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Abstract

This thesis considers the problem of modelling bioreactors with complex mixing and

biokinetic growth based on both soluble nutrients and photosynthesis. From the

results of investigations performed on the different modelling methods for nutrient and

photosynthesis dependent biomass growth a method of coupling the two biokinetic models

was proposed. This new photosynthesis-nutrient (PN) model was then investigated,

validated and determined capable of predicting growth characteristics dependent on both

nutrient and photosynthetic processes. Additionally an investigation into the factors which

may influence the results when using computational fluid dynamics (CFD) to model the

flow field within a gas-lift bioreactor was performed. It was determined that one of the

main factors which must be considered when modelling bioreactors with boundary layer

flow separation is the choice of turbulence model. In the case presented here it was found

that the transition SST turbulence model provided the best results with the k-ω SST also

performing well. Finally, a method of coupling the PN and CFD models was proposed and

investigated. The photosynthesis-nutrient-hydrodynamic (PNH) model also incorporated

a model for diffusion of light within the bioreactor to allow for investigations into the effects

of light absorption and scattering within the bioreactor and how mixing affects the active

biomass. Further investigation of this new PNH model determined that the coupling of the

biokinetics and flow field provided some insight into the ability of a well-mixed bioreactor

to counter low light penetration to an extent.
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Chapter 1

Introduction

Nomenclature

Abbreviations
AD Anaerobic digestion
ADM Anaerobic digestion model
ASM Activated sludge model
CARPT Computer automated radioactive particle tracking
CFD Computational fluid dynamics
CT Computed tomography
IAWPRC International association on water pollution research and control
IWA International water association
ODE Ordinary differential equation
VFA Volatile fatty acid
WWTP Wastewater treatment processes

Bioreactors serve many different purposes in the modern world, from wastewater treatment

and growth of microalgae, to brewing beer (Yamauchi et al., 1994) and producing drugs

in the pharmaceutical industry (Fricke et al., 2013; Merchuk, 2003). As such, they are a

vital part of the modern world for both environmental and health reasons. Wastewater

treatment in particular is of vital importance in maintaining a clean environment in

which to live. Without treatment the huge amount of wastewater produced both

domestically and commercially would have a significant and detrimental affect on the

environment.

To this end, experimental analysis and mathematical modelling of the flow characteristics

within many different types of bioreactor have been performed. Experimental analysis

1



CHAPTER 1. INTRODUCTION 2

of mixing in bioreactors is inherently difficult with the need for non-invasive measuring

techniques. Additionally, in situations where the reactor contents are opaque, light based

measuring techniques are unusable. For example, Karim et al. (2004) used computer

automated radioactive particle tracking (CARPT) and computed tomography (CT) scans

to visualise the flow patterns within a gas-lift anaerobic digester with a central draft

tube. The results from this work were later used to validate a computational fluid

dynamics (CFD) model of the digester and develop the reactor design to improve the

mixing performance (Karim et al., 2007). Due to the different reactor shapes and mixing

methods around, CFD modelling of the mixing covers a wide range of reactor designs.

CFD modelling work has covered many of these reactor designs and the different methods

of mixing they employ, such as mechanically mixed (Aubin et al., 2004; Wu, 2010a; Joshi

et al., 2011; Yu et al., 2011b; Bridgeman, 2012) and gas mixed (Mudde and Van Den

Akker, 2001; Oey et al., 2003; Karim et al., 2007; Terashima et al., 2009; Wu, 2010b).

CFD modelling of other aspects of fluid flow has also been done in an attempt to better

understand aspects such as the effects of turbulence in reactors (Wu, 2010b, 2011; Joshi

et al., 2011; Bridgeman, 2012; Coughtrie et al., 2013) and how the non-Newtonian rheology

of the slurry in a reactor effects the mixing (Wu and Chen, 2008; Langner, 2009; Terashima

et al., 2009; Latha et al., 2010; Wu, 2011). These models include a wide variety of fluid

flow situations and with the inclusion of non-Newtonian fluid properties, the effects of

biomass growth on the mixing.

In many reactor processes there is still debate as to how well mixed a reactor should

be to produce the best results. Stroot et al. (2001) found that minimal mixing of an

anaerobic reactor with high solids content provided stable conditions in comparison to a

continuously mixed reactor. Vavilin and Angelidaki (2005) also found the preferred level

of mixing to be dependent on similar conditions to Stroot et al. (2001) in that mixing

was dependent upon the limiting reaction within the reactor. If methanogenesis is the

rate limiting step in the reaction then a more minimal mixing is preferred in order to

allow methanogenic bacteria to gather and be protected from acidogenisis. However if

hydrolysis is the rate limiting step then more vigorous continuous mixing could allow

for greater solid degradation and increased methane production Vavilin and Angelidaki
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(2005). Turovskiy and Mathai (2006) however, suggest that due to the possible build-up

of a scum layer on the surface of the slurry, preventing the biogas from escaping, mixing

should be continuous.

There is a large body of work investigating biochemical reactions within AD and other

wastewater treatment processes. This work has produced a number of biokinetic reaction

models in the past 30 years. The first of these models and the one that set the standard

in terms of format was the IWA Activated Sludge Model No.1 (ASM1) in 1987 (Henze

et al., 1987). Since then there have been a number of revisions and extensions of the

ASM1 model (ASM2, ASM2d, ASM3) as well as the development of the IWA Anaerobic

Digestion Model No.1 (ADM1) in 2002 (Henze et al., 2000; Batstone et al., 2002b). Since

their development the IWA ASM and ADM models have become the standard platform on

which research into wastewater treatment processes is based. These models are complex

and yet still don’t fully cover all aspects of the reactions found in wastewater treatment

processes. The models use Monod type kinetics for the growth and decay of biomass and

substrates within a reactor but assume a bulk zero dimensional model in terms of the flow.

This means that growth and decay are independent of any localised concentrations that

may be found within a reactor, a situation which is not found in reality.

In algal photo-bioreactors there is also the additional issue of light penetration. As light

can only reach a certain distance into the bioreactor it is important to maintain a constant

exchange of biomass between the internal areas of the bioreactor and those areas where

access to the necessary light is available. The efficiency of growth in a photo-bioreactor

depends greatly on this light-dark cycle with the most efficient growth rate occurring

when the cycle has a high frequency with a short light penetration depth (Richmond,

2004).

Although there has been some work toward creating models which couple both the

fluid flow and biokinetic models they tend to be based on the use of compartmental

modelling techniques where a separate grid produced based on some aspect of the flow

model is created (Gresch et al., 2009; Alvarado et al., 2012; Nauha and Alopaeus, 2012).

This new grid contains larger cells to reduce computational time, yet increase accuracy

of the biokinetic model by giving a more accurate representation of the local biomass
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concentrations in the reactor. There is however still a loss of accuracy as flow features not

captured by the compartments will not be considered.

Therefore, in order to reliably predict the growth and decay of biomass in a bioreactor

with a non-homogenous mixture, local concentrations of substrates and bacteria need to

be known and accounted for in the growth model. For these local concentrations to be

known will require the coupling of an accurate flow model – one able to capture the non-

homogenous flow fields found in many bioreactors – and a biokinetic growth model that

is calculated based upon local biomass and substrate data. These more comprehensive

models combining mixing and growth in a more closely linked manner usual will hopefully

aid in designing and operating reactors to be more efficient and stable.

1.1 Aims and objectives

A.1 Investigate soluble nutrient based biokinetic modelling methods.

O.1.1 Create a simple generic biokinetic model of the same form as those commonly

used in bioreactor research (i.e. Monod kinetics) to evaluate the model

methodology and their limitations as tools for predicting growth in bioreactors.

O.1.2 Investigate more complex models to determine if the additional complexity

has any benefits.

A.2 Develop a coupled model for photosynthesis and nutrient based biokinetic growth

O.2.1 Investigate photosynthesis models with the aim of determining the

effectiveness and accuracy of the modelling methods.

O.2.2 Develop a method of coupling a photosynthesis growth model with a nutrient

based biokinetic model.

O.2.3 Investigate the effects the addition of the photosynthetic processes have on

the biomass growth in the coupled model.

A.3 Determine whether computational fluid dynamics (CFD) can be used to accurately

predict mixing and fluid flow characteristics in bioreactors and what the limitations

of these models in relation to bioreactor are.
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O.3.1 Assess limiting factors of computational fluid dynamics model when used to

simulate mixing in a typical bioreactor (i.e. gas driven anaerobic digestion

reactor).

O.3.2 Assess and determine suitable modelling methods for use in predicting mixing

in bioreactors (e.g. singlephase/multiphase)

O.3.3 Assess and determine suitable modelling methods for use in predicting mixing

in bioreactors (e.g. singlephase/multiphase)

O.3.4 Assess limitations of available modelling tools and the possible approaches to

creating a coupled CFD/biokinetic model.

A.4 Develop a fully coupled model incorporating nutrient based biomass growth,

photosynthetic biomass growth and mixing using CFD.

O.2.1 Determine a methodology which can be used to coupled biokinetic models

with CFD hydrodynamic models.

O.2.2 Create a coupled model which can be used for simulating growth of

phytoplankton in a bioreactor with complex mixing and under different

biokinetic growth conditions.

O.2.3 Investigate the effect different factors have on the model results and determine

what advantages this new coupled model may have.
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Nomenclature

Symbols
IK Light saturation point
κ Boltzmann constant
λ Biomass maintenance coefficient
µm Maximum specific growth rate
σ Specific absorption coefficient
Ea Activation energy
Iav Activation intensity
Imax Maximum specific light intensity
I0 Specific light intensity
Pmax Peak photosynthesis rate
Xm Maximum biomass
l Distance from incident light intensity point
R Ideal gas constant
T Temperature
X Biomass concentration

Abbreviations
AD Anaerobic digestion
CFD Computational fluid dynamics

2.1 Bioreactors and biological processes

Wastewater treatment is a vital part of the modern world; both for environmental

and health reasons. Without treatment the huge amount of wastewater produced both

domestically and by industry every day in the UK would have a significant detrimental

effect on the environment and in particular the UKs waterways. Major impacts that

untreated wastewater can include, oxygen depletion in water ways due to biological

degradation of organic matter, health risks from waterborne pathogens and imbalance

of nutrient content in waterways. These factors can result in significant impacts on

the environment and ecology both surrounding as well as within waterways (DEFRA,

2012). In order to maintain this clean environment and treat all the water used, the

UK water industry consumes approximately 1% of the UKs electricity (7703GWh/year)

(Environmental Knowledge Transfer Network, 2008).

The effects of wastewater treatment methods are not however, limited only to sanitation

and the maintenance of environmental balance in waterways. Due to the increased concern
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regarding both the global environment and dwindling fossil fuel sources a drive toward

finding reliable renewable clean sources of energy is occurring. In 2013 it is estimated that

only 8.6% of world energy consumption comes from renewable sources, of that, 6.7% is

hydroelectric and the other 1.9% a combination of all other sources of renewable energy.

Of the rest nearly 87% of the world’s energy consumption comes from fossil fuels (BP,

2013). Of the fossil fuels used in world energy production 33.1% is oil, this amount is

continually rising with transport being the main reason for the increase; it is estimated

that 116 million barrels a day will be used by 2030 (The Royal Society, 2008). Use of energy

for transport is a large contributor to not only energy consumption but of greenhouse gas

emissions as well. Although there are many renewable sources of energy around few have

become widely used and all have limitations which have yet to be fully resolved.

One renewable source of energy being researched extensively is biofuels. Although biofuels

such as biodiesel and bioethanol have been in production since the 1970’s in some areas, the

methods used in production rely mainly on crops such as sugar cane, sugar beet, soy bean,

rapeseed, sunflower and palm oils (Galbe et al., 2007; Mata et al., 2010). Unfortunately

the increasing demand for biofuels - which can be easily used as a substitute for petrol and

diesel in cars - is pushing the limits of what can be produced through traditional means.

As the crops used in biofuel production also form part of other markets there are limits

to their availability. Another issue is the space requirement of such crops, as the biofuel

crops use the same arable land as food crops there is only limited scope for production

dedicated to supplying fuel. As such, research into alternative methods of producing

biofuels has become a significant area of research interest with one of the main focus areas

being the use of microalgae. As microalgae are not involved in the production of food and

have a significant decrease in space requirements when compared to traditional biofuel

crops, they are of significant interest. Additionally microalgae can be grown as part of

the wastewater treatment processes providing nutrient removal from the wastewater and

production of lipids for use as biofuels (Woertz et al., 2009). Although these methods are

still being researched the idea of combining wastewater treatment and biofuel production

is an enticing one.

Another source of renewable energy related to wastewater treatment processes is anaerobic
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digestion (AD). Although forms of anaerobic digestions have been in use for thousands of

years it is only in the last century that its use as both a method of treating sewage and

of renewable energy production has been developed significantly. AD has found use in

many countries, particularly those with large numbers of rural areas where access to more

centralised sewage treatment and power supplies are limited. In both India and China

significant numbers of small family anaerobic digesters are in use (Abbasi et al., 2012).

There is also increased use of AD in the UK, this is mainly as a means of reducing the

residual solids that need disposing of; the biogas by-product is generally used to heat the

anaerobic digester to improve performance. Some of the larger plant however, are able to

export the biogas off site for use in combined heat and power plants (DEFRA, 2012).

Both biofuels and AD are still being heavily researched however, with many areas of

these processes requiring significant improvement in order to make their use economically

viable as an energy source of the future. Although anaerobic digestion is already in

some use as a means of slurry management, reduction of greenhouse gas (GHG) emissions

and production of biogas for use in combined heat and power plants (CHP), there are

still a number of physical and economic issues limiting its full integration into the UK

farming and wastewater treatment industries (Bywater, 2011). Although the majority of

the stumbling blocks for farmers adopting AD as part of their slurry management process

are economic, there are still some issues with the reliability and efficiency of reactors.

Due to the complex nature of the processes occurring within wastewater treatment reactors

the ability to design a reactor that is stable under all loading conditions is difficult. For

example the most common cause of reactor instability and failure in anaerobic digesters

is imbalance between the two main groups of bacteria. The acidogenic and methanogenic

bacteria in an anaerobic reactor have significantly different physiologies, growth kinetics,

and nutritional needs and prefer different environmental conditions in which to live (Chen

et al., 2008). For these reasons maintaining a stable reactor is a difficult balancing

act. These issues are further compounded by the distribution of the reactor contents.

Suspended growth reactors contain free floating biological flocs of solid biomass. These

flocs need to be suitably distributed throughout the reactor so that their interaction with

the wastewater that is their food source is sufficient (Turovskiy and Mathai, 2006). For
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this reason mixing and the flow of the fluid within the reactor are important factors to be

considered in the design process. Understanding how the flow affects the growth and decay

of biomass within the reactor can help with improving the efficiency of the processes.

2.2 Bioreactor Process Modelling

Modelling the processes (both biological and hydrodynamic) occurring within bioreactors

is a challenging problem. As such numerous different approaches have been developed and

tested, some with more success than others. A number of these modelling strategies are

described here.

2.2.1 Biokinetic modelling strategies

There are three main modelling strategies for phytoplankton. These each have differing

levels of complexity. The Monod model makes growth rate a direct function of the

external nutrient concentration. The cell quota (Droop) modelling method uses the

internal concentration of nutrients within the cells as the controlling factor for growth

rate with an additional step in the model which accounts for nutrient uptake. More

complex mechanistic models are also available where additional internal pools and feedback

processes attempt to make the model more closely resemble the actual biological processes

(Flynn, 2003).

2.2.1.1 Monod models

Monod models (Monod, 1942, 1949) developed in the 1940s to simulate the steady-state

growth of microbes. Monod models although widely used suffer from several issues when

compared to other methods. The solutions obtained using Monod equations for growth

aren’t always as accurate as other methods such as the cell quota model particularly when

external nutrients are no longer available (Droop, 1968). This is particularly the case with

multi-nutrient models, where, if a single nutrient becomes unavailable growth dependent

on internal nutrient reserves is not possible.
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2.2.1.2 Cell quota (Droop) models

Droop (1968) found that the specific growth rate of algae (Monochrysis lutheri) was not

directly dependent on the substrate concentration in the growth medium but on the

concentration within the cells (cell quota). For this reason Droop (1968) proposed a model

of growth rate (hyperbolic) based on the internal cell quota, rather than the michaelis-

menten-monod style of model which relies on the ambient nutrient concentrations. The

cell quota model has been tested extensively since its conception comparing favourably

to alternatives (Sommer, 1991; Droop, 2003). It has also been used in conjunction with

a monod model to determine the nutrient uptake. When used to model co-limitation of

nutrients Leibig’s law of the minimum - growth is controlled by the scarcest resource - can

be used to determine the limiting nutrient. Leibig’s law along with the cell quota (growth)

and monod (nutrient uptake) models have been used in several cases to model continuous

and batch cultures with co-limiting nutrients (Davidson et al., 1999; Legovic and Cruzado,

1997; Klausmeier et al., 2004; Bougaran et al., 2010). When used in conjunction with the

cell quota (growth) model the uptake model can require down-regulation through the use

of an inhibition function.

2.2.1.3 Mechanistic models

A more complex methods for using in modelling phytoplankton growth is the use of

mechanistic models. These models attempt to use the biochemical knowledge to include

more biologically meaningful nutrient interactions. Mechanistic models as described

here are those which contain active feedback mechanisms. In biochemistry feedback is

the process which enables living organisms to control their growth and interact with

physico-chemical processes. It is not possible to construct a full mechanistic model for

phytoplankton growth due to lack of knowledge on the biochemical processes involved.

Even if a full mechanistic model could be created for phytoplankton growth the complexity

of the model would result in large computational requirements limiting the models

use.
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2.2.2 Light limited growth

Photosynthesis is the process through which energy is derived from sunlight on earth. The

majority of life found on earth relies on photosynthesis – either directly or indirectly –

to obtain the energy required for metabolic processes and growth. The process uses the

energy obtained from sunlight in the form of photons to convert inorganic compounds to

organic matter.

The term light here, refers to part of the electromagnetic spectrum, it is more accurately

described as visible light, being that the term generally refers to electromagnetic

wavelengths between 400 and 700 nanometres. This is the range visible to the human

eye, hence the name visible light. Electromagnetic radiation including that in the visible

spectrum takes the form of wave packets or photons which oscillate at different frequencies.

One of the main components of photosynthesis are the pigment molecules (e.g. chlorophyll,

carotenoids) which absorb the energy of the photons. The main pigments found in

green plants and algae are chlorophyll a and b, which appear green in colour due to

the wavelengths of light they are able to absorb. Figure 2.1 shows the absorption spectra

for some of the main pigment molecules found in plant life on earth. Chlorophyll a and

chlorophyll b pigment molecules (the two main photosynthetic pigments found on earth)

are most effective in the ranges of 400nm to 550nm and 640nm to 700nm. This high level

of photon absorption in these ranges is shown by the spikes in the graph on the activity

spectrum in figure 2.1. The low levels of photon absorption in by these pigments at other

wavelengths accounts for the green colour seen in most plant life - the photons at these

wavelengths either passing through the or being reflected by the cells.

The term light intensity, as used in the modelling of photosynthesis, is usually described

in terms of the incident light intensity and measured in µMolm−2s−1 (or sometimes

µEm−2s−1). The µEm−2s−1 unit is defined as one mole of photons when used in studies

of photosynthesis, and is equivalent to µMolm−2s−1. However the use of µEm−2s−1 as a

unit of measure is ambiguous, as the Einstein unit is also defined as the amount of energy

in one mole of Photons. The use of the Einstein unit should therefore be avoided to reduce

the possibility of confusion as well as maintaining the use of SI units.
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Figure 2.1: Absorbtion spectra for different photosynthetic pigments, chylorophyll a/b being the
most common in plants

Photoautotrophs – organisms capable synthesising their own food with the aid of sunlight

– evolved several billion years ago in the then CO2 rich atmosphere of earth. The majority

of photoautotrophic organisms in the modern era perform oxygenic photosynthesis where

carbon dioxide and water are converted by sunlight into organic carbon molecules and

oxygen. It is as a result of this process that earth has such an oxygen rich atmosphere

compared to its younger self.

Oxygenic photosynthesis is generally broken down into two processes, the light dependent

reactions and the light independent reactions (sometimes called dark reactions). Both of

these processes take place in the light harvesting apparatus of the organism; areas known as

chloroplasts in eukaryotic cells and as the photosynthetic membrane in prokaryotes. Plants

and algae are eukaryotes (i.e. they contain membrane bound organelles/sub-structures

which have specific functions in the same manner as the organs of the human body),

where as cyanobacteria – previously called blue-green algae – are prokaryotes (Allaby,

2012).

Light harvesting organelles, known as chloroplasts, are responsible for most of the

processes occurring in photosynthesis in eukaryotic cells. Consisting of a double outer

membrane (the envelope), and containing layers of folded membranes (the thylakoid

system) surrounded by a protein rich gel (the stroma), chloroplasts form a complex
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Figure 2.2: Structure of a typical eukaryotic algal cell Chlamydomonas; showing the
main organelles including the chloroplast, mitochondrion and the thylokoid
membrane.(Unknown, 2014)

system which converts inorganic carbon (CO2) to organic carbon molecules (See figure

2.2. The two phases of photosynthesis take place in different parts of the chloroplast,

the light dependent reactions are performed by the thylakoid membranes which results in

the production of the enzyme NADPH2 and adenosine triphosphate (ATP), a molecule

often called the "molecular unit of currency" in biological energy transfer (Knowles, 1980).

These are then used to drive the light independent reactions (commonly known as the

Calvin-Benson cycle) which occur in the stroma (Bassham et al., 1950).

The main driving factor of the light dependent reactions is the absorption of photons of

light by chlorophyll pigment molecules. The light dependent reaction can be further

divided into two distinct systems commonly referred to as Photosystems I and II.
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Photosystems I and II are systems of proteins and molecules which when stimulated by

the absorption of light initiate an electron transport chain. The electron transport chain is

initiated by the input of energy from photons of light. The energy results in oxidation (loss

of an electron) of a pigment molecule which is passed down the electron transport chain to

reduce the cofactor NADP to the enzyme NADPH and converting adenosine diphosphate

(ADP) to ATP. These molecules are then used in the light independent reactions to convert

carbon dioxide and other compounds into glucose and starch for the organism to use in

growth and sustenance (Lawlor, 2001; Masojidek et al., 2004).

The processes involved in photosynthesis are highly complex making them difficult to

model accurately. As such, most models of photosynthetic processes (which aim to

simulate growth) are simple empirical relationships between the incident light intensity

and the growth of biomass. There are models which attempt to calculate in detail

the many reactions occurring within the cells (Zhu et al., 2013; Pettersson and Ryde-

Pettersson, 1988; Laisk et al., 2006) but these all contain extremely complex chemical

reaction processes which result in a large set of stiff ordinary differential equations (Zhu

et al., 2013). As the models described in this work are designed to be part of a larger

system modelling different aspects of the growth of microalgae it is considered unnecessary

to include such highly complex models for the sake of a small increase in accuracy in one

part of the overall process.

2.2.2.1 Modelling light intensity within bioreactors

There are two main considerations to be taken into account when modelling the growth of

phytoplankton under light limiting conditions; the way in which light within a bioreactor

is distributed and the biological growth based on the light available to the cells. Although

both these points are equally important when constructing an accurate model for light

limited growth, each can be considered separately when investigating the effect light has

on the growth of biomass.
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Figure 2.3: A Schematic representation of photosynthetic response to light intensity where α the
initial slope of the curve is the maximum efficiency and the point where α meets the
line Pmax is known as IK the light saturation point. After the peak photosynthesis
rate at Pmax the curve begins to decline, this is generally refered to as photoinhibition.
(Figure reproduced from Masojidek et al. (2004))

Homogeneous light intensity models

Carvalho and Malcata (2003) used a Monod type model which considers light as a substrate

of the growth process. Although the work described is mostly focused on the effects of

varying environmental temperature on the rate of algal reaction rates they do include

the effects of light intensity in the growth model in particular the combined effects of

temperature and light intensity. The model uses the light intensity at the surface of the

system to determine the photosynthetic rate, a simple approach which assumes the light

intensity does not vary with distance from the surface of the reactor. The model structure

produced from factorial experiments performed by the authors takes the form of a simple

logistic growth model (Equation (2.1)). The maximum specific growth rate µm and the

maximum biomass Xm are determined by the light intensity and temperature (equations

(2.2) - (2.4)). K1-K6 are empirical constants determined through the experimental work in

Carvalho and Malcata (2003). T is temperature, Io and Imax are the specific light intensity

and maximum specific light intensity respectively. R is the ideal gas constant.
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dX

dt
= µmX

(
1− X

Xm

)
(2.1)

µm = K1L

K2T + L
e−

K3L
RT (2.2)

L = I0
Im

(2.3)

Xm = (K4 +K5T ) e−
K6L
RT (2.4)

Bordel et al. (2009) used an alternative to the specific light intensity at the surface by

using the average light intensity within the broth. This presumes that on average the cells

within the culture are on average exposed to the same light intensity if the system is well

mixed. The kinetic parameters for these models have however been shown to depend on

the operating conditions of the system. Equations 2.5 and 2.6 show the light dependent

growth equation and the maximum specific growth rate µm respectively. Where µm,0 is a

constant, Ea the activation energy and κ the Boltzmann constant.

dX

dt
= µm (T )

(
Iav

K + Iav

)
(2.5)

µm (T ) = µm,0e
−Ea
κT (2.6)

I = I0e
−(λAXA+λBXB) (2.7)

The model developed by Bordel et al. (2009) was shown to fit the available experimental

data well. Although this validation of the model is promising the simplicity of the model

and low number of fitting parameters limit it to reactors running under similar conditions

(e.g. hydraulic mixing conditions, photo-period and number of limiting nutrients). These

limitations reduce the flexibility of the models necessitating the development of new models

when operating conditions vary significantly from those under which the models were

developed.
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Intensity gradient models

In Type II models the light gradients within the broth are taken into account and their

effect on the photosynthetic rate included. Each of these models consists of a biological

growth model and coupled with a light distribution model to determine the local light

intensity I(l) at a distance l from the system surface. The most recent formulations of

these models tend to use a simple Monod model for the biomass growth with the main

variations being in the choice of light distribution model. These models are similar in

structure to the incident intensity models with the addition of a function to calculate the

light intensity inside the reactor. The types of function commonly used for this are the

Beer-Lambert law (equation 2.8) or a two-flux model.

I(l) = I0exp(−σXl) (2.8)

2.2.2.2 Modelling photosynthesis dependent growth

Modelling the photosynthetic reactions which take place in algal cultures requires

knowledge of a wide variety of influencing parameters. Béchet et al. (2013) divided

the models they identified in literature into three categories based on the complexity

and perceived accuracy of the model. Type I models were those which predicted the

photosynthetic rate of the entire algae culture based upon the intensity of the light at

the external surface of the system assuming that the light intensity remained constant

throughout the medium. Type II light models account for the light gradients within the

a bioreactor. These local rates are then used to calculate a global light intensity which

is used to calculate the photosynthetic rate. Finally, type III models take account of the

photosynthesis of individual algae cells and the light they receive as they travel through

the broth to calculate a total photosynthetic rate for the culture, the most widely used

of these are the three population or photosynthetic factory (PSF) models (Béchet et al.,

2013). These three types of model are described in the following section. Figure 2.4

shows an outline of difference between the three types of model and how they compare in
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complexity and capability.

