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Abstract

For many years, film and television have dominated the entertainment industry. Recently,
with the introduction of a range of digital formats and mobile devices, multimedia’s
ubiquity as the dominant form of entertainment has increased dramatically. This, in turn,
has increased demand on the entertainment industry, with production companies looking to
increase their revenue by providing entertainment media to a growing international market.
This brings with it challenges in the form of multimedia localisation - the process of
preparing content for international distribution. The industry is now looking to modernise
production processes - moving what were once wholly manual practices to semi-automated
workflows.

A key aspect of the localisation process is the alignment of content, such as subtitles
or audio, when adapting content from one region to another. One method of automating
this is through using audio content as a guide, providing a solution via audio-to-text
alignment. While many approaches for audio-to-text alignment currently exist, these all
require language models - meaning that dozens of languages models would be required for
these approaches to be reliably implemented in large production companies. To address
this, this thesis explores the development of audio-to-text alignment procedures which
do not rely on language models, instead providing a language independent method for
aligning multimedia content. To achieve this, the project explores both audio and visual
speech processing, with a focus on voice activity detection, as a means for segmenting and
aligning audio and text data.

The thesis first presents a novel method for detecting speech activity in entertainment
media. This method is compared with current state of the art, and demonstrates significant
improvement over baseline methods. Secondly, the thesis explores a novel set of features
for detecting voice activity in visual speech data. Here, we show that the combination
of landmark and appearance-based features outperforms recent methods for visual voice
activity detection, and specifically that the incorporation of landmark features is particularly
crucial when presented with challenging natural speech data. Lastly, a speech activity-based
alignment framework is presented which demonstrates encouraging results. Here, we show
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that Dynamic Time Warping (DTW) can be used for segment matching and alignment
of audio and subtitle data, and we also present a novel method for aligning scene-level
content which outperforms DTW for sequence alignment of finer-level data. To conclude,
we demonstrate that combining global and local alignment approaches achieves strong
alignment estimates, but that the resulting output is not sufficient for wholly automated
subtitle alignment. We therefore propose that this be used as a platform for the development
of lexical-discovery based alignment techniques, as the general alignment provided by our
system would improve symbolic sequence discovery for sparse dictionary-based systems.
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Chapter 1

Introduction

For many years, film and television have been the primary forms of entertainment multime-
dia. These industries have continued to grow with the advent of the internet and the ever
increasing number of digital multimedia formats. The ubiquity of digital devices across
the globe means that the international market is now larger than ever before - presenting a
significant opportunity to multimedia production companies. As such, interest in tapping
into these markets has grown, with more and more companies competing to provide content
localisation services to adapt content for international distribution. With this competition
comes the desire to complete projects more efficiently, as time requirements form a key
factor in the selection of localisation services.

One of the bottlenecks in the localisation process is the reliance on manual processes for
translation and adaptation. As such, this work looks to develop methods to automate parts
of the localisation workflow, in order to reduce cost and time requirements for multimedia
localisation. To do so, the project investigates both audio and visual voice activity detection,
before exploring language-independent methods for multimedia content alignment. First,
we introduce some concepts in film post production workflows and discuss how they may
benefit from automation.

1.1 Overview of Film Post Production Workflows

This section gives an overview of the film post-production workflows relevant to this work.
These are Automatic Dialogue Replacement (ADR) and subtitle localisation. Both are part
of the localisation process. Multimedia localisation is defined as the process of preparing
content for international distribution. This includes the process of subtitling and dialogue
adaptation as well as the adaptation of promotional materials such as posters, trailers, etc.
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Format Frame Rate
PAL 25 fps
NTSC 24 fps
SECAM 25 fps

Table 1.1: Common visual multimedia formats and corresponding framerates.

1.1.1 Automatic Dialogue Replacement

ADR is a crucial component for both multimedia localisation and film post-production in
general. In the case of general film post-production, the original dialogue is first recorded
on set (on a soundstage). This initial recording is often noisy and of insufficient quality for
the final product [67]. As such, a separate stage of recording - ADR - takes place, in which
the actors rerecord their lines in a sound treated studio to obtain high quality recordings.
Despite its name, ADR has not traditionally incorporated automatic processes. As such,
it typically relies heavily on manual editing - with an audio engineer being responsible
for overseeing the recording process, and for aligning the new dialogue recordings to the
source video.

Over the past decade manufacturers of post-production software have begun to introduce
automated tools for the ADR process. These involve automatic speech alignment tools, such
as those developed by Adobe [137], which automatically align new dialogue recordings to
the reference audio from the original recording. While this has proven to be successful,
it typically only works for brief, clean pieces of dialogue. This is as noise can have a
detrimental effect on the alignment, and in certain cases the original signal is too noisy
to achieve any alignment whatsoever [67]. As such, a noise-robust solution would be
attractive. One such approach would be audio-to-video alignment, which would use the
video content as a reference for the subsequent audio alignment. In this way, the issue of
noise in the source audio is overcome by using visual information.

1.1.2 Format Conversion

As well as modifying the content itself for subtitling or adaptation, localisation also involves
converting multimedia formats to comply with region-specific standards. Three common
formats used for entertainment content are PAL, NTSC and SECAM. Each format has
different specifications for frame rate and picture resolution. For the purpose of multimedia
alignment, framerate is the most critical of these features. Table 1.1 gives an overview of
common formats and their respective framerates.

While NTSC is technically a 30 fps format, it has an effective frame rate of 24 fps due
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to a processing technique termed 3:2 pulldown [54]. This is used to correct the 30 fps
framerate, which is used to comply with 60 Hz vertical scanning frequency, by manipulating
the way frames are distributed into video fields. 3:2 pulldown works by transmitting the
first frame for 3 video fields, and the subsequent frame for 2 video fields. As such, 2 frames
are transmitted for every five video fields, resulting in an average of 2.5 video fields per
frames. Given a 60 Hz refresh rate ,this results in a framerate of 60÷ 2.5 = 24 fps.

While Table 1.1 shows the most popular current framerates, an increase in types of
multimedia content and a growing variety of digital platforms means the number of formats
is increasing. Currently, there are over 10 different formats being used for visual media
content [37]. This means that localisation could involve re-scaling from any one to any
other of these formats. As such, automatic re-scaling of content would be advantageous,
as it would not require prior information, and could be easily applied to uncommon or
previously unencountered formats.

1.1.3 Subtitle Localisation and Dialogue Adaptation

Subtitling is the process of adding closed-captions to a piece of multimedia in preparation
for either domestic or international distribution. In the case of domestic distribution, the
subtitles contain an approximation of the original dialogue, modified for readability. This is
done as often the dialogue sections will be fairly extensive, thus a shortened approximation
of the dialogue is provided to ensure that the resulting subtitles can be read easily. In the
case of international distribution, a similar process is followed (ensuring that the subtitles
are easy to read), but the dialogue also undergoes a separate process - adaptation.

Dialogue adaptation is the process of adapting the source dialogue to a destination
language, and is used in both subtitle and audio localisation (e.g. dubbing). Part of
this process is simply the translation of content from one language to another, however
straightforward translation is not sufficient for high quality content. This is partially due to
phonological composition - for example, a phrase with identical meaning in English and
German would have a very different phonetic composition, and thus the German dialogue
would not fit with the English mouth movements on screen. Adaptation is also responsible
for preserving cultural values in the content, such as by adapting the content of jokes or
other material to identify more closely with the target audience.

The process of subtitle localisation often requires significant time investment by a
language expert, who is not only capable of translating, but of skilfully adapting the content
to suit its target audience. One of the time consuming tasks during adaptation is the
process of watching a film and marking up areas containing speech. This process could
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thus be improved through the use of automatic speech detection, which could save time
by informing the translator as to where they should focus their attention. This would
reduce time requirements by automatically doing a ’first pass’ over the material, which
in turn would reduce the overall cost of localisation. This could be further enhanced by
automatically identifying associations between segments of subtitles and segments of film.
This would allow the translator to easily move between semantically-related excerpts. It
would also mean that misaligned subtitles could be used, as associations could be found
automatically, thus this would not rely on the original resources being aligned. This would
be particularly useful given the increasing variety of formats [37].

Subtitle localisation also involves modifying subtitle timestamps to correspond to the
destination format, which often has a different timebase. As such, an automated method
for rescaling timestamps would be beneficial. This would involve audio-to-text alignment,
for which there are already a number of methods, such as those developed by Katsmanis et

al. [65] and Goldman et al. [41]. The difference here is twofold:

1. As localisation involves working with many different languages, a language inde-
pendent approach would be advantageous, as it would not require a multitude of
language models.

2. The existing methods have been developed for use on clean audio, and do not
tackle the challenges presented by entertainment media, thus an approach robust to
entertainment media content would be beneficial.

1.2 Motivation and Contributions

The aim of this work is to develop a system for subtitle and audio track alignment which
does not require a language model. This is attractive for post-production processes as,
currently, a majority of alignment tasks are undertaken manually. Furthermore, existing
approaches for audio-to-text alignment, such as those developed by Katsmanis et al. [65]
and Goldman et al. [41], require language models. This greatly limits their potential
applications, however it has been shown that some language models can be successfully
applied for cross-lingual alignment tasks [77]. These approaches are still fairly limited,
as they rely on languages sharing a significant degree of phonological content. As such,
current methods require annotated training data provided by experts, which can be costly
and time consuming to obtain (particularly when considering that these are required
for many languages). Furthermore, speech recognition has demonstrated highly variable
performance on noisy audio, such as the audio present within film and television. Given that
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multimedia production companies deal with a broad range of both content and languages
(particularly where localisation is concerned), it would be beneficial to have a one-fits-all
method for content alignment. This alignment would ideally be both language independent
and robust to the noise conditions present in entertainment media. Such a solution would be
desirable as either a fully automated or semi-automated solution for entertainment media
post-production workflows.

This work looks to realise such a solution through the combination of audio and visual
voice activity detection, and speech-to-text alignment methods. The fundamental concept
here is that, through leveraging broad features from the content - such as patterns of speech
activity - a language independent method for multimedia alignment can be developed. This
also addresses the problem faced by speech recognition given noisy media, as this work
focuses on detecting speech activity, rather than on extracting finer semantic content. This
reduces the complexity of the classification problem - a logical step given the non-trivial
task of speech/non-speech discrimination in complex mixed audio signals.

Figure 1.1: Diagram of speech activity-based text-to-audio alignment.
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The alignment process presented in Figure 1.1 focuses on aligning speech activity
patterns with subtitle data. This is achieved through a novel alignment method comprising
a combination of general signal alignment and incremental segment-wise alignment. This
approach is made possible by a number of segmentation and alignment strategies developed
through this work. These are used to automatically identify and associate segmentation
points (anchors) within the data, which can then be used to estimate a scaling coefficient.
This is then applied to re-scale the time base of the source material to match that of the
destination material.

The thesis also introduces a novel method for detecting visual speech activity in chal-
lenging natural speaker data. This is achieved through applying state-of-the-art landmark
localisation methods to extract facial landmarks. These are then combined with appearance-
based features, and used to train a binary speech/non-speech classifier. The visual speech
activity information is later explored for use within the alignment process as a means of
confidence scoring, and is also investigated for audio-to-visual speech alignment.

To summarise, three core contributions are presented in this thesis:

• Audio Voice Activity Detection in Entertainment Audio This work presents a
novel method for audio voice activity detection within film and television media. The
method is based on the creation of Mel Frequency Cepstral Coeffient (MFCC) Cross-
Covariance features (MFCC-CC), and demonstrates competitive results, outperform-
ing state-of-the-art approaches for audio voice activity detection in entertainment
media.

• Visual Voice Activity Detection for Natural Speech Conditions An approach for
detecting voice activity using visual speech features is presented. The approach
combines both landmark and appearance-based features, and demonstrates strong
performance on natural speech data, outperforming contemporary methods. Further-
more, this work provides a detailed evaluation of how appearance and landmark-
based features perform individually, and shows that significant performance gain
can be achieved through utilising landmarks obtained via state-of-the-art landmark
localisation methods. This is particularly the case when presented with challenging
natural speech data, such as data containing dynamic speaker movements, variable
illumination and partial occlusions.

• Language Independent Subtitle Alignment A method for utilising audio speech
activity and subtitle data for content alignment is presented. This is achieved through
leveraging speech activity patterns in the audio, video and textual content. These
patterns are used to segment the content, after which DTW and other dynamic
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programming-based algorithms are used to estimate the scaling coefficient required
to align the data.

This work also produced two datasets to facilitate the development of voice activity
detection methods. These are:

• Feature-Film Annotations Dataset This dataset comprises annotations of six feature-
films - The Bourne Identity, Kill Bill Volume 1, I Am Legend, Saving Private Ryan,
Disney’s Hercules and The Fellowship of the Ring. Each film has been carefully
segmented into speech and non speech content. This process involved two passes by
two separate annotators to ensure optimal labelling.

• Natural Speech Dataset This dataset comprises 7 videos of 7 different speakers
in natural speech conditions, totalling 105 minutes of speaker data. The dataset
contains numerous examples of challenging visual speech conditions, including
partial occlusions, variable illumination and dynamic speaker movements. This has
been carefully annotated into speech and non-speech components.

1.3 Thesis Overview

This thesis explores audio and visual methods for voice activity detection, and applies
them within an alignment framework specifically designed not to rely on a language model.
The thesis begins with an overview of crucial related technologies in Chapter 2, where
the underlying processes for audio and visual feature extraction are introduced. A range
of recent methods for multimedia synchronisation are also presented, in which several
sequence alignment strategies are presented.

Chapter 3 discusses the development of a novel set of features for audio voice activity
detection in entertainment media. These features are tested using two machine learning
algorithms: support vector machines and random forests. We show that competitive
performance can be achieved using these features, outperforming state-of-the-art voice
activity detection algorithms on a dataset of feature film material.

In Chapter 4, we explore the use of a combined feature set for visual voice activity
detection. These features combined state-of-the-art landmark localisation methods with
popular appearance-based features to create a featureset robust to challenging speaker
data. This chapter demonstrates that, while appearance based features are useful, landmark
features are particularly crucial for achieving good performance on challenging data.
Furthermore, we demonstrate that combining both landmark and appearance-based features
achieves the best performance overall.
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A strategy for language independent alignment is presented in Chapter 5, where speech
activity patterns in audio and text information are used for associating and aligning audio
and text data. Visual voice activity is also explored for audio-to-visual alignment, and as
a means of improving audio-to-text alignment. We demonstrate that, while it is possible
to improve on the original misaligned data, inaccuracies in the data stand in the way of
wholly accurate alignment.

The thesis concludes with an overview of the work and a discussion of potential
directions for future development.
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Chapter 2

Background

This chapter reviews literature concerning three core project themes: audio speech process-
ing, visual speech processing, and feature matching and alignment. For each theme, an
introduction to key developments is presented, followed by discussion on how the tech-
nologies explored relate to the key goals of this work, and how the techniques discussed
influenced project development.

2.1 Audio Speech Processing

Here, a number of approaches for processing speech audio are explored, focusing largely
on developments in audio speech feature extraction and Voice Activity Detection (VAD).

2.1.1 Audio Speech Feature Extraction

Speech feature recognition and classification has been of scientific interest since the 1970s
[7][58]. A crucial component in all speech classification systems developed since is the
extraction of audio features. The choice of features can have a significant impact on
the overall system, with certain features enhancing the discrimination capability of the
classification method. The features discussed here were selected due to their prevalence in
speech processing literature.

Linear Predictive Coding

Linear predictive coding (LPC) is based on work in communications signals carried out
in the mid 20th century [114][135][34] that was further developed and applied within
speech compression in the 1960-70s [5][84][85]. The primary concept behind LPC is that
a sample of a discrete-time signal can be predicted as a linear combination of past signal
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values [30]. The model for LPC is based on an approximation of the vocal tract whereby
speech production is described as the product of a tube of varying diameter. Variation
in the diameter of the tube results in differing resonant frequencies which are analogous
to voiced speech formants. The model also incorporates white noise components which
represent sibilants and plosives.

Through estimating the formants and applying inverse filtering [30], the speech signal
can be analysed to produce coefficients which describe the amplitude, frequency compo-
nents, formants and the residue signal (the remnant of the signal following inverse filtering).
This data can then be synthesized using LPC by reversing the process; applying the residue
signal to a filter determined by the formant information, resulting in an approximation of
the original signal.

While LPC was initially developed for signal compression, it has since been used for a
variety of speech processing tasks including ASR [57], speech activity detection [93] and
other voicing recognition tasks [19].

RASTA-PLP

RASTA-PLP, or Relative Spectral Transform - Perceptual Linear Prediction, is a method of
speech feature extraction introduced in work by Hermansky et al. [53]. The underlying
principle of this method is to minimize the difference between speakers while preserving
important information, such as phonetic content, which can be used for speech processing
tasks. In this way, the method is able to improve speaker independent application of speech
processing techniques such as speech recognition [70] and speech detection [36].

To obtain RASTA-PLP features, the signal is first analysed to obtain the critical-band
power spectrum, before the spectral amplitude is transformed via a compressing static
nonlinear transformation. The time trajectory of each transformed spectral component is
then filtered and transformed through an expanding static nonlinear transformation. The
equal loudness curve is then multiplied and raised to simulate the response of the human
auditory system. An all-pole model of the resulting spectrum is then computed following
the conventional PLP technique [52].

In Hermansky et al.’s RASTA-PLP paper, the RASTA-PLP approach is evaluated
against the original PLP approach described in their earlier work [52] and exhibits a
considerable advantage for speaker independent continuous speech tasks. Since their
development, RASTA-PLP features have gone on to be used in a number of speech
processing tasks. From the perspective of this work, the most crucial application of
RASTA-PLP is in voice activity detection, for which they have achieved encouraging
results when combined with neural network-based classifiers [36].
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Short Time Fourier Transforms

Short time Fourier transforms (STFTs) are crucial for many audio processing tasks. These
are obtained by applying a sliding window to an audio source and obtaining the Fourier
transform of the segment within the window. This is expressed as:

Xm(ω) =
∞∑

n=−∞

x(n)w(n−mR)ejωn (2.1)

where Xm(ω) is the Discrete Time Fourier Transform (DTFT) for a given input signal
x(n) with window function w(n) and hop size R (in samples) between DTFTs. The
principal here is that, while audio spectra vary considerably over time, variance is minimal
within sufficiently small segments. As such, obtaining the STFT at regular intervals over
time provides a good evaluation of the audio content at discrete intervals, while also
allowing changes over time to be analysed by observing all of the segments in the sequence.
STFTs are used as the basis for many audio processing tasks as these provide the basis for
the extraction of other features, such as Mel Frequency Cepstral Coefficients (MFCCs).
These are therefore used in a broad variety of speech processing tasks, including VAD
[119] and audio source separation [8].

Mel Frequency Cepstral Coefficients

MFCCs were initially developed for use within ASR systems [87], and have since been
used widely within speech processing applications such as ASR, VAD, and other audio
classification tasks. MFCCs are obtained by first taking the Fourier transform of an audio
frame and mapping the resulting power spectrum onto the Mel scale - a non-linear scale
based on the human auditory response curve [87][78].

Once the power spectrum has been mapped to the Mel scale, the log power at each of
the Mel frequency filterbanks are obtained. A Discrete Cosine Transform (DCT) is then
applied to the Mel frequency filterbanks, and the MFCCs are the coefficients resulting from
the DCT. Typically, the first 13 DCT coefficients are used for speech processing tasks.

Since their development, MFCCs have become increasingly popular for speech pro-
cessing applications, often chosen over the LPC features used in earlier speech processing
work. This has resulted in a broad range of audio perception applications using MFCCs,
including music information retrieval [126], music modeling [35], ASR [87] and VAD
[69].
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2.1.2 Audio Voice Activity Detection

This section explores a number of methods for voice activity detection, covering both early
approaches such as statistical VAD methods, as well as recent approaches which use more
sophisticated machine learning-based methods. A range of different VAD approaches for
entertainment multimedia are explored, including approaches which have been applied to
feature film content.

Early Approaches for Voice Activity Detection

Earlier approaches for voice activity detection were developed for communications tech-
nologies such as VoIP [100]. In many of these cases, detecting speech activity was a
relatively straightforward task, involving the separation of speech from background noise.
As such, these earlier systems primarily involved statistical operations for evaluating
changes in the signal. One such method, described in Sakhnov et al.’s work [109], involves
evaluating the current frame energy with respect to the energy of silence frames, as given
by:

if (Ei > kEsilence) where k > 1 : Frame is ACTIV E

else Frame is INACTIV E (2.2)

whereEsilence is the mean background noise, Ei is the energy of the frame at point i and
k is user definable, allowing a safe band for the adaptation of the threshold to account for
varying signal to noise ratio (SNR) of the signal. Due to the static threshold, this approach
proved to be insensitive to varying speaker dynamics.

To improve upon this, a dynamic approach, adaptive linear-energy based detection
(ALED), was proposed [110]. This involved varying the threshold according to statistical
information of speech dynamics; using the fall time of syllables to dynamically alter the
threshold value. This improved upon the previous approach through the reduction of
phoneme clipping, proving to be more sensitive to varying speaker dynamics.

The use of spectral content to improve voice activity detection has also been proposed
[100]. The method discussed by Prasad et al. is spectral flatness detection (SFD) the
process of classifying speech or noise segments according to the variation of their spectral
content. The spectrum is first computed using the DCT, after which the spectral variance
(the energy variance within the frame across frequency) of each DCT frame is calculated.
The frames are then classified via:
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if (σi > σth) : Frame is ACTIV E

else Frame is INACTIV E (2.3)

Where σth is the variance threshold, determined by the spectral variance of the noise
content, and σi is the spectral variance of the current frame. To account for varying speaker
dynamics, this is also dynamically varied according to speech dynamics data, by:

σth new = (1− p)σth old + pσi (2.4)

where σth new is the new threshold, σth old is the previous threshold and p is used to scale
the threshold according to speech dynamics. This approach proved to be more successful
in low signal to noise ratio conditions due to its use of spectral information when compared
to the energy-based algorithms described above [100].

Prasad et al. [100] go on to discuss comprehensive VAD (CVAD) a VAD algorithm
that uses decision rules to select from the algorithms discussed above. This proved highly
successful in subjective quality, though was also the most computationally expensive.

Of the VAD algorithms discussed here, ALED, SFD and CVAD demonstrated the best
performance, with SFD and CVAD demonstrating the highest subjective quality (> 75%).
Of the least computationally expensive algorithms, ALED demonstrated more consistent
accuracy in objective tasks with fewer misdetections overall and misdetections below 10%
in discontinuous monologue and rapidly spoken monologue tasks [100]. While these results
are reasonable, all of these algorithms have designed for fairly straightforward speech
detection applications, such as VoIP. Detecting speech in complex mixed audio, such as
in entertainment media, is not as simple a task, and requires more sophisticated VAD
approaches. As such, the following section explores a number of more recent developments
in VAD specifically designed for speech detection in complex mixed audio signals.

Recent Approaches for Voice Activity Detection

This section surveys a number of leading approaches for VAD in challenging mixed audio
data, including methods used applied for VAD in entertainment media such as radio
broadcasts, television and film.

The approach proposed by Sonnleitner et al. [119], for classifying speech/non-speech
in radio broadcasts, exploits spectro-temporal variations of speech signals via Short Time
Fourier Transforms (STFTs) to discriminate between speech and non-speech signals. The
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approach is based on the principle that music contains clear sustained harmonic patterns
whereas speech contains more variable patterns with less consistent harmonic trajectories
(as demonstrated in Figure 2.1). The approach analyses STFTs across adjacent frames and
computes the inter-frame lag (frequency shift) using cross-correlation. This produces a
simple feature vector which represents the inter-frame frequency shifts for a given audio
signal. The feature is used to train a random forest classifier to classify content as speech
or non-speech. This approach was tested on a dataset comprising music and speech content
from radio broadcasts, and demonstrated very strong performance, achieving accuracies
of > 97%. This is encouraging as the approach was developed specifically for speech
detection in complex multimedia content, making it an attractive approach to explore for
speech classification in film audio. One criticism of this approach is its use of a median
filter of approximately 10 seconds duration. Given that this work looks to develop an
accurate method of aligning speech content, this filter would not be feasible as it would
place too great a restriction on processing resolution. As such, this work will investigate
the use of the approach discussed in Sonnleitner’s paper [119] for speech detection in film
audio, but will implement a version without the median filter in order to facilitate greater
speech detection resolution.

Figure 2.1: Spectrograms of speech (a) and music (b) content illustrating the difference in
harmonic patterns.

Another recent approach presented in the paper by Eyben et al. [36] uses a voice
activity detector based on Long Short-Term Memory Recurrent Neural Networks (LSTM-
RNN). The approach was designed around LSTM-RNN’s ability to model dependencies
over time by incorporating information over a number of time steps. This is achieved via
the LSTM-RNN’s memory cells - memory which can be written to, read from or deleted
according to feature context and previous outputs. This is done via multiplicative input,
output and forget units whose weights are computed during training. In this way, the cells
learn when to access the relevant parts of past context. The features used in this approach
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are RASTA-PLP features, introduced in Hermansky et al.’s work [53]. These features
are based on the short-term spectrum of speech, and use the Relative Spectral Transform
(RASTA) method to make the PLP features more robust to linear spectral distortions. The
approach uses cepstral coefficients 1-18, as well as their delta coefficients, resulting in a
36 dimensional feature vector. The VAD demonstrates good performance on a synthetic
test validation set, with an average equal error rate (EER) of 10.4%, outperforming the
state-of-the-art algorithm presented by Sohn et al. [118]. However, it is less effective on
film audio, with an average EER of 33.2%.

A recent film-centered approach proposed by Tsiartas et al. [125] utilizes bilingual
audio streams for speech detection. This identifies speech segments through correlating
spectral coefficients between two different language tracks using a Long Term Spectral
Distance (LTSD) feature. This feature is obtained by comparing the MFCC features
across two audio streams of different languages. The LTSD values are low in non-speech
regions and high in speech regions, as these are the regions in which the audio tracks differ
substantially. The approach proved to be fairly successful, demonstrating an accuracy of
between 84% and 87% in classifying clean and noisy speech in film audio. While this
approach demonstrates good performance on film data, it requires bilingual audio tracks to
perform classification. As such, this is not suitable for the target application as it would not
work with a single audio track.

Another recent approach uses a dataset comprised entirely of television material (thus
similar to film) and looks to differentiate between speech and music data [103]. This
method first computes a Discrete Wavelet Transform (DWT) from each frame of the
audio data. The paper compares the DWT method using a range of three wavelets - Haar,
Symlets2 and Daubechies8 [103]. The resulting DWT features are then used to train
a supervised classifier - the paper compared both SVM and GMM (Gaussian Mixture
Model)-based classification algorithms. The DWT method proved to be fairly successful,
achieving an accuracy of 95.4% when classifying speech and music content. This was
achieved using the GMM-based classifier with the Daubechies8 wavelet. These results
were obtained on similar data to that used by Sonnleitner et al. [119], in that the dataset
comprised only music and speech. This makes the DWT approach attractive for the target
application, however perhaps not as attractive as approaches which have achieved better
results [119], or those which have demonstrated good performance on the target media
[36].

