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Abstract

In areas of signal processing and communications such as antenna array beamforming,
adaptive filtering, multi-user and multiple-input multiple-output (MIMO) detection, chan-
nel estimation and equalization, echo and interference cancellation and others, solving lin-
ear systems of equations often provides an optimal performance. However, this is also a
very complicated operation that designers try to avoid by proposing different sub-optimal
solutions. The dichotomous coordinate descent (DCD) algorithm allows linear systems
of equations to be solved with high computational efficiency. It is a multiplication-free
and division-free technique and, therefore, it is well suited for hardware implementation.

In this thesis, we present architectures and field-programmable gate array (FPGA) im-
plementations of two variants of the DCD algorithm, known as the cyclic and leading
DCD algorithms, for real-valued and complex-valued systems. For each of these tech-
niques, we present architectures and implementations with different degree of parallelism.
The proposed architectures allow a trade-off between FPGA resources and the computa-
tion time. The fixed-point implementations provide an accuracy performance which is
very close to the performance of floating-point counterparts.

We also show applications of the designs to complex division, antenna array beam-
forming and adaptive filtering. The DCD-based complex divider is based on the idea
that the complex division can be viewed as a problem of finding the solution of a 2×2
real-valued system of linear equations, which is solved using the DCD algorithm. There-
fore, the new divider uses no multiplication and division. Comparing with the classical
complex divider, the DCD-based complex divider requires significantly smaller chip area.

A DCD-based minimum variance distortionless response (MVDR) beamformer em-
ploys the DCD algorithm for multiplication-free finding the antenna array weights. An
FPGA implementation of the proposed DCD-MVDR beamformer requires a chip area
much smaller and throughput much higher than that achieved with other implementations.
The performance of the fixed-point implementation is very close to that of floating-point
implementation of the MVDR beamformer using direct matrix inversion.
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When incorporating the DCD algorithm in recursive least squares (RLS) adaptive filter,
a new efficient technique, named as the RLS-DCD algorithm, is derived. The RLS-DCD
algorithm expresses the RLS adaptive filtering problem in terms of auxiliary normal equa-
tions with respect to increments of the filter weights. The normal equations are approx-
imately solved by using the DCD iterations. The RLS-DCD algorithm is well-suited to
hardware implementation and its complexity is as low asO(N2) operations per sample in
a general case and O(N) operations per sample for transversal RLS adaptive filters. The
performance of the RLS-DCD algorithm, including both fixed-point and floating-point
implementations, can be made arbitrarily close to that of the floating-point classical RLS
algorithm. Furthermore, a new dynamically regularized RLS-DCD algorithm is also pro-
posed to reduce the complexity of the regularized RLS problem fromO(N3) toO(N2) in
a general case and to O(N) for transversal adaptive filters. This dynamically regularized
RLS-DCD algorithm is simple for finite precision implementation and requires small chip
resources.
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Chapter 1

Introduction

Contents
1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.4 Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.5 Publication List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.1 Overview

In areas of signal processing and communications such as channel estimation and equal-
ization, multi-user and multiple-input multiple-output (MIMO) detection, antenna array
beamforming, adaptive filtering, echo and interference cancellation and others, solving
the normal system of equations often provides an optimal performance. However, this is
also a complicated operation that designers try to avoid by proposing different sub-optimal
algorithms.

Solving the normal equations is usually considered by using matrix inversion. Com-
puting the matrix inversion directly has a complexity of O(N3) [1], which is too compli-
cated for real-time implementation. From a numerical point of view, the best approach
is to avoid the matrix inversion [2–4]. Consequently for real-time solutions, techniques
that solve systems of equations may be preferable. Among them are direct and iterative
methods. The direct methods, such as Cholesky decomposition, Gaussian elimination,
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CHAPTER 1. INTRODUCTION 2

QR decomposition (QRD) and others, have complexity of O(N3) [1]. Iterative methods,
such as the steepest descent method and conjugate gradient (CG) method provide fast con-
vergence when the condition number of the matrix is not very large but require O(N2)

operations per iteration. The coordinate descent techniques, such as Gauss-Seidel, Jacobi
and Successive Over-Relaxation (SOR) methods [1] demonstrate a slower convergence
but require only O(N) operations per iteration. The computational load of these iterative
techniques depends on the number of iterations executed (and hence accuracy obtained).
These iterative methods require multiplication and division operations, which are com-
plex for implementation, especially in hardware, i.e., they require a significant chip area
and high power consumption. Moreover, divisions can lead to numerical instability.

The Dichotomous Coordinate Descent (DCD) algorithm [5] is based on coordinate de-
scent techniques with power of two variable step-size. It is simple for implementation,
as it does not need multiplication or division operations. For each iteration, it only re-
quires O(N) additions or O(1) additions. Thus, the DCD algorithm is quite suitable for
hardware realization.

In this thesis, we investigate the hardware architectures and designs of the DCD al-
gorithm and its variants, and apply them to several practical applications in the commu-
nication field. Specifically, we present and compare two variants of the DCD algorithm:
cyclic and leading DCD algorithms. A DCD algorithm for complex-valued systems of
equations is also presented. We then present Field-Programmable Gate Array (FPGA)
designs of these DCD algorithms with different degree of parallelism, including designs
with serial and parallel update of the residual vector, as well as trade-off designs with
group-updates. These designs show the relationship between the chip area usage and the
processing speed. We can choose appropriate designs according to the requirements of
practical applications. We also show examples of applications such as the complex di-
vision, antenna array beamforming and adaptive filtering. The designs and application
results show that the DCD algorithm allows solving complicated signal processing prob-
lems requiring matrix inversion and the solution is simple for implementation in hardware.
Furthermore, when incorporating the DCD algorithm in classical signal processing tech-
niques, such as Recursive Least Squares (RLS) adaptive filter, we obtain new efficient
techniques.

1.2 Contribution

The contributions of this thesis is summarized as following:
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CHAPTER 1. INTRODUCTION 3

• Architectures and FPGA designs of two variants of the DCD algorithm, cyclic and
leading DCD algorithms, are presented. For each of these techniques, serial de-
signs, group-2 and group-4 designs, as well as a design with parallel update of the
residual vector for the cyclic DCD algorithm are presented. These designs have
different degrees of parallelism, thus enabling a trade-off between FPGA resources
and the computation time. We also discuss applications of these designs.

• A low complexity complex-valued divider is developed. It is based on the idea
that the complex division problem can be viewed as a 2 × 2 real-valued system of
equations, which is solved using the DCD iterations. This complex divider does
not use any multiplication or division operations. The area usage is only 527 slices.
When operating from a 100 MHz clock, the throughput is at least 1.6 MHz. The
maximum quotient error is less than one least significant bit (LSB).

• An efficient FPGA implementation of the Minimum Variance Distortionless Re-
sponse (MVDR) beamformer is presented. The FPGA design is based on DCD
iterations, thus making the whole design very efficient in terms of both the number
of FPGA slices and throughput. Antenna beampatterns obtained from weights cal-
culated in a fixed-point FPGA platform show a good match with those of a floating-
point implementation by using direct matrix inversion for linear arrays of size 9 to
64 elements.

• An FPGA design of a DCD-based RLS adaptive filtering algorithm has been pro-
posed with two data structures: arbitrary and time-shifted. The RLS-DCD algo-
rithm is obtained by incorporating DCD iterations into the RLS algorithm to solve
the system of equations. The algorithm is simple for finite precision implementa-
tion and requires small chip resources. A 9-element antenna beamformer based on
the arbitrary data structure design can achieve a weight update rate that is signifi-
cantly higher than that of an FPGA design based on QRD with approximately the
same area usage. The design of transversal RLS-DCD algorithm, which exploits the
time-shifted data structure can provide the weight update rate as high as 207 kHz
and 76 kHz for 16-tap and 64-tap adaptive filters, respectively, while using as little
as 1153 and 1306 slices, respectively. Numerical results show that the performance
of the fixed-point FPGA implementation of the RLS-DCD algorithm is close to that
of the floating-point implementation of the classical RLS algorithm.

• A low complexity dynamically regularized RLS algorithm has been proposed based
on the RLS-DCD algorithm. Its FPGA design for complex-valued systems is also
presented. The area usage and throughput are approximately the same as in the
unregularized RLS-DCD algorithm. This dynamically regularized RLS-DCD algo-
rithm is applied to a communication system with the MVDR beamformer. Numeri-
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CHAPTER 1. INTRODUCTION 4

cal results show that the proposed algorithm provides Bit-Error-Ratio (BER) results
close to that of the floating-point regularized classical RLS algorithm.

1.3 Thesis Outline

The structure of the thesis is as follows:

• In Chapter 2, literature review is presented, that describes techniques for solving
systems of equations, matrix inversion, related hardware reference designs, adap-
tive filtering, complex division, MVDR beamforming, as well as FPGA design pro-
cedures.

• In Chapter 3, the DCD algorithm and its variants are introduced. Several architec-
tures and FPGA designs of the DCD algorithm are presented. Numerical properties
of the DCD algorithm are also analyzed.

• In Chapter 4, a multiplication-free complex divider is implemented in FPGA based
on the DCD iterations.

• In Chapter 5, we present an efficient FPGA implementation of the DCD-based
MVDR beamformer.

• In Chapter 6, the RLS-DCD algorithm is introduced and implemented into FPGA
with arbitrary and time-shifted data structures. The dynamically regularized RLS-
DCD algorithm is proposed and implemented into FPGA for solving complex-
valued systems with arbitrary data structure. Numerical results, area usage and
throughput rate of both algorithms and their FPGA designs are also given.

• In Chapter 7, conclusions and future work are presented.

1.4 Notations

In this thesis, we use capital and small bold fonts to denote matrices and vectors, e.g., R
and r, respectively. Elements of the matrix and vector are denoted as Rp,n and rn. A n-th
column of R is denoted as R:,n. The variable i is used as a time index, i.e., R(i) is the
matrix R at time instant i, or as a digit bit index of a variable, i.e., xi is the i-th bit of
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CHAPTER 1. INTRODUCTION 5

the variable X . The variable k is used as an iteration index, i.e., x(k) is the vector x at
k-th iteration. The symbol j is an imaginary unit j =

√−1. We denote <(·) and =(·) the
real and imaginary components of a complex number, respectively; (·)T denotes matrix
transpose and (·)H denotes Hermitian transpose. The symbols E[·] denotes the statistical
expectation operator.

1.5 Publication List

Some of the research presented in this thesis has been published, submitted, or will be
submitted to some publications at the time of submission of this thesis.

Journal Papers

1. J. Liu, B. Weaver and Y. Zakharov, “FPGA implementation of multiplication-free
complex division”, Electronics Letters, vol. 44, no. 2, pp. 95-96, 2008.

2. J. Liu and Y. Zakharov, “A low complexity dynamically regularized RLS algo-
rithm”, Electronics Letters, vol. 44, no. 14, pp. 885-886, 2008.

3. Y. Zakharov, G. White and J. Liu, “Low complexity RLS algorithms using dichoto-
mous coordinate descent iterations”, IEEE Transactions on Signal Processing, vol.
56, no. 7, pp. 3150-3161, July 2008.

4. J. Liu, Y. Zakharov and B. Weaver, “Architecture and FPGA implementation of
dichotomous coordinate descent algorithm”, under revision in IEEE Transactions
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Patent
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Chapter 2

Literature Review

Contents
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Solving Normal Systems of Equations . . . . . . . . . . . . . . . . . 8

2.3 Adaptive Filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.4 Hardware Reference Implementations . . . . . . . . . . . . . . . . . 23

2.5 Complex Division . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.6 MVDR Adaptive Beamforming . . . . . . . . . . . . . . . . . . . . . 29

2.7 FPGA Implementation Procedures . . . . . . . . . . . . . . . . . . . 32

2.8 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.1 Introduction

This chapter presents the background of problems to be solved in this thesis. We first
discuss efficient algorithms for solving the normal equations and calculating matrix inver-
sions, including direct methods and iterative methods. Some hardware reference designs
are discussed and compared. We also introduce some communication application exam-
ples in brief, such as adaptive filtering, complex division, adaptive beamforming. FPGA
design procedures are also presented, including the FPGA implementation environment
used in this thesis.

The rest of this chapter is organized as follows. In Section 2.2, efficient algorithms for
solving systems of equations and performing matrix inversion are analyzed. The related
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CHAPTER 2. LITERATURE REVIEW 8

hardware reference designs are presented in Section 2.4. The literature about adaptive
filtering, complex division and adaptive beamforming are presented in Sections 2.3, 2.5
and 2.6, respectively. FPGA design procedures are introduced in Section 2.7. Finally,
conclusions are given in Section 2.8.

2.2 Solving Normal Systems of Equations

A wide variety of signal processing and communications applications require the linear
least-squares (LS) problem [6] to be solved in real time. Among these are adaptive an-
tenna arrays [6,7], multiuser detection [8], echo cancelation [9], equalization [10], system
identification [6], amplifier linearization [11] and many others. The LS problem is known
to be equivalent to the solution of a system of linear equations, also referred to as normal
equations [3, 7]

Ax = b, (2.1)

where A is an N × N symmetric positive definite matrix and both x and b are N × 1

vectors. The matrix A and vector b are known, whereas the vector x should be estimated.
An exact solution is generally defined as

x = A−1b, (2.2)

where A−1 is the inverse of the matrix A. It is well known that the computational load
of the matrix inversion relates to the size of the matrix N , and is generally regarded as
an operation of a complexity O(N3) [1]. A standard mathematical calculation software
package, such as Matlab, uses one of a variety of techniques from the LAPACK library
[12] to solve this problem. From a numerical point of view, the best approach to matrix
inversion is avoid to do it explicitly but instead, where possible, to solve an applicable
system of equations [2–4]. Consequently for real-time solutions, techniques that solve
systems of equations are the most suitable approach to the LS problem. There exist many
efficient methods, which can be categorized under two main headings: direct methods and
iterative methods. Direct methods compute an exact solution of the system of equations
through a finite number of pre-specified operations [2]. In contrast, iterative methods
produce a sequence of successively better approximations of the optimal solution [2].

These methods can be also used to calculate the inverse of matrix A. Let AX = I,
where I is an N×N identity matrix and X = A−1 is an N×N matrix needed to calculate,
we obtain N systems of equations

AX:,n = I:,n n = 1, ..., N. (2.3)
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By solving these N systems of equations, we could obtain A−1.

In the following two subsections, some direct and iterative algorithms for solving linear
systems will be presented.

2.2.1 Direct Methods

The direct methods, such as Gaussian elimination, LU factorization, Cholesky decompo-
sition, QRD and others, obtain an exact solution of the system of equations (2.1) after a
finite sequence of pre-specified operations [2]. The key idea of most direct methods is
to reduce the general system of equations to an upper triangular form or a lower trian-
gular form, which have the same solution as the original equations. They can be solved
easily by back or forward substitutions, respectively, and often provide a high accuracy
solution [1].

The basic idea of Gaussian elimination is to modify the original equations (2.1) to
obtain an equivalent triangular system by taking appropriate linear combinations of the
original equations (2.1) [1]. Specifically, it systematically applies row operations to trans-
form the system of equations (2.1) to an upper triangular system Ux = y, where U is
an N × N upper triangular matrix and y is an N × 1 vector. Then the upper triangular
system Ux = y can be solved easily through back substitution operations. The com-
plexity of the Gaussian elimination method is as high as 2N3/3 operations [1], including
multiplications, divisions and additions. Besides high complexity, the main disadvantage
of the Gaussian elimination method is that the right-hand vector b of (2.1) is involved in
the elimination process and has to be known in advance for the elimination step to pro-
ceed [1]. Therefore, when solving such linear systems of equations with same left-hand
matrix, the Gaussian elimination has to perform 2N3/3 operations for each one.

The LU factorization (or LU decomposition) can be viewed as a “high-level” algebraic
description of the Gaussian elimination [1]. It decomposes the matrix A of the system of
equations (2.1) into a product, A = LU, where L is an unit lower triangular matrix with
all main diagonal elements equal to one and U is an upper triangular matrix [1]. There-
fore, the solution vector x can be obtained by solving a lower triangular system Ly = b

by forward substitutions and an upper triangular system Ux = y by back substitutions
sequentially [1]. Comparing with the Gaussian elimination technique, the benefit of the
LU decomposition method is that the matrix modification (or decomposition) step can be
executed independently of the right side vector b [1]. Thus, when we have solved the
system of equations (2.1), we can solve additional systems with the same left side matrix
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A without the matrix decomposition operations [2]. Therefore, the complexity of solving
such systems with the same left side matrix is significantly reduced. This property of
LU decomposition has a great meaning in practice, which makes the LU decomposition
method to be usually the direct scheme of choice in many applications [13]. However,
the LU decomposition technique is very complicated, requiring as high as 2N3/3 opera-
tions [1], including multiplications, divisions and additions.

As the coefficient matrix A in the normal equations (2.1) is symmetric and positive
definite, the efficient Cholesky decomposition method can be used. The Cholesky de-
composition is closely related to the Gaussian elimination method [2]. It decomposes
the positive definite coefficient matrix A in exactly one way into a product A = UTU,
where U is an upper triangular matrix with all main diagonal elements positive [2]. Con-
sequently, the system of equations (2.1) can be rewritten as UTUx = b. Let y = Ux, we
obtain a lower triangular system UTy = b. Therefore, the solution vector x can be easily
obtained by solving a low triangular system UTy = b and an upper triangular system
Ux = y sequentially, through forward and back substitutions, respectively. Comparing
with the Gaussian elimination method, the Cholesky decomposition method has the ad-
vantage that it requires half of the number of operations and half of the memory space [1].
Furthermore, Cholesky decomposition technique is numerically stable [1] as the positive
definite matrix A is nonsingular. However, the complexity of the Cholesky decomposi-
tion is as high as N3/3 operations, including multiplication and division operations [1]. It
is still too complicated for real-time hardware implementations, especially if the system
size N is large [1].

QRD is well known for its numerical stability [1] and widely used in many applica-
tions. It solves the system of equation (2.1) in the same way as the LU decomposition [2];
it transforms the coefficient matrix A as A = QR, where Q is an orthogonal matrix
and R is an upper triangular matrix [1]. The orthogonal matrices have the property of
QQT = QTQ = I and Q−1 = QT [1], where I is an N ×N identity matrix. Therefore,
the system (2.1) can be transformed into an upper triangular system Rx = QTb and the
solution vector x can be obtained easily through back substitution operations.

QRD is equivalent to computing an orthogonal basis for a set of vectors [1]. There are
several choices for actually computing the QRD, such as by means of the Householder
reflections and Givens rotations [1]. Reflections and rotations are quite computationally
attractive as they are easily constructed and can be used to introduce zeros in a vector
by properly choosing the rotation angle or the refection plane [1]. The Householder re-
flections are extremely useful for introducing zeros to annihilate all elements (except the
first one) of a vector [1]. In contrast, Givens rotations could introduce zeros to a vector
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more selectively, including the first element [1]. Therefore, Givens rotations is usually
the transformation of choice [1].

By using Givens rotations, QRD is inherently well-suited to hardware implementa-
tion, exploiting parallel processing and pipeline capabilities of a systolic array struc-
ture [14] [15], which consists of an array of individual processing cells arranged as a
triangular structure. Each individual processing cell in such array has its own local mem-
ory and is connected only to its nearest cells [6]. The special architecture of the array
makes regular streams of data to be pipelined through the array in a highly rhythmic fash-
ion. This simple and highly parallel systolic array enables simple data flow and high
throughput with pipelining [16]. Therefore, it is well suited for implementing complex
signal processing algorithms, particularly for real-time and high data bandwidth imple-
mentations [6]. However, the complexity of this triangular array architecture is highly
related to the system size; the number of processing cells (N2 +N)/2 grows dramatically
with the increasing of matrix size N , which makes a direct hardware design of the systolic
array very expensive for most practical applications, e.g., adaptive beamforming, requir-
ing multiple, rather than one chip solutions [17]. Therefore, the triangular architecture is
only feasible for matrices with small size [16].

Alternatively, some less complicated architecture arrays can be used for solving large
size matrices. In [18], a linear architecture systolic array for QRD is obtained through
direct projection of the triangular architecture systolic array; each processing cell of the
linear array corresponds to the processing cells of each row in the triangular array. This
linear array reduces the number of processing cells to N . However, the processing cell of
the linear array in [18] is much more complicated than that of the triangular array, as it is
obtained by merging the functions of the diagonal and off-diagonal cells of the triangular
array. Moreover, not all the processing cells are utilized 100%. Another kind of linear ar-
chitecture systolic array [19] [17] is obtained by using the folding and mapping approach
on the triangular systolic array. This kind of linear array retains the local interconnections
of the triangular systolic array and requires only M + 1 processing cells (N = 2M + 1 is
the matrix size). These processing cells have the similar complexity with that of the trian-
gular array. Moreover, these processing cells are 100% utilized. In [15], another solution
was proposed to avoid the triangular architecture array by combining similar processing
cells of the triangular array, adding memory blocks and using a control logic to sched-
ule the data movements between blocks. The combined architecture is less complicated
at the expense of heavier latency, compared to the linear architectures. Therefore, the
linear architecture arrays [17] [18] and the combined architecture [15] provide a balance
trade-off between the performance and complexity [17]; they require more control logic,
heavier latency, but the required number of processing cells is significantly reduced [16],
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compared to the triangular structure systolic array.

The classical Givens rotations contain square-root, division and multiplication oper-
ations [15], which are expensive for hardware implementation. There has been a lot of
previous work on efficient systolic array implementation of QRD using Givens rotations
on hardware and they can be divided into three main types. The first type of QRD using
Givens rotations is based on the the COordinate Rotation DIgital Computer (CORDIC)
algorithms. The CORDIC algorithm is an iterative technique for computing trigonometric
functions such as sin and cosin [15]. The CORDIC algorithm is simple as it requires bit-
shift and addition operations only, and does not require any multiplication, division and
square-root operations [15]. Therefore, it is quite suitable for fixed-point hardware imple-
mentation. However, due to the limited dynamic range of the fixed-point representation in
CORDIC algorithms, the wordlength requirement is much greater than in floating-point
implementations for the same accuracy [15]. Moreover, there are larger errors due to
many sub-rotations of the CORDIC algorithm [15].

The second type of QRD using Givens rotations is based on a square-root-free version
of the Givens rotations or “Squared Givens Rotations” (SGR) [20], which eliminates the
need for square-root operations and half number of the multiplications [15]. The SGR
method has several benefits compared to the classical Givens rotation and the CORDIC
technique. First of all, it is simple as it does not require square-root operations. On the
other hand, its numerical accuracy becomes worse, comparing with the classical Givens
rotations with square-root operations. Secondly, it is much faster than the CORDIC tech-
nique [15] [16]. The SGR-based hardware design requires about twice smaller area at the
expense of about twice larger number of block multipliers and results in only about 66%
latency compared to the CORDIC-based hardware design [15] [16].

The third type of QRD using Givens rotations is based on Logarithmic Number Sys-
tems (LNS) arithmetic. In the LNS arithmetic, the square-root operations of conventional
number system become simple bit-shift operations, and multiplication and division opera-
tions of conventional number system become addition and subtraction operations, respec-
tively [21]. However, the simple addition or substraction operation in the conventional
number system becomes much more costly in the LNS arithmetic [21]. Therefore, even
though the Givens rotation operations using the LNS arithmetic are multiplication, divi-
sion and square-root free, addition operations make it complicated for hardware imple-
mentation. In addition, the LNS-based QRD requires a number of converting operations
to fit into the conventional number system based design.

Traditionally, systolic array-based QRD is used for large size systems [22] [23]. For
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small size matrices, there are some alternative algorithms which are faster, more hardware
efficient than the QRD, while still providing sufficient numerical stability [22] [23]. One
straightforward way for matrix inversion is the analytic approach [22]. For example, the
inversion of a 2× 2 matrix using the analytic approach is computed as follows [22]:

B−1 =

[
a b

c d

]−1

=
1

ad− bc

[
d −b

−c a

]
. (2.4)

For small size matrices, the complexity of the analytic approach is significantly smaller
than that of the QRD. Therefore, the analytic approach is quite efficient for inversions of
small size matrices, such as a 2 × 2 matrix in equation (2.4). However, the complexity
of the analytic approach grows very quickly as the size N of the matrix increases, which
makes it only suitable for small size matrices. Moreover, the direct analytic matrix inver-
sion is sensitive to finite-length errors [22]. Even for 4 × 4 matrices, the direct analytic
approach is unstable due to the large number of subtractions involved in the computation
which might introduce cancellation [22].

In [22], a method called blockwise analytic matrix inversion (BAMI) is proposed
to compute the inversion of complex-valued matrices. It partitions the matrix into four
smaller matrices, and then computes the inverse based on computations of these smaller
parts. For example, to compute a 4× 4 matrix B, it is first divided into four 2× 2 subma-
trices [22]

B =

[
B1 B2

B3 B4

]
. (2.5)

Consequently, the inversion of the matrix B can be computed by the inversion of these
2× 2 matrices using the analytic method (2.4), i.e., [22]

B−1 =

[
B−1

1 + B−1
1 B2(B4 −B3B

−1
1 B2)

−1B3B
−1
1 −B−1

1 B2(B4 −B3B
−1
1 B2)

−1

−(B4 −B3B
−1
1 B2)

−1B3B
−1
1 (B4 −B3B

−1
1 B2)

−1

]
.

(2.6)
The BAMI approach is more stable than the direct analytic method, due to the fewer
number of subtractions and it requires fewer number of bits to keep the precision [22].
Therefore, the BAMI method provides a good alternative to the classical QRD for solving
small size matrices such as 4 × 4 matrices. However, for 2 × 2 and 3 × 3 matrices, the
direct analytic method is preferred [22].

The Sherman-Morrison equation is a special case of the matrix inversion lemma, al-
lowing the easy computation of the inverse of a series of matrices where two successive
matrices differ only by a small perturbation [1]. The perturbation has to have the form of
a rank-1 update, e.g., uvH , where u and v are vectors with appropriate sizes [24]. Given
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A−1, the Sherman-Morrison formula is expressed as [1]

(A−1 + uvH)−1 = A−1 − (A−1uvH)A−1

1 + vHA−1u
. (2.7)

Consequently, for a series of matrices A(i) = A(i− 1) +u(i)uH(i), e.g. autocorrelation
matrices, where i is the time index and u(i) is the input vector, A−1(i) can be computed
easily by using the Sherman-Morrison formula [24], i.e.,

A−1(i) = [A(i− 1) + u(i)uH(i)]−1

= A−1(i− 1)− A−1(i− 1)u(i)uH(i)A−1(i− 1)

1 + uH(i)A−1(i− 1)u(i)
. (2.8)

This approach of matrix inversion is widely used, e.g. in the MIMO systems [25]. How-
ever, the equation (2.8) requires a large number of multiplications and divisions, which
makes this method difficult for hardware implementation. In [24], the divisions in (2.8)
are translated into multiplications by introducing appropriate scaling, i.e.,

Ã−1(i) = [α(i− 1) + uH(i)Ã−1(i− 1)u(i)]

[
Ã−1(i− 1) +

u(i)uH(i)

α(i− 1)

]−1

= Ã−1(i− 1)[α(i− 1) + uH(i)Ã−1(i− 1)u(i)]

−[Ã−1(i− 1)u(i)uH(i)Ã−1(i− 1)] (2.9)

where Ã−1(i) = α(i)A−1(i) and the scaling factor

α(i) = α(i− 1)[α(i− 1) + uH(i)Ã−1(i− 1)uH(i)] (2.10)

with α(0) = 1. However, the modified Sherman-Morrison equation (2.9) is still very com-
plicated, with a complexity of O(N2) multiplications, which are expensive for hardware
design.

The direct methods, such as the Gaussian, Cholesky and QRD and many others, have
complexity of O(N3) operations, requiring division and multiplication operations. The
modified Sherman-Morrison method requires about O(N2) multiplications. Therefore,
direct methods are difficult for real-time signal processing and hardware implementa-
tions. The direct methods compute an exact solution after a finite number of pre-specified
operations [1]. They only give out results after executing all prespecified operations.
Therefore, if we stop early, the direct methods give out nothing [2]. Moreover, the direct
methods may be prohibitively expensive to solve the very large or sparse systems of linear
equations [1].
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2.2.2 Iterative Methods

In contrast to the direct methods are the iterative methods, which are quite efficient for
both very large systems and very sparse systems [2]. The iterative methods produce a se-
quence of successively better approximations x(k) (k is the iteration index), which hope-
fully converge to the optimal solution [2], and essentially involve the coefficient matrix
A only in the context of the matrix-vector multiplication operations [1].

