider

several types of boundary condition including all periodic and also mixed periodic

and open boundary conditions. Martin and Maillard [60] on the other hand extended

the triangular lattice for 3-state Potts model for 108 sites i.e. 12 by 9 lattice.

In addition, Pearson [77] described the Ising model on 4×4×4 cubic lattice and

then Bhanot and Sastry [9] presented two steps larger with 4× 5× 5′ cubic lattice.

The latest and largest lattice for the cubic case however still due to Valani [92]. In

his thesis, he discussed a sequence of cubic lattices up to 5× 5× 10′.
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5.1 2-state Potts (Ising) model on square lattice

− revisited

As a check for the programs we start with running them on the exactly solved case

of square lattice 2-state (Ising) Potts model. The comparison between the result of

zeros distribution at limit and at finite sizes is also presented here. We consider the

finite case restricted to some boundary conditions.

-2

-1

 0

 1

 2

-2 -1  0  1  2

14x14

(a)

-2

-1

 0

 1

 2

-2 -1  0  1  2

50x50

(b)

Figure 5.2: Square lattice Ising model with Onsager’s partition function a) 14× 14
and b) 50× 50.
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Figure 5.3: ∞×∞ square lattice Ising model.

The square lattice Ising model zeros distribution is discussed in § 4.2 where the
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lattice size is varied. See Figures 5.2 and 5.3. All the zeros lie on the subsets of

points with zeros forming two circles. It is evidence from here that the zeros are

distributed in a pattern of two circles. This is their limiting locus of points. At

thermodynamic limit, the two circles is shown in Figure 5.3. We refer to Chapter 4

for other zeros distribution for this model. The zeros distributions for all the finite

cases are produced using our own computation.

Figures 5.4 and 5.5 show the zeros distributions for square lattice with open

boundary and periodic boundary in horizontal and vertical directions respectively.

See Figure 5.4f. The limiting two circles are drawn in this figure. As the lattice

size increases, the zeros are approximately approaching the two circles. Notice that

some of the zeros are distributed exactly on these circles. The endpoints near the

real axis getting closer to the real axis.

Consider for example the 8 by 8 and 14 by 14 square lattices. The overlay zeros

distributions with the zeros generated from Onsager’s partition function (4.13) are

shown in Figure 5.6. The distributions are different relative to their boundary

conditions. The locus at thermodynamic limit is drawn as two incomplete circles.

5.1.1 The effect of boundary conditions

To highlight further the boundary effect on the zeros distribution, we present the

square lattice of same lattice size with all the considered boundary conditions.

Consider the zeros distribution in Figure 5.7 for periodic-periodic boundary

conditions. The distributions show the existence of symmetries under inversion

of a unit circle x → 1

x
, complex conjugation, duality relation and the sign reversal

symmetry x→ −x. This is a complete 8 symmetries.

When N is an even number, this gives an exact symmetry which satisfies all the

8 symmetries. When N is odd number, the distribution has only an approximated

inversion of a unit circle. For even N , the spin configuration state can forms a

checkerboard pattern where every vertex is allowed to point in different direction

from its nearest neighbour.
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Figure 5.4: 2-state, square lattice with periodic-open boundary conditions.
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Figure 5.5: 2-state, square lattice with periodic-open boundary conditions (cont.).
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Figure 5.6: Zeros distributions for N = 8, 14 square lattices: ons-8×8 and ons-14×14
are generated from the Onsager’s partition function (4.13).
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Figure 5.7: 2-state, square lattice with periodic-periodic boundary conditions.
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Figure 5.8: 2-state, square lattice with self-dual boundary conditions.
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Figure 5.8 shows the distribution for the 2-state Potts model on square lattice

with self-duality condition. A smooth zeros distribution is forming a pattern of a

circle in the physical region.
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Figure 5.9: 2-state, square lattice with different boundary conditions.

Figure 5.9 shows the zeros distributions for the 6 by 6 square lattice with different

boundary conditions. The zeros for model with mixed periodic and open boundary

conditions (Figure 5.9b) are distributed around two circles but mostly are not exactly

lie on the limiting two circles. In contrast, the zeros for self-dual lattice case (Figure

5.9c) shows a clear line distribution especially in the positive real axis part (first

and forth quadrant). The two circles are apparent even at small lattice size.
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5.2 3-state Potts model on square lattice

Here we present the zeros distribution for the 3-state Potts model on a square

lattice with periodic vertical and open horizontal boundary conditions. The study

for higher state Q > 2 is interesting because until now there is no exact solution

found for these cases.

In Figure 5.10, a structure which we call a branch can be seen in the non-physical

axis (−∞, 0]. This branch is related to the (0, 1) antiferro region by the duality

transformation (2.11). The increment in size shows multiple branch structures start

to get closer to the real axis. Close to real axis, we observe an arm of dense zeros

in the antiferro region. In the first and forth quadrants, an arc of a smooth circle is

also observed. Note that the different structure between odd and even N is due to

the finite size effect.

See particularly the new results for N = 13, 14 and 15 in Figures 5.12 to 5.14.

Figure 5.15a shows the overlay distribution of zeros for N = 12, 13 and Figure 5.15b

for N = 14, 15. The different in the non-physical region is particularly obvious

between these figures (also see Figure 5.16).

Nevertheless, the zeros curves are the same for all cases at the (1,∞) ferro

region except that their ending points have different value. The endpoint here is

represented by the closest point near the real axis. The biggest size N = 15 has the

closest point to this axis as compared to other sizes N < 15.

Figures 5.17 and 5.18 in addition emphasize the enlargement of the zeros

distribution for N = 12, 13, 14 and 15 especially for the physical regions.

Correspondingly, the zeros structure in the antiferro region moves closer to the

real axis.

Although we expect that the closest point to the real axis comes from the largest

case, Figure 5.16 shows otherwise. The closest point in this region is represented by

the zeros from N = 14. As discussed earlier, we know that the partition function is

always affected by the finite size effect.
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Figure 5.10: 3-state, square lattice with periodic-open boundary conditions.
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Figure 5.11: 3-state Potts model on 12 by 12 square lattice.
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Figure 5.12: 3-state Potts model on 13 by 13 square lattice.
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Figure 5.13: 3-state Potts model on 14 by 14 square lattice.
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Figure 5.14: 3-state Potts model on 15 by 17 square lattice.
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Figure 5.15: 3-state Potts model on a) 12 × 12′ and 13 × 13′ and b) 14 × 14′ and
15× 17′ square lattices.
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Figure 5.16: Antiferro [0,1]-region: 3-state Potts model on N = 12, 13, 14, 15 square
lattices.
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Figure 5.17: Zoom in: 3-state Potts model on 12× 12′ and 13× 13′ square lattices.
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Figure 5.18: Zoom in: 3-state Potts model on 14× 14′ and 15× 17′ square lattices.
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5.2.1 Self-duality partition function

We investigate the duality transformation for the 3-state Potts model on square

lattice in this section.

On an infinite lattice, the square lattice is self-dual where the partition function

is invariant under the duality transformation (2.11) given by

x↔ x+ (Q− 1)

x− 1
. (5.1)

Similarly, this duality transformation gives the same mapping for the zeros of the

partition function. But for a finite lattice the effect of the transformation depends

on the boundary conditions. However the boundary effect will be reduced at large

lattice size when the partition function is approximately self-dual.

The zeros of the Ising model partition function lie on the locus of two circles

where the dual for each zero must be its complex conjugate. Recall from § 4.4 that

in this model the duality circle has radius
√

2 centered at (1,0) in the complex plane.

Similarly, for the 3-state Potts model we may deduce its locus of zeros by this duality

transformation. In this case the circle has radius
√

3 centered at (1,0) (see Figures

5.19 and 5.20).

Generally, a self-dual polynomial partition function may be constructed from a

linear combination of partition functions from various boundary conditions [26, 54,

55]. Recall also the dual graph relation in § 2.2. Let Zd be the dual of Z given by

Z

(
x+ (Q− 1)

x− 1

)
= Zd(x).

Here we will construct the linear combination of partition functions, denoted Z∗

which preserve the self-duality condition. Let M ∈ N be the degree of Z, then

Z∗(x) =
1

(x− 1)M/2
Z(x) + Zd(x) (5.2)
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where

Z∗
(
x+ (Q− 1)

x− 1

)
= Zd(x) +

1

(x− 1)M/2
Z(x)

= Z∗(x).

The polynomial Z∗ has zeros distribution which lie on an arc of a circle that

is invariance under duality transformation. This transformation corresponds to a

zeros complex conjugation but not all the zeros are confined in that circle [34, 58].

This circle is given by

eβ =
1−Q

1 +
√
Qeiθ

for 0 ≤ θ ≤ 2π . (5.3)

The zeros distribution for Z∗ on 12 by 12 and 13 by 13 square lattice with open

horizontal and periodic vertical boundary conditions for Q = 3 are presented in

Figure 5.19.
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Figure 5.19: Zeros distribution for polynomial Z∗: a) N = 12 and b) N = 13.

Figure 5.20 in addition plots the overlay zeros distribution for the Z,Zd and

Z∗ (denoted as Z ′ in the plane). The incomplete circle in Figures 5.19 and 5.20

correspond to the circle (5.3).
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Figure 5.20: Zeros distribution for polynomial Z,Zd and Z∗ = Z ′: a) N = 14 and
b) N = 15.
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5.3 Q ≥ 4, square lattice Potts model

Here we consider the square lattice Potts model with state Q = 4, 5 and 6.
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Figure 5.21: 4-state, square lattice with periodic-open boundary conditions.
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Figure 5.22: 4-state, square lattice with periodic-open boundary conditions (cont.).

The results of the 4-state case are shown in Figures 5.21 and 5.22. The zeros

distribution in ferro region form a circle-like structure and the endpoints getting

closer to the real axis as the size increases. We call the thick zeros collection that is

very dense in some parts in the complex plane an arm band. In this figure, there is

no obvious arm band in the antiferro region. For the non-physical region however,

there are visible branches of zeros getting denser as the size increases. See this also

in Figure 5.22.

Similarly, Figures 5.23 and 5.24 show the distribution for Q = 5 and 6,

respectively. For both cases, we can see a steady curve in the ferro region as we

change the lattice size. Our result is not large enough to suggest the limiting
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Figure 5.23: 5-state, square lattice with periodic-open boundary conditions.
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behaviour especially in the antiferro region, although a circle-like structure is obvious

in the ferro region.
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Figure 5.24: 6-state, square lattice with periodic-open boundary conditions.
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5.4 On triangular and hexagonal lattice

We know from Chapter 2 that the triangular and hexagonal lattice, up to boundary

condition are dual to each other. This means we can get the hexagonal lattice

distribution from the triangular case and vice versa.

Here we consider Q-state Potts models on triangular and hexagonal lattices

with periodic and open boundary conditions in vertical and horizontal directions

respectively.

For the 2-state Potts model on triangular lattice, the zeros distributions shown

in Figures 5.25 and 5.26 have values near a pattern of a double ‘horseshoe’. The

scattered points are due to the boundary condition and the finite size effect. At the

thermodynamic limit, the zeros distribution is expected to be smooth in this locus.

Figure 5.27 shows the zeros distribution for the 3-state Potts model on triangular

lattice. The positive real axis shows the existence of arcs of zeros approaching the

ferro and antiferro regions.

In addition, the zeros distributions of the 4- and 5-state Potts models on

triangular lattice are presented respectively in Figures 5.28 and 5.29. We can see

the line of zeros approaching the real axis in the ferro region as the size increases.

In the 4-state case, we can see some zeros move closer to the antiferro region as

the size increases. This region either has a transition at the origin or interestingly

at small positive value close to origin. A bigger lattice is needed for studying this

region.

The case for 5-state however has a line of zeros approaching the real axis in ferro

region but not in the antiferro region. Here some branches in the non-physical region

move closer to the origin as the size increases.
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Figure 5.25: 2-state, triangular lattice with periodic-open boundary conditions.
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Figure 5.26: 2-state, triangular lattice with periodic-open boundary conditions
(cont.).
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Figure 5.27: 3-state, triangular lattice with periodic-open boundary conditions.
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Figure 5.28: 4-state, triangular lattice with periodic-open boundary conditions.



94 Chapter 5

-2

-1

 0

 1

 2

-2 -1  0  1  2

4x4’

(a)

-2

-1

 0

 1

 2

-2 -1  0  1  2

5x5’

(b)

-2

-1

 0

 1

 2

-2 -1  0  1  2

6x6’

(c)

-2

-1

 0

 1

 2

-2 -1  0  1  2

7x7’

(d)

-2

-1

 0

 1

 2

-2 -1  0  1  2

8x8’

(e)

Figure 5.29: 5-state, triangular lattice with periodic-open boundary conditions.
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Figure 5.30: 2-state, hexagonal lattice with periodic-open boundary conditions.
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For the 2-state hexagonal lattice in Figure 5.30, the zeros in the physical region

form a pattern looking like a bean, especially in the first and forth quadrants. A

visible locus of small circle near the origin and a ‘bean’-like structure starts to appear

in the physical region as we increase the size. At large enough lattice, it is expected

that the distribution will have smooth structures.

For the 3-state case in Figure 5.31, the zeros are still far from the real axis in the

ferro and antiferro regions. However a short arm at the antiferro region seems to

move into the real axis direction. In the 4-state case, the antiferro region in Figure

5.32 also shows a short branch starts to emerge as we increase the lattice size.

We shall see a duality relation between the zeros distributions of triangular lattice

and hexagonal lattice in the next section § 5.4.1. Note that the hexagonal lattice

has polynomial order that is twice the order of polynomial for triangular lattice.

5.4.1 Duality transformation

Here we present the result from the duality transformation (2.11) on the triangular

lattice. The lattice graph duality relation was described in § 2.2. For example,

consider the zeros distributions as shown in Figure 5.33 to Figure 5.36. We can

produce similar zeros distribution for hexagonal lattice using this transformation.