While not applied to entertainment media, the method proposed by Kinnunen et al.

[69] demonstrates that MFCC features can be used for effective discrimination of speech
and non-speech content. Here, MFCC features are extracted from audio information, and
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the MFCC, MFCC∆ and MFCC∆∆ features are used to train an SVM. The approach was
tested using a subsection of the NIST2005 dataset [44] and two custom datasets, totalling
171 minutes of training data and 325 minutes of test data. Both linear and Radial Basis
Function (RBF) kernels are explored for SVM classification, with the RBF kernel achieving
the best results with an EER of 8%.

Another method, proposed by Chin et al. [20], combines MFCC features with a RBF
Neural Network (RBF-NN) and continuous wavelet transform (CWT) for speech/non-
speech discrimination. This was tested on the CUAVE database [98] with simulated
noise content to evaluate its performance over a range of signal to noise ratios (SNR).
The approach achieves strong results, outperforming a number of competing methods for
VAD tasks [20]. One drawback of this method’s evaluation is its exclusive use of the
CUAVE database - which consists of 36 individuals reciting digits 0 to 9. Thus, a more
comprehensive evaluation using a larger more varied dataset would have been helpful to
support the method’s efficacy.

Several other approaches in the literature have demonstrated an accuracy of > 90%,
however, these either have limited data, such as in the work by Pinquier et al. [99], which
has only 9 main speakers in its dataset, or make use of non-film audio, such as Lu et al.’s
work [80], whose data includes radio and news broadcasts (which typically do not have the
same sonic variance as film data).

Summary

This section has explored a number of recent approaches for speech detection in complex
mixed audio signals, covering a range of audio features and classification strategies. A key
recurring concept present in all of the approaches investigated is that temporal information
is crucial for audio discrimination tasks. This is unsurprising, as the temporal components
of speech have already proven to be central to many existing ASR techniques (partly as
this is crucial to the development of language models). Another key concept appearing in
several approaches is the use of perceptually motivated features [36][125]. This is also
logical, as human speech and hearing each played a crucial role in the other’s evolutionary
development. Thus, features designed according to our auditory perception are likely to be
advantageous for speech processing.

Only two of the approaches found in the literature were applied to film audio - Eyben
et al. [36] and Tsiartas et al.’s work [125] - with the rest being applied to other types of
entertainment media content such as radio broadcasts [119] and television programs [103].
Of the two film-centric approaches, only Eyben et al’s could be applied to a single audio
track, as the other required bilingual audio data. Given this, Eyben et al.’s approach would
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serve a good baseline for VAD development.
Of all entertainment media-based approaches investigated, Sonnleitner et al.’s approach

[119] achieved the strongest performance, with accuracies exceeding 97%. As such, the
approach will be evaluated using feature-film audio data in order to determine whether it is
capable of achieving similar levels of performance in the target domain.

The literature demonstrates that one of the key factors to be considered in the devel-
opment of VAD approaches is the application context. This is as different types of audio
content will contain different variability in speech and non-speech data. For example, in
a straightforward VoIP setting, the variability in both speech and non speech content is
fairly low. On the contrary, in the tasks considered by Sonnleitner and Eyben’s work, the
variability can be fairly high: with there being a great degree of variability in the negative
classes. In the case of Eyben’s work, this comprises a range of atmospheric sounds, e.g.
traffic and crowd noise, which complicates the task of non-speech rejection. In the applica-
tion context of Sonnleitner’s work, this comprises varying types of music - much of which
is vocal music, which blurs the line between speech and non-speech content. In the context
of feature-film audio, an additional challenge is presented: as well as a significant variety
of non-speech content in the form of sound effects and music, the speech content also
contains much greater variability. This is due to highly emotive speech with vastly varying
dynamics, including shouted speech, whispered speech and varying rates of dialogue. Thus,
when developing VAD for feature film content, a significant variation in background noise
must be considered, along with significant variability in the speech content itself.

A number of methods for speech feature extraction have been discussed in this section.
Of these, MFCCs are of particular interest. While they have demonstrated encouraging per-
formance for some VAD applications [69], as well as robust performance under challenging
SNR conditions [20], the literature does not contain examples of MFCC VAD applied to
entertainment media. This is surprising given that MFCCs have a number of properties
which make them ideal for this application context. Firstly, their use of perceptually-scaled
features is advantageous given the strong link between the human auditory system and
speech production [11]. Secondly, cepstra are sensitive to periodicity in the frequency
domain - this makes them particularly attractive given that previous work has highlighted
the importance of spectro-temporal patterns in VAD applications [119]. As such, this work
uses MFCCs as the foundation of the audio VAD approach proposed in section 3.

While audio VAD will form the basis of the approach in this work, it would benefit
from other modalities in order to improve its robustness to noise. This could be achieved
with the use of visual VAD, whereby the video information could be utilised to enhance
speech detection in the presence of audio noise. This has proven to be useful in previous
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work [2], and as such this work will explore the use of visual speech features to enhance
speech detection in entertainment media.

2.2 Computer Vision Approaches for Speech Processing

A number of techniques have been developed for extracting and processing visual speech
information. These include automatic lip reading, visual voice activity detection and meth-
ods for automatic speaker identification. These technologies typically rely on underlying
computer vision processes for face detection and feature extraction. This section reviews
a number of computer vision technologies used within facial feature extraction before
exploring existing developments in visual speech processing.

2.2.1 Face Detection

Face detection is crucial in most visual speech processing tasks, as it is necessary for
initialising other information extraction processes, such as landmark localisation. A
number of approaches have been developed for face detection, from Viola and Jones’ work
on Haar-like features [132], to more recent approaches such as the Histograms of Oriented
Gradients (HOG) approach presented by Dalal et al. [29], developed to provide more
robust detection performance in variable conditions.

Haar-Like Features

Viola and Jones’ Haar-like features approach [132] is a popular method for face detection
within still images and video content. The approach is based on Haar wavelets [46], and
achieves computational efficiency through the use of summed area tables and adaptive
boosting (AdaBoost). This allows the sum of rectangular areas in the image to be computed
using a finite number of lookups.

The features are defined as the intensity difference between two to four rectangles, as
demonstrated in Figure 2.2. For example, in feature a the feature value is the difference in
the average pixel value in the grey and white rectangles. The Haar detector exploits three
different types of rectangular features - edge features (a and b), line features (c and d) and
four-rectangle features (e and f ) for object detection.

AdaBoost is then used to train a cascade of weak detectors according to a decision
threshold. For each Haar-like feature in the pool, AdaBoost finds the optimal threshold
and confidence scores. This information is then used to select the best feature with the
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Figure 2.2: Illustration of Harr-like rectangular features.

minimum Z score. This is repeated until all of the weak classifiers are trained, resulting in
a Haar cascade which can be used for image classification/object detection.

In the case of face detection, the process begins by evaluating whether regions in an
image can be represented by Haar-like features associated with general facial features. If
this is true for a given region, the process moves to the next phase in the cascade, evaluating
against Haar-like features which correspond to more specific facial characteristics. If this
is satisfied for all stages in the cascade, the region is classified as containing a face.

One of the limitations of the earlier Haar-like features implementation is the poor
performance on non-frontal faces. To improve on this, Lienhart and Maydt [76] extended
the work to allow rectangular features to be combined in a greater variety of ways to
improve object detection. This was achieved through the introduction of 45 degree rotated
rectangular features by using rotated integral images.

Rowley et al.’s work introduced a three step approach for non-upright face detection
[106]. This uses two neural network classifiers. The first step estimates the pose of the
face in the detection window prior to adjusting the image and applying a standard face
detector. The three key steps for detection are therefore: 1) estimate the pose of the face, 2)
use the pose estimation to de-rotate the image window, 3) apply the face detector to the
de-rotated window. Investigations into the performance of this approach demonstrated a
detection rate of up to 96.0% on rotated face data. Two drawbacks of this approach are: 1)
as the classifiers primarily work independently, the resulting detection rate is generally the
product of the correct classification rates of the two classifiers; and 2) image de-rotation is
computationally expensive.

To improve on this, Viola and Jones proposed a technique for multi-view face detection
based on their earlier work [62]. This uses diagonal filters to focus on diagonal structures
within the image window. These work in the same way as they previous filters, and can be
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computed via 16 lookups; looking at the 16 corner pixels.
This approach yielded similar accuracy to that proposed by Rowley et al., achieving

a detection rate of up to 95.0% [62]. While this produced similar accuracy results, the
Viola-Jones approach proved to be advantageous as it did not require image de-rotation,
thus being more computationally efficient and providing a faster method for face detection.

Local Binary Patterns

Another popular method for face detection is based on Local Binary Patterns (LBP) [1].
LBP works by creating feature vectors comprising binary information from pixels within a
given window. The first step in computing the LBP feature is to divide the window into
cells of n ∗ n pixels. Next, each pixel, pc, in the cell is compared to its neighbouring
pixels, pn. If pn >= pc, a value of 0 is recorded. If pn < pc, a value of 1 is recorded.
As illustrated in Figure 2.3, this results in an 8 digit binary number which represents pc
in relation to its neighbouring pixels. Once this has been done for all pixels in the cell,
a histogram is computed over all cell values, giving the frequency of each value in the
cell. This histogram forms the basis of the LBP feature vector. The final feature vector is
obtained by concatenating the feature vectors for all cells within the window.

Figure 2.3: Illustration of LBP feature computation.

The resulting feature is then used to train a machine learning algorithm, such as support
vector machine or random forest. LBP features have demonstrated strong performance in a
range of computer vision tasks, including face detection [1], texture analysis [95] and other
object recognition tasks.

LBP has been successfully implemented in a number of face detection frameworks,
and has exhibited strong performance. In [47], LBP features are used with a SVM for
face detection, achieving a 97.8% detection rate on the MIT-CMU dataset [105]. Similarly,
in [138], a modified LBP approach is proposed which utilises RGB and YUV colour
space data. LBP histograms are extracted from these colour spaces, after which histogram
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matching and SVM methods are used for face classification. The approach achieved
a 93.8% detection rate on a bespoke colour database comprising 356 frontal faces. A
modified version of LBP, termed improved LBP (ILBP), was proposed by Jin et al. [60].
As with standard LBP, this creates a histogram based on pixel value relationships within a
cell. In this case, this is achieved by comparing all pixels in a cell with the mean intensity
of all pixels in the cell. In later work by Jin et al. [61] these are used to train a cascade
AdaBoost detector, which achieves a 93% detection rate on the MIT-CMU database.

Figure 2.4: Illustration of LBP invariance to illumination conditions.

While the detection rate of LBP is comparable to Haar-like features, it has the principle
advantage of being more robust to variable illumination conditions, as illustrated in Figure
2.4. The uniform LBP values in Figure 2.4 are obtained by aggregating the 8 digit cell
representations into k bins, where k is the number of unique 8 digit representations
obtained from the image (in this case k = 18). The histogram data here demonstrates
LBP’s invariance over a range of lighting conditions. This illumination invariance has been
exploited in work by Roy et al. [107], which combines both Haar wavelet and LBP-based
features to create Haar Local Binary Pattern (HLBP) features. Their work demonstrates
that this achieves improved performance on data containing variable lighting conditions,
with the HLBP approach outperforming the standard Haar-like features approach and a
competing LBP-based approach on 3 out of 4 datasets.
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Histogram of Oriented Gradients

Another method that has been successfully applied for face detection [31] [48] and other
human detection tasks [29] is the Histogram of Oriented Gradients (HOG) feature descriptor.
This was proposed by Dalal et al. in [29], and was initially developed for pedestrian
detection in static images. The approach is based on the principle of evaluating the
frequency of gradient orientation in localised image segments to create histograms of
gradient orientations for a number of connected segments. In a similar fashion to LBP,
these histograms are concatenated to form the final HoG feature vector.

Figure 2.5: Example of HOG features. Left: input image. Right: HOG features.

To obtain the HOG feature, the image window is first divided into a number of cells.
The gradient values are then computed by applying a 1-D centred point discrete derivative
mask to the image data. For colour images, the gradients are computed for each channel,
and the channel with the largest norm is used as the gradient vector for the pixel. This
is followed by orientation binning, in which the gradient magnitude of each pixel within
the cell is used to cast a weighted vote on the cell orientation. This information is used to
quantise the cell orientation into one of 9 possible bin values. To facilitate better invariance
to illumination, cells are grouped into larger overlapping blocks and contrast normalisation
is applied separately to each block. The final HOG feature is the vector of all normalized
cell responses from the blocks in the detection window. This can be used to train machine
learning algorithms for object detection tasks. Figure 2.5 illustrates the transformation
from original image to HOG features.

In their paper, Dalal et al. demonstrate that the approach can be used to train an SVM
for human detection tasks. Crucially, they show that their method significantly reduces
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false positive rates when compared to leading Haar wavelet-based approaches for human
detection. A key factor in the approach’s performance is its invariance to geometric and
photometric transformations [29], making it particularly attractive for object detection
tasks in challenging lighting conditions.

Summary

Several methods for face detection in image and video content have been explored. Of
the methods explored, HOG features are perhaps the most attractive given their robust
performance in variable illumination conditions. This is advantageous given that the work
looks to develop technologies for use in entertainment media - which contains video
which is highly dynamic both in terms of variable object orientation and variable lighting
conditions. While LBP-based detectors have exhibited some improvement on Haar wavelet-
based detectors, the Haar-like features approach is particularly attractive given its consistent
track record for face detection tasks and the fact that readily available implementations are
incorporated into prevalent computer vision libraries [96]. As such, both Haar wavelet and
HOG-based approaches will be explored for face detection within this work.

Once the face region has been detected, landmark features need to be identified in
order to locate the mouth region and extract visual speech information. The next section
therefore goes on to investigate a range of landmark localisation approaches which can be
used for the localisation of the mouth region and extraction of visual information for use in
visual speech detection.

2.2.2 Landmark Localisation

Landmark localisation concerns the detection of facial landmarks, and follows the face
detection step in the visual speech information extraction process. A broad variety of
landmark localisation techniques have been developed over recent years, including shape
and appearance-based approaches - such as Active Shape Models (ASM) [24] and AAMs
[23] proposed by Cootes et al. - as well as pictorial structure-based approaches, as proposed
by Kazemi et al. [66].

Active Appearance Models

Earlier approaches for landmark localisation include ASMs, which were first proposed
by Cootes et al. [24]. ASMs are based on the concept of modelling an object as a
deformable statistical model with a mean shape. This concept comes from the idea of
Active Contour Models (ACM) [63], but unlike ACMs, ASMs limit the possible deformable
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shapes according to information from the training set. Since their development, ASMs
have proven to be a popular method for landmark localisation [89][104].

Following the development of the ASM, Cootes et al. went on to develop the Active
Appearance Model [23]. This extends their earlier work on ASMs through incorporating
grey-level appearance information. The approach generates models by combining a model
of shape variations with a model of appearance variations in a shape-normalised frame.
This is done using a training set of images for which key landmarks are marked. All sets are
aligned to a common co-ordinate frame and represented by a vector x. Principal Component
Analysis (PCA) is then applied to the data, allowing any feature to be approximated simply
by:

x = x̄ + Psbs (2.5)

where x̄ is the mean shape, Ps is a set of orthogonal modes of variation and bs is a set
of shape parameters.

A statistical model of the grey-level appearance is obtained by warping each example
image so that its control points match the mean shape (via a triangulation algorithm). The
grey level information is then sampled from the shape normalised image over the region
covered by the mean shape. The impact illumination variance is minimised by normalising
the example samples. Once normalised, the linear model of the grey level appearance can
be obtained via PCA, similarly to the shape model:

g = ḡ + Pg + bg (2.6)

where ḡ is the mean normalised grey-level vector, Pg is a set of orthogonal modes of
variation and bg is a set of grey-level parameters. In this way, the shape and appearance
of any example can be described by vectors bs and bg, corresponding to the shape and
grey-level content respectively. The shape parameter is then scaled to ensure that the units
of bs are equivalent to bg, before the vectors are concatenated and PCA is applied to the
concatenated feature vector b:

b = Qc (2.7)

where Q are the eigenvectors and c is a vector of appearance parameters controlling the
shape and grey-level model parameters.

The approach has been used for face landmark localisation using a training set of 400
images, with each image containing 122 labels corresponding to the main features. This
was used to generate an active appearance model capable of explaining 98% of the observed
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variation using 80 parameters.
Given this AAM and an image to be interpreted, the model parameters need to be found

which optimise the match between the target image and the synthesised example. This is
achieved through the use of an iterative algorithm described by Cootes et al. [23] which
minimises the magnitude of the difference vector, ∆ = |δφ|2, for

δφ = φi − φm (2.8)

where φi is the vector of grey level values from the image and φm is the vector of
grey-level values for the current model parameters.

Since their development, AAMs have gone on to demonstrate strong performance in
facial landmark localisation tasks [23], [2], [75], [42].

Recent Developments in Landmark Localisation

More recent developments in landmark localisation have seen significant improvements in
performance, particularly with regard to landmark localisation and tracking in challenging
data. Specifically, approaches such as those proposed by Kazemi et al. [66], Zhu et al.

[139] and Saragih et al. [113] have demonstrated strong performance in data incorporating
variable illumination and occlusions. This is particularly valuable given that this work is
interested in feature film data. As such, the data will contain natural speaker behaviours,
which will include gestures that are likely to cause partial or whole obstructions. The data
is also likely to contain a significant degree of movement through scenes with variable
lighting, thus making robust performance in these conditions particularly critical.

Following the AAM work, Cristinacce and Cootes developed their Constrained Local
Model (CLM) approach for landmark localisation [28]. This approach has demonstrated im-
proved performance on challenging face data incorporating variable illumination conditions
and occlusions.

The approach uses the same method as the AAM to build a combined shape and texture
model, however this work modifies the texture sampling method. Here, for each feature, a
training sample is obtained and normalised, producing pixel values with zero mean and
unit variance. These texture patches are then concatenated, resulting in a single grey value
vector for the training image. The resulting vectors and normalised shape co-ordinates are
then used to construct linear models according to the method in Cootes et al.’s work [23],
shown in equations 2.4 and 2.5. As with the AAM work, these are combined using PCA to
form a joint model.

The next step in the CLM approach is to perform a shape constrained local model search.
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Given this joint shape and texture model, a set of grey value regions can be generated for a
set of features. This is achieved by applying the templates to a search image and computing
the response images, where (xi, yi) is the position of feature point i and φi(xi, yi) is the
response of the ith feature template. These positions can be concatenated into a vector as:

x = (x1, ...xn, y1, ...yn)T (2.9)

Here, x is computed as:

x ≈ Tt(x̄ + Psbs) (2.10)

where bs are the shape parameters and Tt is a similarity transform from the shape model
frame to the response image frame. These can be concatenated into p = (tT |(bs)T )T ,
allowing x to be represented as a function of p. Given an initial value for p, the search
process optimises the function f(p) according to the image response surfaces φi and the
statistical shape model from the training set. The function is given as:

f(p) =
n∑
i=1

φi(xi, yi) +K
s∑
j=1

−b2
j

λj
(2.11)

where the second term is an estimate of the log-likelihood of the shape given parameters
bj and eigenvalues λj , and K is a weight determining the relative importance of good shape
and strong feature responses. The function f(p) is optimised using the Nelder-Meade
simplex algorithm [92].

The CLM approach uses a straightforward algorithm centred around three core process-
ing steps, as illustrated in Figure 2.6: i) initial feature point input, following by ii) fitting
the joint shape and texture model to the feature points, and iii) using the shape constrained
search method to predict a new set of features. Steps ii and iii are repeated until the model
converges. When applied to video content, the initialisation points are obtained from the
previous frame if possible, and are otherwise generated via global search.

Performance evaluation using the BIOID [59] and XM2VTS [88] datasets demonstrated
the CLM method outperformed a number of leading approaches for landmark localisation
and tracking [28], including AAM, TST [27] and SOS [26] approaches.

Further approaches have since been developed based on the initial CLM method. In
Saragih et al.’s work [113], they propose a method termed Regularised Landmark Mean-
Shift (RLMS). This method has two key advantages over the original CLM approach. The
first is an improved procedure for model fitting, which is achieved via a new method for
approximating feature likelihood maps using nonparametric representations.
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Figure 2.6: Flow diagram of CLM search algorithm.

The second key advantage of this approach is its method for handling partial occlusions,
as demonstrated in Figure 2.7. The problem addressed here is that, in a parts-based solution
such as CLM or RLMS, the likelihood of individual features is determined according to the
training set. Thus, if a face is partially occluded, the model will not consider the occluded
feature to be a likely candidate unless a similar example is present in the training set. In
Saragih et al.’s work, performance on data containing partial occlusions is enhanced by
modifying the candidate likelihood function to account for potential outliers. In doing so,
the model is able to handle partial occlusions, assuming that the majority of candidates fit
the model [113].

This method was evaluated using the MultiPIE [43] and XM2VTS [88] datasets for
performance on still images and the FGNet [101] dataset for performance on sequences. In
both cases, results demonstrated enhanced performance when compared to a number of
existing approaches, with improved fitting and tracking metrics when compared to ASM
[24], convex quadratic fitting [133] and GMM-based approaches [45].

Figure 2.7: Example of approach from [113]’s performance on partially occluded data.

Another recent landmark localisation approach was proposed by Kazemi et al. [66].
This approach uses a cascade of regression trees to estimate and refine the position of facial
landmarks. Here, the x, y coordinate of the ith landmark in a given image, I, is given as
xi ∈ R2. Given this, the vector s = (xT1 , x

T
2 , ...x

T
p )T ∈ R2p denotes all p facial landmark
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coordinates in I, corresponding to the face shape. ŝ(t) therefore denotes the current shape
estimate. Each regressor in the cascade is represented by rt(), and predicts an update vector
given the image and an estimate ŝ(t). This prediction is then added to the current shape
estimate to improve the estimate:

ŝ(t+1) = ŝ(t) + rt(I, ŝ(t)) (2.12)

A crucial factor in using the cascade-based approach is that the regressor’s predictions
are made based on features computed from the image, I, and indexed according to the
current shape estimate ŝ(t). As such, the confidence of each feature increases with each
iteration through the cascade, and the approach is more robust to geometric variance as it
is able to correct itself with respect to current estimates.

The regressors are trained using the gradient tree boosting algorithm described by
Hastie et al. [50] using a sum of square error loss function. During training, each regressor
is trained iteratively, using the parameters generated by the previous regressor. In this way,
a cascade of T regressors is generated as:

r0, r1, r2, ...rT−1 (2.13)

where each rt comprises 500 weak regressors. The implementation in Kazemi et al.’s
paper [66] uses T = 10 of these ensemble regressors for the cascade.

The approach was trained and tested using the HELEN [74] dataset, from which
2000 images were used for training and 330 were used for testing. Performance was
evaluated with respect to two leading ASM-based approaches, STASM [89] and CompASM
[74]. Results demonstrate that Kazemi et al.’s approach achieves significantly improved
performance on the HELEN dataset, with an average error of 0.049, compared with 0.111

and 0.091 obtained by the STASM and CompASM approaches respectively. Further to this,
the paper evaluates the impact of using a cascade approach, with the error improving from
0.085 to 0.049 when compared with a single level ensemble.

As with Saragih’s approach [113], this method also produces robust performance on
partially occluded data, as demonstrated in Figure 2.8. This is due to the fact that, as the
cascade progresses, the model is evaluated and updated with regard to the overall shape
estimate, Ŝ(t). As such, occluded regions will have limited impact as long as a majority
shape components agree with the model, thus resulting in a robust overall estimate despite
occluded data at specific landmarks.
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Figure 2.8: Example of approach from [66]’s performance on partially occluded data.

Summary

This section has discussed a number of key approaches for facial landmark localisation,
covering earlier developments such as AAMs [23] as well as more recent developments
based on CLM [28] and cascade ensemble [66] approaches. As the application focus of
this work is entertainment media, a high degree of variance in pose, lighting and speaker
gestures can be assumed. Thus, an approach which demonstrates strong model fitting
on datasets comprising faces in a natural setting, and robust performance on occluded
data is desirable. Given this, the approaches proposed by Kazemi et al. [66] and Saragih
et al. [113] are the most suitable methods investigated, as both demonstrate significant
performance advantages over state of the art on ’faces in the wild’ data, and both perform
well on occluded data.

2.2.3 Visual Speech Processing

Processing visual speech information has been an active area of research for a number
of years, producing numerous developments in areas including visual voice activity de-
tection (V-VAD) [75] and automatic lip reading [49]. These approaches make use of a
number of methods for extracting visual speech features, and these typically fall into two
categories: appearance-based features and landmark-based features. Appearance-based
features typically use grey-scale information from the image, such as two dimensional
cosine transform (2D-DCT) and LBP. Landmark-based features, on the other hand, use the
information obtained from shape estimation approaches, such as AAM and CLM, rather
than directly using the grey-scale information. This section explores a number of existing
approaches for processing visual speech information in order to determine which features
and feature combinations are likely to be useful for modelling visual speech information in
entertainment media.
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Visual Automatic Speech Recognition and Automatic Lip Reading

The approach for automatic lip reading described by Hassanat et al. [49] combines
geometric and appearance-based features for automatic visual speech recognition. This
method first employs face detection and lip region detection before extracting mouth-based
features. While the method does not use facial landmarks, it does make use of mouth
height and width parameters to give an impression of mouth shape. These are combined
with appearance-based features to give an impression of the presence of the teeth or tongue.
The method was evaluated using a bespoke dataset comprising 26 speakers, and achieved
a word recognition rate of 76.4% for speaker dependent tests, and 52.8% for speaker
independent tests. While this falls short of more recent approaches such as Thangthai et

al.’s work [123], this work highlights the importance of appearance-based features for
modelling visual speech. This is as the presence or absence of the tongue and/or teeth
provides crucial information as to the speech components most likely to correspond with
the visual speech gestures [49].

In a paper by Lan et al. [73], AAM-based features are used to extract visual speech
information. These features are obtained using a Linear Predictor (LP) based tracker,
which was shown to improve landmark estimates across frames when compared with
an AAM-based tracking approach on the chosen dataset. The work also investigates a
number of other features, including 2D-DCT and eigen-lip features. These are evaluated
to determine their performance on visual speech recognition tasks on the Grid dataset
[22]. The results in Lan et al.’s paper demonstrate that a feature comprising both AAM
shape and appearance features achieved the strongest performance, with a word accuracy
of 59%. Crucially, this work demonstrates that the combined approach outperforms the
individual shape and appearance features. This is further supported by Hassanat et al.’s
work [49], which goes on to use combined AAM shape and appearance features for viseme
classification.

