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Abstract

Naturally fractured reservoirs are playing an important role in exploration geophysics.

As fractures can control the permeability and pore pressure of the reservoir, it is crucial

to study the fracture characterisation. The thesis is mainly including the estimated

seismic anisotropy from shear-wave splitting (SWS) observations and the study of

the S-wave scattering characteristics of fractured media as well. A suite of synthetic

fractured media with a broad range of fracture parameters is generated. The range of

fracture parameters was chosen based on the numerical simulation and also where there

is a lack of research in the literature.

An automated approach of SWS analysis is performed which is suitable to cope with

large volume of SWS measurements. The SWS analysis was automatically performed

using cross-correlation and eigenvalue minimisation methods by using a cluster analysis

technique. The automated quality measuring is obtained from the misfit calculation of

both methods to estimate SWS measurements. This method leads to detect 7% and 4%

high quality SWS of 6624 SWS measurements for the single and the double fracture

sets models, respectively. This method is crucially beneficial as it reduces the number

of inspection of SWS measurements. The SWS measurements are obtained from the

receivers distribution at near-surface as well as four boreholes. The parametrisation study

of SWS shows that the number of models with good SWS decreases with increasing

fracture length size. Moreover, by increasing normal and tangential compliance by one

order of magnitude while keeping compliance ratio constant leads to models with good

SWS in most cases.

The simulation of synthetic microseismic event provides suitable S-wave sources

that result in SWS measurements to image fracture parameters (i.e., fracture density

and orientation). The δVS , the difference between the fast and slow shear-waves

velocities along the raypath, varied between 0% and 14% which is influenced by the
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fracture density. As the discrete fractures are superimposed in an isotropic medium,

so the anisotropy is interpreted in terms of the fracture strike and fracture density by

implementing an inversion method based on the effective medium theory (EMT). The

inversion was performed for a single fracture set (i.e., HTI) and double orthogonal

fracture sets (i.e., orthorhombic symmetry system). The fracture strike inversion is

more constrained than the fracture density due to the limited ray coverage and inversion

algorithm assumptions.

In the subsequent part of the thesis, I confirm the general scale-dependence of

seismic anisotropy and provide new results specific to SWS. I find that SWS develops

under conditions when the ratio of wavelength to fracture size (λS/d) is greater than 3,

where Rayleigh scattering from coherent fractures leads to an effective anisotropy such

that effective medium model (EMM) theory is qualitatively valid. When 1 < λS/d < 3

there is a transition from Rayleigh to Mie scattering, where no effective anisotropy

develops and hence the SWS measurements are unstable. When λS/d < 1 I observe

geometric scattering and begin to see behaviour similar to transverse isotropy. I find that

seismic anisotropy is more sensitive to fracture density than fracture compliance ratio.

More importantly, I observe that the transition from scattering to an effective anisotropic

regime occurs over a propagation distance between 1 to 2 wavelengths depending on

the fracture density and compliance ratio.

Finally, I use different methods including the RMS envelope analysis, shear-wave

polarisation distortion, differential attenuation analysis and peak frequency shifting

to assess the scattering behaviour of parametrised models in which the propagation

direction is either normal or parallel to the fracture surfaces. The quantitative measures

show strong observable deviations for fractures size on the order of or greater than

the dominant seismic wavelength within the Mie and geometric scattering regime for

both propagation normal and parallel to fracture strike. The results suggest that strong
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scattering is symptomatic of fractures having size on the same order of the probing

seismic wave.
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Chapter 1

Introduction

In this chapter I provide a general overview of the thesis. First I discuss the general ideas

and concepts related to fracture characterisation, seismic modelling in fractured media

and fracture detection using shear wave data. Next I provide the aims and objectives of

this study. Finally, I summarise the thesis structure as well as the software and programs

used.

1.1 Background and motivation

Natural fractures in reservoirs play an important role in the geomechanical and fluid-flow

behaviour of the subsurface. Thus, fracture characterisation in general and knowledge of

the orientation and density of fractures specifically is important in petroleum reservoir

production to enhance hydrocarbon recovery and hence increase economic performance

of naturally fractured reservoirs. Fractures have a significant influence on the multi-

1
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physical response of hydrocarbon reservoirs, yet they are still poorly understood and

their properties largely underestimated in situ. The investigation of natural fractures

should start from an early stage of production, in terms of effectively locating wells and

during the well-construction stage (e.g., Bratton et al., 2006).

Seismic anisotropy is a useful attribute for characterisation and detection of fabric

within most reservoir rocks. There are different length-scales of rock fabric that lead

to seismic anisotropy, such as mineral alignment (e.g., Valcke et al., 2006), grain-

scale fabric (e.g., Hall et al., 2008; Verdon et al., 2008; Angus et al., 2009), large

scale sedimentary layers (e.g., Bacus,1962) and presence of aligned fracture sets (e.g.,

Hudson, 1980, 1981). Furthermore, depending on the wavelength of the seismic signal

and the length-scale of elastic heterogeneity, an elastic medium may or may not appear

seismically anisotropic (e.g., Winterstein, 1990). A set of cracks or fractures may

render a rock seismically anisotropic if they are preferentially aligned parallel to the

maximum primary horizontal stress. The most common anisotropic mechanisms in

hydrocarbon reservoir are horizontally aligned fabric, consisting of a combination of

sedimentary layering, grain-scale and mineral alignment. Such layering leads to a

vertically transverse isotropic symmetry system. Another source of anisotropy displays

coherent vertical alignment due to the presence of subvertical fracture sets.

Seismic velocity is one of the key seismic attributes, and in the presence of coherent

seismic heterogeneity shows directional dependence. In the case of fractures, waves

propagate faster parallel to the fracture surface than those propagating normal to the

fracture surface. The measurement of azimuthal velocity variation of P-waves from

travel-times was first used to confirm the presence of seismic anisotropy in the Earth

(Hess, 1964). There are other key seismic attributes, however, such as amplitude and

seismic polarisation. Several methods have been developed to analyse seismic reflection

data, vertical seismic profile (VSP) data and cross-hole data. For instance, amplitude
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variation with offset (AVO) as well as amplitude variation with offset and azimuth

(AVOA) have been employed to characterise fractured media (e.g., Lynn et al., 1996;

Sayers & Rickett, 1997; Hall & Kendall, 2000; Lynn et al., 2003). Interval normal

moveout P-wave analysis is another attribute to image fractures (e.g., Tsvankin, 1997;

Bakulin et al., 2000).

Similar to P-waves, S-waves can be affected by a set of aligned fractures. For

instance, the S-wave AVOA technique can be utilised to characterise fracture orientation

(e.g., Hall & Kendall, 2000). The sensitivity of S-waves can be utilised as a means

to characterise the fracture strike and density and also the fracture infill (Kendall &

Kendall, 1996). Using both P- and S-waves in the AVOA analysis, Lynn et al. (1995)

provide a more robust method to determine fracture parameters.

Willis et al. (2003, 2006) introduce a method in which the interval transfer function

of the upper and bottom interface of a naturally fractured reservoir is calculated based

on the scattered wave field. Scattered coda energy analysis is capable of constraining

the fracture density and fracture orientation as well as fracture spacing. Moreover,

recent anisotropic attenuation analysis has been developed, such as for small-scale

oriented fractures (e.g., Rathore et al., 1995; Chichinina et al., 2006). Chichinina et al.

(2006) utilise the azimuthal variation of attenuation with offset (QVOA) as a means

to characterise fractures and were able to robustly constrain fracture orientation of

saturated fractures. In a previous study by Hall & Kendall (2000), there was ambiguity

in the estimated fracture orientation due to the trade-off between fracture infill material

and crack aspect ratio.
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Figure 1.1: Schematic illustration of shear-wave splitting in a fractured medium. The delay
between fast and slow S-waves δt and the polarisation direction of the fast S-wave is φ. Figure
is from Wikipedia.)

1.2 Seismic anisotropy and shear-wave splitting

One of the best diagnostic wave phenomenon of anisotropic media within the Earth is

shear-wave splitting (SWS). SWS occurs when a shear wave encounters an anisotropic

medium; the shear-wave is split into two perpendicular polarised shear-wave compo-

nents with different wave speeds (e.g., Crampin, 1981; Savage, 1999). The polarisation

and delay time will persevere outside the anisotropic region. Figure 1.1 illustrates a

schematic of shear-wave splitting in a anisotropic medium, where the S-wave splits

into two S-waves with a time delay. The two SWS parameters are the fast polarisation

direction (φ) and the delay time between fast and slow S-waves (δt). The δt parameter

is a measure of the anisotropy strength of the medium along the raypath. Usually δt

is normalised by the raypath length yielding an estimate of the percentage difference

between the fast and slow shear-wave velocities (δVS). In a simple case, the φ parameter

corresponds to the fracture strike if the S-wave propagates subvertically.

SWS measurements have been extensively used in seismological studies: in studies

of deformation in the deep-mantle (e.g., Lay et al., 1998; Kendall & Silver, 1998),
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upper-mantle (e.g., Silver & Chan, 1988; Savage, 1999) and recently in more applied

seismic settings such as in the exploitation of petroleum reservoirs (i.e, microseismic

monitoring). In the literature, SWS measurements have been presented in numerous

well-established techniques (e.g., Ando & Ishikawa, 1980; Vidale, 1986; Silver & Chan,

1991; Menke & Levin, 2003; Wuestefeld et al., 2010). The technique of Silver &

Chan (1991) is likely the most prevalent approach. This technique is based on a grid

search over the two SWS parameters (φ and δt). The estimation of SWS parameters is

performed by two complementary approaches: attempts to minimise the energy on the

transverse component or by minimising the second eigenvalue of the particle motion

covariance matrix (λ2). Wuestefeld et al. (2010) found that minimising λ2/λ1 leads

to the most efficient and robust results for the estimation of SWS parameters in this

approach.

1.3 Shear-wave splitting inversion

The interpretation of SWS results may be non-unique or require an oversimplification

of the subsurface, such as assuming that the fast polarisation direction represents the

actual strike rather than an average or effective fracture strike, and also that δVS is

related to fracture density (Verdon et al., 2009). The prediction of the SWS pair (δt, φ)

is dependent on the raypath orientation relative to the major fracture orientation (Verdon

et al., 2009). In addition, the presence of fractures in sedimentary layers increases the

complexity of the overall anisotropic elasticity of the medium. Thus it is important to

take into account the relative contribution of each cause.

There have been several attempts in the past to invert SWS measurements for

fracture properties and/or anisotropy parameters from various data. For instance, Horne

& MacBeth (1994) used a genetic algorithm to invert SWS observations for fracture
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parameters from VSP datasets from the Conoco test site in Oklahoma. Šı́lenỳ &

Plomerová (1996) inverted global SWS observations recorded in southern Sweden to

characterise the symmetry axis and the thickness of upper-mantle. Teanby et al. (2004b)

inverted SWS on microseismic data at the Valhal field in the North Sea. In their study,

the elastic constants were calculated using the effective medium theory of Schoenberg

& Sayers (1995) and also the approach of Hall & Kendall (2000) to allow the inclusion

of multiple crack sets. They subsequently compute synthetic seismograms using ray

tracing and Maslov asymptotic theory (Guest & Kendall, 1993), where the synthetic data

were processed similar to the real data to estimate φ and δt following the calculation of

misfit (i.e., the comparison of synthetic with real data). Yang et al. (2005) developed

an inversion algorithm to tackle the inherent non-linearity in the inversion and applied

their inversion scheme on SWS measurements from Geysers geothermal reservoir in

California. Rial et al. (2005) inverted SWS observations from natural and induced

geothermal reservoirs for fracture parameters such as strike, dip, aspect ratio, density,

and fluid-content. Verdon et al. (2009) developed an inversion approach that can be used

for media containing fractures and sedimentary layering and allows for non-vertically

propagating raypaths. To assess the sensitivity of the inversion approach to raypath

orientation, Verdon et al. (2009) construct a suite of synthetic models based on effective

medium theory, and conclude that despite the source-receiver geometry, the strike is

most accurately constrained.

In the previous discussion of SWS measurement inversion, it was assumed that the

anisotropic parameters are uniform along the raypath in the anisotropic region between

source and receiver. Wookey (2012) proposed an advanced inversion algorithm using

a non-linear neighbourhood algorithm to determine the parameter space specified by

an anisotropic model incorporating a number of non-uniform domains. The algorithm

allows quantification of spatially varying model spaces by determination of non-uniform
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anisotropic models.

1.4 Aims and objectives of the thesis

1.4.1 Aims and objectives

Recent research has focused on the integration of geomechanics, fluid-flow and seismic

modelling to characterize fractured reservoirs. This requires knowledge of the crack or

fracture properties (e.g., compliances) on both the geomechanical and seismological

scale. However, populating the geomechanical and/or seismic model with crack and

fracture properties is based primarily on laboratory core data, which are several orders

smaller in length scale than observed in fractured reservoirs. Also, there is scarce field-

scale measurements. Properties such as fracture compliance (and thereby the compliance

ratio) influence the deformation behaviour and hence the fluid pathways within fractured

reservoirs. Effective medium theories have been implemented extensively to model

fractured media. However, effective medium models (EMMs) are limited by the model

assumptions where as the alternative discrete fracture model (DFM) approach makes no

restriction on the fracture size relative to seismic wavelength. As such, in this thesis

I study the feasibility of measuring and inverting for fracture properties using EMM

using finite-difference (FD) synthetic waveform modelling of wave propagation through

a DFM. The aim of this PhD thesis is to:

* Study whether observations of seismic anisotropy from S-waves can constrain

fracture properties. To do this, I investigate the feasibility of using SWS analysis

to invert for fracture density and fracture strike quantitatively for different fracture

properties.

* Calibrate fracture compliance against fracture size from numerical parametrisation
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of discrete fracture modelling.

* Examine under what conditions fractured media become seismically anisotropic.

To do this, I study the development of SWS as a shear wave propagates through a

suite of discrete fractured models.

* Integrate the analysis of scattering characteristics of S-waves for a range of

scattering regimes and study the implication of different S-wave polarisations

with propagation parallel and normal to the fracture planes.

The objectives of this project are threefold: (1) perform a parametric study using full

waveform FD synthetics to model seismic anisotropy in fractured media and examine

the relationship between seismic anisotropy measurements and fracture properties, (2)

examine the heterogeneity-to-anisotropy transition of fractured media over a range

of scattering regimes, encompassing scales where EMM and DFM are valid, and (3)

examine the scattering characteristics of S-waves in fractured media by observing the

widening effect and frequency spectral ratio.

The outcomes from this study will provide quantitative bounds on the feasibility

and errors in inverting for fracture strike and density of discrete fractured media using

an inversion algorithm based on effective medium theory. In addition, provide an

quantitative criteria to distinguish fractured media in transition from heterogeneity to

anisotropy. Furthermore, study the quantitative behaviour of S-wave scattering from

fractured media in relation to the specific S-wave polarisation and orientation.

1.5 Time frame and work content

The research in this PhD project was completed within 4 years, starting in October

2012. Table 1.1 summarises the time frame and work content for this PhD project as a
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reference.

1.6 Thesis structure

There are three principal topics in this thesis: (1) assessing the inversion of fracture

parameters for discrete fractured media, (2) study when heterogeneous fractured media

become seismically anisotropic, and (3) examine the scattering characteristics of S-wave

from discrete fractured media. The first topic involves generating an ensemble of discrete

fractured media with different fracture size, fracture compliance, fracture density and

fracture compliance ratio, where the synthetic data are inverted for fracture properties

using SWS measurements from ensemble of models. The second topic is dedicated

to understanding under what conditions a heterogeneous discrete fractured medium

becomes seismically anisotropic. Finally, the third topic focuses on the scattering

characteristics of S-waves using different analysis techniques. The thesis is composed

of eight chapters, where this chapter discusses the motivation and objectives behind

this PhD thesis. The remainder of the thesis is organized as discussed below and shown

schematically in Figure 1.2.

Chapter 2 reviews the basic principles of the classification of naturally fractured

reservoirs based on the definition of Narr et al. (2006) and provide a general definition

of cracks and fractures used in this study. Also, I review the publications covering the

background theories involved in this study to assess what has been done and provide

motivation for my research.

In Chapter 3, I review the basic theories involved in my thesis. I introduce the

concept of finite-difference modelling of seismic waves and give a detailed explanation

of the algorithm WAVE that I implement to generate the synthetic waveforms. I discuss

the seismic moment tensor as a microseismic source representation in the FD model. I
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review seismic wave propagation in anisotropic media with different symmetry systems,

as well as review effective and discrete fractured media representation. Finally, I present

the workflows used in the shear-wave splitting analysis and the inversion algorithm for

fracture characterisation.

In Chapter 4, I study the feasibility of inverting for fracture properties using S-wave

data. The fractured media are modelled for a broad range of fracture size, normal

and tangential compliances, density and normal to tangential compliance ratio. I use

the concept of seismic anisotropy to image subsurface fractures using an inversion

algorithm based on effective medium theory. The findings from this chapter have been

presented at 76th EAGE Conference and Exhibition 2014 in Yousef et al. (2014).

In Chapter 5, I provide some insight into several fundamental questions: Under what

conditions do fractured media become seismically anisotropic? How do we define the

transition region from scattering to anisotropy? How should we consider this transition

in our quantitative estimates of fracture properties? To answer these questions, I study

the development of SWS since wave propagates through a suite of fractured media

using the DFM approach. I explore the range of fracture properties that result in

effective anisotropy using heterogeneous yet coherent discontinuities by simulating the

interaction of seismic wave with fractures. This chapter is a more detailed expansion of

the work presented in Yousef & Angus (2016).

In Chapter 6, I examine the scattering characteristics of shear-waves for a range of

scattering regimes. I perform qualitative and quantitative analysis of shear-wave coda

energy for a different initial shear-wave polarisations and propagation paths normal

and parallel to the fracture planes. The envelope broadening of shear-waves due to

the scattering is analysed by implementation of root-mean-square envelope analysis.

Next, I carry out differential attenuation analysis of shear-waves to compare my results

with Hudson (1981) and Carter & Kendall (2006). Finally, I investigate the frequency
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content of the dataset.

Chapter 7 discusses the relevance of the results within this thesis and Chapter 8,

summarizes the main conclusions and presents a summary of recommendations for

future research.

The appendices begin with a description of the software and programs adopted in

the thesis. The appendices describe the detail effective elastic constants of fractured

media based on the Hudson’s model as well as Liu’s model. In addition, the inversion

results and their errors for both single and double fracture sets are listed in Appendix

D. Finally, the calculations of excess compliance tensors based on the linear slip EMM

using six different means are written.
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Chapter 2

Natural fractures and their modelling

2.1 Classification of naturally fractured media

Fractures are ubiquitous structural features in the Earth’s upper crust. They are evident

at most outcrops and it is likely that most reservoirs contain some natural fractures

(see Figure 2.1). They are common in conventional reservoirs such as carbonate

and unconventional reservoirs such as tight gas and shale gas (Engelder et al., 2009).

Fractures can affect different aspects of reservoir management, including drilling, well

completion, well placement, data collection and enhanced oil recovery (EOR) strategy.

Therefore, the early recognition of fractures leads to better field development plans

of recoverable reserves: as well, fractures play a critical factor on EOR strategy of

naturally fractured reservoirs.

There are different terminologies for fractures, but in this thesis the terminology I

use is based on Narr et al. (2006) who define a fracture as a discontinuity caused by

14
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(a) Canyon Lake, Texas, USA) (b) tight gas sand (Piceance Basin, Colorado, USA)

(c) shale gas (Marcellus formation at Appalachian
Basin, USA)

Figure 2.1: Typical fracture outcrops in hydrocarbon reservoirs. Figure from Liu & Martinez
(2012).

brittle failure due to deformation or physical diagenesis. Fracture is a general term that

comprises various natural and induced features including crack, joint, fault and vein

(Narr et al., 2006). There are different fracture types based on the force orientation

during failure, such as joints and faults in fractured sandstones as well as joints, faults

and veins in fractured carbonates. Furthermore, fluid-flow properties vary according

to the type of fractures. Therefore, it is essential to properly classify fracture types

to predict fracture orientation as a whole and therefore planning of optimum drilling

direction.

Joints are natural fractures caused by natural tensile forces and thus are extensional

opening mode cracks. The walls of a joint are pulled away from each other during
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formation (see Figure 2.2). Thus, there is no shearing displacement parallel to the

fracture walls. Due to the lack of shear displacement in the joint formation, joints can be

called cracks or tensile fractures (Van der Pluijm & Marshak, 2005). In stratified rocks,

joints are typically almost normal to layering and commonly confined to boundaries

between stratified layers or discontinuities in rocks. A joint set consists of a collection

of parallel joints approximately equally spaced. Joints can have an impact on fluid flow

in a fractured reservoir, for example joint spacing can influence the effective drainage

of the rock matrix and permeability. Fracture height can influence gravity-induced

drainage from a reservoir, where tall joints are more effective than short joints (Narr

et al., 2006).

Faults, on the other hand, experience some shear failure, where shear displacement

has occurred. Faults can enhance the flow of fluid through rocks, or they can act as

barrier to fluid flow resulting in the compartmentalisation of petroleum reservoirs. Faults

can play paradoxically in fluid flow; depending on their openness and composition

within the fault zone they may either create porous storage or permeable pathway in

reservoir, which influence hydrocarbon accumulation and migration. The orientation of

both joints and faults are controlled mainly by the Earth’s stress field, which varies in

direction and magnitude with location (Nelson, 2001; Narr et al., 2006; Fossen, 2010).

In fact, the orientation of faults depends on the tectonic setting and is less influenced by

bedding, whereas for joints bedding plays a significant role (Narr et al., 2006).

2.1.1 Fracture characterisations

Is is impractical to provide a detailed scan of all fractures within a reservoir. However,

fracture network characterisations can be estimated through a range of measurements.

Fracture characterisation can be examined directly from geological aspects; such as

surface outcrops and well logging observations. Surface outcrop observations can assist
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Figure 2.2: Various modes of fractures: model I is an extensional opening fracture, model II is
a sliding and model III is a tearing fracture. Model II and III are shear movements. Figure is
modified from Liu & Martinez (2012).

in understanding the fracture evolution process which is still with large uncertainty.

In contrast, well-log imaging techniques can provide detailed information of fracture

properties (i.e, fracture orientation, density, bedding, permeability and fluid content)

but has limited sampling of the reservoir volume and is dependent on whether fractures

intersect the borehole wall. The interpretation of logging data is essential to calibrate

seismic cross-well sections as well as characterising the fluid flow behaviour around

wells. Furthermore, logging subsurface exploration is an expensive method as a few

kilometres of depths need to be drilled.

The prediction of naturally fractured reservoir behaviour is difficult due to the

geological complexity and heterogeneity, and also presence of fluid and thereby the

flow-related parameters such as viscosity and temperature. The flow behaviour is

unpredictable in well-based scale observations as the sample volume of fractured

reservoir is smaller than the real representative elemental volume (Liu & Martinez, 2012).

This results from the multi-scale variation of subsurface fractures, from millimetre to

kilometre scale (for detailed descriptions, see Narr et al., 2006; Nelson, 2001; Aguilera,

1998).
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Alternatively, fractures can been characterised indirectly by a variety of geophysical

seismic methods, such as vertical seismic profile (VSP) method, reflection seismic

method, time-lapse surface and microseismic monitoring. Over the last few decades,

seismic methods have developed significantly, in terms of seismic acquisition, process-

ing, analysis and interpretation to aid in characterising fractures. Fractures can lead to

various wave phenomena, such as mode conversions, duplex waves as well as seismic

anisotropy. In this thesis, I examine the induced anisotropy and scattering effects on

shear-wave propagation.

2.2 Modelling fractured media

There are two general approaches to define fracture systems: ”effective medium theories”

(EMTs) or ”effective medium models” (EMMs) and discrete fracture models (DFMs).

In this section, I review the concepts of both EMM and DFM representations of fractured

media.

2.2.1 Effective medium model

The analysis of fracture induced seismic anisotropy has been traditionally performed

based on EMT. In this theory, a heterogeneous medium with a distribution of discrete

fractures (inclusions or other heterogeneous features) is mathematically replaced with

an equivalent homogeneous medium. Done correctly, the homogeneous medium and

the heterogeneous fractured medium have the same elastic properties (Liu & Martinez,

2012). In principle, the EMT approach is valid if the seismic wavelength is much greater

than the scale of fractures: at least ten fractures per wavelength (Hobday & Worthington,

2012).
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Garbin & Knopoff (1973) first discuss the behaviour of wave propagation through

aligned parallel fractures, where they demonstrate the variation of shear-wave polarisa-

tion with direction without using the concept of effective anisotropy. Crampin (1978)

uses the conclusions of Garbin & Knopoff (1973) to measure the seismic elastic con-

stants for a parallel vertically fractured medium. Hudson (1981) derives the overall

anisotropic elastic constants for velocity and attenuation in cracked media with a sparse

distribution of cracks. Although there are several EMT, the model of Hudson (1981) is

the most widely applied EMT in fractured media. I will follow this discussion by intro-

ducing two types of EMT models: (1) the inclusion-based model (e.g., Hudson, 1980,

1981; Chapman et al., 2003), and (2) the slip-interface or displacement-discontinuity

model (e.g., Schoenberg, 1980; Pyrak-Nolte et al., 1990; Schoenberg & Sayers, 1995;

Liu et al., 2000).

2.2.1.1 Hudson’s model

The Hudson (1980, 1981) models predict the effective properties of embedded fractures

with small, thin and penny-shaped ellipsoidal cracks or inclusions in an isotropic

background medium. His model is based on a scattering theory analysis of the mean

wavefield. The effective stiffness matrix is expressed as Mavko et al. (2009),

Ceff
ij = C0

ij + C1
ij + C2

ij, (2.1)

where C0
ij is the isotropic background tensor, and C1

ij and C2
ij are the first- and second-

order corrections, respectively (see Appendix B). Note that in Hudson’s model, the

cracks are assumed to be isolated, thereby there is no connection between cracks. In

addition, it is reported that Hudson’s model is applicable for low crack densities and

small fracture sizes (Cheng, 1993). However, Cheng (1993) suggests a new second-order

equation when the crack density is high and aspect ratio is small.
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In fact, Hudson’s model is applicable for various crack (or inclusion) types: (1)

weak infill inclusion, (2) dry cracks by setting the inclusion volume modulus to zero,

and (3) fluid-saturated cracks by setting the inclusion shear modulus to zero. Although,

Hudson’s model is a high-frequency approximation with respect to fluid flow (i.e.,

cracks are isolated), Mavko et al. (2009) propose using Hudson’s model to model dry

cracks and also using Brown & Korringa (1975) to model saturated rock.

Hudson & Liu (1999) developed the model of Cheng (1993) to describe the overall

fracture interface using the averaging process of Schoenberg & Douma (1988). They

classify the fracture model into three models: model (a) the fracture as a cumulative

planar distribution of small cracks, model (b) represent fractures as a group of contacts,

and model (c) represents fractures as a thin layer of weak solid material with a constant

aperture as shown in Figure 2.3. Model (c) can be assumed as an earlier state of

fracturing, in which, by increasing fluid pressure the fracture surfaces are opened up.

Increasing the effective stress closes the surfaces and is represented by model (b). In

the later stage, further increases in stress renders growing contact surface and thus leads

to model (a).

2.2.1.2 Linear slip model

Schoenberg (1980) proposed the Linear Slip (LS) model as another type of EMT to

model fractured media in which fractures and faults are considered as long interfaces

with negligible thickness, compared to the small dispersed cracks in Hudson’s model.

The LS model describes the displacement discontinuity as an imperfectly bonded

interface between two elastic media (i.e., fracture or fault) while the stress remains

continuous.

The relation between difference in displacement ∆u is assumed to depend on the

traction vector t across the fracture as,
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Figure 2.3: Schematic description of the three fracture models. (a) a plane distribution of small
isolated cracks, (b) a plan distribution of imperfect contacts or rough surface and (c) thin layer
of week material infill. Figure is modified from Hudson & Liu (1999).

∆ui = Zijtj, (2.2)

where Z is the individual fracture compliance (also known as specific compliance)

having dimension length/stress.

The overall effective elastic compliance tensor S of a medium with fractures is given

by Schoenberg & Sayers (1995) as,

εij = (Sbijkl + Sfijkl)σkl, (2.3)

where the average strain ε is related to the average stress σ over a representative volume

V . The Sbijkl and Sfijkl are the compliance of background medium and the excess

compliance caused by the presence of the fractures.
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The additional strain is given by Schoenberg & Sayers (1995) as,

Sfijklσkl =
1

2V

∑
r

∫
Sr

([ui]nj + [uj]ni) dS, (2.4)

where [ui] denotes the ith component of the jump discontinuity in the displacement on

fracture surface Sr. However, by assuming that all fractures are aligned with the fixed

normal n, it is possible to replace each fracture in V by an average fracture having a

surface area S and a linear slip boundary as,

[ui] = Zil σlq nq, (2.5)

where σlq nq is the lth component of the traction on the fracture surface, [ui] is the

average displacement discontinuity on the fracture and the quantities Zil depends on the

interior conditions and infill of the fractures (Liu et al., 2000).

Substituting Equation 2.5 into 2.4, the excess compliance in Equation 2.4 can be

expressed in terms of the fracture compliance tensor Z with components Zij ,

Sfijkl =
Df

4
(Ziknlnj + Zjknlni + Zilnknj + Zjlnkni) , (2.6)

where Df = NfS/V and nl are the components of the local unit normal to the fracture

surface.

For a single set of rotationally invariant fractures with normal n=(1,0,0) direction,

the individual compliance of the fracture can be described by the normal compliance

ZN and the tangential compliance ZT . Therefore, the Equation 2.4 can be rewritten,

Zij = ZNninj + ZT (δij − ninj) = ZT δij + (ZN − ZT )ninj. (2.7)

Then by substitution of Equation 2.7 into Equation 2.6, the excess compliance is
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derived as,

Sfijkl =
Df

4
[ZT (δiknlnj + δjknlni + δilnknj + δjlnkni) + 4(ZN − ZT )ninjnknl] .

(2.8)

However, Sayers & Kachanov (1991) and Sayers (2010) expressed Equation 2.8 in

the following form in order to utilise it to calculate the effective elastic compliance,

Sfijkl =
1

4
[BT (δiknlnj + δjknlni + δilnknj + δjlnkni) + 4(BN −BT )ninjnknl] .

(2.9)

where Df is included in BN and BT .

The excess compliance can be derived in the following form by Schoenberg &

Sayers (1995),

Sfijkl =



BN 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 BT 0

0 0 0 0 0 BT


. (2.10)

Note that for an isotropic background medium with a single set of aligned fractures,

the medium is transversely isotropic (TI) with its symmetry axis normal to the fractures.

The overall effective compliance of a TI medium depends only on two background

elastic parameters, µ and λ (i.e., Lamé parameter), and the two non-negative fracture

compliances ZN and ZT . Unlike BN and BT , which describe the equivalent medium

compliance of a full fracture set and have dimension 1/stress (Pa−1), ZN and ZT are the
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compliances of the individual fractures with dimension length/stress (m/Pa). The ZN,T

and BN,T can be related thorough the following equation

BN,T =
ZN,T
H

, (2.11)

where H is the average fracture spacing in a direction normal to the fracture direction.

Note that the fracture set with different BN,T can have the same ZN,T if their spacing is

appropriately scaled (Worthington, 2008).

