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Abstract

In this thesis we will be concerned with some questions regarding involutions
on dual and predual spaces of certain algebras arising from locally compact
quantum groups. In particular we have the L'(G) predual of a von Neumann
algebraic quantum group (L*(G), A). This is a Banach algebra (where the
product is given by the pre-adjoint of the coproduct A), however in general
we cannot make this into a Banach =-algebra in such a way that the regu-
lar representation is a *-homomorphism. We can however find a dense *-
subalgebra L; (G) that satisfies this property and is a Banach algebra under a
new norm. This was originally considered in Kustermans (2001) when defin-
ing the universal C*-algebraic quantum group, however little else has been

studied regarding this algebra in general.

In this thesis we study the Li—algebra of a locally compact quantum group
in this thesis. In particular we show how this has a (not necessarily unique)
operator space structure such that this forms a completely contractive Banach
algebra, we study some properties for compact quantum groups, we study
the object for the compact quantum group SU,(2) and we study the operator

biprojectivity of the Lé-algebra.

In addition we also briefly study some related properties of Cy(G)* and its

«-subalgebra Co(G)*,.
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Introduction

Locally compact quantum groups are a generalisation of locally compact groups that first
appeared in a definitive form in the reduced C*-algebraic setting and afterwards in the
von Neumann algebraic setting as detailed in the papers Kustermans & Vaes (2000) and
Kustermans & Vaes (2003). In the von Neumann algebraic setting of a locally compact
quantum group we obtain a Banach algebra from the predual of the von Neumann algebra
and from this Kustermans introduced a dense *-subalgebra called the L§—algebra (see
Kustermans (2001)). In this thesis we offer a detailed comprehensive study of this Lé-
algebra. In addition to this work for arbitrary locally compact quantum groups we will
study this object for the compact quantum group SU,(2) and obtain new results on this

quantum group as a result.

We now give an outline of this thesis. In Chapter 1 we review some advanced topics
in operator theory. In particular we study operator spaces, basic homological algebra of
operator spaces, one-parameter groups on Banach and operator algebras and lastly weight
theory (which is important for defining a locally compact quantum group). Chapter 1 will

give us a good stable footing in order to develop the rest of the thesis.

In Chapter 2 we define a locally compact quantum group G in the von Neumann
algebraic setting (L*(G), A) and the reduced C*-algebraic setting (Cy(G), A) and then
give the common properties we will use. In addition we will give details of duality, the
L!-algebra and of the product of locally compact quantum groups (a subject that to the
author’s knowledge is not currently recorded explicitly in the literature though we do use

many results from Vaes & Vainerman (2003) to show this).
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After this we study the special cases of compact and discrete quantum groups, Kac al-
gebras and coamenable quantum groups in Chapter 3. For us the compact case is the most
important as we shall see in the remainder of the thesis. We spend some time discussing
compact quantum groups in the locally compact setting where, for example, we calculate
the multiplicative unitary and scaling group of a compact quantum group (objects that

feature predominantly in the locally compact case).

We then come onto the research chapters of this thesis. In Chapter 4 we begin our
study of the Lé—algebra for a locally compact quantum group. We start by detailing known
results regarding this object, many of which were known to Kustermans in his original
paper on universal locally compact quantum groups. We then add an operator space
structure on the Li—algebra making it a completely contractive Banach algebra and we
prove various properties of this as an operator space. We prove finally that a locally
compact quantum group is compact if and only if its L&-algebra is an ideal in its own

double dual with respect to the Arens product.

In Chapter 5 we make a detailed study of the SU,(2) compact quantum group for
q € (0,1) that was originally discovered by Woronowicz. We begin by giving the basic
definition, the Haar state and the corepresentation theory of SU,(2) before moving on
to discuss new results as obtained by the author. We then show that we have a compact
space K such that the commutative C*-algebra generated by the normal element ¢ of
SU,(2) is *-isomorphic to C(/'). We then use this new object to study the L;-algebra
of SU,(2) and the quantum group product of SU,(2) with SU,(2) (for ¢’ € (0, 1) also).
We then finish this chapter with a brief study of C(SU,(2))*, and we show that the set

lin {(r®id)(W) | ve Cy(SU,(2))*}  is not closed under adjoint and therefore not a

C*-algebra.

In the final chapter we study some homological algebra for the Li—algebra. We study
projective modules over the Lﬁl-algebra and the adjoint map of the multiplication map
of the Lé—algebra as a completely contractive Banach algebra. Finally we study its re-

lationship to compact quantum groups where we prove that if the Lé—algebra is operator



biprojective then the quantum group must be compact and we give a structure theorem for
the L;-algebra to be operator biprojective.

We give an appendix for some further results used in functional analysis, measure
theory and operator theory. We do assume however that the reader is familiar with the
basics of these subjects including Banach space, Banach algebra, C*-algebra and von
Neumann algebra theory.

Most of the notation we use is standard in functional analysis, operator theory and
quantum group theory. The notation for operator spaces and quantum groups is described
in the first two chapters. We will also have use for some algebraic notions: for example we
denote by © the algebraic tensor product, lin X will denote the linear span of a subset X of
a linear space and alg A will denote the algebra generated by a subset A of an algebra. We
will only ever use the norm, weak and, when applicable, the weak* topologies on Banach
spaces with the exception of von Neumann algebras where we will also use the weak
operator topologies (we assume the reader is comfortable with these notions). We will
refer interchangeably to the equivalent o-weak topology and weak*-topology on a von
Neumann algebra. We denote the norm closure of a set X by 7”'“, the weak closure by
X" and the weak*-closure by X", We denote a weak limit = of a net (14) by 24 —>
and similarly a weak*-limit by z, %, ». We will often denote a norm with a subscript
when it is not clear where it comes from.

We also assume the reader is familiar with the Banach space projective tensor product
denoted ®, the minimal tensor product denoted by ®,;, on C*-algebras and the von
Neumann algebraic tensor product ® on von Neumann algebras. See Ryan (2002) and
Takesaki (2003a) for further details on tensor products in Banach spaces and operator

theory.
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Chapter 1

Operator Theory

In this chapter we discuss preliminaries required for reading this thesis that may not nec-
essarily follow from standard courses in functional analysis and operator theory. In par-
ticular we describe operator spaces and homological algebra, one-parameter groups and

weights on von Neumann algebras.

1.1 Operator Spaces

We begin with a discussion of operator space theory. It has been seen that operator space
theory is useful for studying locally compact groups (see for example Effros & Ruan
(2003) and Junge et al. (2009)) and locally compact quantum groups (see Hu ez al. (2011),
Aristov (2004) and Daws (2010)). We will make use of operator space structures in this
thesis with our study of the Lt} (G) algebra for a locally compact quantum group G.

Standard references in this section are Effros & Ruan (2000), Pisier (2003) and Blecher
& Le Merdy (2004) which will be quoted regularly throughout.

1.1.1 Operator Spaces and Ruan’s Theorem

Given any Banach space we can show there is some compact space 2 such that X can be

isometrically embedded inside C(£2), that is any Banach space is a subspace of a function
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space. This can in turn be represented as bounded operators on a Hilbert space. We ask
what kind of extra structure embedding a Banach space as a subspace of B(H) will give
us? We characterise this according to Ruan’s theorem below (Theorem 1.1.3).

We now make a small digression about matrices with entries in a linear space X. The

following is just to standardise notation.

Notation 1.1.1 Ler X be a linear space and let M, ,,,(X) denote the space of n x m-

matrices with entries in X. We make this a linear space with operations

n,m

(ig)iity + i)y gey = (@ + i), and M)l = (M)l

where z;5,y;; € X for1 <i,j <nand X\ € C. If n = m then the n x n matrices with
entries in X are denoted M, (X).

Given a linear map T : X — Y between linear spaces we let T, , : M, (X)) —
M,,n(Y') be the map given by (;;);"", — (T'(x;)); ", and if n = m then we denote

by T, : M,,(X) — M, (Y) the obvious map between square matrices.

Say X is a =-algebra, then we make M, (X)) into a =-algebra with multiplication and

adjoint given by

*
(xi,j)ijl (Yij): ij=1 = (Z l’zk?ﬂm) and ((%J)?g 1) - (x;i)i,jzl

ij=1
where z; ;,y,; € X for1 <i,j <n.
It is reasonably straightforward to see that for a linear space X we have an isomor-

phism M, ,,(X) = M,,, © X given by (z;;)}

Pim1 7> 2o €ij ® Tij where ej; is the
n x m-matrix with entry 1 in the ¢, j-th place and 0 elsewhere where ® denotes the alge-
braic tensor product.

Now let X < B(JH) be a linear subspace for some Hilbert space (. We can consider
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H™ = H @D, - @y H (n times) as a Hilbert space with inner product

n

() ()i gy = D (Glmi)se -

i=1

Let ® : M, (X) — B(H™) by

(@ ((zi)721) ] (G)imy = (Z xij£j>

for (&), € H ™. We can show that this preserves the adjoint and multiplication oper-
ations if X is a =-algebra. As the space B(3(™) is normed we can use this to define a

norm on M, (X)) by letting

n

(&)isy € 2 (O] < 1. (1D

[(2ij)ij=1 [, x) = sup H (Z l’ij@)
j=1

i=11Hn

So for all n € N we have defined a norm on M, (X') with an embedding inside M, (B(%H))
such that ML, (B(H)) =; B(H™), i.e. we have a sequence of matrix norms | - ||,,. We can

show that the following is true.

Proposition 1.1.2 Let X < B(H) be a linear subspace with the matrix norms | - |,, given

above. Then we have
(R1) ||axb|,, < |al|llz]m]0ll for all x € M,,,(X), a € M, ., and b € My, 1,
(R2) |2 @ Ylmsn = max{|z|m, [ly[.} for z € M,(X) and y € M, (X);

where © @y € B(H™ @y H™) denotes the operator given by (€,1) — (x&,yn)t for
£ e H™ andn e H™.

The more difficult and interesting point is that the converse of the proposition holds which
forms Ruan’s theorem as follows. See Effros & Ruan (2000) or Pisier (2003) for a proof
of this.
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Theorem 1.1.3 Let X be a linear space such that for all n € N we have a norm on
M., (X) satisfying (R1) and (R2) in Proposition 1.1.2. Then there exists a Hilbert space
H and an embedding J : X — B(H) such that the map J,, : M,,(X) — B(H™) from

Notation 1.1.1 is an isometry for all n € N.

We state the following that is not difficult to prove for convenience here. For our purposes

we will define operator spaces to be complete so as to be analogous to Banach spaces.

Proposition 1.1.4 Let X < B(H), and let (x;;)};_, € M,(X), then X is complete if and
only if ML,,(X) is complete for all n € N.

We now make the following definition of an operator space.

Definition 1.1.5 An operator space X is a linear space with a collection of norms | - |,
on M., (X) for all n € N that satisfy Ruan’s axioms in Proposition 1.1.2 and such that X

is complete with respect to the || - | norm.

So we can either define an operator space through a sequence of norms or through a closed
embedding into B(H) for some Hilbert space . We will define operator spaces using

both of these methods in this thesis.

Remark 1.1.6 In the case where we have a non-square matrix then we can embed this in a
larger square matrix by adding either columns or rows of zeros until it is square. As such,
if we have an operator space structure X, we define norms on rectangular matrices by
simply embedding the rectangular matrices into square matrices this way and calculating
the norm. The norms of square matrices do not change as we add rows or columns of

zeros so this is well defined.

We now give some basic examples of operator spaces with more to follow in the next

section.
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Example 1.1.7 We know from the start of this section that any Banach space X is an
operator space. It also follows that any C*-algebra can be made into an operator space by
the GNS construction. Similarly any von Neumann algebra is automatically an operator

space.

Example 1.1.8 Let X be an operator space, then M,,(X) is an operator space by identi-

. B . ihi\m n i,5 (nm)
fylng Mn<Mm(X)) - an(X) with the map ((xk,l)k,lzl)i7j=1 — (‘rk,l)(i7k)’(j’l)=(171)'

Let Y be a closed subspace of X and we have that Y is an operator space with the

obvious embedding.

1.1.2 Completely Bounded Maps, Duals and Quotients

We have defined an operator space in the previous section and now in this section we
consider the appropriate morphisms between operator spaces. As we have norms on ma-
trices with entries in an operator space it will be useful to have a morphism that respects
this structure in a similar way as to how bounded maps do for Banach spaces. We define
now the completely bounded maps (along with their various counterparts of complete
contractions, complete isometries, etc) and give some of their properties.

We will show in this section how we can make dual spaces and quotient spaces of
operator spaces into operator spaces themselves and we will give various theorems re-
garding completely bounded adjoint maps. We note for the following definition that a

quotient map between Banach spaces is given in Definition A.1.5.

Definition 1.1.9 Let X and Y be operator spaces, let T : X — Y be a linear map and
let T,, : M, (X) — M, (Y') be the map given in Notation 1.1.1. As M,,(X) and M,,(Y")

are both normed then we can define the following norm on T,

|Tn] = sup {IITn (@ii)ija || ()21 € Min(X),

(xij)Zj:IH < 1} :

We say T is completely bounded if there is some M > 0 such that |T,,| < M for all
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n € N in which case we define the following norm
|Tles = sup || T,
neN

We denote by CB(X,Y') the completely bounded maps from X to Y and we have the

following important definitions:
(i) T is completely contractive if |T ., < 1;
(ii) T is a complete isometry if T,, is an isometry for all n € N;

(iii) T is a complete quotient map if T}, is a quotient map for all n € N (see Example

1.1.17 below for the operator space structure on quotient spaces);

(iv) T is a complete isomorphism if T is a linear isomorphism and T and T~ are

completely bounded.

We denote X =.; Y where X andY are completely isometric and completely isomorphic

and say they are completely isometrically isomorphic.

Clearly for any completely bounded map 7' : X — Y between operator spaces we have
[T < |1 for all n € N. In particular we have ||T"| < |71 .
Throughout the rest of this section we give some more examples of operator spaces

and morphisms between them.

Proposition 1.1.10 Let A and B be C*-algebras and T : A — B a =-homomorphism,

then T is a complete contraction. If T is a =-isomorphism than it is a complete isometry.

Proof (Sketch)

We know that a *-homomorphism between C*-algebras is a contraction from C*-algebra
theory. By representing A on a Hilbert space 3 and using that M[,,(A) is a closed subspace
of B(H ™) then ML, (A) is a C*-subalgebra. We can show that ®,, : M,,(A) — M, (A) is

a *-homomorphism and so ®,, is a contraction for all n € N.

10



1.1 Operator Spaces

If @ is a *-isomorphism then we show that ®,, is injective and surjective for all n € N

and thus each ®,, is a *-isomorphism as required. O

We now show that we can make CB(X,Y) into an operator space itself. See section

1.2.19 in Blecher & Le Merdy (2004) for further details.

Example 1.1.11 Foralln € N we can define a bijective linear map ® : M, (CB(X,Y)) —
CB(X,M,(Y)) by ® ((T3)1;—) (x) = (T3j(2)); =, and we can define the norm on
M, (CB(X,Y)) such that ® is an isometry.

As a result of this we see that choosing Y = C in the above we turn X ™ into an operator
space.
We record the following two results from Proposition 2.2.2 and Corollary 2.2.5 from

Effros & Ruan (2000).

Proposition 1.1.12 Let X be an operator space, n € Nand T : X — M, a linear map,
then || Ty, = [T

Corollary 1.1.13 Let X and Y be n-dimensional operator spaces, then there is an iso-

morphism T : X — Y such that |T|||T e < n

Example 1.1.14 Let X be an operator space and X* the Banach dual of X. We have
from Proposition 1.1.12 that X* = B(X,C) = CB(X, C).

Forn € N we define a map ® : M,,(X*) — CB(X,M,) given by ® ((wi;)?;_;) (x) =
((z, wij>)2j:1 and we show this defines a bijective linear map. Clearly we have a lin-
ear injective map. Say f € CB(X,M,), then we define w;; : X — C by w;j(x) =
(f(2)); ;5 that is we define it as the i, j-th entry of f(x) € M,,. Then we have |{x,w;;)| =
|(f(x)ij] < |f(x)| < |fllz| and so w;; € X* forall 1 < i,j < n. Also we have

O((wij)itj=1) (@) = (s wip)i oy = ((f(2))ig)iyoy = f(@)

11



1. OPERATOR THEORY

and so P is surjective. It follows that we can define an operator space structure on X*
making ® a complete isometry using the operator space structure on CB(X,M,,) for
neN.

If X has a predual X, then X, < X™ has an operator space structure by restriction of
the operator space structure on X* by Example 1.1.8. In particular we have an operator
space on the predual M, of a von Neumann algebra M and furthermore, we have that the
operator space structure on (M, )* as the dual space is completely isometric to that of the

operator space structure on M.

We have the following property for the canonical embedding of a space into its double
dual. See Proposition 3.2.1 in Effros & Ruan (2000) and Section 2.1 of Pisier (2003) for

proofs.

Proposition 1.1.15 Let X be an operator space, then the canonical embedding 1 - X —

X** of X into its double dual is a complete isometry.

Next we consider adjoint maps. Let 7" : X — Y be a bounded map between Banach
spaces X and Y, then there exists a unique bounded map 7% : Y* — X* called the
adjoint map such that

(T*w,x) ={w, Tx) (1.2)

forw € Y* and = € X where ||T'| = |T%*|. We have the following in the case of operator

spaces.

Proposition 1.1.16 Let T : X — Y be a linear map between operator spaces X and Y,
then the adjoint map T* : Y* — X* in Equation (1.2) is completely bounded if and only

if T is completely bounded. Furthermore if these conditions hold we have |T*| a4, = |T'|| -

The reader is referred to Section 2.4 in Pisier (2003) for further details on adjoint maps.

We now establish some properties of quotient spaces of operator spaces.

12



1.1 Operator Spaces

Example 1.1.17 Let X be an operator space, Y a closed subspace of X and fix n € N.
Then M., (Y) is closed in ML,,(X) and so we may identify M,, (X /Y") with M.,,(X) /M, (Y)
by defining an isomorphism (vi; + Y ),_y — (vi5)7,=1 + M, (Y). In particular for
(zij)i =1 € M, (X/Y') we have

[ (@)l = inf { (i)l | wi)i =1 € Mn(X), (ys + Y7oy = (@3)7521 } -

It can be shown this forms an operator space, see Example 3.1.1 in Effros & Ruan (2000).

Proposition 1.1.18 Let X, Y and Z be operator spaces, let ¢ : X — X /Y denote the
canonical surjection map and let u : X /Y — Z be a linear map. We let X /Y have the

operator space structure in Example 1.1.17 and then we have u € CB(X /Y, Z) if and
only if ug € CB(X, Z) with ||u| s = |uq]|c-

For a proof of the following see Section 2.4 in Pisier (2003) and 1.4.3 in Blecher &

Le Merdy (2004). We have a similar well known result for Banach spaces.

Proposition 1.1.19 Let T' : X — Y be a completely bounded map between operator

spaces. Then we have the following:
(i) T is a complete isometry if and only if T is a complete quotient map;
(ii) T is a complete quotient map if and only if T* is a complete isometry.

Lemma 1.1.20 Let T : X — Y and S : Y — X be complete contractions between
operator spaces with ST = idx. Then T is a complete isometry and S a complete

quotient map.

Proof

Let z € X and n € N and we have

[ i) jalln = 190 T (2is)i =1l < (S Ten| T (45)7 21 [

< | To(@ig)ijzilln < T llewll (ig)7 =i ln < ()7 21 |

13



1. OPERATOR THEORY

and so we have equality throughout and 7, is an isometry for all n € N.
Now taking adjoints we find completely contractive maps S* and 7™ such that 7*S* =
id x+. Then we see similarly that S* is a complete isometry and thus by Proposition 1.1.19

we have that S is a complete quotient map. O

Corollary 1.1.21 Let T : X — Y and S : Y — X be complete contractions between
operator spaces with ST = idx and T'S = idy, then S and T are completely isometric

isomorphisms and X =, Y.

Example 1.1.22 Let X be a linear space and let X = {T | v € X} be a linear space

with addition and scalar multiplication given by

forx,ye X and \ € C.
Given a finite dimensional linear space X with a basis {e; | 1 < i < n} we can write

T = Z?:lxieifor z; € C(1 <i<mn) NowletT € X and we have v € X and can

write this as above. Then we have T = Z?:l T;6; = Z?:1 T; €; and so we have a basis
(& | 1<i<n}forX.

Let T : X — Y be a linear map between linear spaces and define a map T : X —
Y by T(%) = Tx. In particular we have linear functionals on X say. If X is finite

dimensional and T : X — X is given by a matrix (Ti;);_, then we can write

T(&) = Z
and so we define (T;;)};_, = (T_”)Zl]:1
If we have a Hilbert space 3 we can make H a Hilbert space with inner product
(5’77) §|7] (n|€) for all §,m € H. We have for T € B(H) that HT H = ||T¢| for
all§ € Hand so |T| = |T| giving T € B (H).

14



1.1 Operator Spaces

Given an operator space X < B(3) we have an embedding @ : X — B(I{) and we

can show that

@75

H (xi]')?,jzl ‘

‘Mn(X) - VL) )(xij)ij:lHMn(X) '

It also follows that for a completely bounded map between operator spaces T € CB(X,Y)
that T € €B(X,Y) and |T|o, = |T| ,. Furthermore the map CB(X,Y) — CB(X,Y)
given by T — T is an anti-linear completely isometric isomorphism.

Finally consider a completely bounded linear map T : X — Y, then we have a map

T : X — Y such that for all z,2' € X and X € C we have

Tz + \y) :T(fJJ@) — T(F + \) = TT + \TG = Ta + ATy
and soT : X — Y is linear. We know that |T|| = HTch and so we have a completely
isometric isomorphism CB(X,Y) =, CB(X,Y).

There are potentially many different operator space structures on a Banach space X'; how-
ever we always have a minimal and maximal operator space structure. See Section 3.3 in

Effros & Ruan (2000) and Chapter 3 in Pisier (2003) for further details.

Definition 1.1.23 We define two operator space structures MIN(X) and MAX(X) as

follows. Foralln € N and x = (z5)},_, € M,,(X) let

e
|2 s, i)y = sup {| fa()|| | f e X*, [ f] <1}

and let

H is a Hilbert space and 0 : X — B(H)
| [lv, aax(xy) = sup § [|0n(2)] _
an embedding such that ||0|| < 1

We call MIN(X) the minimal operator space structure on X and MAX(X) the maximal

15



1. OPERATOR THEORY

operator space structure on X.

Let | - |, a be collection of norms defining an operator space structure, then for all
x € M, (X) we have |z |m, minx)) < [2]n < [2]m,iax(x)). We have the following

important proposition.
Proposition 1.1.24 For a Banach space X we have

(MAX(X))* = MIN(X®),  (MIN(X))* >, MAX(X*).

1.1.3 Direct Sums and Tensor Products of Operator Spaces

We now move on to discussing direct sum and tensor products of operator spaces. See
Section 2.6 and Chapters 4 in Pisier (2003) and Chapters 7 and 8 in Effros & Ruan (2000)
for further details. We offer more proofs in this section where the author could not find

proofs in the standard references given.

Definition 1.1.25 Let X; < B(H;) be operator spaces for i = 1,2, then we define the
operator space X1 @, Xo with the obvious embedding into B(H; By Hs).

Note that given Banach spaces X; and X5 we have a Banach space direct sum X; ®., X»
with norm

[, ) x@00x2 = sup{[a ., |27]x. }-

The following shows that our operator space embedding in Definition 1.1.25 gives us the

Banach space X; @,, Xo when X and X are considered as Banach spaces.

Proposition 1.1.26 Let X; ¢ B(H;) be operator spaces fori = 1,2 and let
((zk, 22))*._, € M, (X| @ X3), then we have

12 "ig) )i, =1

= sup {H(lej)zj‘=1||Mn(X1)a “(mgj)2j=1||Mn(X2)} .

1 .27
H(( ij> ZJ))ZJ_l‘Mn(Xl@ooXQ)
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1.1 Operator Spaces

Proposition 1.1.27 Let X; < B(H;) be operator spaces, m; : X1 @y Xo — X; the
canonical projection maps and 1; : X; — X1 @y Xo the canonical injection maps. Then
for i = 1,2 we have that m; and 1; are complete contractions and furthermore m; are

complete quotient maps.

Proposition 1.1.28 (i) Let X, Y and Z be operator spaces, T € CB(X,Y ) and S €
CB(X, Z), then we have amap T ® S € CB(X,Y @y, Z) given by v — (T'z, Sx)
with |T' @ Sl = max{|T e, |S]cs};

(ii) Let X1, Xo, Y1 and Ys be operator spaces, T) € CB(X4,Y7) and T, € CB(X,,Ys).
We have a map T' @ T € CB(X 1@ X2, V1@ Y2) given by (x1, x2) — (1121, Toxs).
If T and T are complete contractions (isometries) then T @, 15 is also a complete

contraction (isometry).

Proof

(i) Let (7i;) € M, (X) and then (T'® S)n((745)7,-1) = ((T(Iij))?,j:p (S<mij))2j:1)

and so

(T @ S)n((wij)7j=1) it (v 2y = max {[| T((@is)75=0), 190 (i) 5=0) 1}

< max{|[ T, |Snll} (i)t [

Then it follows that (7' ® S),| < max{|T,|, ||S.|l} < max{||T|w,|S|s} and so
taking the limit n — oo we get |7 ® S| < max{|T |, [|S]}- On the other hand
we have [ (T'® S)n(zi;)| = |T.((w5)7 ;1| and similarly for S,. So

max{[[T, |, [Sn[} < [(T@© S| < |T® S|es

for all n € N and then taking the limit of n — oo we get max{||Tw, [ S|} <

IT ® S| as required.

17



1. OPERATOR THEORY

(ii) Let (w45)7;_, € M, (X1) and (ys;) € M,,(X>) and we have

|(T2 @20 T2)n ((219)7 -5 (Wis)itj=1) HMn(Yl@ng)
= mnax {H(T1<fcu)>2j:1HMn(yl> ’ H(TQ(yij))ijluMn(Yg)}

< max {\|T1ch | (i)}

I 1 1 LY B

(Yis)i =1 HMn(X2)}

< max{| T o, |Toller max {021 |y sy

and so |71 @ Tolley < |71 T2]lcr and T1 @y, T is a completely bounded map.
Clearly if 77 and 75 are contractions this shows that so is T} @, T5. If T and 75 are

complete isometries then

[(T2 @20 T2)n (2357 jm15 (41| M, (V1@ Y2)
— max {H(Tl(xij))?,jzlumn(yl) ’ H(T2<yij))2]':1HMn(Yg)}

(yz‘j)Zj:lHMn(m}

= max {“(xij)ijl“Mn(Yl) ’

= H((l’ij)%:lv (yij)ijl)HMn(Xl@wxz)
and so 71 @, 15 is also a complete isometry. O

Corollary 1.1.29 Let X, Y and Z denote operator spaces, then we have CB(X,Y @,
7) =, CB(X,Y) @y CB(X, 2).

Proof

We have an isometry ¥ : CB(X,Y) @, CB(X,Z) — CB(X,Y @, Z) by the previous
proposition given by (7, S) — T'@® S and we show this is onto. Let 7' € CB(X,Y @, Z)
and we consider the maps m 07 € CB(X,Y) and mpoT € CB(X, Z). Then forall z € X

we have

P((myoT), (w0 T))(x) = ((m o T)(x), (20 T)(x)) = Tx

and so ¢ (((m o T),(my0T))) =T. So W is an isometric isomorphism.

18



1.1 Operator Spaces

Now fix n € N and using this isometric isomorphism and Proposition 1.1.26 we have

M, (CB(X,Y) @ CB(X, Z)) = M, (CB(X,Y)) @ep M, (CB(X, Z))
=; CB(X, M, (Y)) @ CB(X, My(Z)) =i CB(X, M, (Y) @ M, (2))
~; CB(X, M, (Y @ Z)) = M,(CB(X,Y @ Z))

and so W is a complete isometry as required. O

We consider another example of a direct sum of operator spaces now.

Example 1.1.30 Ler X; < B(H;) denote operator spaces for i = 1,2, let 1; : X; —
B(H, @2 Ho) denote the embeddings x — (z,0) and y — (0, y) and let P denote the set
of all pairs (uy,us) of completely contractive maps w; : X; — B(H,) for some Hilbert
space H,, (dependent on (uy,us)). Note that P is non-empty as we have the completely
isometric embeddings (1,,15) € P. We let H = P _pH, for convenience.

Let J : X1 ® Xy — B(H) be given by (x,y) — (ui(x) + ua(y)) We define an

ue P
operator space X1 @, Xo such that J is a complete isometry here.

This satisfies the following universal property: for any operator space Y and complete
contractions uy : X1 — Y and uy : Xo — Y then the map X, &, Xo — Y given by

(1, x9) ¥ uy(x1) + ug(wo) for x1 € X1 and xo € Xo is a complete contraction.

Proposition 1.1.31 Let X, X, and Y denote operator spaces, let T € CB(X1,Y) and
SeCB(Xo,Y). Let T S : X1®1 Xo — Y be the map given by (x,2') — Tx + Sa'. If
T and S are complete contractions then so is T @, S. Furthermore we have |T @, S||o, =

maX{HTchv HS”Cb}

Proof

Let 7" and S be complete contractions and H the Hilbert space such that Y < B(H) as
an operator space, then we have that (7', S) € P for P given in Example 1.1.30 and it
follows that (7" ®; S)(z,y)| < |J(z,y)|. SoT @, S is completely contractive.
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Let 7' e CB(X,Z)and S € CB(Y, Z) and let & = max{|T, | S|} Then 77 =

T S
— and S’ = — are both complete contractions and thus 7" @, S’ is also a complete
a «
contraction. Then we have || ®, S| < a = max{|7T|e, |S|e}- Also we have for n € N

that

1T ((43)ij=1) a2y = 1(T @1 S)n((45)7 521, O < (T D1 S)allll(45)5 =1 1 20

and so in particular we have |7,,|| < [(T'®; S)n| < [|7°®1 S| . Then we have |1 <
|T @1 S| and similarly | S| < |7 @1 S|w so it follows that max{|T|, |S|w} <
”T D1 Sch- O

Proposition 1.1.32 For operator spaces X, Y and Z we have completely isometric iso-
morphisms CB(X @&, Y, 7Z) =, CB(X,Z) @y CB(Y, Z). In particular it then follows
that (X @, Y)* =, X* @Dy Y™

Proof
It follows similar to that of the proof to Corollary 1.1.29 that we have an isometric iso-
morphism CB(X @&, Y, Z) =, CB(X,Z) @, CB(Y, Z). Then for all n € N we have the

following isometric isomorphisms as required

M, (CB(X @, Y, Z)) = CB(X @, Y,M,(Z)) =~ CB(X,M,(Z)) B CB(Y,M,(Z))
M., (CB(X, Z)) @y M, (CB(Y, Z)) =; M, (CB(X, Z) ®,, CB(Y,Z)). O

We now move on to the topic of tensor products of operator spaces. We have already
introduced the minimal tensor product of two operator spaces; we now introduce the

projective and injective tensor products and give further properties of each of these.

Notation 1.1.33 Let X and Y be operator spaces. Let (v5)7,;_, € M, (X) and (y;;)i%_, €
M,,,(Y), then we have (z;; ® ykl)gfg)(] n=(1) € Mun(X ©Y). We will always identify

M, (X) © M, (Y') with M,,,,,(X ©Y) in this way.
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1.1 Operator Spaces

Definition 1.1.34 Let X andY be operator spaces, then we can form the algebraic tensor
product X ©Y and we can consider norms on M,,(X ®Y"). We say that a collection of
norms {| - |m,xov) | n€ N} on X @Y is a subcross matrix norm if for all (x;;)7;_, €
M., (X) and (yi;)7-, € M,,,(Y') we have

H(ﬂ% ® ykl)EZ}c),(j,l):(l,l) S H(xij)Zj=1HMn(X) H(y’“)zlﬂHMm(Y) '

Mypn (XQY)

We say it is a cross matrix norm if this is an equality for all (v;)};_, € M,(X) and
(Yi)i21 € My (Y). We call the resulting completion of X ©Y the operator space tensor

product.
For a proof of the following see Theorem 7.1.1 in Effros & Ruan (2000).

Definition-Theorem 1.1.35 Let X and Y be operator spaces, then there is a subcross

matrix norm satisfying Ruan’s axioms on X ©Y such that for all (u;;)7;_, € M,(XQY)

we have

(O {|a|||x|y|@

U5 = Z Z ai,pq(xp,r ®yq,s)5rs,j}

p,r=1q,s=1

where on the right hand side we range over all m,m’' € N, a € M, s, © € M,,(X),
y € M vy and 3 € My, and the norms are calculated in the appropriate space.

This is the largest cross matrix norm on X ©Y and we denote by X @Y the operator
space given by the completion of X ©Y with respect to the norm above. We call this the

operator space projective tensor product.

Most of following propositions are proved in Chapter 7 of Effros & Ruan (2000) or Chap-
ter 4 of Pisier (2003). We quote the results we will use here and refer the reader to these

references for further details.

Proposition 1.1.36 Letr X, X', Y, Y' and Z be operator spaces. Then we have the fol-

lowing:
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(i) The operator space projective tensor product X ®Y of X and Y is the unique op-

erator space such that (X ®Y)* =, CB(X,Y™*) or more generally we have

CB(X®Y, Z) = CB(X,CB(Y, Z));

(ii) If T € CB(X,Y) and T" € CB(X',Y') are completely bounded maps, then we
have a completely bounded map TR T' : X ® X' — Y QY that extends the map
TOT : XOX ->YQOY suchthat |T QT ||, < | T T"]

cb ;

(iii) If T € CB(X,Y) and T" € CB(X',Y') are complete quotient maps then there is a
complete quotient map TR T' : X® X' — Y XY extending TR®T' : X © X' —

Y O Y’ and furthermore we have

Ker (T®T) = K T) O X' + X O (Ker T7) ;

I

(iv) The flipmap ¥ : X ®Y — Y ® X is a completely isometric isomorphism;

(v) We have that X Y =, X

&»
~

Proof

We prove only the last property here which follows as for any operator space Z we have

CB(XR®Y,Z) =, CB(X,CB(Y, 7)) = CB(X,CB(Y, 2))

=, CB(X,CB(Y, 7)) =, CB(XR®Y,Z) =, CB(XR®Y,Z). O

Remarks 1.1.37 (i) We have a notion of a “completely bounded bilinear map” which
gives us a space CB(X x Y, Z) that is completely isometrically isomorphic to
CB(X ®Y, Z). We do not pursue this here but this is a motivation for the defini-

tion of a completely contractive Banach algebra below;
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(ii) It does not follow in general that if we have two complete isometries that the projec-
tive tensor product of these maps is a complete isometry. In fact given a complete
isometry T' : X — Y we don’t necessarily have a complete isometry T' ® idy :

X®Z — Y ® Z for an operator space Z.

Proposition 1.1.38 Ler X, X', Y and Y’ be operator spaces, then we have completely
isometric isomorphisms (X @, X') QY 2, XY @ X'®Y and X ® Y& Y') =
X®Y & XY

Proof

This follows as for all operator spaces Z we have

CB(X @1 X®Y, Z) =, CB((X @ X'),CB(Y, Z))
~.,; CB(X,CB(Y, 7)) ®y CB(X',CB(Y, Z))
~,; CB(XRY,Z) Dy CB(X'RY, Z) =, CB(XRY @, X'RY, 2)
and the second follows from a similar calculation or from Proposition 1.1.36 (iv). O

Definition-Theorem 1.1.39 Let X and Y be operator spaces, then there is a cross matrix
norm satisfying Ruan’s axioms on X @'Y such that for all u = (u;;);';—; € M,(X ©Y)

we have

lullv = sup {I(f ® 9) () |ra,. | f € Mp(X¥), g€ M(Y"), [f] <1, 9] <1}

We let X @Y be the operator space given by the completion of X ®Y with respect to this

norm and we call this the operator space injective tensor product.

Notation 1.1.40 Consider the identity map X ©Y — X ©Y which can be coextended
toamap ) : X OY — X QY. Forany v € M,,(X) and y € M,,,(Y) we have

[¢(z @) = lz@yl < ||yl
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and so 1 is a complete contraction. It follows that we can extend this to a linear com-
pletely contractive map VU : X ®Y — X QY called the canonical complete contraction

from XQY to X QY.

We won’t explore many details about this tensor product in this thesis; however we men-

tion the following remark and proposition.

Remark 1.1.41 Let X < B(H) and Y < B(K) be operator spaces, then we have a
completely isometric embedding X @Y = B(H Q@ K). It the follows that for C*-
algebras A and B, then operator space injective tensor product A® B coincides with that
of the minimal tensor product A ®,,;, B as C*-algebras with respect to their canonical

operator space structure.

Proposition 1.1.42 Say T : X1 — Yy and T5 : Xy — Y5 are completely contractive
maps, then there is a completely contractive map Ty Q@ Ts : X, ® Xy — Y1 ® Yy such that
(Th @ Ta)(r®@y) = T1 () @ Ta(y).

We will use the following from Lemma 7.2.2 in Effros & Ruan (2000) shortly to define

some additional operator space tensor products.

Lemma 1.1.43 Let H and K denote Hilbert spaces and w € B(H),, then there is a
unique weak*-continuous linear extension w ® id : B(H®K) — B(X) of the map
r®y — wx)y for x € B(H) and y € B(K) such that |w ® id| < ||w|. Similarly for
k € B(KX), we have a unique weak*-continuous extension id ® k : B(HQ®K) — B(H)
of the map x ® y — k(y)x such that |id ® k| < ||K].

Consider the duals X* and Y* for operator spaces X and Y. As X* and Y* are operator
spaces there are Hilbert spaces H and X and embeddings 7 : X* — B(H) and 7 :
Y* — B(K). Furthermore we can assume this is a weak*-homeomorphic completely
isometric injection from Proposition 3.2.4 in Effros & Ruan (2000). From this we can

define the following tensor products on dual operator space structures.
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Example 1.1.44 Let X and Y be operator spaces with X* < B(H) and Y* < B(X)
for Hilbert spaces H and K. We define the normal tensor product of X* and Y*, de-
noted by X*®@Y*, as the weak*-closure of X* © Y* in B(H)®B(X) =, B(H®X).
This coincides with the von Neumann tensor product when X™* and Y* are von Neumann

algebras.

We define the Fubini tensor product of X* and Y*, denoted by X* ®g Y*, as follows

(w®id)(z) e Y*, ((d® k) € X*,
Vwe B(H),, ke B(K),

X*BrY* =4 zeBHRX)

where we’ve used the previous lemma.

We let X n(;éc Y = (X @Y) JKer ) for 1) the complete contraction in Notation 1.1.40.

The following is proved in Sections 7.2 and 8.1 in Effros & Ruan (2000). See Effros &

Ruan (2003) for the notion of the nuclear tensor product.
Theorem 1.1.45 We have

(i) X*@Y" c X*®@s Y™,

(ii) (X ® Y)* is weak*-homeomorphic completely isometric to X* @5 Y*;
(iii) (X ® Y)* =~y X*®Y™.

Proposition 1.1.46 For any two weak*-closed operator spaces X* < B(H) and Y* <
B(K) we have X*R®Y™* = X*®5 Y™ if and only if the canonical complete contraction
Y X®Y — X QY from Notation 1.1.40 satisfies Ker ¢ = 0.

We have the following properties of these morphisms between operator spaces. See

Proposition 3.2.1 in Effros & Ruan (2000) and Section 2.1 of Pisier (2003) for proofs.

Proposition 1.1.47 Let M and N be von Neumann algebras, then there is a completely
isometric isomorphism (M ® N ), = M, ®N,. In particular it follows that the canoni-

cal complete contraction 1) given by Notation 1.1.40 has Ker ) = (.
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The following can be found in Section 8.2 in Effros & Ruan (2000).

Proposition 1.1.48 Let X and Y be Banach spaces, then we have
MIN(X)@MIN(Y) =, MIN(X ®Y)

and

MAX(X)®MAX(Y) =, MAX(X®Y)

where @ and & denote the injective and projective tensor products as Banach spaces

respectively.

1.1.4 Completely Contractive Banach Algebras

In this section we give the definition of a completely contractive Banach algebra. For a
completely contractive Banach algebra A we have that the multiplication map A® A — A
given by x ® y — xy for all x,y € A is completely contractive. In general there is no
guarantee that this map is onto, however we show that we can extend any completely
contractive Banach algebra to a unital completely contractive Banach algebra and in this

case this map is clearly always onto.

Definition 1.1.49 A completely contractive Banach Algebra is an algebra A that is an
operator space and such that the multiplication map Ax A — A gives rise to a completely

contractive map m : AQ A — A where m(x ® y) = xy for all z,y € A.

Example 1.1.50 Let A denote a completely contractive Banach algebra A and let A°
denote the operator space A @, C given by Example 1.1.30. We want to make this into a

completely contractive Banach algebra such that we have product

(@, ) - (b, N) = (ab+ b+ Na, AN) (1.3)

26



1.2 Homological Algebra in Operator Spaces

forall a,b e Aand \, N € C. Note that we adjoin an identity ¢* = (0,1) (even if there
already is one), meaning we have a new identity. We show now that there is a completely
contractive map m® : A’ @ A® — A’ satisfying this equation.

We let my : AQA — A° be the map v — (m(x),0), my : AQC — A® be the
map a @ A — (\a,0), mg : CR®A — A® be the map A\ ® a — (\a,0) and finally let
my : CRC — A be the map \® N +— (0, \N'). Then each of these maps is completely
contractive. Also we have by Proposition 1.1.38 that A’ QA ~, AQRA®, ARC &,
C® A®; CRC. Furthermore we have m’ = my ®; mq ®; ms ®; my satisfies Equation

(1.3) above and using Proposition 1.1.31 it follows that m” is completely contractive.

Definition 1.1.51 Let A be a completely contractive Banach algebra, then a left ideal 1
of Ais a closed subspace of A such that m(a ®i) € I foralla € Aand i€ I.

1.2 Homological Algebra in Operator Spaces

We now move on to consider modules over completely contractive Banach algebras and
operator biprojectivity. In Chapter 6 we will discuss the subject of operator biprojectivity

for the Lé—algebra of a locally compact quantum group.

1.2.1 Basic Definitions

We first discuss some preliminaries concerning operator A-bimodules over completely

contractive Banach algebras.

Definition 1.2.1 Let A and B denote completely contractive Banach algebras and let X
be a Banach A-B-bimodule, that is we have two operations AQ X — X and X ® B —
X givenby a®x +— a-x and x ® b — x - b such that for all a,a’ € A and x,x' € X we
have

(a+d) x=a x+d -z, a-(z+2)=a-xz+a-2
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1. OPERATOR THEORY

(ad') - z=a-(a"-z),  |a-z|<]allz]

and similarly for the other operation and such that a - (x - b) = (a - ) - b for all a € A,
x e Xandb e B. We say X is a completely bounded A-B bimodule if the operation
ARX®B — X givenby a® t ® b — a - x - b is completely bounded and a com-
pletely contractive A-B bimodule if this operation is completely contractive. We also
have completely bounded (contractive) left A-modules that are operator A-C-bimodules

and similarly for completely bounded (contractive) right A-modules.

Definition 1.2.2 Let T : X — Y denote a completely bounded (contractive) linear map
between operator A-B-bimodules X andY . We say T is a completely bounded (contrac-
tive) A-B-bimodule homomorphism if T(a - x -b) = a-T(z) -bforalla € A, x € X and
b € B and denote such maps by ACBg(X,Y). If A = B we will simply refer to a com-
pletely bounded A-bimodule homomorphism. Similarly we have left and right completely

bounded (contractive) A-module homomorphisms.

We now introduce some basic definitions necessary for introducing the notion of opera-
tor projectivity and biprojectivity. The following can be applied to various objects and
morphisms, in particular we will apply this to operator spaces and completely bounded

maps.

Definition 1.2.3 A short exact sequence is a collection {X,Y,Z} of objects and mor-
phisms f : X — Y and g :' Y — Z such that f is injective, g is surjective and

Image f = Ker g. We will often denote this by the following

Definition 1.2.4 A map f : X — Y is admissible if Ker f and Image f are both closed

and complemented subspaces of X and 'Y respectively.
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1.2 Homological Algebra in Operator Spaces

Definition 1.2.5 Consider a short exact sequence with X, Y and Z operator spaces and

f and g completely bounded maps as follows

We say this is admissible if g has a completely bounded right inverse G € CB(Z,Y') and

that it splits if G can be chosen to be a left completely bounded A-module homomorphism.
We will also use the following definition occasionally.

Definition 1.2.6 Let X be a completely bounded right A-module and Y a completely
bounded left A-module. Then the Balanced tensor product of X and Y, denoted by
X @A Y, is the quotient of X RY by the set

Iin {z-a®y—2®a-y|reX, yey, aeA}M.

1.2.2 Operator Biprojectivity

We now move on to discuss projectivity of completely bounded left A-modules. We
use Wood (2002) as our basis for operator biprojectivity in this thesis. The standard
reference for biprojectivity of Banach algebras Helemskii (1989) is still useful to us here
and we offer Aristov (2002) as an additional reference for the biprojectivity of completely
contractive Banach algebras.

Throughout the rest of this section let A denote a completely contractive Banach alge-
bra and let X, Y and P denote completely bounded left A-modules. We only work with
completely bounded left A-modules in this section but we have the obvious counterparts
for right completely bounded A-modules and completely bounded A-B-bimodules (for a
completely contractive Banach algebra B).

Let P be a completely bounded left A-module with map 7 : AQ P — P. Using

similar methods to that of Example 1.1.50 we can extend 7 to a map 7° € CB(A’® P, P)
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such that 7°(¢” ® ) = z. Welet § : P — A’ ® P denote the map = — ¢’ ® 2. Then
as the operator projective tensor product is a subcross matrix norm we have for all n e N

and () ;—; € M, (P) that
[0 (i) =) | = 1€ @ 2ig)i ol < eIl @i)iy-

and so 6 is completely bounded. Clearly we have 7(f(x)) = = and so we have a right
inverse to 7. In the special case that 6 is a completely bounded left A-module homomor-

phism we make the following definition.

Definition 1.2.7 A completely bounded left A-module P is projective if the multiplication
map w: A’® P — P has a right inverse in 4CB(P, A’ ® P). We have similar definitions
for right completely bounded A modules and completely bounded A-B-bimodules.

Theorem 1.2.8 Let P be a completely bounded left A-module. The following are equiv-

alent:
(i) P is projective;

(ii) For any completely bounded left A-modules X and Y, 0 € ACB(X,Y) a sur-
Jective, admissible homomorphism and o € ,CB(P,Y’), then there exists some

p € ACB(P, X) such that the following diagram commutes

P
v/
p/l
s g
¥

XT»Y;

(iii) Any admissible, short exact sequence of completely bounded left A-modules as fol-

lows

0 Y X P 0

splits.
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1.2 Homological Algebra in Operator Spaces

We reiterate that all definitions and results in this section have obvious corresponding
definitions and results for right completely bounded A-modules and completely bounded

A-B-bimodules (for B a completely contractive Banach algebras).

Definition 1.2.9 A completely contractive Banach algebra A is operator biprojective if it

is projective as a completely bounded A-bimodule.

Proposition 1.2.10 A completely contractive Banach algebra A is operator biprojective

if and only if the multiplication map A : AQ A — A has a right inverse p € 4CB 4(A).

1.2.3 Additional Results

We prove some useful lemmas in this section that originally were recorded in Aristov

(2004). We give our own full proofs of these results expanding on those given by Aristov.

Lemma 1.2.11 Let A denote a completely contractive Banach algebra and I a left ideal
of A, then there is a completely contractive map AR A°/T — A°/I making A°/I a com-
pletely contractive left A-module such that a - ((b,\) + I) = (ab+ Xa,0) + I fora,be A
and \ € C (where we’ve used the identification A” = A @, C).

Proof

As A is a completely contractive Banach algebra then so is A’ by Example 1.1.50. Clearly
I is a subspace of A’ as well with embedding i — (i,0). Let q : A> — A°/I be the
complete quotient map x — x + I for z € A’ and let m” : A® A’ — A be the extension
of the completely contractive map m making A into a completely contractive Banach

algebra. Consider the following commutative diagram

AR A ™ g

-

AQA /I~ = A1
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We want to show that a complete contraction S exists making this diagram commute.

Clearly we need Ker (id ® ¢) = Ker (¢ o m”) and so we show this first. By Proposition

1.1.36 (iii) we have Ker (id ® ¢) = A®Kerq = A® I. Furthermore for a € A and
i € I we have ¢(m”(a ®1)) = q(ai) = ai + I = I and then by linearity it follows that
q(m’(A®I)) = 0. It then follows from continuity that Ker (id ® q) = Ker (g o m’).

As id ® ¢ is onto then for any y € A® A°/I we have some 2 € A® A’ such that
(id ® q)(x) = y. Now we define S(y) = q(m’(x)) and we show this is well defined: that
is given any z, 2’ € A® A with (id®q)(z) = (1d®q)(z') we have ¢(m”’(x)) = q(m"(z")).
For any z, 7' € A® A with (id®q)(z) = (id®¢')(x) then there is some z, € Ker (id®q)

such that z = 2’ + z9. We have shown that Ker (id ® ¢) = Ker (¢ o m”) and so
a(m’(z)) = q(m’(2’ + z0)) = q(m’(a"))

as required.

We have shown there is a map S making this diagram commutative. By Proposition
1.1.36 (iii) the map id ® ¢ is a complete quotient map and so by Proposition 1.1.18 we
have

Sl = 1S 0 (@ ar)lles = llgz © 1 < lgzlles [’ ew < 1

and therefore S is a complete contraction.

Finally we have for a,b € A and A € C that

S@®((b,A) +1)) = (S0 ([d®@g)(a® (b,X) = g(m’(a® (b, 1))
= q((ab + Aa,0)) = (ab + Aa,0) + I

as required. O

Given a right completely bounded A-module X and a completely bounded left A-module

we can form the following tensor product of these two.

32



1.2 Homological Algebra in Operator Spaces

Notation 1.2.12 Let N denote the operator subspace of X ® Y given by

N=ln {za®Ry—2®ay | e X, ac A, yeY}

andlet X ®,Y = X®Y/N.

We record the following proposition that is a more general version of the result in Section
6.2.2. The result was originally proved in the quantum groups work as part of Section

6.2.2 and then rewritten as the more general result given here.

Proposition 1.2.13 Let A be a completely contractive Banach algebra with a left con-
tractive approximate identity. Then the multiplication map m : AQ A — A is a complete

quotient map.

Proof

Fix n € N throughout this proof. As m is a completely contractive map it follows that
it maps the open unit ball of M, (A& A) into the open unit ball of M, (A) and so by
Proposition A.1.6 we need only show that it maps the open unit ball of M,,(A& A) onto
that of M, (A).

We first show that M, (A) is an essential left Banach A-module with the operation map
A®M,,(A) — M, (A) given by z ® (ij)ij=1 — (vyij)i = for v € Aand (yi;)7,-; €
M, (A). The algebraic relations follow easily and as m is completely contractive and the
operator space projective tensor product is a subcross norm (see Definition 1.1.34 and

Definition-Theorem 1.1.35) we have

H(“"?‘/ij)ijlHMn(A) - Hmn(@@%‘j)%:l)“mnm)

S H(x®yij);fj:1HMn(A) <[] H(yij);szlHMn(A)

as required for a left Banach A-module. Clearly this is essential as A has a left contractive

approximate identity.
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Now fix (yi;)7 ;-1 € M, (A) and let e > 0 such that ((1+¢)y;;)7;_; is also in the open
unit ball of M,,(A). Let z;; = (1 + €)y;; forall 1 < 4,5 < n and we show there is some
element of Ml,,(A® A) such that m,, maps this to (2ij)ij=1- As A has a left contractive
approximate identity (e, ) € A, from Cohen’s factorisation theorem (see Theorem A.3.3),

for any ¢ > 0 there is some x € A and (z;;);;_; € M, (A) such that
(’%’)Zj:l =T (xij)’zjil = my((z ®xij)2j:1)

|lz]a <1, 1(2i5)i =1 — (@) =1, ) < 6.

Now as [(2)7,-1] < 1 we have
H(%J‘)Z]’:lHMn(A) < H(xij)zg':l - (Zij>2j:1HMn(A) + “(zij)Zj:l|‘Mn(A) <1+
and so, as the operator space projective tensor product is a subcross norm, we have
[ ®2ij)i -1l a8 4) < 12llall ()71 loaa) < 1+ 6.

< 1 and so it follows

. 1+
As 6 > 0 was arbitrary we may assume that ) < ¢ and thus T
€

1 A~
that . ( ® @)}, is in the open unit ball of ML, (A® A). Then we have shown that
5 I

m,, maps this to (yi;)7,_, as required. O

The following two lemmas are recorded in Aristov (2004) without proof and in Aristov
(2002) with sketch proofs given there. We expand on these here and prove them in full

now.

Lemma 1.2.14 Let [ be a closed left ideal in a completely contractive Banach algebra
A. Then we have
AJAT = AR (A°/1).

34



1.2 Homological Algebra in Operator Spaces

Proof Let m’ : AQ A” — A denote the completely contractive map that extends the
multiplication map of A. Let q; : A — A’/I and let ¢ : A — A/AI be the quotient
map. We can show similarly to that of the proof of Lemma 1.2.11 that there exists a

completely contractive map S : A® (A°/I) — A/AT such that

ARA ™ 4

id®q1 l llh

A® (A1) - 5~ A/AT

1S commutative.

Fora,be A and c € A’ we have
Sa®@(b+1))=S5(id®aq)(a®b) = ¢(m(a®Db)) = q(ab) = ab + Al

and

S(ab® (c+1)—a® (bc+ 1)) = (abc + AI) — (abc + AI) = 0.

