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Abstract 

Chemosymbiotic invertebrates obtain nutrition from harbouring bacteria that oxidize 

reduced chemicals to produce energy for carbon fixation. This allows the animals to 

thrive in the extreme conditions of the deep sea, because the high concentrations 

of sulphide (thiotrophy) and methane (methanotrophy) at cold seeps and 

hydrothermal vents can be utilized by the symbiotic bacteria. This research 

investigates whether the key role of chemosymbiosis in shaping modern deep sea 

ecosystems can be traced through geological time, by using the stable isotope 

composition (δ13C, δ15N, δ34S) of organic matter in invertebrate shells. Shell-bound 

organic matter (SBOM) was isolated using various shell removal techniques, and 

method comparison suggests that the original isotopic signal is least affect by using 

EDTA or acetic acid. Multi-isotope analysis of SBOM obtained from (deep sea) 

molluscs and brachiopods confirms that the main types of chemosymbiosis can be 

differentiated from non-symbiotic heterotrophic nutritional strategies. In particular 

chemosymbiotic SBOM δ13C is characteristically depleted, with defined ranges for 

the presence of either methanotrophic or thiotrophic symbionts across 

environmental settings. In suspected thiotrophic taxa from ancient cold seeps, the 

preservation of this modern range (SBOM δ13C -35‰ to -29‰) is limited to young 

subfossil specimens, but the upper threshold is only exceeded in pre-Pliocene 

samples. Moreover, the protected intra-crystalline SBOM pool retains a distinct 

δ13C signal up to the Miocene, and available δ34S and δ15N data of intra-crystalline 

SBOM do not overlap between heterotrophy and thiotrophy. For methanotrophy 

(δ13C -65‰ to -36‰ at modern cold seeps) a residual δ13C biosignature does 

appear to be present in total SBOM from Miocene samples. This encouraging 

finding, together with the discovery of intra-crystalline original proteins in a fossil of 

Cretaceous age, suggests that future work on other well-preserved specimens 

could trace the evolution of chemosymbiosis deep into geological time. 
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Chapter 1 

Introduction 

The discovery of deep sea ecosystems fuelled by chemical energy drastically 

changed scientific views on marine biodiversity, and this unique way of life was 

found at two types of settings: cold seeps and hydrothermal vents (Corliss et al., 

1979; Paull et al., 1984). Both ecosystems are sustained by reducing compounds 

that are emitted from the subsurface, but there are also marked differences 

between them (reviewed by e.g. Van Dover, 2000; and Tunnicliffe et al., 2003). 

Hydrothermal vents occur mostly at mid-oceanic ridges, and the presence of a 

magma chamber causes water to become heated (up to 60°C) and enriched in 

reduced compounds, such as sulphide and metals. Whereas cold seeps are located 

along continental margins, and are characterized by the reduction of organic matter 

that produces methane and other hydrocarbons to seep to the seafloor (at an 

ambient seawater temperature of 1° to 3°C). Because of the high concentrations of 

methane, not all of the methane is metabolized by sulphate-driven anaerobic 

oxidation of methane (AOM), and the consumption of methane and sulphate 

produces the large amounts of hydrogen sulphide present at cold seeps (Boetius et 

al., 2000).   

Seep and vent ecosystems are located well below the euphotic zone, and primary 

production comes from chemoautotrophic bacteria. The presence of terminal 

electron acceptors (oxygen or nitrate) allows them to oxidize the inorganic reduced 

compounds (sulphide, methane), and use the released energy for carbon fixation 

(Jannasch and Mottl, 1985; Van Dover et al., 2002). Invertebrate animals can 

harbour such chemosynthethic bacteria within modified cells of their gill tissues, a 

nutritional strategy known as chemosymbiosis. The food sources provided by the 

bacteria allow chemosymbiotic invertebrates to overcome low food availability, and 

to thrive in the extremely inhospitable conditions of the deep sea (Conway et al., 

1994). In this symbiotic relationship the invertebrate host steadily provides the 

bacteria with reduced compounds and the oxidant oxygen, often by bridging the 

oxic/anoxic interface (Stewart et al., 2005). The role of nitrate in symbiont 

respiration is still debated (e.g. evidence for nitrate respiration in Hentschel et al., 

1993) and would allow chemosymbiosis to occur in completely anoxic conditions 

(Roeselers and Newton, 2012).  
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Symbioses with chemoautotrophic bacteria have been found in a remarkable 

number of animals, and are most widespread amongst bivalves. All five bivalve 

families that have evolved symbioses contain the bacteria within specialized 

bacteriocytes in their very enlarged gills (Stewart et al., 2005).  

Three main types of chemosymbiosis can be identified: methanotrophic bacteria 

that use methane for energy generation, thiotrophic bacteria that utilize hydrogen 

sulphide, or both types of bacteria in dual symbiosis (Dubilier et al., 2008; Taylor 

and Glover, 2010) Multiple symbioses with additional bacterial types have been 

recognized, but their energy sources and nutritional contribution are poorly 

understood (Taylor and Glover, 2010; Duperron et al., 2013). In addition, Petersen 

et al. (2011) has demonstrated that thiotrophic bacteria are capable of using 

hydrogen present at vents as an energy source. The flexibility in bacterial types, 

and the environmental sources they utilize, allows their hosts to optimally utilize the 

geochemical sources of the deep sea, that can be very variable in time and space 

(LeBris & Dupperon, 2010).  

Cold seeps and hydrothermal vents with their associated faunas have also been 

recognized in the fossil record, dating back to the Silurian (e.g. Barbieri et al., 

2004). Despite the importance of chemosymbiosis in modern deep sea 

environments, there is currently very little evidence as to whether ancient seep and 

vent dwellers were capable of using this nutritional strategy. This is largely because 

methods demonstrating chemosymbiosis in modern specimens, such as 

histological, genetic and lipid biomarker analyses (e.g. Duperron et al., 2007; 

Decker et al., 2013) require soft tissues. A chemosymbiotic lifestyle is therefore 

usually inferred from modern chemosymbiotic representatives of a fossil species. 

However, more ancient deep sea ecosystems also contain invertebrate animals 

whose nutritional strategy cannot be determined, because they have either gone 

extinct, or because they are no longer present at modern seeps and vents. 

Knowledge about the nutritional strategies of such fossil seep dwellers is critical to 

our understanding of the evolution of deep sea fauna, and it is very likely that the 

capability of chemosymbiosis strongly influenced the composition of deep sea 

ecosystems. 

To obtain new evidence about the ecology of fossil invertebrates, we aimed to test 

and apply a novel biogeochemical method to analyse ancient shell material to 

directly reconstruct nutritional strategies. It is well known that an animal’s soft 

tissues reflect the isotopic composition of its nutritional sources for carbon (δ13C), 

nitrogen (δ15N), and sulphur (δ34S), following the “you are what you eat” principle 
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(DeNiro and Epstein, 1976; McCutchan et al., 2003). In biomineralizing 

invertebrates the soft tissues also produce organic templates necessary for 

biomineralisation, the shell-bound organic matter (SBOM), that is thought to reflect 

soft tissues values (O’Donnell et al., 2003). In particular it could be possible to 

identify different types of chemosymbiosis using SBOM, because the unique 

chemical sources they utilize have distinctive isotopic signatures compared to 

photosynthetic sources. It has already been proven possible to distinguish shallow 

water thiotrophic bivalves from heterotrophic feeders based on the carbon, sulphur 

and nitrogen composition of the SBOM from their shells (Dreier et al., 2012; Dreier 

et al., 2014).  

Analysis of stable isotope signatures of SBOM from cold seep fossil shells could 

therefore potentially reveal methanotrophic, thiotrophic or dual chemosymbiosis in 

extinct organisms. Successful application of this novel proxy is dependent on the 

preservation of the organic molecules, and the retention of their original isotopic 

signal. From modern molluscs it is known that the majority of SBOM consists of a 

variety of proteins (amino acids linked by peptides), carbohydrates (complex 

sugars) are present in much lower abundance, and a very small fraction is made up 

by lipids (diverse hydrophobic molecules) (Marin et al., 2012). Lipids are generally 

most resistant to decay and are regularly found in Palaeozoic samples, whilst 

proteins and polysaccharides are not well preserved on geological timescales 

(Gupta & Briggs, 2011). However, the mineral-bound proteins of SBOM have the 

advantage of being protected from degradation compared to organically preserved 

fossils, and proteins have been identified from e.g. mid-Miocene gastropods (Nance 

et al., 2015) and have been reported up to the Silurian (Jope et al., 1967). SBOM 

within fossil shells is however still at risk of degradation via a variety of diagenetic 

pathways, including the incorporation of components from the surrounding 

sediment (Penkman et al., 2008). In addition to ‘total’ SBOM, a particular focus has 

therefore been placed on the isotopic signature of the intra-crystalline SBOM pool. 

Whereas the inter-crystalline SBOM surrounds the mineral crystals, the smaller 

intra-crystalline fraction becomes encased in the growing crystals (Crenshaw, 1972; 

Lowenstam and Weiner, 1989). Because of this protection from the external 

environment, intra-crystalline SBOM has an even greater potential to be protected 

from degradation and preserve over longer timescales (Sykes et al., 1995; 

Penkman et al., 2008).  
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1.1  Aim, objectives and thesis structure 

The aim of this thesis is to use the stable isotopic analysis of SBOM to trace the 

evolution of chemosymbiotic lifestyles through geological time. The application of 

SBOM as a dietary proxy in modern specimens has thus far been very limited, 

particularly with respect to different nutritional strategies and invertebrate taxa. In 

addition, the isotopic effects of chemical SBOM isolation are largely unknown. To 

be able to use stable isotope analysis of SBOM in a reliable manner on fossil 

specimens, this research was devised around several research questions  

 Research question 1: Is the stable isotopic composition of SBOM 

influenced by chemical extraction from shell carbonate?  

 Research question 2: Does the stable isotopic composition of SBOM relate 

in a predictable way to that of soft tissues?  

 Research question 3: Can different nutritional strategies be identified in 

SBOM (and soft tissues) by their distinct isotopic compositions?  

 Research question 4: Are SBOM and its original stable isotopic 

composition preserved over geological time? 

These research questions are discussed in three data chapters that are presented 

in manuscript format, including further introduction to the main research questions. 

Chapter 2 focusses on method comparison of shell removal techniques and their 

potential effects on the stable isotopic values (δ13C, δ15N, δ34S) of total SBOM and 

intra-crystalline SBOM (Research question 1), using three test species. Because 

the isotopic relationship between SBOM and soft tissues of bivalves is poorly 

understood, the soft tissues of several individual specimens were also analysed 

(Research questions 2 and 3 for heterotrophic filter-feeders). In Chapter 3 

Research question 2 and 3 are investigated for a wide range of modern 

invertebrates from cold seeps and hydrothermal vents, including methanotrophic, 

thiotrophic, and dual symbiotic bivalves and gastropods. The suite of modern 

samples also includes brachiopods.  

In Chapter 4 the results concerning Research question 4 are presented. Stable 

isotope compositions of SBOM were obtained from ancient cold seeps specimens. 

To assess the preservation of these biosignatures molecular and visual analyses 

have been performed.  
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Chapter 2 

Stable isotopic comparison of four different methods to 
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Relevant research questions 

This chapter focusses on the methodological aspects of obtaining SBOM for stable 

isotope analysis, presented in the introductory chapter as Research question 1: Is 

the stable isotopic composition of SBOM influenced by chemical extraction 

from shell carbonate? In addition, the stable isotope analysis of soft tissues (δ13C, 

δ15N, δ34S) as well as SBOM for several individual specimens of the heterotrophic 

test species will provide information regarding Research question 2: Does the 

stable isotopic composition of SBOM relate in a predictable way to that of 

soft tissues?  
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2.1  Introduction 

Shell-bound organic matter (SBOM) is the small organic component of mollusc and 

brachiopod shells, consisting of a proteinaceous framework surrounding the mineral 

crystals (inter-crystalline SBOM), and a minor fraction that is present within the 

single crystals (intra-crystalline SBOM), together making up the total SBOM 

(Lowenstam and Weiner, 1989). The SBOM of molluscs is secreted by mantle 

epithelial cells, and regulates biomineralisation by controlling the growth, 

mineralogy and structural organisation of newly formed crystallites (Marin et al., 

2012).  

As a decay-resistant alternative to the animal’s soft tissues, SBOM has great 

potential as an isotopic proxy for nutrition in both modern and fossil shelled 

invertebrates (e.g. O’Donnell et al., 2003; Mae et al., 2007; Dreier et al., 2012). 

Stable isotope analysis of SBOM requires its separation from the mineral 

component of the shell, because the minerals carry an environmental isotopic 

signal derived from surrounding seawater, and they are much more abundant than 

SBOM in the shell. Both the carbon (δ13C) and sulphur (δ34S) isotopic signature of 

SBOM would be strongly influenced by the presence of calcium carbonate minerals 

and carbonate associate sulphate (CAS), respectively. CAS is trace sulphate 

incorporated into the lattice of carbonate minerals (Kampschulte and Strauss, 

2004). 

The isotopic effects of chemical extraction on SBOM are poorly understood and 

have not been rigorously tested, even though small isotopic deviations can indicate 

different food source or different trophic levels (Michener and Kaufman, 2007), and 

potentially confound interpretations about an animal’s ecology and environment. 