2.2.1.3 The linear slip model within finite difference simulation

The LS model can be implemented within the finite-difference (FD) method easily if

fractures and faults are parallel to the FD grid but with some difficulty for arbitrarily

oriented fractures. Coates & Schoenberg (1995) suggest a method to calculate the

elastic compliance matrix of the FD grid intersected by the linear slip interface. Figure

2.4 depicts a fault or fracture with length of ∆l crossing a 2D cell with area ∆A. In the

case of insignificant thickness h, the overall compliance for the fractured cell is given (

e.g., Nichols et al., 1989; Hood, 1991)

S = Sb + Sf = Sb +
∆l

∆A



0 0 0

0 0 0

1 0 0

0 1 0

0 0 1

0 0 0


Z


0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

 , (2.12)
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Figure 2.4: A fault (dashed line) passing through a 2D cell of area ∆A. ∆l is the length of the
fault segment lying within the cell and h is the thickness of the fault (which in the limit goes to
zero). Figure from Coates & Schoenberg (1995).

where Sb is the background compliance matrix, Sf is the excess compliance matrix

caused by the fault or fracture, and
∆l

∆A
is the coefficient used when 2D cells are

considered while
∆a

∆V
is used for 3D cells instead (∆a is the area of the 3D fracture in

the cell and ∆V is the volume of the cell). To extend the expression to the 3D case, ∆l

is replaced by ∆a, and the area ∆A is replaced by the volume ∆V of the cell. Z is a

3×3 fracture characteristic matrix. When the fracture normal is parallel to the X3-axis,

Z is given as (Schoenberg & Muir, 1989),

Z =


ZN 0 0

0 ZT 0

0 0 ZT

 . (2.13)

Therefore the excess compliance matrix is,



Chapter 2. Natural fractures and their modelling 26

Sf =
1

L



0 0 0 0 0 0

0 0 0 0 0 0

0 0 ZN 0 0 0

0 0 0 ZT 0 0

0 0 0 0 ZT 0

0 0 0 0 0 0


, (2.14)

where
1

L
≡ ∆l

∆A
for the 2D case and

1

L
≡ ∆a

∆V
for the 3D case. If the fault or fracture

is not horizontal, the effective compliance is calculated by rotating to the coordinate

system using Bond transformation. For example, when the normal of vertical fracture is

along the X1-axis, the effective compliance matrix is given:

S = Sb +
1

L



ZN 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 ZT 0

0 0 0 0 0 ZT


. (2.15)

Schoenberg’s linear slip theory is more practical for observing the seismic response

of individual fractures than Hudson’s model, in which both predict the overall elastic

properties of a fractured medium (Hou, 2014).

A general explicit expression for various fracture models was proposed by Liu et al.

(2000) based on LS theory as shown in Figure 2.3. Liu et al. (2000) classify the natural

fractures into three models similar to Hudson & Liu (1999) (see Section 2.2.1.1).
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Liu et al. (2000) calculate the overall compliance of a fractured medium which is

associated with the elastic constants of the isotropic host medium (i.e., Lamé parameter)

and different geometrical inclusion variables such as average radius of a fracture, average

radius of welded regions and average fracture aperture. In model (a), the variables

mainly involve the crack density and the two terms U11 and U33 (for more detail see

Appendix C), which can be calculated based on Hudson (1981). A more detailed

derivation of this theory can be found in Appendix C. This model is consistent with

Hudson’s crack theory, where cracks are randomly distributed in a volume. In Model (b)

the fracture density variable is different from the crack density. Furthermore, this model

is suitable for only dry fractures. This model is consistent with the rough surface model

of White (1983). In model (c) the infill is assumed to be weak, so the infill parameters

(two Lamé parameters and viscosity) and the probing wavelet frequency are considered.

This model is in agreement with Backus (1962) for horizontal thin layers. Both models

(a) and (b) can be equivalently replaced by model (c) in which the fracture is modelled

as an equivalent thin layer with constant thickness of weak infill. Model (c) can be used

to represent hydraulic fractures.

In Liu et al. (2000), the fracture density is assumed to be smaller than 0.1, though

resultant estimations of different EMT models claim that the theory may be applicable

for crack density up to 0.5. Moreover, Liu et al. (2000) indicate that, in the three types

of models the assumption of the compliance ratio ZN/ZT ≈ 1 is valid for dry cracks

if the crack Poisson’s ratio ν rages 0.1 6 ν 6 0.25. For liquid-filled cracks, ZN = 0,

therefore ZN/ZT = 0.

2.2.2 Discrete fractured medium

DFM is an approach where fractures are modelled explicitly, incorporating both the

geometry and explicit fracture properties. Since fractures control the flow and transport
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properties within reservoirs (e.g., Dershowitz et al., 2004), modelling fractures as

discrete features allows for a much more direct link between seismic attributes with

fractures and flow parameters. However, modelling fractures as discrete features may

be costly in terms of computational resources (memory and simulation time) as well

as practicalities of constructing deterministic models. Moreover, EMMs are generally

applicable where the size of inclusions are substantially less than the probing seismic

wavelength which is often the case for surface seismic surveys. In contrast, using

numerical analysis of DFM seems to be the only approach to simulate wave propagation

in fractured media without the restriction of the size-to-wavelength ratio (Vlastos et al.,

2003). If the fracture dimensions and spacing are comparable to the seismic wavelength,

the discrete fracture model (DFM) is more appropriate, which is independent of the

fracture size and spacing. This is because, fractures scatter P-waves and S-waves,

leading to a complex seismic signature. This effect is dependent on some conditions as

discussed by Willis et al. (2006): (1) the orientation of source-receiver pairs relative to

the fracture orientation, (2) the fracture spacing, (3) the wavelength of seismic wave,

and (4) the compliance of the fractures. Furthermore, DFMs have been implemented in

FD grids using EMT dealing with multiple scattering without having any limitations on

the fracture density.

To understand the seismic response of a discrete fracture, several modelling studies

(e.g., Yi et al., 1998; Groenenboom & Falk, 2000; Nihei et al., 2002; Vlastos et al., 2003;

Willis et al., 2006) and laboratory experiments (e.g., Pyrak-Nolte et al., 1987, 1990; Hsu

& Schoenberg, 1993; Nihei et al., 1999; Pyrak-Nolte & Roy, 2000; Xian et al., 2001)

have been performed. These studies have significantly illustrated wave propagation

phenomena developed around a single fracture and multiple sets of fractures. The

resultant wave phenomena from these situations are seismic scattering and wave guiding

(Grandi Karam, 2008). Seismic coda waves can reveal valuable information about
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fracture geometry and properties (Vlastos et al., 2003; Willis et al., 2006). Vlastos

et al. (2003) studied the effect of different spatial distributions of fractures with the

same fracture density using the 2D pseudospectral method. They observed that varying

spatial distribution leads to different frequency content in the recorded wavefield which

is consistent with the results of Leary & Abercrombie (1994). In addition, the ratio of

fracture size to wavelength is independent of spatial distribution of fractures. Willis

et al. (2006) propose a scattering index (SI) method to detect the fracture orientation

from 3D field data.

2.3 Fracture compliance

The compliance ratio (ZN/ZT ) plays an important role in the detection of fracture fluid

infill and its properties. A common approach to model ZN and ZT is to assume that the

fracture is represented by penny-shaped voids (e.g., Hudson, 1981; Sayers & Kachanov,

1995; Hudson et al., 1996). In these models ZN/ZT is governed by the fluid filling the

fractures. If the fractures are dry (Sayers & Kachanov, 1995), the compliance can be

estimated simply as,

ZN/ZT = 1− ν/2, (2.16)

where ν is the Poisson’s ratio of the background medium. Since ν is normally in the

range 0.1 ≤ ν ≤ 0.25 for reservoir rocks, ZN/ZT ≈1. Cracks have been referred to as

scalar cracks where ZN/ZT =1.

The presence of fluid in fractures results in an decrease in ZN , while ZT is un-

changed, so ZN/ZT →0 (e.g., Hudson, 1981). However, if fluid can flow between

fractures, or between fracture and the rock matrix, then ZN/ZT can be controlled by the

time that fluid can drain out of the cracks, which is controlled by the fracture and the
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bulk rock permeability as well as fluid viscosity (e.g., Hudson et al., 1996; Chapman

et al., 2003; Baird et al., 2013). If fluid can fully drain out of the cracks, then the cracks

are compliant and ZN/ZT is given by Equation 2.16. If the fluid is viscous, and the

permeability of rock is low, or the frequency of the seismic wave is high enough, then

the fluid will not have sufficient time to escape the fractures. Therefore, liquid will

trapped within the cracks and ZN/ZT →0.

Figure 2.5 and Table 2.1 provide a compilation of published measurements of

ZN/ZT from laboratory and field studies. These studies can be categorised into four

groups: (1) core samples without discrete fractures to image grain-scale discontinuities

(Sayers, 1999; Sayers & Han, 2002; MacBeth & Schuett, 2007; Verdon et al., 2008; An-

gus et al., 2009), (2) representative or synthetic samples with known crack distributions

(Hsu & Schoenberg, 1993; Rathore et al., 1994; Far, 2011), (3) core samples with only

one single large scale fracture (Pyrak-Nolte et al., 1990; Lubbe et al., 2008), and (4)

field scale measurement of a major fracture zone (Hobday & Worthington, 2012).

Verdon et al. (2008) and Angus et al. (2009) inverted ultrasonic measurements of

core samples without fractures in order to determine the compliance of grain-scale

microfractures. Verdon et al. (2008) used a group samples from the Clair reservoir

and found 0.68< ZN/ZT <1.06. Angus et al. (2009) compiled a large body of data

from the literature, and found 0.25< ZN/ZT <1.5. Likewise, Sayers & Han (2002)

utilised ultrasonic measurements performed by Han et al. (1986) on both dry and

water-saturated sandstone samples, finding 0.25< ZN/ZT <3 for the dry samples, and

0.05< ZN/ZT <1.1 for water-saturated. In addition, Sayers (1999) inverted ultrasonic

measurements on dry shale samples performed by Johnston & Christensen (1993), and

on water-saturated shale samples by Hornby et al. (1994) obtaining 0.47< ZN/ZT <0.8

for dry samples, and 0.26< ZN/ZT <0.41 for water- shale samples. In another study,

MacBeth & Schuett (2007) measured ZN/ZT for ultrasonic data for both undamaged
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Table 2.1: Published measurements of ZN/ZT from both laboratory and field studies. Table
from Verdon & Wüstefeld (2013).

Reference Experiment type ZN/ZT

1 Verdon et al. (2008) Dry samples. Ultrasonic measurement on grain-scale
fabrics. Data from Hall et al. (2008)

0.68 - 1.06

2 Angus et al. (2009) Dry samples. Ultrasonic measurement on grain-scale
fabrics. Data collated from a range of literature
sources.

0.25 - 1.5

3(a) Sayers & Han (2002) Dry samples. Ultrasonic measurement on grain-scale
fabrics. Data from Han et al. (1986)

0.25 - 3

3(b) As above, water saturated. 0.05 - 1.1
4(a) Sayers (1999) Dry samples. Ultrasonic measurement on shale sam-

ples. Data from Johnston & Christensen (1993) and
Vernik (1993)

0.47 - 0.8

4(b) As above, water saturated. Data from Hornby et al.
(1994)

0.26 - 0.41

5(a) MacBeth & Schuett (2007) Dry samples. Ultrasonic measurement on grain-scale
fabrics. Undamaged sample.

0 - 0.6

5(b) As above, sample thermally damaged. 0 - 1.2
6(a) Hsu & Schoenberg (1993) Representative medium of compressed perspex plates.

Ultrasonic measurements on dry, unfilled samples.
0.8 - 1.0

6(b) As above, but cracks contain rubber pellet inclusions 0.1
7(a) Far (2011) Representative medium of compressed perspex plates.

Ultrasonic measurements on dry samples.
0.11 - 0.75

7(b) As above, honey saturated. 0.16 - 1.6
8 Rathore et al. (1994) Synthetic sample containing a population of cracks.

Ultrasonic data reanalysed by Hudson et al. (2001)
0.46

9(a) Pyrak-Nolte et al. (1990) Quartz monzonite samples containing a single frac-
ture. Ultrasonic measurements on dry samples.

0.2 - 0.77

9(b) As above, water saturated. 0.04 - 0.48
10(a) Lubbe et al. (2008) Limestone samples cut and reassembled to create a

single fracture. Ultrasonic measurements on dry sam-
ples.

0.2 - 0.55

10(b) As above, honey saturated. 0.02 - 0.05
11 Hobday & Worthington

(2012)
Hammer seismic imaging of outcrop of Caithness Flag-
stone. Water saturated

≤ 0.1
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Figure 2.5: Published values of ZN/ZT from laboratory and field studies. Label number
correspond to the studies listed in Table 1. Figure is modified from Verdon & Wüstefeld (2013).

core and heat damaged core, producing intra/intergranular fractures. They shown that

for the initial sample before heating 0< ZN/ZT <0.6, while for the sample after heating

0< ZN/ZT <1.2. MacBeth & Schuett (2007) noted that pre-existing microfractures

were diagenetically infilled, while the heat induced microcracks had smoother faces and

were unfilled.

Hsu & Schoenberg (1993) in a major experiment, proposed representative sam-

ples roughened with perspex plates to create samples containing discontinuities. In

these samples the fracture geometry, distribution and properties could be well con-

strained. Therefore, these properties could be attributed directly by observations. Hsu &

Schoenberg (1993) examined their samples with ultrasonic measurements, achieving
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0.8< ZN/ZT <1 for dry samples, while for samples filled with honey ZN/ZT decrease

to 0.1. In a similar approach, Far (2011) created a representative sample of compressed

perspex plates. Far’s finding showed that ZN/ZT ranged between 0.11< ZN/ZT <0.75

for unfilled samples. Far (2011) also revealed that when the the samples of perspex

plates whose discontinuities were filled with rubber pellets led to an increase in ZN/ZT

as high as 1.6.

In a different approach, Rathore et al. (1994) created a synthetic fractured rock in

which the crack distributions were known. Ultrasonic measurements of P- and S-waves

were measured at different angles to the fracture set. Although Rathore et al. (1994)

did not estimate ZN/ZT , Hudson et al. (2001) used the frequency-dependent model of

Hudson et al. (1996) to fit the results of Rathore et al. (1994).

Pyrak-Nolte et al. (1990) measured the compliance of a core sample of quartz

monzonite with a single fracture. Unlike earlier mentioned studies (i.e., grain-scale),

the sample of Pyrak-Nolte et al. (1990) represented a large scale fracture in the rock.

For dry samples Pyrak-Nolte et al. (1990) found 0.20< ZN/ZT <0.77, while for water-

saturated samples the compliance ratio decreased to 0.04< ZN/ZT <0.48. Likewise,

Lubbe et al. (2008) cut a limestone core to provide a representative sample with one

fracture and found 0.20< ZN/ZT <0.55 for dry samples while for honey saturated

sample a significant reduction to 0.02< ZN/ZT <0.05.

Interestingly, all previous laboratory measurements were limited to centimetre-scale,

so there was a lack of upscaling in the ZN/ZT measurements. However, Hobday &

Worthington (2012) performed a field scale of measure ZN/ZT . They used a hammer

seismic to estimate ZN/ZT of a water-saturated outcrop of Upper Caithness Flagstone,

revealing that ZN/ZT ≤0.1.

Recently, Verdon & Wüstefeld (2013) developed a method to invert SWS measure-

ments obtained from the microseismic Cotton Valley data with fracture length scales of
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0.5 to 10 m. Verdon & Wüstefeld (2013) found that the effective compliance ratio was

BN/BT = 0.74 ±0.4.

In addition to knowing the ZN/ZT values, the choice of fracture compliance is a

key step in the seismic modelling of fractured media. Figure 2.6 plots a compilation of

laboratory and field estimation of dynamic fracture compliance (as explained earlier)

against fracture length scale. Apparently, there is lack of upscaled measurements

between 10 and 100 m fracture length.

Figure 2.6: Fracture compliance as a function of fracture length scale. Grey is the compilation
of laboratory and field data by Worthington (2008). Black bars are data from Far (2011). Red is
data from Verdon & Wüstefeld (2013). Figure is modified from Worthington (2008).
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2.4 Summary

Fracture is a general term that comprises various natural and induced features including,

cracks, joints, faults and veins. Naturally occurring fractures are ubiquitous structural

features in the Earth’s crust, especially in most hydrocarbon reservoirs. So knowledge of

their orientation and density is important to increase production rates. Although fracture

network characterisations can be understood through various direct measurements,

seismic methods are indirect approaches in which seismic waves travelling through

fractures are affected due to the fractures’ mechanical properties such as compliance

and fluid saturation, and by geometrical properties as well.

There are two general approaches to define fracture systems: effective medium

models” models (EMMs) and discrete fracture models (DFMs). So, in this section I

reviewed the different theories of EMM in fractured media involved in this study.

The EMT can be categorised into two types of models: inclusion-based model (e.g.,

Hudson, 1980, 1981; Chapman et al., 2003), and the displacement-discontinuity model

(e.g., Schoenberg, 1980; Pyrak-Nolte et al., 1990; Schoenberg & Sayers, 1995; Liu

et al., 2000).

Hudson’s model includes some assumptions and limitations in which fractures are

penny-shaped with small aspect ratio and a small fracture density. Though Hudson’s

model estimates frequency-independent behaviour of fractured models, the model of

Chapman et al. (2003) considers frequency-dependent behaviour based on squirt-flow

mechanism. In addition, Chapman’s model can treat the effect of different scales

of fractures. Schoenberg (1980) proposed the LS model as another type of EMT to

model fractured media. The LS model describes the displacement discontinuity at

an imperfectly bonded interface between two elastic media while the stress remains

continuous.

Alternatively, DFM is an approach where fractures are modelled explicitly. Mod-
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elling fractures as discrete features allow for a much more direct link between seismic

attributes with fractures and flow parameters. Unlike EMM, DFM seems to be the only

way to simulate wave propagation in the fractured media without the restriction of the

size-to-wavelength ratio.

The choice of fracture compliance values is an essential step in the seismic modelling

of fractured media. The compilation of laboratory and field research reveals that there

is linear relation between fracture compliance and fracture size. However, there is lack

of estimation for the fractures with lengths from a few meters to a hundred meters. This

is likely the range that most fractures in reservoirs occur. Therefore, it is essential to

understand how fracture compliance might vary over this range and whether they are

detectable using seismic techniques. So in this thesis I intend to fill the gap of study for

this range of fracture sizes by modelling synthetic discrete fractured media.



Chapter 3

Theory and methodology

3.1 Introduction

In this Chapter, I provide an overview of the basic theory involved in my thesis. First

I present the concept of finite-difference (FD) modelling of seismic waves and detail

the algorithm WAVE that I use to create the synthetic waveforms. I discuss the seismic

moment tensor representation of the seismic source, which is used to describe the

microseismic source in the FD models. Next I discuss wave propagation in anisotropic

media, anisotropy symmetry systems, and equivalent and discrete fractured media

representation. Finally, I present the method of shear-wave splitting analysis and the

inversion algorithm for fracture characterisation.

37
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3.2 Finite-difference method (FD)

Seismic numerical modelling methods are valuable approaches to simulate wave propa-

gation within the Earth. Seismic numerical modelling can be categorised within three

end-member approaches: finite-difference, integral-equation and ray-tracing methods.

The FD method is a grid based method often referred to as a full-wave equation method

since the method does not make any restrictions about the wave solution. The FD

method can be very accurate if the model is sufficiently discretised in space and in time.

However, compared to other techniques, such as analytical solutions and ray-tracing, the

FD method can be computationally intensive due to the fine grid sampling required (e.g.,

Carcione et al., 2002). The FD method is widely used to simulate the whole seismic

wavefield including direct waves, primary and multiple reflected waves, refracted waves,

surface waves, diffracted waves and converted waves. It should be noted that there are

other methods that require the discretization of the time and space variables, such as the

pseudospectral (PS) (e.g., Kosloff & Baysal, 1982) and the finite-element (FE) methods

(e.g., Lysmer & Drake, 1972; Schlue, 1979), which yield highly accurate full waveform

synthetics.

There are two types of schemes used in the FD method: (1) the explicit scheme,

where the wavefield at any grid point can be propagated to the next time step using

an explicit FD formulation that uses only values of wavefield at previous time steps;

and (2) the implicit scheme (e.g., Emerman et al., 1982 and Mufti, 1985), where the

wavefield at a specific time step is calculated simultaneously at all grid points based on

the values for the current and past time steps, and requires implementing the inverse of

a system matrix (Moczo et al., 2007).

For a 2D medium, Virieux (1986) represents the velocity-stress formulation for the

second-order hyperbolic system as
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where σij denotes the stress tensor, ux and uz denote the displacement components, ρ

denotes the bulk density, λ(x, z) and µ(x, z) denote the elastic moduli (Lamé param-

eters), and fx and fz represent the applied force. Equation 3.1 can be rewritten as a

system of first-order hyperbolic equations
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where vx and vz denote the velocity components.

The general concept of the FD method is to numerically approximate the partial

derivatives using finite difference stencils typically derived using Taylor series expan-

sions (e.g., Tannehill et al., 1997) or more advanced approaches such as pseudospectral

methods (e.g., Fornberg, 1998). The explicit and implicit FD schemes differ in terms
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of how the time derivatives are approximated. For the explicit method, the wavefield

at a specific time is computed from the data at previous time steps. For the implicit

method, the wavefield is computed from the wavefield at previous and future values.

The implicit scheme requires more computational effort due to the need for inverting a

large system matrix. However, the implicit method is unconditionally stable unlike the

explicit method. In general, explicit schemes can be computationally accurate if the time

step is restricted by the stability criteria (Carcione et al., 2002). The stability criterion is

governed by the maximum phase velocity cmax and the minimum grid spacing dxmin,

dt 6
2

π
√
n

(
dxmin
cmax

)
, (3.3)

where n stands for n-D space. To limit numerical dispersion there is a constraint on the

grid spacing

dx6
cmin

2fmax
, (3.4)

where fmax is the maximum source frequency and cmin is the minimum phase velocity

(e.g., Carcione et al., 2002). Equation 3.4 implies that the grid spacing should not be

larger than the smallest wavelength in order to avoid aliasing.

3.3 WAVE

In this thesis I use the FD program WAVE (Napier & Malan, 1997; Hildyard, 2007) that

is based on an explicit FD technique. WAVE is a staggered grid, fourth-order accurate

in space and second-order accurate in time FD algorithm for isotropic 2D and 3D elastic

media. WAVE was developed specifically for modelling wave propagation through

fractures within an isotropic background medium and has been shown to accurately

model the seismic response due to fractures in mining and radioactive waste storage
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environments (Hildyard & Young, 2002; Hildyard, 2007). The model is discretised into

an orthogonal grid with each discrete node containing component dependent properties

such as stress and velocity, where fractures (and openings) are modelled as zero-width

discontinuities (Hildyard, 2007). A summary of some previous applications of the

program is given in Napier & Malan (1997), while a technical overview can be found in

Hildyard et al. (1995). WAVE is capable of accurately modelling diffraction, refraction,

reflection and transmission of stress waves (Daehnke et al., 1996).

WAVE is being used in this thesis because it is computationally efficient in both

two-dimensions (2D) and three-dimensions (3D). Specifically, WAVE is unique in

that it models fractures as explicit discontinuities and so does not require making

the assumption of an effective medium. Although WAVE is limited in terms of the

geometries of the fractures that can be modelled (i.e., the fractures must be parallel to

the primary grid axes, and thereby are orthogonal in the case of multiple fracture sets), it

allows studying the influence of fracture properties on the wavefield. The most common

approach for modelling the seismic behaviour of fractured rock is to use an effective

medium representation of the fracture network. While much has been achieved with

these methods, there are limitations such as the applicable frequency range, the types of

fracture properties which can be studied, and non-uniform influences for example due

to the stress-field (e.g., Hildyard, 2007). The alternative approach is to model fracture

networks as discrete elements that can encapsulate individual fracture behaviour. The

discrete fracture representation means that we do not need to make any assumptions

about the model, enabling the solution to simulate more accurately the interaction of

seismic waves with fractures systems. Using a discrete fracture representation allows

models to capture the influence of the stress state, as well as specific fracture properties

such as fracture size, filling and compliance.

WAVE as well as other FD algorithms solve the first-order equations on a staggered
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grid (e.g., Madariaga, 1976; Aki & Richards, 1980; Virieux, 1986) due to computational

efficiency. The explicit solutions can be divided into two main types: solution to

the first-order hyperbolic wave equation (e.g., Madariaga, 1976; Virieux, 1986 (see

Equation 3.2) and solution to the second order hyperbolic wave equation (e.g, Kelly

et al., 1976; Virieux, 1986 (see Equation 3.1).

WAVE uses a staggered mesh with central differences (e.g., Madariaga, 1976; Aki &

Richards, 1980; Graves, 1996). In the central difference formulation two values are used

at half distance from nodal points where the value at the nodal point will be calculated

from. The velocity and stress variables in WAVE are obtained by consecutively solving

the constitutive equation for stresses from velocity, and the equation of the motion

for velocities from stress values (Hildyard, 2001). Hence velocities and stresses are

staggered in time by ∆t/2, where ∆t is the time step between samples in the staggered

grid. Figure 3.1 shows the positions of the grid variables in the 2D and 3D WAVE

grids. Figure 3.2 depicts part of the 2D staggered grid for some unit cells in WAVE.

Velocities are calculated from the equation of motion (Newton’s law) and stresses from

the constitutive equation (Hooke’s law).

3.4 Explicit fracture models

The discrete fracture model is generated independently and then embedded within the

isotropic medium (Hildyard, 2001). The concept of fracturing is based on collection of

flat open fractures that are randomly distributed in a prescribed fracture volume. The

crack density ε is related to fracture size per unit of volume and is defined by O’Connell

& Budiansky (1974) as,

ε =
2N

πV
〈A

2

P
〉, (3.5)
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Figure 3.1: 2D and 3D unit cell in WAVE staggered grid, showing the position of the velocity
and stress components distributed around the cell. Figure from Hildyard (2001).

Figure 3.2: Part of the 2D staggered grid in WAVE. Figure from Hildyard (2001).
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where N is the number of fractures within the medium volume V , A the crack area, P

the crack perimeter and brackets denote an average. This is a dimensionless definition

of fracture density. For circular cracks with radius a, crack density is defined

ε =
N

V

∑
a3. (3.6)

In WAVE cracks are defined,

ε =
1

πV

∑ A2B2

A+B
, (3.7)

where A and B are the crack side lengths. Based on Equations 3.5-3.7, the same crack

density for the different scale of crack length size can be obtained.

The program CRACKGN generates a random crack realisation that can be imple-

mented in WAVE. It renders three orthogonal directions of cracks with a specified crack

density for three axes. Cracks are distributed linearly in the specified fracture volume

with fracture intersections being avoided. This limits the generation of cracks for small

size fractures with high fracture density that can skew the random distribution for high

density fractures (Hildyard, 2001).

3.5 Moment Tensor (MT)

The physics of the seismic source and its description have been studied significantly

in global seismology. The source within the solid Earth can be categorised into shear

sources and volumetric sources. A shear or faulting source is associated with slip across

a fracture plane while a volumetric source is a sudden expansion or contraction through-

out a volumetric source region. The seismic source can be described mathematically

in two different ways: in terms of a body force imposed to a certain element of the
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medium containing the source or by a discontinuity in displacement or strain across a

rupture or fault (e.g., across a fault plane or surface of volumetric source).

Aki & Richards (2002) discuss the equivalence of the body-force and displacement

discontinuity concept. Equivalent forces are the typical approach to approximate the

seismic source, that can be incorporated into the linear wave equation by neglecting

non-linear effects in the near source region (Aki & Richards, 2002). Equivalent forces

generate a displacement discontinuity at the Earth’s surface that is similar to those

generated by a fault (e.g., earthquake) source or volumetric source. The seismic

source or point source is small compared to the seismic wavelength and is described

by its magnitude (M0) and fault plane solution (e.g., Honda, 1962; Herrmann, 1975).

The seismic moment tensor (MT) is the most common approach used to describe

the seismic point source (e.g., Kanamori & Given, 1982). Gilbert (1971) introduced

the seismic moment tensor to evaluate displacements at the free surface, where the

displacement could be formulated as a sum of moment tensor elements convolved with

the corresponding Green’s function. The Green’s function is the impulse response of the

medium between source and receiver (Jost & Herrmann, 1989). The Green’s function

depends on the source and receiver coordinates, the Earth or velocity model, and is

a tensor (Aki and Richards, 1980). Gilbert (1973) first uses the linearity between the

moment tensor and Green’s function elements to calculate moment tensor elements

from observations (moment tensor inversion).

Figure 3.3 describes how a point source can be described by a system of double cou-

ples Mij , which consist of nine components of the moment tensor. Based on symmetry,

Mij = Mji, and so the nine components reduce to six independent components. Based

on Aki & Richards (2002) the MT for a double couple mechanism is defined

Mij = µA(uinj + ujni), (3.8)
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where µ is shear modulus, A is the area of the fault, ui indicates the ith slip vector

component on the fault surface and ni indicates the ith component of the normal vector

to the fault plane. The vectors u and v can be determined from the strike Φ, dip Υ and

slip Λ of the fault (Aki & Richards, 2002)

u = ū(cosΛ cos Φ + cos Υ sin Λ sin Φ)ex

+ū(cos Λ sin Φ− cos Υ sin Λ cos Φ)ey (3.9)

−ū(sin Υ sin Λ)ez,

where ū is the mean displacement on the fault plane and ex is the unit X-component of

the X-axis. The fault normal v is

v = − sin Υ sin Φex + sin Υ cos Φey − cos Υez . (3.10)

The strike Φ is measured clockwise from North (0 6 Φ 6 2π), the dip Υ is measured

down from horizontal (0 6 Υ 6 π/2) and slip (or rake) Λ is measured in the fault plane

with the angle between direction of strike and slip (−π 6 Λ 6 π). These parameters

are depicted in Figure 3.4.

The scalar seismic moment can be obtained

M0 = µAū. (3.11)

The Cartesian components of the symmetric moment M0, based on Equation 3.8-3.11

can be defined in terms of strike, dip and slip angles

Mxx = −M0(sin Υ cos Λ sin 2Φ + sin 2Υ sin Λ sin2 Φ)
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Myy = M0(sin Υ cos Λ sin 2Φ− sin 2Υ sin Λ cos2 Φ)

Mzz = M0(sin 2Υ sin Λ) (3.12)

Mxy = M0(sin Υ cos Λ cos 2Φ + 0.5 sin 2Υ sin Λ sin 2Φ)

Mxz = −M0(cos Υ cos Λ cos Φ + cos 2Υ sin Λ sin Φ)

Myz = −M0(cos Υ cos Λ sin Φ− cos 2Υ sin Λ cos Φ).

Figure 3.3: The nine possible couples that describe a seismic point source. In this notation
(Mij), i and j are the force direction and the axis along which the force acts, respectively. Figure
is modified from Aki & Richards (2002).

The equivalent forces and source mechanism can be determined from the eigenvalues

and eigenvectors of the moment tensor (Jost & Herrmann, 1989). If the sum is positive,

the source is explosive type, whereas it is implosive if the sum is negative. Since the
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Figure 3.4: Definition of fault-plane parameters in the Cartesian coordinates (x,y,z). The
strike Φ is measured clockwise from North (0 6 Φ 6 2π), the dip Υ is measured down from
horizontal (0 6 Υ 6 π/2) and slip (or rake) Λ is measured in the fault plane with the angle
between direction of strike and slip (−π 6 Λ 6 π). u and v are the slip vector and fault normal
vector, respectively. Figure is modified from Aki & Richards (2002).

seismic moment tensor is symmetric and real, Mij can be decomposed in different ways,

such as into isotropic and deviatoric terms. The deviatoric component represents a

double couple source if one eigenvalue equals zero. Otherwise, if none of the eigenvalues

equals zero, the moment tensor can be defined by a major and minor double couple

(Kanamori & Given, 1981), or a double couple and a compensated linear vector dipole

(CLVD) (Knopoff & Randall, 1970). In this thesis the moment tensor I implement is a

pure double couple source. For a pure double couple source, the principal axis (i.e., the

eigenvector) corresponding to the negative eigenvalue is the pressure axis, the principal

axis corresponding to the positive eigenvalue is the tension axis, and the null axis is

associated with the eigenvalue of zero.

Figure 3.5 shows the Cartesian and spherical polar coordinates used for the analysis

of radial and transverse components (i.e., r, θ and φ) of the radiated seismic wavefield

from a seismic source. The P- and S-wave radiation patterns in the far field are given by
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Aki & Richards (2002), respectively

AP = sin 2θ cosϕ r̂

(3.13)

AS = cos 2θ cosϕ θ̂ − cos θ sinϕ ϕ̂,

whereAP is the radial component which is explicitly proportional to (sin 2θ cosϕ r̂), and

AS is the transverse component which is proportional to (cos 2θ cosϕ θ̂− cos θ sinϕ ϕ̂).

It can be seen from Equation 3.13 that the far field displacement terms can be obtained

from the two radiation patterns of a double couple source.

Figure 3.5: Cartesian and spherical polar coordinates for analysis of radial and transverse
components of displacement radiated by a double couple. Figure is modified from Aki &
Richards (2002).

Figure 3.6 shows how the radial (P) wave (Figure 3.6a) and transverse (S) wave (

Figure 3.6b) displacement radiation pattern due to a double couple source, where the ar-

rows at the centre denote the orientation of shear dislocation. In Figure 3.6a the radiation

pattern is proportional to sin 2θ. The plus sign indicates outward direction (compres-
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sional) first motion while the minus sign indicates inward direction (dillational) first

motion of the radial wave (i.e, P-wave). Figure 3.6b depicts the pattern of displacement

due to the a double couple source which is proportional to cos 2θ cosϕ θ̂ − cos θ sinϕ.