Figure 2.4: Schematic representation of models of algal productivity (P: rate of photosynthesis;
I: light intensity; T: temperature; RD:rate of day-time respiration; µ: specific rate
of photosynthesis; X: biomass cell concentration; ζ: proportionality constant; RN:
night-time maintenance; λ:biomass maintenance coefficient)(Béchet et al., 2013).

2.2.3 Hydrodynamic mixing

The other major area of interest in bioreactor design is the effect of mixing and other

hydrodynamic properties on performance and stability. There are a number of different

factors which can influence the physical properties of a bioreactors, from the viscosity,

which can have a significant effect on the mixing bioreactors (Babaei et al., 2015) to

the dimensions of the tank, which significantly effect the light penetration depth in algal

photobioreactors (Gupta et al., 2015). In general the mixing processes occurring within

bioreactors has been shown to play an important role in the growth of biomass and the

overall stability of many bioreactors. How well mixed the digestate in an anaerobic digester

is will affect the pH balance throughout the bioreactor; as methane producing bacteria

are highly sensitive to pH and even small variations can have a substantial effect careful
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control is necessary. Mixing is also useful in preventing settling of suspended biomass

and the build-up of a scum layer on the slurry surface which can inhibit the escape of

the biogas. As such, a well-mixed homogeneous slurry is necessary for stable, controlled

anaerobic digestion (Turovskiy and Mathai, 2006). Due to the nature of the slurries used

in the bioreactors and the size of full scale industrial plants, experimental methods of

determining the flow characteristics are expensive and complicated. Computational Fluid

Dynamics (CFD) provides an excellent method of assessing the flow characteristics and

mixing effectiveness under different bioreactor configurations without the time and expense

of experimental studies.

2.2.3.1 Modelling hydrodynamic mixing

Over the past 25 years, research work describing numerical modelling of anaerobic

bioreactors has been undertaken widely; with CFD being used to assess the mixing in

bioreactors of different types.

This includes assessment and development of CFD procedures for use with mechanically

mixed bioreactors (Joshi et al., 2011; Bridgeman, 2012). The modelling of mechanically

mixed bioreactors has shown that the type of impeller and flow direction effects the mixing

efficiency, with up mixing being found to be more efficient than down (Wu, 2010b; Aubin

et al., 2004). Yu et al. (2011a) also investigated mechanically mixed bioreactors and

showed the potential of helical ribbon impellers in the mixing of high solids content

and provided insight into the minimum power requirements. Additionally, high solids

bioreactors typically contain slurries of a non-Newtonian nature which have been shown

to produce significantly different flow patterns to Newtonian fluids when modelled (Wu

and Chen, 2008).

Numerical modelling has also been used to investigate flow and mixing in gas lift

bioreactors, using tracers in full scale AD’s to monitor mixing time and showing that

for internal loop gas lift bioreactors transient oscillatory behaviour can sometimes be

found (Terashima et al., 2009). Oey et al. (2003) showed that CFD modelling can be

used to predict flow patterns in gas lift bioreactors. Mudde and Van Den Akker (2001)

described how such modelling can be used to design and tune gas lift bioreactors and
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Karim et al. (2007) used CFD to alter the flow characteristics and reduce the stagnation

region, by modifying the geometry of a bench scale anaerobic gas lift digester. Meroney

and Sheker (2014) also investigated gas mixing of an anaerobic bioreactor and compared

its effectiveness when compared to vertical linear motion mixing with little difference in

the quality of the mixing.

There has however been no definitive methodology produced defining the most appropriate

models and approach to use in predicting the complex flow in bioreactors. One of the

significant factors is that slurry being mixed in many bioreactors, including bench scale

reactors from where experimental data is often obtained, has Reynolds numbers indicating

flow to be in the transitional turbulent region. This type of flow is known to be difficult to

model and many common turbulence models fail to correctly resolve the flow field. This is

compounded by the non-Newtonian nature of many slurries which can significantly alter

Reynolds numbers throughout the bioreactor where internal shear stresses vary. Published

literature has not fully addressed the issue of which turbulence models are appropriate, nor

what criteria should be adopted in selecting one for slurries of particular rheology. Failure

to simulate turbulence correctly in non-Newtonian, transitional flow regimes may result in

an inability to capture the important flow characteristics responsible for mixing reliably.

There have been a small number of studies into the effects of turbulence modelling on the

CFD results for anaerobic bioreactors (Wu, 2010a, 2011; Joshi et al., 2011; Bridgeman,

2012). The majority of CFD modelling of bioreactors tends to rely on the standard k-ε

turbulence model with wall functions (Vesvikar and Dahhan, 2006; Meroney, 2009; Mudde

and Van Den Akker, 2001; Oey et al., 2003).

In addition to the problems encountered with the choice of turbulence model and the

viscosity of the fluid, many bioreactors are also multiphase in nature and in many cases

including solid, liquid and gas phases (Karpinska and Bridgeman, 2016). In order to

accurately model these complex fluid systems multiphase modelling is required which can

be time consuming and computationally expensive. Wu (2010a) was able to model a gas

mixing bioreactor using an Eulerian-Eulerian multiphase approach to model two gas lift

bioreactors with different configurations finding that when including non-newtonian fluid

properties gas mixing with the inclusion of a draft tube was insensitive to the changes in
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fluid properties whereas the opposite occurred when the draft tube was excluded. Further

extension of these multiphase models has been made for activated sludge processes by

several authors. Lei and Ni (2014) developed an three phase activated sludge model for

and oxidation ditch where physical processes for liquid, gas, and solid transport were

included as well as biological processes for activated sludge processes. Another method

of implementing biokinetic growth with fluid mechanics is through the use of smooth

particle hydrodynamics (SPH) which has the advantage that modelling multiple different

phases such as liquid and gas is inherently built into the modelling method (Meister et al.,

2017).

2.3 Summary

The literature on bioreactor modelling shows that although a great deal of work has

been done on the modelling of both the biokinetic processes within bioreactors as well as

investigations into the physical aspects of the bioreactor contents, there is little in the way

of work coupling these different aspects together. Although some effort has been made to

develop models incorporating biokinetics and computational fluid dynamics for activated

sludge processes no evidence in literature was found for coupled models incorporating algal

biokinetics with both photosynthesis models and mixing performed using computational

fluid dynamics. As such it is this area that will be focused on in this work with the aim

being to develop a coupled model for algal biokinetics with the inclusion of photosynthesis

modelling and coupled in a framework with a CFD model for hydrodynamic mixing.
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Nomenclature

Symbols
µ Growth rate
µ∞ Growth rate at infinite quota
µm Maximum growth rate
θ Hydraulic retention time
C Nutrient concentration
fP Fraction of biomass yielding particulate products
kH Maximum specific hydrolysis rate
KS Half velocity constant
Qi Cell quota of nutrient i
Qmin,i Minimum cell quota of nutrient i
RK Rate limit for increasing concentrations of C
Si Soluble nutrient i
Vmax Maximum nutrient update rate
Vr Bioreactor volume
X Insoluble biomass concentration
Xi Insoluble biomass concentration of component i
Yi Yield of component i
a Dilution rate
b Specific decay rate
Q Flow rate through bioreactor
aL Light absorption coefficient
σL Light scattering coefficient

Abbreviations
AD Anaerobic digestion
ADM Anaerobic digestion model
ASM Activated sludge model
CFD Computational fluid dynamics
IAWPRC International association on water pollution research and control
IWA International water association
ODE Ordinary differential equation
PAO Phosphorus accumulating organisms
VFA Volatile fatty acid
WWTP Wastewater treatment processes

3.1 Introduction

The use of modelling in the prediction of biomass growth has been occurring for many

years, the development of models for studying the growth of bacterial cultures by Monod

(1949) has provided the basis for many of the biokinetic growth models still used today.

In this chapter a number of these models are investigated and discussed in detail.
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3.2 Numerical methods for ordinary differential equa-

tions

As the majority of the biokinetic models currently in use today take the form of ordinary

differential equations (ODEs) it is important to understand how these equations are solved.

Described here is one of the most widely used methods of solving systems of ODEs, the

Runge-Kutta method. The method is used to solve initial value problems of the form

shown in equation 3.1.

y′ = f(x, y) (3.1)

y(x0) = y0 (3.2)

The Runge-Kutta method is what is known as a predictor-corrector method and works in

the following way to find solutions to yn+1. For each fixed step h taken by x the calculation

for y uses a weighted average of the four values k1−4 (equations 3.5 - 3.8). Each of the

values of ki is in fact using a different method of estimating the next value of y by using

either Eulers method or by estimating the slope of the solution at some point across the

interval. Equations 3.3 - 3.8 describe the numerical method for the 4th order Runge-Kutta

method.

xn+1 =xn + h (3.3)

yn+1 =yn + (1/6)(k1 + 2k2 + 2k3 + k4) (3.4)

Where:
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k1 =hf(xn, yn) (3.5)

k2 =hf(xn + h/2, yn + k1/2) (3.6)

k3 =hf(xn + h/2, yn + k2/2) (3.7)

k − 4 =hf(xn + h, yn + k3) (3.8)

3.3 Activated sludge treatment models

In 1982 Activated sludge modelling had been undergoing research for about 15 years.

It was at this point the International Water Association (IWA) - at the time known

as the International Association on Water Pollution Research and Control (IAWPRC) –

decided to form a task group to consolidate the currently known information and produce

a modelling platform that could be used in future research into nitrogen removal activated

sludge treatment processes. The main problems with the models currently available at this

time were the lack of trust in the models and the lack of computational power available

to run simulations. Additionally there was no standard format used in documenting

these models, and the notation used was generally complex due to their complicated

nature.

The result of the work of the IWA task group was the formation of the Activated Sludge

Model No.1 (ASM1). This model was completed and published in 1987 (Henze et al.,

1987, 2000) and has since been the basis of numerous other models used in research into

wastewater treatment processes (WWTP), even if it has found little use in its original

form. One of the main advantages of the ASM1 was the notation through which it was

presented. The task group determined that the best method of easily presenting the large

and complex model was to use a matrix form based on the work of Petersen (1965) and

using notation from a previous task group in 1982 (Grau et al., 1982). An example of

the matrix notation used for the ASM1 and the other wastewater models developed by

the IWA task groups since then is shown in Figure 3.1. In line with the recommendations
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of Grau et al. (1982), the notations in the matrix represent insoluble (Xi) and soluble

(Si) components, yield (Y ), maximum growth rate (µ̂), half-velocity constant (KS) and

specific decay rate (b).

Figure 3.1: Petersen Matrix form developed for ASM1, shows process kinetics and stoichiometry
for heterotrophic bacterial growth in an aerobic environment, reproduced from (Henze
et al., 2000)

Since the formation of the ASM1 three other IWA ASM models have been published due

to advancements in the understanding of activated sludge processes. In 1995 due to better

understanding of and the need to be able to model biological phosphorus removal as well

as nitrogen removal a second ASM model was published (Henze et al., 2000). ASM2

built upon the knowledge gained through the development and use of ASM1 to include

biological phosphorus removal, and to take into account the effects of internal cell structure

on biomass growth; it was of the same form as ASM1 using the Petersen matrix format

which allowed for publication in a manner with which researchers were already familiar.

A further extension to ASM2 was to resolve the denitrification relating to phosphorus

accumulating organisms (PAOs) a process that was not fully understood when the ASM2

was published. The ASM2d model which included this was published in 1999 (Henze et al.,

2000). After ten years of use and research a number of short comings had become apparent

in the IWA ASM1. Such issues as the inability to differentiate between aerobic and anoxic

decay rates of nitrifiers which leads to issues predicting the max nitrification rates at



CHAPTER 3. NUTRIENT LIMITED BIOMASS GROWTH MODELLING 28

high solid retention times and where there are large anoxic reaction volumes. ASM1 also

included the use of certain parameters which were in reality either not measurable or

impossible to differentiate from other similar substances making validation of the model

unreliable when concerning such parameters. Additionally certain kinetic expressions were

either not included or found to have minimal effect on the overall modelling results. This

increased understanding resulted in the publication of a revised model, the ASM3, in

1998 (Henze et al., 2000). The ASM3 was a revision of the ASM1 and therefore did not

include the processes added to the ASM2d though it did include the internal cell structure

modelling found in the ASM2. A few years after its publication an extension to the ASM3

model to include enhanced biological phosphorus removal based around the methods used

in the ASM2d was implemented by Rieger et al. (2001). Work from 1994 - 2004 at

Delft technical university in the Netherlands paid particular attention to the modelling of

biological phosphorus removal. Over the ten years of its development the metabolic BioP

model was integrated with the processes of the ASM2d model, validated using a number of

experimental setups and found to be capable of modelling COD, Nitrogen and Phosphorus

removal for full scale simulations (Meijer, 2004).

As ASM1 is made up of 13 species both soluble and insoluble in order to help understand

the structure of the biokinetic models and their limitations a simple model was created by

building up in stages the number of reactions being modelled. MATLAB was used as the

development platform due to the built in ODE solvers available.

3.3.1 Simple activated sludge biokinetic model

A kinetic reaction model containing substrate limited biomass growth, biomass decay, and

substrate utilisation is described. Figure 3.2 shows an over view of the process with cells

representing substances (particulates and solutes) and the connecting arrows the processes

converting one substance to another. Table 3.1 lists the substances and variables, their

notation, units, and typical values obtained from literature (Henze et al., 2000).

The Petersen Matrix for the processes shown in Figure 3.2 is shown in Table 3.2, this

format is commonly used for documenting rate equations and models, the Anaerobic

Digestion Model 1 (ADM1) and the Activated Sludge Models (ASM’s) are often written
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Biomass Growth

Biomass Decay

SS XB

Figure 3.2: Process diagram of reaction model

this way.

Table 3.1: List of variables, units and typical values from literature

Definition Notation Units Value

Readily biodegradable substrate SS gCODm−3 -
Active Biomass XB gCODm−3 -
Biomass yield YB gcellCODformed.(gCODoxidized)−1 0.67
Max specific growth rate µm d−1 6
Half saturation coefficient KS gCODm−3 20
Biomass decay rate bB d−1 0.62

Table 3.2: Petersen Matrix for processes

SS XB ρj

1. Biomass Growth 1
YB

1 µm
(

SS
KS+SS

)
XB

2. Biomass Decay 0 −1 bBXB

The model was solved using one of MATLABs built in ODE solvers ODE45. ODE45 is a

4th order accurate variable step Runge-Kutta solver for systems of ODEs. The function

used to express the ODEs is shown in figure 3.3. To help with understanding the code

shown the full ODE’s of the processes are shown in equations (3.9) and (3.10). Table 3.1

contains the initial conditions used in the analysis of all models, this data was obtained

from the IWA Task Group on Benchmarking of Control Strategies for WWTPs.
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dSS
dt

= − 1
YB

µm

(
SS

KS + SS

)
XB (3.9)

dXB

dt
= µm

(
SS

KS + SS

)
XB − bBXB (3.10)

1 function dy=hvarfARM(t,y)
2 KS = 20.0; % Half Saturation coefficient
3 global mum %mum = 6.0; % Max specific growth rate
4 bB = 7.17e-6; % Biomass decay rate
5 YB = 0.67; % Biomass yield
6
7 dy = zeros(2,1); % a column vector - (dy(max),1)
8 dy(1)=(-1/YB)*mum*(y(1)/(KS+y(1)))*y(2); % Soluble substrate concentration
9 dy(2)=(1.0*mum*(y(1)/(KS+y(1)))*y(2))+(-1.0*bB*y(2)); % Biomass concentration

Figure 3.3: Function for biokinetic model

Table 3.3: Initial conditions taken from IWA benchmark data set (IWA, 2005).

t SS XB XS

0 63.63455 31.425 224.352

Figure 3.4 shows the growth and decay of the biomass and soluble substrate with the

varying line thickness representing different specific growth rate values. As is expected

as the specific growth rate is increased the growth of the biomass increases in speed,

this results in an increase in the rate of substrate usage but no change in the biomass

decay rate. An extension of the previous kinetic reaction model was created consisting of

substrate limited biomass growth, biomass decay, and substrate utilisation. Also included

is partial hydrolysis of dead biomass. Figure 3.5 shows an over view of the process with cells

representing substances (particulates and solutes) and the connecting arrow the processes

converting one substance to another. Table 3.4 lists the substances and variables, their

notation, units, and typical values obtained from literature.

To help with understanding the code shown in Table 3.5 the full Ordinary Differential

Equations (ODE’s) of the processes are shown in equations (3.11) - (3.13). Figure 3.6

shows the MATLAB code for the ODE system to be solved using the built in ODE45

(Runge-Kutta Method) solver. As can be seen, the addition of hydrolysis to the model

not only adds an additional ODE due to the new slowly biodegradable biomass substance
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Figure 3.4: Plot of growth and decay of biomass and substrate usage. Line thickness variation
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Figure 3.5: Process diagram of extended reaction model, including slowly biodegradable
substrate

in the reactor, but increases the number of terms found in the substrate ODE as there is

now an increase in the substrate as the slowly biodegradable biomass is hydrolysed.
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Table 3.4: List of variables, units and typical values from literature

Definition Notation Units Value

Readily biodegradable substrate SS gCODm−3 -
Active Biomass XB gCODm−3 -
Slowly biodegradable substrate XS gCODm−3 -
Biomass yield YB gcellCODformed.(gCODoxidized)−1 0.67
Max specific growth rate µm d−1 6
Half saturation coefficient KS gCODm−3 20
Biomass decay rate bB d−1 0.62
Fraction of biomass yielding particulate products fP dimensionless 0.08
Max specific hydrolysis rate kH d−1 3
Digester Volume Vr m3 100
Flow rate Q m3s−1 1

Table 3.5: Petersen matrix for extended biokinetic model

SS XB XS ρj

1. Biomass Growth 1
YB

1 µm
(

SS
KS+SS

)
XB

2. Biomass Decay 0 −1 1− fP bBXB

3. Hydrolysis 1 0 −1 kHXS

dSS
dt

= − 1
YB

µm

(
SS

KS + SS

)
XB +KHXS (3.11)

dXB

dt
= µm

(
SS

KS + SS

)
XB − bBXB (3.12)

dXS

dt
= (1− fP ) (bBXB)− kHXS (3.13)

1 function dy=hvarfARM(t,y)
2 KS = 0.02; % Half Saturation coefficient
3 mum = 6.94e-5; % Max specific growth rate
4 bB = 7.17e-6; % Biomass decay rate
5 YB = 0.67; % Biomass yield
6 fP = 0.08; % Fraction of biomass yielding particulate products
7 kH = 3.472e-5; % Max specific hydrolysis rate
8
9 dy = zeros(3,1); % a column vector - (dy(max),1)

10 dy(1)=((-1.0/YB)*mum*(y(1)/(KS+y(1)))*y(2))+((1.0)*(kH*y(3))); % Soluble
substrate concentration

11 dy(2)=(1.0*mum*(y(1)/(KS+y(1)))*y(2))+(-1.0*bB*y(2)); % Biomass concentration
12 dy(3)=((1.0-fP)*(bB*y(2)))+((-1.0)*(kH*y(3))); % Slowly biodegradable substrate

Figure 3.6: Function for extended biokinetic model

Figure 3.7 shows how the changes in the amount of decayed biomass yielding substrate

affect the biomass growth and substrate amounts. When compared to previous model the

inclusion of the hydrolysis terms shows how the decrease in substrate is slowed and that
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a greater maximum value of biomass is achieved.
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Figure 3.7: Plot of growth and decay of biomass and substrate usage with the addition of
hydrolysis of dead biomass

3.3.2 Bulk Biokinetic Model Reactor

An extension of the previous batch model where it was assumed there was no flow in or

out of the reactor after start is presented. The new reactor utilises the same kinetic model

with substrate limited biomass growth, biomass decay, and substrate utilisation. Also

included is partial hydrolysis of dead biomass. This model uses a mass balance approach

to simulate a complete-mix reactor with a fixed flow rate.

3.3.2.1 Time Dependent Solution

Figure 3.8 shows an over view of the process with cells representing substances (particulates

and solutes) and the connecting arrows the processes converting one substance to

another.

The Petersen Matrix for the processes shown in Figure 3.8 is shown in Table 3.5. Figure

3.9 shows the time dependent development of substrate and biomass in the complete mix

reactor. The solution reaches a full steady-state after approximately 20 days although it

appears steady after 48hrs.
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Figure 3.8: Process diagram of bulk reactor model

dSS
dt
− Q

Vr
SS,in + Q

Vr
SS = − 1

YB
µm

(
SS

KS + SS

)
XB + kHXS (3.14)

dXB

dt
− Q

Vr
XB,in + Q

Vr
XB = µm

(
SS

KS + SS

)
XB − bBXB (3.15)

dXS

dt
− Q

Vr
XS,in + Q

Vr
XS = (1− fP ) (bBXB)− kHXS (3.16)

The full Ordinary Differential Equations (ODE’s) of the processes are shown in equations

(3.14) - (3.16). These equations include the flow rate into and out of the domain and the

solution to these equations is found using the Runge-Kutta ODE solver in MATLAB.

3.3.2.2 Steady-State Solution

A comparison between the time dependent solution presented above and its hand

calculated steady state solution is shown for verification purposes. The mass balances

for the microorganism and substrate biomass can be written as equations (3.14) - (3.16).

For a steady-state solution dφ
dt = 0, where φ is the variable of interest. Additionally, the

hydraulic retention time is described by Vr
Q = θ. As such equations (3.17) - (3.19) can be

rearranged to:
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Figure 3.9: Time dependent concentration of variables in complete mix reactor

SS,in − SS − θ
(

µmSSXB

YB (KS + SS) − kHXS

)
= 0 (3.17)

XB,in −XB + θ

(
µmSSXB

KS + SS
− bBXB

)
= 0 (3.18)

XS,in −XS + θ ((1− fP ) (bBXB)−KHXS) = 0 (3.19)

Where the variables are SS , XB, and XS , and all constants are the same as those in table

3.4.

Table 3.6: Steady-state vs transient solution comparison

SS
(
gCODm−3) XB

(
gCODm−3) XS

(
gCODm−3)

Unsteady-State 2.8352 17.5787 4.0086
Steady-State 2.8654 17.5786 4.0086

3.4 Anaerobic digestion models

In 1998 a formal task group was formed by the International Water Association (IWA)

to produce a model framework of the processes found in anaerobic digestion. Over the

next few years the task grouped coordinated by Damien Batstone the model structure was
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finalised and tested before being presented at the 9th IWA Anaerobic Digestion Conference

in 2001. The model was published in 2002 and as expected was received well, mainly due to

the success of the IWA ASM models previously published (Batstone et al., 2002b). Work

on modelling anaerobic digestion had been done prior to the publication of the ADM1 but

had seen limited use. This was possibly due to the large number of models available and

the very specific nature of those models. The ADM1 although based upon these previous

models was designed to be a general model and a platform upon which future research and

model development could be done. The ADM1 is of the same format as the IWA ASM

models, being presented using the Petersen matrix notation, making the model easy to

understand and familiar to those already aware of the IWA ASM model. Two main types

of reaction are included in the model, biochemical and physico-chemical. Biochemical

reactions occurring both inside cells as well as enzyme driven extra-cellular reactions are

modelled. Physico-chemical reactions such as gas-liquid transfer and ion association and

disassociation are also included in the model.

The first stages of the AD process in the model are the extracellular enzyme driven

disintegration and hydrolysis stages where the solid waste matter first disintegrates into

particulate carbohydrates, proteins and fats before being hydrolysed to form sugars, amino

acids and long chain fatty acids. These extracellular steps are followed by three internal

cellular biological stages:

Acidogenisis - the degradation of sugars and amino acids to organic acids, hydrogen and

carbon dioxide.

Acetogenesis - conversion of volatile fatty acids (VFAs) to acetic acid, hydrogen and carbon

dioxide.

Methanogenesis - conversion of acetates to methane and carbon dioxide and the

consumption of hydrogen.

These stages are more clearly shown in Figures 3.10 and 3.11.

Also included in the ADM1 model are a number of physico-chemical reactions. These are

reactions that are not driven by enzymes. Physico-chemical reactions can generally be

separated into three categories; Liquid-liquid reactions which include ion association and
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Figure 3.10: ADM1 process flow diagram
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Figure 3.11: ADM1 model flow diagram of reactions (reproduced from Batstone et al. (2002a))
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disassociation, solid-liquid transfer such as precipitation and gas-liquid transfer such as

dissolving of gas in the solution. Solid-liquid transfer was not implemented in the ADM1

model due to the complex processes and the limited understanding of them at the time

the model was created.

A number of extensions to the ADM1 model have been produced since its publication. The

ADM1 has been used for improved remote monitoring, control and operation of high-rate

anaerobic wastewater treatment plants (the TELEMAC project) (Batstone et al., 2006). A

number of extension have been added to ADM1 including an extensive sulphate reduction

extension by Fedorovich et al. (2003), this was very complex as it required modification

to every part of the ADM1. An extension is also available for CaCO3 which can be used

as a template for other precipitation reactions as well (Batstone and Keller, 2003).

Other than adding extensions to increase the accuracy of the ADM1 extensions such as two-

step models have been created to assess things like temperature impact (Elmitwalli et al.,

2003) and for use modelling upflow Anaerobic Sludge Blanket reactors (Batstone, 2006).

Simplifications to the model have also been made, usually to increase simulation speed,

one such case is the implementation in GPS-X by (Copp et al., 2004).This simplification

involved lumping together all soluble components more complex than acetate as soluble

COD, and separating nitrogen states from COD states. Reduction although useful and

valid does reduce specific capabilities of the model. GPS-X does however show an increase

in simulation speed of 5x.

3.5 Phytoplankton models

3.5.1 Monod Kinetics

The development of one of the most widely known methods of modelling the growth

of microbes was done by a French biologist Jacques Monod in the 1940s. Although

he later shared the Nobel prize for medicine with François Jacob and André Lwoff "for

their discoveries concerning genetic control of enzyme and virus synthesis" in 1965 (Nobel

Media AB 2014, 2014), Monod started his career working on the growth of bacterial

cultures for his doctoral degree (Monod, 1942). The result of this work is the Monod
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equation; a hyperbolic equation (Equation 3.20) for the steady-state growth of microbes

(originally bacterial cultures) where C is the nutrient concentration, RK is the rate limit

for increasing concentrations of C and CI is the concentration at which the rate is half

the maximum.

R = RK
C

CI + C
(3.20)

The form this equation takes is very similar to that of the Michaelis-Menten kinetics of

enzyme growth(Monod, 1949; Michaelis et al., 2011). It can be argued that Jacques Monod

did not actually create a new modelling method, rather appropriating the enzyme kinetics

model for use in the growth of micro-organisms. As such, review of literature shows

both Monod and Michaelis-Menten kinetics as being applied for the growth of bacteria,

microalgae and all manner of other plankton species.

The Monod kinetic models used for phytoplankton growth take the form shown in equation

3.21 where S is the limiting substrate, µmax is the maximum growth rate and KS is the

value of S when µ/µmax = 0.5 also known as the “half-velocity constant”. The value of

S/(S +KS) is always between 0-1 for positive values of KS . The values of S and KS are

empirical constants, dependent on the environmental conditions and algae species being

grown; these constants require experimental data for calibration of the model.

dX

dt
= µmax

SP
SP +KP

(3.21)

An important aspect of the Monod type models that must be noted is that they only

consider aspects of processes external to the biomass - bacteria, phytoplankton, etc. -

being modelled. This means that any storage of nutrients or processes which occur inside

the biomass cells is not accounted for directly. In 1968 Droop (1968) found that in studying

the growth limitation of vitamin B12 in the microalgae Monochrysis lutheri growth rate

did not directly depend on the external nutrient concentration but upon the concentration
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inside the cells, this discovery by Droop resulted in the development of the Cell Quota or

Droop model of biokinetic growth.