In Thangthai et al.’s work [123], Deep Neural Networks (DNNs) are investigated for
use in visual speech recognition. Here, combined AAM shape and appearance components
are again used, with the method first extracting these features from the lip region in a given
video frame. Hierarchical Linear Discriminant Analysis (HiLDA) features are then obtained
by applying Linear Discriminant Analysis (LDA) to a set of high dimensional features
constructed from the first, middle and last frame in a 15 frame window. A Maximum
Likelihood Linear Transform (MLLT) is then applied to the features in order to minimize
intra-class distance while maximising inter-class distance. These features are used as
the input for a context dependent DNN-HMM model (CD-DNN), which is trained using
stochastic gradient descent for four hidden layers with a hyperbolic tangent activation
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function. The paper evaluates the performance of the CD-DNN using both simple AAM
features and HiLDA with respect to GMM and conventional HMM-based approaches.
Results demonstrate that the HiLDA method achieves the strongest results, with 84.7%

word accuracy on the speaker dependent RM-3000 dataset. This is with respect to the
simple AAM-based approach, which achieved a word accuracy of 77.49%, and the HTK
baseline approach described in the paper [123], which achieved a word accuracy of only
47.5%.

Visual Voice Activity Detection

While the automatic lip reading approaches give some impression of which techniques
may be useful, one of the aims of this work is to develop an alignment strategy that does
not rely on a language model. Given that automatic lip reading is a speech recognition
task, all successful automatic lip reading approaches require a language model. Here, a
broader technique for visual speech processing is explored - visual voice activity detection
(V-VAD). The idea here is that it may be possible to leverage audio-visual speech activity
patterns for sequence association and alignment.

A number of V-VAD approaches have been proposed over recent years. These include
simple GMM-based approaches [2], as well as more comprehensive Neural Network (NN)
oriented approaches [75] and unsupervised methods [121]. These have been developed
to enhance existing VAD systems through incorporating visual information, as this has
proven to improve performance in the presence of acoustic noise [2] and on data containing
variable audio speech dynamics [121].

Several recent developments in V-VAD use DCT and GMM-based approaches, such as
work by Almajai et al. [2] and Navarathna et al. [91]. In Almajai et al.’s work, the mouth is
detected using an AAM, and 2D-DCT information is extracted from a ROI centered around
the detected mouth area. Expectation Maximization (EM) clustering is then used to create
two GMMs - one for speech, and one for non-speech. The visual speech is then classified
using the GMM to determine whether a given sample contains speech activity. This method
was evaluated on a subset of the Grid corpus, and demonstrated reasonable results with
V-VAD accuracy of 72%. Crucially, this work demonstrated the advantage of combining
audio and visual speech features, with the combined audio-visual VAD achieving ≈ 90%

accuracy in noisy data, where the audio-only VAD achieved ≈ 50% accuracy.
In Navarathna et al.’s work [91], DCT information from the mouth ROI is concatenated

over 7 frames prior to dimensionality reduction via Linear Discriminant Analysis (LDA).
GMM’s are then used to model the data and classify an input vector as either speech or
non-speech, similarly to Almajai et al.’s approach [2]. The method is evaluated using the
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CUAVE database [98], and produces reasonable results, with a false positive (FP) rate of
24.2% and missed detection (MD) rate of 27.6% on frontal face data. This yields a half
total error rate (HTER = FP+MD

2
) of 25.9%. This error rate increases significantly for

profile views, for which it achieves a HTER of ≈ 35%. These results support the intuition
that frontal face information is far more informative when modelling visual speech activity.
That said, this is likely to be more critical for appearance-based methods such as the DCT
used here, as they have no mechanism of estimating features which correspond to occluded
areas of the face, whereas this may be achievable with landmark-based methods.

More recently, appearance-based approaches for V-VAD have been used in more so-
phisticated classification frameworks. In Tao et al.’s paper [121], optical flow is combined
with mouth height and width information to create a base feature vector. The temporal
characteristics are then modelled using short-time zero crossing rate and short-time vari-
ance information, after which the resulting features are combined prior to dimensionality
reduction using principal component analysis (PCA). The EM algorithm is then used to
automatically cluster the speech and non-speech components, modelling them as a GMM
with two univariate mixtures. The speech or non-speech classification is then determined
according to the value of the GMM cluster means, with a higher mean indicating that
the cluster represents speech information, and a lower mean indicating that the cluster
represents non-speech information. This method is evaluated using the MSP-AVW Corpus
[124], and achieves an accuracy of 79.1% using the unsupervised model, and an accuracy
of 86.9% using a supervised variation of the model. A key focus of this investigation is
V-VAD’s performance on variable speech dynamics. This work demonstrates that, while
audio-VAD achieves better results for normal speech, V-VAD achieves better results on
whispered speech, with consistent results obtained regardless of speech dynamics.

Recent work by Le Cornu et al. [75] uses two different neural network-based methods.
The first of these is a backpropagation neural network trained on DCT coefficients extracted
from the mouth region. Their paper details two versions of the backpropagation network:
first using only the DCT coefficients, and secondly using the DCT coefficients and their
first order temporal derivatives. These are described as ”NN DCT” and ”NN DCT ∆”
respectively.

Their second neural network approach explores the use of CNN’s for speech classifica-
tion - using raw pixel intensities as the input information and using the CNN for feature
discovery and classification. As with their first neural network approach, there are two
variants of this method - both without and with temporal information, described in the
paper as ”CNN Static” and ”CNN Stack 3”. For the CNN Static approach, the CNN archi-
tecture comprises two sets of standard CNN layers. These each contain a convolutional
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stage, a max-pooling stage and a dropout stage. The first convolutional stage comprises
32 filters of size 3 × 3, and the second comprises 64 filters of the same size. Each of
the convolutional stages are followed by non-overlapping max-pooling with max filters
of size 2 × 2, after which dropout is applied to each max-pooled layer with probability
p = 0.2. These layers are followed by a single fully-connected layer comprising 512 units
with dropout of probability p = 0.5, and an output layer which uses a softmax activation
function. The CNN Stack 3 approach uses the same architecture, but incorporates temporal
information via the early-fusion technique. This method stacks three video frames at the
input stage, enabling the first convolutional stage to convolve across consecutive frames to
build a representation of local motion direction.

These approaches are investigated on a subset of the Grid corpus, and compared with
the method from Almajai et al. [2]. The results demonstrate that the NN-DCT approach
achieves the strongest results in speaker independent tests, with a VAD accuracy of 78.7%,
improving on the CNN and GMM [2] approaches which achieve a VAD accuracy of 74.7%

and 70.5% respectively. This work supports earlier findings by Almajai et al. [2] and
Navarathna et al. [91], confirming that 2D-DCTs are strong appearance-based features for
detecting speech activity, and goes on to demonstrate that VAD performance can be further
enhanced with the use of more sophisticated machine learning algorithms such as Neural
Networks (NNs).

While not as prevalent in the literature as appearance-based methods, a number of
landmark-based V-VAD approaches have been explored. One such approach proposed by
Liu et al. [77] performs lip landmark extraction using active contour models and rotational
template matching. Once the lip landmarks are extracted, a vector, v(t), containing both
static and dynamic features is constructed to model the movement of the lip region over
time. AdaBoosting is then used for speech classification, with an ensemble of weak
classifiers predicting on elements within the feature vector v(t). The content is classified
as speech if the output from the ensemble satisfies a voting threshold, and non-speech
otherwise. While this approach produces reasonable results, achieving an equal error rate
(EER) of < 0.15, the work uses a very limited dataset, consisting of only 150 seconds of
data, of which only 30 seconds was used for testing. Furthermore, the work provides no
comparison to other approaches or baseline methods.

Another approach proposed by Aubrey et al. [6] utilises both shape and appearance-
based features from an AAM, using a Hidden Markov Model (HMM) to model lip-based
shape and appearance characteristics to classify visual speech activity. The approach uses
eigendecomposition to obtain the first 10 eigenvectors, which contain 75% of the original
appearance energy. These are then used to train a HMM using 600 frames of visual speech
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data. This approach is evaluated by calculating the number of correct silence detections,
rather than speech detections. While results are encouraging, achieving up to 90% for
correct silence classification, the dataset used here also contains only 150 seconds of data.

Both Liu et al. [77] and Aubrey et al. [6] use considerably smaller datasets than
the other V-VAD approaches discussed here, which use at least ≈60 minutes of data
[75], with some using considerably more [121]. Hence, it was felt that neither of these
landmark-based V-VAD investigations provide a sufficiently comprehensive evaluation
from which the efficacy of landmark features for V-VAD can be determined. As such, this
work will look to carry out a more comprehensive evaluation of landmarks for V-VAD
tasks, specifically with regard to more challenging speaker conditions such as those likely
to be encountered in entertainment media.

Summary

This section has explored a number of methods for visual speech processing, with a focus
on visual speech recognition and visual voice activity detection. Existing work in visual
automatic speech recognition (visual ASR) has demonstrated the combining both shape
and appearance features can yield performance improvements when compared to individual
features, as demonstrated in work by Thangthai et al. [123] and Lan et al. [73]. Further to
this, work on visual ASR has highlighted the importance of appearance features, in that they
indicate the presence/absence of the tongue and teeth - crucial features for differentiating
between different types of speech phenomena.

While visual-ASR approaches clearly demonstrated enhanced performance when com-
bining shape and appearance features, the V-VAD approaches found in the literature were
largely appearance based. While these have demonstrated strong results using primarily
appearance-based features, they have all been evaluated using fairly ideal datasets with
static speakers and consistent illumination. This raises the question of whether these
approaches would work as well given more variable data, and whether the inclusion of
robust landmark localisation approaches, such as those discussed in Section 2.2.2.2, would
enhance performance under these conditions.

As such, this work will look to further explore the use of combining shape and ap-
pearance features for visual speech processing, with a specific focus on utilising robust
landmark localisation methods. This work will also explore the use of 2D-DCTs for pro-
viding appearance information, as these have demonstrated strong performance in several
V-VAD approaches [2][75][91].
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2.2.4 Computer Vision Approaches for Speech Processing - Summary

This section has evaluated a number of existing computer vision approaches for visual
speech feature extraction as well as approaches for processing visual speech information,
such as visual-ASR and V-VAD.

The review of the literature demonstrates that there are a number of promising methods
for face detection and landmark localisation, both crucial processes for obtaining features
associated with visual speech. Of these methods, those demonstrating robust performance
on data containing variable illumination and partial occlusions are most attractive, as
these are challenges present within entertainment media. This makes the more recent
developments in landmark localisation, such as proposed by Saragih et al. [113] and
Kazemi et al. [66], particularly attractive.

Existing work on visual speech processing demonstrates a strong bias towards appearance-
based features, particularly for V-VAD. Despite this, work on visual-ASR has demonstrated
that combining appearance and shape-based features yields some improvement [73]. How-
ever, investigations into combined features for V-VAD use limited datasets, and are thus
not sufficiently conclusive as to whether this is also the case for detecting visual speech
activity. This work will therefore look to conduct a more comprehensive study on the use
of shape and appearance-based features for V-VAD applications, with a specific focus on
applying state of the art methods in landmark localisation.

2.3 Feature Matching and Sequence Alignment

A key aim of this work is to develop a method for multimedia alignment using speech
information. As such, feature matching and sequence alignment methods are crucial. This
section explores a number of methods for matching features and aligning sequences using
speech information.

2.3.1 Speech to Text Alignment

A number of approaches exist for audio to text alignment, including work by Katsmanis
et al. [65], Goldman et al. [41] and Braunschweiler et al. [16]. The method proposed by
Katsamanis et al. provides an adaptive, iterative speech recognition and text alignment
solution capable of aligning long, noisy audio content, and also allows for transcription
errors. The system first segments an audio stream into chunks of 10-15 s duration. Speech
recognition is then applied to the individual segments to provide an estimate of the word
sequences. This is aligned with a reference transcript, and the alignment is evaluated
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using a minimum-number-of-words criterion. If the number of aligned words exceeds this
criteria, the sequence is considered to be aligned and is removed from subsequent cycles. If
the criteria is not met, the audio is repartitioned and the cycle is repeated for the unaligned
segments. For improved performance, the acoustic models used for speech recognition are
adapted at each iteration using information extracted from the reliably aligned regions. This
is achieved by applying Maximum Likelihood Linear Regression in two stages. The first
stage involves training a global transformation, after which a class-based transformation is
built for the phonemes corresponding to the reliably aligned content. Thus, the three core
phases of the algorithm are: recognition, alignment, adaptation. These are repeated five
times, with each iteration improving both the overall alignment and the acoustic model.
This approach has demonstrated strong results, outperforming Viterbi-based approaches
and achieving > 70% correctly aligned words on noisy audio and corrupted transcription
data.

Another approach, proposed by Anguera et al. [4], is perhaps more applicable to this
work. This is as it is specifically designed for applications with very limited resources, as
is the case with audio to text alignment for a single feature film. In this work, the audio is
first time stretched using the synchronous overlap-add algorithm [136] in order to reduce
the rate of speech, as this improves alignment. The audio is then segmented into segments
of up to 30 s in length. These audio segments are then decoded using a phoneme recogniser
trained using a Hungarian language model. The segment outputs are then converted back
to their original time-base before being concatenated into a single sequence. For the text
processing, the textual input is first normalised to produced a set of individual grapheme-like
symbols. The resulting phoneme and grapheme sequences are then aligned using dynamic
programming to find the optimal global alignment between both strings. This achieved by
first constructing a global distance matrix of cost functions between phoneme/grapheme
data, and then tracking back through the matrix using dynamic programming to find the
optimal alignment. The use of dynamic programming is particularly useful here as it is able
to account for inaccuracies in the matrix (e.g. incorrect transcriptions), providing a correct
global alignment even in the case of noisy data. Evaluation of this approach demonstrated
strong results when applied to Catalan and Spanish data, achieving errors of < 5% and
< 10% on pooled utterances of Spanish and Catalan respectively. As this approach relies
on a language model, it is not wholly appropriate for our target application, as this work
looks to develop an approach which does not rely on a language model. Nevertheless, this
demonstrates that the process of tokenization followed by dynamic programming achieves
strong alignment results. This is relevant as this work could adopt a similar approach, albeit
without the use of a language model for the tokenization step.
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In Hazen et al.’s work [51], a method for aligning transcripts and long speech recordings
is proposed. As with Anguera et al.’s work [4], this approach first applies ASR to the
audio, this time via the SUMMIT ASR system [40][97]. For improved performance on
the target data, the transcript is used to heavily bias the recogniser’s language model. The
ASR produces word-level tokenisation of the audio data, which is then used with the
transcript information to find corresponding points between the speech and text data. These
points are then used as anchors for the alignment stage. The alignment process, termed
pseudo-forced alignment, aims to find an optimal alignment for the speech and text data
while allowing for transcriptions errors. As such, this process allows for word insertion
or deletion as well as substitution of words which exist in the transcript. This is achieved
using a phonetic-based out-of-vocabulary word filler model [9] and a finite state transducer
(FST). The FST model allows the process of data manipulation to be controlled via penalty
weights in order to ensure that correct words are rarely modified. After this phase, the
transcript and speech data are aligned, and segments containing substitutions, insertions or
deletions are marked. The ASR is then re-applied to these segments to provide estimates
of the substituted or inserted content using the ASR’s language model. This process also
uses a FST network, this time using the FST to moderate insertions and substitutions by
allowing marked segments to be modified while preserving segments in which no insertions
or substitutions have been made. This approach has demonstrated strong performance,
dramatically reducing the ASR’s word error rate from 24.3% to just 8.8%. As with the other
audio-to-text alignment methods explored here, this relies on a language model, making
it unsuitable for the target application of this work. However, this highlights a number of
useful mechanisms for alignment. The first of these is the use of anchor points between the
data - points of higher confidence which can be used to align information across different
media. Secondly, this work introduces the concept of iteratively correcting the alignment
based on previous alignments steps. This incremental approach to alignment would likely
be useful as it allows for higher confidence segments to be aligned first, thereby improving
the efficacy of alignment when subsequently aligning lower confidence regions as a general
alignment has already been achieved.

Work by Lyu et al. [83] proposes a method for aligning speech and audio from
separate languages is proposed. This has been developed for the alignment of Taiwanese
and Mandarin content. The approach first segments the audio content into a number of
semantically significant segments - in this case, the segments correspond to individual
news stories. A speech recogniser is then applied to transcribe the speech information
into Taiwanese spoken syllables. Machine translation is then used to provide word-by-
word translation of the corresponding Mandarin document into a sequence on Taiwanese
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tonal syllables, after which the resulting word sequences are aligned using Dynamic Time
Warping (DTW) [12]. The advantage of using DTW is that it is capable of length-invariant
sequence alignment, making it ideal for applications involving data with different time
bases. This method for cross-lingual alignment proved to be fairly successful, achieving an
alignment accuracy of 82.5% (33/40 words correctly aligned). This was achieved despite
poor performance of the ASR, which exhibited an accuracy of only 57.7%, demonstrating
that DTW was able to achieve strong general results despite noisy data. While this method
is interesting in that it tackles the issue of cross-lingual alignment, as with the other methods
reviewed, it again relies on a language model. Despite this, the work clearly highlights the
capabilities of DTW, with it achieving strong alignment results despite noisy data. Given
this, DTW would likely be an ideal method for cross-media alignment of audio and video
or subtitle information, particularly given a system which aims to achieve alignment by
language-independent means.

2.3.2 Automatic Speech Alignment

For current multimedia workflows, automatic speech alignment via audio-to-audio align-
ment is often used during the ADR process. This facilitates quick substitution of soundstage
recordings with the ADR recordings by automatically aligning audio by means of spectral
content. This has been a key interest within ADR for many years, with early attempts to
automate the process being made in the 1980’s [15].

More recently, systems such as WordFit [86] and VocAlign PRO [79] proved that it
was possible to use dynamic programming to automatically align similar sections of audio,
though the systems only worked successfully under ideal circumstances [116]; i.e. between
two signals of similar spacings under low noise conditions. Several approaches were
explored to improve upon the performance of automatic speech alignment [18][102][32]
through the use of dynamic time warping (DTW) - an algorithm designed to find an optimal
alignment between two sequences.

DTW works by finding the optimal path through a cost matrix, as demonstrated in
Figure 2.9. The cost matrix is obtained by computing a distance value (or cost) for each
feature in a query sequence, a, to each feature in a reference sequence, b. For audio-to-audio
alignment, these features are typically spectro-temporal features [116][137][117]. Once
the cost matrix has been constructed, dynamic programming is used to find the optimal
path through the matrix from (0, 0) to (n1−1, n2−1), for signals of length n1 and n2. This
produces a warping path - a path mapping the query signal to the reference signal - which
can be used to align the signals. In the case of automatic speech alignment, this warping
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path is used to inform how the audio query signal is time-stretched or time-compressed to
fit the reference audio.

Figure 2.9: Diagram path through cost matrix mapping query signal to reference signal
produced by DTW.

While applications of DTW in Soens et al.’s work [116], WordFit [86] and VocAlign
PRO [79] were successful in identifying similarities for audio-to-audio alignment tasks,
they did not address the issue of spacing, and thus was not consistently accurate, particularly
when timing differences between speech sequences were large.

Further work explored the incorporation of prosodic features within speech alignment
[128], however the performance of these approaches was also found to be inconsistent,
often resulting in distortions relating to acoustic differences. Later developments involved
the use of linear predictive coding (LPC) and standard DTW to achieve automatic post-
synchronisation of speech signals through detecting and aligning spectral content using
LPC cepstral vectors [127]. The signal could then be time-scaled through the use of the
Waveform Similarity Synchronized Overlap Add algorithm (WSOLA) [129]. This system
proved to be more effective when presented with timing differences between utterances,
however time-stretched results often produced notable distortions. Further work saw this
approach adopted and expanded upon through applying the DP principals to classify the
signals into segments of speech and non-speech. While this was more successful in certain
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scenarios, it also resulted in significant misalignments due to the alignment getting stuck in
local minima.

These algorithms all contend with drawbacks which produce unnatural distortions in
the resulting signal. This stems from the requirement of the warping function curvature:
this should allow very steep or flat gradients to account for temporal differences in speech
signals, but it should also be smooth enough to avoid unnatural sounding artefacts in the
time-aligned results. This was addressed in Soens et al.’s work on the development of
split dynamic time warping [116][117]. The algorithm first segments the two waveforms
into speech and non-speech segments. The reference speech segments are then delimited
by time markers (αr, βr), with 1 ≤ r ≤ R. For each of these, there must correspond
a replacement segment (λr−1, λr). Corresponding pairs can be found by splitting the
replacement speech waveform in which all non-speech segments have been removed in a
pre-processing step at time instants:

λr =

∫ αr+1

βr
g(x)τ(x)dx∫ αr+1

βr
g(x)dx

(2.14)

for r = 1, 2, 3, ...R−1, where λ0 = 0 and λR is the duration of the reduced replacement.
In this expression, τ(x) represents the linearly interpolated DTW path between the reference
(along the x-axis) and the reduced replacement using the symmetric Sakoe-Chiba local
constraint [111]. g(x) is a Gaussian weighting function that is used to bias the split towards
the speech segment boundaries.

The second step comprises of the recalculation of the timing relationships for each
pair of matching speech segments. This uses the same DTW algorithm as step 1 using a
Sakoe-Chiba band to speed up re-computation [111]. To reduce distortions in the resulting
signal, the warping path is smoothed using locally weighted regression (LOWESS) [21].
The effects of smoothing on DTW alignment are illustrated in Figure 2.10.

LOWESS smoothing proved to be both highly effective and computationally efficient.
Despite this, the process still produced occasional artefacts, as such a correction procedure
was also implemented to improve the consistency of natural sounding results by correcting
for unnatural deceleration and acceleration generated by the smoothing algorithm.

In performance evaluations the system demonstrated significant advantages over the
industry benchmark, VocAlign [117], with performance improvements of 44.8% in lip-sync
accuracy and 51.9% in speech quality over the baseline system [116]. Improvements were
primarily found when using the system on speech signals with large structural timing
differences.

The approaches discussed here all tackle the problem of audio-to-audio speech align-
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Figure 2.10: Illustration of smoothing process from [116].

ment through finding associations between spectro-temporal features. While this does not
relate directly to the core aims of the project, this review has been crucial in demonstrating
the capabilities of DTW - an algorithm which continues to be a crucial component within
audio alignment systems. This further supports the notion that DTW and related dynamic
programming-based methods are robust for multimedia alignment tasks, making them
strong candidates for use within this work.

2.3.3 Summary

This section has explored a number of methods used for alignment, with a focus on
audio feature alignment and audio-to-text alignment. While some of the audio-to-text
approaches required relatively few resources, all of the audio-to-text alignment methods
relied on a language model for audio tokenisation. This makes them unsuitable for solving
audio-to-text alignment by language independent means. However, these approaches have
introduced a number of concepts that will be useful for developing an alignment solution.
One key method used in alignment in both audio-to-audio and audio-to-text alignment is
dynamic programming sequence alignment. This has demonstrated strong performance for
aligning tokenised sequences in Anguera et al.’s work [4], and is a crucial component in
DTW, which itself is central to all audio-to-audio alignment methods explored. Another
useful method is presented by Hazen et al. [51], which uses an incremental framework
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to iteratively correct sequence alignment - first starting with a general estimate, before
improving alignment by re-analysing specific regions. Lastly, DTW has proven to be a
robust approach for sequence alignment, being applied for text-to-speech alignment in
work by Lyu et al. [83], as well is in all of the automatic speech alignment processes
explored.

In conclusion, while none of the literature explored tackled the exact problem of
language-independent alignment, the approaches reviewed have all been valuable in high-
lighting useful methods for sequence alignment. As such, this work will look to incorporate
these approaches within a solution developed for the language-independent alignment task.

2.4 Conclusion

This chapter has covered three key areas of interest to the project: audio speech processing,
computing vision techniques for speech processing, and methods feature matching and
sequence alignment. The literature reviewed here has guided each of the core sections of
this project, providing both conceptual guidance to inform the development of solutions,
and baseline systems against which these solutions have been evaluated. Each section here
has also been summarised, providing an overview of how the literature influenced project
development. The following chapters will go on to present the development of methods in
audio speech processing, visual speech processing and sequence alignment which form the
core contributions of this thesis.
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Detecting Speech in Entertainment
Audio

3.1 Introduction

In order to utilise speech within an audio-based alignment system, it is first necessary to
identify speech segments within the audio signal. As discussed in Chapter 2, numerous
methods exist for speech detection, however many of these are incapable of robust speech
detection within entertainment media. This is largely due to the variety of audio phenomena
present in entertainment media, including atmospheric noise and sound effects [55], and
audio effects applied to speech during post-production, such as distortion and pitch shifting
[131].

This section discusses the development of a Voice Activity Detection (VAD) approach
designed to detect speech in complex mixed audio signals, with a specific focus on solving
the problem of speech classification in entertainment media. Furthermore, this approach
looks to solve the problem of speech classification without the use of a language model, to
allow the work to be incorporated into a language-independent approach for audio-visual
matching and synchronisation.

The chapter begins with an introduction of the datasets used for the VAD development,
before describing the concepts behind the key competing approach and a novel speech
classification method developed through this work. The chapter goes on to present the
results of classifier tuning, after which results are presented in the form of an initial
investigation and a comprehensive evaluation which compares the proposed approach with
current state of the art. The chapter concludes with an investigation into how the amount of
data impacts classifier performance, and an examination of the method’s performance on
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Film Genre Dataset
Constantine Drama/Fantasy/Horror Partial Film Dataset
Shrek 3 Animation/Adventure/Comedy Partial Film Dataset
Knocked Up Comedy/Drama/Romance Partial Film Dataset
Blood Diamond Adventure/Drama/Thriller Partial Film Dataset
I Am Legend Drama/Sci-Fi/Thriller Whole Film Dataset 1 & 2
The Bourne Identity Action/Mystery/Thriller Whole Film Dataset 1 & 2
Kill Bill Vol. 1 Action Whole Film Dataset 1 & 2
Saving Private Ryan Action/Drama/War Whole Film Dataset 1 & 2
Disney’s Hercules Animation/Adventure/Comedy Whole Film Dataset 2
The Fellowship of the Ring Adventure/Drama/Fantasy Whole Film Dataset 2

Table 3.1: Dataset content and film genres. Genre labels according to The Internet Movie
Database (IMDb) [56]

non-English speech data.

