
Structures and Processes for Managing

Model-Metamodel Co-evolution

Louis Mathew Rose

Department of Computer Science
University of York

This thesis is submitted in partial fulfilment
of the requirements for the degree of

Doctor of Philosophy.

July 2011

i

iii

Abstract

Software changes over time. During the lifetime of a software system, un-
intended behaviour must be corrected and new requirements satisfied. Because
software changes are costly, tools for automatically managing change are com-
monplace. Contemporary software development environments can automatically
perform change management tasks such as impact analysis, refactoring and back-
ground compilation.

Increasingly, models and modelling languages are first-class citizens in soft-
ware development. Model-Driven Engineering (MDE), a state-of-the-art approach
to software engineering, prescribes the use of models throughout the software en-
gineering process. In MDE, modelling tools and task-specific language are used to
generate an ultimate artefact, such as simulation models or working code.

Contemporary MDE environments provide little support for managing a type
of evolution termed model-metamodel co-evolution, in which changes to a mod-
elling language are propagated to models. This thesis demonstrates that model-
metamodel co-evolution occurs often in MDE projects, and that dedicated struc-
tures and processes for its management can increase developer productivity. Struc-
tures and processes for managing model-metamodel co-evolution are proposed, de-
veloped, and then evaluated by comparison to existing structures and processes
with quantitative and qualitative techniques.

For my Nanna Spence

Contents

Contents vii

List of Figures ix

List of Tables xii

Listings xiii

Author Declaration xix

1 Introduction 1
1.1 An Overview of Model-Driven Engineering 2
1.2 An Overview of Software Evolution . 2
1.3 Motivation: Software Evolution in MDE 3
1.4 Research Hypothesis and Method . 4
1.5 Results of the Thesis Research . 7
1.6 Thesis Structure . 7

2 Background: Model-Driven Engineering 9
2.1 MDE Terminology and Principles . 9
2.2 MDE Guidelines and Methods . 20
2.3 Tools for MDE . 25
2.4 Research Relating to MDE . 31
2.5 Benefits of and Current Challenges to MDE 34
2.6 Chapter Summary . 36

3 Review of Software Evolution 37
3.1 Software Evolution Theory . 37
3.2 Software Evolution in Practice . 42
3.3 Challenges to Managing Software Evolution in MDE 59
3.4 Chapter Summary . 60

4 MDE and Evolution: Problem Analysis 63
4.1 Examples of Evolution from MDE Projects 64

vii

viii CONTENTS

4.2 An Analysis of Existing Co-Evolution Techniques 71
4.3 Requirements for Identifying and Managing Co-Evolution 83
4.4 Chapter Summary . 85

5 Design and Implementation 87
5.1 A Metamodel-Independent Syntax . 89
5.2 Epsilon HUTN: A Textual Modelling Notation 100
5.3 An Analysis of Languages used for Model Migration 117
5.4 Epsilon Flock: A Model Migration Language 124
5.5 Chapter Summary . 146

6 Evaluation 149
6.1 Evaluating User-Driven Co-Evolution . 150
6.2 Evaluating Conservative Copy . 164
6.3 Evaluating Epsilon Flock and other Co-evolution Tools 183
6.4 Evaluating Co-Evolution Tools with an Example from UML 198
6.5 Limitations of the Proposed Structures and Processes 212
6.6 Chapter Summary . 213

7 Conclusions 215
7.1 Contributions of the Thesis Research . 216
7.2 Future Work . 219
7.3 Closing Remarks . 221

A Code Listings 223
A.1 Migrating Petri Nets with Ecore2Ecore 223
A.2 Model Management Operations for Epsilon HUTN 228

B A Graphical Editor for Process-Oriented Programs 247
B.1 Iteration 1: Processes and Channels . 248
B.2 Iteration 2: Interoperability with GMF 249
B.3 Iteration 3: Shared Channels . 249
B.4 Iteration 4: Connection Points . 253
B.5 Iteration 5: Connection Point Types . 257
B.6 Iteration 6: Nested Processes and Channels 260
B.7 Summary . 261

C Co-evolution Examples 263
C.1 Newsgroups Examples . 263
C.2 UML Example . 268
C.3 GMF Examples . 274

D TTC Results 319

Bibliography 325

List of Figures

1.1 Overview of the research method. 6

2.1 Jackson’s definition of a model . 10
2.2 A fragment of the UML metamodel defined in MOF 13
2.3 A State Machine metamodel. 16
2.4 An Object-Oriented metamodel. 16
2.5 Interactions between a PIM and several PSMs. 21
2.6 The tiers of standards used as part of MDA. 21
2.7 An EMF model editor for state machines. 26
2.8 EMF’s tree-based metamodel editor. 27
2.9 EMF’s graphical metamodel editor. 28
2.10 The Emfatic textual metamodel editor for EMF. 29
2.11 GMF state machine model editor. 29
2.12 The architecture of Epsilon . 30

3.1 Categories of traceability link . 41
3.2 Attribute to association end refactoring in EMF Refactor 51
3.3 Approaches to incremental transformation 52
3.4 Example impact analysis pattern . 54
3.5 An exemplar co-evolution process . 57
3.6 Visualising a transformation chain . 58

4.1 Analysis chapter overview. 63
4.2 Refactoring a reference to a value . 70
4.3 Co-evolution activities . 72
4.4 User-driven co-evolution with EMF . 74
4.5 COPE’s Make Reference Containment operation. 78
4.6 Metamodel evolution in the Epsilon FPTC tool 80
4.7 Spectrum of developer-driven co-evolution approaches 83

5.1 Implementation chapter overview. 87
5.2 The relationships between the proposed structures 88
5.3 Evolution of a families metamodel . 89
5.4 A family model . 90

ix

x List of Figures

5.5 Objects resulting from the binding of a conformant model 91
5.6 A minimal generic metamodel for MOF . 92
5.7 Loading models with the metamodel-independent syntax 93
5.8 Pseudo code for binding XMI tags to Objects. 95
5.9 Metamodel-independent binding of the families metamodel 95
5.10 Minimal MOF metamodel, based on [OMG 2008a]. 96
5.11 The constraints of the conformance checking service. 96
5.12 Implemented version of the metamodel-independent syntax 97
5.13 Evolution of a families metamodel . 101
5.14 A family model . 101
5.15 A metamodel for abstract syntax trees, in Ecore 107
5.16 The architecture of Epsilon HUTN. 108
5.17 Final version of the metamodel-independent syntax, in Ecore 109
5.18 User-driven co-evolution with dedicated structures 115
5.19 Conformance problem reporting in Epsilon HUTN. 116
5.20 Petri nets metamodel evolution . 118
5.21 Mappings between the original and evolved Petri nets metamodels 120
5.22 The abstract syntax of Flock. 125
5.23 Evolution of the Process-Oriented metamodel 129
5.24 Process-Oriented model prior to migration 130
5.25 UML metamodel evolution . 134
5.26 Evolution of a unidirectional to a bidirectional reference. 137
5.27 Epsilon GUI for selecting a value at runtime 140
5.28 A metamodel that uses inheritance . 144

6.1 Final version of the prototypical graphical model editor. 152
6.2 The graphical editor at the start of the iteration. 153
6.3 The graphical editor at the end of the iteration. 154
6.4 Process-oriented metamodel evolution. 155
6.5 User-driven co-evolution with EMF . 157
6.6 XMI prior to migration . 158
6.7 XMI after migration . 159
6.8 User-driven co-evolution with dedicated structures 160
6.9 HUTN source prior to migration . 161
6.10 HUTN source part way through migration 162
6.11 Petri nets metamodel evolution . 171
6.12 Simplified fragment of the GMF Graph metamodel. 177
6.13 Change Reference to Containment metamodel evolution 181
6.14 Exemplar metamodel evolution (Petri nets) 185
6.15 GMF graph metamodel evolution . 186
6.16 Migration tool performance comparison. 194
6.17 Activity model in UML 1.4. 200
6.18 UML 1.4 Activity Graphs . 201
6.19 UML 2.2 Activity Diagrams . 201

List of Figures xi

6.20 Migrating Actions for the Core Task . 203
6.21 Migrating Actions for Extension 1 . 203

B.1 The process-oriented metamodel after one iteration. 248
B.2 The process-oriented metamodel after two iterations. 249
B.3 A diagram after the second iteration. 250
B.4 The process-oriented metamodel after three iterations. 250
B.5 HUTN migration between second and third metamodel versions 252
B.6 The process-oriented metamodel after the fourth iteration. 253
B.7 A diagram after the fourth iteration. 255
B.8 HUTN migration between third and fourth metamodel versions 256
B.9 The process-oriented metamodel after five iterations. 257
B.10 HUTN migration between fourth and fifth metamodel versions 259
B.11 The process-oriented metamodel after six iterations. 260
B.12 A diagram after the final iteration. 262

C.1 Newsgroups metamodel during the Extract Person iteration 264
C.2 Newsgroups metamodel during the Resolve Replies iteration 266
C.3 Activities in UML 1.4 and UML 2.2 . 269
C.4 The Graph metamodel in GMF 1.0 and GMF 2.0 276

List of Tables

4.1 Candidates for study of evolution in existing MDE projects 66

5.1 Relating the thesis requirements and proposed structures 88
5.2 Compliance of Epsilon HUTN with OMG HUTN 114
5.3 Properties of model migration approaches 146

6.1 Model operation frequency (analysis examples). 174
6.2 Model operation frequency (evaluation examples). 174
6.3 Summary of comparison criteria. 188
6.4 Summary of tool selection advice . 196
6.5 TTC scores for Epsilon Flock (unweighted). 209

D.1 Correctness scores . 320
D.2 Conciseness scores . 320
D.3 Clarity scores . 321
D.4 Appropriateness scores . 321
D.5 Tool maturity scores . 322
D.6 Reproducibility scores . 322
D.7 Extensions scores . 323
D.8 Total (equally weighted) scores . 323
D.9 Total (weighted) scores . 324

xii

Listings

2.1 M2M transformation in ETL . 16
2.2 M2T transformation in EGL . 17
2.3 T2M transformation in EMFText . 18
2.4 Model validation in EVL . 19
4.1 Migration strategy for the refactoring in Figure 4.2 69
5.1 Parsing XMI attributes (in Java) . 97
5.2 Consistency constraint for instantiating a metamodel type 98
5.3 XMI for the family model in Figure 5.14 100
5.4 A metamodel-specific syntax for families in EBNF 102
5.5 Specifying attributes with HUTN . 104
5.6 Specifying a containment reference with HUTN 104
5.7 Specifying a simple reference with HUTN 105
5.8 Keywords and adjectives in HUTN . 105
5.9 A reference block in HUTN . 105
5.10 An infix reference in HUTN . 106
5.11 An extract of the Epsilon HUTN grammar definition in EBNF 109
5.12 Transforming Nodes to PackageObjects with ETL. 110
5.13 Consistency constraint for checking the uniqueness of identifiers 110
5.14 Higher-order transformation with EGL 111
5.15 The M2M transformation generated for the Families metamodel 113
5.16 OMG HUTN for people with mothers and fathers. 115
5.17 HUTN for people with parents. 116
5.18 Part of the Petri nets migration in ATL 119
5.19 Java method for deserialising a reference. 121
5.20 Petri nets model migration in COPE . 122
5.21 Concrete syntax of migrate and delete rules. 126
5.22 Redefining equivalences for the Component model migration. 130
5.23 Petri nets model migration in Flock . 131
5.24 UML model migration in Flock . 133
5.25 Using a non-null check to guard a migration rule 135
5.26 Using primitive and collection values . 136
5.27 Using higher-order operations on collections 136
5.28 Using metamodel types . 137
5.29 Creating new model elements . 138

xiii

xiv LISTINGS

5.30 Using a context-less custom operation 138
5.31 Using a custom operation in the context of a metamodel type 139
5.32 Prompting for user input at runtime . 139
5.33 Changing and unsetting conservatively copied feature values 141
5.34 Casting feature values . 141
5.35 Using equivalent() to access migrated model elements 142
5.36 Preventing the conservative copy of original model elements 142
5.37 Redefining equivalences for the Component model migration. 143
5.38 A migration strategy for the evolution in Figure 5.28 144
5.39 Using an operation to reduce the duplication in Listing 5.38 145
6.1 Assignment operators in ATL . 169
6.2 The Petri nets model migration in ATL 172
6.3 The Petri nets model migration in Groovy-for-COPE 173
6.4 Petri nets model migration in Flock . 173
6.5 An extract of the GMF Graph model migration in ATL 176
6.6 Simplified GMF Graph model migration in ATL 178
6.7 Simplified GMF Graph model migration in COPE 179
6.8 Simplified GMF Graph model migration in Flock 180
6.9 Migration for Change Reference to Containment in ATL 181
6.10 Migration for Change Reference to Containment in Flock 182
6.11 Migrating Actions . 205
6.12 Migrating FinalStates and Transitions 205
6.13 Migrating Pseudostates . 205
6.14 Migrating ActivityGraphs . 206
6.15 Migrating Guards . 206
6.16 Migrating Partitions . 206
6.17 Migrating ObjectFlows . 207
6.18 Migrating ObjectFlowStates to a single ObjectFlow 207
6.19 Migrating Partitions without ObjectFlowStates 207
A.3 Transforming AST models to intermediate models with ETL. 228
A.4 Syntactic and Conformance Constraints in EVL. 238
A.5 Generating the intermediate to target model transformation 243
B.1 The annotated process-oriented metamodel after one iteration 248
B.2 The annotated process-oriented metamodel after two iterations 251
B.3 The annotated process-oriented metamodel after four iterations 253
B.4 The annotated process-oriented metamodel after five iterations 257
B.5 The annotated process-oriented metamodel after six iterations 260
C.1 The Newsgroup Extract Person migration in ATL 264
C.2 The Newsgroup Extract Person migration in Groovy-for-COPE 265
C.3 The Newsgroup Extract Person migration in Flock 265
C.4 The Newsgroup Resolve Replies migration in ATL 266
C.5 The Newsgroup Resolve Replies migration in Groovy-for-COPE 267
C.6 The Newsgroup Resolve Replies migration in Flock 267
C.7 UML activity diagram migration in ATL 268

LISTINGS xv

C.8 UML activity diagram migration in Groovy-for-COPE 272
C.9 UML activity diagram migration in Flock 273
C.10 GMF Graph migration in ATL . 275
C.11 GMF Graph migration in Groovy-for-COPE 287
C.12 GMF Graph migration in Flock . 288
C.13 GMF Generator migration in ATL . 289
C.14 GMF Generator migration in Groovy-for-COPE 313
C.15 GMF Generator migration in Flock . 315

Acknowledgements

I thank my supervisors, Prof. Richard Paige and Dr. Fiona Polack, for their
invaluable guidance, support and encouragement throughout my doctoral
research. I am also very grateful to Dr. Dimitrios Kolovos for his advice
and for countless rewarding discussions. I thank Dr. Simon Poulding for
reviewing a technical report of preliminary research results.

I would like to thank my colleagues in the department for their support
and friendship, particularly Dr. Heather Barber, Mark Read and Tara
Gilliam. For many interesting and entertaining discussions, I thank my col-
leagues and friends in the Enterprise Systems group. I am also grateful to
Dr. Anne Etien, Dr. Antonio Cicchetti, Markus Herrmannsdörfer and Dr.
Kelly Garcés for the interesting debates and discussions that we have shared.

I would like to express gratitude to my parents and my brother Nathan
for their continued support and reassurance. Finally, I am eternally grate-
ful to my partner, Kate Senior, for her patience and optimism, and for our
many adventures together.

xvii

Author Declaration

Except where stated, all of the work contained in this thesis represents
the original contribution of the author. Section 6.3 reports collaborative
experiments with model migration tools, and that section makes clear the
roles of the author and other participants.

Parts of the work described in this thesis have been previously published
by the author in:

• The Epsilon Generation Language, Louis M. Rose, Richard F.
Paige, Dimitrios S. Kolovos and Fiona A.C. Polack in Proc. European
Conference on Model Driven Architecture – Foundations and Appli-
cations (ECMDA-FA), volume 5095 of LNCS, pages 1-16. Springer,
2008,
[Rose et al. 2008b].
• Constructing Models with the Human-Usable Textual Nota-

tion, Louis M. Rose, Richard F. Paige, Dimitrios S. Kolovos and Fiona
A.C. Polack in Proc. International Conference on Model Driven En-
gineering Languages and Systems (MoDELS), volume 5301 of LNCS,
pages 249-263. Springer, 2008, [Rose et al. 2008a].
• An Analysis of Approaches to Model Migration, Louis M.

Rose, Richard F. Paige, Dimitrios S. Kolovos and Fiona A.C. Po-
lack in Proc. Joint Model-Driven Software Evolution and Model Co-
evolution and Consistency Management (MoDSE-MCCM) Workshop,
co-located with MoDELS 2009, [Rose et al. 2009b].
• Enhanced Automation for Managing Model and Metamodel

Inconsistency, Louis M. Rose, Dimitrios S. Kolovos, Richard F. Paige
and Fiona A.C. Polack in Proc. International Conference on Auto-
mated Software Engineering (ASE), pages 545-549, ACM Press, 2009,
[Rose et al. 2009a].
• Concordance: An Efficient Framework for Managing Model

Integrity, Louis M. Rose, Dimitrios S. Kolovos, Nicholas Drivalos,
James. R. Williams, Richard F. Paige, Fiona A.C. Polack, and Kiran
J. Fernandes in Proc. European Conference on Modelling Founda-
tions and Applications (ECMFA), volume 6138 of LNCS, pages 62-73.
Springer, 2010, [Rose et al. 2010c].

xix

xx AUTHOR DECLARATION

• Model Migration with Epsilon Flock, Louis M. Rose, Dimitrios
S. Kolovos, Richard F. Paige, and Fiona A.C. Polack in Proc. Inter-
national Conference on the Theory and Practice of Model Transforma-
tions (ICMT), volume 6142 of LNCS, pages 184-198. Springer, 2010,
[Rose et al. 2010f].

• Model Migration Case, Louis M. Rose, Dimitrios S. Kolovos, Richard
F. Paige, and Fiona A.C. Polack in Proc. Transformation Tools Con-
test (TTC), co-located with TOOLS Europe 2010, [Rose et al. 2010e].

• Migrating Activity Diagrams with Epsilon Flock,
Louis M. Rose, Dimitrios S. Kolovos, Richard F. Paige, and Fiona A.C.
Polack in Proc. Transformation Tools Contest (TTC), co-located with
TOOLS Europe 2010,
[Rose et al. 2010d].

• A Comparison of Model Migration Tools, Louis M. Rose, Markus
Herrmannsdoerfer, James R. Williams, Dimitrios S. Kolovos, Kelly
Garcés, Richard F. Paige, and Fiona A.C. Polack in Proc. Interna-
tional Conference on Model Driven Engineering Languages and Sys-
tems (MoDELS), volume 6394 of LNCS, pages 6175. Springer, 2010,
[Rose et al. 2010b].

Chapter 1

Introduction

Today’s software engineers build distributed and interoperating systems with sophisti-
cated graphical interfaces rather than the insular, monolithic, and command-line driven
mainframe applications built by their predecessors. For example, the NatWest and
Royal Bank of Scotland banking systems were successfully unified in 2003, which in-
volved processing 14 million customer records, 13 million account records and 22 million
direct debits in a single weekend [RAE & BCS 2004, pg26]. Distributed and interoper-
able systems are key requirements in the National Programme for IT1, which seeks to
modernise the United Kingdom’s National Health Service with computerised systems
for managing the nation’s patient records. In the United States of America, the goals of
the Department of Defense depend on increasingly complex systems, which encompass
“thousands of platforms, sensors, decision nodes, weapons, and war-fighters connected
through heterogeneous wired and wireless networks” [Northrop 2006].

Some of the software demanded by users and developers today is so complicated
that its construction is not possible, even using state-of-the-art software engineering
techniques [Selic 2003]. For example, a large supermarket chain recently planned to
develop software for managing a new loyalty card scheme. However, implementing the
system would have involved devising algorithms for efficiently searching 4 terabytes of
customer data, and it was deemed impossible to implement despite its obvious com-
mercial advantages [RAE & BCS 2004, pg15]. Demand, however, does not appear to
exceed capability in all areas of computer science.

Hardware development, for example, seems to advance more quickly than soft-
ware development. Each year, faster personal computers with larger disk drives be-
come available, while operating systems, office software and development environments
seem to improve more gradually. Radical advances in software development ap-
pear to occur only by raising the level of abstraction at which software is specified
[Brooks Jr. 1987, Selic 2003, Kleppe et al. 2003]. Improvements to the training and
education of software engineers have also been suggested as key for the construction of
increasingly complex software systems [RAE & BCS 2004].

1http://www.connectingforhealth.nhs.uk/about/benefits/statement0607.pdf

1

http://www.connectingforhealth.nhs.uk/about/benefits/statement0607.pdf

2 CHAPTER 1. INTRODUCTION

1.1 An Overview of Model-Driven Engineering

Historically, raising the level of abstraction of software development has led to increased
productivity [Brooks Jr. 1987, Barry 2006, Kelly & Tolvanen 2008]. For example, as-
sembly language provides mnemonics for machine code, allowing developers to disregard
extraneous detail (such as the binary representation of instructions). Object-orientation
and functional programming permit further abstraction over assembly language, en-
abling developers to express solutions in a manner that is more representative of their
problem domain.

Model-Driven Engineering (MDE) is a contemporary approach to software engi-
neering that seeks to abstract away from technological details (such as programming
languages and off-the-shelf software components) and towards the problem domain of
the system (for example: accounting, managing patient records, or searching the In-
ternet) [Frankel 2002, Kleppe et al. 2003, Selic 2003]. To this end, MDE prescribes,
throughout the software engineering process, the use of models to capture the relevant
details of the problem domain. Software development is driven by manipulating (trans-
forming, validating, merging, comparing, etc.) the models to automatically generate
an ultimate artefact, such as working code or simulation models.

MDE reportedly provides many benefits over traditional approaches to software en-
gineering. Conclusions drawn from two unpublished case studies suggest that MDE can
lead to increased productivity by reducing the amount of time to develop a system, and
by reducing the number of defects discovered throughout development [Watson 2008].
MDE can be used to increase the productivity of software development and the main-
tainability of software systems [Kleppe et al. 2003]. Separating platform-specific and
platform-independent details using MDE can facilitate greater portability of systems
[Frankel 2002]. Section 2.5.1 discusses further benefits of MDE.

Notwithstanding its benefits, MDE introduces additional challenges for software de-
velopment. Large models are commonplace in many software engineering projects, and
contemporary MDE environments have not be optimised to facilitate the manipulation
of large models [Kolovos et al. 2008a]. More generally, MDE introduces new challenges
for managing change throughout the lifetime of a system [Mens & Demeyer 2007]. This
thesis focuses on the latter challenge, which is part of a branch of computer science
termed software evolution.

1.2 An Overview of Software Evolution

Software changes over time. During the lifetime of a software system, unintended
behaviour must be corrected and new requirements satisfied. Because modern software
systems are rarely isolated from other systems, changes are also made to facilitate
interoperability with new systems [Sjøberg 1993].

Software evolution is an area of computer science that focuses on the way in which
a software system changes over time in response to external pressures (such as changing
requirements, or the discovery of unintended behaviour). The terms software evolution

1.3. MOTIVATION: SOFTWARE EVOLUTION IN MDE 3

and software maintenance are used interchangeably in the software engineering litera-
ture. In this thesis, evolution is preferred to maintenance, because the latter can imply
deterioration caused by repeated use, and most software systems do not deteriorate in
this manner [Ramil & Lehman 2000]. Other than sharing some terminology, software
evolution is not related to evolutionary algorithms, a branch of computer science that
encompasses genetic programming and genetic algorithms.

In the past, studies have suggested that software evolution can account for as much
as 90% of a development budget [Erlikh 2000, Moad 1990], and there is no reason to
believe that the situation is different today. Although such figures have been described
as uncertain [Sommerville 2006, ch. 21], precise figures are not required to demonstrate
that the effects of evolution can inhibit the productivity of software development.

For example, suppose that we are developing a software system using a combination
of hand-written code and off-the-shelf components. Part way through development,
one of the components changes to support a new requirement. When using the new
version of the component, we must first determine whether our system exhibits any
unintended behaviour, identify the cause of the unintended behaviour, and change the
system accordingly. The resources allocated to correcting any unintended behaviour
are not being used to develop features for the users of our system.

Primarily, software evolution research seeks to reduce the cost of making changes to
a system. Analysis of the effects of evolution facilitates decision making. For example,
analysis of our system might indicate that using a new version of a component will
introduce three defects, but simplify the implementation of two features. Studying
the way in which systems evolve leads to improvements in software development tools
and processes that reduce the effects of evolution. For example, contemporary software
development environments recognise compilation as a common activity during software
evolution, and often perform automatic and incremental compilation of source code in
the background. Future changes to a system might be anticipated by identifying the
ways in which the system has previously evolved. For example, understanding the
ways in which a system has been affected by using a new version of a component
might highlight ways in which the system can be better protected against changes to
its dependencies.

1.3 Motivation: Software Evolution in MDE

Proponents of MDE suggest that, compared to traditional approaches to software engi-
neering, application of MDE leads to systems that better support evolutionary change
[Kleppe et al. 2003]. Large-scale systems developed with traditional approaches to
software engineering have been described as examples of a modern-day Sisyphus2, whose
developers must constantly perform evolution to support conformance to changing stan-
dards and interoperability with external systems [Frankel 2002]. Some proponents
suggest that MDE can be used to reduce the cost of software evolution [Frankel 2002],

2In Greek mythology, Sisyphus was condemned to an eternity of repeatedly rolling a boulder to the
top of a mountain, only to see it return to the mountain’s base.

4 CHAPTER 1. INTRODUCTION

while others report that MDE introduces additional challenges for managing software
evolution [Mens & Demeyer 2007].

In particular, the evolution of models, modelling languages and other MDE devel-
opment artefacts must be managed in MDE. Contemporary development environments
provide some assistance for performing software evolution activities (by, for example,
providing transformations that automatically restructure code). However, there is little
support for software evolution activities that involve models and modelling languages.
Chapters 3 and 4 review, analyse and motivate improvements to the way in which
software evolution is identified and managed in contemporary MDE development envi-
ronments. Chapters 5 and 6 explore the extent to which the productivity of identifying
and managing evolutionary change can be increased by extending contemporary MDE
development environments with additional, dedicated structures and processes.

1.4 Research Hypothesis and Method

The research presented in this thesis explores the hypothesis below. The emboldened
terms are potentially ambiguous, and their definition follows the hypothesis.

In existing MDE projects, the evolution of MDE development artefacts
is typically managed in an ad-hoc manner with little regard for re-use.
Dedicated structures and processes for managing evolutionary change
can be designed by analysing evolution in existing MDE projects. Further-
more, supporting those dedicated structures and processes in contemporary
MDE environments is beneficial in terms of increased productivity for soft-
ware development activities pertaining to the management of evolutionary
change.

In this thesis, the terms below have the following definitions:

MDE development artefacts. Compared to traditional approaches to software
engineering, MDE uses additional development artefacts as first-class citizens in the
development process. The additional development artefacts peculiar to MDE include
models and modelling languages, as well as model management operations (such as
model transformations). Chapter 2 describes models, modelling languages and model
management operations in more detail.

Managing evolutionary change. Contemporary computer systems are constructed
by combining numerous interdependent artefacts. Evolutionary changes to one artefact
can affect other artefacts. For example, changing a database schema might cause data
to become invalid with respect to the database integrity constraints, and changing
source code may require recompilation of object code to ensure the latter is an accurate
representation of the former. Managing evolutionary change typically comprises three
related activities: identifying when a change has occurred, reporting the effects of a

1.4. RESEARCH HYPOTHESIS AND METHOD 5

change, and reconciling affected artefacts in response to a change. Chapter 3 reviews
existing approaches to managing evolutionary change.

Productivity is a measure of the output from a process, per unit of input to that
process [Beattie et al. 2007]. For example, the productivity of data entry might be
measured by counting the number of characters produced per typist per hour. An
Optical Character Recognition (OCR) system might increase data entry productivity,
but this is likely to be dependent on many factors, including: the accuracy and capa-
bilities of the OCR system, the speed and accuracy of each typist, and the legibility
and consistency of the data. Managing and measuring the productivity of software
engineering is challenging. Division of labour, for example, can decrease productivity
in software engineering as evidenced by Brooks’s eponymous law (“adding manpower
to a late software project makes it later”) [Brooks Jr. 1995]. This thesis investigates
the productivity of small, well-defined software development activities, and not the
productivity of software engineering projects.

1.4.1 Thesis Objectives

The objectives of the thesis are to:

1. Identify and analyse the evolution of MDE development artefacts in existing
projects.

2. Investigate the extent to which existing structures and processes can be used to
manage the evolution of MDE development artefacts.

3. Propose and develop prototypes of new structures and processes for managing
the evolution of MDE development artefacts, and integrate those structures and
processes with a contemporary MDE development environment.

4. Evaluate the proposed structures and processes for managing evolutionary change,
particularly with respect to productivity.

1.4.2 Research Method

To explore the hypothesis outlined above, the thesis research was conducted using the
method described in this section and summarised in Figure 1.1. The shaded boxes
represent the three phases of research, which are described below. The unshaded boxes
represent inputs and outputs to those phases.

Firstly, the analysis phase involved studying the evolution of MDE development
artefacts in existing projects. The results of the analysis phase were used to deter-
mine a category of evolution that lacked support in contemporary MDE development
environments, model-metamodel co-evolution or, simply co-evolution. Co-evolution ex-
amples from existing MDE projects were used to categorise existing processes for man-
aging co-evolution, and to formulate requirements for new structures and processes

6 CHAPTER 1. INTRODUCTION

Figure 1.1: Overview of the research method.

for managing co-evolution. The analysis phase also led to the identification of user-
driven co-evolution, a process for managing co-evolution that has not previously been
recognised in the co-evolution literature.

The implementation phase involved proposing, designing and implementing proto-
types of novel structures for managing co-evolution, and integrating the prototypical
structures with a contemporary MDE environment. The co-evolution examples identi-
fied in the analysis phase were used for testing the implementation of the structures.

The evaluation phase involved assessing the novel structures for managing co-
evolution by comparison to existing structures, and demonstrating the novel process.
Evaluation was performed using further examples of co-evolution. To mitigate a pos-
sible threat to the validity of the research, the examples used in the evaluation phase
were different from those used in the analysis phase. The strengths and weaknesses of
the novel and existing structures and processes were synthesised from the comparisons,
particularly with respect to the productivity of the development activities that are used
to manage co-evolution.

1.5. RESULTS OF THE THESIS RESEARCH 7

A similar method was successfully used to explore the extent to which component-
based applications can be automatically evolved [Dig 2007]. Initially, analysis was
conducted to identify and categorise evolution in five existing component-based appli-
cations, with the hypothesis that many of the changes could be classified as behaviour-
preserving [Dig & Johnson 2006b]. Examples from the survey facilitated implementa-
tion of a novel algorithm for the automatic detection of behaviour-preserving changes
[Dig et al. 2006]. The algorithm was used to implement tools for migrating code
in a distributed software development environment [Dig & Johnson 2006a], and for
analysing the history of component-based applications [Dig et al. 2007]. The latter fa-
cilitated better understanding of program evolution, and refinement of the detection
algorithm. Finally, evaluation of the tools and detection algorithm was performed by
application to three further component-based applications [Dig 2007].

1.5 Results of the Thesis Research

This thesis proposes novel structures and processes for managing model-metamodel
co-evolution. Prototypical reference implementations of the proposed structures have
been constructed, including Epsilon HUTN (a textual modelling notation) and Ep-
silon Flock (a model migration language). The reference implementations have ex-
tended and reused Epsilon [Kolovos 2009], an extensible platform for specifying MDE
languages and tools, and are interoperable with the Eclipse Modelling Framework
[Steinberg et al. 2008], arguably the most widely used MDE modelling framework.

Additionally, this thesis identifies a novel process for managing model-metamodel
co-evolution and proposes a theoretical categorisation of existing process for managing
model-metamodel co-evolution. The novel process, termed user-driven co-evolution, is
demonstrated by application to a MDE development process for a real-world project.

The research hypothesis has been validated by comparing the prototypes of the
proposed structures and processes with existing structures and processes using exam-
ples of evolution from real-world MDE projects. Evaluation has been performed using
several approaches, including a collaborative comparison of model migration tools car-
ried out with three MDE experts, comparing quantitive measurements of the proposed
and existing migration languages, and application of the proposed structures and pro-
cesses to two examples of evolution, including an example from a widely used modelling
language, the Unified Modelling Language (UML) [OMG 2007a]. The evaluation also
explored areas in which the prototypical implementations of the proposed structures
and processes might be usefully improved to be fit for industrial use.

1.6 Thesis Structure

Chapter 2 gives an overview of MDE by defining terminology; describing associated
engineering principles, practices and tools; and reviewing related areas of computer
science. Section 2.5 synthesises some of the benefits of, and challenges for, contempo-
rary MDE.

8 CHAPTER 1. INTRODUCTION

Chapter 3 reviews theoretical and practical software evolution research. Areas of
research that underpin software evolution are described, including refactoring, design
patterns, and traceability. The review then discusses work that approaches particular
categories of evolution problem, such as programming language, schema and grammar
evolution. Section 3.2.4 surveys work that considers evolution in the context of MDE.
Section 3.4 identifies three types of evolution that occur in MDE projects and highlights
challenges for their management.

Chapter 4 surveys existing MDE projects and categorises the evolution of MDE
development artefacts in those projects. From this survey, the context for the thesis
research is narrowed, and the remainder of the thesis focuses on one type of evolution oc-
curring in MDE projects, termed model-metamodel co-evolution or simply co-evolution.
Examples of co-evolution are used to identify the strengths and weaknesses of existing
structures and processes for managing co-evolution. From this, Section 4.2.2 identifies
a process for managing co-evolution which has not been recognised previously in the
literature, Section 4.2.3 derives a categorisation of existing processes for managing co-
evolution, and Section 4.3 synthesises requirements for novel structures for managing
co-evolution.

Chapter 5 describes novel structures for managing co-evolution, including a meta-
model-independent syntax, which is used to identify, report and to facilitate the recon-
ciliation of problems caused by metamodel evolution. The textual modelling notation
described in Section 5.2 and the model migration language described in Section 5.4
are used for reconciliation of models in response to metamodel evolution. The latter
provides a means for performing reconciliation in a repeatable manner.

Chapter 6 assesses the structures and processes proposed in this thesis by compar-
ison to existing structures and processes. To explore the research hypothesis, several
different types of comparison were performed, including an experiment in which quan-
titive measurements were derived, a collaborative comparison of model migration tools
with three MDE experts, and application to a large, independent example of evolution
taken from a real-world MDE project.

Chapter 7 summarises the achievements of the research, and discusses results in
the context of the research hypothesis. Limitations of the thesis research and areas of
future work are also outlined.

Chapter 2

Background: Model-Driven
Engineering

This chapter presents the thesis background, introduces concepts relating to Model-
Driven Engineering (MDE), and surveys the MDE literature. Software evolution re-
search is reviewed in Chapter 3. MDE is a principled approach to software engineer-
ing in which models are produced and consumed throughout the engineering process.
Section 2.1 introduces the terminology and fundamental principles used in MDE. Sec-
tion 2.2 reviews guidance and three methods for performing MDE. Section 2.3 describes
contemporary MDE environments. Two areas of research relating to MDE, domain-
specific languages and language-oriented programming, are discussed in Section 2.4.
Finally, the benefits of and current challenges for MDE are described in Section 2.5.

2.1 MDE Terminology and Principles

Software engineers using MDE construct and manipulate artefacts familiar from tra-
ditional approaches to software engineering (such as code and documentation) and,
in addition, work with different types of artefact, such as models, metamodels and
model transformations. Furthermore, MDE involves new development activities, such
as model management. This section describes the artefacts and activities involved in
MDE.

2.1.1 Models

Models are fundamental to MDE. Kurtev identifies many definitions of the term model
[Kurtev 2004], including the following: “any subject using a system A that is neither
directly nor indirectly interacting with a system B to obtain information about the
system B, is using A as a model for B” [Apostel 1960]. “A model is a representation
of a concept. The representation is purposeful and used to abstract from reality the
irrelevant details,” [Starfield et al. 1990]. “A model is a simplification of a system
written in a well-defined language,” [Bézivin & Gerbé 2001].

9

10 CHAPTER 2. BACKGROUND: MODEL-DRIVEN ENGINEERING

While there are many definitions of the term model, a common notion is that a
model is a representation of the real-world [Kurtev 2004, pg12]. The part of the real-
world represented by a model is termed the domain, the object system or, simply the
system. Another common notion is that a model may have either a textual or graphical
representation [Kolovos et al. 2006].

Models that share some characteristics and can be used in place of their object
system have been described as analogous [Ackoff 1962]. An aeroplane toy that can fly
is an analogous model of an aeroplane. In computer science, models can be used to
construct a computer system. A model of an object system, say the lending service of
a library, might be used to decide the way in which data is stored on disk, or the way
in which a program is to be structured.

The models constructed in computer science can be regarded as analogous to two
systems: the object system (e.g. the library lending service in the real-world) and the
computer system (e.g. the software and hardware used to implement a library lending
service) [Jackson 1995]. A model can be used to think about both the real system
and the computer system. Figure 2.1 illustrates this notion further and suggests that a
model is both the description of the domain (object system) and the machine (computer
system) [Jackson 1995]. Computer scientists switch between designations when using
a model to think about the object system or to think about the software system.

Figure 2.1: Jackson’s definition of a model, taken from [Jackson 1995, pg.125].

Models can be unstructured (for example, sketches on a piece of paper) or structured
(conform to some well-defined set of syntactic and semantic constraints). In software
engineering, models are used widely to reason about object systems and computer
systems. MDE recognises this, and seeks to drive the development of computer systems
from structured models.

2.1. MDE TERMINOLOGY AND PRINCIPLES 11

2.1.2 Modelling languages

In MDE, models are structured rather than unstructured [Kolovos 2009]. A modelling
language is the set of syntactic and semantic constraints used to define the structure of
a group of related models. In MDE, a modelling language is often specified as a model
and, hence the term metamodel is used in place of modelling language.

Conformance is a relationship between a metamodel and a model. A model con-
forms to a metamodel when the metamodel specifies every concept used in the model
definition, and the model uses the metamodel concepts according to the rules specified
by the metamodel [Bézivin 2005]. Conformance can be described by a set of constraints
between models and metamodels [Paige et al. 2007]. When all constraints are satisfied,
a model conforms to a metamodel. For example, a conformance constraint might state
that every object in the model has a corresponding non-abstract class in the metamodel.

Metamodels facilitate model interchange and, therefore, interoperability between
modelling tools. For this reason, Evans recommends that software engineers “use a
well-documented shared language that can express the necessary domain information
as a common medium of communication.” [Evans 2004, pg377]. To support this rec-
ommendation, Evans discusses the way in which chemists have collaborated to define a
standardised language for describing chemical structures, Chemical Markup Language
(CML)1. The standardisation of CML has facilitated interoperability between tools for
specification, analysis and simulation.

A metamodel typically comprises three categories of constraint:

• The concrete syntax provides a notation for constructing models that con-
form to the language. For example, a model may be represented as a collection
of boxes connected by lines. A standardised concrete syntax enables commu-
nication. Concrete syntax may be optimised for consumption by machines (e.g.
XML Metadata Interchange (XMI) [OMG 2007c]) or by humans (e.g. the Unified
Modelling Language (UML) [OMG 2007a]).

• The abstract syntax defines the concepts described by the language, such as
classes, packages, datatypes. The representation for these concepts is independent
of the concrete syntax. For example, the implementation of a compiler might use
an abstract syntax tree to encode the abstract syntax of a program (whereas the
concrete syntax for the same language may be textual or graphical).

• The semantics identifies the meaning of the modelling concepts with respect
to the domain. For example, consider a modelling language defined to describe
genealogy, and another to describe flora. Although both languages may define
a tree construct, the semantics of a tree in one is likely to be different from the
semantics of a tree in the other. The semantics of a modelling language may be
specified rigorously, by defining a reference semantics in a formal language such
as Z [ISO/IEC 2002], or in a semi-formal manner by employing natural language.

1http://cml.sourceforge.net/

http://cml.sourceforge.net/

12 CHAPTER 2. BACKGROUND: MODEL-DRIVEN ENGINEERING

Concrete syntax, abstract syntax and semantics are used together to specify mod-
elling languages [Álvarez et al. 2001]. There are many other ways of defining languages,
but this approach is common in MDE: a metamodel is often used to define abstract
syntax, a grammar or text-to-model transformation to specify concrete syntax, and
code generators, annotated grammars or behavioural models to effect semantics.

2.1.3 MOF: A metamodelling language

Software engineers using MDE can re-use existing – and define new – metamodels.
To facilitate interoperability between MDE tools, the Object Management Group
(OMG)2 has standardised a language for specifying metamodels, the Meta-Object Facil-
ity (MOF). Contemporary MDE tools are interoperable because MOF standardises the
way in which models are represented with a further OMG standard, XML Metadata
Interchange (XMI), a dialect of XML optimised for loading, storing and exchanging
models.

Because MOF is a modelling language for describing modelling languages, it is
sometimes termed a metamodelling language. Part of the UML metamodel, defined in
MOF, is shown in Figure 2.2. As discussed in Section 2.3, different kinds of concrete
syntax can be used for MOF. Figure 2.2, for example, uses a concrete syntax similar
to that of UML class diagrams. Specifically:

• Modelling constructs are drawn as boxes. The name of each modelling construct
is emboldened. The name of abstract (uninstantiable) constructs are italicised.

• Attributes are contained within the box of their modelling construct. Each at-
tribute has a name, a type (prefixed with a colon) and may define a default value
(prefixed with an equals sign).

• Generalisation is represented using a line with an open arrow-head.

• References are specified using a line. An arrow illustrates the direction in which
the reference may be traversed. Labels are used to name and define the multi-
plicity of references.

• Containment references are specified by including a solid diamond on the con-
taining end.

2http://www.omg.org

http://www.omg.org

2
.1

.
M

D
E

T
E

R
M

IN
O

L
O

G
Y

A
N

D
P

R
IN

C
IP

L
E

S
13

Figure 2.2: A fragment of the UML metamodel defined in MOF, from [OMG 2007a].

14 CHAPTER 2. BACKGROUND: MODEL-DRIVEN ENGINEERING

Specifying modelling languages with a common metamodelling language, such as
MOF, ensures consistency in the way in which modelling constructs are specified. MOF
has facilitated the construction of interoperable MDE tools that can be used with
a range of modelling languages. Without a standardised metamodelling language,
modelling tools were specific to one modelling language, such as UML. In contemporary
MDE environments, any number of modelling languages can be used together and
manipulated in a uniform manner.

Furthermore, when modelling languages are specified without using a common
metamodelling language, identifying similarities between modelling languages is chal-
lenging [Frankel 2002, pg97]. The sequel discusses the way in which models and meta-
models are used to construct systems in MDE.

2.1.4 Model Management

In MDE, models are managed to produce software. The term model management
was first used in 2004 to describe a collection of operators for manipulating models
[Melnik 2004]. This thesis uses the term model management to refer to development
activities that manipulate models for the purpose of producing software. Model man-
agement activities typical in MDE, such as model transformation and validation, are
discussed in this section. Section 2.2 discusses MDE guidelines and methods, and de-
scribes the way in which model management activities are used together to produce
software in MDE.

Model Transformation

Model transformation is a development activity in which software artefacts are derived
from others, according to some well-defined specification. There are three types of
model transformations: those specified between modelling languages (model-to-model
transformation), those specified between modelling languages and textual artefacts
(model-to-text-transformation) and those specified between textual artefacts and mod-
elling languages (text-to-model transformation) [Kleppe et al. 2003]. Each type of
transformation has unique characteristics and tools, but share some common char-
acteristics. The remainder of this section first introduces the commonalities and then
discusses each type of transformation individually.

Common characteristics of model transformations The input to a transforma-
tion is termed its source, and the output its target. In theory, a transformation can have
more than one source and more than one target, but not all transformation languages
support multiple sources and targets. Consequently, much of the model transformation
literature considers single source and target transformations.

The similarities and differences of different model transformation languages have
been categorised and compared using a feature model [Czarnecki & Helsen 2006]. Two
features peculiar to model transformation are relevant to the research presented in this
thesis, and are now discussed.

2.1. MDE TERMINOLOGY AND PRINCIPLES 15

Source-target relationship A new-target transformation creates afresh the tar-
get model on each invocation, while an existing-target transformation updates an ex-
isting model. Existing target transformations are used for partial (incremental) trans-
formation and for preserving parts of the target model that are not derived from the
source model.

Domain language Transformations specified between source and target models
that conform to the same metamodel are termed endogenous or rephrasings, while
transformations specified between a source and a target model that conform to different
metamodels are termed exogenous or translations.

Endogenous, existing-target transformations are a special case of transformation
and are termed refactorings. Refactorings have been studied in the context of software
evolution and are discussed more thoroughly in Chapter 3.

Model-to-Model (M2M) Transformation M2M transformation is used to derive
models from others. By automating the derivation of models from others, M2M trans-
formation has the potential to reduce the cost of engineering large and complex systems
that can be represented as a set of interdependent models [Sendall & Kozaczynski 2003].

M2M transformations are most often specified using a set of transformation rules
[Czarnecki & Helsen 2006]. Each rule specifies the way in which a specific set of ele-
ments in the source model is transformed to an equivalent set of elements in the target
model [Kolovos 2009, pg.44].

Many M2M transformation languages have been proposed, such as the Atlas Trans-
formation Language (ATL) [Jouault & Kurtev 2005], VIsual Automated model TRAns-
formations (VIATRA) [Varró & Balogh 2007] and the Epsilon Transformation Lan-
guage (ETL) [Kolovos et al. 2008b]. There also exists a standard for M2M transfor-
mation, Queries/Views/Transformations (QVT) [OMG 2005]. M2M transformation
languages can be categorised according to their style, which is either declarative, im-
perative or hybrid.

Declarative M2M transformation languages only provide constructs for mapping
source to target model elements and, as such, are not computationally complete. Con-
sequently, the scheduling of rules can be implicit (determined by the execution engine
of the transformation language). By contrast, imperative M2M transformation lan-
guages are computationally complete, but often require rule scheduling to be explicit
(specified by the user). Hybrid M2M transformation languages combine declarative
and imperative parts, are computationally complete, and provide a mixture of implicit
and explicit rule scheduling.

Declarative M2M transformation languages cannot be used to solve some categories
of transformation problem [Patrascoiu & Rodgers 2004]. Imperative M2M transforma-
tion languages are argued to be difficult to write and maintain [Kolovos 2009, pg.45].
Consequently, hybrid languages, such as ATL, are presently believed to be more suit-
able for specifying model transformation than pure imperative or declarative languages
[Kolovos et al. 2008b].

16 CHAPTER 2. BACKGROUND: MODEL-DRIVEN ENGINEERING

An example of an M2M transformation, written in the hybrid M2M transformation
language ETL, is shown in Listing 2.1. The source of the transformation is a state
machine model, conforming to the metamodel shown in Figure 2.3. The target of the
transformation is an object-oriented model, conforming to the metamodel shown in
Figure 2.4. The transformation in Listing 2.1 comprises two rules.

Figure 2.3: A State Machine metamodel.

Figure 2.4: An Object-Oriented metamodel.

The first rule (lines 1-7) is named Machine2Package (line 1) and transforms
Machines (line 2) into Packages (line 3). The body of the first rule (lines 5-6) specifies
the way in which a Package, p, can be derived from a Machine, m. Specifically, the
name of p is derived from the id of m (line 5), and the contents of p are derived
from the states of m (line 6).

The second rule (lines 9-16) transforms States (line 10) to Classes (line 11).
Additionally, line 13 contains a guard to specify that the rule is only to be applied to
States whose isFinal property is false.

When executed, the transformation rules will be scheduled implicitly by the ex-
ecution engine, and invoked once for each Machine and State in the source. On
line 6 of Listing 2.1, the built-in equivalent() operation is used to produce a set of
Classes from a set of States by invoking the relevant transformation rule. This is
an example of explicit rule scheduling, in which the user defines when a rule will be
called.

1 rule Machine2Package

2 transform m : StateMachine!Machine

3 to p : ObjectOriented!Package {

4

5 p.name := ’uk.ac.york.cs.’ + m.id;

6 p.contents := m.states.equivalent();

7 }

2.1. MDE TERMINOLOGY AND PRINCIPLES 17

8

9 rule State2Class

10 transform s : StateMachine!State

11 to c : ObjectOriented!Class

12

13 guard: not s.isFinal {

14

15 c.name := s.name + ’State’;

16 }

Listing 2.1: M2M transformation in the Epsilon Transformation Language

[Kolovos et al. 2008b]

Model-to-Text (M2T) Transformation M2T transformation is used for model
serialisation (enabling model interchange), code and documentation generation, and
model visualisation and exploration. In 2005, the OMG recognised the lack of a stan-
dardised M2T transformation with its M2T Language Request for Proposals3. In re-
sponse, various M2T languages were developed including JET4, XPand5, MOFScript
[Oldevik et al. 2005], the Epsilon Generation Language (EGL) [Rose et al. 2008b].

Because M2T transformation is used to produce unstructured rather than struc-
tured artefacts, M2T transformation has different requirements to M2M transforma-
tion. For instance, M2T transformation languages often provide mechanisms for speci-
fying sections of text that will be completed manually and must not be overwritten by
the transformation engine.

Templates are commonly used in M2T languages. Templates comprise static and
dynamic sections. When the transformation is invoked, the contents of static sections
are emitted verbatim, while dynamic sections contain logic and are executed.

An exemplar M2T transformation, written in EGL, is shown in Listing 2.2. The
source of the transformation is an object-oriented model conforming to the metamodel
shown in Figure 2.4, and the target is Java source code. The template assumes that
an instance of Class is stored in the class variable.

1 package [%=class.package.name%];

2

3 public class [%=class.name%] {

4 [% for(attribute in class.attributes) { %]

5 private [%=attribute.type%] [%=attribute.name%];

6 [% } %]

7 }

Listing 2.2: M2T transformation in the Epsilon Generation Language

[Rose et al. 2008b]

3http://www.omg.org/docs/ad/04-04-07.pdf
4http://www.eclipse.org/modeling/m2t/?project=jet
5http://www.eclipse.org/modeling/m2t/?project=xpand

http://www.omg.org/docs/ad/04-04-07.pdf
http://www.eclipse.org/modeling/m2t/?project=jet
http://www.eclipse.org/modeling/m2t/?project=xpand

18 CHAPTER 2. BACKGROUND: MODEL-DRIVEN ENGINEERING

In EGL, dynamic sections are contained within [% and %]. Dynamic output sections
are a specialisation of dynamic sections contained within [%= and %]. The result
of evaluating a dynamic output section is included in the generated text. Line 1 of
Listing 2.2 contains two static sections (‘package’ and ‘;’) and a dynamic output
section ([%=class.package.name%]), and will generate a package declaration when
executed. Similarly, line 3 will generate a class declaration. Lines 4 to 6 iterate over
every attribute of the class, outputting a field declaration for each attribute.

Text-to-Model (T2M) Transformation T2M transformation is most often imple-
mented as a parser that generates a model rather than object code. Parser generators
such as ANTLR [Parr 2007] can be used to produce a structured artefact (such as an
abstract syntax tree) from text. T2M tools typically reuse a parser generator, and
post-process the structured artefacts to produce a model that can be managed with a
particular modelling framework.

Xtext6 and EMFText [Heidenreich et al. 2009] are contemporary examples of T2M
tools that, given a grammar and a target metamodel, will automatically generate a
parser that transforms text to a model.

An exemplar T2M transformation, written in EMFText, is shown in Listing 2.3.
From the transformation shown in Listing 2.3, EMFText can be used to generate
a parser that, when executed, will produce state machine models. For the input,
lift[stationary up down stopping emergency], the parser will produce a
model containing one Machine with lift as its id, and five States with the names,
stationary, up, down, stopping, and emergency.

Lines 1-2 of Listing 2.3 define the name of the parser and target metamodel. Line
3 indicates that parser should first seek to construct a Machine from the source text.
Lines 5-9 define rules for the lexer, including a rule for recognising IDENTIFIERs
(represented as alphabetic characters).

Lines 11-14 of Listing 2.3 are key to the transformation. Line 11 specifies that a
Machine is constructed whenever an IDENTIFIER is followed by a LBRACKET and
eventually a RBRACKET. When constructing a Machine, the first time an IDENTIFIER
is encountered, it is stored in the id attribute of the Machine. The states* state-
ment on line 12 indicates that, before matching a RBRACKET, the parser is permitted to
transform subsequent text to a State (according to the rule on line 13) and store the
resulting State in the states reference of the Machine. The asterisks in states*
indicates that any number of States can be constructed and stored in the states
reference.

1 SYNTAXDEF statemachine

2 FOR <statemachine>

3 START Machine

4

5 TOKENS {

6 DEFINE IDENTIFIER $(’a’..’z’|’A’..’Z’)*$;

6http://www.eclipse.org/Xtext/

http://www.eclipse.org/Xtext/

2.1. MDE TERMINOLOGY AND PRINCIPLES 19

7 DEFINE LBRACKET $’[’$;

8 DEFINE RBRACKET $’]’$;

9 }

10

11 RULES {

12 Machine ::= id[IDENTIFIER] LBRACKET states* RBRACKET ;

13 State ::= name[IDENTIFIER] ;

14 }

Listing 2.3: T2M transformation in EMFText

Model Validation

Model validation provides a mechanism for managing the integrity of the software
developed using MDE. A model that omits information is said to be incomplete, while
related models that suggest differences in the underlying phenomena are said to be
contradicting [Kolovos 2009]. Incompleteness and contradiction are two examples of
inconsistency [Elaasar & Briand 2004]. In MDE, inconsistency is detrimental, because,
when artefacts are automatically derived from each other, the inconsistency of one
artefact might be propagated to others. Model validation is used to detect, report and
reconcile inconsistency throughout a MDE process.

Inconsistency detection is inherently pattern-based and, hence, higher-order lan-
guages are more suitable for model validation than so-called “third-generation” pro-
gramming languages (such as Java) [Kolovos 2009]. The Object Constraint Language
(OCL) [OMG 2006] is an OMG standard that can be used to specify consistency con-
straints on UML and MOF models. OCL cannot express inter-model constraints, unlike
the Epsilon Validation Language (EVL) [Kolovos et al. 2009] and the xlinkit toolkit
[Nentwich et al. 2003].

An exemplar model validation constraint, written in EVL, is shown in Listing 2.4.
The constraint validates state machine models that conform to the metamodel shown
in Figure 2.3. The constraint shown in Listing 2.4 is defined for States (line 1), and
checks that there exists some transition whose source or target is the current state (line
4). When the check part (line 4) is not satisfied, the message part (line 6) is displayed.
When executed, the EVL constraint will be invoked once for every State in the model.
The keyword self is used to refer to the particular State on which the constraint is
currently being invoked.

1 context State {

2 constraint NoStateIsAnIsland {

3 check:

4 Transition.all.exists(t | t.source == self or t.target == self)

5 message:

6 ’The state ’ + self.name + ’ has no transitions.’

7 }

20 CHAPTER 2. BACKGROUND: MODEL-DRIVEN ENGINEERING

8 }

Listing 2.4: Model validation in the Epsilon Validation Language

Further model management activities

In addition to model transformation and validation, further examples of model man-
agement activities include model merging or weaving – in which two or more models are
combined (e.g. Reuseware [Henriksson et al. 2008]) – and model comparison in which
a trace of similar and different elements is produced from two or more models (e.g.
EMF Compare [Brun & Pierantonio 2008]).

Further activities, such as model versioning and tracing, might be regarded as model
management but, in the context of this thesis, are considered as evolutionary activities
and as such are discussed in Chapter 3.

2.1.5 Summary

This section has introduced the terminology and principles necessary for discussing
MDE in this thesis. Models provide abstraction, capturing necessary and disregard-
ing irrelevant details. Metamodels provide a structured mechanism for describing the
syntactic and semantic rules to which a model must conform. Metamodels facilitate
interoperability between modelling tools. MOF, the OMG standard metamodelling lan-
guage, enables the development of tools that can be used with a range of metamodels,
such as model management tools. Throughout an MDE process, models are manipu-
lated to produce other development artefacts using model management activities such
as model transformation and validation. Using the terms and principles described in
this section, the ways in which MDE is performed in practice are now discussed.

2.2 MDE Guidelines and Methods

For performing MDE, new engineering practices and processes have been proposed.
Proponents of MDE have produced guidance and methods for MDE. This section dis-
cusses the guidance for MDE set out in the Model-Driven Architecture [OMG 2008b]
and three popular methods for MDE.

2.2.1 The Model-Driven Architecture

The Model-Driven Architecture (MDA) is a software engineering framework defined by
the OMG. The MDA provides guidelines for MDE. For instance, the MDA prescribes
the use of a Platform Independent Model (PIM) and one or more Platform Specific
Models (PSMs).

A PIM provides an abstract, implementation-agnostic view of a system. Successive
PSMs provide increasingly more implementation detail. Inter-model mappings are used
to forward- and reverse-engineer these models, as depicted in Figure 2.5.

2.2. MDE GUIDELINES AND METHODS 21

Figure 2.5: Interactions between a PIM and several PSMs.

A key difference between the MDA and related approaches, such as round-trip
engineering (in which models and code are co-evolved to develop a system), is that the
MDA prescribes automated transformations between PIM and PSMs, whereas other
approaches use some manual transformations.

With MDA, the OMG sought to communicate and encourage the adoption of MDE
principles, and to provide standards for building interoperable MDE platforms. Ar-
guably, some parts of MDA have been widely adopted. For example, the metamod-
elling language provided by the Eclipse Modeling Framework (Section 2.3.1) is heavily
based on MOF (Section 2.1.3), one of the key standards prescribed by MDA. However,
it is difficult to assess the extent to which the principles advocated by MDA have been
adopted. Empirical analysis is needed to determine the way in which MDE is performed
in practice, and to drive changes to MDA and the modelling standards provided by the
OMG.

Standards for the MDA

As part of the guidelines for MDE, the OMG prescribes a set of standards for the MDA.
The standards are allocated to one of four tiers, and each tier represents a different
level of model abstraction (Figure 2.6). Members of one tier conform to a member of
the tier above. A discussion of the four tiers, based on [Kleppe et al. 2003, Section 8.2],
follows.

Figure 2.6: The tiers of standards used as part of MDA.

The base of the pyramid, tier M0, contains the domain (real-world). When mod-
elling a business, this tier is used to describe items of the business itself, such as a
real customer or an invoice. When modelling software, M0 instances describe the soft-

22 CHAPTER 2. BACKGROUND: MODEL-DRIVEN ENGINEERING

ware representation of such items. M1 contains models (Section 2.1.1) of the concepts
in M0, for example a customer may be represented as a class with attributes. The
M2 tier contains the modelling languages (metamodels, Section 2.1.2) used to describe
the contents of the M1 tier. For example, if UML [OMG 2007a] models were used to
describe concepts as classes in the M1 tier, M2 would contain the UML metamodel.
Finally, M3 contains a metamodelling language (metametamodel, Section 2.1.3) which
describes the modelling languages in the M2 tier. As discussed in Section 2.1.3, the
M3 tier facilitates tool standardisation and interoperability. The MDA specifies the
Meta-Object Facility (MOF) [OMG 2008a] as the only member of the M3 tier.

Interpretations of the MDA

The guidelines in the MDA have been interpreted by engineers in two distinct ways
[McNeile 2003]. Both interpretations begin with a PIM, but the way in which exe-
cutable code is produced differs:

• Translationist: The PIM is used to generate code directly using a sophisticated
code generator. Any intermediate PSMs are internal to the code generator. No
generated artefacts are edited manually.

• Elaborationist: Any generated artefacts (such as PSMs, code and documenta-
tion) can be augmented with further details of the application. To ensure that
all models and code are synchronised, tools must allow bi-directional transforma-
tions.

Translationists must encode behaviour in PIMs [Mellor & Balcer 2002], whereas
elaborationists can specify behaviour in PSMs or in code [Kleppe et al. 2003].

The difference between translationist and elaborationist approaches to MDE is re-
lated to a difference in the way in which models are viewed in traditional approaches
to software engineering. Modelling has been identified as a vital activity that should
take place throughout the development process [Evans 2004]. By contrast, it has also
been suggested that modelling should only be used for communicating and reason-
ing about a design, and not “as a long-term replacement for real, working software”
[Martin & Martin 2006, ch. 14].

Use of MDA

The guidelines set out in the MDA have been adopted – in varying degrees – by the
methods for MDE described in the sequel. Tools for MDE (Section 2.3) tend not to en-
force many of the MDA guidelines. For example, contemporary modelling frameworks
allow – but do not force – developers to specify a single PIM and use model transforma-
tion to create successive PSMs. The MDE standards prescribed by the MDA have been
widely adopted. MOF, UML and XMI, for example, are used in many contemporary
modelling frameworks and modelling tools.

2.2. MDE GUIDELINES AND METHODS 23

2.2.2 Methods for MDE

Several methods for MDE are prevalent today. In this section, three of the most
established MDE methods are discussed: Architecture-Centric Model-Driven Software
Development [Stahl et al. 2006], Domain-Specific Modelling [Kelly & Tolvanen 2008]
and Software Factories [Greenfield et al. 2004] at Microsoft. All three methods have
been defined by MDE practitioners, and have been used repeatedly to solve problems
in industry. The methods vary in the extent to which they follow the guidelines set out
by the MDA.

Architecture-Centric Model-Driven Software Development

Architecture-centric model-driven software development (AC-MDSD) is a style of MDE
that focuses on generating the infrastructure of large applications [Stahl et al. 2006].
For example, a typical J2EE application contains concepts (such as EJBs, descrip-
tors, home and remote interfaces) that “admittedly contain domain-related informa-
tion such as method signatures, but which also exhibit a high degree of redundancy”
[Stahl et al. 2006]. Using code generation, AC-MDSD seeks to eliminate this kind of
redundancy. Domain-related information is specified in a single source (typically in a
model). The single source is used as input to code generators, which automatically
produce the implementation concepts.

AC-MDSD applies more of the MDA guidelines than the other methods discussed
below. For instance, AC-MDSD supports the use of a general-purpose modelling lan-
guage for specifying models. The way in which AC-MDSD may be used to enhance
the productivity, efficiency and understandability of software development has been
demonstrated for a small number of examples [Stahl et al. 2006]. In these examples,
models are annotated using UML profiles to describe domain-specific concepts.

Domain-Specific Modelling

Domain-Specific Modelling (DSM) [Kelly & Tolvanen 2008] provides a collection of
principles, practices and advice for constructing systems using MDE. DSM is based on
the translationist interpretation of the MDA: domain models are transformed directly
to code. DSM has been motivated by comparison to the large productivity gains
made when third-generation programming languages were used in place of assembler
[Kelly & Tolvanen 2008]. Tolvanen7 notes that DSM focuses on increasing the pro-
ductivity of software engineering by allowing developers to specify solutions by using
models that describe the application domain.

To perform DSM, expert developers define:

• A domain-specific modelling language: allowing domain experts to encode
solutions to their problems.

7Tutorial on Domain Specific Modelling for Full Code Generation at the Fourth European Confer-
ence on Model Driven Architecture (ECMDA), June 2008, Berlin, Germany.

24 CHAPTER 2. BACKGROUND: MODEL-DRIVEN ENGINEERING

• A code generator: that translates the domain-specific models to executable
code in an existing programming language.

• Framework code: that encapsulates the common areas of all applications in
this domain.

As the development of these three artefacts requires significant effort from expert
developers, Tolvanen7 states that DSM should only be applied if more than three
problems specific to the same domain are to be solved.

Tools for defining domain-specific modelling languages, editors and code generators
enable DSM [Kelly & Tolvanen 2008]. Reducing the effort required to specify these
artefacts is key to the success of DSM. In this respect, DSM resembles a programming
paradigm termed language-oriented programming (LOP), which also requires tools to
simplify the specification of new languages. LOP is discussed further in Section 2.4.

Examples from industrial partners have been used to argue that DSM can improve
developer productivity [Kelly & Tolvanen 2008]. Unlike the MDA, DSM appears to be
optimised for increasing productivity, and less concerned with portability or maintain-
ability. Therefore, DSM is less suitable for engineering applications that frequently
interoperate with – and are underpinned by – changing technologies.

Microsoft Software Factories

During the industrialisation of the automobile industry, problems with economies of
scale (mass production) and scope (product variation) were largely addressed and, as a
consequence, the efficiency of automobile production increased [Greenfield et al. 2004,
pg159]. Software Factories [Greenfield et al. 2004], a software engineering method de-
veloped at Microsoft, seeks to address problems with economies of scope in software
engineering by borrowing concepts from product-line engineering. Software Factories
focuses on addressing economies of scope rather than economies of scale because, unlike
many other engineering disciplines, software development requires considerably more
development effort than production effort [Greenfield et al. 2004].

Software Factories [Greenfield et al. 2004] prescribes a bottom-up approach to ab-
straction and re-use. Development begins by producing prototypical applications. The
common elements of these applications are identified and abstracted into a product-
line. When instantiating a product, models are used to choose values for the variation
points in the product. To simplify the creation of these models, Software Factories pro-
pose model creation wizards, because “moving from totally-open ended hand-coding to
more constrained forms of specification [such as wizard-based feature selection] are the
key to accelerating software development” [Greenfield et al. 2004, pg179]. By provid-
ing explanations that assist in making decisions, the wizards used in Software Factories
guide users towards best practices for customising a product.

Compared to DSM, Software Factories appears to provide more support for ad-
dressing portability problems. The latter provides viewpoints into the product-line
(essentially different ways of presenting and aggregating data from development arte-
facts), which allow decoupling of concerns (e.g. between logical, conceptual and physical

2.3. TOOLS FOR MDE 25

layers). Viewpoints provide a mechanism for abstracting over different layers of plat-
form independence, adhering more closely than DSM to the guidelines provided in the
MDA. Unlike the guidelines provided in the MDA, Software Factories does not insist
that development artefacts be derived automatically where possible.

Finally, Software Factories prescribes the use of domain-specific languages (dis-
cussed in Section 2.4.1) for describing models in conjunction with Software Factories,
rather than general-purpose modelling languages, as the authors of Software Factories
state that the latter often have imprecise semantics [Greenfield et al. 2004].

2.2.3 Summary

This section has discussed the ways in which process and practices for MDE have been
captured. Guidance for MDE has been set out in the MDA standard, which seeks to
use MDE to produce adaptable software in a productive and maintainable manner.
Three methods for performing MDE have been discussed.

The methods discussed share some characteristics. They all require a set of ex-
emplar applications, which are examined by MDE experts. Analysis of the exemplar
applications identifies the way in which software development may be decomposed. A
modelling language for the problem domain is constructed, and instances are used to
generate future applications. Code common to all applications in the problem domain
is encapsulated in a framework.

Each method has a different focus. AC-MDSD seeks to eliminate duplication of
information from the problem domain via automatic code generation, and targets en-
terprise applications. Software Factories concentrates on providing different viewpoints
into the system, and facilitating collaborative specification of a system. DSM aims to
improve reusability between solutions to problems in the same problem domain, and
hence improve developer productivity.

Perhaps unsurprisingly, the proponents of each method for MDE recommend a
single tool (such as MetaCase for DSM). Alternative tools are available from open-
source modelling communities, including the Eclipse Modelling Project, which provides
– among other MDE tools – arguably the most widely used MDE modelling framework.
Two MDE tools are reviewed in the sequel.

2.3 Tools for MDE

Mature and powerful tools and languages for many common MDE activities are avail-
able today. This section discusses two MDE tools that are well-suited for MDE research
and that are used in the remainder of the thesis.

Section 2.3.1 provides an overview of the Eclipse Modelling Framework (EMF)
[Steinberg et al. 2008], which implements MOF and underpins many contemporary
MDE tools and languages, facilitating their interoperability. Section 2.3.2 discusses
Epsilon [Kolovos 2009], an extensible platform for the specification of model manage-
ment languages. The highly extensible nature of Epsilon (which is described below)

26 CHAPTER 2. BACKGROUND: MODEL-DRIVEN ENGINEERING

makes it an ideal host for the rapid prototyping of languages and exploring research
hypotheses.

The purpose of this section is to review EMF and Epsilon, and not to provide a
thorough review of all MDE tools. There are many other MDE tools and environments
that this section does not discuss, such as ATL and VIATRA for M2M transforma-
tion (Section 2.1.4), oAW8 for model transformation and validation, and the AMMA
platform9 for large-scale modelling, model weaving and software modernisation.

2.3.1 Eclipse Modelling Framework

The Eclipse Foundation10 is an open-source community seeking to build an extensible
and integrated development platform. Within Eclipse, the Eclipse Modelling Frame-
work (EMF) project [Steinberg et al. 2008] provides support for MDE. EMF provides
code generation facilities, and a meta-modelling language, Ecore, that implements the
MOF 2.0 standard [OMG 2008a]. EMF is arguably the most widely-used contemporary
MDE modelling framework.

EMF is used to generate metamodel-specific editors for loading, storing and con-
structing models. EMF model editors comprise a navigation view for specifying the
elements of the model, and a properties view for specifying the features of model ele-
ments. Figure 2.7 shows an EMF model editor for a simple state machine language.
The navigation (or tree) view is shown in the top pane, while the properties view is
shown in the bottom pane.

Figure 2.7: An EMF model editor for state machines.

8http://www.eclipse.org/workinggroups/oaw/
9http://wiki.eclipse.org/AMMA

10http://www.eclipse.org

http://www.eclipse.org/workinggroups/oaw/
http://wiki.eclipse.org/AMMA
http://www.eclipse.org

2.3. TOOLS FOR MDE 27

Users of EMF can define their own metamodels in Ecore, the metamodelling lan-
guage and MOF implementation of EMF. EMF provides two metamodel editors, tree-
based and graphical. Figure 2.8 shows the metamodel of a simple state machine lan-
guage in the tree-based metamodel editor. Figure 2.9 shows the same metamodel in
the graphical metamodel editor. Like MOF, the graphical metamodel editor uses con-
crete syntax similar to that of UML class diagrams. Emfatic11 provides a further,
textual metamodel editor for EMF, and is shown in Figure 2.10. The editors shown in
Figure 2.8, 2.9 and 2.10 are used to manipulate the same underlying metamodel, but
using different syntaxes. A change to the metamodel in one editor can be propagated
automatically to the other two.

Figure 2.8: EMF’s tree-based metamodel editor.

From a metamodel, EMF can generate an editor for models that conform to that
metamodel. For example, the simple state machine metamodel specified in Figures 2.8,
2.9 and 2.10 was used to generate the code for the model editor shown in Figure 2.7.
The model editors generated by EMF incorporate mechanisms for loading and saving
models. As prescribed by MOF, EMF typically generates code that stores models using
XMI [OMG 2007c], a dialect of XML optimised for model interchange.

The Graphical Modeling Framework (GMF) [Gronback 2009] is used to create
graphical model editors from metamodels defined with EMF. Figure 2.11 shows a
model editor produced with GMF for the simple state machine language described

11http://www.alphaworks.ibm.com/tech/emfatic

http://www.alphaworks.ibm.com/tech/emfatic

28 CHAPTER 2. BACKGROUND: MODEL-DRIVEN ENGINEERING

Figure 2.9: EMF’s graphical metamodel editor.

above. GMF itself uses a model-driven approach: users specify several models, which
are combined, transformed and then used to generate code for the resulting graphical
editor.

Many MDE tools are interoperable with EMF, enriching its functionality. The
remainder of this section discusses one tool that is interoperable with EMF, Epsilon.

2.3.2 Epsilon

The Extensible Platform for Specification of Integrated Languages for mOdel maN-
agement (Epsilon) [Kolovos 2009] is a suite of tools and domain-specific languages for
MDE. Epsilon comprises several integrated model management languages – built on
a common infrastructure – for performing tasks such as model transformation, model
validation and model merging [Kolovos 2009]. Figure 2.12 illustrates the various com-
ponents of Epsilon in 2008, at the start of the thesis research. Since then, several
further languages and tools have been added to Epsilon, including those presented in
Chapter 5.

Whilst many model management languages are bound to a particular subset of mod-
elling technologies, limiting their applicability, Epsilon’s model management languages
can manipulate models written in various modelling languages [Kolovos et al. 2006].
Currently, Epsilon supports models implemented using EMF, MOF 1.4, XML, or Com-

2.3. TOOLS FOR MDE 29

Figure 2.10: The Emfatic textual metamodel editor for EMF.

Figure 2.11: GMF state machine model editor.

30 CHAPTER 2. BACKGROUND: MODEL-DRIVEN ENGINEERING

munity Z Tools (CZT)12. Interoperability with further modelling technologies can be
achieved by extension of the Epsilon Model Connectivity (EMC) layer.

Figure 2.12: The architecture of Epsilon, taken from [Rose et al. 2008b].

The architecture of Epsilon promotes reuse when building task-specific model man-
agement languages and tools. Each Epsilon language can be reused wholesale in the
production of new languages. Ideally, the developer of a new language only has to
design language concepts and logic that do not already exist in Epsilon languages. As
such, new task-specific languages can be implemented in a minimalistic fashion. This
claim has been demonstrated by the style of implementation used to construct the
Epsilon Generation Language (EGL) [Rose et al. 2008b].

The Epsilon Object Language (EOL) [Kolovos et al. 2006] is the core of the plat-
form and provides functionality similar to that of OCL [OMG 2006]. However, EOL
provides an extended feature set, which includes the ability to update models, access to
multiple models, conditional and loop statements, statement sequencing, and provision
of standard output and error streams.

As shown in Figure 2.12, every Epsilon language re-uses EOL, so improvements
to EOL enhance the entire platform. EOL also allows developers to delegate com-
putationally intensive tasks to extension points, where the task can be authored in
Java.

Epsilon is a member of the Eclipse GMT13 project, a research incubator for the top-
level modelling technology project. Epsilon provides a lightweight means for defining
new experimental languages for MDE. For these reasons, Epsilon is uniquely positioned
as an ideal host for the rapid prototyping of languages for model management, and
hence has been used extensively for the work described in Chapter 5.

12http://czt.sourceforge.net/
13http://www.eclipse.org/gmt

http://czt.sourceforge.net/
http://www.eclipse.org/gmt

2.4. RESEARCH RELATING TO MDE 31

2.3.3 Summary

This section has introduced the MDE tools used throughout the remainder of the thesis.
The Eclipse Modeling Framework (EMF) provides an implementation of MOF, Ecore,
for defining metamodels. From metamodels defined in Ecore, EMF can generate code
for metamodel-specific editors and for persisting models to disk. EMF is arguably
the most widely used contemporary MDE modelling framework and its functionality
is enhanced by numerous tools, such as the Graphical Modeling Framework (GMF)
and Epsilon. GMF allows metamodel developers to specify a graphical concrete syntax
for metamodels, and can be used to generate graphical model editors. Epsilon is an
extensible platform for defining and executing model management languages, provides
a high degree of re-use for defining new model management languages and can be used
with a range of modelling frameworks, including EMF.

2.4 Research Relating to MDE

MDE is closely related to several other fields of software engineering. This section dis-
cusses two of those fields, Domain-Specific Languages (DSLs) and Language-Oriented
Programming (LOP). A further related area, Grammarware, is discussed in the context
of software evolution in Section 3.2.3. DSLs and LOP are closely related to the research
central to this thesis. Other areas relating to MDE but less relevant to this thesis, such
as formal methods, are not considered here.

2.4.1 Domain-Specific Languages

For a set of related problems, a specific, tailored approach is likely to provide better
results than instantiating a generic approach for each problem [Deursen et al. 2000].
The set of problems for which the specific approach outperforms the generic approach
is termed the domain. A domain-specific programming language (often called a domain-
specific language or DSL) enables the encoding of solutions for a particular domain.

Like modelling languages, DSLs describe abstract syntax. Furthermore, a common
language can be used to define DSLs (e.g. EBNF [ISO/IEC 1996]), like the use of MOF
for defining modelling languages. In addition to abstract syntax, DSLs typically define
a textual concrete syntax but, like modelling languages, can utilise a graphical concrete
syntax.

Cobol, Fortran and Lisp first existed as DSLs for solving problems in the domains
of business processing, numeric computation and symbolic processing respectively, and
evolved to become general-purpose programming languages [Deursen et al. 2000]. SQL,
on the other hand, is an example of a DSL that, despite undergoing much change, has
not grown into a general-purpose language. Unlike a general-purpose language, a single
DSL cannot be used to program an entire application. DSLs are often small languages
at inception, but can grow to become complicated (such as SQL). Within their domain,
DSLs should be easy to read, understand and edit [Fowler 2010].

32 CHAPTER 2. BACKGROUND: MODEL-DRIVEN ENGINEERING

There are two ways in which DSLs are typically implemented. An internal DSL
uses constructs from a general-purpose language (the host) to describe the domain
[Fowler 2010]. Examples of internal DSLs include the libraries of abstract data types
that are part of many programming languages (e.g. STL for C++, the Collections
API for Java). Some languages are better than others for hosting internal DSLs. For
example, Ruby has been proposed as a suitable host for DSLs due to its unintrusive
syntax and flexible runtime evaluation [Fowler 2010, ch. 4]. In Lisp, internal DSLs
can be implemented by using macros to translate domain-specific concepts to Lisp
abstractions [Graham 1993].

When the gap between domain and programming concepts is large, constructing
an internal DSL can require a lot of programming effort. Consequently, translating
DSL programs into code written in a general-purpose language has been recommended
[Parr 2007]. The term external is sometimes used for this style of DSL implementation
[Fowler 2010]. Programs written in simple DSLs are often easy to translate to programs
in an existing general-purpose language [Parr 2007]. Approaches to translation include
preprocessing; building or generating an interpreter or compiler; or extending an exist-
ing compiler or interpreter [Fowler 2010].

The construction of an external DSL can be achieved using many of the principles,
practices and tools used in MDE. Parsers can be generated using text-to-model trans-
formation; syntactic constraints can be specified with model validation; and translation
can be specified using model-to-model and model-to-text transformation. MDE tools
are used to implement two external DSLs in Chapter 5.

Internal and external DSLs have been successfully used as part of application de-
velopment in many domains [Deursen et al. 2000]. They have been used in conjunction
with general-purpose languages to build systems rapidly and to improve productivity
in the development process (such as automation of system deployment and configura-
tion). More recently, some developers are building complete applications by combining
DSLs, in a style of development called Language-Oriented Programming.

2.4.2 Language-Oriented Programming

DSLs are central to LOP, a style of software development [Ward 1994]. Firstly, a
very high-level language to encode problem domains is developed. Simultaneously, a
compiler is developed to translate programs written in the high-level language to an
existing programming language. Ward describes how this approach to programming
can enhance the productivity of development and the understandability of a system.
Additionally, Ward mentions the way in which multiple very high-level languages could
be layered to separate domains.

