
Disciplined Exploitation of
Emergent Properties

Konstantinos Rousis

A thesis submitted in partial fulfilment of the requirements for the degree of
Master of Philosophy

The University of Sheffield
Faculty of Engineering

Department of Computer Science

November 2016

i

Abstract

Digital systems are becoming increasingly complex, requiring sig-

nificantly more effort and resources in order to be designed, imple-

mented, and maintained. In the last decade, industry and academia

alike share the concern that in the near future engineers will have to

face unprecedented levels of complexity. Similarly, the belief that tra-

ditional engineering approaches will be insufficient for coping with

systems of such complexity is gaining increasingly more support-

ers. An alternative approach suggests the use of implicit engineering

techniques which could lead to complex global-level behaviours by

focusing solely on the local, or individual, level. The quality of ris-

ing macroscopic behaviours which are irreducible, or non-trivial to

reduce, to any microscopic properties is more widely known as emer-

gence, especially in the fields of complex and multi-agent systems.

This work aims to investigate the possibility of engineering sys-

tems which harness, in intentional and disciplined ways, beneficial

emergent properties. An experimental framework is being proposed

to assist system designers towards that goal. This framework is based

on the results and experience gained by Paunovski during the design

of the Emergent Distributed Bio-Organisation (EDBO) case study.

EDBO has demonstrated a number of beneficial emergent properties

rising out of simple, bio-inspired, local interactions. The original im-

plementation of the EDBO case study is closely coupled with a cus-

tom simulation platform; both developed by the same author. This

ii

work provides a basis for separating the EDBO case study from this

combined implementation, by documenting it concisely and defin-

ing it in a formal manner. This formal model allows for rigorous

testing and enables other authors to reuse the EDBO principles in

their systems. The model is validated informally through animation

and it serves as the basis of an independent implementation which

cross-validated many of EDBO’s original findings.

iii

Acknowledgements

I would like to express my sincere gratitude to my supervisors, Dr

George Eleftherakis and Dr Anthony J. Cowling, for their continuous

support during my research and the writing of this thesis. There is

no doubt that this work would not have been possible, nor would I

be the person I am today, without them.

My heartfelt thanks goes also to the rest of my thesis commit-

tee — Dr Ioanna Stamatopoulou, Dr Ilias Sakellariou and Professor

Panayotis Ketikidis — for their thorough review, insightful com-

ments and ability to point out new and exciting directions for future

work. Special thanks to Dr Ognen Paunovski for inspiring and laying

the foundation for a significant part of this work.

This thesis would not have been possible without the support of

the South East European Research Centre (SEERC). My thanks to

Nikos Zaharis, Athanasia Halatzouka and Eleni Tsimiga.

I would also like to thank the whole Computer Science Depart-

ment of the International Faculty of the University of Sheffield, City

College — Anna, Dimitris, George, Ioanna, Iraklis, Kostas, Panos,

Petros, Sofia, Thanos and Thomas — for all their support, encour-

agement and inspiration during my undergraduate and postgraduate

studies.

Finally, the biggest thanks goes to my better half, Isidora, and to

my family — Efi, Rena, Emilios, Sofia, Sandro, Anna, Efthychia and

Kostas — not only for putting up with me during the more stressful

periods of this work, but also for believing in me when I was not.

So long, and thanks for all the fish!

Table of Contents

1 Introduction . 1

1.1 Contributions . 5

1.2 Structure . 7

2 Understanding Emergence . 9

2.1 Different Perspectives and Definitions of Emergence . . 11

2.2 Categorisation and Classification of Emergent

Phenomena . 19

2.3 Summary . 30

3 Different Approaches to Engineering Emergence 31

4 Harnessing Emergent Properties in Artificial Distributed

Systems . 39

4.1 Emergence from an Engineering Perspective 39

4.2 Engineering Emergence . 42

4.3 The EDBO Case Study . 44

4.4 An Experimental Framework . 45

5 Simulation Platforms . 49

5.1 The EDBO Simulation Platform 49

5.2 FLAME . 52

6 A Formal Model of EDBO . 57

6.1 Emergent Distributed Bio-Organisation 58

6.2 The X-Machine Formalism . 62

6.3 Modelling EDBO with X-machines 63

6.4 Summary . 68

7 Validating the Formal Model of EDBO 69

7.1 Animating EDBO with XMDL . 70

v

7.2 Applying the Model . 81

7.3 Summary . 88

8 Summary and Conclusions . 89

8.1 Future Work . 92

A List of Author’s Publications . 101

vi

List of Tables

1 Boundaries, feedbacks and leaps of complexity for the

different emergence types. Adapted from [1]. 29

2 The classification seen from the perspective of

predictability and system roles. Adapted from [1]. 29

3 A complete list of the initial parameters. Adapted from [2]. 51

4 Response accuracy and delay regarding the selected

service for the runtime evaluation scenario using the

random and complex (meta-data) strategies. Reprinted

from [3]. 86

5 List of the author’s publications in international

conference proceedings and journals so far. 101

vii

List of Figures

1 Mathematical and scientific roots of emergence.

Reprinted from [4]. 12

2 A network of MEMS devices acting as a single MEMS

device with increased processing capabilities. Reprinted

from [5]. 33

3 A three element architecture for engineering emergence.

Reprinted from [6]. 34

4 An abstract process for engineering emergent properties

in complex systems. Reprinted from [7]. 47

5 An abstract X-machine in diagrammatic notation. 53

6 An iteration with two agents instances of the same type

running on parallel. 54

7 Overview of the EDBO components. 60

8 The X-machine model of a biobot. 64

9 Basic types for the XMDL model of EDBO. 71

10 State transitions of EDBO in XMDL. 73

11 The basic properties of the X-machine EDBO model in

XMDL. 74

12 The model’s forwarding query function coded in

XMDL. 75

13 Animating the EDBO X-machine model with the

X-System animator: matching 2 different queries. 77

14 Animating the initiation of 2 different queries. 78

15 Animating a query forwarding and expiration scenario . . . 80

16 An abstract representation of the proposed architecture.

Reprinted from [3]. 83

1

1 Introduction

The advent of the Internet introduced an exponential increase in

technology’s penetration to everyday life. While less than three de-

cades ago digital networks could only be found in the military, large

universities and research organisations, nowadays the vast major-

ity of the households in developed countries are connected to the

Internet. Recent advances in mobile devices, such as laptops, net-

books, tablets, and smartphones, only increased the number of in-

terconnected nodes per household or person. Moving further, the

first house appliances which are able to connect to the Internet and

perform online services on behalf of their users have long since hit

the market.

From a digital-networks perspective, the world can be viewed

as a huge overlay network consisting of billions of nodes interacting

through a shared channel: the Internet. Yesterday’s emerging trends,

such as the mobile Internet and the Internet of Things, have become

today’s norms. This results to a constant increase of complexity: de-

vices have to be managed, maintained, adapted, re-configured, and

so on. Classical engineering has successfully tackled these issues for

many decades but as the complexity increases so does the effort put

into managing this complexity. The main concern is that, eventually,

a turning point will be reached in which the complexity will grow be-

yond the point of being practically manageable with the traditional

engineering processes that have been developed so far.

2

Towards this direction, a number of alternative theories and ap-

proaches have been suggested by both industry and academia. IBM

acknowledged this threat and proposed autonomic computing as a

possible solution. Universities and research institutions focused on

complexity management by offering graduate-level programmes in

the renewed field of complexity science. The European Commission

has also acknowledged the issue and further supported research and

applications towards complexity management with two subsequent

calls under the “Complex Systems” initiative in 2003 and 2005; re-

sulting to the funding of numerous STREP, IP, and FET projects.

There is a common and central element in discussions of com-

plexity science and complex systems: emergence. A lot of effort has

been put by academia on exploring the concept of emergence and

how simple interactions at a lower level of organisation can yield

complex phenomena at a higher level. Thorough observation of nat-

ural systems has demonstrated that the process of emergence is ac-

countable for various biological properties such as survivability and

adaptability. Turning to nature for inspiration, researchers have been

able to reproduce these processes in their engineered, artificial, sys-

tems and yield similar favourable properties such as self-adaptability,

self-healing, and other self-* properties.

The author shares the belief that a point will soon be reached

where an explicit design and implementation of complex systems will

become infeasible. At the same time, it is apparent that harnessing

the power of emergence and incorporating it in a disciplined and in-

tentional manner into system design and engineering could greatly

assist with tackling the complexity. This work suggests the investiga-

tion of alternative and implicit engineering techniques which could

3

allow for the rise of complex macroscopic behaviours by focusing

solely on the microscopic level. The aim of this work is to identify

disciplined ways, for example in the form of frameworks, processes,

and design patterns, which could facilitate the intentional engineer-

ing of complex global behaviours by allowing engineers to focus on

the local level.

Directing, controlling (even partially), or in the extreme case en-

gineering emergence, however, could be extremely hard and even

oxymoronic according to most definitions of emergence. It is essen-

tial to form a thorough understanding of emergence and its intrinsic

issues before exploring any such possibility. Being a topic of great

debate among researchers, there is a multitude of proposed defini-

tions of emergence, spanning different disciplines, but a universally

accepted one is still missing. In order to proceed it is necessary to

examine the proposed definitions from an engineering perspective

and conclude with a working definition which can serve as the basis

for the rest of this work.

The last decade has seen various scientific attempts at control-

ling and engineering emergence. While these approaches may dif-

fer on many aspects, they invariably use simulation as a means of

proving (or disproving) their hypotheses regarding engineering emer-

gence. One has to carefully model the desired system, with the right

level of abstraction and refinement, in order to allow for the desired

processes and properties to emerge. Consequently, it is deemed es-

sential that an adequate simulation platform is used in order to allow

for the experimentation with different case studies and hypotheses

which could potentially lead to disciplined ways of exploiting emer-

gent properties.

4

Another common point in these approaches is the focus on spe-

cific application domains and case studies. At this point it seems

impossible to make generic claims about engineering emergence and

one has to narrow their focus in order to draw any meaningful con-

clusions. In this direction, Paunovski has focused on the field of

Artificial Distributed Systems (ADS) and more specifically on the

Emergent Distributed Bio-Organisation (EDBO) case study[2].

EDBO simulates an overlay peer-to-peer network where each

node, referred to as “biobot”, participates in a distributed query

forwarding mechanism. Biobots act on behalf of their users: when

a user initiates a query the biobot tries to satisfy it either directly,

if it already offers the requested service, or by forwarding it to its

neighbours until it is eventually matched or it expires.

The key differentiation between EDBO and regular peer-to-peer

networks is the introduction of energy values at the biobot level.

When these values reach certain thresholds, the biobots are allowed

to perform different biologically-inspired functions. Biobots receive

energy rewards when they contribute to the success of the network;

for example by participating in a successful query match. Likewise,

they incur energy penalties for communicating with their neighbours

or performing bio-inspired actions such as replicating or pairing with

other biobots as a means of sexual reproduction. When a biobot loses

all of its energy it “dies”.

The EDBO case study has already demonstrated its potential at

engineering emergent properties [2, 8]. By following an iterative and

experimental, yet disciplined, framework for engineering emergence

in ADS [7], simulations with EDBO resulted in the emergence of vari-

ous beneficial behaviours. Introducing biologically-inspired functions

5

and energy as part of the node’s design, allowed for the emergence

of complex global properties.

The major flaw of EDBO is that the model is tied to its own,

custom developed, simulation platform. As such, there is no formal

or even semi-formal description of the EDBO model available. This

work devises a formal specification of the EDBO by using the X-

machine formalism. This specification is decoupled from any imple-

mentation details and it allows for easier reuse of the EDBO model.

The model is informally validated by using an independent anima-

tor available in the X-machine ecosystem. Moreover, confidence to

the model is further increased by a separate implementation of the

EDBO core principles in a different application domain, which was

based on this same formal model. The next section presents this

work’s contributions in more detail.

1.1 Contributions

This section presents the main contributions of this work. For those

already published in scientific papers, citations are included.

1. Establish a working definition of emergence that assists towards

the quest of engineering emergence. As Chapters 2 and 3 detail,

the scientific community has not reached a consensus on the def-

inition and the intricacies of emergence. There is a large number

of different and often conflicting definitions available in the liter-

ature. Section 4.1 suggests the adoption of Wolf and Holvoet’s [9]

definition as a suitable one in the context of computer science as

well as towards harnessing beneficial emergent properties in dig-

6

ital systems. Work presented in Chapters 2, 3, and 4 have been

published in [10] and [11].

2. Provide a disciplined way of exploiting emergent phenomena in

artificial distributed systems. Chapter 4 presents an experimental

framework for designing distributed systems that benefit from

emergent phenomena. Work presented in that chapter has been

published in [12].

3. Devise a formal model of the EDBO. EDBO was introduced in

Paunovski’s PhD thesis [2] with very promising results. However,

many of the details were only documented in the implementa-

tion of the model and the simulation platform itself. After an

extensive study of this combined implementation, a more concise

and implementation-independent description was formed. This

is presented in parts of Chapters 5 and 6 and has been pub-

lished in [8]. Based on that, a formal model of the EDBO was

constructed by employing the X-machine formalism. This con-

tributed to a better understanding of the original model. More

importantly, it enables other researchers and practitioners to un-

derstand and reuse the EDBO principles in their own systems. It

further paved the road for independent simulation studies on the

EDBO case study which allows for cross-validation of the origi-

nal findings. The formal model is presented in Chapter 6 and has

been published in [13].

4. Improve confidence to EDBO’s original results and cross-validate

some of the original findings. The formal model described in the

previous contribution has been informally validated through an-

imation techniques, increasing the understanding of the original

model as well as confidence on that the devised formal model is

7

at least partially equivalent to the original. Furthermore, a new

implementation of the EDBO in a different application domain

was based on this same formal model and it resulted to many

of the original findings of the EDBO case study, providing some

form of cross-validation. This work has been published in [3] and

is presented in Chapter 7.

1.2 Structure

Chapter 2 provides an in-depth literature review on emergence and

Chapter 3 presents various attempts at utilising emergent phenom-

ena and incorporating them into engineering processes. In Chap-

ter 4, emergence and the recurring topics surrounding it are discussed

from an engineering perspective and a working definition is selected.

The author’s approach to engineering emergence is also presented

along with his contributions on harnessing emergent properties in

distributed systems.

Chapter 5 presents the EDBO simulation platform which has

been used in previous work and identifies as its main weakness the

fact that its implementation is tied together to the EDBO model

itself. FLAME is suggested as an alternative, general-purpose simu-

lation platform.

Chapter 6 provides a formal definition of the EDBO model by

using the X-machine formalism and Chapter 7 validates this model

informally, though animation. Furthermore, it presents a separate

implementation of EDBO that was based on the same formal model

and has demonstrated similar findings to those of the original EDBO

8

case study. Finally, Chapter 8 summarizes this work and presents its

conclusions along with possible future directions for this work.

9

2 Understanding Emergence

In the complex systems and multi-agent systems fields emergence

typically refers to a global (or macroscopic) level behaviour which is

either impossible or highly unlikely to be predicted by observing the

behaviour of the individual entities at the local (or microscopic) level.

A typical example is the flocking behaviour of birds, whereby birds

fly in a lockstep formation and by analysing the behaviour of each

individual bird it would be rather unlikely to predict such a global-

level result. Another example is the ability of ants to establish the

shortest possible route between their nest and the various sources

of food, even when the environment changes, while the behaviour

of each ant (i.e. the local or micro level) is rather simplistic and

by simply observing it, it would be hard to predict such a global

behaviour a priori.

Lexically, emerge is derived from the Latin word emergere and

according to the Oxford English Dictionary is defined as something

moving out of something else and becoming visible or apparent. The

same source defines emergence as the action or process of emerging

while emergent, in a philosophic context, is defined as a property

which arises due to complex causes and can not be analysed solely

on its own or by its effects.

This last, philosophic, definition of emergence can be traced back

to Aristotle who at the 4th century BC wrote [14]:

10

In the case of all things which have several parts and in
which the totality is not, as it were, a mere heap, but the
whole is something beside the parts, there is a cause [...]

This excerpt is commonly interpreted in the literature as “the

whole is greater than the sum of the parts”. More than two millennia

after, the father of modern economics, Adam Smith, wrote in his

seminal work, The Wealth of Nations [15]:

He [the individual] generally, indeed, neither intends to
promote the public interest, nor knows how much he is pro-
moting it. By preferring the support of domestic to that of
foreign industry, he intends only his own security; and by di-
recting that industry in such a manner as its produce may be
of the greatest value, he intends only his own gain, and he is
in this, as in many other cases, led by an invisible hand to
promote an end which was no part of his intention.

What Smith states is that although individuals may act solely

in self-interest, a certain order, which he names the invisible hand,

is emerging. There is, thus, a possibly positive effect which can be

observed at a global level, i.e. the society, and cannot be deduced by

observing the micro level, that is each individual.