Solving the normal system of equations (2.1) can be formulated as a process of mini-
mization of the quadratic function [2]

f(x) =
1

2
xTAx− xTb. (2.11)

The minimum value of f(x) is −1
2
bTA−1b, obtained by setting x = A−1b which is ex-

actly the solution of the normal equations (2.1) [1]. Consequently, most iterative methods
solve the normal equations (2.1) by minimizing the function f(x) iteratively [1]. Each of
them begins from an initial guess x(0) and generates a sequence of iterates x(1), x(2), .... At
each step (or iteration), x(k+1) is chosen as f(x(k+1)) ≤ f(x(k)), and f(x(k+1)) < f(x(k))

is preferable [2]. Therefore, we get closer to the minimum value of f(x) step by step. If
we obtain Ax(k) = b or nearly so after some iterations, we can stop and accept x(k) as
the solution of the system (2.1).

Computing the step from x(k) to x(k+1) has two ingredients: 1) choosing a direction
vector p(k) that indicates the direction in which we will travel to get from x(k) to x(k+1);
and 2) choosing a point on the line x(k) + α(k)p(k) as x(k+1), where α(k) is the step size
chosen to minimize f(x(k) + α(k)p(k)) [2]. The process of choosing α(k) is called the line
search [2]. We want to choose an appropriate α(k) to make f(x(k+1)) ≤ f(x(k)). One way
to ensure this is to choose α(k) to let

f(x(k+1)) = min f(x(k) + α(k)p(k)); (2.12)

this is called an exact line search, otherwise it is an inexact line search [2].

There are two main types of iterative methods: the nonstationary methods and the sta-
tionary methods. Nonstationary methods are a relatively recent development, including
the steepest descent method, the CG method and many others; they are usually compli-
cated, but they can be highly effective [26]. Stationary iterative methods are older, simple,
but usually not as effective as the nonstationary methods [26]. There are three common
stationary iterative methods for linear systems: Jacobi, Gauss-Seidel and SOR methods.
These methods will be analyzed below.
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One of the well-known iterative techniques is the steepest descent method [1]. It per-
forms the exact line search in the direction of negative gradient

p(k) = −∇f(x(k)) = b−Ax(k) = r(k), (2.13)

and we call r(k) as the residual vector of the solution x(k) and the step size is chosen as [1]

α(k) =
(r(k))T r(k)

(r(k))TAr(k)
. (2.14)

The method of steepest descent is easy to program, but it often converges slowly [2]. The
main reason for its slow convergence is that the steepest descent method may spend time
on minimizing f(x(k)) along parallel or nearly parallel search directions [2]. The com-
plexity of the steepest descent method is high, requiringO(N2) multiplications, divisions
and additions per iteration.

The CG algorithm is a simple variation of the steepest descent method that has a fast
convergence speed. It is based on the idea that the convergence speed to the optimal
solution could be accelerated by minimizing f(x(k)) over the hyperplane that contains all
previous search directions, i.e.,

x(k) = α(0)p(0) + α(1)p(1) + ... + α(k−1)p(k−1), (2.15)

instead of minimizing f(x(k)) over just the line that points down gradient [2], which
actually happens in the steepest descent method. Due to its fast convergence, the CG
method has already been used for adaptive filtering for a long time (e.g., see [27–30]
and references therein). However, the complexity of the CG iteration is O(N2), includ-
ing divisions, multiplications and additions, which is often too high for real time signal
processing.

The Jacobi method perhaps is the simplest iterative method [1]. It updates next iterate
x(k+1) beginning with an initial guess x(0) by solving each element of x in terms of [1]

x(k+1)
n =

(
bn −

∑

p6=n

An,px
(k)
p

)
/An,n, (2.16)

where An,p, bn and xn are (n, p)-th element of the coefficient matrix A, and n-th elements
of vector b and x, respectively. The Jacobi method has the advantage that all elements
of the correction x(k+1) can be performed simultaneously as all elements of new iterate
x(k+1) are independent to each other; therefore the Jacobi method is inherently parallel [2].
On the other hand, the Jacobi method does not use the most recent available information
to compute x

(k+1)
n [1] as shown in (2.16). Therefore, the Jacobi method needs to store two

copies of x, since x(k) can only be overwritten until the next iterate x(k+1) is obtained [2].
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If the system size N is large, each copy of x will occupy large memory space. Moreover,
the Jacobi method requires nonzero diagonal elements of the matrix A to avoid division
by zero in (2.16), which can usually be achieved by permuting rows and columns if the
condition is not already true. Furthermore, the Jacobi method does not always converge to
the optimal solution [26]. But the convergence of the Jacobi method is guaranteed under
the conditions that are often satisfied (e.g., if matrix A is strictly diagonally dominant),
even though the convergence speed may be very slow [26].

The Gauss-Seidel method is obtained by revising the Jacobi iteration to make it using
the most current estimation of the solution x; the Gauss-Seidel iterations are performed
using each new component as soon as it has been computed rather than waiting until the
next iteration [2], which actually happens in the Jacobi method. This feature gives the
Gauss-Seidel method in terms of [2]

x(k+1)
n =

(
bn −

∑
p<n

An,px
(k+1)
p −

∑
p>n

An,px
(k)
p

)
/An,n. (2.17)

Therefore, the Gauss-Seidel method can store each new element x
(k+1)
n immediately in

the place of old x
(k)
n , saving memory space and making programming easier [26]. On the

other hand, the Gauss-Seidel iterations can only be performed sequentially as each com-
ponent of x(k+1) only depends on previous ones; the Gauss-Seidel is inherently sequen-
tial [2]. Moreover, the Gauss-Seidel method also requires some conditions to guarantee
its convergence; conditions that are somewhat weaker than those for Jacobi method (e.g.,
if the matrix is symmetric and positive definite) [26]. However, even though the Gauss-
Seidel method may converge very slowly, it converges faster and needs only slightly more
than half as many iterations as the Jacobi method to obtain the same accuracy [2]. Due
to the explicit division in (2.17), the Gauss-Seidel method also requires non-zero diago-
nal elements of the matrix A. Gauss-Seidel iterations are widely used in, e.g. adaptive
filtering [31, 32].

The relaxation is the process of correcting an equation by modifying one unknown [2].
Therefore, the Jacobi method performs simultaneous parallel relaxation and the Gauss-
Seidel method performs successive relaxation [2]. The over-relaxation is the technique
making a somewhat bigger correction, rather than making only a correction for which
the equation is satisfied exactly [2]. The over-relaxation scheme could accelerate the
convergence substantially [2]. The successive over-relaxation method, or SOR method,
is obtained by applying extrapolation to the Gauss-Seidel technique; it takes a weighted
average between the previous iterate and the current Gauss-Seidel iteration successively,
i.e.,

x(k+1) = wx
(k+1)
GS + (1− w)x(k), (2.18)
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where x
(k+1)
GS is the next iterate given by the Gauss-Seidel method and w > 1 is the

extrapolation factor [26]. The value of w decides the accelerate rate of the convergence
speed. If w is chosen as w = 1, the SOR method collapses to the Gauss-Seidel method.
The parameter w can also be chosen as w < 1, which amounts to under-relaxation, but this
choice normally leads to slow convergence [2]. With optimal value for w, the SOR method
can be an order of magnitude faster than that of the Gauss-Seidel method [26]. However,
choosing optimal w is difficult in general except for special classes of matrices [26]. As
SOR is based on the “successive” relaxation (Gauss-Seidel iterations), it also only requires
to keep one copy of x [2].

Comparing with the direct methods, the iterative methods have several advantages:
1) they may require less memory than direct methods; 2) they may be faster than di-
rect methods; and 3) they may handle special structures (such as sparse) in a simpler
way [2]. Furthermore, the iterative techniques have the ability to exploit a good initial
guess, which could reduce the number of iterations required to get the solution [2]. Even
though in theory infinite number of iterations might be required to converge to optimal
solution, iterative techniques have the ability to stop the solving process arbitrary accord-
ing to the required accuracy level. While for the direct methods, they do not have the
ability of exploiting an initial guess and they simply execute a predetermined sequence of
operations and obtain the solution after all these operations [2].

However, the iterative methods are complex. The nonstationary iterative methods,
such as the steepest descent method and the CG method we presented above, are highly
effective with a complexity of O(N2) operations per iteration. The stationary iterative
methods, such as the Jacobi, Gauss-Seidel and SOR algorithms, are less complicated,
with a complexity of O(N) operations per iteration, at the expense of less efficiency. The
iterative methods contain division and multiplication operations, making them expensive
for real-time signal processing and hardware designs.

The DCD algorithm [5] is a nonstationary iterative method, but based on stationary
coordinate descent techniques. It is simple for implementation, as it does not need mul-
tiplication or division operations. For each iteration, it only requires O(N) additions or
O(1) additions. Therefore, the DCD algorithm is quite suitable for hardware realization.
The disadvantage of the DCD algorithm is that it requires infinite number of iterations (or
updates) in theory to converge to an optimal solution. Therefore, the number of updates
and processing time is individual for each system to be solved. The relationship between
the number of updates and the linear systems to be solved is very complicated and it is
not possible to predict an accurate number of updates. This is an common drawback for
the iterative techniques, such as the steepest descent, CG, Jacobi and Gauss-Seidel meth-

J. Liu, Ph.D. Thesis, Department of Electronics, University of York 2008



CHAPTER 2. LITERATURE REVIEW 19

ods. However, the DCD algorithm has the lowest complexity per iteration and performs
a similar convergence speed to other iterative methods, such as the CG, Gauss-Seidel and
CD algorithms. In this thesis, the DCD algorithm will be analyzed and implemented into
FPGA chips.

2.3 Adaptive Filtering

An adaptive filter is a filter that self-adjusts the filter coefficients according to a recursive
algorithm, which makes the filter to perform satisfactorily in an environment where the
statistics of the input signals are not available or time varying [6]. Adaptive filters are
widely used in the areas of system identification, channel equalization, channel identifi-
cation, interference suppression, acoustic echo cancellation and others.

+Adaptive Filter

Adaptive 
Algorithm

)(id

)()()( iyidie −=

)(iy)(ix

)(iw

Figure 2.1: Basic structure of an adaptive filter [33]

The basic structure of an adaptive filter is shown in Fig. 2.1, where x(i), y(i), d(i),
e(i) = d(i)− y(i) and w(i) are the input data vector, output signal, desired response sig-
nal, error signal and the filter coefficients (or filter weights) at time instant i, respectively.
It is seen that the operation of an adaptive filter involves two basic processes which work
interactively with each other: 1) a filtering process to generate an output in response to a
sequence of input data x(i) and the filter coefficients w(i); and 2) an adaptive algorithm
to determine how to modify the filter coefficients w(i) to minimize a cost function on next
iteration by observing the error signal e(i) between the filter output y(i) and the desired
response signal d(i) [34].

The adaptive filter can be of either finite-duration impulse response (FIR) or infinite-
duration impulse response (IIR) structures [33]. The FIR structure is simple and robust as
it does not involve any feedback mechanism. Furthermore, many practical problems can
be accurately modeled by an FIR filter, e.g., echo cancellation using adaptive transversal
filter and antenna beamforming using adaptive linear combiner. The IIR structure contains
feedback mechanisms which make it complicated and sometimes unstable. Therefore, the
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FIR adaptive filter is many times preferred over the IIR one and the application of the IIR
structure in the area of adaptive filter is rather limited [35].

As already mentioned above, the adaptive algorithm adjusts the filter weights w(i)

by minimizing a cost function which is related to the error signal e(i). The choice of
one adaptive algorithm over another often involves a trade-off between certain conflicting
performance measures. Some of the most important performance measures to choose an
adaptive algorithm are [6]:

• Rate of convergence, i.e., the number of iterations required by the adaptive algo-
rithm to converge close enough to a steady-state solution.

• Misadjustment, which quantifies how close the adaptive filter coefficients are to the
ones of the optimal filter.

• Tracking ability, i.e., the performance of the filter when operating in a nonstationary
environment.

• Robustness to quantization when implemented in finite-precision.

• Computational complexity, including the number of operations, the memory re-
quirements and the investment required to program the algorithm on a computer.

However, these performance measures are often conflicting. Consequently, specifica-
tions on the adaptive filter in terms of these measures cannot in general be guaranteed
simultaneously. For example, fast convergence rate usually implies high computational
complexity requirement. On the other hand, if low misadjustment is desired, a low com-
plexity adaptive algorithm would most likely suffer from slow convergence. Basically,
there are two distinct approaches for deriving recursive algorithms for the operation of
linear adaptive filters: stochastic gradient approach and LS estimation [6].

The structural basis for the linear adaptive filter using the stochastic gradient approach
is a tapped-delay linear, or transversal filter [6]. The cost function of the stochastic gradi-
ent approach is defined as the mean-square error (MSE)

Jw = E[e2(i)], (2.19)

where E[·] denotes the statistical expectation operator, resulting in the widely known Least
Mean-Square (LMS) algorithm [6]. The LMS algorithm is very popular due to its low
complexity and robustness. The LMS algorithm updates the coefficient vector by taking
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a step in the direction of the negative gradient of the cost function, i.e.,

w(i + 1) = w(i)− µ

2

∂Jw

∂w(i)

= w(i) + µe(i)x(i), (2.20)

where µ is the step size controlling the stability, convergence speed, and misadjust-
ment [6]. The step size µ should be small compared with 1/λmax, where λmax is the largest
eigenvalue of the autocorrelation matrix R = E[x(i)xT (i)] of the input data x(i) [6]. The
complexity of the LMS algorithm is as low asO(N) operations per sample [6]. However,
the main drawbacks of the LMS algorithm are a relatively slow convergence rate and a
sensitivity to variations in the condition number of the correlation matrix R [6].

In the standard form of the LMS algorithm in equation (2.20), the adjustment applied
to the weight vector is directly proportional to the input vector x(i) [6]. Therefore, the
standard LMS algorithm suffers from a gradient noise amplification problem when the
input data x(i) is large [6]. To eliminate this problem, a normalized LMS (NLMS) al-
gorithm is obtained by substituting the step size µ in equation (2.20) with a time-varying
step size

w(i + 1) = w(i) + µ(i)e(i)x(i), (2.21)

where µ(i) = µ̃/(||x(i)||2 + δ), ||x(i)|| is the Euclidean norm of the input data vector
x(i), µ̃ is a fixed step size, and δ is a small positive constant to avoid division by a small
value of the squared norm ||x(i)||2. Therefore, the NLMS algorithm mitigates the gradient
noise amplification problem. Furthermore, the NLMS algorithm converges faster than the
standard LMS algorithm [6]. However, it still converges slowly for colored noise input
signals [6].

The method of LS minimizes a cost function that is defined as the sum of weighted
error squares [6],

Jw =
i∑

k=1

λi−ke2(k), (2.22)

where 0 < λ ≤ 1 is an exponential scaling factor (or forgetting factor). The method of
LS may be formulated with two structures, block estimation and recursive estimation [6].
The block estimator updates the filter coefficients on a block-by-block basis; all blocks
contain equal length (duration) of input data stream. In contrast, the recursive estimator
estimates the filter coefficients on a sample-by-sample basis [6]. Due to its less memory
storage, the recursive estimation structure is widely used in practice and results in the well
known RLS algorithm.
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Differentiating the cost function Jw (2.22) with respect to w(i) and solving for mini-
mum, we obtain [6]

R(i)w(i) = β(i), (2.23)

where

R(i) =
i∑

k=1

λi−kx(k)xT (k)

= λR(i− 1) + x(i)xT (i) (2.24)

is the correlation matrix of the input data vector x(i), and

β(i) =
i∑

k=1

d(k)x(k)

= λβ(i− 1) + d(i)x(i) (2.25)

is the cross correlation vector between the input data vector x(i) and the desired response
d(i). Thus, the filter weights can be obtained as

w(i) = R−1(i)β(i). (2.26)

In practice, the classical RLS algorithm employs the matrix inversion lemma to calculate
the inversion of matrix R(i) recursively, avoiding direct computing the matrix inversion
R−1(i) at each time instant. The convergence rate of the RLS algorithm is much faster
than that of the LMS algorithm [6], which makes it widely used in many signal processing
areas. However, such improvement is achieved at the expense of an increase in computa-
tional complexity, which is O(N2) operation per sample [6].

Another major limitation of the classical RLS algorithm is the potential divergence be-
havior in finite-precision environment [33]. The stability problems are usually caused by
lost symmetry and positive definiteness of the matrix inversion R−1(i) [33]. Most robust
implementations of the RLS adaptive algorithm are based on QRD of the matrix R(i).
The QRD-RLS algorithm works directly with the incoming data x(i), rather than work-
ing with the (time-average) correlation matrix R(i) as in the standard RLS algorithm [6].
Accordingly, the QRD-RLS algorithm is robust to numerical errors compared to the clas-
sical RLS algorithm [6] [35]. However, the QRD-RLS algorithm is complicated, requir-
ing O(N2) operations per sample. Moreover, as we present above, the hardware design
of the QRD is very complicated, requiring a large number of logic resources with a heavy
processing latency.
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2.4 Hardware Reference Implementations

The processes of solving linear systems of equations and matrix inversion have been for
a long time considered to be too hard a task to be implemented within real-time systems.
Consequently, hardware reference designs have only started appearing relatively recently.
Most of the related hardware designs are based on the QRD using Givens rotations [4,15–
18, 36–41].

Karkooti et al. [15] implemented a 4×4 floating-point complex-valued matrix inver-
sion core on the Xilinx Virtex4 XC4VLX200 FPGA chip, based on the QRD algorithm
via SGR. The design uses 21-bit data format; 14 bits for mantissa, 6 bits for exponent
of floating-point number and 1 sign bit. The design was implemented using the Xilinx
System Generator tool [42], calling on the Xilinx Core Generator [43] to implement a
floating-point divider block. To make the design able to fit in one single chip, a combined
architecture of the systolic array was implemented. Internally, the design consists of one
diagonal cell, one off-diagonal internal cell and a back substitution block. It also requires
block RAMs and a control unit to schedule the movement of data between these blocks.
Compared to the triangular architecture systolic array, the combined architecture makes
the design less complicated at the expense of heavier latency. The area usage of this de-
sign is about 9117 logic slices and 22 DSP48 (also known as “XtremeDSP”) blocks [44]
with a latency of 933 clock cycles (777 cycles for QRD and 156 cycles for back substi-
tution). The Virtex-4’s DSP48 block is a configurable multiply-accumulate block based
on an 18-bit×18-bit hardware multiplier [44]. The design can be extended to other size
matrices with a slight modification of the control unit and the RAM size.

Edman et al. [18] implemented a 4×4 fixed-point complex-valued matrix inversion
core on the Xilinx Virtex-II FPGA chip using QRD via SGR. The design is based on a
linear architecture systolic array which is obtained through direct projection of the trian-
gular architecture systolic array. This linear array requires only 2N processing cells for
QRD and back substitutions. However, the processing cells are very complicated and not
all of them are of 100% utilization. The most complicated complex-valued divider was
realized using 9 multipliers, 3 adders and a look-up table, with 5 pipelining stages. The
implementation with 19-bit fixed-point data format consumes 86% of the Virtex-II chip
area with a latency of 175 cycles. Unfortunately, the paper does not point out the FPGA
chip model and the area usage in terms of the logic slices, RAMs and multipliers in detail.

Liu et al. [17] implemented a floating-point QRD array processor based on SGR for
adaptive beamforming on a TSMC (Taiwan Semiconductor Manufacturing Company)
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0.13 micron chip. The design is based on a N -cell linear architecture systolic array ob-
tained by using the folding and mapping approach on the triangular systolic array. The
processing cell has similar complexity to the cell in the triangular systolic array and has a
utilization of 100%. By using parameterized arithmetic processors, the design provides a
very elegant and direct approach to create a generic core for implementing the QR array
processor. For the case of a 41-element antenna system in which data is represented by a
14-bit mantissa and 5-bit exponent, the linear array QR processor comprises 21 process-
ing cells and utilizes 1060-K gates, corresponding to a maximum clock rate of 150 MHz.
The authors did not implement their linear array into FPGA chip. However, as the basic
operations of SGR is complex, we could get a conclusion that this linear array is compli-
cated for FPGA implementation and not possible to implement a large size system such
as 41-element in a single FPGA chip.

Myllyla et al. [16] implemented a fixed-point complex-valued minimum mean square
error (MMSE) detector for MIMO OFDM (orthogonal frequency-division multiplexing)
system for both 2×2 and 4×4 cases on the Xilinx Viretex-II XC2V6000 FPGA chip. The
matrix operation of this design is based on the systolic array, using CORDIC-based QRD
and SGR-based QRD. A fast and parallel triangular structure of the systolic array is con-
sidered for 2×2 antenna systems and a less complicated linear architecture with easy scal-
ability and time sharing processing cells is considered for 4×4 systems. The CORDIC-
based design is implemented using VHDL, whilst the SGR-based design is implemented
using the System Generator. For 2×2 and 4×4 systems, the CORDIC-based QRD design
in which data is represented in a 16-bit fixed-point data format, requires 11910 and 16805
slices, 6 and 101 block RAMs, 20 and 44 18-bit×18-bit embedded multipliers, with 685
and 3000 cycles latency, respectively. The SGR-based QRD only implemented for the
2×2 system, requires 6305 slices, 8 block RAMs and 59 18-bit×18-bit embedded multi-
pliers with a latency of 415 cycles; it uses 19-bit fixed-point data format. Obviously, the
CORDIC-based design requires more slices and less multipliers compared to the SGR-
based design. This is because the SGR is based on normal arithmetic operations, while
the CORDIC is based on multiplier- and divider-free rotation operations [16].

There are also many commercial QR intellectual property (IP) cores that use the
CORDIC algorithm. Altera has published a CORDIC-based QRD-RLS design [36] [37]
using their CORDIC IP core [45] that supports applications such as smart antenna-
beamforming [46], WiMAX [47], channel estimation and equalization of 3G wireless
communications [48]. Altera’s CORDIC IP block has a deeply pipelined parallel archi-
tecture enabling speed over 250MHz on their Stratix FPGAs. In [36] [37], they explore
a number of different degrees of parallelism of CORDIC blocks for performing matrix
decomposition for 64 input vectors for 9-element antenna with 16-bit data on an Altera
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Stratix FPGA. The required logic resources of the CORDIC cores can be as low as 2600
logic elements (equivalent to 1300 Xilinx slices [49] [50]). When the CORDIC cores run
at 150 MHz, the design obtains an update rate of 5 kHz and the processing latency is about
29700 cycles. The logic resources of other modules are not given. An embedded NIOS
processor is used to perform the back substitution with a latency about 12000 cycles for
9× 9 matrix. However, the QRD and back substitution can not be executed in a pipelined
scheme. Therefore, the total latency of the design is about 41700 cycles.

Xilinx has a similar CORDIC IP core [51]. Dick et al. [38] implemented a complex-
valued folded QRD with subsequent back-substitution on a Virtex-4 FPGA device using
the Xilinx System Generator tool [42]. The folded design contains one diagonal cell
(CORDIC-based), one off-diagonal cell (DSP48-based) of the systolic array, and a back-
substitution cell, with block RAMs and a control unit to schedule the movement of data
between these blocks. All of them together cost about 3530 slices, 13 DSP48 blocks and 6
block RAMs. For solving a 9×9 system of equations, the proposed design results in about
10971 cycles. The area usage of the CORDIC-based QRD is much smaller compared to
Dick’s 2005 [15] 4×4 matrix inversion core using SGR-based QRD; this is because it
uses fixed-point rather than floating-point arithmetic, and the SGR operation is based on
normal arithmetic operations, while the CORDIC operation is based on multiplier- and
divider-free rotation operations [16].

Xilinx also has QR decomposition, QR inverse and QRD-RLS spatial filtering IP cores
available in the AccelWare DSP IP Toolkits [52] originally from AccelChip, Inc. Accel-
Ware is a library of floating-point Matlab model generators that can be synthesized by
AccelDSP into efficient fixed-point hardware. These AccelWare DSP cores are used in
WiMAX (Worldwide Interoperability for Microwave Access) baseband MIMO systems
[53] and for beamforming [4] applications. Uribe et al. [4] described a 4-element beam-
former based on the QRD-RLS algorithm with CORDIC-based Givens rotations. The
resources required on the target device (a Xilinx Virtex-4 XC4VSX55 FPGA) are 3076
logic slices and one DSP48 block. The number of slices and DSP48 blocks is further re-
duced compared to the design in [38]; this is because the design in [4] is mainly based on
CORDIC operation, whilst only the diagonal cell is based on CORDIC operation in [38].
The sample throughput rate of the design is quoted at 1.7 MHz. The authors do not state
the clock speed of the device they are using, but their chosen device (an XC4VSX55) is
available in 400MHz, 450MHz and 500MHz variants, which would give 235, 265 and
294 cycles, respectively.

Matousek et al. implemented a diagonal cell of the systolic array for QRD using
their high-speed logarithmic arithmetic (HSLA) library [39]. In this design, the LNS
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format is applied, i.e., the number is divided into an integer part, which always has 8
bits, and a fractional part, the size of which depends on the data precision. For 32-bit
LNS format, their QRD diagonal cell consumes about 3000 slices of Xilinx Virtex-E
XCV2000E FPGA devices with 13 cycles latency. For comparison, a floating-point QRD
diagonal cell in which data is represented by a 23-bit mantissa and 8-bit exponent is also
implemented, which requires 3500 slices with a latency of 84 cycles. It is obvious that
the LNS arithmetic based design is much faster than the conventional arithmetic based
design.

Schier et al. uses the same HSLA library as in [39] to implement floating-point opera-
tions for Givens rotations [40] and QRD-RLS algorithm [41], based on a Xilinx Virtex-E
XCV2000E FPGA. Two LNS data formats are implemented: one is a 19-bit LNS format
and the other is a 32-bit LNS format. Only one diagonal cell and one off-diagonal cell
of the systolic array, not the full array, are implemented. Since addition and subtraction
become the most computationally complex modules in an LNS system, they are evalu-
ated using a first-order Taylor-series approximation with look-up tables. Even by using
an error correction mechanism and a range-shift algorithm [54] to minimize the size of
the look-up table, the logarithmic addition/subtraction block still requires a large number
of slices and memory space. For 19-bit and 32-bit LNS format, one addition/subtraction
block requires about 8% and 13% slices, and 3% and 70% block RAMs of a single Xil-
inx Virtex-E XCV2000E FPGA, respectively. Thus, for 19-bit LNS format, these two
cells (one diagonal cell and one off-diagonal cell) require about 4492 slices and 30 block
RAMs. The diagonal cell has 11 cycles latency and the off-diagonal element has 10 cycles
latency. These two cells could run at 75 MHz and get a throughput about 6.8 MHz since
both types of cells are fully pipelined. In contrast, for 32-bit LNS data format, only one
logarithmic addition/subtraction block can fit on the Xilinx Virtex-E XCV2000E FPGA
limited by the number of block RAMs.

Eilert et al. [23] implemented a 4×4 complex-valued matrix inversion core in floating-
point format for the Xilinx Virtex-4 FPGA based on their BAMI algorithm [22]. The
design was implemented using the Xilinx Core Generator [43] to generate all basic units,
such as the floating-point real adders, subtractor, real multipliers and real dividers. As the
multiplications and divisions are executed using logic gates, not the embedded multipliers
or the DSP48 blocks, the BAMI design requires a large chip area. It requires overall 7312
slices and 9474 slices for 16-bit and 20-bit floating-point data formats, respectively. The
16-bit design and 20-bit design run at 120 MHz and 110 MHz, respectively, both with
270 cycles latency.

