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Preface

With this thesis, some of the chapters contain work presented in the

jointly authored publications:

I “Ram pressure stripping of the hot gaseous haloes of galaxies us-

ing the k-ǫ sub-grid turbulence model” – J. L. Close, J. M. Pit-

tard, T. W. Hartquist, S. A. E. G. Falle, 2013, MNRAS, 436,

3021.

II “Hydrodynamic ablation of protoplanetary disks via supernovae”

– J. L. Close, J. M. Pittard, MNRAS, submitted

Paper I forms the basis of Chapter 3. Paper II forms the basis of

Chapter 5. In both papers the hydrodynamical code used to perform

the simulations was written originally by S.A.E.G. Falle. The primary

author (J. L. Close) is responsible for the initial conditions, running

of the simulation and the analysis of the results. The primary author

wrote the first draft of the publication after which comments from

the co-authors were incorporated for the final draft. The simulations

presented in Chapter 4 uses the same hydrodynamical code.
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Abstract

This thesis presents numerical simulations of the ablation of galaxies

and stellar disks. A sub-grid turbulence model is used to improve

the accuracy of the results. Firstly simulations of galactic ram pres-

sure stripping are presented. A spherically symmetric galactic halo

is subjected to a wind of a number of different Mach numbers, both

with and without the turbulence model. The initial, instantaneous

stripping is unaffected by the use of the turbulence model. The tur-

bulence model leads to significantly greater levels of long term abla-

tion, which is more consistent with what simple analytic calculations

indicate, showing that the continual Kelvin-Helmholtz stripping plays

a significant role in the ram pressure stripping and this is hidden by

the finite resolution of simulations without turbulence models.

Secondly the turbulence model is applied to galactic disk simulations.

In high Mach number (∼ 15) rotating disks the turbulence generated

from the internal stresses in the disk causes it to become unstable

and erroneously expand in the z direction. This is not the case for

lower Mach number disks, such as dwarf disk galaxies. Further devel-

opments are needed in turbulence modelling if disk galaxies are to be

simulated in this way.



Finally inviscid simulations of the interaction of a supernova rem-

nant on a stellar disk are presented. The supernova remnant is simu-

lated hydrodynamically as opposed to using analytical approximations

which represents an improvement on previous models. A number of

inclination angles of the disk are considered which is not possible with

previous two dimensional simulations. Mass loss rates are calculated

and compared to other competing processes. Similarly to disk galax-

ies, the inclination angle only has a large effect on the evolution when

the disk is close to edge on. Edge on disks develop an asymmetry

when the ablation period is less than the rotation period of the disk.

Contamination of the disk with supernova material is also investigate

and is found to be low (about one part in 200, 000 in the highest case),

consistent with previous results.
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Chapter 1

Introduction

The evolution of almost all astrophysical objects is influenced in some way by

the environment in which it lives. Objects that are otherwise identical can follow

very different evolutionary paths depending on how it interacts with the medium

around it and so it is important to understand these interactions in order to create

a full picture of the evolution of the object itself. Many objects (e.g. molecular

clouds, filaments, circumstellar disks, galaxies) are comprised largely of gas or

have gas as a significant component and are thus susceptible to erosion/ablation

from the relative motion between them and their surrounding medium. Relative

motion can arise from movement of the object though the medium or due to the

presence of strong shocks and winds which are driven though the medium (e.g.

jets, stellar winds and supernovae).

This chapter outlines some examples of ablation in astrophysics, and forms

the background to this thesis. In Section 1.1 observational evidence for the ram

pressure stripping of gas from galaxies is noted as well as numerical simulations

of the process. Section 1.2 notes the processes by which protoplanetary disks are
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Figure 1.1: The original Hubble sequence of galaxies (from Hubble (1936)).

dispersed and how external factors, such as stellar winds and supernova remnants

(SNRs) can play a role.

1.1 Galactic Ram Pressure Stripping

1.1.1 Galaxy Morphology

Galaxies can be classified into a surprisingly small number of types. First in-

troduced by Hubble (1926), galaxies can be classified into ellipticals, spirals and

irregulars simply by shape. Hubble (1926) also introduced the concept of “early”,

“intermediate” and “late” types, referring not to their chronology but outlining

a sequence of increasing complexity. This system has since been extended (de

Vaucouleurs 1959) to include spirals beyond Sc.

As the body of knowledge grew it became apparent that these galaxy types

are distinguished by more than just morphology. Ellipticals are typically redder

(Holmberg 1958), and have less gas (Haynes et al. 1984) and lower rates of star

./Chapter1/Chapter1Figs/hubble_1936.eps
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formation (Blanton et al. 2003; Lee et al. 2013) than spiral galaxies. This paints

the picture that they really are distinct species. The fact that they can be put

into a clear sequence suggests galaxies may evolve along the sequence (Roberts

& Haynes 1994).

1.1.2 Density - Morphology Relation

Galaxies reside in a wide range of environments, from small groups to large clus-

ters (such as the Virgo cluster, which contains the Milky Way), or even in relative

isolation. These environments effect the orbital speeds of the galaxies, the proper-

ties of the intracluster medium (ICM) and the frequency of interactions between

galaxies.

It has been observed that there exists a relationship between galaxy type and

local galaxy density (Melnick & Sargent 1977; Dressler 1980). Goto et al. (2003)

use a sample of galaxies from the Sloan Digital Sky Survey (SDSS). By classifying

the galaxies into one of four types, it can be seen (as shown in Figure 1.2) that

the number of “Late Disc” galaxies drops off and the number of “Early-type”

galaxies increases as the local galaxy density increases. In other words, galaxies

that are more strongly clustered are less likely to be late-type galaxies than

weakly clustered or isolated galaxies. Another analysis of the SDSS by Gómez

et al. (2003) correlates star formation rate (SFR) with galaxy density, showing

strongly clustered galaxies have reduced rates of star formation (see Figure 1.3).

These observational results strongly suggest that a cluster environment shapes

the evolution of the galaxies within it.

One possible way to explain the morphology-density relation is ram pressure
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Figure 1.2: Galaxy type fraction as a function of local galaxy density. The upper
panel shows the number of galaxies in each bin of galaxy density. (Figure from Goto
et al. (2003).)

stripping. This was first explored analytically for a disk shaped gas distribution

by Gunn & Gott (1972). As a galaxy orbits within a cluster it moves though the

inter-cluster medium (ICM) which exerts a ram pressure on the gas in the galaxy.

Ram pressure stripping can be separated into two distinct processes: instanta-

neous stripping and Kelvin-Helmholtz stripping. The instantaneous stripping

occurs when the ram pressure is higher than the gravitational force per area on

./Chapter1/Chapter1Figs/galtype_goto_2003.eps
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Figure 1.3: Star formation rate (SFR) as a function of local galactic surface density.
The grey area shows the 25th-75th percentile of galaxies, with the median shown as a
black line. (Figure from Gómez et al. (2003).)

./Chapter1/Chapter1Figs/sfr_gomez_2003.eps
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Figure 1.4: Observational evidence of ram pressure stripping in NGC 4402. Radio
continuum contours show the tail structure over a B band image. (Figure from Crowl
et al. (2005).)

a column of gas and occurs on short time-scales (less than 1Gyr in most cases).

Kelvin-Helmholtz stripping is due to the shear force created as the ICM flows

past the edge of the galaxy. This induces the Kelvin-Helmholtz instability and

allows material to be continually stripped from the galaxy and occurs on longer

time scales. Ram pressure stripping has led to observable tails in a number of

galaxies in the Virgo cluster (Crowl et al. 2005; Abramson et al. 2011) and is also

visible as X-ray wakes and bow shocks. Figures 1.4 and 1.5 show the observable

effect of ram pressure stripping in galaxy NGC 4402.

A number of studies have been done to try to quantify different aspects of this

./Chapter1/Chapter1Figs/crowl_2005_rc.ps
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Figure 1.5: Observational evidence of ram pressure stripping in NGC 4402. BVR
colour image. Many features associated with ram pressure can be seen, such as the
bow shape, dust plumes and exposed star clusters. (Figure from Crowl et al. (2005).)

effect. In general, the effect of ram pressure stripping is simulated in two ways.

Firstly one can perform a “wind tunnel” test. Here the galaxy is placed in a

constant wind to simulate the effect of the galaxy moving though the ICM. This

allows parameters, like the relative speed of the ICM and galaxy, to be precisely

controlled. The other method is to allow the galaxy to orbit within a cluster

potential. This gives a more realistic representation of ram pressure stripping

and includes tidal effects (which may or may not be desirable).

./Chapter1/Chapter1Figs/crowl_2005_col.ps
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Many studies have been performed to investigate the effect of ram pressure

stripping on spiral galaxies. Abadi, Moore & Bower (1999) used a smoothed

particle hydrodynamics (SPH) code to simulate a three-dimensional spiral galaxy

undergoing ram pressure stripping. Although their results match those of the

analytic approach of Gunn & Gott, their simulations could not account fully for

the observations. Roediger & Brüggen (2006) looked specifically at the role of

the inclination angle of the disk and its effect on the morphology of the galaxy,

using a grid based code. They found that the mass loss of the galaxy is relatively

insensitive to the inclination angle for angles . 60◦. They also noted that the

tail does not necessarily point in the same direction as the motion of the galaxy.

Jáchym et al. (2009) also looked at the role of inclination angle but used a SPH

code. They find much the same dependence on inclination angle as Roediger &

Brüggen (2006) although they saw no Kelvin-Helmholtz stripping1. Tonnesen &

Bryan (2009) allowed the gas in the disk of the spiral galaxy to radiatively cool

before being hit by the wind to allow areas of low and high density to develop.

They found that gas is stripped more rapidly in the case with cooling as areas of

lower density allow gas to also be stripped from the inner regions of the galaxy.

A number of studies have instead been focused on dwarf galaxies. Mori &

Burkert (2000) looked at the stripping of the extended hot gas component using

a two-dimensional grid based code. They found that the gas is totally stripped in

a typical galactic cluster. Mayer et al. (2002) simulated a dwarf galaxy orbiting

the Milky Way with an N-body code to probe the tidal effects on the dwarf galaxy

and found a significant mass loss over a period of 7Gyr. Mayer et al. (2006) used a

1This is likely due to the “negative pressure” which arises at interfaces in SPH models.
Agertz et al. (2007) provide a detailed analysis of this effect.
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combination of SPH and N-body simulations to study the combined effects of ram

pressure and tidal stripping on dwarf galaxies. They pointed out that tidal effects

can alter the morphology of the dwarf galaxy and change the effectiveness of ram

pressure stripping. In general this increases effectiveness but tidally induced bar

formation can funnel gas towards the centre of the galaxy, making it harder to

strip.

In addition to these works a few papers contain results of work specifically

on the effect of ram pressure stripping on the hot extended component of the

gas. McCarthy et al. (2008) simulated a massive galaxy with a hot halo of gas

undergoing ram pressure stripping. They performed both wind tunnel tests and

simulations allowing the galaxy to orbit within a cluster to include tidal effects.

They extended the analytic model of Gunn & Gott (1972) to the case of a spherical

gas distribution and found that their formula fits simulations well when the galaxy

represents less than 10% of the cluster mass. They suggested that at this point

tidal effects and gravitational shock heating become important, which their model

does not take into account. Bekki (2009) included both a hot halo and a disc in

their model and suggested that the presence of the disk can suppress ram pressure

stripping. Shin & Ruszkowski (2013) used a grid based code to look at the effects

of turbulence within the ISM. They found that this increases mass loss and allows

the ICM to penetrate further into a galaxy.

1.2 Protoplanetary disks and Stellar Feedback

Disks are a common feature around young stars, from high mass (Wang et al.

2012) to low mass brown dwarfs (Ricci et al. 2014). Stars are formed from the
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Figure 1.6: Disk frequency as a function of age for 15 different stellar populations.
Disk frequency is measured as the ratio of stars with excess near-infrared disk emission
to the total number of stars in the population. (Figure from Hernández et al. (2007))

gravitational collapse of dense gas clouds. Due to the angular momentum in the

system, any left over gas that did not become part of the star forms a disk around

it.

./Chapter1/Chapter1Figs/hernandez_2007.eps
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1.2.1 Disk dispersion

The disk has a finite lifetime, and do not occur around older stars. Figure 1.6

shows that stars older than ∼ 10Myr are unlikely to have associated disks. The

disk can be removed by a number of different processes. Possible mechanisms

include accretion onto the central star, coalescence into planets, photoevaporation

by the central star or external forces (radiation from a massive star, SNRs, tidal

interactions etc.).

The time-scale for accretion to consume the disk depends primarily on the

disk mass and the accretion rate of the star. For the entire disk to be consumed

by accretion some mechanism is needed to redistribute the angular momentum

in the disk, such that the outer material can fall into the star. This is generally

attributed to some form of viscosity, arising due to instabilities in the disk. The

accretion time-scale can be estimated as Mdisk/Ṁacc. Taking Mdisk = 0.5M⊙ and

Ṁacc = 10−8 M⊙yr
−1 (Garcia 2011; Williams & Cieza 2011) gives an accretion

lifetime of 50Myr. In practice Ṁacc decreases as the disk evolves (Hartmann

et al. 1998) which has the effect of increasing the expected accretion lifetime

significantly. It is clear there must be other mechanisms that remove the disk in

order to match the observed lifetimes.

The picture of planet formation is a little more uncertain, and depends on

complex dynamics (planet migration (Alibert et al. 2005) or gravitational insta-

bilities (Durisen et al. 2007), for example) which can not be easily predicted from

observables such as stellar mass, accretion rate or disk size. Theoretical models

typically predict planet formation time-scales of 1 − 10Myr (Guillot & Hueso

2006; Lissauer & Stevenson 2007; Lambrechts & Johansen 2012). However, in
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Figure 1.7: Various timescales for disk dispersal as a function of distance from the star
for a minimum mass disk (Md = 0.01M⊙). The different timescales are as follows. tν -
accretion with viscous angular momentum transport, for two different disk viscosities.
tSE - stellar encounter (tidal stripping). tws, t

′
ws - stellar wind assuming constant and

decreasing mass loss rates respectively. tc(evap) - photoevaporation by the central star.
tE(evap) - photoevaporation by an external star. (Figure from Hollenbach et al. (2000))

order for the planets to form in a reasonable time frame the initial disk mass

must be 5-10 times larger than ends up contained within planets (Lissauer 1987,

1993), so planets can only play a small role in the overall dispersion of the proto-

planetary disk. Given its minor role, it is likely that disk lifetimes mediate planet

formation, rather than vice-versa.

Hollenbach et al. (2000) provides a summary of the timescales of different

./Chapter1/Chapter1Figs/disk_ts.eps
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disk dispersal mechanisms, as shown in Figure 1.7. Note that these timescales

are given for a minimum mass disk. Timescales for a realistic disk are likely to

be several times longer. Generally speaking, accretion dominates at small radii

and photoevaporation at large radii. These two processes in combination with

viscous spreading of disk material across radii can remove the entire disk within

a few Myr (Richling & Yorke 1997).

1.2.1.1 External forces

From Figure 1.7 it is clear that internal effects are sufficient in removing the disk

on the desired timescales. This should not come as a surprise as diskless stars

can be observed in relatively quiescent regions (e.g. Armitage et al. (2003)). As

massive stars are often the source of strong winds and eventually supernova, these

regions are potentially hostile to protoplanetary disks and the subsistent forma-

tion of planets. There are ∼ 2000 low-mass stars within 2pc of the centre of the

Trapezium cluster (Hillenbrand & Hartmann 1998), and stars with circumstellar

disks (O’dell et al. 1993; McCaughrean & O’dell 1996; Bally et al. 1998) within

a few tenths of a parsec of the central star,

theta1 Ori C. The interactions massive stars have on other stars and their disks

can be broadly categorised into the effects of gravitational, radiation or ablation.

When two stars pass one another, the associated disks become perturbed by

the gravitational interaction. If this interaction is strong enough, material from

the disk can become unbound (Clarke & Pringle 1993). Scally & Clarke (2001)

use N-boby simulations to model the dynamics of the stars in the Orion Nebula.

They find that only a small fraction of the stars interact closely on the expected

disk dispersal timescales. Thus it seems that although these sort of interactions
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Figure 1.8: The proplyd two wind interaction model. The ionising photons from a
nearby massive star drive a photoevaporation flow which interacts with the oncoming
stellar wind. (Figure from Henney & Arthur (1997))

do occur they are not a major contributor to protoplanetary disk dispersal.