These examples show the implementation of duality transformation on the

available zeros which gives result for its dual case. The result for a bigger hexagonal

lattice can be produced from the triangular lattice; for example the 24×24′ hexagonal

lattice from 12× 12′ triangular lattice.
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Figure 5.31: 3-state, hexagonal lattice with periodic-open boundary conditions.
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Figure 5.32: 4-state, hexagonal lattice with periodic-open boundary conditions.
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Figure 5.33: 2-state, duality transformation of 11 by 11 triangular lattice with
periodic-open boundary conditions.
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Figure 5.34: 2-state, duality transformation of 12 by 12 triangular lattice with
periodic-open boundary conditions.
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Figure 5.35: 3-state, duality transformation of 11 by 11 triangular lattice with
periodic-open boundary conditions.
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Figure 5.36: 3-state, duality transformation of 12 by 12 triangular lattice with
periodic-open boundary conditions.
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5.5 On cubic lattice

Here we show the zeros distribution for cubic lattice Q-state Potts models with

Q ≥ 2. Figures 5.37 through 5.42 present the zeros distributions for number of

states Q = 2, 3, 4, 5, 6 on cubic lattice with periodic boundary conditions in x and y

direction and open boundary condition in z direction.

The largest 2-state Potts model on a cubic lattice in this thesis is the size 5 ×

5× 5′ (see Figure 5.38c). We checked the result for big cases for example the zeros

distribution for 5× 5× 5′ and 6× 4× 5′ (see Figure 5.38b) are correct as discuss in

Valani’s thesis [92].
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Figure 5.37: 2-state, cubic lattice with periodic-periodic-open boundary conditions.
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Figure 5.38: 2-state, cubic lattice with periodic-periodic-open boundary conditions
(cont.).

For small lattice sizes, no specific pattern can be extracted from the zeros

distribution. But as the size increases, the pattern of zeros becomes more apparent.

This can be seen for example for 4 × 4 × 10 case in Figure 5.37d. The multiple

branches near antiferro region only exist for odd Nx or Ny. This effect is due to the

checkerboard pattern in the configuration. The odd case has no perfect checkerboard

because of the periodic boundary condition. The distribution gives almost complete

inverse symmetry x→ 1

x
.

The zeros distribution for the 3-state cubic lattice is presented in Figure 5.39.

As the size increases the zeros move toward real axis but not in the same locus as

the 2-state cubic case. Again, multiple branches are seen at the antiferro region.
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Figure 5.39: 3-state, cubic lattice with periodic-periodic-open boundary conditions.
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Figure 5.40: 4-state, cubic lattice with periodic-periodic-open boundary conditions.
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Figure 5.41: 5-state, cubic lattice with periodic-periodic-open boundary conditions.
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The zeros distributions for 4-, 5- and 6-state Potts models on cubic lattices are

presented in Figures 5.40, 5.41, and 5.42. The distributions are dominated by the

finite size effect since the pattern is largely changing as the size increases. Although

we can see the zeros move closer to real axis in the ferro region, that is difficult to

conclude exactly for the antiferro part.
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Figure 5.42: 6-state, cubic lattice with periodic-periodic-open boundary conditions.

5.6 On tetragonal and octagonal lattice

The final case that has been considered for the Q-state Potts model is the three-

dimensional cubic lattices with closed packing. Here we consider two types of lattice
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with closed packing known as the face-centered cubic lattice and the hexagonal close-

packed lattice. Respectively, we call this two cases by their regular shapes portrayed

in their lattice layer which are the octagonal and tetragonal lattices.

The zeros of the partition function for the 2-state Potts models on tetragonal

lattice is shown in Figure 5.43. For small Nx and Ny, we can see the pattern of

zeros distribution is changing. As the size increases, the pattern develops into more

clear curve towards stability. We can see more symmetries such as x → −x. A

smooth line of zeros approaching the physical axis is also observed. This suggests

the existence of a positive antiferro transition point.

For the tetragonal lattice 3-state case in Figure 5.44, the distribution is

particularly scattered at some part of the non-physical region including the antiferro

region. In ferro region, the zeros getting closer to real axis with dense line. The

3×3×7′ case in Figure 5.44c shows a line emerges in the antiferro region. The finite

size effect is obvious in these distributions portrayed by the zeros that is scattered

in some parts of the plane.

The zeros distribution for the 2-state octagonal lattice is shown in Figure 5.45.

As the size changes, an arm of zeros starts to form and moves closer to the antiferro

region. The behaviour of this zeros is very similar to the tetragonal 2-state case.

Furthermore, the zeros distributions for the 3-state octagonal cases are shown in

Figure 5.46. Again, the similarity with the tetragonal case is observed. The locus

of zeros in the physical region is more stable as compared to the scattered zeros in

the non-physical region.

For the hexagonal close-packed lattice, the vertices are placed in repeated

tetrahedron shape. This arrangement forms another shape of octahedron at some

middle layer of the lattice. This is similar to the face-centered cubic case. For

this reason, although we portrayed them with different regular shape, the zeros

distribution has a similar pattern of distribution. In all these four cases in this

section, the zeros endpoints in ferro region are very close to the real axis.
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Figure 5.43: 2-state, tetragonal lattice with periodic-open boundary conditions.
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Figure 5.44: 3-state, tetragonal lattice with periodic-open boundary conditions.
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Figure 5.45: 2-state, octagonal lattice with periodic-open boundary conditions.
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Figure 5.46: 3-state, octagonal lattice with periodic-open boundary conditions.

5.7 Discussion

We have considered many computable cases of Q-state Potts models on sequence of

crystal lattices from two-dimensional to three-dimensional cases. For each case, we

vary the lattice size and continue to investigate the model for given Q spin directions.

We are interested to investigate the zeros distribution analytic structure particularly

in the physical region.

The locus of points for the 2-state Potts model on square lattice for example

satisfies the result in Chapter 4 i.e. two circles. The exact solution of Ising model

on square lattice by Onsager is the benchmark for checking our computation.
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For Q > 3, Q-state Potts models on square lattices show the line of zeros

distribution that is smooth in ferromagnetic region. As the size increases, we can see

the zeros form a nice arc approaching the real axis. However, no visible structure is

manifested in the antiferromagnetic (0, 1)-region. Similar behaviour is observed for

zeros distribution on triangular and hexagonal lattices for Q = 4.

Although the 2-state Potts model on triangular lattice suggests no interesting

structure in the antiferro region, its dual case of hexagonal lattice shows otherwise.

The hexagonal lattice shows the presence of the transition point at ferro and

antiferro regions. Conversely, the 3-state Potts model on triangular lattice has

similar behaviour.

The behaviour of zeros near the positive real axis is understood to be a

corresponding to the behaviour of a physical property near a phase transition [56, 60].

The locus of points formed by the approximation of the zeros distribution near the

limiting size can suggest a particular point on the real axis. The locus cut the real

positive axis at a singular interception point. It corresponds to the critical point

where the system change phases.

For finite lattice, the zeros distribution is always affected by the finite size effect.

For small cases, this effect is dominating the partition function. As the size increases

for a good model, the fuzziness in the distribution (as shown in Figure 5.4) will

eventually stabilise into a limiting pattern of the zeros distribution. From there

a good approximation for the locus of points can be inferred. A stable limiting

zeros distribution is essential to estimate the critical exponents [101] (as explained

in Chapter 7) of phase transition.

The cases that have been considered corresponds to the types of crystal lattice

in solid state [31, 85]. In the next chapter we will consider another model which is

related to Q-state Potts model. The model is called the ZQ-symmetric model.
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The ZQ-symmetric model partition

function zeros

We continue with one more model that is related to the Q-state Potts model called

the ZQ-symmetric model [57, 58]. In this chapter we describe several particular cases

of spin states Q = 5, 6 on square lattice. As before, the Hamiltonian function for

this model is defined and the partition function will then be computed. The energy

relation is studied and the zeros distribution of the partition function is presented

in the complex-eβ plane.

The ZQ-symmetric model is suitable to study a system with many spin directions

especially for Q > 4 and to study a system with possibly multiple phase transitions.

Let Λ = (V,E, f) be a graph. By Definition 1.1.5, the Hamiltonian function of theQ-

state Potts model is defined by H : Ω→ R. For any σ ∈ Ω the Hamiltonian function

H can be written in general function g : Q×Q→ R where (σi, σj) 7→ g(σi, σj), that

is

H(σ) = −J
∑

〈i,j〉=f(e),
e∈E

g(σi, σj).

Without loss of generality, the function g can be rescaled to be g′(σi, σj) =

γ1g(σi, σj) + γ2 where γ1, γ2 ∈ R are rescaling factors. The rescaling factor is also

present in the relation (4.1) between Ising and Potts models.

113
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6.1 ZQ-symmetric model − definitions

We write the definitions for the ZQ-symmetric model in this section. The idea of

this model is that the spin directions are drawn in a clock-like circle. Each spin

direction is associated with an interaction energy of one spin relative to another

spin, written outside of the circle. As we move any pair of spin direction with fixed

angle around the clock, the energy difference will always remains the same. This

property represents the symmetry for this model.

1

23

1

γ1γ2

(a)

1

23

1

γ1γ2

(b)

1

23

1

γ1γ2

(c)

Figure 6.1: The interaction of a spin relative to spin 1 represented by a pair of arrow.

We restrict our study into the case with positive energy value. Given graph

Λ = (V,E, f), let the space of spin configuration for the ZQ-symmetric model be

similar to the Q-state Potts model. A function σ : V → Q = {1, 2, ..., Q} is a spin

configuration for a ZQ-symmetric model.

For any microstate σ ∈ Ω we define the Hamiltonian function of the ZQ-

symmetric model below.
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Definition 6.1.1. The Hamiltonian of ZQ-symmetric model is defined as

Hχ(σ) = −J
∑

〈j,k〉=f(e),
e∈E

χ[σ(j)− σ(k)]

= −J
∑

〈j,k〉=f(e),
e∈E

[Q
2

]∑
r=1

γr cos

(
2πr(σ(j)− σ(k))

Q

)
+ γ′r (6.1)

where [Q/2] is the discrete value of the division and γr, γ
′
r ∈ R are model parameters

fixed for a given model.

The calculation of the Hamiltonian (6.1) depends on the distance between two

spin directions or simply by the angle separating them. Two spin directions that

are close together will lose less energy as compared to the spin directions with large

angle. This energy loss is called the energy penalty. The pair of spin variables

(σ(j), σ(k)) that point in the same direction is equivalent to the Potts model. For

fixed γ1 = 1 and γr 6=1 = 0, the Hamiltonian function is reduced to the Clock model

[93].

Example 6.1.1 shows the calculation of the Hamiltonian for each interacting pair

of spins. The existence of spins symmetry is also observed through this example.

Example 6.1.1. Let Q = 3 and the energy value for each pair of spin variables

is represented by Table 6.1. Let gr(σ(j), σ(k)) = cos(2πr(σ(j) − σ(k))/Q) and

[Q/2] = 1.

Table 6.1: gr(σ(j), σ(k)) for Z3-symmetric model.

σ 1 2 3
1 1 −1/2 −1/2
2 −1/2 1 −1/2
3 −1/2 −1/2 1

This table of gr can be rescaled to g′r(σ(j), σ(k)) = γr gr(σ(j), σ(k)) + γ′r =
2

3
gr(σ(j), σ(k)) +

1

3
. This example is now reduced to the 3-state Potts model as

shown in Table 6.2.
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Table 6.2: g′r(σ(j), σ(k)) for Z3-symmetric model.

σ 1 2 3
1 1 0 0
2 0 1 0
3 0 0 1

For the Potts model, a pair of nearest neighbour vertices pointing in the same

direction gives an energy value 1 and 0 otherwise. This choice of value corresponds

to a large energy penalty. For the ZQ-symmetric model, the energy value is between

0 and 1. The cases with Q = 2, 3, and 4 are covered by the Potts and Ising models.

The interesting case for this model is thus given by Q > 4.

Figures 6.1 and 6.2 give illustrations of the following statement. The energy

values of the model can be written as a list of possible choices of energy χ̃ =

(χ̃[0], χ̃[1], χ̃[2], ...) ∈ [0, 1]. The χ̃ is a list of energy between Q different spin

directions. The arrows in the clock correspond to the spin directions of one spin

relative to spin 1. The list is arranged in the order of increasing angles relative to

one spin direction.

We consider the value of energy on the clock that has reflection symmetry (see

Figure 6.2). We write the energy list up to half of the total spin direction i.e.

χ̃ = (χ̃[0], χ̃[1], ..., χ̃[n]) where n =
Q

2
if Q is even and n =

Q− 1

2
if Q is odd. Let θ

be the angle between 2 spin directions. The energy value 1 corresponds to cos θ = 1

(i.e. θ = 0) and energy value 0 corresponds to cos θ = 0 (i.e. θ = π/2).

In all cases, we let the first element χ̃[0] = 1 and the last element χ̃[n] = 0.

Figure 6.2 illustrates the arrangement of this energy list for Q = 4, 5 and 6 where

χ̃ = (1, χ̃[1] = γ1, χ̃[2] = γ2, ...). The χ̃ = (1, γ1, 0) corresponds to the case with spin

state Q = 4, 5 and the χ̃ = (1, γ1, γ2, 0) corresponded to Q = 6.

Similar to the Potts model, the number of calculations can be reduced by using

symmetry. For this model we are able to translate all the spin directions around the

clock.

The energy list χ̃ can be rescaled into discrete number by multiplying with an
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Figure 6.2: The illustration of energy list with: (a) χ̃a = (1, γ1, 0), (b) χ̃b = (1, γ1, 0),
and (c) χ̃c = (1, γ1, γ2, 0).

appropriate integer, i.e. χ = Cχ̃ where C ∈ N. The energy value can be chosen in

this range 0 ≤ χ[i] ≤ C. See Example 6.1.2.

Example 6.1.2. See Figure 6.3. Suppose the spin state has Q = 4. The energy list

χ̃ = (1, 2/3, 0) corresponds to

g(σ1, σ1) = 1,

g(σ1, σ2) = 2/3,

g(σ1, σ3) = 0,

g(σ1, σ4) = 2/3.

Without loss of generality, the new energy list is χ = 3χ̃ = (3, 2, 0) which
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Figure 6.3: The illustration of Z4-symmetric model with energy value χ̃ = (1, 2/3, 0)
(left) and χ = 3χ̃ = (3, 2, 0) (right).

corresponds to

g′(σ1, σ1) = 3,

g′(σ1, σ2) = 2,

cg′(σ1, σ3) = 0,

g′(σ1, σ4) = 2.

