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Abstract

In this thesis we will be concerned with some questions regarding involutions

on dual and predual spaces of certain algebras arising from locally compact

quantum groups. In particular we have the L1pGq predual of a von Neumann

algebraic quantum group pL8pGq,∆q. This is a Banach algebra (where the

product is given by the pre-adjoint of the coproduct ∆), however in general

we cannot make this into a Banach ˚-algebra in such a way that the regu-

lar representation is a ˚-homomorphism. We can however find a dense ˚-

subalgebra L1
7 pGq that satisfies this property and is a Banach algebra under a

new norm. This was originally considered in Kustermans (2001) when defin-

ing the universal C˚-algebraic quantum group, however little else has been

studied regarding this algebra in general.

In this thesis we study the L1
7 -algebra of a locally compact quantum group

in this thesis. In particular we show how this has a (not necessarily unique)

operator space structure such that this forms a completely contractive Banach

algebra, we study some properties for compact quantum groups, we study

the object for the compact quantum group SUqp2q and we study the operator

biprojectivity of the L1
7 -algebra.

In addition we also briefly study some related properties of C0pGq˚ and its

˚-subalgebra C0pGq˚
7.
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Introduction

Locally compact quantum groups are a generalisation of locally compact groups that first

appeared in a definitive form in the reduced C˚-algebraic setting and afterwards in the

von Neumann algebraic setting as detailed in the papers Kustermans & Vaes (2000) and

Kustermans & Vaes (2003). In the von Neumann algebraic setting of a locally compact

quantum group we obtain a Banach algebra from the predual of the von Neumann algebra

and from this Kustermans introduced a dense ˚-subalgebra called the L1
7 -algebra (see

Kustermans (2001)). In this thesis we offer a detailed comprehensive study of this L1
7 -

algebra. In addition to this work for arbitrary locally compact quantum groups we will

study this object for the compact quantum group SUqp2q and obtain new results on this

quantum group as a result.

We now give an outline of this thesis. In Chapter 1 we review some advanced topics

in operator theory. In particular we study operator spaces, basic homological algebra of

operator spaces, one-parameter groups on Banach and operator algebras and lastly weight

theory (which is important for defining a locally compact quantum group). Chapter 1 will

give us a good stable footing in order to develop the rest of the thesis.

In Chapter 2 we define a locally compact quantum group G in the von Neumann

algebraic setting pL8pGq,∆q and the reduced C˚-algebraic setting pC0pGq,∆q and then

give the common properties we will use. In addition we will give details of duality, the

L1-algebra and of the product of locally compact quantum groups (a subject that to the

author’s knowledge is not currently recorded explicitly in the literature though we do use

many results from Vaes & Vainerman (2003) to show this).

1



Introduction

After this we study the special cases of compact and discrete quantum groups, Kac al-

gebras and coamenable quantum groups in Chapter 3. For us the compact case is the most

important as we shall see in the remainder of the thesis. We spend some time discussing

compact quantum groups in the locally compact setting where, for example, we calculate

the multiplicative unitary and scaling group of a compact quantum group (objects that

feature predominantly in the locally compact case).

We then come onto the research chapters of this thesis. In Chapter 4 we begin our

study of the L1
7 -algebra for a locally compact quantum group. We start by detailing known

results regarding this object, many of which were known to Kustermans in his original

paper on universal locally compact quantum groups. We then add an operator space

structure on the L1
7 -algebra making it a completely contractive Banach algebra and we

prove various properties of this as an operator space. We prove finally that a locally

compact quantum group is compact if and only if its L1
7 -algebra is an ideal in its own

double dual with respect to the Arens product.

In Chapter 5 we make a detailed study of the SUqp2q compact quantum group for

q P p0, 1q that was originally discovered by Woronowicz. We begin by giving the basic

definition, the Haar state and the corepresentation theory of SUqp2q before moving on

to discuss new results as obtained by the author. We then show that we have a compact

space K such that the commutative C˚-algebra generated by the normal element c of

SUqp2q is ˚-isomorphic to CpKq. We then use this new object to study the L1
7 -algebra

of SUqp2q and the quantum group product of SUqp2q with SUq1p2q (for q1 P p0, 1q also).

We then finish this chapter with a brief study of CpSUqp2qq˚
7 and we show that the set

lin tpν b idqpW q | ν P C0pSUqp2qq˚u}¨}
is not closed under adjoint and therefore not a

C˚-algebra.

In the final chapter we study some homological algebra for the L1
7 -algebra. We study

projective modules over the L1
7 -algebra and the adjoint map of the multiplication map

of the L1
7 -algebra as a completely contractive Banach algebra. Finally we study its re-

lationship to compact quantum groups where we prove that if the L1
7 -algebra is operator

2



biprojective then the quantum group must be compact and we give a structure theorem for

the L1
7 -algebra to be operator biprojective.

We give an appendix for some further results used in functional analysis, measure

theory and operator theory. We do assume however that the reader is familiar with the

basics of these subjects including Banach space, Banach algebra, C˚-algebra and von

Neumann algebra theory.

Most of the notation we use is standard in functional analysis, operator theory and

quantum group theory. The notation for operator spaces and quantum groups is described

in the first two chapters. We will also have use for some algebraic notions: for example we

denote by d the algebraic tensor product, linX will denote the linear span of a subsetX of

a linear space and algA will denote the algebra generated by a subsetA of an algebra. We

will only ever use the norm, weak and, when applicable, the weak˚ topologies on Banach

spaces with the exception of von Neumann algebras where we will also use the weak

operator topologies (we assume the reader is comfortable with these notions). We will

refer interchangeably to the equivalent σ-weak topology and weak˚-topology on a von

Neumann algebra. We denote the norm closure of a set X by X
}¨}

, the weak closure by

X
w

and the weak˚-closure by X
w˚

. We denote a weak limit x of a net pxαq by xα
wÝÑ x

and similarly a weak˚-limit by xα
w˚

ÝÑ x. We will often denote a norm with a subscript

when it is not clear where it comes from.

We also assume the reader is familiar with the Banach space projective tensor product

denoted b̂ , the minimal tensor product denoted by bmin on C˚-algebras and the von

Neumann algebraic tensor product b on von Neumann algebras. See Ryan (2002) and

Takesaki (2003a) for further details on tensor products in Banach spaces and operator

theory.

3
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Chapter 1

Operator Theory

In this chapter we discuss preliminaries required for reading this thesis that may not nec-

essarily follow from standard courses in functional analysis and operator theory. In par-

ticular we describe operator spaces and homological algebra, one-parameter groups and

weights on von Neumann algebras.

1.1 Operator Spaces

We begin with a discussion of operator space theory. It has been seen that operator space

theory is useful for studying locally compact groups (see for example Effros & Ruan

(2003) and Junge et al. (2009)) and locally compact quantum groups (see Hu et al. (2011),

Aristov (2004) and Daws (2010)). We will make use of operator space structures in this

thesis with our study of the L1
7 pGq algebra for a locally compact quantum group G.

Standard references in this section are Effros & Ruan (2000), Pisier (2003) and Blecher

& Le Merdy (2004) which will be quoted regularly throughout.

1.1.1 Operator Spaces and Ruan’s Theorem

Given any Banach space we can show there is some compact space Ω such that X can be

isometrically embedded inside CpΩq, that is any Banach space is a subspace of a function

5



1. OPERATOR THEORY

space. This can in turn be represented as bounded operators on a Hilbert space. We ask

what kind of extra structure embedding a Banach space as a subspace of BpHq will give

us? We characterise this according to Ruan’s theorem below (Theorem 1.1.3).

We now make a small digression about matrices with entries in a linear space X . The

following is just to standardise notation.

Notation 1.1.1 Let X be a linear space and let Mn,mpXq denote the space of n ˆ m-

matrices with entries in X . We make this a linear space with operations

pxijqn,mi,j“1
` pyijqn,mi,j“1

“ pxij ` yijqn,mi,j“1
and λ pxi,jqn,mi,j“1

“ pλxi,jqn,mi,j“1

where xij, yij P X for 1 ď i, j ď n and λ P C. If n “ m then the n ˆ n matrices with

entries in X are denoted MnpXq.

Given a linear map T : X Ñ Y between linear spaces we let Tn,m : Mn,mpXq Ñ
Mn,mpY q be the map given by pxi,jqn,mi,j“1

ÞÑ pT pxi,jqqn,m
i,j“1

and if n “ m then we denote

by Tn : MnpXq Ñ MnpY q the obvious map between square matrices.

Say X is a ˚-algebra, then we make MnpXq into a ˚-algebra with multiplication and

adjoint given by

pxi,jqni,j“1
¨ pyi,jqni,j“1

“
˜

nÿ

k“1

xi,kyk,j

¸n

i,j“1

and
´

pxijqni,j“1

¯˚
“
`
x˚
ji

˘n
i,j“1

where xi,j , yi,j P X for 1 ď i, j ď n.

It is reasonably straightforward to see that for a linear space X we have an isomor-

phism Mn,mpXq “ Mn,m d X given by pxijqni,j“1 ÞÑ řn

i,j“1 eij b xij where eij is the

n ˆ m-matrix with entry 1 in the i, j-th place and 0 elsewhere where d denotes the alge-

braic tensor product.

Now let X Ă BpHq be a linear subspace for some Hilbert space H. We can consider

6



1.1 Operator Spaces

Hpnq “ H ‘2 ¨ ¨ ¨ ‘2 H (n times) as a Hilbert space with inner product

ppξiqni“1|pηiqni“1qHpnq “
nÿ

i“1

pξi|ηiqH .

Let Φ : MnpXq Ñ BpHpnqq by

“
Φ
`
pxijqni,j“1

˘‰
pξiqni“1 “

˜
nÿ

j“1

xijξj

¸n

i“1

for pξiqni“1 P Hpnq. We can show that this preserves the adjoint and multiplication oper-

ations if X is a ˚-algebra. As the space BpHpnqq is normed we can use this to define a

norm on MnpXq by letting

}pxijqni,j“1}MnpXq “ sup

$
&
%

›››››

˜
nÿ

j“1

xijξj

¸n

i“1

›››››
Hn

ˇ̌
ˇ̌
ˇ̌ pξiqni“1 P Hn, }pξqni“1} ď 1

,
.
- . (1.1)

So for all n P N we have defined a norm on MnpXq with an embedding inside MnpBpHqq
such that MnpBpHqq –i BpHpnqq, i.e. we have a sequence of matrix norms } ¨ }n. We can

show that the following is true.

Proposition 1.1.2 Let X Ă BpHq be a linear subspace with the matrix norms } ¨ }n given

above. Then we have

(R1) }axb}n ď }a}}x}m}b} for all x P MmpXq, a P Mn,m and b P Mm,n;

(R2) }x ‘ y}m`n “ maxt}x}m, }y}nu for x P MmpXq and y P MnpXq;

where x ‘ y P BpHpnq ‘2 H
pmqq denotes the operator given by pξ, ηqt ÞÑ pxξ, yηqt for

ξ P Hpnq and η P Hpmq.

The more difficult and interesting point is that the converse of the proposition holds which

forms Ruan’s theorem as follows. See Effros & Ruan (2000) or Pisier (2003) for a proof

of this.

7



1. OPERATOR THEORY

Theorem 1.1.3 Let X be a linear space such that for all n P N we have a norm on

MnpXq satisfying pR1q and pR2q in Proposition 1.1.2. Then there exists a Hilbert space

H and an embedding J : X Ñ BpHq such that the map Jn : MnpXq Ñ BpHpnqq from

Notation 1.1.1 is an isometry for all n P N.

We state the following that is not difficult to prove for convenience here. For our purposes

we will define operator spaces to be complete so as to be analogous to Banach spaces.

Proposition 1.1.4 Let X Ă BpHq, and let pxijqni,j“1 P MnpXq, then X is complete if and

only if MnpXq is complete for all n P N.

We now make the following definition of an operator space.

Definition 1.1.5 An operator space X is a linear space with a collection of norms } ¨ }n
on MnpXq for all n P N that satisfy Ruan’s axioms in Proposition 1.1.2 and such that X

is complete with respect to the } ¨ }1 norm.

So we can either define an operator space through a sequence of norms or through a closed

embedding into BpHq for some Hilbert space H. We will define operator spaces using

both of these methods in this thesis.

Remark 1.1.6 In the case where we have a non-square matrix then we can embed this in a

larger square matrix by adding either columns or rows of zeros until it is square. As such,

if we have an operator space structure X , we define norms on rectangular matrices by

simply embedding the rectangular matrices into square matrices this way and calculating

the norm. The norms of square matrices do not change as we add rows or columns of

zeros so this is well defined.

We now give some basic examples of operator spaces with more to follow in the next

section.
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1.1 Operator Spaces

Example 1.1.7 We know from the start of this section that any Banach space X is an

operator space. It also follows that any C˚-algebra can be made into an operator space by

the GNS construction. Similarly any von Neumann algebra is automatically an operator

space.

Example 1.1.8 Let X be an operator space, then MnpXq is an operator space by identi-

fying MnpMmpXqq “ MmnpXq with the map
`
pxi,jk,lqmk,l“1

˘n
i,j“1

ÞÑ
`
x
i,j
k,l

˘pn,mq
pi,kq,pj,lq“p1,1q.

Let Y be a closed subspace of X and we have that Y is an operator space with the

obvious embedding.

1.1.2 Completely Bounded Maps, Duals and Quotients

We have defined an operator space in the previous section and now in this section we

consider the appropriate morphisms between operator spaces. As we have norms on ma-

trices with entries in an operator space it will be useful to have a morphism that respects

this structure in a similar way as to how bounded maps do for Banach spaces. We define

now the completely bounded maps (along with their various counterparts of complete

contractions, complete isometries, etc) and give some of their properties.

We will show in this section how we can make dual spaces and quotient spaces of

operator spaces into operator spaces themselves and we will give various theorems re-

garding completely bounded adjoint maps. We note for the following definition that a

quotient map between Banach spaces is given in Definition A.1.5.

Definition 1.1.9 Let X and Y be operator spaces, let T : X Ñ Y be a linear map and

let Tn : MnpXq Ñ MnpY q be the map given in Notation 1.1.1. As MnpXq and MnpY q
are both normed then we can define the following norm on Tn

}Tn} “ sup
!

}Tn pxijqni,j“1
}
ˇ̌
ˇ pxijqni,j“1

P MnpXq,
›››pxijqni,j“1

››› ď 1
)
.

We say T is completely bounded if there is some M ą 0 such that }Tn} ď M for all

9



1. OPERATOR THEORY

n P N in which case we define the following norm

}T }cb “ sup
nPN

}Tn}.

We denote by CBpX, Y q the completely bounded maps from X to Y and we have the

following important definitions:

(i) T is completely contractive if }T }cb ď 1;

(ii) T is a complete isometry if Tn is an isometry for all n P N;

(iii) T is a complete quotient map if Tn is a quotient map for all n P N (see Example

1.1.17 below for the operator space structure on quotient spaces);

(iv) T is a complete isomorphism if T is a linear isomorphism and T and T´1 are

completely bounded.

We denote X –ci Y where X and Y are completely isometric and completely isomorphic

and say they are completely isometrically isomorphic.

Clearly for any completely bounded map T : X Ñ Y between operator spaces we have

}Tn}n ď }T }cb for all n P N. In particular we have }T } ď }T }cb.
Throughout the rest of this section we give some more examples of operator spaces

and morphisms between them.

Proposition 1.1.10 Let A and B be C˚-algebras and T : A Ñ B a ˚-homomorphism,

then T is a complete contraction. If T is a ˚-isomorphism than it is a complete isometry.

Proof (Sketch)

We know that a ˚-homomorphism between C˚-algebras is a contraction from C˚-algebra

theory. By representingA on a Hilbert space H and using that MnpAq is a closed subspace

of BpHpnqq then MnpAq is a C˚-subalgebra. We can show that Φn : MnpAq Ñ MnpAq is

a ˚-homomorphism and so Φn is a contraction for all n P N.

10



1.1 Operator Spaces

If Φ is a ˚-isomorphism then we show that Φn is injective and surjective for all n P N

and thus each Φn is a ˚-isomorphism as required. ✷

We now show that we can make CBpX, Y q into an operator space itself. See section

1.2.19 in Blecher & Le Merdy (2004) for further details.

Example 1.1.11 For all n P N we can define a bijective linear map Φ : MnpCBpX, Y qq Ñ
CBpX,MnpY qq by Φ

`
pTijqni,j“1

˘
pxq “ pTijpxqqn

i,j“1
and we can define the norm on

MnpCBpX, Y qq such that Φ is an isometry.

As a result of this we see that choosing Y “ C in the above we turn X˚ into an operator

space.

We record the following two results from Proposition 2.2.2 and Corollary 2.2.5 from

Effros & Ruan (2000).

Proposition 1.1.12 Let X be an operator space, n P N and T : X Ñ Mn a linear map,

then }T }cb “ }Tn}.

Corollary 1.1.13 Let X and Y be n-dimensional operator spaces, then there is an iso-

morphism T : X Ñ Y such that }T }cb}T´1}cb ď n2.

Example 1.1.14 Let X be an operator space and X˚ the Banach dual of X . We have

from Proposition 1.1.12 that X˚ “ BpX,Cq “ CBpX,Cq.

For n P N we define a map Φ : MnpX˚q Ñ CBpX,Mnq given by Φ
`
pωijqni,j“1

˘
pxq “

pxx, ωijyqn
i,j“1

and we show this defines a bijective linear map. Clearly we have a lin-

ear injective map. Say f P CBpX,Mnq, then we define ωij : X Ñ C by ωijpxq “
pfpxqqi,j; that is we define it as the i, j-th entry of fpxq P Mn. Then we have |xx, ωijy| “
|pfpxqqij| ď }fpxq} ď }f}}x} and so ωij P X˚ for all 1 ď i, j ď n. Also we have

Φppωijqni,j“1qpxq “ pxx, ωijyqn
i,j“1

“ ppfpxqqi,jqni,j“1
“ fpxq

11



1. OPERATOR THEORY

and so Φ is surjective. It follows that we can define an operator space structure on X˚

making Φ a complete isometry using the operator space structure on CBpX,Mnq for

n P N.

IfX has a predualX˚ thenX˚ Ă X˚ has an operator space structure by restriction of

the operator space structure on X˚ by Example 1.1.8. In particular we have an operator

space on the predual M˚ of a von Neumann algebra M and furthermore, we have that the

operator space structure on pM˚q˚ as the dual space is completely isometric to that of the

operator space structure on M .

We have the following property for the canonical embedding of a space into its double

dual. See Proposition 3.2.1 in Effros & Ruan (2000) and Section 2.1 of Pisier (2003) for

proofs.

Proposition 1.1.15 Let X be an operator space, then the canonical embedding ι : X Ñ
X˚˚ of X into its double dual is a complete isometry.

Next we consider adjoint maps. Let T : X Ñ Y be a bounded map between Banach

spaces X and Y , then there exists a unique bounded map T ˚ : Y ˚ Ñ X˚ called the

adjoint map such that

xT ˚ω, xy “ xω, Txy (1.2)

for ω P Y ˚ and x P X where }T } “ }T ˚}. We have the following in the case of operator

spaces.

Proposition 1.1.16 Let T : X Ñ Y be a linear map between operator spaces X and Y ,

then the adjoint map T ˚ : Y ˚ Ñ X˚ in Equation (1.2) is completely bounded if and only

if T is completely bounded. Furthermore if these conditions hold we have }T ˚}cb “ }T }cb.

The reader is referred to Section 2.4 in Pisier (2003) for further details on adjoint maps.

We now establish some properties of quotient spaces of operator spaces.

12



1.1 Operator Spaces

Example 1.1.17 Let X be an operator space, Y a closed subspace of X and fix n P N.

Then MnpY q is closed in MnpXq and so we may identify MnpX{Y q with MnpXq{MnpY q
by defining an isomorphism pxij ` Y qni,j“1 ÞÑ pxijqni,j“1 ` MnpY q. In particular for

pxijqni,j“1 P MnpX{Y q we have

}pxijqni,j“1} “ inf
 

}pyijqni,j“1}
ˇ̌

pyijqni,j“1 P MnpXq, pyij ` Y qni,j“1 “ pxijqni,j“1

(
.

It can be shown this forms an operator space, see Example 3.1.1 in Effros & Ruan (2000).

Proposition 1.1.18 Let X , Y and Z be operator spaces, let q : X Ñ X{Y denote the

canonical surjection map and let u : X{Y Ñ Z be a linear map. We let X{Y have the

operator space structure in Example 1.1.17 and then we have u P CBpX{Y, Zq if and

only if uq P CBpX,Zq with }u}cb “ }uq}cb.

For a proof of the following see Section 2.4 in Pisier (2003) and 1.4.3 in Blecher &

Le Merdy (2004). We have a similar well known result for Banach spaces.

Proposition 1.1.19 Let T : X Ñ Y be a completely bounded map between operator

spaces. Then we have the following:

(i) T is a complete isometry if and only if T ˚ is a complete quotient map;

(ii) T is a complete quotient map if and only if T ˚ is a complete isometry.

Lemma 1.1.20 Let T : X Ñ Y and S : Y Ñ X be complete contractions between

operator spaces with ST “ idX . Then T is a complete isometry and S a complete

quotient map.

Proof

Let x P X and n P N and we have

}pxijqni,j“1}n “ }SnTnpxijqni,j“1}n ď }S}cb}Tnpxijqni,j“1}n

ď }Tnpxijqni,j“1}n ď }T }cb}pxijqni,j“1}n ď }pxijqni,j“1}n

13



1. OPERATOR THEORY

and so we have equality throughout and Tn is an isometry for all n P N.

Now taking adjoints we find completely contractive maps S˚ and T ˚ such that T ˚S˚ “
idX˚ . Then we see similarly that S˚ is a complete isometry and thus by Proposition 1.1.19

we have that S is a complete quotient map. ✷

Corollary 1.1.21 Let T : X Ñ Y and S : Y Ñ X be complete contractions between

operator spaces with ST “ idX and TS “ idY , then S and T are completely isometric

isomorphisms and X –ci Y .

Example 1.1.22 Let X be a linear space and let X “ tx | x P Xu be a linear space

with addition and scalar multiplication given by

x ` y “ x ` y, λx “ λx

for x, y P X and λ P C.

Given a finite dimensional linear space X with a basis tei | 1 ď i ď nu we can write

x “ řn

i“1 xiei for xi P C (1 ď i ď n). Now let x P X and we have x P X and can

write this as above. Then we have x “ řn

i“1 xiei “ řn

i“1 xi ei and so we have a basis

tei | 1 ď i ď nu for X .

Let T : X Ñ Y be a linear map between linear spaces and define a map T : X Ñ
Y by T pxq “ Tx. In particular we have linear functionals on X say. If X is finite

dimensional and T : X Ñ X is given by a matrix pTijqni,j“1 then we can write

T peiq “ T peiq “
nÿ

j“1

Tijej

and so we define pTijqni,j“1 “
`
Tij

˘n
i,j“1

.

If we have a Hilbert space H we can make H a Hilbert space with inner product
`
ξ
ˇ̌
η
˘

“ pξ|ηq “ pη|ξq for all ξ, η P H. We have for T P BpHq that
››T pξq

›› “ }Tξ} for

all ξ P H and so
››T

›› “ }T } giving T P B
`
H
˘
.
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1.1 Operator Spaces

Given an operator space X Ă BpHq we have an embedding π : X Ñ BpHq and we

can show that

›››pxijqni,j“1

ˇ̌
ˇ
MnpXq

“
›››pxijqni,j“1

›››
MnpXq

“
›››pxijqni,j“1

›››
MnpXq

.

It also follows that for a completely bounded map between operator spaces T P CBpX, Y q
that T P CBpX, Y q and }T }cb “

››T
››
cb

. Furthermore the map CBpX, Y q Ñ CBpX, Y q
given by T ÞÑ T is an anti-linear completely isometric isomorphism.

Finally consider a completely bounded linear map T : X Ñ Y , then we have a map

T : X Ñ Y such that for all x, x1 P X and λ P C we have

T px ` λyq “ T
´
x ` λy

¯
“ T px ` λyq “ Tx ` λTy “ Tx ` λTy

and so T : X Ñ Y is linear. We know that }T }cb “
››T

››
cb

and so we have a completely

isometric isomorphism CBpX, Y q –ci CBpX, Y q.

There are potentially many different operator space structures on a Banach spaceX; how-

ever we always have a minimal and maximal operator space structure. See Section 3.3 in

Effros & Ruan (2000) and Chapter 3 in Pisier (2003) for further details.

Definition 1.1.23 We define two operator space structures MINpXq and MAXpXq as

follows. For all n P N and x “ pxijqni,j“1 P MnpXq let

}x}MnpMINpXqq :“ sup t}fnpxq} | f P X˚, }f} ď 1u

and let

}x}MnpMAXpXqq :“ sup

$
&
%}θnpxq}

ˇ̌
ˇ̌
ˇ̌

H is a Hilbert space and θ : X Ñ BpHq
an embedding such that }θ} ď 1

,
.
- .

We call MINpXq the minimal operator space structure onX and MAXpXq the maximal

15



1. OPERATOR THEORY

operator space structure on X .

Let } ¨ }n a be collection of norms defining an operator space structure, then for all

x P MnpXq we have }x}MnpMINpXqq ď }x}n ď }x}MnpMAXpXqq. We have the following

important proposition.

Proposition 1.1.24 For a Banach space X we have

pMAXpXqq˚ –ci MINpX˚q, pMINpXqq˚ –ci MAXpX˚q.

1.1.3 Direct Sums and Tensor Products of Operator Spaces

We now move on to discussing direct sum and tensor products of operator spaces. See

Section 2.6 and Chapters 4 in Pisier (2003) and Chapters 7 and 8 in Effros & Ruan (2000)

for further details. We offer more proofs in this section where the author could not find

proofs in the standard references given.

Definition 1.1.25 Let Xi Ă BpHiq be operator spaces for i “ 1, 2, then we define the

operator space X1 ‘8 X2 with the obvious embedding into BpH1 ‘2 H2q.

Note that given Banach spaces X1 and X2 we have a Banach space direct sum X1 ‘8 X2

with norm

}px1, x2q}X1‘8X2
“ supt}x1}X1

, }x2}X2
u.

The following shows that our operator space embedding in Definition 1.1.25 gives us the

Banach space X1 ‘8 X2 when X1 and X2 are considered as Banach spaces.

Proposition 1.1.26 Let Xi Ă BpHiq be operator spaces for i “ 1, 2 and let

ppx1ij, x2ijqqni,j“1 P MnpX1 ‘8 X2q, then we have

›››
`
px1ij , x2ijq

˘n
i,j“1

›››
MnpX1‘8X2q

“ sup
 

}px1ijqni,j“1}MnpX1q, }px2ijqni,j“1}MnpX2q
(
.
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1.1 Operator Spaces

Proposition 1.1.27 Let Xi Ă BpHiq be operator spaces, πi : X1 ‘8 X2 Ñ Xi the

canonical projection maps and ιi : Xi Ñ X1 ‘8 X2 the canonical injection maps. Then

for i “ 1, 2 we have that πi and ιi are complete contractions and furthermore πi are

complete quotient maps.

Proposition 1.1.28 (i) Let X , Y and Z be operator spaces, T P CBpX, Y q and S P
CBpX,Zq, then we have a map T ‘ S P CBpX, Y ‘8 Zq given by x ÞÑ pTx, Sxq
with }T ‘ S}cb “ maxt}T }cb, }S}cbu;

(ii) Let X1, X2, Y1 and Y2 be operator spaces, T1 P CBpX1, Y1q and T2 P CBpX2, Y2q.

We have a map T1‘8T2 P CBpX1‘8X2, Y1‘8Y2q given by px1, x2q ÞÑ pT1x1, T2x2q.

If T1 and T2 are complete contractions (isometries) then T1 ‘8T2 is also a complete

contraction (isometry).

Proof

(i) Let pxijq P MnpXq and then pT ‘ Sqnppxijqni,j“1q “
`
pT pxijqqni,j“1, pSpxijqqni,j“1

˘

and so

}pT ‘ Sqnppxijqni,j“1q}MnpY ‘8Zq “ max
 

}Tnppxijqni,j“1q}, }Snppxijqni,j“1q}
(

ď maxt}Tn}, }Sn}u}pxijqni,j“1}.

Then it follows that }pT ‘ Sqn} ď maxt}Tn}, }Sn}u ď maxt}T }cb, }S}cbu and so

taking the limit n Ñ 8 we get }T ‘ S}cb ď maxt}T }cb, }S}cbu. On the other hand

we have }pT ‘ Sqnpxijq} ě }Tnppxijqni,j“1} and similarly for Sn. So

maxt}Tn}, }Sn}u ď }pT ‘ Sqn} ď }T ‘ S}cb

for all n P N and then taking the limit of n Ñ 8 we get maxt}T }cb, }S}cbu ď
}T ‘ S}cb as required.
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(ii) Let pxijqni,j“1 P MnpX1q and pyijq P MnpX2q and we have

››pT1 ‘8 T2qn
`
pxijqni,j“1, pyijqni,j“1

˘››
MnpY1‘8Y2q

“ max
!››pT1pxijqqni,j“1

››
MnpY1q ,

››pT2pyijqqni,j“1

››
MnpY2q

)

ď max
!

}T1}cb
››pxijqni,j“1

››
MnpX1q , }T2}cb

››pyijqni,j“1

››
MnpX2q

)

ď maxt}T1}cb, }T2}cbumax
!››pxijqni,j“1

››
MnpX1q ,

››pyijqni,j“1

››
MnpX2q

)

and so }T1 ‘8 T2}cb ď }T1}cb}T2}cb and T1 ‘8 T2 is a completely bounded map.

Clearly if T1 and T2 are contractions this shows that so is T1 ‘8 T2. If T1 and T2 are

complete isometries then

››pT1 ‘8 T2qn
`
pxijqni,j“1, pyijqni,j“1

˘››
MnpY1‘8Y2q

“ max
!››pT1pxijqqni,j“1

››
MnpY1q ,

››pT2pyijqqni,j“1

››
MnpY2q

)

“ max
!››pxijqni,j“1

››
MnpY1q ,

››pyijqni,j“1

››
MnpY2q

)

“
››`pxijqni,j“1, pyijqni,j“1

˘››
MnpX1‘8X2q

and so T1 ‘8 T2 is also a complete isometry. ✷

Corollary 1.1.29 Let X , Y and Z denote operator spaces, then we have CBpX, Y ‘8

Zq –ci CBpX, Y q ‘8 CBpX,Zq.

Proof

We have an isometry Ψ : CBpX, Y q ‘8 CBpX,Zq Ñ CBpX, Y ‘8 Zq by the previous

proposition given by pT, Sq ÞÑ T ‘S and we show this is onto. Let T P CBpX, Y ‘8 Zq
and we consider the maps π1 ˝T P CBpX, Y q and π2 ˝T P CBpX,Zq. Then for all x P X
we have

ψppπ1 ˝ T q, pπ2 ˝ T qqpxq “ ppπ1 ˝ T qpxq, pπ2 ˝ T qpxqq “ Tx

and so ψ pppπ1 ˝ T q, pπ2 ˝ T qqq “ T . So Ψ is an isometric isomorphism.
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1.1 Operator Spaces

Now fix n P N and using this isometric isomorphism and Proposition 1.1.26 we have

MnpCBpX, Y q ‘8 CBpX,Zqq –i MnpCBpX, Y qq ‘8 MnpCBpX,Zqq

–i CBpX,MnpY qq ‘8 CBpX,MnpZqq –i CBpX,MnpY q ‘8 MnpZqq

–i CBpX,MnpY ‘8 Zqq –i MnpCBpX, Y ‘8 Zqq

and so Ψ is a complete isometry as required. ✷

We consider another example of a direct sum of operator spaces now.

Example 1.1.30 Let Xi Ă BpHiq denote operator spaces for i “ 1, 2, let ιi : Xi Ñ
BpH1 ‘2 H2q denote the embeddings x ÞÑ px, 0q and y ÞÑ p0, yq and let P denote the set

of all pairs pu1, u2q of completely contractive maps ui : Xi Ñ BpHuq for some Hilbert

space Hu (dependent on pu1, u2q). Note that P is non-empty as we have the completely

isometric embeddings pι1, ι2q P P . We let H “ À2

uPPHu for convenience.

Let J : X1 ‘ X2 Ñ BpHq be given by px, yq ÞÑ pu1pxq ` u2pyqquPP . We define an

operator space X1 ‘1 X2 such that J is a complete isometry here.

This satisfies the following universal property: for any operator space Y and complete

contractions u1 : X1 Ñ Y and u2 : X2 Ñ Y then the map X1 ‘1 X2 Ñ Y given by

px1, x2q ÞÑ u1px1q ` u2px2q for x1 P X1 and x2 P X2 is a complete contraction.

Proposition 1.1.31 Let X1, X2 and Y denote operator spaces, let T P CBpX1, Y q and

S P CBpX2, Y q. Let T ‘1 S : X1 ‘1X2 Ñ Y be the map given by px, x1q ÞÑ Tx`Sx1. If

T and S are complete contractions then so is T ‘1 S. Furthermore we have }T ‘1 S}cb “
maxt}T }cb, }S}cbu.

Proof

Let T and S be complete contractions and H the Hilbert space such that Y Ă BpHq as

an operator space, then we have that pT, Sq P P for P given in Example 1.1.30 and it

follows that }pT ‘1 Sqpx, yq} ď }Jpx, yq}. So T ‘1 S is completely contractive.
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Let T P CBpX,Zq and S P CBpY, Zq and let α “ maxt}T }cb, }S}cbu. Then T 1 “
T

α
and S 1 “ S

α
are both complete contractions and thus T 1 ‘1 S

1 is also a complete

contraction. Then we have }T ‘1 S} ď α “ maxt}T }cb, }S}cbu. Also we have for n P N

that

}Tnppxijqni,j“1q}MnpZq “ }pT ‘1 Sqnppxijqni,j“1, 0q} ď }pT ‘1 Sqn}}pxijqni,j“1}MnpXq

and so in particular we have }Tn} ď }pT ‘1 Sqn} ď }T ‘1 S}cb. Then we have }T }cb ď
}T ‘1 S}cb and similarly }S}cb ď }T ‘1 S}cb so it follows that maxt}T }cb, }S}cbu ď
}T ‘1 S}cb. ✷

Proposition 1.1.32 For operator spaces X , Y and Z we have completely isometric iso-

morphisms CBpX ‘1 Y, Zq –ci CBpX,Zq ‘8 CBpY, Zq. In particular it then follows

that pX ‘1 Y q˚ –ci X
˚ ‘8 Y ˚.

Proof

It follows similar to that of the proof to Corollary 1.1.29 that we have an isometric iso-

morphism CBpX ‘1 Y, Zq –i CBpX,Zq ‘8 CBpY, Zq. Then for all n P N we have the

following isometric isomorphisms as required

MnpCBpX ‘1 Y, Zqq –i CBpX ‘1 Y,MnpZqq –i CBpX,MnpZqq ‘8 CBpY,MnpZqq

MnpCBpX,Zqq ‘8 MnpCBpY, Zqq –i MnpCBpX,Zq ‘8 CBpY, Zqq. ✷

We now move on to the topic of tensor products of operator spaces. We have already

introduced the minimal tensor product of two operator spaces; we now introduce the

projective and injective tensor products and give further properties of each of these.

Notation 1.1.33 LetX and Y be operator spaces. Let pxijqni,j“1 P MnpXq and pyijqmi,j“1 P
MmpY q, then we have pxij b yklqpn,mq

pi,kq,pj,lq“p1,1q P MmnpX d Y q. We will always identify

MnpXq d MmpY q with MmnpX d Y q in this way.
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1.1 Operator Spaces

Definition 1.1.34 LetX and Y be operator spaces, then we can form the algebraic tensor

product X d Y and we can consider norms on MnpX d Y q. We say that a collection of

norms
 

} ¨ }MnpXdY q
ˇ̌
n P N

(
on X d Y is a subcross matrix norm if for all pxijqni,j“1 P

MnpXq and pyijqmi,j“1 P MmpY q we have

›››pxij b yklqpn,mq
pi,kq,pj,lq“p1,1q

›››
MmnpXdY q

ď
››pxijqni,j“1

››
MnpXq

››pyklqmk,l“1

››
MmpY q .

We say it is a cross matrix norm if this is an equality for all pxijqni,j“1 P MnpXq and

pyijqmi,j“1 P MmpY q. We call the resulting completion of X dY the operator space tensor

product.

For a proof of the following see Theorem 7.1.1 in Effros & Ruan (2000).

Definition-Theorem 1.1.35 Let X and Y be operator spaces, then there is a subcross

matrix norm satisfying Ruan’s axioms on XdY such that for all puijqni,j“1 P MnpXdY q
we have

›››puijqni,j“1

›››
MnpXdY q

“ inf

#
}α}}x}}y}}β}

ˇ̌
ˇ̌
ˇ uij “

mÿ

p,r“1

m1ÿ

q,s“1

αi,pqpxp,r b yq,sqβrs,j
+

where on the right hand side we range over all m,m1 P N, α P Mn,mm1 , x P MmpXq,

y P Mm1pY q and β P Mmm1,n and the norms are calculated in the appropriate space.

This is the largest cross matrix norm on X dY and we denote by X pbY the operator

space given by the completion of X d Y with respect to the norm above. We call this the

operator space projective tensor product.

Most of following propositions are proved in Chapter 7 of Effros & Ruan (2000) or Chap-

ter 4 of Pisier (2003). We quote the results we will use here and refer the reader to these

references for further details.

Proposition 1.1.36 Let X , X 1, Y , Y 1 and Z be operator spaces. Then we have the fol-

lowing:
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1. OPERATOR THEORY

(i) The operator space projective tensor product X pbY of X and Y is the unique op-

erator space such that pX pbY q˚ –ci CBpX, Y ˚q or more generally we have

CBpX pbY, Zq –ci CBpX,CBpY, Zqq;

(ii) If T P CBpX, Y q and T 1 P CBpX 1, Y 1q are completely bounded maps, then we

have a completely bounded map T b T 1 : X pbX 1 Ñ Y pbY 1 that extends the map

T d T 1 : X d X 1 Ñ Y d Y 1 such that }T b T 1}cb ď }T }cb}T 1}cb;

(iii) If T P CBpX, Y q and T 1 P CBpX 1, Y 1q are complete quotient maps then there is a

complete quotient map T b T 1 : X pbX 1 Ñ Y pbY 1 extending T b T 1 : X d X 1 Ñ
Y d Y 1 and furthermore we have

Ker pT b T 1q “ pKerT q d X 1 ` X d pKerT 1q}¨}
;

(iv) The flip map Σ : X pbY Ñ Y pbX is a completely isometric isomorphism;

(v) We have that X pbY –ci X pbY .

Proof

We prove only the last property here which follows as for any operator space Z we have

CBpX pbY , Zq –ci CBpX,CBpY , Zqq –ci CBpX,CBpY, Zqq

–ci CBpX,CBpY, Zqq –ci CBpX pbY, Zq –ci CBpX pbY , Zq. ✷

Remarks 1.1.37 (i) We have a notion of a “completely bounded bilinear map” which

gives us a space CBpX ˆ Y, Zq that is completely isometrically isomorphic to

CBpX pbY, Zq. We do not pursue this here but this is a motivation for the defini-

tion of a completely contractive Banach algebra below;
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1.1 Operator Spaces

(ii) It does not follow in general that if we have two complete isometries that the projec-

tive tensor product of these maps is a complete isometry. In fact given a complete

isometry T : X Ñ Y we don’t necessarily have a complete isometry T b idZ :

X pbZ Ñ Y pbZ for an operator space Z.

Proposition 1.1.38 Let X , X 1, Y and Y 1 be operator spaces, then we have completely

isometric isomorphisms pX ‘1 X
1q pbY –ci X pbY ‘1 X

1 pbY and X pb pY ‘1 Y
1q –ci

X pbY ‘1 X pbY 1.

Proof

This follows as for all operator spaces Z we have

CBppX ‘1 X
1q pbY, Zq –ci CBppX ‘1 X

1q,CBpY, Zqq

–ci CBpX,CBpY, Zqq ‘8 CBpX 1,CBpY, Zqq

–ci CBpX pbY, Zq ‘8 CBpX 1 pbY, Zq –ci CBpX pbY ‘1 X
1 pbY, Zq

and the second follows from a similar calculation or from Proposition 1.1.36 (iv). ✷

Definition-Theorem 1.1.39 LetX and Y be operator spaces, then there is a cross matrix

norm satisfying Ruan’s axioms on X d Y such that for all u “ puijqni,j“1 P MnpX d Y q
we have

}u}_ “ sup
 

}pf b gqpuq}Mpqn

ˇ̌
f P MppX˚q, g P MqpY ˚q, }f} ď 1, }g} ď 1

(

We let X qbY be the operator space given by the completion of XdY with respect to this

norm and we call this the operator space injective tensor product.

Notation 1.1.40 Consider the identity map X d Y Ñ X d Y which can be coextended

to a map ψ : X d Y Ñ X qbY . For any x P MnpXq and y P MmpY q we have

}ψpx b yq} “ }x b y} ď }x}}y}
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1. OPERATOR THEORY

and so ψ is a complete contraction. It follows that we can extend this to a linear com-

pletely contractive map Ψ : X pbY Ñ X qbY called the canonical complete contraction

from X pbY to X qbY .

We won’t explore many details about this tensor product in this thesis; however we men-

tion the following remark and proposition.

Remark 1.1.41 Let X Ă BpHq and Y Ă BpKq be operator spaces, then we have a

completely isometric embedding X qbY � � // BpH b Kq . It the follows that for C˚-

algebrasA andB, then operator space injective tensor productA qbB coincides with that

of the minimal tensor product AbminB as C˚-algebras with respect to their canonical

operator space structure.

Proposition 1.1.42 Say T1 : X1 Ñ Y1 and T2 : X2 Ñ Y2 are completely contractive

maps, then there is a completely contractive map T1 b T2 : X1 qbX2 Ñ Y1 qbY2 such that

pT1 b T2qpx b yq “ T1pxq b T2pyq.

We will use the following from Lemma 7.2.2 in Effros & Ruan (2000) shortly to define

some additional operator space tensor products.

Lemma 1.1.43 Let H and K denote Hilbert spaces and ω P BpHq˚, then there is a

unique weak˚-continuous linear extension ω b id : BpHbKq Ñ BpKq of the map

x b y ÞÑ ωpxqy for x P BpHq and y P BpKq such that }ω b id}cb ď }ω}. Similarly for

κ P BpKq˚ we have a unique weak˚-continuous extension id b κ : BpHbKq Ñ BpHq
of the map x b y ÞÑ κpyqx such that }id b κ}cb ď }κ}.

Consider the duals X˚ and Y ˚ for operator spaces X and Y . As X˚ and Y ˚ are operator

spaces there are Hilbert spaces H and K and embeddings π1 : X˚ Ñ BpHq and π2 :

Y ˚ Ñ BpKq. Furthermore we can assume this is a weak˚-homeomorphic completely

isometric injection from Proposition 3.2.4 in Effros & Ruan (2000). From this we can

define the following tensor products on dual operator space structures.
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1.1 Operator Spaces

Example 1.1.44 Let X and Y be operator spaces with X˚ Ă BpHq and Y ˚ Ă BpKq
for Hilbert spaces H and K. We define the normal tensor product of X˚ and Y ˚, de-

noted by X˚ bY ˚, as the weak˚-closure of X˚ d Y ˚ in BpHq bBpKq –ci BpHbKq.

This coincides with the von Neumann tensor product when X˚ and Y ˚ are von Neumann

algebras.

We define the Fubini tensor product of X˚ and Y ˚, denoted by X˚ bF Y
˚, as follows

X˚ bF Y
˚ “

$
&
%x P BpHbKq

ˇ̌
ˇ̌
ˇ̌

pω b idqpxq P Y ˚, pid b κq P X˚,

@ω P BpHq˚, κ P BpKq˚

,
.
-

where we’ve used the previous lemma.

We let X
nuc
b Y “ pX pbY q{Kerψ for ψ the complete contraction in Notation 1.1.40.

The following is proved in Sections 7.2 and 8.1 in Effros & Ruan (2000). See Effros &

Ruan (2003) for the notion of the nuclear tensor product.

Theorem 1.1.45 We have

(i) X˚ bY ˚ Ă X˚ bF Y
˚;

(ii) pX pbY q˚ is weak˚-homeomorphic completely isometric to X˚ bF Y
˚;

(iii) pX
nuc
b Y q˚ –ci X

˚ bY ˚.

Proposition 1.1.46 For any two weak˚-closed operator spaces X˚ Ă BpHq and Y ˚ Ă
BpKq we have X˚ bY ˚ “ X˚ bF Y

˚ if and only if the canonical complete contraction

ψ : X pbY Ñ X qbY from Notation 1.1.40 satisfies Kerψ “ 0.

We have the following properties of these morphisms between operator spaces. See

Proposition 3.2.1 in Effros & Ruan (2000) and Section 2.1 of Pisier (2003) for proofs.

Proposition 1.1.47 Let M and N be von Neumann algebras, then there is a completely

isometric isomorphism pM bNq˚ –ci M˚ pbN˚. In particular it follows that the canoni-

cal complete contraction ψ given by Notation 1.1.40 has Kerψ “ 0.
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1. OPERATOR THEORY

The following can be found in Section 8.2 in Effros & Ruan (2000).

Proposition 1.1.48 Let X and Y be Banach spaces, then we have

MINpXq qbMINpY q –ci MINpX b̌Y q

and

MAXpXq pbMAXpY q –ci MAXpX b̂Y q

where b̌ and b̂ denote the injective and projective tensor products as Banach spaces

respectively.

1.1.4 Completely Contractive Banach Algebras

In this section we give the definition of a completely contractive Banach algebra. For a

completely contractive Banach algebraAwe have that the multiplication mapA pbA Ñ A

given by x b y ÞÑ xy for all x, y P A is completely contractive. In general there is no

guarantee that this map is onto, however we show that we can extend any completely

contractive Banach algebra to a unital completely contractive Banach algebra and in this

case this map is clearly always onto.

Definition 1.1.49 A completely contractive Banach Algebra is an algebra A that is an

operator space and such that the multiplication mapAˆA Ñ A gives rise to a completely

contractive map m : A pbA Ñ A where mpx b yq “ xy for all x, y P A.

Example 1.1.50 Let A denote a completely contractive Banach algebra A and let A5

denote the operator space A ‘1 C given by Example 1.1.30. We want to make this into a

completely contractive Banach algebra such that we have product

pa, λq ¨ pb, λ1q “ pab ` λb ` λ1a, λλ1q (1.3)
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1.2 Homological Algebra in Operator Spaces

for all a, b P A and λ, λ1 P C. Note that we adjoin an identity e5 “ p0, 1q (even if there

already is one), meaning we have a new identity. We show now that there is a completely

contractive map m5 : A5 pbA5 Ñ A5 satisfying this equation.

We let m1 : A pbA Ñ A5 be the map x ÞÑ pmpxq, 0q, m2 : A pbC Ñ A5 be the

map a b λ ÞÑ pλa, 0q, m3 : C pbA Ñ A5 be the map λ b a ÞÑ pλa, 0q and finally let

m4 : C pbC Ñ A5 be the map λ b λ1 ÞÑ p0, λλ1q. Then each of these maps is completely

contractive. Also we have by Proposition 1.1.38 that A5 pbA5 –ci A pbA ‘1 A pbC ‘1

C pbA‘1 C pbC. Furthermore we have m5 “ m1 ‘1 m2 ‘1 m3 ‘1 m4 satisfies Equation

(1.3) above and using Proposition 1.1.31 it follows that m5 is completely contractive.

Definition 1.1.51 Let A be a completely contractive Banach algebra, then a left ideal I

of A is a closed subspace of A such that mpab iq P I for all a P A and i P I .

1.2 Homological Algebra in Operator Spaces

We now move on to consider modules over completely contractive Banach algebras and

operator biprojectivity. In Chapter 6 we will discuss the subject of operator biprojectivity

for the L1
7 -algebra of a locally compact quantum group.

1.2.1 Basic Definitions

We first discuss some preliminaries concerning operator A-bimodules over completely

contractive Banach algebras.

Definition 1.2.1 Let A and B denote completely contractive Banach algebras and let X

be a Banach A-B-bimodule, that is we have two operations A pbX Ñ X and X pbB Ñ
X given by a b x ÞÑ a ¨ x and x b b ÞÑ x ¨ b such that for all a, a1 P A and x, x1 P X we

have

pa ` a1q ¨ x “ a ¨ x ` a1 ¨ x, a ¨ px ` x1q “ a ¨ x ` a ¨ x1
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1. OPERATOR THEORY

paa1q ¨ x “ a ¨ pa1 ¨ xq, }a ¨ x} ď }a}}x}

and similarly for the other operation and such that a ¨ px ¨ bq “ pa ¨ xq ¨ b for all a P A,

x P X and b P B. We say X is a completely bounded A-B bimodule if the operation

A pbX pbB Ñ X given by a b x b b ÞÑ a ¨ x ¨ b is completely bounded and a com-

pletely contractive A-B bimodule if this operation is completely contractive. We also

have completely bounded (contractive) left A-modules that are operator A-C-bimodules

and similarly for completely bounded (contractive) right A-modules.

Definition 1.2.2 Let T : X Ñ Y denote a completely bounded (contractive) linear map

between operator A-B-bimodules X and Y . We say T is a completely bounded (contrac-

tive) A-B-bimodule homomorphism if T pa ¨ x ¨ bq “ a ¨ T pxq ¨ b for all a P A, x P X and

b P B and denote such maps by ACBBpX, Y q. If A “ B we will simply refer to a com-

pletely bounded A-bimodule homomorphism. Similarly we have left and right completely

bounded (contractive) A-module homomorphisms.

We now introduce some basic definitions necessary for introducing the notion of opera-

tor projectivity and biprojectivity. The following can be applied to various objects and

morphisms, in particular we will apply this to operator spaces and completely bounded

maps.

Definition 1.2.3 A short exact sequence is a collection tX, Y, Zu of objects and mor-

phisms f : X Ñ Y and g : Y Ñ Z such that f is injective, g is surjective and

Image f “ Ker g. We will often denote this by the following

0 // X
f // Y

g // Z // 0.

Definition 1.2.4 A map f : X Ñ Y is admissible if Ker f and Image f are both closed

and complemented subspaces of X and Y respectively.
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1.2 Homological Algebra in Operator Spaces

Definition 1.2.5 Consider a short exact sequence with X , Y and Z operator spaces and

f and g completely bounded maps as follows

0 // X
f // Y

g // Z // 0.

We say this is admissible if g has a completely bounded right inverse G P CBpZ, Y q and

that it splits ifG can be chosen to be a left completely boundedA-module homomorphism.

We will also use the following definition occasionally.

Definition 1.2.6 Let X be a completely bounded right A-module and Y a completely

bounded left A-module. Then the Balanced tensor product of X and Y , denoted by

X pbA Y , is the quotient of X pbY by the set

lin tx ¨ a b y ´ x b a ¨ y | x P X, y P Y, a P Au}¨}
.

1.2.2 Operator Biprojectivity

We now move on to discuss projectivity of completely bounded left A-modules. We

use Wood (2002) as our basis for operator biprojectivity in this thesis. The standard

reference for biprojectivity of Banach algebras Helemskiı̆ (1989) is still useful to us here

and we offer Aristov (2002) as an additional reference for the biprojectivity of completely

contractive Banach algebras.

Throughout the rest of this section let A denote a completely contractive Banach alge-

bra and let X , Y and P denote completely bounded left A-modules. We only work with

completely bounded left A-modules in this section but we have the obvious counterparts

for right completely bounded A-modules and completely bounded A-B-bimodules (for a

completely contractive Banach algebra B).

Let P be a completely bounded left A-module with map π : A pbP Ñ P . Using

similar methods to that of Example 1.1.50 we can extend π to a map π5 P CBpA5 pbP, P q
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such that π5pe5 b xq “ x. We let θ : P Ñ A5 pbP denote the map x ÞÑ e5 b x. Then

as the operator projective tensor product is a subcross matrix norm we have for all n P N

and pxijqni,j“1 P MnpP q that

}θnppxijqni,j“1q} “ }pe5 b xijqni,j“1} ď }e5}}pxijqni,j“1}

and so θ is completely bounded. Clearly we have πpθpxqq “ x and so we have a right

inverse to π. In the special case that θ is a completely bounded left A-module homomor-

phism we make the following definition.

Definition 1.2.7 A completely bounded leftA-module P is projective if the multiplication

map π : A5 pbP Ñ P has a right inverse in ACBpP,A5 pbP q. We have similar definitions

for right completely bounded A modules and completely bounded A-B-bimodules.

Theorem 1.2.8 Let P be a completely bounded left A-module. The following are equiv-

alent:

(i) P is projective;

(ii) For any completely bounded left A-modules X and Y , θ P ACBpX, Y q a sur-

jective, admissible homomorphism and σ P ACBpP, Y q, then there exists some

ρ P ACBpP,Xq such that the following diagram commutes

P
ρ

~~⑥
⑥

⑥

⑥

σ

��
X

θ
// // Y ;

(iii) Any admissible, short exact sequence of completely bounded left A-modules as fol-

lows

0 // Y // X // P // 0

splits.
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We reiterate that all definitions and results in this section have obvious corresponding

definitions and results for right completely bounded A-modules and completely bounded

A-B-bimodules (for B a completely contractive Banach algebras).

Definition 1.2.9 A completely contractive Banach algebra A is operator biprojective if it

is projective as a completely bounded A-bimodule.

Proposition 1.2.10 A completely contractive Banach algebra A is operator biprojective

if and only if the multiplication map ∆ : A pbA Ñ A has a right inverse ρ P ACBApAq.

1.2.3 Additional Results

We prove some useful lemmas in this section that originally were recorded in Aristov

(2004). We give our own full proofs of these results expanding on those given by Aristov.

Lemma 1.2.11 Let A denote a completely contractive Banach algebra and I a left ideal

of A, then there is a completely contractive map A pbA5{I Ñ A5{I making A5{I a com-

pletely contractive left A-module such that a ¨ ppb, λq ` Iq “ pab` λa, 0q ` I for a, b P A
and λ P C (where we’ve used the identification A5 “ A ‘1 C).

Proof

AsA is a completely contractive Banach algebra then so isA5 by Example 1.1.50. Clearly

I is a subspace of A5 as well with embedding i ÞÑ pi, 0q. Let q : A5 Ñ A5{I be the

complete quotient map x ÞÑ x ` I for x P A5 and let m5 : A pbA5 Ñ A be the extension

of the completely contractive map m making A into a completely contractive Banach

algebra. Consider the following commutative diagram

A pbA5 m5
//

idbq
��

A5

q

��

A pbA5{I
S

//❴❴❴ A5{I.
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We want to show that a complete contraction S exists making this diagram commute.

Clearly we need Ker pid b qq Ă Ker pq ˝ m5q and so we show this first. By Proposition

1.1.36 (iii) we have Ker pid b qq “ A d Ker q “ A d I . Furthermore for a P A and

i P I we have qpm5pa b iqq “ qpaiq “ ai ` I “ I and then by linearity it follows that

qpm5pA d Iqq “ 0. It then follows from continuity that Ker pid b qq Ă Ker pq ˝ m5q.

As id b q is onto then for any y P A pbA5{I we have some x P A pbA5 such that

pid b qqpxq “ y. Now we define Spyq “ qpm5pxqq and we show this is well defined: that

is given any x, x1 P A pbAwith pidbqqpxq “ pidbqqpx1q we have qpm5pxqq “ qpm5px1qq.

For any x, x1 P A pbA with pidbqqpxq “ pidbq1qpxq then there is some x0 P Ker pidbqq
such that x “ x1 ` x0. We have shown that Ker pid b qq “ Ker pq ˝ m5q and so

qpm5pxqq “ qpm5px1 ` x0qq “ qpm5px1qq

as required.

We have shown there is a map S making this diagram commutative. By Proposition

1.1.36 (iii) the map id b q is a complete quotient map and so by Proposition 1.1.18 we

have

}S}cb “ }S ˝ pid b q1q}cb “ }q2 ˝ m5}cb ď }q2}cb}m5}cb ď 1

and therefore S is a complete contraction.

Finally we have for a, b P A and λ P C that

Spa b ppb, λq ` Iqq “ pS ˝ pid b qqqpab pb, λqq “ qpm5pab pb, λqqq

“ qppab ` λa, 0qq “ pab ` λa, 0q ` I

as required. ✷

Given a right completely bounded A-module X and a completely bounded left A-module

we can form the following tensor product of these two.
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1.2 Homological Algebra in Operator Spaces

Notation 1.2.12 Let N denote the operator subspace of X pbY given by

N “ lin txa b y ´ x b ay | x P X, a P A, y P Y u

and let X pbA Y “ X pbY {N .

We record the following proposition that is a more general version of the result in Section

6.2.2. The result was originally proved in the quantum groups work as part of Section

6.2.2 and then rewritten as the more general result given here.

Proposition 1.2.13 Let A be a completely contractive Banach algebra with a left con-

tractive approximate identity. Then the multiplication map m : A pbA Ñ A is a complete

quotient map.

Proof

Fix n P N throughout this proof. As m is a completely contractive map it follows that

it maps the open unit ball of MnpA pbAq into the open unit ball of MnpAq and so by

Proposition A.1.6 we need only show that it maps the open unit ball of MnpA pbAq onto

that of MnpAq.

We first show that MnpAq is an essential left BanachA-module with the operation map

A pbMnpAq Ñ MnpAq given by x b pyijqni,j“1 ÞÑ pxyijqni,j“1 for x P A and pyijqni,j“1 P
MnpAq. The algebraic relations follow easily and as m is completely contractive and the

operator space projective tensor product is a subcross norm (see Definition 1.1.34 and

Definition-Theorem 1.1.35) we have

››pxyijqni,j“1

››
MnpAq “

››mnppx b yijqni,j“1q
››
MnpAq

ď
››px b yijqni,j“1

››
MnpAq ď }x}A

››pyijqni,j“1

››
MnpAq

as required for a left BanachA-module. Clearly this is essential asA has a left contractive

approximate identity.
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Now fix pyijqni,j“1 P MnpAq and let ε ą 0 such that pp1` εqyijqni,j“1 is also in the open

unit ball of MnpAq. Let zij “ p1 ` εqyij for all 1 ď i, j ď n and we show there is some

element of MnpA pbAq such that mn maps this to pzijqni,j“1. As A has a left contractive

approximate identity peαq P A, from Cohen’s factorisation theorem (see Theorem A.3.3),

for any δ ą 0 there is some x P A and pxijqni,j“1 P MnpAq such that

pzijqni,j“1 “ x ¨ pxijqni,j“1 “ mnppx b xijqni,j“1q

}x}A ď 1, }pzijqni,j“1 ´ pxijqni,j“1}MnpAq ă δ.

Now as }pzijqni,j“1} ă 1 we have

}pxijqni,j“1}MnpAq ď }pxijqni,j“1 ´ pzijqni,j“1}MnpAq ` }pzijqni,j“1}MnpAq ă 1 ` δ

and so, as the operator space projective tensor product is a subcross norm, we have

}px b xijqni,j“1}
MnpA pbAq ď }x}A}pxijqni,j“1}MnpAq ă 1 ` δ.

As δ ą 0 was arbitrary we may assume that δ ă ε and thus
1 ` δ

1 ` ε
ă 1 and so it follows

that
1

1 ` ε
px b xijqni,j“1 is in the open unit ball of MnpA pbAq. Then we have shown that

mn maps this to pyijqni,j“1 as required. ✷

The following two lemmas are recorded in Aristov (2004) without proof and in Aristov

(2002) with sketch proofs given there. We expand on these here and prove them in full

now.

Lemma 1.2.14 Let I be a closed left ideal in a completely contractive Banach algebra

A. Then we have

A{AI –ci A pbA pA5{Iq.
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Proof Let m5 : A pbA5 Ñ A denote the completely contractive map that extends the

multiplication map of A. Let q1 : A5 Ñ A5{I and let q2 : A Ñ A{AI be the quotient

map. We can show similarly to that of the proof of Lemma 1.2.11 that there exists a

completely contractive map S : A pb pA5{Iq Ñ A{AI such that

A pbA5 m5
//

idbq1
��

A

q2
��

A pb pA5{Iq
S

//❴❴❴ A{AI

is commutative.

For a, b P A and c P A5 we have

Spa b pb ` Iqq “ Spid b q1qpab bq “ q2pmpab bqq “ q2pabq “ ab ` AI

and

Spab b pc ` Iq ´ a b pbc ` Iqq “ pabc ` AIq ´ pabc ` AIq “ 0.

So for all u P lin tab b pc ` Iq ´ a b pbc ` Iq | a, b P A, c P A5u we have shown that

Spuq “ 0. Thus there exists a completely contractive T : A pbA pA5{Iq Ñ A{AI with

}T }cb “ }S}cb (again using Proposition 1.1.18) such that we have a commutative diagram

A pb pA5{Iq
Q
����

S // A{AI

A pbA pA5{Iq
T

88
q

q

q

q

q

where Q : A pb pA5{Iq Ñ A pbA pA5{Iq is the quotient map to the balanced projective

tensor product. As S is a completely contractive left A-module homomorphism and Q is

a completely contractive left A-module homomorphism it follows that T is also a com-

pletely contractive left A-module homomorphism.
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Clearly T is surjective as Spa b e ` Iq “ a ` AI for all a P A.

We now consider the dual map T ˚ : pA{AIq˚ Ñ pAb̂ApA5{Iqq˚ and we show this is

surjective. We have for the domain of T ˚ that

pA{AIq˚ “ pAIqK “
 
µ P A˚ ˇ̌

xµ, zy “ 0 @ z P AI
(

“ tµ P A˚ | xµ, zy “ 0 @ z P AIu

“ tµ P A˚ | xµ, axy “ 0 @ a P A, x P Iu

“ tµ P A˚ | xµ ¨ a, xy “ 0 @ a P A, x P Iu

“
 
µ P A˚ ˇ̌

µ ¨ a P IK @ a P A
(

and for the codomain of T ˚ let

Z “ lin tab b pc ` Iq ´ a b pbc ` Iq | a, b P A, c P A5u Ă A pb pA5{Iq.

Then we have

pA pbA pA5{Iqq˚ “ ppA pb pA5{Iqq{Zq˚ “ ZK

where

ZK “
 
µ P pA pb pA5{Iqq˚ ˇ̌

µpab b c ` Iq “ µpa b bpc ` Iqq @ a, b P A, c P A5(

“
 
µ : A Ñ pA5{Iq˚ ˇ̌

xµpabq, c ` Iy “ xµpaq, bc ` Iy @ a, b P A, c P A5(

“
 
µ : A Ñ pA5{Iq˚ ˇ̌

xµpabq, c ` Iy “ xµpaq ¨ b, c ` Iy @ a, b P A, c P A5(

“
 
µ : A Ñ pA5{Iq˚ ˇ̌

µpabq “ µpaq ¨ b @ a, b P A
(

“ CBApA, pA5{Iq˚q.

Let µ P pA{AIq˚, then T ˚pµq P pA pbA pA5{Iqq˚ –ci CBApA, pA5{Iq˚q and thus for all
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1.2 Homological Algebra in Operator Spaces

a P A and b P A5 we have

xT ˚pµqpaq, b ` Iy “ xT ˚pµq, a b pb ` Iqy “ xµ, T pab pb ` Iqqy

“ xµ, ab ` AIy “ xµ, aby “ xµ ¨ a, by “ xµ ¨ a, b ` Iy

giving T ˚pµqpaq “ µ ¨ a P pA5{Iq˚ for all a P A.

Now let α P CBApA, pA5{Iq˚q and we show that there is some µ P pA{AIq˚ such that

T ˚pµq “ α. We can define µ : A2 Ñ C, where we denote A2 “ lin tab | a, b P Au,

by µpabq “ xαpaq, by “ xαpaq ¨ b, ey “ xαpabq, ey. So for any c P A2 we have µpcq “
xαpcq, ey and µ is well defined as α is well defined. Also

|µpcq| “ |xαpcq, ey| ď }αpcq}}e} ď }α}}c}

and so }µ} ď }α}. We can then use Hahn-Banach to extend this to an element µ P A˚

with }µ}cb ď }α}cb. As BpA,Cq “ CBpA,Cq then µ is completely bounded.

Let a P A and b P I , then we have xab, µy “ xαpaq, by “ 0 as αpaq P IK as a subset

of pA5q˚ and thus µ P pAIqK –ci pA{AIq˚. We have

xT ˚pµqpaq, by “ xµ, aby “ xαpaq, by

and thus T ˚pµqpaq “ αpaq for all a P A and therefore T ˚pµq “ α. So we have shown that

T ˚ is surjective and therefore T must be injective as required.

We have that T is completely contractive and bijective and so there exists a bounded

inverse T´1 : A{AI Ñ A pbA pA5{Iq. We can easily see that T´1pa`AIq “ ab pe` Iq
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1. OPERATOR THEORY

and so we have a commutative diagram

A pbA5 m5
//

idbq1
��

A

q2

��

A pb pA5{Iq
Q

��

A pbA pA5{Iq T //
A{AI.