Soforall u € lin {ab® (¢c+ 1) —a® (bc+ 1) | a,be A, ce A} we have shown that
S(u) = 0. Thus there exists a completely contractive 7' : A®, (A°/I) — A/AI with

IT|e = S| (again using Proposition 1.1.18) such that we have a commutative diagram

AR (A1) —2= AJAT

P 7
of 3
A®a (A1)
where Q : AQ (A’/I) — A®, (A°/I) is the quotient map to the balanced projective
tensor product. As S is a completely contractive left A-module homomorphism and () is

a completely contractive left A-module homomorphism it follows that 7" is also a com-

pletely contractive left A-module homomorphism.
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Clearly T is surjective as S(a® e + I) = a + Al forall a € A.
We now consider the dual map T* : (A/AI)* — (A®a(A’/I))* and we show this is

surjective. We have for the domain of 7™ that

(AJAT)* = (AI)*" = {pe A* | {u,z) =0 Vze Al}
={pneA* | {u,z)=0Vze Al}
={ue A" | {p,ar)y =0 Yae A, x €1}
={pueA* | {u-a,x)y=0Vaec A xel}
:{MEA* ‘ pw-aelt VaeA}

and for the codomain of 7™ let

Z=1lin {ab® (c+1) —a® (bc+ 1) | a,be A, ce A} c AR (A’/I).

Then we have
(A®a (A/D)* = (AR (X/1))/2)* =
where
={pe (AR A /1) | plab®@c+1) = pla®@b(c+ 1)) Ya,be A,ce A’}
—{p: A= (A/D)* | {ulab), e + Iy = (u(a),be+ Ty Va,be A, ce A’}

={pu: A— (A/D* | {uab),c+ 1) ={ua) bc+1) Yabe Ace A}
={p:A— (A°/1)* | p(ab) = p(a)-b Ya,be A} = CBA(A, (A°/1)*).

Let o € (A/AI)*, then T* () € (A®4 (A"/1))* = CBA(A, (A°/I)*) and thus for all
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a€ Aandbe A” we have

T*(p)(a),b+ 1) = T (p),a® (b + 1)) = (u, T(@® (b + 1))

:</~L7ab+m>:</‘L7ab>:<:u'a’b>:<p“'a’vb+l>

giving T*(p)(a) = p-a € (A°/I)* forall a € A.

Now let a € CB 4 (A, (A°/I)*) and we show that there is some z € (A/AI)* such that
T*(u) = . We can define p : A*> — C, where we denote A% = lin {ab | a,be A},
by p(ab) = {a(a),by = {ala) - b,e) = {a(ab),e). So for any c € A? we have yu(c) =
{a(c), ey and i is well defined as « is well defined. Also

u(e)] = Kale), )l < ate)le] < lallel

and so ||| < [|r||. We can then use Hahn-Banach to extend this to an element p € A*
with [ 1t < || As B(A, C) = CB(A, C) then 1 is completely bounded.

Leta € A and b € I, then we have (ab, i) = {a(a),b) = 0 as a(a) € I'* as a subset
of (A”)* and thus p € (AI)* = (A/AI)*. We have

(T*(p)(a), by = {p, aby = {afa),b)

and thus T* (1) (a) = «(a) for all @ € A and therefore 7*(11) = «. So we have shown that
T* is surjective and therefore 7" must be injective as required.
We have that 7" is completely contractive and bijective and so there exists a bounded

inverse 7' : A/AI — A®, (A°/I). We can easily see that T~ (a + AI) = a® (e + I)
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and so we have a commutative diagram

AR A ™ A

id®q1l

AR (A/T) a2
d

A@a (A1) Té AJAT.

We show that 7" is a complete quotient map and then as Ker 7' = 0 we have that 7" is
a completely isometric isomorphism by Definition 1.1.9 (see also Definition A.1.5). We
have that m” is a complete quotient map by following a similar proof to that of Proposition
1.2.13. As ¢, is a complete quotient map it follows that we must have that 7" is a complete

quotient map as required. O

Lemma 1.2.15 Let A be a biprojective completely contractive algebra and 'Y a left com-
pletely bounded A-module, then A® 4 Y is a left projective completely bounded A-module
with the operation a - (b®y) = ab® y foralla,b€ Aandy €Y.

Proof
Let m : A® A — A denote the multiplication map and *m the extension of m to A”® A.
We have that X = A®,Y is a completely bounded left A-module with operation a -
b®y) = ab®y = a®b-yforabe Aandy € Y, that is the module operation
on X is given by the map m ®idy : AQAR®,Y — A®,Y. We want to show that
A®4Y is projective as a completely bounded left A-module, that is there is a completely
bounded left A-module homomorphism A®,Y — A°® A®4 Y that is a right inverse
to’midy : LLRARLY — ARLY.

As A is biprojective there is a completely bounded A-bimodule homomorphism from
Ato A® A that is a right inverse to m. Let p : A — A° ® A denote its coextension

and define 7 : AQ,Y — Ab@)A@AYby a®y — pla) ®y. We want to show this is
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well defined. Let Q : AQY — A®, Y be the projection map onto the balanced tensor

product, then we have a diagram

ARY 2L AR ARY

J e

ABAY — > X ®ABLY.

Let u,v € AQY with Q(u) = Q(v) and we show that 7(Q(u)) = 7(Q(v)). This is
equivalent to showing that if u € Ker @ then (id ® Q)((p ® id)(u)) = 0. We have
KerQ =1lin {ab®@y —a®b-y | a,be A, ye Y} andfora,be Aandy e Y we have

(p®id)(ab®y—a®b-y) = p(ab)®y—p(a)@b-y = p(a) -b®y—p(a)@b-y € Ker (id®Q)

and thus (id ® Q)((p ®id)(ab®y — a® b - y)) = 0. Then it follows by linearity and
continuity that (id ® Q)((p ®id)(u)) = 0 for all u € Ker ) as required.
We have that

T(a- (b®y)) =7(ab®y) = plab) @y = (a-p(b)) ®y =a - (p(b)®y) =a-71(bXy)

so 7 is a completely contractive left A-module homomorphism.

Finally we have
(m®idy)oT0oQ = (M®idy) o (Id®Q) o (pRidy) = Id®Q)(mopRidy) = id®Q

and thus (m ® idy ) o 7 = id as required. O
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1.3 One-parameter Groups and Smearing

In this section we introduce one-parameter groups and smearing techniques on Banach
spaces, C*-algebras and von Neumann algebras. These techniques will be used through-
out this thesis. They will be used when we discuss the modular automorphism groups
for weights, in Chapter 2 when we introduce the scaling group and in Chapter 4 onwards

when we investigate the Li}—algebra of a locally compact quantum group.

1.3.1 One-parameter Groups

We introduce one-parameter groups, analytic functions with values in Banach spaces,
analytic extensions of one-parameter groups and further properties of these objects in this
section. The standard reference for this section is Ciordanescu et al. (1976) and Kustermans

(1997b). See also Kustermans’ notes in Applebaum et al. (2005).

Definition 1.3.1 Ler X denote a Banach space, then a one-parameter group on X is a
map o : R — B(X), where we denote oy = o(t) for convenience, such that oy, = 0,00y
forallt,s € R, o9 = id and |oy| < 1 forall t € R. If X is a Banach algebra and
o : R — Aut(X) we say it is a one-parameter group of automorphisms on X and
similarly if X is a Banach +-algebra and o : R — Aut™(X) we say it is a one-parameter
group of =-automorphisms on X.

We say o is norm continuous (weak continuous, weak*-continuous) if for all x € X
the map R — X given by t — oy(x) is continuous with respect to the norm topology
(weak topology, weak*-topology) on X. If X is a von Neumann algebra then we can

define similar properties with respect to any of the weak operator topologies.

Note it follows that o, is an isometry and invertible for all ¢ € R with (at)_l = o_y4. This

follows as for allt e R we have o, 00_;, = 09 = id = 0_; 0 0, and

low(@)| < 2] = llo—i(o:(2)] < ou(2)]
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and thus we have equality throughout.

Remark 1.3.2 We have mentioned several possibilities of continuity for one-parameter
groups in the above definition. We can have norm and weak continuity for a Banach
space, for a Banach space with a predual we can have weak* continuity and for a von
Neumann algebra we have o-strong*, o-strong, o-weak, strong”*, strong and weak opera-
tor continuity. In this thesis we will mostly use o-weak (or equivalently weak™) continuity
for von Neumann algebras and norm continuity otherwise, however we mention that the
Kustermans and Vaes’ defined one-parameter groups on von Neumann algebraic quantum
groups with respect to the o-strong™ topology. We will refer to a one-parameter group in
this section when the results are not dependent on the choice of topology, however we will

always assume some continuity property on all one-parameter groups.

We wish to discuss the analytic continuation of one-parameter groups, in order to do so we
now give details of the analyticity of functions from a complex domain D into a Banach
space X. We see from the following lemma that in fact analyticity is the same whether

we are working with the norm, weak or weak™ topologies on X.

Notation 1.3.3 Let z € C\R, then we denote

5(2) {fweC | Imwe|0,Jmz]} fImz>0
z) =
{fweC | Imwe[IJmz0]} fImz<0

and S(2)° is the interior of S(z).
The reader is referred to A.1 in Takesaki (2003b) for a proof of the following lemma.

Lemma 1.3.4 Let X be a Banach space, let D < C be a complex domain (i.e. an open

connected subset of C) and let f : D — X. Then the following are equivalent:

(i) Forall wy € D and 6 > 0 such that Bs(wo) < S(2)° (where Bs(wy) is the open ball

of radius § around wy) there is a sequence (), < X such that for all w with
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|w — wo| < & the following is norm convergent
0
flw) = Y (w = wo)"an;
n=0

(ii) For all w € X* we have a holomorphic function D — C given by w — {f(w),w);

(iii) Let Y < X™ be a norm closed subspace such that for all x € X we have
|z]| = sup {{z,w)| [ weY, |w| <1}.

For each w € Y we have a holomorphic function D — C given by w — {f(w),w).

Definition 1.3.5 Let X be a Banach space and D < C be a complex domain, then a

function f : D — X is an analytic function if any of the equivalent conditions in Lemma

1.3.4 hold.

The following lemma belongs to complex analysis, we prove it here as it will be useful in

this section.

Lemma 1.3.6 Let F': S(z) — C be a function that is continuous, analytic on S(z)° and

F(t) = 0forallt e R, then F' = 0 everywhere.

Proof
We may assume without loss of generality that Jm z > 0 and we define a map G :

S(z) u S(—z) — Cby

F@) ifdmw <0
G(w) = -

)
(w) ifImw = 0.

Clearly G is continuous on S(z) and S(—z) and thus everywhere. We also have G(t) =

F(0) = 0 for all £ € R and so by the Schwarz reflection principle (see Theorem 11.14 in
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1.3 One-parameter Groups and Smearing

Rudin (1987)) this is analytic on Dom(G). From Theorem 10.18 in Rudin (1987) we have
that the set Z(G) = {w € Dom(G) | G(w) = 0} is either Dom(G) or there is no limit
point of Z(G) in Z(G). However any ¢ € R is a limit point of Z(G) with ¢ € Z(G) and so
we must have Z(G) = Dom(G). So we have shown that G(w) = 0 for all w € Dom(G)

and thus £’ = 0 as required. O

Note that we don’t specify a continuity property for the one-parameter group in the fol-
lowing lemma, however for there to exist such an F' in the lemma then o would need to

satisfy such a continuity property also.

Lemma 1.3.7 Let X be a Banach space, x € X, 0 : R — B(X) a one-parameter
group on X and z € C\R. Say there exists a function F' : S(z) — X such that (i)
F' is continuous with respect to either the norm topology, weak topology or (if X has a
predual) a weak*-topology on X, (ii) F' is analytic on S(z) and (iii) F(t) = o¢(x) for all

t € R. Then F is necessarily unique.

Proof

Fix z € C and let F, I, : S(z) — X be two functions satisfying these conditions. Let
F : 8(z) — X be the map F' = F} — Fy, then clearly F' is continuous, analytic and we
have F(t) = 0 for all t € R. Let w € X* and we consider the map G, : S(z) — C
given by G, (w) = (F(w),w) for all w € S(z). Clearly G, (t) = 0 for all t € R. As F'is
analytic it follows from Lemma 1.3.4 that GG, is analytic.

Say F) and F, are norm or weak continuous, then GG, is easily seen to be continuous
for all w € X* and so it follows from Lemma 1.3.6 that G, = 0 for all w € X™* and so
F} = F as required. If there exists a predual X, of X such that X =~; (X,)* then for all
w € X, we have (G, is continuous and as this separates X we can similarly conclude that

L =FK.0

Finally we can introduce the analytic continuation of a one-parameter group.
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1. OPERATOR THEORY

Definition 1.3.8 Let X be a Banach space and o a one-parameter group on X. Then we

define the following:

(i) For any z € C we define Dom(c,) as the set of x € X such that there exists a
function (necessarily unique by the previous lemma) F : S(z) — X such that (i) F

is continuous with respect to the appropriate topology on X, (ii) I' is analytic on

S(z)° and (iii) F(t) = o4(x) for all t € R.
(ii) For x € Dom(o,) we define o,(x) = F(z) for F': S(z) — X the function in (i).

We say o, is the analytic extension of o at z € C.

Proposition 1.3.9 Let X be a Banach space, o a one-parameter group on X, z € C and

x € Dom(o,). Then we have:

(i) For w € S(z) we have Dom(o,) > Dom(o,) and if Im w = Jm z we have

Dom(o,) = Dom(oy,);
(ii) Forallt € R we have o,(0,(x)) = 0,44(x) = 0.(04(x));
(iii) o, is injective.

Proof (Sketch)

Part (i) follows by considering the restriction of the function from Definition 1.3.8 from
S(z) to S(w). Part (ii) follows from considering the function G : S(z) — X given by
w +— 0y(0y(x)) — 440 (x). For part (iii) let z,y € Dom(o,) such that o,(z) = 0.(y)
and let F,G : S(z) — X be the functions that are are continuous, analytic on S(z)°,
F(t) = oy(x) forall t € R and G(t) = o4(y) for all t € R. Then from (ii) we have
Op2(x) = o(0.(x)) = 0(0.(y)) = 044.(y) for all t € R. By considering the function
H : S(z) - X given by H(w) = F(z —w) — G(z — w) we find that we must have
F =G,andsoz = F(0) = G(0) = y as required. O
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1.3 One-parameter Groups and Smearing

Proposition 1.3.10 Let X be a Banach algebra, o a one-parameter group of automor-
phisms on X and z € C, then Dom(o,) is a subalgebra of X and o, acts as a homo-
morphism on Dom(c,). If in addition X is a Banach +-algebra and o is a one-parameter
group of #-automorphisms then Dom(o,)* := {x € X | z* € Dom(0,)} = Dom(o%) and

*

o.(x)* = oz(x*) for all x € Dom(o,).

Proof

Let z,y € Dom(o,) and let F,G : S(z) — X be the functions that are continuous,
analytic on S(2)°, F(t) = o(z) forall t € R and G(t) = oy(y) for all ¢ € R and
thus o,(z) = F(z) and 0,(y) = G(z). Let H : S(z) — X be given by H(w) =
F(w)G(w) for all w € S(z), then H is a product of continuous functions and a product
of analytic functions on S(2)° and so is continuous and analytic on S(z)°.
have H(t) = F(t)G(t) = oi(x)oi(y) = o(zy) for all t € R. So 2y € Dom(o,) with
0-(ry) = H(z) = F(2)G(2) = 0.(z)0=(y).

Now let X be a Banach =-algebra with o a one-parameter group of *-automorphisms.

Also we

Let x € Dom(o,), then there is some F' : S(z) — X that is continuous, analytic on
S(z)° and F(t) = o,(z) for all t € R. Then consider the map G : S(Z) — X given
by w — F(w)*. It is easy to show that G is continuous and analytic on S(%)° and
G(t) = F(t)* = oy(x)* = oy(z*) for all t € R. So we have 2* € Dom(oz) with
o:(2*) = G(Z) = F(2)* = 0,(x)*. O

Proposition 1.3.11 Let o, o’ denote two one-parameter groups of =-automorphisms on a

x-algebra M. Then o = o' if and only if o0, = o’ for any z = ti € C with t # 0.

We now examine the tensor product of one-parameter groups to finish this subsection. Fix
norm continuous one-parameters groups o and 7 on Banach spaces X and Y respectively
throughout this section and fix a subcross norm |- |, on X ©Y and let X ®,, Y denote the
completion of X ® Y with respect to this norm. Then we define a one-parameter group
(c®7):R— B(X ®,Y) in the rest of section. This work is largely influenced by that

of Section 4 in Kustermans (1997b).
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For fixed t € R we have o, € B(X) and 7; € B(Y) and so we can consider o; © 7; :
XQOY — X QY foranyt € R. We will assume that o and 7 are such that the map o, ®7;

is continuous with respect to the | - |, and has norm less than 1.

Definition 1.3.12 Forallt e Rlet (c®7);: X®Y — X ®Y be the unique continuous

linear extension of o, © T;.

For any z € C we have (unbounded) linear maps o, : X — X and 7, : Y — Y defined
in Definition 1.3.8. We consider the map o, ® 7, : Dom(o,) ® Dom(7,) — X ® Y such
that r ® y — 0.(x) ® 7,(y) and we have the following.

Proposition 1.3.13 For all z € C the map o, ® T, given above is closable with closure

equal to the analytic extension (0 ® ), of 0 ® T at z (see Definition 1.3.8).

1.3.2 Smearing of a One-parameter Group on a Banach space

We now consider smearing on Banach space in this section, this will be very important
in this thesis and is one of the key techniques that we will use frequently. Throughout
this section let X be a Banach space and ¢ : R — Aut(X) be a one-parameter group of
automorphisms on X that is norm continuous.

Fix x € X and consider the function f : R — X given by
t . _6_n2t2

Wz o).

Then this is continuous with respect to the norm topology on X. Also we have

jR e de = 2= j e oy(@) | dt = |

where we’ve used the Gaussian integral formula

J ool gy T (1.4)
R a

46



1.3 One-parameter Groups and Smearing

and that o; is an isometry for all ¢ € R. It follows by Proposition A.6.3 that there is a
unique z(n) € X that is the weak integral of this function f so we have the following

definition.

Definition 1.3.14 Let n € N and we let x(n) denote the element in X that is the weak

242

integral of the function R — X given by t — % SR e " oy(x)dt. Then we can define
T

amap X — X given by x — x(n) such that for all v € X and w € X* we have

{x(n),w) = N fR e "oy (x),w) dt.

We call x(n) the smear of x with respect ton € N.
Proposition 1.3.15 Let x € X, then the sequence (x(n))_, has norm limit x € X.

Proof

Using the Gaussian integral formula (1.4) we have

2t2

(o¢(x) —x)dt

|z (n) — | =

\FJ W o (3) — a] dt.

Now we define a map f : R — R* given by ¢ — |o,(z) — z|. Then f is continuous as o

is norm continuous, f(0) = 0 and f(¢) < 2||«| for all ¢ € R.

Fix ¢ > 0. As f(0) = 0 there is some § > 0 such that f(¢) < 5 for all t € R with

—n2¢2

|t| < 0. Furthermore there exists some N € N such that = SR\ 581€ dt < for

e
4|

all n > N. Then putting all this together and using Equation (1.5) we have

n n2¢2 n2 2
|z(n) — x| < —J P2z | dt + — f Pft)dt <e
VT -4

for all n = N where we’ve used that S[_ 5,8] e dt < */TE forall 6 > 0. O
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1. OPERATOR THEORY

1.3.3 Smearing of a One-parameter Group on a von Neumann alge-

bra

We now consider smearing on von Neumann algebras in this section. Throughout this
section let M be a von Neumann algebra, M, its unique predual and o : R — Aut(M)
be a one-parameter group of *-automorphisms on M that is o-weakly continuous.

Similarly to the previous section for x € M we can consider the function f : R — M
given by

PN n e—n2t2

ﬁ Ot (ZL’)
that is continuous with respect to the o-weak topology on M. Also from the Gaussian
integral formula we have { | f(¢)||d¢t = || and from Proposition A.6.4 we can define

the smear z(n) similarly to Definition 1.3.14.
Proposition 1.3.16 For x € M the sequence x(n) has weak*-limit .

Proof (Sketch)
We sketch the proof here as it is very similar to the proof of Proposition 1.3.15. For

w € M, we have

(aln). = | < 2= | 7 Koa) =)

We define amap f : R — R* by t — [{oy(x) — z,w)]|, then f is continuous as o is

o-weakly continuous and for all ¢ € R we have f(¢) < 2|w|||z|. Finally fix € > 0. Then

the rest of the proof follows verbatim from that of Proposition 1.3.15 but we pick N € N
n —n?t? e

such that 2= {55 e7" " f(t) dt < g O

Al

Theorem 1.3.17 Let x € M then for all z € C we have that x(n) € Dom(c,) and

furthermore
and |0 (x(n))| < e O™ |z].
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1.3 One-parameter Groups and Smearing

Proof

Fix z € C and consider the map f : R — M given by

e g (1), (1.5)

t—

Jr

2 1\ 2 2.2 212 .
For a,b € R we have ‘e‘” (a+ib) = e @ and so setting

_ ‘ e—n2 (a®+2iab—b?)

a=t—%Rezand b = —TJm 2z we get

n2 Zzn n2t2 2)2
| U e = erm o L ey an - erton e,

Then we have from Proposition A.6.4 that f is weak™® integrable and so we have

| P22 dte M
ﬁJRe o(z)dt €

for all z € C.
So we can define a map F' : C — M given by

n 2 2
—n?(t—=z)
2> — | e o(x) dt
\/%JIR

Fix s € R, then for all w € M, we have

). w) = o o (t=s) olx),w
(F(s),w) ﬁJR (ov(x),w) di
- J e o), wydt = (ou(x(n)), w)

and thus F(s) = o4(z(n)) forall s € R.
We show that F' is analytic on C. In particular we show that for all w € M, that the

map C — C given by z — (F'(z),w) is analytic and then by Lemma 1.3.4 we have that

F' is analytic on C and thus also continuous on C. Fix w € M, and define g : C — C as

49
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the map

n —n2t? _2n’tz
z—>— | e e oy(x),w)y dt
VT JIR

and we have (F(z),w) = e "’**¢(2) and so we need only show that g is analytic on C.

2
2n°tz we have

n 22 - (antz)k
g(z) = \/—%JRe (;} T) (oy(x),w) dt

Expanding e

and so letting NV € Ny be arbitrary and using that we can interchange infinite sums and
integrals for positive numbers (see Theorem 1.27 in Rudin (1987)) we have

—n2t2 2n tZ)

e 2 gy (x), w dit — 22 (oy(a), w)dt

IR
n Re_n2t2< Z (2n tZ) )<O’t( )w>dt

n _n2¢2 = (2712)k |t2|k

e ( > EEL) (o), )
k=N+1 ’

nlzlw] <3 @r)* n2g2

o 3 T|z|k K et at

k=N+1

_2ilelll @) [
VT k=N+1 k! 0

N

N

We define a;, = w (2n%) So e "tk 4t and we find

i ag |Z|k — w‘jvw €_n2t2€2n2|z‘t dt < w\[‘ €—n2t2€2n2|z\t dt
7T T

_ an||w€n2|z|2j ean(t7|z|)2 dt — ZHxHHwHen?MQ
VT R

where we’ve used the Gaussian integral formula (1.4). As e’ is finite for all fixed

z € C it follows that for all ¢ > 0 and fixed z € C there is some N € N such that
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1.3 One-parameter Groups and Smearing

> G |2|¥ < . 1t then follows from the derivation above that for all ¢ > 0 and z € C

there is some N € N such that

-3

f n2¢2 (2n tZ) <0’t( ) w>dt - e

%\:

and so g is analytic.

It follows that for any z € C and n € N we have z(n) € Dom(o,) with

o,(x) = % Le_"2(t_z)20t(x) dt

and from the first paragraph we have ||o (z(n))|| < &™)’ |z|. O

We omit the proofs of the following two results and refer the reader to Kustermans (1997b)

and Cioranescu et al. (1976).

Proposition 1.3.18 For all z € C the map o, is densely defined, has dense range and is

closed in the o-weak topology (see Definition A.2.2).

Proposition 1.3.19 Let X be a Banach space, let Y denote a dense subspace of X, let o
denote a one-parameter group on X and let z € C. Then the set {x(n) | x €Y, n e N}

is a core for 0.

Proposition 1.3.20 Let M be a von Neumann algebra, z € C and x € Dom(o,) < M.

Then we have the following:

(i) o.(x(n)) = o.(x)(n);

(ii) Any normal linear or antilinear map T' : M — M that commutes with o, for all

t € R satisfies T'(x(n)) = T(z)(n) for all n € N.
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Proof

Let w € M, and consider the map F' : S(z) — M given by

n 2 2
—n?(t—=z)
z—>— | e o(z) dt.
ﬁflR

Using similar methods from the proof of Theorem 1.3.17 we can show that this is contin-

uous and analytic on S(z)°. Also for s € R we have

™

os(x)(n),w - et Orys(),w - e~ (t=9)? o(x),w = F'(s
(04(2)(n),) ﬁfR (Osa(), ) ij (o), wydt = F(s)

from which (i) follows.
LetT : M — M be anormal map such that T'oo, = g, 0T forallt € R. Let w € M,

and we have

242

{Tz)(n),w) = 7= fRe_” "Ur(Tx),wydt = 7 JRG_” (r(x), Ty (w)) dt

= (x(n), Tu(w)) = (T(x(n)),w)

and we have (i1). O

The following is highly important for us as it gives us a notion of smearing in the predual

M,.

Theorem 1.3.21 Let M be a von Neumann algebra x € M, n € N and define a map
®(n) : M — M by x — x(n). Then ®(n) is contractive and normal. Furthermore if
we consider M with its natural operator space structure as a von Neumann algebra, then

®(n) is completely contractive.

Proof
Using that oy is an isometry we can show that for all w € M, we have |[(x(n),w)| <

|z||w] and so |z(n)| < ||, i.e. (n) is a contraction.
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Let (z,) € M with o-weak limit z € M. As oy is normal for all ¢ € R then for all

w € M, and t € R we have (z,,w o ;) — {x,w o ;). It then follows that

2t2

[(xq — z,woop|dt —0

mmwwmmwmﬁkw

and so ®(n) is normal.

Let M have the usual operator space structure as a von Neumann algebra from Ex-
ample 1.1.7. Let m € N and consider the map ®(n),, : M,,(M) — M,,(M) given
by Definition 1.1.9. We have that o; is a =-automorphism for all ¢ € R and thus a
751 € M, (M). Then using that
M, (M) = M,,,((My)*) = CB(M,,M,,) and the operator space structure on the dual

complete isometry by Proposition 1.1.10. Let (z;;)"

(and thus on the predual) we have

2t2

(@) (@)751)) () = wwwm“:ffn
= % JR eithQ (O't<xij>>:‘7nj:1) (w)d \FJ 7n2t2 ((:L’”)fl]:l)) (w) dt

where we used that (§; fi;(t) dt); ., = {5 (fi;(t))};_, dt. As this holds for any w € M,

(ou(wi), w))ijy di

we read off that

D) ()5er) = = | e 0 (()mr)

Now we calculate the norm to get

o ()25l < = [ fom (@t de < o)

and so ®(n),, is contractive for all m € N. O
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1.4 Weight Theory

Let 1+ be a measure on the o-algebra generated by the open sets on a locally compact
space (2. Then we can consider a map ¢ : Cy(2)* — [0, 0] on the continuous positive
functions on Q given by f — {, fdu. On the other hand, given any positive linear
functional ¢ € Co(G)* we know there is some measure 4 such that ¢(f) = §, f dp so for
the “unbounded” functionals we might want to consider ¢ : Co(G)* — [0, «o].

In this section we will consider weights which are the non-commutative analogue
of such “unbounded” functionals on arbitrary C*-algebras and von Neumann algebras.
These are important for the development of C*-algebras and von Neumann algebras in
general and will be needed in order to define locally compact quantum groups in the next
chapter.

Proofs are scarce in this section as it would lead us too far astray to include them
here. We refer the reader to Takesaki (2003b), Stratila et al. (1979), Combes (1968),
Kustermans & Vaes (1999) and Kustermans (1997a).

Notation 1.4.1 We denote by [0, 0] the set [0,00) U {co}. We have a totally ordered set
with the usual order on |0, 0) and by letting a < o for all a € [0,0). We also define
addition and multiplication on [0, o0 with the usual operations on |0, 0) and by letting
a+0w=0w+a=0wforallac |[0,0],0-0=00-0=0anda-0 =0 a= 0 for

a€ (0,00].

1.4.1 Weights on C*-algebras and von Neumann algebras

Throughout this section fix a C*-algebra A and a von Neumann algebra M.

Definition 1.4.2 A map ¢ : AT — [0,0] is called a weight if for all x,y € A" and
A € RY we have ¢(x + y) = ¢(x) + ¢(y) and p(Az) = \p(x).
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1.4 Weight Theory

Furthermore we define the following sets
M; ={ac A" | ¢(a) < 0}, Ny ={ae A | ¢(a*a) < o0}

M¢ = lin Mg
We say a weight ¢ on A is faithful if for a € A* we have ¢(a) = 0 implies a = 0.

Example 1.4.3 In the case of a commutative von Neumann algebra L (€2, j1) where pis a
positive measure on a locally compact space ) we have a weight ¢ : L* (), )™ — [0, 0]

defined by
o) = | rau

forall f € L*(Q, u)" and we have
MJ =LY, p) nL2(Q, ) *, NJ = L2(Q, 1) 0 L2(Q, p)

My = LHQ, p) A L2(Q, ).

In particular, given a locally compact group G with left (or right) Haar measure i we

have a weight defined on L™ (G, ).

Of course a linear functional restricted to the positive elements of a von Neumann algebra
are trivial examples of a weight. Non-trivial examples of weights (i.e. including oo in
the range) in the non-commutative case are often not so easy to construct as they are in
the commutative case. We can however construct weights on C*-algebras from GNS-
constructions using similar functionals to those in 1.4.7, see Section 3 in Kustermans
(1997a) for further details.

Part (vi) in the following is from Theorem 3.20 in Stritila ez al. (1979). The remainder

can be found in Chapter VII of Takesaki (2003b).
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Proposition 1.4.4 Let ¢ be a weight on a C*-algebra A then we have the following prop-

erties of ¢:

(i) M;j is a hereditary cone in A%, that is if x,y € M('g thenx +y € M; and if v € M},
ye AT and 0 < y < x theny e M ;

(i) If0 < v <y for x,y € M then ¢(x) < ¢(y);
(iii) Ny is a left ideal in A;

(iv) My = lin {y*z | x,y € Ny} is a =-subalgebra of A with My n At = M;f and
My < Ny. Furthermore any element of My can be written uniquely as a linear

combination Zz:o i* 2, of 4 elements 2, € M('g for0 <k <3;

(v) There exists a net (eq) in M such that 0 < e, < 1 for all o, for o, 8 € I with

a < fwe have e, < egand |x — xe,| — 0 forall x € Ny;

(vi) There exists a unique linear map ¢ : My — C (also denoted by ¢) that is equivalent

to ¢ on M and such that ¢(x*) = ¢(x) for all x € M.

We also have the following Cauchy-Schwarz type equation. The proof is similar to that

of the standard Cauchy-Schwarz equation.

Proposition 1.4.5 Let ¢ denote a weight on a C*-algebra A, then we have
Gy ) < oa*x)o(y*y)

forall z,y € Ny.

There is a GNS construction for a weight on a C*-algebra to that given by a positive linear

functional that follows similarly to that of the usual GNS construction.

56



1.4 Weight Theory

Theorem 1.4.6 Let ¢ denote a weight on a C*-algebra A, then there exists a triple
(Hp, mg, Ay) where Hy is a Hilbert space, Ay : Ny — Hy is a map into Hy with dense

range and my : A — B(Hy) is a ~-homomorphism such that

(Ao (2)[As(y)) = ¢y x)

forall x,y € Ny and my(x)Ap(y) = Ay(zy) for all x € A and y € Ny. Further-
more this triple is unique up to unitary isomorphism of Hilbert spaces. We call the triple

(Hy, Ty, Ay) the GNS construction of ¢.

In order to handle the unboundedness of A, we give approximations for a weight ¢ by
positive linear functionals. In particular we define two sets F and G that both approxi-
mate ¢. We will see below that the advantage of G4 over Fy is that G is directed upwards
enabling us to take limits over §,. We will prove this in Proposition 1.4.9 but first we
need some preliminary lemmas. We also define similar sets for von Neumann algebras

but taken as subsets of M and show similar properties hold.

Notation 1.4.7 Let A be a C*-algebra and ¢ a weight on A. Then we define the sets

Fyp={we At |w@) <¢x) Voec AT}
9¢={>\w | w€?¢, /\6(0,1)}c3"¢

where we let F 4 have the order inherited from A} .
Now let M be a von Neumann algebra and ¢ a weight on M. In this case we define

the sets to be

Fyp={we M | wlx)<¢(z) Yae M},
Gp ={ \w | weFy, Ae(0,1)} < Fy.

where we let I, have the order inherited from M. We note in this case of von Neumann
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algebras that we only consider functionals from the predual in accordance with weights

on a von Neumann algebra.

The proof of this can be found in Combes (1968) Lemma 2.3 and Proposition 2.4. See
also Chapter VII in Takesaki (2003b).

Proposition 1.4.8 Let ¢ be a weight on a C*-algebra A, let (H,, 7y, Ay) be the GNS

construction of ¢ and let w € F, with GNS representation (H,,, 7,,,1.,). Then we have:

(i) There exists a unique contraction T € m4(A) where 0 < T < 1 such that

(TAy(x)|Ay(y)) = w(y*x) for all x,y € Ny;

(ii) Thereis a unique element &, € H such that (x,w) = (m4(1)&,|E,) and T2 Ay (x) =
7y(2)&, for all x € N.

For the proof of the following two Propositions see Chapter 3 in Kustermans (1997b). See
also Quaegebeur & Verding (1999).

Proposition 1.4.9 The sets G, for a weight ¢ on a C*-algebra and §¢ for a weight ¢ on

a von Neumann algebra are both upwards directed.

1.4.2 Normal Semi-finite Faithful Weights on von Neumann algebras

Similar to the development of measure theory on locally compact spaces, we want to
impose some further conditions on weights such that we obtain a more complete theory
as a result. We describe further conditions for weights on von Neumann algebras that
generalise some of the conditions of measure theory. See Kustermans & Vaes (1999) for
the case of weights on a C*-algebra.

Most theorems in this section have complex proofs and we refer the reader to the

standard references Takesaki (2003b) and Stratila (1981) for further details.

Definition 1.4.10 A weight ¢ on a von Neumann algebra M is:
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(i) normal if for all X € R* the set {a € M | ¢(a) < \} is o-weakly closed;
(ii) semi-finite if M [ is o-weakly dense in M*;
(iii) n.s.f. if it is normal, semi-finite and faithful.

Proposition 1.4.11 Let ¢ be a weight on a von Neumann algebra M, then ¢ is semi-finite

if and only any of the following conditions are satisfied:
(i) M; is dense in M ™ in any of the weak topologies;
(ii)) My, is dense in M in any of the weak topologies;

(iii) Ny is dense in M in any of the weak topologies.

Proposition 1.4.12 Let ¢ be an n.s.f. weight on a von Neumann algebra M and let
(Hy, my, Ay) denote the GNS construction. Then w, : M — B(H,) is a normal *-
isomorphism of M onto m,(M) < B(H,).

The following theorem is from Haagerup (1975). See also Chapter VII of Takesaki
(2003b).

Theorem 1.4.13 Let ¢ be a weight on a von Neumann algebra M then the following

conditions are equivalent:

(i) ¢ is normal;

(ii) for any bounded increasing net (x,) < M™ we have ¢(sup,, x,) = sup ¢(z,);
(iii) ¢(z) = sup{w(z) | we Fy} = lim{w(x) | we Gy} forall z e M.
See Theorem VII.2.7 in Takesaki (2003b) for a proof of the following.

Theorem 1.4.14 Let M be a von Neumann algebra, then there exists an n.s.f. weight on

M.
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The following is from Lemma IX.1.5 in Takesaki (2003b).

Proposition 1.4.15 Let ¢ and 1 denote two n.s.f. weights on a von Neumann algebra M
with GNS constructions (Hy, 7y, Ay) and (Hy, w0y, Ay) respectively. Then there exists a

unitary operator U : Hy — H,, such that Ury(x)U* = 7y () for all x € M.

We now give the KMS properties of n.s.f. weights on von Neumann algebras. The notation

S(i) and S(7)° in the next theorem is introduced in Notation 1.3.3.

Definition-Theorem 1.4.16 Let ¢ be a weight on a von Neumann algebra M then there

exists a unique strongly continuous one-parameter automorphism group o® (see Defini-

tion 1.3.1) on M such that
(i) ¢oaf’ = ¢forallt € R and

(ii) for all x,y € Ny N Nj there exists a function F, , : S(i) — C which is analytic on
S(1)° and such that

forallt e R.

We call 0 the modular automorphism group of ¢.

Proposition 1.4.17 Let M be a von Neumann algebra, ¢ a weight on M and o the mod-

ular automorphism group of ¢. Then we have:
(i) o?(1) = 1 forallt € R;

(ii) Let x € Dom(o_;) and y € My, then xy and yo_;(x) are in M, and ¢(xy) =
d(yo—i(x)).

Definition-Theorem 1.4.18 For an n.s.f. weight ¢ on a von Neumann algebra M with

GNS construction (H, m, A) and with modular automorphism group o there exists:
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1.4 Weight Theory

(i) a unique injective positive operator NV on H such that V*A(z) = A(oy(x)) for all
teRandx e Ny;

(ii) an anti-unitary operator J on 3 such that JA(x) = A(oy2(x)*) for all x € Ny
Dom(o;/2) such that o;5(x)* € Ny. We call J the modular conjugation and V the

modular operator of ¢ for any n.s.f. weight .

Proposition 1.4.19 Let M be a von Neumann algebra, ¢ a weight on M, J the modular

conjugation and V the modular operator of ¢. Then we have:
(i) J? =1;

(ii) Forall v € Ny and y € Dom(0;/2) we have xa € Ny and

A(za) = Jr(oi(y))* JA(2);
(iii) The set A(Ny " N3) is a core for VV/* and A(az*) = JV'2A(x) for all x € Ny A N,

1.4.3 Slicing and Tensor Products of Weights on von Neumann alge-

bras

In this section we consider the tensor product of weights and slice maps on weights, that
is given von Neumann algebras M and /N and n.s.f. weights ¢ on M and ¢ on N we want
to make sense of the maps ¢ ® id on (M ® N)* and id ® ¢ on (M ® N)*. In order to

do this we define the extended positive part M}

- of any von Neumann algebra M and we

. (or M}, for the other

ext

will define an operator valued weight from (M ® N)T into N,
weight ).

We follow Stratild (1981) chapters 8, 9 and 11 in this section. See also Takesaki
(2003b) and the papers Haagerup (1979a) and Haagerup (1979b). For the C*-algebra

case see Kustermans & Vaes (1999).
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Definition-Theorem 1.4.20 Let M and N be von Neumann algebras and ¢ and 1 be
normal semi-finite weights on M and N respectively. Then there exists a unique weight

¢ ® 1 on M QN such that for v € My, and y € My, we have x @ y € Mygy, and

(@Y (x®y) = d(x)(y).

Proposition 1.4.21 Let M and N be von Neumann algebras with weights ¢ and ) re-
spectively. Then for all x € (M ® N)* we have

(0 @9)(x) =sup {(w@k)(2) | we Ty, neFy}

=lim{(z,w®~k) | we Gy, k€ Gy}

where we take the supremum or limit of an unbounded set to be infinity and w Q k is the
unique positive linear functional in (M ® N )} such that (w ® k)(z ® y) = w(x)k(y) for
all z € M and y € N (see Proposition IV.5.13 in Takesaki (2003a)).

We have the following important theorem.

Theorem 1.4.22 Let ¢ and 1) denote normal semi-finite weights on von Neumann alge-
bras M and N respectively. Then ¢Qu) is a normal semi-finite weight on the von Neumann
algebra M ® N and

Ny O Ny = Nogy-

If ¢ and 1) are faithful then so is ¢ & 1.
Let 0 and o denote the modular automorphism groups of ¢ and 1 respectively (see
Theorem 1.4.16), then the modular automorphism group of the weight ¢ ® ) satisfies the

property af@w = af & af’ forallteR.

Proposition 1.4.23 Let M and N denote von Neumann algebras and ¢ and ) denote
n.s.f. weights on M and N respectively. Let JM and V' denote the modular conjugation

and modular operator of ¢ on M and similarly for 1) on N. Then J* @ JV is the modular

62



1.4 Weight Theory

conjugation of ¢ @ 1 and the one-parameter group VM @ V¥ (as per Definition 1.3.12)
is the modular operator of ¢ & 1.

We now move on to discuss operator valued weights in order to discuss the slice maps we

mentioned at the start of this section.

Definition 1.4.24 Let M be a von Neumann algebra and let M, denote the set of maps

m : M} — [0, 0] such that
(i) m(w + k) = m(w) + m(k) forall w,k € M};
(ii) m(Aw) = dm(w) forall A = 0 and w € M };
(iii) m is lower semi-continuous on M.

We call M}, the extended positive part of a von Neumann algebra M. For m,n € M,

ext’
A = 0and a € M we define m + n, An and a*ma € M}, by

ext

for w € M where awa* € M} is given by x — {(a*va,w). We can order M},

by

my < ma if my(w) < me(w) forallwe M.
We now move on to the main definition of the section.

Definition 1.4.25 Let M be a von Neumann algebra and N a von Neumann subalgebra

of M. An operator valued weight is a map T : M+ — N, such that:

(i) T(x +y) =T(x) +T(y) forz,ye M*;

(ii) T(A\z) = \T'(x) forx € M and A = 0;
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(iii) T(y*xy) = y*T(z)y forall x € M* and y € N.

Similarly to the case of a weight on M we define
M;:{xeM+‘T(.r)EN+}, NTZ{:EEM‘T(I*x)eNJF}
Mr = lin M;

By the previous proposition we have that x € M7, if and only if we have (7'(x))(w) is

finite for all w € N with similar condition for N7 also.

Proposition 1.4.26 Let T : M — N

ot be an operator valued weight. Then we have the

following properties:
(i) MY is a hereditary cone in M and if 0 < x < y for x,y € M. then T'(x) < T(y);
(ii) Nr is a left ideal in M;

(iii) My = lin {y*z | x,y € N} is a =-subalgebra of M with My n M+ = M7 and
Mr < Np. Furthermore any element of Mr can be written uniquely as a linear

combination Zz:o i* 21 of 4 elements 2, € Nt for 0 < k < 3;

(iv) There is a unique linear map T : My — N (also denoted by T') such that T'(axb) =

aT (z)bfor all v € My and a,b € N that is equivalent to the given T on M.,

(v) Mg and Nt are N-bimodules.

We again want to define additional requirements on operator valued weights in order to
define normal, semi-finite and faithful (n.s.f.) operator valued weights. We define each of

these concepts now.

Definition 1.4.27 An operator valued weight T : M — N, from a von Neumann alge-

bra M to a von Neumann subalgebra N < M is
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(i) normal if for all bounded increasing nets (x,) < M™ with limit x € M+ we have

Im T (z,) = T'(x);
(ii) semi-finite if ny is o-weakly dense in M
(iii) faithful if T'(x*x) = 0 implies © = 0;
(iv) n.s.f. if it is normal, semi-finite and faithful.

Remark 1.4.28 We have that an n.s.f- operator valued weight T : M+ — N

', can be

uniquely extended to amap T : M}, — N .. It follows that we can also extend a weight

ext ext*

¢: Mt — [0,00] toamap ¢ : M}, — [0, 0] and so the following theorem makes sense.

We have the following important theorems proved by Haagerup in Haagerup (1979b). See
also Sections 12.1-12.5 and 12.8 in Stratila (1981).

Theorem 1.4.29 For i« = 1,2 let M; be von Neumann algebras with N; < M; a von
Neumann subalgebra and let T; : M;" — (N;).,;, be n.s.f. operator valued weights. Then

there exists a unique n.s.f. operator valued weight Ty @ Ty : (M@ M)t — (N ® Na) 7,
such that for all n.s.f. weights 1; on N; (i = 1,2) we have

(V1 @) o (Th ®Ta) = (1 0Th) ® (P2 @ T3).

Furthermore for x1 € My, and xo € My, we have 11 ® x5 € Mq,gr, and (T1 ® Ty)(x1 ®

x9) = T1(x) ® Ty(x).
Now we consider slice maps with weights.

Corollary 1.4.30 Let ¢ and 1 be n.s.f. weights on von Neumann algebras ¢ and 1) re-
spectively. Then there exist n.s.f. operator valued weights ¢ ® id : (M@ N)* — NI,
andid® : (M@ N)t — M, suchthat o (¢ ®id) = ¢ @1 = ¢ o (id®1)). Further-

more for x € My and y € N we have © ® y € Mygia with (¢ ®id)(z ® y) = ¢(z)y and
similarly for x € M and y € My, we have © ® y € Miagy with (Id® V) (z ® y) = ¥ (y)z.
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Chapter 2

Locally Compact Quantum Groups

There are three types of locally compact quantum groups that we will use in this thesis,
namely the von Neumann algebraic setting, the reduced C*-algebraic setting and the uni-
versal C*-algebraic setting. Locally compact quantum groups first appear in the literature
in the reduced C*-algebraic setting in Kustermans & Vaes (2000), then in the univer-
sal C*-algebraic setting in Kustermans (2001) and finally in the von Neumann algebraic
setting in Kustermans & Vaes (2003). We will reference these regularly in this chapter.
See also Johan Kustermans’ lecture notes in Applebaum er al. (2005), Stefan Vaes’ PhD
Thesis Vaes (2001), Thomas Timmermann’s book Timmermann (2008) and van Daele’s

alternative approach for the von Neumann algebraic setting Van Daele (2014).

2.1 Introduction

In this section we briefly introduce locally compact groups in the language of locally
compact quantum groups and we discuss quantum semigroups for the C*-algebraic and
von Neumann algebraic settings. We will also briefly discuss Hopf algebras and the diffi-

culties in using them for locally compact quantum groups.
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2. LOCALLY COMPACT QUANTUM GROUPS

2.1.1 Locally Compact Groups as Quantum Groups

It is recommended that the reader use this as a motivation for what follows and as a
reference for the properties of quantum groups in the special case where we have a group.
The results are easier to prove here because of the commutativity of Cy(G), however we
feel that it may give the reader some motivation as to why we are interested in the results

in the more general case of quantum groups.

Example 2.1.1 Let GG be a locally compact group, then we can consider the commutative

C*-algebra of continuous functions vanishing at infinity Co(G). Given the structure on
the group G we define the map A : Cy(G) — Cy(G x G) given by (A(f))(x,y) — f(zy)
for f € Co(G). We have that A(f) is bounded as we have

A1 = sup (AW (a)| = sup [f@y)] = sup|f()] = ]

z,yeG z,yeG

We note that Cy(G x G) =~; M(Co(G x G)) =~; M(Co(G) ®min Co(G)) where M denotes
the multiplier algebra (see Section A.5) and so A : Cy(G) — M(Co(G) ®min Co(G)).
We have for x,y, z € G and f € Cy(Q) that

f((zy)2) = [A)(zy, 2) = [(A@1d)(Af)](2,y, 2)

and

f(x(y2)) = [AN)(2, y2) = [(d@ A)(A)](2,y,2)

and so by associativity of G we have (A ®1id) o A = (id ® A) o A. We call this property
coassociativity.

We also have a left Haar weight ¢ : Co(G)" — [0, 0] given by  — §, fdu. Sim-
ilarly we have a right Haar weight 1 given by the right Haar measure. We can consider

L%(G, 1) as the space of square integrable (up to almost everywhere) functions on G, that
is f € L*(G, p) ifand only if § , f*f dp < 0. Then L*(G, p) is a Hilbert space with inner
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product (f|g) = ¢(fg*).
For w € Cy(G)* we have a positive measure v € M(G) such that {f,w) = § fdv. It

then follows from Fubini’s theorem that for all f € Co(G)" we have

¢((w@id)(A(f))) = J [(w®id)(A(f)](y) du(y)

= JG (L f(zy) dV(%)) du(y) = L (L f(y) du(y)> dv(z) = w(1)o(f)

It follows that left invariance of the Haar measure [ is equivalent to having ¢((w ®

id)(A(f))) = o(flw(l) for allw € Co(G)* and f € Co(G)*. It also follows that

i {(@®I)A(f) | e ColG), we Co(G)*} = Co(G)

and similarly for w acting on the right.

We can define an isometry W : L*(G, ) ® L2(G,n) — L*(G, pn) ® L2(G, u) by
W(F)(z,y) = F(z,27Yy) for F € L2(G x G, x p) = L2(G, pn) ® L*(G, ) and it
follows that W*(f ® g) = A(g)(f ® 1). We denote Wi, = W ® 1, Wy = 1 Q W and
Wi3 = 093Wia where o denotes the flip map on L*(G, 1) @ L2(G, p). Then we have for
Fel?(GxGxGuxpxu)

(WioWisWas) (F))(,y, z) = (WisWas(F))(z, 2™y, 2)

= (Wos(F))(z, 2 'y, 27 '2) = F(a, 27 y,y™'2)

and

(WasWi2)(F))(z,y, 2) = (Wia(F)) (2, 5,y 2)

= F(z,v 'y, y '2) = (WiaWisWas)(F))(z,v, 2).

As this then holds for all such F we have W1usW13Wo3 = WozWis.
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Example 2.1.2 Let GG be a locally compact group and i the left Haar measure on G. Then
we have the von Neumann algebra of measurable essentially bounded functions L* (G, ).
We also have amap A : L*(G, ) — L*(G, n) @ L*(G, p) given by A(f)(x,y) = f(xy)
where we’ve identified L (G, 1) @ L* (G, n) =; L*(G x G, pu x p).

We define ¢ : L*(G, )t — [0,00] by f — (. fdu and we have a n.s.f. weight on

L*(G, p). As w is a Haar measure then we have

L F (o) du(w) = L £(&) du()

forally € G.

2.1.2 Quantum Semigroups

We now define the coproduct on an algebra to give us a notion of a “‘quantum semigroup”
or a bialgebra. On the way to defining a locally compact quantum group we need to
define a C*-algebraic quantum semigroup or von Neumann algebraic quantum semigroup

in order to capture the “topology” at the quantum level.

Definition 2.1.3 Let A be an algebra and A : A — M(A ® A) a non-degenerate map,
then we say A is coassociative if we have (A®id) o A = (Id® A) o A. A non-degenerate
coassociative homomorphism A : A — M(A ® A) is called a coproduct on A where
if A is unital we require A to be unital and if A is a =-algebra we require A to be a
x-homomorphism.

A C*-algebraic quantum semigroup is a pair (A, A) where A is a C*-algebra and
A: A - MARminA) is a coproduct on A. A von Neumann algebraic quantum
semigroup is a pair (M, A) where M is a von Neumann algebra and A : M — M ® M

is a normal coproduct on M.
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In Example 2.1.1 we gave a coproduct A : Co(G) — M(Co(G) ®min Co(G)) =; Cp(G x
() on Cy(G) for a locally compact group GG. Similarly from Example 2.1.2 we have a
coproduct A : L®(G, u) — L*(G, ) @ L®(G, ) on L*(G, ).

2.1.3 Hopf Algebras

For a quantum group we need operations that are equivalent to the identity and inversion
operations at a “quantum level”. We will discuss the “inversion” operation with Hopf
algebras now. First we give the definition of a Hopf algebra, then we discuss this definition
in terms of the algebra of polynomials over a finite group and finally we discuss some of
the problems for defining locally compact quantum groups using Hopf algebras in this

way.

Definition 2.1.4 A Hopf algebra is a unital algebra A with multiplication map m : A ®
A — A and unit given by n : C — A such that m is associative (i.e. m o (m ® id) =

mo (id®m) and mo (n®1id) = mo (id ®n)). Furthermore we have the following:

(i) We have a unital, coassociative homomorphism A : A — A® A and a homomor-

phism ¢ : A — C called the counit such that (¢ ®id) o A = id = (id®e) o A;

(ii) There is an antihomomorphism S : A — A such that

mo(S®id)oA=noe=mo(id®S)oA

called the antipode.

A Hopf =-algebra is a Hopf algebra A with involution such that A is a =-algebra and A

and ¢ are x-homomorphisms.

Now consider the algebra of polynomials A over a finite group G with multiplication
m:AQ®A— Agivenby m(f,g)— fgforall f,ge A (where (fg)(x) = f(z)g(x) for
all z € 3) and identity map n : C — A given by A — A1 for A € C and 1 the unit of A.
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We let A be the usual coproduct (A(f))(z,y) = f(xy) forall f € Aand z,y € G. We
can define the counit ¢ : A — C given by f — f(e) for all f € A (where e is the unit
element of () and the antipode S : A — A given by (S(f))(z) = f(z!) forall f € A
and x € (G. We can easily show that this gives us a Hopf algebra. Note how we have
used the group product to define A, the group identity to define £ and the group inverse
to define S.

Unfortunately for locally compact quantum groups it does not necessarily follow that
the maps ¢ and S are bounded. In particular we will see that S' is unbounded for the
example of SU,(2) that we will give in Chapter 5. As such it is difficult to define locally
compact quantum groups using Hopf algebras, however the antipode in particular does
still play an important role. We show in the next section an appropriate generalisation to

what we now consider a locally compact quantum group.