Therefore we have directly compared the most commonly applied techniques for 

shell removal: ethylenediaminetetraacetic acid (EDTA), hydrochloric acid (HCl), 

acetic acid (AA), and cation exchange resin (RESIN). Using these methods, total 

SBOM and intra-crystalline SBOM were obtained from a large sample of 

homogenized shell powder from three modern filter-feeding bivalve species: the 

blue mussel Mytilus edulis, the grooved carpet shell Ruditapes decussatus, and the 

common cockle Cerastoderma edule. The intra-crystalline SBOM pool can be 

isolated by removing the inter-crystalline pool of total SBOM through prolonged 

chemical oxidation (Penkman et al., 2008), and the bulk stable isotope signature of 

intra-crystalline SBOM of molluscs has not previously been determined. To confirm 

working hypotheses about compositional differences between total SBOM and 

intra-crystalline SBOM, the molecular constituents of both SBOM pools were 
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characterized and compared using pyrolysis gas chromatography mass 

spectrometry (Py-GC/MS). Previous molecular investigations of SBOM have 

focussed on soluble components, in particularly proteins (Farre et al., 2009; Marin 

et al., 2012), but Py-GC/MS can be used on insoluble organic matter, and provides 

insights into the overall composition of SBOM, by producing a suite of thermal 

break-down products indicative of different types of macromolecules. 

The four chemical treatments for SBOM isolation are known to have different 

advantages and disadvantages. Acidification is the most common method used in 

ecological studies to obtain biological organics from carbonate-rich samples, 

whereby inorganic carbon is expelled as CO2. In general, the published literature 

shows that acidification can both deplete or enrich δ13C and δ15N values to varying 

extents. In many cases the exact mechanisms for these changes have remained 

undetermined, but potential causes are loss or chemical transformation of organic 

matter, particularly due to the break-up of protein complexes and the solubilisation 

of proteins (Schlacher and Connolly, 2014). No information could be found on the 

potential effects of acidification for δ34S stable isotope analysis. Carmicheal et al. 

(2008) studied potential acidification effects on δ15N of SBOM, and report no 

significant alteration compared to untreated shell powder. In this study two different 

strengths of the commonly used acid HCl were tested, as well as the weaker acetic 

acid.  

An alternative method to acidification is the calcium-chelating agent EDTA (Albeck 

et al., 1996; Mae et al., 2007; Dreier et al., 2012) that isolates SBOM by binding 

calcium in a very stable manner, and compared to acidification has the benefit of 

working at neutral pH (Meenakshi et al., 1971). However, EDTA can be very difficult 

to remove from the SBOM without specialized filtration systems due to the 

formation of EDTA-calcium-protein complexes (Curry et al., 1991). Because EDTA 

molecules contain carbon and nitrogen, this technique could potentially influence 

SBOM isotope δ13C and δ15N ratios by introducing exogenous carbon and nitrogen.  

The cation exchange resin method of shell removal (Albeck et al., 1996; Gotliv et 

al., 2003) does not introduce any additives, and isolates SBOM by binding calcium 

ions, whilst releasing carbon dioxide. Here we present a novel set-up of this 

method, aimed at performing large batches of these extractions. In addition we test 

the possibility of this method to simultaneously obtain CAS for δ34S isotope 

analysis, which was precipitated from the demineralising solution.  

In addition to stable isotope analysis of chemically isolated SBOM, the δ15N value of 

total SBOM can be obtained from untreated shell powder because SBOM is the 

file:///C:/Users/Eigenaar/Downloads/Methodlogy%20Paper%2031-03-16%20RJN%20(2).docx%23_ENREF_2
file:///C:/Users/Eigenaar/Downloads/Methodlogy%20Paper%2031-03-16%20RJN%20(2).docx%23_ENREF_2
file:///C:/Users/Eigenaar/Downloads/Methodlogy%20Paper%2031-03-16%20RJN%20(2).docx%23_ENREF_11
file:///C:/Users/Eigenaar/Downloads/Methodlogy%20Paper%2031-03-16%20RJN%20(2).docx%23_ENREF_7
file:///C:/Users/Eigenaar/Downloads/Methodlogy%20Paper%2031-03-16%20RJN%20(2).docx%23_ENREF_15
file:///C:/Users/Eigenaar/Downloads/Methodlogy%20Paper%2031-03-16%20RJN%20(2).docx%23_ENREF_2
file:///C:/Users/Eigenaar/Downloads/Methodlogy%20Paper%2031-03-16%20RJN%20(2).docx%23_ENREF_9
file:///C:/Users/Eigenaar/Downloads/Methodlogy%20Paper%2031-03-16%20RJN%20(2).docx%23_ENREF_9
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only nitrogen pool in the shell.  Unfortunately the intra-crystalline SBOM pool forms 

only a minor fraction of total SBOM, and sample size limitation of isotope analysis 

means that the amounts of intra-crystalline SBOM present in bleached shell powder 

would be insufficient for δ15N stable isotope analysis. For nitrogen it will thus be 

possible to compare total SBOM results to the ‘true’ δ15N SBOM values of untreated 

shell powder to assess the effect of the different extraction techniques directly.  

In the second part of this study the isotopic relationship (δ13C, δ15N, δ34S) between 

total SBOM and soft tissues for individual specimens of the three test species is 

investigated. Because the isotopic values of the food sources consumed by the test 

species are unknown, soft tissues are used as a proxy, because food sources are 

incorporated into soft tissues with known fractionation. This fractionation reflects a 

trophic level, and is approximately +3-5‰ for δ15N and +0.2-1‰ for δ13C, whilst 

δ34S does not change between producers and consumers (Michener et al., 2007). 

To be able to use SBOM to identify nutritional sources and nutritional strategies, 

they should therefore directly reflect soft tissue values, or show consistent offsets 

that make it possible to calculate the values of food sources. Previous stable 

isotopic investigations of SBOM from modern filter-feeding bivalves have been 

limited to a relatively small number of species (shown in Fig. 2.11) and the exact 

nature of the isotopic relationship between SBOM and soft tissues is still poorly 

constrained, and has previously suggested to vary between species (Kovacs et al., 

2010),  

Because this study investigates two different issues concerning the application of 

SBOM as an alternative to soft tissues as a dietary proxy, the data is presented and 

discussed separately. Part I shows the results of method comparison experiments, 

and the potential isotopic effects of different shell removal techniques on the 

original SBOM, and Part II focusses on the isotopic relationship between SBOM 

and soft tissues.  
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2.2  Material & Methods 

2.2.1  Material   

Chemical treatments were compared using homogenized shell samples from the 

bivalve taxa Mytilus edulis (blue mussel), Ruditapes decussatus (grooved carpet 

shell) and Cerastoderma edule (common cockle). These species are primary 

consumers that filter feed on suspended organic matter from the water column, M. 

edulis has an epifaunal lifestyle whilst the other two species are infaunal sediment 

dwellers. Material for this study was obtained from the local fish market in Leeds 

(UK) in October/November 2012, and comprises 1 kilogram of live specimens each 

originating from Wales, UK (M. edulis), southern France (R. decussatus) and 

Dorset, UK (C. edule). The shells were first washed in deionised water and the soft 

tissue was then excised (separated into gill, mantle, foot, adductor muscle and 

rest), rinsed three times with DI water and frozen. The extracted soft tissues were 

freeze-dried and homogenized (where necessary with liquid nitrogen) in a ceramic 

mortar and pestle. The shells were then cleaned of remaining organic material 

(internal soft tissues, periostracum and ligament) using a scalpel and a Dremel 

rotary tool, rinsed with DI water and air-dried. The dry valves were ground using a 

ceramic mortar and pestle, and sieved to <125µm particle size in a stainless steel 

sieve, and homogenized for SBOM extraction. For five randomly selected 

individuals from each species the soft tissues and SBOM were analysed separately.  

 

2.2.2  Isolation of SBOM 

2.2.2.1 SBOM isolation using cation exchange resin 

SBOM was isolated using cation exchange resin (Dowex 50WX8 50-100 mesh, 

Acros Organics, New Jersey, USA) based on a modification of the methodologies 

from Albeck et al. (1996) and Gotliv et al. (2003). Approximately 2 grams of shell 

powder suspended in DI water were placed inside a dialysis bag (3500D, Spectra 

Por 3, 18mm width, SpectrumLab, Inc., Rancho Dominguez, USA). The dialysis bag 

was placed in a glass vial with 75 ml resin and 25 ml DI water. The dialysis tube 

was vented through the lid of the vial and the reaction vessel was placed in a 

horizontal shaker for two weeks. The pH of the solution stays constant around 1.5-

2. After shell dissolution was completed, the dialysis bag with SBOM was dialysed 

for five days in DI water, frozen and freeze-dried. Dried SBOM was weighed for 

calculation of recovery.  
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2.2.2.2 SBOM isolation using EDTA 

For the EDTA technique, the methodology of Dreier et al. (2012) was followed (see 

also, Mae et al., 2007). Circa 2 grams of shell powder were suspended in DI water 

within dialysis tubing, and placed in 100ml 0.5M EDTA (VWR International, Leuven, 

Belgium) made up with MilliQ water (adjusted to pH 7.4 using potassium hydroxide) 

in glass beakers. Shell dissolution was complete after two weeks, and the dialysis 

bag with SBOM was dialysed for five days in MilliQ water changed daily. 

Subsequently, the SBOM was placed in centrifuge tubes, centrifuged and rinsed 

three times with MilliQ water, before freezing and freeze-drying.  

2.2.2.3 SBOM isolation using acid 

For HCl dissolution of the mineral component (following Mae et al., 2007) 10ml 6M 

HCl (Sigma-Aldrich, Steinheim, Germany) was slowly added to 2 grams of shell 

powder in a 50ml centrifuge tube, dissolution using 10% HCl 40 ml was added to 

the shell powder in a glass vial. The SBOM was subsequently centrifuged and 

rinsed three times with DI water to de-acidify the organics. A similar procedure was 

followed with acetic acid 10% v/v (Aldrich, Dorset, England), whereby 40ml acid 

was slowly added to 2 grams of shell powder in glass vials left overnight. The 

SBOM was centrifuged and rinsed three times with DI water. The SBOM samples 

obtained using HCl and acetic acid were then frozen and freeze-dried.   

 

2.2.3  Removal of inter-crystalline SBOM 

Intra-crystalline SBOM samples were obtained following the procedure of Penkman 

et al. (2008) and Demarchi et al. (2012) to remove the inter-crystalline SBOM pool. 

Prepared shell powder (maximum of 2 grams) was oxidized with 12% w/v NaOCl 

(VWR International, Carnot, France) for a 48 hour period within a glass beaker (50 

μL per mg of shell powder). After completion the samples were dialyzed a minimum 

of three times against DI water and air-dried on 20-25 μm filter paper. For isolation 

of the intra-crystalline SBOM the samples were treated in the same way as 

unbleached shell powder. 

 

2.2.4  CAS isolation using resin or HCl 

Carbonate-associated sulphate (CAS) was obtained from the DI water containing 

the cation exchange resin. The water was filtered using 20-25 μm filter paper to 

remove residual resin, then placed in clean glass beakers, and the pH was adjusted 
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to 2-3 using 10% HCl or 10% NH4. To precipitate the BaSO4 for isotopic analysis 

the solutions were heated to ~70°C on a hot plate, 10% BaCl was added as 10% of 

the total volume, and the solution was kept at this temperature for an hour. After 

having cooled down overnight, the precipitated BaSO4 was vacuum filtered out on 

0.45µm cellulose/nitrate filter paper, that were left to dry in a drying cabinet (~50°C) 

and stored in glass vials. As a control for the cation exchange resin method, CAS 

was also isolated from C. edule bulk shell material using 10% HCl, and precipitated 

as described for the resin method. 

 

2.2.5  Stable isotope analyses and elemental concentration 

δ13C, δ15N and δ34S analyses were performed on freeze-dried SBOM and soft 

tissues, and additional analyses were performed on untreated shell powder to 

derive a measurement of SBOM δ15N unaffected by an extraction procedure. To 

test for possible isotopic effects from the addition of nitrogen during extraction, a 

subsample of the batch of EDTA used for the extractions was analysed for δ15N. 

Similarly, a subsample of the cation exchange resin was analysed for δ13C and 

δ34S.  