Direct observational evidence of the effects of radiation on disks is seen in

the form of the proplyds in the Orion Nebula (e.g. O’dell & Wen (1994); Mc-

Caughrean (2001)). The radiation from θ1 Ori C causes a photoevaporation flow

from the disks which collides with the oncoming stellar wind. This results in

a number of cometary-shaped ionization fronts associated with stars around θ1

Ori C. Estimates put the mass-loss rate of the proplyds at ∼ 4 × 10−7 M⊙ yr−1

(Henney & O’Dell 1999). If sustained over the lifetime of the cluster this would

mean that the stars would have had unrealistically massive disks (greater than

the star’s mass) at some point in the past. However, θ1 Ori C may have switched

on only ∼ 105 years ago (Scally & Clarke 2001). Hence, it is unlikely that in a

few ×105 years the combination of photoevaporation and viscous accretion will

./Chapter1/Chapter1Figs/proplyd_henney.eps
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have depleted the disks (Garcia 2011). This suggests that the Origin Nebula is in

a relativity short-lived stage of it’s evolution, which is consistent with the lack of

proplyd-like objects in other clusters (e.g. Stapelfeldt et al. (1997); Balog et al.

(2006)).

While there is a lot of evidence, both from theory and observations, that

massive stars influence the disks of neighbouring stars, observational surveys show

little difference in the disk frequency near massive stars (Hillenbrand et al. 1998;

Richert et al. 2015). It is unclear how much of an effect massive stars have on

disk lifetimes, although it seems that if disks are affected they are only partially

destroyed.

Supernova remnants (SNRs) provide another source of agitation for proto-

planetary disks. There is evidence in π Sco of circumstellar disks similar to those

in the Origin nebula (Bertoldi & Jenkins 1992) and that a supernova occurred

nearby ∼ 106 yrs ago (de Geus 1992). Lada & Lada (2003) compiled a catalog

of embedded clusters and find that the vast majority (70 - 90%) of stars form

in clusters of > 100 members, and the majority of those (∼ 75%) are in clusters

containing stars massive enough to give rise to supernovae (Hester & Desch 2005).

Analytic estimates for the ablation of protoplanetary disks due to a SNR were

presented by (Chevalier 2000). He found that for typical disk and supernova

parameters, partial stripping of the disk can occur, but typically not its complete

disruption. This suggests that although the disks are affected, they can survive

such events.
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1.2.2 Short-lived radionuclides

The interaction of a SNR with a protoplanetary disk is also of interest from the

point of view of injecting short-lived radionuclides (SLRs) into the early solar

system (e.g. Jacobsen (2005); Looney et al. (2006)). Analyses of meteorites

suggest that the early solar system had a 60Fe/56Fe ratio of ∼ 3 − 7 × 10−7, far

above the average interstellar medium (ISM) value (Quitté et al. 2005; Tachibana

et al. 2006). The short half-life of 60Fe (1.5Myr) constrains the timing of it’s

injection into the solar system to a relativity recent event. Other SLRs can be

explained by production internal to the solar system (Lee et al. 1998; Gounelle

et al. 2006) although the yields of 60Fe are much too low to explain the abundances

derived from meteorites.

The amount of 60Fe produced by supernovae varies depending on the mass

and metallicity of the exploding star. Calculations by Woosley & Weaver (1995)

put the 60Fe/56Fe ratio at typically 1 − 3 × 10−3. In order to reach the ratio

60Fe/56 ∼ 3−7×10−7 needed for the young solar nebula, the supernova ejecta must

contribute a fractional mass of ∼ 3−7×10−4 to the disk. Given that supernovae

are abundant sources of nucleosynthesis and they are often in close proximity to

young, low mass stars the consensus is that they are a likely candidate for the

source of 60Fe in the early solar system1.

1One problem with this model is that supernova produce different ratios of specific SLRs
(i.e. 60Fe/26Al is too low in supernova ejecta) compared with what is inferred from meteorite
analysis, though perhaps different sized dust grains offer a solution.
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1.2.3 Hydrodynamical simulations

Hydrodynamical simulations of the interaction of a SNR with a circumstellar disk

were performed by Ouellette et al. (2007). They found that only a small fraction

(∼ 1%) of the disk mass is removed, in contrast to the ∼ 13% expected from the

analytical prediction of Chevalier (2000). They attribute this to the cushioning

and deflecting effect of the bow shock in addition to the compression of the disk

further into the gravitational well of the central star. However their simulations

are limited to two dimensions and face-on impacts. While an inclined disk might

be expected to be disadvantageous for ablation, the geometry of the bowshock

that shields the disk is likely to be substantially different and the impacting flow

acts with the rotation of the disk on one side, reducing the threshold for ablation.

They also found that only ∼ 1% of the passing ejecta is captured by the disk.

This is not enough to explain the observed abundances, although they suggest

that dust grains might be a more efficient mechanism for injecting SLRs into the

disk.

To investigate this possibility, Ouellette et al. (2010) incorporated dust grains

into their simulations. They found that about 70% of dust grains larger than

0.4µm are injected into the disk. This could potentially be enough to explain

the observed abundances, although it relies on higher than observed dust con-

densation in the ejecta and the ejecta to be clumpy with the disk being hit by a

high density clump of ejecta. They estimate the probability of these conditions

being met at 0.1− 1% and that the solar system may be atypical in this respect.

The mixing effects of clumpy supernova ejecta interacting with a molecular

cloud were investigated by Pan et al. (2012). When the mixing is efficient the
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ejecta contamination is ∼ 10−4. This is approximately the correct level, although

as the SLRs are injected into the molecular cloud, and it takes of order a Myr to

form stars and disks, the abundance of 60Fe could be significantly reduced in this

time.

The formation and subsequent evolution of a star-disk system under the effects

of a supersonic wind were investigated by Li et al. (2014). They found that a disk

can indeed form and survive in these conditions: a 10−3 M⊙ disk remains after

being exposed to the wind for 0.7Myr. However, their disk radius after formation

is∼ 1000 au, whereas disks near massive stars are typically photoevaporated down

to tens of au (Johnstone et al. 1998). The flow speed is also much slower than

that adopted by Ouellette et al. (2007), which in turn reduces the ram pressure

significantly. Therefore, while their work was useful for investigating triggered

star formation, the region of parameter space that they explored is unrealistic for

disk ablation via nearby supernova.

Recently Goodson et al. (2016) performed three dimensional simulations of

the interaction of a SNR with a large (8.8 pc), clumpy molecular cloud, including

dust grains. They found that the majority of large dust grains are injected into

the molecular cloud, and within 0.1Myr of the supernova explosion. They note

that if 60Fe and 26Al preferentially condense onto different sized grains this could

explain the discrepancy in the ratio between the two SLRs.

1.3 Turbulence limited simulations

One of the principle ways in which the above phenomenon are studied is though

the use of numerical simulations. Due to the limited nature of computational
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resources and the desire to include additional physics1, it is always desirable to

keep resolution to the minimum required to simulation the problem correctly.

One of the things that limits the necessary resolution is turbulence. Turbulence

is generated by instabilities in the fluid, which lead to the formation of smaller

and smaller eddies. This increases the diffusivity of the flow, accelerating the

mixing of fluids and increases dissipation, converting kinetic energy into internal

energy via viscous shear stresses.

Fig 1.9 shows the generation of turbulence by the Kelvin-Helmholtz instability.

This is of particular interest in the context of ablation, as these instabilities are

generated along the side of the object being ablated by the shear between the

object and the wind. When the resolution of a simulation is too low, it is unable

to resolve the small eddies, limiting the diffusive and dissipative effects of the

turbulence.

This problem can be overcome by using a statistical model to account for

the effects of turbulence. This is a common practice in terrestrial applications of

fluid dynamics but is still relatively unexplored in an astrophysical context. One

turbulence model is the k-ǫ model, described in more detail in Section 2.2.

1.4 Thesis Outline

This chapter has detailed how ablation is an important topic in astrophysics and

why turbulence plays a crucial role. Chapter 2 details the numerical methods that

will be used in this thesis. Chapter 3 presents numerical simulations of galactic

ram pressure stripping and how the k-ǫ model can be used to improve accuracy.

1Such as magnetic fields, self-gravity, heating/cooling, chemistry, etc.
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Figure 1.9: The evolution of the Kelvin-Helmholtz instability. The red and blue fluids
have opposing velocities in the x direction. Any small perturbations in the boundary
are enhanced and mixing occurs between the two layers. Each row corresponds to a
different time, each column is a different code/resolution. (Figure from Lecoanet et al.
(2016))

Chapter 4 shows the limits of the k-ǫ model when used to simulate disks. Chapter

5 presents simulations of the interaction of circumstellar disks and SNRs. Finally

Chapter 6 provides a summery of the conclusions draw in this thesis and how

they can be build upon in future research.

./Chapter1/Chapter1Figs/lecoanet_2016.eps


Chapter 2

Numerical Methods

The simulations presented in Chapters 3, 4 and 5 were calculated using the hy-

drodynamics code MG. This chapter outlines the numerical methods and theory

employed by MG in order to produce accurate and reliable fluid dynamics data.

2.1 The Governing equations

The aim of any fluid dynamics code is to find a solution to a set of equations know

as the Navier-Stokes equations. In the case of zero viscosity and zero thermal

conductivity (which will be assumed in this thesis), the equations reduce to the

Euler equations.

The Euler equations are supplemented by the k-ǫ model which aims to model

highly turbulent flows. The details and reasons for using such a model are noted

in Section 2.2.

The Euler equations in Cartesian coordinates, with the k-ǫ model, consist of
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six equations. These are: the continuity equation,

∂ρ

∂t
+∇ · (ρu) = 0, (2.1)

momentum conservation,

∂ρu

∂t
+∇ · (ρuu) +∇P −∇ · τ = ρg, (2.2)

energy conservation,

∂E

∂t
+∇ · [(E + P )u− u · τ ]− γ

γ − 1
∇ · (µT∇T ) = ρu · g − Pt + ρǫ, (2.3)

an equation for advected scalars,

∂ρC

∂t
+∇ · (ρCu)−∇ · (µT∇C) = 0, (2.4)

turbulent energy,

∂ρk

∂t
+∇ · (ρku)−∇ · (µT∇k) = Pt − ρǫ, (2.5)

and the turbulent energy dissipation rate

∂ρǫ

∂t
+∇ · (ρǫu)−∇ · (µǫ∇ǫ) =

ǫ

k
(C1Pt − C2ρǫ). (2.6)

Here ρ is the mass density, u is the velocity and P is the thermal pressure. E

is the total energy density (thermal and kinetic) and is given by the equation of
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state:

E =
p

γ − 1
+

ρu.u

2
, (2.7)

where γ is the adiabatic index of the gas. C represents any advected scalar. An

advected scalar has no physical meaning or impact on the other fluid variables

but is used to mark regions of fluid so that they can be traced as the simulation

evolves. g is the local acceleration due to gravity. The k-ǫ model adds the

variables, k, the turbulent energy per unit mass and ǫ, the turbulent dissipation

rate per unit mass. C1 = 1.4 and C2 = 1.94 are both constants of the k-ǫ model.

The effect of k and ǫ on the other fluid variables is characterised by

µT = ρCµ
k2

ǫ
, (2.8)

and

µǫ =
µT

1.3
, (2.9)

where Cµ = 0.09. Pt is the turbulent production term. Using the summation

convention,

Pt = µT

[

∂ui

∂xj

(

∂ui

∂xj

+
∂uj

∂xi

)]

− 2

3
∇ · u(ρk + µT∇ · u). (2.10)

τ is the turbulent stress tensor and is defined as

τij = µT

(

∂ui

∂xj

+
∂uj

∂xi

)

− 2

3
δij(ρk + µT∇ · u). (2.11)
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The equations simplify to the Euler equations for k = 0.

2.2 The k-ǫ sub-grid turbulence model

The turbulent behaviour of a flow is characterised by its Reynolds number, which

can be used to relate the sizes of the smallest and largest eddies,

η ∼ R−3/4
e l, (2.12)

where η and l are the scales of the smallest and largest eddies, respectively. l

is typically of the scale of the turbulent region. Astrophysical flows can have

Reynolds numbers of 105 or higher. To simulate such a flow using pure hydrody-

namics ∼ 5000 cells would be needed across the turbulent region in order to start

to resolve the smallest scale eddies. This is far beyond the capabilities of modern

hardware, and in order to simulate such flows accurately a statistical approach is

required.

The Euler equations are already a statistical model in many ways. Any fluid

worth simulating contains many more particles than can simulated individually.

The fluid can be thought of being the sum of two components, the bulk motion

of the particles and their motions relative to one another. So density and velocity

become spatial-averaged terms, and the information of the individual particles

is represented in the internal energy term. This allows the fluid to be simulated

without having to worry about the details of the individual particles.

In a similar way, the turbulent motion of a fluid can be separated from the

time-averaged flow. One widely used method of achieving this goal is the k-ǫ

model. This model introduces two additional fluid variables to represent the
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turbulent motions of the flow, k and ǫ, governed by equations 2.5 and 2.6 respec-

tively. The earliest development efforts on this model were by Chou (1945). The

closure coefficients were subsequently adjusted by Launder & Sharma (1974) to

create the accepted “standard” model, and its popularity has led to it featuring

extensively in textbooks (e.g., Pope 2000; Davidson 2004; Wilcox 2006). Turbu-

lence is modelled through the use of k and ǫ to calculate a turbulent viscosity

which increases the transport coefficients in regions of high turbulence.

The equations that determine k and ǫ are largely empirical, but have been

used to great success in engineering and also in some astrophysical problems (Falle

1994, Pittard et al. 2009, Pittard, Hartquist & Falle 2010). For instance, Pittard

et al. (2009) found that k-ǫ simulations of the turbulent ablation of clouds showed

much better convergence in resolution tests than inviscid simulations, and that

the converged solution in the k-ǫ models was in good agreement with the highest

resolution inviscid models. Of course, other possibilities and variations also exist

for modelling turbulent flows. For instance, Scannapieco & Brüggen (2008) use

a model similar to the k-ǫ model to capture the Rayleigh-Taylor and Richtmyer-

Meshkov instabilities and buoyancy-driven turbulence in active galactic nuclei,

and Schmidt & Federrath (2011) recently developed a subgrid model for highly

compressible astrophysical turbulence.

The k-ǫ model works well for shear flows, but can fail for non-anisotropic

flows or when boundary layers contain large pressure gradients (Hanjalic 1994;

Davidson 2004). The advantage of the k-ǫ model over other models is its ease

of implementation, low dependence on initial turbulent energy (as typically the

amount of turbulence in a problem is not known prior to simulation) and the

cases where it fails are well documented.
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The implementation of the k-ǫ model is described in more detail in Falle

(1994). Thought out this thesis, the term “inviscid” is used to refer to simulations

performed without the use of the k-ǫ model. The following sections detail how

the equations of hydrodynamics can be solved, and omit the turbulent terms for

simplicity.

2.3 The Finite volume method

As the Euler equations have no general analytical solution, a numerical method

must be used to find an approximate solution. In order to do so, they must first

be discretised. The domain is divided into finite volumes (which will be referred

to as cells) such that the Euler equations can be integrated over that volume,

e.g., for Equation 2.1:

∫∫∫

V

∂ρ

∂t
dV +

∫∫∫

V

∇ · (ρu)dV = 0, (2.13)

using the divergence theorem becomes

∂ρV

∂t
+

∮

A

ρ(u · n̂)dA = 0. (2.14)

This equation states that the rate of change of mass contained with a volume V ,

is equal to the mass flux though the surface, A, that bounds it. Meaning that

mass can move from one volume to another, but the total mass is conserved.

The equations must also be discretised in time. The change from one discrete
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time to the next is given by integrating the flux over the time between them,

ρn+1
i

= ρn
i
−
∫ tn+1

tn

Fi(ρ)dt (2.15)

where Fi is the total flux across the surface bounding the cell indexed by i.

Consider a one-dimensional flow, across cubic cells with side length, l. The

total flux in the x direction is the difference between the fluxes of the left and

right faces,

Fi(ρ) = Fi−1/2(ρ)− Fi+1/2(ρ) (2.16)

To fully discretise the equation, F needs to be replaced with its average value,

∫ tn+1

tn

Fi(ρ)dt = ∆tF̄i(ρ). (2.17)

Combining equations 2.14, 2.16 and 2.17 gives the mass advection step in the x

direction,

ρn+1
i,j,k = ρni,j,k +∆tF̄i−1/2,j,k(ρ)−∆tF̄i+1/2,j,k(ρ), (2.18)

where the index i has become i, j, k to represent the three dimension index of the

cubic grid. This procedure is repeated for the momentum and energy equations

to obtain

(ρu)n+1
i,j,k = (ρu)ni,j,k +∆tF̄i−1/2,j,k(ρu)−∆tF̄i+1/2,j,k(ρu), (2.19)
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and

En+1
i,j,k = En

i,j,k +∆tF̄i−1/2,j,k(e+ P )−∆tF̄i+1/2,j,k(e+ P ). (2.20)

The final step is to determine the average fluxes, F̄ . This is done by solving the

Riemann problem.

2.4 The Riemann problem

The Riemann problem starts with two regions, each with constant density, pres-

sure and velocity. If W represents the vector of primitive values,

W =













ρ

u

p













, (2.21)

then the initial values of the Riemann problem are,

W (x, 0) =















WL if x < 0

WR if x > 0.