2.2 Locally Compact Quantum Groups

In this section we give details of locally compact quantum groups in the von Neumann
algebraic and reduced C*-algebraic settings. We will also discuss the relationship from
one to another though in essence they describe the same “object” as we will see.

Proofs are scarcely given in this section and the reader is referred to the literature for

further details.

2.2.1 Von Neumann Algebraic Quantum Groups

In this section we give details of von Neumann algebraic quantum groups. We give details

of the Haar weights, the main definition, the multiplicative unitary, the antipode and its

related objects and then we give further properties of each of these objects as needed.
The main reference for this is Kustermans & Vaes (2003) (see also Vaes (2001)). We

remind the reader that we defined M = {a € A" | ¢(a) < oo} in Definition 1.4.2.
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Definition 2.2.1 Let (M, A) be a von Neumann algebraic quantum semigroup. Then a

weight ¢ on M is:
(i) left invariant if p((w ® id)A(z)) = w(1)¢(x) for all x € M and w € M/;

(ii) right invariant if $((id @ w)A(x)) = w(1)d(x) for all x € M and w € M}

Let (M, A) be a von Neumann algebraic quantum semigroup where M acts on a Hilbert
space JH and let ¢ be a left or right invariant weight on M. We may assume that M acts
on J in standard form and we have a GNS construction (H, 7, A) of ¢ and (3, 7, I") of
.

We now turn to the main definition of this section.

Definition 2.2.2 A von Neumann algebraic quantum group (M, A, ¢, 1)) consists of a
von Neumann algebraic quantum semigroup (M, A) with a left invariant n.s.f. weight ¢
and a right invariant n.s.f. weight 1. We call ¢ the left Haar weight and 1) the right Haar
weight.

We will often denote a von Neumann algebraic quantum group (M, A, ¢, ) simply by
M or (M, A) with ¢ and v understood. Throughout the rest of this section we let M
denote a von Neumann algebraic quantum group. We also fix a Hilbert space H on which
M acts in standard form and which is also the GNS Hilbert space of ¢ and ).

The following is proved in Proposition 3.17 in Kustermans & Vaes (2000).

Proposition 2.2.3 The coproduct A : M — M ® M of a locally compact quantum group

M is injective.
We require the following frequently in quantum groups so we introduce this now.

Notation 2.2.4 Let H denote a Hilbert spaces and let X € B(H ® H), then we let
X2 = X®1 € B(H®H® H) where 1 is the identity in B(H) and similarly we let
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Xy =1®X e BIHOHQH). Let ¥ € B(H ® H) denote the flip map given by
§®n — n®E and we define X3 = Loz X12303.

We call the notation X5, X13 and X3 the leg numbering notation. It can easily be
extended to higher tensor products of H and to different Hilbert spaces when necessary.

This should be clear from the context.
We now introduce the multiplicative unitary.

Definition-Theorem 2.2.5 There is a unique unitary operator W € B(H ® H) such that
WA (z) ® Aly)) = (M@ A)(A(y)(z @ 1))

forall x,y € Ny. Furthermore we have the following properties:
(i) Forall x € M we have
Alz) =W*"(1®@z)W; (2.1)
(ii) WigWisWag = WasWia;
(i) (A@id)(W) = WizWas.
We call W the multiplicative unitary of (M, A).

We have the following density conditions as a theorem for a von Neumann algebraic

quantum group.

Theorem 2.2.6 Let M denote a von Neumann algebraic quantum group, then we have

M = {{(w®id)A(z) | x € M, we M,}

{
{(ldew)A(z) | e M, we M,}
{(w@IA)W | we B(H).}.

We now give details of the antipode as mentioned earlier.
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Definition-Theorem 2.2.7 There exists a unique o-strong* closed operator S : M — M

with a o-strong™ core

lin{(id®@w)(W) | we M,}

such that

S((i[d@w)(W)) = (i[d@w)(WF)

for all w € M,. Furthermore we have a polar decomposition S = R o T7_;; where T
is a o-strong™ continuous one-parameter group of =-automorphisms on M and R is a

«-anti-automorphism on A with R* = id such that
(i) S is densely defined and has dense range;
(ii) S is injective with S™' = R o 7,5,

(iii) S is an anti-homomorphism on its domain, i.e. for x,y € Dom(S) we have S(xy) =

S(y)S(x);
(iv) For all x € Dom(S) we have S(x)* € Dom(S) with S(S(z)*)* = z;

(v) We have 1 € Dom(S) with S(1) = 1. In particular 7,(1) = 1 for all t € R and
R(1) = 1.

We call S the antipode, T the scaling group and R the unitary antipode of M.
Proposition 2.2.8 We have the following relations for R and T:
(i) moR= RoT forallt e R;

(ii) Aot = (;Q@T1) o Aforallte Rand Ao R = 0o (R® R) o A where o is the flip
map on M Q@ M ;

(iii) Sory =71, 0S forallte Rand So R = Ro S;

(iv) Forallt € R we have 1, and R are isometries and normal.
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It follows easily that S = 7_; o R. We now turn to look at modular automorphism
groups and the uniqueness of Haar weights. It follows from the properties given that
(9o R)((Id®w)A(x)) = w(1)(¢ o R)(x) for all x € M and w € M, and so from the

following we may always assume that 1) = ¢RR.

Notation 2.2.9 We let 0 and o' denote the modular automorphism groups of ¢ and

respectively as given by Theorem 1.4.16.

Proposition 2.2.10 There exists a number v > 0 such that ¢7, = v='¢ forallt € R and a
unique injective positive operator P on 3 such that P*A(x) = v"?A(y(x)) forall t € R

and x € Ny. We call v the scaling constant of (M, A).

Proposition 2.2.11 The one parameter groups 7, o and ¢’ all commute with each other

and we have for all t € R that

Aoat:(Tt®Ut)oAa Aoaé:(aé@T,t)oA,
Aor = (T, ®@m)0 A, AOTt:(Ut®0/—t)OA-

Theorem 2.2.12 Let ¢ denote a left invariant normal semi-finite weight on (M, A), then
there exists some r > 0 such that ¢ = r¢. There is a similar result for right invariant

normal semi-finite weights.

We record the following useful results in von Neumann algebraic quantum groups for
later use. A proof is given in Lemma 4.6 in Aristov (2004). See also Proposition 5.13 in

Kustermans & Vaes (2000).

Lemma 2.2.13 Let z,y € M such that A(x) = y® 1, then x,y € C- 1.

2.2.2 (Cr-algebraic Quantum Groups

In this section we give an overview of locally compact quantum groups in the C*-algebraic
setting, in particular in the reduced C*-algebraic setting. This section is so similar to sec-

tion 2.2.1 we will often only point out the differences in definitions and theorems and not
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2.2 Locally Compact Quantum Groups

restate them. The main reference C*-algebraic quantum groups is the work Kustermans &
Vaes (2000) and we refer there for all such proofs or justification (see also Vaes (2001)).
We don’t give the definitions of KMS weights and approximate KMS weights for the fol-
lowing definition as it is not required for this thesis, see Kustermans & Vaes (1999) for
further details.

We note how in the following definition we have some density conditions that are
absent in the von Neumann algebraic setting. These conditions follow from the axioms
for a von Neumann algebraic quantum group but we must assume them in the C*-algebraic

setting.

Definition 2.2.14 A C*-algebraic quantum group is a C*-algebraic quantum semigroup

(A, A) such that

I (A@)(1®y) |2,y Al = A@mn A =Iin (AD)y®1) | syc A} (22)

and there exists a left and right invariant approximate KMS weights ¢ and 1 on (A, A)

respectively.

We now give the main definition of the section. Note that it follows from Proposition
5.1 in Woronowicz (1996) that if the density conditions in the following definition are

satisfied then the density conditions of the previous definition are automatically satisfied.

Definition 2.2.15 A reduced C*-algebraic quantum group is a C*-algebraic quantum
group (A, A, ¢, 1) such that the left invariant approximate KMS weight ¢ is faithful and

that satisfy the following density conditions

A=Tn {(w@iA@) [we A, zc A}

—Tin {([d@w)A(@) [we Ar, ze Al

Throughout the rest of this section let H{ denote the GNS Hilbert space given by ¢ and we
let A : Ny — H be the GNS embedding of A into J{. In this thesis we will assume that
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our reduced C*-algebraic quantum groups act on H and we will often drop the GNS map

m:A— B(H).

Theorem 2.2.16 There exists a unique unitary operator W € B(H ® H) such that
W*(A(z) @ A(y)) = (AR A)(A(y)(x ® 1)) for all x,y € Ny. Furthermore we have:

(i) Forall x € A we have A(x) = W*(1® x)W;

(ii) WiaWisWag = WasWia;

(i) A =Tm {([d@w)(W) | we BFH).} .

We call this operator the multiplicative unitary of (A, A). It is also sometimes referred

to as the left regular corepresentation of the locally compact quantum group.

We note that in the setting of Kustermans & Vaes (2000) we have an operator V' €
M(A ®pnin Bo(H)) such that (7 ® id)(V) = W and we call V the left regular corep-
resentation. As we are assuming A acts on H these two objects are the same for us so we
use both names to refer to WW.

The definition of the antipode for a C*-algebraic quantum group is identical to that
of a von Neumann algebraic quantum group in Definition-Theorem 2.2.7 but with the
o-strong™ topology replaced with the norm topology. So itis a closed map S : A — A
with a core given by lin {(id ® w)(W) | w € B(H),} where we have S ((id @ w)(IWV)) =
(id®w)(W*) for all w € B(H),. Also T is a norm continuous one-parameter group on A
in the decomposition S = Ro7_;/». The commutation relations are similar to the previous

section.

78



2.2 Locally Compact Quantum Groups

2.2.3 Reduced C*-algebraic and von Neumann algebraic Quantum

Groups

We show now that the two settings we have given above are essentially equivalent. In
particular given a von Neumann algebraic quantum group we can associate a reduced
C*-algebraic quantum group and similarly vice versa. We give details in this section, see
Kustermans & Vaes (2000) and Kustermans & Vaes (2003) for further details.

First fix a von Neumann algebraic quantum group (M, A, ¢,1). Then we have the

following (see Proposition 1.6 in Kustermans & Vaes (2003) for the proof).

Theorem 2.2.17 Let A = lin {(idQw)(W) | we fB(J-C)*}M', then A is a C*-algebra
and there exists a restriction and corestriction of A : M — M ® M to a contractive map
A — M(A®nin A). Similarly we can restriction ¢ and 1 such that (A, Al , ¢| 4, ¥|4)

is a reduced C*-algebraic quantum group.

Proposition 2.2.18 Let (A, A, ¢, 9?) denote the reduced C*-algebraic quantum group
associated with a von Neumann algebraic quantum group (M, A, ¢,1) from Theorem
2.2.17. Let S, R and T denote the antipode, unitary antipode and scaling group of M
b T = 7| forall t € R and let Dom(S#) = Dom(S) n A
with SA(z) = S(x) for all x € Dom(S?). Then S, R* and 7" are the antipode, unitary

respectively. Let R* = R

antipode and scaling group of A respectively.

Now let (A, A, ¢,1) denote a reduced C*-algebraic quantum group, let (3, 7, A) denote
the GNS construction of ¢ and let M = 7(A)”. Then there is an extension A : M —
M ® M and extensions ¢ and ¢ of ¢ and 1 such that (M, A, $,v) is a von Neumann

algebraic quantum group. So in fact we have the following.

Proposition 2.2.19 For every reduced C*-algebraic quantum group there is a von Neu-
mann algebraic quantum group and similarly for every von Neumann algebraic quantum

group there is a reduced C*-algebraic quantum group.
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2.2.4 The Locally Compact Quantum Group G

We now have two different settings for locally compact quantum groups, namely the
von Neumann algebraic setting and the reduced C*-algebraic setting. We have seen in
the previous section that given a von Neumann algebraic quantum group we can form a
reduced C*-algebraic quantum group and vice versa.

Consider the case where we have a locally compact group G, then we have a reduced
C*-algebraic quantum group (Cy(G), A, ¢, 1) with Cy(G) a commutative C*-algebra (see
Example 2.1.1). We also have a von Neumann algebraic quantum group (L*(G), A, ¢, )
such that L*(G) is a commutative von Neumann algebra where we’ve used the same
notation for the coproduct and Haar weights. So in this case the von Neumann algebraic
and reduced C*-algebraic quantum groups are two different operator algebras generated
by functions over the same group G. We mimic this for the case of quantum groups and
we say there is some underlying locally compact quantum group G such that we have
a reduced C*-algebraic version (Co(G), A, ¢, 1) and a von Neumann algebraic version
(L*(G), A, ¢,1). We have no way of computing such an object; however notationally

we will still speak of locally compact quantum group G. So we have the following.

Notation 2.2.20 In the remainder of this thesis we will denote a locally compact quantum
group by G (or H) and then we denote the reduced C*-algebraic quantum group by Cy(G)
and the von Neumann algebraic quantum group by L (G) where A, ¢ and 1 are implied.
We will denote the GNS Hilbert space by L*(G) and the predual of L*(G) by L}(G).

We will discuss the L*(G) object further in section 2.4. Given a locally compact quantum
group we can form its opposite locally compact quantum group, we give the details of

this in the next example that will be referred back to later.

Example 2.2.21 Let G be a locally compact quantum group and let A’ = o o A
L*(G) — L*(G)®L*(G) where 0 € B(L*(G)R®L*(G)) is the flip map. Then we
can show that (L*(G), A% 1, ¢) is a von Neumann algebraic quantum group called the

opposite quantum group.
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2.2.5 The Universal C*-algebraic Quantum Group

We introduce briefly the universal C*-algebraic quantum group. We give only the exis-
tence theorem and properties that we require here. We refer the reader to Kustermans

(2001) for further details.

Definition-Theorem 2.2.22 There exists a C*-algebraic quantum group called the uni-
versal C*-algebraic quantum group and denoted (CY(G), A", ¢*, ") with a unique em-

bedding 1y : Co(G) — CY(G) and a surjective x-homomorphism 7 : C§(G) — Co(G).

Proposition 2.2.23 There exists a unique non-zero x-homomorphism £* : C§(G) — C

such that (" ®id) o A* = id = (id ® %) o A",

It can be shown that there exist an antipode, a scaling group, a unitary antipode and
modular automorphism groups for the universal C*-algebraic quantum group, all denoted

with a superscript © when needed and detailed further in Kustermans (2001).

2.3 Duality in Locally Compact Quantum Groups

Let G denote a locally compact quantum group, then in this section we will define a
locally compact quantum group G through its von Neumann algebraic quantum group
(LOO(G), AG, ggG, @/A)G). We define the von Neumann algebra and the coproduct first. Note
the flip map on the coproduct below is a matter of convention where we have chosen to
follow Kustermans & Vaes (2000).

We will also discuss the self-duality of locally compact quantum groups as a general-
isation of the Pontryagin duality of locally compact Abelian groups.

We again refer to Kustermans & Vaes (2000) and Kustermans & Vaes (2003) as refer-

ences of this section.

Notation 2.3.1 We define the following

o —strong*®

L*(G) = lin {(w®id)(W) | we B(L2(G)),}
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and the map A : L*(G) — B(L2(G) ® L2(G)) is defined by

~

Alz) =XW(z®@ 1)W*E
for all x € L*(G) where Y is the flip map on L2(G) ® L2(G).

Theorem 2.3.2 We have that L*(G) is a von Neumann algebra and A : L*(G) —

L*(G)®L*(G) is the unique normal unital coassociative x-homomorphism such that

(L*(G), A) is a von Neumann algebraic quantum group.

Remark 2.3.3 Equivalently we can define this as a reduced C*-algebraic quantum group
with C*-algebra Co(G) = lin {(w @id)(W) | w e B(LQ(G))*}”.H and coproduct A
Co(G) = M(Co(G) ®uin Co(G)) given by A(x) = SW (z @ 1)W*X for all z € Co(G).

We have that IV € L*(G) ® L*(G) and from the definition of the coproducts and Definition-

Theorem 2.2.5 we have
(A®id)(W) = Wj,Was Wiy = Wi3Wag
and
(d@A) (W) = (1R D) WasWiaWis (1 ®3) = (1@ D)W Wis(1 ®@ B) = WiWie.

As Gis a locally compact quantum group then we have an antipode, a unitary antipode
and a scaling group denoted by S, Rand 7 respectively. It can be shown that the scaling
constant of G is given by v~! for v the scaling constant for G.

Given a locally compact quantum group G we can form its double dual (é? as the
dual of G. We have the following theorem showing that locally compact quantum groups
are closed under this duality and generalises the Pontryagin duality theorem for locally

compact Abelian groups (see Chapter 4 in Folland (1994)).
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Theorem 2.3.4 Let G denote a locally compact quantum group, then there is a map 0 :

~
~

L®(G) — L*(G) that is a *-isomorphism and satisfies (0 ® 0) o A = A o 0. We can also
identify ¢ with ¢, 1 with 1 and A with A.

For a locally compact quantum group G, we have its dual locally compact quantum group
G and so we have a multiplicative unitary W of G satisfying the appropriate relations.

We also have the following relation of W with W.

Proposition 2.3.5 For W the multiplicative unitary of a locally compact quantum group

G and W the multiplicative unitary of its dual G we have
W = SW*s
where 3 € B(L*(G) ® L*(G)) is the flip map.
We will make use of the following formulas for the scaling group.

Proposition 2.3.6 Let G be a locally compact quantum group with ¢ the left invariant
Haar weight for (L*(G), A) and ¢ the left invariant Haar weight for (LOO(G), A) Let
J and V denote the modular conjugation and modular operator of ¢ respectively, let J
and N denote the modular conjugation and modular operator of é respectively and let P

denote the operator given in proposition 2.2.10. Then for all z € L*(G), y € L*(G) and

t € R we have

7(z) = ViVt = pitgp=it, R(z) = Ja*J,
#(y) = VityV =t = pityp=it, R(y) = Jy*J.

Corollary 2.3.7 As 7 is normal for all t € R we can consider the pre-adjoint (1;), :
LYG) — LY(G). Then we have a norm continuous one-parameter group T, on the Ba-

nach space L' (G) where (7,);(w) = (1)« (w) for all t € R and w € L} (G).
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Proof

We show norm continuity as the rest is a straight forward application of the definition. It
is enough to show that for all w € L}(G) that we have lim; ,o(74):(w) = w as (T4)11s =
(T4)s © (1) forall st € R,

As L®(G) is in standard position with respect to L?(G) then a typical element of
LY(G) is given by wg, for some &, € L*(G). Therefore it is sufficient to show that
limy 0 (74 )¢ (we,y) = we . First we show that the map R — L?(G) given by ¢ — "¢ is
continuous. As P is positive and injective we can define In P and we consider the map
R — L%(G) given by t > e*"P¢ = Pit¢. Then by Stone’s theorem (see for example
Section 10.5 in Conway (1990)) we have that this map is continuous.

Now let ¢ > 0 and as the previous map is continuous we can find 6 > 0 such that

(P~ —id)¢| < ﬁ and (P~ — id)y| < ﬁ for all || < 4. For all = € L(G) and
n
t € R and using that 7;(x) = P"zP~" from the previous proposition we have

[z, (T*)t(wﬁm» - <$,w§,77>‘ = ‘(xp_itf}P_itn) - (I§|n>‘
< |(aP7E[P"y) = («P7En)| + (2P ~"€|n) — (2€]n)]
< |(@P7|(P" —id)n)| + |(z(P7" —id)¢|n)] .

Then for all x € L*(G) with |z < 1 we have

[z, (T)e(wen)) — <, wen| < [ [P NP —id)nl + |2 (P~ —id)&] ]
< [€MP~" —id)n| + (P~ —id)¢|n] <e.

Then we can take the supremum over all such z in the left hand side to get

[(7)e(wen) — wenll <€

and thus limt_,o(T*)t(wg,n) = Wey. U
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2.4 Duals and Preduals of Operator Algebraic Quantum
Groups

Again let G denote a locally compact quantum group throughout this section. We dis-
cuss the dual space of the C*-algebra Cy(G) and the predual of the von Neumann al-
gebra L*(G). Given the coproduct A on Cy(G) we can define a bilinear map m :
Co(G)*®Co(G)* — Co(G)* that gives Co(G)* the structure of a Banach algebra as
follows: let w, k € Cy(G)* and denote by w * k € Cy(G)* the map

(r,w=k)y={(Ax),w®K)

for all z € Cy(G) where w ®  denotes one of the maps wo (id® k) = ko (Id®w). Tt
follows that Cy(G)* is a Banach algebra by using that A is a *-homomorphism and thus

contractive and so
Kz, w = k)| < [A()||w @&l < [z]|wll]~]-
So we have |w * k|| < |w|||x|| for all w, k € Co(G)*.

Definition 2.4.1 Given a locally compact quantum group G we consider Co(G)* as a

Banach algebra with multiplication given as above.

We can also consider L!'(G) < Co(G)* as a Banach subalgebra where we remind that

L!(G) is defined as the predual of the von Neumann algebra L (G).

Proposition 2.4.2 We have that

LYG)=1lin {z-¢-y* | z,y€ Ny} =lin {wonm | we B(L2(G)),}

where we let 7 : Co(G) — B(L*(G)) denote the isometric GNS map 7w(a)A(b) = A(ab)
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for all a,b € Co(G) from the GNS construction of ¢. Furthermore L*(G) is a two sided
ideal of Co(G)*.

Definition 2.4.3 Ler A\ : L' (G) — B(XH) be the map w — (w ®id)(W). Then X is the

left regular representation of G.

We have that A is a homomorphism as

Mw*k) = (w*r)®id)(W) = (w® k®id)(A®id) (W)
= (w®krkid)(W13Wa3) = (w®id)(W)(k @ id)(W) = AMw)A(k)

where we’ve used Definition-Theorem 2.2.5 property (ii1). We also have the following.

Proposition 2.4.4 We can extend )\ to a contractive injective linear homomorphism X :

Co(G)* = M(Cy(G)) given by w — (w ®1id)(W) for all w € Co(G)*. Furthermore we
have A\(L'(G)) is a dense subalgebra of Cy(G).

2.5 Products of Locally Compact Quantum Groups

Let G and H denote locally compact quantum groups as per Notation 2.2.20. We will
now define a locally compact quantum group G x H in a similar fashion to the product
of two groups. Whilst this section is not necessarily new work the author is unaware of a
suitable reference in this section so we give proofs (though we will heavily make use of
the work in Vaes & Vainerman (2003)).

Throughout this section, to distinguish maps associated to a particular quantum group,
we will add a superscript of the quantum group to the map. For example A®, 7€ and R®
refer to the coproduct, scaling group and unitary antipode of the locally compact quantum
group G.

We give some motivation first and discuss products of groups now.
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Example 2.5.1 Let G and H be locally compact groups, then we can form a locally
compact group G x H given by the Cartesian product of G and H and given product
(2,9) - () = (22, yy).

We would like to define a map A on Co(G x H) =; Cy(G) @pmin Co(H) that gives
this group product in terms of A% and A". So for F € Co(G x H), z,2’ € G and

y,y € H we wish to have

AT (E)((2,y), (' y) = F(za',yy')

but we have

F(aa',yy') = [(A% @ A" (F)]((2,2"), (y.4))
= [(o230 (A @A) (F)]((2,y). (', /)

where o is the flip map and thus 93 : Co(G x G x H x H) — Co(G x H x G x H) flips

the middle two legs. So we can define A := gy3 0 (AY @ AH),

We now state the main theorem of this section that we will take as a definition of the
product G x H of two locally compact quantum groups G and H. Whilst this is not
necessarily a new result to the author’s knowledge it is not previously recorded in the

literature in this form.

Definition-Theorem 2.5.2 Let G and H denote locally compact quantum groups. Then

there exists a locally compact quantum group G x H such that we have:

(i) L*(G x H) = L*(G) ® L*(H),

(ii) coproduct A®™ = 543 0 (A® @ AR) where o is the flip map on L*(G) ® L™ (H),
(iii) multiplicative unitary W& H = g,3(W® @ WH);

(lV) CO(G X H) = C()(G) ®mm Co(H)
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For the following proof we will reference many results in Vaes & Vainerman (2003). The

reader may find it helpful while reading this proof to have a copy of this at hand.

Proof

Let G denote the dual of G and let <L°O(@), AC G @G> denote its von Neumann al-
gebraic quantum group. We let 7 : L®(G)® L®(H) — L*(G)®L*(H) be the identity
map, U = 1o ®1z®@1gand V = 15 ® 1y ® 1y to give the triple (7, U, V). Then by Defi-

N

nition 2.1 in Vaes & Vainerman (2003) we have an action « : L*(H) — L*(G) ® L*(H)
given by y — 1 ® y and an action 8 : L*(G) — L*(G)®@L*(H) given by = — 2 ® 1
satisfying the properties of the same definition to give a cocycle matching (7, U, V).

We let ¢© denote the left invariant n.s.f. Haar weight of G, we let (L?*(G), 7%, A®)
denote the GNS construction of © and W® the multiplicative unitary of G and simi-
larly for H. Also we let gz%G denote the Haar weight of G which has GNS construction
(L%(G), 7%, A®). We have the multiplicative unitary W of G given by Proposition 2.3.5

and so from Definition 2.2.2 in Vaes & Vainerman (2003) we have a von Neumann algebra

generated in B(L?(G)) ® L*(H) by
{(w@id@id) (WG@ 1) ‘ we Ll(@)} and o(L°(H)) = {1®y | y € L*(G)}.
We have

~
~

L*(6) = L*(G) = { (w ®ia)(1W*)

we 3(L2(G))*}
_ {(w@id)(WG) ( we Ll(@)}
and so the von Neumann algebra generated is L™ (G) ® L™ (H). We let L*(G x H) denote

this von Neumann algebra.

We need several flip maps that we denote as follows
(i) ¥ be the flip map from L?(G) ® L?(H) to L?(H) ® L?(G) and * the reverse flip;

(i) X®*® denotes the flip map on L2(G x H)® L*(G x H);
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(iii) X¢ the flip map on L?(G) ® L?(G) and similarly for IH;

(iv) o will denote the flip on C*-algebra or von Neumann algebra tensors, e.g. for C*-

algebras A and B we let 0 : A ®,in B — B ®pin A be the usual flip map.

We will also use the leg notation on many of these maps.

It also follows from Definition 2.2 in Vaes & Vainerman (2003) that we have
WGXH _ 023(WG ® WH)’ WGXH -y <WG><H) Yo
and we calculate for §;, 11, &3, m3 € Hy and &a, 12, 4, s € Hy, that

(WEHE @& ®E® &) |m @12 ®@ 113 @ i)
= <WGXH(§3 LR ® 52)‘773 @M Om& 772>

- (6©6 6|V RW )L 0n @nemn))

= (L ®&E®EE|(WE)* @ (WH)*) (1 @ 03 ® 1 @ 1a) )
( (Sas(WE@WMEE) (6 @& ®E R &) \771 K12 ®n3 ® 774)
and so we have W& = 55 (WE @ WH),

We claim that A®*H = 755 0 (A® ® A™). We know from Definition 2.2.1 in Vaes &
Vainerman (2003) that A®*H(z) = (WEH)*(1@2)WEH for all # € L (G x H) and we
show that ((023 0 (A® @ A®))(z)) (WEH)* = (WEHE)*(1®2z) for all z € L*(G x H).
For all y € L*(G), z € L*(H), a,a’ € Cy(G) and b, b’ € Cy(H) we have
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(023 0 (A® @ A®))(y ® 2)) (WEH)*(A%(a) @ AT (b)) @ A®(a) @ A% (1))
= (Zas(A(y) ® A(2))Ea3") Tas(WE)* @ (WH)*)(A%(a) @ A%(a') @ A (b) @ A™(V))
= (Zas(A(y) ® A(2))) (A° @ A%)(A()(a® 1)) @ (A" @ AT)(AW)(b®1)))
(AG’@AG (Alya)(a®1)) ® (A" @ A™) (A=) (b @ 1))
(W a) ® A%(ya)) ® (WH)*(A%(b) ® A%(20)))
=2 ((WG) ® (WH)*)E*za(AG(a) ® A% (b) ® A®(ya') @ A™ (b))
= (WEH 1010y ®2)(A%(a) ® A%(0) @ A%(d) ® A* (V).

23

=
= Y3

As this holds for all a,a’ € Cy(G) and b, b’ € Cy(H) we have
(0230 (A*@AT))(y®@2)) (WEH)* = WEE) (1@1®y®2)
for all y € L*(G) and z € L*(H) and thus by linearity and continuity we have
(025 0 (A% ® AT))(2)) (WEH)* = (WEH)* (1@ )

for all x € L*(G x H) as was to be shown.
So we have shown that G x H is a locally compact quantum group with (L*(G x
H), A®*H) the von Neumann algebraic quantum group and we now consider the reduced

C*-algebraic quantum group. We have

Co(G x H) = lin {(idGXH@)w)(WGxH) ‘ we LG x H)}H'H

forming the reduced C*-algebraic quantum group and

Co(G) ®umin Co(H) =lin {z®vy | x€ Cy(G),y € CO(H)}H.”
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2.5 Products of Locally Compact Quantum Groups

with the closures taken inside B(L?(G) ® L?(H)). We want to show these are equal.
Letw € L}(G) and € L*(H), then we have

([d@w) (W @ (i[d® k) (W) = (([d®id®w® k) (WEH) e Co(G x H)

and so {(i[d@w)(W®) | we LYG)} © {(id@r)(WH) | ke L'(H)} < Co(G x H).
Taking the closure of the left hand side we get

Co(G) ®pmin Co(H) = Co(G x H).

Now let Q € LY(G x H) and so (id ® Q)(WEH) € Co(G x H). As L}(G x H) =;
LY(G)®L(H) we have a net (Q,) < LYG) ® L'(H) such that lim, Q, = 2 and so
lim,(z, Q) = (z,Q) for all z € L¥(G x H). For all « we have

(1d ® Q) (WEHE) = (Q)0u(WE @ WH) € Co(G) © Co(H)

and so (id ® Q)(WEH) = lim, (id ® Q) (WE*H) € Cy(G) @min Co(H). It then follows
that Co(G X H) c Cy (G) Qmin Co(H) O

We now calculate explicit formulas for the left Haar weight, the unitary antipode and the

scaling group of the locally compact quantum group G x H.

Lemma 2.5.3 For z € L*(G x H)* we have
(Id®id @ ¢%)(id @ AF)(z) = (Id ® ¢™)(z) ® 1B (2.3)

and

(¢° ®id®id)((A%)” @id)(z) = 1° ® (¢° ®id)(x) (2.4)

where each side of both equations is in L*(G x H)Z,

ext*
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Proof

Equation (2.3) is given by Proposition 3.1 in Kustermans & Vaes (2003) and we prove
Equation (2.4) as a consequence of this. We fix x € L*(G x H)* throughout this proof.
We have an operator valued weight ¢® ® id ® id : L*(G x G x H)* — L®(G x H)%,
and as ((A®)? ®id)(z) € L®(G x G x H)* we have a map

(¢° ®id ®1d)((A®)”? ®id)(z)) : LY(G x H)* — [0, ] (2.5)

given by w — ¢%((id®w)((A®)?®id)(x)). Alsoleto : L?(G) ® L*(H) — L*(H) ® L*(G)
and 0’ : L?(H)®L*(G) — L*(G)®L*(H) be the flip maps with pre-adjoints o, :
L'(H x G) —» LYG x H) and o, : L}(G x H) — L'H x G). Then we have

(id ® A®)(o(z)) € L*(H x G x G)* and so we have a map

(id ®1id ® ¢%)(id ® A®)(x) o o, : L}G x H)™ — [0, o0]. (2.6)

We claim the maps in Equations (2.5) and (2.6) are equal, that is for any w € L' (G x H)*
we have either both acting on w are finite and equal or both are infinite.
Letwe LY(GxH) " andy = 2®2' € L*(G xH) " forz € L*(G)" and 2’ € L*(H)*,

then we have
(o4 (w)@id) (([d®@ A%)(0(y))) = (0%(w)@id) (Z'@A%(2)) = (id@w) ((A%)* @id)(y))
and so by linearity and continuity we have

(02 (w) ®id) ([d @ A%)(0(2))) = (i[d®w) ((A%)* ®id)(z))

forall z € L®(G x H)*. So if w is such that [(id ® id ® ¢®)(id ® A®) (o (z))] (0% (w)) is

*
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finite, then we have

[([d®id ® ¢°)(id ® A®)(0(2))](05(w)) = °[(o4(w) ®id)(id ® A%)(o(x))]
= °[([d®w)((A®)” ®id)(2)] = [(¢° ® d ®@id)((A%)” @id)(z)](w)

and so [(¢° ®id®id)((A®)?®id)(x)](w) is finite and they are equal. It follows similarly
that if the latter is finite then so is the former and they are equal. Also if either of these is

infinite then so is the other and the maps (2.5) and (2.6) are equal.

From Equation (2.3) (with G and H reversed) we have

(¢0° ®id ®id)((A®)? ®id)(r) = (id ®id ® ¢°)(id ® A®) (o (2)) 0 7,
= (([d®¢%)(o(2)) ®1%) 00, = 1° @ (¢° ®id)(x)

as required. O

Proposition 2.5.4 For locally compact quantum groups G and H we have left Haar

weight ¢ = ¢® @ ¢™ on G x H.

Proof
This follows largely from the work in Sections 1 and 2 of Vaes & Vainerman (2003).
From Definition 1.13 in Vaes & Vainerman (2003) we have a left invariant n.s.f. weight

¢®*H on (L°(G x H), A®*H) given by

P =l oo (p®id®id) o a

~

where o : L*(H) — L*(G)®L*(H) is given by y — 1 ® y and & is the map from
Propositions 1.4 and 1.5 in Vaes & Vainerman (2003) such that &(z) = (W€ ® 1)(id ®
)(2)(WE)*®1) forall z e L®(G)® L (H).
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It follows that for y € L*(G) and z € L (H) that

ay®z) = (W )(y®a())(WE)* ®@1) = Wy ) (W) © =
=YW 1RyYWCERz2=3SAWYER 2z = AP(y) ® 2

and so it follows by linearity and continuity that &(x) = (A% ® id)(x) for all = €
L*(G)®L*(H). Now let x € L*(G x H)*, clearly &(z) € L®(G x G x H)™" then

applying Lemma 2.5.3 we have
(¢ ®id®id) 0 d)(z) = 1¢ ® (¢ ®id)(x) € L*(G x H)},.

Clearly we have a restriction and corestriction o : L*(H)* — (L*(G x H)" and we can

extend this to a map o, : L*(H)/,, — L®(G x H)},, such that [o_,(y)](w) = w(1®1y)

ext ext ext
forall 2 € L*(H)}, and w € LY(G x H)*. Then o, " (1 ® (¢ ®id)(z)) = (¢ ®id)(z)

and thus we have
(@' o (p@id®id) o d)(z) = (¢ ®id)(x) € L*(H)L,.
Finally by 1.4.30 we have
(Woa o (¢®id®id)od)(z) = U((¢®id)(z)) = (9@ ¥)(2)

forall x € L*(G x H)™" as required. O

Proposition 2.5.5 As G x H is a locally compact quantum group by Definition-Theorem

2.2.7 have a scaling group 7%*™ and a unitary antipode R®*™. We have the following:

o =r'®r"  and  R¥" =R°@R"
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Proof

We have from Proposition 2.3.6 that the scaling group 7> is given by
T;GXH<x> _ (AGXH)it T (AGXH)—it

for all z € L®(G x H) and ¢ € R where A®*H js the modular operator of the left Haar
weight of (L*(G x H), A®H). From Proposition 1.4.23 we have that AG*E — ACg@AH
where A® and AH are the modular operators of the left Haar weight of (L*(G), A®) and
(L (H), AH). It follows that 78*H(y®2) = 78 (2)@7E(y) = (rEf @) (y®2) forall y €
L®(G) and z € L*(H) and by linearity and continuity we have 7% (z) = (¢ @ 711 (z).

Similarly from Proposition 2.3.6 we have RE*H(z) = JO<Hgx JOxH for a]] 2 ¢
L*(G x H) and from Proposition 1.4.23 we have J¢*# = J€ ® .J¥ and the rest follows

as above. O
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Chapter 3

Special Quantum Groups

In the previous chapter we have worked at a high level of generality by describing locally
compact quantum groups. In this chapter we now study the special cases of Kac algebras,

compact and discrete quantum groups and coamenable quantum groups.

3.1 Kac Algebras

As we have introduced locally compact quantum groups (which are a generalisation of
Kac algebras) we will give our definition based on quantum groups for Kac algebras. We
only give the definition of Kac algebras here and refer the reader to Enock & Schwartz
(2013) for further details.

We can see from Definitions 1.2.1 and 2.2.1 in Enock & Schwartz (2013) that our

definition and the usual definition coincide.

Definition 3.1.1 A locally compact quantum group G is of Kac type if we have 7, = id
forallt e Rand o' = 0. We say (L*(G), A, ¢,1) is a Kac algebra in this case.
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3.2 Compact Quantum Groups

We now introduce the special case of compact quantum groups. Historically compact
quantum groups were defined before the locally compact setting by Woronowicz after
discovering SU,(2) that didn’t fit in the Kac algebra framework. Originally he generalised
this to what are now called the compact matrix quantum groups Woronowicz (1987a)
and then later he made a generalisation of this to what are now called compact quantum
groups Woronowicz (1998). We give details of this in this section now. See also Maes &
Van Daele (1998) and Neshveyev & Tuset (2013).

We will introduce some conditions for verifying when a locally compact quantum
group is compact and then come back to discussing how to construct examples of compact
quantum groups. We then discuss corepresentation theory, a cornerstone for the subject
and compact matrix quantum groups. Lastly we discuss the multiplicative unitary and

products of compact quantum groups.

3.2.1 Compact and Locally Compact Quantum Groups

We start with the following as a definition based on our work with locally compact quan-
tum groups and in the following sections make contact with Woronowicz’ original defini-

tion.

Definition 3.2.1 A locally compact quantum group G is a compact quantum group if the
reduced C*-algebra Cy(G) is unital in which case we denote the reduced C*-algebra by

C(G) (in accordance with the convention for continuous functions on a compact group).

Proposition 3.2.2 The following are equivalent for a locally compact quantum group G:
(i) G is compact;
(ii) The left Haar weight of L°(G) is finite;

(iii) There exists a normal left invariant state.
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Proof

(1) = (i1): It follows from the theory of compact quantum groups that we have a unique
state ¢ on the reduced C*-algebra quantum group C(G) such that for all x € C(G) we
have (id® ¢)A(z) = ¢(x)1 = (¢ ®id)A(z). We refer the reader to Section 4 in Maes &
Van Daele (1998) and Section 5.1 in Timmermann (2008) for a proof of this. Then from
Result 2.3 in Kustermans & Vaes (2000) we have that ¢(z)1 = (¢ ® id)A(z) € N, and
thus 1 € Ny. As N, is a left ideal it follows that z = 1 € Ny forall z € Cy(G), or indeed
Ny = Co(G), and therefore ¢ is finite.

(i) = (iii): As the left Haar weight ¢ is finite we have Ny = M, = L*(G). We can
show using the definition of normal functionals that ¢ € L'(G)" and so ¢ := ¢/|¢| €

L!(G)™ is a normal state that is easily seen to be left invariant.

(iii) = (i): We have that L'(G) is a left Cy(G)-module by the map a@w — a-w fora €
Co(G) and w € L' (G) where we denote by a-w € L'(G) the functional (b, a-w) = {ba,w)
for all b € Cy(G). We show that this is essential, see Definition A.3.2. Let w = wa(q),
for a € Cy(G) and n € L*(G) first. Then as Co(G) has a bounded approximate identity
it follows that this is essential as a left Banach module over itself. Then by the Cohen
Factorisation Theorem (see Theorem A.3.3) we have that a = be for some b, ¢ € Co(G).

Then for all z € Cy(G) it follows that

wW(a) () = (2A(be)|n) = (xbA(c)[n) = wa(e)n(xb) = (b~ W) (7)

where we’ve used the Cy(G)-bimodule structure on L*(G) from Example A.3.1. Then
it follows that wx(), = b - wWa(),, and thus as A has dense range we have we, €

i {a w|acCoG), weLi(G)]

for all £, € L*(G). It the follows from linear-
ity and continuity that L' (G) is essential as a left Co(G)-module.

Now we can use Cohen’s Factorisation Theorem again to show that there exists a €

Co(G) and w € L(G) such that ¢ = a - w. As ¢ is left invariant for all x € L}(G) and
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z € Co(G) we have
A@), k@ d) = (1, K)x,9)

and then substituting ¢ = a - w we get

A@)1®a),r@w) = (L, KXz, 0).

As this holds for all x € L'(G) we have for all z € Cy(G) that

(id®w) (Alx)(1®a)) = {z,¢$)L.

By the density conditions in Definition 2.2.14 we have A(z)(1®a) € Co(G) ®min Co(G)
and so (x,0)1 = (Id ®w) (A(x)(1®a)) € Co(G). As (en,d) — 1 there is some
x € Co(G) such that (x, ) # 0 and so 1 € Cy(G) and G is compact. O

3.2.2 (Cr-algebraic Compact Quantum Groups

So we have seen that we can check whether a locally compact quantum group is compact
from the reduced C*-algebraic or von Neumann algebraic version. It is more common,
however, when constructing compact quantum groups to find a unital C*-algebraic quan-
tum semigroup that satisfies some density conditions. We can then form the reduced
C*-algebraic or von Neumann algebraic version from this when required.

The following important proposition was proved in Woronowicz (1998) in the separa-

ble case and in Van Daele (1995) in the general case.

Definition-Theorem 3.2.3 Let A be a unital C*-algebra with A : A — AQ®uin A a
unital =-homomorphism making (A, A) a C*-algebraic quantum semigroup such that that

the following equations hold:

A@min A=Tn (A1) | Ty A} =Tn (AD)(1®y) | z,yc A} . G.1)
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Then we have a KMS state ¢ such that for all x € A we have (id ® ¢)A(z) = ¢(x)1 =
(¢ ®id)A(x). In particular (A, A) is a C*-algebraic quantum group as per Definition
2.2.14 and a compact quantum group. We call ¢ the Haar state of (A, A).

Proposition 3.2.4 Let (A, A) denote an arbitrary C*-algebraic quantum group satisfying
the properties of Definition-Theorem 3.2.3, that is A is a unital C*-algebra and ¢ the left
and right invariant Haar state. Let A, = A/Ker ¢ and we can restrict A to a map
A, A — A Quin Ay such that (A, A,) is a reduced C*-algebraic quantum group
with A, unital, A, a unital map and there is a left and right Haar state ¢, such that
¢, 0o = ¢ where m : A — B(L?(G)) is the GNS map.

So given a unital C*-algebra A and a unital coproduct A : A — A®,;, A satisfying
Equation (3.1) we consider this a C*-algebraic quantum group. Then there is a com-
pact quantum group G such that we can form the reduced C*-algebraic quantum group
(C(G),A,). We treat both (A, A) and (C(G), A) as C*-algebraic quantum groups for the

same compact quantum group G.

3.2.3 Corepresentation Theory

For compact quantum groups we have a good understanding of corepresentation theory.
This is fundamental to a lot of work in compact quantum groups and there are many pre-
sentations of this in the literature, see Maes & Van Daele (1998) and Woronowicz (1998)
for example. However, many conventions used in the case of locally compact quantum
groups are different to those used by Woronowicz and van Daele for compact quantum
groups, for example in the compact case we tend use the right regular representation
where in the locally compact case we tend to use the left regular corepresentation. Addi-
tionally it is difficult to find some of the results as stated here in the literature and as such
we present a thorough treatment of this subject here.

Throughout this section let (A, A) be a C*-algebraic quantum group satisfying the

conditions of Definition-Theorem 3.2.3 and G the underlying compact quantum group,
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that is the reduced C*-algebra C(G) is constructed as in Proposition 3.2.4.

Definition 3.2.5 A corepresentation of (A, A) on a Hilbert space H is an element U €
M(A ® Bo(H)) such that (A ® id)U = Uy3Uss. If U is unitary then we say this is a

unitary corepresentation.

If H is n-dimensional with orthonormal basis {e; | 1 < k < n}thenfor1 <i,j < n we

define u;; € M(A) = Aby us; = (id ® we, ¢,)(U) and we have
Augj) = (1d®1d @ we, ¢, ) (A ®id)(U) = (id ® id ® we, ¢, ) (U13U23).

As we; e (xy) = (wyejler) = 2oy (yejlen) (exlrei) = gy ey e (X)we e () for z,y €
B(H) then we have

u”

ld ® ld ® wek €; )(Ulg)(ld ® ld ® weﬁek)(UQg)

-2
X

(id ®@ Wepe;) (V) ® (id @ we, ¢, )(U) = Zui,k®uk,j-
k=1

We can also similarly show that if this equation holds then so does Definition 3.2.5. So
equivalently, for a finite dimensional corepresentation, we can consider a matrix (u;;);';_; €
M, (A) such that A'U,l'j = Z:-;l Ui, ® Uk

We now move on to consider irreducible corepresentations.

Definition 3.2.6 Let U € M(A ® Bo(H)) be a corepresentation of G. Then a closed
subspace K of J is invariant if for e the orthogonal projection from H to K we have
(I®e)U(l®e) = U(1®e). We say U is irreducible if the only invariant subspaces of
H are {0} and .

Definition 3.2.7 Let U and V' be corepresentations of (A, A) on Hilbert spaces H and K
respectively. Then we say a linear map T : H — XK intertwines U and V if (1 Q T)U =

V(1 ®T). We say corepresentations U and V are equivalent if there is an invertible
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intertwiner from U to V' and unitarily equivalently if there is a unitary intertwiner from

UtoV.

We now offer some theorems on corepresentations and refer the reader to Maes & Van Daele

(1998) for proofs.

Proposition 3.2.8 Any invertible, finite-dimensional corepresentation of (A, A) is equiv-

alent to a unitary corepresentation.

The following is one of the most important theorems on corepresentations of compact

quantum groups.

Theorem 3.2.9 There exists a maximal family denoted
{Ue AQB(H,) | o€ A}

of mutually inequivalent, finite-dimensional, irreducible, unitary corepresentations of
(A, A) such that U* is contained in the left regular corepresentation for all o € A. Fur-

thermore any unitary irreducible corepresentation is equivalent to some U*“.

Let U € M(A ® By(H)) be a corepresentation where H is finite dimensional with or-
thonormal basis {e; | 1 <i < n}. Then we have U = }}",_, u;; ® e;; for some u;; € A
such that A(u;;) = > wix @ uy; for all 1 < 4,5 < n. In particular for the maximal

family given in the previous theorem we can write this as

{u=(u@)fs_ €M, (A) | ach 1<ij<na}.

We will use this notation throughout the rest of this section for this maximal family.

Notation 3.2.10 We denote by Hopf(G) the linear span of{u% ‘ aehA 1<i,57< na}
in A.
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Proposition 3.2.11 We have that Hopf(G) is a unital Hopf =-algebra that is dense in
A such that the Haar state ¢ is faithful on Hopf(G). Furthermore, for all o € A and

1 <1,5 < ng,, we have the following relations
)= D uh®uy, S = (5), e(u) =0y G(uf) = Gaa

where oy € A is the unique 1-dimensional corepresentation consisting of the identity

1e A

Example 3.2.12 We now give examples for constructing corepresentation matrices from

given corepresentation matrices. Say (u;;)?._, € M, (A) is a corepresentation matrix,

i?j:

then we have

and so we have another corepresentation U = ZZ]‘=1 uy; ® e;;. We can show that if
U is irreducible then so is U. Clearly the definition of U depends on the choice of or-
thonormal basis however given any other orthonormal basis we can show that the two
corepresentations obtained are equivalent.

Say u € M, (A) is a corepresentation. Similarly to Example 2.2.21 we have a C*-
algebraic quantum group (A, A°?) where A’ = o o A for o the flip map on A®y;, A.

Then we have
Aop((ut)i]) u]z Z Uk ® u] Z zk ®

and so u' € M, (A) is a corepresentation matrix of (A, A°?). Similarly u* = (u)' €
ML, (A) is a corepresentation matrix of (A, A°P).

We can show that for an n-dimensional unitary irreducible corepresentation U that U
is equivalent to a unitary corepresentation. Then there exists an invertible matrix T’ € M,

such that V = (1@ T)U(1 ® T™Y) is unitary. Then we have U is invertible with inverse
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Ult=1T HV*(1®T). Also Ut = (U)* is invertible with
U =(O)) " =1TIVI(T ")) =1T T) U1 (T"T)™).
It then follows that (U")™! is a corepresentation as

A®id)(U)''=(11T'T)(A®id)(U)(1®1® (T*T)™ )
=(11T*T)(U)31@1® (T*T)™)
x (1@1QT*T)(U)s(1® 1@ (T*T)™1)
= (U Ds((U) e

and thus (1@ T*T)T = (U")" (1@ T*T).

We offer a proof of the next few results as they differ slightly from that found in the liter-
ature. We first record the following which comes from Lemma 6.3 in Maes & Van Daele

(1998).

Lemma 3.2.13 Let U and V' be corepresentations of (A, A) on Hilbert spaces H and X
respectively, and let v € By(H, K) and let

y = (¢@id)(V*(1®a)U).
Theny € Bo(H, K) and V(1@ y)U = 1®y.

Proof
Because x € By(H,K) we have (1 ® x)U € Bo(H,K) ® A and thus V*(1 ® x)U €
Bo(H, K) ® A also. In particular y € Bo(H, K).

Also we have

ARV 1©2)U) = Vi1 Q1@ 2)Uislss

105



3. SPECIAL QUANTUM GROUPS

and then applying ¢ ® id ® id we get the result. O

Lemma 3.2.14 (Schur’s Lemma) Let U and V' be finite-dimensional corepresentations

of (A, A) on H and X respectively and let T an intertwiner from U to V. Then
(i) Ker T is invariant for U and Image T' is invariant for V;

(ii) If either U or V is irreducible then either U and V' are inequivalent and there is only
the 0 intertwiner from U to V or U is equivalent to V' and there is some invertible

T € B(H,K) such that the set {\T' | X € C} gives all the intertwiners from U to V.

In particular we have that the intertwiners from U to itself are given by {\id | A € C}.

Proof

Let e denote the orthogonal projection of I onto Ker 7" and f the orthogonal projection
of K onto Image 7. Then 0 = (1®T¢) and thus 0 = V(1®Te) = (1®T)U(1®e) and
sowe have (1®e)U(1®e) = U(1® e). Similarly we have

1R HVIRT) = (1 [TV =(1RT)U =V(1®T)

and as f(X) = TH thenwe have (1® /)V(1® f) = V(I ® f).

It follows that if U is irreducible then either Ker 7' = {0} or KerT' = U, that is T is
either injective (and thus an isomorphism as it is finite dimensional) or 0. Similarly if V' is
irreducible then Image T" = {0} or Image T' = X, that is 7" is 0 or surjective (and thus an
isomorphism as it is finite dimensional). In either case if U and V' are inequivalent then
the only intertwiner is 0. On the other hand if 7" is a non-zero intertwiner from U to V'
then 7' is bijective and U and V" are equivalent.

Now say S is a non-zero intertwiner from U to V, then for all A € C we have \T' — S
is an intertwiner from U to V' and so is either bijective (and thus an isomorphism) or 0.
Choose A such that det(A\T" — S) = 0 and then we have S = AT for some A € C as

required. O
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The diagonalisation argument in the following theorem was originally given in Daws

(2010).

Theorem 3.2.15 For all o € A there exists a unique invertible positive definite matrix
F® € M, with Tr F* = Tr (F*)~! such that for all o, 3 € A, 1 < k,l < n, and
1 <4,7 < ngwe have

Fg ((F*) i

O(ugy(u)) = dapbuy 2y O((uh) ufh) = dasdy——

G (3.2)

where A* = Tr F*. We can assume that the maximal family of corepresentations is
chosen such that for all o € A we have F* = diag(\}, ..., Ay ) with A} > 0 for all
iand A* = Y7 N = Y7 (M)t > 0. Furthermore we have that F* intertwines

U and ((U*)")~" and (F*)~" intertwines U and k%_(U®). We call these matrices the

F-matrices of (A, A).

Proof
Let o € A. We have from Example 3.2.12 that there is some 7" € M, such that V' =
(1QT)U*(1®T 1) is unitary, U® is invertible and 1®T*T intertwines U with ((U)!)~!
as corepresentations of (A, A). We have T*T is positive definite as 7" is invertible. We
define F'* = X\(T*T)'! where we choose A such that Tr F* = Tr (F*)~! > 0 and
we have that (F)! intertwines U® and ((U®)")~. As U is irreducible it follows from
Schur’s Lemma (3.2.14) that F'® is the unique operator such that (F*)! intertwines U
and ((U*)")~! and such that Tr F'* = Tr (F*)~".

Leta,5 € A, i,j € Nysuchthat 1 < i <mn, 1 <j<ngandletx = ef}a be the

ng X ne-matrix in B(H,, Hp) with 1 in the 4, j-th position and 0 elsewhere. Then by
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Lemma 3.2.13 we have an intertwiner given by

= (peid) (70 8 407)

ng Na

= 3 2 (0®id) (1) ®cp) (1©€5°) (uh®es)
p,q=1s,t=1
Na Na M8

= > 2¢ %) pijseii’ ZZ¢( ull) ) a
p,q=1s,t=1 q=1t=1

such that (1 ® y)U® = UP(1 ® y), i.e. y intertwines U and U”. As U® and U” are
irreducible then, by Schur’s Lemma 3.2.14, we have that y = 0 if a # f.