All C, N and S isotopic analyses were performed on an Isoprime continous flow 

mass spectrometer coupled to an Elementar Pyrocube Elemental Analyser. For all 

analyses the sample was weighed into 8 x 5 mm tin cups and combusted to N2, 

CO2 and SO2 at 1150C in the presence of pure oxygen (N5.0) injected into a 

stream of helium (CP grade).  Quantitative conversion to N2, CO2 and SO2 was 

achieved by passing the combustion product gas through tungstic oxide packed into 

the combustion column.   Excess oxygen was removed by reaction with hot copper 

wires at 850C and water was removed in a Sicapent trap. All solid reagents were 

sourced from Elemental Microanalysis, UK, and all gases were sourced from BOC, 

UK. One aliquot of each SBOM and soft tissue sample was analysed for its carbon 

isotope composition whilst duplicate larger aliquots were analysed for their nitrogen 

and sulphur isotope composition in the same run. Samples for nitrogen and sulphur 

isotope analysis were analysed in duplicate because of a small sulphur isotopic 

memory effect imparted during processing of SO2 gas in the Pyrocube. In all 

analyses, N2 produced by combustion continued through the system to unchecked 

whilst CO2 and SO2 were removed from, and re-injected into, the gas stream using 

temperature controlled adsorption/desorption columns.   
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The δ13C of the sample is derived from the integrated mass 44, 45 and 46 signals 

from the pulse of sample CO2, compared to those in an independently introduced 

pulse of CO2 reference gas (CP grade).  These ratios are then calibrated using urea 

and C4 sucrose lab standards assigned values of -11.93‰ and -46.83‰ 

respectively. These values were assigned by calibration using the international 

standards LSVEC (-46.479‰), CH7 (-31.83‰), CH6 (-10.45‰), and CO-1 

(+2.48‰) to the Vienna-Pee Dee Belemnite (V-PDB) scale. The precision obtained 

for repeat analysis of standard materials is generally 0.2‰ or smaller (1 standard 

deviation). Repeat analyses of a lab C3 sucrose produced an average of -26.5‰ 

with a standard deviation of 0.1‰. 

The δ15N is derived using the integrated mass 28 and 29 signals relative to those in 

a pulse of N2 reference gas (N5.0). These ratios are calibrated to the international 

AIR scale using USGS-25 and USGS-26 (both ammonium sulphate) which have 

been assigned values of -30.4‰ and +53.7‰ respectively. The precision obtained 

for repeat analyses of standard materials is generally 0.3‰ or smaller (1 standard 

deviation). Repeat analyses of a yeast sample produces an average of -0.8‰ with 

a standard deviation of 0.1‰. 

The δ34S is derived using the integrated mass 64 and 66 signals relative to those in 

a pulse of SO2 reference gas (N3.0). These ratios are calibrated to the international 

V-CDT scale using an internal lab barium sulphate standard derived from seawater 

(SWS-3) which has been analysed against the international standards NBS-127 

(+20.3‰), NBS-123 (+17.01‰), IAEA S-1 (-0.30‰) and IAEA S-3 (-32.06‰) and 

assigned a value of +20.3‰, and an inter-lab chalcopyrite standard CP-1 assigned 

a value of -4.56‰. The precision obtained for repeat analyses of standard materials 

is generally 0.5‰ or smaller (1 standard deviation) for SBOM, and 0.2‰ or smaller 

(1 standard deviation) for CAS. Repeat analyses of a sulphanilamide sample 

produced an average of -0.2‰ with a standard deviation of 0.3‰. 

Weight percent nitrogen and sulphur data were calculated by the Pyrocube 

software using a calibration based on multiple analyses of sulphanilamide samples 

with a range of weights. Relative standard deviations on analyses of the 

concentrations of the nitrogen and sulphur contents of the isotope calibration 

materials were 5% or better. The very small amount of material needed for carbon 

isotope analysis meant that the sample size was below the calibration range for 

carbon and were highly variable. The carbon concentration data are therefore 

considered unreliable and are not reported. 
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2.2.6  Pyrolysis Gas Chromatography Mass Spectrometry  

analysis of SBOM 

Pyrolysis GC/MS analysis of total and intra-crystalline SBOM from bulk M. edulis 

(obtain using cation exchange resin) was performed on a CDS Pyroprobe 1000 via 

a CDS1500 valved interface (320°C), to a Hewlett-Packard 6890GC split injector 

(320°C) linked to a Hewlett-Packard 5973MSD (electron voltage 70eV, filament 

current 220uA, source temperature 230°C, quadrupole temperature 150°C, 

multiplier voltage 2200V, interface temperature 320°C). The acquisition was 

controlled by a HP kayak xa chemstation computer, in full scan mode (50-650amu). 

Approximately 0.3mg of the SBOM sample was weighed into a quartz tube with 

glass wool end plugs. The chemical reagent tetramethylammonium hydroxide 

(TMAH) and the internal standard androstane were added to the samples. The tube 

was then placed into a pyroprobe platinum heating coil and then sealed into the 

valved interface. The sample was pyrolysed at 610°C for 10 seconds with the split 

open. At the same time the GC temperature programme and data acquisition 

commenced. Separation was performed on a fused silica capillary column (60m x 

0.25mm i.d) coated with 0.25um 5% phenyl methyl silicone (HP-5). Initially the GC 

was held at 50°C for 5 minutes and then temperature programmed from 50°C-

320°C at 5°C per min and held at the final temperature for 5 minutes, total run time 

65 minutes, with helium as the carrier gas (constant flow 1ml/min, initial pressure of 

50kPa, split at 30 mls/min). Peaks were identified and labelled after comparison of 

their mass spectra with those of the NIST05 library. 

Part I – Method comparison for SBOM isolation  

2.3  Results 

Total SBOM and intra-crystalline SBOM were successfully isolated using all shell 

removal methods. The weight percent (wt%) of total SBOM obtained from the shell 

powder varied between species (M. edulis = 0.7% to 1.0%; R. decussatus = 0.2% 

to 0.4% ; C. edule = 0.1% to 0.4% using ion-exchange resin) and the intra-

crystalline fraction makes up a small percentages of the total (shell wt%: M. edulis = 

~ 0.01%, R. decussatus and C. edule = ~ 0.005%, using ion-exchange resin). 

SBOM is voluminous, and has a uniform colour for each species. The dark blue 

shelled M. edulis contains SBOM with a dark brown colour. The other two species 

have lighter beige/brown shells and contain SBOM with a beige or light brown 

colour.  

http://www.bris.ac.uk/nerclsmsf/techniques/pyro.html
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2.3.1  Isotopic values of bulk SBOM and CAS obtained using 

various shell carbonate removal techniques 

This section presents the method comparison results for aliquots of homogenized 

shell powder from the three test species. For each species the stable isotope 

composition of SBOM obtained using the different methods are statistically 

compared using unpaired t-tests (significance threshold: p=<0.05), these results are 

presented for each isotope system (carbon, nitrogen, sulphur). The data is also 

shown as box-and-whisker plots, allowing the identification of outliers (values 

outside 1.5* inter-quartile range). The outliers are expected to be caused by 

experimental error, and because of their strong influence on statistical analysis they 

are discussed separately. The mean values for each method are reported with and 

without outliers.  

 

2.3.1.1  Carbon 

The δ13C data for each method are given in Table 2.1 (total SBOM) and Table 2.2. 

(intra-crystalline SBOM), the distribution of δ13C is also shown as box-and-whisker 

plots in Fig. 2.1 (total SBOM) and Fig. 2.2 (intra-crystalline SBOM). No elemental 

carbon concentration data is available for the analysed samples. The carbon 

isotope values of the shell removal agents are δ13C -39.0‰ (±0.6, n=2) for EDTA, 

and δ13C -29.2‰ (n=1) for cation exchange resin.  

 

Total SBOM  

Total SBOM isolated using cation exchange resin has lower mean δ13C values than 

the other four methods (Fig. 2.1). For M. edulis this difference is statistically 

significant versus EDTA (p=0.0039), 10%HCl (p=0.0037), and 50%HCl (p=0.0110), 

for R. decussatus versus 10%HCl (p=0.0155), and for C. edule versus EDTA 

(p=0.0008), 10%HCl (p=0.0007), 50%HCl (p=0.0059), and acetic acid (p=0.0047). 

In addition, total SBOM data obtained using δ13C cation exchange resin is generally 

the most variable method, particularly in R. decussatus and C. edule.  

Excluding cation exchange resin, comparison between the other four methods 

shows that total SBOM obtained using 50% HCl has the lowest median value in all 

three species. In M. edulis the δ13C data from the 50%HCl method is significantly 

depleted in comparison to EDTA (p=0.0409), and 10%HCl (p=0.0339), and in R. 

decussatus compared to 10%HCl (p=0.0006). Alternatively this could be interpreted 
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as an enrichment of 10%HCl/EDTA compared to 50%HCl total SBOM samples, 

particularly because the 10%HCl total SBOM δ13C values are also statistically 

enriched compared to those of acetic acid R. decussatus total SBOM samples 

(p=0.0003). There are no further statistically significant δ13C differences between 

EDTA, acetic acid, and 10%HCl obtained total SBOM. It should however be noted 

that for acetic acid, the δ13C total SBOM distribution is very wide and enriched in M. 

edulis (ranging from -18.4‰ to -12.5‰, n=3), and contains an enriched outlier in C. 

edule.  

 

Table 2.1  δ13C values of bulk total SBOM for method comparison 

SBOM was obtained from aliquots of homogenised shell powder from Mytilus 
edulis, Ruditapes decussatus and Cerastoderma edule. SBOM was isolated 
using the shell removal techniques: cation exchange resin (RESIN), EDTA, 
acetic acid (AA), 10%HCl and 50%HCl. For sample sets in which outliers have 
been identified (Fig. 2.1), mean values without outliers are also given and are 
underlined. 

 

δ13C (‰, ±SD) M. edulis R. decussatus C. edule 

RESIN 
-18.7 ±3.3 (n=7) 

-17.5 ±0.9 (n=6) 

-21.1 ±2.0 (n=6) 

 

-22.8 ±1.8 (n=7) 

-22.3 ±1.3 (n=6) 

EDTA 
-16.7 ±2.2 (n=4) 

-15.6 ±0.2 (n=3) 

-19.2 ±0.4 (n=4) -18.8 ±0.2 (n=4) 

10%HCl -15.6 ±0.1 (n=3) -18.4 ±0.2 (n=5) -18.7 ±0.2 (n=6) 

50%HCl 
-16.8 ±1.2 (n=5) 

-16.3 ±0.4 (n=4) 

-19.5 ±0.4 (n=5) -19.1 ±0.7 (n=3) 

AA 
-15.2 ±3.0 (n=3) -19.3 ±0.2 (n=4) -18.6 ±1.1 (n=4) 

-19.1 ±0.3 (n=3) 
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Figure 2.1  Box-and-whisker plots of δ13C values from bulk total SBOM for method 
comparison. 

SBOM was obtained from aliquots of homogenised shell powder from Mytilus 
edulis, Ruditapes decussatus and Cerastoderma edule. SBOM was isolated 
using the techniques: cation exchange resin (RESIN), EDTA, acetic acid (AA), 
10%HCl and 50%HCl. Soft tissue ranges show the minimum and maximum 
δ13C value of the gill/mantle/foot/muscle from individual specimens of the 
three species (presented in Fig. 2.11, n=60). In the plots, the horizontal line 
presents the median, and the limits of the box and whiskers contain 50% and 
100% of the data, respectively. If outliers are present, they fall outside 
1.5*inter-quartile range (which is then indicated by the length of the whiskers). 
The number of analyses for each method are given in Table 2.1.    

 

 

 

 

Comparison between total SBOM data and soft tissue δ13C values (Fig 2.1, -20.0‰ 

to -16.5‰) from M. edulis shows that only SBOM obtained using cation exchange 

resin (-16.7‰ to -18.7‰, outlier -26.0‰, n=6) overlaps with the isotopic range of 

the soft tissues. The majority of total SBOM values isolated using EDTA, 10%HCl, 

50%HCl, or AA, are more enriched than soft tissue values. For R. decussatus total 

SBOM data obtained using all methods falls inside the range of soft tissue values 

(δ13C -21.1‰ to -16.9‰), with the exception of two depleted resin values (-22.5‰ 

and -25.1‰). With the exception of one value, all of the C. edule total SBOM 

samples isolated using resin (-25.6‰ to -20.0‰) are more depleted than the range 

of soft tissues (-20.3‰ to -17.1‰) from this species. Total SBOM obtained using 

other methods have similar values (ranging from -19.9‰ to -17.0‰) to the soft 

tissue data 
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Intra-crystalline SBOM 

Table 2.2  δ13C values of bulk intra-crystalline SBOM for method comparison 

See Table 2.1 for further details, outliers are identified in Fig. 2.2. 
 

δ13C (‰, ±SD) M. edulis R. decussatus C. edule 

RESIN 
-24.8 ±1.7 (n=6) 

-24.1 ±0.5 (n=5) 

-25.7 ±1.3 (n=5) 

-25.1 ±0.3 (n=4) 

-25.7 ±1.6 (n=4) 

 

EDTA -23.5 ±0.3 (n=3) -26.1 ±0.1 (n=3) -26.1 ±0.2 (n=4) 

10%HCl -21.9 ±1.5 (n=8) -24.8 ±0.5 (n=4) -22.9 ±0.7 (n=5) 

50%HCl -23.2 ±0.7 (n=3) -26.1 ±0.3 (n=4) -25.7 ±1.4 (n=5) 

AA 
-25.2 ±7.2 (n=6)  

-22.0 ±0.9 (n=5) 

-29.0 ±7.4 (n=6) 

-26.0 ±1.4 (n=5) 

-28.4 ±8.8 (n=6) 

-25.1 ±4.1 (n=5) 

 

 

Figure 2.2  Box-and-whisker plots of δ13C values from bulk intra-crystalline SBOM 
for method comparison. 

See Figure 2.1 for further details, soft tissue ranges are not visualised 
because all the intra-crystalline SBOM data falls below these ranges. δ13C 
values for AA outliers are given in the plots, the whisker for AA of C. edule 
extents to -35.4‰. Number of analyses are given in Table 2.2. 
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Intra-crystalline SBOM is significantly depleted compared to total SBOM from bulk 

aliquots of the same species, for each of the five different methods. Mean 

differences between the two pools across the different methods are: δ13C -6.8‰ 

±0.7 for M. edulis, -6.8‰ ±0.7 for R. decussatus, and -5.4‰ ±2.0 for C. edule. 