(2.22)

By solving the Riemann problem, the fluxes for each fluid variable between the

two regions can be calculated, and the cell values updated via equations 2.18 -

2.20. Treating each cell-cell interface as a Riemann problem is only valid if the

waves emanating from one interface cannot interact with another. This imposes

the so called Courant-Friedrichs-Lewy condition, ∆t ≤ Cl/u, where C is the

Courant number, which depends on a number of factors, notably the dimension-

ality of the problem and the precise nature of the Riemann solver. For the work
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Figure 2.1: Space-time diagram showing the solution to the Riemann problem. The
dashed line represents a contact discontinuity, the pairs of lines to the left and right
represent the unknown waves.

presented in this thesis, C = 0.2, which gives good numerical stability for three

dimensional problems.

The solution to the Riemann problem has three distinct waves, splitting the

flow into four regions, WL, W∗L, W∗R and WR, as show in fig 2.1. The inner two

regions are separated by a contact discontinuity, meaning that the pressure and

velocity of these two regions are the same, i.e., P∗L = P∗R = p∗ and u∗L = u∗R =

u∗. This leaves four unknown quantities, p∗, u∗, ρ∗L and ρ∗R.

The pressure, p∗ is found by solving the equation Toro (2009),

f(p∗,WL,WR) = fL/R(p∗,WL) + fL/R(p∗,WR) + uR − uL = 0, (2.23)

Chapter2/Chapter2Figs/riemann.eps
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where

fL/R(p∗,W ) =















(p∗ − p)
[

2
((γ+1)p∗+(γ−1)p)ρ

]1/2

if p∗ > p (shock),

2
γ−1

√

γp
ρ

[

(

p∗
p

)
γ−1

2γ − 1

]

if p∗ ≤ p (rarefaction).

(2.24)

In the case where both left and right waves are rarefactions, the equation is

solvable directly. In the case of a shock, the equation is solved by a Newton-

Raphson iterative method, i.e.,

p∗i+1 = p∗i −
f(p∗i,WL,WR)

f ′(p∗i,WL,WR)
. (2.25)

The initial guess is given a linear solver,

p0 =
ρRaRpL + ρLaLpR − ρRρLaRaL(uR − uL)

ρRaR + ρLaL
. (2.26)

This can be iterated arbitrarily many times to achieve the desired precision,

at the expense of CPU time. MG iterates until p∗i+1 and p∗i differ by less than

0.01%. In the case that the initial guess from the linear solver differs by less than

10% from either pL or pR, p0 is taken as the final value and the iterative method

is not used. This initial guess is also used to determine whether each wave is a

rarefaction or a shock for Equation 2.24.

Once the pressure is known, the velocity, u∗ can be calculated simply from,

u∗ =
1

2
(uL + uR) +

1

2
[fR/L(p∗,WR)− fR/L(p∗,WL)]. (2.27)

The density in regions W∗L and W∗R can now be found. In the case of a shock,
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the Rankine-Hugoniot conditions can be used. As the speed of the shock is not

known explicitly at this point, the three Rankine-Hugoniot conditions (for mass,

momentum and energy) must be combined, giving,

ρ∗K = ρK

[

p∗
pK

+ γ−1
γ+1

γ−1
γ+1

p∗
pK

+ 1

]

, (2.28)

where K is either L or R for the left and right waves respectively. In the case of

a rarefaction, assuming isentropic expansion,

ρ∗K = ρK

(

p∗
pK

)

. (2.29)

By calculating the speed of each wave, the cell boundary (at x = 0) can be

placed within one of the four regions (or possibly within the rarefaction fan if one

exists). If the wave speed is positive it falls to the right of the boundary, and to

the left if it is negative. A rarefaction has two wave speeds, one for the head, and

one for the tail. The wave speeds for all possible waves are:

Scd = u∗, (2.30)

Sshock,K = uK ∓ aK

[

γ + 1

2γ

p∗
pK

+
γ − 1

2γ

]1/2

, (2.31)

Srf,head,K = uK ∓ aK , (2.32)

Srf,tail,K = u∗K ∓ a∗K , (2.33)
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where ∓ takes the upper sign for the left wave and the lower sign for the right

wave. If Srf,head,K and Srf,tail,K have opposing signs the cell boundary falls inside

the rarefaction fan. Unlike the other regions, the values within the fan are not

uniform, and are given by,

Wrf,K(x, t) =































ρrf,K(x, t) = ρK

[

2
γ+1

± γ−1
(γ+1)aK

(

uK − x
t

)

] 2

γ−1

,

urf,K(x, t) =
2

γ+1

[

γ−1
2
uK ± aK + x

t

]

,

prf,K(x, t) = pK

[

2
γ+1

± γ−1
(γ+1)aK

(

uK − x
t

)

]
2γ
γ−1

,

(2.34)

where ± takes the upper sign for the left wave and the lower sign for the right

wave. At the cell boundary (x = 0) Wrf,K is constant over time. It follows that

the flux over the boundary is also constant. By knowing which region the cell

boundary is in the average flux can be calculated. This procedure is done for all

six faces of the cell and summed together to get the total flux for that cell. The

fluid variables can then be updated via equations 2.18, 2.19 and 2.20.

2.5 Other details

While the above methods are sufficient for numerical calculations, there are a

number of other methods employed by MG in order to ensure accurate results at

low computational cost.
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x

q

Figure 2.2: An example of the piecewise linear interpolation of some fluid variable, q.
Black lines show the constant value in each cell, red lines show the interpolated values,
red dots are the mid-points of each cell and dash lines show the boundary between cells.

2.5.1 Second order accuracy

2.5.1.1 Space - Piecewise linear interpolation

The scheme outlined above is accurate to first order in space and time. The first

order accuracy in space comes from assuming fluid variables do not vary within

cells (piecewise constant method, PCM). This can be improved by interpolating

between cell values using the piecewise linear method (PLM). Higher orders of

interpolation give less diffusive results but at a higher computational cost. MG

achieves second order accuracy in space using piecewise linear interpolation. The

steepest slope is used under the condition that values at the cell boundaries lie

between the constant cell values. An example of the resulting construction is

shown in Figure 2.2.

Chapter2/Chapter2Figs/pwl.eps
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2.5.1.2 Time - Predictor-corrector method

If Wi represents the state of a cell at step i, and stepPCM/PLM(W , dt) represents

a function that advances the solution W by dt using either PCM or PLM. The

above methods describe the scheme,

Wi+1 = stepPLM(Wi, dt), (2.35)

which is accurate to second order in space and first order in time. Second order

accuracy can also be achieved in time using a predictor-corrector method,

Wi+1/2 = stepPCM(Wi, dt/2)

Wi+1 = stepPLM(Wi+1/2, dt).

(2.36)

This can, in principle, be extended to higher orders1 however this comes with

a higher computational cost (which might be better spent on higher resolution

or shorter timesteps, for example). The second order method provides a good

balance between accuracy and computational cost.

2.5.2 Adaptive Mesh Refinement

Often the spatial resolution needed to perform a simulation accurately is deter-

mined by a small fraction of the region. For example, many cells are needed to

resolve the sharp features of a shock, however the pre- and post-shock material

can be smooth in comparison and require much lower resolution. By using mul-

tiple different sized cells across the grid, the sharp features can be resolved while

1The fourth order Runge-kutta method for example, often considered the standard for
solving ordinary differential equations.
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Figure 2.3: An AMR grid with seven levels of refinement. Regions where the density
(shown as the colour map) changes quickly are given more cells and therefore higher
spatial resolution.

Chapter2/Chapter2Figs/amr.eps
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keeping the computational cost low.

MG does this dynamically using a technique known as Adaptive Mesh Refine-

ment (AMR). A number of different grid levels are used, each containing cells

half the size in each dimension. The two lowest grid levels cover the entire region

of interest. Each level solves the Riemann problem, calculates fluxes and updates

fluid variables independently. The values are compared and in regions where the

results differ by more than a user defined tolerance (with a default of 1%) finer

cells are added. This highlights regions where the fluid has steep gradients that

the coarser cells can not resolve. Cells can be removed if the solutions of the

levels below agree to within the specified tolerance. Refinement is done on a cell

by cell basis (as opposed to in patches which is common in other hydrocodes),

although the code will try to refine neighbouring cells in order to ensure accuracy

in the surrounding region and prevent neighbouring cells being more than one

level apart.

When cells are refined, the coarse cell still exists and must be updated along

with the fine cells in order to provide a comparison to test for potential refinement

or derefinement. This adds a certain amount of overhead to the computations,

making AMR unsuitable to situations where a high resolution is needed across the

entire computational domain. However when this is not the case, the overhead

is outweighed significantly by the overall reduction in the number of cells on the

grid.

2.5.2.1 Coarse-fine boundaries

The boundaries between cells on different levels of refinement (shown in red in

Figure 2.4a) must be treated with some care to maintain consistency across levels
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Update states

Coarse Cells Fine Cells
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Figure 2.4: Scheme for updating coarse-fine boundaries in 2D. Red line shows the
boundary of interest. The dashed cells are the temporary cells created from WL,i using
PLM.

Chapter2/Chapter2Figs/fluxcorrect.eps


38

and to ensure mass, energy, etc. are conserved across the grid. The general

scheme for calculating the flux across the coarse-fine boundary in 2D is as follows

(shown in Figure 2.4). The boundary is bordered by two coarse cells and two fine

cells (Figure 2.4b). The flux across coarse cells (Fcoarse) is calculated as normal

(described in detail in Sec. 2.4). For the fine cells, the left state is temporarily

split into two using PLM, giving two fluxes, one for each fine cell adjacent to the

coarse fine boundary. As the fine cells are likely to have different results than the

corresponding coarse cell this will ultimately lead to divergence of the solution

across levels. To correct this, solutions of fine cells are mapped down to their

parent cells, i.e,

W ′

R,i+1 =
1

Vcoarse

∑

n=a,b,c,d

WR,n,i+1Vfine, (2.37)

where Vcoarse and Vfine are the volumes of the coarse and fine cells respectively.

As, in general, Fcoarse 6= FFine,a+FFine,b, the flux leavingWL,i+1 is not necessarily

equal to the flux entering W ′

R,i+1. This can be fixed by correcting the flux,

W ′

L,i+1 = WL,i+1 +∆t(AFineFFine,a + AFineFFine,b − ACoarseFcoarse), (2.38)

where ∆t is the timestep and AFine and ACoarse are the areas of the fine and

coarse boundaries respectively. W ′

L,i+1 is then used in place of WL,i+1. This

ensures that the flux is consistent across all levels and that conservation laws are

not violated.
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2.6 Grid initialisation

In order to actually run the hydrodynamic simulations presented in this thesis, a

number of other ancillary tasks must be performed, including grid initialisation

and data processing. These are achieved using custom code that I have written

and exist independently of the main MG hydrocode.

For simple problems (such as the supernova presented in Chapter 5) only a

simple analytic function is required to describe the initial conditions and so this

can be simply embedded into the hydrocode’s initialisation routine. For more

complex initial conditions, where hydrostatic equilibrium has to be calculated

numerically, this is not possible. The solution is to perform the integrations on a

fixed grid first. As this only has to be performed once for each problem, and often

can be done in axisymmetry, a far higher resolution than the main hydrodynamic

simulation can be used. The result of this calculation is then stored in a data

file, which can then be read by the hydrocode to initialise the grid. This ensures

that the initial conditions are calculated accurately and consistently regardless of

the resolution of the hydrodynamic simulation and provides a certain amount of

flexibility if a different hydrocode needed to be used.



Table 2.1: Summary of features of major grid-based hydrocodes. Some features are omitted here (magnetic fields, self gravity etc.) as they are beyond the
scope of this thesis. Note that some features may not be used in conjunction with one another. See individual method papers for specific implementation
details.

Code AMR
Spatial

Reconstruction7
Time

Integrator8
Riemann
Solver9

Turbulence
Model

Corner
Transport

Language

MG Cell Based PLM PC Exact k-ǫ N C++

ATHENA
1 n/a6

PCM, PLM,
PPM

CTU, MH
Exact, Force, Two-shock,

HLLE, HLLC, Roe
N Y C

ENZO
2 Patch Based PPM RK2 Exact, HLLC, HLL, LLF N N C++

FLASH
3 Paramesh,

CHOMBO
PPM,

WENO5
Explicit, MH

Roe, LLF, HLL, HLLC,
Hybrid, Marquina

N Y Fortran

PLUTO
4 CHOMBO

PCM, PLM, PPM,
WENO5, LimO3

Explicit, RK2,
RK3, MH

Exact, Roe, AUSM+,
HLLC, HLL, TVDLF

N Y
C, C++,
Fortran

RAMSES
5 Cell Based PCM, PLM Explicit

Exact, Acoustic, LLF,
HLL, HLLC

N N Fortran

1Stone et al. (2008)
2Stone et al. (2008)
3Fryxell et al. (2000)
4Mignone et al. (2007), AMR Mignone et al. (2012)
5Teyssier (2002)
6Static refinement available
7PCM - Piecewise Constant Method, PLM - Piecewise Linear Method, PPM - Piecewise Parabolic Method (Colella & Woodward 1984), WENO3/WENO5 (Yamaleev &
Carpenter 2009), LimO3 (Cada & Torrilhon 2009)
8PC - Predictor corrector, CTU - Corner Transport Upwind, MH - MUSCL-Hancock, RK2/3 - Runge Kutta 2nd/3rd order
9HLL - Harten-Lax-van Leer, HLLC - HLL with contact discontinuity, HLLE - HLL with Einfeldt fix, LLF - Local Lax-Friedrichs, TVDLF - Total Variation Diminishing
Lax-Friedrichs



Chapter 3

Ram pressure stripping of

galactic haloes

3.1 Introduction

As discussed in Section 1.1, galaxies can be ablated by the medium that they

pass through, significantly affecting their evolution. The majority of studies on

ram pressure stripping have been performed with SPH codes. While these can

model the effect of instantaneous stripping, they are known to have difficulty re-

solving Kelvin-Helmholtz instabilities (KHIs) correctly (Agertz et al. 2007). Typ-

ically studies done with SPH codes show little to no Kelvin-Helmholtz stripping,

whereas it is seen in studies done with grid based codes. However, grid based

codes are also currently unable to reproduce the turbulence actually involved in

ram pressure stripping. This chapter presents three-dimensional numerical simu-

lations of the ram pressure stripping of the hot extended gaseous halo of a massive

galaxy using the k-ǫ sub-grid turbulence model at Mach numbers 0.9, 1.1 and 1.9.
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3.1.1 Turbulence model

The turbulent behaviour of a flow depends on its Reynolds number, Re = ur/ν,

where u is the velocity of the flow, r is the typical length scale of the flow and ν

is the kinematic viscosity. For a fully ionized, non-magnetic gas of density ρ and

temperature T , the kinematic viscosity

ν = 2.21× 10−15T
5/2A1/2

Z4ρ lnΛ
cm2 s−1, (3.1)

where A and Z are the atomic weight and charge of the positive ions and lnΛ is

the coulomb logarithm (Spitzer 1956).

The Reynolds number of the ICM can be estimated using the above equations.

Taking v = 580 km s−1 as the flow speed past the galaxy, r = 79 kpc as the charac-

teristic size of the galaxy after instantaneous stripping, ρ = 1.7×10−28 g cm−3 and

T = 107K as the ICM density and temperature, A ≈ 1.0, Z ≈ 1.0 and lnΛ ≈ 30,

gives ν ≈ 1.35 cm2 s−1 and Re ≈ 100 for the ICM gas for pure hydrodynamics.

However, the ICM contains a magnetic field, which is typically of order 1µG

(see, e.g., Carilli & Taylor 2002). If the thermal velocity is ≈ 5 × 107 cm s−1

(appropriate for 107K plasma), then the particle gyroradius ≈ 2.5 × 1010 cm.

Since this is small compared to the size of the largest turbulent eddies, the ions

are constrained to move along the field. For the tangled fields that one would

expect, this leads to a considerable reduction in the viscosity, which means that

it can be safely assumed that the Reynolds number is high, certainly too large

for direct numerical simulation.

The only tractable method to describe such flows is a statistical approach. I

therefore use a subgrid turbulent viscosity model in an attempt to calculate the
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properties of the turbulence and the resulting increase in the transport coeffi-

cients. The k-ǫ model used has been shown to give reasonable agreement with

experiment for turbulent underexpanded jets with Mach numbers in the range

1−2 and density contrasts ≈ 2 (Fairweather & Ranson 2006). This gives us some

confidence in the the present simulations since both problems involve the growth

of turbulent shear layers and the dimensionless parameters are not very different:

the Mach numbers are similar, the density contrast in the galactic shear layer is

≈ 10 and the Reynolds numbers are large in both cases.

3.1.2 Numerical parameters

The numerical methods used in these simulations are detailed in Chapter 2. The

maximum turbulent length scale (MTL) must be chosen on a case-by-case basis,

which limits the size of the largest eddies. The predicted radius of the galaxy

after instantaneous stripping, 120 kpc, is used as the appropriate value. Figure

3.1 shows the effect changing the MTL has on the rate of stripping of the galaxy.