Emergence is very commonly found in discussions of systems the-

ory which take an anti-reductionism and holistic stance. Reduction-

ism is the belief that a system’s behaviour can be completely pre-

dicted and understood by analysing and observing its components;

anti-reductionism being the exact opposite. Holism, being the oppo-

site of atomism, refers to the theory that some wholes are greater

than the sum of their parts or that these parts are explicable only

by reference to the whole [16], a definition similar to the one given

by Aristotle [14].

11

Although these definitions are sufficient for providing a basic un-

derstanding of emergence as a concept, they are mostly inadequate

for approaching emergence as a scientific or engineering subject. Re-

cent years have brought a renewed research interest on emergence,

mostly from the communities of complex and multi-agent systems.

However, to this day, a universally accepted definition of emergence

is still lacking.

The rest of this section presents various attempts to define emer-

gence and tackle the intricate topics inherently related to it such as

novelty, models, levels, surprise, and observation. Following, differ-

ent emergence classification schemes that have been suggested in the

literature are presented.

2.1 Different Perspectives and

Definitions of Emergence

Holland famously wrote that it is unlikely that a topic as complicated

as emergence will submit meekly to a concise definition [17]. While

this, to this day, is true, one can gain great insight into emergence

by reviewing the various definitions available in the literature, span-

ning different decades, sciences and disciplines. Figure 1, reprinted

from [4], gives an insight into the mathematical and scientific roots

of emergence.

Lewes, in 1875, proposed the use of the term emergent as an

antonym to resultant. While a resultant is either the sum or the dif-

ference of two or more co-operant forces, an emergent encompasses

any result which does not satisfy the aforementioned property [18].

Anderson, nearly a hundred years afterwards, managed to renew

12

Fig. 1: Mathematical and scientific roots of emergence. Reprinted
from [4].

scientific interest in emergence with his claim that the whole is not

only more than the sum of its parts (the original notion of emergence

according to Aristotle [14]), but it is different [19]. Drawing a mul-

titude of examples from molecular biology to psychology and social

sciences, Anderson describes how global properties can emerge that

are not deducible from the properties and behaviours of a system’s

local components.

Rosen described emergence in terms of models, defining a sys-

tem’s behaviour as emergent if it cannot be explained anymore by

the model which described the system so far [20]. This idea was later

named by Cariani as “emergence relative to a model” [21], describ-

ing how any functional discrepancies between the system’s model and

the actual behaviour during execution can be classified as emergent.

Heylighen also states that emergence is a process which cannot

be captured by a fixed model of a system [22]. Following a state-based

13

approach, Heylighen uses the term model as a construct capable of

capturing all possible states of a system as well as the relational

constraints which define which states can be reached under differ-

ent conditions. For example, the movement of a car can be typically

modelled with a dynamic state space dimensionality of five: three

variables to model its kinematics state, that is its coordinates in

the three-dimensional space, one variable for its forward velocity

and another one for its yaw rate (accounting for steering). These

five variables are sufficient to determine any possible state of the

car model given that the dimensions of the state space are bound

to be constant. If, on the other hand, the car was somehow to be

split into two parts, the state space dimensionality would be imme-

diately doubled. The original model thus would become insufficient

for modelling the system after the event of splitting.

A more realistic example is crystallization where the dissolved

molecules move independently of each other causing their state space

to be the product of the state spaces of all molecules which could be

virtually infinite [22]. In this scenario the initial model of the system

is deemed irrelevant after an emergent phenomenon occurs (i.e. the

crystallization). Heylighen proposes the use of a meta-model, which

also consists of states and transition rules, capable of capturing ap-

propriately systems which exhibit emergence. In this meta-model,

each state corresponds to a simple model of the system for a given

time instance during its evolution. For example one state could cor-

respond to a model describing the car before the splitting event and

another state to a model describing it after that. Transition rules in

the meta-model determine the shift from one model to another.

14

Holland proposes a subtle change in the classical reductionism

approach by contradicting the notion “that all phenomena in the

universe are reducible to the laws of physics” with “all phenomena

are constrained by the laws of physics” [17]. The latter alternative

allows for the recognition of emergent phenomena even if these are

the result of a relatively small set of components, governed by sim-

ple rules. Holland further claims that emergence must be the result

of self-organisation and not of a centralised coordination and con-

trol [17]; an opinion Corning [23] seems to reject emphatically by

arguing that self-organisation has become an academic buzzword

which is often used uncritically.

Bar-Yam takes an anti-reductionism stance as well but he makes

another important realisation: although it is impossible to study

emergent phenomena by isolating a system’s parts and studying

them separately, on their own (i.e. anti-reductionism), it is possi-

ble to study them by studying each part under the context of the

system as a whole [24]. Supporting his statement he provides an

example drawn from the field of neural networks:

...there are synapses between each neuron and every other
neuron. If we remove a small part of the network and look
at its properties, then the number of synapses that a neuron
is left with in this small part is only a small fraction of the
number of synapses it started with. If there are more than
a few patterns stored, then when we cut out the small part
of the network it loses the ability to remember any of the
patterns, even the part which would be represented by the
neurons contained in this part.

The important distinction BarYam makes is that the emergent

behaviour is not absent in the behaviour of the individual parts (i.e.

15

classic anti-reductionism) but rather it is not readily observable. If,

however, the individual parts are to be studied within the context

they are found, the collective behaviour can then be observed as a

part of the individual components [24].

Goldstein defines emergence as “the arising of novel and coher-

ent structures, patterns, and properties during the process of self-

organisation in complex systems” [4] while he emphasises the dis-

tinction between the macroscopic level (in which the emergent phe-

nomena are conceptualised) and the microscopic level (from whose

components such phenomena arise). Goldstein attributes the follow-

ing properties to any emergent phenomenon [4]:

– radical novelty: the emergent phenomenon should be novel re-

garding to the system and its parts and not deducible or reducible

to the system’s components.

– coherence or correlation: emergents tend to appear as integrated

wholes (at the macro level).

– global or macro level: the emergent phenomena should be observ-

able at a global or macroscopic level as opposed to the local or

microscopic level in which the components lie.

– dynamical: emergents cannot be characterised as static properties

of a system but rather they evolve, dynamically, as the system

evolves over time.

– ostensive: emergents should be perceivable.

The latter point emphasises the need for an observer which plays

a central role in emergence and has been the subject of great debates

among researchers. Ronald, Sipper, and Capcarrere [25] are consis-

tent with Goldstein’s view of the need for an observer and taking

16

the notion a step further they devised a scheme for testing whether

a system is actually exhibiting emergent phenomena or not. The

scheme requires a designer who designs a system in a language L1

and an observer, fully aware of the design, who describes the observed

macro-level system behaviour in a different language L2. The condi-

tion for classifying the system as capable of exhibiting emergence is

the element of surprise, that is, the observer should be surprised by

the global behaviour, documented in L2, denoting thus the existence

of non-obvious causal links to the system’s design in L1. Far from

formal, the definition of “design, observation, surprise!” has been

the subject of debates, especially regarding the element of surprise,

how this could be formally defined and whether once the observer

has gained enough insight into the causal relationships of the sys-

tem, as to cease the element of surprise, the phenomenon can still

be classified as emergent or not [17, 26–30, 6].

The definition of Ronald et al. is in line with Goldstein’s re-

quirement for an observer as expressed by his ostensiveness require-

ment [4]. Crutchfield shares this view regarding the necessity for

an observer by claiming that the process of detecting emergence

is subjective and is restricted to the observer’s computational re-

sources [31]. As an example, Crutchfield discusses the case of a self-

avoidance random walking algorithm and how similarity patterns

can arise from the paths traced by its execution, although the path

forming process involves a lot of stochasticity. Crutchfield claims that

the emergence in this scenario is in the eye of the observer whose

initial predictions of the system might have failed.

Corning, for that matter, disqualifies the need of an observer

and he claims that an emergent phenomenon is real and measurable

17

regardless of whether someone is observing it or not [23]. Fromm

shares Corning’s opinion and moving a step further, he rejects both

the need for the element of surprise and novelty as prerequisites for

defining emergence [26]. Kub́ık opposes the surprise element as well

by arguing that it can be misleading and obscure better explana-

tions [27]. Nicely put, “the moment of surprise can fade away once

sufficient information is provided” and thus he suggests, towards an

attempt to provide a more formal definition of emergence, to “ig-

nore surprise” altogether. Holland also believes that surprise is not

an essential factor for classifying a behaviour as emergent [17] as

does Damper [28]:

What might be surprising on first acquaintance or at a
particular stage of scientific knowledge tends to become com-
monplace, trite or predictable after intensive, lengthy study.

A more formal substitute for the surprise characteristic is the no-

tion of the gap of complexity provided by Deguet and Demazeau [29].

The authors agree with Ronald’s distinction (and therefore the need)

of a designer and an observer but following Holland’s paradigm of

emergence, “much from little” [17], they devise a complexity metric

which is used to prove whether a system exhibits this kind of emer-

gent behaviour. More specifically, they consider “little” as a simple

system, S, “much” as a complex phenomenon phi that this system

exhibits and they classify a feature as emergent if the following equa-

tion results in a positive outcome:

eFeat = C(ϕ)− C(S) ≥ 0

In the formula above, C is an abstract complexity measure. For

obvious reasons the same complexity metric cannot be applied to

18

both a phenomenon (phi) and a system (S), thus, the authors asso-

ciate a computational task to each of them [29]. The authors, how-

ever, omit to provide any practical example of a system to which they

apply their proposed formula. Kub́ık attempts to provide a formal

definition of emergence as well but firstly he suggests an informal

definition of basic emergence [27]:

By basic emergence, we mean behavior reducible to agent-
to-agent interactions without any evolutionary processes in-
volved (i.e., an agent’s behavioral set stays the same during
the modeling and the analysis of the system). The environ-
ment has no rules of behavior and is changed only by the
actions of agents.

Subsequently, he proceeds to formalising this notion by modelling

the various concepts involved (such as a MAS, an agent, agents’

behaviour) with formal constructs (grammars) and testing the pro-

posed formal framework with the well studied emergence example

of gliders1. Gordon opposes in principle the need for an external

observer by making a more philosophical point that if emergence

requires an observer, “A relation is implied that humans are to ar-

tificial life as God is to real life. This precludes a unified treatment

of life and artificial life.” [30]. Instead, he suggests that both the

designer and the observer should be an integral part of the system

under simulation, they should emerge as well, and their emergence

should also be simulated. Gordon claims that this can be accom-

plished by adding the elements of evolution, embryology, and physics

to Ronald’s [25] “Design, Observation, Surprise!” original process as

such [30]:

1 Gliders are spaceship-like patterns which travel across the board of Conway’s Game
of Life. Gliders can appear even in simulations with a random initial configuration.

19

1. At a given time, a species is defined by construction rules

for its individuals, by which the genotype is translated to

a phenotype via genetics and physics.

2. The ability to observe is part of an individual’s construc-

tion.

3. Surprise! occurs when gene duplication is followed by (vi-

able, heritable, survivable) mutations in subsequent gen-

erations that construct new capabilities (morphological,

behavioral, or observational).

It is apparent that emergence has become a term used by a di-

verse set of science and engineering disciplines with a multitude of

proposed definitions. Even within the scope of a specific domain,

such as complex systems, there is no universally accepted definition.

Nonetheless, there is an acknowledged need for classifying different

types of emergent processes and phenomena which is the topic of the

next section.

2.2 Categorisation and Classification of

Emergent Phenomena

Undoubtedly, the most common distinction found in the literature

is the one between weak and strong emergence. The distinguishing

attribute is whether a global property characterised as emergent is

reducible (even if the reduction is non-trivial) or irreducible (in prin-

ciple) to the local parts [32]. In the first case the emergent phe-

nomenon is classified as weakly (or reductionistic) emergent while

in the latter as strongly (or holistic) emergent. Countless examples

20

fall under the category of weak emergence, depending on the specific

definition used, such as birds’ flocking behaviour, various abilities

of living organisms (e.g. breathing or reproducing), molecule crys-

tallisation, and many others. Strong emergence, on the other hand,

is still treated mostly philosophically and actual examples are lack-

ing; for that matter some authors completely doubt the existence of

strong emergent phenomena.

Stephan had originally distinguished among three types of emer-

gence which coincide with the distinction of weak and strong emer-

gence but they were named differently: weak emergentism, diachronic

emergentism, and synchronic emergentism [33, 34]. Stephan’s weak

emergentism coincides with Chalmers [32] notion of weak emergence.

More specifically, Stephan defines any systemic property as weakly

emergent, that is, any property possessed by the system but not by

the individual parts. The various abilities of living organisms such

as breathing, walking, and reproducing are a typical example of this

kind of properties.

Diachronic and synchronic emergentisms are stronger versions of

emergence, based upon the notion of weak emergentism. A diachronic

emergent property is one that is novel and cannot be predicted before

its first instantiation. Synchronic emergentism includes properties

which cannot, in principle, be reduced to the system’s parts and

their interactions; this view is in accordance with Chalmers’ view

on strong emergence [32] as well. It can be deduced that synchronic

properties are at the same time diachronic as well, but not vice versa.

Nonetheless, as already mentioned, discussions around strong

emergence are rather philosophic and the literature is still lacking

actual examples. Chalmers [32] takes a cautious stance, avoiding to

21

make any definite claims regarding whether strong emergence exists

at all. He believes, however, that the phenomenon of consciousness

is a case of strong emergence as facts about consciousness are not

deducible from physical facts alone [32, 35]. To further support his

view, Chalmers introduces two arguments [32]:

First, it seems that a colourblind scientist given complete
physical knowledge about brains could nevertheless not de-
duce what it is like to have a conscious experience of red.
Secondly, it seems logically coherent in principle that there
could be a world physically identical to this one, but lacking
consciousness entirely, or containing conscious experiences dif-
ferent from our own. If these claims are correct, it appears to
follow that facts about consciousness are not deducible from
physical facts alone.

According to Bar-Yam [36] strong emergence is possible and can

occur when there are no constraints in the individual components

but only on collectives of those (i.e. global constraints). Laughlin

considers supervenience a characterising attribute of strong emer-

gence [37]; that is that the system, as a whole (or at the macroscopic

level), supervenes in some way to the individual components (or the

microscopic level) resulting to new properties and qualities which

cannot be accounted for by using a reductionistic approach. On the

other hand, Bedau clearly doubts the existence of any strongly emer-

gent phenomena [38]:

Although strong emergence is logically possible, it is un-
comfortably like magic. How does an irreducible but super-
venient downward causal power arise, since by definition it
cannot be due to the aggregation of the micro-level poten-
tialities? Such causal powers would be quite unlike anything

22

within our scientific ken. This not only indicates how they will
discomfort reasonable forms of materialism. Their mysterious-
ness will only heighten the traditional worry that emergence
entails illegitimately getting something from nothing.

He does, however, propose the term nominal emergence to ac-

count for systemic properties which are not possessed by the sys-

tem’s constituents but given sufficient knowledge can be easily pre-

dicted [39]. An example of nominal emergence is the circle in which

each individual point has no shape on its own and thus being a circle

is considered a property of the whole. Given however the knowledge

that each of these points have an equal distance from a fixed point

it can be easily derived that the figure is a circle.

To account for cases where such knowledge is insufficient for pre-

dicting a systemic property, Bedau supports the notion of weak emer-

gence and places it somewhere between nominal and strong emer-

gence [38, 39]. He further provides a more formal definition of weak

emergence as: “Macrostate P of S with microdynamic D, is weakly

emergent iff P can be derived from D and S’s external conditions

but only by simulation.” In this definition, S is an evolving system

with various micro- and macro-level states and D governs the time

evolution of the microstates in S.

To illustrate the applicability of his definition, Bedau considers a

variety of Conway’s Game of Life (GoL) scenarios. In GoL, an initial

configuration is specified by a two-dimensional grid in which either

alive or dead cells are situated. In every iteration, each cell’s state

is updated according to the state of its eight neighbours (four on

its sides and four connected diagonally) in the previous iteration. If

23

exactly three of them were alive, the cell will become alive as well;

in any other case the cell will die2.

Mapping GoL concepts with Bedau’s formal definition of weak

emergence is rather straightforward:

System S. Any GoL configuration can be perceived as a system.

Clearly, GoL scenarios consist of various microstates and macrostates

which evolve over time.

Microstate3. The individual cells which can be either alive or dead.

Macrostate P. GoL structural macrostates such as gliders, glider

guns (structures which produce gliders) or eaters (structures which

destroy gliders upon collision).

Microdynamic D. The microdynamic in GoL is the simple birth-

death rule described above, solely responsible for governing the

time evolution of any microstates in S.

It thus follows that any structural macrostate P is weakly emer-

gent if deriving its behaviour requires simulation. Two specific exam-

ples which fall under this category and thus prove the applicability of

his definition are the R pentomino growth and the glider spawning. To

further illustrate the applicability of the definition, an R pentomino

refers to a configuration which results in a five cell edge-connected

structural pattern which over time leads to new configurations which

are different from all of its predecessors. A possible question arising

is whether an R pentomino grows indefinitely, i.e. whether the to-

tal number of living cells is always increasing (assuming an infinite

GoL grid). Extensive simulation proves that it does not as after ex-

2 The rationale behind these conditions is that cells having two or less alive neighbours
die of loneliness and cells with more than 3 alive neighbours die of overcrowding.
The exact amount of 3 alive neighbours is perceived as that necessary in order to
breed a new cell.