Again the central arrows depict the orientations of shear dislocation and arrows on each

lope indicates the direction of the shear-wave displacement.

        

(a) (b)

Figure 3.6: Radiation pattern of radial (a) and transverse (b) component of displacement due to
the a double couple source mechanism. Figure from Aki & Richards (2002).

3.6 Seismic anisotropy

Seismic anisotropy is defined to be the dependence of seismic velocity upon propagation

direction or angle (Thomsen, 2002). The angle refers to the polar angle (from vertical) as

well as azimuthal angle. Seismic anisotropy has become a powerful tool in geophysics

with vast applications from mantle convection, plate boundaries and lithospheric struc-

ture (e.g., Silver, 1996; Nataf et al., 1984) to hydrocarbon exploration and extraction

(e.g., Kendall et al., 2007; Verdon et al., 2011a) and monitoring of CO2 storage sites

(e.g., Verdon et al., 2011b). There are several causes of seismic anisotropy in the earth
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but in the upper crust it can be influenced by two main factors; structural anisotropy

and stress-related anisotropy. Seismic anisotropy can result from various causes: (1)

intrinsic anisotropy due to preferentially aligned minerals, crystals and grains (e.g.,

Valcke et al., 2006; Hall et al., 2008), (2) preferred orientation of rock fabric, cracks,

fractures and joints (e.g., Hudson, 1981), (3) rock layering in sedimentary rocks (e.g.,

Backus, 1962), (4) direct stress-induced anisotropy (e.g., Nur & Simmons, 1969 and

Crampin & Zatsepin, 1997). In hydrocarbon exploration, seismic velocity (or travel

time) is one of the key seismic attributes, and in the presence of the seismic anisotropy

shows directional dependence. There are other key seismic attributes, however, such as

amplitude and seismic polarization.

The concept of anisotropy is closely related to geophysical concept of heterogeneity.

A medium is anisotropic when its properties change with propagation direction at a

specific location, whereas the medium is heterogeneous if its properties change with

location for a specific direction (Winterstein, 1990). The concept of anisotropy and

heterogeneity are scale dependent. It means that when the wavelength is larger than the

scale length of the heterogeneity, the medium may behave as an anisotropic medium,

whereas if the seismic wavelength is comparable to or less than the scale length of the

heterogeneity, the medium can be treated as a heterogeneous medium. For instance, on

the larger scale shales appear homogeneous, but on the microscopic scale, shales are

heterogeneous (Figure 3.7).

Seismic anisotropy in the Earth can be complicated due to the numerous sources of

anisotropy. However, analysis of seismic anisotropy can still yield useful characterisa-

tion of the source of anisotropy. In sedimentary rocks, there are two common types of

seismic anisotropy: transverse isotropy (TI) with vertical symmetry axis (VTI), which

is observed in most sedimentary rocks due to the presence of horizontal layering, and

horizontal transverse isotropy (HTI) which is observed in many fractured reservoirs.
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Figure 3.7: Scanning electron microphotograph of a shale. Shale (platey particles) in the small
scale appears a heterogeneous medium. Figure from Hornby et al. (1994).

VTI and HTI are also referred to as polar anisotropy and azimuthal anisotropy. In

general, VTI is related to layering or bedding, whereas HTI is related to vertically

oriented fracture or joint sets.

Fractures or small cracks in hydrocarbon reservoirs can have preferred orientations

due to a variety of stress-induced processes, such as subcritical crack growth leading

azimuthal anisotropy (Crampin, 1981; Crampin et al., 1983). Typically, fracture-induced

anisotropy is equivalent to HTI media if the scale of the fractures or cracks are much

smaller than the seismic wavelength of the probing wave. Studies have shown that the

response of waves is sensitive to fracture properties, such as fracture orientation and

fracture density, which can be used to as an indirect means to characterise fractured

reservoirs (e.g., Liu & Gao, 2013; Tsvankin & Grechka, 2011). The strength of

anisotropy is proportional to the crack density (ε) of the fracture system.

A fractured medium can be dry or fluid saturated, which can influence the overall

stiffness of the medium. Thus, it is necessary to understand the effect of fracture

properties, such as fracture infill, on the overall stiffness of the medium. The aligned



Chapter 3. Theory and methodology 53

fractures exhibit effective anisotropy in the limit of low frequency waves (i.e, long-

wavelength approximation, LWA) where the fluid flows between fractures and pore

space. This happens due to the equilibration of pore fluid pressure with dynamic pressure

changes caused by the transient wave that sometimes result in anisotropy frequency

dependence (Zatsepin & Crampin, 1997; Liu et al., 2003; Maultzsch et al., 2003; Baird

et al., 2014; Galvin & Gurevich, 2015).

There are a number of attributes that can be used to characterise fractured reservoirs:

P-to-S mode conversion where the S-wave splitting of the upgoing S-wave is valid for

the analysis of fractured medium (e.g., Rüger, 1997; Qian et al., 2007; Far & Hardage,

2016). Lynn (2004) use P-wave data because it is easier and cheaper to acquire with high

resolution than S-wave and converted PS-wave methods. Using P-wave seismic attribute

includes various attributes such as amplitude, velocity, travel time and AVO/AVOA

gradient are observed to be related to the fracture size (e.g., Vlastos et al., 2003), density

(e.g., Pearce, 2003; Vlastos et al., 2003, fracture spacing (Willis et al., 2004a) and

orientation (e.g., Pérez et al., 1999; Vlastos et al., 2003).

3.6.1 Hooke’s law for isotropic media

In an isotropic elastic medium the stress and strain are linearly related by Hooke’s law

using two constants (i.e., Lamé parameters λ and µ),

σij = λδijεkk + 2µεij (3.14)

or alternatively in terms of Young’s modulus E and Poisson’s ratio ν (Mavko et al.,

2009) in the following form

εij =
1

E
[(1 + ν)σij − νδijσkk], (3.15)
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where σij is the stress tensor, σkk is the sum of 3 principal stresses, εij is the strain

tensor, and δij is the Kronecker delta function.

3.6.2 Hooke’s law for general anisotropic media

In general anisotropic elastic media the relationship between stress σij and strain εij is

given through a fourth-rank stiffness or compliance tensor as follows

σij = Cijklεkl, (3.16)

or alternatively:

εij = Sijklσkl, (3.17)

where Cijkl is the stiffness tensor and Sijkl is the compliance tensor. Both matrices have

the subscribe values i = 1, 2, 3 and j = 1, 2, 3.

There are several different symmetry systems of anisotropic media, which may

result in different physical properties and wave phenomena. The elastic tensor Cijkl (or

its inverse, S = C−1) is 3× 3× 3× 3 tensor (i.e, 81 components in total). However,

due to the symmetry of stress and strain tensors, the independent components reduce

from 81 to 21 components. The subscripts in the stiffness and compliance tensors can

be simplified to J and K by using Voigt notation,

ij(kl) 11 22 33 23 = 32 13 = 31 12 = 21

↓ ↓ ↓ ↓ ↓ ↓ ↓

J(K) 1 2 3 4 5 6

. (3.18)

Therefore the strain and stress components will be as,
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

ε1

ε2

ε3

ε4

ε5

ε6


=



ε11

ε22

ε33

2ε23

2ε13

2ε12


(3.19)



σ1

σ2

σ3

σ4

σ5

σ6


=



σ11

σ22

σ33

σ23

σ13

σ12


(3.20)

Finally, the Voigt convention of the elastic stiffness is formed as

C =



C11 C12 C13 C14 C15 C16

C12 C22 C23 C24 C25 C26

C13 C23 C33 C34 C35 C36

C14 C24 C34 C44 C45 C46

C15 C25 C35 C45 C55 C56

C16 C26 C36 C46 C56 C66


. (3.21)

In addition to the symmetry system (i.e, the symmetry of elastic properties) of a

medium, there is another concept of symmetry which is the symmetry of the constituents

(e.g, solid grains) of a medium (Winterstein, 1990). In fact, the symmetry system

of a medium is always as high as or higher than the symmetry of its constituents.

Furthermore, by increasing the symmetries, fewer independent parameters are needed

to characterise the media. Winterstein (1990) introduced symmetry systems by using

sets of parallel planar cracks into a homogeneous isotropic rock. Hexagonal symmetry

system is related to a medium with one set of vertical or horizontal fractures. A

medium with hexagonal symmetry system is most commonly considered in exploration

geophysics. For such media, the elastic stiffness tensor has the following form
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CV TI =



C11 C11 − 2C66 C13 0 0 0

C11 − 2C66 C11 C13 0 0 0

C13 C13 C33 0 0 0

0 0 0 C55 0 0

0 0 0 0 C55 0

0 0 0 0 0 C66


(3.22)

CHTI =



C11 C13 C13 0 0 0

C13 C33 C33 − 2C44 0 0 0

C13 C33 − 2C44 C33 0 0 0

0 0 0 C44 0 0

0 0 0 0 C55 0

0 0 0 0 0 C55


. (3.23)

Another symmetry system considered in this thesis is orthorhombic symmetry which

is formed by embedding two sets of orthogonal and vertical fractures in an isotropic

medium. However, there are other forms of orthorhombic symmetry system; one set

of fractures embedded in a VTI background medium or even two sets of vertical and

orthogonal fractures in a VTI background medium (Bakulin et al., 2000). The elastic

stiffness of an orthorhombic symmetry medium is



Chapter 3. Theory and methodology 57

COrth =



C11 C12 C13 0 0 0

C12 C22 C23 0 0 0

C13 C23 C33 0 0 0

0 0 0 C44 0 0

0 0 0 0 C55 0

0 0 0 0 0 C66


. (3.24)

In comparison to the TI or hexagonal symmetry system (with five independent elastic

stiffness constants), the orthorhombic symmetry system medium has nine independent

elastic stiffness constants.

Thomsen (1986) reveals that for sedimentary rock, anisotropy is weak. So, to

simplify the description of weak anisotropic, Thomsen (1986) introduced an alternative

notation for VTI media in terms of seismic velocities and three anisotropic parameters

as

VP0 =

√
c33
ρ
, ε =

C11 − C33

2C33

,

VS0 =

√
C44

ρ
, γ =

C66 − C44

2C44

, (3.25)

δ =
(C13 + C44)

2 − (C33 − C44)
2

2C33(C33 − C44)
,

where VP0 and VS0 are respectively the vertical P- and S-wave velocity, ρ is the bulk

density, ε and γ represent the strength of the P- and S-wave anisotropy, respectively,

and δ represents the P-wavefront ellipticity. In general, for most sedimentary rocks that

are weakly anisotropic, the anisotropy parameters ε, γ and δ are less than 0.2. If the
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anisotropic is weak, the quadratic expression above for δ can be simplified (Thomsen,

2002)

δ → δweak =
C13 − C33 + 2C44

C33

. (3.26)

The phase velocity of seismic waves in weakly anisotropic rocks can be defined

(Thomsen, 1986)

VP (θ) = VP0

(
1 + δsin2θcos2θ + εsin4θ

)
,

VSV (θ) = VS0

(
1 +

α2

β2
(ε− δ) sin2θcos2θ

)
, (3.27)

VSH(θ) = VS0
(
1 + γsin2θ

)
,

where VP , VSV and VSH are the phase velocities for the P-, SV- and SH-waves, respec-

tively, and θ is the angle between the wavefront normal and the symmetry axis.

3.7 Shear-wave splitting analysis

3.7.1 Introduction

Seismic anisotropy is manifested in many ways, such as leading to anisotropic veloc-

ity models and amplitude versus offset and azimuth (AVOA) anomalies in reflection

seismology. Shear-wave splitting (SWS) from P-to-S mode converted waves in reflec-

tion seismic data and transmitted S-waves in microseismic data represents the most

unambiguous measure of seismic anisotropy (e.g., Wookey, 2012). When an S-wave
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propagating within an isotropic medium encounters an anisotropic medium, the shear

wave splits into a fast (S1) and a slow (S2) wave component depending on the initial

S-wave polarisation and the allowable polarisations defined by the anisotropic elasticity

tensor (e.g., Angus et al., 2004). SWS measures the associated S1 polarisation direction

(φ) and the delay time (δt) between the S1 and the S2 waves (e.g., Shearer, 2009). This

delay time is proportional to the length of the ray path inside the anisotropic material

and the strength of the seismic anisotropy (e.g., Wuestefeld et al., 2011). Figure 3.8

shows a schematic of SWS in the two common TI symmetry models, HTI and VTI

media. Depending on the initial polarisation of the incident S-wave, the medium can

split the incident S-wave into the S1 and S2 waves. There is no splitting where the initial

S-wave polarisation is parallel to the fracture plane or perpendicular to the fracture

plane (see Figure 3.8).

(a) (b)

Figure 3.8: Shear-wave splitting in two common TI anisotropy: (a) HTI and (b) VTI. Shear-
wave splitting occurs for non-parallel rays to the symmetry axis. Specific combination of
symmetry axis and initial polarisation leads null splitting results. Figure from Wuestefeld et al.
(2010).

Significant contributions to our understanding of the Earth’s subsurface developed

through the analysis of SWS; seismic anisotropy was observed to be widespread within

the crust (e.g., Crampin et al., 1980) and upper mantle (e.g., Ando & Ishikawa, 1980).

Within the crust, seismic anisotropy measured from shear-waves has identified the
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presence of coherent and often critically stressed fractures (e.g., Crampin, 1978; Hudson,

1981; Crampin, 1984; Crampin & Peacock, 2005).

Historically, SWS methods involved manual analysis of waveforms (e.g., Buch-

binder, 1985; Booth et al., 1985a; Booth & Crampin, 1985b) and so were subjective

and time consuming, especially for large datasets which were becoming increasingly

common (e.g., Aster et al., 1990; Ryall & Savage, 1974). Shih et al. (1989) and Savage

et al. (1989) developed an objective and automated approach for calculating SWS in

which the aspect ratio of particle motion is projected onto an orthogonal plane, where

the fast polarisation direction is estimated by maximising the aspect ratio as a function of

strike, and the delay time is estimated by finding the maximum correlation between the

S1 and S2 waves (e.g., Shih et al., 1989). Although additional enhancements were also

proposed by Aster et al. (1990), there were several limitations with this approach. For

example, these methods did not automatically select the analytical window for SWS and

only used a small subset of the waveform (Teanby et al., 2004a). The subjective window

choice gave widely varying results for even slightly different window choices and the

use of limited waveform information caused the SWS calculations more susceptible to

noise (Teanby et al., 2004a). The issue of using the whole waveform instead of a small

subset was solved by Silver & Chan (1991) and was later expanded on by Teanby et al.

(2004a) to enable selecting the analytical window objectively and automatically.

In this study, I use the SHEar-wave Birefringence Analysis (SHEBA) algorithm

developed by Teanby et al. (2004a) to conduct the analysis of SWS. In SWS analysis, the

δt is used to characterise the strength of anisotropy along the raypath. The δt parameter

is normalised by the path length to estimate the percentage velocity anisotropy δVS

(i.e., difference between S1 and S2 velocity). The δVS parameter is computed using the

following relationship: 100× (VS1 − VS2)/((VS1 + VS2)/2).
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3.7.2 Methodology

3.7.2.1 Rotation to the ray frame and filtering

In microseismic monitoring, the rays are not always subvertical and so the S-wave

energy will not be predominantly on the horizontal components. Thus, to improve the

clarity of S-waves and also to have more accurate shear-wave splitting measurements,

the seismic data in the acquisition frame (i.e., geographical coordinate system) are

rotated to the ray frame coordinate (L-SH-SV). The L-axis is the ray direction which

contains the P-wave, and SH- and SV-axes contain the S-waves which are normal to the

L-axis. Rotation to the ray frame is performed using the P-wave particle motion to point

out the direction of the ray, using the protate algorithm presented by Al-Anboori (2005).

The P-wave particle motion is parallel or near parallel to the ray direction in isotropic

or weakly anisotropic media (Al-Harrasi, 2010). Next, a P-wave window is selected

manually, whose length varies from one to many cycles dependent on the separation

of the P- and S-wave. The rotation angles in the horizontal and vertical planes are

estimated based on the least absolute residuals (L1 norm) perpendicular to the line. The

uncertainty of this method is measured by a bootstrap technique (Press, 1989). For cases

where the P-wave can not be picked, or the rotation is not acceptable, the data are rotated

using the azimuth and inclination assuming a straight source-receiver path. Figure 3.9

depicts the rotation from the geographic to ray frame coordinate. After rotation the data

are filtered using a Butterworth bandpass filter between 10 Hz and 1500 Hz, which is

the range of the expected frequencies. Since the manual P-wave window picking is a

time consuming process, Al-Harrasi (2010) presents a fixed P-wave window relative to

the P-wave time pick following the construction of the hodograms by looping over the

chosen event.
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Figure 3.9: Rotation from geographic to ray coordinate. (a) Schematic illustrate of rotation.
seismograms before (b) and after (c) rotation to ray frame. Notice the S-wave energy on the SH-
and SV- axes are increased, while the P-wave energy are minimised. P-wave energy increases
on P-axis while s-wave energy is minimised. The part (a) is modified from Al-Harrasi (2010).

3.7.2.2 Cluster analysis

A standard technique for measuring SWS is the method of Silver & Chan (1991). The

technique requires a manual selection of the S-wave window, where the SWS parameters

φ and δt are estimated using a grid search over φ and δt. In fact, if the SWS has occurred,

the S-wave particle motion is elliptical. So, the grid search attempts to linearise the

particle motion which is stable and reliable. An issue encountered with manual selection

is that the SWS calculation is sensitive to the chosen S-wave window. Teanby et al.

(2004a) introduced an automated approach to remove the subjective window of the

results by incorporating a cluster analysis technique in SWS analysis. The cluster
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approach of Teanby et al. (2004a) performs the SWS analysis to achieve the best cluster

of results over many windows around the S-wave. This results in the most stable and

reliable result for φ and δt.

The automation approach initiates by setting up a grid analysis window. The grid

analysis incorporates the construction of many windows with different lengths. Figure

3.10 depicts a schematic of the grid window analysis. The analysis begins with choosing

the window before the S-wave time pick (TS) which varies between Tbeg0 and Tbeg1 .

Similarly, the window after TS expands between Tend0 and Tend1 . The analysis window

starts at Tbeg and ends at Tend. Tbeg is allowed to vary with Nbeg steps of ∆Tbeg and

similarly Tend is allowed to vary with Nend steps of ∆Tend. Therefore, the total number

of windows will be N = Nbeg×Nend. The two boundaries of the SWS analysis window

are defined as,

Tbeg = Tbeg1 − (i− 1)∆tbeg for : i = 1 . . . . . . Nbeg (3.28)

Tend = Tend0 + (j − 1)∆tend for : j = 1 . . . . . . Nend (3.29)

Tbeg0 , Tbeg1 , Tend0 and Tend1 are defined relative to TS . Generally, by increasing the

number of windows, the window length increases. The window analysis for N = 250 is

shown in figure 3.11. The window parameters must be chosen precisely such that no

more phases aside from the S-wave are included. However, by increasing N the cluster

analysis becomes more time consuming. Considering the results of the window analysis

with different N , I choose N = 30 (i.e., Nbeg = 5 and Nend = 6) for this study. Based

on the uncertainty in the picking time and the dominant period of the source (5.5 ms) in

this study, I choose Tbeg1 = 2 ms before TS and Tbeg0 = 5 ms. Tend0 and Tend1 are set to

10 ms and 12 ms, respectively.
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Figure 3.10: Cluster analysis of SWS. TP and TS depicts the onset of P- and S-waves respec-
tively. The start of analysis window is expanded between Tbeg0 and Tbeg1 while the end of
window is expanded between the Tend0 and Tend1.

3.7.2.3 Choice of automation parameters

Implementation of Teanby et al. (2004a) requires a number of guidelines that must be

considered:

• The analysis window should be expanded over several dominant periods to reduce

the cycle skipping effects and reduce the influence of noise.

• The window should not be so long to include P-wave or the secondary phase of

S-waves. These are can reduce the reliability of splitting measurements.

• Large N and small ∆t can render more reliable estimation. Nend should be larger

than Nbeg.

• Tbeg1 should be selected slightly before the onset of the S-wave keeping in mind

the uncertainty of the S-wave onset.
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Figure 3.11: Shear-wave splitting cluster analysis. (a) Measurements of δt and φ obtained from
250 different analysis windows plotted against window number. (b) Stable results correspond to
plateaus with small error bars which is denoted by the gray crosshairs. Figure from Teanby et al.
(2004a).

3.7.2.4 Quality of the splitting measurements

There are two common techniques to estimate the splitting parameters. The first type (so-

called multi-event technique) performs the analysis: on a suite of stations from different

azimuths, simultaneously. Vinnik et al. (1989) proposed the stacking of transverse

components with weights dependent on azimuth. In this approach, φ is derived from the

maximum weighted amplitude and δt is retrieved from the maximum stacked amplitude

of the transverse component. However, the method is deprived of error calculation.

Chevrot (2000) proposed to project the transverse components on the amplitudes of the

time derivatives of radial components known as splitting components. The fast S-wave

polarisation and time delay are estimated by the best fit of the phase and amplitude,

respectively. The method is applicable when the signal-to-noise ratio (S/N) is low. The

multi-event technique has been applied in some teleseismic studies (e.g., Vinnik et al.,

1989; Dricker et al., 1999; Menke & Levin, 2003; Long & van der Hilst, 2006).

The second type of technique calculates the splitting parameters based on each
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raypath (Ando & Ishikawa, 1980; Fukao, 1984; Silver & Chan, 1991). The technique

is based on a grid search to remove the effects of splitting. Two methods are used

to compare the results of SWS; the cross-correlation method (XC hereafter) and the

eigenvalue method (EV hereafter). Both methods are automated methods which use the

cluster technique of Teanby et al. (2004a). The XC method rotates the seismograms

in the ray frame and seeks the orientation where the cross-correlation coefficient is

maximum and thus leading to the SWS parameters φXC and δtXC (e.g., Ando &

Ishikawa, 1980). The EV method rotates the shear components and applies a time-shift

in the ray frame to return the most singular covariance matrix based on its eigenvalues

λ1 and λ2 (e.g., Fukao, 1984). Silver & Chan (1991) performed this by maximising λ1

or λ1/λ2 and minimising λ2 or λ2/λ1. Wuestefeld et al. (2010) found that minimising

λ2/λ1 renders the most reliable results for the SWS parameters φXC and δtXC . The

grid search in both methods (EV and XC) vary between 0 ms and 5 ms for ∆t, and

between -90◦ and 90◦ for φ.

An increase in confidence of the results can be achieved by stacking multiple error

surfaces (Wuestefeld et al., 2010). Wolfe & Silver (1998) proposed stacking with

normalised error surfaces while Restivo & Helffrich (1999) performed the stacking

of error surfaces with S/N. An alternative stacking method was presented by Teanby

et al. (2004a) in which the results are stacked from neighbouring stations in a vertical

borehole array.

The process of SWS is sensitive to the window selection and so can lead to several

pitfalls (see Vecsey et al., 2007). Moreover, the SWS process includes some manual

steps, such as picking and visual control of the waveforms and diagnostic plots (e.g.,

Teanby et al., 2004a; Wüstefeld et al., 2008). Therefore, Wuestefeld et al. (2010)

modified the method of Wüstefeld & Bokelmann (2007) to present a numerical value

for SWS quality (Q). The method begins with the calculation of two parameters:
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the ratio between the delay times in the XC and EV methods (∆ = δtXC/δtEV )

and the normalised misfit between the fast polarisation between the two methods

(Ω = (φEV − φXC)/45◦). The parameter ∆ varies between 0 and ∞, whereas the

parameter Ω ranges between 0 and 1. The SWS measurements can be classified as

good, poor and good null based on values of ∆ and Ω. Ideal good measurements are

achieved when the measurements from both methods are identical (i.e., ∆ = 1, Ω = 0).

In contrast, the ideal null occurs when δtXC = 0 (∆ = 0) and the fast polarisation differ

by 45◦ (Ω = 1). So the quality of SWS measurements are determined based on how

far the values vary between these two ideal extreme points. Wuestefeld et al. (2010)

defined dnull as distance from Ω = 1 and dgood as distance from the ideal good (∆ = 1)

as

dnull =
√

2(∆2 + (Ω− 1)2) (3.30)

dgood =
√

2((∆− 1)2) + Ω2)

Q =


−(1− dnull) : for dnull < dgood

(1− dgood) : for dnull ≥ dgood.

The Q ranges from +1 (good) to 0 (poor) and -1 (good null). I define the quality

category ranges as: good (Q > 0.75), fair (0.75 > Q > 0.25), poor (0.25 > Q >

−0.25), fair null (−0.25 > Q > −0.75) and good null (−0.75 > Q). The quality of

each window Qwin varies in the automated cluster analysis. So, Wuestefeld et al. (2010)

suggest a way to estimate the best quality Qbest for a event with N cluster windows as

Qevent = ω1

∑
Qwin

N
+ ω2Qbest, (3.31)

where ω1,2 are weighting factors that determine the average and best quality, respectively.
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I chose ω1 = 1
3

and ω2 = 2
3
.

3.7.2.5 Workflow of automated S-wave splitting

The workflow of the automated SWS using cluster analysis is shown in Figure 3.12. By

assuming that the direct P- and S-waves have previously been picked and the geometrical

information regarding the source and receivers are available, SWS is performed using

the following steps:

• Rotation from geographic to ray frame coordinates (i.e, E-N-Z to L-SH-SV) by

maximising the P-wave energy on L-component.

• Performing SWS using cluster analysis for 30 different windows, taking into con-

sideration that the S-wave window excludes the P-wave. The splitting parameters

(φ and δt) are estimated using both XC and EV techniques.

• Quality determination (Q) of SWS measurements by comparing the results of

both methods. Select good measurements for inversion or interpretation.

3.8 Fracture inversion

There have been several studies that have used SWS results to infer (e.g., Teanby et al.,

2004b; Al-Harrasi et al., 2011) or invert (e.g., Verdon et al., 2009; Verdon et al., 2011b;

Verdon & Wüstefeld, 2013) for various fracture properties, such as fracture density

and orientation. The inversions use sets of delay times and fast polarisation directions

along with source-to-receiver information such as ray path azimuth, inclination, and

propagation distance. Unlike SWS seismic anisotropy studies, application of SWS

fracture inversion has been limited due to its inherent complexity as a non-linear

problem (Horne & MacBeth, 1994). One of the first attempts at solving this problem
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3C	seismograms	with	P-	and	S-
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Rotate	seismograms	into	geographical	coordinates	(E,N,Z)	

Use	P-wave	parAcle	moAon	to	rotate	seismograms	into	ray	frame	

Perform	spliDng	analysis	over	mulAple	S-wave	windows	

Perform	analysis	using	
	XC	method	

	
	

Perform	analysis	using	
EV	method	

Assess	quality	and	nulls	by	comparing	
results	from		two	methods	

	
	

User	cluster	analysis	to	determine	the	best	spliDng	measurement	
From	the	different	S-wave	windows	

Select	results	with	Q	≥	0.75	

Use	selected	results	to	invert	for	fracture	parameters	

Figure 3.12: Workflow of automated S-wave splitting. Figure is modified from Wuestefeld
et al. (2010).
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was done using forward modelling, either using trial and error or a pre-calculated

database of SWS attributes (MacBeth, 1991), yet this was time consuming (Horne

& MacBeth, 1994). The lack of efficient inversion algorithms for fracture inversion

led to more sophisticated inversion schemes, such as trying to linearise the problem

using degenerate perturbation theory for weakly anisotropic cases (Chapman & Pratt,

1992) and genetic algorithms (Horne & MacBeth, 1994). Both of these methods only

considered fracture distribution in two-dimensions (2D), which was mainly due to

the increase in mathematical complexity and computational expense associated with

3D (Horne & MacBeth, 1994). Rial et al. (2005) developed a method allowing 3D

variations, where the theoretical values of the delay time and fast polarisation angle could

be calculated by evaluating the eigenvectors and eigenvalues of a Kelvin-Christoffel

matrix (this corresponds with an elastic stiffness matrix devised by MacBeth, 1999).

Those theoretical values would be compared with the values calculated from measured

data, then the pair with the best root-mean-square (RMS) misfit is chosen, and finally the

desired properties are calculated from their theoretical relationships (Rial et al., 2005). A

similar approach was made by Verdon et al. (2009, 2011b) by using more comprehensive

rock physics models that allow for the inversion of multiple fracture sets and fracture

properties. This approach has been extended to allow for fracture compliance inversion

(Verdon & Wüstefeld, 2013). A problem with these methods is that they consider the

whole medium in which the ray propagates to be an effective fractured medium, which

can lead to an underestimate of the fracture density. While there exist other approaches

that allow spatial variation in anisotropy and isotropic regimes (Abt & Fischer, 2008;

Wookey, 2012), they tend to be under-determined problems due to requiring significantly

more model parameters (Verdon et al., 2009).

A common approach to modelling fractures is to assume an effective medium

representation of the fracture volume. Effective medium theories are employed when
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the size of inclusions is substantially less than the seismic wavelength (e.g. Liu et al.,

2000) and are a popular approach for modelling fractures since only general properties

of the fracture system are required (i.e., we do not need a deterministic model). In

the inversion approach, the additional compliance approach of (Schoenberg & Sayers,

1995) is used to represent the influence of fractures on the elasticity tensor. Specifically,

the fracture compliance for each fracture set (∆S) is added to the background rock

compliance (Sb):

S = Sb + ∆S1 + ∆S2 + ...+ ∆Sm, (3.32)

where m is the number of fracture sets present (m =1 for the single fracture case

and m = 2 for the orthogonal fracture case). The background rock compliance (Sb)

represents the unfractured rock and can be either isotropic or anisotropic (e.g., vertical

transverse isotropy if layering is present) as demonstrated by Verdon et al. (2009). Based

on the approach of Schoenberg & Sayers (1995) and for a set of vetical fracture, in a

VTI medium, ∆Si is given by the following matrix for each fracture set (Verdon et al.,

2011b):

∆Si =



Bi
N 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 Bi
Tv 0

0 0 0 0 0 Bi
Th


, (3.33)

where Bi
N is the normal compliance of a fracture set while Bi

Tv, and Bi
Th are the vertical
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and horizontal components of the shear compliances. Bi
Tv can be set to equal Bi

Th if

the background rock is isotropic (Verdon et al., 2009), which is the case in this thesis.

These compliances can be computed using the following equations by Hudson (1981)

for penny-shaped fractures (Verdon et al., 2011b):

Bi
N =

4

3

εiC
r
11

Cr
66(C

r
11 − Cr

66)
(3.34a)

Bi
Th =

16

3

εiC
r
11

Cr
66(3C

r
11 − 2Cr

66)
(3.34b)

Bi
Tv =

16

3

εiC
r
33

Cr
44(3C

r
33 − 2Cr

44)
, (3.34c)

where εi is the density of the ith fracture set. Note that all of the fracture densities are

based on Hudson (1981) dimensionless fracture density definition (Equation 3.6) using

the low-frequency limit, such that the compliance of a fracture set is only dependent on

the fracture density (εi) and the Lamé parameters of the isotropic background rock.

The presence of liquid between cracks and equant pores may be taken into account

in the calculation of fracture compliance. This happens when the pressure gradient

within the liquid can equalise by moving between cracks and equant pores within the

low-frequency limit. Essentially, the liquid between the cracks does not cause any

deformation and hence does not contribute to the compliance of the fracture. Finally,

equation 3.33 is substituted into equation 3.32 to calculate the total compliance (S),

which is then inverted for rock stiffness or elasticity (C) (Verdon et al., 2009). Note that

Cij in equation 3.34a (where i, j = 1 to 6) are the elastic components in Voigt notation

(see Equation 3.21).
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3.8.1 Inversion algorithm

In this thesis I use the fracture inversion algorithm INSAFF (Verdon et al., 2009). The

fracture inversion algorithm INSAFF starts by performing a grid search over the model

free parameters and computes the elastic stiffness tensor (C) for each case (Verdon et al.,

2009). It calculates the theoretical fast and slow S-wave velocities and polarisation

directions for each C and subsequent SWS parameters using the Christoffel equation

(CijklPjPk − ρδil)gl = 0, (3.35)

where Pj is the jth component of the slowness, gl is the lth component of the polarisation

and ρ is the rock density. The polarisation gl can be derived

det|aijklnjnk − ν2nδil| = 0, (3.36)

where aijkl is the elastic tensor normalised by ρ, ni is the wave normal, and νn is the nth

phase velocity. For each arrival azimuth θ and inclination β, the Christoffel equation

is used to calculate the SWS parameters (i.e, δVS and φ). The SWS predictions are

compared to the observed SWS values by computing the RMS misfits. To calculate the

overall misfit, the misfits of δVS and φ are normalised by their minimum values. Finally,

the model which minimises the RMS misfit is chosen as the best fitting model (Verdon

et al., 2009). From all SWS measurements only those in the good SWS category are

included in the inversion process. The overall misfit is performed by computing the 90%

confidence interval using an F-test (see for e.g., Silver & Chan, 1991, in appendix). The

workflow for these processes is shown in Figure 3.13. To do the inversion, in this study,

the free parameters are constrained to fracture density ε and fracture strike azimuth α.