T´1

oo

We show that T is a complete quotient map and then as KerT “ 0 we have that T is

a completely isometric isomorphism by Definition 1.1.9 (see also Definition A.1.5). We

have thatm5 is a complete quotient map by following a similar proof to that of Proposition

1.2.13. As q2 is a complete quotient map it follows that we must have that T is a complete

quotient map as required. ✷

Lemma 1.2.15 Let A be a biprojective completely contractive algebra and Y a left com-

pletely boundedA-module, thenA pbA Y is a left projective completely boundedA-module

with the operation a ¨ pb b yq “ ab b y for all a, b P A and y P Y .

Proof

Let m : A pbA Ñ A denote the multiplication map and 5m the extension of m to A5 pbA.

We have that X “ A pbA Y is a completely bounded left A-module with operation a ¨
pb b yq “ ab b y “ a b b ¨ y for a, b P A and y P Y , that is the module operation

on X is given by the map m b idY : A pbA pbA Y Ñ A pbA Y . We want to show that

A pbA Y is projective as a completely bounded left A-module, that is there is a completely

bounded left A-module homomorphism A pbA Y Ñ A5 pbA pbA Y that is a right inverse

to 5m b idY : A5 pbA pbA Y Ñ A pbA Y .

As A is biprojective there is a completely bounded A-bimodule homomorphism from

A to A pbA that is a right inverse to m. Let ρ : A Ñ A5 b A denote its coextension

and define τ : A pbA Y Ñ A5 pbA pbA Y by a b y ÞÑ ρpaq b y. We want to show this is
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1.2 Homological Algebra in Operator Spaces

well defined. Let Q : A pbY Ñ A pbA Y be the projection map onto the balanced tensor

product, then we have a diagram

A pbY

Q
��

ρbid // A5 pbA pbY

idbQ
��

A pbA Y τ
//❴❴❴ A5 pbA pbA Y.

Let u, v P A pbY with Qpuq “ Qpvq and we show that τpQpuqq “ τpQpvqq. This is

equivalent to showing that if u P KerQ then pid b Qqppρ b idqpuqq “ 0. We have

KerQ “ lin tab b y ´ a b b ¨ y | a, b P A, y P Y u and for a, b P A and y P Y we have

pρbidqpabby´abb¨yq “ ρpabqby´ρpaqbb¨y “ ρpaq¨bby´ρpaqbb¨y P Ker pidbQq

and thus pid b Qqppρ b idqpab b y ´ a b b ¨ yqq “ 0. Then it follows by linearity and

continuity that pid b Qqppρb idqpuqq “ 0 for all u P KerQ as required.

We have that

τpa ¨ pb b yqq “ τpab b yq “ ρpabq b y “ pa ¨ ρpbqq b y “ a ¨ pρpbq b yq “ a ¨ τpb b yq

so τ is a completely contractive left A-module homomorphism.

Finally we have

pmb idY q ˝ τ ˝Q “ pmb idY q ˝ pidbQq ˝ pρb idY q “ pidbQqpm ˝ ρb idY q “ idbQ

and thus pm b idY q ˝ τ “ id as required. ✷
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1. OPERATOR THEORY

1.3 One-parameter Groups and Smearing

In this section we introduce one-parameter groups and smearing techniques on Banach

spaces, C˚-algebras and von Neumann algebras. These techniques will be used through-

out this thesis. They will be used when we discuss the modular automorphism groups

for weights, in Chapter 2 when we introduce the scaling group and in Chapter 4 onwards

when we investigate the L1
7 -algebra of a locally compact quantum group.

1.3.1 One-parameter Groups

We introduce one-parameter groups, analytic functions with values in Banach spaces,

analytic extensions of one-parameter groups and further properties of these objects in this

section. The standard reference for this section is Ciorănescu et al. (1976) and Kustermans

(1997b). See also Kustermans’ notes in Applebaum et al. (2005).

Definition 1.3.1 Let X denote a Banach space, then a one-parameter group on X is a

map σ : R Ñ BpXq, where we denote σt “ σptq for convenience, such that σt`s “ σt ˝σs
for all t, s P R, σ0 “ id and }σt} ď 1 for all t P R. If X is a Banach algebra and

σ : R Ñ AutpXq we say it is a one-parameter group of automorphisms on X and

similarly if X is a Banach ˚-algebra and σ : R Ñ Aut˚pXq we say it is a one-parameter

group of ˚-automorphisms on X .

We say σ is norm continuous (weak continuous, weak˚-continuous) if for all x P X
the map R Ñ X given by t ÞÑ σtpxq is continuous with respect to the norm topology

(weak topology, weak˚-topology) on X . If X is a von Neumann algebra then we can

define similar properties with respect to any of the weak operator topologies.

Note it follows that σt is an isometry and invertible for all t P R with pσtq´1 “ σ´t. This

follows as for all t P R we have σt ˝ σ´t “ σ0 “ id “ σ´t ˝ σt and

}σtpxq} ď }x} “ }σ´tpσtpxqq} ď }σtpxq}
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1.3 One-parameter Groups and Smearing

and thus we have equality throughout.

Remark 1.3.2 We have mentioned several possibilities of continuity for one-parameter

groups in the above definition. We can have norm and weak continuity for a Banach

space, for a Banach space with a predual we can have weak˚ continuity and for a von

Neumann algebra we have σ-strong˚, σ-strong, σ-weak, strong˚, strong and weak opera-

tor continuity. In this thesis we will mostly use σ-weak (or equivalently weak˚) continuity

for von Neumann algebras and norm continuity otherwise, however we mention that the

Kustermans and Vaes’ defined one-parameter groups on von Neumann algebraic quantum

groups with respect to the σ-strong˚ topology. We will refer to a one-parameter group in

this section when the results are not dependent on the choice of topology, however we will

always assume some continuity property on all one-parameter groups.

We wish to discuss the analytic continuation of one-parameter groups, in order to do so we

now give details of the analyticity of functions from a complex domain D into a Banach

space X . We see from the following lemma that in fact analyticity is the same whether

we are working with the norm, weak or weak˚ topologies on X .

Notation 1.3.3 Let z P CzR, then we denote

Spzq “

$
&
%

tw P C | Im w P r0, Im zsu if Im z ą 0

tw P C | Im w P rIm z, 0su if Im z ă 0

and Spzqo is the interior of Spzq.

The reader is referred to A.1 in Takesaki (2003b) for a proof of the following lemma.

Lemma 1.3.4 Let X be a Banach space, let D Ă C be a complex domain (i.e. an open

connected subset of C) and let f : D Ñ X . Then the following are equivalent:

(i) For all w0 P D and δ ą 0 such that Bδpw0q Ă Spzqo (where Bδpw0q is the open ball

of radius δ around w0) there is a sequence pxnq8
n“0 Ă X such that for all w with
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1. OPERATOR THEORY

|w ´ w0| ă δ the following is norm convergent

fpwq “
8ÿ

n“0

pw ´ w0qnxn;

(ii) For all ω P X˚ we have a holomorphic function D Ñ C given by w ÞÑ xfpwq, ωy;

(iii) Let Y Ă X˚ be a norm closed subspace such that for all x P X we have

}x} “ sup t|xx, ωy| | ω P Y, }ω} ď 1u .

For each ω P Y we have a holomorphic function D Ñ C given by w ÞÑ xfpwq, ωy.

Definition 1.3.5 Let X be a Banach space and D Ă C be a complex domain, then a

function f : D Ñ X is an analytic function if any of the equivalent conditions in Lemma

1.3.4 hold.

The following lemma belongs to complex analysis, we prove it here as it will be useful in

this section.

Lemma 1.3.6 Let F : Spzq Ñ C be a function that is continuous, analytic on Spzqo and

F ptq “ 0 for all t P R, then F “ 0 everywhere.

Proof

We may assume without loss of generality that Im z ą 0 and we define a map G :

Spzq Y Sp´zq Ñ C by

Gpwq “

$
&
%

F pwq if Im w ă 0

F pwq if Im w ě 0.

Clearly G is continuous on Spzq and Sp´zq and thus everywhere. We also have Gptq “
F p0q “ 0 for all t P R and so by the Schwarz reflection principle (see Theorem 11.14 in
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1.3 One-parameter Groups and Smearing

Rudin (1987)) this is analytic on DompGq. From Theorem 10.18 in Rudin (1987) we have

that the set ZpGq “ tw P DompGq | Gpwq “ 0u is either DompGq or there is no limit

point of ZpGq in ZpGq. However any t P R is a limit point of ZpGq with t P ZpGq and so

we must have ZpGq “ DompGq. So we have shown that Gpwq “ 0 for all w P DompGq
and thus F “ 0 as required. ✷

Note that we don’t specify a continuity property for the one-parameter group in the fol-

lowing lemma, however for there to exist such an F in the lemma then σ would need to

satisfy such a continuity property also.

Lemma 1.3.7 Let X be a Banach space, x P X , σ : R Ñ BpXq a one-parameter

group on X and z P CzR. Say there exists a function F : Spzq Ñ X such that (i)

F is continuous with respect to either the norm topology, weak topology or (if X has a

predual) a weak˚-topology on X , (ii) F is analytic on Spzq and (iii) F ptq “ σtpxq for all

t P R. Then F is necessarily unique.

Proof

Fix z P C and let F1, F2 : Spzq Ñ X be two functions satisfying these conditions. Let

F : Spzq Ñ X be the map F “ F1 ´ F2, then clearly F is continuous, analytic and we

have F ptq “ 0 for all t P R. Let ω P X˚ and we consider the map Gω : Spzq Ñ C

given by Gωpwq “ xF pwq, ωy for all w P Spzq. Clearly Gωptq “ 0 for all t P R. As F is

analytic it follows from Lemma 1.3.4 that Gω is analytic.

Say F1 and F2 are norm or weak continuous, then Gω is easily seen to be continuous

for all ω P X˚ and so it follows from Lemma 1.3.6 that Gω “ 0 for all ω P X˚ and so

F1 “ F2 as required. If there exists a predual X˚ of X such that X –i pX˚q˚ then for all

ω P X˚ we have Gω is continuous and as this separates X we can similarly conclude that

F1 “ F2. ✷

Finally we can introduce the analytic continuation of a one-parameter group.
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Definition 1.3.8 Let X be a Banach space and σ a one-parameter group on X . Then we

define the following:

(i) For any z P C we define Dompσzq as the set of x P X such that there exists a

function (necessarily unique by the previous lemma) F : Spzq Ñ X such that (i) F

is continuous with respect to the appropriate topology on X , (ii) F is analytic on

Spzqo and (iii) F ptq “ σtpxq for all t P R.

(ii) For x P Dompσzq we define σzpxq “ F pzq for F : Spzq Ñ X the function in (i).

We say σz is the analytic extension of σ at z P C.

Proposition 1.3.9 Let X be a Banach space, σ a one-parameter group on X , z P C and

x P Dompσzq. Then we have:

(i) For w P Spzq we have Dompσwq Ą Dompσzq and if Im w “ Im z we have

Dompσzq “ Dompσwq;

(ii) For all t P R we have σtpσzpxqq “ σz`tpxq “ σzpσtpxqq;

(iii) σz is injective.

Proof (Sketch)

Part (i) follows by considering the restriction of the function from Definition 1.3.8 from

Spzq to Spwq. Part (ii) follows from considering the function G : Spzq Ñ X given by

w ÞÑ σtpσwpxqq ´ σt`wpxq. For part (iii) let x, y P Dompσzq such that σzpxq “ σzpyq
and let F,G : Spzq Ñ X be the functions that are are continuous, analytic on Spzqo,
F ptq “ σtpxq for all t P R and Gptq “ σtpyq for all t P R. Then from (ii) we have

σt`zpxq “ σtpσzpxqq “ σtpσzpyqq “ σt`zpyq for all t P R. By considering the function

H : Spzq Ñ X given by Hpwq “ F pz ´ wq ´ Gpz ´ wq we find that we must have

F “ G, and so x “ F p0q “ Gp0q “ y as required. ✷
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Proposition 1.3.10 Let X be a Banach algebra, σ a one-parameter group of automor-

phisms on X and z P C, then Dompσzq is a subalgebra of X and σz acts as a homo-

morphism on Dompσzq. If in addition X is a Banach ˚-algebra and σ is a one-parameter

group of ˚-automorphisms then Dompσzq˚
:“ tx P X | x˚ P Dompσzqu “ Dompσzq and

σzpxq˚ “ σzpx˚q for all x P Dompσzq.

Proof

Let x, y P Dompσzq and let F,G : Spzq Ñ X be the functions that are continuous,

analytic on Spzqo, F ptq “ σtpxq for all t P R and Gptq “ σtpyq for all t P R and

thus σzpxq “ F pzq and σzpyq “ Gpzq. Let H : Spzq Ñ X be given by Hpwq “
F pwqGpwq for all w P Spzq, then H is a product of continuous functions and a product

of analytic functions on Spzqo and so is continuous and analytic on Spzqo. Also we

have Hptq “ F ptqGptq “ σtpxqσtpyq “ σtpxyq for all t P R. So xy P Dompσzq with

σzpxyq “ Hpzq “ F pzqGpzq “ σzpxqσzpyq.

Now let X be a Banach ˚-algebra with σ a one-parameter group of ˚-automorphisms.

Let x P Dompσzq, then there is some F : Spzq Ñ X that is continuous, analytic on

Spzqo and F ptq “ σtpxq for all t P R. Then consider the map G : Spzq Ñ X given

by w ÞÑ F pwq˚. It is easy to show that G is continuous and analytic on Spzqo and

Gptq “ F ptq˚ “ σtpxq˚ “ σtpx˚q for all t P R. So we have x˚ P Dompσzq with

σzpx˚q “ Gpzq “ F pzq˚ “ σzpxq˚. ✷

Proposition 1.3.11 Let σ, σ1 denote two one-parameter groups of ˚-automorphisms on a

˚-algebra M . Then σ “ σ1 if and only if σz “ σ1
z for any z “ ti P C with t ‰ 0.

We now examine the tensor product of one-parameter groups to finish this subsection. Fix

norm continuous one-parameters groups σ and τ on Banach spaces X and Y respectively

throughout this section and fix a subcross norm } ¨ }µ on XdY and let Xbµ Y denote the

completion of X d Y with respect to this norm. Then we define a one-parameter group

pσ b τq : R Ñ BpX bµ Y q in the rest of section. This work is largely influenced by that

of Section 4 in Kustermans (1997b).
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For fixed t P R we have σt P BpXq and τt P BpY q and so we can consider σt d τt :

XdY Ñ XdY for any t P R. We will assume that σ and τ are such that the map σtd τt

is continuous with respect to the } ¨ }µ and has norm less than 1.

Definition 1.3.12 For all t P R let pσ b τqt : X b Y Ñ X b Y be the unique continuous

linear extension of σt d τt.

For any z P C we have (unbounded) linear maps σz : X Ñ X and τz : Y Ñ Y defined

in Definition 1.3.8. We consider the map σz d τz : Dompσzq d Dompτzq Ñ X d Y such

that x b y ÞÑ σzpxq b τzpyq and we have the following.

Proposition 1.3.13 For all z P C the map σz d τz given above is closable with closure

equal to the analytic extension pσ b τqz of σ b τ at z (see Definition 1.3.8).

1.3.2 Smearing of a One-parameter Group on a Banach space

We now consider smearing on Banach space in this section, this will be very important

in this thesis and is one of the key techniques that we will use frequently. Throughout

this section let X be a Banach space and σ : R Ñ AutpXq be a one-parameter group of

automorphisms on X that is norm continuous.

Fix x P X and consider the function f : R Ñ X given by

t ÞÑ n?
π
e´n2t2σtpxq.

Then this is continuous with respect to the norm topology on X . Also we have

ż

R

}fptq} dt “ n?
π

ż

R

e´n2t2}σtpxq} dt “ }x}

where we’ve used the Gaussian integral formula

ż

R

e´apx´bq2 dx “
c
π

a
(1.4)
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and that σt is an isometry for all t P R. It follows by Proposition A.6.3 that there is a

unique xpnq P X that is the weak integral of this function f so we have the following

definition.

Definition 1.3.14 Let n P N and we let xpnq denote the element in X that is the weak

integral of the function R Ñ X given by t ÞÑ n?
π

ş
R
e´n2t2σtpxq dt. Then we can define

a map X Ñ X given by x ÞÑ xpnq such that for all x P X and ω P X˚ we have

xxpnq, ωy “ n?
π

ż

R

e´n2t2xσtpxq, ωy dt.

We call xpnq the smear of x with respect to n P N.

Proposition 1.3.15 Let x P X , then the sequence pxpnqq8
n“1 has norm limit x P X .

Proof

Using the Gaussian integral formula (1.4) we have

}xpnq ´ x} “
››››
n?
π

ż

R

e´n2t2pσtpxq ´ xq dt
›››› ď n?

π

ż

R

e´n2t2}σtpxq ´ x} dt.

Now we define a map f : R Ñ R
` given by t ÞÑ }σtpxq ´ x}. Then f is continuous as σ

is norm continuous, fp0q “ 0 and fptq ď 2}x} for all t P R.

Fix ε ą 0. As fp0q “ 0 there is some δ ą 0 such that fptq ă ε
2

for all t P R with

|t| ă δ. Furthermore there exists some N P N such that n?
π

ş
Rzr´δ,δs e

´n2t2 dt ă ε
4}x} for

all n ě N . Then putting all this together and using Equation (1.5) we have

}xpnq ´ x} ď n?
π

ż

Rzr´δ,δs
e´n2t22}x} dt ` n?

π

ż

r´δ,δs
e´n2t2fptq dt ă ε

for all n ě N where we’ve used that
ş

r´δ,δs e
´n2t2 dt ă

?
π

n
for all δ ą 0. ✷
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1.3.3 Smearing of a One-parameter Group on a von Neumann alge-

bra

We now consider smearing on von Neumann algebras in this section. Throughout this

section let M be a von Neumann algebra, M˚ its unique predual and σ : R Ñ AutpMq
be a one-parameter group of ˚-automorphisms on M that is σ-weakly continuous.

Similarly to the previous section for x P M we can consider the function f : R Ñ M

given by

t ÞÑ n?
π
e´n2t2σtpxq

that is continuous with respect to the σ-weak topology on M . Also from the Gaussian

integral formula we have
ş
R

}fptq} dt “ }x} and from Proposition A.6.4 we can define

the smear xpnq similarly to Definition 1.3.14.

Proposition 1.3.16 For x P M the sequence xpnq has weak˚-limit x.

Proof (Sketch)

We sketch the proof here as it is very similar to the proof of Proposition 1.3.15. For

ω P M˚ we have

|xxpnq, ωy ´ xx, ωy| ď n?
π

ż

R

e´n2t2 |xσtpxq ´ x, ωy| dt.

We define a map f : R Ñ R
` by t ÞÑ |xσtpxq ´ x, ωy|, then f is continuous as σ is

σ-weakly continuous and for all t P R we have fptq ď 2}ω}}x}. Finally fix ε ą 0. Then

the rest of the proof follows verbatim from that of Proposition 1.3.15 but we pick N P N

such that n?
π

ş
Rzr´δ,δs e

´n2t2fptq dt ă ε
4}ω}}x} . ✷

Theorem 1.3.17 Let x P M then for all z P C we have that xpnq P Dompσzq and

furthermore

σzpxpnqq “ n?
π

ż
e´n2pt´zq2σtpxq dt;

and }σzpxpnqq} ď en
2pIm zq2}x}.
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1.3 One-parameter Groups and Smearing

Proof

Fix z P C and consider the map f : R Ñ M given by

t ÞÑ n?
π
e´n2pt´zq2σtpxq. (1.5)

For a, b P R we have

ˇ̌
ˇe´n2pa`ibq2

ˇ̌
ˇ “

ˇ̌
ˇe´n2pa2`2iab´b2q

ˇ̌
ˇ “ e´n2a2`n2b2 and so setting

a “ t ´ Re z and b “ ´Im z we get

ż

R

}fptq} dt “ en
2pIm zq2 n?

π

ż

R

e´n2t2}x} dt “ en
2pIm zq2}x}.

Then we have from Proposition A.6.4 that f is weak˚ integrable and so we have

n?
π

ż

R

e´n2pt´zq2σtpxq dt P M

for all z P C.

So we can define a map F : C Ñ M given by

z ÞÑ n?
π

ż

R

e´n2pt´zq2σtpxq dt

Fix s P R, then for all ω P M˚ we have

xF psq, ωy “ n?
π

ż

R

e´n2pt´sq2xσtpxq, ωy dt

“ n?
π

ż

R

e´n2t2xσs`tpxq, ωy dt “ xσspxpnqq, ωy

and thus F psq “ σspxpnqq for all s P R.

We show that F is analytic on C. In particular we show that for all ω P M˚ that the

map C Ñ C given by z ÞÑ xF pzq, ωy is analytic and then by Lemma 1.3.4 we have that

F is analytic on C and thus also continuous on C. Fix ω P M˚ and define g : C Ñ C as
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the map

z ÞÑ n?
π

ż

R

e´n2t2e2n
2tzxσtpxq, ωy dt

and we have xF pzq, ωy “ e´n2z2gpzq and so we need only show that g is analytic on C.

Expanding e2n
2tz we have

gpzq “ n?
π

ż

R

e´n2t2

˜
8ÿ

k“0

p2n2tzqk
k!

¸
xσtpxq, ωy dt

and so letting N P N0 be arbitrary and using that we can interchange infinite sums and

integrals for positive numbers (see Theorem 1.27 in Rudin (1987)) we have

ˇ̌
ˇ̌
ˇ
n?
π

ż

R

e´n2t2e2n
2tzxσtpxq, ωy dt ´

Nÿ

k“0

n?
π

ż

R

e´n2t2 p2n2tzqk
k!

xσtpxq, ωy dt
ˇ̌
ˇ̌
ˇ

“
ˇ̌
ˇ̌
ˇ
n?
π

ż

R

e´n2t2

˜
8ÿ

k“N`1

p2n2tzqk
k!

¸
xσtpxq, ωy dt

ˇ̌
ˇ̌
ˇ

ď n?
π

ż

R

e´n2t2

˜
8ÿ

k“N`1

p2n2qk |tz|k
k!

¸
|xσtpxq, ωy| dt

ď n}x}}ω}?
π

8ÿ

k“N`1

p2n2qk
k!

|z|k
ż

R

e´n2t2 |t|k dt

“ 2n}x}}ω}?
π

8ÿ

k“N`1

p2n2qk
k!

|z|k
ż 8

0

e´n2t2tk dt.

We define ak “ 2n}x}}ω}?
π

p2n2qk
k!

ş8
0
e´n2t2tk dt and we find

8ÿ

k“0

ak |z|k “ 2n}x}}ω}?
π

ż 8

0

e´n2t2e2n
2|z|t dt ď 2n}x}}ω}?

π

ż

R

e´n2t2e2n
2|z|t dt

“ 2n}x}}ω}?
π

en
2|z|2

ż

R

e´n2pt´|z|q2 dt “ 2}x}}ω}en2|z|2

where we’ve used the Gaussian integral formula (1.4). As en
2|z|2 is finite for all fixed

z P C it follows that for all ε ą 0 and fixed z P C there is some N P N such that
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1.3 One-parameter Groups and Smearing

ř8
k“N ak |z|k ă ε. It then follows from the derivation above that for all ε ą 0 and z P C

there is some N P N such that

ˇ̌
ˇ̌
ˇgpzq ´

Nÿ

k“0

n?
π

ż

R

e´n2t2 p2n2tzqk
k!

xσtpxq, ωy dt
ˇ̌
ˇ̌
ˇ ă ε

and so g is analytic.

It follows that for any z P C and n P N we have xpnq P Dompσzq with

σzpxq “ n?
π

ż

R

e´n2pt´zq2σtpxq dt

and from the first paragraph we have }σzpxpnqq} ď en
2pIm zq2}x}. ✷

We omit the proofs of the following two results and refer the reader to Kustermans (1997b)

and Ciorănescu et al. (1976).

Proposition 1.3.18 For all z P C the map σz is densely defined, has dense range and is

closed in the σ-weak topology (see Definition A.2.2).

Proposition 1.3.19 Let X be a Banach space, let Y denote a dense subspace of X , let σ

denote a one-parameter group on X and let z P C. Then the set txpnq | x P Y, n P Nu
is a core for σz.

Proposition 1.3.20 Let M be a von Neumann algebra, z P C and x P Dompσzq Ă M .

Then we have the following:

(i) σzpxpnqq “ σzpxqpnq;

(ii) Any normal linear or antilinear map T : M Ñ M that commutes with σt for all

t P R satisfies T pxpnqq “ T pxqpnq for all n P N.
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Proof

Let ω P M˚ and consider the map F : Spzq Ñ M given by

z ÞÑ n?
π

ż

R

e´n2pt´zq2σtpxq dt.

Using similar methods from the proof of Theorem 1.3.17 we can show that this is contin-

uous and analytic on Spzqo. Also for s P R we have

xσspxqpnq, ωy “ n?
π

ż

R

e´n2t2xσt`spxq, ωy dt “ n?
π

ż

R

e´n2pt´sq2xσtpxq, ωy dt “ F psq

from which (i) follows.

Let T :M Ñ M be a normal map such that T ˝ σt “ σt ˝ T for all t P R. Let ω P M˚

and we have

xpTxqpnq, ωy “ n?
π

ż

R

e´n2t2xτtpTxq, ωy dt “ n?
π

ż

R

e´n2t2xτtpxq, T˚pωqy dt

“ xxpnq, T˚pωqy “ xT pxpnqq, ωy

and we have (ii). ✷

The following is highly important for us as it gives us a notion of smearing in the predual

M˚.

Theorem 1.3.21 Let M be a von Neumann algebra x P M , n P N and define a map

Φpnq : M Ñ M by x ÞÑ xpnq. Then Φpnq is contractive and normal. Furthermore if

we consider M with its natural operator space structure as a von Neumann algebra, then

Φpnq is completely contractive.

Proof

Using that σt is an isometry we can show that for all ω P M˚ we have |xxpnq, ωy| ď
}x}}ω} and so }xpnq} ď }x}, i.e. Φpnq is a contraction.
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1.3 One-parameter Groups and Smearing

Let pxαq Ă M with σ-weak limit x P M . As σt is normal for all t P R then for all

ω P M˚ and t P R we have xxα, ω ˝ σty Ñ xx, ω ˝ σty. It then follows that

|xxαpnq, ωy ´ xxαpnq, ωy| ď n?
π

ż

R

e´n2t2 |xxα ´ x, ω ˝ σty| dt Ñ 0

and so Φpnq is normal.

Let M have the usual operator space structure as a von Neumann algebra from Ex-

ample 1.1.7. Let m P N and consider the map Φpnqm : MmpMq Ñ MmpMq given

by Definition 1.1.9. We have that σt is a ˚-automorphism for all t P R and thus a

complete isometry by Proposition 1.1.10. Let pxijqmi,j“1 P MmpMq. Then using that

MmpMq “ MmppM˚q˚q –ci CBpM˚,Mmq and the operator space structure on the dual

(and thus on the predual) we have

`
Φpnqm

`
pxijqmi,j“1

˘˘
pωq “ pxxijpnq, ωyqm

i,j“1
“ n?

π

ż

R

e´n2t2 pxσtpxijq, ωyqm
i,j“1

dt

“ n?
π

ż

R

e´n2t2
´

pσtpxijqqm
i,j“1

¯
pωq dt “ n?

π

ż

R

e´n2t2
`
pσtqm

`
pxijqmi,j“1

˘˘
pωq dt

where we used that
`ş

R
fijptq dt

˘n
i,j“1

“
ş
R

pfijptqqn
i,j“1

dt. As this holds for any ω P M˚

we read off that

Φpnqm
`
pxijqmi,j“1

˘
“ n?

π

ż

R

e´n2t2pσtqm
`
pxijqmi,j“1

˘
dt.

Now we calculate the norm to get

››Φpnqm
`
pxijqmi,j“1

˘›› ď n?
π

ż

R

e´n2t2
››pσtqm

`
pxijqmi,j“1

˘›› dt ď
››pxijqmi,j“1

››

and so Φpnqm is contractive for all m P N. ✷
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1.4 Weight Theory

Let µ be a measure on the σ-algebra generated by the open sets on a locally compact

space Ω. Then we can consider a map φ : C0pΩq` Ñ r0,8s on the continuous positive

functions on Ω given by f ÞÑ
ş
Ω
f dµ. On the other hand, given any positive linear

functional φ P C0pGq˚
` we know there is some measure µ such that φpfq “

ş
Ω
f dµ so for

the “unbounded” functionals we might want to consider φ : C0pGq` Ñ r0,8s.

In this section we will consider weights which are the non-commutative analogue

of such “unbounded” functionals on arbitrary C˚-algebras and von Neumann algebras.

These are important for the development of C˚-algebras and von Neumann algebras in

general and will be needed in order to define locally compact quantum groups in the next

chapter.

Proofs are scarce in this section as it would lead us too far astray to include them

here. We refer the reader to Takesaki (2003b), Strătilă et al. (1979), Combes (1968),

Kustermans & Vaes (1999) and Kustermans (1997a).

Notation 1.4.1 We denote by r0,8s the set r0,8q Y t8u. We have a totally ordered set

with the usual order on r0,8q and by letting a ă 8 for all a P r0,8q. We also define

addition and multiplication on r0,8s with the usual operations on r0,8q and by letting

a ` 8 “ 8 ` a “ 8 for all a P r0,8s, 0 ¨ 8 “ 8 ¨ 0 “ 0 and a ¨ 8 “ 8 ¨ a “ 8 for

a P p0,8s.

1.4.1 Weights on C˚-algebras and von Neumann algebras

Throughout this section fix a C˚-algebra A and a von Neumann algebra M .

Definition 1.4.2 A map φ : A` Ñ r0,8s is called a weight if for all x, y P A` and

λ P R
` we have φpx ` yq “ φpxq ` φpyq and φpλxq “ λφpxq.
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1.4 Weight Theory

Furthermore we define the following sets

M`
φ “

 
a P A` ˇ̌

φpaq ă 8
(
, Nφ “ ta P A | φpa˚aq ă 8u

Mφ “ lin M`
φ .

We say a weight φ on A is faithful if for a P A` we have φpaq “ 0 implies a “ 0.

Example 1.4.3 In the case of a commutative von Neumann algebra L8pΩ, µq where µ is a

positive measure on a locally compact space Ω we have a weight φ : L8pΩ, µq` Ñ r0,8s
defined by

φpfq “
ż

X

f dµ

for all f P L8pΩ, µq` and we have

M`
φ “ L1pΩ, µq X L8pΩ, µq`, N`

φ “ L2pΩ, µq X L8pΩ, µq

Mφ “ L1pΩ, µq X L8pΩ, µq.

In particular, given a locally compact group G with left (or right) Haar measure µ we

have a weight defined on L8pG, µq.

Of course a linear functional restricted to the positive elements of a von Neumann algebra

are trivial examples of a weight. Non-trivial examples of weights (i.e. including 8 in

the range) in the non-commutative case are often not so easy to construct as they are in

the commutative case. We can however construct weights on C˚-algebras from GNS-

constructions using similar functionals to those in 1.4.7, see Section 3 in Kustermans

(1997a) for further details.

Part (vi) in the following is from Theorem 3.20 in Strătilă et al. (1979). The remainder

can be found in Chapter VII of Takesaki (2003b).
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1. OPERATOR THEORY

Proposition 1.4.4 Let φ be a weight on a C˚-algebra A then we have the following prop-

erties of φ:

(i) M`
φ is a hereditary cone in A`, that is if x, y P M`

φ then x`y P M`
φ and if x P M`

φ ,

y P A` and 0 ď y ď x then y P M`
φ ;

(ii) If 0 ď x ď y for x, y P M`
φ then φpxq ď φpyq;

(iii) Nφ is a left ideal in A;

(iv) Mφ “ lin ty˚x | x, y P Nφu is a ˚-subalgebra of A with Mφ X A` “ M`
φ and

Mφ Ă Nφ. Furthermore any element of Mφ can be written uniquely as a linear

combination
ř3

k“0 i
kzk of 4 elements zk P M`

φ for 0 ď k ď 3;

(v) There exists a net peαq in M`
φ such that 0 ď eα ď 1 for all α, for α, β P I with

α ď β we have eα ď eβ and }x ´ xeα} Ñ 0 for all x P Nφ;

(vi) There exists a unique linear map φ : Mφ Ñ C (also denoted by φ) that is equivalent

to φ on M`
φ and such that φpx˚q “ φpxq for all x P Mφ.

We also have the following Cauchy-Schwarz type equation. The proof is similar to that

of the standard Cauchy-Schwarz equation.

Proposition 1.4.5 Let φ denote a weight on a C˚-algebra A, then we have

|φpy˚xq|2 ď φpx˚xqφpy˚yq

for all x, y P Nφ.

There is a GNS construction for a weight on a C˚-algebra to that given by a positive linear

functional that follows similarly to that of the usual GNS construction.
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1.4 Weight Theory

Theorem 1.4.6 Let φ denote a weight on a C˚-algebra A, then there exists a triple

pHφ, πφ,Λφq where Hφ is a Hilbert space, Λφ : Nφ Ñ Hφ is a map into Hφ with dense

range and πφ : A Ñ BpHφq is a ˚-homomorphism such that

pΛφpxq|Λφpyqq “ φpy˚xq

for all x, y P Nφ and πφpxqΛφpyq “ Λφpxyq for all x P A and y P Nφ. Further-

more this triple is unique up to unitary isomorphism of Hilbert spaces. We call the triple

pHφ, πφ,Λφq the GNS construction of φ.

In order to handle the unboundedness of Λφ we give approximations for a weight φ by

positive linear functionals. In particular we define two sets Fφ and Gφ that both approxi-

mate φ. We will see below that the advantage of Gφ over Fφ is that Gφ is directed upwards

enabling us to take limits over Gφ. We will prove this in Proposition 1.4.9 but first we

need some preliminary lemmas. We also define similar sets for von Neumann algebras

but taken as subsets of M`
˚ and show similar properties hold.

Notation 1.4.7 Let A be a C˚-algebra and φ a weight on A. Then we define the sets

Fφ “
 
ω P A˚

`
ˇ̌
ωpxq ď φpxq @x P A`(

Gφ “ tλω | ω P Fφ, λ P p0, 1qu Ă Fφ

where we let Fφ have the order inherited from A`
˚ .

Now let M be a von Neumann algebra and φ a weight on M . In this case we define

the sets to be

Fφ “
 
ω P M`

˚
ˇ̌
ωpxq ď φpxq @x P M`( ,

Gφ “ tλω | ω P Fφ, λ P p0, 1qu Ă Fφ.

where we let Fφ have the order inherited from M`
˚ . We note in this case of von Neumann
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algebras that we only consider functionals from the predual in accordance with weights

on a von Neumann algebra.

The proof of this can be found in Combes (1968) Lemma 2.3 and Proposition 2.4. See

also Chapter VII in Takesaki (2003b).

Proposition 1.4.8 Let φ be a weight on a C˚-algebra A, let pHφ, πφ,Λφq be the GNS

construction of φ and let ω P Fφ with GNS representation pHω, πω, ηωq. Then we have:

(i) There exists a unique contraction T P πφpAq1 where 0 ď T ď 1 such that

pTΛφpxq|Λφpyqq “ ωpy˚xq for all x, y P Nφ;

(ii) There is a unique element ξω P Hφ such that xx, ωy “ pπφpxqξω|ξωq and T 1{2Λφpxq “
πφpxqξω for all x P Nφ.

For the proof of the following two Propositions see Chapter 3 in Kustermans (1997b). See

also Quaegebeur & Verding (1999).

Proposition 1.4.9 The sets Gφ for a weight φ on a C˚-algebra and G̃φ for a weight φ on

a von Neumann algebra are both upwards directed.

1.4.2 Normal Semi-finite Faithful Weights on von Neumann algebras

Similar to the development of measure theory on locally compact spaces, we want to

impose some further conditions on weights such that we obtain a more complete theory

as a result. We describe further conditions for weights on von Neumann algebras that

generalise some of the conditions of measure theory. See Kustermans & Vaes (1999) for

the case of weights on a C˚-algebra.

Most theorems in this section have complex proofs and we refer the reader to the

standard references Takesaki (2003b) and Strătilă (1981) for further details.

Definition 1.4.10 A weight φ on a von Neumann algebra M is:
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(i) normal if for all λ P R
` the set ta P M` | φpaq ď λu is σ-weakly closed;

(ii) semi-finite if M`
φ is σ-weakly dense in M`;

(iii) n.s.f. if it is normal, semi-finite and faithful.

Proposition 1.4.11 Let φ be a weight on a von Neumann algebra M , then φ is semi-finite

if and only any of the following conditions are satisfied:

(i) M`
φ is dense in M` in any of the weak topologies;

(ii) Mφ is dense in M in any of the weak topologies;

(iii) Nφ is dense in M in any of the weak topologies.

Proposition 1.4.12 Let φ be an n.s.f. weight on a von Neumann algebra M and let

pHφ, πφ,Λφq denote the GNS construction. Then πφ : M Ñ BpHφq is a normal ˚-

isomorphism of M onto πφpMq Ă BpHφq.

The following theorem is from Haagerup (1975). See also Chapter VII of Takesaki

(2003b).

Theorem 1.4.13 Let φ be a weight on a von Neumann algebra M then the following

conditions are equivalent:

(i) φ is normal;

(ii) for any bounded increasing net pxαq Ă M` we have φpsupα xαq “ supφpxαq;

(iii) φpxq “ sup tωpxq | ω P Fφu “ lim tωpxq | ω P Gφu for all x P M`.

See Theorem VII.2.7 in Takesaki (2003b) for a proof of the following.

Theorem 1.4.14 Let M be a von Neumann algebra, then there exists an n.s.f. weight on

M .
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The following is from Lemma IX.1.5 in Takesaki (2003b).

Proposition 1.4.15 Let φ and ψ denote two n.s.f. weights on a von Neumann algebra M

with GNS constructions pHφ, πφ,Λφq and pHψ, πψ,Λψq respectively. Then there exists a

unitary operator U : Hφ Ñ Hψ such that UπφpxqU˚ “ πψpxq for all x P M .

We now give the KMS properties of n.s.f. weights on von Neumann algebras. The notation

Spiq and Spiqo in the next theorem is introduced in Notation 1.3.3.

Definition-Theorem 1.4.16 Let φ be a weight on a von Neumann algebra M then there

exists a unique strongly continuous one-parameter automorphism group σφ (see Defini-

tion 1.3.1) on M such that

(i) φ ˝ σφt “ φ for all t P R and

(ii) for all x, y P Nφ X N˚
φ there exists a function Fx,y : Spiq Ñ C which is analytic on

Spiqo and such that

Fx,yptq “ φpσφt pxqyq and Fx,ypt ` iq “ φpxσφt pyqq

for all t P R.

We call σφ the modular automorphism group of φ.

Proposition 1.4.17 Let M be a von Neumann algebra, φ a weight on M and σ the mod-

ular automorphism group of φ. Then we have:

(i) σ
φ
t p1q “ 1 for all t P R;

(ii) Let x P Dompσ´iq and y P Mφ, then xy and yσ´ipxq are in Mφ and φpxyq “
φpyσ´ipxqq.

Definition-Theorem 1.4.18 For an n.s.f. weight φ on a von Neumann algebra M with

GNS construction pH, π,Λq and with modular automorphism group σ there exists:
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(i) a unique injective positive operator ∇ on H such that ∇itΛpxq “ Λpσtpxqq for all

t P R and x P Nφ;

(ii) an anti-unitary operator J on H such that JΛpxq “ Λpσi{2pxq˚q for all x P Nφ X
Dompσi{2q such that σi{2pxq˚ P Nφ. We call J the modular conjugation and ∇ the

modular operator of φ for any n.s.f. weight φ.

Proposition 1.4.19 Let M be a von Neumann algebra, φ a weight on M , J the modular

conjugation and ∇ the modular operator of φ. Then we have:

(i) J2 “ 1;

(ii) For all x P Nφ and y P Dompσi{2q we have xa P Nφ and

Λpxaq “ Jπpσi{2pyqq˚JΛpxq;

(iii) The set ΛpNφXN˚
φq is a core for ∇1{2 and Λpx˚q “ J∇1{2Λpxq for all x P NφXN˚

φ.

1.4.3 Slicing and Tensor Products of Weights on von Neumann alge-

bras

In this section we consider the tensor product of weights and slice maps on weights, that

is given von Neumann algebras M and N and n.s.f. weights φ on M and ψ on N we want

to make sense of the maps φ b id on pM bNq` and id b ψ on pM bNq`. In order to

do this we define the extended positive part M`
ext of any von Neumann algebra M and we

will define an operator valued weight from pM bNq` into N`
ext (or M`

ext for the other

weight ψ).

We follow Strătilă (1981) chapters 8, 9 and 11 in this section. See also Takesaki

(2003b) and the papers Haagerup (1979a) and Haagerup (1979b). For the C˚-algebra

case see Kustermans & Vaes (1999).
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Definition-Theorem 1.4.20 Let M and N be von Neumann algebras and φ and ψ be

normal semi-finite weights on M and N respectively. Then there exists a unique weight

φ b ψ on M bN such that for x P Mφ and y P Mψ we have x b y P Mφbψ and

pφ b ψqpx b yq “ φpxqψpyq.

Proposition 1.4.21 Let M and N be von Neumann algebras with weights φ and ψ re-

spectively. Then for all x P pM bNq` we have

pφ b ψqpxq “ sup tpω b κqpxq | ω P Fφ, κ P Fψu

“ lim txx, ω b κy | ω P Gφ, κ P Gψu

where we take the supremum or limit of an unbounded set to be infinity and ω b κ is the

unique positive linear functional in pM bNq`
˚ such that pω b κqpx b yq “ ωpxqκpyq for

all x P M and y P N (see Proposition IV.5.13 in Takesaki (2003a)).

We have the following important theorem.

Theorem 1.4.22 Let φ and ψ denote normal semi-finite weights on von Neumann alge-

brasM andN respectively. Then φbψ is a normal semi-finite weight on the von Neumann

algebra M bN and

Nφ d Nψ Ă Nφbψ.

If φ and ψ are faithful then so is φ b ψ.

Let σφ and σψ denote the modular automorphism groups of φ and ψ respectively (see

Theorem 1.4.16), then the modular automorphism group of the weight φ b ψ satisfies the

property σ
φbψ
t “ σ

φ
t b σ

ψ
t for all t P R.

Proposition 1.4.23 Let M and N denote von Neumann algebras and φ and ψ denote

n.s.f. weights on M and N respectively. Let JM and ∇M denote the modular conjugation

and modular operator of φ onM and similarly for ψ onN . Then JM bJN is the modular
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conjugation of φ b ψ and the one-parameter group ∇M b ∇N (as per Definition 1.3.12)

is the modular operator of φ b ψ.

We now move on to discuss operator valued weights in order to discuss the slice maps we

mentioned at the start of this section.

Definition 1.4.24 Let M be a von Neumann algebra and let M`
ext denote the set of maps

m :M`
˚ Ñ r0,8s such that

(i) mpω ` κq “ mpωq ` mpκq for all ω, κ P M`
˚ ;

(ii) mpλωq “ λmpωq for all λ ě 0 and ω P M`
˚ ;

(iii) m is lower semi-continuous on M`
˚ .

We call M`
ext the extended positive part of a von Neumann algebra M . For m,n P M`

ext,

λ ě 0 and a P M we define m ` n, λn and a˚ma P M`
ext by

pm ` nqpωq “ mpωq ` npωq

pλmqpωq “ λmpωq

pa˚maqpωq “ mpaωa˚q

for ω P M`
˚ where aωa˚ P M`

˚ is given by x ÞÑ xa˚xa, ωy. We can order M`
ext by

m1 ď m2 if m1pωq ď m2pωq for all ω P M`
˚ .

We now move on to the main definition of the section.

Definition 1.4.25 Let M be a von Neumann algebra and N a von Neumann subalgebra

of M . An operator valued weight is a map T :M` Ñ N`
ext such that:

(i) T px ` yq “ T pxq ` T pyq for x, y P M`;

(ii) T pλxq “ λT pxq for x P M` and λ ě 0;
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(iii) T py˚xyq “ y˚T pxqy for all x P M` and y P N .

Similarly to the case of a weight on M we define

M`
T “

 
x P M` ˇ̌

T pxq P N`( , NT “
 
x P M

ˇ̌
T px˚xq P N`(

MT “ lin M`
T .

By the previous proposition we have that x P M`
T if and only if we have pT pxqqpωq is

finite for all ω P N`
˚ with similar condition for NT also.

Proposition 1.4.26 Let T : M Ñ N`
ext be an operator valued weight. Then we have the

following properties:

(i) M`
T is a hereditary cone in M` and if 0 ď x ď y for x, y P M`

T then T pxq ď T pyq;

(ii) NT is a left ideal in M ;

(iii) MT “ lin ty˚x | x, y P NT u is a ˚-subalgebra of M with MT X M` “ M`
T and

MT Ă NT . Furthermore any element of MT can be written uniquely as a linear

combination
ř3

k“0 i
kzk of 4 elements zk P M`

T for 0 ď k ď 3;

(iv) There is a unique linear map T : MT Ñ N (also denoted by T ) such that T paxbq “
aT pxqb for all x P MT and a, b P N that is equivalent to the given T on M`

T ;

(v) MT and NT are N -bimodules.

We again want to define additional requirements on operator valued weights in order to

define normal, semi-finite and faithful (n.s.f.) operator valued weights. We define each of

these concepts now.

Definition 1.4.27 An operator valued weight T : M Ñ N`
ext from a von Neumann alge-

bra M to a von Neumann subalgebra N Ă M is
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(i) normal if for all bounded increasing nets pxαq Ă M` with limit x P M` we have

limT pxαq “ T pxq;

(ii) semi-finite if nT is σ-weakly dense in M ;

(iii) faithful if T px˚xq “ 0 implies x “ 0;

(iv) n.s.f. if it is normal, semi-finite and faithful.

Remark 1.4.28 We have that an n.s.f. operator valued weight T : M` Ñ N`
ext can be

uniquely extended to a map T :M`
ext Ñ N`

ext. It follows that we can also extend a weight

φ :M` Ñ r0,8s to a map φ :M`
ext Ñ r0,8s and so the following theorem makes sense.

We have the following important theorems proved by Haagerup in Haagerup (1979b). See

also Sections 12.1-12.5 and 12.8 in Strătilă (1981).

Theorem 1.4.29 For i “ 1, 2 let Mi be von Neumann algebras with Ni Ă Mi a von

Neumann subalgebra and let Ti : M
`
i Ñ pNiq`

ext be n.s.f. operator valued weights. Then

there exists a unique n.s.f. operator valued weight T1 bT2 : pM1 bM2q` Ñ pN1 bN2q`
ext

such that for all n.s.f. weights ψi on Ni (i “ 1, 2) we have

pψ1 b ψ2q ˝ pT1 b T2q “ pψ1 ˝ T1q b pψ2 b T2q.

Furthermore for x1 P MT1 and x2 P MT2 we have x1 b x2 P MT1bT2 and pT1 b T2qpx1 b
x2q “ T1pxq b T2pxq.

Now we consider slice maps with weights.

Corollary 1.4.30 Let φ and ψ be n.s.f. weights on von Neumann algebras φ and ψ re-

spectively. Then there exist n.s.f. operator valued weights φ b id : pM bNq` Ñ N`
ext

and idbψ : pM bNq` Ñ M`
ext such that ψ ˝ pφb idq “ φbψ “ φ ˝ pidbψq. Further-

more for x P Mφ and y P N we have x b y P Mφbid with pφ b idqpx b yq “ φpxqy and

similarly for x P M and y P Mψ we have x b y P Midbψ with pid b ψqpx b yq “ ψpyqx.
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Chapter 2

Locally Compact Quantum Groups

There are three types of locally compact quantum groups that we will use in this thesis,

namely the von Neumann algebraic setting, the reduced C˚-algebraic setting and the uni-

versal C˚-algebraic setting. Locally compact quantum groups first appear in the literature

in the reduced C˚-algebraic setting in Kustermans & Vaes (2000), then in the univer-

sal C˚-algebraic setting in Kustermans (2001) and finally in the von Neumann algebraic

setting in Kustermans & Vaes (2003). We will reference these regularly in this chapter.

See also Johan Kustermans’ lecture notes in Applebaum et al. (2005), Stefan Vaes’ PhD

Thesis Vaes (2001), Thomas Timmermann’s book Timmermann (2008) and van Daele’s

alternative approach for the von Neumann algebraic setting Van Daele (2014).

2.1 Introduction

In this section we briefly introduce locally compact groups in the language of locally

compact quantum groups and we discuss quantum semigroups for the C˚-algebraic and

von Neumann algebraic settings. We will also briefly discuss Hopf algebras and the diffi-

culties in using them for locally compact quantum groups.
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2. LOCALLY COMPACT QUANTUM GROUPS

2.1.1 Locally Compact Groups as Quantum Groups

It is recommended that the reader use this as a motivation for what follows and as a

reference for the properties of quantum groups in the special case where we have a group.

The results are easier to prove here because of the commutativity of C0pGq, however we

feel that it may give the reader some motivation as to why we are interested in the results

in the more general case of quantum groups.

Example 2.1.1 Let G be a locally compact group, then we can consider the commutative

C˚-algebra of continuous functions vanishing at infinity C0pGq. Given the structure on

the group G we define the map ∆ : C0pGq Ñ CbpGˆGq given by p∆pfqqpx, yq ÞÑ fpxyq
for f P C0pGq. We have that ∆pfq is bounded as we have

}∆pfq} “ sup
x,yPG

|p∆pfqqpx, yq| “ sup
x,yPG

|fpxyq| “ sup
xPG

|fpxq| “ }f}.

We note that CbpGˆGq –i MpC0pGˆGqq –i MpC0pGq bminC0pGqq where M denotes

the multiplier algebra (see Section A.5) and so ∆ : C0pGq Ñ MpC0pGq bminC0pGqq.

We have for x, y, z P G and f P C0pGq that

fppxyqzq “ r∆pfqspxy, zq “ rp∆ b idqp∆pfqqspx, y, zq

and

fpxpyzqq “ r∆pfqspx, yzq “ rpid b ∆qp∆pfqqspx, y, zq

and so by associativity of G we have p∆ b idq ˝ ∆ “ pid b ∆q ˝ ∆. We call this property

coassociativity.

We also have a left Haar weight φ : C0pGq` Ñ r0,8s given by f ÞÑ
ş
X
f dµ. Sim-

ilarly we have a right Haar weight ψ given by the right Haar measure. We can consider

L2pG, µq as the space of square integrable (up to almost everywhere) functions on G, that

is f P L2pG, µq if and only if
ş
G
f˚f dµ ă 8. Then L2pG, µq is a Hilbert space with inner
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product pf |gq “ φpfg˚q.

For ω P C0pGq˚
` we have a positive measure ν P MpGq such that xf, ωy “

ş
X
f dν. It

then follows from Fubini’s theorem that for all f P C0pGq` we have

φppω b idqp∆pfqqq “
ż

G

rpω b idqp∆pfqqspyq dµpyq

“
ż

G

ˆż

G

fpxyq dνpxq
˙
dµpyq “

ż

G

ˆż

G

fpyq dµpyq
˙
dνpxq “ ωp1qφpfq

It follows that left invariance of the Haar measure µ is equivalent to having φppω b
idqp∆pfqqq “ φpfqωp1q for all ω P C0pGq˚

` and f P C0pGq`. It also follows that

lin tpω b idq∆pfq | f P C0pGq, ω P C0pGq˚u “ C0pGq

and similarly for ω acting on the right.

We can define an isometry W : L2pG, µq b L2pG, µq Ñ L2pG, µq b L2pG, µq by

W pF qpx, yq “ F px, x´1yq for F P L2pG ˆ G, µ ˆ µq “ L2pG, µq b L2pG, µq and it

follows that W ˚pf b gq “ ∆pgqpf b 1q. We denote W12 “ W b 1, W23 “ 1 b W and

W13 “ σ23W12 where σ denotes the flip map on L2pG, µq b L2pG, µq. Then we have for

F P L2pG ˆ G ˆ G, µ ˆ µ ˆ µq

ppW12W13W23qpF qqpx, y, zq “ pW13W23pF qqpx, x´1y, zq

“ pW23pF qqpx, x´1y, x´1zq “ F px, x´1y, y´1zq

and

ppW23W12qpF qqpx, y, zq “ pW12pF qqpx, y, y´1zq

“ F px, x´1y, y´1zq “ .ppW12W13W23qpF qqpx, y, zq.

As this then holds for all such F we have W12W13W23 “ W23W12.
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2. LOCALLY COMPACT QUANTUM GROUPS

Example 2.1.2 LetG be a locally compact group and µ the left Haar measure onG. Then

we have the von Neumann algebra of measurable essentially bounded functions L8pG, µq.

We also have a map ∆ : L8pG, µq Ñ L8pG, µq bL8pG, µq given by ∆pfqpx, yq “ fpxyq
where we’ve identified L8pG, µq bL8pG, µq –i L

8pG ˆ G, µ ˆ µq.

We define φ : L8pG, µq` Ñ r0,8s by f ÞÑ
ş
X
fdµ and we have a n.s.f. weight on

L8pG, µq. As µ is a Haar measure then we have

ż

X

fpyxq dµpxq “
ż

X

fpxq dµpxq

for all y P G.

2.1.2 Quantum Semigroups

We now define the coproduct on an algebra to give us a notion of a “quantum semigroup”

or a bialgebra. On the way to defining a locally compact quantum group we need to

define a C˚-algebraic quantum semigroup or von Neumann algebraic quantum semigroup

in order to capture the “topology” at the quantum level.

Definition 2.1.3 Let A be an algebra and ∆ : A Ñ MpA b Aq a non-degenerate map,

then we say ∆ is coassociative if we have p∆b idq ˝∆ “ pidb∆q ˝∆. A non-degenerate

coassociative homomorphism ∆ : A Ñ MpA b Aq is called a coproduct on A where

if A is unital we require ∆ to be unital and if A is a ˚-algebra we require ∆ to be a

˚-homomorphism.

A C˚-algebraic quantum semigroup is a pair pA,∆q where A is a C˚-algebra and

∆ : A Ñ MpAbminAq is a coproduct on A. A von Neumann algebraic quantum

semigroup is a pair pM,∆q where M is a von Neumann algebra and ∆ : M Ñ M bM

is a normal coproduct on M .

70



2.1 Introduction

In Example 2.1.1 we gave a coproduct ∆ : C0pGq Ñ MpC0pGq bminC0pGqq –i CbpG ˆ
Gq on C0pGq for a locally compact group G. Similarly from Example 2.1.2 we have a

coproduct ∆ : L8pG, µq Ñ L8pG, µq bL8pG, µq on L8pG, µq.

2.1.3 Hopf Algebras

For a quantum group we need operations that are equivalent to the identity and inversion

operations at a “quantum level”. We will discuss the “inversion” operation with Hopf

algebras now. First we give the definition of a Hopf algebra, then we discuss this definition

in terms of the algebra of polynomials over a finite group and finally we discuss some of

the problems for defining locally compact quantum groups using Hopf algebras in this

way.

Definition 2.1.4 A Hopf algebra is a unital algebra A with multiplication map m : A b
A Ñ A and unit given by η : C Ñ A such that m is associative (i.e. m ˝ pm b idq “
m ˝ pid b mq and m ˝ pη b idq “ m ˝ pid b ηq). Furthermore we have the following:

(i) We have a unital, coassociative homomorphism ∆ : A Ñ A b A and a homomor-

phism ε : A Ñ C called the counit such that pε b idq ˝ ∆ “ id “ pid b εq ˝ ∆;

(ii) There is an antihomomorphism S : A Ñ A such that

m ˝ pS b idq ˝ ∆ “ η ˝ ε “ m ˝ pid b Sq ˝ ∆

called the antipode.

A Hopf ˚-algebra is a Hopf algebra A with involution such that A is a ˚-algebra and ∆

and ε are ˚-homomorphisms.

Now consider the algebra of polynomials A over a finite group G with multiplication

m : A d A Ñ A given by mpf, gq ÞÑ fg for all f, g P A (where pfgqpxq “ fpxqgpxq for

all x P G) and identity map η : C Ñ A given by λ ÞÑ λ1 for λ P C and 1 the unit of A.
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We let ∆ be the usual coproduct p∆pfqqpx, yq “ fpxyq for all f P A and x, y P G. We

can define the counit ε : A Ñ C given by f ÞÑ fpeq for all f P A (where e is the unit

element of G) and the antipode S : A Ñ A given by pSpfqqpxq “ fpx´1q for all f P A
and x P G. We can easily show that this gives us a Hopf algebra. Note how we have

used the group product to define ∆, the group identity to define ε and the group inverse

to define S.

Unfortunately for locally compact quantum groups it does not necessarily follow that

the maps ε and S are bounded. In particular we will see that S is unbounded for the

example of SUqp2q that we will give in Chapter 5. As such it is difficult to define locally

compact quantum groups using Hopf algebras, however the antipode in particular does

still play an important role. We show in the next section an appropriate generalisation to

what we now consider a locally compact quantum group.

2.2 Locally Compact Quantum Groups

In this section we give details of locally compact quantum groups in the von Neumann

algebraic and reduced C˚-algebraic settings. We will also discuss the relationship from

one to another though in essence they describe the same “object” as we will see.

Proofs are scarcely given in this section and the reader is referred to the literature for

further details.

2.2.1 Von Neumann Algebraic Quantum Groups

In this section we give details of von Neumann algebraic quantum groups. We give details

of the Haar weights, the main definition, the multiplicative unitary, the antipode and its

related objects and then we give further properties of each of these objects as needed.

The main reference for this is Kustermans & Vaes (2003) (see also Vaes (2001)). We

remind the reader that we defined M`
φ “ ta P A` | φpaq ă 8u in Definition 1.4.2.
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Definition 2.2.1 Let pM,∆q be a von Neumann algebraic quantum semigroup. Then a

weight φ on M is:

(i) left invariant if φppω b idq∆pxqq “ ωp1qφpxq for all x P M`
φ and ω P M`

˚ ;

(ii) right invariant if φppid b ωq∆pxqq “ ωp1qφpxq for all x P M`
φ and ω P M`

˚ .

Let pM,∆q be a von Neumann algebraic quantum semigroup where M acts on a Hilbert

space H and let φ be a left or right invariant weight on M . We may assume that M acts

on H in standard form and we have a GNS construction pH, π,Λq of φ and pH, π,Γq of

ψ.

We now turn to the main definition of this section.

Definition 2.2.2 A von Neumann algebraic quantum group pM,∆, φ, ψq consists of a

von Neumann algebraic quantum semigroup pM,∆q with a left invariant n.s.f. weight φ

and a right invariant n.s.f. weight ψ. We call φ the left Haar weight and ψ the right Haar

weight.

We will often denote a von Neumann algebraic quantum group pM,∆, φ, ψq simply by

M or pM,∆q with φ and ψ understood. Throughout the rest of this section we let M

denote a von Neumann algebraic quantum group. We also fix a Hilbert space H on which

M acts in standard form and which is also the GNS Hilbert space of φ and ψ.

The following is proved in Proposition 3.17 in Kustermans & Vaes (2000).

Proposition 2.2.3 The coproduct ∆ :M Ñ M bM of a locally compact quantum group

M is injective.

We require the following frequently in quantum groups so we introduce this now.

Notation 2.2.4 Let H denote a Hilbert spaces and let X P BpH b Hq, then we let

X12 :“ X b 1 P BpH b H b Hq where 1 is the identity in BpHq and similarly we let
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X23 :“ 1 b X P BpH b H b Hq. Let Σ P BpH b Hq denote the flip map given by

ξ b η ÞÑ η b ξ and we define X13 “ Σ23X12Σ23.

We call the notation X12, X13 and X23 the leg numbering notation. It can easily be

extended to higher tensor products of H and to different Hilbert spaces when necessary.

This should be clear from the context.

We now introduce the multiplicative unitary.

Definition-Theorem 2.2.5 There is a unique unitary operator W P BpH bHq such that

W ˚pΛpxq b Λpyqq “ pΛ b Λqp∆pyqpxb 1qq

for all x, y P Nφ. Furthermore we have the following properties:

(i) For all x P M we have

∆pxq “ W ˚p1 b xqW ; (2.1)

(ii) W12W13W23 “ W23W12;

(iii) p∆ b idqpW q “ W13W23.

We call W the multiplicative unitary of pM,∆q.

We have the following density conditions as a theorem for a von Neumann algebraic

quantum group.

Theorem 2.2.6 Let M denote a von Neumann algebraic quantum group, then we have

M “ tpω b idq∆pxq | x P M, ω P M˚u

“ tpid b ωq∆pxq | x P M, ω P M˚u

“ tpω b idqW | ω P BpHq˚u .

We now give details of the antipode as mentioned earlier.
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Definition-Theorem 2.2.7 There exists a unique σ-strong˚ closed operator S :M Ñ M

with a σ-strong˚ core

lin tpid b ωqpW q | ω P M˚u

such that

S ppid b ωqpW qq “ pid b ωqpW ˚q

for all ω P M˚. Furthermore we have a polar decomposition S “ R ˝ τ´i{2 where τ

is a σ-strong˚ continuous one-parameter group of ˚-automorphisms on M and R is a

˚-anti-automorphism on A with R2 “ id such that

(i) S is densely defined and has dense range;

(ii) S is injective with S´1 “ R ˝ τi{2;

(iii) S is an anti-homomorphism on its domain, i.e. for x, y P DompSq we have Spxyq “
SpyqSpxq;

(iv) For all x P DompSq we have Spxq˚ P DompSq with SpSpxq˚q˚ “ x;

(v) We have 1 P DompSq with Sp1q “ 1. In particular τtp1q “ 1 for all t P R and

Rp1q “ 1.

We call S the antipode, τ the scaling group and R the unitary antipode of M .

Proposition 2.2.8 We have the following relations for R and τ :

(i) τt ˝ R “ R ˝ τt for all t P R;

(ii) ∆ ˝ τt “ pτt b τtq ˝∆ for all t P R and ∆ ˝R “ σ ˝ pRbRq ˝∆ where σ is the flip

map on M bM ;

(iii) S ˝ τt “ τt ˝ S for all t P R and S ˝ R “ R ˝ S;

(iv) For all t P R we have τt and R are isometries and normal.
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It follows easily that S “ τ´i{2 ˝ R. We now turn to look at modular automorphism

groups and the uniqueness of Haar weights. It follows from the properties given that

pφ ˝ Rqppid b ωq∆pxqq “ ωp1qpφ ˝ Rqpxq for all x P M`
φ and ω P M`

˚ and so from the

following we may always assume that ψ “ φR.

Notation 2.2.9 We let σ and σ1 denote the modular automorphism groups of φ and ψ

respectively as given by Theorem 1.4.16.

Proposition 2.2.10 There exists a number ν ą 0 such that φτt “ ν´tφ for all t P R and a

unique injective positive operator P on H such that P itΛpxq “ νt{2Λpτtpxqq for all t P R

and x P Nφ. We call ν the scaling constant of pM,∆q.

Proposition 2.2.11 The one parameter groups τ , σ and σ1 all commute with each other

and we have for all t P R that

∆ ˝ σt “ pτt b σtq ˝ ∆, ∆ ˝ σ1
t “ pσ1

t b τ´tq ˝ ∆,

∆ ˝ τt “ pτt b τtq ˝ ∆, ∆ ˝ τt “ pσt b σ1
´tq ˝ ∆.

Theorem 2.2.12 Let φ1 denote a left invariant normal semi-finite weight on pM,∆q, then

there exists some r ą 0 such that φ1 “ rφ. There is a similar result for right invariant

normal semi-finite weights.

We record the following useful results in von Neumann algebraic quantum groups for

later use. A proof is given in Lemma 4.6 in Aristov (2004). See also Proposition 5.13 in

Kustermans & Vaes (2000).

Lemma 2.2.13 Let x, y P M such that ∆pxq “ y b 1, then x, y P C ¨ 1.

2.2.2 C˚-algebraic Quantum Groups

In this section we give an overview of locally compact quantum groups in the C˚-algebraic

setting, in particular in the reduced C˚-algebraic setting. This section is so similar to sec-

tion 2.2.1 we will often only point out the differences in definitions and theorems and not
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restate them. The main reference C˚-algebraic quantum groups is the work Kustermans &

Vaes (2000) and we refer there for all such proofs or justification (see also Vaes (2001)).

We don’t give the definitions of KMS weights and approximate KMS weights for the fol-

lowing definition as it is not required for this thesis, see Kustermans & Vaes (1999) for

further details.

We note how in the following definition we have some density conditions that are

absent in the von Neumann algebraic setting. These conditions follow from the axioms

for a von Neumann algebraic quantum group but we must assume them in the C˚-algebraic

setting.