24

actly 1103 time steps the R pentomino stabilises [40]. This finite

bound however could not be predicted or determined without simu-

lation and thus it is considered a weak emergent macrostate of the

GoL [39].

Bar-Yam [24] suggests another distinction of emergent phenom-

ena according to the part of the system they affect: local and global

emergence. While local emergence affects only a subset of the sys-

tem, global emergence pertains throughout the system as a whole.

Another interesting observation is that whereas isolating a small part

of a system exhibiting local emergence would have little effect on the

part and the system overall, removing a small part from a system

with global emergent properties would cause this part to yield a com-

pletely different behaviour when compared to the one it previously

had as part of the system [24].

Heylighen provided a taxonomy of emergence types based on the

following attributes [22]:

– amount of variety in the system or its subsystems according to

their state space.

– internal or external origin of the variation and selection mecha-

nisms which lead to emergent phenomena.

– single- or multi-level character of the creative process and its

structure.

– type of constraints according to mathematical criteria and their

contingency.

The first attribute is directly related to the state space of a sys-

tem: the more possible states and thus state transitions a system

(or its subsystems) has the greater the amount of variety would be.

25

The second attribute characterises whether the mechanisms which

may lead to emergent properties (such as attractors, adaptation etc.)

are originating from within the system (internality) or from the

outside (externality). Heylighen further classifies creative processes,

which may not necessarily be characterised as emergent, according

to whether they consist of structures with one level (e.g. an animal

seeking for food), two levels, or more levels; the human body being

an example of a multi-level system [22]. The last attribute is con-

cerned with the classification of the different constraints on a system

according to different mathematical properties [41] and the criterion

of contingency4.

Cariani distinguishes between three types of emergence [21]:

– computational emergence: a mathematically-based theory con-

cerned with the emergence of new formal structures.

– thermodynamic emergence: a physically-based theory related to

the origins of new physical structures.

– emergence relative to a model : a biologically-based theory con-

cerned with the origins of new functions.

The first type is concerned with the emergence of new formal

structures (e.g. symbols, patterns) which can be observed in simula-

tions of computational models such as Turing machines and cellular

automata. Typical examples that fall under Cariani’s computational

emergence include the flocking behaviour of birds and gliders in the

game of life. Emergent phenomena regarding new physical structures

and lying within the fields of dynamical theory, non-equilibrium ther-

4 The criterion of contingency [22] states that “either the constraint is absolute and
fixed, precluding and allowing always the same variations, or different variations
will be selected in different situations, depending on the circumstances”.

26

modynamics, and information theory fit into thermodynamic emer-

gence. Finally, emergence relative to a model is based on Rosen’s

view of emergence [20], and refers to a functional theory of emer-

gence. The expected behaviour of a device (or an artificial system in

general) should be formally modelled a priori and any discrepancies

or deviations observed when the device is actually functioning are

characterised as emergent phenomena. As a consequence the model

originally describing the behaviour of the device has to be revised in

order to keep up with the new (emergent) features observed during

execution.

A more comprehensive classification of emergent phenomena has

been provided by Bar-Yam who separates them into four distinc-

tive types [36]. Type 1 is considered as weak emergence, types 2

and 3 as strong emergence while type 0 as another form of emer-

gence not strong enough to be even classified as weak emergence.

The latter type is mostly about the effects that the organisation

of individual parts has on the observation of a system as a whole.

Type 1 emergence proceeds a step further by describing situations

where predicting global properties by merely observing the individ-

ual parts is considered impossible or at the best case unlikely [36].

Finally, both types 2 and 3 encompass strong emergent phenomena,

with the former focusing mostly on states and ensembles and the

latter on environmental information and how these are necessary in

order to determine macroscopic properties [36].

Inspired by BarYam’s categorisation of emergent types [36] and

based on the classification of cellular automata originally proposed

by Wolfram [42] and subsequently refined by Eppstein [43], Fromm

proposed the following taxonomy of emergent phenomena [1]:

27

Type I. Simple or nominal emergence without top-down feedback,

containing only feed-forward relationships.

Type Ia: Simple Intentional Emergence. Intended emergent

properties arising due to the organisation and interactions of

the local parts (e.g. the various parts of a clock or components

of a software system) which do not even qualify as weakly

emergent.

Type Ib: Simple Unintentional Emergence. Non-intended

emergence concerned with statistical properties that cannot

be applied to single local parts but rather to (relations of) col-

lectives. For example pressure cannot be applied to a single

particle nor slope can be defined for a single grain of sand [1].

Type II. Weak emergence including self-organisation and top-down

(either positive or negative but not both at the same time) feed-

back.

Type IIa: Weak Emergence (Stable). The most commonly

referenced type of emergence, including top-down feedback

and bottom-up influences, found in the flocking/schooling be-

haviour of birds/fishes, the foraging behaviour of ant colonies

etc.

Type IIb: Weak Emergence (Unstable). An undesired form

of emergence based on positive feedback with typical exam-

ples including the creation of bubbles in the stock market and

buzzes in the news.

Type III. Multiple emergence with many feedbacks.

Type IIIa: Stripes, Spots, Bubbling. A multiple-feedback

emergence such as in the case of short-range positive feedback

and long-range negative feedback (i.e. activator-inhibitor sys-

28

tems) responsible for stripes, spots and other patterns that

can be found in animals.

Type IIIb: Tunnelling, Adaptive Emergence. A form of

emergence common in adaptive and evolutionary systems re-

lated to extinctions, catastrophic events in the environment

and sudden jump of barriers (mental or physical).

Type IV. Strong, multiple-level (as per Heylighen [22]) emergence

with huge amounts of variety and irreducible in principle. Char-

acteristic examples are the emergence of life out of genes and

genetic code and the emergence of culture out of memes and lan-

guage systems [1].

Table 1 depicts the different feedback types along with local-

global boundaries and the jumps/leaps in complexity associated with

each emergence subtype. As the figure suggests feedback types in-

clude no feedback at all (type Ia), peer-to-peer feedback (type Ib),

either positive or negative feedback but not both at the same time

(type II), positive and negative feedback simultaneously (type III),

and all of these in addition to feedback across different systems (type

IV). Furthermore, the more complex the emergent phenomenon the

larger the jump or leap in organisation, ranging from a static jump

(e.g. type Ia) to a quantum leap in complex adaptive systems (e.g.

type IIIb) and gateways to new evolutionary systems (type IV).

Each type of emergence has a different predictability associated

with it, as Table 2 suggests. Type I is absolutely predictable and

type II is predictable in principle. Type III is much harder to pre-

dict if not completely impossible. Lastly, type IV is classified as

strong emergence and is not predictable in principle, coinciding with

Chalmers’ [32] and Stephan’s [33] views on strong emergence and

29

Type Boundaries Feedbacks Jump/Leap

I Ia agent-system boundary
(only in one direction)

no feedback but absolute
commands or constraints

intended or static jump
to higher level of

organization

Ib agent-agent boundary scale-preserving
(peer-to-peer) feedback

fluctuations, no jump to
significant higher level of

organization

II II agent-group or agent
system boundary (in both

directions)

scale-crossing (topdown)
feedback, positive or

negative

dynamic jump to higher
level of organization

III IIIa agent-group or agent
system boundary (in both

directions)

scale-crossing (topdown)
feedback, positive and

negative

dynamic jump to higher
level of organization

IIIb large fitness barriers in
complex evolutionary

systems

multiple feedbacks in a
system

quantum leap in complex
adaptive system

IV IV boundary between
different evolutionary

systems, barrier of
relevance

all of the above, incl.
feedback between different

systems

gateway or quantum leap
in evolution to new

(evolutionary) system

Table 1: Boundaries, feedbacks and leaps of complexity for the dif-
ferent emergence types. Adapted from [1].

Type Name Roles Frequency Predictability System

I Nominal or
Intentional

fixed abundant predictable closed, with passive
entities

II Weak flexible frequent predictable in
principle

open, with active
entities

III Multiple fluctuating common -
unusual

not predictable
(or chaotic)

open, with multiple
levels

IV Strong new world of
roles

rare not predictable
in principle

new or many systems

Table 2: The classification seen from the perspective of predictability
and system roles. Adapted from [1].

30

predictability. Furthermore, roles are different for each of the types

with fixed ones for type I, flexible for type II, fluctuating (existing

roles disappearing and new ones emerging) for type III and lastly,

on type IV, completely new worlds of roles appear.

2.3 Summary

While there is a renewed interest in emergence, it is clear that re-

searchers have not yet agreed to a common view or definition of

emergence. The debates seem to be endless regarding observers, the

elements of surprise and novelty, and different levels, scales, and hi-

erarchies, to name a few.

Although the term engineering emergence might be oxymoronic

according to some definitions, there are others that could sufficiently

support such a goal. Before concluding to such a working definition,

the next chapter presents the most notable approaches to engineering

emergence.

31

3 Different Approaches to

Engineering Emergence

Emergence is commonly seen as an unexpected and unpredictable

effect. Such approaches to defining emergence, as discussed in detail

in the previous section, make the phrase “engineering emergence”

an oxymoron. Moreover, emergence in the context of engineering is

typically interpreted as the appearance of undesired and unforeseen

properties in a system or device, which are commonly described as

malfunctions or misbehaviour. In this work, we use the term engi-

neering emergence to refer to disciplined ways of incorporating de-

sired and beneficial properties into systems by utilising, in some way

or another, emergent processes. While many researchers would reject

the whole concept when phrased like this, others have been trying

to achieve exactly that.

One of the earliest works on the topic was carried out by General

Electric’s Bush and Kulkarni [5] in the domain of Microelectrome-

chanical Systems (MEMS)5 which can also be seen from an active

networks6 perspective. The microscopic level in their case study con-

sists of individual MEMS devices while the macroscopic level consists

of network-wide qualities and behaviours.

5 MEMS are very small computational devices with a size ranging from few microm-
eters to one millimetre.

6 Active networking refers to an alternative networking paradigm which allows the
packets (also known as active packets) to alter the operation of the network by
executing arbitrary code within special networking hardware equipment.

32

MEMS devices have limited resources and computational power

making thus impossible to explicitly program intelligent behaviour

into them. In their white paper, Bush and Kulkarni attempt to har-

ness emergent phenomena created by the various interactions among

the devices as well as the environment in order to achieve global

characteristics such as an optimal performance on active networks.

A MEMS device can be seen as consisting of an inherent physical

behaviour, an explicitly programmed behaviour, and a sense-and-

control unit which interacts with the environment via sensing and

actuating. Given that the explicitly programmed behaviour requires

more computational resources, the authors try to understand and

harness the inherent behaviour and the external emergent responses

perceived by the sense and control unit.

Bush has further developed a mechanism which allows the injec-

tion of network component models into operational networks, aiming

to improve the overall performance [44]. In this work Bush attempts

to utilise the aggregate emergent behaviour of a set of MEMS de-

vices in order to model a single, more powerful, MEMS device (see

Figure 2). The goal is to allow for behaviours and intelligence which

would be otherwise impossible to implement on a single MEMS de-

vice due to computational limitations.

Stepney, Polack, and Turner believe that “engineering emergence

is not an impossible dream” [6]. Following Abbott’s observations on

emergent properties from an engineering point of view [45], they set

as a goal the transition from an abstract design which describes a

global emergent, to a lower level implementation of that design [6].

Further, they adopt the views of Ronald et al. [25, 46] on using sep-

33

Fig. 2: A network of MEMS devices acting as a single MEMS device
with increased processing capabilities. Reprinted from [5].

arate languages for describing the implementation and the abstract,

higher level, emergents.

Due to the different concepts employed in these two languages,

the authors claim that classic refinement techniques are not sufficient

for emergent systems [47] and thus they propose retrenchment [48]

as an applicable alternative for such systems [49]. Their main contri-

bution to the engineering of emergence is the architecture depicted

in Figure 3.

The architecture comprises three elements: the system of sys-

tems (SoS) model, the local system model, and the integrated model.

34

Fig. 3: A three element architecture for engineering emergence.
Reprinted from [6].

Macroscopic properties are described in the SOS model while micro-

scopic are described in the local model; a different language, H and

L respectively, should be employed for each of them. Finally, a third

model is introduced to describe the integration of SOS and local

models. This integration model contains any environment character-

istic in another language, E, which is shared with both SOS and

local environment models. The authors illustrate the use of their ar-

chitecture by applying it to different scenarios such as Game of Life

gliders and nanite platelet systems.

A nanite platelet system, for example, corresponds to the pro-

posed architecture as follows [6]:

– SoS model — a collection of platelets which can move and clot,

described in H.

– Local system model — a single nanite platelet which changes

according to some local rules which are activated through sensor

inputs, described in L.

35

– Integrated model — the physical environment of a blood vessel,

described in E, providing the components’ physical locations,

movement, and inputs.

– SoS model for the environment — a collection of platelets and

clots within a blood vessel.

– Local model for the environment — the individual components

(platelets) situated in the environment (blood vessel) and pro-

vided with inputs from the latter via their sensors.

– Integration environment — a simulation environment of the real

(physical) environment to aid understanding.

Fromm [50] attempts to tackle many intrinsic issues on combin-

ing engineering and emergence or self-organisation7. Claiming that

the problem of engineering emergence equals the problem of science

in general, he proceeds by applying a variety of classical scientific

methods to this domain and proposes that the solution is an “intel-

ligent design based on the classic scientific method” [50]:

...is indeed possible, if we apply the scientific method to
the domain of engineering. The solution is therefore an in-
telligent design based on the classic scientific method. The
problem of “engineering emergence” — to find a simple rule
for a complex pattern — equals the problem of science in
general: to explain complexity by describing complex natural
phenomena with a minimum of primary principles, laws and
rules. The central questions of the study of “emergence” and
science are similar — how can you find simple local rules to
generate specific higher levels of global organisation — and
therefore the answers or solutions are similar, too.

7 The author uses the terms emergence and self-organisation interchangeably.

36

What Fromm suggests is the use of conventional scientific meth-

ods, such as iterative two-way approaches or synthetic microanalysis,

applied on artificial worlds (such as Conway’s Game of Life) instead

of the natural world. Nonetheless the suggestion is rather generic

and is limited by the scientist’s creativity and experience.

Welch et al. [51] expresses views on engineering emergence that

are very close to our perspective on the topic: systems in the near

future will be too complex to design and implement explicitly and

thus we will have to learn to engineer them implicitly. They sug-

gest the use of simple, local, behaviour rules on a large number of

interacting components (agents) from which they expect that the

desired, global, behaviour will emerge. Their simulation platform is

based on the CSP and pi-calculus formalisms, and implemented in

the occam-pi language, which allows for massive parallelisation in

grid-based computational environments.

In [51], the authors experiment with various formations of Rey-

nold’s boids, succeeding in engineering various emergent behaviours

such as flocking, feeding frenzy, panic/fear, and directional migra-

tions, among others. They achieve this by focusing solely on the

implementation of microscopic-level properties, i.e. attributes of a

single bird. For example, by changing the birds’ vision angle the col-

lective’s flocking behaviour changes as well. In this case the vision

angle is an explicitly programmed characteristic which concerns the

individual birds, or put differently the microscopic level. The flocking

behaviour and its variations (e.g. squabbling), however, relate to a

collective of individual birds, or the macroscopic level of the system,

and it was neither explicitly programmed nor planned a priori. This

37

is a fine demonstration of how local properties can control complex,

global, behaviours in non-obvious and non-linear ways.

Ulieru and Doursat [52] state that Cyber-Physical Ecosystems

(CPEs)8 is yet another domain in which conventional engineering ap-

proaches will be insufficient in tackling with their complexity. They

challenge many assumptions of the traditional engineering school

such as the need for a system to be well-defined in terms of func-

tionality and performance as well as the top-down approach followed

by most designers of distributed systems. They suggest “emergent

engineering” as an endogenous (i.e. bottom-up) alternative for de-

signing adaptive systems by focusing only in the microscopic level

and allowing for self-organisation and emergence to appear in the

global. They further devise three generic principles of emergent en-

gineering [52]:

– Architecting from the bottom-up without an architect : where focus

is centred on the microscopic state, or the agent level, and the

set of variables and rules governing this without any reference to

the whole or any explicit development towards the global-level

desired functionality (e.g. adaptability).

– Control without a controller : referring mostly to the autonomy of

the local-level entities where there is no central controller, as in

traditionally engineered systems, to coordinate the whole process

and instruct each agent what to perform next. Instead, each agent

has its own behaviour defined through a set of “micro-rules”.

Such rules can be further decomposed into two parts: a positive

8 Cyber-Physical Systems or Cyber-Physical Ecosystems refer to environments com-
bining elements from the physical world with digital artefacts. A typical example is
the connection of sensors to the Internet, providing an information channel between
the physical and the cyber world.

38

feedback reinforcing local behaviours which lead to the creation of

new macroscopic structures and a negative one correcting agents’

behaviours resulting in stabilisation of such structures.