Letae A, 1<1,j,k, Il <n,and we let

yir = (¢ ®@id) (U*)* (1 ®@ef)U”) Z ¢ qu

p,g=1

and in (A, A°) (as (U®)* is a corepresentation of (A4, A°)) we let

zii = (0 ®id) (U*(1®@e3)(U*)*) = (¢ ®id) (U*(1 ®e5)(U))

= ) (001d) (((up)* @) (1@ ef) (ug, @ ef) Zcb Uspj)

P,q,8,t=1 p,q=1

We have from Lemma 3.2.13 that (1 ® y;)U® = U*(1 @ yi) and (1 ® z;)((U*)") !
U (1®z;;). So by Schur’s Lemma 3.2.14 we must have y;; = pid and 2 = v ((F*)!)~!

for some collections (1), (v;;) = C. Then we have

va((FY) = 3 () ud)e

p,q=1
W how that =0 ! We h
€ now show that v;; = JlTrFO" € have
vir(F*) Dk = vu((F)) ™ i = ¢((ugy) ugy) = pardi (3.3)
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3.2 Compact Quantum Groups

and so for j # [ we have v;; = O and if j = [ then v;; is independent of j so we let v;; = v

for some v € C. Using that U is unitary we have

Zy”— (¢®id) ( (1@2 ) U"‘) (6®id) ((U*)*U?) = (¢®id)(1®1) = 1

and so >, i = 1. Then it follows from Equation (3.3) that

VTI" Z:um =

1 1
and so v = Tr (Fay)1 = Ty e and we have the second equation in (3.2).

The first equation is proved similarly by considering (¢®id) (U*(1® e%)(U*)*) and
(¢6®id) (U")(1®ef)T?).

For o € A we have that F'“ is positive and so there is some unitary Q¢ € M, such
that (Q*)*F*Q" is diagonal with matrix diag(Af, ..., A% ). It follows that D' A® =
Tr F* = Tr (F*)~t = 3" (A¥)~! which are all greater than 0. For 1 < i, j < n,, let

= (@) aQa Z Q iU Q-

k=1

We then have that V = (vf});'5_, is a corepresentation of (A, A) as

Mo

Z vz’ ® Ugj - Z Q u;:lle ® Q s,p stQt]

p=1 k,l,p,s,t=1

= Za: Qi (upy ®up)Qy; = Z QrA(uR)Qry = A(v).

k=1 k=1

Using similar techniques we can show that 1V is unitary and satisfies Equation (3.2) with
F}; the diagonal matrix diag(Af, ..., A7 ).

Finally we show that F* intertwines U* and S2 (U“). Above we have a T' € M,,

such that we have a unitary matrix V = (1Q7)U*(1®7T~!). Then using that S, (W)! =
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(W*)t = W for any corepresentation W € M,,_(A) of (4,A) (where we’ve used No-
tation 1.1.1 for the antipode S) and so S, (W) = S2 (W). Using these equations it

follows that

1T AQT ™) =V =8, (V) = (1QT)S,. [U)ART )
= (1®(T7))S (U A®T) = (1@ (T))S,, (U1 T)

and so rearranging we get

(1T'T)U* =52 (UM(A®T'T)

and using that 7T = (T*T')" we are done. O

Definition 3.2.16 Ler (A, A) be a compact quantum group with {U® | « € A} the max-
imal family of mutually inequivalent, finite-dimensional, irreducible, unitary corepresen-
tations. We define f. : Hopf(G) — C for all z € C as the map ug; — ((F'*)?)i;, that is
the i, j-th entry of the matrix (F'“)?.

We can calculate the modular automorphism group from Definition-Theorem 1.4.16 and
the scaling group from Definition-Theorem 2.2.7 for a compact quantum group in terms
of the collection ( f,).cc. We have the following properties for the collection (f,).cc. See

Theorem 3.2.19 in Timmermann (2008) for a proof.

Proposition 3.2.17 For all z € C we have that f. is a character on Hopf(G), that is it is

a non-zero homomorphism f, : Hopf(G) — C. Furthermore we have the following

(i) For any x € Hopf(G) we have that the map w — f,(x) is entire and there exists

C > 0and d € R such that | f(2)| < Ce®™** for all z € C with Re z > 0;

(ii) fo = € (the counit) and f, * f, = f.1w where f, = fo, = (f. ® fu) o A for all

z,we C;
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3.2 Compact Quantum Groups

(iii) f.(1) =1, f.(S(x)) = f_.(z) and fy(z*) = fu(zx) for all x € Hopf(G), z € C and
teR.

Proposition 3.2.18 Let o denote the modular automorphism group and let T denote the
scaling group of the reduced C*-algebra C(G) of a compact quantum group G. Then for
any z € C we have Hopf(G) < Dom(o,) and Hopf(G) < Dom(r,) and furthermore for

alla € Aand 1 < 1,5 < n, we have

o.(uf) = . fieluf) fi(uf)ugy  and  T(ul) = D fia(uly) foi (uf)ufy.

k7l:1 k?,l=1

If we assume that F* = diag(A\$, ..., \;, ) as per Theorem 3.2.15 we have

o:(ufy) = (A7) (AF) s,

G and o m(uf) = () (9) g

ije

Proof
For all ¢ € R we define ¢? : Hopf(G) — Hopf(G) by

o) = (f# ®id® fiy) o (A®id) o A (3.4)

and we show that this can be extended to a one-parameter group of *-automorphisms on
the reduced C*-algebra C(G). Using Proposition 3.2.11, foraw € A and 1 < i,j < n,, we

have

op(ufy) = (fu ®1d® fir) D) ufi @ufy @iy = Y fuluf) fuluf)uiy. (3.3
k=1 k=1
For all @ € A we have that (F'*)" is unitary for all ¢ € R and thus for all & € A and

1 <1i,j < n, we have

| fie(ui)] = [((F*) )| < N(F™] = 1.
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We may assume £ is diagonal without loss of generality and so from Equation (3.5) we

have

2 it (uge) fie (ugy)ui | <

k=1

o) (s s

and so o7 is contractive.

It follows easily that o) = id and for s, ¢ € R we have o}, , = o) 0 0. We now show

that for ¢ € R that o} is a »-automorphism on Hopf(G). Let o, 3 € A, 1 < 4,5 < n, and
1 < k,l < ng, then using Equation (3.4), that A is a *-homomorphism and that f;; is a

character we have

o (Ua U}fl) = Z Z fzt & id 2y f’Lt> <uzpuk7" ® 'prqurs ® qu Sl>

p,q=1r,5=1
= Z Z flt uzpukr flt( Ugs sl) Upg rs
p,q=17r:s5=1
= (Z flt Uip flt( q] ) <Z f’bt uk:r f2t< sl) ) :O'?(UZ])O'?(UQQ
p,q=1 r,s=1
and similarly using Proposition 3.2.17 we have
o ((u)*) = X (fu ®1d® fu) (ufh)* @ (ug,)* @ ugy)*)
pg=1
= Z fit(u%)fit(u%)(ugq>* = U?(Uz‘o})*‘
pyq=1

Let z € C, v € Aand 1 < i,j < n,, then we show that u% € Dom(c?). Let

ij
G : S(z) — C be the map

Na

we Z Fiwo (i) fiw (Ui} )ugy-

k=1

From Proposition 3.2.17 we have that w — f,,(z) is entire for any = € Hopf(G) and thus

G is analytic on S(z) and continuous. We have from Equation (3.5) that G(t) = o} (ug;)
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3.2 Compact Quantum Groups

and so ug; € Dom (o) with
o:(ufy) = 3 fieuf) fis (uf gy
kl=1
We calculate for o, B € A, 1 <i,57 < nyand 1 < k,l < ng that

O((ufy) o2 (uy) = X filug,) filug)d((ugh) up,)

p,g=1

S [e% a((Fa>_1)pi F;OZ 3 o
= ap Z kaFjlW - 5a65kiTr(Fa) = ¢(ukl(u”) ).
p=1
It then follows by linearity that for all z,y € Hopf(G) we have ¢(z0%,(y)) = ¢(yz).

Then for all z, y € Hopf(G) we have z0,(y) € Hopf(G) and also

o(20%,(y)) = d(yz) = d(zo_i(y)).

Now using that ¢ is faithful on Hopf(G) it follows that z0,(y) = zo_;(y) for all z,y €
Hopf(G) and then letting # = 1 we have 0°,(y) = 0_;(y) for all y € Hopf(G).

So 0°,(y) = o_;(y) for all y € Hopf(G) and thus for all y € Dom(c_;). It then
follows from Proposition 1.3.11 that we have o = ¢°.

Define 70 : Hopf(G) — Hopf(G) be the map ug; — 3305, fiz(uf},) fiz (u)ugy. As
we have F'* intertwines U® and S?_(U®) we have S2 (U*) = F*U*(F*)~" and so it

follows that

SP(uf) = 82 (U)ij = Y Faugy(F*) ™y = > fululh) for (uf)ug,
k=1 k=1

and so 7_;(ugy) = 7%;(ug;). It follows that 7° is the scaling group restricted to Hopf(G).

We have from 3.2.16 that f.(u;) = ((F'“)?)i; = 0i;(A{')* where t* = exp(zInt) for
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all ¢ = 0. Then it follows that

Z Jiz (i) fie (ugy Juigy = Z 0idn (AF)= (A7) gy = (A7) () *ug

k=1 k=1

and similarly for 7,. O

Corollary 3.2.19 For any z € C and compact quantum group G we have that Hopf(G)

is a core for T,. Similarly Hopf(G) is a o-weak core for T, on L*(G).

Proof
From Proposition 1.3.19 we have that {z(n) | z € Hopf(G), n € N} is a core for Dom(7,)
as Hopf(G) is dense in A. Fix n € N and let { ‘ aehA 1<ij< na} be the family
from Theorem 3.2.9 that is a basis for Hopf (G) Then we need only show that for any
a€Aand 1 <i,j < n, wehave ufi(n) € Hopf(G).

Fixne N,ae Aand 1 < 1,5 < n, and assume the /'“ matrices are diagonal with

F* = diag(A?, ..., A5 ) for convenience. Then using Proposition 3.2.18 we have

ujn) = = f T (ugs) dt = < NG f T ) () dt)
- ( (In(A?) — In(x3))>2 ) o
An? i

Then we have u;(n) € Hopf(G) as required. O

Corollary 3.2.20 For any z € C we have that o, and 7, are automorphisms on Hopf (G).

3.2.4 Compact Matrix Quantum Groups

We end this section with the following proposition. This will be our method for construct-

ing the compact quantum group SU,(2) in Chapter 5.

Proposition 3.2.21 Let A denote a unital C*-algebra, (u;;)};_

LEM,(A)and A : A —

A ®yin A a unital x-homomorphism such that:
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3.2 Compact Quantum Groups

(i) w = (uij)};_, is unitary and  is invertible in M, (A);
(ii) the set {u;; | 1 <1i,j < n} generates A;

(iii) A(uij) = Do q Uik @ ugg forall 1 <i,j < n.

Then there is a compact quantum group G such that the reduced C*-algebra A, = C(G)
and (C(G), A) is a C*-algebraic quantum group.

Definition 3.2.22 We say a C*-algebra quantum group (A, A) generated as in Proposi-

tion 3.2.21 by a corepresentation u is a compact matrix quantum group (A, A, u).

We have immediately that v and @ are corepresentation matrices of (A, A).

3.2.5 The Multiplicative Unitary on Compact Quantum Groups

Throughout this section let G be a compact quantum group and we consider the reduced
C*-algebraic quantum group (C(G), A). Let {u; | a € A, 1 <4,j < n,} be the usual
basis for Hopf(G).

We now show that we can give a formula for the multiplicative unitary in the compact

case.

Notation 3.2.23 Let a € A and consider H, = lin {A((uf)*) | 1 <i,j < na} asa
subspace of L*(G).

- Hz

As Hopf(G) is a dense *-subalgebra of C(G) we have L*(G) = ®>_, Ha

Proposition 3.2.24 For W the multiplicative unitary of (C(G), A) we have
W (E@A((u)®)) = X, ui€ @ A(uf))*)
k=1

forallaoe A1 < i,5 < ngand & € L3(G). In particular it follows that for all w € L}(G)

we have

(w®id)(W

Na
Z ukz uk] *)
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Proof
We have from Theorem 2.2.16 that W € B(L*(G)® L*(G)) is given by W*(A(z) ®
Ay)) = (A A)(A(y)(z ®1)) for all z,y € C(G). Then for n € L*(G), 8 € A and

1 < p,q < ngwe have

W ® A((l)")) = (2(% 8 <ufq>*) (® ML) = iwﬁ»*n@mu@)*)
and so for o€ A, 1 <1, < no and € € L2(G) we calculate
(W(€ @A) D]n @ A(()") = Z (6® M) (0l Y1 ® Al(ul)")
Zﬁ (u€]n) & - i (u,€]n) & ﬁai - Z (UEEIn) B0 2
= S i) o)) = 3 (us€ © M) ® Al(u,)")

1

r

ﬁ
Il
—_

from which the result follows. O

Proposition 3.2.25 The Hilbert space H = P> - en Ho is unitarily equivalent to L*(G)
and for o € A and 1 < i,j < n, we have that W acts on the restriction L*(G) ® H,, of
L*(G) @ H by )
W(EReir) = ) ujE @ epy
k=1

«

Proof We define a map 7 : H, — My, by A((u})*) — Aj e where e €

M, is the unit matrix with 1 in the 7, j-th entry and 0 elsewhere and we treat M, =;
(*(n,) ® £*(ny,) as a Hilbert space with this isometric identification. Clearly T is onto

and we have
Aa
(T (A ()" )| T (A (up,)*))) = 5gq5sza d(upy (ugh) ™) = (A((ug)")|A(up,)"))

for A the diagonal elements of the F'-matrices as per Theorem 3.2.15. So we have shown
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3.2 Compact Quantum Groups

that 7' is unitary.

Let H := mm as a Hilbert space direct sum, where again we treat M, =;
(*(n,) ® (*(n,) as a Hilbert space. Then we can then define amap 7 : L*(G) — H as a
direct sum of the maps (77, )qca as given in Proposition A.5.2. Let £ = (&,),1n = (1,) € H

and we have

(T¢|Tn) = Z (T8alTna) = 2 (€alna)

« «

and as 7" has dense range by construction then 7" is unitary.

Now using the formula for W given by Proposition 3.2.24 we can consider (1 ®
TYW(1®T*) e B(L}G) ®@H) for H given above. As T is unitary we have (7T%)* =
(T*)~! and thus

(T°)*(ef) =

ij

The result follows as forall « € A, 1 < 4,5 < n, and £ € L?(G) we have

(I@TWARTY)) (E®e;) = \/g (T@T)W) (£ @ A(ug5)"))

Aa Na Na
=\ 2,187 (uE @ A(ufy)*) = D uil ®ejy. O
J k=1 k=1

3.2.6 Products of Compact Quantum Groups

In Section 2.5 we defined the product of two locally compact quantum groups. We now

consider products of compact quantum groups.

Proposition 3.2.26 If G and H are compact quantum groups then the product G x H of

Definition-Theorem 2.5.2 is compact.

G

Theorem 3.2.27 Let G and H be compact matrix quantum groups with matrices u”~ €

My (G) and u™ € My, (H) that generate C(G) and C(H) respectively. Let 1¢ : C(G) —
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C(G) ®umin, C(H) and ™' : C(H) — C(G) ®ynin C(H) denote the maps given by x — x®1
andy — 1®y respectively for x € C(G) and y € C(H). Then the product G x H as locally
compact quantum groups given by Definition-Theorem 2.5.2 is a compact matrix quantum
group with reduced C*-algebraic quantum group (C(G x H), A®E § (u®) @ 1 (uf))

where
G/, G H, H 0
iv(u”) @ ey (u™) = " € My 11 (C(G) ®pin C(H))

and with dense Hopf algebra Hopf(G) ® Hopf (H).

Proof

GxH . G

It is easy to show that u®*¥ := /§ (u®) @ (&, (u™) is unitary and invertible and we show it

is a corepresentation. For 1 < i, 7 < N we have

]

AGXH(UGXH) _ AGXH(Ug ® 1) _ 0_23<A(G<ug) ®AG(1))

N N+M
o G G o GxH GxH
—Zuik®1®ukj®1— Z Uiy @ Uy,
k=1 k=1

where we can take the sum to N + M as the off diagonal entries are 0. Similarly for

N +1<1,7 <N+ M we have

AGXH(UGXH) _ AGXH(1®UE]I—N,j—N) _ 023(AG(1) ®AH(UEH—N,J‘—N))

ij
N+M N+M
_ H H o GxH G xH
= Z 1®ui_np-Ny@LOUi N N = Z U, Qug;
k=1

k=N+1
The off diagonal entries are all zero so forall 1 <i,7 < N + M we have shown that
N+M

GxH/, GxHY __ GxH H
AT P () = Z Uy, @ Uy,
k=1

GxH

and so u is a unitary, invertible corepresentation.
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Let Hopf(G x H) be the Hopf +-algebra generated by the corepresentation u®*. Let
z € C(G) and y € C(H), then we have nets (z,) < Hopf(G) and (y3) < Hopf(H) with
limits = and y respectively. Clearly (z, ® 1), (1 ® y3) < Hopf(G x H) and (z, ® ys) <
Hopf(G x H) with limit z ® y € C(G) ® C(H). Using that C(G) ® C(H) is dense in
C(G x H) we have that Hopf(G x H) is dense in C(G x H). Then by Proposition 3.2.21
we have a compact matrix quantum group. It follows that Hopf(G x H) = Hopf(G) ®
Hopf(H) from the matrix generating Hopf(G x H). O

3.3 Discrete Quantum Groups

We will only need a few minor facts about discrete quantum groups for this thesis. We

give only basic properties here and refer the reader to Sottan (2006) for further details.

Definition 3.3.1 A discrete quantum group is a locally compact quantum group that is

the dual of a compact quantum group.

For G a discrete quantum group we denote by ¢,(G) the reduced C*-algebraic quantum

group to mimic ¢, (G) for a discrete group G.

Theorem 3.3.2 Let G be a discrete quantum group, then Gisa compact quantum group
and we let {U® | « € A} denote the set of all mutually inequivalent, finite-dimensional,

irreducible, unitary corepresentations. Then we have

o (G) - C—BooaeAMna

that is c¢o(G) is the set of all families {(Mmy)acs | Mo € M, } such that for any ¢ > 0
there is a finite subset F' < A such that |mg| < ¢ for all B € A\F. Also we have the
multiplier C*-algebra M(co(G)) given by the family {(ma)aca | ma € M, } such that

Supse; | ma] is finite
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3.4 Coamenable Quantum Groups

We now define coamenable quantum groups. Coamenability has the interesting property
that the universal and reduced C*-algebras are equal and therefore the dual of Cy(G) is a
unital Banach algebra. We refer to the paper Bédos & Tuset (2003) for further details and

proofs. In particular we have that SU,(2) is coamenable.

Theorem 3.4.1 Let G be a locally compact quantum group. Then the following are equiv-

alent:
(i) There exists a state € on Cy(G) such that (id ® €) o A = id;
(ii) There exists a state € on Cy(G) such that (¢ ® id) o A = id;
(iii) There exists a bounded approximate identity in L}(G);
(iv) Co(G)* is unital;

(v) Co(G) = CH(G).

Definition 3.4.2 A locally compact quantum group G is coamenable if any of the equiv-

alent conditions of Theorem 3.4.1 hold.
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Chapter 4
The Lé(@) Algebra

We now move on to the research topics of the thesis. In this chapter we will define a Ba-
nach #-subalgebra of L'(G) that we will denote Lé (G) and we will give a comprehensive
study of the properties of this object for a locally compact quantum group G.

We begin in Section 4.1 with an overview of L;(G) and properties that were already
known before this work. We show it is a Banach =-algebra, investigate properties of
smearing elements of L;(G) as a Banach space, investigate further properties of L;(G)
and its dual and we consider the related space of CO(G)*u. In Section 4.2 we will place
an operator space structure on L§ (G) and show that we have a completely contractive Ba-
nach algebra. Then we review smearing properties on Lé (G) as a completely contractive
Banach algebra and for the L; algebra of a product of locally compact quantum groups.
Finally in Section 4.3 we investigate properties of the L;(G) algebra for compact quan-
tum groups and we show that a locally compact quantum group G is compact if and only
if Lé (G) is an ideal in its double dual with respect to either Arens products.

With the exception of Section 4.1 all the work in this chapter is original research by

the author.
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4. THE L}(G) ALGEBRA

4.1 Basic Properties of L'(G) and L} (G)

In this section we define L&(G) in Definition 4.1.1 and we investigate the elementary
properties of this object. We show first it is a Banach =-algebra and then we investigate
the smearing to show that it is dense in L' (G) under the | - | 1,1(g) norm.

Note that whilst all the results in this section are known, the proofs, whilst not nec-
essarily difficult, are not always recorded in the original literature on the subject and we

offer them here for completeness.

4.1.1 L}(G) as a Banach =-algebra

We showed in Section 2.4 that L' (G) is a Banach algebra. We can make L' (G) a Banach
«-algebra with involution given by w — w! where we define (z,w") = (R(x)*,w) for
x € Co(G) or indeed w? = w* o R; however in general \ is not a *-homomorphism with
this involution. In fact there is no involution on L'(G) such that X is a »-homomorphism
but we can define a =-subalgebra such that the restriction of A to this =-subalgebra is a
x-homomorphism. We define this object now and then show that there is a norm such that

this is a Banach =-algebra.

Definition 4.1.1 We define the space

Li(G) = {w e L'(G) ‘ ik € LY(G) such that {x, k) = (S(z)*,w) Vze Dom(S)} :
4.1)

Let w € L{(G), then we have a unique € L'(G) such that (z,x) = (S(z)*,w) for
all z € Dom(S). This follows by considering two such r1, ko € L'(G) that satisfy this
equation and we have then (x,r;) = (S(x)*,w) = (x, kq) for all x € Dom(S). As
Dom(S) is dense in Cy(G) we have k1 = ko.

Note that we haven’t mentioned whether we are considering the antipode in the C*-

algebraic or von Neumann algebraic setting. It seems more natural to consider the von
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Neumann algebraic antipode as L' (G) is the predual of L*(G) and clearly if we assume
this then the equation holds for all the x in the domain of the C*-algebraic antipode.
On the other hand let x € Dom(S) for S the von Neumann algebraic antipode, then from
Definition-Theorem 2.2.7 we have a o-strong* core of Dom(.S) given by Dom(S)nCy(G)
and thus also a o-weak core as this is weaker than the o-strong* topology. Then there is
some (z,) < Dom(S) n Cy(G) such that z,, %, 7 and S(xq) o, S(z) and so for all

w € Li(G) we have

Sy wy — (@, wh| < [(S@)w) — el w)| + [Kas ) = (o)

= [(S(z) = S(za),w*)| + [(za — 2,0 — 0.

So it is sufficient to consider the C*-algebraic antipode.
The following proposition was proved in Proposition 3.1 in Kustermans (2001) but

we reproduce the proof here for convenience of the reader.

Proposition 4.1.2 Let \ : L1(G) — CO(@) be the left regular representation from Defi-
nition 2.4.3. We have the following identity

Li(G) = {weLY(G) | Ik e L'(G), Aw)* = A(r)}
and Nw*) = Aw)* for all w € L{(G).

Proof

Let w € L}(G) and we show that A(w*) = A(w)*. By Definition-Theorem 2.2.7 for all
p € L1(G) we have (id ® p)(W) € Dom(S) and using the formula S((id ® p)(W)) =
(id ® p)(W*) we have

AW, py = (W ®id) (W), p) = (([d @ p) (W), ") = (S((id ® p)(W)), ™)
= ([d®@p)(W*),w*) = Ww®p*) = (wId)(W)*, p) = (Aw)*, p)-
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4. THE L}(G) ALGEBRA

As this holds for all p € L'(G) we have A\(wf) = \(w)*.

Using that A\(w?) = \(w)* for all w € L;(G) it follows immediately that we have
Li(G) c {weL'(G) | 3x e LY(G), A(w)* = A(x)}. Conversely, let w € L'(G) such
that there exists k € L'(G) with A\(w)* = A(k). Then for all p € L*(G) we have

Sd@p)(W))*,w) = (({d @ p)(W*),w*) = W, w® p*) = (A(w), p*)
= QAW)*, p) = (A(K), p) = (Id @ p)(W), k).

We have from Definition-Theorem 2.2.7 that {(id ® p)(W) | p € L}(G)} is a core for S

and so we have shown that for all z € Dom(S) we have (S(x)*,w) = {(z, k), that is

w € L}(G) with w* = . O

In particular we have shown in the previous proposition that the left regular representation

A restricts to a *-homomorphism on L} (G).

Proposition 4.1.3 We have that 1;(G) is a Banach +-algebra under the norm || - ||; given
by

Jwlly = max{|w]rs(e), |}

Jorw e Li(G).

Proof

Let wi,w; € LI(G), then as )\ is a *-homomorphism on L} (G) we have
f p :

Awr * w2)* = (Awi)Mwa))* = Mwz)*Mwr)* = Mwd)A(w]) = AMw = wf)

which implies that w; *w, € L}(G) with (wy *ws)* = wh Wi, Ttis easy to see that w — w?
is an involution on L} (G) and thus L} (G) is a «-algebra.

We now show that | - |; is indeed a norm. It is clear that |jw|; = 0 if and only if w = 0
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4.1 Basic Properties of L' (G) and L;(G)

and [[twly = [t| w]; for all w € Lj(G) and ¢ € C. Finally we have
Jwr + wallLre) < llwifure) + lwilue) < fwills + wsls

and similarly |w? + ngU( < Jwi [ + |w2 | and so it follow that [wy + way < Jwi s +
|wa |4 as required.

We want to show that Lj (G) is complete under the | - [ norm. Let (w,) = L;(G) be a
Cauchy sequence under the | - [|; norm. Then we have from the definition of the | - [|; norm
that both |w, — w11y — 0 and |w? —w? |11 — 0asn,m — o andsoas L'(G)isa
Banach algebra there exists w, k € L'(G) with |w —w,|11(g) — 0 and ||k —w? |11G) — 0.

We now show that w € L;(G). For all 2 € Dom(S) we have

@ w) - (@) < [ w) - S wo

+ Kx,wi} —{x, /£>| — 0

and so for all z € Dom(S) we have (S(z)*,w) = (z, k) as required.

Finally we show that it satisfies the additional properties for it to be a Banach -
algebra. For wi,w; € Lj(G) we have [wi * wa|Lic) < [willuiclwzluie) < Jwils|walls
and similarly |(w; *2)? L (@) < Jen [yl lals giving or swa; < Jlor|5ws - Also clearly

lwlls = [|w?|; for all w € L} (G) and we are done. O

We quote the following theorem now which will be proved in the next section after a

discussion of smearing in L;(G).

Theorem 4.1.4 The Banach algebra L(G) is dense in L'(G) with respect to the norm
on L}(G).

We now show a few elementary known properties regarding L' (G) and Lé (G) and in par-

ticular the involution. The next Proposition follows immediately as 7, and R are normal.

Proposition 4.1.5 Letw € L' (G) and t € R, then w o 7; € L'(G) and w o R € L}(G).
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4. THE L}(G) ALGEBRA

Proposition 4.1.6 Letw € L}(G) and t € R, then wo 1, € L}(G) and we have (w o 7)* =

wﬁ O T¢.

Proof

Let x € Dom(5), then by Proposition 1.3.9 (ii) we have 7;(z) € Dom(S) and furthermore
T(T_i2(x)) = Ti—ij2(x) = T_i2(7e(x)). So using Proposition 2.2.8 we have 7(S(z)) =
S(7(z)) and for all x € Dom(.S) we have

(S(@)*,wom) = (S(n(2))*,w) = (n(2),w) = (z,wF o )

As w* € LY(G) it follows that w? o 7; € L}(G) and (w o 73)* = wf o 3. O

4.1.2 Smearing for Locally Compact Quantum Groups

We now move on to describe some further properties of Lé (G) as a Banach =-algebra using
smearing techniques. Some of the properties of smearing here were known previously as
evidenced in Kustermans (2001) however we give more details here. This section also
contains a proof of Theorem 4.1.4.

By Definition-Theorem 2.2.7 we have that the scaling group 7 is a o-strong* continu-
ous one-parameter group of =-automorphisms on L*(G). So by Definition 1.3.1, for fixed
z € L*(G), for all sequences (¢,) < R with limit ¢ € R we have that 7 (z) converges
to 7;(x) in the o-strong* topology. As the o-weak topology is weaker than the o-strong*
topology we have that 7, () — 7;(x) in the o-weak topology and so the map R — C
given by t — {7;(x),w) is continuous for any fixed z € L*(G) and w € L'(G).

It follows from Section 1.3.3 that we can consider the smear z(n) € L*(G) forn € N

and we have for all w € L!(G) that

(x(n),w) = \/—7? JR e r(x), w)dt.

We have that 7; is normal for all £ € R and so we have a map (73), : L}(G) — L}(G). In
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4.1 Basic Properties of L' (G) and L;(G)

particular for all t € R and = € L*(G) we have

(m)s(w), ) = (w,mi(x)) = {wom, x)

and so (7;)«(w) = w o 7, for all ¢ € R. We make the following definition (which is easily

seen to be a one-parameter group).

Definition 4.1.7 Let 7, be the one-parameter group on L (G) given by (1) = (73)+ for

all t € R. In particular we have (7,);(w) = wo Tt forallw e L' (G) and t € R.

We know that the map L*(G) — L*(G) given by = — z(n) is normal and contractive
by Theorem 1.3.21 and thus there is a contractive map which we denote ®(n) : L}(G) —

LY(G) given by

(x, (®(n))(w)) = (z(n),w) = 7 JR e n(x),w)dt

and so we see that

(®(n))(w) = 7 fu@ e " " wor dt e LI(G)

where the integral is considered in the weak topology. We show now that in fact ®(n) has
image inside Lé (G) after showing how smearing interacts with the antipode and unitary

antipode. The following is immediately from Proposition 1.3.20 and Proposition 1.3.10.

Proposition 4.1.8 Ler x € L*(G) and n € N, then we have R(x(n)) = R(z)(n) and
(x*)(n) = x(n)*. Furthermore let x € Dom(S) < L*(G), then we have (S(x))(n) =
S((n)) and (S(x)*)(n) = S(a(n))"

The proof of the following theorem is original work by the author (though it is likely that
a similar theorem was already known by Kustermans in Kustermans (2001) but no proof

is offered.)
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4. THE L}(G) ALGEBRA

Theorem 4.1.9 For all w € L' (G) we have (®(n))(w) € L{(G). In particular we have a
corestriction ¥ (n) : L(G) — Li(G) of the map ®(n) and we have |®'(n) (w)||L§(G) <

e/ |wlLig)-

_n22 6”2/

Proof We note that ‘e‘”Q(t”/ 2)? 4 and so we have

242502 2
:‘ent znt+n/4‘:e

n 2 : /912

—n?(t+1i/2) < * R >dt
Ry e r,w O O Ty
\/%JR

< n2/4i —n2¢2 *
: ﬁﬁe (R(r())*, )| di

24” _
gen/_Jen
VT Jr

where we’ve used that 7, and R are isometries from Proposition 2.2.8. So we can define a

map k € L*(G)* by

Clalwl dt = e |w]

k(x) = % JR e (g w* o Ro 1) dt.

with |k| < e”/4|w|. As w, R are normal and 7; is normal for all t € R we have w* o

Ror, € LYG) for all t € R and we have a continuous function R — L!(G) given by

1 ,—n?(t+i/2)?
t /=€

J

and so we have that x € L' (G) from Proposition A.6.3.

w* o R o 1. Furthermore we have that

T —n2(t+i/2)?

NG

w*oRom

dt = 6"2/4% f e~ | o Romy|ldt < e"/|w| < oo
™ Jr

From Theorem 1.3.17 and Propositions 1.3.20 and 4.1.8, for all z € Dom(.S) we have

z* € Dom(7;2) and

@@=%LW%W@wwmw=%fwwmewwm

R

= {(7ip(2*)(n), w o R) = {(R(7-ip2(x))*) (n),w) = (S(2)*, w(n))

and so w(n) € L}(G) with (w(n))* = k.
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Finally we have

()@ = max{w(n) i @), lw ()L}
n2 7’L2
< max{|wiie) e wliie)} = € wliie. O
We now show the following as a corollary of this theorem as promised earlier.

Proof of Theorem 4.1.4
Let w € L'(G) and consider the sequence (w(n)) in Lj(G) from the previous theorem.
Then as 7, is norm continuous by Corollary 2.3.7 it follows from Proposition 1.3.15 that

lim,, o w(n) = w in the norm topology. O
We also have the following straightforward proposition.
Proposition 4.1.10 For w € L{(G) it follows that w*(n) = w(n)".

Proof

Using Proposition 4.1.8 for x € Dom(.S) we have

(z,w(n)f) = (S(2)*,w(n)) = (S(a(n)*w) = (x(n),w?) = (z,w(n))

and so it follows from the density of Dom(S) in Cy(G). O

4.1.3 Further Properties of L;(G)

We have the following useful characterisation of L; (G) in terms of the scaling group. See

Definition A.2.10 in the appendix for the definition of the pre-adjoint of ;5.

Proposition 4.1.11 We have that w € L;(G) if and only if w o 75 € L'(G), in which case
w? = (w o 79 © R)*. It then follows that L;(G) = Dom((7i/2))-

Proof
First say w € L}(G) and let # € Dom(7;5). Then by Proposition 1.3.20 (ii) we have
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4. THE L}(G) ALGEBRA

x* € Dom(7_;/2) and 7_;5(2*) = 7;2(x)* and so we have the following

(w0 Ta)(x) = (roa(a®)*,w) = (S(R(x"))* w) = (), ) = (x, (wf o B)")

where we’ve used that R, S and 7_; 5 commute from Proposition 2.2.8 and R? = id from

Definition-Theorem 2.2.7. It follows from this that for = € Dom(7;/,) we have
|(w o m) ()] = [o* 0 o B)| < |R(=")|w?lere) = lollwiere)

and as Dom(7;2) is dense in L*(G) we then have that |w o 75| < [w¥||r1(g). Also we
aswo Ty = (cuﬁ o R)* and R is normal it follows that w o 7 /2 1s normal and so we have
shown that w o 7;» € L'(G) as required.

Conversely, say w o 7;/2 € L'(G). Then for all z € Dom(S) we have

(S(@)*,w) = (Tipp(R(2*)),w) = {z*,w o Typ 0 R) =z, (wo Tipp 0 R)*)

where we’ve used that z* € Dom(7;/2) again and that R is a -map. As w o 7, € L*(G)
it follows that (w o 73/, 0 R)* € L'(G) and so w € L{(G) with w* = (w o 7,5 0 R)*.

It follows immediately from this and Definition A.2.10 that L}(G) = Dom((7;2)«).
O

We create the following notation, note however that this does not give us an involution as

generally (W)’ =wor; # wforwe Li(G).
Notation 4.1.12 Given w € L}(G) we let w’ := w o 7y, € L'(G).

It follows from Proposition 4.1.11 that if w € Lé (G) then the map w o 7;/5 : Dom(7;/5) —
C given by « — {(7;2(z),w) extends uniquely to a map in L'(G). We might ask the
following question: given w € L'(G) such that the map w o 7,2 : Dom(7;2) — C
is bounded, then by the Hahn-Banach theorem there is a map x € Cy(G)* such that

(x,k) = {(Ty2(x),w) for all x € Dom(7;») and such that x| = |w o 7,5/, then does
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it follows that x € L'(G)? If so we can give a much more palatable definition of the
Lé (G) algebra. The general answer to this question is still open to the best of the author’s
knowledge, however we will investigate this further in the case of SU,(2) in Section 5.3
below.

We refer the reader to Daws & Salmi (2013) for a proof of the following useful theo-

rem.

Theorem 4.1.13 For G a coamenable locally compact quantum group there is a contrac-

tive approximate identity (e) of L;(G).

Finally we mention that as L; (G) is a Banach =-algebra we have a multiplication map
m : L}(G)®L}(G) — L}(G) linearising the multiplication map where @ denotes the
Banach space projective tensor product. We show in the next section that we can extend

this to a completely contractive Banach algebra as per Definition 1.1.49.

4.1.4 The Dual of L}(G)

Consider the map 6 : L}(G) — L'(G) @, L1(G) given by
w — (w,wh). (4.2)

It follows easily that this is a linear map and for w € L{(G) we have that |§(w)] =
max {|w||r1 ), [w*|rie)} = [w]; and so 6 is an isometric embedding. Because this is an
isometry the adjoint is a quotient map and we show below that we can form an explicit
representation of Lj(G)*. We begin with a result that comes from Proposition A.1 from

Brannan et al. (2013). Note however we use smearing techniques for the proof here.

Lemma 4.1.14 Let G be a locally compact quantum group and x,y € L*(G) such that
(x*,w*) = (y,w*) for all w € L} (G). Then y € Dom(S) and S(y) = *.
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Proof

o0

®_, < Dom(S) where y(n) is the smear of y with respect

We consider the sequence (y(n))
to 7 for n € N given by Definition 1.3.14. It follows from Theorem 1.3.17 that for all
n € N we have y(n) € Dom(S) and from Proposition 1.3.16 we have y(n) iR y. We
show that S(y(n)) 2t

Let w € L{(G). From Proposition 4.1.6 we have that w o 7; € L}(G) with (w o ;)" =

w* o 7, and using Proposition 4.1.8 we have

n)),w*> = (y(n), wh = s et 7(y), W - e g WO T
(Sl = ). = T | )it = I [ oy
= 7= JR e r(x)*, W dt = N fR e (x®), Wy dt = {x(n)*,w*).

As {w* | we L{(G)} is dense in L'(G) it follows that S(y(n)) = x(n)* for all n € N.
But as 2(n)* > z* then S(y(n)) “> x*. Then using Proposition A.2.3 we have

y € Dom(S) and S(y) = 2*. O
Theorem 4.1.15 We have an isometric isomorphism

Li(G)* = (L*(G) & L*(G))/K;

where Ky = {(3:, —S(x)*) |z e Dom(S)}. In particular we can represent any element

of Li(G)* by (x,7) + K for some (non-unique) x,y € L*(G).

Proof

As per Equation (1.2) we can form the adjoint 6* : L'(G)* @ L}(G)* — L}(G)* or

indeed 6* : L”(G) @, L*(G) — Li(G)* of the map 6 : Lj(G) — L'(G) @y, L1(G) given

in Equation 4.2 as follows. Let 2,y € L*(G) and w € L}(G) and we have

(0*(2,9),w) = {(2,7),0(w)) = (z,w) + (7, wF) = (&, w) + {y,wb).

As 6 is an isometry then 6* is a quotient map and we have an induced isometric isomor-
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phism 6* : (L°(G)@®; L*(G))/Ker 6* — L;(G)*. We calculate Ker 6*. Letz, y € L*(G)
such that 6*((,%)) = 0, then for all w € L} (G) we have

0 = (0*((2,7)),w) = {(2,7), (w,w?)) = (x,w) + {y,w?)

and so 0*((x,%)) = 0 if and only if for all w € L{(G) we have (y,w*) = (—z* w*). It
follows from the above lemma that this is true if and only if y € Dom(S) with S(y) =
—z*. Then we have x = —S(y)* € Dom(S) and S(z)* = —S(S(y)*)* = —y. O

It can easily be shown that the adjoint .* : L*(G) — Lj(G)* of the inclusion ¢ : Lj(G) —
LY(G) is given by t*(x) = (x,0) + K for x € L*(G). See the proof of Lemma 6.2.7 for

example.

415 Cy(G),

We now offer brief details of a related space CO(G)*ﬁ in preparation for Section 5.5. We
define Co(G)*, as a subspace of Co(G)* in a similar way to how we defined L;(G) as a
subspace of L}(G).

Definition 4.1.16 We define
Co(G)*, = {w e Co(G)* ‘ Ik € Co(G)* such that (x, k) = (S(x)*,w) Ve Dom(S)}
and for i € CO(G)*ti we let jif denote its (necessarily unique) involution.

We know from Proposition 2.4.4 that we have a contractive injective linear map \ :

~

Co(G)* — M(Cy(G)) given by p — (u ® id)(W) for all p € Co(G)*. A similar
proof to that of Proposition 4.1.2 shows that when restricted to CO(G)*ﬁ we have a *-

homomorphism.
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Proposition 4.1.17 We have the following identity
Co(G)*y = {ne Co(G)* [ Fv e Co(G)*, A(u)*™ = A(¥)}

and X is a =-homomorphism on Co(G)*,.

We define the smear of 1 € Cy(G)* by

an) = = [

Clearly we have |pu(n)| < [u by similar proofs to that for the case of L'(G) and so

242

<7-t(x)v :u> dt = <$(n)7 :u>'

f1(n) € Co(G)*. It follows from a similar proof to that of Theorem 4.1.9 that 11 € Co(G)*,

and so we have the following proposition and corollary.
Proposition 4.1.18 Let ji € Co(G)*, then pu(n) € Co(G)*,.

Corollary 4.1.19 We have that Co(G)*, is weak™-dense in Co(G)*.

4.2 Operator Space Structures on th (G)

In this section we show that we can place an operator space structure on Lé (G) to make
this into a completely contractive Banach algebra and we discuss further properties of this
object with this operator space structure.

Let G denote a locally compact quantum group. Then we have a o-weakly continuous
embedding L*(G) = B(L?(G)) and in particular, by Proposition 1.1.7 we have that
L*(G) has a natural operator space structure. We also have a natural operator space struc-
ture on L' (G) given by Example 1.1.14. We will assume these operator space structures
on L*(G) and L' (G) throughout this section.

We have that L*(G) ® L*(G) has an operator space structure by Example 1.1.44 and

we have a unital normal injective *-homomorphism A : L?(G) — L*(G) ®@ L*(G) and
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so this is a completely isometric map. It follows from Definition-Theorem 1.1.16 that
we can take the pre-adjoint A, : L'(G)®LY(G) — L'(G) to make L'(G) an algebra
where associativity of A, follows from coassociativity of A. In fact we have that A, is a

complete contraction by Proposition 1.1.16 and furthermore we have that
@, 8x(W@ k) = (Az),w @ k) = (z,w * k)

for all z € L*(G) and so A,(w ® k) = w = k. Then from Definition 1.1.49 we have
that (L'(G), A,) is a completely contractive Banach algebra. We show next that there is
an operator space structure on Lé(G) such that this is a completely contractive Banach

algebra.

4.2.1 L;(G) as a Completely Contractive Banach Algebra

We remind the reader that we have the map 6 : Lj(G) — L'(G) @y, L'(G) from Equation
(4.2) given by w — (w, w?) that is an isometric embedding. We show now that using this

map we can make L; (G) into a completely contractive Banach algebra.

Theorem 4.2.1 Let L*(G) and L'(G) have the operator space structures given in the

introduction to this section, let L1(G) have the operator space structure given from Ex-

ample 1.1.22 and let L (G) @y LY(G) have the operator space structure given in Def-
inition 1.1.25 and Proposition 1.1.26. Then there is a unique operator space structure
on Li(@) making the map 0 in Equation (4.2) a complete isometry and there is a com-
pletely contractive map m; : L;(G) @Lé(@) — L(G) such that my(w ® k) = w = & for
all w, k € Lj(G) making (L{(G),m;) a completely contractive Banach algebra with this

operator space Structure.

Proof

For all n € N we define a norm on M,,(L{(G)) by

H(Wij)zg':lHMn(L;(G)) = "en((wij)Zj:l)”Mn(Ll(G)@OOLl(G))‘
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We know that L!(G) ®., L1(G) has an operator space structure as stated in the theorem
and so there is a unique operator space structure on L; (G) making 6 a complete isometry.

We can define a complete contraction T} : Lj (G) ® L} (G) — L'(G) given by
Ty = A, o (m@m)o(f®0) : Li(G)®LI(G) — L'(G)

where 0 is the embedding above, 7 is the projection onto the first coordinate of L (G)@®.,
m and A, is the multiplication map on the completely contractive Banach algebra
L!(G). We have that § and 7, are complete contractions and so by Proposition 1.1.36 we
have that  ® 6 and 7; ® 71 are complete contractions. So as § ® 0, m; ® w1 and A, are all
complete contractions it follows that 7} is a complete contraction. Furthermore we have
for w, k € L(G) that Ty (w ® v) = w * k € Li(G).

Similarly we can define a complete contraction 75 : Lj(G) ® L} (G) — LY(G) given
by Ty := A, 0 3, 0 (1 @ m2) o (0 ® 6) where ¥, is the completely isometric flip map
on L'(G) ® L'(G) and where we’ve used Proposition 1.1.36 (v). We have Th(w ® k) =
ki wh and as Ti(w ® k) € L;(G) we have T1(w ® k)t = Ty(w® k) which extends
by linearity to an equality on L}(G) ® L}(G). Given any € L}(G)®L;(G) we can
approximate this in L} (G) © L} (G) and so it follows that for all z € Dom(S) we have

(S(x)*, T1(Q)) = (x, T5()) and thus T} (Q) € L{(G) with T} (Q)* = T5(Q).

So we have shown that 77 has image in L;(G) and finally we show that the map
my - Li(G) ® L}(G) — Lj(G) defined as the corestriction of T} is a complete contraction.
We clearly have that 77 ® 15 = 6 o my where T @ T is given in Proposition 1.1.28 (i).
Also from Proposition 1.1.28 (i) we have that |77 ® Ts| = max{| 71w, |72} < 1 and
so Ty @ T, is a complete contraction. As ¢ is a complete isometry we must have that my

is also a complete contraction. O

We have the following corollary using the same proof as that of Theorem 4.1.15 but using

that ¢ is now a complete isometry and thus its adjoint is a complete quotient map.
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Corollary 4.2.2 We have a completely isometric isomorphism
Lé(G)* = L (G) D1 LOO( )/Kli

The following proposition will be used a few times in this thesis. We give it here as we
feel it is an interesting characteristic of the operator space structure we have given on

L!(G).

Proposition 4.2.3 The linear map Q : LY(G) — LY(G) given by w — w*o R is a

completely isometric isomorphism.

Proof
We have the adjoint Q* : L*(G) — L*(G) of @ and for z € L*(G) and w € L' (G) we
have

(Q(T),w) = (T,QWw)) = (z,w* o R) = (R(z7),w).

Thus by Proposition 2.3.6 we have Q*(%) = R(z*) = Jx.J for all z € L®(G) where J is
the modular conjugation of the left invariant weight ¢ of (L*(G), A).

We show that Q* is a complete contraction now. Let (&), € L*(G)™, then using
that ML,,(L*(G)) < B(L%(G)™) and .J is an anti-unitary operator and thus an isometry
we have
2

1@ (@))€

2

9 n
L2(G)(™ H (Z Jay ij)

i=111.2(G)(™

2 2

= Z ij,-jj§j = sz’jjﬁj ‘(Z %J‘]g])
i=1|[|j=1 L2G) =1lls=1 L2(G) i=111.2(G)(")
2 " 9 ~ n 2
- H(m”)” ! <J€]> =1lL2@)m S H(xij)z‘,FlHMn(L@(G)) H <J£i>i=1 L2(G)™)

= H(ZL’W ij= 1HMn L®(G)) H(fz)?:l“i%@)( )
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4. THE L}(G) ALGEBRA

Then taking the supremum over (£;)7, € L(G)™ with norm less than 1 we have

H(Q*)n ((l'_ij);fj=1)HMn(L00(G)) S H(xij)ZjﬂHMn(Loo(G)) - H(x_iJ)ZFlHMn(Loo(G))

and thus (Q* is a complete contraction.
As Q* is a complete contraction then () and () are complete contractions. Also for

k € L}(G) and € L*(G) we have

(Q(F), 2y = (w*, R(x)) = {1, R(z*))

and then letting ® = Q(w) for w € L'(G) we have

(QQ)(w), x) = (Qw), R(z*)) = (Q(w), R(z*)) = {w*,2*) = (w, ).

As this holds for all w € L}(G) and = € L®(G) and so we have Q@ = id. In particular,
() is completely contractive with a completely contractive inverse and so () is a complete

isometric isomorphism. O

The next corollary follows from Propositions 4.2.3, 4.1.11 and 1.1.28 (ii).

Corollary 4.2.4 Let 0 be the map from Equation (4.2), then we have a complete isometry
(id @y Q) 00 : LI(G) — LY(G) @ LY(G) such that

w s (w,woTip) = (w,uw)
and so we can calculate the norm on L& (G) with the formula

HWHL;(G) = maX{HwHLl(G)a ”wbHLl(G)}'
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4.2 Operator Space Structures on L; (G)

4.2.2 Smearing L% (G) as a Completely Contractive Banach Algebra

We know from Theorem 1.3.21 that smearing in L*(G) is completely contractive and
normal. In this section we will prove some propositions regarding smearing in L' (G) and

Lé (G) as completely contractive Banach algebras that will be useful later.

Theorem 4.2.5 Let n € N and ®(n) : L1(G) — LY (G) be the map w — w(n) from
Proposition 4.1.9. Then there is a completely bounded corestriction ®'(n) : L}(G) —
Li(G).

Proof

By Proposition 4.1.9 we have that ®(n)(w) € L}(G) and so the corestriction &' : L'(G) —
L;(G) exists and we show it is completely bounded. We let p := 6 o @'(n) : L'(G) —
LY(G) ®, L}(G) where 6 is the usual embedding of Lj(G) into L'(G) @ L*(G). Then

as # is a complete isometry we need only show that p is completely bounded.

Let m € N and (w;;)]"_; € M,,(L'(G)), then we have

pm ((wi)i=1) = <(wij (n), wz‘j(”)ﬂ)yn

1,j=1

and so

H,Om ((wij)?,}:l) HMm(Ll(G)@mLI(G))

M (L1(G)) }

(wi; (n)ﬁ)?7j=1HMm(Ll(G))} '

= max {H(Wm (”)>Z}=1HMM(L1(G)) 3 (n)ﬁmﬂ’

= max {H(Wu (n))zz‘ﬂHMm(Ll(G)) ’

We consider each of these norms in M,,,(L*(G)) in turn now. Firstly, as the map L*(G) —
L*(G) given by x — x(n) is completely contractive then so is its pre-adjoint as a map

LY(G) — LY(G) and we have

H(wij(n))zz':luMm(Ll(G)) s H(Wij)%:lumm(um))‘
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4. THE L}(G) ALGEBRA

Also from Proposition 4.2.3 we have

m
o f T OROTtdt)
H ] z] HMm L1 \/» o1
—n2(t+i/2)2 m
< ﬁfR He D (Wt o Rom)]
\6n2/4%L6—n2t2 (w

L B Y H dt
W J]Re (W)= Mo (L1(G))
_ en?/A H ™

M, (LH(G))

dt
My (L1(G))

|| dt

5 HMm<L1<G>>

wii )i .
Y WlHMm(Ll(G))

Then it follows from the preceding equations that | p,,| < ¢"’/* for all m € N and so pis

completely bounded as required. O

Proposition 4.2.6 Let ®'(n) : L'(G) — L;(G) be the map w — w(n) given by Theorem
4.2.5, then for all v,y € L*(G) (and thus (x,7) + Ky € L{(G)*) we have

'(n)*((z,7) + Ky) = z(n) + S(y(n))*.

Proof
We have the adjoint ®'(n)* : Lj(G)* — L'(G) and using L}(G)* =, (L*(G) &
LY(G))/K; for all w € L' (G) we have

@' (n)*((z,7) + Ky), w) = {(,7) + Ky, D' (n)(w)) = (z, ¥'(n)(w)) + {y, P (n) (w)?).
For y € Dom(S) we have by Corollary 4.1.8 that

(y, @'(n)(w)F) = (S(y)*, ' (n)(w)) = (S(y(n))*,w)

and as Dom(S) is o-weakly dense in L*(G) and y(n) € Dom(S) for all y € L*(G)
(Theorem 1.3.17) we have (y, ®(n)?) = (S(y(n))*,w) for all y € L®(G). Then it
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4.2 Operator Space Structures on L; (G)

follows that
(@' (n)*((2,9) + Ky),w) = (x(n) + S(y(n)*,w)

for all w € L'(G) and the theorem follows. O

We now define the following notation for use later on.

Notation 4.2.7 For n € N we let Y(n) : Lj(G) — L}(G) be the map ®'(n) o v where
v: Li(G) — LYG) is the inclusion map.

Proposition 4.2.8 We have that Y(n) is a completely contractive map and for v,y €

L*(G) (so (x,y) + K; € Li(G)*) we have Y (n)*((x,y) + K3) = (z(n),y(n)) + K.

Proof Fix m € N and let (w;;)7_, € M, (L}(G)). As the map = — x(n) is completely

contractive it follows that its pre-adjoint map is also completely contractive and so

l(wij ()i szt v (@) < (i) =1 I (@)

and similarly ||(wfj(n))glj:1\|Mm(L1(G)) < H(wfj)%:lHMm(Ll(G)). Then as the map 6 :

L;(G) — LY(G) @, L!(G) given by Equation (4.2) is a complete isometry we have

1T () (wig)itg= ) It ei@)) = [Om 0 T (0)m) (wi)i5=1) i, 11 (@)@ T @)
= max{|(wij (n))_1 I 2 @)y 1(wig (0)D2 21l @) )
< max{ || (wi)) 751 I @) (W) 71 I @)}

= Hem((wij)?fjﬂ)HMm(Ll(G)@OCLI(G)) = H(Wij)?fjﬂHMm(L;(G))

where we’ve used Proposition 4.1.10. So we have that T'(n) is a complete contraction.