3.2 Datasets

Three dataset configurations have been used for audio voice activity detection investigations.
Each comprises a variety of genres to give a comprehensive impression of voice activity
detection performance on a range of content. Each dataset has been manually annotated
to provide a human-defined ground-truth against which the predicted output of VAD
approaches can be evaluated. The datasets are as follows:

• Partial Film Dataset

• Whole Film Dataset 1

• Whole Film Dataset 2

The composition of each dataset and the genre labels of each film are given in Table
3.1.

The Partial Film Dataset was created to facilitate fast prototyping and classifier tuning
on a modest but diverse dataset. The films were specifically chosen to cover a range of
genres in order to incorporate a variety of sound design approaches, sound effects and voice
types. For each film in the dataset, 10 minutes of speech data has been obtained through
manual annotation of the film audio, and 20 minutes of non-speech data has been obtained
by the same means. This was done by going through the film content from the beginning
until 10 and 20 minutes of speech and non-speech data were obtained respectively. The
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speech and non-speech segments were then concatenated to form two blocks of data per
film: one 10 minute block of speech, and one 20 minute block of non-speech.

The ratio of speech to non-speech was determined following investigations into the
speech/non-speech ratio within films using Whole Film Dataset 2. As demonstrated in
Table 3.2, speech typically comprises between 20-30% of the total audio track for the films
investigated, with some films exhibiting more dialogue at up to 45% speech content. In
order to ensure an accurate impression of classifier performance, the upper-bound of 45%
was used as a guideline, and thus the Partial Film Dataset was constructed using a 2:1
ratio of non-speech to speech. This was done to ensure a significant degree of positive
classifications existed within the dataset, thus helping to ensure a more accurate impression
of classifier performance.

Whole Film Dataset 1 was constructed according to the films used in Eyben et al.’s
work [36]. This allowed for direct comparison between the VAD approaches explored here
and the approaches investigated in their paper. Whole Film Dataset 2 is an extension of the
first, adding films of the Fantasy and Animation genres to further diversify the content. In
total, Whole Film Dataset 2 comprises approximately 13 hours of audio data.

To ensure optimal accuracy when annotating the data, both audio and visual speech
information was used to inform the annotation process (by listening to the speech, and
watching visual speech cues when these were available). While much of the data could
be clearly differentiated into one of the two classes, the annotation process introduced a
number of challenges. Firstly, judgement had to be made as to whether background speech
should be classified as speech, as this may not be present in the dialogue. The decision
was made that, if the speech was intelligible, it should be classified as speech, however
if it was unintelligible (e.g. crowd noise), it would not be classified as speech. This is
as classifying intelligible background speech as non-speech could impact the classifier’s
performance on content with quieter speech segments, or where the speech is purposefully
engineered to sound distant. Secondly, a decision had to be made as to whether brief
vocalisations (such as grunts) should be classified as speech. The decision here was to
classify foreground vocalisations (i.e. close-miked) as speech, as often short periods of
dialogue, e.g. one or two words, are likely to have similar spectro-temporal qualities to
these kinds of vocalisations. As such, these were classified as speech to try and prevent the
rejection of potentially useful speech information. Lastly, there was the issue of where to
cut the audio: if cut at non-zero points, this would introduce time-domain artefacts which
could negatively impact feature extraction. As such, the audio was cut on zero-crossing
points to minimise the introduction of distortions from data segmentation.
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Film Speech
I Am Legend 18.26%
The Bourne Identity 22.87%
Kill Bill 23.46%
Saving Private Ryan 30.74%
Disney’s Hercules 45.22%
The Fellowship of the Ring 27.96%

Table 3.2: Speech percentage per film for Whole Film Dataset 2.

3.3 Machine Learning Techniques for Voice Activity De-
tection

Due to the challenging nature of complex mixed audio signals, such as described in work
by Sonnleitner et al. [119] and Eyben et al. [36], machine learning approaches for VAD
have been explored. The techniques discussed here use signal processing methods to
extract audio features prior to training binary classifiers to discriminate between speech
and non-speech information. The first technique explored was developed specifically for
speech discrimination in multimedia content, and is described by Sonnleitner et al. [119].
In Section 3.3.2, a novel VAD method is introduced which uses a correlation matrix-based
approach for feature selection and dimensionality reduction. While the former approach
demonstrates reasonable performance, the latter achieves particularly encouraging results,
outperforming contemporary and state of the art approaches on a range of feature films.

3.3.1 Sonnleitner et al.

One of the most successful methods for speech classification found in the literature is the
approach described by Sonnleitner et al., which achieves accuracies of > 97% on speech
classification tasks. The approach was developed to classify radio broadcasts as either
speech or music - the two predominant types of content in radio material. The approach
uses Short Time Fourier Transforms (STFTs) to exploit spectro-temporal variations of
speech signals in order to discriminate between speech and non-speech content. More
specifically, the approach exploits the sustained harmonic information in music, and the
lack of sustained harmonic information in speech, to discriminate between the two content
classes.
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Audio Processing and Spectral Features

The approach compares adjacent STFT audio frames to determine the amount of spectral
fluctuation, with low fluctuation indicating music, and high fluctuation indicating speech.
The STFT here uses a log frequency axis in order to improve sensitivity to musical
structures. This is achieved by computing the cross-correlation between time frames xt
and xt+offset, whereby the cross-correlation is used to estimate the degree of correlation
between shifted versions of the vectors for a range of lags l, where, for two vectors x and y
of length N , the cross-correlation for all lags l ∈ [−N,N ], gives a cross-correlation series
of length 2N + 1. The cross correlation is given as:

Rxy(l) =
∑
i

xiyi+l (3.1)

Input vectors x and y correspond to time frames, and the lag corresponds to a shift in
frequency content. rxcorr is defined as the maximum cross-correlation over a range of lags,
as given by:

rxcorr(xt, xt+offset) = max
1
Rxt,xt+offset

(l) (3.2)

where the lag is denoted by l ∈ [−lmax, lmax], which corresponds to the frequency shift
between bins. r is defined as a special case of the cross-correlation, where lag l = 0, thus
zero-lag cross-correlation is defined as correlation, i.e.:

r(xt, xt+offset) = Rxt,xt+offset
(0) (3.3)

Correlation gain, defined as rxcorr − r, is used to indicate the prevalence of speech within
the signal. This provides a measure of spectral fluctuation, whereby cross-correlation is
maximal at frequency lag l = 0, thus the gain rxcorr − r = R(0)− r = r − r = 0. Hence,
for signals with greater spectral fluctuation (such as speech), R(l) will be maximal for
some value of l 6= 0, and the gain rxcorr − r will be positive. Likewise, the gain will be
lower for audio in which music is dominant, as the cross-correlation between frames is
greater. As harmonic content is a key factor in discriminating between speech and music, a
log scale has been used to ensure that harmonic relationships are represented as constant
offsets to the fundamental frequency, thus allowing continuous frequency changes and
harmonic relationships to be picked up by cross-correlation between frames. The paper
describes using audio data sampled at 22.05 kHz, to which an STFT is applied via a Kaiser
window of size 4096 samples. The magnitude spectrum |Z(f)| is then computed, and the
STFT magnitude spectrum is mapped to the logarithmic cent scale. The features considered
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are the first 150 frequency bins of the spectrum, corresponding to 0 Hz to approximately
800 Hz. The paper also describes the use of a maximum lag parameter, lmax, which has a
value of 3 in order to account for chromatic sequences within musical content [119]. The
final implementation evaluates audio at 200 ms intervals using a frame of 50 STFT blocks
around each observation point. For each STFT block, two feature vectors are computed:
the cross-correlation, xc, and the correlation, c. The difference of the vectors provides the
feature vector r = xc− c, after which r is smoothed using a rectangular window of width 5.
The index of the dominant frequency bin within the observation window is then appended
to the feature vector, thus resulting in a vector of 48 feature values per observation. The
features were used to train a random forest classifier with 200 estimators (trees) and 10
features per tree. This was trained on an annotated set of 21 hours of randomly selected
audio from radio stations.

Modifications to Approach

The approach described in Sonnleitner et al.’s paper [119] uses a sliding median window
with a duration of approximately 10 s. While this yields strong results, entertainment media
contains brief segments of speech, with many utterances of sub-10 s duration [38]. As
such, adjusting the output using a 10 s long median window does not provide the desired
resolution. For the implementation used here, the median window has been removed in
order to provide the classification resolution necessary for identifying shorter utterances.

3.3.2 MFCC Cross-Covariance Features

While successful in its application context, the approach proposed by Sonnleiter et al.

[119] is not as well tailored to film audio. This is as feature film audio is far more variable
than radio audio, as it is comprised of a more diverse mixture of audio sources. This
includes music, speech and sound effects, whereas radio broadcasts typically only contain
either speech or music. The complexity of the problem is further compounded by the fact
that different audio sources can occur concurrently in feature films, making it desirable to
identify dialogue amongst other audio phenomena.

To address this, a novel approach for speech detection in complex mixed audio signals
is proposed. The approach uses cross-correlation of MFCC features applied to an annotated
dataset to extract feature pairs with the greatest inter-set cross-correlation difference
between speech and non-speech data.

The motivation behind these features is drawn from the principles underlying Sonnleit-
ner’s work [119], principally the observation that speech has distinct spectro-temporal
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characteristics when compared to other types of audio information (this is illustrated in
Chapter 2, Figure 2.1). It is clear from other speech processing techniques, such as the
method presented by Kinnunen et al. [69], that this quality can be exploited by utilising
speech activity in different critical bands. This is as speech affects certain critical bands
more than others, meaning that it should be possible to determine the presence of speech
by examining the correlation between a critical band which is known to be more sensitive
to speech with one that is known to be less sensitive to speech. Thus, the principle here
is to find pairs of critical band coefficients (in this case MFCCs) which have the greatest
difference in correlation between speech and non-speech data. In doing so, it is possible
to pick out the coefficient pairs whose correlation is most significantly affected by the
presence or absence of speech, and thus the coefficient pairs which are likely to be most
informative for the speech classification task.

Once the inter-set MFCC correlation differences have been obtained, the most signifi-
cant n features are processed to produce MFCC Cross-Covariance (MFCC CC) features.
These features are then used to train a binary classifier. Two machine learning approaches
have been investigated for binary classification: support vector machines (SVM) and ran-
dom forests. Investigations demonstrate that random forests outperform SVMs on speech
classification within entertainment media.

Audio Processing and Spectral Features

A number of spectral features were considered for audio feature extraction, including
MFCCs, Linear Predictive Coefficients (LPCs), and STFTs. MFCCs were chosen as the
feature for a number of reasons:

1. Their prevalence in the literature for speech processing tasks [35][87][69].

2. The use of perceptual scaling (the Mel scale).

3. The fact that they are cepstral features, rather than spectral features.

The use of Mel scale features has several key advantages. The first is that there is
a strong link between the human voice and the human auditory system [11]. Secondly,
entertainment audio is intentionally mixed by humans, to be experienced by humans - this
implies a strong relationship between the data and human auditory perception. Given these
two factors, it is sensible to assume that perceptually scaled features would be optimal
for speech detection tasks in this context. Lastly, the fact that they are cepstral features
means that they are sensitive to patterns in the frequency domain, and previous work has
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demonstrated that frequency-domain patterns are useful for discriminating between speech
and non-speech information (Section 2.1.2).

For this work, stereo audio signals recorded at 44.1 kHz at a bit depth of 16 bits were
used. The MFCC features are extracted by first applying a sliding window to the data with
frame size 25 ms (1102 samples), with a step of 10 ms (441 samples) between frames. The
Discrete Fourier Transform (DFT) for each frame is obtained via:

S(k) =
N∑
n=1

s(n)h(n)ej2πkn/N1 ≤ k ≤ K (3.4)

where h(n) is a sample window of length N , K is the DFT length, and k is an integer
corresponding to the DFT bin number [115]. The power spectrum for the frame s(n) is
obtained by:

P (k) =
1

N
|S(k)|2 (3.5)

A set of triangular filters are then applied to the power spectrum signal to obtain the
Mel-spaced filterbank. This is done by first converting the frequency range, f , to the Mel
scale by:

M(f) = 1125ln(1 + f/700) (3.6)

A 26-vector Mel-spaced filterbank is constructed according to the linearly spaced Mel
frequencies via:

Hm(k) =


0 k < f(m− 1)

k−f(m−1)
f(m)−f(m−1)

f(m− 1) ≤ k ≤ f(m)
f(m+1)−k

f(m+1)−f(m)
f(m) ≤ k ≤ f(m+ 1)

0 k > f(m+ 1)

(3.7)

whereM denotes the number of filters and f() is a list ofM+2 Mel-spaced frequencies
[81]. This produces a Mel filterbank with an upper-frequency of 22.05 kHz, as shown in
Figure 3.1.

In order to obtain the filterbank energies, each band of the Mel filterbank is multiplied
with the power spectrum, and resulting coefficients are summed together. This produces 26
filterbank energy coefficients which describe the energy content of each filterbank. The log
of each filterbank energy coefficient is then computed, producing 26 log filterbank energy
values. A discrete cosine transform (DCT) is applied to these values, producing 26 MFCCs,
of which the lower 13 MFCCs are used.
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Figure 3.1: Diagram of Mel-scale filterbank.

For investigations using the Python programming language, the Python Speech Features
library MFCC implementation has been used [82].

Feature Selection and Feature Vector Processing

The first phase in MFCC CC feature extraction is to obtain MFCC feature pairs which
demonstrate significant difference in correlation between speech and non-speech data.
These are the top n feature pairs with greatest difference in correlation, d, between speech
and non-speech data sets. Correlation is calculated as the Pearson product-moment cor-
relation coefficient, ρ. This is computed for all pairs of MFCCs in both the speech and
non-speech data sets. Each correlation coefficient ρ in P is obtained from the covariance
matrix, Σ, of a pair of MFCC features, via the coefficient matrix P:

Pij =
Σij√

Σii × Σjj

(3.8)

The correlation coefficient has a value between−1 and 1, where 1 denotes total positive
correlation, and −1 denotes total negative correlation. Two matrices are produced as a
result of this phase: one inter-MFCC correlation matrix for speech data, MFCs, and one
inter-MFCC correlation matrix for non-speech data, MFCns. The difference matrix, D, is
obtained simply by:

S = MFCs −MFCns

D = (|Sij|)
(3.9)
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Higher values of dij , for dij ∈ D, indicate greater variance in the MFCC pair relation-
ships between speech and non-speech data, as shown in Figure 3.2. This in turn indicates
that the pairs are more likely to provide information relating to the presence or absence of
speech spectral data, thus facilitating more effective speech/non-speech discrimination.

Figure 3.2: Matrix of MFCC pair correlation coefficient differences between speech and
non-speech data. Darker squares indicate greater values.

The MFCC CC features are obtained for n MFCC pairs which have the greatest
values of d. The cross-covariance vector is obtained by computing the cross-covariance of
segments of the two signals along their length via a rectangular sliding window:

(f× g)i :=
∑
j

fj × gi+j

f = vak:k+w, g = vbk:k+w,∀k ∈ K − w
(3.10)

where va and vb are the MFCC vectors, k is the index, K is the length of the vectors, and
w is the length of the sliding window.

Previous work has demonstrated the importance of temporal information for speech classi-
fication problems [36][119]. As such, temporal information is incorporated through using
a window size, w, of 450 ms. This duration was determined based on an average phoneme
duration of ≈176 ms [64]. A window size of 450 ms is therefore long enough to facilitate
the rejection of brief speech-like phenomena, while still allowing for the detection of finer
resolution (sub-1s duration) speech features, such as words or sub-word phoneme strings.
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Classifier Training and Feature Optimization

The resulting MFCC-CC feature vectors are used to train a binary classifier to discriminate
between speech and non-speech information in entertainment audio. In this work, two
classification approaches have been explored: random forests and support vector machines
(SVMs). Grid-search optimization has been used to find the optimal parameters for both
the random forest and SVM classifiers. For the random forest, the number of estimators
(trees per forest) was varied, using a range of between 10 and 500 estimators.

For the SVM, linear, polynomial and Radial Basis Function (RBF) kernels were
investigated. For each kernel, various values for the C parameter were investigated, along
with kernel-specific parameters d and γ for polynomial and RBF kernels respectively. In
the context of SVMs, C denotes the regularization parameter which controls the trade-off
between margin maximisation and training data errors [13]. The kernels used for the SVM
are defined as:

Linear kernel:

K(x, x′) = xTx′ + c (3.11)

Polynomial kernel:

K(x, x′) = (xTx′ + 1)d (3.12)

where d is the order of the polynomial.
Gaussian RBF kernel:

K(x, x′) = exp(γ||x− x′||22) (3.13)

where the free parameter γ affects the degree of influence for individual training
examples, thus moderating support vector selection.

The number of MFCC feature pairs used for MFCC-CC feature creation was also
explored in order to find the optimal number of MFCC feature pairs. The following
sections discuss parameter tuning and MFCC-CC feature optimization.

3.3.3 Evaluation Design

The Partial Film dataset was used for evaluation of machine learning approaches. For
each approach, k-fold cross-validation was used for classifier tuning, with each iteration
investigating a range of classifier parameters. This method facilitates a comprehensive
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evaluation of classifier performance through maximising the usefulness of the data - giving
an accurate impression of classifier performance over the whole range of data.

Each iteration uses 90 minutes of data for the training set (from three films), and 30
minutes of data for the test set (from the remaining film). This ensures that the classifier is
naı̈ve to the test data and maximizes testing cycles for the evaluation test set. The mean of
the performance metrics for all four evaluations is then obtained and used for performance
evaluation.

For the random forest, the key parameter investigated is the number of estimators (or
trees) per forest. For the SVM, two kernels are investigated: radial basis function (RBF)
and polynomial. The RBF kernel is tuned using a range of C and γ values, while the
polynomial is tuned using a range of C and degree values.

Both the random forest and SVM approaches evaluate the performs of the machine
learning algorithms over a range of MFCC-CC feature vectors, in order to determine the
optimal number of MFCC-CC vectors required for good classifier performance. To do so,
MFCC-CC feature vectors were added to the feature vector in order of significance, with
the most significant being the vector with the greatest correlation coefficient difference, d,
across speech and non-speech data.

The statistical parameters used for evaluation are accuracy, precision, recall, F-score
and Receiver Operating Characteristics (ROC) curves. These were chosen as accuracy
gives a reasonable impression of performance, while F-score and ROC evaluations give
an estimate of how well the classifier will generalize. The use of these methods is further
supported by their prevalence in the literature [36][119][125].

3.3.4 Evaluation Results

This section discusses the results of the investigations into random forest and SVM-based
classification methods.

Random Forest Classification

The random forest approach was investigated using a range of estimators (trees per forest)
to determine the optimal parameter for performance. The number of estimators used ranged
from 10 to 500.

Figure 3.3 clearly demonstrates appreciable performance gain between 10 and 100
estimators, with performance metrics stabilising at approximately 150 estimators. This
indicates an optimal number of estimators of >150. Previous work on random forest-based
speech classifiers has found 200 estimators to be optimal [119]. Thus, given observations
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Figure 3.3: Random forest classification results using a range of estimators

from the literature and the results shown here, a value of 200 was chosen as the number of
estimators for the random forest classifier.

Figure 3.4: Random forest classification results using a range of MFCC-CC features

As demonstrated in Figure 3.4, pronounced improvement in performance can be ob-
served between one and three MFCC-CC features, with performance levelling off at around
five MFCC-CC features, after which performance enhancement is minimal. Therefore, 5
was deemed a suitable number of MFCC-CC features as this is past the point of significant
performance gain by a reasonable margin.

Support Vector Machine Classification

The performance of the linear SVM was tested over a range of C values from 0.00001 to
100. As Figure 3.5 demonstrates, the best performance was obtained between C values
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of 0.001 and 1.0, with a peak accuracy value of 0.864 at C = 0.01. The same trend can
be observed for the F-score values in Figure 3.6, with better performance in the range
C = 0.001 to 1.0, and performance trailing off thereafter. This is unsurprising, as higher
values for C will tend to result in over-fitting, hence this drop-off in performance is likely
attributed to the classifier beginning to develop a stronger bias to the training set.

Figure 3.5: Accuracy scores for linear kernel SVM over a range of C values.

Figure 3.6: F-scores for linear kernel SVM over a range of C values.

As the heatmap in Figure 3.7 demonstrates, the polynomial kernel performed reasonably
well, achieving a peak mean accuracy of 0.86 for speech classification on the Partial Film
dataset. The peak accuracy statistics were obtained with low d values, and across a range
of C values. This indicates optimal parameters of C = 0.1 to 1000 and d = 1.0. While the
C parameter appears to be less critical - demonstrating strong performance over a range of
values - low d values likely correspond to reduction in over-fitting of the SVM. As the d
values are increased, poorer performance on the validation set becomes increasingly likely
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due to the model’s increased bias for the training set. This leads to over-fitting for higher
values of d, and corresponds to the pattern observed in Figures 3.5 and 3.6.

Figure 3.7: Heatmap of accuracy scores from SVM grid search with polynomial kernel
SVM.

Figure 3.8 shows the performance of the RBF kernel SVM to be optimal over γ values
of 0.001 and C values of 0.01 to 100. As with the polynomial kernel’s d parameter, this
range of γ values suggests that the classifier may begin to over-fit at higher γ values,
resulting in increased training set bias. This effect is far more pronounced with the RBF
kernel - with a sudden severe drop in accuracy once the parameters fall outside of their
optimal values. Most importantly, this investigation demonstrates that the RBF kernel
outperforms both the linear and polynomial kernels, as demonstrated in Table 3.3. As such,
this section explores RBF kernel performance in more detail - examining the impact of the
number of MFCC-CC features and classifier performance over a broader range of metrics.

Figure 3.9 shows classifier performance over a range of MFCC-CC features. Similarly
to the results from the random forest classifier, the greatest degree of performance gain is
achieved between 1 and 3 features, after which only marginal improvement in performance
is observed. Unlike the random forest approach, the SVM demonstrates a slight dip in
precison at 5 MFCC-CC features. Analysis of the scores on individual test sets demonstrates
that this is due to a drop in precision score at 5 MFCC-CC features for the Shrek 3 data.
Nevertheless, all other statistics demonstrate improvement between 4 and 5 features, hence
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Figure 3.8: Heatmap of accuracy scores from SVM grid search with RBF kernel SVM
using 5 MFCC-CC features.

Figure 3.9: RBF kernel SVM performance over a range of MFCC-CC features using
parameters C = 1.0 and γ = 0.001.

5 MFCC-CC features was selected as this is significantly past the ’knee’ in performance
gain, and fits the underlying trend for all but one of the test sets.

Conclusion

Optimal SVM performance was achieved using the RBF kernel with γ = 0.001 and
C = 1.0, which outperformed the best polynomial score by > 2% across both accuracy
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Classifier Accuracy F-score
SVM - Linear 0.864 0.768
SVM - RBF 0.886 0.827
SVM - Polynomial 0.864 0.769
Random Forest 0.892 0.837

Table 3.3: Results from tuned random forest and SVM approaches.

and F-score. While this performance is strong, it was exceeded marginally by the random
forest classifier, which exhibited an accuracy of 0.892 to the SVM’s accuracy of 0.886.
Comparison of tables 3.4 and 3.7 shows that the random forest largely outperformed the
SVM except for one film in the dataset for which it demonstrated some advantage on a
few metrics. This was Knocked Up, for which the SVM achieved greater results in both
accuracy and precision. The random forest also demonstrated slightly more consistent
results, with all metrics following a consistent trend when evaluating the number of MFCC-
CC features (whereas the SVM demonstrated a slight deviation from the trend with a drop
in precision).

In order to assess the significance of the performance metrics presented here, the
variance of the accuracy scores across the four films has been obtained. This has been done
using 5 MFCC-CC features for both of the highest performing methods: the RBF SVM
and the random forest classifier. For the random forest, a variance of 0.029 was obtained
using 200 estimators. For the SVM, a variance of 0.001 was obtained using optimal SVM
parameters: C = 1.0, and /gamma = 0.001. While the results are very close, the random
forest has been chosen for future investigation as it is significantly faster to train than the
SVM (with the random forest taking around 20 minutes compared the SVM taking up to
several hours). Thus, the advantages in training time far outweigh the marginal gains of
the low variance in results from the SVM. As such, a random forest with 250 estimators
using 5 MFCC-CC features was selected as the classification algorithm of choice for the
MFCC-CC VAD.

The evaluation provided here also serves to inform the degree of significance required
for the MFCC-CC approach’s performance to be considered superior to competing ap-
proaches. Thus, this work will only classify performance as improved if there is a minimum
of a 0.03 improvement in performance between methods, in order to account for variation
inherent to classification performance.
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Test set Accuracy Precision Recall Fscore
Constantine 0.894 0.879 0.790 0.832
Shrek 3 0.845 0.781 0.741 0.761
Knocked Up 0.893 0.851 0.824 0.837
Blood Diamond 0.910 0.918 0.803 0.857
Mean 0.886 0.857 0.789 0.827

Table 3.4: Classification results from SVM with RBF kernel trained using optimal parame-
ters from grid search cross-validation.

3.4 Experimental Design

Several investigations were undertaken to evaluate the performance of the MFCC-CC VAD
with respect to other contemporary VAD approaches developed for entertainment media
content. The initial investigation explores the performance of the MFCC-CC classifier
and Sonnleitner et al.’s approach [119] on the Partial Film dataset, using leave-one-out
cross-validation on two hours of data from the four feature films. This is followed by
investigations using Whole Film Dataset 1, which explores the performance of the two
classifiers on four whole feature films and compares their performance with the methods
described by Eyben et al. [36]. This investigation uses the entire Partial Film dataset
as training material, and Whole Film Dataset 1 as the test set. The final investigation
uses leave-one-out cross-validation on Whole Film Dataset 2 in order to explore classifier
performance on a greater range of feature films, and to explore the impact of training set
size on classifier performance.

Each investigation evaluated performance using accuracy, precision, recall, F-score and
ROC analysis.

3.5 Initial Investigation

3.5.1 Sonnleitner VAD

As Table 3.5 demonstrates, the approach from Sonnleitner et al.’s work [119] achieves a
mean accuracy of 69.9%, and also demonstrates significantly lower values for precision,
recall and F-score than reported in the paper. The foremost cause of this is likely the removal
of the median filter, which would have had a smoothing effect on the data; reducing the
impact of false positives and false negatives.

Another key factor is the type of data used. While the classifier may perform well
when discriminating between music and speech, the approach may not be sophisticated
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Test set Accuracy Precision Recall Fscore
Constantine 0.714 0.642 0.315 0.423
Shrek 3 0.701 0.642 0.228 0.337
Knocked Up 0.678 0.539 0.224 0.317
Blood Diamond 0.701 0.637 0.236 0.344
Mean 0.699 0.615 0.251 0.355

Table 3.5: Classification results from random forest trained on features described in
Sonnleitner et al.’s work [119].

enough to achieve strong accuracy on entertainment media. This is because, unlike radio,
which contains predominantly speech and music, entertainment media contains a variety of
sounds, including modified voices, foley, and sound effects - as well as speech and music.