Implicitly, the INSAFF algorithm is based on the assumption that the physical

properties of the rock which shear-waves have travelled through are constant. INSAFF
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has been extended to invert for the strike and density of two fracture sets (Verdon et al.,

2011b) and to invert for the strike, tangential compliance, and the compliance ratio for

one fracture set (Verdon & Wüstefeld, 2013). To make the approach efficient and reduce

the number of free parameters, I assume that each fracture set contributes equally to

the excess compliance. This assumption is reasonable given no a priori knowledge of

the orthogonal fracture system (i.e., no knowledge of dominant fracture set). However,

with real microseismic data that contain many recorded microseismic events (on the

order of 100 or more), this restriction can be relaxed as there should be more SWS

measurements to constrain the inversion.
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Figure 3.13: Workflow for the inverting for fracture parameter (α and ε) from SWS measure-
ments. Figure is modified from Verdon et al. (2009).
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3.9 Summary

In this Chapter, I reviewed the theoretical concepts of anisotropy. Due to tectonic and

sedimentation processes in the subsurface, vertical fracturing and horizontal layering

are pervasive features in hydrocarbon reservoirs. Therefore, the study of anisotropy is

of great interest for exploration geophysicists to seismically characterise fractures.

Seismic numerical modelling is a valuable approach to simulate wave propagation

in a medium. I explained the 3D FD forward modelling approach as a means to study

the seismic response of discrete vertical fractured media. To do this, a MT source and

discrete fracture volume are separately inserted in an isotropic background medium.

Shear-wave splitting is selected as a robust attribute to characterise fractured media

in terms of evaluating the strength of anisotropy and thereby as a means to invert

for fracture properties such as fracture strike and fracture density by implementation

of the fracture inversion algorithm INSAFF. An automated SWS analysis cluster is

implemented to reduce computational requirements. The quality of SWS measurements

are evaluated by a numerical value including two different XC and EV methods. The

integration of all these concepts and algorithms will be used to study shear-wave

anisotropy and scattering response of fractured media.



Chapter 4

Inverting shear-wave splitting

measurements for fracture parameters

4.1 Introduction

The observation of seismic anisotropy can be an indicator of the presence of fractures.

Thus the imaging of seismic anisotropy within the Earth’s subsurface can enable signif-

icant spatial and temporal characterisation of fracture properties. Seismic anisotropy

in sedimentary rocks can result from several phenomena over a broad range of length-

scales. These length-scales include mineral alignment (e.g., Valcke et al., 2006), grain

scale alignment (e.g., Arne Johansen et al., 2004; Hall et al., 2008), large scale layering

(e.g., Backus, 1962) and the presence of the aligned fracture sets (e.g., Hudson, 1981).

In this thesis I focus on seismic anisotropy due to fracture alignment. Fractures are

discontinuities in the Earth’s crust and can result from various types of rock failure when

77
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the stress state exceeds the rock yield strength. Fractures occur over a range of scales,

from continental scale (e.g., mega-fault) to micro-scale (e.g., micro cracks or grain

boundaries). Fractures display themselves as seismological discontinuities and, in the

case of aligned or coherent fractures sets, can appear to be effectively homogeneous and

seismically anisotropic (e.g., Wuestefeld et al., 2011; Yousef & Angus, 2016). Seismic

anisotropy refers to the situation where medium elastic properties change with direction

of propagation and/or polarisation. As such, seismic anisotropy can be diagnosed in

many ways, such as azimuthal velocity variation, amplitude variation with offset and

azimuth (AVOA), and shear-wave splitting (SWS) analysis.

Although azimuthal variation in velocity and reflection amplitude of P- and S-waves

can be diagnostic of anisotropy, shear-wave splitting (SWS) is the least ambiguous

indicator of seismic anisotropy. When a shear-wave from an isotropic medium enters

an anisotropic region it splits into two orthogonally polarised waves, the S1-wave will

travel faster than the S2-wave. The degree of splitting depends on the initial S-wave

polarisation in the isotropic medium and the allowable polarisation defined by the

anisotropic elasticity tensor (e.g., Angus et al., 2004). SWS measures the polarisation

direction (φ) of the fast S1-wave and the delay time (δt) between the S1- and the

S2- waves (e.g., Shearer, 2009). This delay time is proportional to the length of the

raypath inside the anisotropic medium and the strength of the seismic anisotropy (e.g.,

Wuestefeld et al., 2011). The delay time δt is normalised by the path length between

the source and the receiver to yield a percentage difference in S-wave velocity δVS .

In hydrocarbon reservoirs, shear waves can be generated from two different sources:

(1) passive seismic or microseismic events in and around the reservoir caused by stress

changes, and (2) active seismic or controlled sources, using either a shear source or from

P-to-S conversions. In reflection surveys, seismic waves travel subvertically and so the

fast polarisation direction is generally interpreted to be the direction of a fracture strike,
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while δVS indicates the strength of fracturing. There have been several studies that have

used SWS results to infer (e.g., Teanby et al., 2004b; Al-Harrasi et al., 2011) or invert

(e.g., Verdon et al., 2009; Verdon et al., 2011b; Verdon & Wüstefeld, 2013; Yousef et al.,

2013, 2014) for various fracture properties, such as fracture density (ε) and fracture

orientation (α). SWS inversion techniques use sets of delay times and fast polarisations

along with source-to-receiver information such as raypath azimuth, inclination, and

travel distance (e.g., Verdon et al., 2009; Wookey, 2012) to image fracture zones and

estimate in situ fracture properties.

In this Chapter, I study the feasibility of inverting for fracture strike (α) and density

(ε) for several fracture models having one set of fractures or two sets of orthogonally

aligned fractures using microseismic SWS measurements. To do this, I generate a suite

of 96 fracture models for each single and double fracture sets with varying fracture

size, density, stiffness and effective compliance ratio. For each model, I generate full

waveform microseismic synthetics using the 3D finite-difference (FD) algorithm WAVE

(Hildyard, 2007). The seismic anisotropy induced by the fractures is measured using

shear-wave splitting (SWS) delay times and fast polarisation directions utilising the

algorithm SHEBA (Teanby et al., 2004a). Based on an effective medium fracture model,

the SWS measurements are inverted for the fracture model parameters (α and ε) using

the algorithm INSAFF (Verdon & Wüstefeld, 2013; Verdon et al., 2011b; Verdon et al.,

2009). I subsequently compare the inversion results to the true model to evaluate the

feasibility of the inversion approach in extracting fracture properties from SWS data.

4.2 Model

In this section, I simulate wave propagation through a suite of elastic models: one

subset of models having a single set of aligned fractures and another subset having two
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Property Value
P-wave (m/s) 5700
S-wave (m/s) 3200

VP/VS 1.78
λP (m) 31.4
λS (m) 17.6

Density (kg/m3) 2600
Dominant period (s) 0.0055

Dimension (x, y, z) (m) (300, 300, 300)

Table 4.1: Physical properties of the background (isotropic) medium.

orthogonally aligned fracture sets within a homogeneous isotropic medium (Yousef

et al., 2014). The isotropic background model has P-wave velocity of 5700 m/s, S-wave

velocity of 3200 m/s and density of 2600 kg/m3 (see Table 4.1). For each model, a

total of 69 3C receivers are used (see Figure 4.1), with 20 receivers placed in vertical

boreholes (four boreholes each containing 5 receivers) and the remaining 49 receivers

forming a planar near-surface square array (the near surface array is buried to eliminate

free surface noise contamination). The dimension of the elastic model is 300 m× 300

m × 300 m. A microseismic source is defined having a Ricker wavelet with time

duration of 5.5 ms. The source mechanism is a moment tensor having a seismic moment

magnitude of 1× 1011 N m and a strike-slip double-couple mechanism with strike 90◦,

dip of 90◦ and slip 45◦. To reduce the computational time and allow exploring the

influence of fracture properties on the fracture inversion, I simulate one event for each

fracture model. In practice, numerous microseismic events would be recorded during

microseismic monitoring and so many source-receiver SWS measurements would be

used to invert for fracture properties. However, the synthetic data are noise free and

so allow studying the feasibility of inverting microseismic SWS for fracture properties

from fewer source-receiver measurements.

A total of 96 models have been generated by varying the fracture size (6, 10, 20 and
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(a) (b)

Figure 4.1: Geometry of the 3D FD model with (a) one set of aligned fractures and (b) two sets
of aligned fractures. The red star represents the location of the micro-seismic source (located in
the centre of the left edge of the fracture zone), the triangles represent the surface and borehole
receivers and the grey and blue rectangles within the sub-volume schematically represent the
vertical fractures.

50 m), fracture density (0.02, 0.04, 0.08 and 0.1) and fracture compliance ratio (0.33,

0.60 and 1.00). The fracture stiffness values are divided into high stiffness models and

low stiffness model. The low stiffness models have values of (1, 5 and 6)×1010 Pa.m−1

for the normal fracture stiffness KN and (1, 3 and 2)×101 Pa.m−1 for the shear fracture

stiffness KS . Similar values for the HS models have been chosen with the exception

that these models have higher stiffness by one order of magnitude (i.e., multiplied by

101). These values were chosen based on the range of values observed in the field

and laboratory (e.g., Lubbe & Worthington, 2006; Verdon & Wüstefeld, 2013). For

the orthogonal double fracture sets, fracture properties are kept identical between the

fracture sets to simplify the modelling procedure. Table 4.2 lists the fracture parameters

for the 96 models in this chapter.



Chapter 4. Inverting shear-wave splitting measurements for fracture parameters 82

Z
N
/Z

T
=

0.
33

Fr
ac

tu
re

de
ns

ity
0.

02
0.

04
0.

08
0.

1
si

ze
(m

)
K
N

(P
a
/m

)
K
S

(P
a
/m

)
M

od
el

K
N

(P
a
/m

)
K
S

(P
a
/m

)
M

od
el

K
N

(P
a
/m

)
K
S

(P
a
/m

)
M

od
el

K
N

(P
a
/m

)
K
S

(P
a
/m

)
M

od
el

6
6
×

10
1
0

2
×

10
1
0

S6
L

D
2

6
×

10
1
0

2
×

10
1
0

S6
L

D
4

6
×

10
1
0

2
×

10
1
0

S6
L

D
8

6
×

10
1
0

2
×

10
1
0

S6
L

D
1

6
6
×

10
1
1

2
×

10
1
1

S6
H

D
2

6
×

10
1
1

2
×

10
1
1

S6
H

D
4

6
×

10
1
1

2
×

10
1
1

S6
H

D
8

6
×

10
1
1

2
×

10
1
1

S6
H

D
1

10
3
×

10
1
0

1
×

10
1
0

S1
0L

D
2

3
×

10
1
0

1
×

10
1
0

S1
0L

D
4

3
×

10
1
0

1
×

10
1
0

S1
0L

D
8

3
×

10
1
0

1
×

10
1
0

S1
0L

D
1

10
3
×

10
1
1

1
×

10
1
1

S1
0H

D
2

3
×

10
1
1

1
×

10
1
1

S1
0H

D
4

3
×

10
1
1

1
×

10
1
1

S1
0H

D
8

3
×

10
1
1

1
×

10
1
1

S1
0H

D
1

20
3
×

10
9

1
×

10
9

S2
0L

D
2

3
×

10
9

1
×

10
9

S2
0L

D
4

3
×

10
9

1
×

10
9

S2
0L

D
8

3
×

10
9

1
×

10
9

S2
0L

D
1

20
3
×

10
1
0

1
×

10
1
0

S2
0H

D
2

3
×

10
1
0

1
×

10
1
0

S2
0H

D
4

3
×

10
1
0

1
×

10
1
0

S2
0H

D
8

3
×

10
1
0

1
×

10
1
0

S2
0H

D
1

50
3
×

10
9

1
×

10
9

S5
0L

D
2

3
×

10
9

1
×

10
9

S5
0L

D
4

3
×

10
9

1
×

10
9

S5
0L

D
8

3
×

10
9

1
×

10
9

S5
0L

D
1

50
3
×

10
1
0

1
×

10
1
0

S5
0H

D
2

3
×

10
1
0

1
×

10
1
0

S5
0H

D
4

3
×

10
1
0

1
×

10
1
0

S5
0H

D
8

3
×

10
1
0

1
×

10
1
0

S5
0H

D
1

Z
N
/Z

T
=

0.
6

Fr
ac

tu
re

de
ns

ity
0.

02
0.

04
0.

08
0.

1
si

ze
(m

)
K
N

(P
a
/m

)
K
S

(P
a
/m

)
M

od
el

K
N

(P
a
/m

)
K
S

(P
a
/m

)
M

od
el

K
N

(P
a
/m

)
K
S

(P
a
/m

)
M

od
el

K
N

(P
a
/m

)
K
S

(P
a
/m

)
M

od
el

6
5
×

10
1
0

3
×

10
1
0

S6
L

D
2

5
×

10
1
0

3
×

10
1
0

S6
L

D
4

5
×

10
1
0

3
×

10
1
0

S6
L

D
8

5
×

10
1
0

3
×

10
1
0

S6
L

D
1

6
5
×

10
1
1

3
×

10
1
1

S6
H

D
2

5
×

10
1
1

3
×

10
1
1

S6
H

D
4

5
×

10
1
1

3
×

10
1
1

S6
H

D
8

5
×

10
1
1

3
×

10
1
1

S6
H

D
1

10
5
×

10
1
0

3
×

10
1
0

S1
0L

D
2

5
×

10
1
0

3
×

10
1
0

S1
0L

D
4

5
×

10
1
0

3
×

10
1
0

S1
0L

D
8

5
×

10
1
0

3
×

10
1
0

S1
0L

D
1

10
5
×

10
1
1

3
×

10
1
1

S1
0H

D
2

5
×

10
1
1

3
×

10
1
1

S1
0H

D
4

5
×

10
1
1

3
×

10
1
1

S1
0H

D
8

5
×

10
1
1

3
×

10
1
1

S1
0H

D
1

20
5
×

10
9

3
×

10
9

S2
0L

D
2

5
×

10
9

3
×

10
9

S2
0L

D
4

5
×

10
9

3
×

10
9

S2
0L

D
8

5
×

10
9

3
×

10
9

S2
0L

D
1

20
5
×

10
1
0

3
×

10
1
0

S2
0H

D
2

5
×

10
1
0

3
×

10
1
0

S2
0H

D
4

5
×

10
1
0

3
×

10
1
0

S2
0H

D
8

5
×

10
1
0

3
×

10
1
0

S2
0H

D
1

50
5
×

10
9

3
×

10
9

S5
0L

D
2

5
×

10
9

3
×

10
9

S5
0L

D
4

5
×

10
9

3
×

10
9

S5
0L

D
8

5
×

10
9

3
×

10
9

S5
0L

D
1

50
5
×

10
1
0

3
×

10
1
0

S5
0H

D
2

5
×

10
1
0

3
×

10
1
0

S5
0H

D
4

5
×

10
1
0

3
×

10
1
0

S5
0H

D
8

5
×

10
1
0

3
×

10
1
0

S5
0H

D
1

Z
N
/Z

T
=

1.
0

Fr
ac

tu
re

de
ns

ity
0.

02
0.

04
0.

08
0.

1
si

ze
(m

)
K
N

(P
a
/m

)
K
S

(P
a
/m

)
M

od
el

K
N

(P
a
/m

)
K
S

(P
a
/m

)
M

od
el

K
N

(P
a
/m

)
K
S

(P
a
/m

)
M

od
el

K
N

(P
a
/m

)
K
S

(P
a
/m

)
M

od
el

6
1
×

10
1
0

1
×

10
1
0

S6
L

D
2

1
×

10
1
0

1
×

10
1
0

S6
L

D
4

1
×

10
1
0

1
×

10
1
0

S6
L

D
8

1
×

10
1
0

1
×

10
1
0

S6
L

D
1

6
1
×

10
1
1

1
×

10
1
1

S6
H

D
2

1
×

10
1
1

1
×

10
1
1

S6
H

D
4

1
×

10
1
1

1
×

10
1
1

S6
H

D
8

1
×

10
1
1

1
×

10
1
1

S6
H

D
1

10
3
×

10
1
0

3
×

10
1
0

S1
0L

D
2

3
×

10
1
0

3
×

10
1
0

S1
0L

D
4

3
×

10
1
0

3
×

10
1
0

S1
0L

D
8

3
×

10
1
0

3
×

10
1
0

S1
0L

D
1

10
3
×

10
1
1

3
×

10
1
1

S1
0H

D
2

3
×

10
1
1

3
×

10
1
1

S1
0H

D
4

3
×

10
1
1

3
×

10
1
1

S1
0H

D
8

3
×

10
1
1

3
×

10
1
1

S1
0H

D
1

20
1
×

10
9

1
×

10
9

S2
0L

D
2

1
×

10
9

1
×

10
9

S2
0L

D
4

1
×

10
9

1
×

10
9

S2
0L

D
8

1
×

10
9

1
×

10
9

S2
0L

D
1

20
1
×

10
1
0

1
×

10
1
0

S2
0H

D
2

1
×

10
1
0

1
×

10
1
0

S2
0H

D
4

1
×

10
1
0

1
×

10
1
0

S2
0H

D
8

1
×

10
1
0

1
×

10
1
0

S2
0H

D
1

50
3
×

10
9

3
×

10
9

S5
0L

D
2

3
×

10
9

3
×

10
9

S5
0L

D
4

3
×

10
9

3
×

10
9

S5
0L

D
8

3
×

10
9

3
×

10
9

S5
0L

D
1

50
3
×

10
1
0

3
×

10
1
0

S5
0H

D
2

3
×

10
1
0

3
×

10
1
0

S5
0H

D
4

3
×

10
1
0

3
×

10
1
0

S5
0H

D
8

3
×

10
1
0

3
×

10
1
0

S5
0H

D
1

Ta
bl

e
4.

2:
Su

m
m

ar
y

of
fr

ac
tu

re
pr

op
er

tie
s

fo
ra

ll
96

m
od

el
s.



Chapter 4. Inverting shear-wave splitting measurements for fracture parameters 83

4.3 SWS results

The first step in processing SWS involves picking the arrival times of the P- and S-waves

from the 3C synthetic seismograms. From all 96 models, 6624 3C seismograms are

processed. After picking the 3C seismograms, each 3C seismogram is rotated from the

global coordinate (east,north,vertical) into the local (source-receiver) ray coordinate,

with one coordinate being the ray direction (containing primarily the P-wave energy)

and the other coordinates perpendicular to the ray direction (one is the SV direction and

the other the SH direction)(see Figure 3.9). After rotation, I use SHEBA to calculate

the SWS delay time δt and fast polarisation direction (φ). To do this the seismograms

are filtered using a Butterworth bandpass filter between 10 Hz and 1500 Hz, which is

the range of the expected frequencies. After some parameter and quality control tests, a

P-wave window size of 0.02 s is chosen, where I allow the S-wave window size to vary

slightly around 0.01 s (the maximum δt value is constrained to be 3 ms). Next, SWS

analysis is performed for each 3C seismogram. For each measurement, a diagnostic

plot is created and is used to determine whether the SWS result is good, null or bad. A

SWS measurement is classified using an automated quality control value (Q) and is a

measure of how similar the SWS measurement parameters of the cross-correlation (XC)

and Eigenvalue (EV) techniques are (see section 3.7.2.4). In addition to the automated

quality control measure, the SWS measurements can be assessed using the diagnostic

plots from the EV method. A SWS measurement is considered reliable by determining

when (1) the energy on the corrected transverse component has been minimised, (2)

the S1- and S2-waves have similar waveforms, and (3) the elliptical S-wave particle

motion in the SV-SH plane has been linearised after the splitting correction. The value

of Q ranges from -1 to +1, where Q = −1 denotes a null result (i.e., no anisotropy and

hence no SWS), Q = 0 denoting a poor result (i.e., unreliable) and Q = +1 denoting

a good result (i.e., SWS present). I define a Q value of greater than or equal to 0.75
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to be a good SWS result for the synthetic seismograms based on trial and error (i.e.,

Q < 0.75 resulted in inaccurate fracture inversions). Figure 4.2 shows an example of

a SWS diagnostic plot with a good quality factor (Q = 0.96) and an example of the

null result (Q = −0.98). For the good quality factor (Figure 4.2a) the particle motion is

ellipsoidal before correction and is linearised after correction while for the null SWS

(Figure 4.2b) the particle motion is linear before and after the correction.

4.3.1 Single fracture set vs double fracture sets

For the models with one fracture set, the strike of the fracture set is α = 90◦ from north

(i.e., the Y-axis), whereas for the double fracture set model the fracture sets have strike

α = 0◦ and 90◦ (i.e., the fractures are orthogonal along the X- and Y-axes). Figure 4.3

depicts the ray coverage in the vertical (inclination) and horizontal (azimuth) planes.

There is good azimuth coverage with the exception of a reduction in azimuthal coverage

between 210◦ and 300◦. The range of inclination covers mainly between 0◦ and 60◦

with some coverage between 60◦ and 110◦. Out of 6624 source-receiver combination

there are 445 good SWS measurements (≈ 7%) for the single fracture set models after

using the quality control. In contrast, for the double fracture set models there are 261

good SWS measurements (≈ 4%). This is likely due to the additional fracture set which

reduces the amount of coherent scattering that would allow SWS to develop.

Figure 4.4 is a histogram of the azimuth and inclination values for the all models

and including all the 6624 SWS measurements. This figure shows that the inclination

of the ray paths are mostly between 20◦ and 60◦, but with good azimuthal coverage.

Figure 4.5 is a histogram for azimuth and inclination of the good SWS measurements

for the both single and double fracture set models. The figure shows that the majority of

the raypaths are between 40◦ and 120◦ azimuth travelling subhorizontally through the

fracture volume. There is no azimuth coverage between 0◦ and 40◦ as well as 140◦ and
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Figure 4.2: Example of (a) good SWS measurement (Q = 0.96) and (b) null splitting (Q =
−0.98). For (a) and (b); (top-left) 3 component waveforms in local ray coordinates; (top-right)
radial and transverse components before (top 2 traces) and after (bottom 2 traces) splitting
correction; (middle-left) fast (dashed) and slow (solid) S waves before (left) and after (right)
correction; (bottom-left) particle motion in SV -SH coordinate frame before (dashed) and after
(solid) correction; (bottom-right) error surfaces of the eigenvalue (left) and cross-correlation
(lower right) methods (see Wuestefeld et al., 2010, for details). The best result of the two
methods are shown as blue + and red circle for the eigenvalue and cross-correlation method,
respectively; and (middle-right) fast axis (top) and δt variations for each window including
corresponding error bars.
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Figure 4.3: Distribution of source-receiver azimuth and inclination for the fracture model array.

180◦ since the raypaths do not travel through the fracture volume where SWS would

develop. The highest azimuthal counts in the histogram are for the vertical borehole

arrays.

Figure 4.6 is a histogram of the measurement quality (Q) for the whole SWS

measurements and also for the good SWS measurements. It can be seen for the whole

dataset that most of the SWS measurements fall in the category of good null (Q <

−0.75). However, the histogram for good SWS Q reveals that the majority of Q values

are larger than 0.90. For the case of data with good signal-to-noise ratio where the

S-wave signals are clear or for data with large number of SWS measurements, the

threshold could be increased to higher values such as 0.80 or even 0.90. As such, the

measure allows a reduction in the required visual examination of the diagnostic plots

(Al-Harrasi, 2010). Since the dataset is noise free and the model geometry is designed

to maximise S-wave anisotropy, I can automatically control and choose the high SWS
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(a) (b)

Figure 4.4: Histogram of azimuth and inclination for the whole SWS dataset (6624 measure-
ments).

measurement quality reliably from the large volume of data. Similarly, Wuestefeld et al.

(2010) applied this approach to a Valhall microseismic dataset, where the results of

their automated SWS analysis being equivalent with the manual results of Teanby et al.

(2004b).

Figure 4.7 shows the distribution of Q against the difference between initial S-wave

polarisation and φ in the shear-wave plane (i.e., SV-SH plane). The null measurements

can be seen clearly in this figure. Good quality SWS measurements require a separation

of at least 20◦ from the null direction. The scatter reveals that higher Q values occur

when the difference is approximately 45◦, and lower Q values when differences equal

to 0◦ and 90◦. This figure confirms that the automated quality control approach has a

physical basis. However, it would be expected that the signal-to-noise ratio can robustly

affect this limitation (Wuestefeld et al., 2010).

To make the SWS less subjective, the Q value is introduced and is calculated from

the combination of both the EV and XC techniques. Both techniques behave differently,

particularly in the vicinity of the null direction, where the XC technique fails to extract

proper values of φXC and δtXC . This occurs because of the absence or the weakness

of S-wave energy on the transverse component close to the null. In fact, correlation
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(a) Single fracture (b) Single fracture

(c) Double fracture (d) Double fracture

Figure 4.5: Histogram of azimuth and inclination of the good SWS for the single and double
fracture sets.

can only be found if the transferred energy by the rotations of the grid search from

the initial polarization component to the transverse component is much more strong.

The correlation is maximum for a rotation of 45◦ and obviously results in zero timelag

between the two S-wave components. Therefore, the techniques should not be used

alone (Wüstefeld & Bokelmann, 2007). The Q value is crucial for reliable fracture

inversion of anisotropy measurements; the results of the inversion are dependent on the

Q values of the input SWS measurements.

In SWS analysis, the δt is used to characterise the strength of anisotropy along the

raypath. The δt parameter is normalised by the path length to estimate the percentage

velocity anisotropy δVS (i.e., difference between S1 and S2 velocity). The δVS parameter
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(a) Single fracture (b) Single fracture

(c) Double fracture (d) Double fracture

Figure 4.6: Histogram of SWS Q values: (a) for all SWS measurements of single fracture set,
(b) for good, Q > 0.75, SWS measurements of single fracture set, (c) for all SWS of double
fracture set, and (d) for good SWS of double fracture set.

is computed using the following relationship: 100× (VS1 − VS2)/VS(ave), where VS(ave)

is the average S-wave velocity. The maximum S-wave velocity anisotropy δVS for the

single and double fracture sets are 16.3% and 21.2%, respectively.

Figure 4.8 shows the variation of δVS against direct distance between the source

and receiver for the whole dataset and Q ≥ 0.75 for the single and double fracture set

models, respectively. The distances range between approximately 50 m and 200 m for

the whole dataset. For the whole dataset it can be seen that δVS decreases by increasing

source-receiver distance. However, the large δVS values at short distances have very
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(a) Single fracture

(b) Double fracture

Figure 4.7: The SWS quality versus difference between initial source polarisation and the fast
S-wave polarisation (φ) in the S-plane for the whole dataset. The colour depicts the percentage
of shear-wave splitting δVS . Note that the colour scales are not normalised between the two
models.
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low Q values, and so indicates the importance of having quality control of the specific

SWS values used. For the Q ≥ 0.75 dataset the δVS values are less than 6% for the

single fracture set and 15% for the double fracture set models. Furthermore, for good

quality SWS measurements the raypath are approximately greater than or equal to 100

m, or approximately 5 wavelengths. In the double fracture models it can be seen that the

distribution of good Q range over a broader propagation distance from 100-200 m, while

for the single fracture models is narrower (i.e., approximately between 130-180 m).

However, the magnitude of anisotropy is higher in the double fracture model compared

to the single fracture model.

The number of good SWS measurements is a key parameter in the inversion for

fracture parameters. Based on trial and error and considering the stability of the inversion

results for each model, I perform the fracture inversion with a minimum of 5 SWS

with Q ≥ 0.75, generally leading to a stable inversion. Figure 4.9 maps the number of

good SWS measurements for each of the 96 models. For the case of the single fracture

set, the number of models with more than 5 good Q values for the compliance ratios

Zn/ZT =0.33, 0.60 and 1.00 are 10, 8 and 17, respectively, whereas for the double

fracture sets the number of models are 13, 8 and 3 respectively.

Figures 4.10-4.11 plot the histograms of δt and δVS for the whole dataset and good

SWS data for both single and double fracture sets. Figure 4.10 shows that the δVS

distribution decreases from 1% to 14%, and that δt is approximately constant between

0 to 3 ms with higher number of SWS measurements at 0 ms and 3 ms. In contrast,

in Figure 4.11, there is a skewed distribution of δVS centred around roughly 1.8% for

both single and double fracture sets. In terms of the δt values, the distribution for the

double fracture set models are roughly constant between 0.25 to 2.75 ms. For the single

fracture set models the range is similar but with a skewed distribution centred towards

lower δt values.
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(a) Single fracture (b) Single fracture

(c) Double fracture (d) Double fracture

Figure 4.8: Variation of δVS with length of raypath: single fracture model for (a) whole dataset
and (b) for good SWS results (Q ≥ 0.75), and double fracture model for (c) whole dataset and
(d) for good SWS results. Colour indicates the quality index (Q) of the SWS measurements.

In Figure 4.12, I plot the published compliance values versus fracture size a (grey

rectangles) from literature (Lubbe, 2005; Pyrak-Nolte et al., 1990; Hardin et al., 1987;

Lubbe & Worthington, 2006; King et al., 1986 and Worthington & Hudson, 2000)

as well as the model values (see table 4.2) generated in this chapter. For the three

compliance ratios ZN/ZT = 0.33, 0.60 and 1.00 and fracture sizes a =6, 10, 20 and

50 m the results are categorised into good, unstable and no SWS. The models with

good SWS are those that have 5 or more good SWS values Q ≥ 0.75 (red), the models

with unstable SWS have less than 5 good SWS values (blue) and the models with no
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(a) Single fracture

(b) Double fracture

Figure 4.9: Number of SWS results with Q > 0.75 for each (a) single fracture set model and
(b) double fracture set model.
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(a) Single fracture (b) Single fracture

(c) Double fracture (d) Double fracture

Figure 4.10: Histogram of δVS and δt for the whole dataset for the single and double fracture
set models (6624 measurements).

SWS (black). The dashed diagonal line in Figure 4.12 represents the inferred scale

dependence of the normal or shear fracture compliance with fracture size.

From Figure 4.12, it can be observed that by increasing the fracture density ε the

number of models with good SWS increases, particularly for small fractures. Further-

more, by increasing the compliance (ZN and ZT ) by one order of magnitude while

keeping ZN/ZT constant leads to models with good SWS, except for models with

fracture size a = 50 m and ZN/ZT ≥ 0.60. However, the poor SWS results are due to

the fewer number of fractures (i.e., the maximum number is 3) the wave interacts with

between source and receivers.
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(a) Single fracture (b) Single fracture

(c) Double fracture (d) Double fracture

Figure 4.11: Histogram of δVS and δt for the good SWS results (Q ≥ 0.75) for the single
fracture set and double fracture set models.

4.4 Inversion method (INSAFF)

In this section, the inversion algorithm INSAFF (Verdon et al., 2009) is used to invert

for fracture strike α and fracture density ε. To obtain reliable inversion results, the

inversion is performed for models with at least 5 good SWS results (Q > 0.75). To

assess the inversion approach, I will first invert for the fracture properties of the single

vertical fracture set models, which represent a simpler model and hence, in principle,

more constrained inversion. Subsequently, I will then invert for fracture properties of
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(a) ε = 0.02

(b) ε = 0.04

Figure 4.12: Continued...
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(c) ε = 0.08

(d) ε = 0.1

Figure 4.12: Normal compliance against fracture size. The grey rectangles are data taken from
literature while the other symbols are data from this study. The colour depicts the quality of
SWS: good (red); unstable (blue); no SWS (black).
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the orthogonal fracture set models (orthorhombic model). INSAFF allows the inversion

for background VTI anisotropy (e.g., Verdon et al., 2011b), but since the background

medium is isotropic the VTI Thomsen’s parameters are excluded from the inversion

process. Therefore, the independent parameters in the inversion are fracture strike and

fracture density for the single and double fracture set models.