Definition 2.2.14 A C˚-algebraic quantum group is a C˚-algebraic quantum semigroup

pA,∆q such that

lin t∆pxqp1 b yq | x, y P Au}¨} “ AbminA “ lin t∆pxqpy b 1q | x, y P Au}¨}
(2.2)

and there exists a left and right invariant approximate KMS weights φ and ψ on pA,∆q
respectively.

We now give the main definition of the section. Note that it follows from Proposition

5.1 in Woronowicz (1996) that if the density conditions in the following definition are

satisfied then the density conditions of the previous definition are automatically satisfied.

Definition 2.2.15 A reduced C˚-algebraic quantum group is a C˚-algebraic quantum

group pA,∆, φ, ψq such that the left invariant approximate KMS weight φ is faithful and

that satisfy the following density conditions

A “ lin tpω b idq∆pxq | ω P A˚, x P Au}¨}

“ lin tpid b ωq∆pxq | ω P A˚, x P Au}¨}
.

Throughout the rest of this section let H denote the GNS Hilbert space given by φ and we

let Λ : Nφ Ñ H be the GNS embedding of A into H. In this thesis we will assume that
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our reduced C˚-algebraic quantum groups act on H and we will often drop the GNS map

π : A Ñ BpHq.

Theorem 2.2.16 There exists a unique unitary operator W P BpH b Hq such that

W ˚pΛpxq b Λpyqq “ pΛ b Λqp∆pyqpxb 1qq for all x, y P Nφ. Furthermore we have:

(i) For all x P A we have ∆pxq “ W ˚p1 b xqW ;

(ii) W12W13W23 “ W23W12;

(iii) A “ lin tpid b ωqpW q | ω P BpHq˚u}¨}
.

We call this operator the multiplicative unitary of pA,∆q. It is also sometimes referred

to as the left regular corepresentation of the locally compact quantum group.

We note that in the setting of Kustermans & Vaes (2000) we have an operator V P
MpAbminB0pHqq such that pπ b idqpV q “ W and we call V the left regular corep-

resentation. As we are assuming A acts on H these two objects are the same for us so we

use both names to refer to W .

The definition of the antipode for a C˚-algebraic quantum group is identical to that

of a von Neumann algebraic quantum group in Definition-Theorem 2.2.7 but with the

σ-strong˚ topology replaced with the norm topology. So it is a closed map S : A Ñ A

with a core given by lin tpid b ωqpW q | ω P BpHq˚u where we have S ppid b ωqpW qq “
pidbωqpW ˚q for all ω P BpHq˚. Also τ is a norm continuous one-parameter group on A

in the decomposition S “ R˝τ´i{2. The commutation relations are similar to the previous

section.
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2.2.3 Reduced C˚-algebraic and von Neumann algebraic Quantum

Groups

We show now that the two settings we have given above are essentially equivalent. In

particular given a von Neumann algebraic quantum group we can associate a reduced

C˚-algebraic quantum group and similarly vice versa. We give details in this section, see

Kustermans & Vaes (2000) and Kustermans & Vaes (2003) for further details.

First fix a von Neumann algebraic quantum group pM,∆, φ, ψq. Then we have the

following (see Proposition 1.6 in Kustermans & Vaes (2003) for the proof).

Theorem 2.2.17 Let A “ lin tpid b ωqpW q | ω P BpHq˚u}¨}
, then A is a C˚-algebra

and there exists a restriction and corestriction of ∆ :M Ñ M bM to a contractive map

A Ñ MpAbminAq. Similarly we can restriction φ and ψ such that pA, ∆|A , φ|A , ψ|Aq
is a reduced C˚-algebraic quantum group.

Proposition 2.2.18 Let pA,∆A, φA, ψAq denote the reduced C˚-algebraic quantum group

associated with a von Neumann algebraic quantum group pM,∆, φ, ψq from Theorem

2.2.17. Let S, R and τ denote the antipode, unitary antipode and scaling group of M

respectively. Let RA “ R|A, τAt “ τt|A for all t P R and let DompSAq “ DompSq X A

with SApxq “ Spxq for all x P DompSAq. Then SA, RA and τA are the antipode, unitary

antipode and scaling group of A respectively.

Now let pA,∆, φ, ψq denote a reduced C˚-algebraic quantum group, let pH, π,Λq denote

the GNS construction of φ and let M “ πpAq2. Then there is an extension ∆̃ : M Ñ
M bM and extensions φ̃ and ψ̃ of φ and ψ such that pM, ∆̃, φ̃, ψ̃q is a von Neumann

algebraic quantum group. So in fact we have the following.

Proposition 2.2.19 For every reduced C˚-algebraic quantum group there is a von Neu-

mann algebraic quantum group and similarly for every von Neumann algebraic quantum

group there is a reduced C˚-algebraic quantum group.

79
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2.2.4 The Locally Compact Quantum Group G

We now have two different settings for locally compact quantum groups, namely the

von Neumann algebraic setting and the reduced C˚-algebraic setting. We have seen in

the previous section that given a von Neumann algebraic quantum group we can form a

reduced C˚-algebraic quantum group and vice versa.

Consider the case where we have a locally compact group G, then we have a reduced

C˚-algebraic quantum group pC0pGq,∆, φ, ψq with C0pGq a commutative C˚-algebra (see

Example 2.1.1). We also have a von Neumann algebraic quantum group pL8pGq,∆, φ, ψq
such that L8pGq is a commutative von Neumann algebra where we’ve used the same

notation for the coproduct and Haar weights. So in this case the von Neumann algebraic

and reduced C˚-algebraic quantum groups are two different operator algebras generated

by functions over the same group G. We mimic this for the case of quantum groups and

we say there is some underlying locally compact quantum group G such that we have

a reduced C˚-algebraic version pC0pGq,∆, φ, ψq and a von Neumann algebraic version

pL8pGq,∆, φ, ψq. We have no way of computing such an object; however notationally

we will still speak of locally compact quantum group G. So we have the following.

Notation 2.2.20 In the remainder of this thesis we will denote a locally compact quantum

group by G (or H) and then we denote the reduced C˚-algebraic quantum group by C0pGq
and the von Neumann algebraic quantum group by L8pGq where ∆, φ and ψ are implied.

We will denote the GNS Hilbert space by L2pGq and the predual of L8pGq by L1pGq.

We will discuss the L1pGq object further in section 2.4. Given a locally compact quantum

group we can form its opposite locally compact quantum group, we give the details of

this in the next example that will be referred back to later.

Example 2.2.21 Let G be a locally compact quantum group and let ∆op “ σ ˝ ∆ :

L8pGq Ñ L8pGq bL8pGq where σ P BpL2pGq bL2pGqq is the flip map. Then we

can show that pL8pGq,∆op, ψ, φq is a von Neumann algebraic quantum group called the

opposite quantum group.
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2.2.5 The Universal C˚-algebraic Quantum Group

We introduce briefly the universal C˚-algebraic quantum group. We give only the exis-

tence theorem and properties that we require here. We refer the reader to Kustermans

(2001) for further details.

Definition-Theorem 2.2.22 There exists a C˚-algebraic quantum group called the uni-

versal C˚-algebraic quantum group and denoted pCu
0pGq,∆u, φu, ψuq with a unique em-

bedding ι0 : C0pGq Ñ Cu
0pGq and a surjective ˚-homomorphism π : Cu

0pGq Ñ C0pGq.

Proposition 2.2.23 There exists a unique non-zero ˚-homomorphism εu : Cu
0pGq Ñ C

such that pεu b idq ˝ ∆u “ id “ pid b εuq ˝ ∆u.

It can be shown that there exist an antipode, a scaling group, a unitary antipode and

modular automorphism groups for the universal C˚-algebraic quantum group, all denoted

with a superscript u when needed and detailed further in Kustermans (2001).

2.3 Duality in Locally Compact Quantum Groups

Let G denote a locally compact quantum group, then in this section we will define a

locally compact quantum group Ĝ through its von Neumann algebraic quantum group

pL8pĜq, ∆̂G, φ̂G, ψ̂Gq. We define the von Neumann algebra and the coproduct first. Note

the flip map on the coproduct below is a matter of convention where we have chosen to

follow Kustermans & Vaes (2000).

We will also discuss the self-duality of locally compact quantum groups as a general-

isation of the Pontryagin duality of locally compact Abelian groups.

We again refer to Kustermans & Vaes (2000) and Kustermans & Vaes (2003) as refer-

ences of this section.

Notation 2.3.1 We define the following

L8pĜq “ lin tpω b idqpW q | ω P BpL2pGqq˚uσ´strong˚
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and the map ∆̂ : L8pĜq Ñ BpL2pGq b L2pGqq is defined by

∆̂pxq “ ΣW px b 1qW ˚Σ

for all x P L8pĜq where Σ is the flip map on L2pGq b L2pGq.

Theorem 2.3.2 We have that L8pĜq is a von Neumann algebra and ∆̂ : L8pĜq Ñ
L8pĜq bL8pĜq is the unique normal unital coassociative ˚-homomorphism such that

pL8pĜq, ∆̂q is a von Neumann algebraic quantum group.

Remark 2.3.3 Equivalently we can define this as a reduced C˚-algebraic quantum group

with C˚-algebra C0pĜq “ lin tpω b idqpW q | ω P BpL2pGqq˚u}¨}
and coproduct ∆̂ :

C0pĜq Ñ MpC0pĜq bminC0pĜqq given by ∆̂pxq “ ΣW px b 1qW ˚Σ for all x P C0pĜq.

We have thatW P L8pGq bL8pĜq and from the definition of the coproducts and Definition-

Theorem 2.2.5 we have

p∆ b idqpW q “ W ˚
12W23W12 “ W13W23

and

pid b ∆̂qpW q “ p1 b ΣqW23W12W
˚
23p1 b Σq “ p1 b ΣqW12W13p1 b Σq “ W13W12.

As Ĝ is a locally compact quantum group then we have an antipode, a unitary antipode

and a scaling group denoted by Ŝ, R̂ and τ̂ respectively. It can be shown that the scaling

constant of Ĝ is given by ν´1 for ν the scaling constant for G.

Given a locally compact quantum group G we can form its double dual
ˆ̂
G as the

dual of Ĝ. We have the following theorem showing that locally compact quantum groups

are closed under this duality and generalises the Pontryagin duality theorem for locally

compact Abelian groups (see Chapter 4 in Folland (1994)).
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Theorem 2.3.4 Let G denote a locally compact quantum group, then there is a map θ :

L8pGq Ñ L8p ˆ̂Gq that is a ˚-isomorphism and satisfies pθb θq ˝ ∆ “ ˆ̂
∆ ˝ θ. We can also

identify
ˆ̂
φ with φ,

ˆ̂
ψ with ψ and

ˆ̂
Λ with Λ.

For a locally compact quantum group G, we have its dual locally compact quantum group

Ĝ and so we have a multiplicative unitary Ŵ of Ĝ satisfying the appropriate relations.

We also have the following relation of Ŵ with W .

Proposition 2.3.5 For W the multiplicative unitary of a locally compact quantum group

G and Ŵ the multiplicative unitary of its dual Ĝ we have

Ŵ “ ΣW ˚Σ

where Σ P BpL2pGq b L2pGqq is the flip map.

We will make use of the following formulas for the scaling group.

Proposition 2.3.6 Let G be a locally compact quantum group with φ the left invariant

Haar weight for pL8pGq,∆q and φ̂ the left invariant Haar weight for pL8pĜq, ∆̂q. Let

J and ∇ denote the modular conjugation and modular operator of φ respectively, let Ĵ

and ∇̂ denote the modular conjugation and modular operator of φ̂ respectively and let P

denote the operator given in proposition 2.2.10. Then for all x P L8pGq, y P L8pĜq and

t P R we have

τtpxq “ ∇̂itx∇̂´it “ P itxP´it, Rpxq “ Ĵx˚Ĵ ,

τ̂tpyq “ ∇ity∇´it “ P ityP´it, R̂pyq “ Jy˚J.

Corollary 2.3.7 As τt is normal for all t P R we can consider the pre-adjoint pτtq˚ :

L1pGq Ñ L1pGq. Then we have a norm continuous one-parameter group τ˚ on the Ba-

nach space L1pGq where pτ˚qtpωq “ pτtq˚pωq for all t P R and ω P L1pGq.
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Proof

We show norm continuity as the rest is a straight forward application of the definition. It

is enough to show that for all ω P L1pGq that we have limtÑ0pτ˚qtpωq “ ω as pτ˚qt`s “
pτ˚qs ˝ pτ˚qt for all s, t P R.

As L8pGq is in standard position with respect to L2pGq then a typical element of

L1pGq is given by ωξ,η for some ξ, η P L2pGq. Therefore it is sufficient to show that

limtÑ0pτ˚qtpωξ,ηq “ ωξ,η. First we show that the map R Ñ L2pGq given by t ÞÑ eitP ξ is

continuous. As P is positive and injective we can define lnP and we consider the map

R Ñ L2pGq given by t ÞÑ eit lnP ξ “ P itξ. Then by Stone’s theorem (see for example

Section 10.5 in Conway (1990)) we have that this map is continuous.

Now let ε ą 0 and as the previous map is continuous we can find δ ą 0 such that

}pP´it ´ idqξ} ă ε

2}η} and }pP´it ´ idqη} ă ε

2}ξ} for all |t| ă δ. For all x P L8pGq and

t P R and using that τtpxq “ P itxP´it from the previous proposition we have

|xx, pτ˚qtpωξ,ηqy ´ xx, ωξ,ηy| “
ˇ̌`
xP´itξ

ˇ̌
P´itη

˘
´ pxξ|ηq

ˇ̌

ď
ˇ̌`
xP´itξ

ˇ̌
P´itη

˘
´
`
xP´itξ

ˇ̌
η
˘ˇ̌

`
ˇ̌`
xP´itξ

ˇ̌
η
˘

´ pxξ|ηq
ˇ̌

ď
ˇ̌`
xP´itξ

ˇ̌
pP´it ´ idqη

˘ˇ̌
`
ˇ̌`
xpP´it ´ idqξ

ˇ̌
η
˘ˇ̌
.

Then for all x P L8pGq with }x} ď 1 we have

|xx, pτ˚qtpωξ,ηqy ´ xx, ωξ,ηy| ď }x}}P´itξ}}pP´it ´ idqη} ` }x}}pP´it ´ idqξ}}η}

ď }ξ}}pP´it ´ idqη} ` }pP´it ´ idqξ}}η} ă ε.

Then we can take the supremum over all such x in the left hand side to get

}pτ˚qtpωξ,ηq ´ ωξ,η} ă ε

and thus limtÑ0pτ˚qtpωξ,ηq “ ωξ,η. ✷
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2.4 Duals and Preduals of Operator Algebraic Quantum

Groups

Again let G denote a locally compact quantum group throughout this section. We dis-

cuss the dual space of the C˚-algebra C0pGq and the predual of the von Neumann al-

gebra L8pGq. Given the coproduct ∆ on C0pGq we can define a bilinear map m :

C0pGq˚ b̂C0pGq˚ Ñ C0pGq˚ that gives C0pGq˚ the structure of a Banach algebra as

follows: let ω, κ P C0pGq˚ and denote by ω ˚ κ P C0pGq˚ the map

xx, ω ˚ κy “ x∆pxq, ω b κy

for all x P C0pGq where ω b κ denotes one of the maps ω ˝ pid b κq “ κ ˝ pid b ωq. It

follows that C0pGq˚ is a Banach algebra by using that ∆ is a ˚-homomorphism and thus

contractive and so

|xx, ω ˚ κy| ď }∆pxq}}ω b κ} ď }x}}ω}}κ}.

So we have }ω ˚ κ} ď }ω}}κ} for all ω, κ P C0pGq˚.

Definition 2.4.1 Given a locally compact quantum group G we consider C0pGq˚ as a

Banach algebra with multiplication given as above.

We can also consider L1pGq Ă C0pGq˚ as a Banach subalgebra where we remind that

L1pGq is defined as the predual of the von Neumann algebra L8pGq.

Proposition 2.4.2 We have that

L1pGq “ lin tx ¨ φ ¨ y˚ | x, y P Nφu}¨} “ lin tω ˝ π | ω P BpL2pGqq˚u}¨}

where we let π : C0pGq Ñ BpL2pGqq denote the isometric GNS map πpaqΛpbq “ Λpabq

85



2. LOCALLY COMPACT QUANTUM GROUPS

for all a, b P C0pGq from the GNS construction of φ. Furthermore L1pGq is a two sided

ideal of C0pGq˚.

Definition 2.4.3 Let λ : L1pGq Ñ BpHq be the map ω ÞÑ pω b idqpW q. Then λ is the

left regular representation of G.

We have that λ is a homomorphism as

λpω ˚ κq “ ppω ˚ κq b idqpW q “ pω b κ b idqp∆ b idqpW q

“ pω b κ b idqpW13W23q “ pω b idqpW qpκb idqpW q “ λpωqλpκq

where we’ve used Definition-Theorem 2.2.5 property (iii). We also have the following.

Proposition 2.4.4 We can extend λ to a contractive injective linear homomorphism λ :

C0pGq˚ Ñ MpC0pĜqq given by ω ÞÑ pω b idqpW q for all ω P C0pGq˚. Furthermore we

have λpL1pGqq is a dense subalgebra of C0pĜq.

2.5 Products of Locally Compact Quantum Groups

Let G and H denote locally compact quantum groups as per Notation 2.2.20. We will

now define a locally compact quantum group G ˆ H in a similar fashion to the product

of two groups. Whilst this section is not necessarily new work the author is unaware of a

suitable reference in this section so we give proofs (though we will heavily make use of

the work in Vaes & Vainerman (2003)).

Throughout this section, to distinguish maps associated to a particular quantum group,

we will add a superscript of the quantum group to the map. For example ∆G, τG and RG

refer to the coproduct, scaling group and unitary antipode of the locally compact quantum

group G.

We give some motivation first and discuss products of groups now.
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Example 2.5.1 Let G and H be locally compact groups, then we can form a locally

compact group G ˆ H given by the Cartesian product of G and H and given product

px, yq ¨ px1, y1q “ pxx1, yy1q.

We would like to define a map ∆GˆH on C0pGˆHq –i C0pGq bminC0pHq that gives

this group product in terms of ∆G and ∆H . So for F P C0pG ˆ Hq, x, x1 P G and

y, y1 P H we wish to have

∆GˆHpF qppx, yq, px1, y1qq “ F pxx1, yy1q

but we have

F pxx1, yy1q “ rp∆G b ∆HqpF qsppx, x1q, py, y1qq

“ rpσ23 ˝ p∆G b ∆HqqpF qsppx, yq, px1, y1qq

where σ is the flip map and thus σ23 : C0pGˆGˆH ˆHq Ñ C0pGˆH ˆGˆHq flips

the middle two legs. So we can define ∆GˆH :“ σ23 ˝ p∆G b ∆Hq.

We now state the main theorem of this section that we will take as a definition of the

product G ˆ H of two locally compact quantum groups G and H. Whilst this is not

necessarily a new result to the author’s knowledge it is not previously recorded in the

literature in this form.

Definition-Theorem 2.5.2 Let G and H denote locally compact quantum groups. Then

there exists a locally compact quantum group G ˆ H such that we have:

(i) L8pG ˆ Hq “ L8pGq bL8pHq;

(ii) coproduct ∆GˆH “ σ23 ˝ p∆G b ∆Hq where σ is the flip map on L8pGq bL8pHq;

(iii) multiplicative unitary WGˆH “ σ23pWG b WHq;

(iv) C0pG ˆ Hq “ C0pGq bminC0pHq.
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For the following proof we will reference many results in Vaes & Vainerman (2003). The

reader may find it helpful while reading this proof to have a copy of this at hand.

Proof

Let Ĝ denote the dual of G and let
´
L8pĜq, ∆̂G, φ̂G, ψ̂G

¯
denote its von Neumann al-

gebraic quantum group. We let τ : L8pĜq bL8pHq Ñ L8pĜq bL8pHq be the identity

map, U “ 1
Ĝ

b 1
Ĝ

b 1H and V “ 1
Ĝ

b 1H b 1H to give the triple pτ,U,Vq. Then by Defi-

nition 2.1 in Vaes & Vainerman (2003) we have an action α : L8pHq Ñ L8pĜq bL8pHq
given by y ÞÑ 1 b y and an action β : L8pĜq Ñ L8pĜq bL8pHq given by x ÞÑ x b 1

satisfying the properties of the same definition to give a cocycle matching pτ,U,Vq.

We let φG denote the left invariant n.s.f. Haar weight of G, we let pL2pGq, πG,ΛGq
denote the GNS construction of φG and WG the multiplicative unitary of G and simi-

larly for H. Also we let φ̂G denote the Haar weight of Ĝ which has GNS construction

pL2pGq, πG, Λ̂Gq. We have the multiplicative unitary ŴG of Ĝ given by Proposition 2.3.5

and so from Definition 2.2.2 in Vaes & Vainerman (2003) we have a von Neumann algebra

generated in BpL2pGqq bL8pHq by

!
pω b id b idq

´
ŴG b 1

¯ ˇ̌
ˇ ω P L1pĜq

)
and αpL8pHqq “ t1 b y | y P L8pGqu .

We have

L8pGq “ L8p ˆ̂Gq “
!

pω b idqpŴGq
ˇ̌
ˇ ω P BpL2pGqq˚

)

“
!

pω b idqpŴGq
ˇ̌
ˇ ω P L1pĜq

)

and so the von Neumann algebra generated is L8pGq bL8pHq. We let L8pGˆHq denote

this von Neumann algebra.

We need several flip maps that we denote as follows

(i) Σ be the flip map from L2pGq bL2pHq to L2pHq bL2pGq and Σ˚ the reverse flip;

(ii) ΣGˆH denotes the flip map on L2pG ˆ Hq bL2pG ˆ Hq;
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(iii) ΣG the flip map on L2pGq bL2pGq and similarly for H;

(iv) σ will denote the flip on C˚-algebra or von Neumann algebra tensors, e.g. for C˚-

algebras A and B we let σ : AbminB Ñ BbminA be the usual flip map.

We will also use the leg notation on many of these maps.

It also follows from Definition 2.2 in Vaes & Vainerman (2003) that we have

ŴGˆH “ σ23pŴG b ŴHq, WGˆH “ Σ
´
ŴGˆH

¯˚
Σ˚

and we calculate for ξ1, η1, ξ3, η3 P Hφ and ξ2, η2, ξ4, η4 P Hψ that

`
WGˆHpξ1 b ξ2 b ξ3 b ξ4q

ˇ̌
η1 b η2 b η3 b η4

˘

“
´
ŴGˆHpξ3 b ξ4 b ξ1 b ξ2q

ˇ̌
ˇη3 b η4 b η1 b η2

¯

“
´
ξ3 b ξ1 b ξ4 b ξ2

ˇ̌
ˇpŴG b ŴHqpη3 b η1 b η4 b η2q

¯

“
`
ξ1 b ξ3 b ξ2 b ξ4

ˇ̌
ppWGq˚ b pWHq˚qpη1 b η3 b η2 b η4q

˘

“
`
pΣ23pWG b WHqΣ˚

23qpξ1 b ξ2 b ξ3 b ξ4q
ˇ̌
η1 b η2 b η3 b η4

˘

and so we have WGˆH “ σ23pWG b WHq.

We claim that ∆GˆH “ σ23 ˝ p∆G b ∆Hq. We know from Definition 2.2.1 in Vaes &

Vainerman (2003) that ∆GˆHpxq “ pWGˆHq˚p1bxqWGˆH for all x P L8pGˆHq and we

show that
`
pσ23 ˝ p∆G b ∆Hqqpxq

˘
pWGˆHq˚ “ pWGˆHq˚p1bxq for all x P L8pGˆHq.

For all y P L8pGq, z P L8pHq, a, a1 P C0pGq and b, b1 P C0pHq we have
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`
pσ23 ˝ p∆G b ∆Hqqpy b zq

˘
pWGˆHq˚pΛGpaq b ΛHpbq b ΛGpa1q b ΛHpb1qq

“ pΣ23p∆pyq b ∆pzqqΣ23
˚qΣ23ppWGq˚ b pWHq˚qpΛGpaq b ΛGpa1q b ΛHpbq b ΛHpb1qq

“ pΣ23p∆pyq b ∆pzqqq
`
pΛG b ΛGqp∆pa1qpa b 1qq b pΛH b ΛHqp∆pb1qpb b 1qq

˘

“ Σ23

`
pΛG b ΛGqp∆pya1qpab 1qq b pΛH b ΛHqp∆pzb1qpb b 1q

˘

“ Σ23

`
pWGq˚pΛGpaq b ΛGpya1qq b pWHq˚pΛHpbq b ΛHpzb1qq

˘

“ Σ23ppWGq˚ b pWHq˚qΣ˚
23pΛGpaq b ΛHpbq b ΛGpya1q b ΛHpzb1qq

“ pWGˆHq˚p1 b 1 b y b zqpΛGpaq b ΛHpbq b ΛGpa1q b ΛHpb1qq.

As this holds for all a, a1 P C0pGq and b, b1 P C0pHq we have

`
pσ23 ˝ p∆G b ∆Hqqpy b zq

˘
pWGˆHq˚ “ pWGˆHq˚p1 b 1 b y b zq

for all y P L8pGq and z P L8pHq and thus by linearity and continuity we have

`
pσ23 ˝ p∆G b ∆Hqqpxq

˘
pWGˆHq˚ “ pWGˆHq˚p1 b xq

for all x P L8pG ˆ Hq as was to be shown.

So we have shown that G ˆ H is a locally compact quantum group with pL8pG ˆ
Hq,∆GˆHq the von Neumann algebraic quantum group and we now consider the reduced

C˚-algebraic quantum group. We have

C0pG ˆ Hq “ lin
 

pidGˆH b ωqpWGˆHq
ˇ̌
ω P L1pG ˆ Hq

(}¨}

forming the reduced C˚-algebraic quantum group and

C0pGq bminC0pHq “ lin tx b y | x P C0pGq, y P C0pHqu}¨}
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with the closures taken inside BpL2pGq bL2pHqq. We want to show these are equal.

Let ω P L1pGq and κ P L1pHq, then we have

pid b ωqpWGq b pid b κqpWHq “ pid b id b ω b κqpWGˆHq P C0pG ˆ Hq

and so
 

pid b ωqpWGq
ˇ̌
ω P L1pGq

(
d

 
pid b κqpWHq

ˇ̌
κ P L1pHq

(
Ă C0pG ˆ Hq.

Taking the closure of the left hand side we get

C0pGq bminC0pHq Ă C0pG ˆ Hq.

Now let Ω P L1pG ˆ Hq and so pid b ΩqpWGˆHq P C0pG ˆ Hq. As L1pG ˆ Hq –i

L1pGq b̂L1pHq we have a net pΩαq Ă L1pGq d L1pHq such that limαΩα “ Ω and so

limαxz,Ωαy “ xz,Ωy for all z P L8pG ˆ Hq. For all α we have

pid b ΩαqpWGˆHq “ pΩαq24pWG b WHq P C0pGq d C0pHq

and so pid b ΩqpWGˆHq “ limαpid b ΩαqpWGˆHq P C0pGq bminC0pHq. It then follows

that C0pG ˆ Hq Ă C0pGq bminC0pHq. ✷

We now calculate explicit formulas for the left Haar weight, the unitary antipode and the

scaling group of the locally compact quantum group G ˆ H.

Lemma 2.5.3 For x P L8pG ˆ Hq` we have

pid b id b φHqpid b ∆Hqpxq “ pid b φHqpxq b 1H (2.3)

and

pφG b id b idqpp∆Gqop b idqpxq “ 1G b pφG b idqpxq (2.4)

where each side of both equations is in L8pG ˆ Hq`
ext.
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Proof

Equation (2.3) is given by Proposition 3.1 in Kustermans & Vaes (2003) and we prove

Equation (2.4) as a consequence of this. We fix x P L8pG ˆ Hq` throughout this proof.

We have an operator valued weight φG b id b id : L8pG ˆ G ˆ Hq` Ñ L8pG ˆ Hq`
ext

and as pp∆Gqop b idqpxq P L8pG ˆ G ˆ Hq` we have a map

pφG b id b idqpp∆Gqop b idqpxqq : L1pG ˆ Hq` Ñ r0,8s (2.5)

given by ω ÞÑ φGppidbωqpp∆Gqopbidqpxqq. Also let σ : L8pGq bL8pHq Ñ L8pHq bL8pGq
and σ1 : L8pHq bL8pGq Ñ L8pGq bL8pHq be the flip maps with pre-adjoints σ˚ :

L1pH ˆ Gq Ñ L1pG ˆ Hq and σ1
˚ : L1pG ˆ Hq Ñ L1pH ˆ Gq. Then we have

pid b ∆Gqpσpxqq P L8pH ˆ G ˆ Gq` and so we have a map

pid b id b φGqpid b ∆Gqpxq ˝ σ1
˚ : L1pG ˆ Hq` Ñ r0,8s. (2.6)

We claim the maps in Equations (2.5) and (2.6) are equal, that is for any ω P L1pGˆHq`

we have either both acting on ω are finite and equal or both are infinite.

Let ω P L1pGˆHq` and y “ zbz1 P L8pGˆHq` for z P L8pGq` and z1 P L8pHq`,

then we have

pσ1
˚pωqbidq

`
pid b ∆Gqpσpyqq

˘
“ pσ1

˚pωqbidqpz1b∆Gpzqq “ pidbωq
`
pp∆Gqop b idqpyq

˘

and so by linearity and continuity we have

pσ1
˚pωq b idq

`
pid b ∆Gqpσpxqq

˘
“ pid b ωq

`
pp∆Gqop b idqpxq

˘

for all x P L8pG ˆ Hq`. So if ω is such that rpid b id b φGqpid b ∆Gqpσpxqqspσ1
˚pωqq is
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finite, then we have

rpid b id b φGqpid b ∆Gqpσpxqqspσ1
˚pωqq “ φGrpσ1

˚pωq b idqpid b ∆Gqpσpxqqs

“ φGrpid b ωqpp∆Gqop b idqpxqs “ rpφG b id b idqpp∆Gqop b idqpxqspωq

and so rpφGb idb idqpp∆Gqopb idqpxqspωq is finite and they are equal. It follows similarly

that if the latter is finite then so is the former and they are equal. Also if either of these is

infinite then so is the other and the maps (2.5) and (2.6) are equal.

From Equation (2.3) (with G and H reversed) we have

pφG b id b idqpp∆Gqop b idqpxq “ pid b id b φGqpid b ∆Gqpσpxqq ˝ σ1
˚

“ ppid b φGqpσpxqq b 1Gq ˝ σ1
˚ “ 1G b pφG b idqpxq

as required. ✷

Proposition 2.5.4 For locally compact quantum groups G and H we have left Haar

weight φGˆH “ φG b φH on G ˆ H.

Proof

This follows largely from the work in Sections 1 and 2 of Vaes & Vainerman (2003).

From Definition 1.13 in Vaes & Vainerman (2003) we have a left invariant n.s.f. weight

φGˆH on pL8pG ˆ Hq,∆GˆHq given by

φGˆH “ φH ˝ α´1 ˝ pφ b id b idq ˝ α̂

where α : L8pHq Ñ L8pĜq bL8pHq is given by y ÞÑ 1 b y and α̂ is the map from

Propositions 1.4 and 1.5 in Vaes & Vainerman (2003) such that α̂pzq “ pŴG b 1qpid b
αqpzqppŴGq˚ b 1q for all z P L8pGq bL8pHq.
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It follows that for y P L8pGq and z P L8pHq that

α̂py b zq “ pŴG b 1qpy b αpzqqppŴGq˚ b 1q “ ŴGpy b 1qpŴGq˚ b z

“ ΣpWGq˚p1 b yqWGΣ b z “ Σ∆pyqΣ b z “ ∆oppyq b z

and so it follows by linearity and continuity that α̂pxq “ p∆op b idqpxq for all x P
L8pGq bL8pHq. Now let x P L8pG ˆ Hq`, clearly α̂pxq P L8pG ˆ G ˆ Hq` then

applying Lemma 2.5.3 we have

ppφ b id b idq ˝ α̂qpxq “ 1G b pφ b idqpxq P L8pG ˆ Hq`
ext.

Clearly we have a restriction and corestriction α1 : L8pHq` Ñ pL8pGˆHq` and we can

extend this to a map α1
ext : L

8pHq`
ext Ñ L8pGˆHq`

ext such that rα1
extpyqspωq “ ωp1b yq

for all x P L8pHq`
ext and ω P L1pGˆHq`. Then α1

ext
´1p1G b pφb idqpxqq “ pφb idqpxq

and thus we have

pα´1 ˝ pφ b id b idq ˝ α̂qpxq “ pφ b idqpxq P L8pHq`
ext.

Finally by 1.4.30 we have

pψ ˝ α´1 ˝ pφ b id b idq ˝ α̂qpxq “ ψppφ b idqpxqq “ pφ b ψqpxq

for all x P L8pG ˆ Hq` as required. ✷

Proposition 2.5.5 As G ˆ H is a locally compact quantum group by Definition-Theorem

2.2.7 have a scaling group τGˆH and a unitary antipode RGˆH. We have the following:

τGˆH

t “ τGt b τHt and RGˆH “ RG b RH.
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Proof

We have from Proposition 2.3.6 that the scaling group τGˆH is given by

τGˆH

t pxq “ p∆̂GˆHqit x p∆̂GˆHq´it

for all x P L8pG ˆ Hq and t P R where ∆̂GˆH is the modular operator of the left Haar

weight of pL8p {G ˆ Hq, ∆̂GˆHq. From Proposition 1.4.23 we have that ∆̂GˆH “ ∆̂Gb∆̂H

where ∆̂G and ∆̂H are the modular operators of the left Haar weight of pL8pĜq, ∆̂Gq and

pL8pĤq, ∆̂Hq. It follows that τGˆHpybzq “ τGt pxqbτHt pyq “ pτGt bτHt qpybzq for all y P
L8pGq and z P L8pHq and by linearity and continuity we have τGˆH

t pxq “ pτGt b τHt qpxq.

Similarly from Proposition 2.3.6 we have RGˆHpxq “ ĴGˆH x˚ ĴGˆH for all x P
L8pG ˆ Hq and from Proposition 1.4.23 we have ĴGˆH “ ĴG b ĴH and the rest follows

as above. ✷
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Chapter 3

Special Quantum Groups

In the previous chapter we have worked at a high level of generality by describing locally

compact quantum groups. In this chapter we now study the special cases of Kac algebras,

compact and discrete quantum groups and coamenable quantum groups.

3.1 Kac Algebras

As we have introduced locally compact quantum groups (which are a generalisation of

Kac algebras) we will give our definition based on quantum groups for Kac algebras. We

only give the definition of Kac algebras here and refer the reader to Enock & Schwartz

(2013) for further details.

We can see from Definitions 1.2.1 and 2.2.1 in Enock & Schwartz (2013) that our

definition and the usual definition coincide.

Definition 3.1.1 A locally compact quantum group G is of Kac type if we have τt “ id

for all t P R and σ1 “ σ. We say pL8pGq,∆, φ, ψq is a Kac algebra in this case.
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3.2 Compact Quantum Groups

We now introduce the special case of compact quantum groups. Historically compact

quantum groups were defined before the locally compact setting by Woronowicz after

discovering SUqp2q that didn’t fit in the Kac algebra framework. Originally he generalised

this to what are now called the compact matrix quantum groups Woronowicz (1987a)

and then later he made a generalisation of this to what are now called compact quantum

groups Woronowicz (1998). We give details of this in this section now. See also Maes &

Van Daele (1998) and Neshveyev & Tuset (2013).

We will introduce some conditions for verifying when a locally compact quantum

group is compact and then come back to discussing how to construct examples of compact

quantum groups. We then discuss corepresentation theory, a cornerstone for the subject

and compact matrix quantum groups. Lastly we discuss the multiplicative unitary and

products of compact quantum groups.

3.2.1 Compact and Locally Compact Quantum Groups

We start with the following as a definition based on our work with locally compact quan-

tum groups and in the following sections make contact with Woronowicz’ original defini-

tion.

Definition 3.2.1 A locally compact quantum group G is a compact quantum group if the

reduced C˚-algebra C0pGq is unital in which case we denote the reduced C˚-algebra by

CpGq (in accordance with the convention for continuous functions on a compact group).

Proposition 3.2.2 The following are equivalent for a locally compact quantum group G:

(i) G is compact;

(ii) The left Haar weight of L8pGq is finite;

(iii) There exists a normal left invariant state.
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Proof

(i) ùñ (ii): It follows from the theory of compact quantum groups that we have a unique

state φ on the reduced C˚-algebra quantum group CpGq such that for all x P CpGq we

have pidb φq∆pxq “ φpxq1 “ pφb idq∆pxq. We refer the reader to Section 4 in Maes &

Van Daele (1998) and Section 5.1 in Timmermann (2008) for a proof of this. Then from

Result 2.3 in Kustermans & Vaes (2000) we have that φpxq1 “ pφ b idq∆pxq P Nφ and

thus 1 P Nφ. As Nφ is a left ideal it follows that x “ x1 P Nφ for all x P C0pGq, or indeed

Nφ “ C0pGq, and therefore φ is finite.

(ii) ùñ (iii): As the left Haar weight φ is finite we have Nφ “ Mφ “ L8pGq. We can

show using the definition of normal functionals that φ P L1pGq` and so ψ :“ φ{}φ} P
L1pGq` is a normal state that is easily seen to be left invariant.

(iii) ùñ (i): We have that L1pGq is a left C0pGq-module by the map abω ÞÑ a¨ω for a P
C0pGq and ω P L1pGq where we denote by a¨ω P L1pGq the functional xb, a¨ωy “ xba, ωy
for all b P C0pGq. We show that this is essential, see Definition A.3.2. Let ω “ ωΛpaq,η

for a P C0pGq and η P L2pGq first. Then as C0pGq has a bounded approximate identity

it follows that this is essential as a left Banach module over itself. Then by the Cohen

Factorisation Theorem (see Theorem A.3.3) we have that a “ bc for some b, c P C0pGq.

Then for all x P C0pGq it follows that

ωΛpaq,ηpxq “ pxΛpbcq|ηq “ pxbΛpcq|ηq “ ωΛpcq,ηpxbq “ pb ¨ ωΛpcq,ηqpxq

where we’ve used the C0pGq-bimodule structure on L1pGq from Example A.3.1. Then

it follows that ωΛpaq,η “ b ¨ ωΛpcq,η and thus as Λ has dense range we have ωξ,η P
lin ta ¨ ω | a P C0pGq, ω P L1pGqu}¨}

for all ξ, η P L2pGq. It the follows from linear-

ity and continuity that L1pGq is essential as a left C0pGq-module.

Now we can use Cohen’s Factorisation Theorem again to show that there exists a P
C0pGq and ω P L1pGq such that φ “ a ¨ ω. As φ is left invariant for all κ P L1pGq and
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x P C0pGq we have

x∆pxq, κ b φy “ x1, κyxx, φy

and then substituting φ “ a ¨ ω we get

x∆pxqp1 b aq, κ b ωy “ x1, κyxx, φy.

As this holds for all κ P L1pGq we have for all x P C0pGq that

pid b ωq p∆pxqp1 b aqq “ xx, φy1.

By the density conditions in Definition 2.2.14 we have ∆pxqp1baq P C0pGq bminC0pGq
and so xx, φy1 “ pid b ωq p∆pxqp1 b aqq P C0pGq. As xeα, φy Ñ 1 there is some

x P C0pGq such that xx, φy ‰ 0 and so 1 P C0pGq and G is compact. ✷

3.2.2 C˚-algebraic Compact Quantum Groups

So we have seen that we can check whether a locally compact quantum group is compact

from the reduced C˚-algebraic or von Neumann algebraic version. It is more common,

however, when constructing compact quantum groups to find a unital C˚-algebraic quan-

tum semigroup that satisfies some density conditions. We can then form the reduced

C˚-algebraic or von Neumann algebraic version from this when required.

The following important proposition was proved in Woronowicz (1998) in the separa-

ble case and in Van Daele (1995) in the general case.

Definition-Theorem 3.2.3 Let A be a unital C˚-algebra with ∆ : A Ñ AbminA a

unital ˚-homomorphism making pA,∆q a C˚-algebraic quantum semigroup such that that

the following equations hold:

AbminA “ lin t∆pxqpy b 1q | x, y P Au}¨} “ lin t∆pxqp1 b yq | x, y P Au}¨}
. (3.1)
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Then we have a KMS state φ such that for all x P A we have pid b φq∆pxq “ φpxq1 “
pφ b idq∆pxq. In particular pA,∆q is a C˚-algebraic quantum group as per Definition

2.2.14 and a compact quantum group. We call φ the Haar state of pA,∆q.

Proposition 3.2.4 Let pA,∆q denote an arbitrary C˚-algebraic quantum group satisfying

the properties of Definition-Theorem 3.2.3, that is A is a unital C˚-algebra and φ the left

and right invariant Haar state. Let Ar “ A{Kerφ and we can restrict ∆ to a map

∆r : Ar Ñ Ar bminAr such that pAr,∆rq is a reduced C˚-algebraic quantum group

with Ar unital, ∆r a unital map and there is a left and right Haar state φr such that

φr ˝ π “ φ where π : A Ñ BpL2pGqq is the GNS map.

So given a unital C˚-algebra A and a unital coproduct ∆ : A Ñ AbminA satisfying

Equation (3.1) we consider this a C˚-algebraic quantum group. Then there is a com-

pact quantum group G such that we can form the reduced C˚-algebraic quantum group

pCpGq,∆rq. We treat both pA,∆q and pCpGq,∆q as C˚-algebraic quantum groups for the

same compact quantum group G.

3.2.3 Corepresentation Theory

For compact quantum groups we have a good understanding of corepresentation theory.

This is fundamental to a lot of work in compact quantum groups and there are many pre-

sentations of this in the literature, see Maes & Van Daele (1998) and Woronowicz (1998)

for example. However, many conventions used in the case of locally compact quantum

groups are different to those used by Woronowicz and van Daele for compact quantum

groups, for example in the compact case we tend use the right regular representation

where in the locally compact case we tend to use the left regular corepresentation. Addi-

tionally it is difficult to find some of the results as stated here in the literature and as such

we present a thorough treatment of this subject here.

Throughout this section let pA,∆q be a C˚-algebraic quantum group satisfying the

conditions of Definition-Theorem 3.2.3 and G the underlying compact quantum group,
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that is the reduced C˚-algebra CpGq is constructed as in Proposition 3.2.4.

Definition 3.2.5 A corepresentation of pA,∆q on a Hilbert space H is an element U P
MpA b B0pHqq such that p∆ b idqU “ U13U23. If U is unitary then we say this is a

unitary corepresentation.

If H is n-dimensional with orthonormal basis tek | 1 ď k ď nu then for 1 ď i, j ď n we

define uij P MpAq “ A by uij “ pid b ωej ,eiqpUq and we have

∆pui,jq “ pid b id b ωej ,eiqp∆ b idqpUq “ pid b id b ωej ,eiqpU13U23q.

As ωej ,eipxyq “ pxyej|eiq “ řn

k“1 pyej|ekq pek|x˚eiq “ řn

k“1 ωek,eipxqωej ,ekpyq for x, y P
BpHq then we have

∆pui,jq “
nÿ

k“1

pid b id b ωek,eiqpU13qpid b id b ωej ,ekqpU23q

“
nÿ

k“1

pid b ωek,eiqpUq b pid b ωej ,ekqpUq “
nÿ

k“1

ui,k b uk,j.

We can also similarly show that if this equation holds then so does Definition 3.2.5. So

equivalently, for a finite dimensional corepresentation, we can consider a matrix puijqni,j“1 P
MnpAq such that ∆uij “ řn

i“1 uik b ukj .

We now move on to consider irreducible corepresentations.

Definition 3.2.6 Let U P MpA b B0pHqq be a corepresentation of G. Then a closed

subspace K of H is invariant if for e the orthogonal projection from H to K we have

p1 b eqUp1 b eq “ Up1 b eq. We say U is irreducible if the only invariant subspaces of

H are t0u and H.

Definition 3.2.7 Let U and V be corepresentations of pA,∆q on Hilbert spaces H and K

respectively. Then we say a linear map T : H Ñ K intertwines U and V if p1 b T qU “
V p1 b T q. We say corepresentations U and V are equivalent if there is an invertible
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intertwiner from U to V and unitarily equivalently if there is a unitary intertwiner from

U to V .

We now offer some theorems on corepresentations and refer the reader to Maes & Van Daele

(1998) for proofs.

Proposition 3.2.8 Any invertible, finite-dimensional corepresentation of pA,∆q is equiv-

alent to a unitary corepresentation.

The following is one of the most important theorems on corepresentations of compact

quantum groups.

Theorem 3.2.9 There exists a maximal family denoted

tUα P A b BpHαq | α P Au

of mutually inequivalent, finite-dimensional, irreducible, unitary corepresentations of

pA,∆q such that Uα is contained in the left regular corepresentation for all α P A. Fur-

thermore any unitary irreducible corepresentation is equivalent to some Uα.

Let U P MpA b B0pHqq be a corepresentation where H is finite dimensional with or-

thonormal basis tei | 1 ď i ď nu. Then we have U “ řn

i,j“1 uij b eij for some uij P A
such that ∆puijq “ řn

k“1 uik b ukj for all 1 ď i, j ď n. In particular for the maximal

family given in the previous theorem we can write this as

 
u “ puαijqnα

i,j“1 P Mnα
pAq

ˇ̌
α P A, 1 ď i, j ď nα

(
.

We will use this notation throughout the rest of this section for this maximal family.

Notation 3.2.10 We denote by HopfpGq the linear span of
 
uαij

ˇ̌
α P A, 1 ď i, j ď nα

(

in A.
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Proposition 3.2.11 We have that HopfpGq is a unital Hopf ˚-algebra that is dense in

A such that the Haar state φ is faithful on HopfpGq. Furthermore, for all α P A and

1 ď i, j ď nα, we have the following relations

∆puαijq “
nαÿ

k“1

uαik b uαkj, Spuαijq “ puαjiq˚, ǫpuαijq “ δij, φpuαijq “ δα,α0

where α0 P A is the unique 1-dimensional corepresentation consisting of the identity

1 P A.

Example 3.2.12 We now give examples for constructing corepresentation matrices from

given corepresentation matrices. Say puijqni,j“1 P MnpAq is a corepresentation matrix,

then we have

∆pu˚
ijq “ ∆puijq˚ “

nÿ

k“1

u˚
ik b u˚

kj

and so we have another corepresentation Ū “ řn

i,j“1 u
˚
ij b eij . We can show that if

U is irreducible then so is Ū . Clearly the definition of Ū depends on the choice of or-

thonormal basis however given any other orthonormal basis we can show that the two

corepresentations obtained are equivalent.

Say u P MnpAq is a corepresentation. Similarly to Example 2.2.21 we have a C˚-

algebraic quantum group pA,∆opq where ∆op “ σ ˝ ∆ for σ the flip map on AbminA.

Then we have

∆oppputqijq “ ∆oppujiq “
nÿ

k“1

uki b ujk “
nÿ

k“1

putqik b putqkj

and so ut P MnpAq is a corepresentation matrix of pA,∆opq. Similarly u˚ “ pūqt P
MnpAq is a corepresentation matrix of pA,∆opq.

We can show that for an n-dimensional unitary irreducible corepresentation U that Ū

is equivalent to a unitary corepresentation. Then there exists an invertible matrix T P Mn

such that V “ p1 b T qŪp1 b T´1q is unitary. Then we have Ū is invertible with inverse
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Ū´1 “ p1 b T´1qV ˚p1 b T q. Also U t “ pŪq˚ is invertible with

pU tq´1 “ ppŪq˚q´1 “ p1 b T ˚qV p1 b pT´1q˚q “ p1 b T ˚T qŪp1 b pT ˚T q´1q.

It then follows that pU tq´1 is a corepresentation as

p∆ b idqpU tq´1 “ p1 b 1 b T ˚T qp∆ b idqpŪqp1 b 1 b pT ˚T q´1q

“ p1 b 1 b T ˚T qpŪq13p1 b 1 b pT ˚T q´1q

ˆ p1 b 1 b T ˚T qpŪq23p1 b 1 b pT ˚T q´1q

“ ppU tq´1q13ppU tq´1q23

and thus p1 b T ˚T qŪ “ pU tq´1p1 b T ˚T q.

We offer a proof of the next few results as they differ slightly from that found in the liter-

ature. We first record the following which comes from Lemma 6.3 in Maes & Van Daele

(1998).

Lemma 3.2.13 Let U and V be corepresentations of pA,∆q on Hilbert spaces H and K

respectively, and let x P B0pH,Kq and let

y “ pφ b idqpV ˚p1 b xqUq.

Then y P B0pH,Kq and V ˚p1 b yqU “ 1 b y.

Proof

Because x P B0pH,Kq we have p1 b xqU P B0pH,Kq b A and thus V ˚p1 b xqU P
B0pH,Kq b A also. In particular y P B0pH,Kq.

Also we have

p∆ b idqpV ˚p1 b xqUq “ V ˚
23V

˚
13p1 b 1 b xqU13U23
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and then applying φ b id b id we get the result. ✷

Lemma 3.2.14 (Schur’s Lemma) Let U and V be finite-dimensional corepresentations

of pA,∆q on H and K respectively and let T an intertwiner from U to V . Then

(i) KerT is invariant for U and ImageT is invariant for V ;

(ii) If either U or V is irreducible then either U and V are inequivalent and there is only

the 0 intertwiner from U to V or U is equivalent to V and there is some invertible

T P BpH,Kq such that the set tλT | λ P Cu gives all the intertwiners from U to V .

In particular we have that the intertwiners from U to itself are given by tλ id | λ P Cu.

Proof

Let e denote the orthogonal projection of H onto KerT and f the orthogonal projection

of K onto ImageT . Then 0 “ p1 b Teq and thus 0 “ V p1 b Teq “ p1 b T qUp1 b eq and

so we have p1 b eqUp1 b eq “ Up1 b eq. Similarly we have

p1 b fqV p1 b T q “ p1 b fT qU “ p1 b T qU “ V p1 b T q

and as fpKq “ TH then we have p1 b fqV p1 b fq “ V p1 b fq.

It follows that if U is irreducible then either KerT “ t0u or KerT “ U , that is T is

either injective (and thus an isomorphism as it is finite dimensional) or 0. Similarly if V is

irreducible then ImageT “ t0u or ImageT “ K, that is T is 0 or surjective (and thus an

isomorphism as it is finite dimensional). In either case if U and V are inequivalent then

the only intertwiner is 0. On the other hand if T is a non-zero intertwiner from U to V

then T is bijective and U and V are equivalent.

Now say S is a non-zero intertwiner from U to V , then for all λ P C we have λT ´ S

is an intertwiner from U to V and so is either bijective (and thus an isomorphism) or 0.

Choose λ such that detpλT ´ Sq “ 0 and then we have S “ λT for some λ P C as

required. ✷
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The diagonalisation argument in the following theorem was originally given in Daws

(2010).

Theorem 3.2.15 For all α P A there exists a unique invertible positive definite matrix

F α P Mnα
with Tr F α “ Tr pF αq´1 such that for all α, β P A, 1 ď k, l ď nα and

1 ď i, j ď nβ we have

φpuαijpuβklq˚q “ δαβδik
F α
lj

Λα
, φppuαijq˚uβklq “ δαβδjl

ppF αq´1qki
Λα

(3.2)

where Λα “ Tr F α. We can assume that the maximal family of corepresentations is

chosen such that for all α P A we have F α “ diagpλα1 , . . . , λαnα
q with λαi ą 0 for all

i and Λα “ řnα

i“1 λ
α
i “ řnα

i“1pλαi q´1 ą 0. Furthermore we have that F α intertwines

Ūα and ppUαqtq´1 and pF αq´1 intertwines Uα and κ2nα
pUαq. We call these matrices the

F -matrices of pA,∆q.

Proof

Let α P A. We have from Example 3.2.12 that there is some T P Mnα
such that V “

p1bT qŪαp1bT´1q is unitary, Ūα is invertible and 1bT ˚T intertwines Ūα with ppUαqtq´1

as corepresentations of pA,∆q. We have T ˚T is positive definite as T is invertible. We

define F α “ λpT ˚T qt where we choose λ such that Tr F α “ Tr pF αq´1 ą 0 and

we have that pF αqt intertwines Ūα and ppUαqtq´1. As Ūα is irreducible it follows from

Schur’s Lemma (3.2.14) that F α is the unique operator such that pF αqt intertwines Ūα

and ppUαqtq´1 and such that Tr F α “ Tr pF αq´1.

Let α, β P A, i, j P N0 such that 1 ď i ď nα, 1 ď j ď nβ and let x “ e
β,α
i,j be the

nβ ˆ nα-matrix in BpHα,Hβq with 1 in the i, j-th position and 0 elsewhere. Then by
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Lemma 3.2.13 we have an intertwiner given by

y “ pφ b idq
´

pUβq˚p1 b e
β,α
ij qUα

¯

“
nβÿ

p,q“1

nαÿ

s,t“1

pφ b idq
`
puβpqq˚ b eβqp

˘ ´
1 b e

β,α
ij

¯
puαst b eαstq

“
nαÿ

p,q“1

nβÿ

s,t“1

φ
`
puβpqq˚uαst

˘
δpiδjse

β,α
qt “

nαÿ

q“1

nβÿ

t“1

φ
´

puβiqq˚uαjt

¯
e
β,α
qt

such that p1 b yqUα “ Uβp1 b yq, i.e. y intertwines Uα and Uβ . As Uα and Uβ are

irreducible then, by Schur’s Lemma 3.2.14, we have that y “ 0 if α ‰ β.

Let α P A, 1 ď i, j, k, l ď nα and we let

yik “ pφ b idq ppUαq˚p1 b eαikqUαq “
nαÿ

p,q“1

φ
`
puαipq˚uαkq

˘
eαpq

and in pA,∆opq (as pŪαq˚ is a corepresentation of pA,∆opq) we let

zjl “ pφ b idq
`
Ūαp1 b eαjlqpŪαq˚˘ “ pφ b idq

`
Ūαp1 b eαjlqpUαqt

˘

“
nαÿ

p,q,s,t“1

pφ b idq
`
ppuαpsq˚ b eαpsqp1 b eαjlqpuαqt b eαtqq

˘
“

nαÿ

p,q“1

φppuαpjq˚uαqlqeαpq.

We have from Lemma 3.2.13 that p1 b yikqUα “ Uαp1 b yikq and p1 b zjlqppUαqtq´1 “
Ūαp1bzjlq. So by Schur’s Lemma 3.2.14 we must have yik “ µikid and zjl “ νjlppF αqtq´1

for some collections pµikq, pνjlq Ă C. Then we have

νjlppF αqtq´1 “
nαÿ

p,q“1

φppuαpjq˚uαqlqeαpq.

We now show that νjl “ δjl
1

Tr F α
. We have

νjlppF αq´1qki “ νjlpppF αqtq´1qik “ φppuαijq˚uαklq “ µikδjl (3.3)
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and so for j ‰ l we have νjl “ 0 and if j “ l then νjj is independent of j so we let νjj “ ν

for some ν P C. Using that Uα is unitary we have

nαÿ

i“1

yii “ pφbidq
˜

pUαq˚

˜
1 b

nαÿ

i“1

eαii

¸
Uα

¸
“ pφbidqppUαq˚Uαq “ pφbidqp1b1q “ 1

and so
řnα

i“1 µii “ 1. Then it follows from Equation (3.3) that

ν Tr ppF αqtq´1 “
nαÿ

i“1

µii “ 1

and so ν “ 1

Tr ppF αqtq´1
“ 1

Tr F α
and we have the second equation in (3.2).

The first equation is proved similarly by considering pφb idq
`
Uαp1 b eαjlqpUαq˚˘ and

pφ b idq
`
pUαqtp1 b eαikqŪα

˘
.

For α P A we have that F α is positive and so there is some unitary Qα P Mnα
such

that pQαq˚F αQα is diagonal with matrix diagpλα1 , . . . , λαnα
q. It follows that

řnα

i“1 λ
α
i “

Tr F α “ Tr pF αq´1 “ řnα

i“1pλαi q´1 which are all greater than 0. For 1 ď i, j ď nα let

vαij “ ppQαq˚uαQαqij “
nαÿ

k,l“1

Qα
kiu

α
klQ

α
lj.

We then have that V α “ pvαijqnα

i,j“1 is a corepresentation of pA,∆q as

nαÿ

p“1

vαip b vαpj “
nαÿ

k,l,p,s,t“1

Qα
kiu

α
klQ

α
lp b Qα

s,pu
α
stQ

α
tj

“
nαÿ

k,l,t“1

Qα
kipuαkl b uαltqQα

tj “
nαÿ

k,t“1

Qα
ki∆puαktqQα

tj “ ∆pvαijq.

Using similar techniques we can show that V α is unitary and satisfies Equation (3.2) with

Fij the diagonal matrix diagpλα1 , . . . , λαnα
q.

Finally we show that F α intertwines Uα and S2
nα

pUαq. Above we have a T P Mnα

such that we have a unitary matrix V “ p1bT qŪαp1bT´1q. Then using that Snα
pW qt “
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pW ˚qt “ W̄ for any corepresentation W P Mnα
pAq of pA,∆q (where we’ve used No-

tation 1.1.1 for the antipode S) and so Snα
pW̄ qt “ S2

nα
pW q. Using these equations it

follows that

p1 b T̄ qUαp1 b T̄´1q “ V̄ “ Snα
pV qt “ pp1 b T qSnα

pŪαqp1 b T´1qqt

“ p1 b pT´1qtqSnα
pŪαqtp1 b T tq “ p1 b pT´1qtqS2

nα
pUαqp1 b T tq

and so rearranging we get

p1 b T tT̄ qUα “ S2
nα

pUαqp1 b T tT̄ q

and using that T tT̄ “ pT ˚T qt we are done. ✷

Definition 3.2.16 Let pA,∆q be a compact quantum group with tUα | α P Au the max-

imal family of mutually inequivalent, finite-dimensional, irreducible, unitary corepresen-

tations. We define fz : HopfpGq Ñ C for all z P C as the map uαij ÞÑ ppF αqzqij , that is

the i, j-th entry of the matrix pF αqz.

We can calculate the modular automorphism group from Definition-Theorem 1.4.16 and

the scaling group from Definition-Theorem 2.2.7 for a compact quantum group in terms

of the collection pfzqzPC. We have the following properties for the collection pfzqzPC. See

Theorem 3.2.19 in Timmermann (2008) for a proof.

Proposition 3.2.17 For all z P C we have that fz is a character on HopfpGq, that is it is

a non-zero homomorphism fz : HopfpGq Ñ C. Furthermore we have the following

(i) For any x P HopfpGq we have that the map w ÞÑ fwpxq is entire and there exists

C ą 0 and d P R such that |fpzq| ď CedRe z for all z P C with Re z ą 0;

(ii) f0 “ ε (the counit) and fz ˚ fw “ fz`w where fz ˚ fw “ pfz b fwq ˝ ∆ for all

z, w P C;
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(iii) fzp1q “ 1, fzpSpxqq “ f´zpxq and fitpx˚q “ fitpxq for all x P HopfpGq, z P C and

t P R.

Proposition 3.2.18 Let σ denote the modular automorphism group and let τ denote the

scaling group of the reduced C˚-algebra CpGq of a compact quantum group G. Then for

any z P C we have HopfpGq Ă Dompσzq and HopfpGq Ă Dompτzq and furthermore for

all α P A and 1 ď i, j ď nα we have

σzpuαijq “
nαÿ

k,l“1

fizpuαikqfizpuαljquαkl and τzpuαijq “
nαÿ

k,l“1

fizpuαikqf´izpuαljquαkl.

If we assume that F α “ diagpλα1 , . . . , λαnα
q as per Theorem 3.2.15 we have

σzpuαijq “ pλαi qizpλαj qizuαij , and τzpuαijq “ pλαi qizpλαj q´izuαij.

Proof

For all t P R we define σ0
t : HopfpGq Ñ HopfpGq by

σ0
t “ pfit b id b fitq ˝ p∆ b idq ˝ ∆ (3.4)

and we show that this can be extended to a one-parameter group of ˚-automorphisms on

the reduced C˚-algebra CpGq. Using Proposition 3.2.11, for α P A and 1 ď i, j ď nα, we

have

σ0
t puαijq “ pfit b id b fitq

nαÿ

k,l“1

uαik b uαkl b uαlj “
nαÿ

k,l“1

fitpuαikqfitpuαljquαkl. (3.5)

For all α P A we have that pF αqit is unitary for all t P R and thus for all α P A and

1 ď i, j ď nα we have

ˇ̌
fitpuαijq

ˇ̌
“
ˇ̌
ppF αqitqij

ˇ̌
ď }pF αqit} “ 1.
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We may assume F it is diagonal without loss of generality and so from Equation (3.5) we

have
››σ0

t puαijq
›› “

›››››
nαÿ

k,l“1

fitpuαikqfitpuαljquαkl

››››› ď }uαij}

and so σ0
t is contractive.

It follows easily that σ0
0 “ id and for s, t P R we have σ0

t`s “ σ0
t ˝ σ0

s . We now show

that for t P R that σ0
t is a ˚-automorphism on HopfpGq. Let α, β P A, 1 ď i, j ď nα and

1 ď k, l ď nβ , then using Equation (3.4), that ∆ is a ˚-homomorphism and that fit is a

character we have

σ0
t puαijuβklq “

nαÿ

p,q“1

nαÿ

r,s“1

pfit b id b fitq
´
uαipu

β
kr b uαpqu

β
rs b uαqju

β
sl

¯

“
nαÿ

p,q“1

nβÿ

r,s“1

fitpuαipuβkrqfitpuαqjuβslquαpquβrs

“
˜

nαÿ

p,q“1

fitpuαipqfitpuαqjquαpq

¸˜
nβÿ

r,s“1

fitpuβkrqfitpuβslquβrs

¸
“ σ0

t puαijqσ0
t puβklq

and similarly using Proposition 3.2.17 we have

σ0
t ppuαijq˚q “

nαÿ

p,q“1

pfit b id b fitqppuαipq˚ b puαpqq˚ b uαqjq˚q

“
nαÿ

p,q“1

fitpuαipqfitpuαqjqpuαpqq˚ “ σ0
t puαijq˚.

Let z P C, α P A and 1 ď i, j ď nα, then we show that uαij P Dompσ0
zq. Let

G : Spzq Ñ C be the map

w ÞÑ
nαÿ

k,l“1

fiwpuαikqfiwpuαljquαkl.

From Proposition 3.2.17 we have that w ÞÑ fwpxq is entire for any x P HopfpGq and thus

G is analytic on Spzq and continuous. We have from Equation (3.5) that Gptq “ σ0
t puαijq

112



3.2 Compact Quantum Groups

and so uαij P Dompσzq with

σzpuαijq “
nαÿ

k,l“1

fizpuαikqfizpuαljquαkl.

We calculate for α, β P A, 1 ď i, j ď nα and 1 ď k, l ď nβ that

φppuαijq˚σ0
´ipuβklqq “

nβÿ

p,q“1

f1puβkpqf1puβqlqφppuαijq˚uβpqq

“ δαβ

nαÿ

p“1

F α
kpF

α
jl

ppF αq´1qpi
TrpF αq “ δαβδki

F α
jl

TrpF αq “ φpuβklpuαijq˚q.

It then follows by linearity that for all x, y P HopfpGq we have φpxσ0
´ipyqq “ φpyxq.

Then for all x, y P HopfpGq we have xσ0
´ipyq P HopfpGq and also

φpxσ0
´ipyqq “ φpyxq “ φpxσ´ipyqq.

Now using that φ is faithful on HopfpGq it follows that xσ0
´ipyq “ xσ´ipyq for all x, y P

HopfpGq and then letting x “ 1 we have σ0
´ipyq “ σ´ipyq for all y P HopfpGq.

So σ0
´ipyq “ σ´ipyq for all y P HopfpGq and thus for all y P Dompσ´iq. It then

follows from Proposition 1.3.11 that we have σ “ σ0.

Define τ 0z : HopfpGq Ñ HopfpGq be the map uαij ÞÑ řnα

k,l“1 f´izpuαikqfizpuαljquαkl. As

we have F α intertwines Uα and S2
nα

pUαq we have S2
nα

pUαq “ F αUαpF αq´1 and so it

follows that

S2puαijq “ S2
nα

pUαqij “
nαÿ

k,l“1

F α
iku

α
klppF αq´1qlj “

nαÿ

k,l“1

f1puαikqf´1puαljquαkl

and so τ´ipuαijq “ τ 0´ipuαijq. It follows that τ 0 is the scaling group restricted to HopfpGq.

We have from 3.2.16 that fzpuαijq “ ppF αqzqij “ δijpλαi qz where tz “ exppz ln tq for
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all t ě 0. Then it follows that

σzpuαijq “
nαÿ

k,l“1

fizpuαikqfizpuαljquαkl “
nαÿ

k,l“1

δkiδljpλαi qizpλαj qizuαkl “ pλαi qizpλαj qizuαij

and similarly for τz. ✷

Corollary 3.2.19 For any z P C and compact quantum group G we have that HopfpGq
is a core for τz. Similarly HopfpGq is a σ-weak core for τz on L8pGq.