A further consideration is the difference in training set size between the example here
and the training set used in Sonnleitner et al.’s work. While this likely contributed to the
reduction in performance, the same training set has been used to evaluate this with respect
to the MFCC-CC VAD, as such these results were deemed sufficient for comparison, as the
MFCC-CC VAD has the same training set size constraints.

3.5.2 MFCC-CC VAD

The MFCC-CC VAD was developed to provide a VAD method with higher classification
resolution than the approach detailed in Sonnleitner et al.’s paper [119], but with the aim
of achieving better performance statistics than exhibited by the implementation in Section
3.5.1. Results from initial investigations were encouraging - as demonstrated when compar-
ing Table 3.5 and 3.7, the MFCC-CC VAD significantly outperforms the implementation
from the previous section, achieving accuracies > 90%, and a mean accuracy of ≈89%.
This is significantly better than the implementation based on Sonnleitner et al.’s paper,
which achieves a peak accuracy of ≈71%, and a mean accuracy of ≈70% [119]. This
performance advantage can be observed across all other metrics used, with particularly
distinctive scores for the recall and F-score statistics. The low recall metrics for [119]’s
approach suggests a high degree of misclassifications, particularly regarding false negatives
- suggesting that it is unable to return a significant proportion of relevant classes. The
poor precision score indicates that, while the approach returns some correct positive cases,
it returns a significant proportion of false positives. In contrast, the MFCC-CC VAD
demonstrates good results across all performance metrics, with a mean > 80% across all
datasets for all statistics.

The MFCC-CC classifier was also evaluated using ROC curves (Figure 3.10), a common

61



3.5. Initial Investigation Chapter 3

Figure 3.10: Receiver Operating Characteristic curves for MFCC-CC classification results
from initial investigations.

Test set Constantine Shrek 3 Knocked Up Blood Diamond Mean
AUC 0.969 0.925 0.954 0.973 0.955
EER [%] 9.5 15.0 11.6 8.1 11.1

Table 3.6: Area under the curve and equal error rate from receiver operating characteristics
plot.

method of assessing binary classifier performance. The ROC curves in Figure 4 indicate
strong performance, with an average area under curve (AUC) of 0.955 (see Table 3.6),
indicating that the classifier exhibits strong discrimination between the two classes. The
Equal Error Rate (EER) observed here further indicates strong system accuracy, with
an average EER of 11.1% achieved across the four test scenarios. This suggests better
performance than the VAD in Eyben et al.’s work, which achieved an average EER of
33.2% on film audio data [36].

3.5.3 Conclusion

The approach from Sonnleitner et al.’s paper was particularly attractive given the classifica-
tion results reported in the paper, and the fact that it was applied to more appropriate data
than the other leading approach [36], which was developed for speech detection in acoustic
environments (rather than for detecting speech in entertainment audio). Investigations into
this approach demonstrate that it does not achieve statistics comparable to the paper when
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Test set Accuracy Precision Recall Fscore
Constantine 0.903 0.902 0.794 0.844
Shrek 3 0.861 0.792 0.789 0.790
Knocked Up 0.881 0.783 0.889 0.833
Blood Diamond 0.924 0.920 0.845 0.881
Mean 0.892 0.849 0.829 0.837

Table 3.7: Classification results from random forest trained on MFCC-CC features.

applied to feature film audio data. While better results may be achievable with the addition
of median filtering (as described in the paper), the median filtering would greatly limit
classifier resolution, and is thus not desirable for the application scenario considered. As
such, this approach was deemed unsuitable, and it was concluded that a more accurate
classifier with greater classification resolution would be necessary.

The MFCC-CC approach was developed to provide the higher resolution functionality
and to achieve more robust performance on the feature film audio data. Investigations into
its performance on the partial film dataset demonstrate that it meets these requirements,
significantly outperforming the approach proposed in the paper by Sonnleitner et al. [119]
across all metrics and on all data. Further testing goes on to explore the performance of
the MFCC-CC approach on a greater range of data, and to provide more comprehensive
comparison against other contemporary approaches and state of the art.

3.6 Comparison with Contemporary and State of the Art
Approaches

This section explores the performance of the MFCC-CC classifier on the first whole feature
film dataset in order to provide a more comprehensive evaluation of its performance with
respect to existing methods. The methods used for comparison were a long-standing state of
the art VAD approach proposed by Sohn et al. [118], used to provide baseline performance
statistics, as well as Eyben et al.’s [36] and Sonnleitner et al.’s [119] approaches, which
have demonstrated strong performance on entertainment media.

Interestingly, the results in Table 3.8 indicate that the approach from Sonnleitner et al.’s
work demonstrated competitive performance against both Eyben et al. and Sohn et al.’s
work, despite the poor performance exhibited in Section 3.5. The MFCC-CC approach
again exceeds the performance of Sonnleitner’s approach - improving on all methods
investigated, with greater AUC values and lower EER for all test sets. Another interesting
point to note is that Eyben et al.’s approach yielded better results using the training set in

63



3.6. Comparison with Contemporary and State of the Art Approaches Chapter 3

AUC
Test set Sohn* Eyben* Eyben Sonnleitner MFCC-CC
I Am Legend 0.567 0.704 0.710 0.718 0.921
Kill Bill Vol. 1 0.554 0.627 0.642 0.800 0.893
Saving Private Ryan 0.577 0.743 0.708 0.717 0.946
The Bourne Identity 0.603 0.685 0.698 0.730 0.977
Mean 0.575 0.690 0.689 0.741 0.934
[%] EER
All 45.73 33.18 33.77 31.41 13.49

Table 3.8: Comparison of VAD approaches. * indicates results from [36] in which a
different training set was used.

AUC
Test set Eyben Sonnleitner
I Am Legend 0.810 0.721
Kill Bill Vol. 1 0.720 0.734
Saving Private Ryan 0.792 0.722
The Bourne Identity 0.785 0.805
Mean 0.777 0.746
[%] EER
All 25.92 31.18

Table 3.9: Comparison of VAD approaches using median smoothing on the classifier output.

the paper, than when using the partial film dataset for training. This is likely due to the
fact that the dataset used in the paper is substantially larger, at approximately 35 hours,
indicating that a sufficient quantity of data can overcome some of the challenges presented
by out-of-domain training. Nevertheless, the MFCC-CC approach still clearly outperforms
all implementations detailed in Eyben et al.’s paper, indicating that the feature can be used
for robust discrimination of speech activity.

Table 3.10 provides a more detailed performance comparison of the MFCC-CC ap-
proach and Sonnleitner et al.’s approach (as this demonstrated the most competitive results
in Table 3.8). The MFCC-CC approach demonstrates some reduced performance when
compared to the initial testing results in Table 3.7, however, this was anticipated given
the limited training set and larger test set. Despite this, the approach continues to exhibit
competitive results, outperforming Sonnleitner et al.’s classifier across all performance
metrics. In particular, it can be seen that while Sonnleitner et al.’s approach demonstrates
relatively strong accuracy scores, significantly greater F-score values for our approach can
be observed, indicating more robust performance.
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Test set Accuracy Precision Recall F-score
IAL 0.88 0.81 0.62 0.47 0.81 0.17 0.70 0.25
KB.1 0.84 0.79 0.64 0.62 0.72 0.26 0.68 0.37
SPRn 0.87 0.77 0.91 0.45 0.66 0.29 0.77 0.35
TBI 0.94 0.76 0.88 0.45 0.88 0.25 0.87 0.32
Mean 0.88 0.78 76 0.50 0.77 0.24 0.75 0.32

Table 3.10: Performance statistics of MFCC-CC approach and classifier from Sonnleitner
et al. [119] when applied to whole-film dataset. Left (bold) MFCC-CC results. Right:
results Sonnleitner et al.’s approach.

As the MFCC-CC approach uses 450 ms of temporal data, the investigations into Eyben
and Sonnleitner’s methods were reproduced using median smoothing over the classifier
output of the same duration. The results of these investigations are demonstrated in Table
3.9. As shown when comparing Table 3.8 and Table 3.9, both approaches demonstrate
improved AUC and EER when using the median filtering. This is likely due to de-noising
effect of the median filter: by assigning classes according to the most prevalent classification
within the window, incorrect classifications have less impact, thus resulting in greater
classification accuracy. Crucially, despite the use of additional temporal information in this
investigation, the MFCC-CC approach still demonstrates significantly better performance
across all datasets.

3.7 Six Film Cross-Validation Investigation

Whole Film Dataset 2 was used to investigate the impact of training set size on classifier
performance. While the typical approach to learning curve investigations involves itera-
tively adding a small proportion of the training set and re-training and testing the classifier,
the approach used here adds the data from whole feature films at each iteration. The reason
for this is that it is difficult to sub-sample fairly from feature film content due to the high
degree of variance in the audio content. As such, were sub-sampling used for each film, it is
unlikely that the sample set would be representative of the variety of audio content present
within the data. Therefore, the learning curve has been constructed through adding entire
feature films, in order to ensure representative sampling of content and therefore provide
a more accurate impression of performance. The following results therefore present the
mean statistics obtained from k-fold cross-validation over a range of 6 films, wherein a
range of 1-5 are used for training, with the remaining film held out as the test set.

Figures 3.11 and 3.12 demonstrate that performance improves both overall and on
individual test sets as the size of the training set is increased. That said, performance gain
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is fairly marginal - with a peak mean accuracy of 0.86 only marginally above the minimum
observed mean accuracy of 0.85. This suggests that a single feature film contains sufficient
training examples to achieve good classification performance.

Figure 3.12 also provides further detail into classifier performance on a broader range
of data, demonstrating competitive results across all six test sets. Of particular interest is
the strong performance observed when testing on data from The Fellowship of the Ring
and Saving Private Ryan, both of which contain a substantial amount of sound effects and
modified voices. This is encouraging, indicating that the classifier is capable of negotiating
some of the key challenges encountered when detecting speech in feature-film audio data.

A further notable observation is the difference in results from testing on The Bourne
Identity and Disney’s Hercules, which achieve the strongest and weakest results respectively.
The contrast in classifier performance implies relatively significant differences in the data,
indicating that The Bourne Identity contains largely typical speech content, while Hercules
contains a greater proportion of atypical speech content. Empirical analysis reveals that
Hercules contains a large amount of music that incorporates spoken word vocal styles. This
differentiates it from the other films in the dataset and is a likely contributor to the reduced
classifier performance observed on this test set. As such, these results indicate that music
containing spoken-word speech content should be considered as an additional challenge
when discriminating between music and dialogue.

Figure 3.11: Mean MFCC CC classification results from six-film cross-validation over a
range of training set sizes.

3.8 Non-English Speech Tests

While the VAD does not incorporate a language model, so far it has only been tested on
largely English content. As such, to validate that it performs equivalently well on non-
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Figure 3.12: Accuracy of MFCC CC classifier from six-film cross-validation over a range
of training set sizes.

Test set Accuracy Precision Recall F-score
The Girl with the Dragon Tattoo 0.921 0.906 0.887 0.897
Pan’s Labyrinth 0.858 0.799 0.617 0.697

Table 3.11: Results from MFCC-CC VAD applied to non-English speech data.

English speech data, it has been tested on excerpts from two non-English films. These are
The Girl with the Dragon Tattoo, which contains Swedish dialogue, and Pan’s Labyrinth,
which contains Spanish dialogue. The languages investigated were specifically chosen to
cover both Germanic and Romance language groups: the two principal language groups
in Europe. The test data comprised the first 30 minutes of each film, which was manually
annotated to provide a ground truth for classifier evaluation. The classifier used is trained
on all available data from the Whole Film Dataset.

As demonstrated in Table 3.11, the results for the two non-English datasets indicate
similar VAD performance to the English data, with accuracies of 92% and 86% for The Girl
with the Dragon Tattoo and Pan’s Labyrinth respectively. These scores are both similar to
the accuracy scores for the earlier investigations on English speech content, which achieved
scores of ≈ 86 − 88%. The F-scores are also similar, with the lowest F-score achieved
here being ≈ 70% for Pan’s Labyrinth, while The Girl with the Dragon Tattoo achieved an
F-score of ≈ 89%. This resembles the range of F-score results from earlier investigations,
such as demonstrated when comparing Table 3.11 to Table 3.10.

While this investigation only addresses a small subset of possible language groups, it
clearly indicates that the VAD is capable of achieving strong results on languages which
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are different to that used in the training set. This is encouraging as it demonstrates that the
method is robust to the highly dynamic and variable audio used in entertainment media,
and that it can be applied to languages which are not included in the training set. This
makes it attractive for use in multimedia localisation and as the foundation of a language
independent alignment solution.

3.9 Conclusion

This chapter has presented a novel approach for speech detection within film audio, and
evaluated it with respect to a number of state of the art and contemporary approaches. The
evaluations have shown that the approach is capable of strong performance over a range
of feature film content, achieving accuracy scores of > 90% and improving on existing
approaches across all performance metrics investigated. This approach is therefore deemed
suitable for speech detection applications in feature film media. As such, the VAD will
be used to obtain audio speech activity information which can be leveraged alongside
transcript and visual speech information for use within an overall multimedia matching
and synchronisation framework.
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Visual Speech Processing

4.1 Introduction

The previous chapter demonstrated that audio VAD is achievable via a number of methods,
with the MFCC-CC method demonstrating encouraging performance with respect to other
existing approaches. Despite the success of the proposed approach, there are still scenarios
in which multimedia audio data is challenging for the audio VAD approach. Previous
approaches have utilised visual speech information to help tackle some of the issues
presented by complex or noisy audio signals in speech processing, such as work by Almajai
et al. [2], Dov et al. [33] and Noda et al [94].

Given their prevalence in speech processing tasks, this work has explored the use of
visual speech features for visual VAD (V-VAD). The principal here is that V-VAD can
be used on content which is particularly challenging for audio VAD, such as content
containing a significant degree of noise or sound effects. This is not a trivial task given
the dynamic nature of entertainment media - with video content containing challenging
lighting conditions, dynamic movement and frequent occlusions of key visual features.

Existing V-VAD approaches principally rely on appearance-based features, with several
methods using 2D-DCTs as the primary feature [3] [75]. To address the challenging nature
of visual speech in entertainment media, this work looks to exploit state-of-the-art methods
for facial landmark localisation. These have been explored as they are more robust to noise
induced by variable illuminations and occlusions (as discussed in Section 2.2.2), making
them ideal for use with the challenging visual speech data in entertainment media. While
the literature indicates that these landmark approaches may be better suited to entertainment
media, appearance-based methods also provide useful information. As such, this work
investigates both appearance and landmark-based features, and goes on to explore whether
it is advantageous to combine both feature types.
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4.2 Datasets

Two datasets have been used within this section: the Grid corpus, and a natural speech
dataset comprising material obtained from video lectures. The Grid corpus is an audio-
visual speech dataset assembled by the University of Sheffield [22]. The entire corpus
contains 33 individuals each speaking 1000 sentences. For this work, four subsets of the
Grid corpus have been used:

• Grid Corpus Subset 1 The first subset is used for speaker independent testing. This
comprises 1000 sentences from Grid subject 6. This subject was chosen as the same
subject is used for speaker dependent investigations in Le Cornu et al.’s work [75],
hence this allows for direct comparison with their approaches.

• Grid Corpus Subset 2 This subset contains 10% of sentences from Grid subjects
1-7, 10 and 12. This is the subset of the corpus used in Le Cornu et al.’s paper [75],
as such it has been used to compare directly with the VAD methods used in their
paper.

• Grid Corpus Subset 3 This subset uses the same subjects from Subset 1, however
uses 100% of the available data. This has been used to validate that the 10% subset
is representative of classifier performance on the whole dataset.

• Grid Corpus Subset 4 The fourth Grid corpus subset is a gender balanced subset,
comprising subjects 1-7, 15, 20 and 31. The latter three subjects were arbitrarily
selected to create a gender balanced corpus of 5 male and 5 female subjects. This
corpus is used to evaluate classifier performance on a gender balanced subset.

The natural speech dataset contains approximately 105 minutes of data from 7 different
speakers. The video has been obtained (with permission) from video lectures from The Uni-
versity of Leeds, UK, and Duke University, North Carolina, USA. Whereas the Grid corpus
subjects are restricted to stationary, frontal-face poses, this dataset has been assembled to
provide visual speech information from unrestricted subjects. As such, the videos contain
natural movements and head poses, as well as a variety of sub-optimal detection conditions
including lighting variance, full and partial occlusions, and dynamic movement of both
the camera and the subjects. The dataset contains approximately 10 minutes of speech
and 5 minutes of non-speech for each speaker. This is as ≈5 minutes was the maximum
amount of non-speech obtainable from most of the information sources, as many sources
only contained ≈1 hour of data, during which pauses were rare. Furthermore, many of
the sources change frequently from a view of the speaker to presentation slides, further
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restricting the amount of usable data. Rather than using the natural speech/non-speech
ratio, which in this case significantly favours speech, a ratio of 2:1 has again been used.
This facilitates an accurate impression of classifier performance through ensuring there are
a significant number of non-speech examples.

Figure 4.1: Examples from Natural Speech dataset: head poses, natural gestures and
reflective glasses creating more challenging detection scenarios.

The data for the Grid Corpus datasets was segmented into speech and non-speech using
the speech ’in’ and ’out’ times detailed in the data files provided with the Grid Corpus. The
resulting data segments for each class were then concatenated, resulting in two pools of
data: one for speech, and one for non-speech. For the Natural Speech Dataset, a similar
approach for speech/non-speech segmentation used in Chapter 3 was applied: the data was
first carefully segmented into speech and non-speech content, after which the resulting
frames were concatenated to form two pools of data (speech and non-speech). In each case,
the data was labelled according to its source file in order to ensure that, when the data was
split into training and test data, none of the training data appeared in the test sets.

4.3 Feature Extraction and Selection

The first step in obtaining visual speech information is to extract relevant visual features. In
the case of speech, these features should relate strongly to facial activity, and particularly to
the mouth, as it is central to speech production. Several investigations have been undertaken
to determine which computer vision techniques are most appropriate for feature extraction.
Given work on audio/visual speech association in recent literature [2][75][94][73][123],
two approaches have been considered: appearance-based features, via two dimensional
DCTs (2D DCT), and landmark-based features, obtained using landmark localisation
methods described by Kazemi et al. [66] and Saragih et al. [113].
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4.3.1 Landmark Features

Two methods for landmark feature extraction have been used: a CLM-based approach and
a pictorial structure model-based approach. These are introduced in Section 2.2.2. Each
uses a simple face detector for initialisation, after which landmark localisation is applied
to the ROI provided by the face detector. Each approach uses a different method for face
detection, with the method from Kazemi et al. [66] using a HOG-based detector, and the
method from Saragih et al. [113] using a Haar-like features detector. The implementation
of Saragih et al.’s method used here was obtained via the FaceTracer C++ library [112],
which facilitates an out-of-the-box implementation of the approach described in their paper.
This is trained on the MultiPIE [43] dataset, thus providing 65 facial landmarks per face.
The mouth-specific landmarks are numbered 48-64, thus the features used in this work are:

vlandmarks = [l48, l49, l50...l64] (4.1)

where ln comprises an (x,y) coordinate for the respective facial landmark location.
For the approach described in Kazemi et al.’s work [66], the DLib library [68] was

used, which contains a C++ implementation of the approach. As the implementation comes
with very few training examples, a training set was assembled using a variety of datasets
labelled according to the i-BUG specification [108]. These datasets were:

• HELEN [74]

• iBUG [108]

• Annotated Facial landmarks in the Wild (AFW) [72]

• Labeled Face Parts in the Wild (LFPW) [10]

These datasets were chosen for training as they a) used ’faces in the wild’ type data
containing many examples of natural poses and illumination conditions, and b) were easily
obtainable. The resulting training set consisted of 3837 annotated frames, comprising
a variety of head poses and lighting conditions. The parameters used for training the
approach were taken directly from the original paper [66] - with a tree depth of 5, and the
learning rate, ν, set at 0.1. Oversampling has also been used to improve model training,
with the oversampling amount set to 10. The model produces 68 facial landmarks, of which
the mouth region landmarks are numbered 48-67. The resulting feature vector is therefore:

vlandmarks = [l48, l49, l50...l67] (4.2)
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4.3.2 Two Dimensional Discrete Cosine Transforms

The two dimensional DCTs (2D-DCT) coefficients are extracted from a rectangular region
around the mouth. The region is obtained using a landmark-based approach to locate the
mouth area. A rectangular region of interest is then defined around this region, with height
and width set as hm = H/3, and wm = W/2, where H is the height of the detected face
and hm is the height of the region of interest around the mouth, and W is the width of the
detected face, and wm is the width of the region of interest around the mouth. A median
filter is applied to the region of interest prior to extracting the 2D-DCT coefficients.

Previous literature has demonstrated good performance through the use of 14 2D-DCT
mouth features [2]. As such, we employ the same approach for feature extraction here. The
2D-DCT matrix is obtained via:

tij =


1√
N

if i = 0√
2
N
cosπ(2j+1)i

2N
if i > 0

0 ≤ i, j ≤ N − 1 (4.3)

for each tij in transformation matrix T. The resulting 2D-transformed matrix is then
given by:

C = TZTT (4.4)

where Z is an NxN -pixel image of the mouth region. The 2D-DCT produces a matrix
which contains DCT coefficients ordered from high to low energy originating from the
top left entry in the matrix - (0, 0). The energy values decrease in zig-zag ordering, as
demonstrated in figure 4.2.

Figure 4.2: Example of energy-based ordering of DCT coefficients.

The resulting vector contains the first 14 DCT coefficients c1, c2, c3...c14, which forms
the 2D-DCT vector for each video frame.
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4.3.3 Feature Selection Via Audio-Visual Speech Correlation

The features have been evaluated according to their linear correlation with audio speech
features. In this case, the audio feature used for correlation is MFCC0. This has been
chosen following previous work [3], which showed that MFCC0 demonstrated the strongest
correlation with visual speech features. A 10% subset of Grid Corpus Subset 4 was used to
evaluate audio-visual speech correlation. The audio from the Grid corpus was originally
sampled at 50 kHz, however has been down-sampled to 44.1 kHz. This has been done to
conform with the sample rate used in the rest of the work.

Ordinary least squares has been used to model the data and obtain the multiple linear
regression coefficients for each approach investigated, using MFCC0 as the dependant
variable and the visual speech features as independent variables. Three facial feature
approaches have been explored: one appearance-based feature, and two landmark-based
features. The grey-level-based features are extracted using 2D-DCT, which has demon-
strated strong performance in previous work [2][75], and the landmark-based features
are extracted using the approaches from Kazemi et al. [66] and Saragih et al. [113], as
described previously.

Figure 4.3: Multiple linear regression results for 2D-Discrete Cosine Transform, Saragih et
al.’s landmarks [113] and Kazemi et al.’s [66] landmarks. Left bars (orange): R2 terms.
Right bars (yellow): correlation coefficients.

As demonstrated in Figure 4.3, the landmark-based features extracted from Saragih
et al. and Kazemi et al.’s approaches correlate more strongly with audio speech features
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when compared to the DCT features. This is potentially due to the DCT features incorpo-
rating information from the entire mouth region, whereas the landmark features facilitate
extraction of lip-specific points while ignoring other, potentially noisy, information in
the mouth region. However, the use of appearance-based features has clear advantages
in a number of speech-oriented applications, such as automatic lip reading [49], where
grey-scale information relating to visibility of teeth and mouth openness have proven to be
crucial for accurate visual speech recognition. As such, this work will look to incorporate
the DCT information alongside landmark features with the aim of providing a feature
which incorporates the advantages of both approaches.

The results here also demonstrate that the approach from Saragih et al. achieves better
correlation with audio speech features than the approach from Kazemi et al.’s work. A key
contributing factor to the performance of Saragih et al.’s method is its ability to handle
observations which do not adhere to the assumed model. This has been achieved by
replacing the least-squares projection method with an M-estimator, as described in their
paper [113]. While this modification was made to improve performance on data containing
partial occlusions, it will also contribute to better model generalisation, and likely explains
the enhanced correlation observed here, as visual speech features are extracted more
consistently.

Given that the greatest audio-visual speech correlation was achieved using Saragih et

al.’s approach, this has been chosen as the landmark localisation method for this work. The
approach’s strong performance on occluded data, as illustrated in their paper [113], was
also influential when comparing the two methods used here.

4.4 Visual Voice Activity Detection

A number of methods for Visual Voice Activity Detection (V-VAD) have been proposed
in the literature, such as Almajai et al.’s work [2], which uses V-VAD to enhance audio
speech detection, and Le Cornu et al.’s work [75], which proposes a CNN-based approach
for V-VAD, and demonstrates the strongest results, with an accuracy of > 78% on speaker
independent data (the strongest results in the literature at the time of writing). While
these results are encouraging, they have been obtained on a fairly ideal dataset - the
Grid corpus - which consists of multiple speakers speaking a variety of brief, structurally
similar sentences. Furthermore, all speakers are stationary and front-facing, and the dataset
does not contain instances of occlusion, noise, significant lighting variability or dynamic
movement. Given that the application scenario for this work is entertainment media, it
would be beneficial to use a method which has been tested on, or indeed developed for,
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more challenging speaker scenarios. This section discusses the development of a V-VAD
approach designed to achieve strong performance for the task of speaker-independent visual
speech classification for dynamic speaker applications.

4.4.1 Feature Extraction

As discussed in section 4.2.3, 2D-DCT and AAM demonstrated the strongest multiple
correlation with audio speech features. Each approach has been used extensively in the
literature, and each has a number of advantages and disadvantages. 2D-DCTs have proven
to be useful in a variety of speech-based tasks, such as audio coefficient prediction [2],
visual ASR [49][123] and V-VAD [75]. This demonstrates that appearance-based features
can be used successfully within visual speech processing tasks, and supports findings in
previous work as to the importance of grey-level features in this domain [17]. Landmark
and shape-based approaches have also been successfully applied to visual speech processing
problems, such as those described in work by Aubrey et al. [6] and Werda et al. [134],
demonstrating that facial geometry can be exploited effectively for speech perception and
processing tasks.

The advantages of appearance-based approaches are due to their incorporation of
pixel-level features, making it possible to model mouth-specific information which can be
leveraged within visual speech processing. This extends beyond more basic features such
as mouth shape and openness, incorporating characteristics such as visibility of the teeth or
tongue, which can be used to more accurately model visual speech features [49]. In turn,
the disadvantage of appearance-based approaches is their reliance on a clear representation
of the mouth region. As such, when this region is occluded, the data becomes highly noisy
and potentially unusable.