Halving the MTL has only a small effect, and doubling the MTL has almost

no effect, therefore the rate of stripping within the model is robust. In these

calculations the lowest level grid had 50 cells per side and spans a cubic region

with sides of length 9.6Mpc. There were 5 additional levels of refinement, giving

a maximum resolution of 1600 cells per side, corresponding to a minimum mesh

spacing of 6 kpc.
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Figure 3.1: Mg,bound as a function of time for a Mach number of 1.9, showing the
late-time behaviour of different values of MTL. The bound mass is identical for all
values of MTL at times earlier than 4Gyr.

Table 3.1: Galaxy model parameters

Variable Value
M200 2× 1012 M⊙

c200 4
fb 0.141
rs 79kpc

Table 3.2: ICM parameters

Variable Value
n0 10−4 cm−3

T0 107 K
Mach number 0.9, 1.1, 1.9

Chapter3/Chapter3Figs/mtl.eps


Table 3.3: Parameters for the simulations. U1 is the speed of the ICM relative to the galaxy. a1 and a2 are the sound
speeds in the ICM and in the galaxy at the stripping radius, respectively. The temperature and sound speed of the hot halo
increases with radius. ρ2 is the gas mass density of the galaxy at the stripping radius, and ρ1 is the density of the ICM. Uc

is the predicted convective velocity of the gas in the shear-layer (Eq. 3.9). δ′0 is the incompressible growth rate of the mixing
layer (Eq. 3.8), πc is a compressibility parameter (Eq. 3.10), δ′(πc)/δ

′
0 is the normalized growth rate (Eq. 3.11), and θ′(πc)

is the opening angle (Eq. 3.12). For the Mach 1.1 and 1.9 models, the ICM first passes through a bowshock upstream of the
galaxy. The second line for each of these models therefore contains values computed with the free-streaming ICM conditions
replaced by the conditions of the immediate post-shock flow on the symmetry axis. The stripping radius is assumed to be
unchanged and therefore the values of a2 and ρ2 are not adjusted.

Model U1 Stripping a1 a2 ρ2 ρ2/ρ1 Uc δ′0 πc
δ′(πc)
δ′
0

θ′(πc)

Mach No. (km s−1) radius (kpc) (km s−1) (km s−1) (g cm−3) (km s−1) (◦)

1.9 1000 120 526 320 4.6× 10−28 5.5 298 0.57 2.55 0.19 6.2

460 733 2.5 346 0.44 1.17 0.39 9.8

1.1 580 202 526 380 1.4× 10−28 1.65 254 0.39 1.25 0.37 8.2

504 550 1.44 232 0.37 1.08 0.42 8.9

0.9 470 236 526 425 0.9× 10−28 1.13 228 0.35 0.90 0.49 9.8
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3.1.3 Initial conditions

The galaxy is taken to be comprised of a dark matter halo and a hot extended

gas component. McCarthy et al. (2008) is followed for the dark matter and gas

density distributions. A NFW distribution (Navarro, Frenk & White 1996) is

used for the dark matter:

ρ(r)dm =
ρs

(r/rs)(1 + r/rs)2
. (3.2)

The characteristic density of the dark matter halo is

ρs =
Ms

4πr3s
, (3.3)

where

Ms =
M200

ln(1 + c200)− c200/1 + c200
, (3.4)

c200 = r200/rs is the concentration parameter and c200 = 4 in accordance with

McCarthy et al. (2007). r200 is the radius at which the average density is 200

times the critical density, ρcrit = 3H2
0/8πG. M200 is the mass within r200. The

dark matter is assumed to cause a static gravitational field. In the absence of tidal

forces the dark matter distribution is not expected to be significantly altered; so

a static field is justified. The dark matter extends to a radius of r25 ≈ 2.44 r200.

The initial hot gas component was assumed to follow the dark matter distri-

bution, such that

ρg(r) = fbρt(r), (3.5)
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where ρb is the gas density, ρt is the total density and fb = 0.022h−2/0.3 = 0.141

is the universal fraction of baryonic matter. The gas distribution of the galaxy is

truncated at r200. The temperature and density of the ICM were set to 107 K and

10−4 cm−3. Hydrostatic equilibrium of the halo gas was assumed and determines

the temperature and pressure distributions. The gas contained within r200 was

given an advected scalar so that mass from the galaxy could be identified at later

times. The total initial mass of the hot gaseous halo is 5.64×1011 M⊙. The galaxy

was allowed to evolve in isolation with and without the k-ǫ model implemented

and is stable for many Gyr.

The initial values of k and ǫ were set to 3×1010 erg g−1 and to 3×1010 erg g−1 s−1

respectively. As these values are several orders of magnitude lower than those

subsequently generated during the interaction, the effect of the turbulent viscos-

ity is dominated by the real turbulence at all times. Note that a positive feature

of the k-ǫ model is its relative insensitivity to the initial conditions for k and ǫ

(see e.g. Section 5.4.3 of Wilcox (2006)).

The ICM was given an initial velocity U1 in the positive x direction to simulate

the effects of the galaxy moving though it. The lower x boundary is set to drive

the wind at the same speed throughout the simulation. In reality a galaxy falling

into a cluster will see a gradual increase in wind speed. This will cause the

instantaneous stripping phase to be drawn out over a longer period of time. By

the onset of continual stripping however, enough time has passed (∼ 2Gyr) that

any shocks caused by the initial impact have dissipated. Three different velocities

were used, corresponding to Mach numbers of 0.9, 1.1 and 1.9 (U1 = 470 km s−1,

580 km s−1 and 1000 km s−1 respectively). These values are typical of those in the

literature and representative of the orbital speeds of a cluster galaxy. Simulations
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for each different Mach number were performed with and without the k-ǫ model.

Tables 3.1 and 3.2 summarise the setup parameters.

3.1.4 Parametrization of Galaxy Mass

In order to measure the mass of the gaseous component of the galaxy as a function

of time, and hence the effectiveness of ram pressure stripping, the mass is tracked

in four ways. Mg,r200 is the mass of gas that was initially part of the galaxy and

is within a distance of r200 of the galactic centre. Mg,unmixed is the mass of gas

that was initially in the galaxy and that is in cells in which as least half of the

gaseous material started the simulation in the galaxy. Mg,bound,gal is the mass

of gas that was initially in the galaxy that is gravitationally bound to the dark

matter potential. Mg,bound is the total mass of gas that is bound to the dark

matter potential.

3.1.5 Effects of Resolution

In order to investigate the effects of resolution, the highest Mach number sim-

ulation is ran with one extra refinement level. The bound mass for these tests

is shown in Figure 3.2. At early times both methods give similar results, which

is not surprising since the instantaneous stripping is unaffected by turbulence.

At later time the k-ǫ model converges, whereas there is no evidence of conver-

gence in the inviscid runs. The inviscid calculations can be regarded as Implicit

Large Eddy Simulations since the numerical algorithm has the required proper-

ties (Aspden et al. 2008), but such calculations are clearly not reliable unless one

can achieve convergence. This has not been achieved although the resolution is
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Figure 3.2: Mg,bound as a function of time for a Mach number of 1.9. The results for
the model incorporating the k-ǫ model are shown in green. Those for the inviscid model
are in red. The solid lines are for the standard resolution used throughout the rest of
this study, the dashed lines are for the runs with an extra level of refinement, which
allowed twice the maximum resolution and the dotted line uses one less refinement
level, halving the maximum resolution. The dash-dotted line has two extra refinement
levels, increasing the maximum resolution by a factor of 4 to 1.5kpc.

higher than in previous calculations such as Shin & Ruszkowski (2013).

The advantage of the k-ǫ model is that it converges at a resolution that can

be used in practical calculations. Figure 3.2 also shows results for a run with one

less refinement level using the k-ǫ model. At this resolution the results begin to

diverge from the higher resolution runs.

Chapter3/Chapter3Figs/resolution.eps
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3.2 Analytical Approximations

3.2.1 Instantaneous Stripping

Instantaneous stripping occurs when the ram pressure exceeds the gravitational

force per unit area on a column of material. In McCarthy et al. (2008) an an-

alytical prediction for the instantaneous ram pressure stripping of a spherically

symmetric galaxy was derived, which extended work done by Gunn & Gott (1972).

The condition for ram pressure stripping at a given radius, R, is,

ρicmν
2
gal > α

GMgal(R)ρgas(R)

R
, (3.6)

where α is a constant dependent on the dark matter and gas profiles. McCarthy

et al. (2008) found that for their wind tunnel tests α ≈ 2 best fits their results.

The stripping radius for each model is noted in Table 3.1.3. Note also the mass

density and the sound speed of the hot gaseous galactic halo at this radius (ρ2

and a2 in Table 3.1.3, respectively).

3.2.2 Kelvin-Helmholtz Stripping

The rate at which mass is lost due to the Kelvin-Helmholtz instability was esti-

mated by Nulsen (1982) to be

Ṁkh = πr2ρicmνgal. (3.7)

Taking r as the radius after instantaneous stripping from equation (3.6) and using

1000 km s−1 as the velocity of the galaxy gives a mass loss rate of 49 M⊙ yr−1 for

the assumed galaxy. At this rate the hot halo would be completely stripped in
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4.4Gyr. It might be expected that this is the rate at which mass is lost initially,

but as mass is stripped the radius will decrease. One can assume that the mass-

radius relation remains constant in order to calculate how the radius changes as

mass is removed from the galaxy.

3.2.3 Compressible Turbulent Shear Layers

Turbulent shear layers are also of wide interest to the fluid-mechanics community

and much study has been devoted to them. Brown & Roshko (1974) determined

that the visual thickness of the shear layer spread as

δ′vis,0 =
δ(x)

x− x0

≈ 0.17
∆U

Uc

, (3.8)

where δ(x) is the thickness of the mixing layer at a downstream distance of x−x0

from the point where the streams initially interact, ∆U = U1 −U2 is the velocity

difference between the two free streams and Uc is the “convective velocity” at

which large-scale eddies within the mixing layer are transported downstream.

The constant 0.17 was empirically determined. When stream “2” is stationary,

Uc =
U1

1 +
(

ρ2
ρ1

)1/2
, (3.9)

where the densities of the free streams are ρ1 and ρ2 (e.g., Papamoschou &

Roshko 1988). A slightly more complicated form of Eq. 3.8 is noted in Sote-

riou & Ghoniem (1995).

It has long been recognized that the growth rate of compressible mixing lay-

ers is lower than predicted by Eq. 3.8 when the convective velocity is high. This
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is attributed to compressibility effects. Papamoschou & Roshko (1988) showed

that experimental measurements of the growth rate normalized by its incom-

pressible value, δ′/δ′0, was largely a function of the “convective Mach number”,

Mc,1 = (U1 − Uc)/a1, where a1 is the sound speed of free stream “1”. More

recently, Slessor et al. (2000) argue that the convective Mach number under-

represents compressibility effects for free streams with a significant density ratio,

and show that a better characterisation is achieved through the use of an alter-

native compressibility parameter,

πc = maxi

[√
γi − 1

ai

]

∆U, (3.10)

where γi and ai are the ratio of specific heats and the sound speed of free stream

i. For πc . 3, the normalized growth rate

δ′(πc)

δ′0
≈
(

1 + απ2
c

)−1/2
. (3.11)

The opening angle of the mixing layer is then

θ′(πc) = 2 arctan

(

δ′(πc)

2

)

. (3.12)

3.3 Results

3.3.1 Wind tunnel tests

Figure 3.3 shows snapshots of the mass density distribution at a number of times

for each of the runs. The k-ǫ runs agree relatively closely with their inviscid

counterparts during the instantaneous stripping phase, but become increasingly
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Figure 3.3: The mass density in the z = 0 plane. The first two columns contain
results for simulations at a Mach number of 0.9, the second two results for a Mach
number of 1.1 and the last two results for a Mach number of 1.9. The left column in
each pair shows results for the inviscid simulations, while the right column in each pair
gives results for models that incorporate the k-ǫ model.

Chapter3/Chapter3Figs/rhosi_all_rot.eps
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Figure 3.4: The distribution in the z = 0 plane of turbulent energy, k, for simulations
incorporating the k-ǫ model. Rows correspond to, from the top, Mach numbers of 0.9,
1.1 and 1.9. The three times are: during instantaneous stripping, after instantaneous
stripping and at the end of the simulation.

divergent at later times when the Kelvin-Helmholtz instability is most important.

The largest difference between the inviscid and k-ǫ simulations are seen in the

Mach 1.9 run. The results for runs incorporating the k-ǫ model look smoother in

general as the density given is a local mean density.

Figure 3.4 shows the distribution of turbulent energy for each k-ǫ run. The

turbulence is initially produced at the interface between the galaxy and the ICM.

There is also turbulence in the tail after instantaneous stripping, as seen in the

central column of panels. This is initially generated during instantaneous strip-

ping and is advected downstream. At later times the turbulence generated at

the galaxy-ICM interface has managed to propagate into and fill the tail. Some

of the turbulence in the tail also moves back towards the galaxy. The general

trend of increased turbulence at higher Mach numbers is apparent. This is shown

quantitatively in Figure 3.5. At sonic and marginally supersonic Mach numbers

the turbulent energy rises gradually with time after an initial delay of ∼ 2Gyr

Chapter3/Chapter3Figs/k_all.eps
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Figure 3.5: The total turbulent energy, Eturb, across the entire grid. The blue, green
and red lines give results for the simulations with Mach numbers of 0.9, 1.1 and 1.9
respectively. The turbulent energy obtained by integrating ρk across the entire volume.

while instantaneous stripping is occurring. The total turbulent energy peaks at

∼ 8Gyr in the highest Mach number simulation as turbulence begins to be ad-

vected from the grid. The typical value of the turbulent diffusivity in the shearing

layers is µT ∼ 3× 1028 cm2s−1 (as defined by Equation 2.8).

Figure 3.6 shows each of the different ways the mass of the galaxy is tracked,

as described in Section 3.1.4. In the first ∼ 2Gyr gas is removed where grav-

ity is weak enough to be overcome by ram pressure, and Mg,bound,gal (red) and

Mg,r200 decreases. Mg,unmixed (green) remains relatively constant during this pe-
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Figure 3.6: Gaseous component of the galaxy mass as a function of time for all six
simulations. Results for inviscid runs are shown in a-c, and results for runs incorpo-
rating the k-ǫ model in d-f. Columns correspond to, from the left, Mach numbers of
0.9, 1.1 and 1.9. The blue line shows Mg,r200, the green line shows Mg,unmixed, the red
line shows Mg,bound,gal and the cyan line shows Mg,bound. The black dashed line is the
analytical prediction from equation (3.6) with α = 2. The black dotted line gives the
result for the same equation but for α = 3.

riod, showing that the ram pressure is not mixing the gases, but rather pushing

it from the galaxy, as might be expected. This occurs on a time-scale equal to

the sound crossing time (1.8Gyr). It should be noted that in the transonic cases

much of the ICM component of Mg,bound is in front of the galaxy and is still part

of the flow. For example, in the Mach 0.9 case (shown in Figure 3.7), the wind

speed is equal to the escape velocity at ∼170 kpc, so gas within this radius is

Chapter3/Chapter3Figs/masses_all.eps
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Figure 3.7: The distribution of gas that started the simulation as ICM and is bound
to the dark matter potential, for the 0.9 Mach number model incorporating the k-ǫ
model. In the blue area the gas bound to the galaxy is mostly gas that was associated
with the galaxy initially.

technically bound but is being constantly pushed downstream due to the flow of

the wind behind it. After this the galaxy enters a transitional period where little

to no mass is stripped from the galaxy, particularly at lower Mach numbers. The

galaxy then begins to be stripped by the Kelvin-Helmholtz instability until the

end of simulation and the mass associated with the galaxy decreases.

The general shape of the curves is the same in all cases (with the exception of

Mg,bound, as noted above). The lengths of the instantaneous stripping and transi-

tional periods appear independent of Mach number, with the transitional period

being more pronounced at lower Mach numbers. In general stripping is stronger at

higher Mach numbers. In all cases the galaxy loses more mass than predicted due

to instantaneous stripping alone. This means that Kelvin-Helmholtz stripping is

Chapter3/Chapter3Figs/nongal.eps
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Figure 3.8: Ratio of the mass of the galaxy in k-ǫ runs over the corresponding inviscid
run. The top panel shows Mg,r200, while the bottom panel Mg,bound,gal. The blue, green
and red lines correspond to Mach numbers of 0.9, 1.1 and 1.9 respectively.
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Figure 3.9: Mg,bound as a function of time for a Mach number of 1.9. Shown in green
is the run incorporating the k-ǫ model and in red is the inviscid run. The black dotted
line shows the prediction from equation (3.7), assuming a constant radius. The black
dashed line shows the same equation but allowing the radius to change over time.

significant on the 10Gyr time-scales investigated. The simulations incorporat-

ing the k-ǫ model differ the most from the corresponding inviscid simulation at

the highest Mach number (Figure 3.6c and 3.6f), particularly in the late-time

Kelvin-Helmholtz stripping phase, when the turbulence is fully developed.