3.5.2 Cell Quota Modelling

Cell quota model are two stage processes where external nutrients are taken up by the

cells into “storage” before being used for biomass growth. This allows for growth to occur

when external nutrients are depleted as long as there are available nutrients in the cells

quota (storage).

Unlike the Monod kinetic models which calculate the growth of biomass using only a

single equation which produces a hyperbolic growth curve dependent on only two empirical

constants the cell quota model requires at least two separate equations for nutrient quota

and biomass concentration. Both models use an additional equation for the nutrient

concentration in the surrounding medium which is usually a Monod style equation. A

simple cell quota model is shown in equations 3.22-3.23. The first expression in equation

3.22 - (Vmax,PSP ) / (SP +KP ) - dictates the nutrient uptake of the cells using a Monod

equation in the same manner as equation 3.21. The difference between the expressions

is found in the use of Vmax,P , the maximum nutrient uptake rate, rather than µmax, the

maximum algal growth rate.

dQP
dt

= Vmax,PSP
SP +KP

− µ∞
(

1− Qmin,P
QP

)
QP (3.22)

dX

dt
= µ∞

(
1− Qmin,P

QP

)
X (3.23)

A number of different applications of the cell quota model can be found in literature with

empirical constants for various different species of algae and environmental conditions.

Its use is generally found in models where nitrogen and phosphorus are the nutrients of

interest as these are stored internally in the cells and can be used when external availability

is limited.
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3.5.3 Multi-Nutrient modelling

The cell quota model can also be used for multiple nutrient limited growth. The

assumption that the growth rate is determined by the limiting nutrient (i.e. the nutrient

with the lowest cell quota). Which of the nutrients is limiting is determined through

the use of Liebig’s law of the minimum. The equations below show a multi-nutrient cell

quota model for phosphorus and nitrogen limited growth. The model below was developed

by Klausmeier et al. (2004) based on the experimental work of Rhee (1978). Table 3.7

contains the constants for the model and the initial conditions under nitrogen limited

growth.

Parameter Notation Value Units
Dilution rate a 6.829E-6 s−1

Nitrogen inflow concentration Sin,N 1.8E5 µMolN.m−3

Phosphorus inflow concentration Sin,P 3.0E3 µMolP.m−3

Maximum nitrogen uptake rate Vmax,N 3.947E-12 µMolN.Cell−1.s−1

Maximum phosphorus uptake rate Vmax,P 1.424E-13 µMolP.Cell−1.s−1

Nitrogen half saturation constant KN 5.6E3 µMolN.s−1

Phosphorus half saturation constant KP 2.0E2 µMolP.s−1

Growth at infinite quota µ∞ 1.563E-5 s−1

Minimum nitrogen cell quota Qmin,N 4.54E-8 µMolN.Cell−1

Minimum phosphorus cell quota Qmin,P 1.640E-9 µMolP.Cell−1

Initial Conditions
Soluble nitrogen SN 1.8E5 µMolN.m−3

Soluble phosphorus SP 3.0E3 µMolP.m−3

Nitrogen cell quota QN 4.54E-8 µMolN.cell−1

Phosphorus cell quota QP 1.64E-9 µMolP.cell−1

Biomass concentration X 1.0E7 Cells.m−3

Table 3.7: Constants for the multi nutrient cell quota model (Klausmeier et al., 2004)

The multi nutrient cell quota model for nitrogen and phosphorus limited growth is

implemented here and solved using the fourth order Runge-Kutta method. Two

simulations were run and are compared against each other here, the first was under

phosphorus limited growth where it is the phosphorus cell quota which dictates the growth

rate of the biomass, the second under nitrogen limited growth. The minimum function

which determines the growth of algal cells is found in the equations 3.26, 3.27 and 3.28.

The implementation of this model can be found in appendix A.
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dSN
dt

= a (Sin,N − SN )− Vmax,NSN
SN +KN

X (3.24)

dSP
dt

= a (Sin,P − SP )− Vmax,PSP
SP +KP

X (3.25)

dQN
dt

= Vmax,NSN
SN +KN

− µ∞min
(

1− Qmin,N
QN

, 1− Qmin,P
QP

)
QN (3.26)

dQP
dt

= Vmax,PSP
SP +KP

− µ∞min
(

1− Qmin,N
QN

, 1− Qmin,P
QP

)
QP (3.27)

dX

dt
= µ∞min

(
1− Qmin,N

QN
, 1− Qmin,P

QP

)
X −mX (3.28)
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Figure 3.12: Biomass growth under nitrogen and phosphorus limited growth

The results of multi nutrient cell quota model show that nitrogen is a much more limiting

substrate than phosphorus in terms of the biomass growth, this can be seen in the fact

that the under phosphorus limited growth the biomass concentration at steady state is

nearly three times that of the nitrogen under similar conditions.
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3.6 Summary

The work in this chapter describes the different soluble nutrient based biokinetic models

currently used in modelling bioreactors both in the fields of research and for industrial

purposes.

A number of models were implemented to investigate the different aspects of the model. A

simple activated sludge model based around monod kinetics was developed to include both

growth based on soluble nutrients as well as decay and hydrolysis of biomass. This model

was investigated as both a batch bioreactor with no flow in or out as well as continuous

flow bioreactor using the mass balance method. Both time-dependent and steady state

solutions were calculated and compared with each other to show how the results were in

agreement.

A number of different models for soluble nutrient based biokinetic growth of algae were

investigated and described. From literature it was determined that the most widely used

was the cell-quota or Droop model which has been investigated extensively over many

years and shown to provide more accurate results when compared to the simpler monod

models.

An implementation of the cell-quota model with a multi-nutrient limiting function was

implemented to with variable initial conditions to show how the least abundant nutrient

determined the growth rate.
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Nomenclature

Symbols
Ī Average irradiance through culture volume
ξ Light attenuation rate
λ Optical depth
µ Growth rate
µ∞ Growth rate at infinite quota
µm Maximum growth rate
Ψmax Chlorophyll:Nitrogen proportional coefficient
ρ Nutrient uptake rate
ρm Maximum nutrient uptake rate
θ Hydraulic retention time
µ̃ Light limited growth rate
AChl Chlorophyll light attenuation coefficient
AB Biomass attenuation coefficient
C Nutrient concentration
fP Fraction of biomass yielding particulate products
I∗ Photoaddaption intensity of algal cells
Kil Photosynthesis inhibition coefficient
kH Maximum specific hydrolysis rate
KS Half velocity constant
Qi Cell quota of nutrient i
Qmin,i Minimum cell quota of nutrient i
RK Rate limit for increasing concentrations of C
Si Soluble nutrient i
Vr Bioreactor volume
X Insoluble biomass concentration
Xi Insoluble biomass concentration of component i
Yi Yield of component i
a Dilution rate
b Specific decay rate
Chl Chlorophyll concentration
Q Flow rate through bioreactor
R Baseline respiration rate
I Light intensity
I0 Incident light intensity
ε Algal photoacclimation rate
x1 Resting state for photosynthetic factor model
x2 Active state for photosynthetic factor model
x3 Inhibited state for photosynthetic factor model
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Abbreviations
AD Anaerobic digestion
ADM Anaerobic digestion model
ASM Activated sludge model
CFD Computational fluid dynamics
IAWPRC International association on water pollution research and control
IWA International water association
ODE Ordinary differential equation
VFA Volatile fatty acid
WWTP Wastewater treatment processes
PN Photosynthesis nutrient

Incorporating the effects of light on phytoplankton growth into an overall model of the

biomass growth can be a complex undertaking; this is especially true when there are several

non-independently limiting factors effecting the biomass growth. In this chapter two

different methods of including the effects of limited light intensity on the photosynthesis

of algal biomass are described, implemented and evaluated against experimental results of

phytoplankton growth under different light conditions (e.g. a diurnal light intensity cycle).

The first, a multiplicative approach developed by Bernard (2011), considers and includes

a number of different factors which can affect the photosynthesis of the phytoplankton

(i.e. photoinhibition, light absorption and photoacclimation) along with a single soluble

nutrient (Nitrogen) as a limiting factor independent of light. This model is described in

some detail and then implemented to reproduce the work of Bernard (2011) comparing

the model with experimental results obtained by Flynn et al. (1994); the model is then

further validated using the experimental data produced by Davidson et al. (1992).

The second modelling method uses the concept of photosynthetic factories (states)

determined by the light intensity to calculate the growth rate of the biomass. This method,

first proposed by Eilers and Peeters (1988), considers three possible states for the cells

in relation to photosynthetic process. The three states - resting (x1), active (x2) and

inhibited (x3) - calculated based on the light intensity, determine the fraction of biomass

which is able to grow.

4.1 Multiplicative modelling approach

The multiplicative approach used by Bernard (2011) in the development of an algal

growth model including growth limited by both soluble nutrients (Nitrogen) and light,
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incorporates a number of photosynthetic processes that have been determined to effect

the growth rate of phytoplankton.

4.1.1 Soluble nutrient model methodology

The approach used to model the growth due to Nitrogen concentration is based around

that of a single nutrient cell quota model under nitrogen dependent growth (Droop, 1968).

The basic structure of the model on which all subsequent functions are built is shown

in equations 4.1-4.3 where a is the dilution rate, SN the soluble Nitrogen, Sin,N the

inflow concentration of soluble Nitrogen, QN the cell nitrogen quota, X the biomass

concentration, R the baseline respiration rate, and µ(QN ) the growth rate as a function

of cell quota; all other constants are defined in table 4.1.

dSN
dt

= a (Sin,N − SN )− ρ(SN )X (4.1)

dQN
dt

= ρ(SN )− µ(QN )QN (4.2)

dX

dt
= µ(QN )X − aX −RX (4.3)

Where the functions for ρm(SN ) and µ(QN ) are:

ρ(SN ) = ρm

(
SN

SN +Ks,N

)
(4.4)

µ(QN ) = µ∞

(
1− Qmin,N

QN

)
(4.5)

With Qmin,N being the minimum Nitrogen cell quota required for growth to occur and

µ∞ being the growth rate at a theoretical infinite quota.

This basic nutrient dependent growth model was adapted by Bernard (2011) to incorporate

cell respiration; this needs to be considered in the case of high density cultures where a

fraction of the phytoplankton may be in darkness at any time. The respiration rate,

including both baseline respiration (the minimum respiration rate required for basic

function) and respiration due to biosynthesis, are included to account for areas (within

the bioreactor) and periods where light is so low that the growth rate is lower than the
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respiration rate (Geider et al., 1998; Ross and Geider, 2009). The respiration rate due

to the baseline function (R) can be considered proportional to biomass while biosynthesis

respiration is generally considered to be included in the "net growth rate".

Parameter Name Symbol Value Unit

Light limited growth rate µ̃ 1.7 day−1

Minimum Nitrogen Cell Quota Qmin,N 0.05 gNgC−1

Maximum Nitrogen Cell Quota Qmax,N 0.25 gNgC−1

K∗sI 1.4 µmolm−2s−1

Photosynthesis Inhibition Coefficient Kil 295 µmolm−2s−1

Maximum Nitrogen Uptake Rate ρm 0.073 gNgC−1day−1

Half Saturation Constant Ks 0.0012 gNm−1

Respiration Rate R 0.0081 day−1

Proportional Coefficient Chl:N Ψmax 0.57 gChlgN−1

k∗I 63 µmolm−2s−1

Chl Light Attenuation Coefficient AChl 16.2 m2gChl−1

Biomass Light Attenuation Coefficient AB 0.087 m−1

Table 4.1: Constants for multiplicative photosynthesis model obtained through experimental
analysis as described by Bernard (2011)

4.1.2 Photosynthesis modelling methodology

The photosynthetic processes are included in a multiplicative manner as a function of light

intensity I within the biomass growth rate term µ∞(I) which replaces and includes the

previous growth rate at infinite quota term µ∞. The different photosynthetic processes

included in the model are described below and include functions for photoinhibition,

pigment dynamics, photoacclimation and light distribution within the culture.

Photoinhibition is a process which occurs at high light intensities when surplus energy

absorbed by the cells resulting in damage to the photosynthesis centres of the cells

(Zonneveld, 1998). Bernard (2011) account for photoinhibition using the kinetic model

of Eilers and Peeters (1988, 1993) shown in equation 4.6, where KiI is the inhibition

coefficient which when combined with the variable KsI defines Iopt =
√
KsIKiI for which

µ(I) is greatest. Photoacclimation the process by which long term acclimatisation of

the phytoplankton to a particular light intensity effects the PI curve (figure 4.1) is also

considered and is accounted for through the variable KsI as shown in equation 4.7; where
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θ is the initial chlorophyll/biomass ratio (θ = Chl/X).

µ∞ (I) = µ̃
I

I +KsI + I2/KiI
(4.6)

KsI = K∗sI
θ

(4.7)

Figure 4.1: Photoacclimation of algae species Skeletenonema costatum at low light (IL = 50
µmolm−2s−1, dark blue points and lines) and at high irradiance (IH = 1200
µmolm−2s−1, light blue points and lines) reproduced from (Bernard, 2011; Anning
et al., 2000)

In order to predict the effect of biomass concentration on the light field within the culture

- so as to be able to account for changes in light intensity within the bioreactor - a model of

the pigment dynamics is required. The assumption that chlorophyll (Chl) concentration

is linearly correlated to particulate nitrogen XQ (Laws and Bannister, 1980) is made,

this results in equation 4.8 for Chl concentration of a culture photoacclimated at a light

intensity I∗.

Chl = Ψ (I∗)XQ (4.8)
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where:

Ψ (I∗) = Ψmax
KI∗

I∗ +KI∗
(4.9)

and I∗ represents the photoadaptation of the cells to different light intensities described in

equation 4.10, where Ī is the average irradiance through the culture volume (i.e. between

the surface and the maximum distance from the incident irradiance point) defined in more

detail in section 4.1.4 and ε is the photoacclimation rate.

I∗ = εµ (Q, I)
(
Ī − I∗

)
(4.10)

4.1.3 Nutrient uptake limiting model for low light conditions

A further addition to the cell quota nutrient uptake model is required when including

light limited growth to account for maximum nutrient cell quota, limiting the uptake rate

under conditions of no light where growth can not occur. As the maximum cell quota is

defined as:

Qm = Qmin + ρm
µ∞

(4.11)

the inclusion of photosynthesis as a limiting factor on the growth rate µ̄ results in the

following change to equation 4.11:

Qm(I) = Qmin + ρm
µ∞(I) (4.12)

which under conditions of no light (I=0) results in a zero growth rate (µ̄(0) = (0)) and

thus an infinite maximum quota, an undesirable and unphysical condition for the model.

As such it is necessary to include a limiting factor in the nutrient uptake rate to account

for maximum cell quota when growth is reduced to zero in darkness. This limiting factor

is included in the function for ρ(S) in equation 4.4 resulting in equation 4.13. This new
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addition to the function produces a tail off effect as the cell quota approaches Ql.

ρ(S) = ρ̄
S

S +Ks

(
1− Q

Ql

)
(4.13)

4.1.4 Modelling light distribution within the culture volume

The final problem of interest in the model of Bernard (2011) is the distribution of light

within the culture. As the model is based on a mass balance approximation and considers

the bioreactor to be homogeneously mixed it is necessary to form an approximation to

the change in light intensity over the distance from the incident irradiance point and the

maximum distance from that point in the reactor. For this a Beer-Lambert approximation

is used. The Beer-Lambert approximation assumes an exponential decrease in the light

intensity as distance from the incident location increases with a linear relationship to

biomass concentration (equation 4.14).

I(z) = I0e
−ξz (4.14)

The light attenuation rate, ξ, is mainly dependent on the chlorophyll content and the

biomass concentration and can be defined as ξ = AChlChl + ABX + c where AChl and

AB are light attenuation coefficients for chlorophyll and biomass respectively and c is the

background turbidity coefficient (the cloudiness of the growth medium on its own). The

light attenuation rate is used to calculate the optical depth of the medium λ = ξL, which

describes how efficiently the light is absorbed. Using this it is possible to calculate an

average value for the irradiance of the culture by integrating equation 4.14 from 0 to L (L

being the maximum depth) resulting in the following equation:

Ī = I0
L

∫ L

0
e−ξzdz = I0

λ

[
1− e−λ

]
= I0 − I(L)
ln(I0/I(L)) (4.15)

where µ̄ contains all the previously described functions for defining the photosynthetic
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growth rate in the following form:

µ̄ = µ̃
2KiI

λ
√

∆
arctan

 I0
(
1− e−λ

)√
∆

2I2
0e
−λ + I0 (1 + e−λ)KiI + 2I2

opt(θ)

 (4.16)

where ∆ = 4I2
opt (θ)−K2

il.

Finally when all the different parts of the model are combined, the resulting system of

equations 4.17-4.20 is obtained.

dSN
dt

= a (SN,in − SN )− ρm
SN

SN +Ks,N

(
1− QN

Qmax,N

)
X (4.17)

dQN
dt

= ρm
SN

SN +Ks,N

(
1− QN

Qmax,N

)
− µ̄ (QN −Qmin,N ) (4.18)

dX

dt
= µ̄

(
1− Qmin,N

QN

)
X − aX −RX (4.19)

dI∗

dt
= µ̄

(
1− Qmin,N

QN

)(
Ī − I∗

)
(4.20)

4.1.5 Validating the multiplicative model

In order for the model described above to be considered accurate and applicable to real

world applications validation of the results must be performed. Therefore, the model is

implemented and solved here using numerical methods suitable for the solving of systems

of ordinary differential equations (ODEs). These numerical methods are described in

more detail in section 3.2; in this case the Runge-Kutta family of methods is used to

solve the problems as they provide a good compromise between efficiency and accuracy

and are well established numerical methods. The solving of the model was performed

using the numerical computing environment MATLAB using the ode23 solver a 3rd order

Runge-Kutta method developed by Bogacki and Shampine (1989). The code for the

implementation of the model in MATLAB is provided in Appendix B.1.

The results of this implemented model are compared to experimental results from literature

- as was done by Bernard (2011), who compared the results produced by the model to
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a set of time dependent experimental results produced by ((Flynn et al., 1994)). Figure

4.2 shows the plot comparing the results of the model compared against the experimental

result, these results are for the phytoplankton Isochrysis galbana Parke, under periodic

light and dark conditions at a ratio of 12hrs light:12hrs dark. The model was set up using

a set of initial values and boundary conditions (inflow concentrations) obtained from the

experimental data to which the results are compared. As the experimental results used

for validating the model were performed under batch flow conditions (i.e. no inflow or

outflow) only the initial conditions are needed with Sin and D being set to 0. Table 4.2

shows the initial conditions used in the implementation of the model for the case described

here.

Ammonium
[µg.N.ml−1]

Cell
Nitrogen
[µg.N.ml−1]

Cell Carbon
[µg.C.ml−1]

Light
Intensity

[µMol.m−2.s−1]
Initial Conditions 1.411 0.03 0.6 100

Table 4.2: Initial conditions used for the implementation of the model developed by Bernard
(2011) for the periodic light variation simulation

The results of the model show excellent results when compared to the experimental results;

the close fit to the experimental data for the external Nitrogen and the cell carbon, in

particular the inclusion of the stepping shape of the cell carbon modelling results, shows

that the model, even though complex and including a large set of variables, accurately

predicts the growth and nutrient consumption processes within the bioreator. The stepped

shape of the cell carbon graph is a result of the periodic light and dark conditions imposed

on the bioreactor and can be seen in the experimental results for the cell carbon content.

The fact that the model predicts this indicates that the function described in equation

4.6 is properly predicting the effects of limited light on the biomass growth rate. The

results for cell chlorophyll and Nitrogen content also show good accuracy particularly in

the exponential growth phase in the first half of the growth period. There is however a

slight loss of accuracy for both of these variables after the point where external nitrogen is

depleted. Both of these plots fail to reach the peak values shown in the experimental data

indicating the model functions fail to account for continued activity in Chl production and

possibly uptake of Nitrogen from an alternative source other than the Ammonium shown
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in the external Nitrogen plot. Additionally, the model prediction between 10 and 25 days

for the chlorophyll concentration has a lower gradient than is shown by the experimental

results. This may be due to experimental errors as there is some visible fluctuation in

the experimental data in that period. However, without further experimental data for

a longer experimental run it is not possible to tell whether the model predictions would

diverge from the experimental data.
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Figure 4.2: Comparison performed between the model of Bernard (2011), implemented here, and
the dynamic experimental data of Flynn et al. (1994) for a light:dark periodic light
source.

Although the results produced by Bernard (2011) indicate that the model is able to

accurately predict the growth and decay of biomass as well as the concentrations of internal
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and external nutrients and Chl the model is only compared to results under a single set of

experimental conditions. To this end a second set of data for the same species of algae was

obtained from literature and compared with results produced by the model implemented.

As the algal species is the same as that used in the previous case, the model constants

should still be appropriate and are thus kept the same as described in table 4.1. The initial

conditions for this simulation are the same as the initial conditions of the experimental

work to which it is to be compared; these initial values are shown in table 4.3.

Ammonium
[µg.N.ml−1]

Cell
Nitrogen
[µg.N.ml−1]

Cell Carbon
[µg.C.ml−1]

Light
Intensity

[µMol.m−2.s−1]
Initial Conditions 1.4 0.05 1.29 100

Table 4.3: Initial conditions obtained from the experimental work of Davidson et al. (1992) for
use with the Bernard (2011) algal growth model implemented here as part of validating
the model accuracy.

As the only significant difference (other than slight variations in initial conditions) between

the model set-up described previously and the one shown here is the lighting conditions,

the results should show a number of similarities and the results of the model predictions

should be comparable to those found by Bernard (2011) for the periodic lighting condition.

Figure 4.3 shows the results of the simulation performed here with the experimental results

for dynamic growth of the phytoplankton species Isochrysis galbana Parke under constant

light intensity growth conditions, the experimental results were obtained from the work

of Davidson et al. (1992). Although the accuracy of the model is not as great as when

compared that of the original experimental data set - from which some of the model

parameters were tuned - there is still reasonably good agreement between the experimental

and model results. In this second case the model has a tendency to overshoot the

experimental results even though it maintains the same basic shape for the different plots.

On the whole the results of the comparison with a second set of experimental data show

that although the model fails to reproduce the accuracy shown from the original validation

it does show itself capable of predicting the main features of the second data set. Again the

chlorophyll calculation shows the most inaccuracies of the results plotted with peak values

being 0.05g.Chl.m−3 greater than the experimental result and maintaining that difference

for the remaining 9 days of simulation time. This shows that, although the model is



CHAPTER 4. PHOTOSYNTHESIS MODELLING 56

providing good predictions of the biomass and cell nutrient contents, the difference in

the peak simulated chlorophyll vs experimental results indicates that some part of the

model requires further investigation. Whether the calculated chlorophyll concentration

has a significant effect on the overall result is unknown considering the number of different

factors which have been included in the model. This is particularly the case as a number

of the controlling processes were ’tuned’ using the initial set of experimental data from

Flynn et al. (1994). Additionally, although the model accounts for quite a few factors

which may have an effect on the results it doesn’t account for any form of mixing which

may have a much greater effect on the availability of light for individual algal cells. This

would make it difficult to use the model for any bioreactors with complex geometries or

lighting conditions without significant changes and enhancements.
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Figure 4.3: Comparison between solutions from the model of Bernard (2011) implemented here
and the experimental results of Davidson et al. (1992) for a constant light intensity



CHAPTER 4. PHOTOSYNTHESIS MODELLING 58

4.2 The photosynthetic factory (PSF) model

The photosynthetic factory (PSF) model for light limited phytoplankton growth described

here was originally created and published by Eilers and Peeters (1988) and further

developed by Wu and Merchuk (2002) and Nauha and Alopaeus (2012). The model

describes the photosynthetic processes though the use of the concept of photosynthetic

factories or states. This approach, although not accounting for the full complexity of

the photosynthesis process, does consider the affect light can have on photosynthetic cells

when at extreme low and high concentrations as well as at the optimum intensity. There

are three possible states for the PSFs, (1) the resting state (x1), (2) the activated state (x2)

and (3) the inhibited state (x3). The transition from one state to another is dictated by

rate constants where change from the resting to the activated state and from the activated

to the inhibited state is proportional to the light intensity (figure 4.4). The recovery from

the activated and inhibited states to the resting state is controlled by enzymatic processes

which are not dependent on the light intensity, this is reflected in the model equations.

Equations 4.21 to 4.23 show the linear coupled ODEs which represent the changes in

state of the PSF model shown in figure 4.4. The diagram describes the connections

between the PSF states, where α, β, γ and δ are constants describing the behaviour of

the photosynthetic process and I is the incident light intensity. The values for the model

constants are provided in table 4.4.

I

γ
δ

αI I

βI

x1

x2x3

Figure 4.4: Photosynthetic factory model states diagram
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dx1
dt

= −αIx1 + γx2 + δx3 (4.21)

dx2
dt

= αIx1 − γx2 − βIx2 (4.22)

dx3
dt

= βIx2 − δx3 (4.23)

Parameter Name Symbol Value Unit

alpha α 0.001935 (µMol.m−2)−1

beta β 5.7848e-7 (µMol.m−2)−1

gamma γ 0.1460 s−1

delta δ 0.0004796 s−1

Table 4.4: Constants for the photosynthetic factory model (Wu and Merchuk, 2001)

This section details a series simulations using the photosynthetic factory model for growth

of phytoplankton under limited light conditions; variable functions are imposed for the

light intensity to demonstrate the effects of changing light levels on the photosynthetic

state of the biomass. The initial conditions used for the PSF model are for all biomass

to be in the resting state (i.e. x1 = 1, x2 = 0 and x3 = 0) this condition is analogous to

conditions where the algae has been kept in darkness for a considerable period of time.

The code used to implement each of the simulations described here is found in Appendix

B.

4.2.1 Effects of light intensity function on the photosynthetic state of

biomass

In order to understand how the PSF model works, a series of functions describing the light

intensity applied to the biomass were implemented for the model. Four different functions

were tested to determine the response under different theoretical lighting situations.

Although the light intensity in a bioreactor can vary based on a number of factors (e.g.

time of day, location within the reactor, global latitude), due to the one-dimensional

nature of the ODE systems implemented here, the functions are considered as variations

in time rather than in space with the bioreactor being considered as homogeneously
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mixed and with the incident light intensity applied to all depths within the reactor. The

implementation for these different lighting conditions can be found in Appendix B.
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Figure 4.5: Difference in photosynthetic states for differing light intensity functions, where the
subplot is the light intensity function shape. Each function has the same average
value over a one day period (266µMol.m−2.s−1), also depicted within the subplots.

The four functions implemented were a constant fixed value of 266µMol.m−2.s−1 (as used

in the experimental work of Rhee (1973)), a periodic step function to represent a lamp

being turned on after a period of time and then later switched off, a SIN function with
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a frequency of 1d−1 and a Gaussian function also applied over a period of 1 day. In

cases where results are shown over multiple days the functions for light intensity repeat

at a frequency of one cycle per day. All of these functions were set-up to have the same

average light intensity (266µMol.m−2.s−1) when calculated over one 24 hour day. The

average value was chosen to represent the light intensity provided by the lamps used in

the experimental work of Rhee (1974, 1978) which are later used for validation purposes.