Landmark-based features, on the other hand, are advantageous as they can compensate
for occlusions or noise [66][113]. This makes them attractive for processing ’natural’ visual
speech (such as in entertainment media), where occlusions and dynamic movement may
impede the performance of appearance-based approaches. The disadvantage to landmark-
based approaches is that they rely entirely on shape-based information, making it difficult to
accurately model visual speech characteristics due to the lack of appearance-level features.

Given these considerations, three feature representations have been explored: 2D-DCT,
mouth landmarks and a combination of 2D-DCT and mouth landmarks. The hypothesis
behind using the combined approach is that, where possible, the V-VAD will make use
of 2D-DCT information, thereby facilitating a richer representation of visual speech
characteristics. Where this is not possible (due to occlusion or other noise), the landmark
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approach will still provide mouth shape information, thus reducing the impact of occlusion
and noise on the V-VAD.

Visual Speech Feature Processing

In work by Vieriu et al. [130], an effective V-VAD is presented which processes grey-scale
information from the mouth region to obtain statistical information which describes how
visual speech characteristics change over time. Here, a similar method is proposed, this
time using 2D-DCT, mouth landmarks and the combined 2D-DCT and mouth landmarks
approach, rather than the features proposed in Vieriu et al.’s paper [130].

For the appearance-based features, 2D-DCTs are extracted in zig-zag order as described
in Section 4.2.3, resulting in the feature vector:

vdct = [c(0,0), c(0,1), c(1,0), c(2,0), c(1,1)...] (4.5)

The landmark feature vector simply comprises the mouth landmarks obtained from the
tracker. As the tracker is trained on the CMU Multi-PIE dataset [43], the mouth landmarks
are those numbered 48-64, hence the landmark feature is constructed as:

vlandmarks = [l48, l49, l50...l64] (4.6)

where ln comprises an (x,y) coordinate for the respective facial landmark location.
For the combined feature, the 2D-DCT and landmark features, vdct and vlandmarks are

combined for each frame, hence:

vcombined = [vdct, vlandmarks] (4.7)

Given the importance of temporal information described in the literature [75, 121], the
feature vectors are further processed to incorporate information from a range of frames
(Figure 4.4). The approach for incorporating temporal information is based on Vieriu
et al.’s work [130], and models the change over time by comparing all frames within a
window to the first frame within the window (v0). This is obtained using a sliding window
of size w, for which the inter-frame difference, d, is obtained for the first frame, d0, and
each consecutive frame:

di = vi+1 − v0 for vi:i+(w−1) in v (4.8)

where v is the array of visual feature vectors and i is the index within the window. The
feature is also appended with the mean, standard deviation, and first and second order
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Figure 4.4: Illustration of frame window in which origin frame (v0) is compared with
subsequent frames to provide frame-difference feature.

temporal derivatives of d, where d is the final difference feature containing features d0:w.
Hence, the final feature vector is given as:

vfinal = [d,d∆,d∆∆,d〈d〉,dσ] (4.9)

In this work, a variety of window sizes are used to explore the impact of temporal
information on V-VAD performance. This ranges from a window size of two to ten frames.
For investigations using only two frames, the second order difference (d∆∆) is not used (as
this cannot be computed for < 3 frames).

4.4.2 Experimental Design

Given the success of combining similar features with random forests in the literature [130],
random forests have also been chosen as the classification method used here. Five V-VAD
scenarios are explored here, using all Grid Corpus configurations described in Section 4.1,
as well as the Natural Speech dataset.

Each test scenario uses a leave-one-out cross-validation approach, training on n − 1

samples and testing on the remaining sample. For each V-VAD scenario, the impact of
temporal information and random forest estimators has been investigated. For the temporal
information investigations, window sizes of 1, 3, 5, 7 and 10 have been used. This facilitates
exploration of classifier performance from using only a single frame to using 400 ms of
temporal information, as detailed in Table 4.1.

To investigate the impact of the number of estimators per forest, classifier performance
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Window size (frames) Temporal information at 25 fps (ms)
2 80
3 120
5 200
7 280

10 400

Table 4.1: Window sizes and equivalent durations used in V-VAD investigations.

over a range of estimators was explored on the speaker dependent and speaker independent
Grid datasets. For the speaker dependent investigations, the number of estimators was
increased incrementally, starting with 10 and 50 estimators, after which the number of
estimators was increased by 50 for each subsequent test in the investigation, to a maximum
of 450 estimators. As the V-VAD is being developed for speaker independent applications,
speaker independent testing explored estimator impact at finer granularity - starting at 10
and 25 estimators, and increasing by 25 up to a maximum of 500 estimators - to obtain a
more comprehensive impression of estimator impact on performance.

4.4.3 Speaker Dependent Results

Speaker dependent testing has been carried out using subject 6 from the Grid corpus. This
subject was chosen as the same data is used for speaker dependent evaluation of the V-VAD
approaches in Le Cornu et al.’s paper [75].

Estimator Tuning

Estimator results for a window size of 5 are presented here. This is as investigations in
Section 4.3.3.2 section demonstrate that performance gain above 5 frames is marginal, and
5 frames achieves a good balance between resolution and performance. As demonstrated
in Figures 4.5 and 4.6, all approaches demonstrate a gain in performance as the number
of estimators is increased. This performance gain is more pronounced between 10 and
50 estimators, after which classifier performance begins to stabilise, with all approaches
demonstrating less variability in performance above 250 estimators. Crucially, the results
here show a clear advantage to using DCT over the landmark-based approach, with an
approximate increase in accuracy of 2% across all estimator configurations tested. This
improvement in performance supports the notion of appearance-level features providing a
richer representation of visual speech characteristics, i.e. due to the visibility of tongue or
teeth, as discussed in Hassanat et al.’s work [49]. The landmark-based features still achieve
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Figure 4.5: Accuracy results from visual speech feature comparison on speaker dependent
dataset. Testing over a range of estimators with a window size of 5.

Figure 4.6: F-score results from visual speech feature comparison on speaker dependent
dataset. Testing over a range of estimators with a window size of 5.

relatively strong results, with a peak accuracy of 92%, achieving performance statistics
close to those observed in the literature [75].

Another key observation here is the performance gain achieved through the use of
the combined approach. A marginal yet clear gain in performance can be observed, with
the combined features attaining an accuracy approximately 0.6-0.8% greater than the
2D-DCT features, as well as a marginal improvement in F-score. This is encouraging,
suggesting that performance gain can be achieved through combining shape/landmark and

80



Chapter 4 4.4. Visual Voice Activity Detection

Window size (frames) Accuracy Precision Recall F-score ROC AUC
2 0.880 0.889 0.927 0.907 0.935
3 0.930 0.922 0.972 0.947 0.966
5 0.948 0.939 0.982 0.960 0.974
7 0.958 0.947 0.988 0.967 0.976
10 0.962 0.951 0.990 0.970 0.978
15 0.965 0.952 0.996 0.973 0.980

Table 4.2: Speaker dependent V-VAD results for combined feature classifier trained on 250
estimators.

appearance-based features, supporting the hypothesis behind this approach.
As negligible performance gain is achieved after 250 estimators, this configuration has

been used in the following investigations.

Window Size Investigation

Further investigations into the performance of the combined classifier have been undertaken
to explore the impact of temporal information. As Figures 4.7 and 4.8 demonstrate, both
accuracy and F-score results improve with the inclusion of more temporal data.

Figure 4.7: Accuracy results from visual speech feature comparison on speaker dependent
dataset. Testing over a range of window sizes using 250 estimators.

Table 4.2 explores the impact of temporal information on classifier performance in
more detail. The results demonstrate that all performance statistics improve as the number
of frames is increased. Interestingly, the classifier performs relatively well given very little
temporal information, with an accuracy of 0.88 when using information from single frames.
The greatest improvement in performance is observed when moving from two frames to a
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Figure 4.8: F-score results from visual speech feature comparison on speaker dependent
dataset. Testing over a range of window sizes using 250 estimators.

Approach Accuracy
Landmarks 0.919
DCT 0.942
Combined 0.948
GMM DCT* 0.926
GMM DCT ∆* 0.943
NN DCT* 0.960
NN DCT ∆* 0.968
CNN Static* 0.970
CNN Stack 3* 0.977

Table 4.3: Comparison of V-VAD results for speaker dependent tests using Grid subject s6.
Results from Le Cornu et al.’s paper [75] indicated by *.

window size of five frames - producing an increase in accuracy of approximately 7%.
While the strongest results are observed with a window size of 15 frames, the perfor-

mance gain is marginal when compared to using 10 frames (Table 4.2). As such, future
investigations will explore the range of 2-10 frames, as the marginal performance increase
does not justify the loss in resolution.

The speaker dependent VAD was evaluated with respect to leading contemporary
approaches described in Section 2.2.3.2. A window size of 5 frames was used for the DCT,
landmarks and combined approaches. As Table 4.3 demonstrates, the combined landmark
and DCT approach comes closest to achieving the accuracy metrics from Le Cornu et

al.’s work, with an accuracy between 1.3% and 3% below the NN and CNN results from
their paper [75]. This demonstrates that, in a speaker dependent scenario, the NN and
CNN approaches are able to more effectively model visual speech characteristics. As the

82



Chapter 4 4.4. Visual Voice Activity Detection

underlying aim of using the combined approach is to improve model generalisation through
the incorporation of landmark-based features, it is possible that while the approach does
not perform as well in the speaker dependent case, it may generalise better - thus improving
upon the performance of these approaches in the speaker independent scenario.

4.4.4 Speaker Independent Results

Initial investigations explored classifier performance over a number of estimators and
window sizes using Grid Corpus Subset 2. Figure 4.9 shows clear performance gain
when increasing from 10 to 50 estimators, and between window sizes 2 and 5. The figure
also demonstrates that the same pattern is reflected in the 2D-DCT and landmark-based
approaches, however the landmark approach demonstrates improved performance over
the 2D-DCT (contrary to the speaker dependent results). The following sections explore
the impact of number of estimators and window size in more detail in order to determine
suitable algorithm parameters. These investigations into classifier performance have been
carried out on a number of speaker independent dataset configurations.

Figure 4.9: Speaker independent accuracy results using Grid dataset configuration from
Le Cornu et al.’s paper [75]. Testing over a range of estimators and window sizes. Left:
2D-DCT, right: landmarks, Bottom: combined features.
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Estimator Tuning

A window size of 5 has again been used for speaker independent estimator tuning. As Figure
4.10 demonstrates, the performance curves follow a similar trend to the speaker dependent
results, with a significant initial increase in performance which then stabilises. Interestingly,
the results here vary from the speaker dependent investigations, with the landmark-based
approach achieving greater accuracy than the 2D-DCT approach. This indicates that
landmark-based features may be particularly advantageous in speaker-independent sce-
narios, potentially due to the features’ invariance to appearance factors (e.g. variable
lighting, textures or facial features), which allows them to more effectively model speaker
independent speech characteristics.

Figure 4.10: Speaker independent accuracy results using Grid dataset configuration from
Le Cornu et al.’s paper [75]. Testing over a range of estimators with a window size of 5.

A similar trend can be observed in the F-score values, as demonstrated in Figure
4.11. This further supports the notion of the landmark-based approach being more robust
for speaker independent scenarios due to minimising the impact of appearance-based
phenomena.

Crucially, the combined approach has continued to demonstrate the strongest perfor-
mance, with the accuracy and F-score values consistently exceeding the landmark-based
approach by ≈ 0.5% and ≈ 1% respectively.

Window Size Investigation

The results in Figures 4.10 and 4.11 and the speaker dependent investigations demonstrate
that good performance can be achieved using 250 estimators. As such, this number of
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Figure 4.11: Speaker independent F-score results using Grid dataset configuration from Le
Cornu et al.’s paper [75]. Testing over a range of estimators with a window size of 5.

Window size (frames) Accuracy Precision Recall F-score ROC AUC
2 0.764 0.761 0.862 0.809 0.822
3 0.811 0.794 0.906 0.846 0.881
5 0.826 0.808 0.916 0.858 0.904
7 0.840 0.819 0.927 0.869 0.917
10 0.850 0.826 0.939 0.878 0.930

Table 4.4: Speaker independent V-VAD results for combined feature classifier trained on
250 estimators.

estimators has been chosen for the window size investigations.

Figure 4.12: Speaker independent accuracy results using Grid dataset configuration from
Le Cornu et al.’s paper [75]. Testing over a range of window sizes using 250 estimators.
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Figure 4.13: Speaker independent F-score results using Grid dataset configuration from Le
Cornu et al.’s paper [75]. Testing over a range of window sizes using 250 estimators.

The use of greater window sizes continues to produce enhanced accuracy and F-
score metrics with the speaker independent approach, as exhibited in Figures 4.12 and
4.13. Further insight into the impact of temporal information is provided in Table 4.4.
Again, the trend from the previous section (Table 4.2) is reflected here, with the greatest
increment in performance metrics observed in the step between one and three frames.
All performance metrics demonstrate improvement as the number of frames is increased,
however, performance gain between 7 and 10 frames is fairly marginal. As such, a frame
size of 7 (280 ms) or 5 (200 ms) may be preferable - sacrificing marginal performance gain
for a reasonably significant increase in resolution from 2.5 Hz to 5 Hz.

Table 4.5 compares speaker independent results of the three classification approaches
with those from Le Cornu et al.’s paper [75]. While the NN DCT ∆ approach demonstrates
reasonable performance, all proposed approaches except for the 3 frame DCT approach,
outperform the methods detailed in Le Cornu et al.’s work. Most significantly, this
demonstrates that the combined approach is more effective on speaker independent data
than the NN and CNN results proposed by Le Cornu et al., further supporting the original
hypothesis. This indicates that while the CNN and NN approaches achieve strong results
on speaker dependent data, they do not generalise as well as the proposed approaches
when considering speaker independent applications. This is likely due to a combination of
factors:

• Previous work has demonstrated strong performance of random forests for both
audio [119] and visual [130] VAD tasks. Thus, it is possible that the structure of
the learning approach, i.e. a decision tree ensemble, is more effective at modelling
speech characteristics for binary speech classificaton problems.
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Approach Accuracy
Landmarks (3 frames) 0.802
Landmarks (5 frames) 0.821
DCT (3 frames) 0.779
DCT (5 frames) 0.793
Combined (3 frames) 0.811
Combined (5 frames) 0.826
GMM DCT ∆* 0.705
NN DCT ∆* 0.787
CNN Static* 0.741
CNN Stack 3* 0.747

Table 4.5: Comparison of V-VAD results for speaker independent tests using 9 speaker
Grid corpus configuration from Le Cornu et al.’s paper [75]. Results from Le Cornu et al.
indicated by *.

• All approaches in Le Cornu et al.’s paper [75] use appearance-based features, and
thus are not robust to more variable appearance features, such as would be present
within a speaker independent dataset. As previously mentioned, the inclusion of
landmark-based features likely helps to improve performance as the features are less
affected by grey-scale variation.

The efficacy of landmark-based features for modelling speaker-independent data is fur-
ther substantiated by the performance of the landmark-based approach, which significantly
exceeds the performance of the GMM and both CNN-based approaches documented in Le
Cornu et al.’s paper [75].

As Le Cornu et al.’s evaluation uses only 10% of the available data for the 9 selected
subjects [75], further investigations have been carried out using 100% of data from these
subjects. This has been done both to determine the impact that the amount of training data
has on classifier performance, as well as to validate that the 10% subset of the data gives
an accurate impression of classifier performance. These tests explore the performance of
the landmarks, DCT and combined classifiers trained on 250 estimators over a range of
window sizes.

Through comparing tables 4.5 and 4.6, marginal improvement can be observed from
using 100% of the data from the 9 speaker subset, however the overall trend remains nearly
identical. This indicates that the incorporation of more data has some impact on classifier
performance, but suggests that the 10% subset used in earlier investigations gives a good
general impression of performance across all metrics explored.

Investigations exploring the three feature sets also concur with earlier findings, with the
landmark and combined approaches achieving greater performance when compared with
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Window size (frames) Accuracy Precision Recall F-score ROC AUC
2 0.779 0.784 0.870 0.824 0.840
3 0.830 0.822 0.915 0.865 0.901
5 0.848 0.837 0.927 0.879 0.923
7 0.859 0.846 0.936 0.888 0.935
10 0.870 0.854 0.947 0.897 0.947

Table 4.6: Speaker independent V-VAD cross-validation results for combined feature
classifier trained on 250 estimators. Using 100% of Grid corpus data from users selected in
Le Cornu et al.’s paper [75].

the DCT features. Interestingly, Figure 4.14 shows that, from a window size of 3 onwards,
the accuracy of the landmark-based approach exceeds that of the combined approach,
albeit marginally. A similar trend can be observed in Figure 4.15, with the F-score of the
landmark approach slightly exceeding the metric of the combined method when using
window sizes of 7 and 10. This indicates that the landmark features perform better with
more contextual information. A possible explanation for this is that the landmark features
are more robust to noise. Thus, as the number of frames per feature increases, the likelihood
of noisy frames - and thus inaccurate DCT features - also increases. At this point, the DCT
has a slight negative impact on the combined feature vector, whereas the landmark features
alone are more robust to noisy grey-scale data.

Figure 4.14: Speaker independent accuracy results using 100% of Grid corpus data from
users selected in Le Cornu et al.’s paper [75]. Testing over a range of window sizes using
250 estimators.

88



Chapter 4 4.4. Visual Voice Activity Detection

Figure 4.15: Speaker independent F-score results using 100% of Grid corpus data from
users selected in Le Cornu et al.’s paper [75]. Testing over a range of window sizes using
250 estimators.

Gender Balanced Dataset

As the dataset used in Le Cornu et al.’s paper [75] is not gender balanced, the VAD
investigations were repeated on the gender balanced subset of the Grid corpus to determine
whether subject gender has any notable impact on classifier performance.

Figure 4.16: Speaker independent accuracy results using 100% of Grid corpus data from
gender balanced subset. Testing over a range of window sizes using 250 estimators.

As the F-score and accuracy results in Figures 4.16 and 4.17 demonstrate, the landmark
and combined approaches achieve the strongest results - further supporting the findings
from earlier investigations. While the results from Grid subset 3 demonstrate a marginal
improvement with frame sizes 7 and 10 using the landmark features alone, these results
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Figure 4.17: Speaker independent F-score results using 100% of Grid corpus data from
gender balanced subset. Testing over a range of window sizes using 250 estimators.

corroborate more strongly with those from subsets 1 and 2, suggesting that the combined
features perform better overall.

Figure 4.18: Mean of speaker independent accuracy and F-score results for male and
female subsets of Grid Corpus Subset 4. Testing over a range of window sizes using 250
estimators.

Figure 4.18 shows the mean results for the male and female subsets of Grid Corpus
Subset 4 over a range of window sizes. These results suggest that gender has minimal
impact on classifier performance, with only subtly variable F-score results and accuracy
metrics converging strongly at window sizes of 5+ frames. While the variance may simply
be due to general inter-speaker variance (rather than variance influenced by gender), these
results indicate that gender has little impact on classifier performance. Most importantly,
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the investigations on the gender-balanced dataset achieve similar results to the unbalanced
dataset, thus validating that the unbalanced dataset gives an accurate impression of classifier
performance.

4.4.5 Natural Speech Dataset Results

This section explores the performance of the V-VAD on the Natural Speech dataset in order
to evaluate its performance on more variable data incorporating more realistic speaker
behaviour. As Figure 4.19 demonstrates, classifier performance begins to level off when
between 10% and 20% of the training data is used, equating to approximately 100 minutes
of data. As such, this has been used as a guideline for the amount of data necessary to
provide a good impression of classifier performance, and ≈100 minutes of data has been
put together for the Natural Speech dataset (approximately 15 minutes of data each for 7
speakers).

Figure 4.19: Learning curve of Grid Corpus Subset 4 using combined approach with
window size of 5 and 250 estimators.

Figures 4.20 and 4.21 demonstrate that the impact of landmark features is particularly
pronounced, with the landmark features alone achieving a notable improvement in per-
formance over the DCT features commonly used in other work [2][75][91]. Furthermore,
the performance of the combined features exceeds that of both the 2D-DCT features and
landmark features over all window sizes tested. This indicates that the combined feature
set provides a more robust representation of visual speech information for V-VAD in noisy,
sub-optimal conditions. In turn, this supports the hypothesis that landmark features are
advantageous for challenging visual speech detection tasks, and that performance can be
enhanced by combining both appearance and landmark-based features.
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Figure 4.20: Mean accuracy results from V-VAD applied to Natural Speech dataset using
250 estimators over a range of window sizes using cross-validation.

Figure 4.21: Mean F-score results from V-VAD applied to Natural Speech dataset using
250 estimators over a range of window sizes using cross-validation.

4.5 Conclusion

This chapter has presented a novel method for V-VAD which incorporates a combination
of appearance-based and landmark-based features. The V-VAD has been tested on a
variety of datasets, and has demonstrated improved performance when compared with
other contemporary V-VAD approaches. Crucially, this work has shown that feature vectors
which incorporate facial landmarks outperform commonly used appearance-based features
in speaker-independent visual voice activity detection tasks. This performance advantage
has also been demonstrated in more difficult speech detection tasks involving variable
lighting and natural speaker behaviours, and the results indicate that landmark features are
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Test set: 1 2 3 4 5 6 7
Accuracy 0.720 0.844 0.768 0.784 0.745 0.752 0.714
Precision 0.687 0.872 0.841 0.784 0.746 0.751 0.766
Recall 0.943 0.939 0.85 0.942 0.937 0.949 0.829
F-score 0.795 0.904 0.846 0.856 0.831 0.839 0.796

Table 4.7: Classifier results from Natural Speech dataset cross-validation using 250 estima-
tors with a window size of 5 frames.

particularly valuable in achieving improved classification accuracy under these challenging
conditions.

While the approach discussed here has achieved encouraging results, future work will
look into using the combined features with more sophisticated machine learning algorithms,
such as convolutional neural networks, as these have proven to be successful in the literature
[75]. Furthermore, as more training data enhances classifier performance (as demonstrated
in sections 4.3.4 and 4.3.5), it would be beneficial to continue to expand the dataset to
facilitate training of a more accurate model.
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Language Independent Feature
Matching and Alignment

5.1 Introduction

A key aim of this work is to develop a language-independent method for associating text
(either transcript or subtitle files) with speech information. This has value in facilitating
the following:

• A method for re-aligning audio to video of a different frame rate (e.g. aligning PAL
to NTSC).

• A low-resource method for finding associations between text and speech content
when no language model is available.

• A language-independent method for associating text and speech prior to linguistic
processing for lexical discovery.

• A language-independent method for evaluating the accuracy of human-defined
speech-to-text, e.g. for subtitles.

This chapter proposes language independent methods for feature matching and align-
ment which leverage information from speech detections to find corresponding patterns
in textual media. While output from the speech detector does not provide the high level
information used in language-dependent approaches, such as lexical content, it does pro-
vide useful information regarding speech within the audio signal in the form of speech
in and out predictions. This section explores the process of feature matching and subse-
quent alignment using the predicted speech output and text resources such as subtitles and
transcripts.
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The chapter begins with an outline of the data representation methods used for this
work, after which an approach for anchor point detection, signal segmentation and audio to
text association is introduced. This is then applied in the context of multimedia alignment
whereby a query signal, obtained from the text data, is mapped to a reference signal,
obtained from the audio data. The chapter explores the application of the feature matching
and alignment framework for both whole-film and scene-level data, and discusses the
challenges and proposed solutions for each case. Section 5.5 also explores the feasibility
of incorporating visual speech information, and goes on to demonstrate the challenges
presented by feature film content in this regard. Lastly, the chapter explores an improved
alignment method which utilises both whole-film and scene-level data to improve scale
coefficient estimation, before concluding with a summary of the feature matching and
alignment investigations.

The multimedia alignment method used throughout this chapter comprises three key
steps: anchor point estimation, segment matching and scale coefficient estimation. Each
step is evaluated individually to provide a detailed analysis of the alignment and association
framework. First, evaluation of the anchor point estimation step is used to determine
how close the estimated anchor points in the query signal are to their equivalent points in
the reference signal, thus giving an impression of the anchor point estimation’s accuracy.
The evaluation of the segment matching step investigates the method’s performance at
general association by analysing the degree of overlap between segments matched by
the algorithm. Lastly, the scale coefficient estimation task looks to generate a scaling
coefficient to linearly adjust the time base of the query signal to match that of the reference
signal. This is achieved by processing and filtering information from the anchor point and
segment association steps. Crucially, evaluation of the scale coefficient estimation gives an
impression of whether VAD and text data can be applied within an automatic multimedia
alignment solution.

5.2 Data Representation

The speech detector provides speech activity data in the form of a binary signal, with 1
being speech and 0 being non-speech. As such, a similar signal has been generated from
the text information. For the subtitle data, this is done using the speech ’in’ and ’out’
timestamps. For the transcript data, as out times are not provided, simulated durations have
been used. This is done by counting the number of words following the onset in a given
segment of speech, and dividing this number by a words-per-second estimate to provide the
duration of speech activity in seconds. For English, this estimate is 2.5 words per second
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[122]. An array of the same resolution as the VAD output is then created, and the speech in
and out data is used to define elements of the array as either 1 (speech active) or 0 (speech
inactive). This is achieved by converting the speech in and out times to array indices which
match the resolution of the VAD output, after which all array items which lay between in
and out times are defined as 1, while those outside of active subtitle regions (e.g. between
’out’ and ’in’) are defined as 0.

While this represents the text information in a manner similar to the VAD output, this
approach has several problems. The first of these concerns transcript information: as the
out time is only a rough estimate, the simulated signal varies with respect to the actual
durations of speech segments. Secondly, while the subtitles provide in and out times, these
timestamps represent the on/off times for the subtitles to be displayed on screen. These
timings rarely match the actual speech content, as they are: a) re-worded to optimise their
space requirements on screen, and b) displayed for longer than the corresponding speech,
to allow viewers sufficient time to read the content. The final issue with this representation
is due to noise from the speech detector. While this does demonstrate good performance
on feature film data, the speech detections do not align perfectly with the ground truth, and
the output can be noisy, containing both false positives and false negatives as demonstrated
in Figure 5.1.

Figure 5.1: Plot of speech detections and subtitle in/out data represented as binary pulse
signal.

Given these factors, sequence alignment techniques such as DTW cannot always be
confidently used, as they will tend to misalign segments due to the variation between the
binary speech and text signals. This problem is further compounded by the lack of shape
in the binary signals. This results in many candidates which appear to match optimally
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according to the DTW cost function, despite the fact that the features are not associated.
This is illustrated in Figure 5.2, in which DTW is used to align the predicted speech (query)
with the corresponding subtitles (reference). As there is no shift in time, these should
align almost perfectly, producing a diagonal path through the cost matrix. Deviations
from the diagonal correspond to points at which the signal is warped to fit an optimal
alignment. Given that the signals correspond exactly to one-another, these deviations
represent misalignments resulting from inconsistencies between the subtitle and speech
detection signals.