Figure 3.8 shows the difference in mass stripping between the inviscid and the

k-ǫ simulations in more detail. While there is little difference in Mg,bound,gal at

the transonic Mach numbers (but some difference in Mg,r200), at supersonic Mach

numbers there is significantly more stripping when the k-ǫ model is used. For
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the Mach 1.9 case, Mg,r200 and Mg,bound,gal are both only 20% of the mass in the

inviscid model at late times.

Figure 3.9 shows the simple analytical predictions of equation (3.7) for a

Mach number of 1.9. The galaxy undergoes a transitional period between the

instantaneous and Kelvin-Helmholtz phases. Thus the time at which the results

should follow the analytic prediction is unclear. For any chosen starting point

after ∼ 5Gyr both curves fit the simulation well initially and slowly diverge away.

This suggests that although the simulation strips at a rate which is similar to the

analytical prediction, the formula is an over simplification of the time dependence

of the radius.

Table 3.1.3 notes predicted values for the convective velocity, Uc, for each

simulation. However, it is not possible for us to easily compare simulation re-

sults presented here to this value because these simulations provide us with the

mean local velocity instead, and this changes across the mixing layer from the

undisturbed galactic halo gas to the unmixed ICM gas flowing past. In addition,

Papamoschou & Bunyajitradulya (1997) show that predictions for the convective

Mach number and the convective velocity need correcting if the mixing is not

“symmetric”. For these reasons the opening angle of the mixing layer is focused

on instead. The predicted opening angles for the Mach 0.9 model and the post-

shock-adjusted predictions for the Mach 1.1 and 1.9 models yield θ′(πc) ≈ 10◦.

This compares with the observed angle of about 10◦-15◦ estimated from Fig. 3.5,

and is also consistent with the results of Canto & Raga (1991) (see also the end of

section 4.2 in Pittard et al. 2009). This level of agreement is perfectly acceptable

given that those simulations differ in some notable respect to those presented

here. For instance, in this work i) the mixing layer is not flat but instead curves
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around the galaxy; ii) the ICM gas does not stream past the galaxy at a steady

velocity (it is nearly stationary close to the stagnation point of the flow upstream

of the galaxy and accelerates around the galaxy); iii) the gas experiences gravi-

tational forces from the galaxy. These differences affect the opening angle of the

mixing layer by less than a factor of two.

3.3.2 Comparison to previous works

McCarthy et al. (2008) investigated ram pressure stripping of a hot galactic halo

with the SPH code GADGET-2. The bound mass of the simulations presented here

after instantaneous stripping lies above what one would expect from equation

(3.6) using the α ∼ 2 value that they determined from their results, particularly

at lower Mach numbers, which they did not investigate. The method they used

for calculating bound mass is fundamentally different from the one used here

(due to the differences in SPH and grid-based codes) and they discussed this in

appendix A of their paper. They found that implementing the same bound mass

calculation as used here increases the amount of mass bound after instantaneous

stripping suggesting that this could be the reason for the discrepancy between

the results. The results are more consistent with α = 3, as shown in Figure 3.6.

They noted that instantaneous stripping occurs on time-scales comparable to the

sound crossing time of the galaxy, which is what is found here. They did not

however see any mass loss after the instantaneous stripping period, in contrast

to these results.

Bekki (2009) included a disc in the galaxy in addition to a halo and used the

SPH code GRAPE-SPH. He only conducted two-body tests (i.e. no wind tunnel
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tests) so a direct comparison with these results is not possible. However he

remarked that his results are broadly consistent with those of McCarthy et al.

(2008). He also does not see any continual stripping after the initial mass loss.

Most recently Shin & Ruszkowski (2013) used the grid-based code FLASH3 to

study ram pressure stripping of elliptical galaxies. They measured the mass of

their galaxy by measuring the mass within radial zones and so their results are

most comparable with the Mg,r200 calculations. They look specifically at subsonic

galaxy speeds (Mach number of 0.25) so these results are not necessarily directly

comparable but the same broad pattern is seen: quick, instantaneous stripping,

followed by a plateau and then continual stripping to the end of simulation.

3.4 Conclusion

This chapter presents a study of the effects of ram pressure stripping on the

halo of a massive galaxy using three dimensional hydrodynamic simulations in-

corporating the k-ǫ sub-grid turbulence description. The Mach number of the

interaction is varied to investigate its effect.

In all cases the Kelvin-Helmholtz instability contributes significantly to the

stripping of material from the galaxy. This is captured both with and without use

of the k-ǫ model at transonic Mach numbers. During instantaneous stripping the

simulations incorporating the k-ǫ model produces the same results as simulations

in which it is not used. However at higher Mach numbers (i.e. 1.9) Kelvin-

Helmholtz stripping is only properly captured when the k-ǫ model is used.

This means that the stripping of gas from hot gaseous haloes has been under-

estimated in previous simulations particularly those in which the galaxy Mach
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number is about two or more. Since it is currently not feasible to accurately

model fully developed turbulence in this problem, the incorporation of a sub-grid

turbulence model, such as the k-ǫ model, is highly desirable.
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Chapter 4

Galactic disks and the limits of

the k - epsilon model

4.1 Introduction

Rotationally supported disks, such as those seen in spiral galaxies, are a common

feature in astrophysics, the long term stability of which is important for the

evolutionary characteristics of these objects. Galaxies in clusters are known to

undergo ram pressure stripping (Gunn & Gott 1972; Roediger 2009), a process

that removes gas from the galaxy due to the relative motion between it and the

intra-cluster medium (ICM). The removal of gas can have the effect of quenching

star formation and reddening the galaxy. This is observed in the differences

between cluster and isolated galaxies that do not undergo this process (Goto et al.

2003; Gómez et al. 2003; Balogh et al. 2004). Direct observations have shown the

large effect ram pressure stripping can have on a galaxy’s gas content (Vollmer

et al. 2012), star formation (Abramson & Kenney 2014; Jáchym et al. 2014)
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and morphology (Paolillo et al. 2002; Abramson et al. 2011), even dramatically

influencing the most massive galaxy clusters (Ebeling et al. 2014).

As shown in Chapter 3 the use of a subgrid turbulence model is desirable

when studying the ablation of objects, such as ram pressure stripping. There is

a potential problem however, as the differential rotation in the galaxy produces

a shear within the disk. Shear forces are the drivers of turbulence and are repre-

sented in the k-ǫ model in the turbulent production term (Equation 2.10). Due

to the complexities of the model it is unclear what effect this turbulence model

has on the galaxy. This forms the basis of investigation for this chapter.

4.2 Hydrostatic equilibrium

In order for the galaxy to be stable it must satisfy the conditions for hydrostatic

equilibrium. Galaxies are typically rotational supported radially and pressure

supported vertically. This gives the conditions:

1

ρ

∂p

∂R
+

∂Φ

∂R
=

V 2

R
, (4.1)

and

1

ρ

∂p

∂z
+

∂Φ

∂z
= 0. (4.2)

In order to satisfy Equation 4.2 either the temperature or the density distribution

must be given. This leads to two general approaches to satisfying these equations,

discussed next.
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4.2.1 Explicit temperature distribution

The first approach is to specify the temperature distribution of the galaxy and

calculate the density structure required to satisfy Equation 4.2. Assuming an

equation of state p = c2ρ, and that the galaxy is initially isothermal, Equation

4.2 is solved by:

ρ(R, z) = ρ0(R)exp





z
∫

0

gz(R, z
′)

c2s
dz′



 . (4.3)

Given the mid-plane density, ρ0, the rest of the density distribution can be cal-

culated via numerical integration. In order to find a suitable mid-plane density,

typically a surface density profile is specified as this is easily observable in real

galaxies. An exponential profile is commonly used:

Σ(R) = Σ0exp(−R/Rd), (4.4)

where Σ0 is the surface density at the galactic centre and is chosen to give the

required total gas mass. The central density is then chosen such that after in-

tegration of Equation 4.3 the surface density matches that specified in Equation

4.4. In practice this is done by a process of iteration, choosing an arbitrary cen-

tral density, calculating the resulting surface density then adjusting the central

density appropriately.

As the grid resolution is limited, only an approximation can be made to the

ideal hydrostatic structure. As shown in Figure 4.1 the vertical structure is not

represented well in the centre of the galaxy, as the galaxy becomes only a few cells

thick. The consequence of this is a relaxation into a slightly different equilibrium

where the centre of the galaxy is thickened. As this is no worse an approximation
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Figure 4.1: The ratio of the force due to the pressure gradient to the gravitational
force in the z direction at t = 0Myr

to a real galaxy than the ideal equilibrium, this is not necessarily an issue.

4.2.2 Explicit density distribution

The second approach is to specify the density distribution. A simple, common

choice is the exponential disk:

ρ(R, z) =
Mgas

2πa2gasbgas
exp

(−R

agas

)

exp

( −z

bgas

)

, (4.5)

where Mgas is the total gas mass and agas and bgas define scale lengths in the

radial and vertical directions respectively. The problem with this distribution is

the sharp peak in density is somewhat unphysical and difficult to reproduce on a

finite grid. This can be fixed by slighting modifying the density distribution to a

Chapter4/Chapter4Figs/gal_balance.eps
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softened exponential disk (e.g. Roediger & Brüggen (2006)):

ρ(R, z) =
Mgas

2πa2gasbgas
0.52sech

(

R

agas

)

sech

( |z|
bgas

)

. (4.6)

It should be noted that the softening reduces the total integrated mass and it is

no longer equal to Mgas. Equation 4.3 can be rearranged to give

∂p

∂z
= gρ, (4.7)

which can be integrated numerically to obtain the pressure distribution. Note

that some gravitational fields diverge at z = 0 meaning p(z = 0) cannot be used

as a boundary condition. Instead the ambient medium can be used to set the

external pressure boundary. This is perhaps more reasonable as it is easier to

obtain estimates for the temperature and density of the ICM than that in the

centre of a galaxy.

4.2.3 Velocity distribution

Once the density and the temperature distributions have been determined, the

velocity structure can be calculated quite simply from Equation 4.1, as all other

parameters are now known.
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4.3 Turbulence in cylindrical coordinates

In the k-ǫ model the effect of turbulence on the fluid is governed by the turbulent

stress tensor, τ . The turbulent stress tensor can be written as:

τij = µT2Sij −
2

3
δij(ρk + µT∇ · u), (4.8)

where Sij is the rate of strain tensor and can be written in general as:

Sij =
1

2

(

î · ∂u
∂xj

+ ĵ · ∂u
∂xi

)

. (4.9)

In cylindrical coordinates:

∂x0 = ∂r,

∂x1 = r∂θ,

∂x2 = ∂z,

(4.10)

and

u = urr̂ + uθθ̂ + uzẑ. (4.11)

Using these equations with Equation 4.9 the rate of strain tensor can be rep-

resented in cylindrical coordinates. For example, the normal strain in the θ
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direction:

Sθθ = θ̂ · 1
r

∂u

∂θ

= θ̂ · 1
r

(

∂(urr̂)

∂θ
+

∂(uθθ̂)

∂θ
+

∂(uzẑ)

∂θ

)

= θ̂ · 1
r

(

r̂
∂ur

∂θ
+ ur

∂ r̂

∂θ
+ θ̂

∂uθ

∂θ
+ uθ

∂ θ̂

∂θ
+ ẑ

∂uz

∂θ
+ uz

∂ ẑ

∂θ

)

= θ̂ · 1
r

(

r̂
∂ur

∂θ
+ urθ̂ + θ̂

∂uθ

∂θ
− uθr̂ + ẑ

∂uz

∂θ

)

=
1

r

∂uθ

∂θ
+

ur

r
,

(4.12)

using the fact that ∂ r̂
∂θ

= θ̂, ∂ θ̂
∂θ

= −r̂ and ∂ ẑ
∂θ

= 0. Following the same procedure

for all the components of S, and eliminating some terms due to the disk’s ax-

isymmetry (∂u
∂θ

= 0) and circular velocity (uz = ur = 0) the rate of strain tensor

becomes:

S =
1

2













0 1
r
∂uθ

∂r
+ ur

r
0

1
r
∂uθ

∂r
+ ur

r
0 ∂uθ

∂z

0 ∂uθ

∂z
0













. (4.13)

For certain types of disk ∂uθ

∂z
= 0. However this term is left in here as this is not

true in the general case. The divergence of the velocity field is

∇ · u =
1

r

∂(rur)

∂r
+

1

r

∂uθ

∂θ
+

∂uz

∂z
. (4.14)

For circular rotation, ur = uz =
∂uθ

∂θ
= 0, and therefore,

∇ · u = 0. (4.15)
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Combining Equations 4.8, 4.13 and 4.15 the turbulent stress tensor becomes:

τ =













−2
3
ρk µT

(

∂uθ

∂r
+ uθ

r

)

0

µT

(

∂uθ

∂r
+ uθ

r

)

−2
3
ρk µT

(

∂uθ

∂z

)

0 µT

(

∂uθ

∂z

)

−2
3
ρk













. (4.16)

The turbulent stress tensor influences the momentum of the fluid through its

divergence, as shown in Equation 2.2. This equation represents 3 independent

equations, one for each spatial dimension. For example, for the z dimension:

∂ρuz

∂t
+∇ · (ρuzu) +

∂P

∂z
−∇ · τz = ρgz, (4.17)

where τz = (τzr, τzθ, τzz). Using Equation 4.16 the divergence of τz becomes

∇ · τz =
1

r

∂

∂r
[r · 0] + 1

r

∂

∂θ

[

µT
∂uθ

∂z

]

+
∂

∂z

[

−2

3
ρk

]

= −2

3

∂ρk

∂z

(4.18)

The z momentum equation can then be written:

∂ρuz

∂t
+∇ · (ρuzu) +

∂(P + 2
3
ρk)

∂z
= ρgz. (4.19)

It is clear that the turbulent energy acts as a positive pressure. If 2/3ρk is

a significant fraction of the thermal pressure it could disrupt the hydrostatic

equilibrium.
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Table 4.1: Disk galaxy model parameters

Variable Value
Mstar 1011 M⊙

astar 4.0 kpc
bstar 0.25 kpc
Mbulge 1010 M⊙

rbulge 0.4 kpc
Mgas 1010 M⊙

agas 7.0 kpc
bgas 0.4 kpc
M200 1012 M⊙

c200 12

4.4 Initial conditions

A massive disk galaxy is modelled. The galaxy is comprised of a gaseous disk

and a static gravitational field, with dark matter and stellar components. The

gravitational field is built from three analytical components representing the dark

matter halo, stellar disk and stellar bulge. Roediger & Brüggen (2006) is followed

for these profiles, with the exception of the dark matter halo.

Roediger & Brüggen (2006) use the dark matter distribution from Burkert

(1995):

ρ(r)dm,MB =
ρdr

3
0

(r + r0)(r2 + r20)
, (4.20)

where ρd is the central density and r0 defines a radial length scale. Instead, a

NFW distribution (Navarro et al. 1996) is used for the dark matter:

ρ(r)dm,NFW =
ρs

(r/rs)(1 + r/rs)2
. (4.21)

The characteristic density of the dark matter halo is

ρs =
Ms

4πr3s
, (4.22)
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where

Ms =
M200

ln(1 + c200)− c200/(1 + c200)
, (4.23)

and c200 = r200/rs is the concentration parameter. We take c200 = 12 and M200 =

1012 M⊙. The Burkert profile is designed to reproduce the rotation curves of dwarf

galaxies, specifically those with core masses from 106 to 1010 M⊙(Mori & Burkert

2000), whereas the dark matter haloes of massive disk galaxies are typically of

the order of 1011 to 1012 M⊙. The gravitational force can be calculated from the

density distribution as

∂Φ

∂r
= g(r) = −GM(r)

r2
, (4.24)

where M(r) is the integrated mass:

M(r) =

∫ r

0

4πr′2ρ(r′)dr′. (4.25)

For the NFW dark matter distribution, this gives:

gdm(r) =
GMs

r2

[

r/rs
1 + r/rs

− ln(1 + r/rs)

]

. (4.26)

This can be decomposed intoR and z components in order to calculate hydrostatic

equilibrium.

The stellar disk is modelled as a Plummer-Kuzmin disk (Miyamoto & Nagai

1975), with a gravitational potential:

Φs,disk(R, z) =
−GMstar

{R2 + [astar + (z2 + b2star)
1/2]2}1/2 , (4.27)

with the mass of the stellar disk Mstar = 4 × 1010 M⊙, and shape parameters
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a = 3.5 kpc and b = 0.2 kpc.

The stellar bulge is a spherically symmetric Hernquist bulge (Hernquist 1993):

Φs,bulge(r) =
−GMbulge

r + rbulge
, (4.28)

with mass of the bulge, Mbulge = 1010 M⊙ and scale radius, rbulge = 0.4 kpc.