Combining DSLs to solve a problem is not a new technique [Fowler 2010]. Tra-
ditionally, UNIX has encouraged developers to combine programs written in small
(domain-specific) languages (such as awk, make, sed, lex and yac) to solve problems.
Lisp, Smalltalk and Ruby programmers often construct domain-specific languages when
developing programs [Graham 1993].

To fully realise the benefits of LOP, the development effort required to construct

2.4. RESEARCH RELATING TO MDE 33

DSLs must be minimised. Two approaches for constructing DSLs seem to be preva-
lent for LOP. The first advocates using a highly dynamic, reflexive and extensible
programming language to specify DSLs. This category of language has been termed
a superlanguage [Clark et al. 2008]. The superlanguage permits new DSLs to re-use
constructs from existing DSLs, which simplifies development.

A language workbench [Fowler 2010, ch. 9] is an alternative means for simplify-
ing DSL development. Language workbenches provide tools, wizards and DSLs for
defining abstract and concrete syntax, for constructing editors and for specifying code
generators.

For defining DSLs, the main difference between using a language workbench or a
superlanguage is the way in which semantics of language concepts are encoded. In a lan-
guage workbench, a typical approach is to write a generator for each DSL [Fowler 2010],
whereas a superlanguage often requires that semantics be encoded in the definition of
language constructs [Clark et al. 2008].

Like MDE, LOP requires mature and powerful tools and languages to be applicable
in the large, and to complex systems. Unlike MDE, LOP tools typically combine
concrete and abstract syntax. The emphasis for LOP is in defining a single, textual
concrete syntax for a language. MDE tools might provide more than one concrete
syntax for a single modelling language. For example, two distinct concrete syntaxes
are used for the tree-based and graphical editors of the simple state-machine language
shown in Figures 2.7 and 2.11.

Some of the key concerns for MDE are also important to the success of LOP. For
example, tools for performing LOP and MDE need to be as usable as those available for
traditional development, which often include support for code-completion, automated
refactoring and debugging. Presently, these features are often lacking in tools that
support LOP or MDE.

In summary, LOP addresses many of the same issues with traditional development
as MDE, but requires a different style of tool. LOP focuses more on the integration
of distinct DSLs, and providing editors and code generators for them. Compared to
LOP, MDE typically provides more separation between concrete and abstract syntax,
and concentrates more on model management.

2.4.3 Summary

This section has described two areas of research related to MDE, domain-specific lan-
guages (DSLs) and language-oriented programming (LOP). DSLs facilitate the encod-
ing of solutions for a particular problem domain. For solving problems in their domain,
DSLs can be easier to read, use and edit than general-purpose programming languages
[Deursen et al. 2000, Fowler 2010]. During MDE, one or more DSLs may be used to
model the domain, and the tools and techniques for implementing DSLs can be used
for MDE.

LOP is an approach to software development that seeks to specify complete systems
using a combination of DSLs. Contemporary LOP seeks to minimise the effort required
to specify and use DSLs. Like MDE, LOP requires mature and powerful tools, but,

34 CHAPTER 2. BACKGROUND: MODEL-DRIVEN ENGINEERING

unlike MDE, LOP does not separate concrete and abstract syntax, and does not focus
on model management, which is a key development activity in MDE.

2.5 Benefits of and Current Challenges to MDE

Compared to traditional software engineering approaches and to domain-specific lan-
guages and language-oriented programming, MDE has several benefits and weaknesses.
This section identifies benefits of and challenges to MDE, synthesised from the litera-
ture reviewed in this chapter.

2.5.1 Benefits

Two benefits of MDE are now identified, and used to describe the advantages of the
MDE principles and practices discussed in this chapter.

Tool interoperability MOF, the standard MDE metamodelling language, facilitates
interoperability between tools via model interchange. With Ecore, EMF provides a ref-
erence implementation of MOF which provides a foundation for many contemporary
MDE tools. Interoperability between modelling tools allows model management to be
performed across a range of tools, and developers are not tied to one vendor. Further-
more, models represented in a range of modelling languages can be used together in a
single environment. Prior to the formulation of MOF, developers would use different
tools for each modelling language. Each tool would probably have different storage
formats, complicating the interchange of models between tools.

System evolution The guidelines set out for MDE in MDA [OMG 2008b] highlight
principles and patterns for modelling to increase the adaptability of software systems
by, for example, separating platform-specific and platform-independent detail. When
the target platform changes (for example a new technological architecture is required),
only part of the system needs to be changed. The platform-independent detail can be
re-used wholesale.

Related to this, MDE facilitates automation of the error-prone or tedious elements
of software engineering. For example, code generation can be used to automatically
produce so-called “boilerplate” code, which is repetitive code that cannot be restruc-
tured to remove duplication (typically for technological reasons).

While MDE can be used to reduce the extent to which a system is changed in
some circumstances, MDE also introduces additional challenges for managing system
evolution [Mens & Demeyer 2007]. For example, mixing generated and hand-written
code typically requires a more elaborate software architecture than would be used for
a system composed of only hand-written code. Further examples of the challenges that
MDE presents for evolution are discussed in the sequel.

2.5. BENEFITS OF AND CURRENT CHALLENGES TO MDE 35

2.5.2 Challenges

Three challenges for MDE are now identified, and used to motivate areas of potential
research for improving MDE. The remainder of the thesis focuses on the final challenge,
maintainability in the small.

Learnability MDE involves new terminology, development activities and principles
for software engineering. For the novice, producing a simple system with MDE is
arguably challenging. For example, GMF is difficult for new users to understand and
mechanisms for its simplification have been proposed [Kolovos et al. 2010]. It seems
reasonable to assume that the extent to which MDE tools and principles can be learnt
will eventually determine the adoption rate of MDE.

Scalability In traditional approaches to software engineering, a model is considered
of comparable value to any other documentation artefact, such as a word processor
document or a spreadsheet [Rose et al. 2010c]. As a result, the convenience of main-
taining self-contained model files which can be easily shared outweighs other desirable
attributes. This perception is thought to have led to the situation where single-file mod-
els of the order of tens (if not hundreds) of megabytes, containing hundreds of thousands
of model elements, are the norm for real-world software projects [Kolovos et al. 2008a].

MDE languages and tools must scale such that they can be used with large and
complex models. Ways in which the scalability of model management tasks, such
as model transformation, can be improved have been explored [Hearnden et al. 2006,
Ráth et al. 2008, Tratt 2008]. Kolovos prescribes a different approach, suggesting that
MDE research should aim for greater modularity in models, which, as a by-product,
will result in greater scalability in MDE [Kolovos et al. 2008a]. Scalability of MDE
tools is a key concern for practitioners and, for this reason, scalability has been called
the “holy grail” of MDE [Kolovos et al. 2008a].

Maintainability in the small Notwithstanding the benefits of MDE for managing
the evolution of systems, the introduction of additional development artefacts (such
as models and metamodels) and activities (such as model transformation and valida-
tion) presents additional challenges for the way in which software evolution is managed
[Mens & Demeyer 2007]. For example, in traditional approaches to software engineer-
ing, maintainability is achieved by restructuring code, updating documentation and
regression testing [Feathers 2004]. It is not yet clear the extent to which existing main-
tenance activities can be applied in MDE. (For example, should models be tested and,
if so, how?)

As demonstrated in Chapter 4, the way in which some MDE tools are structured
limits the extent to which some traditional maintenance activities can be performed.
Understanding, improving and assessing the way in which evolution is managed in the
context of MDE is an open research topic to which this thesis contributes.

36 CHAPTER 2. BACKGROUND: MODEL-DRIVEN ENGINEERING

2.5.3 Summary

This section has identified some of the benefits of and challenges for contemporary
MDE. The interoperability of tools and modelling languages in MDE allows developers
greater flexibility in their choice of tools and facilitates interchange between heteroge-
neous tools and modelling frameworks. MDE is more flexible than other, more formal
approaches to software engineering, which can be beneficial for constructing complex
systems. The principles and practices of MDE can be used to achieve greater main-
tainability of systems by, for example, separating platform-independent and platform-
specific details.

As MDE tools approach maturity, non-functional requirements, such as learnabil-
ity, and scalability, become increasingly desirable for practitioners. MDE tools must
also be able to support developers in managing changing software. This section has
demonstrated some of the weakness of contemporary MDE, particularly in the areas of
learnability, scalability and maintainability.

2.6 Chapter Summary

This chapter has discussed Model-Driven Engineering (MDE), a state-of-the-art and
principled approach to software engineering. The terminology, development activities
and tools used in a typical MDE process were introduced. Two areas relating to MDE,
language-oriented programming and domain-specific languages, were discussed, and
three methods for performing MDE were reviewed.

Traditional approaches to software engineering do not treat modelling artefacts –
such as model, metamodels and model management operations – as first-class citizens,
and they are typically represented in an unstructured manner, if at all. MDE involves
creating, manipulating and managing changes to modelling artefacts and therefore
modelling artefacts are represented in a structured manner. This chapter has demon-
strated that contemporary MDE tools, such as EMF and Epsilon, provide structures
and processes for creating and manipulating modelling artefacts, but not for managing
evolutionary change. Chapters 3 and 4 review, explore and investigate structures and
processes for managing the evolution of modelling artefacts.

Chapter 3

Review of Software Evolution

This chapter reviews existing work on software evolution. In particular, this chapter
explores the ways in which software evolution is identified and managed in the context
of MDE, which was discussed in Chapter 2. Potential directions for future research
are identified from the literature review, and Chapter 4 performs a critical analysis of
some of the tools and techniques reviewed in this chapter. The principles of software
evolution are discussed in Section 3.1, while Section 3.2 reviews the ways in which
evolution is identified, analysed and managed in a range of fields, including relational
databases, programming languages, and MDE development environments. From the
review, Section 3.4 synthesises research challenges for software evolution in the context
of MDE, highlighting those to which this thesis contributes, and elaborates on the
research method used in this thesis.

3.1 Software Evolution Theory

Software evolution is an important facet of software engineering. As discussed in Sec-
tion 1.2, studies [Erlikh 2000, Moad 1990] have shown that the evolution of software
can account for as much as 90% of a development budget, and there is no reason to be-
lieve the situation is different today. Such figures are sometimes described as uncertain
[Sommerville 2006, ch. 21], primarily because the term evolution is not used consis-
tently. For example, some authors prefer the term maintenance to evolution. Here,
the latter is preferred as the former can imply deterioration caused by repeated use,
and most software systems do not deteriorate in this manner [Ramil & Lehman 2000].
There is a corpus of software evolution research. Publications in this area have existed
since the 1960s (e.g. [Lehman 1969]).

The remainder of this section introduces software evolution terminology and dis-
cusses three research areas that relate to software evolution: refactoring, design patterns
and traceability. Refactoring concentrates on improving the structure of existing sys-
tems, design patterns on best practices for software design, and traceability for record-
ing and analysing the lifecycle of software artefacts. Each area provides a vocabulary
for discussing software design and evolution. There is an abundance of research in these

37

38 CHAPTER 3. REVIEW OF SOFTWARE EVOLUTION

areas, including seminal works on refactoring, such as [Opdyke 1992] and [Fowler 1999];
and on design patterns, such as [Gamma et al. 1995].

3.1.1 Categories of Software Evolution

Three activities – addressing changing requirements, adapting to new technologies,
and architectural restructuring – have been identified as the primary causes of software
evolution [Sjøberg 1993]. These activities are the motivations for three common types
of software evolution [Sommerville 2006, ch. 21]:

• Corrective evolution takes place when a system exhibiting unintended or faulty
behaviour is corrected. Alternatively, corrective evolution may be used to adapt
a system to new or changing requirements.

• Adaptive evolution is employed to make a system compatible with a change
to platforms or technologies that underpin its implementation.

• Perfective evolution refers to the process of improving the internal quality of
a system, while preserving the behaviour of the system.

The remainder of this section adopts this categorisation for discussing software
evolution literature. Refactoring (discussed in Section 3.1.3), for instance, is one way
in which perfective evolution can be realised.

3.1.2 Evolutionary Development Activities

Software evolution is identified and managed via many different development activ-
ities. Two software evolution activities, impact analysis (for reasoning about the
effects of evolution) and change propagation (for updating one artefact in response to
a change made to another) are commonplace [Winkler & Pilgrim 2010]. In addition,
reverse engineering (analysing existing development artefacts to extract information)
and source code translation (rewriting code to use a more suitable technology, such
as a different programming language) are also important software evolution activities
[Sommerville 2006].

MDE introduces new software engineering principles, and the concerns and require-
ments for software evolution differ between MDE processes and traditional software
development processes. For example, MDE facilitates portable software by prescribing
platform-independent and platform-specific models (as discussed in Section 2.1.4), and
as such source code translation is arguably less relevant to MDE than to traditional
software engineering. Because MDE seeks to capture the essence of the software in
models, reverse engineering information from, for example, code is also less likely to
be relevant to MDE than to traditional software engineering. Consequently, this thesis
focuses on impact analysis and change propagation, which are both relevant to MDE
[Winkler & Pilgrim 2010], as discussed in Section 3.2.4.

3.1. SOFTWARE EVOLUTION THEORY 39

3.1.3 Refactoring

There is “an urgent need for techniques that reduce software complexity by incremen-
tally improving the internal software quality” [Mens & Tourwé 2004]. Refactoring is
“the process of changing a software system in such a way that it does not alter the
external behaviour of the code yet improves its internal structure” [Fowler 1999, pg.
xvi]. Refactoring plays a significant role in the evolution of software systems – a recent
study of five open-source projects showed that over 80% of changes were refactorings
[Dig & Johnson 2006b].

Typically, refactoring literature concentrates on three primary activities in the refac-
toring process: identification (where should refactoring be applied, and which refactor-
ings should be used?), verification (has refactoring preserved behaviour?) and assess-
ment (how has refactoring affected other qualities of the system, such as cohesion and
efficiency?).

Beck describes an informal means for identifying the need for refactoring, termed bad
smells: “structures in the code that suggest (sometimes scream for) the possibility of
refactoring” [Fowler 1999, foreword]. Tools and semi-automated approaches have also
been devised for refactoring identification, such as Daikon [Kataoka et al. 2001], which
detects program invariants that may indicate the possibility for refactoring. Clone
analysis tools have been employed for identifying refactorings that eliminate duplication
[Balazinska et al. 2000, Ducasse et al. 1999]. The types of refactoring being performed
may vary over different domains. For example, Buck1 describes refactorings, such as
“Skinny Controller, Fat Model”, particular to the Ruby on Rails web framework2.

Since 2006, Dig has been studying the refactoring of systems that are developed
by combining components, possibly developed by different organisations. The changes
made to five components that are known to have been re-used often were categorised,
with the hypothesis that a significant number of the changes could be classified as
behaviour-preserving (i.e. refactorings) [Dig & Johnson 2006b]. By using examples
from the survey, an algorithm was devised for automatically detecting refactorings to a
high degree of accuracy (over 85%) [Dig et al. 2006]. The algorithm was then utilised in
tools for (1) replaying refactorings to perform migration of client code following break-
ing changes to a component [Dig & Johnson 2006a], and (2) versioning object-oriented
programs using a refactoring-aware configuration management system [Dig et al. 2007].
The latter facilitated better understanding of program evolution, and the refinement
of the refactoring detection algorithm.

3.1.4 Patterns and Anti-Patterns

A design pattern identifies a commonly occurring design problem and describes a re-
usable solution to that problem. Related design patterns are combined to form a pattern
catalogue – such as for object-oriented programming [Gamma et al. 1995] or enterprise

1In a keynote address to the First International Ruby on Rails Conference (RailsConf), May 2007,
Portland, Oregon, United States of America.

2http://www.rubyonrails.org

http://www.rubyonrails.org

40 CHAPTER 3. REVIEW OF SOFTWARE EVOLUTION

applications [Fowler 2002]. A pattern description comprises at least a name, overview
of the problem, and details of a common solution [Brown et al. 1998]. Depending on
the domain, further information may be included in the pattern description (such as a
classification, a description of the pattern’s applicability and an example usage).

Design patterns can be thought of as describing objectives for improving the internal
quality of a system (i.e. perfective software evolution). Often developers improve the
quality of systems by restructing systems to exhibit design patterns [Kerievsky 2004].
Studying the way in which experts perform perfective software evolution can lead to
devising best practices, sometimes in the form of a pattern catalogue, such as the
object-oriented refactorings described in [Fowler 1999].

Design patterns were first used to devise a pattern catalogue for town planning
[Alexander et al. 1977]. Refactorings were later adapted to software architecture, by
specifying a pattern catalogue for designing user-interfaces [Beck & Cunningham 1989].
Utilising pattern catalogues allowed the software industry to “reuse the expertise of
experienced developers to repeatedly train the less experienced” [Brown et al. 1998,
pg. 10]. Furthermore, design patterns “help to define a vocabulary for talking about
software development and integration challenges; and provide a process for the orderly
resolution of these challenges” [Rising 2001, pg. xii].

Anti-patterns are an alternative literary form for describing patterns of a soft-
ware architecture [Brown et al. 1998]. Rather than describe patterns that have often
been observed in successful architectures, they describe those which are present in un-
successful architectures. Essentially, an anti-pattern is a pattern in an inappropriate
context, which describes a problematic solution to a frequently encountered problem.
The (anti-)pattern catalogue may include alternative solutions that are known to yield
better results (termed “refactored solutions” by Brown). Catalogues might also con-
sider the reasons why (inexperienced) developers use an anti-pattern. Brown notes that
“patterns and anti-patterns are complementary” [Brown et al. 1998, pg. 13]; both are
useful in providing a common vocabulary for discussion of system architectures and in
educating less experienced developers.

3.1.5 Traceability

A software development artefact rarely evolves in isolation. Changes to one artefact
cause and are caused by changes to other artefacts (e.g. object code is recompiled when
source code changes, source code and documentation are updated when requirements
change). Hence, traceability – the ability to describe and follow the life of software arte-
facts [Winkler & Pilgrim 2010, Lago et al. 2009] – is closely related to and facilitates
software evolution.

Historically, traceability is a branch of requirements engineering, but is increasingly
used for artefacts other than requirements [Winkler & Pilgrim 2010]. Because MDE
prescribes automated transformation between models, traceability is also researched
in the context of MDE. The remainder of this section discusses traceability principles
focussing on the relationship between traceability and software evolution. Section 3.2.4
reviews the traceability literature that relates to MDE.

3.1. SOFTWARE EVOLUTION THEORY 41

The traceability literature uses inconsistent terminology. This thesis uses the ter-
minology of a survey of traceability research [Winkler & Pilgrim 2010]: traceability is
the ability to describe and follow the life of software artefacts; traceability links are
the relationships between software artefacts. Traceability is facilitated by traceability
links, which document the dependencies, causalities and influences between artefacts.
Traceability links are established by hand or by automated analysis of artefacts. In
MDE environments, some traceability links can be automatically inferred because the
relationships between some types of artefact are specified in a structured manner (for
example, as a model-to-model transformation).

Traceability links are defined between artefacts at the same level of abstraction
(horizontal links) and at different levels of abstraction (vertical links). Traceability
links can be uni- or bi-directional. The former are navigated either forwards (away
from the dependent artefact) or backwards (towards the dependent artefact). Figure 3.1
summaries these categories of traceability link.

A survey of traceability in requirements engineering and MDD

Fig. 1 Dimensions and
directions of traceability links

has been derived. Forward traceability stands for following
the traceability links to the artifacts that have been derived
from the artifact under consideration.

Finally, Ramesh and Edwards [155] have introduced the
distinction between horizontal and vertical traceability.
These terms differentiate between traceability links of arti-
facts belonging to the same project phase or level of abstrac-
tion, and links between artifacts belonging to different ones.
Because levels of abstractions or phases can both be drawn
from left to right or from top to bottom, there is some uncer-
tainty about which term is used for which dimension. The
case more commonly reported is illustrated in the example
in Fig. 1: A traceability link between a statement documented
by meeting notes and a requirement in the requirements spec-
ification document is considered a part of horizontal trace-
ability. A link from a requirement to a design element, like a
class or a component, is considered a part of vertical trace-
ability. It is, however, unclear if traceability practices really
differ depending on the different types of links and, hence, if
a classification in horizontal and vertical traceability is actu-
ally sensible in this context.

Yet, in the context of iterative development processes
which include the two dimensions increment and iteration
the difference does make sense: Antoniol et al. [12] briefly
relates horizontal and vertical traceability to the iteration- and
increment-dimensions of the development process, respec-
tively. This differentiation has an immediate effect on the
types of traceability links, as horizontal traceability mostly
implies a form of evolves- to link.

2.2.3 Traceability in MDD

In the context of MDD, traces partially fulfill the same pur-
pose as in requirements engineering because in many tasks,
MDD is simply an automation of software engineering. The
special characteristic of MDD is the usage of models and
automated transformations. So, the artifacts under study are
mainly (intermediate) models. This context influences the
definitions and semantics of the terms known from require-
ments traceability and software engineering in general.

In addition, the “MDD way” to define terms is often to
simply define models and metamodels in which they occur.
This is why most publications either do not refer to an explicit
definition of traceability at all, or only refer to the general
IEEE definition cited above. Also, since traceability cannot
be modeled intuitively, most definitions refer to traceability
links.3

An example for a model-like definition for the term trace-
ability is the rather technical and narrow definition that is
given by the OMG [132]:

A trace [...] records a link between a group of objects
from the input models and a group of objects in the
output models. This link is associated with an element

3 It can be noted that the distinction between traceability (the ability)
and traceability links (the relations) is not regarded very strictly by some
authors.

123

Figure 3.1: Categories of traceability link [Winkler & Pilgrim 2010].

Traceability supports software evolution activities, such as impact analysis (discov-
ering and reasoning about the effects of a change) and change propagation (updating
impacted artefacts following a change to an artefact). Moreover, automated software
evolution is facilitated by programmatic access to traceability links.

Current approaches for traceability-supported software evolution use triggers and

42 CHAPTER 3. REVIEW OF SOFTWARE EVOLUTION

events. Each approach proposes mechanisms for detecting triggers (changes to arte-
facts) and for notifying dependent artefacts of events (the details of a change). Existing
approaches vary in the extent to which they automatically update dependent artefacts.
Some approaches [Chen & Chou 1999, Cleland-Huang et al. 2003] do not perform au-
tomatic updates, while others [Aizenbud-Reshef et al. 2005, Costa & Silva 2007] pro-
vide guided or fully automatic updates. Section 3.2.4 provides a more thorough dis-
cussion and critical analysis of event-based approaches for impact analysis and change
propagation in the context of MDE.

To remain accurate and hence useful, traceability links must be updated as a system
evolves. Although most existing approaches to traceability are “not well suited to the
evolution of [traceability] artefacts” [Winkler & Pilgrim 2010, pg. 24], there is some
work in this area. For example, Mader et al. describe a development environment that
records changes to artefacts, comparing the changes to a catalogue of built-in patterns
[Mäder et al. 2008]. Each pattern provides an executable specification for updating
traceability links.

Software evolution and traceability are entangled concerns. Traceability facilitates
software evolution activities such as impact analysis and change propagation. Traceabil-
ity is made possible with consistent and accurate traceability links. Software evolution
can affect the relationships between artefacts (i.e. the traceability links) and hence soft-
ware evolution techniques are applied to ensure that traceability links remain consistent
and accurate.

3.2 Software Evolution in Practice

Using the principles of software evolution described above, this section examines the
ways in which evolution is identified, managed and analysed in a variety of settings,
including programming languages, grammarware, relational database management sys-
tems and MDE.

3.2.1 Programming Language Evolution

Programming language designers often attempt to ensure that legacy programs con-
tinue to conform to new language specifications. For example, the designers of the
Java [Gosling et al. 2005] language are reluctant to introduce new keywords (becauae
identifiers in existing programs could then be mistakenly recognised as instances of the
new keyword) [Cervelle et al. 2006].

Although designers are cautious about changing programming languages, evolution
does occur. In this section, two examples of the ways in which programming lan-
guages have evolved are discussed. The vocabulary used to describe the scenarios is
applicable to evolution of MDE artefacts. Furthermore, MDE sometimes involves the
use of general-purpose modelling languages, such as UML [OMG 2007a]. The evolu-
tion of general-purpose modelling languages may be similar to that of general-purpose
programming languages.

3.2. SOFTWARE EVOLUTION IN PRACTICE 43

Reduction

Mapping language abstractions to executable concepts can be complicated. Therefore,
languages are sometimes evolved to simplify the implementation of translators (com-
pilers, interpreters, etc). It seems that this type of evolution is more likely to occur
when language design is a linear process (with a reference implementation occurring
after design), and in larger languages.

The evolution of FORTRAN involved some simplification of language constructs
[Backus 1978]. Originally, FORTRAN’s DO statements were awkward to compile. The
semantics of DO were simplified such that more efficient object code could be generated
from them. Essentially, the simplified DO statement allowed linear changes to index
statements to be detected (and optimised) by compilers.

The removal of the RELABEL construct (which simplified indexing into multi-
dimensional arrays) from FORTRAN [Backus 1978] is a further example of reduction.

Revolution

When using a programming language, software engineers often develop best practices,
which are expressed and shared with other software engineers. Design patterns are one
way in which best practices may be communicated to other developers. Incorporating
existing design patterns as language constructs is one approach to specifying a new
language (e.g. [Bosch 1998]).

Lisp makes idiomatic some of the Fortran List Processing Language (FLPL) design
patterns. For example, the awkwardness of using FLPL’s IF construct led expe-
rienced developers to define the function XIF(P, T, F) where T was executed iff P
was true, and F was executed otherwise [McCarthy 1978]. However, such functions had
to be used sparingly, as all three arguments would be evaluated due to the way in which
FORTRAN executed function calls. A more efficient semantics, wherein T (F) was only
evaluated when P was true (false), was inspired by the use of XIF [McCarthy 1978].
Because FORTRAN programs could not express these semantics, McCarthy’s new con-
struct informed the design of Lisp. Lazy evaluation in functional languages can be
regarded as a further step on this evolutionary path.

3.2.2 Schema Evolution

This section reviews schema evolution research. Work covering the evolution of XML
and database schemata is considered. Both types of schema are used to describe a set
of concepts (termed the universe of discourse in database literature). Schema designers
decide which details of their domain concepts to describe; their schemata provide an ab-
straction containing only those concepts which are relevant [Elmasri & Navathe 2006,
pg. 30]. As such, schemata in these domains may be thought of as analogous to meta-
models – they provide a means for describing an abstraction over a phenomenon of
interest. Therefore, approaches to identifying, analysing and performing schema evolu-
tion are directly relevant to the evolution of metamodels in MDE. However, the patterns

44 CHAPTER 3. REVIEW OF SOFTWARE EVOLUTION

of evolution commonly seen in database systems and with XML may be different to
those of metamodels because evolution can be:

• Domain-specific: Patterns of evolution may be applicable only within a partic-
ular domain (e.g. normalisation in a relational database).

• Language-specific: The way in which evolution occurs may be influenced by the
language (or tool) used to express the change. (For example, some implemen-
tations of SQL may not have a rename relation command, so alternative
means for renaming a relation must be used).

Many of the published works on schema evolution share a similar method, with
the aim of defining a taxonomy of evolutionary operators. Developers are expected
to apply the operators to evolve schemata. This approach is used heavily for XML
schema evolution (e.g. [Guerrini et al. 2005, Kramer 2001, Su et al. 2001]). Simi-
lar taxonomies exist for schema evolution in relational database systems (e.g. in
[Banerjee et al. 1987, Edelweiss & Moreira 2005]), but other approaches to evolution
are also prevalent. An alternative is discussed in depth, along with a summary of other
work.

XML Schema Evolution

XML provides a specification for defining mark-up languages. XML documents can
reference a schema, which provides a description of the ways in which the concepts
in the mark-up should relate (i.e. the schema describes the syntax of the XML doc-
ument). Prior to the definition of the XML Schema specification [W3C 2007] by the
World Wide Web Consortium (W3C)3, authors of XML documents could use a specific
Document Type Definition (DTD) to describe the syntax of their mark-up language.
XML Schemata provide several advantages over the DTD specification, including the
following:

• XML Schemata are defined in XML and may, therefore, be validated against
another XML Schema. DTDs are specified in another language entirely, which
requires a different parser and different validation tools.

• DTDs provide a means for specifying constraints only on the mark-up language,
whereas XML Schemata may also specify constraints on the data in an XML
document.

Work on the evolution of the structure of XML documents is now discussed. Exist-
ing work concentrates on changes made to XML Schema (e.g. [Guerrini et al. 2005])
or to DTDs (e.g. [Kramer 2001]).

Guerrini et al. propose a set of primitive operators for changing XML schemata
[Guerrini et al. 2005]. The set is sound (application of an operator always results in a

3http://www.w3.org/

http://www.w3.org/

3.2. SOFTWARE EVOLUTION IN PRACTICE 45

valid schema) and complete (any valid schema can be produced by composing opera-
tors). Guerrini et al. also detail those operators that can be ‘validity-preserving’ (i.e.
application of the operator produces a schema that does not require its instances to be
migrated). The arguments of an operator influence whether it is validity-preserving.
For example, inserting an element is validity-preserving when the lowerbound of the
new element is zero, but not otherwise. In addition to soundness and completeness,
minimality is another desirable property in a taxonomy of primitive operators for per-
forming schema evolution [Su et al. 2001]. To complement a minimal set of primitives,
and to improve the conciseness with which schema evolutions can be specified, Guerrini
et al. propose a number of ‘high-level’ operators, which comprise two or more primitive
operators.

Kramer provides a further taxonomy of primitives for the evolution of XML schema
[Kramer 2001]. To describe her evolution operators, Kramer uses a template, which
comprises a name, syntax, semantics, preconditions, resulting DTD changes and result-
ing data changes section for each operator. This style is similar to a pattern catalogue,
but Kramer does not provide a context for her operators (i.e. there are no examples
that describe when the application of an operator may be useful). Kramer utilises
her taxonomy in a repository system, Exemplar, for managing the evolution of XML
documents and their schemata. The repository provides an environment in which the
variation of XML documents can be managed. However, to be of practical use, Exem-
plar would benefit from integration with a source code management system (to provide
features such as branching, and version merging).

The evolutionary taxonomies described in the above approaches are complete in
the sense that any valid schema can be produced, but do not allow for arbitrary updates
of the XML documents in response to schema changes [Pizka & Jürgens 2007]. Hence,
none of the approaches discussed in this section ensure that information contained in
XML documents is not lost.

Relational Database Schema Evolution

Defining a taxonomy of operators for performing schema updates is also common for
supporting relational database schema evolution. For example, two taxonomies are
described in [Edelweiss & Moreira 2005, Banerjee et al. 1987]. However, problems that
arise when performing data migration after these taxonomies have been used to specify
schema evolution have been highlighted:

“There are two major issues involved in schema evolution. The first issue
is understanding how a schema has changed. The second issue involves
deciding when and how to modify the database to address such concerns
as efficiency, availability, and impact on existing code. Most research ef-
forts have been aimed at this second issue and assume a small set of schema
changes that are easy to support, such as adding and removing record fields,
while requiring the maintainer to provide translation routines for more com-
plicated changes. As a result, progress has been made in developing the

46 CHAPTER 3. REVIEW OF SOFTWARE EVOLUTION

backend mechanisms to convert, screen, or version the existing data, but
little progress has been made on supporting a rich collection of changes”
[Lerner 2000, pg. 84].

Fundamentally , Lerner believes that any taxonomy of operators for schema evo-
lution is too fine-grained to capture the semantics intended by the schema developer,
and therefore cannot be used to provide automated migration: existing taxonomies are
concerned with the “editing process rather than the editing result” [Lerner 2000]. Fur-
thermore, Lerner believes that developing such a taxonomy creates a proliferation of
operators, increasing the complexity of specifying migration. To demonstrate, Lerner
considers moving a field from one type to another in a schema. This could be ex-
pressed using two primitive operators, delete_field and add_field. However,
the semantics of a delete_field command likely dictate that the data associated
with the field will be lost, making it unsuitable for use when specifying that a type has
been moved. The designer of the taxonomy could introduce a move_field command
to solve this problem, but now the maintainer of the schema needs to understand the
difference between the two ways in which moving a type can be specified, and carefully
select the correct one. Lerner provides other examples which expand on this issue (such
as introducing a new type by splitting an existing type). Even though Lerner high-
lights that a fine-grained approach may not be the most suitable for specifying schema
evolution, other potential uses for a taxonomy of evolutionary operators (such as, a
common vocabulary for discussing the restructuring of a schema) are not discussed.

Lerner proposes an alternative to operator-based schema evolution in which two
versions of a schema are compared to infer the schema changes. Using the inferred
changes, migration strategies for the affected data can be proposed. Lerner presents
algorithms for inferring changes from schemata and performing both automated and
guided migration of affected data. By inferring changes, developers maintaining the
schema are afforded more flexibility. In particular, they need not use a domain-specific
language or editor to change a schema, and can concentrate on the desired result,
rather than how best to express the changes to the schema in the small. Further-
more, algorithms for inferring changes have uses other than for migration (e.g. for
semantically-aware comparison of schemata, similar to that provided by a refactoring-
aware source code management system [Dig et al. 2007]). Comparison of two schema
versions might suggest more than one feasible strategy for updating data, and Lerner
does not propose a mechanism for distinguishing between feasible alternatives.

Vries et al. propose the introduction of an extra layer to the typical architecture of
a relational database management system [Vries & Roddick 2004]. They demonstrate
the way in which the extra layer can be used to perform migration subsequent to
a change of an attribute type. The layer contains (mathematical) relations, termed
mesodata, that describe the way in which an old value (data prior to migration) maps
to one or more new values (data subsequent to migration). These mappings are added
to the mesodata by the developer performing schema updates, and are used to semi-
automate migration. It is not clear how this approach can be applied when schema
evolution is not an attribute type change.

3.2. SOFTWARE EVOLUTION IN PRACTICE 47

In the O2 database [Ferrandina et al. 1995], schema updates are performed using a
domain-specific language. Modification constructs are used to describe the changes to
be made to the schema. To perform data migration, O2 provides conversion functions
as part of its modification constructs. Conversion functions are either user-defined or
default (pre-defined). The pre-defined functions concentrate on providing mappings
for attributes whose types are changed (e.g. from a double to an integer; from a set
to a list). Additionally, conversion functions may be executed in conjunction with the
schema update, or they may be deferred, and executed only when the data is accessed
through the updated schema. Ferrandina et al. observe that deferred updates may
prevent unnecessary downtime of the database system. Although the approach used
in the O2 database addresses the concern that “approaches to coping with schema
evolution should be concerned with the editing result rather than the editing process”
[Lerner 2000], there is no support for some types of evolution such as moving an at-
tribute from one relation to another.

3.2.3 Grammar Evolution

An engineering approach to producing grammarware (grammars and software that
depends on grammars, such as parsers and program convertors) is regarded as one way
to better support software development [Klint et al. 2003]. The grammarware engi-
neering approach envisaged by Klint et al. is based on best practices and techniques,
which they anticipate will be derived from addressing open research challenges. Klint
et al. identify seven key questions for grammarware engineering, one of which relates
to grammar evolution: “How does one systematically transform grammatical structure
when faced with evolution?” [Klint et al. 2003, pg. 334].

Between 2001 and 2005, Ralf Lämmel (an author of [Klint et al. 2003]) and his col-
leagues at Vrije Universiteit published several important papers on grammar evolution.
Lämmel has proposed a taxonomy of operators for semi-automatic grammar refactoring
[Lämmel 2001] and demonstrated their usefulness in recovering the formal specifications
of undocumented grammars (such as VS COBOL II in [Lämmel & Verhoef 2001]) and
in specifying generic refactorings [Lämmel 2002].

The work of Lämmel et al. focuses on grammar evolution for refactoring or for
grammar recovery (corrective evolution in which a deviation from a language reference
is removed), but does not address the impact of grammar evolution on corresponding
programs or grammarware. For instance, when a grammar changes, updates are po-
tentially required both to programs written in that grammar and to tools that parse,
generate or otherwise manipulate programs written in that grammar.

Grammar-program co-evolution has been recognised is a challenge for grammarware
[Pizka & Jürgens 2007]. Pizka and Juergens believe that most grammars evolve over
time and that, without tool support, co-evolution is a complex, time-consuming and er-
ror prone task. To this end, the language evolution tool, Lever [Pizka & Jürgens 2007],
defines and uses operators for changing grammars (and programs).

Lever can be used to manage the evolution of grammars and programs, and
also the co-evolution of grammars and programs. By contrast Lämmel’s taxonomy

48 CHAPTER 3. REVIEW OF SOFTWARE EVOLUTION

[Lämmel 2001] can be used only to manage grammar evolution. However, as a conse-
quence, Lever sacrifices the formal preservation properties of Lämmel’s taxonomy.

3.2.4 Evolution of MDE Artefacts

As discussed in Chapter 1, the evolution of development artefacts during MDE inhibits
the productivity and maintainability of model-driven approaches for constructing soft-
ware systems. Mitigating the effects of evolution on MDE is an open research topic, to
which this thesis contributes. This section surveys literature that explores the evolu-
tion of development artefacts used when performing MDE, and Chapter 4 contributes a
more detailed and critical analysis of the tools and techniques described in this section.

Evolution in MDE is complicated, because MDE involves combining several dif-
ferent types of interdependent artefact [Deursen et al. 2007]. More specifically, there
are three types of development artefact specific to MDE (models, metamodels, and
specifications of model management operations), and a change to one type of artefact
can affect other artefacts (possibly of a different type).

Evolution can regarded as either syntactic or semantic [Sprinkle & Karsai 2004].
In the former, no information is known about the intention of the the evolutionary
change. In the latter, a lack of detailed information about the semantics of evolution
can reduce the extent to which change propagation can be automated. For example,
consider the case where a class is deleted from a metamodel. The following questions
typically need to be answered to facilitate evolution:

• Should subtypes of the deleted class also be removed? If not, should their inher-
itance hierarchy be changed? What is the correct type for references that used
to have the type of the deleted class?

• Suppose that the evolving metamodel is the target of a previous model-to-model
transformation. Should the data that was previously transformed to instances of
the deleted class now be transformed to instances of another metamodel class?

• What should happen to instances of the deleted metamodel class? Perhaps they
should be removed too, or perhaps their data should be migrated to new instances
of another class.

Tools that recognise only syntactic evolution tend to lack the information required
for full automation of evolution activities. Furthermore, tools that focus only on syntax
cannot be applied in the face of additive changes [Gruschko et al. 2007]. There are
complexities involved in recording the semantics of software evolution. For example,
the semantics of an impacted artefact need not always be preserved: this is often the
case in corrective evolution.

Notwithstanding the challenges described above, MDE has great potential for man-
aging software evolution and automating software evolution activities, particularly be-
cause of model transformations (Section 2.1.4). Approaches for managing evolution in
other fields, described above, must consider the way in which artefacts are updated

3.2. SOFTWARE EVOLUTION IN PRACTICE 49

when changes are propagated from one artefact to another. Model transformation lan-
guages already fulfil this role in MDE. In addition, model transformations provide a
(limited) form of traceability between MDE artefacts, which can be used in impact
analysis.

This section focuses on the three types of evolution most commonly discussed in
MDE literature. Model refactoring is used to improve the quality of a model without
changing its functional behaviour. Model synchronisation involves updating a model
in response to a change made in another model, usually by executing a model-to-
model transformation. Model-metamodel co-evolution involves updating a model in
response to a change made to a metamodel. This section concludes by reviewing
existing techniques for visualising model-to-model transformation and assessing their
usefulness for understanding evolution in the context of MDE.

Model Refactoring

Refactoring (Section 3.1.3) is a perfective software evolution activity in which the struc-
ture and representation of a system is improved without changing its functional be-
haviour. In a particular domain, some refactoring activities might occur often and, to
increase productivity, could benefit from automation. In a MDE process, reoccurring
patterns of evolution might be expressed as refactoring transformations on models, and
used to document and perhaps automate model refactoring activities.

In model transformation terminology (discussed in Section 2.1.4), a refactoring is
an endogenous, in-place transformation. Refactorings are applied to an artefact (e.g.
model, code) producing a semantically equivalent artefact, and hence an artefact that
conforms to the same rules and structures as the original. Because refactorings are
used to improve the structure of an existing artefact, the refactored artefact typically
replaces the original. Endogenous, in-place transformation languages, suitable for
refactoring have been implemented with a declarative style based on graph theory
[Biermann et al. 2006, Porres 2003] and with a hybrid style that mixes declarative and
imperative constructs [Kolovos et al. 2007].

There are similarities between the structures defined in the MOF metamodelling
language and in object-oriented programming languages. For the latter, refactoring
pattern catalogues exist (such as [Fowler 1999]), which might usefully be applied to
modelling languages. Moha et al. provide a notation for specifying refactorings for
MOF and UML models and Java programs in a generic (metamodel-independent) man-
ner [Moha et al. 2009]. Because MOF, UML and the Java language share some concepts
with the same semantics (such as classes and attributes), Moha et al. show that refac-
torings can be shared among them, but only consider 3 of the 72 object-oriented refac-
torings identified by Fowler. To more thoroughly understand metamodel-independent
refactoring, a larger number of refactorings and languages should be explored.

Eclipse, an extensible development environment, provides a library for building
development tools for textual languages, LTK (language toolkit)4. LTK allows de-
velopers to specify – in Java – refactorings for their language, which can be invoked

4http://www.eclipse.org/articles/Article-LTK/ltk.html

http://www.eclipse.org/articles/Article-LTK/ltk.html

50 CHAPTER 3. REVIEW OF SOFTWARE EVOLUTION

via the language editor. LTK makes no assumptions on the way in which languages
will be structured, and as such refactorings specified with LTK must interact with the
modelling framework directly.

The Epsilon Wizard Language (EWL) [Kolovos et al. 2007] is a model transforma-
tion language tailored for the specification of model refactorings. EWL is part of the
Epsilon platform and re-uses the Epsilon Object Language (EOL), which can query,
update and navigate models represented in a diverse range of modelling technologies
(Section 2.3.2). Consequently, EWL, unlike LTK, abstracts over modelling frameworks.

EMF Refactor [Arendt et al. 2009] has been compared with EWL and the LTK
by specifying a refactoring on a UML model. EMF Refactor, like EWL, contributes
a model transformation language tailored for refactoring. Unlike EWL, EMF Refac-
tor has a visual (rather than textual) syntax, and is based on graph transformation
concepts. Figure 3.2 shows the “Change attribute to association end” refactoring for
the UML metamodel in EMF Refactor. The left-hand side of the refactoring rule, Fig-
ure 3.2(a), matches a Class whose owned attributes contains a Property whose type has
the same name as a Class. The right-hand side of the rule, Figure 3.2(b), introduces a
new Association, whose member end is the Property matched in the left-hand side of
the rule. Due to its visual syntax, EMF Refactor might be usable only with modelling
technologies based on MOF (which has a graphical concrete-syntax based on UML class
diagrams). It is not clear to what extent EMF Refactor can be used with modelling
technologies other than EMF.

Existing model refactoring approaches focus on refactoring a model in isolation,
rather than inter-model refactorings, which affect more than one model at once. The
Eclipse Java Development Tools support refactorings of Java code that update many
source-code artefacts at once: for example, renaming a class in one source file updates
references to that class in other source files. In the context of MDE, support for
inter-model refactoring would facilitate a greater degree of model modularisation and
hence increase scalability, one of the key challenges for MDE [Kolovos et al. 2008a]
(Section 2.5.2).

Model refactoring research remains “in its infancy” [Mens et al. 2007]. Mens et al.
identify formalisms for investigating the feasibility and scalability of model refactoring.
In particular, Mens et al. suggest that meaning-preservation (an objective of refac-
toring, as discussed in Section 3.1.3) can be checked by evaluating OCL constraints,
behavioural models or downstream program code.

Model Synchronisation

Changes made to development artefacts may require the synchronisation of related
artefacts (models, code, documentation). Traceability links (which capture the rela-
tionships of software artefacts) facilitate synchronisation. This section discusses the
way in which change propagation is approached in the literature, which typically in-
volves using an incremental style of transformation. Work that addresses more funda-
mental aspects of model synchronisation, such as capturing trace links and performing
impact analysis are also discussed. Finally, synchronisation between models and text

3.2. SOFTWARE EVOLUTION IN PRACTICE 51

– A new Property with features name, type, upperValue, and lowerValue
(that are set to 1 each).

– A new Association with features name, ownedEnd, and memberEnd.

Again, global variable self is used to get the appropriate features of the selected
Property. Finally, the new association has to be added to the including package.

3.3 Refactoring Implementation using EMF Refactor

A new approach to specify and execute EMF model refactorings is EMF Refactor
[2]. The development of new refactorings in EMF Refactor is based on EMF Tiger
[3] [8], an Eclipse plug-in that performs in-place EMF model transformations [7]
[14]. The model transformation concepts of EMF Tiger are based on algebraic
graph transformation concepts. It provides a graphical editor for the design of
transformation rules and a Java code generator which has been extended by
EMF Refactor.

Model refactorings are designed by ordered sets of rules. Each rule describes
an if-then statement on model changes. If the pattern specified in the left-hand
side (LHS) exists, it is transformed into another pattern defined in the right-hand
side (RHS). Here, several input parameters can be used to specify the LHS pat-
tern in more detail. Additionally, several negative application conditions (NACs)
can be specified which represent patterns that prevent the rule from being ap-
plied. Mappings between objects in LHS and RHS and/or between objects in
LHS and NACs are used to express preservation, deletion, and creation of ob-
jects. A LHS object being mapped to a RHS object is preserved, while an object
without mapping to a RHS object is deleted from the model including all its
possible children. A RHS object without an original LHS object is newly created
and attached to the model.

Fig. 6. EMF Refactor: LHS

To specify the sample refactoring in EMF Refactor we have to define one rule.
The LHS of this rule is shown in Fig. 6. This pattern represents the abstract
syntax which has to be found when starting the refactoring from within the
context menu of a Property named propName whose type is a Class. To ensure
that the selected Property is not already part of an Association an appropriate
NAC is defined, that is similar to the LHS but with an additional Association
instance that references the selected Property as memberEnd (not shown here).

Fig. 7 shows the RHS of the sample refactoring rule. It contains a new
Association object with a new opposite association end (Property). This end

43

(a) Left-hand side matching rule.

Fig. 7. EMF Refactor: RHS

is equipped with multiplicity 1 as lower and upper bound. The newly created
objects are named by additional input variables associationName and srcProp-
erty.

The rule specification ensures that the specified transformation rule is consis-
tent. This means that the application of an appropriate EMF model transforma-
tion always leads to EMF models consistent with typing and containment con-
straints. To do so, you have to check whether the rules perform restricted changes
of containments only. Consistent EMF model transformations behave like alge-
braic graph transformations. Hence, the rich theory of algebraic graph trans-
formation can be applied to show functional behavior and correctness [9]. The
sample refactoring rule is consistent, since all new object nodes (Association,
Property, and two LiteralIntegers) are connected immediately to their ac-
cording container (see Fig. 7).

After rule definition the corresponding refactoring code is generated, includ-
ing a wizard for parameter specification. Here, default values for the parameters
associationName and srcProperty are set.

4 Case Study Results and Evaluation

This section presents the results of the case study. First, all three solutions
are compared along the criteria introduced in Section 2 and finally they are
interpreted.

Complexity - All approaches require a comprehensive understanding of the
UML2 meta model [5]. In LTK, 7 Java classes including 711 LoC were imple-
mented. 416 LoC can be generated and 195 are refactoring specific, in particular
methods checkInitialConditions() and createChange() of class Refactor
ingProcessor. Here, the most challenging task is to exactly implement the cor-
responding ChangeDescription object because of its general and complex API.
In EWL, one single file with 47 LoC was implemented. Automatically generating
generic parts would not lead to a significant reduction. Finally, in EMF Refactor
the whole refactoring code was generated from one rule only, containing 32 ob-

44

(b) Right-hand side production rule.

Figure 3.2: Attribute to association end refactoring in EMF Refactor. Taken from
[Arendt et al. 2009].

and between models and trace links is also considered.

Incremental transformation Many model synchronisation approaches extend or
instrument existing model-to-model transformation languages. Declarative transfor-
mation languages are well-suited to the specification of bi-directional transformations
and incremental transformations, a style of model transformation that facilitates in-
cremental updates of the target model. In fact, much of the model synchronisation
literature focuses on incremental transformation.

Incremental transformation can be achieved in one of two ways. Because model-to-
model transformation is used to generate one or more target models from one or more
source models, when a source model changes, the model-to-model transformation can
be invoked to completely re-generate the target models. This activity has been termed
re-transformation and an alternative, live transformation, in which the transformation
context is persistent has been proposed [Hearnden et al. 2006]. Figure 3.3 illustrates

52 CHAPTER 3. REVIEW OF SOFTWARE EVOLUTION

the differences between re-transformation and live transformation, showing the evolu-
tion of source and target models on the left-hand and right-hand sides, respectively,
and the transformation context in the middle. Live transformation facilitates change
propagation from the source to the target models without completely re-generating the
target models and is therefore a more efficient approach when changes to the source
models affect only part of the target models. Live transformation appears to be a com-
mon way to achieve incremental transformation (e.g. [Ráth et al. 2008, Tratt 2008]).

322 D. Hearnden, M. Lawley, and K. Raymond

The second approach involves preserving the transformation context from the
original transformation, thus obviating a merge strategy to recreate it. A live
transformation does not terminate, rather it continuously maintains a transfor-
mation context such that the effects of changes to source inputs can be readily
identified, and the necessary recomputation performed.

Figure 1 illustrates these two approaches. In Figure 1(a), each successive up-
date to S requires a complete re-transformation t producing new versions of
T . If in-situ updates are desired, then a merge is required. In Figure 1(b), the
transformation t is continuous, starting from an initial transformation from S
producing T . Each successive source update ∆S is mapped directly to a target
update ∆T . The transformation t does not terminate as such, but rather goes
through phases of activity when S is changed.

(a) Re-transformation (b) Live transformation

Fig. 1. Incremental Update Strategies

The advantage of the second approach is that it is far more efficient, especially
for small changes, and is thus more suitable for the rapid update of transforma-
tion outputs. On average, the amount of computation necessary is proportional
to the size of the input changes and the output changes. This is particularly
important for model-driven tools in an incremental development methodology,
where models are constantly evolving and constant synchronisation is neces-
sary for consistency. Another advantage of the second approach is that it is a
more direct solution for finding the changes to outputs required in response to
changes to inputs, as opposed to finding the actual outputs themselves. For a
model evolution tool, this may be an important distinction. Consider the task of
selecting, from a set of possible source changes under consideration, the change
that produces the smallest consequent change on the target models.

The cost of the second approach is that the execution context must be con-
stantly maintained. Unless there are a large number of large transformations
being maintained, this is unlikely to be a significant problem, and section 3.1
discusses how the space cost can be scalably traded for computation time should
the context become too large.

(a) Re-transformation.

322 D. Hearnden, M. Lawley, and K. Raymond

The second approach involves preserving the transformation context from the
original transformation, thus obviating a merge strategy to recreate it. A live
transformation does not terminate, rather it continuously maintains a transfor-
mation context such that the effects of changes to source inputs can be readily
identified, and the necessary recomputation performed.

Figure 1 illustrates these two approaches. In Figure 1(a), each successive up-
date to S requires a complete re-transformation t producing new versions of
T . If in-situ updates are desired, then a merge is required. In Figure 1(b), the
transformation t is continuous, starting from an initial transformation from S
producing T . Each successive source update ∆S is mapped directly to a target
update ∆T . The transformation t does not terminate as such, but rather goes
through phases of activity when S is changed.

(a) Re-transformation (b) Live transformation

Fig. 1. Incremental Update Strategies

The advantage of the second approach is that it is far more efficient, especially
for small changes, and is thus more suitable for the rapid update of transforma-
tion outputs. On average, the amount of computation necessary is proportional
to the size of the input changes and the output changes. This is particularly
important for model-driven tools in an incremental development methodology,
where models are constantly evolving and constant synchronisation is neces-
sary for consistency. Another advantage of the second approach is that it is a
more direct solution for finding the changes to outputs required in response to
changes to inputs, as opposed to finding the actual outputs themselves. For a
model evolution tool, this may be an important distinction. Consider the task of
selecting, from a set of possible source changes under consideration, the change
that produces the smallest consequent change on the target models.

The cost of the second approach is that the execution context must be con-
stantly maintained. Unless there are a large number of large transformations
being maintained, this is unlikely to be a significant problem, and section 3.1
discusses how the space cost can be scalably traded for computation time should
the context become too large.

(b) Live transformation.

Figure 3.3: Approaches to incremental transformation. Taken from
[Hearnden et al. 2006].

Primarily, incremental transformation has been used to address the scalability of
model transformations. For large models, transformation execution time can be signif-
icantly reduced by using incremental transformation [Hearnden et al. 2006]. However,
it has been suggested that scalability should be addressed not only by attempting
to develop techniques for increasing the speed of model transformation, but also by
providing principles, practices and tools for building models that are less monolithic
and more modular [Kolovos et al. 2008a]. For this end, model synchronisation research
should focus on maintainability as well as scalability.

Model synchronisation and incremental transformation can be applied to decouple
models and facilitate modularisation [Fritzsche et al. 2008], although this is not com-
monly discussed in the literature. Fritzche et al. contribute a transformation that
produces, from any UML model, a model for which performance characteristics can
be readily analysed. The relationships between UML and performance model artefacts
are recorded using traceability links. The results of the performance analysis are later
fed back to the UML model using an incremental transformation made possible by the
traceability links. Using this approach, performance engineers can focus primarily on
the performance models, while other engineers are shielded from the low-level detail of
the performance analysis. As such, Fritzsche et al. show that two different modelling
concerns can be separated and decoupled, yet remain cohesive via the application of
model synchronisation.

3.2. SOFTWARE EVOLUTION IN PRACTICE 53

Towards automated model synchronisation Some existing work provides a foun-
dation for automating model synchronisation activities. Theoretical aspects of the
traceability literature were reviewed in Section 3.1.5, and explored the automated ac-
tivities that traceability facilitates, such as impact analysis and change propagation.
This section now analyses the traceability research in the context of MDE and focuses
on the way in which traceability facilitates the automation of model synchronisation
activities.

Aside from live transformation, other techniques for capturing trace links between
models have been reported. To this end, a model-to-model transformation has been
enriched with traceability information using a generic higher-order transformation
[Jouault 2005]. Given a transformation, the generic higher-order transformation adds
transformation rules that produce a traceability model. In contrast to the genericity
of the approach described by Jouault, Drivalos et al. propose domain-specific trace-
ability metamodels for richer traceability link semantics [Drivalos et al. 2008]. Further
research is required to assess the requirements of automated model synchronisation
tools and to select appropriate traceability approaches for their implementation.

Impact analysis is used to reason about the effects of a change to a development
artefact. As well as facilitating change propagation, impact analysis can help to predict
the cost and complexity of changes [Bohner 2002]. Impact analysis requires solutions
to several sub-problems, which include change detection, analysis of the effects of a
change, and effective display of the analysis.

Impact analysis can be performed for UML models by comparing original and
evolved versions of the same model to produce a report of evolved model elements that
have been impacted by the changes to the original model elements [Briand et al. 2003].
To facilitate the impact analysis, Briand et al. identify change patterns that comprise,
among other properties, a trigger (for change detection) and an impact rule (for marking
model elements affected by this change). Figure 3.4 shows a sample impact analysis
pattern for UML sequence diagrams, which is triggered when a message is added, and
marks the sending class, the sending operation and the postcondition of the sending
operation as impacted.

Only event-based approaches, such as the one described by Briand et al., have
been proposed for automating impact analysis [Winkler & Pilgrim 2010]. Because of
the use of patterns for detecting changes and specifying resulting actions, event-based
impact analysis is similar to differencing approaches for schema evolution (for example,
[Lerner 2000], which was discussed in Section 3.2.2). When more than one trigger might
apply, event-based impact analysis approaches must provide mechanisms for selecting
between applicable patterns. The selection policy used by Briand et al. is implicit
(cannot be changed by the user) and does not provide a mechanism for selecting between
applicable patterns.

Finally, model synchronisation tools might apply techniques used in automated syn-
chronisation tools for traditional development environments. For example, the refactor-
ing functionality of the Eclipse Java Development Tools [Fuhrer et al. 2007] propagates
changes between classes using a cache of the workspace to improve performance and
scalability.

54 CHAPTER 3. REVIEW OF SOFTWARE EVOLUTION

!"#$%&'()*+&,! "#$%&'(!)'*+'%,'!-.$&/$0!1!2(('(!3'44$&'!
!"#$%&'!-.&,! ")-523!
!"#$%&.'/+&0&$*,! !"#$%&&'$()*+",-)%.%$!$/01&&2"%%)'"-)0+"/1&&3

4$5,$/2$6+)7-)!8+$93
1..&.'23-4&3*5,3 !"#$%&&'$()*+",-)%.%$!$/01&&2"%%)'"-)0+"/1&&:$11)7$3
604#7*&.'/+&0&$*8,! !"#$%&&;",/#)0+"/&&2"-$&&<%)11<%)11+;+$-3

!"#$%&&;",/#)0+"/&&2"-$&&=>$-)0+"/3
!"#$%&&;",/#)0+"/&&2"-$&&?"102"/#+0+"/3

9&873)4*)-$,'6#'!7$4'!,8$44!9:!;#'!,8$44.:.'/!/98'!;#$;!4'%(4!;#'!$(('(!0'44$&'!.4!.0<$,;'(=!6#'!9<'/$;.9%
;#$;!4'%(4!;#'!$(('(!0'44$&'!.4!.0<$,;'(!$%(!.;4!<94;,9%(.;.9%!.4!$849!.0<$,;'(=!!

:#*)-$#+&,'6#'!4'%(.%&>49+/,'!,8$44!%9?!4'%(4!$!%'?!0'44$&'!$%(!9%'!9:!.;4!9<'/$;.9%4@!$,;+$88A!
4'%(.%&!;#'!$(('(!0'44$&'@!.4!.0<$,;'(=!6#.4!9<'/$;.9%!.4!B%9?%!9/!%9;@!('<'%(.%&!9%!?#';#'/!;#'!
0'44$&'!;/.&&'/.%&!;#'!$(('(!0'44$&'!,9//'4<9%(4!;9!$%!.%C9B'(!9<'/$;.9%=!D:@!:9/!'E$0<8'@!.;!.4!$!
4.&%$8!;#'%!?'!0$A!%9;!B%9?!;#'!9<'/$;.9%@!F+4;!7A!899B.%&!$;!;#'!4'*+'%,'!(.$&/$0=!6#'!.0<$,;'(!
<94;,9%(.;.9%!0$A!%9?!%9;!/'</'4'%;!;#'!'::',;!G?#$;!.4!;/+'!9%!,90<8';.9%H!9:!.;4!9<'/$;.9%=!

:&8;+*)$%'!"#$%&8,'6#'!.0<8'0'%;$;.9%!9:!;#'!7$4'!,8$44!0$A!#$C'!;9!7'!09(.:.'(=!6#'!0';#9(!9:!;#'!
.0<$,;'(!9<'/$;.9%!0$A!#$C'!;9!7'!09(.:.'(=!6#'!.0<$,;'(!<94;,9%(.;.9%!4#9+8(!7'!,#',B'(!;9!
'%4+/'!;#$;!.;!.4!4;.88!C$8.(=!

6$<-=&.':;+&,!"#$%&'(!"8$44!I<'/$;.9%!1!"#$%&'(!J94;,9%(.;.9%!G""I"J4;H!
>!?'/@43&88)-$8,'
context modelChanges::Change def:

let addedMessage:Message = self.changedElement.oclAsType(SequenceDiagramView).
Message->select(m:Message | m.getIDStr()=self.propertyID)

let sendingOperation:Operation = (
if addedMessage.activator.action.oclIsTypeOf(CallAction) then

addedMessage.sender.base.operation->select(o:Operation |
o.equals(addedMessage.activator.callAction.operation))

else
null

endif)
context modelChanges::Change – class

addedMessage.sender.base
context modelChanges::Change – operation

sendingOperation
context modelChanges::Change – postcondition

sendingOperation.postcondition

A)%;3&'B'C'604#7*'1$#+58)8':;+&'/@#04+&'

D%!9+/!'E$0<8'@!;#'!,#$%&'(!</9<'/;A!.4!$%!$(('(!0'44$&'!.%!;#'!SequenceDiagramView=!

6#'%@! ;#'! 9<'/$;.9%! ;#$;! <944.78A! 4'%(4! ;#'! $(('(!0'44$&'! .4! .('%;.:.'(=!K9;'! ;#$;! ;#'!

%$C.&$;.9%!'E</'44.9%! :./4;! .('%;.:.'4! ;#'!7$4'!,8$44!9:! ;#'!,8$44.:.'/! /98'L! ;#$;! 4'%(4! ;#'!

$(('(!0'44$&'4@!$4!?'!?$%;!;9!.('%;.:A!;#'!9<'/$;.9%!$4!('4,/.7'(!.%!;#'!,8$44!(.$&/$0@!

$%(!%9;!;#'!9<'/$;.9%!$4!.;!.4!+4'(!.%!;#'!4'*+'%,'!(.$&/$0M=!6#.4!.('%;.:.,$;.9%!.%C98C'4!

4'8',;.%&!G;#'!select!9<'/$;9/H!;#'!0';#9(!(',8$/$;.9%!.%!;#'!,8$44!;#$;!,9//'4<9%(4!;9!;#'!
!!!
M!D%!;#.4!,$4'@!;#'!%$C.&$;.9%!.4!4.0<8AN!addedMessage.activator.callAction.operation=!24!.%!;#'!
9::.,.$8!O3P!0';$Q09('8@!9<'/$;.9%!.%C9,$;.9%4!$%(!(',8$/$;.9%4!$/'!09('8'(!7A!;#'!4$0'!=>$-)0+"/!
,8$44=!!

RS!

Figure 3.4: Example impact analysis pattern, taken from [Briand et al. 2003].

Synchronisation of models with text and trace links So far, this section has
concentrated on model-to-model synchronisation, which is facilitated by traceability.
Traceability is important for other software evolution activities in a model-driven devel-
opment environment – such as synchronisation between models and text and between
models and trace links – and these activities are now discussed.

While most of the model synchronisation literature focuses on synchronising mod-
els with other models, some papers consider synchronisation between models and other
types of artefact. For synchronising changes in requirements documents with mod-
els, there is abundance of work in the field of requirements engineering, where the
need for traceability was first reported. For synchronising models with generated text
(during code generation, for example), the model-to-text language, Epsilon Gener-
ation Language (EGL) [Rose et al. 2008b], produces traceability links between code
generation templates and generated files. Sections of code can be marked protected,

3.2. SOFTWARE EVOLUTION IN PRACTICE 55

and are not overwritten by subsequent invocations of the code generation template.
The MOFScript model-to-text language, like EGL, provides protected sections. Un-
like EGL, MOFScript stores traceability links in a structured manner, facilitating im-
pact analysis, model coverage (for highlighting which areas of the model contribute
to the generated code) and orphan analysis (for detecting invalid traceability links)
[Olsen & Oldevik 2007].

Trace links can be affected when development artefacts change. Synchronisation
tools rely on accurate trace links and hence the maintenance of trace links is important.
It has been suggested that trace versioning should be used to address the challenges
of trace link maintenance [Winkler & Pilgrim 2010], which include the accidental in-
clusion of unintended dependencies as well as the exclusion of necessary dependencies.
Furthermore, Winkler and von Pilgrim note that, although versioning traces has been
explored in specialised areas (such as hypermedia [Nguyen et al. 2005]), there is no
holistic approach for versioning traces.

Model-metamodel Co-Evolution

A metamodel describes the structures and rules for a family of models. When a model
uses the structures and adheres to the rules defined by a metamodel, the model is said
to conform to the metamodel [Bézivin 2005]. A change to a metamodel might require
changes to models to ensure the preservation of conformance. The process of evolving a
metamodel and its models together to preserve conformance is termed model-metamodel
co-evolution and is subsequently referred to as co-evolution. This section explores
existing approaches to co-evolution, comparing them with work from the closely related
areas of schema and grammar evolution approaches (Sections 3.2.2 and 3.2.3). A more
thorough analysis of co-evolution approaches is conducted in Chapter 4.

Co-evolution theory A co-evolution process involves changing a metamodel and
updating instance models to preserve conformance. Often, the two activities are con-
sidered separately, and the latter is termed migration. In this thesis, the term migration
strategy is used to mean an algorithm that specifies migration. Sprinkle and Karsai
were the first to identify the need for approaches that consider the specific requirements
of co-evolution [Sprinkle & Karsai 2004]. In particular, Sprinkle and Karsai describe
migration as distinct from – and as having unique challenges compared to – the more
general activity of model-to-model transformation. The phrase “evolution, not revolu-
tion” has been used to highlight and emphasise that, during co-evolution, the difference
between source and target metamodels is often small [Sprinkle 2003].

Understanding the situations in which co-evolution must be managed is important
for formulating appropriate requirements for co-evolution tools. Migration is some-
times made unnecessary by evolving a metamodel such that the conformance of models
is not affected (e.g. making only additive changes) [Herrmannsdoerfer et al. 2009a].
Co-evolution can be carried out by more than one person, and in some cases metamodel
developers and model users might not communicate [Cicchetti et al. 2008]. Notwith-

56 CHAPTER 3. REVIEW OF SOFTWARE EVOLUTION

standing these observations, the co-evolution literature rarely reports on the ways in
which co-evolution is managed in practice.

Co-evolution patterns Much of the co-evolution literature suggests that the mi-
gration process should vary depending on the type of metamodel changes made (for
example [Gruschko et al. 2007, Cicchetti et al. 2008]). In particular, the co-evolution
literature identifies two important classifications of metamodel changes that affect the
way in which migration is performed. Depending on the type of metamodel change, mi-
gration might be unnecessary (non-breaking change), can be automated (breaking and
resolvable change) and can be automated only when ambiguity is resolved by a devel-
oper (breaking and non-resolvable change) [Gruschko et al. 2007]. Metamodel changes
can also be regarded as either metamodel-independent (observed in the evolution of
more than one metamodel) or metamodel-specific (observed in the evolution of only
one metamodel) [Herrmannsdoerfer et al. 2008a].

Further research is needed to identify categories of metamodel changes, because
many automated co-evolution approaches are underpinned by the categorisations. Al-
though it has been suggested that a large proportion of metamodel changes re-occur
[Herrmannsdoerfer et al. 2008a], the study in which this claim was made considers only
two metamodels, both taken from the same organisation. Assessing the extent to which
changes re-occur across a larger and broader range of metamodels is an open research
challenge to which this thesis contributes, particularly in Chapter 4.

Co-evolution approaches Several approaches for managing co-evolution have been
proposed, most of which are based on one of the two classifications of metamodel
changes described above.

Re-use of migration knowledge is a primary concern in the work of Herrmannsdörfer,
which is premised on an observation that a large proportion of metamodel changes re-
occurred during the development of two metamodels [Herrmannsdoerfer et al. 2008a].
COPE [Herrmannsdoerfer et al. 2009a] is a co-evolution tool that provides a library of
co-evolutionary operators. Operators are applied to evolve a metamodel and have pre-
defined migration semantics. The application of each operator is recorded, and used to
generate an executable migration strategy. Due to its use of re-usable operators, COPE
shares characteristics with operator-based approaches for schema and grammar evolu-
tion (Sections 3.2.2 and 3.2.3). Consequently, the limitations of operator-based schema
evolution approaches [Lerner 2000] apply to COPE. Balancing expressiveness and un-
derstandability is a key challenge for operator-based approaches because the former
implies a large number of operators while the latter a small number of operators.

Gruschko et al. suggest inferring co-evolution strategies, based on either a differ-
ence model of two versions of the evolving metamodel (direct comparison) or on a
list of changes recorded during the evolution of a metamodel (indirect comparison)
[Gruschko et al. 2007]. To this end, Gruschko et al contribute the co-evolution process
shown in Figure 3.5.

Two inference approaches inspired by the work of Gruschko et al. are now de-

3.2. SOFTWARE EVOLUTION IN PRACTICE 57

Figure 3.5: The co-evolution process described in [Gruschko et al. 2007].

scribed. Both approaches use a co-evolution process similar to the one shown in Figure
3.5, and use higher-order model transformation5 for determining the migration strategy
(the penultimate phase in Figure 3.5). Cicchetti et al. contribute a metamodel for de-
scribing the similarities and differences between two versions of a metamodel, enabling a
model-driven approach to generating model migration strategies [Cicchetti et al. 2008].
Garcés et al. provide a similar metamodel, but use a metamodel matching process
that can be customised by the user, who specifies matching heuristics to form a match-
ing strategy [Garcés et al. 2009]. Otherwise, the co-evolution approaches described by
Cicchetti et al. and Garcés et al. are fully automatic and cannot be guided by the
user. Clearly then, accuracy is important for approaches that compare two metamodel
versions, but Cicchetti et al. and Garcés et al. do not explore the extent to which the
proposed approaches can be applied.

Some co-evolution approaches predate the classifications of metamodel changes de-
scribed above. For instance, an initial catalogue of metamodel changes was the first to
employ higher-order transformation for specifying model migration [Wachsmuth 2007].
However, Wachsmuth considers a small number of metamodel changes occurring in
isolation and, as such, it is not clear whether the approach can be used in the general
case. Sprinkle proposes a visual transformation language for specifying model mi-
gration based on graph transformation theory [Sprinkle 2003], which is less expressive
than imperative or hybrid transformation languages (as discussed in Section 2.1.4).

5A model-to-model transformation that consumes or produces a model-to-model transformation is
higher-order.

58 CHAPTER 3. REVIEW OF SOFTWARE EVOLUTION

Visualisation

To better understand the effects of evolution on development artefacts, visualising
different versions of each artefact may be beneficial. Existing research for comparing
text can be enhanced to perform semantic-differencing of models with a textual concrete
syntax. For models with a visual concrete syntax, another approach is required.

To visualise the way in which model elements are transformed by transforma-
tion chains (the sequential composition of model-to-model transformations), a three-
dimensional editor has been implemented [Pilgrim et al. 2008]. Figure 3.6 depicts a
sample transformation chain visualisation. Each plane represents a model. The links
between each plane illustrates the effects of a model-to-model transformation. The
visualisation style used in the three-dimensional editor could be used to facilitate ex-
ploration of artefact evolution.

Figure 3.6: Visualising a transformation chain. Taken from [Pilgrim et al. 2008].

Summary Fully automated migration remains an open research challenge. Co-
evolution approaches are in their infancy, and key problems need to be addressed.
For example, matching schemas (metamodels) can yield more than one feasible set of
migration strategies [Lerner 2000]. To this end, matching heuristics, which guide the
inference of the model migration strategy – but might affect the predictability of the
co-evolution process – have been proposed [Garcés et al. 2009].

3.3. CHALLENGES TO MANAGING EVOLUTION IN MDE 59

Another open research challenge is in identifying an appropriate notation for de-
scribing migration. Existing tools have used general-purpose programming languages
[Herrmannsdoerfer et al. 2009a] or higher-order model-to-model (M2M) transforma-
tions [Wachsmuth 2007, Cicchetti et al. 2008]. Migration is a specialisation of M2M
transformation [Sprinkle & Karsai 2004], and therefore languages other than M2M
transformation languages might be more suitable for describing migration.

Until co-evolution tools reach maturity, improving MDE modelling frameworks to
better support co-evolution is necessary. For example, EMF (Section 2.3.1) cannot
load models that no longer conform to their metamodel and, hence non-conformant
models cannot be loaded in model editors, and cannot be used with model management
operations.

This section has surveyed the existing work on identifying and managing software
evolution in the context of MDE. In particular, several types of evolutionary change to
modelling artefacts have been identified. Chapter 4 provides a more detailed and critical
analysis of the work described in this section. In particular, Section 4.2 compares
different approaches to managing co-evolution using an example from an MDE project.

3.3 Challenges to Managing Software Evolution in MDE

From the review presented above, several research challenges for managing software
evolution in the context of MDE are synthesised. The challenges summarised in this
section were considered as possible research directions for the thesis research.

Model refactoring challenges The model refactoring literature proposes tools and
techniques for improving the quality of existing models without affecting their func-
tional behaviour. In traditional development environments, inter-artefact refactoring
(in which changes span more than one development artefact) is often automated, but
none of the model refactoring papers discussed in this chapter consider inter-model
refactoring. In general, the refactoring literature covers several concerns, such as identi-
fication, validation and assessment (Section 3.1.3), but the model refactoring literature
considers only the specification and application of refactoring. To better understand
the costs and benefits of model refactoring, further model refactoring research must
also explore the identification, validation and assessment of model refactorings.

Model synchronisation challenges Improved scalability is the primary motiva-
tion of most model synchronisation research, although it has been suggested that model
synchronisation can be used to improve the maintainability of a system via modulari-
sation [Fritzsche et al. 2008]. Consequently, further research should explore the extent
to which model synchronisation can be used to manage evolution. For impact analysis
between models, only event-based approaches have been reported; other approaches
– used successfully to manage evolution in other fields (such as relational databases
and grammarware) – have not been applied to models [Winkler & Pilgrim 2010]. Few

60 CHAPTER 3. REVIEW OF SOFTWARE EVOLUTION

papers consider synchronisation with other artefacts and maintaining trace links and
there is potential for further research in these areas.

Co-evolution challenges To better understand and to more thoroughly investi-
gate model-metamodel co-evolution, further studies of the ways in which metamodels
change are required. The existing empirical study of metamodel evolution in industry
[Herrmannsdoerfer et al. 2008a] focuses only on two metamodels produced in the same
organisation. Challenges for co-evolution reported in other fields have not been ad-
dressed by the model-metamodel co-evolution literature. For example, comparing two
versions of a changed artefact (such as metamodel) can suggest more than one feasi-
ble migration strategy [Lerner 2000]. This challenge must be addressed by approaches
to co-evolution that do not consider the way in which a metamodel has changed (e.g.
[Cicchetti et al. 2008, Garcés et al. 2009]). A range of notations are used for model mi-
gration, including M2M transformation languages and general-purpose programming
languages, which is a challenge for the comparison of co-evolution tools. Finally, con-
temporary MDE modelling frameworks do not facilitate MDE for non-conformant mod-
els, which is problematic at least until co-evolution tools reach maturity.

General challenges for evolution in MDE From the analysis in this chapter,
several research challenges for software evolution in the context of MDE are apparent.
Greater understanding of the situations in which evolution occurs informs the iden-
tification and management of evolution, yet few papers study evolution in real-world
MDE projects. Analysis of existing projects can yield patterns of evolution, providing a
common vocabulary for thinking and communicating about evolution. These patterns
are used as a foundation for notations and tools used to automate some evolution activ-
ities. In addition, recording, analysing and visualising changes made over the long term
to MDE development artefacts and to MDE projects is an area that is not considered
in the literature.

3.4 Chapter Summary

This chapter has reviewed and analysed software evolution literature. Two evolution
activities explored in the remainder of this thesis, impact analysis and change prop-
agation, were introduced. Principles and practices of software evolution (from the
fields of programming languages, relational database systems and grammarware) were
compared and analysed. In particular, software evolution literature from the MDE
community was reviewed and analysed to allow the synthesis of research challenges
and potential directions for the thesis research.

As well as directing the thesis research, the literature review influenced the choice
of research method (Section 1.4.2). Most of the software evolution research discussed
uses a similar method (e.g. [Guerrini et al. 2005, Kramer 2001, Su et al. 2001] for XML
schema evolution and [Banerjee et al. 1987, Edelweiss & Moreira 2005] for relational
database schema evolution): first, identify and categorise evolutionary changes by con-

3.4. CHAPTER SUMMARY 61

sidering all of the ways in which artefacts can change. Next, design a taxonomy of
operators that capture these changes or a matching algorithm that detects the applica-
tion of the changes. Then, implement a tool for applying operators, invoking a matching
algorithm, or trigger change events. Finally, evaluate the tool on existing projects con-
taining examples of evolution. This method assumes that most (if not all) evolutionary
changes can be identified and captured from existing examples of evolution, and does
not consider the ways in which evolution is already managed in existing projects. An
alternative method was used to conduct the thesis research, which was discussed in
Section 1.4.2 and based on the method used by Dig in his work on program refactoring
([Dig 2007]). First, existing projects were analysed to better understand the situations
in which evolution occurs. From this analysis, research requirements were derived, and
structures and processes for managing evolution were implemented. The structures and
processes were evaluated by comparison with related structures and processes, and by
application to real-world MDE projects in which evolution had occurred. This method
was preferred as existing work on evolution in MDE (Section 3.2.4) does not consider
the way in which evolution is managed in existing MDE projects, and, with the excep-
tion of COPE [Herrmannsdoerfer et al. 2009a], can only be used to manage a fixed set
of evolutionary changes.

The review and the research challenges presented in this chapter led to a critical
analysis of techniques for identifying and managing evolution in the context of software
evolution. Chapter 4 presents the critical analysis, which was conducted using examples
from real-world MDE projects.

Chapter 4

MDE and Evolution: Problem
Analysis

The review presented in Chapter 3 highlighted challenges for identifying and managing
evolution in the context of MDE, and noted that little work has explored the way in
which evolution occurs in practice. This chapter explores evolution in the context of
MDE by identifying and analysing examples from software engineering projects de-
veloped in a model-driven manner. The research method, outlined in Sections 1.4.2
and 3.4, comprises three phases: analysis, implementation and evaluation. This chap-
ter describes the first phase, and presents the requirements that were identified for the
implementation and evaluation phases.

Figure 4.1 summarises the work presented in this chapter. Examples of evolution
in MDE projects were located from real-world MDE projects and additional sources
(Section 4.1). The examples of evolution were used to analyse existing co-evolution
techniques, which led to a categorisation and comparison of existing co-evolution ap-
proaches (Section 4.2) and to the identification of modelling framework characteristics
that restrict the way in which co-evolution can be managed (Section 4.2.1). Research
requirements for this thesis were identified from the analysis presented in this chapter
(Section 4.3).

Figure 4.1: Analysis chapter overview.

63

64 CHAPTER 4. MDE AND EVOLUTION: PROBLEM ANALYSIS

4.1 Examples of Evolution from MDE Projects

In Chapter 3, three categories of evolutionary change were identified: model refactoring,
synchronisation and co-evolution. Existing MDE projects were examined for examples
of synchronisation and co-evolution and, due to time constraints, examples of model
refactoring were not considered. The examples were used to provide requirements for
developing structures and processes for evolutionary changes in the context of MDE.
In this section, the requirements used to select example data are described, along with
candidate and selected MDE projects. The section concludes with a discussion of
further examples, which were obtained from joint research – with colleagues in this
department and at the University of Kent – and from related work on the evolution of
object-oriented programs.