LaRoche et al. [24] synthesised a 4×4 complex-valued matrix inversion unit based
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Table 2.1: Comparison of FPGA-based matrix inversion and linear system of equation
solvers. (MULT = multiplier)

Matrix
Technique

Logic
Extras

Latency
Size Slices Cycles
2×2 QRD-SGR [16] 6305 59 MULTs 415
4×4 QRD-SGR [15] 9117 22 DSP48s 933
2×2 QRD-CORDIC [16] 11910 20 MULTs 685
4×4 QRD-CORDIC [16] 16805 44 MULTs 3000
4×4 QRD-CORDIC [4] 3076 1 DSP48s 265
9×9 QRD-CORDIC [36] 1300 1 NIOS Processor 41700
9×9 QRD-CORDIC [38] 3530 13 DSP48s 10971

4×4 BAMI [23] 9474 - 270

4×4
modified

4446 101 MULTs 64
Sherman-Morrison [24]

1 diagonal cell QRD-LNS [39] 3000 - 13
1 diagonal cell QRD [39] 3500 - 84
1 diagonal cell

QRD-LNS [41] [40] 4492 -
11

1 off-diagonal cell 10

on the modified Sherman-Morrison equation (2.9) using Xilinx Synthesis Technology
(XST) [55] on a Xilinx Virtex II XC2V600 FPGA chip. Even though this modified
Sherman-Morrison equation (2.9) does not contain division operations, its FPGA imple-
mentation is still very complicated due to a large number of multiplication operations.
The design has four main blocks, a matrix-matrix multiplication block, a matrix-vector
multiplication block, a vector-vector multiplication block and a scalar-matrix multiplica-
tion block, which consume about 3108, 765, 187 and 780 logic slices with 64, 16, 4 and
16 18-bit×18-bit embedded multipliers, respectively. The total area usage written in [24]
is 4446 slices and 101 18-bit×18-bit embedded multipliers, which is smaller than the sum
of usage of the four main blocks. The author did not give explanation about this differ-
ence. Moreover, the number of required RAMs is also not given out. The latency of the
design is about 64 cycles.

Table 2.1 compares some of the FPGA implementations that have been mentioned
above. In summary, it can be seen that current approaches to the problem of solving
normal equations and matrix inversion demand relatively high computational resources,
making notable use of hardware multipliers. Only small-size problems can be efficiently
solved in real-time hardware design.
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2.5 Complex Division

Complex numbers are very common in the field of communications where they are of-
ten used to represent signals or signal-related quantities. The division of two complex
numbers has been used diversely in signal processing areas, such as acoustic pulse re-
flectometry [56], astronomy [57], optics [58], image processing [59] and non-linear RF
measurement [60]. It also appears in many signal processing linear algebra problems such
as the complex singular value decomposition [61].

The most straightforward method for complex division is to pre-multiply both the di-
visor d = dr + jdj and the dividend r = rr + jrj by the complex conjugate of the divisor

q =
r

d
=

rr + jrj

dr + jdj

=
rrdr + rjdj

dr
2 + dj

2 + j
rjdr − rrdj

dr
2 + dj

2 (2.27)

where q = qr + jqj is the quotient and j =
√−1. This is the most fundamental method

of performing complex division, and refers to as the fundamental equation of complex
division [62]. However, this basic equation requires six real multiplications, two real
divisions and three real additions. One problem associated with the fundamental equation
is that of the dynamic range, i.e., the multiplications in equation (2.27) may generate very
large values or very small values. This may cause overflow or underflow, respectively,
and errors will be introduced [63] [62].

The Smith algorithm [64] avoids the problems of overflow and underflow by convert-
ing multiplications in (2.27) as

q =
r

d
=

rr + jrj

dr + jdj

=





rr + rj(dj/dr)

dr + dj(dj/dr)
+ j

rj − rr(dj/dr)

dr + dj(dj/dr)
, if |dr| ≥ |dj|,

rr(dr/dj) + rj

dr(dr/dj) + dj

+ j
rj(dr/dj)− rr

dr(dr/dj) + dj

, if |dr| < |dj|.
(2.28)

Thus, the product ranges of the multiplications in (2.28) are much better defined compared
to that of (2.27). Overflow error will only occur if the operands themselves are very
close to overflowing. It is seen that the Smith method requires three divisions, three
multiplications and three additions. Comparing with the fundamental equation (2.27),
Smith method obtains a higher numerical accuracy at the expense of computational load
through the increased number of divisions.

In [65, 66], a complex division algorithm using a digit-recursion scheme is proposed.
The key idea of the approach is to apply a digit-recurrence division algorithm, where
real and imaginary quotient bits are computed in a linear sequence, with prescaled
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operands [65, 66]. That is, the proposed algorithm uses a standard residual recurrence
with complex variables

w(k+1) = w(k) − qk+1d (2.29)

where w(k) is the complex partial remainder at the k-th iteration and w(0) = r is the
complex dividend, d is the complex divisor, and qk is the k-th complex quotient digit.
The attractiveness of the digit-recursion division scheme is that the recursion is based
on a very simple quotient digit selection function; the quotient digits qk are actually a
rounded version of the most significant bits of the partial remainder w(k), which makes
the equation (2.29) very simple. The major disadvantage of the digit-recurrence division
scheme is that it only works if the dividend (or rather, one component of the dividend)
is equal to or very close to 1. Therefore, a rather cumbersome complex prescaling (i.e.
magnitude scaling and rotation) operation is required prior to the digit-recurrence division
scheme commencing. The complex prescaling operation is performed based on a set of
hardware multipliers [67] [62]. The scaling factor is calculated through interpolation
from values stored in look-up tables, and these look-up tables can be quite large [67] [62].
In practice, the storage requirement of look-up tables can be reduced by using bipartite
tables [67] [62], which significantly reduce the number of values needed to be stored at the
expense of a handful of arithmetic operations performed during each look-up table [62].

Alternatively, the complex division problem can be viewed as a problem of finding the
solution of a system of linear equations [68]

[
dr −dj

dj dr

][
qr

qj

]
=

[
rr

rj

]
. (2.30)

However, using the algorithms we presented above, both the direct and iterative methods,
to solve this simple 2 × 2 real-valued linear equations is complicated, requiring division
and multiplication operations.

Division of complex numbers based on the techniques we presented in this section
is very complicated and expensive for real-time hardware implementation. Therefore,
complex division has traditionally been a computationally-intensive process and largely
implemented in software [65].

2.6 MVDR Adaptive Beamforming

The adaptive beamformer performs spatial filtering, wherein an array of individual sen-
sors is exploited to receive a source signal from the interested direction and to attenuate
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signals from other directions and uncorrelated noise [6]. Fig. 2.2 shows a generic adaptive
beamforming system that uses a linear array of N individual sensors, where x(i) are the
array outputs (or also referred as snapshot) at time instant i, w(i) is the array weights,
β(i) is the steering vector of the interest direction and y(i) = wH(i)x(i) is the beam-
former output. The beamforming process is carried out by weighting the array outputs
x(i), thereby adjusting their amplitudes and phases such that when added together they
form an electronically-steerable beamformer output y(i) [69]. An adaptive algorithm is
employed to optimize the array weights automatically based on the array outputs x(i)

and the steering vector β(i) of the interested direction. Therefore, by choosing an ap-
propriate adaptive algorithm, the adaptive beamformer has two main benefits: 1) steering
capability, whereby the interested source signal is always listened; 2) cancellation of inter-
ferences and uncorrelated noise, therefore the obtained signal-to-interference-plus-noise
ratio (SINR) is maximized [6].

. . .

Adaptive 
Algorithm

)(iβ

)(iw )(iy
)(ix

Figure 2.2: A generic adaptive beamforming system

Adaptive beamformer based on the MVDR criterion (or also referred as Capon beam-
forming) [70] is considered as the optimal beamformer. Refer to Fig. 2.2, the MVDR
beamformer selects the array weights w(i) by minimizing the variance (i.e., average
power) of the beamforming output y(i), subject to maintaining unity response in the look
direction (the direction of the interested source) [6] [71],

minimize wH(i)R(i)w(i),
w(i)

subject to wH(i)β(i) = 1, (2.31)

where R(i) = E[x(i)xH(i)] is the correlation matrix of the snapshot x(i). Applying the
method of Lagrange to (2.31), we could get the following solution for the weight vector

w(i) =
R−1(i)β(i)

βH(i)R−1(i)β(i)
. (2.32)

Therefore, the MVDR beamformer (2.32) obtains the maximum SINR by keeping the
unity response on the desired source signal constant while minimizing the total out-
put noise, including the interference signals and uncorrelated noise [71]. However, the
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MVDR beamforming (2.32) requires matrix inversion and is considered too computation-
ally complicated for practical implementation.

Alternatively, the equation (2.32) can be solved by computing

h(i) = R−1(i)β(i), (2.33)

which can be represented as the normal equations

R(i)h(i) = β(i). (2.34)

Consequently, the optimal weights w(i) can then simply be computed as

w(i) =
h(i)

βH(i)h(i)
. (2.35)

There exist some efficient techniques for solving the normal equations (2.34), such as the
QRD-RLS algorithm. However, the QRD using Givens rotations is very complicated for
hardware implementation, even though it could exploit parallel processing and pipelin-
ing capabilities using systolic array architectures. Some other techniques, such as SGR,
CORDIC and LNS, are applied to the QRD to reduce the complexity. As we have shown
above, the QRD algorithms based on SGR, CORDIC and LNS are still expensive for
hardware designs, requiring a large number of logic resources and hardware multipliers,
which makes large size beamformers impractical on all but the largest available FPGA
chips.

The performance of the MVDR adaptive beamformer is not robust and is sensitive to
the steering vector errors caused by imprecise sensor calibrations [72]. Diagonal loading
on the correlation matrix R(i) is a popular method to improve the performance of the
MVDR beamformer [72], i.e.,

R(i) = E[x(i)xH(i)] + δ(i)I, (2.36)

where δ(i) is an extra diagonal loading at time instant i and I is an N × N identity ma-
trix. For the classical RLS algorithm, this extra diagonal loading does not allow to use the
matrix inversion lemma and increases the complexity to O(N3) operations per sample
as it requires matrix inversion at each time instant [6]. The leaky RLS adaptive algo-
rithm [73] allows solving the RLS problem with a diagonal loading with complexity of
O(N2). It is based on using a recursive update of the eigenvalue decomposition of the
correlation matrix. However, the eigenvalue decomposition is very complicated for real-
time implementation. The QRD-RLS algorithm processes the input vector x(i) directly
avoiding estimation of the correlation matrix to reduce the complexity [6]. We did not
find any technique that implements the QRD-RLS algorithm with extra diagonal loading.
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We could use the QRD method on the regularized correlation matrix to solve the normal
equations discretely at each time instant. However, this discrete QRD scheme can not be
expressed recursively like the QRD-RLS to reduce the complexity, which makes it very
complicated. Therefore, the regularized MVDR beamforming problem is very compli-
cated and expensive for real-time hardware implementation of large size beamformers.

2.7 FPGA Implementation Procedures

Basically, an FPGA is a large-scale integrated circuit containing programmable logic
blocks, programmable interconnects and programmable input-output blocks [74]. The
architecture of a Xilinx Virtex II pro chip is shown in Fig. 2.3. The programmable logic
blocks can be programmed to duplicate the functionality of basic logic gates such as AND,
OR, XOR, NOT or more complex combinatorial functions such as flip-flops, memory el-
ements, decoders or simple mathematical functions [74]. The programmable input-output
blocks at the periphery of the devices provide programmable input and output capabili-
ties [74]. By programming the hierarchy of programmable interconnects, the program-
mable logic blocks and programmable input-output blocks can be interconnected to per-
form whatever logical functions and input-output connections are required [74]. During
the past decade, FPGAs have experienced extensive architecture innovations [75]. Many
advanced technologies have been applied to FPGA devices that enable the development
of higher density and much more powerful devices [75]. Now most FPGA devices also
have block RAMs, hardware multipliers and embedded microprocessors besides tradi-
tional logic blocks and interconnects. Therefore FPGA devices become extremely well
suited to the high-performance real-time signal processing [75].

Defining the behavior of an FPGA chip can be done using a Hardware Description
Language (HDL) such as VHDL and Verilog to describe the functions directly. The hand-
written code can be guaranteed as optimal by the designer in the sense that one can be
sure what is got as an output [16]. However, the optimality of the design is highly related
to the experience of the designer which makes the HDL design method difficult for inex-
perienced designers. Alternatively, defining the behavior of an FPGA can be done using
a schematic based design tool, such as the System Generator [42] we mentioned above.
The System Generator provides blocks of pre-defined functions, which can be arranged
through a graphical user interface, as shown in Fig. 2.4. Therefore, the System Genera-
tor is easy for designers, especially for persons unexperienced with HDL design method.
After defining the behavior using either the HDL method or the schematic method, a
technology-mapped netlist is generated using an electronic design automation tool [74].
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Figure 2.3: Architecture of an FPGA chip (Copied from [76])

The netlist can then be fitted to the actual FPGA architecture using a process called place-
and-route, usually performed by the FPGA company’s proprietary place-and-route soft-
ware [74]. The user will validate the map, place and route results via timing analysis,
simulation, and other verification methodologies [74]. Once the design and validation
process is complete, the binary file can be generated (also using the FPGA company’s
proprietary software) and downloaded to (re)configure the FPGA device [74].

To simplify the design of complex systems in FPGAs, there exist libraries of predefined
complex functions and circuits that have been tested and optimized to speed up the design
process. These predefined circuits are commonly called IP cores, such as the CORDIC
cores we mentioned above, and are available from FPGA vendors and third-party IP sup-
pliers [74]. The FPGA device vendors also provide related software to support their chips,
such as the Xilinx Integrated Software Environment (ISE). With assistance of these soft-
ware tools and IP cores, FPGA design is simpler now.

In this thesis we choose the Xilinx Virtex-II Pro Development System [77] to im-
plement our designs. This is an evaluation board that features a Xilinx Virtex-II Pro
XC2VP30 FPGA [76] (FF896 package, speed grade 7), which in turn features 13696
logic slices, 136 18k-bit block-RAM components, 136 18-bit-by-18-bit embedded mul-
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Figure 2.4: Schematic Design using System Generator (Copied from [42])

tipliers etc. The whole device is organized as an array of logic elements and program-
mable routing resources [75]. Besides the traditional programmable logic blocks, pro-
grammable interconnects and programmable input-output blocks, this FPGA device also
contains some dedicated resources such as on-chip memory, DCM (Digital Clock Man-
ager) and embedded hardware multipliers. These dedicated resources are quite useful for
the high-performance real-time processing.

We use VHDL to describe our designs, and they are synthesized and downloaded to
the target platform using the Xilinx ISE 8.1i software package. All our designs presented
in this thesis operate synchronously from a single 100 MHz clock signal which is gener-
ated by the crystal oscillator circuit on the evaluation board. This 100 MHz clock signal
connects to each logic slice through the DCM Logic module and the Global Clock Dis-
tribution Network [76]. The DCM here acts as a Delay Lock Loop (DLL) to de-skew
and enhance the fan-out on the clock signal [76]. The Global Clock Distribution Network
is a dedicated copper-layer which could guarantee that the delay difference of the clock
signal arriving at each flip flop could be ignored. Distributing the global clock signal like
this can ensure uniform delay between the system clock source and each logic slice in our
synchronous designs.
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2.8 Conclusions

In this chapter we presented reviews on the problems to be solved in the next chapters. We
first introduced well-known algorithms for solving the normal equations and calculating
matrix inversion, including both direct and iterative methods. Some reference hardware
designs were also presented and compared with each other. However, these efficient al-
gorithms are complicated, requiring division and multiplication operations. Therefore,
they demand relatively high hardware resources, making them expensive for real-time
hardware design.

The RLS algorithm attracts a lot of interest in adaptive filtering applications due to its
fast convergence speed. However, the fast convergence is obtained at the expense of high
complexity. The classical RLS algorithm employs the matrix inversion lemma to reduce
the complexity to O(N2) operations per sample. The widely used robust QRD-RLS al-
gorithm, using QRD to work directly with the incoming data, is also very complicated
with O(N2) operation per sample. Therefore, hardware design of the RLS algorithm is
complicated, requiring large number of logic resources with heavy latency.

The division of two complex numbers is another common problem in the areas of
signal processing and communications. Some techniques for solving this problem were
analyzed, including the fundamental method, the Smith algorithm, the digit-recursion
algorithm and the method of solving a system of linear equations. However, even though
the complex division is easy to understand in theory, it is computationally complicated
and largely implemented in software.

The MVDR beamforming obtains a high SINR performance and is considered as the
optimal beamformer. However, it has high computational complexity, requiring matrix
inversion at each time instant. Alternatively, the MVDR beamforming can be achieved by
solving normal equations. However, solving the normal equations is also a computation-
ally complex process and expensive for real-time hardware design. To achieve the array
beamforming with robust performance, the diagonal loading on the correlation matrix of
input snapshots is the popular choice. However, this extra diagonal loading increases the
computational complexity and it is difficult for real-time hardware implementation.

FPGA design procedures were also introduced, including overview of the architecture
of an FPGA chip and the design flow to develop an FPGA implementation. The FPGA
design environment used in this thesis was also introduced.
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In the rest of this thesis, we will be solving the problems considered above. A low
complexity normal equations solver based on the multiplication-free DCD iterations will
be presented in Chapter 3. In Chapter 4, a multiplication-free complex divider is devel-
oped based on the idea that the multiplication-free DCD algorithm is used to solve the
system of equations in the complex division problem. In Chapter 5, an efficient FPGA
implementation of the DCD-based MVDR beamformer is developed with a small area
usage and high throughput. In Chapter 6, a low complexity RLS algorithm based on
DCD iterations is introduced and implemented in FPGA. It solves the RLS problem with
a small number of multiplications, without divisions. The FPGA design of the RLS-DCD
algorithm is highly efficient, requiring small chip area and obtains high throughput. Fur-
thermore, the regularized version of the RLS-DCD algorithm is still of low complexity
and easy for hardware design.
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3.1 Introduction

The LS approach is widely used in the areas of signal processing and communication.
The solution of the LS problem is often based on solving the normal equations. How-
ever, solving the normal equations is very complicated. It can be done by using matrix
inversion. The complexity of direct matrix inversion is generally regarded asO(N3) arith-
metic operations [1] where N is the system size, which is not practical for many real-time
solutions.
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From a numerical point of view, the best approach is to avoid matrix inversion [2–4].
Consequently for real-time solution, techniques that solve system of equations without
performing matrix inversion may be preferable. These can be classified into direct and
iterative methods. The direct methods, such as Cholesky decomposition, Gaussian elim-
ination, QRD and others, also have complexity of O(N3) [1]. Iterative methods, such as
the steepest descent method and CG method, provide fast convergence but requireO(N2)

operations per iteration [1]. The coordinate descent (CD) techniques, such as Gauss-
Seidel, Jacobi and SOR [1] methods, demonstrate a slower convergence but require only
O(N) operations per iteration. The computational load of these techniques depends on
the number of iterations executed (and hence accuracy obtained). These iterative methods
require multiplication and division operations, which are complex for implementation, es-
pecially in hardware, i.e., they require significant chip area and high power consumption.
Moreover, divisions can lead to numerical instability.

The QR decomposition is most often used for implementing matrix operations in hard-
ware [4, 11, 36, 78–81]. However, this technique requires multiplications and divisions,
and some implementations [15] also require square-root operations; all of these operations
are difficult for implementation in hardware. Although CORDIC is an efficient technique
for implementing Givens rotations for QRD [4, 36, 38, 80], CORDIC blocks require sub-
stantial chip resources and large number of clock cycles. In total, implementation of QRD
by using systolic arrays consumes large silicon area [23] and requires a large number of
clock cycles. The use of the BAMI allows significant reduction in the number of clock
cycles [23] for solving small size matrices; however, the occupied chip area is high. Most
of the implementations use extra computing resources such as Xilinx DSP48 block [44],
Altera NIOS processor [36], or custom logic. However, even with such extra computa-
tional engines, only small problems (N ≤ 9) can be practically implemented when using
these traditional methods.

The DCD algorithm [5] is an iterative algorithm for solving normal equations. It is
based on the CD iterations with power of two variable step size. It does not need multipli-
cations and division. For each iteration, it only requires O(N) or O(1) additions. Thus,
it is well suited to hardware implementation.

In this chapter, we present several architectures and FPGA implementations of two
variants of the DCD algorithm, known as the cyclic and leading DCD algorithm, and
show how these implementations are comparable to each other and which of the variants
are more suitable for different applications. Specifically, we propose partly-parallel im-
plementations of the cyclic and leading DCD algorithms, thus allowing a trade-off in chip
area and computation time; we call these implementations group-2 and group-4 imple-
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mentations. In particular, the group-2 implementations can be efficiently used for solving
complex-valued systems of equations. We present and compare serial, partly-parallel and
parallel implementations of the cyclic and leading DCD algorithms. This includes a com-
parison of the complexity and the convergence speed of the implementations. We present
numerical results and discuss preferable applications of these implementations. Finally
conclusions are given.

The rest of this chapter is organized as follows. Coordinate descent optimization is
introduced in Section 3.2, where we also introduce cyclic and leading DCD algorithms
for real-valued and complex-valued systems. Sections 3.3 to 3.6 present architectures
and FPGA implementations of the DCD algorithms. Numerical results are given in Sec-
tion 3.7. Finally, Section 3.8 gives conclusions.

3.2 Coordinate Descent Optimization and DCD Algo-
rithm

Many techniques can be used to solve the normal system of equations

Rh = β (3.1)

where R is an N × N symmetric positive definite matrix and both h and β are N × 1

vectors. The matrix R and vector β are known, whereas the vector h should be estimated.
As discussed in Chapter 2, solving the normal equations (3.1) is equivalent to minimizing
the quadratic function

f(h) =
1

2
hTRh− hT β. (3.2)

Line search methods [1] are iterative methods for minimizing the function f(h). In a
line search method, at each iteration k, the solution h(k) is updated as h(k) = h(k−1) +

α(k)d(k) in a direction d(k) that is chosen to be non-orthogonal to the residual vector
r(k−1) = β−Rh(k−1), i.e., (d(k))T r(k−1) 6= 0. The step size α(k) minimizing the function
f

(
h(k) + α(k)d(k)

)
is α(k) = (d(k))T r(k−1)/(d(k))TRd(k); this step size corresponds to

the exact line search method [82, 83]. A general description of the exact line search
method is given in Table 3.1, where Nu denotes the number of iterations (or the number
of updates of the solution vector).

An efficient variant of the line search method is the CG algorithm [1] shown in Ta-
ble 3.2. At the first iteration, k = 1, the direction vector is the residual vector: d = r.
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Table 3.1: Exact line search method
Step Equation

Initialization: h = 0, r = β

for k = 1, . . . , Nu

1 Choose d such that dT r 6= 0
2 v = Rd
3 α = dT r/dT v
4 h = h + αd
5 r = r− αv

Table 3.2: Conjugate gradient algorithm
Step Equation × + ÷

Initialization: h = 0, r = β, ρ(0) = rT r, d = r
for k = 1, . . . , Nu

1 if k > 1, d = r + (ρ(k−1)/ρ(k−2))d N N 1
2 v = Rd N2 N2 −N

3 α = ρ(k−1)/dT v N N − 1 1
4 h = h + αd N N

5 r = r− αv N N

6 ρ(k) = rT r N N − 1

Total: (N2 + 5N)Nu mults, (N2 + 4N − 2)Nu adds and Nu divs

At other iterations, k > 1, the direction d is updated to guarantee R-conjugacy of the
direction vectors. Due to its fast convergence, the CG method has already been used for
solving normal equations, e.g., in adaptive filtering [27]. Although, the CG algorithm
shows fast convergence, its complexity is too high for many applications; in general, it is
O(N2) operations per update. The algorithm also requires divisions at steps 1 and 3.

The CD algorithm chooses the directions as Euclidean coordinates, i.e., d = en, where
all elements of the vector en are zeros, except the n-th element which is one. The itera-
tions are significantly simplified. In this case, for the exact line search, v = Rd = R:,n

is the n-th column of the matrix R. Thus, the most complicated step of the line search
method (step 2 in Table 3.1), requiring the matrix-vector multiplication of complexity
O(N2), is eliminated. The other steps are also simplified: dT r = rn, dTv = Rn,n,
α = rn/Rn,n, and hn = hn + α. If the directions are chosen in a cyclic order,
n = 1, . . . , N , we arrive at Gauss-Seidel iterations [1]. The Gauss-Seidel method is
used in many signal processing applications, including adaptive filtering [31], multiuser
detection [84], and others. The CD algorithm with cyclic passes through N elements
of h is presented in Table 3.3. One update in this cyclic CD algorithm requires only N

multiplications, N + 1 additions, and one division.

However, the cyclic order of the directions is not efficient when solving a system of
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Table 3.3: Cyclic CD algorithm
Step Equation × + ÷

Initialization: h = 0, r = β, k = 0
for n = 1, . . . , N

1 α = rn/Rn,n 1
2 hn = hn + α 1
3 r = r− αR:,n N N

4 k = k + 1
5 if k = Nu, algorithm stops

Total: NNu mults, (N + 1)Nu adds and Nu divs

Table 3.4: Leading CD algorithm
Step Equation × + ÷

Initialization: h = 0, r = β

for k = 1, . . . , Nu

1 n = arg maxp=1,...,N{|rp|} N − 1
2 α = rn/Rn,n 1
3 hn = hn + α 1
4 r = r− αR:,n N N

Total: NNu mults, 2NNu adds and Nu divs

equations which only needs a small number of updates, e.g., in adaptive filtering [31,85].
A more efficient method for selecting the (leading) index n is therefore important to speed
up convergence. The CD algorithm chooses the leading index n according to

n = arg max
p=1,...,N

{|rp|}. (3.3)

This CD algorithm is presented in Table 3.4. Each update in the algorithm requires N

multiplications, 2N additions, and one division.

3.2.1 Real-Valued Cyclic DCD Algorithm

An exact line search method provides the fastest descent for a particular iteration. Inexact
line search methods, though not providing the maximum decrement of f(h) for a par-
ticular iteration, can improve the convergence speed in a sequence of iterations [82, 86].
The DCD algorithm is an inexact line search method. In the RLS adaptive filtering, it can
provide faster convergence than the CD algorithm (to be shown in Chapter 6).

The DCD algorithm, presented in Table 3.5, updates the solution in directions of
Euclidean coordinates in the cyclic order n = 1, 2, . . . , N which is similar to the cyclic
CD algorithm. Thus, we refer to this DCD algorithm as the cyclic DCD algorithm. The
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Table 3.5: Real-valued cyclic DCD algorithm
Step Equation +

Initialization: h = 0, r = β, α = H , k = 0
for m = 1, . . . , Mb

1 α = α/2
2 Flag = 0

for n = 1, . . . , N

3 if |rn| > (α/2)Rn,n 1
4 hn = hn + sign(rn)α 1
5 r = r− sign(rn)αR:,n N

6 k = k + 1, Flag = 1
7 if k = Nu, algorithm stops
8 if Flag = 1, repeat from step 2

Total: ≤ N(2Nu + Mb − 1) + Nu adds

selection of the step-size α is as follows. For some iterations (unsuccessful iterations),
the step-size is zero; for the other iterations (successful iterations), it is chosen as a power
of two and, in general, it reduces with the number of iterations. The parameter H defines
the initial value of the step-size. The parameter Mb indicates how many times the step-
size may be reduced; Mb can be considered as the number of bits used for a fixed-point
representation of elements of the solution vector. For every change of the step size, the
algorithm repeats iterations until all elements of the residual vector r become so small
that the condition at step 3 is not met for all n, i.e., the last N iterations are unsuccess-
ful. In this case, the step-size is reduced at step 1. The computational load posed by this
algorithm is mainly due to the successful iterations, and to limit the complexity with an
uncertain error in the solution, a limit on the number of successful iterations (updates) Nu

is predefined. The selection of the step-size results in existence of unsuccessful iterations
which require the only comparison at step 3 and thus reduces the complexity compared
to the CD algorithm. However, it is even more important that this also results in no ex-
plicit multiplication and no explicit division as all the multiplications and divisions can
be replaced by simple bit shifts.