In order to obtain the optimum estimates of fracture strike and fracture density

and also minimise the computation time of the inversion, I limit the grid search to

sensible values for these parameters. For the single fracture inversion, I allow α to vary

between 0◦ and 180◦, whereas for the double fracture inversion, I allow α1 and α2 to

vary between α1 =-45◦ and 45◦ and α2 = 45◦ and 135◦ for the first and second fracture

set. Following the assumption of Crampin (1994) that fracture density is roughly equal

to one hundredth of δVS and assuming a maximum δVS of 14% (see Figure 4.10), I

set the fracture density range to be between 0.00 and 0.14 for both single and double

fracture sets.

4.5 Results

4.5.1 Single fracture set

Figure 4.13 shows the lower hemisphere projection of the S-wave phase velocities as

a function of propagation direction based on the best fitting elasticity tensor inverted

using a single fracture set. This example is for the fracture model having fracture size 6

m, compliance ratio ZN/ZT = 0.33 and fracture density of 0.08. The inversion result

for the single fracture set model has strike α = 98◦ and density ε = 0.02, whereas the

true fracture set model has strike α = 90◦ and density ε = 0.08.

Figure 4.14 plots the inversion results of fracture strike versus fracture density for

all the single fracture set models. It is clear that the inversion results for fracture strike
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cluster around the true value of α =90◦, but are biased to lower density estimates. The

confidence in the inversion results was obtained using the F-test with 90% confidence

interval (see section 3.8). In order to assess the error of the inversion results, Figure

4.15 plots the absolute error in fracture strike ∆α(◦) against the percentage error in

fracture density ∆ε(%). It is clear that the error in fracture strike ∆α(◦) is within ±40◦

with standard deviation of 14◦, and the error in fracture density ∆ε(%) remains between

approximately 40 and 60%. The models with ZN/ZT = 0.60 have the lowest ∆ε(%)

and ∆α(◦). However, taking into account the errors in both fracture strike and density,

the models with ZN/ZT = 0.33 yield the most reliable inversions.
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Figure 4.13: Inversion result for the single fracture set model with size 6 m and ZN/ZT = 0.33.
The inverted fracture parameters have α = 98◦ and ε = 0.02 while the true values are α = 90◦

and ε = 0.08 (model S6LD8). In this figure and Figure 4.17 the thin ticks and the coloured
contours are the modelled splitting results using the best fit effective medium model parameters.
Also, the position of the black outlined ticks depicts the position of the azimuth and inclination
of the S-wave, while the orientation shows the φ and the length and the colour shows the δVS .

Figure 4.16 shows the inversion results for α and ε for the single fracture models

in polar plot diagram, which allows comparison between the inversion results for the

single and double fracture set models. The inverted fracture strikes fall within ±40◦ of
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Figure 4.14: Inversion results for fracture strike versus fracture density for the single fracture
set models.

Figure 4.15: Inversion error for fracture strike inversion versus fracture density for the single
fracture set models.
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the true model fracture strike α = 90◦. The inverted strikes for the ZN/ZT = 0.60 are

more tightly constrained around the true model. The average and standard deviation of

the inversion results for the three categories of compliance ratio ZN/ZT are given in

Table 4.3 (more detailed analysis of fracture inversion error for the single fracture set

models are listed in Tables D.1-D.3 of the Appendix D). A general observation from the

inversion results of the single fracture models suggests that fracture strike is much better

constrained than fracture density, consistent with the results of Verdon et al. (2011b).

ZN/ZT ∆ε(%) ∆α(◦)

0.33 76.85 ± 41.62 24.00 ± 21.53
0.6 66.56 ± 25.74 16.19 ± 23.95
1.0 67.79 ± 16.36 11.40 ± 8.75

Table 4.3: Average error in fracture strike and density for the single fracture set models (given
as average error ± standard deviation).

(a) (b)

Figure 4.16: Inversion results for fracture strike versus fracture density for the single fracture
set models in the polar plot diagram (left) and zoom in for clear visualisation of the results
(right).
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4.5.2 Double fracture sets

Figure 4.17 shows the lower hemisphere projection of the S-wave phase velocity as a

function of propagation direction based on the best fitting elasticity tensor for the double

fracture set models with a = 20 m, ε = 0.08 and ZN/ZT = 0.60 (see Table 4.2). The

inverted strike and density for the first fracture set are α1 = -10.49◦ and ε1 = 0.075,

and for the second fracture set are α2 = 86.20◦ and ε2 = 0.032. The inverted fracture

strikes are close to the true model fracture strikes (i.e., 0◦ and 90◦), indicating that the

inversion for strike has been successful. However, the inverted fracture densities are

less accurate for the case of orthogonal fracture sets. This finding is consistent with the

inverted fracture densities of Verdon et al. (2009). Furthermore, Bakulin et al. (2002)

and Grechka & Tsvankin (2003) have discussed that it is possible for a broad range of

fracture density models to produce equivalent effective medium stiffness tensor.

0°
30°

60°

90
°

12
0°

150°

180°

−150°

−120°

−9
0°

−6
0°

−30°

0

2

4

6

8

Anisotropy [%]

Figure 4.17: Inversion results for the double fracture set model (S20LD8) with size 20 m and
ZN/ZT =0.60. The fracture parameters were determined to have α1 =-10.49◦ and ε1 =0.075
for the first fracture set and α2 =86.20◦ and ε2 = 0.032 for the second fracture set. The true
model have have values α1 = 0◦ and α2 = 90◦ for strike and ε1 = ε2 = 0.08 for fracture
density.
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Figure 4.18 plots the inversion results of fracture strike versus fracture density for all

the double fracture set models. The inversion results for the second fracture set (strike

of 90◦) are more accurate than the inversion results for the first fracture set (strike of 0◦),

although it is necessary to calculate the errors of inversion results for the fracture strike

and density. Figure 4.19 shows the error of the inversion results for the double fracture

set models in term of absolute error in fracture strike ∆α(◦) versus percentage error in

fracture density ∆ε(%). The error in fracture strike for both fracture sets ranges between

0◦ and 45◦. For both fracture sets, the error in fracture density are approximately on the

same order of magnitude ranging between 0% and 100%. Table 4.4 lists the average

errors in the inversion for fracture strike and density for both fracture sets for each

compliance ratio ZN/ZT (more detailed analyses of fracture inversion error for the

double fracture set models are listed in Tables D.4-D.6 of the Appendix D).

Figure 4.20 shows the inversion results for fracture strike (α1 and α2) and fracture

density (ε1 and ε2) for the double fracture set models. The results reveal that the in-

verted fracture strike and density for fracture set 2 are more constrained than those for

fracture set 1. This is due to the optimal orientation of the MT source polarisation to

illuminate the second fracture set (90◦) than the first fracture set (0◦). Since the fractures

in the model are orthogonal, I examine the orthogonality of the inverted fracture strikes.

Figures 4.21-4.22 show the histogram and polar plot diagrams of the difference in strike

between the inverted fracture strikes ∆α. The histogram reveals that the majority of the

inversions have ∆α = 90◦± 30◦. From Figure 4.22 it can be observed that the inversion

results for fracture densities versus ∆α are more constrained with increasing compli-

ance ratio ZN/ZT . However, by decreasing ZN/ZT the inverted fracture densities have

broader range. This seems to correlate with the number of models having different

fracture parameters particularly in term of the fracture size (see Tables D.4-D.6).
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Figure 4.18: Inversion results for fracture strike versus fracture density for the double fracture
set models.

ZN/ZT ∆ε1(%) ∆α1(◦) ∆ε2(%) ∆α2(◦)

0.33 88.38 ± 101.62 23.41 ± 13.73 60.21 ± 61.95 22.68±11.97
0.6 67.61 ±76.84 14.68±9.78 31.64±38.04 15.88±12.39
1.0 40.83±11.24 21.37±16.93 60.08±4.57 21.39±15.15

Table 4.4: Average error in fracture strike and density error for the double fracture set models
(given as average error ± standard deviation).

Figure 4.23 presents the inverted fracture strike versus fracture density for both single

and double fracture set models. From this figure, it is apparent that the maximum error

in the inversion for strike for the single fracture set models (i.e., 80◦) is approximately

double that of the double fracture set models. In contrast, the inversion error for fracture
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Figure 4.19: Inversion error for fracture strike versus fracture density for the double fracture
set models. The results for set 1 are shown in black and for set 2 are shown in red.

density for both single and double fracture set models are generally between 40% and

100%.

4.6 Discussion

From Figures 4.14 to 4.20 it can be observed that the inversion algorithm is capable

of estimating fracture strike robustly without prior knowledge of the medium fracture

properties. The outliers are likely influenced by the non-linear nature of the inversion

algorithm and the fact that the inversion uses only a single event to characterise a finite

fracture volume. In contrast, it should be noted that the inverted fracture densities are

systematically underestimated from the true value for the single fracture set (i.e., the

inversion results clustered between 0.00 and 0.06), while it is systematically overesti-

mated for the double fracture sets for the low compliance ratios (i.e., ZN/ZT = 0.33
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Figure 4.20: Inversion results for fracture strike versus fracture density for the double fracture
set models in polar diagram.

Figure 4.21: The histogram of the difference between the inverted fracture strikes of the double
fracture sets.
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Figure 4.22: The results of difference in fracture strike inversion for the double fracture sets of
in the polar coordinate for the ZN/ZT=1.00, 0.60 and 0.33. The radial axis and the angular axes
are the fracture density and fracture strike respectively.

Figure 4.23: Comparison of inversion results for fracture strike versus fracture density for both
the single and double fracture set models.
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and 0.60). The INSAFF algorithm assumes that the whole medium in which the ray

traverses is fractured, instead of only a portion of the raypath within fracture zone and

so might explain the underestimate of density (Verdon et al., 2009; Verdon et al., 2011b;

Wookey, 2012). Furthermore, the location of the source and orientation of failure source

mechanism may be insufficient to illuminate the fracture set. However, with more

sources spatially distributed around the fracture volume and more favourable (i.e, more

data) it is possible that the fracture inversion would yield more accurate results (Rial

et al., 2005). For the double fracture set models, the inverted strike for the 0◦ fracture

set degrades, whereas the inverted strike for the 90◦ fracture set appears to be better

resolved (broader but fewer outliers). In the following chapter, I will show that the

inaccurate estimate of fracture density are significantly influenced by the choice of

effective medium rock physics model.

4.7 Summary

In this chapter, I have shown that it is feasible to invert SWS measurements to quan-

titatively estimate fracture strike and qualitatively estimate fracture density assuming

an effective medium fracture model. The results of the full waveform FD synthetics

indicate that the source frequency of the microseismicity will be crucial in extracting

reliable fracture parameters due to the relationship between scale length of the probing

seismic wave and the fracture heterogeneity (i.e., size). Although the SWS results

themselves are diagnostic of fracturing, the fracture inversion allows placing constraints

on the physical properties of the fracture system. For real microseismic datasets, the

range in magnitude of microseismicity (i.e., frequency content), spatial distribution and

variable source mechanisms suggests that the inversion of fracture properties from SWS

measurements is feasible. For the single seismic source case and optimum receiver array
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geometry, the inversion for strike has average errors of between 11◦ and 25◦, whereas

for density has average errors between 65% and 80% for the single fracture set and 30%

and 90% for the double fracture sets. Improvements on resolving strike can be made

by including more microseismic sources in the inversion process. Furthermore, the

improvements in resolving fracture density (or stiffness) can be achieved using a more

advanced inversion approach such as anisotropic tomography in which the medium

can be divided into different domains, where each domain has different anisotropic

characteristics (e.g., Abt & Fischer, 2008; Wookey, 2012).



Chapter 5

Parametrisation study: Quantifying a

transition from scattering to

anisotropy

5.1 Introduction

To estimate or invert for the fracture properties a rock physics model is required to

map the measured seismic anisotropy attributes (e.g., SWS) to the physical fracture

properties. In general there are two approaches to model fractured rock: effective

medium models (EMM) and discrete fracture models (DFM) (see Chapter 2). EMM is

the most common approach for modelling the seismic behaviour of fractured rock (e.g.,

Hall & Kendall, 2000; Baird et al., 2013). However, there are limitations such as the

applicable frequency range, the types of fracture properties which can be studied, and

110
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non-uniform influences for example due to stress-field (e.g. Hildyard, 2007). The main

restriction for EMM is that it is valid only when the dominant seismic wavelength of the

propagating wave is much greater than the heterogeneity induced by the fractures; this

is referred to as the LWA. Furthermore, EMM assumes the rock mass is instantaneously

anisotropic and so does not allow for the transition from a scattering regime to an

effective anisotropy regime.

The alternative approach is to model fracture networks as discrete elements that

can encapsulate individual fracture behaviour (e.g. Hildyard, 2007). DFM allows us

to reduce many assumptions about the model and enables the solution to simulate the

interaction of seismic waves with fracture systems more correctly. DFM models can

capture the influence of the stress state, as well as specific fracture properties such as

fracture size, fill and compliance. Furthermore, DFM is not restricted by the LWA and

allows the dominant seismic wavelength to be greater, less than or equal to the fracture

size, allowing the characterisation of low-frequency behaviour (i.e., LWA regime) and

high-frequency behaviour (i.e., ray theoretical limit). However, it is generally difficult

to determine the spatial geometry of fracture systems deterministically and often the

computational costs associated with modelling discrete fractures can be a barrier.

Figure 5.1 illustrates some of the uncertainties in inferring fracture properties from

seismic anisotropy. Figure 5.1a shows two ray paths (P1 and P2) of equal length

propagating through a fracture zone consisting of discrete fractures. The ray path

perpendicular to fracture strike (P1) will experience a longer travel time than the ray

path traveling along strike (P2) due to the presence of the seismic discontinuities (e.g.,

Babuska & Cara, 1991). This leads to an effective velocity anisotropy with seismic

velocity being greater along strike than perpendicular to strike. In Figure 5.1b I include

an elliptical velocity anomaly that can lead to either (i) a perceived greater seismic

velocity anisotropy (if the anomaly is a high-velocity ellipse) or a perceived smaller
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Figure 5.1: Schematic diagram of fracture induced seismic anisotropy: (a) two ray paths P1

and P2 (dashed arrows) travel through a fracture zone (within the dashed rectangle) with discrete
fractures depicted by grey lines; (b) same as (a) but with the inclusion of a velocity anomaly
(shaded ellipse); (c) same as (a) but with the discrete fracture zone represented by an effective
homogeneous fracture zone; and (d) same as (c) but with the effective homogeneous fracture
zone reduced in size and surrounded by a transition region (stippled region).

seismic velocity anomaly or isotropy (if the anomaly is a low-velocity ellipse). This

illustrates the inherent ambiguity of traveltime anisotropic velocity analysis. In Figure

5.1c I apply the standard approach to modelling fractures by introducing a homogeneous

representation of the discrete fractures with an elastically anisotropic zone based on an

effective rock physics model of the fracture zone (e.g., Liu & Martinez, 2012). Since

seismic anisotropy evolves as the wave propagates through a discrete fracture system,

there is a region within the fracture volume where the interaction of the wave with the

fractures transitions from a scattering regime to an effectively anisotropic regime. This

is depicted in Figure 5.1d where I introduce a buffer zone around a smaller effective

homogeneous fracture zone.

Under what conditions do fractured media become seismically anisotropic? How do
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we define the transition region from scattering to anisotropy? How should we consider

this transition in our quantitative estimates of fracture properties? To provide some

insight into these fundamental questions, I study the development of SWS as a wave

propagates through a fractured medium using the DFM approach. To do this, I model

full waveform seismic synthetics using the 3D finite-difference (FD) algorithm WAVE

(Hildyard, 2007) that models fracture networks as explicit discontinuity elements that

can encapsulate individual fracture behaviour. By using the DFM approach I can explore

the range of fracture properties that lead to effective anisotropy using heterogeneous yet

coherent discontinuities by simulating the interaction of seismic waves with fractures.

The DFM allows models to capture the influence of specific fracture properties, such as

fracture size, stiffness and spacing (or density) on seismic SWS.

5.2 Methods

In this section, I first describe the forward modelling approach and elastic models used

to generate the FD full waveform seismic synthetics. Subsequently, I summarise the

approach to calculate SWS with special attention to the evaluation of the SWS quality

factor.

5.2.1 Numerical FD model

I use the full waveform FD algorithm WAVE (Hildyard, 2007) to simulate wave propa-

gation in 3D heterogeneous and isotropic media. The WAVE algorithm was previously

discussed in Chapter 3. Fractures are represented using the DFM approach, where each

fracture or group of fractures are explicitly defined as a displacement discontinuity. The

fracture surfaces have zero-thickness, where the difference in displacements across the

two surfaces is related to the stress across the interface. The stress and discontinuity in
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displacement across the two surfaces are coupled by the fracture normal and tangential

stiffnesses. In principal, the fracture stiffness accounts for the existence of asperities

and voids between the surfaces of natural fractures (e.g., Baird et al., 2013; Petrovitch

et al., 2013), leading to a finite coupling between the surfaces. Hildyard & Young (2002)

benchmark WAVE and the DFM approach with laboratory experiments of ultrasonic

wave propagation through natural fractures in rock (Pyrak-Nolte et al., 1990). Hildyard

& Young (2002) show that the WAVE and the DFM approach accounts for frequency

dependence of both the seismic velocity and the transmitted wave amplitude.

I consider a base fracture model having vertical fractures oriented along the x-axis

within an isotropic background medium. The isotropic elastic medium has density ρ =

2600 kg/m3, P-wave velocity VP = 5700 m/s and S-wave velocity VS = 3200 m/s (VP/VS

= 1.78). The geometry of the model has overall dimension of (x, y, z) = (300 m, 300

m, 300 m)(see Table 4.1). Seismic waves are generated using a moment tensor source

having a seismic moment magnitude of 1× 1011 N m and a strike-slip double-couple

mechanism with strike 90◦, dip of 90◦ and slip 45◦. The source time function has a

dominant source frequency of approximately 180 Hz, and so I use a grid spacing of

∆h = 1 m and time increment of approximately ∆t = 0.08 ms to maintain numerical

stability and minimise grid dispersion for all fracture model realisations. The source

is located at (xs, ys, zs) = (100 m, 150 m, 140 m) outside the fracture volume having

dimension (x, y, z)=(80 m, 80 m, 80 m). A single linear array of 10 three-component

receivers is defined, oriented along the direction of maximum SWS (i.e., along the

x-axis) and located through the fracture volume (see Figure 5.2).

I generate a suite of 48 model realisations by varying one of three explicit fracture

properties (compliance ratio, fracture size and fracture density) while keeping the other

two constant. I focus on compliance ratio as this parameter has been used as an indicator

for fracture fluid fill as well as fracture geometry (e.g., Verdon & Wüstefeld, 2013).
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(a) (b)

(c) (d) (e)

Figure 5.2: (a) Schematic view of the linear receiver array within the FD model. The star
represents the source location, the triangles represent the receivers and the grey shaded rectangles
represent the vertical and lateral extent of the discrete fracture zone. The red vertical plane
depicts an example plane where I perform horizontal scans through the fracture volume to
compute fracture spacing distribution. Snapshot of a seismic wave propagating in the x-y plane
through a fractured medium for a double-couple source at time (b) t=7.9 ms, (c) t= 17.34 ms, (d)
t=33.1 ms and (e) t=48.9 ms. In (d) the scattered waves are highlighted by the region within the
dashed ellipse.
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For compliance ratio, ZN/ZT , I consider values of 0.33, 0.60 and 1.00, which are

consistent with the range of values observed from laboratory and field measurements

(e.g., Angus et al., 2012; Verdon & Wüstefeld, 2013; Choi et al., 2014). For fracture

size, a, I consider values of 6, 10, 20 and 50 m for several reasons and constrained by

the dominant wavelength (λS ≈ 18 m) of the shear-wave. For crustal rock, the size

(or height) of fractures ranges on the order of between 0.01 to 10 m (e.g. Narr et al.,

2006; Barton, 2007). Thus the lower end values of 6 and 10 m represent typical values

observed in the field yet having size that approaches the length scale of the dominant

wavelength. Values above 10 m allow us to explore the transition from conditions

where EMM would be valid to conditions where EMM for fractures would not be valid.

Therefore the size range of the fractures allows us to examine the transition from LWA

or Rayleigh scattering where λS/a > 1, to Mie scattering regime where λS/a→ 1, and

to the high frequency or geometric scattering regime (λS/a < 1). For fracture density,

ε, I used values of 0.02, 0.04, 0.08 and 0.10, which is consistent with field observations

of naturally occurring fracture systems (e.g., Narr et al., 2006). The values of normal

and tangential stiffnesses range on the order of between 1 × 109 to 1 × 1011 Pa/m.

The specific values used are consistent with the laboratory and field-scale estimates of

Worthington (2008) and Verdon & Wüstefeld (2013), and are dependent on the fracture

size.

Figure 5.2 shows an example of shear-wave propagation through a fracture volume

at 4 time steps to highlight the evolution of SWS, where the linear array allows us

to monitor the evolution of the shear wavefront as it propagates through the fracture

volume. (Note that the P-wave is barely visible because the x-y section is along the

null axis of the P-wave radiation pattern of the double-couple source.) As the wave

propagates, the right-hand side of the wavefront begins to interact with the fracture

volume, where scattering can be observed behind the primary shear-wave. At later times,
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SWS can be observed on the right-hand side of the wavefront as well as significant

scattering in the wavefield persisting behind the primary shear-wave within the fracture

volume. The scattering that is observed is due to a combination of first-order (i.e.,

single) and higher-order (i.e., multiple) diffractions from fracture tips and edges as well

as specular reverberations (i.e., multiply reflected energy) from fracture surfaces.

5.2.2 SWS parameters

I use the algorithm SHEBA (e.g., Teanby et al., 2004a; Wuestefeld et al., 2010) to

compute the SWS parameters. The analysis of SWS requires first rotating the three

component waveforms into a local ray coordinate frame, where the P-wave energy will

be constrained to the ray direction (P ) and the shear-wave energy on the two remaining

components (SV and SH)(see Section 3.7.2.1). The rotation can be done either using a

standard rotation algorithm based on the polarisation filter approach of Montalbetti &

Kanasewich (1970) or by assuming a straight ray path between the source and receiver.

I compare both approaches and found very little difference in the respective local

coordinate frames for my models, and so use the straight ray path approximation to

reduce processing time. After rotation into the ray coordinate, an analysis window is

specified relative to the shear-wave first arrival. Typically one window size is chosen

but a range of window start and end times are evaluated to cover the maximum possible

time delays that could be expected. A grid search of analysis windows over these

intervals allows for a much faster calculation of SWS parameters than manual picking

and provides a measure of the overall SWS quality Q (Wuestefeld et al., 2010).

Within the algorithm the time delay between the fast and slow shear-waves and

the rotation angle for maximum splitting are calculated by two XC and EV methods

and compared to give a measure of quality (Teanby et al., 2004a). By comparing the

similarity in the calculated time differences from the two methods a Q value is defined
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(see Section 3.7.2.4), where values close to one represent good splitting and values close

to negative one are good nulls (i.e., no SWS) (Wuestefeld et al., 2010). When the value

of Q is close to zero, the data quality of the splitting is poor or inconclusive. Typically,

with noisy data, values between -0.5 and 0.5 are discarded from further analysis. In

my models, poor values would be expected due to the diffraction type scattering effects

(e.g., Klem-Musatov, 2008) from the edge of the discrete fractures (see Chapter 3 for

further discussion).

Previously an example of good and good null splitting was shown in Figure 4.2.

That figure shows the results for a good splitting measurement, where an initial elliptical

particle motion is linearised after an appropriate rotation and delay correction. The

calculated delay time of 1.32 ms and fast polarisation direction of 36◦ is well constrained

in both methods yielding Q = 0.96. Figure 4.2 also shows the result of a null splitting

example, where the initial polarisation is linear. Since there is no SWS, the solution is

not well constrained yielding Q = −0.98. For all fracture models, I apply the same

SWS analysis to all receiver recordings to compute the delay time and associated quality

factor.

5.3 Results

For all 48 models, I calculate the SWS parameters for all 10 receivers within the fracture

volume. In Figures 5.3-5.6, I show the computed delay time δt for each station as a

function of propagation length within the volume normalised by the shear wavelength

(distance/λS). The quality of δt is given by colour contours, with Q = 1 red, Q = 0

green and Q = −1 blue.

Figure 5.3 displays the SWS results for the fracture models having fracture size

a = 6 m. For this model, the dominant wavelength of the shear-wave is 3 times greater
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than the size of the fractures such that the simulation results fall within the LWA regime

(e.g., Ebrom et al., 1990; Marion et al., 1994). For all compliance ratios and fracture

density, there is a general trend of spurious δt measurements for receivers located

close to the source within approximately one wavelength of propagation distance. For

these receivers the quality of the SWS measurements is low indicating either null or

inconclusive measurements. For fracture density greater than 0.04 there is a general

trend of increasing δt starting from a non-zero value (≈ 0.5 ms) up to approximately 3

ms with generally good SWS quality factors. For the lower fracture densities of 0.02

and 0.04, the quality of the SWS results is variable indicating that the model fracture

density may not be of sufficient magnitude to induce shear-wave anisotropy. The results

indicate that fracture density plays a more significant role on the evolution of SWS than

compliance ratio.

Figure 5.4 displays the SWS results for the fracture models having fracture size

a = 10 m. For fracture size a = 10 m the model falls close to the border of the LWA

regime, where the dominant shear wavelength is less than 2 times greater than the size

of the fractures. As with Figure 5.3, there is a general trend of spurious low quality

δt measurements within approximately one wavelength of propagation distance. For

fracture density greater than 0.04 there is a general trend of increasing δt starting from a

non-zero value (≈ 0.5 ms) up to approximately 2 ms with generally good SWS quality

factors for receivers beyond 2 to 3 propagation wavelengths. For the lower fracture

densities of 0.02 and 0.04, the quality of the SWS results are much more variable than

those for fracture size a = 6 m indicating that the fracture size of a = 10 m leads to

less reliable or coherent induce shear-wave anisotropy.

Figure 5.5 displays the SWS results for the fracture models having fracture size

a = 20 m. The dominant shear wavelength has approximately the same order of

magnitude of the fracture size such that the LWA is no longer valid and where I expect
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Figure 5.3: Evolution of SWS for fractures having size a = 6 m: (top)ZN/ZT = 0.33, (middle)
ZN/ZT = 0.60 and (bottom) ZN/ZT = 1.00. The vertical axis represents the calculated
delay time δt with corresponding error bars and the horizontal axis represents the propagation
distance within the fracture volume normalised by the dominant wavelength λS = 18m. The
colour contour of the symbols represents the quality factor of the SWS measurement. The
fracture stiffness values are: (ZN/ZT = 0.33) KN = 6 × 1010 Pa/m and KT = 2 × 1010

Pa/m,(ZN/ZT = 0.60) KN = 5× 1010 Pa/m and KT = 3× 1010 Pa/m, and (ZN/ZT = 1.00)
KN = 1 × 1010 Pa/m and KT = 1 × 1010 Pa/m. The legend in the top-right corner of each
subplot represents the fracture density: inverted triangle=0.02, circle=0.04, diamond=0.08 and
square=0.1

to observe Mie scattering. For all compliance ratios and fracture density the SWS results

are unreliable and incoherent. In Figure 5.6, I show the results for fracture models

having fracture size a = 50 m. The ratio of shear wavelength to fracture size falls in the

high-frequency approximation (HFA) region, λ/a ≈ 2/5 (Ebrom et al., 1990; Marion

et al., 1994) where I expect to observe geometric scattering. As with the case of fracture

size a = 20 m, the SWS results are incoherent with the exception of two models:

ZN/ZT = 0.60 and ε = 0.1, and ZN/ZT = 1.00 and ε = 0.08. It is important to note

that the fracture models used in WAVE are generated using random fracture assemblies
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Figure 5.4: Evolution of SWS for fractures having size a = 10 m: (top) ZN/ZT = 0.33,
(middle) ZN/ZT = 0.60 and (bottom) ZN/ZT = 1.00. The fracture stiffness values are:
(ZN/ZT = 0.33) KN = 3 × 1010 Pa/m and KT = 1 × 1010 Pa/m, (ZN/ZT = 0.60) KN =
5 × 1010 Pa/m and KT = 3 × 1010 Pa/m, and (ZN/ZT = 1.00) KN = 3 × 1010 Pa/m and
KT = 3× 1010 Pa/m. See caption in Figure 5.3 for details.

given a range of fracture size and fracture density (Hildyard, 2007). For some of the

random realisations the fracture distribution could form coherent and persistent planar

features, similar to the influence of sedimentary layering that often leads to transverse

isotropy (TI). Thus the interaction of the shear-wave with these large fractures could

yield wave behaviour similar to that observed in TI media in the HFA regime. For larger

fracture sizes or greater ray paths within the fracture volume, wave propagation would

likely yield SWS having the same characteristics as that of horizontal TI media.
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Figure 5.5: Evolution of SWS for fractures having size a = 20 m: (top) ZN/ZT = 0.33,
(middle) ZN/ZT = 0.60 and (bottom) ZN/ZT = 1.00. The fracture stiffness values are:
(ZN/ZT = 0.33)KN = 3×109 Pa/m andKT = 1×109 Pa/m, (ZN/ZT = 0.60)KN = 5×109

Pa/m and KT = 3× 109 Pa/m, and (ZN/ZT = 1.00) KN = 1× 109 Pa/m and KT = 1× 109

Pa/m. See caption in Figure 5.3 for details.
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Figure 5.6: Evolution of SWS for fractures having size a = 50 m: (top) ZN/ZT = 0.33,
(middle) ZN/ZT = 0.60 and (bottom) ZN/ZT = 1.00. The fracture stiffness values are:
(ZN/ZT = 0.33)KN = 3×109 Pa/m andKT = 1×109 Pa/m, (ZN/ZT = 0.60)KN = 5×109

Pa/m and KT = 3× 109 Pa/m, and (ZN/ZT = 1.00) KN = 3× 109 Pa/m and KT = 3× 109

Pa/m. See caption in Figure 5.3 for details.

5.4 Implications

I have addressed the question of when fracture systems become seismically anisotropic,

at least for the case of shear-waves. However, I have explored the implications of the

transition zone between scattering and effective anisotropy. To do this, I compare my

δt observations with predictions using the LS EMM representation of Schoenberg &

Sayers (1995). The LS approach is used extensively in the seismological literature to

transform fracture compliance to dynamic (i.e., seismic) elasticity, primarily because of

its generality (Hall & Kendall, 2000) due to the fracture compliances being rotationally
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invariant (Barton, 2007).

First I compute the background stiffness matrix CISO based on the model density

and isotropic P- and S-wave velocities. The background elasticity is then inverted to

yield the background compliance SISO, where I can then add the excess compliance due

to the presence of fractures using the approach of Schoenberg & Sayers (1995). The

excess compliance matrix (∆S) of the fractured medium requires first converting the

WAVE model specific compliances ZN and ZT (units mPa−1) to effective compliances

BN and BT (units Pa−1) using Equation 2.11.

The excess compliance matrix previously is given by Equation 2.15 (second term).

If grid cells ∆h in 3D FD are equal in three primary axes, so L ≡ ∆h. Finally, the

overall compliance in Equation 2.15 can be rewritten as,

S = SISO +
1

∆h



ZN 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 ZT 0

0 0 0 0 0 ZT


, (5.1)

and then inverted to yield the LS effective elastic stiffness tensor CEMM .

The approach I use to compute the fracture spacing follows that of Borgos et al.

(2000) and Worthington (2008). For each grid point along the ray path from the source

to the receivers through the fracture volume, I define a vertical plane having dimension

36×36 m2 (approximately the dimension of the first two Fresnel zones for a transmitted

wave, e.g., see Figure 5.2a). Within the plane I compute the distribution of fracture

spacing using horizontal scan lines within the plane, each line separated vertically by
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the FD grid spacing ∆h. Figure 5.7 shows the fracture spacing distribution for each

vertical plane in the whole fracture volume as well as within the first two Fresnel zones,

where the general trend shows a right (positive) skewed distribution with peak fracture

spacing between 2 and 3 m. Summing the distribution for all vertical planes I get an

approximate distribution of the fracture spacing: 4% for 1 m spacing, 32% for 2 m

spacing, 37% for 3 m spacing, 19% for 4 m spacing, and 5% for 5 m spacing.