To show how the energy list χ is related to Hamiltonian Hχ, we give example

for Q = 4 and Q = 6.

Example 6.1.3. Let Q = 4. For χ = (χ[0], χ[1], χ[2]) = (2, 1, 0) the Hamiltonian is

given by

H(2,1,0)(σ) = −J
∑

〈j,k〉=f(e),
e∈E

χ[σ(j)− σ(k)]

= −J
∑

〈j,k〉=f(e),
e∈E

1 + cos

(
π(σ(j)− σ(k))

2

)
(6.2)

where γ1 = γ′1 = 1 and γ2 = γ′2 = 0.

Example 6.1.4. Let Q = 6. For χ = (χ[0], χ[1], χ[2], χ[3]) = (2, 1, 0, 0) the
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Hamiltonian is given by

H(2,1,0,0)(σ) = −J
∑

〈j,k〉=f(e),
e∈E

χ[σ(j)− σ(k)]

= −J
∑

〈j,k〉=f(e),
e∈E

2

3
+ cos

(
π(σ(j)− σ(k))

3

)

+
1

3
cos

(
2π(σ(j)− σ(k))

3

)
(6.3)

where γ1 = 1, γ′1 = 2/3, γ2 = 1/3, and γ′2 = γ3 = γ′3 = 0.

The partition function for the ZQ-symmetric model on Λ is given by (1.1), i.e.

Z =
∑
σ∈Ω

exp(−βHχ(σ))

where Hχ is as in Definition 6.1.1.

Let N,M ∈ N. We consider a ZQ-symmetric model on a square lattice of N by

M size. We restrict our study of partition function for the case of mixed boundary

condition i.e. periodic in vertical direction and open in horizontal direction. We

denote the energy penalty between two spins in the energy list χ by an energy step

notation given by value (χ[1]− χ[0], χ[2]− χ[1], ...)-step. We will use this notation

later for comparing the χ values.

6.2 The zeros distribution on square lattice

Here we present the result of the zeros distribution of the partition function for Z5-

and Z6-symmetric models.

The figures of zeros distribution are arranged in increasing lattice sizes for

respective χ value. Table 6.3 shows all the cases under study for Z5- and Z6-

symmetric models in this chapter.

Our hypothesis is that the emergence of circular arcs in the physical region

can be used to determine the number of phase transitions for a physical system
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[58]. Multiple arcs of zeros approaching the real axis correspond to the existence of

multiple phase transitions.

Table 6.3: The Z5- and Z6-symmetric models with arbitrary χ. New results are
highlighted grey.

χ 5x5’ 6x6’ 6x7’ 7x7’ 8x8’ 9x9’

Q=5

(2,1,0) X X X X X X
(3,1,0) X X X X X X
(3,2,0) X X X X X X
(4,1,0) X X X X X X
(4,3,0) X X X X X X
(5,3,0) X X X X X
(5,4,0) X X X X X
(6,1,0) X X X X X
(6,5,0) X X X X X

Q=6

(2,1,0,0) X X X X X
(2,1,1,0) X X X X X
(3,1,0,0) X X X X X
(3,2,0,0) X X X X X
(3,2,1,0) X X X X X

6.2.1 5-state: Z5-symmetric

Consider the Z5-symmetric model on finite size square lattice with some energy

value χ. The study on 6 by 7 square lattice which was described by Martin [58] is

our reference for checking and comparison.

Figure 6.4 shows the zeros distribution of Z5-symmetric model with χ = (2, 1, 0).

The χ value has a (1,1)-step energy penalty. In the antiferro region, two behaviours

are observed. For even N , few lines indicated in Figure 6.4 are merged forming

single curve move closer to the real axis. As the lattice size increases, a clear curve

is observed. For odd N , we see multiple lines are approaching the antiferro region.

In the ferro region, as the number of vertices N increases, the zeros show the

emergence of multiple lines near the real axis. It is not clear either the lines will

remain or merge to form a thin arm suggesting single phase transition. The case

of χ = (2, 1, 0) for 6 by 7 square lattice has been described by Martin [58] in the
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Figure 6.4: Zeros distribution for χ = (2, 1, 0) 5-state model.
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complex-e−β plane. He shows that this case has only 1 transition in the ferro region.

That case is just the inverse version of the one presented in Figure 6.4c.
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Figure 6.5: Zeros distribution for χ = (3, 1, 0) 5-state model.
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Figure 6.6: Zeros distribution for χ = (3, 2, 0) 5-state model.



124 Chapter 6

Next, we present the distribution of χ = (3, 1, 0) in Figure 6.5 and χ = (3, 2, 0)

in Figure 6.6. Both figures are related to each other through their number of steps

of the energy penalty. The χ = (3, 2, 0) has (1, 2) energy step. This step is the

inverse steps of χ = (3, 1, 0) which has (2, 1) energy step.

For χ = (3, 1, 0) there exist single line of zeros in ferro region approaching the

real axis. The antiferro region shows the emergence of two lines but it is not very

clear either the lines will remain or merge at the thermodynamic limit.

For χ = (3, 2, 0) in Figure 6.6, there exist several distinct lines approaching the

real axis. We claim that at the limit two circular arcs will approach the real axis in

the ferro region. This observation is obvious based on the increasing number of zeros

in this region. In the antiferro region, we can see that as the lattice size increases,

a thick single band is approaching the real axis. The emergence of two lines in odd

case is just due to the boundary effect. If the antiferromagnetic phase transition

exists, this case has only a single transition given by the single line of dense zeros

near the real axis.

A further comparison is made between Figures 6.7 and 6.8. Both cases are related

to each other through their number of steps (energy penalty) that is (3, 1)-step for

χ = (4, 1, 0) and (1, 3)-step for χ = (4, 3, 0). The ferro region in Figure 6.7 presents

the existence of single limiting critical point. On the other hand, there exist two lines

approaching the real axis in antiferro region. This behaviour suggests the antiferro

region may have single or double transition point in the limit N →∞.

Conversely, the case shown in the Figure 6.8 is opposite to the one in Figure 6.7.

The antiferro region is expected to give single transition whereas the ferro region

shows a strong possibility of multiple transition points as N →∞.

Figure 6.9 shows the distribution of zeros for χ = (5, 3, 0) with energy penalty

(2, 3)-step. Although the lattice size is considered to be small, we can already see

the expected number of critical points for this system. At N = 6, the Figure 6.9b

suggests the possibility of multiple transition at the ferro region and single transition

at the antiferro region. The smooth line in Figure 6.9b gives a clue of boundary
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Figure 6.7: Zeros distribution for χ = (4, 1, 0) 5-state model.
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Figure 6.8: Zeros distribution for χ = (4, 3, 0) 5-state model.
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Figure 6.9: Zeros distribution for χ = (5, 3, 0) 5-state model.
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Figure 6.10: Zeros distribution for χ = (5, 4, 0) 5-state model.
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Figure 6.11: Zeros distribution for χ = (6, 1, 0) 5-state model.



130 Chapter 6

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

-2 -1  0  1  2

5x5’

(a)

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

-2.5 -2 -1.5 -1 -0.5  0  0.5  1  1.5  2  2.5

6x6’

(b)

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

-2 -1  0  1  2

6x7’

(c)

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

-2 -1  0  1  2

7x7’

(d)

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

-2 -1  0  1  2

7x9’

(e)

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

-2 -1  0  1  2

8x8’

(f)

Figure 6.12: Zeros distribution for χ = (6, 5, 0) 5-state model.
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effect in the odd N case; for example at N = 7. It is evidenced from this structure

that the number of transitions is two in ferro region and one in antiferro region.

Figures 6.11 and 6.12 are more examples with inverse relation through the

number of penalty steps. The case χ = (6, 1, 0) in Figure 6.11 can only suggest

the existence of single transition in the ferro region while it is not clear for the

antiferro part. Interestingly for χ = (6, 5, 0) in Figure 6.12, the distribution in

the ferro region shows multiple lines approaching the real axis. This ferro region

corresponds to the antiferro part of χ = (6, 1, 0).

This result is interesting because at previous example between χ = (3, 1, 0) and

χ = (3, 2, 0), the number of transitions is also opposite to each other. We can

investigate two cases that is related by the energy penalty step by considering only

one of the cases.

6.2.2 6-state: Z6-symmetric

We continue with square lattice of the Z6-symmetric model. Refer Table 6.3. Similar

to the Z5-symmetric case, the study on 6 by 7 square lattice was described by Martin

[58].

For 6-state model, the degree of partition function polynomial increases rapidly

due to the higher number of states (Q = 6) as the lattice size increases. Thus only

small cases are available due to computing limitation. We consider the study of

6-state model on square lattice up to 8 by 8 lattice size, i.e. |V | = 64.

Figure 6.13 presents the zeros distribution for χ = (2, 1, 0, 0) with (1, 1, 0)-step.

The zeros distribution in the ferro and antiferro regions indicates that there is only

a single transition point in each region. For even N , the zeros distribution shows

smoother and visible pattern than those for odd N .

Interestingly, for the case χ = (2, 1, 1, 0) with (1, 0, 0)-step, the zeros shown in

Figure 6.14 have a stable pattern approaching the real axis as the size increases.

Both physical regions have clear behaviour of a smooth line indicating the existence

of single transition.
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Figure 6.13: Zeros distribution for χ = (2, 1, 0, 0) 6-state model.
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Figure 6.14: Zeros distribution for χ = (2, 1, 1, 0) 6-state model.
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Figure 6.15: Zeros distribution for χ = (3, 1, 0, 0) 6-state model.



Chapter 6 135

-2

-1

 0

 1

 2

-2 -1  0  1  2

5x5’

(a)

-2

-1

 0

 1

 2

-2 -1  0  1  2

6x6’

(b)

-2

-1

 0

 1

 2

-2 -1  0  1  2

6x7’

(c)

-2

-1

 0

 1

 2

-2 -1  0  1  2

7x7’

(d)

-2

-1

 0

 1

 2

-2 -1  0  1  2

8x8’

(e)

Figure 6.16: Zeros distribution for χ = (3, 2, 0, 0) 6-state model.
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Figure 6.17: Zeros distribution for χ = (3, 2, 1, 0) 6-state model.
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To proceed, the next case is shown in Figure 6.15 with χ = (3, 1, 0, 0) where the

energy penalty is in the (2, 1, 0)-step. Here there is a branch of dense points in the

antiferro region getting closer to real axis. It is expected that the ferro and antiferro

regions have only a single transition point in the limit.

The distribution for χ = (3, 2, 0, 0) is illustrated in Figure 6.16. In this case there

exist two possible transition points in the ferro region and only single point in the

antiferro region.

The final case of 6-state for χ = (3, 2, 1, 0) is shown in Figure 6.17. The

ferro region suggests the existence of two transition points at thermodynamic limit.

However for the antiferro region, it is hard to infer the number of transitions. The

big arm branch in this region has two brief lines emanating from the arm. Two

possibilities can be predicted. First the two small lines will eventually merge at a

point close to real axis. Second the small lines will go further to real axis separately.

The first statement suggests the existence of single transition point. The latter

means the existence of two transition points.

So far we only describe the figures based on our observation directly on the

distribution structure in all the complex-eβ plane. In the next section, further

discussion of the result and more comparison among these cases will continue.

6.3 Discussion

We highlight few more details for comparison among the zeros distributions of Z5-

and Z6-symmetric models in this section.

In general, the distribution is affected by the boundary condition and the finite

size effect especially in the odd N case. In this case, we can see for example in

Figure 6.12d that some of the zeros in the antiferro region are not nicely distributed

on a smooth line.

As the lattice size increases, we can distinguish the zeros movement towards the

real axis for even and odd N . Interestingly, the zeros movement in the ferro region
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looks more stable as compared to the antiferro region. The zeros in the antiferro

region for even N shows a smoother line than the odd N near the real axis.

The results for the Z5- and Z6-symmetric models show the emergence of visible

lines as the number of zeros increases. As the lattice size increases, more zeros in

the distribution form some branches in physical and non-physical region. A visible

pattern of distribution can be seen where the zeros get closer to the real axis. At

thermodynamic limit N →∞, the zeros is expected to touch the real line at critical

point of the phase transition.

Consider one layer of a square lattice with vertical spins σ(js) = k (mod Q) ≡ s

with s = 0, 1, 2, · · · , N − 1. This is one of the antiferromagnetic ground state where

the vertices have spins with multiple of Q repeated in the vertical direction. The

number of ways for a system to be in this ground states is high. However, the most

probable kind of ground state is still an open question.

From all the figures in this chapter, we can see that the transition points are

vary based on the energy list χ. The choice of χ value differs by their energy step

relative to the first element of the energy list. We call this the first energy followed

by second, third and so on. Denotes the energy step as αi where index i determine

the sequence of the energy difference.

Figures 6.18 to 6.19 show the zeros distributions of the Z5-symmetric model on

6 by 6 square lattices with all their considered χ values. The χ with an energy step

α1 < α2 gives two arcs of zeros distribution in ferro region. This difference shows the

existence of more than one transition point in the limit. The case with α1 > α2 has

only single arc in this region which implies single transition point. For the α1 = α2

like the case of χ = (2, 1, 0), this case has either one or two transition points. The

exact number of transitions for this case is not clear. From this example, we may

predict the number of transitions based on the energy penalty step. This problem

is still open. We need bigger lattice to provide more evidence for this idea.

The Z5- and Z6-symmetric model zeros distributions show the existence of line

of zeros in the antiferro region. This observation does not exist for the 5- and 6-state
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Potts model on square lattice (as discussed in § 5.3).
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Figure 6.18: Zeros distribution for several χ of 6 by 6 on square lattice.
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Figure 6.19: Zeros distribution for several χ of 6 by 6 on square lattice (cont.).
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6.3.1 Energy losses in configurations

Here we discuss the configurations of the ZQ-symmetric model relative to choices of

the energy penalty.

Given a lattice graph Γ = (V,E, f). We can illustrate the spin configuration

σ ∈ Ω by their value of spin orientation. The configuration can be pictured by their

spin value at each site of the lattice. Consider Figure 6.20a for example.