The density and temperature distributions of the galaxies are determined

using the method described in Section 4.2.2 using Mgas = 1010 M⊙, agas = 7.0 kpc

and bgas = 0.4 kpc. The galaxy parameters are summarised in Table 4.1. The

ambient medium has a density of 10−28 g cm−3 and a temperature of 107 K.

4.5 Simulations

4.5.1 Isolation - with and without k-ǫ

First, the galaxy is evolved both with and without the k-ǫ model. In the k-ǫ the

initial values of k and ǫ are set uniformly across the grid to 105 cm2 s−2 and to

6.91×10−6 cm2 s−3 respectively. The exact values of k and ǫ are not too important

as the k-ǫ model is relatively insensitive to the initial conditions for k and ǫ (see

e.g. Section 5.4.3 of Wilcox (2006)).

The evolution of the density distribution is shown in Figure 4.2. The inviscid

disk has a slight readjustment in its hydrodynamic equilibrium in the first ∼

500Myr and then remains stable for the next several Gyr. The k-ǫmodel however,

has a huge impact on the disk which expands continuously, predominately in the

z-direction over the entire 7.5Gyr simulation.
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Figure 4.2: Gas density as shown in a slice though y = 0, for the galaxy in isolation.
The left two columns shows the inviscid run and the right two columns shows the run
using the k-ǫ model.

Chapter4/Chapter4Figs/rhosi_XZ.eps


77

4.5.2 k-ǫ tests

There are a number of possible explanations for the behaviour of the k-ǫ model

under these conditions. This section outlines these possibilities and presents

simulations to test them.

4.5.2.1 Uniform ρk

In the k-ǫ simulation the initial turbulent energy per mass (k) is set uniformly,

meaning that the turbulent energy per volume (ρk) is much higher in the central

regions of the disk. As this value acts somewhat like a pressure (see Equation 4.19)

this could potentially upset the hydrodynamic equilibrium and cause expansion

of the disk. The k and ǫ values are initialised such that the turbulent energy per

volume (ρk) is uniform across the grid, keeping the value of k the same at the

origin.

Figure 4.3 shows the turbulent energy per volume for both cases. While the

values are quite different initially, the turbulence generated quickly dominates

and is the same in both cases. This is reflected in the density distribution shown

in Figure 4.4 where the same expansive behaviour is seen in both cases. The

ambient medium still retains a high value when a uniform kρ is used, however,

as it is the gradient of the turbulent energy that is important, this has no impact

on the evolution of the simulation.

4.5.2.2 No turbulent heating

In the k-ǫ model the turbulent energy is dissipated into the internal energy of

the fluid. This turbulent heating of the fluid could potentially cause inflation of
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Figure 4.3: ρk shown in a slice though y = 0. The left column shows the unmodified
original k-ǫ results (as shown in Figure 4.2), the right column shows the simulation
with initially uniform turbulent energy per unit volume (ρk). Shown at the start of the
simulation (top) and at t =∼ 1Gyr (bottom).
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Figure 4.4: Gas density shown in a slice though y = 0 at t =∼ 1Gyr. The left panel
shows the unmodified original k-ǫ results (as shown in Figure 4.2), the right panel shows
the simulation with initially uniform turbulent energy per unit volume (ρk).
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Figure 4.5: As Figure 4.4 but the right panel shows the simulation without turbulent
heating.
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Figure 4.6: As Figure 4.4 but the right panel shows the simulation without off-
diagonal terms in the turbulent stress tensor.

the disk. The equation that governs energy conservation, Equation 2.3, has the

the turbulent heating term, ρǫ, removed. This is as if the turbulent energy is

efficiently radiated away instead of being used to heat the galaxy. While there is

not necessarily any physical justification for this behaviour it should be able to

show whether turbulent heating is responsible for the expansion of the disk.

Figure 4.5 shows the impact on the density distribution when turbulent heat-

ing is removed. Without turbulent heating the gas is slightly cooler and this is

reflected in the slight reduction in the extent of the expansion, particularly in

the centre of the galaxy, although some other factor that is causing the galaxy to

expand is still dominating.

4.5.2.3 Eliminating off-diagonal terms in the turbulent stress tensor

It has been noted previously (e.g. Gauthier & Bonnet (1990); Scannapieco &

Brüggen (2010)) that in the presence of shocks the off-diagonal strain terms

Chapter4/Chapter4Figs/rhosi_nodiag.eps
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Table 4.2: Dwarf disk galaxy model parameters

Variable Value
Mstar 3× 108 M⊙

astar 0.7 kpc
bstar 0.2 kpc
Mbulge 0
Mgas 2× 108 M⊙

agas 0.7 kpc
bgas 0.2 kpc
M200 1010 M⊙

c200 12
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Figure 4.7: Gas density as shown in a slice though y = 0, for the dwarf disk galaxy
in isolation.

(∂ui/∂xj+∂uj/∂xi, where i 6= j) can become unphysically large. Figure 4.6 shows

a comparison of the galaxy with and without off-diagonal terms after ∼ 1Gyr.

There is no perceivable difference.

4.5.2.4 Dwarf disk galaxy

The use of a turbulence model is fairly rare in astrophysical simulations. The

only previous application of a turbulence model to a rotating disk comes from

Scannapieco & Brüggen (2010) where they do not see any such expansive effects.

Their investigation differs to the one in this chapter in three important ways.

They neglect off-diagonal strain terms, they use a k-L model (modelling the

turbulent length scale as opposed to the turbulent dissipation rate) and they

Chapter4/Chapter4Figs/rhosi_small.eps
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model a dwarf galaxy as opposed to a massive galaxy. As shown in Section

4.5.2.3 the off-diagonal strain terms have no impact on the expansive behaviour.

In order to differentiate between the effects of the turbulence model and the area

of parameter space, a galaxy with the same parameters as theirs is simulated in

isolation using the k-ǫ model. The parameters used are shown in Table 4.2.

Figure 4.7 shows the evolution of the dwarf galaxy under the k-ǫ model. It

is completely stable for the 100Myr simulated (Scannapieco & Brüggen (2010)

show 60Myr of evolution). This suggests that it is the area of parameter space,

rather than the specific turbulence model that is the significant factor. The

massive galaxy rotates at up to Mach 15 where as the dwarf galaxy rotates up

to Mach 4 which could be the relevant difference. It is also possible that it is

just the shorter timescale that is responsible, and if the dwarf galaxy were to be

evolved for 1Gyr or more it would become inflated by the generated turbulence.

Either way, the dwarf galaxy provides a small region of parameter space where a

turbulence model might be used.

4.5.3 Modified hydrostatic equilibrium

Another possibility is that the condition of hydrostatic equilibrium (Equation

4.2) does not account of the effects of turbulence. Using the modified momentum

equation (Equation 4.19) results in the hydrostatic equation:

1

ρ

∂(p+ 2
3
ρk)

∂z
+

∂Φ

∂z
= 0. (4.29)

This is not enough however, as k and ǫ both need to be put into equilibrium

distributions. However, calculating this analytically is non-trivial. A more prag-



83

−30 −20 −10 0 10 20 30
x / kpc

−10

−5

0

5

10
z 

/ 
kp

c

0.8 1.6 2.4 3.2 4.0 4.8 5.6 6.4
log10 T (K)

Figure 4.8: Initial temperature as shown in a slice though y = 0, for the massive disk
galaxy using the modified hydrostatic equilibrium.

matic approach would be to use the k and ǫ distributions from the end of the

previous simulations (seen in Figure 4.3). These distributions are almost certainly

not correct given the difference in density distributions but should give some in-

dication as to the viability of this approach given the amount of turbulence that

is produced. Figure 4.8 shows the resulting initial temperature distribution. In

order to counteract the turbulence the temperature has to drop to unphysical

levels. This shows that the amount of turbulence generated is too high to be

contained with reasonable alterations to the hydrostatic equilibrium and is likely

a flaw in the turbulence model.

Chapter4/Chapter4Figs/temp_mod.eps
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4.6 Alternate turbulence models

It has been recognised within the engineering literature that the standard k-

ǫ has numerous short comings, including poor predictions for flows with strong

separation, rotating/swirling flows and adverse pressure gradients (see e.g. Menter

1994; Pope 2000; Wilcox 2006). This has lead to many attempts to improve upon

it, such as dynamic renormalization group (RNG) k-ǫ (Yakhot & Orszag 1986)

and later the realizable k-ǫ model (Shih et al. 1995). Both these models aim to

improve upon the standard k-ǫ model by improving, amongst other things, the

prediction of rotating flows, which is very relevant to the simulations presented

here.

Each different model performs better for particular flows and have different

parameters to be calibrated. This is not such a problem in terrestrial applications,

where the different models can be compared against each other and lab experi-

ments (e.g. Gorman et al. 2016) in order to ensure the most accurate model is

used. As astrophysical objects cannot be reproduced and observed in a controlled

manner any similar investigation taken without great care is likely to result in

overfitting the turbulence model to the few objects that can be observed.

4.7 Conclusions

This chapter presents the effects the k-ǫ sub-grid turbulence model has on a

galactic disk, using high resolution, three dimensional simulations.

A massive disk galaxy that would otherwise be stable, expands significantly

in the z-direction under the influence of the k-ǫ model. This is shown not due
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to be due to turbulent heating (i.e. something that may be mitigated by cooling

processes) and occurs independently of the initial turbulent energy but rather

inherent properties of the turbulence generated by shear forces in the galaxies

differential rotation. It is also too large to be contained by reasonable alterations

to the pressure distribution, suggesting it is a flaw in the turbulence model.

The only previous instance of the use of a turbulence model with a disk galaxy

(Scannapieco & Brüggen (2010)) is done with a much smaller (dwarf) galaxy. No

erroneous behaviour is seen in their simulations, due to the lower Mach number

of the rotation or the shorter timescales.

Turbulence models were generally developed to solve terrestrial problems so

it is perhaps unsurprising that they fail in circumstances unique to astrophysics.

If they are to be applied to such problems, a more systematic approach is needed,

comparing multiple different turbulence models, such that there relative strengths

and weaknesses may be compared and their failure points documented. However

without a “one size fits all” turbulence model it is hard to have faith in their

predictive power. Given its ubiquity the k-ǫ model is perhaps the closest thing

to this, however as shown here, it is not without its problems.
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Chapter 5

Ablation of stellar disks

5.1 Introduction

It is widely believed that massive stars can trigger the formation of lower mass

stars in their surrounding regions, leading to frequent associations of massive

stars, and young low mass stars. For instance, there are ∼ 2000 low-mass stars

within 2pc of the centre of the Trapezium cluster (Hillenbrand & Hartmann

1998), and stars with circumstellar disks (O’dell et al. 1993; McCaughrean &

O’dell 1996; Bally et al. 1998) within a few tenths of a parsec of the central star,

θ1 Ori C. As massive stars are often the source of strong winds and eventual

supernova, these regions are potentially hostile to protoplanetary disks and the

subsequent formation of planets, not only due to direct ablation but also the

ionizing radiation created by massive stars.

When radiation dominates, the stellar disk is photoevaporated, giving rise

to a photoevaporative flow which collides with the on coming wind (Henney &

Arthur 1997). Objects under-going this interaction are typically referred to as
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proplyds.

If the flow from the massive stars is stronger than any photoevaporative flow,

it interacts directly with the circumstellar disk, allowing hydrodynamic ablation

and mixing to occur. The mixing of supernova material into the disk has been

suggested as a mechanism to introduce short-lived radionuclides into the early

solar system (Goswami et al. 2005; Looney et al. 2006; Ouellette et al. 2005;

Tachibana et al. 2006) and has been examined in a limited manner by Ouellette

et al. (2005). However their simulations are two dimensional, and hence limited

to a face-on orientation. Figure 5.1 shows their disk before and after the effect

of the SNR. They find that only a small fraction (∼ 1%) of the disk mass is

removed, in contrast to the ∼ 13% expected from the analytical prediction of

Chevalier (2000). They attribute this to the cushioning and deflecting effect

of the bow shock in addition to the compression of the disk further into the

gravitational well of the central star. However their simulations are limited to

two dimensions and face-on impacts. While an inclined disk might be expected

to be disadvantageous for ablation, the geometry of the bowshock that shields

the disk is likely to be substantially different and the wind acts with the rotation

of the disk on one side making the threshold for ablation lower.

This chapter aims to improve and expand on the 2D hydrodynamical calcu-

lations of Ouellette et al. (2007) in a number of ways. Firstly, by doing fully

3d simulations, which also allows the angle between the disk and the flow to be

varied. Secondly, by considering a range of disk masses (1×, 0.1× and 0.01×

their canonical disk mass). Finally, time-dependent flow properties from a 1D

simulation of the SNR are adopted. This provides more accurate flow conditions

past the disk, compared to the analytical approximation used by Ouellette et al.
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Figure 5.1: Density contours from the disk of Ouellette et al. (2005). The top panel
shows the disk prior to impact by supernova ejecta. The bottom panel shows the disk
2000 yr after impact.

Chapter5/Chapter5Figs/ouellette_disk.eps
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Table 5.1: SNR parameters

Variable Value
Mej 20 M⊙

Eej 1044 J
ρamb 2.34× 10−24 g cm−3

Tamb 104 K

(2007), particularly in the early stages of the SNR’s expansion. This chapter aims

to better determine the nature of the interaction, the mass-stripping rate of the

disk, and the injection rate of SLRs into the disk.

5.2 Models

5.2.1 Overview

A stellar disk is simulated in three dimensions, with mass injected onto the grid

to simulate the impact of a SNR. The strength of the flow is dependent on the size

and distance of the supernova and is time dependent. To calculate this precisely,

a simple, one dimensional simulation of a SNR is performed. The evolution of

the density, velocity and temperature are recorded at the desired distance from

the supernova, which can then be used by the main simulation to control the

properties of the wind. This is in many ways simpler than performing an ana-

lytical approximation (e.g. Matzner & McKee (1999)), and has the advantage of

reproducing all the features of a realistic SNR, particularly in the early expansion.

5.2.2 The supernova remnant

The supernova has an ejecta mass of 20 M⊙ and an ejecta energy of 1051 erg

(following Ouellette et al. (2007) to represent a typical type II supernova). At
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Table 5.2: Disk model parameters

Variable Value(s)
R0 1 au
T0 400K

ρ0







3.5× 10−13 g cm−3

3.5× 10−12 g cm−3

3.5× 10−11 g cm−3

M∗ 1 M⊙

the start of the simulation the energy is initially thermal is confined to a radius

of 2000 au. The ambient medium is set to a density of 2.34× 10−24 g cm−3 and a

temperature of 104 K. The simulation parameters are noted in Table 5.1. For all

simulations, the mean molecular weight, µ = 2.4, and γ = 5/3. The supernova

calculations were performed in spherical symmetry on a uniform 1 dimensional

grid, extending to r = 105 au with 3200 cells. The same calculations were done

at half and quarter resolution with identical results.

Figure 5.2 shows how the fluid variables change over time at a point 0.3 pc

from the origin of the SNR. 0.3 pc is chosen to aid comparison with Ouellette

et al. (2007) and is consistent with observations of the Orion Trapezium Cluster.

These values will determine the properties of the flow past the circumstellar

disk in the 3d simulation. The strength of the flow is parametrised by the ram

pressure, Pram = ρν2, and is shown in Figure 5.3. Also shown is the ram pressure

curve used by Ouellette et al. (2007), which is only a close approximation to the

numerical results at late times. The interaction is strongest in the early stages,

where the approximation is poor.
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Figure 5.2: Density, temperature and velocity of the fluid 0.3 pc away from the su-
pernova as described in Section 5.2.2. t0 is the time at which the SNR shockwave first
reaches a radius of 0.3 pc.

5.2.3 The circumstellar disk

The disk model is adapted from Gressel et al. (2013). The temperature is defined

to be constant across z, and to be inversely proportional to cylindrical radius, R,

T (R) = T0(R/R0)
−1. (5.1)

This gives the disk a constant opening angle. A constant opening angle is typically

desirable as it allows the disk edge to align with cell boundaries in a spherical-

Chapter5/Chapter5Figs/snr_density.eps
Chapter5/Chapter5Figs/snr_temperature.eps
Chapter5/Chapter5Figs/snr_velocity.eps
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Figure 5.3: Ram pressure 0.3 pc away from the supernova as described in Section
5.2.2. t0 is the time at which the SNR shockwave first reaches 0.3 pc. The dashed green
line shows the ram pressure used by Ouellette et al. (2007) for comparison.

polar domain. While this is not a concern for these simulations, it aids comparison

with works in the literature. Defining the midplane density as

ρmid(R) = ρ0(R/R0)
−3/2, (5.2)

and enforcing hydrostatic equilibrium vertically defines the three dimensional

density structure, which can be derived as

ρ(r) = ρmid exp

(

GM∗

c2s

[

1

r
− 1

R

])

, (5.3)

Chapter5/Chapter5Figs/snr_ram.eps
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where cs is the isothermal sound speed, and r is the distance to the centre of the

disk. Finally, the angular velocity, Ω, is set to achieve radial equilibrium,

Ω(r) = Ωk(R)

√

R

r
− 5

2

(

cs
Ωk(R)R

)2

, (5.4)

where Ωk(R) =
√
GM∗R

−3/2 is the Keplerian angular velocity. The free disk

parameters are chosen such that the disk resembles that described in Ouellette

et al. (2005). As they observe no significant ablation of their disk, lower disk

mass simulations are also performed, which are likely to be more susceptible to

ablation. The values are summarised in Table 5.2. The disk is truncated at an

inner radius of 4 au and an outer radius of 40 au. The temperature of the disk

ranges from 100K to 10K from the inner to outer disk boundaries. The outer

rotation period is ∼ 250 yr and the inner rotation period is ∼ 10 yr. The initial

ambient medium (ρamb and Tamb) is set to the same as that of the supernova

simulation for consistency (see Table 5.1). The disk was evolved in isolation and

found to be stable for several outer rotation periods.