The intra-crystalline data is shown as box-and-whisker plots in Fig. 2.2., and the 

most notable difference between the methods are extremely depleted outliers for 

intra-crystalline SBOM obtained using acetic acid (δ13C > -40‰) in each test 

species. Due to the limited number of analysed samples, the isotopic variation of 

this method is therefore very large for each species.  

In M. edulis intra-crystalline SBOM isolated using cation exchange resin is 

significantly depleted in δ13C compared to EDTA (p=0.0001), 10%HCl (p=0.0030), 

and acetic acid (p=0.0001). For R. decussatus and C. edule is cation exchange 

resin does not have the most depleted values of the different methods. Potentially 

this is related to the differences in mean intra-crystalline δ13C values of M. edulis (-

22.7‰, mean of the four other methods) compared to R. decussatus (-25.8‰) and 

C. edule (-25.0‰).  

For all three species the mean/median values of 50%HCl/EDTA are more depleted 

than 10%HCl/acetic acid values. This difference could be statistically confirmed 

using t-tests between M. edulis EDTA vs. acetic acid (p=0.0346), R. decussatus 

EDTA vs. 10%HCl (p=0.0074) and 50%HCl vs. 10%HCl (p=0.0043), and for C. 

edule EDTA vs. 10%HCl (p=0.0001) and 50%HCl vs. 10%HCl (p=0.0054). No 

statistical differences exist between intra-crystalline samples obtained using EDTA 

and those isolated using 50%HCl, or between the methods 10%HCl and acetic 

acid.   

 

Key observations 

 Total SBOM isolated using cation exchange resin has more depleted and 

more variable δ13C values than the other shell removal methods, this 13C 

depletion also exists compared to soft tissue δ13C ranges (with the 

exception of M. edulis). For intra-crystalline SBOM samples the 13C 

depletion of cation exchange obtained samples is only present in M. edulis.  

 

 Intra-crystalline SBOM obtained using 50%HCl/EDTA can have depleted 

δ13C values compared to 10%HCl/acetic acid samples, and total SBOM 

50%HCl samples also have depleted δ13C values compared to 10%HCl 
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 Acetic acid δ13C data contains several enriched δ13C values for total SBOM, 

and extremely δ13C depleted values for intra-crystalline SBOM 

 

 For all test species intra-crystalline SBOM is depleted by δ13C - 5-7‰ 

compared to total SBOM, and δ13C values fall below the soft tissue ranges 

 

2.3.1.2  Nitrogen 

The δ15N results and the distribution of the values are reported in Table 2.3 and 2.4, 

and Figure 2.3 and 2.4. In addition the elemental concentration of nitrogen (%N) 

could be obtained for each isotopic measurement, and for each analysed aliquot of 

bulk shell powder δ15N and %N are plotted against each other in Fig. 2.5.The 

nitrogen value of the EDTA used for the extractions is δ15N +1.5‰ ±0.6 (n=2).  

 

Total SBOM 

Statistical tests between δ15N of total SBOM (Table 2.3) show that there are no 

differences in δ15N values between the different shell removal methods, with the 

exception of C. edule 10%HCl samples that are significantly depleted compared to 

EDTA, 50%HCl and AA obtained samples. 

 

Table 2.3  δ15N values and elemental nitrogen concentrations (%N) of bulk total 
SBOM for method comparison 

(p. 19 and 20) SBOM was obtained from aliquots of homogenised shell 
powder from Mytilus edulis, Ruditapes decussatus and Cerastoderma edule. 
SBOM was isolated using the shell removal techniques: cation exchange resin 
(RESIN), EDTA, acetic acid (AA), 10%HCl and 50%HCl. Three M. edulis total 
SBOM samples isolated using EDTA underwent the cation exchange resin 
method (EDTA-RESIN) and were subsequently re-analysed. For sample sets 
in which outliers have been identified (see Fig. 2.3), mean values without 
outliers are also given and underlined.  

 

δ15N (‰, ±SD) M. edulis R. decussatus C. edule 

RESIN 
+12.8 ±0.8 (n=7) 

+12.5 ±0.5 (n=6) 

+8.3 ±1.9 (n=8) 

+7.7 ±0.8 (n=7) 

+11.3 ±1.2 (n=8) 

EDTA +12.2 ±0.1 (n=4) +7.3 ±0.3 (n=4) +12.3 ±0.2 (n=3) 

EDTA-RESIN +12.1 ±0.3 (n=3) n/a n/a 

10%HCl 
+12.3 ±0.3 (n=6) +6.8 ±0.2 (n=5) 

 

+12.0 ±0.3 (n=4) 

+11.8 ±0.1 (n=3) 
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50%HCl +12.2 ±0.1 (n=4) +7.1 ±0.4 (n=3) +12.4 ±0.1 (n=3) 

AA +12.3 ±0.4 (n=3) +7.1 ±0.1 (n=3) +12.3 ±0.1 (n=4) 

UNTREATED +11.6 ±0.1 (n=3) +6.8 n/a 

%N M. edulis R. decussatus C. edule 

RESIN +11.7 ±3.8 (n=7) +9.4 ±1.5 (n=8) +7.0 ±2.2 (n=8) 

EDTA +14.9 ±0.7 (n=4) +12.9 ±1.5 (n=4) +11.6 ±0.4 (n=3) 

EDTA-RESIN +13.1±1.3 (n=3) n/a n/a 

10%HCl +17.1 ±1.9 (n=6) +14.2 ±0.5 (n=5) +11.5 ±0.3 (n=4) 

50%HCl +13.6 ±2.3 (n=4) +8.3 ±3.6 (n=3) +10.1 ±0.9 (n=3) 

AA +5.2 ±1.5 (n=3) +12.6 ±0.6 (n=3) +11.3 ±1.2 (n=3) 

UNTREATED +0.2 ±0.1 (n=3) +0.1 n/a 

 

Figure 2.3  Box-and-whisker plots of δ15N values from bulk total SBOM for method 
comparison. 

Further information on the plots is given at Fig. 2.1. The number of analyses 
for each method is shown in Table 2.3. The soft tissue range for R. 
decussatus is very wide (δ15N 3.2‰ to 14.8‰) and is therefore not shown.  
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It should however be noted that box-and-whisker plots of the δ15N data (Fig. 2.3) 

show a much larger variation for samples obtained using cation exchange resin, 

than for the other methods. This difference is also apparent from the standard 

variation of the three test species when using cation exchange resin (0.5‰ to 

1.2‰), compared to the other methods (0.1‰ to 0.4‰). To further analyse the 

isotopic effect of cation exchange resin extraction on total SBOM, several EDTA 

extracted samples were re-extracted using resin (Table 1). This re-extraction did 

not change the isotopic signature of the three samples (EDTA: 12.2‰ ±0.1, n=3, 

EDTA-resin: 12.1‰ ±0.3, n=3), or the elemental concentration between EDTA 

(14.7% ±0.7, n=3) and EDTA-resin samples (13.1% ±1.3, n=3), although the 

variation slightly increased for both sets of measurments.  

Untreated total SBOM data could be obtained for M. edulis (δ15N: +11.6‰ ±0.1, 

n=3) and R. decussatus (+6.8‰, n=1). Untreated M. edulis total SBOM is 

significantly depleted compared to all other methods (p= 0.005 – 0.0424, n=5), and 

this  difference is generally limited to ∼ -0.7‰. Untreated R. decussatus total SBOM 

only overlaps with the majority of 10%HCl obtained values (6.8‰ ±0.2, n=5), total 

SBOM samples isolated using EDTA/50%HCl/acetic acid are enriched by ∼ +0.3‰, 

and for cation exchange resin ∼ +1.0‰, compared to untreated δ15N values.  

The elemental concentration of nitrogen (%N) of total SBOM differs between 

methods. Most notable, the %N of total SBOM samples from M. edulis obtained 

using acetic acid (5.2% ±1.5, n=3) is approximately half that of the other methods 

(mean values ranging from 10.9% to 14.9%, n=4) but this statistically significant 

depletion is not reflected in the other two species. 

Resin obtained δ15N outliers are not related to a difference in %N, as shown in Fig. 

2.5. The elemental concentration of nitrogen is generally the most variable for 

samples obtained using cation exchange resin, and also considerable lower 

compared to other methods: for M. edulis vs. 10%HCl (p=0.0130), for R. 

decussatus vs. EDTA (0.0034), vs. 10%HCl (0.0001) and acetic acid (0.0068), and 

for C. edule vs. EDTA (0.0069), 10%HCl (0.0026), 50%HCl (0.0466), and acetic 

acid (p=0.0119). In addition 50%HCl samples were statistically depleted compared 

to 10%HCl for M. edulis (p=0.0300), to EDTA (0.0369) and 10%HCl (0.0043) for R. 

decussatus), and to 10%HCl for C. edule (p=0.0307). Total SBOM samples isolated 

using EDTA are not statistically enriched in elemental nitrogen concentration 

compared to 10%HCl for all three test species, and compared to acetic acid for R. 

decussatus and C. edule.  
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Intra-crystalline SBOM 

Where total and intra-crystalline SBOM could be compared, intra-crystalline SBOM 

δ15N values are significantly depleted compared to total SBOM for all 

methods/species, with the exception of M. edulis SBOM obtained using acetic acid 

(total SBOM: +12.3‰ ±0.4, n=3 / intra-crystalline SBOM: +11.2‰ ±0.6, n=3) and R. 

decussatus SBOM isolated using cation exchange resin (total SBOM: +7.7‰ ±0.8, 

n=7 / intra: +7.0‰ ±0.6, n=5). The mean difference between the two SBOM pools is 

around 1-2‰ for M. edulis, 0.5-1‰ for R. decussatus, and 1-2.5‰ for C. edule, for 

cation exchange obtained samples this difference is much larger for M. edulis 

(mean difference: 7.9‰) and C. edule (5.5‰).  

The elemental nitrogen concentration (%N) of intra-crystalline SBOM is also 

significantly lower than the %N of total SBOM using the following methods: for M. 

edulis EDTA (-10.9%), 10%HCl (-11.1%), 50%HCl (-12.4%), but not for cation 

exchange resin (-3.3%) and acetic acid (-1.0%). For R. decussatus there is a 

statistically significant difference between total and intra-crystalline SBOM %N for 

resin (-5.4%) and AA (-9.6%), No data is available for the other methods. The 

depletion in %N is significant for C. edule intra-crystalline SBOM in: 10%HCl (-

9.5%), 50%HCl (8.6%), AA (-6.8%), but not for cation exchange resin obtained 

samples (-3.3%). The general difference in elemental concentration between total 

SBOM and intra-crystalline SBOM is also shown in Fig. 2.5.  

Because of to the lower amounts of intra-crystalline SBOM in the shell and the 

lower elemental concentration of nitrogen compared to total SBOM, it was not 

always possible to obtain δ15N data for intra-crystalline SBOM. The available data 

(Fig. 2.4) shows that for M. edulis cation exchange resin obtained samples are 

statistically depleted by ∼2‰ and more variable than SBOM obtained using the 

other methods (EDTA, 10%HCl, 50%HCl, acetic acid). The same pattern is 

observed for C. edule intra-crystalline δ15N data, whereby cation exchange samples 

are ∼4‰ depleted compared to the other methods for which data is available 

(10%HCl, 50%HCl, acetic acid). For R. decussatus δ15N data for intra-crystalline 

SBOM is only available for cation exchange resin and acetic acid samples, but 

there is no statistical difference between these two methods. Potentially this is 

related to the lower δ15N value of intra-crystalline SBOM for that species, as is 

evident from acetic acid obtained mean δ15N values: +11.2‰ for M. edulis, and 

+11.0‰ for C. edule, compared to +6.7‰ for R. decussatus.  
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Table 2.4  δ15N values and elemental nitrogen concentrations (%N) of bulk intra-
crystalline SBOM for method comparison 

See Table 2.3 for further details. 

δ15N (‰, ±SD) M. edulis R. decussatus C. edule 

RESIN +4.6 ±0.8 (n=5) +7.0 ±0.6 (n=5) +5.8 ±0.9 (n=2) 

EDTA +11.1 ±0.2 (n=3) n/a n/a 

10%HCl +9.9 ±0.2 (n=5) n/a +9.7 ±1.3 (n=2) 

50%HCl +10.3 ±0.2 (n=3) n/a +10.0 ±0.6 (n=2) 

AA +11.2 ±0.6 (n=3) +6.7 ±0.3 (n=2) +11.0 ±0.9 (n=3) 

%N M. edulis R. decussatus C. edule 

RESIN 7.6 ±2.1 (n=5) 4.0 ±0.8 (n=5) 3.7 ±0.5 (n=2) 

EDTA 4.0 ±0.5 (n=3) n/a n/a 

10%HCl 4.8 ±0.9 (n=5) n/a 2.6 ±1.5 (n=2) 

50%HCl 2.2 ±1.0 (n=3) n/a 1.5 ±0.2 (n=3) 

AA 4.2 ±0.7 (n=3) 3.3 ±0.1 (n=2) 4.5 ±2.5 (n=3) 

 

Figure 2.4  Box-and-whisker plots of δ15N values from bulk intra-crystalline SBOM 
for method comparison. 