We have that T (n)* = +* o ®'(n)* and so using Proposition 4.2.6 we have

T(n)* ((z,9) + Ky) = (2(n) + S(y(n))*,0) + K.
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4. THE L}(G) ALGEBRA

As y(n) € Dom(S) we have S(y(n))* € Dom(S) and so (S(y(n))*, —S(S(y(n))*)*) =
(S(y(n))*, —y(n)) € K and thus we also have

T(n)* ((2,9) + K3) = (2(n),y(n)) + K. O

We now prove some useful results about the convergence of (T (n)) and (T(n) ® Y(n))

for use later.

Proposition 4.2.9 We have Y (n) — id weakly as n — oo, that is for all w € Lj(G) we
have | (n)(w) — wl1ye) — 0.

Proof
Letw € L}(G) and = € L*(G), then by Proposition 1.3.15 we have

[T()(w) = wluie) = [wn) = wlwie —0

and so lim Y'(n)(w) = w in the L*(G) norm.

Let 2 € Dom(S) and w € L;(G), then from Proposition 4.1.8 we have

(2, T(n)(W)F) = (S(2)*, T(n)(w)) = (S(x(n)*,w) = (x(n), (o)) = (&, T(n)(WF))

and as Dom(S) is weak*-dense in L*(G) we have Y (n)(w)* = T(n)(w*). Then similarly
to above we have |(Y(n)(w) —w)*|Lic) = [T (n)(w*) —w*|r1(G) — 0and so | T(n)(w)—

oJ||L;(G) — 0 as required. O

Proposition 4.2.10 For all Q € L}(G) ® L (G) we have

lim (T (n) ® T(n))(Q) = Q.

n—00
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4.2 Operator Space Structures on L; (G)

Proof

Let w, w' € L}(G), then using Proposition 4.2.8 we have

(n)

< [T(n)(w) @ T(n)(w) —w®@T(n)(w)|Lie) + |lw®T(n)(W) —w®w|ie
(w) — WHL;(G)HT(”)(W/)HL;(G) + \’WHL;(G)\\T(n)(W/) - W/HL;(G)
(w)

and so by linearity this holds on all L} (G) © L;(G).
Now let Q € L}(G) ®L}(G), then for all ¢ > 0 there is some ' € L{(G) © L}(G)
such that |2 — €| < € and there is some n € N such that [(T(n) ® T(n))(Q2) — Q| < e.

Then as T (n) is (completely) contractive by Proposition 4.2.8 we have

[(C(n) @ T(n))(2) = ]y
< (T (n) @ T(n))(©2) = (T(n) @ T(n))(X) |35
+[(T(n) @ T(n))(X) = Vi) + 19 = Ly
< [T() @ T2 = Yy + [(T(7) @ T(0))(X) = Vrye) + 1€ = Qe

<<(|T(n) @ T(n)| +2) < 3¢

as required. O

4.2.3 Smearing for Products of Quantum Groups

Fix two locally compact quantum groups G and H. In Section 2.5 we gave a definition
of a locally compact quantum group G x H. We defined the von Neumann algebra by
L*(G x H) = L*(G)®L*(H) and so it follows that L' (G x H) = (L*(G x H)), =
(L®(G)®L*(H)), = LY(G)®L'(H). In this section we ask if we can find a similar
relation between L (G x H) and L}(G) ® Lj (H)?
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4. THE L}(G) ALGEBRA

We begin this section by showing that we have a weak*-core for S¢* and that we
have an embedding of L} (G) © Lj (H) inside L (G x H). We then prove Theorem 4.2.14
showing that in the case that G = H we have a complete contraction from Lj (G) ® Li(G)
to Lj(G x G). It follows immediately by density of Lj-algebras in L'-algebras that if
Li(G) @Lé (H) is completely isometrically isomorphic to Li(G x H) that the map T
in Theorem 4.2.14 must be a completely isometric isomorphism. We will return to this
theorem in Section 5.4 where we prove that this is not a completely isometric isomorphism

for the case G = H = SU,(2).

Proposition 4.2.11 We have Dom(S®) ® Dom(S%) is a weak*-core for S¢*™ in the von

Neumann algebraic setting (where Dom(S®) < L*(G) and similarly for H).

Proof
We have that {(id ® w)(W®H) | we LY(G x H)} is a weak*-core for S®*¥. Fix w €
LY(G x H) and € > 0, then there exists some v’ € L'Y(G) ® L'(H) such that |w —

w'||11(exm) < €. Then using that W©*H is unitary we have
[(d®@w)(WHH) — ([d@w) (W) = |([d@ (w - w))WTH)| < |w -] <e
and similarly
|S((1d ®@w) (W) = S((([d®@w) (W) = [(id® (w — o)) (W) <€

and so as S®*™ is weak*-closed then {(id @ w)(W®H) | we LY(G) © L' (H)} isalso a

weak*-core for SC*H,
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4.2 Operator Space Structures on L; (G)

We have

{(1d*" @w)(WEH) | we LYG) ©L'(H)}
= lin {(id®" @ w1 @wa) (W) | w1 € LY(G), wp € L'(H) }
= lin {(id° ® w))(W®) @ (id" @ wa) (W) | wy € LY(G),ws € L' (H)}
< Dom(5%) ® Dom(S™) < Dom(S%*™)

and so as Dom(S®) ® Dom(S™) is a superset of a weak*-core for Dom(S®**) and a

subset of Dom(S®*H) it must be a weak*-core for Dom(S¢*H). O
Lemma 4.2.12 We have L;(G) © Lj(H) = Li(G x H), in particular for all w € Ly(G)
and r € Lj(H) we have w ® k € L{(G x H) with (w ® k)" = w* @ &,

Proof
Let w € L}(G) and x € L} (H). We have w® x € L'(G x H) and for y € Dom(S®) and

z € Dom(S™) we have

((ST®SH)(y® )", w® k) = Y@z w @)

and so by linearity we have for all z € Dom(S®) ® Dom(S™) we have

(SCH(1),w® k) = {(z,w* ® k).

It follows from Proposition 4.2.11 that we have a weak*-core Dom(S®) ® Dom(S™) of
SE*H and so for all z € Dom(S®*H) we have anet (z,) € Dom(S®)®Dom(S™) such that
Kz, Q) — (@0, W — 0and [(SH(z), Q) — (S“H(z,), Q)| — 0forall Q € L' (G xH).

Then from above we have

‘<SGXH(£C), w® Ky —{x, Wt ® Hu>‘

< (<5GxH(x>,w ® ) — (S (7)) w0 ® @‘ (o w0 ® B — (@0t @ KE)| — 0.

145



4. THE L}(G) ALGEBRA

It follows then that w ® « € L}(G) with (w ® k) =w @kt O
Let 2 € L*(G x H), then as this is a von Neumann algebra then we have the smear x(n)
for n € N given by Section 1.3.3. We define the smear of an element in L*(G) ® L*(H)

as the smear in L*(G x H). We consider such smears now.

We need one more lemma to prove the last theorem of this section.

Lemma 4.2.13 Fix n € N. Then for x € L*(G) we have
A¥(z(n)) = (A%(x))(n) (4.3)
where in the right hand side we take the smear in L*(G x G) and
(00 A%)(x(n)) = (0 0 A%)(2))(n) (4.4)

where 0 : L*(G)®L*(G) — L*(G)®L*(G) is the flip map. Furthermore we have
that A®(x(n)) € Dom(S¢*®) and

SEE (A%(z(n))) = (o0 A% 0 5%)(z(n)). 4.5)

Proof

Fix n € N. It follows from Proposition 2.2.8 (iii) and Proposition 2.5.5 that A® o Tt@’ =
(T8 ®@78) 0 A® = 75*€ o A® forall t € R and so for all z € L*(G) and x € L'(G x G)
we have

(A ((n)), K) = Cu(n), AS (k) = —= f e (), A (k) dt
VT Jr
n —n2¢2 «
= I [ e @ @), e = (A% @) ).
VT Jr

and so Equation (4.3) follows. The proof of Equation (4.4) is almost identical.
Let z € L*(G), then by Equation (4.3) and Propositions 4.1.8, 2.2.8 and 2.5.5 we
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4.2 Operator Space Structures on L; (G)

have

(R® 0 A%)(x(n)) = (R*F 0 A%)(2))(n) = (0 © A% 0 R¥)(x))(n) € Dom(757y).

Then for all x € L*(G) we have

(SEE 0 A%)(x(n)), k) = (7% (00 A% 0 BE)(@)) () . 5 )
_ T%J R (R (5 o A® o RE)(2)), k) df
- \/i%f e_ng(t+i/2)2<(7-f;ORG)(x)v(A(SOU*)(ﬁ»dt
= (7%, 0 R%)(2(n)), (AS 0 0)()) = (7 0 A® 0 §%)(w(n)), )

as required. O

Theorem 4.2.14 There is a unique completely contractive map T : Li(G) @Lé (G) —

Li (G x G) such that we have a commutative diagram

and there exists a map m : Ly(G x G) — Lj(G) such that we have m, o T = my for m

the map in Theorem 4.2.1.

Proof

We have a complete isometry 6¢ : L}(G) — L'(G) @y LL(G) given by w — (w,w?)
and complete contractions 7, : L'(G) @, L'(G) — LY(G) and 7, : L'(G) @, L'(G) —
m as coordinate projections. Then similarly to the proof of Theorem 4.2.1, using the
identification L'(G x G) = L'(G)®L'(G), we can define complete contractions 77 :
L} (G)®L}(G) — LY(G x G) given by (m ®m) 0 (0° ®6°) and T : L}(G) ® L} (G) —
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Ile

LY(G x G) given by (my ® 73) o (I° ® 6%) where we’ve used that L1(G) ® L1(G)
LY(G)®LY(G) =, LG x G).

ci

Using Lemma 4.2.12, for w;,w; € Lj(G) we have Th(w; ® wy) = w! ® Wi and so
Ti (w1 @uwy) = wi ®uws € Lé(G x G) with

Ti(wr @ws)t = W @ wh = Th(w) @ws).

Then by linearity and continuity we have T1(2) € L} (G x G) for all Q € L}(G) ® L}(G)
with T (Q)* = T5(€2). Then similar to the proof of Theorem 4.2.1, we have a corestriction
T :L}(G)®L{(G) — L{(G x G) and we can show that the map °*® o T' = Ty @ Ty is
completely contractive for #*© the usual isometric embedding of L; (G xG) into L'(G x
G) @y m It follows that 7" must be completely contractive. By construction this
T makes the diagram in the theorem commute. Also 7" is unique as if there is a map 7"
making this diagram commute then we have :°*¢ o T = ;®*C¢ o 7" and we use that (©*C
is injective.

Now we define a completely contractive map m; : Lj(G x G) — L'(G) by A, o
7 0 %€ where 7, is now the projection of L'(G x G) @, L}(G x G) onto the first

component. Similarly we define ms : L (G x G) — L'(G) by A, 07, o mp 0 €. Fix
n e Nand k € L{(G x G), then for all z € Dom(S%) we have

(S(@)*sma(k(n))) = (S%(x(n))*,mi(k)) = (A% 0 5%)(x(n))*, 15(x))
= ((8%C 000 A%)(x(n))*, ) = {(0 0 A%)(x(n)), k)

= (a(n), (A% 0 0,) ((m2 0 05F) (W) ) ) = (o, ma(w(m)) )

where we’ve used Lemma 4.2.13 and Proposition 4.1.8. So we have shown that for all

r € L}(G x G) and n € N we have m; (k(n)) € L{(G) and my (k(n))* = ma(k(n)).
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Again for k € L} (G x G) and for all 2 € Dom(S®*€) we have

(SE<C(2)*, ma(r)) = Hm{SC*C(2)*, ma(r(n))) = limdz, mi(x(n))?)

= lim{z, ma(k(n))) = (,ma(x))

and so my(x) € L{(G) with my(k)* = my(r). We can show the restriction to a map
m : L}(G x G) — L{(G) is a completely contractive map in a similar way to that of the

proof of 4.2.1. By construction we have my o T" = my as required. O

So we have proved that we have a unique complete contraction 7' from Lé (G)® Lé (G) to
L} (G x G) such that L% o T' = +® ® /“. Furthermore it follows easily that if there were
a completely isometric isomorphism from L}(G) ® Lj(G) to L} (G x G) then it would
be equal to this map 7. At this point we might hope that next we can prove that this is
a completely isometric isomorphism, however as alluded to earlier we will show that we

have a counterexample to this in Section 5.4.

4.3 Compact Quantum Groups

We now investigate Lé (G) in the case that G is a compact quantum group. We show in the
first section that for G compact we have a dense subset of L'(G) and L;(G) that can be
built using Hopf(G). In the next section we give a new criterion for compactness in terms

of the L} (G) algebra similar to a criterion of Runde for L' (G) given in Runde (2008).

4.3.1 Ll}-algebra for a Compact Quantum Group

We assume throughout this section that G is a compact quantum group as per Definition
3.2.1 and that we have a maximal set of irreducible corepresentations {U® | o € A} as
per Theorem 3.2.9 indexed by a set A.

We define the following subset of L' (G) and we show that this subset is dense in both
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LY(G) and Lé (G) with respect to the appropriate norms. In particular we see we have a
nice way of calculating the Lé (G) algebra of a compact quantum group G using its Hopf

algebra structure Hopf(G).

Notation 4.3.1 Lera € A, 1 <'i,j < n, and let \* and X be as in Theorem 3.2.15. We

denote W = ¢ € LNG) and we let

- )\a( z])
D =lin{w} e L'Y(G) | @€ A, 1 <i,j <na}.

Note that it follows immediately that D = {x - ¢ € L(G) | x € Hopf(G)}. We show that
D < Li(G) first.

Proposition 4.3.2 For a € A and 1 < i, j < nq we have g € Li(G) with (wi)* = w5

Proof

Let f € Aand 1 < k,l < ngthen, as AY > O forall 1 < j < n, and A” > 0 we have

Aa
(s (ukl)7 1]> <ulk’ :_aﬁb(ulﬁk(u@a])*)
AO(
= Oaplidjr = e —p(ug(us)*) = (upy, why

where we’ve used Proposition 3.2.11 and Theorem 3.2.15. We have from Theorem 3.2.9
that {ufl ‘ BeA, 1<kIl< nﬁ} is a basis for Hopf(G) and so (S(x)*, w®) wit) = {w,ws;
for all 2 € Hopf(G). By Proposition 3.2.19 we have that Hopf(G) is a core for Dom(5),

so for any = € Dom(.S) we have a net (x,) = Hopf(G) such that x,, %, 2 and S(xq) o,

S(z). So we have

(S(x)*,w) = lm (S (2a)*, wiy) = limdwa, wh;) = (z, W

as required. O
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Now we show that the set D in Notation 4.3.1 gives us a dense subset of L!(G) first and

then L; (G) with respect to each of their norms.
Theorem 4.3.3 The set D in Notation 4.3.1 is dense in L' (G).

Proof
Clearly D = L'(G). Consider the set D' = lin {x - ¢ - y* | z,y € Hopf(G)}, then clearly
D < D'. We show first that D’ = D and then we show that D’ is dense in L'(G).

Let n € Nand z,y € Hopf(G), then y* € Hopf(G) < Dom(o_;) and by Proposition
3.2.18 we have o_;(Hopf(G)) < Hopf(G). Using this and Proposition 1.4.17 we have

(zw-¢-y*) = oy zx) = ¢(zx04(y*)) = (2, (2oi(y")) - ¢)

and so as zo_;(y*) € Hopf(G) we have x - ¢ - y* = (zo_;(y*)) - ¢ € D and so D' < D.

Now we show that D’ is dense in L'(G). Fix ¢ > 0 and let z,y € C(G). There
€

exists 2’ € Hopf(G) such that |z — 2/| < _2H H then there exists ¢y’ € Hopf(G) such that
Yy
ly —v'|| < 28 7k Then for any z € C(G) we calculate
x

Kz,z ¢ y*) — (a0 ¢y = [d(y*za — v 22!)| < |y* 22 — /22
< |y*za — y*za!| + |yt za’ —y 2|

< lyllizllz — 2| + ly — y'll2l"] < 2]
and so taking the supremum over z € C(G) with ||z]| < 1 we get
lz-¢-y* —a' ¢y <e. (4.6)

Now let w € L'(G) and fix ¢ > 0, then it follows from Proposition 2.4.2 that we
have some n € N and {z;} |, {y;}Iy < C(G) such that |w— > 2t ¢ y;|| < %
Let 1 < k < n, then from Equation (4.6), we can find z},y, € Hopf(G) such that
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€
|y - b yi — - o-y."| < o Then we have
n

n

Dl by = D T by
k=1

< Zk¢yk
k=1

whe by + D ek vk — ko
k=1

n
/ / *
W‘Z%'¢'?/k
k=1

N
8

1

c_.
2

DO | ™

TMS TM: i

As >0 2} - ¢-y." € D' then it follows that D’ is dense in L'(G) as required. O

We can use this proposition to show that D is also dense in L;(G). The following proof

uses similar techniques to that of the proof of Lemma 3 in Daws & Salmi (2013).
Theorem 4.3.4 The set D in Notation 4.3.1 is dense in L (G).

Proof

Letae A, 1 <1, < ngandletw := wf‘j € D for ease of notation and we show that
w(r)e D.Let e A, 1<k, l<nganduy, = (In(\;) —In(\)) € R. From Proposition

3.2.18 we calculate

<Ufl> (r) \FJ et {7i( Ukz) wydt = \fj it )\ﬁ Zt()\ﬁ) Zt<ukl7w>dt

_ (% f dt) () = exp ( () ) ().

B2
As {ufl ‘ pel 1<kl< nfg} is dense in C(G) we have w(r) = exp (—(‘j;;g >w €
D.
Let w € Lj(G), then w € L'(G) and so by Theorem 4.3.3 there is a net (w,) <

D such that limw, = w in the L!(G) norm. By Theorem 4.1.9, for fixed r € N, we
have w(r),wa(r) € Li(G) where w,(r) € D for all a and so [w(r) — Wa(T)HL;(G) <

e/ |w — WallLi(G)- So taking the limit of a whilst holding r fixed we see that w(r) is
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4.3 Compact Quantum Groups

in the closure of D with respect to the Lj(G) norm. As 7 — o we have w(r) — w
and by Proposition 4.1.10 we have w(r)* = w*(r) — w* and so |w — W(T)HLé(G) =
max{|w — w(r)|L (), |w* = w*(r) |1 @)} — 0 and thus w is in the L} (G) closure of D as

required. O

4.3.2 Criterion for Compactness in terms of L} (G) and L}(G)**

It was shown in Runde (2008) that a locally compact quantum group G is compact if and
only if L!(G) is an ideal in L' (G)** with respect to either Arens product in L' (G)**. We
show in this section that a similar result holds in the case of L; (G). We quote this theorem

now to begin with and will spend the rest of this section proving this result.

Theorem 4.3.5 Let G be a locally compact quantum group, then Lé(G) is an ideal in
L;(G)* if and only if G is compact.

We begin with some preparatory lemmas for the case that we have a locally compact

quantum group G that is not compact.

Lemma 4.3.6 Let G be a locally compact quantum group, w € L;(G) and y € Dom(S).
Then w -y € L{(G) with (w - y)* = w* - S(y)*.

Proof
Let x € Dom(S5), then using that S(S(y)*)* = y and that S is an anti-homomorphism we

have

(S(2)*,w-y) = YS(w)*,wy = (S(S(y)*a)*,w) = (S(y)*z,0) = (z, 0" - S(y)*)

and as y € Dom(S) it follows that w* - S(y)* € L}(G) and the result follows. O

Lemma 4.3.7 Let G be a non-compact, locally compact quantum group, then there ex-
ists a non-zero net of states (ko) < LY(G)" such that for all x € Cyo(G) we have

lim, {(z, ko) = 0.
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4. THE L}(G) ALGEBRA

We remind the reader that for the next proof we have Ny = {x € L*(G) | ¢(z*z) < 0}
from Definition 1.4.2, 5 = {we L}(G)} | w(z) < ¢(z) Yoz eL®(G)*} and G, =
{Aw | we Ty, Ae (0,1)} from Notation 1.4.7.

Proof

Let w € F4 be non-zero, let j1 = ‘w_’ so that 4 is a state in L' (G) and let (K, 7,,&,,) be
w

the GNS representation of y1. Let x € Ny n Ker 7, then we have u(z*z) = |7, (2)E,[* <

|7 (2)|?€u]1> = 0 and thus w(z*z) = 0. Also by Proposition 1.4.8 there is a T €

Co(G)' < B(L*(G)) such that 0 < 7' < 1 and for all y € N, we have

[(TAgs(@)|Ags(y)] = |w(y™z)| < wy*y)w(z*z) =0
and thus TAg(z) = 0. Then we have |[TY2A4(2)|> = (TAg(z)|Ag(z)) = 0 and so

TY2A4(x) = 0 for all z € Ny N Ker ..

By Proposition 1.4.8 we have a unique element ¢, € L?(G) such that (z,w) =
(To(7)&,|€,) and TYV2Ay(x) = z€, (where we've suppressed the 7, map). We now
show that &, = |w|'/?. Define U : 3, — L?(G) as the map

()6 = W] 72T Ag(2) = |w] ~/2a€,,

for all z € Ny. It follows from the previous paragraph that this is well-defined. Then for

all z,y € N, we have

Ur (@)U, ()6,) = Cre@IAelw)) _ wl™e) ey (), i)

and so as N, is dense in C(G) then U is an isometry. It follows that 1 = [|£,|| = |UE,| =
o[ ~*2] &, ] and thus &, ] = w2

By Proposition 1.4.13 we have a net (w,) < G, = Fy < Co(G)% such that for all

r € L®(G)" we have lim,{x,w,) = ¢(x) and thus this also holds for all z € M,. As
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4.3 Compact Quantum Groups

wa € F for all « then, by Proposition 1.4.8, there is a T,, € Co(G)' < B(L*(G)) with
0 < T, < 1 such that for all z,y € Ny we have (T,,As(x)|Ay(y)) = (y*z,w,) and there

exists a &, € L%(G) such that for all 2 € N, we have To/*Ay(z) = 2.

«

[€a ]

all &) and define k, := wy, », € L'(G)". As|n,] = 1 we have a net of states (r,). We

Now let n, = for all o (we may assume without loss of generality w, # 0 for

calculate for fixed o and x,y € Ny that

o Gyt Th @A) _ Aol IAs(y)]
Ky™a, o)l = [(@malyma)l = == 275 &F S [P

However as G is non-compact it follows from Proposition 3.2.2 that ¢ is not finite and
as ¢(zr) = lim{(x,w,) it follows that |w,| — oo. Then from the first two paragraphs of

this proof we have that ||£,] = [lw, >

— oo and thus we have (y*z, k,) — 0 for all
z,y € Ny. By Proposition 1.4.4 (iv) we have (z, k,) — 0 for all z € M, and by density

of M in Cy(G) we thus have this for all Cy(G) as required. O

Lemma 4.3.8 Let G denote a non-compact locally compact quantum group, then there
exists a net (wa) < Lj(G) n LY(G)™ that is bounded in 1;(G) and such that w, is a state
in LY(G)* for all a and for all x € Cy(G) we have lim,{z,w,y = 0 but {1,w,) = 1 for

all o.

Proof

Let (ko) < L'(G)™ be a non-zero net of states given by Lemma 4.3.7 such that for all
x € Co(G) we have lim,, (z, ko) = 0. As 7; is a *-homomorphism and «,, is positive for
all @ we have (1;(z), ko) = 0 forall ¢t € R and «. Fix n € N, then for all x € Cy(G)™" and

« we have

(x,Ka(n)) = N fR e "), Koy dt =0

and so 4 (n) € LY(G)™. It also follows that
n _n2e2 n _n2¢2
(&, Ko(n)) = 7= Re (Te(x), Koy dt = 7. e T(x)dt, ko ) — 0
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where we note that we have n fixed and the limit is in ««. However we have

(1, Ra(n)) = 7 JR e " UT(1), kaydt = (1, ksy = 1

and also

n? n?
[Ka(m) i) < €/ Falise) = €

and so (i (n)) is bounded in Lj(G) for any fixed n € N. So for fixed n € N the net

(ka(n)) satisfies the required properties. O

Now we consider some preparatory lemmas in the case that we have a compact quantum
group G. For any compact quantum group G we will denote by {U® | a € A} the maxi-
mal family of irreducible corepresentations by Theorem 3.2.9 for A the index set and D

the set from Notation 4.3.1.

Lemma 4.3.9 Let G denote a compact quantum group, w € D and let T, : L&(G) —
L (G) be the map k — & = w. Then T, has finite rank.

Proof
Letae A, 1 <14,j < n,and wj; € D the set from Notation 4.3.1. For fixed x € Lé(G)

we calculate

N N ng
D g, Ul Wiy = a0l s, 1) = SapdeiCul, £) = > (Ul K)60p0ridy;
=1 =1

r=1

ng
= > g m)uly, Wiy = (A(up,), £ @iy = (up,, To(k)).
r=1

So by linearity for all 2 € Hopf(G) we have (x, T}j(x)) = >} {ufi, 5 )(x, wf;) and as
Hopf(G) is dense in C(G) we have T (x) = >}/ {(uf}, k)wi;. Thus we have shown that
the image of T7; is a finite linear combination of wy; for 1 < I < n, and thus T has finite
rank.

Now for w € D we consider the map 7., : Lj(G) — L}(G) given by x — & * w,
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then as w is a finite linear combination of elements w;; it follows that 7., is a finite linear

combination of elements 777 and so 7., is of finite rank. O

Lemma 4.3.10 Let G denote a compact quantum group and w € Lé(G), then the maps

K= w =k and Kk — k= w from LY(G) to L) (G) are weakly compact.

Proof
Let T,, : L;(G) — L;(G) denote the map « — = w. It follows from Notation 4.3.1 and
Theorem 4.3.4 that the set D (the linear span of all wy;) is dense in Lé(G) and so there is

anet (wy) = D with |w — wal|p) (@) — 0. Then for x € L;(G) we have

T, (k) — Twa(H)HL;(G) = [k *w— K= WaHL;(G) < HKHL;(G)HM - WaHL;(@) —0

and so ||T,, — 1, | — 0. From Lemma 4.3.9 we have T, is of finite rank so 7;, is compact
and thus weakly compact by Proposition A.4.4.

Letw e L; (G) and we consider the map x — w =~ now. We have by Proposition A.4.3
that the composition of arbitrary maps with weakly compact maps is weakly compact.
Then as w = k = (k% * w*)* and as the map x — & = w is weakly compact it follows that

Kk — w * k is weakly compact. O

Proof of Theorem 4.3.5

Let G be a compact quantum group, then by Lemma 4.3.10 we have that multiplication
from the left and right in L; (G) is weakly compact and thus it follows from Proposition
A.4.6 that Lj(G) is an ideal in L; (G)**.

Now assume G is not compact and we show that we have some w € Lé(G) such that
the map x — w * K is not weakly compact and thus it follows by Proposition A.4.6 that
L;(G) is not an ideal in L} (G)**. As G is not compact then 1 ¢ Cy(G). Fixw € L{(G) and
y € Dom(S) n Cy(G) such that (y,w) # 0, then by Lemma 4.3.6 we have w - y € L{(G).

Assume that the map 7' : L{(G) — Lj(G) given by x — (w - y) * r is weakly

compact and it suffices to show we have a contradiction. By Lemma 4.3.8 we have a
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4. THE L}(G) ALGEBRA

net (ko) © L{(G) n LY(G)™ such that for all z € Co(G) we have lim,{(z, ko) = 0 and
(1, Koy = 1 for all . As left multiplication by w - y is weakly compact there is a subnet

(k) of (ko) with a weak*-limit of (w - y) = kg. For all x € Cy(G) we have

@, (w-y) *kg) = (Y@ A(x), w @ k)

and as (y ® 1)A(z) € Co(G) ®min Co(G) we have (w ®id)((y ® 1)A(x)) € Co(G) and
taking the limit we see that (z, (w - y) = k) — 0 for all x € Cy(G). Now let z € L*(G)

and we have a net (x,) with weak*-limit . Then we have

@, (@ 9) » g) = limay, () « 7g) = 0

and so (w - y) * k3 —> 0. But we also have

lim1, (w - ) » k) = limdy, w)X1, K5) = (y,w) # 0

and so we have a contradiction as required. O
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Chapter 5

The Compact Quantum Group SU,(2)

By considering the C*-algebra of continuous functions on the compact Lie group SU(2)
Woronowicz found a non-trivial example of a compact quantum group in the C*-algebraic
setting in Woronowicz (1987b). He showed that for ¢ € [—1, 1]\{0} there is a C*-algebra
C(SU4(2)) such that as ¢ tends to 1 we obtain a commutative C*-algebra isomorphic to
the continuous functions on SU(2). He then showed there is a map A : C(SU,(2)) —
C(SU4(2)) ®min C(SU,(2)) that implements the group product when ¢ = 1 which subse-
quently led to the definition of a compact matrix quantum group. Furthermore he detailed
the corepresentation theory in the same paper and he showed there was a non-trivial Haar

state in Woronowicz (1987a) analogous to that of the Haar integral of SU(2).

We will give an overview of SU,(2) in Section 5.1 where we define the C*-algebra
C(SU4(2)), the coproduct A and show that we get a compact quantum matrix group.
In addition we give details of the corepresentation theory for SU,(2) and we give for-
mulas for the antipode on Hopf(SU,(2)) and the Haar state on C(SU,(2)). In Section
5.2 we move on to prove some new results about the C*-algebraic and von Neumann
algebraic quantum group structure of SU,(2). Most importantly we will show that the
commutative unital C*-subalgebra C*(c, 1) of C(SU,(2)) can be realised as the contin-
uous functions C(K') on a compact subset X' — C and we use this to study C*(c, 1)

further. In Section 5.3 we discuss the L;(SU,(2)) algebra and prove some new results
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5. THE COMPACT QUANTUM GROUP SU,(2)

about this. In particular we show that we have a subalgebra Lé(K ,v) as a subspace of
LY(K,v) and we prove some structure theorems regarding this. Then in Section 5.4 we
consider the product SU,(2) x SU,(2) and we use this as a counterexample to a question
asked in Chapter 4 regarding tensoring L} (SU,(2)). Finally in Section 5.5 we discuss
adjoints of elements (1 ® id)(W5Y®@) e B(L2(SU,(2))) where u € C(SU,(2))* and
show that there is some v € C(SU,(2))* where (v ® id)(W)* is not in the closure of
lin {(p®id)(W) | pe C(SU,(2))*} answering a question resulting from work in Das
& Daws (2014).

Throughout this chapter we let ¢ € (0, 1) with the exception of Section 5.1 where
the results hold for ¢ € [—1,0) u (0,1]. We let K < C denote the set K = {0} U
{q’"e2”9 ’ re Ny, 0¢€ |0, 1)} For all n € N we let 2" : K — C be the map z — 2" and
2*": K — C the map z ~— 2. Finally we let a, = (1 — ¢**)"/? for s € N.

We note that all results from Section 5.2 would also hold for ¢ € (—1, 0) excepting the

notational inconvenience of having to consider |¢| instead of g.

5.1 Basics of SU,(2)

In this section we give details of SU,(2). Nothing in this section is new, we simply give
the background required for the new results in the following section. We give details of
the C*-algebraic quantum group, the corepresentation theory, the antipode and the Haar

state of SU,(2).

5.1.1 C*-algebraic Quantum Group

Let Hopf(SU,(2)) denote the free unital «-algebra generated by two elements « and c¢
satisfying the following commutation relations
a*a + c*c =1 = aa* + ¢*c*c,

(5.1)

cc® = c*c, ac = qca, ac* = gc*a.
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We notice that for ¢ = 1 we have a commutative =-algebra and otherwise we have a
non-commutative =-algebra.

Consider the Hilbert space /*(Ny) ® (*(Z) ~; ¢*(Ny x Z) with canonical orthonormal
basis {ey; | k € No,l € Z} and let y : Hopf(SU,(2)) — B(¢*(Ny) ® (*(Z)) be defined

as follows

OR€r—1,1 ifk >0 k
Wo(a)em = and 7T0(C)6k7l ={q €kl+1- (52)
0 ifk=0

With a little bit of work we can show that this satisfies the relations given by 5.1 with

adjoints given by
mo(a*)ep) = pr1€k+1y and mo(cM)ers = g ersa (5.3)
and so this forms a «-representation of Hopf(SU,(2)).

Notation 5.1.1 Throughout this chapter for k < 0 we let a* = (a*)~* and (a*)* = a7

For all k € 7 and m,n € Ny we denote ayp,, := a*(c*)™c".

The following theorem is due to Woronowicz. For a proof see Theorem 1.2 in Woronow-
icz’ paper Woronowicz (1987b) or Proposition 6.2.5 in Timmermann’s book Timmer-

mann (2008).
Theorem 5.1.2 The set {aymy, | k € Z, m,n € Ny} forms a basis for Hopf(SU,(2)).

We now want to build a C*-algebra A with Hopf(SU,(2)) as a dense =-subalgebra. First

we need to give an appropriate norm on Hopf(SU,(2)).

Lemma 5.1.3 Let m : Hopf(SU,(2)) — B(H) be a =-representation for any Hilbert

space H, then we have | (agmn)| < 1 for all k € Z and m,n € N,,.
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Proof

For £ € H we have

[m(@)€]* + | ()€ = (m(a)é|m(a)g) + (w(c)¢|m(c)€)
= (m(a)*m(a)¢ + m(c)*m(c)8]€) = (m(a”a + c*c)¢[¢) = (&]€) = I&]

Then it follows by varying £ € L2(SU,(2)) with ||¢| < 1 that |7(a)| < 1 and |7(c)| < 1

and thus |7 (amy,)|| < 1 for all k € Z and m, n € Ny as 7 is a *-homomorphism. O

Using that we have a =-representation 7, of Hopf(SU,(2)) given by Equation (5.2) we
can define amap || - | : Hopf(SU,(2)) — R* given by
7 : Hopf(SU,(2)) — B(H) for H a
|z] = sup < |7 (2)] ! . (5.4)
Hilbert space and 7 a *-representation
for x € Hopf(SU,(2)). We note this is finite by Lemma 5.1.3. We show in Propo-
sition 5.1.5 that it is non-zero and thus a norm satisfying ||z*z|| = |z|? for all z €

Hopf(SU,(2)). We have a simple lemma first.

Lemma 5.1.4 We have for k,t € Z and m,n, s € Ny that

qs(n+m)ozs o Ol (k—1)Cs—k,t+n—m f0<k<s
71-O(akmn)es,t = qs("+m)as+1 v O ks t+n—m lfk‘ <0 (55)
0 ifk>s

where if k = 0 this reduces to mo(aomn)€st = e e
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Proof

For k > s we have m(a*)es; = 0. For 0 < k < s we have

mola®)esy = asa" e, 1y = asa, 1 (a*) e, gy

*\k—3
= Qs 10 (a%) g gy = = Qg e (—1) €kt

and the result follows as 7o ((c*)™c™)es; = ¢*™*™eg 11 . The case of k < 0 is similar.

O

Proposition 5.1.5 We have |agm,| # 0 and ||agmn| < 1 for all k € Z and m,n € N,.
In particular the completion of Hoptf(SU,(2)) with respect to the norm given is a C*-

algebra.

Proof

If Kk > 0let s > k and then

s(n+m) s(n+m)

HWO(&kmn)es,tH =4dq Qg - Olg—(k—1) H687k,t+n7mH =4dq Qg - v Olg—(k—1) >0

and similarly if £ < 0 then |7 (@xmn)es| > 0 and so

HakmnH = HT"O(akmnN = sup {HWO(&kmn)SH ’ f € KZ(NO) ®€2<Z)7 ng < 1} > 0.
It is almost immediate from the definition that |z*x| = |«|? for all x € Hopf(SU,(2))
and then it follows easily that the completion is a C*-algebra. O

We are now in a position to define the following C*-algebraic completion of Hopf(SU,(2)).
In fact as we will see shortly, this gives us the C*-algebra from the reduced C*-algebraic

quantum group (C(SU,(2)), A).

Definition 5.1.6 We define A to be the completion of Hopf(SU,(2)) with respect to the
norm given by Equation (5.4).
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We can make A into a compact matrix quantum group as follows.

a —qc*

Theorem 5.1.7 Consider u = € My(A). Then we have a map A : A —
c a*
A ®pin A given by
Ala) =a®a—qc*®c,  Ale)=c®a+a"®c (5.6)

making this a compact matrix quantum group (A, A,u) as per definition 3.2.22. The

antipode S as defined in Definition-Theorem 2.2.7 is given by

1
S(a) = a”, S(a*) = a, S(c) = —qc, S(c*) = —=c". (5.7)
q
Proof
We show that the conditions of Proposition 3.2.21 are satisfied. It is easy to see that u is
. . . . a g’
unitary. We can also easily see that the inverse of u is given by )
—=c* a*
q

Clearly A = alg {u;; | 1 <1i,j5 < 2}”'H by construction where alg denotes the alge-
bra generated. It is easy to show that A satisfies condition (iv) in Proposition 3.2.21 and
so we have a compact matrix quantum group. The antipode S follows from the equation

S(uw) = U;kl forl < Z,j <20

We now calculate the (f,).cc characters from 3.2.16.

Proposition 5.1.8 For z € C we have f.(a) = ¢ %, f.(a*) = ¢* and f.(c) = f.(c*) = 0.

Furthermore we have
(id & fz)A(a) = q_za = (fz & id)A(a)v

(d® f.)A(a*) = ¢*a* = (f. ®id)A(a*),

(1d® f.)A(c) = ¢ *c, (f: ®id)A(e) = ¢°c,
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(id® f.)A(c*) = ¢°c* and (f. ®id)A(c*) = ¢ *c*.

Proof

We calculate the F'-matrix for the corepresentation u. We have by Theorem 3.2.15

a —-c
that F' intertwines u and S3(u) and we have S3(u) = q . Setting F' =
qQC a*
¢t 0
we can easily show that F'u = S5 (u)F and furthermore this satisfies Tr(F') =
0 ¢

Tr(F ') giving the F-matrix for uy of Theorem 3.2.15.
We can then calculate the f, values on the generators a and ¢ and their adjoints easily
(for example f.(a) = (F11)* = ¢~*). We can then use these formulas and Equation (5.5)

to calculate the remainder of the equations. O

The formulas in the following corollary can be extended to all Hopf(SU,(2)) as R is a

+-anti-homomorphism and 7, is a homomorphism on Hopf(SU,(2)).

Corollary 5.1.9 Let z € C. We have the following formulas for the scaling group on
Hopf(SU,(2)):

and for the unitary antipode R on Hopf(SU,(2)) we have

—c if0<qg<1
c if —1<q<0.

Proof

The first set of formulas for 7, follow easily from Proposition 3.2.18 and the formulas
in Proposition 5.1.8. It is easy to calculate R knowing S and 7_;/, on the Hopf algebra
elements. It follows that 1 is a *-anti-homomorphism from Definition-Theorem 2.2.7 and

that 7, is a homomorphism from Proposition 1.3.10. O
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Finally we have the following important theorem. We refer the reader to Bédos et al.

(2001) for a proof.
Theorem 5.1.10 The compact quantum group SU,(2) is co-amenable.

As SU,(2) is coamenable we have that C(SU,(2)) =; A from Theorem 3.4.1 and so we
can always work with the reduced C*-algebraic quantum group C(SU,(2)) < B(L?*(SU,(2))).

5.1.2 Corepresentation Theory for SU,(2)

In this section we discuss corepresentations of SU,(2). This was investigated first in
Woronowicz (1987b) and the explicit formulas for the irreducible unitary corepresenta-
tions were found in Koornwinder (1989). The following is a summary of the results we
need from these papers.

We first give some definitions and basic propositions on g-hypergeometric polyno-
mials and we give the main theorem regarding the irreducible finite-dimensional unitary
corepresentations of SU,(2) (note that by Theorem 3.2.9 we need only consider finite-

dimensional corepresentations for the unitary corepresentations).

Definition 5.1.11 Lett € C and k € N, then the q-shifted factorial is defined inductively
by (t;q)o = 1 and

() = [ (1~ tg) = (1— )1 —tg)-~ (1 — tg*).

j=0

For n, k € N the qg-combinatorial coefficient is defined by

n @0 (@GO

k (@ 9k (@ (@ Dn—r

It is straightforward to show that we have the following relations.
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Proposition 5.1.12 Forn € Ny and 0 < k < n we have the relations

n n n . n
n—k k ’ 0 n
q q q q
and
n—+1 (i) n N n
k k—1 k
q q q

Proposition 5.1.13 For x and y indeterminates such that xy = qyx we have

(x4 y)" i : Yk = Z " xFyn k.

. .

We will need the following definition in Section 5.5.

Definition 5.1.14 For n € N we define the little q-Jacobi polynomial by
o

- r(ab
pn(z;a,b|q) :2 o q;l

n+1 ) (ql,)k

Finally we have the following important theorems. The proof of the following is given in
Theorem 5.4 in Woronowicz (1987b) and Section 4 and Proposition 5.2 of Koornwinder

(1989).

Theorem 5.1.15 Let U be a unitary finite-dimensional corepresentation, then there is a
half-integer | € %Ng = {O, %, 1,15 Lo } such that dim U = 2l + 1 and the matrix can be

indexed by n,m € {—1l, =l + 1,...,1 — 1,1} such that the entries are given by

1/2 —-1/2

21l 2l min{(l—n),(l+m)} A . A .
uil’m = Z q(l—n—l)(n—m+2l)q—z(n—m+z)
[=n g2 l=m 2 i=max{0,(m—n)}
l[—n l+n .
X ( qc )l n—m-+1i l n— z(a*)lerfl'
[ l+m—i

q72
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l l 20+1

In particular we have U* = Zn,mzfl Upy €l i1 4mt1-

The following is Theorem 5.3 from Koornwinder (1989).

Theorem 5.1.16 Let [ € 1Ny and —l < n,m <. Ifn = m > —n we have

1/2 1/2
[—m l+n
l q—(n—m)(l—n) (a* )n+m
n—m n—m

(n—m)  2(n+m) |q2)cn—m

pin(c*c; ¢ .q

and if m = n = —m we have

1/2 1/2

. l—n l+m q—(m—n)(l—m)(a*)m+n

m—-n ) m—-n

q q?

pZ—m(C*C; q2(m—n)7 q2(m+n) |q2) (_qc*)m—n
for p,, the q-Jacobi Polynomial of Definition 5.1.14.

Example 5.1.17 We can show that U° = (1) and U'? = w for u the corepresentation in

Theorem 5.1.7.

5.1.3 The Haar State

In this section we calculate the Haar state from Definition-Theorem 3.2.3 on Hopf(SU,(2)).
Later we will show that we can extend this to C(SU,(2)). Throughout this section we let
mo be the representation given by equation (5.2).

Consider the Hilbert space ¢*(Ny) ® ¢*(Z) ® £*(Ny) with an orthonormal basis given
by {e,s: | r,t € Ny, s € Z} and z € C(SU,(2)) acting on this Hilbert space as

§ = (mo(x) ®1)¢
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for £ € (*(Ny) ® (*(Z) ® £*(Ny). We define
So= (1= epop (5.8)
p=0

as per Equation (1.8) in Lance (1994) which is easily seen to be a unit vector in the Hilbert

space (%(Ny) ® (*(Z) ® (*(Ny). We can easily prove the following formula.

Lemma 5.1.18 We have

(1 - (]2)1/2 Z;D:k qs(1+n+m)as cee O‘sf(kfl)es—km—mﬁ lfk = 0

(1 - q2)1/2 ZZO:O qs(1+n+m)as+1 cee O‘sfkesfk,nfm,s lfk < O
(5.9)

where we remind that oy, = (1 — ¢**)V2. If k = 0 this collapses to (7o(aomn) @ 1)& =

(1 o q2)1/2 ZZO:O qs(1+n+m)es,n_m7s'

(770<akmn> ® 1)50 =

Let ¢ denote the Haar state on Hopf(SU,(2)) (see Definition-Theorem 3.2.3). We now
given an explicit description of ¢ in terms of 7y and &,. We offer a proof of the following
as this is in a different form than sometimes found in the literature (though the proof is

very similar to that of Theorem 6.2.17 in Timmermann (2008)).

Proposition 5.1.19 For all x € C(SU,(2)) we have

P(z) = ((mo(z) ® 1)&0/&0) (5.10)

and in particular for k € 7 and m,n € Ny we have

1—¢2
(Ahmn) = 5k,06m,nm-
Proof
Let £ € Z and m,n € Nj throughout this proof, then from Lemma 5.1.18 we have

1— 2
that ((mo(armn) ® 1)&[&0) = 5k706m7n1—2(q1+) immediately. We show that Equation
— q n
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(5.10) holds for ay,,, € Hopf(SU,(2)) and then extending by linearity and continuity the
result follows. Let z € C, then using the multiplicativity of f, by Proposition 3.2.17 and

Proposition 5.1.8 we have

(id ® f2)Aarmn) = ((1[d® f:)Aa)*((([d ® f:)A()™(([d ® f.)A(c))"

_ (q—za)k(qzc*)m(q—zc)n _ qz(—k+m—n) Ao
Now acting on this with ¢ we get
qz(_k+m_n)¢(akmn) = (¢ ® f2)Aakmn) = f2(1)@(armn) = ¢(armn) (5.11)

for all z € C. Similarly by considering (f. ® id)A(agm,) we can show that

¢(akmn> _ qz(—k—m+n)¢(akmn) (512)

for all z € C. Then, from Equations (5.11) and (5.12), if ¢(agm.) # 0 we have

for all z € C and so we must have k—m+n = 0 = k+m—norindeed k = m—n = n—m.

This is only possible if £ = 0 and m = n.

If k& # 0 or m # n then from Lemma 5.1.18 we have

((mo(@rmn) ® 1)&0|&o)

(]- - q2) Z:O:k ZZO:() qr+sqr(n+m)aT s ar—(k—l) (er—k,n—m,r|es,0,s> if k =0

(1—¢?) Zfs:o ¢y g (e hnma|€s0s) if k<0

=0= gb(akmn)

and so we need to verify this equation for £k = 0 and m = n.
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We have

o]

9
(a0 ® Déoléo) = (1 — ¢?) 3 g0 = =L (5.13)

— 2(14n
r=0 1 q(+)

and we show that ¢(ag,,, ) satisfies this equation also. From Proposition 3.2.18 we have

1/2

oi(a) = Y A, ) A2 )’ = fila)fila)a = ¢

kil=—1/2

and then from Proposition 1.4.17 (ii) we have

q2n+2¢(&a*a0nn) = q2n+2¢(a*a0nn071<a)) = q2n¢(a*a0nna)' (514)

We have

2n+2 2n+4

M2,k 20421 — ) aomn = ¢ 2 aonn — " a0 1ns1 (5.15)

q " aaT apn, = q
and as appna = ¢~ 2"aag,, from relations (5.1) we have

" a*aonna = a*aagn, = (1 — ¢*¢)aoum = Aonn — Aops1ms1- (5.16)
Applying ¢ to Equations (5.15) and (5.16), subtracting and using (5.14) we get

¢(@0nn) - ¢(a0,n+1,n+1) = 2n+2¢(a nn) q2n+4¢(ao,n+1,n+1)

and then rearranging we have

(1 _ q2(n+1)>

¢(a0,n+1,n+1> = (b(aonn)m

It then follows easily that ¢(ag,,) is equal to the final Equation in (5.13) as required. O
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5.2 New Results on SU,(2)

In the previous section we have described the basic results largely due to Woronowicz.
For the rest of this chapter we will move on to discuss new results as obtained by the
author.

We know by the Gelfand-Naimark theorem (see Theorem 4.4.3 in Kadison & Ringrose
(1997)) that as c is normal there exists a compact space K < C such that the commutative
unital C*-algebra C*(c, 1) is =-isomorphic to C(K) (the continuous functions on K). Our
main result in this section is Proposition 5.2.4 where we calculate this space /K. We then
find a measure v that implements the Haar state ¢ € C(SU,(2))* on C(K), that is for any
f € C(K) with corresponding = € C*(c, 1) we have ¢(z) = §,. f dv. Then we will study
the von Neumann algebra L (K, v) and its predual L' (K, v) in relation to L*(SU,(2))
and L'(SU,(2)) respectively. In particular we show that we have an isometric normal
*-homomorphism that embeds L™ (K, v) in L®(SU,(2)) that has a left inverse that is
a normal quotient map. Lastly we will calculate the P operator for SU,(2) given by
Theorem 2.2.10.

In the remaining sections of this chapter we will use the space K to enable a deeper

study of SU,(2).

5.2.1 The GNS Space L*(SU,(2))

The following Theorem is quoted in Lance (1994) however to the author’s knowledge this
is not proved anywhere in the literature. We feel this is a non-trivial result and so we offer
a proof here.

We remind the reader that we have a GNS representation (L*(SU,(2)), 74, {s) Where
d(x) = (x€y|&y) for all z € C(SU,(2)) (where we omit the 7, map as we will do in this

section).
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Theorem 5.2.1 We have an isometric isomorphism of 1?(SU,(2)) onto the Hilbert space
(*(No) ® (*(Z) ® (*(Ny) such that €, — (x @ 1) for all € C(SU,(2)) and where &
is defined by Equation (5.8).

Proof
Throughout this proof let H = ¢?(Ny) ® (*(Z) ® (*(Np) and ¢ : L?(SU,(2)) — H be the
map given by z&, — (z ® 1)&, for convenience.

We have already observed that ¢ is realised as a vector state, given by the vector &, and
the representation my&® 1. To identify this representation and &, with the GNS construction
for ¢, we must show that &, is actually a cyclic vector for (7o ® 1)(C(SU,(2))).

We now show that ¢ issurjective. We denote by X the image of L?(SU,(2)) under ¢

inside JH, that is let

K = Tin {(ammn @ )&y | K€ Z, mneNo] °.
Let n € K+ and write n = qu:o > Mstu€siu in terms of the orthonormal basis
{estu | s,ueNy,teZ} for H. We show that 75, = 0 for all s,u € Ny and t € Z
meaning X+ = {0} and thus K = J as required.

Fix n,m € Ny. As € X*, from Equation (5.9) in Lemma 5.1.18, for k£ > 0 we have

0= ((akmn® 1)§0|7]) - Z Z

0

r(1+n+m
Z q ( )ar cee ar—(kz—l)ns,t,u (es,t,u|€r—k,n—m,r>
u=

0

o0
r(1+n+m r+k)(14+n+m
= Z q ( )Oér o O (k=) —kn—m,r = 2 q( I )ar+k co Qe 1T n—mr ke
r==k r=0
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k(1+n+m)

and so dividing by through ¢ # 0 we have equivalently that

r(1+n+m
0= Z q ( )ar+k c e Qe 1 M n—mr -k
r=0

We can also use Equation (5.9) for the case £ < 0 and we have in general that

Ce 1+n+ i
Z'I‘—O qr( n m)ar—H e Qe kr—marak 1f k=0

0— - e (5.17)
Z:O:() qr(1+n+m)ar+1 QM —kn—m,r if k <0.

Letp=1+n+mandp =n — m,thatis

or inverting

I

%
As n,m = 0 it follows that p > 1 and from the previous equation that p — 1 + p’ > 0
andp—1—p >0orindeed 1 —p < p’ < p— 1. Also as n,m € Ny we must have
p—1+p €2Ngand p—1—p' € 2Ny. So if p is odd then p’ must be even and if p is even
then p’ must be odd. So we must have

l1-p<p <p-1land

(p,p) eNxZ
((pis even and p' is odd) or (p is odd and p’ is even))

Solving for p in terms of p’ we get 1 — p’ < pand p’ + 1 < p or indeed p > max{l —
p,p +1}.
For k£ > 0 it follows from Equation (5.17) that

T
Z q pa7’+1 Qe kM p ek = 0
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/

forall pe Nand p’ € Z suchthatp > 1and 1 —p < p/ < p — 1. Say there is some p' € Z

such that 7,y # 0, then for all p > max{1 —p’,p’ — 1} we have

r
No,p' k = _O./ o Z q par+1 Qe kMl ke (5.18)
e

We have

o0

a0
< Z ‘qrpOéTJrl Ce ar+knr,p’,r+k‘ < Z qrp ‘nr,plﬂ“+k‘

rp
Apy1 - Qe kN ! etk

0 2 /5 1/2 qu 1/2 / o 1/2
r 2 2
< <Z ¢ p) (Z |70,k ) = (1 _qu) <Z |70 k] )
r=1 r=1 r=1

where we’ve used the Cauchy-Schwarz inequality. We have Y% [1o,x|° < |n]? < o
2p

and so letting p — oo (which satisfies p > max{1 — p/,p’ — 1}) we see that T
—q

and thus ‘Zio:l qPo g awknr,plﬁkl — (0 as p — co. However from Equation (5.18)

we see that 1), = 0 contradicting the existence of such a p’ making this non-zero. So

as k > 0 was fixed we have shown that for all p’ € Z and k& > 0 we have 79, = 0.

Now say for V € N we have 1), ;7,1 = Oforall0 < r < N — 1 and p’ € Z. Then we

have
0]
r(1+ +2n

Z P oy 1 ke vk

r=N
ee}

N(1+p'+2n r(1+p'+2n

=q (1+p ) Z q (1+p )ar+N+1 C Qe N4 kTl Np/ r+ N+k

r=0

and a similar proof from above shows that 7y ,» x4 and thus we have 7,y .1, = 0 for all

r,k = 0andp € Z.

A similar proof follows to show that 7, ,,, = Oforall k < 0,7 > O and p’ € Z
or indeed 7,4, = 0 forall 7,k > 0 and p’ € Z. Thus it follows that 7, = 0 for all

s,u € Npand t € Z as required. O
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The following shows that we can in fact consider C(SU,(2)) as acting on /*(Ny) ® ¢*(Z)

given by the representation 7y in Equation (5.2).