Figure 5.8 compares the measured SWS results for the fracture model having a = 6

m, ε = 0.1 and ZN/ZT = 0.33 with several LS EMM predictions. For the simplest

prediction I use an approximate average fracture spacing of 2.5 m and 6 m and observe

that LS over predicts SWS. Next I compute the excess compliance based on the summed

average fracture spacing distribution using 6 different means: arithmetic, geometric,

harmonic, quadratic, cubic and weighted. For example, the weighted mean excess

compliance is given

∆S =

∑5
i=1wi∆Si∑5
i=1wi

, (5.2)

where wi is the fractional distribution of the ith fracture spacing (i.e., w1 = 0.04) and

∆Si is the corresponding compliance. The definition of all six different means are given

in Appendix E. As can be seen, most of the LS predictions do not match the observed

SWS trend of the data and over predict the amount of shear-wave anisotropy. Only the

weighted mean average comes close to predicting a broadly similar trend, yet under

predicting the shear-wave anisotropy and having a shallower slope.

To estimate the LS EMM model parameters that would fit the data, I perform a grid

search over one fracture parameter while keeping the other two constant. In the first

case I assume a priori model fracture compliances of ZN = 1.7 × 10−11 m/Pa and

ZT = 5× 10−11 m/Pa (i.e., exact values from FD model) that might be available from
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(a) (b)

(c) (d)

Figure 5.7: Histogram showing the distribution of fracture spacing for the whole volume (a
and b) and that the shear-wave would be sensitive to as the wave propagates through the fracture
volume (c and d) based on the first and second Fresnel zone. Perspective views shows (a and c)
the distribution of the small fracture spacing and (b and d) the distribution of the larger spacing.
Each vertical plane provides an estimate of the fracture spacing within the first two Fresnel
zones (2× λS ≈ 36m) tangential to the direction of wave propagation.
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Figure 5.8: Comparison of LS EMM δt predictions with the observed SWS for the fracture
model: a = 6 m, ε = 0.1 and ZN/ZT = 0.33. LS EMM predictions of Schoenberg & Sayers
(1995) for spacing 2 m, 6 m and 10 m (best fitting LS EMM model) as well as LS EMM
predictions from the summed distribution in Figure 5.7 using 6 different means: arithmetic,
geometric, harmonic, quadratic, cubic and weighted. See caption in Figure 5.3 for details.

laboratory core measurements. The best fit LS model requires a fracture spacing of

10 m. In the second case I assume a priori an average model fracture spacing of 2.5

m (i.e., approximate mode value for the summed distribution) and compliance ratio of

ZN/ZT = 0.33 that might be available from laboratory core measurements. The best fit

LS model requires fracture normal and tangential compliances of ZN = 2.7 × 10−11

m/Pa and ZT = 8.2 × 10−11 m/Pa, respectively. Based on these two cases, the error

from using the LS EMM prediction would lead to a 400% error in fracture spacing and

60% error in fracture compliance.

There are two important implications to the results: (1) any EMM will predict that
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anisotropy will develop instantaneously as the wave propagates through the model and

neglects the influence of the transition zone and (2) the LS EMM significantly over

predicts seismic anisotropy. The first observation suggests that EMM predictions from

SWS measurements near the source will suffer from inaccuracies as seismic anisotropy

will have very little time to develop. The strength of seismic anisotropy is coupled to

the path length within the anisotropic volume (e.g., Savage, 1999. This is analogous

to the slope (δt/distance) of the trends shown in Figure 5.8. As the distance of SWS

observation moves further from the seismic source and the ray path within the zone

exceeds 2 to 3 propagation wavelengths, EMM predictions will suffer less from the

influence of the transition zone. This is because the slope of the best-fitting EMM

prediction will approach asymptotically that of the observations (i.e., H = 10 m). For

most observational applications it is not practical to acquire data with sensors within a

fracture volume: for laboratory data this might require drilling a core through the middle

of the sample to place sensors or placing sensors within a synthetic rock specimen

during manufacturing whereas for field data this might require access to one or more

boreholes that intersect a fracture volume where sensors could be positioned throughout

the fracture system. This could be achieved on outcrop scale but would involve special

processing of the seismic data to compensate for free surface effects.

The second observation is more concerning given that the LS model is used perva-

sively in the seismological community. Chichinina et al. (2015) analyse the limitations

of Schoenberg & Sayers (1995) LS model and find that their model is not generally

adequate for real rocks. Chichinina et al. (2015) note that the LS model is only valid

for two conditions: (1) when ZN = 0 (i.e., case of fluid-filled fractures) or (2) when

the scalar crack ZN/ZT = 1 is assumed (e.g., Bakulin et al., 2000). Hildyard (2001)

observed that the LS model was only accurate for high-stiffness fractures and became

increasingly inaccurate as the stiffness decreased, which is consistent with the first
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condition ZN = 0. Regarding the second condition ZN/ZT = 1, it has been observed

from laboratory (e.g., MacBeth & Schuett, 2007; Angus et al., 2012; Choi et al., 2014)

and field (e.g., Worthington, 2008; Verdon & Wüstefeld, 2013) data that the scalar crack

assumption is not universally consistent. Figure 5.9 compares the measured SWS results

for the fracture model having a = 6 m, ε = 0.1 and ZN/ZT = 1.00 with several LS

EMM predictions. For this case, I observe the same misfit of the LS predictions with the

synthetic data (see Figure 5.9). Thus, even for the scalar crack case, my results indicate

that the LS model is inconsistent with the vast majority of real fracture behaviour. This

brings us to another important limitation of the LS model, the assumption that the lateral

dimension of linear slip interface be greater than the dominant seismic wavelength (e.g.,

Hsu & Schoenberg, 1993) or the assumption of a smooth stress field (e.g., Kachanov,

1992) thus limiting scattering within the fracture normal direction. For my models, the

wavelength of the S-waves range on the order of the fracture size (i.e., the fracture size

is not significantly greater than the wavelength) and so the LS model does not model

the scattering from fracture edges and tips

It should be noted that the general assumption involved with the LS model is the

LWA, such that λS/a � 1 (e.g., Sayers & Kachanov, 1991; Schoenberg & Sayers,

1995). In my simulations, the smallest fracture size is a = 6 m, which lies on the

boundary of where the LWA is valid (i.e., λS/a ≈ 3). To test LWA, I simulate a seismic

source having dominant frequency of 50 Hz with a wavelength of approximately 65

m (i.e., λS/a ≈ 10). Figure 5.10 compares the measured SWS results for the fracture

model having a = 6 m, ε = 0.1 and ZN/ZT = 1.00 with several LS EMM predictions.

Again, I observed that at least 1 to 2 propagation wavelengths is needed before SWS

develops and, even under the appropriate LWA conditions, I observe the same misfit of

the LS predictions with the synthetic data (see Figure 5.10).

Thus, based on my results, I suggest that if SWS is to be used to quantify fracture
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Q

Figure 5.9: Comparison of LS EMM δt predictions with the observed SWS for the fracture
model: a = 6 m, ε = 0.1 and ZN/ZT = 1.0. LS EMM predictions of Schoenberg & Sayers
(1995) for spacing 2 m, 6 m and 10 m (best fitting LS EMM model) as well as LS EMM
predictions from the summed distribution in Figure 5.8 using 6 different means: arithmetic,
geometric, harmonic, quadratic, cubic and weighted. See caption in Figure 5.3 for details.

properties the following criteria should be met:

1. Ray paths through the fracture volume should exceed 2 wavelengths to detect

anisotropy and be at least 5 wavelengths to minimise the influence of the transition

for quantitative estimates,

2. The ratio of dominant wavelength to expected fracture size should be greater than

or equal to 3, and

3. The LS model should not be used for quantitative estimates, unless there is further
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Figure 5.10: Comparison of LS EMM δt predictions with the observed SWS for dominant
source frequency of 50 Hz (approximate wavelength of 60 m) for the fracture model: a = 6 m,
ε = 0.1 and ZN/ZT = 1.0. LS EMM predictions of Schoenberg & Sayers (1995) for spacing
2 m, 6 m and 10 m (best fitting LS EMM model) as well as LS EMM predictions from the
summed distribution in Figure 5.8 using 6 different means: arithmetic, geometric, harmonic,
quadratic, cubic and weighted. See caption in Figure 5.3 for details.

data to calibrate the EMM results to in situ properties.

The last point is salient since the inversion of seismic anisotropy for fracture properties

is increasingly being used to populate and calibrate multi-physical models of the sub-

surface (e.g., Angus et al., 2015). Significant errors in fracture property estimates will

lead to over or under predicting the multi-physical response, which can have significant

impact on hazard assessment and risk mitigation.



Chapter 5. Parametrisation study: Quantifying a transition from scattering to
anisotropy 132

5.5 Summary

Fractures are pervasive features within the Earth’s crust and have a significant influence

on the multi-physical response of the subsurface. The presence of coherent fracture

sets often leads to observable seismic anisotropy enabling seismic techniques to re-

motely locate and characterise fracture systems. In this chapter, I confirm the general

scale-dependence of seismic anisotropy and provide new results specific to shear-wave

splitting (SWS). I find that SWS develops under conditions when the ratio of wavelength

to fracture size (λS/d) is greater than 3, where Rayleigh scattering from coherent frac-

tures leads to an effective anisotropy such that effective medium model (EMM) theory

is qualitatively valid. When 1 < λS/a < 3 there is a transition from Rayleigh to Mie

scattering, where no effective anisotropy develops and hence the SWS measurements

are unstable. When λS/a < 1 I observe geometric scattering and begin to see behaviour

similar to transverse isotropy. I find that seismic anisotropy is more sensitive to fracture

density than fracture compliance ratio. More importantly, I observe that the transition

from scattering to an effective anisotropic regime occurs over a propagation distance

between 1 to 2 wavelengths depending on the fracture density and compliance ratio.

The existence of a transition zone means that inversion of seismic anisotropy parameters

based on EMM will be fundamentally biased. More importantly, I observe that linear

slip EMM commonly used in inverting fracture properties is inconsistent with my results

and leads to errors of approximately 400% in fracture spacing (equivalent to fracture

density) and 60% in fracture compliance. Although EMM representations can yield

reliable estimates of fracture orientation and spatial location, my results show that EMM

representations will systematically fail in providing quantitatively accurate estimates

of other physical fracture properties, such as fracture density and compliance. Thus

more robust and accurate quantitative estimates of in situ fracture properties will require

improvements to effective medium models as well as the incorporation of full waveform
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inversion techniques.



Chapter 6

Scattering characteristics of

shear-waves in fractured media

6.1 Introduction

Scattering of seismic waves is a phenomenon in which the seismic energy is scattered

in all possible directions due to the presence of obstacles or strong lateral variation

of elastic stiffness in the medium (see Figure 6.1). The scattering of seismic waves

allow us to study the heterogeneous structure of the Earth’s subsurface on both global

and exploration scales (Margerin, 2011). Pioneering studies of seismic scattering have

focused mostly on characterising the subseismic scale structure of the lithosphere,

the mantle and the solid core (e.g., Shearer & Earle, 2004). Recently, the scientific

community has shown an increasing interest in using seismic scattering to characterise

fractured reservoirs (e.g., Shen & Toksöz, 2000; Willis et al., 2006).

134



Chapter 6. Scattering characteristic of shear-waves in fractured media 135

Figure 6.1: Schematic of wave propagation through a medium with typical dimension L. As the
incident plane wave passes through the heterogeneous medium, scattering happens and deflects
energy in all spatial directions. The transmitted wavefield is distorted and attenuated. Figure
from Margerin (2011).

The amount of scattering, or scattering strength, due to seismic wave propagation

in heterogeneous media depends on the relative size (or correlation length) of the

heterogeneity a compared to the seismic wavelength λ (see Figure 6.1). A dimensionless

parameter ka (wavenumber 2π
λ

times a) is introduced and is referred to as the so-called

normalised wave number. It describes the relative correlation length with respect to the

seismic wavelength. Depending on the magnitude of ka, different scattering regimes

can be classified as follows:

Quasi-homogeneous and effective elastic medium regime: ka < 0.01. The elastic

medium can be regarded as an effective medium because the dominant wavelength is

much larger than the heterogeneity scale lengths. Scattering effects are small.

Rayleigh scattering regime: 0.01 ≤ ka < 0.1. Weak fluctuation of the elastic parame-

ters is considerable. This regime can be described using the Born approximation based
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on the single scattering assumption.

Mie scattering regime: 0.1 ≤ ka < 10. Also known as resonant scattering, het-

erogeneity scale lengths are on the order of the dominant seismic wavelength. The

prominent effect in the Mie regime is scattering at large angles with respect to the

incident direction.

Forward scattering regime: 10 ≤ ka. This occurs when the correlation length is

much larger than the dominant seismic wavelength and seismic energy is scattered

primarily in the forward direction. In this regime backscattered energy is weak, but

other phenomena such as focusing, diffraction and interference effects are important.

Heterogeneous media can been treated as either random media (e.g., Sato, 1984,

1989; Fukushima et al., 2003) or homogeneous media with discrete scatterers (e.g.,

Willis et al., 2004b, 2006). For the case of random heterogeneous media, the medium

can be classified using five different approaches: radiative transfer theory based on the

Born approximation (e.g., Sato, 1984; Shang & Gao, 1988), analytical approaches, such

as using parabolic approximations (Sato, 1989; Saito et al., 2002), numerical simulation

(e.g., Frankel & Clayton, 1986; Hoshiba, 2000; Fehler et al., 2000), laboratory exper-

iments using physical models (e.g., Nishizawa et al., 1997; Fukushima et al., 2003),

and empirical approaches, such as using well-log data from the shallow crust that show

strong random heterogeneity but provide limited access to the nature of heterogeneities

in the Earth (Wu et al., 1994).

In contrast, for the case of homogeneous media with discrete fractures, the fractured

medium can be treated by a variety of different approaches. Analytical approaches

can describe the propagation of elastic waves in the presence of fractures, but are only

acceptable for rather simple cases, such as single cracks with simple geometries (Mal,

1970), and in most cases are valid only at far offset (Liu et al., 1997). The Born and

Rytov approximations may be used for more complex situations (Wu & Aki, 1985), and
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are applicable for: low frequency wave propagation and low elasticity contrasts between

scatters and the host rock. These limitations are consistent when dealing with large

scale inclusions or fractures, such as in some fractured reservoirs, and where seismic

waves have short wavelengths compare to the large fractures. Numerical techniques

are also employed to investigate the scattering of seismic waves, such as the finite-

difference (FD) method (Saenger & Shapiro, 2002; Xie et al., 2013; Hildyard, 2007),

finite-element (FE) method (Lysmer & Drake, 1972); pseudospectral (PS) method (e.g.,

Vlastos et al., 2003), boundary-element method (e.g., Pointer et al., 1998) and spectral

finite-difference method (Mikhailenko, 2000). In this study I use the FD algorithm

WAVE (see section 3.3) that is capable of modelling fracture networks as individual

fractures defined as explicit discontinuities, where distribution of the fracture network

can be populated randomly.

The scattering of elastic waves propagating in a heterogeneous medium influences

the kinematic evolution (i.e., travel-times) of the seismic wavefield and can lead to

amplitude attenuation and phase distortion with distance (Vinogradov et al., 1995).

Thus understanding the scattering process in a heterogeneous medium is important for

characterising discontinuous structures (e.g., cracks, fractures, etc.). Seismic charac-

terisation of fractured reservoirs has the potential to not only identify fracture zones,

but also estimate fracture properties. If the fracture size and spacing are substantially

small relative to the seismic wavelength, then coherent fractures can lead to the rock

appearing as an effective anisotropic medium with a symmetry axis normal to the strike

of fractures (Liu et al., 2000). For such scenarios, application of seismic anisotropy

methods (e.g., amplitude versus offset and azimuth and shear-wave splitting) can be

used to extract fracture properties, such as fracture orientation and density (e.g., Willis

et al., 2004b; Zhang et al., 2005, 2006). If, however, the fracture size and spacing are on

the order of the seismic wavelength, then the fractures will lead to observable scatter in
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the seismic energy causing complex reverberation or coda in the seismic signal (Willis

et al., 2006).

Aki (1969) first showed the appearance of ”wriggly” wave trains in the tail portion of

a seismogram of a local earthquake and showed that this was direct evidence of random

heterogeneity of the lithosphere. The coda wave can be described by an envelope where

the amplitude decreases with increasing time from the onset of the direct arrivals on a

recorded seismogram.

The Earth’s interior has been observed to be laterally heterogeneous within the crust,

mantle and core, with scale length of heterogeneity ranging from the grain size (mm)

to the order of global spherical harmonics (Km). The scale length of heterogeneity a,

which in this chapter means fracture size, influences the scattering response of seismic

waves and hence observable seismic attributes (Snieder, 2006). The seismic attributes

sensitive to scattering include travel-time anomalies, amplitude and phase fluctuations,

as well as excitation in the scattered wave such as the envelope broadening phenomenon

(Aki, 1988). The excitation of coda waves due to scattering means that the direct wave

loses energy with increasing propagation distance (Sato et al., 2012). Furthermore, the

excitation can be due to the distortion of the first-arriving seismic wave polarisation.

Recently, the distortion of the first-arriving signal has been studied in laboratory

experiments using physical models (Nishizawa et al., 1997) that utilised a laser Doppler

vibrometre (LDV) to measure elastic waves in the ultrasonic frequency range. Nishizawa

et al. (1998) explained the principal method of measuring shear-wave particle motions

by LDV. By knowing the initial source radiation pattern and comparing it with the

recorded elastic waves, the relationship between scattering and medium heterogeneity

can be established. Fundamentally, the P- and S-wave scattering characteristics, (i.e.,

P- and S-wave coda energy) are different, and the majority of studies has focused on

the P-wave scattering characteristics of fractures, and so the main aim of this chapter
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is analysing the effect of different fracture properties on shear-wave scattering. So, in

this chapter I study the scattering characteristics of shear-waves in 3D models within an

isotropic background medium with the inclusion of fracture corridors.

In order to better understand S-wave scattering and minimise the effect of the

compressional P-waves, a point source is generated by using a moment tensor (MT) with

optimally oriented strike-slip double couple mechanisms to enhance S-wave interaction

with the fractures. The aim of this study is to investigate the scattering characteristic

of shear-waves as a function of the scale length of the heterogeneity. Specifically, I

consider fracture induced heterogeneity by varying the fracture size.

In this chapter, I examine the scattering characteristics of S-waves for a range of

scattering regimes. First, I present the parameters of the numerical models. Next, I

perform a qualitative analysis of shear-wave coda on the recorded seismograms for

different source polarisations and propagation paths relative to the fracture orientation. I

perform the RMS envelope analysis to examine the envelope broadening of shear-waves

due to the scattering. I study the distortion of shear-wave polarisation of different

fracture size against ka. Next, I perform the differential attenuation analysis of shear-

wave to compare my result with Hudson (1981) and Carter & Kendall (2006) in section

6.6. Finally, I explore the frequency content of the dataset and I describe the tapering

approach.

6.2 Modelling

In this chapter, I simulate wave propagation in 3D isotropic and heterogeneous media

using the FD algorithm WAVE (see section 3.2). A suite of models are generated

consisting of: two non-fracture models and several fracture models. All models have

the same background isotropic elasticity . However, I vary the fracture properties (i.e.,
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fracture size a, fracture density ε, and fracture compliances ZN and ZT ) to study the

scattering characteristics and sensitivity of various fracture properties.

The isotropic elastic medium has density ρ = 2600 kg/m3, P-wave velocity VP =

5700 m/s and S-wave velocity VS = 3200 m/s (VP/VS = 1.78). The fracture models

have a geometry as depicted in Figure 6.2, where the specific parameters of the various

fracture models are given in Table 6.1. In general, for each fracture model there are two

types of source-receiver orientations: (1) in-line receivers parallel to the fracture strike

(hereafter called Parallel) and (2) in-line receivers normal to the fracture strike (hereafter

called Normal). Seismic waves are generated using a moment tensor source having a

seismic moment magnitude 1× 1011 N m and a strike-slip double-couple mechanism

with strike 90◦, dip of 90◦ and slip 45◦ (for Parallel) and a 0◦, dip of 90◦ and slip 45◦

(for Normal). These double-couple source mechanisms allow the source polarisations in

the Y-Z and the X-Z planes to be equally partitioned. The source is located at (xs, ys, zs)

= (100 m, 150 m, 140 m) for the Parallel model and (xs, ys, zs)=(150 m, 100 m, 150 m)

for the Normal model. In all models the fracture volume has dimension of 80 m × 80 m

× 80 m. The geometry of the model has overall dimension of 300 m × 300 m × 300 m.

In both the Normal and Parallel models, only one set of discrete vertical fractures is

inserted with orientation along the X-axis (see Figure 6.2). For each model, a Ricker

wavelet source with a period of 5.5 ms is used. Thus, based on dispersion and stability

requirements, a grid spacing of dh = 1 m and time increment of approximately dt =

0.08 ms are used.

Following the scaling relation of Worthington & Lubbe (2007), the fracture size a

dictates the allowable range of normal compliance (ZN ) and tangential compliance (ZT )

summarised in Table 6.1. A normal to tangential compliance ratio of ZN/ZT = 0.33 is

chosen to represent water-filled fractures (Lubbe et al., 2008) and is representative of

realistic compliance ratios of fractured reservoirs (e.g., Verdon & Wüstefeld, 2013).
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Figure 6.2: Geometry of 3D FD model. The red star shows the source location, the triangles
show the receiver array and the grey rectangles within the sub-volume schematically represent
the vertical fractures:(a) the linear receiver array is parallel to the fracture plane and (b) the
linear receiver array is normal to the fracture plane. The receiver spacing in the Parallel model
is 10 m while in the Normal model the receiver are 9 m, 100 m and 150 m far from the source.

For the Parallel model, a single linear array of 15 three-component (3C) receivers

is placed through the centre of model in the X-direction. The first receiver is outside

fracture zone in the isotropic background medium, the subsequent 8 are within the

fracture volume and the last 6 are on the outside at the other end. The receiver spacing

is 10 m. This series of receivers can be used to evaluate the evolution of scattering

characteristics when S-waves propagate parallel to the fractured plane. I introduce the

Normal model to investigate the behaviour of S-waves as they propagate in the normal

direction to the fracture planes. To allow direct comparison between the Normal and

Parallel results, the fracture geometry is kept consistent. Due to the constraints imposed

by WAVE implementation, receivers could only be placed outside the fracture zone (i.e.

to generate the fracture volume using CRACKGEN the receiver locations are required

priori). Thus, in the Normal model, the receivers are placed at distance 9 m, 100 m and

150 m respectively from the source.
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Figures 6.3 and 6.4 show snapshots of the P- and S-waves from the moment tensor

point source in the isotropic, homogeneous model for the Parallel and Normal geome-

tries. The wavefronts show clear P- and S-waves with no scattering energy as well as the

diagnostic radiation pattern for a double-couple source. Figures 6.3a and 6.4c represent

the identity of particle velocity in these planes based on the slip 45◦ and the dip 90◦ of

the source mechanism which is the same in the Parallel and Normal models.

Figure 6.5 displays snapshots of wave propagation in the X-Y horizontal plane for

the Parallel isotropic and fracture model and Normal fracture model at times 33.1 and

48.9 ms. The revolution of the scattered energy is highlighted within the big circle for

the fractured models. The splitting of the shear-waves in the Parallel model is visible

(Figure 6.5d).

Y

Z

S-wave

(a)

X

Y

S-wave
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(b)

X

Z

S-wave

P-wave

(c)

Figure 6.3: 2D Snapshots of particle velocity at time 17.3 ms for the double-couple source for
Parallel type model at source location (100 m, 150 m, 140 m) in the three primary planes:(a)
Y-Z plane, (b) X-Y plane and (c) X-Z plane. Red is the maximum velocity and indicates greater
than 4 mm/s.

6.3 Qualitative analysis of shear-wave coda

In this section, I examine qualitatively the influence of fractures on S-waves as they

propagate through a fracture volume. Before showing the results of the wavefront
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Figure 6.4: 2D Snapshots of particle velocity at time 17.3 ms for double-couple source for
Normal type model at source location (150 m, 200 m, 150 m) in the three primary planes:(a)
Y-Z plane, (b) X-Y plane and (c) X-Z plane.

scattering, I show the 3C signals for the isotropic model in Figures 6.6 and 6.7. With

the exception of only minor P-wave contamination, the signals show a clean S-wave.

Note that the visible P-wave energy is the result of the numerical implementation of

the moment-tensor source. These figures verify the equal magnitude and similarity of

waveforms on the Y-, Z- and X-, Z-components. Furthermore, it can be seen there is

no energy on the third-component in the direction of wave propagation, as would be

expected for S-wave propagation in isotropic media.

Figures 6.8-6.11 show the 15 3C seismograms for the Parallel models having the

fracture sizes a = 6 m, 10 m, 20 m and 50 m. Although the MT source prescribes initial

polarisations of equal magnitude on the Y- and Z-components for the Parallel models,

small forward scattered energy can be observed on the X-component due to edge and

tip diffractions.

As expected, the Y- and Z-components are initially equal at the first station, but with

increasing offset there are significant changes in the waveforms, especially for a = 20

m, where λS ≈ 18 m. In other words, between Figures 6.8-6.9 we see a transition from

the long wave approximation (LWA) or Rayleigh scattering (where λS/a > 1) to the
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Boundary reflection
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Figure 6.5: Continued...



Chapter 6. Scattering characteristic of shear-waves in fractured media 146

P-wave
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Scattering

(e) Normal at t=33.1 ms

S-wave
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Boundary reflection

(f) Normal at t=48.9 ms

Figure 6.5: 2D snapshots of seismic wave propagation in the X-Y plane at times 33.1 and 48.9
ms in the isotropic medium (a and b), and the Parallel (c and d) and Normal (e and f) fracture
models.

Mie scattering regime (where λS/a→ 1) in Figure 6.10. In Figure 6.11, the scattering

regime falls under the geometric regime, where the waveforms show similarity with

those in Figures 6.8-6.9.

Figure 6.12 displays 3C seismograms for Normal models at the 3 stations, 9 m, 100

m and 150 m away from the source location, for all desired fracture sizes a = 6 m, 10 m,

20 m and 50 m. For the same reason as for the Parallel models, the source polarisation

is equal in the X- and Z-axis for the Normal models as can be observed in the left-hand

column of Figure 6.12.

For station 1, as the fracture size increases from 6 m to 50 m, we observe an increase

in signals arriving after the primary wave. These signals are related to increasing

specular reflections from the fracture zone. For station 2, we observe a substantial

amount of scattering, specifically when the fracture size is comparable or larger than

the wavelength of the S-wave (λS ≈ 18 m) at a = 20 m and 50 m. As in the Parallel
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Figure 6.6: Three-component waveforms observed at the 15 stations in the Parallel model with
no fractures (i.e., isotropic medium). Hereafter the components are depicted: X-component (red
color), Y-component (blue) and Z-component (black).The arrows for the station 6 show the P-
and S-wave signals. Amplitude is particle velocity in mm/s.

Figure 6.7: Three-component waveforms observed at the 3 stations in the Normal model with
no fractures (i.e., isotropic medium).
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Figure 6.8: Three-component waveforms observed at 15 stations in the Parallel model with
fracture size 6 m.
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Figure 6.9: Three-component waveforms observed at 15 stations in the Parallel model with
fracture size 10 m.
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Figure 6.10: Three-component waveforms observed at 15 stations in the Parallel model with
fracture size 20 m.
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Figure 6.11: Three-component waveforms observed at 15 stations in the Parallel model with
fracture size 50 m.
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Figure 6.12: Three-component waveforms observed at 3 stations in the Normal models with
fracture size 6 m, 10 m, 20 m, and 50 m.

models, we also observe scattering in the forward direction on the Y-component.

In the following sections, the scattering characteristics for these fracture models

will be evaluated by using different techniques such as envelope broadening, amplitude

spectrum and polarisation analysis.

6.4 RMS envelope analysis

This section discusses the time widening effect of wavelets due to scattering within the

fractured medium. I evaluate this effect quantitatively by analysing the root-mean-square

(RMS) waveform envelopes. The envelope width approach has been used previously to

characterise random heterogeneities in the crust (Sato, 1989). Based on Sato (1989),

the width can be qualified by the parameter tq and depends on the intensity of velocity
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fluctuation, scale length of the random heterogeneity as well as attenuation factor Q−1.

The RMS envelope is estimated using the following steps:

1. Calculate the square amplitude of the waveform,

2. Average the square amplitude trace using a moving window of time length 7.9 ms

(which is the width of the MS envelope),

3. Calculate the square root of step (2), and

4. Smooth the result in step (3).

To do the smoothing, I implement the method ”loess” from the MATLAB R© toolbox,

which is a local regression algorithm using weighted linear least squares with a second

degree polynomial mode. The strength of excitation of the scattered waves can be

described by measuring the envelope width tq, which is defined by the interval time

from the onset of the shear wave to the time when the RMS envelope amplitude decreases

to the half of its maximum value (see Figure 6.13).

Figure 6.13 shows the 15 3C RMS envelopes of the Parallel fracture model for

fracture size a = 6 m. The RMS envelopes were calculated at 15 stations and show

the evolution of the envelopes at 10 m increments. As expected in Figure 6.8, the

RMS amplitude of the X-component is smaller (one order of magnitude) than the Y-

and Z-components. As the shear-waves propagate through the fracture volume we

observe a gradual decrease in the amplitude of the envelopes with minor changes in the

shape of the envelope for the Y- and Z-components and more drastic changes for the

X-component.

Figure 6.14 represents the RMS envelope for Normal fracture models with fracture

sizes 6 m, 10 m, 20 m and 50 m for 3 stations. Similar to Figure 6.13, the components

normal to wave propagation (the X- and Z-components) have approximately the same
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initial RMS amplitude, whereas the component along the direction of propagation (the

Y-component) displays initial RMS amplitude one order of magnitude smaller than the

X- and Z-components as well as drastically different envelope shapes.

Figure 6.15 shows the result of measuring tq against ka for the Parallel models

with fracture density ε = 0.1, ZN/ZT = 0.33 and fracture sizes 6 m, 10 m , 20 m and

50 m. I use the scaled wavenumber ka (product of wavenumber 2π
λ

and fracture size

a) to normalise the results. Thus for fracture sizes 6 m, 10 m, 20 m and 50 m, the

values of ka are approximately 2.2, 3.6, 7.2 and 17.9. Parametrizing in terms of ka

allows easier discussion with respect to scattering regimes. Within the near-offset, the

tq value of the first 5 stations is heavily variable. This variation is due to the fact that

the propagation distance is not sufficiently long enough to allow self-averaging (Müller

& Shapiro, 2001). However, for the other stations self-averaging occurs such that the

value of tq for the Y- and Z-components become stable and equal to approximately

0.013 s for fracture sizes a = 6 m and 10 m (i.e., ka ≈ 2.2 and 3.6 respectively). In

contrast, for ka ≈ 7.2 and 17.9 (for stations 9-15) the tq value increases, especially for

ka ≈ 17.9. The Y-component envelope experiences notable increases compare to the

Z-component at ka ≈ 17.9. Since the last 5 stations are placed outside the fractured

corridor far from the source, the tq values are nearly constant. This confirms the fact

that the wave is propagating in the isotropic homogeneous medium and that the effect

of scattering remains constant but is imprinted on the wave after station 10.

Figure 6.16 shows the tq values for Normal models for all fracture sizes. At station

1, the tq values are constant for the X- and Z-components at approximately 9 ms, while

for the Y-component the tq values are unstable due to the fact that very little energy is on

this component. The results from station 2 show similar pattern to station 10 in Figure

6.15. for ka values between 2.2 and 3.6, tq decreases and then increases to values of 21

ms, 39 ms and 15 ms for the X-, Y- and Z-components, respectively. Station 3 shows
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Figure 6.13: Continued...
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Figure 6.13: Three-component RMS envelopes observed at 15 stations in the fractured medium
(Parallel) with fracture size 6 m. The black dashed line shows the maximum RMS envelope,
and thick cyan line depicts the envelope width time tq.

Figure 6.14: Continued...
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Figure 6.14: Three-component RMS envelopes observed at 3 stations in the fractured medium
(Normal) with fracture size 6 m, 10 m, 20 m and 50 m. The black dashed line shows the
maximum RMS envelope, and thick cyan line depicts the envelope width time tq.

similar pattern to station 2 for ka between 2.2 and 7.2, but with lower maximum values

of 16.4 ms, 20.9 ms and 19.6 ms for ka = 7.2. Displaying a different pattern to station

2, tq values for ka = 17.9 at station 3 are smaller. Again we observe a reduction in the

tq values indicating that wavefront healing is occurring.

To remove the effect of geometrical spreading in my analysis, the tq values for

each station in the Parallel and Normal models are divided by the tq values of the

corresponding isotropic homogeneous models. Figure 6.17 displays the normalised

tq values (hereafter called tq) against the scaled wavenumber ka for the Y- and Z-

components. The RMS values are zero for the X-component in Parallel model with

no fractures, and so the X-component is not normalised and hence is not available in

this figure. The first 5 stations reveal that the tq values are nearly equal to 1 for all ka

values, indicating an equivalent homogeneous medium. There is a gradual increase over

stations 6-10 where the Y-component shows much larger values than the Z-component.
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Figure 6.15: Plot of the envelope width tq against ka for the fracture sizes 6 m,10 m, 20 m and
50 m (Parallel). The tq are shown for Y-component (blue) and Z-component (black).