4.1.1 Requirements

The suitability of each MDE project for analysing co-evolution and for analysing model
synchronisation was determined using a set of requirements. The requirements were
partitioned into: common requirements (needed to analyse both model synchronisation
and co-evolution), requirements for studying model co-evolution, and requirements
for studying synchronisation. Candidate MDE projects were evaluated against these
requirements, and several were selected for further analysis.

Common requirements

Every project needs to use MDE (requirement R1), as the analysis investigated evo-
lution in the context of MDE. Metamodelling and model transformation are two fun-
damental activities in MDE, as discussed in Section 2.1, and, as such, a project was
deemed as using MDE when evidence of both metamodelling and model transformation
was encountered.

Every project needs to provide historical information of development artefacts (R2),
as the analysis investigated the evolution of development artefacts. For example, several
versions of a project are needed, perhaps stored in a source code management system.

Every project needs to have undergone significant evolutionary change1 (R3). Some
types of evolution have little impact on other artefacts (adding a non-mandatory at-
tribute to a class, for example), are not costly, and, hence, do not require dedicated
structures and processes for their management.

Co-evolution requirements

Every project for the study of co-evolution needs to define a metamodel and some
changes to that metamodel (R4), as co-evolution is the process of evolving a model in
response to metamodel changes. In the projects considered, the metamodel changes

1This is deliberately vague. Further details are given in Section 4.1.2.

4.1. EXAMPLES OF EVOLUTION FROM MDE PROJECTS 65

took the form of either another version of the metamodel, or a history (which recorded
each of the steps used to produce the adapted metamodel)

Every project also needs to provide example instances of models before and after
each migration activity (R5), as the way in which a model should be evolved during co-
evolution is not always apparent from the metamodel changes. When a class is deleted
from a metamodel, for example, models might be evolved such that all instances of
the deleted class are also deleted, or such that all instances of the deleted class have a
different type.

Ideally, every project will include more than one metamodel change in sequence,
so as to represent the way in which the same development artefacts continue to evolve
over time (optional requirement O1).

Synchronisation requirements

Every project for the study of synchronisation needs to define a model-to-model trans-
formation (R6), as model synchronisation is the process of propagating changes between
two models, and typically uses a model-to-model transformation to define the relation-
ship between the two models.

Every project needs to provide examples of the kinds of change (to either source or
target model) that cause inconsistency between the models (R7), so as to investigate the
way in which models have changed in the context of the project (rather than investigate
changes that might not have occurred in practice).

Ideally, every project will include transformation chains (more than one model-to-
model transformation, executed sequentially) (O2), because chains of transformations
are prescribed by the MDA guidelines [Kleppe et al. 2003], and hence model synchroni-
sation tools might be required to propagate changes over a transformation chain (rather
than over a single transformation).

4.1.2 Project Selection

Eight candidate projects were considered for the analysis presented in this chapter.
Table 4.1 shows which of the requirements are met by each of the candidates. Each
candidate is now discussed in turn.

GSN

The Goal Structuring Notation (GSN) [Kelly 1999] is a notation for specifying safety
arguments. Georgios Despotou and Tim Kelly, members of this department’s High
Integrity Systems Engineering group, are constructing a metamodel for Goal Struc-
turing Notation (GSN). The metamodel has been developed incrementally. There is
no accurate and detailed version history for the GSN metamodel (requirement R2).
Suitability for study: Unsuitable.

66 CHAPTER 4. MDE AND EVOLUTION: PROBLEM ANALYSIS

Name
Requirements

Common Co-evolution Synchronisation
R1 R2 R3 R4 R5 O1 R6 R7 O2

GSN x x
OMG x x x
Zoos x x x
MDT x x x x

MODELPLEX x x x x x x
FPTC x x x x x
Xtext x x x x x x x x
GMF x x x x x x x x

Table 4.1: Candidates for study of evolution in existing MDE projects

OMG MDE Projects

The Object Management Group (OMG)2 oversees the development of model-driven
technologies. Andrew Watson, the Vice President and Technical Director of OMG,
oversaw the development of two MDE projects [Watson 2008]. Personal correspondence
with Watson ascertained that source code is available for one of the projects, but there
is no version history. Suitability for study: Unsuitable.

Zoos

A zoo is a collection of metamodels, authored in a common metamodelling language.
Two zoos were considered (the Atlantic Zoo and the AtlantEcore Zoo3), but neither
contained significant metamodel changes. Those changes that were recorded involved
only renaming of meta-classes (trivial to migrate) or additive changes, which do not
affect conformance and therefore require no migration. Suitability for study: Un-
suitable.

MDT

The Eclipse Model Development Tools (MDT)4 provides implementations of industry-
standard metamodels, such as UML2 [OMG 2007a] and OCL [OMG 2006]. Like the
metamodel zoos, the version history for the MDT metamodels contained no significant
changes. Suitability for study: Unsuitable.

2http://www.omg.org
3Both have moved to: http://www.emn.fr/z-info/atlanmod/index.php/Zoos
4http://www.eclipse.org/mdt

http://www.omg.org
http://www.emn.fr/z-info/atlanmod/index.php/Zoos
http://www.eclipse.org/mdt

4.1. EXAMPLES OF EVOLUTION FROM MDE PROJECTS 67

MODELPLEX

Jendrik Johannes, a Research Assistant at TU Dresden, has made available work from
the European project, MODELPLEX5. Johannes’s work involves transforming UML
models to Tool Independent Performance Models (TIPM) for simulation. Although the
TIPM metamodel and the UML-to-TIPM transformation have been changed signifi-
cantly, no significant changes have been made to the models. The TIPM metamodel was
changed such that conformance was not affected. Suitability for study: Unsuitable.

FPTC

Failure Propagation and Transformation Calculus (FPTC) [Wallace 2005], developed
by Malcolm Wallace in this department, provides a means for reasoning about the
failure behaviour of complex systems. In an earlier project, Richard Paige and the
author developed an implementation of FPTC in Eclipse [Paige et al. 2009]. The im-
plementation includes an FPTC metamodel. More recent work with Philippa Conmy,
a Research Associate in this department, has identified a significant flaw in the imple-
mentation, leading to changes to the metamodel. The metamodel changes affected the
conformance of existing FPTC models. Conmy has made available copies of FPTC
models from before and after the changes. Suitability for study: Suitable for study-
ing co-evolution. Unsuitable for studying synchronisation, because, although the tool
includes a transformation, the target models are produced as output from a simulation,
never stored and hence do not become inconsistent with their source model.

Xtext

Xtext6 is used to generate parsers, metamodels and editors for performing text-to-
model transformation, and was introduced in Section 2.1.4. Internally, Xtext defines a
metamodel, which was changed significantly between 2006 and 2008. In several cases,
changes have affected conformance. Xtext provides examples, which have been updated
alongside the metamodel. Xtext uses model-to-model transformation to generate mod-
els, which are later disregarded and hence do not need to be synchronised with source
models. Suitability for study: Suitable for studying co-evolution. Unsuitable for
studying synchronisation.

GMF

The Graphical Modelling Framework (GMF) [Gronback 2009] allows the definition of
graphical concrete syntax for metamodels that have been defined in EMF, and was
introduced in Section 2.3.1. GMF prescribes a model-driven approach: users of GMF
define concrete syntax as a model, which is used to generate a graphical editor. In fact,
five models are used together to define a single editor using GMF.

5Grant number IST 34081, http://www.modelplex.org/
6http://www.eclipse.org/Xtext/

http://www.modelplex.org/
http://www.eclipse.org/Xtext/

68 CHAPTER 4. MDE AND EVOLUTION: PROBLEM ANALYSIS

GMF defines the metamodels for graphical, tooling and mapping definition mod-
els; and for generator models. The metamodels have changed considerably during the
development of GMF. Some changes have affected the conformance of existing GMF
models. Presently, migration is encoded in Java. Gronback has stated7 that the mi-
gration code is being ported to QVT (a model-to-model transformation language) as
the Java code is difficult to maintain.

GMF meets almost all of the requirements for the study. Co-evolution data is
available, including migration strategies. The GMF source code repository does not
contain examples of the kinds of change that cause inconsistency between the models
(R7). Suitability for study: Suitable for studying co-evolution. Unsuitable for
studying synchronisation.

Summary of selection

Of the eight projects considered, three (FPTC, Xtext and GMF) met all of the require-
ments for studying co-evolution. No project met all of the requirements for studying
synchronisation, and, consequently, data was sought from other sources as discussed
below. FPTC and Xtext were used to perform the analysis described in the remain-
der of this chapter, along with examples taken from other sources. GMF provides
the most comprehensive examples of co-evolution, as it includes several metamodels
that have undergone two major and several minor revisions, several exemplar models
that have been migrated, and reference migration strategies (written in Java). Rather
than use GMF for analysis, it was instead reserved for evaluation of the thesis research
(Chapter 6).

4.1.3 Other examples

Since few existing MDE projects met all of the requirements for studying evolution,
additional data was sought from alternative sources. Examples were located from
object-oriented systems – which have some similarities to systems developed using
MDE – and via collaboration with colleagues on two projects, both of which involved
developing a system using MDE.

Examples of evolution from object-oriented software

Object-oriented programming and metamodelling have some commonalities. In object-
oriented programming, software is constructed by developing groups of related objects.
Every object is an instance of (at least) one class. A class is a description of character-
istics, which is shared by each of the class’s instances (objects). A similar relationship
exists between models and metamodels: metamodels comprise meta-classes, which de-
scribe the characteristics shared by each of the meta-class’s instances (elements of a
model). Together, model elements are used to describe one perspective (model) of a sys-
tem. This similarity between object-oriented programming and metamodelling implied

7Private communication, 2008.

4.1. EXAMPLES OF EVOLUTION FROM MDE PROJECTS 69

that the evolution of object-oriented systems may be similar to evolution occurring in
MDE.

Refactoring is the process of improving the structure of existing code while main-
taining its external behaviour. When used as a noun, a refactoring is one such im-
provement. As discussed in Chapter 3, refactoring of object-oriented systems has been
widely studied, perhaps most notably in [Fowler 1999], which provides a catalogue of
refactorings for object-oriented systems. For each refactoring, Fowler gives advice and
instructions for its application.

To explore their relevance to MDE, Fowler’s refactorings have been applied to meta-
models. Some have been found to be relevant to metamodels, and could potential occur
during MDE. Many have been found to be irrelevant, belonging to one of the following
three categories:

1. Operational refactorings focus on restructuring behaviour (method bodies).
Most modelling frameworks do not support the specification of behaviour in mod-
els.

2. Navigational refactorings affect navigational constructs are specified, such as
changing between bi- and uni-directional associations. These changes are often
non-breaking in modelling frameworks, which typically infer values for the inverse
of a reference when required.

3. Domain-specific refactorings manage issues not relevant to metamodels, such
as casting, defensive return values, and assertions.

The object-oriented refactorings that can be applied to metamodels provide ex-
amples of metamodel evolution and, in some cases, have the potential to affect con-
formance. For each refactoring that affected conformance, a migration strategy was
deduced by the author using Fowler’s description of each refactoring. An example of
this process is now presented.

Figure 4.2 illustrates a refactoring that changes a reference object to a value object
[Fowler 1999][pg183]. Value objects are immutable, and cannot be shared (i.e. any
two objects cannot refer to the same value object). By contrast, reference objects are
mutable, and can be shared. Figure 4.2 indicates that applying the refactoring restricts
the multiplicity of the association (on the Order end) to 1 (implied by the composition);
prior to the refactoring the multiplicity is many-valued.

Before applying the refactoring, each customer may be associated with more than
one order. After the refactoring, each customer should be associated with only one
order. Fowler indicates that every customer associated with more than one order should
be duplicated, such that one customer object exists for each order. Therefore, the
migration strategy in Listing 4.1 is deduced. Using this process, migration strategies
were deduced for each of the refactorings that were applicable to metamodels and
affected conformance.

1 for every customer, c

2 for every order, o, associated with c

70 CHAPTER 4. MDE AND EVOLUTION: PROBLEM ANALYSIS

Figure 4.2: Refactoring a reference to a value. Taken from [Fowler 1999, pg183].

3 create a new customer, d

4 copy the values of c’s attributes into d

5 next o

6

7 delete c

8 next c

Listing 4.1: Pseudo code migration strategy for the refactoring in Figure 4.2

The examples of metamodel evolution based on Fowler’s refactorings provided addi-
tional data for deriving research requirements. Some parts of the metamodel evolutions
from existing MDE projects were later found to be equivalent to Fowler’s refactorings,
which, to some extent, validates the above claim that evolution from object-oriented
systems can be used to reason about metamodel evolution.

However, object-oriented refactorings are used to improve the maintainability of
existing systems. In other words, they represent only one of the three common reasons
for evolutionary change (Section 3.1.1). The two other types of change – for addressing
new requirements and facilitating interoperability with other systems – are equally
relevant for deriving research requirements, and so object-oriented refactorings alone
are not sufficient for reasoning about metamodel evolution.

Research collaborations

As well as the example data located from object-oriented systems, collaboration on
projects using MDE with two colleagues provided several examples of evolution. A
graphical editor for process-oriented programs was developed with Adam Sampson,
then a Research Associate at the University of Kent, and is described in Appendix B.
Additionally, the feasibility of a tool for generating story-worlds for interactive nar-
ratives was investigated with Heather Barber, then a postdoctoral researcher in this
department.

In both cases, a metamodel was constructed for describing concepts in the do-
main. The metamodels were developed incrementally and changed over time. The

4.2. AN ANALYSIS OF EXISTING CO-EVOLUTION TECHNIQUES 71

collaborations with Sampson and Barber did not involve constructing model-to-model
transformations, but did provide data suitable for a study of co-evolution.

The majority of the changes made in both of these projects relate to changing re-
quirements. In each iteration, existing requirements were refined and new requirements
discovered. Neither project required changes to support architectural restructuring. In
addition, the work undertaken with Sampson included some changes to adapt the sys-
tem for use with a different technology than originally anticipated. That is to say, the
changes observed represented two of the three common reasons for evolutionary change
(Section 3.1.1).

4.1.4 Summary

This section has described the identification of examples for analysing the way in which
evolution is identified and managed in the context of MDE. Example data was sought
from existing MDE projects, a related domain (refactoring of object-oriented systems)
and collaborative work on MDE projects (with Sampson and Barber). Eight MDE
projects were located, three of which satisfied the requirements for a study of co-
evolutionary changes in the context of model-driven engineering. One of the three
projects, GMF, was reserved for the evaluation presented in Chapter 6. Refactorings of
object-oriented programming supplemented the data available from the existing MDE
projects. Collaboration with Sampson and Barber yielded further examples of co-
evolution.

The lack of examples of model synchronisation might indicate that model synchro-
nisation is not an important evolutionary activity for MDE. An alternative explanation
is that, in 2008, many projects were beginning to adopt MDE principles, but had not
transitioned to a fully model-driven style of development. It has been suggested that
MDE is adopted in an incremental manner and that model transformations are spec-
ified only after models are first used in an ad-hoc manner and MDE is applied to
automate simple tasks [Rios et al. 2006]. Regular, empirical assessment is necessary to
investigate the adoption of MDE and the need to support evolutionary activities, such
as model synchronisation. Due to the lack of examples of model synchronisation, the
remainder of the thesis focuses on model-metamodel co-evolution.

4.2 An Analysis of Existing Co-Evolution Techniques

The examples of co-evolution identified in the Section 4.1 were analysed to identify
and compare existing techniques for managing co-evolution. This section discusses the
results of analysing the examples; namely a deeper understanding of modelling frame-
work characteristics that affect the management of co-evolution (Section 4.2.1), and
a categorisation of existing techniques for managing co-evolution (Sections 4.2.2 and
4.2.3). The work presented here was published in [Rose et al. 2009b, Rose et al. 2009a].

72 CHAPTER 4. MDE AND EVOLUTION: PROBLEM ANALYSIS

4.2.1 Modelling Framework Characteristics

The co-evolution examples identified in Section 4.1 were examined to understand the
ways in which co-evolution is managed in practice. The examination of co-evolution
examples highlighted characteristics of MDE development environments that affect the
way in which co-evolution can be managed. The characteristics are now described.

Model-Metamodel Separation

In MDE development environments, models and metamodels are separated. Metamod-
els are developed and distributed to users. Metamodels are installed, configured and
combined to form a customised MDE development environment. Metamodel developers
have no programmatic access to instance models, which reside in a different workspace
and potentially on a different machine. Consequently, metamodel evolution occurs in-
dependently to model migration. Figure 4.3 shows the activities typically involved in
co-evolution. First, the metamodel developer evolves the metamodel and may create a
migration strategy. Subsequently, the metamodel users discover conformance problems
after installing the new version of the metamodel, and migrate their models.

Metamodel developer Metamodel user

Evolve metamodel

Create migration strategy

Install new metamodel version

Find conformance problems

Migrate models

Figure 4.3: Co-evolution activities

Due to model and metamodel separation, co-evolution is either developer-driven
(the metamodel developer devises an executable migration strategy, which is distributed
to the metamodel user with the evolved metamodel) or user-driven (the metamodel
developer provides no migration strategy). In either case, model migration occurs on
the machine of the metamodel user, after and independent of metamodel evolution.

Implicit Conformance

MDE development environments implicitly enforce conformance. A model is bound
to its metamodel, typically by constructing a representation in the underlying pro-
gramming language for each model element and data value. Frequently, binding is

4.2. AN ANALYSIS OF EXISTING CO-EVOLUTION TECHNIQUES 73

strongly-typed: each metamodel type is mapped to a corresponding type in the under-
lying programming language using mappings defined by the metamodel. Consequently,
modelling frameworks do not permit changes to a model that would cause it to no
longer conform to its metamodel. Loading a model that does not conform to its meta-
model causes an error. In short, MDE modelling frameworks cannot be used to manage
models that do not conform to their metamodel.

Because modelling frameworks can only load models that conform to their meta-
model, user-driven co-evolution is always a manual process, in which models are mi-
grated without using the modelling framework. Typically then, the metamodel user
can only perform migration by editing the model directly, normally manipulating its
underlying representation (e.g. XMI). Model editors and model management opera-
tions, which are ordinarily integral to MDE, cannot be used to manage models that do
not conform to their metamodel and hence, cannot be used during model migration.

A further consequence of implicitly enforced conformance is that modelling tools
must produce models that conform to their metamodel, and therefore, model migration
cannot be decomposed. Consequently, model migration cannot be performed by com-
bining co-evolution techniques, because intermediate steps must produce conformant
models.

4.2.2 User-Driven Co-Evolution

Examples of co-evolution were analysed to discover and compare existing techniques for
managing co-evolution. As discussed above, the separation of models and metamodels
leads to two processes for co-evolution: developer-driven and user-driven. Analysis
of the co-evolution examples identified in Section 4.1 highlighted several instances of
user-driven co-evolution. Projects conducted in collaboration with Barber and with
Sampson involved user-driven co-evolution, and all of the co-evolution examples taken
from the Xtext project were managed in a user-driven manner. This section demon-
strates user-driven co-evolution using a scenario similar to one observed during the
collaboration with Barber.

In user-driven co-evolution, the metamodel user performs migration by loading their
models to test conformance, and then reconciling conformance problems by updating
non-conformant models. The metamodel developer might guide migration by providing
a migration strategy to the metamodel user. Crucially, however, the migration strategy
is not executable (e.g. it is written in prose). This is the key distinction between
user-driven and developer-driven co-evolution. Only in the latter does the metamodel
developer provided an executable model migration strategy.

In some cases, the metamodel user will not be provided with any migration strategy
(executable or otherwise) from the metamodel developer. To perform migration, the
metamodel user must determine which (if any) model elements no longer conform to
the evolved metamodel, and then decide how best to change non-conformant elements
to re-establish conformance.

74 CHAPTER 4. MDE AND EVOLUTION: PROBLEM ANALYSIS

Attempt to load
model with

graphical editor

Does EMF report any
conformance problems?

No

Yes
Edit XMI of

non-conformant
model

Figure 4.4: User-driven co-evolution with EMF

User-driven co-evolution in EMF

EMF (Section 2.3.1) provides structures and processes for loading, storing and editing
models and metamodels. When a model no longer conforms to its metamodel, however,
the model cannot be loaded, cannot be used with EMF’s model editors, and cannot
be used with model management operations. Therefore, model migration must be
performed manually, typically by editing the underlying storage representation of the
model.

A typical workflow for performing user-driven co-evolution with EMF is shown in
Figure 4.4. (The workflow in Figure 4.4 assumes a graphical model editor, such as those
generated by GMF, but any model editor that is built on EMF will exhibit the same
behaviour). When the user attempts to load a model, EMF automatically checks the
conformance of the model with respect to its metamodel. When the model does not
conform to its metamodel, EMF reports (some of the) conformance errors, loading fails
and the model is not displayed in the graphical editor. To re-establish conformance, the
user must edit by hand the underlying storage representation of the model, XMI. After
saving the reconciled XMI to disk, the user attempts to load the model in the graphical
editor again. If the user makes a mistake in reconciling the XMI, loading will fail again
and further conformance errors will be reported. Even if the user makes no mistakes in
reconciling the XMI, further conformance errors might be reported because EMF uses
a multi-pass XMI parser and cannot report all categories of conformance problem in
one pass of the XMI. If further conformance problems are reported, the user continues
to reconcile the XMI by hand. Otherwise, migration is complete and the model is
displayed in the graphical editor.

Scenario The following scenario demonstrates user-driven co-evolution. Mark
is developing a metamodel. Members of his team, including Heather, install Mark’s

4.2. AN ANALYSIS OF EXISTING CO-EVOLUTION TECHNIQUES 75

metamodel and begin constructing models. Mark later identifies new requirements,
changes the metamodel, builds a new version of the metamodel, and distributes it
to his colleagues.

After several iterations of metamodel updates, Heather tries to load one of her
older models, constructed using an earlier version of Mark’s metamodel. When
loading the older model, the modelling framework reports an error indicating that
the model no longer conforms to its metamodel. To load the older model, Heather
must reinstall the version of the metamodel to which the older model conforms.
But even then, the modelling framework will bind the older model to the old version
of the metamodel, and not to the evolved metamodel.

Employing user-driven co-evolution, Heather must trace and repair the load-
ing error directly in the model as it is stored on disk. Model storage formats
have typically been optimised to either reduce the size of models on disk or to
improve the speed of random access to model elements. Therefore, human usabil-
ity is not a key requirement for model storage formats. XMI, for example, is a
standard model storage format and is regarded as sub-optimal for use by humans
[OMG 2004]. Consequently, using a model storage format to perform model migra-
tion can be error-prone and tedious. When directly editing the underlying format
of a model, reconciling conformance is often a slow and iterative process. With
EMF [Steinberg et al. 2008], for example, user-driven co-evolution is an iterative
process as shown in Figure 4.4. When models are persisted in a database (perhaps
for scalability reasons), a binary rather than a textual storage representation is
used, further impeding user-driven co-evolution. For example, models stored using
the Connected Data Objects Model Repository (CDO)8 are persisted in a rela-
tional database, which must be manipulated when non-conformant models are to
be edited.

Challenges

The scenario (in the box above) highlights the two most significant challenges faced
when performing user-driven co-evolution. Firstly, the underlying model representation
is unlikely to be optimised for human usability and hence user-driven co-evolution is
error-prone and tedious. Secondly, although conformance can be affected when a new
version of a metamodel is installed, conformance problems are not reported to the
user as part of the installation process. These challenges are further elaborated in the
Section 4.3, which identifies research requirements.

It is worth noting that the above scenario describes a metamodel with only one
user. Some metamodels – such as UML, Ecore, and MOF – have many more users, and
user-driven co-evolution would require repeated manual effort from each user. In spite
of this, UML, for example, does not provide a strategy for migrating between versions

8http://www.eclipse.org/cdo/

http://www.eclipse.org/cdo/

76 CHAPTER 4. MDE AND EVOLUTION: PROBLEM ANALYSIS

of the specification, and users must infer the migration semantics from changes to the
specification.

4.2.3 Developer-Driven Co-Evolution Approaches

In developer-driven co-evolution, the metamodel developer provides an executable mi-
gration strategy along with the evolved metamodel. Model migration might be sched-
uled automatically by the modelling framework (for example when a model is loaded)
or by the metamodel user.

As noted in Section 4.2.2, co-evolution research focuses on developer-driven rather
than user-driven co-evolution. Several developer-driven co-evolution approaches were
reviewed in Section 3.2.4. To compare and categorise existing developer-driven co-
evolution approaches, the approaches have been applied by the author to the co-
evolution examples identified in Section 4.1. From this analysis and from the literature
review conducted in Section 3.2.4, three categories of developer-driven co-evolution
approach were identified: manual specification, operator-based and inference. The cat-
egorisation has been published in [Rose et al. 2009b]. Each category is now discussed.

Manual Specification

In manual specification, the migration strategy is encoded manually by the metamodel
developer, typically using a general purpose programming language (e.g. Java) or
one of the model-to-model transformation languages described in Section 2.1.4. The
migration strategy can manipulate instances of the metamodel in any way permitted by
the modelling framework. Manual specification approaches have been used to manage
migration in GMF (Section 2.3.1) and in the Eclipse MDT UML2 project, which were
outlined in Section 4.1. Compared to operator-based and inference techniques (below),
manual specification permits the metamodel developer the most control over model
migration.

However, manual specification generally requires the most effort on the part of the
metamodel developer for two reasons. Firstly, as well as implementing the migration
strategy, the metamodel developer must also produce code for executing the migration
strategy. Typically, this involves integration of the migration strategy with the mod-
elling framework (to load and store models) and possibly with development tools (to
provide a user interface). Secondly, frequently occurring model migration patterns –
such as copying a model element from original to migrated model – are not captured
by existing general purpose and model-to-model transformation languages, and so each
metamodel developer has to codify migration patterns in their chosen language.

Operator-based

In operator-based co-evolution techniques, a library of co-evolutionary operators is pro-
vided. Each co-evolutionary operator specifies a metamodel evolution along with a
corresponding model migration strategy. For example, the “Make Reference Contain-
ment” operator might evolve the metamodel such that a non-containment reference be-

4.2. AN ANALYSIS OF EXISTING CO-EVOLUTION TECHNIQUES 77

comes a containment reference and migrate models such that the values of the evolved
reference are replaced by copies. By composing co-evolutionary operators, metamodel
evolution can be performed and a migration strategy can be generated without writ-
ing any code. Operator-based approaches for schema evolution and co-evolution were
described in Sections 3.2.2 and 3.2.4. In particular, a library of co-evolutionary op-
erators for MOF metamodels has been described in [Wachsmuth 2007], and COPE
[Herrmannsdoerfer et al. 2009a] is an operator-based co-evolution approach for EMF.

The efficacy of an operator-based co-evolution approach depends heavily on the
richness of its library of co-evolutionary operators. When no operator describes the
required co-evolution pattern, the metamodel developer must use another approach
for performing model migration. For instance, COPE allows migration to be specified
manually with a general purpose programming language when no co-evolutionary op-
erator is appropriate. (Consequently, custom migration strategies in COPE suffer one
of the same limitations as manual specification approaches: model migration patterns
are not captured in the language used to specify migration strategies).

As using co-evolutionary operators to express migration require the metamodel
developer to write no code, it seems that operator-based co-evolution approaches should
seek to provide a large library of co-evolutionary operators, so that at least one operator
is appropriate for every co-evolution pattern that a metamodel developer may wish to
apply. However, as discussed in Section 3.2.2, a large library of operators increases
the complexity of specifying migration. To demonstrate, Lerner considers moving a
feature from one type to another. This could be expressed by sequential application
of two operators called, for example, delete feature and add feature. However,
the semantics of a delete feature operator are likely to dictate that the values
of that feature will be removed during migration and hence, delete feature is
unsuitable when specifying that a feature has been moved. To solve this problem, a
move feature operator could be introduced, but then the metamodel developer must
understand the difference between the two ways in which moving a type can be achieved,
and carefully select the correct one. Lerner provides other examples which further
elucidate this issue (such as introducing a new type by splitting an existing type). As
the size of the library of co-evolutionary operators grows, so does the complexity of
selecting appropriate operators and, hence, the complexity of performing metamodel
evolution.

Clear communication of the effects of each co-evolutionary operator (on both the
metamodel and its instance models) can improve the navigability of large libraries of
co-evolutionary operators. COPE, for example, provides a name, description, list of
parameters and applicability constraints for each co-evolutionary operator. An example
is shown in Figure 4.5. To choose between operators, users can read descriptions (such
as the one shown below) examine the source code of the operator, or try executing the
operator (an undo command is provided).

Finding a balance between richness and navigability is a key challenge in defin-
ing libraries of co-evolutionary operators for operation-based co-evolution approaches.
Analogously, a known challenge in the design of software interfaces is the trade-off
between a rich and a concise interface [Bloch 2005].

78 CHAPTER 4. MDE AND EVOLUTION: PROBLEM ANALYSIS

Make Reference Containment
In the metamodel, a reference is made [into a] containment. In the model, its values
are replaced by copies.
Parameters:

• reference: The reference

Constraints:

• The reference must not already be containment.

Figure 4.5: Make Reference Containment operation, taken from COPE
[Herrmannsdoerfer et al. 2009a].

To perform metamodel evolution using co-evolutionary operators, the library of co-
evolutionary operators must be integrated with tools for editing metamodels. COPE,
for instance, provides integration with the EMF tree-based metamodel editor. However,
some developers edit their metamodels using a textual syntax, such as Emfatic9. In
general, freeform text editing is less restrictive than tree-based editing (because in the
latter, the metamodel is always structurally sound whereas in the former, the text
does not always have to compile). Consequently, it is not clear whether operator-based
co-evolution can be used with all categories of metamodel editing tool.

Inference

In inference approaches, a migration strategy is derived from the evolved metamodel
and the metamodel history. Inference approaches can be further categorised according
to the type of metamodel history used. Differencing approaches compare and match
the original and evolved metamodels, while change recording approaches use a record
of primitive changes made to the original metamodel to produce the evolved meta-
model. The analysis of the evolved metamodel and the metamodel history yields a
difference model [Cicchetti et al. 2008], a representation of the changes between orig-
inal and evolved metamodel. The difference model is used to infer a migration strat-
egy, typically by using a higher-order model-to-model transformation10 to produce
a model-to-model transformation from the difference model. Cicchetti et al. and
Garcés et al. describe differencing-based inference approaches [Cicchetti et al. 2008,
Garcés et al. 2009]. There exist no pure change recording approaches, although COPE
[Herrmannsdoerfer et al. 2009a] uses change recording for the specification of custom

9http://www.alphaworks.ibm.com/tech/emfatic
10A model-to-model transformation that consumes or produces a model-to-model transformation is

termed a higher-order model transformation.

http://www.alphaworks.ibm.com/tech/emfatic

4.2. AN ANALYSIS OF EXISTING CO-EVOLUTION TECHNIQUES 79

model migration strategies, and Méndez et al. suggest that a change recording approach
might be used to manage metamodel-transformation co-evolution [Méndez et al. 2010].

Compared to manual specification and operator-based co-evolution approaches, in-
ference approaches require the least amount of effort from the metamodel developer
who needs only to evolve the metamodel and provide a metamodel history. However,
for some types of metamodel change, there is more than one feasible model migration
strategy. For example, when a metaclass is deleted, one feasible migration strategy is to
delete all instances of the deleted metaclass. Alternatively, the type of each instance of
the deleted metaclass could be changed to another metaclass that specifies equivalent
structural features.

To select the most appropriate migration strategy from all feasible alternatives,
an inference approach often requires guidance, because the metamodel changes alone
do not provide enough information to correctly distinguish between feasible migration
strategies. Existing inference approaches use heuristics to determine the most appro-
priate migration strategy. These heuristics sometimes lead to the selection of the wrong
migration strategy.

Because inference approaches use heuristics to select a migration strategy, it can
sometimes be difficult to reason about which migration strategy will be selected. For
domains where predictability, completeness and correctness are a primary concern (e.g.
safety critical or security critical systems, or systems that must undergo certification
with respect to a relevant standard), such approaches are unsuitable, and deterministic
approaches that can be demonstrated to produce correct, predictable results will be
required.

The two types of inference approach – differencing and change recording – are now
compared, using an example of co-evolution, introduced below.

Example The following example was observed during the development of the Epsilon
FPTC tool [Paige et al. 2009] (which was summarised in Section 4.1). The source code
is available from EpsilonLabs11. Figure 4.6(a) illustrates the original metamodel in
which a System comprises any number of Blocks. A Block has a name, and any
number of successor Blocks; predecessors is the inverse of the successors
reference.

Further analysis of the domain revealed that extra information about the rela-
tionship between Blocks was to be captured. The evolved metamodel is shown in
Figure 4.6(b). The Connection class is introduced to capture the extra information
via its literalsText attribute. Blocks are no longer related directly to Blocks,
instead they are related via an instance of the Connection class. The incomingCo-
nnections and outgoingConnections references of Block are used to relate
Blocks to each other via an instance of Connection.

A model that conforms to the original metamodel (Figure 4.6(a)) might not conform
to the evolved metamodel (Figure 4.6(b)). Below is a description of the strategy used

11http://sourceforge.net/projects/epsilonlabs/

http://sourceforge.net/projects/epsilonlabs/

80 CHAPTER 4. MDE AND EVOLUTION: PROBLEM ANALYSIS

(a) Original metamodel, prior to evolution

(b) Evolved metamodel with Connection metaclass

Figure 4.6: Metamodel evolution in the Epsilon FPTC tool. Taken from
[Rose et al. 2009b].

by the Epsilon FPTC tool to migrate a model from original to evolved metamodel and
is taken from [Rose et al. 2009b]:

1. For every instance, b, of Block:

For every successor, s, of b:

Create a new instance, c, of Connection.

Set b as the source of c.

Set s as the target of c.

Add c to the connections of the System containing b.

2. And nothing else changes.

Using the example described above, differencing and change recording inference
approaches are now compared.

Change recording In change recording approaches, metamodel evolution is mon-
itored by a tool, which records a list of primitive changes (e.g. Add class named
Connection, Change the type of feature successors from Block to Connection).
The record of changes may be reduced to a normal form to remove redundancy, but
doing so can erase useful information. In change recording, some types of metamodel

4.2. AN ANALYSIS OF EXISTING CO-EVOLUTION TECHNIQUES 81

evolution can be more easily recognised than with differencing. With change record-
ing, renaming can be distinguished from a deletion followed by an addition. With
differencing, this distinction is not possible.

In general, more than one combination of primitive changes can be used to achieve
the same metamodel evolution. However, when recording changes, the way in which a
metamodel is evolved affects the inference of migration strategy. In the example pre-
sented above, the outgoingConnections reference (shown in Figure 4.6(b)) could
have been produced by changing the name and type of the successors reference
(shown in Figure 4.6(a)). In this case, the record of changes would indicate that the
new outgoingConnections reference is an evolution of the successors reference,
and consequently an inferred migration strategy would be likely to migrate values of
successors to values of outgoingConnections. Alternatively, the metamodel
developer may have elected to delete the successors reference and then create the
outgoingConnections reference afresh. In this record of changes, it is less obvious
that the migration strategy should attempt to migrate values of successors to val-
ues of outgoingConnections. Clearly then, change recording approaches require
the metamodel developer to consider the way in which their metamodel changes will
be interpreted.

Change recording approaches require facilities for monitoring metamodel changes
from the metamodel editing tool, and from the underlying modelling framework. As
with operation-based co-evolution, it is not clear to what extent change recording can
be supported when a textual syntax is used to evolve a metamodel. A further challenge
is that the granularity of the metamodel changes that can be monitored influences the
inference of the migration strategy, but this granularity is likely to be controlled by
and specific to the implementation of the metamodelling language. Normal forms to
which a record of changes can be reduced have been proposed to address this issue
[Cicchetti 2008].

Differencing In differencing approaches, the original and evolved metamodels are
compared to produce the difference model. Unlike change recording, metamodel evo-
lution may be performed using any metamodel editor; there is no need to monitor the
primitive changes made to perform the metamodel evolution. However, as discussed
above, not recording the primitive changes can cause some categories of change to
become indistinguishable, such as renaming versus a deletion followed by an addition.

To illustrate this problem further, consider again the metamodel evolution described
above. A comparison of the original (Figure 4.6(a)) and evolved (Figure 4.6(b)) meta-
models shows that the references named successors and predecessors no longer
exist on Block. However, two other references, named outgoingConnections and
incomingConnections, are now present on Block. A differencing approach might
deduce (correctly, in this case) that the two new references are evolutions of the old
references. However, no differencing approach is able to determine which mapping is
correct from the following two possibilities:

• successors evolved to incomingConnections; predecessors evolved to

82 CHAPTER 4. MDE AND EVOLUTION: PROBLEM ANALYSIS

outgoingConnections.

• successors evolved to outgoingConnections; predecessors evolved to
incomingConnections.

The choice between these two possibilities can only made by the metamodel de-
veloper, who knows that successors (predecessors) is semantically equivalent
to outgoingConnections (incomingConnections). As shown by this example,
fully automatic differencing approaches cannot always infer a migration strategy that
will capture the semantics desired by the metamodel developer.

4.2.4 Summary

Analysis of existing co-evolution techniques has led to a deeper understanding of mod-
elling frameworks characteristics that are relevant for co-evolution, to the identifica-
tion of user-driven co-evolution and to a categorisation of developer-driven co-evolution
techniques.

Modelling frameworks separate models and metamodels and, hence, co-evolution is
a two-step process. To facilitate model migration, metamodel developers may codify
an executable migration strategy and distribute it along with the evolved metamodel
(developer-driven co-evolution). When no executable migration strategy is provided,
models must be migrated by hand (user-driven co-evolution). Because modelling frame-
works implicitly enforce conformance, user-driven co-evolution is performed by editing
the underlying storage representation of models, which is error-prone and tedious.

User-driven co-evolution, which has not been explored in the literature, was ob-
served in several of the co-evolution examples discussed in Section 4.1. In situations
where the metamodel developer has not specified or cannot specify an executable mi-
gration strategy, user-driven co-evolution is required.

Existing techniques for performing developer-driven co-evolution have been com-
pared and categorised. The categorisation highlights a trade-off between flexibility and
effort for the metamodel developer when choosing between categories of approach, as
shown in Figure 4.7.

Manual specification affords the metamodel developer more flexibility in the spec-
ification of the migration strategy, but, because languages that do not capture re-
occurring model migration patterns are typically used, may require more effort. By
contrast, inference approaches derive a migration strategy from a metamodel history
and hence require less effort from the metamodel developer. However, an inference ap-
proach affords the metamodel developer less flexibility, and may restrict the metamodel
evolution process because, for example, the order of metamodel changes affects the in-
ference of a migration strategy. Operator-based approaches occupy the middle-ground:
by restricting the way in which metamodel evolution is expressed, an operator-based
approach can be used to infer a migration strategy. The metamodel developer selects
appropriate operators that express both metamodel evolution and model migration.
Operator-based approaches require a specialised metamodel editor, and it is not yet

4.3. REQUIREMENTS FOR CO-EVOLUTION 83

Figure 4.7: Spectrum of developer-driven co-evolution approaches

clear whether they can be applied when a metamodel is represented with a freeform
(e.g. textual) rather than a structured (e.g. tree-based) syntax.

4.3 Requirements for Identifying and Managing
Co-Evolution

The analysis presented throughout this chapter has highlighted a number of challenges
for identifying and managing model-metamodel co-evolution. Several factors affect
and restrict the way in which co-evolution is performed in practice. The way in which
modelling frameworks are implemented affect the ways in which the impact analysis and
propagation of metamodel changes can be performed. Existing co-evolution approaches
are developer-driven rather than user-driven (i.e. assume that the metamodel developer
will provide a migration strategy), which was not the case for several of the examples
identified in Section 4.1. Additionally, the languages used to specify model migration
vary over existing co-evolution approaches, which inhibits the conceptual and practical
re-use of model migration patterns. This section contributes requirements for structures
and processes that seek to address these challenges.

Below, the thesis requirements are presented in three parts. The first identifies
requirements that seek to extend and enhance support for managing model and meta-
model co-evolution with modelling frameworks. The second summarises and identi-
fies requirements for enhancing the user-driven co-evolution process discussed in Sec-
tion 4.2.2. Finally, the third identifies requirements that seek to improve the spectrum
of existing developer-driven co-evolution techniques.

4.3.1 Explicit conformance checking

Section 4.2.1 discussed characteristics of modelling frameworks relevant to managing
co-evolution. Because modelling frameworks typically enforce model and metamodel
conformance implicitly, they cannot be used to load non-conformant models. Con-

84 CHAPTER 4. MDE AND EVOLUTION: PROBLEM ANALYSIS

sequently, user-driven co-evolution involves editing a model in its storage representa-
tion, which is error-prone and tedious, because human usability is not normally a key
requirement for model storage representations. Furthermore, modelling frameworks
that implicitly enforce conformance understandably provide little support for explic-
itly checking the conformance of a model with other metamodels (or other versions of
the same metamodel). As discussed in Section 4.2.1, explicit conformance checking is
useful for impact analysis activities, such as determining whether a model needs to be
migrated during the installation of a newer version of its metamodel.

Therefore, the following requirement was derived: This thesis must investigate the
extension of existing modelling frameworks to support the loading of non-conformant
models and conformance checking of models against other metamodels.

4.3.2 User-driven co-evolution

When a metamodel change will affect conformance in only a small number of mod-
els, a metamodel developer may decide that the extra effort required to specify an
executable migration strategy is too great, and prefer a user-driven co-evolution tech-
nique. Section 4.2.2 introduced – and highlighted several challenges for – user-driven
co-evolution.

Because modelling frameworks typically cannot be used to load models that do not
conform to their metamodel, user-driven co-evolution involves editing the storage rep-
resentation of a model. As discussed above, model storage representations are typically
not optimised for human use and hence user-driven co-evolution can be error-prone and
time consuming. When a multi-pass parser is used to load models (as is the case with
EMF), user-driven co-evolution is an iterative process, because not all conformance
errors are reported at once.

Therefore, the following requirement was derived: This thesis must demonstrate
a user-driven co-evolution process that enables the editing of non-conformant models
without directly manipulating the underlying storage representation and provides a con-
formance report for the original model and evolved metamodel.

4.3.3 Developer-driven co-evolution

The comparison of developer-driven co-evolution techniques (Section 4.2.3) highlights
variation in the languages used for codifying model migration strategies. More specif-
ically, the model migration strategy languages varied in their scope (general-purpose
programming languages versus model transformation languages) and category of type
system. Furthermore, the amount of processing performed when executing a model
migration strategy also varied: some techniques only load a model, execute the model
migration strategy using an existing execution engine and store the model, while others
perform significant processing in addition to the computation specified in the model mi-
gration strategy. COPE, for example, transforms models to a metamodel-independent
representation before migration is executed, and back to a metamodel-specific repre-
sentation afterwards.

4.4. CHAPTER SUMMARY 85

Of the three categories of developer-driven co-evolution technique identified in Sec-
tion 4.2.3, only manual specification (in which the metamodel developer specifies the
migration strategy by hand) always requires the use of a migration strategy language.
Nevertheless, both operator-based and inference approaches might utilise a migration
strategy language in particular circumstances. Some operator-based approaches, such
as COPE, permit manual specification of a model migration strategy when no co-
evolutionary operator is appropriate. For describing the effects of co-evolutionary op-
erators, the model migration part of an operator could be described using a model
migration strategy language. When an inference approach suggests more than one
feasible migration strategy, a migration strategy language could be used to present
alternatives to the metamodel developer. To some extent then, the choice of model
migration strategy language influences the efficacy of all categories of developer-driven
co-evolution approach.

Given the variations in existing model migration strategy languages and the in-
fluence of those languages on developer-driven co-evolution, the following requirement
was derived: This thesis must compare and evaluate existing languages for specifying
model migration strategies.

As discussed in Section 4.2.3, existing manual specification techniques do not pro-
vide model migration strategy languages that capture patterns specific to model mi-
gration. Developers must re-invent solutions to commonly occurring model migration
patterns, such as copying an element from the original to the migrated model. In some
cases, manual specification techniques require the developer to implement, in addition
to a migration strategy, mechanisms for loading and storing models and for interfacing
with the metamodel user.

Devising a domain-specific languages or DSL (discussed in Chapter 3) is one ap-
proach to capturing re-occurring patterns, and executable DSLs are widely used for
specifying and performing model management in contemporary model-driven develop-
ment environments. Contemporary model management tools provide many executable
DSLs for model transformation, validation, merging, weaving, and many other model
management tasks (Section 2.1.4).

Given the apparent appropriateness of a domain-specific language for specifying
model migration and that no common language for specifying migration has yet been
devised, the following requirement was derived: This thesis must implement and evalu-
ate a domain-specific language for specifying and executing model migration strategies,
comparing it to existing languages for specifying model migration strategies.

4.4 Chapter Summary

The literature review performed in Chapter 3 identified several types of evolution that
occur in MDE projects, including model refactoring, synchronisation and co-evolution.
Although several papers propose structures and processes for managing evolution in
MDE, little work has considered the way in which MDE artefacts evolve in practice.
The work described in this chapter has investigated evolution in existing MDE projects,

86 CHAPTER 4. MDE AND EVOLUTION: PROBLEM ANALYSIS

culminating in a deeper understanding of the conceptual and technical issues faced when
identifying and managing co-evolution. Furthermore, the analysis has facilitated the
derivation of requirements for structures and processes that will address several of the
challenges to identifying and managing co-evolution today.

Examples of co-evolution were identified from real-world MDE projects, and supple-
mentary data was located by examining a related area (refactoring in object-oriented
systems) and from collaborative work on two projects using MDE. The examples were
used to understand how co-evolution is performed in practice, and led to the identifica-
tion of user-driven co-evolution. Furthermore, the examples were used to analyse and
categorise existing approaches to managing co-evolution.

Examining the co-evolution examples and applying existing co-evolution tools to the
examples led to several observations. Firstly, modelling frameworks restrict the way in
which co-evolution can be identified and managed. Secondly, user-driven co-evolution
(in which models are migrated without an executable strategy) occurs in practice, but
no existing co-evolution tools provide support for it. Finally, the variation of languages
used for specifying model migration inhibits the re-use of commonly occurring patterns.

From the analysis performed in this chapter, requirements for the implementation
phase of the thesis were formulated. The structures and process developed to approach
those requirements are described in Chapter 5, and seek to alleviate the restrictions
of modelling frameworks, to improve and support user-driven co-evolution (which is
currently error-prone and tedious), and to provide a common language for specifying
model migration.

Chapter 5

Design and Implementation

Section 4.3 presented requirements for structures and processes for identifying and man-
aging co-evolution. This chapter describes the way in which the requirements have been
addressed. Several related structures have been implemented, using domain-specific
languages, metamodelling and model management operations. Figure 5.1 summarises
the contents of the chapter. To facilitate the management of non-conformant mod-
els with existing modelling frameworks, a metamodel-independent syntax was devised
and implemented (Section 5.1). To address some of the challenges faced in user-driven
co-evolution, an OMG specification for a textual modelling notation was implemented
(Section 5.2). Finally, a model transformation language – tailored for model migration
and centred around a novel approach to relating source and target model elements –
was designed and implemented (Sections 5.3 and 5.4).

Figure 5.1: Implementation chapter overview.

The structures presented in this chapter are interoperable as shown in Figure 5.2. In
particular, the modelling framework extensions of the metamodel-independent syntax
are used to provide conformance checking for the textual modelling notation, and to
enable conformance checking for the model migration language. The structures were
separated to facilitate re-use of the conformance checking services provided by the
metamodel-independent syntax. Table 5.1 shows the relationship between the proposed
structures and the thesis requirements (Section 4.3).

87

88 CHAPTER 5. DESIGN AND IMPLEMENTATION

Developer-driven
co-evolution

User-driven
co-evolution

Textual modelling notation Model migration language

Metamodel-independent syntax

uses uses

Figure 5.2: The relationships between the proposed structures

Structure (Section) Requirement

Metamodel-independent syntax (5.1)

This thesis must investigate the
extension of existing modelling
frameworks to support the loading
of non-conformant models and
conformance checking of models
against other metamodels.

Textual modelling notation (5.2)

This thesis must demonstrate a
user-driven co-evolution process
that enables the editing of
non-conformant models without
directly manipulating the
underlying storage representation
and provides a conformance report
for the original model and
evolved metamodel.

Model migration language (5.3)

This thesis must compare and
evaluate existing languages
for specifying model
migration strategies.

Model migration language (5.4)

This thesis must implement and
evaluate a domain-specific
language for specifying and
executing model migration
strategies, comparing it to
existing languages for specifying
model migration strategies.

Table 5.1: The relationship between the thesis requirements and the proposed struc-
tures

5.1. A METAMODEL-INDEPENDENT SYNTAX 89

5.1 A Metamodel-Independent Syntax

Section 4.2.1 discussed the way in which modelling frameworks implicitly enforce con-
formance, and hence prevent the loading of non-conformant models. Additionally,
modelling frameworks provide little support for checking the conformance of a model
with other versions of a metamodel, which is potentially useful during metamodel
installation. In Section 4.3, these concerns led to the identification of the following re-
quirement: This thesis must investigate the extension of existing modelling frameworks
to support the loading of non-conformant models and conformance checking of models
against other metamodels.

This section describes the way in which existing modelling frameworks load and
store models using metamodel-specific binding mechanisms, proposes an alternative
binding mechanism using a metamodel-independent syntax, and demonstrates how
this facilitates automatic consistency checking. The work presented in this section has
been published in [Rose et al. 2009a].

(a) Original metamodel.

(b) Evolved metamodel.

Figure 5.3: Evolution of a families metamodel, based on the metamodel in [OMG 2004].

90 CHAPTER 5. DESIGN AND IMPLEMENTATION

5.1.1 Metamodel Evolution Example: Families

This section uses the example of metamodel evolution in Figure 5.3. The metamodels in
Figure 5.3 have been constructed in Ecore, the metamodelling language of EMF, which
is based on MOF (Section 2.1.3). The metamodels use Ecore types such as EString
and EFloat. The nuclear attribute on the Family type is used to indicate that the
family “comprises only a father, a mother, and children” [Merriam-Webster 2010], and
not extended family members (such as cousins or grandparents).

In Figure 5.3(a), naturalChildren and adoptedChildren are modelled as
separate features, and, in Figure 5.3(b), they are modelled as a single feature, chil-
dren. Models that specify values for the naturalChildren or adoptedChildren
features do not conform to the evolved metamodel. For example, the model in Fig-
ure 5.4 represents a Family comprising two Persons, conforms to the original meta-
model, and does not conform to the evolved metamodel. Using the families metamodel
and model, the sequel explains why existing modelling frameworks cannot be used to
load non-conformant models.

Figure 5.4: A family model, which conforms to the metamodel in Figure 5.3(a), in an
EMF tree editor

5.1.2 Binding to a Specific Metamodel

To load a model, existing modelling frameworks construct objects in the underlying
programming language in a process termed binding (Section 4.2.1). The metamodel
defines the way in which model elements will be bound, and binding is strongly-typed.
Figure 5.5 illustrates the results of binding the family model in Figure 5.4 to the original
families metamodel in Figure 5.3(a). The objects in Figure 5.5 instantiate types that
are defined in the metamodel, such as Family and Person. In other words, binding
results in a metamodel-specific representation of the model.

5.1. A METAMODEL-INDEPENDENT SYNTAX 91

Figure 5.5: Objects resulting from the binding of a conformant model, as a UML object
diagram

Metamodel-specific binding fails for non-conformant models. For example, attempt-
ing to bind the family model in Figure 5.4 to the evolved families metamodel (Fig-
ure 5.3(b)) fails because the model uses naturalChildren and adoptedChildren
features for the type Family, and these features are not defined by the evolved meta-
model.

Because non-conformant models cannot be loaded, model migration must be per-
formed by editing the underlying storage representation, which can be error-prone
and tedious (Section 4.2.2). The sequel discusses potential solutions for loading non-
conformant models.

5.1.3 Potential Solutions for Loading Non-Conformant Models

Two potential approaches to binding (and hence loading) non-conformant models have
been considered and are now discussed. The benefits and drawbacks of each approach
have been compared, which resulted in the selection of the second approach, binding
to a metamodel-independent syntax.

Store metamodel history

Presently, modelling frameworks are used to store only the latest version of a meta-
model, and hence binding fails for models that conform to a previous version of the
metamodel. If modelling frameworks could access old versions of a metamodel, mod-
els that do not conform to the current version of the metamodel could be loaded by
binding to a previous version of the metamodel.

A metamodel-independent syntax

Models can always be successfully bound to a metamodel-independent representation,
such as the one shown in Figure 5.6. Binding each model element results in the in-
stantiation of a metamodel-independent type (Object in Figure 5.6) rather than of

92 CHAPTER 5. DESIGN AND IMPLEMENTATION

types defined in a specific metamodel, such as Family or Person. Hence, binding is
independent of the types defined in metamodels, and will succeed for non-conformant
models.

Figure 5.6: A minimal generic metamodel for MOF in Ecore, based on [OMG 2008a]
and taken from [Rose et al. 2009a].

Benefits and drawbacks of the potential solutions

The two potential solutions for loading non-conformant models have different bene-
fits and drawbacks, which are now discussed. Storing metamodel histories would use
the binding and conformance checking services provided by existing modelling frame-
works, and therefore require less implementation effort than a metamodel-independent
syntax, which would require bespoke binding and conformance checking services. Fur-
thermore, structures for managing metamodel histories might be integrated with exist-
ing approaches to managing co-evolution, such as metamodel differencing approaches
(Sections 4.2.3), for switching between different versions of a MDE workflow.

Storing metamodel histories relies on the metamodel developer to enable model
migration: if the metamodel developer does not provide a metamodel that contains
historical data, then binding will fail for non-conformant models. Conversely, models
can be bound to a metamodel-independent syntax irrespective of the actions of the
metamodel developer.

A metamodel-independent syntax has been chosen because it makes fewer assump-
tions of the metamodel developer, and hence facilitates user-driven as well as developer-
driven co-evolution.

5.1.4 Proposed Solution: A Metamodel-Independent Syntax

This section discusses the design and implementation of a metamodel-independent syn-
tax, and of the binding and conformance checking services that are used to load non-
conformant models. As discussed below, the metamodel-independent syntax and con-
formance checking service are inspired by UML [OMG 2007b] and [Paige et al. 2007],
respectively. As such, the primary contribution of this section is the implementation
and integration of the syntax and services with EMF. In addition, the syntax and ser-
vices have been designed to be re-usable, and hence have been used to simplify the
implementation of a textual modelling notation (Section 5.2) and a model migration
language (Section 5.4).

5.1. A METAMODEL-INDEPENDENT SYNTAX 93

Design

A high-level design for the way in which the metamodel-independent syntax, binding
service and conformance checking service load models is shown in Figure 5.7. The bind-
ing service parses XMI (the canonical storage representation of models, Section 2.1.3)
and produces a model that conforms to the metamodel-independent syntax. The
conformance checking service is used to explicitly check the conformance of a model
conforming to the metamodel-independent syntax.

Binding
Service

XMI
Conformance

Checking
Service

Model conforming
to the metamodel

-independent syntax

Conformance
report

Figure 5.7: Loading models with the metamodel-independent syntax

Binding and conformance checking were split into separate services to facilitate re-
use. For example, the textual modelling notation in Section 5.2 re-uses the metamodel-
independent syntax and conformance checking service, in conjunction with a different
binding service.

Metamodel-independent syntax The metamodel-independent syntax is used to
represent a model without instantiating types defined by its metamodel. Its design was
inspired by the metamodel for UML 2 [OMG 2007a] object diagrams, which describes
objects in a generic, class-independent manner. UML 2 object diagrams are specified
in terms of an abstract syntax (comprising, for example, InstanceSpecification
and Link classes) and a concrete syntax (comprising, for example, boxes and lines).
The metamodel-independent syntax proposed here is abstract. It is not used directly
by metamodel developers or users and hence a concrete syntax was not required.

Abstract syntax is typically represented as a metamodel (Section 2.1.2). The meta-
model in Figure 5.6 was used as an initial design for the metamodel-independent syntax,
which contains a class for each type in the MOF metamodel that is instantiated in a
model. In other words, Objects are used to represent each element of a model, and
the type attribute is used to indicate the name of the metaclass that the Object
intends to instantiate. Similarly, Slots are used to represent values in the model,
and the feature attribute indicates the metafeature that the Slot intends to in-
stantiate. The metamodel was designed to capture the information needed to perform
conformance checking (described below), and implementing the conformance checking
service led to a refactored metamodel, which is presented in the sequel.

COPE (Section 4.2.3) is underpinned by a metamodel-independent syntax. How-
ever, the metamodel-independent syntaxes used by COPE and proposed here were
developed independently, and both were first published in 2008 (in [Rose et al. 2008a,
Herrmannsdoerfer et al. 2008b]).

94 CHAPTER 5. DESIGN AND IMPLEMENTATION

Metamodel-independent binding service The metamodel-independent binding
service is a text-to-model (T2M) transformation that consumes XMI and produces
a model conforming to the metamodel-independent syntax. The transformation was
designed to extract all of the information pertaining to the model from XMI, translating
it into the concepts defined in the metamodel-independent syntax. In particular, the
binding service iterates over each tag in the XMI, and creates instances of Object
and Slot. For example, when encountering a tag that represents a model element, the
transformation performs the steps in Figure 5.8.

Applying the metamodel-independent binding service to the families model (Fig-
ure 5.4) produces three instances of Object, illustrated as a UML object diagram
in Figure 5.9. For clarity, instances of Object are shaded, and instances of Sl-
ot are unshaded. The first Object represents the Family model element and has
three slots. Two of the slots are used to reference the Person model elements via the
naturalChildren and adoptedChildren references.

Conformance checking service Conformance is a type of inter-model consistency,
between a model and its metamodel (Section 2.1.2), and, in MDE, inter-model consis-
tency is often validated using a set of constraints (Section 2.1.4). Furthermore, con-
formance can be specified as a set of constraints between a model and its metamodel
[Paige et al. 2007]. As such, the conformance checking service has been designed as the
set of constraints between models and metamodels in Figure 5.11.

The conformance checking service must be interoperable with the metamodel-indep-
endent syntax and, hence, the constraints are specified in terms of Objects and Slots.
Clearly, to check conformance the constraints must refer to a (specific) metamodel, and
the constraints are also specified in terms of concepts from the MOF metamodelling
language (Section 2.1.3), such as Class and Property. Figure 5.10 shows a minimal
version of the MOF metamodel.

After binding to the metamodel-independent syntax, the conformance of a model
can be checked against any specific metamodel. To illustrate the value of the confor-
mance checking service, consider again the metamodel evolution in Figure 5.3 and the
bound model in Figure 5.9. For the evolved metamodel (Figure 5.3(b)), conformance
checking for the model element representing the Family would fail. As illustrated in
Figure 5.9, the Family Object defines slots for features named naturalChildren
and adoptedChildren, which are not defined the metaclass Family in Figure 5.3(b).
Specifically, the model element representing the Family does not satisfy conformance
constraint 3, which states: each Slot’s feature must be the name of a metamodel
Property. That Property must belong to the Slot’s owner’s type. The confor-
mance checking service provides a report of conformance problems, which can be used
during co-evolution by tools and users.

Reference implementation in Java, EMF and Epsilon

Reference implementations of the metamodel-independent syntax, the binding service
and the conformance service were constructed with Java, EMF and Epsilon (Sec-

5.1. A METAMODEL-INDEPENDENT SYNTAX 95

1. Constructs an instance of Object, o.

2. For each attribute of the tag:

Creates an instance of Slot, s.

Sets s.feature to the name of the attribute.

Sets s.value to the value of the attribute.

Adds s to o.slots.

3. For each child tag:

Creates an instance of Slot, s.

Sets s.feature to the name of the child tag.

Recursively constructs an instance of Object, c.

Sets s.value to c.

Adds s to o.slots.

Figure 5.8: Pseudo code for binding XMI tags to Objects.

Figure 5.9: Result of binding the families model with the metamodel-independent
syntax

96 CHAPTER 5. DESIGN AND IMPLEMENTATION

Figure 5.10: Minimal MOF metamodel, based on [OMG 2008a].

1. Each Object’s type must be the name of some non-abstract metamodel
Class.

2. Each Object must specify a Slot for each mandatory Property of its
type.

3. Each Slot’s feature must be the name of a metamodel Property. That
Property must belong to the Slot’s owner’s type.

4. Each Slot must be multiplicity-compatible with its Property. More specif-
ically, each Slot must contain at least as many values as its Property’s
lower bound, and at most as many values as its Property’s upper bound.

5. Each Slot must be type-compatible with its Property. (The way in which
type-compatibility is checked depends on the way in which the modelling
framework is implemented).

Figure 5.11: The constraints of the conformance checking service.

5.1. A METAMODEL-INDEPENDENT SYNTAX 97

tion 2.3). The way in which each component was implemented is now discussed.

Metamodel-independent syntax Ecore, the metamodelling language of EMF, was
used to implement the metamodel-independent syntax. The final metamodel is shown
in Figure 5.12, which differs slightly from the initial design (Figure 5.6). Specifically,
Slot is abstract, has a generic type (T), and is the superclass of AttributeSlot, Re-
ferenceSlot and ContainmentSlot. These changes simplified the implementation
of the (abstract) typeCompatibileWith method, which is used by the conformance
checking service, and returns true if and only if every element of the values attribute
is type compatible with the EClassifier parameter (a metamodel type).

Figure 5.12: Implemented version of the metamodel-independent syntax, in Ecore

Binding service A text-to-model (T2M) transformation language (Section 2.1.4)
could have been used to implement the binding service. However, when this work
started (2008) the Eclipse Modeling Project1 did not provide a standard T2M language
and using a T2M language that was not part of the Eclipse Modeling Project would
have complicated installation of the service for users.

Instead, the binding service has been implemented by constructing in Java an XMI
parser that emits objects conforming to the metamodel-independent syntax. Listing 5.1
illustrates the way in which XMI attributes are parsed. The processAttribut-
es method is called to generate instances of AttributeSlot from the metamodel-
independent syntax (Figure 5.12). For each attribute in an XMI tag, the body of the
loop is executed. If the attribute is not XMI metadata such as type information (line
4), the name and value of the attribute (lines 5 and 6) are extracted from the XMI,
and used to add the value to an AttributeSlot with feature equal to the name of
the attribute (line 8). Constructing Objects and Slots is the responsibility of the
generator object, which is an instance variable of the parser.

1 private void processAttributes(Attributes atts) {

2 for (int index = 0; index < atts.getLength(); index++) {

3

1http://www.eclipse.org/modeling/

http://www.eclipse.org/modeling/

98 CHAPTER 5. DESIGN AND IMPLEMENTATION

1 context Object {

2 constraint ClassMustNotBeAbstract {

3 check: not self.toClass().isAbstract()

4 message: ’Cannot instantiate the abstract class: ’ + self.type

5 }

6 }

7

8 operation Object toClass() : EClass {

9 return Metamodel!EClass.all.selectOne(c|c.name == self.type);

10 }

Listing 5.2: A constraint (in EVL) to check that only concrete metamodel types are

instantiated

4 if (!attributeIsMetadata(atts.getQName(index))) {

5 final String feature = atts.getLocalName(index);

6 final String value = atts.getValue(index);

7

8 generator.addAttributeValue(feature, value);

9 }

10 }

11 }

Listing 5.1: Parsing XMI attributes (in Java)

Conformance checking service EVL (Section 2.1.4), a language tailored for model
verification and hence suitable for rapid prototyping of consistency constraints, was
used to implement the conformance constraints (Figure 5.11). Listing 5.2 shows the
EVL constraint that checks whether each Object’s type is a non-abstract class (con-
straint 1 in Figure 5.11). The check part (line 3) verifies that a particular Object
(referenced via the self keyword) refers to a metamodel type that is not abstract.
If the check fails, the message (line 4) is automatically added to a set of unsatisfied
constraints. The toClass operation (lines 8-10) is used to determine the metamodel
class (an instance of EClass) to which the type attribute (a String) of an Object
refers. The conformance checking service returns a report of unsatisfied constraints.

Type-compatibility checks have been implemented using the type-checking methods
provided by EMF. The EVL constraints call the isTypeCompatibleWith method
on the Slot class. Each subclass of Slot provides an implementation of isTypeCo-
mpatibleWith, which delegates to EMF to perform type-checking.

5.1.5 Applications of the Metamodel-Independent Syntax

There are many potential uses for the metamodel-independent syntax described in
this section. Section 5.2 describes a textual modelling notation integrated with the

5.1. A METAMODEL-INDEPENDENT SYNTAX 99

metamodel-independent syntax to achieve live conformance checking. In addition to
this, the metamodel-independent syntax is potentially useful during metamodel instal-
lation. As discussed in Section 4.2.1, metamodel developers do not have access to
downstream models, and conformance is implicitly enforced by modelling frameworks.
Consequently, the conformance of models may be affected by the installation of a new
version of a metamodel, and the conformance of models cannot be checked during in-
stallation. Typically, installing a new version of a metamodel can result in models that
no longer conform to their metamodel and cannot be used with the modelling frame-
work. Moreover, a user discovers conformance problems only when attempting to use
a model after installation has completed, and not as part of the installation process.

To enable conformance checking during metamodel installation in EMF, the meta-
model-independent syntax has been integrated with a model indexing service, Concor-
dance [Rose et al. 2010c]. The work was conducted outside of the scope of the thesis,
and is now summarised to indicate the usefulness of the metamodel-independent syn-
tax for supporting the automation of co-evolution activities. Concordance provides a
mechanism for resolving inter-model references (such as those between models and their
metamodels). Without Concordance, determining the the instances of a metamodel is
possible only by checking every model in the workspace. Integrating Concordance and
the metamodel-independent syntax resulted in a service, which Epsilon (Section 2.3.2)
executes after the installation of a metamodel, to identify the models that are affected
by the metamodel changes. All models that conform to the old version of the meta-
model are checked for conformance with the new metamodel. As such, conformance
checking occurs automatically and immediately after metamodel installation. Confor-
mance problems are detected and reported immediately, rather than when an affected
model is next used. Conformance problems detected via Concordance can be reconciled
with the structures described in Sections 5.2 and 5.4.

Summary

Modelling frameworks implicitly enforce conformance, which presents challenges for
managing co-evolution. In particular, detecting and reconciling conformance problems
involves managing non-conformant models, which cannot be loaded by modelling frame-
works and hence cannot be used with model editors or model management operations.
The metamodel-independent syntax proposed in this section enables modelling frame-
works to load non-conformant models, and has has been integrated with Concordance
[Rose et al. 2010c] to facilitate the reporting of conformance problems during meta-
model installation. The metamodel-independent syntax, binding service and confor-
mance checking service underpin the implementation of the textual modelling notation
presented in the sequel. The benefits and drawbacks of the metamodel-independent
syntax in the context of user-driven co-evolution are explored in Chapter 6.

100 CHAPTER 5. DESIGN AND IMPLEMENTATION

5.2 Epsilon HUTN: A Textual Modelling Notation

The analysis of co-evolution examples in Chapter 4 highlighted two ways in which
co-evolution is managed. In developer-driven co-evolution, migration is specified by
the metamodel developer in an executable format; while in user-driven co-evolution
migration is specified by the metamodel developer in prose or not at all. Performing
user-driven co-evolution with modelling frameworks presents two key challenges that
have not been explored by existing research. Firstly, user-driven co-evolution often
involves editing the storage representation of the model, such as XMI. Model stor-
age representations are typically not optimised for human use and hence user-driven
co-evolution can be error-prone. Secondly, non-conformant model elements must be
identified during user-driven co-evolution. When a multi-pass parser is used to load
models, as is the case with EMF, not all conformance problems are reported at once,
and user-driven co-evolution is an iterative process. In Section 4.3, these challenges led
to the identification of the following requirement: This thesis must demonstrate a user-
driven co-evolution process that enables the editing of non-conformant models without
directly manipulating the underlying storage representation and provides a sound and
complete conformance report for the original model and evolved metamodel.

Section 5.2.1 illustrates some of the challenges to performing model migration with
XMI, and Section 5.2.2 discusses potential alternatives to XMI for user-driven co-
evolution. Section 5.2.3 describes an OMG standard modelling notation that is opti-
mised for human-usability, and Section 5.2.4 presents a reference implementation of the
OMG standard that is interoperable with EMF. Finally, Section 5.2.5 demonstrates the
way in which the reference implementation of the notation has been integrated with
the metamodel independent syntax described in Section 5.1 to produce conformance
reports. The work presented in this section has been published in [Rose et al. 2008a].

5.2.1 Model Migration with XMI

The co-evolution example from Section 5.1 is re-used in this section to illustrate the way
in which model migration is performed by editing the underlying storage representation
of a model, such as XMI (Section 2.1.3). For convenience, Figures 5.3 and 5.4 are
repeated here as Figures 5.13 and 5.14, respectively. Recall that the model (Figure 5.14)
conforms to the original metamodel (Figure 5.13(a)).

The model in Figure 5.14 does not conform to the evolved metamodel (because it
uses the naturalChildren and adoptedChildren features, which are not defined
for Person), and hence cannot be loaded by the modelling framework. Migration might
be achieved by editing the underlying storage representation directly (i.e. manually
manipulating XMI). Listing 5.3 shows the XMI for the model in Figure 5.14.

1 <?xml version="1.0" encoding="ASCII"?>

2 <families:Family xmi:version="2.0" xmlns:xmi="http://www.omg.org/XMI"

xmlns:families="families" xmi:id="_kE2LkAagEeC-FIOYrvUj0A" name="Smiths">

3 <naturalChildren xmi:id="_q8RWYAagEeC-FIOYrvUj0A" name="Paul"/>

4 <adoptedChildren xmi:id="_nj6TcAagEeC-FIOYrvUj0A" name="John"/>

5.2. EPSILON HUTN: A TEXTUAL MODELLING NOTATION 101

(a) Original metamodel.

(b) Evolved metamodel.

Figure 5.13: Reproduction of Figure 5.3: Evolution of a families metamodel, based on
the metamodel in [OMG 2004].

Figure 5.14: Reproduction of Figure 5.4: A family model, which conforms to the
metamodel in Figure 5.13(a)

102 CHAPTER 5. DESIGN AND IMPLEMENTATION

5 </families:Family>

Listing 5.3: XMI for the family model in Figure 5.14

XMI is a concrete syntax for models, which has been optimised for use by machines
and not by humans [OMG 2004]. Models often contain information that is not relevant
to the domain, such as the universally unique identifiers (xmi:id attributes) on lines
2, 3 and 4 of Listing 5.3. Furthermore, information is often omitted to reduce the size
of the model on disk. For example, the model elements on lines 3 and 4 of Listing 5.3 do
not specify their type (Person) and this is inferred from the type of the naturalCh-
ildren and adoptedChildren features. Types are inferred from the metamodel by
the modelling framework using a reference from the model to the metamodel. In XMI,
metamodel references are expressed using XML namespaces. The XMI in Listing 5.3
imports the families metamodel to a namespace (families) on line 2. The evaluation
presented in Section 6.1 further explores the suitability of XMI for user-driven co-
evolution. The remainder of this section discusses the design and implementation of a
modelling notation that provides an alternative to XMI, and is tailored for human-use.

5.2.2 Potential Alternatives to XMI

Two characteristics were considered when designing a notation that provides an al-
ternative to representing models with XMI. Models can be represented textually or
graphically (Section 2.1.2), and with a metamodel-specific or a metamodel-independent
syntax (Section 5.1). The benefits and drawbacks of each option have been considered
particularly with respect to their implications for user-driven co-evolution, and are now
discussed.

Metamodel-independent vs metamodel-specific A metamodel-specific syntax is
defined using terms from the metamodel, and is often more concise than a metamodel-
independent syntax. A metamodel-specific (and textual) syntax for part of the original
families metamodel (Figure 5.13(a)) is shown in Listing 5.4. Using the metamodel-
specific syntax, the families model in Listing 5.3 is written Smiths:Paul(John).
Notice that the syntax is defined in metamodel terms, such as Family, naturalCh-
ildren, and adoptedChildren. Consequently, the syntax definition can be affected
by metamodel evolution, and hence cannot be used to load a model that does not con-
form to the metamodel. Therefore, a metamodel-specific representation is not suitable
for use during user-driven co-evolution, which involves using a modelling notation with
non-conformant models. Here, a metamodel-independent representation is preferred.

1 family = name ":" naturalChildren "(" adoptedChildren ")"

2 naturalChildren = name { "," naturalChildren }

3 adoptedChildren = name { "," adoptedChildren }

4 name = "A" | ... | "z"

Listing 5.4: A metamodel-specific syntax for families in EBNF

5.2. EPSILON HUTN: A TEXTUAL MODELLING NOTATION 103

Textual vs graphical For user-driven co-evolution, the usability of the modelling
notation is important because a metamodel user manipulates models with the notation
to perform migration. The choice between a textual or graphical notation is likely to
have a significant impact on usability, but it was not feasible to conduct a thorough
user analysis given the time constraints of the thesis. Instead, a textual notation was
selected to reduce implementation effort, and implemented to facilitate the addition
of an equivalent graphical notation in future work. In particular, the concrete and
abstract syntax definitions of the notation were kept separate to simplify future addition
of alternative concrete syntax, such as a graphical notation.

Currently, several tools exist for representing models with textual and metamodel-
specific syntaxes (such as the text-to-model transformation tools discussed in Sec-
tion 2.1.4), but only XMI represents models in a metamodel-independent syntax.
The Distributed Systems Technology Centre’s TokTok project provided a metamo-
del-independent textual modelling notation [Steel & Raymond 2001], but the tool has
been abandoned and the source code has vanished. Sintaks2, a tool for constructing
metamodel-specific representations, was originally intended to provide a metamodel-
independent representation [Muller & Hassenforder 2005].

The TokTok project and earlier versions of Sintaks based their metamodel-indepen-
dent representations on an OMG standard, Human-Usable Textual Notation (HUTN)
[Steel & Raymond 2001, Muller & Hassenforder 2005]. HUTN defines a textual mod-
elling notation that aims to conform to human-usability criteria [OMG 2004]. As a me-
tamodel-independent and textual concrete syntax, HUTN was seen as an ideal starting
point for designing a textual modelling notation for user-driven co-evolution. OMG
HUTN is described in the sequel.

5.2.3 OMG Human-Usable Textual Notation

OMG HUTN is a textual, metamodel-independent modelling notation whose primary
design goal is human-usability and “this is achieved through consideration of the suc-
cesses and failures of common programming languages” [OMG 2004, Section 2.2]. The
HUTN specification refers to two studies of programming language usability to justify
design decisions. However, the OMG specification cannot evaluate the human-usability
of the notation because no reference implementation exists. As HUTN is (purport-
edly) optimised for human-usability, using HUTN rather than XMI for user-driven
co-evolution should lead to increased developer productivity. This claim is explored in
Chapter 6.

Like the metamodel presented in Section 5.1, HUTN provides a metamodel-indep-
endent syntax for MOF. However, the OMG HUTN specification focuses on concrete
syntax, whereas the metamodel-independent syntax presented in Section 5.1 focuses
on abstract syntax. In this section, the key features of HUTN are introduced, and the
sequel describes a reference implementation of HUTN. Throughout the remainder of
this section, the original families metamodel (Figure 5.3(a), 5.13(a)) is used to illustrate

2http://www.kermeta.org/sintaks/

http://www.kermeta.org/sintaks/

104 CHAPTER 5. DESIGN AND IMPLEMENTATION

the notation.

Basic Notation

Listing 5.5 shows the construction of an object (an instance of a metamodel class) in
OMG HUTN, here an instance of the Family class from Figure 5.13(a). Line 1 specifies
the metamodel package containing the metamodel classes that can be instantiated by
this model (FamilyPackage). A package declaration in OMG HUTN is equivalent
to a namespace import at the start of an XMI document (e.g. line 2 of Listing 5.3).
In Listing 5.5, line 2 names the metamodel class to be instantiated (Family) and
gives an identifier for the object (The Smiths). Package and object identifiers are
optional in OMG HUTN, have no direct equivalent in XMI, and are used to specify
reference values (discussed below). Lines 3 to 7 define attribute values; in each case,
the data value is assigned to the attribute with the specified name. The encoding of
the value depends on its type: strings are delimited by any form of quotation mark;
multi-valued attributes use comma separators, etc. HUTN accesses type information
from the metamodel (Figure 5.13(a) here), which the user references in the package
declaration (on line 1).

The metamodel in Figure 5.13(a) has a simple reference (familyFriends) and
two containment references (adoptedChildren; naturalChildren). The OMG
HUTN representation embeds a contained object directly in the parent object, as shown
in Listing 5.6. A simple reference can be specified using the type and identifier of the
referred object, as shown in Listing 5.7. Like attribute values, both styles of reference
are preceded by the name of the meta-feature.

1 FamilyPackage "families" {

2 Family "The Smiths" {

3 nuclear: true

4 name: "The Smiths"

5 averageAge: 25.7

6 numberOfPets: 2

7 address: "120 Main Street", "37 University Road"

8 }

9 }

Listing 5.5: Specifying attributes with HUTN, taken from [Rose et al. 2008a]

1 FamilyPackage "families" {

2 Family "The Smiths" {

3 naturalChildren: Person "John" { name: "John" },

4 Person "Jo" { gender: female }

5 }

6 }

Listing 5.6: Specifying a containment reference with HUTN, taken from

[Rose et al. 2008a]

5.2. EPSILON HUTN: A TEXTUAL MODELLING NOTATION 105

1 FamilyPackage "families" {

2 Family "The Smiths" {

3 familyFriends: Family "The Does"

4 }

5 Family "The Does" {}

6 }

Listing 5.7: Specifying a simple reference with HUTN, taken from [Rose et al. 2008a]

Keywords and Adjectives

In general, a metamodel-independent syntax (such as OMG HUTN) is more verbose
than a metamodel-specific concrete syntax. However, OMG HUTN defines optional
syntactic shortcuts to make model specifications more concise, and aims to make the
syntactic shortcuts intuitive [OMG 2004, pg2-4].

Two of the syntactic shortcuts relate to Boolean-valued attributes and are now
discussed; a complete list of syntactic shortcuts is provided in the OMG HUTN specifi-
cation [OMG 2004]. OMG HUTN permits the use of an attribute name to represent the
value true, or the attribute name prefixed with a tilde to represent the value false).
When used in the body of the object, this style of Boolean-valued attribute represents a
keyword. A keyword used to prefix an object declaration is called an adjective. Listing
5.8 shows the use of both an attribute keyword (˜nuclear on line 6) and adjective
(migrant on line 2), and states that The Smiths are migrant and that The Does
are not nuclear.