Proof

From Proposition 1.3.19 we have that txpnq | x P HopfpGq, n P Nu is a core for Dompτzq
as HopfpGq is dense in A. Fix n P N and let

 
puαijq

ˇ̌
α P A, 1 ď i, j ď nα

(
be the family

from Theorem 3.2.9 that is a basis for HopfpGq. Then we need only show that for any

α P A and 1 ď i, j ď nα we have uαijpnq P HopfpGq.

Fix n P N, α P A and 1 ď i, j ď nα and assume the F α matrices are diagonal with

F α “ diagpλα1 , . . . , λαnα
q for convenience. Then using Proposition 3.2.18 we have

uαijpnq “ n?
π

ż

R

e´n2t2τtpuαijq dt “
ˆ
n?
π

ż

R

e´n2t2pλαi qitpλαj q´it dt

˙
uαij

“ exp

ˆplnpλαi q ´ lnpλαj qq2
4n2

˙
uαij .

Then we have uαijpnq P HopfpGq as required. ✷

Corollary 3.2.20 For any z P C we have that σz and τz are automorphisms on HopfpGq.

3.2.4 Compact Matrix Quantum Groups

We end this section with the following proposition. This will be our method for construct-

ing the compact quantum group SUqp2q in Chapter 5.

Proposition 3.2.21 Let A denote a unital C˚-algebra, puijqni,j“1 P MnpAq and ∆ : A Ñ
AbminA a unital ˚-homomorphism such that:
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(i) u “ puijqni,j“1 is unitary and ū is invertible in MnpAq;

(ii) the set tuij | 1 ď i, j ď nu generates A;

(iii) ∆puijq “ řn

k“1 uik b ukj for all 1 ď i, j ď n.

Then there is a compact quantum group G such that the reduced C˚-algebra Ar “ CpGq
and pCpGq,∆q is a C˚-algebraic quantum group.

Definition 3.2.22 We say a C˚-algebra quantum group pA,∆q generated as in Proposi-

tion 3.2.21 by a corepresentation u is a compact matrix quantum group pA,∆, uq.

We have immediately that u and ū are corepresentation matrices of pA,∆q.

3.2.5 The Multiplicative Unitary on Compact Quantum Groups

Throughout this section let G be a compact quantum group and we consider the reduced

C˚-algebraic quantum group pCpGq,∆q. Let
 
uαij

ˇ̌
α P A, 1 ď i, j ď nα

(
be the usual

basis for HopfpGq.

We now show that we can give a formula for the multiplicative unitary in the compact

case.

Notation 3.2.23 Let α P A and consider Hα “ lin
 
Λppuαijq˚q

ˇ̌
1 ď i, j ď nα

(
as a

subspace of L2pGq.

As HopfpGq is a dense ˚-subalgebra of CpGq we have L2pGq “ À2

αPA Hα

}¨}2
.

Proposition 3.2.24 For W the multiplicative unitary of pCpGq,∆q we have

W
`
ξ b Λppuαijq˚q

˘
“

nαÿ

k“1

uαkiξ b Λppuαkjq˚q

for all α P A, 1 ď i, j ď nα and ξ P L2pGq. In particular it follows that for all ω P L1pGq
we have

pω b idqpW qΛppuαijq˚q “
nαÿ

k“1

ωpuαkiqΛppuαkjq˚q.
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Proof

We have from Theorem 2.2.16 that W P BpL2pGq bL2pGqq is given by W ˚pΛpxq b
Λpyqq “ pΛ b Λqp∆pyqpx b 1qq for all x, y P CpGq. Then for η P L2pGq, β P A and

1 ď p, q ď nβ we have

W ˚pη b Λppuβpqq˚qq “
˜

nβÿ

r“1

puβprq˚ b puβrqq˚

¸
pη b Λp1qq “

nβÿ

r“1

puβprq˚η b Λppuβrqq˚q

and so for α P A, 1 ď i, j ď nα and ξ P L2pGq we calculate

`
W pξ b Λppuαijq˚qq

ˇ̌
η b Λppuβpqq˚q

˘
“

nβÿ

r“1

`
ξ b Λppuαijq˚q

ˇ̌
puβprq˚η b Λppuβrqq˚q

˘

“
nβÿ

r“1

`
uβprξ

ˇ̌
η
˘
φpuβrqpuαijq˚q “

nβÿ

r“1

`
uβprξ

ˇ̌
η
˘
δα,βδri

F α
jq

Λα
“

nαÿ

r“1

puαriξ|ηq δα,βδrp
F α
jq

Λα

“
nαÿ

r“1

puαriξ|ηqφpuβpqpuαrjq˚q “
nαÿ

r“1

`
uαriξ b Λppuαrjq˚q

ˇ̌
η b Λppuβpqq˚q

˘

from which the result follows. ✷

Proposition 3.2.25 The Hilbert space H “ À2

αPA Hα is unitarily equivalent to L2pGq
and for α P A and 1 ď i, j ď nα we have that W acts on the restriction L2pGq bHα of

L2pGq bH by

W pξ b enα

ij q “
nαÿ

k“1

uαikξ b enα

kj .

Proof We define a map T α : Hα Ñ Mnα
by Λppuαijq˚q ÞÑ

c
λαj

Λα
enα

ij where enα

ij P
Mnα

is the unit matrix with 1 in the i, j-th entry and 0 elsewhere and we treat Mnα
–i

ℓ2pnαq b ℓ2pnαq as a Hilbert space with this isometric identification. Clearly T α is onto

and we have

`
T αpΛppuαijq˚qq

ˇ̌
T αpΛppuαpqq˚qq

˘
“ δjqδip

λαj

Λα
“ φpuαpqpuαijq˚q “

`
Λppuαijq˚q

ˇ̌
Λppuαpqq˚q

˘

for λαj the diagonal elements of the F -matrices as per Theorem 3.2.15. So we have shown
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that T α is unitary.

Let H :“ À2

αPA Mnα

}¨}2
as a Hilbert space direct sum, where again we treat Mnα

–i

ℓ2pnαq b ℓ2pnαq as a Hilbert space. Then we can then define a map T : L2pGq Ñ H as a

direct sum of the maps pTαqαPA as given in Proposition A.5.2. Let ξ “ pξαq, η “ pηαq P H

and we have

pTξ|Tηq “
ÿ

α

pT αξα|T αηαq “
ÿ

α

pξα|ηαq

and as T has dense range by construction then T is unitary.

Now using the formula for W given by Proposition 3.2.24 we can consider p1 b
T qW p1 b T ˚q P BpL2pGq bHq for H given above. As T α is unitary we have pT αq˚ “
pT αq´1 and thus

pT αq˚penα

ij q “
d

Λα

λαj
Λppuαijq˚q.

The result follows as for all α P A, 1 ď i, j ď nα and ξ P L2pGq we have

pp1 b T qW p1 b T ˚qq pξ b enα

ij q “
d

Λα

λαj
pp1 b T qW q pξ b Λppuαijq˚qq

“
d

Λα

λαj

nαÿ

k“1

p1 b T q
`
uαkiξ b Λppuαkjq˚q

˘
“

nαÿ

k“1

uαkiξ b enα

kj . ✷

3.2.6 Products of Compact Quantum Groups

In Section 2.5 we defined the product of two locally compact quantum groups. We now

consider products of compact quantum groups.

Proposition 3.2.26 If G and H are compact quantum groups then the product G ˆ H of

Definition-Theorem 2.5.2 is compact.

Theorem 3.2.27 Let G and H be compact matrix quantum groups with matrices uG P
MNpGq and uH P MMpHq that generate CpGq and CpHq respectively. Let ιG : CpGq Ñ
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CpGq bminCpHq and ιH : CpHq Ñ CpGq bminCpHq denote the maps given by x ÞÑ xb1

and y ÞÑ 1by respectively for x P CpGq and y P CpHq. Then the product GˆH as locally

compact quantum groups given by Definition-Theorem 2.5.2 is a compact matrix quantum

group with reduced C˚-algebraic quantum group pCpG ˆ Hq,∆GˆH, ιGNpuGq ‘ ιHMpuHqq
where

ιGNpuGq ‘ ιHMpuHq “

¨
˝ ιGNpuGq 0

0 ιHMpuHq

˛
‚P MN`MpCpGq bminCpHqq

and with dense Hopf algebra HopfpGq d HopfpHq.

Proof

It is easy to show that uGˆH :“ ιGNpuGq ‘ ιHMpuHq is unitary and invertible and we show it

is a corepresentation. For 1 ď i, j ď N we have

∆GˆHpuGˆH

ij q “ ∆GˆHpuGij b 1q “ σ23p∆GpuGijq b ∆Gp1qq

“
Nÿ

k“1

uGik b 1 b uGkj b 1 “
N`Mÿ

k“1

uGˆH

ik b uGˆH

kj

where we can take the sum to N ` M as the off diagonal entries are 0. Similarly for

N ` 1 ď i, j ď N ` M we have

∆GˆHpuGˆH

ij q “ ∆GˆHp1 b uHi´N,j´Nq “ σ23p∆Gp1q b ∆HpuHi´N,j´Nqq

“
N`Mÿ

k“N`1

1 b uHi´N,k´N b 1 b UH

k´N,j´N “
N`Mÿ

k“1

uGˆH

ik b uGˆH

kj .

The off diagonal entries are all zero so for all 1 ď i, j ď N ` M we have shown that

∆GˆHpuGˆH

ij q “
N`Mÿ

k“1

uGˆH

ik b uHkj

and so uGˆH is a unitary, invertible corepresentation.
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Let HopfpG ˆ Hq be the Hopf ˚-algebra generated by the corepresentation uGˆH. Let

x P CpGq and y P CpHq, then we have nets pxαq Ă HopfpGq and pyβq Ă HopfpHq with

limits x and y respectively. Clearly pxα b 1q, p1 b yβq Ă HopfpG ˆ Hq and pxα b yβq Ă
HopfpG ˆ Hq with limit x b y P CpGq d CpHq. Using that CpGq d CpHq is dense in

CpG ˆ Hq we have that HopfpG ˆ Hq is dense in CpG ˆ Hq. Then by Proposition 3.2.21

we have a compact matrix quantum group. It follows that HopfpG ˆ Hq “ HopfpGq d
HopfpHq from the matrix generating HopfpG ˆ Hq. ✷

3.3 Discrete Quantum Groups

We will only need a few minor facts about discrete quantum groups for this thesis. We

give only basic properties here and refer the reader to Sołtan (2006) for further details.

Definition 3.3.1 A discrete quantum group is a locally compact quantum group that is

the dual of a compact quantum group.

For G a discrete quantum group we denote by c0pGq the reduced C˚-algebraic quantum

group to mimic c0pGq for a discrete group G.

Theorem 3.3.2 Let G be a discrete quantum group, then pG is a compact quantum group

and we let tUα | α P Au denote the set of all mutually inequivalent, finite-dimensional,

irreducible, unitary corepresentations. Then we have

c0pGq “
à8

αPAMnα

that is c0pGq is the set of all families tpmαqαPA | mα P Mnα
u such that for any ε ą 0

there is a finite subset F Ă A such that }mβ} ă ε for all β P AzF . Also we have the

multiplier C˚-algebra Mpc0pGqq given by the family tpmαqαPA | mα P Mnα
u such that

supiPI }mα} is finite.
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3.4 Coamenable Quantum Groups

We now define coamenable quantum groups. Coamenability has the interesting property

that the universal and reduced C˚-algebras are equal and therefore the dual of C0pGq is a

unital Banach algebra. We refer to the paper Bédos & Tuset (2003) for further details and

proofs. In particular we have that SUqp2q is coamenable.

Theorem 3.4.1 Let G be a locally compact quantum group. Then the following are equiv-

alent:

(i) There exists a state ε on C0pGq such that pid b εq ˝ ∆ “ id;

(ii) There exists a state ε on C0pGq such that pε b idq ˝ ∆ “ id;

(iii) There exists a bounded approximate identity in L1pGq;

(iv) C0pGq˚ is unital;

(v) C0pGq “ Cu
0pGq.

Definition 3.4.2 A locally compact quantum group G is coamenable if any of the equiv-

alent conditions of Theorem 3.4.1 hold.
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Chapter 4

The L
1
7pGq Algebra

We now move on to the research topics of the thesis. In this chapter we will define a Ba-

nach ˚-subalgebra of L1pGq that we will denote L1
7 pGq and we will give a comprehensive

study of the properties of this object for a locally compact quantum group G.

We begin in Section 4.1 with an overview of L1
7 pGq and properties that were already

known before this work. We show it is a Banach ˚-algebra, investigate properties of

smearing elements of L1
7 pGq as a Banach space, investigate further properties of L1

7 pGq
and its dual and we consider the related space of C0pGq˚

7. In Section 4.2 we will place

an operator space structure on L1
7 pGq and show that we have a completely contractive Ba-

nach algebra. Then we review smearing properties on L1
7 pGq as a completely contractive

Banach algebra and for the L1
7 algebra of a product of locally compact quantum groups.

Finally in Section 4.3 we investigate properties of the L1
7 pGq algebra for compact quan-

tum groups and we show that a locally compact quantum group G is compact if and only

if L1
7 pGq is an ideal in its double dual with respect to either Arens products.

With the exception of Section 4.1 all the work in this chapter is original research by

the author.
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4.1 Basic Properties of L1pGq and L
1
7pGq

In this section we define L1
7 pGq in Definition 4.1.1 and we investigate the elementary

properties of this object. We show first it is a Banach ˚-algebra and then we investigate

the smearing to show that it is dense in L1pGq under the } ¨ }L1pGq norm.

Note that whilst all the results in this section are known, the proofs, whilst not nec-

essarily difficult, are not always recorded in the original literature on the subject and we

offer them here for completeness.

4.1.1 L1

7 pGq as a Banach ˚-algebra

We showed in Section 2.4 that L1pGq is a Banach algebra. We can make L1pGq a Banach

˚-algebra with involution given by ω ÞÑ ω6 where we define xx, ω6y “ xRpxq˚, ωy for

x P C0pGq or indeed ω6 “ ω˚ ˝ R; however in general λ is not a ˚-homomorphism with

this involution. In fact there is no involution on L1pGq such that λ is a ˚-homomorphism

but we can define a ˚-subalgebra such that the restriction of λ to this ˚-subalgebra is a

˚-homomorphism. We define this object now and then show that there is a norm such that

this is a Banach ˚-algebra.

Definition 4.1.1 We define the space

L1
7 pGq “

!
ω P L1pGq

ˇ̌
ˇ Dκ P L1pGq such that xx, κy “ xSpxq˚, ωy @x P DompSq

)
.

(4.1)

Let ω P L1
7 pGq, then we have a unique κ P L1pGq such that xx, κy “ xSpxq˚, ωy for

all x P DompSq. This follows by considering two such κ1, κ2 P L1pGq that satisfy this

equation and we have then xx, κ1y “ xSpxq˚, ωy “ xx, κ2y for all x P DompSq. As

DompSq is dense in C0pGq we have κ1 “ κ2.

Note that we haven’t mentioned whether we are considering the antipode in the C˚-

algebraic or von Neumann algebraic setting. It seems more natural to consider the von
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Neumann algebraic antipode as L1pGq is the predual of L8pGq and clearly if we assume

this then the equation holds for all the x in the domain of the C˚-algebraic antipode.

On the other hand let x P DompSq for S the von Neumann algebraic antipode, then from

Definition-Theorem 2.2.7 we have a σ-strong˚ core of DompSq given by DompSqXC0pGq
and thus also a σ-weak core as this is weaker than the σ-strong˚ topology. Then there is

some pxαq Ă DompSq X C0pGq such that xα
w˚

ÝÑ x and Spxαq w˚

ÝÑ Spxq and so for all

ω P L1
7 pGq we have

ˇ̌
ˇxSpxq˚, ωy ´ xx, ω7y

ˇ̌
ˇ ď

ˇ̌
ˇxSpxq˚, ωy ´ xSpxαq˚, ωy

ˇ̌
ˇ `

ˇ̌
xxα, ω7y ´ xx, ω7y

ˇ̌

“ |xSpxq ´ Spxαq, ω˚y| `
ˇ̌
xxα ´ x, ω7y

ˇ̌
Ñ 0.

So it is sufficient to consider the C˚-algebraic antipode.

The following proposition was proved in Proposition 3.1 in Kustermans (2001) but

we reproduce the proof here for convenience of the reader.

Proposition 4.1.2 Let λ : L1pGq Ñ C0ppGq be the left regular representation from Defi-

nition 2.4.3. We have the following identity

L1
7 pGq “

 
ω P L1pGq

ˇ̌
Dκ P L1pGq, λpωq˚ “ λpκq

(

and λpω7q “ λpωq˚ for all ω P L1
7 pGq.

Proof

Let ω P L1
7 pGq and we show that λpω7q “ λpωq˚. By Definition-Theorem 2.2.7 for all

ρ P L1pGq we have pid b ρqpW q P DompSq and using the formula Sppid b ρqpW qq “
pid b ρqpW ˚q we have

xλpω7q, ρy “ xpω7 b idqpW q, ρy “ xpid b ρqpW q, ω7y “ xSppid b ρqpW qq, ω˚y

“ xpid b ρqpW ˚q, ω˚y “ xW,ω b ρ˚y “ xpω b idqpW q˚, ρy “ xλpωq˚, ρy.
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As this holds for all ρ P L1pGq we have λpω7q “ λpωq˚.

Using that λpω7q “ λpωq˚ for all ω P L1
7 pGq it follows immediately that we have

L1
7 pGq Ă tω P L1pGq | Dκ P L1pGq, λpωq˚ “ λpκqu. Conversely, let ω P L1pGq such

that there exists κ P L1pGq with λpωq˚ “ λpκq. Then for all ρ P L1pGq we have

xSppid b ρqpW qq˚, ωy “ xpid b ρqpW ˚q, ω˚y “ xW,ω b ρ˚y “ xλpωq, ρ˚y

“ xλpωq˚, ρy “ xλpκq, ρy “ xpid b ρqpW q, κy.

We have from Definition-Theorem 2.2.7 that tpid b ρqpW q | ρ P L1pGqu is a core for S

and so we have shown that for all x P DompSq we have xSpxq˚, ωy “ xx, κy, that is

ω P L1
7 pGq with ω7 “ κ. ✷

In particular we have shown in the previous proposition that the left regular representation

λ restricts to a ˚-homomorphism on L1
7 pGq.

Proposition 4.1.3 We have that L1
7 pGq is a Banach ˚-algebra under the norm } ¨ }7 given

by

}ω}7 “ maxt}ω}L1pGq, }ω7}L1pGqu

for ω P L1
7 pGq.

Proof

Let ω1, ω2 P L1
7 pGq, then as λ is a ˚-homomorphism on L1

7 pGq we have

λpω1 ˚ ω2q˚ “ pλpω1qλpω2qq˚ “ λpω2q˚λpω1q˚ “ λpω7
2qλpω7

1q “ λpω7
2 ˚ ω7

1q

which implies that ω1 ˚ω2 P L1
7 pGq with pω1 ˚ω2q7 “ ω

7
2 ˚ω7

1. It is easy to see that ω ÞÑ ω7

is an involution on L1
7 pGq and thus L1

7 pGq is a ˚-algebra.

We now show that } ¨ }7 is indeed a norm. It is clear that }ω}7 “ 0 if and only if ω “ 0
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and }tω}7 “ |t| }ω}7 for all ω P L1
7 pGq and t P C. Finally we have

}ω1 ` ω2}L1pGq ď }ω1}L1pGq ` }ω1}L1pGq ď }ω1}7 ` }ω2}7

and similarly }ω7
1 ` ω

7
2}L1pGq ď }ω1}7 ` }ω2}7 and so it follow that }ω1 ` ω2}7 ď }ω1}7 `

}ω2}7 as required.

We want to show that L1
7 pGq is complete under the } ¨ }7 norm. Let pωnq Ă L1

7 pGq be a

Cauchy sequence under the } ¨ }7 norm. Then we have from the definition of the } ¨ }7 norm

that both }ωn´ωm}L1pGq Ñ 0 and }ω7
n´ω7

m}L1pGq Ñ 0 as n,m Ñ 8 and so as L1pGq is a

Banach algebra there exists ω, κ P L1pGq with }ω´ωn}L1pGq Ñ 0 and }κ´ω7
n}L1pGq Ñ 0.

We now show that ω P L1
7 pGq. For all x P DompSq we have

ˇ̌
ˇxSpxq˚, ωy ´ xx, κy

ˇ̌
ˇ ď

ˇ̌
ˇxSpxq˚, ωy ´ xSpxq˚, ωny

ˇ̌
ˇ `

ˇ̌
xx, ω7

ny ´ xx, κy
ˇ̌

Ñ 0

and so for all x P DompSq we have xSpxq˚, ωy “ xx, κy as required.

Finally we show that it satisfies the additional properties for it to be a Banach ˚-

algebra. For ω1, ω2 P L1
7 pGq we have }ω1 ˚ ω2}L1pGq ď }ω1}L1pGq}ω2}L1pGq ď }ω1}7}ω2}7

and similarly }pω1 ˚ω2q7}L1pGq ď }ω1}7}}ω2}7 giving }ω1 ˚ω2}7 ď }ω1}7}ω2}7. Also clearly

}ω}7 “ }ω7}7 for all ω P L1
7 pGq and we are done. ✷

We quote the following theorem now which will be proved in the next section after a

discussion of smearing in L1
7 pGq.

Theorem 4.1.4 The Banach algebra L1
7 pGq is dense in L1pGq with respect to the norm

on L1pGq.

We now show a few elementary known properties regarding L1pGq and L1
7 pGq and in par-

ticular the involution. The next Proposition follows immediately as τt and R are normal.

Proposition 4.1.5 Let ω P L1pGq and t P R, then ω ˝ τt P L1pGq and ω ˝ R P L1pGq.
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Proposition 4.1.6 Let ω P L1
7 pGq and t P R, then ω ˝ τt P L1

7 pGq and we have pω ˝ τtq7 “
ω7 ˝ τt.

Proof

Let x P DompSq, then by Proposition 1.3.9 (ii) we have τtpxq P DompSq and furthermore

τtpτ´i{2pxqq “ τt´i{2pxq “ τ´i{2pτtpxqq. So using Proposition 2.2.8 we have τtpSpxqq “
Spτtpxqq and for all x P DompSq we have

xSpxq˚, ω ˝ τty “ xSpτtpxqq˚, ωy “ xτtpxq, ω7y “ xx, ω7 ˝ τty

As ω7 P L1pGq it follows that ω7 ˝ τt P L1pGq and pω ˝ τtq7 “ ω7 ˝ τt. ✷

4.1.2 Smearing for Locally Compact Quantum Groups

We now move on to describe some further properties of L1
7 pGq as a Banach ˚-algebra using

smearing techniques. Some of the properties of smearing here were known previously as

evidenced in Kustermans (2001) however we give more details here. This section also

contains a proof of Theorem 4.1.4.

By Definition-Theorem 2.2.7 we have that the scaling group τ is a σ-strong˚ continu-

ous one-parameter group of ˚-automorphisms on L8pGq. So by Definition 1.3.1, for fixed

x P L8pGq, for all sequences ptnq Ă R with limit t P R we have that τtnpxq converges

to τtpxq in the σ-strong˚ topology. As the σ-weak topology is weaker than the σ-strong˚

topology we have that τtnpxq Ñ τtpxq in the σ-weak topology and so the map R Ñ C

given by t ÞÑ xτtpxq, ωy is continuous for any fixed x P L8pGq and ω P L1pGq.

It follows from Section 1.3.3 that we can consider the smear xpnq P L8pGq for n P N

and we have for all ω P L1pGq that

xxpnq, ωy “ n?
π

ż

R

e´n2t2xτtpxq, ωy dt.

We have that τt is normal for all t P R and so we have a map pτtq˚ : L1pGq Ñ L1pGq. In
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particular for all t P R and x P L8pGq we have

xpτtq˚pωq, xy “ xω, τtpxqy “ xω ˝ τt, xy

and so pτtq˚pωq “ ω ˝ τt for all t P R. We make the following definition (which is easily

seen to be a one-parameter group).

Definition 4.1.7 Let τ˚ be the one-parameter group on L1pGq given by pτ˚qt “ pτtq˚ for

all t P R. In particular we have pτ˚qtpωq “ ω ˝ τt for all ω P L1pGq and t P R.

We know that the map L8pGq Ñ L8pGq given by x ÞÑ xpnq is normal and contractive

by Theorem 1.3.21 and thus there is a contractive map which we denote Φpnq : L1pGq Ñ
L1pGq given by

xx, pΦpnqqpωqy “ xxpnq, ωy “ n?
π

ż

R

e´n2t2xτtpxq, ωy dt

and so we see that

pΦpnqqpωq “ n?
π

ż

R

e´n2t2ω ˝ τt dt P L1pGq

where the integral is considered in the weak topology. We show now that in fact Φpnq has

image inside L1
7 pGq after showing how smearing interacts with the antipode and unitary

antipode. The following is immediately from Proposition 1.3.20 and Proposition 1.3.10.

Proposition 4.1.8 Let x P L8pGq and n P N, then we have Rpxpnqq “ Rpxqpnq and

px˚qpnq “ xpnq˚. Furthermore let x P DompSq Ă L8pGq, then we have pSpxqqpnq “
Spxpnqq and pSpxq˚qpnq “ Spxpnqq˚.

The proof of the following theorem is original work by the author (though it is likely that

a similar theorem was already known by Kustermans in Kustermans (2001) but no proof

is offered.)
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Theorem 4.1.9 For all ω P L1pGq we have pΦpnqqpωq P L1
7 pGq. In particular we have a

corestriction Φ1pnq : L1pGq Ñ L1
7 pGq of the map Φpnq and we have }Φ1pnqpωq}L1

7 pGq ď
en

2{4}ω}L1pGq.

Proof We note that

ˇ̌
ˇe´n2pt`i{2q2

ˇ̌
ˇ “

ˇ̌
ˇe´n2t2´in2t`n2{4

ˇ̌
ˇ “ e´n2t2en

2{4 and so we have

ˇ̌
ˇ̌ n?
π

ż

R

e´n2pt`i{2q2xx, ω˚ ˝ R ˝ τtydt
ˇ̌
ˇ̌ ď en

2{4 n?
π

ż

R

e´n2t2 |xRpτtpxqq˚, ωy| dt

ď en
2{4 n?

π

ż

R

e´n2t2}x}}ω} dt “ en
2{4}x}}ω}

where we’ve used that τt and R are isometries from Proposition 2.2.8. So we can define a

map κ P L8pGq˚ by

κpxq “ n?
π

ż

R

e´n2pt`i{2q2xx, ω˚ ˝ R ˝ τty dt.

with }κ} ď en
2{4}ω}. As ω, R are normal and τt is normal for all t P R we have ω˚ ˝

R ˝ τt P L1pGq for all t P R and we have a continuous function R Ñ L1pGq given by

t ÞÑ n?
π
e´n2pt`i{2q2ω˚ ˝ R ˝ τt. Furthermore we have that

ż

R

››››
n?
π
e´n2pt`i{2q2ω˚ ˝ R ˝ τt

›››› dt “ en
2{4 n?

π

ż

R

e´n2t2}ω˚ ˝ R ˝ τt}dt ď en
2{4}ω} ă 8

and so we have that κ P L1pGq from Proposition A.6.3.

From Theorem 1.3.17 and Propositions 1.3.20 and 4.1.8, for all x P DompSq we have

x˚ P Dompτi{2q and

xx, κy “ n?
π

ż

R

e´n2pt`i{2q2xRpτtpxqq˚, ωydt “ n?
π

ż

R

e´n2pt´i{2q2xτtpx˚q, ω ˝ Rydt

“ xpτi{2px˚qqpnq, ω ˝ Ry “ x
`
Rpτ´i{2pxqq˚

˘
pnq, ωy “ xSpxq˚, ωpnqy

and so ωpnq P L1
7 pGq with pωpnqq7 “ κ.
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Finally we have

}ωpnq}L1

7 pGq “ maxt}ωpnq}L1pGq, }ωpnq7}L1pGqu

ď maxt}ω}L1pGq, e
n2{4}ω}L1pGqu “ en

2{4}ω}L1pGq. ✷

We now show the following as a corollary of this theorem as promised earlier.

Proof of Theorem 4.1.4

Let ω P L1pGq and consider the sequence pωpnqq in L1
7 pGq from the previous theorem.

Then as τ˚ is norm continuous by Corollary 2.3.7 it follows from Proposition 1.3.15 that

limnÑ8 ωpnq “ ω in the norm topology. ✷

We also have the following straightforward proposition.

Proposition 4.1.10 For ω P L1
7 pGq it follows that ω7pnq “ ωpnq7.

Proof

Using Proposition 4.1.8 for x P DompSq we have

xx, ωpnq7y “ xSpxq˚, ωpnqy “ xSpxpnqq˚, ωy “ xxpnq, ω7y “ xx, ω7pnqy

and so it follows from the density of DompSq in C0pGq. ✷

4.1.3 Further Properties of L1

7 pGq

We have the following useful characterisation of L1
7 pGq in terms of the scaling group. See

Definition A.2.10 in the appendix for the definition of the pre-adjoint of τi{2.

Proposition 4.1.11 We have that ω P L1
7 pGq if and only if ω ˝ τi{2 P L1pGq, in which case

ω7 “ pω ˝ τi{2 ˝ Rq˚. It then follows that L1
7 pGq “ Domppτi{2q˚q.

Proof

First say ω P L1
7 pGq and let x P Dompτi{2q. Then by Proposition 1.3.20 (ii) we have
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x˚ P Dompτ´i{2q and τ´i{2px˚q “ τi{2pxq˚ and so we have the following

pω ˝ τi{2qpxq “ xτ´i{2px˚q˚, ωy “ xSpRpx˚qq˚, ωy “ xRpx˚q, ω7y “ xx, pω7 ˝ Rq˚y

where we’ve used that R, S and τ´i{2 commute from Proposition 2.2.8 and R2 “ id from

Definition-Theorem 2.2.7. It follows from this that for x P Dompτi{2q we have

ˇ̌
pω ˝ τi{2qpxq

ˇ̌
“
ˇ̌
xx˚, ω7 ˝ Ry

ˇ̌
ď }Rpx˚q}}ω7}L1pGq “ }x}}ω7}L1pGq

and as Dompτi{2q is dense in L8pGq we then have that }ω ˝ τi{2} ď }ω7}L1pGq. Also we

as ω ˝ τi{2 “ pω7 ˝ Rq˚ and R is normal it follows that ω ˝ τi{2 is normal and so we have

shown that ω ˝ τi{2 P L1pGq as required.

Conversely, say ω ˝ τi{2 P L1pGq. Then for all x P DompSq we have

xSpxq˚, ωy “ xτi{2pRpx˚qq, ωy “ xx˚, ω ˝ τi{2 ˝ Ry “ xx, pω ˝ τi{2 ˝ Rq˚y

where we’ve used that x˚ P Dompτi{2q again and that R is a ˚-map. As ω ˝ τi{2 P L1pGq
it follows that pω ˝ τi{2 ˝ Rq˚ P L1pGq and so ω P L1

7 pGq with ω7 “ pω ˝ τi{2 ˝ Rq˚.

It follows immediately from this and Definition A.2.10 that L1
7 pGq “ Domppτi{2q˚q.

✷

We create the following notation, note however that this does not give us an involution as

generally pω5q5 “ ω ˝ τi ‰ ω for ω P L1
7 pGq.

Notation 4.1.12 Given ω P L1
7 pGq we let ω5 :“ ω ˝ τi{2 P L1pGq.

It follows from Proposition 4.1.11 that if ω P L1
7 pGq then the map ω ˝ τi{2 : Dompτi{2q Ñ

C given by x ÞÑ xτi{2pxq, ωy extends uniquely to a map in L1pGq. We might ask the

following question: given ω P L1pGq such that the map ω ˝ τi{2 : Dompτi{2q Ñ C

is bounded, then by the Hahn-Banach theorem there is a map κ P C0pGq˚ such that

xx, κy “ xτi{2pxq, ωy for all x P Dompτi{2q and such that }κ} “ }ω ˝ τi{2}, then does
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it follows that κ P L1pGq? If so we can give a much more palatable definition of the

L1
7 pGq algebra. The general answer to this question is still open to the best of the author’s

knowledge, however we will investigate this further in the case of SUqp2q in Section 5.3

below.

We refer the reader to Daws & Salmi (2013) for a proof of the following useful theo-

rem.

Theorem 4.1.13 For G a coamenable locally compact quantum group there is a contrac-

tive approximate identity peαq of L1
7 pGq.

Finally we mention that as L1
7 pGq is a Banach ˚-algebra we have a multiplication map

m : L1
7 pGq b̂L1

7 pGq Ñ L1
7 pGq linearising the multiplication map where b̂ denotes the

Banach space projective tensor product. We show in the next section that we can extend

this to a completely contractive Banach algebra as per Definition 1.1.49.

4.1.4 The Dual of L1

7 pGq

Consider the map θ : L1
7 pGq Ñ L1pGq ‘8 L1pGq given by

ω ÞÑ pω, ω7q. (4.2)

It follows easily that this is a linear map and for ω P L1
7 pGq we have that }θpωq} “

max
 

}ω}L1pGq, }ω7}L1pGq
(

“ }ω}7 and so θ is an isometric embedding. Because this is an

isometry the adjoint is a quotient map and we show below that we can form an explicit

representation of L1
7 pGq˚. We begin with a result that comes from Proposition A.1 from

Brannan et al. (2013). Note however we use smearing techniques for the proof here.

Lemma 4.1.14 Let G be a locally compact quantum group and x, y P L8pGq such that

xx˚, ω˚y “ xy, ω7y for all ω P L1
7 pGq. Then y P DompSq and Spyq “ x˚.
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Proof

We consider the sequence pypnqq8
n“1 Ă DompSq where ypnq is the smear of y with respect

to τ for n P N given by Definition 1.3.14. It follows from Theorem 1.3.17 that for all

n P N we have ypnq P DompSq and from Proposition 1.3.16 we have ypnq w˚

ÝÑ y. We

show that Spypnqq w˚

ÝÑ x˚.

Let ω P L1
7 pGq. From Proposition 4.1.6 we have that ω ˝ τt P L1

7 pGq with pω ˝ τtq7 “
ω7 ˝ τt and using Proposition 4.1.8 we have

xSpypnqq, ω˚y “ xypnq, ω7y “ n?
π

ż

R

e´n2t2xτtpyq, ω7y dt “ n?
π

ż

R

e´n2t2xx, ω ˝ τty dt

“ n?
π

ż

R

e´n2t2xτtpxq˚, ω˚y dt “ n?
π

ż

R

e´n2t2xτtpx˚q, ω˚y dt “ xxpnq˚, ω˚y.

As
 
ω˚ ˇ̌

ω P L1
7 pGq

(
is dense in L1pGq it follows that Spypnqq “ xpnq˚ for all n P N.

But as xpnq˚ w˚

ÝÑ x˚ then Spypnqq w˚

ÝÑ x˚. Then using Proposition A.2.3 we have

y P DompSq and Spyq “ x˚. ✷

Theorem 4.1.15 We have an isometric isomorphism

L1
7 pGq˚ –ci pL8pGq ‘1 L8pGqq{K7

where K7 “
!

px,´Spxq˚q
ˇ̌
ˇ x P DompSq

)
. In particular we can represent any element

of L1
7 pGq˚ by px, yq ` K7 for some (non-unique) x, y P L8pGq.

Proof

As per Equation (1.2) we can form the adjoint θ˚ : L1pGq˚ ‘1 L1pGq˚ Ñ L1
7 pGq˚ or

indeed θ˚ : L8pGq ‘1 L8pGq Ñ L1
7 pGq˚ of the map θ : L1

7 pGq Ñ L1pGq ‘8 L1pGq given

in Equation 4.2 as follows. Let x, y P L8pGq and ω P L1
7 pGq and we have

xθ˚px, yq, ωy “ xpx, yq, θpωqy “ xx, ωy ` xy, ω7y “ xx, ωy ` xy, ω7y.

As θ is an isometry then θ˚ is a quotient map and we have an induced isometric isomor-
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phism rθ˚ : pL8pGq‘1L8pGqq{Ker θ˚ Ñ L1
7 pGq˚. We calculate Ker θ˚. Let x, y P L8pGq

such that θ˚ppx, yqq “ 0, then for all ω P L1
7 pGq we have

0 “ xθ˚ppx, yqq, ωy “ xpx, yq, pω, ω7qy “ xx, ωy ` xy, ω7y

and so θ˚ppx, yqq “ 0 if and only if for all ω P L1
7 pGq we have xy, ω7y “ x´x˚, ω˚y. It

follows from the above lemma that this is true if and only if y P DompSq with Spyq “
´x˚. Then we have x “ ´Spyq˚ P DompSq and Spxq˚ “ ´SpSpyq˚q˚ “ ´y. ✷

It can easily be shown that the adjoint ι˚ : L8pGq Ñ L1
7 pGq˚ of the inclusion ι : L1

7 pGq Ñ
L1pGq is given by ι˚pxq “ px, 0q ` K7 for x P L8pGq. See the proof of Lemma 6.2.7 for

example.

4.1.5 C0pGq˚
7

We now offer brief details of a related space C0pGq˚
7 in preparation for Section 5.5. We

define C0pGq˚
7 as a subspace of C0pGq˚ in a similar way to how we defined L1

7 pGq as a

subspace of L1pGq.

Definition 4.1.16 We define

C0pGq˚
7 “

!
ω P C0pGq˚

ˇ̌
ˇ Dκ P C0pGq˚ such that xx, κy “ xSpxq˚, ωy @x P DompSq

)

and for µ P C0pGq˚
7 we let µ7 denote its (necessarily unique) involution.

We know from Proposition 2.4.4 that we have a contractive injective linear map λ :

C0pGq˚ Ñ MpC0ppGqq given by µ ÞÑ pµ b idqpW q for all µ P C0pGq˚. A similar

proof to that of Proposition 4.1.2 shows that when restricted to C0pGq˚
7 we have a ˚-

homomorphism.
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Proposition 4.1.17 We have the following identity

C0pGq˚
7 “ tµ P C0pGq˚ | D ν P C0pGq˚, λpµq˚ “ λpνqu

and λ is a ˚-homomorphism on C0pGq˚
7.

We define the smear of µ P C0pGq˚ by

xx, µpnqy “ n?
π

ż

R

e´n2t2xτtpxq, µy dt “ xxpnq, µy.

Clearly we have }µpnq} ď }µ} by similar proofs to that for the case of L1pGq and so

µpnq P C0pGq˚. It follows from a similar proof to that of Theorem 4.1.9 that µ P C0pGq˚
7

and so we have the following proposition and corollary.

Proposition 4.1.18 Let µ P C0pGq˚, then µpnq P C0pGq˚
7.

Corollary 4.1.19 We have that C0pGq˚
7 is weak˚-dense in C0pGq˚.

4.2 Operator Space Structures on L
1
7pGq

In this section we show that we can place an operator space structure on L1
7 pGq to make

this into a completely contractive Banach algebra and we discuss further properties of this

object with this operator space structure.

Let G denote a locally compact quantum group. Then we have a σ-weakly continuous

embedding L8pGq � � // BpL2pGqq and in particular, by Proposition 1.1.7 we have that

L8pGq has a natural operator space structure. We also have a natural operator space struc-

ture on L1pGq given by Example 1.1.14. We will assume these operator space structures

on L8pGq and L1pGq throughout this section.

We have that L8pGq bL8pGq has an operator space structure by Example 1.1.44 and

we have a unital normal injective ˚-homomorphism ∆ : L8pGq Ñ L8pGq bL8pGq and
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so this is a completely isometric map. It follows from Definition-Theorem 1.1.16 that

we can take the pre-adjoint ∆˚ : L1pGq pbL1pGq Ñ L1pGq to make L1pGq an algebra

where associativity of ∆˚ follows from coassociativity of ∆. In fact we have that ∆˚ is a

complete contraction by Proposition 1.1.16 and furthermore we have that

xx,∆˚pω b κqy “ x∆pxq, ω b κy “ xx, ω ˚ κy

for all x P L8pGq and so ∆˚pω b κq “ ω ˚ κ. Then from Definition 1.1.49 we have

that pL1pGq,∆˚q is a completely contractive Banach algebra. We show next that there is

an operator space structure on L1
7 pGq such that this is a completely contractive Banach

algebra.

4.2.1 L1

7 pGq as a Completely Contractive Banach Algebra

We remind the reader that we have the map θ : L1
7 pGq Ñ L1pGq ‘8 L1pGq from Equation

(4.2) given by ω ÞÑ pω, ω7q that is an isometric embedding. We show now that using this

map we can make L1
7 pGq into a completely contractive Banach algebra.

Theorem 4.2.1 Let L8pGq and L1pGq have the operator space structures given in the

introduction to this section, let L1pGq have the operator space structure given from Ex-

ample 1.1.22 and let L1pGq ‘8 L1pGq have the operator space structure given in Def-

inition 1.1.25 and Proposition 1.1.26. Then there is a unique operator space structure

on L1
7 pGq making the map θ in Equation (4.2) a complete isometry and there is a com-

pletely contractive map m7 : L
1
7 pGq pbL1

7 pGq Ñ L1
7 pGq such that m7pω b κq “ ω ˚ κ for

all ω, κ P L1
7 pGq making pL1

7 pGq,m7q a completely contractive Banach algebra with this

operator space structure.

Proof

For all n P N we define a norm on MnpL1
7 pGqq by

}pωijqni,j“1}MnpL1

7 pGqq “ }θnppωijqni,j“1q}
MnpL1pGq‘8L1pGqq.
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We know that L1pGq ‘8 L1pGq has an operator space structure as stated in the theorem

and so there is a unique operator space structure on L1
7 pGq making θ a complete isometry.

We can define a complete contraction T1 : L
1
7 pGq pbL1

7 pGq Ñ L1pGq given by

T1 :“ ∆˚ ˝ pπ1 b π1q ˝ pθ b θq : L1
7 pGq pbL1

7 pGq Ñ L1pGq

where θ is the embedding above, π1 is the projection onto the first coordinate of L1pGq‘8

L1pGq and ∆˚ is the multiplication map on the completely contractive Banach algebra

L1pGq. We have that θ and π1 are complete contractions and so by Proposition 1.1.36 we

have that θb θ and π1 bπ1 are complete contractions. So as θb θ, π1 bπ1 and ∆˚ are all

complete contractions it follows that T1 is a complete contraction. Furthermore we have

for ω, κ P L1
7 pGq that T1pω b κq “ ω ˚ κ P L1

7 pGq.

Similarly we can define a complete contraction T2 : L1
7 pGq pbL1

7 pGq Ñ L1pGq given

by T2 :“ ∆˚ ˝ Σ˚ ˝ pπ2 b π2q ˝ pθ b θq where Σ˚ is the completely isometric flip map

on L1pGq pbL1pGq and where we’ve used Proposition 1.1.36 (v). We have T2pω b κq “
κ7 ˚ ω7 and as T1pω b κq P L1

7 pGq we have T1pω b κq7 “ T2pω b κq which extends

by linearity to an equality on L1
7 pGq d L1

7 pGq. Given any Ω P L1
7 pGq pbL1

7 pGq we can

approximate this in L1
7 pGq d L1

7 pGq and so it follows that for all x P DompSq we have

xSpxq˚, T1pΩqy “ xx, T2pΩqy and thus T1pΩq P L1
7 pGq with T1pΩq7 “ T2pΩq.

So we have shown that T1 has image in L1
7 pGq and finally we show that the map

m7 : L
1
7 pGq pbL1

7 pGq Ñ L1
7 pGq defined as the corestriction of T1 is a complete contraction.

We clearly have that T1 ‘ T2 “ θ ˝ m7 where T1 ‘ T2 is given in Proposition 1.1.28 (i).

Also from Proposition 1.1.28 (i) we have that }T1 ‘T2}cb “ maxt}T1}cb, }T2}cbu ď 1 and

so T1 ‘ T2 is a complete contraction. As θ is a complete isometry we must have that m7

is also a complete contraction. ✷

We have the following corollary using the same proof as that of Theorem 4.1.15 but using

that θ is now a complete isometry and thus its adjoint is a complete quotient map.
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Corollary 4.2.2 We have a completely isometric isomorphism

L1
7 pGq˚ –ci L

8pGq ‘1 L8pGq{K7.

The following proposition will be used a few times in this thesis. We give it here as we

feel it is an interesting characteristic of the operator space structure we have given on

L1
7 pGq.

Proposition 4.2.3 The linear map Q : L1pGq Ñ L1pGq given by ω ÞÑ ω˚ ˝ R is a

completely isometric isomorphism.

Proof

We have the adjoint Q˚ : L8pGq Ñ L8pGq of Q and for x P L8pGq and ω P L1pGq we

have

xQ˚pxq, ωy “ xx,Qpωqy “ xx, ω˚ ˝ Ry “ xRpx˚q, ωy.

Thus by Proposition 2.3.6 we have Q˚pxq “ Rpx˚q “ ĴxĴ for all x P L8pGq where Ĵ is

the modular conjugation of the left invariant weight φ̂ of pL8pĜq, ∆̂q.

We show that Q˚ is a complete contraction now. Let pξiqni“1 P L2pGqpnq, then using

that MnpL8pGqq Ă BpL2pGqpnqq and Ĵ is an anti-unitary operator and thus an isometry

we have

›››pQ˚qn
´

pxijqni,j“1

¯
¨ pξiqni“1

›››
2

L2pGqpnq
“
›››››

˜
nÿ

j“1

ĴxijĴξj

¸n

i“1

›››››

2

L2pGqpnq

“
nÿ

i“1

›››››
nÿ

j“1

ĴxijĴξj

›››››

2

L2pGq

“
nÿ

i“1

›››››
nÿ

j“1

xijĴξj

›››››

2

L2pGq

“
›››››

˜
nÿ

j“1

xijĴξj

¸n

i“1

›››››

2

L2pGqpnq

“
›››pxijqni,j“1 ¨

´
Ĵξj

¯n
i“1

›››
2

L2pGqpnq
ď
››pxijqni,j“1

››2
MnpL8pGqq

›››
´
Ĵξi

¯n
i“1

›››
2

L2pGqpnq

“
››pxijqni,j“1

››2
MnpL8pGqq }pξiqni“1}2

L2pGqpnq .
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Then taking the supremum over pξiqni“1 P L2pGqpnq with norm less than 1 we have

››pQ˚qn
`
pxijqni,j“1

˘››
MnpL8pGqq ď

››pxijqni,j“1

››
MnpL8pGqq “

››pxijqni,j“1

››
MnpL8pGqq

and thus Q˚ is a complete contraction.

As Q˚ is a complete contraction then Q and Q are complete contractions. Also for

κ P L1pGq and x P L8pGq we have

xQpκq, xy “ xκ˚, Rpxqy “ xκ,Rpx˚qy

and then letting κ “ Qpωq for ω P L1pGq we have

xpQQqpωq, xy “ xQpωq, Rpx˚qy “ xQpωq, Rpx˚qy “ xω˚, x˚y “ xω, xy.

As this holds for all ω P L1pGq and x P L8pGq and so we have QQ “ id. In particular,

Q is completely contractive with a completely contractive inverse and so Q is a complete

isometric isomorphism. ✷

The next corollary follows from Propositions 4.2.3, 4.1.11 and 1.1.28 (ii).

Corollary 4.2.4 Let θ be the map from Equation (4.2), then we have a complete isometry

pid ‘8 Qq ˝ θ : L1
7 pGq Ñ L1pGq ‘8 L1pGq such that

ω ÞÑ pω, ω ˝ τi{2q “ pω, ω5q

and so we can calculate the norm on L1
7 pGq with the formula

}ω}L1

7 pGq “ maxt}ω}L1pGq, }ω5}L1pGqu.
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4.2.2 Smearing L1

7 pGq as a Completely Contractive Banach Algebra

We know from Theorem 1.3.21 that smearing in L8pGq is completely contractive and

normal. In this section we will prove some propositions regarding smearing in L1pGq and

L1
7 pGq as completely contractive Banach algebras that will be useful later.

Theorem 4.2.5 Let n P N and Φpnq : L1pGq Ñ L1pGq be the map ω ÞÑ ωpnq from

Proposition 4.1.9. Then there is a completely bounded corestriction Φ1pnq : L1pGq Ñ
L1

7 pGq.

Proof

By Proposition 4.1.9 we have that Φpnqpωq P L1
7 pGq and so the corestriction Φ1 : L1pGq Ñ

L1
7 pGq exists and we show it is completely bounded. We let ρ :“ θ ˝ Φ1pnq : L1pGq Ñ

L1pGq ‘8 L1pGq where θ is the usual embedding of L1
7 pGq into L1pGq ‘8 L1pGq. Then

as θ is a complete isometry we need only show that ρ is completely bounded.

Let m P N and pωijqmi,j“1 P MmpL1pGqq, then we have

ρm
`
pωijqmi,j“1

˘
“
´

pωijpnq, ωijpnq7q
¯m
i,j“1

and so

››ρm
`
pωijqmi,j“1

˘››
MmpL1pGq‘8L1pGqq

“ max

"››pωijpnqqmi,j“1

››
MmpL1pGqq ,

›››pωijpnq7qmi,j“1

›››
MmpL1pGqq

*

“ max
!››pωijpnqqmi,j“1

››
MmpL1pGqq ,

››pωijpnq7qmi,j“1

››
MmpL1pGqq

)
.

We consider each of these norms in MmpL1pGqq in turn now. Firstly, as the map L8pGq Ñ
L8pGq given by x ÞÑ xpnq is completely contractive then so is its pre-adjoint as a map

L1pGq Ñ L1pGq and we have

››pωijpnqqmi,j“1

››
MmpL1pGqq ď

››pωijqmi,j“1

››
MmpL1pGqq .
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Also from Proposition 4.2.3 we have

››pωijpnq7qmi,j“1

››
MmpL1pGqq “

›››››

ˆ
n?
π

ż

R

e´n2pt`i{2q2ω˚
ij ˝ R ˝ τt dt

˙m

i,j“1

›››››
MmpL1pGqq

ď n?
π

ż

R

›››e´n2pt`i{2q2 `ω˚
ij ˝ R ˝ τt

˘m
i,j“1

›››
MmpL1pGqq

dt

ď en
2{4 n?

π

ż

R

e´n2t2
›››
`
ω˚
ij ˝ R

˘m
i,j“1

›››
MmpL1pGqq

}τt}dt

“ en
2{4 n?

π

ż

R

e´n2t2
›››pωijqmi,j“1

›››
MmpL1pGqq

dt

“ en
2{4

›››pωijqmi,j“1

›››
MmpL1pGqq

.

Then it follows from the preceding equations that }ρm} ď en
2{4 for all m P N and so ρ is

completely bounded as required. ✷

Proposition 4.2.6 Let Φ1pnq : L1pGq Ñ L1
7 pGq be the map ω ÞÑ ωpnq given by Theorem

4.2.5, then for all x, y P L8pGq (and thus px, yq ` K7 P L1
7 pGq˚) we have

Φ1pnq˚ppx, yq ` K7q “ xpnq ` Spypnqq˚.

Proof

We have the adjoint Φ1pnq˚ : L1
7 pGq˚ Ñ L1pGq and using L1

7 pGq˚ –ci pL8pGq ‘1

L1pGqq{K7 for all ω P L1pGq we have

xΦ1pnq˚ppx, yq ` K7q, ωy “ xpx, yq ` K7,Φ
1pnqpωqy “ xx,Φ1pnqpωqy ` xy,Φ1pnqpωq7y.

For y P DompSq we have by Corollary 4.1.8 that

xy,Φ1pnqpωq7y “ xSpyq˚,Φ1pnqpωqy “ xSpypnqq˚, ωy

and as DompSq is σ-weakly dense in L8pGq and ypnq P DompSq for all y P L8pGq
(Theorem 1.3.17) we have xy,Φ1pnq7y “ xSpypnqq˚, ωy for all y P L8pGq. Then it
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follows that

xΦ1pnq˚ppx, yq ` K7q, ωy “ xxpnq ` Spypnqq˚, ωy

for all ω P L1pGq and the theorem follows. ✷

We now define the following notation for use later on.

Notation 4.2.7 For n P N we let Υpnq : L1
7 pGq Ñ L1

7 pGq be the map Φ1pnq ˝ ι where

ι : L1
7 pGq Ñ L1pGq is the inclusion map.

Proposition 4.2.8 We have that Υpnq is a completely contractive map and for x, y P
L8pGq (so px, yq ` K7 P L1

7 pGq˚) we have Υpnq˚ppx, yq ` K7q “ pxpnq, ypnqq ` K7.

Proof Fix m P N and let pωijqmi,j“1 P MmpL1
7 pGqq. As the map x ÞÑ xpnq is completely

contractive it follows that its pre-adjoint map is also completely contractive and so

}pωijpnqqni,j“1}MmpL1pGqq ď }pωijqni,j“1}MmpL1pGqq

and similarly }pω7
ijpnqqmi,j“1}MmpL1pGqq ď }pω7

ijqmi,j“1}MmpL1pGqq. Then as the map θ :

L1
7 pGq Ñ L1pGq ‘8 L1pGq given by Equation (4.2) is a complete isometry we have

}Υpnqmppωijqmi,j“1q}MmpL1

7 pGqq “ }pθm ˝ Υpnqmqppωijqmi,j“1q}
MmpL1pGq‘8L1pGqq

“ maxt}pωijpnqqmi,j“1}MmpL1pGqq, }pωijpnq7qni,j“1}MmpL1pGqqu

ď maxt}pωijqmi,j“1}MmpL1pGqq, }pω7
ijqni,j“1}MmpL1pGqqu

“ }θmppωijqmi,j“1q}
MmpL1pGq‘8L1pGqq “ }pωijqmi,j“1}MmpL1

7 pGqq

where we’ve used Proposition 4.1.10. So we have that Υpnq is a complete contraction.

We have that Υpnq˚ “ ι˚ ˝ Φ1pnq˚ and so using Proposition 4.2.6 we have

Υpnq˚ ppx, yq ` K7q “ pxpnq ` Spypnqq˚, 0q ` K7.
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As ypnq P DompSq we have Spypnqq˚ P DompSq and so pSpypnqq˚,´SpSpypnqq˚q˚q “
pSpypnqq˚,´ypnqq P K7 and thus we also have

Υpnq˚ ppx, yq ` K7q “ pxpnq, ypnqq ` K7. ✷

We now prove some useful results about the convergence of pΥpnqq and pΥpnq b Υpnqq
for use later.

Proposition 4.2.9 We have Υpnq Ñ id weakly as n Ñ 8, that is for all ω P L1
7 pGq we

have }Υpnqpωq ´ ω}L1

7 pGq Ñ 0.

Proof

Let ω P L1
7 pGq and x P L8pGq, then by Proposition 1.3.15 we have

}Υpnqpωq ´ ω}L1pGq “ }ωpnq ´ ω}L1pGq Ñ 0

and so limΥpnqpωq “ ω in the L1pGq norm.

Let x P DompSq and ω P L1
7 pGq, then from Proposition 4.1.8 we have

xx,Υpnqpωq7y “ xSpxq˚,Υpnqpωqy “ xSpxpnqq˚, ωy “ xxpnq, ιpω7qy “ xx,Υpnqpω7qy

and as DompSq is weak˚-dense in L8pGq we have Υpnqpωq7 “ Υpnqpω7q. Then similarly

to above we have }pΥpnqpωq´ωq7}L1pGq “ }Υpnqpω7q´ω7}L1pGq Ñ 0 and so }Υpnqpωq´
ω}L1

7 pGq Ñ 0 as required. ✷

Proposition 4.2.10 For all Ω P L1
7 pGq pbL1

7 pGq we have

lim
nÑ8

pΥpnq b ΥpnqqpΩq “ Ω.
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Proof

Let ω, ω1 P L1
7 pGq, then using Proposition 4.2.8 we have

}pΥpnq b Υpnqqpω b ω1q ´ ω b ω1}L1

7 pGq

ď }Υpnqpωq b Υpnqpω1q ´ ω b Υpnqpω1q}L1

7 pGq ` }ω b Υpnqpω1q ´ ω b ω1}L1

7 pGq

ď }Υpnqpωq ´ ω}L1

7 pGq}Υpnqpω1q}L1

7 pGq ` }ω}L1

7 pGq}Υpnqpω1q ´ ω1}L1

7 pGq

ď }Υpnqpωq ´ ω}L1

7 pGq}ω1}L1

7 pGq ` }ω}L1

7 pGq}Υpnqpω1q ´ ω1}L1

7 pGq Ñ 0

and so by linearity this holds on all L1
7 pGq d L1

7 pGq.

Now let Ω P L1
7 pGq pbL1

7 pGq, then for all ε ą 0 there is some Ω1 P L1
7 pGq d L1

7 pGq
such that }Ω ´ Ω1} ă ε and there is some n P N such that }pΥpnq b ΥpnqqpΩq ´ Ω1} ă ε.

Then as Υpnq is (completely) contractive by Proposition 4.2.8 we have

}pΥpnq b ΥpnqqpΩq ´ Ω1}L1

7 pGq

ď }pΥpnq b ΥpnqqpΩq ´ pΥpnq b ΥpnqqpΩ1q}L1

7 pGq

` }pΥpnq b ΥpnqqpΩ1q ´ Ω1}L1

7 pGq ` }Ω1 ´ Ω}L1

7 pGq

ď }Υpnq b Υpnq}}Ω ´ Ω1}L1

7 pGq ` }pΥpnq b ΥpnqqpΩ1q ´ Ω1}L1

7 pGq ` }Ω1 ´ Ω}L1

7 pGq

ă εp}Υpnq b Υpnq} ` 2q ď 3ε

as required. ✷

4.2.3 Smearing for Products of Quantum Groups

Fix two locally compact quantum groups G and H. In Section 2.5 we gave a definition

of a locally compact quantum group G ˆ H. We defined the von Neumann algebra by

L8pG ˆ Hq “ L8pGq bL8pHq and so it follows that L1pG ˆ Hq “ pL8pG ˆ Hqq˚ “
pL8pGq bL8pHqq˚ “ L1pGq pbL1pHq. In this section we ask if we can find a similar

relation between L1
7 pG ˆ Hq and L1

7 pGq pbL1
7 pHq?
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We begin this section by showing that we have a weak˚-core for SGˆH and that we

have an embedding of L1
7 pGq d L1

7 pHq inside L1
7 pG ˆ Hq. We then prove Theorem 4.2.14

showing that in the case that G “ H we have a complete contraction from L1
7 pGq pbL1

7 pGq
to L1

7 pG ˆ Gq. It follows immediately by density of L1
7 -algebras in L1-algebras that if

L1
7 pGq pbL1

7 pHq is completely isometrically isomorphic to L1
7 pG ˆ Hq that the map T

in Theorem 4.2.14 must be a completely isometric isomorphism. We will return to this

theorem in Section 5.4 where we prove that this is not a completely isometric isomorphism

for the case G “ H “ SUqp2q.

Proposition 4.2.11 We have DompSGq d DompSHq is a weak˚-core for SGˆH in the von

Neumann algebraic setting (where DompSGq Ă L8pGq and similarly for H).

Proof

We have that
 

pid b ωqpWGˆHq
ˇ̌
ω P L1pG ˆ Hq

(
is a weak˚-core for SGˆH. Fix ω P

L1pG ˆ Hq and ε ą 0, then there exists some ω1 P L1pGq d L1pHq such that }ω ´
ω1}L1pGˆHq ă ε. Then using that WGˆH is unitary we have

}pid b ωqpWGˆHq ´ pid b ω1qpWGˆHq} “ }pid b pω ´ ω1qqpWGˆHq} ď }ω ´ ω1} ă ε

and similarly

}Sppid b ωqpWGˆHqq ´ Sppid b ω1qpWGˆHqq} “ }pid b pω ´ ω1qqppWGˆHq˚q} ă ε

and so as SGˆH is weak˚-closed then
 

pid b ωqpWGˆHq
ˇ̌
ω P L1pGq d L1pHq

(
is also a

weak˚-core for SGˆH.
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We have

 
pidGˆH b ωqpWGˆHq

ˇ̌
ω P L1pGq d L1pHq

(

“ lin
 

pidGˆH b ω1 b ω2qpWGˆHq
ˇ̌
ω1 P L1pGq, ω2 P L1pHq

(

“ lin
 

pidG b ω1qpWGq b pidH b ω2qpWHq
ˇ̌
ω1 P L1pGq, ω2 P L1pHq

(

Ă DompSGq d DompSHq Ă DompSGˆHq

and so as DompSGq d DompSHq is a superset of a weak˚-core for DompSGˆHq and a

subset of DompSGˆHq it must be a weak˚-core for DompSGˆHq. ✷

Lemma 4.2.12 We have L1
7 pGq d L1

7 pHq Ă L1
7 pG ˆ Hq, in particular for all ω P L1

7 pGq
and κ P L1

7 pHq we have ω b κ P L1
7 pG ˆ Hq with pω b κq7 “ ω7 b κ7.

Proof

Let ω P L1
7 pGq and κ P L1

7 pHq. We have ω b κ P L1pG ˆ Hq and for y P DompSGq and

z P DompSHq we have

xppSG b SHqpy b zqq˚, ω b κy “ xy b z, ω7 b κ7y

and so by linearity we have for all x P DompSGq d DompSHq we have

xSGˆHpxq, ω b κy “ xx, ω7 b κ7y.

It follows from Proposition 4.2.11 that we have a weak˚-core DompSGq d DompSHq of

SGˆH and so for all x P DompSGˆHq we have a net pxαq P DompSGqdDompSHq such that

|xx,Ωy ´ xxα,Ωy| Ñ 0 and
ˇ̌
xSGˆHpxq,Ωy ´ xSGˆHpxαq,Ωy

ˇ̌
Ñ 0 for all Ω P L1pGˆHq.

Then from above we have

ˇ̌
ˇxSGˆHpxq, ω b κy ´ xx, ω7 b κ7y

ˇ̌
ˇ

ď
ˇ̌
ˇxSGˆHpxq, ω b κy ´ xSGˆHpxαq, ω b κy

ˇ̌
ˇ `

ˇ̌
xxα, ω7 b κ7y ´ xx, ω7 b κ7y

ˇ̌
Ñ 0.
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It follows then that ω b κ P L1
7 pGq with pω b κq7 “ ω7 b κ7. ✷

Let x P L8pG ˆ Hq, then as this is a von Neumann algebra then we have the smear xpnq
for n P N given by Section 1.3.3. We define the smear of an element in L8pGq bL8pHq
as the smear in L8pG ˆ Hq. We consider such smears now.

We need one more lemma to prove the last theorem of this section.

Lemma 4.2.13 Fix n P N. Then for x P L8pGq we have

∆Gpxpnqq “ p∆Gpxqqpnq (4.3)

where in the right hand side we take the smear in L8pG ˆ Gq and

pσ ˝ ∆Gqpxpnqq “ ppσ ˝ ∆Gqpxqqpnq (4.4)

where σ : L8pGq bL8pGq Ñ L8pGq bL8pGq is the flip map. Furthermore we have

that ∆Gpxpnqq P DompSGˆGq and

SGˆG
`
∆Gpxpnqq

˘
“ pσ ˝ ∆G ˝ SGqpxpnqq. (4.5)

Proof

Fix n P N. It follows from Proposition 2.2.8 (iii) and Proposition 2.5.5 that ∆G ˝ τGt “
pτGt b τGt q ˝ ∆G “ τGˆG

t ˝ ∆G for all t P R and so for all x P L8pGq and κ P L1pG ˆ Gq
we have

x∆Gpxpnqq, κy “ xxpnq,∆G

˚ pκqy “ n?
π

ż

R

e´n2t2xτGt pxq,∆G

˚ pκqy dt

“ n?
π

ż

R

e´n2t2xτGˆG

t p∆Gpxqq, κy dt “ xp∆Gpxqqpnq, κy

and so Equation (4.3) follows. The proof of Equation (4.4) is almost identical.

Let x P L8pGq, then by Equation (4.3) and Propositions 4.1.8, 2.2.8 and 2.5.5 we
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have

pRGˆG ˝ ∆Gqpxpnqq “ ppRGˆG ˝ ∆Gqpxqqpnq “ ppσ ˝ ∆G ˝ RGqpxqqpnq P DompτGˆG

´i{2 q.