The complexity of this cyclic DCD algorithm can be considered as a random number
with an upper bound corresponding to a worst-case scenario as follows. For the m-th bit,
m = 1, . . . , Mb − 1, within one pass (n = 1, . . . , N ) there is one “successful” iteration
and then, in another pass, N “unsuccessful” iterations; this will require (3N +1)(Mb−1)

additions. For the last (least significant) bit, m = Mb, there are (Nu − Mb + 1) passes
each with one “successful” iteration; this will require (2N + 1)(Nu −Mb + 1) additions.
Thus, the worst-case complexity is N(2Nu + Mb − 1) + Nu additions. Notice that the
average complexity will be lower.
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Table 3.6: Real-valued leading DCD algorithm
Step Equation +

Initialization: h = 0, r = β, α = H , m = 1
for k = 1, . . . , Nu

1 n = arg maxp=1,...,N{|rp|}, go to step 4 N−1
2 m = m + 1, α = α/2
3 if m > Mb, algorithm stops
4 if |rn| ≤ (α/2)Rn,n, then go to step 2 1
5 hn = hn + sign(rn)α 1
6 r = r− sign(rn)αR:,n N

Total: ≤ (2N + 1)Nu + Mb adds

3.2.2 Real-Valued Leading DCD Algorithm

For the cyclic DCD algorithm in Table 3.5, if Nu >> Mb, the complexity is approxi-
mately upper bounded by 2NNu additions. However, if Nu is small Nu < Mb/2, the
term NMb will dominate in the complexity. The leading DCD algorithm shown in Ta-
ble 3.6 can eliminate this term. Similar to the leading CD algorithm, this variant of the
DCD algorithm identifies a leading (n-th) element in h to be updated corresponding to an
element of the residual vector r which has the largest absolute value. This differs from
the cyclic DCD algorithm, where the elements to be updated are chosen in a cyclic or-
der. With Nu updates, the complexity of the leading DCD algorithm is upper limited by
(2N+1)Nu+Mb additions. This corresponds to a worst-case scenario when the algorithm
makes use of all Nu updates and the condition at step 3 is never satisfied.

3.2.3 Complex-Valued Cyclic DCD Algorithm

The DCD algorithms in Table 3.5 and Table 3.6 can only solve real-valued equations.
To use these techniques for solving complex-valued systems, we need to form an equiv-
alent real-valued system according to the following rule. Let R = (A1 + jA2), h =

(b1 + jb2) and β = (c1 + jc2), where A1 and A2 are N/2 × N/2 real-valued matrices
and b1, b2, c1 and c2 are N/2× 1 real-valued vectors. The N/2×N/2 complex-valued
system (3.1) is equivalent to the N ×N real-valued system

Ab = c (3.4)

where

A =

[
A1 −A2

A2 A1

]
, b =

[
b1

b2

]
, c =

[
c1

c2

]
. (3.5)
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Table 3.7: Complex-valued cyclic DCD algorithm (N/2×N/2 system)
Step Equation +

Initialization: h = 0, r = β, α = H , k = 0, s = 1
for m = 1, . . . , Mb

1 α = α/2
2 Flag = 0

for n = 1, . . . , N/2

3
if s = 1 then rtmp = <(rn), else rtmp = =(rn)

1
if |rtmp| > (α/2)Rn,n

4 hn = hn + sign(rtmp)sα 1
5 r = r− sign(rtmp)sαR:,n N

6 k = k + 1, Flag = 1
7 if k = Nu, algorithm stops
8 if s = 1, then s = j, goto step 3; else s = 1
9 if Flag = 1, then goto step 2

Total: ≤ N(2Nu + Mb − 1) + Nu adds

However, even though this representation does not contain any arithmetic operations, from
a hardware implementation point of view it introduces extra processing overhead, and the
memory space required for the matrix A is doubled compared to the complex-valued
matrix R.

Now we consider solving a complex-valued system of equations by integrating the
real-valued DCD algorithms in Table 3.5 and Table 3.6 with the pre-processing described
in equation (3.5). For a real-valued system, the DCD algorithm tests possible updates of
the solution vector in two coordinate directions: negative real and positive real. For a
complex-valued system, the DCD algorithm tests possible updates of the solution vector
in four coordinate directions: negative real, negative imaginary, positive real and positive
imaginary.

The complex-valued cyclic DCD algorithm is shown in Table 3.7. Notice that the ma-
trix R and vectors β, r and h here are all complex-valued. The real and imaginary compo-
nents of each element of the residual vector r are processed sequentially. A variable s in-
dicates which component is being processed - real (s = 1) or imaginary (s = j =

√−1).
The remaining operations are the same as in the real-valued cyclic DCD algorithm in Ta-
ble 3.5. The complexity of the complex-valued cyclic DCD algorithm is upper limited by
N(2Nu +Mb− 1)+Nu real-valued additions for an N/2×N/2 complex-valued system.
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Table 3.8: Complex-valued leading DCD algorithm (N/2×N/2 system)
Step Equation +

Initialization: h = 0, r = β, α = H , m = 0
for k = 1, . . . , Nu

1
[n, s] = arg maxp=1,...,N/2{|<(rp)|, |=(rp)|}

N−1
go to step 4

2 m = m + 1, α = α/2
3 if m > Mb, algorithm stops

4
if s = 1, then rtmp = <(rn), else rtmp = =(rn)

1
if |rtmp| ≤ (α/2)Rn,n, then go to step 2

5 hn = hn + sign(rtmp)sα 1
6 r = r− sign(rtmp)sαR:,n N

Total: ≤ (2N + 1)Nu + Mb adds

3.2.4 Complex-Valued Leading DCD Algorithm

The complex-valued leading DCD algorithm is presented in Table 3.8. Similar to the
real-valued leading DCD algorithm in Table 3.6, it finds a leading element in the solution
vector h to be updated. This corresponds to a component in the residual vector r, which
has the maximum absolute value. Two variables n and s are used to locate this maximum.
The other operations are the same as in the real-valued leading DCD algorithm in Table
3.6. The complexity of this algorithm is upper limited by (2N + 1)Nu + Mb real-valued
additions for an N/2×N/2 complex-valued system.

3.3 Real-Valued Serial Architecture DCD Algorithm

We have developed and implemented FPGA cores for the real-valued DCD algorithms
in Table 3.5 and Table 3.6. The implementation is based on using a Xilinx Virtex-II Pro
Development System [77] with an XC2VP30 (FF896 package, speed grade 7) FPGA [76].
VHDL is used to describe the implementation, which is synthesized and downloaded to
the target platform using the Xilinx ISE 8.1i software package. The whole implementation
operates from a single 100 MHz clock and we make use of the FPGA Digital Clock
Manager and Global Clock Distribution Network [76] to ensure a uniform delay between
the system clock source and each logic slice. Our implementation uses the 16-bit Q15
number format [87] to represent elements of the matrix R; they are limited to the range
[−1, 1). To avoid overflow errors, elements of the vectors β, r and h are all stored using
a 32-bit fixed-point Q15 format; they are limited to the range [−216, 216). The matrix R

and vectors β and h are stored in R RAM, β RAM and h RAM, respectively. During
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Figure 3.1: Block-diagram of the processor for the cyclic DCD algorithm

the computation, we treat the vector stored in β RAM as the residual vector r since r is
initialized as β. These three RAM components are dual-port (ports A and B) with each
port having their own address, data-in and data-out connections, thus allowing the RAM
to be accessed through both ports simultaneously. The data width of these RAMs can
be configured arbitrarily from 1 to 256 bits [76]. For various DCD implementations, the
configuration of the RAMs differs; this is described below in detail.

3.3.1 Implementation of Real-Valued Cyclic DCD Algorithm

The architecture of the cyclic DCD algorithm is shown in Fig. 3.1. Besides the three dual-
port block RAM components, the DCD processor contains five modules: 1) DCD Core
State Machine; 2) RAM Reader; 3) Comparator; 4) β Updater; and 5) h Updater. The data
widths of the R, β and h RAM are configured to be 16, 32 and 32 bits, respectively. Thus,
each of them can provide one element of the matrix R or vectors β and h at each read
or write operation. The RAM Reader is used for addressing the β RAM and R RAM for
reading data, and the h RAM for both reading and writing data. The Comparator decides
whether the iteration is successful. The h Updater and β Updater update elements of
h and β (the residual vector r), respectively. These modules work in a fully pipelined
manner under the control of the DCD Core State Machine.

The cyclic DCD algorithm in Table 3.5 has been optimized for FPGA implementation
as described in Table 3.9 and Fig.3.2. We simplify the implementation by exploiting the
fact that the step size α only changes when a new m-th bit is considered. We remove
α from steps 3 and 5 of Table 3.5 and arrange that the β RAM stores a version of the
vector r that is incrementally scaled to compensate for α. The scaling of r, controlled by
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Figure 3.2: Flow-chart of the cyclic DCD algorithm

a parameter ∆m, is performed in conjunction with the first successful update of each new
m-th bit. The division-by-two of Rn,n in state 2 is hardwired. The following paragraphs
explain the operations of the optimized algorithm.

During the initialization (state 0), the DCD Core State Machine initializes control sig-
nals as shown in Table 3.9.

In state 1, the DCD Core State Machine updates the bit counter m, step size α, and the
prescaling counter ∆m. The step size α is chosen to be equal to α = 2m. If the current
value of m is equal to 0 (i.e., α = 1), then the least significant bits of the solution have
been updated and the DCD processor halts and indicates that it has finished solving the
system of equations. If m is non-zero, the DCD processor proceeds to state 2 and then
state 3 to perform the comparison.

Two cycles (due to the RAM read latency) before each comparison, the RAM Reader
asserts the address of rn in the β RAM and Rn,n in the R RAM. Then, when the compar-
ison (state 2) commences, the Comparator reads rn from the β RAM and Rn,n from the
R RAM. If the vector r has not been prescaled for a new m-th bit, the Comparator scales
rn. It then performs the comparison and passes on the sign bit of the result c to the DCD
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Table 3.9: Real-valued cyclic DCD algorithm for serial FPGA implementation
State Operation Cycles

0
Initialization: h = 0, r = β, Flag=0, m = Mb,

k = 0, ∆m = 0, n = 1

1
if m = 0, algorithm stops

1
else, m = m− 1, α = 2m, ∆m = ∆m + 1

2 c = Rn,n/2− |rn| × 2∆m 1
3 if c ≥ 0, goto state 5 1

4

hn = hn + sign(rn)α

N
r = r× 2∆m − sign(rn)R:,n

∆m = 0, k = k + 1, Flag = 1
if k = Nu, algorithm stops

5

n = (n)mod(N) + 1

1
if n = 1 and Flag = 1, then Flag = 0, goto state 2
elseif n = 1 and Flag = 0, then goto state 1
else, goto state 2

Total: ≤ 4NNu + 3N(Mb − 1) + Mb cycles

Core State Machine. This comparison executes in a single cycle.

In state 3, the DCD Core State Machine examines the comparison result to decide
whether this iteration is successful, in which case the algorithm proceeds to state 4 to
update the solution element hn and the residual vector r; otherwise it proceeds to state 5
without any update.

In state 4, the h Updater and β Updater perform updates on hn and r, respectively. The
RAM Reader sequentially asserts addresses of elements of the column R:,n and the vector
r in the R RAM and the β RAM, respectively. The β Updater reads elements of r from
port B of the β RAM, updates them, and writes the result back to the β RAM through
port A. The h Updater reads the element hn from the h RAM, updates it, and writes the
updated hn back to the h RAM. Then, the DCD Core State Machine sets the prescaling
counter ∆m to 0 and the variable ‘Flag’ to 1, indicating at least one successful iteration.
The successful iteration counter k is also updated; if k is equal to the predefined limit Nu,
the DCD processor stops; otherwise, it proceeds to state 5.

In state 5, the counter n is updated to indicate the next element of h to be analyzed.
The DCD Core State Machine then tests n and ‘Flag’ to decide how the algorithm should
loop.

The number of clock cycles required for each state is shown in Table 3.9. Due to
pipelining, state 4 requires only N cycles for updating all elements of the vector r and
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Figure 3.3: Block-diagram of the processor for the leading DCD algorithm

the element hn. All other states require only a single cycle each. The total number of
cycles required for solving a system of equations varies depending on the system size,
the solution sparseness, the condition number of the system matrix, as well as the al-
gorithm parameters Nu and Mb. The number of cycles can be considered as a random
number with an upper bound corresponding to the worst-case complexity of the cyclic
DCD algorithm in Table 3.5. For given N , Nu and Mb, the maximum number of cycles is
4NNu+3N(Mb−1)+Mb, or for high Nu we have approximately 4NNu. This number of
clock cycles corresponds to an unlikely situation when, in every pass through the system,
only one successful iteration happens. In a typical situation, there are many successful
iterations in every pass, and the average number of clock cycles will be close to NNu.

3.3.2 Implementation of Real-Valued Leading DCD Algorithm

The hardware architecture of the leading DCD algorithm is shown in Fig. 3.3. Besides
the modules required for the cyclic DCD architecture shown in Fig. 3.1, there is a β Max
module that is used to find the maximum absolute value in the residual vector r. The
function of other modules are similar to those in the serial cyclic DCD algorithm. The
leading DCD algorithm has been optimized for FPGA implementation and this is shown
in Table 3.10 and Fig.3.4.

Here, state 1 is used to find the index n of the leading element for the first iteration; it
executes only once. In this state, the β Updater asserts sequential addresses of elements of
vector r to the β RAM, the β Max module reads the elements of r and finds the element
possessing the maximum absolute value. The index n of this element is fed to the DCD
Core State Machine.
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Table 3.10: Real-valued leading DCD algorithm for serial FPGA implementation
State Operation Cycles

0
Initialization: h = 0, r = β, m = Mb,

k = 0, ∆m = 0
1 n = arg maxp=1,...,N{|rp|} N + 3

2
if m = 0, algorithm stops

1
else, m = m− 1, α = 2m, ∆m = ∆m + 1

3 c = Rn,n/2− |rn| × 2∆m 2

4
if c < 0, goto state 5

1
else, goto state 2

5

hn = hn + sign(rn)α

N + 3
r = r× 2∆m − sign(rn)R:,n

n = arg maxp=1,...,N{|rp|}
∆m = 0, k = k + 1
if k = Nu, algorithm stops; else, goto state 3

Total: ≤ (N + 6)Nu + N + 4Mb cycles
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The operations in states 2 to 5 are similar to the operations in the cyclic DCD algo-
rithm (states 1 to 5) in Table 3.9. The only differences are due to the inclusion of the
β Max module which works in parallel with the β Updater. The β RAM is configured
in Transparent Mode, meaning that input data is simultaneously written into the memory
and placed on the output data port [76]. When the β Updater writes elements of r into
the β RAM, these elements are also available to the β Max module through the output
data port with one cycle latency. The β Max module reads these elements, seeks the ele-
ment with the maximum absolute value, and provides its index n to the DCD Core State
Machine.

The number of clock cycles required by each state of this design are listed in Ta-
ble 3.10. Execution of state 1 costs N + 3 cycles, and it is only executed once during the
whole algorithm. Indeed, in some applications, these N + 3 cycles can be removed, as
the β Max module could be designed to work simultaneously with the hardware used to
generate the vector β. The comparison in state 3 costs two cycles, one for the RAM read
latency and one for the arithmetic comparison. As this design is pipelined, only N + 3

cycles are needed in state 5 for updating hn and r and finding a new leading element.
States 2 and 4 each requires one cycle. For a given Nu, the maximum number of cycles
is (N + 6)Nu + N + 4Mb, which corresponds to the worst case in which the condition
m = 0 in state 2 is never satisfied.

3.3.3 FPGA Resources for Real-Valued Serial Implementations

The FPGA resources required for the serial implementations of the real-valued cyclic and
leading DCD algorithms for the cases N = 16 and N = 64 with Mb = 15 are presented
in Table 3.11. The whole implementation requires at most 3.6% of FPGA slices available
on the Xilinx Virtex-II Pro chip. The overhead posed by the increase of the system size
is small – the increase in slice count can be accounted for by the increase in the address
bus-widths and the address counter-widths. The area usage of the leading DCD algorithm
is larger than that of the cyclic DCD algorithm; this is mainly due to the introduction of
the β Max module.

The area usage of the implementations is very small (342–491 slices). It is comparable
to the area of an 18-bit×18-bit multiplier, which costs about 208 slices in a Virtex-4
FPGA chip [88]. Therefore, any other technique for solving linear equations that requires
multiplications will be more costly than our implementations.

In these serial implementations, the residual vector is updated sequentially, requiring
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Table 3.11: FPGA resources for real-valued serial implementations
Algorithms Cyclic DCD Leading DCD

Resources N = 16 N = 64 N = 16 N = 64
Slices 342 (2.5%) 364 (2.7%) 453 (3.3%) 491 (3.6%)
D-FFs 193 (0.7%) 214 (0.8%) 208 (0.8%) 243 (0.9%)
LUT4s 597 (2.2%) 645 (2.3%) 841 (3.1%) 902 (3.3%)
Block RAMs 3 (2.2%) 6 (4.4%) 3 (2.2%) 6 (4.4%)

Max Cycles: 64Nu + 687 256Nu + 2703 22Nu + 76 70Nu + 124

N cycles for each successful iteration. The serial architecture guarantees that the imple-
mentation is hardware efficient, but the update rate (throughput) is hindered. As the slice
requirements of the DCD core is very low, it would be possible to implement many such
cores on a single FPGA device and operate them in a pipelined fashion, giving a direct
increase in the overall update rate. However, in the word we are interested in implemen-
tations that increase the update rate of the DCD processor itself.

3.4 Complex-Valued Serial Architecture DCD Algorithm

The architectures of the complex-valued cyclic and leading DCD algorithms are the same
as the architectures of real-valued implementations shown in Fig. 3.1 and Fig. 3.3, respec-
tively. However, now we assume that the complex-valued system to be solved is of the size
N/2×N/2. Since an N/2×N/2 complex-valued system is equivalent to an N ×N real-
valued system, this allows correct comparison of hardware resources and performance
of the two types of design. Each element of a complex-valued system of equations is
represented using two 16-bit Q15 numbers (in turn representing the real component and
the imaginary component). Real and imaginary components of r and h are stored using
the 32-bit fixed-point Q15 format. To obtain a high update rate, the real and imaginary
components of r are processed in parallel. Thus the configuration of the RAM compo-
nents and operation of other modules are naturally different compared to the real-valued
implementation. The R RAM now has a 32-bit data width and the β RAM has a 64-bit
data width. This enables them to support both components of a complex-valued element
simultaneously. The h RAM still has a 32-bit data width, as at each iteration only one
component of a complex-valued element is required.
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3.4.1 Implementation of Complex-Valued Cyclic DCD Algorithm

The complex-valued cyclic DCD algorithm optimized for FPGA implementation is shown
in Table 3.12. At each iteration, the Comparator selects, according to the signal s ∈ {1, j},
either the real (s = 1) or imaginary (s = j) component of the element rn to compare with
Rn,n. The β Updater has two adders for processing the real and imaginary components,
respectively, so that they are updated simultaneously. The h Updater only updates one
component of hn, as selected by the signal s. The other operations are similar to the
operations of the real-valued cyclic DCD algorithm in Table 3.10.

The number of cycles required in each state is shown in Table 3.12. For each iteration,
three cycles are used for comparison and other operations, and N/2 cycles for updating
vectors h and r. For a given Nu, the maximum number of cycles is 7NNu/2 + 3N(Mb−
1)+Mb. However, in a typical situation when there are many successful iterations within
every pass of N iterations, the number of clocks will be close to NNu/2.

Considering that the complex-valued system is equivalent to a double-size real-valued
system, the overall update rate of this complex-valued implementation is faster than that
of the implementation of the real-valued cyclic DCD algorithm, as both components of
the residual vector r are updated simultaneously.

3.4.2 Implementation of Complex-Valued Leading DCD Algorithm

A hardware-optimized version of the complex-valued leading DCD algorithm is shown
in Table 3.13. In this implementation, the β Max module has two units each seeking
the maximum absolute value among the real and imaginary components of r, respec-
tively. The maximum of the two values is selected and the index (n, s) which indicates
the maximum-value position is fed to the DCD Core State Machine. The functions of
other modules are similar to those of the implementation of the complex-valued cyclic
DCD algorithm.

For each iteration, three cycles are used for comparison, and N + 4 cycles are used for
updating r and hn, and finding the next leading element. Compared to the implementation
of the real-valued leading DCD algorithm, the extra cycle in states 1 and 5 is caused by
the β Max module which now has to compare the maximum absolute values of real and
imaginary components of r. Thus, for given N , Nu, and Mb, the maximum number of
cycles is (N/2 + 7)Nu + N/2 + 4Mb + 1.
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Table 3.12: Complex-valued cyclic DCD algorithm for serial FPGA implementation
(N/2×N/2 system)

State Operation Cycles
0 Initialization: h = 0, r = β, m = Mb, k = 0,

∆m = 0, s = 1, n = 1

1
if m = 0, algorithm stops

1
else, m = m− 1, α = 2m, ∆m = ∆m + 1

2
if s = 1, then rtmp = <(rn); else, rtmp = =(rn)

1
c = Rn,n/2− |rtmp| × 2∆m

3
if c < 0, then goto state 4

1
else, goto state 5

4

hn = hn + sign(rtmp)sα

N/2
r = r× 2∆m − sign(rtmp)sR:,n

∆m = 0, k = k + 1, Flag = 1
if k = Nu, algorithm stops

5

if s = 1, then s = j, goto state 2

1

else, s = 1, n = (n)mod(N/2) + 1
if n = 1 and Flag = 1, then Flag = 0, goto state 2
elseif n = 1 and Flag = 0, then goto state 1
else, goto state 2

Total: ≤ 7NNu/2 + 3N(Mb − 1) + Mb cycles

Table 3.13: Complex-valued leading DCD algorithm for serial FPGA implementation
(N/2×N/2 system)

State Operation Cycles
0 Initialization: h = 0, r = β, m = Mb,

k = 0, ∆m = 0
1 (n, s) = arg maxp=1,...,N/2{|<(rp)|, |=(rp)|} N/2 + 4

2
if m = 0, algorithm stops

1
else, m = m− 1, α = 2m, ∆m = ∆m + 1

3
if s = 1, rtmp = <(rn); else, rtmp = =(rn)

2
c = Rn,n/2− |rtmp| × 2∆m

4
if c < 0, goto state 5

1
else, goto state 2

5

hn = hn + sign(rtmp)sα

N/2 + 4
r = r× 2∆m − sign(rtmp)sR:,n

(n, s) = arg maxp=1,...,N/2{|<(rp)|, |=(rp)|}
∆m = 0, k = k + 1
if k = Nu, algorithm stops; else, goto state 3

Total: ≤ (N/2 + 7)Nu + N/2 + 4Mb + 1 cycles
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Table 3.14: FPGA resources for complex-valued implementations
Algorithms Complex Cyclic DCD Complex Leading DCD

Resources N = 16 N = 64 N = 16 N = 64
Slices 610 (4.5%) 640 (4.7%) 837 (6.1%) 873 (6.4%)
D-FFs 263 (1.0%) 292 (1.1%) 346 (1.3%) 374 (1.4%)
LUT4s 1004 (3.7%) 1045 (3.8%) 1411 (5.2%) 1488 (5.4%)
Block RAMs 5 (3.7%) 6 (4.4%) 5 (3.7%) 6 (4.4%)

Max Cycles: 56Nu + 687 224Nu + 2703 15Nu + 69 39Nu + 93

3.4.3 FPGA Resources for Complex-Valued Implementations

The FPGA area requirements for the complex-valued DCD algorithms are shown in Ta-
ble 3.14 for the cases of N = 16 and N = 64 with Mb = 15. The simultaneous processing
of the real and imaginary components is equivalent to introducing 2-element parallelism
with respect to the real-valued implementations. As a result, the areas of these imple-
mentations are approximately twice as large than that of the corresponding real-valued
serial DCD implementations in Table 3.11, while the number of cycles used to update
the residual vector is approximately twice as small. The area usage is still small and the
implementations occupy less than 10% of the whole chip. We can draw upon this results
and increase the degree of parallelism for obtaining higher update rates.

3.5 Real-Valued Group-4 Architecture DCD Algorithm

We have extended the concept of the 2-element (group-2) parallelism of the complex-
valued DCD algorithms to process four consecutive elements of the residual vector si-
multaneously. These group-4 implementations bear understandable resemblance to the
complex-valued implementations.

3.5.1 Group-4 Implementation of Cyclic DCD Algorithm

The architecture of the group-4 real-valued cyclic DCD algorithm is similar to the archi-
tecture of the real-valued cyclic DCD algorithm in Fig. 3.1. The matrix R can be treated
as a resized matrix of size of N/4 by N , with each location containing the bitwise concate-
nation of four elements of R. Likewise, the residual vector r can be viewed as a matrix
of size 4 by N/4. The data widths of the R RAM and β RAM are configured to be 64
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and 128 bits, respectively. Consequently four elements of the matrix R and the residual
vector r can be accessed in a single cycle. In this implementation, the Comparator selects
a diagonal element Rn,n of R from four output elements of the R RAM and an element rn

of r from four output elements of the β RAM, compares them and outputs the comparison
result to the DCD Core State Machine. The comparison costs one cycle. The β Updater
has four processing units to update four rows of the ‘matrix’ r in parallel. Thus, N/4 cy-
cles are required for updating r. The other operations are similar to the operations of the
serial implementation of the real-valued cyclic DCD algorithm shown in Table 3.9. For
given N , Nu, and Mb, the maximum number of cycles is (13N/4)Nu+3N(Mb−1)+Mb.
However, in a typical situation when there are many successful iterations in a pass of N

iterations, the number of clocks will be close to NNu/4.

3.5.2 Group-4 Implementation of Leading DCD Algorithm

The hardware architecture of the group-4 leading DCD algorithm is the same as the archi-
tecture of the real-valued leading DCD algorithm in Fig. 3.3. The RAM configuration for
this implementation is the same as in the group-4 cyclic DCD algorithm. The comparison
here costs 2 cycles, one for the RAM read latency and one for the arithmetic operation.
The β MAX module contains four processing units and executes in two stages. In the first
stage, it finds four maximum absolute values of the four rows of the ‘matrix’ r; this costs
N/4 cycles. In the second stage, it selects the maximum from these four values; this costs
2 cycles. The β MAX module then outputs the index of the largest element to the DCD
Core State Machine. Taking into account the latency of the hardware, the total number of
cycles used for the updating and finding the next leading element is N/4 + 5. The other
operations are the same as in the serial implementation of the real-valued leading DCD
algorithm shown in Table 3.10. For given N , Nu, and Mb, the maximum number of cycles
is (N/4+8)Nu +N/4+4Mb +2. Comparing to the serial implementation of the leading
DCD algorithm, the processing speed of this implementation is enhanced by a factor of
approximately four.

3.5.3 FPGA Resources for Group-4 Implementations

The area usage of both group-4 implementations is presented in Table 3.15 for the cases
of N = 16 and N = 64 with Mb = 15. The maximum possible number of cycles is also
shown. The area usage of each implementation is about 3 times larger and the number of
cycles for updating the residual vector r is one quarter compared to the same size serial
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Table 3.15: FPGA resources for group-4 implementations
Algorithms Cyclic DCD Group-4 Leading DCD Group-4

Resources N = 16 N = 64 N = 16 N = 64
Slices 986 (7.2%) 1019 (7.4%) 1468 (10.7%) 1522 (11.1%)
D-FFs 332 (1.1%) 356 (9.3%) 500 (1.8%) 538 (2.0%)
LUT4s 1618 (5.9%) 1670 (6.1%) 2607 (9.5%) 2703 (9.9%)
Block RAMs 7 (5.2%) 9 (6.6%) 7 (5.2%) 9 (6.6%)

Max Cycles: 52Nu + 687 208Nu + 2703 12Nu + 66 24Nu + 77

implementations.

Although the area usage of the group-4 implementations increases significantly when
compared to the serial implementations, they still occupy at most only 11% of the FPGA
chip. We may even desire to increase the number of group elements further in order to
obtain a higher processing speed. For the group-4 implementation, the β Max unit spends
two cycles comparing the four absolute values at stage 2. As the number of elements in
the group increases, the number of clock cycles required at this stage will increase. At
some point, this will become significant. Depending on the required processing speed of
the application and the practical area limitation, one can decide upon a suitable number
of elements in the group. For the cyclic algorithm, there is no such limitation. We can
choose to increase the parallelism, even to update all elements of r simultaneously in a
single cycle. This is explored in the following section.