1 FamilyPackage "families" {

2 migrant Family "The Smiths" {}

3

4 Family "The Does" {

5 averageAge: 20.1

6 ˜nuclear

7 name: "The Does"

8 }

9 }

Listing 5.8: Keywords and adjectives in HUTN, taken from [Rose et al. 2008a]

Alternative Reference Syntax

In addition to the syntax defined in Listings 5.6 and 5.7, OMG HUTN defines two
alternative syntactic constructs for specifying the value of references. For example,
Listing 5.9 demonstrates the use of a reference block for defining The Does as friends
with both The Smiths and The Bloggs. Listing 5.10 illustrates a further alternative
syntax for references, which employs an infix notation.

1 FamilyPackage "families" {

2 Family "The Smiths" {}

106 CHAPTER 5. DESIGN AND IMPLEMENTATION

3 Family "The Does" {}

4 Family "The Bloggs" {}

5

6 familyFriends {

7 "The Does" "The Smiths"

8 "The Does" "The Bloggs"

9 }

10 }

Listing 5.9: A reference block in HUTN, taken from [Rose et al. 2008a]

1 FamilyPackage "families" {

2 Family "The Smiths" {}

3 Family "The Does" {}

4 Family "The Bloggs" {}

5

6 Family "The Smiths" familyFriends Family "The Does";

7 Family "The Smiths" familyFriends Family "The Bloggs";

8 }

Listing 5.10: An infix reference in HUTN, taken from [Rose et al. 2008a]

The reference block (Listing 5.9) and infix (Listing 5.10) notations are syntactic
variations on – and have identical semantics to – the reference notation shown in
Listings 5.6 and 5.7.

Customisation via Configuration

The OMG HUTN specification allows some limited, metamodel-specific customisation
of the notation, using configuration rules. Customisations include a parametric form
of object instantiation; renaming of metamodel elements; specifying the default value
of a feature; and providing a default identifier for classes of object.

5.2.4 Reference Implementation: Epsilon HUTN

To investigate the extent to which OMG HUTN can be used for user-driven co-
evolution, a reference implementation, Epsilon HUTN, has been designed and imple-
mented. This section describes the way in which Epsilon HUTN was implemented using
a combination of model-management operations. From text conforming to the OMG
HUTN syntax (described above), Epsilon HUTN produces an equivalent model that
can be managed with EMF (Section 2.3.1). The sequel demonstrates the way in which
Epsilon HUTN can be used for user-driven co-evolution.

Design of Epsilon HUTN

Implementing OMG HUTN involved building a tool for producing an EMF model (i.e. a
model represented in XMI) from text conforming to the OMG HUTN syntax (described

5.2. EPSILON HUTN: A TEXTUAL MODELLING NOTATION 107

above). Essentially then, Epsilon HUTN can be regarded as a parser (that emits mod-
els), or as a text-to-model transformation. Several approaches to constructing Epsilon
HUTN were considered, including: using a text-to-model (T2M) transformation tool
(Section 2.1.4), using a domain-specific language (DSL) framework (Section 2.4.1), and
using MDE tools and techniques such as EMF (Section 2.3.1), Epsilon (Section 2.3.2)
and metamodelling.

As was the case for the design and implementation of the metamodel-independent
syntax (Section 5.1), it was preferrable to avoid dependencies on tools that were not part
of the Eclipse Modelling Project (in order not to complicate installation of the notation
for users). In 2008, the Eclipse Modeling Project3 did not provide a standard T2M
language or DSL framework, and so these implementation strategies were discounted.

Instead, Epsilon HUTN was constructed using existing languages of the Epsilon
platform. To parse HUTN source, a parser was generated with the ANTLR parser
generator tool [Parr 2007], which had been used successfully to implement parsers
for every task-specific language of Epsilon [Kolovos 2009]. A parser generated with
ANTLR emits an abstract syntax tree (a set of Java objects that conform to a simple
tree data structure), from which the Epsilon HUTN tool needs to produce an EMF
model.

Figure 5.15: A metamodel for abstract syntax trees, in Ecore

The abstract syntax tree produced by ANTLR can be regarded as a model (con-
forming to the metamodel in Figure 5.15) and hence, producing an EMF model from
the abstract syntax tree can be regarded as a model-to-model transformation. Ep-
silon HUTN, however, was designed as two separate model-to-model transformations,
for two reasons. Firstly, initial prototyping highlighted that the difference between a
model represented in terms of the tree metamodel in Figure 5.15 and the same model
represented in metamodel-specific terms is vast, and the logic required to perform a
one-step transformation quickly became complicated even for simple models. In par-
ticular, each transformation rule would have required a lengthly guard statement to
distinguish Nodes representing different types of model element, which would have
been difficult to debug and maintain. Secondly, it became apparent that the concrete
syntax defined in OMG HUTN could be transformed to the metamodel-independent

3http://www.eclipse.org/modeling/

http://www.eclipse.org/modeling/

108 CHAPTER 5. DESIGN AND IMPLEMENTATION

syntax defined in Section 5.1, which would reduce implementation effort by re-using
the metamodel and conformance checking service described in Section 5.1.

Implementation of Epsilon HUTN

For the reasons outlined above, Epsilon HUTN is implemented using two model-to-
model transformations. Figure 5.16 outlines the workflow through Epsilon HUTN,
from HUTN source text to an EMF instantiation of the target model. The HUTN
model specification is parsed to an abstract syntax tree using a HUTN parser speci-
fied in ANTLR [Parr 2007]. From this, a Java postprocessor is used to construct an
instance of the simple AST metamodel in Figure 5.15. Using ETL, a M2M trans-
formation is applied to produce an intermediate model, which is an instance of the
metamodel-independent syntax discussed in Section 5.1. Validation is performed on
the intermediate model to ensure that the syntactic constraints specified in the OMG
HUTN specification are satisfied4, and that the model conforms to the target meta-
model. Conformance checking is achieved by re-using the service presented in Sec-
tion 5.1. Finally, a M2T transformation on the target metamodel, specified in EGL,
produces a further M2M transformation, which consumes the intermediate model and
produces the target model5.

Figure 5.16: The architecture of Epsilon HUTN.

The modular architecture in Figure 5.16 facilitated the re-use of the metamo-
del-independent syntax and conformance checking service described in Section 5.1,
and hence reduced implementation effort. A small modification was made to the
metamodel-independent syntax to facilitate the implementation of Epsilon HUTN: an
additional metaclass, PackageObject, was added to the metamodel-independent syn-
tax. In OMG HUTN, packages are used to segregate a model such that different parts of
a OMG HUTN document can refer to different metamodels. Consequently, a Packa-
geObject has a type (i.e. the metamodel to which its contents refer), an optional iden-
tifier (used for inter-package references) and contains any number of Objects. To avoid
confusion with PackageObject, the Object class in the metamodel-independent

4For example, no two objects may have the same identifier.
5This final step involves a higher-order transformation (a M2T transformation is used to produce

a M2M transformation), and is described in more detail below.

5.2. EPSILON HUTN: A TEXTUAL MODELLING NOTATION 109

syntax was renamed to ClassObject. The version of the metamodel-independent
syntax used with Epsilon HUTN is shown in Figure 5.17.

Figure 5.17: Final version of the metamodel-independent syntax, in Ecore

Each module of the architecture in Figure 5.16 is now discussed in detail. Note
that, in this section, instances of the metamodel-independent syntax produced during
the execution of the HUTN workflow are termed an intermediate model.

Parsing the HUTN Source A parser for OMG HUTN was constructed using
ANTLR [Parr 2007], a parser generator tool. ANTLR produces a parser from an
annotated EBNF grammar definition. To simplify the implementation of the model
transformations described below, the EBNF grammar used by Epsilon HUTN varies
slightly from the grammar defined in OMG HUTN. Part of the grammar definition used
by Epsilon HUTN is shown in Listing 5.11 and is used to generate parser rules that
process the body of ClassObjects. The attr rule on line 4, for example, matches
any number of comma separated attribute values or the null keyword.

Epsilon HUTN uses a simple, bespoke Java post-processor to construct instances
of the abstract syntax tree metamodel (Figure 5.15) from the Java objects produced
by ANTLR. Specifically, the post-processor copies the Java objects produced by the
parser into an EMF resource, and hence produces a model that can be managed with
EMF.

1 cls_contents = feature | adjective

2 feature = NAME ASSIGNMENT feature_contents

3 feature_contents = attr | refs | containments

4 attr = attr_value { COMMA attr } | NULL

Listing 5.11: An extract of the Epsilon HUTN grammar definition in EBNF

AST Model to Intermediate Model For M2M transformation, Epsilon HUTN
uses ETL [Kolovos et al. 2008b]. One of the transformation rules from Epsilon HUTN
is shown in Listing 5.12; the complete transformation is presented in Listing A.3. In

110 CHAPTER 5. DESIGN AND IMPLEMENTATION

Listing 5.12, the rule (starting on line 1) transforms a Node with type name (which
could represent a PackageObject or a ClassObject) to a PackageObject in
the intermediate model. The guard (line 5) specifies that a name node will only be
transformed to a PackageObject if the node has no parent (i.e. it is a top-level
node, and hence a package rather than a class). The body of the rule states that the
type, line number and column number of the package are determined from the text,
line and column attributes of the Node object. On line 11, the children of the Node
object are transformed to the intermediate model (using a method built into ETL,
equivalent()), and added to the objects reference of the PackageObject.

1 rule NameNode2PackageObject

2 transform n : AntlrAst!Node

3 to p : Intermediate!PackageObject {

4

5 guard : n.type == ’Name’ and n.parent.isUndefined()

6

7 p.type := n.text;

8 p.line := n.line;

9 p.col := n.column;

10

11 p.objects.addAll(n.children.equivalent());

12 }

Listing 5.12: Transforming Nodes to PackageObjects with ETL.

Intermediate Model Validation An advantage of the two-stage transformation
is that contextual analysis can be specified in an abstract manner – that is, without
having to express the traversal of the AST. This gives clarity and minimises the amount
of code required to define syntactic constraints.

1 context ClassObject {

2 constraint IdentifiersMustBeUnique {

3 guard: self.id.isDefined()

4 check: ClassObject.all

5 .select(c|c.id = self.id).size() = 1;

6 message: ‘Duplicate identifier: ’ + self.id

7 }

8 }

Listing 5.13: A constraint (in EVL) to check that all identifiers are unique

Epsilon HUTN uses EVL [Kolovos et al. 2009] to specify validation, resulting in
highly expressive syntactic constraints. An EVL constraint comprises a guard, the
logic that specifies the constraint, and a message to be displayed if the constraint is not
met. For example, Listing 5.13 specifies the constraint that every HUTN class object
has a unique identifier. The complete set of constraints is presented in Listing A.4.

5.2. EPSILON HUTN: A TEXTUAL MODELLING NOTATION 111

In addition to the syntactic constraints defined in the OMG HUTN specification,
the EVL constraints for checking conformance (Section 5.1) are executed on the model
at this stage.

Intermediate Model to Target Model When the intermediate model conforms
to the target metamodel, the intermediate model can be transformed to an instance of
the target metamodel. In other words, the model can be represented in a metamodel-
specific manner and, for example, used with model management operations. In gen-
erating the target model from the intermediate model (Figure 5.16), the transforma-
tion uses information from the target metamodel, such as the names of classes and
features. A typical approach to this category of problem is to use a higher-order
transformation (HOT) on the target metamodel to generate the desired transforma-
tion [Tisi et al. 2009]. Currently, ETL cannot be used to produce a transformation
from a transformation and hence Epsilon HUTN uses a slightly different approach: the
transformation to the target model is produced by executing a M2T transformation on
the target metamodel, using EGL [Rose et al. 2008b]. EGL is a template-based M2T
language; [% %] tag pairs are used to denote dynamic sections, which may produce
text when executed; any code not enclosed in a [% %] tag pair is included verbatim
in the generated text.

Listing 5.14 shows part of the M2T transformation used by Epsilon HUTN; the
complete M2T transformation is presented in Listing A.5. When executed on the
target metamodel, the M2T transformation generates an ETL program (i.e. a M2M
transformation). The generated ETL code transforms an intermediate model to a model
that conforms to the target metamodel. The loop beginning on line 1 of Listing 5.14
iterates over each metaclass in the target metamodel, producing a M2M transformation
rule. The generated transformation rule consumes a ClassObject in the intermediate
model and produces an element of the target model. The guard of the generated
transformation rule (line 6) ensures that only ClassObject with a type equal to the
current meta-class are transformed by the generated rule. To generate the body of the
rule, the M2T transformation iterates over each structural feature of the current meta-
class, and generates appropriate transformation code for populating the values of each
structural feature from the slots on the class object in the intermediate model. The
part of the M2T transformation that generates the body of the M2M transformation
rule is omitted in Listing 5.14 because it contains a large amount of code for interacting
with EMF, which is not relevant to this discussion. The complete M2T transformation
is presented in Listing A.5.

1 [% for (class in EClass.allInstances()) { %]

2 rule Object2[%=class.name%]

3 transform o : Intermediate!ClassObject

4 to t : Model![%=class.name%] {

5

6 guard: o.type = ‘[%=class.name%]’

7

8 -- body omitted

112 CHAPTER 5. DESIGN AND IMPLEMENTATION

9 }

10 [% } %]

Listing 5.14: Part of the M2T transformation (in EGL) that takes a target metamodel

and generates an intermediate model to target model transformation (in ETL).

To illustrate the way in which Epsilon HUTN generates a target model from an
intermediate model, the M2T transformation in Listing 5.14 is applied to the the fam-
ilies metamodel in Figure 5.13(a). The M2T transformation generates the two M2M
transformation rules in Listing 5.15. The rules produce instances of Family and Pe-
rson from instances of ClassObject in the intermediate model. The body of each
rule copies the values from the slots of the ClassObject to the Family or Person
in the target model. Lines 7-9, for example, copy the value of the name Slot (if one
is specified) to the target Family.

Currently, Epsilon HUTN can be used only to generate EMF models. Support for
other modelling languages would require different transformations between intermedi-
ate and target model. In other words, for each target modelling language, a new EGL
template would be required. The transformation from AST to intermediate model is
independent of the target modelling language and would not need to change. As EMF
is arguably the most widely-used modelling framework today, support for other mod-
elling frameworks is not crucial for exploring the suitability of HUTN for user-driven
co-evolution. However, one interesting example of metamodel evolution predates EMF:
the changes made to UML between versions 1.5 and 2.0 of the specification. Because
the UML 1.x specifications use a version of MOF that is not supported by EMF, the
current version of Epsilon HUTN cannot be used for migrating UML 1.x models. Sev-
eral other examples, however, were available for evaluating Epsilon HUTN, and so
support for other modelling frameworks was not crucial in the context of the thesis
research.

Compliance with OMG HUTN

Epsilon HUTN is a reference implementation of the OMG HUTN standard. There
are, however, a few differences between the implementation in Epsilon and the OMG
standard. The differences are now discussed and justified. The discussion is based
on the Epsilon HUTN compliance report6, which provides up-to-date information on
compliance with the OMG HUTN standard.

Table 5.2 summarises the differences between Epsilon HUTN and the OMG HUTN
standard. Epsilon HUTN does not support two of the syntactic shortcuts described for
classes in the OMG HUTN standard: parametric attributes and enumeration adjectives.
The former are used to specify attribute values in a parametric form (e.g. Point
(0,0), for creating a Point object with x and y attributes with value 0). The latter
allows an enumeration value to prefix an object definition (e.g. female Person for
creating a Person with female gender). The attribute to which the parametric

6http://www.eclipse.org/gmt/epsilon/doc/articles/hutn-compliance/

http://www.eclipse.org/gmt/epsilon/doc/articles/hutn-compliance/

5.2. EPSILON HUTN: A TEXTUAL MODELLING NOTATION 113

1 rule Object2Family

2 transform o : Intermediate!ClassObject

3 to t : Model!Family {

4

5 guard: o.type = ’Family’

6

7 if (o.hasSlot(’name’)) {

8 t.name := o.findSlot(’name’).values.first;

9 }

10

11 if (o.hasSlot(’address’)) {

12 for (value in o.findSlot(’address’).values) {

13 t.address.add(value);

14 }

15 }

16

17 -- remainder of body omitted

18 }

19

20 rule Object2Person

21 transform o : Intermediate!ClassObject

22 to t : Model!Person {

23

24 guard: o.type = ’Person’

25

26 if (o.hasSlot(’name’)) {

27 t.name := o.findSlot(’name’).values.first;

28 }

29

30 -- remainder of body omitted

31 }

Listing 5.15: The M2M transformation generated for the Families metamodel

or enumeration values are bound is specified using OMG HUTN configuration rules
(Section 5.2.3). Parametric attribute and enumeration adjectives were not implemented
to reduce the amount of time required to build Epsilon HUTN, but could be easily added
in the future. No functionality is lost through these omissions, as alternative (albeit
less concise) notion can be used to express models without using parametric attribute
and enumeration adjectives.

Section 6.4 of the OMG HUTN standard [OMG 2004] appears to contain a mistake
in the grammar definition. Grammar rule 20 implies that an attribute’s name is optional
when specifying a keyword attribute, and that an empty string and a tilde character
are valid forms of a keyword attribute. However, the prose describing grammar rule 20
proposes no semantics for an empty string or a tilde character as a keyword attribute.

114 CHAPTER 5. DESIGN AND IMPLEMENTATION

OMG HUTN Epsilon HUTN
Feature Supported? Details of support

Packages Yes

Classes Partial
Not yet supported:

parametric attributes,
enumeration adjectives.

Attributes Yes
Corrects a mistake

in the standard.
References Yes

Classifier-level attributes Yes
Data values Yes

Inline configuration No
A configuration model

is used instead.

Configuration rules Partial
Not yet supported:

parametric attributes,
enumeration adjectives.

Table 5.2: Compliance of Epsilon HUTN with OMG HUTN

Consequently, Epsilon HUTN deviates from grammar rule 20 of the OMG HUTN
standard, and requires an attribute name for every keyword attribute.

Finally, the OMG HUTN standard defines syntax for specifying configuration rules
inline, at the start of a HUTN document. Epsilon HUTN does not support inline con-
figuration, and Epsilon HUTN documents are configured with a configuration model,
which is constructed using an EMF model editor. Using a configuration model rather
than inline configuration reduced the time required to implement Epsilon HUTN and
facilitated re-use of configuration models between HUTN documents.

The OMG HUTN standard does not include a set of compliance tests for refer-
ence implementations. Instead, the compliance of Epsilon HUTN to OMG HUTN was
checked using the many examples of HUTN documents in the OMG HUTN standard
[OMG 2004]. The examples were used to create a suite of executable compliance test
cases, which were run frequently during the development of Epsilon HUTN.

5.2.5 Migration with Epsilon HUTN

Used in combination with the metamodel-independent syntax presented in Section 5.1,
Epsilon HUTN facilitates user-driven co-evolution using the workflow in Section 5.18,
which provides an alternative to the user-driven co-evolution workflow observed in Sec-
tion 4.2.2. First, the user attempts to load a model with the model editor7. If the model
is non-conformant and cannot be loaded, the user clicks a “Generate HUTN” menu item
provided by Epsilon HUTN. Epsilon HUTN then binds the model to the metamodel-

7The workflow in Figure 5.18 assumes a graphical model editor, such as those generated by GMF,
but any editor built with EMF will exhibit the same behaviour.

5.2. EPSILON HUTN: A TEXTUAL MODELLING NOTATION 115

1 FamilyPackage "families" {

2 Family "Smiths" {

3 name: "Smiths"

4 naturalChildren: Person { name: "Paul" }

5 adoptedChildren: Person { name: "John" }

6 }

7 }

Listing 5.16: OMG HUTN for people with mothers and fathers.

independent syntax and unparses the bound model to produce HUTN source code
equivalent to XMI representation of the non-conformant model.

To support the final step of the workflow in Figure 5.18, Epsilon HUTN provides an
editor for HUTN documents that is integrated with the conformance checking service
(described in Section 5.1). The user edits the HUTN document to reconcile confor-
mance problems (i.e. performs migration), and Epsilon HUTN automatically performs
conformance checking as the user edits the HUTN document. When the conformance
problems are fixed, the user saves the HUTN document and Epsilon HUTN auto-
matically generates XMI for the conformant model (using the model transformations
described in Section 5.2.4). The conformant model can then be loaded with the model
editor.

Attempt to load
model with

graphical editor

Does EMF report any
conformance problems?

No

Yes
Invoke

XMI-to-HUTN
transformation

Edit HUTN of
non-conformant

model

Figure 5.18: User-driven co-evolution with dedicated structures

To demonstrate the way in which HUTN can be used to perform migration, the
XMI shown in Listing 5.3 is represented using OMG HUTN in Listing 5.16. Recall
that the XMI describes a Family with one adopted and one natural child.

If the Families metamodel now evolves such that children are modelled using one
rather than two features (Figure 5.13(b)), Epsilon HUTN reports conformance prob-
lems on the HUTN document using the conformance checking service described in
Section 5.1, as illustrated by the screenshot in Figure 5.19.

Resolving the conformance problems requires the user to merge the values for ad-
optedChildren and naturalChildren into a set of values for the new feature,

116 CHAPTER 5. DESIGN AND IMPLEMENTATION

Figure 5.19: Conformance problem reporting in Epsilon HUTN.

1 FamilyPackage "families" {

2 Family "Smiths" {

3 name: "Smiths"

4 children: Person { name: "Paul" },

5 Person { name: "John" }

6 }

7 }

Listing 5.17: HUTN for people with parents.

children. The Epsilon HUTN development tools provide content assistance, which
might be useful in this situation. Listing 5.17 shows a HUTN document that conforms
to the evolved metamodel in which adopted and natural children are specified using a
single feature, children.

When the user saves the reconciled HUTN document, Epsilon HUTN will auto-
matically generate XMI for the (now) conformant model, and migration is complete.
Compared to the user-driven co-evolution workflow observed in Section 4.2.2, the work-
flow presented in Figure 5.18 provides live conformance checking and a modelling no-
tation that is optimised for humans rather than for machines. The two workflows are
compared and evaluated in Chapter 6.

5.2.6 Summary

In this section, a textual modelling notation for performing model migration has been
designed and implemented. The notation proposed in this section is based on the OMG
HUTN standard, which was described in Section 5.2.3. The design and implementa-
tion of Epsilon HUTN, an implementation of OMG HUTN for EMF, was discussed
in this section. Integration of Epsilon HUTN with the metamodel-independent syntax
in Section 5.1 facilitates user-driven co-evolution with a textual modelling notation
other than XMI, as demonstrated by the example above. The user-driven co-evolution
workflow presented in Section 5.2.5 is evaluated in Chapter 6. The remainder of this
chapter focuses on developer-driven co-evolution, in which model migration strategies
are executable.

5.3. AN ANALYSIS OF MODEL MIGRATION LANGUAGES 117

5.3 An Analysis of Languages used for Model Migration

In contrast to the previous section, this section focuses on developer-driven co-evolution,
in which migration is specified as a program that metamodel users execute to migrate
their models. Section 4.2.3 discussed existing approaches to model migration, highlight-
ing variation in the languages used for specifying migration strategies. In this section,
the results of comparing migration strategy languages are described, using a new ex-
ample of metamodel evolution (Section 5.3.1). From the comparison, requirements for
a domain-specific language for specifying and executing model migration strategies are
derived (Section 5.3.3). The sequel describes an implementation of a model migration
language based on the analysis presented here. The work described in this section has
been published in [Rose et al. 2010f].

5.3.1 Co-Evolution Example

The Petri net metamodel evolution is now used to compare model migration lan-
guages. The example has been used often in co-evolution literature, and hence is
a useful benchmark for migration languages [Cicchetti et al. 2008, Garcés et al. 2009,
Wachsmuth 2007].

In Figure 5.20(a), a Petri Net is defined to comprise Places and Transitions.
A Place has any number of src or dst Transitions. Similarly, a Transition
has at least one src and dst Place. The metamodel is to be evolved to support
weighted connections between Places and Transitions and between Transitions
and Places, as shown in Figure 5.20(b). Places are connected to Transitions via
instances of PTArc. Likewise, Transitions are connected to Places via TPArc.
Both PTArc and TPArc inherit from Arc, and can be used to specify a weight.

Models that conform to the original metamodel might not conform to the evolved
metamodel. The following strategy can be used to migrate models:

1. For every instance, t, of Transition:

For every Place, s, referenced by the src feature of t:

Create a new instance, arc, of PTArc.

Set s as the src of arc.

Set t as the dst of arc.

Add arc to the arcs reference of the Net referenced by t.

For every Place, d, referenced by the dst feature of t:

Create a new instance, arc, of TPArc.

Set t as the src of arc.

Set d as the dst of arc.

Add arc to the arcs reference of the Net referenced by t.

2. And nothing else changes.

118 CHAPTER 5. DESIGN AND IMPLEMENTATION

(a) Original metamodel.

(b) Evolved metamodel.

Figure 5.20: Petri nets metamodel evolution. Taken from [Rose et al. 2010f].

5.3.2 Languages Currently Used for Model Migration

Using the above example, the languages used by existing approaches for specifying and
executing model migration strategies are now compared. From this comparison, the
strengths and weakness of each language are highlighted and requirements for a model
migration language are synthesised in the sequel.

Manual Specification with M2M Transformation

Model migration can be specified using M2M transformation. For example, the Petri
net migration has been specified in the M2M transformation language, ATL (Atlas
Transformation Language) [Jouault & Kurtev 2005], with an inference co-evolution ap-
proach [Garcés et al. 2009]. This is reproduced in Listing 5.18. Rules for migrating
Places and TPArcs have been omitted for brevity, but are similar to the Nets and
PTArcs rules.

Model transformation in ATL is specified using rules, which transform source

5.3. AN ANALYSIS OF MODEL MIGRATION LANGUAGES 119

1 rule Nets {

2 from o : Before!Net

3 to m : After!Net (places <- o.places, transitions <- o.transitions)

4 }

5

6 rule Transitions {

7 from o : Before!Transition

8 to m : After!Transition (

9 name <- o.name,

10 "in" <- o.src->collect(p | thisModule.PTArcs(p,o)),

11 out <- o.dst->collect(p | thisModule.TPArcs(o,p))

12)

13 }

14

15 unique lazy rule PTArcs {

16 from place : Before!Place, destination : Before!Transition

17 to ptarcs : After!PTArc (

18 src <- place, dst <- destination, net <- destination.net

19)

20 }

Listing 5.18: Part of the Petri nets migration in ATL, from [Rose et al. 2010f]

model elements (specified using the from keyword) to target model elements (specified
using to keyword). For example, the Nets rule on line 1 of Listing 5.18 transforms an
instance of Net from the original (source) model to an instance of Net in the evolved
(target) model. The source model element (the variable o in the Net rule) is used to
populate the target model element (the variable m). ATL allows rules to be specified
as lazy (not scheduled automatically and applied only when called by other rules).

The Transitions rule in Listing 5.18 codifies in ATL the migration strategy
described previously. The rule is executed for each Transition in the original model,
o, and constructs a PTArc (TPArc) for each reference to a Place in o.src (o.dst).
Lazy rules must be used to produce the arcs to prevent circular dependencies with
the Transitions and Places rules. Here, ATL, a typical rule-based transformation
language, is considered and model migration would be similar in QVT. With Kermeta,
migration would be specified in an imperative style using statements for copying Nets,
Places and Transitions, and for creating PTArcs and TPArcs.

In model transformation, two common categories of relationship between source
and target model, new-target and existing-target, have been identified (Section 2.1.4).
In the former, the target model is constructed afresh by the execution of the transfor-
mation, while in the latter, the target model contains the same data as the source model
before the transformation is executed. M2M transformation languages typically sup-
port new-target transformations. Some M2M transformation languages also support
existing-target transformations, but typically require the source and target metamodel

120 CHAPTER 5. DESIGN AND IMPLEMENTATION

to be identical.
In model migration, source and target metamodels differ, and therefore existing-

target transformations cannot be used to specify model migration strategies. Con-
sequently, model migration strategies are specified with new-target model-to-model
transformation languages, and often contain sections for copying from original to mi-
grated model those model elements that have not been affected by metamodel evolution.
For the Petri nets example, the Nets rule (in Listing 5.18) and the Places rule (not
shown) exist only for this reason.

Manual Specification with a Metamodel Mapping

Model migration can be undertaken using the model loading mechanisms of EMF
[Hussey & Paternostro 2006], with a tool that is termed Ecore2Ecore here. EMF binds
models to a specific metamodel, and hence cannot be used to load models that have
been affected by metamodel evolution (Section 4.2.1). Therefore, Ecore2Ecore requires
the metamodel developer to provide a mapping between the metamodelling language
of EMF (Ecore) and the concrete syntax used to persist models (XMI). Mappings are
specified using Ecore2Ecore, which can suggest relationships between source and tar-
get metamodel elements by comparing names and types. Figure 5.21 shows mappings
between the original and evolved Petri nets metamodels.

Figure 5.21: Mappings between the original and evolved Petri nets metamodels, con-
structed with the tool described in [Hussey & Paternostro 2006]

The mappings are used by the EMF XMI parser to determine the metamodel types
to which pieces of the XMI will be bound. When a type or feature is not bound, the user
must specify a custom migration strategy in Java. For the Petri nets metamodel, the
src and dst features of Place and Transition are not bound, because migration
is more complicated than a one-to-one mapping.

5.3. AN ANALYSIS OF MODEL MIGRATION LANGUAGES 121

1 private Collection<Place> toCollectionOfPlaces

2 (String value, Resource resource) {

3

4 final String[] uriFragments = value.split(" ");

5 final Collection<Place> places = new LinkedList<Place>();

6

7 for (String uriFragment : uriFragments) {

8 final EObject eObject = resource.getEObject(uriFragment);

9 final EClass place = PetriNetsPackage.eINSTANCE.getPlace();

10

11 if (eObject == null || !place.isInstance(eObject))

12 // throw an exception

13

14 places.add((Place)eObject);

15 }

16

17 return places;

18 }

Listing 5.19: Java method for deserialising a reference.

In Ecore2Ecore, model migration is specified on the XMI representation of the model
and requires some knowledge of the XMI standard. For example, in XMI, references
to other model elements are serialised as a space delimited collection of URI fragments
[Steinberg et al. 2008]. Listing 5.19 shows a fragment of the code used to migrate Petri
net models with Ecore2Ecore. The method shown converts a String containing URI
fragments to a Collection of Places. The method is used to access the src and
dst features of Transition, which no longer exist in the evolved metamodel and
hence are not loaded automatically by EMF. To specify the migration strategy for the
Petri nets example, the metamodel developer must know the way in which the src and
dst features are represented in XMI. The complete listing (presented in Section A.1)
exceeds 150 lines of code.

Operator-based Co-evolution with COPE

Operator-based approaches to identifying and managing co-evolution, such as COPE
[Herrmannsdoerfer et al. 2009a], provide a library of co-evolutionary operators. Each
co-evolutionary operator specifies both a metamodel evolution and a corresponding
model migration strategy. For example, the “Make Reference Containment” operator
from COPE evolves the metamodel such that a non-containment reference becomes a
containment reference and migrates models such that the values of the evolved reference
are replaced by copies. By composing co-evolutionary operators, metamodel evolution
can be performed and a migration strategy can be generated without writing any code.

Clearly, the development of an operator-based approach must start by identifying

122 CHAPTER 5. DESIGN AND IMPLEMENTATION

1 for (transition in petrinets.Transition.allInstances) {

2 for (source in transition.unset(’src’)) {

3 def arc = petrinets.PTArc.newInstance()

4 arc.src = source

5 arc.dst = transition

6 arc.net = transition.net

7 }

8

9 for (destination in transition.unset(’dst’)) {

10 def arc = petrinets.TPArc.newInstance()

11 arc.src = transition

12 arc.dst = destination

13 arc.net = transition.net

14 }

15 }

16

17 for (place in petrinets.Place.allInstances) {

18 place.unset(’src’)

19 place.unset(’dst’)

20 }

Listing 5.20: Petri nets model migration in COPE

operators, which can be challenging. Operators capture both metamodel evolution
and model migration semantics, and as such, a complete library of operators is dif-
ficult to imagine [Lerner 2000]. Instead, operator-based approaches seek to capture
the most commonly occurring co-evolutionary operators, which are typically identified
by examining existing examples of evolution [Herrmannsdoerfer et al. 2008a]. Hence,
the breadth of consultation when identifying operators will affect the efficacy of an
operator-based approach, because evolutionary changes that occur frequently in one
project might never occur in other projects, or vice-versa.

To perform metamodel evolution using an operator-based approach, the library
of co-evolutionary operators must be integrated with tools for editing metamodels.
COPE provides integration with the EMF tree-based metamodel editor. Operators
may be applied to an EMF metamodel, and COPE tracks their application. Once
metamodel evolution is complete, a migration strategy can be generated automatically
from the record of changes maintained by COPEs. The migration strategy is distributed
along with the updated metamodel, and metamodel users choose when to execute the
migration strategy on their models.

To be effective, operator-based approaches must provide a rich yet navigable library
of co-evolutionary operators (Section 4.2.3). COPE allows model migration strategies
to be specified manually when no co-evolutionary operator is appropriate. COPE em-
ploys a fundamentally different approach to M2M transformation and Ecore2Ecore,
using an existing-target transformation. As discussed above, existing-target transfor-

5.3. AN ANALYSIS OF MODEL MIGRATION LANGUAGES 123

mations cannot be used for specifying model migration strategies as the source (original)
and target (evolved) metamodels differ. However, models can be structured indepen-
dently of their metamodel using a metamodel-independent syntax (such as the one
introduced in Section 5.1).

Listing 5.20 shows the COPE model migration strategy for the Petri net example
given above8. Most notably, slots for features that no longer exist must be explicitly
unset. In Listing 5.20, slots are unset on four occasions (on lines 2, 9, 18 and
19), once for each feature that is in the original metamodel but not in the evolved
metamodel. These features are: src and dst of Transition and of Place. Failing
to unset slots that do not conform to the evolved metamodel causes migration to fail
with an error.

5.3.3 Requirements Identification

Requirements for a domain-specific language for model migration were identified from
the review of existing languages (Section 5.3.2). The derivation of the requirements
is now summarised, by considering two orthogonal concerns: the source-target rela-
tionship of the language used for specifying migration strategies and the way in which
models are represented during migration.

Source-Target Relationship Requirements

When migration is specified as a new-target transformation, as in ATL (Listing 5.18),
model elements that have not been affected by metamodel evolution must be explicitly
copied from the original to the migrated model. When migration is specified as an
existing-target transformation, as in COPE (Listing 5.20), model elements and values
that no longer conform to the target metamodel must be explicitly removed from the
migrated model. Ecore2Ecore does not require explicit copying or unsetting code;
instead, the relationship between original and evolved metamodel elements is captured
in a mapping model specified by the metamodel developer. The mapping model can
be derived automatically and customised by the metamodel developer. To explore
the appropriateness for model migration of an alternative to new- and existing-target
transformations, the following requirement was derived:

The migration language must automatically copy every model element that con-
forms to the evolved metamodel from original to migrated model, and must automati-
cally not copy any model element that does not conform to the evolved metamodel from
original to migrated model.

Model Representation Requirements

With Ecore2Ecore, migration is achieved by manipulating XMI. Consequently, the
metamodel developer must be familiar with XMI and must perform tasks such as

8In Listing 5.20, some of the concrete syntax has been changed in the interest of readability.

124 CHAPTER 5. DESIGN AND IMPLEMENTATION

dereferencing URI fragments (Listing 5.19) and type conversion. Transformation lan-
guages abstract over the underlying storage representation of models (such as XMI) by
using a modelling framework to load, store and access models.

The migration language must not expose the underlying representation of models.

To apply co-evolution operators, COPE requires the metamodel developer to use
a specialised metamodel editor. The editor can manipulate only metamodels defined
with EMF. Similarly, the mapping tool used in the Ecore2Ecore approach can be used
only with metamodels defined with EMF. Although EMF is arguably very widely-used,
other modelling frameworks exist. Adapting to interoperate with new systems is recog-
nised as a common reason for software evolution [Sjøberg 1993], and migration between
modelling frameworks is as a possible use case for a model migration language. In par-
ticular, there is demand for migrating between UML 1 (e.g. [OMG 2001]) and UML
2 (e.g. [OMG 2007b]) models9, which are typically managed with different modelling
frameworks. Decoupling model management operations from the model representation
facilitates interoperability with many modelling technologies, as demonstrated by Ep-
silon (Section 2.3.2). Therefore, to facilitate interoperability with modelling frameworks
other than EMF, the following requirement was derived:

The migration language must be loosely coupled with modelling frameworks and must
not assume that models and metamodels will be represented in EMF.

5.4 Epsilon Flock: A Model Migration Language

Driven by the analysis presented above, a domain-specific language for model migration,
Epsilon Flock (subsequently referred to as Flock), has been designed and implemented.
Flock makes idiomatic a novel and complicated semantics for automatically copying
model elements from original to migrated model and a domain-specific language was
preferred to repurposing an existing language to capture the semantics with a compact
and tailored syntax. Section 5.4.1 discusses the principle tenets of Flock, which include
user-defined migration rules and a novel algorithm for relating source and target model
elements. In Section 5.4.2, Flock is demonstrated via application to three examples
of model migration. Finally, Section 5.4.3 provides patterns and guidelines for using
the model migration language provided by Flock to specify migration strategies. The
work described in this section has been published in [Rose et al. 2010f], except for
Section 5.4.3 which provides new material.

5.4.1 Design and Implementation

Flock has been designed to be a rule-based transformation language that mixes declar-
ative and imperative parts. Consequently, Flock should be familiar to developers

9Forum discussion with Tom Morris, lead developer of the ArgoUML tool, http:
//www.planet-research20.org/ttc2010/index.php?option=com_community&view=
groups&task=viewdiscussion&groupid=4&topicid=20&Itemid=150 (registration required).

http://www.planet-research20.org/ttc2010/index.php?option=com_community&view=groups&task=viewdiscussion&groupid=4&topicid=20&Itemid=150
http://www.planet-research20.org/ttc2010/index.php?option=com_community&view=groups&task=viewdiscussion&groupid=4&topicid=20&Itemid=150
http://www.planet-research20.org/ttc2010/index.php?option=com_community&view=groups&task=viewdiscussion&groupid=4&topicid=20&Itemid=150

5.4. EPSILON FLOCK: A MODEL MIGRATION LANGUAGE 125

who have used hybrid-style M2M transformation languages, such as ATL and ETL
[Kolovos et al. 2008b]. Flock is syntactically efficient, but semantically complex. In
particular, the way in which Flock relates source to target elements is novel; it is neither
a new- nor an existing-target relationship. Instead, elements are copied conservatively,
as described below.

Like Epsilon HUTN (Section 5.2.4), Flock reuses parts of Epsilon (Section 2.3.2).
In particular, Flock reuses EMC to provide interoperability with several modelling
frameworks, and EOL for specifying the imperative part of user-defined migration
rules.

Abstract Syntax

As illustrated by Figure 5.22, Flock migration strategies are organised into modules
(FlockModule). Flock modules inherit from EOL modules (EolModule) and hence
provide language constructs for specifying user-defined operations and for re-using mod-
ules. Flock modules comprise any number of rules (Rule). Each rule has an original
metamodel type (originalType) and can optionally specify a guard, which is ei-
ther an EOL statement or a block of EOL statements. MigrateRules must specify an
evolved metamodel type (evolvedType) and/or a body comprising a block of EOL
statements.

Figure 5.22: The abstract syntax of Flock.

Concrete Syntax

Listing 5.21 shows the concrete syntax of migrate and delete rules. All rules begin with
a keyword indicating their type (either migrate or delete), followed by the original
metamodel type. Guards are specified using the when keywords. Migrate rules may
also specify an evolved metamodel type using the to keyword and a body as a (possibly
empty) sequence of EOL statements.

Note that Flock does not define a create rule. The creation of new model elements
is instead encoded in the imperative part of a migrate rule specified on the containing
type.

126 CHAPTER 5. DESIGN AND IMPLEMENTATION

1 migrate <originalType> (to <evolvedType>)?

2 (when (:<eolExpression>)|({<eolStatement>+}))? {

3 <eolStatement>*

4 }

5

6 delete <originalType>

7 (when (:<eolExpression>)|({<eolStatement>+}))?

Listing 5.21: Concrete syntax of migrate and delete rules.

Execution Semantics

When executed, a Flock module consumes an original model, O, and constructs a
migrated model, M. The transformation is performed in three phases: rule selection,
equivalence establishment and rule execution. The behaviour of each phase is described
below, and the first example in Section 5.4.2 demonstrates the way in which a Flock
module is executed.

Rule Selection The rule selection phase determines an applicable rule for every
model element, e, in O. As such, the result of the rule selection phase is a set of pairs
of the form <r,e> where r is a migration rule.

A rule, r, is applicable for a model element, e, when the original type of r is the
same type as (or is a supertype of) the type of e; and the guard part of r is satisfied
by e.

The rule selection phase has the following behaviour:

• For each original model element, e, in O:

− Identify for e the set of all applicable rules, R. Order R by the occurrence
of rules in the Flock source file.

◦ If R is empty, let r be a default rule, which has the type of e as both its
original and evolved type, and an empty body.

◦ Otherwise, let r be the first element of R.

− Add the pair <r,e> to the set of selected rules.

Rules are ordered according to their position in the Flock source file. A rule that ap-
pears earlier (higher) in the source file has priority. Ordering rules according to general-
ity is an alternative approach for distinguishing between applicable rules [Wallace 2005].
In model transformation, the generality of a rule might be assessed by considering its
source type and guard. For Flock, the former approach was preferred, because it sim-
plified implementation and is consistent with the way in which rules are selected in
other languages of the Epsilon platform.

5.4. EPSILON FLOCK: A MODEL MIGRATION LANGUAGE 127

Equivalence Establishment The equivalence establishment phase creates an equiv-
alent model element, e’, in M for every pair of rules and original model elements,
<r,e>. The equivalence establishment phase produces a set of triples of the form
<r,e,e’>, and has the following behaviour:

• For each pair <r,e> produced by the rule selection phase:

− If r is a delete rule, do nothing.

− If r is a migrate rule:

◦ Create a model element, e’, in M. The type of e’ is determined from
the the evolvedType (or the originalType when no evolvedType has been
specified) of r.

◦ Copy the data contained in e to e’ (using the conservative copy algorithm
described in the sequel).

◦ Add the triple <r,e,e’> to the set of equivalences.

Rule Execution The final phase executes the imperative part of the user-defined
migration rules on the set of triples <r,e,e’>, and has the following behaviour:

• For each triple <r,e,e’> produced by the equivalence establishment phase:

− Bind e and e’ to new EOL variables named original and migrated,
respectively.

− Execute the body of r with EOL.

Conservative Copy

Flock contributes a novel algorithm, termed conservative copy, that copies model el-
ements from original to migrated model only when those model elements conform
to the evolved metamodel. Conservative copy is a hybrid of the new- and existing-
target source-target relationships that are commonly used in M2M transformation
[Czarnecki & Helsen 2006], because some model elements are copied from source to
target (as in an existing-target transformation), while some model elements must be
copied explicitly (as in a new-target transformation).

Conservative copy operates on an original model element, e, and its equivalent
model element in the migrated model, e’, and has the following behaviour:

• For each metafeature, f for which e has specified a value:

− Find a metafeature, f’, of e’ with the same name as f.

◦ If no equivalent metafeature can be found, do nothing.

◦ Otherwise, copy the original value (e.f) to produce a migrated value
(e’.f’) if and only if the migrated value conforms to f’.

128 CHAPTER 5. DESIGN AND IMPLEMENTATION

The definition of conformance varies over modelling frameworks. Typically, confor-
mance between a value, v, and a feature, f, specifies at least the following constraints:

• The type of v must be the same as or a subtype of the type of f.

• The size of v must be greater than or equal to the lowerbound of f.

• The size of v must be less than or equal to the upperbound of f.

EMC provides drivers for several modelling frameworks, permitting management of
models defined with EMF, the Metadata Repository (MDR), Z or XML. To support
migration between metamodels defined in heterogeneous modelling frameworks, EMC
has been extended to support conformance checking; each EMC driver provides con-
formance checking semantics specific to its modelling framework. Specifically, EMC
define Java interfaces for specifying the way in which model values are written to a
model, and an additional, conformance checking Java method has been added to the
interface. When a Flock module is executed, conformance checking responsibilities are
delegated to EMC drivers by calling the new method. The conformance checking sup-
port in EMC is applicable to other areas of the Epsilon platform and, in particular,
could be used to add some static type checking to the Epsilon languages, which are
currently dynamically typed.

In response to some types of metamodel evolution, some categories of model value
must be converted before being copied from the original to the migrated model. Again,
the need for and semantics of this conversion varies over modelling frameworks. For
example, reference values typically require conversion before copying because, once
copied, they must refer to elements of the migrated rather than the original model. In
this case, the set of equivalences (<r,e,e’>) can be used to perform the conversion.
In other cases, the target modelling framework must be used to perform the conversion,
such as when EMF enumeration literals are copied.

5.4.2 Examples of Flock Migration

Flock is now demonstrated using three examples of model migration. The first example
demonstrates the way in which a Flock module is executed and illustrates the semantics
of conservative copy. The second describes the way in which the migration of the Petri
net co-evolution example (Section 5.3.1) can be specified with Flock, and is included
for direct comparison with the other languages discussed in Section 5.3. The final,
larger example demonstrates all of the features of Flock, and is based on changes made
to UML class diagrams between versions 1.5 and 2.0 of the UML specification.

Process-Oriented Migration in Flock

The first example considers the evolution of a process-oriented metamodel, intro-
duced in Section 4.1.3 and described in Appendix B. The process-oriented metamodel

5.4. EPSILON FLOCK: A MODEL MIGRATION LANGUAGE 129

was developed to explore the feasibility of a graphical model editor for represent-
ing programs written in process-oriented programming languages, such as occam-π
[Welch & Barnes 2005].

(a) Original metamodel.

(b) Evolved metamodel.

Figure 5.23: Evolution of the Process-Oriented metamodel (Appendix B)

The original metamodel, shown in Figure 5.23(a), has been evolved to distinguish
between ConnectionPoints that are a reader for a Channel and ConnectionP-
oints that are a writer for a Channel by making ConnectionPoint abstract and
introducing two subtypes, ReadingConnectionPoint and WritingConnectio-
nPoint, as shown in Figure 5.23(b).

The model shown in Figure 5.24 conforms to the original metamodel in Figure 5.23(a)
and is to be migrated. The model comprises three Processes named delta, prefix and

130 CHAPTER 5. DESIGN AND IMPLEMENTATION

1 migrate ConnectionPoint to ReadingConnectionPoint when: original.outgoing.

isDefined()

2 migrate ConnectionPoint to WritingConnectionPoint when: original.incoming.

isDefined()

Listing 5.22: Redefining equivalences for the Component model migration.

minus; three Channels named a, b and c; and six ConnectionPoints named a?,
a!, b?, b!, c? and c!.

Figure 5.24: Process-Oriented model prior to migration

For the migration strategy shown in Listing 5.22, the Flock module will perform
the following steps. Firstly, the rule selection phase produces a set of pairs <r,e>.
For each ConnectionPoint, the guard part of the user-defined rules control which
rule will be selected. ConnectionPoints a!, b! and c! have outgoing Channels
(a, b and c respectively) and hence the migration rule on line 1 is selected. Sim-
ilarly, the ConnectionPoints a?, b? and c? have incoming Channels (a, b

5.4. EPSILON FLOCK: A MODEL MIGRATION LANGUAGE 131

and c respectively) and hence the migration rule on line 2 is selected. There is no
ConnectionPoint with both an outgoing and an incoming Channel, but if there
were, the first applicable rule (i.e. the rule on line 1) would be selected. For the other
model elements (the Processes and Channels) no user-defined rules are applicable,
and so default rules are used instead. A default rule has an empty body and identical
original and evolved types. In other words, a default rule for the Process type is
equivalent to the user-defined rule: migrate Process to Process {}

Secondly, the equivalence establishment phase creates an element, e’, in the mi-
grated model for each pair <r,e>. For each ConnectionPoint, the evolved type
of the selected rule (r) controls the type of e’. The rule on line 1 of Listing 5.22
was selected for the ConnectionPoints a!, b! and c! and hence an equivalent
element of type ReadingConnectionPoint is created for a!, b! and c!. Similarly,
an equivalent element of type WritingConnectionPoint is created for a?, b? and
c?. For the other model elements (the Processes and Channels) a default rule was
selected, and hence the equivalent model element has the same type as the original
model element.

Finally, the rule execution phase performs a conservative copy for each original and
equivalent model element in the set of triples <r,e,e’> produced by the equivalence
establishment phase. The metamodel evolution shown in Figure 5.23 has not affected
the Process type, and hence for each Process in the original model, conservative
copy will create a Process in the migrated model and copy the values of all features.
For each Channel in the original model, conservative copy will create an equivalent
Channel in the migrated model and copy the value of the name feature from original
to migrated model element. However, the values of the reader and writer features
will not be copied by conservative copy because the type of these features has changed
(from ConnectionPoint to ReadingConnectionPoint and WritingConnec-
tionPoint, respectively). The values of the reader and writer features in the
original model will not conform to the reader and writer features in the evolved
metamodel. Finally, the values of the name, incoming and outgoing features of
the ConnectionPoint class have not evolved, and hence are copied directly from
original to equivalent model elements.

The rule execution phase also executes the body of each rule, r, for every triple in
the set <r,e,e’>. The user-defined rules in Listing 5.22 have no body, and hence no
further execution is performed in this case.

Petri Nets Migration in Flock

The Petri net metamodel evolution demonstrates the core functionality of Flock. In
Listing 5.23, Nets and Places are migrated automatically. Unlike the ATL migration
strategy (Listing 5.18), no explicit copying rules are required. Compared to the COPE
migration strategy (Listing 5.20), the Flock migration strategy does not need to unset
the original src and dst features of Transition.

1 migrate Transition {

2 for (source in original.src) {

132 CHAPTER 5. DESIGN AND IMPLEMENTATION

3 var arc := new Migrated!PTArc;

4 arc.src := source.equivalent(); arc.dst := migrated;

5 arc.net := original.net.equivalent();

6 }

7

8 for (destination in original.dst) {

9 var arc := new Migrated!TPArc;

10 arc.src := migrated; arc.dst := destination.equivalent();

11 arc.net := original.net.equivalent();

12 }

13 }

Listing 5.23: Petri nets model migration in Flock

UML Class Diagram Migration in Flock

Figure 5.25 illustrates a subset of the changes made between UML 1.5 and UML 2.0.
Only class diagrams are considered, and features that did not change are omitted.
In Figure 5.25(a), association ends and attributes are specified separately. In Fig-
ure 5.25(b), the Property class is used instead. The Flock migration strategy (List-
ing 5.24) for Figure 5.25 is now discussed.

Firstly, Attributes and AssociationEnds are migrated to be Properties
(lines 14 to 18, and 25 to 29). In particular, the Association#navigableEnds
reference replaces the AssociationEnd#isNavigable attribute; following migra-
tion, each navigable AssociationEnd must be referenced via the navigableEnds
feature of its Association (lines 26-28).

In UML 2.0, StructuralFeature#ownerScope has been replaced by #isS-
tatic (lines 15-17 and 20-22). The UML 2.0 specification states that the UML 1.5
values ScopeKind#classifier and #instance should be migrated to true and to
false, respectively.

The UML 1.5 StructuralFeature#targetScope feature is no longer sup-
ported in UML 2.0, and no migration path is provided. Consequently, line 14 deletes
any model element whose targetScope is not the default value.

Finally, Class#features has been split to form Class#operations and #at-
tributes. Lines 7 and 8 partition features on the original Class into Operations
and Propertys. Class#associations has been removed in UML 2.0, and Asso-
ciationEnds are instead stored in Class#attributes (line 9).

5.4. EPSILON FLOCK: A MODEL MIGRATION LANGUAGE 133

1 migrate Association {

2 migrated.memberEnds := original.connections.equivalent();

3 }

4

5 migrate Class {

6 var fs := original.features.equivalent();

7 migrated.operations := fs.select(f|f.isKindOf(Operation));

8 migrated.attributes := fs.select(f|f.isKindOf(Property));

9 migrated.attributes.addAll(original.associations.equivalent())

10 }

11

12 delete StructuralFeature when: original.targetScope <> #instance

13

14 migrate Attribute to Property {

15 if (original.ownerScope = #classifier) {

16 migrated.isStatic = true;

17 }

18 }

19 migrate Operation {

20 if (original.ownerScope = #classifier) {

21 migrated.isStatic = true;

22 }

23 }

24

25 migrate AssociationEnd to Property {

26 if (original.isNavigable) {

27 original.association.equivalent().navigableEnds.add(migrated)

28 }

29 }

Listing 5.24: UML model migration in Flock

134
C

H
A

P
T

E
R

5.
D

E
S
IG

N
A

N
D

IM
P

L
E

M
E

N
T
A

T
IO

N

(a) Original, UML 1.5 metamodel.

(b) Evolved, UML 2.0 metamodel.

Figure 5.25: UML metamodel evolution

5.4. EPSILON FLOCK: A MODEL MIGRATION LANGUAGE 135

5.4.3 Developing Migration Strategies with Epsilon Flock

To demonstrate the way in which Flock can be used to specify migration strategies,
this section provides a guide to the model migration language provided by Flock. In
particular, the main features of EOL (the core language of Epsilon, which provides
a foundation for Flock) are summarised, and then the way in which Flock can be
used to specify model migration strategies in response to common types of metamodel
evolution is discussed. Finally, guidelines are presented for specifying Flock migration
strategies when the original and evolved metamodels use type inheritance, because the
implementation of conservative copy provided by Flock affects the way in which such
migration strategies are specified.

EOL for Migration Strategies

As discussed in Section 5.4.1, EOL is used to specify the guards and bodies of Flock
rules. EOL is dynamically and strongly typed, and is a pure object-oriented language:
primitives, collections and model elements are objects. The fundamental properties of
EOL and its core functionality are now summarised.

The Any type The universal (top) type in EOL is called Any, and defines operations
for performing null checks (isDefined and isUndefined), for type-checking (isTy-
peOf and isKindOf) and for printing to the standard output stream (print and
println). In Flock, null and type checks are most often used in the guard of a
migrate rule. For example, Listing 5.25 shows a fragment of a migration strategy that
makes explicit that LabourItems are a special type of JobItem because they always
reference an employee. Consequently, migration involves retyping only those JobItems
that have a non-null value for the feature employee (i.e. employee.isDefined()
evaluates to true).

Built-in types EOL provides four primitive types (String, Integer, Real and
Boolean) and four collection types (Bag, Sequence, Set and OrderedSet). The
built-in types provide many operations for manipulating primitive and collection values
[Kolovos et al. 2006]. For example, Listing 5.26 demonstrates the way in which the St-
ring and Sequence types can be used to extract an author’s name and email address
from text of the form "Joe Bloggs" <joe.bloggs@example.com>. On line 2,
the String#split operation is used to divide the original string into two parts (i.e.
a Sequence). On lines 4 and 5 the Collection#first and Collection#last
operations are used to access each part of the original string, and the String#trim
operation is used to remove superfluous prefix and suffix characters from the substrings.

1 migrate JobItem to LabourItem when: original.employee.isDefined()

Listing 5.25: Using a non-null check to guard a migration rule

136 CHAPTER 5. DESIGN AND IMPLEMENTATION

1 migrate Article {

2 var authorParts : Sequence := original.author.split(’<’);

3

4 migrated.authorName := authorParts.first.trim(’"’, ’"’);

5 migrated.authorEmail := authorParts.last.trim(’<’, ’>’);

6

7 }

Listing 5.26: Using primitive and collection values

1 migrate Partition {

2 migrated.edges := original.contents.collect(e : Transition | e.equivalent());

3 migrated.nodes := original.contents.reject(ofs : ObjectFlowState | true).

collect(n : StateVertex | n.equivalent());

4 }

Listing 5.27: Using higher-order operations on collections

Variable declarations are also demonstrated in Listing 5.26. Line 2 declares the
authorParts variable, sets its type to Sequence, and sets its initial value. Variable
declarations can omit the type (in which case Any is used) and the initialisation (in
which case null is used). Variables are scoped to their enclosing context (denoted with
brackets: {}). In Flock, a variable is local to either a migration rule or an operation,
and the user cannot define global variables.

Collection types The collection types in EOL provide higher-order operations, such
as select and reject (which filter a collection); collect (which applies a function
to every element of a collection); and exists (which returns true iff at least one
member of the collection satisfies the specified predicate). The higher-order operations
have no side-effects: they do not modify the collection on which they are called. In
Flock, the select and collect operators are most often used to partition values
for migration in response to splitting a feature. For example, Listing 5.27 presents
a fragment of a migration strategy for UML activity diagrams, which is discussed
in full in Section 6.4. Briefly, the Partition metaclass has evolved such that the
contents feature has been split into two features (edges and nodes). Migration
involves dividing the elements of the contents into the new features. The collect
operator is used to apply the built-in equivalent() operator to every Transiti-
on (line 2) and to every StateVertex (line 3) in a collection. Note that on line
3, the reject operator is used to filter out instances of ObjectFlowState from a
collection. The higher-order operations are sometimes chained together as shown on
line 3.

5.4. EPSILON FLOCK: A MODEL MIGRATION LANGUAGE 137

(a) Original metamodel. (b) Evolved metamodel.

Figure 5.26: Evolution of a unidirectional to a bidirectional reference.

1 migrate Person {

2 migrated.mother := Original!Person.all

3 .selectOne(p|p.gender = "f" and

4 p.children.includes(original))

5 .equivalent();

6 }

Listing 5.28: Using metamodel types

Metamodel types EOL programs can access metamodel types using the syntax
ModelName!MetamodelType. Flock migration strategies are typically executed on
two models (the original and migrated models), and conventionally the two models
are called Original and Migrated. EOL provides metamodel type operations for
accessing all instances of a type (allInstances) and for checking whether a type can
be instantiated (isInstatiable). In Flock, metamodel types are sometimes used
to navigate between model elements for which there exists no direct reference. For
example, consider the metamodel evolution in Figure 5.26. The children reference
has been evolved to become bidirectional. Migration involves setting the value of a
mother reference for every Person. Searching the children reference for every Pe-
rson in the model can be achieved using the all property (a syntactic shortcut for the
allInstances operation) on the Original!Person metamodel type (Listing 5.28).
(Note that selectOne(x) is a syntactic shortcut for select(x).random()).

Instantiation with new Like the primitive and collection types, metamodel types
can be instantiated using the new keyword. Model elements can be deleted (com-
pletely removed from a model) using the delete keyword. Flock migration strategies
conventionally have read-only access to the Original model and read-write access to
Migrated model, and hence model elements are typically only created in – and deleted
from – the Migrated model. Listing 5.29 demonstrates using the new keyword to cre-
ate elements in the Migrated model. Specifically, one instance of Connection is
created for every member of the successor reference for each Block.

138 CHAPTER 5. DESIGN AND IMPLEMENTATION

1 migrate Block {

2 for (successor in original.successors) {

3 var connection := new Migrated!Connection;

4 connection.source := migrated;

5 connection.target := successor.equivalent();

6

7 migrated.outgoing.add(connection);

8 }

9 }

Listing 5.29: Creating new model elements

1 migrate Block {

2 for (successor in original.successors) {

3 var connection := connect(migrated, successor.equivalent());

4 migrated.outgoing.add(connection);

5 }

6 }

7

8 operation connect(source : Migrated!Block, target : Migrated!Block) : Connection

{

9 var connection := new Migrated!Connection;

10 connection.source := source;

11 connection.target := target;

12 return connection;

13 }

Listing 5.30: Using a context-less custom operation

Control flow Listing 5.29 also demonstrates the use of the for construct for iterating
over collection values. Additionally, EOL provides the if and while constructs for
controlling the execution path of a program.

Custom operations Logic can be re-used and existing types enhanced via custom
operations. For example, the migrate rule in Listing 5.29 can also be written using an
operation to create instances of Connection (Listing 5.30). The connect operation
can be re-used by other migrate rules.

The connect operation in Listing 5.30 is context-less: it is not called using dot
notation. An existing type can be specified when defining an operation, and then the
operation is invoked using dot notation. For example, the connect operation could
be rewritten in the context of the Migrated!Block type (Listing 5.31). Compared
to the context-less version, the custom operation is now invoked directly on the mi-
grated object using dot notation. Note that the self built-in variable can be used
to refer to the object on which the custom operation is invoked (line 10).

5.4. EPSILON FLOCK: A MODEL MIGRATION LANGUAGE 139

1 migrate Block {

2 for (successor in original.successors) {

3 var connection := migrated.connectTo(successor.equivalent());

4 migrated.outgoing.add(connection);

5 }

6 }

7

8 operation Migrated!Block connectTo(target : Migrated!Block) : Connection {

9 var connection := new Migrated!Connection;

10 connection.source := self;

11 connection.target := target;

12 return connection;

13 }

Listing 5.31: Using a custom operation in the context of a metamodel type

1 migrate Account {

2 if (migrated.type.interestRate <> original.interestRate) {

3 var message := ’Which is the correct interest rate for ’ + migrated.type.name

+ ’ accounts?’;

4 var choices := Sequence{migrated.type.interestRate, original.interestRate};

5 var defaultChoice := original.interestRate;

6

7 var chosen := System.getUserInput().choose(message, choices, defaultChoice);

8

9 // Do something with the interest rate selected by the user

10 }

11 }

Listing 5.32: Prompting for user input at runtime

User input Finally, EOL provides a mechanism for obtaining values from the user
at runtime. The System built-in variable provides access to a user input library via
its getUser operation. In Flock, user input can be used, for example, to resolve
ambiguities during migration. For example, Listing 5.32 demonstrates the way in
which the choose operation prompts the user to select between two possible interest
rates for an account type (line 7). Epsilon provides several implementations of the user
input interface for use in different contexts. For example, when running a migration
strategy in Eclipse, a user is prompted with a graphical user interface (Figure 5.27). If
a migration strategy is applied in a batch environment, the user might elect to specify
input via Epsilon’s command line interface for user input.

140 CHAPTER 5. DESIGN AND IMPLEMENTATION

Figure 5.27: Epsilon graphical user interface for selecting between values at runtime.

Specifying Migration Strategies with Epsilon Flock

Some common patterns for specifying migration strategies with Epsilon Flock are now
presented. In particular, this section suggests migration strategy patterns that can used
in response to some common types of metamodel evolution. The way in which rules
are scheduled by the Flock engine and, in particular, the way in which elements are
conservatively copied (Section 5.4.1) by the Flock engine influences the way in which
migration is specified with Flock.

Recall that conservative copy automatically copies from the original to the migrated
model only those elements that conform to the both the original and evolved meta-
models. For example, model elements will not be automatically copied when their type
does not exist in – or cannot be instantiated according to – the evolved metamodel.
When a model element is conservatively copied from original to migrated model, its
feature values are also conservatively copied. Like model elements, feature values that
do not conform to the evolved metamodel are not automatically copied. The semantics
of conservative copy is demonstrated with an example in Section 5.4.2.

Changing feature values The Flock engine executes migrate rules after conserva-
tive copy has been used to populate the migrated model. Consequently, migrate rules
can be used to change – or even to delete – feature values that were set in the migrated
model during conservative copying. Listing 5.33 demonstrates how to change a single-
valued feature value (line 3), how to refer to the original value when changing a feature
value (line 4) and how to add a value to a multi-valued feature value (line 5). Feature

5.4. EPSILON FLOCK: A MODEL MIGRATION LANGUAGE 141

1 migrate Person {

2 -- Changing model values

3 migrated.name := ’Joe Bloggs’;

4 migrated.age := original.age + 1;

5 migrated.luckyNumbers.add(42);

6

7 -- Unsetting model values

8 migrated.address := null;

9 migrated.lotteryNumbers.clear();

10 }

Listing 5.33: Changing and unsetting conservatively copied feature values

1 migrate Person {

2 if (original.id.isInteger()) {

3 migrated.id := original.id.asInteger();

4 } else {

5 (’Warning: no id has been set for ’ + migrated.name).println();

6 }

7 }

Listing 5.34: Casting feature values

values are unset by either assigning null to the feature (single-valued features) as shown
on line 8, or by calling the Collection#clear operation (multi-valued features) as
shown on line 9.

Casting feature values When the type of a feature has been changed during meta-
model evolution, it is sometimes necessary to explicitly convert a value from one type to
another (such as from a String to an Integer). In EOL, primitive types can be cast
using the built-in operations starting with as and is. Listing 5.34 demonstrates the
use of the isInteger operation to check whether casting a String to an Integer
will succeed (line 2), and the asInteger operation to perform the cast (line 3).

Migrating reference values Flock provides the equivalent() operation, which
returns an element in the migrated model (or null) when invoked on an element of the
original model, and can be used to migrate reference values. For example, invoking
equivalent() on the built-in original variable will always return the value of the
built-in migrated variable. Recall the migration rule in Listing 5.35, which was first
introduced when describing the new keyword in EOL. The rule in Listing 5.35 iterates
over a reference value in the original model, original.successors (line 2). The
body of the loop has access to an element of the original model via the successor
variable, and creates an instance of the Connection type in the migrated model.

142 CHAPTER 5. DESIGN AND IMPLEMENTATION

1 migrate Block {

2 for (successor in original.successors) {

3 var connection := new Migrated!Connection;

4 connection.source := migrated;

5 connection.target := successor.equivalent();

6

7 migrated.outgoing.add(connection);

8 }

9 }

Listing 5.35: Using equivalent() to access migrated model elements

1 delete Block when: original.name = ’Foo’;

Listing 5.36: Preventing the conservative copy of original model elements

Assigning the value of the successor variable (an element of the original model)
to the connection (an element of the migrated model) will result in inter-model
reference from the migrated model to the original model, which is typically incorrect
in the context of model migration. Instead, the equivalent() operation is called
on the successor to locate the element of the migrated model that corresponds to
successor, which is an element of the original model (line 5).

Creating model elements When metamodel evolution has introduced new classes,
migration often involves creating new model elements. With Flock, new model elements
are created in the body of a migrate rule, because their values are either derived from
data in the original model, or because they must be associated with another element of
the migrated model. Listing 5.35 demonstrates the use of the new keyword to create an
element in the migrated model (line 3). In this case, the newly created Connection
is associated with the Block that is being migrated (line 4).

Deleting model elements Model migration sometimes involves deleting model el-
ements, such as when metamodel evolution has restricted the set of conformant model
elements. (For example, the UML 2.1.2 [OMG 2007a] disallows a type of Struct-
uralFeature that was permitted in previous versions of the UML specification). In
Flock, a delete rule can be used to prevent an element of the original model from
being conservatively copied to the migrated model. Listing 5.36 demonstrates the use
of a delete rule to ensure that instances of Block with the name Foo are not auto-
matically copied from original to migrated model.

Changing the type of model elements Migration sometimes involves changing
the type of existing model elements, such as when a metamodel class has been renamed
or split. In Flock, a migrate rule optionally specifies a to part, which is used (during

5.4. EPSILON FLOCK: A MODEL MIGRATION LANGUAGE 143

1 migrate ConnectionPoint to ReadingConnectionPoint when: original.outgoing.

isDefined()

2 migrate ConnectionPoint to WritingConnectionPoint when: original.incoming.

isDefined()

Listing 5.37: Redefining equivalences for the Component model migration.

conservative copy) to determine the target type of an original model element. List-
ing 5.37 demonstrates10 the use of two migrate rules to change the type of instances of
ConnectionPoint to either ReadingConnectionPoint or WritingConnecti-
onPoint. As discussed in Section 5.4.1, rules are prioritised from top to bottom in the
Flock source file. Therefore, instances of ConnectionPoint that satisfy the guards
of both rules in Listing 5.37 are retyped to ReadingConnectionPoint rather than
WritingConnectionPoint, because the rule on line 1 takes precedence over the
rule on line 2.

Migration Strategies for Metamodels that use Inheritance

In addition to the Flock migration strategy patterns described above, users of Flock
must consider one further facet of conservative copy that affect the way in which mi-
gration strategies with Flock should be specified. Specifically, conservative copy deter-
mines the target type of a model element by locating the first applicable migrate rule
(from top to bottom in the source file). This has implications for the way in which
migrate rules should be ordered, particularly when migrating models that conform to
metamodel that use inheritance. The extent to which this implementation detail affects
the efficacy of Flock is evaluated in Section 6.2.4. Here, the way in which migration
strategies should be specified in response to the current implementation of conservative
copy in Flock is discussed.

Consider the metamodel in Figure 5.28, which uses inheritance and is based on the
GMF metamodel evolution described in Section C.3.1. Suppose that, during metamodel
evolution, the type of the figure and accessor attributes is changed from string
to integer, and migration involves deriving the migrated value for these features from
the length of the original strings. Listing 5.38 demonstrates one way to specify this
migration strategy with Flock. Note that, for the reasons given below, there is no rule
specified on the DiagramElement type, and that the rule for the DiagramLabel
type is placed above the rule for the supertype of DiagramLabel, Node.

Recall that the first applicable migrate rule is used to determine the target type.
This has two implications for specifying the migration strategy with Epsilon Flock.
Firstly, a migrate rule must not be specified for abstract types (such as DiagramEl-
ement) unless a concrete target type is specified via the to part of the migrate rule.

10The migrate rules in Listing 5.37 were first presented in Section 5.4.2 and are taken from the Flock
migration strategy for the process-oriented example described in Appendix B).

144 CHAPTER 5. DESIGN AND IMPLEMENTATION

Figure 5.28: A metamodel that uses inheritance

1 migrate Compartment {

2 migrated.figure := original.figure.length();

3 }

4

5 migrate Connection {

6 migrated.figure := original.figure.length();

7 }

8

9 migrate DiagramLabel {

10 migrated.figure := original.figure.length();

11 migrated.accessor := original.accessor.length();

12 }

13

14 migrate Node {

15 migrated.figure := original.figure.length();

16 }

Listing 5.38: A migration strategy for the metamodel evolution described in Figure 5.28

Hence, a separate migration rule must be specified for each subtype of DiagramEl-
ement.

Secondly, a migrate rule is applicable for every model element that instantiates
its original type or, crucially, a subtype of its original type. Hence, a migrate rule
specified for the Node type will also be applicable for instances of DiagramLabel.
Consequently, the migrate rule for the DiagramLabel type must be placed above the
the migrate rule for the Node type in the Flock source file. Otherwise, the Node rule
will be applied to all instances of Node and DiagramLabel, and the migrate rule
specific to DiagramLabel will never be applied.

The Flock migration strategy in Listing 5.38 exhibits some duplication due to the
way in which migrate rules must be ordered for the current implementation of con-

5.4. EPSILON FLOCK: A MODEL MIGRATION LANGUAGE 145

1 migrate Compartment {

2 migrated.migrateFigureFrom(original);

3 }

4

5 migrate Connection {

6 migrated.migrateFigureFrom(original);

7 }

8

9 migrate DiagramLabel {

10 migrated.migrateFigureFrom(original);

11 migrated.accessor := original.accessor.length();

12 }

13

14 migrate Node {

15 migrated.migrateFigureFrom(original);

16 }

17

18 operation Migrated!DiagramElement migrateFigureFrom(o : Original!DiagramElement)

{

19 self.figure := o.figure.length();

20 }

Listing 5.39: Using a custom operation to reduce duplication in the migration strategy

in Listing 5.38

servative copy in Flock. To reduce the duplication, a custom operation can be used
to encapsulate the repeated migration logic, as demonstrated in Listing 5.39. Custom
operations were described above, when discussing the core functionality of EOL.

In summary, there are three guidelines to consider when using Flock to specify mi-
gration strategies for metamodels that use inheritance. Firstly, do not specify migrate
rules for abstract types (unless a concrete type is specified via the to part of the migrate
rule). Secondly, place rules for more specific types above rules for less specific types
in the Flock source file. Finally, use custom operations to reduce duplication between
rules that migrate parts of the same type hierarchy.

Using the guidelines and patterns described above, Flock can be used to specify
migration strategies in response to metamodel evolution. Further examples of Flock
migration strategies that use the patterns and guidelines described in this section can
be found in Sections 6.2 and 6.4, and in Appendices B and C.

5.4.4 Summary

Requirements for a language tailored to model migration were described in Section 5.3.
This section has presented Epsilon Flock, a language that seeks to fulfil those require-
ments. The way in which Flock has been designed and implemented has been discussed,

146 CHAPTER 5. DESIGN AND IMPLEMENTATION

Automatic Modelling
Tool Copy Unset technologies

Ecore2Ecore 3 7 XMI
ATL 7 3 EMF, MDR, KM3, XML

COPE 3 7 EMF
Flock 3 3 EMF, MDR, XML, Z

Table 5.3: Properties of model migration approaches

with a particular focus on the novel source-target relationship, conservative copy (Sec-
tion 5.4.1). Several examples of migration strategies constructed in Flock have been
presented (Section 5.4.2). Further examples are given in Appendix C. Finally, the way
in which metamodel developers can use the model migration language provided by
Flock to specify migration strategies was discussed (Section 5.4.3).

Table 5.3 illustrates several characterising differences between Flock and the pre-
existing languages presented in Section 5.3. Due to its conservative copying algorithm,
Flock is the only language to provide both automatic copying and unsetting. The
evaluation presented in Section 6.2 explores the extent to which automatic copying
and unsetting affect the conciseness of migration strategies.

All of the approaches considered in Section 5.3 support EMF. Both Flock and ATL
support further modelling technologies, such as MDR and XML. However, ATL does
not automatically copy model elements that have not been affected by metamodel
changes. Therefore, migration between models of different technologies with ATL
requires extra statements in the migration strategy to ensure that the conformance
constraints of the target technology are satisfied. Because it delegates conformance
checking to an EMC driver, Flock requires no such checks.

A more thorough examination of the similarities and differences between Flock
and other migration strategy languages is provided by the evaluation presented in
Chapter 6.

5.5 Chapter Summary

Three structures for identifying and managing co-evolution have been designed and
implemented to approach the thesis requirements outlined in Chapter 4. The way
in which modelling frameworks implicitly enforce conformance makes managing non-
conformant models challenging, and the proposed metamodel-independent syntax (Sec-
tion 5.1) extends modelling frameworks to facilitate the management of non-conformant
models. The proposed textual modelling notation, Epsilon HUTN (Section 5.2), pro-
vides a human-usable notation as an alternative to XMI for performing user-driven
co-evolution. Finally, Epsilon Flock (Section 5.4) contributes a domain-specific lan-
guage for describing model migration.

The metamodel-independent syntax is a modelling framework extension that makes
explicit the conformance relationship between models and metamodels. By bind-

5.5. CHAPTER SUMMARY 147

ing models not to their metamodel but to a generic metamodel, the metamodel-
independent syntax allows non-conformant models to be managed with modelling tools
and model management operations. Furthermore, conformance checking is provided
as a service, which can be scheduled at any time, and not just when models are
loaded. The metamodel-independent syntax has been integrated with Concordance
[Rose et al. 2010c] to provide a metamodel installation process that automatically re-
ports conformance problems, and underpins the implementation of the second structure
described in this chapter, a textual modelling notation.

For performing user-driven co-evolution, the textual modelling notation described in
Section 5.2 provides an alternative to XMI. Unlike XMI, the notation introduced in this
chapter implements the OMG standard for Human-Usable Textual Notation (HUTN)
[OMG 2004] and is optimised for human usability. Epsilon HUTN, introduced here,
is presently the sole reference implementation of HUTN. Constructing Epsilon HUTN
by reusing the metamodel-independent syntax allows Epsilon HUTN to provide incre-
mental and background conformance checking, and an XMI-to-HUTN transformation
for loading non-conformant models. Section 6.1 explores the benefits and drawbacks
of using the metamodel-independent syntax and Epsilon HUTN together to perform
user-driven co-evolution.

The domain-specific language described in Section 5.4, Epsilon Flock, combines
several concepts from existing model-to-model transformation languages to form a lan-
guage tailored to model migration. In particular, Flock contributes a novel mechanism
for relating source and target model elements termed conservative copy, which is a
hybrid of new- and existing-target styles of model-to-model transformation. Flock ex-
tends and reuses Epsilon and hence interoperates transparently with several modelling
technologies via EMC, the Epsilon Model Connectivity layer.

The metamodel-independent syntax, Epsilon HUTN, Epsilon Flock and Concor-
dance have been released as part of Epsilon in the Eclipse GMT11 project, which is
the research incubator of arguably the most widely used MDE modelling framework,
EMF. By re-using parts of Epsilon, the structures were implemented more rapidly than
would have been possible when developing the structures independently. In particu-
lar, re-using EMC facilitated interoperability of Flock with several MDE modelling
frameworks, which was exploited to manage a practical case of model migration in
Section 6.4.

11http://www.eclipse.org/gmt

http://www.eclipse.org/gmt

Chapter 6

Evaluation

Chapters 1 and 2 discussed the way in which contemporary MDE development environ-
ments provide structures and processes for creating and managing modelling artefacts.
For MDE to be applicable in the large and to complex systems, however, MDE de-
velopment environments must approach concerns relating to scalability, usability and
managing evolutionary change. This chapter evaluates the structures and processes
developed and described in this thesis with respect to the research hypothesis outlined
in Section 1.4. In particular, the evaluation explores whether the structures and pro-
cesses are effective for managing evolutionary change by assessing the extent to which
they affect developer productivity in co-evolution.

As discussed in Chapter 1, the developed structures and processes are prototypes,
and unlikely to be completely fit for industrial use in their current state. As such,
the evaluation also aims to determine areas in which the proposed structures and
processes might be usefully improved by identifying factors that affect their efficacy.
The conclusions drawn in this chapter identify benefits and drawbacks of using the
proposed structures and processes for managing co-evolution in contemporary MDE
development environments and for industrial software-engineering projects.

Section 4.2.2 identified co-evolution management process, user-driven co-evolution,
that had been used in real-world MDE projects and that had not been recognised in the
literature. Chapter 5 described the implementation of two structures tailored for user-
driven co-evolution, a metamodel-independent syntax and a textual modelling notation.
Using a real-world example of user-driven co-evolution, Section 6.1 assesses the extent
to which the dedicated structures proposed in Chapter 5 affect the productivity of
user-driven co-evolution.

The remainder of the chapter evaluates developer-driven co-evolution (described in
Section 4.2.3 and in which a migration strategy is specified in an executable format) and
focuses on Epsilon Flock (Section 5.4), a transformation language tailored for model
migration. Section 6.2 evaluates the novel source-target relationship strategy imple-
mented in Flock, conservative copy, by comparison with two existing source-target re-
lationship strategies using co-evolution examples from real-world projects. Sections 6.3
and 6.4 evaluate Flock as a whole, using an expert evaluation and a transformation

149

150 CHAPTER 6. EVALUATION

contest, respectively. The transformation contest was judged by members of the MDE
community, providing an opportunity for Flock and other transformation tools to be
assessed in a peer review.

The evaluation described in Sections 6.3 and 6.4 was performed collaboratively, and
the contributions of others are highlighted in those sections. The work presented in this
chapter has been published in [Rose et al. 2010b, Rose et al. 2010d, Rose et al. 2010e].