Figure 5.2: Example misalignment of two corresponding speech detection (query) and
subtitle (reference) signals.

To address this, a sliding window is applied to the binary signals to obtain the sum of
segments in signal x centred at indices i over windows of size w:

sumi =
∑

xi−w
2

:i+w
2

(5.1)

This improves the performance of signal alignment by smoothing the detection noise
and creating a signal with distinct shape characteristics. This reduces ambiguity when
evaluating features between the two signals, improving the performance of the DTW feature
matches and thus the subsequent alignment. This is illustrated in Figure 5.3, in which the
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path through the cost matrix is improved, exhibiting less deviation from the diagonal.

Figure 5.3: Example of DTW alignment on summed speech detection (query) and subtitle
(reference) signals.

In this work, an implementation of the MFCC-CC VAD approach was used as the
method for audio speech detection. The VAD was trained using the data from Whole
Film Dataset 2 (As described in Section 3.2). For visual speech detection, the combined
feature V-VAD approach from Chapter 4 was used. This was trained using the data from
the Natural Speech Dataset (as described in Section 4.1). The Dynamic Time Warping
(DTW) implementation used is from the R package developed by Toni Giorgino [39].

5.3 Anchor Point Detection and Signal Segmentation

One of the key goals of this work is to find associations between segments of audio and
text. To do so, it is first necessary to identify segments which represent significant features
within the audio and text signals. This is achieved by finding key anchor points within the
data - points which can be used to define breaks between significant sections of dialogue.
This has the additional advantage of minimizing DTW error through focusing on distinct
points of interest, as significant features are less affected by speech detection noise. As
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such, the similarity between text and audio data is likely to be greater around these points -
this further enhances the accuracy of the associations produced by the DTW.

The anchor points are detected using a GMM to cluster minima features within the
signal. This is done to identify extrema which correspond to significant features, such
as breaks between dialogue sections (Figure 5.4), and thus which can be used to define
segmentation points.

Figure 5.4: Example of corresponding signal minima.

The first step in this process is to apply smoothing to the signal to improve minima
detection. This is achieved through applying convolution-based smoothing using a Hanning
window. The smoothed output, xs, is obtained by convolving a scaled window with the
signal x. First, x is appended with reflected copies of itself at both ends of the signal to
ensure minimisation of transient signal components at the beginning and end of the output
signal.

x′ = [x(−τ), x(τ), x(−τ)] (5.2)

The resulting signal, x′, is then convolved with a Hanning window of size 17 samples.
This window size was determined empirically through applying the approach to a range
of speech detection and subtitle samples and varying the window size. The result is the
smoothed signal, xs:

xs =
T∑

t=−T

h[n− t]x′[t] (5.3)

where h is a Hanning window defined as:
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h(n) = 0.5(1− cos(
2πn

N − 1
)) (5.4)

This results in a smoothed signal which facilitates better extrema detection through
smoothing ’flat’ signal components, as illustrated in Figure 5.5.

Figure 5.5: Example of signal before and after smoothing.

Once smoothed, the minima are obtained using a discrete wavelet transform-based
approach.

5.3.1 Anchor Point Clustering

Following minima detection, the key anchor points are selected by constructing minima-
centred features which are then clustered using a variational Bayes GMM (VB-GMM). The
anchor point features were designed to convey key information about the anchor points,
such as gradient and magnitude. The anchor point feature vectors, af , are defined as:

af = [ag, am] (5.5)

where am is a vector of magnitude information obtained from the smoothed signal as:

am = xst−wa
2

:t+wa
2

(5.6)

where wa is the length of the window around the anchor point.
The gradient vector is obtained from am by computing the second-order differences for

am1:N−1, forward differences at am0 and backward differences at amN , where N is the length
of the magnitude vector, thus for each point, n to N , in am:
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if n = 0

if n = N

else

agn = ∆→am(n) = ∆→1 [am](n)

agn = ∆←am(n) = am(n)−∆←1 [am](n)

agn = ∆am(n) = am(n+ 1
2
)− am(n− 1

2
)

(5.7)

where ∆ indicates the central difference, ∆→ indicates the forward difference and ∆←

indicates the backward difference.
where ∆ indicates the forward difference,
This results in a feature vector, ag, which comprises the difference quotients of, and

conforms to the same length as, vector am. The final anchor point feature vector, a,
comprises all minima features af for the signal.

The features in a are then clustered using a GMM. While this could have been achieved
using a simple rule based approach (e.g. via applying a threshold), the use of a GMM
allows for other similar minima to be identified, such as significant but brief breaks in
dialogue (e.g. the anchor point at ≈ 300 samples in Figure 5.6). The GMM produces a
mixture of Gaussian distributions of the data, in which each distribution models a different
type of extrema. In this work, a variational Bayes GMM (VB-GMM) was used. The
VB GMM uses variational inference, an extension of the EM algorithm, to fit Gaussian
components to the data. Like the EM algorithm, for each feature in the data, this calculates
the probability that the feature was generated by a given component. Unlike the EM
algorithm, variational inference also incorporates information from prior distributions to
regularize model fitting. The initial priors are obtained by a Dirichlet process - a crucial
reason for chooosing this approach, as this automatically determines the optimal number
of components (or Gaussians) without the need for other more computationally expensive
methods such as cross-validation [25] [14]. VB-GMM therefore produces a model which
fits optimally, thus eliminating the need to re-fit and re-evaluate the model to find the
optimal number of components, as would be necessary with a standard GMM. This is
advantageous in the case of the anchor point data, as the variety of extrema ’shapes’ varies
greatly depending on the speech patterns in the content (and therefore the optimal number
of components varies). This approach has been used to account for this variation, adapting
to the data by procedurally determining the optimal number of components.

In this work, we initialise the VB GMM using a diagonal covariance matrix and the
following parameters: α = 1.0 and max components = n/2, where n is the number of
anchor points in a.

Once clustered by the GMM, the anchor points are selected according to the degree of
the extrema. Observations from the data demonstrate that segments can be more effectively
associated by larger features, such as long speech segments, rather than by less significant
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features, such as fine variations in speech activity. As such, the segmentation focuses on
finding more significant extrema, as these typically lie between more significant features, as
demonstrated in Figure 5.6. To do so, the mixture with the lowest mean is selected, as this
corresponds to the anchor points with the lowest magnitude, and thus to the minima that
are likely to lie between, rather than among, segments of continuous speech. While basic
minima separation could be achieved by implementing a simple threshold, the incorporation
of the GMM and gradient data allows for other similar minima to be identified, such as
significant but brief breaks in dialogue, e.g. the anchor point at ≈ 300 samples.

Figure 5.6: Example of more extreme minima separating significant regions of speech
activity. Red: extreme minima. Green: less extreme minima.

5.3.2 Audio to Text Association

One of the goals of this work is to provide a language independent method for audio and
text association. This is achieved using anchor point-based segmentation in combination
with DTW. Anchor points are used to define breaks between segments, and thus to define
the segments to be matched. Once the anchor points have been identified, DTW is applied
to the audio and text signals. Given a source and a reference signal, anchor points in the
reference signal are used to find matching points in the source signal. In this case, we use
the speech detector data as the source signal, as this is prone to false detections, whereas
the subtitle data is assumed to be free of noise, and therefore provides a better reference for
anchor point selection.

This results in a vector mapping all anchor points obtained from the text to correspond-
ing points in the audio, as demonstrated in Figure 5.7. The association between audio and
text segments can therefore be obtained from the anchor point mapping.
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Figure 5.7: Example of anchor point matching via DTW on feature film data. Segments
are coloured to reflect the mapping between the subtitle and VAD data.

5.4 Audio to Text Association of Whole Film Content

Two potential applications have been explored for audio-to-text association. The first
application is focused on audio/text segment matching, and is evaluated by comparing
the audio and text anchor mappings to the ground truth. The second application focuses
on exactly aligning the signals, for use in automatic subtitle or audio alignment. This is
evaluated by calculating the difference between an estimated scale coefficient and a target
scale coefficient. Due to the application context proposed by the industrial partner, this
work assumes a linear relationship between the time bases of the text and audio signals, as
such it seeks to find a single scale coefficient to align the data.

Given the length of feature film data, and the fact that we are interested in general,
rather than fine, alignment, the audio and text signal lengths are scaled down by a factor
of 50. This retains the signal shape while reducing the size of the vectors to be processed,
thus reducing the time and resources required for processing.

To evaluate the performance of the matching and alignment methods, they have been
applied to data from the following four feature films:

• Frankenweenie

• Brave

• John Carter

• Pirates of the Caribbean: Dead Man’s Chest
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The first three films were chosen as text content was provided by the industrial partner.
The last film was chosen to balance the dataset between live action and animated films, and
was chosen arbitrarily as the content was readily available.

5.4.1 Start Point Alignment

Prior to segment matching, the start points of the signals are aligned to enhance the efficacy
of the matching and alignment algorithms. This is achieved by using DTW to align the
first anchor point. While the signals could be aligned by shifting them to match the
corresponding non-zero components at the beginning of the signals, there is no guarantee
that these are equivalent, i.e. there could be false detections from the speech detector at
the signal start which would result in an incorrect initial alignment. The use of anchor
points and DTW is therefore preferable for initial alignment as it ensures that the features
are aligned according to similarity, and thus increases the likelihood of accurate initial
alignment.

5.4.2 Anchor Point Evaluation

Anchor point accuracy is evaluated by calculating the error between the target anchor point
and the scaled source anchor point in minutes. Given a target anchor point, at, a source
anchor point, as, and a scaling coefficient, c, the error is calculated as:

e = |at − (asc)| (5.8)

This is computed for each anchor point pair across both segments for all films in
the dataset. As Figure 5.8 demonstrates, Frankenweenie achieves the strongest results,
with the lowest mean and standard deviation results for anchor point error, while poorest
performance is exhibited on John Carter, with the mean error at ≈ 0.69mins. The mean
of both the mean and standard deviation across all samples is ≈ 0.5mins ≈ 0.45mins

respectively. Given an average segment duration of ≈ 13mins, this indicates reasonable
segmentation performance, with the source anchor points being, on average, within 5% of
the segment length. This in turn suggests that the segments are strongly associated, and that
they should achieve reasonable results for segment matching. However, this degree of error
may be too great to achieve an accurate estimate of scale, suggesting that the approach may
not be sufficient for accurate scale estimation.
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Figure 5.8: Anchor point evaluation results for VAD and subtitle alignment of whole film
data.

5.4.3 Segment Matching

Segment matching is performed using the anchor point detection and DTW approach
described previously. The segment matching described here is being considered for rough
audio to text association, and as such does not evaluate word-level accuracy, but is instead
concerned with segment-level accuracy.

Figure 5.9: Segment matching example mapping a segment in signal b (segment b1) to a
segment in signal a (segment a1). Segments are marked by segment start (red) and end
(blue) anchor points.

Figure 5.9 illustrates how segment matches are evaluated. Given a pair of segments
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across the target and source signals, a and b, the source segment is scaled by the scaling
coefficient, c. If scaled segment bc overlaps the target segment by >= 80%, the segments
qualify as a match. The value of 80% was chosen as this permits some margin for variation
while ensuring that the segments contain a significant degree of mutual content. The
segment matches are further validated by manually comparing the audio and text content
for each match to ensure that matching segments are appropriately classified.

The results presented here are given as the Positive Predictive Value (PPV) i.e.:

PPV =
correct matches

all matches
(5.9)

Figure 5.10: Segment matching results use subtitle and VAD data.

As Figure 5.10 demonstrates, the algorithm correctly matches a significant proportion
of segments - achieving a mean of≈ 85% correct matches overall. As with the anchor point
evaluation, the strongest results can be observed for Frankwenweenie, while the weakest
results were obtained using data from John Carter. This is to be expected, as a greater
degree of anchor point error indicates poorer inter-signal segmentation. Overall these
results demonstrate that the combination of anchor point segmentation and DTW-based
mapping can be used for successful audio-to-text association, with > 80% correct matches
achieved for a majority of the data sets tested.

5.4.4 Scale Coefficient Estimation

One of the aims of this work is to provide a low resource, language independent method
of re-aligning subtitle content to films distributed in different formats. One such example
is the conversion of NTSC to PAL, which involves altering the frame rate from 24 fps to
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25 fps. This alters the time base by a factor of 1.04167 which, while subtle, results in
misalignment, particularly with longer media such as feature films. To correct for this, we
propose an approach which utilises the combination of unsupervised anchor point selection
and DTW described previously.

Thus, the approach first performs anchor point selection on the subtitle data, after which
DTW is applied to the signals to obtain the corresponding points in the speech detection
data. The scale coefficient estimate, sct, is then simply obtained by:

sct =
asubt

aspdt
(5.10)

where asubt is the time at a given subtitle anchor point and aspdt is the time at the
corresponding speech detection anchor point.

Given that sections 5.3.2 and 5.3.3 demonstrate that anchor point misalignment will
occur, the final scale factor is computed by taking the median of all scale factor estimates,
sct for all anchor point pairs in asub and aspd. This has proven to be more effective
than taking the mean, which is less accurate due to outlying scale estimates produced by
misalignments, as demonstrated in Figure 5.11.

Figure 5.11: Plot of scale estimates obtained from anchor point matches.

For the films in the dataset, the subtitles have been obtained from PAL sources, while
the films themselves are NTSC. The subtitles therefore need to be rescaled by factor of
1.04167 to align with the PAL framerate. The alignment method is evaluated using the
scale coefficient error, scerr, which is defined as:
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Dataset Scale estimate Scale error Scale error %
Frankenweenie 1.0451 0.0034 0.3294
Brave 1.0509 0.0093 0.8893
John Carter 1.0386 0.0031 0.2945
Pirates of the Caribbean 1.0448 0.0032 0.305
Mean - 0.0047 0.455

Table 5.1: Scale factor estimate results.

scerr = |sctarget − scestimate| (5.11)

where sctarget is the target scale coefficient of 1.04167 and scestimate is the scale
coefficient estimate produced by the alignment process.

As demonstrated in Table 5.1, the alignment method does a reasonable job of estimating
the scale factor, with a mean error of 0.45% across all datasets. Interestingly, while the
worst results for the matching investigation were obtained for John Carter, it obtains the
best results for scale factor estimation. This indicates that, while it didn’t achieve as many
strong segment matches, the anchor points corresponding to the scale estimate median
were more accurately associated.

While the estimates produced here are close to the target value of 1.04167, they would
be unsuitable for automatically realigning subtitle data. This is due to the cumulative effect
of the error over the duration of the media. For example, consider a set of subtitles scaled
to a 60 minute piece of media which need to be rescaled to its NTSC counterpart. The
counterpart will have a duration of 3750s. Rescaling this incorporating an error of ≈ 0.9%

(e.g Brave) would result in a duration of ≈ 3780s. Thus, the subtitles towards the end of
the media would be out of synchronization by around 30s - demonstrating that the approach
is not suitably accurate for automatic subtitle re-alignment.

The underlying reasons for this error are likely twofold:

1. Subtitle timing: as mentioned earlier, subtitles are not designed to align perfectly
with speech, and are instead created with readability in mind. While these give a
reasonable impression of the location of dialogue, they will not align perfectly, and
therefore will introduce error into the system.

2. Speech detection errors: while the speech detection approach has proven to work
well on entertainment media, it achieves an accuracy of between 85% and 90%.
Thus, the speech detector will contain errors, both in the form of false positives and
false negatives, which may subsequently contribute to alignment errors.
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Nevertheless, this does provide a method for rough alignment and association of audio
and text information, and is therefore useful as a means of aiding post-production through
automatically selecting and roughly aligning associated segments.

5.4.5 Transcript Alignment and Matching

As transcript data was provided by the industry partner, investigations into the use of
transcript data, rather than subtitle data, for alignment and matching were carried out.
These use the same processes used for subtitle alignment and matching, but replace the
subtitle signal with a simulated speech in/out signal generated from the transcripts. As the
transcripts only contain speech in times, the out time is simulated by simply counting the
number of words in a passage and dividing this by the average number of words per second
in English, which is 2.5 [122]. Thus, for each transcript entry, the duration is given by:

duration (seconds) =
n words

2.5
(5.12)

This can then be used to create a pulse signal such as those generated by the subtitle
and VAD data.

Figure 5.12: Anchor point evaluation results for VAD and transcript alignment of whole
film data.

As with the subtitle oriented approach, the anchor points are first evaluated by comput-
ing the error between target and source anchor points. As Figure 5.12 shows, there is a rise
in anchor point error across the board when using the transcript data.

As Figure 5.13 illustrates, the segment matching results are similar to the trend demon-
strated in the anchor point evaluation. This is as John Carter achieves the strongest results,
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Figure 5.13: Segment matching results using transcript and VAD data.

Dataset Scale estimate Scale error Scale error %
Frankenweenie 1.0678 0.0262 2.491
Brave 1.0647 0.0231 2.195
John Carter 1.0533 0.0116 1.108
Mean - 0.02 1.932

Table 5.2: Scale factor estimate results.

while fewer successful matches are obtained for Brave and Frankenweenie. A similar
pattern can also be observed for the scale factor estimation results in Table 5.2. These
results demonstrate a fall in scale estimate accuracy across the board when compared with
the subtitle data, indicating that the transcript data is not as useful for scale coefficient
estimation. This is probably due to the use of the average speaking rate value used to
estimate speech out times. The speech out times produced by this approach are likely to
vary greatly in accuracy depending on the speaker and the type of dialogue. On the other
hand, while the subtitle information is modified for readability, this will still match the
action on screen, thus its timing variations will more closely match the variations in the
spoken dialogue.

While it would have been interesting to explore the use of transcript data further,
the results here indicate that subtitles are more useful for segment matching and scale
estimation. Further to this, the industry partner was primarily interested in applications of
subtitle data, as transcripts themselves are rarely used in the localisation process. As such,
the remaining work focuses on the use of subtitles as the form of textual information.
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Film Dataset # Duration (minutes)
Silence of the Lambs 1 01:35
Silence of the Lambs 2 02:31
Silence of the Lambs 3 02:28
Pulp Fiction 4 02:07
Pulp Fiction 5 03:36
John Carter 6 02:04
John Carter 7 02:59
John Carter 8 01:42
A Few Good Men 9 02:03
A Few Good Men 10 03:10

Table 5.3: Dataset used for development and testing of fine alignment approach.

5.5 Scene-Level Alignment

While general alignment of audio and text information is useful, fine alignment is also
desirable. This is as it facilitates associations of finer features, such as speech content within
a scene, rather than general alignment which associates segments from the film as a whole
(segments which may or may not correspond to scenes or have other semantic meaning).
Alignment of finer features is therefore useful for realigning subtitles of individual sections,
and for automatically identifying audio/text associations for the post-production process.

Interestingly, while DTW is effective for aligning media with longer durations, it is less
effective for aligning shorter excerpts. This section evaluates the performance of DTW for
aligning shorter pieces of multimedia, and proposes a novel approach for alignment based
on the anchor point features discussed previously.

Short scenes from a number of films were selected for use in developing a new alignment
approach and for testing the performance of DTW on short extracts. As the work also
looks to investigate the incorporation of visual speech features, scenes involving faces
were specifically selected. As such, it was necessary to use live action films, as the V-VAD
approach will not work on animated media. The details of the dataset assembled for this
investigation are given in Table 5.3.

For the scene-level data, rescaled data has not been used. As such, both the reference
and query signals are of the same scale, thus the target scale coefficient is 1.0.

As with the whole film content, the scene-level content is also used to evaluate segment
matching and scale coefficient estimation for alignment, using the same methods used for
whole film investigations.
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5.5.1 Segment-Based Alignment

Due to the poor performance observed when using DTW for aligning scene-level data (as
demonstrated in Section 5.4.3), a segment-based alignment approach was developed. This
works similarly to DTW in that it uses a cost matrix to map similar features between the
two signals. Unlike DTW, this approach focuses on matching individual segments, and
ignores finer signal features. In this way, it is more robust to fine-level noise, as it only
considers larger features.

Another parameter used to ensure focus on broader features is the minimum distance
between segmentation points. This is used to ensure that anchor points are separated by
a minimum distance of 5 seconds. In this way, only minima which separate utterances
of significant duration are considered, thus increasing the likelihood that the resulting
segments are associated with speech content, rather than noise such as false detections. The
value of 5 seconds was chosen according to empirical observations, which demonstrated
that segments of shorter durations were more prone to being affected by speech detection
noise.

The proposed approach for segment-based matching and alignment is as follows. After
anchor point segmentation, the cosine similarity between each segment in the reference
signal is computed for each segment in the query signal. The segments are constructed
using the anchor points as the start points, and the end of the signal as the end point. Thus,
each segment can be described as:

segt = signalat:end (5.13)

where at is the anchor point at time t. This results in a cosine similarity matrix which
can then be used to find optimal matches between segments. To reduce the likelihood of
incorrect alignments, we constrain the search space to the n/2 nearest segments, where n
is the total number of segments. As with DTW, the segments are matched using a dynamic
programming-based algorithm to navigate the similarity matrix. This algorithm is defined
as:
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Here, the cost matrix is navigated first by the reference segments via i, for which the
minimum distance in the query segments is obtained by evaluating:

argmin(cost matrix[i][j : j + search limit]) (5.14)

This gives the minimum cost matrix value for query segments j : j + search limit,
from which the resulting i and j indices can be used to obtain the reference-to-query signal
mapping, shown here in the form [i,min index]. Following this, the algorithm updates
the query and reference anchor vectors according to the position of the subsequent anchors.
This is done by first evaluating whether the distance between the current and subsequent
query or reference anchors is longer, and then by incrementing the other anchor vector
appropriately. For example, if the reference segment is longer than the query segment, the
algorithm iterates the reference anchor vector by 1, and the query anchor vector to the
index of the closest query anchor point, defined as

argmin(|reference anchor[i+ 1]− query anchor[j]| for j to J) (5.15)

This is done as it is assumed that a linear relationship exists between the two signals.
Therefore, if the distance between the current and subsequent reference anchor points is
greater than the distance between the query anchor points, it is likely that the reference
signal does not contain a corresponding anchor point, and thus the query anchor point
vector should increment to an anchor point which more closely matches the anchor point
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in the reference vector. This is illustrated in Figure 5.14.

Figure 5.14: Illustration of anchor incrementation by ’closest’ anchors. Bold typesetting is
used to indicate the matching anchor points discussed in the text.

As shown here, the reference anchor point at [i + 1] can be more closely associated
with the query anchor point at [j + 2] than at [j + 1]. As such, j is incremented to the
more closely matching anchor point in the query anchor point vector, and the anchor at
[j + 1] is discarded by the alignment process as it does not closely match an equivalent
reference anchor point. The closest anchor point is then identified by evaluating cost matrix
for j : j + search limit, which in this case is anchor[j + 3].

As illustrated previously in the pseudocode, this process is repeated for all segments
in the reference and query signals, producing a vector which contains the reference-to-
query mapping for each anchor point and corresponding segment. In order to compare the
performance of this approach with DTW, both methods have been evaluated for scene-level
segment matching and scale coefficient estimation.

5.5.2 Anchor Point Evaluation

As with the whole film investigations, audio/text association is first investigated by eval-
uating anchor point selection. Given that the scene-level data is of higher resolution, the
anchor point error is given in seconds.

Figure 5.15 demonstrates that, while the proposed approach exhibits greater error for
some samples in the dataset (e.g. sample 7), overall it achieves better performance than
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the DTW-based approach. This performance advantage is reasonably significant, with
an average mean and standard deviation of ≈ 2s compared with values of > 3s for the
DTW-based approach.

Figure 5.15: Anchor point evaluation results for VAD and subtitle alignment of scene-level
data.

While this demonstrates a clear improvement over the DTW approach, a mean error of
2s is fairly significant given the fine resolution of the data. This is likely an unavoidable
product of the higher resolution data, as subtitles will frequently be of greater duration
than the corresponding audio by several seconds in order to ensure readability. This, and
the increased impact of speech detection errors on finer resolution data, are likely the key
factors contributing to anchor point errors.

5.5.3 Segment Matching

This section explores both DTW and the proposed method for the task of segment matching.
Figure 5.16 demonstrates a similar trend to that observed in the anchor point evaluation,
with DTW demonstrating enhanced performance on some samples, and the proposed
approach achieving better overall results. Another notable factor is the significant drop in
matching performance between the DTW here and the whole film results. Whereas the
DTW-based approach achieved > 80% correct matches for the whole film data, it achieves
an average of only 50% correct matches for the scene level data (Figure 5.16). This clearly
illustrates DTW’s significantly reduced performance on the scene level data and validates
the decision to develop an alternative approach. In contrast, the proposed approach achieves
a mean of ≈ 75% correct matches. This demonstrates marginally worse performance than
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achieved for the whole film data, a result that is likely due to the increased impact of
subtitle and audio inconsistencies on finer resolution data.

Figure 5.16: Segment matching results for scene-level data.

The cause of the DTW’s poor performance is likely due to reduced smoothing of the
scene level features, as these use a much smaller summing window. This results in a
greater proportion of flat signal segments (Figure 5.17), which have proven to reduce
the performance of DTW’s warping algorithm in previous work [71]. In addition to this,
the reduced smoothing also increases the impact of noise, i.e. inconsistencies between
the VAD and subtitle signals. This is likely also a contributing factor, as previous work
demonstrates that DTW has a tendency to latch onto noise, particularly in data which
contains a significant proportion of flat segments [90].

Figure 5.17: Example signal containing flat features.

This could be improved with the use of a larger summing window, however the window
size was selected to maximise smoothing while minimising reduction of signal features for
the finer level data. As such, while a greater window size would enhance the smoothing
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effect, it would also smooth distinct features necessary for accurate segment matching and
alignment.

On the other hand, the proposed approach performs relatively well as it focuses on
segments rather than on mapping every point from the two signals. This allows it to ignore
finer-resolution noise, making it more effective in the presence of noisy data. The result is
a matching approach that does not get stuck in finer level inconsistencies between the two
signals, and thus produces better overall performance.

5.5.4 Scale Coefficient Estimation

Scale coefficient estimation was evaluated using the same method described in Section
5.1.2. As demonstrated in Figure 5.18, the proposed approach generally performs better
for scale coefficient estimation when compared with DTW, with a scale estimate error of
0.013 compared with the DTW-based methods error of 0.027. Most importantly, while the
DTW-based approach achieves better estimates on some data, the proposed approach is far
less variable, with the maximum scale error never exceeding 0.03, while the DTW-based
method exhibits more significant errors of > 0.06. This demonstrates that, not only does
the proposed approach achieve better results overall, but it exhibits far more consistent
performance, indicating that it is a more robust method for scene-level scale estimation and
alignment.