– Co-evolving the CPE with the environmental dynamics : where

after a CPE (or any other global-level conceptual entity) has at-

tained a certain growth and established some desired functional-

ity, it should be in position to evolve along with the environment

it is situated.

During the literature survey of engineering emergence it became

apparent that although the field might be still immature there is an

ongoing research effort on engineering emergence. Furthermore, there

is an increased interest into devising processes, patterns, and tools

which could allow for the exploitation of emergent phenomena in

more disciplined ways, from both complex systems and multi-agent

systems communities. Many different research groups are attempting

to achieve what was inconceivable a decade ago.

The next chapter discusses emergence from an engineering per-

spective and concludes to a working definition of emergence that does

not contradict the notion of engineering it. Moreover, it presents pre-

vious work on harnessing emergent properties in ADS and introduces

a framework that can guide system designers to do the same.

39

4 Harnessing Emergent

Properties in Artificial

Distributed Systems

Having presented the most notable attempts at defining emergence

and classifying emergent phenomena (Chapter 2), it becomes appar-

ent that the scientific community has not yet reached a consensus

on the subject. Section 4.1 discusses emergence from an engineer-

ing perspective and concludes to a single definition of emergence

that is adopted for the rest of this work. Section 4.2 presents the

author’s views on the feasibility of engineering emergence and the

need of domain-specific approaches and studies. Section 4.3 details

the EDBO case study which was devised in order to test, via simula-

tions, various ideas on harnessing emergent properties in ADS. The

experience gained during this work [2] has been abstracted into an

experimental framework [7], which is presented in Section 4.4.

4.1 Emergence from an

Engineering Perspective

A central idea in every definition of emergence appears to be the

existence of different levels where actions on a lower level result in

emergent properties in a higher one, often in non obvious ways. The

40

debate seems endless regarding the necessity of observers, novelty,

surprise, downward causation, and supervenience, and it seems that

this will be the case for as long as it takes to explore and understand

emergent phenomena in more disciplined and scientific ways.

Nonetheless, it is essential that a single definition is adopted

throughout this work. We consider emergence from an engineering

perspective and thus some of the solely philosophical debates, like

the discussions around downward causation and supervenience, seem

irrelevant to our goal. On the other hand, we believe that different

levels, such as the microscopic and the macroscopic (and even the

mesoscopic according to some authors [52]), are a crucial part of

emergence. Like many of the researchers in the field we feel that

the element of surprise might lead to misconceptions and ambiguity,

and hinder the validity of any scientific results. Considering only the

observer’s surprise for classifying something as emergent would po-

tentially threaten the validity of any engineering approach we may

suggest. Instead we prefer to focus on the novelty and added-value

characteristics of these arising properties: if something was not ap-

parent in the microscopic level and was not explicitly engineered, yet

it emerges on the macroscopic level and the system benefits from it,

it is sufficient to accomplish our aim.

After an extensive literature review, we believe that the definition

provided by Wolf and Holvoet [9] fits best the scope of our research

and focuses on the computer science aspects of emergence. Moreover,

we feel that it sufficiently meets the objectives we set before, from

an engineering-emergence point of view:

41

A system exhibits emergence when there are coherent emer-
gents at the macro-level that dynamically arise from the inter-
actions between the parts at the micro-level. Such emergents
are novel w.r.t. the individual parts of the system.

The definition incorporates every aspect we consider relevant to

emergence such as the need for different levels (or points of view

of the system) and the interaction between micro-level components.

At the same time it lacks any reference to the controversial issues

of observers, the need for surprise, downward causation, and super-

venience, which we believe would only introduce unnecessary com-

plexity to engineering attempts, even though they might be of great

importance in a philosophical context.

A common criticism of this definition is the recursive use of the

word “emergent” as a means of defining “emergence”, however, we

feel that Wolf and Holvoet sufficiently clarify this by stating that [9]:

“the definition uses the concept of an ’emergent’ as a general term to

denote the result of the process of emergence: properties, behavior,

structure, patterns, etc.” An emergent, thus, can be any relevant

attribute apparent at the macro-level of a system, but not at the

micro-level.

A single definition however cannot possibly encompass and suf-

ficiently describe all different forms and types of emergence; there

is a further need for a classification scheme similar to the ones dis-

cussed in Section 2.2. The author believes that Fromm’s classifica-

tion of emergence types and forms [1] is the most comprehensive

and complete work on the subject available so far. It succeeds in dis-

tinguishing different types and subtypes of emergence while at the

same time providing a critical view on various inherent and intri-

42

cate concepts of emergence such as predictability, roles, boundaries,

leaps, and feedback types. For the purpose of this work the author

assumes Fromm’s classification, unless explicitly stated otherwise.

4.2 Engineering Emergence

The author believes that neither the complex system field nor en-

gineering as a discipline are mature enough as to allow for catholic

claims about engineering emergence. It is necessary to research emer-

gent phenomena extensively in order to be able to harness them in

our engineered models, in a domain-by-domain case. Generic claims

of engineering emergence are impossible to make and it is doubted

that a generic “one size fits all” solution can or will be provided

soon, if ever. The author proposes the study of each specific domain

separately, in an attempt to identify generic patterns and guide-

lines which could assist with introducing desired emergent proper-

ties. The domain of cyber-physical ecosystems (CPEs), for exam-

ple, has yielded a need for emergent engineering as a characteris-

tic attribute of CPEs is that they cannot be defined a priori but

rather emerge [52]. Stepney, Polack and Turner have centred their

research on engineering emergence on the field of molecular nan-

otechnology [6] while Welch et al. focused on herd formations [51].

Similarly, Bush has shown some promising results in the field of

MEMS devices and active networks [5].

This work focuses on the domain of ADS. In many domains cen-

tralised architectures have been replaced by decentralised approaches

which are able to offer significant advantages in utilisation of net-

work resources. Nevertheless, the increased demand and complex-

43

ity of applications and services operating within distributed envi-

ronments has demonstrated the need for more efficient, robust and

adaptive solutions that will operate without manual configuration

and management. Systems are getting increasingly complex and it is

inevitable that a point will be reached where humans will not be able

to cope with such complexity; both due to resource and capability

limitations.

It is for such situations that humans turn to nature for inspira-

tion. A multitude of useful, typically self-*, properties can be ob-

served to emerge from natural complex systems such as ant colonies

and bird flocks. The ability to guide and use these emergent pro-

cesses could prove very valuable since emergence is considered to

be the basis for a variety of very useful phenomena including self-

organisation, self-optimisation, adaptation as well as other beneficial

properties encountered in complex systems. Incorporating such be-

haviours in ADS could offer significant benefits to the development

and performance of the system, making it highly available, scalable

and robust. Having even partial control of this process, however,

proves to be extremely difficult.

Section 4.3 details the EDBO case study which was devised in

order to test, via simulations, various ideas on harnessing emergent

properties in ADS. The experience gained during this work [2] has

been abstracted into an experimental framework [7], which is pre-

sented in Section 4.4.

44

4.3 The EDBO Case Study

The EDBO [2] case study was devised in order to validate a number

of hypotheses and gain insight into various aspects of distributed

systems exhibiting emergence. In EDBO each agent, referred to as

biobot, is considered to be a network peer (node) acting simultane-

ously as service provider and consumer. In other words, each biobot

offers services to its peers while at the same time it issues requests

for services it needs.

Beyond the typical service capabilities which are common to most

peer-to-peer applications, EDBO employs a distributed query for-

ward mechanism. Instead of relying on a central authority (similar

to a UDDI registry or a central fileserver index) for locating desired

resources, each peer sends to its neighbours a special type of message

informing them of the resource it wishes to utilise. If the recipient

can fulfil the request it replies positively to the requester, otherwise

it forwards further the request to its own neighbours either randomly

or based on keyword similarity criteria. The whole forwarding chain

is restricted by a time-to-live (TTL) attribute in order to be finite.

The main differentiator of EDBO compared to other file sharing

and distributed service paradigms is the introduction of energy val-

ues. Following a biologically-inspired approach to networking, each

biobot possess some energies, emulating natural organisms which in

principle try to maximise their own energy. Different energies can

be affected by various events such as successfully matching another

peer’s request or being part of a successful forwarding chain (i.e. the

node’s decision to forward the request to a certain biobot resulted

in the resource being found). Higher amounts of energies reward

biobots by allowing them to perform an array of bio-functions such

45

as replication, migration, and (a)sexual reproduction. On the other

hand, depletion of energies could result in the death of a biobot. This

evolutionary approach emulates the process of natural selection, or

survival of the fittest, in which the best biobots live longer and are

given the chance to pass their characteristics to offspring while the

weaker ones vanish. What makes a biobot better than another varies

and depends on the application requirements as well as the hypothe-

sis in hand. It could be the case that a biobot is considered successful

when the services it provides are on high demand. In such a scenario

giving the chance to successful biobots to reproduce might allow the

network to handle specific traffic peaks and lead to increased scalabil-

ity. In this context, scalability is a macroscopic quality which might

emerge due to interactions of microscopic entities (i.e. the biobots).

4.4 An Experimental Framework

Previous work from Paunovski, Eleftherakis, and Cowling [53] con-

centrated on devising a framework for studying emergence in a dis-

ciplined way that provided insight into the causal relations between

microscopic and macroscopic levels. In a second phase, the aim is to

develop systems that exploit desired emergent properties, focusing on

ADS, aiming in the long term to provide designers and engineers with

tools, models and patterns. Towards this direction and in an attempt

to put forward several ideas on how to approach and revise engineer-

ing practices when dealing with systems which exhibit emergence,

an abstract process has been devised which was followed throughout

the experimentation. Figure 4 depicts the experience gathered on

engineering ADS which exploit emergent phenomena, as a successor

46

to the previous framework for studying emergence. It is an abstract

and laborious process of experimentation, attempting to provide a

disciplined approach to harnessing emergent properties as a means

of providing desired behaviours to complex systems.

The starting point (step 1) is defined as the analysis of the sys-

tem to be built and the separation of the desired properties of that

system into two categories: the first includes functionality that is

sought to be developed by following standard (software) engineer-

ing processes and methodologies (step 2) and the other consists of

desired properties which are considered to be related with emer-

gent phenomena, such as self-adaptability (step 3). Step 4 consists

of modelling the so called “normal” behaviour as a multi-agent sys-

tem (MAS). The abstract model can be afterwards refined to a more

formal and less ambiguous model such as an extended finite state

machine (FSM). At this stage, the use of validation and verifica-

tion techniques is strongly encouraged. Proper verification of the

standard system model can ensure at later stages that the pres-

ence or absence of particular emergent properties is the effect of the

“planted”, emergence design, and not due to bugs and design flaws

in the standard model.

Step 3 is concerned with the design, through a process of exper-

imentation, of the additions and modifications to the MAS model,

which may lead to the appearance of the desired emergent phenom-

ena. As already argued, there cannot be strict or specific guidelines

for this step; depending on the domain and the type of emergence

expected, different patterns can be utilised to form an initial hypoth-

esis. These additions, combined with the standard model, form the

extended system model (step 5).

47

System

Description

1 Analysis

Design Design

Normal

Behaviour

Emergent

Behaviour

2

Individual

Entity

Behaviour

CommunicationEnvironment

3

Modelling4n
oit

acifi re
V l

a
mr

oF)
nI(

Analysis 8

Evaluation

C

la
ss

ic
 E

n
g

in
e
e
ri

n
g

Design3

Analysis 8

Evaluationvv

Hypothesis

Standard

System Model

Modelling

Extended

System Model

EMPTY

NON_EMPTY

FULL

 add_part

 become_empty

 remove_part

 add_part

 become_full

M=(set_of (ITEM_TYPE, ID), capacity)

 remove_part

 ignore_add

Buffer

5

Modelling &
Implementation

6

Simulation/
Animation 7

Conclusions
Planted

Individual

Behaviour

Communication

Additions

Environment

Additions

ITERATION

Simulation

Model

Execution

Data

9

E
m

e
rg

e
n

ce
 E

n
g

in
e
e
rin

g

Design2

Individual

Entity

Behaviour

CommunicationEnvironment

Modelling4n
oit

acifii i re
V

e
l

a
mrmm

oFo)
n

))
I(II

Standard

System Model

tion

Fig. 4: An abstract process for engineering emergent properties in
complex systems. Reprinted from [7].

48

In step 6, this model is then refined, translated or implemented

in order to serve as a simulation model on which experiments can be

run. After simulating and analysing the results, in step 7, it should

be possible to reach some conclusions regarding the initial hypoth-

esis (step 8). The last step, 9, consists of comparing and evaluating

the conclusions against the initial hypothesis. At this stage, there

is either a conjecture that the hypothesis is sound so the desired

functionality can be implemented or the hypothesis is disproved in

which case another iteration starts at step 5.

As already stressed, simulation can sometimes be the only means

of testing and supporting such ideas. The next chapter describes

the EDBO simulation platform which has been used so far for run-

ning the EDBO case study and introduces FLAME; a more general-

purpose simulation platform which could overcome various limita-

tions encountered so far.

49

5 Simulation Platforms

Simulation is of utmost importance for complex systems as it allows

for concepts and ideas to be tested before proceeding to the actual

implementation. By means of simulation it is possible to better un-

derstand the emergent phenomena which occur in natural systems

and try to reproduce them in artificial designs. Previous work by

Paunovski, Eleftherakis, and Cowling [53] has focused on developing

a simulation platform which will aid to the better understanding of

emergence in complex natural systems. The platform has been later

expanded by the same authors in order to allow for the simulation of

the EDBO case study. This platform is considered in the next sec-

tion while Section 5.2 introduces FLAME: a general-purpose, agent-

based simulation platform which could overcome various limitations

identified in EDBO.

5.1 The EDBO Simulation Platform

In order to test the various hypotheses of the EDBO case study a

platform has been developed which allows for the simulation of vari-

ous biobots with different parameters and strategies [2]. Biobots are

situated in the BioSpace which serves as a model of the environ-

ment. BioSpace offers a number of services that enable biobots to

communicate with each other, to perform energy management, to

move in the logical space of the network, to manage relationships

50

with neighbours and to perform reproduction. The attributes which

can be customised through the platform include:

– initial state parameters : such as the number of biobots, the ser-

vices they provide, initial energy levels and energy costs, etc (see

Table 3 for a detailed list of parameters).

– discovery strategy : determines how a biobot should decide to

which neighbour to forward an incoming query that it cannot

satisfy itself. A random strategy forwards the query to a neigh-

bour chosen in a non deterministic manner. A similarity-based

strategy requires an additional vector to be associated with each

of the neighbours, containing a list of representative keywords for

each of them. Upon receiving a query, its keywords are compared

with these vectors in order to make a more informed decision. Fi-

nally, a complex discover strategy relies on a heuristic algorithm

which provides estimates for each neighbour on how likely it is

to result in a successful query match. The algorithm utilises a

number of metrics such as keyword similarity, proximity, history,

and success of the neighbour.

– relationship types : with available options being simplex and du-

plex. In simplex a biobot may establish an one-way relationship

with another biobot without the consent and knowledge of the

latter. In this case the latter has no reference to the former. In

duplex relationships, relationships are mutual and thus consent

of both is required.

– movement strategy : determines towards which position a biobot

should move once it decides to relocate. Options include moving

towards the nearest partner, the most successful one (in terms of

51

energy) or closer to whichever biobot has forwarded the highest

number of queries.

– relationship formation strategy : determines how new relation-

ships between biobots are formed. It can be random or based

on other characteristics such as the partners’ success or distance.

– birth and death strategies : define when a biobot can replicate or

reproduce and when it should die. Different strategies allow for

random events or for events based on the energy levels of the

biobots.

Global Parameters BioBot Parameters Discovery Energy Parameters
Total Cycles 15,000 cycles Init. Population 500 entries Initial Bot Energy 2,000 units

Statistics Period 500 cycles Services per BioBot 20 services Query Path Reward 1,250 units
Cycle Quorum 90% of population Init. R. Buffer Size 10 relationships Message Forward Cost 0.085 units x Distance

BioSpace Size X 1,000 units Max. R.Buffer Size 30 relationships Movement Cost 3 units per 1 spatial unit
BioSpace Size Y 1,000 units Min. R.Buffer Size 5 relationships Service Energy Parameters

Neighbour. Radius 10 units Service Parameters Initial Service Energy 2,000 units
Total Keywords 300 keywords Total Service Types 800 types Query Match Reward 800 units

Query Parameters Keywords per Service 10 keywords Query Similarity Reward 50 units
Query Load 200/20/200 Query Processing Cost 1.5 units

Query Load Period 5,000 cycles
Query Service Range

- Random
- Restricted

Query TTL 30 cycles Que. Ser. Range Size 30 types
Keywords per Query 10 keywords Que. Ser. Range Prob. 0.8 (80%)

Table 3: A complete list of the initial parameters. Adapted from [2].