6.1 Evaluating User-Driven Co-Evolution

Several real-world MDE projects in which user-driven co-evolution has been observed
were reported in Chapter 4, and Chapters 3 and 4 highlighted that no tool support
for user-driven co-evolution has yet been reported in the literature. To address this,
Chapter 5 proposed two structures to support user-driven co-evolution, a metamodel-
independent syntax (Section 5.1) and a textual modelling notation (Section 5.2). This
section explores the extent to which the two structures increase the productivity of user-
driven co-evolution, supporting the research hypothesis which stated that integrating
dedicated structures and processes with contemporary MDE environments is beneficial
in terms of increased productivity.

To explore the hypothesis, several approaches to evaluation could be used. The
metamodel-independent syntax and textual modelling notation are freely available as
part of Epsilon, a component of the Eclipse Modeling Project, so the productivity
benefits of the structures could have been explored by gathering and analysing the
opinion of users. However, this approach was discounted because drawing meaningful
conclusions would have needed understanding of each user’s domain, context and back-
ground. Evaluation could have been performed with a comprehensive user study that
measured the time taken for developers to perform model migration with and without
the dedicated structures for user-driven co-evolution. However, locating developers and
co-evolution examples was not possible in the available time. Instead, evaluation was
conducted by comparing two approaches to user-driven co-evolution using an example
from a real-world MDE project. The first approach uses only the tools available in the
Eclipse Modeling Framework (EMF); while the second approach uses EMF together
with the metamodel-independent syntax and textual modelling notation introduced in
Chapter 5.

Section 6.1.1 summarises Section 4.2.2, which described the challenges to produc-
tivity faced by developers while performing user-driven co-evolution with EMF. Sec-
tion 6.1.2 introduces the example of user-driven co-evolution used to perform the eval-
uation. In Sections 6.1.3 and 6.1.4, the two approaches to user-driven co-evolution are
demonstrated. The section concludes by comparing the two approaches and highlight-
ing ways in which the metamodel-independent syntax and textual modelling notation
increase developer productivity in the context of user-driven co-evolution.

6.1. EVALUATING USER-DRIVEN CO-EVOLUTION 151

6.1.1 Challenges for Performing User-Driven Co-Evolution

Two productivity challenges for performing user-driven co-evolution in contemporary
MDE environments were identified in Section 4.2.2. Firstly, model storage represen-
tations are not optimised for use by humans, and so user-driven co-evolution – which
typically involves changing models by hand – is made error-prone and time consuming.
Secondly, the multi-pass parsers used to load models in contemporary MDE environ-
ments make user-driven co-evolution an iterative process, because not all conformance
errors are reported in the first pass. The identification of these productivity challenges
led to the derivation of the following research requirement in Section 4.3: This thesis
must demonstrate a user-driven co-evolution process that enables the editing of non-
conformant models without directly manipulating the underlying storage representation
and provides a conformance report for the original model and evolved metamodel.

Two of the structures presented in Chapter 5 provide the foundation for fulfilling
the above research requirement. The first, a metamodel-independent syntax, facilitates
the conformance checking of a model against any metamodel. The second structure, the
textual modelling notation Epsilon HUTN, allows models to be managed in a format
that is reputedly easier for humans to use than XMI, the canonical model storage
format [OMG 2004].

To fulfil the above research requirement, this section applies the metamodel-ind-
ependent syntax and the textual modelling notation to demonstrate that user-driven
co-evolution can be performed without encountering the challenges to productivity
described above. To this end, an example of co-evolution is used to show the way in
which user-driven co-evolution might be achieved with and without the metamodel-
independent syntax and Epsilon HUTN.

6.1.2 Co-Evolution Example

The evaluation uses the co-evolution example taken from collaborative work with Adam
Sampson, then a Research Associate at the University of Kent. The purpose of the col-
laboration was to build a prototypical editor for graphical models of programs written
in process-oriented programming languages, such as occam-π [Welch & Barnes 2005].
The graphical models would provide a standard notation for describing process-oriented
programs. Part of the example was used to describe Epsilon Flock in 5.4.2.

The collaboration with Sampson was selected for the evaluation presented here for
several reasons. Firstly, the work involved constructing a graphical model editor,
a common MDE development activity [Amyot et al. 2006]. Secondly, the editor was
developed in an incremental and iterative manner, and involved several different types
of change to the metamodel, some of which affected conformance. Finally, a relatively
small number of models were constructed during the collaboration, and hence a user-
driven approach to managing co-evolution was more suitable than a developer-driven
approach for this example.

The graphical model editor was developed using a MDE approach. A metamodel
captures the abstract syntax of process-oriented programming languages, and code for

152 CHAPTER 6. EVALUATION

a graphical model editor is automatically generated from the metamodel.
The final version of the graphical model editor is shown in Figure 6.1. The editor

captures the three primary concepts used to specify process-oriented programs: pro-
cesses, connection points and channels. Processes, represented as boxes in the graphical
notation, are the fundamental building blocks of a process-oriented program. Channels,
represented as lines in the graphical notation, are the mechanism by which processes
communicate, and are unidirectional. Connection points, represented as circles in the
graphical notation, define the channels on which a process can communicate. Because
channels are unidirectional, connection points are either reading (consume messages
from the channel) or writing (generate messages on the channel). Reading (writing)
connection points are represented as white (black) circles in the graphical notation.

Figure 6.1: Final version of the prototypical graphical model editor.

The graphical model editor was implemented using EMF. The metamodel was spec-
ified in Ecore, the metamodelling language of EMF, and the graphical editor was gen-
erated from the metamodel using GMF. Section 2.3 describes in more detail the way
in which EMF and GMF can be used to specify metamodels and to generate graphical
model editors.

The process-oriented metamodel was developed iteratively, and the six iterations
are described in Appendix B. During each iteration, the metamodel was changed. The

6.1. EVALUATING USER-DRIVEN CO-EVOLUTION 153

evaluation described here uses an example of metamodel changes from the fifth iteration
of the project. The way in which development proceeded during that iteration is
described in Section B.5 and summarised below.

Aim of Iteration 5

Iteration 5 of the process-oriented example was used to describe Epsilon Flock in 5.4.2.
The purpose of the iteration was to refine the way in which connection points were
represented. At the start of the iteration, the graphical model editor could be used
to draw processes, channels and connection points. However, no distinction was made
between reading and writing connection points.

Figure 6.2 shows a model represented in the graphical model editor before the
iteration began. The model contains two processes (depicted as boxes), P1 and P2,
one channel (depicted as a line), a, and two connection points (depicted as circles), a!
and a?.

Figure 6.2: The graphical editor at the start of the iteration.

The aim of the iteration was to distinguish between reading and writing connection
points in the graphical notation. The former are used to receive messages, and the latter
to send messages. In Figure 6.2, a? is intended to represent a reading connection point,

154 CHAPTER 6. EVALUATION

and a! a writing connection point. Sampson and I decided that the editor should be
changed so that black circles would be used to represent writing connection points, and
white circles to represent reading connection points. At the end of the iteration the
model shown in Figure 6.2 would be represented as shown in Figure 6.3. Furthermore,
the editor would ensure that a? was used only as the reader of a channel, and a! only
as the writer of a channel. Before the iteration started, the editor did not enforce this
constraint.

Figure 6.3: The graphical editor at the end of the iteration.

Metamodel changes during Iteration 5

Before the iteration started, the metamodel, shown in Figure 6.4(a), did not distinguish
between reading and writing ConnectionPoints. A ConnectionPoint could be
associated with a Channel via the reader or writer reference of Channel, but the
type of a ConnectionPoint was not specified explicitly.

The way in which connection points were modelled was changed, resulting in the
metaclasses shown in Figure 6.4(b). ConnectionPoint was made abstract, and
two subtypes, ReadingConnectionPoint and WritingConnectionPoint, were
introduced. The reader and writer references of Channel were changed to refer

6.1. EVALUATING USER-DRIVEN CO-EVOLUTION 155

to the new subtypes. The evolved metamodel correctly prevented the use of a Conn-
ectionPoint as both a reader and a writer.

(a) Part of the original metamodel.

(b) Part of the evolved metamodel.

Figure 6.4: Process-oriented metamodel evolution.

Following the metamodel changes, a new version of the graphical editor was gen-
erated automatically from the metamodel using GMF. An annotation – not shown
in Figure 6.4(b) – on the WritingConnectionPoint class was used to indicate to
GMF that black circles were to be used to represent writing connection points in the
graphical notation.

Testing during Iteration 5

Testing the new version of the graphical editor highlighted the need for model migration.
Attempting to load existing models, such as the one shown in Figure 6.2, caused an
error because ConnectionPoint was now an abstract class. Any model specifying
at least one connection point no longer conformed to the metamodel. Model migration
was performed to re-establish conformance and to allow the models to be loaded.

Several models, presented in Appendix B, had been constructed when testing pre-
vious versions of the graphical editor. The models were used during each iteration to
ensure that any changes had not introduced regressions. After the metamodel changes
described above, the test models could no longer be loaded and required migration. A

156 CHAPTER 6. EVALUATION

developer-driven co-evolution approach was not suitable for the development of process-
oriented editor because only a few small models required migration in each iteration.
A user-driven co-evolution approach was used instead, but, as no structures dedicated
to user-driven co-evolution were available, co-evolution was performed by manually
editing the storage representation of models.

The sequel describes the way in which migration was performed during the develop-
ment of the process-oriented metamodel, without dedicated structures for performing
user-driven co-evolution. Section 6.1.4 describes the way in which migration could
have been performed using two of the structures presented in Chapter 5. The section
concludes by comparing the two approaches.

6.1.3 User-Driven Co-Evolution with EMF

During the development of the process-oriented metamodel, no dedicated structures for
performing user-driven co-evolution were available. Instead, migration was performed
using only those tools available in EMF, as described below.

Migration with EMF involved identifying and fixing conformance errors, using the
workflow shown in Figure 6.5. The workflow was first discussed in Chapter 4. When
the user attempts to load a model, EMF automatically checks the conformance of the
model. If the model does not conform to its metamodel, loading fails. To re-establish
conformance, the user must edit by hand the underlying storage representation of the
model, XMI. Recall that co-evolution is an iterative process because EMF uses a multi-
pass XMI parser and cannot report all categories of conformance problem in the first
pass.

One of the test models, shown in Figure 6.2, is now used to illustrate the way in
which user-driven co-evolution was performed using the workflow shown in Figure 6.5.
For the test model shown in Figure 6.2, the conformance problems shown in the bottom
pane (and by the error markers in the left-hand margin of the top pane) of Figure 6.6
were reported by EMF. For example, the first conformance problem reported is shown
in the tooltip in Figure 6.6, and states that a ClassNotFoundException was en-
countered because the “Class ‘ConnectionPoint’ is not found or is abstract.”

The conformance problems were fixed by editing the XMI shown in Figure 6.6,
producing the XMI shown in Figure 6.7. The type of each connection point element
was changed to either ReadingConnectionPoint or WritingConnectionPoi-
nt. The former was used when the connection point was referenced via the reader
reference of Channel, and the latter otherwise. The reconciled XMI is shown in
Figure 6.7. On lines 4 and 7, the connection point model elements have been changed
to include xsi:type attributes, which specify whether the connection point should
instantiate ReadingConnectionPoint or WritingConnectionPoint.

Reconciling the conformance problems by editing the XMI required considerable
knowledge of the XMI specification. For example, the xsi:type attribute is used
to specify the type of the connection point model elements. In fact, it must be in-
cluded for those model elements. However, for the other model elements in Figure 6.7
the xsi:type attribute is not necessary, and is omitted. When and how to use

6.1. EVALUATING USER-DRIVEN CO-EVOLUTION 157

Attempt to load
model with

graphical editor

Does EMF report any
conformance problems?

No

Yes
Edit XMI of

non-conformant
model

Figure 6.5: User-driven co-evolution with EMF

the xsi:type attribute is discussed further in the sidebar, in the XMI specification
[OMG 2007c], and by the developers of EMF [Steinberg et al. 2008]. EMF abstracts
away from XMI, and typically users do not interact directly with XMI. Therefore, it
may be reasonable to assume that EMF users might not be familiar with XMI, and
implementation details such as the xsi:type attribute.

During the development of the process-oriented editor, some mistakes were made
when the XMI of the test models was edited by hand. For example, the wrong sub-
type of ConnectionPoint was used as the type of several connection point model
elements. The mistake occurred because XMI identifies model elements using an offset
from the root of the document. For example, consider the XMI shown in Figure 6.7.
The channel on line 9 specifies the value “//@processes.1/@connectionPoints.0” for its
reader attribute. The value is an XMI path referencing the first connection point
(“@connectionPoints.0”) contained in the second process (“@processes.1”) of this doc-
ument (“//”); in other words the connection point on line 7. One of Sampson’s models
contained many channels and connection points and incorrectly counting the connec-
tion points in the model led to several mistakes during the manual editing of the XMI.
Each time a mistake was made when reconciling the XMI by hand, another loop around
the workflow shown in Figure 6.5 was required.

As demonstrated above, migration using only the tools provided by EMF can be
iterative and error-prone. The sequel demonstrates that, by using the dedicated struc-
tures described in Chapter 5, migration can be performed in one iteration, without
requiring the developer to switch between conformance reporting and model migra-
tion tools. In addition, the sequel suggests how the mistake described above might be
avoided by using Epsilon HUTN rather than XMI for manually migrating models.

158 CHAPTER 6. EVALUATION

Figure 6.6: XMI prior to migration

6.1.4 User-Driven Co-Evolution with Dedicated Structures

Chapter 5 describes two structures that can be used to perform user-driven co-evolution.
Here, the functionality of the two structures, a metamodel-independent syntax and a
textual modelling notation, is summarised. Subsequently, an approach that uses the
metamodel-independent syntax and the textual modelling notation for migrating the
model from the process-oriented example is presented. The model migration exam-
ple presented in this section was performed retrospectively by the author after the
process-oriented editor was completed, and demonstrates how migration might have
been achieved with dedicated structures for user-driven co-evolution. The sequel com-
pares the user-driven co-evolution approach presented in this section with the approach
presented in Section 6.1.3.

The metamodel-independent syntax presented in Section 5.1 allows non-conformant

6.1. EVALUATING USER-DRIVEN CO-EVOLUTION 159

Figure 6.7: XMI after migration

The xsi:type attribute
In XMI, each model element must indicate the metaclass that it instantiates. Typ-
ically, the xsi:type attribute is used for this purpose. For example, the model
element on line 4 of Figure 6.7 instantiates the metaclass named WritingConn-
ectionPoint. To reduce the size of models on disk, the XMI specification allows
type information to be omitted when it can be inferred. For example, line 9 of
Figure 6.7 defines a model element that is contained in the channels reference
of a Process. Because the channels reference can contain only one type of
model element (Channel), the xsi:type attribute can be omitted, and the type
information is inferred from the metamodel.

160 CHAPTER 6. EVALUATION

models to be loaded with EMF, and for the conformance of models to be checked
against any metamodel. Epsilon HUTN, the textual modelling notation presented in
Section 5.2 is underpinned by the metamodel-independent syntax and is an alternative
to XMI for representing models in a textual format. Together, the two structures can
be used for performing user-driven co-evolution using the workflow shown in Figure 6.8.
The workflow was first discussed in Chapter 5. First, the user attempts to load a model
in the graphical editor. If the model is non-conformant and cannot be loaded, the user
clicks the “Generate HUTN” menu item, and the model is loaded with the metamodel-
independent syntax and then a HUTN representation of the model is generated by
Epsilon HUTN. The generated HUTN is presented in an editor that automatically
reports conformance problems using the metamodel-independent syntax. The user
edits the HUTN to reconcile conformance problems, and the conformance report is
automatically updated as the user edits the model. When the conformance problems
are fixed, XMI for the conformant model is automatically generated, and migration is
complete. The model can then be loaded in the graphical editor.

Attempt to load
model with

graphical editor

Does EMF report any
conformance problems?

No

Yes
Invoke

XMI-to-HUTN
transformation

Edit HUTN of
non-conformant

model

Figure 6.8: User-driven co-evolution with dedicated structures

The way in which the workflow shown in Figure 6.8 was used to perform user-driven
co-evolution for the process-oriented metamodel is now demonstrated. For the model
shown in Figure 6.2, the HUTN shown in Figure 6.9 was generated by invoking the au-
tomatic XMI-to-HUTN transformation. The HUTN development tools automatically
present any conformance problems, as shown in the bottom pane (and the left-hand
margin of the top pane) in Figure 6.9.

Conformance problems are reconciled manually by the user, who edits the HUTN
source. Conformance is automatically checked whenever the HUTN is changed. For
example, Figure 6.10 shows the HUTN editor when migration is partially complete.
Some of the conformance problems have been reconciled, and the associated error-
markers are no longer displayed in the left-hand margin.

When no conformance errors remain, Epsilon HUTN automatically generates XMI
for reconciled model, and the user can now successfully load the migrated model with
the graphical editor.

6.1. EVALUATING USER-DRIVEN CO-EVOLUTION 161

Figure 6.9: HUTN source prior to migration

6.1.5 Comparison

To suggest ways in which dedicated structures for user-driven co-evolution might in-
crease developer productivity, the two user-driven co-evolution approaches demon-
strated above are now compared. The first approach, described in Section 6.1.3, uses
only those tools available in EMF for performing user-driven co-evolution, while the
second approach, described in Section 6.1.4 uses two of the structures introduced in
Chapter 5. Applying the approaches to the process-oriented example highlighted dif-
ferences between the modelling notations used, and the way in which conformance
problems were reported.

Differences in modelling notation

For reconciling conformance problems, the two approaches used different modelling
notations, XMI and Epsilon HUTN. Differences in notation that might influence devel-
oper productivity during user-driven co-evolution are now discussed. However, further

162 CHAPTER 6. EVALUATION

Figure 6.10: HUTN source part way through migration

work is required to more rigorously explore the extent to which developer productivity
is affected by the modelling notation, as discussed in Section 6.1.6.

The way in which the type of a model element is specified is different in XMI
and HUTN. In XMI, type information can be omitted in some circumstances, but
must be included in others. In HUTN, type information is mandatory for every model
element. Consequently, every HUTN document contains examples of how type infor-
mation should be specified, whereas XMI documents may not.

Reference values use paths in XMI (such as //@processes.1/@connectionPo-
ints.0) and names (such as a?) in HUTN. XMI paths are constructed in terms of
a document’s structure and, as such, rely on implementation details. The name of
a model element, on the other hand, is specified in the model, and does not rely on
any implementation details. Consequently, it is conceivable that fewer mistakes will
be made during user-driven co-evolution when reference values are specified by name
rather than with the structural details of a model.

6.1. EVALUATING USER-DRIVEN CO-EVOLUTION 163

Differences in conformance reports

The two approaches differ in the way in which conformance problems were reported,
and, as a consequence, the first approach was iterative and the second was not. The dif-
ferences might influence developer productivity during user-driven co-evolution. Again,
further work is required to rigorously explore the extent to which developer productivity
is affected by the differences in conformance reporting, as discussed in Section 6.1.6.

With EMF, user-driven co-evolution is an iterative process. Conformance errors
are fixed by the user, who then reloads the reconciled model (with, for example, a
graphical editor). Each time the model is loaded, further conformance problems might
be reported when, for example, the user makes a mistake when reconciling the model.
By contrast, the implementation of HUTN described in Section 5.2 uses a background
compiler that checks conformance while the user edits the HUTN source. When the
user makes a mistake reconciling the HUTN source, the error is reported immediately,
and does not require the model to be loaded in the graphical editor.

Although not demonstrated here, user-driven co-evolution would, for some types
of metamodel changes, remain an iterative process even if EMF performed confor-
mance checking in the background. Because EMF uses a multi-pass parser, some types
of conformance problem are reported before other types. For example, conformance
problems relating to multiplicity constraints (e.g. a process does not specify a name,
but name is a mandatory attribute) are reported after all other types of conformance
problem. When several types of conformance problem have been affected by meta-
model changes, user-driven co-evolution with EMF would remain an iterative process.
Single-pass, background parsing is required to display all conformance problems while
the user migrates a model.

6.1.6 Towards a more thorough comparison

Extensions to the evaluation of user-driven co-evolution are now discussed. In partic-
ular, alternative comparison methods might enable a more rigorous exploration of the
ways in which dedicated structures for performing user-driven co-evolution influence
developer productivity.

A comprehensive user study, involving hundreds of users, is one means for exploring
the extent to which productivity varies when dedicated structures are used to perform
user-driven co-evolution. Ideally, participants for the study would constitute a large
and representative sample of the users of EMF. Productivity might be measured by
the time taken to perform co-evolution. To remove a potential source of bias, several
examples of co-evolution might be used.

Locating a reasonable number of participants and co-evolution examples for a com-
prehensive user study was not feasible in the context of this thesis. Nevertheless, the
comparison presented in Section 6.1.5 suggests that productivity might be increased
when using dedicated structures for user-driven co-evolution. By demonstrating an ap-
proach to user-driven co-evolution that uses dedicated structures, this thesis provides a
foundation for further, more rigorous evaluation. For example, the HUTN specification

164 CHAPTER 6. EVALUATION

[OMG 2004] makes claims about the human-usability of the notation, but the usability
of HUTN has not been studied or compared with other modelling notations. Epsilon
HUTN (Section 5.2) is a reference implementation of HUTN and, as demonstrated by
the evaluation presented here, facilitates the evaluation of HUTN and the comparison
of HUTN to other modelling notations, such as XMI.

6.1.7 Summary

This section has demonstrated two approaches to user-driven co-evolution using a co-
evolution example from a project in which a graphical model editor was created for
process-oriented programs. The first approach used the structures available in EMF
alone, while the second approach used two of the structures described in Chapter 5.
Comparing the two approaches highlighted differences between the way in which confor-
mance problems were reported and between the modelling notations used to reconcile
conformance problems. The comparison described in Section 6.1.5 suggests that devel-
oper productivity might be increased by using the second approach, but, as discussed
in Section 6.1.6, further work is required to more rigorously evaluate this claim.

6.2 Evaluating Conservative Copy

In contrast to the previous section, this section focuses on developer-driven co-evolution,
in which migration is specified in a programming language. As discussed in Chapter 4,
often a model-to-model (M2M) transformation language is used to specify migration.
The M2M languages typically used to specify migration vary and, in particular, use dif-
ferent approaches to relating source and target model elements. This section evaluates
the novel source-target relationship implemented in Flock (Section 5.4), conservative
copy, by comparison to new-target and existing-target source-target relationships, which
have been used for model migration in [Cicchetti et al. 2008, Garcés et al. 2009]) and
in [Herrmannsdoerfer et al. 2009a, Hussey & Paternostro 2006]) respectively.

The evaluation performed in this section aims to demonstrate that migration strate-
gies are more concise when written with a M2M language that uses conservative copy
rather than when written with a M2M language that uses new- or existing-target. Ar-
guably, more concise migration strategies lead to increased developer productivity in
model migration. In manual specification approaches, migration strategies are written
by hand and a concise language is likely to increase productivity because less code
is written. In operator-based and inference approaches, migration strategies may be
presented to the user to facilitate selection between feasible alternatives, and a concise
language could increase productivity because less code must be read to comprehend
a migration strategy. Other factors that might influence productivity, such as the
comprehensibility of a migration strategy are not considered in this section, but in the
sequel in which Epsilon Flock is evaluated by comparison with other co-evolution tools.

Conciseness might be measured in many ways. For instance, the number of lines of
code have been used to argue that more concise software components indicate a high
degree of inter-component re-use [Kolovos 2009]. In that context, the number of lines

6.2. EVALUATING CONSERVATIVE COPY 165

of code is an appropriate measure because the software components were written in
a single programming language. The conciseness and understandability of programs
can be approximated by determining the ratio of operators (language constructs) to
operands (data) [Halstead 1977]. Halstead’s Metrics are calculated from programming
language constructs and, consequently, are affected by variations in programming lan-
guages. Here, counting lines of code and Halstead’s Metrics are inappropriate because
no single language implements the three styles of source-target relationship that are to
be compared.

Instead, conciseness is measured by counting the frequency of model operations,
atomic program statements that are used to manipulate the target (migrated) model.
Model operations were specified in a language-independent manner and then mapped
onto language-specific constructs to perform the counting. Therefore, the hypothesis for
the comparison was: specifying a migration strategy with conservative copy requires no
more model operations than when new-target or when existing-target are used instead.
The results presented in Section 6.2.4 corroborate the hypothesis and highlight some
limitations of the implementation of conservative copy in Flock.

The remainder of this section briefly recaps the theoretical differences between the
three styles of source-target relationship (Section 6.2.1), describes the co-evolution ex-
amples and languages used in the comparison (Section 6.2.2), and details the compar-
ison method (Section 6.2.3). Finally, the results of the comparison (Section 6.2.4) are
used to support the claims made above, and to highlight limitations of the conservative
copy implementation provided by Flock.

6.2.1 Styles of Source-Target Relationship

Two styles of source-target relationship, new-target and existing-target, are used in
existing approaches to model migration, and a third is proposed in this thesis, conser-
vative copy. The differences between the source-target relationships were discussed in
Chapter 5 and are now summarised.

With a new-target source-target relationship, the migrated model is created afresh
by the model migration strategy. The model migration language does not automatically
copy any part of the original model to the migrated model. Consequently, any model
elements that are not affected by metamodel evolution must be explicitly copied from
original to migrated model.

With an existing-target source-target relationship, the migrated model is initialised
as a copy of the original model. Prior to execution of the migration strategy, the
migrated and original models are identical. Elements that no longer conform to the
evolved metamodel might have been copied automatically from original to migrated
model and, consequently, the migration strategy may need to delete model elements.

This thesis proposes a third style of source-target relationship termed conservative
copy, which is a hybrid of new- and existing-target source-target relationships. Prior
to the execution of the migration strategy, only those model elements that conform to
the evolved metamodel are copied from original to migrated model

To compare the styles of source-target relationship, the evaluation uses a reference

166 CHAPTER 6. EVALUATION

implementation of each style. The reference implementations are model-to-model trans-
formation languages, which automatically copy model elements according to the style
of source-target relationship. Flock, for example, provides a reference implementation
of conservative copy.

6.2.2 Artefacts

To evaluate conservative copy, five examples of co-evolution taken from three projects,
and three reference implementations of source-target relationships were used. The co-
evolution examples and the selection process for the reference implementations are now
discussed.

Co-evolution Examples

Conservative copy was designed in response to analysis of co-evolution examples, as
discussed in Chapters 4 and 5. To reduce contamination of the comparison, the co-
evolution examples used were distinct from those used to design conservative copy. The
examples used for evaluating conservative copy are now summarised, and more details
can be found in Appendix C.

Two examples were taken from the Newsgroup project, which performs statisti-
cal analysis of NNTP newsgroups, developed by Dimitris Kolovos, a lecturer in this
department. One example was taken from changes made to UML (the Unified Model-
ing Language) between versions 1.4 [OMG 2001] and 2.2 [OMG 2007b] of the spec-
ification. Two examples were taken from GMF (Graphical Modeling Framework)
[Gronback 2009], an Eclipse project for generating graphical model editors.

For the newsgroup and GMF projects, the co-evolution examples were identified
from source code management systems. The revision history for each project was ex-
amined, and metamodel changes were located. The intended migration strategy was
determined by speaking with the developer (for the Newsgroup project) and by exam-
ining examples and documentation (for GMF). The co-evolution example taken from
UML was identified from the list of changes in the UML 2.2 specification [OMG 2007b],
and by discussion with other UML users as described in Section 6.4.

For interoperability with the three reference implementations used in the com-
parison, the UML co-evolution was adapted. The original (UML 1.4 [OMG 2001])
metamodel is specified in XMI 1.2 [OMG 2007c], which is not supported by two of the
reference implementations. The part of the UML 1.4 relating to activity graphs was
reconstructed by the author in XMI 2.1 and used in place of the XMI 1.2 version. The
reconstructed metamodel was checked by several UML users and was used in the expert
evaluation described in Section 6.4, where the reconstructed metamodel is discussed
further.

Reference Implementations Used in the Comparison

A formal semantics has not been specified for new-target, existing-target and con-
servative copy, and therefore the comparison reported in this section was performed

6.2. EVALUATING CONSERVATIVE COPY 167

using a reference implementation of each source-target relationship. Reference imple-
mentations for new- and existing-target were selected from the implementations used
by existing approaches to model migration and compared to the implementation of
conservative copy provided by Flock.

New-target As far as the author is aware, the Atlas Transformation Language (ATL)
is the only new-target M2M transformation language that has been used for model
migration. Existing new-target model migration approaches use higher-order transfor-
mations specified in ATL [Cicchetti et al. 2008, Garcés et al. 2009]. As such, ATL was
used in the evaluation as the reference implementation of new-target.

Existing-target Two approaches to migration use existing-target transformations.
In COPE [Herrmannsdoerfer et al. 2009a], migration strategies can be hand-written in
Groovy when no co-evolutionary operator is applicable. COPE provides six Groovy
functions for interacting with model elements, such as set, for changing the value
of a feature, and unset, for removing all values from a feature. In this section, the
term Groovy-for-COPE is used to refer to the combination of the Groovy program-
ming language and the functions provided by COPE for use in hand-written migration
strategies. In Ecore2Ecore [Hussey & Paternostro 2006], migration is performed when
the original model is loaded, effectively an existing-target approach. For the compari-
son performed in this section, Groovy-for-COPE was preferred to Ecore2Ecore because
the latter is not as expressive1 and cannot be used for migration in the co-evolution
examples considered here.

In summary, the comparison described in this section uses ATL for investigating
new-target, Groovy-for-COPE for existing-target, and Flock for conservative copy.

6.2.3 Method

The comparison involved constructing migration strategies in each of the reference
implementations (ATL, Groovy-for-COPE and Flock), identifying and counting model
operations, and analysing the results. Following the selection of co-evolution examples
and reference implementations, the author wrote a migration strategy for each co-
evolution example in each of the reference implementations. The intended migration
strategy was determined from models available in the source code management system
of the co-evolution example (Newsgroup and GMF projects), or (for the UML example)
by referring to the UML specification and discussing ambiguities with other UML users,
as described in Section 6.4.

Next, a set of model operations were identified in a language independent manner
and then mapped onto language constructs in ATL, Groovy-for-COPE and Flock. The
counting of model operations was then automated by implementing a counting program,

1Communication with Ed Merks, Eclipse Modeling Project leader, 2009, avail-
able at http://www.eclipse.org/forums/index.php?t=tree&goto=486690&S=
b1fdb2853760c9ce6b6b48d3a01b9aac

http://www.eclipse.org/forums/index.php?t=tree&goto=486690&S=b1fdb2853760c9ce6b6b48d3a01b9aac
http://www.eclipse.org/forums/index.php?t=tree&goto=486690&S=b1fdb2853760c9ce6b6b48d3a01b9aac

168 CHAPTER 6. EVALUATION

which was tested and used to further develop the comparison technique. Finally, the
counting program was executed on the evaluation examples and the results investigated
(Section 6.2.4).

Because the author is more familiar with Flock than with ATL and Groovy-for-
COPE, the comparison method has an obvious drawback: the migration strategies
written in the latter two languages might be more concise if they were written by the
developers of ATL and Groovy-for-COPE. The evolutionary operators built into COPE
provide many examples of migration strategy code written by the developer of COPE
and, where possible, this code was re-used.

Language-Independent Model Operations

The way in which model operations were identified and counted is now described.
Four types of model operation were considered for inclusion in the evaluation: model
element creation and deletion operators, and model value assignment and unassignment
operators.

Creation and deletion operators are used to create or delete model elements in the
migrated model. Assignment and unassignment operators are used to set or unset data
values in the migrated model. Typically, assignment operators are used for copying
values from the original to the migrated model.

Deletion and unassignment operators are not necessary when specifying model mi-
gration with new-target, because the migrated model is created afresh by the model
migration strategy. Any deletion or unassignment would involve removing model el-
ements or values created explicitly elsewhere in the migration strategy. By contrast,
existing-target and conservative copy will automatically create model elements and as-
sign model values prior to the execution of the model migration strategy and hence
unassignment and deletion operators are required.

Creation operators were not included in the comparison because, unlike the other
operators, they are difficult to specify with regular expressions (and hence automatically
count). Moreover, in all of the co-evolution examples considered in the comparison,
values are assigned to model elements after they are created. Consequently, at least
one assignment operator is used whenever a creation operator would have been used.

Model Operations in ATL, Groovy-for-COPE and Flock

The concrete syntax of the deletion, assignment and unassignment model operations
in each language is now introduced. First however, it is important to note that the
languages considered provide loop constructs and consequently a single model operation
might be executed several times during the execution of a migration strategy. Here,
a model operation is counted only once even if it is contained in a loop because the
comparison is used to reason about the conciseness of migration strategies, and not
about the way in which model operations are executed.

6.2. EVALUATING CONSERVATIVE COPY 169

New-target in ATL For new-target in ATL, the following model operation was
counted:

• Assignment:

<feature> <- <value>

The assignment operator is used to copy values from the original to the migrated
model. Typically, the value on the right-hand side is a literal, the value of a feature in
the original model, or derived from a combination of the two. Listing 6.1 shows these
typical uses of an assignment operator in ATL: line 4 assigns to a literal value, line 5
to the value of a feature in the original model, and line 6 to a value derived from two
features in the original model that are separated with a literal value. In the listings in
the remainder of this section, lines on which model operations appear are highlighted.

1 rule Person2Employee {

2 from o : Before!Person

3 to m : After!Employee (

4 role <- "Unknown",

5 id <- o.id,

6 name <- o.forename + " " + o.surname

7)

8 }

Listing 6.1: Assignment operators in ATL

As discussed above, deletion and unassignment operators are not used for new-
target model migration.

Existing-target in Groovy-for-COPE For existing-target in Groovy-for-COPE,
the following model operations were counted:

• Assignment:

<element>.<feature> = <value>

<element>.<feature>.add(<value>)

<element>.<feature>.addAll(<collection of values>)

<element>.set(<feature>, <value>)

• Unassignment:

<element>.unset(<feature>)

<element>.<feature>.remove(<value>)

• Deletion:

delete <element>

170 CHAPTER 6. EVALUATION

Unlike ATL, Groovy-for-COPE provides distinct operators for assigning to single-
and multi-valued features. The first assignment operator assigns to a single-valued
feature, the second adds one value to a multi-valued feature, and the third adds mul-
tiple values to a multi-valued feature. The fourth form allows the feature name to be
determined at runtime and, hence, facilitates reflective access to models.

COPE provides two forms of unassignment. The first can be used to unassign any
feature. The second form is used to remove one value from a multi-valued feature.

Conservative Copy in Epsilon Flock Epsilon Flock, a transformation language
tailored for model migration, was developed in this thesis and discussed in Chapter 5.
The following model operations were counted:

• Assignment:

<element>.<feature> := <value>

<element>.<feature>.add(<value>)

<element>.<feature>.addAll(<collection of values>)

• Unassignment:

<element>.<feature> := null

<element>.<feature>.remove(<value>)

• Deleting:

delete <element>

The model operation listed above are the only mechanisms for changing the values
or deleting model elements from the migrated model in a Flock migration strategy.

Like Groovy-for-COPE, Flock distinguishes between assignment to single-value and
assignment to multi-valued features and, hence, provides three assignment operators.
Unlike Groovy-for-COPE, Flock does not provide a form of assignment that allows the
name of the assigned feature to be determined at runtime.

Flock does not provide a dedicated language construct for performing unassignment,
which is instead achieved by assignment to null. One value can be removed from a
multi-valued feature with the second form of unassignment.

Development and Testing of Method

The comparison method and a program for counting model operations were developed
and tested by using the co-evolution examples described in Chapter 4, which were used
to derive the thesis requirements. An example of model operation counting is given in
the remainder of this section, along with the total number of model operations observed
for each of the co-evolution examples described in Chapter 4.

Consider the example of metamodel-evolution shown in Figure 6.11. This is the
Petri nets metamodel evolution described in Sections 5.3 and 5.4. The migration strat-
egy replaces Arcs with PTArcs or TPArcs. In ATL, the migration strategy uses 12

6.2. EVALUATING CONSERVATIVE COPY 171

(a) Original metamodel.

(b) Evolved metamodel.

Figure 6.11: Petri nets metamodel evolution. Taken from [Rose et al. 2010f].

model operations (Listing 6.2). In Groovy-for-COPE, the migration strategy uses 10
model operations (Listing 6.3) . In Flock, the migration strategy uses 6 model opera-
tions (Listing 6.4). These results are also shown in the (Literature) PetriNets row of
Table 6.1.

Table 6.1 shows the total number of model operations needed to specify migration
in ATL, Groovy-for-COPE and Flock for each of the co-evolution examples from Chap-
ter 4. Because the examples used to produce the measurements shown in Table 6.1 were
used to design Flock, they are not used to evaluate conservative copy. Instead, they
are presented here to show the way in which the evaluation method was developed, and
because one of the results (Refactor: Change Ref to Cont) highlighted a limitation of
the existing-target and conservative copy implementations in COPE and Flock, which
is discussed in Section 6.2.4.

172 CHAPTER 6. EVALUATION

1 rule Nets {

2 from o : Before!Net

3 to m : After!Net (

4 places <- o.places,

5 transitions <- o.transitions

6)

7 }

8

9 rule Places {

10 from o : Before!Place

11 to m : After!Place (

12 name <- o.name

13)

14 }

15

16 rule Transitions {

17 from o : Before!Transition

18 to m : After!Transition (

19 name <- o.name,

20 "in" <- o.src->collect(p | thisModule.PTArcs(p,o)),

21 out <- o.dst->collect(p | thisModule.TPArcs(o,p))

22)

23 }

24

25 lazy rule PTArcs {

26 from place : Before!Place, destination : Before!Transition

27 to ptarcs : After!PTArc (

28 src <- place,

29 dst <- destination,

30 net <- destination.net

31)

32 }

33

34 lazy rule TPArcs {

35 from transition : Before!Transition, destination : Before!Place

36 to tparcs : After!TPArc (

37 src <- transition,

38 dst <- destination,

39 net <- transition.net

40)

41 }

Listing 6.2: The Petri nets model migration in ATL

6.2. EVALUATING CONSERVATIVE COPY 173

1 for (transition in Transition.allInstances) {

2 for (source in transition.unset(’src’)) {

3 def arc = petrinets.PTArc.newInstance()

4 arc.src = source;

5 arc.dst = transition;

6 arc.net = transition.net

7 }

8

9 for (destination in transition.unset(’dst’)) {

10 def arc = petrinets.TPArc.newInstance()

11 arc.src = transition;

12 arc.dst = destination;

13 arc.net = transition.net

14 }

15 }

16

17 for (place in Place.allInstances) {

18 place.unset(’src’);

19 place.unset(’dst’);

20 }

Listing 6.3: The Petri nets model migration in Groovy-for-COPE

1 migrate Transition {

2 for (source in original.src) {

3 var arc := new Migrated!PTArc;

4 arc.src := source.equivalent();

5 arc.dst := migrated;

6 arc.net := original.net.equivalent();

7 }

8

9 for (destination in original.dst) {

10 var arc := new Migrated!TPArc;

11 arc.src := migrated;

12 arc.dst := destination.equivalent();

13 arc.net := original.net.equivalent();

14 }

15 }

Listing 6.4: Petri nets model migration in Flock

174 CHAPTER 6. EVALUATION

Migration Language
Source-Target Relationship

ATL G-f-C Flock
(Project) Example New Existing Conservative

(FPTC) Connections 6 6 3
(FPTC) Fault Sets 7 5 3

(GADIN) Enum to Classes 4 1 0
(GADIN) Partition Cont 5 3 2

(Literature) PetriNets 12 10 6
(Process-Oriented) Split CP 8 1 1

(Refactor) Cont to Ref 4 5 3
(Refactor) Ref to Cont 3 5 3

(Refactor) Extract Class 5 4 2
(Refactor) Extract Subclass 6 0 0

(Refactor) Inline Class 4 5 2
(Refactor) Move Feature 6 2 1

(Refactor) Push Down Feature 6 0 0

Table 6.1: Model operation frequency (analysis examples).

Migration Language
Source-Target Relationship

ATL G-f-C Flock
(Project) Example New Existing Conservative

(Newsgroup) Extract Person 9 4 3
(Newsgroup) Resolve Replies 8 3 2

(UML) Activity Diagrams 15 15 8
(GMF) Graph 101 10 13

(GMF) Gen2009 310 16 16

Table 6.2: Model operation frequency (evaluation examples).

6.2.4 Results

By counting the model operations in model migration strategies, the similarities and
differences between the three styles of source-target relationship were investigated. The
five co-evolution examples discussed in Section 6.2.2 were measured to obtain the results
shown in Table 6.2.

The comparison hypothesis stated that specifying a migration strategy with conser-
vative copy requires no more model operations than when new-target or when existing-
target are used instead. For four of the five examples in Table 6.2, the results support
the hypothesis, but the results for the GMF Graph example do not.

The comparison hypothesis did not consider differences between new-target and

6.2. EVALUATING CONSERVATIVE COPY 175

existing-target, but the results show that, for the most part, a migration strategy uses
fewer model operations when using existing-target rather than new-target. For all of
the examples in Table 6.2 and most of the examples in Table 6.1, no migration strategy
specified with existing-target contained fewer model operations when specified with
new-target. However, three of the Refactor examples in Table 6.1 required more model
operations when specified with existing-target than when specified with new-target.

The results are now investigated, starting by discussing the way in which the results
support the comparison hypothesis. Subsequently, results that contradict the hypothe-
sis are investigated. Two limitations of the conservative copy implementation in Flock
were discovered via the investigation of results.

Investigation of results

As discussed in Section 6.2.1, new-target, existing-target and conservative copy initialise
the migrated model in a different way. New-target initialises an empty model, while
existing-target initialises a complete copy of the original model. Conservative copy
initialises the migrated model by copying only those model elements from the original
model that conform to the migrated metamodel.

For four of the co-evolution examples, the results in Table 6.2 support the com-
parison hypothesis, which stated that specifying a migration strategy with conservative
copy requires no more model operations than when new-target or when existing-target
are used instead. Additionally, the results in Table 6.2 indicate that a migration strat-
egy can be specified with fewer model operations when using existing-target rather
than new-target. In particular, for the GMF examples shown in Table 6.2, evolution
affected only a small proportion of the metamodel, and the ATL (new-target) migration
strategies use many more model operations than Groovy-for-COPE (existing-target)
and Flock (conservative copy).

This result can be explained by considering how new-target differs from exiting-
target and conservative copy when the source (original) and target (evolved) metamod-
els are very similar. New-target initialises an empty model and, hence, every element of
the migrated model must be derived from the original model. For model elements that
do not need to be changed in response to metamodel evolution, the migration strategy
must copy those elements without change. For instance, the new-target version of the
GMF Graph and Gen migration strategies contain many transformation rules such as
the one shown in Listing 6.5, which exist only for copying model elements from the
original to the migrated model. In Listing 6.5, 5 model operations are used (all assign-
ments) to copy values from the original to the migrated model. The features shown
in Listing 6.5 (figures, nodes, connections, compartments and labels) were
not changed during metamodel evolution. Unlike new-target, existing-target and con-
servative copy do not require explicit copying of model elements from the original to
migrated model due to the way in which they initialise the migrated model.

In the UML co-evolution example (Table 6.2) and the Refactor Inline Class (Ta-
ble 6.1), a large proportion of metamodel features were renamed. For these examples,
expressing migration with an existing-target transformation language requires more

176 CHAPTER 6. EVALUATION

1 rule Canvas2Canvas {

2 from o : Before!Canvas

3 to m : After!Canvas (

4 figures <- o.figures,

5 nodes <- o.nodes,

6 connections <- o.connections,

7 compartments <- o.compartments,

8 labels <- o.labels

9)

10 }

Listing 6.5: An extract of the GMF Graph model migration in ATL

model operations than using a new-target transformation language. Existing-target re-
quires two model operations be used when a feature is renamed, while new-target and
conservative copy require only one model operation. For instance, the transitions
feature of ActivityGraph was renamed to edge in the UML co-evolution example.
The code used for migration in response to this change for new-target, existing-target
and conservative copy is shown below.

New-target: edge <- transitions
Existing-target: element.edge = element.unset(transitions)
Conservative copy: migrated.edge := original.transitions

As shown above, migration in response to feature renaming typically requires one
model operation when using new-target and conservative copy (an assignment). When
using existing-target, the equivalent migration strategy requires an additional model
operation (an unassignment) that removes the value from the old feature. Note that,
in Groovy-for-COPE, the unset function unassigns a feature and returns the (unas-
signed) value.

The results in Table 6.2 support the comparison hypothesis for four of the five exam-
ples. When specified with conservative copy, the migration strategies did not contain
explicit copying (which was required when using new-target for the GMF examples)
and used one rather than two model operations for migration in response to feature
renaming (which required two model operations when using existing-target). However,
the GMF Graph co-evolution example does not support the hypothesis due to a limi-
tation of the way in which conservative copy is implemented in Flock. This limitation
is described in the sequel.

Two conclusions can be drawn from investigating the results of the comparison.
Firstly, in general, fewer model operations are used when specifying a migration strat-
egy with a conservative copy migration language than when specifying the same mi-
gration strategy with a new- or existing-target migration language. Secondly, in the
examples studied here, there are often more features unaffected by metamodel evolution

6.2. EVALUATING CONSERVATIVE COPY 177

than affected. Consequently, specifying model migration with a new-target migration
language requires more model operations than in an existing-target migration language
for the examples shown in Tables 6.1 and 6.2. It has been suggested that metamodel
evolution often involves changes to relatively few metamodel elements [Sprinkle 2003],
and the results presented in this section support this hypothesis.

Limitation 1: Duplication when migrating subtypes

For the GMF Graph example (Table 6.2), conservative copy requires more model op-
erations than existing-target. Investigation of this result revealed a limitation of the
conservative copy implementation provided by Flock, which is now described and illus-
trated using a simplified fragment of the GMF Graph co-evolution example.

Figure 6.12 shows2 part of the GMF Graph metamodel prior to evolution, which
has been simplified for illustrative purposes. In the real metamodel, the figure and
accessor features are references to other metamodel classes, rather than attributes.
When the metamodel evolved, the types of the figure and accessor features were
changed. Here, let us assume that their types were changed from string to integer. The
real metamodel changes are described in Section C.3.1.

Figure 6.12: Simplified fragment of the GMF Graph metamodel.

In response to re-typing of the figure and accessor features, the migration
strategy derived new values for the figure and accessor features. In the real
example, a new model element was created and used to decorate [Gamma et al. 1995]
each old value. In the simplified example presented here, the new integer value will
be derived from the old string value by using its length. Section C.3.1 presents the
strategies used to perform migration for the real metamodel changes.

As demonstrated below, ATL and Groovy-for-COPE provide mechanisms for re-
using migration code between subtypes. Migration of the figure feature can be

2Note that this metamodel was also used to discuss specifying migration strategies with Flock in
Section 5.4.3.

178 CHAPTER 6. EVALUATION

1 abstract rule DiagramElements {

2 from o : Before!DiagramElement

3 to m : After!DiagramElement (

4 figure <- o.figure.length()

5)

6 }

7

8 rule Nodes extends DiagramElements {

9 from o : Before!Node

10 to m : After!Node

11 }

12

13 rule Connections extends DiagramElements {

14 from o : Before!Connection

15 to m : After!Connection

16 }

17

18 rule Compartments extends DiagramElements {

19 from o : Before!Compartment

20 to m : After!Compartment

21 }

22

23 rule DiagramLabels extends Nodes {

24 from o : Before!DiagramLabel

25 to m : After!DiagramLabel (

26 accessor <- o.accessor.length()

27)

28 }

Listing 6.6: Simplified GMF Graph model migration in ATL

specified once and used for migrating all subtypes of DiagramElement. Currently,
Flock does not provide a mechanism for re-using migration code between subtypes.

In ATL (Listing 6.6), the GMF Graph migration strategy was expressed using
two model operations: the two assignment operations on lines 4 and 26. For Nodes,
Connections and Compartments, migration of the figure feature is achieved by ex-
tending the DiagramElement transformation rule. Note the use of the extends key-
word on lines 8, 13 and 18 for inheriting the rule on lines 1-4. For DiagramLabels, the
values of both the accessor and figure features must be migrated. On lines 23-28,
the DiagramLabels rule extends the Nodes rule (and hence the DiagramElements
rule) to inherit the body of the DiagramElements rule on line 4. In addition, the
DiagramLabels rule defines the migration for the value of the accessor feature on
line 26.

In Groovy-for-COPE (Listing 6.7), the migration is similar to ATL but is specified
imperatively. In Listing 6.7, a loop iterates over each instance of DiagramElement

6.2. EVALUATING CONSERVATIVE COPY 179

1 for (diagramElement in DiagramElement.allInstances()) {

2 diagramElement.figure = diagramElement.figure.length()

3

4 if (DiagramLabel.allInstances.contains(diagramElement)) {

5 diagramElement.accessor = diagramElement.accessor.length()

6 }

7 }

Listing 6.7: Simplified GMF Graph model migration in COPE

(line 1), migrating the value of its figure feature (line 2). The allInstances
function is used to locate every model element with the type DiagramElement or one
of its subtypes. If the DiagramElement is also a DiagramLabel (line 4), the value
of its accessor feature is also migrated (line 5). In Groovy-for-COPE, the migration
strategy uses two model operations: the assignment statements on lines 2 and 5.

In both ATL and Groovy-for-COPE, only 2 model operations are required for this
migration: an assignment for each of the two features being migrated. However, the
equivalent Flock migration strategy, shown in Listing 6.8, requires 5 model operations:
the assignment statements on lines 2, 6, 10, 11 and 15. Note that the migration of the
figure feature is specified four times (once for each subtype of DiagramElement).
A single DiagramElement rule cannot be used to migrate the figure feature be-
cause, when a migrate rule does not specify a to part, Flock will create an in-
stance of the type named after the migrate keyword. In other words, a migrate
DiagramElement rule will result in Flock attempting to instantiate the abstract class
DiagramElement. Instead migration must be specified using four migrate rules, as
shown in Listing 6.8.

In the current implementation of Flock, migrate rules are used for specifying
two concerns and the limitation described here might be avoided if those concerns
were specified using two distinct language constructs. The first concern relates to,the
to part of a migrate rule, which is used to establish type equivalences between the
original and evolved metamodel. When a metaclass is renamed, for example, migration
in Flock would typically use a rule of the form migrate OldType to NewType.
Omitting the to part of a rule (migrate X) is a shorthand for migrate X to X.
The second concern relates to the body of each rule, which specifies the way in which
each model element should be migrated. Separating the two concerns using distinct
language constructs might facilitate the re-use of migration code between subtypes.
The extent to which greater re-use and increased conciseness can be addressed with
changes to the implementation of Flock is discussed in Section 7.2. The sequel considers
one further limitation of existing-target and conservative copy migration languages.

180 CHAPTER 6. EVALUATION

1 migrate Compartment {

2 migrated.figure := original.figure.length();

3 }

4

5 migrate Connection {

6 migrated.figure := original.figure.length();

7 }

8

9 migrate DiagramLabel {

10 migrated.figure := original.figure.length();

11 migrated.accessor := original.accessor.length();

12 }

13

14 migrate Node {

15 migrated.figure := original.figure.length();

16 }

Listing 6.8: Simplified GMF Graph model migration in Flock

Limitation 2: Side-effects during initialisation

The measurements observed for one of the examples of co-evolution from Chapter 4,
Change Reference to Containment (Table 6.1), cannot be explained by the conceptual
differences between source-target relationship. Instead, the way in which the source-
target relationship is implemented must be considered.

When a reference feature is changed to a containment reference during metamodel
evolution, constructing the migrated model by starting from the original model (as
is the case with existing-target and conservative copy) can have side-effects which
complicate migration.

In the Change Reference to Containment example, a System initially comprises
Ports and Signatures (Figure 6.13(a)). A Signature references any number of
ports. The metamodel is evolved to prevent sharing of Ports between Signatures
by changing the ports feature to a containment instead of a reference (Figure 6.13(b)).
Ports are contained in Signatures rather than in Systems, and consequently the
ports is no longer a feature of System.

Listing 6.9 shows the migration strategy using new-target in ATL. Three model
operations are used: the assignment statements on lines 3, 8 and 14. The rules for
migrating Systems (lines 1-4) and Ports (13-15) copy values for the features unaf-
fected by evolution (signatures and name respectively). The rule for migrating
Signatures (lines 6-11) clones each member of the ports feature (using the Port
rule on lines 13-15). Crucially, the Ports rule is marked as lazy and consequently
is only executed when called from the Signatures rule. By contrast, the Systems
and Signatures rules are executed automatically by ATL for each System and
Signature in the original model, respectively.

6.2. EVALUATING CONSERVATIVE COPY 181

(a) Original metamodel.

(b) Evolved metamodel.

Figure 6.13: Change Reference to Containment metamodel evolution

1 rule Systems {

2 from o : Before!System

3 to m : After!System (

4 signatures <- o.signatures

5)

6 }

7

8 rule Signatures {

9 from o : Before!Signature

10 to m : After!Signature (

11 ports <- o.ports->collect(p | thisModule.Ports(p))

12)

13 }

14

15 lazy rule Ports {

16 from o : Before!Port

17 to m : After!Port (

18 name <- o.name

19)

Listing 6.9: Migration for Change Reference to Containment in ATL

182 CHAPTER 6. EVALUATION

1 migrate Signature {

2 for (port in original.ports) {

3 if (migrated.ports.excludes(port.equivalent())) {

4 var clone := new Migrated!Port;

5 clone.name := port.name;

6 migrated.ports.add(clone);

7 }

8 }

9 }

10

11 delete Port when:

12 not Original!Signature.all.exists(s|s.ports.includes(original))

Listing 6.10: Migration for Change Reference to Containment in Flock

In existing-target and conservative copy migration languages, migration is less
straightforward because, during the initialisation of the the migrated model from the
original model, the value of a containment reference (Signature#ports) is set. When
a containment reference is set, the contained objects are removed from their previous
containment reference (i.e. setting a containment reference has side-effects). There-
fore, in a System where more than one Signature references the same Port, the
migrated model cannot be formed by copying the contents of Signature#ports from
the original model. Attempting to do so causes each Port to be contained only in the
last referencing Signature that was copied.

In Flock, the containment nature of the reference is enforced when the migrated
model is initialised. Because changing the contents of a containment reference has side-
effects, a Port that appears in the ports reference of a Signature in the original
model may not have been automatically copied to the ports reference of the equivalent
Signature in the migrated model during initialisation. Consequently, the migration
strategy must check the ports reference of each migrated Signature, cloning only
those Ports that have not be automatically copied during initialisation (see line 3 of
Listing 6.10). The Flock migration strategy uses 3 model operations: assignments on
lines 5 and 6, and a deletion on 11.

The Flock migration strategy must also remove any Ports which are not referenced
by any Signature (line 11 of Listing 6.10), whereas the ATL migration strategy, which
initialises any empty migrated model, does not copy unreferenced Ports.

When a non-containment reference is changed to a containment reference, migration
strategies written in Flock and Groovy-for-COPE must account for the side-effects that
can occur during initialisation of the migrated model, resulting in less concise migration
strategies. The existing-target and conservative copy implementations used in COPE
and Flock might be changed to avoid this limitation by either automatically cloning
values when a reference is changed to be a containment reference, or by allowing the
user to specify features that should not be copied by the source-target relationship

6.3. EVALUATING FLOCK AND OTHER CO-EVOLUTION TOOLS 183

during initialisation. Section 7.2 discusses this issue further.

6.2.5 Summary

By counting model operations, this section has compared, in the context of model
migration, three approaches to relating source-target relationship: new-target, existing-
target and conservative copy. The results have been analysed and the measurement
method described.

The analysis of the measurements has shown that new- and existing-target migra-
tion languages are more concise in different situations. New-target languages require
fewer model operations than existing-target languages when metamodel evolution in-
volves the renaming of features. Existing-target languages require fewer model opera-
tions than new-target languages when metamodel evolution does not affect most model
elements. For the examples considered here, the latter context was more common. Con-
servative copy requires fewer model operations than both new- and existing-target in
almost all of the examples considered here.

The comparison has highlighted two limitations of the conservative copy algorithm
implemented in Flock, and this section has shown how these limitations are problematic
for specifying some types of migration strategy.

The author is not aware of any existing quantitive comparisons of migration lan-
guages, and, as such, the best practices for conducting such comparisons are not clear.
The method used in obtaining these measurements has been described to provide a
foundation for future comparisons.

6.3 Evaluating Epsilon Flock and other Co-evolution
Tools

This section assesses the extent to which Epsilon Flock (Section 5.4) can be used for
automating developer-driven co-evolution. To this end, Flock is compared to three
co-evolution tools using an expert evaluation. While Chapter 4 highlighted theoretical
differences between co-evolution tools, the expert evaluation explored the ways in which
migration tools compare in practice.

One aspect of Flock, conciseness, was evaluated in Section 6.2. The evaluation per-
formed in this section evaluates several further aspects of model migration tools. The
results of the comparison, described in Section 6.3.3, suggest situations in which using
Flock leads to increased productivity of model migration, and, conversely, situations in
which the other co-evolution tools provide benefits over using Flock. Additionally, the
expert evaluation aimed to simplify the selection of migration tools by recommending
tools for particular situations or requirements. Tool selection advice was synthesised
from the expert evaluation, and recommends tools that are suitable, for example, when
scalability is a concern (many large models are to be migrated).

The way in which Flock affects the productivity of model migration might have
been explored using a comprehensive user-study, involving hundreds of users. How-

184 CHAPTER 6. EVALUATION

ever, locating a large number of participants with expertise in model-driven engineer-
ing was not possible given the time constraints of the research. Alternatively, Flock
and several further co-evolution tools might have been applied, by the author, to a
large, independent co-evolution example in a case study. However, exploring the vari-
ations in productivity of the co-evolution tools would probably have been challenging
as the author is obviously more familiar with Flock than the other tools. Instead, the
comparison of co-evolution tools was performed using an expert evaluation.

The remainder of this section describes the comparison method, reports results and
tool selection guidance, and discusses the situations in which Flock was identified as
stronger or weaker than the other co-evolution tools. Section 6.3.1 describes the way
in which the co-evolution tools were selected, comparison criteria were identified and
the way in which the tools were applied to two co-evolution examples. The experts’
experiences with each tool are reported in Section 6.3.2. Section 6.3.3 presents the
experts’ guidance for identifying the most appropriate model migration tool in different
situations, and the section concludes with a description of the strengths and weaknesses
of Flock.

Section 6.3 is based on joint work with Markus Herrmannsdörfer (a research
student at Technische Universität München), James Williams (a research student
in this department), Dimitrios Kolovos (a lecturer in this department) and Kelly
Garcés (then a research student at EMN-INRIA / LINA-INRIA in Nantes), and has
been published in [Rose et al. 2010b]. Garcés provided assistance with installing
and configuration one of the migration tools, and commented on a draft of the
paper. Herrmannsdörfer, Williams and Kolovos played a larger role in the compar-
ison, as discussed in Sections 6.3.1 and 6.3.2.

6.3.1 Comparison Method

The comparison described in this section is based on practical application of the tools
to the co-evolution examples described below. This section also discusses the tool
selection and comparison processes. Herrmannsdörfer and the author identified the
co-evolution examples, and formulated the comparison process.

Co-Evolution Examples

To compare migration tools, two examples of co-evolution were used. The first, Petri
nets, was first described in Section 5.3 and is a well-known problem in the model migra-
tion literature. The Petri nets example was used to test the installation and configura-
tion of the migration tools. The second, GMF, is a larger example taken from a real-
world model-driven development project, and was identified as a potentially useful ex-
ample for co-evolution case studies in Chapter 4 and in [Herrmannsdoerfer et al. 2009b].

6.3. EVALUATING FLOCK AND OTHER CO-EVOLUTION TOOLS 185

Petri Nets. The first example is the Petri nets example, which was described in
Section 5.3, and is repeated in Figure 6.14. During metamodel evolution, the PTArc
and TPArc classes are introduced to allow the specification of weighted arcs.

(a) Original metamodel.

(b) Evolved metamodel.

Figure 6.14: Petri nets metamodel evolution (taken from [Rose et al. 2010f], and from
Section 5.3).

GMF. The second example is taken from GMF [Gronback 2009], an Eclipse project
for generating graphical editors for models. The development of GMF is model-driven
and utilises four domain-specific metamodels. Here, we consider one of those meta-
models, GMF Graph, and its evolution between GMF versions 1.0 and 2.0. The GMF
Graph example is now summarised, and more details can be found in Section C.3.1.

The GMF Graph metamodel (Figure 6.15) describes the appearance of the gener-
ated graphical model editor. As described in the GMF Graph documentation3, the

3http://wiki.eclipse.org/GMFGraph_Hints

http://wiki.eclipse.org/GMFGraph_Hints

186 CHAPTER 6. EVALUATION

(a) Original metamodel.

(b) Evolved metamodel.

Figure 6.15: GMF graph metamodel evolution

Graph metamodel from GMF 1.0 was evolved – as shown in Figure 6.15(b) – to facili-
tate greater re-use of figures by introducing a proxy [Gamma et al. 1995] for Figure,
termed FigureDescriptor. The original referencingElements reference was
removed, and an extra metaclass, ChildAccess in its place. Section C.3.1 discusses
the metamodel changes in more detail.

GMF provides a migrating algorithm that produces a model conforming to the
evolved Graph metamodel from a model conforming to the original Graph metamodel.
In GMF, migration is implemented using Java. The GMF source code includes two
example editors, for which the source code management system contains versions con-
forming to GMF 1.0 and GMF 2.0. For the comparison of migration tools described in
this paper, the migrating algorithm and example editors provided by GMF were used
to determine the correctness of the migration strategies produced by using each model

6.3. EVALUATING FLOCK AND OTHER CO-EVOLUTION TOOLS 187

migration tool.

Compared Tools

The expert evaluation compares Flock (manual specification), COPE (operator-based)
and AML (inference). A further tool, Ecore2Ecore (manual specification), was included
because it is distributed with EMF (Section 2.3.1), arguably the most widely used
modelling framework. AML, COPE and Ecore2Ecore were discussed in Chapter 4, and
Flock in Chapter 5.

Comparison Process

The comparison of migration tools was conducted by applying each of the four tools
(Ecore2Ecore, AML, COPE and Flock) to the two examples of co-evolution (Petri nets
and GMF). The developers of each tool were invited to participate in the comparison.
The authors of COPE and Flock were able to participate fully, while the authors
of Ecore2Ecore and AML were available for guidance, advice, and to comment on
preliminary results.

Each tool developer was assigned a migration tool to apply to the two co-evolution
examples. Because the authors of Ecore2Ecore and AML could not participate fully
in the comparison, two colleagues experienced in model transformation and migration,
James Williams and Dimitrios Kolovos, took part. To improve the validity of the
comparison, each tool was used by someone other than its developer.

The comparison was conducted in three phases. In the first phase, criteria against
which the tools would be compared were identified by discussion between the tool
developers. In the second phase, co-evolution of Petri nets was used for familiarisation
with the migration tools and to assess the suitability of the comparison criteria. In
the third phase, the tools were applied to the larger co-evolution (GMF) and results
were drawn from the experiences of the tool developers. Table 6.3 summarises the
comparison criteria used, which provide a foundation for future comparisons. The next
section presents, for each criterion, observations from applying the migration tools to
the co-evolution examples.

6.3.2 Comparison Results

This section reports the similarities and differences of each tool, using the nine criteria
described above. The migration strategies formulated with each tool are available
online4.

Each subsection below considers one criterion. This section reports the experiences
of the developer to which each tool was allocated. As such, this section contains
the work of others. Specifically, Herrmannsdörfer described Epsilon Flock, Williams
described COPE and Kolovos described Ecore2Ecore. (The author described AML,
and introduced each criterion).

4http://github.com/louismrose/migration_comparison

http://github.com/louismrose/migration_comparison

188 CHAPTER 6. EVALUATION

Name Description
Construction Ways in which tool supports the development of mi-

gration strategies
Change Ways in which tool supports change to migration

strategies
Extensibility Extent to which user-defined extensions are supported
Re-use Mechanisms for re-using migration patterns and logic
Conciseness Size of migration strategies produced with tool
Clarity Understandability of migration strategies produced

with tool
Expressiveness Extent to which migration problems can be codified

with tool
Interoperability Technical dependencies and procedural assumptions of

tool
Performance Time taken to execute migration

Table 6.3: Summary of comparison criteria.

Constructing the migration strategy

Facilitating the specification and execution of migration strategies is the primary func-
tion of model migration tools. This section reports the process for and challenges faced
in constructing migration strategies with each tool.

AML. An AML user specifies a combination of match heuristics from which AML in-
fers a migrating transformation by comparing original and evolved metamodels. Match-
ing strategies are written in a textual syntax, which AML compiles to produce an
executable workflow. The workflow is invoked to generate the migrating transforma-
tion, codified in the Atlas Transformation Language (ATL) [Jouault & Kurtev 2005].
Devising correct matching strategies is difficult, as AML lacks documentation that de-
scribes the input, output and effects of each heuristic. Papers describing AML (such
as [Garcés et al. 2009]) discuss each heuristic, but mostly in a high-level manner. A
semantically invalid combination of heuristics can cause a runtime error, while an in-
correct combination results in the generation of an incorrect migration transformation.
However, once a matching strategy is specified, it can be re-used for similar cases of
metamodel evolution. To devise the matching strategies used in this paper, AML’s
author provided considerable guidance.

COPE. A COPE user applies coupled operations to the original metamodel to form
the evolved metamodel. Each coupled operation specifies a metamodel evolution along
with a corresponding fragment of the model migration strategy. A history of applied
operations is later used to generate a complete migration strategy. As COPE is meant
for co-evolution of models and metamodels, reverse engineering a large metamodel

6.3. EVALUATING FLOCK AND OTHER CO-EVOLUTION TOOLS 189

can be difficult. Determining which sequence of operations will produce a correct
migration is not always straightforward. To aid the user, COPE allows operations to
be undone. To help with the migration process, COPE offers the Convergence View
which utilises EMF Compare to display the differences between two metamodels. While
this was useful, it can, understandably, only provide a list of explicit differences and
not the semantics of a metamodel change. Consequently, reverse-engineering a large
and unfamiliar metamodel is challenging, and migration for the GMF Graph example
could only be completed with considerable guidance from the author of COPE.

Ecore2Ecore. In Ecore2Ecore model migration is specified in two steps. In the first
step, a graphical mapping editor is used to construct a model that declares basic migra-
tions. In this step only very simple migrations such as class and feature renaming can
be declared. In the next step, the developer needs to use Java to specify a customised
parser (resource handler, in EMF terminology) that can parse models that conform to
the original metamodel and migrate them so that they conform to the new metamodel.
This customised parser exploits the basic migration information specified in the first
step and delegates any changes that it cannot recognise to a particular Java method
in the parser for the developer to handle. Handling such changes is tedious as the
developer is only provided with the string contents of the unrecognised features and
then needs to use low-level techniques – such as data-type checking and conversion,
string splitting and concatenation – to address them. Here it is worth mentioning that
Ecore2Ecore cannot handle all migration scenarios and is limited to cases where only
a certain degree of structural change has been introduced between the original and the
evolved metamodel. For cases which Ecore2Ecore cannot handle, developers need to
specify a custom parser without any support for automated element copying.

Flock. In Flock, model migration is specified manually. Flock automatically copies
only those model elements which still conform to the evolved metamodel. Hence, the
user specifies migration only for model elements which no longer conform to the evolved
metamodel. Due to the automatic copying algorithm, an empty Flock migration strat-
egy always yields a model conforming to the evolved metamodel. Consequently, a
user typically starts with an empty migration strategy and iteratively refines it to
migrate non-conforming elements. However, there is no support to ensure that all non-
conforming elements are migrated. In the GMF Graph example, completeness could
only be ensured by testing with numerous models. Using this method, a migration
strategy can be easily encoded for the Petri net example. For the GMF Graph example
whose metamodels are larger, it was more difficult, since there is no tool support for
analysing the changes between original and evolved metamodel.

Changing the migration strategy

Migration strategies can change in at least two ways. Firstly, as a migration strategy
is developed, testing might reveal errors which need to be corrected. Secondly, further
metamodel changes might require changes to an existing migration strategy.

190 CHAPTER 6. EVALUATION

AML. Because AML automatically generates migrating transformations, changing
the transformation, for example after discovering an error in the matching strategy, is
trivial. To migrate models over several versions of a metamodel at once, the migrating
transformations generated by AML can be composed by the user. AML provides no
tool support for composing transformations.

COPE. COPE’s undo feature means that incorrect migrations can be easily fixed.
COPE stores a history of releases – a set of operations that has been applied between
versions of the metamodel. Because the migration code generated from the release
history can migrate models conforming to any previous metamodel release, COPE
provides a comprehensive means for chaining migration strategies.

Ecore2Ecore. Migrations specified using Ecore2Ecore can be modified via the graph-
ical mapping editor and the Java code in the custom model parser. Therefore, devel-
opers can use the features of the Eclipse Java IDE to modify and debug migrations.
Ecore2Ecore provides no dedicated tool support for composing migrations.

Flock. There is comprehensive support in Flock for fixing errors. A migration strat-
egy can easily be re-executed using a launch configuration, and migration errors are
linked to the line in the migration strategy that caused the error to occur. If the meta-
model is further evolved, the original migration strategy has to be extended, since there
is no explicit support to chain migration strategies. The full migration strategy may
need to be read to know where to extend it.

Extensibility

The fundamental constructs used for specifying migration in COPE and AML (oper-
ators and match heuristics, respectively) are extensible. Flock and Ecore2Ecore use a
more imperative (than declarative) approach, and as such do not provide extensible
constructs.

AML. An AML user can specify additional matching heuristics. This requires un-
derstanding of AML’s domain-specific language for manipulating the data structures
from which migrating transformations are generated.

COPE provides the user with a large number of operations. If there is no applicable
operation, a COPE user can write their own operations using an in-place transformation
language embedded into Groovy5.

5http://groovy.codehaus.org/

http://groovy.codehaus.org/

6.3. EVALUATING FLOCK AND OTHER CO-EVOLUTION TOOLS 191

Re-use

Each migration tool captures patterns that commonly occur in model migration. This
section considers the extent to which the patterns captured by each tool facilitate re-use
between migration strategies.

AML. Once a matching strategy is specified, it can potentially be re-used for further
cases of metamodel evolution. Match heuristics provide a re-usable and extensible
mechanism for capturing metamodel change and model migration patterns.

COPE. An operation in COPE represents a commonly occurring pattern in meta-
model migration. Each operation captures the metamodel evolution and model migra-
tion steps. Custom operations can be written and re-used.

Ecore2Ecore. Mapping models cannot be reused or extended in Ecore2Ecore but as
the custom model parser is specified in Java, developers can decompose it into reusable
parts some of which can potentially be reused in other migrations.

Flock. A migration strategy encoded in Flock is modularised according to the classes
whose instances need migration. There is support to reuse code within a strategy by
means of operations with parameters and across strategies by means of imports. Re-
use in Flock captures only migration patterns, and not the higher level co-evolution
patterns captured in COPE or AML.

Conciseness

A concise migration strategy is arguably more readable and requires less effort to
write than a verbose migration strategy. This section comments on the conciseness of
migration strategies produced with each tool, and reports the lines of code (without
comments and blank lines) used.

AML. 117 lines were automatically generated for the Petri nets example. 563 lines
were automatically generated for the GMF Graph example, and a further 63 lines of
code were added by hand to complete the transformation. Approximately 10 lines of
the user-defined code could be removed by restructuring the generated transformation.

COPE requires the user to apply operations. Each operation application generates
one line of code. The user may also write additional migration code. For the Petri net
example, 11 operations were required to create the migrator and no additional code.
The author of COPE migrated the GMF Graph example using 76 operations and 73
lines of additional code.

192 CHAPTER 6. EVALUATION

Ecore2Ecore. As discussed above, handling changes that cannot be declared in the
mapping model is a tedious task and involves a significant amount of low level code. For
the PetriNets example, the Ecore2Ecore solution involved a mapping model containing
57 lines of (automatically generated) XMI and a custom hand-written resource handler
containing 78 lines of Java code.

Flock. 16 lines of code were necessary to encode the Petri nets example, and 140
lines of code were necessary to encode the GMF Graph example. In the GMF Graph
example, approximately 60 lines of code implement missing built-in support for rule
inheritance, even after duplication was removed by extracting and re-using a subroutine.

Clarity

Because migration strategies can change and might serve as documentation for the
history of a metamodel, their clarity is important. This section reports on aspects of
each tool that might affect the clarity of migration strategies.

AML. The AML code generator takes a conservative approach to naming variables,
to minimise the chances of duplicate variable names. Hence, some of the generated
code can be difficult to read and hard to re-use if the generated transformation has to
be completed by hand. When a complete transformation can be generated by AML,
clarity is not as important.

COPE. Migration strategies in COPE are defined as a sequence of operations. The
release history stores the set of operations that have been applied, so the user is clearly
able to see the changes they have made, and find where any issues may have been
introduced.

Ecore2Ecore. The graphical mapping editor provided by Ecore2Ecore allows de-
velopers to have a high-level visual overview of the simple mappings involved in the
migration. However, migrations expressed in the Java part of the solution can be far
more obscure and difficult to understand as they mix high-level intention with low-level
string management operations.

Flock clearly states the migration strategy from the source to the target metamodel.
However, the boilerplate code necessary to implement rule inheritance slightly obfus-
cates the real migration code.

Expressiveness

Migration strategies are easier to infer for some categories of metamodel change than
others [Gruschko et al. 2007]. This section reports on the ability of each tool to migrate
the examples considered in this comparison.

6.3. EVALUATING FLOCK AND OTHER CO-EVOLUTION TOOLS 193

AML. A complete migrating transformation could be generated for the Petri nets
example, but not for the GMF Graph example. The latter contains examples of two
complex changes that AML does not currently support6. Successfully expressing the
GMF Graph example in AML would require changes to at least one of AML’s heuristics.
However, AML provided an initial migration transformation that was completed by
hand.

In general, AML cannot be used to generate complete migration strategies for co-
evolution examples that contain breaking and non-resolvable changes, according to the
categorisations discussed in Section 3.2.4.

COPE. The expressiveness of COPE is defined by the set of operations available.
The Petri net example was migrated using only built-in operations. The GMF Graph
example was migrated using 76 built-in operations and 2 user-defined migration actions.
Custom migration actions allow users to specify any migration strategy.

Ecore2Ecore. A complete migration strategy could be generated for the Petri nets
example, but not for the GMF Graph example. The developers of Ecore2Ecore have
advised that the latter involves significant structural changes between the two versions
and recommended implementing a custom model parser from scratch.

Flock. Since Flock extends EOL, it is expressive enough to encode both examples.
However, Flock does not provide an explicit construct to copy model elements and thus
it was necessary to call Java code from within Flock for the GMF Graph example.

Interoperability

Migration occurs in a variety of settings with differing requirements. This section
considers the technical dependencies and procedural assumptions of each tool, and
seeks to answer questions such as: “Which modelling technologies can be used?” and
“What assumptions does the tool make on the migration process?”

AML depends only on ATL, while its development tools also require Eclipse. AML
assumes that the original and target metamodels are available for comparison, and
does not require a record of metamodel changes. AML can be used with either Ecore
(EMF) or KM3 metamodels.

COPE depends on EMF and Groovy, while its development tools also require Eclipse
and EMF Compare. COPE does not require both the original and target metamodels
to be available. When COPE is used to create a migration strategy after metamodel
evolution has already occurred, the metamodel changes must be reverse-engineered.
To facilitate this, the target metamodel can be used with the Convergence View, as

6http://www.eclipse.org/forums/index.php?t=rview&goto=526894

http://www.eclipse.org/forums/index.php?t=rview&goto=526894

194 CHAPTER 6. EVALUATION

discussed in Section 6.3.2. COPE targets EMF, and does not support other modelling
technologies.

Ecore2Ecore depends only on EMF. Both the original and the evolved versions
of the metamodel are required to specify the mapping model with the Ecore2Ecore
development tools. Alternatively, the Ecore2Ecore mapping model can be constructed
programmatically and without using the original metamodel7. Unlike the other tools
considered, Ecore2Ecore does not require the original metamodel to be available in the
workspace of the metamodel user.

Flock depends on Epsilon and its development tools also require Eclipse. Flock as-
sumes that the original and target metamodels are available for encoding the migration
strategy, and does not require a record of metamodel changes. Flock can be be used
to migrate models represented in EMF, MDR, XML and Z (CZT), although we only
encoded a migration strategy for EMF metamodels in the presented examples.

Performance

The time taken to execute model migration is important, particularly once a migration
strategy has been distributed to metamodel users. Ideally, migration tools will produce
migration strategies whose execution time is quick and scales well with large models.

Figure 6.16: Migration tool performance comparison.

7Private communication with Marcelo Paternostro, an Ecore2Ecore developers.

6.3. EVALUATING FLOCK AND OTHER CO-EVOLUTION TOOLS 195

To measure performance, five sets of Petri net models were generated at random.
Models in each set contained 10, 100, 1000, 5,000, and 10,000 model elements. Fig-
ure 6.16 shows the average time taken by each tool to execute migration across 10 rep-
etitions for models of different sizes. Note that the Y axis has a logarithmic scale. The
results indicate that, for the Petri nets co-evolution example, AML and Ecore2Ecore
execute migration significantly more quickly than COPE and Flock, particularly when
the model to be migrated contains more than 1,000 model elements. Figure 6.16 indi-
cates that, for the Petri nets co-evolution example, Flock executes migration between
two and three times faster than COPE, although the author of COPE reports that
turning off validation causes COPE to perform similarly to Flock.

6.3.3 Discussion

The comparison described above highlights similarities and differences between a rep-
resentative sample of model migration approaches. From this comparison, guidance for
selecting between tools was synthesised. The guidance is presented below, and was pro-
duced by all four participants in the comparison (Herrmannsdörfer, Williams, Kolovos
and the author).

COPE captures co-evolution patterns (which apply to both model and metamodel),
while Ecore2Ecore, AML and Flock capture only model migration patterns (which
apply just to models). Because of this, COPE facilitates a greater degree of re-use in
model migration than other approaches. However, the order in which the user applies
patterns with COPE impacts on both metamodel evolution and model migration, which
can complicate pattern selection particularly when a large amount of evolution occurs
at once. The re-usable co-evolution patterns in COPE make it well suited to migration
problems in which metamodel evolution is frequent and in small steps.

Flock, AML and Ecore2Ecore are preferable to COPE when metamodel evolution
has occurred before the selection of a migration approach. Because of its use of co-
evolution patterns, we conclude that COPE is better suited to forward- rather than
reverse-engineering.