Then for all κ P L1pGq we have

xpSGˆG ˝ ∆Gqpxpnqq, κy “
A
τGˆG

´i{2
``

pσ ˝ ∆G ˝ RGqpxq
˘

pnq
˘
, κ
E

“ n?
π

ż

R

e´n2pt`i{2q2xτGˆG

t ppσ ˝ ∆G ˝ RGqpxqq, κy dt

“ n?
π

ż

R

e´n2pt`i{2q2xpτGt ˝ RGqpxq, p∆G

˚ ˝ σ˚qpκqy dt

“ xpτG´i{2 ˝ RGqpxpnqq, p∆G

˚ ˝ σ˚qpκqy “ xσ ˝ ∆G ˝ SGqpxpnqq, κy

as required. ✷

Theorem 4.2.14 There is a unique completely contractive map T : L1
7 pGq pbL1

7 pGq Ñ
L1

7 pG ˆ Gq such that we have a commutative diagram

L1
7 pGq pbL1

7 pGq T //

ιGbιG
��

L1
7 pG ˆ Gq

ιGˆG

��
L1pGq pbL1pGq L1pG ˆ Gq

and there exists a map m1
7 : L

1
7 pG ˆ Gq Ñ L1

7 pGq such that we have m1
7 ˝ T “ m7 for m7

the map in Theorem 4.2.1.

Proof

We have a complete isometry θG : L1
7 pGq Ñ L1pGq ‘8 L1pGq given by ω ÞÑ pω, ω7q

and complete contractions π1 : L
1pGq ‘8 L1pGq Ñ L1pGq and π2 : L

1pGq ‘8 L1pGq Ñ
L1pGq as coordinate projections. Then similarly to the proof of Theorem 4.2.1, using the

identification L1pG ˆ Gq “ L1pGq pbL1pGq, we can define complete contractions T1 :

L1
7 pGq pbL1

7 pGq Ñ L1pGˆGq given by pπ1 bπ1q ˝ pθG b θGq and T2 : L
1
7 pGq pbL1

7 pGq Ñ

147



4. THE L1
7 pGq ALGEBRA

L1pG ˆ Gq given by pπ2 b π2q ˝ pθG b θGq where we’ve used that L1pGq pbL1pGq –ci

L1pGq pbL1pGq –ci L1pG ˆ Gq.

Using Lemma 4.2.12, for ω1, ω2 P L1
7 pGq we have T2pω1 b ω2q “ ω

7
1 b ω

7
2 and so

T1pω1 b ω2q “ ω1 b ω2 P L1
7 pG ˆ Gq with

T1pω1 b ω2q7 “ ω
7
1 b ω

7
2 “ T2pω1 b ω2q.

Then by linearity and continuity we have T1pΩq P L1
7 pG ˆ Gq for all Ω P L1

7 pGq pbL1
7 pGq

with T1pΩq7 “ T2pΩq. Then similar to the proof of Theorem 4.2.1, we have a corestriction

T : L1
7 pGq pbL1

7 pGq Ñ L1
7 pG ˆ Gq and we can show that the map θGˆG ˝ T “ T1 ‘ T2 is

completely contractive for θGˆG the usual isometric embedding of L1
7 pGˆGq into L1pGˆ

Gq‘8 L1pG ˆ Gq. It follows that T must be completely contractive. By construction this

T makes the diagram in the theorem commute. Also T is unique as if there is a map T 1

making this diagram commute then we have ιGˆG ˝ T “ ιGˆG ˝ T 1 and we use that ιGˆG

is injective.

Now we define a completely contractive map m1 : L1
7 pG ˆ Gq Ñ L1pGq by ∆˚ ˝

π1 ˝ θGˆG where π1 is now the projection of L1pG ˆ Gq ‘8 L1pG ˆ Gq onto the first

component. Similarly we define m2 : L
1
7 pG ˆ Gq Ñ L1pGq by ∆˚ ˝ σ˚ ˝ π2 ˝ θGˆG. Fix

n P N and κ P L1
7 pG ˆ Gq, then for all x P DompSGq we have

xSGpxq˚,m1pκpnqqy “ xSGpxpnqq˚,m1pκqy “ xp∆G ˝ SGqpxpnqq˚, ιGpκqy

“ xpSGˆG ˝ σ ˝ ∆Gqpxpnqq˚, κy “ xpσ ˝ ∆Gqpxpnqq, κ7y

“
A
xpnq, p∆G

˚ ˝ σ˚q
´

pπ2 ˝ θGˆGqpκq
¯E

“
A
x,m2pκpnqq

E

where we’ve used Lemma 4.2.13 and Proposition 4.1.8. So we have shown that for all

κ P L1
7 pG ˆ Gq and n P N we have m1pκpnqq P L1

7 pGq and m1pκpnqq7 “ m2pκpnqq.
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Again for κ P L1
7 pG ˆ Gq and for all x P DompSGˆGq we have

xSGˆGpxq˚,m1pκqy “ limxSGˆGpxq˚,m1pκpnqqy “ limxx,m1pκpnqq7y

“ limxx,m2pκpnqqy “ xx,m2pκqy

and so m1pκq P L1
7 pGq with m1pκq7 “ m2pκq. We can show the restriction to a map

m1
7 : L

1
7 pG ˆ Gq Ñ L1

7 pGq is a completely contractive map in a similar way to that of the

proof of 4.2.1. By construction we have m1
7 ˝ T “ m7 as required. ✷

So we have proved that we have a unique complete contraction T from L1
7 pGq pbL1

7 pGq to

L1
7 pG ˆ Gq such that ιGˆG ˝ T “ ιG b ιG. Furthermore it follows easily that if there were

a completely isometric isomorphism from L1
7 pGq pbL1

7 pGq to L1
7 pG ˆ Gq then it would

be equal to this map T . At this point we might hope that next we can prove that this is

a completely isometric isomorphism, however as alluded to earlier we will show that we

have a counterexample to this in Section 5.4.

4.3 Compact Quantum Groups

We now investigate L1
7 pGq in the case that G is a compact quantum group. We show in the

first section that for G compact we have a dense subset of L1pGq and L1
7 pGq that can be

built using HopfpGq. In the next section we give a new criterion for compactness in terms

of the L1
7 pGq algebra similar to a criterion of Runde for L1pGq given in Runde (2008).

4.3.1 L1

7 -algebra for a Compact Quantum Group

We assume throughout this section that G is a compact quantum group as per Definition

3.2.1 and that we have a maximal set of irreducible corepresentations tUα | α P Au as

per Theorem 3.2.9 indexed by a set A.

We define the following subset of L1pGq and we show that this subset is dense in both
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L1pGq and L1
7 pGq with respect to the appropriate norms. In particular we see we have a

nice way of calculating the L1
7 pGq algebra of a compact quantum group G using its Hopf

algebra structure HopfpGq.

Notation 4.3.1 Let α P A, 1 ď i, j ď nα and let Λα and λαj be as in Theorem 3.2.15. We

denote ωαij :“
Λα

λαj
puαijq˚ ¨ φ P L1pGq and we let

D “ lin
 
ωαij P L1pGq

ˇ̌
α P A, 1 ď i, j ď nα

(
.

Note that it follows immediately thatD “ tx ¨ φ P L1pGq | x P HopfpGqu. We show that

D Ă L1
7 pGq first.

Proposition 4.3.2 For α P A and 1 ď i, j ď nα we have ωαij P L1
7 pGq with pωαijq7 “ ωαji.

Proof

Let β P A and 1 ď k, l ď nβ then, as λαj ą 0 for all 1 ď j ď nα and Λα ą 0 we have

xSpuβklq˚, ωαijy “ xuβlk, ωαijy “ Λα

λαj
φpuβlkpuαijq˚q

“ δαβδilδjk “ Λα

λαi
φpuβklpuαjiq˚q “ xuβkl, ωαjiy

where we’ve used Proposition 3.2.11 and Theorem 3.2.15. We have from Theorem 3.2.9

that
!
u
β
kl

ˇ̌
ˇ β P A, 1 ď k, l ď nβ

)
is a basis for HopfpGq and so xSpxq˚, ωαijy “ xx, ωαjiy

for all x P HopfpGq. By Proposition 3.2.19 we have that HopfpGq is a core for DompSq,

so for any x P DompSq we have a net pxαq Ă HopfpGq such that xα
w˚

ÝÑ x and Spxαq w˚

ÝÑ
Spxq. So we have

xSpxq˚, ωαijy “ lim xSpxαq˚, ωαijy “ limxxα, ωαjiy “ xx, ωαjiy

as required. ✷
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Now we show that the set D in Notation 4.3.1 gives us a dense subset of L1pGq first and

then L1
7 pGq with respect to each of their norms.

Theorem 4.3.3 The set D in Notation 4.3.1 is dense in L1pGq.

Proof

ClearlyD Ă L1pGq. Consider the setD1 “ lin tx ¨ φ ¨ y˚ | x, y P HopfpGqu, then clearly

D Ă D1. We show first that D1 “ D and then we show that D1 is dense in L1pGq.

Let n P N and x, y P HopfpGq, then y˚ P HopfpGq Ă Dompσ´iq and by Proposition

3.2.18 we have σ´ipHopfpGqq Ă HopfpGq. Using this and Proposition 1.4.17 we have

xz, x ¨ φ ¨ y˚y “ φpy˚zxq “ φpzxσ´ipy˚qq “ xz, pxσ´ipy˚qq ¨ φy

and so as xσ´ipy˚q P HopfpGq we have x ¨ φ ¨ y˚ “ pxσ´ipy˚qq ¨ φ P D and so D1 Ă D.

Now we show that D1 is dense in L1pGq. Fix ε ą 0 and let x, y P CpGq. There

exists x1 P HopfpGq such that }x ´ x1} ă ε

2}y} then there exists y1 P HopfpGq such that

}y ´ y1} ă ε

2}x1} . Then for any z P CpGq we calculate

ˇ̌
xz, x ¨ φ ¨ y˚y ´ xz, x1 ¨ φ ¨ y1˚y

ˇ̌
“
ˇ̌
φpy˚zx ´ y1˚zx1q

ˇ̌
ď }y˚zx ´ y1˚zx1}

ď }y˚zx ´ y˚zx1} ` }y˚zx1 ´ y1˚zx1}

ď }y}}z}}x ´ x1} ` }y ´ y1}}z}}x1} ă ε}z}

and so taking the supremum over z P CpGq with }z} ď 1 we get

}x ¨ φ ¨ y˚ ´ x1 ¨ φ ¨ y1˚} ă ε. (4.6)

Now let ω P L1pGq and fix ε ą 0, then it follows from Proposition 2.4.2 that we

have some n P N and txiuni“1, tyiuni“1 Ă CpGq such that }ω ´ řn

k“1 xk ¨ φ ¨ y˚
k} ă ε

2
.

Let 1 ď k ď n, then from Equation (4.6), we can find x1
k, y

1
k P HopfpGq such that
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}xk ¨ φ ¨ y˚
k ´ x1

k ¨ φ ¨ y1
k

˚} ă ε

2n
. Then we have

›››››ω ´
nÿ

k“1

x1
k ¨ φ ¨ y1

k
˚
››››› ď

›››››ω ´
nÿ

k“1

xk ¨ φ ¨ y˚
k

››››› `
›››››
nÿ

k“1

xk ¨ φ ¨ y˚
k ´

nÿ

k“1

x1
k ¨ φ ¨ y1

k
˚
›››››

ď
›››››ω ´

nÿ

k“1

xk ¨ φ ¨ y˚
k

››››› `
nÿ

k“1

››xk ¨ φ ¨ y˚
k ´ x1

k ¨ φ ¨ y1
k

˚››

ă ε

2
`

nÿ

k“1

ε

2n
“ ε.

As
řn

k“1 x
1
k ¨ φ ¨ y1

k
˚ P D1 then it follows that D1 is dense in L1pGq as required. ✷

We can use this proposition to show that D is also dense in L1
7 pGq. The following proof

uses similar techniques to that of the proof of Lemma 3 in Daws & Salmi (2013).

Theorem 4.3.4 The set D in Notation 4.3.1 is dense in L1
7 pGq.

Proof

Let α P A, 1 ď i, j ď nα and let ω :“ ωαij P D for ease of notation and we show that

ωprq P D. Let β P A, 1 ď k, l ď nβ and µ
β
kl “ plnpλβkq ´ lnpλβl qq P R. From Proposition

3.2.18 we calculate

xuβkl, ωprqy “ n?
π

ż

R

e´n2t2xτtpuβklq, ωy dt “ n?
π

ż

R

e´n2t2pλβkqitpλβl q´itxuβkl, ωy dt

“
ˆ
n?
π

ż

R

e´n2t2eitµ
β
kl dt

˙
xuβkl, ωy “ exp

˜
´pµβklq2

4n2

¸
xuβkl, ωy.

As
!
u
β
kl

ˇ̌
ˇ β P A, 1 ď k, l ď nβ

)
is dense in CpGq we have ωprq “ exp

´
´ pµβ

kl
q2

4n2

¯
ω P

D.

Let ω P L1
7 pGq, then ω P L1pGq and so by Theorem 4.3.3 there is a net pωαq Ă

D such that limωα “ ω in the L1pGq norm. By Theorem 4.1.9, for fixed r P N, we

have ωprq, ωαprq P L1
7 pGq where ωαprq P D for all α and so }ωprq ´ ωαprq}L1

7 pGq ď
er

2{4}ω ´ ωα}L1pGq. So taking the limit of α whilst holding r fixed we see that ωprq is
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in the closure of D with respect to the L1
7 pGq norm. As r Ñ 8 we have ωprq Ñ ω

and by Proposition 4.1.10 we have ωprq7 “ ω7prq Ñ ω7 and so }ω ´ ωprq}L1

7 pGq “
maxt}ω ´ ωprq}L1pGq, }ω7 ´ ω7prq}L1pGqu Ñ 0 and thus ω is in the L1

7 pGq closure of D as

required. ✷

4.3.2 Criterion for Compactness in terms of L1

7 pGq and L1

7 pGq˚˚

It was shown in Runde (2008) that a locally compact quantum group G is compact if and

only if L1pGq is an ideal in L1pGq˚˚ with respect to either Arens product in L1pGq˚˚. We

show in this section that a similar result holds in the case of L1
7 pGq. We quote this theorem

now to begin with and will spend the rest of this section proving this result.

Theorem 4.3.5 Let G be a locally compact quantum group, then L1
7 pGq is an ideal in

L1
7 pGq˚˚ if and only if G is compact.

We begin with some preparatory lemmas for the case that we have a locally compact

quantum group G that is not compact.

Lemma 4.3.6 Let G be a locally compact quantum group, ω P L1
7 pGq and y P DompSq.

Then ω ¨ y P L1
7 pGq with pω ¨ yq7 “ ω7 ¨ Spyq˚.

Proof

Let x P DompSq, then using that SpSpyq˚q˚ “ y and that S is an anti-homomorphism we

have

xSpxq˚, ω ¨ yy “ xySpxq˚, ωy “ xSpSpyq˚xq˚, ωy “ xSpyq˚x, ω7y “ xx, ω7 ¨ Spyq˚y

and as y P DompSq it follows that ω7 ¨ Spyq˚ P L1pGq and the result follows. ✷

Lemma 4.3.7 Let G be a non-compact, locally compact quantum group, then there ex-

ists a non-zero net of states pκαq Ă L1pGq` such that for all x P C0pGq we have

limα xx, καy “ 0.
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We remind the reader that for the next proof we have Nφ “ tx P L8pGq | φpx˚xq ă 8u
from Definition 1.4.2, Fφ “ tω P L1pGq`

˚ | ωpxq ď φpxq @x P L8pGq`u and Gφ “
tλω | ω P Fφ, λ P p0, 1qu from Notation 1.4.7.

Proof

Let ω P Fφ be non-zero, let µ “ ω

}ω} so that µ is a state in L1pGq and let pHµ, πµ, ξµq be

the GNS representation of µ. Let x P NφXKer πµ, then we have µpx˚xq “ }πµpxqξµ}2 ď
}πµpxq}2}ξµ}2 “ 0 and thus ωpx˚xq “ 0. Also by Proposition 1.4.8 there is a T P
C0pGq1 Ă BpL2pGqq such that 0 ď T ď 1 and for all y P Nφ we have

|pTΛφpxq|Λφpyqq| “ |ωpy˚xq| ď ωpy˚yqωpx˚xq “ 0

and thus TΛφpxq “ 0. Then we have }T 1{2Λφpxq}2 “ pTΛφpxq|Λφpxqq “ 0 and so

T 1{2Λφpxq “ 0 for all x P Nφ X Ker πµ.

By Proposition 1.4.8 we have a unique element ξω P L2pGq such that xx, ωy “
pπωpxqξω|ξωq and T 1{2Λφpxq “ xξω (where we’ve suppressed the πφ map). We now

show that }ξω} “ }ω}1{2. Define U : Hµ Ñ L2pGq as the map

πµpxqξµ ÞÑ }ω}´1{2T 1{2Λφpxq “ }ω}´1{2xξω

for all x P Nφ. It follows from the previous paragraph that this is well-defined. Then for

all x, y P Nφ we have

pUπµpxqξµ|Uπµpyqξµq “ pTΛφpxq|Λφpyqq
}ω} “ ωpy˚xq

}ω} “ µpy˚xq “ pπµpxqξµ|πµpyqξµq

and so as Nφ is dense in C0pGq then U is an isometry. It follows that 1 “ }ξµ} “ }Uξµ} “
}ω}´1{2}ξω} and thus }ξω} “ }ω}1{2.

By Proposition 1.4.13 we have a net pωαq Ă Gφ Ă Fφ Ă C0pGq˚
` such that for all

x P L8pGq` we have limαxx, ωαy “ φpxq and thus this also holds for all x P Mφ. As
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ωα P Fφ for all α then, by Proposition 1.4.8, there is a Tα P C0pGq1 Ă BpL2pGqq with

0 ď Tα ď 1 such that for all x, y P Nφ we have pTαΛφpxq|Λφpyqq “ xy˚x, ωαy and there

exists a ξα P L2pGq such that for all x P Nφ we have T
1{2
α Λφpxq “ xξα.

Now let ηα “ ξα

}ξα} for all α (we may assume without loss of generality ωα ‰ 0 for

all α) and define κα :“ ωηα,ηα P L1pGq`. As }ηα} “ 1 we have a net of states pκαq. We

calculate for fixed α and x, y P Nφ that

|xy˚x, καy| “ |pxηα|yηαq| “ |pxξα|yξαq|
}ξα}2 “ |pTαΛφpxq|Λφpyqq|

}ξα}2 ď }Λφpxq}}Λφpyq}
}ξα}2 .

However as G is non-compact it follows from Proposition 3.2.2 that φ is not finite and

as φpxq “ limxx, ωαy it follows that }ωα} Ñ 8. Then from the first two paragraphs of

this proof we have that }ξα} “ }ωα}1{2 Ñ 8 and thus we have xy˚x, καy Ñ 0 for all

x, y P Nφ. By Proposition 1.4.4 (iv) we have xx, καy Ñ 0 for all x P Mφ and by density

of Mφ in C0pGq we thus have this for all C0pGq as required. ✷

Lemma 4.3.8 Let G denote a non-compact locally compact quantum group, then there

exists a net pωαq Ă L1
7 pGq X L1pGq` that is bounded in L1

7 pGq and such that ωα is a state

in L1pGq` for all α and for all x P C0pGq we have limαxx, ωαy “ 0 but x1, ωαy “ 1 for

all α.

Proof

Let pκαq Ă L1pGq` be a non-zero net of states given by Lemma 4.3.7 such that for all

x P C0pGq we have limα xx, καy “ 0. As τt is a ˚-homomorphism and κα is positive for

all α we have xτtpxq, καy ě 0 for all t P R and α. Fix n P N, then for all x P C0pGq` and

α we have

xx, καpnqy “ n?
π

ż

R

e´n2t2xτtpxq, καy dt ě 0

and so καpnq P L1pGq`. It also follows that

xx, καpnqy “ n?
π

ż

R

e´n2t2xτtpxq, καy dt “
B

n?
π

ż

R

e´n2t2τtpxq dt, κα
F

Ñ 0
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where we note that we have n fixed and the limit is in α. However we have

x1, καpnqy “ n?
π

ż

R

e´n2t2xτtp1q, καy dt “ x1, καy “ 1

and also

}καpnq}L1

7 pGq ď en
2{4}κα}L1pGq “ en

2{4

and so pκαpnqq is bounded in L1
7 pGq for any fixed n P N. So for fixed n P N the net

pκαpnqq satisfies the required properties. ✷

Now we consider some preparatory lemmas in the case that we have a compact quantum

group G. For any compact quantum group G we will denote by tUα | α P Au the maxi-

mal family of irreducible corepresentations by Theorem 3.2.9 for A the index set and D

the set from Notation 4.3.1.

Lemma 4.3.9 Let G denote a compact quantum group, ω P D and let Tω : L1
7 pGq Ñ

L1
7 pGq be the map κ ÞÑ κ ˚ ω. Then Tω has finite rank.

Proof

Let α P A, 1 ď i, j ď nα and ωαij P D the set from Notation 4.3.1. For fixed κ P L1
7 pGq

we calculate

nαÿ

l“1

xuαli, κyxuβpq, ωαljy “
nαÿ

l“1

δαβδplδqjxuαli, κy “ δαβδqjxuαpi, κy “
nβÿ

r“1

xuβpr, κyδαβδriδqj

“
nβÿ

r“1

xuβpr, κyxuβrq, ωαijy “ x∆puβpqq, κ b ωαijy “ xuβpq, T αijpκqy.

So by linearity for all x P HopfpGq we have xx, T αijpκqy “ řnα

l“1xuαli, κyxx, ωαljy and as

HopfpGq is dense in CpGq we have T αijpκq “ řnα

l“1xuαli, κyωαlj . Thus we have shown that

the image of T αij is a finite linear combination of ωαlj for 1 ď l ď nα and thus T αij has finite

rank.

Now for ω P D we consider the map Tω : L1
7 pGq Ñ L1

7 pGq given by κ ÞÑ κ ˚ ω,

156



4.3 Compact Quantum Groups

then as ω is a finite linear combination of elements ωαij it follows that Tω is a finite linear

combination of elements T αij and so Tω is of finite rank. ✷

Lemma 4.3.10 Let G denote a compact quantum group and ω P L1
7 pGq, then the maps

κ ÞÑ ω ˚ κ and κ ÞÑ κ ˚ ω from L1
7 pGq to L1

7 pGq are weakly compact.

Proof

Let Tω : L1
7 pGq Ñ L1

7 pGq denote the map κ ÞÑ κ ˚ ω. It follows from Notation 4.3.1 and

Theorem 4.3.4 that the set D (the linear span of all ωαij) is dense in L1
7 pGq and so there is

a net pωαq Ă D with }ω ´ ωα}L1

7 pGq Ñ 0. Then for κ P L1
7 pGq we have

}Tωpκq ´ Tωα
pκq}L1

7 pGq “ }κ ˚ ω ´ κ ˚ ωα}L1

7 pGq ď }κ}L1

7 pGq}ω ´ ωα}L1

7 pGq Ñ 0

and so }Tω´Tωα
} Ñ 0. From Lemma 4.3.9 we have Tωα

is of finite rank so Tω is compact

and thus weakly compact by Proposition A.4.4.

Let ω P L1
7 pGq and we consider the map κ ÞÑ ω˚κ now. We have by Proposition A.4.3

that the composition of arbitrary maps with weakly compact maps is weakly compact.

Then as ω ˚ κ “ pκ7 ˚ ω7q7 and as the map κ ÞÑ κ ˚ ω is weakly compact it follows that

κ ÞÑ ω ˚ κ is weakly compact. ✷

Proof of Theorem 4.3.5

Let G be a compact quantum group, then by Lemma 4.3.10 we have that multiplication

from the left and right in L1
7 pGq is weakly compact and thus it follows from Proposition

A.4.6 that L1
7 pGq is an ideal in L1

7 pGq˚˚.

Now assume G is not compact and we show that we have some ω P L1
7 pGq such that

the map κ ÞÑ ω ˚ κ is not weakly compact and thus it follows by Proposition A.4.6 that

L1
7 pGq is not an ideal in L1

7 pGq˚˚. As G is not compact then 1 R C0pGq. Fix ω P L1
7 pGq and

y P DompSq X C0pGq such that xy, ωy ‰ 0, then by Lemma 4.3.6 we have ω ¨ y P L1
7 pGq.

Assume that the map T : L1
7 pGq Ñ L1

7 pGq given by κ ÞÑ pω ¨ yq ˚ κ is weakly

compact and it suffices to show we have a contradiction. By Lemma 4.3.8 we have a
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net pκαq Ă L1
7 pGq X L1pGq` such that for all x P C0pGq we have limαxx, καy “ 0 and

x1, καy “ 1 for all α. As left multiplication by ω ¨ y is weakly compact there is a subnet

pκβq of pκαq with a weak˚-limit of pω ¨ yq ˚ κβ . For all x P C0pGq we have

xx, pω ¨ yq ˚ κβy “ xpy b 1q∆pxq, ω b κβy

and as py b 1q∆pxq P C0pGq bminC0pGq we have pω b idqppy b 1q∆pxqq P C0pGq and

taking the limit we see that xx, pω ¨ yq ˚ κy Ñ 0 for all x P C0pGq. Now let x P L8pGq
and we have a net pxγq with weak˚-limit x. Then we have

xx, pω ¨ yq ˚ κβy “ lim
γ

xxγ, pω ¨ yq ˚ κβy “ 0

and so pω ¨ yq ˚ κβ wÝÑ 0. But we also have

lim
β

x1, pω ¨ yq ˚ κβy “ lim
β

xy, ωyx1, κβy “ xy, ωy ‰ 0

and so we have a contradiction as required. ✷
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Chapter 5

The Compact Quantum Group SUqp2q

By considering the C˚-algebra of continuous functions on the compact Lie group SUp2q
Woronowicz found a non-trivial example of a compact quantum group in the C˚-algebraic

setting in Woronowicz (1987b). He showed that for q P r´1, 1szt0u there is a C˚-algebra

CpSUqp2qq such that as q tends to 1 we obtain a commutative C˚-algebra isomorphic to

the continuous functions on SUp2q. He then showed there is a map ∆ : CpSUqp2qq Ñ
CpSUqp2qq bminCpSUqp2qq that implements the group product when q “ 1 which subse-

quently led to the definition of a compact matrix quantum group. Furthermore he detailed

the corepresentation theory in the same paper and he showed there was a non-trivial Haar

state in Woronowicz (1987a) analogous to that of the Haar integral of SUp2q.

We will give an overview of SUqp2q in Section 5.1 where we define the C˚-algebra

CpSUqp2qq, the coproduct ∆ and show that we get a compact quantum matrix group.

In addition we give details of the corepresentation theory for SUqp2q and we give for-

mulas for the antipode on HopfpSUqp2qq and the Haar state on CpSUqp2qq. In Section

5.2 we move on to prove some new results about the C˚-algebraic and von Neumann

algebraic quantum group structure of SUqp2q. Most importantly we will show that the

commutative unital C˚-subalgebra C˚pc, 1q of CpSUqp2qq can be realised as the contin-

uous functions CpKq on a compact subset K Ă C and we use this to study C˚pc, 1q
further. In Section 5.3 we discuss the L1

7 pSUqp2qq algebra and prove some new results
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about this. In particular we show that we have a subalgebra L1
7 pK, νq as a subspace of

L1pK, νq and we prove some structure theorems regarding this. Then in Section 5.4 we

consider the product SUqp2q ˆ SUq1p2q and we use this as a counterexample to a question

asked in Chapter 4 regarding tensoring L1
7 pSUqp2qq. Finally in Section 5.5 we discuss

adjoints of elements pµ b idqpW SUqp2qq P BpL2pSUqp2qqq where µ P CpSUqp2qq˚ and

show that there is some ν P CpSUqp2qq˚ where pν b idqpW q˚ is not in the closure of

lin tpµ b idqpW q | µ P CpSUqp2qq˚u answering a question resulting from work in Das

& Daws (2014).

Throughout this chapter we let q P p0, 1q with the exception of Section 5.1 where

the results hold for q P r´1, 0q Y p0, 1s. We let K Ă C denote the set K “ t0u Y
 
qre2πiθ

ˇ̌
r P N0, θ P r0, 1q

(
. For all n P N we let zn : K Ñ C be the map z ÞÑ zn and

z˚n : K Ñ C the map z ÞÑ zn. Finally we let αs “ p1 ´ q2sq1{2 for s P N.

We note that all results from Section 5.2 would also hold for q P p´1, 0q excepting the

notational inconvenience of having to consider |q| instead of q.

5.1 Basics of SUqp2q

In this section we give details of SUqp2q. Nothing in this section is new, we simply give

the background required for the new results in the following section. We give details of

the C˚-algebraic quantum group, the corepresentation theory, the antipode and the Haar

state of SUqp2q.

5.1.1 C˚-algebraic Quantum Group

Let HopfpSUqp2qq denote the free unital ˚-algebra generated by two elements a and c

satisfying the following commutation relations

a˚a ` c˚c “ 1 “ aa˚ ` q2c˚c,

cc˚ “ c˚c, ac “ qca, ac˚ “ qc˚a.
(5.1)

160



5.1 Basics of SUqp2q

We notice that for q “ 1 we have a commutative ˚-algebra and otherwise we have a

non-commutative ˚-algebra.

Consider the Hilbert space ℓ2pN0q b ℓ2pZq –i ℓ
2pN0 ˆZq with canonical orthonormal

basis tek,l | k P N0, l P Zu and let π0 : HopfpSUqp2qq Ñ Bpℓ2pN0q b ℓ2pZqq be defined

as follows

π0paqek,l “

$
&
%

αkek´1,l if k ą 0

0 if k “ 0
and π0pcqek,l “ qkek,l`1. (5.2)

With a little bit of work we can show that this satisfies the relations given by 5.1 with

adjoints given by

π0pa˚qek,l “ αk`1ek`1,l and π0pc˚qek,l “ qkek,l´1 (5.3)

and so this forms a ˚-representation of HopfpSUqp2qq.

Notation 5.1.1 Throughout this chapter for k ă 0 we let ak “ pa˚q´k and pa˚qk “ a´k.

For all k P Z and m,n P N0 we denote akmn :“ akpc˚qmcn.

The following theorem is due to Woronowicz. For a proof see Theorem 1.2 in Woronow-

icz’ paper Woronowicz (1987b) or Proposition 6.2.5 in Timmermann’s book Timmer-

mann (2008).

Theorem 5.1.2 The set takmn | k P Z, m, n P N0u forms a basis for HopfpSUqp2qq.

We now want to build a C˚-algebra A with HopfpSUqp2qq as a dense ˚-subalgebra. First

we need to give an appropriate norm on HopfpSUqp2qq.

Lemma 5.1.3 Let π : HopfpSUqp2qq Ñ BpHq be a ˚-representation for any Hilbert

space H, then we have }πpakmnq} ď 1 for all k P Z and m,n P N0.

161



5. THE COMPACT QUANTUM GROUP SUQp2q

Proof

For ξ P H we have

}πpaqξ}2 ` }πpcqξ}2 “ pπpaqξ|πpaqξq ` pπpcqξ|πpcqξq

“ pπpaq˚πpaqξ ` πpcq˚πpcqξ|ξq “ pπpa˚a ` c˚cqξ|ξq “ pξ|ξq “ }ξ}2.

Then it follows by varying ξ P L2pSUqp2qq with }ξ} ď 1 that }πpaq} ď 1 and }πpcq} ď 1

and thus }πpakmnq} ď 1 for all k P Z and m,n P N0 as π is a ˚-homomorphism. ✷

Using that we have a ˚-representation π0 of HopfpSUqp2qq given by Equation (5.2) we

can define a map } ¨ } : HopfpSUqp2qq Ñ R
` given by

}x} “ sup

$
&
%}πpxq}

ˇ̌
ˇ̌
ˇ̌
π : HopfpSUqp2qq Ñ BpHq for H a

Hilbert space and π a ˚-representation

,
.
- (5.4)

for x P HopfpSUqp2qq. We note this is finite by Lemma 5.1.3. We show in Propo-

sition 5.1.5 that it is non-zero and thus a norm satisfying }x˚x} “ }x}2 for all x P
HopfpSUqp2qq. We have a simple lemma first.

Lemma 5.1.4 We have for k, t P Z and m,n, s P N0 that

π0pakmnqes,t “

$
’’’&
’’’%

qspn`mqαs . . . αs´pk´1qes´k,t`n´m if 0 ď k ď s

qspn`mqαs`1 . . . αs´kes´k,t`n´m if k ă 0

0 if k ą s

(5.5)

where if k “ 0 this reduces to π0pa0mnqes,t “ qspn`mqes,t`n´m.
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Proof

For k ą s we have π0pakqes,t “ 0. For 0 ď k ď s we have

π0pakqes,t “ αsa
k´1es´1,t “ αsαs´1pa˚qk´2es´2,t

“ αsαs´1αs´2pa˚qk´3es´3,t “ ¨ ¨ ¨ “ αsαs´1 ¨ ¨ ¨αs´pk´1qes´k,t

and the result follows as π0ppc˚qmcnqes,t “ qspn`mqes,t`n´m. The case of k ă 0 is similar.

✷

Proposition 5.1.5 We have }akmn} ‰ 0 and }akmn} ď 1 for all k P Z and m,n P N0.

In particular the completion of HopfpSUqp2qq with respect to the norm given is a C˚-

algebra.

Proof

If k ě 0 let s ě k and then

}π0pakmnqes,t} “ qspn`mqαs ¨ ¨ ¨αs´pk´1q}es´k,t`n´m} “ qspn`mqαs ¨ ¨ ¨αs´pk´1q ą 0

and similarly if k ă 0 then }π0pakmnqes,t} ą 0 and so

}akmn} ě }π0pakmnq} “ sup
 

}π0pakmnqξ}
ˇ̌
ξ P ℓ2pN0q b ℓ2pZq, }ξ} ď 1

(
ą 0.

It is almost immediate from the definition that }x˚x} “ }x}2 for all x P HopfpSUqp2qq
and then it follows easily that the completion is a C˚-algebra. ✷

We are now in a position to define the following C˚-algebraic completion of HopfpSUqp2qq.

In fact as we will see shortly, this gives us the C˚-algebra from the reduced C˚-algebraic

quantum group pCpSUqp2qq,∆q.

Definition 5.1.6 We define A to be the completion of HopfpSUqp2qq with respect to the

norm given by Equation (5.4).
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We can make A into a compact matrix quantum group as follows.

Theorem 5.1.7 Consider u “

¨
˝ a ´qc˚

c a˚

˛
‚P M2pAq. Then we have a map ∆ : A Ñ

AbminA given by

∆paq “ a b a ´ qc˚ b c, ∆pcq “ c b a ` a˚ b c (5.6)

making this a compact matrix quantum group pA,∆, uq as per definition 3.2.22. The

antipode S as defined in Definition-Theorem 2.2.7 is given by

Spaq “ a˚, Spa˚q “ a, Spcq “ ´qc, Spc˚q “ ´1

q
c˚. (5.7)

Proof

We show that the conditions of Proposition 3.2.21 are satisfied. It is easy to see that u is

unitary. We can also easily see that the inverse of ū is given by

¨
˝ a q2c

´1
q
c˚ a˚

˛
‚.

Clearly A “ alg tuij | 1 ď i, j ď 2u}¨}
by construction where alg denotes the alge-

bra generated. It is easy to show that ∆ satisfies condition (iv) in Proposition 3.2.21 and

so we have a compact matrix quantum group. The antipode S follows from the equation

Spuijq “ u˚
ji for 1 ď i, j ď 2. ✷

We now calculate the pfzqzPC characters from 3.2.16.

Proposition 5.1.8 For z P C we have fzpaq “ q´z, fzpa˚q “ qz and fzpcq “ fzpc˚q “ 0.

Furthermore we have

pid b fzq∆paq “ q´za “ pfz b idq∆paq,

pid b fzq∆pa˚q “ qza˚ “ pfz b idq∆pa˚q,

pid b fzq∆pcq “ q´zc, pfz b idq∆pcq “ qzc,
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pid b fzq∆pc˚q “ qzc˚ and pfz b idq∆pc˚q “ q´zc˚.

Proof

We calculate the F -matrix for the corepresentation u. We have by Theorem 3.2.15

that F intertwines u and S2
2puq and we have S2

2puq “

¨
˚̋ a ´1

q
c˚

q2c a˚

˛
‹‚. Setting F “

¨
˝ q´1 0

0 q

˛
‚we can easily show that Fu “ S2

2puqF and furthermore this satisfies TrpF q “

TrpF´1q giving the F -matrix for u2 of Theorem 3.2.15.

We can then calculate the fz values on the generators a and c and their adjoints easily

(for example fzpaq “ pF11qz “ q´z). We can then use these formulas and Equation (5.5)

to calculate the remainder of the equations. ✷

The formulas in the following corollary can be extended to all HopfpSUqp2qq as R is a

˚-anti-homomorphism and τz is a homomorphism on HopfpSUqp2qq.

Corollary 5.1.9 Let z P C. We have the following formulas for the scaling group on

HopfpSUqp2qq:

τzpaq “ a, τzpcq “ q2izc, τzpc˚q “ q´2izc˚, τzpa˚q “ a˚

and for the unitary antipode R on HopfpSUqp2qq we have

Rpaq “ a˚, Rpcq “

$
&
%

´c if 0 ă q ď 1

c if ´ 1 ď q ă 0.

Proof

The first set of formulas for τz follow easily from Proposition 3.2.18 and the formulas

in Proposition 5.1.8. It is easy to calculate R knowing S and τ´i{2 on the Hopf algebra

elements. It follows thatR is a ˚-anti-homomorphism from Definition-Theorem 2.2.7 and

that τz is a homomorphism from Proposition 1.3.10. ✷
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Finally we have the following important theorem. We refer the reader to Bédos et al.

(2001) for a proof.

Theorem 5.1.10 The compact quantum group SUqp2q is co-amenable.

As SUqp2q is coamenable we have that CpSUqp2qq –i A from Theorem 3.4.1 and so we

can always work with the reduced C˚-algebraic quantum group CpSUqp2qq Ă BpL2pSUqp2qqq.

5.1.2 Corepresentation Theory for SUqp2q

In this section we discuss corepresentations of SUqp2q. This was investigated first in

Woronowicz (1987b) and the explicit formulas for the irreducible unitary corepresenta-

tions were found in Koornwinder (1989). The following is a summary of the results we

need from these papers.

We first give some definitions and basic propositions on q-hypergeometric polyno-

mials and we give the main theorem regarding the irreducible finite-dimensional unitary

corepresentations of SUqp2q (note that by Theorem 3.2.9 we need only consider finite-

dimensional corepresentations for the unitary corepresentations).

Definition 5.1.11 Let t P C and k P N, then the q-shifted factorial is defined inductively

by pt; qq0 “ 1 and

pt; qqk “
k´1ź

j“0

p1 ´ tqjq “ p1 ´ tqp1 ´ tqq ¨ ¨ ¨ p1 ´ tqk´1q.

For n, k P N the q-combinatorial coefficient is defined by

»
– n

k

fi
fl
q

“ pqn; q´1qk
pq; qqk

“ pq; qqn
pq; qqkpq; qqn´k

.

It is straightforward to show that we have the following relations.
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Proposition 5.1.12 For n P N0 and 0 ď k ď n we have the relations

»
– n

n ´ k

fi
fl
q

“

»
– n

k

fi
fl
q

,

»
– n

0

fi
fl
q

“ 1 “

»
– n

n

fi
fl
q

and »
– n ` 1

k

fi
fl
q

“ qn´pk´1q

»
– n

k ´ 1

fi
fl
q

`

»
– n

k

fi
fl
q

.

Proposition 5.1.13 For x and y indeterminates such that xy “ qyx we have

px ` yqn “
nÿ

k“0

»
– n

k

fi
fl
q

ykxn´k “
nÿ

k“0

»
– n

k

fi
fl
q´1

xkyn´k.

We will need the following definition in Section 5.5.

Definition 5.1.14 For n P N we define the little q-Jacobi polynomial by

pnpx; a, b|qq :“
8ÿ

k“0

pq´n; qqkpabqn`1; qqk
paq; qqk

pqxqk.

Finally we have the following important theorems. The proof of the following is given in

Theorem 5.4 in Woronowicz (1987b) and Section 4 and Proposition 5.2 of Koornwinder

(1989).

Theorem 5.1.15 Let U be a unitary finite-dimensional corepresentation, then there is a

half-integer l P 1
2
N0 “

 
0, 1

2
, 1, 11

2
, . . .

(
such that dimU “ 2l ` 1 and the matrix can be

indexed by n,m P t´l,´l ` 1, . . . , l ´ 1, lu such that the entries are given by

uln,m “

»
– 2l

l ´ n

fi
fl

1{2

q´2

»
– 2l

l ´ m

fi
fl

´1{2

q´2

mintpl´nq,pl`mquÿ

i“maxt0,pm´nqu
qpl´n´iqpn´m`2iqq´ipn´m`iq

ˆ

»
– l ´ n

i

fi
fl
q´2

»
– l ` n

l ` m ´ i

fi
fl
q´2

p´qc˚qicn´m`ial´n´ipa˚ql`m´i.

167



5. THE COMPACT QUANTUM GROUP SUQp2q

In particular we have U l “ řl

n,m“´l u
l
n,me

2l`1
l`n`1,l`m`1.

The following is Theorem 5.3 from Koornwinder (1989).

Theorem 5.1.16 Let l P 1
2
N0 and ´l ď n,m ď l. If n ě m ě ´n we have

uln,m “

»
– l ´ m

n ´ m

fi
fl

1{2

q2

»
– l ` n

n ´ m

fi
fl

1{2

q2

q´pn´mqpl´nqpa˚qn`m

pl´npc˚c; q2pn´mq, q2pn`mq|q2qcn´m

and if m ě n ě ´m we have

uln,m “

»
– l ´ n

m ´ n

fi
fl

1{2

q2

»
– l ` m

m ´ n

fi
fl

1{2

q2

q´pm´nqpl´mqpa˚qm`n

pl´mpc˚c; q2pm´nq, q2pm`nq|q2qp´qc˚qm´n

for pn the q-Jacobi Polynomial of Definition 5.1.14.

Example 5.1.17 We can show that U0 “ p1q and U1{2 “ u for u the corepresentation in

Theorem 5.1.7.

5.1.3 The Haar State

In this section we calculate the Haar state from Definition-Theorem 3.2.3 on HopfpSUqp2qq.

Later we will show that we can extend this to CpSUqp2qq. Throughout this section we let

π0 be the representation given by equation (5.2).

Consider the Hilbert space ℓ2pN0q b ℓ2pZq b ℓ2pN0q with an orthonormal basis given

by ter,s,t | r, t P N0, s P Zu and x P CpSUqp2qq acting on this Hilbert space as

ξ ÞÑ pπ0pxq b 1qξ
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for ξ P ℓ2pN0q b ℓ2pZq b ℓ2pN0q. We define

ξ0 “ p1 ´ q2q1{2
8ÿ

p“0

qpep,0,p (5.8)

as per Equation p1.8q in Lance (1994) which is easily seen to be a unit vector in the Hilbert

space ℓ2pN0q b ℓ2pZq b ℓ2pN0q. We can easily prove the following formula.

Lemma 5.1.18 We have

pπ0pakmnq b 1qξ0 “

$
&
%

p1 ´ q2q1{2ř8
s“k q

sp1`n`mqαs . . . αs´pk´1qes´k,n´m,s if k ě 0

p1 ´ q2q1{2ř8
s“0 q

sp1`n`mqαs`1 . . . αs´kes´k,n´m,s if k ă 0

(5.9)

where we remind that αk “ p1 ´ q2kq1{2. If k “ 0 this collapses to pπ0pa0mnq b 1qξ0 “
p1 ´ q2q1{2ř8

s“0 q
sp1`n`mqes,n´m,s.

Let φ denote the Haar state on HopfpSUqp2qq (see Definition-Theorem 3.2.3). We now

given an explicit description of φ in terms of π0 and ξ0. We offer a proof of the following

as this is in a different form than sometimes found in the literature (though the proof is

very similar to that of Theorem 6.2.17 in Timmermann (2008)).

Proposition 5.1.19 For all x P CpSUqp2qq we have

φpxq “ ppπ0pxq b 1qξ0|ξ0q (5.10)

and in particular for k P Z and m,n P N0 we have

φpakmnq “ δk,0δm,n
1 ´ q2

1 ´ q2p1`nq .

Proof

Let k P Z and m,n P N0 throughout this proof, then from Lemma 5.1.18 we have

that ppπ0pakmnq b 1qξ0|ξ0q “ δk,0δm,n
1 ´ q2

1 ´ q2p1`nq immediately. We show that Equation
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(5.10) holds for akmn P HopfpSUqp2qq and then extending by linearity and continuity the

result follows. Let z P C, then using the multiplicativity of fz by Proposition 3.2.17 and

Proposition 5.1.8 we have

pid b fzq∆pakmnq “ ppid b fzq∆paqqkppid b fzq∆pc˚qqmppid b fzq∆pcqqn

“ pq´zaqkpqzc˚qmpq´zcqn “ qzp´k`m´nqakmn.

Now acting on this with φ we get

qzp´k`m´nqφpakmnq “ pφ b fzq∆pakmnq “ fzp1qφpakmnq “ φpakmnq (5.11)

for all z P C. Similarly by considering pfz b idq∆pakmnq we can show that

φpakmnq “ qzp´k´m`nqφpakmnq (5.12)

for all z P C. Then, from Equations (5.11) and (5.12), if φpakmnq ‰ 0 we have

qzp´k`m´nq “ 1 “ qzp´k´m`nq

for all z P C and so we must have k´m`n “ 0 “ k`m´n or indeed k “ m´n “ n´m.

This is only possible if k “ 0 and m “ n.

If k ‰ 0 or m ‰ n then from Lemma 5.1.18 we have

ppπ0pakmnq b 1qξ0|ξ0q

“

$
&
%

p1 ´ q2qř8
r“k

ř8
s“0 q

r`sqrpn`mqαr . . . αr´pk´1q per´k,n´m,r|es,0,sq if k ě 0

p1 ´ q2qř8
r,s“0 q

r`sqrpn`mqαr`1 . . . αr´k per´k,n´m,r|es,0,sq if k ă 0

“ 0 “ φpakmnq

and so we need to verify this equation for k “ 0 and m “ n.
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We have

ppa0nn b 1qξ0|ξ0q “ p1 ´ q2q
8ÿ

r“0

q2rp1`nq “ 1 ´ q2

1 ´ q2p1`nq (5.13)

and we show that φpa0nnq satisfies this equation also. From Proposition 3.2.18 we have

σ´ipaq “
1{2ÿ

k,l“´1{2
f1pu1{2

´1{2,kqf1pu1{2
l,´1{2qu1{2

kl “ f1paqf1paqa “ q´2a

and then from Proposition 1.4.17 (ii) we have

q2n`2φpaa˚a0nnq “ q2n`2φpa˚a0nnσ´ipaqq “ q2nφpa˚a0nnaq. (5.14)

We have

q2n`2aa˚a0nn “ q2n`2p1 ´ q2c˚cqa0nn “ q2n`2a0nn ´ q2n`4a0,n`1,n`1 (5.15)

and as a0nna “ q´2naa0nn from relations (5.1) we have

q2na˚a0nna “ a˚aa0nn “ p1 ´ c˚cqa0nn “ a0nn ´ a0,n`1,n`1. (5.16)

Applying φ to Equations (5.15) and (5.16), subtracting and using (5.14) we get

φpa0nnq ´ φpa0,n`1,n`1q “ q2n`2φpa0nnq ´ q2n`4φpa0,n`1,n`1q

and then rearranging we have

φpa0,n`1,n`1q “ φpa0nnqp1 ´ q2pn`1qq
p1 ´ q2pn`2qq .

It then follows easily that φpa0nnq is equal to the final Equation in (5.13) as required. ✷
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5.2 New Results on SUqp2q

In the previous section we have described the basic results largely due to Woronowicz.

For the rest of this chapter we will move on to discuss new results as obtained by the

author.

We know by the Gelfand-Naimark theorem (see Theorem 4.4.3 in Kadison & Ringrose

(1997)) that as c is normal there exists a compact spaceK Ă C such that the commutative

unital C˚-algebra C˚pc, 1q is ˚-isomorphic to CpKq (the continuous functions on K). Our

main result in this section is Proposition 5.2.4 where we calculate this space K. We then

find a measure ν that implements the Haar state φ P CpSUqp2qq˚ on CpKq, that is for any

f P CpKq with corresponding x P C˚pc, 1q we have φpxq “
ş
K
f dν. Then we will study

the von Neumann algebra L8pK, νq and its predual L1pK, νq in relation to L8pSUqp2qq
and L1pSUqp2qq respectively. In particular we show that we have an isometric normal

˚-homomorphism that embeds L8pK, νq in L8pSUqp2qq that has a left inverse that is

a normal quotient map. Lastly we will calculate the P operator for SUqp2q given by

Theorem 2.2.10.

In the remaining sections of this chapter we will use the space K to enable a deeper

study of SUqp2q.

5.2.1 The GNS Space L2pSUqp2qq

The following Theorem is quoted in Lance (1994) however to the author’s knowledge this

is not proved anywhere in the literature. We feel this is a non-trivial result and so we offer

a proof here.

We remind the reader that we have a GNS representation pL2pSUqp2qq, πφ, ξφq where

φpxq “ pxξφ|ξφq for all x P CpSUqp2qq (where we omit the πφ map as we will do in this

section).
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Theorem 5.2.1 We have an isometric isomorphism of L2pSUqp2qq onto the Hilbert space

ℓ2pN0q b ℓ2pZq b ℓ2pN0q such that xξφ ÞÑ px b 1qξ0 for all x P CpSUqp2qq and where ξ0

is defined by Equation (5.8).

Proof

Throughout this proof let H “ ℓ2pN0q b ℓ2pZq b ℓ2pN0q and ψ : L2pSUqp2qq Ñ H be the

map given by xξφ ÞÑ px b 1qξ0 for convenience.

We have already observed that φ is realised as a vector state, given by the vector ξ0 and

the representation π0b1. To identify this representation and ξ0 with the GNS construction

for φ, we must show that ξ0 is actually a cyclic vector for pπ0 b 1qpCpSUqp2qqq.

We now show that ψ issurjective. We denote by K the image of L2pSUqp2qq under ψ

inside H, that is let

K “ lin tpakmn b 1qξ0 | k P Z, m, n P N0u}¨}2
.

Let η P KK and write η “ ř8
s,u“0

ř8
t“´8 ηs,t,ues,t,u in terms of the orthonormal basis

tes,t,u | s, u P N0, t P Zu for H. We show that ηs,t,u “ 0 for all s, u P N0 and t P Z

meaning KK “ t0u and thus K “ H as required.

Fix n,m P N0. As η P KK, from Equation (5.9) in Lemma 5.1.18, for k ě 0 we have

0 “ ppakmn b 1qξ0|ηq “
8ÿ

r“k

8ÿ

t“´8

8ÿ

s,u“0

qrp1`n`mqαr . . . αr´pk´1qηs,t,u pes,t,u|er´k,n´m,rq

“
8ÿ

r“k
qrp1`n`mqαr . . . αr´pk´1qηr´k,n´m,r “

8ÿ

r“0

qpr`kqp1`n`mqαr`k . . . αr`1ηr,n´m,r`k
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and so dividing by through qkp1`n`mq ‰ 0 we have equivalently that

0 “
8ÿ

r“0

qrp1`n`mqαr`k . . . αr`1ηr,n´m,r`k.

We can also use Equation (5.9) for the case k ă 0 and we have in general that

0 “

$
&
%

ř8
r“0 q

rp1`n`mqαr`1 ¨ ¨ ¨αr`kηr,n´m,r`k if k ě 0
ř8
r“0 q

rp1`n`mqαr`1 ¨ ¨ ¨αr´kηr´k,n´m,r if k ă 0.
(5.17)

Let p “ 1 ` n ` m and p1 “ n ´ m, that is

¨
˝ p ´ 1

p1

˛
‚“

¨
˝ 1 1

1 ´1

˛
‚
¨
˝ n

m

˛
‚

or inverting ¨
˝ n

m

˛
‚“ 1

2

¨
˝ 1 1

1 ´1

˛
‚
¨
˝ p ´ 1

p1

˛
‚.

As n,m ě 0 it follows that p ě 1 and from the previous equation that p ´ 1 ` p1 ě 0

and p ´ 1 ´ p1 ě 0 or indeed 1 ´ p ď p1 ď p ´ 1. Also as n,m P N0 we must have

p´ 1` p1 P 2N0 and p´ 1´ p1 P 2N0. So if p is odd then p1 must be even and if p is even

then p1 must be odd. So we must have

$
&
%pp, p1q P N ˆ Z

ˇ̌
ˇ̌
ˇ̌

1 ´ p ď p1 ď p ´ 1 and

ppp is even and p1 is oddq or pp is odd and p1 is evenqq

,
.
- .

Solving for p in terms of p1 we get 1 ´ p1 ď p and p1 ` 1 ď p or indeed p ě maxt1 ´
p1, p1 ` 1u.

For k ě 0 it follows from Equation (5.17) that

8ÿ

r“0

qrpαr`1 ¨ ¨ ¨αr`kηr,p1,r`k “ 0
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for all p P N and p1 P Z such that p ě 1 and 1 ´ p ď p1 ď p´ 1. Say there is some p1 P Z

such that η0,p1,k ‰ 0, then for all p ě maxt1 ´ p1, p1 ´ 1u we have

η0,p1,k “ ´ 1

α1 ¨ ¨ ¨αk

8ÿ

r“1

qrpαr`1 ¨ ¨ ¨αr`kηr,p1,r`k. (5.18)

We have

ˇ̌
ˇ̌
ˇ

8ÿ

r“1

qrpαr`1 ¨ ¨ ¨αr`kηr,p1,r`k

ˇ̌
ˇ̌
ˇ ď

8ÿ

r“1

|qrpαr`1 ¨ ¨ ¨αr`kηr,p1,r`k| ď
8ÿ

r“1

qrp |ηr,p1,r`k|

ď
˜

8ÿ

r“1

q2rp

¸1{2˜ 8ÿ

r“1

|η0,p1,k|2
¸1{2

“
ˆ

q2p

1 ´ q2p

˙1{2
˜

8ÿ

r“1

|η0,p1,k|2
¸1{2

where we’ve used the Cauchy-Schwarz inequality. We have
ř8
r“1 |η0,p1,k|2 ď }η}2 ă 8

and so letting p Ñ 8 (which satisfies p ě maxt1 ´ p1, p1 ´ 1u) we see that
q2p

1 ´ q2p
Ñ 0

and thus
ˇ̌ř8

r“1 q
rpαr`1 ¨ ¨ ¨αr`kηr,p1,r`k

ˇ̌
Ñ 0 as p Ñ 8. However from Equation (5.18)

we see that η0,p1,k “ 0 contradicting the existence of such a p1 making this non-zero. So

as k ě 0 was fixed we have shown that for all p1 P Z and k ě 0 we have η0,p1,k “ 0.

Now say for N P N we have ηr,p1,r`k “ 0 for all 0 ď r ď N ´ 1 and p1 P Z. Then we

have

0 “
8ÿ

r“N
qrp1`p1`2nqαr`1 ¨ ¨ ¨αr`kηr,p1,r`k

“ qNp1`p1`2nq
8ÿ

r“0

qrp1`p1`2nqαr`N`1 ¨ ¨ ¨αr`N`kηr`N,p1,r`N`k

and a similar proof from above shows that ηN,r1,N`k and thus we have ηr,p1,r`k “ 0 for all

r, k ě 0 and p1 P Z.

A similar proof follows to show that ηr´k,p1,r “ 0 for all k ă 0, r ě 0 and p1 P Z

or indeed ηr`k,p1,r “ 0 for all r, k ě 0 and p1 P Z. Thus it follows that ηs,t,u “ 0 for all

s, u P N0 and t P Z as required. ✷
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The following shows that we can in fact consider CpSUqp2qq as acting on ℓ2pN0q b ℓ2pZq
given by the representation π0 in Equation (5.2).

Corollary 5.2.2 Let A Ă Bpℓ2pN0q b ℓ2pZqq be the C˚-algebra generated by 1, π0paq
and π0pcq where a, c P HopfpSUqp2qq and π0 is the representation from Equation (5.2).

Then A is isometrically isomorphic to the reduced C˚-algebra CpSUqp2qq.

Proof

We have by the previous theorem that the GNS space L2pSUqp2qq is unitary equivalent

to ℓ2pN0q b ℓ2pZq b ℓ2pN0q. The map Bpℓ2pN0q b ℓ2pZqq Ñ Bpℓ2pN0q b ℓ2pZq b ℓ2pN0qq
given by x ÞÑ x b 1 for x P Bpℓ2pN0q b ℓ2pZqq is an injective ˚-homomorphism onto its

image and thus is an isometry. Then as CpSUqp2qq acts on ℓ2pN0q b ℓ2pZq b ℓ2pN0q as

π0pxq b 1 for all x P CpSUqp2qq the restriction of this to the map A is also a complete

isometry onto CpSUqp2qq. ✷

5.2.2 The C˚-algebra CpKq and the Hilbert space L2pK, νq

We can consider the C˚-subalgebra C˚pc, 1q of CpSUqp2qq generated by c and 1. As c is

normal we have that this forms a unital commutative C˚-subalgebra and so it follows from

the Gelfand-Naimark theorem that we have some compact space K Ă C (given by the

spectrum of c) such that C˚pc, 1q is ˚-isomorphic to CpKq where c maps to z (z ÞÑ z). In

this section we show that we have a conditional expectation from CpSUqp2qq onto C˚pc, 1q
and we explicitly find the compact space K Ă C. We will then move on to consider a

measure ν on CpKq that implements the Haar state equivalent on CpKq and we study

L2pK, νq further including showing how this embeds in L2pSUqp2qq.

Theorem 5.2.3 There exists a unique conditional expectation (see Definition A.5.4) P :

CpSUqp2qq Ñ C˚pc, 1q such that P pakmnq “ δk0a0mn for all k P Z and m,n P N0 where

akmn P HopfpGq is from Notation 5.1.1. Furthermore we have φ ˝ P “ φ for the Haar

state φ on CpSUqp2qq.
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Proof

We define P0 : HopfpGq Ñ C˚pc, 1q as the unique linear map such that akmn ÞÑ δk,0a0mn

where HopfpGq is considered as a normed subspace of CpSUqp2qq. We show that P0

is contractive and then P0 extends uniquely to the conditional expectation P by Theo-

rem A.5.5. As pCpSUqp2qq,∆q is coamenable we need only consider the reduced C˚-

algebraic setting and by Corollary 5.2.2 we can consider this as a acting on the Hilbert

space ℓ2pN0q b ℓ2pZq by the representation π0 from Equation (5.2).

Consider the Hilbert space

H “
#

pξiq8
i“0

ˇ̌
ˇ̌
ˇ ξi P ℓ2pZq @ i P N0,

8ÿ

i“0

}ξi}2 ă 8
+

(5.19)

with inner product ppξiq8
i“0|pηiq8

i“0q
H
:“ ř8

i“0 pξi|ηiqℓ2pZq. We have a unique unitary iso-

morphism ψ : ℓ2pN0q b ℓ2pZq Ñ H such that

Ψpes,tq “ pδi,setq8
i“0 (5.20)

for all s P N0 and t P Z, that is Ψ maps es,t into the vector with 0 in all but the s-th entry

where it has entry et P ℓ2pZq. Then we have a ˚-isomorphism Ψ : Bpℓ2pN0q b ℓ2pZqq Ñ
BpHq given by Ψpxq “ ψxψ´1. We have that BpHq consists of infinite matrices with

entries in Bpℓ2pZqq. Consider c P CpSUqp2qq first. Let T : ℓ2pZq Ñ ℓ2pZq be the map

et ÞÑ et`1 for all t P Z, then from Equation (5.2) we have

Ψpcq “

¨
˚̊
˚̊
˚̊
˝

T 0 0 ¨ ¨ ¨
0 qT 0 ¨ ¨ ¨
0 0 q2T ¨ ¨ ¨
...

...
...

. . .

˛
‹‹‹‹‹‹‚

(5.21)
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with usual adjoint. Similarly for a P CpSUqp2qq we have

Ψpaq “

¨
˚̊
˚̊
˚̊
˝

0 α1id 0 0 ¨ ¨ ¨
0 0 α2id 0 ¨ ¨ ¨
0 0 0 α3id ¨ ¨ ¨
...

...
...

...
. . .

˛
‹‹‹‹‹‹‚

with the usual adjoint. By construction, P0 acts on the matrices in BpHq by sending the

non-diagonal entries to 0. That is for x “ pxijq8
i,j“0 P BpHq we have P0x “ diagpxijq.

From Proposition A.5.3 we have that }xii} ď }x} for all i P N0 and so sup }xii} ď }x}.

In Proposition A.5.2 we let Hi “ Ki “ ℓ2pZq for all i P N0 and we have }diagpxijq} “
supiPN0

}xii} ď }x}. So for x P CpSUqp2qq it follows from Proposition that

}P0x} “ }diagpxijq} ď }x}

and P0 is contractive.

Finally for k P Z and m,n P N0 we have

pφ ˝ P qpakmnq “ δk,0φpa0mnq “ φpakmnq

which extends by linearity to all of HopfpSUqp2qq. Then as HopfpSUqp2qq is dense in

CpSUqp2qq we have φ ˝ P “ φ as required. ✷

We remind that in this chapter we denote K “ t0u Y
 
qre2πiθ

ˇ̌
r P N0, θ P r0, 1q

(
. That

isK is a compact subset of C (as it is closed and bounded) consisting of 0 and every circle

in C of radius qr for all r P N0. We now show as a consequence of this previous theorem

that K is the spectrum of c P CpSUqp2qq.

Proposition 5.2.4 We have σpcq “ K and consequently we have a ˚-isomorphism Ψ :

C˚pc, 1q Ñ CpKq such that pc˚qmcn ÞÑ z˚mzn.
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Proof

Consider the Hilbert space H from Equation (5.19) and the ˚-isomorphism Ψ from equa-

tion (5.20). We have Ψpcq is the operator in Equation (5.21) from the proof of the previous

theorem and we know from Proposition A.7.4 that we have σpT q “ T (the unit circle in

C). So it follows immediately that the spectrum of Ψpcq, and thus the spectrum of c,

consists of the closure
 
qre2πiθ

ˇ̌
r P N0, θ P r0, 1q

(
. The rest follows from the Gelfand-

Naimark theorem (see Theorem 2.1.13 in Murphy (1990) for example). ✷

We define a measure ν on K where for all measurable A Ă K we let

νpAq “ p1 ´ q2q
8ÿ

r“0

q2r
ż 1

0

χApqre2πiθq dθ (5.22)

and then for all f P CpKq it follows that

ż

K

f dν “ p1 ´ q2q
8ÿ

r“0

q2r
ż 1

0

fpqre2πiθq dθ.

Let m,n P N0, then by Proposition 5.1.19 we have

ż

K

z˚mzn dν “ p1 ´ q2q
8ÿ

r“0

q2rqrpn`mq
ż 1

0

e2πipn´mqθ dθ

“ p1 ´ q2q
8ÿ

r“0

q2rp1`nqδn,m “ δn,m
1 ´ q2

1 ´ q2p1`nq “ φppc˚qmcnq

where we remind that zn, z˚m : K Ñ C are the maps z ÞÑ zn and z ÞÑ zm respectively.

We also have
ş
K
1 dν “ 1 and so we have a probability measure ν on K. We have from

Proposition 5.2.4 that CpKq –i C
˚pc, 1q with a0mn corresponding to the function z˚mzn

and so ν is the measure on K corresponding to the restriction of the Haar state φ. We will

use CpKq with measure ν to study C˚pc, 1q and thus CpSUqp2qq further.

We now study L2pK, νq briefly.
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Proposition 5.2.5 Let f : K Ñ C. Then f P L2pK, νq if and only if there exists a

sequence of functions pfrq8
r“0 Ă L2pTq such that

ř8
r“0 q

2r}fr}2L2pTq ă 8 and fpqre2πiθq “
frpe2πiθq for all r P N0 and θ P r0, 1q.

Proof

Let f P L2pK, νq, then we have

}f}2L2pK,νq “
ż 1

0

|f |2 dν “ p1 ´ q2q
8ÿ

r“0

q2r
ż 1

0

ˇ̌
fpqre2πiθq

ˇ̌2
dθ ă 8.

For s P N0 let fs : K Ñ C be the map fspe2πiθq “ fpqse2πiθq for all θ P r0, 1q and we

have

q2s}fs}2L2pTq “ q2s
ż 1

0

ˇ̌
fspe2πiθq

ˇ̌2
dθ ď

8ÿ

r“0

q2r
ż 1

0

ˇ̌
frpe2πiθq

ˇ̌2
dθ ă 8

and so fs P L2pTq. Then we have
ř8
r“0 q

2r}fr}2L2pTq “ 1

1 ´ q2
}f}2

L2pK,νq ă 8 as required.

The converse is immediate from considering }f}2
L2pK,νq. ✷

Notation 5.2.6 Let s P N0 and t P Z, then we let φs,t : K Ñ C be the function qre2πiθ ÞÑ
1a

1 ´ q2
q´sδr,se

2πitθ for all r P N0 and θ P r0, 1q.

Proposition 5.2.7 We have an orthonormal basis for L2pK, νq given by the functions

tφs,t | s P N0, t P Zu

where φs,t is given by Notation 5.2.6 above.