1 1 1 1 2 2

221111

1 1 3 2 2 1

3 3 3 1 1 1

3 3 3 2 2 2

3 2 2 2 2 2

(a)

3

2
1

1

2

(b)

Figure 6.20: a) Value of spin configurations associated to the lattice sites and b)
regions of aligned spin configurations.

Let Vi ⊆ V has the same associated spin configuration, that is the spin variable

spin in the same direction. We can divide the configuration by regions of aligned

spins by drawing a line on the dual lattice for any not align pair. The line is drawn

in red in Figure 6.20a.

From here, a simplified version can be illustrated by only writing the spin

orientation as representative in the region that has been separated. Configuration

in Figure 6.20b for example represents the configuration in Figure 6.20a.

Suppose there is a configuration behaves as in Figure 6.20b. As the temperature

decreases, the system changes towards the ferromagnetic ground state. Eventually

the lines are forced to shrink as the temperature T is lowered down. This shrinking

behaviour suggests the existence of tension along the line. We call this a string

tension.
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For the study on the Potts model, the line separating the spin region gives no

significant difference for the study. It assigned a 0 value for any pair of spin variables

with different spin. However this is different for the ZQ-symmetric model. The line

separation shows significant correspondence to the total energy of the system.

For neighbouring vertices with points to directions close to each other (small

degree), the configuration state is almost stable at the ground state. The energy

varies according to the choices of χ.

Refering to Figures 6.20 and 6.21, some configurations may also have a point

of intersection between the line separations. This intersection is called vortex. The

length of the line separation corresponds to the value of the total energy penalty.

��1

2

3

3

2222 2 22 22 2 2

2

2

2

2

21

1

1

1

1

1

1

1

1

1

1

1

1 1 1 3 3 3 3 3 3 3 3 3

3

3

3

3

Figure 6.21: A configuration with fixed boundary condition.

Here we observe that the first kind of disordered states is the one with small

variation. Many microstates have small energy penalty. As the temperature varies,

the first phase corresponds to the kind of ordered state with slow varying angle.

Then it is followed by a transition to another phase (small disorder) and then to a

completely disordered state.

The largest magnitude of the Hamiltonian represents the ground state where

the free energy is at minimum. For a configuration state represented by some line

separation, one can determine the Hamiltonian energy of that particular state. Since

the length of the line corresponds to the value of the energy penalty, therefore the

ground state can be described by the shortest length of line separation. The shortest

line means lowest energy penalty.
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The ZQ-symmetric model is the final model we have considered in this thesis.

We give evidence that the distribution of this model for specific value of χ may

exhibit multiple transitional phases. The analytic structure of the zeros distribution

highlights the possibility of this occurrence.

Chapter 7 will continue with the analysis of the zeros distribution particularly

related to the value of specific heat critical exponent. This is then followed by the

analysis for multiple phases in Chapter 8.
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Analysis on zeros density of

partition function

Here we study the relation between the specific heat critical exponent [58, 101] and

the zero distribution of the partition function.

The hypothesis is that the exponent can be computed from (sufficiently large)

finite lattice distributions. (The hypothesis was proposed in [55], but at that time

the accessible lattices were too small for testing.)

We test this first using our methods on the Onsager/Kaufman Ising solution,

where we both have access to all the finite partition functions Z, and also know

the exact exponent. Then we apply our methods to the square lattice 3-state Potts

model (which is not integrable, but for which the folklore is certain that α = 1/3

[101]).

Suppose we heat ice. Assume that the heat is transferred at the same rate. It

takes some time before the ice turns to water completely. The existence of two

phases of solid ice and liquid water show the process of phase transition. This point

is the melting point in Figure 7.1.

Continuously adding the heat will eventually increase the temperature and stop

at the boiling point. This point is another phase transition point where water starts

to change into steam.

145
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Figure 7.1: Phase change diagram.

Recall that the discontinuity in a first derivatives of logarithm of partition

function is the evidence of the first order phase transition. This means a

discontinuity in the internal energy. However if the first derivative of logarithm

of partition function is continuous and its second derivative is discontinuous, this

corresponds to the second order phase transition. This means a discontinuity in the

specific heat.

7.1 The specific heat critical exponent

Recall from § 1.3 that the specific heat is defined by

CV
kB

= −β2 d
2 lnZ

dβ2
(7.1)

Given a critical point at β = βc, the specific heat may diverge at this point (see

(7.3) for examples). The critical exponent α is defined by the specific heat relation

CV ∼ (β − βc)−α. (7.2)

The critical temperature T is a dependence of the detail of atomic interaction of

the system. So any critical temperature we get from our models is not realistic in the

laboratory. But the exponent α has universal property [7, 58] which depends only
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on few fundamental parameters [101]. For our model with short-range interaction,

the exponents depend on the dimensionality of the system and Q, but not on J or

units of H.

Consider the Ising model on a square lattice. As shown in the Onsager’s zeros

distribution in Chapter 4, at the thermodynamic limit the zeros give locus of points

with two circles where one of them cut the positive real axis at 1 +
√

2. This is a

critical point. A sudden peak in the graph of specific heat over β (in Figure 7.2)

indicates a change in the phases of the system. The peak in the graph shows the

occurrence of a phase transition when the specific heat is at infinity. This is also an

indication of a discontinuity in the second derivative of a free energy [27].

The Onsager’s solution specific heat [75] near the critical point βc is given by

1

kB
CV ∼

8β2
c

π

[
− log

∣∣∣∣1− β

βc

∣∣∣∣+ log

∣∣∣∣ 1

2βc

∣∣∣∣− 1− π

4

]
. (7.3)

Figure 7.2 shows the graph of specific heat with divergence at the critical point βc.

βc

1
/k

B
 C

V

β

Figure 7.2: Specific heat of square lattice Ising model (Onsager’s solution).

For a finite lattice, the specific heat graph for example for 3-state Potts model

is shown in Figure 7.3. The graph has a peak which becomes larger as the lattice

size increases.

We claim that there exist a power law relation through the line density

distribution of zeros of the partition function near the phase transition point. This

relation has been discussed by Martin [55, 56, 58] and also the earlier study by Fisher

[26]. To support this claim, we show an approximation towards the experimental
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Figure 7.3: Specific heat in the 3-state Potts model on square lattice with lattice
sizes, N = 12, 13, 15.

value [42, 101] extracted directly from the zeros distribution. We study this by

computing the multiplicity of the zeros and plot them in log-log plots (in § 7.3).

7.2 Zeros and α-exponent

This section discusses the relation between the zeros distribution of Z on the complex

plane and α-exponent of specific heat. We derive the α-exponent approximation

from the partition function.

First consider a toy model partition function Z = xN + 1 (we refer to § 4.3 for

its zeros distribution ). Here we can write

Z =
N−1∏
r=0

(
x− e

iπ
N

(2r+1)
)
.
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At limit N →∞, we have the free energy given by

lim
N→∞

f = lim
N→∞

1

N
lnZ

= lim
N→∞

1

N
ln

N−1∏
r=0

(
x− e

iπ
N

(2r+1)
)

= lim
N→∞

1

N

N−1∑
r=0

ln
(
x− e

iπ
N

(2r+1)
)
.

By Taylor expansion for x = eβ and small β, we have

lim
N→∞

f ∼ lim
N→∞

1

N

N−1∑
r=0

ln

(
1 + β −

(
1 +

iπ

N
(1 + 2r)

))

= lim
N→∞

1

N

N−1
2∑

r=−N−1
2

ln

(
β +

πi

N
(2r +N)

)
.

As N → ∞ the zeros are distributed uniformly with a fixed density. We could

write the free energy with the zeros distribution line density denoted a(y) as

lim
N→∞

f ∼ 1

2π

∫ ∞
−∞

a(y) ln(β + iy) dy

where a(y) = 1.

Suppose we replace this constant density with other density which varying as we

move in the complex plot. We have the internal energy

U = − df
dβ

∼ − 1

2π

∫ ∞
−∞

a(y)

β + iy
dy

=
i

2π

∫ ∞
−∞

a(y)

y − iβ
dy (7.4)

that has pole at y = iβ and a(y) = a(−y). This distribution give a first order phase

transition [58].

Alternatively, suppose the line density a(y) has power law relation [58], for small

y, that is

a(y) ∼ |y|1−p (0 ≤ p < 1). (7.5)
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This gives a continuous internal energy function and a divergence in specific heat at

p = 0. This corresponds to a second order phase transition.

By examining the asymptotic behaviour of U(β) as β → 0 [58], we may obtain

specific heat critical exponent for 0 < p < 1. The specific heat is given by

dU

dβ

β→0∼ β−p.

This relation gives the specific heat critical exponent α = p.

Suppose we consider a model that, like the two-dimensional Ising model, has a

line distribution of partition function zeros (for example as a function of eβ) in the

complex neighbourhood of the critical point.

Our hypothesis is that for sufficiently large lattices the distribution of zeros of

the partition function determines the α exponent. Specifically the hypothesis is that

the exponent is determined by fitting the ‘line density’ to a power law dependence

on distance from the critical point.

We can model this with a uniform positional distribution that has varying zeros

multiplicity. We could also vary the line separation between zeros. But for a finite

lattice approximation of continuum density, these two suggestion are similar [55].

Consider the zeros complex plane. We denote an equal range of imaginary part

of the zeros as y. Let a(y) be the multiplicity of zeros for each y. The partition

function can now be written in this form; for a suitable n ∈ N (with respect to the

zeros distribution),

Z =
n∏
y=1

(
β + i

y

n

)a(y)

(7.6)

where y is arranged in increasing distance from critical point. The partition function

has zeros that are less dense near the critical point to more denser zeros as we move

out in the complex plane. Let N be the size of the system. This gives the free
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energy

f =
1

N
lnZ =

1

N
ln

n∏
y=1

(
β + i

y

n

)a(y)

=
1

N

n∑
y=1

a(y) ln(β + iy). (7.7)

Taking the logarithm on both sides of relation (7.5), we have

log a(y) ∼ (1− p) log |y| (7.8)

which gives a gradient (1− p) in the log-log scale plane.

The idea of zeros multiplicity in function (7.6) will be used in analysing our zeros

data near the real axis in complex plane zeros distribution. We use relation (7.8)

to approximate the value of specific heat critical exponent α. We discuss this by

notion of line density of zeros distribution in the next section.

7.3 Analysis on zeros density distribution

In this section, we analyse the line density of the zeros distribution. The line density

is measured by the number of zeros in a subset of points in the complex zeros

distribution plane. The α-exponent is determined by fitting a straight line into the

log-log graph. This will gives the gradient m = 1− p and α = p.

For the finite lattice, we know that the finite size effects (explained in Chapter

4) are present in the zeros distribution. This also affect the log-log analysis. For

sufficiently large enough size, we expect the gradient of the log-log graph will become

stable hence converge to the result in thermodynamic limit.

If this is true, then the problem of finding the critical exponent of a specific

heat can be reduced to a problem of finding the log-log gradient. We may be able

to determine the log-log gradient by increasing the lattice sizes. Hence we can

determine the critical exponent. This simplification will assist the calculation of

this α-exponent.
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Three cases have been considered using this log-log analysis. They are briefly

listed as follows:

1. The 2-state Potts model and Ising model on square lattice - finite cases from

Onsager’s solution.

2. The 3-state Potts model on square lattice.

3. The accumulated case of the 3-state Potts model on square lattice.

The accumulated case above will be explained further in § 7.3.3.
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Figure 7.4: Example: first quadrant with bin of equal size for square lattice Ising
model, N = 50.

Consider the complex plane for zeros distribution. We call each space with equal

size a bin. See Figure 7.4. First, the first quadrant of complex plane is divided into

several bins of equal angle. Then the total number of zeros in each bin over distance

from the real axis is plotted in the log-log plot. The gradient of the logarithmic plot

is determined to represent the power law relation for comparison with the known

result.

Let b ∈ N be the number of total bins with equal angle from origin i.e. θ =
π

2b
.

And let ai be the number of zeros in each bin where i = 1, 2, · · · , b. The number of

zeros is counted only for those in the ferromagnetic region.
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The linear regression line fitting is used to fit the line of the zeros data. Due

to the quantisation effect in the finite case, the linear fitting is done only on the

angle near the transition point (first few bins). The y-axis is the logarithmic scale

for the number of zeros ai and the x-axis is the logarithmic scale for distance from

real axis in the complex plane. The distance is represented by a simple numbering

with x = 1, 2, ..., b.

Let m denotes the gradient of the linear fit. For comparison, we manually fit the

line on the log-log graph.

7.3.1 The 2-state Potts model and Ising model − finite case

from Onsager’s solution

Here we describe the analysis on 2-state Potts model on square lattices of sizes 19

by 19 and 20 by 20. We also analyse the Onsager’s Ising model zeros distribution

with lattice sizes 49 by 49, 50 by 50, 99 by 99 and 100 by 100.

Table 7.1: Approximated slope m of log-log plane for 19 × 19′ and 20 × 20′ square
lattices. The manual column is our own estimate directly on the log-log graph.

Lattice size 19× 19′ 20× 20′

Bin, b Lin. reg. Std. dev. Manual Lin. reg. Std. dev. Manual
6 0.93899 0.16400 1.00 0.91110 0.21020 0.90
7 0.72474 0.12319 0.80 0.97427 0.12869 1.00
8 1.09710 0.22530 1.00 1.13670 0.27250 0.90
9 0.87645 0.10518 0.95 1.02096 0.11154 1.00
10 0.95920 0.07519 1.00 1.07383 0.10632 0.90
11 1.000e+00 2.415e-16 1.00

See Table 7.1. This table describes the approximation for gradient m of the

log-log plot for square lattice 19 by 19 and 20 by 20 of 2-state Potts model. The

standard deviation of the linear regression analysis is also shown in this table. The

column with total number of bins b is the variable for testing. As we vary the value

of b, we check the gradient and its standard deviation.

For 19 by 19 lattice size, it can be seen in Table 7.1 that the approximation
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reaches low standard deviation when we take the number of bins, b = 10. This

approximation suggests that the approximated value of α-exponent is nearly zero

i.e. α19 = 1− 0.95920 = 0.0408.