Through its Convergence View and integration with the EMF metamodel editor,
COPE facilitates metamodel analysis that is not possible with the other approaches
considered in this paper. COPE is well-suited to situations in which measuring and
reasoning about co-evolution is important.

In situations where migration involves modelling technologies other than EMF,
AML and Flock are preferable to COPE and Ecore2Ecore. AML can be used with
models represented in KM3, while Flock can be used with models represented in MDR,
XML and CZT. Via the connectivity layer of Epsilon, Flock can be extended to support
further modelling technologies.

There are situations in which Ecore2Ecore or AML might be preferable to Flock and
COPE. For large models, Ecore2Ecore and AML might execute migration significantly
more quickly than Flock and COPE. Ecore2Ecore is the only tool that has no technical
dependencies (other than a modelling framework). In situations where migration must
be embedded in another tool, Ecore2Ecore offers a smaller footprint than other migra-

196 CHAPTER 6. EVALUATION

tion approaches. Compared to the other approaches considered in this paper, AML
automatically generates migration strategies with the least guidance from the user.

Despite these advantages, Ecore2Ecore and AML are unsuitable for some types
of migration problem, because they are less expressive than Flock and COPE. Specifi-
cally, changes to the containment of model elements typically cannot be expressed with
Ecore2Ecore, and metamodel-specific changes [Herrmannsdoerfer et al. 2008a] cannot
be expressed with AML. Because of this, it is important to investigate metamodel
changes before selecting a migration tool. Furthermore, it might be necessary to antic-
ipate which types of metamodel change are likely to arise before selecting a migration
tool. Investing in one tool to discover later that it is no longer suitable causes wasted
effort.

Requirement Recommended Tools
Frequent, incremental co-evolution COPE

Reverse-engineering AML, Ecore2Ecore, Flock
Modelling technology diversity Flock

Quicker migration for larger models AML, Ecore2 Ecore
Minimal dependencies Ecore2Ecore

Minimal hand-written code AML, COPE
Minimal guidance from user AML

Support for metamodel-specific migrations COPE, Flock

Table 6.4: Summary of tool selection advice. (Tools are ordered alphabetically).

Strengths and Weaknesses of Flock

The comparison and guidance highlight strengths and weaknesses of AML, COPE,
Ecore2Ecore and Flock. The findings for Flock are now summarised.

Strengths Flock was the only co-evolution tool suitable for performing model mi-
gration when the original and evolved metamodels are specified in different modelling
technologies. AML, Ecore2Ecore and COPE are interoperable with a single modelling
technology, EMF. Migrating models between metamodels represented in different mod-
elling technologies would require modification of the co-evolution tool when using AML,
Ecore2Ecore or COPE and hence, model migration with Flock requires less effort than
using AML, Ecore2Ecore or COPE when migrating between modelling technologies.
This was a key requirement for the co-evolution example described in the sequel.

For the examples of metamodel evolution explored here, Flock (and COPE) is more
expressive than AML, but requires more guidance from the user. This is consistent with
the trade-off between flexibility and level of automation of co-evolution approaches
identified in Chapter 4.

Unlike COPE, Flock (and AML and Ecore2Ecore) does not make assumptions
on the way in which metamodel evolution will be specified. With Flock, AML and

6.3. EVALUATING FLOCK AND OTHER CO-EVOLUTION TOOLS 197

Ecore2Ecore, metamodel evolution need not occur at the same time or in the same
development environment as the formulation of the model migration strategy. For this
reason, Flock (and AML and Ecore2Ecore) arguably lead to more productive model
migration when used to formulate a model migration strategy after metamodel evolu-
tion has already been specified, as was the case for the GMF Graph example used in
this section.

Weaknesses The results presented here indicate that model migration with Flock
takes longer to execute than with AML and Ecore2Ecore. This is likely because Flock
migration strategies are interpreted, while AML and Ecore2Ecore migration strategies
are compiled. A compiler for Flock would be likely to increase execution time, but,
at present, Epsilon (which Flock extends and reuses) lacks the infrastructure required
for constructing compilers. As such, model migration with Flock is likely to be less
productive than with AML or Ecore2Ecore when a large model or a large number of
models are to be migrated.

Compared to COPE and AML, Flock lacks re-use of model migration patterns
across varying metamodels. In Flock, model migration is specified in terms of concrete
metamodel types and cannot be re-used for different metamodels. By contrast, COPE
and AML capture model migration in a metamodel-independent manner. When mi-
gration is likely to be a commonly occurring practice, the use of COPE or AML rather
than Flock is likely to led to increased productivity of model migration, because the
metamodel-independent migration patterns will probably increase re-use and provide a
vocabulary for describing migration. Section 7.2 describes ways in which Flock might
be extended to capture metamodel-independent migration patterns.

6.3.4 Summary

The work presented in this section compared a representative sample of approaches to
automating developer-driven co-evolution using an expert evaluation. The comparison
was performed by following a methodical process and using an example from a real-
world MDE project. Some preliminary recommendations and guidelines in choosing a
co-evolution tool were synthesised from the presented results and are summarised in
Table 6.4. The comparison was carried out by the tool developers (or stand-ins where
the developers were unable to participate fully). Each developer used a tool other than
their own so that the comparison could more closely emulate the level of expertise of a
typical user.

The results of the comparison suggested situations in which the use of Flock might
lead to increased productivity of model migration, and, conversely, situations in which
an alternative tool might be preferable. The comparison results suggest that Flock is
well-suited to co-evolution when models are to be migrated between different modelling
technologies, when migration involves metamodel-specific detail, and when metamodel
evolution has occurred prior to – or in a different development environment to – the
formulation of a model migration strategy. Additionally, Flock might be improved via
optimisations to increase execution speed for large models or a large number of models,

198 CHAPTER 6. EVALUATION

and by considering the ways in which model migration patterns could be captured in
a metamodel-independent manner.

Some criteria were excluded from the comparison because of the method employed.
For instance, the learnability of a tool affects the productivity of users, and, as such,
affects tool selection. However, drawing conclusions about learnability (and also us-
ability) is challenging with the comparison method employed because of the subjective
nature of these characteristics. A comprehensive user study (with hundreds of users)
would be more suitable for assessing these types of criteria.

6.4 Evaluating Co-Evolution Tools with an Example
from UML

In contrast to the previous section, which compared Flock to three co-evolution tools,
the evaluation performed in this section compares Flock with model-to-model trans-
formation tools. As discussed in Chapter 4, model migration can be regarded as a
specialisation of model-to-model transformation. Chapter 5 introduces Flock, a lan-
guage tailored for model migration. This section compares Flock with other model-to-
model transformation languages, and explores the benefits and drawbacks of treating
model migration and model-to-model transformation as separate model management
operations, as proposed in this thesis and by [Sprinkle 2003].

The author participated in the 2010 edition of the Transformation Tools Contest
(TTC), a workshop series that seeks to compare and contrast tools for performing
model and graph transformation. At TTC 20108, two rounds of submissions were
invited: cases (transformation problems, three of which are selected by the workshop
organisers) and solutions to the selected cases. The author submitted a case based on
a model migration problem from a real-world example of metamodel evolution. Nine
solutions were submitted for the case, including one by the author, which used Flock.

Compared to the evaluation described in Section 6.3, the evaluation in this section
compares Flock to a wider range of tools (model and graph transformation tools, and
not just model migration tools). The remainder of this section describes the model
migration case (Section 6.4.1), the Flock solution (Section 6.4.2), and reports the results
of the workshop in which the solutions were compared and scored by the organisers
and participants.

6.4.1 Model Migration Case

To compare Flock with other transformation tools for specifying model migration, the
author submitted a case to TTC based on the evolution of the UML. The way in which
activity diagrams are modelled in the UML changed significantly between versions 1.4
and 2.1 of the specification. In the former, activities were defined as a special case of

8http://www.planet-research20.org/ttc2010/index.php?Itemid=132

http://www.planet-research20.org/ttc2010/index.php?Itemid=132

6.4. EVALUATING CO-EVOLUTION TOOLS (UML) 199

state machines, while in the latter they are defined with a more general semantic base9

[Selic 2005].
The remainder of this section briefly introduces UML activity diagrams, describes

their evolution, and discusses the way in which solutions were assessed. Section C.2.1
describes the metamodel evolution in more detail. The work presented in this section
is based on the case submitted to TTC 2010 [Rose et al. 2010e].

Activity Diagrams in UML

Activity diagrams are used for modelling lower-level behaviours, emphasising sequenc-
ing and co-ordination conditions. They are used to model business processes and logic
[OMG 2007b]. Figure 6.17 shows an activity diagram for filling orders. The diagram is
partitioned into three swimlanes, representing different organisational units. Activities
are represented with rounded rectangles and transitions with directed arrows. Fork and
join nodes are specified using a solid black rectangle. Decision nodes are represented
with a diamond. Guards on transitions are specified using square brackets. For exam-
ple, in Figure 6.17 the transition to the restock activity is guarded by the condition
[not in stock]. Text on transitions that is not enclosed in square brackets repre-
sents a trigger event. In Figure 6.17, the transition from the restock activity occurs
on receipt of the asynchronous signal called receive stock. Finally, the transitions
between activities might involve interaction with objects. In Figure 6.17, the Fill Order
activity leads to an interaction with an object called Filled Object.

Between versions 1.4 and 2.2 of the UML specification, the metamodel for activity
diagrams has changed significantly. The sequel summarises most of the changes, and
further details can be found in the UML 1.4 [OMG 2001] andUML 2.2 [OMG 2007b]
specifications.

Evolution of Activity Diagrams

Figures 6.18 and 6.19 are simplifications of the activity diagram metamodels from
versions 1.4 and 2.2 of the UML specification, respectively. In the interest of clarity,
some features and abstract classes have been removed from Figures 6.18 and 6.19.

Some differences between Figures 6.18 and 6.19 are: activities have been changed
such that they comprise nodes and edges, actions replace states in UML 2.2, and the
subtypes of control node replace pseudostates.

To facilitate the comparison of solutions, the model shown in Figure 6.17 was used.
Solutions migrated the activity diagram shown in Figure 6.17 – which conforms to UML
1.4 – to conform to UML 2.2. The UML 1.4 model, the migrated UML 2.2 model, and
the UML 1.4 and 2.2 metamodels are available from10.

Submissions were evaluated using the following criteria, which were decided in ad-
vance by the author and the workshop organisers:

9A variant of generalised coloured Petri nets.
10http://www.cs.york.ac.uk/˜louis/ttc/

http://www.cs.york.ac.uk/~louis/ttc/

200 CHAPTER 6. EVALUATION

Customer

Request service

Sales

Take order

Placed Order

Stockroom

Fill order

Entered Order

Filled Order

Pay

Deliver order

Collect order

Delivered Order

 [in stock]

Restock

 [not in stock]

receive stock

Figure 6.17: Activity model in UML 1.4, taken from [Rose et al. 2010e] and based on
[OMG 2001, pg3-165].

6.4. EVALUATING CO-EVOLUTION TOOLS (UML) 201

Figure 6.18: UML 1.4 Activity Graphs (based on [OMG 2001]).

Figure 6.19: UML 2.2 Activity Diagrams (based on [OMG 2007b]).

202 CHAPTER 6. EVALUATION

• Correctness: Does the transformation produce a model equivalent to the mi-
grated UML 2.2. model included in the case resources?

• Conciseness: How much code is required to specify the transformation? (Sprin-
kle and Karsai propose that the amount of effort required to codify migration
should be directly proportional to the number of changes between original and
evolved metamodel [Sprinkle & Karsai 2004]).

• Clarity: How easy is it to read and understand the used transformation? (For
example, is a well-known or standardised language?)

• Appropriateness: How much effort is required to adapt the tool in providing a
solution?

• Tool maturity: To what extent can the tool be used by people other than the
developer?

• Reproducibility: Can the solution be reproduced on another machine?11

• Extensions: Which of the case extensions (described below) were implemented
in the solution?

To further distinguish between solutions, three extensions to the core task were pro-
posed. The first extension was added after the case was submitted, and was proposed
by the workshop organisers and the solution authors. The second and third extension
were included in the case by the author.

Extension 1: Alternative Object Flow State Migration Semantics

Following the submission of the case to the competition, discussion on the TTC fo-
rums12 revealed an ambiguity in the UML 2.2 specification indicating that the migra-
tion semantics for the ObjectFlowState UML 1.4 concept are not clear from the UML
2.2 specification. The case was revised to incorporate both the original semantics (sug-
gested by the author and described above) and an alternative semantics (suggested by
a workshop participant via the TTC forums) for migrating ObjectFlowStates. The
alternative semantics are now described.

In the core task described above, instances of ObjectFlowState were migrated
to instances of ObjectNode. Any instances of Transition that had an Obje-
ctFlowState as their source or target were migrated to instances of ObjectFlow.
Figure 6.20 shows an example application of this migration semantics. Structures such
as the one shown in Figure 6.20(a) are migrated to an equivalent structure shown in

11Participants were invited to install their tools and solutions on virtual machines, which would
later be made accessible via the workshop proceedings.

12http://planet-research20.org/ttc2010/index.php?option=com_
community&view=groups&task=viewgroup&groupid=4&Itemid=150 (registration required)

http://planet-research20.org/ttc2010/index.php?option=com_community&view=groups&task=viewgroup&groupid=4&Itemid=150
http://planet-research20.org/ttc2010/index.php?option=com_community&view=groups&task=viewgroup&groupid=4&Itemid=150

6.4. EVALUATING CO-EVOLUTION TOOLS (UML) 203

Figure 6.20(b). The Transitions, t1 and t2, are migrated to instances of Obje-
ctFlow. Likewise, the instance of ObjectFlowState, s2, is migrated to an instance
of ObjectNode.

(a) ObjectFlowState structure in UML 1.4

(b) Equivalent ObjectNode structure in UML 2.2

Figure 6.20: Migrating Actions for the Core Task

This extension considered an alternative migration semantics for ObjectFlow-
State. For this extension, instances of ObjectFlowState (and any connected Tr-
ansitions) were migrated to instances of ObjectFlow, as shown in Figure 6.21 in
which the UML 2.2 ObjectFlow, f1, replaces t1, t2 and s2.

(a) ObjectFlowState structure in UML 1.4

(b) Equivalent ObjectFlow structure in UML 2.2

Figure 6.21: Migrating Actions for Extension 1

204 CHAPTER 6. EVALUATION

Extension 2: Concrete Syntax

The second extension relates to the appearance of activity diagrams. The UML spec-
ifications provide no formally defined metamodel for the concrete syntax of UML di-
agrams. However, some UML tools store diagrammatic information in a structured
manner using XML or a modelling tool. For example, the Eclipse UML 2 tools13 store
diagrams as GMF [Gronback 2009] diagram models.

Submissions were invited to explore the feasibility of migrating the concrete syntax
of the activity diagram shown in Figure 6.17 to the concrete syntax in their chosen
UML 2 tool. To facilitate this, the case resources included an ArgoUML project14

containing the activity diagram shown in Figure 6.17.

Extension 3: XMI

The UML specifications [OMG 2001, OMG 2007b] indicate that UML models should
be stored using XMI. However, because XMI has evolved at the same time as UML,
UML 1.4 tools most likely produce XMI of a different version to UML 2.2 tools. For
instance, ArgoUML produces XMI 1.2 for UML 1.4 models, while the Eclipse UML2
tools produce XMI 2.1 for UML 2.2.

As an extension to the core task, submissions were invited to consider how to
migrate a UML 1.4 model represented in XMI 1.x to a UML 2.1 model represented
in XMI 2.x. To facilitate this, the UML 1.4 model shown in Figure 6.17 was made
available in XMI 1.2 as part of the case resources.

Following the submission of the case, Tom Morris, the project leader for ArgoEclipse
and a committer on ArgoUML, encouraged solutions to consider the extension described
above. ArgoUML cannot, at present, migrate models from UML 1 to UML 2. On the
TTC forums, Morris stated that “We have nothing available to fill this hole currently,
so any contributions would be hugely valuable. Not only would achieve academic fame
and glory from the contest, but you’d get to see your code benefit users of one of the
oldest (10+ yrs) open source UML modeling tools.” 15

6.4.2 Model Migration Solution in Epsilon Flock

This section describes a Flock solution for migrating UML activity diagrams in response
to the evolution described above. The solution was developed by the author, and, at
the workshop, compared with migration strategies written in other languages. The
workshop participants and organisers rated each tool.

The Flock migration strategy was developed in an iterative and incremental manner,
using the following process, starting with an empty migration strategy:

1. Execute Flock on the original model, producing a migrated model.
13http://www.eclipse.org/modeling/mdt/?project=uml2tools
14http://argouml.tigris.org/
15http://www.planet-research20.org/ttc2010/index.php?option=com_

community&view=groups&task=viewdiscussion&groupid=4&topicid=20&Itemid=150
(registration required)

http://www.eclipse.org/modeling/mdt/?project=uml2tools
http://argouml.tigris.org/
http://www.planet-research20.org/ttc2010/index.php?option=com_community&view=groups&task=viewdiscussion&groupid=4&topicid=20&Itemid=150
http://www.planet-research20.org/ttc2010/index.php?option=com_community&view=groups&task=viewdiscussion&groupid=4&topicid=20&Itemid=150

6.4. EVALUATING CO-EVOLUTION TOOLS (UML) 205

2. Compare the migrated model with the reference model provided in the case re-
sources.

3. Change the Flock migration strategy.

4. Repeat until the migrated and reference models were the same.

The remainder of this section presents the Flock solution in an incremental manner.
The code listings in this section show only those rules relevant to the iteration being
discussed.

Actions, Transitions and Final States

Development of the migration strategy began by executing an empty Flock migration
strategy on the original model. Because Flock automatically copies model elements
that have not been affected by evolution, the resulting model contained Pseudost-
ates and Transitions, but none of the ActionStates from the original model. In
UML 2.2 activities, OpaqueActions replace ActionStates. Listing 6.11 shows the
Flock code for changing ActionStates to corresponding OpaqueActions.

1 migrate ActionState to OpaqueAction

Listing 6.11: Migrating Actions

Next, similar rules were added to migrate instances of FinalState to instances of
ActivityFinalNode and to migrate instances of Transition to ControlFlow,
as shown in Listing 6.12.

1 migrate FinalState to ActivityFinalNode

2 migrate Transition to ControlFlow

Listing 6.12: Migrating FinalStates and Transitions

Pseudostates

Development continued by selecting further types of state that were not present in the
migrated model, such as Pseudostatess, which are not used in UML 2.2 activities.
Instead, UML 2.2 activities use specialised Nodes, such as InitialNode. Listing 6.13
shows the Flock code used to change Pseudostates to corresponding Nodes.

1 migrate Pseudostate to InitialNode when: original.kind = Original!

PseudostateKind#initial

2 migrate Pseudostate to DecisionNode when: original.kind = Original!

PseudostateKind#junction

3 migrate Pseudostate to ForkNode when: original.kind = Original!PseudostateKind#

fork

4 migrate Pseudostate to JoinNode when: original.kind = Original!PseudostateKind#

join

Listing 6.13: Migrating Pseudostates

206 CHAPTER 6. EVALUATION

Activities

In UML 2.2, Activitys no longer inherit from state machines. As such, some of the
features defined by Activity have been renamed. Specifically, transitions has
become edges and partitions has become groups. Furthermore, the states (or
nodes in UML 2.2 parlance) of an Activity are now contained in a feature called
nodes, rather than in the subvertex feature of a composite state accessed via the
top feature of Activity. The Flock migration rule shown in Listing 6.14 captured
these changes.

1 migrate ActivityGraph to Activity {

2 migrated.edge = original.transitions.equivalent();

3 migrated.group = original.partition.equivalent();

4 migrated.node = original.top.subvertex.equivalent();

5 }

Listing 6.14: Migrating ActivityGraphs

Note that the rule in Listing 6.14 used the built-in equivalent operation to find
migrated model elements from original model elements. As discussed in Section 5.4,
the equivalent operation invokes other migration rules where necessary and caches
results to improve performance.

Next, a similar rule for migrating Guards was added. In UML 1.4, the the guard
feature of Transition references a Guard, which in turn references an Expres-
sion via its expression feature. In UML 2.2, the guard feature of Transition
references an OpaqueExpression directly. Listing 6.15 captures this in Flock.

1 migrate Guard to OpaqueExpression {

2 migrated.body.add(original.expression.body);

3 }

Listing 6.15: Migrating Guards

Partitions

In UML 1.4 activity diagrams, Partition specifies a single containment reference
for its contents. In UML 2.2 activity diagrams, partitions have been renamed to
ActivityPartitions and specify two containment features for their contents, edg-
es and nodes. Listing 6.16 shows the rule used to migrate Partitions to Activi-
tyPartitions in Flock. The body of the rule shown in Listing 6.16 uses the collect
operation to segregate the contents feature of the original model element into two
parts.

1 migrate Partition to ActivityPartition {

2 migrated.edges = original.contents.collect(e:Transition | e.equivalent());

3 migrated.nodes = original.contents.collect(n:StateVertex | n.equivalent());

4 }

Listing 6.16: Migrating Partitions

6.4. EVALUATING CO-EVOLUTION TOOLS (UML) 207

ObjectFlows

Finally, two rules were written for migrating model elements relating to object flows.
In UML 1.4 activity diagrams, object flows are specified using ObjectFlowState, a
subtype of StateVertex. In UML 2.2 activity diagrams, object flows are modelled
using a subtype of ObjectNode. In UML 2.2 flows that connect to and from Obje-
ctNodes must be represented with ObjectFlows rather than ControlFlows.

Listing 6.17 shows the Flock rule used to migrate Transitions to ObjectFlows.
The rule applies for Transitions whose source or target StateVertex is of type
ObjectFlowState.

1 migrate ObjectFlowState to ActivityParameterNode

2

3 migrate Transition to ObjectFlow when: original.source.isTypeOf(ObjectFlowState)

or original.target.isTypeOf(ObjectFlowState)

Listing 6.17: Migrating ObjectFlows

In addition to the core task, the Flock solution also approached two of the three
extensions described in the case (Section 6.4.1). The solutions to the extensions are
now discussed.

Alternative ObjectFlowState Migration Semantics

The first extension required submissions to consider an alternative migration semantics
for ObjectFlowState, in which a single ObjectFlow replaces each ObjectFl-
owState and any connected Transitions.

Listing 6.18 shows the Flock source code used to migrate ObjectFlowStates
(and connecting Transitions) to a single ObjectFlow. This rule was used instead
of the two rules defined in Listing 6.17. In the body of the rule shown in Listing 6.18,
the source of the Transition is copied directly to the source of the ObjectFlow.
The target of the ObjectFlow is set to the target of the first outgoing Transition
from the ObjectFlowState.

1 migrate Transition to ObjectFlow when: original.target.isTypeOf(ObjectFlowState)

{

2 migrated.source = original.source.equivalent();

3 migrated.target = original.target.outgoing.first.target.equivalent();

4 }

Listing 6.18: Migrating ObjectFlowStates to a single ObjectFlow

Because, in this alternative semantics, ObjectFlowStates are represented as
edges rather than nodes, the partition migration rule was changed such that Obje-
ctFlowStates were not copied to the nodes feature of Partitions. To filter out
the ObjectFlowStates, line 3 of Listing 6.16 was changed to include a reject state-
ment, as shown on line 3 of Listing 6.19.

1 migrate Partition to ActivityPartition {

208 CHAPTER 6. EVALUATION

2 migrated.edges = original.contents.collect(e:Transition | e.equivalent());

3 migrated.nodes = original.contents.reject(ofs:ObjectFlowState | true).collect(n

:Original!StateVertex | n.equivalent());

4 }

Listing 6.19: Migrating Partitions without ObjectFlowStates

The complete source code listing for the Flock migration strategy is provided in
Section C.2.1.

XMI

The second extension required submissions to migrate an activity graph conforming to
UML 1.4 and encoded in XMI 1.2 to an equivalent activity graph conforming to UML
2.2 and encoded in XMI 2.1. The core task did not require submissions to consider
changes to XMI (the model storage representation), but, in practice, this is a challenge
to migration, as noted by Tom Morris on the TTC forums16.

As discussed in Section 5.4, Flock extends and reuses Epsilon, which includes a
model connectivity layer (EMC). EMC provides a common interface for accessing and
persisting models. Currently, EMC supports EMF (XMI 2.x), MDR (XMI 1.x), and
plain XML models. To support migration between metamodels defined in heteroge-
neous modelling frameworks, EMC was extended during the development of Flock to
provide a conformance checking service.

Consequently, the migration strategy developed for the core task works for all of
the types of model supported by EMC. To migrate a model encoded in XMI 1.2 rather
than in XMI 2.1, the user must select a different option when executing the Flock
migration strategy. Otherwise, no other changes are required.

6.4.3 Comparison with other solutions

At the workshop, solutions to the migration case described in Section 6.4.1 were pre-
sented. Each solution was allocated two opponents who highlighted weaknesses of each
approach. Following the solution presentations and opposition statements, each so-
lution was scored using the criteria described above: correctness, clarity, conciseness,
appropriateness, tool maturity, reproducibility and number of extensions solved. Flock
scored the highest average marks for four of seven criteria, and was awarded overall first
prize. The remainder of this section discusses the scores in more detail, and summarises
the opposition statements for Flock.

Opposition Statements

The opposition statements highlighted two weaknesses of Flock. Firstly, there is some
duplicated code in Listing 6.13: the migrate Pseudostate to ... statement

16http://www.planet-research20.org/ttc2010/index.php?option=com_
community&view=groups&task=viewdiscussion&groupid=4&topicid=20&Itemid=150
(registration required)

http://www.planet-research20.org/ttc2010/index.php?option=com_community&view=groups&task=viewdiscussion&groupid=4&topicid=20&Itemid=150
http://www.planet-research20.org/ttc2010/index.php?option=com_community&view=groups&task=viewdiscussion&groupid=4&topicid=20&Itemid=150

6.4. EVALUATING CO-EVOLUTION TOOLS (UML) 209

Response # 1 4 5 6 7 8 9 10 11 12 Mean

Correctness 0 1 1 1 0 0 1 1 1 1
Conciseness 1 2 2 1 1 1 0 1 2 1

Clarity 1 1 1 0 1 1 1 1 1 1
Extensions 2 2 2 1 2 2 2 2 2 1

Appropriateness 1 2 2 1 2 1 1 2 2 2
Tool Maturity 0 0 0 1 0 0 1 1 0 1

Reproducibility 1 1 1 1 1 1 1 1 1 1
Total 6 9 9 6 7 6 7 9 9 8 7.6

Table 6.5: TTC scores for Epsilon Flock (unweighted).

appears several times. The duplication exists because Flock only allows one-to-one
mappings between original and evolved metamodel types. The conservative copy algo-
rithm would need to be extended to allow one-to-many mappings to remove this kind
of duplication.

Secondly, the body of Flock rules are specified in an imperative manner. Con-
sequently, reasoning about the correctness of a migration strategy is arguably more
difficult than in languages that use a purely declarative syntax. This point is discussed
further in Section 6.5, which considers the limitations of the thesis.

Scoring

Flock was awarded the overall first prize and scored the highest average marks for five
of the seven criteria outlined above. The overall ranking process is first described,
and the remainder of the section discusses the score awarded to Flock for each of the
criteria.

During the workshop, each tool developer presented their solution. The workshop
participants and organisers awarded each solution an individual score for each of the
seven criteria outlined above, and a total score (by summing the seven criteria scores).
The overall ranking for each solution was calculated by taking the mean of the total
scores. For example, Flock was awarded the scores shown in Table 6.5. (Note that
Participants #2 and #3 did not award scores to Flock due to a conflict of interest).
Appendix D presents the complete set of results.

Although Flock was awarded the overall first prize, few conclusions can be drawn
from the rankings. The scores for each criterion were awarded on different scales
(e.g. -2 to 2 for conciseness, and 0 to 2 for extensions) and the workshop organisers
applied a weight to each criterion before calculating the totals (5 for correctness; 4
for tool maturity; 3 for conciseness, clarity, extensions, and appropriateness; and 2 for
reproducibility). Clearly, the relative importance of each criterion may vary between
migration cases, and between organisations. Therefore, the remainder of the discussion
focusses on the per-criteria scores awarded to Flock and the other tools.

210 CHAPTER 6. EVALUATION

Correctness Each tool developer demonstrated the extent to which their solution
performed a correct migration of activity diagrams according to the migration semantics
described in the case description (Section 6.4.1). The following scores could be awarded:
-1 (probably doesn’t work at all), 0 (cannot judge), 1 (works for one model), and
2 (works for more than one model). Flock received a mean score of 0.7, and was
ranked seventh out of the nine solutions. Migration with Flock is specified with both
imperative and declarative language constructs, while many of the other solutions use
only declarative language constructs to specify the migration of UML activity diagrams
and, hence, more could be said about the correctness of the solutions written in those
languages.

Conciseness Solutions were awarded one of the following scores for the conciseness
of their migration strategies: -2 (very verbose), -1 (quite verbose), 0 (cannot judges),
1 (quite concise), and 2 (very concise). Flock received a mean score of 1.2, and was
ranked first out of the nine solutions. Three of the solutions used general purpose
languages (such as Java and Prolog), and these were ranked sixth, seventh and ninth.
The other solutions used graph or model transformation languages, and, in general,
scored more highly than those written in general-purpose languages.

Clarity The extent to which the intention of the migration could be determined from
the migration strategy was scored on the following scale: -1 (no idea how it works), 0
(some idea how it works), 1 (fully understand how it works). Flock received a mean
score of 0.9, was ranked first out of the nine solutions, and there was little variation in
the scores awarded to Flock (a score of 1 from eleven of the twelve responses, and a score
of 0 from the remaining respondent). Tools tailored to model migration, such as Flock
and COPE [Herrmannsdoerfer et al. 2009a], and graph transformation languages, such
as GrGen [Geiß & Kroll 2007] and MOLA [Kalnins et al. 2005], were ranked the highest
in this category.

Appropriateness The suitability of the tool for migrating activity diagrams was as-
sessed on the following scale: -2 (totally inappropriate), -1 (inappropriate), 0 (neutral),
1 (somewhat appropriate), 2 (perfect fit). Flock received a mean score of 1.6, and
was ranked first out of the nine solutions. Again, tools tailored to model migration,
such as Flock and COPE [Herrmannsdoerfer et al. 2009a], and graph transformation
languages, such as GrGen [Geiß & Kroll 2007] and MOLA [Kalnins et al. 2005], were
ranked the highest in this category.

Tool maturity The maturity of each tool was discussed during the solution presen-
tations, and the workshop participants were able to use eight of the nine solutions via
a virtual machine. Scores were awarded on the following scale: -1 (prototype), 0 (av-
erage), 1 (good). Flock received a mean score of 0.4, and was ranked third out of the
nine solutions. Fujaba [Nickel et al. 2000] and GrGen [Geiß & Kroll 2007] were ranked

6.4. EVALUATING CO-EVOLUTION TOOLS (UML) 211

first and second in this category, and are established transformation tools that were
first reported in the literature in 2000 and 2007 respectively.

Reproducibility Each developer was invited to configure a virtual machine with
their tool and solution, and the workshop participants were invited to use each of the
tools. A score of 1 was awarded if a working virtual machine image was provided by
the tool developer, and 0 otherwise. Flock had a mean score of 1, and ranked joint first
along with seven of the other tools. The virtual machine image for one of the tools did
not work, and it was awarded a mean score of 0.

Extensions Three extensions to the core task were described in Section 6.4.1, and a
point was awarded for approaching each additional task. Flock was awarded a mean
score of 5.4, and ranked first of the nine solutions. Determining the extensions ap-
proached by a solution seems to be an objective task, but some tools were awarded
different scores for the extensions criterion which is difficult to explain. For instance,
the Flock solution (Section 6.4.2) approached two of the three extensions, but some
of the participants awarded Flock only 1 point. Rather than analysing the scores, it
is perhaps more interesting to note that the Flock solution was the only solution to
approach the XMI extension, and similarly for Fujaba [Nickel et al. 2000] and the con-
crete syntax extension. This might indicate that contemporary migration tools can
be used to manage realistic metamodel changes, but lack some features that would
be desirable in an industrial setting (namely, interoperability with several modelling
technologies and co-migration of abstract and concrete syntax).

6.4.4 Summary

This section has discussed the way in which Flock was evaluated by participating in
the 2010 edition of the Transformation Tools Contest (TTC). Flock was assessed by
application to an example of migration from the UML and comparison with eight other
model and graph transformation tools. Flock was awarded the overall first prize and
ranked first in five of seven categories by the workshop participants and organisers.

In addition to evaluating Flock, the work described in this section provides three
further contributions. Firstly, the migration case submitted to TTC 2010, described in
Section 6.4.1 provides a real-world example of co-evolution for use in future comparisons
of model migration tools. The case is based on the evolution of UML, between versions
1.4 and 2.2. The migration strategy was devised by analysis of the UML specification,
and by discussion between workshop participants.

Secondly, the Flock solution to the migration case (Section 6.4.2) demonstrates the
way in which a migration strategy can be constructed using Flock. In particular, Sec-
tion 6.4.2 describes an iterative and incremental development process and indicates that
an empty Flock migration strategy can provide a useful starting point for development.

Finally, Section 5.4 claims that Flock supports several modelling technologies. The
solution described in Section 6.4.2 demonstrates the way in which Flock can be used

212 CHAPTER 6. EVALUATION

to migrate models over two modelling technologies: MDR (XMI 1.x) and EMF (XMI
2.x), and hence supports the claim made in Section 5.4.

6.5 Limitations of the Proposed Structures and
Processes

The limitations of the research presented in the thesis are now discussed. Some of the
shortcomings identified here are elaborated on in Section 7.2, which highlights areas of
future work.

Generality The thesis research focuses on model-metamodel co-evolution, but, as
discussed in Chapter 4, metamodel changes can affect artefacts other than models.
Model management operations and model editors are specified using metamodel con-
cepts and, consequently, are affected when a metamodel changes. The work presented
in Chapter 5 focuses on migrating models in response to metamodel changes, and
does not consider integration with tools for migrating model management operations
and model editors. To reduce the effort required to manage the effects of metamodel
changes, it seems reasonable to envisage a unified approach that migrates models, model
management operations, model editors, and other affected artefacts.

Reproducibility The analysis and evaluation presented in Chapters 4 and 6 respec-
tively involved using migration tools to understand and assess their functionality. With
the exceptions noted below, the work presented in these chapters is difficult to repro-
duce and therefore the results drawn are somewhat subjective. On the other hand,
multiple approaches to analysis and evaluation have been taken, and the work has
been published and subjected to peer review.

Not all of the work in Chapter 4 and 6 is difficult to reproduce. In particular,
the evaluation methods used in Chapter 6 are described in detail and a complete set of
results are provided in Appendices C and D. In general, the lack of real-world examples
of co-evolution restricts the extent to which any work in this area can be considered
reproducible.

Formal semantics No formal semantics for the conservative copy algorithm (Sec-
tion 5.4) have been provided. Instead, a reference implementation, Epsilon Flock,
was developed, which facilitated comparison with other migration and transformation
tools. Without a reference implementation, the evaluation described in Sections 6.2,
6.3 and 6.4 would have been impossible. For Epsilon as a whole, a similar case has been
made in favour of a reference implementation over a formal semantics [Kolovos 2009].
For domains where completeness and correctness are a primary concern, a formal se-
mantics would be required before Flock could be applied to manage model-metamodel
co-evolution.

6.6. CHAPTER SUMMARY 213

6.6 Chapter Summary

The work presented in this chapter assessed the structures and processes proposed
in Chapter 5. The evaluation has investigated the extent to which the prototypical
implementations of the structures and processes increase developer productivity for
co-evolution. Factors that affect the efficacy of the proposed structures and processes
were identified via the evaluation, and are summarised below. A range of techniques
were used for evaluation, and the work presented in this chapter provides a foundation
for future work on – and further evaluation of – structures and processes for managing
and identifying model-metamodel co-evolution.

Section 6.1 explored and compared the ways in which user-driven co-evolution is
performed with and without two of the structures proposed in Chapter 5. The com-
parison suggested that the way in which models are represented and the way in which
conformance is checked affects developer productivity. A model representation that
is optimised for human rather than machine use might reduce the likelihood of mis-
takes, particularly if the developers performing co-evolution lack expertise in manip-
ulating XMI (the canonical model storage representation used by contemporary mod-
elling frameworks). Checking conformance as the model is migrated might prevent
errors, particularly if several types of breaking metamodel change are to be resolved,
but might be a waste of computational resources when few breaking metamodel changes
are to be resolved.

Section 6.2 investigated the conciseness of model migration strategies written us-
ing new-target, existing-target and conservative copy source-target relationships. The
results indicate that conservative copy yields the most concise model migration strate-
gies, which might lead to increased developer productivity when specifying migration
manually. However, other factors that were not assessed in this chapter will affect pro-
ductivity, such as the learnability of the three source-target relationships. When spec-
ifying migration with an operator-based or an inference approach, migration strategies
are typically presented to the user to facilitate selection between feasible alternatives.
Further evaluation is needed to assess whether conciseness of migration strategies is a
desirable quality for operator-based and inference approaches.

Sections 6.3 and 6.4 assessed Epsilon Flock (Section 5.4), a model-to-model trans-
formation language tailored for model migration, by comparison with developer-driven
co-evolution tools and model-to-model transformation languages. The comparisons il-
luminated various considerations for co-evolution. For example, the requirements and
maturity of the MDE process can preclude the use of some co-evolution approaches.
When an established MDE process is used to develop a system, it might be impossi-
ble to use co-evolution approaches that mandate specific tools or techniques, such as
operator-based approaches, which require that evolution is expressed with a specialised
metamodel editor.

In addition to the evaluation described in this chapter, the work presented in this
thesis has been subject to peer review by the academic and Eclipse communities. The
thesis research has been published in 3 workshop papers, 2 European conference papers
and 4 international conferences papers. Epsilon HUTN and Epsilon Flock (Chapter 5)

214 CHAPTER 6. EVALUATION

were contributed to the Epsilon project, a component of the research incubator for the
Eclipse Modeling Project (EMP), which is arguably the most active MDE community
at present. EMP’s research incubator hosts a limited number of participants, selected
through a rigorous process and contributions made to the incubator undergo regular
technical review.

Evaluation of the research hypothesis has highlighted areas in which the structures
and processes proposed in Chapter 5 should be improved, and has motivated plans for
future work, which are described in Section 7.2. Additionally, the work presented in
this chapter has identified areas in which further evaluation might be carried out. In
particular, comprehensive user studies are needed to assess the usability and learnability
of co-evolution tools, and to further evidence the benefits of co-evolution tools in terms
of increased developer productivity.

Chapter 7

Conclusions

This thesis has investigated software evolution – a key and costly development activ-
ity in software engineering [Moad 1990] – in the context of Model-Driven Engineering
(MDE), a state-of-the art approach to software engineering. While MDE promises
increased developer productivity [Watson 2008] and increased portability of software
systems [Frankel 2002], it also poses several challenges that threaten its adoption. For
example, identifying and managing evolutionary change in the context of MDE presents
many open research challenges [Mens & Demeyer 2007]. The thesis research has con-
tributed to these research challenges and has explored the following research hypothesis:

In existing MDE projects, the evolution of MDE development artefacts is
typically managed in an ad-hoc manner with little regard for re-use. Ded-
icated structures and processes for managing evolutionary change can be
designed by analysing evolution in existing MDE projects. Furthermore,
supporting those dedicated structures and processes in contemporary MDE
environments is beneficial in terms of increased productivity for software de-
velopment activities pertaining to the management of evolutionary change.

To explore the thesis hypothesis, the following research objectives were defined.

1. Identify and analyse the evolution of MDE development artefacts in existing
projects.

2. Investigate the extent to which existing structures and processes can be used to
manage the evolution of MDE development artefacts.

3. Propose and develop new structures and processes for managing the evolution of
MDE development artefacts, and integrate those structures and processes with a
contemporary MDE development environment.

4. Evaluate the proposed structures and processes for managing evolutionary change,
particularly with respect to productivity.

215

216 CHAPTER 7. CONCLUSIONS

The remainder of this chapter summarises the contributions of the thesis in relation
to the thesis hypothesis and research objectives, and gives a brief description of and
motivation for several potential extensions to the thesis research.

7.1 Contributions of the Thesis Research

The primary contributions of the thesis are summarised below, and the remainder of
this section discusses each contribution in turn.

• Chapter 4 presented an analysis of evolution in existing MDE projects, which
indicated ways in which models, metamodels and model management operations
evolve, highlighted model-metamodel co-evolution as a commonly-occuring soft-
ware evolution activity in MDE projects and led to a categorisation of existing
approaches to managing model-metamodel co-evolution.

• Chapter 5 described the design and implementation of structures and processes for
performing model-metamodel co-evolution, which included a metamodel-indepen-
dent syntax for managing non-conformant models, a textual modelling notation
for manually migrating models, and a model-to-model transformation language
tailored for migration. The proposed structures and processes are interoperable
with EMF (Section 2.3.1), arguably the most widely-used contemporary MDE
modelling framework.

• Chapter 6 detailed the evaluation of the proposed structures and processes using
quantitive measurements, expert evaluation and application to large, independent
examples of co-evolution and explored the extent to which the proposed structures
and processes are beneficial in terms of increased developer productivity.

7.1.1 Investigation of Evolution in MDE Projects

The way in which evolution occurs and is managed in existing MDE projects was
analysed in Chapter 4. The analysis investigated two types of evolutionary change,
model-metamodel co-evolution and model synchronisation, which were identified from
the review presented in Chapter 3. For the MDE projects considered in Chapter 4,
several suitable model-metamodel co-evolution examples – and no suitable model syn-
chronisation examples – were located, and consequently the remainder of the thesis
focused on model-metamodel co-evolution.

The co-evolution examples were used to identify the differences between existing
approaches to managing model-metamodel co-evolution, and to investigate the way
in which model-metamodel co-evolution is managed in existing MDE projects. The
investigation led to the definition of two distinct approaches to managing model-
metamodel co-evolution in MDE projects, user-driven and developer-driven and to
a categorisation of existing approaches, which was published in [Rose et al. 2009b] and
has since been used and extended in several papers, including [Jurack & Mantz 2010,
Méndez et al. 2010].

7.1. CONTRIBUTIONS OF THE THESIS RESEARCH 217

7.1.2 Structures and Processes for Managing Co-evolution

The analysis of existing MDE projects presented in Chapter 4 highlighted challenges
for identifying and managing co-evolution. Managing co-evolution in a user-driven
manner, for instance, is particularly challenging in contemporary MDE modelling en-
vironments because conformance is enforced implicitly and models and metamodels
are kept separate. Similarly, the variation in programming and transformation lan-
guages typically used to specify model migration presents a challenge for comparing
existing approaches to developer-driven co-evolution approaches. Moreover, none of
the languages typically used have been tailored for the specific requirements of model
migration. This thesis contributes structures and processes that seek to address the
challenges summarised above.

Metamodel-Indepenent Syntax

Contemporary MDE modelling frameworks cannot be used to load non-conformant
models. Consequently, model migration cannot be performed using the structures typ-
ically available in contemporary MDE modelling environments, such as model editors
and model management operations. The metamodel-independent syntax, introduced in
Chapter 5, is a proposed extension to contemporary MDE modelling frameworks that
facilitates the loading of non-conformant models and provides services for reporting
conformance problems.

The metamodel-independent syntax underpins the implementation of two further
structures, the textual modelling notation described below, and the automatic confor-
mance checking service of Concordance [Rose et al. 2010c].

Textual Modelling Notation

When a small number of models are to be migrated, the effort required to specify
an executable migration strategy might not be justifiable. Instead, models can be
migrated by editing models by hand. The textual modelling notation, presented in
Chapter 5, provides a notation for editing models in contemporary MDE development
environments. The notation proposed in this thesis adopts the Human-Usable Textual
Notation (HUTN) [OMG 2004], a standard notation for textual modelling proposed by
the Object Management Group (OMG)1. The implementation of HUTN introduced in
Section 5.2, Epsilon HUTN, is the sole reference implementation of the HUTN standard,
and was published in [Rose et al. 2008a].

During user-driven co-evolution, model editors cannot be used for migration and
editing models in their underlying storage representation, which will not have been op-
timised for human use, can be error-prone and time consuming. The textual modelling
notation introduced in Chapter 5, Epsilon HUTN, provides an alternative to editing
models in their underlying storage representation.

1http://www.omg.org

http://www.omg.org

218 CHAPTER 7. CONCLUSIONS

A Process for User-Driven Co-evolution

The analysis of existing MDE projects highlighted several projects in which model mi-
gration was performed using user-driven co-evolution techniques, and yet no existing
work sought to address the specific requirements of user-driven co-evolution. Con-
temporary MDE modelling environments typically enforce conformance in an implicit
manner, and cannot be used to load non-conformant models. Consequently, user-driven
co-evolution is an iterative, error-prone and time-consuming task, because model edi-
tors and model management operations cannot be used to assist migration.

A typical process for performing user-driven co-evolution involves performing model
migration by repeatedly switching between a model editor (which reports conformance
problems) a text editor (in which conformance is reconciled by the user). Chapter 6 pro-
poses an alternative process in which conformance reporting and reconciliation occur in
the same environment, using the metamodel-independent syntax and textual modelling
notation described above. The alternative process was published in [Rose et al. 2009a].

Epsilon Flock: A Model Migration Language

In addition to the structures and processes for performing user-driven co-evolution, the
thesis also contributes a structure dedicated to developer-driven co-evolution, a model
migration language termed Epsilon Flock. The analysis performed in Chapter 4 showed
that model migration is often specified with a model-to-model transformation language
or with a general purpose programming language, and that these languages are not
tailored to the specific requirements of model migration. The investigation presented
in Chapter 5, highlighted that a language tailored for model migration might provide
several benefits over repurposing an existing language to specify model migration. Flock
was designed and implemented to explore the extent to which a language tailored for
model migration might increase developer productivity. The investigation of languages
for model migration and the design and implementation of Flock were published in
[Rose et al. 2010f].

Flock contributes a novel mechanism for relating source and target model elements
termed conservative copy, which is a hybrid of the two existing mechanisms used to re-
late source and target model elements in contemporary model-to-model transformation
languages. Conservative copy automatically copies to the target model every source
model element that conforms to the target metamodel, and does not copy to the target
model source model elements that do not conform to the target metamodel.

7.1.3 Evaluation of Structures and Processes

The structures and processes introduced in this thesis have been evaluated using a
variety of techniques, including a quantitive comparison, an expert evaluation and
comparison to related processes and structures. Existing work on evolutionary change
in MDE has typically been evaluated with a case study (such as in [Sprinkle 2003])
or by demonstration (such as in [Cicchetti 2008]), and few papers in the area report
the strengths and weaknesses of proposed approaches, or seek to contextualise their

7.2. FUTURE WORK 219

contentions. The evaluation presented in Chapter 6 is a contribution in its own right
as it presents several alternative evaluation techniques, including the first expert eval-
uation of model migration tools, and seeks to identify situations in which the proposed
structures and processes are both effective and ineffective.

7.2 Future Work

In the context of a doctoral thesis, it is impossible to thoroughly investigate many of
the issues raised in exploring the thesis hypothesis. Below, several potential extensions
to the research presented in this thesis are identified, and any initial work in those
areas is described.

7.2.1 Further Evaluation

The extent to which the structures and processes introduced in Chapter 5 increase
developer productivity for co-evolution has been explored via expert evaluation and
comparison to related work. Assessing the way in which the proposed structures and
processes affect productivity is challenging due to the number of factors that affect
productivity. In practice, for example, the proposed structures and processes would
be used by developers with different expertise, and together with other tools and tech-
niques. Evaluating the way in which software evolution is identified and managed in
practice using comprehensive case and user studies would be likely to allow stronger
claims to be made about the efficacy of the proposed structures and processes. Given
the time constraints of a doctoral thesis, comprehensive case and user studies were not
feasible, and hence are desirable extensions to the thesis research. A key first step
would be to establish a common vocabulary for discussing software evolution activities
in the context of MDE, which would facilitate the comparison of user experiences.

7.2.2 Extensions to the Model Migration Language

The model migration language proposed and implemented in Chapter 5, Epsilon Flock,
makes idiomatic commonly occurring patterns of model migration. The evaluation
presented in Chapter 6 suggested that migration strategies are often more concise
when specified with Flock rather than when specified with contemporary model-to-
model transformation languages. The evaluation also highlighted a limitation in the
implementation of Flock and demonstrated further patterns that might be captured by
model migration languages.

Addressing these issues would further improve the conciseness and re-usability of
model migration strategies written in Flock and, hence, is an obvious area of future
work. In particular, one language construct controls two concerns in the current im-
plementation of Flock, and introducing separate language constructs for each concern
could increase the potential for re-use between model migration rules. Applying Flock
to the co-evolution examples used for evaluation highlighted further model migration
patterns that might be made idiomatic in the language. For example, in situations

220 CHAPTER 7. CONCLUSIONS

where conservative copy can have side-effects, it may be desirable to afford more con-
trol of the copying algorithm via, for example, an ignore keyword that identifies
values that should not be automatically copied.

7.2.3 Unifying Co-evolution Approaches

The thesis research has focused on one type of software evolution, model-metamodel
co-evolution. Many further types of evolution occur in practice, including model refac-
toring and model synchronisation, which were discussed in Chapter 3. Changes to
a metamodel affect not only models but also model management operations, such as
model transformations. When changes are propagated from a metamodel to a model
during migration, further artefacts might be impacted as an indirect consequence of
the metamodel evolution.

The use of distinct structures and processes for each type of evolution poses us-
ability challenges relating to the interoperability of tools and increased training ef-
fort. Seeking, instead, a unified approach to managing evolution might address these
challenges, and presents an interesting opportunity for future work. Integrating the
thesis research with approaches for managing other types of co-evolution, such as
transformation-metamodel co-evolution, is one way in which the formulation of a uni-
fied approach might proceed. To this end, an outline for integrating model-metamodel
and transformation-metamodel co-evolution approaches has proposed in collaboration
with Anne Etien, an Associate Professor at the Université Lille, and published in
[Rose et al. 2010a].

7.2.4 Higher-Order Migration

In model transformation, a higher-order transformation consumes or produces a model
transformation. Higher-order transformation has been used to generate model migra-
tion strategies [Cicchetti 2008, Garcés et al. 2009], and to compose and analyse trans-
formations [Tisi et al. 2009]. Similarly, higher-order migration might be used effectively
for migrating model transformation specifications between similar model transforma-
tion languages, and for migrating model management operations in response to changes
to their specification language. For example, higher-order migration might be applied
to migrate model migration strategies between different types of transformation lan-
guage, such as from a new-target to a conservative copy language.

7.2.5 Genericity

Chapter 6 identified a lack of metamodel-independent re-use as one of the primary weak-
nesses of Flock compared to related approaches. In Flock, model migration strategies
are specified in terms of metamodel concepts, and consequently, the extent to which
code can be re-used across migration strategies is reduced. By mixing model manage-
ment languages with ideas from generic programming, one way in which model manage-
ment operations can be specified in a manner that is independent of their metamodel
has been identified [de Lara & Guerra 2010]. Applying these ideas to Flock would

7.3. CLOSING REMARKS 221

facilitate increased re-use across model migration strategies, and address a primary
weakness of Flock.

7.3 Closing Remarks

Building the systems demanded by society now and in the future will require new
approaches to software engineering [Selic 2003]. MDE is a state-of-the-art, principled
approach to software engineering, and promises many benefits particularly with re-
spect to the portability and maintainability of software systems [Kleppe et al. 2003,
Frankel 2002]. While MDE shows promise, its success is reliant on the availability of
mature and powerful tools. Such tools are beginning to emerge, but typically fail to
address concerns that affect their applicability to the engineering of large and complex
software systems, such as scalability and the cost of systems evolution.

The work presented in this thesis has demonstrated a systematic method for iden-
tifying challenges for software evolution in typical MDE processes, proposed structures
and processes for addressing those challenges, and evaluated the structures and pro-
cesses by comparison to related work and by application to real-world examples of
evolution.

Appendix A

Code Listings

This appendix provides complete versions of the code listings discussed in this thesis.
Specifically, this appendix presents listings for migrating Petri nets with Ecore2Ecore
(Section 5.3.2), and presents the model management operations used to implement
Epsilon HUTN (Section 5.2).

A.1 Migrating Petri Nets with Ecore2Ecore

The code in Listings A.1 and A.2 demonstrates the way in which the Ecore2Ecore tool
[Hussey & Paternostro 2006] can be used to perform model migration, using the Petri
nets example described in Section 5.3.1.

1 package lit_petriNets.resources;

2

3 import java.io.InputStream;

4 import java.util.Collection;

5 import java.util.Iterator;

6 import java.util.LinkedList;

7 import java.util.Map;

8 import java.util.Map.Entry;

9

10 import lit_petriNets.Lit_petriNetsFactory;

11 import lit_petriNets.Lit_petriNetsPackage;

12 import lit_petriNets.PTArc;

13 import lit_petriNets.Place;

14 import lit_petriNets.TPArc;

15 import lit_petriNets.Transition;

16

17 import org.eclipse.emf.ecore.EObject;

18 import org.eclipse.emf.ecore.EStructuralFeature;

19 import org.eclipse.emf.ecore.resource.Resource;

223

224 APPENDIX A. CODE LISTINGS

20 import org.eclipse.emf.ecore.util.FeatureMap;

21 import org.eclipse.emf.ecore.xmi.XMLResource;

22 import org.eclipse.emf.ecore.xmi.impl.BasicResourceHandler;

23 import org.eclipse.emf.ecore.xml.type.AnyType;

24

25 public class PetriNetsResourceHandler extends BasicResourceHandler {

26

27 @Override

28 public void postLoad(XMLResource resource, InputStream inputStream,

Map<?, ?> options) {

29 final Map<EObject, AnyType> extMap = resource.

getEObjectToExtensionMap();

30

31 for(Entry<EObject, AnyType> entry : extMap.entrySet()) {

32 handleUnknownData(entry.getKey(), entry.getValue());

33 }

34 }

35

36 private void handleUnknownData(EObject eObj, AnyType unknownData) {

37 handleUnknownFeatures(eObj, unknownData.getMixed());

38 handleUnknownFeatures(eObj, unknownData.getAnyAttribute());

39 }

40

41 private void handleUnknownFeatures(EObject owner, FeatureMap

featureMap) {

42 for (Iterator<FeatureMap.Entry> iter = featureMap.iterator(); iter.

hasNext();) {

43 final FeatureMap.Entry entry = iter.next();

44

45 if (isTransition(owner)) {

46 if (isCollectionOfPlaces(entry.getValue(), owner.eResource())) {

47 final Transition transition = (Transition)owner;

48 final Collection<Place> places = toCollectionOfPlaces(entry.

getValue(), owner.eResource());

49

50 if (isSrc(entry.getEStructuralFeature())) {

51 migrateSrc(transition, places);

52

53 } else if (isDst(entry.getEStructuralFeature())) {

54 migrateDest(transition, places);

55 }

56

A.1. MIGRATING PETRI NETS WITH ECORE2ECORE 225

57 iter.remove();

58

59 } else {

60 System.err.println("Not a collection of places: " + entry.

getValue());

61 }

62 } else {

63 System.err.println("Not a transition: " + owner);

64 }

65 }

66 }

67

68 private boolean isTransition(EObject eObject) {

69 return Lit_petriNetsPackage.eINSTANCE.getTransition().isInstance(

eObject);

70 }

71

72 private boolean isSrc(EStructuralFeature feature) {

73 return "src".equals(feature.getName());

74 }

75

76 private boolean isDst(EStructuralFeature feature) {

77 return "dst".equals(feature.getName());

78 }

79

80 private boolean isCollectionOfPlaces(Object value, Resource resource)

{

81 final String[] uriFragments = ((String)value).split(" ");

82

83 for (String uriFragment : uriFragments) {

84 final EObject eObject = resource.getEObject(uriFragment);

85

86 if (eObject == null || !Lit_petriNetsPackage.eINSTANCE.getPlace().

isInstance(eObject))

87 return false;

88 }

89

90 return true;

91 }

92

93 private Collection<Place> toCollectionOfPlaces(Object value, Resource

resource) {

226 APPENDIX A. CODE LISTINGS

94 final String[] uriFragments = ((String)value).split(" ");

95

96 final Collection<Place> places = new LinkedList<Place>();

97

98 for (String uriFragment : uriFragments) {

99 places.add((Place)resource.getEObject(uriFragment));

100 }

101

102 return places;

103 }

104

105 private void migrateSrc(Transition owner, Collection<Place> sources) {

106 for (Place source : sources) {

107 final PTArc arc = Lit_petriNetsFactory.eINSTANCE.createPTArc();

108 arc.setSrc(source);

109 arc.setDst(owner);

110 arc.setNet(owner.getNet());

111 }

112 }

113

114 private void migrateDest(Transition owner, Collection<Place>

destinations) {

115 for (Place destination : destinations) {

116 final TPArc arc = Lit_petriNetsFactory.eINSTANCE.createTPArc();

117 arc.setSrc(owner);

118 arc.setDst(destination);

119 arc.setNet(owner.getNet());

120 }

121 }

122 }

Listing A.1: Resource handler for migrating Petri net models.

1 package lit_petriNets.resources;

2

3 import java.util.Map;

4

5 import lit_petriNets.Lit_petriNetsPackage;

6

7 import org.eclipse.emf.common.util.URI;

8 import org.eclipse.emf.ecore.EPackage;

9 import org.eclipse.emf.ecore.resource.Resource;

10 import org.eclipse.emf.ecore.resource.ResourceSet;

A.1. MIGRATING PETRI NETS WITH ECORE2ECORE 227

11 import org.eclipse.emf.ecore.resource.impl.ResourceSetImpl;

12 import org.eclipse.emf.ecore.util.EcoreUtil;

13 import org.eclipse.emf.ecore.util.ExtendedMetaData;

14 import org.eclipse.emf.ecore.xmi.XMIResource;

15 import org.eclipse.emf.ecore.xmi.XMLResource;

16 import org.eclipse.emf.ecore.xmi.impl.XMIResourceFactoryImpl;

17 import org.eclipse.emf.mapping.ecore2xml.Ecore2XMLPackage;

18 import org.eclipse.emf.mapping.ecore2xml.Ecore2XMLRegistry;

19 import org.eclipse.emf.mapping.ecore2xml.impl.Ecore2XMLRegistryImpl;

20 import org.eclipse.emf.mapping.ecore2xml.util.Ecore2XMLExtendedMetaData

;

21

22 public class PetriNetsFactoryImpl extends XMIResourceFactoryImpl {

23

24 public static final String BEFORE_NS_URI = "lit_petriNets";

25 public static final String AFTER_PLATFORM_URI = "platform:/plugin/

petrinets/model/After.ecore";

26 public static final String BEFORE_PLATFORM_URI = "platform:/plugin/

petrinets/model/Before_2_After.ecore2xml";

27

28 private ExtendedMetaData extendedMetaData;

29

30

31 public Resource createResource(URI uri) {

32 final XMIResource resource = (XMIResource) super.createResource(uri)

;

33

34 final Map<Object, Object> defaultLoadOptions = resource.

getDefaultLoadOptions();

35 defaultLoadOptions.put(XMLResource.OPTION_EXTENDED_META_DATA,

getExtendedMetaData());

36 defaultLoadOptions.put(XMLResource.OPTION_RECORD_UNKNOWN_FEATURE,

Boolean.TRUE);

37 defaultLoadOptions.put(XMLResource.OPTION_RESOURCE_HANDLER, new

PetriNetsResourceHandler());

38

39 return resource;

40 }

41

42 private ExtendedMetaData getExtendedMetaData() {

43 if(extendedMetaData == null) {

44 final ResourceSet resourceSet = new ResourceSetImpl();

228 APPENDIX A. CODE LISTINGS

45 final EPackage.Registry ePackageRegistry = resourceSet.

getPackageRegistry();

46

47 ePackageRegistry.put(BEFORE_NS_URI, Lit_petriNetsPackage.eINSTANCE)

;

48 ePackageRegistry.put(AFTER_PLATFORM_URI, Lit_petriNetsPackage.

eINSTANCE);

49

50 Ecore2XMLRegistry ecore2xmlRegistry = new Ecore2XMLRegistryImpl(

Ecore2XMLRegistry.INSTANCE);

51 ecore2xmlRegistry.put(BEFORE_NS_URI,

52 EcoreUtil.getObjectByType(

53 resourceSet.getResource(URI.createURI(BEFORE_PLATFORM_URI),

54 true).getContents(),

55 Ecore2XMLPackage.Literals.XML_MAP));

56

57 extendedMetaData = new Ecore2XMLExtendedMetaData(ePackageRegistry,

ecore2xmlRegistry);

58 }

59 return extendedMetaData;

60 }

61 }

Listing A.2: Resource factory for migrating Petri net models.

A.2 Model Management Operations for Epsilon HUTN

The code listings in this section demonstrate the way in which Epsilon HUTN (Sec-
tion 5.2) is implemented, and are taken from Epsilon HUTN v0.8.0 (which was released
in November 2010).

A.2.1 AST Model to Intermediate Model

The ETL transformation in Listing A.3 transforms a model that conforms to the AST
metamodel (Figure 5.15) into a model that conforms to the metamodel-independent
syntax (Section 5.1).

1 pre {

2 var EmfTool := new Native(’org.eclipse.epsilon.emc.emf.tools.EmfTool’);

3

4 var ast := AntlrAst!Ast.allInstances().first();

5 var config := Config!Configuration.allInstances().first();

6

7 var spec := Intermediate!Spec.allInstances().first();

A.2. MODEL MANAGEMENT OPERATIONS FOR HUTN 229

8

9 for (root in ast.roots) {

10 if (AntlrAst!NameNode.isType(root) and root.text.toLowerCase() = ’@spec’) {

11 for (child in root.children) {

12

13 -- process @Spec.model package

14 if (child.text.toLowerCase() = ’model’) {

15 var modelFileAttribute := child.children.selectOne(n : AntlrAst!NameNode

| n.text = ’file’);

16

17 if (modelFileAttribute.isDefined()) {

18 var modelFileValue := modelFileAttribute.children.selectOne(t :

AntlrAst!TextualValueNode | true);

19

20 if (modelFileValue.isDefined()) {

21 spec.modelFile = modelFileValue.getValue();

22 }

23 }

24

25 -- process all other @Spec packages as metamodel specifications

26 } else {

27

28 for (grandchild in child.children.select(n : AntlrAst!NameNode | n.text.

toLowerCase() = ’nsuri’)) {

29 for (valueNode in grandchild.children.select(t : AntlrAst!

TextualValueNode | true)) {

30 var nsUri := new Intermediate!NsUri;

31 nsUri.value := valueNode.getValue();

32 nsUri.addTraceabilityInfo(valueNode.parent);

33 spec.nsUris.add(nsUri);

34 }

35 }

36 }

37 }

38 }

39 }

40 }

41

42 rule NameNode2PackageObject

43 transform n : AntlrAst!NameNode

44 to p : Intermediate!PackageObject {

45

46 guard : n.parent.isUndefined() and n.text.toLowerCase() <> ’@spec’

47

48 spec.objects.add(p);

49

50 p.type := n.text;

230 APPENDIX A. CODE LISTINGS

51 p.addIdentifier(n, false);

52 p.addTraceabilityInfo(n);

53

54 if (not spec.nsUris.isEmpty()) {

55 for (nsUri in spec.nsUris) {

56 var package := EmfTool.getEPackage(nsUri.value);

57

58 if (package.isDefined()) {

59 p.metamodel.add(package);

60 }

61 }

62 }

63

64 for (child in n.children.select(n : AntlrAst!NameNode | true)) {

65 p.classObjects.add(child.equivalent());

66 }

67

68 -- Transform association blocks and infix associations

69 n.children.forAll(a : AntlrAst!AssociationInstanceNode | a.createReferences(p))

;

70 }

71

72 rule NameNode2ClassObject

73 transform n : AntlrAst!NameNode

74 to c : Intermediate!ClassObject {

75

76 guard : n.isClass() and n.parent.text.toLowerCase() <> ’@spec’

77

78 createClassObject(c, n);

79 }

80

81 operation AntlrAst!AssociationInstanceNode createReferences(package :

Intermediate!PackageObject) {

82

83 var slot : Intermediate!ReferenceSlot;

84 var currentChildIsSource := true;

85

86 for (ref in self.children) {

87 var cls := Intermediate!ClassObject.allInstances().selectOne(c|c.identifier =

ref.children.first().text.stripQuotes());

88

89 if (cls.isUndefined()) {

90 cls := createClassObject(ref);

91 package.classObjects.add(cls);

92 }

93

94 if (currentChildIsSource) {

A.2. MODEL MANAGEMENT OPERATIONS FOR HUTN 231

95 slot := cls.slots.selectOne(r : Intermediate!ReferenceSlot | r.feature =

self.text);

96

97 if (slot.isUndefined()) {

98 slot := new Intermediate!ReferenceSlot;

99 slot.feature := self.text;

100 cls.slots.add(slot);

101 }

102

103 } else {

104 slot.values.add(cls.identifier);

105 }

106

107 currentChildIsSource := not currentChildIsSource;

108 }

109 }

110

111

112

113 operation AntlrAst!Node isClass() : Boolean {

114 if (self.parent.isUndefined()) {

115 return false;

116 } else {

117 return ast.roots.includes(self.parent);

118 }

119 }

120

121 operation Intermediate!ModelElement addTraceabilityInfo(node : AntlrAst!Node) :

Intermediate!ModelElement {

122 self.line := node.line;

123 self.col := node.column;

124 return self;

125 }

126

127 operation Intermediate!Object addIdentifier(node : AntlrAst!Node) {

128 self.addIdentifier(node, true);

129 }

130

131 operation Intermediate!Object addIdentifier(node : AntlrAst!Node, infer :

Boolean) {

132 var identifierNode : AntlrAst!Node := node.children.select(t : AntlrAst!

TextualValueNode | true).first();

133

134 if (identifierNode.isDefined()) {

135 self.identifier := identifierNode.text.stripQuotes();

136

137 } else if (infer) {

232 APPENDIX A. CODE LISTINGS

138 var nameSlot : Intermediate!AttributeSlot := self.slots.select(s:

Intermediate!AttributeSlot | s.feature = self.getIdentifierAttributeName

()).first();

139

140 if (nameSlot.isDefined() and nameSlot.values.size() = 1) {

141 self.identifier := nameSlot.values.first();

142 }

143 }

144 }

145

146 operation Intermediate!ClassObject inferAttributeValueFromIdentifier() {

147 if (self.identifier.isDefined() and self.getIdentifierAttributeName().isDefined

() and not self.slots.exists(s : Intermediate!AttributeSlot | s.feature =

self.getIdentifierAttributeName())) {

148 var slot := new Intermediate!AttributeSlot;

149 slot.feature := self.getIdentifierAttributeName();

150 slot.values.add(self.identifier);

151 self.slots.add(slot);

152 }

153 }

154

155 operation Intermediate!ClassObject getIdentifierAttributeName() : String {

156 var idRule : Config!IdentifierRule := config.rules.select(r : Config!

IdentifierRule | r.classifier = self.type).first();

157

158 if (config.isDefined() and idRule.isDefined()) {

159 return idRule.attribute;

160 }

161 }

162

163 operation Intermediate!ClassObject addDefaultValuesForAttributes() {

164 var classifierLevelAttributes := AntlrAst!ClassifierLevelAttributeNode.

allInstances().select(cla | cla.children.first().text = self.type).collect

(cla | cla.children.first());

165

166 for (cla in classifierLevelAttributes) {

167 var attribute := cla.children.first().text;

168 var defaultValues := cla.children.first().children.collect(node | node.text.

stripQuotes());

169

170 if (not self.slots.exists(s : Intermediate!AttributeSlot | s.feature =

attribute)) {

171 self.slots.add(createSlotFor(defaultValues, attribute).addTraceabilityInfo(

cla));

172 }

173 }

174

A.2. MODEL MANAGEMENT OPERATIONS FOR HUTN 233

175 var defaultValueRules := config.rules.select(r : Config!DefaultValueRule | r.

classifier = self.type);

176

177 for (defaultValueRule in defaultValueRules) {

178 if (not self.slots.exists(s : Intermediate!AttributeSlot | s.feature =

defaultValueRule.attribute)) {

179 self.slots.add(createSlotFor(defaultValueRule.defaultValue, defaultValueRule

.attribute));

180 }

181 }

182 }

183

184 -- Default Value Rules --

185 operation createSlotFor(defaultValue : String, attribute : String) :

Intermediate!Slot {

186 var defaultValues := new Sequence;

187 defaultValues.add(defaultValue);

188

189 return createSlotFor(defaultValues, attribute);

190 }

191

192 operation createSlotFor(defaultValues : Collection, attribute : String) :

Intermediate!Slot {

193 var slot : Intermediate!Slot := defaultValues.first().inferType().toSlot();

194

195 slot.feature := attribute;

196

197 defaultValues.forAll(value | slot.values.add(value.inferType()));

198

199 return slot;

200 }

201

202 operation String inferType() : Any {

203 -- Boolean?

204 if (self = ’true’) {

205 return true;

206

207 } else if (self = ’false’) {

208 return false;

209

210 -- Int?

211 } else if (self.isInteger()) {

212 return self.asInteger();

213

214 -- Real?

215 } else if (self.isReal()) {

216 return self.asFloat();

234 APPENDIX A. CODE LISTINGS

217

218 -- String

219 } else {

220 return self;

221 }

222 }

223

224 operation String stripQuotes() : String {

225 var result : String := self;

226

227 if (result.startsWith(’"’)) {

228 result := result.substring(1);

229 }

230

231 if (result.endsWith(’"’)) {

232 result := result.substring(0, result.length() - 1);

233 }

234

235 return result;

236 }

237

238 operation Intermediate!ClassObject addAdjective(a : AntlrAst!AdjectiveNode) {

239 var slot := new Intermediate!AttributeSlot;

240 slot.feature := a.getFeature();

241 slot.values.add(a.getValue());

242

243 slot.addTraceabilityInfo(a);

244

245 self.slots.add(slot);

246 }

247

248 operation AntlrAst!AdjectiveNode getFeature() : String {

249 if (self.text.startsWith(’˜’) or self.text.startsWith(’#’)) {

250 return self.text.substring(1);

251

252 } else {

253 return self.text;

254 }

255 }

256

257 operation AntlrAst!AdjectiveNode getValue() : Boolean {

258 return not self.text.startsWith(’˜’);

259 }

260

261 operation Intermediate!ClassObject addAttribute(n : AntlrAst!NameNode) {

262 var slot := self.findSlot(n.text);

263

A.2. MODEL MANAGEMENT OPERATIONS FOR HUTN 235

264 if (slot.isUndefined() or slot.isDifferentTypeTo(n.children.first().toSlot()))

{

265 slot := n.children.first().toSlot();

266 slot.feature := n.text;

267 }

268

269 if (Intermediate!ReferenceSlot.isType(slot)) {

270 for (valueNode in n.children) {

271 slot.values.add(valueNode.getValue());

272 }

273

274 } else {

275 for (valueNode in n.children) {

276 if (valueNode.text.isDefined()) {

277 slot.values.add(valueNode.getValue());

278 }

279 }

280 }

281

282 slot.addTraceabilityInfo(n);

283 self.slots.add(slot);

284 }

285

286 post {

287 Intermediate!AttributeSlot.all.forAll(s|s.coerceValues());

288 }

289

290 operation Intermediate!Slot isDifferentTypeTo(other : Intermediate!Slot) {

291 return self.eClass.name <> other.eClass.name;

292 }

293

294 -- Nulls --

295 operation AntlrAst!NullNode toSlot() : Intermediate!Slot {

296 return new Intermediate!AttributeSlot;

297 }

298

299 -- Booleans --

300 operation Boolean toSlot() : Intermediate!Slot {

301 return new Intermediate!AttributeSlot;

302 }

303

304 operation AntlrAst!TrueNode toSlot() : Intermediate!Slot {

305 return new Intermediate!AttributeSlot;

306 }

307

308 operation AntlrAst!TrueNode getValue() : Boolean {

309 return true;

236 APPENDIX A. CODE LISTINGS

310 }

311

312 operation AntlrAst!FalseNode toSlot() : Intermediate!Slot {

313 return new Intermediate!AttributeSlot;

314 }

315

316 operation AntlrAst!FalseNode getValue() : Boolean {

317 return false;

318 }

319

320 -- Strings --

321 operation String toSlot() : Intermediate!Slot {

322 return new Intermediate!AttributeSlot;

323 }

324

325 operation AntlrAst!TextualValueNode toSlot() : Intermediate!Slot {

326 return new Intermediate!AttributeSlot;

327 }

328

329 operation AntlrAst!TextualValueNode getValue() : String {

330 return self.text.stripQuotes();

331 }

332

333 -- Numbers --

334 operation Integer toSlot() : Intermediate!Slot {

335 return new Intermediate!AttributeSlot;

336 }

337

338 operation Real toSlot() : Intermediate!Slot {

339 return new Intermediate!AttributeSlot;

340 }

341

342 operation String isReal() : Boolean {

343 return ’.’.isSubstringOf(self);

344 }

345

346 operation AntlrAst!NumericValueNode toSlot() : Intermediate!Slot {

347 return new Intermediate!AttributeSlot;

348 }

349

350 operation AntlrAst!NumericValueNode getValue() : Any {

351 if (self.text.isReal()) {

352 return self.text.asDouble();

353 } else {

354 return self.text.asInteger();

355 }

356 }

A.2. MODEL MANAGEMENT OPERATIONS FOR HUTN 237

357

358 -- References

359 operation AntlrAst!ReferenceNode toSlot() : Intermediate!Slot {

360 return new Intermediate!ReferenceSlot;

361 }

362

363 operation AntlrAst!ReferenceNode getValue() : Any {

364 var value = self.children.first().text.stripQuotes();

365

366 if (value.isExternalObjectReference()) {

367 var base = Intermediate!Spec.all.first.sourceFile;

368 value = EmfTool.resolveURI(value, base);

369 }

370

371 return value;

372 }

373

374 operation String isExternalObjectReference() : Boolean {

375 return self.contains("#");

376 }

377

378 -- Containment and Enumerations --

379 operation AntlrAst!NameNode toSlot() : Intermediate!Slot {

380 if (self.children.isEmpty()) {

381 return new Intermediate!AttributeSlot;

382

383 } else {

384 return new Intermediate!ContainmentSlot;

385 }

386 }

387

388 operation AntlrAst!NameNode getValue() : Any {

389 if (self.children.isEmpty()) {

390 return self.text;

391

392 } else {

393 return createClassObject(self);

394 }

395 }

396

397 operation createClassObject(n : AntlrAst!Node) : Intermediate!ClassObject {

398 var c := new Intermediate!ClassObject;

399 createClassObject(c, n);

400 return c;

401 }

402

403 operation createClassObject(c : Intermediate!ClassObject, n : AntlrAst!Node) {

238 APPENDIX A. CODE LISTINGS

404 c.type := n.text;

405 c.addTraceabilityInfo(n);

406

407 n.children.forAll(a : AntlrAst!AdjectiveNode | c.addAdjective(a));

408 n.children.forAll(n : AntlrAst!NameNode | c.addAttribute(n));

409

410 c.addIdentifier(n);

411 c.inferAttributeValueFromIdentifier();

412 c.addDefaultValuesForAttributes();

413 }

Listing A.3: Transforming AST models to intermediate models with ETL.

A.2.2 Intermediate Model Validation

The EVL constraints in Listing A.4 are executed on an intermediate model and a
target model, and produce a set of consistency problems. Listing A.4 includes the
syntactic constraints of HUTN (e.g. all identifiers must be unique) and the conformance
constraints defined for the metamodel-independent syntax in Section 5.1.

1 pre {

2 var EmfTool := new Native(’org.eclipse.epsilon.emc.emf.tools.EmfTool’);

3 }

4

5 context Object {

6 constraint IdentifiersMustBeUnique {

7 guard: self.identifier.isDefined()

8 check: self.identifier.isUniqueIdentifier()

9 message: ’Duplicate identifier: ’ + self.identifier

10 }

11 }

12

13 context ClassObject {

14 constraint ClassifierMustExist {

15 guard: hasSpecificMetamodel()

16 check: self.hasEClass() or Metamodel!EClassifier.allInstances().select(c|c.

name = self.type).size() = 1

17 message: ’Unrecognised classifier: ’ + self.type

18 }

19

20 constraint ClassifierMustBeClass {

21 guard: self.satisfies(’ClassifierMustExist’)

22 check: self.hasEClass()

23 message: ’Cannot instantiate the enumeration or data type: ’ + self.type

24 }

25

26 constraint ClassMustNotBeAbstract {

27 guard: self.satisfies(’ClassifierMustBeClass’)

A.2. MODEL MANAGEMENT OPERATIONS FOR HUTN 239

28 check: not self.toClass().isAbstract()

29 message: ’Cannot instantiate the abstract class: ’ + self.type

30 }

31

32 constraint ClassMustSpecifyRequiredReferences {

33 guard: self.satisfies(’ClassMustNotBeAbstract’)

34 check: self.getAllReferencesThatRequireAValueButDontHaveOne().isEmpty()

35 message: self.identifier + ’ must specify a value for the following reference

features: ’ + self.getAllReferencesThatRequireAValueButDontHaveOne().

collect(f|f.name).toString()

36

37 fix {

38 title : ’Infer empty instances’

39 do {

40 for (reference in self.getAllReferencesThatRequireAValueButDontHaveOne())

{

41 -- An instance can be inferred if no values are required

42 if (reference.aValueCanBeInferred()) {

43 var instance := new Intermediate!ClassObject;

44 instance.type := reference.eType.name;

45

46 var slot := new Intermediate!ContainmentSlot;

47 slot.feature := reference.name;

48 slot.values.add(instance);

49

50 self.slots.add(slot);

51 }

52 }

53 }

54 }

55 }

56 }

57

58 context Slot {

59 constraint FeatureMustExist {

60 guard: hasSpecificMetamodel() and self.owner.isTypeOf(ClassObject) and self.

owner.toClass().isDefined() and self.feature.isDefined()

61 check: self.owner.toClass().eAllStructuralFeatures.select(c|c.name = self.

feature).size() = 1

62 message: ’Unrecognised feature: ’ + self.feature

63 }

64

65 constraint FeatureMustBeChangeable {

66 guard: self.satisfies(’FeatureMustExist’)

67 check: self.getEStructuralFeature().changeable

68 message: ’Feature ’ + self.getEStructuralFeature().name + ’ is not changeable

’

240 APPENDIX A. CODE LISTINGS

69 }

70

71 constraint MustBeTypeCompatibleWithFeature {

72 guard: self.satisfies(’FeatureMustExist’)

73 check: self.typeCompatibleWith(self.getEStructuralFeature())

74 message: ’Expected ’ + self.getEStructuralFeature().eType.name + ’ for: ’ +

self.feature

75 }

76

77 constraint SingleValuedFeatureCannotTakeMultipleValues {

78 guard: self.satisfies(’FeatureMustExist’)

79 check: self.getEStructuralFeature().isMany() or self.values.size = 1

80 message: ’Multiple values not permitted for: ’ + self.feature

81 }

82 }

83

84 context ReferenceSlot {

85 constraint FeatureMustBeReference {

86 guard: self.satisfies(’MustBeTypeCompatibleWithFeature’)

87 check: not self.getEStructuralFeature().isContainment

88 message: ’A reference value was specified for the containment feature ’ +

89 self.owner.type + ’#’ + self.feature + ’.’