The tq values for a = 50 m (ka ≈ 17.9) ranges between 1.2 to 1.6. The results of the last

5 stations remain almost stable as expected as wave propagates within the homogeneous

section of the model. There is very little change in the tq value for the Z-component

which is polarised in the direction of the fracture plane. However, there is significant

change in the tq value for the Y-component which is polarised normal to plane.

For the Normal models, the tq value versus ka is plotted in the Figure 6.18 for the

X- and Z-components. Similar to the X-component in the Parallel model, the results for

Y-component are excluded in this figure. The results are close to 1.0 at station 1 for all

ka values as expected as this station is within the isotropic homogeneous medium before

the fracture zone. For station 2, we observe similar behaviour to that shown in Figure
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Figure 6.16: Plot of the envelope width tq against ka for the fracture sizes 6 m,10 m, 20 m and
50 m (Normal). The tq are shown for X-component (red star), Y-component (blue square) and
Z-component (black cross).

6.17, yet where we observe both components having an increase in tq values, especially

for ka ≈ 7.2 and 17.9. In principal we would expect the increase for both components

to be equal (both components are polarised tangential to the fracture planes). However,

we notice that the X-component is larger than Z-component at station 2 and vice versa at

station 3. Since the fracture distribution is generated randomly, this particular realisation

yields more heterogeneity in the X-direction. It is expected that including significantly

more random realisations we would expect, statistically, that the X- and Z-components

would behave similarly.

As the seismic moment magnitude of the source is equal in the Parallel and Normal

models, it is useful to compare the results of the tq values for the three primary axes
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Figure 6.17: Plot of the normalised envelope width tq against ka for the fracture sizes 6 m,10
m, 20 m and 50 m (Parallel).

of polarisation, X-, Y-, and Z-axes. In Figure 6.19, the tq results for the X- and Z-

components from the Normal model and the Y- and Z-components from the Parallel

model are shown together. I compare the values for station 1 of both Parallel and

Normal models, which show the result of the wave prior to entering the fracture zone.

I also show the values for stations 10 and 15 of the Parallel model and stations 2 and

3 of the Normal model, which show the results of the wave after exiting the fracture

volume. Here after, I refer to station 1 as the proximal station, station 2 in Normal

model and station 10 in Parallel model as the exit station and station 3 in the Normal

model and station 15 in the Parallel model as the distal station. At the proximal station,

the tq values are approximately 1.0, while at the exit station the tq values increase, with
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Figure 6.18: Plot of the normalised envelope width tq against ka for the fracture sizes 6 m,10
m, 20 m and 50 m (Normal).

more significant increase for ka > 3. The tq values between ka 7.2 to 17.9 decrease for

Normal model at the distal station in comparison with the those at the exit station except

for the Z-component. In general, the tq values for the Normal model, with propagation

direction normal to the fracture plane, are larger than those for the Parallel model. This

can be explained by the fact that in the normal direction the wavefront interacts to a

much larger extent with the fracture surfaces and so experiences much greater edge

and tip diffractions. For propagation parallel to the fracture surface the wavefront still

interacts with the fracture surface, but to a lesser extent.
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Figure 6.19: Plot of normal envelope width tq against ka for the fracture sizes 6 m,10 m, 20 m
and 50 m (Parallel and Normal).

6.5 Distortion of shear-wave polarisation

In a homogeneous isotropic medium, the particle motion of the P-wave is normal to

the spherical wavefront and the polarisation of the S-wave is confined to within the

wavefront (i.e., normal to the propagation direction) and defined by the source radiation

pattern. However, in a heterogeneous medium, P-wave particle motion and S-wave

polarisation can deviate from linearity. The deviation from linearity (or waveform

distortion) can be assessed by tracking the trajectory of the waveform particle motion.

The shape of the time evolution of the particle motion (or hodogram) can be diagnostic of

the seismic waveform distortion. A number of earlier studies have shown the usefulness

of hodograms for detecting heterogeneity (e.g., Nishizawa et al., 1983; Nishimura, 1996;

Fukushima et al., 2003).

Figures 6.20-6.23 display the particle motion of the direct S-waves in the Y-Z plane

for the Parallel model with fracture sizes a = 6 m, 10 m, 20 m and 50 m for all 15

stations. The figures are plotted for a time window encompassing two cycles of the

dominant period (11 ms) of the S-wave. The first station shows a linear particle motion

as expected for a homogeneous isotropic medium. With increasing distance from the

source, the waveforms become increasingly distorted and deviate from linear motion.
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After station 10 the hodograms remain steady. In Figures 6.20-6.21, the particle motion

of the S-waves display typical behaviour of orthogonal fast and slow shear-waves (i.e.,

shear-wave splitting). In Figures 6.22-6.23, the polarisation is not consistent with that

of shear-wave splitting and shows a more random behaviour.

Figure 6.20: Particle motion of S-waves in the Y-Z plane for the Parallel model with fracture
sizes 6 m. In this figure and Figures 6.21-6.23, the time window is set from the onset of the
S-wave and has a time length two times the period of the Ricker source wavelet.

Figure 6.24 displays the particle motion for the Normal model for all fracture sizes

at the 3 stations. For all fracture sizes at station 1, the particle motions are linear as

expected. At stations 2 and 3 by increasing fracture size the distortion from linearity

also increases. For wave propagation normal to the fracture planes shear-wave splitting

will not develop. Although the waveform envelopes where shown to increase (i.e.,

waveform broadening) in the previous section, the actual polarisation of the shear-waves

remain relatively unaffected for scenarios where ka 6 3. For ka > 3, we observe

significant deviation from linearity, primarily as a result of the multiple reverberations
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Figure 6.21: Particle motion of S-waves in the Y-Z plane for the Parallel model with fracture
sizes 10 m.

Figure 6.22: Particle motion of S-waves in the Y-Z plane for the Parallel model with fracture
sizes 20 m.
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Figure 6.23: Particle motion of S-waves in the Y-Z plane for the Parallel model with fracture
sizes 50 m.

due to specular type reflections from the interaction of the spherical wavefront and the

fracture surfaces (i.e., stronger coherent scattering).

To quantitatively evaluate the distortion of the direct shear-waves, the RMS am-

plitude ratio between the Y- and Z-components for Parallel models, and the X- and

Z-components for Normal models are calculated. The RMS amplitude ratios are calcu-

lated according to

χParallel =

√∑
iRMSzi∑
iRMSyi

, (6.1)

χNormal =

√∑
iRMSzi∑
iRMSxi

, (6.2)
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Figure 6.24: Particle motion of S-waves in the X-Z plane for the Normal model with fracture
sizes 6 m, 10 m, 20 m, 50 m. The time window is set from the onset of the S-wave and has a
time length two times the period of the Ricker source wavelet.

where RMSxi , RMSyi and RMSzi are the RMS amplitudes of X, Y and Z components

at time ti, respectively. The summation is evaluated over a time window that is two

times the dominant period (11 ms) of the S-wave source from the onset.

Figures 6.25 and 6.26 show the RMS amplitude ratio for Parallel χParallel and

Normal χNormal models, respectively, against ka for all the fracture sizes in this study.

As shown in Figure 6.25, for a = 6 m and all stations the values of χParallel are very

close to 1, which indicates that the same amount of the energy is partitioned into the

Y- and Z-components. Also, for all fracture sizes for the first 5 stations the values of

χParallel remain nearly equal to 1. For fracture sizes a = 10 m, 20 m and 50 m (i.e.

ka = 3.6, 7.2 and 17.9 respectively), the values of χParallel are noticeably larger than 1,

especially when ka = 17.9. However, for ka = 3.6 and 7.2 the χParallel values fluctuate

in a more or less random pattern between stations 6-10. Outside the fracture zone

(stations 11-15) the χParallel values rise for increasing ka to about 1.5 (at ka = 7.2) and
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then fall to about 1.2 at ka = 17.9.

The results for the χNormal calculations are shown in Figure 6.26 for the 3 stations.

Similar to χParallel at station 1, for all fracture sizes the χNormal values are about 1, but

at station 2 the χNormal values increase with increasing ka to 1.8 at ka = 7.2 and then

decrease to 1.3 at ka = 17.9. From Figures 6.25 and 6.26, it can seen that the largest

distortion occurs when the fracture size a is comparable to the dominant wavelength λS

(i.e., a =20 m) in the Mie scattering regime.

Figure 6.25: Plot of the RMS ratio χParallel against ka for the fracture sizes 6 m,10 m, 20 m
and 50 m.
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Figure 6.26: Plot of the RMS ratio χNormal against ka for the fracture sizes 6 m,10 m, 20 m
and 50 m.

6.6 Differential attenuation analysis

There are several techniques to measure wave attenuation, such as the centroid frequency

shift method (e.g., Quan & Harris, 1997), the dominant frequency shift method (Barnes,

1993) and the spectral ratio method (e.g., Båth, 1974). In this section, I first consider the

waveform frequency content of both the Parallel and Normal models and then discuss

and implement the spectral analysis method to quantify attenuation.

6.6.1 Amplitude spectrum analysis

In the previous section, I analysed the effects of scattering in the time-domain. In this

section, I examine the data in the frequency domain. Analysis in the frequency domain

allows me to apply filters much more easily as well as analyse the whole signal as a

spectrum in the frequency domain rather than at specific points in time around the onset

of the direct P- or S-waves. Analysis in the frequency domain allows comparison of

waveforms frequency content such as dominant or central frequency and their respective

amplitude. The comparison can be unambiguous and allow comparison between stations

and components.
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Figures 6.27-6.30 show the amplitude spectrum for the Parallel models for all

fracture sizes for Z- and Y-components. To eliminate the effect of geometrical spreading,

each component has been normalised by its corresponding station component in the

model with no fractures. A Hanning window has been used to taper the shear-waves

prior to Fourier transformation into the frequency domain. The window length varies

depending on the model fracture size. For all fracture sizes, the amplitude spectrum of

the Y-component is more attenuated at higher frequencies than Z-component (this is

expected as the Y-component is polarised normal to the fracture surface whereas the

Z-component is polarised parallel to the fracture surface). With increasing distance from

the source in the fracture zone for all models, attenuation increases and the frequency

content of all waveforms is reduced. The results remain relatively constant for stations

10-15, where the receivers are located in the isotropic homogeneous background. I

compute the peak (maximum) frequency as well as the dominant frequency at each

station and for each component.The dominant frequency as defined by (Barnes, 1993)

is given

f 2
d =

∫∞
0
f 4P (f)df∫∞

0
f 2P (f)df

, (6.3)

where fd is the dominant frequency and P (f) is the power spectrum.

To facilitate the results of the spectral analysis of the Parallel models for all fracture

sizes, I combined all the results for station 15 as well as the spectrum for the isotropic

medium (orange colour) in Figure 6.31. In this figure it can be observed that for the Z-

component, attenuation is greater for the smaller fracture sizes and the peak frequency is

approximately 210 Hz. However, for the Y-component the most attenuation is obtained

for a = 10 m and 20 m (blue and green dashed line respectively) and the peak frequency

has shifted to a lower frequency (≈ 173 Hz). Furthermore, the Y-component shows

larger attenuation than the Z-component. The results indicate that a larger number
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Figure 6.27: Fourier amplitude spectrum for model having fracture density 0.1 and fracture size
6 m (Parallel). For this figure and Figures 6.28-6.30 the solid black line depicts the Z-component,
the blue dashed line depicts the Y-components (Figures 6.27-6.30) and the small green and
magenta bars, respectively show the dominant and peak frequencies of spectra.

Figure 6.28: Fourier amplitude spectrum of model having fracture density of 0.1 and fracture
size 10 m (Parallel).
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Figure 6.29: Fourier amplitude spectrum of model having fracture density of 0.1 and fracture
size 20 m (Parallel).

Figure 6.30: Fourier amplitude spectrum of model having fracture density of 0.1 and fracture
size 50 m (Parallel).
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of small fractures causes higher attenuation than a small number of large fractures.

Moreover, the medium with small fracture size behaves as a low pass filter. Furthermore,

there is discrepency between peak frequency of the signal for the isotrpic medium (≈

200 Hz) and for the fratured media (≈ 210 Hz) due to (1) some possible numerical

dispersion although the optimal FD grid parameters are used (e.g., Wang et al., 2015)

and (2) some observed distortion of input wavelets when using finite-difference moment

tensor implementation on numerical grids.

Figure 6.31: Amplitude spectra of Y- and Z-velocities of Parallel with ε = 0.1 and a =10 m,
20 m and 50 m at the station 15. The small magenta bars show the peak frequency of spectra.

Figure 6.32 shows the amplitude spectra for the Normal models at the 3 stations

for all fracture sizes. With the exception of the first station (where the spectra results

are very closely equal) the remaining stations reveal that the Z-component is more
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attenuated at higher frequencies than the X-component. For both components, the peak

frequencies have shifted to lower frequencies; the shift being greatest for models with

larger fracture size.

Figure 6.32: Fourier amplitude spectrum of models having fracture density of 0.1 and fracture
sizes 6 m, 10 m, 20 m and 50 m (Normal). The solid red line depicts the X-component and the
black dashed line depicts the Z-components.

6.6.2 Amplitude spectral ratio

In section 6.2 it was mentioned that the presence of discrete fractures leads to elastic

heterogeneity. If fractures or cracks form within coherent and subparallel patterns, the

seismic velocity will be dependent on the direction of wave propagation. For instance,

P-waves propagating parallel to the fracture planes will travel faster than P-waves

propagating normal to the fracture planes. The velocity between these two directions

depends on several variables, such as the medium elastic constants, pore-fluid properties
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and saturation, the fracture density as well as the distribution and shape of fractures

(Carter & Kendall, 2006). The presence of aligned fracture sets often results in seismic

anisotropy, although there is a transition where a fractured medium evolves from a

scattering to anisotropic regime (Yousef & Angus, 2016).

Velocity anisotropy is theoretically formulated for various types of anisotropic

symmetries, such as transverse isotropy (TI), azimuthal anisotropy and fracture-induced

anisotropy. Yet, velocity anisotropy alone is not sufficient to reveal the reasons that lead

to elastic anisotropy. For instance, crystal scale lattice preferred orientation (LPO) and

aligned fractures can theoretically result in the same observed anisotropy. However,

attenuation anisotropy can differ between these two causes of observed anisotropy and

this is due to frequency-dependent mechanisms. For instance, when the scale length of

heterogeneity is smaller than the seismic wavelength, low frequency waves have longer

splitting times than high frequency waves (Carter & Kendall, 2006). For media where

the shear-wave velocity is frequency-dependent, the medium elasticity is required to be

dispersive. Furthermore, there is a relation between dispersion and intrinsic attenuation

(e.g., Aki & Richards, 1980; Hudson, 1981).

Hudson (1981) studied velocity and attenuation anisotropy of vertically fractured

media with low fracture density and introduced a model valid in the high frequency limit,

where wavelengths are larger than fracture size. The Hudson (1981) model predicts that

the slow shear-wave will be more attenuated at higher frequencies relative to the fast

shear-wave. Chapman et al. (2003) extended the Hudson (1981) model and showed the

dependency of shear-wave splitting on waveform frequency and fracture size. Carter

& Kendall (2006) tested the Hudson (1981) model on several microseismic datasets of

shear-waves splitting to predict attenuation of the split shear-waves. However, Carter

& Kendall (2006) observed that sometimes the fast shear-wave was more attenuated at

higher frequencies than the slow shear-wave.
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In this section I implement the spectral ratio method for the Y- and Z-components

for the Parallel models and the X- and Z-components for the Normal models for the

model with fracture density ε = 0.1 and fracture sizes a = 6 m, 10 m, 20 m and

50 m. To do this, the intrinsic attenuation Q−1 is assumed to be a constant. For the

Parallel models, where the propagation direction is along the strike of the fracture

planes and for the initial prescribed source polarisation orientation, shear-wave splitting

has the potential to develop in the synthetic data. Hence, the calculation of differential

attenuation ∆Q−1Z−Y for the Parallel models might provide a measure of shear-wave

scattering attenuation. Differential attenuation is the difference in the loss of energy per

cycle experienced by pairs shear-components along the fractured part of the raypath.

The measurement of the quality factor is not a true value, rather it approximates Q−1,

and is refereed as specific attenuation.

The amplitude of the shear-wave can be written as a function of frequency f ,

An(f) = Gn(f)Sn(f)Rn(f)exp(
−πtnf
Qn

), (6.4)

where An(f) is the amplitude spectrum at a particular station, n is the component (i.e.,

X, Y or Z), Gn(f) is the transfer function between source and station, Sn(f) is the

amplitude at the source, Rn(f) is the effective transfer function of the receiver (i.e.,

including rotation, the coupling, the impulse response of the receiver and the recording

system response) and t is the traveltime between source and receiver.

Assuming the pairs of shear-wave components have the same transfer function, the

same effective transfer function and the same spectral frequency at the source, then the

spectral ratio method (Båth, 1974) can provide a measure of the relative attenuation

between two orthogonal components. The calculation of the loge amplitude spectral

ratio (LASR) for the Paralel and Normal models, respectively, are formed,
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ln

(
AZ(f)

AY (f)

)
= −π

(
tZ
QZ

− tY
QY

)
f + c. (6.5a)

ln

(
AZ(f)

AX(f)

)
= −π

(
tZ
QZ

− tX
QX

)
f + c. (6.5b)

The c term is a constant value that results from the frequency-independent differences

in the Gn, Sn and Rn values in Equation 6.4. The tn values for the Parallel and the

Normal model represent the arrival time for each component. For the Parallel model

tZ 6 tY (tZ = tY if no shear-wave splitting and tZ < tY if there is shear-wave splitting,

where the Z-component is the fast shear-wave). For the Normal model the tZ = tX . If

attenuation Q−1 is constant, the LASR should be approximately linear with frequency

over the signal bandwith. Figures 6.33-6.36 display the LASR for the Parallel models

against frequency. Regression is performed over a limited bandwidth (black dashed

line). The differential attenuation for the Parallel and Normal models, respectively, can

be defined as

∆Q−1Z−Y = πtZ

(
tY

tZQY

− 1

QZ

)
(6.6a)

∆Q−1Z−X = πtZ

(
tX

tZQX

− 1

QZ

)
. (6.6b)

The term πtZ is positive, so the remaining term can be either positive or negative. If

Equation 6.6a is negative, the Z-component is more attenuated than the Y-component

since tY /tZ is greater than or equal to one. However, when Equation 6.6a is positive, we

can not strictly say which component has been more attenuated. Without a measurement

of either Q−1Z or Q−1Y , it is not possible to know which component has experienced

more attenuation at high frequencies due to the trade-off between the additional travel

time of the slow shear-wave spent in the attenuative medium and the magnitude of
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attenuation affecting the slow component being larger than the fast component (i.e., the

slow shear-wave has experienced a greater attenuation per cycle).

In section 6.6.1 I show that the Y-component (slow shear-wave) has larger atten-

uation than the Z-component (fast shear-wave), which is consistent with results of

Hudson (1981). However, Carter & Kendall (2006) observe that the fast shear-wave can

experience larger attenuation than the slow shear-wave. Carter & Kendall (2006) note

that the relative peak amplitude of the split shear-waves depends more on the initial po-

larization of the incident shear-wave than on the relative levels of frequency-dependent

attenuation.

Figures 6.33-6.36 show the LASR for Parallel models for all fracture sizes. The

regression lines (black dashed lines) reveal a positive gradient over the bandwidth of

0-200 Hz. The positive gradient suggests that the Y-component is more attenuated than

the Z-component. As well in Figures 6.27-6.30 the difference between peak frequency

of the shear-waves is positive (fpZ − fpY > 0) indicating that the Y-component is more

attenuated. However, it is not possible to determine whether QZ > QY or whether

QZ ≈ QY since the Y-component could be more attenuated due to the longer travel

time in fractured medium.

The LASR for the Normal model can be simplified based on the assumption that the

shear-wave onset times will be equal (tX = tZ)

∆Q−1Z−X = πtZ

(
1

QX

− 1

QZ

)
. (6.7)

The term πtZ is positive and the remaining term in brackets can be either positive

or negative. If Equation 6.7 is positive, the X-component is more attenuated than Z-

component (Q−1X > Q−1Z ). Equation 6.7 intuitively reveals that differences in attenuation

between the X- and Z-components in the Normal model is not influenced by differential
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Figure 6.33: Amplitude spectral ratio of Y- and Z-axis Loge(AZ(f)/AY (f)) of Parallel with
ε =0.1 and a = 6 m. The dashed line shows the regression line over limited bandwidth.

Figure 6.34: Amplitude spectral ratio of Y- and Z-axis Loge(AZ(f)/AY (f)) of Parallel with
ε =0.1 and a = 10 m. The dashed line shows the regression line over limited bandwidth.
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Figure 6.35: Amplitude spectral ratio of Y- and Z-axis Loge(AZ(f)/AY (f)) of Parallel with
ε =0.1 and a = 20 m. The dashed line shows the regression line over limited bandwidth.

Figure 6.36: Amplitude spectral ratio of Y- and Z-axis Loge(AZ(f)/AY (f)) of Parallel with
ε = 0.1 and a = 50 m. The dashed line shows the regression line over limited bandwidth.
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travel times. The LASR for the Z- and X-components of the Normal model is shown in

Figure 6.37, where the regression gradient lines (black dashed line) for almost all the

stations is negative. The negative regression line implies that Q−1Z > Q−1X . However,

with the exception of a few frequency notches, the slopes are approximately horizontal.

We would expect that the X- and Z-component attenuation to be identical and so my

results could be influenced by focusing and defocusing of discrete frequency bands.

Figures 6.38-6.39 depict the differential attenuations (∆Q−1Z−Y and fpZ−fpY ) against

the difference in the peak frequencies fpZ − fpY and the dominant frequency fdZ − fdY

respectively. From Figures 6.38-6.39 it can be seen that the differential attenuation

in the parallel model ∆Q−1Z−Y > 0 is consistent with the observation of a shift in the

peak frequency fpZ − fpY > 0. However, it can be seen that for the Normal model

the differential attenuation ∆Q−1Z−X < 0, while fpZ − fpX 6 0. These results implies

that the differential attenuation method is adequate to examine the attenuation of each

component individually, except when ∆Q−1Z−Y > 0. In addition, differential attenuation

is an appropriate method and is compatible with method of peak frequency shift.

6.7 Summary

In this chapter, I examined the widening effect of wavelets due to scattering within

a fractured medium by using several different approaches. The examination was

performed by implementing numerical modelling of wave propagation in discrete

fracture models with a desired high fracture density and for various fracture sizes. I

used different methods including the RMS envelope analysis, shear-wave polarisation

distortion, differential attenuation analysis and peak frequency shifting to assess the

scattering behaviour of those parametrised models in which the propagation direction is

either normal or parallel to the fracture surfaces.
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Figure 6.37: Amplitude spectral ratio of X- and Z-axis Loge(AZ(f)/AX(f)) of Parallel with
ε = 0.1 and a = 6 m, 10 m, 20 m and 50 m from top to bottom. The dashed line shows the
regression line over limited bandwidth.

(a) (b)

Figure 6.38: Differential attenuation plotted against difference in peak frequency, fpZ − fpY
for the Parallel (a) model and fpZ − fpX for the Normal model (b).
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(a) (b)

Figure 6.39: Differential attenuation plotted against difference in peak frequency, fdZ − fdY
for the Parallel (a) model and fdZ − fdX for the Normal model (b).

For the Parallel model the largest tq was obtained for the largest fracture size (a =

50 m), while for the Normal model the largest tq occurred for fracture size, a = 20 m

(where a is approximately equal to the λS). Neerhoff & Van der Hijden (1984) and

Van Der Hijden & Neerhoff (1984) theoretically examined the scattering characteristics

of shear-waves of planar cracks of finite width for ka > 3. Based on their results,

scattering is prominent when the shear-wave propagates perpendicular to the fracture

planes. In general, the average tq values for the Normal model were generally larger

than the Parallel model. This is consistent with theory and is likely due to the wavefront

interactions with fracture surfaces that result in diffraction from the tip and edge of

fractures.

By using the shear-wave propagation distortion approach, I observed that the particle

motion qualitatively shows a distortion from linearity. This is symptomatic of orthogonal

shear-wave splitting that occurs in the Parallel model for small fracture sizes (6 and 10

m) relative to the λS . For the Normal model there is no splitting but there is observable

distortion for fracture sizes larger 10 m (i.e., ka > 3.6). The χParallel and χNormal

values for the direct shear-waves for the Parallel and Normal models increased by ka ≈
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7.2 and then decreased at ka ≈ 17.9. In other words, the transition occurs when the

fracture size a =20 m is comparable to the dominant shear wavelength λS in the Mie

scattering regime.

The amplitude spectral analysis for the Parallel model indicated that the Y-component

was attenuated more than the Z-component, which is consistent with the observed dif-

ference in dominant frequency of the shear-waves being positive (fdZ − fdY > 0).

Also, for the Parallel model the attenuation of Z-component is greater for the smaller

fracture sizes (see Figure 6.31). However, for the Y-component the largest attenuation

appeared for the small fracture sizes a = 6 and 10 m. Moreover, the medium with

larger number of small fractures led to higher attenuation than the model with sparse

fractures. For the Normal model, the Z-component experienced broader attenuation than

the X-component, which is due to the spatial distribution of the randomly generated

fracture model realisation.

The gradient of regression line of amplitude spectral ratio over the limited bandwith

of 0-200 Hz was positive for the Parallel model (∆Q−1Z−Y ) and negative for the Normal

model (∆Q−1Z−X). The LASR method was compatible to the result of peak frequency

shifting of direct shear-waves, where for the Normal models is negative(fdZ − fdX < 0).

Stochastically, the result for the Normal models would be expected be equal for the

X- and Z-components as the result intuitively depend on the fracture geometry in the

fracture volume for the consistent source polarisation.

Although the results from this chapter remain inconclusive in terms of using shear-

wave scattering phenomena as means of imaging fracture properties, previous works

suggest that considering the frequency-dependent response can provide constraint of

fracture size and fracture infill (e.g., Chapman et al., 2003; Maultzsch, 2005; Baird

et al., 2013). Further work should include performing the analysis in discrete frequency

bands as well as a range of different source dominant frequencies.



Chapter 7

Discussion

7.1 Fracture parameter inversion from SWS

Assessing the inversion of SWS measurements for fracture properties using full wave-

form seismic synthetic using DFM represents a novel contribution. Previous feasibility

studies of fracture property inversion have been performed assuming the whole medium

in which the ray propagates is an effective fractured medium (Verdon et al., 2009, 2011a).

For instance, Verdon et al. (2009) noted that there is a potential pitfall in the inversion

for fracture strike and density when using SWS data from only sub-vertical arrivals and

that SWS data from a medium with two sets of fractures can only be inverted for one set

of fractures. They suggested a wider range of arrivals, including sub-horizontal arrivals,

is required to precisely characterise the fractured medium, particularly the anisotropic

parameters. However, Verdon et al. (2009, 2011a) did not validate the methodology

of using an effective medium approximation with realistic band-limited full waveform
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seismic data.

In this thesis, I designed the receiver array and model geometry to yield the most

suitable arrivals, specifically sub-horizontal arrivals (see Figure 4.5). Despite this, there

is no azimuth coverage between 0◦ and 40◦ as well as 140◦ and 180◦ since the raypaths

do not travel through the fracture volume where SWS would develop. This is due to the

single microseismic source implemented at one side, which allows the raypaths to travel

through the fracture volume. This may be crucial for the models with double fracture

sets, where the number of good SWS results (Q ≥ 0.75) falls to approximately half

(≈ 4%) in comparison to those models with a single fracture set (≈ 7%). In addition,

the number of good SWS is a key factor in the inversion process, and thus I choose a

minimum of 5 good SWS, leading to a stable inversion (see Figure 4.9).

The assumption that the whole medium is an effective fractured medium in the

inversion algorithm is a significant limitation. Alternative approaches that allow spatial

variation in anisotropy and isotropic regimes exist (Abt & Fischer, 2008; Wookey,

2012), but they tend to be underdetermined problems due to requiring significantly more

model parameters (Verdon et al., 2009). This may result in the inversion process to

be computationally time consuming, as well as requiring a priori assumptions of the

medium.

Figure 4.6 shows a histogram of the SWS measurement quality Q of 6624 SWS

measurements. The largest volume of SWS data for both single and double fracture set

models are in the category good null (≈ 4% and 7%, respectively). My results validate

the automated approach showing that the approach can be successful in recognising

unreliable SWS measurements that typically would require manual inspection. The

good category Q can be shifted to the higher values if the volume of the data is large

enough and/or if the S-wave is of very good quality. The method is applicable for the

large microseismic data (e.g., Jones, 2010; Wuestefeld et al., 2010).
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The separation of Q into different categories through implementation of the au-

tomated approach leads to the detection of null SWS measurements (see Figure 4.6).

The null measurements can potentially characterise the anisotropy symmetry system

of the probing medium. However, it is necessary to take into consideration that the

interpretation of the null data is controversial as the null measurements can be due to

the low signal-to-noise ratio or the coincidence of the initial S-wave polarisation with

the symmetry plane (see Figure 3.8). Figure 4.7 plots the distribution of Q against the

difference between the initial S-wave polarisation and the fast polarisation direction φ in

the shear-wave plane (i.e., SV-SH plane). Reliable measurements are found to have 20◦

separation from the null direction (i.e., 0◦ and 90◦). Furthermore, another cause of null

measurements can be due to the medium being isotropic. However, detailed examination

of null measurements is beyond the scope of this PhD, as the null measurements are

ignored in the inversion approach of Verdon et al. (2009).

Worthington & Lubbe (2007) investigated the relationship between fracture length

scale and compliance. Figure 7.1 plots a compilation of laboratory and field esti-

mates of fracture compliance against fracture length scale. A compilation of ZN/ZT

measurements is reviewed by Verdon & Wüstefeld (2013) in which the majority of

measurements are from laboratory studies. The models in this thesis are consistent

with the fracture sizes, observed in hydrocarbon reservoirs. There is a lack of upscaled

measurements between 10 and 100 m fracture length (Figure 2.6). This study fills the

gap of fracture size which has not examined in the literature and is important in the

reservoir characterisation. Figure 4.12 shows that the compliances of the models are

compatible with the findings of Worthington & Lubbe (2007). Worthington & Lubbe

(2007) discussed that the fracture compliances of the laboratory scale are certainly

smaller at least one order of magnitude than the fracture compliances of the field scale

data. Therefore, for each model parameter I set two different compliances (see Table
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4.2). Figure 4.12 indicates that by increasing compliance by one order of magnitude

while keeping ZN/ZT constant leads to models with good SWS.

The ZN/ZT measurement is sensitive to both the fracture fluid infill and the fracture

structure itself (Foord et al., 2015). However, in this thesis the examination of fracture

infill structure is ignored even though the study of fracture infill is of great interest.

Figure 7.1: Fracture compliance as a function of fracture length scale. Grey is the compilation
of laboratory and filed data by Worthington (2008). Black bars are data from Far (2011). Red
is data from Verdon & Wüstefeld (2013). Blue represents the data from this study. Figure is
modified from Worthington (2008).

7.1.1 Errors in inverted fracture parameters

From Figures 4.14 to 4.20 it can be observed that the inversion algorithm is capable

of estimating fracture strike robustly without prior knowledge of the medium fracture
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properties. The outliers are likely influenced by the non-linear nature of the inversion

algorithm and the fact that the inversion uses only a single event to characterise a finite

fracture volume. In contrast, it should be noted that the inverted fracture densities are

systematically underestimated from the true value for the single fracture set (i.e., the in-

version results clustered between 0.00 and 0.06), while it is systematically overestimated

for the double fracture sets for the low compliance ratios (i.e., ZN/ZT = 0.33 and 0.60).

The underestimation of fracture density is addressed by Verdon et al. (2009, 2011b) due

to the inversion algorithm assumptions that the whole medium is fractured and also for

non-orthogonal fracture sets there is a trade-off between the inverted fracture densities.