Proof

We have that φs,t is orthonormal as for s, s1 P N0 and t, t1 P Z we have

pφs,t|φs1,t1q “ p1 ´ q2q
8ÿ

r“0

q2r
ż 1

0

1

1 ´ q2
q´s´s1

δr,sδr,s1e2πipt´t
1qθdθ “ δs,s1δt,t1 .
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It is sufficient to show that this set spans L2pK, νq. Let f P L2pK, νq, then by Proposition

5.2.5 we have a sequence of functions pfrq8
r“0 Ă L2pTq such that fpqre2πiθq “ frpe2πiθq

and
ř8
r“0 q

2r}f}2
L2pTq ă 8. We have

›››››
8ÿ

s“0

8ÿ

t“0

qs pfsptqφs,t
›››››

2

“
8ÿ

s,s1

8ÿ

t,t1“0

qs`s1 pfsptqxfs1ptq pφs,t|φs1,t1q

“
8ÿ

s“0

8ÿ

t“´8
q2s

ˇ̌
ˇ pfsptq

ˇ̌
ˇ
2

“
8ÿ

s“0

q2s}fs}2L2pTq ă 8

using Equation (A.1) for the last equality and so we have
ř8
s“0

ř8
t“0 q

s pfsptqφs,t P L2pK, νq.

We can then calculate that

›››››f ´
a
1 ´ q2

8ÿ

s“0

8ÿ

t“´8
qs pfsptqφs,t

›››››
L2pK,νq

“ 0

using Hilbert space techniques and therefore the set tφs,t | s P N0, t P Zu is an orthonor-

mal spanning set, i.e. a basis. ✷

We prove in the following that we have an isometric embedding of L2pK, νq inside

L2pSUqp2qq with some further useful properties.

Proposition 5.2.8 We have an isometric embedding U : L2pK, νq Ñ L2pSUqp2qq such

that for all m,n P N0 we have Upz˚mznq “ pc˚qmcnξφ (where ξφ P L2pSUqp2qq is the

cyclic vector from the GNS space of the Haar state φ). Furthermore the adjoint is a

contractive map U˚ : L2pSUqp2qq Ñ L2pK, νq such that for Ψ the ˚-isomorphism from

Proposition 5.2.4 we have:

(i) for x P CpSUqp2qq we have U˚pxξφq “ pΨ ˝ P qpxq P CpKq Ă L2pK, νq;

(ii) for x P C˚pc, 1q and y P CpSUqp2qq we have U˚pxyξφq “ ΨpxqU˚pyξφq;

(iii) for x P CpSUqp2qq and y P C˚pc, 1q we have U˚pxyξφq “ pΨ ˝ P qpxqU˚pyξφq.

181



5. THE COMPACT QUANTUM GROUP SUQp2q

Proof

We can define a unique linear map from the polynomials in z and z˚ to L2pSUqp2qq such

that znz˚m ÞÑ pc˚qmcnξφ for m,n P N0 and ξφ the cyclic vector for the Haar state φ of

CpSUqp2qq. Then for m,n,m1, n1 P N0 and we have

´
Upz˚mznq

ˇ̌
ˇUpzn1

z˚m1q
¯

“
´

pc˚qmcnξφ
ˇ̌
ˇpc˚qm1

cn
1

ξφ

¯
“ φpcm1pc˚qn1pc˚qmcnq

“
ż

K

zm
1

z˚n1

z˚mzn dν “
´
z˚mzn

ˇ̌
ˇz˚m1

zn
1
¯

and so we can extend this to an isometric embedding U : L2pK, νq Ñ L2pSUqp2qq.

We now consider the Hilbert space adjoint U˚ : L2pSUqp2qq Ñ L2pK, νq. Clearly U˚

is contractive as U is an isometry. Furthermore for k P Z and m,n, s, t P N0 we have

`
U˚pakmnξφq

ˇ̌
z˚szt

˘
“ pakmnξφ|a0stξφq “

`
δk,0z

˚mzn
ˇ̌
z˚szt

˘

and so U˚pakmnξφq “ δk,0z
˚mzn from which property (i) follows. Let x P C˚pc, 1q and

y P CpSUqp2qq, then as P is a conditional expectation we have from Definition A.5.4 that

P pxyq “ xP pyq and so

U˚pxyξφq “ pΨ ˝ P qpxyq “ ΨpxP pyqq “ ΨpxqU˚pyξφq

and we have property (ii). Finally for x P CpSUqp2qq and y P C˚pc, 1q we have P pxyq “
P pxqy and so U˚pxyξφq “ pΨ ˝ P qpxyq “ ΨpP pxqyq “ pΨ ˝ P qpxqΨpyq “ pΨ ˝
P qpxqU˚pyξφq giving (iii). ✷

5.2.3 The von Neumann algebras L8pSUqp2qq and L8pK, νq

In the previous section we studied the C˚-subalgebra C˚pc, 1q of CpSUqp2qq and we

showed that C˚pc, 1q –i CpKq. We now consider what this means for the von Neu-

mann algebraic setting, that is we consider relations between the von Neumann alge-
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bra L8pSUqp2qq (which can be given as the double commutant of CpSUqp2qq inside

BpL2pSUqp2qqq) and the commutative von Neumann algebra L8pK, νq. We also con-

sider L1pSUqp2qq “ L8pSUqp2qq˚ and L1pK, νq the integrable functions with respect to

the measure ν.

We show in this section that there is a normal, completely isometric embedding of

L8pK, νq in L8pSUqp2qq with a left inverse given by a normal ˚-map that is also a com-

plete quotient map (where we let L8pK, νq have the operator space structure given by its

embedding inside BpL2pK, νqq and let L1pK, νq have the predual operator space struc-

ture).

For convenience in this section we let Θ : CpKq Ñ CpSUqp2qq be the isometric ˚-

homomorphism given as the composition of Ψ´1 in Proposition 5.2.4 and the isometric

embedding of C˚pc, 1q into CpSUqp2qq.

We note that the following theorem is similar to that of a variety of theorems on Borel

functional calculus for normal operators on a Hilbert space. We could not find a theorem

in the literature that states this theorem in the form we give here however and so we offer

a proof in full that gives details. We note however that the applying F in the following

theorem to bounded Borel functions on K gives the same result as that of the usual Borel

functional calculus homomorphism for c.

Theorem 5.2.9 There exists an isometric normal ˚-homomorphism F : L8pK, νq Ñ
L8pSUqp2qq that is the normal extension of the isometric ˚-homomorphism Θ : CpKq Ñ
CpSUqp2qq with image C˚pc, 1qw

˚

Ă L8pSUqp2qq.

Proof

We define a map α : L1pSUqp2qq Ñ CpKq˚ by ω ÞÑ ω ˝ Θ. Clearly as α is a composition

of contractions then α is a contraction and so αpωq P CpKq˚. We show that α has

image L1pK, νq. Let y P CpSUqp2qq and z P Dompσ´iq X CpSUqp2qq, then ωyξφ,zξφ P
L1pSUqp2qq. Let f P CpKq and x “ Θpfq P C˚pc, 1q. Using that φ ˝ P “ φ and that P is
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a conditional expectation from Theorem 5.2.3 and Proposition 1.4.17 (ii) we have

@
f, α

`
ωyξφ,zξφ

˘D
“ xx, ωyξφ,zξφy “ pxyξφ|zξφq “ φpz˚xyq “ φpxyσ´ipz˚qq

“ φpP pxyσ´ipz˚qqq “ φpxP pyσ´ipz˚qqq “ φpΘpfqΘpgqq “
ż

K

fg dν

where we’ve set g “ ΨpP pyσ´ipz˚qqq P CpKq Ă L1pK, νq for Ψ the ˚-isomorphism in

Proposition 5.2.4. Then we have shown that

@
f, α

`
ωyξφ,zξφ

˘D
“ xf, gy

for all f P CpKq and thus α
`
ωyξφ,zξφ

˘
“ g P L1pK, νq.

Now let y, z P CpSUqp2qq. By Proposition 1.3.18 we have that Dompσ´iq is dense in

CpSUqp2qq, so we have a net pzαq Ă Dompσ´iq XCpSUqp2qq such that lim zα “ z and by

the above we have ωyξφ,zαξφ P L1pSUqp2qq for all α. So it follows that

}αpωyξφ,zξφq ´ αpωyξφ,zαξφq} ď }ωyξφ,pz´zαqξφ} “ }yξφ}}pz ´ zαqξφ} Ñ 0

and thus αpωyξφ,zξφq P L1pSUqp2qq. As lin tωyξ,zξ | y, z P CpSUqp2qqu is dense in L1pSUqp2qq
and α is contractive we have αpωq P L1pK, νq for all ω P L1pSUqp2qq.

We show α is surjective. Let f P L1pK, νq, then there exists g, h P L2pK, νq such that

f “ gh and let ξ “ Upfq and η “ Upgq for U : L2pK, νq Ñ L2pSUqp2qq the isometric

embedding given in Proposition 5.2.8. Let F P CpKq with x “ ΘpF q P C˚pc, 1q and we

have

xF, αpωξ,ηqy “ xx, ωξ,ηy “ pxUg|Uhq “ xF, ghy “ xF, fy.

As this holds for all F P CpKq we have αpωξ,ηq “ f .

We let F˚ : L1pSUqp2qq Ñ L1pK, νq denote the corestriction of α to L1pK, νq and

we consider the adjoint F : L8pK, νq Ñ L8pSUqp2qq. We have that F is contractive

as F˚ is contractive. Let F P CpKq Ă L8pK, νq then for all ω P L1pSUqp2qq we have
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xFpF q, ωy “ xΘpF q, ωy and so FpF q “ ΘpF q and F is the normal extension of Θ. Then

F|CpKq is the map Θ and thus is a ˚-homomorphism. In particular from Proposition 5.2.4

we have that Fpz˚mznq “ pc˚qmcn.

Clearly we have that ImageF Ă C˚pc, 1qw
˚

and so we show that F is onto C˚pc, 1qw
˚

.

Let x P C˚pc, 1qw
˚

, then by the Kaplansky density theorem there exists a bounded net

pxαq Ă C˚pc, 1q such that xα
w˚

ÝÑ x. For all α we let Fα P CpKq such that FpFαq “ xα

which exists as F restricted to CpKq and corestricted to C˚pc, 1q is a ˚-isomorphism. Also

it follows that F is an isometry on CpKq again as F restricted to CpKq and corestricted to

C˚pc, 1q is a ˚-isomorphism, therefore we have a bounded net pFαq Ă CpKq. Also as F˚

is surjective for all f P L1pK, νq we have some ω P L1pSUqp2qq such that F˚pωq “ f and

so

|xFα ´ Fβ, fy| “ |xFpFα ´ Fβq, ωy| “ |xxα ´ xβ, ωy| Ñ 0.

So pFαq is a weak˚ Cauchy net and we have a unique F P L8pK, νq such that Fα
w˚

ÝÑ F .

Using the triangle inequality and that F is a ˚-map on CpKq, for all ω P L1pSUqp2qq we

have

|xx, ωy ´ xFpF q, ωy| ď |xx ´ xα, ωy| ` |xFα ´ F,F˚pωqy| Ñ 0.

and so FpF q “ x.

Finally we show that F is a ˚-homomorphism. Let F P L8pK, νq and let pFαq Ă
CpKq such that Fα

w˚

ÝÑ F . Then for all ω P L1pSUqp2qq we have

|xFpF ˚q, ωy ´ xFpF q˚, ωy| ď |xFpF ˚ ´ F ˚
α q, ωy| ` |xFpFα ´ F q˚, ωy|

“ |xF ´ Fα,F˚pωq˚y| ` |xFα ´ F,F˚pω˚qy| Ñ 0

and so F is a ˚-map.

Now let F P L8pK, νq and G P CpKq and using that F is a ˚-homomorphism on
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CpKq we have

|xFpFGq, ωy ´ xFpF qFpGq, ωy|

ď |xFpFGq ´ FpFαGq, ωy| ` |xFpFαqFpGq, ωy ´ xFpF qFpGq, ωy|

“ |xF ´ Fα, G ¨ F˚pωqy| ` |xFα ´ F,F˚pFpGqωqy| Ñ 0

and so FpFGq “ FpF qFpGq. Similarly we have FpGF q “ FpGqFpF q. Now say G P
L8pK, νq and let pGαq Ă CpKq such that Gα

w˚

ÝÑ G, then using the results above we

have

|xFpFGq ´ FpF qFpGq, ωy|

ď |xFpFGq ´ FpFGαq, ωy| ` |xFpF qFpGαq ´ FpF qFpGq, ωy|

“ |xG ´ Gα,F˚pωq ¨ F y| ` |xGα ´ G,F˚pω ¨ FpF qqy| Ñ 0

and so F is a homomorphism as required. ✷

Theorem 5.2.10 There exists a normal quotient map E : L8pSUqp2qq Ñ L8pK, νq that

is a ˚-map where for all f, g P L2pK, νq and x P L8pSUqp2qq we have

pEpxqf |gq “ pxUpfq|Upgqq

(where U : L2pK, νq Ñ L2pSUqp2qq is the embedding from Proposition 5.2.8) and where

E is a left inverse to F. Additionally we have

(i) a normal extension P :“ F ˝ E of the conditional expectation P : CpSUqp2qq Ñ
C˚pc, 1q given in Theorem 5.2.3 where Ppxq “ x if and only if x P C˚pc, 1qw

˚

;

(ii) Epxq P CpKq for all x P CpSUqp2qq;

(iii) E is a ˚-homomorphism when restricted to C˚pc, 1qw
˚

.
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Proof

We define E : L8pSUqp2qq Ñ BpL2pK, νqq by the Epxq “ U˚xU . Then clearly E

is contractive and satisfies the formula given in the theorem. Let pxαq Ă L8pSUqp2qq
with a σ-weak limit x P L8pSUqp2qq. Then in particular for any pξiq8

i“1, pηiq8
i“1 Ă

L2pSUqp2qq such that
ř8
i“1 }ξi}2,

ř8
i“1 }ηi}2 ă 8 we have

ˇ̌ř8
i“1 pprx ´ xαsξi|ηiq

ˇ̌
Ñ 0.

Let pfiq8
i“1, pgiq8

i“1 Ă L2pK, νq such that
ř8
i“1 }fi}2 ă 8 and

ř8
i“1 }gi}2 ă 8, then we

have ˇ̌
ˇ̌
ˇ

8ÿ

i“1

prEpxq ´ Epxαqsfi|giq
ˇ̌
ˇ̌
ˇ “

ˇ̌
ˇ̌
ˇ

8ÿ

i“1

prx ´ xαsUpfiq|Upgiqq
ˇ̌
ˇ̌
ˇ .

As U is an isometry then we have
ř8
i“1 }Upfiq}2 “ ř8

i“1 }fi}2 ă 8 and similarly
ř8
i“1 }Upgiq}2 ă 8 and so this equation tends to 0 and E is a normal map. For g, h P

L2pK, νq and x P L8pSUqp2qq we have

pEpx˚qg|hq “ px˚Upgq|Uphqq “ pxUphq|Upgqq “ pEpxqh|gq “ pEpxq˚g|hq

and so we have shown that we have a normal contractive ˚-map E : L8pSUqp2qq Ñ
BpL2pK, νqq.

Let x P CpSUqp2qq Ă L8pSUqp2qq and g, h P L2pSUqp2qq, then letting y “ Upgq in

Proposition 5.2.8 we have

pEpxqg|hq “ pxUpgq|Uphqq “ pU˚pxUpgqq|hq

“ ppΨ ˝ P qpxqU˚Upgq|hq “ ppΨ ˝ P qpxqg|hq

where we’ve used the ˚-isomorphism Ψ from Proposition 5.2.4 and that U is unitary and

so U˚U “ id. So Epxq “ pΨ ˝ P qpxq for all x P CpSUqp2qq.

Now we show that E has image inside L8pK, νq. We have that CpSUqp2qq is σ-weakly

dense inside L8pSUqp2qq and similarly CpKq is σ-weakly dense inside L8pK, νq, so we

have a commutative diagram as follows
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L8pSUqp2qq
E

,,
L8pK, νq � � // BpL2pK, νqq

CpSUqp2qq
?�

OO

P
// C˚pc, 1q

Ψ
// CpKq.

?�

OO

As E is normal and restricts to Ψ ˝ P on CpSUqp2qq it follows that E has image inside

L8pK, νq. We redefine E to be the map E : L8pSUqp2qq Ñ L8pK, νq and it follows from

above that E is a normal contractive ˚-map with Epxq “ pΨ˝P qpxq for all x P CpSUqp2qq.

As F and E are normal we can define a normal map P “ F ˝E. We have shown above

that P is the normal extension of P , that is we have Ppxq “ P pxq for all x P CpSUqp2qq.

Now say x P C˚pc, 1q then we have pF ˝ Ψqpxq “ x and so Ppxq “ pF ˝ Ψ ˝ P qpxq “ x.

We show that E is a left inverse of F. For g, h P L2pK, νq and m,n P N0 we have

xpF˚ ˝ E˚qpωg,hq, z˚mzny “ xωg,h,Eppc˚qmcnqy “ ppc˚qmcnUpgq|Uphqq

“ pU˚ppc˚qmcnUpgqq|hq “ pz˚mznU˚Ug|hq “ xωg,h, z˚mzny

where we’ve used Proposition 5.2.8 (iii) and that U˚U “ id again. It follows that for all

F P CpKq we have xpF˚ ˝ E˚qpωg,hq, F y “ xωg,h, F y and, as any element of L1pK, νq
can be written as a product of two elements of L2pK, νq, we have F˚ ˝ E˚ “ idL1pK,νq.

Then taking the adjoint of this we see that E ˝ F “ idL8pK,νq. From this and using that F

and E are contractions and the Banach space version of Lemma 1.1.20 we have that E is

a quotient map.

We show that for x P L8pSUqp2qq we have Ppxq “ x if and only if x P C˚pc, 1qw
˚

.

Say Ppxq “ x, then as F has image C˚pc, 1qw
˚

we must have x P C˚pc, 1qw
˚

. Conversely

let x P C˚pc, 1qw
˚

, then there is a net pxαq Ă C˚pc, 1q such that xα
w˚

ÝÑ x. Then for all

ω P L1pSUqp2qq we have

xPpxq ´ x, ωy “ xPpxq ´ Ppxαq, ωy ` xxα ´ x, ωy “ xx ´ xα,P˚pωq ` ωqy Ñ 0
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and so Ppxq “ x.

Finally it is clear that E is a ˚-homomorphism on C˚pc, 1qw
˚

as P “ F ˝ E is clearly a

˚-homomorphism on C˚pc, 1qw
˚

and F is a ˚-homomorphism. ✷

We have natural operator space structures on CpKq and L8pK, νq as subspaces of BpL2pK, νqq
and thus we have an operator space on the predual L1pK, νq of L8pK, νq. Then with these

operator space structures we have the following. We note that this gives us the minimal

operator space structure on CpKq and L8pK, νq and the maximal operator space structure

on L1pK, νq.

Proposition 5.2.11 The map E is a complete quotient map and F is a complete isometry.

Proof

Using Stinespring’s theorem we have }E}cb “ }U}}U˚} ď 1 and so E is a complete con-

traction. We also have that F is a ˚-homomorphism and so this is a complete contraction.

It follows that E˚ and F˚ are also complete contractions. By Lemma 1.1.20 and using that

F˚ ˝ E˚ “ idL1pK,νq it follows that E˚ is a complete isometry with F˚ a complete quotient

map. The result then follows from Proposition 1.1.19. ✷

We finish this section by proving a decomposition theorem for L1pK, νq that will be useful

later.

Proposition 5.2.12 Let f : K Ñ C, then we have f P L1pK, νq if and only if there

exists a sequence of functions pfrq8
r“0 Ă L1pTq such that

ř8
r“0 q

2r}fr}1 is finite with

fpqre2πiθq “ frpe2πiθq.

Proof

Say we have a sequence pfrq8
r“0 Ă L1pTq such that

ř8
r“0 q

2r}fr}1 is finite and let f be the

function fpqre2πiθq “ frpe2πiθq for r P N0 and θ P r0, 1q and fp0q arbitrary. Then

}f}L1pK,νq “ p1 ´ q2q
8ÿ

r“0

q2r
ż 1

0

ˇ̌
fpqre2πiθq

ˇ̌
dθ “ p1 ´ q2q

8ÿ

r“0

q2r}fr}1 ă 8
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and so f P L1pK, νq.

Conversely, say f P L1pK, νq and for all r P N0 let fr : T Ñ C be the map e2πiθ ÞÑ
fpqre2πiθq for θ P r0, 1q. Then

p1 ´ q2q
8ÿ

r“0

q2r}fr}1 “ p1 ´ q2q
8ÿ

r“0

q2r
ż 1

0

ˇ̌
fpqre2πiθq

ˇ̌
dθ “ }f}L1pK,νq

which is finite as f P L1pK, νq and so we must have }fr}1 finite for all r P N0 and

therefore pfrq8
r“0 Ă L1pTq. ✷

5.2.4 The P Operator for SUqp2q

In this section we show that we have an explicit formula for the unbounded operator

P : L2pSUqp2qq Ñ L2pSUqp2qq from Proposition 2.2.10 for the case of SUqp2q. Note that

this is not used for the remainder of the thesis and is given for interest only.

As SUqp2q is compact it follows immediately that ν “ 1 for ν the scaling constant.

We show that we have the following formula for P .

Proposition 5.2.13 We have ΛpHopfpSUqp2qqq Ă DompP q and P pek,l,mq “ q2lek,l,m for

k,m P N0 and l P Z.

Proof

Let Q : L2pSUqp2qq Ñ L2pSUqp2qq be the map ek,l,m ÞÑ q2lek,l,m for k,m P N0 and

l P Z, i.e. let Q be the map given in the proposition. It follows easily that Q is positive,

injective, self-adjoint and unbounded. It follows from the theory of unbounded operators

(see Strătilă et al. (1979) Chapter 9 and Conway (1990) Chapter 10) that Qit is a unitary

operator and Qitek,l,m “ q2iltek,l,m for all k,m P N0 and l P Z.

Let k P Z, m,n P N0 and t P R, then we show that P itΛpakmnq “ τtpΛpakmnqq. It

follows from Corollary 5.1.9 that Λpτtpakmnqq “ q2itpn´mqΛpakmnq. Also from Equation

(5.8) and Theorem 5.2.1 we have GNS space L2pSUqp2qq “ ℓ2pN0q b ℓ2pZqb ℓ2pN0q. We
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calculate from Lemma 5.1.18 for k ě 0 that

Λpakmnq “ pakmn b 1qξ0 “ p1 ´ q2q1{2
8ÿ

p“0

qppakmn b 1qep,0,p

“

$
&
%

p1 ´ q2qř8
p“k q

pp1`n`mqαp . . . αp´pk´1qep´k,n´m,p if k ě 0

p1 ´ q2qř8
p“0 q

pp1`n`mqαp`1 . . . αp´kep´k,n´m,p if k ă 0

and so

P itΛpakmnq “ q2itpn´mqΛpakmnq “ Λpτtpakmnqq.

Clearly we can extend this linearly to all of HopfpSUqp2qq and the result then follows

from Proposition 2.2.10. ✷

5.3 L
1
7pSUqp2qq

In this section we study the L1
7 -algebra from Chapter 4 of the quantum group SUqp2q.

Consider the antipode S on CpSUqp2qq with domain DompSq where HopfpSUqp2qq Ă
DompSq Ă CpSUqp2qq Ă L8pSUqp2qq with Spaq “ a˚, Spa˚q “ a, Spcq “ ´qc and

Sp´qc˚q “ c˚ for the generators of CpSUqp2qq. As S is an anti-homomorphism we

have that Sppc˚qmq “
´

´1
q

¯m
pc˚qm and so we see that }Sppc˚qmq} Ñ 8 as m Ñ 8

and S is unbounded on CpSUqp2qq. As a result of this unboundedness we will see that

L1
7 pSUqp2qq is a proper subalgebra of L1pSUqp2qq. Also as the unboundedness of S seems

to be largely dependent on the c generator then it is worth to study the effects of this on

C˚pc, 1q –ci CpKq. We now turn to the study of this.

5.3.1 The Antipode of C˚pc, 1q and CpKq

First we consider what happens with S acting on DompSq X C˚pc, 1q. We show in this

section that for x P DompSq X C˚pc, 1q that we have Spxq P C˚pc, 1q.
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Lemma 5.3.1 We have τt˝P “ P˝τt for all t P R. Then it follows that there is a σ-weakly

continuous one-parameter group τ c on C˚pc, 1qw
˚

such that for all t P R we have that

τ ct is the restriction of τt. Furthermore we can restrict this again to a norm continuous

one-parameter group on C˚pc, 1q.

Proof

By Corollary 5.1.9 we have τtpaq “ a and τtpcq “ q2itc for all t P R, so using that τt is a

˚-homomorphism for all t P R we have

pP ˝ τtqpakmnq “ q2itpn´mqP pakmnq “ q2itpn´mqδk,0pc˚qmcn “ pτt ˝ P qpakmnq.

By linearity and continuity it follows that τt ˝ P “ P ˝ τt on CpSUqp2qq for all t P R.

Now let x P L8pSUqp2qq, then we have a net pxαq Ă CpSUqp2qq that has σ-weak limit

x. Then using that τt is normal for all t P R and P is normal from Theorems 5.2.9 and

5.2.10 it follows that for all ω P L1pSUqp2qq we have

|xpP ˝ τtqpxq, ωy ´ xpτt ˝ Pqpxq, ωy|

ď |xpP ˝ τtqpxq ´ pP ˝ τtqpxαq, ωy| ` |xpτt ˝ Pqpxαq ´ pτt ˝ Pqpxq, ωy|

“ |xx ´ xα, pP ˝ τtq˚pωqy| ` |xx ´ xα, pτt ˝ Pq˚pωqy| Ñ 0

where we’ve used that Ppyq “ P pyq for all y P CpSUqp2qq. So we have τt ˝P “ P ˝ τt for

all t P R.

By Theorem 5.2.10, for x P C˚pc, 1qw
˚

we have Ppxq “ x, then from above we

have τtpxq “ Ppτtpxqq and so τtpxq P C˚pc, 1qw
˚

. Then we can define a restriction and

corestriction τ ct : C˚pc, 1qw
˚

Ñ C˚pc, 1qw
˚

. As for all t P R we have τ ct is the restriction

of τt then for all x P C˚pc, 1qw
˚

the map t ÞÑ τ ct pxq from R to is C˚pc, 1qw
˚

is continuous

with respect to the weak˚-topology on its codomain, that is τ c is a weak˚-continuous one-

parameter group. The proof for the norm-continuous one-parameter group on C˚pc, 1q
follows similarly. ✷
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Proposition 5.3.2 Fix z P C and let τ be the σ-weakly continuous scaling group on

L8pSUqp2qq given by Definition-Theorem 2.2.7. Then for x P Dompτzq we have Ppxq P
Dompτzq with τzpPpxqq “ Ppτzpxqq and in particular if x P C˚pc, 1qw

˚

X Dompτzq then

τzpxq P C˚pc, 1qw
˚

.

Similarly let τ be the norm continuous scaling group on CpSUqp2qq. Then for x P
CpSUqp2qq X Dompτzq we have P pxq P C˚pc, 1q X Dompτzq with τzpP pxqq “ P pτzpxqq
and in particular if x P C˚pc, 1q X Dompτzq then τzpxq P C˚pc, 1q.

Proof

First let τ be the σ-weakly continuous scaling group on L8pSUqp2qq and fix x P Dompτzq Ă
L8pSUqp2qq. Then there is a unique F : Spzq Ñ L8pSUqp2qq such that F is continuous

with respect to the σ-weak topology on L8pSUqp2qq, analytic on Spzqo and F ptq “ τtpxq
for all t P R. Define a mapG : Spzq Ñ C˚pc, 1qw

˚

byGpwq “ PpF pwqq for all w P Spzq.

We show thatG is continuous with respect to the σ-weak topology on C˚pc, 1qw
˚

, analytic

on Spzqo and Gptq “ τtpPpxqq.

Clearly G is continuous as it is the composition of continuous functions. Fix w0 P
Spzqo. As F is analytic we have some sufficiently small δ ą 0 that is not bigger than the

radius of convergence and a sequence pxnq8
n“0 Ă L8pSUqp2qq such that we have a norm

convergent sum

F pwq “
8ÿ

n“0

pw ´ w0qnxn

for all w P Spzqo such that |w ´ w0| ă δ. As δ is less than or equal to the radius of

convergence of F we have
ř8
n“0 |w ´ w0|n }xn} ă 8. Consider the sequence pynq8

n“0

where yn “ řn

i“0pw ´ w0qiPpxiq for all n P N0. Then for all n P N we have

›››››Gpwq ´
nÿ

i“0

pw ´ w0qiPpxiq
››››› “

›››››P
˜
F pwq ´

nÿ

i“0

pw ´ w0qixi
¸›››››

ď
›››››F pwq ´

nÿ

i“0

pw ´ w0qixi

›››››
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which converges to 0 as n Ñ 8. So it follows that Gpzq “ ř8
n“0pw ´ w0qnPpxnq

converges in the norm for w P Spzqo with |w ´ w0| ă δ where δ is less than the radius

of convergence of F and thus G is analytic on Spzqo. Lastly, from Lemma 5.3.1 we have

Gptq “ PpF ptqq “ Ppτtpxqq “ τtpPpxqq. It then follows that Ppxq P Dompτzq and

τzpPpxqq “ Gpzq “ PpF pzqq “ Ppτzpxqq.

The C˚-algebra case follows similarly but by considering the function G : Spzq Ñ
C˚pc, 1q given by Gpwq “ P pF pwqq for all w P Spzq and using the norm topology on

CpSUqp2qq and C˚pc, 1q. ✷

Proposition 5.3.3 We have P ˝ R “ R ˝ P.

Proof

We show that P ˝ R “ R ˝ P on CpSUqp2qq and then P ˝ R “ R ˝ P on L8pSUqp2qq.

Assume for now that 0 ă q ď 1, then from Corollary 5.1.9 we have Rpcq “ ´c and

Rpaq “ a˚. So as R is a ˚-anti-homomorphism, for k ě 0 and m,n P N0 we have

Rpakmnq “ RpcqnRpc˚qmRpaqk “ p´1qn`mcnpc˚qmpa˚qk

“ p´1qn`mqkpn`mqpa˚qkpc˚qmcn “ p´1qn`mqkpn`mqa´k,m,n

and similarly for k ă 0 we have Rpakmnq “ p´1qn`mq´kpn`mqa´k,m,n. Thus we have

pP ˝ Rqpakmnq “ p´1qn`mδk,0pc˚qmcn “ Rpδk,0pc˚qmcnq “ pR ˝ P qpakmnq.

Similarly if ´1 ď q ă 0 we have Rpcq “ c and Rpaq “ a˚ and so again pP ˝Rqpakmnq “
pR ˝ P qpakmnq. It then follows by continuity that pP ˝ Rqpxq “ pR ˝ P qpxq for all

x P CpSUqp2qq.

Now let x P L8pSUqp2qq and let pxαq Ă CpSUqp2qq be a net such that xα
w˚

ÝÑ x. Then

using that R and P are normal, for all ω P L1pSUqp2qq we have
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|xpP ˝ Rqpxq, ωy ´ xpR ˝ Pqpxq, ωy|

ď |xpP ˝ Rqpxq ´ pP ˝ Rqpxαq, ωy| ` |xpR ˝ Pqpxαq ´ pR ˝ Pqpxq, ωy|

“ |xx ´ xα, pP ˝ Rq˚pωqy| ` |xx ´ xα, pR ˝ Pq˚pωqy| Ñ 0

and so P ˝ R “ R ˝ P as required. ✷

The next theorem follows immediately from the preceding three lemmas and propositions

and the decomposition S “ R ˝ τ´i{2.

Theorem 5.3.4 Let S denote the von Neumann algebraic antipode and x P DompSq Ă
L8pSUqp2qq, then Ppxq P DompSq and SpPpxqq “ PpSpxqq. In particular for x P
C˚pc, 1qw

˚

we have Spxq P C˚pc, 1qw
˚

.

Similarly let S denote the reduced C˚-algebraic antipode and x P DompSq Ă CpSUqp2qq,

then P pxq P DompSq and SpP pxqq “ P pSpxqq. In particular for x P C˚pc, 1q we have

Spxq P C˚pc, 1q.

We want to define an antipode, unitary antipode and a scaling group on CpKq and L8pK, νq.

The preceding theorems and propositions of this section ensure the following definitions

make sense.

Definition 5.3.5 (i) Let DompSKq “ tf P L8pK, νq | Fpfq P DompSqu and let

SK : L8pK, νq Ñ L8pK, νq be given by SKpfq “ EpSpFpfqqq for f P DompSKq;

(ii) For z P C, let DompτKz q “ tf P L8pK, νq | Fpfq P Dompτzqu and let

τKz : L8pK, νq Ñ L8pK, νq be given by τKz pfq “ EpτzpFpfqqq for f P DompτKz q;

(iii) Let RK : L8pK, νq Ñ L8pK, νq be the map E ˝ R ˝ F.

In the following straightforward proposition we show that τKz is equivalent to the one-

parameter group τ cz from Lemma 5.3.1 as would be expected.

Proposition 5.3.6 Let f P DompτKz q and let x “ Fpfq, then x P Dompτzq X C˚pc, 1qw
˚

and FpτKz pfqq “ τzpxq.
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Proof

It follows by definition of DompτKz q that x “ Fpfq P Dompτzq and as Fpfq P C˚pc, 1qw
˚

from Theorem 5.2.9 we have x P DompτKz q X C˚pc, 1qw
˚

. It follows from Definition

5.3.5 (ii) that FpτKz pfqq “ FpEpτzpxqq “ Ppτzpxqq “ x where the final equality follows

as x P C˚pc, 1qw
˚

and Theorem 5.2.10 (i). ✷

Proposition 5.3.7 For all t P R we have that τKt is a ˚-automorphism on L8pK, νq and

the restriction of τKt to CpKq is also a ˚-automorphism.

Proof

This follows on L8pK, νq as F is a ˚-homomorphism from Theorem 5.2.9, E is a ˚-

homomorphism on C˚pc, 1qw
˚

from Theorem 5.2.10 (iii), τt is a ˚-homomorphism for all

t P R and τKt “ E ˝ τt ˝ F for all t P R.

Let x P C˚pc, 1q. When restricted to CpKq we have that F has image C˚pc, 1q, for all

t P R we have that τtpxq P C˚pc, 1q and Epxq P CpKq by Theorem 5.2.10 (ii) and thus τKt

is a ˚-automorphism on CpKq. ✷

Proposition 5.3.8 We have the following relations

SK ˝ E “ E ˝ S, S ˝ F “ F ˝ SK , τKz ˝ E “ E ˝ τz, τz ˝ F “ F ˝ τKz
RK ˝ E “ E ˝ R, R ˝ F “ F ˝ RK , SK “ RK ˝ τK´i{2 “ τK´i{2 ˝ RK

pRKq2 “ id, RK ˝ τKt “ τKt ˝ RK

and RK and τKt are normal operators where z P C and t P R.

Proof

If x P DompSq then from Theorem 5.3.4 we have FpEpxqq “ Ppxq P DompSq and so by

definition Epxq P DompSKq and SKpEpxqq “ pE˝S ˝Pqpxq “ pE˝P˝Sqpxq “ EpSpxqq,

that is SK ˝ E “ E ˝ S. For F P DompSKq by definition we have FpF q P DompSq and

pS ˝ FqpF q “ pS ˝ P ˝ FqpF q “ pP ˝ S ˝ FqpF q “ pF ˝ SK ˝ E ˝ FqpF q “ pF ˝ SKqpF q

196



5.3 L1
7 pSUqp2qq

and so S ˝ F “ F ˝ SK . We can prove the results on τKz for z P C and RK similarly.

Let f P DompSKq and we have

SKpfq “ pE ˝ S ˝ Fqpfq “ pE ˝ R ˝ τ´i{2 ˝ Fqpfq.

We have Fpfq P DompSq “ Dompτ´i{2q and so by Proposition 5.3.2 it follows that

pP ˝ τ´i{2 ˝ Fqpfq “ pτ´i{2 ˝ P ˝ Fqpfq “ pτ´i{2 ˝ Fqpfq. Then

SKpfq “ pE ˝ R ˝ P ˝ τ´i{2 ˝ Fqpfq “ pRK ˝ τK´i{2qpfq

and we have SK “ RK ˝ τK´i{2. The others follow similarly.

For all t P R we have RK and τKt are normal operators as E, F, R and τt are normal

for all t P R. ✷

We now show that for any z P C that PolypKq is a core for τKz and thus also for SK .

Proposition 5.3.9 Fix z P C. We have that PolypKq is a core for τKz on CpKq and is a

weak˚-core for τKz on L8pK, νq.

Proof

We show the case where τK is a one-parameter group on L8pK, νq, the C˚-algebra case

is similar. Let F P DompτKz q so that FpF q P Dompτzqq. Then using Corollary 3.2.19

we have HopfpSUqp2qq is a σ-weak core in L8pSUqp2qq and so we have a net pxαq Ă
HopfpSUqp2qq such that xα

w˚

ÝÑ FpF q and τzpxαq w˚

ÝÑ τzpFpF qq. From Theorems 5.2.9

and 5.2.10 we have Epxαq P PolypKq and as FpEpxαqq “ Ppxαq “ P pxαq then Epxαq P
DompτKz q. Then for all G P L1pK, νq and using that E ˝ F “ id we have

|xEpxαq ´ F,Gy| “ |xEpxαq ´ pE ˝ FqpF q, Gy| “ |xxα ´ FpF q,E˚pGqy| Ñ 0

and using that τKz ˝E “ E˝τKz from Proposition 5.3.8 and τz˝P “ P˝τz from Proposition
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5.3.2 we have

ˇ̌
xτKz pEpxαqq ´ τKz pF q, Gy

ˇ̌
“ |xEpτzpPpxαqqq ´ EpτzpFpF qqq, Gy|

“ |xτzpxαq ´ τzpFpF qq,E˚pGqy| Ñ 0.

Both of these equations tend to 0 because xα
w˚

ÝÑ FpF q and τzpxαq w˚

ÝÑ τKz pFpF qq and

so PolypKq is a core for DompτKz q as required. ✷

For t P R we have that τKt acts by rotating the domain. We make this precise in the next

proposition.

Proposition 5.3.10 Let F P CpKq, then we have τKt pF qpqre2πiθq “ F pqre2πiθ`2it ln qq for

all r P N0 and θ P r0, 1q and τKt pF qp0q “ F p0q.

Proof

For all t P R we have that τKt is a ˚-automorphism on CpKq from Proposition 5.3.7 and

from Lemma 1.33 in Williams (2007) we have a homeomorphism ht : K Ñ K such that

τKt pF qpzq “ F phtpzqq for all F P CpKq and z P K. Now consider the function z, we

know that τKt pzq “ Epτtpcqq “ q2itz and thus for all r P N0 and θ P r0, 1q we have

htpqre2πiθq “ zphtpqre2πiθqq “ τKt pzqpqre2πiθq “ e2it ln qzpqre2πiθq “ qre2πiθ`2it ln q

and similarly htp0q “ zphtp0qq “ τKt pzqp0q “ 0 as required. ✷

To finish this section we show that we have the following complete isometry similar to

Proposition 4.2.3.

Proposition 5.3.11 The map QK : L1pK, νq Ñ L1pK, νq given by f ÞÑ RK
˚ pf˚q for

f P L1pK, νq is a complete isometry.

Proof

We define a map QK : L1pK, νq Ñ L1pK, νq by QK “ F˚ ˝ Q ˝ E˚ where Q :
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L1pSUqp2qq Ñ L1pSUqp2qq is given by Proposition 4.2.3. Then using that E and F are

˚-maps, for all f P L1pK, νq and F P L8pK, νq we have

xQKpfq, F y “ xpF˚ ˝ QqpE˚pfqq, F y “ xF˚ppE˚pfqq˚ ˝ Rq, F y

“ xE˚pfq, RpFpF qq˚y “ xf,RKpF q˚y “ xRK
˚ pf˚q, F y

and so QKpfq “ RK
˚ pf˚q.

We have from Proposition 4.2.3 that Q is a completely isometric isomorphism and so

Q˚ is a completely isometric isomorphism given by x ÞÑ Rpx˚q. Taking the adjoint of

QK we get pQKq˚ “ E ˝ Q˚ ˝ F and then for F P L8pK, νq, and using Proposition 5.3.8

we have

pQKq˚pF q “ pE ˝ RqpFpF q˚q “ RKpF ˚q.

Then we have ppQKq˚ ˝ pQKq˚qpF q “ pQKq˚pRKpF ˚qq “ RKpRKpF ˚q˚q “ F and so

pQKq˚ ˝ pQKq˚ “ id. Also we have FpF q P C˚pc, 1qw
˚

and Q˚
´
FpF q

¯
P C˚pc, 1qw

˚

meaning P

´
Q˚pFpF qq

¯
“ Q˚pFpF qq and as F and Q˚ are complete isometries we have

›››pQKq˚
`
F
˘›››
cb

“
››pE ˝ Q˚ ˝ FqpF q

››
cb

“
›››P

´
Q˚pFpF qq

¯›››
cb

“
›››Q˚pFpF qq

›››
cb

“ }FpF q}cb “ }F }cb “
››F

››
cb
.

As pQKq˚ ˝ pQKq˚ “ id and pQKq˚ is a complete isometry then pQKq˚ is a completely

isometric isomorphism and so is QK . ✷

5.3.2 L1

7 pK, νq

In this section we introduce the L1
7 pK, νq with a natural inclusion into L1

7 pSUqp2qq and

then investigate this space further. As L1pK, νq are the integrable functions with respect

to the measure ν we can use some measure theoretic techniques in this section to gain a

better understanding of L1
7 pK, νq.
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We begin by introducing L1
7 pK, νq.

Proposition 5.3.12 Let f P L1pK, νq. Then E˚pfq P L1
7 pSUqp2qq if and only if there

exists some g P L1pK, νq such that xF, gy “ xSKpF q, f˚y for all F P CpKq XDompSKq.

Proof

Let ω :“ E˚pfq and assume ω P L1
7 pSUqp2qq. Let F P CpKq X DompSKq and then

FpF q P C˚pc, 1q X DompSq. Then using that E is a ˚-map from Theorem 5.2.10 and

Definition 5.3.5 we have

xSKpF q, f˚y “ xpE ˝ S ˝ FqpF q˚, fy “ xSpFpF qq˚, ωy “ xFpF q, ω7y “ xF,F˚pω7qy.

And so letting g “ F˚pω7q we have xF, gy “ xSKpF q, fy for all F P CpKq X DompSq.

Conversely say there exists some g P L1pK, νq such that xF, gy “ xSKpF q, f˚y for all

F P CpKq XDompSKq. Let x P DompSq XCpSUqp2qq, then by Theorem 5.2.10 we have

Epxq P CpKq X DompSKq and using that E is a ˚-map and Proposition 5.3.8 we have

xSpxq˚,E˚pfqy “ xEpSpxq˚q, fy “ xSKpEpxqq, f˚y “ xEpxq, gy “ xx,E˚pgqy.

Now let x P DompSq Ă L8pSUqp2qq, then there exists a bounded net pxαq Ă DompSq X
CpSUqp2qq such that xα

w˚

ÝÑ x and Spxαq w˚

ÝÑ Spxq. Then we have

ˇ̌
ˇxSpxq˚,E˚pfqy ´ xx,E˚pgqy

ˇ̌
ˇ

ď
ˇ̌
ˇxSpxq˚,E˚pfqy ´ xSpxαq˚,E˚pfqy

ˇ̌
ˇ ` |xxα,E˚pgqy ´ xx,E˚pgqy| Ñ 0.

So for all x P DompSq we have xSpxq˚,E˚pfqy “ xx,E˚pgqy where E˚pgq P L1pSUqp2qq
as required. ✷

So we make the following obvious definition for L1
7 pK, νq.

200



5.3 L1
7 pSUqp2qq

Definition 5.3.13 We let

L1
7 pK, νq “

$
&
%f P L1pK, νq

ˇ̌
ˇ̌
ˇ̌

D g P L1pK, νq such that

xSKpF q, f˚y “ xF, gy @F P CpKq X DompSKq

,
.
- .

Similarly to the case of L1
7 pGq for a general locally compact quantum group G we have a

unique f 7 satisfying the condition of L1
7 pK, νq and we have a norm

}f}L1

7 pK,νq “ maxt}f}L1pK,νq, }f 7}L1pK,νqu

for f P L1
7 pK, νq under which L1

7 pK, νq is a Banach space. We show we have an an iso-

metric embedding of L1
7 pK, νq into L1

7 pSUqp2qq next that we can use to define an operator

space structure on L1
7 pK, νq.

Proposition 5.3.14 There is an isometric embedding E
7
˚ : L1

7 pK, νq Ñ L1
7 pSUqp2qq given

as the restriction and corestriction of the map E˚ : L1pK, νq Ñ L1pSUqp2qq from Theorem

5.2.10.

Proof

We have an isometry θK : L1
7 pK, νq Ñ L1pK, νq ‘8 L1pK, νq given by f ÞÑ pf, f 7q

for all f P L1
7 pK, νq. We also have an isometric embedding θSUqp2q : L1

7 pSUqp2qq Ñ
L1pSUqp2qq ‘8 L1pSUqp2qq given by Equation (4.2). Lastly from Theorem 5.2.10 and

Proposition 1.1.28 (ii) we have an isometric embedding E˚‘8E˚ : L1pK, νq‘8L1pK, νq Ñ
L1pSUqp2qq ‘8 L1pSUqp2qq. Then by Theorem 5.3.12 there exists a bounded map E

7
˚ :

L1
7 pK, νq Ñ L1

7 pGq that is the restriction and corestriction of E˚ such that we have a

commutative diagram

L1
7 pK, νq θK //

E
7
˚

��

L1pK, νq ‘8 L1pK, νq

E˚‘8E˚

��

L1
7 pSUqp2qq

θSUqp2q
// L1pSUqp2qq ‘8 L1pSUqp2qq.
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As θK , θSUqp2q and E˚ ‘8 E˚ are all isometries then E
7
˚ must also be an isometry. ✷

Definition 5.3.15 We let L1
7 pK, νq have the operator space structure such that the embed-

ding E
7
˚ : L1

7 pK, νq Ñ L1
7 pSUqp2qq from the preceding proposition is a complete isometry.

Proposition 5.3.16 (i) The map θK : L1
7 pK, νq Ñ L1pK, νq ‘8 L1pK, νq given by

f ÞÑ pf, f 7q is a completely isometric embedding.

(ii) For ω P L1
7 pSUqp2qq we have F˚pωq P L1

7 pK, νq and we have a map F
7
˚ : L1

7 pSUqp2qq Ñ
L1

7 pK, νq that is the restriction and corestriction of the map F˚ from Theorem 5.2.9.

Furthermore this map is a complete quotient map that is a left inverse of E7
˚.

Proof

(i) From the preceding proof we have a commutative diagram

L1
7 pK, νq θK //

E
7
˚

��

L1pK, νq ‘8 L1pK, νq

E˚‘8E˚

��

L1
7 pSUqp2qq

θSUqp2q
// L1pSUqp2qq ‘8 L1pSUqp2qq.

We know that E7
˚ and θSUqp2q are complete isometries. Also as E˚ : L1pK, νq Ñ

L1pSUqp2qq is a complete isometry then by Proposition 1.1.28 (ii) it follows that

E˚ ‘8 E˚ is a complete isometry and so θK must be a complete isometry.

(ii) Let ω P L1
7 pSUqp2qq, then for all F P DompSKq we have

xSKpF q˚,F˚pωqy “ xSpFpF qq˚, ωy “ xFpF q, ω7y “ xF,F˚pω7qy

and so F˚pωq P L1
7 pK, νq with F˚pωq7 “ F˚pω7q.

Then we have shown that there is a completely bounded map F
7
˚ : L1

7 pSUqp2qq Ñ
L1

7 pK, νq given by the restriction and corestriction of F˚ such that we have a com-
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mutative diagram

L1
7 pSUqp2qq θSUqp2q

//

F
7
˚

��

L1pSUqp2qq ‘8 L1pSUqp2qq

F˚‘8F˚

��

L1
7 pK, νq

θK
// L1pK, νq ‘8 L1pK, νq.

As F˚ is a complete contraction it follows from Proposition 1.1.28 that F˚ ‘8 F˚ is

a complete contraction and then using that θSUqp2q and θK are complete isometries it

follows from the commutative diagram that F7
˚ is a complete contraction.

As E7
˚ and F

7
˚ are restrictions of the maps E˚ and F˚ respectively it follows that F7

˚

is the left inverse for E7
˚. Then from Lemma 1.1.20 it follows that F7

˚ is a complete

quotient map. ✷

We have the following which is similar to Proposition 4.1.11.

Proposition 5.3.17 Let f P L1pK, νq. We have that the following are equivalent:

(i) f P L1
7 pK, νq;

(ii) For all F P DompτKi{2q we have some g P L1pK, νq such that xτKi{2pF q, fy “ xF, gy;

(iii) f P DomppτKi{2q˚q.

In the case that these conditions hold we have pτKi{2q˚pfq “ RK
˚ pf 7q˚.

Proof

Say (i) holds, that is f P L1
7 pK, νq. By Proposition 1.3.20 (ii) for all F P DompτKi{2q we

have F ˚ P DompτK´i{2q and τK´i{2pF ˚q “ τKi{2pF q˚ and so

xτKi{2pF q, fy “ xτK´i{2pF ˚q˚, fy “ xSKpRKpF ˚qq˚, fy “ xRKpF ˚q, f 7y “ xF,RK
˚ pf 7q˚y

where we’ve used that SK “ τK´i{2 ˝ RK and pRKq2 “ id. Then as RK
˚ pf 7q˚ P L1pK, νq

we have condition (ii).
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We have that condition (ii) implies condition (iii) straight from Definition A.2.10. It

also follows that pτKi{2q˚pfq “ RK
˚ pf 7q˚ from the same definition.

Now assume f P DomppτKi{2q˚q, then again by Definition A.2.10 there exists g P
L1pK, νq such that for all F P DompτKi{2q we have xτKi{2pF q, fy “ xF, gy. Let G P
DompτK´i{2q and using that G˚ P DompτKi{2q with τKi{2pG˚q “ τK´i{2pGq˚ we have

xSKpGq, f˚y “ xτKi{2pRKpGq˚q˚, f˚y “ xRKpGq˚, gy “ xG,RK
˚ pg˚qy

for all G P DompτK´i{2q and so f P L1
7 pK, νq. ✷

By this proposition the following notation is well defined.

Notation 5.3.18 Given f P L1
7 pK, νq we let f 5 P L1pK, νq denote the function pτKi{2q˚pfq

where pτKi{2q˚ is defined by Definition A.2.10.

We give another method for calculating the norm on L1
7 pK, νq before moving on to further

investigation. This follows directly from Propositions 5.3.17, 5.3.16, 5.3.11 and 1.1.28.

Corollary 5.3.19 For θK : L1
7 pK, νq Ñ L1pK, νq ‘8 L1pK, νq the map in Proposition

5.3.16 and QK : L1pK, νq Ñ L1pK, νq the map from Proposition 5.3.11, we have a

complete isometry Ψ :“ pid‘8 QKq ˝ θK : L1
7 pK, νq Ñ L1pK, νq ‘8 L1pK, νq such that

f ÞÑ pf, pτKi{2q˚pfqq “ pf, f 5q

and furthermore it follows that

}f}L1

7 pK,νq “ maxt}f}L1pK,νq, }f 5}L1pK,νqu.

5.3.3 Structure of L1

7 pK, νq

In this section we now prove Theorem 5.3.26 that states informally that a function f P
L1pK, νq is in L1

7 pK, νq if the function f ˝ τKi{2 is bounded. This goes part way towards
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answering the question after Proposition 4.1.11 for SUqp2q, however we will see in the

next section that this is not easy to extend to the case of L1
7 pSUqp2qq.

We remind the reader that given f P L1pTq we have the Fourier transform f̂ P c0pZq
where f̂pnq “

ş1
0
fpe2πiθqe2πinθ dθ for n P N0 (see Appendix A.7). We now give a couple

of straightforward lemmas before proving our first proposition of this section.

Lemma 5.3.20 Fix z0 P C and s P N0. For all l P Z the function F on K given by

qre2πiθ ÞÑ δr,se
2πilθ is in CpKq X DompτKz0 q and τKz0 pF qpqre2πiθq “ δr,se

2πilθ`2ilz0 ln q.

Proof

Clearly for any given l P Z the function F given in the lemma is in CpKq. We define

α : Spz0q Ñ CpKq by z ÞÑ δr,se
2πilθ`2ilz ln q. This is clearly continuous and analytic

on Spz0qo by properties of the exponential function and by Proposition 5.3.10 we have

αptq “ δr,se
2πilθ`2ilt ln q “ F pqre2πiθ`2it ln qq “ τKt pF qpqre2πiθq. So it follows that F P

DompτKz0 q with pτKz0 pF qqpqre2πiθq “ F pz0q “ δr,se
2πilθ`2ilz0 ln q. ✷

Lemma 5.3.21 Let z0 P C, r P N0, m,n P N0 be fixed, F “ z˚mzn P CpKq and

φ P L1pTq. Then we have

ż 1

0

τKz0 pF qpqre2πiθqφpe2πiθq dθ “ qrpn`mqe2ipn´mqz0 ln qpφpm ´ nq.

Proof

We let α : Spz0q Ñ C denote the map z ÞÑ qrpn`mqe2ipn´mqz ln qpφpm ´ nq. Clearly this is

continuous and analytic on Spz0qo and for t P R we have

αptq “ qrpn`mqe2ipn´mqt ln q
ż 1

0

φpe2πiθqe´2πipm´nqθ dθ

“
ż 1

0

F pqre2πiθ`2it ln qqφpe2πiθq dθ “
ż 1

0

τKt pF qpqre2πiθqφpe2πiθq dθ

from which the result follows. ✷
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Proposition 5.3.22 Let f P L1pK, νq and let pfrq8
r“0 Ă L1pTq denote the decomposition

of f P L1pK, νq as per Proposition 5.2.12. We have f P L1
7 pK, νq if and only if there

exists a sequence of functions pgrq8
r“0 Ă L1pTq such that

ř8
r“0 q

2r}gr}1 is finite and

pgsplq “ ql pfsplq for all l P Z and s P N0. If these conditions are true we can define

g P L1pK, νq given by qre2πiθ ÞÑ grpe2πiθq (and gp0q arbitrary) and we have f 5 “ g.

Proof

Let f P L1
7 pK, νq, then by Proposition 5.3.17 we have some f 5 P L1pK, νq such that for

all F P DompτKi{2q we have xτKi{2pF q, fy “ xF, f 5y (where f 5 is from Notation 5.3.18). By

Proposition 5.2.12 we have a decomposition of f 5 into a sequence of functions pf 5
rq8
r“0 Ă

L1pTq such that f 5
rpe2πiθq “ f 5pqre2πiθq and

ř8
r“0 q

2r}f 5
r}1 ă 8.

Fix s P N0 and l P Z and let F denote the function qre2πiθ ÞÑ δr,se
´2πilθ, then clearly

F P CpKq and by Lemma 5.3.20 we have F P DompτKi{2q and

pτKi{2pF qqpqre2πiθq “ δr,se
´2πilθ´2ilpi{2q ln q “ δr,sq

le´2πilθ

and so it follows that we have

xτKi{2pF q, fy “ p1 ´ q2q
8ÿ

r“0

q2rδr,sq
l

ż 1

0

frpe2πiθqe´2πilθ dθ “ p1 ´ q2qq2sql pfsplq.

Also we have

xF, f 5y “ p1 ´ q2q
8ÿ

r“0

q2rδr,s

ż 1

0

f 5
rpe2πiθqe´2πilθ dθ “ p1 ´ q2qq2s pf 5

splq

and as xτKi{2pF q, fy “ xF, f 5y we can equate these to get

pf 5
splq “ ql pfsplq

for all l P Z and s P N0.

Conversely, say there exists a sequence of functions pgrq8
r“0 Ă L1pTq such that
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ř8
r“0 q

2r}gr}1 ă 8 and pgsplq “ ql pfsplq for all s P N0 and l P Z. Let g : K Ñ C be the

map gpqre2πiθq “ grpe2πiθq for r P N0 and θ P r0, 1q with gp0q arbitrary. By Proposition

5.2.12 we have g P L1pK, νq. We show that xF, gy “ xτKi{2pF q, fy for all F P DompτKi{2q
and then by Proposition 5.3.17 we have f P L1

7 pK, νq.

By Proposition 5.3.9 we have that lin tz˚mzn | n,m P N0u is a core for DompτKi{2q Ă
CpKq. For fixed m,n P N0 we consider F “ z˚mzn and we show that xτKi{2pF q, fy “
xF, gy. We have by Lemma 5.3.21 that

xτKi{2pF q, fy “ p1 ´ q2q
8ÿ

r“0

q2r
ż 1

0

τKi{2pF qpqre2πiθqfrpe2πiθq dθ

“ p1 ´ q2q
8ÿ

r“0

qrp2`n`mqe´pn´mq ln q pfrpm ´ nq

“ p1 ´ q2q
8ÿ

r“0

qrp2`n`mq pgrpm ´ nq

“ p1 ´ q2q
8ÿ

r“0

q2r
ż 1

0

qrpn`mqe2πipn´mqθgrpe2πiθq dθ

“ p1 ´ q2q
8ÿ

r“0

q2r
ż 1

0

F pqre2πiθqgpqre2πiθq dθ “ xF, gy

where we’ve used that pgrplq “ ql pfrplq for all r P Z.

So by linearity we have xF, gy “ xτKi{2pF q, fy for all F P PolypKq and as this is a core

for DompτKi{2q this also holds for all F P DompτKi{2q. Then by Proposition 5.3.17 we have

f P L1
7 pK, νq and by construction f 5 “ g. ✷

We now move on to proving the main theorem of this section. We still need a bit more

preparation however. We begin with the following which is essentially notation.

Proposition 5.3.23 Let φ P MpKq be a measure on K. Then for all r P N0 there is a

measure φr P MpTq and φ8 P Mpt0uq such that for any F P L1pK,φq we have

ż

K

F dφ “
˜

8ÿ

r“0

ż

T

Fr dφr

¸
` F p0qφ8pt0uq
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where we’ve decomposed F as per Proposition 5.2.12.

Proof

For all r P N0 we let φr P MpTq be given by φrpAq “ φpqrAq for all measurable A Ă T

and we let φ8 P Mpt0uq the measure on 0 given by φ8pt0uq “ φpt0uq. Then for any

measurable A Ă K we have a sequence pArq8
r“0 Ă T such that A “

`Ť8
r“0 q

rAr
˘

Y A8

where A8 “ t0u if 0 P A and is empty otherwise. Then we have

φpAq “ φ

˜
8ď

r“0

qrAr

¸
` φpA8q “

˜
8ÿ

r“0

φrpArq
¸

` φ8pA8q

from which the result follows. ✷

The following lemma is the main ingredient in the proof of Theorem 5.3.26 below.

Lemma 5.3.24 Let f P L1pK, νq and φ P MpKq such that for all F P DompτKi{2qXCpKq
we have

ş
F dφ “ xτKi{2pF q, fy. Then for all r P N0 there exists a function gr P L1pTq

such that grdθ “ dφr (where φr P MpTq is the measure in the decomposition of φ given

by Proposition 5.3.23).

Proof

Fix s P N0 and l P Z and let F : K Ñ C be the function qre2πiθ ÞÑ δr,se
´2πilθ. From

Lemma 5.3.20 we have F P DompτKi{2q and pτKi{2pF qqpqre2πiθq “ δr,sq
le´2πilθ and so

xτKi{2pF q, fy “ p1 ´ q2qq2sql
ż 1

0

fspe2πiθqe´2πilθ dθ “ p1 ´ q2qq2sql pfsplq.

We also have ż

K

F dφ “
ż

T

z´ldφs “ pφsplq

where pφs P ℓ8pZq is the Fourier transform of φs (see Definition A.7.3). Then as
ş
K
F dφ “

xτKi{2pF q, fy and because s was arbitrary we can equate to get

pφrplq “ p1 ´ q2qq2rql pfrplq (5.23)
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for all r P N0 and l P Z.

We know that if A Ă T is open then A “ tx P T | x P Au (not to be confused with

closure here) is also open and so if A is measurable then A is measurable. So we can

define a measure ψr P MpTq by ψrpAq “ φrpAq for all Borel subsets A of T making

the map φr ÞÑ ψr an isometry on MpTq. We have χApzq “ χApzq and by linearity and

density of all χA in CpTq we have

ż 1

0

hpe2πiθq dψrpθq “
ż 1

0

hpe´2πiθqdφrpθq

for all h P CpTq. So in particular for all l P Z we have xψrplq “ pφrp´lq and then by

Equation (5.23) we have

xψrplq “ p1 ´ q2qq2rq´l pfrp´lq (5.24)

for all l P Z and r P N0.

We define a function λ´
r : Z Ñ C by

λ´
r plq “

$
&
%

xψrplq if l ă 0

0 if l ě 0
“

$
&
%

p1 ´ q2qq2rq´l pfrp´lq if l ă 0

0 if l ě 0,

that is λ´
r is the negative coefficients in Equation (5.24). We know that fr P L1pK, νq and

so pfr P c0pZq and so

ÿ

lPZ

ˇ̌
λ´
r plq

ˇ̌
“ p1 ´ q2qq2r

8ÿ

l“1

ql
ˇ̌
ˇ pfrplq

ˇ̌
ˇ ď p1 ´ q2qq2r

››› pfr
›››

8

8ÿ

l“1

ql “ qp1 ` qqq2r
››› pfr

›››
8

where we’ve used that
ř8
l“1 q

l “ q

1´q . As this is finite we have λ´
r P ℓ1pZq and as

ℓ1pZq Ă ApZq, where ApZq is the Fourier algebra, there exists some h´
r P L1pTq such

that xh´
r plq “ λ´

r plq for all l P Z.

We define a measure ψ´
r such that dψ´

r “ h´
r dθ and we let ψ`

r “ ψr ´ ψ´
r . Then we

have

209
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xψ`
r plq “

$
&
%

xψrplq if l ě 0

0 if l ă 0

and so for all l ă 0 we have
ş1
0
e´2πilθ dψ`

r pθq “ 0. Then by the Theorem of F. and M.

Riesz (Theorem 17.13 in Rudin (1987)) we have that this is absolutely continuous and so

there is some h`
r P L1pTq such that ψ`

r pAq “
ş1
0
h`
r pe2πiθqχApe2πiθq dθ. We then define

hr “ h`
r ` h´

r and we have that

hrdθ “ ph`
r ` h´

r qdθ “ ψ`
r ` ψ´

r “ ψr.

Finally let gr P L1pTq be the function grpe2πiθq “ hrpe´2πiθq for all θ P r0, 1q. We then

have grdθ “ hrdθ “ ψr “ φr as required. ✷

Lemma 5.3.25 Fix f P L1pK, νq and let φ P MpKq such that for all F P DompτKi{2q X
CpKq we have

ş
F dφ “ xτKi{2pF q, fy. Then φ8pt0uq “ 0 for φ8 P Mpt0uq the measure

in 5.3.23

Proof

Let s P N0 be fixed and let Fs : K Ñ C be the function qre2πiθ ÞÑ δr,s and Fsp0q “ 0.

Clearly Fs P CpKq and from Proposition 5.3.10 we have pτKt pF qqpqre2πiθq “ δr,s and so

clearly F P DompτKi{2q with τKi{2pF q “ F . Then it follows from
ş
F dφ “ xτKi{2pF q, fy that

for all s P N0 we have

ż

T

1 dφs “ p1 ´ q2qq2s
ż 1

0

fpqse2πiθq dθ

Now let F P CpKq be the function z ÞÑ 1. Then clearly F P DompτKi{2q with τKi{2pF q “ F

and thus from
ş
F dφ “ xτKi{2pF q, fy we have

φ8p0q `
8ÿ

r“0

ż

T

1 dφr “ p1 ´ q2q
8ÿ

r“0

q2r
ż 1

0

fpqre2πiθqdθ.
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So we have φ8p0q “ 0 as required. ✷

Theorem 5.3.26 Fix f P L1pK, νq such that the map DompτKi{2q X CpKq Ñ C given by

F ÞÑ xτKi{2pF q, fy is bounded. Then there exists some g P L1pK, νq such that F ÞÑ xF, gy
extends this given map to a map CpKq Ñ C. In particular it follows that f P L1

7 pK, νq.

Proof

As the map DompτKi{2q Ñ C given by F ÞÑ xτKi{2pF q, fy is bounded and as DompτKi{2q
is dense in CpKq we can extend this to a bounded map CpKq Ñ C. Then identifying

CpKq˚ with MpKq it follows that there is some φ P MpKq such that

ż

K

F dφ “ xτKi{2pF q, fy

for all F P DompτKi{2q. We show that there is some g P L1pK, νq such that
ş
K
F dφ “

xF, gy.