Corollary 5.2.2 Let A = B((*(Ny) ®(*(Z)) be the C*-algebra generated by 1, my(a)
and o(c) where a,c € Hopf(SU,(2)) and m, is the representation from Equation (5.2).

Then A is isometrically isomorphic to the reduced C*-algebra C(SU,(2)).

Proof

We have by the previous theorem that the GNS space L*(SU,(2)) is unitary equivalent
to *(Ny) ® (*(Z) ® £*(Ny). The map B((*(Ny) ® *(Z)) — B({*(Ny) ® (*(Z) @ (*(Ny))
given by z — 2 ® 1 for z € B((*(Ny) ® (*(Z)) is an injective *-homomorphism onto its
image and thus is an isometry. Then as C(SU,(2)) acts on ¢*(Ny) ® (*(Z) ® £*(Ny) as
mo(x) ® 1 for all x € C(SU,(2)) the restriction of this to the map A is also a complete
isometry onto C(SU,(2)). O

5.2.2 The C*-algebra C(K) and the Hilbert space L?(K, /)

We can consider the C*-subalgebra C*(c, 1) of C(SU,(2)) generated by ¢ and 1. As cis
normal we have that this forms a unital commutative C*-subalgebra and so it follows from
the Gelfand-Naimark theorem that we have some compact space ' < C (given by the
spectrum of ¢) such that C*(c, 1) is *-isomorphic to C(K) where ¢ maps to z (z — z). In
this section we show that we have a conditional expectation from C(SU,(2)) onto C*(c, 1)
and we explicitly find the compact space K < C. We will then move on to consider a

measure v on C(K) that implements the Haar state equivalent on C(K') and we study

L?(K,v) further including showing how this embeds in L*(SU,(2)).

Theorem 5.2.3 There exists a unique conditional expectation (see Definition A.5.4) P :
C(SU4(2)) — C*(c, 1) such that P(agmn) = SkoGomn for all k € Z and m,n € Ny where
agmn € Hopf(G) is from Notation 5.1.1. Furthermore we have ¢ o P = ¢ for the Haar
state ¢ on C(SU,(2)).
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Proof

We define P : Hopf(G) — C*(c, 1) as the unique linear map such that g, — 0. 000mn
where Hopf(G) is considered as a normed subspace of C(SU,(2)). We show that F,
is contractive and then F, extends uniquely to the conditional expectation PP by Theo-
rem A.5.5. As (C(SU,(2)),A) is coamenable we need only consider the reduced C*-
algebraic setting and by Corollary 5.2.2 we can consider this as a acting on the Hilbert
space (?(Ny) ® £*(Z) by the representation 7, from Equation (5.2).

Consider the Hilbert space

H= {(fi)ﬁo

0
& e *(Z) Yie Ny, Z 1€ < oo} (5.19)
i=0

with inner product ((£)7o(1:)0)c = Dieo (&il7i) 2 (z)- We have a unique unitary iso-
morphism v : £*(Ny) ® ¢*(Z) — H such that

Uesy) = (iser)isy (5.20)

for all s € Ny and ¢ € Z, that is ¥ maps e, ; into the vector with 0 in all but the s-th entry
where it has entry ¢; € £*(Z). Then we have a *-isomorphism ¥ : B(¢*(Ny) ® (*(Z)) —
B(FH) given by W(z) = vxp~'. We have that B(H) consists of infinite matrices with
entries in B(¢*(Z)). Consider ¢ € C(SU,(2)) first. Let T : (*(Z) — (*(Z) be the map

e; — €41 for all ¢ € Z, then from Equation (5.2) we have

T 0 0
0 ¢I 0 -
U(c) = I (5.21)

0 0 ¢&T
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with usual adjoint. Similarly for a € C(SU,(2)) we have

0 onid O 0
0 0 oid O
0 0 0 asid

U(a) =

with the usual adjoint. By construction, Fy acts on the matrices in B(3H) by sending the

non-diagonal entries to 0. That is for x = (2;)7%_, € B(H) we have Fyx = diag(xy).
From Proposition A.5.3 we have that |z;| < |z| forall i € Ny and so sup |z < |z].

In Proposition A.5.2 we let 3(; = K; = (*(Z) for all i € Ny and we have |diag(z;;)| =

sup; Tyl < [lx)l. So for x € 1t ftollows from I'OpOSlthIlt at
e So f C(SU,(2)) it follows from Proposition th
[ Pox|| = [[diag(zi;)| < ||

and P, is contractive.

Finally for k € Z and m,n € Ny we have

(¢ 0 P)(ahmn) = (5k,0¢(a0mn) = ¢(hmn)

which extends by linearity to all of Hopf(SU,(2)). Then as Hopf(SU,(2)) is dense in
C(SU,(2)) we have ¢ o P = ¢ as required. O

We remind that in this chapter we denote K = {0} U {¢"e*™ | r € Ny, 6 € [0,1)}. That
is K is a compact subset of C (as it is closed and bounded) consisting of 0 and every circle

in C of radius ¢" for all » € Ny. We now show as a consequence of this previous theorem

that K is the spectrum of ¢ € C(SU,(2)).

Proposition 5.2.4 We have o(c) = K and consequently we have a =-isomorphism U :

C*(¢,1) — C(K) such that (¢*)™c™ — z*™2".
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Proof

Consider the Hilbert space J{ from Equation (5.19) and the *-isomorphism ¥ from equa-
tion (5.20). We have W(c) is the operator in Equation (5.21) from the proof of the previous
theorem and we know from Proposition A.7.4 that we have o(7") = T (the unit circle in
C). So it follows immediately that the spectrum of ¥(c), and thus the spectrum of c,
consists of the closure {q’"e2”9 } r e Ny, 0 € [0, 1)} The rest follows from the Gelfand-

Naimark theorem (see Theorem 2.1.13 in Murphy (1990) for example). O

We define a measure v on K where for all measurable A < K we let

( 1 _ q Z QQTJ 7" 2#10) do (522)

and then for all f € C(K) it follows that

_ 2 < 2r ' re27ri9
Lde—(l Q)Z‘)q Jof(q ) do

Let m,n € Ny, then by Proposition 5.1.19 we have

0 1
_*m ndy = 1 . q r (n4+m) J 627r72(n—m)9 Ao
) Dy

0

o
(1) Y b = Bt = o))
where we remind that 2", z*™ : K — C are the maps z — 2" and z — 2™ respectively.
We also have |  1dv =1 and so we have a probability measure v on K. We have from
Proposition 5.2.4 that C(K') =~; C*(c, 1) with ag,,, corresponding to the function z*™ 2"
and so v is the measure on K corresponding to the restriction of the Haar state ¢. We will
use C(K') with measure v to study C*(c, 1) and thus C(SU,(2)) further.
We now study L?(K, v) briefly.
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Proposition 5.2.5 Let f : K — C. Then f € L*(K,v) if and only if there exists a
sequence of functions (f,)*, < L2(T) such that ", ¢*" | fTH ) < oand f(q" e?mify =
f(e*™) for all r € Ny and 6 € [0, 1).

Proof
Let f € L?(K,v), then we have

1 e 1
Hf“]%z(K,y) = L |f|2 dv = (1—¢?) Z QQTL ‘f(qrezmeﬂ2 df < oo.
r=0

For s € Ny let f, : K — C be the map f,(e2™) = f(q*c*) for all § € [0,1) and we

have

1 o0 1
0N sl 2ery = QQSL [f(e )" do < > q”fo |12 d6 < oo
r=0

and so f; € L?(T). Then we have >~ , ¢ Hf,qHL2 () = HfHL2 K < 00 asrequired.

The converse is immediate from considering | f ||L2( Ku): \Zl

Notation 5.2.6 Let s € Ny andt € Z, then we let ¢, : K — C be the function q"e*™ 0 —

ﬁqisér,se2ﬂ—itefor Clll re NO Cll’ld 0 < [0’ 1)
—q

Proposition 5.2.7 We have an orthonormal basis for (K, v) given by the functions
{d)s,t | S € NOut € Z}

where ¢, is given by Notation 5.2.6 above.

Proof

We have that ¢, is orthonormal as for s, s’ € Ny and ¢, ¢’ € Z we have

0 1
1 —s—s’ Ti(t—t
(¢s,t|¢s’,t’) = (1 - q2) Z q2TJ 1 q2q 57”,867",8/62 (¢ t)ede = 5375’51571?’-
r=0 0
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It is sufficient to show that this set spans L?(K, v). Let f € L?(K, v), then by Proposition
5.2.5 we have a sequence of functions (f,), = L%(T) such that f(q"e?™) = f,.(e*"?)

and 37 oq%HfHLz(T < 0. We have

s+s fs s( )(¢st‘¢s’t/)

Z_:Z ¢st

2s

I|| MS I M8

Ro| —Zq28||fs|\L2

using Equation (A.1) for the last equality and so we have .7/ >° ¢ 1, (t)pss € LA(K, v).

We can then calculate that

0 0

Hf V1= D @ fut)ss

s=0t=—00

=0
L2(K,v)

using Hilbert space techniques and therefore the set {¢s; | s € Ny, ¢ € Z} is an orthonor-
mal spanning set, i.e. a basis. O
We prove in the following that we have an isometric embedding of L?(K,v) inside

L?(SU,(2)) with some further useful properties.

Proposition 5.2.8 We have an isometric embedding U : L*(K,v) — L*(SU,(2)) such
that for all m,n € Ny we have U(z*"2") = (¢*)™c"&y (where £y € L*(SU,(2)) is the
cyclic vector from the GNS space of the Haar state ¢). Furthermore the adjoint is a
contractive map U* : 1L*(SU,(2)) — L*(K,v) such that for V the «-isomorphism from

Proposition 5.2.4 we have:
(i) for x € C(SU,(2)) we have U*(2&y) = (Vo P)(z) € C(K) < L*(K,v);
(ii) for x € C*(c,1) and y € C(SU,(2)) we have U*(xyé,) = V(x)U*(yéy);

(iii) for x € C(SU,(2)) and y € C*(c, 1) we have U*(zy&y) = (Vo P)(x)U*(y&s).
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Proof
We can define a unique linear map from the polynomials in z and z* to L?(SU,(2)) such
that 2"2*™ — (c*)™ "¢y for m,n € Ny and 4 the cyclic vector for the Haar state ¢ of

C(SU4(2)). Then for m, n, m’,n" € Ny and we have

=
N
:\
*
3
S~—
~_
[
VR
—
@)
*
S~—
3
@)
3
Iy
&
—
@)
*
S~—
3
)
3
Iy
<
~
|
-
—~
@)
3
—~
@)
*
N—
3
—~
@)
*
N—r
3
@)
3
N—

and so we can extend this to an isometric embedding U : L*(K,v) — L*(SU,(2)).

We now consider the Hilbert space adjoint U* : L*(SU,(2)) — L*(K,v). Clearly U*

is contractive as U is an isometry. Furthermore for k£ € Z and m, n, s,t € Ny we have

(U*(armn€s)|2%72") = (kmnéslaoss) = (dpoz™"2"|2*°2")

n

and so U*(agmn€p) = dk02*™ 2" from which property (i) follows. Let x € C*(c, 1) and
y € C(SU,(2)), then as P is a conditional expectation we have from Definition A.5.4 that
P(zy) = xP(y) and so

U*(xy€s) = (Vo P)(ay) = W(zP(y)) = V(x)U"(ys)

and we have property (ii). Finally for x € C(SU,(2)) and y € C*(c, 1) we have P(zy) =
P(z)y and so U*(zysy) = (Vo P)(zy) = W(P(z)y) = (Vo P)(x)¥(y) = (Vo
P)(x)U*(y€,) giving (iii). O

5.2.3 The von Neumann algebras L*(SU,(2)) and L™ (K, v)

In the previous section we studied the C*-subalgebra C*(c,1) of C(SU,(2)) and we
showed that C*(c,1) =~; C(K). We now consider what this means for the von Neu-

mann algebraic setting, that is we consider relations between the von Neumann alge-
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bra L*(SU,(2)) (which can be given as the double commutant of C(SU,(2)) inside
B(L*(SU,(2)))) and the commutative von Neumann algebra L (K, ). We also con-
sider L' (SU,(2)) = L*(SU,(2)). and L' (K, v) the integrable functions with respect to
the measure v.

We show in this section that there is a normal, completely isometric embedding of
L*(K,v)in L*(SU,(2)) with a left inverse given by a normal *-map that is also a com-
plete quotient map (where we let L™ (K, v) have the operator space structure given by its
embedding inside B(L?(K,v)) and let L' (K, v) have the predual operator space struc-
ture).

For convenience in this section we let © : C(K) — C(SU,(2)) be the isometric *-
homomorphism given as the composition of U~! in Proposition 5.2.4 and the isometric
embedding of C*(c, 1) into C(SU,(2)).

We note that the following theorem is similar to that of a variety of theorems on Borel
functional calculus for normal operators on a Hilbert space. We could not find a theorem
in the literature that states this theorem in the form we give here however and so we offer
a proof in full that gives details. We note however that the applying F in the following
theorem to bounded Borel functions on K gives the same result as that of the usual Borel

functional calculus homomorphism for c.

Theorem 5.2.9 There exists an isometric normal =-homomorphism F : L*(K,v) —

L*(SU,(2)) that is the normal extension of the isometric *-homomorphism © : C(K) —
C(SU,(2)) with image C*(c,1) < L*(SU,(2)).

Proof

We define a map o : L'(SU,(2)) — C(K)* by w + w o O. Clearly as « is a composition
of contractions then « is a contraction and so a(w) € C(K)*. We show that a has
image L'(K,v). Lety € C(SU,(2)) and z € Dom(c_;) n C(SU,(2)), then wye, .¢, €
LY(SU,(2)). Let f € C(K) and x = O(f) € C*(c,1). Using that ¢ o P = ¢ and that P is
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a conditional expectation from Theorem 5.2.3 and Proposition 1.4.17 (i1) we have

<f7 o (wy§¢725¢)> = <wiy€¢vz$¢> = (vy&y|2&y) = o(2" 1Y) = P(zyo_i(2
— 3(P(eyoi(2))) = HzPyo_i(=))) = H(© j fgdv

where we’ve set g = U(P(yo_;(2%))) € C(K) < L}(K,v) for ¥ the *-isomorphism in

Proposition 5.2.4. Then we have shown that

(oo (wpge,)) = (o9

forall f € C(K) and thus a (wye, .¢,) = g € L'(K,v).

Now let y, z € C(SU,(2)). By Proposition 1.3.18 we have that Dom(o_;) is dense in
C(SU,4(2)), so we have a net (z,) < Dom(o_;) n C(SU,(2)) such that lim z, = z and by

the above we have wye, ¢, € L'(SU,(2)) for all a.. So it follows that

le(wyey z6,) = Ay zags) | < lwyey o—zareo | = 190111 (2 = 2a)Es] — 0

and thus a(wye, .¢,) € L' (SU4(2)). Aslin {wye . | y, 2 € C(SU,4(2))}is densein L' (SU,(2))
and « is contractive we have a(w) € L*(K, v) for all w € L'(SU,(2)).

We show « is surjective. Let f € L!'(K, v), then there exists g, h € L*(K, ) such that
f=ghandleté = U(f)andn = U(g) for U : L2(K,v) — L2(SU,(2)) the isometric
embedding given in Proposition 5.2.8. Let ' € C(K) with z = ©(F') € C*(¢, 1) and we

have
(F,alwey)) = (x,wey) = (aUg|UR) = (F, ghy = (F, f).
As this holds for all ' € C(K) we have a(we,,) = f.

We let F, : L'(SU,(2)) — L'(K,v) denote the corestriction of o to L'(K, v) and
we consider the adjoint F : L*(K,v) — L*(SU,(2)). We have that F is contractive
as I, is contractive. Let F' € C(K) < L*(K,v) then for all w € L'(SU,(2)) we have
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(F(F),w) = (O(F),w) and so F(F') = ©(F) and I is the normal extension of ©. Then
IF|C( K) is the map © and thus is a *-homomorphism. In particular from Proposition 5.2.4
we have that F(2*™z") = (¢*)™c".

Clearly we have that Image [ < W* and so we show that [F' is onto W*
Let z € mw*, then by the Kaplansky density theorem there exists a bounded net
(xa) < C*(c, 1) such that z,, % 7. For all a we let F, € C(K) such that F(F,) = z,
which exists as IF restricted to C(/K’) and corestricted to C*(c, 1) is a *-isomorphism. Also
it follows that I is an isometry on C(K’) again as I restricted to C(K) and corestricted to
C*(¢, 1) is a =-isomorphism, therefore we have a bounded net (F,,) < C(K). Also as F,
is surjective for all f € L'(K, v) we have some w € L*(SU,(2)) such that F, (w) = f and

SO

[(Foo = F, [ = KF(Fo = Fg),w)| = (o — 2,w)| = 0.

So (F,) is a weak* Cauchy net and we have a unique F' € L* (K, v) such that F, .
Using the triangle inequality and that IF is a =-map on C(K), for all w € L'(SU,(2)) we
have

(2, w) = (F(F),w)| < K& = 20, w)| + [(Fo = FFu(w))] = 0.

and so F(F) = z.
Finally we show that F is a *-homomorphism. Let F' € L*(K,v) and let (F,) <
C(K) such that F, %, F. Then for all w € L'(SU,(2)) we have

[F(F),w) = F(F)*,w)| < [KE(F* = FY),w)| + [KF(Fo = F)*, w)l
= [(F = Fo, Fa(W))] + [{Fo = FFL (W)l = 0

and so [F is a *-map.

Now let F' € L*(K,v) and G € C(K) and using that IF is a »-homomorphism on
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C(K) we have

[(F(FG),w) = F(F)F(G),w)|
< [(F(FG) = F(F.G),w)| + KF(Fo)F(G), w) — F(F)F(G),w)]
= |<F - FomG ’ F*(W)>| + |<Fa - Fa F*(F(G>w)>| —0

and so F(FG) = F(F)F(G). Similarly we have F(GF) = F(G)F(F). Now say G €
L®(K,v) and let (G,) < C(K) such that G, %, @G, then using the results above we

have

[(F(FG) = F(F)F(G),w)|
< (F(FG) = F(FGa),w)| + [(F(F)F(Ga) = F(F)F(G), w)l
= G = Ga, Fu(w) - F)| + (Ga = G, Fu(w - F(F)))[ = 0

and so [F is a homomorphism as required. O

Theorem 5.2.10 There exists a normal quotient map E : L*(SU,(2)) — L*(K, v) that
is a =-map where for all f,g € L?(K,v) and x € L*(SU,(2)) we have

(E(z)flg) = (zU()IU(g))

(where U : 1L*(K,v) — L*(SU,(2)) is the embedding from Proposition 5.2.8) and where

E is a left inverse to F. Additionally we have

(i) a normal extension P := T o E of the conditional expectation P : C(SU,(2)) —

*

C*(c, 1) given in Theorem 5.2.3 where P(x) = x if and only if x € C*(c, 1)w ;
(ii) E(z) € C(K) forall x € C(SU,(2));

—’LU*
(iii) E is a x-homomorphism when restricted to C*(c,1) .
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Proof

We define E : L*(SU,(2)) — B(L*(K,v)) by the E(z) = U*zU. Then clearly E
is contractive and satisfies the formula given in the theorem. Let (z,) < L*(SU,(2))
with a o-weak limit x € L*(SU,(2)). Then in particular for any (&), (7:)72, <
L2(3U, (2)) such that 37, &%, 322, ]2 < o we have [S17 (([z — za)éiln)] — 0.
Let (fi)%4, (9:), = L*(K,v) such that >~ | fi|* < o0 and Y7, | gi[|> < oo, then we

have

0
Z E(za)]fil9:)

As U is an isometry then we have >.° [U(f)|* = 2.2, [fi]*> < oo and similarly

= 2~ U I

Yy U (gi)]* < oo and so this equation tends to 0 and E is a normal map. For g,/ €

L*(K,v) and z € L*(SU,(2)) we have

(E(z%)g|h) = (z*U(g)|U(h)) = (2U(h)|U(9)) = (E(x)hlg) = (E(z)"g[h)

and so we have shown that we have a normal contractive »-map E : L*(SU,(2)) —
B(LA(K,v)).
Let z € C(SU,(2)) = L®(SU,(2)) and g, h € L?(SU,(2)), then letting y = U(g) in

Proposition 5.2.8 we have

(E(z)glh) = (2U(g)|U(h)) = (U*(zU(g))|h)
= (Wo P)(@)U*U(g)h) = (¥ o P)(x)g|h)

where we’ve used the #-isomorphism ¥ from Proposition 5.2.4 and that U is unitary and
so U*U =1id. So E(z) = (¥ o P)(z) for all z € C(SU,(2)).

Now we show that [E has image inside L (K, v). We have that C(SU,(2)) is o-weakly
dense inside L*(SU,(2)) and similarly C(K) is o-weakly dense inside L* (K, v/), so we

have a commutative diagram as follows
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/]E\.
L*(SU,(2)) L*(K,v) = B(L*(K,v))

C(ST,(2)) —5= C* (e, 1) —— C(K).

As E is normal and restricts to W o P on C(SU,(2)) it follows that E has image inside
L*(K,v). We redefine E to be the map E : L*(SU,(2)) — L* (K, v) and it follows from
above that E is a normal contractive *-map with E(z) = (Vo P)(z) forall z € C(SU,(2)).
As [ and E are normal we can define a normal map P = F o E. We have shown above
that IP is the normal extension of P, that is we have P(z) = P(z) for all x € C(SU,(2)).
Now say x € C*(c, 1) then we have (F o ¥)(z) = x and so P(z) = (Fo ¥ o P)(x) = x.

We show that E is a left inverse of F. For g, h € L?(K, v) and m, n € Ny we have

(s 0 B )(wyn), 227 2") = Cwon, B((¢)™e")) = ((¢")""U(9)|U (h))
= (U((c*)"c"U(g))|h) = (2"2"U*Uglh) = {wgn, 22" 2")

where we’ve used Proposition 5.2.8 (iii) and that U*U = id again. It follows that for all
F e C(K) we have {((F, o E,)(wyn), F) = {wyn, F) and, as any element of L' (K, v/)
can be written as a product of two elements of L?(K, v), we have F, o E, = idp (g )-
Then taking the adjoint of this we see that £ o F = idp« (k. ,). From this and using that F
and K are contractions and the Banach space version of Lemma 1.1.20 we have that [E is
a quotient map.

We show that for = € L*(SU,(2)) we have P(z) = « if and only if € C*(c, 1)" .
Say P(x) = z, then as F has image W* we must have z € mw*. Conversely
let z € W*, then there is a net (z,) < C*(c, 1) such that z,, %, 2. Then for all

w € L(SU,(2)) we have

(P(x) — z,w) = (P(x) — P(xq),w) + (o — z,w) =& — 24, Ps(w) +w)) — 0
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and so P(z) = z.
Finally it is clear that E is a *-homomorphism on C*(c, 1)w aslP =Fo[Eisclearly a

*-homomorphism on C*(¢, 1) and F is a *-homomorphism. O

We have natural operator space structures on C(K) and L (K, v/) as subspaces of B(L?(K,v))
and thus we have an operator space on the predual L' (K, v) of L (K, ). Then with these
operator space structures we have the following. We note that this gives us the minimal
operator space structure on C(K') and L (K, v) and the maximal operator space structure

on L'(K,v).
Proposition 5.2.11 The map E is a complete quotient map and F is a complete isometry.

Proof

Using Stinespring’s theorem we have |E|,, = |U||U*| < 1 and so E is a complete con-
traction. We also have that [F is a *-homomorphism and so this is a complete contraction.
It follows that [E, and [, are also complete contractions. By Lemma 1.1.20 and using that
Fy o Ey = idpi (k) it follows that [E, is a complete isometry with [F,, a complete quotient

map. The result then follows from Proposition 1.1.19. O

We finish this section by proving a decomposition theorem for L' (K, v/) that will be useful

later.

Proposition 5.2.12 Let f : K — C, then we have f € L'(K,v) if and only if there
exists a sequence of functions (f.)*, < LY(T) such that Y-, ¢*||f:|l1 is finite with

f'(qT€27ri9) — fr (€27ri9).

Proof
Say we have a sequence (), = L'(T) such that >, , ¢*"| f,||1 is finite and let f be the

function f(q"e?™) = f,.(e*™) for r € Ny and 6 € [0, 1) and f(0) arbitrary. Then

0 1 0
| lurewy = (1= ¢%) ), QQTL f(q"e*™)| d6 = (1= ¢*) D ¢ | fe|1 < 0
r=0 r=0
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and so f € LY(K,v).
Conversely, say f € L'(K,v) and for all 7 € Ny let f, : T — C be the map ¢** —
f(q"e*™) for § € [0,1). Then

o0 o¢] 1
A=) > el = (1= ) QZTL |F(q"e*™) [ dO = | flur k)
r=0 r=0

which is finite as f € L'(K,v) and so we must have | f.|; finite for all » € Ny and

therefore (f,)*, < L}(T). O

5.2.4 The P Operator for SU,(2)

In this section we show that we have an explicit formula for the unbounded operator
P :12(SU,(2)) — L?(SU,(2)) from Proposition 2.2.10 for the case of SU,(2). Note that
this is not used for the remainder of the thesis and is given for interest only.

As SU,(2) is compact it follows immediately that » = 1 for v the scaling constant.

We show that we have the following formula for P.

Proposition 5.2.13 We have A(Hopf(SU,(2))) € Dom(P) and P(ex;m) = ¢*exim for
k,m e Ngyandl € Z.

Proof

Let Q : L?(SU,(2)) — L?*(SU,(2)) be the map ex;.m — ¢*exim for k,m € Ny and
l € Z,1i.e. let () be the map given in the proposition. It follows easily that () is positive,
injective, self-adjoint and unbounded. It follows from the theory of unbounded operators
(see Stritild et al. (1979) Chapter 9 and Conway (1990) Chapter 10) that ()% is a unitary

operator and Q%ey;,, = ¢**

er1m forall k,m e Ny and [ € Z.
Let k € Z, m,n € Ny and ¢ € R, then we show that PUA(apm,) = 7¢(A(akmn)). It
follows from Corollary 5.1.9 that A(7;(armn)) = ¢**" ™ A(apmy). Also from Equation

(5.8) and Theorem 5.2.1 we have GNS space L?(SU,(2)) = (*(Ny) ® (*(Z) ® (*(Ny). We
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calculate from Lemma 5.1.18 for £ > 0 that

A<akmn> = (akmn ® 1)50 - ]- - q 1/ Z akmn ®1 epOp

(1 - q2) Z;O:k qp(1+n+m)ap tte ap—(k‘—l)ep—k,n—m,p lf k 2 0

(1—¢?) Z;OZO Py ke knmy ik <0

and so

PitA(akmn) = q%t(n_m)A(akmn) = A(Tt(akmn))-

Clearly we can extend this linearly to all of Hopf(SU,(2)) and the result then follows

from Proposition 2.2.10. O

53 LL(SU,(2))

In this section we study the L%—algebra from Chapter 4 of the quantum group SU,(2).
Consider the antipode S on C(SU,(2)) with domain Dom(S) where Hopf(SU,(2)) <
Dom(S) < C(SU,(2)) = L*(SU,(2)) with S(a) = a*, S(a*) = a, S(c) = —qc and
S(—qc*) = c* for the generators of C(SU,(2)). As S is an anti-homomorphism we
have that S((c¢*)") = (—%)m (¢*)™ and so we see that |S((c¢*)™)|| — o0 as m —
and S is unbounded on C(SU,(2)). As a result of this unboundedness we will see that
L;(SU,(2)) is a proper subalgebra of L' (SU,(2)). Also as the unboundedness of S seems

to be largely dependent on the ¢ generator then it is worth to study the effects of this on

C*(¢,1) = C(K). We now turn to the study of this.

5.3.1 The Antipode of C*(c, 1) and C(K)

First we consider what happens with S acting on Dom(S) n C*(¢, 1). We show in this
section that for € Dom(S) n C*(c, 1) that we have S(z) € C*(c, 1).
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Lemma 5.3.1 We have 1,0P = PoT, forallt € R. Then it follows that there is a o-weakly
. —lu*

continuous one-parameter group 7¢ on C*(¢, 1) such that for all t € R we have that

7f is the restriction of 1. Furthermore we can restrict this again to a norm continuous

one-parameter group on C*(c, 1).

Proof
By Corollary 5.1.9 we have 7;(a) = a and 7;(c) = ¢**c for all t € R, so using that 7; is a

s-homomorphism for all £ € R we have
(P o Tt)(a'kmn) = q%t(n_m)P<akmn) = q2it(n—m)5k7o(c*)mcn = (Tt O P) (akmn)-

By linearity and continuity it follows that 7, o P = P o 7, on C(SU,(2)) for all ¢ € R.
Now let x € L*(SU,(2)), then we have a net (z,) < C(SU,(2)) that has o-weak limit
x. Then using that 7; is normal for all ¢ € R and PP is normal from Theorems 5.2.9 and

5.2.10 it follows that for all w € L' (SU,(2)) we have

(P om)(x),w) = (o P)(x),w)]
< KPom)(z) = (Pom)(za),w)| + (1 0 P)(2a) — (i 0 P)(2), w)l

= [(& = o, (Pom)u(w))] + (& = Za, (12 0 P)u(w))] = 0

where we’ve used that P(y) = P(y) for all y € C(SU,(2)). So we have 7, o P = P o 7 for
all t e R.
By Theorem 5.2.10, for z € C*(¢,1) we have P(z) = x, then from above we

have 7(z) = P(r(z)) and so 7;(x) € C*(¢,1)" . Then we can define a restriction and

corestriction 77 : C*(c, 1)w* — C*(e, 1)w*. As for all ¢ € R we have 7/ is the restriction
of 7, then for all x € W* the map t — 77(x) from R to is mw* is continuous
with respect to the weak™-topology on its codomain, that is 7¢ is a weak™*-continuous one-
parameter group. The proof for the norm-continuous one-parameter group on C*(c, 1)

follows similarly. O
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Proposition 5.3.2 Fix z € C and let T be the o-weakly continuous scaling group on
L*(SU,(2)) given by Definition-Theorem 2.2.7. Then for x € Dom(t,) we have P(x) €
Dom(t,) with 7.(P(z)) = P(1.(z)) and in particular if v € mw* N Dom(7,) then
n(@) e

Similarly let T be the norm continuous scaling group on C(SU,(2)). Then for x €
C(SU4(2)) n Dom(7,) we have P(z) € C*(c,1) n Dom(r,) with 7,(P(x)) = P(7,(z))

and in particular if x € C*(¢, 1) n Dom(7,) then 7,(x) € C*(c, 1).

Proof
First let 7 be the o-weakly continuous scaling group on L*(SU,(2)) and fix € Dom(7,) <
L*(SU,4(2)). Then there is a unique F' : S(z) — L*(SU,(2)) such that F' is continuous
with respect to the o-weak topology on L*(SU,(2)), analytic on S(z)° and F'(t) = 7(z)
forallt € R. Defineamap G : S(z) — mw* by G(w) = P(F(w)) forall w € S(z).

.
We show that G is continuous with respect to the o-weak topology on C*(c, 1)w , analytic

on S(z)? and G(t) = 7(P(x)).

Clearly G is continuous as it is the composition of continuous functions. Fix wg €
S(z)°. As F is analytic we have some sufficiently small § > 0 that is not bigger than the
radius of convergence and a sequence (z,);_, < L*(SU,(2)) such that we have a norm

convergent sum
0
w) = Z(w — wo) "y
n=0

for all w € S(z)° such that |w — wy| < 0. As 9 is less than or equal to the radius of
convergence of I we have >, |w — wo|" |x,| < oo. Consider the sequence (y,,)*_,

where y, = > (w — wp)'P(z;) for all n € Ny. Then for all n € N we have

: ( K )H

n
I Yo
=0

n
Yo
=0

N
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which converges to 0 as n — 0. So it follows that G(z) = > (w — wo)"P(x,,)
converges in the norm for w € S(z)° with |w — wy| < 0 where ¢ is less than the radius
of convergence of F' and thus G is analytic on S(z)°. Lastly, from Lemma 5.3.1 we have
G(t) = P(F(t)) = P(r(x)) = 7(P(x)). It then follows that P(x) € Dom(7,) and
7:(P(z)) = G(2) = P(F(2)) = P(7.(x)).

The C*-algebra case follows similarly but by considering the function G : S(z) —
C*(c, 1) given by G(w) = P(F(w)) for all w € S(z) and using the norm topology on
C(SU,(2)) and C*(c, 1). O

Proposition 5.3.3 We have Po R = Ro P.

Proof
We show that P o R = Ro P on C(SU,(2)) and then Po R = R o P on L*(SU,(2)).
Assume for now that 0 < ¢ < 1, then from Corollary 5.1.9 we have R(c) = —c and

R(a) = a*. So as R is a =-anti-homomorphism, for k£ > 0 and m, n € Ny we have

R(agmn) = R(¢)"R(c")" R(a)" = (=1)"""c"(c*)" (a")"

_ (_1)n+mqk(n+m)(a*)k(c*)mcn _ (_1>n+mqk(n+m)a7k’m’n

and similarly for k& < 0 we have R(app,) = (—1)"*mq *+mq_, ... Thus we have
(P o R)(akmn) = (—1)"™60(c*)"c" = R(6ko(c*)"c") = (R o P)(agmn)-

Similarly if —1 < ¢ < 0 we have R(c) = cand R(a) = a* and so again (P o R)(axmn) =
(R o P)(amn). It then follows by continuity that (P o R)(xz) = (R o P)(x) for all
z € C(SU,(2)).

Now let x € L*(SU,(2)) and let (z,) = C(SU,(2)) be a net such that x,, %, 2. Then

using that R and [P are normal, for all w € L*(SU,(2)) we have
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[(Po R)(x),w) = (RoP)(z),w)
< K(Po R)(x) = (Po R)(xa), w)| + (R o P)(xa) = (RoP)(x),w)]
= [(& = za, (P o R)u(w))| + (& = 2o, (RO P)u(w))] = 0

andsoPo R = R o P asrequired. O

The next theorem follows immediately from the preceding three lemmas and propositions

and the decomposition S = R o 7_;.

Theorem 5.3.4 Let S denote the von Neumann algebraic antipode and x € Dom(S) <
L*(SU,(2)), then P(z) € Dom(S) and S(P(z)) = P(S(z)). In particular for x €
mw* we have S(z) € mw*.

Similarly let S denote the reduced C*-algebraic antipode and - € Dom(S) < C(SU,(2)),
then P(z) € Dom(S) and S(P(z)) = P(S(z)). In particular for x € C*(c, 1) we have

S(z) € C*(e, 1).

We want to define an antipode, unitary antipode and a scaling group on C(K) and L* (K, v).
The preceding theorems and propositions of this section ensure the following definitions

make sense.

Definition 5.3.5 (i) Let Dom(S%) = {f € L™(K,v) | F(f) € Dom(S)} and let
SELP(K,v) — L*(K,v) be given by S5 (f) = E(S(F(f))) for f € Dom(S¥);

(ii) For z € C, let Dom(7X) = {f e L*(K,v) | F(f) € Dom(r.)} and let
7K L®(K,v) — L®(K,v) be given by 7% (f) = E(r.(F(f))) for f € Dom(7X);

(i) Let RX : L°(K,v) — L®(K,v) be the map E o RoF.

In the following straightforward proposition we show that 7 is equivalent to the one-
parameter group 7¢ from Lemma 5.3.1 as would be expected.

w*

Proposition 5.3.6 Let f € Dom(7X) and let x = F(f), then x € Dom(1.) n C*(c, 1)
and F(7*(f)) = 7.().
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Proof

It follows by definition of Dom(7X) that x = F(f) € Dom(7.) and as F(f) € W*
from Theorem 5.2.9 we have x € Dom(7X) n W* It follows from Definition
5.3.5 (ii) that F(7X(f)) = F(E(r.(z)) = P(r.(z)) = = where the final equality follows
as z € C*(,1)" and Theorem 5.2.10 (i). O

Proposition 5.3.7 For all t € R we have that T/ is a =-automorphism on 1°(K,v) and

the restriction of T/ to C(K) is also a x-automorphism.

Proof

This follows on L*(K,v) as IF is a *-homomorphism from Theorem 5.2.9, E is a -
homomorphism on C*(c, 1)w from Theorem 5.2.10 (iii), 73 is a *-homomorphism for all

teRand7X =EornoF forallteR.
Let z € C*(c¢,1). When restricted to C(K) we have that F has image C*(c, 1), for all
t € R we have that 7;(x) € C*(c, 1) and E(z) € C(K) by Theorem 5.2.10 (ii) and thus 7%

is a =-automorphism on C(K). O

Proposition 5.3.8 We have the following relations

SEoE=EoS, SoF =Fo Sk, tEocE=Eor, r,oF=Fork
RKQE:EOR’ ROIF:IFORK’ SK:RKOT5/2:T£/2ORK

(R™)? = id, RN orf =1/t o R

and R and 7 are normal operators where z € C and t € R.

Proof

If 2 € Dom(S) then from Theorem 5.3.4 we have F(E(z)) = P(z) € Dom(S) and so by
definition E(z) € Dom(S%) and S¥(E(z)) = (EoSoP)(x) = (EoPoS)(z) = E(S(x)),
thatis S® o E = E o S. For F' € Dom(S¥) by definition we have F(F) € Dom(.S) and

(SoF)(F)=(SoPoF)(F)=(PoSoF)(F)=(FoSXoEoF)(F) = (FoS")(F)
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and so S o F = IF o S%. We can prove the results on 7% for 2z € C and R¥ similarly.

Let f € Dom(S¥) and we have
S*(f) = (EoSoF)(f) = (Eo RoripoF)(f).

We have F(f) € Dom(S) = Dom(7_;;2) and so by Proposition 5.3.2 it follows that
(Por_ipoF)(f) = (T_ip o PoF)(f) = (7—ij2 © F)(f). Then

SE(f) = ([EoRoPoripoF)(f) = (R o78,)(f)

and we have S* = R" o 7, .. The others follow similarly.

For all t € R we have R¥ and TtK are normal operators as E, F, R and 7; are normal

forallt e R. O

We now show that for any z € C that Poly(K) is a core for 7% and thus also for S¥.

Proposition 5.3.9 Fix z € C. We have that Poly(K) is a core for 7 on C(K) and is a

weak*-core for T on L7 (K, v).

Proof

We show the case where 75 is a one-parameter group on L* (K, ), the C*-algebra case
is similar. Let /' € Dom(7X) so that F(F) € Dom(7.)). Then using Corollary 3.2.19
we have Hopf(SU,(2)) is a o-weak core in L*(SU,(2)) and so we have a net (z,) <
Hopf(SU,(2)) such that z,, o, F(F) and 7,(z,) AR 7.(F(F)). From Theorems 5.2.9
and 5.2.10 we have E(z,,) € Poly(K) and as F(E(z,)) = P(z,) = P(z,) then E(z,) €
Dom (7). Then for all G € L}(K, v) and using that E o F = id we have

[KE(za) = F, G)| = KE(za) — (EoF)(F),G)| = Kza — F(F),E«(G))| = 0

and using that 7 oE = Eo7X from Proposition 5.3.8 and 7, 0P = Po7, from Proposition
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5.3.2 we have

(K (E(xa) — 7 (F),G)| = [(B(7.(P(24))) — E(7.(F(F))), G|
= [(7.(za) — T=(F(F)), E.(G))| — 0.

*

Both of these equations tend to 0 because z,, w, F(F) and 7.(7,) — 7E(F(F)) and

so Poly(K) is a core for Dom(7X) as required. O

For t € R we have that 7% acts by rotating the domain. We make this precise in the next

proposition.

Proposition 5.3.10 Let I’ € C(K), then we have 75 (F)(q"e*™) = F(q"e2™0+2itnq) for
allr € Ny and 0 € [0,1) and 7 (F)(0) = F(0).

Proof

For all ¢ € R we have that 7/ is a *-automorphism on C(K) from Proposition 5.3.7 and
from Lemma 1.33 in Williams (2007) we have a homeomorphism h; : k' — K such that
T5(F)(z) = F(hy(z)) forall F € C(K) and z € K. Now consider the function z, we

know that 7/(2) = E(7y(c)) = ¢**z and thus for all 7 € Ny and 6 € [0, 1) we have
ht (qr€27ri9) _ z(ht (qr627ri6)) _ TtK (g) (qr€27ri9) _ 62it In qg(qre%ri@) _ qr€27ri9+2it Ingq

and similarly £;(0) = z(h:(0)) = 7/(2)(0) = 0 as required. O

To finish this section we show that we have the following complete isometry similar to

Proposition 4.2.3.

Proposition 5.3.11 The map Q¥ : LY(K,v) — LY(K,v) given by f — RE(f*) for

f € LYK, v) is a complete isometry.

Proof

We define a map Q¥ : L' (K,v) — LY(K,v) by QX = F, o Q o E, where Q :
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L'(SU,(2)) — L'(SU,(2)) is given by Proposition 4.2.3. Then using that E and F are
«-maps, for all f € L'(K,v) and F € L*(K,v) we have

@QF(), F) = (Fu 0 Q)(Ba(f)), F) = Ful(Bu( )" o R), F)

= (E.(f), R(F(F))*) = {f,R"(F)*) = (RE(f*), F)

and so QX (f) = RE(J").
We have from Proposition 4.2.3 that () is a completely isometric isomorphism and so

(Q* is a completely isometric isomorphism given by T — R(z*). Taking the adjoint of
Q" we get (QF)* = E o Q* o F and then for F' € L* (K, v), and using Proposition 5.3.8
we have

(Q")*(F) = (Eo R)(F(F)*) = R*(F").
Then we have ((Q")* o (QF)*)(F) = (Q")*(RK(F*)) = R*(R"(F*)*) = F and so
(QF)* o (OF)* = id. Also we have F(F) € C*(;1)" and OF (F(F)) e O, 0
meaning [P (W) — Q*(F(F)) and as F and Q* are complete isometries we have

[@ (7)|, = |®o@ T, = [P (@FF)|

- |@®F)|, - IFE)ls = 1Flas = ],

As (QF)* o (QX)* = id and (Q¥)* is a complete isometry then (Q%)* is a completely

isometric isomorphism and so is Q¥. O

532 Li(K,v)

In this section we introduce the Lj (K, ») with a natural inclusion into L} (SU,(2)) and
then investigate this space further. As L!(K,v) are the integrable functions with respect
to the measure  we can use some measure theoretic techniques in this section to gain a

better understanding of L (K, v/).
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We begin by introducing L (K, v).

Proposition 5.3.12 Let f € L'(K,v). Then E.(f) € Li(SU,(2)) if and only if there
exists some g € L (K, v) such that {(F, gy = (S*(F), f*) for all F € C(K) n Dom(S*).

Proof
Let w := E,(f) and assume w € Lj(SU,4(2)). Let F' € C(K) n Dom(S*) and then
F(F) € C*(¢,1) n Dom(S). Then using that E is a *-map from Theorem 5.2.10 and

Definition 5.3.5 we have

(SH(F), f*) = (B0 SoF)(F)*, f) = (SF(F))*,w) = (F(F),w) = (F,Fu(w)).

And so letting g = F,,(w*) we have (F, g) = (SK(F), f) forall F € C(K) n Dom(S).
Conversely say there exists some g € L!(K, ) such that (F, g) = (S¥(F), f*) for all

F € C(K) nDom(S¥). Let « € Dom(S) n C(SU,(2)), then by Theorem 5.2.10 we have

E(x) € C(K) n Dom(S%) and using that IE is a *-map and Proposition 5.3.8 we have

(S(2)*,Eu(f)) = (B(S(2)*), f) = (S"(E(2)), f*) = (E(2), 9) = {z, Ex(g))-

Now let z € Dom(S) < L*(SU,(2)), then there exists a bounded net (x,) < Dom(S) N
C(SU,(2)) such that 2, 2> z and S(z,) 2> S(z). Then we have

5@ BT~ <@, Eulg))
< [ Bl - (S Eull)] + Kea, Bal9)) — @, Eulg)] = 0.

So for all x € Dom(S) we have (S(z)*,E.(f)) = {(z,E.(g)) where E,(g) € L'(SU,(2))

as required. O

So we make the following obvious definition for Lé(K V).
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Definition 5.3.13 We [et

1g € LYK, v) such that

Li(K,v) =< feL'(K,v)
(SE(F), f*y =(F,g) VF e C(K)n Dom(SK)

Similarly to the case of L; (G) for a general locally compact quantum group G we have a

unique f* satisfying the condition of L;(K,v) and we have a norm

|l oy = max{l| fllea o, | £l

for f € Li(K,v) under which L} (K, v) is a Banach space. We show we have an an iso-
metric embedding of L} (K, v) into L} (SU,(2)) next that we can use to define an operator

space structure on L} (K, v/).

Proposition 5.3.14 There is an isometric embedding E : L} (K, v) — L{(SU,(2)) given
as the restriction and corestriction of the map E,. : L' (K, v) — L*(SU,(2)) from Theorem

5.2.10.

Proof

We have an isometry 0% : LI(K,v) — LY(K,v) @, LI(K,v) given by f — (f, f?)
for all f € Lj(K,v). We also have an isometric embedding 65U+ : L}(SU,(2)) —
L'(SU,(2)) @, L1(SU,(2)) given by Equation (4.2). Lastly from Theorem 5.2.10 and
Proposition 1.1.28 (ii) we have an isometric embedding E.®,E, : L'(K, v)®,L (K, v) —
LY(SU,(2)) ®, L1(SU,(2)). Then by Theorem 5.3.12 there exists a bounded map E :
Li(K,v) — L}(G) that is the restriction and corestriction of E, such that we have a

commutative diagram

LL(K,v) 0" LY(K,v) @, L (K, V)
Eii iE*@ocE*
Ly (SUq(2)) — 5= L1 (SU4(2)) @0 L (SU,(2)).

201



5. THE COMPACT QUANTUM GROUP SU,(2)

As 0K, 65V« and E,, @, E, are all isometries then Ef, must also be an isometry. O

Definition 5.3.15 We let Lj} (K, v) have the operator space structure such that the embed-

ding Ef, L} (K,v) — L{(SU4(2)) from the preceding proposition is a complete isometry.

Proposition 5.3.16 (i) The map 6% : Li(K,v) — L'(K,v) @, L'(K,v) given by

f = (f, f%) is a completely isometric embedding.

(ii) Forw € L}(SUy(2)) we have F(w) € L{(K,v) and we have amap F%, : L} (SU,(2)) —
L& (K, v) that is the restriction and corestriction of the map . from Theorem 5.2.9.

Furthermore this map is a complete quotient map that is a left inverse of Ef.

Proof

(1) From the preceding proof we have a commutative diagram

0 -

Li(K,v) LYK, v) @, LYK, v)
Eil iE*@ooE*

L;(5Uq(2)) L1(SU,(2)) @a L1(SU4(2)).

95Uq(2)

We know that E% and 65V«(2) are complete isometries. Also as E, : L'(K,v) —
L!'(SU,(2)) is a complete isometry then by Proposition 1.1.28 (ii) it follows that

E, @, E, is a complete isometry and so ' must be a complete isometry.

(i) Letw € L{(SU,4(2)), then for all F' € Dom(S*) we have

(SK(F)* Fo(w)) = (S(E(F))*,w) = F(F),w) = (F,Fy(w?))

and so F, (w) € L} (K, v) with F, (w)* = F,(w?).

Then we have shown that there is a completely bounded map F? : Lj(SU,(2)) —

Lé(K ,v) given by the restriction and corestriction of I, such that we have a com-
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mutative diagram

QSUq (2)

L (SU4(2)) L1(SU,(2)) @ L1(SU,(2))
Fil l]F*@oo]F*

Li(K,v) LYK,v)®, LYK, v).

eK

As T, is a complete contraction it follows from Proposition 1.1.28 that ', @, F, is
a complete contraction and then using that #5Y4(2) and #% are complete isometries it

follows from the commutative diagram that % is a complete contraction.

As Ef and [F%, are restrictions of the maps E., and F, respectively it follows that F?
is the left inverse for EX. Then from Lemma 1.1.20 it follows that F% is a complete

quotient map. 0O
We have the following which is similar to Proposition 4.1.11.
Proposition 5.3.17 Let f € L' (K, v). We have that the following are equivalent:
(i) feLi(K.v);
(ii) Forall F € DOIH(TZ%) we have some g € L'(K, v) such that <7',§(2(F), ) ={(F,g)
(iii) f € Dom((7]},)«).
In the case that these conditions hold we have (t}},).(f) = Ry (f*)*.

Proof
Say (i) holds, that is f € Lj(K,v). By Proposition 1.3.20 (ii) for all F € DOHI(TiI/(Q) we

have F'* € Dom(7”, ,) and 7%, ,(F*) = 7J},(F)* and so
(Tia(F), ) = B (FF)* f) = (SH(RE(F))%, f) = (R (F), f5) = (B, RE(f))

where we’ve used that S* = 7%, o R and (R")? = id. Then as Ry (f*)* € L'(K,v)

we have condition (ii).
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We have that condition (ii) implies condition (iii) straight from Definition A.2.10. It
also follows that (7 /2) (f) = RE(f*)* from the same definition.

Now assume f € Dom((7 /2) ), then again by Definition A.2.10 there exists g €
LY(K,v) such that for all F € Dom(t /2) we have (T 1/2( ). f) = (F,g). Let G €
Dom(tm) and using that G* € Dom(Tm) with Tm(G*) = T£/2(G)* we have

(S™(G), [*) = (TR(RM(G))", f*) = (RE(G)*,9) = (G, R (g))

for all G € Dom(7”, ,) and so f € L}(K,v). O

By this proposition the following notation is well defined.

Notation 5.3.18 Given f € L}(K,v) we let f* € L'(K,v) denote the function (7:7)%(f)
where (7’52)* is defined by Definition A.2.10.

We give another method for calculating the norm on Lé (K, v) before moving on to further

investigation. This follows directly from Propositions 5.3.17, 5.3.16, 5.3.11 and 1.1.28.

Corollary 5.3.19 For 6% : Li{(K,v) — L'(K,v) @y LY(K,v) the map in Proposition
5.3.16 and Q¥ : LY(K,v) — LYK, v) the map from Proposition 5.3.11, we have a
complete isometry U := (id @, Q) 0 6% - Li(K,v) — LYK, v) ®y L' (K, v) such that

f (L (5):(0) = (F, f)

and furthermore it follows that
b
HfHL;(K,u) = maX{HfHLl(K,y)v Hf HLl(K,y)}-

5.3.3 Structure of L}(K’, v)

In this section we now prove Theorem 5.3.26 that states informally that a function f €

L'(K,v) is in Lj(K,v) if the function f o 7'52 is bounded. This goes part way towards
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answering the question after Proposition 4.1.11 for SU,(2), however we will see in the
next section that this is not easy to extend to the case of L} (SU,(2)).

We remind the reader that given f € L'(T) we have the Fourier transform f € ¢o(Z)
where f(n) = Sé f(eZm0)e2™ind dg for n € Ny (see Appendix A.7). We now give a couple

of straightforward lemmas before proving our first proposition of this section.

Lemma 5.3.20 Fix zyp € C and s € Ny. For all | € Z the function F on K given by

qr627ri9 — 57”78627”‘10 isin C(K) A DOIIl(TZIg) and TZIE(F> <q7"627ri9> _ 5T78627ril0+2ilzo lnq.

Proof

Clearly for any given [ € 7Z the function F given in the lemma is in C(K). We define
a : S(z) — C(K) by z — §, e 0+2lzIna Thig is clearly continuous and analytic
on S(z)° by properties of the exponential function and by Proposition 5.3.10 we have
a(t) = 0, erior2iltng — p(gre2mib+2itlng) — K () (gre?™?), So it follows that F' €

Dom(7%) with (75 (F))(¢"e*™) = F(z) = 0, ,e*™10+2lzma O

Lemma 5.3.21 Let zp € C, r € Ny, m,n € Ny be fixed, F = z*"z" € C(K) and
¢ € LY(T). Then we have

20

1
J TK(F) (qr62ﬂ19)¢(€27r29> do = qr(n-‘rm)e?z(n—m)zo lnq(b(m o n)
0

Proof
We let o : S(z9) — C denote the map z —> ¢" ("™ e2in=mznag i, p) Clearly this is

continuous and analytic on S(2()° and for ¢ € R we have

1
CY(t) _ qr(n+m)€2i(nm)tlan\ (b(eQﬂ'i@)efQﬂ'i(mfn)H A6
0

1

1
_ f F(qre2ﬂ'i6’+2it lnq)¢(e2ﬂ'i6’) do = f TtK<F)(qr€27ri9)¢(€27ri0) do
0 0

from which the result follows. O
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Proposition 5.3.22 Let f € L'(K,v) and let (f,)?2, = L'(T) denote the decomposition
of f € LYK, v) as per Proposition 5.2.12. We have f € Lj(K,v) if and only if there
exists a sequence of functions (g,)2, < LYT) such that ¥, ,q*"|g.|1 is finite and
gs(l) = qlfs(l) foralll € Z and s € Ny. If these conditions are true we can define

g € LYK, v) given by ¢"¢*™? — g,(e*™) (and ¢(0) arbitrary) and we have f° = g.

Proof
Let f € L;(K,v), then by Proposition 5.3.17 we have some f* e L'(K, v) such that for
all F e Dom(7},) we have (75, (F), f) = (F, ) (where f is from Notation 5.3.18). By
Proposition 5.2.12 we have a decomposition of f” into a sequence of functions (f°,)%,
LU(T) such that £2(¢2%) = f*(q7¢? ™) and ¥ ¢ | 2], < cc.