Further information on the plots is given at Fig. 2.1. The number of analyses 
for each method is shown in Table 2.4.  

 

 3‰

4‰

5‰

6‰

7‰

8‰

9‰

10‰

11‰

12‰

13‰

14‰

R
E

S
IN

E
D

T
A

1
0
%

H
C

l

5
0
%

H
C

l

A
A

5‰

6‰

7‰

8‰

9‰

10‰

11‰

12‰

13‰

14‰

R
E

S
IN

E
D

T
A

1
0
%

H
C

l

5
0
%

H
C

l

A
A

R
E

S
IN

E
D

T
A

1
0
%

H
C

l

5
0
%

H
C

l

A
A

R. decussatus M. edulis C.edule 



- 24 - 

Comparison between the shell removal methods EDTA, 10%HCl, 50%HCl and 

acetic acid for M. edulis shows that the mean δ15N values of the methods do not 

vary by more than 1‰. But due to very small intra-method variability (S.D for the 

various methods: 0.2‰ to 0.6‰), 10%HCl samples are statistically depleted 

compared to EDTA (p=0.0002) and acetic acid (0.0035), and 50%HCl is statistically 

depleted compared to EDTA (0.0080). For C. edule the intra-method δ15N variability 

is greater (0.6‰ to 1.3‰), and no statistical differences exist between the different 

shell removal methods.  

The elemental nitrogen concentration of intra-crystalline SBOM samples obtained 

using cation exchange resin are statistically enriched compared to all other 

methods (for which data could be obtained) in M. edulis (p=0.0065 to 0.0384, n=4), 

and for C. edule compared to 50%HCl (p=0.0054). For R. decussatus the elemental 

concentration does not differ between intra-crystalline samples using cation 

exchange resin or acetic acid. In addition to ion exchange resin, statistically lower 

concentration of nitrogen where found in M. edulis 50%HCl samples when 

compared to EDTA (p=0.0494), 10%HCl (0.0089), and acetic acid (0.0470) 

samples.  

 

SBOM compared to soft tissue ranges 

All M. edulis total SBOM δ15N values obtained using the various techniques overlap 

with the soft tissue δ15N range (+10.9‰ to +12.9‰, n=20), with the exception of two 

enriched cation exchange resin values. Intra-crystalline SBOM M. edulis δ15N 

values overlap (EDTA, acetic acid) with the 15N depleted end of the soft tissue 

range, or are more depleted than the soft tissue range (cation exchange resin, 

10%HCl, 50%HCl).  

R. decussatus has a wide soft tissue δ15N range (+3.2‰ to +14.8‰, n=20) due to 

the large isotopic variation between individual specimens, that have average soft 

tissue δ15N of +5.6‰, +6.1‰, +7.7‰, +10.2‰, and +14.3‰. The soft tissue range 

therefore encompasses all total SBOM and intra-crystalline SBOM δ15N values.  

With the exception of one resin δ15N value (+9.1‰) all total SBOM data is within the 

range of soft tissue δ15N values from C. edule specimens (+10.2‰ to +13.6‰, 

n=20). Intra-crystalline SBOM samples obtained using acetic acid completely 

overlap with the soft tissue range, whilst 10%HCl/50%HCl data generally falls 

∼0.5‰ below that range. Cation exchange resin intra-crystalline SBOM δ15N values 

from C. edule are ∼4‰ depleted below the soft tissue range. 
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Figure 2.5  δ15N isotopic composition and elemental nitrogen (%N) concentration of 
bulk SBOM for method comparison 

(p.26 and 27) Data for individual aliquots of homogenised shell powder as 
reported in Table 2.3 and 2.4.  
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Key observations 

 For total SBOM there are generally no statistical differences in δ15N 

between the different methods, although δ15N variation is greatest when 

cation exchange resin is used. %N is lower in cation exchange resin total 

SBOM samples compared to other methods, of these 50%HCl obtained 

samples are lower in %N than 10%HCl/EDTA samples. 

 

 For two test species cation exchange resin δ15N intra-crystalline SBOM 

values are depleted by several per mille compared to the other methods.  

 

 Untreated M. edulis total SBOM shows very little δ15N variation and is 

statistically depleted in δ15N compared to all chemical methods, this 

depletion is also observed for R. decussatus (with the exception of 10%HCl 

obtained samples) 

 

 Intra-crystalline SBOM has depleted δ15N values (1-2‰) compared to total 

SBOM, and is also lower in elemental nitrogen concentration 

 

 Total SBOM overlaps with the δ15N soft tissue ranges, but intra-crystalline 

SBOM δ15N values can be more depleted than soft tissue values depending 

on the species and shell removal method 

0

2

4

6

8

10

12

14

16

18

0 2 4 6 8 10 12 14 16 18 20 22

RESIN - total

RESIN - intra

EDTA - total

10HCl - total

10HCl - intra

50HCl - total

50HCl - intra

AA - total

AA - intra

soft tissuesδ15N

%N

C. edule   

EDTA



- 27 - 

2.3.1.3  Sulphur 

The stable isotope δ34S results and the distribution of the values are reported in 

Table 2.5 and 2.6, and Figure 2.6 and 2.7. In addition the elemental concentration 

of sulphur (%S) could be obtained for each isotopic measurement, and for each 

analysed aliquot of bulk shell powder δ34S and %S are plotted against each other in 

Figure 2.8. The sulphur value of the cation exchange resin used for the extractions 

is δ34S -1.5‰ (n=1).  

 

Total SBOM 

Table 2.5  δ34S values and elemental sulphur concentrations (%S) of bulk total 
SBOM for method comparison 

See Table 2.3 for further information, outliers are identified in Fig. 2.6.   
 

δ34S (‰, ±SD) M. edulis R. decussatus C. edule 

RESIN +2.4 ±3.4 (n=6) +1.8 ±2.8 (n=4) +0.1 ±1.7 (n=2) 

EDTA 
+10.6 ±0.8 (n=5) 

+10.9 ±0.3 (n=4) 

+11.0 ±0.4 (n=4) +7.4 ±0.6 (n=4) 

EDTA-RESIN +3.2 ±0.1 (n=2) n/a n/a 

10%HCl 
+9.7 ±0.7 (n=5) 

+10.2 ±0.3 (n=4) 

+10.3 ±0.4 (n=5) 

+10.5 ±0.1 (n=4) 

+5.2 ±0.4 (n=4) 

50%HCl +10.6 n/a +5.4 ±0.7 (n=3) 

AA 
+11.0 ±0.2 (n=3) +9.3 ±1.3 (n=5) 

+9.8 ±0.3 (n=4) 

+6.5 ±0.5 (n=3) 

%S M. edulis R. decussatus C. edule 

RESIN 3.7 ±3.5 (n=6) 5.4 ±1.4 (n=4) 5.1 ±2.5 (n=2) 

EDTA 0.8 ±0.2 (n=4) 1.8 ±0.1 (n=4) 2.3 ±0.2 (n=4) 

EDTA-RESIN 2.8 ±0.1 (n=2) n/a n/a 

10%HCl 0.9 ±0.4 (n=3) 1.6 ±0.2 (n=3) 2.7 ±0.5 (n=4) 

50%HCl 1.3 n/a 2.3 ±0.2 (n=3) 

AA 0.3 ±0.7 (n=3) 2.2 ±0.4 (n=3) 2.8 ±0.7 (n=3) 
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Total SBOM δ34S data from M. edulis obtained using resin is significantly depleted 

in isotopic value (2.4‰ ±3.4, n=6) and shows a significant increase in elemental 

concentration (3.7% ±3.5, n=6) compared to all other methods (combined values for 

other extractions, including outliers: δ34S 10.3‰ ±3.5, n=13 and %S 0.7% ±0.5, 

n=11) (Fig. 2.8). The same pattern is found for R. decussatus resin total SBOM 

isotope data (1.8‰ ±2.8, n=4) and elemental concentration (5.4% ±1.4 (n=4) 

compared to all other methods: δ34S 10.1‰ ±1.1, n=10, and %S 1.9% ±0.3, n=10. 

Similarly this difference can be seen for C. edule: δ34S 0.1‰ ±1.7 (resin, n=2) vs. 

6.2‰ ±1.1 (other methods, n=14), and in concentration: %S 5.1% ±2.5 (resin, n=2) 

vs. 2.5% ±0.5 (other methods, n=14). The %S and isotopic δ34S value are strongly 

correlated, with R-squared of 0.62 for M. edulis, 0.47 for R. decussatus and 0.33 for 

C. edule, whereby δ34S becomes more depleted with increasing %S. M. edulis 

EDTA samples that were treated using resin show a similar shift, with a decrease in 

isotopic value (before: 10.1‰ ±1.1, n=2; after: 3.2‰ ±0.1, n=2) and an increase in 

elemental concentration (before: 0.8% ±0.2, n=2; after: 2.8% ±0.1, n=2). 

 

Figure 2.6  Box-and-whisker plots of δ34S values from bulk total SBOM for method 
comparison 

Further information on the plots is given at Fig. 2.1. The number of analyses 
for each method is shown in Table 2.5.  
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When comparing the other shell removal methods against each other, the EDTA 

obtained total SBOM δ34S values are be generally enriched compared to the 

acidification methods (Fig. 2.7). This difference is significant for M. edulis between 

EDTA vs. 10%HCl (p=0.0164), R. decussatus EDTA vs. acetic acid (0.0030), and 

C. edule EDTA vs. 10%HCl (0.0009) and 50%HCl (0.0095). The relationship 

between the different acidification methods is variable, but significant differences 

exist between 10% HCl and acetic acid for all three test species (p=0.044 to 

0.0121, n=3). Multiple δ34S measurements of total SBOM obtained using 50%HCl 

could only be done for C. edule, and results are statistically similar to 10%HCl. 

Sulphur concentrations of total SBOM are not statistically different between any of 

the shell removal techniques for the three test species.  

 

Intra-crystalline SBOM 

Method comparison for intra-crystalline SBOM shows that resin samples show the 

same systematic relationship observed in total SBOM resin values and 

concentrations (Fig. 2.8). For M. edulis there is a strong depletion in isotopic value 

for resin (-0.9‰ ±0.4, n=4) compared to all other methods (7.2‰ ±4.0, n=13), as 

well as an increase in sulphur concentration between resin (6.6‰ ±1.1, n=4) and 

the other methods (1.2‰ ±0.6, n=11). The same relationship can be found for R. 

decussatus: δ34S -0.9‰ ±0.9 (resin, n=4) vs. 5.0‰ ±3.7 (other extraction methods, 

n=5); and %S 5.1% ±1.3 (resin, n=4) vs. 1.3% ±0.2 (other, n=5), as well as for C. 

edule: δ34S -0.9‰ ±0.1 (resin, n=2) vs. 4.9‰ ±0.9 (other, n=8), and %S 2.8% ±0.1 

(resin, n=2) vs. 1.5% ±0.8 (other, n=8).  

For other methods used to isolate intra-crystalline SBOM, several very depleted 

δ34S values where observed for 10%HCl and 50%HCl in M. edulis, R. decussatus 

and C. edule (Fig. 2.7 and 2.8). In M. edulis this leads to a significant difference of 

∼ +7‰ between EDTA vs. 10%HCl (p=0.0075), and vs. acetic acid (p=0.0005), and 

very large variation in 50%HCl δ34S values. Unfortunately EDTA values could not 

be obtained for the other two test species, acetic acid total SBOM samples are also 

significantly enriched in δ34S compared to 50%HCl in R. decussatus (p=0.0007) by 

∼ +6‰, but there are no statistical differences between the acidification methods 

for C. edule. Sulphur concentrations of total SBOM are not statistically different 

between any of the shell removal techniques for the three test species.  
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Table 2.6  δ34S values and elemental sulphur concentrations (%S) of bulk intra-
crystalline SBOM for method comparison 

See Table 2.3 for further information   
 

δ34S (‰, ±SD) M. edulis R. decussatus C. edule 

RESIN -0.9 ±0.4 (n=4) -0.9 ±0.9 (n=4) -0.9 ±0.1 (n=2) 

EDTA +9.3 ±1.1 (n=2) n/a n/a 

10%HCl +2.0 ±1.3 (n=3) n/a +4.2 ±1.5 (n=2) 

50%HCl +7.1 ±4.6 (n=3) +1.0 ±0.1 (n=2) +5.0 ±1.1 (n=3) 

AA +10.2 ±0.5 (n=3) +7.6 ±0.6 (n=3) +5.3 ±0.2 (n=3) 

%S M. edulis R. decussatus C. edule 

RESIN 6.6 ±1.1 (n=4) 5.1 ±1.3 (n=4) 2.8 ±0.1 (n=2) 

EDTA 1.8 ±0.6 (n=2) n/a n/a 

10%HCl 1.5 ±0.6 (n=3) n/a 1.5 ±1.2 (n=2) 

50%HCl 1.7 ±0.7 (n=3) 1.1 ±0.2 (n=2) 1.7 ±0.9 (n=3) 

AA 0.9 ±0.2 (n=3) 1.4 ±0.2 (n=3) 1.3 ±0.6 (n=3) 

 
Figure 2.7  Box-and-whisker plots of δ34S values from bulk intra-crystalline SBOM 

for method comparison. 