It should be noted that much bigger disks (with radii up to ∼ 1000 au see

e.g. Bally et al. (2015)) have been observed. Such disks have a much larger

surface area and the outer regions are less strongly held by the gravitational

field, meaning they will lose mass to ablation more readily. However, a 40 au disk

is used here to aid comparison with previous work. Without good statistics of

the disk radius at formation it is also hard to say what is more typical and in

any case it likely depends on unknown quantities such as the conditions under

which the cluster formed. Having said this, since material at larger radius is

easier to strip, disks with the same central density and stellar mass should strip
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Table 5.3: Simulation regions and flow directions for each inclination angle.

Inclination Injection Region Grid size / au







X
Y
Z

Flow direction

0◦ X > 96
(−256,+128)
(−256,+256)
(−256,+256)

−X

45◦ X > 96 or Y < −96
(−256,+128)
(−128,+256)
(−256,+256)

−X,+Y

90◦ Y < −96
(−256,+256)
(−128,+256)
(−256,+256)

+Y

Table 5.4: Summary of the simulations. The disk angle (i) is defined as the difference
in angle between the angular momentum vector of the disk and the vector of the flow
direction, making 0◦ face-on and 90◦ edge-on. MJ is the mass of Jupiter.

Simulation ρ0 / g cm
−3 Mdisk /MJ i Dynamic flow?

const00high 3.5× 10−11 8.22 0◦ n
const00med 3.5× 10−12 0.822 0◦ n
const00low 3.5× 10−13 0.0822 0◦ n
const45low 3.5× 10−13 0.0822 45◦ n
const90low 3.5× 10−13 0.0822 90◦ n
dyn00low 3.5× 10−13 0.0822 0◦ y
dyn45low 3.5× 10−13 0.0822 45◦ y
dyn90low 3.5× 10−13 0.0822 90◦ y

down to the same mass and radius regardless of their initial radius. With this in

mind, some insight into the behaviour of larger disks can also be gleaned from

our simulations.

5.3 The simulations

All simulations are performed on a three dimensional Cartesian grid, with the

disk situated at the origin, and the plane of rotation aligned with the X-Y plane.

For each simulation a “flow injection region” is defined where the values of the

grid cells are set to the current SNR flow properties at the beginning of each time
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step. This region is placed 96 au from the origin. The simulation region extends

to ±256 au in all directions, except in the cases where this would create a large

flow injection region. The parameters of the different flow injection regions and

grid sizes are listed in Table 5.3. For all simulations the lowest grid level has a

resolution of 8 au, with 4 additional grid levels giving an effective resolution of

0.5 au.

There are two reasons the disk is kept in the same orientation and the wind

direction is changed (as opposed to vice versa). Firstly, if the plane of rotation

is not aligned to the direction of the grid, instabilities can develop and cause the

disk to fragment with no outside influence (e.g., Davis (1984); Hahn et al. (2010);

Hopkins (2015)). Secondly, the grid is split among processors by dividing the

domain along one of the grid directions. Placing the disk such that the divides

split the disk across processors helps to distribute the computational load more

evenly and allows the simulations to run more efficiently.

A set of eight simulations are performed. Table 5.4 details the differences

between them. Some simulations are done with a constant flow, as this is the most

straight forward to compare against analytical approximations. The parameters

of the constant flow are defined by the peak ram pressure point of the SNR

(see Figures 5.2 and 5.3) and occurs 55.8 yrs after the disk is first hit by the

SNR. The peak is taken as it represents the worst case scenario for the survival

of the disk. Specifically this is a density of 5.74 × 10−21 g cm−3, a velocity of

2.87 × 108 cm s−1 and a temperature of 2.72 × 105 K. The corresponding ram

pressure is 4.74×10−4 g cm−1 s−2. In contrast the flow in the dynamic simulations

follows the temperature, density and velocity of the calculated SNR, shown in

Figure 5.2.
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Figure 5.4: Gravitational pressure in the disk as a function of radius, as defined by
Equation 5.5. The blue, green and red lines correspond to the low, medium and high
values of ρ0 (see Table 5.4 for details). The dashed horizontal line shows the peak ram
pressure of the SNR at 0.3 pc.

5.4 Analytical Approximations

Material in the disk will be disrupted if the ram pressure of the wind exceeds

the gravitational force per unit area, Pgrav. This can be estimated as (Chevalier

2000):

Pgrav =
GM∗σ

R2
, (5.5)

where σ is the surface density of the disk. Figure 5.4 shows the gravitational

pressure as a function of radius for the three disk masses considered. By in-

tegrating surface density from the centre of the disk to the point at which the

gravitational pressure drops below the peak ram pressure of the SNR, an estimate

Chapter5/Chapter5Figs/radial_gp.eps
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Figure 5.5: The fractional integrated mass of the disk as a function of disk radius.
Note this is the same for all values of ρ0 for the density distribution given by Equation
5.3. The dashed vertical lines shows the radius outside which the gravitational pressure
of the disk is less than the peak ram pressure of the SNR for each value of ρ0. From
left to right the dashed lines are shown for low, medium and high disk mass cases.

for the extent of the instantaneous stripping can be obtained.

Figure 5.5 shows the cumulative integrated mass for the disk. If all the mate-

rial at a gravitational pressure less than the peak ram pressure of the supernova is

stripped, then the low mass disk is left with 10.7% of its initial mass, the medium

density disk retains 65.1% and the high mass disk retains 99.95%.

In their investigation of the effects of inclination on the ablation of disk galax-

ies, Roediger & Brüggen (2006) provide an argument for why stripping should

be independent of inclination angle for small angles. Assuming the gas disk

to be infinitely thin, the force due to ram pressure on a surface element dA is

Chapter5/Chapter5Figs/radial_mass.eps
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ρwindν
2
windcos(i). The ram pressure is effectively reduced by a factor of cos(i).

As the radial gravitational force is balanced with the centrifugal force only the

force perpendicular to the plane of the disk contributes. This is also reduced

by a factor of cos(i). This means that the criteria for material to be stripped

from the disk is independent of inclination angle. For highly inclined disks, the

assumption of an infinitely thin disk will break down. While galactic disks are

in a very different area of parameter space to stellar disks, these arguments are

equally valid for either case.

5.5 Results

Figures 5.6-5.8 show snapshots of the evolution of the disk with two dimensional

slices though the three dimensional grid. Figure 5.6 shows the evolution of disks

of different masses subject to a constant flow. As expected the more massive disks

are more resilient to stripping. The low and medium mass disks are significantly

deformed by the flow. For the low mass disk this breaks up the disk and forms

a turbulent tail. However, in the medium mass case the deformed disk remains

bound.

Figures 5.7 and 5.8 show the effect of inclination angle for the constant flow

and dynamic flow cases respectively. For inclined disks the stripping is asym-

metrical. For disk inclinations of 45◦ the leading edge fragments and strips from

the disk first, as the bow shock partially shields the trailing edge of the disk. As

the disk continues to evolve the trailing edge is stripped and the disk becomes

more symmetrical again. As the 45◦ disk evolves, the disk is heavily stripped

and eventually destroyed. At an inclination of 90◦ the side of the disk rotating in
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the direction of the flow is stripped more heavily at first than the side rotating

against the flow. Mass is stripped from the 90◦ disk much more slowly than for

disks with lower inclinations, due mainly to the lower cross-sectional area of the

disk to the flow.

The morphology of the constant wind and dynamic wind cases is broadly

similar in all cases. The main distinguishing feature is that as the pressure of the

dynamic wind starts to decrease, the tail becomes much wider.
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Figure 5.6: Slices through the X-Z plane at Y= 0 for the simulations of varying disk mass. The simulations from top to
bottom are const00low, const00med and const00high. The flow is constant and from left to right.
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Figure 5.7: Slices through the X-Z plane at Y= 0 for the constant flow simulations. From top to bottom: const00low,
const45low and const90low. The bottom row also shows a slice though the X-Y plane at Z= 0 for const90low (the disk
rotates clockwise in these images). Note that although the simulations are performed by changing the angle of the flow, the
images here are rotated such that the flow in each image is from left to right in the plane of the slice.
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Figure 5.8: As Figure 5.7 but for the dynamical flow simulations, dyn00low, dyn45low and dyn90low.

Chapter5/Chapter5Figs/rhosi_dyn.eps


104

The amount of mass bound to the star’s gravitational well is shown as a

function of time in Figures 5.9-5.11. Simulations with a constant flow exhibit

an initial rapid (“instantaneous”) stripping down to the level where the ram

pressure is balanced by the gravitational pressure (where the disk mass plateaus),

followed by a slower continual stripping caused primarily by the Kelvin-Helmholtz

instability. Figure 5.9 shows this for the three different disk masses simulated,

together with the analytical approximations. For the low mass disk, the analytical

prediction fits the position of the plateau very well. The medium mass disk begins

to plateau but the continual stripping starts to dominate before it does so, pulling

the mass below the analytical approximation. The high mass disk loses virtually

no mass due to instantaneous stripping and effectively starts in the continuous

stripping phase. At the end of the simulation both the medium and high mass

disks are losing mass at a rate of ∼ 10−6 M⊙ yr−1. During continuous stripping

(between t = 40 yr and t = 70 yr), the mass-loss rate of the low mass disk is

∼ 10−7 M⊙ yr−1.

As the inclination angle of the disk is increased, the stripping is generally

slower (Figures 5.10 and 5.11). However, the difference between inclination angles

of 0◦ and 45◦ is relatively small. Not only do they both plateau at about the same

level, but they do so at about the same time (see Figures 5.10 and 5.11). This is

because the flow in this instance is strong enough to deform the disk such that the

initial inclination angle is no longer relevant. At high inclination angles a different

behaviour is observed, and the disk survives significantly longer at an inclination

of 90◦. The same general trend can be seen in Figure 5.11 for the dynamic flow.

Interestingly, for the face-on flow, the mass plateaus before the peak ram pressure

has been reached, indicating that the history of the flow is important in shaping
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Figure 5.9: The upper panel shows the mass of the disk as a function of time for
constant face-on flows, showing the three different disk masses simulated. The dashed
lines show the corresponding analytical predictions from Section 5.4. The lower panel
shows the mass-loss rates for the same three simulations.
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Figure 5.10: As Figure 5.9 but for the different inclinations of the low mass disk in a
constant flow. The black dashed line shows the analytical predictions from Section 5.4.
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Figure 5.11: As Figure 5.10 but for dynamic supernova flow. The dashed black line
represents the fraction of the initial disk mass that is vulnerable to stripping as the
ram pressure evolves.
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Figure 5.12: Absolute value of the mass flux in the X-Z plane for const00high at
t = 140 yr. The left plane shows the total contribution to the mass flux from the disk
material. The right plane shows only disk material which is gravitationally unbound
from the central star.

the disk and determining whether it is susceptible to ablation. The low mass disk

only survives the dynamic flow when placed edge-on to the flow, retaining nearly

60% of its mass in this case (Figure 5.11).

Figure 5.12 shows the z-direction mass flux of the disk material at the end of

simulation const00high. To show the regions where the disk is losing mass the

unbound material is shown in the right panel. Mass is lost from two main regions:

along the sides of the deformed disk and also though the central hole. While the

Chapter5/Chapter5Figs/massflux.eps
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Figure 5.13: As Figure 5.12, but showing the mass flux multiplied by a factor of 2πr.

mass flux in both these areas is similar the central region spans a much smaller

area. Figure 5.13 shows the same mass flux as Figure 5.12 now multiplied by a

factor of 2πr to account for the differing contributions to the total mass flux. It

is clear that the majority of the mass is lost from the edge of the disk. Ablation

from the centre of the disk accounts for approximately 30% of the mass being

ablated at this point in the disk’s evolution.

Figure 5.14 shows the amount of material from the SNR that becomes bound

to the disk, tracked using an advected scalar. The disks in simulations const00med,

const00high and dyn90low are the only disks to survive to the end of simula-

Chapter5/Chapter5Figs/massflux_az.eps
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Figure 5.14: Fraction of mass bound to the gravitational field that originated from
the SNR as a function of time.

tion and the only ones that could be considered to be enriched by SNR material,

although all simulations are shown for completeness. The mass of SNR material

in the disk is ∼ 10−9 M⊙ for face-on disks and ∼ 10−10 M⊙ for the edge-on disk.

The mass is deposited on the surface of the disk as the shock stalls, and little

mixing into the disk interior occurs (though in reality, turbulent motions within

the disk, which are not resolved in our simulations, may do so). For the edge-on

disk the SNR material enters an orbit around the edge of the disk.

Chapter5/Chapter5Figs/constmass_wind_bound_frac.eps
Chapter5/Chapter5Figs/constlow_wind_bound_frac.eps
Chapter5/Chapter5Figs/dynlow_wind_bound_frac.eps
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5.6 Discussion

5.6.1 Comparison to previous works

The main point of comparison is with Ouellette et al. (2005). Our face-on high

density disk can be considered equivalent to their canonical disk. Good agreement

is obtained in that virtually no stripping is seen in either case. However they see

less than 0.1% mass lost over 2000 yr whereas we see ∼ 2.5% lost over 140 yr. This

difference can be attributed to the fact that our high density disk is only simulated

for the constant ram pressure flow where the long term ablation is much stronger,

whereas Ouellette et al. (2005) used a time varying flow. Our simulations also

differ in that we observe consistency with the analytical predictions of Chevalier

(2000), whereas they state that the bow shock shields the disk causing it to be

able to survive higher levels of ram pressure.

Li et al. (2014) study the effect of triggered star formation, allowing a disk

to form and evolve under the effects of a wind. Their simulations are in a very

different region of parameter space to ours: the ram pressure of their wind is ∼ 7

orders of magnitude lower, so they are observing the interaction on a timescale of

Myrs and their disk after formation has a radius of ∼ 1000au, with a resolution

of 23au. However, they do note that at the end of their simulation the disk radius

is much less than that predicted using the method of Chevalier (2000).

As there have been no studies specifically of the ablation of inclined stellar

disks, the only comparison that can be made is with galactic disks. Roediger &

Brüggen (2006) and Jáchym et al. (2009) both specifically investigated the effect

of inclination on the ram pressure stripping of galactic disks. We observe the

same general dependence on inclination angle, where stripping is similar for low
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inclination angles and is only strongly impeded for close to edge-on orientations.

We also observe the same asymmetry when disks are not face on. Jáchym et al.

(2009) argues that the parallel side is stripped more easily as the wind works in

the direction of rotation to push the material off the disk, whereas the material

on the anti-parallel side must first be slowed to zero velocity and re-accelerated

in the opposite direction if it is to be stripped on that side on the disk (otherwise

it will continue to orbit round to the other side of the galaxy where it may

then be stripped more easily). Roediger & Brüggen (2006) note that after an

outer rotation period the disc becomes symmetrical again, as the entire disk has

experienced the side with stronger stripping.

For galactic disks the stripping occurs over a relatively long period of time,

with the disk experiencing several rotation periods while being ablated. How-

ever, the nature of the stripping depends on how the galaxy is orbiting within

the cluster. A galaxy on a circular orbit will experience constant ram pressure

throughout its lifetime, whereas a galaxy falling radially will experience a shorter

peak of ram pressure. Roediger & Brüggen (2007) calculate the dynamic ram

pressure for several different orbital paths a galaxy might take. Defining a signif-

icant ram pressure as one that would be expected to strip at least half of the disk

mass if maintained constantly (this corresponds to what Roediger & Brüggen

(2007) refer to as a ”medium” ram pressure and is ∼ 10−11 g cm−1 s−2 in their

case), the galactic disk experiences significant ram pressure for approximately

0.75 to 2 times the outer rotation period during each orbit.

For the supernova and stellar disk interaction examined here the ram pressure

is only significant for ∼ 1/3 of the outer rotation period. This means it is possible

for the stellar disk to maintain asymmetry after the point where stripping is
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significant, although it is not clear where the boundary lies, either in terms of

ram pressure or rotation periods, in order for this to occur. Also note that this

effect requires the flow to impact the disk edge-on or near edge-on for extended

periods, whereas a galaxy is likely to experience stripping from a number of

different angles at different points in its orbit.