From Proposition 5.3.23 we have a decomposition of
ş
K
F dφ. From Lemma 5.3.24

we have for each φr P MpTq that there is some gr P L1pTq such that grdθ “ dφr and

from Lemma 5.3.25 we have φ8p0q “ 0. From this we have

φpAq “
ż

K

χA dφ “
8ÿ

r“0

ż 1

0

χApqre2πiθq dφrpθq “
8ÿ

r“0

ż 1

0

χApqre2πiθqgrpe2πiθq dθ

for all measurable A on K.

Let A be a measurable subset of K such that νpAq “ 0, then we have

8ÿ

r“0

q2r
ż 1

0

χApqre2πiθq dθ “ 0.

As χA is positive it follows that
ş1
0
χApqre2πiθq dθ “ 0 for all r P N0, i.e. A is negligible

on each circle. Define hr : T Ñ C by hrpe2πiθq “ χApe2πiθqgrpe2πiθq and we have

ż 1

0

ˇ̌
hrpe2πiθq

ˇ̌
dθ “

ż 1

0

χApe2πiθq
ˇ̌
grpe2πiθq

ˇ̌
dθ ď

ż 1

0

ˇ̌
grpe2πiθq

ˇ̌
dθ ă 8
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and so hr P L1pTq and hr “ χA almost everywhere so
ş1
0
hrpe2πiθq dθ “ 0. It follows that

φ is absolutely continuous and so from the Radon-Nikodym theorem there exists some

g P L1pK, νq such that dφ “ g dν and furthermore we have xF, gy “ xτKi{2pF q, fy for all

F P CpKq X DompτKi{2q. ✷

5.3.4 L1

7 pSUqp2qq and L1

7 pK, νq

We might try to extend Theorem 5.3.26 to L1
7 pSUqp2qq after proving this for L1

7 pK, νq. We

show however in this section that this is a non-trivial question to answer. This is still an

open problem for SUqp2q.

It will be difficult to transcribe the proof of Theorem 5.3.26 to the L1
7 pSUqp2qq case

as this relies heavily on measure theoretic techniques. However, given any f P L1pK, νq
we have ω :“ E˚pfq P L1pSUqp2qq where E is given by Theorem 5.2.10 such that for all

x P L8pSUqp2qq we have xx, ωy “ xEpxq, fy. We can consider “shifting” ω with the ak

and pa˚qk elements of HopfpSUqp2qq for k P Z. That is for all k P Z we can consider

ω ¨ pa˚qk as the map xx, ω ¨ pa˚qky “ xpa˚qkx, ωy for x P L8pSUqp2qq (where we remind

that for k ă 0 we let pa˚qk “ a´k and ak “ pa˚q´k). We let g, h P L2pK, νq such that

f “ gh and }f}1 “ }g}2}h}2. Then for all x P L8pSUqp2qq we have

xx, ω ¨ pa˚qky “ xEppa˚qkxq, fy “
`
Eppa˚qkxqg

ˇ̌
h
˘

“
`
pa˚qkxUg

ˇ̌
Uh

˘
“ xx, ωUg,akUhy

where U : L2pK, νq Ñ L2pSUqp2qq is the map from Proposition 5.2.8 and so we have

ω ¨ pa˚qk “ ωUg,akUh. We have the following easy proposition.

Proposition 5.3.27 Let f, g P L2pK, νq and for k P Z let ωk :“ ωUpfq,akUpgq P L1pSUqp2qq.

We have ωk P L1
7 pSUqp2qq for all k P Z if and only if ωf,g :“ fg P L1

7 pK, νq in which case

we have xx, ω7
ky “ xEppa˚qkxq, ω7

f,gy.
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Proof

Say ωk P L1
7 pSUqp2qq for all k P Z, then for F P DompSKq we have

xSKpF q˚, ωf,gy “ pSKpF q˚f |gq “ pEpSpFpF qq˚qf |gq

“ pSpFpF qq˚Upfq|Upgqq “ xSpFpF qq˚, ω0y “ xF,F˚pω7
0qy

(where ω0 denotes ωk with k “ 0) and so ωf,g P L1
7 pK, νq with ω

7
f,g “ F˚pω7

0q.

Conversely, say ωf,g P L1
7 pK, νq. Let k P Z and x P DompSq, then using that S is an

anti-homomorphism, Spa˚q “ a and that E is a ˚-map we have

xSpxq˚, ωky “ pSpxq˚Upfq|akUpgqq “ pSppa˚qkxq˚Upfq|Upgqq “ pEpSppa˚qkxqq˚f |gq

“ xSKpEppa˚qkxqq, ω˚
f,gy “ xEppa˚qkxq, ω7

f,gy “ xx,E˚pω7
f,gq ¨ pa˚qky.

So ωk P L1
7 pSUqp2qq for all k P Z.

We have shown that for all x P DompSq we have xx, ω7
ky “ xEppa˚qkxq, ω7

f,gy and as

DompSq is weak˚-dense in L8pSUqp2qq this holds for all x P L8pSUqp2qq. ✷

We now ask is this sufficient to capture all of L1
7 pSUqp2qq in some way? One might

hope that we can build L1
7 pK, νq by taking all sequences pfkqkPZ Ă L1

7 pK, νq such that

ω :“ ř8
k“´8 E˚pfkq ¨ pa˚qk is convergent in L1pSUqp2qq. However we show in the next

example that we can find such a sequence of functions such that ω P L1pSUqp2qq but ω R
L1

7 pSUqp2qq. We have not yet found a satisfactory way of “reconstructing” L1
7 pSUqp2qq

from L1
7 pK, νq at present.

Lemma 5.3.28 Fix s ě 0 and let f P L1pK, νq be the map qre2πiθ ÞÑ δr,se
2πiαθ for α P R.

Then fs P L1
7 pK, νq with f 5pqre2πiθq “ δr,sq

αe2πiαθ.

Proof

For all r ě 0 let φr P L1pTq be given by φrpe2πiθq “ fpqre2πiθq and let ψr : T Ñ C be

213



5. THE COMPACT QUANTUM GROUP SUQp2q

given by

ψrpe2πiθq “ δr,sq
αe2πiαθ

Clearly ψr P L1pTq for all r ě 0 and
ř8
r“0 q

2r}ψr}1 is finite. We show that xψrplq “ ql pφrplq
for all r P N0 and l P Z then by Proposition 5.3.22 we have f P L1

7 pK, νq with f 5 given

by qre2πiθ ÞÑ ψrpe2πiθq. Fix r P N0 and l P Z, then

pφrplq “
ż 1

0

fpqre2πiθqe´2πilθ dθ “ δr,s

ż 1

0

e2πipα´lqθ dθ “ δr,sδl,α

and so using this we have

xψrplq “
ż 1

0

ψrpe2πiθqe´2πilθ dθ “ δr,sq
αδl,α “ ql pφrplq

and thus f P L1
7 pK, νq. ✷

Lemma 5.3.29 Fix s ě 0 and let f P L1
7 pK, νq be the map qre2πiθ ÞÑ δr,se

2πiαθ for α P R.

Then for k ě 0 we have E˚pfq ¨ pa˚qk P L1
7 pSUqp2qq and for p ě 0 we have

xapx, pE˚pfq ¨ pa˚qkq5y “ δp,kp1 ´ q2qq2kp1 ´ q2q . . . p1 ´ q2kqqα

ˆ
ż 1

0

pEpxqqpqre2πiθqe2πiαθ dθ.

Proof

We have f is non-zero everywhere and so we can define g “ f

|f |1{2 and h “ |f |1{2
where

|f |1{2 pzq “ |fpzq|1{2
for z P K. Then g, h P L2pK, νq, f “ ωg,h and }f}L1pK,νq “

}g}L2pK,νq}h}L2pK,νq. Then we can identify E˚pfq ¨ pa˚qk “ ωUg,akUh and it follows from

Proposition 5.3.27 that E˚pfq ¨ pa˚qk P L1
7 pSUqp2qq.

Let x P C˚pc, 1q X Dompτi{2q, then using that τi{2 is a homomorphism by Proposition

3.2.20 and that a˚ P Dompτi{2q with τi{2pa˚q “ a˚ by Corollary 5.1.9 we have
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xapx, pE˚pfq ¨ pa˚qkq5y “ xpa˚qkτi{2papxq,E˚pfqy

“ xτKi{2pEppa˚qkapxqq, fky “ xEppa˚qkapxq, f 5
ky

where we’ve also used Proposition 5.3.8. We can use Relations 5.1 to calculate pa˚qkap

dependent on p. If p ě k we have

pa˚qkap “ pa˚qk´1p1 ´ c˚cqap´1 “ pa˚qk´1ap´1p1 ´ q´2pp´1qc˚cq

“ pa˚qk´2ap´2p1 ´ q´2pp´2qc˚cqp1 ´ q´2pp´1qc˚cq

“ ¨ ¨ ¨ “ ap´kp1 ´ q´2pp´kqc˚cq . . . p1 ´ q´2pp´1qc˚cq

and similarly if p ă k we have

pa˚qkap “ pa˚qk´pp1 ´ c˚cqp1 ´ q´2c˚cq . . . p1 ´ q´2pp´1qc˚cq.

So it follows that Eppa˚qkapxq “ δp,kp1´z˚zq . . . p1´q´2pk´1qz˚zqEpxq and using Lemma

5.3.28 for f 5 we have

xapx, pE˚pfq ¨ pa˚qkq5y “ δk,pxp1 ´ z˚zq . . . p1 ´ q´2pk´1qz˚zqEpxq, f 5
ky

“ δk,pp1 ´ q2q
8ÿ

r“0

q2rp1 ´ q2rqp1 ´ q2r´2q . . . p1 ´ q2r´2pk´1qqδr,kqα

ˆ
ż 1

0

pEpxqqpqre2πiθqe2πiαθ dθ

“ δk,pp1 ´ q2qq2kp1 ´ q2q . . . p1 ´ q2kqqα
ż 1

0

pEpxqqpqre2πiθqe2πiαθ dθ. ✷

Example 5.3.30 For k ă 0 let fk “ 0 and for k ě 0 let fk P L1pK, νq be given by

fkpqre2πiθq “ δr,ke
2πip´4k´αpkqqθ
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where for each k we choose αpkq P N such that αpkq ě lnp1 ´ q2q ` řk

i“1 lnp1 ´ q2q
ln q

.

Clearly fk P L1
7 pK, νq for all k P Z and from Lemma 5.3.28 we have fk P L1

7 pK, νq for

all k ě 0 with f 5
kpqre2πiθq “ δr,ke

2πip´4k´αpkqqθ for k ě 0. From the proof of Lemma 5.3.29

we have gk, hk P L2pK, νq such that fk “ ωgk,hk and }fk}L1pK,νq “ }gk}L2pK,νq}hk}L2pK,νq.

Now define ω :“ ř8
k“0 ωUpgkq,akUphkq and we will show that ω P L1pSUqp2qq but ω R

L1
7 pSUqp2qq.

We have }fk} “ p1 ´ q2qq2k for all k ě 0 and so

}ω} ď
8ÿ

k“0

}ωUpgkq,akUphkq} “
8ÿ

k“0

}Upgkq}}akUphkq} ď
8ÿ

k“0

}gk}}hk} “
8ÿ

k“0

}fk} “ 1

and thus ω P L1pSUqp2qq.

Let x P Dompτi{2q, then from Proposition 5.3.27 we have ωUpgkq,akUphkq P L1
7 pSUqp2qq

for all k P Z and so from Proposition 4.1.11 and Notation 4.1.12 we have

xτi{2pxq, ωy “
8ÿ

k“0

xτi{2pxq, ωUpgkq,akUphkqy “
8ÿ

k“0

xx, ω5
Upgkq,akUphkqy.

So it follows that ω P L1
7 pSUqp2qq if and only if

ř8
k“0 ω

5
Upgkq,akUphkq P L1pSUqp2qq.

As CpKq –i C
˚pc, 1q we consider F P CpKq given by qre2πiθ ÞÑ δr,ke

2πip4k`αpkqqθ

(and F p0q “ 0), then we have

}F }CpKq “ sup
zPK

|F pzq| “ sup
θPr0,1q

ˇ̌
F pqke2πiθq

ˇ̌
“ 1

and ˇ̌
ˇ̌
ż 1

0

F pqke2πiθqe2πip´4k´αpkqqθ dθ

ˇ̌
ˇ̌ “

ˇ̌
ˇ̌
ż 1

0

1 dθ

ˇ̌
ˇ̌ “ 1.

So letting x P C˚pc, 1q with Epxq “ F we have from Lemma 5.3.29 that

ˇ̌
ˇxakx, ω5

Upgkq,akUphkqy
ˇ̌
ˇ “ p1 ´ q2qq´2k´αpkq

kź

l“1

p1 ´ q2lq.
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We have chosen αpkq P N such that αpkq ě lnp1 ´ q2q ` řk

l“1 lnp1 ´ q2lq
ln q

. As 0 ă q ă 1

then ln q ă 0 and so

αpkq ln q ď lnp1 ´ q2q `
kÿ

l“1

lnp1 ´ q2lq

and taking exponentials we have

qαpkq ď p1 ´ q2q
kź

l“1

p1 ´ q2lq

meaning

q´αpkq ě 1

p1 ´ q2qśk

l“1p1 ´ q2lq
.

Then substituting this above we have

ˇ̌
ˇxakx, ω5

Upgkq,akUphkqy
ˇ̌
ˇ ě q´2k

and so ˇ̌
ˇ̌
ˇ

C
akx,

8ÿ

k“0

ω5
Upgkq,akUphkq

Gˇ̌
ˇ̌
ˇ “

ˇ̌
ˇxakx, ω5

Upgkq,akUphkqy
ˇ̌
ˇ ě q´2k

and

›››
ř8
k“0 ω

5
Upgkq,akUphkq

››› ě q´2k for all k ě 0. In particular we have shown that
ř8
k“0 ω

5
Upgkq,akUphkq does not converge and is not in L1pSUqp2qq and therefore ω R L1

7 pSUqp2qq.

5.4 SUqp2q ˆ SUq1p2q

In this section we investigate the quantum group product SUqp2q ˆ SUq1p2q for q, q1 P
p´1, 1qzt0u as per Definition-Theorem 2.5.2. In investigating this we will show that

L1
7 pSUqp2q ˆ SUqp2qq is not isometrically isomorphic to L1

7 pSUqp2qq pbL1
7 pSUqp2qq an-

swering a question posed at the beginning of Section 4.2.3.

Take two compact matrix quantum groups pCpSUqp2qq,∆, uq and pCpSUq1p2qq,∇, vq.
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Let a, c and a1, c1 denote the generators of CpSUqp2qq and CpSUq1p2qq respectively and

then we have u “

¨
˝ a ´qc˚

c a˚

˛
‚and v “

¨
˝ a1 ´q1c1˚

c1 a1˚

˛
‚. We consider the quantum

group SUqp2q ˆ SUq1p2q. It follows from Proposition 3.2.26 and Theorem 3.2.27 that

SUqp2q ˆ SUq1p2q is a compact matrix quantum group with generators a b 1, c b 1, 1 b
a1, 1 b c1 for HopfpSUqp2q ˆ SUq1p2qq.

Let K “
 
qre2πiθ

ˇ̌
r P N0, θ P r0, 1s

(
Y t0u with measures

νpAq “ p1 ´ q2q
8ÿ

r“0

q2r
ż 1

0

χApqre2πiθq dθ

and similarly for K 1. We will now investigate properties of SUqp2q ˆSUq1p2q and KˆK 1

similar to those given previously for SUqp2q and K.

Proposition 5.4.1 We have completely isometric isomorphisms

CpKˆK 1q –ci CpKq bminCpK 1q –ci C
˚pc, 1q bminC

˚pc1, 1q –ci C
˚pcb1, 1bc1, 1b1q.

Proof

We know from C˚-algebra theory that CpK ˆ K 1q –i CpKq bminCpK 1q. Also from

Proposition 5.2.4 we have that CpKq –i C
˚pc, 1q and CpK 1q –i C

˚pc1, 1q and therefore

CpKq bminCpK 1q –i C
˚pc, 1q bminC

˚pc1, 1q. We have a unital commutative C˚-algebra

C˚pcb1, 1b c1, 1b1q as cb1 and 1b c1 are normal and commute and we have isometric

˚-homomorphisms C˚pc, 1q � � // CpSUqp2qq and C˚pc1, 1q � � // CpSUq1p2qq . Then by

Proposition IV.4.22 in Takesaki (2003a) it follows easily that we have an isometric ˚-

homomorphism

CpKq bminCpK 1q � � // CpSUqp2qq bminCpSUq1p2qq CpSUqp2q bmin SUq1p2qq.

Clearly the image of CpK ˆ K 1q –i CpKq bminCpK 1q under this map is C˚pc b 1, 1 b
c1, 1 b 1q and so we have CpK ˆ K 1q –i C

˚pc b 1, 1 b c1, 1 b 1q as required. These are
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then all completely isometric isomorphisms as they are C˚-algebraic ˚-isomorphisms. ✷

For convenience we will often identify L1pK ˆK 1, ν ˆ ν 1q with L1pK, νq pbL1pK 1, ν 1q as

per the following proposition.

Proposition 5.4.2 We have a L1pK, νq pbL1pK 1, ν 1q –ci L
1pK ˆK 1, ν ˆ ν 1q where pf b

gqpqre2πiθ, pq1qr1
e2πiθ

1q “ fpqre2πiθqgppq1qr1
e2πiθ

1q for all f P L1pK, νq and g P L1pK 1, ν 1q.

Proof

We have that L8pK, νq is a commutative von Neumann algebra with the minimal op-

erator space structure and so, by Proposition, 1.1.24 its predual L1pK, νq has the maxi-

mal operator space structure. By Proposition 1.1.48 we have L1pK, νq pbL1pK 1, ν 1q –ci

MAXpL1pK, νq b̂L1pK 1, ν 1qq. As ν and ν 1 are clearly σ-finite it follows from a result in

Banach space and measure theory (see Chapter 2 in Ryan (2002)) that as Banach spaces

we have L1pK, νq b̂L1pK 1, ν 1q –i L
1pK ˆK 1, ν ˆ ν 1q with the equation given in the the-

orem. The result follows as L1pK ˆK 1, ν ˆ ν 1q has the maximal operator space structure

as the predual of the space L8pK ˆK 1, ν ˆ ν 1q with minimal operator space structure. ✷

For ease of notation, in the remainder of this section we use a superscript q for an operator

on SUqp2q, q1 for an operator on SUq1p2q and q ˆ q1 for an operator on SUqp2q ˆ SUq1p2q.

We also consider the K spaces and we will similarly use superscripts K, K 1 and K ˆK 1.

Proposition 5.4.3 Using that L8pSUqp2q ˆ SUq1p2qq “ L8pSUqp2qq bL8pSUq1p2qq and

L1pK ˆ K 1, ν ˆ ν 1q –ci L
1pK, νq pbL1pK 1, ν 1q we have a normal ˚-map and complete

quotient map given by

E
qˆq1

:“ E
q b E

q1

: L8pSUqp2q ˆ SUq1p2qq Ñ L8pK ˆ K 1, ν ˆ ν 1q

and a normal ˚-homomorphism and completely isometric embedding given by

F
qˆq1

:“ F
q b F

q1

: L8pK ˆ K 1, ν ˆ ν 1q Ñ L8pSUqp2q ˆ SUq1p2qq.
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We have that Fqˆq1
is a right inverse to E

qˆq1
and for all x P C˚pc b 1, 1 b c1, 1 b 1qw

˚

we have pFqˆq1 ˝ E
qˆq1qpxq “ x and ImageFqˆq1 “ C˚pc b 1, 1 b c1, 1 b 1qw

˚

.

Proof

From the maps Eq : L8pSUqp2qq Ñ L8pK, νq and F
q : L8pK, νq Ñ L8pSUqp2qq given

by Theorems 5.2.9 and 5.2.10 we have complete contractions E
q b E

q1
and F

q b F
q1

.

Clearly we have E
qˆq1 ˝ F

qˆq1 “ idL8pKˆK1,νˆν1q and so it follows from Lemma 1.1.20

that Eqˆq1
is a complete quotient map and F

qˆq1
is a completely isometric embedding.

The map E
qˆq1

is normal as it has a pre-adjoint map given by E
q

˚ b E
q1

˚ and it is

a ˚-map as E
q and E

q1
are ˚-maps. Similarly F

qˆq1
is a normal ˚-homomorphism. For

x P C˚pc b 1, 1 b c1, 1 b 1qw
˚

we have

pFqˆq1 ˝ E
qˆq1qpxq “ ppFq ˝ E

qq b pFq1 ˝ E
q1qqpxq “ x.

It then follows that ImageFqˆq1 Ą C˚pc b 1, 1 b c1, 1 b 1qw
˚

. We know that Fq|CpKq has

image C˚pc, 1q and similarly for F
q1

and so we have Image F
q b F

q1
ˇ̌
CpKq bmin CpK1q “

C˚pc, 1q b C˚pc1, 1q “ C˚pc b 1, 1 b c1, 1 b 1q. Then taking the weak˚-closure we have

that ImageFqˆq1 Ă C˚pc b 1, 1 b c1, 1 b 1qw
˚

. ✷

Similarly to the case of SUqp2q we define the following notation.

Notation 5.4.4 Let Pqˆq1
: L8pSUqp2q ˆ SUq1p2qq Ñ C˚pc, 1q b C˚pc1, 1qw

˚

denote the

map F
qˆq1 ˝ E

qˆq1
.

We define the scaling group on L8pKˆK 1, νˆν 1q and then prove some properties related

to this. We could also define the antipode and unitary antipode in the obvious way but

these will not be needed.

Definition 5.4.5 For z P C let

DompτKˆK1

z q “
!
f P L8pK ˆ K 1, ν ˆ ν 1q

ˇ̌
ˇ Fqˆq1pfq P Dompτ qˆq1

z q
)
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and let τKˆK1

z : L8pK ˆ K 1, ν ˆ ν 1q Ñ L8pK ˆ K 1, ν ˆ ν 1q be given by τKˆK1

z pfq “
E
qˆq1pτ qˆq1

z pFqˆq1pfqqq for f P DompτKˆK1

z q.

The proof of the following proposition is almost identical to that of Proposition 5.3.2 so

we omit the details.

Proposition 5.4.6 Let z P C and x P Dompτ qˆq1

z q, then P
qˆq1pxq P Dompτ qˆq1

z q with

τ qˆq1

z pPqˆq1pxqq “ P
qˆq1pτ qˆq1

z pxqq.

Corollary 5.4.7 For z P C and x P Dompτ qˆq1

z q we have E
qˆq1pxq P DompτKˆK1

z q
and pτKˆK1

z ˝ E
qˆq1qpxq “ pEqˆq1 ˝ τ qˆq1

z qpxq. Similarly for F P DompτKˆK1

z q then

F
qˆq1pF q P Dompτ qˆq1

z q and pτ qˆq1

z ˝ F
qˆq1qpF q “ pFqˆq1 ˝ τKˆK1

z qpF q.

The proof of the following proposition is similar to that of Proposition 5.3.9.

Proposition 5.4.8 For z P C we have PolypKq d PolypK 1q is a core for τKˆK1

z .

Proof

We have that HopfpSUqp2q ˆ SUq1p2qq “ HopfpSUqp2qq d HopfpSUq1p2qq is a core for

τ qˆq1

z by Proposition 3.2.19, then for F P DompτKˆK1

z q we have F
qˆq1pF q P Dompτ qˆq1

z q
and so there is a net pxαq Ă HopfpSUqp2q ˆ SUq1p2qq such that

}Fqˆq1pF q ´ xα} Ñ 0 and }τ qˆq1

z pFqˆq1pF qq ´ τ qˆq1

z pxαq} Ñ 0.

We have Eqˆq1pxαq P PolypKq dPolypK 1q as Eqˆq1 “ E
q bE

q1
and F

qˆq1 “ F
q bF

q1
and

so

F
qˆq1pEqˆq1pxαqq “

´
pFq ˝ E

qq b pFq1 ˝ E
q1q
¯

pxαq “ pP q b P q1qpxαq

P
`
HopfpSUqp2qq X C˚pc, 1q

˘
d
`
HopfpSUq1p2qq X C˚pc1, 1q

˘
.
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We have

}Eqˆq1pxαq ´ F } “ }Eqˆq1pxαq ´ E
qˆq1pFqˆq1pF qq} ď }xα ´ F

qˆq1pF q} Ñ 0

and from Proposition 5.4.6 we have

}τKˆK1

z pEqˆq1pxαqq ´ τKˆK1

z pF q} “ }Eqˆq1pτ qˆq1

z pPqˆq1pxαqqq ´ E
qˆq1pτ qˆq1

z pFqˆq1pF qqq}

ď }τ qˆq1

z pxαq ´ τ qˆq1

z pFqˆq1pF qq} Ñ 0

as required. ✷

The proof of the following is very similar to that of Theorem 5.3.12.

Theorem 5.4.9 Let f P L1pKˆK 1, νˆν 1q. Then ω :“ E
qˆq1

˚ pfq P L1
7 pSUqp2qˆSUq1p2qq

if and only if there exists a g P L1pK ˆK 1, ν ˆ ν 1q such that for all F P DompτKˆK1

i{2 q we

have

xF, gy “ xτKˆK1

i{2 pF q, fy.

We now make the following definition of L1
7 pK ˆ K 1, ν ˆ ν 1q. This is slightly different

to the definition of L1
7 pK, νq. We could have started with a definition similar to that of

Definition 5.3.13 and we would have derived our definition as a consequence. The two

definitions can be shown to be equivalent using similar techniques as we have used in

Proposition 5.3.17 for example, and we choose this definition here as this is all we require

for our main result in this section.

Definition 5.4.10 We define

L1
7 pK ˆ K 1, ν ˆ ν 1q

:“

$
&
%f P L1pK ˆ K 1, ν ˆ ν 1q

ˇ̌
ˇ̌
ˇ̌

D g P L1pK ˆ K 1, ν ˆ ν 1q such that

xτKˆK1

i{2 pF q, fy “ xF, gy @F P DompτKˆK1

i{2 q

,
.
- .
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We denote the map g in the definition of L1
7 pKˆK, νˆνq by f 5 for f P L1

7 pKˆK, νˆνq.

Using a very similar proof to that of Proposition 4.1.3 we can show that this is a Banach

space with norm

}f}L1

7 pKˆK1,νˆν1q “ maxt}f}L1pKˆK1,νˆν1q, }f 5}L1pKˆK1,νˆν1qu

for f P L1
7 pKˆK 1, νˆν 1q. We wish to introduce the operator space structure on L1

7 pKˆ
K 1, ν ˆ ν 1q next. The next two propositions have proofs that follow similarly to that of

Propositions 5.3.14 and 5.3.16.

Proposition 5.4.11 The map E
qˆq1 7

˚ : L1
7 pKˆK 1, νˆν 1q Ñ L1

7 pSUqp2qˆSUq1p2qq as the

restriction and corestriction of the map E
qˆq1

˚ : L1pKˆK 1, νˆν 1q Ñ L1pSUqp2qˆSUqp2qq
from Proposition 5.4.3 is an isometric embedding.

Definition 5.4.12 We let L1
7 pK ˆK 1, ν ˆ ν 1q have the operator space structure such that

the map E
qˆq1 7

˚ from the preceding proposition is a completely isometry.

Proposition 5.4.13 (i) The map ΨKˆK1
: L1

7 pKˆK 1, νˆν 1q Ñ L1pKˆK 1, νˆν 1q‘8

L1pK ˆ K 1, ν ˆ ν 1q given by f ÞÑ pf, f 5q is a complete isometry.

(ii) For ω P L1
7 pSUqp2q ˆ SUq1p2qq we have F˚pωq P L1

7 pK ˆ K 1, ν ˆ ν 1q and we have

a map F
qˆq1 7

˚ : L1
7 pSUqp2qq Ñ L1

7 pK, νq that is the restriction and corestriction

of F
qˆq
˚ . Furthermore this map is a complete quotient map that is a left inverse of

E
qˆq1 7

˚.

We now concentrate on SUqp2q ˆ SUqp2q and we answer the question from Section 4.2.3

by showing that L1
7 pSUqp2qq pbL1

7 pSUqp2qq is not completely isometrically isomorphic to

L1
7 pSUqp2q ˆ SUqp2qq. Assume there exists a completely isometric isomorphism T :

L1
7 pSUqp2qq pbL1

7 pSUqp2qq Ñ L1
7 pSUqp2q ˆ SUqp2qq. Then as L1

7 -algebras are dense in
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L1-algebras the following diagram must commute

L1
7 pSUqp2qq pbL1

7 pSUqp2qq T //

ιqbιq
��

L1
7 pSUqp2q ˆ SUqp2qq

ιqˆq

��
L1pSUqp2qq pbL1pSUqp2qq L1pSUqp2q ˆ SUqp2qq

and so T is the completely contractive map from Theorem 4.2.14. We show in the fol-

lowing counterexample that this map cannot give us a completely isometric isomorphism

after some preparatory lemmas.

Lemma 5.4.14 Let Pq7
˚ :“ E

q7
˚ ˝Fq7

˚ and P
qˆq7

˚ :“ F
qˆq7

˚ ˝Eqˆq7
˚. Then T ˝pPq7

˚ bP
q7

˚q “
P
qˆq7

˚ ˝ T where T is the completely contractive map from Theorem 4.2.14.

Proof

We show that ιq ˝ P
q7

˚ “ P
q
˚ ˝ ιq first. Let ω P L1

7 pSUqp2qq and x P L8pSUqp2qq, then we

have pιq ˝ P
q7

˚qpωq P L1pSUqp2qq and so have that following

xx, pιq ˝ P
q7

˚qpωqy “ xx,Pq˚pωqy “ xPqpxq, ιqpωqy “ xx, pPq˚ ˝ ιqqpωqy

where we’ve used that Pq7
˚ is the restriction of P

q
˚. Then as this holds for all x P L8pSUqp2qq

and ω P L1
7 pSUqp2qq we have the formula stated. We can show similarly that ιqˆq˝Pqˆq7

˚ “
P
qˆq
˚ ˝ ιqˆq.

Let Ω P L1
7 pSUqp2q ˆ SUqp2qq, then by Theorem 4.2.14 we have ιqˆq ˝ T “ ιq b ιq

and so

pT ˝ pPq7
˚ b P

q7
˚qqpΩq “ pιqˆq ˝ T ˝ pPq7

˚ b P
q7

˚qqpΩq “ ppιq b ιqq ˝ pPq7
˚ b P

q7
˚qqpΩq

“ ppPq˚ b P
q
˚q ˝ pιq b ιqqqpΩq “ pPqˆq

˚ ˝ ιqˆq ˝ T qpΩq “ pPqˆq7
˚ ˝ T qpΩq

where we’ve used that P
qˆq
˚ “ P

q
˚ b P

q
˚ by Proposition 5.4.3. ✷
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Lemma 5.4.15 Fix s, l ě 0 and let G P L1pK ˆ K, ν ˆ νq be the map

Gpqre2πiθ, qr1

e2πiθ
1q “ δr,sδr1,s

1

p1 ´ q2q2 e
´2πilθ`2πilθ1

.

Then G P L1
7 pK ˆ K, ν ˆ νq with G “ G5.

Proof

For F P CpK ˆ Kq it follows from Definition 5.4.5, Propositions 5.4.3 and 2.5.5 that

τKˆK
t “ E

qˆq ˝ τ qˆq
t ˝ F

qˆq “ pEq b E
qq ˝ pτ qt b τ

q
t q ˝ pFq b F

qq “ τKt b τKt

and so

pτKˆK
t pF qqpqre2πiθ, qr1

e2πiθ
1q “ F pqre2πiθ`2it ln q, qr

1

e2πiθ
1`2it ln qq.

Let m,n,m1, n1 P N0 and consider F “ z˚mzn b z˚m1

zn
1 P PolypKq d PolypKq. By

considering maps Spi{2q Ñ CpK ˆ Kq given by

z ÞÑ qrpm`nqqr
1pm1`n1qe2πipn´mqθ`2πipn1´m1qθ1`2ipn`n1´m´m1qz ln q

it is straightforward to show that

pτKˆK
i{2 pF qqpqre2πiθ, qr1

e2πiθ
1q “ qrpm`nqqr

1pm1`n1qqm`m1´n´n1

e2πipn´mqθ`2πipn1´m1qθ1

.

Using the completely isometric isomorphism from Proposition 5.4.2 we can calculate

xτKˆK
i{2 pF q, Gy “

ż

K

ˆż

K1

pτKˆK
i{2 pF qqGdν 1

˙
dν

“
8ÿ

r“0

q2r
ż 1

0

˜
8ÿ

r1“0

q2r
1

ż 1

0

qrpm`nqqr
1pm1`n1qqm`m1´n´n1

e2πipn´mqθ`2πipn1´m1qθ1

δr,sδr1,se
´2πilθe2πilθ

1

dθ1
¯
dθ

“ q4sqspm`n`m1`n1qqm´n`m1´n1

δl,n´mδl,m1´n1 “ q4sqspm`n`m1`n1qδl,n´mδl,m1´n1
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and similarly

xF,Gy “ q4sqspm`n`m1`n1qδl,n´mδl,m1´n1 .

Thus extending this by linearity we have that xτKˆK
i{2 pF q, Gy “ xF,Gy for all F P

PolypKq d PolypKq and then by Proposition 5.4.8 we have G P L1
7 pK ˆ K, ν ˆ νq

with G5 “ G. ✷

Lemma 5.4.16 Let T : L1
7 pSUqp2qq pbL1

7 pSUqp2qq Ñ L1
7 pSUqp2q ˆ SUqp2qq be the com-

pletely contractive map from Theorem 4.2.14 and let TK : L1
7 pK, νq pbL1

7 pK, νq Ñ
L1

7 pK ˆ K, ν ˆ νq be the map given by pFqˆqq7
˚ ˝ T ˝ pEq7

˚ b E
q7

˚q. If T is a completely

isometric isomorphism then TK is a completely isometric isomorphism.

Proof

We have from Theorems 5.2.9 and 5.2.10, Definition 5.3.15 and Proposition 5.3.16 a

commutative diagram

L1
7 pK, νq

Eq7
˚ //

ιK

��

L1
7 pSUqp2qq

ιq

��

Fq7
˚

oo

L1pK, νq
E
q
˚ // L1pSUqp2qq

F
q
˚

oo

where the bottom horizontal arrows are left inverses to the top horizontal arrows and

ιK : L1
7 pK, νq Ñ L1pK, νq is the canonical embedding. By expanding this composing

with the diagram in Theorem 4.2.14 we get

L1
7 pK, νq pbL1

7 pK, νq
T˝pEq7

˚bEq7
˚q

//

ιKbιK
��

L1
7 pSUqp2q ˆ SUqp2qq

ιqˆq

��

pFq7
˚bFq7

˚q˝T´1

oo

L1pK, νq pbL1pK, νq
E
q
˚bE

q
˚ // L1pSUqp2q ˆ SUqp2qq

F
q
˚bF

q
˚

oo

where we’ve used that T is invertible as it is a completely isometric isomorphism. Also
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from Definition 5.4.12 and Propositions 5.4.3 and 5.3.15 we have a commutative diagram

L1
7 pSUqp2q ˆ SUqp2qq

pFqˆqq7
˚

//

ιqˆq

��

L1
7 pK ˆ K, ν ˆ νq

pEqˆqq7
˚oo

ιKˆK

��
L1pSUqp2q ˆ SUqp2qq

F
qˆq
˚

// L1pK ˆ K, ν ˆ νq
E
qˆq
˚oo

where again the bottom horizontal arrows are left inverses to the top horizontal arrows.

We can collapse all this to a diagram

L1
7 pK, νq pbL1

7 pK, νq TK
//

ιKbιK
��

L1
7 pK ˆ K, ν ˆ νq

ιKˆK

��
L1pK, νq pbL1pK, νq L1pK ˆ K, ν ˆ νq

where TK : L1
7 pK, νq pbL1

7 pK, νq Ñ L1
7 pK ˆ K, ν ˆ νq is a complete contraction given

in the theorem and we’ve used Proposition 5.4.2 on the bottom row.

We show next that TK is a completely isometric isomorphism. We have that TK is a

complete contraction and we consider the complete contraction from L1
7 pKˆK, νˆνq to

L1
7 pK, νq pbL1

7 pK, νq given by pFq7
˚ b F

q7
˚q ˝ T´1 ˝ E

qˆq7
˚. Using Lemma 5.4.14 we have

TK ˝ pFq7
˚ b F

q7
˚q ˝ T´1 ˝ E

qˆq7
˚ “ F

qˆq7
˚ ˝ T ˝ pPq7

˚ b P
q7

˚q ˝ T´1 ˝ E
qˆq7

˚

“ F
qˆq7

˚ ˝ P
qˆq7

˚ ˝ T ˝ T´1 ˝ E
qˆq7

˚ “ id

and similarly pFq7
˚ b F

q7
˚q ˝ T´1 ˝ E

qˆq7
˚ ˝ TK “ id as required. ✷

We now give our counterexample and show that the map T is not a completely isometric

isomorphism and therefore L1
7 pG ˆ Hq is in general not completely isometrically isomor-

phic to L1
7 pGq pbL1

7 pHq.

Counterexample 5.4.17 We can “twist” an element on L1
7 pK, νq pbL1pK, νq on one side

of this tensor product, however in L1
7 pK ˆ K, ν ˆ νq it is not clear that we can do this in
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the same way. We try and exploit this in this counterexample and we will show that if we

apply the 5 operation from Notation 4.1.12 that we cannot perform the same operation in

L1
7 pK ˆ K, ν ˆ νq.

Assume the map T is a completely isometric isomorphism and we aim towards a con-

tradiction. It follows from Lemma 5.4.16 that we have a completely isometric isomor-

phism TK : L1
7 pK, νq pbL1

7 pK, νq Ñ L1
7 pK ˆ K, ν ˆ νq. Let αK : L1

7 pK, νq Ñ L1pK, νq
be the map π2 ˝ pid b QKq ˝ θK where QK is from Proposition 5.3.11. Then by Corol-

lary 5.3.19 αK is a complete contraction with αKpfq “ f 5 where f 5 “ pτKi{2q˚pfq.

As TK is a completely isometric isomorphism there is a completely contractive map

S : L1
7 pK ˆ K, ν ˆ νq Ñ L1pK ˆ K, ν ˆ νq such that the following diagram commutes

L1
7 pK, νq pbL1

7 pK, νq TK
//

idbαK

��

L1
7 pK ˆ K, ν ˆ νq

S

��
L1pK, νq pbL1pK, νq L1pK ˆ K, ν ˆ νq.

Fix l, s ě 0 and let f, g P L1pK, νq be maps given by fpqre2πiθq “ δr,s
1

1 ´ q2
e´2πilθ

and gpqre2πiθq “ δr,s
1

1 ´ q2
e2πilθ for r P N0 and θ P r0, 1q. Then from Proposition

5.3.22 we have f, g P L1
7 pK, νq with f 5pqre2πiθq “ δr,s

1

1 ´ q2
qle´2πilθ and g5pqre2πiθq “

δr,sq
´l 1

1 ´ q2
e2πilθ. So we can easily calculate

}f}L1

7 pK,νq “ maxt}f}L1pK,νq, }f 5}L1pK,νqu “ maxtq2s, q2sqlu “ q2s

and similarly

}g}L1

7 pK,νq “ maxtq2s, q2sq´lu “ q2sq´l.

As the operator space projective tensor product is a cross matrix norm it follows that

}f b g}L1

7 pK,νq pbL1

7 pK,νq “ }f}L1

7 pK,νq}g}L1

7 pK,νq “ q4sq´l.
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From Lemma 5.4.15 we have TKpf b gq P L1
7 pK ˆ K, ν ˆ νq with pTKpf b gqq5 “

TKpf b gq and so

}TKpf b gq}L1

7 pKˆK,νˆνq “ }TKpf b gq}L1pKˆK,νˆνq “
ż

K

ˆż

K1

ˇ̌
TKpf b gq

ˇ̌
dν 1

˙
dν

“ p1 ´ q2q2
8ÿ

r“0

q2r
ż 1

0

˜
8ÿ

r1“0

q2r
1

ż 1

0

ˇ̌
ˇfpqre2πiθqgpqr1

e2πiθ
1q
ˇ̌
ˇ dθ

¸
dθ1 “ q4s.

Lastly we calculate

}pid b αKqpf b gq}L1pK,νq pbL1pK,νq “ }f}L1pK,νq}g5}L1pK,νq “ q4sq´l

and as id b αK “ S ˝ TK we have

q4sq´l “ }pid b αKqpf b gq}L1pK,νq pbL1pK,νq “ }pS ˝ TKqpf b gq}L1pKˆK,νˆνq

ď }TKpf b gq}L1

7 pKˆK,νˆνq “ q4s ă q4sq´l

a contradiction.

5.5 Adjoint of pµ b idqpW SUqp2qq for µ P CpSUqp2qq˚

Consider for a moment an arbitrary locally compact quantum group G. Then for W P
MpC0pGq bminC0ppGqq we have that C0ppGq “ lin tpω b idqpW q | ω P L1pGqu is a C˚-

algebra from Remark 2.3.3. We have pµbidqpW q P MpC0ppGqq for µ P C0pGq˚ and so we

can consider lin tpµ b idqpW q | µ P C0pGq˚u. Clearly this is a closed linear space and

we can easily show it is an algebra. We show in this section that this is not a C˚-algebra in

general, in particular we show that forW SUqp2q the left regular corepresentation of SUqp2q
there is a µ P C0pSUqp2qq˚ such that pµ b idqpW q˚ R lin tpν b idqpW q | ν P C0pGq˚u.

We consider the space K from Proposition 5.2.4 and throughout this section we fix

r P N0 and θ P r0, 1q and z0 “ qre2πiθ and we consider the measure δz0 P CpKq˚ given by
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f ÞÑ fpz0q. We can extend this to a linear functional µ “ δz0 ˝ P P C0pSUqp2qq˚ where

P is the conditional expectation from Theorem 5.2.3 and we have }µ} ď }δz0} “ 1.

We begin by proving a couple of straightforward lemmas.

Lemma 5.5.1 Let
 
U l

ˇ̌
l P 1

2
N0

(
be the irreducible corepresentations in Theorem 5.1.15,

l P 1
2
N0, n,m P 1

2
N0 such that ´l ď n,m ď l and let µ “ δz0 ˝ P P CpSUqp2qq˚. If

m ‰ ´n we have µpuln,mq “ 0, if n ě 0 and m “ ´n we have

uln,´n “

»
– l ` n

2n

fi
fl
q2

q´2npl´nqpl´npc˚c; q4n, 1|q2qc2n (5.25)

and if n ă 0 and m “ ´n we have

uln,´n “

»
– l ´ n

´2n

fi
fl
q2

q2npl`nqpl`npc˚c; q´4n, 1|q2qp´qc˚q´2n. (5.26)

In particular for all l P 1
2
N0 and ´l ď n ď l we have

uln,´n “ p´qq´2npul´n,nq˚ (5.27)

Proof

We have by construction of µ above that µpakmnq “ 0 if k ‰ 0. Then using the SUqp2q
relations (5.1) and Theorem 5.1.15 we see that µpuln,mq “ 0 if n ‰ ´m. If n ě 0 we let

m “ ´n then n ě m ě ´n and using Theorem 5.1.16 we get Equation (5.25). If n ă 0

we let m “ ´n then m ě n ě ´m and again using Theorem 5.1.16 we get Equation

(5.26). We also see that if n ě 0 then ´n ď 0 and we have
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uln,´n “

»
– l ´ p´nq

´2p´nq

fi
fl
q2

q2p´nqpl`p´nqqpl`p´nqpc˚c; q´4p´nq, 1|q2qc´2p´nq

“

¨
˝
»
– l ´ p´nq

´2p´nq

fi
fl
q2

q2p´nqpl`p´nqqpl`p´nqpc˚c; q´4p´nq, 1|q2qpc˚q´2p´nq

˛
‚

˚

“ p´qq´2npul´n,nq˚

and similarly for n ă 0 we have

uln,´n “

¨
˝
»
– l ` p´nq

2p´nq

fi
fl
q2

q´2p´nqpl´p´nqqpl´p´nqpc˚c; q4p´nq, 1|q2qp´qcq2p´nq

˛
‚

˚

“ p´qq´2npul´n,nq˚. ✷

Lemma 5.5.2 For µ “ δz0 ˝ P , s P N0, k P Z and m,n P N0 we have

pµpsqqpakmnq “ µpakmnq exp
ˆ´pn ´ mq2pln qq2

s2

˙
. (5.28)

and thus for any l P N0 and ´l ď m1, n1 ď l we have

pµpsqqpuln1,m1q “ µpuln1,m1q exp
ˆ´4n12pln qq2

s2

˙
. (5.29)

Proof

Using Corollary 5.1.9 we have

pµpsqqpakmnq “ s?
π

ż

R

e´s2t2xτtpakmnq, µy dt

“ µpakmnq s?
π

ż

R

e´s2t2e2itpn´mq ln q dt

“ µpakmnq exp
ˆ´pm ´ nq2pln qq2

s2

˙
.
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As µpakmnq “ 0 if k ‰ 0 then by Lemma 5.5.1 we need only show Equation (5.29) for

m1 “ ´n1. We notice from Lemma 5.5.1 that uln1,´n1 is a polynomial
řN

k1“0 λk1pc˚qk1
ck

1`2n1

for n1 ě 0 and a polynomial
řN

k1“0 λk1ck
1pc˚qk1´2n1

for n1 ă 0 for some pλk1q Ă C. How-

ever we have from above that for any k1 P N0 we have

pµpsqqppc˚qk1

ck
1`2n1q “ µppc˚qk1

ck
1`2n1q exp

ˆ´4n12pln qq2
s2

˙

and similarly

pµpsqqpck1pc˚qk1´2n1q “ µpck1pc˚qk1´2n1q exp
ˆ´4n12pln qq2

s2

˙

from which the result follows. ✷

Lemma 5.5.3 For any µ P CpSUqp2qq˚ we have

}λpµq} “ sup
lP 1

2
N0

}µ2l`1pU lq} “ sup
lP 1

2
N0

››pµpU l
ijqqnα

i,j“1

›› .

Proof

We have from Proposition 3.2.25 that we can consider W acting on L2pSUqp2qq bH

where H “ À2

lP 1

2
N0
Hl by

W pξ b elijq “
lÿ

k“´l
ulikξ b elkj

for ξ P L2pSUqp2qq, l P 1
2
N0 and ´l ď i, j ď l. So we have that W is a direct sum of

matrices

W “

¨
˚̊
˚̊
˚̊
˝

u0 0 0 . . .

0 u1{2 0 . . .

0 0 u1 . . .
...

...
...

. . .

˛
‹‹‹‹‹‹‚
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and so

pµ b idqpW q “

¨
˚̊
˚̊
˚̊
˝

µpu0q 0 0 . . .

0 µ2pu1{2q 0 . . .

0 0 µ3pu1q . . .
...

...
...

. . .

˛
‹‹‹‹‹‹‚
.

Then we have a direct sum of matrices acting on Hilbert spaces Hl and from Proposition

A.5.2 we have

}pµ b idqpW q} “ sup
lP 1

2
N0

}µ2l`1pulq}

as required. ✷

Theorem 5.5.4 Let µ “ δz0 ˝ P P CpSUqp2qq˚. Then the following are equivalent:

(i) For all ε ą 0 there exists N P N0 such that
ˇ̌
µpuln,´nq

ˇ̌
ă ε for all l P 1

2
N0 and

´l ď n ď l where l ě N and |n| ě N ;

(ii) λpµq˚ “ limm λpµpmq7q where µpmq is the smear of µ and µpmq7 P CpSUqp2qq˚ is

the map such that xx, µpmq7y “ xSpxq˚, µpmqy for all x P DompSq X CpSUqp2qq.

(iii) For all ε ą 0 there exists ν P CpSUqp2qq˚ such that

|pν b idqpW q ´ pµ b idqpW q˚| ă ε.

Proof

(i) ùñ (ii): Fix ε ą 0 and let N P N0 such that for all l P 1
2
N0 and n the integer steps

from ´l to l with l, |n| ě N we have
ˇ̌
µpuln,´nq

ˇ̌
ă ε. By Proposition 4.1.18 we have

µpmq P C0pSUqp2qq˚
7 and by Proposition 4.1.17 we have

}λpµpmq7q ´ λpµq˚} “ }λpµpmqq˚ ´ λpµq˚} “ }λpµpmqq ´ λpµq}.
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We have from Lemma 5.5.3 that }λpµq} “ suplP 1

2
N0

}µ2l`1pU lq} and so

}λpµpmqq ´ λpµq} “ sup
lP 1

2
N0

}µpsq2l`1pU lq ´ µ2l`1pU lq}

“ sup
lP 1

2
N0

›››››
lÿ

n“´l

`
µpsqpuln,´nq ´ µpuln,´nq

˘
e2l`1
n,´n

››››› .

By a Proposition A.5.2 (and rearranging rows by unitary matrices) we have

›››››
lÿ

n“´l

`
µpsqpuln,´nq ´ µpuln,´nq

˘
e2l`1
n,´n

››››› “ sup
nPt´l,...,lu

ˇ̌
µpsqpuln,´nq ´ µpuln,´nq

ˇ̌

and then from Lemma 5.5.2 we have

ˇ̌
µpsqpuln,´nq ´ µpuln,´nq

ˇ̌
“
ˇ̌
µpuln,´nq

ˇ̌ ˇ̌ˇ̌exp
ˆ´4n2pln qq2

m2

˙
´ 1

ˇ̌
ˇ̌ .

We let M ą 0 such that for all n P 1
2
Z where |n| ă N and for all m ě M we haveˇ̌

ˇexp
´

´4n2pln qq2
m2

¯
´ 1

ˇ̌
ˇ ă ε. For all l P 1

2
N0 we have that U l is unitary and µ is contractive

and so using Proposition A.5.3 we have
ˇ̌
µpuln,´nq

ˇ̌
ď }µ}}uln,´n} ď }µ}}U l} ď 1. So we

have shown that for all l P 1
2
N0 and ´l ď n ď l with |n| ă N and m ě M we have

ˇ̌
µpuln,´nq

ˇ̌ ˇ̌ˇ̌exp
ˆ´4n2pln qq2

m2

˙
´ 1

ˇ̌
ˇ̌ ă ε.

On the other hand if l P 1
2
N0 and ´l ď n ď l with l, |n| ě N then we have by assumption

that
ˇ̌
µpuln,´nq

ˇ̌
ă ε and

ˇ̌
ˇexp

´
´4n2pln qq2

m2

¯
´ 1

ˇ̌
ˇ ď 1. So we have shown that for all

l P N0 and ´l ď n ď l there is some M ą 0 such that for all m ě M we have

}λpµpmq7q ´ λpµq˚} ă ε and we have (ii).

Clearly (ii) ùñ (iii) and we show (iii) ùñ (i). Fix ε ą 0, then by (iii) there is some

ν P CpSUqp2qq˚ such that

}pν b idqpW q ´ pµ b idqpW q˚} ă ε{2.
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Equivalently by Lemma 5.5.3 we have

sup
lP 1

2
N0

›››››
lÿ

n,m“´l
νpuln,mqe2l`1

l`n`1,l`m`1 ´
lÿ

n,m“´l
µpuln,mqe2l`1

l`m`1,l`n`1

››››› ă ε{2

ðñ sup
lP 1

2
N0

›››››
lÿ

n,m“´l
νpulm,nqe2l`1

l`m`1,l`n`1 ´
lÿ

n“´l
µpuln,´nqe2l`1

l´n`1,l`n`1

››››› ă ε{2

or equivalently for all l P 1
2
N0 we have

›››››
lÿ

n“´l

˜
lÿ

m“´l
νpulm,nqe2l`1

l`m`1,l`n`1 ´ µpuln,´nqe2l`1
l´n`1,l`n`1

¸››››› ă ε{2.

Fix l P 1
2
N0 and let Ql : M2l`1 Ñ M2l`1 be the map that paijq2l`1

i,j“1 ÞÑ pδi,´jaijq2l`1
i,j“1,

that is Ql maps an off anti-diagonal entry to 0 and an anti-diagonal entry to itself. We

have that Ql is a contractive projection by the similar result to that of Proposition A.5.2

referred to previously and Proposition A.5.3 we have

}QlU l} “ sup
nPt´l,...,lu

}uln,´n} ď }U l}

and so it follows that

›››››
lÿ

n“´l

´
νpul´n,nq ´ µpuln,´nq

¯
e2l`1
l´n`1,l`n`1

››››› ă ε{2.

From Lemma 5.5.2 we have that ul´n,n “ p´qq2npuln,´nq˚ and so for all ´l ď n ď l we

have ˇ̌
ˇp´qq2nνppuln,´nq˚q ´ µpuln,´nq

ˇ̌
ˇ ă ε{2

and so
ˇ̌
µpuln,´nq

ˇ̌
ă ε{2 `

ˇ̌
p´qq2nνppuln,´nq˚q

ˇ̌
ď ε{2 ` q2n}ν}.
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Also we have uln,´n “ p´qq´2npul´n.nq˚ and so

ˇ̌
ˇpp´qq´2nνppul´n.nq˚q ´ µpul´n,nq

ˇ̌
ˇ ă ε

or indeed
ˇ̌
µpul´n,nq

ˇ̌
ă ε `

ˇ̌
pp´qq´2nνppul´n.nq˚q

ˇ̌
ď ε ` q´2n}ν}.

Now we can choose N P N0 such that for all n ě N we have q2n}ν} ă ε{2 and for all

n ď ´N we have q´2n}ν} ă ε{2. Then for all l P 1
2
N0 and ´l ď n ď l with |n| ě N we

have
ˇ̌
µpuln,´nq

ˇ̌
ă ε as required. ✷

Counterexample 5.5.5 We consider the special case of r “ 0, θ P r0, 1q arbitrary and

so z0 “ e2πiθ and µ “ δz0 ˝ P . We now show that we cannot approximate pµ b idqpW q˚

by elements tpν b idqpW q | ν P C0pSUqp2qq˚u. Fix l P 1
2
N0 and consider n “ l. Then

we have

µpull,´lq “ µpc2lq “ e2πilθ. (5.30)

According to Theorem 5.5.4 if pµ b idqpW q˚ can be norm approximated by elements

tpν b idqpW q | ν P C0pSUqp2qq˚u then for all ε ą 0 we must have some N ą 0 such

that for large enough l and n we have µpuln,´nq ă ε, however for ε ă 1 it follows from

Equation (5.30) that this is not possible.

There is still an open problem, motivated by the work Das & Daws (2014), of finding the

largest C˚-subalgebra of lin tpµ b idqpW q | µ P C0pGq˚u. We have shown here however

that it is not all of lin tpµ b idqpW q | µ P C0pGq˚u.
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Chapter 6

Homological Algebra for L
1
7pGq

In this chapter we investigate the operator biprojectivity of L1
7 pGq as a completely con-

tractive Banach algebra where this structure is given in Theorem 4.2.1. The notion of

biprojectivity for Banach algebras was introduced by Helemskiı̆ when he investigated the

biprojectivity of L1pGq for a locally compact group G. He showed that L1pGq is bipro-

jective as a Banach algebra if and only if G is compact (see Helemskiı̆ (1989) for further

details). The notion of operator biprojectivity was introduced by Ruan in his study of the

Fourier algebra of a group G and is described in Section 1.2.2.

The case of locally compact quantum groups was studied in Aristov (2004) where

Aristov showed that if L1pGq is operator biprojective then G is compact and on the other

hand that if G is compact and a Kac algebra then L1pGq is operator biprojective. It was

then shown in Daws (2010) and Caspers et al. (2015) that if L1pGq is operator biprojective

then G is of Kac type (see Definition 3.1.1) so we have the following theorem:

G is compact and of Kac type if and only if L1pGq is operator biprojective.

We investigate similar questions in this chapter.

In the first section we show that we have more completely bounded L1
7 pGq-modules

than completely bounded L1pGq-modules. We then show that we have a dual completely

contractive map ∆7 : L1
7 pGq˚ Ñ L1

7 pGq˚ bL1
7 pGq˚ (rather than into the Fubini tensor
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product) in Theorem 6.2.1 in preparation for an investigation of operator biprojectivity.

For L1
7 pGq to be operator biprojective it is clearly necessary that the multiplication map

m7 : L1
7 pGq pbL1

7 pGq Ñ L1
7 pGq in Theorem 4.2.1 is surjective; so we show in Section

6.2.2 that for all coamenable quantum groups that the map m7 is a complete quotient map

and thus onto. Finally in Section 6.2.3 we show that if L1
7 pGq is operator biprojective

then G is compact and in Theorem 6.2.6 we give a give a structure theorem for compact

quantum groups similar to that in Daws (2010).

It is still an open and possibly difficult question as to whether we can find similar con-

ditions to that of L1pGq that are necessary and sufficient to ensure operator biprojectivity

of L1
7 pGq in general.

6.1 Projective Modules over L
1
7pGq

In this section we show that all completely bounded L1pGq-modules are also completely

bounded L1
7 pGq-modules and that there does exist a completely bounded L1

7 pGq-module

that is not a completely bounded L1pGq-module. We work with completely bounded left

modules in this section, however the same could be applied to completely bounded right

and bimodules.

Proposition 6.1.1 Let X be a completely bounded left L1pGq-module. Then X is a com-

pletely bounded left L1
7 pGq-module.

Proof

We have a complete contraction ι :“ π1 ˝ θ : L1
7 pGq Ñ L1pGq where θ is the map given

by Equation (4.2) and π1 is the projection onto the first coordinate.

Let X be a completely bounded left L1pGq-module: that is there is a completely

bounded map Φ : L1pGq pbX Ñ X such that ω b x ÞÑ ω ¨ x. We define a completely

bounded map Φ7 : L1
7 pGq pbX Ñ X by Φ7 :“ Φ ˝ pι b idXq. We know that ι has

dense range and is a homomorphism and so for ω, ω1 P L1
7 pGq we can easily show that
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Φ7pidbΦ7qpωbω1 bxq “ Φ7pm7 b idqpωbω1 bxq. Then it follows that Φ7 ˝ pidbΦ7q “
Φ7 ˝ pm7 b idq and thus E is also a left completely bounded Banach L1

7 pGq-module. ✷

We now spend the rest of this section showing there exists a completely bounded left

L1
7 pGq-module that is not a completely bounded left L1pGq-module.

Example 6.1.2 Assume G is coamenable giving us that L1
7 pGq has a contractive approx-

imate identity by Theorem 4.1.13. Clearly as L1
7 pGq is a completely contractive Banach

algebra then it is also a left completely contractive L1
7 pGq-module with the same oper-

ation m7 : L1
7 pGq pbL1

7 pGq Ñ L1
7 pGq. Say this extends to a left completely bounded

L1pGq-module; that is we have a map ψ : L1pGq pbL1
7 pGq Ñ L1

7 pGq making the following

diagram commute

L1
7 pGq pbL1

7 pGq m7 //

ιbid

��

L1
7 pGq

L1pGq pbL1
7 pGq

ψ

88
♣
♣
♣
♣
♣
♣
♣
♣
♣
♣
♣

where ι : L1
7 pGq Ñ L1pGq is the usual completely contractive embedding. We will show

that these assumptions imply that the antipode S is bounded and thus we are in the Kac

algebra case. In particular this is a contradiction for SUqp2q for example.

Let ω P L1pGq, then by Theorem 4.1.4 there exists a net pωαq Ă L1
7 pGq such that

}ω ´ ωα}L1pGq Ñ 0. Then for ω1 P L1
7 pGq we can consider ∆˚pω b ιpω1qq P L1pGq and

we have

}pι ˝ ψqpω b ω1q ´ ω ˚ ιpω1q}L1pGq ď }pι ˝ ψqpω b ω1q ´ pι ˝ ψqpωα b ω1q}L1pGq

` }ιpωα ˚ ω1q ´ ω ˚ ιpω1q}L1pGq Ñ 0

and so pι ˝ ψqpω b ω1q “ ω ˚ ιpω1q for all ω P L1pGq and ω1 P L1
7 pGq, or indeed we have

239



6. HOMOLOGICAL ALGEBRA FOR L1
7 pGq

the following commutative diagram

L1
7 pGq pbL1

7 pGq m7 //

ιbid

��

L1
7 pGq ι // L1pGq

L1pGq pbL1
7 pGq

ψ

88
♣
♣
♣
♣
♣
♣
♣
♣
♣
♣
♣

idbι
// L1pGq pbL1pGq.

∆˚

OO

As G is coamenable it follows from Theorem 4.1.13 that we have a contractive ap-

proximate identity peαq Ă L1
7 pGq. Let ω P L1pGq, then we have shown above that

ω ˚ eα “ ψpω b eαq P L1
7 pGq and so there exists pω ˚ eαq7 such that for all x P DompSq

we have

xx, ψpω b eαq7y “ xSpxq˚, ω ˚ eαy Ñ xSpxq˚, ωy.

Also for x P DompSq we have

ˇ̌
xx, ψpω b eαq7y

ˇ̌
ď }x}}ψpω b eαq7}L1pGq ď }x}}ψpω b eαq}L1

7 pGq

ď }x}}ψ}}ω b eα}L1pGq pbL1

7 pGq ď }x}}ψ}}ω}L1pGq.

So we have

|xSpxq˚, ωy| “ lim
ˇ̌
xx, ψpω b eαq7y

ˇ̌
ď }x}}ψ}}ω}

for all x P DompSq and ω P L1pGq and therefore

}Spxq} “ }Spxq˚} ď }ψ}}x}.

As DompSq is norm dense in C0pGq we have for any x P C0pGq a net pxαq Ă DompSq
with limit x. It follows that pxαq is a Cauchy net and from above we have }Spxαq ´
Spxα1q} ď }ψ}}xα ´ xα1} meaning pSpxαqq is also a Cauchy net. Then there is some

y P C0pGq with Spxαq Ñ y and so x P DompSq and y “ Spxq. Then DompSq “ C0pGq
and }Spxq} ď }ψ}}x} for all x P C0pGq, i.e. S is bounded as was to be shown.
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6.2 Operator Biprojectivity of L1
7pGq

We investigate now the operator biprojectivity of L1
7 pGq. In order for L1

7 pGq to be operator

biprojective it is necessary that the multiplication map m7 : L1
7 pGq pbL1

7 pGq Ñ L1
7 pGq

must be onto. We begin an investigation into the circumstances under which this holds

now. In particular we show that if G is coamenable then m7 is a complete quotient map

(and thus onto) and we give a structure theorem for L1
7 pGq. First we will show that the

dual of our map m7 has image L1
7 pGq˚ bL1

7 pGq˚ where b denotes the normal tensor

product from Example 1.1.44.

6.2.1 The Adjoint of m7

We know that in the case of L1pGq that ∆˚ : L1pGq pbL1pGq Ñ L1pGq is onto as the

adjoint map ∆ : L8pGq Ñ L8pGq bL8pGq is an isometry. So we consider the map

∆7 “ pm7q˚ : L1
7 pGq˚ Ñ L1

7 pGq˚ bF L
1
7 pGq˚ where we’ve used the Fubini tensor product

from Example 1.1.44 and Theorem 1.1.45. To begin our investigation we show that the

Fubini tensor product and normal tensor product of L1
7 pGq˚ with itself are equal (which

follows in the case of L8pGq as it is a von Neumann algebra).

Theorem 6.2.1 Let ψ : L1
7 pGq pbL1

7 pGq Ñ L1
7 pGq qbL1

7 pGq denote the canonical com-

plete contraction from Notation 1.1.40 that extends the identity map on L1
7 pGq d L1

7 pGq.

Then ψ is injective and thus by Proposition 1.1.46 we have that L1
7 pGq˚ bF L

1
7 pGq˚ “

L1
7 pGq˚ bL1

7 pGq˚.

Proof

Let Ω P L1
7 pGq pbL1

7 pGq such that ψpΩq “ 0 and we show that Ω “ 0. Let φ :

L1pGq pbL1pGq Ñ L1pGq qbL1pGq denote the canonical complete contraction from Nota-

tion 1.1.40 that extends the identity map on L1pGqdL1pGq. We know that this is injective

from Proposition 1.1.47. Then using Proposition 1.1.42 and that φ and ψ are the identity
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maps on L1
7 pGqdL1

7 pGq and L1pGqdL1pGq respectively, we have a commutative diagram

L1
7 pGq pbL1

7 pGq ψ //

ιbι
��

L1
7 pGq qbL1

7 pGq
ιbι
��

L1pGq pbL1pGq
φ

// L1pGq qbL1pGq.