Further information on the plots is given at Fig. 2.1. The number of analyses 
for each method is shown in Table 2.6.  
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A comparison between the results of total SBOM and intra-crystalline SBOM of the 

different shell removal methods (if available) does not give a consistent relationship 

for either sulphur isotopic value or elemental concentration between the two pools. 

Acetic acid SBOM data could be compared for all three test species: both pools are 

similar in isotopic composition and elemental concentration for M. edulis, but for the 

other two species the intra-crystalline SBOM δ34S is statistically depleted by 1-2‰ 

compared to total SBOM (p=0.0013 and 0.0181), and also statistically depleted in 

elemental concentration (p=0.0363 and 0.0479). EDTA obtained SBOM could only 

be compared for M. edulis and shows a small statistical depletion (∼ -1‰, 

p=0.0385) in intra-crystalline SBOM compared to total SBOM, but %S is statistically 

higher (+1%) in intra-crystalline SBOM. 10%HCl samples from M. edulis show a 

large δ34S depletion in intra-crystalline SBOM (∼ -8‰), but a similar elemental 

concentration. For 10% HCl obtained total and intra-crystalline SBOM from C. 

edule, both δ34S and %S are statistically similar between the two pools. This was 

also observed for 50%HCl SBOM samples from the same species.  

 

SBOM compared to soft tissue ranges 

SBOM results are differently related to δ34S soft tissue values for the three test 

species (Fig. 2.9). For M. edulis the large majority of total SBOM δ34S values 

(except some depleted 10%HCl values) overlap with the soft tissue δ34S range. For 

intra-crystalline SBOM from M. edulis only acetic acid obtained SBOM, and some 

EDTA/50%HCl overlap with the soft tissue range, but none of the 10%HCl samples. 

For R. decussatus only a minority of EDTA δ34S values overlaps with the soft tissue 

range, whilst total SBOM obtained using other methods is more depleted. In 

addition, all intra-crystalline SBOM from R. decussatus is more depleted than the 

soft tissue δ34S range. Lastly, for C. edule all total and intra-crystalline SBOM has 

depleted δ34S values compared to the soft tissue range of that species. 

 

 

 

Figure 2.9  δ34S isotopic composition and elemental sulphur (%S) concentration of 
bulk SBOM for method comparison 

(p.32) Data for individual aliquots of homogenised shell powder as reported in 
Table 2.5 and 2.6.  
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Key observations 

 Total and intra-crystalline SBOM obtained using cation exchange resin is 

depleted in δ34S and enriched in %S compared to the other shell removal 

methods 

 

 Total SBOM obtained using EDTA is generally enriched for δ34S compared 

to acidification methods, and for intra-crystalline SBOM very depleted δ34S 

values have been observed for samples obtained using 10%HCl and 

50%HCl 

 

 The relationship between total SBOM and intra-crystalline SBOM for δ34S 

and %S is unclear, and varies between the different methods and species.  

 

 Total SBOM and some intra-crystalline SBOM δ34S values of M. edulis 

overlap with the soft tissue range, for the other two test species the SBOM 

δ34S values are generally depleted outside of the soft tissue range 

 

 

 

 

Carbonate-associated sulphate (CAS) 

CAS data is shown in Table 2.7. C. edule CAS obtained using HCl (20.3‰ ±0.3 

(n=2) is significantly enriched compared to C. edule CAS (total SBOM) obtained 

from resin water (11.9‰ ±0.7, n=2, (p=0.0041), with a mean difference of +8.4‰. 

There is no difference in %S between the two extraction methods (p=0.5442). C. 

edule CAS HCl is also significantly different from all resin CAS data (combined: 

11.0‰ ±2.3, n=11, excluding outlier shown in Table 3.1), with a p-value of 0.0002. 

Similarly there is no difference in %S (11.4% ±0.8, n=11, p=0.3503).  

 

Table 2.7  δ34S isotopic composition of CAS 

(p. 34) CAS was obtained using cation exchange resin (RESIN) or 10%HCl 
from aliquots of homogenised shell powder from Mytilus edulis, Ruditapes 
decussatus and Cerastoderma edule. Elemental sulphur concentration is 
shown as %S. The outlier values are not from the same sample. 
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Species Method SBOM δ34S (‰ ±SD ) %S (%) 

M. edulis RESIN 

total +14.5 (n=1) 11.8 (n=1) 

intra +11.1 ±1.5 (n=3), 

outlier 0.7  

11.2 ±0.6 (n=3), 

outlier 3.3 

R. decussatus RESIN 
total +12.6 (n=1) 12.0 (n=1) 

intra +5.4 (n=1) 12.6 (n=1) 

C. edule 
RESIN 

total +11.9 ±0.7 (n=2) 11.6 ±0.5 (n=2) 

intra +10.5 ±0.6 (n=3) 10.9 ±1.0 (n=3) 

10%HCl total +20.3 ±0.3 (n=2) 12.0 ±0.6 (n=2) 

 

 

2.3.2  Pyrolysis GC/MS comparison of total and intra-crystalline 

bulk SBOM  

The molecular composition of total and intra-crystalline SBOM (isolated using cation 

exchange resin) from M. edulis was analysed using Py-GC/MS, whereby the 

molecular components are separated using gas chromatography and identified 

using mass spectrometry (Fig. 2.10). Pyrolysis GC/MS results show that the 

majority of SBOM consists of proteins, and that lipids (in the form of saturated fatty 

acids) are also present, which is in agreement with published literature (Goulletquer 

& Wolowicz et al., 1989; CoBabe & Pratt, 1995). Comparison between the two 

samples shows that intra-crystalline SBOM has a simple make-up with only several 

high intensity peaks of pyrolysis products, particularly compared to the more 

complex total SBOM sample. The most abundant component of intra-crystalline 

SBOM is the lipid C16:0 (palmitic acid), and there are also clear peaks for other 

saturated fatty acids (C14:0, C15:0, C17:0, C:18:10, C). Palmitic acid is the most 

abundant and widespread natural saturated acid, and its occurrence is ubiquitous 

(Gunstone et al., 2007). Other major pyrolysis products are break-down 

components of proteins, and toluene. Toluene is also abundant in the total SBOM 

sample, which is furthermore dominated by phenol and indole. The generation of 

toluene, phenol and indole is associated with the presence of aromatic amino acids 

in proteins (Moldoveanu, 1998). The C16:0 peak has a much lower relative 

abundance in total SBOM than in the intra-crystalline SBOM sample. No identifiable 

cation exchange resin products were detected in the samples. 
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Figure 2.10  Total ion chromatograms from pyrolysis GC/MS for total SBOM and 
intra-crystalline SBOM of M. edulis 

SBOM samples were isolated using cation exchange resin. Identified pyrolysis 
products are numbered and listed in the table below.  
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2.4  Discussion 

2.4.1  Isotopic and compositional comparison between total 

SBOM and intra-crystalline SBOM 

Consistent isotopic differences between total SBOM and intra-crystalline SBOM 

were observed for all three test species, irrespective of shell removal method: both 

δ13C (- 5-7‰) and δ15N (- 1-2‰) values of intra-crystalline SBOM are statistically 

depleted compared to total SBOM samples, and generally also compared to the 

soft tissue ranges. In addition, the intra-crystalline fraction has a lower in elemental 

nitrogen concentration than the total SBOM fraction. This isotopic and elemental 

difference can be explained by the higher relative proportion of lipids in the intra-

crystalline fraction. Of the macromolecular groups lipids are characteristically 

depleted in 13C due to enzymatic discrimination (DeNiro & Epstein, 1978), and high 

lipid content would result in the observed lower δ13C values of intra-crystalline 

SBOM. In addition lipids contain very limited amounts of nitrogen, and this would 

therefore also explain the elemental difference between the two pools. The lower 

δ15N values of intra-crystalline SBOM could be due to the presence of e.g. 15N 

depleted lipoprotein compounds, that have previously been suggested to explain 

δ15N enrichment of soft tissues after lipid removal (Ruiz-Cooley, 2011). 

Alternatively, other difference in protein compounds (with different δ15N values) 

could contribute to the observed difference (see: 2.4.2). In either scenario, the δ13C 

and δ15N components of inter-crystalline SBOM are more similar to those of soft 

tissues, because total SBOM reflects soft tissue values much closer. Unfortunately 

due the limited δ34S data it is unclear if there is a consistent difference in sulphur 

stable isotope values and concentration between the two SBOM pools.  

The difference in macromolecular composition between inter- and intra-crystalline 

SBOM suggests that they are secreted following different biochemical pathways, 

and it is likely that these differences are related to different functions of the two 

pools in the biomineralisation process. The role of lipids in biomineralisation is not 

yet deciphered, but has been suggested to be important (Farre and Dauphin, 2009). 

In addition, the relationship between intra-crystalline SBOM and the mineral is not 

completely understood, but is also crucial and crucial in biomineralisation, and has 

been shown to control shell microstructures (Okumara et al., 2013).  

For our study the compositional difference of the two pools is important to take into 

account when comparing shell removal methods, and their potentially different 

influences on these two SBOM pools. These results are furthermore relevant for 
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palaeontological investigations. In general, the intra-crystalline SBOM pool is often 

preferred for biochemical analysis of fossil specimens because it is physically 

protected from external diagenetic pathways by the mineral (Sykes et al., 1995). 

This study however shows that when this pool is used for stable isotope analysis, 

the results will be very different from original soft tissue/total SBOM values, and 

subsequent reconstruction of the precise nutritional sources of the animal will be 

much more difficult.  

In addition, a change in the isotopic off-set between total SBOM and intra-

crystalline SBOM in fossil specimens (compared to modern taxa) could indicate 

degradation or contamination of either the inter-crystalline pool or both SBOM 

pools. Hypothetically, inter-crystalline SBOM would be first affected because of the 

difference in preservation potential compared to intra-crystalline SBOM. 

 

2.4.2  Evaluation criteria for the success of shell removal 

methods  

With the exception of total SBOM δ15N, it is not possible to assess the effects of 

shell removal methods by comparing the obtained isotope data to untreated 

samples. Because of the lack of true controls, the success of the different methods 

is evaluated using the following characteristics for the SBOM results: (i) low 

variation, and (ii) isotopic similarity to soft tissue values, these two criteria are 

presented in more detail below.  

(i) Low isotopic variation. It is likely that isotopic heterogeneity of SBOM 

exists within individual specimens, and between individual specimens of the 

same species. However, because of the extensive homogenization of bulk 

shell powder in this study, the analysed aliquots of the bulk material are 

expected to have a uniform isotopic signal. This assumption is confirmed by 

the δ15N analysis of total SBOM from M. edulis (δ15N 11.6‰ ±0.1, n=3), that 

showed isotopic variation within measurement error. Therefore low variation 

and absence of outliers are expected for the stable isotope values of SBOM 

obtained using the different methods.    

 

(ii) Similarity to soft tissue values. Soft tissues are often used as a stable 

isotopic proxy for untreated SBOM (e.g. Carmichael et al., 2008). Within this 

specific study it is not possible to compare the bulk shell powder to “bulk” 

soft tissue values, because of the difficulty of homogenising soft tissues, 
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particularly for such a large amount of individual animals. As a preferred 

alternative, the bulk SBOM results are compared to the range of stable 

isotope values obtain from the different tissues (gills, mantle, foot, muscle, 

rest) of several individual specimens.   

Isotopic differences between the soft tissue ranges and bulk SBOM can be 

caused by inherent differences between the two organic pools instead of 

methodological effects. Some of these potential causes can also be 

responsible for isotopic variation between the different soft tissues (and 

potentially SBOM values of different species), and below these are 

discussed in combination where appropriate.  

a) SBOM synthesis fractionation. The different molecular components of 

the SBOM are secreted by epithelial cells that line the outer margin of 

the mantle (Lowenstam & Weiner, 1989), potentially in combination with 

specialized hemocytes (blood cells) (Johnstone et al., 2015), and it has 

been proposed that their cells and cell products combine SBOM with 

nanocrystals in vesicles to form multi-crystalline composites, and 

progressively organised shell structures (Johnstone et al., 2015). The 

formation of SBOM is therefore a complex cellular process that involves 

many different secretory cell types and their products (Myers et al., 

2007). However, data about the synthesis and routing of SBOM 

components are very scarce, and it is unknown how this affects isotopic 

discrimination of the different macromolecules. 

For essential amino acids the fractionation between soft tissues and 

SBOM is expected to be limited. Because essential amino acids cannot 

be synthesized by the animal, they are taken up from the diet and 

directly routed to soft tissues with minimal isotopic alteration. If these 

are also directly routed into SBOM, they have very similar values 

(McCullagh et al., 2005). Whilst carbon and nitrogen are present in both 

essential and non-essential amino acids, sulphur can only be present in 

proteins as the essential amino acid methionine, and as cysteine, a 

semi-essential amino acid that can be synthesized from methionine (no 

isotopic information is available for that process) (Nehlich et al., 2015). 