3.6 Real-Valued Parallel Architecture Cyclic DCD Algo-
rithm

We now consider a modification of the cyclic DCD algorithm where all N elements of the
residual vector r are updated in a single cycle. The matrix R and vector β are stored in the
Input RAM. Since execution is fully parallel, all elements of the residual vector r should
be accessed simultaneously; therefore, the elements are stored in registers. As only one
element of the vector h is involved in computation at each iteration, h is stored in a single
RAM (h RAM). Also, since at each iteration, all elements in column R:,n have to be read
concurrently. We consider to store it in registers (Register-based DCD implementation)
or in block RAMs (RAM-based DCD implementation).
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Table 3.16: Cyclic DCD algorithm for parallel FPGA implementation
State Operation Cycles

0
Initialization: h = 0, r = β, Flag=0,

m = Mb, k = 0, n = 1

1
if m = 0, algorithm stops

1
else, m = m− 1, α = 2m, r = 2r

2 rtmp = r− sign(rn)R:,n 1
3 c = Rn,n/2− |rn| 1

4

if c < 0

1

r = rtmp

hn = hn + sign(rn)α
k = k + 1, Flag = 1
if k = Nu, algorithm stops

n = (n)mod(N) + 1
if n = 1 and Flag = 1, then Flag = 0, goto state 2
elseif n = 1 and Flag = 0, then goto state 1
else, goto state 2

Total: ≤ 3NNu + 3N(Mb − 1) + Mb cycles

3.6.1 Register-based DCD Implementation

This register-based DCD implementation consists of three sub-modules: Control Logic,
Input RAM Reader and β Updater, as shown in Fig. 3.5. The β Updater is designed to
update all elements of r in parallel; it comprises N adder/subtractor units, as shown in
Fig. 3.6.
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Figure 3.5: Architecture of Register-based DCD Core
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The cyclic DCD algorithm optimized for parallel FPGA implementation is shown in
Table 3.16. In general, the operations are similar to the serial implementation of the
cyclic DCD algorithm as shown in Table 3.9. During initialization (state 0), the matrix
R and vector β are copied into the registers from the Input RAM. In state 1, since the
vector r is stored in registers and all elements can be accessed simultaneously, the left-
shift of the elements is executed in the same cycle as the update of the step-size α. In
state 2, the DCD Core State Machine passes all elements of the column R:,n and vector
r to the β Updater. The total time for accessing the vector elements and computation
on the FPGA chip is approximately 15 ns, which is one-and-a-half clock cycle. Hence,
the results are read after 2 cycles. In state 3, the DCD Core State Machine compares
rn and Rn,n. State 4 is similar to states 3 to 5 of Table 3.9. The only difference is that
the vector r is updated by replacing the contents of the β registers with the output rtmp

of the β Updater. This requires one cycle. Thus, for each iteration, three clock cycles
are required. The maximum number of clock cycles used for the complete algorithm is
3NNu+3N(Mb−1)+Mb. However, in a typical situation, this figure will be significantly
smaller. Since all elements of the matrix R are saved in registers, the area usage of this
register-based implementation is high.
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3.6.2 RAM-based DCD Implementation

The RAM-based implementation uses an array of relatively small RAMs to store the
matrix R; this allows significant reduction in the area usage. The architecture of the
RAM-based DCD core is shown in Fig. 3.7. Besides Control Logic, β Updater and Input
RAM Reader, it contains an R RAM Array Writer and R RAM Array. The RAM Array
contains N block RAMs, which correspond to N rows of the matrix R, as shown in
Fig. 3.8. During the initialization (state 0), R RAM Array Writer copies the rows of
R from Input RAM and writes each in a corresponding RAM in R RAM Array. The
N output ports of R RAM Array are connected to corresponding adder’s input ports in
β Updater. To access elements of R:,n, the same address is presented to each RAM.
The operation of this RAM-based implementation has the same five states and its time
efficiency is exactly the same as that of the register-based implementation. However, the
RAM-based implementation significantly reduces the area usage compared to that of the
register-based implementation.
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Figure 3.7: Architecture of RAM-based DCD Core
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Table 3.17: FPGA resources for parallel implementation of cyclic DCD algorithm
Architectures: Register-based RAM-based

Resources N = 16 N = 18 N = 16 N = 64
Slices 7176(52.4%) 11775(86.0%) 1465(10.7%) 5307(38.6%)
D-FFs 5123(18.7%) 6201(22.6%) 802(2.9%) 2549(9.3%)
LUT4s 5646(20.6%) 18242(66.6%) 2754(10.1%) 10062(36.4%)
Block RAMs 2(1.5%) 2(1.5%) 18(13.2%) 70(51.4%)

Max Cycles 48Nu + 687 54Nu + 770 48Nu + 687 192Nu + 2703
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Figure 3.8: Architecture of RAM Array

3.6.3 FPGA Resources for Parallel Implementations

The area usage of both register-based and RAM-based implementations is presented in
Table 3.17 for the cases of N = 16, N = 18 and N = 64 with Mb = 15. The maximum
number of cycles is also shown. The parallel implementation does not need extra cycles
to update the residual vector r as the residual vector r is updated simultaneously with the
comparison operation. The area usage of the register-based implementation is quite high
as all elements of the matrix R and residual vector r are stored in registers constructed
from the regular FPGA fabric. It requires about 53% and 87% slices for cases of N = 16

and N = 18, respectively, and is not possible for larger size cases. The RAM-based
implementation uses smaller number of slices than the register-based implementation by
storing the matrix R in RAMs. From the area usage point of view, the RAM-based
implementation is much more attractive as it is possible to solve large size systems of
equations using a single chip. However, the area usage of the RAM-based implementation
is still quite higher than the serial, group-2 and group-4 implementations. The required
number of RAMs is highly related to the system size.
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3.7 Numerical Results

In this section, we present numerical results that show that the different DCD designs
may be useful for different applications. Specifically, the convergence speed (in terms of
the number of updates and number of clock cycles) of the designs is demonstrated for
different systems of equations.

We now compare the misalignment obtained by the proposed fixed-point designs of
the DCD algorithms against their floating-point counterparts and other iterative tech-
niques. Only real-valued systems are considered. In each trial, the matrix R is gener-
ated as R = SST where S is an N × M matrix whose elements are independent zero
mean random numbers with normal distribution. We can view columns of S as spreading
waveforms and, accordingly, the matrix R as a spreading waveform correlation matrix
in a CDMA multiuser system with N users and a spreading factor M ≥ N [8]. By
changing the relationship between M and N , we can change the condition number of R,
i.e., λmax/λmin, where λmax and λmin are the maximum and minimum eigenvalues of
R, respectively. The condition number is generally higher when N is closer to M . In
such cases, we deal with highly loaded multiuser scenarios, where the multiuser detection
based on solving the system Rh = β with β being the vector of matched filter outputs,
is especially complicated. We also generate a random N × 1 vector h0 with elements
uniformly distributed on [−1, +1] representing transmitted data in a multiuser system.
The vector β is generated as β = Rh0. By solving (3.1), the DCD algorithm obtains a
solution h. The misalignment between vectors h0 and h is calculated as

ξ =
[h− h0]

T [h− h0]

hT
0 h0

. (3.6)

The values ξ obtained in 100 trials are averaged and plotted against the number of updates
Nu or number of clock cycles.
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Figure 3.9: Misalignment for low condition numbers: N = 64, Mb = 15, M = 512,
cond{R}=[3,5].

We consider in Fig. 3.9 the system matrix R with small condition numbers. Note
that here we only choose systems with condition numbers in the interval [3, 5]. It is seen
that the performance of the fixed-point FPGA designs of the DCD algorithms are not
distinguishable from that of the floating-point counterparts. The leading DCD algorithm
shows a slightly faster convergence than the cyclic DCD algorithm. For this scenario,
all considered iterative methods (DCD, CD, CG and Gauss-Seidel methods) demonstrate
similar convergence speed. Note that one CG update of Table 3.1 is counted here as
N updates. This allows comparison of different techniques with an approximately fixed
complexity in terms of the number of arithmetic operations.

Note that if the accuracy required is very high, the total complexity of the DCD al-
gorithm can be as high as O(N2) or O(N3). For example, in Fig. 3.9, if the required
misalignment is chosen as −95 dB, the leading DCD algorithm and cyclic DCD algo-
rithm require about 500 and 600 updates, and obtain a total complexity about 16N2 and
18N2 additions, respectively. However, one of the advantage of the iterative DCD algo-
rithm is that we could stop the computation when the required accuracy is achieved, which
means the total complexity of the DCD algorithm could be very low when the required
accuracy is not high.
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Figure 3.10: Misalignment for low condition numbers vs. Mb for fixed-point implemen-
tation of the DCD algorithms: N = 64, M = 512, cond{R} = [3,5].

Fig. 3.10 shows the dependence of the misalignment for different values of Mb. It can
be seen that with increase in Mb, the steady state misalignment is reduced. However, even
for Mb = 8, as small misalignment as -53 dB is achieved.
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Figure 3.11: Misalignment for low condition numbers vs. the word bit-length (Q6, Q8,
and Q15) for fixed-point implementation of the DCD algorithms: N = 64, M = 512,
cond{R}=[3,5].

Fig. 3.11 shows the dependence of the misalignment for different number of bits used
for representation of the input data (matrix R and vector β). Again, this only affects
the steady-state misalignment. However, it is seen that even for the Q6 format (7 bits,
including 1 sign bit and 6 fraction bits, used for representation of the input data), a very
low steady-state misalignment is achieved.
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Figure 3.12: Misalignment for high condition numbers: N = 64, Mb = 15, M = 75,
cond{R} = [400,500].

Results for high condition numbers are shown in Fig. 3.12. The difference between
the fixed-point and floating-point implementations of the DCD algorithm is again very
small. The convergence for both the DCD algorithms is now slower than in Fig. 3.9. A
slightly faster convergence is provided by the cyclic DCD algorithm. For this scenario,
the fastest convergence is demonstrated by the CG algorithm. The cyclic DCD algorithm
requires approximately twice greater number of updates than the CG algorithm to achieve
a misalignment of -63 dB. However, for lower accuracy the difference in the performance
of the two techniques is smaller. It is interesting to note that both the DCD algorithms
provide faster convergence than the two other coordinate descent techniques.
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Figure 3.13: Misalignment for high condition numbers vs. Mb for fixed-point implemen-
tation of the DCD algorithms: N = 64, M = 512, cond{R} = [400,500].

Fig. 3.13 shows the dependence of the misalignment for different values of Mb. With
increase in Mb, the steady state misalignment is reduced. Comparing to the case of small
condition numbers (Fig.3.9), now the parameter Mb should be higher to achieve the same
steady-state misalignment. For a fixed Mb, the cyclic DCD algorithm provides a lower
steady-state misalignment than the leading DCD algorithm.
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Figure 3.14: Misalignment for high condition numbers vs. the word bit-length (Q6, Q10,
and Q15) for fixed-point implementation of the DCD algorithms: N = 64, M = 512,
cond{R} = [400,500].

Fig. 3.14 shows the dependence of the misalignment for different number of bits used
for representation of the input data. Again, this only affects the steady-state misalignment.
However, it is seen that even for the Q6 format, a low steady-state misalignment is still
achieved.
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Figure 3.15: Misalignment for high condition numbers and sparse solutions: N = 64,
Mb = 15, M = 75, cond(R)=[400, 500].
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Figure 3.16: Misalignment for high condition numbers and sparse solutions: N = 64,
Mb = 15, M = 75, cond(R)=[400, 500].

Now we consider scenarios with sparse vectors h0; in every trial, only K randomly
chosen elements of the vector are non-zero. Scenarios with sparse true solutions appear
in many applications. For example, in multipath communication channels, the number
of multipath components can be very low with respect to the delay uncertainty interval.
Since optimal channel estimation, such as maximum likelihood or minimum mean square
error estimation, is usually based on solving the normal equations [89], in sparse multipath
channels we arrive at systems with sparse true solutions h0. Another example is the
multiuser communication, when the number of active users K involved in communication
is smaller than the expected number of users N [90].

If a true solution is sparse, we can expect a reduction in the number of updates Nu

required to achieve a predefined misalignment. This is due to existence of unsuccessful
iterations. Fig. 3.15 and Fig. 3.16 support this conclusion for the case of high condition
numbers. The sparser the solution, i.e., the smaller the value of K, the faster the conver-
gence of the DCD algorithm. Note that this is a property of the DCD algorithm that is not
general for other iterative techniques.
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It is seen that for K = 16, the number of updates required to achieve a misalignment
of –50 dB for the leading DCD algorithm is reduced by a factor of about two compared
to non-sparse systems. For the cyclic DCD algorithm, the reduction is insignificant. For
K = 4, for the leading DCD algorithm Nu is reduced by about 50 times, whereas for the
cyclic DCD algorithm, this reduction is about 4 times. Thus, for highly sparse scenarios,
the use of the leading DCD algorithm is preferable as it allows significant reduction in the
number of updates. However, for non-sparse systems the cyclic DCD algorithm may be
preferable as it provides faster convergence and smaller steady-state misalignment.
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Figure 3.17: Misalignment against number of clock cycles: N=64, Mb=15, M = 75,
cond(R) = [400, 500].

Fig. 3.17 shows the misalignment against the number of clock cycles for high condition
numbers and non-sparse solutions. It is seen that, within a design group the cyclic DCD
algorithm provides faster convergence in terms of the number of clocks than the leading
DCD algorithm. For the cyclic DCD algorithm, by comparing results in Fig. 3.17 and
Fig. 3.12, we can see that the average number of clocks for the four designs (serial, group-
2, group-4, and parallel) can be estimated as 1.3NNu, 0.8NNu, 0.5NNu, and 0.25NNu,
respectively. These figures are significantly lower than the maximum number of clocks
4NNu, 3.5NNu, 3.25NNu, and 3NNu, corresponding to the worst-case scenarios as
discussed above. They are closer to the scenarios where there are many (significantly
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more than one) successful iterations in every pass of N iterations: NNu, 0.5NNu, and
0.25NNu for the first three designs, respectively.
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Figure 3.18: Misalignment against number of clock cycles: N=64, Mb=10, M = 75,
cond(R) = [400,500].

If the required accuracy is not high, as is the case in an iteration of an adaptive filter [91,
92], the leading DCD algorithm may provide a better performance with a smaller number
of cycles. This is seen from results in Fig. 3.18. However, the cyclic DCD algorithm
requires a chip area that is 25%− 33% smaller (see Table 3.18).
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Figure 3.19: Misalignment against the number of clock cycles: N=8, Mb=8, M = 8.

Finally, in Fig. 3.19, results are presented for a small size problem, N = 8, and M = 8.
This scenario corresponds to the MMSE detector for complex-valued symbols in a MIMO
system with 4 transmit and 4 receive antennas in Rayleigh fading channels. The system
model is represented as

y = Hx + n, (3.7)

where y and x are the 4× 1 receive and transmit data vectors, respectively and, H and n

are the 4×4 channel matrix and 4×1 noise vector, respectively. The data vector x can be
found as the solution vector h of the linear system Rh = β, where R = HHH+σ2I for an
MMSE detector, σ2 is the noise variance, I is an N×N identity matrix and β = HHy. In
this scenario, a misalignment of –10 dB may be considered to be good enough for reliable
detection. It is seen that the parallel design of the cyclic DCD algorithm requires about
500 clocks to reach the misalignment -10 dB, which is comparable to the designs in [93]
(388 clocks). However, our design requires only 847 slices and no multiplier against 8513
slices and 64 multipliers in [93].

The convergence speed in terms of the number of cycles improves with increase in
parallelism. For example, in the case of N = 64 (see Fig. 3.17) for the cyclic DCD
algorithm, the group-4 design speeds up the convergence by about 2.5 compared with the
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serial design; however, this also requires increase in the chip area by a factor of about
2.8. The parallel design has the fastest convergence which for this scenario is about 5
times faster than that of the serial design, but the chip area increases by a factor of about
15. However, for smaller-size problems, e.g., N = 16, as seen from Table 3.18, FPGA
resources for the parallel design are comparable to those of the group-4 design. Moreover,
for N = 8, the parallel design requires even fewer resources than the group-4 design.

Finally, Table 3.18 shows the power consumption for the designs (at the clock fre-
quency 100 MHz). For a fixed N and the same design type, the power consumption is
slightly smaller for the cyclic DCD algorithm than for the leading DCD algorithm. It
increases with the increase in parallelism, with the parallel design requiring the highest
power.

Table 3.18: Number of FPGA slices and power consumption of DCD designs
Number of slices Power consumption

(mW)
Design N = 8 N = 16 N = 64 N = 16 N = 64
Serial Cyclic - 342 364 11 21
Serial Leading - 453 491 16 20
Group-2 Cyclic - 610 640 10 19
Group-2 Leading - 837 873 17 22
Group-4 Cyclic 978 986 1019 18 25
Group-4 Leading - 1468 1522 27 31
Parallel Cyclic 847 1465 5307 44 120

3.8 Conclusions

In this chapter, we have proposed and compared several FPGA designs of the DCD algo-
rithm that solves normal equations. Two variants of the DCD algorithm were considered:
cyclic and leading DCD algorithms. We have demonstrated that each of the two variants
may be useful in different applications. For example, if the true solution is sparse, as in
multipath channel estimation or multiuser detection with an unknown number of active
users, the leading DCD algorithm is preferable. The sparser the true solution, the faster
the convergence of the DCD algorithm. If accuracy is not an issue, as in an iteration of an
adaptive filter, the leading DCD algorithm provides a faster convergence compared to the
cyclic DCD algorithm. However, if the system matrix has a high condition number and
the system is not sparse, the cyclic DCD algorithm may provide faster convergence.

The DCD algorithm is multiplication-free and division-free and, therefore, is well
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suited to hardware implementation. The proposed fixed-point FPGA designs provide an
accuracy performance which is very close to the performance of floating-point counter-
parts. The number of bits used for representation of the solution vector and the input data
only affect the steady-state misalignment. The proposed designs require significantly
lower FPGA resources than techniques based on QR decomposition. The serial designs
require the smallest FPGA resources; they are well suited for applications where many
parallel solvers are required, e.g., for detection in MIMO-OFDM [94, 95] systems. The
parallelism introduced in the proposed group-2 and group-4 designs allows faster conver-
gence to the true solution at the expense of an increase in the FPGA resources. The design
with parallel update of the residual vector provides the fastest convergence speed; how-
ever, if the system size is high, it results in significant increase in FPGA resources. For
the system matrix with a high condition number, within a design group, the cyclic DCD
algorithm provides faster convergence in terms of the number of clocks than the leading
DCD algorithm. Although, for a large system size, the increase in the parallelism reduces
the number of clocks, the corresponding increase in FPGA resources may be significant
thus making the serial design more attractive for implementation. For small-size systems
(N ≤ 16), the parallel design can be more attractive than the partly parallel designs from
the viewpoint of both the number of clock cycles and FPGA resources.

In theory, the DCD algorithm requires infinite number of iterations (or updates) to con-
verge to an optimal solution; this is a drawback for all iterative methods. Therefore, the
number of updates and processing time is individual for each system to be solved. How-
ever we could estimate the required number of iterations based on the information of the
system size, the conditional number of the system matrix and required accuracy. Com-
paring with other iterative methods, such as the CG, Gauss-Seidel and CD algorithms,
the DCD algorithm performs a similar convergence speed with the lowest complexity per
iteration.

In the next chapters, we will consider applications of architectures and implementa-
tions of the DCD algorithm developed in this chapter for complex division in Chapter 4,
MVDR beamforming in Chapter 5 and adaptive filtering in Chapter 6.

The cyclic DCD algorithm is suitable for solving systems of equations requiring large
number of updates. It converges faster and obtains a lower steady-state misalignment than
the leading DCD algorithm. However, its convergence at initial updates is slower than that
of the leading DCD algorithm. Therefore, we may consider to accelerate the convergence
of the cyclic DCD algorithm by combining it with the leading DCD algorithm. Different
combinations can be considered as future work in Chapter 7.

J. Liu, Ph.D. Thesis, Department of Electronics, University of York 2008



Chapter 4

Multiplication-Free Complex Divider

Contents
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.2 Algorithm Description . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.3 FPGA Implementation of the Divider . . . . . . . . . . . . . . . . . 78

4.4 FPGA Resources and Throughput of the Divider . . . . . . . . . . . 81

4.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.1 Introduction

The division of two complex numbers are used widely in the areas of signal processing.
The fundamental method of complex division (2.27) eliminates the imaginary component
of the divisor by multiplying both the dividend and the divisor by the complex conjugate
of the divisor. This method requires six real multiplications, three real additions and two
real divisions. Therefore, the computational load of the fundamental method is high.
Moreover, the conventional method may cause overflow or underflow errors. The Smith
algorithm [64] (2.28) avoids the problems of overflow and underflow of the conventional
method. However, the Smith algorithm’s higher numerical accuracy comes at the cost
of computational complexity. Some other algorithms, such as the digit-recursion scheme
[65, 66] as discussed in Section 2.5, are also complicated and not suitable for real-time
hardware processing.

Alternatively, the complex division problem q = r/d, where q = qr + jqj is the
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quotient, r = rr + jrj is the dividend and d = dr + jdj is the divisor, can be viewed as a
problem of finding the solution of a system of linear equations [68]

[
dr −dj

dj dr

][
qr

qj

]
=

[
rr

rj

]
. (4.1)

Thus, we can use the DCD algorithm to solve this 2×2 system of equations to realize the
complex division without multiplication and division operations. This leads to a widely-
applicable complex division core with remarkably low FPGA footprint.

The rest of this chapter is organized as follows. In Section 4.2, the DCD algorithm for
the complex division is introduced. FPGA implementation of this DCD-based complex
divider is discussed in Section 4.3. In Section 4.4, results of the implementation are ana-
lyzed and compared to the direct implementation of the fundamental method of complex
division described in equation (2.27). Finally, conclusions are given in Section 4.5.

4.2 Algorithm Description

As described in [68], the system of equations (4.1) can be solved by using the DCD
iterations as follows:

1. The algorithm compares the absolute values of rr and drα/2, where α is a system
step size parameter. If |rr| is greater than |drα/2| (such comparison is labelled
“successful”) then qr and both components of r are updated. If |rr| ≤ |drα/2|
then the comparison is labelled “unsuccessful” and no update takes place. This is
illustrated as

if |rr| > |drα/2| then

qr = qr + sign(rr)α,

r = r − sign(rr)αd. (4.2)

2. Then the algorithm compares |rj| and |djα|. If |rj| is greater, qj and both compo-
nents of r are updated according to

if |rj| > |djα| then

qj = qj + sign(rj)α,

r = r − j sign(rj)αd. (4.3)
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3. After executing (4.2) and (4.3), the algorithm applies (4.2) once more. The al-
gorithm then reduces the step size α by half and moves on to the next level of
precision. The process repeats until the LSB of the quotient is obtained.

In hardware, the initial step size α is chosen as a power of 2 so that the multiplication
and division operations in (4.2) and (4.3) can be implemented by bit-shifting.

For division operation, value range of the operands must be limited to avoid quotient
overflow and also low-value quotients that do not make good use of the available resolu-
tion [68]. For example, in a real division, suitable operands might involve the absolute
value of dividend being in the range [1/4, 1) and the absolute value of divisor being in the
range of [1/2, 1), obtaining an absolute value of the quotient in the range [1/4, 1) [68].
For this complex division algorithm, a similar limitation can be performed on the modu-
lus value range of the dividend and divisor. Specifically, the modulus of the dividend is
less than 1/2; this is achieved by limiting the absolute value of each component of the
dividend to no larger than 1/4. The absolute value of one component of the divisor must
be larger than 1/2. Moreover, the value dr should be positive and larger than the absolute
value of dj . Therefore, the left side matrix in system of equations (4.1) is positive definite
and the convergence of DCD iterations is guaranteed. These constraints are illustrated as

|rr| ≤ 1/4 and |rj| ≤ 1/4, (4.4)

1/2 ≤ dr < 1 and dr ≥ |dj| . (4.5)

In hardware, these constraints can be met easily through bit-shift operations, component
transpositions, and negations. As analyzed in [68], both components of the final quotient
are faithfully rounded, and the maximum error value is less than one LSB.

4.3 FPGA Implementation of the Divider

VHDL is used to describe the DCD based multiplication-free complex divider, which
is synthesised and downloaded to the target platform using the Xilinx ISE 8.1i software
package. All initial components of r and d are represented in the 16-bit Q15 format [87]
which implies a range of [−1, 1). To avoid overflow during computation, the variables are
stored internally in 32-bit Q15 format inside the FPGA core.
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Figure 4.1: Architecture of the complex divider

The implementation consists of a controller and four adder/subtractor modules, as
shown in Fig. 4.1. The whole implementation is operated synchronously from an ex-
ternal clock. The divider is triggered by a “start” signal and asserts a “finish” signal to
acknowledge the completion of the division. When facing a zero divisor, the divider as-
serts a “div0” error signal. All components of r, d and q are transferred on separate ports.

The initial step size α is set to 0.5 and is halved at the end of each level of precision
by means of a right bit-shift. Instead of computing drα and djα in equations (4.2) and
(4.3) by right bit-shifting dr and dj , we choose to left-shift rr and rj at the end of each
step size (or each level of precision) and also during the preprocessing. As well as avoid-
ing any underflow conditions in our chosen number format, this simplifies the overall
computation.

The operations of the DCD complex division, which have been optimized for FPGA
implementation, are shown in Table 4.1. The algorithm can be divided into four states.

J. Liu, Ph.D. Thesis, Department of Electronics, University of York 2008



CHAPTER 4. MULTIPLICATION-FREE COMPLEX DIVIDER 80

Table 4.1: The DCD complex division for FPGA implementation.
State Operation Cycles

1
q = 0, α = 0.5, m = Mb 17 (max)
prescale r, d and α or
if d = 0, algorithm stops 3 (min)

2

if |rr| > dr/2

1
rr = rr − sign(rr)dr

rj = rj − sign(rr)dj

qr = qr + sign(rr)α

3

if |rj | > |dj |

1
rr = rr + sign(rj)dj

rj = rj − sign(rj)dr

qj = qj + sign(rj)α

4

if |rr| > dr/2

1

rr = rr − sign(rr)dr

rj = rj − sign(rr)dj

qr = qr + sign(rr)α
if m = 1

algorithm stops
else

r = 2r, α = α/2, m = m− 1
goto state 2

In state 1, the core initializes the quotient q, step size α, and precision level signal m

to 0, 0.5 and Mb respectively, where Mb is the number of fractional bits used to represent
the quotient. The values of r and d are then prescaled according to equations (4.4) and
(4.5). If r is shifted right, α is shifted the same number of bits left. Likewise, if d is
transposed and/or shifted left, r is also transposed in the same manner and/or α is shifted
the same number of bits left. Accordingly, the quotient q will not be affected in any way
and the process or postscaling is avoided. The number of cycles required for this state is
variable and will depend upon both the initial value of d and its notation format. For the
16-bit Q15 format, the minimum and maximum number of cycles required are 3 and 17
respectively.

The remaining three states (state 2, 3 and 4), which correspond to the three iterations
per level of precision as explained in the algorithm description section, represent the main
functionality of the DCD complex division. Each state executes in a single clock cycle.
The comparison and three additions are executed using four adder/subtractor units (herein
referred to as adders) as shown in Fig. 4.1. During each state, the controller provides
operands and sign control signals to four adders, which in turn provide valid results after
a short propagation delay. On the rising clock edge of the next state, the controller tests
the sign bit (MSB) of the output of adder 1, which indicates the result of the comparison.
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If comparison is “successful”, the controller reads the outputs of adders 2, 3 and 4 to
overwrite rr, rj , and qr or qj , respectively. If comparison is “unsuccessful” the controller
ignores outputs of the adders. The controller then provides new data to the adders for the
next iteration.

After three cycles of these compare-update iterations, the controller shifts r one bit
left and α one bit right for the next precision level, and then goes back to state 2. The
computation stops when the LSB of the quotient has been processed.

4.4 FPGA Resources and Throughput of the Divider

Our implementation has been implemented on a Xilinx Virtex-II Pro Development System
[77] with an XC2VP30 (FF896 package, speed grade 7) FPGA chip [76]. The overall
time taken by the DCD complex division depends on the demanded accuracy (number of
bits Mb beyond the decimal point) and the operand notation (Qn) format. The maximum
number of cycles for each division is 3Mb+n+2. For the current implementation (Mb=15,
n=15 and 100 MHz clock), the maximum number of cycles is 62 and so the throughput
is at least 1.6 MHz. The maximum error of this implementation is less than 2−15. As no
multiplication and division operations are required, only 527 logic slices are required for
this implementation.