It follows then that we have

pφ ˝ pι b ιqqpΩq “ ppι b ιq ˝ ψqpΩq “ 0

and as φ is injective we have

pι b ιqpΩq “ 0. (6.1)

Fix n P N. From Proposition 4.2.5 we have a completely bounded map Φ1pnq : L1pGq Ñ
L1

7 pGq and so for any T P pL1
7 pGq pbL1

7 pGqq˚ –ci CBpL1
7 pGq,L1

7 pGq˚q we have Φ1pnq˚ ˝
T ˝ Φ1pnq P CBpL1pGq,L8pGqq. Then for all ω, ω1 P L1pGq we have

xpΦ1pnq˚ ˝ T ˝ Φ1pnqqpωq, ω1y “ xpT ˝ Φ1pnqqpωq,Φ1pnqpω1qy

“ xT, pΦ1pnq b Φ1pnqqpω b ω1qy.

We have Υpnq : L1
7 pGq Ñ L1

7 pGq from Notation 4.2.7 and using that pιb ιqpΩq “ 0 from

Equation (6.1) we have

0 “ xT, pΥpnq b ΥpnqqpΩqy

for all T P pL1
7 pGq pbL1

7 pGqq˚. As we have pΥpnq b ΥpnqqpΩq Ñ Ω as n Ñ 8 by

Proposition 4.2.10 then we have xT,Ωy “ 0 for all T P pL1
7 pGq pbL1

7 pGqq˚ and so Ω “ 0

as required. ✷
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6.2.2 Coamenable Quantum Groups and Biprojectivity

Given a coamenable locally compact quantum group G we have a contractive approximate

identity by Theorem 4.1.13. We record here the following result of interest that follows

immediately as a special case of Proposition 1.2.13.

Proposition 6.2.2 For G a coamenable locally compact quantum group the map m7 :

L1
7 pGq pbL1

7 pGq Ñ L1
7 pGq is a complete quotient map.

6.2.3 Compact Quantum Groups and Operator Biprojectivity of L1

7 pGq

It was shown in Aristov (2004) that if L1pGq is operator biprojective then G is compact.

We now show that we can generalise this result to the case of L1
7 pGq.

Throughout this section we let G denote a locally compact quantum group. We will

prove the following result in this section.

Theorem 6.2.3 If L1
7 pGq is operator biprojective (that is the multiplication map m7 :

L1
7 pGq pbL1

7 pGq Ñ L1
7 pGq has a right inverse that is a completely bounded L1

7 pGq-bimodule

homomorphism, see Proposition 1.2.10) then G is compact.

We remind the reader that we have a complete isometry θ : L1
7 pGq Ñ L1pGq ‘8 L1pGq

from Equation (4.2) given by ω ÞÑ pω, ω7q for ω P L1
7 pGq. We also know from Theorem

4.1.15 and Corollary 4.2.2 that the adjoint θ˚ gives us L1
7 pGq˚ –ci L

8pGq ‘1 L1pGq{K7

where K7 “
!

px,´Spxq˚q
ˇ̌
ˇ x P DompSq

)
.

Following Aristov (2004) we can define a map τ : L1pGq Ñ C by ω ÞÑ x1, ωy.

Then we have immediately that |τpωq| ď }ω} and so τ is contractive. It follows from

Example 1.1.14 that τ is also completely contractive. Now let τ7 : L1
7 pGq Ñ C be the

map τ ˝ ι where ι : L1
7 pGq Ñ L1pGq is the usual embedding. We have that τ is a com-

pletely contractive homomorphism and so τ7 is a completely contractive homomorphism.

In particular we have τ7 P L1
7 pGq˚. We will fix this map τ7 throughout this section.
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For all ω P L1
7 pGq we have

xθ˚p1, 0q, ωy “ x1, ωy “ xτ, ωy “ xτ, ιpωqy “ xτ7, ωy

and so we can identify τ7 “ p1, 0q ` K7. As p1, 0q ` K7 ‰ 0 we have some ω P L1
7 pGq

such that xτ7, ωy ‰ 0 and thus τ7 is surjective. Let I7 “ Ker τ7 and we have a commutative

diagram

L1
7 pGq τ7 //

q

��

C

L1
7 pGq{I7.

τ̃7

;;
✇
✇
✇
✇
✇
✇
✇
✇
✇
✇

As τ and ι are contractive then so is τ̃7 and by Proposition 1.1.12 we have that this is in

fact completely contractive. Clearly it is surjective as it is non-zero and injective as we

have quotiented by the kernel. Then by Corollary 1.1.13 we have that τ̃´1
7 is completely

contractive and thus τ̃7 is a completely isometric isomorphism.

As τ7 is a complete contraction we can make C a completely contractive left L1
7 pGq-

module with module operation given by

ω ¨ λ “ λτ7pωq (6.2)

for all λ P C and ω P L1
7 pGq.

Lemma 6.2.4 Suppose that C be projective as a left completely contractive L1
7 pGq-module

with module operation given by Equation 6.2, then G is compact.

Proof

We show that there is a normal left invariant state on L8pGq and then by Proposition 3.2.2

it follows that G is compact.

As τ7 is a homomorphism we have τ7pω1 ˚ ω2q “ τ7pω1qτ7pω2q “ ω1 ¨ τ7pω2q for

ω1, ω2 P L1
7 pGq and so τ7 is a left completely contractive L1

7 pGq-module homomorphism.

Now fix ω P L1
7 pGq with τ7pωq “ 1 and let ρ : C Ñ L1

7 pGq be the map λ ÞÑ λω
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and we have τ7pρpλqq “ λτ7pωq “ λ and so τ7 is admissible. As C is projective as a

completely bounded left A-module then there exists a completely bounded left L1
7 pGq-

module homomorphism making the following diagram commute

C

Dφ

||②
②

②

②

②

id

��
L1

7 pGq
τ7 // //

C.
ρ

oo❴ ❴ ❴

Let ω0 “ φp1q (for 1 P C), then for all ω P L1
7 pGq we have

ω ˚ ω0 “ ω ˚ φp1q “ φpω ¨ 1q “ φpτ7pωqq “ τ7pωqφp1q “ x1, ωyω0

where we’ve used that φ is a left L1
7 pGq-module homomorphism. Let ω P L1pGq, then

as L1
7 pGq is dense in L1pGq by Theorem 4.1.4 we have a net in pωαq Ă L1

7 pGq with

limωα “ ω and

}ω ˚ ω0 ´ x1, ωyω0} ď }ω ˚ ω0 ´ ωα ˚ ω0} ` }x1, ωαyω0 ´ x1, ωyω0}

ď }ω ´ ωα}}ω0} ` }1}}ωα ´ ω}}ω0} Ñ 0.

So we have shown that for all ω P L1pGq we have ω ˚ ω0 “ x1, ωyω0 and thus ω0 is a left

invariant normal functional by Definition 2.2.1.

We have for x P L8pGq and ω P L1
7 pGq that

xx, ω ˚ ω˚
0 y “ x∆pxq, ω b ω˚

0 y “ x∆px˚q, ω˚ b ω0y

“ xx˚, ω˚ ˚ ω0y “ x1, ω˚yxx˚, ω0y “ x1, ωyxx, ω˚
0 y

and so ω˚
0 is also a normal left invariant functional. So we have a self-adjoint normal left

invariant functional pω0 ` ω˚
0 q{2 and thus we may assume without loss of generality that

ω0 is self-adjoint.
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Now consider the Jordan decomposition ω0 “ ω`
0 ´ ω´

0 with ω`
0 , ω

´
0 P L1pGq such

that }ω0} “ }ω`
0 } ` }ω´

0 }. Let ω P L1pGq be any state, then we have

ω0 “ x1, ωyω0 “ ω ˚ ω0 “ ω ˚ ω`
0 ´ ω ˚ ω´

0

where ω0 ˚ ω`
0 and ω0 ˚ ω´

0 are both positive as ∆ is a ˚-homomorphism. Then

}ω0} “ }ω ˚ ω0} “ }ω ˚ ω`
0 ´ ω ˚ ω´

0 } ď }ω ˚ ω`
0 } ` }ω ˚ ω´

0 } ď }ω`
0 } ` }ω´

0 } “ }ω0}

and then we have equality throughout and so in particular }ω0} “ }ω ˚ ω`
0 } ` }ω ˚ ω´

0 }.

By the uniqueness of the Jordan decomposition we have for all states ω P L1pGq` that

ω ˚ ω`
0 “ ω`

0 “ x1, ωyω`
0

and so for all ω P L1pGq` we have ω ˚ ω`
0 “ x1, ωyω`

0 .

Either ω`
0 or ω´

0 must be non-zero, otherwise ω0 “ 0 so we assume without loss of

generality that ω`
0 ‰ 0. Let ω1

0 “ ω`
0

x1, ω`
0 y and we have ω1

0 is a normal left invariant state

as required. ✷

We need one more technical lemma before proving Theorem 6.2.3.

Lemma 6.2.5 We have L1
7 pGqI7

}¨} “ I7 where I7 “ Ker τ7.

Proof

We first show that L1
7 pGqI7

}¨}7 Ă I7. As τ7 is a homomorphism, then for ω1 P L1
7 pGq and

ω2 P I7 we have

xω1 ˚ ω2, τ7y “ xω1, τ7yxω2, τ7y “ 0

and so by linearity L1
7 pGqI7 Ă I7. Now let pωαq Ă I7 “ Ker τ7 be a net with limit

ω P L1
7 pGq, then xω, τ7y “ limxωα, τ7y “ 0 and so I7 is a closed ideal. So as the right hand

side is closed we can close the left hand side to get L1
7 pGqI7

}¨}7 Ă I7.

246



6.2 Operator Biprojectivity of L1
7 pGq

We now need to show that L1
7 pGqI7

}¨} Ą I7 or as both sides are closed we equivalently

show that pL1
7 pGqI7qK Ă IK

7 . First we show that IK
7 “ tλτ7 | λ P Cu. As λτ7 P IK

7 for all

λ P C we have IK
7 Ą tλτ7 | λ P Cu. Now let T P IK

7 (that is T pωq “ 0 for all ω P I7),

then there is a unique T̃ : L1
7 pGq{I7 Ñ C such that for q : L1

7 pGq Ñ L1
7 pGq{I7 the quotient

map ω ÞÑ ω ` I7 we have T “ T̃ ˝ q. Then as L1
7 pGq{I7 –i C there is some λ P C such

that for all ω P L1
7 pGq we have T̃ pω ` I7q “ λτ̃7pω ` I7q. Then in particular we have

T pωq “ λτ7pωq for all ω P L1
7 pGq and so T “ λτ7 and T P tλτ7 | λ P Cu.

Let x, y P L8pGq such that px, yq ` K7 P pL1
7 pGqI7qK, then we show this is in IK

7 or

indeed that there is some λ such that px, yq ` K7 “ pλ1, 0q ` K7. Let ω P L1
7 pGq and

κ P I7, then xpx, yq ` K7, ω ˚ κy “ 0 and so

0 “ xpx, yq ` K7, ω ˚ κy “ xx, ω ˚ κy ` xy, pω ˚ κq7y

“ x∆pxq, ω b κy ` x∆pyq, κ7 b ω7y “ xpω b idq∆pxq, κy ` xpid b ω7q∆pyq, κ7y

“
@`

pω b idq∆pxq, pid b ω7q∆pyq
˘

` K7, κ
D
. (6.3)

As this holds for all ω P L1
7 pGq and κ P I7 then

`
pω b idq∆pxq, pid b ω7q∆pyq

˘
`K7 P IK

7

for all ω P L1
7 pGq. We showed above that IK

7 “ tλτ7 | λ P Cu so for all ω P L1
7 pGq we

have some αpωq P C such that

`
pω b idq∆pxq, pid b ω7q∆pyq

˘
` K7 “ pαpωq1, 0q ` K7. (6.4)

It is easy to show that this defines a linear map α : L1
7 pGq Ñ C and we show that it is

bounded and thus α P L1
7 pGq˚. By acting ω2 on Equation (6.4) and using the calculation

(6.3), for any ω1, ω2 P L1
7 pGq we have

αpω1qx1, ω2y “ xpx, yq ` K7, ω1 ˚ ω2y
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and so

|αpω1q| |x1, ω2y| ď }px, yq ` K7}L1

7 pGq˚}ω1}L1

7 pGq}ω2}L1

7 pGq.

Now taking the supremum over all ω2 P L1
7 pGq and then ω1 P L1

7 pGq we get

}α} ď
}px, yq ` K7}L1

7 pGq˚

}p1, 0q ` K7}L1

7 pGq
.

Finally using that p1, 0q ` K7 ‰ 0 we have }p1, 0q ` K7} ‰ 0 and α is bounded.

As we have shown that α P L1
7 pGq˚ we can write α “ px1, y1q ` K7 for some x1, y1 P

L8pGq. For all ω1, ω2 P L1
7 pGq we have from Equation (6.4) that

x∆pxq, ω1 b ω2y ` x∆pyq, ω7
2 b ω

7
1y “ xx1 b 1, ω1 b ω2y ` xy1 b 1, ω

7
1 b ω

7
2y (6.5)

where we’ve used that x1, ω7
2y “ x1, ω2y. We now smear and calculate as follows

xpx1pnq ` Spy1pnqq˚q b 1, ω1 b ω2y “
´

xx1pnq, ω1y ` xy1pnq, ω7
1y
¯

x1, ω2y

“
ˆ
n?
π

ż

R

e´n2t2
´

xτtpx1q, ω1y ` xτtpy1q, ω7
1y
¯
dt

˙
x1, ω2y

“ n?
π

ż

R

e´n2t2
´

xx1 b 1, ω1 ˝ τt b ω2 ˝ τty ` xy1 b 1, ω
7
1 ˝ τt b ω

7
2 ˝ τty

¯
dt

“ n?
π

ż

R

e´n2t2
´

x∆pxq, ω1 ˝ τt b ω2 ˝ τty ` x∆pyq, pω2 ˝ τtq7 b pω1 ˝ τtq7y
¯
dt

“ n?
π

ż

R

e´n2t2
´

x∆pτtpxqq, ω1 b ω2y ` x∆pτtpyqq, ω7
2 b ω

7
1y
¯
dt

“ n?
π

ż

R

e´n2t2
´

xτtpxq, ω1 ˚ ω2y ` xτtpyq, pω1 ˚ ω2q7y
¯
dt

“ xxpnq, ω1 ˚ ω2y ` xypnq, pω1 ˚ ω2q7y

“ xx1pnq, ω1 ˚ ω2y ` xSpypnqq˚, ω1 ˚ ω2y “ x∆pxpnq ` Spypnqq˚q, ω1 b ω2y

where we’ve used Equation (6.5), τt is normal, τtp1q “ 1, pω ˝ τtq7 “ ω7 ˝ τt P L1
7 pGq for

all ω P L1
7 pGq and t P R and pτt b τtq ˝ ∆ “ ∆ ˝ τt for all t P R. See Definition-Theorem
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2.2.7 and Propositions 2.2.8 and 4.1.5 for these results.

This holds for all ω1, ω2 P L1
7 pGq and thus we have

∆pxpnq ` Spypnqq˚q “ px1pnq ` Spy1pnqq˚q b 1.

Then by Lemma 2.2.13 for all n P N we have some tn P C such that xpnq ` Spypnqq˚ “
tn1. Let ω P L1

7 pGq and we have

|ptn ´ tmq| |x1, ωy| “ |xxpnq ´ xpmq, ωy ` xSpypnqq˚ ´ Spypmqq˚, ωy|

“
ˇ̌
ˇxxpnq ´ xpmq, ωy ` xypnq ´ ypmq, ω7y

ˇ̌
ˇ Ñ 0

and so as there exists ω P L1
7 pGq with x1, ωy ‰ 0 then ptnq Ă C is a Cauchy sequence.

Let t P C be the limit of ptnq and for ω P L1
7 pGq we have

xpx, yq ` K7, ωy “ xx, ωy ` xy, ω7y “ limxxpnq, ωy ` limxypnq, ω7y

“ limxxpnq ` Spypnqq˚, ωy “ lim tnx1, ωy “ tx1, ωy.

As this holds for all ω P L1
7 pGq we have px, yq ` K7 “ tp1, 0q ` K7 as required. ✷

Proof of Theorem 6.2.3

As L1
7 pGq is a completely contractive Banach algebra it follows from Example 1.1.50 that

the unitisation L1
7 pGq5 is a completely contractive Banach algebra. By Lemma 1.2.11 we

then have that L1
7 pGq5{I7 is a left operator L1

7 pGq-module with an operation such that

ω ¨ ppω1, λq ` I7q “ ω ˚ ω1 ` λω ` I7.

By Lemma 1.2.15 we have that L1
7 pGq pbL1

7 pGq pL1
7 pGq5{I7q is a projective left completely

bounded L1
7 pGq-module. By Lemma 1.2.14 this is completely isometrically isomorphic to

L1
7 pGq{L1

7 pGqI7 which by Lemma 6.2.5 is equal to L1
7 pGq{I7 – C. So C is a left projective

completely bounded L1
7 pGq-module and then G is compact by Lemma 6.2.4. ✷
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6.2.4 Structure Theorem for Operator Biprojectivity of L1

7 pGq for

Compact Quantum Group G

We have seen in the previous section that if L1
7 pGq is operator biprojective then G is com-

pact. We assume in this section that G is compact and we prove a structure theorem for

the operator biprojectivity of L1
7 pGq. In particular we prove some necessary and sufficient

conditions for the L1
7 pGq algebra of a compact quantum group G to be operator bipro-

jective. The inspiration for this section comes from Section 3 in Daws (2010) where a

similar theorem is proved for the L1pGq algebra.

Let tUα P CpGq b BpHαq | α P Au denote the maximal family of corepresentations

from Theorem 3.2.9 throughout this section.

We begin now by stating the main theorem and we spend the rest of this section

proving this result.

Theorem 6.2.6 Let m7 : L
1
7 pGq pbL1

7 pGq Ñ L1
7 pGq be the multiplication map from Theo-

rem 4.2.1 and ∆7 its adjoint. Then the following are equivalent:

(i) L1
7 pGq is operator biprojective;

(ii) There exists a completely bounded normal map Ψ : L1
7 pGq˚ bL1

7 pGq˚ Ñ L1
7 pGq˚

such that

Ψ ˝ ∆7 “ idL1

7 pGq˚ , ∆7 ˝ Ψ “ pΨ b idq ˝ pid b ∆7q “ pid b Ψq ˝ p∆7 b idq;

(6.6)

(iii) There exists a family of matrices tXα P Mnα
| α P Au such that for α, β P A,

1 ď i, j ď nα and 1 ď k, l ď nβ and a completely bounded normal map Ψ :
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L1
7 pGq˚ bL1

7 pGq˚ Ñ L1
7 pGq˚ such that

Ψ
´

ppuαij, 0q ` K7q b ppuβkl, 0q ` K7q
¯

“ δαβX
α
jkppuαil, 0q ` K7q,

nαÿ

r“1

Xα
rr “ 1.

(6.7)

We need two preparatory lemmas before proving Theorem 6.2.6.

Lemma 6.2.7 Let ι : L1
7 pGq Ñ L1pGq be the completely contractive inclusion map, then

the completely contractive adjoint ι˚ : L8pGq Ñ L1
7 pGq˚ has weak˚-dense range and we

have

pι˚ b ι˚q ˝ ∆ “ ∆7 ˝ ι˚

where ∆7 is the adjoint of the completely contractive map m7 : L
1
7 pGq pbL1

7 pGq Ñ L1
7 pGq

from Theorem 4.2.1.

Proof

We have for x P L8pGq and ω P L1
7 pGq and using Theorems 4.1.15 and 4.2.6 that

xι˚pxq, ωy “ xx, ιpωqy “ xpx, 0q ` K7, ωy

and so ι˚pxq “ px, 0q ` K7.

By Theorem 4.1.15 for any element in L1
7 pGq˚ we have some x, y P L8pGq such that

this element is given by px, yq ` K7. Let n P N and consider xpnq ` Spypnqq˚ P L8pGq,

then as K7 “
!

px,´Spxq˚q
ˇ̌
ˇ x P DompSq

)
we have

ι˚pxpnq ` Spypnqq˚q “ pxpnq ` Spypnqq˚, 0q ` K7

“ pxpnq ` Spypnqq˚, 0q ` p´Spypnqq˚, SpSpypnqq˚q˚q ` K7

“ pxpnq, ypnqq ` K7 “ Υpnq˚ppx, yq ` K7q

where we’ve used Υpnq from Notation 4.2.7. Using Proposition 4.2.9 we have for all
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T P L1
7 pGq˚ and ω P L1

7 pGq that

|xΥpnq˚pT q, ωy ´ xT, ωy| ď }T }L1

7 pGq˚}Υpnqpωq ´ ω}L1

7 pGq Ñ 0.

Therefore for all ω P L1
7 pGq we have

limxι˚pxpnq ` Spypnqq˚q, ωy “ limxΥpnq˚ppx, yq ` K7q, ωy “ xpx, yq ` K7, ωy

and so ι˚ has weak˚-dense range.

Using that ι is a homomorphism, for x P L8pGq and ω1, ω2 P L1
7 pGq we have

xp∆7 ˝ ι˚qpxq, ω1 b ω2y “ xι˚pxq,m7pω1 b ω2qy “ xx, ιpω1 ˚ ω2qy

“ x∆pxq, ιpω1q b ιpω2qy “ xppι˚ b ι˚q ˝ ∆qpxqq, ω1 b ω2y.

Then for all Ω P L1pGq pbL1
7 pGq we have xp∆7 ˝ ι˚qpxq,Ωy “ xppι˚ b ι˚q ˝ ∆qpxqq,Ωy

and thus ∆7 ˝ ι˚ “ pι˚ b ι˚q ˝ ∆ as required. ✷

Lemma 6.2.8 For all t P R there is an normal isometry τ
7
t : L

1
7 pGq˚ Ñ L1

7 pGq˚ such that

τ
7
t ˝ ι˚ “ ι˚ ˝ τt (where ι : L1

7 pGq Ñ L1pGq is the inclusion) and where

τ
7
t ppx, yq ` K7q “

´
pτtpxq, τtpyqq ` K7

¯

for all x, y P L8pGq. We have τ 7 : R Ñ BpL1
7 pGq˚q is a weak˚-continuous one-parameter

automorphism group on the Banach space L1
7 pGq˚. In addition for t P R we have

pτ 7
t b τ

7
t q ˝ ∆7 “ ∆7 ˝ τ 7

t

where ∆7 is the adjoint of the completely contractive map m7 : L
1
7 pGq pbL1

7 pGq Ñ L1
7 pGq

from Theorem 4.2.1.
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Proof

Fix t P R and we consider the contraction τ 0t : L8pGq Ñ L1
7 pGq˚ given by ι˚ ˝ τt. Then

as ι˚ : L8pGq Ñ L1
7 pGq˚ has weak˚-dense range by Lemma 6.2.7 above we can uniquely

define a contraction τ
7
t : L1

7 pGq˚ Ñ L1
7 pGq˚ such that τ

7
t ˝ ι˚ “ ι˚ ˝ τt. As ι˚ and τt are

normal it follows that τ
7
t is normal.

Let x, y P L8pGq and t P R, then by Lemma 6.2.7 we have

τ
7
t ppx, yq ` K7q “ τ

7
t plimppxpnq ` Spypnqq˚, 0q ` K7qq

“ limpτ 7
t ˝ ι˚q pxpnq ` Spypnqq˚q “ limpι˚ ˝ τtq pxpnq ` Spypnqq˚q

“ lim ι˚ pτtpxpnqq ` Spτtpypnqqq˚q “ lim
´

pτtpxqpnq, τtpyqpnqq ` K7

¯

“
´´
τtpxq, τtpyq

¯
` K7

¯

where we’ve used that ι˚pxq “ px, 0q ` K7 for all x P L8pGq, px ` Spyq˚, 0q ` K7 “
px, yq `K7 for all x P L8pGq, y P DompSq (see the proof of Proposition 4.2.8), τt ˝ S “
S ˝ τt from Proposition 2.2.8 and that τtpxqpnq “ τtpxpnqq for all x P L8pGq and n P N.

It follows easily that τ
7
t`s “ τ

7
t ˝ τ 7

s for all t, s P R using the same property of τt. We

have that τ
7
t is an isometric automorphism as for all t P R we have τ

7
´t ˝τ 7

t “ id “ τ
7
t ˝τ 7

´t

and so τ
7
´t is a contractive inverse for τ

7
t .

Let x, y P L8pGq, then we have

ˇ̌
ˇ
A
τ

7
t ppx, yq ` K7q , ω

E
´
A
τ

7
tn ppx, yq ` K7q , ω

Eˇ̌
ˇ “

ˇ̌
ˇ
A´
τt´tnpxq, τt´tnpyq

¯
` K7, ω

Eˇ̌
ˇ

“
ˇ̌
ˇxτt´tnpxq, ωy ´ xτt´tnpyq, ωy

ˇ̌
ˇ ď |xτt´tnpxq, ωy| ` |xτt´tnpyq, ωy| Ñ 0

and so τ is a weak˚-continuous one-parameter group of automorphisms.

The final statement follows as

∆7 ˝ τ 7
t ˝ ι˚ “ ∆7 ˝ ι˚ ˝ τt “ pι˚ b ι˚q ˝ ∆ ˝ τt “ pι˚ b ι˚q ˝ pτt b τtq ˝ ∆

“ pτ 7
t b τ

7
t q ˝ pι˚ b ι˚q ˝ ∆ “ pτ 7

t b τ
7
t q ˝ ∆7 ˝ ι˚
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where we’ve used Proposition 2.2.8 and the statements proved above ∆7˝ι˚ “ pι˚bι˚q˝∆
and τ

7
t ˝ ι˚ “ ι˚ ˝ τt for all t P R. As ι˚ has dense range the result follows. ✷

The following lemma will help us prove (iii) ùñ (ii) in Theorem 6.2.6. Note that the

proof gives us that βαk and γαk both depend on j, however we will not use this in our proof

of our main theorem.

Lemma 6.2.9 Let Ψ : L1
7 pGq˚ bL1

7 pGq˚ Ñ L1
7 pGq˚ be a completely bounded normal

map satisfying Equations (6.6), let α P A, 1 ď i, j ď nα and x P L1
7 pGq˚ be fixed and

let aij “ Ψ
`
x b ppuαij, 0q ` K7q

˘
and bij “ Ψ

`
ppuαij, 0q ` K7q b x

˘
. Then there exist

collections tβαk | 1 ď k ď nαu and tγαk | 1 ď k ď nαu such that

aij “
nαÿ

k“1

βαk ppuαkj, 0q ` K7q and bij “
nαÿ

k“1

γαk ppuαik, 0q ` K7q,

Proof

From the second Equation in (6.6) and using Lemma 6.2.7 we have

∆7paijq “ p∆7 ˝ Ψq
`
x b ι˚puαijq

˘
“ pΨ b idq

`
x b p∆7 ˝ ι˚qpuαijq

˘

“
nαÿ

r“1

pΨ b idq
`
x b ι˚puαirq b ι˚puαrjq

˘
“

nαÿ

r“1

air b ppuαrj, 0q ` K7q.

Then for all ω1, ω2 P L1
7 pGq we have

xaij, ω1 ˚ ω2y “
nαÿ

r“1

xair, ω1yxuαrj, ω2y.

As τ
7
t is normal for all t P R from Lemma 6.2.8 we have a pre-adjoint pτ 7

t q˚ : L1
7 pGq Ñ

L1
7 pGq and so replacing ω1 with pτ 7

t q˚pω1q and similarly for ω2 in the above equation we

have

A
aij, ppτ 7

t q˚pω1qq ˚ ppτ 7
t q˚pω2qq

E
“

nαÿ

r“1

xair, pτ 7
t q˚pω1qyxuαrj, pτ 7

t q˚pω2qy.
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Using that pτ 7
t b τ

7
t q ˝ ∆7 “ ∆7 ˝ τ 7

t for all t P R from Lemma 6.2.8 we have equivalently

A
τ

7
t paijq, ω1 ˚ ω2

E
“

nαÿ

r“1

xτ 7
t pairq, ω1yxτtpuαrjq, ω2y

and then weighting and integrating with respect to t and using Proposition 3.2.18 we get

n?
π

ż

R

e´n2t2
A
τ

7
t paijq, ω1 ˚ ω2

E
dt

“
nαÿ

r“1

ˆ
n?
π

ż

R

e´n2t2pλαr qitpλαj q´itxτ 7
t pairq, ω1y dt

˙
xuαrj, ω2y.

(6.8)

For all 1 ď m,n ď nα we let a1mn, a
2
mn P L8pGq such that amn “ pa1mn, a2mnq ` K7. We

calculate the integrals in turn now, first we have

n?
π

ż

R

e´n2t2
A
τ

7
t paijq, ω1 ˚ ω2

E
dt

“ n?
π

ż

R

e´n2t2
´

xτtpa1ijq, ω1 ˚ ω2y ` xτtpa2ijq, pω1 ˚ ω2q7y
¯
dt

“ xa1ijpnq, ω1 ˚ ω2y ` xa2ijpnq, pω1 ˚ ω2q7y

“ xa1ijpnq, ω1 ˚ ω2y ` xSpa2ijpnqq˚, ω1 ˚ ω2y

“ x∆pa1ijpnq ` Spa2ijpnqq˚q, ω1 b ω2y

where we’ve used that the smear of any element of L8pGq is in DompSq. For all 1 ď
m,n ď nα we let µmn “ plnλαm ´ lnλαnq{2 and for the other integral in Equation (6.8)
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we have

n?
π

ż

R

e´n2t2e2itµrjxτ 7
t pairq, ω1y dt

“ n?
π

ż

R

e´n2pt´iµrj{n2q2´µ2rj{n2

´
xτtpa1irq, ω1y ` xτtpa2irq, ω7

1y
¯
dt

“ exp

ˆ
´
µ2
rj

n2

˙´
xτiµrj{n2pa1irpnqq, ω1y ` xτ´iµrj{n2pa2irpnqq, ω7

1y
¯

“ exp

ˆ
´
µ2
rj

n2

˙
xτiµrj{n2pa1irpnqq ` Spτ´iµrj{n2pa2irpnqqq˚, ω1y

where we’ve used Theorem 1.3.17. Then substituting back into Equation (6.8) we have

@
∆
`
a1ijpnq ` Spa2ijpnqq˚˘ , ω1 b ω2

D

“
nαÿ

r“1

exp

ˆ
´
µ2
rj

n2

˙
xτiµrj{n2pa1irpnqq ` Spτ´iµrj{n2pa2irpnqqq˚, ω1yxuαrj, ω2y

and as this is true for all ω1, ω2 P L1
7 pGq we have

∆
`
a1ijpnq ` Spa2ijpnqq˚˘

“
nαÿ

r“1

exp

ˆ
´
µ2
rj

n2

˙`
τiµrj{n2pa1irpnqq ` Spτ´iµrj{n2pa2irpnqqq˚˘ b uαrj.

So we now have an equality in L8pGq bL8pGq. Fix 1 ď k, l ď nα and using this

equation and that ∆ is a ˚-homomorphism we have

∆
`
pa1ijpnq ` Spa2ijpnqq˚qpuαklq˚˘ “

nαÿ

s“1

∆ppa1ijpnq ` Spa2ijpnqq˚qqppuαksq˚ b puαslq˚q

“
nαÿ

r,s“1

exp

ˆ
´
µ2
rj

n2

˙`
τiµrj{n2pa1irpnqq ` Spτ´iµrj{n2pa2irpnqqq˚˘ puαksq˚ b uαrjpuαslq˚.

We can apply pid b φq for φ the Haar state and using Definition-Theorem 3.2.3 and The-
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orem 3.2.15 we have

φ
`
pa1ijpnq ` Spa2ijpnqq˚qpuαklq˚˘ 1

“
nαÿ

r,s“1

exp

ˆ
´
µ2
rj

n2

˙`
τiµrj{n2pa1irpnqq ` Spτ´iµrj{n2pa2irpnqqq˚˘ puαksq˚φpuαrjpuαslq˚q

“
nαÿ

r“1

δjl
λαl
Λα

exp

ˆ
´
µ2
rj

n2

˙`
τiµrj{n2pa1irpnqq ` Spτ´iµrj{n2pa2irpnqqq˚˘ puαkrq˚

where λαl and Λα are as given in Theorem 3.2.15. This holds for all 1 ď k ď nα and so

we can multiply on the right by uαks for 1 ď s ď nα and sum over k. By doing this and

using that Uα is unitary and so
řnα

k“1puαkrq˚uαks “ δrs1 we have

Λα

λαj

nαÿ

k“1

φ
`
pa1ijpnq ` Spa2ijpnqq˚qpuαkjq˚˘ uαks

“ exp

ˆ
´
µ2
sj

n2

˙`
τiµsj{n2pa1ispnqq ` Spτ´iµsj{n2pa2ispnqqq˚˘ .

Then for any ω P L1
7 pGq we have

Λα

λαj

nαÿ

k“1

φ
`
pa1ijpnq ` Spa2ijpnqq˚qpuαkjq˚˘ xuαks, ωy

“ exp

ˆ
´
µ2
sj

n2

˙@
τiµsj{n2pa1ispnqq ` Spτ´iµsj{n2pa2ispnqqq˚, ω

D

“ exp

ˆ
´
µ2
sj

n2

˙´@
τiµsj{n2pa1ispnqq, ω

D
`
@
τ´iµsj{n2pa2ispnqq, ω7

D¯

“ exp

ˆ
´
µ2
sj

n2

˙ˆ
n?
π

ż

R

e´n2pt´iµsj{n2q2
´

xτtpa1isq, ωy ` xτtpa2isq, ω7y
¯˙

dt

“ exp

ˆ
´
µ2
sj

n2

˙
n?
π

ż

R

e´n2pt´iµsj{n2q2xτ 7
t paisq, ωy dt (6.9)

where we’ve used Theorem 1.3.17 again. Using that τ 7 is a weak˚-continuous one-
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parameter group we calculate

ˇ̌
ˇ̌exp

ˆ
´
µ2
sj

n2

˙
n?
π

ż

R

e´n2pt´iµsj{n2q2xτ 7
t paisq, ωy dt ´ e2iµsjxais, ωy

ˇ̌
ˇ̌

“
ˇ̌
ˇ̌ n?
π

ż

R

e´n2t2
´

xτ 7
t paisq, ωy ´ xais, ωy

¯
dt

ˇ̌
ˇ̌ Ñ 0

and so using this, Proposition 4.3.2 and letting n Ñ 8 Equation (6.9) becomes

e2iµsjxais, ωy “ Λα

λαj

nαÿ

k“1

lim
nÑ8

φppa1ijpnq ` Spa2ijpnqq˚qpuαkjq˚qxuαks, ωy

“
nαÿ

k“1

lim
nÑ8

`
xa1ijpnq, ωαkjy ` xSpa2ijpnqq˚, ωαkjy

˘
xuαks, ωy

“
nαÿ

k“1

´
xa1ij, ωαkjy ` xa2ij, pωαkjq7y

¯
xuαks, ωy “

nαÿ

k“1

xaij, ωαkjyxuαks, ωy

where we remind that ωαkj “ Λα

λαj
puαkjq˚ ¨ φ from Notation 4.3.1. As this holds for all

ω P L1
7 pGq we have

ais “
nαÿ

k“1

λkppuαks, 0q ` K7q

for all α P A and 1 ď i, j, s ď nα where we’ve set λk :“ e´2iµisxaij, ωαkjy P C for all

1 ď k ď nα.

Using similar techniques we can show that for 1 ď i, j, s ď nα we have

bsj “ e´2iµisΛαλαj

nαÿ

l“1

φppuαilq˚bijqppuαsl, 0q ` K7q

giving the other formula in the lemma. ✷

Proof of Theorem 6.2.6

(i) ùñ (ii): Then there exists a completely bounded L1
7 pGq-bimodule homomorphism

Ψ˚ : L1
7 pGq Ñ L1

7 pGq pbL1
7 pGq that is a right inverse to the multiplication map m7. By

Theorem 6.2.1 we have the adjoint Ψ : L1
7 pGq˚ bL1

7 pGq˚ Ñ L1
7 pGq˚ and as Ψ˚ is a
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right inverse to m7 we have Ψ ˝ ∆7 “ idL1

7 pGq˚ . By construction Ψ is normal. Also for

ω1, ω2 P L1
7 pGq and T P L1

7 pGq˚ bL1
7 pGq˚ we have

xp∆7 ˝ ΨqpT q, ω1 b ω2y “ xT,Ψ˚pω1 ˚ ω2qy “ xT,Ψ˚pω1q ˚ ω2y

“ xT, pid b m7qpΨ˚pω1q b ω2qy “ xpΨ b idqpid b ∆7qpT q, ω1 b ω2y

and similarly we can show xp∆7 ˝ ΨqpT q, ω1 b ω2y “ xpid b Ψqp∆7 b idqpT q, ω1 b ω2y.

As these hold for all ω1, ω2 P L1
7 pGq and T P L1

7 pGq˚ bL1
7 pGq˚ we have Equation (6.6).

(ii) ùñ (i): As Ψ in (ii) is normal and using Theorem 6.2.1 again we have a predual

map Ψ˚ : L1
7 pGq Ñ L1

7 pGq pbL1
7 pGq that is completely bounded and such that m7 ˝ Ψ˚ “

idL1

7 pGq, i.e. Ψ˚ is a right inverse to ∆7. It follows by similar calculations to above that Ψ˚

is a completely bounded L1
7 pGq-bimodule homomorphism.

(iii) ùñ (ii): Using Equation (6.7), Lemma 6.2.8 above and Proposition 3.2.11, for

α P A and 1 ď i, j ď nα we have

pΨ ˝ ∆7 ˝ ι˚qpuαijq “ pΨ ˝ pι˚ b ι˚q ˝ ∆qpuαijq “ pΨ ˝ pι˚ b ι˚qq
˜

nαÿ

k“1

uαik b uαkj

¸

“
nαÿ

k“1

Ψ
`
ppuαik, 0q ` K7q b ppuαkj, 0q ` K7q

˘
“

nαÿ

k“1

Xα
kkppuαij, 0q ` K7q “ ι˚puαijq.

As HopfpGq is weak˚-dense in L8pGq we have Ψ˝∆7 ˝ ι˚ “ ι˚ and then using that ι˚ has

weak˚-dense range we have Ψ ˝ ∆7 “ id. For α, β P A, 1 ď i, j ď nα and 1 ď k, l ď nβ

259



6. HOMOLOGICAL ALGEBRA FOR L1
7 pGq

we have

`
pid b Ψq ˝ p∆7 b idq ˝ pι˚ b ι˚q

˘ ´
uαij b u

β
kl

¯

“ ppid b Ψqq
´

ppι˚ b ι˚q ˝ ∆qpuαijq b ppuβkl, 0q ` K7q
¯

“
nαÿ

r“1

pid b Ψq
´

ppuαir, 0q ` K7q b ppuαrj, 0q ` K7q b ppuβkl, 0q ` K7q
¯

“ δαβX
α
jk

nαÿ

r“1

ppuαir, 0q ` K7q b ppuαrl, 0q ` K7q

“ δαβX
α
jkppι˚ b ι˚q ˝ ∆qpuαilq “ δαβX

α
jk∆

7 ppuαil, 0q ` K7q

“ p∆7 ˝ Ψ ˝ pι˚ b ι˚qq
´
uαij b u

β
kl

¯

and similarly we can show

`
pΨ b idq ˝ pid b ∆7q ˝ pι˚ b ι˚q

˘ ´
uαij b u

β
kl

¯
“ p∆7 ˝ Ψ ˝ pι˚ b ι˚qq

´
uαij b u

β
kl

¯
.

As before we can linearly extend both of these to HopfpGq d HopfpGq which is weak˚-

dense in to L8pGq bL8pGq and which itself is weak˚-dense in L1
7 pGq˚ bL1

7 pGq˚ and so

we have Equations (6.6).

(ii) ùñ (iii): Let α, β P A, 1 ď i, j ď nα and 1 ď k, l ď nβ . Then by Lemma 6.2.9 we

have Ψ
´

ppuαij, 0q ` K7q b ppuβkl, 0q ` K7q
¯

is in both lin tpuαis, 0q ` K7 | 1 ď s ď nαu
and lin

!
puβrl, 0q ` K7

ˇ̌
ˇ 1 ď r ď nβ

)
. Thus if β ‰ α we have

Ψ
´

ppuαij, 0q ` K7q b ppuβkj, 0q ` K7q
¯

“ 0.

If α “ β it follows by linear independence that there exists some Xα
jk P C such that

Ψ
´

ppuαij, 0q ` K7q b ppuβkl, 0q ` K7q
¯

“ Xα
jkppuαil, 0q ` K7q.
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Finally we have that Ψ is a left inverse to ∆7 and so from Lemma 6.2.7 we have

nαÿ

k“1

Xα
kkppuαij, 0q ` K7q “

nαÿ

k“1

Ψ
`
ppuαik, 0q ` K7q b ppuαkj, 0q ` K7q

˘

“ pΨ ˝ pι˚ b ι˚q ˝ ∆qpuαijq “ pΨ ˝ ∆7 ˝ ι˚qpuαijq “ puαij , 0q ` K7

and so
řnα

k“1X
α
kk “ 1 as required. ✷
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Appendix A

Functional Analysis

In the appendix we record some results from functional analysis and measure theory that

we will use in the text. We assume the reader is familiar with these subjects and will only

discuss those results we feel add clarity to the thesis.

For a more comprehensive treatment of Banach spaces we recommend Helemskiı̆

(2006), Reed & Simon (1980), Megginson (1998), Pedersen (1989) and Conway (1990)

and for Banach algebras see Dales (2000), Palmer (1994) and Helemskiı̆ (1993).

A.1 Banach Spaces

We now define some constructions on Banach spaces, in particular we discuss subspaces

and quotients of Banach spaces.

Proposition A.1.1 Let X be a Banach space and Y a subspace of X , then we let Y have

the norm inherited from X and it follows that Y is a normed linear space. In particular

for Y a closed subspace (with respect to the norm topology) we have that Y is a Banach

space.

Proposition A.1.2 Let X be a normed space, M a closed subspace of X and X{M the
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quotient linear space. Then we have a norm given by

}x ` M} :“ inf t}x ´ y} | y P Mu “ inf t}y} | y P x ` Mu

called the quotient norm and furthermore if X is a Banach space then so is X{M .

Proposition A.1.3 Let M be a closed subspace of a normed space X . Then the map

q : X Ñ X{M given by x ÞÑ x ` M is a contractive linear operator that is an open

mapping with kernel M and if M ‰ X then }q} “ 1.

Theorem A.1.4 Let T : X Ñ Y be a linear map between normed spaces and q : X Ñ
X{KerT the natural from X to X{KerT given by x ÞÑ x`T . Then there exists a unique

injective linear map T̃ : X{KerT Ñ Y such that the following diagram is commutative:

X
T //

q

��

Y

X{KerT.
T̃

::
✉
✉
✉
✉
✉
✉
✉
✉
✉
✉

Furthermore T is bounded if and only if T̃ is bounded in which case we have }T̃ } “ }T }
and T is an open mapping if and only if T̃ is an open mapping. If T is surjective and

bounded then T̃ is an isomorphism.

Definition A.1.5 Let T P BpX, Y q be a bounded linear map between normed spaces,

then T is a quotient map if it is surjective and such that the map T̃ : X{KerT Ñ Y from

Theorem A.1.4 is an isometry (and thus an isometric isomorphism).

Proposition A.1.6 Let T P BpX, Y q be a bounded linear map between normed spaces,

then T is a quotient map if and only if T maps the open unit ball of X onto the open unit

ball of Y .
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A.2 Unbounded Maps in Banach Space Theory

We now give a brief overview of unbounded maps between Banach spaces.

Definition A.2.1 In this thesis we define a linear map T between Banach spacesX and Y

(either with the norm, weak or when applicable weak˚ topologies), denoted T : X Ñ Y

as a map from a subspace DompT q of X to Y that is linear on DompT q. We say T is

densely defined if DompT q is dense in X and everywhere defined if DompT q “ X . A

linear map T : X Ñ X is a linear operator.

Definition A.2.2 Let T : X Ñ Y be a linear map, then the graph of T is the set

GpT q :“ tpx, Txq P X ˆ Y | x P DompT qu .

We say T is closed if GpT q is closed with the product topology on X and Y .

Proposition A.2.3 Let T : X Ñ Y be a linear map. Then GpT q is closed if and only if it

satisfies the following condition: for all nets pxαq Ă DompT q with limit x P X such that

there is some y P Y with limαpTxαq “ y then x P DompT q and y “ Tx.

It is well known in Banach space theory that if a densely defined map T : X Ñ Y is

bounded, then there is a unique map that is everywhere defined that extends T . This is

not necessarily the case for unbounded maps however (by which we mean not necessarily

bounded maps). In fact we have the following which shows that for closed unbounded

maps we must allow for maps that are not everywhere defined.

Theorem A.2.4 (Closed Graph Theorem) Consider X and Y with the norm topologies

and let T : X Ñ Y be an everywhere defined linear map such that the graph GpT q is

closed in X ‘8 Y , then T is bounded.

We now give the notion of a core of an unbounded map which will make unbounded maps

much easier to handle.
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Definition A.2.5 Let T be a closed operator and D0 a subspace of DompT q such that T

is the closure of T0 :“ T |D0
, that is GpT0q is dense in GpT q. Then we say that D0 is a core

for T .

Proposition A.2.6 A subspace D0 Ă DompT q for a closed operator T : X Ñ Y is a

core for T if and only if for all x P DompT q there exists a net pxαq Ă D0 with limα xα “ x

and limα Txα “ Tx.

Proposition A.2.7 Let T, S : X Ñ Y be closed linear maps such that there is a subspace

V Ă DompT q X DompSq with V a core for S and T . If Spxq “ T pxq for all x P V then

S “ T .

We now discuss unbounded linear maps that can be closed.

Definition A.2.8 Let T : X Ñ Y , then T is preclosed if there is a closed map S such that

T Ă S and the closure of GpT q is GpSq. We let T̄ denote the smallest closed extension of

T .

It follows immediately from the definition of a core that for a preclosed operator T : X Ñ
Y we have that DompT q is a core for the closure DompT̄ q.

Proposition A.2.9 Let T : X Ñ Y be a linear map. Then the following conditions are

equivalent on T :

(i) T is preclosed;

(ii) For all y, y1 P Y with px, yq, px, y1q P GpT q then we have y “ y1;

(iii) For all nets pxαq Ă DompT q converging to 0 such that pTxαq converges to some

y P Y , then y “ 0.

Finally we consider the adjoints of unbounded maps. Consider Banach spaces X and Y

and T : X Ñ Y a densely defined map between the Banach spaces. Say for ω P Y ˚ there
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exists κ, κ1 P X˚ such that for all x P DompT q we have xTx, ωy “ xx, κy and similarly

for κ1. Clearly then xx, κy “ xx, κ1y for all x P DompT q and as T is densely defined we

have that κ “ κ1. Thus we have a well defined linear map T ˚ : Y ˚ Ñ X˚ given as follows

(with similar reasoning for a pre-adjoint map).

Definition A.2.10 Let T : X Ñ Y be a densely defined map between Banach spaces X

and Y . Then we define

DompT ˚q “ tω P Y ˚ | Dκ P X˚ such that xTx, ωy “ xx, κy @x P DompT qu

and T ˚ : Y ˚ Ñ X˚ by T ˚ω “ κ for all ω P DompT ˚q for κ P X˚ the unique element

given in the definition of DompT ˚q.

If X and Y are dual Banach spaces with unique preduals X˚ and Y˚ we can similarly

define

DompT˚q “ tω P Y˚ | Dκ P X˚ such that xTx, ωy “ xx, κy @x P DompT qu

and then T˚ : Y˚ Ñ X˚ is given by T˚ ω “ κ for all ω P DompT˚q with κ P X˚ the unique

element given in the definition of DompT˚q. It follows that we have T˚ ω “ ω ˝ T P X˚.

Theorem A.2.11 If T is a closed operator then T ˚ is weak˚-closed. On the other hand, if

T is the dual of an operator T˚ and T is weak˚-closed then the pre-adjoint T˚ is a closed

operator.

A.3 Banach Modules

Banach modules are very similar to that of operator space modules so we don’t give the

main definition. We do however give the example of how to make the dual of a Banach

algebra into an A-bimodule and the Cohen Factorisation Theorem (or sometimes as the

Cohen-Hewitt Factorisation theorem or the Doran-Wichman Factorisation theorem) in

267



A. FUNCTIONAL ANALYSIS

this appendix. The Cohen Factorisation Theorem is a highly non-trivial and important

theorem in the study of BanachA-modules and we refer the reader to Doran & Wichmann

(1979) for further details on this subject.

Example A.3.1 Let A be a Banach algebra, then for all ω P A˚ and a, b P A we define

b ¨ ω, ω ¨ a : A Ñ C by

xa, b ¨ ωy “ xab, ωy “ xb, ω ¨ ay

and we can easily see that b ¨ ω, a ¨ ω P A˚ and that A˚ is a Banach A-bimodule. In

particular for a, b P A and ω P A˚ we have

xx, a ¨ ω ¨ by “ xbxa, ωy

for all x P A. If A has a predual we can restrict the bimodule structure on A˚ to this.

Definition A.3.2 Let A be a Banach algebra and X a left Banach A-module. Then we

say X is essential if X “ lin tax | a P A, x P Xu.

Theorem A.3.3 Let A be a Banach algebra with a left approximate identity bounded by

some K ě 1 and X an essential left Banach A-module. Then for x P X and ε ą 0 there

exists a P A and y P X such that

x “ ay, }a} ď K, y P A ¨ x}¨}
, }y ´ x} ă ε.

A.4 Weakly Compact Operators and Arens Products

We begin this section by defining weakly compact maps between Banach spaces and then

move onto a discussion of Arens products.

Proposition A.4.1 Let T : X Ñ Y be a bounded map between Banach spaces. Then the

following are equivalent:
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(i) T pBXq is relatively weakly compact in Y for BX the closed unit ball in X;

(ii) T pBq is relatively weakly compact in Y for any bounded subset B of X;

(iii) A bounded sequence pxnq Ă X has a subsequence pxnk
q such that pT pxnk

qq con-

verges weakly.

Definition A.4.2 A map T : X Ñ Y between Banach spaces is weakly compact if any of

the equivalent conditions in Proposition A.4.1 are satisfied and we let Bw
0 pX, Y q denote

the weakly compact operators from X to Y .

Proposition A.4.3 Let T : X Ñ Y be a weakly compact map and S : Y Ñ Z and

R : Z Ñ X be arbitrary bounded maps, then S ˝ T and T ˝ R are both weakly compact

operators.

Proposition A.4.4 We have that all compact maps are weakly compact and all weakly

compact maps are bounded, that is B0pX, Y q Ă Bw
0 pX, Y q Ă BpX, Y q for Banach

spaces X and Y .

Let A denote a normed algebra and ι : A Ñ A˚˚ the canonical embedding of A as a

normed space inside its double dual A˚˚. We have that there are two natural ways of

making A˚˚ into a Banach algebra with the left and right Arens’ products. We define

these products now. In general these two products will differ. For further details on this

subject see Palmer (1994).

Definition A.4.5 For m,n P A˚˚ we define the left Arens product m✷n P A˚˚ and the

right Arens product m✸n P A˚˚ as follows. We remind that A˚ is an A-bimodule

with the structure given in Example A.3.1. For ω P A˚ and m,n P A˚˚ we define

n✷ω, ω✸m P A˚ by

xn✷ω, ay “ xn, ω ¨ ay xa, ω✸my “ xa ¨ ω,my
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and then define m✷n,m✸n P A˚˚ by

xm✷n, ωy “ xm,n✷ωy xω,m✸ny “ xω✸m,ny.

It can be shown that A˚˚ is a Banach algebra with either Arens product and that ι :

A Ñ A˚˚ is an injective homomorphism with respect to either Arens product. The most

important theorem for us regarding Arens products is the following.

Proposition A.4.6 Let A be a normed algebra, then ιpAq is a left (right) ideal in A˚˚ if

and only if for all x P A the multiplication map A Ñ A given by y ÞÑ yx (y ÞÑ xy) is

weakly compact.

A.5 Operator Theory

We give a brief discussion of the direct sum of Hilbert spaces now. For Hilbert spaces H

and K we have that the linear space H ‘ K is a Hilbert space when given the following

inner product
`
pξ1, η1qt

ˇ̌
pξ2, η2qt

˘
H‘K

“ pξ1|ξ2q
H

pη1|η2qK

where ξ1, ξ2 P H and η1, η2 P K. We will also use the following notation for bounded

linear operators on direct sums of Hilbert spaces.

Notation A.5.1 Let x P BpHq and y P BpKq. Then we let x‘ y P BpH ‘Kq denote the

operator given by pξ, ηqt ÞÑ pxξ, yηqt for ξ P H and η P K.

We can also consider infinite direct sums of Hilbert spaces which have an additional

convergence property. In particular we will need the following related results.

Proposition A.5.2 Let pHiq, pKiq be two collections of Hilbert spaces and let H “
À

iHi and K “ À
iKi. Let pxiq be a collection of maps that is bounded (i.e. supi }xi}

is finite) where xi P BpHi,Kiq for all i and consider x :“ À
i xi where pÀi xiq ¨ pξiqi “

pxiξiqi for all pξiqi P H, then we have x P BpH,Kq and }x} “ supi }xi}.
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Proof

As pxiq is bounded it follows that supi }xi} ă 8. Let ξ :“ pξiqi P H where ξi P Hi for

all i and we have

}xξ}2 “ }pxiξiqi}
2 “

ÿ

i

}xiξi}2 ď
ˆ
sup
i

}xi}2
˙˜ÿ

i

}ξi}2
¸

“
ˆ
sup
i

}xi}
˙2

}ξ}2

and so taking the square root and supremum over ξ P H with }ξ} ď 1 we have }x} ď
supi }xi}.

Fix i, then for all ξi P Hi such that }ξi} ď 1 we have }x} ě }xiξi} and so taking the

supremum over all such ξi P Hi we have }xi} ď }x} for all i. As this holds for all i we

have supi }xi} ď }x} as required. ✷

Proposition A.5.3 Let A Ă BpHq be a C˚-algebra on a Hilbert space H with the

usual operator space structure, that is for any N P N0 (including N “ 8) and matrix

pxijqNi,j“1 P MNpAq we have

››pxijqNi,j“1

›› “ sup

$
&
%

››››››

˜
Nÿ

j“1

xijξj

¸N

i“1

››››››

ˇ̌
ˇ̌
ˇ̌ ξ “ pξiqNi“1 P HpNq, }ξ} ď 1

,
.
-

where HpNq “ ÀN

i“1 H. Let pxijqNi,j“1 P MNpAq Ă BpHpNqq (including N “ 8), then

for all 1 ď m,n ď N we have }xmn} ď
›››pxijqNi,j“1

›››.

Proof

Fix any 1 ď n ď N , let ξn P H and let ξ “ pδi,nξnqNi“1, then we have

}xξ}2 “
›››pxinξnqNi“1

›››
2

“
Nÿ

i“1

}xinξn}2 ě }xmnξn}2

for all 1 ď m ď N and so }xmnξn} ď }xξ} ď }x}}ξ} “ }x}}ξn}. Taking the supremum

over ξn P H with }ξn} ď 1 we get the result. ✷

We discuss briefly conditional expectations on C˚-algebras now.
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Definition A.5.4 Let A be a C˚-algebra and B a C˚-subalgebra of A. Then a projection

T : A Ñ B is a map such that T pbq “ b for all b P B and a conditional expectation is a

contractive projection E : A Ñ B that is completely positive such that Epbab1q “ bEpaqb1

for all b, b1 P B and a P A.

See Brown & Ozawa (2008) Theorem 1.5.10 for a proof of the following result.

Theorem A.5.5 (Tomiyama’s Theorem) Let A be a C˚-algebra and B a C˚-subalgebra

of A. Then for a projection E : A Ñ B the following are equivalent:

(i) E is a conditional expectation;

(ii) E is contractive and completely positive;

(iii) E is contractive.

Finally we give a brief overview of multiplier C˚-algebras, see Chapter 2 in Murphy

(1990) and Chapter 2 in Timmermann (2008) for further details. We can consider maps

L : A Ñ BpAq and R : A Ñ BpAq given by a ÞÑ La and a ÞÑ Ra respectively where

La, Ra P BpAq are the maps Lapbq “ ab and Rapbq “ ba for all b P A. It is easy to show

that Lapbcq “ Lapbqc, Rapbcq “ bRapcq and bLapcq “ Rapbqc for all a, b, c P A. Also for

a P A we have

}a} “ sup t}ab} | b P A, }b} ď 1u “ sup t}ba} | b P A, }b} ď 1u

and so it follows that }La} “ }Ra} “ }a}. This motivates the following definition.

Definition A.5.6 LetA be a C˚-algebra, then a pair pL,Rq with L,R P BpAq is a double

centraliser for A if for all a, b P A we have

Lpabq “ Lpaqb, Rpabq “ aRpbq, Rpaqb “ aLpbq.

We denote the set of double centralisers of A by MpAq.
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In the following, for L P BpAq we define L˚ : A Ñ A by L˚paq “ Lpa˚q˚ for all a P A.

Then we have }L˚paq} “ }Lpa˚q} ď }L}}a} and so L˚ P BpAq.

Proposition A.5.7 Let A be a C˚-algebra, then MpAq is a unital C˚-algebra with the

following structure

pL,Rq ` λpL1, R1q “ pL ` λL1, R ` λR1q

pL,RqpL1, R1q “ pLL1, R1Rq, pL,Rq˚ “ pR˚, L˚q

}pL,Rq} “ }L} “ }R}

for pL,Rq, pL1, R1q P MpAq and λ P C.

We have that MpAq is in a sense a unitisation of A as shown by the following proposition.

Proposition A.5.8 Let A be a C˚-algebra, then there is an isometric ˚-homomorphism

that embeds A as a C˚-subalgebra of MpAq. Furthermore A is an ideal in MpAq. If A is

unital then we have A –i MpAq.

Definition A.5.9 Let A and B be C˚-algebras and let φ : A Ñ MpBq be a homomor-

phism, then φ is non-degenerate if φpAqB and BφpAq are both linearly dense in B.

A.6 Measure Theory and Banach Spaces

We will make use of various measure theoretic results throughout this thesis and the reader

is assumed to have a background in this area. In particular we expect the reader to be

familiar with integration, the Lebesgue measure, the Lp spaces for 1 ď p ď 8, the

duality of C0pΩq and MpΩq for a locally compact space Ω, complex Radon measures, the

Radon-Nikodym theorem, products of measures, the Fubini theorem and the basics of the

Fourier transform. We recommend Rudin (1987) Chapters 1–6, Folland (1984) and Cohn

(1980) as references.
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We cover now briefly some results in integration on Banach spaces. Let pΩ, µq denote

a measure space and X a Banach spaces and we consider a function f : Ω Ñ X . We let

}f} : Ω Ñ R
` be the function given by }f}ptq “ }fptq} for all t P Ω. We define now the

notions of weak and weak˚ integrable and give some basic results on these concepts.

Definition A.6.1 We say a function f : Ω Ñ X is weakly integrable (sometimes called

Pettis integrable in the literature) if }f} is integrable and there exists x P X such that for

all ω P X˚ we have

xx, ωy “
ż

Ω

xfptq, ωy dµptq.

We then say x is the weak-integral of f over X .

Definition A.6.2 Let Y be a closed separating subset of X˚. Then we say f is integrable

with respect to Y if }f} is integrable and there exists some x P X such that for all ω P Y
we have

xx, ωy “
ż

Ω

xfptq, ωy dµptq.

In particular, if X is the dual of a unique Banach space X˚ and Y “ X˚, then we say x

is the weak˚ integral of f over X .

Say a function f : Ω Ñ X is integrable with respect to some closed separating set

Y Ă X˚, then as Y is separating it is immediate that the x P X such that xx, ωy “
ş
Ω

xfptq, ωy dµptq is unique. We now give the existence theorems we will use in this

thesis.

Proposition A.6.3 Let f : R Ñ X be function that is continuous with respect to the

norm topology on X and such that the map }f} : R Ñ R
` given by }f}ptq “ }fptq} is

integrable. Then f is weak-integrable with respect to the Lebesgue measure on R.

Proposition A.6.4 Let X be a Banach space and let f : R Ñ X˚ be a function that

is continuous with respect to the weak˚-topology on X˚ with }f} integrable. Then f is

weak˚-integrable with respect to the Lebesgue measure on R.
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A.7 The Fourier Transform

Consider the circle T “
 
e2πiθ

ˇ̌
θ P r0, 1q

(
Ă C and consider the Hilbert space L2pTq “!

f : T Ñ C

ˇ̌
ˇ
ş1
0

ˇ̌
fpe2πiθq

ˇ̌2
dθ ă 8

)
with inner product pf |gq “

ş1
0
fpe2πiθqgpe2πiθq dθ.

We define a set of functions tzn | n P Zu where zn : T Ñ C is given by e2πiθ ÞÑ
e2πinθ for all n P Z. Then we have

pzn|zmq “
ż 1

0

znpe2πiθqzmpe2πiθq dθ “
ż 1

0

e2πipn´mqθ dθ “ δn,m

and so this is an orthonormal set. Furthermore we can show that this set is complete and

so forms a basis for L2pTq (see Rudin (1987) Sections 4.24 and 4.25).

We let f̂ : Z Ñ C be the map f̂pnq “
ş1
0
fpe2πiθqe´2πinθ dθ which is well defined

as

ˇ̌
ˇ
ş1
0
fpe2πiθqe´2πinθ dθ

ˇ̌
ˇ
2

ď
ş1
0

ˇ̌
fpe2πiθq

ˇ̌2
dθ ă 8. Given f P L2pTq we can write

f “ ř
nPZ pf |znq zn “ ř

nPZ f̂pnqzn and so fpe2πiθq “ ř
nPZ f̂pnqe2πinθ. We also have

}f}22 “ pf |fq “
ÿ

n,mPZ
f̂pnqf̂pmq pzn|zmq “

ÿ

nPZ

ˇ̌
ˇf̂pnq

ˇ̌
ˇ
2

(A.1)

and so we have the following.

Proposition A.7.1 There exists a unitary isomorphism F : L2pTq Ñ ℓ2pZq given by

f ÞÑ f̂ .

We have Fpznqpmq “
ş1
0
znpe2πiθqe´2πimθ dθ “ δn,m and so Fpznq “ en (the entry with 1

in the n-th place and 0 elsewhere). It follows easily that we have pf |F˚penqq “
´
f̂
ˇ̌
ˇen

¯
“

f̂pnq “ pf |znq and so F˚penq “ zm.

As we have a finite measure it follows that L2pTq Ă L1pTq. We have the following

that is proved in Rudin (1987) Section 5.14.

Lemma A.7.2 (Riemann-Lebesgue Lemma) Let f P L1pTq, then as |n| Ñ 8 we have
ş1
0
fptqe´2πint dt Ñ 0.
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So by this lemma we can define an extension F : L1pTq Ñ c0pZq by f ÞÑ f̂ where

f̂pnq “
ş1
0
fpe2πiθqe´2πinθdθ. Then we have for f P L1pTq that

}Fpfq} “ sup
nPZ

ˇ̌
ˇf̂pnq

ˇ̌
ˇ ď sup

nPZ

ż 1

0

ˇ̌
fpe2πiθqe2πinθ

ˇ̌
dθ “

ż 1

0

ˇ̌
fpe2πiθq

ˇ̌
dθ “ }f}1

and so F is a contraction. Let f, g P L1pTq, then we define f ˚ g : T Ñ C by

pf ˚ gqpe2πiθq “
ż 1

0

fpe2πiφqgpe2πipθ´φqq dφ.

We have

}f ˚ g}L1 “
ż 1

0

ˇ̌
pf ˚ gqpe2πiθq

ˇ̌
dθ “

ż 1

0

ˇ̌
ˇ̌
ż 1

0

fpe2πiφqgpe2πipθ´φqqdφ
ˇ̌
ˇ̌ dθ

ď
ż 1

0

ż 1

0

ˇ̌
fpe2πiθq

ˇ̌ ˇ̌
gpe2πipθ´φqq

ˇ̌
dφdθ “ }f}1}g}1

and so f ˚ g P L1pTq and L1pTq is a Banach algebra under this multiplication. We can

also show that

Fpf ˚ gq “ FpfqFpgq

in a similar way.

Also we can define the following Fourier transform on a measure.

Definition A.7.3 Let φ P MpTq be a measure on T and we define pφ P ℓ8pZq by pφpnq “
ş
T
z´l dφ for all n P Z.

We will make use of the following well known proposition in Chapter 5 that we briefly

sketch a proof of now.

Proposition A.7.4 Let T P Bpℓ2pZqq be the bilateral shift operator on ℓ2pZq, that is the

unique bounded linear operator such that et ÞÑ et`1 for all t P Z, then the spectrum of T

is given by σpT q “ T.
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Proof (Sketch)

By mapping ℓ2pZq to L2pTq with the unitary operator F we can easily see that T is uni-

tarily equivalent to the operator Mz P BpL2pTqq where Mz is the multiplication operator

for the identity function given by pMzfqpe2πiθq “ e2πiθfpe2πiθq for any f P L2pTq. Fur-

thermore it is easy to see that the spectrum of any multiplication operator Mf is given by

the closure range of f , thus we have σpT q “ T. ✷
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