Plots of all these functions are shown as sub figures in figure 4.5 alongside their resulting

PSF states. In order to clearly show the photosynthetic states using the different light

intensity functions, the plots are over a period of only a single day. Each of the functions

would repeat if the plots where extended over a longer period of time.

Each of the light intensity functions and their resultant photosynthetic states represents

different lighting conditions under which phytoplankton might be grown. The constant

light intensity in figure 4.5a represents the response when under lighting conditions which

could only be found in an artificial environment such as a laboratory. Figure 4.5d also

describes laboratory type conditions where the lamps providing the light are switched off

and on periodically; this function may also be used with a much shorter period to represent

a strobe effect. The final two light intensity functions, the SIN function, figure 4.5b, and

the Gaussian function, figure 4.5c, both display behaviour similar to that of the day/night

cycle of sunlight showing a smooth transition from light to dark. However it should be

noted that, although the light intensity of daylight is significantly higher than the values

shown here and when implemented with a more realistic daylight intensity the effect of

photoinhibition is more readily apparent (Figure 4.7).

Figure 4.6 shows mean values of the three photosynthetic states for the different light

functions as fractions of the total biomass, this gives a more obvious visual description of

the living conditions of the biomass in relation to available light. The obvious conclusions

which can be drawn from the chart are that the constant intensity function produces the

highest ratio of active-inactive biomass with nearly 2/3 in the active state (x2). The

SIN function produces the next highest active-inactive ratio with the Gaussian and step

functions having active-inactive ratios less than half that of the constant intensity. This

shows that although the average light intensities are the same it is just as important
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to reduce the range over which the light intensity varies and the time spent under light

intensities which may inhibit the photosynthesis process greatly. This is shown by the fact

that both the Gaussian and step functions spend the majority of the cycle at values much

greater and less than the average.

Constant SIN Function Gaussian Function Step Pulse
0
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0.3
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0.8
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Figure 4.6: The the average ratios for the different photosynthetic states under the different light
intensity functions

Figure 4.7 is a comparison between the photosynthetic states of biomass for two different

Gaussian functions. Figure 4.7b shows the result for a Gaussian function with an average

light intensity of 500µmolm−2s−1 and a maximum value of 2000µmolm−2s−1 which is

typically regarded as maximum bright direct sunlight, this is compared with the results for

the Gaussian function with an average value of 266µmolm−2s−1. The result of increasing

the light intensity effects the photosynthetic states increasing the time the biomass spends

inhibited (x3)particularly at peak light intensity which in turn slightly increases the time

the biomass is dormant or in the resting state (x1). Additionally, and in correspondence

with the increase in time spent in the resting and inhibited states, the fraction of biomass

which is active at peak light intensity (i.e. midday) has decreased. These results are as

expected when considering the typical light response curve of phytoplankton (figure 2.3).
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Figure 4.7: A comparison between the photosynthetic states for Gaussian light functions
with average values of 266µmolm−2s−1 and 500µmolm−2s−1 representing sunlight
(maximum value of 2000µmolm−2s−1 representing sunlight intensity at midday.)
along with a plot of diurnal light intensity and a bar chart of average biomass state

4.2.2 The relationship between light intensity and activated biomass in

the photosynthetic factory model

It is important to understand how the amount of light received by the algae affects

its ability to photosynthesise. It is well known that the photosynthetic response of

photoautotrophs follows a curve with a peak photosynthetic rate preceded by a steep

incline and followed by a shallower decline as shown in figures 2.3 and 4.8. For a

photosynthesis model to include inhibition it must be able to produce results of this

nature.

In order to determine how the PSF model responds under different light intensities in terms

of the fraction of activated biomass, a comparison between x2 (the activated portion of

biomass) and a range of light intensities was produced. This comparison includes results

for three different light intensity functions all with the same average value for each of

the light intensities. Figure 4.8 shows how the mean light intensity affects the amount of

biomass in the active state when using the PSF model. Figure 4.8 shows that as expected
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Figure 4.8: Comparison of light intensity functions (constant, SIN function, Gaussian function
and a step function) for activated biomass vs. average light intensity ranging from
0 to 2000µMol.m−2s−1 (Peak direct sunlight). Figure shows the mean activated
biomass fraction per day vs the mean light intensity

the constant light intensity function produces the highest mean biomass fraction when

compared to the other light functions. The general trend shows that the functions which

have a greater proportion of time spent at very low and very high light intensities where

inhibition of the cells and lack of light reduce photosynthesis significantly (Table 4.5). An

interesting point to note, which to the best of the authors knowledge has not been shown

before, is that the peak average x2 value varies for the different functions indicating that it

is important to aware of both the range of light intensities the algal will be subjected to as

well as the average value. Additionally the time spent at the at different light intensities

will also have a role in determining the average light intensity at which the peak activated

state occurs.

I µMol.m−2s−1

Constant 252
SIN 267

Gaussian 218
Step Function 128

Table 4.5: Light intensity at peak x2 for four different functions (See figure 4.8)
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4.3 Coupling the photosynthetic factory and cell quota

models

On their own both the cell quota (section 3.5.2) and PSF models are limited in their

application to where the effects of only a single controlling parameter are considered (e.g.

only light limited growth with infinite soluble nutrients). In order for light dependent

limitation to be included in a nutrient model, some way of coupling the light dependent

and cell quota models is needed.

Here, a method of coupling the photosynthetic factory model with the multi-nutrient cell

quota model described in section 3.5.3 is proposed. The coupling method proposed for

this photosynthesis-nutrient (PN) model is to use the output of equation 4.22 from the

PSF model as an additional variable (x2) in equations 3.26 - 3.28; by replacing µ∞ with

a proposed new variable µI(x2) (equation 4.24), which is a function of x2, the modified

biomass growth and cell nutrient quota equations 4.25 - 4.27 are obtained. The variable

µl takes the value 2.5084E-5s−1 in equation 4.24.

µI = x2µl (4.24)

dQN
dt

= Vmax,NSN
SN +KN

− µImin
(

1− Qmin,N
QN

, 1− Qmin,P
QP

)
QN (4.25)

dQP
dt

= Vmax,PSP
SP +KP

− µImin
(

1− Qmin,N
QN

, 1− Qmin,P
QP

)
QP (4.26)

dX

dt
= µImin

(
1− Qmin,N

QN
, 1− Qmin,P

QP

)
X −mX (4.27)

The addition of x2 to the cell quota model works by effectively scaling the growth rate

at infinite quota (µ∞) by the amount of photosynthetically active biomass as determined

by the PSF model. As the work of Klausmeier et al. (2004) was based on experimental
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data collected by Rhee (1978) it is possible to determine a corrected value for µ∞ when

under light limitation. Rhee (1978) stated that a "Continuous illumination of about 0.082

lymin−1 was provided by white fluorescent lamps" for the experimental work. This value

can be converted using the formula and data tables in Thimijan and Heins (1983), resulting

in a light intensity value of 266µMol.m−2.s−1. At this constant light intensity value the

PSF model produces a constant x2 value of 0.6231. This allows the value of µl to replace

µ∞ when the light intensity is included.

4.3.1 Cell quota model with nutrient uptake limitation

As with the multiplicative model described in section 4.1 the inclusion of light limited

growth in the cell quota model necessitates the inclusion of an uptake limiting function

to prevent infinite uptake of nutrient under low light conditions. To limit the nutrient

uptake, a function which which tapers off as the cell quota reaches a maximum value is

added to the equations for calculating soluble Nitrogen and Phosphorus and the Nitrogen

and Phosphorus cell quotas. The inclusion of the function described by Lehman et al.

(1975) in equation 4.13 results in the following equations for soluble substrate and cell

quotas (equations 4.28 - 4.31), where the limiting part of the function is highlighted in

red.

dSN
dt

= a (Sin,N − SN )−
(

1− QN
Qmax,N

)
Vmax,NSN
SN +KN

X (4.28)

dSP
dt

= a (Sin,P − SP )−
(

1− QP
Qmax,P

)
Vmax,PSP
SP +KP

X (4.29)

dQN
dt

=
(

1− QN
Qmax,N

)
Vmax,NSN
SN +KN

− µImin
(

1− Qmin,N
QN

, 1− Qmin,P
QP

)
QN (4.30)

dQP
dt

=
(

1− QP
Qmax,P

)
Vmax,PSP
SP +KP

− µImin
(

1− Qmin,N
QN

, 1− Qmin,P
QP

)
QP (4.31)

Several papers describe a maximum cell quota as a ratio of the minimum quota. Lehman

et al. (1975) describes a ratio of maximum:minimum of 8:1 for the Nitrogen max cell quota
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and 16:1 for the Phosphorus cell quota, these values are collated from a number of sources

from different sets of experimental data and for different species of algae. Bernard (2011)

used a ratio of 10:1 for the maximum:minimum ratio for the Nitrogen cell quota but did

not model Phosphorus uptake. For the work done here ratios of 8:1 for Nitrogen and 16:1

for Phosphorus were used with the resulting values quoted in table 4.6.

Parameter Symbol Value µMol.m−3

Max Nitrogen cell quota Qmax,N 3.632e-13
Max Nitrogen cell quota Qmax,P 2.624e-14

Table 4.6: Maximum cell quota values for Nitrogen and Phosphorus

To determine the effect the use of this quota limit has on the growth of algae under light

limiting conditions a comparison between the model both with and without the limit was

performed. The Gaussian function was used to describe the light intensity as, of the

functions described in section 4.2.1, it is the one which most closely describes lighting

conditions under which phytoplankton might be grown (i.e. the natural night/day cycle)

whilst still having significant periods of both low and high light intensity with a gradual

change between the extremes. Figure 4.9 illustrates the difference in soluble nutrient

concentration between the two models; these results show that with the quota limit, the

nutrient concentration has a slower decline than when modelled without the limit as would

be expected with the inclusion of periods of no growth in low light where the cell quota

maximum could be reached. This result is confirmed by the results in figures 4.9a and 4.9b,

which show that the cell quota limit function imposes a hard maximum on the nutrients

within the algal cells which is surpassed when modelled without the limiting function. The

effect this cell quota limit has on the growth of the biomass itself can be seen in figure

4.10c where the result of including the quota limit is an increase in the time taken to reach

the steady-state solution. This is understandable given that the available cell nutrients

for growth is limited at any given time but globally soluble nutrients remain the same in

the system; this result in a delay in growth but has no effect on the maximum biomass

concentration achievable.
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Figure 4.9: Soluble nutrient concentration under cell quota limited nutrient uptake
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Figure 4.10: Cell quota nutrient concentration and biomass for model with and without quota
limited uptake
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4.3.2 Validation of PN coupled model using results from literature

The coupled model was compared with the work of Rhee (1978) as shown in figure

4.11 along with the results from a simulation using a much smaller value of constant

light intensity to show the effect on the growth of algal cells. The graph shows a

set of experimental results obtained under constant light conditions at an intensity of

266µMol.m−2.s−1. Each point on the graph represents the final values of biomass under

different ratios of Nitrogen to Phosphorus. Two sets of simulation results are shown, one

at 266µMol.m−2.s−1 and a second at a much lower light intensity of 60µMol.m−2.s−1.

The results of the simulations performed at a light intensity of 266µMol.m−2.s−1 compare

favourably to the experimental results. The plot shows how the change in the light intensity

effects the maximum amount of biomass obtained with the lower light intensity producing

significantly less biomass. If 266µMol.m−2.s−1 is considered to be the intensity at peak

algal growth the maximum cell number at 60µMol.m−2.s−1 is as expected less than two

thirds that of the higher intensity value. A similar but shallower fall off in the peak cell

number would be expected for light intensities higher than 266µMol.m−2.s−1 in line with

effect on the activated state at different light intensities shown in figure 4.8.
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compared to experimental work done by Rhee (1978)
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4.3.3 Effects of varying the light intensity function on biomass

growth

Figure 4.12 is a comparison between the different light intensity functions. Figure 4.12a

shows the changes in activated photosynthetic state x2 over a period of one day for the

four different models studied above. This shows that although the maximum values of x2

for the functions are similar, both the time spent at that maximum value and the mean

values vary more greatly. Figure 4.12b shows the growth of the biomass over a period of

forty days using equation 4.27. This plot shows that the growth rate is highly dependent

on the average light intensity. The four functions used show growth which correlates with

the results for the activated state for the different light intensity functions as shown in

figure 4.6 with the greatest biomass growth occurring with the constant light intensity

function due to the greatest value of activated biomass.

As can be seen in figures 4.12b, 4.13c and 4.13d there is a periodic fluctuation in the

biomass growth over each day, this corresponds to the periodic behaviour of the light

intensity function used. The plateaus in the gradients of the growth curve correspond to

the times when the biomass in the activated state is at a minimum (Figure 4.12a), this

occurs shortly after the light intensity function is at a minimum indicating a delay in

changes of state.
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Figure 4.12: Growth comparison between different light intensity functions
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Figure 4.13: Growth comparison between different light intensity functions, showing plots for
soluble nutrients nitrogen and phosphorus as well as their respective cell quotas.
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4.3.4 Effects on biomass growth of a light intensity function and the

average of the function

In order to determine the effect of variable light intensity on the PSF a comparison between

a light intensity function and the average of that function. The reason being to determine

whether the use of a complex function for light intensity is necessary or whether the use

of the average of the function is sufficient to determine the effect of light on the biomass

growth and thus provide a reduction in the computational cost of any simulations. To

this end, a comparison of the biomass growth results for the function and its average is

shown in figure 4.15. The Gaussian function and its average were modelled to show how

the results from the average light intensity compares to the results produced by the full

light intensity function.

As can be seen in figure 4.14, the difference in amount of activated biomass between the

Gaussian function and the average of that function is significant, although the peak values

are similar the average value over time is noticeably greater with the function average.

The effect this disparity in the activated biomass fraction has on the biomass growth is

clearly illustrated in figure 4.15 where the difference in the solutions over a period of forty

days is plotted.

The immediately obvious difference is in the time taken to reach the maximum value of

biomass at the end of the simulation where the Gaussian function problem takes more

than twice the time of the average of the function. As expected from the results shown in

figure 4.12b the growth with a constant value of light intensity has a smooth slope with

no obvious short term variation, conversely, the solution with light intensity based on a

Gaussian function shows an obvious stepping period in biomass growth when compared

to the function average.
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Figure 4.14: Comparison between the photosynthetic states of biomass for a Gaussian light
intensity function and the average intensity of the function.
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4.4 Summary and conclusions

The work in this chapter describes the implementation of two of the different methods

of modelling photosynthesis in algae, some of the characteristics and behaviours of these

models and methods by which they can be coupled to the soluble nutrient dependent

growth models described in chapter 3. The two different modelling methodologies

implemented in this chapter were a multiplicative approach, which describes the various

mechanisms controlling photosynthesis dependent growth as terms in the overall growth

rate function, and the photosynthetic factories method, in which the biomass can be in

one of three states with the transition between them controlled through a set of coupled

ODEs.

The multiplicative model described was implemented and compared to experimental data

obtained from literature and shown to produce good results for biomass concentration and

cell nutrient content. Some differences were noted in the results for cell chlorophyll content

where higher than expected peak values indicate the model is compensating elsewhere for

calculating biomass growth or that the cell chlorophyll content is not a significant factor

influencing biomass growth. The model also does not account for mixing and would require

some changes to the growth rate functions to be usable with bioreactors including complex

mixing or bioreactor geometries.

The second photosynthesis model implemented was the photosynthetic factories model.

This model includes several of the same processes as the multiplicative model in a different

manner. The effect of different light intensity values and functions on the photosynthetic

state of the biomass was investigated and showed that large variation in the light intensity

has a detrimental effect on the amount of active biomass. It ws also shown that the

variation in light intensity has an impact on the average light intensity at which maximum

average active biomass is obtained with lower variation in light intensity range producing

both hight peak average active biomass and a higher average light intensity at which this

occurs.

Finally a method was proposed to couple the photosynthetic factory model with a multi-

nutrient cell quota model. This coupling necessitated the inclusion of a function in the



CHAPTER 4. PHOTOSYNTHESIS MODELLING 77

soluble nutrient and cell nutrient quota equations to limit the uptake of nutrients under

limited light conditions. This was to represent cell activity when no light for growth is

available and only nutrient uptake occurs, without the function cells would continue to

absorb nutrient beyond their actual capacity to do so. This model was then run under the

different lighting conditions to determine the effect these had on the biomass growth rate.

The results showed that although the maximum biomass concentration did not vary based

on the light function the time taken to achieve that maximum did. The results for the

model were validated against experimental data from literature showing good correlation

with the experimental work.

The results described in this chapter show that the inclusion of photosynthetic processes

in models of algal biomass growth is important. This is especially the case where large

variations in the light intensity occur either in the bioreactor itself or as a product of time

variations (e.g. day/night cycle).
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Nomenclature

Symbols
ε Turbulent dissipation rate
λ Second coefficient of viscosity
∇ Gradient opperator
νG Superficial gas velocity
ω Turbulent specific frequency
ρ Fluid density
ρb Density of bubbles
σ Fluid stress tensor
F Body force vector
U Velocity vector
CD Drag coefficient
Di
D Draft tube inner diameter

Do
D Draft tube outer diameter

DT Tank diameter
mu Coefficient of fluid viscosity
Re Reynolds number
Y + A non-dimensional wall distance for wall bounded flow
H Distance from tank base to bottom of draft tube
L Draft tube length

Abbreviations
CARPT Computer automated radioactive particle tracking
CFD Computational fluid dynamics
CT Computed tomography
GCI Grid convergence index
MUSCL Monotonic upstream-centered scheme for conservation laws
RANS Reynolds averaged Navier Stokes
RSM Reynolds stress model
SST Shear stress transport
VSM Viscous sublayer model
PN Photosynthesis nutrient

5.1 Introduction

Mixing is an important factor when considering design and operation of bioreactors.

The effects of poor mixing can range from inefficiencies to operational instability in the

bioreactor resulting in short circuiting and forced shutdown.

As discussed in chapter 2, modelling of bioreactors has mainly focused on the biokinetic

growth of biomass within the reactor, using the assumption that biomass concentrations

are homogeneously distributed throughout the bioreactor at all times. Some mixing studies
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have been undertaken but rarely in conjunction with biokinetics; this is particularly the

case when considering algae. As such, the inclusion of mixing in models designed to

accurately predict the growth of biomass in bioreactors is of considerable interest. In

this chapter detail on computational fluid dynamics as a method of modelling bioreactor

mixing is given along with details of a number of simulations which were performed of

mixing in a typical bioreactor. These simulations aim to give insight into some of the

considerations required when modelling mixing of complex flows in bioreactors, including

turbulence model selection and overall modelling approach.

5.2 Computational fluid dynamics modelling

Computational fluid dynamics (CFD) is the broad term used to describe the discrete

numerical modelling methods used in fluid mechanics to predict the dynamics of fluid

flow under a wide variety of conditions. It has found use in a wide variety of fields from

aerodynamics and river modelling (Bernardini et al., 2015; Fischer-Antze et al., 2008) to

aerosol transport and blood flow(King et al., 2013; Doost et al., 2015). CFD is concerned

with the solving of the partial differential equations used to describe various different

aspects of fluid dynamics, from conservation of mass and momentum, to scalar transport

and heat transfer. Due to the complexity and non-linearity of the equations involved, the

solving of these equations is not a trivial matter. To be able to apply these equations to all

but the simplest of problems requires the use of discretisation methods, such as the finite

volume and finite difference approximations (Ferziger and Perić, 2002; S. V. Patankar,

1980).

5.2.1 The Navier-Stokes equations

The system of equations governing the flow of viscous fluids are the well known Navier-

Stokes equations which can be solved to find a velocity field for the fluid. The equations

are the culmination of work by a number of people who discovered the equations in various

different forms from various physical hypotheses. This work by Navier, Poisson, Saint-

Venant and Stokes was summarised by Stokes (1847) who also presented a derivation of

the equations (Drazin and Riley, 2006). The equations for conservation of momentum and
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mass of a Newtonian fluid are described below in vector form where equation 5.1 is the

result of Stokes (1847) work.

ρ
DU
Dt

= ρF +∇.σ (5.1)

where ρ(x, t) is the fluid density as a function of the position vector (x) and time (t),

U(x, t) the velocity vector, F(x, t) the body-force vector per unit mass and σ the stress

tensor of the fluid. Applying the material derivative as defined in equation 5.2 to equation

5.1 results in temporal and convective terms of the momentum equation 5.2.

D

Dt
≡ ∂

∂t
+ U.∇ (5.2)

The stress tensor, σ, for a Newtonian fluid is a linear function of the rate of strain and

can be expanded out into the components shown in equation 5.3 where λ is the second

coefficient of viscosity and µ the coefficient of viscosity of the fluid. These values may

vary in time in non-Newtonian or other variable fluid conditions, it is common however to

assume they are constant in both space and time for most fluids and systems.

σij = −pδij + λ
∂Uk
∂xk

δij + µ

(
∂Ui
∂xj

+ ∂Uj
∂xi

)
(5.3)

Additionally an equation for the conservation of mass is required, the equation of continuity

(equation 5.4) describes the idea that a material volume must contain a proportionally

constant amount of fluid at all times.

1
ρ

Dρ

Dt
+∇.U = 0 (5.4)
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Equation 5.4 under constant density in incompressible flow simplifies to 5.6 this also

implies that the stress is independent of λ, the volume viscosity, and can be ignored

for incompressible fluids. The final result of the above equations when substituted

into one another where appropriate are the Navier-Stokes equations (equation 5.5) for

incompressible Newtonian fluid flow and the mass continuity equation 5.6.

ρ

(
∂U
∂t

+ U · ∇U
)

= −∇p+ µ∇2U + f (5.5)

∇.U = 0 (5.6)

These equations contain highly non-linear convective terms which make solving them

impossible by analytical means for the majority of flows. CFD focuses on the solving

of the continuity and momentum equations through various numerical techniques such as

finite element and finite volume methods, in which the equations are discretised over

a large number of small cells connected over the whole flow area. With a sufficient

number of cells these equations can be used to obtain flow scales down to microscopic

turbulent fluctuations, which significantly impact the larger flow features and are thus

important to resolve. This level of simulation is known as Direct Numerical Simulation

(DNS); unfortunately this is prohibitively expensive for all but the simplest of cases

(e.g. low Reynolds number channel flow). As such it is necessary and common to make

some assumptions that simplify the equations. For low speed flows (Mach<0.3), where

compressibility effects can be ignored, the density can be considered constant and the full

continuity and momentum equations simplify for Newtonian fluids to the incompressible

momentum and Navier-Stokes equations (equations 5.5 and 5.6).

Additionally, in order to resolve the effect of turbulence fluctuations at the very small scales

without incurring prohibitive computational expense, time averaging of the equations

can be performed, resulting in the Reynolds Averaged Navier-Stokes (RANS) equations

(Blazek, 2005).
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5.2.2 Reynolds averaged Navier-Stokes (RANS) turbulence models

The RANS equations contain additional Reynolds stress terms which mean the equations

are not fully closed (there are more unknowns than equations), requiring a turbulence

model to provide the additional necessary transport equations (Menter, 2011). These

turbulence models are generally only useful for Reynolds numbers in the turbulent region

(above 4000), below this the flow is either laminar where no turbulence model is required

or transitionally turbulent where turbulence modelling is more complex. There are several

methods that can be used to perform the closure of the equations, such as the Boussinesq

approximation and Prandtl’s mixing length hypothesis. It is the use of the Boussinesq

approximation relating the Reynolds stresses to the mean flow that results in the commonly

used two equation eddy viscosity models such as k-ε and k-ω. These eddy viscosity models

have become the industry standard in solving turbulent flow and, provided the correct

model is chosen for the particular flow being simulated, produce a good compromise

between accuracy and computational expense.

The prediction of flow separation and Laminar-Turbulent transition has for a long time

been difficult to capture using turbulence models as they have a tendency to over or

under predict these points in the majority of situations. The standard k-ε model has been

consistently found unsuitable for use in accurately modelling low-Re turbulent flows or the

separation of turbulent boundary layers effectively; this resulted in attempts to develop

more accurate formulations such as the k-ω SST model (Menter et al., 2003a).

These RANS turbulence models are particularly sensitive when close to walls and the

effect of the approach taken when modelling near these boundaries can be significant.

The no-slip condition used on solid walls creates a boundary layer that has a significant

effect on the flow characteristics close by. Within the boundary layer both molecular

and kinematic forces have an effect on the turbulence production and dissipation. There

are several methods that can be used to take this effect into account; the simplest and

cheapest in terms of computational expense is the use of wall functions. Wall functions

use empirical formulations to model the near wall flow where the k-ε model is known to

fail. They are however only valid for mesh densities where the Y+ - a dimensionless wall
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distance dependent on the distance to and friction velocity at the nearest wall and the

local kinematic viscosity - falls within certain values (between 30 and 300). As such it

is desirable to use a near wall treatment that is independent of the Y+ value. The SST

k-ω model uses a near wall treatment that shifts between a viscous sublayer model (VSM)

at small Y+ values and wall functions at Y+ values where the VSM is invalid (Menter

et al., 2003a). A variation on this blended near wall treatment is also available for epsilon

based two-equation turbulence models in the form of the enhanced wall treatment in

Fluent 13.0sp2. This Y+ independent wall treatment is more attractive in terms of mesh

refinement studies, posing no restrictions on the refinement near walls.

5.2.2.1 Two equation turbulence models

5.2.2.1.1 RNG k − ε model

The RNG k − ε model is an extension of the original k − ε model developed by Jones

and Launder (1972). The k − ε model has been the most widely used of the RANS

turbulence models over the last 40 years. Originally designed to improve the mixing length

model, two additional transport equations for turbulent kinetic energy (k) and turbulent

dissipation rate (ε) are solved. The model has been shown to give reasonably good results

for external aerodynamic flows with small pressure gradients. Similarly, the results for

wall bounded flows with small pressure gradients compare well with experimental results.

The model has however shown to be less well suited to flows with large pressure gradients

(Bardina et al., 1997). The RNG k − ε model was developed by Yakhot et al. (1992)

using re-normalisation group methods in order to account for the effects of smaller scales

of motion. These improvements to the k − ε model improve the accuracy in predicting

secondary turbulent flows as well allowing the model to account for low Reynolds number

effects with the use of appropriate wall treatments.

5.2.2.1.2 k − ω SST model

The original idea behind the k − ω SST (shear stress transport) turbulence model was

to develop a model which was able to accurately predict aeronautical flows with strong
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adverse pressure gradients. Although many turbulence models had had been developed of

the decades previous none had succeeded in producing accurate predictions for such flows.

The idea behind the k − ω SST model was to use the k − ε model which produced good

predictions in the free stream flow away from boundary layers but which failed capture the

behaviour of turbulent boundary layers along with the k − ω model developed by Wilcox

which although giving good results in the boundary layer was unable to predict pressure

induced boundary layer separation, additionally, the model suffered from high sensitivity

of ω in the freestream. Using a zonal approach which used the k−ω formulation near walls

in the boundary layer and the k − ε model reformulated in terms of ω in the freestream

allowed for the model to provide accurate predictions for pressure-induced boundary layer

separation as well as in the freestream flow (Menter et al., 2003b).

5.2.3 Euler-Lagrange multiphase modelling

Euler-Lagrange multiphase modelling assumes one fluid phase to be dominant (by volume),

usually consisting of more than 90% of the domain, which is treated as a continuum,

modelled in the Eulerian reference frame and solved using the Navier-Stokes equations.