The main disadvantage of EDBO is that the simulation plat-

form is tied to the model, both of which have been implemented

as a standalone Java application. Thus, in order to alter the model

someone has to change the actual program itself making the process

time consuming and error prone. The majority of the initial simu-

lation parameters (as depicted in Table 3) can be easily customised

as they are stored in a separate XML file, however, this is not the

case for the various strategies described above. Another concern is

the ability of the simulator to perform in a timely and responsive

manner under heavy conditions where thousands of biobots interact

52

with each other. Being developed as a standalone Java application

indicates that the application cannot be run in a distributed or par-

allel fashion which limits the available resources to those of a single

computer. An alternative simulation platform which overcomes both

issues is FLAME, discussed in more detail in the next section.

5.2 FLAME

The FLexible Agent-based Modelling Environment9 (FLAME) is a

general-purpose, agent-based simulation platform developed by the

University of Sheffield in collaboration with the Software Engineer-

ing Group at the STFC Rutherford Appleton Laboratory. FLAME’s

main advantage is that it is optimised for high performance comput-

ing which renders possible the simulation of hundreds of thousands

of agents concurrently. Nonetheless, FLAME has available ports for

most personal computers running Windows, Linux, or MacOS, mak-

ing development easier and without imposing the need for a super-

computer.

Overall, FLAME is a flexible and powerful simulation environ-

ment which has been tested in many complex case studies with many

thousands of agents executing in parallel. It has received significant

attention from multiple scientific disciplines and has already been

utilized in large scale projects like the modelling of European eco-

nomic policy design [54], understanding how the Escherichia coli

bacterium responds to oxygen [55], and agent-based modelling of

the behaviour of epithelial tissues [56].

9 http://www.flame.ac.uk

53

The main idea behind FLAME is the use of X-machines as a

means of modelling individual agents. X-machines, initially intro-

duced by Eilenberg in 1974 [57], is a formal method that enhances the

class of Finite State Machines (FSMs) by introducing memory and

functions. Holcombe and Ipate [58] renewed interest in X-machines

by devising a variant named Stream X-machine (SXM). An SXM is

defined by an input stream, an output stream, a set of values that

describe its memory structure, a set of states, a state transition set

and a set of functions (see Figure 5 for a diagrammatic notation). La-

bels in the transitions are functions which are triggered through an

input symbol and a memory instance to produce an output symbol

and a new memory instance. SXMs have been shown to be partic-

ularly suited for specification purposes [59] as well as for modelling

agent-based systems [60–62].

MEMORY

input stream output stream

m’m

S1

S2

S3

S4

1

3

2

4

4

2 2

5

ó ã

ö

ö

ö ö

ö

ö

ö

ö

Fig. 5: An abstract X-machine in diagrammatic notation.

Thus each FLAME agent, or agent machine, has a particular

initial state and initial memory, a set of possible (reachable) states

and a set of functions which accept input, produce output and affect

state transitions. It is also possible for a function to have certain pre-

conditions. All agent instances are run simultaneously by FLAME

54

with an iteration starting at the start states of each agent type and

terminating when every agent has reached an end state (see Fig-

ure 6).

agent_a

agent_b

start fn_a ... fn_b end

start fn_a ... fn_b end

Fig. 6: An iteration with two agents instances of the same type run-
ning on parallel.

The communication between agents in FLAME is based on the

Communicating X-Machines (CXMs) formalism which in essence

consists of SXMs capable of exchanging messages. Different pro-

posals have been made regarding the way messages are exchanged

among machines with the most accepted one utilising a communi-

cation matrix [63]. However, this approach is not suitable for cases

where SXMs are used to model agents [64, 65]. Instead, an input-

centric method is used where each message is stored on a global

read-only space accessible by all agents. The messages are sorted by

message type which is up to the modeller to define. This implies that

each agent machine is responsible for fetching on its own any mes-

sage that it might be expecting and discarding any which is deemed

irrelevant. Building on top of this simple approach, it is possible to

simulate various communication schemes such as direct messaging

(where each message has a recipient id and the agents read only the

messages bringing their id) or proximity communication (where the

55

message carries the sender’s position and the agents discard messages

from agents which are further away than a certain value).

In practice, FLAME is implemented in C code which was highly

optimised for parallel execution. A simulation model is defined by

a model description and the agent functions. The model description

is specified in the X-machine Markup Language (XMML) file which

builds on XML syntax and is accompanied with an XML Schema

(XSD) for syntax validation purposes. An editor10 is also available,

allowing the specification of a model through graphical means in-

stead of directly writing XML. The model can hold the following

information:

– General information regarding the model such as name, author

names, version, description etc.

– Environment constants such as π or other model-specific values.

– Agent types defining in detail the available agents (not their in-

stances): name, memory variables, functions, conditions and state

transitions.

– Message types that agents can exchange defined by their name

and the different variables they carry.

– Datatypes for representing complex structures which cannot be

modelled via standard datatypes of C.

– Time periods consisting of multiple simulation runs or other time

periods already defined.

The agent functions are specified once for each different agent

type in separate files, as executable C code. In addition, FLAME of-

fers a set of useful macros for performing common operations such as

10 http://www.flame.ac.uk/docs/flameeditor/v1/

56

reading all messages of a specific type (by using the macro

start messagename message loop) or sending a message (with

add messagename message(var1, ...varN)). Agent death is made

possible at any point of the simulation by returning any non zero

value from such a function.

Finally, the initial simulation state is configured in a separate

XML file in which the modeller is expected to define the initial agent

population along with values for their variables and any environment

constants declared in the model specification. Once a simulation is

started, FLAME produces a separate XML file for each iteration

(unless it was instructed to do otherwise) containing every agent

attribute and current values. These files can be then used to draw

conclusions either in a manual way (e.g. by having a program pars-

ing the output data) or by using the FLAME visualizer which was

recently released. Additionally, a GPU-programming extension has

been created under the name FlameGPU11 which allows for effi-

cient GPU processing of models. The extension provides a mapping

between agent specifications and optimised CUDA code, allowing

modellers with no knowledge of CUDA programming to harness the

computation power of the GPU paradigm while at the same time

producing real time visual results.

11 http://www.flamegpu.com

57

6 A Formal Model of EDBO

The EDBO case study [2] has demonstrated the potential of engi-

neering emergent properties in ADS. By following an iterative and

experimental, yet disciplined, framework for engineering emergence

in ADS [7], simulations with EDBO resulted in various beneficial

macroscopic behaviours emerging. Introducing biologically-inspired

functions and energy as part of the node’s design, allowed for the

emergence of complex global properties.

As discussed earlier, the major flaw of EDBO is that the model

is tied to its own, in-house developed, simulation platform. As such,

there is no concise formal or semi-formal description of the EDBO

model available. In an attempt to increase the confidence in this case

study, this chapter defines EDBO using the X-machine formalism.

Foremost, this allows for the easy reuse of the paradigm in other

simulation platforms and environments. Furthermore, by using a for-

mal, mathematical, language to describe the model, a more complete

insight can be obtained while at the same time it allows for resolution

of ambiguities. The rich ecosystem surrounding X-machines enables

us to increase our confidence in EDBO by providing a variety of for-

mal and informal validation and verification techniques such as ani-

mation, testing, and model checking. Finally, X-machine models can

be relatively easily adjusted in order to be simulated in FLAME [65]

which could allow to reproduce (and cross-validate) existing results

with a well-tested, general-purpose, simulation platform.

58

The next section provides a thorough description of the EDBO

case study, its basic entities and the initial results gathered during

simulations. Much of the content was gathered by extracting critical

information from the simulation platform itself. Section 6.2 intro-

duces the X-machine formalism which is subsequently used to model

EDBO in a formal way, in Section 6.3.

6.1 Emergent Distributed

Bio-Organisation

EDBO12 is a generic case study inspired by the Bio-Networking Ar-

chitecture [66]. EDBO reflects an overlay network in which each peer

acts both as a resource provider and consumer; a typical property

of the nodes in peer-to-peer (P2P) networks. Each network peer,

referred to as biobot, is situated in the biospace which acts as a mid-

dleware between the physical and the logical layer. Consequently,

physical implementation details, such as network connections among

nodes, are completely abstracted from the model. An overview of the

main EDBO components is depicted in Figure 7.

Resources, Relationships, and Energy

Each biobot serves a set of abstract resources which, depending on

the specific application domain and case study, could represent Web

services, documents, songs, or any other kind of digital information.

The decentralized nature of the EDBO model avoids utilization of

a centralized registry or repository. Consequently, the discovery of

12 EDBO has been briefly introduced in Section 4.3.

59

resources is achieved through a distributed query forwarding mecha-

nism in which all biobots participate. Resources are typically mod-

elled by keywords that identify them, so that discovery strategies

can be expressed in terms of various algorithms for matching sets of

keywords.

If a biobot cannot satisfy a query, it will forward it to another

one (determined according to the discovery strategy used), which in

turn will try to satisfy the query or forward it further until either

the resource is located or the query fails (either a resource cannot

be found or the time-to-live flag has expired).

Connections at the logical layer are represented as relationships.

Each biobot has a set of neighbours with whom it can communicate

directly and forward messages. The relationship set may vary over

time as existing connections are removed and new are formed.

The key characteristic of EDBO is the introduction of energies.

Each biobot possesses a discovery energy as well as a service energy

allocated to the resources it manages. Discovery energy represents

the usefulness of a biobot in the process of locating resources on the

network. The more a node contributes towards the overall success

of resource discovery, the higher its discovery energy is expected

to be. A service energy is allocated for each of the biobot’s shared

resources in order to represent their usefulness, i.e., how popular

these are among other network peers.

Both types of energies are initialised to a fixed value (set as a

simulation parameter) and they are subsequently updated due to

the occurrence of various system events. For example, when a biobot

matches a query, the service energy of the biobot is increased. Sim-

ilarly, a biobot that took part in a forwarding chain that resulted

60

in a successful query match is awarded discovery energy. Biobots

need energy in order to perform various functions such as forward-

ing a query or establishing a new relationship. More interestingly,

biobots whose energies exceed a certain threshold are allowed to per-

form additional functions such as migrating (relocating), replicating

(cloning) or reproducing. On the other hand, a biobot whose energy

is depleted is subject to death (removal from the system). Repro-

duction and death reflect a common property of distributed systems

where components and nodes may be added or removed at any in-

stance. A detailed discussion of energy consumption and rewarding

mechanisms is available in [2].

Execu�on
Pla�orm
(Server)

Physical Network
Connce�ons

Logical Space
(BioSpace)

BioBot Node

Migra�on

Logical Link
(Rela�onship)

Fig. 7: Overview of the EDBO components.

61

Emergence in EDBO

The introduction of biologically-inspired behaviour and energy-based

quantification as part of the biobots’ life cycle allowed for the emer-

gence of various macroscopic qualities and behaviours. While a de-

tailed discussion of these findings is available in [2], a short summary

follows:

– Scalability. Biobot population was able to scale to different de-

mand peaks by introducing birth and death events. During phases

of high query loads there was an increase in the birth events (usu-

ally of biobots with total service energy above average) while

when the query load was lowered there was a significant increase

in death events. Thus, the population of biobots was increasing in

order to handle the extra load, and decreasing accordingly when

the load was low.

– Robustness and Availability. Although extreme dynamic con-

ditions were simulated, with biobots entering and leaving the net-

work constantly, the overall connectivity was always maintained

due to the autonomy provided to each biobot in forming new

relationships.

– Super-node formations. Although initially the biobot network

was completely unstructured, biobots invariantly achieved ad-hoc

super-node network formation. This was visible during visualiza-

tion of the simulation results where super-nodes, their connec-

tions, and the clustering of the network could be clearly observed.

62

6.2 The X-Machine Formalism

The stream X-machine13 formalism has been briefly introduced in

Section 5.2. More formally, a deterministic X-machine [58] is an 8-

tuple X = (Σ,Γ,Q,M,Φ, F, q0,m0) where:

– Σ and Γ are the input and output alphabets respectively.

– Q is the finite set of states.

– M is the (possibly) infinite set called memory.

– Φ, the type of the machine X, is a set of partial functions ϕ that

map an input and a memory state to an output and a possibly

different memory state, ϕ : Σ ×M → Γ ×M .

– F is the next state partial function, F : Q×Φ→ Q, which given

a state and a function from the type Φ determines the next state.

F is often described as a state transition diagram.

– q0 and m0 are the initial state and initial memory, respectively.

X-machines can be employed in similar modelling situations to

those using statecharts and other analogous notations such as SDL.

However, X-machines offer several significant advantages over them.

First, they provide a mathematical modelling formalism for the sys-

tem which in turn allows an X-machine specification to be model

checked [67], facilitating thus the verification of the desired model

properties. Moreover, X-machines offer a formal strategy for testing

the implementation against the model which, under certain assump-

tions, is guaranteed to determine correctness [58].

X-machines have been shown to be particularly well suited for

specification purposes [59] as well as for modelling agent-based sys-

tems [60–62, 64]. The latter makes the formalism appropriate for

13 In the following sections the term X-machine is used to refer to the stream X-machine
variant.

63

modelling of the EDBO case study which can be viewed as a multi-

agent interaction model. Furthermore, X-machine models can be

convienently used as a building block for a FLAME14 model, allowing

for simulations with a more general-purpose, agent-based platform.

6.3 Modelling EDBO with X-machines

As already discussed in Section 6.1, EDBO represents an abstract

distributed system that incorporates biological attributes and func-

tions. During simulation scenarios, a number of different strategies

and parameters were used in order to evaluate different properties of

the model operation. An example of such a strategy is how a biobot

should determine to which peer a relationship request should be sent;

it could be the closest node (in terms of spatial distance), the most

successful node (in terms of its energy levels) or the most similar

node (in terms of the resources being offered).

Biobots’ behaviour might change drastically depending on the

particular strategies employed. Thus, each combination of strategies

requires a distinct formal model. The model presented in this section

describes the behaviour of biobots assuming the following selection

of strategies:

– Proximity relationship acquisition strategy . When a biobot in-

tends to establish a new relationship, it selects the biobot which

is closest to it in terms of spatial distance.

– Random discovery strategy . A biobot which is unable to satisfy a

query forwards it to a biobot randomly selected from its neigh-

bour pool.

14 FLAME was introduced in Section 5.2.

64

receiving_query_expired_last, receiving_query_not_found_last,

receiving_query_matched_last

NO_RELATIONSHIPS

WAITING SEARCHING

DEAD

ignore_everything

ini!a!ng_query, forwarding_query

reques!ng_entry_points, receiving_entry_points, receiving_min_popula!on_boost

rejec!ng_rel_request, receiving_rel_nack,

Φ

receiving_rel_ack,

accep!ng_rel_req

receiving_death_no!fica!on_last,

receiving_rel_removal_last

receiving_death_no!fica!on_last,

receiving_rel_removal_last

1

Φ3 Φ4

Φ2

 = { accep�ng_neighbourship_request, rejec�ng_neighbourship_request, receiving_neighbourship_ack, receiving_neighbourship_nack, receiving_death_

no�fica�on, proposing_rela�onship_candidates, receiving_rela�onship_candidates_and_reques�ng, receiving_rela�onship_candidates_and_ignore,

reques�ng_rela�onship_candidates, matching_query, receiving_min_popula�on_boost, receiving_min_popula�on_boost_and_reloca�ng, receiving_min_

popula�on_boost_and_replica�ng, receiving_min_popula�on_boost_and_reproducing, matching_query_and_reloca�ng, matching_query_and_replica�ng,

matching_query_and_reproducing }

Φ2 = { forwarding_query, ini�a�ng_query, receiving_query_expired, receiving_query_not_found, receiving_query_matched, receiving_query_matched_and_

reloca�ng, receiving_query_matched_and_replica�ng, receiving_query_matched_and_reproducing }

 = { forwarding_query_and_dying, ini�a�ng_query_and_dying, matching_query_and_and_dying, receiving_rela�onship_candidates_reques�ng_and_

dying, receiving_min_popula�on_boost_and_dying }

 = { receiving_query_matched_and_dying }

Φ1

Φ1U

Φ3

Φ4 Φ3U

Fig. 8: The X-machine model of a biobot.

– Most successful partner movement strategy . When a biobot relo-

cates (migrates), it moves closer to the most successful neighbour

as determined by the sum of its energies.

– Energy-based birth and death strategies . The decision to die or

give birth (either by replicating or reproducing) is based on en-

ergy thresholds.

The modelling process was focused on the individual biobot as it

represents the core of EDBO. Figure 8 depicts the state transition

diagram of the X-machine model, consisting of the identified biobot

states as well as the functions that label the transitions.

65

Formally, the set of inputs is Σ = biobots × service × mes-

sage type where biobots is a sequence of biobot and ser-

vice is a set of keyword, biobot and keyword being defined as

basic types (could be any alphanumeric value), and message type

= {search query, query expired, neighbourship request,

neighbourship ack,neighbourship nack, pending death,

request relationship candidates, reply relationship

candidates . . . }. Practically, biobots consists of a set of biobot

identifiers (uniquely identifying a biobot) which represent a query’s

path; with the first biobot id belonging to the query initiator and

the last one to the next hop. A service input describes a specific

service which is desired to be located and for some functions (e.g.

relating to reproduction) could be null. Finally, message type pro-

vides a semantic description of the input type such as a query ex-

piration or a neighbourship request. For example, a received input

of ((b3),nil, pending death) would imply that biobot b3 is

dying and thus it should be removed from the neighbourship buffer.