For comparison, we further test the zeros data for 20 by 20 lattice case. This

size improvement shows that the lowest standard deviation started to emerge when

number of bins is at b = 11. This approximation gives the approximated value of

α-exponent to be zero (1-1=0). Figures 7.5 and 7.6 present the linear regression line

fitting for the 19 by 19 and 20 by 20 case with increasing number of total bins.
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(e) Number of bins, b = 10.

Figure 7.5: Lattice 19× 19 : Linear regression analysis on log-log graphs.

From the known result [101], this observation is very promising since we know

that α = 0 for the Ising model. For a large lattice size, the log-log gradient analysis

is a very convincing approach in finding the critical exponent of specific heat.

We examine the zeros from Onsager’s partition function on 49×49, 50×50, 99×99

and 100 × 100 square lattices. Tables 7.2 and 7.3 describe the approximation of

log-log linear fitting gradient by linear regression analysis and also by our own

estimation.
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Table 7.2: Approximated slope m of log-log plane for 49 × 49′ and 50 × 50′ square
lattices. The manual column is our own estimate directly on the log-log graph.

Lattice size 49× 49′ 50× 50′

Bin, b Lin. reg. Std. dev. Manual Lin. reg. Std. dev. Manual
6 0.70680 0.17581 0.80 0.68589 0.17008 0.85
7 0.96394 0.12327 0.95 0.74285 0.13096 0.90
8 0.88348 0.07914 0.90 0.89385 0.09973 1.00
9 0.94430 0.05673 1.05 0.85755 0.06194 0.90
10 1.02143 0.15312 1.00 1.05898 0.12823 1.15
11 0.90537 0.08267 1.25 0.97027 0.06215 1.00
12 0.96817 0.08687 1.10 0.89355 0.06381 1.00
13 0.88986 0.07570 1.10 0.97750 0.04518 1.10
14 0.96536 0.07308 1.00 1.05585 0.05983 1.00
15 0.99628 0.09292 1.00 0.98123 0.08653 1.00
16 0.97097 0.07456 0.95 1.04545 0.06624 1.05
17 1.04496 0.07042 0.95 0.96997 0.09009 1.10
18 1.01593 0.07278 1.10 0.95723 0.07614 0.95
19 1.03028 0.07994 1.00 0.97725 0.06966 1.00
20 0.95314 0.08499 0.90 0.94095 0.06692 1.00
21 1.01374 0.07093 1.00 0.98264 0.08228 1.00
22 0.97289 0.04845 0.95 0.93796 0.06808 1.00
23 1.00671 0.07221 0.95 1.05704 0.07892 1.20
24 1.02687 0.06218 1.05 1.13146 0.06805 1.00
25 0.96594 0.04661 1.00 1.01301 0.05130 1.00
26 0.95291 0.05226 1.00 1.01507 0.03550 0.95
27 0.97771 0.05102 0.95 0.93749 0.04586 1.10
28 0.97275 0.04557 1.00 1.00687 0.03802 1/00
29 0.97189 0.04521 1.00 0.95440 0.05054 1.05
30 1.00256 0.08744 1.05 0.95792 0.06627 1.05
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Table 7.3: Approximated slope m of log-log plane for 99× 99′ and 100× 100′ square
lattices. The manual column is our own estimate directly on the log-log graph.

Lattice size 99× 99′ 100× 100′

Bin, b Lin. reg. Std. dev. Manual Lin. reg. Std. dev. Manual
6 0.98823 0.09576 1.15 0.98618 0.10626 0.90
7 0.92509 0.07922 1.15 1.08718 0.06377 1.05
8 0.88728 0.08189 1.05 1.01864 0.05231 1.05
9 1.00604 0.07324 1.05 1.07185 0.06142 0.95
10 0.95626 0.07023 1.00 1.11431 0.05931 1.05
11 1.04726 0.06063 1.00 1.08076 0.04094 1.00
12 0.98669 0.04702 1.10 1.04617 0.03913 1.00
13 0.97308 0.05435 1.10 1.08313 0.05358 1.05
14 0.95910 0.04875 1.00 1.05595 0.02985 1.10
15 1.00735 0.05186 1.00 1.04609 0.05617 1.00
16 0.96391 0.04085 0.90 1.02435 0.04026 1.10
17 0.95895 0.04149 0.95 1.02347 0.03518 1.10
18 0.97073 0.03453 1.05 1.01396 0.02934 0.95
19 0.97381 0.03949 1.00 1.01797 0.03956 0.95
20 1.00459 0.06219 1.05 1.07274 0.03707 1.05
21 0.98633 0.04489 1.00 1.07150 0.04394 1.00
22 0.99341 0.03493 1.10 1.05187 0.02727 1.05
23 0.93009 0.03275 1.00 1.03297 0.01873 1.05
24 0.96870 0.02774 1.05 0.99994 0.02763 0.95
25 1.06193 0.03289 1.05 1.01458 0.03217 1.10
26 0.94521 0.03168 1.00 1.01586 0.02909 0.90
27 0.92396 0.03373 1.05 0.99821 0.02324 1.10
28 0.96805 0.03442 1.00 1.02952 0.02803 1.00
29 0.98326 0.03249 1.00 1.03293 0.03717 1.00
30 0.96172 0.04282 0.95 1.04274 0.03229 1.00
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(f) Number of bins, b = 11.

Figure 7.6: Lattice 20× 20 : Linear regression analysis on log-log graphs.

Figures 7.7, 7.8, 7.9 and 7.10 show the linear regression line fitting for 49 ×

49, 50 × 50, 99 × 99 and 100 × 100 square lattices respectively. The approximation

gives many results with small deviation when we change the value of b. The gradients

are mostly very close to m ∼ 1 i.e. 0.9 < m < 1.1. For some bins, the quantisation

effect may dominate which are evident by the large standard deviation. For m ∼ 1,

this approximately gives the value of specific heat exponent α ∼ 1 − 1 = 0. This

analysis will converge to the known result − as shown in [101, p. 46].

For 100 by 100 square lattice, one can see that the log-log graph line fitting is

very close to the points. The change in the number of bins does not give a huge

effect on the distribution. The slope is approximately m ∼ 1 which gives α = 0.
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(a) Number of bins, b = 10.
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(b) Number of bins, b = 11.
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(c) Number of bins, b = 12.

●

●

●
●

● ●

●
●

●

1 2 5 10 20 50 100 200

1
2

5
10

20
50

10
0

20
0

x

y

(d) Number of bins, b = 13.
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(e) Number of bins, b = 14.

●
●

● ●

●
●

● ●
●

1 2 5 10 20 50 100 200

1
2

5
10

20
50

10
0

20
0

x

y

(f) Number of bins, b = 15.
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(g) Number of bins, b = 16.
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(h) Number of bins, b = 17.
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(i) Number of bins, b = 18.
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(j) Number of bins, b = 19.
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(k) Number of bins, b = 20.

Figure 7.7: Lattice 49× 49 : Linear regression analysis on log-log graphs.
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(b) Number of bins, b = 11.
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(c) Number of bins, b = 12.
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(d) Number of bins, b = 13.
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(e) Number of bins, b = 14.
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(f) Number of bins, b = 15.
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Figure 7.8: Lattice 50× 50 : Linear regression analysis on log-log graphs.
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Figure 7.9: Lattice 99× 99 : Linear regression analysis on log-log graphs.
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Figure 7.10: Lattice 100× 100 : Linear regression analysis on log-log graphs.
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7.3.2 The 3-state Potts model

Here we present the analysis on several largest cases for the 3-state Potts model

zeros distributions that we managed to produced in this thesis.

See Tables 7.4 and 7.5. The gradient m for individual case for 12 by 12, 13

by 13, 14 by 14 and 15 by 17 square lattices are presented in these tables with

the comparison between linear regression analysis and our manual estimation. As

before, the standard deviation of the linear regression analysis is also shown in these

tables.

The linear regression line fitting for 12 by 12 square lattice is shown in Figure

7.12. Based on the result in Table 7.4, one can see that the standard deviations are

mostly over 0.1. We suspect the number of zeros is not enough in the first quadrant

(see Figure 7.11a) to approximate the limiting slope through the log-log analysis.

The zeros are still too far from the real axis in the complex plane. The zeros in

antiferromagnetic region is not counted for the log-log graph.

Table 7.4: Approximated slope m of log-log plane for 12 × 12′ and 13 × 13′ square
lattices. The manual column is our own estimate directly on the log-log graph.

Lattice size 12× 12′ 13× 13′

Bin, b Lin. reg. Std. dev. Manual Lin. reg. Std. dev. Manual
6 0.59478 0.10304 0.70 0.54000 0.18192 0.80
7 0.90741 0.06768 0.90 0.74789 0.13769 0.55
8 0.59781 0.11707 0.60 0.76448 0.08011 0.60
9 0.69353 0.10397 0.75 0.77963 0.12546 0.60
10 0.76040 0.11860 1.00 0.65835 0.05620 0.75

Table 7.5: Approximated slope m of log-log plane for 14 × 14′ and 15 × 17′ square
lattices. The manual column is our own estimate directly on the log-log graph.

Lattice size 14× 14′ 15× 17′

Bin, b Lin. reg. Std. dev. Manual Lin. reg. Std. dev. Manual
6 0.58580 0.16110 0.75 0.49330 0.11493 0.60
7 0.76880 0.09357 0.60 0.53440 0.13894 0.80
8 0.69276 0.11134 0.70 0.61090 0.08523 0.70
9 0.67331 0.08984 0.60 0.70270 0.08235 0.60
10 0.74003 0.09145 0.70 0.71160 0.10301 1.00
11 0.71280 0.04786 0.70
12 0.70470 0.06792 0.70
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Figure 7.11: Zeros distribution at quadrant 1 for 3-state Potts model on square
lattice of a) 12 by 12, b) 13 by 13, c) 14 by 14 and d) 15 by 17.
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Figure 7.12: Lattice 12x12 : Linear regression analysis on log-log graphs.
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Figure 7.13: Lattice 13x13 : Linear regression analysis on log-log graphs.

Consider the 13 by 13 square lattice. The linear regression line fitting is shown in

Figure 7.13. Similar to 12 by 12 case, the standard deviation in Table 7.4 gives values

mostly more than 0.1. The number of zeros in the first quadrant (see also Figure

7.11b for 13 by 13 case) are not enough to suggest a good gradient approximation.

Next, Figures 7.14 and 7.15 present the linear regression line fitting for larger

cases with 14 by 14 and 15 by 17 lattice sizes respectively. More zeros are located

in the first quadrant of the complex-eβ plane for larger cases (see Figure 7.11).

As the total number of bins b changes we observe the emergence of the gradient

with small standard deviation, for example in the case with 15 by 17 lattice size.

The approximation converge to the known value from experiment (also the folklore

theory) for the α-exponent of 3-state Potts model i.e. α = 1/3 [98, 101].

In Table 7.5, the estimation for the case with total number of bins equal to 11 and

12 has estimated gradient value of 0.7128 and 0.7047 respectively. This estimations

is the closest approximation we have so far. This value gives α close to 1/3. The

bigger the lattice size, a better convergent sequence can be made from this analysis.
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Figure 7.14: Lattice 14x14 : Linear regression analysis on log-log graphs.
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Figure 7.15: Lattice 15x17 : Linear regression analysis on log-log graphs.
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For some estimation however, the quantisation effect may dominate, for example

as shown in 15 by 17 case when the total number of bins b = 10. Our manual

estimation and the linear regression approximation do not coincide each other. The

reason for this is due to the data chosen for the linear regression line fitting. The

line is fitted on the data that may dominated by quantisation effect or finite size

effect (that includes points that are far from the critical point). In contrast, our

manual fitting give us more freedom in choosing the points from the bins that is

near to the critical point. The linear graph shown in 7.15d convinced us that the

estimation is affected by the finite size effect.

7.3.3 The accumulated case of 3-state Potts model

In this section we consider another type of zeros data collection for testing.

Table 7.6: Approximated slope m of log-log plane for accumulated zeros from 12×
12′, 13 × 13′, 14 × 14′ and 15 × 17′ square lattices. The manual column is our own
estimate directly on the log-log graph.

Lattice size All zeros
Bin, b Lin. reg. Std. dev. Manual

6 0.54650 0.13678 0.75
7 0.76419 0.10170 0.65
8 0.66258 0.08293 0.80
9 0.70973 0.08226 0.80
10 0.71434 0.08326 0.75
11 0.72440 0.11357 0.70
12 0.83374 0.11708 0.65
13 0.79471 0.11728 1.20
14 0.72016 0.05601 0.80
15 0.67004 0.04927 0.75
16 0.70098 0.05753 0.80
17 0.73147 0.04802 0.80
18 0.74239 0.03766 0.70
19 0.66271 0.05214 0.70
20 0.69746 0.06845 0.75
21 0.65775 0.05629 0.80
22 0.62372 0.06816 0.70

To add more varieties to the study, we consider a case with zeros taken from

several big lattice cases that we have investigated. The zeros are now taken from
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Figure 7.16: Lattice 12 × 12′ to 15 × 17′ : Linear regression analysis on log-log
graphs.
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Figure 7.17: Lattice 12×12′ to 15×17′ : Linear regression analysis on log-log graphs
(cont.).

all these lattices i.e. 12 by 12, 13 by 13, 14 by 14 and 15 by 17. We call them the

accumulated zeros data.

As before, the number of zeros in each bin is computed and plotted in the

log-log plot. Again, we vary the number of total bins b. For this case, we let

b = {1, 2, . . . , 22}.

See Table 7.6 for the approximated value of the linear regression and our manual

estimation. Figures 7.16 and 7.17 show the log-log plot and their linear regression

line fitting.

Since a lot of zeros are now involved, we can investigate and vary the total number

of bins b into larger values as compared to the individual case in the previous section

§ 7.3.2. Table 7.6 shows several results of estimation from linear regression analysis

with small standard deviation less than 0.1. In the last five estimation from b = 19

and above, we have several nice estimations with small deviation. These estimations

are very close to the known α-exponent value of 1/3.
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This result suggests that the analysis produces a good approximation if we have

many zeros data. The higher number of bins means smaller range of distance (or

small angle θ) in the imaginary axis of the complex plane zeros distribution. The

estimation particularly involves the zeros that is very close to the critical point xc.