Another point to note is that the scale estimate error here is greater than the error
observed for the whole film data. This is unsurprising given that the matching investigation
has already revealed poorer performance for segment association, which in turn will result
in less accurate scale estimation.

Figure 5.18: Scene-level scale estimate results.
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5.5.5 Incorporating Visual Features

Two investigations into the incorporation of visual speech information have been explored.
Both use the V-VAD detector output, in a similar way to which the VAD detector output has
been used. The first investigation explores audio to visual alignment of content using VAD
and V-VAD output. The second explores the use of V-VAD as a method of enhancing audio
to text alignment. This section uses the sample dataset as the previous section (detailed in
Table 5.3).

Audio to Video Alignment

The audio to video alignment method uses the same as the audio to text method described
5.4.1, however in this case the output from the V-VAD is used in place of the text data.
As with the earlier approach, the V-VAD and VAD data is processed using a summing
window of size 17 prior to the segmentation and matching steps. The results show the scale
coefficient error, given as the difference between the estimated scale coefficient and the
target scale coefficient.

Figure 5.19: Audio to video alignment error. Note: DTW results for item 3 = 2.9, and thus
exceed the scale of the plot.

As demonstrated in Figure 5.19, the audio to video alignment approach can achieve
reasonable results, with an error of as little as 0.001 (0.1%) when using the proposed
approach. As with the audio to text alignment on scene-level data, the proposed segment-
oriented approach outperforms DTW for alignment tasks. These results are encouraging,
and suggest that the combination of audio VAD and V-VAD methods developed through
this work has potential for use in audio to video alignment.
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V-VAD Enhanced Audio to Text Alignment

The V-VAD approach described in Chapter 4 has also been explored as a method of
enhancing audio to text alignment. This has been achieved by incorporating the V-VAD
output as part of a confidence scoring mechanism for anchor point filtering. To do so,
the Pearson correlation is computed for a window of size 10 around each anchor point
in the VAD output to provide the correlation coefficient for the V-VAD and VAD data at
this point. The correlation coefficient at each anchor is then compared to the mean of all
anchor-centred correlation coefficients. If the correlation coefficient is less than the mean,
the anchor point is discarded.

The underlying principal here is to utilise the additional modality to filter out false
detections: if both the V-VAD and VAD indicate speech activity, the region is less likely
to contain false detections. Thus, by using the VAD/V-VAD correlation, it is possible
to determine the extent to which the detectors agree, and thus filter the anchor points
accordingly.

Figure 5.20: Scene-level scale estimate results for proposed approach, V-VAD enhanced
approach and DTW-based approach.

As Figure 5.20 demonstrates, the V-VAD enhanced approach achieves better results than
the DTW-based approach, but does not perform quite as well as the VAD-only approach
overall. This can be explained by variable quality V-VAD data, as illustrated by comparing
the standard deviation of the three approaches. While the proposed method has the lowest
standard deviation, the V-VAD enhanced approach exhibits the highest value across the
dataset. As the data demonstrates, the V-VAD enhanced approach performs very well on
certain items, achieving the strongest performance on items 2, 6 and 7. This indicates that
the V-VAD performed well on these datasets, thus enhancing the scale estimation process.
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On the otherhand, the V-VAD enhanced approach produced poorer results on items 1, 4 and
9 - indicating that the V-VAD performed badly on these samples. This can be confirmed by
comparing the V-VAD and VAD sum plots for the corresponding samples from the dataset.

Figure 5.21: Plot of V-VAD sum data and VAD sum data from dataset item 2.

As Figure 5.21 demonstrates, there is consistent V-VAD output for the sample, indicat-
ing that the face detection and feature localisation performed favourably on the data. The
V-VAD was therefore more successful, and could be used as a means of confidence scoring,
producing stronger anchors which could be used to enhance the alignment process.

Figure 5.22: Plot of V-VAD sum data and VAD sum data from dataset item 4.

In contrast, as shown in Figure 5.22, the V-VAD and VAD plots for sample 4 are starkly
dissimilar - with the V-VAD missing a significant amount of information. As such, the
resulting confidence estimates are inaccurate, resulting in a poor selection of anchors and
an inaccurate scale estimate.
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Conclusion

Section 5.4.5 has explored the use of V-VAD data both as a means of audio to video
alignment and as a means of enhancing the audio to text alignment process. The results
demonstrate that the V-VAD is capable of strong performance in these tasks on some
samples, while overall it produces poorer results when compared to the VAD-only text
alignment method. Observations of the V-VAD and VAD data in Figures 5.21 and 5.22
indicate that the variable performance is due to poor V-VAD performance on some data.
This is likely due to poor face detection and feature localisation data, produced by par-
ticularly challenging video content. As such, we conclude that a more accurate V-VAD
approach, coupled with more robust face detection and feature localisation methods, is
required before a V-VAD based approach can be confidently used on feature film media.

Nevertheless, this work demonstrates that good performance can be achieved with
V-VAD data for both audio to video alignment and enhanced audio to text alignment. The
investigations here also further support the use of the proposed alignment approach, with
it achieving significantly better results for audio to video alignment when compared with
DTW.

Given the results in this section, the V-VAD approach has not been used for further
alignment investigations.

5.6 Improving General Alignment Through Incremental
Scene-Level Alignment

The general alignment method discussed in Section 5.1.2 produces a scale error of up to
0.879%, which is only sufficient for rough alignment of content. To improve upon this,
an incremental alignment method has been explored. This method uses the initial scale
estimate as a starting point - rescaling the signal prior to applying the scene-level alignment
method incrementally to signal segments. This facilitates two key functions:

1. It provides a more precise estimate of segment associations between the text and
audio material by focusing on finer signal features.

2. It provides a better estimate of the scale factor through using information obtained
from a range of signal segments.

The first step in this process is to apply the general alignment method and re-scale
the signal to the resulting scale estimate. This produces a roughly aligned signal, which
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improves the fine alignment process through ensuring that the beginning of the signals are
within reasonable alignment.

Once the initial estimate has been applied to roughly align the subtitle signal, the fine
alignment process is applied incrementally to segments of 10 minutes’ duration. This
duration was chosen to maximize the likelihood of reliable speech detection content while
minimizing the impact of the scale estimate error. For example, given the worst estimate
from Table 5.1, the alignment would be out of sync by approximately 7 seconds towards
the end of the 10 minute segment. This is a significant improvement on using the original
signal, which would have been out of alignment by 30 seconds at this point. While a shorter
segment would improve on this alignment error, the use of a longer segment increases
the likelihood that there will be sufficient speech and dialogue data for the alignment
process, and also that there will be enough speech detection data of sufficient quality for the
alignment process to be effective (i.e. a reasonable amount of low noise speech detection
information).

For each segment, the fine alignment approach is applied, and a scale estimate is
produced. The whole signal is then updated by applying this estimate to the segment, and
the scale estimate is stored in an array. The pre and post alignment correlation is also
calculated for each signal segment, from which the alignment correlation difference is
obtained:

corrdiff = corrpost − corrpre (5.16)

where corrpre and corrpost are the pre and post-alignment correlation values obtained
as the Pearson product-moment correlation coefficient.

This gives an impression of the efficacy of the alignment process for each segment,
and is used to filter the resulting scale estimates for overall realignment. The correlation
difference is stored in an array, and the process is repeated for all signal segments.

Once the fine alignment process has been applied to all signal segments, the resulting
scale estimates and correlation differences are used to filter the results and obtain a second
scale estimate, which is used to correct the initial estimate. The scale estimates are selected
according to correlation improvement, the idea being that the best estimate will correspond
to the most accurately aligned segment, and will thus produce the greatest improvement in
correlation.

As such, the estimate corresponding to the greatest value of corrdiff is obtained by
finding the respective index, and using this to obtain the scale estimate from a vector of all
scale estimates, e:
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Scale estimate
Dataset Initial Corrected
Frankenweenie 1.0451 1.0453
Brave 1.0509 1.0452
John Carter 1.0386 1.0413
Pirates of the Caribbean 1.0448 1.0437

Table 5.4: Scale factor estimates before and after incremental alignment.

Scale estimate error [%]
Dataset Initial Corrected
Frankenweenie 0.3294 0.3448
Brave 0.8893 0.337
John Carter 0.2945 0.0335
Pirates of the Caribbean 0.3054 0.198
Mean 0.455 0.2283

Table 5.5: Scale factor estimate error results before and after incremental alignment. Error
given as percentage of target scale factor.

sc = e[indexd(argmax(corrdiffi for all corrdiffi in d))] (5.17)

where sc is the estimate from the incremental alignment process and d is a vector
containing values of corrdiff for all segments. The final scale factor, sf , is then obtained
by applying sc to the initial scale estimate, si, obtained from the general alignment process:

sf = si × sc (5.18)

As demonstrated in Tables 5.4 and 5.5, this improves overall alignment, with improve-
ments observed for all data except Frankenweenie, for which the scale error increases
marginally. The improvement is fairly significant, with the mean scale error over all
datasets reducing from 0.455% to 0.228%. This shows that the incremental alignment
approach has been successful in improving on the initial scale estimates, demonstrating
that better alignment can be achieved through combining the general and fine alignment
approaches.

While the incremental alignment approach produces a notable improvement in esti-
mating the scale factor, the error is still too great for practical use. This can be illustrated
when considering the earlier example of an hour of data. While scaling content of duration
3600s by a factor of 1.04167 would produce duration ≈ 3750s, scaling the content by the
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least accurate scale estimate of 1.0453 (corresponding to Frankenweenie) would scale the
content to a duration of ≈ 3763s. While this is a clear improvement over the initial scale
factor, the alignment is still out by around 13s towards the one hour mark. Nevertheless,
the incremental approach comes very close on some examples, such as John Carter, for
which it is out of sync by under 2s towards the one hour mark. This suggests that the
approach is more effective for some content, likely due to a combination of better speech
detection performance and the use of subtitles which more closely align with the dialogue
audio.

5.7 Conclusion

In this chapter we have explored the use of VAD and text data within an audio to text
alignment framework that does not require a language model. While the results weren’t
suitably accurate for a fully automated audio to text alignment solution, we were able
to significantly improve on the initial misaligned signals in linear alignment tasks. The
methods therefore have potential as part of a semi automated solution, providing a pre-
alignment estimate for use within the post-production workflow. Alternatively, this could
be used as a pre-processing phase prior to a more comprehensive approach based on lexical
discovery. While alignment is not perfect, the more accurately aligned signal components
(e.g. the first quarter or so of data) could be used for initial discovery of speech and text
associations. This could then be used to build a basic speech recognition model, which
could then be applied to find word-level associations to align the remaining data.

The chapter also evaluated VAD and subtitle-based approaches for whole film and
scene-level matching of audio and text segments. This demonstrated good performance in
both use cases, and suggests that the anchor point segmentation and matching approaches
are effective for association, if not for perfectly accurate alignment.

A crucial discovery regarding scene-level matching and alignment was the poor per-
formance of DTW on the finer level features. This was likely due to increased impact of
inconsistencies between VAD and text data, due to the summing process having a reduced
smoothing effect on the higher resolution features. This was successfully addressed with
the development of an alternative, segment-based matching algorithm. This approach
demonstrated significant improvement over the DTW approach for the scene-level features
in both matching and alignment investigations. Furthermore, this approach went on to
demonstrate improved performance over the DTW-based approach for audio-to-video
alignment.

The chapter also explored the use of V-VAD in audio-to-video alignment, and demon-
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strated promising results when using the anchor-based alignment approach. As with the
audio-to-text alignment, this method was not suitably accurate for a wholly automated
solution, but very promising results were observed on some data.

V-VAD data was also explored as a means of enhancing audio-to-text alignment,
through applying VAD/V-VAD correlation as a means of quantifying anchor point accuracy.
This demonstrated some promise, but as with the other V-VAD-based approach, exhibited
significant variability across datasets due to inconsistent V-VAD performance. As such,
while the use of V-VAD for alignment tasks is promising, performance could likely be
enhanced through the following:

1. The use of more sophisticated machine learning algorithms to model visual voice
activity could lead to improved V-VAD performance, and thus improve the overall
performance of the V-VAD-to-VAD alignment method.

2. The incorporation of a more robust face detection and landmark localisation so-
lution could enhance performance, as reducing missed detections would enhance
performance on more difficult data (e.g. dataset 5).

3. While the VAD approach has demonstrated strong performance, it is still affected by
missed detections and false detections - thus further VAD enhancement would likely
also improve performance. This could be achieved by training the VAD on more
data, or by employing genre-specific feature selection, as discussed in Section 3.

In summary, this chapter has explored a number of methods for finding associations
between and aligning multimedia content. The most encouraging results were demonstrated
by the combined alignment approach, which utilised general alignment as an initial estimate,
before refining this through incremental scene-level alignment. Despite these results coming
close to the desired alignment, the approach is not accurate enough for use in a wholly-
automated alignment solution. This accuracy should be achievable with the integration of
a lexical discovery-based approach utilising low resource speech recognition models, for
which the proposed approach could serve as a preprocessing phase. Thus, we conclude
that the approach is most suitable as a means of automatically segmenting and roughly
aligning data within a semi-automated, rather than wholly-automated, solution for subtitle
alignment.
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Conclusions and Future Work

This thesis has presented novel work in both audio and visual voice activity detection,
and has explored the use of these techniques within a multimedia alignment framework.
The work demonstrates that performance improvements can be obtained for both visual
and audio Voice Activity Detection (VAD) in challenging speech conditions through
engineering noise-robust features. We also show that, while a fully automated alignment
solution could not be realised, improvements on initial alignment can be obtained via
alignment strategies which do not rely on language models.

In Chapter 3, a novel feature for audio VAD in film multimedia was presented. This
was developed to address the problem of speech detection in entertainment audio, which
has proven to be a non-trivial task for a number of contemporary and state-of-the-art
VAD approaches [36][119]. The proposed solution was a novel set of features - Mel
Frequency Cepstral Coefficient (MFCC) Cross Covariance features - which combines
a correlation-based preprocessing step with cross-covariance modelling of inter-MFCC
relationships to provide a highly discriminative feature vector. Investigations demonstrate
that this works successfully with both support vector machines and random forests, with
the latter achieving marginally better performance. Furthermore, we demonstrate that this
outperforms state-of-the-art VAD methods on multimedia speech detection tasks, achieving
significantly greater performance metrics on a commonly used feature-film dataset.

Chapter 4 explored the combination of landmark and appearance-based features for
visual speech detection tasks. A number of case studies were presented, ranging from
straightforward visual VAD tasks on the Grid corpus [22], to more challenging speech
detection scenarios involving natural speaker poses, dynamic gestures and variable illumi-
nation conditions. The results demonstrated that, across all investigations, the combination
of landmark and appearance-based features yielded performance improvements when
compared with using either feature set individually. Crucially, we demonstrated the value
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of state-of-the-art landmark localisation techniques, with the landmark-based approach sig-
nificantly outperforming 2D-DCT features for Visual-VAD (V-VAD) tasks on challenging
data. Furthermore, the combined features proposed achieved better results when compared
with recent methods for Grid corpus V-VAD tasks.

Lastly, Chapter 5 presents an alignment framework designed with language indepen-
dence in mind. Here, we demonstrated that rough alignment of audio and text media
could be obtained using anchor-point selection and Dynamic Time Warping (DTW). This
also proved to be effective for identifying associated sequences of audio and text data,
however was not suitable for wholly automated content alignment. This chapter went on to
present techniques for scene-level alignment, developing a segment-wise method which
outperformed DTW on scene-level association tasks. Visual VAD information was also
explored for both audio-to-visual alignment and as a means of enhancing audio-to-text
alignment. Results demonstrated that, while the landmark localisation methods were state-
of-the-art, they were still not sufficiently robust for use with entertainment multimedia.
Finally, an incremental alignment method was presented, which improves on the initial
alignment through incorporating incremental scene-level alignment. This produced clear
improvements in alignment, but was still not sufficient for use as a wholly automated
solution. We conclude that while the proposed alignment framework does not offer a
complete solution, it may be useful as a means of initial alignment prior to the application
of lexical discovery based techniques. In this way, a language independent approach could
be developed through utilising rough audio and text alignment to build a sparse language
model, such as described in [120].

6.1 Application Contexts

In this section, we explore several potential applications for the methods developed through
this work.

6.1.1 Automatic Content Segmentation

The audio VAD developed through this project could improve multimedia post-production
workflows through automatically segmenting content into speech and non-speech. This
would be particularly useful for translators working on adaptation, as it would highlight
crucial sections of dialogue. This would guide their focus, and would reduce the time
required for adaptation as they would not need to make an initial pass over the film to mark
up key areas of dialogue.
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6.1.2 Subtitle Validation

When developing subtitles for multimedia, the content is typically checked by a number
of people in order to ensure that it is of sufficient quality. The audio VAD and segment
association/alignment described in this work could improve this process by providing a
means of automatically estimating the accuracy of subtitle associations, and the degree to
which the subtitles correspond to audio speech activity. While this wouldn’t be a wholly
automated process, it could provide a confidence measure which could reduce the number
of passes necessary for translators and other post-production engineers.

6.1.3 Enhancement of Automatic Transcription Methods

Many methods for automatic transcription do not include a speech/non-speech segmentation
phase, and instead apply Automatic Speech Recognition (ASR) directly to the content
[16][65][4]. This could produce alignment errors, particularly in audio containing highly
variable content as is the case with entertainment multimedia. As such, these processes may
benefit from a segmentation phase, to separate speech activity from non-speech content.
The idea here would be to improve ASR performance by constraining the input to content
that is more likely to correspond to speech, thus reducing the negative impact of noise or
sound effect content on speech recognition.

6.1.4 Improving ADR Through AV-VAD

While this work demonstrated that current methods for extracting visual speech features
are not sufficient for entertainment media, future improvements to these could results in
stronger performance. This could then be harnessed to improve automated Automatic
Dialogue Replacement (ADR) solutions through incorporating visual speech information.
This could be combined with audio speech data to provide a method for robust audio
realignment of ADR recordings. The idea here would be to utilise the audio information
where possible (using similar methods to current audio-to-audio alignment [86][79]), but
leverage visual speech information in areas where the original recording is too noisy for
robust alignment.

6.1.5 Pre-Processing for Language Independent Alignment

As previously mentioned, while the alignment method discussed in Chapter 5 is not
suitable for a fully automated solution, it could be utilised as a pre-processing step for
a more comprehensive alignment framework. Several existing audio-to-text alignment
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methods, such as those proposed by Stan et al. [120], have been developed for low-resource
applications. In these cases, they require an initial transcription from which to build a
sparse dictionary. This is used to build a speech recogniser, which can subsequently be
applied for word and sentence-level alignment between the audio and text data. As the
alignment strategy here can roughly align content, it is capable of producing reasonable
alignments for towards the beginning of content (e.g. the first ten minutes of a feature
film). As such, this could automatically provide the initial transcription data required for
a more comprehensive lexical discovery-based approach, removing the need for manual
transcription alignment.

6.2 Future Work

This work has investigated broad range of disciplines, including computer vision, audio
processing and sequence alignment. These have been explored with the goal of developing
a method for aligning multimedia content that does not rely on a language model. While
some progress was made towards this goal, the method produced is not capable of wholly
automated alignment. As such, the key interest for future work is in developing this into a
wholly automated solution. This would involve exploring methods for lexical discovery,
and investigating their potential for use in multimedia content. Assuming that they can be
leveraged for more refined word-level alignment, these could then be integrated to achieve
the alignment resolution necessary to provide a comprehensive automated solution for
subtitle localisation.

Another key area for further development is visual voice activity detection. While
the work here demonstrated encouraging results, the proposed feature set was only tested
with one classification algorithm. Given that other methods have proven useful in the
literature [2][91][75][121], it would be sensible to investigate V-VAD performance using
other machine learning algorithms, particularly more sophisticated approaches such as
deep neural network based methods.

There are also several interesting areas for further development of the audio VAD
approach. One of these is in exploring whether the correlation-based features can be
optimised for subsets of multimedia content (e.g. for genre-specific classification). If this
is the case, more robust models can be trained to produce classifiers tailored according to
multimedia content. These could then be used within a comprehensive ensemble-based
approach, by which incoming audio data is filtered according to which type of sub-content
it most closely matches. The data would then be fed to a specially adapted classifier, thus
producing more accurate estimates of speech activity.
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As with the V-VAD, use of other classification algorithms with the audio VAD could
also be explored. Of particular interest here are context-sensitive deep learning approaches,
such as RNNs, which may be able to produce enhanced performance due to their capability
for modelling sequential data.

130



Bibliography

[1] Timo Ahonen, Abdenour Hadid, and Matti Pietikainen. Face description with local
binary patterns: Application to face recognition. Pattern Analysis and Machine

Intelligence, IEEE Transactions on, 28(12):2037–2041, 2006.

[2] Ibrahim Almajai and Ben Milner. Using audio-visual features for robust voice
activity detection in clean and noisy speech. In Signal Processing Conference, 2008

16th European, pages 1–5. IEEE, 2008.

[3] Ibrahim Almajai, Ben Milner, and Jonathan Darch. Analysis of correlation between
audio and visual speech features for clean audio feature prediction in noise. In
INTERSPEECH. Citeseer, 2006.

[4] Xavier Anguera, Jordi Luque, and Ciro Gracia. Audio-to-text alignment for speech
recognition with very limited resources. In INTERSPEECH, pages 1405–1409,
2014.

[5] Bishnu S Atal and Manfred R Schroeder. Adaptive predictive coding of speech
signals. Bell System Technical Journal, The, 49(8):1973–1986, 1970.

[6] Andrew Aubrey, Bertrand Rivet, Yulia Hicks, Laurent Girin, Jonathon Chambers,
and Christian Jutten. Two novel visual voice activity detectors based on appearance
models and retinal filtering. In Signal Processing Conference, 2007 15th European,
pages 2409–2413. IEEE, 2007.

[7] James K Baker. The dragon system–an overview. Acoustics, speech and signal

processing, IEEE transactions on, 23(1):24–29, 1975.

[8] Tom Barker and Tuomas Virtanen. Non-negative tensor factorisation of modulation
spectrograms for monaural sound source separation. In INTERSPEECH, pages
827–831, 2013.

131



Bibliography Chapter 6

[9] I Bazzi and J Glass. Modeling out-of-vocabulary words for robust speech recognition.
In Proc. of ICSLP, 2000.

[10] Peter N Belhumeur, David W Jacobs, David J Kriegman, and Narendra Kumar.
Localizing parts of faces using a consensus of exemplars. Pattern Analysis and

Machine Intelligence, IEEE Transactions on, 35(12):2930–2940, 2013.

[11] Pascal Belin, Robert J Zatorre, Philippe Lafaille, Pierre Ahad, and Bruce Pike.
Voice-selective areas in human auditory cortex. Nature, 403(6767):309–312, 2000.

[12] Donald J Berndt and James Clifford. Using dynamic time warping to find patterns
in time series. In KDD workshop, volume 10, pages 359–370. Seattle, WA, 1994.

[13] Christopher M Bishop. Pattern recognition and machine learning. pages 340–344,
2006.

[14] Christopher M Bishop. Pattern recognition and machine learning. pages 474–480,
2006.

[15] P Jeffrey Bloom. Use of dynamic programming for automatic synchronization of
two similar speech signals. In Acoustics, Speech, and Signal Processing, IEEE

International Conference on ICASSP’84., volume 9, pages 69–72. IEEE, 1984.

[16] Norbert Braunschweiler, Mark JF Gales, and Sabine Buchholz. Lightly super-
vised recognition for automatic alignment of large coherent speech recordings. In
INTERSPEECH, pages 2222–2225, 2010.

[17] Luca Cappelletta and Naomi Harte. Phoneme-to-viseme mapping for visual speech
recognition. In ICPRAM (2), pages 322–329, 2012.

[18] Richard M Chamberlain and John S Bridle. Zip: a dynamic programming algorithm
for time-aligning two indefinitely long utterances. In Acoustics, Speech, and Signal

Processing, IEEE International Conference on ICASSP’83., volume 8, pages 816–
819. IEEE, 1983.

[19] Bingjie Cheng and Shangping Zhong. A novel chicken voice recognition method
using the orthogonal matching pursuit algorithm. In 2015 8th International Congress

on Image and Signal Processing (CISP), pages 1266–1271. IEEE, 2015.

[20] Siew Wen Chin, Kah Phooi Seng, Li-Minn Ang, and King Hann Lim. Improved
voice activity detection for speech recognition system. In Computer Symposium

(ICS), 2010 International, pages 518–523. IEEE, 2010.

132



Chapter 6 Bibliography

[21] William S Cleveland and Susan J Devlin. Locally weighted regression: an approach
to regression analysis by local fitting. Journal of the American statistical association,
83(403):596–610, 1988.

[22] Martin Cooke, Jon Barker, Stuart Cunningham, and Xu Shao. An audio-visual
corpus for speech perception and automatic speech recognition. The Journal of the

Acoustical Society of America, 120(5):2421–2424, 2006.

[23] Timothy F Cootes, Gareth J Edwards, and Christopher J Taylor. Active appearance
models. IEEE Transactions on Pattern Analysis & Machine Intelligence, (6):681–
685, 2001.

[24] Timothy F Cootes, Christopher J Taylor, David H Cooper, and Jim Graham. Active
shape models-their training and application. Computer vision and image understand-

ing, 61(1):38–59, 1995.

[25] Adrian Corduneanu and Christopher M Bishop. Variational bayesian model selection
for mixture distributions. In Artificial intelligence and Statistics, volume 2001, pages
27–34. Morgan Kaufmann Waltham, MA, 2001.

[26] David Cristinacce and Timothy F Cootes. A comparison of shape constrained facial
feature detectors. In Automatic Face and Gesture Recognition, 2004. Proceedings.

Sixth IEEE International Conference on, pages 375–380. IEEE, 2004.

[27] David Cristinacce and Timothy F Cootes. Facial feature detection and tracking with
automatic template selection. In Automatic Face and Gesture Recognition, 2006.

FGR 2006. 7th International Conference on, pages 429–434. IEEE, 2006.

[28] David Cristinacce and Timothy F Cootes. Feature detection and tracking with
constrained local models. In BMVC, volume 2, page 6. Citeseer, 2006.

[29] Navneet Dalal and Bill Triggs. Histograms of oriented gradients for human detection.
In Computer Vision and Pattern Recognition, 2005. CVPR 2005. IEEE Computer

Society Conference on, volume 1, pages 886–893. IEEE, 2005.

[30] Li Deng and Douglas O’Shaughnessy. Speech processing: a dynamic and

optimization-oriented approach. CRC Press, 2003.
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