The number of cycles cost on the DCD iterations (states 2 to 4) is fixed to be 45
as Mb = 15. While the number of cycles required by the state 1 varies from 3 to 17,
according to the initial value of the divisor. Considering that the initial absolute value of
the divisor has a uniform distribution in the range [0, 1], therefore the average number of
cycles of this complex divider is around 55 cycles.

For comparison, we have also implemented a fundamental complex divider based on
equation (2.27) with equivalent operand restrictions and same frequency clock. The re-
quired multipliers and divisors are implemented as Xilinx IP cores working on the 100
MHz system clock. The implementation also uses a 16-bit Q15 format to represent the
initial data and 32-bit Q15 to represent the quotient. To obtain the same accuracy, the
internal divisor dr

2 + dj
2 is shifted 15 bits right prior to the fixed-point division. And to

obtain the smallest area usage as possible, the divider can not be pipelined and the num-
ber of latency cycles for each division is fixed as 50, which is by 12 clock cycles smaller
than that of the DCD complex divider. However the number of logic slices required to
implement the implementation is 2318, which is at least approximately 4.4 times higher
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than that required by our DCD-based complex division implementation.

It should be noted that hardware and timing requirements will vary according to im-
plementation platform and precise application requirements, but comparing these two
implementations we can say that our DCD-based implementation trades off a certain pro-
portion of execution time in return for a very small FPGA footprint. Given that complex
divisions occur less frequently in signal processing algorithms than common operations
such as additions and multiplications, it makes sense adopt this small-footprint approach.

4.5 Conclusions

We have presented an FPGA implementation of a complex divider based on the idea
that the complex division problem can be viewed as a problem of finding the solution of a
2×2 real-valued system of linear equations, which is solved using the DCD algorithm. To
obtain high accuracy results, constraints on the operands are introduced. However, these
constraints can be achieved easily in hardware through bit-shift operations, component
transpositions and negations. Therefore, the implementation is simple and does not use
any multiplication or division operations. The area usage of this implementation is only
527 logic slices for Mb=15 and Q15 number representation. When operating from a 100
MHz clock, the throughput is at least 1.6 MHz. The maximum quotient error is less than
one LSB.

Although the throughput of the fundamental complex divider is about 24% higher than
that of the worst case of the DCD divider, our implementation requires 4.4 times smaller
number of slices to provide the same accuracy. Furthermore, the average number of cycles
of the DCD divider will be lower.
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5.1 Introduction

Adaptive beamforming based on the MVDR criterion [70] (2.32) achieves high levels
of interference cancellation, although MVDR requires matrix inversion and is consid-
ered too computationally complex for practical implementation. Efficient algorithms for
MVDR beamforming based on QRD with Givens rotations (QR-MVDR) [6, 96] are in-
herently well-suited to programmable logic platforms, exploiting their parallel processing
and pipelining capabilities using systolic array structures. Application of the CORDIC
algorithm to QR-MVDR could facilitate practical FPGA implementation by enabling
multiplication-free vector rotations [97]. However, implementation of CORDIC-based
QR-MVDR is still hindered greatly by the large FPGA slice count required for CORDIC
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algorithmic units [36, 51], making large beamforming arrays impracticable on all but the
largest available FPGA devices.

In this chapter, we propose an efficient iterative method for MVDR beamforming that
employs the DCD algorithm for multiplication-free solution of the normal equations. An
FPGA implementation of the proposed method is shown to have complexity, in terms of
slice count, much lower than can be achieved with other implementations. Performance of
the fixed-point implementation is shown to be very close to the performance of a floating-
point implementation of the MVDR beamformer by using direct matrix inversion.

The rest of this chapter is organized as follows. In Section 5.2, the beamforming
configuration is introduced. In Section 5.3, FPGA implementation is discussed in detail.
The numerical results and the FPGA implementation results are presented in Section 5.5.
Finally, conclusions are given in Section 5.7.

5.2 Beamforming Configuration

The configuration that we examine is a linear antenna array, comprising N individual
receiving elements. The signal from each antenna element is down-converted (DC) to
baseband and digitized using an analog-to-digital converter (ADC). The instantaneous
complex-valued N×1 vector x(i) provided by the array outputs at time instant i is referred
to as a “snapshot”. A stream of K snapshots is used for calculating the sample correlation
matrix

R(i) =
1

K

i−K+1∑

k=i

x(k)xH(k). (5.1)

The complex-valued N × 1 steering vector β(i) is assumed to be provided by an external
DoA (direction of arrival) estimator or similar component. This topology is shown in
Fig. 5.1.

Sample
Correlation

Matrix
Calculation

DCD-based
Equation
Solver

DC ADC

DC ADC

. . . 

R )(ix )(i

ββββ )(i

FPGA-based Modules

h )(i

Figure 5.1: Beamforming Topology
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According to the MVDR criterion (2.32) [70], the optimal weights w(i) for the antenna
receiving elements at time instant i are given by

w(i) =
R−1(i)β(i)

βH(i)R−1(i)β(i)
. (5.2)

This can be solved by computing

h(i) = R−1(i)β(i), (5.3)

which can be represented as the normal equations

R(i)h(i) = β(i). (5.4)

The optimal weights w(i) can then simply be computed as

w(i) =
h(i)

βH(i)h(i)
. (5.5)

5.3 FPGA Implementation of MVDR-DCD Beamformer

We have developed and implemented an FPGA core for beamforming as described above
based on a Xilinx Virtex-II Pro Development System [77] with an XC2VP30 (FF896
package, speed grade 7) FPGA chip [76]. VHDL is used to describe our core, and it
is synthesised and downloaded to the target platform using the Xilinx ISE 8.1i software
package. The hardware architecture of the DCD-based MVDR beamformer is shown in
Fig. 5.2. The whole implementation operates from a single 100MHz clock and we make
use of the FPGA Digital Clock Manager and Global Clock Distribution Network [76] to
ensure a uniform delay between the system clock source and each logic slice. For clar-
ity, the clock distribution modules are not shown in Fig. 5.2. The Master State Machine
coordinates the operation of the whole system. Three dual-port block RAMs are used to
store the matrix R(i), vector β(i) and vector h(i). An x RAM used for storing (K + 1)
snapshots [x(i − K),x(i − K + 1), ...,x(i)] is located inside the Transceiver module;
therefore it is not shown in Fig. 5.2. In this implementation, we chose K = 256. Multi-
plexers (MUXs) are used for multi-accessing these RAMs. The Transceiver handles the
data communication between the FPGA board and a Host Computer. At each time in-
stant, the Transceiver receives the snapshot x(i) and steering vector β(i) from the Host
Computer, saves them in the x RAM and β RAM, respectively. After computation, the
Transceiver reads the solution vector h(i) from the h RAM and transmits it to the Host
Computer. The Transceiver also initialises the h RAM for the next time instant.
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Figure 5.2: FPGA Architecture of the DCD Beamformer.

For representation of the complex-valued input data vector x(i), the implementation
uses 16-bit fixed-point words in the Q15 format [87] for each component. Components
of the matrix R(i) and vectors β(i) and h(i) are 32-bit fixed-point words in the Q15
format. The multiplication x(k)xH(k) results in two 32-bit fixed-point words in the Q30
format for real component and imaginary component, respectively. These two 32-bit Q30
words are extended to 40-bit Q30 format to avoid overflow errors when accumulating
RSUM(i) =

∑i−K+1
k=i x(k)xH(k) as we choose K = 256 = 28 in current implementation.

Each component of RSUM(i) is kept in 40-bit Q30 format. Therefore, the matrix R(i) is
obtained by barrel shifting elements of RSUM(i) 8 bits right. Considering that RSUM(i) is
40-bit Q30 format and R(i) is 32-bit Q15 format, therefore the barrel shifting operation
is performed by choosing the left 17 bits of elements of RSUM(i) and then extending the
obtained 17-bit Q15 format R(i) to 32-bit Q15 format.

The architecture of the Correlation Module is shown in Fig. 5.3. The Correlation
Module estimates the correlation matrix R(i) using K = 256 snapshots and writes it
to the R RAM at each time instant i. The estimation of matrix R(i) can be expressed
recursively as

R(i) =
1

K
RSUM(i), (5.6)

where
RSUM(i) = RSUM(i− 1)− x(i−K)xH(i−K) + x(i)xH(i), (5.7)

All (K+1) snapshots [x(i−K),x(i−K+1), ...,x(i)] are stored in the x RAM configured
as a circular buffer. At each time instant i, the Transceiver receives the snapshot x(i) from
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the Host Computer and writes it in the space of the snapshot x(i − K − 1), instead of
moving all snapshots. The x RAM Reader A and the x RAM Reader B assert addresses
of x(i −K) and x(i) to x RAM port A and port B, respectively. The MUY1 Writer and
MUY2 Writer read elements of x(i) and x(i −K) from the both ports of x RAM, write
them to the complex multiplier MUY1 and the complex multiplier MUY2 to compute the
upper triangular elements of x(i)xH(i) and x(i −K)xH(i −K), respectively. Both the
complex multipliers MUY1 and MUY2 are composed of three 18-bit×18-bit embedded
multipliers. The RSUM Reader writes addresses to RSUM RAM through port B to read the
upper triangular part of RSUM(i − 1). The RSUM RAM Writer reads the multiplication
results from MUY1 and MUY2 and upper triangular elements of RSUM(i−1) from RSUM

RAM port B, computes the upper triangular elements of RSUM(i) following the equation
(5.7), and then writes them to RSUM RAM through port A. Simultaneously, the RSUM

RAM Writer reads left 17 bits of RSUM(i) (to perform the division by 1/K in (5.6)),
extends them to 32-bit, and writes the obtained 32-bit Q15 format R(i) to the R RAM. All
these operations are pipelined under the control of the Correlation Module State Machine.
The real and imaginary components are processed simultaneously. Therefore, only one
cycle is required for updating each element of the correlation matrix R(i). Considering
that only the upper triangular part of R(i) is involved, (N2 +N)/2+6 cycles are required
for updating the correlation matrix R(i) with 6 cycles of latency.
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Figure 5.3: FPGA Architecture of the Correlation Module

The DCD Processor uses the DCD algorithm for solving the normal equations. Here,
we use the serial implementation of the complex-valued cyclic DCD algorithm described
in Section 3.4.1.
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Table 5.1: FPGA Requirements for 9-element and 64-element Beamformer
Resources: N = 9 N = 16 N = 32 N = 64
Slices 1491(10.67%) 1491(10.67%) 1685(12.06%) 1750(12.53%)
D-FFs 1183(4.32%) 1185(4.33%) 1234(4.51%) 1282(4.68%)
LUT4s 2276(8.31%) 2271(8.29%) 2640(9.64%) 2656(9.70%)
Block RAMs 18(13.24%) 18(13.24%) 30(22.06%) 70(51.47%)
Block Multipliers 6(4.41%) 6(4.41%) 6(4.41%) 6(4.41%)

5.4 FPGA Resources for the MVDR-DCD Beamformer

The area usage of the Correlation Module and DCD Processor used for implementing
9-element, 16-element, 32-element and 64-element antenna array beamformer are sum-
marized in Table 5.1. The area usage of the 9-element and 16-element are approximately
the same; this is because the 9-element implementation is obtained by simply revising
the address counters of the 16-element implementation. It shares the same configura-
tions of the block RAMs and same width address-buses and address counters with the
16-element implementation. Due to the fact that all the matrices and vectors are stored in
block RAMs, these implementations occupy small number of slices and the increments
due to the system size is very small that can be viewed as the width increments of the
address-bus and address counters.

However, as there are (K + 1) snapshots stored in the x RAM and there is an internal
RSUM RAM, the number of block RAMs is very high and it increases significantly when
the number of elements increases. We may consider to use a forgetting factor λ (0 < λ ≤
1) to estimate the correlation matrix as

R(i) = λR(i− 1) + x(i)xH(i). (5.8)

Thus, only the most recent snapshot x(i) is required to store in memory and the internal
RSUM RAM can be eliminated. If we choose a forgetting factor λ = 1− 2−P , where P is
an integer, then multiplications by λ can be replaced by addition and bit-shift operations.
This approach will be used in Chapter 6 in application to adaptive filtering.

5.5 Numerical Results

Our fixed-point FPGA implementation has been tested against a floating-point MVDR
beamformer using direct matrix inversion and a floating-point MVDR-DCD beamformer.
Our test scenario involved simulating a desired user at -50.53◦ and two interfering users
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Table 5.2: Update Rates for FPGA-based MVDR-DCD Beamformer
Antenna Equation Maximum Number Worst-case Required Update
Elements Size of Updates Nu Cycles Cycles Rate (Hz)

9 9×9
400 25,971 5,180 19,305
500 32,271 8,047 12,427

16 16×16
500 57,359 10,140 9,862
600 68,559 13,888 7,200

32 32×32
900 204,303 3,3153 3,016

1,200 271,503 4,9631 2,015

64 64×64
1,500 677,391 103,552 966
2,500 1,125,391 190,710 524

at angles of -81.59◦ and +32.19◦ degrees from the normal axis of the simulated antenna
array. The interfering users are at a power level of 0 dB relative to the desired user. We
simulate the scenario using 9, 16, 32 and 64 receiving elements, which places the demand
of solving 9 × 9, 16 × 16, 32 × 32 and 64 × 64 complex-valued systems of equations,
respectively. The resultant beampatterns are shown in Figs. 5.4 to 5.7. For each antenna
array, we provide two beampatterns with different Nu. The solid and dashed vertical
lines represent positions of the desired user and interfering users respectively, whilst the
horizontal lines highlight the antenna gain for each user.

It is seen that for all cases by choosing suitable value of Nu, the DCD-based solver,
both floating-point and fixed-point implementations, could obtain approximately the
same beampatterns with that of the floating-point direct matrix inversion. However, the
throughput of MVDR-DCD implementation is hindered greatly (analyised in Table 5.2)
as the DCD processor requires a large number of updates Nu to obtain approximately the
same performance as that of the direct matrix inversion. To improve the throughput of
MVDR-DCD beamformer, we may consider to reduce the number of updates Nu at the
cost of worse beampattern performance.

The number of cycles required by the DCD core to solve the system of equations
depends on the system size, system sparseness and condition number of the correlation
matrix. The figures in Table 5.2 provide examples of the number of cycles required by the
DCD processor in the scenarios described above and give a rough idea of the performance
of the beamformer. The worst-case number of cycles required by the DCD processor is
also presented, as analyzed in Section 3.4. It is seen that the required number of cycles is
much smaller than that for the worst-case scenarios.

Our beamformer implementation compares favourably with an 9-element Altera
FPGA-based reference implementation described in [36]. The reference implementa-
tion, running from a 150 MHz clock, can sustain a latency of 41700 cycles, whereas
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Figure 5.4: Beampattern for N = 9 elements, Mb = 15: (a) Nu = 400; (b) Nu = 500.
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Figure 5.5: Beampattern for N = 16 elements, Mb = 15: (a) Nu = 500; (b) Nu = 600.

J. Liu, Ph.D. Thesis, Department of Electronics, University of York 2008



CHAPTER 5. APPLICATION: FPGA-BASED MVDR BEAMFORMING USING DCD
ITERATIONS 92

−80 −60 −40 −20 0 20 40 60 80
−40

−35

−30

−25

−20

−15

−10

−5

0

5

A
rr

ay
 fa

ct
or

 (
dB

)

Angle (deg)

 

 
matrix inversion (float)
DCD (float)
DCD (fixed)

(a)

−80 −60 −40 −20 0 20 40 60 80
−40

−35

−30

−25

−20

−15

−10

−5

0

5

A
rr

ay
 fa

ct
or

 (
dB

)

Angle (deg)

 

 
matrix inversion (float)
DCD (float)
DCD (fixed)

(b)

Figure 5.6: Beampattern for N = 32 elements, Mb = 15: (a) Nu = 900; (b) Nu = 1200.
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Figure 5.7: Beampattern for N = 64 elements, Mb = 15: (a) Nu = 1500; (b) Nu = 2500.

J. Liu, Ph.D. Thesis, Department of Electronics, University of York 2008



CHAPTER 5. APPLICATION: FPGA-BASED MVDR BEAMFORMING USING DCD
ITERATIONS 94

our implementation (9-element, Nu = 500) sustains a latency of 8047 cycles running
on a lower 100MHz clock. This equates to a five-fold throughput increase. The Altera
implementation also uses in excess of 2600 logic elements (approximately 1300 Xilinx
slices [49,50]), and also requires an additional embedded soft processor. Comparing with
a Xilinx CORDIC-based QRD implementation [38], which requires 3530 slices and 13
DSP48 blocks for solving a 9×9 system of equations with a latency of 10971 cycles, our
implementation achieves about 1.4 times higher throughput and with approximately 2.3
times smaller chip area.

5.6 MVDR DoA Estimation

The MVDR DoA estimation method minimizes the mean output power of the antenna
array subject to unity constraint in the look direction [71]. It is widely used due to its
ability of suppressing strong interference. The power spectrum for an angle θ at time
instant i can be expressed as [71]

Pθ(i) =
1

βH
θ R−1(i)βθ

, (5.9)

where βθ is the steering vector of angle θ. At each time instant, by calculating (5.9) for all
directions, the power spectrums of all directions can be plotted and assessed for a series
of DoA angles in all look directions.

Obviously, the power spectrum Pθ(i) can be computed as

Pθ(i) =
1

βH
θ hθ(i)

, (5.10)

where hθ(i) is the solution of the normal equations

Rhθ(i) = βθ. (5.11)

Therefore, we could obtain a hardware implementation of MVDR DoA estimator based
on DCD iterations by using the implementation of the MVDR-DCD beamformer. How-
ever, these computations will be more efficient when using the recursive DCD solver
which will be discussed in Chapter 6.
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5.7 Conclusions

We have presented an efficient FPGA implementation of the MVDR antenna array beam-
former. The FPGA implementation is based on DCD iterations. Comparing with other
implementations with the same main parameters, our design achieves higher throughput
with smaller chip area. Antenna beampatterns obtained from weights calculated in a fixed-
point FPGA platform have been compared with those of a floating-point MVDR-DCD im-
plementation and a floating-point MVDR implementation using direct matrix inversion.
For 9-element antenna array, our design obtains about 6 times higher throughput with
approximately the same chip area comparing with an Altera CORDIC-based QRD-RLS
implementation. Compared to 9-element Xilinx’s CORDIC-based QRD implementation,
our design achieves about 1.4 times higher throughput and with approximately 2.3 times
smaller chip area. The comparison has shown a good match for linear arrays of size 9
to 64 elements. Moreover, by using the same implementation, we could build an MVDR
DoA estimator based on DCD iterations.

In this implementation, the correlation matrix R(i) is estimated using a sample av-
eraging scheme with K snapshots. By updating R(i) recursively and storing (K + 1)

snapshots in a RAM configured as a circular buffer, a small number of cycles are required
for R(i) estimation. However, the memory required by the correlation module is very
large because all (K + 1) snapshots and matrix RSUM are kept in RAMs. Moreover, at
each time instant, the solution vector h(i) of this DCD-based MVDR beamformer does
not explore the information obtained at previous time instants. Therefore, a large number
of DCD iterations may be required to achieve high accuracy.

In the next chapter, a low complexity RLS adaptive filter using DCD iterations is pre-
sented. The correlation matrix estimate is based on exponential weighting by using a
forgetting factor; therefore the memory requirement for the correlation matrix estimation
is significantly reduced. Moreover, at each time instant, the solution vector h(i) is initial-
ized by the solution vector h(i− 1) obtained at previous time instant (i− 1). Therefore,
the DCD algorithm will require a smaller number of iterations to obtain high accuracy
and the overall throughput will be increased.
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Application: Low Complexity RLS
Adaptive Filters using DCD Iterations
and their FPGA Implementations
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6.1 Introduction

In adaptive filtering, the RLS algorithm is known to possess fast convergence, but also to
have a high complexity of O(N2) operations per sample (N being the filter length) [6,7].
When N is large, the RLS algorithm may become expensive from a hardware implemen-
tation point of view [6]. Therefore, there is a strong motivation to reduce the complexity
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of the RLS algorithms to have O(N) arithmetic operations per sample, i.e., similar to the
complexity of the LMS algorithm, 2N multiplications per sample.

The fast fixed-order RLS adaptive filters, exploiting the shifted structure of data vectors
(i.e., transversal adaptive filters), have a complexity of O(N) per sample [7]. The fastest
among them in terms of multiplications is the fast Kalman filter that requires 6N multi-
plications per sample [7]. The fixed-order algorithms suffer from numerical instability in
finite precision implementation. This problem is partly overcome by using stabilization
techniques. However, these make the algorithms more complicated, and, even with such
techniques, they can still exhibit instability [7]. Another group of fast adaptive algorithms
is the lattice algorithms [7]. However, lattice algorithms do not provide the filter weights
required in many applications, and their complexity is still high; the techniques considered
in [7] require at least 20N multiplications and divisions per sample. Recently, the KaGE
RLS algorithm was introduced [98]; it uses the shifted structure of data vectors, gener-
ates the filter weights, and its complexity is O(N log2 N), more specifically, 13N log2 N

multiplications per sample. However, the KaGE algorithm also requires O(N log2 N)

divisions per sample.

Many adaptive algorithms require division and square-root operations, which are com-
plex for implementation, especially in hardware, i.e., they require a significant chip area
and high power consumption. Although simpler than divisions, multiplications are still
significantly more difficult for implementation than additions. Therefore, it is important
to design algorithms that have no division, no square-root operations, and as few multi-
plications as possible.

Many fast adaptive algorithms are based on matrix inversion which results in insta-
bility in finite precision implementation. An alternative approach based on solving the
normal equations [99] often results in stable adaptive algorithms. Such an approach is
used in the direction set (or line search) based adaptive algorithms. These techniques
have either a good RLS-like performance but a high complexity of O(N2) per sample,
e.g., the CG [27, 28, 30, 100] or Euclidean direction search (EDS) [85] adaptive algo-
rithms, or a low complexity of O(N) per sample but a low performance, e.g., the fast
EDS algorithm [85, 101, 102] or the stochastic line search algorithm [103].

The classical RLS adaptive algorithm usually uses an initial regularization to stabilize
the solution to the RLS problem [6]. Because the initial regularization decays expo-
nentially in time, we may have to add additional diagonal loading to maintain robust-
ness [104]. However, diagonal loading increases the complexity to O(N3) operations
per sample as it requires matrix inversion at each time instant [6]. This makes the RLS
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algorithm impractical [104]. The leaky RLS adaptive algorithm [73] allows solving the
RLS problem with a diagonal loading with complexity of O(N2). It is based on using a
recursive update of the eigenvalue decomposition of the correlation matrix. However, the
eigenvalue decomposition is complicated for real-time implementation.

In this chapter, we express the RLS adaptive filtering problem in terms of auxiliary
normal equations with respect to increments of the filter weights. The normal equations
are then approximately solved by using the low complexity DCD algorithm [5]. There-
fore, the obtained RLS-DCD algorithm is well suited to hardware implementation and the
complexity is as low as 3N multiplications per sample for transversal filtering problem.
Moreover, it results in a stable finite precision implementation. The performance of the
RLS-DCD algorithm can be made arbitrarily close to that of the classical RLS algorithm.
However, the RLS-DCD algorithm does not allow the regularization to be used except
the initial regularization that is used in the classical RLS algorithm. A low complexity
dynamically regularized RLS adaptive filtering algorithm based on the RLS-DCD algo-
rithm is also proposed. The dynamically regularized RLS-DCD algorithm reduces the
complexity of the regularized RLS problem to O(N2) in a general case, and to O(N)

for transversal adaptive filters. The derivation of this algorithm mostly follows the steps
of derivation of the RLS-DCD algorithm. A fixed-point FPGA implementation of this
dynamically regularized RLS-DCD algorithm is also presented.

The main body of this chapter is organized as follows. In Section 6.2, the RLS-DCD
algorithm is introduced and applied to the exponentially weighted RLS filtering case with
unstructured data vector and transversal RLS filtering case with time-shifted structured
data vector in Section 6.2.1 and Section 6.2.2, respectively. In Section 6.3, the dynami-
cally regularized RLS-DCD algorithm for solving complex-valued systems is described.
In Section 6.4 and Section 6.5, fixed-point FPGA implementations of RLS-DCD algo-
rithm and dynamically regularized RLS-DCD algorithm are described, respectively. Sec-
tion 6.6 and Section 6.7 provide numerical results for the RLS-DCD and dynamically
regularized RLS-DCD algorithms, respectively. Finally, Section 6.8 gives conclusions.

6.2 RLS-DCD Adaptive Filtering Algorithms

In the RLS problem, at every time instant i (i = 0, 1, 2, . . .), an adaptive algorithm should
find a solution to the normal equations

R(i)h(i) = β(i), (6.1)
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where R(i) is assumed to be a symmetric positive-definite (correlation) matrix of size
N ×N , β(i) and h(i) are N - length vectors. The matrix R(i) and vector β(i) are known,
whereas the vector h(i) should be estimated. Direct methods for solving the system are
too complex for most applications of adaptive filtering, especially if N is high; e.g., the
Cholesky decomposition finds the solution with a complexity O(N3) [1]. In the classical
RLS algorithm, the solution is represented in the form [7]: h(i) = P(i)β(i) , where
P(i) = R−1(i); P(i) can be computed recursively with a complexity of O(N2) [7].
The RLS-DCD algorithm adopts another approach, which is based on transforming the
original sequence of normal equations (6.1) into a sequence of auxiliary normal equations
that are then solved by using iterative techniques.

Let, at time instant (i − 1), a system of equations R(i − 1)h(i − 1) = β(i − 1) be
approximately solved, and the approximate solution is ĥ(i− 1). Let

r(i− 1) = β(i− 1)−R(i− 1)ĥ(i− 1) (6.2)

be a residual vector for this solution. At time instant i, the system (6.1) is to be solved.
We denote ∆R(i) = R(i)−R(i− 1), ∆β(i) = β(i)− β(i− 1), and

∆h(i) = h(i)− ĥ(i− 1). (6.3)

To find a solution ĥ(i) of the system (6.1) by exploiting the previously obtained solution
ĥ(i− 1) and residual vector r(i− 1), the system (6.1) can be rewritten as

R(i)[ĥ(i− 1) + ∆h(i)] = β(i) (6.4)

and represented as a system of equations with respect to the unknown vector ∆h(i):

R(i)∆h(i) = β(i)−R(i)ĥ(i− 1)

= β(i)−R(i− 1)ĥ(i− 1)−∆R(i)ĥ(i− 1)

= r(i− 1) + ∆β(i)−∆R(i)ĥ(i− 1). (6.5)

Instead of solving the original problem (6.1), one can find a solution ∆ĥ(i) to the auxiliary
system of equations

R(i)∆h(i) = β0(i), (6.6)

where

β0(i) = r(i− 1) + ∆β(i)−∆R(i)ĥ(i− 1), (6.7)

and obtain an approximate solution of the original system (6.1) as

ĥ(i) = ĥ(i− 1) + ∆ĥ(i). (6.8)
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Table 6.1: Recursively solving a sequence of systems of equations
Step Equation

Initialization: r(−1) = 0,β(−1) = 0,ĥ(−1) = 0
for i = 0, 1, . . .

1 Find ∆R(i) and ∆β(i)
2 β0(i) = r(i− 1) + ∆β(i)−∆R(i)ĥ(i− 1)
3 Solve R(i)∆h = β0(i) ⇒ ∆ĥ(i), r(i)
4 ĥ(i) = ĥ(i− 1) + ∆ĥ(i)

It is seen from (6.7) that this approach requires the residual vector r(i) for the solution
ĥ(i) to the original system (6.1) to be known at each time instant i. After some algebra,
we obtain that the residual vector for the solution ∆ĥ(i) to the auxiliary system (6.6) is
also equal to r(i), i.e.,

r(i) = β(i)−R(i)ĥ(i) (6.9)

= β0(i)−R(i)∆ĥ(i). (6.10)

Thus, we can now formulate a recursive approach for solving a sequence of systems of
equations as presented in Table 6.1.

This approach allows us, at each time instant i, instead of solving the original prob-
lem (6.1) with respect to the filter weights h(i), to deal with an auxiliary problem (6.6)
with respect to the increment of the filter weights ∆h(i). The system (6.6) takes into ac-
count the accuracy of the previous solution through the residual vector r(i−1), as well as
the variation of the problem to be solved through the increments ∆R(i) and ∆β(i). If a
true solution to the system (6.6) is found then ĥ(i) is the true solution to the problem (6.1)
as well.