The set of outputs is Γ = MESSAGES × biobots × service,

where MESSAGES={initiated query, matched query, for-

warded query, received query expired, neighbour died,

accepted relationship request, rejected relationship

request, neighbour accepted us, neighbour rejected us,

proposed neighbours, relationship request sent . . . } and

biobots and service as already defined in Σ.

The output parts are very similar to those defined in Σ with the

only difference being that instead of a message type, an element

of the set MESSAGES is outputted. At this level of modelling, where

a single biobot instance is being described, this output message has

66

a solely informative purpose. If, however, separate instances of this

model were to be initiated and set up in order to communicate with

each other (by using Communicating X-machines or FLAME for

example), each output message would serve as a direct input to the

stream of another biobot instance [68, 69].

The set of states is Q ={ no relationships, waiting,

searching, dead }, with the initial state, q0, being

no relationships. The biobot can be seen either as “alive” or

“dead”, reflecting a common characteristic of distributed systems

where existing components can be removed or new ones be added

at any time during execution. In EDBO this is represented as birth

and death of biobots. When a biobot first joins the network it has

no relationships and thus can perform only a limited set of functions

(state no_relationships). In order to establish its first connec-

tion, which will serve as an entry point to the network, a biobot has

to issue a special request to the BioSpace, requesting a list of biobots

that have communicated with BioSpace recently. Upon acquiring an

entry point, the biobot is able to perform most of EDBO’s func-

tionality (state waiting). When a biobot initiates (on behalf of its

user) or forwards (on behalf of another biobot) its first search query,

it moves to the searching state and stays there until every active

query (stored in the memory variable active_queries) has been

matched, expired, or failed. Finally, it is possible that from either

of the two states a biobot could move to the dead state if its lat-

est action caused its energy levels to fall below a predefined death

threshold (memory’s constant death_threshold).

The memory is M = (biobot, active queries, location,

biobots, services, total service energy, total

67

discovery energy, max neighbours, relocation discovery

cost, communication discovery cost, query match

service reward, similarity threshold, death threshold,

initial energy, neighbour buffer size), with biobots

being a set of biobot, services being a set of service, location

defined as a 2-tuple of (x,y), biobot and service being basic

types, and the rest of the variables defined as the set of positive

integers including 0.

The majority of the memory values represent global simulation

parameters such as the initial discovery energy per biobot or the var-

ious energy rewards and costs occurring upon specific events. Differ-

ent simulation scenarios would require different memory values which

can be altered directly in the initial memory. An indicative initial

memory for a scenario revolving around document services could be

m0 = (b1, 0, (23, 43), nil, ((english, italian, translation), (techni-

cal, documents, reports)), 2000, 2000, 50, 1, 0.8, 800, 40, 5, 2000,

5). In this case the biobot offers two unique services, each of them

characterised by three different keywords.

The next-state partial function is F , described as a state transi-

tion diagram which is depicted in Figure 8. The type of the machine

is Φ which is defined as the set of all functions shown in the same

figure. The functions are discussed in more detail in the next chap-

ter where they are implemented in XMDL and animated using the

X-System animator.

68

6.4 Summary

This chapter has demonstrated the applicability of formally mod-

elling the EDBO case study. Utilizing X-machines as a formal mod-

elling construct provided a great insight into the inner workings of

the EDBO paradigm, which in another case might have gone un-

noticed. Having the complete model defined formally allows for the

possibility of guaranteeing the presence of desired properties, as well

as the absence of undesired ones, by applying directly formal verifica-

tion techniques such as model checking. In addition, the X-machine

testing strategy enables the model to be proven equivalent to any

existing or future concrete implementation (for example in a pro-

gramming language). Finally, this work served as a feasibility study

of formally describing the EDBO case study, opening thus the pos-

sibility of transitioning to communicating X-machines and FLAME.

Of equal importance is the fact that by describing the model in a

concise way, possible reuse of the EDBO model is enabled. Nonethe-

less, it is important to verify that the formal model is equivalent to

the original work that introduced EDBO. This is tackled in the next

chapter via informal validation, through the XMDL animator, and

a separate research work in the field of Internet of Things and au-

tonomous distributed sensor networks, that was based on the model

presented in this chapter.

69

7 Validating the Formal

Model of EDBO

Describing EDBO as an X-machine model allows for a concise and

unambiguous understanding of the EDBO model. Moreover, it com-

pletely separates the model from its simulation platform. However,

further steps need to be taken in order to increase confidence in the

formal model and its equivalence to the original one.

Towards this direction, the formal model of the previous chapter

along with its functions have been coded into XMDL in order to

enable the animation of the model. XMDL serves as an interchange

language for describing X-machine models and is supported by ap-

propriate tools (syntax and type checker, visual editor, compiler,

animator, etc.) [70]. The definition of the functions along with some

of the informal animations are presented in Section 7.1.

Finally, a related but independent work has used the formal

model of EDBO as the basis of a new set of tools that realize the

concepts of EDBO in the field of Internet of Things and distributed

sensor networks. This work has promising results that cross-validate

the initial observations of the EDBO case study, further validating

the formal model and its equivalence to the original one. Section 7.2

describes this work in more detail.

70

7.1 Animating EDBO with XMDL

In order to increase confidence in the formal model of EDBO, the

complete X-machine model of a biobot has been coded in XMDL.

This offers a number of advantages. First, different simulation sce-

narios can be easily defined and run with the XMDL animator [70],

which can increase confidence in the model by providing the means

for an informal validation. Additionally, the absence or presence of

any desired properties can be verified by specifying conditions in

temporal logic formulae and performing model checking [67]. Finally,

by utilizing the X-machine testing strategy [58], any concrete imple-

mentation of the EDBO paradigm could be formally tested against

this specification in order to guarantee equivalence between model

and implementation.

XMDL allows the definition of all aspects of an X-machine model.

Basic variable types come with built-in support and additionally it

is possible to declare custom complex types. Figure 9 lists the code

for the basic type definitions needed for modelling a biobot. In this

example, a biobot can be any of 0, b1 up to b10. The biobots

type is a sequence of biobot instances.

Similarly, the possible keywords and services offered by the biobots

are defined. In a real world scenario this could not possible be defined

in advance, but for the needs of animating the X-machine model this

is necessary. Finally, the different simulation parameters, such as the

total energy, the cost of performing different actions and the various

thresholds, are also described as Natural0.

The various transitions between states can be easily described

with the transition keyword, followed by an initial state, a func-

tion, and the resulting state. The state names correspond directly

71

#model edbo.

/* BIOBOT AND PATHS/LISTS/NEIGHBOURS */.
#type biobot = {0,b1,b2,b3,b4,b5,b6,b7,b8,b9,b10

}.
#type biobots = sequence_of biobot.

/* SERVICE WITH KEYWORDS AND LIST (AVAILABLE
SERVICES) */.

#type keyword = {streaming, radio, video,
documents, translation, english, greek,
italian, french, german, web, internet, law,
computer_science}.

#type no_keyword = {0}.
#type services_with_keywords = set_of keyword.
#type service = services_with_keywords union

no_keyword.
#type list_of_services = sequence_of service.

/* POSITION */.
#type xloc = Natural0.
#type yloc = Natural0.
#type location = (xloc, yloc).

/* SIMULATION PARAMETERS */.
#type total_discovery_energy = Natural0.
#type total_service_energy = Natural0.
#type active_queries = Natural0.
#type max_neighbours = Natural0.
#type relocation_discovery_cost = Natural0.
#type communication_discovery_cost = Natural0.
#type query_match_service_reward = Natural0.
#type similarity_threshold = Natural0.
#type death_threshold = Natural0.
#type initial_energy = Natural0.
#type neighbour_buffer_size = Natural0.

Fig. 9: Basic types for the XMDL model of EDBO.

72

to those defined in the state diagram machine in Figure 8, page 64.

Part of the transition map is depicted in Figure 10.

The core components of the X-machine, as coded in XMDL, are

shown in Figure 11. The memory for even a single biobot is a compli-

cated list, holding the identifier of the current biobot, its neighbours,

along with a list of active queries and a multitude of simulation pa-

rameters. This is necessary as each X-machine model needs to hold

everything into its memory; there is no global or shared state be-

tween different models such as models of different biobots.

In the same manner, an init state defines the initial state

of the machine and init memory its initial memory. This is an

arbitrary example used to animate, as shown later, the X-machine

model.

Finally, the lengthiest part of Figure 11 is the definition of input

and output which correspond directly to the formal model’s defi-

nition of Σ (set of inputs) and Γ (set of outputs). Although both of

them have been detailed in Section 6.3, it is worth noting that each

and every possible message type needs to be explicitly defined. At

the end, the different input and output message types are defined

separately, so that they can be mixed in the 3-tuples of input and

output along with the sequence of biobots and service.

The final part of the XMDL model is the definition of the individ-

ual functions. Figure 12 presents indicatively the model’s

forwarding query function coded in XMDL. Following the func-

tion’s name, the input and the initial memory are defined. A function

is applicable only if the input and the current memory matches those

listed in its definition. Strings starting with a question mark (?) rep-

resent variables which can be manipulated later. Following the if

73

/* RELATIONSHIP TRANSITIONS */.
#transition (idle,

accepting_neighbourship_request)=idle.
#transition (searching,

accepting_neighbourship_request)=searching.
#transition (idle,

rejecting_neighbourship_request)=idle.
#transition (searching,

rejecting_neighbourship_request)=searching.
#transition (idle,receiving_neighbourship_ack)=

idle.
/* ... */

/* DISCOVERY TRANSITIONS */.
#transition (idle,matching_query)=idle.
#transition (searching,matching_query)=searching

.
#transition (idle,forwarding_query)=searching.
#transition (searching,forwarding_query)=

searching.
#transition (idle,initiating_query)=searching.
#transition (searching,initiating_query)=

searching.
#transition (searching,receiving_query_expired)=

searching.
#transition (searching,

receiving_query_expired_and_idling)=idle.
/* ... */

Fig. 10: State transitions of EDBO in XMDL.

74

#states = {idle,searching,no_relationships,dead
}.

#memory (biobot, active_queries, location,
biobots, list_of_services,
total_service_energy, total_discovery_energy,
max_neighbours, relocation_discovery_cost,
communication_discovery_cost,
query_match_service_reward,
similarity_threshold, death_threshold,
initial_energy, neighbour_buffer_size).

#init_state {idle}.
#init_memory (b1,0,(4,12),(b9,b4,b7,b10),{(radio

,web),(greek,documents),(streaming,video)
},2000,2000,10,3,1,800,50,5,2000,6).

#type output_message = {initiated_query,
matched_query,forwarded_query,
received_query_expired,
accepted_relationship_request,
rejected_relationship_request,
neighbour_accepted_us,neighbour_rejected_us,
neighbour_died,proposed_neighbours,
relationship_request_sent}.

#type message_type ={search_query,query_expired,
neighbourship_request,neighbourship_ack,
neighbourship_nack,pending_death,
request_relationship_candidates,
reply_relationship_candidates}.

#input (biobots, service, message_type).
#output (output_message, biobots, service).

Fig. 11: The basic properties of the X-machine EDBO model in
XMDL.

75

keyword, an optional set of conditions can specify when the func-

tion should be applicable. The output messages along with the new

memory of the X-machine are defined after the then keyword with

variable manipulation, when necessary, taking place after the where

keyword.

#fun forwarding_query ((?query_path,?service_request,search_query),

 (?own_id, ?active_queries, ?location, ?neighbours, ?available_services,

 ?total_service_energy, ?total_discovery_energy, ?max_neighbours_limit,

 ?current_neighbours_buffer,?relocation_discovery_cost,?death_threshold,

 ?communication_discovery_cost, ?query_match_service_reward, ?init_energy,

 ?similarity_threshold)) =

if ?query_path belongs biobots and ?service_request belongs service and

 ?service_request not_belongs ?available_services and ?path_length > 1 and

 ?own_id belongs query_path and ?total_discovery_energy >= ?occurred_cost

then ((forwarded_query, ?new_query_path, ?service_request),

 (?own_id, ?active_queries, ?location, ?neighbours, ?available_services,

 ?total_service_energy, ?new_discovery_energy, ?max_neighbours_limit,

 ?current_neighbours_buffer,?relocation_discovery_cost,?death_threshold,

 ?communication_discovery_cost, ?query_match_service_reward, ?init_energy,

 ?similarity_threshold))

where ?path_length <- cardinality ?query_path and

 ?next_hop <- random_biobot(?neighbours) and

 ?spatial_diff <- spatial_difference(?location, ?next_hop) and

 ?occurred_cost <- communication_discovery_cost * ?spatial_diff

 ?new_discovery_energy <- ?total_discovery_energy - ?occurred_cost and

 ?new_active_queries <- ?active_queries + 1 and

 ?new_query_path <- ?next_hop addatendof ?query_path.

Fig. 12: The model’s forwarding query function coded in
XMDL.

In the forwarding query example of Figure 12, the code spec-

ifies that the function can only be applicable if the input contains

a query path which represents a set of biobots, a service request

and the string literal search query. Moreover, the function states

as a pre-condition that the requested service is not offered by this

X-machine instance, otherwise the query would be matched instead

of being forwarded. As a result, the X-machine picks randomly a

neighbour and adds it at the end of the current query path, indi-

cating the next hop of the query. Moreover, the associated discovery

76

cost (specified as a simulation parameter in the initial memory m0)

is subtracted from the biobot’s total discovery energy.

Having the whole model coded in XMDL enables the animation

of it with arbitrary simulation parameters. X-System is a collection

of tools which, among others, features the compilation of XMDL

models to Prolog code which can be subsequently animated via a

Prolog interpreter. The user is allowed to input values directly to

the interpreter and observe how the X-machine model behaves in

response to that input. Alternatively, it is possible to specify an

external file with a sequence of inputs, run the whole simulation and

store the results in an output file for further examination.

Figures 13, 14, and 15 show an indicative list of inputs and simu-

lation results, in an interleaved manner. The simulation parameters

used for this run are those depicted in the XMDL model described

above (see Figure 11, page 74).

Figure 13 depicts a scenario in which the requested service (as

denoted by the keywords) can be provided by the biobot, thus the

matching query function is applied. In this scenario the discovery

energy is increased, as a post-condition of this function, by 800 ser-

vice energy points. The reward is specified in the initial memory of

the biobot and specifically in the query match service reward

simulation parameter. Additionally, the resulting state continues to

be idle as the query has been successfully matched and the biobot

waits for further requests.

A second scenario, shown in Figure 14, involves querying for a

service that the biobot cannot fulfill. The first part of the input,

[0], denotes that the query was initiated by the biobot’s user, as

opposed to another biobot. Consequently, the initiating query

77

[[0,b4,b8,b5],[radio,web],search_query].

State : idle Input ?
Input : [[0, b4, b8, b5], [radio, web],

search_query]

Applied Function : matching_query
Output: [matched_query, [0, b4, b8, b5], [radio,

web]]
Memory : [b1, 0, [4, 12], [b9, b4, b7,

b10], [[radio, web], [greek,
documents], [streaming, video]],
2800, 2000, 10, 3, 1, 800, 50, 5,
2000, 6]

At State :idle

--

[[0,b2,b9,b3],[streaming,video],search_query].

State : idle Input ?
Input : [[0, b2, b9, b3], [streaming, video],

search_query]

Applied Function : matching_query
Output: [matched_query, [0, b2, b9, b3], [

streaming, video]] Memory : [b1, 0, [4, 12],
[b9, b4, b7, b10], [[radio, web], [greek,
documents], [streaming, video]], 3600, 2000,
10, 3, 1, 800, 50, 5, 2000, 6] At State :idle

Fig. 13: Animating the EDBO X-machine model with the X-System
animator: matching 2 different queries.

78

[[0],[web,video],search_query].

State : idle Input ?
Input : [[0], [web, video], search_query]

Applied Function : initiating_query
Output: [initiated_query, [b1, b9], [web, video

]] Memory : [b1, 1, [4, 12], [b9, b4, b7, b10
], [[radio, web], [greek, documents], [
streaming, video]], 3600, 1999, 10, 3, 1,
800, 50, 5, 2000, 6] At State :searching

--

[[0],[translation,english],search_query].

State : searching Input ?
Input : [[0], [translation, english],

search_query]

Applied Function : initiating_query
Output: [initiated_query, [b1, b9], [translation

, english]] Memory : [b1, 2, [4, 12], [b9, b4
, b7, b10], [[radio, web], [greek, documents
], [streaming, video]], 3600, 1998, 10, 3, 1,
800, 50, 5, 2000, 6] At State :searching

Fig. 14: Animating the initiation of 2 different queries.