Both methionine and cysteine have been observed in SBOM (e.g. Marin 

et al., 2016), and high isotopic similarity in δ34S between diet, soft 

tissues and SBOM is expected.  
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b) Compositional differences. Different soft tissues and SBOM can differ in 

isotopic value due to isotopic routing: whereby certain biochemical 

components are preferentially allocated to certain organs (Schwarcz 

1991). In general, carbohydrates are used for energy metabolism, 

proteins to build and repair tissues, and fatty acids are present in fat 

reserves. Because these different components have different isotopic 

values, compositional differences can cause isotopic differences 

between soft tissues, and potentially SBOM. This is of particular 

concern for the carbon stable isotope ratios, because sulphur is only 

present in proteins (and restricted to the amino acids cysteine and 

methionine), and similarly protein is the major source of nitrogen 

(present in all amino acids), since lipids only contain negligible amounts 

of nitrogen. Carbon however is supplied by dietary proteins, lipids, and 

carbohydrates, which may differ in their carbon isotope composition. 

This is further complicated by non-essential amino acids, that can be 

synthesized using carbon from other macronutritional sources than 

protein, such as the carbohydrates and lipids (e.g. Jim et al., 2006). As 

discussed in section 2.4.1, lipids are characteristically depleted in 13C 

(Hobson and Welch, 1992), causing more depleted δ13C values in 

tissues with high-lipid content, and δ13C enriched values for those rich in 

protein. This 13C enrichment has particularly been noted for protein-rich 

bivalve muscle tissue (e.g. DeNiro & Epstein, 1976; Mateo et al., 2008; 

Ruiz-Cooley et al., 2011).  

In addition to differences in macromolecular composition, significant 

isotopic variation also exists between compounds of the same 

macromolecular group. E.g. different amino acids in a single tissue can 

in δ13C and δ15N by more than 15‰, due to differences in enzymatic 

discrimination (e.g. Hare et al., 1991). As different proteins contain 

distinction proportions of amino acids, differences in protein composition 

among tissue types can yield dissimilar isotopic compositions that are 

unrelated to nutritional sources.  

c) Represented time periods. An important difference between SBOM and 

soft tissues is the time period over which stable isotope values are 

averaged: in SBOM they represent a life-time average, whilst soft 

tissues represent a specific time period, related to tissue growth and 

isotopic turnover (Versteegh et al., 2011; Fry and Arnold, 1992). The 

represented time periods differ between tissues, and muscle tissue is 
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generally regarded as having the slowest turnover rate (e.g. Hill & 

McQuaid, 2009), potentially followed by the gills, and other soft tissues 

(Fertig et al., 2010).  

 

2.4.3  Method comparison of shell removal techniques 

In this section the analytical results will be discussed per shell removal technique, 

but particular attention will be given to consistent isotopic differences between 

methods that could be indicative of method-specific effects on isotope values. 

 

2.4.3.1  Comparison to untreated δ15N values of total SBOM 

Untreated M. edulis total SBOM shows very little δ15N variation and is statistically 

depleted in δ15N compared to all chemical methods, this depletion is also observed 

for R. decussatus (with the exception of 10%HCl obtained samples). This depletion 

is generally small and the mean differences between untreated SBOM and treated 

SBOM range from -0.6‰ to -1.2‰ for the different methods. This does suggest that 

all SBOM isolation methods remove a δ15N enriched protein component from the 

total SBOM pool. It is difficult to identify the precise mechanisms and source of this 

change, because the SBOM matrix contains at least dozens of different proteins 

that can be hugely diverse, in biochemical properties and sequence information 

(Marin et al., 2012; 2016).  

 

2.4.3.2  Cation exchange resin 

Cation exchange resin was tested as an alternative method to isolate SBOM for 

stable isotope analysis, and no disadvantages of the method were previously 

known. However, in this study significant differences in the isotopic values of SBOM 

obtained using resin versus other shell removal methods were observed. The most 

significant effect was found for δ34S SBOM values, whereby increasing elemental 

sulphur concentrations cause a depletion in δ34S values. This negative correlation 

suggests that the depletion is caused by an accumulating residual component from 

the cation exchange resin (δ34S -1.5‰). Although in a very limited number of 

samples resin beads were observed, the physical size of the resin makes it 

impossible to penetrate the dialysis bag (3500 dalton). It is likely that for the small 

number of samples resin has become attached to the (knots of the) dialysis bag 

and were freeze-dried with the SBOM samples, but a different mechanism involving 
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the release, transport and trapping a dissolved species is necessary to explain the 

34S depletion in all of the samples. The chemical formula of the cation exchange 

resin does however not contain any sulphur, but solely consists of carbon and 

hydrogen (http://www.sigmaaldrich.com/catalog/product/sial/217492? 

lang=en&region=NL, accessed 18 September 2016). One possibility is bacterial 

contamination of the re-usable resin, that could be incorporating resin into the 

SBOM they are feeding on. A similar contamination mechanism could be possible 

for the carbon and nitrogen values discussed below.  

Residual resin compound also appears to effect CAS obtained from resin water (δ34S 

+11.0‰ ±2.3, n=11), that is significantly depleted in 34S compared to the expected 

seawater sulphate value (+20.3‰). C. edule CAS values obtained using HCl 

(+20.3‰ ±0.3, n=2) accurately reflect seawater sulphate δ34S, and confirm this 

conclusion. The %S between resin and HCl samples is very similar, and it is possible 

that the sulphur is exchanging with the resin, or the %S increase is too small to detect. 

The 34S enrichment of CAS provides insights into the mechanisms of residual resin 

contamination. Because the resin water is filtered before precipitation residual resin 

beads cannot be the contaminant, and either the contamination is precipitated with 

CAS from inorganic sulphate, or is present as organic sulphur and co-precipitated 

with BaSO4.   

In summary, the residual inorganic sulphur compound of cation exchange resin 

remains unidentified, but has a δ34S value -1.5‰. The effect of the contaminant is 

variable, and increases with higher %S towards the depleted value of the resin. 

Because both the %S of samples and the δ34S value of the contaminant are known, 

it will still be possible to identify large 34S differences between sulphur sources, 

particularly if these for instance have negative δ34S values. This possibility is further 

explored in Chapter 3. 

In addition to an effect on δ34S SBOM values, cation exchange resin also causes a 

13C depletion for total and intra-crystalline SBOM values compared to the other 

methods, for values heavier than δ13C ∼ -23‰ in this study. These values are also 

depleted compared to soft tissue ranges, with the exception of M. edulis (discussed 

below). It is likely that this depletion is also caused by (the same) residual resin 

component, since resin has a depleted δ13C value of -29.2‰. This is also in 

agreement with several depleted outliers (up to -28.2‰), that could potentially be 

caused by increased amounts of residual resin compounds, potentially incorporated 

by bacteria. The effect on the total and intra-crystalline SBOM δ13C < -23‰ is limited 

to minus 1-2‰.  
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Lastly, cation exchange resin showed the largest variation in δ15N total SBOM 

values, as well as lower elemental nitrogen concentration (%N). Whereas for two 

test species intra-crystalline SBOM δ15N are significantly depleted compared to 

other methods, and have higher %N. This suggests that cation exchange resin can 

both remove and add nitrogen sources, but mechanisms for this are currently 

unknown. In general however, the δ15N total SBOM are statistically similar to the 

other shell removal methods, and can be used to identify trophic levels and 

differentiate nitrogen sources. 

 

2.4.3.3  EDTA 

Several possible disadvantages of using EDTA for SBOM isolation were outlined in 

the introduction, the primary concern being that residual EDTA (containing carbon 

and nitrogen) would become incorporated with SBOM and influence its stable 

isotope values. The carbon value of EDTA (δ13C -39.0‰) was determined, but no 

depletion in δ13C values was observed in total SBOM isolated using EDTA 

compared to the other shell removal methods. However, for intra-crystalline SBOM 

obtained using EDTA the δ13C values are depleted compared to the 10%HCl/acetic 

acid methods, and mean differences can encompass 2‰. Therefore it is possible 

that the smaller amounts of intra-crystalline SBOM (0.1% of shell weight vs. ∼1% in 

total SBOM) is more strongly effected by residual EDTA. The δ15N data of EDTA 

obtained SBOM is similar in value and variability to other shell removal methods.  

EDTA SBOM samples generally have enriched δ34S values compared to 

acidification methods, and they more closely reflect soft tissue ranges for both total 

and intra-crystalline SBOM. For both R. decussatus and C. edule however, the 

EDTA δ34S total SBOM values are still depleted compared to soft tissue ranges. 

This depletion is unexpected, because of the (semi)essential amino acids 

containing sulphur were predicted to be routed directly into SBOM. The most likely 

explanation is that 34S enrichment occurs when the amino acids are transported 

from the soft tissues into SBOM (via the extrapallial fluid), or alternatively this 

fractionation could occur during isolation of SBOM. Our observation is in agreement 

with previously obtained differences in δ34S between total SBOM (obtained using 

EDTA) and soft tissues: O’Donnell (2003) found a depletion in SBOM of Mercenaria 

mercenaria (+13.6‰ ±0.2 for SBOM and +15.4‰ ±0.8 for soft tissues, n=unknown), 

as did Dreier et al., (2012) for Venerupis aurea (+13.6‰ for SBOM, +18.0‰ for 

gills, n=1). This suggests that δ34S total SBOM does not reflect the values from soft 

tissues for heterotrophic filter feeders. 
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2.4.3.4  Acidification methods 

The results for methods using 10%HCl, 50%HCl and acetic acid are discussed 

together because all three methods are based on acidification. In the introduction it 

was noted that the effects of acidification on stable isotope values have led to both 

more enriched and more depleted δ13C and δ15N values, as well as no effects, and 

that the mechanisms behind these changes often remain undetermined. In this 

study statistical differences in δ13C values of SBOM obtained using the different 

acidification methods were found: 50%HCl samples are most depleted for total and 

intra-crystalline SBOM compared to 10%HCl and acetic acid, in addition the 

elemental nitrogen concentration of 50%HCl samples is lower than for 

10%HCl/EDTA samples. Together these observations suggest that the stronger 

50%HCl acid has a greater influence on the δ13C values of SBOM by removing 13C 

depleted protein compounds. Loss of acid-soluble organic carbon (amino 

acids/carbohydrates) has previously been reported, and can cause δ13C depleted 

values if acid-insoluble lipids are preferentially retained for example, since these are 

characteristically 13C depleted (Schlacher & Connelly, 2014). This could also 

explain the depleted δ15N values for both 50%HCl/10%HCl obtained intra-crystalline 

SBOM versus the weaker acetic acid. In addition, deviating values were observed 

for δ13C values of SBOM obtained using acetic acid. The enriched δ13C values for 

total SBOM could be explained by remaining inorganic carbonate (that has a very 

enriched δ13C value) due to the weakness of the acid. The extremely depleted δ13C 

values for intra-crystalline SBOM are best explained by residual acid, as there are 

very few mechanisms that could result in a depletion of -20‰.  

As discussed in the EDTA section, sulphur SBOM data obtained using acidification 

is generally depleted compared to EDTA obtained samples, and neither reflect soft 

tissue δ34S accurately. Moreover, several 10%HCl/50%HCl extremely low values 

(δ34S  < 2.0‰, n=7, species=3) are present in intra-crystalline samples, that are not 

present in EDTA or acetic acid samples. This suggests strong 

depletion/fractionation of δ34S values, that did not result in statistically different 

elemental sulphur concentrations between the different methods. It is known that 

the sulphur containing amino acids can become unstable, which would could be a 

potential explanation for this effect (Dreier et al., 2012).  
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Part II – Isotopic relationship between individual SBOM and 

soft tissues  

In Part I bulk shell powder was used to obtain SBOM for stable isotope analysis, 

which could only be generally compared to soft tissues isotope values. In this 

section the isotopic comparison between SBOM and soft tissues is done on an 

individual basis, and individual SBOM is compared to multiple soft tissues of the 

same individual bivalve. Because these experiments were conducted before the 

results of the Part I were known, the SBOM was obtained using cation exchange 

resin. SBOM was additionally isolated using 10%HCl for specimens with sufficient 

remaining shell powder. 

2.5  Results 

The isotopic offset between different soft tissues and SBOM is shown in Fig. 2.10, 

showing the mean difference (±SE) amongst the different individuals. 

Carbon and nitrogen  

Species-specific variation can be observed in ΔSBOM-ST: M. edulis has a positive 

ΔSBOM-ST for both δ15N and δ13C (soft tissues are more enriched compared to 

SBOM), whilst R. decussatus and C. edule have a negative relationship (soft 

tissues are more depleted compared to SBOM).  

Isotopic differences can be found between the different tissues compared across 

five individual specimens. Particularly noticeable is the statistically significant δ13C 

depletion in muscle tissue compared to several other tissues for both M. edulis and 

R. decussatus. Across the three species and for both carbon and nitrogen, muscle 

is always least positive/most negative difference for both δ13C and δ15N compared 

to SBOM values. The ‘rest’ and ‘mantle’ tissues are amongst the most positive/least 

negative differences for both δ13C and δ15N. 