90 }

91

92 constraint ReferencedIdentifiersMustExist {

93 guard: self.satisfies(’FeatureMustBeReference’)

94 check: self.values.forAll(i|i.isRecognisedIdentifier())

95 message: self.values.selectOne(i|not i.isRecognisedIdentifier()).getMessage()

96

97 }

98 }

99

100 context ContainmentSlot {

101 constraint FeatureMustBeContainment {

102 guard: self.satisfies(’MustBeTypeCompatibleWithFeature’)

103 check: self.getEStructuralFeature().isContainment

104 message: ’A contained object was specified for the non-containment feature ’

+

105 self.owner.type + ’#’ + self.feature + ’.’

106 }

107 }

108

109 operation hasSpecificMetamodel() : Boolean {

110 return Spec.allInstances().at(0).nsUris.notEmpty();

111 }

112

113 operation String isUniqueIdentifier() : Boolean {

A.2. MODEL MANAGEMENT OPERATIONS FOR HUTN 241

114 return ClassObject.allInstances().select(c|c.identifier = self).size() = 1;

115 }

116

117 operation String isRecognisedIdentifier() : Boolean {

118 if (’#’.isSubstringOf(self)) {

119 return self.canLocateExternalModel() and self.canLocateExternalModelElement()

;

120

121 } else {

122 return self.isUniqueIdentifier();

123 }

124 }

125

126 operation String getMessage() : String {

127 if (’#’.isSubstringOf(self)) {

128 if (not self.canLocateExternalModel()) {

129 return ’Model not found: ’ + self.split(’#’).first();

130 }

131

132 return ’Model element not found: ’ + self.split(’#’).last();

133

134 } else {

135 return ’Unrecognised identifier: ’ + self;

136 }

137 }

138

139 operation String canLocateExternalModel() : Boolean {

140 return EmfTool.resourceExists(self.split(’#’).first());

141 }

142

143 operation String canLocateExternalModelElement() : Boolean {

144 return EmfTool.modelElementExists(self);

145 }

146

147 operation String toClass() : Metamodel!EClass {

148 if (’#’.isSubstringOf(self)) {

149 -- External object reference, locate in external model

150

151 var object := EmfTool.getEObject(self);

152

153 if (object.isDefined()) {

154 return object.eClass();

155 }

156

157 } else {

158 -- Internal object reference, located in current model

159

242 APPENDIX A. CODE LISTINGS

160 var object := ClassObject.allInstances().selectOne(c|c.identifier = self);

161

162 if (object.isDefined()) {

163 return object.toClass();

164 }

165 }

166 }

167

168 operation ClassObject toClass() : Metamodel!EClass {

169 return self.getEClass();

170 }

171

172 operation Metamodel!EClass getAllClassObjects() : Collection(ClassObject) {

173 return ClassObject.all.select(c|c.hasEClass() and c.getEClass().name = self.

name);

174 }

175

176 operation Metamodel!EClass getAllFeaturesThatRequireAValue() : Sequence(

EReference) {

177 return self.eAllStructuralFeatures.select(f|f.lowerBound > 0 and f.changeable

and not f.transient);

178 }

179

180 operation Metamodel!EClass getAllReferencesThatRequireAValue() : Sequence(

EReference) {

181 return self.eAllReferences.select(f|f.lowerBound > 0 and f.changeable and not f

.transient);

182 }

183

184 operation Metamodel!EReference hasOppositeReferencing(classObject : ClassObject)

: Boolean {

185 if (self.eOpposite.isDefined()) {

186 for (class in self.eType.getAllClassObjects()) {

187 var slot := class.findSlot(self.eOpposite.name);

188

189 if (slot.isDefined()) {

190 if (slot.isKindOf(ReferenceSlot) and slot.values.includes(classObject.

identifier)) {

191 return true;

192

193 } else if (slot.classObjects.includes(classObject)) {

194 return true;

195 }

196

197 }

198 }

199 }

A.2. MODEL MANAGEMENT OPERATIONS FOR HUTN 243

200

201 return false;

202 }

203

204 operation ClassObject getAllReferencesThatRequireAValueButDontHaveOne() :

Sequence(EReference) {

205 return self.toClass().getAllReferencesThatRequireAValue().reject(r|self.slots

.exists(s|s.feature = r.name) or r.hasOppositeReferencing(self));

206 }

207

208 operation Metamodel!EReference aValueCanBeInferred() : Boolean {

209 return self.isContainment and self.eType.getAllFeaturesThatRequireAValue().

isEmpty();

210 }

211

212

213 operation Sequence toString() : String {

214 var result : String := ’’;

215

216 for (element in self) {

217 result := result + element.toString();

218 if (hasMore) { result := result + ’, ’; }

219 }

220

221 return result;

222 }

Listing A.4: Syntactic and Conformance Constraints in EVL.

A.2.3 Intermediate Model to Target Model

The EGL template in Listing A.5 is used to generate an ETL transformation between
intermediate models and target models.

1 pre {

2 var EmfTool := new Native(’org.eclipse.epsilon.emc.emf.tools.EmfTool’);

3 }

4

5 [% if (not PackageObject.all.isEmpty()) { %]

6 [% for (class in getAllEClassesUsed()) { %]

7 rule Object2[%=class.name%]

8 transform o : Intermediate!ClassObject

9 to t : Model!‘[%=class.name%]‘ {

10

11 guard: o.type = ’[%=class.name%]’

12

13 [% for (attribute in class.eAllAttributes) { %]

14 if (o.findSlot(’[%=attribute.name%]’).isDefined()) {

244 APPENDIX A. CODE LISTINGS

15 [% if (attribute.isMany()) { %]

16 for (value in o.findSlot(’[%=attribute.name%]’).values) {

17 t.‘[%=attribute.name%]‘.add(value);

18

19 t.‘[%=attribute.name%]‘.add(value);

20

21 }

22 [% } else { %]

23

24 t.‘[%=attribute.name%]‘ := o.findSlot(’[%=attribute.name%]’).values.first

;

25 [% } %]

26 }

27 [% } %]

28

29 [% for (reference in class.eAllReferences) { %]

30 if (o.findSlot(’[%=reference.name%]’).isDefined()) {

31 [% if (reference.isMany()) { %]

32 for (object in o.findSlot(’[%=reference.name%]’).getEObjects()) {

33 t.‘[%=reference.name%]‘.add(object);

34 }

35 [% } else { %]

36 t.‘[%=reference.name%]‘ := o.findSlot(’[%=reference.name%]’).getEObjects()

.first();

37 [% } %]

38 }

39 [% } %]

40 }

41 [% } %]

42 [% } %]

43

44 operation ReferenceSlot getEObjects() : Sequence {

45 return self.values.collect(i:String | i.getEObject(self));

46 }

47

48 operation ContainmentSlot getEObjects() : Sequence {

49 return self.classObjects.collect(o:Intermediate!ClassObject | o.equivalent());

50 }

51

52 operation String getEObject(slot : ReferenceSlot) : Any {

53 if (’#’.isSubstringOf(self)) {

54 -- External object reference, locate in external model

55 return EmfTool.getEObject(self);

56

57 } else {

58 -- Internal object reference, located in current model

59 return slot.getClassObjects().selectOne(c|c.identifier = self).equivalent();

A.2. MODEL MANAGEMENT OPERATIONS FOR HUTN 245

60 }

61 }

62

63

64 [%

65 operation getAllEClassesUsed() : Sequence {

66 var types := new Set;

67 var classes := new Sequence;

68

69 for (classObject in ClassObject.all) {

70 if (types.excludes(classObject.type)) {

71 types.add(classObject.type);

72 classes.add(classObject.getEClass());

73 }

74 }

75

76 return classes;

77 }

78 %]

Listing A.5: EGL template that generates an intermediate model to target model

transformation (in ETL)

Appendix B

A Graphical Editor for
Process-Oriented Programs

This appendix describes the design and implementation of a prototypical graphical
editor for process-oriented programs. The work presented here was conducted in col-
laboration with Adam Sampson, then a Research Associate at the University of Kent.
The way in which the graphical editor changed throughout its development provided
was used for the evaluation presented in Section 6.1.

The purpose of the collaboration was to explore the suitability of MDE for designing
a graphical notation and editor for programs written in process-oriented programming
languages, such as occam-π [Welch & Barnes 2005]. The collaboration produced a
prototypical graphical editor implemented with EMF and GMF (Section 2.3).

Process-oriented programs are specified in terms of three core concepts: processes,
connection points and channels. Processes are the fundamental building blocks of a
process-oriented program. Channels are the mechanism by which processes communi-
cate, and are unidirectional. Connection points define the channels on which a process
can communicate. Connection points are used to specify the way in which a process
can communicate, and can optionally be bound to a channel. Because channels are uni-
directional, connection points are either reading (consume messages from the channel)
or writing (generate messages on the channel).

The graphical notation and editor were implemented in an iterative and incremental
manner. The abstract syntax of the domain was specified as a metamodel, captured in
Ecore, which is the metamodelling language provided by EMF. The graphical concrete
syntax was specified with GMF, using EuGENia [Kolovos et al. 2010]. EMF and GMF
are described more thoroughly in Section 2.3.

The remainder of this appendix describes the six iterations that took place during
the development of the graphical editor for process-oriented programs. Each section
describes the goal of the iteration, the changes made to the metamodel to meet the
goal, and the impact of the changes on models that had been constructed in previous
iterations. The way in which models were migrated with a user-driven co-evolution
approach is also described.

247

248 APPENDIX B. A GRAPHICAL MODEL EDITOR

B.1 Iteration 1: Processes and Channels

Development began by identifying two key concepts for modelling process-oriented
programs. From examples of process-oriented programs, process and channel were
identified as the most important concepts, and consequently the metamodel shown in
Figure B.1 was constructed.

Figure B.1: The process-oriented metamodel after one iteration.

Additionally, a graphical concrete syntax was chosen for processes and channels.
The former were represented as boxes, and the latter as lines. EuGENia annotations
were added to the metamodel, resulting in the metamodel shown in Listing B.1. Line
1 of Listing B.1 uses the “@gmf.node” EuGENia annotation to indicate that processes
are to be represented as boxes with a label equal to the value of the name feature.
Line 9 uses the “@gmf.link” EuGENia annotation to indicate that channels are to be
represented as lines between source and target processes with a label equal to the
value of the name feature.

1 @gmf.node(label="name")

2 class Process {

3 attr String name;

4

5 ref Channel[*]#target inputs;

6 val Channel[*]#source outputs;

7 }

8

9 @gmf.link(source="source", target="target", label="name")

10 class Channel {

11 attr String name;

12 ref Process[1]#outputs source;

13 ref Process[1]#inputs target;

14 }

Listing B.1: The annotated process-oriented metamodel after one iteration

To generate code for the graphical editor, EuGENia was invoked on the annotated
metamodel shown in Listing B.1. However, EuGENia failed with an error, because no
“root” element had been specified. GMF, the graphical modelling framework used by
EuGENia, requires one metaclass (termed the root) to be specified as a container for
all diagram elements. The root metaclass cannot be a GMF node or a link, and so

B.2. ITERATION 2: INTEROPERABILITY WITH GMF 249

the second iteration involved adding an additional metaclass for interoperability with
GMF.

B.2 Iteration 2: Interoperability with GMF

In the second iteration, an additional metaclass, Model, was added to the metamodel as
shown in Figure B.2. The Model metaclass was used to provide GMF with a container
for storing all of the diagram elements for each process-oriented diagram.

Figure B.2: The process-oriented metamodel after two iterations.

The Model metaclass was annotated with “@gmf.diagram” to indicate that it
should be used as the diagram’s root element (Listing B.2). Root elements do not
have a concrete syntax and do not appear in the graphical editor.

EuGENia was invoked on the annotated metamodel shown in Listing B.2 to produce
code for the graphical editor. Figure B.3 shows a model that was constructed to test
the generated editor and comprised two processes, P1 and P2, and one channel, a.

B.3 Iteration 3: Shared Channels

In previous iterations, channels had been contained within their source process. The
nested structure made it more difficult to explore process-oriented models in EMF’s
tree editor due to the additional level of nesting. Consequently, the metamodel was
changed such that channels were contained in the root element, rather than in the
source process, resulting in the metamodel shown in Figure B.4.

No additional EuGENia annotations were added to the metamodel during this
iteration. In other words, the graphical notation (concrete syntax) was not changed,
and the resulting editor was identical in appearance to the previous one. However,
the EMF tree editor showed just one level of nesting (everything is contained inside
model).

The existing models required migration because of the way in which XMI differen-
tiates between reference and containment values. Each channel was moved to the new
channels reference of Model, and existing values in the outputs reference of Conn-

250 APPENDIX B. A GRAPHICAL MODEL EDITOR

Figure B.3: A diagram after the second iteration.

Figure B.4: The process-oriented metamodel after three iterations.

B.3. ITERATION 3: SHARED CHANNELS 251

1 @gmf.diagram

2 class Model {

3 val Process[*] processes;

4 }

5

6 @gmf.node(label="name")

7 class Process {

8 attr String name;

9

10 ref Channel[*]#target inputs;

11 val Channel[*]#source outputs;

12 }

13

14

15 @gmf.link(source="source", target="target", label="name")

16 class Channel {

17 attr String name;

18 ref Process[1]#outputs source;

19 ref Process[1]#inputs target;

20 }

Listing B.2: The annotated process-oriented metamodel after two iterations

ectionPoint were changed to a reference value. Figure B.5(a) shows the HUTN for
a model prior to migration, and Figure B.5(b) shows the reconciled, migrated HUTN.

252 APPENDIX B. A GRAPHICAL MODEL EDITOR

(a) HUTN prior to migration

(b) HUTN after migration

Figure B.5: Migration between the second and third versions of the process-oriented
metamodel, with Epsilon HUTN (Section 5.2)

B.4. ITERATION 4: CONNECTION POINTS 253

B.4 Iteration 4: Connection Points

The fourth iteration involved capturing a third domain concept, connection points, in
the graphical notation. When a process is specified, the ways in which it can commu-
nicate are declared as connection points. When a process is instantiated, channels are
connected to its connection points, and messages flow in and out of the process. The
graphical notation was to be used to describe both instantiated processes and types of
process, the metamodel was changed to model connection points.

The iteration resulted in the metamodel shown in Figure B.6. ConnectionPoi-
nt was introduced as an association class for the references between Process and
Channel.

Figure B.6: The process-oriented metamodel after the fourth iteration.

To specify concrete syntax for connection points, additional EuGENia annotations
were added to the metamodel as shown in Listing B.3. The ConnectionPoint class
was annotated with a “@gmf.node” to specify that connections points were to be repre-
sented as circles, labelled with the value of the name attribute. The circles were to be
affixed to the boxes used to represent processes, and, hence, “@gmf.affixed” annotations
are used on lines 12 and 15.

1 @gmf.diagram

2 class Model {

3 val Process[*] processes;

4 val Channel[*] channels;

5 val ConnectionPoint[*] connectionPoints;

6 }

7

8 @gmf.node(label="name")

9 class Process {

254 APPENDIX B. A GRAPHICAL MODEL EDITOR

10 attr String name;

11

12 @gmf.affixed

13 ref ConnectionPoint[*] readers;

14

15 @gmf.affixed

16 ref ConnectionPoint[*] writers;

17 }

18

19

20 @gmf.link(source="reader", target="writer", label="name", incoming="true")

21 class Channel {

22 attr String name;

23 ref ConnectionPoint[1] reader;

24 ref ConnectionPoint[1] writer;

25 }

26

27 @gmf.node(label="name", label.placement="external", label.icon="false", figure="

ellipse", size="15,15")

28 class ConnectionPoint {

29 attr String name;

30 }

Listing B.3: The annotated process-oriented metamodel after four iterations

A new version of the graphical editor was generated by invoking EuGENia on the
annotated metamodel. A larger test model was constructed to test the editor, and is
shown in Figure B.7. The existing models required migration because the inputs and
outputs references of Process and the source and target references of Channel
had been removed.

To migrate each existing model, two connection points were created for each channel
in the model. The source and target reference of the channel was changed to
reference the new connection points, as were the corresponding values of the readers
and writers references of the relevant processes. Figure B.8(a) shows the HUTN for
a model prior to migration, and Figure B.8(b) shows the reconciled, migrated HUTN.

B.4. ITERATION 4: CONNECTION POINTS 255

Figure B.7: A diagram after the fourth iteration.

256 APPENDIX B. A GRAPHICAL MODEL EDITOR

(a) HUTN prior to migration

(b) HUTN after migration

Figure B.8: Migration between the third and fourth versions of the process-oriented
metamodel, with Epsilon HUTN (Section 5.2)

B.5. ITERATION 5: CONNECTION POINT TYPES 257

B.5 Iteration 5: Connection Point Types

Channels are unidirectional, and so connection points are either reading or writing. A
process uses the former to consume messages from a channel, and the latter to produce
messages on a channel. Testing the graphical editor produced in the fourth iteration
showed that it was not immediately obvious as to which connection points were reading
and which were writing. The fifth iteration involved changing the graphical editor to
better distinguish between reading and writing connection points.

The iteration resulted in the metamodel shown in Figure B.9. ConnectionPoint
was made abstract, and two subclass, ReadingConnectionPoint and WritingCo-
nnectionPoint, were introduced. The four references to ConnectionPoint were
changed to reference one of the two subclasses.

Figure B.9: The process-oriented metamodel after five iterations.

The graphical notation was changed, as shown in Listing B.4. The WritingCo-
nnectionPoint class was annotated with an additional colour attribute to specify
that writing connection points were to be represented with a black circle. White is the
default colour for a “@gmf.node” annotation, and so reading connection points were
represented as white circles.

1 @gmf.diagram

2 class Model {

258 APPENDIX B. A GRAPHICAL MODEL EDITOR

3 val Process[*] processes;

4 val Channel[*] channels;

5 val ConnectionPoint[*] connectionPoints;

6 }

7

8 @gmf.node(label="name")

9 class Process {

10 attr String name;

11

12 @gmf.affixed

13 ref ReadingConnectionPoint[*] readers;

14

15 @gmf.affixed

16 ref WritingConnectionPoint[*] writers;

17 }

18

19

20 @gmf.link(source="reader", target="writer", label="name", incoming="true")

21 class Channel {

22 attr String name;

23 ref ReadingConnectionPoint[1] reader;

24 ref WritingConnectionPoint[1] writer;

25 }

26

27 @gmf.node(label="name", label.placement="external", label.icon="false", figure="

ellipse", size="15,15")

28 abstract class ConnectionPoint {

29 attr String name;

30 }

31

32 class ReadingConnectionPoint extends ConnectionPoint {}

33

34 @gmf.node(color="0,0,0")

35 class WritingConnectionPoint extends ConnectionPoint {}

Listing B.4: The annotated process-oriented metamodel after five iterations

A new version of the graphical editor was generated by invoking EuGENia on the
annotated metamodel. All of the existing models required migration, because Connec-
tionPoint was now an abstract class, and could no longer be instantiated. Section 6.1
describes the way in which models were migrated after the changes made during this
iteration. Briefly, migration involved replacing every instantiation of ConnectionP-
oint with an instantiation of either ReadingConnectionPoint or WritingConn-
ectionPoint. The former was used when a connection point was used as the value of
a channel’s reader feature and the latter when when a connection point was used as
the value of a channel’s writer feature. Figure B.10(a) shows the HUTN for a model
prior to migration, and Figure B.10(b) shows the reconciled, migrated HUTN.

B.5. ITERATION 5: CONNECTION POINT TYPES 259

(a) HUTN prior to migration

(b) HUTN after migration

Figure B.10: Migration between the fourth and fifth versions of the process-oriented
metamodel, with Epsilon HUTN (Section 5.2)

260 APPENDIX B. A GRAPHICAL MODEL EDITOR

B.6 Iteration 6: Nested Processes and Channels

The final iteration involved changing the graphical editor such that processes and chan-
nels could be nested inside other processes. In some process-oriented languages, such as
occam-π [Welch & Barnes 2005], processes can be specified in terms of other, internal
processes.

To support the decomposition of processes into other processes and channels, the
nestedProcess and nestedChannel references were added to the Process class,
as shown in Figure B.11.

Figure B.11: The process-oriented metamodel after six iterations.

As shown in Listing B.5, the “@gmf.compartment” annotation was added to the
nestedProcess to indicate that processes can be placed inside other processes in the
graphical editor.

1 @gmf.diagram

2 class Model {

3 val Process[*] processes;

4 val Channel[*] channels;

5 val ConnectionPoint[*] connectionPoints;

6 }

7

B.7. SUMMARY 261

8 @gmf.node(label="name")

9 class Process {

10 attr String name;

11

12 @gmf.compartment

13 val Process[*] nestedProcesses;

14 val Channel[*] nestedChannels;

15

16 @gmf.affixed

17 ref ReadingConnectionPoint[*] readers;

18

19 @gmf.affixed

20 ref WritingConnectionPoint[*] writers;

21 }

22

23

24 @gmf.link(source="reader", target="writer", label="name", incoming="true")

25 class Channel {

26 attr String name;

27 ref ReadingConnectionPoint[1] reader;

28 ref WritingConnectionPoint[1] writer;

29 }

30

31 @gmf.node(label="name", label.placement="external", label.icon="false", figure="

ellipse", size="15,15")

32 abstract class ConnectionPoint {

33 attr String name;

34 }

35

36 class ReadingConnectionPoint extends ConnectionPoint {}

37

38 @gmf.node(color="0,0,0")

39 class WritingConnectionPoint extends ConnectionPoint {}

Listing B.5: The annotated process-oriented metamodel after six iterations

EuGENia was invoked on the annotated metamodel to produce the final version
of the graphical editor. An additional model was constructed to check the nesting of
processes, and is shown in Figure B.12. Because the changes made to the metamodel
in this iteration involved only adding new features, no migration of existing models was
necessary.

B.7 Summary

This appendix has described the way in which a graphical editor for process-oriented
programs was designed and implemented using an iterative style of development. A
metamodel was used to capture the key concepts of the domain, and to generate code

262 APPENDIX B. A GRAPHICAL MODEL EDITOR

Figure B.12: A diagram after the final iteration.

for a graphical editor. Each iteration involved changing the metamodel either to correct
unintended behaviour in the editor (iterations 3 and 5), to facilitate interoperability
with other tools (iteration 2) or to add new features (iterations 1, 4 and 6). The
metamodel changes described in the fifth iteration are used for evaluation of the thesis
research in Section 6.1.

Appendix C

Co-evolution Examples

This appendix describes the co-evolution examples used for evaluation in Chapter 6.
The examples were taken from real-world MDE projects and are distinct from the
examples used for analysis in Chapter 4.

Below, each section details examples from one project, describes metamodel changes
and presents model migration strategies. Each model migration strategy is presented
in the three model migration languages used for evaluating conservative copy in Sec-
tion 6.2, and lines that contain a model operation (a statement that changes the mi-
grated model) are highlighted. Section 6.2 describes model operations and the three
model migration languages in more detail.

C.1 Newsgroups Examples

The first set of examples were taken from a project that performed statistical analysis
of NNTP newsgroups, developed by Dimitris Kolovos, a lecturer in this department.
The analysis was implemented using a metamodel to capture domain-specific concepts,
a text-to-model transformation for parsing newsgroup messages, and a model-to-model
transformation for recording the results of the analysis.

The metamodel and transformations were developed in an iterative and incremental
manner. Five iterations of the metamodel and transformations were made available by
Kolovos, two of which involved metamodel changes that affected the conformance of
existing models and are described below. In the other three iterations, the metamodel
changes were additive, did not lead to model migration, and are not described here.

C.1.1 Extract Person

At the start of the second iteration, the newsgroups metamodel, show in Figure C.1(a),
captured two domain concepts, newsgroups and articles. The iteration involved sepa-
rating the domain concepts of authors and articles. At the start of the iteration, the
Article class defined a string attribute called sender as shown in Figure C.1(a). To
make it easier to recognise when several articles were written by the same person, the

263

264 APPENDIX C. CO-EVOLUTION EXAMPLES

(a) Original metamodel.

(b) Evolved metamodel.

Figure C.1: Newsgroups metamodel during the Extract Person iteration

Person class was introduced, and the sender attribute was replaced with a reference
to the Person class as shown in Figure C.1(b).

Existing models were migrated by deriving a Person object from the sender
feature of each Article. The values of the sender feature used one of two forms:
abc@example.com (Full Name) or "Full Name" abc@example.com.

Listings C.1, C.2 and C.3 show the model migration strategy in ATL, COPE and
Flock respectively. The toEmail() and toName() operations are used to extract
names and email addresses, are defined without using any model operations, and are
omitted from the listings below.

1 module ExtractPerson;

2

3 create Migrated : After from Original : Before;

4

5 rule Newsgroups {

6 from

7 o : Before!Newsgroup

8 to

9 m : After!Newsgroup (

10 articles <- o.articles

11)

12 }

13

14 rule Articles {

15 from

C.1. NEWSGROUPS EXAMPLES 265

16 o : Before!Article

17 to

18 m : After!Article (

19 articleId <- o.articleId,

20 subject <- o.subject,

21 newsgroups <- o.newsgroups,

22 inReplyTo <- o.inReplyTo,

23 date <- o.date,

24 sender <- p

25),

26 p : After!Person (

27 name <- o.sender.toName(),

28 email <- o.sender.toEmail()

29)

30 }

Listing C.1: The Newsgroup Extract Person migration in ATL

1 toPerson = { str ->

2 def person = personClass.newInstance();

3 person.email = str.toEmail()

4 person.name = str.toName()

5 return person

6 }

7

8 for (article in extractperson.Article.allInstances) {

9 def sender = article.unset(sender)

10 article.sender = toPerson(sender)

11 }

Listing C.2: The Newsgroup Extract Person migration in Groovy-for-COPE

1 migrate Article {

2 migrated.sender := original.sender.toPerson();

3 }

4

5 operation String toPerson() : Migrated!Person {

6 var person := new Migrated!Person;

7 person.name := self.toName();

8 person.email := self.toEmail();

9 return person;

10 }

Listing C.3: The Newsgroup Extract Person migration in Flock

266 APPENDIX C. CO-EVOLUTION EXAMPLES

(a) Original metamodel.

(b) Evolved metamodel.

Figure C.2: Newsgroups metamodel during the Resolve Replies iteration

C.1.2 Resolve Replies

The Resolve Replies iteration made explicit the lineage of each article by moving replies
to an article such that they were contained in the original article. At the start of
the iteration (Figure C.2(a)), each Article was assigned a unique identifier in the
articleId feature. The inReplyTo feature was specified for Articles written
in reply to others. At the end of the iteration, the inReplyTo attribute was re-
placed with a reference of type Article. The inReplyTo attribute was renamed to
inReplyToId (and, in a future iteration, was removed from the metamodel).

Listings C.4, C.5 and C.6 show the model migration strategy in ATL, COPE and
Flock respectively. Migration involved dereferencing the inReplyTo value to deter-
mine a parent Article, and then setting the inReplyTo reference to the parent
Article.

1 module ResolveReplies;

2

3 create Migrated : After from Original : Before;

4

5 rule Newsgroups {

6 from

7 o : Before!Newsgroup

8 to

C.1. NEWSGROUPS EXAMPLES 267

9 m : After!Newsgroup (

10 articles <- o.articles

11)

12 }

13

14 rule Articles {

15 from

16 o : Before!Article

17 to

18 m : After!Article (

19 articleId <- o.articleId,

20 subject <- o.subject,

21 newsgroups <- o.newsgroups,

22 inReplyToId <- o.inReplyTo,

23 date <- o.date,

24 sender <- o.sender

25)

26 do {

27 if (not o.inReplyTo.oclIsUndefined() and After!Article.allInstances()->exists

(a|a.articleId = o.inReplyTo)) {

28 After!Article.allInstances()->select(a|a.articleId = o.inReplyTo)->first().

replies <- m;

29 }

30 }

31 }

Listing C.4: The Newsgroup Resolve Replies migration in ATL

1 for (article in extractperson.Article.allInstances) {

2 def replyToId = article.unset(replyTo)

3 article.replyToId = replyToId

4 article.replyTo = Article.allInstances.find { it.articledId = article.replyToId

}

5 }

Listing C.5: The Newsgroup Resolve Replies migration in Groovy-for-COPE

1 migrate Article {

2 migrated.inReplyToId := original.inReplyTo;

3 migrated.inReplyTo := Migrated!Article.all.selectOne(a|a.articleId = migrated.

inReplyToId);

4 }

Listing C.6: The Newsgroup Resolve Replies migration in Flock

268 APPENDIX C. CO-EVOLUTION EXAMPLES

C.2 UML Example

This section describes the co-evolution example taken from the evolution of the Unified
Modeling Language (UML) between versions 1.4 [OMG 2001] and 2.2 [OMG 2007b].
Activity diagrams, in particular, changed radically between UML versions 1.4 and 2.2.
In the former, activities were defined as a special case of state machines, while in the
latter they were defined with a more general semantic base1 [Selic 2005].

The UML 1.4 and 2.2 specifications are defined in different metamodelling lan-
guages. The former uses XMI 1.4 and the latter XMI 2.2. Of the co-evolution tools
discussed in this thesis, only Epsilon Flock interoperates with XMI 1.4. To enable the
use of other co-evolution tools with the UML metamodel changes, the author recon-
structed part of the UML 1.4 metamodel in XMI 2.2.

The migration semantics were identified by comparing the UML 1.4 and UML 2.2
specifications, and by discussing the metamodel evolution with other UML experts.
As described in Section 6.4, the UML 2.2 specification appears to be ambiguous with
respect to the way in which UML 1.4 ObjectFlowStates should be migrated to con-
form to the UML 2.2 metamodel. The migration strategies presented here assume the
semantics of the core task described in Section 6.4: ObjectFlowStates are replaced
with ObjectNodes.

C.2.1 Activity Diagrams

Figures C.3(a) and C.3(b) are simplifications of the activity diagram metamodels from
versions 1.4 and 2.2 of the UML specification, respectively. In the interest of clarity,
some features and abstract classes have been removed from Figures C.3(a) and C.3(b).

Some differences between Figures C.3(a) and C.3(b) are: activities have been
changed such that they comprise nodes and edges, actions replace states in UML 2.2,
and the subtypes of control node replace pseudostates.

Listings C.7, C.8 and C.9 show the model migration strategy in ATL, COPE and
Flock respectively. Migration mostly involved restructuring data by storing values in
features of a different name, and retyping Pseudeostates.

1 module ActivityGraph;

2

3 create Migrated : After from Original : Before;

4

5 rule ActivityGraph {

6 from

7 o : Before!ActivityGraph

8 to

9 p : After!Package (

10 packagedElement <- m

11),

12 m : After!Activity (

1A variant of generalised coloured Petri nets.

C.2. UML EXAMPLE 269

(a) Original metamodel.

(b) Evolved metamodel.

Figure C.3: Activities in UML 1.4 and UML 2.2

270 APPENDIX C. CO-EVOLUTION EXAMPLES

13 name <- o.name,

14 node <- o.top.subvertex,

15 edge <- o.transitions,

16 group <- o.partition

17)

18 }

19

20 rule Partitions {

21 from

22 o : Before!Partition

23 to

24 p : After!ActivityPartition (

25 name <- o.name,

26 edge <- o.contents->select(c|c.oclIsKindOf(Before!Transition)),

27 node <- o.contents->reject(c|c.oclIsKindOf(Before!ObjectFlowState))

28)

29 }

30

31 rule ActionState2OpaqueAction {

32 from

33 o : Before!ActionState

34 to

35 p : After!OpaqueAction (

36 name <- o.name

37)

38 }

39

40 rule Initials {

41 from

42 o : Before!Pseudostate (

43 o.kind = #inital

44)

45 to

46 p : After!InitialNode

47 }

48

49 rule Decisions {

50 from

51 o : Before!Pseudostate (

52 o.kind = #junction

53)

54 to

55 p : After!DecisionNode

56 }

57

58 rule Forks {

59 from

C.2. UML EXAMPLE 271

60 o : Before!Pseudostate (

61 o.kind = #fork

62)

63 to

64 p : After!ForkNode

65 }

66

67 rule Joins {

68 from

69 o : Before!Pseudostate (

70 o.kind = #join

71)

72 to

73 p : After!MergeNode

74 }

75

76 rule Finals {

77 from

78 o : Before!FinalState

79 to

80 p : After!ActivityFinalNode

81 }

82

83 rule ObjectFlows {

84 from

85 o : Before!Transition (

86 o.target.oclIsTypeOf(Before!ObjectFlowState)

87)

88 to

89 p : After!ObjectFlow (

90 source <- o.source,

91 target <- o.target.outgoing->first().target

92)

93 }

94

95 rule ControlFlows {

96 from

97 o : Before!Transition (

98 not o.source.oclIsTypeOf(Before!ObjectFlowState) and

99 not o.target.oclIsTypeOf(Before!ObjectFlowState)

100)

101 to

102 p : After!ControlFlow (

103 guard <- o.guard,

104 source <- o.source,

105 target <- o.target

106)

272 APPENDIX C. CO-EVOLUTION EXAMPLES

107 }

108

109 rule Guards {

110 from

111 o : Before!Guard

112 to

113 p : After!OpaqueExpression (

114 body <- o.expression.body

115)

116 }

Listing C.7: UML activity diagram migration in ATL

1 for (model in activities.Model.allInstances) {

2 model.migrate(activities.Package)

3 def ownedElement = model.unset(ownedElement)

4 model.packagedElement = ownedElement

5 }

6

7 for (activity in activities.ActivityGraph.allInstances) {

8 activity.migrate(activities.Activity)

9 def top = activity.unset(top)

10 activity.node = top.subvertex

11 def transitions = activity.unset(transitions)

12 activity.edge = transitions

13 def partition = activity.unset(partition)

14 activity.group = partition

15 }

16

17 for (partition in activities.ActivityGraph.allInstances) {

18 def contents = partition.unset(contents)

19 partition.edges = contents.findAll{it -> it instanceof activities.Transition}

20 partition.nodes = contents.findAll{it -> it instanceof activities.StateVertex

and not (it instanceof activities.ObjectFlowState)}

21 }

22

23 for (action in activities.ActionState.allInstances) {

24 action.migrate(activities.OpaqueAction)

25 }

26

27 for (pseudostate in activities.Pseudeostate) {

28 switch (pseudostate.kind.toString()) {

29 case "pk_initial":

30 pseudeostate.migrate(activities.InitialNode); break

31 case "pk_junction"

32 pseudeostate.migrate(activities.DecisionNode); break

33 case "pk_fork"

C.2. UML EXAMPLE 273

34 pseudeostate.migrate(activities.ForkNode); break

35 case "pk_join"

36 pseudeostate.migrate(activities.JoinNode); break

37 }

38 }

39

40 for (finalstate in activities.FinalState.allInstances) {

41 finalstate.migrate(activities.ActivityFinalNode)

42 }

43

44 for (transition in activities.ObjectFlow.allInstances.findAll{it -> it.target

instanceof activities.ObjectFlowState}) {

45 transition.target = transition.target.outgoing.first.target

46 }

47

48 for (transition in activities.Transition.allInstances) {

49 transition.migrate(activities.ControlFlow)

50 }

51

52 for (guard in activities.Guard.allInstances) {

53 transition.migrate(activities.OpaqueExpression)

54 def expression = transition.unset(expression)

55 transition.body = expression.body

56 }

Listing C.8: UML activity diagram migration in Groovy-for-COPE

1 migrate Model to Package {

2 migrated.packagedElement := original.ownedElement.equivalent();

3 }

4

5 migrate ActivityGraph to Activity {

6 migrated.node := original.top.subvertex.equivalent();

7 migrated.edge := original.transitions.equivalent();

8 }

9

10 migrate Partition to ActivityPartition {

11 migrated.edges := original.contents.collect(e : Transition | e.equivalent());

12 migrated.nodes := original.contents.reject(ofs : ObjectFlowState | true).

collect(n : StateVertex | n.equivalent());

13 }

14

15 migrate ActionState to OpaqueAction

16

17 migrate Pseudostate to InitialNode when: original.kind.toString() = ’pk_initial’

18 migrate Pseudostate to DecisionNode when: original.kind.toString() = ’

pk_junction’

274 APPENDIX C. CO-EVOLUTION EXAMPLES

19 migrate Pseudostate to ForkNode when: original.kind.toString() = ’pk_fork’

20 migrate Pseudostate to JoinNode when: original.kind.toString() = ’pk_join’

21

22 migrate FinalState to ActivityFinalNode

23

24 migrate Transition to ObjectFlow when: original.target.isTypeOf(ObjectFlowState)

{

25 migrated.source := original.source.equivalent();

26 migrated.target := original.target.outgoing.first.target.equivalent();

27 }

28

29 migrate Transition to ControlFlow

30

31 migrate Guard to OpaqueExpression {

32 migrated.body.add(original.expression.body);

33 }

Listing C.9: UML activity diagram migration in Flock

C.3 GMF Examples

Two co-evolution examples were located in the Graphical Modeling Framework (GMF)
project [Gronback 2009]. GMF allows the specification of a graphical concrete syntax
for metamodel and the generation of graphical model editors from a number of graphical
concrete syntax models. GMF was discussed in Section 2.3, and used to implement the
graphical editor described in Appendix B.

GMF is implemented in a model-driven manner, and uses several metamodels to de-
scribe graphical concrete syntax and graphical model editors. During the development
of GMF, two of its metamodels have evolved in a manner that has required models to
be migrated. This section describes changes to the GMF Graph metamodel (used to
describe the canvas of a graphical model editor) and the GMF Generator metamodel
(used to describe the Java code generated for a graphical model editor).

C.3.1 GMF Graph

The GMF Graph metamodel comprises approximately 60 classes. For clarity, only
those classes that were affected by the changes made between versions 1.0 and 2.0 of
GMF are shown in Figure C.4. The migration strategies were specified on the complete
metamodel, and not only the extract shown here.

The GMF Graph metamodel (Figure C.4) describes the appearance of the generated
graphical model editor. The metaclasses Canvas, Figure, Node, DiagramLabel,
Connection, and Compartment are used to represent components of the graphical
model editor to be generated. The evolution in the GMF Graph metamodel was driven
by analysing the usage of the Figure#referencingElements reference, which re-
lates Figures to the DiagramElements that use them. As described in the GMF

C.3. GMF EXAMPLES 275

Graph documentation2, the referencingElements reference increased the effort
required to re-use figures, a common activity for users of GMF. Furthermore, refe-
rencingElements was used only by the GMF code generator to determine whether
an accessor should be generated for nested Figures.

During the development of GMF 2.0, the Graph metamodel from GMF 1.0 was
evolved – as shown in Figure 6.15(b) – to facilitate greater re-use of figures by intro-
ducing a proxy [Gamma et al. 1995] for Figure, termed FigureDescriptor. The
original referencingElements reference was removed, and an extra metaclass, Ch-
ildAccess, was added to make more explicit the original purpose of referencin-
gElements (accessing nested Figures).

Listings C.10, C.11 and C.12 show the model migration strategy in ATL, COPE
and Flock respectively. Migration involved creating proxy objects for the FigureG-
allery#descriptors and FigureDescriptor#accessors features, and moving
values to those proxy objects.

1 module Graph;

2

3 create Migrated : After from Original : Before;

4

5 rule Canvas2Canvas extends Identity2Identity {

6 from

7 o : Before!Canvas

8 to

9 m : After!Canvas (

10 figures <- o.figures,

11 nodes <- o.nodes,

12 connections <- o.connections,

13 compartments <- o.compartments,

14 labels <- o.labels

15)

16 }

17 rule FigureGallery2FigureGallery extends Identity2Identity {

18 from

19 o : Before!FigureGallery

20 to

21 m : After!FigureGallery (

22 implementationBundle <- o.implementationBundle

23)

24 }

25 abstract rule Identity2Identity {

26 from

27 o : Before!Identity

28 to

29 m : After!Identity (

30 name <- o.name

2http://wiki.eclipse.org/GMFGraph_Hints

http://wiki.eclipse.org/GMFGraph_Hints

276 APPENDIX C. CO-EVOLUTION EXAMPLES

(a) Original metamodel.

(b) Evolved metamodel.

Figure C.4: The Graph metamodel in GMF 1.0 and GMF 2.0

C.3. GMF EXAMPLES 277

31)

32 }

33 abstract rule DiagramElement2DiagramElement extends Identity2Identity {

34 from

35 o : Before!DiagramElement

36 to

37 m : After!DiagramElement (

38 figure <- o.figure,

39 facets <- o.facets

40)

41 }

42 rule Node2Node extends DiagramElement2DiagramElement {

43 from

44 o : Before!Node

45 to

46 m : After!Node (

47 resizeConstraint <- o.resizeConstraint,

48 affixedParentSide <- o.affixedParentSide

49)

50 }

51 rule Connection2Connection extends DiagramElement2DiagramElement {

52 from

53 o : Before!Connection

54 to

55 m : After!Connection

56 }

57 rule Compartment2Compartment extends DiagramElement2DiagramElement {

58 from

59 o : Before!Compartment

60 to

61 m : After!Compartment (

62 collapsible <- o.collapsible,

63 needsTitle <- o.needsTitle

64)

65 }

66 rule DiagramLabel2DiagramLabel extends Node2Node {

67 from

68 o : Before!DiagramLabel

69 to

70 m : After!DiagramLabel (

71 elementIcon <- o.elementIcon

72)

73 }

74 abstract rule VisualFacet2VisualFacet {

75 from

76 o : Before!VisualFacet

77 to

278 APPENDIX C. CO-EVOLUTION EXAMPLES

78 m : After!VisualFacet

79 }

80 rule GeneralFacet2GeneralFacet extends VisualFacet2VisualFacet {

81 from

82 o : Before!GeneralFacet

83 to

84 m : After!GeneralFacet (

85 identifier <- o.identifier,

86 data <- o.data

87)

88 }

89 rule AlignmentFacet2AlignmentFacet extends VisualFacet2VisualFacet {

90 from

91 o : Before!AlignmentFacet

92 to

93 m : After!AlignmentFacet (

94 alignment <- o.alignment

95)

96 }

97 rule GradientFacet2GradientFacet extends VisualFacet2VisualFacet {

98 from

99 o : Before!GradientFacet

100 to

101 m : After!GradientFacet (

102 direction <- o.direction

103)

104 }

105 rule LabelOffsetFacet2LabelOffsetFacet extends VisualFacet2VisualFacet {

106 from

107 o : Before!LabelOffsetFacet

108 to

109 m : After!LabelOffsetFacet (

110 x <- o.x,

111 y <- o.y

112)

113 }

114 rule DefaultSizeFacet2DefaultSizeFacet extends VisualFacet2VisualFacet {

115 from

116 o : Before!DefaultSizeFacet

117 to

118 m : After!DefaultSizeFacet (

119 defaultSize <- o.defaultSize

120)

121 }

122 abstract rule Figure2Figure extends Layoutable2Layoutable {

123 from

124 o : Before!Figure

C.3. GMF EXAMPLES 279

125 to

126 m : After!Figure (

127 foregroundColor <- o.foregroundColor,

128 backgroundColor <- o.backgroundColor,

129 maximumSize <- o.maximumSize,

130 minimumSize <- o.minimumSize,

131 preferredSize <- o.preferredSize,

132 font <- o.font,

133 insets <- o.insets,

134 border <- o.border,

135 location <- o.location,

136 size <- o.size

137)

138 }

139 rule FigureRef2FigureRef extends Layoutable2Layoutable {

140 from

141 o : Before!FigureRef

142 to

143 m : After!FigureRef (

144 figure <- o.figure

145)

146 }

147 abstract rule Shape2Shape extends Figure2Figure {

148 from

149 o : Before!Shape

150 to

151 m : After!Shape (

152 outline <- o.outline,

153 fill <- o.fill,

154 lineWidth <- o.lineWidth,

155 lineKind <- o.lineKind,

156 xorFill <- o.xorFill,

157 xorOutline <- o.xorOutline,

158 resolvedChildren <- o.resolvedChildren

159)

160 }

161 rule Label2Label extends Figure2Figure {

162 from

163 o : Before!Label

164 to

165 m : After!Label (

166 text <- o.text

167)

168 }

169 rule LabeledContainer2LabeledContainer extends Figure2Figure {

280 APPENDIX C. CO-EVOLUTION EXAMPLES

170 from

171 o : Before!LabeledContainer

172 to

173 m : After!LabeledContainer

174 }

175 rule Rectangle2Rectangle extends Shape2Shape {

176 from

177 o : Before!Rectangle

178 to

179 m : After!Rectangle

180 }

181 rule RoundedRectangle2RoundedRectangle extends Shape2Shape {

182 from

183 o : Before!RoundedRectangle

184 to

185 m : After!RoundedRectangle (

186 cornerWidth <- o.cornerWidth,

187 cornerHeight <- o.cornerHeight

188)

189 }

190 rule Ellipse2Ellipse extends Shape2Shape {

191 from

192 o : Before!Ellipse

193 to

194 m : After!Ellipse

195 }

196 rule Polyline2Polyline extends Shape2Shape {

197 from

198 o : Before!Polyline

199 to

200 m : After!Polyline (

201 template <- o.template

202)

203 }

204 rule Polygon2Polygon extends Polyline2Polyline {

205 from

206 o : Before!Polygon

207 to

208 m : After!Polygon

209 }

210 rule ScalablePolygon2ScalablePolygon extends Polygon2Polygon {

211 from

212 o : Before!ScalablePolygon

213 to

214 m : After!ScalablePolygon

215 }

216 rule PolylineConnection2PolylineConnection extends Polyline2Polyline {

C.3. GMF EXAMPLES 281

217 from

218 o : Before!PolylineConnection

219 to

220 m : After!PolylineConnection (

221 sourceDecoration <- o.sourceDecoration,

222 targetDecoration <- o.targetDecoration

223)

224 }

225 rule PolylineDecoration2PolylineDecoration extends Polyline2Polyline {

226 from

227 o : Before!PolylineDecoration

228 to

229 m : After!PolylineDecoration

230 }

231 rule PolygonDecoration2PolygonDecoration extends Polygon2Polygon {

232 from

233 o : Before!PolygonDecoration

234 to

235 m : After!PolygonDecoration

236 }

237 abstract rule CustomClass2CustomClass {

238 from

239 o : Before!CustomClass

240 to

241 m : After!CustomClass (

242 qualifiedClassName <- o.qualifiedClassName,

243 attributes <- o.attributes

244)

245 }

246 rule CustomAttribute2CustomAttribute {

247 from

248 o : Before!CustomAttribute

249 to

250 m : After!CustomAttribute (

251 name <- o.name,

252 value <- o.value,

253 directAccess <- o.directAccess,

254 multiStatementValue <- o.multiStatementValue

255)

256 }

257 rule FigureAccessor2FigureAccessor {

258 from

259 o : Before!FigureAccessor

260 to

261 m : After!FigureAccessor (

262 accessor <- o.accessor,

282 APPENDIX C. CO-EVOLUTION EXAMPLES

263 typedFigure <- o.typedFigure

264)

265 }

266 rule CustomFigure2CustomFigure extends Figure2Figure {

267 from

268 o : Before!CustomFigure

269 to

270 m : After!CustomFigure (

271 customChildren <- o.customChildren

272)

273 }

274 rule CustomDecoration2CustomDecoration extends CustomFigure2CustomFigure {

275 from

276 o : Before!CustomDecoration

277 to

278 m : After!CustomDecoration

279 }

280 rule CustomConnection2CustomConnection extends CustomFigure2CustomFigure {

281 from

282 o : Before!CustomConnection

283 to

284 m : After!CustomConnection

285 }

286 abstract rule Color2Color {

287 from

288 o : Before!Color

289 to

290 m : After!Color

291 }

292 rule RGBColor2RGBColor extends Color2Color {

293 from

294 o : Before!RGBColor

295 to

296 m : After!RGBColor (

297 red <- o.red,

298 green <- o.green,

299 blue <- o.blue

300)

301 }

302 rule ConstantColor2ConstantColor extends Color2Color {

303 from

304 o : Before!ConstantColor

305 to

306 m : After!ConstantColor (

307 value <- o.value

308)

309 }

C.3. GMF EXAMPLES 283

310 abstract rule Font2Font {

311 from

312 o : Before!Font

313 to

314 m : After!Font

315 }

316 rule BasicFont2BasicFont extends Font2Font {

317 from

318 o : Before!BasicFont

319 to

320 m : After!BasicFont (

321 faceName <- o.faceName,

322 height <- o.height,

323 style <- o.style

324)

325 }

326 rule Point2Point {

327 from

328 o : Before!Point

329 to

330 m : After!Point (

331 x <- o.x,

332 y <- o.y

333)

334 }

335 rule Dimension2Dimension {

336 from

337 o : Before!Dimension

338 to

339 m : After!Dimension (

340 dx <- o.dx,

341 dy <- o.dy

342)

343 }

344 rule Insets2Insets {

345 from

346 o : Before!Insets

347 to

348 m : After!Insets (

349 top <- o.top,

350 left <- o.left,

351 bottom <- o.bottom,

352 right <- o.right

353)

354 }

355 abstract rule Border2Border {

284 APPENDIX C. CO-EVOLUTION EXAMPLES

356 from

357 o : Before!Border

358 to

359 m : After!Border

360 }

361 rule LineBorder2LineBorder extends Border2Border {

362 from

363 o : Before!LineBorder

364 to

365 m : After!LineBorder (

366 color <- o.color,

367 width <- o.width

368)

369 }

370 rule MarginBorder2MarginBorder extends Border2Border {

371 from

372 o : Before!MarginBorder

373 to

374 m : After!MarginBorder (

375 insets <- o.insets

376)

377 }

378 rule CompoundBorder2CompoundBorder extends Border2Border {

379 from

380 o : Before!CompoundBorder

381 to

382 m : After!CompoundBorder (

383 outer <- o.outer,

384 inner <- o.inner

385)

386 }

387 rule CustomBorder2CustomBorder extends Border2Border {

388 from

389 o : Before!CustomBorder

390 to

391 m : After!CustomBorder

392 }

393 abstract rule LayoutData2LayoutData {

394 from

395 o : Before!LayoutData

396 to

397 m : After!LayoutData (

398 owner <- o.owner

399)

400 }

401 rule CustomLayoutData2CustomLayoutData extends LayoutData2LayoutData {

402 from

C.3. GMF EXAMPLES 285

403 o : Before!CustomLayoutData

404 to

405 m : After!CustomLayoutData

406 }

407 rule GridLayoutData2GridLayoutData extends LayoutData2LayoutData {

408 from

409 o : Before!GridLayoutData

410 to

411 m : After!GridLayoutData (

412 grabExcessHorizontalSpace <- o.grabExcessHorizontalSpace,

413 grabExcessVerticalSpace <- o.grabExcessVerticalSpace,

414 verticalAlignment <- o.verticalAlignment,

415 horizontalAlignment <- o.horizontalAlignment,

416 verticalSpan <- o.verticalSpan,

417 horizontalSpan <- o.horizontalSpan,

418 horizontalIndent <- o.horizontalIndent,

419 sizeHint <- o.sizeHint

420)

421 }

422 rule BorderLayoutData2BorderLayoutData extends LayoutData2LayoutData {

423 from

424 o : Before!BorderLayoutData

425 to

426 m : After!BorderLayoutData (

427 alignment <- o.alignment,

428 vertical <- o.vertical

429)

430 }

431 abstract rule Layoutable2Layoutable {

432 from

433 o : Before!Layoutable

434 to

435 m : After!Layoutable (

436 layoutData <- o.layoutData,

437 layout <- o.layout

438)

439 }

440 abstract rule Layout2Layout {

441 from

442 o : Before!Layout

443 to

444 m : After!Layout

445 }

446 rule CustomLayout2CustomLayout extends Layout2Layout {

447 from

448 o : Before!CustomLayout

286 APPENDIX C. CO-EVOLUTION EXAMPLES

449 to

450 m : After!CustomLayout

451 }

452 rule GridLayout2GridLayout extends Layout2Layout {

453 from

454 o : Before!GridLayout

455 to

456 m : After!GridLayout (

457 numColumns <- o.numColumns,

458 equalWidth <- o.equalWidth,

459 margins <- o.margins,

460 spacing <- o.spacing

461)

462 }

463 rule BorderLayout2BorderLayout extends Layout2Layout {

464 from

465 o : Before!BorderLayout

466 to

467 m : After!BorderLayout (

468 spacing <- o.spacing

469)

470 }

471 rule FlowLayout2FlowLayout extends Layout2Layout {

472 from

473 o : Before!FlowLayout

474 to

475 m : After!FlowLayout (

476 vertical <- o.vertical,

477 matchMinorSize <- o.matchMinorSize,

478 forceSingleLine <- o.forceSingleLine,

479 majorAlignment <- o.majorAlignment,

480 minorAlignment <- o.minorAlignment,

481 majorSpacing <- o.majorSpacing,

482 minorSpacing <- o.minorSpacing

483)

484 }

485 rule XYLayout2XYLayout extends Layout2Layout {

486 from

487 o : Before!XYLayout

488 to

489 m : After!XYLayout

490 }

491 rule XYLayoutData2XYLayoutData extends LayoutData2LayoutData {

492 from

493 o : Before!XYLayoutData

494 to

C.3. GMF EXAMPLES 287

495 m : After!XYLayoutData (

496 topLeft <- o.topLeft,

497 size <- o.size

498)

499 }

500 rule StackLayout2StackLayout extends Layout2Layout {

501 from

502 o : Before!StackLayout

503 to

504 m : After!StackLayout

505 }

Listing C.10: GMF Graph migration in ATL

1 for (gallery in graph.FigureGallery.allInstances) {

2 while(not gallery.figures.isEmpty()) {

3 def figure = gallery.figures.first()

4 def descriptor = graph.FigureDescriptor.newInstance()

5

6 descriptor.name = figure.name

7 descriptor.actualFigure = figure

8

9 figure.set(descriptor, descriptor)

10

11 figure.children.findAll{ it -> it instanceof graph.Label}.each do |it|

12 def accessor = graph.ChildAccess.newInstance()

13

14 accessor.figure = it

15 descriptor.accessors.add(accessor)

16

17 it.set(accessor, accessor)

18 end

19

20 return descriptor;

21 }

22 }

23

24 for (diagramElement in graph.DiagramElement.allInstances()) {

25 diagramElement.figure.unset(descriptor)

26 diagramElement.figure = descriptor

27 }

28

29 for (diagramLabel in graph.DiagramLabel.allInstances()) {

30 diagramElement.figure.unset(accessor)

31 diagramElement.accessor = accessor

288 APPENDIX C. CO-EVOLUTION EXAMPLES

32 }

Listing C.11: GMF Graph migration in Groovy-for-COPE

1 migrate FigureGallery {

2 while (not migrated.figures.isEmpty()) {

3 migrated.descriptors.add(migrated.figures.first.createDescriptor());

4 }

5 }

6

7 migrate Compartment {

8 migrated.figure := original.figure.equivalent().˜descriptor;

9 }

10

11 migrate Connection {

12 migrated.figure := original.figure.equivalent().˜descriptor;

13 }

14

15 migrate DiagramLabel {

16 migrated.figure := original.figure.equivalent().˜descriptor;

17 migrated.accessor := original.figure.equivalent().˜accessor;

18 }

19

20 migrate Node {

21 migrated.figure := original.figure.equivalent().˜descriptor;

22 }

23

24 operation Migrated!Figure createDescriptor() : Migrated!FigureDescriptor {

25 var descriptor := new Migrated!FigureDescriptor;

26

27 descriptor.name := self.name;

28 descriptor.actualFigure := self;

29

30 self.˜descriptor := descriptor;

31

32 self.children.forAll(l : Migrated!Label | l.addAccessor(descriptor));

33

34 return descriptor;

35 }

36

37 operation Migrated!Label addAccessor(descriptor : Migrated!FigureDescriptor) {

38 var accessor := new Migrated!ChildAccess;

39

40 accessor.figure := self;

41 self.˜descriptor := descriptor;

42 self.˜accessor := accessor;

43 descriptor.accessors.add(accessor);

C.3. GMF EXAMPLES 289

44 }

Listing C.12: GMF Graph migration in Flock

C.3.2 GMF Generator

During the development of GMF v2.2, the Generator metamodel evolved to make
explicit the use of ContextMenus and Parsers. In previous versions of GMF, Cont-
extMenus and Parsers were not customisable via the Generator metamodel. Instead,
the GMF runtime created menus and parsers automatically at runtime. The GMF
generator metamodel is too large to show here, as it comprises approximately 150
classes and the changes made between versions 2.1 and 2.2 of GMF directly affected
23 classes.

Listings C.13, C.13 and C.13 show the model migration strategy in ATL, COPE
and Flock respectively. Migration involved populating ContextMenus from existing
diagram elements, and creating Parsers for built-in and user-defined languages.

1 module GenModel2009;

2

3 create Migrated : After from Original : Before;

4

5 rule GenEditorGenerator2GenEditorGenerator {

6 from

7 o : Before!GenEditorGenerator

8 to

9 m : After!GenEditorGenerator (

10 audits <- o.audits,

11 metrics <- o.metrics,

12 diagram <- o.diagram,

13 plugin <- o.plugin,

14 editor <- o.editor,

15 navigator <- o.navigator,

16 diagramUpdater <- o.diagramUpdater,

17 propertySheet <- o.propertySheet,

18 application <- o.application,

19 domainGenModel <- o.domainGenModel,

20 packageNamePrefix <- o.packageNamePrefix,

21 modelID <- o.modelID,

22 sameFileForDiagramAndModel <- o.sameFileForDiagramAndModel,

23 diagramFileExtension <- o.diagramFileExtension,

24 domainFileExtension <- o.domainFileExtension,

25 dynamicTemplates <- o.dynamicTemplates,

26 templateDirectory <- o.templateDirectory,

27 copyrightText <- o.copyrightText,

28 expressionProviders <- o.expressionProviders,

290 APPENDIX C. CO-EVOLUTION EXAMPLES

29 modelAccess <- o.modelAccess

30)

31 }

32 rule GenDiagram2GenDiagram extends GenContainerBase2GenContainerBase {

33 from

34 o : Before!GenDiagram

35 to

36 m : After!GenDiagram (

37 domainDiagramElement <- o.domainDiagramElement,

38 childNodes <- o.childNodes,

39 topLevelNodes <- o.topLevelNodes,

40 links <- o.links,

41 compartments <- o.compartments,

42 palette <- o.palette,

43 synchronized <- o.synchronized,

44 preferences <- o.preferences,

45 preferencePages <- o.preferencePages

46)

47 }

48 rule GenEditorView2GenEditorView {

49 from

50 o : Before!GenEditorView

51 to

52 m : After!GenEditorView (

53 packageName <- o.packageName,

54 actionBarContributorClassName <- o.actionBarContributorClassName,

55 className <- o.className,

56 iconPath <- o.iconPath,

57 iD <- o.iD,

58 eclipseEditor <- o.eclipseEditor,

59 contextID <- o.contextID

60)

61 }

62 abstract rule GenPreferencePage2GenPreferencePage {

63 from

64 o : Before!GenPreferencePage

65 to

66 m : After!GenPreferencePage (

67 iD <- o.iD,

68 name <- o.name,

69 children <- o.children

70)

71 }

72 rule GenCustomPreferencePage2GenCustomPreferencePage extends

GenPreferencePage2GenPreferencePage {

C.3. GMF EXAMPLES 291

73 from

74 o : Before!GenCustomPreferencePage

75 to

76 m : After!GenCustomPreferencePage (

77 qualifiedClassName <- o.qualifiedClassName

78)

79 }

80 rule GenStandardPreferencePage2GenStandardPreferencePage extends

GenPreferencePage2GenPreferencePage {

81 from

82 o : Before!GenStandardPreferencePage

83 to

84 m : After!GenStandardPreferencePage (

85 kind <- o.kind

86)

87 }

88 rule GenDiagramPreferences2GenDiagramPreferences {

89 from

90 o : Before!GenDiagramPreferences

91 to

92 m : After!GenDiagramPreferences (

93 lineStyle <- o.lineStyle,

94 defaultFont <- o.defaultFont,

95 fontColor <- o.fontColor,

96 fillColor <- o.fillColor,

97 lineColor <- o.lineColor,

98 noteFillColor <- o.noteFillColor,

99 noteLineColor <- o.noteLineColor,

100 showConnectionHandles <- o.showConnectionHandles,

101 showPopupBars <- o.showPopupBars,

102 promptOnDelFromModel <- o.promptOnDelFromModel,

103 promptOnDelFromDiagram <- o.promptOnDelFromDiagram,

104 enableAnimatedLayout <- o.enableAnimatedLayout,

105 enableAnimatedZoom <- o.enableAnimatedZoom,

106 enableAntiAlias <- o.enableAntiAlias,

107 showGrid <- o.showGrid,

108 showRulers <- o.showRulers,

109 snapToGrid <- o.snapToGrid,

110 snapToGeometry <- o.snapToGeometry,

111 gridInFront <- o.gridInFront,

112 rulerUnits <- o.rulerUnits,

113 gridSpacing <- o.gridSpacing,

114 gridLineColor <- o.gridLineColor,

115 gridLineStyle <- o.gridLineStyle

116)

292 APPENDIX C. CO-EVOLUTION EXAMPLES

117 }

118 abstract rule GenFont2GenFont {

119 from

120 o : Before!GenFont

121 to

122 m : After!GenFont

123 }

124 rule GenStandardFont2GenStandardFont extends GenFont2GenFont {

125 from

126 o : Before!GenStandardFont

127 to

128 m : After!GenStandardFont (

129 name <- o.name

130)

131 }

132 rule GenCustomFont2GenCustomFont extends GenFont2GenFont {

133 from

134 o : Before!GenCustomFont

135 to

136 m : After!GenCustomFont (

137 name <- o.name,

138 height <- o.height,

139 style <- o.style

140)

141 }

142 abstract rule GenColor2GenColor {

143 from

144 o : Before!GenColor

145 to

146 m : After!GenColor

147 }

148 rule GenRGBColor2GenRGBColor extends GenColor2GenColor {

149 from

150 o : Before!GenRGBColor

151 to

152 m : After!GenRGBColor (

153 red <- o.red,

154 green <- o.green,

155 blue <- o.blue

156)

157 }

158 rule GenConstantColor2GenConstantColor extends GenColor2GenColor {

159 from

160 o : Before!GenConstantColor

161 to

162 m : After!GenConstantColor (

163 name <- o.name

C.3. GMF EXAMPLES 293

164)

165 }

166 rule GenDiagramUpdater2GenDiagramUpdater {

167 from

168 o : Before!GenDiagramUpdater

169 to

170 m : After!GenDiagramUpdater (

171 diagramUpdaterClassName <- o.diagramUpdaterClassName,

172 nodeDescriptorClassName <- o.nodeDescriptorClassName,

173 linkDescriptorClassName <- o.linkDescriptorClassName,

174 updateCommandClassName <- o.updateCommandClassName,

175 updateCommandID <- o.updateCommandID

176)

177 }

178 rule GenPlugin2GenPlugin {

179 from

180 o : Before!GenPlugin

181 to

182 m : After!GenPlugin (

183 iD <- o.iD,

184 name <- o.name,

185 provider <- o.provider,

186 version <- o.version,

187 printingEnabled <- o.printingEnabled,

188 requiredPlugins <- o.requiredPlugins,

189 activatorClassName <- o.activatorClassName

190)

191 }

192 rule DynamicModelAccess2DynamicModelAccess {

193 from

194 o : Before!DynamicModelAccess

195 to

196 m : After!DynamicModelAccess (

197 packageName <- o.packageName,

198 className <- o.className

199)

200 }

201 abstract rule GenCommonBase2GenCommonBase {

202 from

203 o : Before!GenCommonBase

204 to

205 m : After!GenCommonBase (

206 diagramRunTimeClass <- o.diagramRunTimeClass,

207 visualID <- o.visualID,

208 elementType <- o.elementType,

209 editPartClassName <- o.editPartClassName,

294 APPENDIX C. CO-EVOLUTION EXAMPLES

210 itemSemanticEditPolicyClassName <- o.itemSemanticEditPolicyClassName,

211 notationViewFactoryClassName <- o.notationViewFactoryClassName,

212 viewmap <- o.viewmap,

213 styles <- o.styles,

214 behaviour <- o.behaviour

215)

216 }

217 abstract rule Behaviour2Behaviour {

218 from

219 o : Before!Behaviour

220 to

221 m : After!Behaviour

222 }

223 rule CustomBehaviour2CustomBehaviour extends Behaviour2Behaviour {

224 from

225 o : Before!CustomBehaviour

226 to

227 m : After!CustomBehaviour (

228 key <- o.key,

229 editPolicyQualifiedClassName <- o.editPolicyQualifiedClassName

230)

231 }

232 rule SharedBehaviour2SharedBehaviour extends Behaviour2Behaviour {

233 from

234 o : Before!SharedBehaviour

235 to

236 m : After!SharedBehaviour (

237 delegate <- o.delegate

238)

239 }

240 rule OpenDiagramBehaviour2OpenDiagramBehaviour extends Behaviour2Behaviour {

241 from

242 o : Before!OpenDiagramBehaviour

243 to

244 m : After!OpenDiagramBehaviour (

245 editPolicyClassName <- o.editPolicyClassName,

246 diagramKind <- o.diagramKind,

247 editorID <- o.editorID,

248 openAsEclipseEditor <- o.openAsEclipseEditor

249)

250 }

251 abstract rule GenContainerBase2GenContainerBase extends

GenCommonBase2GenCommonBase {

252 from

253 o : Before!GenContainerBase

254 to

C.3. GMF EXAMPLES 295

255 m : After!GenContainerBase (

256 canonicalEditPolicyClassName <- o.canonicalEditPolicyClassName

257)

258 }

259 abstract rule GenChildContainer2GenChildContainer extends

GenContainerBase2GenContainerBase {

260 from

261 o : Before!GenChildContainer

262 to

263 m : After!GenChildContainer (

264 childNodes <- o.childNodes

265)

266 }

267 abstract rule GenNode2GenNode extends GenChildContainer2GenChildContainer {

268 from

269 o : Before!GenNode

270 to

271 m : After!GenNode (

272 modelFacet <- o.modelFacet,

273 labels <- o.labels,

274 compartments <- o.compartments,

275 primaryDragEditPolicyQualifiedClassName <- o.

primaryDragEditPolicyQualifiedClassName,

276 graphicalNodeEditPolicyClassName <- o.graphicalNodeEditPolicyClassName,

277 createCommandClassName <- o.createCommandClassName

278)

279 }

280 rule GenTopLevelNode2GenTopLevelNode extends GenNode2GenNode {

281 from

282 o : Before!GenTopLevelNode

283 to

284 m : After!GenTopLevelNode

285 }

286 rule GenChildNode2GenChildNode extends GenNode2GenNode {

287 from

288 o : Before!GenChildNode

289 to

290 m : After!GenChildNode

291 }

292 rule GenChildSideAffixedNode2GenChildSideAffixedNode extends

GenChildNode2GenChildNode {

293 from

294 o : Before!GenChildSideAffixedNode

295 to

296 m : After!GenChildSideAffixedNode (

297 preferredSideName <- o.preferredSideName

296 APPENDIX C. CO-EVOLUTION EXAMPLES

298)

299 }

300 rule GenChildLabelNode2GenChildLabelNode extends GenChildNode2GenChildNode {

301 from

302 o : Before!GenChildLabelNode

303 to

304 m : After!GenChildLabelNode (

305 labelReadOnly <- o.labelReadOnly,

306 labelElementIcon <- o.labelElementIcon,

307 labelModelFacet <- o.labelModelFacet

308)

309 }

310 rule GenCompartment2GenCompartment extends GenChildContainer2GenChildContainer {

311 from

312 o : Before!GenCompartment

313 to

314 m : After!GenCompartment (

315 title <- o.title,

316 canCollapse <- o.canCollapse,

317 hideIfEmpty <- o.hideIfEmpty,

318 needsTitle <- o.needsTitle,

319 node <- o.node,

320 listLayout <- o.listLayout

321)

322 }

323 rule GenLink2GenLink extends GenCommonBase2GenCommonBase {

324 from

325 o : Before!GenLink

326 to

327 m : After!GenLink (

328 modelFacet <- o.modelFacet,

329 labels <- o.labels,

330 outgoingCreationAllowed <- o.outgoingCreationAllowed,

331 incomingCreationAllowed <- o.incomingCreationAllowed,

332 viewDirectionAlignedWithModel <- o.viewDirectionAlignedWithModel,

333 creationConstraints <- o.creationConstraints,

334 createCommandClassName <- o.createCommandClassName,

335 reorientCommandClassName <- o.reorientCommandClassName,

336 treeBranch <- o.treeBranch

337)

338 }

339 abstract rule GenLabel2GenLabel extends GenCommonBase2GenCommonBase {

340 from

341 o : Before!GenLabel

342 to

343 m : After!GenLabel (

C.3. GMF EXAMPLES 297

344 readOnly <- o.readOnly,

345 elementIcon <- o.elementIcon,

346 modelFacet <- o.modelFacet

347)

348 }

349 rule GenNodeLabel2GenNodeLabel extends GenLabel2GenLabel {

350 from

351 o : Before!GenNodeLabel

352 to

353 m : After!GenNodeLabel

354 }

355 rule GenExternalNodeLabel2GenExternalNodeLabel extends GenNodeLabel2GenNodeLabel

{

356 from

357 o : Before!GenExternalNodeLabel

358 to

359 m : After!GenExternalNodeLabel

360 }

361 rule GenLinkLabel2GenLinkLabel extends GenLabel2GenLabel {

362 from

363 o : Before!GenLinkLabel

364 to

365 m : After!GenLinkLabel (

366 link <- o.link,

367 alignment <- o.alignment

368)

369 }

370 abstract rule ElementType2ElementType {

371 from

372 o : Before!ElementType

373 to

374 m : After!ElementType (

375 diagramElement <- o.diagramElement,

376 uniqueIdentifier <- o.uniqueIdentifier,

377 displayName <- o.displayName,

378 definedExternally <- o.definedExternally

379)

380 }

381 rule MetamodelType2MetamodelType extends ElementType2ElementType {

382 from

383 o : Before!MetamodelType

384 to

385 m : After!MetamodelType (

386 editHelperClassName <- o.editHelperClassName

387)

388 }

298 APPENDIX C. CO-EVOLUTION EXAMPLES

389 rule SpecializationType2SpecializationType extends ElementType2ElementType {

390 from

391 o : Before!SpecializationType

392 to

393 m : After!SpecializationType (

394 metamodelType <- o.metamodelType,

395 editHelperAdviceClassName <- o.editHelperAdviceClassName

396)

397 }

398 rule NotationType2NotationType extends ElementType2ElementType {

399 from

400 o : Before!NotationType

401 to

402 m : After!NotationType

403 }

404 abstract rule ModelFacet2ModelFacet {

405 from

406 o : Before!ModelFacet

407 to

408 m : After!ModelFacet

409 }

410 abstract rule LinkModelFacet2LinkModelFacet extends ModelFacet2ModelFacet {

411 from

412 o : Before!LinkModelFacet

413 to

414 m : After!LinkModelFacet

415 }

416 abstract rule LabelModelFacet2LabelModelFacet extends ModelFacet2ModelFacet {

417 from

418 o : Before!LabelModelFacet

419 to

420 m : After!LabelModelFacet

421 }

422 rule TypeModelFacet2TypeModelFacet extends ModelFacet2ModelFacet {

423 from

424 o : Before!TypeModelFacet

425 to

426 m : After!TypeModelFacet (

427 metaClass <- o.metaClass,

428 containmentMetaFeature <- o.containmentMetaFeature,

429 childMetaFeature <- o.childMetaFeature,

430 modelElementSelector <- o.modelElementSelector,

431 modelElementInitializer <- o.modelElementInitializer

432)

433 }

434 rule TypeLinkModelFacet2TypeLinkModelFacet extends TypeModelFacet2TypeModelFacet

{

C.3. GMF EXAMPLES 299

435 from

436 o : Before!TypeLinkModelFacet

437 to

438 m : After!TypeLinkModelFacet (

439 sourceMetaFeature <- o.sourceMetaFeature,

440 targetMetaFeature <- o.targetMetaFeature

441)

442 }

443 rule FeatureLinkModelFacet2FeatureLinkModelFacet extends

LinkModelFacet2LinkModelFacet {

444 from

445 o : Before!FeatureLinkModelFacet

446 to

447 m : After!FeatureLinkModelFacet (

448 metaFeature <- o.metaFeature

449)

450 }

451 rule FeatureLabelModelFacet2FeatureLabelModelFacet extends

LabelModelFacet2LabelModelFacet {

452 from

453 o : Before!FeatureLabelModelFacet

454 to

455 m : After!FeatureLabelModelFacet (

456 metaFeatures <- o.metaFeatures,

457 viewPattern <- o.viewPattern,

458 editorPattern <- o.editorPattern,

459 editPattern <- o.editPattern,

460 viewMethod <- o.viewMethod,

461 editMethod <- o.editMethod

462)

463 }

464 rule DesignLabelModelFacet2DesignLabelModelFacet extends

LabelModelFacet2LabelModelFacet {

465 from

466 o : Before!DesignLabelModelFacet

467 to

468 m : After!DesignLabelModelFacet

469 }

470 abstract rule Attributes2Attributes {

471 from

472 o : Before!Attributes

473 to

474 m : After!Attributes

475 }

476 rule ColorAttributes2ColorAttributes extends Attributes2Attributes {

477 from

300 APPENDIX C. CO-EVOLUTION EXAMPLES

478 o : Before!ColorAttributes

479 to

480 m : After!ColorAttributes (

481 foregroundColor <- o.foregroundColor,

482 backgroundColor <- o.backgroundColor

483)

484 }

485 rule StyleAttributes2StyleAttributes extends Attributes2Attributes {

486 from

487 o : Before!StyleAttributes

488 to

489 m : After!StyleAttributes (

490 fixedFont <- o.fixedFont,

491 fixedForeground <- o.fixedForeground,

492 fixedBackground <- o.fixedBackground

493)

494 }

495 rule ResizeConstraints2ResizeConstraints extends Attributes2Attributes {

496 from

497 o : Before!ResizeConstraints

498 to

499 m : After!ResizeConstraints (

500 resizeHandles <- o.resizeHandles,

501 nonResizeHandles <- o.nonResizeHandles

502)

503 }

504 rule DefaultSizeAttributes2DefaultSizeAttributes extends Attributes2Attributes {

505 from

506 o : Before!DefaultSizeAttributes

507 to

508 m : After!DefaultSizeAttributes (

509 width <- o.width,

510 height <- o.height

511)

512 }

513 rule LabelOffsetAttributes2LabelOffsetAttributes extends Attributes2Attributes {

514 from

515 o : Before!LabelOffsetAttributes

516 to

517 m : After!LabelOffsetAttributes (

518 x <- o.x,

519 y <- o.y

520)

521 }

522 abstract rule Viewmap2Viewmap {

523 from

C.3. GMF EXAMPLES 301

524 o : Before!Viewmap

525 to

526 m : After!Viewmap (

527 attributes <- o.attributes,

528 requiredPluginIDs <- o.requiredPluginIDs,

529 layoutType <- o.layoutType

530)

531 }

532 rule FigureViewmap2FigureViewmap extends Viewmap2Viewmap {

533 from

534 o : Before!FigureViewmap

535 to

536 m : After!FigureViewmap (

537 figureQualifiedClassName <- o.figureQualifiedClassName

538)

539 }

540 rule SnippetViewmap2SnippetViewmap extends Viewmap2Viewmap {

541 from

542 o : Before!SnippetViewmap

543 to

544 m : After!SnippetViewmap (

545 body <- o.body

546)

547 }

548 rule InnerClassViewmap2InnerClassViewmap extends Viewmap2Viewmap {

549 from

550 o : Before!InnerClassViewmap

551 to

552 m : After!InnerClassViewmap (

553 className <- o.className,

554 classBody <- o.classBody

555)

556 }

557 rule ParentAssignedViewmap2ParentAssignedViewmap extends Viewmap2Viewmap {

558 from

559 o : Before!ParentAssignedViewmap

560 to

561 m : After!ParentAssignedViewmap (

562 getterName <- o.getterName,

563 setterName <- o.setterName,

564 figureQualifiedClassName <- o.figureQualifiedClassName

565)

566 }

567 rule ValueExpression2ValueExpression {

568 from

569 o : Before!ValueExpression

302 APPENDIX C. CO-EVOLUTION EXAMPLES

570 to

571 m : After!ValueExpression (

572 body <- o.body

573)

574 }

575 rule GenConstraint2GenConstraint extends ValueExpression2ValueExpression {

576 from

577 o : Before!GenConstraint

578 to

579 m : After!GenConstraint

580 }

581 rule Palette2Palette {

582 from

583 o : Before!Palette

584 to

585 m : After!Palette (

586 flyout <- o.flyout,

587 groups <- o.groups,

588 packageName <- o.packageName,

589 factoryClassName <- o.factoryClassName

590)

591 }

592 abstract rule EntryBase2EntryBase {

593 from

594 o : Before!EntryBase

595 to

596 m : After!EntryBase (

597 title <- o.title,

598 description <- o.description,

599 largeIconPath <- o.largeIconPath,

600 smallIconPath <- o.smallIconPath,

601 createMethodName <- o.createMethodName

602)

603 }

604 abstract rule AbstractToolEntry2AbstractToolEntry extends EntryBase2EntryBase {

605 from

606 o : Before!AbstractToolEntry

607 to

608 m : After!AbstractToolEntry (

609 default <- o.default,

610 qualifiedToolName <- o.qualifiedToolName,

611 properties <- o.properties

612)

613 }

614 rule ToolEntry2ToolEntry extends AbstractToolEntry2AbstractToolEntry {

615 from

C.3. GMF EXAMPLES 303

616 o : Before!ToolEntry

617 to

618 m : After!ToolEntry (

619 genNodes <- o.genNodes,

620 genLinks <- o.genLinks

621)

622 }

623 rule StandardEntry2StandardEntry extends AbstractToolEntry2AbstractToolEntry {

624 from

625 o : Before!StandardEntry

626 to

627 m : After!StandardEntry (

628 kind <- o.kind

629)