79

function is applied, indicating that the biobot will ask one of its

neighbours for the requested service, on behalf of the user. In this

case, there is no service energy reward as there was no match. In-

stead, the biobot suffers a discovery energy penalty of 1, as defined

in the communication discovery cost simulation parameter,

to account for the cost of communication to another biobot. Finally,

the resulting state is that of searching, denoting that the biobot

is waiting for an answer to its query. While the biobot is in the

searching state, it can still process further queries, as indicated

by the last input/output pair of Figure 14.

Figure 15 depicts 2 further scenarios. In the first input/output

pair, a service is requested which cannot be provided by the current

biobot. Unlike the previous example, however, this query was not

initiated by the user. As the first part of the input indicates ([0,

b3, b10, b7, b5]), the query has been forwarded to this biobot

by another biobot with identifier “b5”. As the biobot cannot fulfill

this query, it forwards the query (function forwarding query)

to another neighbour not already in the forwarding chain (in this

example “b9”).

In the next scenario, the biobot receives a query expired mes-

sage type regarding an earlier query it had initiated on behalf of the

user. After the query has been forwarded by this biobot (b1) to its

neighbour (b7) and in turn to the neighbour’s neighbour (b2), the

query expired, indicating that the query could not be fulfilled. The

state remains at searching as the biobot, at its current state, has

another 4 active queries, as denoted by the second value of the mem-

ory tuple. Finally, the [end of inputs] special input terminates

the simulation run.

80

[[0,b3,b10,b7,b5],[translation,greek],
search_query].

State : searching Input ?
Input : [[0, b3, b10, b7, b5], [translation,

greek], search_query]

Applied Function : forwarding_query
Output: [forwarded_query, [0, b3, b10, b7, b5,

b9], [translation, greek]] Memory : [b1, 3,
[4, 12], [b9, b4, b7, b10], [[radio, web], [
greek, documents], [streaming, video]], 3600,
1997, 10, 3, 1, 800, 50, 5, 2000, 6] At
State :searching

--

[[0,b1,b7,b2],[web,video],query_expired].

State : searching Input ?
Input : [[0, b1, b7, b2], [web, video],

query_expired]

Applied Function : receiving_query_expired
Output: [received_query_expired, [0, b7, b2], [

web, video]] Memory : [b1, 4, [4, 12], [b9,
b4, b7, b10], [[radio, web], [greek,
documents], [streaming, video]], 3600, 1995,
10, 3, 1, 800, 50, 5, 2000, 6] At State :
searching

--

[end_of_inputs].

State : idle Input ?
Input : [end_of_inputs]

Fig. 15: Animating a query forwarding and a query expiration sce-
nario.

81

Although this type of informal validation can be a great source

of feedback for the designer of a formal model, it is impossible to

observe properties on the macroscopic level, such as those emergent

behaviours described in the original EDBO case study. The reason

is that the animation deals with a single biobot and not a collection

of biobots, communicating with each other.

FLAME is much more suited for this task as it allows the simu-

lation of multiple agents in parallel and provides the necessary tools

to automate large-scale simulation experiments. Alternatively, an

independent implementation based on this formal model could also

provide the means of validating the equivalence of the original model

and the formal model devised previously. The next section presents

work towards that direction.

7.2 Applying the Model

The formal model described in Chapter 6 has been further applied to

a different application domain. In [3], we have proposed an architec-

ture for building a self-organising overlay network of Cyber-Physical

Systems (CPS), with a particular focus on sensor networks. This ar-

chitecture is heavily inspired by nature, and specifically the fact that

innovative design of individual nodes (microscopic level) can lead to

the emergence of desired global properties (macroscopic level). It

aims to offer an Internet of Things (IoT) solution of interacting CPS

in the form of a middleware that facilitates interaction and inter-

connection of things in a distributed manner, providing scalability,

self-adaptation, and self-organisation. The applicability of the pro-

82

posed architecture has been validated with a realistic design and an

implementation solution that could support real-world scenarios.

This work was based directly on the formal model devised earlier

and it serves as a proof of concept of EDBO. Given its promising

results, discussed later in this section, it increases further the confi-

dence to the formal model and its equivalence to the original EDBO

case study by Paunovski [2].

The proposed architecture is directly based on EDBO’s formal

model described in Chapter 6 and it aims to serve as a main infras-

tructure that will enable any authorized consumer to perceive the

required sensor or other types of data as if connected to the nervous

system of an organism. It provides a solution that enables utiliza-

tion of emergent behaviors to achieve availability and scalability of

resources and the organisation and optimization of the network. The

proposed middleware is a realization of the above-described research

prototype network (EDBO) that achieves several self-* properties us-

ing the bio-inspired solution described earlier. Thus, it is composed

of biobots (logical nodes) that are realized in a BioSpace (middle-

ware). Biobots are capable of communicating with CPS if in range,

enabling bridging of the desired CPS and the middleware.

EDBO for CPS facilitates a plug and play solution which allows

the addition of such a system to the network at anytime. By adding

a new CPS (provider) to the proposed middleware, which is based on

the EDBO architecture, a service will be automatically provided and

discovery will be enabled in a fully decentralized manner. Consumers

realized as compatible clients will be able to discover and then con-

sume all the provided data from the connected CPS without the

83

need of any central control. The abstract proposed architecture is

depicted in Figure 16.

Fig. 16: An abstract representation of the proposed architecture.
Reprinted from [3].

This architecture has been implemented using the Jadex Active

Components (JAC) framework. This implementation offers the first

concrete and independent implementation of the EDBO model, out-

side of the original simulation platform described in Chapter 5.

More importantly, the implementation has been thoroughly tested

in order to evaluate whether EDBO’s promising results for self-

adaptivity and self-optimization in ADS could be demonstrated in

84

another scenario. The evaluation of the developed middleware has

been focused on investigating the capabilities of the middleware to-

wards realizing a self-adaptive, self-optimizing ADS. The optimal

approach to determining the behavior of an ADS developed with

the EDBO middleware was designed to be the runtime evaluation

in the form of a case study comparing results of a system with no

self-organisation capabilities to one that possesses them.

Past results on the evaluation of the model have shown that the

most optimal strategy out of the available ones is that of the complex

processing of the meta-data. This is the case where biobots tend to

form meaningful relationships in the long term (self-optimization)

and are capable of handling user behavior fluctuations by reeval-

uating current relationships and reproducing or replicating (self-

adaptive). Consequently, the middleware was configured to use two

different strategies for the same case and compare the results: the

complex strategy and the random strategy.

Evaluation was carried out through the facilities provided by the

JAC framework. Specifically, each AC has an inherent logging mech-

anism that can be activated and its entries can be viewed at real-time

during execution via the component viewer offered by the JCC. Ad-

ditionally, the design of the system enforces the observer pattern

and hence a custom implementation of the abstract observer pro-

vided with the middleware offers the means to record all important

data from the state changes and interactions of each biobot. A parser

has been developed to read and review the resulting logs, produc-

ing information on the data sought after to determine the properties

of the system. The data gathered regarded response accuracy (how

many queries were satisfied on average) and response delay (aver-

85

age number of hops for each query). These values were measured

at the very beginning of runtime and compared to a few moments

later (short-term adaptivity) and nearing the end of runtime (long-

term optimization), in order to determine if the desired properties

emerged in the system. As such, these metrics constitute the Key

Performance Indicators (KPIs) for the purposes of this quantitative

evaluation: determining efficiency of the system over the passage of

time (totally unstructured origins, adaptation, organised system in

the end).

In order to determine how the system can adapt to user behav-

ior, the evaluation scenario required the development of a querying

function that sends various Keywords to the biobots, emphasizing a

select Keyword at the beginning (to establish a baseline), again after

a little time during runtime and near the end again. Naturally, this

evaluation has been carried out as a demonstration of the system

using an elementary case study that could simulate the following

scenario: an ADS of weather sensors is deployed, with end-users in

the beginning asking for data on specific locations and again later

on. As an example, a hailstorm affecting crops in the area shortly

after deployment prompts users to request the data from that loca-

tion mostly, hence the system has to adapt to this sudden need and

try to prepare for future needs. For some time, users also check on

other areas but come back again shortly after to check, and again

much later on again for the specific area, at which point the system

should display its self-organisation capabilities.

The results gathered from the evaluation can be found in Ta-

ble 4. Positive results on response accuracy demonstrate that the

system manages to adapt to user behavior in the short-term, which

86

may become even more significant in the long-term as the system

optimizes itself to serve more queries similar to the ones it received

at the beginning and the first half of its runtime. Delay results did

not provide much information regarding short-term capabilities of

the system, which may be attributed to the low initial energy levels

of biobots restricting more partners. Nonetheless, there were some

changes towards the end of the evaluation hinting at the possibility

of self-organisation considering that metric, too.

Time Frame
Avg. Response Accuracy Avg. Response Delay (hops)

Random Meta-data Random Meta-data

After 5 minutes 60.25% 64.09% 2.921 2.896
After 20 minutes 57.92% 71.23% 3.057 2.842
After 50 minutes 58.51% 89.56% 3.013 2.439

Table 4: Response accuracy and delay regarding the selected service
for the runtime evaluation scenario using the random and complex
(meta-data) strategies. Reprinted from [3].

As expected, the random strategy produced no positive results

whatsoever regarding self-organisation. On the contrary, it appears

that random partner selection leads to biobots having “bad” rela-

tionships and wasting energy on forwarding queries aimlessly. Un-

like the evaluation results of the model, no super-bots have been

observed, which is attributed to the limited resources available for

evaluating an ADS at runtime as compared to simulation results.

Finally, a criticism of the model, or at least for its initial configu-

rations regarding energy levels, stemmed from the fact that several

biobots that could not satisfy queries (or forward them) died after

some time, which prohibited access to services they offered; in one

87

case, the single biobot offering a particular service died, effectively

losing all access to that service in the network.

Overall, the system demonstrates the capacity to address the is-

sue of load balancing and, moreover, it can do so without any human

intervention. This is proving the self-organisation and self-adaptivity

capabilities of the system. There is a differentiation here from the

traditional approaches to load-balancing that similar solutions em-

ploy, where several factors are measured over time during network

operation and then settings are adjusted to account for expected load

balance depending on network size and connected users. Examples

of these approaches that have been studied have used specific hard-

ware settings of nodes such as remaining energy [71], or knowledge of

the general structure of the network such as the very efficient SAAS-

RWSNs [72]. In such cases the adjustments happen when these values

reach the appropriate point that the new settings have to be applied,

and this requires the existence of a centralized mechanism that keeps

all these data for all network nodes so that they can be accessed by

every node. Contrary to this process, the EDBO middleware is ca-

pable of adapting to the changes in its operational environment in

a continuous rather than in a discrete manner. Further, it does so

without any knowledge of the network structure. The advantage in

this case would be the example of 990 users connected but expe-

riencing a slow response because the next optimization is to take

place when the number goes above 1000. In the case of the EDBO

the system should have adapted gradually to better support these

users already.

88

7.3 Summary

This chapter presented the validation of the EDBO formal model

detailed in Chapter 6. First, XMDL was used to code the EDBO

X-machine model along with its functions and allow for different

simulation scenarios. This provided an informal validation, through

animation, which increased the confidence to the formal model.

Second, the same formal model served as the basis of an inde-

pendent work on a separate application domain, this of Internet of

Things and distributed sensor networks. This work offered the first

concrete and separate implementation of the EDBO model. Results

gathered have been very promising and cross-validate the original re-

sults claimed by the EDBO study regarding the emergence of desired

properties. This further validates the formal model of Chapter 6, as

well as its equivalence to the original EDBO model.

89

8 Summary and Conclusions

We are living in a fast paced world where technological revolutions

regularly affect our every day lives. People tend to get increasingly

more interconnected to each other and their own multitude of de-

vices. This greatly increases the complexity and the level of sophisti-

cation needed in order to manage all these devices and the new ways

of interconnecting.

In the past decade there has been a strong interest in alternative

approaches of tackling this kind of complexity: from IBM’s auto-

nomic computing to various technology leaders’ renewed interest in

deep learning. Many of these approaches suggest a decentralized con-

nectivity scheme, such as the revolutionary Blockchain technology

behind Bitcoin, in order to eliminate single points of failure, attack,

or authority. They all have at least one thing in common: they are

inspired by nature and biology.

In this direction, researchers and practitioners have been trying

to engineer systems that harness emergent phenomena in order to

tackle highly-complex tasks in a simple, elegant, and indirect way.

The goal is to engineer simple interactions at the microscopic level,

for example among the interactions of different agents, which hope-

fully will result to the desired complex effect at the macroscopic level,

for example a self-healing network.

Doing that in a predictable or even disciplined way is very chal-

lenging. Foremost, there is a lack of consensus on what is emergence.

90

As detailed in Chapter 2, there has been a wealth of attempts to de-

fine emergence, spanning different disciplines and multiple millennia.

Very often they contradict each other and most of them define emer-

gence in a way that inherently opposes the concept of engineering

emergence, making the term an oxymoron.

Nonetheless, there are researchers that have attempted to inten-

tionally harness emergent phenomena, as presented in Chapter 3. By

studying them it becomes apparent to the author that it is impossi-

ble to make generic claims about engineering emergence, as discussed

in Chapter 4. This field, like most fields, is not yet mature enough

to allow for universal, one-size-fits-all, solutions.

This work focused on the field of ADS. With this field in mind, as

well as the points identified as important by other researchers who

attempted to engineer emergence, Wolf and Holvoet’s [9] definition

of emergence was selected as a working definition.

Based on these findings, a framework was proposed in Chapter 4

which is founded on previous experience within the field of ADS and

attempts to introduce emergent phenomena in those. The framework

encompasses two important characteristics which the author deems

necessary to engineer emergence in ADS: constant hypothesis for-

mation and validation through simulation. The framework is rather

abstract and the practice is often laborious. Nonetheless it presents

a disciplined way of engineering emergent properties in ADS, based

in real experience.

Part of the experience which led to this framework is the EDBO

case study, devised by Paunovski on his PhD thesis [2] and presented

in more detail in Chapters 5 and 6. EDBO is a notable attempt at

engineering emergent properties in ADS with very promising results.

91

By introducing biological properties at the agent level and allowing

for biobot to biobot and biobot to biospace (environment) interac-

tions, global phenomena such as super-cluster formation, network

redundancy and self-optimization have been observed.

An identified weakness of EDBO is the coupling of the model to

the simulation platform itself, both custom developed in a general

purpose programming language. This hinders other people from un-

derstanding the model in an unambiguous way and prevents possible

reuse of the model in the design of other systems and case studies.

Moreover, it makes impractical to simulate the same case study in a

different simulation platform and thus it impedes the cross-validation

of the original findings.

This work tackles these issues by devising a formal, platform-

and implementation-independent model of EDBO (Chapter 6). The

model is built on the X-machine formalism, allowing the use of a

number of tools built around it to be used in the model itself. Chap-

ter 7 presents the results of animating that model with X-System,

increasing confidence to the model as well as understanding of the

original EDBO itself.

The formal model further enabled reuse of EDBO in a different

application domain. In [3], the formal model was used as a basis

of implementing a middleware for a sensor network distributed ar-

chitecture. This work demonstrated very promising results as well,

many of which cross-validate the original findings of the EDBO case

study. The next section presents possible directions that this work

can take in the future.

92

8.1 Future Work

The formal model of EDBO, presented in Chapter 6, sheds light on

the intricacies of the EDBO case study and enables other parties to

reuse its design in other systems and application domains. The next

step towards that direction is to formally test the implementation of

the individual biobots by using the X-machine testing strategy. This

requires the careful design of a set of testing simulation scenarios.

A disadvantage of the current mode is its inability to model com-

munication. This is a crucial feature of EDBO as it relies on commu-

nication among biobots and between biobots and the environment

in order to exhibit emergent properties at the macroscopic level.

In order to model these communication channels, another variant of

this formalism can be used known as the Communicating X-machine

(CXM), briefly introduced in Chapter 5. Using CXM, the commu-

nication can be formally defined by allowing biobot functions to

receive input from and write output to other biobots, or the envi-

ronment. This can allow for the formal modelling of biobot-to-biobot

and biobot-to-BioSpace communication, which can be later validated

and verified informally through an existing animator. The current

X-machine model can serve as a building block for a CXM EDBO

model.

Nonetheless, animating complex scenarios in a practical and effi-

cient manner is infeasible with the current CXM tool set. An alter-

native solution targeted to such use cases is the FLAME simulator,

introduced in Chapter 5. By using FLAME to simulate the EDBO

case study it would be possible to observe emergent properties at

the macroscopic level, allowing for easier experimentation with dif-

ferent simulation scenarios, starting agents, simulation values, and

93

strategies. Furthermore, it would make possible the cross-validation

of the original findings by using an independent, general-purpose,

simulation platform.

As described earlier, FLAME is founded on the theory of CXM

and as such the transition from an X-machine or a CXM model to

a FLAME model is possible and even convenient when compared to

the transition from another formal method. Nonetheless, it does not

come without its challenges. A particular difficulty lies in the fact

that FLAME does not allow for environment variables and functions.