The analysis is done on the 3-state Potts model case and the Ising model because

we can directly compare our estimation with the result from [101]. The promising

results from this analysis can be extended to zeros distributions for other models and

lattices. This is an open problem since more experimental result and bigger lattice

result are needed for checking and comparison. In the next chapter, we continue

with an analysis for a model with multiple phases.





Chapter 8

Analytical machinery for multiple

phases in ZQ-symmetric model

In this chapter we investigate the energy and entropy relation [27] relative to phase

transitions in terms of our exact solutions.

We discuss the possibility of multiple transitions between fully ordered and

disordered states. Next we study the polynomial term of the partition function

Z and plot the accumulated value of the terms towards Z = 0 at complex coupling

values that are roots of Z close to the transition points. The final section contains

graphs of the specific heat. This analysis is focused on the 2- and 3-state Potts

models and the Z5- and Z6-symmetric models.

8.1 Candidates for 3 phase models

The solved case of Ising model [75, 92] for example showed the existence of single

phase transition at x = 1 +
√

2 in the ferromagnetic (ferro) [44] region.

On the other hand, the study of ZQ-symmetric model partition function showed

the possibility of multiple phase transitions for some energy function χ [58]. Recall

the result in Chapter 6. For specific χ, as defined in § 6.1, we can see in Figure 8.1,

a pattern of zeros distribution with single arc for example when χ = (3, 1, 0) and

171
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double arc for example when χ = (3, 2, 0) which move close to the positive real axis

as the lattice size increases (see also § 6.2).
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Figure 8.1: The 8 by 8 zeros distribution for a) χ = (3, 1, 0) and b) χ = (3, 2, 0).

8.2 Energy vs entropy

We describe the idea of energy and entropy competition in a model partition function

in this section. First we describe the idea of energy-entropy in a model of phase

transition. Then we describe a modification aiming to explain two transitions.

To support the existence of two transitions, a new kind of transition mechanism

as compared to order/disorder transition is needed for explanation. The claim is

that there are two stages of disordered state in the system. From first stage to the

second stage, this change corresponds to the second phase transition − for example

from a fairly disordered to a completely random disordered state.

8.2.1 Single order/disorder phase transition

Recall the expectation value (1.4) of an observable quantity O of physical system

given by

〈O〉 =
∑
σ∈Ω

p(σ)O(σ) (8.1)
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where p(σ) =
e−βH

Z
.

We shall observe the energy-entropy competition as we vary the temperature T

[52, 58]. Recall that β = 1/(kBT ).

At low T (high β), e−βH → 0 as β → ∞. The system preferred to be in the

ordered state. The dominant contribution is coming from the high magnitude of H

despite the low entropy. At low T the energy dominate the system.

In contrast, at high T (low β), e−βH → 1 as β → 0. The system is not dominated

by H but by the number of configurations that give the entropy of the system.

The configuration with relatively little order among the spins may be regarded as

representative of the system. At high T the entropy dominate the system.

At low T where the system is in ordered state, there is a strong interaction

between all the particles and its neighbours. At high T , the system is in disordered

state where the spin variables prefer to point at different directions.

Peierls [78] shows a rigorous arguments to support the emergence of phase

transition between order (low energy in the Potts model) and disorder (high

entropy). Peierls in his paper describes the phase transition by the emergence of

line separations in the dual picture of configurations as in § 6.3.1.

8.2.2 Two phase transitions

For the system with two phase transitions we can describe the transition mechanism

by the idea of two different stages of entropy appearance. The idea of the second

phase transition can also be described through the behaviour of the line separation

(see § 6.3.1).

The increase in temperature will drive the line separations to become longer (see

Figure 8.2) or change the distance among the vortices. This system will have extra

entropy from this long string lines which then balance out the energy penalty due

to the different spin orientation. This energy and entropy competition drives the

second phase transition. At large enough temperature, the fairly disordered state
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reach its criticality where the second transition can take place.

Our claim is that the second phase transition is not only driven by the long edges

of line separation but also by the roughness of the long string. See Figure 8.2b for

example. In the long range region, the long line separation between vortices has

higher entropy than the shorter line.
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Figure 8.2: Example of vortex-antivortex pair with a) smooth line separation and
b) rough line separation.
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Figure 8.3: Illustration of some zeros of Z for the first, second and third closest to
the positive real axis.

Recall the definition of partition function (1.1) and x = eβJ . The value of x in

the partition function can be written in terms of angle below:

Z =
∑
j

a|E|−j x
−j =

∑
j

a|E|−j r
−j (e

√
−1θ)−j (8.2)

where x = reiθ. The coefficient of the partition function corresponds to the entropy

associated by Hamiltonian H. The magnitude r =
√
Re(x)2 + Im(x)2 corresponds
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to the magnitude of complex zeros of the partition function. The angle θ is

measure from the real positive axis. These three components are the main factors

contributing to the energy-entropy competition in this system.

The concept of two different stages in the disordered phase may be extended

to more disordered stages as we increase the value of temperature. These

different stages mean other energy-entropy battle in the microscopic detail of

the configuration state. The configuration state is transformed to more random

disordered state where the vortex-antivortex pair may become very close to each

other and the configuration states are at random.

8.3 ZQ-symmetric model partition function

We describe the line separation in a configuration state and further relate them to

the energy-entropy competition in a partition function. Recall Ω as the set of all

configuration states and σ ∈ Ω. We consider the Z5- and Z6-symmetric models on

square lattice in this section.

The configuration state σ can be illustrated by the local spin boundaries between

two different spin configurations drawn on the dual lattice. For a state σ that has

one variable in different orientation from the rest of the spin variables, the total

energy is reduced by 4 corresponding to 4 dual edges (see Figure 8.4a).

Similarly, if there are two neighbouring spin variables with the same orientation

but different from the orientation of the others, the total energy is reduced by 6

(see Figure 8.4b). The partition function can be written with exponent given by the

value of energy penalty. The energy penalty is drawn as the edges of line separation

in the dual lattice.

In this thesis, we are always interested to study the behaviour of configuration

states near the phase transition. We analyse the partition function polynomial

relative to its zero value. The accumulated summations of the polynomial terms are

plotted for specific value of the root x.
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(a) (b)

Figure 8.4: Example of configuration and line separation on dual lattice with a) 1
spin flip and b) 2 same spin flip.

8.3.1 Individual term of partition function polynomial

The order-disorder transition is driven by the domination of either the energy or the

entropy at particular T . This domination is represented by a typical configuration

which manifests the bulk behaviour of the system.

In principle the determination of the typical configuration is not a simple

investigation. Instead of finding the typical configuration for a specific T , we

investigate the typical energy value from the partition function Z. We study the

accumulated summation of the term in the polynomial Z with respect to some values

of x which gives Z = 0.

Here we calculate the magnitude of each term of the partition function and

compute their accumulated summations. The extreme contribution is given by the

longest line in the picture of the accumulated summations.

8.3.2 The picture of polynomial term contribution

In this section, we present the graphs of the accumulated terms contribution with

respect to some roots x. The partition function (1.1) can be written in this form:

Z ′ =
1

x|E|

∑
σ∈Ω

xH̃(σ)

=

|E|∑
j=0

a|E|−j x
−j

=

|E|∑
j=0

a|E|−j x̃
j (8.3)
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where aj is the coefficient of the polynomial, x̃ = 1/x and H̃ is as in (1.2). The

above partition function (8.3) is written based on the energy penalty given by the

length of line separation in the dual lattice.

We compute the accumulated summations of the partition function as below.

Let Zj = a|E|−j x̃
j and p0 = Z0. We have

p1 = p0 + Z1

p2 = p1 + Z2

p3 = p2 + Z3

...

p|E| = p|E|−1 + Z|E|.

The difference between two accumulated summations |pj+1 − pj| is the net

contribution of each new term j + 1. The length of the line from pi to pi+1 is

the total contribution given by the term Zi+1. Here we study the step by step terms

cancellation of the partition function by plotting each value of pj. The root x of Z

is chosen close to critical point in the positive real axis.

Recall that for T ∼ 0, the Boltzmann weight x̃ = e−βJ is close to 0. This value

shows the energy domination. The system is in an ordered state. In contrast, for

T → ∞, all the Boltzmann weight has weight equal to 1. The entropy represented

by the coefficient of the partition function polynomial is dominating the system.

The middle term of the polynomial with the highest entropy is the most probable

state.

At low T when x̃ = 0, only the constant term in the polynomial survives. This

term represents the ordered state when all spin variables spin in the same direction.

We may explain the partition function by this condition. Let n,m ∈ N. The

first n terms of the polynomial are representing the ordered state i.e. ferromagnetic

(ferro) state [41, 44, 45]. And the final m terms correspond to another kind of

ordered state i.e. antiferromagnetic (antiferro) state. The middle part is the most
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disordered part. We claim that the typical energy value is given by the largest

energy contribution towards Z = 0.

We plot the value of accumulated contribution for each term in polynomial Z = 0.

Each line segment in the plot is the magnitude of each of the polynomial term. The

term with the longest line has the highest contribution to Z = 0.
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Figure 8.5: 2-state Potts model on 18 by 18 square lattice with a) x1 = 2.42196 +
.0287144 I, b) x2 = 2.42216 + 0.462357 I, c) x3 = 2.26734 + 0.641372 I.

The pictures of the accumulated terms contribution for 2-state Potts model are

presented in Figure 8.5 on the 18 by 18 square lattice with three values of x (denoted

as x1, x2, x3). For each x, the largest contribution is given by the terms at degree

j = 99, 91 and 121 for the first, second and third closest zeros, respectively. One

can see the summations form some loops before reaching the 0 value. To study for

the model that exhibits two phase transitions, we compare the picture with respect

to the zeros from different transition arc.
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Figure 8.6: Zeros distribution for a) x = eβJ and b) x̃ = e−βJ with χ = (3, 2, 0).

Figure 8.6 presents the zeros distributions of x and x̃ for χ = (3, 2, 0). For the

first quadrant in range (1,∞), we call from left, the curve approaching the positive

real axis as the first curve and then followed by the second curve. The first curve

in the Figure 8.6a corresponds to the second curve at range (0, 1) in Figure 8.6b.

Similarly, the second curve in Figure 8.6a corresponds to the first curve in Figure

8.6b.

Eventually, the two lines in the (0, 1) region (in Figure 8.6b) will touch the real

axis at the limit. The zeros for the first transition is taken from the second curve

and the zeros for the second transition phase is taken from the first curve of the

Figure 8.6a.

Figures 8.7 through 8.10 will present the winding diagrams of the accumulated

summations of the partition function for the Z5-symmetric model on 8 by 8 square

lattice with three different values of χ and x.

Let r = |x| be the magnitude of x. If we approximate the x value by this

magnitude i.e. x = r, the polynomial term accumulated summations will always

grow and positive. The largest length between two neighbouring terms is contributed

by the same degree of Hamiltonian H when x = a + b i. All the contributions are

affected by the energy and entropy of the system.

Let M be the degree of the polynomial Z. The degree of the polynomial
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Figure 8.7: Z5-symmetric model on 8 by 8 square lattice with χ = (2, 1, 0): a) x1 =
2.10969+0.479109 I, b) x2 = 2.42248+0.665705 I and c) x3 = 2.07525+0.734082 I.
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Figure 8.8: Z5-symmetric model on 8 by 8 square lattice with χ = (3, 1, 0): a) x1 =
1.62980+0.137975 I, b) x2 = 1.62659+0.205334 I and c) x3 = 1.61877+0.270632 I.
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Figure 8.9: First curve: Z5-symmetric model on 8 by 8 square lattice with χ =
(3, 2, 0): a) x1 = 1.64360 + 0.334788 I, b) x2 = 1.58838 + 0.476209 I and c) x3 =
1.37846 + 0.546351 I.
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Figure 8.10: Second curve: Z5-symmetric model on 8 by 8 square lattice with χ =
(3, 2, 0): a) x = 2.36582 + 0.771200 I and b) x = 2.24748 + 0.114699 I.
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partition function for the 8 by 8 square lattice with χ = (3, 2, 0) is equal to 360.

In general, let a square lattice have Ny row and Nx column vertices with open

horizontal and periodic vertical boundary conditions. Take the energy list denoted

as χ = (χ1, χ2, ..). Then the degree of the polynomial is given by

M = χ1(2NxNy −Ny).

For any mi < M ∈ N, let (0,m1) be the first range consists of m1+1 terms. Next,

the (m1 +1,m2) be the second range consists of m2−m1 terms. Then (m2 +1,M/2)

be the third and so on. This categorisation can be illustrated as below:

mm
2

m
1

0 MM/2m = m
3 4 5

Figure 8.11: Polynomial range categorisation for x̃.

The first term with zero degree is in the ferromagnetic state where all spin

variables point in the same direction. No energy penalty gives zero degree in the

polynomial. The second part is where the energy penalty increases. The energy

penalty is represented by the non-zero degree of the polynomial. The middle part

of the polynomial is the range where the system is in a random and completely

disordered state. This part has the highest number of entropy. The final part is

again the ordered part of antiferromagnetic state. Each spin variable prefers to point

in different direction from its neighbours.

For χ = (2, 1, 0) and χ = (3, 1, 0), their zeros distributions suggest the existence

of a single phase transition. The largest contributions for the terms cancellation

towards zero value are described in the Figures 8.7 and 8.8. The largest contribution

for both cases have small degree exponent.

We claim that the term that gives the largest contribution marks the occurrence

of a phase transition. With the high number of spin directions for Q = 5, the system

can be in total disordered state even with small energy penalty. The observations

for both cases of χ = (2, 1, 0) and χ = (3, 1, 0) are similar to the 2-state Potts model

which also exhibit only one phase transition.
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The χ = (3, 2, 0) in addition is another example for the Z5-symmetric model.

For this case, there exist a possible multiple phase transitions shown by the double

curve in the ferro region of the zeros distribution. The largest contributions for 5

different zeros in this case fall into two different ranges of polynomial terms. Figures

8.9 and 8.10 show the diagrams for the zeros taken from the first and second curve

of zeros distribution with x = eβJ , respectively.