Additional dispersed phases (e.g. sand particles, bubbles, etc.) are modelled as particle

packets. These dispersed particles are modelled by integrating the force balance on the

particles in the Lagrangian reference frame (Brebbia and Mammol, 2011). Equation 5.7

is the force balance equation for the Cartesian X coordinate, where the drag force (FD)

is described by equation 5.8.

dub
dt

= FD

(
u− ub) + gx (ρb − ρ)

ρb

)
+ Fvm + Fp (5.7)

FD = 18µ
ρbd

2
b

CDRe

24 (5.8)

The last two terms in equation 5.7, Fvm and Fp, are additional force terms specific to

bubble driven flow. Equation 5.9 is a virtual mass force which accelerates the fluid

surrounding the particles, applicable where ρ >> ρb equation 5.10 is included to account

for the effect of pressure gradients.
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Fvm = 1
2
ρ

ρb

d

dt
(u− ub) (5.9)

Fp =
(
ρ

ρb

)
ubi

∂u

∂xi
(5.10)

5.3 CFD modelling of a gas-lift bioreactor, assessing

turbulence model selection and flow control

Mixing the fluid within a bioreactor to create a homogeneous solution can be performed in

a number of different ways, including mechanical impellers, recirculation pumps, bubble

induced mixing as well as combinations of these methods as described in detail in section

2.2.3. Although all these methods have advantages in disadvantages in themselves they also

incur differing numerical cost when attempting to perform CFD analysis of a bioreactor.

A number of approximations and simplifications have been developed which are of use

in these situations but they themselves incur costs in terms of accuracy and must be

properly validated to be used appropriately (Aubin et al., 2004). In order to develop a

coupled model which includes both biokinetic and CFD mixing a suitable bioreactor model

is required. One of the commonly used methods of mixing in bioreactors (and introducing

oxygen in the case of aerobic reactions) is the use of gas (e.g. air, nitrogen, etc.) injected

at some point near the bottom of the bioreactor. Additionally, the use of draft tubes to

create a recirculating flow within the bioreactor and improve mixing of biomass vertically

is sometimes seen (Luo and Al-Dahhan, 2011; Kojima et al., 1999; Karim et al., 2004;

Meroney and Sheker, 2014). An example of a bubble mixed bioreactor is described here

and further investigated under a number of different modelling conditions to determine

the sensitivity of the model and show the importance of careful consideration when setting

up the model.

Karim et al. (2007) performed CFD analysis on a bench-scale gas-lift anaerobic bioreactor

with a central draft-tube (figure 5.1a), this modelling work was an extension of previous

work by the authors ((Karim et al., 2004)) investigating the mixing within the bioreactor
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using experimental methods. Both velocity profiles and velocity vectors for the bioreactor

were obtained using a combination of computer automated radioactive particle tracking

(CARPT) and computed tomography (CT). The geometry (figure 5.1a) and layout of the

computational domain (figure 5.1b) for this gas-lift bioreactor consist of a small cylindrical

glass tank with a draft tube suspended within the fluid below the surface and not touching

the base. The gas was pumped through a tube which extended from the top of the tank

to the bottom edge of the draft tube with the gas being pumped in at several different

flow rates. Karim et al. (2007) made the assumption that the gas holdup (amount of

gas) in the annular section of the bioreactor was negligible allowing them to reduce their

model to a singlephase approximation of the experimental bioreactor. This simplification

although reducing the complexity and computational expense of the model wouldn’t take

into account any of the more localised effects of the bubbles, particularly, directly above

and below the draft tube where any effects would be most prominent.

The assumption reducing the model to a single-phase problem with the gas phase neglected

requires a method to approximate the velocity induced by the rising bubbles within the

draft tube, to this end an inlet boundary condition was assumed at the top of the draft

tube with the corresponding outlet condition at the bottom of the draft tube. In order

to apply an appropriate inlet boundary condition which would imitate the velocity at the

top of the draft tube in the real bioreactor Karim et al. (2007) used a simplified version

of and equation (equation 5.11) developed by Kojima et al. (1999) for flow velocity at the

top of a draft tube. The resulting formula modified by Karim et al. (2007) to equation

5.12, where νG is the superficial gas velocity, DT is the tank diameter, Di
D the tube inner

diameter, Do
D the tube outer diameter, L the draft tube length and H the distance from

the draft tube bottom to the bioreactor base. Using equation 5.12 a constant value of

velocity at the top of the draft tube was calculated based on the experimental gas flow

rate was obtained.
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U = 0.401

νG
(
DT

Di
D

)2
0.564 [

D2
T −Do2

D

Di2
D

]−0.182

L0.283H0.0688 (5.11)

U = 0.401

νG
(
DT

Di
D

)2
0.564 [

D2
T −Do2

D

Di2
D

]−0.182

(5.12)

Additionally, as the bioreactor is cylindrical in shape and assuming the gas flowed out of

the inlet tube in all radial directions the model can be further reduced to an axisymmetric

problem decreasing the number of degrees of freedom being modelled, allowing for a much

smaller mesh (lower cell count) and lowering the computational cost. As the bioreactor is

being modelled as a singlephase system the freesurface of the liquid becomes a boundary

condition rather than being considered as an interface between liquid and gas. The most

appropriate boundary approximation in this case is a zero shear boundary (as opposed to

the standard no-slip boundary used at walls) allowing for free flow of the fluid along the

boundary. All other walls have a no slip boundary applied as is standard for approximating

the effects fluids on smooth walls. The inlet at the top of the draft tube has a constant

velocity inlet using the values calculated from equation 5.12 and the outlet is a zero

pressure outlet.

A calculation of the Reynolds number of the bioreactor under conditions described by

Karim et al. (2004) of νG = 56.64l.h−1 produces a value in the transitional turbulent region

making the use of a turbulence model advisable. The addition of flow separation shown

in the experimental work makes the choice of turbulence model an important question

and one that will be analysed in some depth here. The specific solver settings used for

the modelling are described in table 5.1, any additional settings or changes to settings for

specific simulations are described in the appropriate sections.

The remainder of this chapter is dedicated to describing the CFD simulations performed

assessing the different approaches to modelling the gas-lift bioreactor described above.

Mesh independence testing, CFD solver comparison, turbulence model selection and

singelphase vs. multiphase approximations are all discussed in detail. All modelling

shown here, unless otherwise stated, was performed using the ANSYS Fluent 13.0sp2
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Solver Setting (Fluent)

Solver Coupled
Turbulence model k − ω SST
Wall treatment Blended VSM

Boundary conditions
Inlet Velocity normal inlet 0.09804 m.s−1

Outlet 0 Pa gauge pressure
Walls No slip
Surface Zero shear

Discretisation Schemes
Gradient Scheme Least squares cell based
Pressure Second order
Momentum Third order MUSCL
Turbulent kinetic energy (k) Third order MUSCL
Specific dissipation rate (ω) Third order MUSCL

Table 5.1: Solver settings for CFD simulations performed here. Any changes to these setting are
described where appropriate.

CFD package.
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(a) Bench scale bioreactor geometry (adapted from
(Karim et al., 2004)).

(b) Computational geometry for singlephase model and experimental results of Karim
et al. (2004).

Figure 5.1: Gas-lift bioreactor geometry and experimental results as used by Karim et al. (2004)
and 2-D computational geometry for CFD analysis.
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5.3.1 Mesh independence testing of CFD simulations

Mesh independence testing is an important part of all CFD modelling, it allows for the

determination of the accuracy of the solution in terms of the numerical errors produced

by the mesh discretisation and the numerical order of the equation discretisation schemes.

Described here are the mesh independence test results for the bioreactor using the settings

described in table 5.1. Figure 5.3 shows the mesh independence of the solutions where ′m′

and ′n′ are the horizontal and vertical cell counts as described in table 5.2. Also included

in table 5.2 are the average Y + values for the mesh with the k−ω SST turbulence model.

Four different mesh densities were used, scaling based on the ′m′ and ′n′ values.

Mesh number m n No. of elements Average Y +

N4 80 160 4450 2.07
N3 160 320 17800 1.07
N2 320 640 71200 0.55
N1 480 960 160200 0.37

Table 5.2: Mesh independence densities and Y + values

When using the k−ω turbulence models a Y + ≈ 1 is desirable to keep the node of the first

element as close to the wall as possible; this keeps the node within the laminar layer and

thus allows the solution to be integrated to the wall. Figure 5.2 shows the velocity contour

with velocity vectors for the mesh independence solution for a mesh of 71200 elements.

The figure shows the boundary layer separation at the outer wall an reattachment on

the draft tube, points which are also shown in figure 5.4 where their significance is more

apparent.

To determine whether the velocity fields calculated in the simulations are independent

of the mesh density a method known as the grid convergence index (GCI) is used

(Celik et al., 2008). The GCI reports the discretisation error and apparent order p of

a numerical solution method. The apparent order p of the solution method was calculated

as 2.304. Three GCI values were determined for the four meshes, GCI21
fine = 0.19%,

GCI32
medium = 0.49%, and GCI43

coarse = 0.83%. The small value of GCI shown for the

160200, 71200 and 17800 element meshes indicates that mesh independence is achieved

with the 17800 element mesh. Figure 5.3 shows axial velocity profiles at locations just
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Figure 5.2: Velocity contour and vector for mesh independence testing

above the inlet (figure 5.3a) and just below the outlet (figure 5.3b) (in a similar way to

Karim et al. (2007).

These plots show agreement with the GCI indicating that the solution may be deemed

mesh independent for the 17800 element mesh. However, the point where the solution

separates from the outer wall and reattaches at the draft tube wall, as shown in the plots

of figure 5.4a and 5.4b, that the solution is more sensitive at the wall and independence

can only be reasonably assumed with a mesh of 71200 elements. This increase in mesh

density also has the advantageous effect of reducing the average Y + value to less than 1, a

preferable value for maintaining accuracy near the wall. As it is not possible in this case to

obtain a Y + value of 30 (without significantly compromising mesh independence) as would

be recommended when using wall functions, it is more appropriate to aim for unity where

the VSM is most applicable. This may not however be the case in a full scale bioreactor

where Re numbers can be significantly higher and computations on a mesh fine enough to
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(a) Velocity profiles at 0.1875m above the base of the bioreactor for different mesh
densities

(b) Velocity profiles at 0.0325m above the base of the bioreactor for different mesh
densities

Figure 5.3: Velocity profiles for mesh independence testing where the different mesh densities
displayed in the plot are defined in table 5.2

achieve a Y + ≈ 1 are expensive. Taking all these factors into account it was decided that

the 71200 cell mesh was most suitable for use in all subsequent calculations.
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(a) Separation point

(b) Reattachment point

Figure 5.4: Separation and reattachment points for mesh independence testing

5.3.2 RANS turbulence model assessment

When modelling turbulent flow, in particular flow with boundary layer separation, it is

important to choose the most appropriate turbulence model for the problem at hand. To

determine the most appropriate turbulence model for flow in the the bench-scale gas-lift

bioreactor, an assessment of some common turbulence models and their capabilities in

resolving the flow field was performed. As was previously stated in section the fact that

flow separation is an important factor in the mixing within this bioreactor it is essential to

choose a turbulence model which accurately predicts the points at which flow separation
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occurs. For this reason the turbulence models assessed here were chosen because of their

ability to capture such flow features. The turbulence models which fit the requisite criteria

are listed in table 5.3 along with the most appropriate wall treatment for the mesh used

here (as described in section 5.3.1).

Turbulence model Wall treatment

RNG k − ε Enhanced wall treatment
k − ω SST Omega blended wall treatment
Linear RSM Enhanced wall treatment
SST Transition Omega blended wall treatment

Table 5.3: Turbulence models and their respective wall treatments

Using the same geometry and model setup as for the mesh independence test, velocity

vector and contour plots for each of the chosen turbulence models are shown in 5.5.

Additionally the axial velocity profiles for locations 0.1875m and 0.0325m above the

bioreactor base are shown (figure 5.6) along with the plots of flow separation and

reattachment points (figure 5.7). Experimental results collected by Karim et al. (2004)

are also shown on the velocity profile, separation and reattachment plots as a validation

of the effectiveness of each turbulence model. As can be seen in the contour plots each

of the turbulence models gives significantly different results to its fellows, this further

illustrates the importance of choosing the correct one and not just relying on industry

standards.

As can be seen in figure 5.6a when comparing the results of the different turbulence models

to the experimental results of Karim et al. (2004) the model predict the velocity profile

quite well with the Transition-SST model being the most consistent over the width of the

bioreactor. The turbulence model with the least accurate result when considering flow on

this profile is the RNG k − ε model. The results for the velocity profile near the outlet

(0.0325m from bioreactor base) in figure 5.6b are less accurate when compared to the

experimental results were all the turbulence models over predict the velocity at the base

of the draft tube. This is most likely due to the lack of any downward velocity provided

by the inflow of gas into the bioreactor.

Figure 5.7a shows the separation point of the boundary layer on the outer wall of the
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bioreactor, this plot show that the RNG k− ε over predicts the location of the separation

point while the k−ω SST under predicts it (a known problem with this model). Both the

Transition SST and Linear RSM model do a good job of predicting the separation point

accurately when compared to the experimental results. The obvious differences in the

separation point locations can also be clearly seen in 5.5. The results for the reattachment

point (figure 5.7b) mimic those of the separation point with the Transition SST and Linear

RSM both performing well.

The results of the turbulence model comparison shown here indicates that the best choice

of turbulence model for this bioractor is the Transition SST model which provides accurate

results for the velocity profiles and in terms of the predicting the stagnation zones in the

bioreactor.
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(a) RNG k − ε (b) k − ω SST

(c) RSM (d) k − ω SST Transition

Figure 5.5: Velocity contour and vector plots for different turbulence models for flow in a bench-
scale bioreactor.
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(a) Axial velocity profiles at 0.1875m from bioreactor base

(b) Axial velocity profiles at 0.0325m from bioreactor base

Figure 5.6: Axial velocity profiles at 0.1875m and 0.0325m from base of bioreactor for different
turbulence models compared with experimental results obtained by Karim et al.
(2004)
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(a) Separation points

(b) Reattachment points

Figure 5.7: Axial velocity profile plots for the separation point at the outer wall of the bioreactor
and the reattachment point on the drafttube wall for the different turbulence models
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5.3.3 CFD solver comparison (ANSYS Fluent vs. OpenFOAM)

In order to be assured the results being obtained were solver independent a comparison

between results from Fluent 13.0sp2 and OpenFOAM 3.0.0 was made. Table 5.4 shows

the settings used in both the solvers including boundary conditions and discretization

schemes.

Setting Fluent OpenFOAM

Solver Coupled Simple
Turbulence model k − ω SST k − ω SST
Wall treatment Blended VSM Blended VSM

Boundary conditions
Inlet Velocity normal inlet

0.09804 m.s−1
Velocity normal inlet
0.09804 m.s−1

Outlet 0 Pa gauge pressure 0 Pa fixed value
Walls No slip No slip
Surface Zero shear Zero shear

Discretisation Schemes
Gradient Scheme Least squares cell based Least squares
Pressure Second order Least squares
Momentum Third order MUSCL ∇:Gauss MUSCL,

∇2:Gauss linear corrected

Turbulent kinetic energy (k) Third order MUSCL ∇:Gauss MUSCL,
∇2:Gauss linear corrected

Specific dissipation rate (ω) Third order MUSCL ∇:Gauss MUSCL,
∇2:Gauss linear corrected

Table 5.4: Fluent and OpenFOAM settings comparison

OpenFOAM is an open source CFD code and like Fluent it is Finite Volume based. It

would be expected that both solvers should produce very similar results when using the

same (in principal) settings. The k-ω SST turbulence model was used as its application

and the near wall treatment available in OpenFOAM is produced from the work of Menter

and Esch (2001) as in Fluent. The availability of the VSM for near wall treatment when

using the k-ω SST in OpenFOAM allows the solver settings to be kept as similar as

possible to those used in Fluent. Figure 5.8 shows contours of velocity magnitude for the

two solvers, as can be seen there is qualitatively little difference in the solutions in regards

to the general flow field. However, the velocity profiles shown in Figure 5.9 do highlight

some very minor differences. The profiles at 0.1875m show little difference, whereas the
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solution at 0.0325m shows a slight divergence between the results below the outlet. This is

likely due to the formulation of the pressure out- let boundary condition being different in

the two solvers. This strong agreement of the two solvers confirms that the study results

are solver independent.

(a) Fluent velocity magnitude
contour plot

(b) OpenFOAM velocity
magnitude contour plot

Figure 5.8: Comparison between Fluent and OpenFOAM velocity contours
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(a) Inlet profile

(b) Outlet profile

Figure 5.9: Comparison between Fluent and OpenFOAM velocity profiles

5.3.4 A comparison of different approaches for modelling the velocity

induced by bubble flow in the bioreactor draft tube

Here a comparison between three different methods of approximating the effect of the rising

bubbles which are used to drive the flow inside the bioreactor are described and evaluated.

The solver settings for the modelling described in this section use the same values as

those described in table 5.4 for the appropriate solver unless otherwise stated. Two of

the methods use a singlephase approach while the last uses Euler-Lagrange multiphase

modelling to mimic bubble flow in the draft tube as described in section 5.2.3. The first
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singlephase approximation was that previously described in sections 5.3.1 - 5.3.3 where

the velocity as calculated in equation 5.12 is applied as an inlet condition at the top of

the draft tube and a zero pressure outlet condition is applied at the bottom of the outlet.

The second singlephase method implemented was a model using a mean average velocity

force at the top of the draft tube to drive the flow in the bioreactor. This negates the

need for an inlet and outlet condition reducing the problem to a closed loop system (figure

5.10). The same value for velocity was used as with the inlet/outlet singlephase model

even though the implementation averaged the velocity across the width of the draft tube.

This momentum source term model was implemented in the software OpenFOAM-3.0.0;

the method works by calculating and applying the force necessary to maintain the desired

average velocity in the area specified. The lack of availability of the Transition-SST model

in OpenFOAM-3.0.0 means that an alternative turbulence model is required; as such the

k − ω SST model was used instead.

Figure 5.10: Closed loop singlephase bioreactor with momentum source. Zone in which the mean
average velocity force was applied in the draft tube shown in red

The final method of approximating the bubble driven flow was through the use of
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a Lagrangian particle tracking multiphase method in the Fluent solver. Use of the

multiphase approach allows for the assessment of the velocity approximation used at the

top of the draft tube buy the singlephase models. Of particular interest were the effects

the use of the multiphase method would have on the velocity just above and below the

draft tube where the singlephase models shown in figure 5.6 struggle to accurately predict.

For the multiphase model several assumptions were made to reduce the complexity of the

model. The first assumption was to release the bubble half way between the draft tube

wall and the gas inlet pipe (location 0.011, 0.04). This allows the bubble to rise unhindered

by the walls which would not be the case if the bubbles were released from the bottom of

the gas inlet pipe. By injecting the bubbles in this way the inclusion of thin film models

for the walls is unnecessary as the bubbles rise without coming into contact with the walls.

Axisymmetry was also assumed as with the singlephase model, which for the Lagrangian

phase results in a continuous bubble ring.

The velocity vector plots of these three different methods of implementing the velocity in

the bioreactor are shown in figure 5.11 along with the experimental velocity vector plot

obtained by Karim et al. (2004) in their experimental analysis of the bioreactor. As is

to be expected all three methods show similar vector profiles with the appropriate flow

separation and reattachment as well as the stagnation zone in the outside bottom corner

of the bioreactor. The only differences between the results shown occur in figure 5.11d

showing the results for the momentum source model where flow separates from the outer

wall higher up than in the other plots. This difference however is more likely to be due to

the use of the k − ω SST turbulence model in lieu of the transition SST model which is

unavailable in OpenFOAM. This can be confirmed when comparing the result with those

in figure 5.8.

Further analysis of the results using velocity profiles plots above and below the draft

tube shows good agreement for all the models when compared to the experimental results

of Karim et al. (2004). The profile plots above the draft tube (figure 5.12a) show good

agreement for all the flow control methods used, directly above the draft tube itself (Radial

position 0 - 0.022m) shows that the momentum source term modelling method provides

the most accurate results showing a velocity profile consistent with wall bounded flow as
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(a) Experimental results of
Karim et al. (2004)

(b) Inlet/outlet singlephase
model

(c) Euler-Lagrange multiphase
model

(d) Momentum source term
singlephase model

Figure 5.11: Velocity vector plots for the different methods of controlling the flow in the gas-lift
bioreactor
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would be expected. A similar profile is shown for the multiphase model with a slightly

higher peak velocity when compared to both the experimental and momentum source

results. The inlet outlet method shows the least correlation with the experimental results

with a flat velocity profile due to the constant velocity at the top of the draft tube. This

trend in the accuracy of the results is reversed however when looking at the results near

the outer wall of the bioreactor with the multiphase model producing the less accurate

velocity profile and the inlet/outlet model being more accurate. The momentum source

model again shows a good approximation to the experimental results however making

it the most accurate of the three when looking at the velocity profile above the draft

tube. When considering the results for the velocity profiles below the bioreactor however

the results are in favour of the multiphase model in all areas of the bioreactor. In the

main annular section (0.022 - 0.1016m) the multiphase results are almost identical to the

experimental data with both the singlephase models both under and over predicting the

velocities. Directly below the draft tube again the multiphase model predicts the velocity

more accurately than the singlephase models, though not with the same accuracy as in

the main reactor.

Overall the multiphase model predicts the velocities and flow pattern in the bioreactor the

most accurately. The additional computational expense and complexity however makes

this model less desirable than those using a singlephase approximation. Although the

singlephase approximations are less accurate than the multiphase model they can still be

of use in modelling the bioreactor particularly in cases where additional equations need

to be solved on top of the CFD model as would be the case with a coupled biokinetic-

hydrodynamic model. In the case of a coupled model the inlet/outlet singlephase model

would be the least use as it neglects part of the domain where biokinetic growth and decay

may be occurring, this makes the momentum source model the more desirable of the two

in this case.
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(b) Axial velocity profile at 0.0325m from bioreactor base

Figure 5.12: Velocity vectors for the different methods of controlling the flow in the gas-lift
bioreactor

5.4 Summary and conclusions

This chapter contains details of computational fluid dynamics modelling as well as a

numerical study of the effects of different model assumptions and settings on the prediction

of flow within a gas-lift bioreactor. Turbulence model selection, CFD solver comparison

and single vs. multiphase approximations are all discussed in detail showing the effects

these assumptions make on the results which can be obtained for a gas-lift bioreactor.
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It was stated that the choice of turbulence model is an important consideration when

modelling complex turbulent flows; in particular those which have boundary layer

separation due to adverse pressure gradients. This was proved through an assessment

of a number of RANS turbulence models when applied to a bench-scale cylindrical gas-

lift bioreactor with internal draft tube. The flow had been shown to have boundary

layer separation by experimental work obtained from literature and therefore required

careful choice of turbulence model. It was found that the Transition-SST turbulence

model provided the most accurate predictions for velocity, separation/reattachment and

overall flow-field. The RNG k − ε model was shown to be unsuitable for modelling the

low-Re number flows found in the model bioreactor and significantly under predicted

the separation and reattachment points as well as the size of stagnation regions. The

k−ω SST and RSM models provided more accurate results; however they exhibited some

inaccuracies with velocity and separation and reattachment prediction.

A comparison between the results obtained from two different CFD solver packages was

used to show what if any effect the choice of solver may have on the results obtained. As

the two solvers (ANSYS Fluent 13.0sp2 and OpenFOAM 3.0.0) are well developed and

benchmarked as well as using the same finite volume methodology little difference was

shown as is expected. With well developed CFD software, little difference in solutions

of well established model types should be seen due to thorough testing of the underlying

methods as was demonstrated here.

Further analysis was provided comparing different methods of implementing the bubble

driven velocity field within the bioreactor. Two singlephase models, one with an inlet

and outlet with a fixed inlet velocity and the other using a momentum source enforcing

the appropriate velocity within the draft tube, were compared with a multiphase model

using a Lagrangian particle tracking method to approximate bubble flow in the draft tube.

The solution using the momentum source was found to be more accurate than both the

single and multiphase models when predicting the velocity profile at 0.1875m above the

bioreactor base but suffered from the same shortcomings as the inlet/outlet singlephase

model when predicting flow near the bottom of the draft tube.
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Nomenclature

Symbols
∇ Gradient opperator
U Velocity vector
Γ Diffusion coefficient
x1 Resting state for photosynthetic factor model
x2 Active state for photosynthetic factor model
x3 Inhibited state for photosynthetic factor model
I Light intensity
I0 Incident light intensity
µI Light intensity dependent growth rate
Qi Cell quota of nutrient i
Qmin,i Minimum cell quota of nutrient i
Vmax Maximum nutrient update rate
X Insoluble biomass concentration
Si Soluble nutrient i
Chl Chlorophyll concentration

Abbreviations
CARPT Computer automated radioactive particle tracking
CFD Computational fluid dynamics
CT Computed tomography
PN Photosynthesis nutrient
PNH Photosynthesis nutrient hydrodynamic
TIS Tanks in series

As was described in the introduction (chapter 1), one of the main aims of this work is the

development and implementation of a coupled model framework for use in modelling and

investigation of bioreactors, including under conditions such as complex mixing regimens,

large scale bioreactors, and with the inclusion of multiple possible controlling factors. In

previous chapters, models describing nutrient dependent biomass growth, photosynthetic

processes and hydrodynamic mixing were described and implemented, additionally, a

method of coupling the nutrient biomass growth and photosynthesis models together

(the PN model) was proposed and investigated. The next step in the development of

a comprehensive coupled model of biokinetic growth of phytoplankton in bioreactors is

the inclusion of hydrodynamic mixing, as described in chapter 5, to produce a coupled

framework of biokinetic growth in bioreactors with complex mixing. A method of

constructing this photosynthesis-nutrient-hydrodynamic (PNH) model is proposed here,

this model is then investigated using some of the scenarios under which it may be beneficial
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to include complex mixing flows, including bioreactor scale-up and variations in lighting

conditions.

6.1 Coupled model methodology

In order to create a model combining fluid flow with biokinetic growth, a suitable

framework around which to base the model it is required. Proposed here is a new

coupled model, combining both the photosynthetic and soluble nutrient based biokinetic

growth models of phytoplankton, as well as the hydrodynamic mixing found within non-

homogeneously mixed bioreactors. In addition to the coupling between the biokinetic

and hydrodynamic models, a model to describe light distribution within the bioreactor is

proposed to account for the absorption and scattering of light by the biomass.

6.1.1 Coupling biokinetic growth models with hydrodynamics

Coupling biokinetic growth and hydrodynamic models together to form a model which can

account for the effects of mixing on growth of biomass within a bioreactor can be achieved

in a couple of different ways. The method used however, depends on the complexity of

the hydrodynamic mixing within the bioreactor.

In the case of a simple circulating flow bioreactor, such as that shown in figure 6.1a, where

the flow simply circulates around in one direction a tanks in series (TIS) approach can be

used. This approach, diagrammed in figure 6.1b, uses the mass balance equations normally

used in biokinetic modelling in a series with the biomass concentrations being passed from

one tank to the next based on the flow-rate around the bioreactor. In simple cases, where

flow-rate is constant and passes in a single direction, like the one shown in figure 6.1 the

modelling is relatively easy in that is only requires an increase in the number of times the

model equations are solved with the concentrations being transferred through the tanks

successively.