As already mentioned, EDBO heavily relies on the environment to

carry out energy logistics and facilitate relationship acquisition, re-

location, reproduction, and the like. A possible solution would be to

model the environment as a separate agent of a distinct agent type,

which holds on its memory system-wide values which are expected to

change (e.g. total amount of energy or total number of relationships).

Another concern is the inability of FLAME to model agent birth.

While it provide the means for simulating the death of a previously

instantiated agent, there is no way to instantiate a new agent dur-

ing a simulation. This hinders the process of modelling agent self-

replication and sexual reproduction, both of which are integral parts

of the EDBO case study. A workaround on this issue would be to

instantiate a number of inactive agents at the start of the simulation

which can later become active, emulating agent births as needed.

These agents will form an “unborn agent pool” from which other

agents can draw when they decide to replicate or reproduce. Alter-

natively, FlameGPU could also be a viable option as it claims to

support agent birth and reproduction.

94

Finally, it would be interesting to apply the framework proposed

in Chapter 4 as well as the core principles of EDBO in different

application domains. ADS is a large field which encompasses any

distributed network consisting of any type of nodes, which has been

artificially designed; i.e. it is not natural. As such, potential case

studies include peer-to-peer sharing networks, wireless sensor net-

works (WSNs), decentralised approaches to Web services, the World

Wide Web, and many others.

95

References
1. Fromm, J.: Types and forms of emergence. Technical Report AO/0506028, Dis-

tributed Systems Group, Kassel University (2005)

2. Paunovski, O.: Exploring Emergent Phenomena: Towards Analysis and Synthesis

of Emergent Formations in Complex Systems. PhD thesis, University of Sheffield

(2012)

3. Eleftherakis, G., Pappas, D., Lagkas, T., Rousis, K., Paunovski, O.: Architecting

the IoT paradigm: A middleware for autonomous distributed sensor networks.

International Journal of Distributed Sensor Networks 11(12) (2015)

4. Goldstein, J.: Emergence as a construct: History and issues. Emergence 1(1)

(1999) 49–72

5. Bush, S.F., Kulkarni, A.B.: Engineering emergent protocols. White

paper, General Electric Global Research (2001) Available online at

http://www.crd.ge.com/˜bushsf/EmergenceWhitePaper.pdf.

6. Stepney, S., Polack, F., Turner, H.: Engineering emergence. In: ICECCS ’06

Proceedings of the 11th IEEE International Conference on Engineering of Complex

Computer Systems. (2006) 89–97

7. Eleftherakis, G., Paunovski, O., Rousis, K., Cowling, A.J.: Harnessing emergent

properties in artificial distributed networks: an experimental framework. In Ritson,

C., Andrews, P., Stepney, S., eds.: 4th Workshop on Complex Systems Modelling

and Simulation, Paris, France, Luniver Press (2011) 141–144

8. Eleftherakis, G., Paunovski, O., Rousis, K., Cowling, A.: Emergent distributed

bio-organization: A framework for achieving emergent properties in unstructured

distributed systems. In Fortino, G., Badica, C., Malgeri, M., Unland, R., eds.:

Intelligent Distributed Computing VI. Volume 446 of Studies in Computational

Intelligence. Springer Berlin Heidelberg (2013) 23–28

9. Wolf, T.D., Holvoet, T.: Emergence versus self-organisation: Different concepts

but promising when combined. In: Engineering Self-Organising Systems. (2004)

1–15

10. Rousis, K., Eleftherakis, G., Cowling, A.J.: An engineering perspective on emer-

gence. In Bratanis, K., Dranidis, D., Ketikidis, P., Lazouras, L., Nikolaidou, E.,

eds.: 7th Annual South East European Doctoral Student Conference, Thessaloniki,

Greece, SEERC (2012) 453–463

11. Rousis, K., Eleftherakis, G., Cowling, A.J.: A literature survey on engineering

emergence. In Gonidis, F., Gkasis, P., Lazouras, L., Stamatopoulou, I., eds.: 8th

96

Annual South East European Doctoral Student Conference, Thessaloniki, Greece,

SEERC (2013)

12. Eleftherakis, G., Paunovski, O., Rousis, K., Cowling, A.J.: Harnessing Emergent

Properties in Artificial Distributed Networks: An Experimental Framework. In

Stepney, S., Welch, P., Andrews, P.S., Ritson, C.G., eds.: Proceedings of the 2011

Workshop on Complex Systems Modelling and Simulation, Paris, France, August

2011, Luniver Press (2011) 141–144

13. Rousis, K., Eleftherakis, G., Paunovski, O., Cowling, A.J.: Formal modelling of a

bio-inspired paradigm capable of exhibiting emergence. In Ivanovic, M., Budimac,

Z., Radovanovic, M., eds.: Balkan Conference in Informatics, 2012, BCI ’12, Novi

Sad, Serbia, September 16-20, 2012, ACM (2012) 223–228

14. Aristotle: Metaphysics. Edited and translated by W. D. Ross. NuVision Publica-

tions (2009)

15. Smith, A.: An Inquiry into the Nature and Causes of the Wealth of Nations.

General Books LLC (2010)

16. Soanes, C., Stevenson, A.: Concise Oxford English Dictionary. 11 edn. Oxford

University Press (2004)

17. Holland, J.H.: Emergence: From Chaos to Order. Addison-Wesley (1998)

18. Lewes, G.H.: The Problems of Life and Mind. Truebner (1879)

19. Anderson, P.W.: More is different. Science 177(4047) (1972) 393–396

20. Rosen, R.: Anticipatory Systems: Philosophical, Mathematical, and Methodolog-

ical Foundations. Oxford Press (1985)

21. Cariani, P.: On the Design of Devices with Emergent Semantic Functions. PhD

thesis, State University of New York, Binghamton (1989)

22. Heylighen, F.: Modelling emergence. World Futures: the Journal of General Evo-

lution 31(Special Issue on Emergence) (1991) 89–104

23. Corning, P.A.: The re-emergence of “emergence”: A venerable concept in search

of a theory. Complexity 7(6) (2002) 18–30

24. Bar-Yam, Y.: Dynamics of Complex Systems. Addison-Wesley (1997)

25. Ronald, E., Sipper, M., Capcarrere, M.: Design, observation, surprise! A test of

emergence. Artificial Life 5(3) (1999) 225–239

26. Fromm, J.: Ten questions about emergence. Technical Report AO/0509049, Dis-

tributed Systems Group, Kassel University (2005)

27. Kub́ık, A.: Toward a formalization of emergence. Artificial Life 9(1) (2002) 41–65

28. Damper, R.I.: Editorial for the Special Issue on “Emergent Properties of Complex

Systems”: Emergence and levels of abstraction. International Journal of Systems

Science 31(7) (2000) 811–818

97

29. Deguet, J., Demazeau, Y.: A complexity based feature to support emergence in

MAS. In: Proceedings of the International Central and Eastern European Confer-

ence on Multi-Agent Systems (CEEMAS), Springer (2005) 616–619

30. Gordon, R.: The emergence of emergence: a critique of “design, observation, sur-

prise!”. Rivista di biologia 93(2) (2000) 349–356

31. Crutchfield, J.P.: The calculi of emergence: Computation, dynamics, and induc-

tion. Physica D: Nonlinear Phenomena 75(1–3) (1994) 11–54

32. Chalmers, D.J.: Strong and weak emergence. In Davies, P., Clayton, P., eds.: The

Re-Emergence of Emergence. Oxford University Press (2006)

33. Stephan, A.: Varieties of emergence in artificial and natural systems. Zeitschrift

für Naturforschung C-A Journal of Biosciences 53(7–8) (1998) 639–656

34. Stephan, A.: Varieties of emergentism. Evolution and Cognition 5(1) (1999)

35. Chalmers, D.J.: The Conscious Mind: In Search of a Fundamental Theory. Oxford

University Press, Oxford (1996)

36. Bar-Yam, Y.: A mathematical theory of strong emergence using multiscale variety.

Complexity 9(6) (2004) 15–24

37. Laughlin, R.B.: A Different Universe: Reinventing Physics from the Bottom Down.

Basic Books (2005)

38. Bedau, M.A.: Weak emergence. Noũs 31(11) (1997) 375–399

39. Bedau, M.A.: Downward causation and the autonomy of weak emergence. Prin-

cipia 6(1) (2002) 5–50

40. Poundstone, W.: The Recursive Universe. Contemporary Books, Chicago (1985)

41. Heylighen, F.: Relational closure: a mathematical concept for distinction-making

and complexity analysis. In: Cybernetics and Systems ’90, World Science Publish-

ers (1990) 335–342

42. Wolfram, S.: Universality and complexity in cellular automata. Physica D: Non-

linear Phenomena 10(1–2) (1984) 1–35

43. Eppstein, D.: Wolfram’s classification of cellular automata (2000) Available online

at http://www.ics.uci.edu/˜eppstein/ca/wolfram.html.

44. Bush, S.F.: Active virtual network management prediction. In: Parallel and Dis-

crete Event Simulation Conference. (1999)

45. Abbott, R.: Emergence explained: Abstractions: Getting epiphenomena to do real

work: Essays and commentaries. Complexity 12(1) (2006) 13–26

46. Ronald, E.M.A., Sipper, M., Capcarrère, M.S.: Testing for emergence in artificial

life. In: Proceedings of the 5th European Conference on Advances in Artificial

Life. ECAL ’99, London, UK, Springer-Verlag (1999) 13–20

47. Polack, F., Stepney, S.: Emergent properties do not refine. Electronic Notes in

Theoretical Computer Science 137(2) (2005) 163–181

98

48. Banach, R., Poppleton, M.: Retrenchment: An engineering variation on refinement.

In Bert, D., ed.: B98 The 2nd International B Conference, Springer-Verlag (1998)

129–147

49. Banach, R., Jeske, C., Fraser, S., Cross, R., Poppleton, M., Stepney, S., King,

S.: Approaching the formal design and development of complex systems: The

retrenchment position. In: Workshop on Software and Complex Systems, 9th IEEE

International Conference on Engineering of Complex Computer Systems. (2004)

50. Fromm, J.: On engineering and emergence. Technical Report AO/0601002, Dis-

tributed Systems Group, Kassel University (2006)

51. Welch, P.H., Wallnau, K.C., Klein, M.: Engineering emergence: an occam-pi adven-

ture. In: CPA 2009 Proceedings of the 32nd Communicating Process Architectures

Conference. (2009)

52. Ulieru, M., Doursat, R.: Emergent engineering: a radical paradigm shift. Interna-

tional Journal of Autonomous and Adaptive Communications Systems 4(1) (2011)

39–60

53. Paunovski, O., Eleftherakis, G., Cowling, T.: Disciplined exploration of emergence

using multi-agent simulation framework. Computing and Informatics 28(3) (2009)

369–391

54. Deissenberg, C., van der Hoog, S., Dawid, H.: Eurace: A massively parallel agent-

based model of the european economy. Applied Mathematics and Computation

204(2) (2008) 541 – 552 Special Issue on New Approaches in Dynamic Optimiza-

tion to Assessment of Economic and Environmental Systems.

55. Steinsiek, S., Frixel, S., Stagge, S., Bettenbrock, K.: Characterization of E. coli

MG1655 and frdA and sdhC mutants at various aerobiosis levels. Biotechnology

(2011) [Epub ahead of print].

56. Pogson, M., Holcombe, M., Smallwood, R., Qwarnstrom, E.: Introducing spatial

information into predictive NF-kB modelling — an agent-based approach. PLoS

ONE 3(6) (2008) e2367

57. Eilenberg, S.: Automata, Languages, and Machines. Volume A. Academic Press

(1974)

58. Holcombe, M., Ipate, F.: Correct systems: building a business process solution.

Applied Computing Series. Springer-Verlag, Berlin, Germany (1998)

59. Holcombe, M.: X-machines as a basis for system specification. Software Engineer-

ing Journal 3(2) (1988) 69–76

60. Kefalas, P.: Formal modelling of reactive agents as an aggregation of simple be-

haviours. In: Methods and Applications of Artificial Intelligence. Volume 2308 of

Lecture Notes in Computer Science LNCS., Springer-Verlag (2002) 461–472

99

61. Eleftherakis, G., Kefalas, P., Sotiriadou, A.: Formal verification of agent models.

In: Proceedings of the 2nd Hellenic Conference on AI (SETN02). (2002) 425–435

62. Kefalas, P., Holcombe, M., Eleftherakis, G., Gheorghe, M.: A Formal Method for

the Development of Agent-Based Systems. In: Intelligent Agent Software Engi-

neering. Idea Group Publishing (2003) 68–98

63. Balanescu, T., Cowling, A.J., Georgescu, M., Holcombe, M., Vertan, C.: Commu-

nicating stream X-machines are no more than X-machines. Journal of Universal

Computer Science 5(9) (1999) 494–507

64. Coakley, S., Smallwood, R., Holcombe, M.: Using X-machines as a formal basis

for describing agents in agent-based modelling. In: Proceedings of the 2006 Agent-

Directed Simulation Conference. (2006)

65. Holcombe, M., Coakley, S., Smallwood, R.: A general framework for agent-based

modelling of complex systems. In: Proceedings of the 2006 European Conference

on Complex Systems. (2006)

66. Suda, T., Nakano, T., Moore, M., Enomoto, A., Fujii, K.: Biologically inspired

approaches to networks: The bio-networking architecture and the molecular com-

munication. In Li, P., Yoneki, E., Crowcroft, J., Verma, D., eds.: Bio-Inspired

Computing and Communication. Volume 5151 of Lecture Notes in Computer Sci-

ence. Springer Berlin / Heidelberg (2008) 241–254

67. Eleftherakis, G., Kefalas, P.: Formal verification of generalised state machines. In:

PCI ’08: Proceedings of the 2008 Panhellenic Conference on Informatics, IEEE

Computer Society (2008) 227–231

68. Kefalas, P., Eleftherakis, G., Kehris, E.: Modular Modeling of Large-Scale Systems

using Communicating X-machines. In: 8th Panhellenic Conference on Informatics.

Volume I., Cyprus (2001) 20–29

69. Stamatopoulou, I., Kefalas, P., Gheorghe, M.: Modelling the dynamic structure of

biological state-based systems. BioSystems 87(2-3) (2007) 142–149

70. Kefalas, P., Eleftherakis, G., Sotiriadou, A.: Developing tools for formal meth-

ods. In: PCI ’03: Proceedings of the 2003 Panhellenic Conference on Informatics,

Washington, DC, USA, IEEE Computer Society (2003) 625–639

71. Zhang, Z., Wang, Y., Song, F., Zhang, W.: An energy-balanced mechanism for hi-

erarchical routing in wireless sensor networks. International Journal of Distributed

Sensor Networks 2015 (2015)

72. Kim, K., Ha, C., Ok, C.: Network structure-aware ant-based routing in large-scale

wireless sensor networks. International Journal of Distributed Sensor Networks

501 (2015) 521784

100

73. Eleftherakis, G., Kostic, M., Rousis, K., Vasilescu, A.: Stigmergy inspired approach

to enable agent communication in emergency scenarios. In: Proceedings of the 7th

Balkan Conference on Informatics Conference. BCI ’15, New York, NY, USA, ACM

(2015) 22:1–22:8

74. Eleftherakis, G., Rousis, K., Ketikidis, P.: Innovation resilience by engineering

emergence. In: 8th HSSS National and International Conference, Thessaloniki,

Greece (2012)

75. Eleftherakis, G., Rousis, K., Cislaghi, M., Somaschini, S.: Security requirements

in judicial information systems: Experience from a European project for judicial

cross-border collaboration. Special Issue on Information Assurance and Data Se-

curity, Journal of Information Assurance and Security (JIAS) 4(6) (2009) 519–529

76. Eleftherakis, G., Rousis, K., Cislaghi, M., Somaschini, S.: A view on the role of

information security on ICT-enabled judicial systems. In van Engers, T., Ele-

ftherakis, G., eds.: 1st International Conference on ICT Solutions for Justice

(ICT4Justice ’08), Thessaloniki, Greece, CEUR-WS.org (2009) 35–46

77. Cislaghi, M., Somaschini, S., Eleftherakis, G., Rousis, K.: A new approach to

international judicial cooperation through secure ICT platforms. In van Engers,

T., Eleftherakis, G., eds.: 1st International Conference on ICT Solutions for Justice

(ICT4Justice ’08), Thessaloniki, Greece, CEUR-WS.org (2009) 24–34

78. Rousis, K., Eleftherakis, G., Cowling, A.J.: A formal approach to service com-

position using stream X-machines. In Psychogios, G., Proedrou, F., Kalyva, F.,

Eleftherakis, G., eds.: 5th Annual South East European Doctoral Student Confer-

ence, Thessaloniki, Greece, SEERC (2010) 389–400

101

A List of Author’s

Publications

Table 5 contains a list of papers that have been already published

in international journals or conference proceedings and have been

either authored or co-authored by this author.

Field Publications
Emergence and Complex Systems [13], [10], [11], [3], [8],

[12], [73], [74]
Information Security [75], [76], [77]
Formal Methods [78]
Table 5: List of the author’s publications in international conference
proceedings and journals so far.