The largest contribution for the zeros in second curve falls in the early part

of the polynomial. The degree of the polynomial term is small suggesting a little

disorder for the zeros in the second curve. In contrast, the largest contribution for

the zeros in the first curve falls into the part that is closer to the middle part of

the polynomial. This behaviour suggests a different kind of disordered phase will

emerges.

-2

-1

 0

 1

 2

-2 -1  0  1  2

inv-8x8’

(a)

-2

-1

 0

 1

 2

-2 -1  0  1  2

inv-8x8’

(b)

Figure 8.12: Zeros distribution for x̃ = e−βJ with a) χ = (3, 2, 0, 0) and b) χ =
(3, 2, 1, 0).

The Figures 8.14 through 8.19 present the accumulated summations graphs for

the Z6-symmetric model. The case with χ = (2, 1, 0, 0) in Figure 8.14 is believed to

exhibit only one phase transition based on the comparison of its zeros distribution

and the graph of specific heat (shown in § 8.4).

See Figures 8.14a and 8.14b. In both cases, their typical energy fall

approximately in the same energy range. In contrast, Figure 8.14c shows different
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value for its large term contribution. Since we know that this case only has one

transition point, we know that this different is due to the finite effect on the zeros

value. The third zeros lies off the curve in the zeros distribution as compared to the

first and second zeros (see Figure 8.13).
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Figure 8.13: Zeros distribution for x = eβJ with χ = (2, 1, 0, 0).

The case with χ = (3, 1, 0, 0) in Figure 8.16 also shows the existence of one phase

transition based on its zeros distribution in complex plane. All the three largest term

contributions are approximately in the same degree range.

For χ = (3, 2, 0, 0), this case is another example which exhibits two phase

transitions. See Figure 8.15. The existence of two curves in the ferro region near

the positive real axis gives evidence of this claim (see Figure 8.12). The graph of

accumulated summations for the zeros in the first curve is shown in Figure 8.17 and

the second curve is shown in Figure 8.18 .

For χ = (3, 2, 1, 0) the first and second zeros fall into approximately the same

energy range. However for the third zeros the largest contribution is given by energy

penalty at term x̃32. This distribution may be either because of the finite size effect

on its zeros distribution or due to the existence of multiple transitions. To exactly

check this observation, a bigger lattice is needed for investigation, i.e. N > 8.

In the thermodynamic limit, we expect the largest terms contribution will be

given by a significant value as compared to the contributions from other terms
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Figure 8.14: Z6-symmetric model on 8 by 8 square lattice with χ = (2, 1, 0, 0): a) x =
2.08847 + 0.405804 I, b) x = 2.08267 + 0.622161 I and c) x = 2.42583 + 0.658524 I.
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Figure 8.15: Zeros distribution for x = eβJ with χ = (3, 2, 0, 0).
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Figure 8.16: Z6-symmetric model on 8 by 8 square lattice with χ = (3, 1, 0, 0): a) x =
1.64122 + 0.123280 I, b) x = 1.64234 + 0.186484 I and c) x = 1.63573 + 0.247940 I.
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in the polynomial. This feature will differentiate the largest term contribution at

thermodynamic limit as compared to the finite case.
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Figure 8.17: First curve: Z6-symmetric model on 8 by 8 square lattice with χ =
(3, 2, 0, 0): a) x = 1.60486 + 0.259279 I, b) x = 1.58125 + 0.37801 I and c) x =
1.41710 + 0.486042 I.
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Figure 8.18: Second curve: Z6-symmetric model on 8 by 8 square lattice with χ =
(3, 2, 0, 0): a) x = 2.36594 + 0.771063 I and b) x = 2.2475 + 1.14668 I.
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Figure 8.19: Z6-symmetric model on 8 by 8 square lattice with χ = (3, 2, 1, 0): a) x =
1.85197 + 0.390385 I, b) x = 1.81864 + 0.584863 I and c) x = 2.43082 + 0.682177 I.
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8.4 Graph comparison of specific heat

In this section we present a list of graphs for specific heat formula that are generated

from the partition function.

At constant volume V , a specific heat is defined by the amount of heat Q̃ required

to increase a temperature T , i.e. CV =

(
∂Q̃

∂T

)
V

. In statistical mechanics, the

specific heat equation can be generated from the partition function (see § 1.3). The

specific heat is given by
CV
kB

= −β2 d
2 lnZ

dβ2
.

A sudden peak in the graph of specific heat over β is the signal of phase transition

[7, 35]. A discontinuous peak at thermodynamic limit is due to the discontinuity of

the second derivative of free energy.

We present the specific heat graphs for the 2- and 3-state Potts models and also

the Z5- and Z6-symmetric models for some energy list χ.

8.4.1 2- and 3-state Potts models’ specific heat

Figure 8.20 shows the graph of specific heat for the 2-state Potts model on the square

lattice with size N = 16, 18 and 20. From this plot, as the size increases the peak

of the graph also increases and the graph become steeper.

Similarly, Figure 8.21 shows the specific heat graph for the 3-state Potts model

on the square lattice of size N = 12, 13 and 15. Here the sharp peak in the graph

increases as the size increases. This behaviour in the middle of the graph is similar

to the 2-state Potts model. However the peak shown here is given by a smaller

lattice size as compared to the 2-state case. At infinite size, the peak is expected

to be discontinuous at βc that is at the critical temperature Tc of phase transition.

The single peak is in accordance with the prediction of the single transition through

the existence of a particular single curve in the graph of zeros distribution in the

complex plane. The specific heat graph support this single transition claim.
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Figure 8.20: Specific heat plot for
CV
kB

vs β with N = 16, 18, 20.

Figure 8.21: Specific heat plot for
CV
kB

vs β with N = 12, 13, 15.
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8.4.2 Z5- and Z6-symmetric models’ specific heat

Here we continue with the specific heat graph for the ZQ-symmetric model with

Q = 5 and 6 for some value of χ.

(a)

(b)

Figure 8.22: Z5-symmetric model: Specific heat graph for a) 8× 8 with different χ
and b) 7× 9, 8× 8, 9× 9 for χ = (3, 2, 0).

Figure 8.22 shows the specific heat graph for Z5-symmetric model with three
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(a)

(b)

Figure 8.23: Z6-symmetric model: Specific heat graph on square lattice a) 8 × 8
with different χ and b) 6× 7, 7× 7, 8× 8 for χ = (3, 2, 0, 0).
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energy list χ = (2, 1, 0), (3, 1, 0) and (3, 2, 0). We can see the different peak behaviour

among these three χ values. For the χ = (2, 1, 0) and χ = (3, 1, 0), the single peak

suggests a single phase transition whereas for the χ = (3, 2, 0) the two peaks suggest

two phase transitions. Figure 8.22b presents the graph for χ = (3, 2, 0) for three

increasing lattice size N = 7, 8, 9.

We further consider the case of Z6-symmetric model. Figure 8.23 presents the

graph of specific heat with χ = (2, 1, 0, 0), (3, 1, 0, 0), (3, 2, 0, 0), (3, 2, 1, 0). The

specific heat curves for χ = (2, 1, 0, 0) and χ = (3, 1, 0, 0) each has only single

peak that corresponds to single transition.

The graph for χ = (3, 2, 1, 0) however has a peak which is not entirely sharp. As

shown in the zeros distribution, it has a possibility of either single or double curve

move closer to the positive real axis. A bigger lattice is needed to describe this case

correctly.

The graph for χ = (3, 2, 0, 0) in contrary shows obvious multiple peaks. These

two peaks are the evidence for two phase transitions. This observation is in

accordance with the multiple curves in the positive real axis of its zeros distribution.

We plot for this case with different lattice size as in Figure 8.23b. The bigger the

size, the sharper the peak will be.

8.5 Discussion

The study of polynomial terms of partition function is aimed to find the largest term

contribution of this function. This term is believed to have the most domination

over the cancellation of magnitude in its partition function. The largest contribution

will suggests a typical energy penalty that exists near the transition point.

As expected, the first kind of transition is just between the ordered and

disordered phases. The largest contribution is represented in the region just after

the fully ordered state represented by the constant term of the polynomial. Then we

can see that the zeros in the second curve has the largest contribution somewhere
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between the first disordered state and the middle part of the polynomial. Here the

energy penalty is high given by many edges in the dual lattice. This observation

suggests a different kind of disordered phase will starts to emerge soon afterwards.

We illustrate these phases in Figure 8.24.

1
ordered

disordered

1
st

1

disordered

2   
nd

Figure 8.24: Ordered-disordered states illustration (not scaled).

The distinction between these two kind of disordered phases will be more obvious

at large lattice and certainly at the thermodynamic limit. The graph of specific heat

meanwhile shows the existence of phase transition through the peak in the graph.

The study of the polynomial term contribution support the determination of the

multiple phase transitions. The study provides one more detail about the system

i.e. the typical energy represented by the largest term contribution for Z = 0.

For the second phase transition however, it is not enough to determine the

existence only based on the change in the details of configuration state. The Peierls’

argument must be implemented again to support the existence of the second phase

transition.

This problem is still open − no equivalent to Peierls’ argument that prove the

existence of two transitions. The possibility is evidence in the zeros distribution

especially for Z5- and Z6-symmetric model. This observation is supported by the

behaviour in the graph of specific heat.





Conclusion

We have studied the partition functions and their zeros for Ising, Q-state Potts and

ZQ-symmetric models on several crystal lattices. The zeros are plotted in complex

Argand plane to study the analytic structure of the zeros distributions. Our research

supports the claim that this structure suggests the behaviour of physical observables

at thermodynamic limit related to phase transition.

The study of zeros distribution give the approximation of the physical critical

exponent value. We can also simultaneously study the analytic structure at

ferromagnetic and antiferromagnetic phases.

We may be able to exactly predict the locus of zeros if we can reach large enough

lattice size. For the moment, although it is very interesting to further extend the

zeros distribution to larger cases, the computing resources in hand is limiting our

study. The implementation of parallel computing is one option for improvement.
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A Algorithm for zeros finding

The Newton-Raphson (NR) method is a numerical algorithms for finding roots of
polynomial equation. The complex roots of partition function when Z = 0 are found
using this method.

Let n ≥ 0 and let the number of iterations xn be the estimated zeros at iteration
n and f be the polynomial function. Then the NR method is performed by the
following iterative formula;

xn = xn−1 −
f(xn−1)

f ′(xn−1)
. (A.1)

Theorem A.1. Given a positive integer n ≥ 1 and any choice of coefficients
a0, a1, ..., an ∈ C, such that an 6= 0, define the function f : C→ C by setting

f(z) = anz
n + ...+ a1z + a0, ∀z ∈ C.

In other words, f is a polynomial function of degree n. Then
1. given any complex number w ∈ C, we have that f(w) = 0 if and only if there

exists a polynomial function g : C→ C of degree n− 1 such that

f(z) = (z − w)g(z), ∀z ∈ C.

2. there are at most n distinct complex numbers w for which f(w) = 0. In other
words, f has at most n distinct roots.

3. (Fundamental Theorem of Algebra, restated) there exist exactly n+ 1 complex
numbers w0, w1, ..., wn ∈ C (not necessarily distinct) such that

f(z) = w0(z − w1)(z − w2)...(z − wn),∀z ∈ C.

In other words, every polynomial function with coefficients over C can be factored
into linear factors over C.

For numerical computation, let TOL be the predetermined tolerance (or
estimated error) and x0 be the initial value. The NR method calculate the

199



200 Appendixes

zeros of polynomial by iteration up to the predetermined stopping condition, i.e.
|xn − xn−1| < TOL.

Let n be the degree of partition function Z =
n∑
i=0

ajx
j where aj is the polynomial

coefficient. Let f be a differentiable function f : R → R and f ′ is the derivative of
f . Take function f = Z.

Let x0 be the initial guess and x∗ be the approximated solution to the equation
Pi(x) = 0. The algorithms below summarise the steps taken for the computation of
Newton-Raphson method. Let TOL= 10−300.

Algorithm A.2. (Newton-Raphson method).
INPUT polynomial f , degree n, initial value x0, tolerance TOL
OUTPUT zeros x∗

STEPS
1. For k from 0 to ... do Step 2 and 3.
2. Compute

xk+1 = xk −
f(xk)

f ′(xk)
.

3. If |xk+1 − xk| <TOL, then set x∗ = xk+1. Exit k loop.

Algorithm A.3. (Zeros of Polynomial with refinement).
INPUT polynomial f , degree n, tolerance TOL
OUTPUT Zeros x∗

STEPS
1. Set initial value x0 and P0(x) = f(x).
2. For i from 0 to n− 1 do Steps 3 through 9.
3. Do Newton-Raphson method (A.2).
4. Refinement. Set x0 = x∗ and f(x) = P0(x).
5. Do Newton-Raphson method (A.2).
6. Set x∗ be the complex conjugate of x∗.
7. Deflation. Compute for new Pi+1

Pi+1 =
Pi

(x− x∗)(x− x∗)
.

8. Set i = i+ 1.
9. Set new initial guess x0 = x∗.
10. Stop

A.1 On error estimation

Here we state some challenges we have faced in computing the partition function
and its zeros.
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Let the initial value x0 be a complex number x0 = a + bi, a, b ∈ R. It is known
that as the number of iterations n increases, the rounding error is also expected to
increase.

To reduce the error and at the same time increase the accuracy of the calculation,
a computational library known as GNU multiple precision (GMP) [102] is used in all
the programming code. The GMP is a library with unlimited precision arithmetic.
It allows the computer to perform many computations with large values − exceed
the standard integer range predetermined by ordinary computer. However, this
library increases the usage of computer memory very rapidly. Thus, bigger memory
is needed for large computation.

A.2 Refinement and convergence

To increase the accuracy of the roots finding, we add one more step to refine our
approximation. Let ZG be a partition function of graph G. Let Pi be a polynomial
function where i = 0, 1, 2, ... and set P0 = ZG. Denote xi as the approximated zero
for Pi. For every approximated zeros xi, we take new deflated polynomial

Pi+1 =
Pi

x− xi

for i = 0, 1, ...n− 1 and n is the degree of ZG.

Theorem A.4 (The Complex Conjugate Root Theorem). Let f(z) be a polynomial
with real coefficients. Suppose a + bi is a complex root of the equation f(z) = 0,
where a and b are real and b 6= 0. Then a− bi is also a root of the equation.