A slightly more complex version of this method uses TIS connected in a more complex

manner with flow from and to multiple tanks. In this case, the calculation for the flow

rates between tanks is more complex and usually requires greater understanding of the

flow field itself through either experimental analysis or CFD modelling as was done by
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(a) Simple loop bioreactor geometry where
flow is transported in a single direction
around the loop

(b) Division of loop bioreactor as a series of
tanks in which biokinetic growth models
are applied

Figure 6.1: Tanks in series model method diagram for simple loop bioreactor

Alvarado et al. (2011). This method of using TIS to model flow with biokinetic growth it

does not produce a truly coupled model since there is significant separation between the

calculation of the flow field and the biokinetic modelling, additionally, the model relies

on user interaction to determine the position and size of the tanks to be used as well as

calculate the flow-rates between them. This makes applying the modelling method very

problem specific with no method of easily generalising the set-up of different bioreactor

scenarios.

To couple the flow-field and biokinetic growth in a more general way, where the solution

method is the same for a wide variety of bioreactor problems, a different approach is

required. Although the use of TIS with the ODE mass balance models can produce good

results when cases are set up with care (Alvarado et al., 2012), the lack of efficient coupling

between the flow field and biokinetics makes this limited to simpler mixing problems.

A more efficient method of coupling the flow-field and biokinetics is to approach the

problem from the CFD side of the modelling methodology. CFD models are already

well established in regards to transporting various properties around a domain, including

pollutants (Tominaga and Stathopoulos, 2013; Lateb et al., 2016), thermal energy (Yadav

and Bhagoria, 2013) and chemical reactants in combustion (Hilbert et al., 2004) and
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so provides a good basis upon which to build a coupled model for biokinetic growth in

bioreactors.

In order for the biokinetic models described in chapters 3 and 4 to be coupled with

computational fluid dynamics (CFD) flow-field, a method of transporting the different

components in relation to the flow velocity is required. The ordinary differential equations

(ODEs) that govern the growth and decay of biomass within the bioreactor are one

dimensional in nature, are solved based on mass conservation (Equation 3.15) and as such

are incompatible with the multi-dimensional nature of the partial differential equations

(PDEs) used in CFD. One method of incorporating the biokinetic growth is the use a scalar

transport equations for each of the components being modelled. The scalar transport

equation is the underlying basis for many of the transport equations used in CFD, the

equation takes the form of a time dependent advection-diffusion equation usually with

source terms for additional sources and sinks for the field being transported. Equation 6.1

describes the general advection-diffusion equation for scalar transport in CFD, where C

is the variable of interest U is the velocity vector field obtained from the Navier-Stokes

equations (5.5), D is the diffusion coefficient and SC is the combined term representing

the sources and sinks.

∂C

∂t︸︷︷︸
Time dependent

term

+ ∇ · (UC)︸ ︷︷ ︸
Advection term

−∇ · (D∇C)︸ ︷︷ ︸
Diffusion term

= SC︸︷︷︸
Source terms

(6.1)

Using the advection-diffusion equation as the basis of the biokinetic transport in the

coupled model produces a set of equations with coupled source and sink terms representing

the growth and decay of the various species used in the PN model described in section 4.3.

Equations 6.2 -6.4 represent the photosynthetic states of the biomass described in detail

in section 4.2, the source terms from the ODEs used in the mass balance equations of the

bulk model.
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∂x1
∂t

+∇ · (Ux1)−∇ · Γ∇x1 = −αIx1 + γx2 + δx3 (6.2)

∂x2
∂t

+∇ · (Ux2)−∇ · Γ∇x2 = αIx1 − γx2 − βIx2 (6.3)

∂x3
∂t

+∇ · (Ux3)−∇ · Γ∇x3 = βIx2 − δx3 (6.4)

As with the PSF model equations described above the nutrient based biokinetic growth

model described in section 3.5.3 has been reformulated in equations 6.5 - 6.9, again with

the source terms from the mass balance equation being used as the source terms on the

advection-diffusion equations.

∂SN
∂t

+∇ · (USN )−∇ · Γ∇SN = a (Sin,N − SN )−
(

1− QN
Qmax,N

)
Vmax,NSN
SN +KN

X (6.5)

∂SP
∂t

+∇ · (USP )−∇ · Γ∇SP = a (Sin,P − SP )−
(

1− QP
Qmax,P

)
Vmax,PSP
SP +KP

X (6.6)

∂QN
∂t

+∇ · (UQN )−∇ · Γ∇QN =
(

1− QN
Qmax,N

)
Vmax,NSN
SN +KN

− µImin
(

1− Qmin,N
QN

, 1− Qmin,P
QP

)
QN

(6.7)

∂QP
∂t

+∇ · (UQP )−∇ · Γ∇QP =
(

1− QP
Qmax,P

)
Vmax,PSP
SP +KP

− µImin
(

1− Qmin,N
QN

, 1− Qmin,P
QP

)
QP

(6.8)

∂X

∂t
+∇ · (UX)−∇ · Γ∇X = µImin

(
1− Qmin,N

QN
, 1− Qmin,P

QP

)
X −mX (6.9)
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6.1.2 Modelling light distribution within a bioreactor

Although the model described in equations 6.2 - 6.9 can be run using a constant value of

light intensity I this would provide little additional benefit to the bulk model with regard to

light dependent biomass growth. In order to have a non-homogeneous light gradient within

the bioreactor domain which will have an affect on the biomass growth through the amount

of photosynthetically active biomass an equation solving for the diffusion of light within

the domain is required. As such, a model is proposed here for the distribution of light

within a bioreactor to be coupled with the biokinetic and hydrodynamic models.

The main concepts which govern the radiation intensity at any point within a medium

are the initial incoming intensity, absorption and scattering which reduce the intensity

and emission and scattering from other directions which increase the intensity (figure

6.2).

Figure 6.2: Diagram of radiative transfer equation processes over a small distance ds

These functions are described by the integrodifferential equation shown in equation 6.10,

which describes the propagation of radiation along a path through the medium (Siegel and
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Robinson, 1992). Where I ′λ is the directional radiation intensity at a specific wavelength,

s is the radiation path direction, aλ and σsλ the absorption and scattering coefficients, ω

the scattering angle and Φ the scattering phase function. The equation for I ′λ describes

the radiation intensity at position r along direction s, this requires that the equation be

discretised in both space and the direction of radiation propagation. There are a number

of different ways in which the direction can be discretised and the application of these

methods has resulted in a number of radiation transfer models; none of these models have

been universally accepted as appropriate for all radiation transfer problems (Sazhin et al.,

1996).

∂I ′λ
∂s

= − (aλ + σsλ) I ′λ (s)︸ ︷︷ ︸
Loss by absorption

and scattering

+ aλI
′
λb (s)︸ ︷︷ ︸

Gain by
emission

+ σsλ
4π

∫ 4π

ωI=0
I ′λ (s, ω) Φ (λ, ω, ωI)︸ ︷︷ ︸

Gain by scattering into s direction

(6.10)

The radiation transfer models which have been developed range in complexity from the

simple Rosseland diffusion approximation model, to the discrete ordinates model which

solves the radiative transfer model for a set of n different directions (Habibi et al., 2007).

One the simpler models is the P1 approximation, the model is the simplest formulation of

the general P-N model which expands the radiation intensity into a series of orthogonal

spherical harmonics resulting in a series of partial differential equations. The P1 model

uses only the first two terms in the series resulting in equation 6.11 for the radiative

flux where I is the incident radiation intensity, aL is the absorption coefficient, σL is the

scattering coefficient and Cs is the linear-anisotropic phase function coefficient, a property

of the fluid which in all cases here is taken to be zero, this assumes that scattering is

isotropic. (Siegel and Robinson, 1992).

qr = − 1
3 (aL + σL)− CsσL

∇I (6.11)

At this point it is only necessary to find a solution for the incident intensity rather than the
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directional dependent intensity described in equation 6.10. If the terms for the absorption

and scattering in equation 6.11 are combined into the diffusion coefficient Γ (equation

6.12) the equation simplifies to equation 6.13.

Γ = 1
3 (aL + σL)− CsσL

(6.12)

qr = −Γ∇I (6.13)

The equation for solving the transport of I is the diffusion equation, as the speed of

light determines that the time dependent term of the advection-diffusion equation can

be neglected assuming propagation of light is infinitely fast and reducing the equation

to 6.14. Where σb is the Stefan-Boltzmann constant and SI is the total intensity source

and sink terms. This can be further reduced in this case by neglecting the temperature

component under the assumption that radiation emitted by the algae due is negligible at

the temperatures in which they can survive.

∇ · (Γ∇I)− aLI + 4aLσbT 4 = SI (6.14)

This results in the final equation for transport of light intensity which is described in

equation 6.15.

∇ · (Γ∇I)− aLI = SI (6.15)
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6.1.3 Steady-state CFD and mesh mapping

One of the main obstacles to be overcome when coupling CFD models of hydrodynamics

and biokinetic growth models is the computational resources required. By combining CFD,

which requires small time-steps and large computational grids, with biokinetic growth

models, which are run over long periods of simulated time, it is easily possible to end up

with models which are prohibitively expensive run, both in terms of required resources

and time. In order to reduce these requirements there are several steps which can be

taken, which while increasing model efficiency, should have little impact on the overall

accuracy.

To reduce the computational expense of including CFD in modelling the bioreactor

hydrodynamics, it is possible to produce a steady-state flow field for the biomass transport

in the bioreactor; this is only possible however in cases where mixing is kept in a constant

stable state. The benefit of this is in the reduction in the number of equations being

solved over the long simulation period the biokinetic models require, whilst also allowing

for the time-step to be increased improving the overall simulation run time. This method

works by first solving for the flow field, before starting the biokinetic simulation using the

results from that initial CFD simulation. However, this method of separating the models

somewhat is not applicable in all cases. Simulations where the start-up of the bioreactor

from an unmixed or settled state is of interest would not benefit from this loosely coupled

method and would require the solving of the fluid flow equations at every time-step.

Additionally, this loosely coupled methods does not account for any changes to the fluid

properties, such as increases in viscosity; to include such two directional coupling would

require the inclusion of a model of viscosity dependent on biomass concentration. This

method of solving for a steady-state velocity field also doesn’t allow for changes in flow

rates of influent, as in cases of activated sludge wastewater treatment bioreactors; changes

in influent concentration are still possible however. Even given the limitation described

above, reducing the computational cost of the model by using a steady-state flow field

applied to time dependent biokinetic equations has many benefits. Given the difference in

time-scales between the biokinetic processes and the fluid velocity in phytoplankton growth

the difference in the flow field in the start-up phase of a bioreactor can be neglected.
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Another method of reducing the computational cost of the coupled simulations is to solve

the CFD and biokinetic models on two different grids. This method, which works well

with the method of producing a steady-state CFD solution for use by the biokinetic model

described above, maps the velocity vector values from the fine mesh used to calculate

the flow field in the bioreactor onto a coarser mesh for solving the biokinetic model.

This allows the solution for the biokinetic models to be solved faster due to the reduced

number of linear equations being solved at each time-step whilst still obtaining a non-

homogeneous flow-field within the bioreactor based on well established numerical modelling

techniques.

6.2 Implementation and assessment of the coupled

photosynthesis-nutrient-hydrodynamic model

Documented here are a number simulations which assess potential of the new PNH coupled

model which has been developed. The simulations describe some different scenarios in

which show the differences between the bulk PN model and the PNH model which includes

hydrodynamic mixing. Also investigated is the effect the mesh mapping discussed above

has on the results produced by the model. The implementation of the models here was

done using the OpenFOAM CFD software package and all the code for the model is

provided in appendix C. OpenFOAM was chosen for the model implementation due to its

open-source nature, this allows a user to alter the underlying code of the programme and

adapt it their needs making the PNH model more closely integrated with the CFD and

able to use many of the features built into OpenFOAM. Furthermore, the code itself can

then be easily provided for others to further improve upon the model in the future, while

still having access to all current and new features of the OpenFOAM platform. This makes

it easier to produce a more generalised model for growth of phytoplankton in bioreactors

and in future generalising the code to work with other biokinetic models such as the ASM

and ADM models.
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6.2.1 Solver set up

All the simulations in this section are set-up based around the cases described in sections

4.3 and 5.3 in order for comparison between the increasingly complex models to be made.

The exact solver set-up for the PNH coupled simulations are discussed here along with any

alterations which were necessary when compared to the simulations performed in previous

chapters.

Model constants

As the model has been implemented in OpenFOAM it must conform to the code structures

used by the software, this includes the dimensional units which OpenFOAM attaches to all

field data (e.g. velocity, temperature, etc.) and physical properties. As such, it is advisable

to convert all units to the OpenFOAM dimension set to avoid any later confusion as to

the units being portrayed. The OpenFOAM dimension set uses SI units by default and

contains units for the properties described in table 6.1; only the properties for Mass,

Length, Time and Quantity are used in the models described here.

No. Property SI unit
1 Mass kilogram (kg)
2 Length metre (m)
3 Time second (s)
4 Temperature Kelvin (K)
5 Quantity mole (mol)
6 Current ampere (A)
7 Luminous Intensity candela (cd)

Table 6.1: OpenFOAM dimension system and units

The constants for the PNH model are listed below in table 6.2, the units of Cell−1 are not

included in the OpenFOAM dimension set and as such do not appear in the model code.

However as this is kept consistent throughout the model it has no effect on the results

obtained and the unit labels are adjusted during post processing.

Geometry and meshing

The geometry and mesh chosen for the simulations using the PNH model are those that

have been described and evaluated in section 5.3; this set-up was chosen due to the

validation already performed on the mixing results as well as the inhomogeneous nature
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Parameter Notation Value Units
PSF parameters
alpha α 1935 m2.s−1

beta β 0.57848 m2.s−1

gamma γ 0.1460 s−1

delta δ 4.796E-4 s−1

Nutrient model parameters
Dilusion rate a 6.829E-6 s−1

Nitrogen inflow concentration Sin,N 1.8E-1 MolN.m−3

Phosphorus inflow concentration Sin,P 3.0E-3 MolP.m−3

Maximum nitrogen uptake rate Vmax,N 3.947E-18 MolN.Cell−1.s−1

Maximum phosphorus uptake rate Vmax,P 1.424E-19 MolP.Cell−1.s−1

Nitrogen half saturation constant KN 5.6E-3 MolN.s−1

Phosphorus half saturation constant KP 2.0E-4 MolP.s−1

Growth at infinite quota µl 2.5084E-5 s−1

Minimum nitrogen cell quota Qmin,N 4.54E-14 MolN.Cell−1

Minimum phosphorus cell quota Qmin,P 1.640E-15 MolP.Cell−1

Maximum nitrogen cell quota Qmax,N 3.632E-13 MolN.Cell−1

Maximum phosphorus cell quota Qmax,P 2.624E-14 MolP.Cell−1

Table 6.2: Constants for PNH model in OpenFOAM

of the internal flow field. This incomplete mixing of the bioreactor is big step away from

the homogeneous mixing assumed by the PN model and so makes for a good point of

comparison. Additionally, in order to implement the PNH model properly is is necessary

to use a geometry which covers the whole bioreactor (i.e. contains the draft tube and

annular section), as this is not the case with the original CFD model geometry used

(figure 5.1a) the geometry for the momentum source driven flow in section 5.3.4 is used

instead. This allow the biokinetic model to calculate the growth in the draft tube as well

as the annular section of the bioreactor.

Boundary conditions and solver settings

Boundary conditions for the velocity field calculations are as those described in section

5.3.4 for the momentum source term driven flow unless otherwise stated. The flow rate

for the bioreactors of different sizes is defined in the appropriate sections of this chapter

due to the changes in flow rate when scaling bioreactors up based on Reynolds number.

The light intensity at the surface of the bioreactor is the same value of 266µMol.m−2.s−1

as that used in the validation of the PN model in section 4.3.2 and is kept at a constant

rate in all the simulations described here.
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Additionally, as there is not inlet or outlet in the momentum source driven bioreactor

the biomass inflow and outflow are defined as global source and sink terms. This allows

the the model to be tested for the effects of the photosynthetic growth on the biomass

independently of local variations in nutrient concentration and allowing for comparison

with the PN model. Although this condition is not strictly physical in how a real bioreactor

with inflow and outflow would behave it is important to assess the different aspects of

the model coupling as independently as possible. The solver settings for the biokinetic

equations are described in table 6.3.

Setting Value Units
Time step ∆t 1 s
Run time 45 days
Discretisation Schemes
Time First order implicit Euler
Gradient ∇ Gauss linear
Divergence bounded Gauss upwind
Laplacian Gauss linear corrected

Table 6.3: Solver settings for PNH model in OpenFOAM

6.2.2 Implementation verification

Described here is a simulation designed to verify that the code implemented for the PNH

model performs as would be expected and can reproduce the same results as the bulk

model under the same conditions. As such the simulation set-up conditions include a fully

homogeneously mixed bioreactor with light intensity maintained constant over the whole

domain. As the results of this simulation as shown in figure 6.3 are identical to that of the

PN bulk model it can be assumed that the equations implemented in the source code are

equivalent to those of the PN model. Although this does not validate the accuracy of the

model in terms of the physics it is portraying, the verification is still an important step in

developing a working and usable model.
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Figure 6.3: Biomass growth plot for a simple case where light intensity is set to a constant value
of 266µMol.m−2.s−1 and the fluid velocity is at 0m.s−1

6.2.3 Mesh mapping independence testing

The second test case shown here describes the response of the model results when using

the mesh mapping to reduce the number of elements in the mesh and thus reduce the

solution clock time (i.e. the real world time taken to run the simulations). In all the

models for the different mesh sizes here the velocity field used is that produced on the

largest mesh and validated in chapter 5.

The process used was to first solve for the velocity field in the fine mesh and then use the

OpenFOAM mapFields utility to interpolate the calculated velocity field onto the coarser

mesh. As the meshed used become coarser it is easy to see the loss of accuracy in the flow

field at a local level with finer flow features becoming steadily less visible in the velocity

contour plots (figure 6.4). However, the overall flow-field shape is still visible including
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the areas of relatively high velocity and the stagnation region. Additionally the velocities

appear to be consistent with the areas from which they were mapped.

Further evidence that the mapping of the velocity field onto the coarser meshes provides

little loss in the overall accuracy in terms of the flow rate can be seen in figures 6.5a and

6.5b where the velocity profiles 0.1875m and 0.0325m above the base of the bioreactor show

good correlation with both the results of the original velocity field and the experimental

velocity profiles of Karim et al. (2007). The only obvious discrepancy in the velocity

profile plots in on figure 6.5b in the location corresponding to a position directly below

the draft tube in the bioreactor. There the variation in the velocities is at its greatest when

compared to the original velocity field, this is likely due to the greater velocity gradient

in that area, this is likely to have been smeared out considerably as can be seen in figure

6.4 on the coarser meshes.

The second variable of interest when mapping the mesh is the light intensity profile across

th bioreactor. Figure 6.6a shows the contour of the light intensity across the bioreactor

domain for the mesh with 348 elements while figure 6.6b shows the light profile just above

the bioreactor draft tube. Little difference is shown in the results for the light intensity

between the different meshes.

Finally, a comparison between the biomass growth concentrations is shown in figure 6.7 for

the different mesh sizes. Again there is no indication that there is any difference between

the solutions for the coarsest vs the finest mesh with the results also being comparable to

those of the bulk PN model.
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(a) 20980 Elements (b) 5260 Elements

(c) 1269 Elements (d) 348 Elements

Figure 6.4: Velocity contour plots for the velocity field when mapped from the original mesh onto
courser meshes for biokinetic growth modelling.
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Figure 6.5: Velocity profile plots for CFD solutions mapped onto coarser meshes
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(a) Light gradient for 348
element mesh
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(b) Light intensity profile plot at 0.1875m from base of bioreactor

Figure 6.6: Light gradient within bioreactor (a) and light intensity profile across width of
bioreactor (b)
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Figure 6.7: Comparison of mesh independence for biomass growth in simulations using different
mesh sizes with mapped velocity fields
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6.2.4 Light absorption and scattering affect on biomass growth

Light absorption and scattering in the bioreactor can have a significant effect on the light

intensity at even small distances from the incident location, particularly when biomass

concentration is high. This is the reason why many photobioreactors have large surface

area to volume ratios allowing them to have higher light intensities over a greater fraction

of the bioreactor interior. These large surface area to volume ratios require more material

in the bioreactor structure, which, in the case of photobioreactors is required to be

transparent (e.g. glass) in order to admit light and are therefore expensive to produce. It

is therefore important to gain a better understanding of the relationship between the light

within a bioreactor, the flow-field and the biomass growth.

As such a series of simulations at different light absorption and scattering coefficients are

described. The absorption and scattering coefficients used were determined through the

use of functions obtained from literature developed from experimental results. Bricaud

et al. (1995) developed a function for the absorption coefficient of phytoplankton at

different wavelengths and biomass concentrations (equation 6.16).

aL =0.0403 < Chl (440nm) >0.668 (6.16)

As the most common chlorophyll type is chlorophyll ’a’, which provides the green pigment

in plants and phytoplankton, and which absorbs electromagnetic radiation most effectively

at wavelengths of 440nm (figure 2.1), it is at this wave length the calculated absorption

rates were obtained for. To calculate absorption coefficient values appropriate to the

biomass concentrations typical of the biokinetic model being investigated three values of

biomass concentration calculated by the PN bulk model were used. These concentrations

are shown in table 6.4 and are for the initial biomass concentration, a typical result

calculated when the biomass concentration reached a steady-state and a value half of

that. The value of chlorophyll per cell was taken to be 2pg.cell−1 based on the work of

Pirastru et al. (2012). A similar function for the scattering coefficient, equation 6.17, was
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found in literature (Voss, 1992; Loisel and Morel, 1998).

σL =0.39 < Chl (440nm) >0.57 (6.17)

Simulations were run for the benchscale gas-lift bioreactor with the absorption and

scattering coefficients for each of the three biomass concentrations and for absorption

and scattering coefficients typical of fresh water (table 6.4). All other settings for the

bioreactor were maintained as described above with the validated velocity field and the

initial conditions and constants from the PN bulk model.

Case ID
@Biomass

Concentration
[Cells.m−3]

Absorption
Coefficient

[m−1]

Scattering
Coefficient

[m−1]
Water - 0.01 0.005
a1 1e7 0.0129 0.0469
a2 5e11 4.077 20.006
a3 1e12 6.472 29.697

Table 6.4: Absorption and scattering coefficients for different test cases with their corresponding
biomass concentrations

As the values for the absorption and scattering in the bioreactor were kept constant over

the simulation duration the light intensity gradient also remained constant. The light

intensity gradients for the different absorption and scattering coefficients are shown in

figure 6.8. The first point of interest is in the comparison between the results for the

cases for a1 and water, it is not unexpected that the results for light distribution between

the two are so similar as the absorption coefficients are of the same order of magnitude.

Although the scattering coefficients are significantly different they are both low enough

that over the short distance between the outer wall and the centre of the bioreactor little

difference in their results is likely to be seen. Cases a2 and a3 show a much greater degree

of change in the light intensity over the width of the bioreactor and also show a more

significant difference between their results. This is further confirmed in figure 6.9 where

the light profile for case a3 drops significantly further and faster than the others resulting

in a much lower light intensity at the centre of the bioreactor.
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These results confirm that the absorption and scattering coefficients at different biomass

concentrations can have a great effect on the light intensity within the bioreactor. The

biomass concentration results for these difference cases, shown in figure 6.10, do not

however show any significant difference in growth rate or final concentration. Although

some small difference in the results can be seen in the sub figure for case a3 the difference is

not great. This lack of difference in the biomass concentration for the different absorption

and scattering coefficients is most likely to be due to the small size of bioreactor and the

relatively high velocity of the flow within where the biomass circulates around up to 10

times per minute. As a result of this high rate of recirculation the growth rate is not

overly affected as the resulting biomass concentration shows, however, this is unlikely to

be the case in larger scale bioreactor which would be of greater use in industrial growth

of phytoplankton rather than the 7.2L bench-scale bioreactor. To show that this is the

likely case simulations in scaled up bioreactors are shown in section 6.2.5.



CHAPTER 6. COUPLING HYDRODYNAMICS AND BIOKINETIC GROWTH 132

(a) Water (b) Case a1

(c) Case a2 (d) Case a3

Figure 6.8: Light intensity contour plots for the cases in table 6.4 under different absorption and
scattering coefficients
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bioreactor at the different light absorption and scattering coefficients described in
table 6.4.
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CHAPTER 6. COUPLING HYDRODYNAMICS AND BIOKINETIC GROWTH 134

6.2.5 Reynolds number scaling of a bioreactor

As the previous studies in this chapter have focused on the bench-scale bioreactor and have

shown that there is little difference in the biomass growth even under high absorption acn

scattering conditions a series of simulations on different sized bioreactors of the same

configuration are shown here.

In order to maintain the same flow-field as in the bench-scale bioreactor the scaling up

here is done based on the Reynolds number of the bioreactor. This scale up based on

Reynolds number results in a decrease in the velocities within the bioreactors whilst still

maintaining the same flow field. Three additional sizes of bioreactor were modelled for a

single set of absorption and scattering coefficients from case a2 in section 6.2.4, ranging

up to on thousand times the volume of the bench-scale bioreactor. Table 6.5 describes

the differences in the bioreactor scales and figure 6.11 shows a visual comparison of the

differences in the dimensions of the bioreactors.

Volume [L] Radius [m] Height [m]

7.2 0.1016 0.222
150 0.28 0.61
900 0.51 1.11
7200 1.02 2.22

Table 6.5: Dimensions and volumes for different scaled bioreactors

The results of modelling the flow field for the different scale bioreactors, seen in figure

6.12, show that the increase in size whilst maintaining the Reynolds number reduces the

velocities significantly. This reduction in flow rate coupled with the increase in dimensions

results in much lower recirculation rates within the bioreactors with times of around 5

minutes for a single circuit in the 7200L bioreactor. Even so the shape of the flow-field

itself has not changed in any noticeable way with the stagnation region remaining and

the highest velocities within the draft-tube. Even as the slower circulation time will affect

the biomass growth rate the likely greater influence will come from the decrease in light

intensity in larger fractions of the bioreactor due to increased distance from the incident

location. Figure 6.13 shows how the increase in bioreactor size affects the diffusion of light

in the bioreactor, as was shown previously the 7.2L bench-scale bioreactor (figure 6.13a) is



CHAPTER 6. COUPLING HYDRODYNAMICS AND BIOKINETIC GROWTH 135

0.5m

7.2L (Bench Scale)

900L
150L

D
ra

ft
 T

ub
e

7200L

Figure 6.11: Visual comparison between different scaled bioreactors based on scaling up using
Reynolds number from the bench-scale bioreactor of Karim et al. (2004).

well lit with little variation in the light intensity between the outer wall and the centreline,

the only obvious variation in the light intensity is within the draft-tube where the light is

inhibited by the draft-tube wall. Upon increasing the bioreactor volume to 150L the light

distribution changes significantly. Figure 6.13b shows much greater diffusion from the

outer wall to the centre of the bioreactor, this large decrease in the internal light intensity

is further demonstrated by the plot in figure 6.14 which shows a drop of 150µMol.m−2.s−1

in the light intensity between the 7.2L and 150L bioreactors at the centreline.
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(a) 7.2L Bioreactor (b) 150L Bioreactor

(c) 900L Bioreactor (d) 7200L Bioreactor

Figure 6.12: Contour plots of velocity magnitude for different scale bioreactors

The light intensity gradients for the two largest bioreactors (900L and 7200L) show the

most significant difference in the bioreactor fraction that is in darkness with the 7200L

bioreactor having nearly 80% of its width at light intensities below 25µMp.m−2.s−1 (figure

6.14). This significant fraction of the bioreactor being in relative darkness has a major

effect on the fraction of the biomass which is in the active state as shown by figure 6.15
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(a) 7.2L Bioreactor (b) 150L Bioreactor (c) 900L Bioreactor (d) 7200L Bioreactor

Figure 6.13: Contour plots of light intensity for different bioreactor sizes

where it is easy to see that photosynthetically active biomass fraction (x2) in the 7200L

bioreactor is significantly lower than in the smaller bioreactors.
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Figure 6.14: Comparison of light intensity distribution within bioreactors at different scales using
the same light absorption and scattering coefficients

It is also possible to see the effects the flow-field has on the active biomass fraction in

the bioreactor in particular in the 900L and 7200L bioreactors. The area around where

the recirculation region is at top of the annular section of the bioreactor show a higher
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fraction of active biomass at a greater distance from the outer wall. This indicates that

the mixing in that recirculation zone is having a positive affect on the biomass growth

rate. This gives a good indication that the mixing within the bioreactor has an important

role to play in obtaining the optimal biomass growth rate for larger scale bioreactor with

low light penetration depth. This also show that the couple PNH model proposed here can

be used to help in the design of bioreactors with complex mixing used to aid in biomass

growth.