Fix s € Ny and [ € Z and let F denote the function ¢"e*™ s §, e=2m1

F e C(K) and by Lemma 5.3.20 we have I € Dom(7,},) and

, then clearly

(TZI/E(F)) <qre27m'9) _ 5T78672ﬂil972il(i/2) Ing __ (sr’sqlef%riw
and so it follows that we have
CD 1 . . ~
<TiI/{2(F)7 f> _ (1 . q2) Z q2r5r,squ fr<€2m€)€72ml€ do = (1 . q2)q25qlfs(l).
r=0 0
Also we have
FPy = (1) Y b | 28 = (1= g R
r=0 0

and as <TZI/(2<F), f> = {(F, f) we can equate these to get

forall [ € Z and s € N.

Conversely, say there exists a sequence of functions (g,)®, < L'(T) such that
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> 0@ g1 < oo and gs(1) = quA’s(l) forall s e Npand [ € Z. Let g : K — C be the
map g(q"e*™?) = g,(e2™) for r € Ny and 6 € [0, 1) with g(0) arbitrary. By Proposition
5.2.12 we have g € L' (K, v). We show that (F, g) = (7/},(F), f) for all F' € Dom(7[;)
and then by Proposition 5.3.17 we have f € L;(K, V).

By Proposition 5.3.9 we have that lin {z*"'2" | n, m € Ny} is a core for Dom(Tf/g) c
C(K). For fixed m,n € Ny we consider F' = z*2" and we show that <TZI/(2(F>, =

(F, g). We have by Lemma 5.3.21 that

1
q2r f TZI/B(F) (qTBQMO)fr(QQTWQ) do
0

RgE

(Tip(F), [)=(1-¢)

ﬁ
Il
=}

o0
_ (1 o q2) Z qr(2+n+m)67(nfm) lanr(m _ n)
r=0
o0
_ (1 . q2) Z qr(2+n+m)g\r<m o n)
r=0
w 1 . .
_ (1 o q2) 2 qQTJv qr(n+m)eQm(n—m)ng(e%mG) A6
r=0 0
w 1 . .
= (1-¢"))] qzrf F(q"e*™)g(q"e*™) df = (F, g)
r=0 0

where we’ve used that g,.(1) = qlﬁ(l) for all r € Z.

So by linearity we have (F, g) = <7’11/(2(F), f) forall F' € Poly(K) and as this is a core
for Dom(7,,) this also holds for all F' € Dom(7;,). Then by Proposition 5.3.17 we have
f € LI(K,v) and by construction f* = g. O

We now move on to proving the main theorem of this section. We still need a bit more

preparation however. We begin with the following which is essentially notation.

Proposition 5.3.23 Let ¢ € M(K) be a measure on K. Then for all r € Ny there is a
measure ¢, € M(T) and ¢, € M ({0}) such that for any F € L*(K, ¢) we have

L Fdg = <i LF dabr) + F(0)¢({0})
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where we’ve decomposed F' as per Proposition 5.2.12.

Proof

For all r € Ny we let ¢, € M (T) be given by ¢,.(A) = ¢(q"A) for all measurable A — T
and we let ¢, € M ({0}) the measure on 0 given by ¢ ({0}) = ¢({0}). Then for any
measurable A ¢ K we have a sequence (A4,)”, < T such that A = (U?«O:O qTAT) U Ay

where A, = {0} if 0 € A and is empty otherwise. Then we have

(b(A) =¢ (U qrAr> + ¢(Aw) = <i (br(Ar)) + ¢oo<Aoc)

from which the result follows. O

The following lemma is the main ingredient in the proof of Theorem 5.3.26 below.

Lemma 5.3.24 Let f € L'(K,v) and ¢ € M(K) such that for all F € Dom(7}},) n C(K)
we have § F d¢ = <7'f/<2(F), [)- Then for all r € Ny there exists a function g, € L'(T)
such that g,d0 = d¢, (where ¢, € M(T) is the measure in the decomposition of ¢ given
by Proposition 5.3.23).

Proof
Fix s € Npand [ € Z and let I : K — C be the function ¢"e*™ s §, ;=2 From

Lemma 5.3.20 we have ' € Dom(7/},) and (7,%,(F))(¢"¢*™) = 0, 5¢'e 7> and so

1 ~
(), ) = (1= )i f fole? e 20 g = (1= ¢*)g™q F(0),

We also have

fK Fd - Lg—’d@ — 4.1

where ¢As € (*(Z) is the Fourier transform of ¢, (see Definition A.7.3). Then as { i Fdo =

<7'f/(2(F), f) and because s was arbitrary we can equate to get

or(1) = (1 - ¢*)g*q' (1) (5.23)
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forallr e Npand !l € Z.

We know that if A — T is open then A = {x € T | T € A} (not to be confused with
closure here) is also open and so if A is measurable then A is measurable. So we can
define a measure 1, € M(T) by 1,(A) = ¢,(A) for all Borel subsets A of T making
the map ¢, — 1, an isometry on M (T). We have x4(z) = xa(%Z) and by linearity and

density of all x 4 in C(T) we have

J h(e*™ ) dip,(0) = fo h(e *)dg,(6)

0

~

for all h € C(T). So in particular for all [ € Z we have @;(l) = ¢,(—1) and then by
Equation (5.23) we have

o) = (1= )¢ g (1) (5.24)

foralll € Z and r € N,.
We define a function A\ : Z — C by
_— () ifl <0 (1—)g¥q f (=) ifl<0
0 ifl=>0 0 ifl >0,
that is . is the negative coefficients in Equation (5.24). We know that f, € L'(K, ) and

s0 f, € co(Z) and so

0 o0
SOl == Y d R0 < 0= L] Yd =+ e | f
leZ. =1 =1 *
where we’ve used that >, ¢ = quq. As this is finite we have A\, € ('(Z) and as

(MZ) = A(Z), where A(Z) is the Fourier algebra, there exists some i, € L'(T) such
that - (1) = A= (1) for all [ € Z.
We define a measure v, such that di- = h,” df and we let )" = 1), — 1. Then we

have
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bo(l) if1=0
0 ifl <0

o (1) =

and so for all [ < 0 we have Sé e~ 2m0 qa)+(0) = 0. Then by the Theorem of F. and M.
Riesz (Theorem 17.13 in Rudin (1987)) we have that this is absolutely continuous and so
there is some %, € L'(T) such that ¢; (A) = § k" (e>™)x a(¢*™®) d. We then define

h, = h} + h,” and we have that
hodd = (B + by )0 = 0 + 7 = .

Finally let g, € L'(T) be the function g,(e2™) = h,.(e=2"*) for all § € [0,1). We then
have g,df = h,df = 1, = ¢, as required. O

Lemma 5.3.25 Fix f € LY(K,v) and let ¢ € M(K) such that for all F' € Dom(rf/{?) N
C(K) we have § F dp = (7[,(F), ). Then ¢x({0}) = 0 for ¢, € M({0}) the measure
in5.3.23

Proof

Let s € Ny be fixed and let F, : K — C be the function ¢"¢*™  §, , and F,(0) = 0.
Clearly F, € C(K) and from Proposition 5.3.10 we have (7/(F"))(¢"¢*") = §,., and so
clearly F € Dom(7},) with 7}, (F) = F. Then it follows from § " d¢ = (7},(F'), f) that

for all s € Ny we have

[[1aos= @y [ sty ao
T 0

Now let ' € C(K) be the function 2 + 1. Then clearly F' € Dom(7},) with 7}, (F)) = FF
and thus from § F"d¢ = (7[},(F'), f) we have

0 0 1
- dr: 2 2r r27ri9d9.
oo+ 2 | 10 = (=) B | S
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So we have ¢, (0) = 0 as required. O

Theorem 5.3.26 Fix f € L'(K,v) such that the map Dom(7/5,) n C(K) — C given by
F— <Ti/2( ), [ is bounded. Then there exists some g € L' (K, v) such that F — (F, g)

extends this given map to a map C(K) — C. In particular it follows that f € Lé(K, v).

Proof

)

As the map Dom(rf/g) — C given by F' — (7}, Jo(F), f) is bounded and as Dom(7;,

is dense in C(K') we can extend this to a bounded map C(K) — C. Then identifying
C(K)* with M (K) it follows that there is some ¢ € M (K) such that

fK Fdg = (S (F), 1)

for all F' € Dom(r,
(F,g).

From Proposition 5.3.23 we have a decomposition of SK Fd¢p. From Lemma 5.3.24

we have for each ¢, € M(T) that there is some g, € L!(T) such that g,df = d¢, and

Tij2 ’,). We show that there is some g € L'(K,v) such that §, F dp =

from Lemma 5.3.25 we have ¢, (0) = 0. From this we have

0 1
(b(A) _ JK XA dd) _ ;L XA r 27r19 d(br rZE)f 7" 27r10 (627”9) do

for all measurable A on K.

Let A be a measurable subset of K such that v(A) = 0, then we have

Z q2rf r 27r20) do = 0.

As x4 1s positive it follows that So xa(q"e?™) df = 0 for all r € Ny, i.e. A is negligible

on each circle. Define h, : T — C by h,(e?™) = y 4(e*™)g,(¢*%) and we have

1

1 1
‘hr(€2m9>‘ do = f XA(GQMG) ‘gr<€27ri9)‘ do < J ‘gr(e%ri@)‘ do < o
0 0 0
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and so h, € L'(T) and h, = x4 almost everywhere so S(l) h, (™) df = 0. It follows that
¢ is absolutely continuous and so from the Radon-Nikodym theorem there exists some
g € L'(K,v) such that dp = g dv and furthermore we have (F, g) = <7‘ZI/(2(F), f) for all
FeC(K)n Dom(Ti’Z). O

5.3.4 1}(SU,(2)) and Lj(K,v)

We might try to extend Theorem 5.3.26 to L; (SU,(2)) after proving this for L (K, v). We
show however in this section that this is a non-trivial question to answer. This is still an
open problem for SU,(2).

It will be difficult to transcribe the proof of Theorem 5.3.26 to the L;(SU,(2)) case
as this relies heavily on measure theoretic techniques. However, given any f € L'(K,v)
we have w := E,(f) € L'(SU,(2)) where E is given by Theorem 5.2.10 such that for all
z € L®(SU,(2)) we have (x,w) = (E(z), f). We can consider “shifting” w with the a*
and (a*)* elements of Hopf(SU,(2)) for k € Z. That is for all k¥ € Z we can consider
w - (a*)* as the map (x,w - (a*)*) = ((a*)*x,w) for z € L®(SU,(2)) (Where we remind
that for £ < 0 we let (a*)* = o™ % and a* = (a*)~%). We let g, h € L?(K,v) such that
f =ghand|f|l; = |g|la|h|2- Then for all z € L*(SU,(2)) we have

(w,w- (a*)") = E((a*)"z), f) = (E((a*)"x)g|h) = ((a*)*xUg|Uh) = (&, wygarvn)

where U : L?(K,v) — L?*(SU,(2)) is the map from Proposition 5.2.8 and so we have

w - (a*)* = wyry akyn. We have the following easy proposition.

Proposition 5.3.27 Let f, g € L*(K,v) andfor k € Zlet wy, := wy () aiur(g) € L' (SUy(2)).
We have wy, € Ly(SU,(2)) for all k € Z if and only if wy := fg € L (K, v) in which case
we have (x,wt) = (E((a*)Fz), w?g}.
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Proof

Say wy € L} (SU,(2)) for all k € Z, then for I € Dom(S*) we have

(SE(F)* wrg) = (SE(F)* flg) = (E(S(F(F))*) flg)
= (SEE)*T(NIU(9) = (SE(F))*,wo) = (F,Fs(wh))

(where wo denotes wy, with & = 0) and so wy, € L} (K, v) with w]ﬂc’g — F..(wh).
Conversely, say wy, € Li(K,v). Let k € Z and « € Dom(S), then using that S is an

anti-homomorphism, S(a*) = a and that E is a »-map we have

S(x)*,wi) = (S(@)*U(f)la*U(g)) = (S((a*)k2)*U(f)IU(g)) = (E(S((a*)*x))* flg)
= (SH(E((a")*2)), w}g) = (B((a*)'x), o ) = (2, Bu(wh) - (a*)*).

So wy € Lj(SU,(2)) for all k € Z.
We have shown that for all z € Dom(S) we have (z,w!) = (E((a*)"z), wjﬁc,g> and as
Dom(S) is weak*-dense in L*(SU,(2)) this holds for all x € L*(SU,(2)). O

We now ask is this sufficient to capture all of Lj(SU,(2)) in some way? One might
hope that we can build L (K, v) by taking all sequences (fi)rez < Lj(K,v) such that
w = >, E.(fr)- (a*)* is convergent in L'(SU,(2)). However we show in the next
example that we can find such a sequence of functions such that w € L'(SU,(2)) but w ¢
L;(SU,4(2)). We have not yet found a satisfactory way of “reconstructing” L} (SU,(2))

from L] (K, v) at present.

Lemma 5.3.28 Fixs > 0 and let f € LY(K,v) be the map ¢"¢*™ > 5, ,¢2™ for o € R.
Then f, € LL(IK, v) with f*(q¢*™?) = §, 4%,

Proof
For all 7 > 0 let ¢ € L(T) be given by ¢,.(e>™) = f(¢"e¢*) and let 1, : T — C be
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given by

¢ (627”'9) =4 qa€2m’a9
r = Ors

Clearly ¢, € L}(T) forall 7 > Oand >~ ; ¢*"[[¢]1 is finite. We show that o) = ¢ (1)
for all » € Ny and [ € Z then by Proposition 5.3.22 we have [ € L;(K ,v) with f* given
by ¢"e*™ s 1, (e*™?). Fix r € Ny and [ € Z, then

1 1
¢T‘(l) _ J f<qre27ri9)e—27ril6‘ do = 67‘,SJ 627ri(a—l)9 do = 5r,s(5l,a
0 0

and so using this we have

1
wTU) _ J 1/)T(627ri49)e—277il9 do = 5r,sqa5l,a _ ql¢r(l)
0
and thus f € Lj(K,v). O

Lemma 5.3.29 Fixs > Oandlet f € Lé(K, v) be the map q"e*™ — §, 2™ for a € R.
Then for k = 0 we have E..(f) - (a*)* € L}(SU,(2)) and for p = 0 we have

(aPz, (Eu(f) - (a*)*)) = Gpp(l — ¢*)d* (1 —¢*) ... (1 — ¢*)g”

X L (E(2))(q"e*™ e qg.

Proof

We have f is non-zero everywhere and so we can define g = Luz and h = |f \1/ ? where

/]
172 (2) = |f(2)]"* for z € K. Then g,h € L3(K,v), f = wyp and | [l =

|9|lL2(k.)| B[l 125 ) Then we can identify E, (f) - (a*)* = wyy ks and it follows from
Proposition 5.3.27 that E.(f) - (a*)* € L{(SU,(2)).
Let z € C*(c, 1) n Dom(7;/2), then using that 7;/, is a homomorphism by Proposition

3.2.20 and that a* € Dom(7;/2) with 7;)5(a™) = a* by Corollary 5.1.9 we have
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(aPw, (E(f) - (a)*)") = {(a*)'Ti(a”a), Eu(f))
= (i (E((a*)*a"2)), fi) = (E((a*)*a"x), f7)

where we’ve also used Proposition 5.3.8. We can use Relations 5.1 to calculate (a*)*a?

dependent on p. If p > k we have

(a*)kap _ (a*)k—1<1 o C*C)ap_l _ (a*>k—1ap—1(1 . q—2(p—1)c>x<c)
_ (a*)k72ap72(1 . q72(p72)c*c)(1 . q72(p71)c*c)

= =aPF(1 = g2 Pere) (1 = g2 e
and similarly if p < £ we have
(a*)ra? = (a*)FP(1 — c*e)(1 — g 2c%c) ... (1 — ¢ 2P~ Vexe).

So it follows that E((a*)*aPz) = 0, x(1—2*2) ... (1—¢ 2*~Y2*2)E(z) and using Lemma
5.3.28 for f” we have

(aPx, (Ba(f) - (@)*)) = Gp((1 = 2°2) ... (1 = 2V 222)E (), f7)

a0
= (1= ¢") X (1 =) (1= g7 %) (1= ¢ D)5, 4"
r=0

1
% J (E<m))(qr€2m0)€2m'a9 d9
0

1

= 61— (1 —¢*) ... (1— q%)qaL (E(2))(¢"€*™®)e?™i00 gg. O

Example 5.3.30 For k < 0 let f, = 0 and for k = 0 let f, € L*(K, v) be given by

fk(qr627ri9) _ 57‘,k62m(_4k_a(k))9
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In(1 —¢%) + ZL In(1 — ¢°)
Ing '
Clearly fy € Li(K, v) for all k € 7 and from Lemma 5.3.28 we have f. Lé(K, v) for

all k = 0 with f)(q"e*™?) = 6, 2 (==l for k > 0. From the proof of Lemma 5.3.29

where for each k we choose o(k) € N such that o(k) >

we have gy, hy, € L2(K, v) such that fy, = w,, p, and el = gz [Pl (-
Now define w 1= Y/ Wi (gp).abU(hy) and we will show that w € L'(SU,(2)) but w ¢
L} (SU,(2)).

We have | fr| = (1 — ¢*)¢®* for all k = 0 and so

0
Jwll < Z |wurguy.arv i | = Z [U(gi)[|a"U (hs)| Z lgwlllPox]] = Z [ el =1

k=0

and thus w € L'(SU,(2)).

Let v € Dom(7;/3), then from Proposition 5.3.27 we have wy g, okt (hy) € L;(SUQ(Q))
for all k € 7 and so from Proposition 4.1.11 and Notation 4.1.12 we have

0

(Tipp (), w) = Z<TZ/2 » WU (g0),ab U (hi)) = Z<x wU(gk) FU ()"

k=0

So it follows that w € LY(SU,(2)) if and only if ;" w{b] (a0).a* U (h) € LY(SU,(2)).
As C(K) =; C*(c,1) we consider F € C(K) given by q"e*™ s §, je?mi(k+a(k)?
(and F'(0) = 0), then we have

1 cxy =su}1?|F( 2)| = sup \F k 2#10)} 1
ze

0e[0,1)
1
J 1d9‘ =1
0

So letting x € C*(c, 1) with E(x) = F we have from Lemma 5.3.29 that

and
1
f F<qk627ri€)627ri(—4k—a(k))0 d@' _

0

—2k o

:]»

b
‘<akx7wU(gk),akU(hk)> =(1- Q (1- 7

=1
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1(1_Q)+Zz1 n(l— 21)

Inq

We have chosen a(k) € N such that o(k) = LAsO<qg<1

then Inq < 0 and so

a(k)Ing <In(l —¢*) + Zln(l —¢*

=1

and taking exponentials we have

k
¢ <= -¢"
=1

meaning
—a(k) 1 )
T =) T (-

q

Then substituting this above we have

k b —2k
‘<a m’wU(gw,akU(W‘ =4

and so
o0
k b k b —2k
‘ aT, Z “U(gk),akU(hk>>‘ - ‘<a T Wy (gy),ak v ()| = 4

k=0

> ¢ % for all k = 0. In particular we have shown that

w b
and HZk—o “U(gr).akU(hy,)
Yo w?](gk) o+ U (hy ) d0€S N0t converge and is not in L' (SU,(2)) and therefore w ¢ Ly (SU,(2)).

5.4 SUq<2> X SUq/(2)

In this section we investigate the quantum group product SU,(2) x SU,(2) for q,¢" €
(—1,1)\{0} as per Definition-Theorem 2.5.2. In investigating this we will show that
L}(SU,(2) x SU,4(2)) is not isometrically isomorphic to L}(SU,(2)) ® L} (SU,(2)) an-
swering a question posed at the beginning of Section 4.2.3.

Take two compact matrix quantum groups (C(SU,(2)), A, u) and (C(SU,(2)), V, v).

217



5. THE COMPACT QUANTUM GROUP SU,(2)

Let a,c and @, ¢ denote the generators of C(SU,(2)) and C(SU,(2)) respectively and

a _qc* a _qlc/* ‘
then we have u = and v = . We consider the quantum

*
c a* A d

group SU,(2) x SU,(2). It follows from Proposition 3.2.26 and Theorem 3.2.27 that
SU,(2) x SU,(2) is a compact matrix quantum group with generators c ® 1,c® 1,1 ®
a’,1® ¢ for Hopf(SU,(2) x SU,(2)).

Let K = {¢"¢*™ | r € Ny, 0 € [0,1]} U {0} with measures

0 1
V(A) _ (1 _ q2) Z q2rf XA(qre%m@) do
r=0 0

and similarly for K’. We will now investigate properties of SU,(2) x SU(2) and K x K’

similar to those given previously for SU,(2) and K.

Proposition 5.4.1 We have completely isometric isomorphisms
C(K X K,) =i C(K) ®mm C<K/) =i C*<07 1) ®mzn C* (c/’ ]-) =i C*<C®17 1®C,7 1®1)

Proof

We know from C*-algebra theory that C(K x K') =; C(K)®umin C(K'). Also from
Proposition 5.2.4 we have that C(K') =~; C*(¢,1) and C(K’) =~; C*(¢, 1) and therefore
C(K) Qmin C(K") =; C*(¢, 1) ®min C*(, 1). We have a unital commutative C*-algebra
C*(e®1,1®d,1®1) as c®1 and 1 ® ¢’ are normal and commute and we have isometric
*-homomorphisms C*(c, 1) —— C(SU,(2)) and C*(¢,1) —— C(SU,(2)) . Then by
Proposition 1V.4.22 in Takesaki (2003a) it follows easily that we have an isometric -

homomorphism
C(K) @min C(K") —— C(SUy(2)) ®min C(SUy (2)) == C(SUy(2) @min SUy (2)).
Clearly the image of C(K x K') =~; C(K) ®umin C(K’) under this map is C*(c® 1,1 ®

d,1®1) and so we have C(K x K') =, C*(c®1,1®¢,1® 1) as required. These are
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then all completely isometric isomorphisms as they are C*-algebraic *-isomorphisms. [J

For convenience we will often identify L' (K x K’ v x /') with L'(K,v) ® L'(K', /) as

per the following proposition.

Proposition 5.4.2 We have a L'(K,v) QLY (K', 1) =, LMK x K',v x ') where (f ®
g) (qr€27ri9, <ql)r’e27ri0') — f(qT€27ri0)g<(q/)rl€27ri0’)f0rallf c LI(K, V) and g € LI(K/, y/)'

Proof

We have that L* (K, v) is a commutative von Neumann algebra with the minimal op-
erator space structure and so, by Proposition, 1.1.24 its predual L!(K,v) has the maxi-
mal operator space structure. By Proposition 1.1.48 we have L' (K, v) @ L1(K', V) =,
MAX(LY(K,v)®LY(K’,1)). As v and /' are clearly o-finite it follows from a result in
Banach space and measure theory (see Chapter 2 in Ryan (2002)) that as Banach spaces
we have L' (K, v) ® L} (K’, V') ~; L}(K x K’,v x V') with the equation given in the the-
orem. The result follows as L' (K x K’, v x 1) has the maximal operator space structure

as the predual of the space L*(K x K’ v x /') with minimal operator space structure. O

For ease of notation, in the remainder of this section we use a superscript ¢ for an operator
on SU,(2), ¢’ for an operator on SU,(2) and g x ¢ for an operator on SU,(2) x SU,(2).

We also consider the K spaces and we will similarly use superscripts K, K’ and K x K.

Proposition 5.4.3 Using that L*(SU,(2) x SU,(2)) = L*(SU,(2)) ® L*(SU,(2)) and
LYK x K' v x V') =y LYK, v) @LYK’, ) we have a normal =-map and complete

quotient map given by
E? .= ET@QE? : L*(SU,(2) x SU4(2)) — L®(K x K',v x /')
and a normal +-homomorphism and completely isometric embedding given by

F7 = FIQF? : L°(K x K',v x /) — L*(SU,(2) x SU,(2)).
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*

We have that 99 is a right inverse to Eaxd and forall z € C*(c® 1,10, 1® 1)w
we have (F7¢ o B9*7)(z) = z and Image F©*7 = C*(c@1,1®@d,1®1) .

Proof

From the maps E? : L*(SU,(2)) — L*(K,v) and F? : L*(K,v) — L*(SU,(2)) given

by Theorems 5.2.9 and 5.2.10 we have complete contractions E¢ ® EY and F¢ ® F?.

Clearly we have [E9 xq' o F1xd = idpeo (K x K7,wxv) and so it follows from Lemma 1.1.20

that E9*? is a complete quotient map and F9*? is a completely isometric embedding.
The map E?*¢ is normal as it has a pre-adjoint map given by E¢, ® E?, and it is

/ . . /. .
a =-map as E? and E? are =-maps. Similarly F9*? is a normal *-homomorphism. For

2eC*(c@L,1®C,1®1) wehave

(F7*9 o B9 (z) = (F? 0 ) @ (F7 o E¥))(z) = .

w*
It then follows that Image F**9 > C*(c® 1,1®¢,1®1) . We know that F?|¢ k) has

image C*(c, 1) and similarly for F? and so we have Image F? ® Fq/‘ O @i CEY) =

C*(¢,1) @ C*(d,1) = C*(c® 1,1 ® ¢, 1 ® 1). Then taking the weak*-closure we have

that Image F**7 < C*(c®1,1®¢,1®1) . O

Similarly to the case of SU,(2) we define the following notation.

Notation 5.4.4 Let P77 : L°(SU,(2) x SU,(2)) — C*(c, 1) ® C*(¢, l)w* denote the

map F1*4 o E1%7

We define the scaling group on L* (K x K’ v x /') and then prove some properties related
to this. We could also define the antipode and unitary antipode in the obvious way but

these will not be needed.

Definition 5.4.5 For z € C let

Dom (7 ") = { f € L*(K x K',v x /) | F**¥(f) & Dom(r2*7)}
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and let TE*K LK x K'\v x V') — L®(K x K',v x V') be given by T}*K'(f) =

z z

B9 (7274 (F*7(f))) for f € Dom(r/K").

z

The proof of the following proposition is almost identical to that of Proposition 5.3.2 so

we omit the details.
Proposition 5.4.6 Let z € C and x € Dom(79%?), then P?*% () € Dom(79%7) with
O (B0 (2)) = B (52 (),

Corollary 5.4.7 For = € C and v € Dom(79%?) we have E9*? (r) e Dom(rX*K")
and (T5*K" o %) (z) = (B o 79%0)(z). Similarly for F € Dom(7X*X") then

Fo*7 (F) € Dom(79%7) and (19*9 o F9*9)(F) = (F9*7 o 7J*K") (),
The proof of the following proposition is similar to that of Proposition 5.3.9.
Proposition 5.4.8 For z € C we have Poly(K) ® Poly(K') is a core for 1>,

Proof
We have that Hopf(SU,(2) x SU,(2)) = Hopf(SU,(2)) ® Hopf(SU,(2)) is a core for

79%4" by Proposition 3.2.19, then for F' € Dom(75*%") we have F?*¢ (F) € Dom(79%7)

z

and so there is a net (z,) < Hopf(SU,(2) x SU,(2)) such that
[FO(F) —aa| =0 and  [720(F7 (F)) — 789 (aq)]| — 0.

We have E?*% (z,) € Poly(K)®Poly(K’) as E?*7 = EI®E? and F9*¢ = F¢®F? and

SO

Fod (B (2,)) = ((F10 BY) @ (7 0 BY)) (za) = (P ® P7)(za)

e (Hopf(SU,4(2)) n C*(c, 1)) © (Hopf(SUy(2)) n C*(c, 1)).
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We have
[E*? (24) — F| = [E*Y (20) — EPC(F”C(F))| < |20 —F(F)| -0
and from Proposition 5.4.6 we have

[0 B (3,)) — 7IK ()| = B (0 (B () — B (07 (B0 ()|

z ¥4

< 789 (20) — TP (EC(F))| - 0

as required. O

The proof of the following is very similar to that of Theorem 5.3.12.

Theorem 5.4.9 Let f € L' (K x K',vx /). Thenw := EV7 (f) e L;(SU4(2) xSU4(2))
if and only if there exists a g € L} (K x K', v x V') such that for all F € Dom(Tg;K,) we

have

(F,g) = {r M (F), f).

We now make the following definition of Lé(K x K' v x 1/'). This is slightly different
to the definition of L;(K ,v). We could have started with a definition similar to that of
Definition 5.3.13 and we would have derived our definition as a consequence. The two
definitions can be shown to be equivalent using similar techniques as we have used in
Proposition 5.3.17 for example, and we choose this definition here as this is all we require

for our main result in this section.
Definition 5.4.10 We define

Ly(K x K',v x /)
1ge LYK x K',v x V') such that

<T§(2XK/(F),f> =(F,g) VFe Dom(TiIszK,)

=< felY (K x K',vx/)
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We denote the map g in the definition of L} (K x K, v x v/) by f*for f e L (K x K,vxv).
Using a very similar proof to that of Proposition 4.1.3 we can show that this is a Banach

space with norm

[l e x i wry = max|| fllLr vy, | e e sy}

for f € Li(K x K',v x V). We wish to introduce the operator space structure on Lj (K x
K’ v x V') next. The next two propositions have proofs that follow similarly to that of

Propositions 5.3.14 and 5.3.16.

Proposition 5.4.11 The map E**7 : LY(K x K',v x ') — L}(SU,(2) x SU, (2)) as the
restriction and corestriction of the map EY? : LY(K x K',ux1/) — L! (SU,(2)xSU,(2))

from Proposition 5.4.3 is an isometric embedding.

Definition 5.4.12 We let Lé(K x K' v x V') have the operator space structure such that

the map quqli from the preceding proposition is a completely isometry.

Proposition 5.4.13 (i) The map UV<*K" . L;(K xK' vxv) - LYK xK vxv)®y
LY (K x K',v x V') given by f — (f, f°) is a complete isometry.

(ii) For w € L{(SU,(2) x SUy(2)) we have F,(w) € L{(K x K',v x V') and we have
a map quq/i : Lé (SU4(2)) — Li(K,v) that is the restriction and corestriction
of FL*9. Furthermore this map is a complete quotient map that is a left inverse of

't
Raxd”

We now concentrate on SU,(2) x SU,(2) and we answer the question from Section 4.2.3
by showing that L} (SU,(2)) ® L;(SU,(2)) is not completely isometrically isomorphic to
L}(SU,4(2) x SU,(2)). Assume there exists a completely isometric isomorphism 7"
L} (SU,4(2)) ®L}(SU,(2)) — Li(SU,4(2) x SU,4(2)). Then as Li-algebras are dense in
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L!-algebras the following diagram must commute

LL(SU,(2) ® LH(SU, (2)) —Z LL(SU,(2) x SU,(2))

L‘Z®L‘1\L quXq

LI(SUq@)) ®L1<SUq(2)) —1! (SU4(2) x SU,(2))

and so 7' is the completely contractive map from Theorem 4.2.14. We show in the fol-
lowing counterexample that this map cannot give us a completely isometric isomorphism

after some preparatory lemmas.

Lemma 5.4.14 Let P% := R oF4% and P79% .= F9*9 o R9*9 . Then To (P% Q%) =

paxa i o T where 'T" is the completely contractive map from Theorem 4.2.14.

Proof
We show that 19 o P%, = PZ o 1 first. Let w € L;(SU,4(2)) and = € L*(SU,(2)), then we
have (1% o P%)(w) € L'(SU,(2)) and so have that following

(z, (1 o PE) (w)) = (o, PL(w)) = (B(x), 1(w)) =z, (P{ 0 17)(w))

where we’ve used that P?? is the restriction of PZ. Then as this holds for all z € L*(SU,(2))
andw € L}(SU,(2)) we have the formula stated. We can show similarly that (7*7oP?*¢ =
P2*9 o 1974,

Let Q € L;(SU,(2) x SU,(2)), then by Theorem 4.2.14 we have 17 o T' = 19 ® 11

and so

(T o (PE @P%E))(Q) = (10T o (P @P%))(Q) = (1! @) o (P ®PY))()
= (PL®PY) 0 (11 ®1))(Q) = (PY* 0™ 0 T)(Q) = (P4, 0 T)()

where we’ve used that PL*? = P% ® PL by Proposition 5.4.3. O
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Lemma 5.4.15 Fix s,] > 0 and let G € LN (K x K,v x v) be the map

. , . 1 o e
G(qr€2m€’ qr 6271'19 ) _ 57",557“’,3 (1 q2)2€ 2milO+27mwilf )

Then G € L} (K x K,v x v) with G = G".

Proof

For F' € C(K x K) it follows from Definition 5.4.5, Propositions 5.4.3 and 2.5.5 that
TR 2 1o 77X o9 = (BIQE) o (@71 o (FIQFY) = 7 @ 7%
and so
(TtKXK(F>> (qr€2m'9’ qr’€2m'9/> _ F(qr€2m'9+2it lnq’ qr’€27ri9/+22't In q)l

Let m,n,m’,n’ € Ny and consider F = z*™2" ® z*™ 2" e Poly(K) ® Poly(K). By

considering maps S(i/2) — C(K x K) given by

r(m+n) r’(m/+n’)627ri(nfm)9+27ri(n/7m’)9/+2i(n+n’fmfm’)zlnq

Z=q q

it is straightforward to show that

(TZ%XK(F)) (qr€27ri97 qr’627ri0’) _ qr(ern) qr’(m’Jrn’)qurm’fnfn’e27ri(nfm)0+27ri(n’fm’)0’ )

Using the completely isometric isomorphism from Proposition 5.4.2 we can calculate
.6 = | ( L (R (F)G dz/) v
1 & ! 1 / / / ! /
Z q2r J qr(ern)qr (m/+n )qm+m —n—n

S 1o\l o S
€2m(n m)0+2mi(n’—m’)0 5r,s(5r’,s€ 2#110627rzl9 d¢9,> A6

4s s(m+n+m/+n’)

= ¢%q q 4s s(m+n+m'+n

6l,m’—n’ =q g /)5l,n—m6l,m’—n’

m—n-+m/—n’ 5
l,n—m
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5. THE COMPACT QUANTUM GROUP SU,(2)

and similarly

<F G> _ q4sqs m4n+m/+n )5l,nfm5l,m’fn’-

Thus extending this by linearity we have that <7‘K “K(F),Gy = (F,G) for all F €
Poly(K) © Poly(K) and then by Proposition 5.4.8 we have G € Lj(K x K,v x v)
with & = G. O

Lemma 5.4.16 Let T : L (SU,(2)) ® L} (SU,(2)) — Li(SU4(2) x SU,(2)) be the com-
pletely contractive map from Theorem 4.2.14 and let T* : Lj(K, V)@Lé(K, v) —
Li(K x K,v x v) be the map given by (Foxa)t o T' o (B @ E9%). If T is a completely

isometric isomorphism then T is a completely isometric isomorphism.

Proof
We have from Theorems 5.2.9 and 5.2.10, Definition 5.3.15 and Proposition 5.3.16 a

commutative diagram
E7%,

L} (K, v) === L{(SU,(2))

|k
L' (K, v) == L' (8U,(2))

where the bottom horizontal arrows are left inverses to the top horizontal arrows and
K L;(K,v) — L'(K,v) is the canonical embedding. By expanding this composing

with the diagram in Theorem 4.2.14 we get

To(E1%QE,)

L} (K, 1) QL}(K,v) ——— L} (SU,(2) x SU,(2))
(F95,®F9, )oT
LK®LKi \LLqu
e E{®E]
LYK, v)QLYK,v) S L1(SU,(2) x SU,(2))
&I

where we’ve used that 7' is invertible as it is a completely isometric isomorphism. Also
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from Definition 5.4.12 and Propositions 5.4.3 and 5.3.15 we have a commutative diagram

L} (SU,4(2) x SU,(2)) e Li(K x K,v xv)

LI(SU,(2) x SU, (2)) =

*

LYK x K,v x v)

axq
F*

where again the bottom horizontal arrows are left inverses to the top horizontal arrows.

We can collapse all this to a diagram

LUK, v) O LUK, v) T LYK x K,v x v)

LK®LKi lLKxK

LYK, 1) QLY K, v) — LYK x K,v x v)

where TX : L}(K,v)® L} (K,v) — L{(K x K,v x v) is a complete contraction given
in the theorem and we’ve used Proposition 5.4.2 on the bottom row.
We show next that 7% is a completely isometric isomorphism. We have that TX is a

complete contraction and we consider the complete contraction from Lé (K x K,vxv)to

L} (K,v)®L}(K,v) given by (F” @ Fe4) o T~ o Ee*9*  Using Lemma 5.4.14 we have

TK o (FE @F%)oT o quqi = quqi oTo (P ®P¥)oT o quqi
= ot o Prd o T o T o B = id
and similarly (F% @ F4%) o T-! 0 E9*9} o TK = id as required. O

We now give our counterexample and show that the map 7" is not a completely isometric
isomorphism and therefore Lé(G x H) is in general not completely isometrically isomor-

phic to L} (G) ® Lj (H).

Counterexample 5.4.17 We can “twist” an element on Ly (K, v) ®LY(K,v) on one side

of this tensor product, however in L;(K x K,v x v) it is not clear that we can do this in
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the same way. We try and exploit this in this counterexample and we will show that if we
apply the b operation from Notation 4.1.12 that we cannot perform the same operation in

Li(K x K,v xv),

Assume the map T’ is a completely isometric isomorphism and we aim towards a con-
tradiction. It follows from Lemma 5.4.16 that we have a completely isometric isomor-
phism T : Li(K, V)®L§(K, v) = L{(K x K,v xv). Let o : L}(K,v) — L'(K,v)
be the map 1y o (id ® @) o 0% where Q¥ is from Proposition 5.3.11. Then by Corol-
lary 5.3.19 o is a complete contraction with o (f) = f* where f° = (TZI/(Q)*(f)
As T is a completely isometric isomorphism there is a completely contractive map

S Li(K x K,v xv) — LYK x K,v x v) such that the following diagram commutes

LYK, v) ® LUK, v) L5 LYK x K,v x v)

id®al i is

LYK, v)QLYK,v) LYK x K,v x v).

1
7‘,81 o q2

—2milf

Fix I,s = 0 and let f, g € L'(K,v) be maps given by f(q"e*™) = § e

1 .
1 e*™ for r € Ny and 0 € [0,1). Then from Proposition
—q
1

5.3.22 we have f, g € Lj(K,v) with P(q ™) = 57«731 sq'e ™" and (g e*™0) =
—q
1

1—¢?

and g(q"e*™) = 6, 5

6rsq " e?™9 So we can easily calculate

HfHL’}(K,V) = max{| fllLi s | £ g} = max{g®, ¢*¢'} = ¢*

and similarly

lgli(x.) = max{¢®, ¢*¢"} = ¢*°¢".
f

As the operator space projective tensor product is a cross matrix norm it follows that

||f®g||L;(K,V)®L;(K,u) = HfHL;(K,V)||9HL;(K,V) = q4sq_l-
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From Lemma 5.4.15 we have T* (f ® g) € Li(K x K,v xv)with (TK(f® g))’ =
TE(f ® g) and so

T ® 9)legacescunr = 1T @ s = | U \TK<f®g>\du') v
K \JK’
_ (1 N q2>22q2rJ <2 q2r J ‘f<qr627rz9>g<qr 20 )‘ de) 4o’ = q4s.
r=0 0 \sw=0 0
Lastly we calculate

||(id®aK>(f®9)HL1(K,V)®L1(K,V) = HfHLl(K,u)||9b\|L1(K,u) = q4sq_l

and as id ® o = S o T we have

¢ =A@ ™) (f @ DLk orixw = 1050 TH)f ® 9) Ltk x kwxw)

<[T5(f @ 9Ly g xrwnry = 6" < a*a”"

a contradiction.

5.5 Adjoint of (1 ®id)(W3%®) for y e C(SU,(2))*

Consider for a moment an arbitrary locally compact quantum group G. Then for W e

M(Co(G) ®min Co(G)) we have that Co(G) = lin {(w ®1d)(W) | w e LI(G)} is a C*-

A~

algebra from Remark 2.3.3. We have (u®id)(WW) € M(Cy(G)) for i € Cy(G)* and so we

can consider lin {(x®1id)(W) | pe€ Co(G)*}. Clearly this is a closed linear space and
we can easily show it is an algebra. We show in this section that this is not a C*-algebra in
general, in particular we show that for /5Y«() the left regular corepresentation of SU,(2)

there is a 1 € Co(SU,(2))* such that (¢ ®id)(W)* ¢ lin {(v ®id)(W) | v € Co(G)*}.

We consider the space K from Proposition 5.2.4 and throughout this section we fix

reNpand 6 € [0,1) and 25 = ¢"e*™* and we consider the measure J,, € C(K)* given by
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f — f(z0). We can extend this to a linear functional 1 = §,, o P € Cy(SU,(2))* where
P is the conditional expectation from Theorem 5.2.3 and we have |u| < ||0,,] = 1.

We begin by proving a couple of straightforward lemmas.

Lemma 5.5.1 Let {U ! } le %No} be the irreducible corepresentations in Theorem 5.1.15,

I € 3Ny, n,m € 3Ny such that =l < n,m < land let p = 6., o P € C(SU,(2))*. If

m # —n we have ,u(ufmm) =0, ifn = 0and m = —n we have
[+n
Un,—n = ¢ pn(cte g™ 1) e (5.25)
2n
q2
and if n < 0 and m = —n we have
[—n
u;ﬁn _ , q2"(l+")pz+n(c*0; q74n, 1|q2)(_qc*)72n. (526)
—2n

q2

In particular for all | € %NO and —1l < n < [ we have

Uy, = (—0) (Ul )" (5.27)
Proof

We have by construction of £ above that /i(aky,) = 0 if k£ # 0. Then using the SU,(2)
relations (5.1) and Theorem 5.1.15 we see that y(u}, ,,) = 0if n # —m. If n. > 0 we let
m = —n then n > m > —n and using Theorem 5.1.16 we get Equation (5.25). If n < 0
we let m = —n then m > n > —m and again using Theorem 5.1.16 we get Equation

(5.26). We also see that if n > 0 then —n < 0 and we have
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5.5 Adjoint of (11 ®id)(W5Y®@) for € C(SU,(2))*

= (=n) 2(—n)(I+(~n)) ~2(—n)

Pii(my(cte; g 1 g%)e

= (=n) 2(—n)(I+(—n))

Pis(ny(cFe; g 0™ 1) (¢*) 720

*

Pi(—my(c*e; ¢ 1]g%) (—ge)

Lemma 5.5.2 For jp = 6,,0 P, s € Ny, k € Z and m,n € Ny we have

(D 1) = ) esp (9, (5.28)

and thus for any | € Ny and —1 < m',n’ <1 we have

Proof

52

(6 ) = ) exp (520, (529

Using Corollary 5.1.9 we have

() @) = S | )y

_ 7s2t2 QZt(TL m)lngq
/,l, Qmn dt
\FJ
—(m —n)*(Ing)*
= 1(Qgmn) €Xp 5 :

S
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As p(agmn) = 0if k # 0 then by Lemma 5.5.1 we need only show Equation (5.29) for

/

m/ = —n/. We notice from Lemma 5.5.1 that v}, _, is a polynomial S A (F)F K2

for n’ = 0 and a polynomial 35_, Ac® (¢*)¥ =2 for n/ < 0 for some (\/) = C. How-

ever we have from above that for any £’ € Ny we have

() ((¢*)F & H2Y = () & +27) exp (M)

82
and similarly

() (X (@ =2) = e ()92 excp (M)

52

from which the result follows. O

Lemma 5.5.3 For any e C(SU,(2))* we have

A = sup o2 (U] = sup [[(u(U7)551] -
€Ny 1eiNy

Proof

We have from Proposition 3.2.25 that we can consider W acting on L?(SU,(2)) ® H
2

where H = @ e, Ji by

!
W(£®€éj) = Z uék£®e§6j

k=—1

for £ € L2(SU,(2)), I € 3Ng and —I < 4,5 < [. So we have that W is a direct sum of

matrices
w0 0
0 u/2 0
W:
0 0
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and so
p(u®)y 0 0
S (U2
woam) = | 0 e

Then we have a direct sum of matrices acting on Hilbert spaces J{(; and from Proposition

A.5.2 we have
[(p@id)(W)| = sup |pore(u')]

le$Ng

as required. O

Theorem 5.5.4 Let j1 = 6,, o P € C(SU,(2))*. Then the following are equivalent:

(i) For all ¢ > 0 there exists N € Ny such that |u(ul, _,)| < ¢ for all | € {Ny and

—l<n<lwherel> N and |n| = N;

(ii) A(p)* = lim,, A(;(m)*) where p(m) is the smear of n and j1(m)* € C(SU,(2))* is
the map such that (z, u(m)*) = (S(x)*, u(m)) for all z € Dom(S) N C(SU,(2)).

(iii) For all € > 0 there exists v € C(SU,(2))* such that

(v ®@id)(W) — (p@id)(W)*| <e.

Proof
(i) = (ii): Fixe > 0 and let N € Ny such that for all [ € %No and n the integer steps
from —1 to [ with [,|n| = N we have |u(ul, _,)| < e. By Proposition 4.1.18 we have

p(m) € Co(SU,(2))*, and by Proposition 4.1.17 we have

IAG(m)?) = A)* | = IMa(m))* = Ap)* | = [A(u(m)) = A(e)].

233



5. THE COMPACT QUANTUM GROUP SU,(2)

We have from Lemma 5.5.3 that | A(n)|| = SUD;c 1, 2141 (U] and so

IA((m)) = M) = sup [u(s)ais1(U') = parir (U]

le4Ng

= sup

1€4Ng || p=—1

By a Proposition A.5.2 (and rearranging rows by unitary matrices) we have

—4n?(Inq)?
exp($>_l\.

We let M > 0 such that for all n € 1Z where |n| < N and for all m > M we have
‘exp <W) — 1) < e.Foralll e %NO we have that U' is unitary and ;. is contractive
and so using Proposition A.5.3 we have |u(u!, _,)| < |l [l _.| < [p]|U'] < 1. So we

have shown that for all / € 1Ny and —I < n < with |n| < N and m > M we have
—4n?*(Inq)?
exp (M) 1
m

On the other hand if [ € %NO and —! < n <[ with[,|n| = N then we have by assumption

< E.

(il )|

—4n?(In q)2
m2

that |p(ul,_,)] < ¢ and ‘exp(

n,—n

) — 1‘ < 1. So we have shown that for all
[ € Ngand —! < n < [ there is some M > 0 such that for all m > M we have

IA((m)#) — M(p)*| < € and we have (ii).

Clearly (ii)) = (iii) and we show (iii)) = (i). Fix € > 0, then by (iii) there is some

v e C(SU,(2))* such that

[(v @id)(W) = (p@id)(W)*| < /2.

234



5.5 Adjoint of (11 ®id)(W5Y®@) for € C(SU,(2))*

Equivalently by Lemma 5.5.3 we have

! l
! 2+1 T 2+1
Sup Z V(Un )€l mt 1 pama1 — Z (U )€t a1 | < €/2
legNo n,m=—l nm=—l1
l !
! 2+1 ] 2+1
— Sup Z V(U )€l sm 11441 — Z (U, )€1 541 pngn | < €/2
le5No ||n,m=—1 n=—1

or equivalently for all [ € 1N, we have

<g/2.

l l
l 20+1 l 20+1
Z (Z v(uy, )€l+m+1l+n+1 (U, €T n+1l+n+1)

n=—l \m=-—1

Fix [ € %NO and let Ql . Mgl+1 — M21+1 be the map that (aij)ilj-i_:ll —> (5i7_ja,~j)?’l]111,
that is Q' maps an off anti-diagonal entry to 0 and an anti-diagonal entry to itself. We
have that (' is a contractive projection by the similar result to that of Proposition A.5.2

referred to previously and Proposition A.5.3 we have

QU= sup u,

ne{—1,...,l}

<|U']

and so it follows that

D (V) = il 2 ) e | < /2

From Lemma 5.5.2 we have that v’ = (—¢)*"(u!, _,)* and so for all =] < n <[ we

have

() w((ul, _)") — (k)

<eg/2

and so

[y, )| < €/2 + [(=a)*"v((up _)*)| < /2 + ¢*"|v.
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Also we have v/, _, = (—¢)"*"(u",,,

n

)* and so

or indeed

l

uul,, )| < e+ |((=9) " v((ul, )" < e+ a7l

Now we can choose N € Nj such that for all n > N we have ¢*"|v| < /2 and for all
n < —N we have ¢~ *"|v| < ¢/2. Then for all | € Ny and — < n < [ with |n| > N we

have |p(ul, _,)| < € as required. O

Counterexample 5.5.5 We consider the special case of v = 0, 6 € [0, 1) arbitrary and
50 29 = ¥ and ji = §,, o P. We now show that we cannot approximate (y ® id)(W)*
by elements {(v ®1d)(W) | v e Co(SU,(2))*}. Fix 1 € $No and consider n = . Then
we have

plug ) = p(c*) = 2. (5.30)

According to Theorem 5.5.4 if (un ® id)(W)* can be norm approximated by elements
{(v®id)(W) | v e Cy(SU,(2))*} then for all ¢ > 0 we must have some N > 0 such
that for large enough | and n we have ,u(uflﬁn) < ¢, however for ¢ < 1 it follows from

Equation (5.30) that this is not possible.

There is still an open problem, motivated by the work Das & Daws (2014), of finding the

largest C*-subalgebra of lin {(x ®id)(W) | p e Co(G)*}. We have shown here however
that it is not all of lin {(u®id)(W) | p e Co(G)*}.
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Chapter 6

Homological Algebra for Lé (G)

In this chapter we investigate the operator biprojectivity of L;(G) as a completely con-
tractive Banach algebra where this structure is given in Theorem 4.2.1. The notion of
biprojectivity for Banach algebras was introduced by Helemskii when he investigated the
biprojectivity of L!(G) for a locally compact group G. He showed that L' (G) is bipro-
jective as a Banach algebra if and only if G is compact (see Helemskii (1989) for further
details). The notion of operator biprojectivity was introduced by Ruan in his study of the
Fourier algebra of a group G and is described in Section 1.2.2.

The case of locally compact quantum groups was studied in Aristov (2004) where
Aristov showed that if L' (G) is operator biprojective then G is compact and on the other
hand that if G is compact and a Kac algebra then L*(G) is operator biprojective. It was
then shown in Daws (2010) and Caspers et al. (2015) that if L!(G) is operator biprojective

then G is of Kac type (see Definition 3.1.1) so we have the following theorem:
G is compact and of Kac type if and only if L!(G) is operator biprojective.

We investigate similar questions in this chapter.

In the first section we show that we have more completely bounded L;(G)-modules
than completely bounded L!(G)-modules. We then show that we have a dual completely
contractive map A* : L}(G)* — L}(G)*®L{(G)* (rather than into the Fubini tensor
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product) in Theorem 6.2.1 in preparation for an investigation of operator biprojectivity.
For Lj}((G) to be operator biprojective it is clearly necessary that the multiplication map
my = Li(G) @L;(G) — L{(G) in Theorem 4.2.1 is surjective; so we show in Section
6.2.2 that for all coamenable quantum groups that the map my is a complete quotient map
and thus onto. Finally in Section 6.2.3 we show that if Lé (G) is operator biprojective
then G is compact and in Theorem 6.2.6 we give a give a structure theorem for compact
quantum groups similar to that in Daws (2010).

It is still an open and possibly difficult question as to whether we can find similar con-
ditions to that of L' (G) that are necessary and sufficient to ensure operator biprojectivity

of L}(G) in general.

6.1 Projective Modules over L} (G)

In this section we show that all completely bounded L' (G)-modules are also completely
bounded L; (G)-modules and that there does exist a completely bounded Lj (G)-module
that is not a completely bounded L' (G)-module. We work with completely bounded left
modules in this section, however the same could be applied to completely bounded right

and bimodules.

Proposition 6.1.1 Let X be a completely bounded left 1.} (G)-module. Then X is a com-
pletely bounded left L& (G)-module.

Proof
We have a complete contraction ¢ := 7, 0 0 : Lj(G) — L'(G) where 6 is the map given
by Equation (4.2) and 7, is the projection onto the first coordinate.

Let X be a completely bounded left L!(G)-module: that is there is a completely
bounded map ® : L'(G)® X — X such that w ® x — w - x. We define a completely
bounded map ¥ : Lé(G)@X — X by &; := ®o (1 ®idy). We know that ¢ has

dense range and is a homomorphism and so for w,w’ € L%(G) we can easily show that
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6.1 Projective Modules over L}(G)

Q;(1d®P4) (w®W @) = P4(my®id)(w®@w ®x). Then it follows that 4o (IdQ@ Py) =
® o (my ®id) and thus F is also a left completely bounded Banach Lj (G)-module. O

We now spend the rest of this section showing there exists a completely bounded left

L; (G)-module that is not a completely bounded left L' (G)-module.

Example 6.1.2 Assume G is coamenable giving us that L; (G) has a contractive approx-
imate identity by Theorem 4.1.13. Clearly as Lé (G) is a completely contractive Banach
algebra then it is also a left completely contractive Lé(G)-module with the same oper-
ation my : Lé(G)@)L&(G) — L}(G). Say this extends to a left completely bounded
LY(G)-module; that is we have a map 1) : L'(G) ® L} (G) — L(G) making the following

diagram commute

where 1 : Li(G) — L(G) is the usual completely contractive embedding. We will show
that these assumptions imply that the antipode S is bounded and thus we are in the Kac
algebra case. In particular this is a contradiction for SU,(2) for example.

Let w € LY(G), then by Theorem 4.1.4 there exists a net (w,) < L}(G) such that
lw = wallLi) — 0. Then for W' € Li(G) we can consider A,(w ® (w')) € L'(G) and

we have

[(cop)(w®w) —ws (W)L < [(LoP)(w®w) = (Lo P)(wa ® W)L

+ [t(wa * w') —w * t(w') L1 = O

and so (1o V) (w®W') = w = 1(w') for allw € L'(G) and W' € L}(G), or indeed we have
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the following commutative diagram

L}(G)®L{(G) — L}(G) ———LY(G)

(G
L®idi / TA*

LY(G)®L'(G).