Proof. Let the polynomial f(z) as below

f(z) = a0 + a1z + a2z
2 + ...+ anz

n

=
n∑
r=0

arz
r = 0
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where all ar are real. Then

f(z) =
n∑
r=0

ar(z)r = 0

n∑
r=0

ar(z)r = 0

n∑
r=0

ar(z)r = 0

n∑
r=0

ar(z)r = 0

f(z) = 0.

Therefore, the zeros appear to be in conjugate pair.

By the complex conjugate root theorem A.4, for any polynomial with complex
zero, its complex conjugate is also a zero of the polynomial. For each Pi, the NR
method is implemented to find the remaining zeros.

For refinement, the NR method is implemented on the original ZG. At each Pi
when i > 0, we take the approximated zero x′i as the initial value for NR method
on ZG. The new root from this step is accepted as the new approximated zero xi of
ZG. This step is repeated each time we find the root for the polynomial Pi.

At some condition, we may have a convergence problem when there exist two or
more zeros located very close together or when there exist zeros with multiplicity
greater than 1. The existence of real zeros may also contribute to the problem. Thus
it is worth to check the possible real zeros from the beginning of the computation.

For the case where two or more zeros are close together, we can choose different
initial value after some number of iterations where it can redirect the program to
compute the zeros finding. A lot of checking need to be done in order to detect this.
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B Onsager’s solution

We present the Onsager’s solution using rotational matrix approach as discussed by
Kaufman in [40].

Note that the horizontal and vertical nearest neighbour interaction for the square
lattice can be represented by rotational matrix

MR(θ) =

(
cos(θ) sin(θ)
− sin(θ) cos(θ)

)
where the det(MR(θ)) = 1, so the complex eigenvalues are exp(±iθ).

Denote W as the rotational matrix and Wab(θ) be the matrix rotation in ab-plane.
For any i and 2N dimensions of rotational matrix, let

wii+1(θ) = 1i−1 ⊕MR(θ)⊕ 12N−i−1.

The idea is to replace the product of V1 =

(
N∏
i=1

ti

)
and V2 =

(
N∏
i=1

ti(i+1)

)
(from

(4.2)) by a matrix rotation W = W1W2. The W1 and W2 are rotational matrices
given by

W1 =
N∏
i=1

w2i 2i−1(2iθ)

and

W2 =
N∏
i=1

w2i+1 2i(2iθ
′).

Let c = cos(2iθ), c′ = cos(2iθ′), s = sin(2iθ) and s′ = sin(2iθ′). For example, if
N = 4,

W1 = w12w34w56w78 =



c s
−s c

c s
−s c

c s
−s c

c s
−s c


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W2 =



c −s
c s
−s c

c s
−s c

c s
−s c

s c


.

Then

W = W1W2 =
2N∏
i

waibi(θi) (B.2)

where all {ai, bi} are distinct. Let z = e
2πik
N so zN = 1. Since the dimension of a

rotational matrix is smaller than the dimension of transfer matrix T , the problem
of finding the eigenvalue for partition function is reduced to only for finding the
eigenvalue of the corresponding rotational matrix.

Using Fourier transform, we define vector

fz =



1
z2

z4

z6

...
z2N−2


where vz = fz ⊗

(
1
0

)
and v′z = fz ⊗

(
0
1

)
.

Then

W1

(
vz
v′z

)
=

(
c −s
s c

)(
vz
v′z

)
,

W2

(
vz
v′z

)
=

(
c′ −zs′

−z−1s′ c′

)(
vz
v′z

)
and

W

(
vz
v′z

)
=

(
cc′ + ss′z−1 cs′z − sc′
−cs′z−1 + sc′ ss′z + cc′

)(
vz
v′z

)
(B.3)

where we denote image of W as W (z) =

(
cc′ + ss′z−1 cs′z − sc′
−cs′z−1 + sc′ ss′z + cc′

)
. Since the

det(W (z)) = 1, we write the eigenvalues as λ± = e±lz .
For example, suppose we have an Ising model on N by M square lattice. From

Martin [58] and Valani [92], the transfer matrix have the largest magnitude of
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eigenvalue given by λ0

λ0 = exp

(
1

2

N∑
k=1

le2iπk/N

)
. (B.4)

Denote λ = λ0. The eigenvalues of rotational matrix are elz and e−lz . Then
by the relation between the transfer matrix and the rotational matrix, the sum of
eigenvalues is equal to the trace of W (z) [84, p. 249]

elz + e−lz = 2

(
cos(2iθ) cos(2iθ′) +

z + z−1

2
sin(2iθ) sin(2iθ′)

)
.

For large M , the partition function

ZNM ∼ λM . (B.5)

Using identities cosh(x) ≡ ex + e−x

2
, cosh(x) ≡ cos(ix) and sinh(x) ≡ i sin(ix), we

have

cosh(lz) = cosh(2θ) cosh(2θ′)− z + z−1

2
sinh(2θ) sinh(2θ′) (B.6)

where lz is the solution for the eigenvalue (B.4). Using identities sinh(2θ′) =
sinh(2θ)−1 and coth(2θ′) = cosh(2θ) in isotropic case θ = θ′ gives

lz = cosh−1

(
coth(2θ′) cosh(2θ′)− z + z−1

2

)
.

Again, using identity for simplification that is

cosh−1 x = ln(x) +
1

π

∫ π

0

ln(1 + x cos y) dy

=
1

π

∫ π

0

dy ln(2x− 2 cos y),

this gives

lz =
1

π

∫ π

0

ln

(
2
(

coth(2θ′) cosh(2θ′)− z + z−1

2

)
− 2 cos y

)
dy

le2iπk/N =
1

π

∫ π

0

ln (2 coth(2θ′) cosh(2θ′)− 2 cos(2πk/N)− 2 cos y) dy.

Substitute this into Equation (B.4), we get

lnλ =
1

2

N∑
k=1

1

π

∫ π

0

dy ln
(
2 coth(2θ′) cosh(2θ′)− 2 cos(2πk/N)− 2 cos y

)
. (B.7)



206 Appendixes

The above integral can be discretise using the following sum;∫ π

0

f(y) dy ∼ π

M

M∑
r=1

f(πr/M). (B.8)

Therefore, we have

lnλ ∼ 1

2

N∑
k=1

2

M

M∑
r=1

ln
(
2 coth(2β) cosh(2β)− 2 cos(2πk/N)− 2 cos(2πr/M)

)
=

N∑
k=1

1

M
ln

M∏
r=1

(
2 coth(2β) cosh(2β)− 2 cos(2πk/N)− 2 cos(2πr/M)

)
=

1

M
ln

N∏
k=1

M∏
r=1

(
2 coth(2β) cosh(2β)− 2 cos(2πk/N)− 2 cos(2πr/M)

)
.

This gives

λM =
N∏
k=1

M∏
r=1

(
K − 2(cos(2πk/N) + cos(2πr/M))

)
(B.9)

where

K =
(1 + e−4β)2

e−2β(1− e−4β)
. (B.10)

Without loss of generality, we derive the partition function for the zeros
distribution as

ZNM ∼ λM

=
N∏
k=1

M∏
r=1

(
K − 2(cos(2πk/N) + cos(2πr/M))

)
. (B.11)

For y = e2β and C = cos(2πk/N) + cos(2πr/M), each factor in (B.11) can be
written in a polynomial form when Z = 0. We can find the zeros for each factor
where

K − 2(cos(2πk/N) + cos(2πr/M) = 0

e−8β + 2Ce−6β + 2e−4β − 2Ce−2β + 1 = 0

y−4 + 2Cy−3 + 2y−2 − 2Cy−1 + 1 = 0

y4 − 2Cy3 + 2y2 + 2Cy + 1 = 0 (B.12)

for any N by M square lattice with k = 1, 2, ..., N and r = 1, 2, ...,M .
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C Coefficient of partition function

Here we present one example of partition function coefficient. The coefficient of 3-state Potts model on 15 by 17 square
lattice is given below:

Degree Coefficient

0 2927476648137810571486137368142321550071037034496
1 250629094205791710036093951670291161267563721523200
2 11212634445676329456086523351994212908827165269747840
3 348184989462262219267971485562991018963027441810479360
4 8415485449732589931130118521444790681914246871184748320
5 168394770020611937795494541922997960480757252827282078560
6 2898888300548412776521260189674548404504296458442009489280
7 44065228173284469916101697443311849676877874346809322536880
8 602637865330708992967670067810758068153928108040925507307880
9 7520011885393468229004786042061947241324556272574374214729160
10 86559845854750227520819143969840655733143551251113511427786936
11 927076213901731100046452604930195132358934276041244907603300660
12 9304053571146475249632201637622822290138930599396359883251119080
13 88005729968209806423351576613313679596269846264557505501033976880
14 788398993981997058843289935373078388059050400366825664670192004800
15 6716923539551525044204187229564265113345069166504680890980577045340
16 54616061494314291109093921280518256810681900338355234528862580296210
17 425133037510174847468984094454856917880581753867893191750823430685550
18 3176454749506222370900295569501155646093838955639214738135013519909180
19 22834516371240509736193415886954675540334933887715217132221899636706650
20 158260474118287257014953700485790312713618225755612170467074020698561512
21 1059461968612007308753616751023841811139249768287439416508640747158192310
22 6861937772260283431932238556311772866637088053818399465509340549041877320
23 43062625696375826484725102380858912382806306850160508559876353893237826620
24 262197166853725812783704586047822178047050895840511626341063266659741128230
25 1550802727504766024575661523335210209991531405541991925065957411008282377742
26 8920030374995383068526620081731836581820868226772074028537823773008746926080
27 49945472885985747034211207486704848829626031395417222142552423146191818536150
28 272488610130909355831484468388320565011848653484848957970332275005976161323000
29 1449750383497213334245028046164511945019370685997826099605737517496433364857750
30 7527875258050685315104247944077419411841987985313952476143324535199998928786420
31 38177024147699160043136338744139469143335937840955230862687245140060886146628070
32 189223725746927675845543965182398368171347895827192858758077215050695758510028810
33 917203871430595047987851049193365105593967656832626254506671777218899663245164650
34 4350382268187902932099040874311827910877212701668962337103577621571908285736290430
35 20202170259077751154325800969383603294287938374182697375627773456177416405073559498
36 91896804239585326517949829789881350201501435591006448590292787112805006571628945910
37 409678847559189571720387127912505050373722639349197250156615688693383995598482756820
38 1790704303909575164172859002980213344947563327183834111052525241166541623971020729210
39 7677616653267073570778227224989480998166419981943087842970668382768273959248365198760
40 32301723404055909739862133408313900411165942722007521638631104270149252891302060705150
41 133409439835148745022280638142385230577132849535669448136379352603917825644781945249710
42 541084404194269685541058778525335711697765567457201108461623258889673569828116637721240
43 2155801926858579864066764969315862838542508828031213921589772034995881211817961440515500
44 8440307874294537521520790824136503745183084960624858839587966888623706067797124856388520
45 32482278926431453470427739938032851936589888705227261052664515287696412328152198796058334
46 122913647444167751726630612456266245924978029294151532977743615901094596797378766097959120
47 457445851256916380295716348749973246419445017468575247082530877368697680924540607353681230
48 1674866271485273432805278809205619081827047817558166393275203231486791626494970582833371930
49 6034357296321008999534931967917909598290795096564203853869628192792527661154657090844953380
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50 21399171937224366754650410373825737141675880598387623513336532285002871060030177017471850428
51 74709864090256159164060626956119440492424983639179432619324656972450442907162330918353921010
52 256844077216258865312449757620081521505147050208653904012081071181001176747712746670611909140
53 869687615416246063680073912102885545489730244945974817753430057210634435279861312818842912670
54 2900993506499704507480569504992754322993798032011291746086690569476446828030530460479247750750
55 9534632036707428584716109149832639468941240331949340726225391842011028273097814571458877236540
56 30882706066710799035768096854300166220514099381561328220126413062378674491639972983534075895720
57 98595762098598147310566879007883043165635093624913524014167345364262310687679952888129236563540
58 310317887390904779208138342097293224429212696168126712516866550281543084394626810715594549505540
59 963013284127765163604367916475689470870303610194957136999619494580593246039146163419477396991790
60 2947155962719366775275887468936517964409647551175755449072463724305491580764398427590639446349970
61 8895803099630407026468500611964508478639847193091550688751330428768699199248622463786326558994910
62 26487545971700574149982017551293783570267619695128083568121941029397481316212323359253718334570140
63 77809698748430344105497012381132751710148844535260537059881571424550254200337578984599279515074290
64 225538062713975200655766905502351597142829877703093305506956060799117653106592472379394042471946530
65 645143819305537832756243297592811647489366480074213941044171441382694276791946415088871772712341336
66 1821370213113531065219665024967726773892677343553974202969140087085325964474990264270109374792953680
67 5075716340977709368096051281544223614948631010870052648707862521024314877063376900053704089449914100
68 13963825749613062514556828958482493970087502942530949452053662258386359914300498913182016959161539960
69 37928720425185044451354773876264503503766712521077984295440393596758909465444907466087418659688678200
70 101726863059696719457755868893179928942764276482915961544791508702644766203599560750739408357357613746
71 269433840150602725377561198270872749270769360729751227502995577658380161886921461355295672627208545290
72 704792711107569185255828983281399009860304274752392828885648304813081410953762783711219499144553515130
73 1820982040739886225722610665695676801922713776347721850662156405006752929683477440102435191640863286330
74 4647567159908237451648017138807874290176782204503304204694922598592958846052104382718952288358147646050
75 11718196894305096163991441187516514942366442915856109530552895250379396151497107359410766758663513633714
76 29191002801012663560776751492700224668068139008873135218740938240930894549749019997324765553742269094060
77 71850045907402115903405532326802975058431322006055076745993695240627020536339641707368130393075428937550
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470 2086326646454628
471 599101822655130
472 174116764660860
473 49520192753070
474 12988896122430
475 3699657010116
476 1076263554150
477 288545344020
478 66595291470
479 20069636040
480 5894444562
481 1379596770
482 255032280
483 97330650
484 27450810
485 4768380
486 603600
487 428220
488 95850
489 8730
490 540
491 1530
492 180
493 0
494 0
495 3
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