Also, the problem of non-uniqueness has been observed by Bakulin et al. (2002) for

fracture densities of orthogonal fracture sets. Furthermore, for the double fracture set

models, the inverted strike is more constrain for the 90◦ than the 0◦ (Figures 4.18 and

4.20). This is likely due to the fact that most raypaths with good SWS are sub/parallel

to the fracture strike 90◦. Moreover, for the double fracture set models the estimation

of the orthogonality of fracture sets is 90 ± 30 (Figures 4.21-4.22). This suggests that

the inversion method can determine the orthogonality of fracture strike precisely than

the absolute fracture strike of each fracture set. However, by increasing ZN/ZT the

orthogonality of fracture strike is more constrained. This is a potential approach to

distinguish between scalar fracture (i.e., ZN/ZT = 1.00) and fracture fluid infill.

7.2 Quantifying a transition from scattering to anisotropy

I have shown the scale-dependence of seismic anisotropy with new results specific to

SWS. I explore the influence of Rayleigh, Mie and geometric scattering on shear-wave

propagation through explicit fracture volumes. I find that SWS develops under condi-

tions when the ratio of wavelength to fracture size is greater than 3 (Rayleigh scattering),
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where scattering from coherent fractures leads to an effective anisotropy. When the

ratio of wavelength to fracture size is between 1 and 3, the scattering regime transitions

from Rayleigh to Mie and no effective anisotropy develops. Within the Mie scattering

regime the SWS measurements are unstable and of poor quality. When wavelength to

fracture size is less than 1, geometric scattering occurs where I have potentially observe

behaviour similar to transverse isotropy. In terms of fracture properties, I observe that

seismic anisotropy is more sensitive to fracture density than fracture compliance ratio.

I observe that the transition from scattering to an effective anisotropic regime occurs

over a propagation distance between 1 to 2 wavelengths and as such indicates that

the inversion of seismic anisotropy parameters based on EMM will be biased. More

importantly, I find that the linear slip effective medium model is inconsistent with my

results. I show that the application of the linear slip model to predict fracture properties

leads to errors of approximately 400% in fracture spacing (equivalent to fracture density)

and 60% in fracture compliance.

It should be noted that numerous studies based on the linear slip EMM representation

have yielded reliable estimates fracture orientation and the spatial location of fracture

systems. However, my results indicate that the linear slip model will systematically fail

in providing quantitatively accurate estimates of physical fracture properties, such as

fracture density and compliance. EMM approaches are still valuable, especially in terms

of identifying the location and orientation of fracture sets as well as semi-quantitatively

estimates of temporal variations in fracture properties, such as compliance ratio. For

accurate and robust quantitative estimates of in situ fracture properties, improvements to

effective medium models will be required as well as the incorporation of a full waveform

inversion techniques that enable capturing the influence of stress state as well as specific

fracture properties such as fracture size, filling and compliance.
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7.3 Scattering characteristics of shear-waves in fractured

media

7.3.1 Envelope broadening

The scattering characteristic of S-wave can be used as an additional attribute (rather

than P-wave) to characterise fractured media. In Chapter 6, the different techniques

such as envelope broadening, amplitude spectrum and polarisation analysis have been

used to evaluate the S-wave scattering characteristics. Fukushima et al. (2003) study the

S-wave scattering of rock samples in the lab. However, the study makes no attempts to

include a different scale length of discrete fractured medium. Furthermore, their study

are limited to the ka smaller than 1.5 which can not explain the transitional behaviour

of scattering regimes. Figures 6.17-6.18 display the normalised envelope width tq

against ka for the Parallel and Normal models, respectively. The ka ≈ 1 for the first

5 stations in the Parallel model indicate that for the near offsets (i.e., approximately 3

times the wavelength of the S-wave λS ≈ 18 m), the medium behaves as an equivalent

homogeneous medium. For stations 6-10 larger coda excitation occurs for the Y-

component (i.e, normal to the fracture plane) than the Z-component (i.e., parallel to the

fracture plane). For both the Parallel and Normal models, larger excitation happens for

ka > 3 which is much larger than the findings of Fukushima et al. (2003) (i.e, in the

sample of gabbro rock ka ≈ 1.4 and in the granite rock ka ≈ 0.4). However, the largest

tq occurs for the Normal models as shown in Figure 6.19 and suggests that in the Normal

models the wavefronts interact to a much larger extent with fracture surfaces and so

undergo much greater edge and tip diffractions. This is compatible with the results of

Fukushima et al. (2003) for their rock samples. Moreover, Figure 6.19 indicates that

in general larger excitation happens for ka ≈ 7.2 instead of 17.9. Willis et al. (2006)
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introduce a techniques of scattering index SI for the detection of the fracture strike and

spacing for the range of the random discrete fracture models (10 m, 25 m, 35 m, 50

m and 100 m) in which the maximum SI happens for fracture length size a = 35 m,

where the fracture size is 0.35 times the P-wavelength (λP = 100 m) and 0.6 times

the S-wavelength (λS = 58 m). Moreover, the large tq for ka > 5 in Figure 6.19 is

consistent with the theoretical findings of the Neerhoff & Van der Hijden (1984) and

Van Der Hijden & Neerhoff (1984), where they investigate the scattering characteristics

of S-waves due to planar crack of finite length having ka > 3. This is consistent for the

Normal model, where the back-angle scattering results in large envelope broadening for

the ka > 5.

Coda wave excitation is addressed in field observations for a frequency range of 2-30

Hz (Fukushima et al., 2003), where the scattering observations are due to the forward

modelling (ka > 10) as the wavelength is much smaller than the characteristic length of

heterogeneity of the media (Sato et al., 2012; Fehler et al., 2000; Sato, 1989). However,

the results in this thesis show that envelope broadening happens for ka < 5. This seems

to be due to the large angle scattering rather than the multiple forward scattering when

the scale of the crack size is smaller or comparable to the wavelength.

7.3.2 Distortion of shear-wave polarisation

The distortion of shear-wave particle motion for the Parallel models show typical

behaviour of shear-wave splitting for fracture sizes a = 6 m and 10 m as shown in

Figures 6.20-6.21, whereas for the larger fracture sizes (i.e., a = 20 m and 50 m)

the shear-wave particle motions display more random behaviour (see Figures 6.22-

6.23). However, for the Normal models, as the wave is normal to the fracture plane,

there is no development of shear-wave splitting. For the Normal model, the waveform

envelop increases and the shear-wave polarisation remains relatively unaffected for
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ka 6 3 (see Figure 6.24). However, for ka > 3, a significant deviation from linearity

happens, essentially as a result of reverberations due to the specular reflections from

the interaction of the spherical wavefronts and the fracture surfaces (i.e, string coherent

scattering).

The distortion of shear-wave polarisation in the Parallel χParallel and Normal models

χNormal (see Figures 6.25-6.26) is noticeable for ka > 3 (i.e. for ka = 3.6, 7.2 and

17.9). The high χParallel is consistent with the broadening envelope and indicates large

scattering when ka > 3. The largest χParallel values for the station outside the fracture

zone (stations 11-15) happens at ka = 7.2 which is in the Mie scattering regime. For

the Normal models by increasing ka from 7.2 to 17.9 the shear-wave distortion χNormal

decreases and then increases between stations 2 and 3, while tq shows an increase and

then decrease (see Figure 6.19). This may be due to the random distribution of the

fractures, specifically at ka = 7.2 in Mie scattering regime.

7.4 Differential attenuation analysis

7.4.1 Amplitude spectrum

The amplitude spectrum for the Y-component is more attenuated at higher frequencies

than the Z-component for the Parallel models. This is expected as the Y-component is

polarised normal to the fracture planes whereas the Z-component is polarised parallel to

the fracture planes. Attenuation increases and thereby the frequency content decreases

by increasing the source-receiver distance in the fracture zone for all Parallel models

(see Figures 6.27-6.30). For the Z-component attenuation is increased with decreas-

ing fracture size (Figure 6.31); however, for the Y-component the largest attenuation

happenes for fracture sizes a = 10 m and 20 m. The findings of attenuation analysis

indicate that the large number of small fractures lead to larger wave attenuation than a
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small number of larger fractures. Furthermore, the medium with small fracture size acts

as a low pass filter which is consistent with the results of amplitude spectral analyses

for P-waves by Al-Rajhi (2012).

In contrast, for the Normal models, the amplitude spectrum for the Z-component is

more attenuated than the Y-component, which I would expect to be equal as both wave

components propagate normal to the fracture surface. The most likely explanation is

due to the random distribution of the fractures. Moreover, the attenuation is larger and

thereby the dominant frequency is shifted more to the lower frequencies with increasing

fracture size. The most attenuation occurs in the forward scattering regime, where the

wavefront interacts in a reverberation pattern with the fractures.

7.4.2 Amplitude spectral ratio

I perform an analysis of the amplitude spectral ratio for the pair of shear-waves in the

ray frame for both the Parallel and the Normal models based on the assumption that

the intrinsic attenuation Q−1 is constant between the source and receivers (see Figures

6.33-6.37). The amplitude spectral method is based on the linear regression of loge

amplitude spectral ratio (LASR). However, the LASR measurements are limited to

where the regression lines are linear over the limited range of 20-180 Hz. I exclude the

analyses beyond this frequency range as the LASRs are non-linear. The non-linearity

of the LASRs is likely due to the scattering of some frequencies which can lead to the

highly inaccurate results.

The differential attenuation measurements for the Parallel models ∆Q−1Z−Y are

positive, and as such it is not possible to strictly say whether the Y-component or the

Z-component is more attenuated. The results of amplitude spectral analysis indicate that

the Y-component, (i.e., slow shear-wave S2) is attenuated more than the Z-component

(i.e., fast shear S1 component). However, Carter & Kendall (2006) point out that
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sometimes the S1 component can be poorer in high frequency than the S2, which is

contrary to the attenuation anisotropy predicted by the effective medium models of

Hudson (1981) for the elastic moduli.

The differential attenuation measurements for the Normal models ∆Q−1Z−X are

almost all negative, which implies that Q−1Z > Q−1X . However, there are a few re-

gression lines which are horizontal. This is implies that the attenuation of the X- and

Z-components are identical and is expected due to the focusing and defocusing of

discrete frequency bands.



Chapter 8

Conclusions and recommendations

8.1 Conclusions

8.1.1 Seismic imaging of fractured media

Imaging and characterising fractures based on inverting microseismic SWS measure-

ments is a relatively new method in the field of petroleum production. Thus, in Chapter

4 I studied the robustness of inverting SWS measurements from a suite of synthetic

microseismic data from fractured media with known fracture parameters. The synthetic

fractured media are simulated for a single fracture set and a more complicated double

fracture set. By using a 3D FD algorithm I simulate the propagation of shear wave in the

fractured media based on an appropriate geometry of source and receivers in order to

acquire numerous high Q SWS measurements which are used in the fracture inversion

process. There are five important findings: (1) based on the results of the full waveform
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FD synthetics the dominant frequency of the microseismicity is crucial in extracting

reliable fracture parameters due to the relationship between the scale length of the

probing seismic wave and the fracture size; (2) the automated SWS approach is capable

of detecting unreliable SWS measurements; (3) increasing fracture density leads to a

greater number of the models with good SWS, particularly for small fractures; (4) by

increasing normal and tangential compliances by one order of magnitude while keeping

ZN/ZT constant leads to models with good SWS, except for models with fracture size

a = 50 m and ZN/ZT 6 0.60 (see Figure 4.12); and (5) the inversion for fracture strike

is more constrained than fracture density as the average errors for the fracture strike are

between 11◦ and 25◦, whereas for density the average errors are between 65% and 80%

for the single fracture set and 30% and 90% for the double fracture sets. In summary,

it is possible to image discrete fractures feasibly based upon some conditions: wide

azimuthal and large inclination coverage of high quality SWS measurements.

8.1.2 Quantifying a transition from scattering to anisotropy

I have shown the scale-dependence of seismic anisotropy with new results specific to

SWS. I explored the influence of Rayleigh, Mie and geometric scattering on shear-

wave propagation through explicit fracture volumes. I found that SWS develops under

conditions when the ratio of wavelength to fracture size is greater than 3 (Rayleigh

scattering), where scattering from coherent fractures leads to an effective anisotropy.

When the ratio of wavelength to fracture size is between 1 and 3, the scattering regime

transitions from Rayleigh to Mie scattering and no effective anisotropy develops. Within

the Mie scattering regime the SWS measurements are unstable and of poor quality.

When the wavelength to fracture size is less than 1, geometric scattering occurs and

I potentially observed behaviour similar to transverse isotropy. In terms of fracture

properties, I observed that seismic anisotropy is more sensitive to fracture density than
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fracture compliance ratio. I observed that the transition from scattering to an effective

anisotropic regime occurs over a propagation distance between 1 to 2 wavelengths and

as such indicates that the inversion of seismic anisotropy parameters based on EMM

will be biased. More importantly, I found that the linear slip effective medium model is

inconsistent with my results. I showed that the application of the linear slip model to

predict fracture properties leads to errors of approximately 400% in fracture spacing

(equivalent to fracture density) and 60% in fracture compliance.

It should be noted that numerous studies based on the linear slip EMM representation

have yielded reliable estimates fracture orientation and the spatial location of fracture

systems. However, my results indicate that the linear slip model will systematically fail

in providing quantitatively accurate estimates of physical fracture properties, such as

fracture density and compliance. EMM approaches are still valuable, especially in terms

of identifying the location and orientation of fracture sets as well as semi-quantitatively

estimates of temporal variations in fracture properties, such as compliance ratio. For

accurate and robust quantitative estimates of in situ fracture properties, improvements to

effective medium models will be required as well as the incorporation of a full waveform

inversion technique that enable capturing the influence of stress state as well as specific

fracture properties such as fracture size, filling and compliance.

8.1.3 Scattering characterisation of shear-wave in fractured media

I examined the widening effect of wavelets due to scattering within a fractured medium

by using several different approaches. The examination was performed by implementing

numerical modelling of wave propagation in discrete fracture models with a desired

fracture density and for various fracture sizes. I used different methods including the

RMS envelope analysis, shear-wave polarisation distortion, differential attenuation anal-

ysis and peak frequency shifting to assess the scattering behaviour of those parametrised
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models in which the propagation direction is either normal or parallel to the fracture sur-

faces. The quantitative measurements showed strong observable deviations for fracture

sizes of the order of or greater than the dominant seismic wavelength within the Mie

and geometric scattering regime for both propagation normal and parallel to fracture

strike. In other words, this occurs when the ka exceeds 5 for both the Parallel and the

Normal models. The results suggest that strong scattering is symptomatic of fractures

having size on the same order of the probing seismic wave. Furthermore, the distortion

of the shear-wave polarisation happens when ka exceeds 3 for both the Parallel and the

Normal models.

Two different source polarisations and two different source-receiver orientations

were used to study propagation normal and parallel to the fracture surface. The results

indicated that scattering is notable for the Normal models where shear-wave propagates

perpendicular to the aligned fracture surface.

The amplitude spectrum analysis for the Parallel models reveals that by increasing

the fracture size both the fast and slow shear-waves are less attenuated, whereas this

is contrary to the Normal models. The results also indicate that the slow shear-wave

attenuation undergoes higher attenuation than the fast shear-wave for the Normal models.

The amplitude spectral ratio, based on the calculation of the gradient of regression

line over limited frequency bandwith, was performed for both models. It was con-

cluded that the differential attenuation in both models are consistent with their relative

difference in the peak/dominant frequency.

8.2 Recommendations for future study

In this PhD research, a parametrisation study was performed through modelling numer-

ous fractured media with different fracture parameters. This led to an examination of the
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capability of a fracture inversion approach by placing quantitative constraints on fracture

strike and fracture density. The 3D FD algorithm WAVE is limited to orthogonal planar

fractures limited to the three primary axes and thus greater efforts are required to develop

the algorithm to incorporate different fracture shapes and orientations. Moreover, it

would be useful to assess the effects of different random spatial distributions of fractures,

such as Gaussian distribution, exponential distribution and Gamma distribution (Vlastos

et al., 2003) in the study of seismic fractured characterisation.

There are some inaccuracies in terms of inverted fracture strike and fracture density.

For instance, there is high uncertainty in fracture density inversion. Thus improvements

are needed in the inversion approach. It is suggested that incorporating more micro-

seismic events around the receivers and fracture volume as well as implementing more

advanced inversion approach. Anisotropic tomography allows the medium to be divided

into different domains, where each domain has different anisotropic characteristics

(e.g., Wookey, 2012). Although anisotropic tomography is computationally intensive, it

would be expected to yield more precise and accurate results.

In this study the null SWS measurements have been excluded, whereas these mea-

surements can be used to reveal more information about the medium background and

also where the raypaths are normal to the fracture surfaces. However, such data must

filter out any null data due to high signal noise. Therefore, using null measurements in

anisotropic tomography can constrain the inversion parameters.

The study in chapter 5 shows that the findings are more sensitive to the fracture

density than the compliance ratio. Thus it would be interesting to examine the study of

scattering shear-wave for the models with broad value of fracture density and also for

different fracture compliance ratio. Although the application of the linear slip model

in quantitative estimates could be accurate if further data are available to calibrate

the EMM results to in situ properties, improvements could be made to the model to
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incorporate realistic scattering effects.
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Båth, B. (1974). Spectral analysis in geophysics. Amsterdam: Elsevier.

Booth, D. C., & Crampin, S. (1985b). Shear-wave polarizations on a curved wavefront

at an isotropic free surface. Geophysical Journal International, 83(1), 31–45.

Booth, D. C., Crampin, S., Evans, R., & Roberts, G. (1985a). Shear-wave polarizations

near the north anatolian fault–i. evidence for anisotropy-induced shear-wave splitting.

Geophysical Journal International, 83(1), 61–73.

Borgos, H. G., Cowie, P. A., & Dawers, N. H. (2000). Practicalities of extrapolating

one-dimensional fault and fracture size-frequency distributions to higher-dimensional

samples. Journal of Geophysical Research: Solid Earth, 105(B12), 28377–28391.

Bratton, T., Canh, D. V., Van Que, N., Duc, N. V., Gillespie, P., Hunt, D., Li, B.,

Marcinew, R., Ray, S., Montaron, B., et al. (2006). The nature of naturally fractured

reservoirs. Oilfield Review, 18(2), 4–23.

Brown, R. J., & Korringa, J. (1975). On the dependence of the elastic properties of a

porous rock on the compressibility of the pore fluid. Geophysics, 40(4), 608–616.

Buchbinder, G. G. (1985). Shear-wave splitting and anisotropy in the charlevoix seismic

zone, quebec. Geophysical Research Letters, 12(7), 425–428.

Carcione, J. M., Herman, G. C., & Ten Kroode, A. (2002). Seismic modeling. Geo-

physics, 67(4), 1304–1325.

Carter, A. J., & Kendall, J. M. (2006). Attenuation anisotropy and the relative frequency

content of split shear waves. Geophysical Journal International, 165(3), 865–874.



Bibliography 203

Chapman, C. t., & Pratt, R. (1992). Traveltime tomography in anisotropic media-II.

theory. Geophysical Journal International, 109(1), 1–19.

Chapman, M., Maultzsch, S., Liu, E., & Li, X.-Y. (2003). The effect of fluid saturation

in an anisotropic multi-scale equant porosity model. Journal of Applied Geophysics,

54(3), 191–202.

Cheng, C. (1993). Crack models for a transversely isotropic medium. Journal of

Geophysical Research: Solid Earth, 98(B1), 675–684.

Chevrot, S. (2000). Multichannel analysis of shear wave splitting. Journal of Geophysi-

cal Research: Solid Earth, 105(B9), 21579–21590.

Chichinina, T., Obolentseva, I., Dugarov, G., et al. (2015). Effective-medium anisotropic

models of fractured rocks of ti symmetry: analysis of constraints and limitations in

linear slip model. In 2015 SEG Annual Meeting. Society of Exploration Geophysi-

cists.

Chichinina, T., Sabinin, V., & Ronquillo-Jarillo, G. (2006). Qvoa analysis: P-wave

attenuation anisotropy for fracture characterization. Geophysics, 71(3), C37–C48.

Choi, M.-K., Bobet, A., & Pyrak-Nolte, L. J. (2014). The effect of surface roughness

and mixed-mode loading on the stiffness ratio κx/κz for fractures. Geophysics, 79(5),

D319–D331.

Coates, R. T., & Schoenberg, M. (1995). Finite-difference modeling of faults and

fractures. Geophysics, 60(5), 1514–1526.

Crampin, S. (1978). Seismic-wave propagation through a cracked solid: polarization as

a possible dilatancy diagnostic. Geophysical Journal International, 53(3), 467–496.



Bibliography 204

Crampin, S. (1981). A review of wave motion in anisotropic and cracked elastic-media.

Wave motion, 3(4), 343–391.

Crampin, S. (1984). An introduction to wave propagation in anisotropic media. Geo-

physical Journal International, 76(1), 17–28.

Crampin, S. (1994). The fracture criticality of crustal rocks. Geophysical Journal

International, 118(2), 428–438.
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Appendix A

Software and programmes in the thesis

1. Programmes

The Programmes used in this PhD are listed below:

• WAVE

The WAVE is a 3D FD programme developed by Hildyard et al. (1995) which is

capable of accurately modelling diffraction, refraction, reflection and transmission

of stress waves.

• WVPLOT

The WVPLOT is a post-processing package developed by Hildyard et al. (1995)

to plot and or print the WAVE programme’s outputs such as snapshot and time

series. I used this Programme only for inspection of the results on the screen.

• SHEBA

SHEBA (SHEar-wave Birefringence Analysis) is an algorithm developed by

Teanby et al. (2004a) to conduct the analysis of shear-wave splitting.
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• INSAFF

The INSAFF is an inversion programme by Verdon et al. (2009) to invert for frac-

tured medium anisotropy parameters such as fracture strike, density, Thomsen’s

parameters and compliance ratio. The programme is based on effective medium

theory.

2. Software

The software used in this PhD are listed below:

• DosBox

DosBox is a open-source DOS-emulator sofware that emulates graphics and

sound cards. I used DosBox to visualise the result from WAVE by implementing

the GUI WVPLOT.

• CorelDRAW

CorelDRAW is commercial software for general graphic design. I use it for

displaying some figures in Chapter 2.

• Matlab

Matlab is a commercial software package that has broad applications in numerical

computing, signal processing, 2D/3D visualization, etc. I use it for the picking

of direct P- and S-waves for the SWS analysis. Furthermore, it is used for the

scattering analysis in chapter 6 and general result visualisation.
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Effective elastic constants of fractured

media- Hudson’s model

The Hudson (1980, 1981) models predict the effective properties of embedded frac-

tures with small, thin and penny-shaped ellipsoidal cracks or inclusion in an isotropic

background medium. His model is based on a scattering theory analysis of the mean

wavefield. The effective stiffness matrix is expressed by Mavko et al. (2009),

Ceff
ij = C0

ij + C1
ij + C2

ij, (B.1)

where C0
ij (i, j = 1 − 6 using Voigt notation) is the isotropic background stiffness

tensor. C1
ij and C2

ij are the first- and second-order corrections, respectively. ε is the

crack density defined in Chapter 3. For a single fracture set with normal oriented along

the 3-axis, the Cl
ij components are expressed as,

C1
11 = −λ

2

µ
εU3, (B.2a)
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C1
13 = −λ(λ+ 2µ)

µ
εU3, (B.2b)

C1
33 = −(λ+ 2µ)2

µ
εU3, (B.2c)

C1
44 = −λεU1, (B.2d)

C1
66 = 0, (B.2e)

C2
11 =

b

15

λ2

(λ+ 2µ)
(εU3)

2, (B.2f)

C2
13 =

b

15
λ(εU3)

2, (B.2g)

C2
33 =

b

15
(λ+ 2µ)(εU3)

2, (B.2h)

C2
44 =

2

15

µ(3λ+ 8µ)

λ+ 2µ
(εU1)

2, (B.2i)

C2
66 = 0, (B.2j)

where

b = 15
λ2

µ2
+ 28

λ

µ
+ 28,

ε =
N

V
a3.

The isotropic background moduli are λ and µ. and a is crack radius. The symmetry

conditions can be applied for corrections C1
ij and C2

ij like for elastic tensor C of an

elastic media (see Equation 3.21).

The terms U1 and U3 depend on the crack conditions. For dry cracks

U1 =
16(λ+ 2µ)

3(3λ+ 4µ)
U3 =

4(λ+ 2µ)

3(λ+ µ)
(B.3)

For cracks filled with weak materials whose bulk and shear moduli are K ′ and µ′,
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U1 =
16(λ+ 2µ)

3(3λ+ 4µ)(1 +M)
U3 =

4(λ+ 2µ)

3(λ+ µ)(1 +K)
(B.4)

where

M =
4µ′

παaµ

(λ+ 2µ)

(3λ+ 4µ)
K =

(K ′ +
4

3
µ′)(λ+ µ)

παaµ(λ+ µ)
(B.5)

The criteria for an inclusion to be weak depend on its shape or aspect ratio αa as

well as on the relative moduli of the inclusion and matrix material. Dry cracks can be

modelled by setting the inclusion material moduli to zero. Fluid-saturated cracks can be

modelled by setting the inclusion shear modulus to zero.
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Effective elastic constants of fractured

media- Liu’s model

Based on LS theory, which there is liner relation between displacement discontinuity

and the stress traction in DFM, Liu et al. (2000) classify that the natural fractures into

three type models as explained in 2.2.1. when the fracture normal is aligned the unit

norm n = (1,0,0), the effective compliance matrix is

Ceff =



C11 C12
C12

1 + EN
0 0 0

C12 C11
C12

1 + EN
0 0 0

C12

1 + EN

C12

1 + EN

C11

1 + EN
0 0 0

0 0 0
C44

1 + ET
0 0

0 0 0 0
C44

1 + ET
0

0 0 0 0 0 C44


=



λ+ 2µ λ
λ

1 + EN
0 0 0

λ λ+ 2µ
λ

1 + EN
0 0 0

λ

1 + EN

λ

1 + EN

λ+ 2µ

1 + EN
0 0 0

0 0 0
µ

1 + ET
0 0

0 0 0 0
µ

1 + ET
0

0 0 0 0 0 µ


,(C.1)

where EN = (λ+ 2µ)ZN and ET = µZT are related to the fracture model. For model

(a),
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EN =

(
N ca3c
H

)(
λ+ 2µ

µ

)
U3

[
1 + πU3(N

ca2c)
3/2(1− µ

λ+ 2µ
)

]
, (C.2a)

ET =

(
N ca3c
H

)
U1

[
1 +

π

4
U1(N

ca2c)
3/2(3− 2µ

λ+ 2µ
)

]
, (C.2b)

and for (b) model,

EN =
(λ+ 2µ)2

4µ(λ+ µ)(NwHb)

(
1 + 2

√
Nwb2

)−1
, (C.3a)

ET =
(3λ+ 4µ)

8µ(λ+ µ)(NwHb)

(
1 + 2

√
Nwb2

)−1
, (C.3b)

where ac is crack radius, N c is the number density of cracks on the fault surface and

H is the average fault spacing. Note that Equation C.2a is valid only for small (N ca2)

and also Nw is the number density of welded regions and Equation C.3a is valid for

small (Nwb2) as well. The terms U1 and U3 are related to the internal crack conditions

(Hudson & Liu, 1999; Liu et al., 2000):

for dry crack, i.e., a crack filled with inviscid gas with high compressibility,

U1 =
16(λ+ 2µ)

3(3λ+ 4µ)
=

16

3

1− ν
2− ν

U3 =
4(λ+ 2µ)

3(λ+ µ)
=

8

3
(1− ν), (C.4)

ZN
ZT

=
3λ+ 4µ

4(λ+ µ)
= 1− ν

2
, (C.5)

where ν = λ/2(λ + µ) is the Poisson’s ratio for the isotropic background (Liu et al.,

2000). The compliance ration ZN/ZT ≈ 1 when ν is small in the range (0.1 6 ν 6

0.25).

for infinity thin liquid infill cracks (filled with inviscid liquid of low compressibility),
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U1 =
16(λ+ 2µ)

3(3λ+ 4µ)
U3 = 0, (C.6)

Therefore, ZN = 0 and ZN/ZT = 0.
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Inversion results for single and double

fracture set models

Size (m) ε KN(Pa/m) # ε α(◦) ∆ε(%) ∆α(◦)
6 0.1 6× 1011 17 0.023 86.92 77.00 3.08
6 0.04 6× 1010 12 0.012 75.35 70.00 14.65
6 0.08 6× 1010 16 0.02 98.00 75.00 8.00
10 0.1 3× 1010 13 0.026 94.72 74.00 4.72
10 0.04 3× 1010 6 0.013 64.70 67.50 25.29
10 0.08 3× 1010 14 0.019 81.12 76.25 8.89
20 0.1 3× 109 10 0.055 52.69 45.00 37.31
20 0.02 3× 109 7 0.059 168.80 195.00 78.80
20 0.08 3× 109 6 0.039 121.45 51.25 31.45
50 0.04 3× 1010 13 0.025 117.86 37.50 27.86

Average 76.85 24.00
Standard deviation 41.62 21.536

Table D.1: Fracture inversion results for the single fracture model having ZN/ZT = 0.33 and a
minimum of 5 SWS results with Q > 0.75. The average and standard deviation of the error was
shown at the bottom of the table.
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Size (m) ε KN(Pa/m) # ε α(◦) ∆ε(%) ∆α(◦)
6 0.1 5× 1010 20 0.017 88.04 83.00 1.96
6 0.04 5× 1010 8 0.01 85.30 75.00 4.70

10 0.1 5× 1010 8 0.015 95.02 85.00 5.02
10 0.08 5× 1010 11 0.011 93.14 86.25 3.14
20 0.1 5× 109 12 0.039 126.03 61.00 36.03
20 0.08 5× 109 5 0.029 86.06 63.75 3.94
50 0.1 5× 109 6 0.024 91.88 76.00 1.88
50 0.04 5× 109 5 0.039 17.15 2.50 72.85

Average 66.56 16.19
Standard deviation 25.74 23.95

Table D.2: Fracture inversion results for the single fracture model having ZN/ZT = 0.6 and a
minimum of 5 SWS results with Q > 0.75. The average and standard deviation of the error was
shown at the bottom of the table.

Size (m) ε KN(Pa/m) # ε α(◦) ∆ε(%) ∆α(◦)
6 0.1 1× 1010 23 0.038 98.24 62.00 9.12
6 0.1 1× 1011 12 0.008 90.91 92.00 0.51
6 0.02 1× 1010 10 0.012 88.49 40.00 1.84
6 0.04 1× 1010 15 0.016 76.78 60.00 14.74
6 0.08 1× 1010 17 0.031 80.69 61.25 10.32
6 0.08 1× 1011 8 0.007 85.37 90.00 15.68

10 0.1 3× 1010 13 0.016 104.04 79.00 33.54
10 0.08 3× 1010 8 0.013 81.04 83.75 9.79
20 0.1 1× 109 9 0.053 52.00 65.00 15.24
20 0.1 1× 1010 9 0.023 100.57 78.00 0.22
20 0.04 1× 109 8 0.025 83.67 37.50 7.03
20 0.04 1× 1010 5 0.016 101.67 60.00 11.23
20 0.08 1× 109 7 0.023 78.74 77.00 3.16
20 0.08 1× 1010 6 0.014 86.00 82.05 4.40
50 0.1 3× 109 7 0.023 78.74 77.00 3.16
50 0.1 3× 1010 6 0.024 66.08 76.00 27.03
50 0.08 3× 109 7 0.029 82.06 63.75 8.90

Average 67.79 11.40
Standard deviation 16.36 8.75

Table D.3: Fracture inversion results for the single fracture model having ZN/ZT = 1.0 and a
minimum of 5 SWS results with Q > 0.75. The average and standard deviation of the error was
shown at the bottom of the table.
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Appendix E

Excess compliance computations from

different means

In Chapter 5, I compute the excess compliance based on the summed average fracture

spacing distribution using 6 different means: arithmetic, geometric, harmonic, quadratic,

cubic and weighted. The definition of each mean is formulated as following

(1) Weighted:

∆S =

∑n
i=1wi∆Si∑n
i=1wi

, (E.1)

where wi is the fractional distribution of the i-th fracture spacing (i.e., w1 = 0.04) and

∆Si is the corresponding compliance.

(2) Arithmetic:

∆S =
1

n

n∑
i=1

∆Si, (E.2)

240
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(3) Geometric:

∆S = n
√

∆S1 ∆S1 . . .∆Sn, (E.3)

(4) Quadratic:

∆S = n

√√√√ 1

n

n∑
i=1

∆Si
2, (E.4)

(5) Cubic:

∆S = n

√√√√ 1

n

n∑
i=1

∆Si
3, (E.5)

(6) Harmonic:

∆S =
n∑n

i=1 ∆Ci
, (E.6)

where ∆Ci =
1

∆Si
.