(a) 7.2L Bioreactor (b) 150L Bioreactor (c) 900L Bioreactor (d) 7200L Bioreactor

Figure 6.15: Contour plots of photosynthetically active biomass (x2) for different bioreactor sizes

As is expected the active biomass fraction in the bioreactors has an affect on the growth of

the biomass itself. Figure 6.16 shows how the biomass concentration varies in the different

scale bioreactors after 40 days. All of the different size bioreactors show different values

for the biomass concentration with the 7.2L bioreactor having the highest concentration

of the four, this is as expected due to the near homogeneous light intensity over the

whole bioreactor domain. The 7.2L bioreactor also shows no local variations in the

biomass concentration. In contrast the three larger bioreactors produced lower biomass

concentrations with increase in bioreactor size corresponding to a decrease in the biomass

concentration. The 7200L bioreactor once again showed the most significant difference



CHAPTER 6. COUPLING HYDRODYNAMICS AND BIOKINETIC GROWTH 139

between itself and the others with a much larger decrease in biomass concentration. It

can also be seen in figures 6.16b - 6.16d that there is some local variation in the biomass

concentration with in the bioreactor. In the 150L bioreactor this local variation is confined

to the point directly below the gas inlet tube, a location where a small stagnation region

can be found, as this area is also one of the furthest points from the outer wall where

the light is shining, it stands to reason that the biomass growth rate would be very low.

This region of low biomass concentration can also be seen in the two larger bioreactors as

well. Additionally, the 7200L bioreactor shows an increase in the biomass concentration

in the main stagnation zone near the lower outer edge of the annular section, this is

most likely due to the biomass in that region spending a greater amount of time in the

higher light concentration than the biomass which is constantly circulating around the

bioreactor.

(a) 7.2L Bioreactor (b) 150L Bioreactor (c) 900L Bioreactor (d) 7200L Bioreactor

Figure 6.16: Contour plots of biomass concentration for the different bioreactor sizes after 40
days of growth

Finally the difference scaling up the bioreactors while maintaining the same Reynolds

number and flow-field has on the biomass growth can be seen from the results in figure

6.17 where the differences in the final biomass concentrations between the bioreactors

is easy to see. Additionally, although there is some difference between the results for
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the 150L and 900L bioreactors when compared to the PN bulk model and the bench-scale

bioreactor the differences are not as great as expected. This implies that the mixing within

this gas-lift bioreactor is homogeneous enough to compensate for the lower penetration

depth of the light. However, the largest of the scaled bioreactors shows a much greater

drop in the final biomass concentration indicating that mixing is not able to overcome the

much lower light penetration depth of such a large bioreactor.
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Figure 6.17: Average concentration of biomass in the different sized bioreactors

6.2.6 Effect of increasing incident light intensity on the active biomass

and biomass growth

The case tested here is to see what affect varying the incident light intensity value at the

outer wall has on the biomass growth within the bioreactor. The case was set-up in the

same manner as the 900L bioreactor from section 6.2.5 with the only change being an

increase in incident light intensity from 266µMol.m−2.s−1 to 500µMol.m−2.s−1. Figure
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6.18 shows the light intensity gradient for the two incident intensities as well as the active

biomass fractions within the bioreactors. Although the higher incident intensity appears

to produce the greater values for active biomass, the results shown in figure 6.19 show

that the final biomass concentration and the biomass growth rate are both lower for the

higher incident intensity, this indicates that the higher incident intensity causes inhibition

of the photosynthetic processes.

(a) Light distribution
at
266µMol.m−2.s−1

incident intensity

(b) Photosyntheti-
cally active
biomass (x2)
fraction at
266µMol.m−2.s−1

(c) Light distribution
at
500µMol.m−2.s−1

incident intensity

(d) Photosyntheti-
cally active
biomass (x2)
fraction at
500µMol.m−2.s−1

Figure 6.18: Contour plots of different light intensities and their respective active biomass
fractions
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Figure 6.19: Average concentration of biomass for two different incident light intensities at the
outer wall of the bioreactor; comparison with the results of the PN model.

6.3 Summary and conclusions

This chapter contains details of a proposed coupled model which combines photosynthetic

and nutrient based biokinetic models with a CFD based hydrodynamic mixing model. The

model takes the PN bulk coupled model proposed in chapter 4 and couples it to CFD based

hydrodynamic mixing using a series of scalar advection-diffusion equations with coupled

source terms. This approach was chosen as it allows for a more general model structure

than other methods which use a tanks in series approximation.

The model implemented here uses a steady-state velocity field calculated using CFD

modelling to transport the biokinetic species around the bioreactor domain. In addition to

the biokinetic coupling a model for the diffusion of light within the domain was proposed

which uses absorption and scattering coefficients to determine the light intensity as the
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radiation passes through the fluid.

This new PNH model was then tested in a series of simulations designed to assess its

capabilities in modelling growth of phytoplankton within a bioreactor. In order to reduce

the computational time for solving the biokinetic model, which are run of long periods of

simulated time, a method of mapping the the velocity field calculated on the fine CFD

mesh onto a coarser mesh for the biokinetic modelling. This method was assessed and

the resulting velocities, light distribution fields and biomass concentrations were found

to not be significantly effected by the reduction in the flow field accuracy. The model

was then assessed to determine the effects different absorption and scattering coefficients

have on the biomass growth. Although the biomass growth was not significantly effected

when varying the absorption and scattering coefficients, this was due to the small size of

the bioreactor being investigated. Further simulations on larger scale bioreactors showed

that absorption and scattering of the light within the bioreactor could have a significant

affect on the final biomass concentration. These simulations on scaled up bioreactors also

showed that the mixing within the bioreactor could overcome the low light penetration

to a certain extent reducing its affect on biomass growth rate by continually circulating

the biomass through the areas of higher light intensity. Finally the model was tested

to determine the effect increasing the light intensity had on the biomass growth, as was

expected although increasing the incident light intensity increased the depth to which

light was able to diffuse at usable intensities into the bioreactor the inhibition which

occurred near due to the higher intensities reduced the photosynthetically active biomass

fraction.

The results this new coupled PNH model produced for the test simulations described are

very promising with regard to the future applicability of the model in investigating and

designing bioreactors for efficient growth of phytoplankton.
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7.1 Conclusions

The main aim of the research presented in this thesis was to develop a framework combining

biokinetic models for both nutrient based biokinetic growth and photosynthesis based

growth of phytoplankton with a hydrodynamic model. Coupling these models together is

of great interest with regard to modelling bioreactors of all types, as the current widely

used model focus on biokinetic growth whilst neglecting the hydrodynamic flow within a

bioreactor. As complex mixing can have a significant affect on the interactions within a

bioreactor neglecting the flow outright is not an ideal solution. To this end a coupled model

has been developed here which incorporates both biokinetic growth and hydrodynamic

mixing.

As the chosen biological process for the coupled model involved photosynthetic growth as

well as nutrient based biokinetic modelling it was important to investigate the modelling

processes for both these area. As such, an investigation into nutrient based biokinetic

growth models was performed looking at the processes involved in activated sludge models

144
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as well as phytoplankton models for microalgae. From this investigation it was determined

that the most attractive modelling method for microalgal growth was the cell quota model

which accounts for both external nutrient uptake and internal storage of nutrient by the

cells. This is an important factor when modelling microalgae as they are able to continue

surviving for a time even when not external nutrient supply is available.

The next step in the development of the coupled model was an investigation into

photosynthesis based growth modelling. When modelling a photosynthetic organism

such as microalgae it is equally important to determine the growth based on light as

it is the soluble nutrients such as nitrogen and phosphorous. Chapter 4 of this thesis

describes an investigation into two different methods of modelling photosynthetic growth

of phytoplankton along with some of the characteristics of the models, their behaviour and

methods of coupling them to the soluble nutrient dependent models in chapter 3. The two

different modelling methodologies, a multiplicative approach which describes the various

processes involved in photosynthesis in terms of multiplicative functions in the overall

growth rate term and a method using photosynthetic factories (PSF) which calculates the

photosynthetic state of the biomass depending on the light intensity with the transition

between the three different states controlled by a set of coupled ODEs. The multiplicative

model was implemented and compared to experimental data obtained from literature. The

model was shown to produce good results for the biomass concentration and cell nutrient

content. The PSF model was also implemented and the effect different time dependent

light intensity function had on the photosynthetic state of the biomass was investigated.

The results of these simulations showed that large variations in the light intensity values

had a detrimental effect on the amount of active biomass. Following these investigations

a proposal was made for a method of coupling the PSF model with a multi nutrient cell

quota model. In order for this coupling to be possible a change to the cell quota model

structure was required. A limiting function related to a maximum cell quota was added

to the nutrient uptake so as to prevent infinite uptake of nutrient in low light conditions

where no growth could occur. The method used to couple the PSF and cell quota models

involved incorporating the active biomass term into the equations for biomass growth

and cell quota in the nutrient model. Following this the photosynthesis-nutrient (PN)
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model was validated against experimental data from literature and an investigation into

the affects of light on biomass growth was performed for the model. The results showed

that time taken to reach maximum biomass concentration increased in low light conditions

although there was no affect on the maximum value of concentration itself. This showed

that the model was able to predict variation in biomass growth rate in conditions where

the cell quota model alone would not.

The next stage in the work was to investigate the use of computational fluid dynamics

(CFD) in modelling the flow within a typical bioreactor. A number of different

model assumptions were investigated and their affects on the flow within the bioreactor

assessed. Turbulence modelling, solver comparison and single vs. multiphase flow were all

investigated with regard to a bench-scale gas-lift bioreactor. It was stated that the choice

of turbulence model can have a significant affect on the results produced by the model, in

particular when there is flow separation.

This was found to be one of the main influencing factors with regard to predicting the flow

field in the gas-lift bioreactor with the Transition SST model providing the best results

with regard to the flow separation location and velocity profiles. Several different methods

of modelling the bubble driven flow were also investigated, the most accurate of these was

the Lagrangian multiphase method followed closely by a method which uses a momentum

source term in the draft tube to drive the flow.

Finally, a method of coupling the PN and CFD models was proposed and investigated.

This new photosynthesis-nutrient-hydrodynamic (PNH) model also included the addition

of a model for diffusion of light within a bioreactor. This allows for investigations into

the effects of light absorption and scattering within the bioreactor and how mixing affects

the active biomass. Further investigation was then performed using this new PNH model,

simulations regarding the effects of different light absorption and scattering coefficients on

the distribution of light and active biomass within the bioreactor were performed. The

results showed that although there was some small variation in the biomass concentration

with high absorption and scattering values the bioreactor was on too small a scale to be

affected. Further investigation when scaling up the bioreactor showed that the results

became more definitive at larger scales with the largest bioreactor with a radius of 1m
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providing significant loss of biomass growth due to low light penetration. It was also

determined that the coupling of the biokinetics and flow field provided some insight into

the ability of a well-mixed bioreactor to counter low light penetration to an extent, the

low loss of biomass growth in a bioreactor with a radius of 0.5m when compared to smaller

reactors along with the affect the flow field had on the active biomass showed that the

mixing is of importance and can be advantageous in larger scale bioreactor.

7.2 Implications of results

The work presented here has shown that by modifying existing biokinetic growth models

for bioreactors to include computational fluid dynamics models which are able to predict

the flow characteristic a framework for more extensive investigation of bioreactor physics

can be created.

Current state-of-the-art bioreactor design is based on general empirical guidelines and

the experience of the designers rather than comprehensive design strategies using well

validated models. As such there is a need to quantify the processes occurring within these

bioreactors to enable improvements to be made to their efficiency and reliability. The

coupled model developed in this work provides a method by which these improvements

can be made.

One of the issues with full-scale bioreactors is the designs are based on bench-scale

and pilot-scale bioreactor data. This can often be misleading when used for full-scale

bioreactors as the methods used to scale them do not account for all the physical and

biological components of the bioreactor (Valentín-Vargas et al., 2012). The coupled

PNH model developed in this work by including both biokinetic growth models and fluid

models allows for a more comprehensive study on the differences in bioreactor conditions

at different scales. This should also allow for improvements to the design of full-scale

bioreactors as greater understanding of the effects mixing has on the biomass growth are

determined.

Furthermore as the model can be expanded to include other physical and biochemical

phenomena, the uses to which the model framework can be put are extensive and should



CHAPTER 7. CONCLUSIONS AND FURTHER WORK 148

provide a valuable tool for both bioreactor research and design.

7.3 Further work

There are a number of different areas that could be investigated to improve the PNH

model presented.

The inclusion of a dynamic model for absorption and scattering of light within the

bioreactor domain would allow for a better understanding of the effect mixing has on

the photosynthesis growth of biomass. The ability to determine whether local increases

in biomass concentration become a significant factor in the growth rates in localised areas

of the bioreactor would be beneficial to determining the improvements to mixing methods

within the bioreactor that may be needed.

Additionally the an investigation into the effect of continuous flow bioreactors with flow

both into and out of the domain from a local point would provide insight into the

development of long term biomass growth reactors.

In its current form the model framework is only coupled in one direction, where the effects

of mixing on the biomass growth are considered. There is currently no inclusion of the

effect changes in biomass concentration would have on the fluid properties which at high

biomass concentrations would be a necessary due to increases in the viscosity. Whether

or not the fluid would be considered non-Newtonian is also a factor worth considering and

investigating. However by including a model in which the viscosity of the fluid changed

based solely on the increase in biomass concentration (neglecting any changed due to shear

stress), a more accurate representation of the mixing and growth within the bioreactor at

high solids concentrations would be possible.

Finally, a comprehensive experimental investigation would be needed to fully validate the

model proposed as at this current time there is no experimental investigation available as

far as the author knows which contains data for all the variables required to ascertain if

the model it accurate.
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Appendix A

Biokinetic model code

MATLAB code A.1: Multi nutrient cell quota model
1 function klausmeierMicroMol
2 set(0,'DefaultFigureWindowStyle','docked')
3 clear all;
4 clc;
5 close all;
6 Greens=cbrewer('seq','Greens',9);
7 Reds=cbrewer('seq','Reds',9);
8 Blues=cbrewer('seq','Blues',9);
9

10 filename = 'D:\pm10arc\Research\PhDWork\Data Manipulation\Algae CFD Models\
klausmeierModel.xlsx';

11 sheet = 4;
12 xlRange = 'B11:B15';
13
14 initial = xlsread(filename, sheet, xlRange)
15
16 xlRange = 'B19:B30';
17
18 constants = xlsread(filename, sheet, xlRange);
19
20 global a RinN RinP VmaxN VmaxP KN KP muinf m QminN QminP
21
22 a = constants(1);
23 RinN = constants(2);
24 RinP = constants(3);
25 VmaxN = constants(4);
26 VmaxP = constants(5);
27 KN = constants(6);
28 KP = constants(7);
29 muinf = constants(8);
30 m = constants(9);
31 QminN = constants(10);
32 QminP = constants(11);
33
34
35
36 initial(1) = 180000;
37 initial(2) = 3000;
38 RinN = initial(1);
39 RinP = initial(2);
40 [t,y]=ode45(@model,[0:3600:3456000],initial);
41
42 initial(1) = 30000;
43 initial(2) = 3000;
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44 RinN = initial(1);
45 RinP = initial(2);
46 [t2,y2]=ode45(@model,[0:3600:3456000],initial);
47
48 h(1)=figure(1);
49 th=t(:)/86400;
50 th2=t2(:)/86400;
51 hold on;
52 QNQP = y(:,3)./y(:,4);
53 subplot(3,1,1); plot(th,y(:,5),'-','Color',[155/255,187/255,89/255],'linewidth'

,3);
54 title('Biomass Growth');
55 xlabel('Time [days]')
56 ylabel('Biomass [Cells.m^{-3}]')
57 subplot(3,1,2); plot(y(:,2),y(:,1),'-','Color',[192/255,80/255,77/255],'

linewidth',3);
58 title('Available Phosphorus and Nitrate');
59 xlabel('R_P [mol P m^{-3}]')
60 ylabel('R_N [mol N m^{-3}]')
61 subplot(3,1,3); plot(th,QNQP,'-','Color',[192/255,80/255,77/255],'linewidth',3)

;
62 title('N:P Stiochiometry vs. Time');
63 xlabel('Time [days]')
64 ylabel('N:P, Q_N/Q_P [mol N /mol P]')
65 hold off
66
67
68 h(2)=figure(2);
69 hold on;
70 subplot(2,1,1); plot(th,y(:,1)*512,'.','Color',[155/255,187/255,89/255],'

linewidth',1);
71 title('Nitrate');
72 xlabel('Time [days]')
73 ylabel('R_N [mol N m^{-3}]')
74 subplot(2,1,2); plot(th,y(:,2)*512,'-','Color',[192/255,80/255,77/255],'

linewidth',3);
75 title('Phosphorus');
76 xlabel('Time [days]')
77 ylabel('R_P [mol P m^{-3}]')
78
79 h(3)=figure(3);
80 hold on;
81 subplot(2,1,1); plot(th,y(:,3),'-','Color',[192/255,80/255,77/255],'linewidth'

,3);
82 title('Q_N vs. Time');
83 xlabel('Time [days]')
84 ylabel('Q_N [mol N]')
85 subplot(2,1,2); plot(th,y(:,4),'-','Color',[192/255,80/255,77/255],'linewidth'

,3);
86 title('Q_P vs. Time');
87 xlabel('Time [days]')
88 ylabel('Q_P [mol P]')
89 hold off
90
91 lp = 18;
92
93 h(4)=figure(4);
94 hold on;
95 plot(th(1:lp:end),y(1:lp:end,5),'-x','Color',Greens(7,:),'linewidth',1);
96 plot(th2(1:lp:end),y2(1:lp:end,5),'-o','Color',Greens(6,:),'linewidth',1);
97 title('Biomass Growth');
98 xlabel('Time [days]')
99 ylabel('Biomass [Cells.m^{-3}]')

100 pleg=legend('P limited growth','N limited growth','location','northwest');
101 set(figure(4),'PaperSize', [14 7]);
102 set(figure(4),'PaperPosition',[-0.5 0 15 7]);
103
104 h(5)=figure(5);
105 hold on;
106 plot(th(1:lp:end),y(1:lp:end,1),'-x','Color',Blues(7,:),'linewidth',1);
107 plot(th2(1:lp:end),y2(1:lp:end,1),'-o','Color',Blues(6,:),'linewidth',1);
108 title('Available Nitrogen');
109 xlabel('Time [days]')
110 ylabel('S_N [\mumol N m^{-3}]')
111 pleg=legend('P limited growth','N limited growth','location','northwest');
112 set(figure(5),'PaperSize', [14 7]);
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113 set(figure(5),'PaperPosition',[-0.5 0 15 7]);
114
115 h(6)=figure(6);
116 hold on;
117 plot(th(1:lp:end),y(1:lp:end,2),'-x','Color',Reds(7,:),'linewidth',1);
118 plot(th2(1:lp:end),y2(1:lp:end,2),'-o','Color',Reds(6,:),'linewidth',1);
119 title('Available Phosphorus');
120 xlabel('Time [days]')
121 ylabel('S_P [\mumol P m^{-3}]')
122 pleg=legend('P limited growth','N limited growth','location','northwest');
123 set(figure(6),'PaperSize', [14 7]);
124 set(figure(6),'PaperPosition',[-0.5 0 15 7]);
125
126 h(7)=figure(7);
127 hold on;
128 plot(th(1:lp:end),y(1:lp:end,3),'-x','Color',Blues(7,:),'linewidth',1);
129 plot(th2(1:lp:end),y2(1:lp:end,3),'-o','Color',Blues(6,:),'linewidth',1);
130 title('Nitrogen Cell Quota');
131 xlabel('Time [days]')
132 ylabel('Q_N [\mumol N Cell^{-1}]')
133 pleg=legend('P limited growth','N limited growth','location','best');
134 set(figure(7),'PaperSize', [14 7]);
135 set(figure(7),'PaperPosition',[-0.5 0 15 7]);
136
137 h(8)=figure(8);
138 hold on;
139 plot(th(1:lp:end),y(1:lp:end,4),'-x','Color',Reds(7,:),'linewidth',1);
140 plot(th2(1:lp:end),y2(1:lp:end,4),'-o','Color',Reds(6,:),'linewidth',1);
141 title('Phosphorus Cell Quota');
142 xlabel('Time [days]')
143 ylabel('Q_P [\mumol N Cell^{-1}]')
144 pleg=legend('P limited growth','N limited growth','location','best');
145 set(figure(8),'PaperSize', [14 7]);
146 set(figure(8),'PaperPosition',[-0.5 0 15 7]);
147
148 print (h(1),'-dpdf', 'bio+QNQP+NP.pdf');
149 print (h(2),'-dpdf', 'RN+RP.pdf');
150 print (h(3),'-dpdf', 'QN+QP.pdf');
151 print (h(4),'-dpdf','algalBiomass.pdf');
152 print (h(5),'-dpdf','availableN.pdf');
153 print (h(6),'-dpdf','availableP.pdf');
154 print (h(7),'-dpdf','QN.pdf');
155 print (h(8),'-dpdf','QP.pdf');
156
157 output=[th(:),y(:,1)*512,y(:,2)*512,y(:,3)*512,y(:,4)*512,y(:,5)*512];
158 dlmwrite('matlabDataReactor',output,'delimiter','\t','precision',6);
159 dlmwrite('constants',constants,'delimiter','\t','precision',6);
160
161 end
162
163 function dy=model(t,y)
164
165 global a RinN RinP VmaxN VmaxP KN KP muinf m QminN QminP
166
167 dy=zeros(5,1);
168 dy(1) = a*(RinN - y(1)) - (VmaxN * y(1) * y(5))/(y(1) + KN); % Nitrate

concentration
169 dy(2) = a*(RinP - y(2)) - (VmaxP * y(2) * y(5))/(y(2) + KP); % Phosphorus

concentration
170 dy(3) = ((VmaxN * y(1))/(y(1) + KN)) - muinf * min(1 - (QminN/y(3)), 1 - (QminP

/y(4))) * y(3); % Nitrate cell quota
171 dy(4) = ((VmaxP * y(2))/(y(2) + KP)) - muinf * min(1 - (QminN/y(3)), 1 - (QminP

/y(4))) * y(4); % Phosphorus cell quota
172 dy(5) = (muinf * min(1 - (QminN/y(3)), 1 - (QminP/y(4))) * y(5)) - (m * y(5));

% Biomass
173 end



Appendix B

Photosynthetic model code

MATLAB code B.1: Implementation of multiplicative photosynthesis algal growth model

developed by Bernard (2011). Code includes the main function with the

call to ODE23 and all plotting of results, a subfunction called hvarfAlgal

(line 124) which includes the ODEs to be solved and is called by the

ODE23 function as well as a function to calculate the light intensity based

on a step pulse on line 171.
1 function Bernard2011
2 tic
3 clf;
4 close all;
5 clear;
6 clc;
7
8 days = 25;
9 hrs = 12; % hours for width of pulse

10 w = hrs/24; % width of peak
11 td = w; % width of gap
12 lw = 3;
13
14 const = [
15 days; % (1)
16 w; % (2) width of peak
17 td; % (3) width of gap
18 ];
19
20 init=[1.411 0.03 0.6 100];
21
22 odeOptions = odeset('RelTol',1e-12);
23 [t,y]=ode23(@(t,y) hvarfAlgal(t,y,const),[0:0.01:25],init,odeOptions);
24
25 gammaMax = 0.57;
26 KIStar = 63;
27
28
29 load('Y:\Matlab\rateEquations\algae\Experimental\Flynn1994.mat')
30 %convert
31 A(:,4) = A(:,4)*0.0713944041066;
32 y(:,1) = y(:,1)*0.0713944041066;
33 h(1)=figure(1);

166
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34 th=t(:);
35 plot(th,y(:,1),'-k','linewidth',lw)
36 hold on
37 plot(A(:,1),A(:,4),'or')
38 pleg=legend('Model','Experimental');
39 set(pleg,'fontsize',12)
40 xlabel('Time (days)','fontsize',12,'fontweight','b')
41 ylabel('NH_{4}^{+} (\mumol.m^{-3})','fontsize',12,'fontweight','b')
42 %title('Nutrient','fontsize',12,'fontweight','b')
43 hold off
44
45
46 h(2)=figure(2);
47
48 %convert
49 xqA(:,1) = (A(:,2).*A(:,5))/0.0713944041066;
50 xqy(:,1) = (y(:,2).*y(:,3));
51 plot(th,xqy(:,1),'-k','linewidth',lw)
52 hold on
53 plot(A(:,1),A(:,6),'or')
54 pleg=legend('Model','Experimental');
55 set(pleg,'fontsize',12,'location', 'southEast')
56 xlabel('Time (days)','fontsize',12,'fontweight','b')
57 ylabel('Cell N (gN.m^{-3})','fontsize',12,'fontweight','b')
58 title('Cell Nitrogen Content','fontsize',12,'fontweight','b')
59 hold off
60
61 h(3)=figure(3);
62 plot(th,y(:,3),'-k','linewidth',lw)
63 hold on
64 plot(A(:,1),A(:,5),'or')
65 pleg=legend('Model','Experimental');
66 set(pleg,'fontsize',12,'location','southEast')
67 xlabel('Time (days)','fontsize',12,'fontweight','b')
68 ylabel('Cell C (g.m^{-3})','fontsize',12,'fontweight','b')
69 title('Cell Carbon Content','fontsize',12,'fontweight','b')
70 hold off
71
72 xq(:,1) = (y(:,2).*y(:,3));
73 Chl(:,1)=(gammaMax.*(KIStar./(y(:,4)+KIStar)).*xq(:,1));
74 h(5)=figure(5);
75 %convert
76 A(:,8) = A(:,8)/1000;
77 plot(th,Chl,'-k','linewidth',lw)
78 hold on
79 plot(A(:,1),A(:,8),'or')
80 pleg=legend('Model','Experimental');
81 set(pleg,'fontsize',12,'location','southEast')
82 xlabel('Time (days)','fontsize',12,'fontweight','b')
83 ylabel('Chl (gChl.m^{-3})','fontsize',12,'fontweight','b')
84 title('Chlorophyll','fontsize',12,'fontweight','b')
85 hold off
86
87 pAf = 8;
88 axA = [0 25];
89 h(6)=figure(6);
90 subplot(2,2,1), line1=plot(th,y(:,1),'-k','linewidth',lw),
91 hold on, line2=plot(A(:,1),A(:,4),'or'), axis([axA 0 0.12]),
92 xlabel('Time (days)','fontsize', pAf,'fontweight','b'),
93 ylabel('NH_{4}^{+} (\mumol.m^{-3})','fontsize', pAf,'fontweight','b'),
94 title('External Nitrogen (as Ammonium)')
95 subplot(2,2,2), plot(th,y(:,3),'-k','linewidth',lw), axis([axA 0 30]),
96 hold on, plot(A(:,1),A(:,5),'or'),
97 xlabel('Time (days)','fontsize', pAf,'fontweight','b'),
98 ylabel('Cell C (gC.m^{-3})','fontsize',pAf,'fontweight','b'),
99 title('Cell Carbon')