When using direct methods for solving the normal equations, both approaches would
require approximately the same computational load. However, when using iterative tech-
niques, the new approach is preferable, since it corresponds to solving the original prob-
lem with (implicit) initialization by the solution of the problem for the previous time
instant. Therefore, with the same accuracy of calculating the vector h(i), the proposed
approach will typically require a smaller number of iterations. If, in addition to finding
a solution vector ∆ĥ(i), the iterative equation solver produces the residual vector r(i) at
a low computational cost, and a simple way of computing the product R(i)∆ĥ(i) also
exists, the complexity of adaptive filtering based on the new approach will be lower than
that with the original approach. There are many iterative techniques, such as the CG al-
gorithm, the CD algorithm and the DCD algorithm as discussed in Chapter 3, that can be
used to solve the system (6.6). We call the obtained algorithms as RLS-CG, RLS-CD and
RLS-DCD algorithms, respectively. The numerical performance and complexity of these
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Table 6.2: Leading DCD algorithm
Step Equation +

Initialisation: ∆ĥ(i) = 0, r(i) = β0(i), α = H/2, m = 1
for k = 1, . . . , Nu

1 n = arg maxp=1,...,N{|rp(i)|}, go to step 4 N−1
2 m = m + 1, α = α/2 0
3 if m > Mb, the algorithm stops 0
4 if |rn(i)| ≤ (α/2)Rn,n(i), then go to step 2 1
5 ∆ĥn(i) = ∆ĥn(i) + sign[rn(i)]α 1
6 r(i) = r(i)− sign[rn(i)]αR:,n(i) N

Total: ≤ (2N + 1)Nu + Mb adds

algorithms will be compared in Section 6.6.

The DCD algorithm provides both a solution ∆ĥ(i) and the residual vector r(i). As
we analyzed in Chapter 3, the leading DCD is preferable for solving the adaptive filter-
ing problem due its fast convergence at initial iterations. The real-valued leading DCD
algorithm is represented here in Table. 6.2 for the time-varying system (6.6). Below, the
RLS-DCD algorithm is applied to the exponentially weighted RLS filter and transversal
RLS filter problems. It can also apply to the sliding window RLS problem as shown
in [92].

6.2.1 Exponentially Weighted RLS-DCD Algorithm

The exponentially weighted RLS (ERLS) problem deals, at every time instant i, with a
N -length data vector x(i) and a scalar desired signal d(i). An adaptive algorithm should
find a vector h(i) that minimizes the error [7]

Ee(i) = λi+1hT (i)Πh(i) +
i∑

j=0

λi−j[d(j)− hT (i)x(j)]2 (6.11)

where Π is a regularization matrix and 0 < λ ≤ 1 is a forgetting factor. The regularization
matrix is usually chosen as a diagonal matrix Π = ηI, where the regularization parameter
η > 0 is a small positive number and I is the N × N identity matrix [6, 7]. The vector
h(i) can be found by solving the normal equations (6.1) with the system matrix and the
right-hand vector given by [6]

R(i) = λR(i− 1) + x(i)xT (i), (6.12)

β(i) = λβ(i− 1) + d(i)x(i). (6.13)
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To apply the method in Table 6.1 to this problem, the vector β0(i) should be expressed in
terms of x(i) and d(i). From (6.12) and (6.13), we obtain

∆R(i) = (λ− 1)R(i− 1) + x(i)xT (i), (6.14)

∆β(i) = (λ− 1)β(i− 1) + d(i)x(i). (6.15)

By using (6.2) and (6.14), we obtain

∆R(i)ĥ(i− 1) = (λ− 1)[β(i− 1)− r(i− 1)] + x(i)y(i) (6.16)

where y(i) is the adaptive filter output at time instant i,

y(i) = xT (i)ĥ(i− 1). (6.17)

Using (6.16), we obtain step 2 for the method in Table 6.1:

β0(i) = λr(i− 1) + e(i)x(i), (6.18)

where e(i) is the a priori estimation error,

e(i) = d(i)− y(i). (6.19)

Finally, the exponentially weighted RLS algorithm is summarized in Table 6.3, which
also shows the complexity of different steps of the algorithm in terms of multiplications
and additions. Note that due to the symmetry of R(i) only its upper triangle part is
calculated to reduce the complexity. Moreover, the forgetting factor λ is chosen as λ =

1− 2−P , where P is a positive integer number. Therefore, the multiplications by λ can be
replaced by bit-shifts and additions, thus reducing the number of multiplications that are
significantly more complicated for implementation than additions and bit-shifts.

The auxiliary systems are solved using the real-valued leading DCD algorithm, with a
complexity of Pm = 0 multiplications and Pa = (2N + 1)Nu + Mb additions and Mb is
the number of bits used for a fixed-point representation of elements of the solution vector,
where Nu denotes the number of updates, as discussed in Section 3.2.2. Thus, the com-
plexity of the exponentially weighted RLS-DCD (ERLS-DCD) algorithm is (N2+5N)/2

multiplications and N2 + 4N + (2N + 1)Nu + Mb additions. We can also use other itera-
tive techniques, such as CG and CD algorithms, to solve the exponentially weighted RLS
problem. The computational complexity and numerical results of the obtained exponen-
tially weighted RLS-CG (ERLS-CG) and exponentially weighted RLS-CD (ERLS-CD)
will be analyzed and compared to that of the ERLS-DCD, classical RLS algorithm and
NLMS algorithm in Section 6.6.
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Table 6.3: Exponentially weighted RLS (ERLS) algorithm
Step Equation × +

Initialization:
ĥ(−1) = 0, r(−1) = 0, R(−1) = Π
for i = 0, 1, . . .

1 R(i) = λR(i− 1) + x(i)xT (i) N(N + 1)/2 N(N + 1)
2 y(i) = xT (i)ĥ(i− 1) N N−1
3 e(i) = d(i)− y(i) 0 1
4 β0(i) = λr(i− 1) + e(i)x(i) N 2N

5 R(i)∆h(i) = β0(i) ⇒ ∆ĥ(i), r(i) Pm Pa

6 ĥ(i) = ĥ(i− 1) + ∆ĥ(i) 0 N

Total: mults= (N2 + 5N)/2 + Pm ; adds ≤ N2 + 4N + Pa

6.2.2 Transversal RLS-DCD Algorithm

The exponentially weighted RLS algorithm as presented in Table 6.3 can be used in ap-
plications with arbitrary data vectors (regressors) x(i). One of such applications is the
antenna array beamforming [6, 7]. In other applications, e.g., in echo cancellation, equal-
ization and noise reduction [6], the regressors have a time-shifted structure

x(i) = [x(i−N + 1) . . . x(i− 1) x(i)]T , (6.20)

where x(i) is a discrete-time signal. In this case, updating the correlation matrix R(i) is
significantly simplified. Specifically, the upper-left (N − 1)× (N − 1) block of R(i) can
be obtained by copying the lower-right (N − 1)× (N − 1) block of R(i− 1). The only
part of the R(i) that should be directly updated is the last column:

R:,N(i) = λR:,N(i− 1) + x(i)x(i). (6.21)

As a result, the number of multiplications and additions at step 1 is reduced to N and
2N , respectively. The transversal filter RLS algorithm is shown in Table 6.4. For the
transversal RLS-DCD algorithm, the total number of multiplications and additions are
reduced to 3N and 6N + (2N + 1)Nu + Mb, respectively.
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Table 6.4: Transversal RLS algorithm
Step Equation × +

Initialization:
ĥ(−1) = 0, r(−1) = 0, R(−1) = Π
for i = 0, 1, . . .

1 R:,N (i) = λR:,N (i− 1) + x(i)xT (i) N 2N

2 y(i) = xT (i)ĥ(i− 1) N N−1
3 e(i) = d(i)− y(i) 0 1
4 β0(i) = λr(i− 1) + e(i)x(i) N 2N

5 R(i)∆h(i) = β0(i) ⇒ ∆ĥ(i), r(i) Pm Pa

6 ĥ(i) = ĥ(i− 1) + ∆ĥ(i) 0 N

Total: mult = 3N + Pm; adds ≤ 6N + Pa

6.3 Dynamically Regularized RLS-DCD Adaptive Filter-
ing Algorithm

In the previous section, the RLS-DCD algorithm is applied to real-valued systems. For
the complex-valued systems, the matrix R(i) is calculated as

R(i) =
i∑

k=0

λi−kx(k)xH(k) + δ(i)I, (6.22)

where x(i) is an N -length complex-valued input data vector, λ is a forgetting factor 0 <

λ ≤ 1, δ(i) is a time-varying diagonal loading and I is the N × N identity matrix [6].
In the classical RLS algorithm and in the RLS-DCD algorithm, an initial regularization
R(−1) = ηI is used, η > 0, and the matrix R(i) is updated as [6]

R(i) = λR(i− 1) + x(k)xH(k). (6.23)

This corresponds to the time varying regularization δ(i) = λi+1η which exponentially
decays in time. However, it is often of interest to add an extra diagonal loading to maintain
the algorithm robustness. Moreover, in some applications [105] this diagonal loading can
vary in time. We consider that the regularization parameter δ(i) may vary in time without
restarting the adaptive filter [105], resulting in a dynamically regularized RLS algorithm.

From equation (6.22), we obtain

R(i) = λR(i− 1) + x(i)xH(i) + [δ(i)− λδ(i− 1)]I, (6.24)

and
∆R(i) = (λ− 1)R(i− 1) + x(i)xH(i) + [δ(i)− λδ(i− 1)]I. (6.25)

J. Liu, Ph.D. Thesis, Department of Electronics, University of York 2008



CHAPTER 6. APPLICATION: LOW COMPLEXITY RLS ADAPTIVE FILTERS USING DCD
ITERATIONS AND THEIR FPGA IMPLEMENTATIONS 105

Table 6.5: Dynamically regularized RLS algorithm
Step Equation × +

Initialisation: ĥ(−1) = 0, r(−1) = 0
R(−1) = ηI

for i = 0, 1, . . .

1
R(i) = λR(i− 1) + x(i)xH(i)

2N2 + 2N 3N2 + 4N + 2
+[δ(i)− λδ(i− 1)]I

2 y(i) = xH(i)ĥ(i− 1) 4N 4N − 2

3
β0(i) = λr(i− 1) + (1− λ)β(i)

8N 12N + 2+∆β(i)− x(i)y(i)
−[δ(i)− λδ(i− 1)]ĥ(i− 1)

4 R(i)∆h(i) = β0(i) =⇒ ∆ĥ(i), r(i) Pm Pa

5 ĥ(i) = ĥ(i− 1) + ∆ĥ(i) − 2N

Total: mults=2N2 + 14N + Pm; adds=3N2 + 22N + Pa + 2

Thus, the auxiliary vector β0(i) of step 2 in Table 6.1 can be represented as

β0(i) = λr(i−1)+(1−λ)β(i)+∆β(i)−x(i)y(i)− [δ(i)−λδ(i−1)]ĥ(i−1), (6.26)

where y(i) = xH(i)ĥ(i− 1) is the filter output at time instant i.

Finally, the dynamically regularized RLS algorithm is summarized in Table 6.5. The
complexity of each step is measured in terms of real-valued multiplications and addi-
tions. Similarly to the unregularized RLS-DCD algorithm in Table 6.3 and Table 6.4,
multiplications by λ and (1 − λ) are replaced by addition and bit-shift operations as
λ = 1−2−P with a positive integer P and we only compute the upper triangular part of the
symmetric correlation matrix R(i). The complex-valued auxiliary equations are solved
using the complex-valued leading DCD algorithm presented in Chapter 3. The complex-
valued leading DCD algorithm is presented in Table 6.6 for time-varying complex-valued
system (6.6) with a worst-case complexity of Pa = (4N + 1)Nu + Mb real-valued ad-
ditions and Pm = 0 multiplication. Thus, the complexity of this proposed algorithm
for an N -size complex-valued system is 2N2 + 14N real-valued multiplications and
3N2 + 22N + (4N + 1)Nu + Mb + 2 real-valued additions.

The dynamically regularized RLS-DCD algorithm in Table 6.5 can be used in appli-
cations with arbitrary data structures. In a similar way, we can obtain a dynamically
regularized transversal RLS-DCD algorithm. The complexity of this algorithm is O(N)

arithmetic operations per sample.
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Table 6.6: Complex-valued Leading DCD Algorithm (N ×N system)
Step Equation +

Initialization: ∆ĥ(i) = 0, r(i) = β0(i), α = H , m = 0
for k = 1, . . . , Nu

1
[n, s] = arg maxp=1,...,N{|<(rp(i))|, |=(rp(i))|} 2N−1
go to step 4

2 m = m + 1, α = α/2
3 if m > Mb, algorithm stops

4
if s = 1, then rtmp = <(rn(i)), else rtmp = =(rn(i))

1
if |rtmp| ≤ (α/2)Rn,n(i), then go to step 2

5 ∆ĥn(i) = ∆ĥn(i) + sign(rtmp)sα 1
6 r(i) = r(i)− sign(rtmp)sαR:,n(i) 2N

Total: ≤ (4N + 1)Nu + Mb adds

6.4 FPGA Implementation of RLS-DCD Adaptive Filter-
ing Algorithms

The hardware architecture of the RLS-DCD algorithm is shown in Fig. 6.1. The whole
implementation operates from a single 100MHz clock and we make use of the FPGA
Digital Clock Manager and Global Clock Distribution Network [76] to ensure a uniform
delay between the system clock source and each logic slice. For clarity, the clock distri-
bution modules are not shown in the Fig. 6.1. The Master State Machine coordinates the
operation of the whole system. The Transceiver handles the data communication between
the FPGA board and a host computer. Four dual-port block RAMs are used to store the
matrix R(i), the vector β0(i), the vector ĥ(i) and the input data x(i). The scalar d(i) is
stored in a register. The x RAM used for storing vectors x(i) is located inside the Trans-
ceiver module; therefore it is not shown in Fig. 6.1. Multiplexers (MUXs) are used for
multi-accessing these RAMs. The Correlation Module updates the matrix R(i) and cal-
culates the vector β0(i) according to steps 1 to 4 of Table 6.3. The DCD Processor uses
the DCD algorithm for solving the normal equations and generating the residual vector
r(i) at step 5 of Table 6.3; step 6 is also incorporated in the DCD Processor.

For representation of the input data x(i), the implementation uses 16-bit fixed-point
words in the Q15 format [87]. The samples d(i) are represented by 32-bit fixed-point
words in the Q15 format. Elements of the matrix R(i) and vectors r(i), β0(i), and ĥ(i)

are 32-bit fixed-point words in the Q15 format, which are same as the previous implemen-
tations of DCD algorithms. When computing the filter output y(i), each multiplication
results in a 47-bit fixed-point word in the Q30 format; after the accumulation of the N

products, y(i) is truncated to a 32-bit fixed-point word in the Q15 format. The error signal
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Figure 6.1: Block-diagram of the FPGA implementation of the RLS-DCD adaptive filter-
ing algorithm.

e(i) is represented by 32-bit fixed-point words in the Q15 format.

6.4.1 FPGA Implementation for Arbitrary Data Vectors

The Correlation Module is shown in Fig. 6.2. It initializes the R RAM according to the
initialization step in Table 6.3. For updating the matrix R(i), the x RAM Reader B writes
addresses to the x RAM through port B. The MUY1 Writer reads elements of x(i) and
writes them into both operand ports of the multiplier MUY1 to produce upper triangular
elements of the vector product x(i)xT (i). The MUY1 is a 16-bit×16-bit multiplier. The
R RAM Reader writes addresses to the R RAM to read upper triangular elements of the
matrix R(i − 1). The R RAM Writer reads the elements of R(i − 1) and multiplication
results from the MUY1, computes upper triangle elements of R(i) according to step 1
in Table 6.3 and writes them into the R RAM through port A. The whole process is
pipelined under the control of the Correlation Module State Machine and requires one
cycle for updating one element of R(i) with a 4-cycle latency. In total, the matrix update
requires (N2 + N)/2 + 4 cycles.

The updating of the vector β0(i) is carried out in two stages. The first stage is the
computation of the error signal e(i) according to steps 2 and 3 in Table 6.3. The x RAM
Reader A writes sequentially addresses of elements of the vector x(i) into the x RAM port
A. The h RAM Reader writes sequentially addresses of elements of the vector ĥ(i − 1)

into the h RAM. The MUY2 Writer reads elements of x(i) and ĥ(i− 1), and writes them
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Figure 6.2: Block-diagram of the Correlation Module.

into two operand ports of the multiplier MUY2. The MUY2 is a 16-bit×32-bit multiplier
configured from two 18-bit×18-bit embedded multipliers. The β RAM Writer reads
multiplication results from the MUY2 and accumulates them into the signal y(i). The β

RAM Writer reads d(i) stored in a register and calculates the error signal e(i) according
to step 3 in Table 6.3.

The second stage is executed according to step 4 in Table 6.3. The x RAM Reader A
writes addresses of elements of the vector x(i) sequentially into the x RAM. The β RAM
Reader writes addresses of elements of r(i−1) into the β RAM. The MUY2 Writer reads
elements of x(i) from the x RAM and e(i) from the β RAM Writer, and writes them into
two operand ports of the multiplier MUY2. The β RAM Writer reads the multiplication
results from the MUY2 and elements of the vector r(i − 1) from the β RAM port B
sequentially, computes elements of the vector β0(i), and writes them into the β RAM
through port A. The latency of each stage is 3 cycles. Thus, the updating of the vector
β0(i) requires 2N + 6 cycles.

The DCD Processor here is mostly the same as that of the real-valued leading DCD
algorithm in Chapter 2 except for finding the leading element for the first iteration at
each time instant i. The β RAM is configured in “Transparent Mode”, i.e., the input
data are simultaneously written into the memory and placed on the data output port [76].
At each time instant, when writing the vector β0(i) into the β RAM in the Correlation
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Module Fig. 6.2, the β Max module of the DCD processor works synchronously with the
Correlation Module. The β Max reads elements of the vector β0(i) sequentially, finds
the maximum absolute value and outputs its index n to the DCD Core State Machine for
the first iteration at a time instant i. Therefore, the maximum number of cycles for the
real-valued leading DCD implementation is (N + 6)Nu + 4Mb − 1 per sample.

In the Correlation Module, updating the matrix R(i) and vector β0(i) are executed
simultaneously. In the case of arbitrary regressors x(i), updating the correlation matrix
requires significantly more cycles than updating β0(i). Therefore, the maximum number
of cycles for the RLS-DCD adaptive filter with an arbitrary data structure is (N2+N)/2+

(N + 6)Nu + 4Mb + 3 per sample.

6.4.2 FPGA Implementation for Time-Shifted Data Vectors
(Transversal Adaptive Filter)

For the transversal RLS-DCD adaptive filter, the vector x(i) has a time-shifted struc-
ture (6.20) and the upper-left (N−1)× (N−1) block of R(i) can be obtained by shifting
the lower-right (N − 1)× (N − 1) block of R(i− 1). The direct shifting would require at
least (N − 1)× (N − 1) cycles, as the block RAMs can only be accessed at one memory
space per cycle [76]. A simple memory address modification is performed instead of the
direct copying. The data do not change the position in the RAM and only the correspond-
ing address counters are modified. The x RAM is now configured as a circular buffer. At
each time instant i, the Transceiver writes an element x(i) into the x RAM to overwrite
the first element of the vector x(i− 1).

To update the matrix R(i), the x RAM Reader B generates the address of the element
x(i) and then sequentially generates addresses of elements of the vector x(i). The MUY1
Writer reads elements x(i) from the x RAM, writes the element x(i) into an operand
port of the multiplier MUY1, and sequentially writes N elements of x(i) into another
operand port to produce the product x(i)x(i) according to (6.21). The R RAM Reader
writes addresses of elements in the last column R:,N(i− 1) of R(i− 1) into the R RAM.
The R RAM Writer reads elements of R:,N(i − 1) from the R RAM and multiplication
results from the multiplier MUY1, computes elements of the column R:,N(i), and writes
them into the R RAM through port A to overwrite the column R:,1(i − 1). As only
the upper triangular part of the matrix R(i) is involved, the column R:,n(i) is accessed
in the following order: R1,n(i), . . . Rn,n(i), Rn,n+1(i), . . . Rn,N(i). The whole process is
fully pipelined under the control of the Correlation Module State Machine. As only one
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column of R(i) is involved in the computation, the matrix update requires N + 4 cycles.
The other modules of the transversal RLS-DCD adaptive filter operate similarly to the
modules of the RLS-DCD filter with arbitrary regressors. In the case of time-shifted
regressors x(i), updating R(i) requires less cycles than updating β0(i). The “worst-case”
number of cycles for the transversal RLS-DCD adaptive filter is 2N+(N+6)Nu+4Mb+5

per sample.

6.4.3 FPGA Resources for RLS-DCD Adaptive Filtering Algorithm

The RLS-DCD algorithm has been implemented for the cases N = 16, 18 and 64 with
Mb = 15 and Nu = 16, for both arbitrary and time-shifted data structures. The choice
of the high number of iterations Nu = 16 will guarantee filtering results close to that of
the classical RLS algorithm (as analyzed in Section 6.6). In some applications, it can
be significantly reduced, as even as small number of iterations as Nu = 1 can provide
performance close to that of the classical RLS algorithm (to be shown in Section 6.6).

FPGA resources for four implementations are presented in Table 6.7. The area usage
of the Transceiver module is not included as it is application specific. The whole im-
plementation requires at most 9.5% of the resources available on the FPGA chip. The
overhead in the slice count posed by the increase of the filter size is small and is mostly
due the increase of the address bus-widths and the address counter-widths.

The RLS-DCD implementation for arbitrary regressors is applicable, for example, to
adaptive antenna beamforming. For an 9-element antenna array with complex-valued
weights (corresponding to a 18-tap adaptive filter), we obtain the update rate at least 162

kHz (619 cycles per sample). Comparing with an 9-element Altera CORDIC-based QRD-
RLS implementation [36], our implementation achieves about 67 times higher throughput
and with approximately the same chip area. Moreover, the Altera implementation requires
an additional NIOS processor to perform the back substitutions. Our implementation also
achieves about 17 times higher throughput and with approximately 3 times smaller chip
area, compared to a Xilinx CORDIC-based QRD implementation [38], which requires
3530 slices and 13 DSP48 blocks for solving a 9×9 system of equations with a latency
of 10971 cycles. The throughput of the N = 18 RLS-DCD implementation is about
13 times higher than that of an 9-element MVDR beamformer in Chapter 5 using the
complex-valued leading DCD algorithm to directly solve the system (6.1). Comparing
with the area usage of N = 16 serial implementation of the complex-valued leading DCD
algorithm in Table 3.14, this RLS-DCD implementation only has an extra 500 slices. For a
32-element antenna (64-tap adaptive filter), we obtain a 31 kHz update rate at least, which
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Table 6.7: FPGA resources for RLS-DCD adaptive filter
Algorithms RLS-DCD Transversal RLS-DCD

Resources: N = 18 N = 64 N = 16 N = 64
Slices 1103 (7.6%) 1174 (8.6%) 1153 (8.4%) 1306 (9.5%)
Block RAM 5 (3.7%) 11 (8.1%) 4 (2.9%) 11 (8.1%)
Multiplier 3 (2.2%) 3 (2.2%) 3 (2.2%) 3 (2.2%)
Update Rate 162 kHz 31 kHz 207 kHz 76 kHz

is 5 times higher than that of the implementation based on the direct use of the complex-
valued DCD algorithm in Chapter 5. The DCD algorithm implemented here uses a serial
implementation with a maximum of N +6 cycles for one iteration. The weight update rate
of the RLS-DCD adaptive filter can be further increased by using a group implementation
or a parallel implementation of the DCD algorithm as we discussed in Chapter 3.

6.5 FPGA Implementation of Dynamically Regularized
RLS-DCD Adaptive Filtering Algorithm

The architecture of the implementation is similar to the implementation of unregularized
RLS-DCD algorithm which is shown in Fig. 6.1. The system clock is 100 MHz and
distributed using the FPGA Digital Clock Manager and Global Clock Distribution Net-
work [76] to ensure a uniform delay between the system clock source and each logic slice.
The Master State Machine coordinates the operation of the whole system. The Transceiver
handles the data communication between the FPGA board and a Host Computer.

The Host Computer provides the input data x(i), δ(i) and β(i) to the FPGA board and
receives the filter weights ĥ(i) and the filter output y(i) from the board. The scalar δ(i)

is stored in a register. Five dual-port block RAMs are used to store the matrix R(i) and
vectors β0(i), ĥ(i), β(i), ∆β(i) and x(i). The x RAM and βin RAM used for storing
vectors x(i), β(i) and ∆β(i) are located inside the Transceiver module; they are not
shown in Fig. 6.1. The vector ∆β(i) is computed inside the Transceiver. Multiplexers
(MUXs) are used for multi-accessing these RAMs. The Correlation Module updates the
matrix R(i) and calculates the vector β0(i) according to steps 1 to 3 in Table 6.5. The
DCD Processor uses the DCD algorithm for solving the auxiliary equations (6.6) and
generating the residual vector r(i) at step 4 in Table 6.5; step 5 is also incorporated in the
DCD Processor.

For representation of δ(i) and each component of vectors x(i), β(i) and ∆β(i), 16-
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Figure 6.3: Block-diagram of the Correlation Module.

bit fixed-point words in the Q15 format [87] are used. Components of the matrix R(i)

and vectors r(i), β0(i), and ĥ(i) are 32-bit fixed-point words in the Q15 format. When
computing the filter output y(i) according to step 2 in Table 6.5, after accumulation of the
N products, both components of y(i) are truncated to 32-bit fixed-point words in the Q15
format.

The Correlation Module is shown in Fig. 6.3. The functions and operations of each
module are similar to that of the correlation module of the implementation of RLS-DCD
algorithm in Fig 6.2. For updating the correlation matrix R(i), at each time instant i,
the R RAM Writer reads the elements x(i)xH(i) from the multiplier MUY1, elements
of R(i − 1) from R RAM port B, δ(i − 1) from internal register and δ(i) from input
register, computes elements of R(i) according to step 1 in Table 6.5 and writes them to
the R RAM through port A. After updating all upper triangular elements of R(i), the R

RAM Writer replaces δ(i− 1) in its internal register with δ(i). The remaining operations
for updating the matrix R(i) are exactly the same as the operations in the implementation
of RLS-DCD algorithm with arbitrary data vector in Section 6.4.1. The whole process
is pipelined under the control of the Correlation Module State Machine and requires one
cycle for updating one element of R(i) with a 6-cycle latency. In total, the matrix update
requires (N2 + N)/2 + 6 cycles.

Similar to the previous implementation, the updating of the vector β0(i) is also carried
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out in two stages. The first stage is the computation of the filter output y(i) according to
step 2 in Table 6.5. The x RAM Reader A and the h RAM Reader assert addresses to x

RAM and h RAM to read the vectors x(i) and h(i − 1), sequentially and respectively.
The MUY2 Writer reads elements of x(i) and ĥ(i− 1), and writes them into two operand
ports of the multiplier MUY2, sequentially. The β RAM Writer reads multiplication
results from the MUY2 and accumulates them into the signal y(i).

The second stage is executed according to step 3 in Table 6.5. The x RAM Reader A
and the h RAM Reader read the vectors x(i) and h(i − 1) once more, respectively. The
MUY2 Writer reads elements of x(i) from the x RAM and y(i) from the β RAM Writer,
and writes them into two operand ports of the multiplier MUY2. The MUY3 Writer reads
elements of ĥ(i−1), δ(i) and δ(i−1) from its internal register, and writes [δ(i)−λδ(i−1)]

and elements of ĥ(i− 1) into two operand ports of MUY3. Simultaneously, the β RAM
Reader writes addresses to the β RAM and the βin RAM to read r(i−1), β(i) and ∆β(i),
respectively and sequentially. The β RAM Writer reads the multiplication results from the
MUY2 and MUY3, elements of the vector r(i−1) from the β RAM port B, and elements
of β(i) and ∆β(i) from the βin RAM, computes elements of the vector β0(i), and writes
them into the β RAM through port A. After computing all N elements sequentially and
in a pipelined manner, the MUY3 Writer stores δ(i) to replace the δ(i−1) in register. The
latency of each stage is 5 cycles. Thus, the updating of the vector β0(i) requires 2N + 10

cycles.