1d®e

As G is coamenable it follows from Theorem 4.1.13 that we have a contractive ap-
proximate identity (¢,) < Li(G). Let w € L'(G), then we have shown above that
wx e = Y(w®eq) € L(G) and so there exists (w = eq)? such that for all z € Dom(S)

we have

(2, YW@ ea)’) = (S(2)*,w * €ay — (S(2)*,w).

Also for x € Dom(S) we have

[z, ¥(w ® ea)| < 2]lt(w @ ea) i) < lallv(w ® ea)liie)

< 2zl llw ® ealii@srye < Il [lwlie)-
So we have
[(S(2)*, wy| = lim |(z, Y(w @ ea))| < [z ¢]|w]

for all x € Dom(S) and w € L (G) and therefore
[S(@)] = [5@)*| < [¥]l«]-

As Dom(S) is norm dense in Co(G) we have for any x € Cy(G) a net (x,) < Dom(S)
with limit x. It follows that (x,) is a Cauchy net and from above we have || S(x,) —
S(xa)|| < |[¢)l|xe — zor| meaning (S(x4)) is also a Cauchy net. Then there is some
y € Co(G) with S(x,) — y and so x € Dom(S) and y = S(x). Then Dom(S) = Cy(G)
and |S(x)| < |¢|||x| for all z € Co(G), i.e. S is bounded as was to be shown.
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6.2 Operator Biprojectivity of L}(G)

We investigate now the operator biprojectivity of L; (G). In order for L; (G) to be operator
biprojective it is necessary that the multiplication map my : L}(G) ®Li(G) — Li(G)
must be onto. We begin an investigation into the circumstances under which this holds
now. In particular we show that if G is coamenable then mj is a complete quotient map
(and thus onto) and we give a structure theorem for Lé(G). First we will show that the
dual of our map my has image L}(G)*®L}(G)* where ® denotes the normal tensor

product from Example 1.1.44.

6.2.1 The Adjoint of m;

We know that in the case of L'(G) that A, : L'(G)®LY(G) — L'(G) is onto as the
adjoint map A : L*?(G) — L*(G)®L*(G) is an isometry. So we consider the map
Af = (my)* : Li(G)* — L}(G)*®g L} (G)* where we’ve used the Fubini tensor product
from Example 1.1.44 and Theorem 1.1.45. To begin our investigation we show that the
Fubini tensor product and normal tensor product of L§(G)* with itself are equal (which

follows in the case of L*(G) as it is a von Neumann algebra).

Theorem 6.2.1 Let ¢ : L} (G)QL}(G) — L}(G)Q®L}(G) denote the canonical com-
plete contraction from Notation 1.1.40 that extends the identity map on Li(G) © Li(G).
Then ) is injective and thus by Proposition 1.1.46 we have that Ly(G)* ®s L{(G)* =
L (G)*®Li(G)*.

Proof

Let 2 € L;(G)@Lé(@) such that ¢)(2) = 0 and we show that Q@ = 0. Let ¢ :
LY(G)®LY(G) — L'(G) ® L'(G) denote the canonical complete contraction from Nota-
tion 1.1.40 that extends the identity map on L' (G) ®L!(G). We know that this is injective

from Proposition 1.1.47. Then using Proposition 1.1.42 and that ¢ and v are the identity
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maps on L} (G)OL}(G) and L} (G) ®L!(G) respectively, we have a commutative diagram
# #

L}(G) ®LL(G) —~L}(G) ®LL(G)

L@L\L J{L@L

LYG)®LYG) —~LY(G) RLYG).

It follows then that we have

(G0 (L®0)(Q) = ((L®1) o ¥)(R) =0

and as ¢ is injective we have

(L®0)() = 0. 6.1)

Fix n € N. From Proposition 4.2.5 we have a completely bounded map ®’(n) : L'(G) —
L}(G) and so for any T' € (Lj(G) ® L} (G))* =, CB(L}(G), L} (G)*) we have ®'(n)* o
T o ®'(n) € CB(LYG),L*(G)). Then for all w,w’ € L!(G) we have

(@' (n)* o T o &'(n))(w),w) = (T o ¥'(n))(w), ¥'(n)(w))

= (T, (¥'(n) ® ¥ (n))(w @ W)).

We have T(n) : L}(G) — L}(G) from Notation 4.2.7 and using that (¢ ® ¢)(2) = 0 from
Equation (6.1) we have
0 = (T, (T(n) ® T (n))(©))

for all T € (L}(G)®L}(G))*. As we have (Y(n) ® T(n))(Q) — Qasn — oo by
Proposition 4.2.10 then we have (T, Q) = 0 forall T € (L}(G) ®L§(G))* and so Q2 =0

as required. O
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6.2.2 Coamenable Quantum Groups and Biprojectivity

Given a coamenable locally compact quantum group G we have a contractive approximate
identity by Theorem 4.1.13. We record here the following result of interest that follows

immediately as a special case of Proposition 1.2.13.

Proposition 6.2.2 For G a coamenable locally compact quantum group the map my :

L (G) ® Li(G) — Ly(G) is a complete quotient map.

6.2.3 Compact Quantum Groups and Operator Biprojectivity of Lé (G)

It was shown in Aristov (2004) that if L'(G) is operator biprojective then G is compact.
We now show that we can generalise this result to the case of Lé (G).
Throughout this section we let G denote a locally compact quantum group. We will

prove the following result in this section.

Theorem 6.2.3 If Lé (G) is operator biprojective (that is the multiplication map my :
L (G) ® L;(G) — L;(G) has a right inverse that is a completely bounded L; (G )-bimodule

homomorphism, see Proposition 1.2.10) then G is compact.

We remind the reader that we have a complete isometry 6 : Lj(G) — L'(G) @, L}(G)
from Equation (4.2) given by w — (w, wk) for w € L;(G). We also know from Theorem
4.1.15 and Corollary 4.2.2 that the adjoint §* gives us Lj(G)* =, L*(G) ®, L(G)/K;
where K} = {(m, ~S(x)") | z € Dom(S)}.

Following Aristov (2004) we can define a map 7 : L}(G) — C by w — {(1,w).
Then we have immediately that |7(w)| < |w]| and so 7 is contractive. It follows from
Example 1.1.14 that 7 is also completely contractive. Now let 73 : Lj(G) — C be the
map 7 o ¢ where ¢ : Lj(G) — L'(G) is the usual embedding. We have that 7 is a com-

pletely contractive homomorphism and so 7; is a completely contractive homomorphism.

In particular we have 7; € Lé (G)*. We will fix this map 7; throughout this section.
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For all w € L}(G) we have

O*(1,0),w) = (Lw) = (Tw) = (7,1(w)) = (7, w)

and so we can identify 7, = (1,0) + K. As (1,0) + K # 0 we have some w € L{(G)
such that (7, w) # 0 and thus 7y is surjective. Let [; = Ker 7; and we have a commutative
diagram

T4

LY(G) —*—C

| A7

L; (G)/1;.
As 7 and ¢ are contractive then so is 73 and by Proposition 1.1.12 we have that this is in
fact completely contractive. Clearly it is surjective as it is non-zero and injective as we
have quotiented by the kernel. Then by Corollary 1.1.13 we have that %ﬁ_l is completely
contractive and thus 7; is a completely isometric isomorphism.
As 7 is a complete contraction we can make C a completely contractive left Lé (G)-

module with module operation given by
WA= A(w) (6.2)

forall A € C and w € L}(G).

Lemma 6.2.4 Suppose that C be projective as a left completely contractive L§ (G)-module

with module operation given by Equation 6.2, then G is compact.

Proof
We show that there is a normal left invariant state on L*°(G) and then by Proposition 3.2.2
it follows that G is compact.

As 7 is a homomorphism we have 73(wy * wo) = T4(w1)Ty(w2) = wy - 74(we) for
w1, wy € Li(G) and so 7 is a left completely contractive L; (G)-module homomorphism.

Now fix w € Lj(G) with 74(w) = 1 and let p : C — Lj(G) be the map A — Iw
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and we have 74(p(\)) = Ary(w) = A and so 73 is admissible. As C is projective as a
completely bounded left A-module then there exists a completely bounded left Lé(G)—

module homomorphism making the following diagram commute

=

C
J¢ // l
s id
l—/

Lé(@) ?ﬁ@.

Let wy = ¢(1) (for 1 € C), then for all w € L} (G) we have

wrwy =w = P(1) = g(w- 1) = d(1(w)) = T(w)d(1) = (1, w)wy

where we’ve used that ¢ is a left Lj(G)-module homomorphism. Let w € L'(G), then
as L;(G) is dense in L'(G) by Theorem 4.1.4 we have a net in (w,) = Lj(G) with

lim w, = w and

lw * wo — (1, wwp|| < [lw * wo — wa * wol + (<1, waywo — {1, wwol|

< Jw = walllwoll + 1] |lwa = wll]lwo] — 0.

So we have shown that for all w € L'(G) we have w * wy = {1, w)wy and thus wy is a left

invariant normal functional by Definition 2.2.1.

We have for z € L”(G) and w € Lj(G) that

(,wxwy) = (A1), w ®uwy) = (A(r*), w* @wo)

= (x*,w* * wyy = 1, w* }a* wey = L, w)x,wy)

and so w{ is also a normal left invariant functional. So we have a self-adjoint normal left
invariant functional (wy + w;)/2 and thus we may assume without loss of generality that

wy 1s self-adjoint.
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Now consider the Jordan decomposition wy = wq — w, with wi,w; € L'(G) such

that |wo|| = |lwg || + |lwg || Let w € L'(G) be any state, then we have

wo = {l,wHwg = w*wy = w*wj —w*wy

where wy * wy and wy * wy are both positive as A is a =-homomorphism. Then

lwoll = llw = woll = [l wy = w = wy'|| < Jw = w' | + |l = wy | < flwg | + g || = flwol

and then we have equality throughout and so in particular |wy| = |w * wy || + |w * wy ||-

By the uniqueness of the Jordan decomposition we have for all states w € L(G)™ that

wrwg =wg =1, wwi

and so for all w € L'(G)" we have w * wi = (1, w)w; .

Either w; or w; must be non-zero, otherwise wy = 0 so we assume without loss of
+

A wg )

generality that wy # 0. Let w) =

and we have wy, is a normal left invariant state

as required. O

We need one more technical lemma before proving Theorem 6.2.3.

Lemma 6.2.5 We have Lj(G)I; LG = = I, where Iy = Ker 7.
Proof
We first show that L} (C(})Iﬁu‘”'i < I;. As 7y is a homomorphism, then for w; € Lj(G) and

wo € Iy we have

<w1 * Wa, Tﬁ> = <W1; Tﬁ><w2>7'ﬁ> =0

and so by linearity Lj(G)I; < I;. Now let (w,) < Iy = Ker, be a net with limit
w € L{(G), then {w, 73) = lim{w,, 73) = 0 and so Iy is a closed ideal. So as the right hand

side is closed we can close the left hand side to get L} (G)[ﬁ LG " c .
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We now need to show that L; (G)Iy o I or as both sides are closed we equivalently
show that (L} (G)I;)" < I;". First we show that I;- = {Ary | A € C}. As A1y € I} for all
A e Cwehave I;- > {Ary | Ae C}. Now let T € ]ﬁL (that is T'(w) = O for all w € Iy),
then there is a unique 7" : L}(G)/I; — C such that for ¢ : L}(G) — L}(G)/I; the quotient
map w +— w + Iy we have T = T o q. Then as L;(G)/I; =; C there is some A € C such
that for all w € L;(G) we have T(w + I;) = My(w + ). Then in particular we have
T(w) = Ary(w) forall w e Lj(G) andso 7' = Aryand T € {1y | A e C}.

Let 2,y € L”(G) such that (z,7) + K € (Lj(G)I;)", then we show this is in I} or
indeed that there is some A such that (z,7) + Ky = (A,0) + Kj. Let w € L}(G) and
k€ Iy, then {(z,7) + Ky, w = k) = 0 and so

0:<($a?)+Kﬁ>W*H>:<$aW*“>+m
= (A7), w® k) + (Ay), FF @ wh) = {(w®id)A(z), k) + ((Id ® W) A(y), &F)
= ((w®id)A(z), [d @ w)A(y)) + Ky, k). (6.3)

As this holds for all w € L} (G) and & € I; then ((w ® id)A(x), (id @ w*)A(y)) + K; € I}
for all w € L}(G). We showed above that I;- = {Ary | A € C} so for all w € L}(G) we

have some a(w) € C such that
(w®id)A(z), [d@wHA(y)) + K; = (a(w)1,0) + K;. (6.4)

It is easy to show that this defines a linear map « : L§(G) — C and we show that it is
bounded and thus « € Lé(G)*. By acting wy on Equation (6.4) and using the calculation

(6.3), for any wy, w; € L} (G) we have

a(wr)(1,we) = ((2,7) + Ky, wi *ws)
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and so

a(w)| [<1, wop| < [[(2,7) + KﬁHL;(G)*leHL;(G)HWHL;(G)

Now taking the supremum over all w, € Lj(G) and then w; € Lj(G) we get

(2, y) + KﬁHL;(G)
[(1,0) + K¢l e

el <

Finally using that (1,0) + K} # 0 we have [(1,0) + K;| # 0 and « is bounded.
As we have shown that a € Lj(G)* we can write @ = (2/,¢/) + Kj for some 2,3/ €

L*(G). For all wy, w; € Lj(G) we have from Equation (6.4) that

(A(z),w1 ®ws) + {AY),wh @wh) = (7' @ 1,01 o) + (¥ ®L,wl @l  (6.5)

where we’ve used that (1, wé} = (1,wsy). We now smear and calculate as follows

(& (0) + Sy (n)*) ® Lwn @ ws) = ((a'(m),wn) + (g (m), ) (L wa)
- (= ”wkmwwﬁﬂmwwmdoﬂwﬁ

@'@Liw o @uwaom) + Y ®1, w107t®w2on>) dt

"
e <<A(x), wi 0T ®@uwy oty + {A(Y), (W o) ® (wy 0 Tt)ﬁ>> dt
(

(A(ny()), w1 @ wa) +(A((y)), wh ® w§>) dt

(&

Si= 5l= 5l= 5=
%ﬁ%ﬁ%ﬁ%ﬁ

(&

e (<Tt(x), w1 wed + {To(y), (@ = w2)ﬁ>) dt

x(n),wr * wa) + {y(n), (wi *wz)f)
1(n), w1 = wa) + (S(y(n))*, w1 *wa) = (A(z(n) + S(y(n))*), w1 @ wa)

NN
=

where we’ve used Equation (6.5), 7; is normal, (1) = 1, (w o 7)* = w® o 7 € L}(G) for

allwe Li(G)andt e Rand (, ®7¢) o A = Ao forall t € R. See Definition-Theorem
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2.2.7 and Propositions 2.2.8 and 4.1.5 for these results.

This holds for all wy, w, € L}(G) and thus we have
A(z(n) + S(y(n))*) = (2'(n) + S (n))*) @ 1.

Then by Lemma 2.2.13 for all n € N we have some t,, € C such that z(n) + S(y(n))* =
tnl. Letw € L{(G) and we have

|t = tn)[ K1, )l = [(z(n) = 2(m), w) + (S(y(n))* = S(y(m))*,w)|
= [(x(n) — z(m),w) + (y(n) —y(m),whH)| =0

and 50 as there exists w € Lj(G) with (1,w) # 0 then (t,) < C is a Cauchy sequence.

Let ¢ € C be the limit of (t,,) and for w € L}(G) we have

{(z,9) + Ky, w) = {z,w) + {y,w?) = lim{z(n), w) + lim{y(n), wk)

= lim{z(n) + S(y(n))*,w) = limt,(1,w) = {1, w).

As this holds for all w € L} (G) we have (x,7) + K; = t(1,0) + Kj as required. O

Proof of Theorem 6.2.3
As Lé (G) is a completely contractive Banach algebra it follows from Example 1.1.50 that
the unitisation L; (G) is a completely contractive Banach algebra. By Lemma 1.2.11 we

then have that L] (G)°/I4 is a left operator L} (G)-module with an operation such that
w- (W) + L) =w*w + Aw + L.

By Lemma 1.2.15 we have that L;(G) ®L§ @) (L1 (G)’/Iy) is a projective left completely
bounded Lﬁ1 (G)-module. By Lemma 1.2.14 this is completely isometrically isomorphic to

L} (G)/L}(G)I; which by Lemma 6.2.5 is equal to L} (G) /I = C. So Cis a left projective
completely bounded Lé(G)—module and then G is compact by Lemma 6.2.4. O
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6.2.4 Structure Theorem for Operator Biprojectivity of L;(G) for
Compact Quantum Group G

We have seen in the previous section that if Lj} (G) is operator biprojective then G is com-
pact. We assume in this section that G is compact and we prove a structure theorem for
the operator biprojectivity of Lé (G). In particular we prove some necessary and sufficient
conditions for the L; (G) algebra of a compact quantum group G to be operator bipro-
jective. The inspiration for this section comes from Section 3 in Daws (2010) where a
similar theorem is proved for the L' (G) algebra.

Let {U* € C(G) ® B(H,) | a € A} denote the maximal family of corepresentations
from Theorem 3.2.9 throughout this section.

We begin now by stating the main theorem and we spend the rest of this section

proving this result.

Theorem 6.2.6 Let my : L;(G) @Lé (G) — L{(G) be the multiplication map from Theo-

rem 4.2.1 and A* its adjoint. Then the following are equivalent:
(i) L&(@) is operator biprojective;

(ii) There exists a completely bounded normal map ¥ : Li(G)*®L{(G)* — L{(G)*

such that

ToAf = idps @y Aol = (T ®id)o (id®A%) = ([d® ¥) o (A ®id);
(6.6)

(iii) There exists a family of matrices {X® € M., | o € A} such that for o, € A,

1 <i4,7 < ngandl < k,l < ng and a completely bounded normal map V :
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L (G)*®L}(G)* — Li(G)* such that

W (((u5,0) + K5) ® (1, 0) + K3) ) = 0 X3 (15, 0) + Ky), D X5 = 1.
r=1

6.7)

We need two preparatory lemmas before proving Theorem 6.2.6.

Lemma 6.2.7 Let . : L}(G) — L'(G) be the completely contractive inclusion map, then
the completely contractive adjoint 1* : L*(G) — Ly (G)* has weak*-dense range and we
have

(F®1*)o A= Ao
where A* is the adjoint of the completely contractive map my : L}(G) ® L (G) — L{(G)
from Theorem 4.2.1.

Proof

We have for 2 € L”(G) and w € L} (G) and using Theorems 4.1.15 and 4.2.6 that

(), w) =, 1(w)) = ((x,0) + Ky, w)

and so t*(z) = (x,0) + Kj.

By Theorem 4.1.15 for any element in L} (G)* we have some z,y € L*(G) such that
this element is given by (z,7) + Kj. Let n € N and consider z(n) + S(y(n))* € L*(G),
then as Ky = {(x, —S(x)*) |z e Dom(S)} we have

Ha(n) + 5(y(n)*) = (z(n) + S(y(n))*,0) + Ky
= (z(n) + S(y(n))*,0) + (=S(y(n))*, S(S(y(n))*)*) + K;
= (2(n),y(n)) + Ky = T(n)*((2,7) + Ky)

where we’ve used Y(n) from Notation 4.2.7. Using Proposition 4.2.9 we have for all
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T e L}(G)* and w € L}(G) that
KL (n)*(T),w) = (T, w)l < [Ty T (n)(w) = wleye) — 0.
Therefore for all w € L} (G) we have
lim{e*(z(n) + S(y(n))*),w) = Em(Y(n)*((z,7) + Ky), w) = (2, 7) + Ky,w)

and so ¢* has weak*-dense range.

Using that ¢ is a homomorphism, for 2 € L*(G) and wy, w; € L;(G) we have

(A% 0 1*)(x), w1 @wa) = (*(x), my(wr @ wa)) = {x, t(wy * ws))
= (A(z), t(wr) @ t(w2)) = (((t" ® 1) 0 A)(2)), w1 @ wa).

Then for all Q € L'(G) ® L{(G) we have ((Af o 1*)(x), Q) = {((¢* ® *) o A)(x)), Q)

and thus Af o /* = (1* ® 1*) o A as required. O

Lemma 6.2.8 For all t € R there is an normal isometry 7/ : L} (G)* — L{(G)* such that

ot = ¥ ory (where o : Li(G) — LY(G) is the inclusion) and where

% ((@,9) + K) = ((nla), 7)) + K3 )

forall z,y € L*(G). We have 7% : R — B(L}(G)*) is a weak*-continuous one-parameter

automorphism group on the Banach space Lt} (G)*. In addition for t € R we have

where A is the adjoint of the completely contractive map my : L} (G) ® L (G) — Ly(G)
from Theorem 4.2.1.
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Proof

Fix ¢t € R and we consider the contraction 7 : L*(G) — L}(G)* given by ¢* o 7,. Then
as t* : L?(G) — Lj(G)* has weak*-dense range by Lemma 6.2.7 above we can uniquely
define a contraction 7/ : L;(G)* — Li(G)* such that TP ou* = *or. As(* and 7, are
normal it follows that 7}ti is normal.

Let z,y € L*(G) and t € R, then by Lemma 6.2.7 we have

% ((@7) + Ky) = 7 (lm((x(n) + S(y(n)",0) + Ky)
— tim(rf 0 *) (#(n) + S(y(n))") = ln(e” o 1) (x(n) + S(y(n))")
— tim * (ra(n)) + S(r(y(m))*) = lim () (), 7)) + )
~ (@), 7)) + K3)

where we’ve used that (*(z) = (z,0) + K for all z € L*(G), (z + S(y)*,0) + Ky =
(x,79) + Ky forall x € L*(G), y € Dom(S) (see the proof of Proposition 4.2.8), 7,0 .S =
S o 1; from Proposition 2.2.8 and that 7(x)(n) = 7(z(n)) for all x € L*(G) and n € N.

It follows easily that Tf e = Ttﬂ o 7% for all t, s € R using the same property of 7;. We

have that 77 is an isometric automorphism as for all £ € R we have 7%, 07/ = id = 7fo7?,
and so TL is a contractive inverse for 77

Let z,y € L*(G), then we have

(@) + 1) w) = (7 (@9) + 1) )| = [ (7m0, (@) 70, ) + Epw)

= (<Tt7tn(w),w> = (T (y), )| < [T, (), ) + (711, (y), )] = 0

and so 7 is a weak™-continuous one-parameter group of automorphisms.

The final statement follows as

AﬁOTtﬁOL*ZAﬁOL*OTtZ(L*®L*)OAO7‘t:(L*®L*)o(7-t®7—t)oA
= (Ttﬁ®T£)O(L*®L*)OA=(Tf@Ttﬁ)OAﬁOL*
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where we’ve used Proposition 2.2.8 and the statements proved above Afor* = (1*®@:*)oA

and Ttﬁ o* =" or, forall t € R. As ¢* has dense range the result follows. O

The following lemma will help us prove (iii) == (i1) in Theorem 6.2.6. Note that the
proof gives us that 3;' and ~;* both depend on j, however we will not use this in our proof

of our main theorem.

Lemma 6.2.9 Let ¥ : Li(G)*®L;(G)* — Li(G)* be a completely bounded normal
map satisfying Equations (6.6), let c« € A, 1 < i,j < n, and x € Lé(G)* be fixed and
let a;; = U (z® ((ug, ) + Ky)) and by = U (((ug,0) + K;) @x). Then there exist

collections {f | 1 <k <nu,}and{yy | 1 <k < nu} such that

Z ((ug;,0) + Ky) and ka ugy,, 0) + Ky),

Proof

From the second Equation in (6.6) and using Lemma 6.2.7 we have

Aﬁ(aij) = (Aﬁ o W) (x®L*(uf;)) = (¥ ®id) (:z:® (Aﬁ o *)(u z]))
= j(@@id) (z® 1 (up) @ L Zaw uy;, 0) + Ky).

r=1

Then for all wy, wy € Li(G) we have
{aj,wy * wp) = Z<air7w1><u?j7w2>'
r=1
As 7/ is normal for all ¢ € R from Lemma 6.2.8 we have a pre-adjoint (7). Li(G) —

L;(G) and so replacing w; with (78)4(w1) and similarly for w, in the above equation we

have

Lo (rf)aln)) = (7)) = D et (1) )Xy, (o).
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Using that (735ﬁ ® Ttﬁ) oAf = Afo Ttﬁ for all t € R from Lemma 6.2.8 we have equivalently

(rfa) o+ = S ot onXm(ay) )

and then weighting and integrating with respect to ¢ and using Proposition 3.2.18 we get

\% JR e (rhlaig) wi v wp ) dt
-3 (e [ onr oy oton) woar) ot e

(6.8)

Forall 1 < m,n < n, weletal, a2, € L*(G) such that a,, = (a’,, a2, ) + K; We

mn’ 'mn mn’ 'mn

calculate the integrals in turn now, first we have

% JRe_”QtQ <Tf(aij), Wy * w2> dt
=2 | e (Gl + )+ Gl o )
= (aj;(n), wy * w2y + {af;(n), (w1 * wn)?)
= {az;(n), w1 * way + {S(af;(n))*, wi * wa)

= (A(a;(n) + S(ai;(n)"), w1 @ws)

where we’ve used that the smear of any element of L*(G) is in Dom(.S). For all 1 <

m,n < ng we let (i, = (In A%, —In\%)/2 and for the other integral in Equation (6.8)
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we have

n —n2t? 2itu,.; s f
— | e e i (i (ag ), wr ) dt
VT JR
n 2 ; 2V2_ 2 /02
_ —n?(t—ipy;/n?)2—p;/n ( 1 4 2 § ) dt
ﬁ fR € 7 <Tt(a’zr)7 W1> <Tt(a7,r)7 w1>

= o0 (=50 (el ) 1)+ e, 1))

2
Mo %
= oxp (<52 ) (i 0) + S ()0
where we’ve used Theorem 1.3.17. Then substituting back into Equation (6.8) we have

(A (aj;(n) + S(af;(n))*) ;w1 @ ws)
Mo 2
Ho-j % o
- Z exXp (n_;) <Tiﬂrj/”2 (a’zlr(n)) + S(T—iurj/nz (a’zzr(n))) 7w1><u7~ja w2>
r=1
and as this is true for all wy, w, € Lj(G) we have
A (aj;(n) + S(af(n))*)

No 2
ILL’I" ES «
= X0 (=22 (o 00) + SCri ol (00)) @15
r=1

So we now have an equality in L*(G)®L*(G). Fix 1 < k,l < n, and using this

equation and that A is a *-homomorphism we have

A (@) + (a3 (m)") ui)") = D A(aln) + (a2 m) ()" ® (1))
= 35 00 (5 ) (b 0) + S B D)) () @1 )"

r,s=1

We can apply (id ® ¢) for ¢ the Haar state and using Definition-Theorem 3.2.3 and The-
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orem 3.2.15 we have

6 ((alyn) + (a2, m) o))
35 030 (5 ) (o 0) 4 S( 0 G D)) 02000, 03"

«
T,8=
2

—Zéﬂ exp( ”“") (i o (8, (0)) + S (02, (0)))) ()"

where A\* and A“ are as given in Theorem 3.2.15. This holds for all 1 < k£ < n,, and so
we can multiply on the right by ug, for 1 < s < n, and sum over k. By doing this and

using that U® is unitary and so > ;% (uf.)*us, = 0,51 we have

7 20 o)+ SCa )0

2
s
= oxp (<) (@b (1) S(is i 01)°).
Then for any w € L} (G) we have

A S 6 (b )+ S(a () (o)) )

J k=1

= e (52} iy a0 + (o))
e (<L) (o) )+ T T )
= oxp (1) (2 [ e (Gt + Tl o) )

= exp ( MS]) \ff e~ (t—ipsj /n)? <Tt (a;s),w)dt (6.9)

where we’ve used Theorem 1.3.17 again. Using that 7% is a weak*-continuous one-
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parameter group we calculate

'usj) —n?(t—ipgj/n>)? QZM
exp ( s <7‘t (ais),w)dt — I Qig, W)
VT J

o Re_”t <Tt(ai5),w>—<ais,w>) dt‘—»O

and so using this, Proposition 4.3.2 and letting n — oo Equation (6.9) becomes

a Na

€2 (g o) — % Z lim ((afy(n) + S(af;(n))*) (ugy) ) uiy, )

Z m ({aj;(n), wiy) + (S(aj;(n)*, wiiy)) (g, w)
>

(Catyy iy + 0%, (W By ) iy ) = Z@W%M%w>

«

where we remind that w, = —(uf,)* - ¢ from Notation 4.3.1. As this holds for all
kj PR
J

w € Li(G) we have

= 3 (. 0) + )

k=1
forall a € Aand 1 < i,5,5 < n, where we've set Ay 1= e~ **is(a;,wp;) € C for all

1<k <n,.

Using similar techniques we can show that for 1 < ¢, 7, s < n,, we have
bsj = € AN o ((uf)*big) (ugy, 0) + K)
=1

giving the other formula in the lemma. O

Proof of Theorem 6.2.6

(i) = (ii): Then there exists a completely bounded Lﬁ1 (G)-bimodule homomorphism
U, : L}(G) — L}(G) ®L{(G) that is a right inverse to the multiplication map m;. By
Theorem 6.2.1 we have the adjoint ¥ : Li(G)*®L{(G)* — L{(G)* and as U, is a
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right inverse to my we have ¥ o Af = idLé (G)*- By construction ¥ is normal. Also for

wi,wy € Li(G) and T € Ly(G)* ® L{(G)* we have

(Ao U)(T), w1 @wa)y = (T, Uy (wr * wa))y = (T, Uy (wr) * wa)
= (T, (iId @ my) (¥, (w1) @ws)) = (¥ ®id)(id ® A)(T), w1 @ wa)

and similarly we can show {(A% o U)(T),w; @ wy) = {(id @ ¥)(A* ®@1d)(T), w1 ® wa).
As these hold for all wy,w, € L{(G) and T' € L} (G)* ® L} (G)* we have Equation (6.6).

(i1)) = (1): As V¥ in (ii) is normal and using Theorem 6.2.1 again we have a predual
map U, : L}(G) — Li(G) @Lj}(G) that is completely bounded and such that my o ¥, =
idLé (@) 1.e. W is aright inverse to A*, Tt follows by similar calculations to above that W,

is a completely bounded L} (G)-bimodule homomorphism.

(ili) == (ii): Using Equation (6.7), Lemma 6.2.8 above and Proposition 3.2.11, for

aeAand 1 <1i,j5 <n, wehave

(W o AF o ") ()

(Vo (1" @) o A)(ugy) = (Vo (tf®F)) (i sy, ®u‘,§j>

k=1

Z zk’ +Kﬁ)®((uk‘j7 +Kﬁ Zka zg’ +Kﬂ) = L*(U%)

As Hopf(G) is weak*-dense in L®(G) we have ¥ o Afo/* = ¢* and then using that /* has
weak*-dense range we have U o A = id. Fora, e A, 1 <i,j <n,and1 <k, Il <n
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we have

(d® W) o (A ®id)o (1* %)) (uf; @uf))

— (4@ W) (((* ® ") 0 A) () ® (1, 0) + K3))

= D@ W) (((u5,0) + K) @ (u,0) + ;) @ (1, 0) + K3))

r=1

kz ’L7‘7 +Kﬁ ®((u?l70) +Kﬁ)

= 6ap X5 ((1F @ 1) 0 A)(uf) = Sap X5 A ((uf),0) + K)
- (Ati oWo (t*®Y)) (uf‘] ® ukl>

and similarly we can show
(¥ ®id) o (id® A o (1* @ 1*)) <u0; ®u§l> — (AfoWo (@) (uf{; @uf,) .

As before we can linearly extend both of these to Hopf(G) ® Hopf(G) which is weak*-
dense in to L”(G) ® L*(G) and which itself is weak*-dense in Lj(G)* ® L;(G)* and so

we have Equations (6.6).

(i) = (iii): Let o, 5 € A, 1 < 4,5 <ngand1 < k,l < ng. Then by Lemma 6.2.9 we
have W (((u 0) + K3) ® ((up,,0) + Kﬁ)> is in both lin {(uf,0) + Ky | 1 < s < n,}

157

and lin{(url,O + K ) 1<r< ng}. Thus if 8 # o we have

ZS’

W (15, 0) + K) @ (u];,0) + K5) ) = 0.
If o = f3 it follows by linear independence that there exists some X7 € C such that

W (5, 0) + K3) @ ((uf 0) + K3) ) = X3l (g 0) + K.
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Finally we have that W is a left inverse to A% and so from Lemma 6.2.7 we have

N

S XE(%,0) + 1) = S0 (((ug,0) + Ky ® (15, 0) + K5y)
k=1 k=1

= (To(*@u*)oA)(ul) = (FoA?o ) (ugy) = (ug, 0) + Ky

iJ i)

and so >, X7 = 1 as required. O
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Appendix A

Functional Analysis

In the appendix we record some results from functional analysis and measure theory that
we will use in the text. We assume the reader is familiar with these subjects and will only
discuss those results we feel add clarity to the thesis.

For a more comprehensive treatment of Banach spaces we recommend Helemskii
(2006), Reed & Simon (1980), Megginson (1998), Pedersen (1989) and Conway (1990)
and for Banach algebras see Dales (2000), Palmer (1994) and Helemskii (1993).

A.1 Banach Spaces

We now define some constructions on Banach spaces, in particular we discuss subspaces

and quotients of Banach spaces.

Proposition A.1.1 Let X be a Banach space and Y a subspace of X, then we let Y have
the norm inherited from X and it follows that Y is a normed linear space. In particular
forY a closed subspace (with respect to the norm topology) we have that Y is a Banach

space.

Proposition A.1.2 Let X be a normed space, M a closed subspace of X and X /M the
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quotient linear space. Then we have a norm given by
|z + M| :=inf{[z —y| [ ye M} =inf{|y| | y ez + M}

called the quotient norm and furthermore if X is a Banach space then so is X /M.

Proposition A.1.3 Let M be a closed subspace of a normed space X. Then the map
q: X — X/M given by x — x + M is a contractive linear operator that is an open

mapping with kernel M and if M # X then |q| = 1.

Theorem A.1.4 Let'T' : X — Y be a linear map between normed spaces and q : X —
X /Ker T the natural from X to X /Ker T given by x — x + T'. Then there exists a unique

injective linear map T = X J/KerT' — Y such that the following diagram is commutative:

| £

X/KerT.

Furthermore T is bounded if and only if T is bounded in which case we have |T|| = |T|
and T is an open mapping if and only if T is an open mapping. If T is surjective and

bounded then T is an isomorphism.

Definition A.1.5 Let T € B(X,Y) be a bounded linear map between normed spaces,
then T' is a quotient map if it is surjective and such that the map T:X /KerT' —'Y from

Theorem A.1.4 is an isometry (and thus an isometric isomorphism).

Proposition A.1.6 Let T € B(X,Y') be a bounded linear map between normed spaces,

then T’ is a quotient map if and only if T' maps the open unit ball of X onto the open unit
ball of Y.
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A.2 Unbounded Maps in Banach Space Theory

We now give a brief overview of unbounded maps between Banach spaces.

Definition A.2.1 In this thesis we define a linear map T' between Banach spaces X and 'Y
(either with the norm, weak or when applicable weak* topologies), denoted ' : X — 'Y
as a map from a subspace Dom(T) of X to Y that is linear on Dom(T'). We say T is
densely defined if Dom(T') is dense in X and everywhere defined if Dom(T) = X. A

linear map T' : X — X is a linear operator.

Definition A.2.2 Let T : X — Y be a linear map, then the graph of T is the set
9(T):={(z,Tzr) e X xY | x € Dom(T)}.

We say T is closed if G(T) is closed with the product topology on X and Y .

Proposition A.2.3 Let T : X — Y be a linear map. Then §(T) is closed if and only if it
satisfies the following condition: for all nets (x,) < Dom(T') with limit x € X such that

there is some y € Y with lim, (Tx,) = y then x € Dom(T) and y = T'z.

It is well known in Banach space theory that if a densely defined map 7" : X — Y is
bounded, then there is a unique map that is everywhere defined that extends 7'. This is
not necessarily the case for unbounded maps however (by which we mean not necessarily
bounded maps). In fact we have the following which shows that for closed unbounded

maps we must allow for maps that are not everywhere defined.

Theorem A.2.4 (Closed Graph Theorem) Consider X and Y with the norm topologies

and let T : X — Y be an everywhere defined linear map such that the graph G(T') is
closedin X ® Y, then T is bounded.

We now give the notion of a core of an unbounded map which will make unbounded maps

much easier to handle.
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Definition A.2.5 Let T be a closed operator and Dy a subspace of Dom(T') such that T
is the closure of Ty := T\, , that is §(Ty) is dense in G(T'). Then we say that Dy is a core
forT.

Proposition A.2.6 A subspace Dy — Dom(T) for a closed operator T : X — Y is a
core for T if and only if for all x € Dom(T)) there exists a net (x,) < Do withlim, x, = z

and lim, Tx, = Tx.

Proposition A.2.7 LetT,S : X — Y be closed linear maps such that there is a subspace
V < Dom(T) n Dom(S) with V' a core for S and T. If S(x) = T'(z) for all x € V then
S=T.

We now discuss unbounded linear maps that can be closed.

Definition A.2.8 LetT : X — Y, thenT is preclosed if there is a closed map S such that
T < S and the closure of G(T) is G(S). We let T denote the smallest closed extension of
T.

It follows immediately from the definition of a core that for a preclosed operator 7" : X —

Y we have that Dom(7) is a core for the closure Dom(7T").

Proposition A.2.9 Let T : X — Y be a linear map. Then the following conditions are
equivalent on T':
(i) T is preclosed;

(ii) Forally,y' €Y with (z,y),(x,y’) € G(T) then we have y = y';

(iii) For all nets (x,) < Dom(T) converging to 0 such that (T'z,) converges to some

yeY, theny = 0.

Finally we consider the adjoints of unbounded maps. Consider Banach spaces X and YV

and 7" : X — Y adensely defined map between the Banach spaces. Say for w € Y* there
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exists k, k' € X* such that for all x € Dom(7") we have (I'z,w) = (z, k) and similarly
for x’. Clearly then {(z, k) = {(x, ') for all z € Dom(T’) and as T is densely defined we
have that k = x’. Thus we have a well defined linear map 7% : Y* — X* given as follows

(with similar reasoning for a pre-adjoint map).

Definition A.2.10 Let T': X — Y be a densely defined map between Banach spaces X
and Y. Then we define

Dom(T*) ={w e Y™ | 3k € X* such that {Tx,w) = {x,k) Yz € Dom(T)}

and T* : Y* — X* by T*w = & for all w € Dom(T*) for k € X* the unique element
given in the definition of Dom(T™).
If X and Y are dual Banach spaces with unique preduals X, and Y, we can similarly

define

Dom(Ty) = {we Y, | 3k € X, such that (Tz,w) = {(x,k) Yx € Dom(T)}

and then T, : Y, — X, is given by T, w = k for all w € Dom(T,) with k € X, the unique

element given in the definition of Dom(T). It follows that we have T, w = wo T € X,.

Theorem A.2.11 IfT is a closed operator then T is weak™-closed. On the other hand, if
T is the dual of an operator T, and T is weak™-closed then the pre-adjoint T, is a closed

operator.

A.3 Banach Modules

Banach modules are very similar to that of operator space modules so we don’t give the
main definition. We do however give the example of how to make the dual of a Banach
algebra into an A-bimodule and the Cohen Factorisation Theorem (or sometimes as the

Cohen-Hewitt Factorisation theorem or the Doran-Wichman Factorisation theorem) in
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this appendix. The Cohen Factorisation Theorem is a highly non-trivial and important
theorem in the study of Banach A-modules and we refer the reader to Doran & Wichmann

(1979) for further details on this subject.

Example A.3.1 Let A be a Banach algebra, then for all w € A* and a,b € A we define
b-ww-a:A— Chbhy
{a,b-w)y = {(ab,w) = {(b,w - a)

and we can easily see that b - w,a - w € A* and that A* is a Banach A-bimodule. In

particular for a,b € A and w € A* we have

(x,a-w-by = {bra,w)

forall x € A. If A has a predual we can restrict the bimodule structure on A* to this.

Definition A.3.2 Let A be a Banach algebra and X a left Banach A-module. Then we

say X is essential if X =lin {ax | a€ A, x € X}.

Theorem A.3.3 Let A be a Banach algebra with a left approximate identity bounded by
some K = 1 and X an essential left Banach A-module. Then for x € X and ¢ > 0 there

exists a € A and y € X such that

r =ay, ||CL||§K, yEAJ} ) Hy—ZL‘”<€

A.4 Weakly Compact Operators and Arens Products

We begin this section by defining weakly compact maps between Banach spaces and then

move onto a discussion of Arens products.

Proposition A.4.1 Let T : X — Y be a bounded map between Banach spaces. Then the

following are equivalent:
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(i) T(Bx) is relatively weakly compact in Y for Bx the closed unit ball in X,
(ii) T(B) is relatively weakly compact in'Y for any bounded subset B of X;

(iii) A bounded sequence (x,) = X has a subsequence (x,, ) such that (T (x,,)) con-

verges weakly.

Definition A.4.2 Amap T : X — Y between Banach spaces is weakly compact if any of
the equivalent conditions in Proposition A.4.1 are satisfied and we let BY (X,Y") denote

the weakly compact operators from X to'Y .

Proposition A.4.3 Let T : X — Y be a weakly compact map and S :' Y — Z and
R : Z — X be arbitrary bounded maps, then S o T and T o R are both weakly compact

operators.

Proposition A.4.4 We have that all compact maps are weakly compact and all weakly
compact maps are bounded, that is By(X,Y) < By (X,Y) < B(X,Y) for Banach
spaces X and 'Y .

Let A denote a normed algebra and ¢ : A — A** the canonical embedding of A as a
normed space inside its double dual A**. We have that there are two natural ways of
making A** into a Banach algebra with the left and right Arens’ products. We define
these products now. In general these two products will differ. For further details on this

subject see Palmer (1994).

Definition A.4.5 For m,n € A** we define the left Arens product m On € A** and the
right Arens product m OGn € A** as follows. We remind that A* is an A-bimodule
with the structure given in Example A.3.1. For w € A* and m,n € A** we define

nOw,w<me A* by

mOw,ay ={(n,w-a)y la,wOmy={a-w,m)
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and then define m On,m O n € A* by
(mOn,wy ={(m,nOw) {lw,m<Ony ={wom,n).

It can be shown that A** is a Banach algebra with either Arens product and that ¢ :
A — A** is an injective homomorphism with respect to either Arens product. The most

important theorem for us regarding Arens products is the following.

Proposition A.4.6 Let A be a normed algebra, then 1(A) is a left (right) ideal in A** if
and only if for all x € A the multiplication map A — A given by y — yx (y — xy) is

weakly compact.

A.S Operator Theory

We give a brief discussion of the direct sum of Hilbert spaces now. For Hilbert spaces J
and X we have that the linear space H @ X is a Hilbert space when given the following

inner product

((51,771)t‘(§27772)t)g{@9< = (&11€2) ¢ (m1]m2)5

where &1,& € H and 1,1, € K. We will also use the following notation for bounded

linear operators on direct sums of Hilbert spaces.

Notation A.5.1 Let v € B(H) and y € B(K). Then we let x ®y € B(H ® K) denote the
operator given by (£,n)" — (z&,yn)! for £ € H and n € K.

We can also consider infinite direct sums of Hilbert spaces which have an additional

convergence property. In particular we will need the following related results.

Proposition A.5.2 Let (H;), (K;) be two collections of Hilbert spaces and let H =
@, H; and X = @, K. Let (x;) be a collection of maps that is bounded (i.e. sup; |z
is finite) where x; € B(H;, K;) for all i and consider x := ), x; where (P, ;) - (&), =
(2:&), for all (&;); € H, then we have x € B(H,XK) and |x| = sup; |z;].
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Proof
As (z;) is bounded it follows that sup, |z;| < . Let £ := (&;); € H where &; € H; for

all 7 and we have

2
I = (" = Sl < (m«mﬁ<2mﬂ>=(wwa0nm2

and so taking the square root and supremum over { € H with ]| < 1 we have |z| <
sup; |-

Fix ¢, then for all {; € J; such that |;| < 1 we have ||z| > |z;&| and so taking the
supremum over all such ; € 3(; we have |z;| < [z for all i. As this holds for all i we

have sup, ||z;| < ||=| as required. O

Proposition A.5.3 Let A < B(H) be a C*-algebra on a Hilbert space H with the
usual operator space structure, that is for any N € Ny (including N = o) and matrix

(2ij)1;—1 € My (A) we have

| (i) f-a] = sup (Zrﬁa £= (&, e KW, ¢ <1
i=1

where HN) = @Y H. Let (2i)N1 € Mn(A) € B(HW) (including N = o), then
|

forall1 < m,n < N we have |z,| < ”(xij)ijzl )

Proof
Fixany 1 <n < N, let§, € Hand let & = (9;,,&,)Y ,, then we have

Jotl? = | @it Zwmﬁ [l

forall 1 < m < N and so |2,,,6,| < [|z€] < |z||¢]| = |=][|&,]. Taking the supremum
over &, € H with |£,] < 1 we get the result. O

We discuss briefly conditional expectations on C*-algebras now.
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Definition A.5.4 Let A be a C*-algebra and B a C*-subalgebra of A. Then a projection
T : A — Bisamap such that T(b) = bfor all b € B and a conditional expectation is a
contractive projection € : A — B that is completely positive such that €(bab’) = b€ (a)b’
forallb,b' € B and a € A.

See Brown & Ozawa (2008) Theorem 1.5.10 for a proof of the following result.

Theorem A.5.5 (Tomiyama’s Theorem) Let A be a C*-algebra and B a C*-subalgebra

of A. Then for a projection € : A — B the following are equivalent:

(i) € is a conditional expectation;
(ii) € is contractive and completely positive;
(iii) & is contractive.

Finally we give a brief overview of multiplier C*-algebras, see Chapter 2 in Murphy
(1990) and Chapter 2 in Timmermann (2008) for further details. We can consider maps
L:A— B(A)and R: A — B(A) given by a — L, and a — R, respectively where
L., R, € B(A) are the maps L,(b) = ab and R,(b) = ba for all b € A. It is easy to show
that L, (bc) = L, (b)c, Ru(be) = bR, (c) and bL,(c) = R, (b)c for all a, b, c € A. Also for

a € A we have

lall = sup {llab] | be A, [b] <1} = sup{lba] | be A, [b] <1}

and so it follows that | L,| = ||R,| = |a|. This motivates the following definition.

Definition A.5.6 Let A be a C*-algebra, then a pair (L, R) with L, R € B(A) is a double

centraliser for A if for all a,b € A we have

L(ab) = L(a)b, R(ab) = aR(b), R(a)b = aL(b).

We denote the set of double centralisers of A by M(A).
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In the following, for L € B(A) we define L* : A — Aby L*(a) = L(a*)* forall a € A.
Then we have |L*(a)| = ||L(a*)| < | L]|al and so L* € B(A).

Proposition A.5.7 Let A be a C*-algebra, then M(A) is a unital C*-algebra with the
following structure

(L,R) + AM(L',R') = (L+ AL, R+ \R')

(L,R)(L',R") = (LL',R'R), (L,R)* = (R*, L")
I(Z; R)| = [ L] = | R
for (L,R),(L',R") € M(A) and \ € C.
We have that M(A) is in a sense a unitisation of A as shown by the following proposition.

Proposition A.5.8 Let A be a C*-algebra, then there is an isometric *-homomorphism
that embeds A as a C*-subalgebra of M(A). Furthermore A is an ideal in M(A). If A is
unital then we have A =; M(A).

Definition A.5.9 Let A and B be C*-algebras and let ¢ : A — M(B) be a homomor-
phism, then ¢ is non-degenerate if $(A)B and B¢(A) are both linearly dense in B.

A.6 Measure Theory and Banach Spaces

We will make use of various measure theoretic results throughout this thesis and the reader
is assumed to have a background in this area. In particular we expect the reader to be
familiar with integration, the Lebesgue measure, the L spaces for 1 < p < oo, the
duality of Cy(€2) and M(£2) for a locally compact space €2, complex Radon measures, the
Radon-Nikodym theorem, products of measures, the Fubini theorem and the basics of the
Fourier transform. We recommend Rudin (1987) Chapters 1-6, Folland (1984) and Cohn

(1980) as references.

273



A. FUNCTIONAL ANALYSIS

We cover now briefly some results in integration on Banach spaces. Let (€2, 1) denote
a measure space and X a Banach spaces and we consider a function f : 2 — X. We let
[f] : 2 — R* be the function given by | f||(t) = | f(t)| for all ¢ € 2. We define now the

notions of weak and weak* integrable and give some basic results on these concepts.

Definition A.6.1 We say a function f : Q — X is weakly integrable (sometimes called
Pettis integrable in the literature) if | f| is integrable and there exists x € X such that for

all w e X* we have

) = | <FE)dute).
We then say x is the weak-integral of f over X.

Definition A.6.2 LetY be a closed separating subset of X*. Then we say f is integrable
with respect to Y if || f| is integrable and there exists some x € X such that for allw € Y

we have

(,w) = L<f<t>,w>du<t>.

In particular, if X is the dual of a unique Banach space X, andY = X,, then we say x

is the weak™ integral of f over X.

Say a function f : 2 — X is integrable with respect to some closed separating set
Y < X* then as Y is separating it is immediate that the z € X such that (x,w) =
§o(f(t),w)du(t) is unique. We now give the existence theorems we will use in this

thesis.

Proposition A.6.3 Let f : R — X be function that is continuous with respect to the
norm topology on X and such that the map | f|| : R — R* given by || f|(t) = | f(t)| is

integrable. Then f is weak-integrable with respect to the Lebesgue measure on R.

Proposition A.6.4 Let X be a Banach space and let f : R — X* be a function that
is continuous with respect to the weak*-topology on X* with || f| integrable. Then f is

weak™*-integrable with respect to the Lebesgue measure on R.
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A.7 The Fourier Transform

Consider the circle T = {e* | § € [0,1)} = C and consider the Hilbert space L*(T) =
{f :T—-C ’ Sé ‘f(62”i9)|2 db < oo} with inner product (f|g) = S(l) f(e¥m0)g(e2mif) dp.
We define a set of functions {z" | n € Z} where 2" : T — C is given by €™

e2mm9 for all n € Z. Then we have

1

1
gn gm _ z eZmO 27r10 do = 27ri(nfm)6’ do = 5nm
(2"z"™) *( ,

0 0

and so this is an orthonormal set. Furthermore we can show that this set is complete and
so forms a basis for L?(T) (see Rudin (1987) Sections 4.24 and 4.25).
We let f : Z — C be the map f(n So e?™i0)e=2min0 4o which is well defined

as ‘Sof (e2mi0)e—2mind dQ‘ < So | 627”‘9 } df < oo. Given f € L*(T) we can write

f= Znez (fle") 2" = Znez f(n>§n and so f<€2m9) = Znez f(n)€2mn9' We also have

173 = (1) = Y Fonfom 1z = 3 [fon| (A1)

n,mez neZ

and so we have the following.

Proposition A.7.1 There exists a unitary isomorphism F : 12(T) — (*(Z) given by
[

We have F(z = {3 2"(e2™)e 20 4 = §,,, and s0 F(2") = e,, (the entry with 1
in the n-th place and 0 elsewhere). It follows easily that we have (f|F*(e,)) = ( f en> =
f(n) = (f|z") and so F*(e,) = 2™

As we have a finite measure it follows that L*(T) < L'(T). We have the following

that is proved in Rudin (1987) Section 5.14.

Lemma A.7.2 (Riemann-Lebesgue Lemma) Let f € L'(T), then as |n| — « we have

§o f(t)e2mmt dt — 0.
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So by this lemma we can define an extension F : LY(T) — ¢(Z) by f — f where

So e?™0) =270 () Then we have for f € L(T) that

nez

5001 = sup || < sup [ e an = [ do = 1,
ne
and so F is a contraction. Let f, g € L'(T), then we define f =g : T — C by
(f " g)(€27r19) _ J f(62m¢)g(€2m(97¢>)) d¢
0
We have

1
|f =gl = JO ‘(f * g)(e%w)‘ do — (e2wi¢)g(e2m(07¢))d¢ do

1 rl ) '
) f f [£(e™ )] |g(e*™ )| dodd = | fl gl
0 Jo

and so f = g € L!(T) and L!(T) is a Banach algebra under this multiplication. We can

also show that

F(f=g9) =3(f)F(9)

in a similar way.

Also we can define the following Fourier transform on a measure.

Definition A.7.3 Let ¢ € M(T) be a measure on T and we define e (*(Z) by (E(n) =
ST 2t do forall n € Z.

We will make use of the following well known proposition in Chapter 5 that we briefly

sketch a proof of now.

Proposition A.7.4 Let T € B((*(Z)) be the bilateral shift operator on (*(Z), that is the
unique bounded linear operator such that e; — e, for all t € 7, then the spectrum of T

is given by o(T) = T.
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Proof (Sketch)

By mapping ¢?(7Z) to L*(T) with the unitary operator ¥ we can easily see that 7" is uni-
tarily equivalent to the operator M, € B(L*(T)) where M, is the multiplication operator
for the identity function given by (M, f)(e*™) = 2™ f(¢*™) for any f € L?(T). Fur-
thermore it is easy to see that the spectrum of any multiplication operator M is given by

the closure range of f, thus we have o (7)) = T. O
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