5.6.2 Internal stripping

Our simulations show that a significant amount of mass is lost though the central

hole of the disk during the continuous stripping phase. Theoretical considerations

show that large planets can cause gaps to form in the disk (Takeuchi et al. 1996)

and observations of protoplanetary disks have since detected the presence of such

gaps (Calvet et al. 2002; Andrews et al. 2016). If these gaps are large and deep

enough they could provide additional channels for ablation to take place.

Similarly, in disk galaxy simulations cooling causes the disk to fragment and

allows the wind to flow though areas of low density within the galaxy (Tonnesen

& Bryan 2009). This causes the instantaneous stripping to proceed faster but to

the same extent compared to the adiabatic, non-fragmented disk. The differences

in long term stripping were not investigated but it is likely to be accelerated in

the same way by the additional surface area, and will almost certainly effect the

morphology of the flow.

5.6.3 Continuous stripping

A number of different authors (Nulsen 1982; Hartquist et al. 1986; Arthur &

Lizano 1997) have provided estimates for the mass-loss rate of a pressure sup-
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ported globule under the effect of a wind. All their estimates are based on the

mass-loss rate of the globule being, due to conservation of momentum, approxi-

mately equal to the mass flow rate though the cross-sectional area of the object

being ablated, i.e., Ṁ = πr2ρwindνwind. Calculating this value for the constant

wind used for the simulations in this chapter gives Ṁ = 3×10−8 M⊙ yr−1 which is

around 100 times lower than the value seen in the simulations (∼ 10−6 M⊙ yr−1).

The flaw in this argument when applied to disks is that each parcel of gas already

contains a large amount of momentum due to its rotation. For protoplanetary

disks the pressure support is relatively weak so the velocity of the gas is close

to Keplerian and thus the escape velocity. This means that the oncoming wind

only need to transfer a relatively small portion of its amount to the gas in the

disk so that it becomes unbound. In practice this interaction is fairly complex,

particularly for non-face-on orientations and there has been no simple analytical

formulae proposed, but it is clear that it is not well described by those for simpler,

non-rotating objects.

Photoevaporation by a nearby massive star can also play a role in disk dis-

persal, and is thought to be the cause of the proplyd objects in the Orion nebula

(Henney & Arthur 1997). Störzer & Hollenbach (1999) model the effect of an

external source of ultraviolet radiation on circumstellar disks, finding good agree-

ment with their models and observations of the Orion proplyds. They provide a

crude fit to their results for the mass-loss rate:

Ṁ ≈ 10−7 M⊙yr
−1
( rdisk
100au

)1−1.5

, (5.6)

at a distance of 0.2pc from a θ1 Ori C-like star. Richling & Yorke (2000) perform
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a similar analysis and find agreement with the above equation. Calculating this

value for a disk of rdisk = 40 au gives Ṁ = 3× 10−8 M⊙ yr−1. This is ∼ 100x less

than the continuous stripping rate from the SNR interaction at a distance of 0.3 pc

for models const00med and const00high. Thus supernova induced stripping

can far exceed the photoevaporative mass-loss rate and clearly dominates during

the interaction of the disk with the SNR.

Another possible source of ablation for stellar disks is the wind from a nearby

massive star. This can last much longer than the SNR. For massive stars (M &

25 M⊙) The strongest wind occurs during the Wolf-Rayet (WR) phase which lasts

∼ 0.3Myr. For an isotropic wind, the ram pressure at a distance, r is

Pram =
Ṁ

4πr2ν
, (5.7)

where Ṁ is the mass-loss rate of the star and ν is the velocity of the stellar wind.

Typical values for the star’s wind during the WR phase are Ṁ = 10−5 M⊙ yr−1

and 2×10−8 cm s−1, giving a ram pressure of 1.2×10−8 g cm−1 s−2. This is several

orders of magnitude lower than appears in any of the three disk masses simulated

(see Figure 5.4) so no direct stripping is possible. While there may be some

long term, continuous stripping, it will be much weaker than that seen in any

simulation presented in this work.

5.6.4 Planet formation

As planet formation occurs on timescales much longer than the SNR interaction

simulated in this work, the disk is likely to re-establish equilibrium before planets

begin to form. As far as planet formation is concerned, the interaction is therefore
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equivalent to replacing the disk with one of smaller mass.

5.6.5 Enrichment via supernova

Overall very little mass from the SNR flow becomes bound to the disk: ∼ 10−9 M⊙

for face-on disks that survive the stripping and ∼ 10−10 M⊙ for the edge-on disk.

This is about 10 times less than seen by Ouellette et al. (2007). Some of the

difference may be due to the differences in the dimensionality of the simulations

(3D in our case, 2D in theirs). However, most of it is likely due to differences

in the radiative cooling (which is included in their simulations, while ours are

adiabatic). Thus the hot supernova ejecta is more able to cool down and mix with

the disk in their simulations. The broad conclusion is the same, however: that the

enrichment of protoplanetary disks via supernova ejecta by pure hydrodynamic

mixing is too inefficient to explain the abundance of SLRs in the early solar

system. The highest ejecta contamination seen in our simulations is 5 × 10−6

(which falls short of the 10−4 needed using SLR production values from Woosley

& Weaver (1995)). Interestingly, this is for our low mass, edge-on case. Low

mass disks obviously benefit more from the same amount of ejecta material, but

are also generally destroyed more easily. However, we believe that the fact that

edge-on disks survive significantly longer than face-on disks allows such disks to

intercept more of the SN ejecta, and thus have the highest injection efficiency. So,

at least for the particular parameters chosen here, a low mass edge-on disk can be

enriched more than a high mass face-on disk. While the disks here do not meet

the enrichment requirements deduced from observations, it may be possible that

a much larger disk (and hence larger surface area for collection) placed further



117

away from the supernova (such that its outer parts do not get instantaneously

stripped) could be more efficient at absorbing material from a SNR. This is left

for the subject of future investigation.

It should be noted that these disks are less massive than the minimum-mass

solar nebula solar (∼ 10MJ versus 8.22MJ for the highest mass disk) and as such

should not be interpreted as a simulation of the early solar system. The disk

masses were chosen to facilitate comparison with Ouellette et al. (2005), and lower

mass disks are required to probe the interesting effects of ablation. However, as

more massive disks are less effected by ablation we can say with some confidence

that the amount of gas in the early solar system would have been unaffected

by a supernova occurring 0.3 pc away. This does not exclude the possibility of

an extremely close supernova, although the reduced probability of such a close

event must be considered. It is disk density, rather than total integrated mass,

that determines how a disk responds to an ablating wind, therefore a supernova

occurring during an earlier point in the solar system’s evolution, while it was less

condensed, could have had a larger impact in shaping the solar environment.

5.7 Conclusion

Presented in this chapter are three dimensional simulations of the stripping of

stellar disks due to the influence of a nearby SNR, using a physically motivated

dynamic flow. We have also investigated the effect of varying the inclination angle

and disk mass.

Good agreement is found with the analytical predictions of Chevalier (2000).

However, this only accounts for part of the stripping as Kelvin-Helmholtz insta-
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bilities can cause additional material to be ablated. In the initial, instantaneous

stripping phase, a flow at the peak ram pressure can strip 90% of a low mass disk

(Md ∼ 0.1MJ) and 30% of a medium mass disk (Md ∼ 1.0MJ) on timescales of

10-100 yrs (less than one outer rotation period). High mass disks (Md ∼ 10MJ)

are largely unaffected by instantaneous stripping.

During continuous, longer-term, ablation disks lose mass at a rate of∼ 10−6 M⊙ yr−1.

This value decreases with time as the SNR passes and the flow weakens, but is

several orders of magnitude greater than the mass-loss rate due to photoevapo-

ration or stellar wind ablation and will therefore dominate the disk’s mass-loss

rate during this time.

We find that the inclination angle only has a large effect on the evolution when

the disk is close to edge on (similarly to previous findings from simulations of disk

galaxies). When the ram pressure is large compared to the gravitational pressure

in the disk, low inclination angle disks are deformed to the point that their

evolution converges to that of a face-on (zero degree inclination) disk. In contrast,

our edge-on disks show a much steadier rate of mass-loss (instantaneous stripping

is much reduced due to the lower cross-section) and can survive significantly

longer than their face-on counterparts. Amongst the low-mass disks simulated,

only the edge-on disk survived interaction with the SNR (retaining almost 60%

of its mass).

The stripping of inclined disks can be quite asymmetrical, and the direction

of the stripped tail may not line up with the direction of the flow (also like disk

galaxies). However, unlike disk galaxies, the flow may die down before the asym-

metries have disappeared. For the SNR parameters chosen the interaction is very

short, lasting only a couple of hundred years. This means that stellar disks are
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unlikely to be observed during this period, but seeing an asymmetric disk may

be evidence that it underwent this type of ablation in its past. For disks more

distant from the supernova the interaction will likely be longer. There are a num-

ber of other processes (e.g. photoevaporation and a wind from a nearby massive

star) that produce much weaker stripping than a SNR, but which nonetheless

could cause significant stripping on much longer timescales. The exact extent of

stripping due to these processes is at this point unknown.

Amongst all the disks, the highest ejecta contamination fraction is 5× 10−6,

which is much lower than that required to explain the presence of SLRs in the

early solar system. The highest contamination is seen in a low mass edge-on disk,

suggesting the ideal case for enrichment is a low mass edge-on disk (that would

be destroyed if placed face-on) rather than a face-on disk like one might assume.
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Chapter 6

Conclusions

This thesis has presented three dimensional numerical simulations of the ablation

of galaxies and stellar disks, and how a sub-grid turbulence model may be used

to improve the accuracy of results. A summary of the findings of this research

is provided in this chapter followed by a discussion on possible future avenues of

research and some concluding remarks.

6.1 Summary

Chapter 3 presents simulations of the ram pressure stripping of the hot gaseous

halo of a massive galaxy. The long term stripping is mediated by KHIs which are

poorly resolved by previous work, particularly those using SPH. This invites the

use of a sub-grid turbulence model which allows the effect of turbulent instabilities

like the KHI to be accounted for even if they are not resolved on the grid scale.

The interaction occurs in two phases. First the ”instantaneous” stripping

phase where material is removed in areas where the pressure force exceeds the
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gravitational force. The extent of this stripping is well predicted by the analytical

formula of Gunn & Gott (1972). This is the general consensus of other works in

the literature. This phase is unaffected by the presence of the turbulence model.

The second phase of ”continuous” stripping is significantly stronger when the

turbulence model is used, and is closer to what you would expect from mass

flux and momentum conservation arguments. This difference is most pronounced

at higher Mach numbers. At Mach numbers of 0.9 and 1.1 there is little to

no difference when using the turbulence model, but at a Mach number of 1.9

the galaxy is left with ∼ 5 times less material at the end of the simulation,

representing a very different future for the star formation in the galaxy.

Chapter 3 extended the use of a sub-grid turbulence model from previous

applications to shock-cloud interactions, to a more complex and less idealised

system. The logical next step is to examine whether it can be applied to a system

that is more complex still, such as the interaction of a wind with a disk. This

is the focus of Chapter 4. A disk is of particular interest due to its differential

rotation, which gives the fluid a non-zero strain even before it is perturbed by any

external shock or wind. This is shown to have an adverse and unphysical effect

on the galaxy, causing it to expand along its z-axis until it is almost spherical,

exposing a fundamental flaw in the turbulence model.

Chapter 5 presents simulations of the interaction of a stellar disk with a nearby

supernova. By performing a simple one dimensional calculation of the evolution

of the supernova remnant realistic values can be obtained for the density, velocity

and temperature of the resulting flow as a function of time. The time dependent

flow can then be injected into the stellar disk simulation. A simulation where

the flow has constant density, velocity and temperature is also computed as a
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point of comparison. For time independent flow good agreement is found with

the analytical predictions of Chevalier (2000) (which follows a similar logic to

Gunn & Gott (1972) in the galactic case). However, these are valid only for the

instantaneous stripping, whereas in reality there is continuous mass loss in all

disks, even those that would not be expected to lose any mass via the predictions

of Chevalier (2000). Disks lose mass at a rate of order 10−6 M⊙ yr−1 which is

faster than other potential mass loss processes, e.g., photoevaporation, accretion,

or stellar winds and it is much higher than would be expected from the typical

momentum conservation arguments due to the initial rotation of the disk. How-

ever, the ablation due to the SNR passage occurs over much shorter timescales.

Despite this, for disks with a mass of less than ∼ 1.0MJ that experience this

interaction it is likely to dominant the total integrated mass loss. It should be

noted that the ease of ablation is highly dependent on the radius of the disk. The

disks simulated in Chapter 5 have a radius of 40 au. A disk with a bigger radius

will lose a larger fraction of its mass when hit by the same supernova remnant.

When the disk is inclined to the flow the mass loss is predictably reduced.

However it is only at large inclination angles that a significant reduction is seen.

Face-on (0◦) and 45◦ disks experience roughly the same mass loss curves. This

is consistent with simulations of galactic disks, where similar behaviour is seen.

Under the dynamic flow, an edge-on (90◦) disk survives the passing of the super-

nova flow where as more moderately inclined disks (45◦) would not. When the

disk is oriented edge-on to the flow stripping is asymmetrical due to the rotation

of the disk. This is seen to some extent in galactic disk stripping, however the

symmetry is restored after the disk has completed a full rotation. As the SNR

passages lasts less time than the rotation period of the disk it can result in a
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lasting asymmetry to the disk.

The mixing of SNR material into the disk is also investigated, as this has been

proposed as a mechanism for injecting SLRs into the early solar system. Amongst

all the stellar disks, the highest ejecta contamination fraction is 5×10−6, too low

to explain the presence of SLR in the early solar system. This is in general

agreement with other works, and shows that contamination must occur either

earlier in the disks lifetime (when it was larger or a molecular cloud) or though

another method, such as being carried by dust grains. The highest contamination

is see in a low mass edge-on disk, suggesting the ideal case for enrichment is a

low mass edge-on disk (that would be destroyed if placed face-on) rather than a

face-on disk like one might assume.

6.2 Future Work

Like all interesting areas of science, there is still much to be understood on the

topic of ablation.

The sophistication of galactic simulations has increased substantially in recent

years, with the inclusion of stellar feedback models, dynamic simulation of the

cluster instead of static potentials, and realistic orbital trajectories instead of

wind tunnel tests (e.g. Steinhauser et al. (2016); Martizzi et al. (2016)). Despite

the improvements in the models, there is still no consensus on the exact role

ram pressure stripping plays in galactic evolution. A broad parameter study

(galaxy mass, orbital trajectory, cluster size, etc.) is needed in order to produce

good relationships between the mass lost from the galaxy and the star formation

rate in that galaxy. This, in combination with cosmological simulations, and
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galaxy statistics from observations of our current universe, is needed to place

ram pressure stripping into the wider picture of galaxy formation and evolution.

In order to perform a good parameter study many simulations are required to

be performed. It is therefore beneficial to keep the cost of each simulation down

to a minimum. Sub-grid modelling is a great tool for this, and is already being

leveraged for things like star formation and feedback. Turbulence modelling can

also be beneficial as I have shown in Chapter 3 and is of particular interest when

simulating ablation processes as it can lower the resolution needed (Pittard et al.

2009).

While turbulence modelling has its advantages it is not without its hazards.

It is well established within the engineering literature but a greater body of work

needs to be built up within an astrophysical context to understand the limits

of the model. As show in Chapter 4 it can behave quite poorly under certain

circumstances. A systematic review of different turbulence models is needed so

that such models may be used with an understanding of their failure points and

confidence can be had in the results.

The state of stellar disk ablation simulations is perhaps less advanced than

their galactic counter parts. As shown in Chapter 5 there are a number of simi-

larities (and differences) between simulations of ablation of both disk types and a

greater level of cross-citation would likely be of benefit to both groups. There is

still much room for improvement of models, the inclusion of radiative transfer for

example, which is of particular importance to the dynamics of stellar disks. Also

the effects of long term ablation from a sustained wind (such as from a nearby

massive star) is still unknown and would be a valuable piece of information to

the overall picture of stellar disk evolution.
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The origin of SLR is still unknown, but it seems clear that is cannot occur

by hydrodynamic mixing during the protoplanetary disk phase. Mediation via

dust grains seems plausible, as they penetrate much more easily that gas phase

material, although it is uncertain how much material is likely to condense onto

grains within a SNR. A SNR simultaneously contaminating a molecular cloud

and triggering it to form stars and disks gives higher levels of contamination,

although the formation time of the star-disk systems is comparable to the half-

lifes of the SLRs. Another possibility is contamination during the early stages

of disk formation, while it is still many 100s of au in radius. A parameter study

of disk radius and contamination rates would be useful in assessing this as a

possibility.

6.3 Final Remarks

Stripping is a process that occurs across a wide scale of objects in astrophysics.

This thesis has presented advancements in the models of both galactic ram pres-

sure stripping and stellar disk ablation which will aid future simulations in build-

ing a complete picture of the evolution of these objects.
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