100 subplot(2,2,3), plot(th,Chl,'-k','linewidth',lw), axis([axA 0 0.45]),
101 hold on, plot(A(:,1),A(:,8),'or'),
102 xlabel('Time (days)','fontsize', pAf,'fontweight','b'),
103 ylabel('Chl (gChl.m^{-3})','fontsize',pAf,'fontweight','b'),
104 title('Cell Chlorophyll Content')
105 subplot(2,2,4), plot(th,xqy(:,1),'-k','linewidth',lw), axis([axA 0 1.8]),
106 hold on, plot(A(:,1),A(:,6),'or'),
107 xlabel('Time (days)','fontsize', pAf,'fontweight','b'),
108 ylabel('Cell N (gN.m^{-3})','fontsize',pAf,'fontweight','b'),
109 title('Cell Nitrogen')
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110 hL = legend([line1,line2],{'Model','Experimental'});
111 newPosition = [0.45 0.46 0.15 0.1];
112 newUnits = 'normalized';
113 set(hL,'Position', newPosition, 'Units', newUnits);
114
115 % export images
116 set(figure(6),'PaperSize', [14 14]);
117 set(figure(6),'PaperPosition',[-0.5 -0.5 15 15]);
118 print (h(6),'-dpdf', 'AllPeriodicLight.pdf');
119
120 %end
121 toc
122 end
123
124 function dx=hvarfAlgal(t,x,C)
125 muTilda = 1.7;
126 Q0 = 0.050;
127 QI = 0.25;
128 KSIStar = 1.4;
129 Kil = 295;
130 rhoBar = 0.073;
131 Ks = 0.0012;
132 R = 0.0081;
133 gammaMax = 0.57;
134 KIStar = 63;
135 a = 16.2;
136 b = 0.087;
137 c = 0.5;
138 I0 = 100;
139 Chl0 = 0.004;
140 x0 = 0.6;
141 L = 0.13;
142
143 %Function for creating a rectangular pulse
144 ts = C(2);
145 te = C(1);
146 d = [ts:C(2)+C(3):te]; % width of gap between centre of peaks
147 y = pulstran(t,d,'rectpuls',C(2));
148 I0 = I0 * y;
149
150 %calculated
151 Chl=(gammaMax*(KIStar/(x(4)+KIStar))*x(3)*x(2));
152 Theta0C = Chl/x(3);
153 Ksi = KSIStar/Theta0C;
154 Iopt = sqrt(Ksi * Kil);
155 Delta = (4 * (Iopt^2)) - (Kil^2);
156 zeta = (a*Chl)+(b*x(3));
157 lambda = zeta * L;
158 muBar = (muTilda * ((2 * Kil)/(lambda * sqrt(Delta))))...
159 * atan((I0*(1-exp(-lambda))*sqrt(Delta))/...
160 (((2*(I0^2)*exp(-lambda))+(I0*(1 + exp(-lambda))*Kil)+(2*(Iopt^2)))));
161 Ibar = ((I0/lambda)*(1-exp(-lambda)));
162
163 dx = zeros(4,1);
164 dx(1)=((-rhoBar * (x(1)/(x(1)+Ks))) * (1-(x(2)/QI)) * x(3));
165 dx(2)=((rhoBar * (x(1)/(x(1)+Ks))) * (1-(x(2)/QI))) - (muBar * (x(2)-Q0));
166 dx(3)= muBar * (1-(Q0/x(2))) * x(3) - (R * x(3));
167 dx(4)= muBar * (1-(Q0/x(2))) * (Ibar - x(4));
168
169 end
170
171 function [th,S,SA]=StepPulse(days, wh, tdh, l)
172 %Function for creating a rectangular pulse
173 w = wh * 3600; % width of peak
174 td = tdh * 3600;
175 ts = (wh * 3600)/2;
176 te = days * 86400;
177 t = 0:60:te; % time steps and range, small steps equal sharp continuity
178 d = [ts:w+td:te]; % width of gap between centre of peaks
179 y = pulstran(t,d,'rectpuls',w);
180 th=t(:)/3600;
181 S = l * y;
182 SA = mean(S);
183 end
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MATLAB code B.2: PSF Coupled model
1 function lightModelComp
2 set(0,'DefaultFigureWindowStyle','docked')
3 set(0,'DefaultAxesFontSize',8)
4 set(0,'DefaultAxesFontname','Times New Roman')
5 set(0,'DefaultTextFontname', 'Times New Roman')
6 %set(0, 'defaultTextInterpreter', 'latex');
7 set(gca,'box','off')
8 clear all;
9 clc;

10 close all;
11
12
13 filename = 'D:/matlab/klausmeierModel.xlsx';
14 sheet = 4;
15 xlRange = 'K11:K15';
16
17 iR = xlsread(filename, sheet, xlRange);
18
19 xlRange = 'K19:K30';
20
21 constants = xlsread(filename, sheet, xlRange);
22
23 global a RinN RinP VmaxN VmaxP KN KP muinf m QminN QminP n QmaxN QmaxP
24
25 a = constants(1);
26 RinN = constants(2);
27 RinP = constants(3);
28 VmaxN = constants(4);
29 VmaxP = constants(5);
30 KN = constants(6);
31 KP = constants(7);
32 muinf = 2.5084e-5; %constants(8);
33 m = constants(9);
34 QminN = constants(10);
35 QminP = constants(11);
36 QmaxN = 8*4.540E-14;% (19) Qmax,N
37 QmaxP = 16*1.640E-15;% (20) Qmax,P
38
39 %Colour maps
40 Blues=cbrewer('seq','Blues',9);
41 Greens=cbrewer('seq','Greens',9);
42 Reds=cbrewer('seq','Reds',9);
43
44 lw=3;
45 %for i=0.1:0.1:0.5
46 init=[1,0,0,iR(1),iR(2),iR(3),iR(4),iR(5)];
47 %init=[0,1,0];
48 %[t,y]=ode45(@hvarfAlgal,[0,1036800],init);
49 options = odeset('RelTol',1e-3);
50 days =60;
51 for i=1:4
52 n=i;
53 [ti,yi]=ode15s(@PSF,[0:3600:days*86400],init,options);
54 t(:,i)=ti(:)';
55 y1(:,i)=yi(:,1)';
56 y2(:,i)=yi(:,2)';
57 y3(:,i)=yi(:,3)';
58 y4(:,i)=yi(:,4)';
59 y5(:,i)=yi(:,5)';
60 y6(:,i)=yi(:,6)';
61 y7(:,i)=yi(:,7)';
62 y8(:,i)=yi(:,8)';
63 Check = [num2str(i), ' is complete'];
64 disp(Check)
65 end
66
67 fw(:,1)=t(:,1);
68 fw(:,2)=y8(:,1);
69 dlmwrite('bulkData.dat',fw,'delimiter',' ')
70
71 i=1;
72 for i=1:4
73 meanVals(i,1)=mean(y1(:,i)); %constant
74 meanVals(i,2)=mean(y2(:,i)); %constant
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75 meanVals(i,3)=mean(y3(:,i)); %constant
76 end
77 meanVals
78 bH(1)=figure('name','BarChart');
79 b = bar(meanVals,'stacked');
80 ylim([0 1]);
81 xlabels={'Constant','SIN Function','Gaussian Function','Step Pulse'};
82 set(gca, 'xticklabel',xlabels);
83 set(b(1),'FaceColor','k','EdgeColor','k');
84 set(b(2),'FaceColor','r','EdgeColor','r');
85 set(b(3),'FaceColor','b','EdgeColor','b');
86 set(bH(1),'PaperSize', [14 7]);
87 set(bH(1),'PaperPosition',[-0.25 0.1 14.5 7]);
88 print (bH(1),'-dpdf', 'meanBars.pdf');
89
90
91 th=t(:,1)/3600/24;
92
93 h(2)=figure('name','X');
94 hold on
95 plot(th,y8(:,1),'-k','linewidth',lw)
96 plot(th,y8(:,2),'-b','linewidth',lw)
97 plot(th,y8(:,3),'color',[0 0.5 0],'linewidth',lw)
98 plot(th,y8(:,4),'-r','linewidth',lw)
99 xlabel('Time (days)','fontweight','b')

100 ylabel('cells.m^{-3}','fontweight','b')
101 set(h(2),'PaperSize', [7 7]);
102 set(h(2),'PaperPosition',[0 0 7.5 7]);
103 print (h(2),'-dpdf', 'X.pdf');
104
105 h(3)=figure('name','RN');
106 hold on
107 plot(th,y4(:,1),'-k','linewidth',lw)
108 plot(th,y4(:,2),'-b','linewidth',lw)
109 plot(th,y4(:,3),'color',[0 0.5 0],'linewidth',lw)
110 plot(th,y4(:,4),'-r','linewidth',lw)
111 ylim([0 0.18])
112
113 xlabel('Time (days)','fontweight','b')
114 ylabel('\muMol.m^{-3}','fontweight','b')
115 set(h(3),'PaperSize', [7 7]);
116 set(h(3),'PaperPosition',[0 0 7.5 7]);
117 print (h(3),'-dpdf', 'RN.pdf');
118
119 h(4)=figure('name','RP');
120 hold on
121 plot(th,y5(:,1),'-k','linewidth',lw)
122 plot(th,y5(:,2),'-b','linewidth',lw)
123 plot(th,y5(:,3),'color',[0 0.5 0],'linewidth',lw)
124 plot(th,y5(:,4),'-r','linewidth',lw)
125 ylim([0 3e-3])
126 xlabel('Time (days)','fontweight','b')
127 ylabel('\muMol.m^{-3}','fontweight','b')
128 set(h(4),'PaperSize', [7 7]);
129 set(h(4),'PaperPosition',[0 0 7.5 7]);
130 print (h(4),'-dpdf', 'RP.pdf');
131
132 h(5)=figure('name','QN');
133 hold on
134 plot(th,y6(:,1),'-k','linewidth',lw)
135 plot(th,y6(:,2),'-b','linewidth',lw)
136 plot(th,y6(:,3),'color',[0 0.5 0],'linewidth',lw)
137 plot(th,y6(:,4),'-r','linewidth',lw)
138 xlabel('Time (days)','fontweight','b')
139 ylabel('\muMol.m^{-3}','fontweight','b')
140 set(h(5),'PaperSize', [7 7]);
141 set(h(5),'PaperPosition',[0 0 7.5 7]);
142 print (h(5),'-dpdf', 'QN.pdf');
143
144 h(6)=figure('name','QP');
145 hold on
146 plot(th,y7(:,1),'-k','linewidth',lw)
147 plot(th,y7(:,2),'-b','linewidth',lw)
148 plot(th,y7(:,3),'color',[0 0.5 0],'linewidth',lw)
149 plot(th,y7(:,4),'-r','linewidth',lw)
150 xlabel('Time (days)','fontweight','b')
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151 ylabel('\muMol.m^{-3}','fontweight','b')
152 set(h(6),'PaperSize', [7 7]);
153 set(h(6),'PaperPosition',[0 0 7.5 7]);
154 print (h(6),'-dpdf', 'QP.pdf');
155 hold on
156 end
157
158 function dx=PSF(t,x)
159 alpha = 0.001935; % per micro einsteins per metre square (\muE m^-2)^-1
160 beta = 5.7848e-7; % per micro einsteins per metre square (\muE m^-2)^-1
161 gamma = 0.1460; % per second s^-1
162 ∆ = 0.0004796; % per second s^-1
163
164 global a RinN RinP VmaxN VmaxP KN KP muinf m QminN QminP n QmaxN QmaxP
165 switch n
166 case 1
167 l = 266;
168 case 2
169 l=267+267*sin((0.728e-4*t)+21600);
170 case 3
171 sigma = 8640;
172 mu = 43200;
173 ga = 61094/(sigma*sqrt(pi));
174 ti=rem(t,86400);
175 l= 266*ga*exp(-((ti-mu)^2)/(2*sigma^2));
176 case 4
177 l=2*266;
178 %Function for creating a rectangular pulse
179 totLength = 86400; %total pulse length seconds (on+off)
180 onPulse = 1/2; %fraction of total length pulse is on
181 ts = onPulse * totLength;
182 te = totLength;
183 d = [ts:ts+ts:te]; % width of gap between centre of peaks
184 ti=rem(t,totLength);
185 y = pulstran(ti,d,'rectpuls',ts);
186 l = l * y;
187 end
188
189 dx = zeros(8,1);
190 dx(1) = (-alpha*l*x(1)) + (gamma*x(2)) + ∆*(1 - x(1) - x(2));
191 dx(2) = (alpha*l*x(1)) - (gamma*x(2)) - (beta*l*x(2));
192 dx(3) = (beta*l*x(2)) - ∆*x(3);
193 dx(4) = a*(RinN - x(4)) - (1-(x(6)/QmaxN)) * (VmaxN * x(4) * x(8))/(x(4) + KN);

% Nitrate concentration
194 dx(5) = a*(RinP - x(5)) - (1-(x(7)/QmaxP)) * (VmaxP * x(5) * x(8))/(x(5) + KP);

% Phosphorus concentration
195 dx(6) = (1-(x(6)/QmaxN)) * ((VmaxN * x(4))/(x(4) + KN)) - muinf * x(2) * min(1

- (QminN/x(6)), 1 - (QminP/x(7))) * x(6); % Nitrate cell quota
196 dx(7) = (1-(x(7)/QmaxP)) * ((VmaxP * x(5))/(x(5) + KP)) - muinf * x(2) * min(1

- (QminN/x(6)), 1 - (QminP/x(7))) * x(7); % Phosphorus cell quota
197 dx(8) = (muinf * min(1 - (QminN/x(6)), 1 - (QminP/x(7))) * x(2) * x(8)) - (m *

x(8)); % Biomass
198 end
199
200 function [th,S,SA]=StepPulse(days, wh, tdh, l)
201 %Function for creating a rectangular pulse
202 w = wh * 3600; % width of peak
203 td = tdh * 3600;
204 ts = (wh * 3600)/2;
205 te = days * 86400;
206 t = 0:60:te; % time steps and range, small steps equal sharp continuity
207 d = [ts:w+td:te]; % width of gap between centre of peaks
208 y = pulstran(t,d,'rectpuls',w);
209 th=t(:)/3600;
210 S = l * y;
211 SA = mean(S);
212 end
213
214 function S=funcEval(li)
215 %integrate gaussian function
216 syms tgauss
217 sigma = 8640;
218 mu = 43200;
219 ga = 61094/(sigma*sqrt(pi));
220 R=int(li*ga*exp(-((tgauss-mu)^2)/(2*sigma^2)), 0,86400)/(86400);
221 S=double(R);
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222 end



Appendix C

Coupled model source code

The source code displayed here is for the PNH coupled model. All the files required for

compiling the model are provided here, to compile the model copy the source code into

separate files named based on the captions and place them in a folder called PNHFoam.

The code can be compiled for and standard build of OpenFOAM 3.0.0 using the ’wmake’

command.

OpenFOAM source code C.1: PNHFoam.C
1 #include "fvCFD.H"
2 #include "fvIOoptionList.H"
3 #include "simpleControl.H"
4
5 // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
6
7 int main(int argc, char *argv[])
8 {
9 #include "setRootCase.H"

10 #include "createTime.H"
11 #include "createMesh.H"
12
13 simpleControl simple(mesh);
14
15 #include "createScalarFields.H"
16 #include "createPSFFields.H"
17 #include "createFvOptions.H"
18
19 // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
20
21 Info<< "\nCalculating scalar transport\n" << endl;
22
23 #include "CourantNo.H"
24
25 while (simple.loop())
26 {
27 Info<< nl << "Time = " << runTime.timeName() << "s" << nl
28 << "ClockTime = " << runTime.elapsedClockTime() << "s"
29 << nl << endl;
30

173
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31 while (simple.correctNonOrthogonal())
32 {
33 #include "PSF.H"
34 #include "cellQuota.H"
35 }
36
37 runTime.write();
38 }
39
40 Info<< "End\n" << endl;
41
42 return 0;
43 }

OpenFOAM source code C.2: PSF.H
1
2 fvScalarMatrix IEqn
3 (
4 fvm::laplacian(DI, I)
5 − fvm::Sp(aL, I)
6 );
7
8 IEqn.solve();
9

10 fvScalarMatrix xL1Eqn
11 (
12 fvm::ddt(xL1)
13 + fvm::div(phi, xL1)
14 − fvm::laplacian(DX, xL1)
15 ==
16 (gamma*xL2) − (alpha*I*xL1) + (delta*xL3)
17 );
18
19 fvScalarMatrix xL2Eqn
20 (
21 fvm::ddt(xL2)
22 + fvm::div(phi, xL2)
23 − fvm::laplacian(DX, xL2)
24 ==
25 (alpha*I*xL1) − (gamma*xL2) − (beta*I*xL2)
26 );
27
28 fvScalarMatrix xL3Eqn
29 (
30 fvm::ddt(xL3)
31 + fvm::div(phi, xL3)
32 − fvm::laplacian(DX, xL3)
33 ==
34 (beta*I*xL2) − (delta*xL3)
35 );
36
37 xL1Eqn.relax();
38 xL2Eqn.relax();
39 xL3Eqn.relax();
40
41 for (int coup=0; coup<=1; coup++)
42 {
43 xL1Eqn.solve();
44 xL2Eqn.solve();
45 xL3Eqn.solve();
46 }

OpenFOAM source code C.3: cellQuota.H
1 fvScalarMatrix nNEqn
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2 (
3 fvm::ddt(nN)
4 + fvm::div(phi, nN)
5 − fvm::laplacian(Dn, nN)
6 == a*(ninN − nN) − (scalar(1.0)−(QN/QmaxN)) * (VmaxN*nN*X)/(nN + KN)
7 );
8
9 fvScalarMatrix nPEqn

10 (
11 fvm::ddt(nP)
12 + fvm::div(phi, nP)
13 − fvm::laplacian(Dn, nP)
14 == a*(ninP − nP) − (scalar(1.0)−(QP/QmaxP)) * (VmaxP*nP*X)/(nP + KP)
15 );
16
17 fvScalarMatrix QNEqn
18 (
19 fvm::ddt(QN)
20 + fvm::div(phi, QN)
21 − fvm::laplacian(DX, QN)
22 == (scalar(1.0)−(QN/QmaxN)) * ((VmaxN*nN)/(nN + KN)) − muinf*xL2*min(scalar

(1.0) − (QminN/QN), scalar(1.0) − (QminP/QP)) * QN
23 );
24
25 fvScalarMatrix QPEqn
26 (
27 fvm::ddt(QP)
28 + fvm::div(phi, QP)
29 − fvm::laplacian(DX, QP)
30 == (scalar(1.0)−(QP/QmaxP)) * ((VmaxP*nP)/(nP + KP)) − muinf*xL2*min(scalar

(1.0) − (QminN/QN), scalar(1.0) − (QminP/QP)) * QP
31 );
32
33 fvScalarMatrix XEqn
34 (
35 fvm::ddt(X)
36 + fvm::div(phi, X)
37 − fvm::laplacian(DX, X)
38 == (muinf*xL2*min(scalar(1.0) − (QminN/QN), scalar(1.0) − (QminP/QP)) * X) −

(a*X)
39 );
40
41 for (int coup=0; coup<=1; coup++)
42 {
43 nNEqn.solve();
44 nPEqn.solve();
45 QNEqn.solve();
46 QPEqn.solve();
47 XEqn.solve();
48 }

OpenFOAM source code C.4: createScalarFields.H
1 Info<< "Reading field U\n" << endl;
2
3 volVectorField U
4 (
5 IOobject
6 (
7 "U",
8 runTime.timeName(),
9 mesh,

10 IOobject::MUST_READ,
11 IOobject::AUTO_WRITE
12 ),
13 mesh
14 );
15
16 Info<< "Reading field nN\n" << endl;
17
18 volScalarField nN
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19 (
20 IOobject
21 (
22 "nN",
23 runTime.timeName(),
24 mesh,
25 IOobject::MUST_READ,
26 IOobject::AUTO_WRITE
27 ),
28 mesh
29 );
30
31 Info<< "Reading field nP\n" << endl;
32
33 volScalarField nP
34 (
35 IOobject
36 (
37 "nP",
38 runTime.timeName(),
39 mesh,
40 IOobject::MUST_READ,
41 IOobject::AUTO_WRITE
42 ),
43 mesh
44 );
45
46 Info<< "Reading field QN\n" << endl;
47
48 volScalarField QN
49 (
50 IOobject
51 (
52 "QN",
53 runTime.timeName(),
54 mesh,
55 IOobject::MUST_READ,
56 IOobject::AUTO_WRITE
57 ),
58 mesh
59 );
60
61 Info<< "Reading field QP\n" << endl;
62
63 volScalarField QP
64 (
65 IOobject
66 (
67 "QP",
68 runTime.timeName(),
69 mesh,
70 IOobject::MUST_READ,
71 IOobject::AUTO_WRITE
72 ),
73 mesh
74 );
75
76 Info<< "Reading field X\n" << endl;
77
78 volScalarField X
79 (
80 IOobject
81 (
82 "X",
83 runTime.timeName(),
84 mesh,
85 IOobject::MUST_READ,
86 IOobject::AUTO_WRITE
87 ),
88 mesh
89 );
90
91 Info<< "Reading biokineticProperties\n" << endl;
92
93 IOdictionary biokineticProperties
94 (
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95 IOobject
96 (
97 "biokineticProperties",
98 runTime.constant(),
99 mesh,

100 IOobject::MUST_READ_IF_MODIFIED,
101 IOobject::NO_WRITE
102 )
103 );
104
105 dimensionedScalar a
106 (
107 biokineticProperties.lookup("a")
108 );
109
110 dimensionedScalar ninN
111 (
112 biokineticProperties.lookup("ninN")
113 );
114
115 dimensionedScalar ninP
116 (
117 biokineticProperties.lookup("ninP")
118 );
119
120 dimensionedScalar VmaxN
121 (
122 biokineticProperties.lookup("VmaxN")
123 );
124
125 dimensionedScalar VmaxP
126 (
127 biokineticProperties.lookup("VmaxP")
128 );
129
130 dimensionedScalar KN
131 (
132 biokineticProperties.lookup("KN")
133 );
134
135 dimensionedScalar KP
136 (
137 biokineticProperties.lookup("KP")
138 );
139
140 dimensionedScalar muinf
141 (
142 biokineticProperties.lookup("muinf")
143 );
144
145 dimensionedScalar QminN
146 (
147 biokineticProperties.lookup("QminN")
148 );
149
150 dimensionedScalar QminP
151 (
152 biokineticProperties.lookup("QminP")
153 );
154
155 dimensionedScalar QmaxN
156 (
157 biokineticProperties.lookup("QmaxN")
158 );
159
160 dimensionedScalar QmaxP
161 (
162 biokineticProperties.lookup("QmaxP")
163 );
164
165 Info<< "Reading transportProperties\n" << endl;
166
167 IOdictionary transportProperties
168 (
169 IOobject
170 (
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171 "transportProperties",
172 runTime.constant(),
173 mesh,
174 IOobject::MUST_READ_IF_MODIFIED,
175 IOobject::NO_WRITE
176 )
177 );
178
179
180 Info<< "Reading diffusivity DX\n" << endl;
181
182 dimensionedScalar DX
183 (
184 transportProperties.lookup("DX")
185 );
186
187 Info<< "Reading diffusivity Dn\n" << endl;
188
189 dimensionedScalar Dn
190 (
191 transportProperties.lookup("Dn")
192 );
193
194 # include "createPhi.H"

OpenFOAM source code C.5: createPSFFields.H
1 Info<< "Reading field I\n" << endl;
2
3 volScalarField I
4 (
5 IOobject
6 (
7 "I",
8 runTime.timeName(),
9 mesh,

10 IOobject::MUST_READ,
11 IOobject::AUTO_WRITE
12 ),
13 mesh
14 );
15
16 Info<< "Reading field xL1\n" << endl;
17
18 volScalarField xL1
19 (
20 IOobject
21 (
22 "xL1",
23 runTime.timeName(),
24 mesh,
25 IOobject::MUST_READ,
26 IOobject::AUTO_WRITE
27 ),
28 mesh
29 );
30
31 Info<< "Reading field xL2\n" << endl;
32
33 volScalarField xL2
34 (
35 IOobject
36 (
37 "xL2",
38 runTime.timeName(),
39 mesh,
40 IOobject::MUST_READ,
41 IOobject::AUTO_WRITE
42 ),
43 mesh
44 );
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45
46 Info<< "Reading field xL3\n" << endl;
47
48 volScalarField xL3
49 (
50 IOobject
51 (
52 "xL3",
53 runTime.timeName(),
54 mesh,
55 IOobject::MUST_READ,
56 IOobject::AUTO_WRITE
57 ),
58 mesh
59 );
60
61 Info<< "Reading PSFProperties\n" << endl;
62
63 IOdictionary PSFProperties
64 (
65 IOobject
66 (
67 "PSFProperties",
68 runTime.constant(),
69 mesh,
70 IOobject::MUST_READ_IF_MODIFIED,
71 IOobject::NO_WRITE
72 )
73 );
74
75 dimensionedScalar alpha
76 (
77 PSFProperties.lookup("alpha")
78 );
79
80 dimensionedScalar beta
81 (
82 PSFProperties.lookup("beta")
83 );
84
85 dimensionedScalar gamma
86 (
87 PSFProperties.lookup("gamma")
88 );
89
90 dimensionedScalar delta
91 (
92 PSFProperties.lookup("delta")
93 );
94
95 dimensionedScalar aL
96 (
97 transportProperties.lookup("aL")
98 );
99

100 dimensionedScalar sigma
101 (
102 transportProperties.lookup("sigma")
103 );
104
105 dimensionedScalar DI
106 (
107 1.0/(3.0*aL + sigma)
108 );

OpenFOAM source code C.6: Make/files
1 PNHFoam.C
2
3 EXE = $(FOAM_USER_APPBIN)/PNHFoam
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OpenFOAM source code C.7: Make/options
1 EXE_INC = \
2 −I$(LIB_SRC)/finiteVolume/lnInclude \
3 −I$(LIB_SRC)/fvOptions/lnInclude \
4 −I$(LIB_SRC)/meshTools/lnInclude \
5 −I$(LIB_SRC)/sampling/lnInclude
6
7 EXE_LIBS = \
8 −lfiniteVolume \
9 −lfvOptions \

10 −lmeshTools \
11 −lsampling
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