We should notice that the implementation here processes the complex-valued systems
and that the real components and the imaginary components are processed simultane-
ously. The MUY1 is a 16-bit×16-bit complex-valued multiplier configured from three
18-bit×18-bit embedded multipliers. The MUY2 is a 16-bit×32-bit complex-valued mul-
tiplier configured from six 18-bit×18-bit embedded multipliers. The MUY3 contains two
16-bit×32-bit real-valued multipliers for real parts and imaginary parts respectively. Each
16-bit×32-bit real-valued multiplier is composed by two 18-bit×18-bit embedded mul-
tipliers. Thus, 13 18-bit×18-bit embedded multipliers are required in the Correlation
Module.

The DCD Processor here is slightly different from the serial implementation of the
complex-valued leading DCD algorithm in Section 3.4.2; finding the leading component
for the first iteration at each time instant i is optimized for this implementation. The β

RAM is configured in “Transparent Mode”, i.e., the input data are simultaneously written
into the memory and stored in the data output port [76]. At each time instant, when writing
the vector β0(i) into the β RAM in the Correlation Module Fig. 6.2, the β Max module of
the DCD processor works synchronously with the Correlation Module. The β Max reads
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Table 6.8: FPGA resources for dynamically regularized RLS-DCD
Size Slices Block RAM Multiplier Update Rate

N = 16 2680(19.57%) 8(5.88%) 13(9.57%) 176 kHz
N = 64 2814(20.55%) 21(15.44%) 13(9.57%) 31 kHz

elements of the vector β0(i) sequentially, finds the maximum absolute value and outputs
its index (p, s) to the DCD Core State Machine for the first iteration at a time instant i.
The remaining operations of the DCD processor are the same as the implementation in
Section 3.4.2. The maximum cycles cost by the DCD processor is (N +7)Nu +4Mb− 3.

In the Correlation Module, Updating the matrix R(i) and vector β0(i) are executed
in parallel. Therefore, the “worst-case” number of cycles for the dynamically regularized
RLS-DCD adaptive filter is (N2 + N)/2 + (N + 7)Nu + 4Mb + 3.

FPGA resources (excluding the Transceiver module) are presented in Table 6.8 for the
cases N = 16 and N = 64 with Mb = 15 and Nu = 16. The area usage of the Transceiver
module is not included as it is application specific. The whole implementation requires at
most 21% of the resources available on the FPGA chip. The overhead in the slice count
posed by the increase of the filter size is small and is mostly due the increase of the address
bus-widths and the address counter-widths. The design processes the real components
and imaginary components simultaneously. The area usage is approximately twice of the
real-valued implementation of unregularized RLS-DCD algorithm in Section 6.2.1. The
choice of the high number of iterations Nu = 16 will guarantee filtering results close to
that of the regularized classical RLS algorithm.

The implementation with arbitrary regressors is applicable, for example, to adaptive
antenna beamforming. For an 16-element antenna array, we obtain the update rate at
least 191 kHz (567 cycles per sample) that is about 74 times higher than an 9-element Al-
tera CORDIC-based QRD-RLS implementation [36] with approximately two times larger
chip area, and 19 times higher than a 9 × 9 Xilinx CORDIC-based QRD implementa-
tion [38] with approximately 1.4 times smaller chip area. For a 64-element antenna, we
obtain a 31 kHz update rate at least. The DCD algorithm implemented here uses a serial
implementation with a maximum of N + 7 cycles for one iteration. The weight update
rate can be further increased by using a group-element implementation or a parallel im-
plementation of the DCD algorithm as we discussed in Chapter 3.
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Table 6.9: Complexity of proposed and known transversal adaptive algorithms
Algorithm × + ÷
ERLS-CG N2Nu + 5NNu + 3N N2Nu + 4NNu + 6N 2Nu − 1
ERLS-CD NNu + 3N 2NNu + 6N Nu

ERLS-DCD 3N 2NNu + 6N -
RLS N2 + 5N + 1 N2 + 3N 1
NLMS 2N + 3 2N + 3 1

6.6 Numerical Results for RLS-DCD Adaptive Filtering
Algorithm

Table 6.9 shows the complexity of the proposed and known transversal adaptive filters; the
complexity of the RLS and NLMS algorithms is from [7]. The complexity of the ERLS
algorithms takes into account the choice of the forgetting factor as λ = 1 − 2−P with
a positive integer P . For additions, we only show figures that are O(N2) or O(N) and
ignore figures that are O(Nu), O(Mb) or O(1). It is seen that the transversal ERLS-DCD
algorithm requires only 3N multiplications per sample and no division.

Below, we present numerical results for RLS-DCD adaptive filtering algorithm ob-
tained by computer simulation. We compare the MSE performance of the proposed adap-
tive algorithms against the classical exponentially weighted RLS algorithm, NLMS al-
gorithm, and a recently proposed efficient conjugate gradient control Liapunov function
(CG-CLF) algorithm with complexity O(N2) [30]. Only scenarios with the time-shifted
structure of input data, corresponding to the transversal adaptive filter, are considered.
The input data are generated according to

d(i) = hT (i)x(i) + n(i) (6.27)

where n(i) is the additive zero-mean Gaussian random noise with variance σ2. The vec-
tor x(i) = [x(i) x(i − 1) . . . x(i − N + 1)]T contains either a real speech signal or
autoregressive correlated random numbers given by

x(i) = νx(i− 1) + w(i) (6.28)

where ν is the autoregressive factor (0 ≤ ν < 1) and w(i) are uncorrelated zero-mean
random Gaussian numbers of unit variance. The MSE in a simulation trial is calculated
as

ε(i) =
[h(i)− ĥ(i)]T [h(i)− ĥ(i)]

hT (i)h(i)
. (6.29)
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Table 6.10: Complexity of adaptive algorithms (N = 16)
Algorithm × + ÷
ERLS-CG(Nu=1) 384 416 1
ERLS-CD(Nu=1) 64 128 1
ERLS-DCD(Nu=1) 48 128 -

ERLS-CG(Nu=4) 1392 1376 7
ERLS-CD(Nu=4) 112 224 4
ERLS-DCD(Nu=4) 48 224 -

ERLS-CG(Nu=16) 5424 5216 31
ERLS-CD(Nu=16) 304 608 16
ERLS-DCD(Nu=16) 48 608 -

RLS 337 304 1
NLMS 35 35 1

The MSEs obtained in Nmc trials are averaged and plotted against the time index i. Results
in Figs. 6.4 to 6.7 below are obtained by floating point simulation. Fig. 6.8 compares
floating and fixed point simulation results.

Fig. 6.4 shows the MSE performance of the ERLS-CG and ERLS-DCD algorithms
against the RLS, NLMS, and CG-CLF algorithms. All elements of the impulse response
h(i) are kept constant over the first 1000 samples; the elements are independent random
numbers uniformly distributed on [−1, +1]. At time instant i = 1000, a new vector h

is generated and kept constant over the remaining samples. It is seen that, in the case
of Nu = 1, the ERLS-DCD algorithm outperforms the ERLS-CG algorithm, but is in-
ferior to the CG-CLF algorithm. For Nu = 2, the ERLS-DCD and CG-CLF algorithms
demonstrate similar performance, whereas the ERLS-CG algorithm converges faster. For
Nu ≥ 4, the ERLS-DCD and ERLS-CG algorithms outperform the CG-CLF algorithm.
For a fixed Nu, the ERLS-CG algorithm converges faster than the ERLS-DCD algorithm.
However, this is achieved at the expense of a significant increase in the complexity (see
Table 6.10). Under a fixed complexity, the ERLS-DCD algorithm provides significantly
faster convergence than the ERLS-CG algorithm. Fig. 6.4b shows that after a change of
the impulse response, only two updates (Nu = 2) are enough for both the ERLS-CG and
ERLS-DCD algorithms to approach the RLS performance. The results for Nu > 2 are
not shown as they are not distinguishable from that of the classical RLS algorithm.

Fig. 6.5 compares the performance of the ERLS-CD and ERLS-DCD algorithms. It
is seen that, with increase in Nu, the ERLS-CD algorithm approaches the RLS perfor-
mance. However, the performance of the ERLS-DCD algorithm is superior to that of
the ERLS-CD and, as seen from Table 6.10, it requires a significantly fewer number of
multiplications.
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Figure 6.4: MSE performance of the ERLS-CG and ERLS-DCD algorithms against the
RLS, NLMS, and CG-CLF algorithms; N = 16, λ = 1 − 1/(2N) ≈ 0.969, η = 10−3,
H = 1, Mb = 16, ν = 0.9, σ = 0.01, Nmc = 100: (a) initial convergence; (b) conver-
gence after a change of the impulse response.
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Figure 6.5: MSE performance of the ERLS-CD and ERLS-DCD algorithms against the
RLS and NLMS algorithms; N = 16, λ = 1 − 1/(2N) ≈ 0.969, η = 10−3, H = 1,
Mb = 16, ν = 0.9, σ = 0.01, Nmc = 100: (a) initial convergence; (b) convergence after a
change of the impulse response.
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Figure 6.6: Echo cancellation experiment with a real speech signal. MSE performance
of the ERLS-DCD vs. RLS and NLMS algorithms: N = 512, SNR = 30 dB, λ =

1− 1/(4N) ≈ 0.9995, η = 0.015, H = 1, Mb = 16, Nmc = 1.

The results in Fig. 6.6 correspond to the application of adaptive filtering to acoustic
echo cancellation with a long impulse response, N = 512. Elements of the impulse
response hn, n = 1, . . . , N , are independent zero-mean random numbers with variance
exp (−0.005n), which corresponds to a typical acoustic impulse response [106]. The vec-
tors x(i) contain a real speech signal sampled at a frequency of 8 kHz. It is seen that with
Nu = 1, the ERLS-DCD algorithm significantly outperforms the NLMS algorithm. With
increase in Nu, the MSE performance of the ERLS-DCD algorithm is significantly im-
proved and, in the steady-state, for Nu ≥ 2, it outperforms the RLS algorithm. Table 6.11
shows the complexity of the three algorithms. It is seen that the complexity of the ERLS-
DCD algorithm is significantly lower than that of the RLS algorithm and it requires only
50% more multiplications than the NLMS algorithm.

Fig. 6.7 shows the tracking performance of the ERLS-DCD algorithm in a time-
varying environment. The n-th element hn(i) of the impulse response h(i) varies in time
according to

hn(i) = hn(0) cos(2πFi + φn) (6.30)

where φn are independent random numbers uniformly distributed on [−π, π), hn(0) are
independent zero-mean Gaussian random numbers of unit variance, and F is the variation
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Table 6.11: Complexity of adaptive algorithms (N = 512)
Algorithm × + ÷
ERLS-DCD(Nu=1) 1536 4096 -
ERLS-DCD(Nu=2) 1536 5120 -
ERLS-DCD(Nu=4) 1536 7168 -
ERLS-DCD(Nu=8) 1536 11264 -
RLS 264705 263680 1
NLMS 1027 1027 1
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Figure 6.7: The tracking performance of the ERLS-DCD algorithm in a time-varying
environment: F = 10−4, ν = 0.9, σ = 0.001, N = 64, λ = 0.975, η = 10−3, Nmc = 1.
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Figure 6.8: The MSE performance of a fixed-point implementation of the ERLS-DCD
algorithm against the floating point ERLS-DCD and classical RLS algorithms: N = 64,
σ = 10−5, λ = 1− 1/N ≈ 0.984, η = 2−10 ≈ 10−3, Nu = 2, ν = 0, Nmc = 1.

rate. It is seen that as Nu increases, the MSE performance of the ERLS-DCD algorithm
is approaching that of the RLS algorithm.

Fig. 6.8 shows the performance of a fixed-point implementation of the ERLS-DCD
algorithm against the ERLS-DCD and classical RLS algorithms implemented in floating-
point. For representation of all variables in the algorithm, including the input data d(i) and
x(i), elements of the matrix R and vector r, etc., Nb bits are used (Nb = 16 or Nb = 24).
It can be seen that the accuracy of both the fixed-point ERLS-DCD and floating-point
ERLS-DCD algorithms depends on the parameter Mb that defines the number of bits for
representation of the solution vector ĥ. As Mb increases, the steady-state MSE approaches
that of the RLS algorithm. For the fixed-point ERLS-DCD algorithm, for a fixed Mb, the
steady-state MSE depends on Nb. In this scenario, for Mb = 16, the parameter Nb = 16

limits the algorithm performance, while Nb = 24 provides enough accuracy to achieve
the floating-point performance.
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6.7 Numerical Results for Dynamically Regularized
RLS-DCD Adaptive Algorithm

We present numerical results for a communication system with the MVDR beam-
former [70]. The configuration we examine is a N -element uniform linear array (ULA).
The complex-valued N × 1 vector x(i) provided by the array at time i is referred to as
a “snapshot”. A stream of snapshots is used for calculating the correlation matrix R(i)

according to (6.22). The complex-valued N × 1 steering vector β(i) is assumed to be
provided by an external DoA estimator.

Our test scenario involves a desired user at angle 10◦ and two interfering users at angles
−40◦ and 60◦ from the normal axis of a 16-element ULA. Binary Phase Shift Keying
(BPSK) modulation scheme is employed. The interfering users are at a power level of 0
dB relative to the desired user. The SNR is set at 20 dB. The forgetting factor λ is chosen
as (1 − 2−8) ≈ 0.9961. We choose a fixed δ(i) = 0.1 (100 times of the noise variance).
Fig. 6.9 shows the BER performance of the regularized RLS-DCD algorithm against
the regularized and unregularized classical RLS algorithm. The BER obtained in 4000
trials is averaged and plotted against the time index i. It is seen that the regularization
significantly improves the performance of the classical RLS algorithms. The convergence
speed of the regularized RLS-DCD algorithm depends on the algorithm accuracy which
is determined by the parameters Mb and Nu. For a fixed Mb = 15, as shown in Fig.
6.9, when Nu increases, the steady-state BER of the regularized RLS-DCD algorithm is
reduced. With Nu = 16, the regularized RLS-DCD algorithm obtains approximately the
same BER performance as that of the regularized RLS algorithm. The BER performance
results for the fixed-point FPGA implementation are also presented to show that there is
no significant difference with the floating-point results.
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Figure 6.9: BER performance of the dynamically regularized RLS-DCD algorithm
against the classical RLS algorithm (Mb = 15)

6.8 Conclusions

In this chapter, we have derived low-complexity RLS adaptive filtering algorithms. The
RLS problem is represented as a sequence of auxiliary normal equations which are then
approximately solved by using iterative line search methods. The leading DCD algorithm
is applied to solve the obtained normal equations. Both exponentially weighted RLS fil-
tering case with unstructured data vector and transversal RLS filtering case with time-shift
structured data vector were considered. Simulation results show that the performance of
the proposed adaptive algorithms can be made arbitrarily close to that of the classical
RLS algorithm. The convergence properties of the proposed algorithms were discussed.
A fixed-point FPGA implementation of the exponentially weighted DCD-based RLS al-
gorithms has also been described, which shows that the proposed algorithms are simple
for finite precision implementation, require small chip resources, and exhibit numerical
stability. However, the RLS-DCD algorithm does not allow additional regularization to
maintain robustness and its initial regularization decays rapidly.
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A low complexity dynamically regularized RLS adaptive filtering algorithm based on
the RLS-DCD algorithm is proposed and implemented into FPGA. The derivation of this
algorithm mostly follows the steps of derivation of the RLS-DCD algorithm. We have
shown that this algorithm is simple for finite precision implementation and requires small
chip resources. Numerical results show that the performance of the fixed-point FPGA
implementation of the proposed algorithm provides BER performance results close to
that of the floating-point regularized classical RLS algorithm in a communication system
with the MVDR beamformer, while it only requires O(N2) operations per sample.
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7.1 Summary of the Work

In this thesis, we have investigated various architectures and implementations of the DCD
algorithm (Chapter 3) and applied these implementations to several practical applications
in signal processing and communications areas, namely complex division (Chapter 4),
MVDR beamforming (Chapter 5) and RLS adaptive filtering (Chapters 6). Other appli-
cations, such as the MVDR DoA estimation and affine projection (AP) adaptive filtering,
will be mentioned in Section 7.2.

In Chapter 3, we started with the introduction of the DCD algorithm and its vari-
ants: the cyclic DCD algorithm and leading DCD algorithm for both real-valued sys-
tems and complex-valued systems. Several hardware architectures and implementations
of the DCD algorithm have been developed. The serial implementation of the real-valued
DCD algorithm is the smallest hardware implementation and it is notable for smaller than
any other methods requiring multiplication operations. However, the update rate is lim-
ited as the residual vector is updated sequentially. The proposed serial implementation
of the complex-valued DCD algorithm introduces 2-element parallelism to update the
real and imaginary components of the residual vector simultaneously. Thus, the update
rate of the residual vector is twice higher than in the serial implementation of the real-
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valued DCD algorithm. The area usage of these implementations are still very low and
we have also implemented the real-valued DCD algorithm which extends the concept of
the complex-valued DCD algorithm in order to process four consecutive data elements si-
multaneously. These 4-element group implementations bear understandable resemblance
to the complex-valued serial architecture implementations. The update rate of the resid-
ual vector is enhanced by a factor of four compared with the serial implementation of the
real-valued DCD algorithm. Two architectures of the parallel implementations, register-
based and RAM-based, were investigated; the RAM-based implementation is much more
attractive because of smaller area usage. The parallel implementation updates all ele-
ments of the residual vector in a single clock cycle simultaneously with the comparison
operation. Comparing with the serial implementation and group-4 implementation, the
update rate of parallel implementation is significantly increased. These architectures and
implementations of the DCD algorithm provide several choices of throughput. Thus, one
can choose suitable architectures and implementations of the DCD processor according
to requirements of practical applications.

We have analyzed the numerical properties of the cyclic DCD algorithm and the lead-
ing DCD algorithm, including both floating-point and fixed-point implementations. The
fixed-point implementations can obtain approximately the same accuracy as the floating-
point implementations. For solving the system of equations that require small number
of updates, sparse systems or systems with a small condition number, the leading DCD
algorithm is much more suitable than the cyclic DCD algorithm due to its fast conver-
gence speed. For systems requiring a large number of updates, the cyclic DCD algorithm
is more suitable as it converges faster and holds a lower error level than the leading DCD
algorithm. However, at the initial iterations, the leading DCD algorithm has a faster con-
vergence speed.

We have also compared the convergence speed of the DCD algorithm with other well-
known iterative techniques, such as the CG, Gauss-Seidel and CD algorithms. The DCD
algorithm has the same drawback as other iterative method; it requires infinite number of
iterations to converge to the optimal solution and it is very complicated to predict the re-
quired number of iterations. However, the DCD algorithm performs a similar convergence
speed with the lowest complexity per iteration.

In Chapter 4, a low complexity complex divider was developed based on the DCD
iterations. The division of two complex numbers is used diversely in signal processing
areas. However, it has traditionally been a computationally-intensive process and largely
implemented in software. The conventional routine requires six multiplications, three
additions and two divisions; the computational load of this conventional method is high.
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Alternatively, the complex division problem can be viewed as the solution of a 2× 2 real-
valued system of linear equations. We used the DCD algorithm to solve this 2×2 system
of equations and implemented it on the FPGA chip. The implementation is simple and
does not use any multiplication or division operations. Comparing with a conventional
complex divider which provides the same accuracy as our DCD-based complex divider,
we have found that our DCD-based multiplication-free complex divider has a 4.4 times
smaller chip area usage while the throughput is approximately the same.

In Chapter 5, we have presented an efficient FPGA implementation of the MVDR
beamformer based on DCD iterations. The MVDR beamforming achieves high levels of
interference cancellation, but it is considered too computationally complex for practical
implementation as it requires matrix inversion. The FPGA implementation of MVDR-
DCD is very efficient in terms of both the number of FPGA slices and speed. Antenna
beampatterns obtained from weights calculated in a fixed-point FPGA platform have been
compared with those of a floating-point implementation. The comparison has shown
a good match for linear arrays of size 9 to 64 elements. Comparing with a 9-element
implementation based on the Altera CORDIC-based QRD-RLS algorithm, our 9-element
MVDR beamformer obtains about 6 times higher throughput with approximately the same
chip area. Comparing with a 9-element Xilinx’s CORDIC-based QRD implementation,
our implementation achieves about 1.4 times higher throughput and with approximately
2.3 times smaller chip area. Moreover, these two reference implementations require addi-
tional embedded processor and multipliers, respectively. The implementation of MVDR-
DCD technique can also be used to solve the MVDR DoA estimation problem.

In Chapter 6, a low-complexity RLS adaptive filter using DCD iterations has been in-
troduced and implemented on FPGA. The RLS-DCD algorithm expresses the RLS adap-
tive filtering problem in terms of auxiliary normal equations with respect to increments
of the filter weights. The equations are solved using the DCD iterations that require no
multiplication and no division and, therefore, they are well suited to hardware imple-
mentation. The RLS-DCD algorithm is implemented for two data structures: arbitrary
and time-shifted. The complexity of the RLS-DCD algorithm for input data with the
time-shifted structure is as low as 3N multiplications per sample. An 9-element antenna
beamformer based on the arbitrary data structure implementation can achieve a weight
update rate that is about 67 times higher than that of an Altera CORDIC-based QRD-
RLS FPGA implementation with approximately the same area usage, and about 17 times
higher than that of a Xilinx CORDIC-based QRD implementation with 3 times smaller
chip area. The implementation of the transversal RLS-DCD algorithm, which has the
time-shifted data structure can provide a weight update rate as high as 207 kHz and 76
kHz for 16-tap and 64-tap adaptive filters, respectively, while using as little as 1153 and
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1306 slices, respectively. Numerical results show that the performance of the fixed-point
FPGA implementation of the RLS-DCD algorithm is close to that of the floating-point
classical RLS algorithm.

The classical RLS algorithm usually uses an initial regularization to stabilize the solu-
tion to the RLS problem. Because the initial regularization decays exponentially in time,
we may have to add additional diagonal loading to maintain robustness. However, such
extra diagonal loading increases the complexity to O(N3) as it requires matrix inversion
at each time instant, which makes the RLS algorithm impractical. The RLS-DCD al-
gorithm described above does not allow the regularization to be used except the initial
regularization that is used in the classical RLS algorithm. A low complexity dynamically
regularized RLS adaptive filtering algorithm based on the RLS-DCD algorithm has been
proposed and its FPGA implementation has been presented. The dynamically regularized
RLS-DCD algorithm reduces the complexity of the regularized RLS problem to O(N2)

operations per sample. We have shown that this algorithm is simple for finite precision
implementation and requires small chip resources. For N = 16 and N = 64 complex-
valued system, our implementation achieves an update rate of 171 kHz and 31 kHz with
2680 and 2814 slices, respectively. Numerical results show that the performance of the
fixed-point FPGA implementation of the proposed algorithm provides BER results close
to that of the floating-point regularized classical RLS algorithm in a communication sys-
tem with the MVDR beamformer.

7.2 Future Work

Some suggestions for future work based on this thesis are given below.

1) In Chapter 3, we have shown the numerical properties of the DCD algorithm and
its variants. The cyclic DCD algorithm provides a faster convergence speed and a lower
steady-state misalignment than the leading DCD algorithm for non-sparse systems with
a large condition number. However, the cyclic DCD algorithm has a slower convergence
speed than the leading DCD algorithm at initial iterations. Therefore, we may consider to
solve the non-sparse systems with both cyclic DCD iterations and leading DCD iterations
to perform a fast convergence speed and obtain a low steady-state misalignment. We call
the obtained DCD algorithm as combined DCD algorithm.

Two combined DCD algorithms can be considered. One uses the leading and cyclic
DCD iterations sequentially; the leading DCD iterations are used at initial iterations and
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the cyclic DCD iterations are used at the other iterations.

The other method views the residual vector and the solution vector as containing sev-
eral element-groups. At each iteration, the combined DCD algorithm updates a leading
element within the current solution element-group, corresponding to the maximum ab-
solute value element in the current residual element-group. Then, it moves to the next
element-group; the element-groups are selected in a cyclic order.

Through these two combinations, the combined DCD algorithm may obtain faster con-
vergence speed and achieve similar misalignment compared to the cyclic DCD algorithm
when solving the non-sparse systems with large number of updates. Furthermore, the
hardware implementations of the combined DCD algorithm can be realized based on the
architectures and implementations of the cyclic DCD algorithm and the leading DCD
algorithm presented in Chapter 3.

2) In Chapter 4, we have discussed the MVDR DoA estimation using DCD algorithm
to solve the system of equations directly. The hardware implementation can be similar
to that of the MVDR-DCD beamformer. Alternatively, we could use the RLS-DCD al-
gorithm and the dynamically regularized RLS-DCD algorithm to solve the systems of
equations for the MVDR DoA estimation. The DCD-based MVDR DoA estimator could
be configured in three different modes using the hardware blocks we have presented in
Chapter 6. The fastest mode employs M RLS-DCD cores for M angles needed to listen to
and these RLS-DCD cores share one correlation matrix estimation module. At each time
instant, these cores solve the systems of equations for different angles simultaneously and
find out directions of source signals. This configuration obtains a high throughput at the
cost of large area usage. The slowest mode uses only one RLS-DCD core. At each time
instant, it scans from one side to the other, angle by angle sequentially. The area usage
of this configuration is about M times lower than that of the fastest mode. However, the
throughput is also about M times lower. The third mode uses a small number of RLS-
DCD cores than in the fastest mode. These cores could scan the angle range using the
efficient search method, which is similar to the search method used in [107]. Comparing
with other two modes, this configuration needs smaller number of cores than in the fastest
mode and achieves higher throughput than in the slowest mode.

3) As we have mentioned in Chapter 2, the NLMS algorithm is well known due to its
low computational complexity and robustness. However, one of the major limitations of
the NLMS algorithm is its low convergence speed for colored input signals [6]. The AP
adaptive filter can be treated as a generalization of the NLMS algorithm that reuses past
and current information [6] to balance the convergence speed and the computational com-
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plexity [33] of the NLMS algorithm. Therefore, the AP adaptive filter may be viewed as
an intermediate adaptive filter between the NLMS filter and the RLS filter. Consequently,
comparing with the NLMS filter, the AP filter provides a significant improvement in the
convergence speed. However, it is still complicated for implementation. The fast AP
(FAP) adaptive algorithm allows a significant simplification [108] of the AP algorithm.
However, it requires matrix inversion which is complicated and numerically unstable.
Many iterative techniques were proposed for matrix inversion in the FAP algorithm, such
as the CG iterations [109] and the Gauss-Seidel iterations [31] [110]. On the other hand,
the FAP algorithm based on recursive matrix inversion is computationally efficient only if
the step size, which controls the convergence speed and the steady-state output (residual)
error, is close to one [108]. However, the step size should be reduced to reduce the resid-
ual error after the algorithm has converged [108]. Moreover, when the step size is close
to one, the FAP algorithm is sensitive to the input noise [108].

In [108], an efficient numerical implementation of the FAP algorithm with an arbi-
trary step size based on DCD iterations is proposed. The proposed DCD-FAP algorithm
is simple, computationally stable and well-suited to real-time hardware implementation.
It also demonstrates performance close to that of the ideal FAP algorithm which com-
putes the matrix inversion, and the complexity smaller than that of the Gauss-Seidel-FAP
algorithms [108]. Recently, a low complexity implementation of the AP algorithm was
proposed in [111] by incorporating the DCD algorithm into the filter update of the AP
algorithm to solve the systems of equations. Comparing with the DCD-FAP algorithm
which employs the DCD algorithm to solve the system of equations directly, the com-
plexity of this DCD-AP algorithm is reduced significantly. It allows the performance
of the AP algorithm to be approached with a complexity that can be even smaller than
the NLMS complexity. Furthermore, the proposed DCD-AP algorithm is well-suited to
hardware implementation as it is division-free and the filter update is multiplication-free.
The performance of the DCD-AP algorithm can be made arbitrarily close to that of the
ideal AP algorithm. However, both the DCD-FAP algorithm and the DCD-AP algorithm
have not been implemented in hardware. By using the architectures and implementations
of the DCD algorithm and the RLS-DCD algorithm presented in this thesis, one could
implement the DCD-FAP algorithm and the DCD-AP algorithm in hardware.
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