630 }

631 abstract rule ToolGroupItem2ToolGroupItem {

632 from

633 o : Before!ToolGroupItem

634 to

635 m : After!ToolGroupItem

636 }

637 rule Separator2Separator extends ToolGroupItem2ToolGroupItem {

638 from

639 o : Before!Separator

640 to

641 m : After!Separator

642 }

643 rule ToolGroup2ToolGroup extends EntryBase2EntryBase {

644 from

645 o : Before!ToolGroup

646 to

647 m : After!ToolGroup (

648 palette <- o.palette,

649 stack <- o.stack,

650 collapse <- o.collapse,

651 entries <- o.entries

652)

653 }

654 abstract rule GenElementInitializer2GenElementInitializer {

655 from

656 o : Before!GenElementInitializer

657 to

658 m : After!GenElementInitializer

659 }

660 rule GenFeatureSeqInitializer2GenFeatureSeqInitializer extends

GenElementInitializer2GenElementInitializer {

661 from

304 APPENDIX C. CO-EVOLUTION EXAMPLES

662 o : Before!GenFeatureSeqInitializer

663 to

664 m : After!GenFeatureSeqInitializer (

665 initializers <- o.initializers,

666 elementClass <- o.elementClass

667)

668 }

669 rule GenFeatureValueSpec2GenFeatureValueSpec extends

GenFeatureInitializer2GenFeatureInitializer {

670 from

671 o : Before!GenFeatureValueSpec

672 to

673 m : After!GenFeatureValueSpec (

674 value <- o.value

675)

676 }

677 rule GenReferenceNewElementSpec2GenReferenceNewElementSpec extends

GenFeatureInitializer2GenFeatureInitializer {

678 from

679 o : Before!GenReferenceNewElementSpec

680 to

681 m : After!GenReferenceNewElementSpec (

682 newElementInitializers <- o.newElementInitializers

683)

684 }

685 abstract rule GenFeatureInitializer2GenFeatureInitializer {

686 from

687 o : Before!GenFeatureInitializer

688 to

689 m : After!GenFeatureInitializer (

690 feature <- o.feature

691)

692 }

693 rule GenLinkConstraints2GenLinkConstraints {

694 from

695 o : Before!GenLinkConstraints

696 to

697 m : After!GenLinkConstraints (

698 link <- o.link,

699 sourceEnd <- o.sourceEnd,

700 targetEnd <- o.targetEnd

701)

702 }

703 rule GenAuditRoot2GenAuditRoot {

704 from

705 o : Before!GenAuditRoot

706 to

C.3. GMF EXAMPLES 305

707 m : After!GenAuditRoot (

708 categories <- o.categories,

709 rules <- o.rules,

710 clientContexts <- o.clientContexts

711)

712 }

713 rule GenAuditContainer2GenAuditContainer {

714 from

715 o : Before!GenAuditContainer

716 to

717 m : After!GenAuditContainer (

718 id <- o.id,

719 name <- o.name,

720 description <- o.description,

721 path <- o.path,

722 audits <- o.audits

723)

724 }

725 abstract rule GenRuleBase2GenRuleBase {

726 from

727 o : Before!GenRuleBase

728 to

729 m : After!GenRuleBase (

730 name <- o.name,

731 description <- o.description

732)

733 }

734 rule GenAuditRule2GenAuditRule extends GenRuleBase2GenRuleBase {

735 from

736 o : Before!GenAuditRule

737 to

738 m : After!GenAuditRule (

739 id <- o.id,

740 rule <- o.rule,

741 target <- o.target,

742 message <- o.message,

743 severity <- o.severity,

744 useInLiveMode <- o.useInLiveMode,

745 category <- o.category

746)

747 }

748 abstract rule GenRuleTarget2GenRuleTarget {

749 from

750 o : Before!GenRuleTarget

751 to

752 m : After!GenRuleTarget

306 APPENDIX C. CO-EVOLUTION EXAMPLES

753 }

754 rule GenDomainElementTarget2GenDomainElementTarget extends

GenAuditable2GenAuditable {

755 from

756 o : Before!GenDomainElementTarget

757 to

758 m : After!GenDomainElementTarget (

759 element <- o.element

760)

761 }

762 rule GenDiagramElementTarget2GenDiagramElementTarget extends

GenAuditable2GenAuditable {

763 from

764 o : Before!GenDiagramElementTarget

765 to

766 m : After!GenDiagramElementTarget (

767 element <- o.element

768)

769 }

770 rule GenDomainAttributeTarget2GenDomainAttributeTarget extends

GenAuditable2GenAuditable {

771 from

772 o : Before!GenDomainAttributeTarget

773 to

774 m : After!GenDomainAttributeTarget (

775 attribute <- o.attribute,

776 nullAsError <- o.nullAsError

777)

778 }

779 rule GenNotationElementTarget2GenNotationElementTarget extends

GenAuditable2GenAuditable {

780 from

781 o : Before!GenNotationElementTarget

782 to

783 m : After!GenNotationElementTarget (

784 element <- o.element

785)

786 }

787 rule GenMetricContainer2GenMetricContainer {

788 from

789 o : Before!GenMetricContainer

790 to

791 m : After!GenMetricContainer (

792 metrics <- o.metrics

793)

794 }

795 rule GenMetricRule2GenMetricRule extends GenRuleBase2GenRuleBase {

C.3. GMF EXAMPLES 307

796 from

797 o : Before!GenMetricRule

798 to

799 m : After!GenMetricRule (

800 key <- o.key,

801 rule <- o.rule,

802 target <- o.target,

803 lowLimit <- o.lowLimit,

804 highLimit <- o.highLimit,

805 container <- o.container

806)

807 }

808 rule GenAuditedMetricTarget2GenAuditedMetricTarget extends

GenAuditable2GenAuditable {

809 from

810 o : Before!GenAuditedMetricTarget

811 to

812 m : After!GenAuditedMetricTarget (

813 metric <- o.metric,

814 metricValueContext <- o.metricValueContext

815)

816 }

817 abstract rule GenAuditable2GenAuditable extends GenRuleTarget2GenRuleTarget {

818 from

819 o : Before!GenAuditable

820 to

821 m : After!GenAuditable (

822 contextSelector <- o.contextSelector

823)

824 }

825 rule GenAuditContext2GenAuditContext {

826 from

827 o : Before!GenAuditContext

828 to

829 m : After!GenAuditContext (

830 root <- o.root,

831 id <- o.id,

832 className <- o.className,

833 ruleTargets <- o.ruleTargets

834)

835 }

836 abstract rule GenMeasurable2GenMeasurable extends GenRuleTarget2GenRuleTarget {

837 from

838 o : Before!GenMeasurable

839 to

840 m : After!GenMeasurable

308 APPENDIX C. CO-EVOLUTION EXAMPLES

841 }

842 rule GenExpressionProviderContainer2GenExpressionProviderContainer {

843 from

844 o : Before!GenExpressionProviderContainer

845 to

846 m : After!GenExpressionProviderContainer (

847 expressionsPackageName <- o.expressionsPackageName,

848 abstractExpressionClassName <- o.abstractExpressionClassName,

849 providers <- o.providers

850)

851 }

852 abstract rule GenExpressionProviderBase2GenExpressionProviderBase {

853 from

854 o : Before!GenExpressionProviderBase

855 to

856 m : After!GenExpressionProviderBase (

857 expressions <- o.expressions

858)

859 }

860 rule GenJavaExpressionProvider2GenJavaExpressionProvider extends

GenExpressionProviderBase2GenExpressionProviderBase {

861 from

862 o : Before!GenJavaExpressionProvider

863 to

864 m : After!GenJavaExpressionProvider (

865 throwException <- o.throwException,

866 injectExpressionBody <- o.injectExpressionBody

867)

868 }

869 rule GenExpressionInterpreter2GenExpressionInterpreter extends

GenExpressionProviderBase2GenExpressionProviderBase {

870 from

871 o : Before!GenExpressionInterpreter

872 to

873 m : After!GenExpressionInterpreter (

874 language <- o.language,

875 className <- o.className

876)

877 }

878 abstract rule GenDomainModelNavigator2GenDomainModelNavigator {

879 from

880 o : Before!GenDomainModelNavigator

881 to

882 m : After!GenDomainModelNavigator (

883 generateDomainModelNavigator <- o.generateDomainModelNavigator,

884 domainContentExtensionID <- o.domainContentExtensionID,

C.3. GMF EXAMPLES 309

885 domainContentExtensionName <- o.domainContentExtensionName,

886 domainContentExtensionPriority <- o.domainContentExtensionPriority,

887 domainContentProviderClassName <- o.domainContentProviderClassName,

888 domainLabelProviderClassName <- o.domainLabelProviderClassName,

889 domainModelElementTesterClassName <- o.domainModelElementTesterClassName,

890 domainNavigatorItemClassName <- o.domainNavigatorItemClassName

891)

892 }

893 rule GenNavigator2GenNavigator extends

GenDomainModelNavigator2GenDomainModelNavigator {

894 from

895 o : Before!GenNavigator

896 to

897 m : After!GenNavigator (

898 contentExtensionID <- o.contentExtensionID,

899 contentExtensionName <- o.contentExtensionName,

900 contentExtensionPriority <- o.contentExtensionPriority,

901 linkHelperExtensionID <- o.linkHelperExtensionID,

902 sorterExtensionID <- o.sorterExtensionID,

903 actionProviderID <- o.actionProviderID,

904 contentProviderClassName <- o.contentProviderClassName,

905 labelProviderClassName <- o.labelProviderClassName,

906 linkHelperClassName <- o.linkHelperClassName,

907 sorterClassName <- o.sorterClassName,

908 actionProviderClassName <- o.actionProviderClassName,

909 abstractNavigatorItemClassName <- o.abstractNavigatorItemClassName,

910 navigatorGroupClassName <- o.navigatorGroupClassName,

911 navigatorItemClassName <- o.navigatorItemClassName,

912 uriInputTesterClassName <- o.uriInputTesterClassName,

913 packageName <- o.packageName,

914 childReferences <- o.childReferences

915)

916 }

917 rule GenNavigatorChildReference2GenNavigatorChildReference {

918 from

919 o : Before!GenNavigatorChildReference

920 to

921 m : After!GenNavigatorChildReference (

922 parent <- o.parent,

923 child <- o.child,

924 referenceType <- o.referenceType,

925 groupName <- o.groupName,

926 groupIcon <- o.groupIcon,

927 hideIfEmpty <- o.hideIfEmpty

310 APPENDIX C. CO-EVOLUTION EXAMPLES

928)

929 }

930 rule GenNavigatorPath2GenNavigatorPath {

931 from

932 o : Before!GenNavigatorPath

933 to

934 m : After!GenNavigatorPath (

935 segments <- o.segments

936)

937 }

938 rule GenNavigatorPathSegment2GenNavigatorPathSegment {

939 from

940 o : Before!GenNavigatorPathSegment

941 to

942 m : After!GenNavigatorPathSegment (

943 from <- o.from,

944 to <- o.to

945)

946 }

947 rule GenPropertySheet2GenPropertySheet {

948 from

949 o : Before!GenPropertySheet

950 to

951 m : After!GenPropertySheet (

952 tabs <- o.tabs,

953 packageName <- o.packageName,

954 readOnly <- o.readOnly,

955 needsCaption <- o.needsCaption,

956 labelProviderClassName <- o.labelProviderClassName

957)

958 }

959 abstract rule GenPropertyTab2GenPropertyTab {

960 from

961 o : Before!GenPropertyTab

962 to

963 m : After!GenPropertyTab (

964 iD <- o.iD,

965 label <- o.label

966)

967 }

968 rule GenStandardPropertyTab2GenStandardPropertyTab extends

GenPropertyTab2GenPropertyTab {

969 from

970 o : Before!GenStandardPropertyTab

971 to

972 m : After!GenStandardPropertyTab

C.3. GMF EXAMPLES 311

973 }

974 rule GenCustomPropertyTab2GenCustomPropertyTab extends

GenPropertyTab2GenPropertyTab {

975 from

976 o : Before!GenCustomPropertyTab

977 to

978 m : After!GenCustomPropertyTab (

979 className <- o.className,

980 filter <- o.filter

981)

982 }

983 abstract rule GenPropertyTabFilter2GenPropertyTabFilter {

984 from

985 o : Before!GenPropertyTabFilter

986 to

987 m : After!GenPropertyTabFilter

988 }

989 rule TypeTabFilter2TypeTabFilter extends

GenPropertyTabFilter2GenPropertyTabFilter {

990 from

991 o : Before!TypeTabFilter

992 to

993 m : After!TypeTabFilter (

994 types <- o.types,

995 generatedTypes <- o.generatedTypes

996)

997 }

998 rule CustomTabFilter2CustomTabFilter extends

GenPropertyTabFilter2GenPropertyTabFilter {

999 from

1000 o : Before!CustomTabFilter

1001 to

1002 m : After!CustomTabFilter (

1003 className <- o.className

1004)

1005 }

1006 abstract rule GenContributionItem2GenContributionItem {

1007 from

1008 o : Before!GenContributionItem

1009 to

1010 m : After!GenContributionItem

1011 }

1012 rule GenSharedContributionItem2GenSharedContributionItem extends

GenContributionItem2GenContributionItem {

1013 from

1014 o : Before!GenSharedContributionItem

1015 to

312 APPENDIX C. CO-EVOLUTION EXAMPLES

1016 m : After!GenSharedContributionItem (

1017 actualItem <- o.actualItem

1018)

1019 }

1020 rule GenGroupMarker2GenGroupMarker extends

GenContributionItem2GenContributionItem {

1021 from

1022 o : Before!GenGroupMarker

1023 to

1024 m : After!GenGroupMarker (

1025 groupName <- o.groupName

1026)

1027 }

1028 rule GenSeparator2GenSeparator extends GenContributionItem2GenContributionItem {

1029 from

1030 o : Before!GenSeparator

1031 to

1032 m : After!GenSeparator (

1033 groupName <- o.groupName

1034)

1035 }

1036 rule GenActionFactoryContributionItem2GenActionFactoryContributionItem extends

GenContributionItem2GenContributionItem {

1037 from

1038 o : Before!GenActionFactoryContributionItem

1039 to

1040 m : After!GenActionFactoryContributionItem (

1041 name <- o.name

1042)

1043 }

1044 abstract rule GenContributionManager2GenContributionManager extends

GenContributionItem2GenContributionItem {

1045 from

1046 o : Before!GenContributionManager

1047 to

1048 m : After!GenContributionManager (

1049 iD <- o.iD,

1050 items <- o.items

1051)

1052 }

1053 rule GenMenuManager2GenMenuManager extends

GenContributionManager2GenContributionManager {

1054 from

1055 o : Before!GenMenuManager

1056 to

1057 m : After!GenMenuManager (

1058 name <- o.name

C.3. GMF EXAMPLES 313

1059)

1060 }

1061 rule GenToolBarManager2GenToolBarManager extends

GenContributionManager2GenContributionManager {

1062 from

1063 o : Before!GenToolBarManager

1064 to

1065 m : After!GenToolBarManager

1066 }

1067 rule GenApplication2GenApplication {

1068 from

1069 o : Before!GenApplication

1070 to

1071 m : After!GenApplication (

1072 iD <- o.iD,

1073 title <- o.title,

1074 packageName <- o.packageName,

1075 className <- o.className,

1076 perspectiveId <- o.perspectiveId,

1077 supportFiles <- o.supportFiles,

1078 sharedContributionItems <- o.sharedContributionItems,

1079 mainMenu <- o.mainMenu,

1080 mainToolBar <- o.mainToolBar

1081)

1082 }

Listing C.13: GMF Generator migration in ATL

1 for (genLinkLabel in gen.GenLinkLabel.allInstances) {

2 genLinkLabel.unset(notationViewFactoryClassName)

3 }

4

5 for (genLink in gen.GenLink.allInstances) {

6 genLink.unset(notationViewFactoryClassName)

7 }

8

9 for (genEditorGenerator in gen.GenEditorGenerator.allInstances) {

10 def genContextMenu = gen.GenContextMenu.newInstance()

11 genEditorGenerator.contextMenus.add(genContextMenu)

12

13 genContextMenu.context.add(genEditorGenerator.diagram)

14 genContextMenu.items.add(gen.LoadResourceAction.newInstance())

15

16 for (shortcutName in genContextMenu.diagram.containsShortcutsTo) {

17 genContextMenu.items.add(gen.CreateShorcutAction.newInstance())

18 }

314 APPENDIX C. CO-EVOLUTION EXAMPLES

19 }

20

21 for (genDiagram in gen.GenDiagram) {

22 genDiagram.validationProviderPriority = gen.ProviderPriority#Lowest

23 }

24

25 for (featureLabelModelFacet in gen.FeatureLabelModelFacet) {

26 def viewMethod = featureLabelModelFacet.unset(viewMethod)

27 def editMethod = featureLabelModelFacet.unset(editMethod)

28 featureLabelModelFacet.parser = createOrRetrievePredefinedParser(viewMethod,

editMethod)

29 }

30

31 for (designLabelModelFacet in gen.DesignLabelModelFacet) {

32 designLabelModelFacet.parser = createOrRetrieveExternalParser()

33 }

34

35

36 createOrRetrievePredefinedParser = { viewMethod, editMethod ->

37 if (getPredefinedParser(viewMethod, editMethod) == null) {

38 createOrRetrieveGenParsers().implementations.add(createPredefinedParser(

viewMethod, editMethod))

39 }

40

41 return getPredefinedParser(viewMethod, editMethod)

42 }

43

44 getPredefinedParser = { viewMethod, editMethod ->

45 return gen.PredefinedParser.allInstances.find{ it -> it.viewMethod ==

viewMethod && p.editMethod == editMethod }

46 }

47

48 createPredefinedParser = { viewMethod, editMethod ->

49 def parser = gen.PredefinedParser.newInstance()

50 parser.viewMethod = viewMethod

51 parser.editMethod = editMethod

52 return parser

53 }

54

55 createOrRetrieveExternalParser = {

56 if (gen.ExternalParser.allInstances.size == 0) {

57 createOrRetrieveGenParsers().implementations.add(gen.ExternalParser.

newInstance())

58

59 }

60

C.3. GMF EXAMPLES 315

61 return gen.ExternalParser.first

62 }

63

64 createOrRetrieveGenParsers = {

65 if (gen.GenEditorGenerator.allInstances.first.labelParsers == null) {

66 gen.GenEditorGenerator.allInstances.first.labelParsers = gen.GenParsers.

newInstance()

67 gen.GenEditorGenerator.allInstances.first.labelParsers.extensibleViaService =

true

68 }

69

70 return gen.GenEditorGenerator.allInstances.first.labelParsers

71 }

Listing C.14: GMF Generator migration in Groovy-for-COPE

1 migrate GenLinkLabel {

2 migrated.notationViewFactoryClassName := null;

3 }

4

5 migrate GenLink {

6 migrated.notationViewFactoryClassName := null;

7 }

8

9 migrate GenEditorGenerator {

10 migrated.contextMenus.add(new Migrated!GenContextMenu);

11 migrated.contextMenus.first.context.add(migrated.diagram);

12

13 migrated.contextMenus.first.items.add(new Migrated!LoadResourceAction);

14

15 for (shortcutName in original.diagram.containsShortcutsTo) {

16 migrated.contextMenus.first.items.add(new Migrated!CreateShortcutAction);

17 }

18 }

19

20

21 migrate GenDiagram {

22 migrated.validationProviderPriority := Migrated!ProviderPriority#Lowest;

23 }

24

25 migrate FeatureLabelModelFacet {

26 migrated.parser := createOrRetrievePredefinedParser(migrated.viewMethod,

migrated.editMethod);

27 migrated.viewMethod := null;

28 migrated.editMethod := null;

29 }

30

316 APPENDIX C. CO-EVOLUTION EXAMPLES

31 migrate DesignLabelModelFacet {

32 migrated.parser := createOrRetrieveExternalParser();

33 }

34

35 operation createOrRetrievePredefinedParser(viewMethod : Any, editMethod : Any) :

Migrated!PredefinedParser {

36 if (getPredefinedParser(viewMethod, editMethod).isUndefined()) {

37 createOrRetrieveGenParsers().implementations.add(createPredefinedParser(

viewMethod, editMethod));

38 }

39

40 return getPredefinedParser(viewMethod, editMethod);

41 }

42

43 operation getPredefinedParser(viewMethod : Any, editMethod : Any) : Migrated!

PredefinedParser {

44 return Migrated!PredefinedParser.all.selectOne(p | p.viewMethod = viewMethod

and p.editMethod = editMethod);

45 }

46

47 operation createPredefinedParser(viewMethod : Any, editMethod : Any) : Migrated!

PredefinedParser {

48 var parser := new Migrated!PredefinedParser;

49 parser.viewMethod := viewMethod;

50 parser.editMethod := editMethod;

51 return parser;

52 }

53

54 operation createOrRetrieveExternalParser() : Migrated!ExternalParser {

55 if (Migrated!ExternalParser.all.isEmpty()) {

56 createOrRetrieveGenParsers().implementations.add(new Migrated!ExternalParser)

;

57 }

58

59 return Migrated!ExternalParser.all.first;

60 }

61

62 operation createOrRetrieveGenParsers() : Migrated!GenParsers {

63 if (Migrated!GenEditorGenerator.all.first.labelParsers.isUndefined()) {

64 Migrated!GenEditorGenerator.all.first.labelParsers := new Migrated!GenParsers

;

65 Migrated!GenEditorGenerator.all.first.labelParsers.extensibleViaService :=

true;

66 }

67

68 return Migrated!GenEditorGenerator.all.first.labelParsers;

C.3. GMF EXAMPLES 317

69 }

Listing C.15: GMF Generator migration in Flock

Appendix D

TTC Results

This appendix describes the results of a model migration case submitted to the Tools
Transformation Contest (TTC) 2010 workshop1. Nine solutions were submitted for the
migration case and, during the workshop, the solutions were compared and awarded
a score by the workshop participants and organisers. The results of the workshop
are presented here, and were used for the evaluation of Epsilon Flock described in
Section 6.4.

Below, each table presents scores for each of the nine solutions. The first seven
tables show the score awarded to each tool for the criteria described in Section 6.4:
correctness, conciseness, clarity, appropriateness, tool maturity, reproducibility and
extensions. The final two tables show the total scores for each tool using an equal
weight for each criterion, and using the weights determined by the workshop organisers.
Each table shows the mean score (M column), variance between scores (V column), and
the rank of each solution (R column). An x in a cell indicates a conflict of interest (no
score awarded).

1http://www.planet-research20.org/ttc2010/index.php?Itemid=132

319

http://www.planet-research20.org/ttc2010/index.php?Itemid=132

320
A

P
P

E
N

D
IX

D
.

T
T

C
R

E
S
U

L
T

S
Tool 1 2 3 4 5 6 7 8 9 10 11 12 M V R

PETE 0 1 2 1 x 1 1 1 x 2 1 1 1.10 0.29 1
COPE 0 1 2 1 x 1 1 0 1 2 1 1 1.00 0.36 2
Fujaba 1 x 2 1 0 1 1 1 1 x 1 x 1.00 0.22 2
GrGen 0 1 2 1 1 1 x 1 1 2 0 1 1.00 0.36 2

A/J 0 1 1 1 1 1 1 1 1 1 0 1 0.83 0.14 5
Mola x 1 x -1 0 1 1 x 1 2 1 1 0.78 0.62 6

Flock 0 x x 1 1 1 0 0 1 1 1 1 0.70 0.21 7
GReTL 0 x x 0 1 x 0 1 0 1 0 1 0.44 0.25 8

RSDS 0 1 x -1 0 0 0 0 1 0 1 0 0.18 0.33 9

Table D.1: Correctness scores (in the range -1 to 2).

Tool 1 2 3 4 5 6 7 8 9 10 11 12 M V R

Flock 1 x x 2 2 1 1 1 0 1 2 1 1.20 0.36 1
COPE 1 1 1 1 x 1 0 1 1 -1 2 1 0.82 0.51 2
GrGen 0 2 1 1 1 0 x 1 0 1 1 1 0.82 0.33 2
Fujaba 1 x 1 0 -1 0 0 0 -1 x 1 x 0.11 0.54 4

Mola x 0 x -2 0 0 0 x -1 1 1 1 0.00 0.89 5
A/J -1 -1 1 0 -1 0 0 0 0 -1 0 0 -0.25 0.35 6

PETE -2 -1 1 1 x -1 -1 0 x 0 1 -1 -0.30 1.01 7
GReTL -1 x x 1 -1 x 0 0 -1 -1 0 0 -0.33 0.56 8

RSDS 0 -1 x -1 -1 0 0 -1 -1 0 -1 0 -0.55 0.25 9

Table D.2: Conciseness scores (in the range -2 to 2).

321

Tool 1 2 3 4 5 6 7 8 9 10 11 12 M V R

Flock 1 x x 1 1 0 1 1 1 1 1 1 0.90 0.09 1
COPE 1 1 1 0 x 1 0 0 1 1 1 1 0.73 0.20 2
GrGen 0 0 0 1 0 1 x 0 1 1 0 1 0.45 0.25 3

Mola x 1 x 1 0 1 -1 x 0 1 0 1 0.44 0.47 4
Fujaba 1 x 0 1 0 0 0 0 0 x 1 x 0.33 0.22 5

A/J -1 0 1 0 1 1 0 0 0 1 0 0 0.25 0.35 6
GReTL 0 x x 0 0 x 1 0 0 0 0 0 0.15 0.10 7
PETE 0 1 0 0 x 0 0 0 x 0 0 0 0.10 0.09 8
RSDS -1 1 x 0 0 0 -1 -1 0 -1 1 0 -0.18 0.51 9

Table D.3: Clarity scores (in the range -1 to 1).

Tool 1 2 3 4 5 6 7 8 9 10 11 12 M V R

Flock 1 x x 2 2 1 2 1 1 2 2 2 1.60 0.24 1
COPE 2 2 2 1 x 2 0 1 2 2 1 2 1.55 0.43 2
GrGen 0 1 1 1 0 1 x 1 1 1 0 1 0.73 0.20 3

Mola x 1 x 0 0 1 0 x 0 1 1 2 0.67 0.44 4
Fujaba 1 x 1 0 0 1 0 0 0 x 0 x 0.33 0.22 5

GReTL 0 x x 0 0 x 1 1 0 0 0 0 0.30 0.18 6
PETE -1 1 1 0 x 0 0 0 x 0 0 1 0.20 0.36 7

A/J 0 1 0 0 0 0 0 -1 0 1 0 1 0.17 0.31 8
RSDS 0 0 x -1 0 1 0 0 0 0 0 1 0.09 0.26 9

Table D.4: Appropriateness scores (in the range -2 to 2).

322
A

P
P

E
N

D
IX

D
.

T
T

C
R

E
S
U

L
T

S
Tool 1 2 3 4 5 6 7 8 9 10 11 12 M V R

Fujaba 1 x 1 1 1 1 1 1 1 x 0 x 0.89 0.10 1
GrGen 0 0 1 1 1 0 x 0 0 1 1 1 0.55 0.25 2
Flock 0 x x 0 0 1 0 0 1 1 0 1 0.40 0.24 3
Mola x 1 x 0 -1 1 0 x 1 0 0 1 0.33 0.44 4

COPE 0 0 1 0 x 0 0 -1 0 0 1 1 0.18 0.33 5
PETE -1 0 1 0 x 1 0 -1 x 0 0 0 0.00 0.40 6

GReTL -1 x x -1 0 x 0 -1 0 0 0 0 -0.28 0.23 7
A/J -1 -1 -1 -1 -1 0 0 0 0 -1 0 -1 -0.58 0.24 8

RSDS -1 -1 x -1 -1 -1 -1 -1 -1 -1 0 0 -0.82 0.15 9

Table D.5: Tool maturity scores (in the range -1 to 1).

Tool 1 2 3 4 5 6 7 8 9 10 11 12 M V R

A/J 1 1 1 1 1 1 1 1 1 1 1 1 1 0.00 1
COPE 1 1 1 1 x 1 1 1 1 1 1 1 1 0.00 1
Flock 1 x x 1 1 1 1 1 1 1 1 1 1 0.00 1
Fujaba 1 x 1 1 1 1 1 1 1 x 1 x 1 0.00 1

GReTL 1 x x 1 1 x 1 1 1 1 1 1 1 0.00 1
GrGen 1 1 1 1 1 1 x 1 1 1 1 1 1 0.00 1

Mola x 1 x 1 1 1 1 x 1 1 1 1 1 0.00 1
PETE 1 1 1 1 x 1 1 1 x 1 1 1 1 0.00 1
RSDS 0 0 x 0 0 0 0 0 0 0 0 0 0 0.00 9

Table D.6: Reproducibility scores (in the range 0 to 1).

323

Tool 1 2 3 4 5 6 7 8 9 10 11 12 M V R

Flock 2 x x 2 2 1 2 2 2 2 2 1 1.80 0.16 1
Fujaba 1 x 2 2 2 2 2 1 1 x 1 x 1.56 0.25 2

A/J 1 2 2 2 0 2 2 2 2 1 0 2 1.50 0.58 3
COPE 1 1 1 1 x 1 1 1 1 1 1 1 1.00 0.00 4

GReTL 1 x x 1 1 x 1 1 1 1 1 1 1.00 0.00 4
GrGen 1 1 1 1 2 1 x 1 1 1 0 1 1.00 0.18 4
PETE 1 1 1 1 x 1 1 1 x 1 0 0 0.80 0.16 7

Mola x 0 x 0 0 0 0 x 0 0 1 0 0.11 0.10 8
RSDS 0 0 x 0 0 0 0 0 0 0 0 0 0.00 0.00 9

Table D.7: Extensions scores (in the range 0 to 2).

Tool 1 2 3 4 5 6 7 8 9 10 11 12 M V R

Flock 6 x x 9 9 6 7 6 7 9 9 8 7.60 1.64 1
COPE 6 7 9 5 x 7 3 3 7 6 8 8 6.27 3.47 2
GrGen 2 6 7 7 6 5 x 5 5 8 4 7 5.64 2.60 3
Fujaba 7 x 8 6 3 6 5 4 3 x 5 x 5.22 2.62 4

Mola x 5 x -1 0 5 2 x 2 6 5 7 3.44 6.91 5
A/J -1 3 5 3 1 5 4 3 4 3 2 4 3.00 2.67 6

PETE -2 4 7 4 x 3 2 2 x 4 3 2 2.90 4.69 7
GReTL 0 x x 2 2 x 4 x 1 6 2 3 2.50 3.00 8

RSDS -2 0 x -4 -2 0 -2 -3 -1 -2 1 1 -1.27 2.38 9

Table D.8: Total (equally weighted) scores (in the range -7 to 11).

324
A

P
P

E
N

D
IX

D
.

T
T

C
R

E
S
U

L
T

S

Tool 1 2 3 4 5 6 7 8 9 10 11 12 M V R

Flock 17 x x 28 28 20 20 17 23 29 28 26 23.60 20.64 1
COPE 17 22 31 16 x 22 10 7 22 21 26 26 20.00 45.45 2
GrGen 5 19 25 23 20 16 x 16 16 28 12 23 18.45 38.07 3
Fujaba 23 x 28 20 9 20 17 14 11 x 16 x 17.56 31.36 4

Mola x 17 x -6 -2 17 7 x 8 21 16 23 11.22 91.51 5
PETE -8 13 25 13 x 11 7 6 x 15 10 7 9.90 62.69 6

A/J -5 9 15 9 3 16 13 10 13 9 5 12 9.08 31.24 7
GReTL -2 x x 4 7 x 11 9 2 12 5 10 6.44 18.91 8

RSDS -7 1 x -15 -7 -1 -7 -10 -2 -7 5 3 -4.27 32.74 9

Table D.9: Total (weighted) scores (in the range -24 to 37).

Bibliography

[Ackoff 1962] R.L. Ackoff. Scientific Method: Optimizing Applied Research Decisions.
John Wiley and Sons, New York, 1962.

[Aizenbud-Reshef et al. 2005] N. Aizenbud-Reshef, R.F. Paige, J. Rubin, Y. Shaham-
Gafni, and D.S. Kolovos. Operational semantics for traceability. In Proc. Work-
shop on Traceability, co-located with the European Conference on Model-Driven
Architecture (ECMDA), pages 8–14, 2005.

[Alexander et al. 1977] C. Alexander, S. Ishikawa, and M. Silverstein. A Pattern
Language: Towns, Buildings, Construction (Center for Environmental Structure
Series). Oxford University Press, New York, 1977.

[Álvarez et al. 2001] J. Álvarez, A. Evans, and P. Sammut. MML and the metamodel
architecture. In Proc. Workshop on Transformation in UML, co-located with the
European Joint Conferences on Theory and Practice of Software (ETAPS), 2001.

[Amyot et al. 2006] D. Amyot, H. Farah, and J.-F. Roy. Evaluation of development
tools for domain-specific modeling languages. In R. Gotzhein and R. Reed, editors,
System Analysis and Modeling: Language Profiles, volume 4320 of Lecture Notes
in Computer Science, pages 183–197. Springer, Heidelberg, 2006.

[Apostel 1960] L. Apostel. Towards the formal study of models in the non-formal
sciences. Synthese, 12(2):125–161, 1960.

[Arendt et al. 2009] T. Arendt, F. Mantz, L. Schneider, and G. Taentzer. Model
refactoring in Eclipse by LTK, EWL, and EMF Refactor: A case study. In Proc.
Joint Model-Driven Software Evolution and Model Co-evolution and Consistency
Management (MoDSE-MCCM) Workshop, co-located with the International Con-
ference on Model-Driven Engineering Languages and Systems (MoDELS), 2009.

[Backus 1978] J. Backus. The history of FORTRAN I, II and III. History of Pro-
gramming Languages, 1:165–180, 1978.

[Balazinska et al. 2000] M. Balazinska, E. Merlo, M. Dagenais, B. Lagüe, and K. Kon-
togiannis. Advanced clone-analysis to support object-oriented system refactoring.
In Proc. Working Conference on Reverse Engineering (WCRE), pages 98–107.
IEEE Computer Society, 2000.

325

326 BIBLIOGRAPHY

[Banerjee et al. 1987] J. Banerjee, W. Kim, H. Kim, and H.F. Korth. Semantics and
implementation of schema evolution in object-oriented databases. In U. Dayal
and I.L. Traiger, editors, Proc. Special Interest Group on Management of Data
(SIGMOD) Conference, pages 311–322. ACM Press, 1987.

[Barry 2006] B. Barry. A view of 20th and 21st century software engineering. In L.J.
Osterweil, H.D. Rombach, and M.L. Soffa, editors, Proc. International conference
on Software Engineering (ICSE), pages 12–29. ACM, 2006.

[Beattie et al. 2007] B.R. Beattie, C.R. Taylor, and M.J. Watts. The Economics of
Production. Krieger Publishing Company, 2nd edition, 2007.

[Beck & Cunningham 1989] K. Beck and W. Cunningham. Constructing abstractions
for object-oriented applications. Journal of Object Oriented Programming, 2, 1989.

[Bézivin & Gerbé 2001] J. Bézivin and O. Gerbé. Towards a precise definition of the
OMG/MDA framework. In Proc. International Conference on Automated Software
Engineering (ASE), pages 273–280. IEEE Computer Society, 2001.

[Bézivin 2005] J. Bézivin. On the unification power of models. Software and System
Modeling, 4(2):171–188, 2005.

[Biermann et al. 2006] E. Biermann, K. Ehrig, C. Köhler, G. Kuhns, G. Taentzer, and
E. Weiss. EMF model refactoring based on graph transformation concepts. Elec-
tronic Communications of the European Association for the Study of Science and
Technology [online], 3, 2006. Available at http://eceasst.cs.tu-berlin.
de/index.php/eceasst/article/view/34 [Accessed 2 November 2010].

[Bloch 2005] J. Bloch. How to design a good API and why it matters [online]. Keynote
address to the LCSD Workshop at OOPSLA, October 2005, San Diego, United
States of America. Available at: http://lcsd05.cs.tamu.edu/slides/
keynote.pdf [Accessed 2 November 2010], 2005.

[Bohner 2002] S.A. Bohner. Software change impacts - an evolving perspective. In
Proc. International Conference on Software Maintenance (ICSM), pages 263–272.
IEEE Computer Society, 2002.

[Bosch 1998] J. Bosch. Design patterns as language constructs. Journal of Object
Oriented Programming, 11(2):18–32, 1998.

[Briand et al. 2003] L.C. Briand, Y. Labiche, and L. O’Sullivan. Impact analysis and
change management of uml models. In Proc. International Conference on Software
Maintenance (ICSM), pages 256–265. IEEE Computer Society, 2003.

[Brooks Jr. 1987] F.P. Brooks Jr. No silver bullet - essence and accidents of software
engineering. IEEE Computer, 20(4):10–19, 1987.

http://eceasst.cs.tu-berlin.de/index.php/eceasst/article/view/34
http://eceasst.cs.tu-berlin.de/index.php/eceasst/article/view/34
http://lcsd05.cs.tamu.edu/slides/keynote.pdf
http://lcsd05.cs.tamu.edu/slides/keynote.pdf

BIBLIOGRAPHY 327

[Brooks Jr. 1995] F.P. Brooks Jr. The mythical man-month. Addison-Wesley Long-
man Publishing Co., Inc., Boston, Massachusetts, 25th anniversary edition, 1995.

[Brown et al. 1998] W.J. Brown, R.C. Malveau, H.W. McCormick III, and T.J. Mow-
bray. Anti Patterns. Wiley, New York, 1998.

[Brun & Pierantonio 2008] C. Brun and A. Pierantonio. Model differences in the
Eclipse Modelling Framework. Upgrade, 9(2):29–34, 2008.

[Cervelle et al. 2006] J. Cervelle, R. Forax, and G. Roussel. Tatoo: an innovative
parser generator. In Ralf Gitzel, Markus Aleksy, and Martin Schader, editors,
Proc. International Symposium on Principles and Practice of Programming in Java
(PPPJ), volume 178 of ACM International Conference Proceeding Series, pages
13–20. ACM, 2006.

[Chen & Chou 1999] J.Y.J. Chen and S.C. Chou. Consistency management in a
process environment. Systems and Software, 47(2-3):105–110, 1999.

[Cicchetti et al. 2008] A. Cicchetti, D. Di Ruscio, R. Eramo, and A. Pierantonio. Au-
tomating co-evolution in model-driven engineering. In Proc. International IEEE
Enterprise Distributed Object Computing Conference (EDOC), pages 222–231.
IEEE Computer Society, 2008.

[Cicchetti 2008] A. Cicchetti. Difference Representation and Conflict Management
in Model-Driven Engineering. PhD thesis, Universita’ degli Studi dell’Aquila,
L’Aquila, Italy, 2008.

[Clark et al. 2008] T. Clark, P. Sammut, and J. Willians. Superlanguages: Developing
Languages and Applications with XMF [online]. Ceteva, Sheffield, 2008. Available
at: http://itcentre.tvu.ac.uk/˜clark/Papers/Superlanguages.
pdf [Accessed 02 November 2010].

[Cleland-Huang et al. 2003] J. Cleland-Huang, C.K. Chang, and M. Christensen.
Event-based traceability for managing evolutionary change. IEEE Transactions
on Software Engineering, 29(9):796–810, 2003.

[Costa & Silva 2007] M. Costa and A.R. da Silva. RT-MDD framework – a prac-
tical approach. In Proc. Workshop on Traceability, co-located with the European
Conference on Model-Driven Architecture (ECMDA), pages 17–26, 2007.

[Czarnecki & Helsen 2006] K. Czarnecki and S. Helsen. Feature-based survey of model
transformation approaches. IBM Systems Journal, 45(3):621–646, 2006.

[de Lara & Guerra 2010] J. de Lara and E. Guerra. Generic meta-modelling with con-
cepts, templates and mixin layers. In D.C. Petriu, N. Rouquette, and Ø. Haugen,
editors, Proc. International Conference on Model Driven Engineering Languages
and System (MoDELS), Part I, volume 6394 of Lecture Notes in Computer Sci-
ence, pages 16–30. Springer, 2010.

http://itcentre.tvu.ac.uk/~clark/Papers/Superlanguages.pdf
http://itcentre.tvu.ac.uk/~clark/Papers/Superlanguages.pdf

328 BIBLIOGRAPHY

[Deursen et al. 2000] A. van Deursen, P. Klint, and J. Visser. Domain-Specific Lan-
guages: An annotated bibliography. Special Interest Group on Programming Lan-
guages (SIGPLAN) Notices, 35(6):26–36, 2000.

[Deursen et al. 2007] A. van Deursen, E. Visser, and J. Warmer. Model-driven soft-
ware evolution: A research agenda. In Proc. Workshop on Model-Driven Software
Evolution, co-located with the European Conference on Software Maintenance and
Reengineering (CSMR), pages 41–49, 2007.

[Dig & Johnson 2006a] D. Dig and R. Johnson. Automated upgrading of component-
based applications. In P.L. Tarr and W.R. Cook, editors, Companion to the ACM
SIGPLAN Conference on Object-Oriented Programming, Systems, Languages, and
Applications (OOPSLA), pages 675–676, 2006.

[Dig & Johnson 2006b] D. Dig and R. Johnson. How do APIs evolve? A story of
refactoring. Journal of Software Maintenance and Evolution, 18(2):83–107, 2006.

[Dig et al. 2006] D. Dig, C. Comertoglu, D. Marinov, and R. Johnson. Automated
detection of refactorings in evolving components. In D. Thomas, editor, Proc.
European Conference on Object-Oriented Programming (ECOOP), volume 4067
of Lecture Notes in Computer Science, pages 404–428. Springer, 2006.

[Dig et al. 2007] D. Dig, K. Manzoor, R. Johnson, and T.N. Nguyen. Refactoring-
aware configuration management for object-oriented programs. In Proc. Interna-
tional Conference on Software Engineering (ICSE), pages 427–436. IEEE Com-
puter Society, 2007.

[Dig 2007] D. Dig. Automated Upgrading of Component-Based Applications. PhD
thesis, University of Illinois at Urbana-Champaign, USA, 2007.

[Drivalos et al. 2008] N. Drivalos, R.F. Paige, K.J. Fernandes, and D.S. Kolovos.
Towards rigorously defined model-to-model traceability. In Proc. Workshop on
Traceability, co-located with the European Conference on Model Driven Architec-
ture (ECMDA), 2008.

[Ducasse et al. 1999] S. Ducasse, M. Rieger, and S. Demeyer. A language independent
approach for detecting duplicated code. In Proc. International Conference on
Software Maintenance (ICSM), pages 109–118. IEEE Computer Society, 1999.

[Edelweiss & Moreira 2005] N. Edelweiss and Á.F. Moreira. Temporal and version-
ing model for schema evolution in object-oriented databases. Data & Knowledge
Engineering, 53(2):99–128, 2005.

[Elaasar & Briand 2004] M. Elaasar and L.C. Briand. An overview of UML con-
sistency management. Technical Report SCE-04-18, Carleton University, August
2004.

BIBLIOGRAPHY 329

[Elmasri & Navathe 2006] R. Elmasri and S.B. Navathe. Fundamentals of Database
Systems. Addison-Wesley Longman, Boston, Massachusetts, 5th edition, 2006.

[Erlikh 2000] L. Erlikh. Leveraging legacy system dollars for e-business. IT Profes-
sional, 2(3):17–23, 2000.

[Evans 2004] E. Evans. Domain-Driven Design: Tacking Complexity In the Heart of
Software. Addison-Wesley, Boston, Massachusetts, 2004.

[Feathers 2004] M.C. Feathers. Working Effectively with Legacy Code. Prentice Hall,
Upper Saddle River, New Jersey, 2004.

[Ferrandina et al. 1995] F. Ferrandina, T. Meyer, R. Zicari, G. Ferran, and J. Madec.
Schema and database evolution in the O2 object database system. In U. Dayal,
P.M.D. Gray, and S. Nishio, editors, Proc. International Conference on Very Large
Data Bases (VLDB), pages 170–181. Morgan Kaufmann, 1995.

[Fowler 1999] M. Fowler. Refactoring: improving the design of existing code. Addison-
Wesley, Upper Saddle River, New Jersey, 1999.

[Fowler 2002] M. Fowler. Patterns of Enterprise Application Architecture. Addison-
Wesley, Boston, Massachusetts, 2002.

[Fowler 2010] M. Fowler. Domain Specific Languages. Addison-Wesley Professional,
Boston, Massachusetts, 2010.

[Frankel 2002] D. Frankel. Model Driven Architecture: Applying MDA to Enterprise
Computing. John Wiley & Sons Inc., New York, 2002.

[Fritzsche et al. 2008] M. Fritzsche, J. Johannes, S. Zschaler, A. Zherebtsov, and
A. Terekhov. Application of tracing techniques in model-driven performance en-
gineering. In Proc.Traceability Workshop, co-located with the European Confer-
ence on Model-Driven Architecture - Foundations and Applications (ECMDA-FA),
pages 111–120, 2008.

[Fuhrer et al. 2007] R.M. Fuhrer, A. Kiezun, and M. Keller. Refactoring in the Eclipse
JDT: Past, present, and future. In Proc. Workshop on Refactoring Tools (WRT),
co-located with European Conference on Object-Oriented Programming (ECOOP),
2007.

[Gamma et al. 1995] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design
patterns: elements of reusable object-oriented software. Addison-Wesley, Reading,
Massachusetts, 1995.

[Garcés et al. 2009] K. Garcés, F. Jouault, P. Cointe, and J. Bézivin. Managing model
adaptation by precise detection of metamodel changes. In R.F. Paige, A. Hartman,
and A. Rensink, editors, Proc. European Conference on Model Driven Architecture
- Foundations and Applications (ECMDA-FA), volume 5562 of Lecture Notes in
Computer Science, pages 34–49. Springer, 2009.

330 BIBLIOGRAPHY

[Geiß & Kroll 2007] R. Geiß and M. Kroll. GrGen.NET: A fast, expressive, and
general purpose graph rewrite tool. In A. Schürr, M. Nagl, and A. Zündorf,
editors, Proc. International Symposium on Applications of Graph Transformations
with Industrial Relevance (AGTIVE), Revised Selected and Invited Papers, volume
5088 of Lecture Notes in Computer Science, pages 568–569. Springer, 2007.

[Gosling et al. 2005] J. Gosling, B. Joy, G. Steele, and G. Bracha. The JavaTM

Language Specification. Addison-Wesley, Boston, Massachusetts, 2005.

[Graham 1993] P. Graham. On Lisp: Advanced Techniques for Common Lisp.
Prentice-Hall, Upper Saddle River, New Jersey, 1993.

[Greenfield et al. 2004] J. Greenfield, K. Short, S. Cook, and S. Kent. Software Fac-
tories: Assembling Applications with Patterns, Models, Frameworks, and Tools.
John Wiley & Sons Inc., New York, 2004.

[Gronback 2009] R.C. Gronback. Eclipse Modeling Project: A Domain-Specific Lan-
guage (DSL) Toolkit. Addison-Wesley Professional, Boston, Massachusetts, 2009.

[Gruschko et al. 2007] B. Gruschko, D.S. Kolovos, and R.F. Paige. Towards synchro-
nizing models with evolving metamodels. In Proc. Workshop on Model-Driven
Software Evolution, co-located with the European Conference on Software Mainte-
nance and Reengineering (CSMR), 2007.

[Guerrini et al. 2005] G. Guerrini, M. Mesiti, and D. Rossi. Impact of XML schema
evolution on valid documents. In A. Bonifati and D. Lee, editors, Proc. Inter-
national Workshop on Web Information and Data Management (WIDM), pages
39–44. ACM, 2005.

[Halstead 1977] M.H. Halstead. Elements of Software Science. Elsevier Science Inc.,
New York, 1977.

[Hearnden et al. 2006] D. Hearnden, M. Lawley, and K. Raymond. Incremental
model transformation for the evolution of model-driven systems. In O. Nierstrasz,
J. Whittle, D. Harel, and G. Reggio, editors, Proc. International Conference on
Model Driven Engineering Languages and Systems (MoDELS), volume 4199 of
Lecture Notes in Computer Science, pages 321–335. Springer, 2006.

[Heidenreich et al. 2009] F. Heidenreich, J. Johannes, S. Karol, M. Seifert, and
C. Wende. Derivation and refinement of textual syntax for models. In R.F. Paige,
A. Hartman, and A. Rensink, editors, Proc. European Conference on Model-Driven
Architecture - Foundations and Applications (ECMDA-FA), volume 5562 of Lec-
ture Notes in Computer Science, pages 114–129. Springer, 2009.

[Henriksson et al. 2008] J. Henriksson, F. Heidenreich, J. Johannes, S. Zschaler, and
U. Aßmann. Extending grammars and metamodels for reuse: the Reuseware ap-
proach. IET Software, 2(3):165–184, 2008.

BIBLIOGRAPHY 331

[Herrmannsdoerfer et al. 2008a] M. Herrmannsdoerfer, S. Benz, and E. Juergens.
Automatability of coupled evolution of metamodels and models in practice. In
K. Czarnecki, I. Ober, J. Bruel, A. Uhl, and M. Völter, editors, Proc. International
Conference on Model Driven Engineering Languages and Systems (MoDELS), vol-
ume 5301 of Lecture Notes in Computer Science, pages 645–659. Springer, 2008.

[Herrmannsdoerfer et al. 2008b] M. Herrmannsdoerfer, S. Benz, and E. Juergens.
COPE: A language for the coupled evolution of metamodels and models. In
Proc. International Workshop on Model Co-Evolution and Consistency Manage-
ment (MCCM), co-located with the International Conference on Model-Driven En-
gineering Languages and Systems (MoDELS), 2008.

[Herrmannsdoerfer et al. 2009a] M. Herrmannsdoerfer, S. Benz, and E. Juer-
gens. COPE - automating coupled evolution of metamodels and models. In
S. Drossopoulou, editor, Proc. European Conference on Object-Oriented Program-
ming (ECOOP), volume 5653 of Lecture Notes in Computer Science, pages 52–76.
Springer, 2009.

[Herrmannsdoerfer et al. 2009b] M. Herrmannsdoerfer, D. Ratiu, and G. Wachsmuth.
Language evolution in practice. In M. van den Brand, D. Gasevic, and J. Gray,
editors, Proc. International Conference on Software Language Engineering (SLE),
Revised Selected Papers, volume 5696 of Lecture Notes in Computer Science, pages
3–22. Springer, 2009.

[Hussey & Paternostro 2006] K. Hussey and M. Paternostro. Advanced features of
EMF. Tutorial at EclipseCon 2006, California, USA. [Accessed 02 November 2010]
Available at: http://www.eclipsecon.org/2006/Sub.do?id=171, 2006.

[ISO/IEC 1996] Information Technology ISO/IEC. Syntactic metalanguage – Ex-
tended BNF. ISO 14977:1996 International Standard, 1996.

[ISO/IEC 2002] Information Technology ISO/IEC. Z Formal Specification Notation
– Syntax, Type System and Semantics. ISO 13568:2002 International Standard,
2002.

[Jackson 1995] M. Jackson. Software Requirements and Specifications: A Lexicon of
Practice, Principles and Prejudices. ACM Press, New York, 1995.

[Jouault & Kurtev 2005] F. Jouault and I. Kurtev. Transforming models with ATL. In
J-M. Bruel, editor, Proc. Satellite Events at the International Conference on Model
Driven Engineering Languages and Systems (MoDELS), International Workshops,
Doctoral Symposium, Educators Symposium, Revised Selected Papers, volume 3844
of Lecture Notes in Computer Science, pages 128–138. Springer, 2005.

[Jouault 2005] F. Jouault. Loosely coupled traceability for ATL. In Proc. Work-
shop on Traceability, co-located with the European Conference on Model-Driven
Architecture (ECMDA), 2005.

http://www.eclipsecon.org/2006/Sub.do?id=171

332 BIBLIOGRAPHY

[Jurack & Mantz 2010] S. Jurack and F. Mantz. Towards metamodel evolution of
EMF models with Henshin. In Proc. Models and Evolution Workshop, co-located
with the International Conference on Model Driven Engineering Languages and
Systems (MoDELS), 2010.

[Kalnins et al. 2005] A. Kalnins, J. Barzdins, and E. Celms. Model transformation
language MOLA. In U. Aßmann, M. Aksit, and A. Rensink, editors, Proc. Model
Driven Architecture, European MDA Workshops: Foundations and Applications,
MDAFA 2003 and MDAFA 2004, Revised Selected Papers, volume 3599 of Lecture
Notes in Computer Science, pages 62–76. Springer, 2005.

[Kataoka et al. 2001] Y. Kataoka, M.D. Ernst, W.G. Griswold, and D. Notkin. Au-
tomated support for program refactoring using invariants. In Proc. International
Conference on Software Maintenance (ICSM), pages 736–743. IEEE Computer
Society, 2001.

[Kelly & Tolvanen 2008] S. Kelly and J.P. Tolvanen. Domain-Specific Modelling.
Wiley and IEEE Computer Society, 2008.

[Kelly 1999] T.P. Kelly. Arguing Safety – A Systematic Approach to Safety Case
Management. PhD thesis, University of York, United Kingdom, 1999.

[Kerievsky 2004] J. Kerievsky. Refactoring to Patterns. Pearson Higher Education,
2004.

[Kleppe et al. 2003] A.G. Kleppe, J. Warmer, and W. Bast. MDA Explained: The
Model Driven Architecture: Practice and Promise. Addison-Wesley Longman Pub-
lishing Co. Inc., Boston, Massachusetts, 2003.

[Klint et al. 2003] P. Klint, R. Lämmel, and C. Verhoef. Towards an engineering disci-
pline for grammarware. ACM Transactions on Software Engineering Methodology,
14(3):331–380, 2003.

[Kolovos et al. 2006] D.S. Kolovos, R.F. Paige, and F.A. Polack. The Epsilon Object
Language (EOL). In A. Rensink and J. Warmer, editors, Proc. European Confer-
ence on Model-Driven Architecture - Foundations and Applications (ECMDA-FA),
volume 4066 of Lecture Notes in Computer Science, pages 128–142. Springer, 2006.

[Kolovos et al. 2007] D.S. Kolovos, R.F. Paige, F.A.C. Polack, and L.M. Rose. Update
transformations in the small with the Epsilon Wizard Language. Journal of Object
Technology, 6(9):53–69, 2007.

[Kolovos et al. 2008a] D.S. Kolovos, R.F. Paige, and F.A.C. Polack. The grand chal-
lenge of scalability for model driven engineering. In M.R. Chaudron, editor, Models
in Software Engineering: Workshops and Symposia at MoDELS 2008, Reports and
Revised Selected Papers, volume 5421 of Lecture Notes in Computer Science, pages
48–53. Springer-Verlag, 2008.

BIBLIOGRAPHY 333

[Kolovos et al. 2008b] D.S. Kolovos, R.F. Paige, and F.A.C Polack. The Epsilon
Transformation Language. In A. Vallecillo, J. Gray, and A. Pierantonio, editors,
Proc. International Conference on the Theory and Practice of Model Transforma-
tions (ICMT), volume 5063 of Lecture Notes in Computer Science, pages 46–60.
Springer, 2008.

[Kolovos et al. 2009] D.S. Kolovos, R.F. Paige, and F.A.C. Polack. On the evolution
of OCL for capturing structural constraints in modelling languages. In J. Abrial
and U. Glässer, editors, Rigorous Methods for Software Construction and Analysis,
volume 5115 of Lecture Notes in Computer Science, pages 204–218. Springer, 2009.

[Kolovos et al. 2010] D.S. Kolovos, L.M. Rose, S. bin Abid, R.F. Paige, F.A.C. Polack,
and G. Botterweck. Taming EMF and GMF using model transformation. In D.C.
Petriu, N. Rouquette, and Ø. Haugen, editors, Proc. International Conference on
Model Driven Engineering Languages and System (MoDELS), Part I, volume 6394
of Lecture Notes in Computer Science, pages 211–225. Springer, 2010.

[Kolovos 2009] D.S. Kolovos. An Extensible Platform for Specification of Integrated
Languages for Model Management. PhD thesis, University of York, United King-
dom, 2009.

[Kramer 2001] D. Kramer. XEM: XML Evolution Management. Master’s thesis,
Worcester Polytechnic Institute, MA, USA, 2001.

[Kurtev 2004] I. Kurtev. Adaptability of Model Transformations. PhD thesis, Uni-
versity of Twente, Netherlands, 2004.

[Lago et al. 2009] P. Lago, H. Muccini, and H. van Vliet. A scoped approach to
traceability management. Systems and Software, 82(1):168–182, 2009.

[Lämmel & Verhoef 2001] R. Lämmel and C. Verhoef. Semi-automatic grammar
recovery. Software - Practice and Experience, 31(15):1395–1438, 2001.

[Lämmel 2001] R. Lämmel. Grammar adaptation. In J.N. Oliveira and P. Zave,
editors, Proc. Formal Methods for Increasing Software Productivity (FME), Inter-
national Symposium of Formal Methods Europe, volume 2021 of Lecture Notes in
Computer Science, pages 550–570. Springer, 2001.

[Lämmel 2002] R. Lämmel. Towards generic refactoring. In B. Fischer and E. Visser,
editors, Proc. ACM SIGPLAN Workshop on Rule-Based Programming, pages 15–
28. ACM, 2002.

[Lehman 1969] M.M. Lehman. The programming process. Technical report, IBM
Research Report RC 2722, 1969.

[Lerner 2000] B.S. Lerner. A model for compound type changes encountered in schema
evolution. ACM Transactions on Database Systems, 25(1):83–127, 2000.

334 BIBLIOGRAPHY

[Mäder et al. 2008] P. Mäder, O. Gotel, and I. Philippow. Rule-based maintenance
of post-requirements traceability relations. In Proc. IEEE International Require-
ments Engineering Conference (RE), pages 23–32. IEEE Computer Society, 2008.

[Martin & Martin 2006] R.C. Martin and M. Martin. Agile Principles, Patterns, and
Practices in C#. Prentice Hall, Upper Saddle River, NJ, USA, 2006.

[McCarthy 1978] J. McCarthy. History of Lisp. History of Programming Languages,
1:217–223, 1978.

[McNeile 2003] A. McNeile. MDA: The vision with the hole? [online]. Metamaxim Ltd,
2003. [Accessed 02 November 2010] Available at: http://www.metamaxim.
com/download/documents/MDAv1.pdf.

[Mellor & Balcer 2002] S.J. Mellor and M. Balcer. Executable UML: A Foundation for
Model-Driven Architectures. Addison-Wesley Longman, Boston, Massachusetts,
2002.

[Melnik 2004] S. Melnik. Generic Model Management: Concepts and Algorithms.
PhD thesis, University of Leipzig, Germany, 2004.

[Méndez et al. 2010] D. Méndez, A. Etien, A. Muller, and R. Casallas. Towards
transformation migration after metamodel evolution. In Proc. Models and Evo-
lution Workshop, co-located with the International Conference on Model Driven
Engineering Languages and Systems (MoDELS), 2010.

[Mens & Demeyer 2007] T. Mens and S. Demeyer. Software Evolution. Springer-
Verlag, Berlin, 2007.

[Mens & Tourwé 2004] T. Mens and T. Tourwé. A survey of software refactoring.
IEEE Transactions on Software Engineering, 30(2):126–139, 2004.

[Mens et al. 2007] T. Mens, G. Taentzer, and D. Müller. Challenges in model refac-
toring. In Proc. Workshop on Object-Oriented Reengineering, co-located with the
European Conference on Object-Oriented Programming (ECOOP), 2007.

[Merriam-Webster 2010] Merriam-Webster. Definition of Nuclear Family [online].
[Accessed 02 November 2010] Available at: http://www.merriam-webster.
com/dictionary/nuclear%20family, 2010.

[Moad 1990] J. Moad. Maintaining the competitive edge. Datamation, 36(4):61–66,
1990.

[Moha et al. 2009] N. Moha, V. Mahé, O. Barais, and J.M. Jézéquel. Generic model
refactorings. In A. Schürr and B. Selic, editors, Proc. International Conference
on Model Driven Engineering Languages and Systems (MoDELS), volume 5795 of
Lecture Notes in Computer Science, pages 628–643. Springer, 2009.

http://www.metamaxim.com/download/documents/MDAv1.pdf
http://www.metamaxim.com/download/documents/MDAv1.pdf
http://www.merriam-webster.com/dictionary/nuclear%20family
http://www.merriam-webster.com/dictionary/nuclear%20family

BIBLIOGRAPHY 335

[Muller & Hassenforder 2005] P. Muller and M. Hassenforder. HUTN as a Bridge
between ModelWare and GrammarWare. In Proc. Workshop in Software Mod-
elling Engineering, co-located with the International Conference on Model Driven
Engineering Languages and Systems (MoDELS), 2005.

[Nentwich et al. 2003] C. Nentwich, W. Emmerich, A. Finkelstein, and E. Ellmer.
Flexible consistency checking. ACM Transactions on Software Engineering and
Methodology, 12(1):28–63, 2003.

[Nguyen et al. 2005] T.N. Nguyen, C. Thao, and E.V. Munson. On product version-
ing for hypertexts. In Proc. International Workshop on Software Configuration
Management (SCM), pages 113–132. ACM, 2005.

[Nickel et al. 2000] U. Nickel, J. Niere, and A. Zündorf. The FUJABA environment.
In Proc. International Conference on Software Engineering (ICSE), pages 742–745.
ACM, 2000.

[Northrop 2006] L. Northrop. Ultra-large scale systems: The software challenge of
the future. Technical report, Carnegie Mellon, June 2006.

[Oldevik et al. 2005] J. Oldevik, T. Neple, R. Grønmo, J.Ø. Aagedal, and A. Berre.
Toward standardised model to text transformations. In A. Hartman and D. Kreis-
che, editors, Proc. European Conference on Model-Driven Architecture - Founda-
tions and Applications (ECMDA-FA), volume 3748 of Lecture Notes in Computer
Science, pages 239–253. Springer, 2005.

[Olsen & Oldevik 2007] G.K. Olsen and J. Oldevik. Scenarios of traceability in model
to text transformations. In D.H. Akehurst, R. Vogel, and R.F. Paige, editors, Proc.
European Conference on Model-Driven Architecture - Foundations and Applica-
tions (ECMDA-FA), volume 4530 of Lecture Notes in Computer Science, pages
144–156. Springer, 2007.

[OMG 2001] OMG. Unified Modelling Language 1.4 Specification [online]. [Accessed
02 November 2010] Available at: http://www.omg.org/spec/UML/1.4/,
2001.

[OMG 2004] OMG. Human-Usable Textual Notation 1.0 Specification [online]. [Ac-
cessed 02 November 2010] Available at: http://www.omg.org/technology/
documents/formal/hutn.htm, 2004.

[OMG 2005] OMG. MOF QVT Final Adopted Specication [online]. [Accessed 22
July 2009] Available at: www.omg.org/docs/ptc/05-11-01.pdf, 2005.

[OMG 2006] OMG. Object Constraint Language 2.0 Specification [online]. [Ac-
cessed 02 November 2010] Available at: http://www.omg.org/technology/
documents/formal/ocl.htm, 2006.

http://www.omg.org/spec/UML/1.4/
http://www.omg.org/technology/documents/formal/hutn.htm
http://www.omg.org/technology/documents/formal/hutn.htm
www.omg.org/docs/ptc/05-11-01.pdf
http://www.omg.org/technology/documents/formal/ocl.htm
http://www.omg.org/technology/documents/formal/ocl.htm

336 BIBLIOGRAPHY

[OMG 2007a] OMG. Unified Modelling Language 2.1.2 Specification [online]. [Ac-
cessed 02 November 2010] Available at: http://www.omg.org/spec/UML/2.
1.2/, 2007.

[OMG 2007b] OMG. Unified Modelling Language 2.2 Specification [online]. [Accessed
02 November 2010] Available at: http://www.omg.org/spec/UML/2.2/,
2007.

[OMG 2007c] OMG. XML Metadata Interchange 2.1.1 Specification [online]. [Ac-
cessed 02 November 2010] Available at: http://www.omg.org/technology/
documents/formal/xmi.htm, 2007.

[OMG 2008a] OMG. Meta-Object Facility [online]. [Accessed 02 November 2010]
Available at: http://www.omg.org/mof, 2008.

[OMG 2008b] OMG. Model Driven Architecture [online]. [Accessed 02 November
2010] Available at: http://www.omg.org/mda/, 2008.

[Opdyke 1992] W.F. Opdyke. Refactoring Object-Oriented Frameworks. PhD thesis,
University of Illinois at Urbana-Champaign, IL, USA, 1992.

[Paige et al. 2007] R.F. Paige, P.J. Brooke, and J.S. Ostroff. Metamodel-based model
conformance and multiview consistency checking. ACM Transactions on Software
Engineering and Methodology, 16(3):1–48, 2007.

[Paige et al. 2009] R.F. Paige, L.M. Rose, X. Ge, D.S. Kolovos, and P.J. Brooke.
FPTC: Automated safety analysis for domain-specific languages. In M.R.V. Chau-
dron, editor, Models in Software Engineering, Workshops and Symposia at MoD-
ELS 2008, Reports and Revised Selected Papers, volume 5421 of Lecture Notes in
Computer Science, pages 229–242. Springer, 2009.

[Parr 2007] T. Parr. The Definitive ANTLR Reference: Building Domain-Specific
Languages. Pragmatic Programmers, 2007.

[Patrascoiu & Rodgers 2004] O. Patrascoiu and P. Rodgers. Embedding OCL expres-
sions in YATL. In Proc. OCL and Model-Driven Engineering Workshop, co-located
with the International Conference on the Unified Modeling Language (UML), 2004.

[Pilgrim et al. 2008] J. von Pilgrim, B. Vanhooff, I. Schulz-Gerlach, and Y. Berbers.
Constructing and visualizing transformation chains. In I. Schieferdecker and
A. Hartman, editors, Proc. European Conference on the Model Driven Architec-
ture – Foundations and Applications, volume 5095 of Lecture Notes in Computer
Science, pages 17–32. Springer, 2008.

[Pizka & Jürgens 2007] M. Pizka and E. Jürgens. Automating language evolution. In
Proc. Joint IEEE/IFIP Symposium on Theoretical Aspects of Software Engineering
(TASE), pages 305–315. IEEE Computer Society, 2007.

http://www.omg.org/spec/UML/2.1.2/
http://www.omg.org/spec/UML/2.1.2/
http://www.omg.org/spec/UML/2.2/
http://www.omg.org/technology/documents/formal/xmi.htm
http://www.omg.org/technology/documents/formal/xmi.htm
http://www.omg.org/mof
http://www.omg.org/mda/

BIBLIOGRAPHY 337

[Porres 2003] I. Porres. Model refactorings as rule-based update transformations.
In P. Stevens, J. Whittle, and G. Booch, editors, Proc. International Conference
on the Unified Modeling Language, Modeling Languages and Applications (UML),
volume 2863 of Lecture Notes in Computer Science, pages 159–174. Springer, 2003.

[RAE & BCS 2004] The RAE and The BCS. The challenges of complex IT projects.
Technical report, The Royal Academy of Engineering, April 2004.

[Ramil & Lehman 2000] J.F. Ramil and M.M. Lehman. Cost estimation and evolv-
ability monitoring for software evolution processes. In Proc. Workshop on Empir-
ical Studies of Software Maintenance (WESS), co-located with the International
Conference on Software Maintenance, 2000.

[Ráth et al. 2008] I. Ráth, G. Bergmann, A. Ökrös, and D. Varró. Live model trans-
formations driven by incremental pattern matching. In A. Vallecillo, J. Gray, and
A. Pierantonio, editors, Proc. International Conference on the Theory and Prac-
tice of Model Transformations (ICMT), volume 5063 of Lecture Notes in Computer
Science, pages 107–121. Springer, 2008.

[Rios et al. 2006] E. Rios, T. Bozheva, A. Bediaga, and N. Guilloreau. MDD maturity
model: A roadmap for introducing Model-Driven Development. In A. Rensink
and J. Warmer, editors, Proc. European Conference on Model Driven Architecture
Foundations and Applications (ECMDA-FA), volume 4066 of Lecture Notes in
Computer Science, pages 78–89. Springer Berlin / Heidelberg, 2006.

[Rising 2001] L. Rising, editor. Design patterns in communications software. Cam-
bridge University Press, Cambridge, 2001.

[Rose et al. 2008a] L.M. Rose, R.F. Paige, D.S. Kolovos, and F.A.C. Polack. Con-
structing models with the Human-Usable Textual Notation. In K. Czarnecki,
I. Ober, J. Bruel, A. Uhl, and M. Völter, editors, Proc. International Conference
on Model Driven Engineering Languages and Systems (MoDELS), volume 5301 of
Lecture Notes in Computer Science, pages 249–263. Springer, 2008.

[Rose et al. 2008b] L.M. Rose, R.F. Paige, D.S. Kolovos, and F.A.C. Polack. The
Epsilon Generation Language. In I. Schieferdecker and A. Hartman, editors, Proc.
European Conference on Model Driven Architecture – Foundations and Applica-
tions, volume 5095 of Lecture Notes in Computer Science, pages 1–16. Springer,
2008.

[Rose et al. 2009a] L.M. Rose, D.S. Kolovos, R.F. Paige, and F.A.C. Polack. En-
hanced automation for managing model and metamodel inconsistency. In Proc.
International Conference on Automated Software Engineering (ASE), pages 545–
549. IEEE Computer Society, 2009.

338 BIBLIOGRAPHY

[Rose et al. 2009b] L.M. Rose, R.F. Paige, D.S. Kolovos, and F.A.C. Polack. An
analysis of approaches to model migration. In Proc. Joint Model-Driven Soft-
ware Evolution and Model Co-evolution and Consistency Management (MoDSE-
MCCM) Workshop, co-located with the International Conference on Model-Driven
Engineering Languages and Systems (MoDELS), 2009.

[Rose et al. 2010a] L.M. Rose, A. Etien, D. Méndez, D.S. Kolovos, R.F. Paige, and
F.A.C. Polack. Comparing model-metamodel and transformation-metamodel co-
evolution. In Proc. Models and Evolution Workshop, co-located with the Interna-
tional Conference on Model Driven Engineering Languages and Systems (MoD-
ELS), 2010.

[Rose et al. 2010b] L.M. Rose, M. Herrmannsdoerfer, J.R. Williams, D.S. Kolovos,
K. Garcés, R.F. Paige, and F.A.C. Polack. A comparison of model migration tools.
In D.C. Petriu, N. Rouquette, and Ø Haugen, editors, Proc. International Con-
ference on Model Driven Engineering Languages and Systems (MoDELS), Part I,
volume 6394 of Lecture Notes in Computer Science, pages 61–75. Springer, 2010.

[Rose et al. 2010c] L.M. Rose, D.S. Kolovos, N. Drivalos, J.R. Williams, R.F. Paige,
F.A.C. Polack, and K.J. Fernandes. Concordance: An efficient framework for
managing model integrity. In T. Kühne, B. Selic, M-P. Gervais, and F. Terrier,
editors, Proc. European Conference on Modelling Foundations and Applications,
volume 6138 of Lecture Notes in Computer Science, pages 62–73. Springer, 2010.

[Rose et al. 2010d] L.M. Rose, D.S. Kolovos, R.F. Paige, and F.A.C. Polack. Migrat-
ing activity diagrams with Epsilon Flock. In Proc. Transformation Tools Contest
(TTC), co-located with the International Conference on Objects, Models, Compo-
nents and Patterns (TOOLS Europe), 2010.

[Rose et al. 2010e] L.M. Rose, D.S. Kolovos, R.F. Paige, and F.A.C. Polack. Model
migration case. In Proc. Transformation Tools Contest (TTC), co-located with the
International Conference on Objects, Models, Components and Patterns (TOOLS
Europe), 2010.

[Rose et al. 2010f] L.M. Rose, D.S. Kolovos, R.F. Paige, and F.A.C Polack. Model
migration with Epsilon Flock. In L. Tratt and M. Gogolla, editors, Proc. Interna-
tional Conference on the Theory and Practice of Model Transformations (ICMT),
volume 6142 of Lecture Notes in Computer Science, pages 184–198. Springer, 2010.

[Selic 2003] B. Selic. The pragmatics of Model-Driven Development. IEEE Software,
20(5):19–25, 2003.

[Selic 2005] B. Selic. Whats new in UML 2.0? IBM Rational software, 2005.

[Sendall & Kozaczynski 2003] S. Sendall and W. Kozaczynski. Model transforma-
tion: The heart and soul of model-driven software development. IEEE Software,
20(5):42–45, 2003.

BIBLIOGRAPHY 339

[Sjøberg 1993] D.I.K. Sjøberg. Quantifying schema evolution. Information & Software
Technology, 35(1):35–44, 1993.

[Sommerville 2006] I. Sommerville. Software Engineering. Addison-Wesley, Boston,
Massachusetts, 9th edition, 2006.

[Sprinkle & Karsai 2004] J. Sprinkle and G. Karsai. A domain-specific visual language
for domain model evolution. Journal of Visual Languages and Computing, 15(3-
4):291–307, 2004.

[Sprinkle 2003] J. Sprinkle. Metamodel Driven Model Migration. PhD thesis, Van-
derbilt University, TN, USA, 2003.

[Stahl et al. 2006] T. Stahl, M. Voelter, and K. Czarnecki. Model-Driven Software
Development: Technology, Engineering, Management. Wiley, Chichester, 2006.

[Starfield et al. 1990] M. Starfield, K.A. Smith, and A.L. Bleloch. How to model it:
Problem Solving for the Computer Age. McGraw-Hill Inc., New York, 1990.

[Steel & Raymond 2001] J. Steel and K. Raymond. Generating human-usable textual
notations for information models. In Proc. International Conference on Enterprise
Distributed Object Computing (EDOC), pages 250–261. IEEE Computer Society,
2001.

[Steinberg et al. 2008] D. Steinberg, F. Budinsky, M. Paternostro, and E. Merks.
EMF: Eclipse Modeling Framework. Addison-Wesley Professional, Boston, Mas-
sachusetts, 2008.

[Su et al. 2001] H. Su, D. Kramer, L. Chen, K.T. Claypool, and E.A. Rundensteiner.
XEM: Managing the evolution of XML documents. In K. Aberer and L. Liu,
editors, Proc. International Workshop on Research Issues in Data Engineering
(RIDE), pages 103–110. IEEE Computer Society, 2001.

[Tisi et al. 2009] M. Tisi, F. Jouault, P. Fraternali, S. Ceri, and J. Bézivin. On
the use of higher-order model transformations. In R.F. Paige, A. Hartman, and
A. Rensink, editors, Proc. European Conference on Model-Driven Architecture -
Foundations and Applications (ECMDA-FA), volume 5562 of Lecture Notes in
Computer Science, pages 18–33. Springer, 2009.

[Tratt 2008] L. Tratt. A change propagating model transformation language. Journal
of Object Technology, 7(3):107–124, 2008.

[Varró & Balogh 2007] D. Varró and A. Balogh. The model transformation language
of the VIATRA2 framework. Science of Computer Programming, 68(3):187–207,
2007.

340 BIBLIOGRAPHY

[Vries & Roddick 2004] D. de Vries and J.F. Roddick. Facilitating database attribute
domain evolution using meso-data. In S. Wang, D. Yang, K. Tanaka, F. Grandi,
S. Zhou, E.E. Mangina, T.W. Ling, I-Y. Song, J. Guan, and H.C. Mayr, editors,
Proc. Conceptual Modeling for Advanced Application Domains, ER 2004 Work-
shops CoMoGIS, COMWIM, ECDM, CoMoA, DGOV, and ECOMO, volume 3289
of Lecture Notes in Computer Science, pages 429–440. Springer, 2004.

[W3C 2007] W3C. W3C XML Schema 1.1 Specification [online]. [Accessed 02 Novem-
ber 2010] Available at: http://www.w3.org/XML/Schema, 2007.

[Wachsmuth 2007] G. Wachsmuth. Metamodel adaptation and model co-adaptation.
In E. Ernst, editor, Proc. European Conference on Object-Oriented Programming
(ECOOP), volume 4609 of Lecture Notes in Computer Science, pages 600–624.
Springer, 2007.

[Wallace 2005] M. Wallace. Modular architectural representation and analysis of
fault propagation and transformation. Electronic Notes in Theoretical Computer
Science, 141(3):53–71, 2005.

[Ward 1994] M.P. Ward. Language-oriented programming. Software — Concepts and
Tools, 15(4):147–161, 1994.

[Watson 2008] A. Watson. A brief history of MDA. Upgrade, 9(2):7–11, 2008.

[Welch & Barnes 2005] P.H. Welch and F.R.M. Barnes. Communicating mobile pro-
cesses. In A.E. Abdallah, C.B. Jones, and J.W. Sanders, editors, Proc. Symposium
on the Occasion of 25 Years Communicating Sequential Processes (CSP), volume
3525 of Lecture Notes in Computer Science, pages 175–210. Springer, 2005.

[Winkler & Pilgrim 2010] S. Winkler and J. von Pilgrim. A survey of traceability
in requirements engineering and model-driven development. Software and System
Modeling, 9:529–565, 2010.

http://www.w3.org/XML/Schema

	Contents
	List of Figures
	List of Tables
	Listings
	Author Declaration
	Introduction
	An Overview of Model-Driven Engineering
	An Overview of Software Evolution
	Motivation: Software Evolution in MDE
	Research Hypothesis and Method
	Results of the Thesis Research
	Thesis Structure

	Background: Model-Driven Engineering
	MDE Terminology and Principles
	MDE Guidelines and Methods
	Tools for MDE
	Research Relating to MDE
	Benefits of and Current Challenges to MDE
	Chapter Summary

	Review of Software Evolution
	Software Evolution Theory
	Software Evolution in Practice
	Challenges to Managing Software Evolution in MDE
	Chapter Summary

	MDE and Evolution: Problem Analysis
	Examples of Evolution from MDE Projects
	An Analysis of Existing Co-Evolution Techniques
	Requirements for Identifying and Managing Co-Evolution
	Chapter Summary

	Design and Implementation
	A Metamodel-Independent Syntax
	Epsilon HUTN: A Textual Modelling Notation
	An Analysis of Languages used for Model Migration
	Epsilon Flock: A Model Migration Language
	Chapter Summary

	Evaluation
	Evaluating User-Driven Co-Evolution
	Evaluating Conservative Copy
	Evaluating Epsilon Flock and other Co-evolution Tools
	Evaluating Co-Evolution Tools with an Example from UML
	Limitations of the Proposed Structures and Processes
	Chapter Summary

	Conclusions
	Contributions of the Thesis Research
	Future Work
	Closing Remarks

	Code Listings
	Migrating Petri Nets with Ecore2Ecore
	Model Management Operations for Epsilon HUTN

	A Graphical Editor for Process-Oriented Programs
	Iteration 1: Processes and Channels
	Iteration 2: Interoperability with GMF
	Iteration 3: Shared Channels
	Iteration 4: Connection Points
	Iteration 5: Connection Point Types
	Iteration 6: Nested Processes and Channels
	Summary

	Co-evolution Examples
	Newsgroups Examples
	UML Example
	GMF Examples

	TTC Results
	Bibliography