Isotopic comparison between individual total SBOM for δ13C and δ15N obtained 

using both cation exchange resin and 10%HCl does not show a clear pattern for 

nitrogen (difference: δ15N +0.3‰ ±1.1, n=4), but carbon is generally more depleted 

using ion-exchange resin (δ13C -0.7‰ ±1.0, n=6). Due to species-specific variation, 

using HCl values causes the ΔSBOM-ST for M. edulis to increase, and for R. 

decussatus/C. edule to generally decrease. For nitrogen the effects on ΔSBOM-ST 

were variable.  
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Figure 2.11  Isotopic comparison (δ13C and δ15N) between total SBOM and soft 
tissues for individual specimens  

The three test species used in this study are underlined, total SBOM was 
obtained using cation exchange resin. Published results (and methodology) 
from: aVersteegh et al., 2011 (simple combustion), bLeBlanc, 1989 (EDTA, 
acidification), cWatanabe et al., 2009 (acidification), dO’Donnell et al., 2003 
(acidification), eCarmicheal et al., 2008 (acidification), fDreier et al., 2012 
(EDTA), gKovacs et al., 2010 (acidification). Data is compared between 
average values of individual specimens for SBOM and soft tissues (‘specimen 
comparison’), or mean values of SBOM and soft tissues for multiple 
specimens (‘means comparison’). The bold error range shows values without 
one outlier, that showed very large variation between the different soft tissues 
(as explained in the text). 
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Sulphur  

δ34S total SBOM isolated using cation exchange resin values from individual 

specimens (-1.4‰ to +11.9‰) were unrealistically variable, and not compared to 

related soft tissues. Therefore SBOM was also isolated using 10%HCl for a limited 

number of specimens. δ34S total SBOM obtained using HCl (+5.2‰ to +9.5‰, n=5 

specimens of three species) is strongly depleted compared to mean soft tissue 

values of the species (+12.0‰ to +15.2‰), with a mean difference of -6.2‰ ±1.5 

 

2.6  Discussion 

Carbon and nitrogen 

In section 2.4.2 possible reasons for isotopic variation in soft tissues/SBOM are 

listed. The enriched δ13C/ δ15N values of muscle tissue can be explained by high 

protein content, that is generally enriched in 13C compared to lipids.   

Our dataset confirms previous reports of species-specific variation in ΔSBOM-ST of 

bivalves species in for δ13C and δ15N. For M. edulis soft tissues are consistently 

more enriched compared to SBOM, and for R. decussatus and C. edule soft tissue 

are more depleted for both isotope systems, even though all species were isolated 

using cation exchange resin that was shown to cause a 1-2‰ depletion in δ13C 

values. Published values (shown in Fig. 2.11) confirm this positive relationship for 

ΔSBOM-ST of M. edulis in δ15N (LeBlanc, 1989; Versteegh et al., 2011), that is also 

found in the species C. virginica (Kovacs et al., 2010). 

Assumed isotopic similarity of SBOM vs. soft tissues can give a false impression of 

a successful extraction method: bulk resin δ13C total SBOM of M. edulis (Part I, this 

chapter) obtained using cation exchange resin overlaps with the species’ soft tissue 

δ13C range, whilst total SBOM obtained using the other methods appears to be δ13C 

enriched. The ‘depleting effect’ of cation exchange resin therefore causes the off-

set between SBOM and soft tissues for M. edulis to decrease. This effect would 

likely also have been observed for bulk resin δ15N total SBOM in Part I if soft tissue 

ranges were smaller.  

The δ13C/δ15N enrichment of M. edulis SBOM in relation to soft tissue values has 

previously been attributed to the thin shell of this species (Carmichael et al., 2008). 

However, that does not explain the similar results for thick-shelled C. virginica. 

Alternatively, both M. edulis and C. virginica are distinct from the other bivalve 
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species because of the presence of calcite within their shells: M. edulis consists of 

both calcite and aragonite (Lorens and Bender, 1980) and C. virginica is completely 

calcitic (Lombardi et al., 2013). In addition, differences exist in the shell 

ultrastructure in M. edulis and C. virginica compared to the other species, in 

particular the absence of crossed-lamellar layers and the presence of nacre/nacre-

like structures (Bourgoin, 1988; Checa et al., 2007; Lombardi et al., 2013).  

SBOM is responsible for forming shell structure, as well as the CaCO3 polymorph 

(Marin et al., 2012). Although it is still not understood how SBOM works (Marin et 

al., 2016), it is known that different shell structures are related to different SBOM 

compositions, as e.g. Liao et al. (2015) identified multiple unique proteins to 

different shell layers of Mytilus coruscus (nacre, fibrous prism, myostracum). It is 

very likely that these different proteins differ in δ13C and δ15N due to difference in 

synthesis, which would explain the differences ΔSBOM-ST within our data.  

Sulphur 

Total SBOM obtained using 10%HCl showed a strong isotopic depletion of SBOM 

sulphur composition (-6.2‰ ±1.5, n=5 specimens for three species) compared to 

soft tissues. This is in agreement with our observations for bulk SBOM, which show 

that SBOM δ34S values do not closely reflect soft tissue δ34S values.  

2.7  Conclusions 

This study shows that the largest isotopic influence on SBOM δ13C and δ15N 

composition is the species-specific off-set compared to soft tissue values, likely 

caused by differences in SBOM protein composition. Understanding the SBOM-soft 

tissue relationship is therefore critical for identifying nutritional strategies and 

nutritional sources.  

The impact of the shell removal methods is of secondary influence on isotopic 

SBOM values, and generally the isotopic variation between shell removal methods 

is less than the soft tissue ranges of the species. Of the different methods EDTA, 

10%HCl and 50%HCl are most suitable for δ13C analysis of total and intra-

crystalline SBOM. These methods, as well as acetic acid, are also preferred for 

δ15N total SBOM, whilst intra-crystalline SBOM should best be isolated using EDTA 

or acetic acid. EDTA is the preferred method for δ34S SBOM analysis, although the 

relationship between SBOM and soft tissues needs to be further investigated. 

Ultimately the important of such isotopic differences will depend on the research 

question that are investigated. 
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values of shell carbonate. GDA generated Py-GC/MS results, that were interpreted 

by FG and GDA. 

Relevant research questions 

The aim of the research presented in this thesis is to reconstruct the occurrence of 

chemosymbiosis through geological time using stable isotope analysis of shell-

bound organic matter (SBOM), and to investigate the influence of chemosymbiosis 

on the evolution of deep sea fauna and ecosystems. This chapter focusses on 

Research question 3: Can different nutritional strategies be identified in 

SBOM by their distinct isotopic compositions? As well as Research Question 

2: Does the stable isotopic composition of SBOM relate in a predictable way 

to that of soft tissues? for those specimens analysed that include soft tissues in 

addition to shell material. If it is possible to identify biosignatures for 

chemosymbiosis in the modern suite of samples, these can subsequently be 

compared to analytical results from fossil taxa. 

The majority of the results were obtained before the method comparison data 

(presented in Chapter 2) could be analysed, and therefore cation exchange resin 

was used to isolate the SBOM for analysis. The potential isotopic effects of the 

cation exchange resin method are discussed in the Material & Methods section of 

this chapter. For samples with sufficient shell material additional SBOM extractions 

were performed using 10%HCl, and a small part of the data could also be 

compared to a pilot study using EDTA. Because the stable isotope composition of 

SBOM from chemosymbiotic taxa is expected to differ from heterotrophic filter-

feeders, the potential isotopic effects of the three shell removal techniques on 

SBOM could also be different. The comparison between cation exchange resin, 

10%HCl and EDTA provides further insights regarding Research question 1: Is 

the stable isotopic composition of SBOM influenced by chemical extraction 

from shell carbonate?     
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3.1  Introduction 

Chemosymbiosis is an unusual nutritional strategy whereby invertebrates obtain 

nutrition from living in symbiosis with chemoautotrophic bacteria that oxidize 

reduced chemicals to produce energy for carbon fixation. The invertebrate host 

then directly digests the bacteria, or receives nutrition via translocation of nutrients 

(Fisher, 1990). Chemosymbiotic animals are characterized by either the presence 

of methanotrophic bacteria that use methane for energy generation and as a carbon 

source, or by thiotrophic bacteria that utilize hydrogen sulphide. It is also possible 

for both types of bacteria to be present as a dual symbiosis (Dubilier et al., 2008; 

Taylor & Glover, 2010). The identification of these chemosymbiotic strategies in 

macroinvertebrates not only reveals their nutritional sources, but is also indicative of 

an array of physiological and behavioural adaptions. In addition, it provides insights 

into local environmental conditions, as well as about the distribution of 

chemosymbiotic nutrition itself. Unfortunately the existing techniques to determine 

the presence of symbionts require the animal’s soft tissues, and can therefore only 

be performed on animals that are collected alive. This methodological issue 

hampers the identification of chemosymbiosis in dead specimens, as well as in 

subfossil and more ancient taxa. To overcome this limitation, the stable isotope 

composition of shell-bound organic matter (SBOM) is tested as a decay-resistant 

alternative to soft tissue analysis. SBOM consists of a framework of organic 

molecules produced by the mantle, and therefore reflects the stable isotope 

composition of soft tissues (O’Donnell et al., 2003), although the precise 

relationship between soft tissues and SBOM is not well understood and can be 

species-specific (as discussed in Chapter 2). 

The carbon (δ13C), sulphur (δ34S), and nitrogen (δ15N) stable isotope values of 

bivalve and gastropod soft tissues have been very important in revealing nutritional 

strategies (e.g. Childress et al., 1986; McAvoy et al., 2008). Most commonly used 

for the identification of methanotrophic chemosymbiosis is an extremely depleted 

carbon value, because the bacteria incorporate methane with δ13C values of -50 to -

110‰ (Whiticar, 1999), whereas heterotrophic bivalves consume particular organic 

matter (δ13C -22‰ to -18.5‰, Hoefs, 2015). Because thiotrophic bacteria rely on 

depleted hydrogen sulphide (δ34S -10 to -50‰, Bottrell and Raiswell, 2000) as an 

energy and sulphur source, thiotrophic chemosymbiosis can be distinguished from 

bivalves with  heterotrophic lifestyles who derive their sulphur from seawater-

sulphate producing a much more positive range of values (δ34S +15‰ to +20‰, as 

reviewed in Mae et al 2008). The nitrogen sources of seep and vent organisms are 
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not well known (e.g. Dreier et al., 2012; Feng et al., 2015), but many 

chemosymbiotic bivalves have the ability to directly utilize 15N depleted nitrate and 

ammonium (Lee and Childress 1994; Lee et al., 1992), differentiating them from 

animals relying on photosynthetically derived nutrition (δ15N +0‰ to +15‰, 

Michener et al., 2007) 

Published studies using the stable isotope composition of SBOM from 

chemosymbiotic bivalves have analysed a limited number of thiotrophic and 

methanotrophic species originating from shallow reducing environments (Dreier et 

al., 2012 and 2014) or deep sea hydrothermal vents (Mae et al., 2007). Missing 

from this dataset are taxa from cold seep localities, in particular bivalves relying on 

dual symbiosis. Cold seeps represent an important type of chemosynthesis-based 

ecosystem in the deep sea, that differ from hydrothermal vents in the chemical 

composition of seeping fluids, as well as their longevity. Moreover, ancient cold 

seeps have been recognized in the fossil record and contain well-preserved shell 

material (Kiel, 2010; Campbell, 2006), whereas fossil vent specimens are 

notoriously difficult to study (Little et al., 2004).  

To identify the isotopic ranges of each nutritional strategy, 19 species from 9 

different cold seep localities were analysed. To effectively compare isotopic 

variation between environmental settings, additional hydrothermal vent families and 

shallow-water bivalves were included. In addition to the complete SBOM fraction 

(total SBOM), the intra-crystalline SBOM pool from these samples was also 

analysed. This SBOM fraction is present within the minerals and more likely to be 

protected from external diagenesis (Sykes et al., 1995). Therefore intra-crystalline 

SBOM could be very important in the study of fossil samples. In Chapter 2 it was 

shown that intra-crystalline SBOM carries a different stable isotope signal to the 

total SBOM pool for heterotroph species, that does not closely reflect soft tissue 

values. It was suggested that this isotopic off-set is related to differences in the 

chemical composition of the two pools. A similar isotopic and compositional 

difference can be expected for chemosymbiotic taxa. To further investigate 

compositional differences, both SBOM pools and related shell powder were 

analysed using pyrolysis gas chromatography mass spectrometry (pyrolysis 

GC/MS) for a thiotrophic seep vesicomyid.  

Our suite of samples includes several brachiopods species from shallow non-

reducing environments. These animals were analysed because at pre-Cretaceous 

cold seeps dense assemblages of mono-specific brachiopods are common (Sandy, 

2010). This high abundance has led some to suggest a chemosymbiotic lifestyle, 
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even though modern brachiopods are suspension-feeders and generally absent 

from cold seeps Brachiopods also secrete SBOM (Jope, 1967) but the bulk isotope 

signal of total or intra-crystalline SBOM has not previously been determined. In 

future studies the stable isotope values of heterotrophic brachiopods can be 

compared to suspected chemosymbiotic brachiopods from the fossil record. 

Lastly, the extensive suit of samples analysed within this study provides the 

opportunity to investigate whether nutritional strategies can be differentiated using 

the δ13C values of shell carbonate (e.g. Lietard and Pierre, 2009). Whilst most of 

the shell carbonate is derived from seawater DIC, a small proportion of the shell is 

made up of metabolic CO2, that can be reconstructed using δ13C of SBOM and/or 

soft tissues (McConnaughey et al., 2008). Because nutrition only determines a 

minor part of the δ13C signal, shell carbonate is expected to be a much less 

effective proxy for nutritional strategies than SBOM.  

 

Research questions 

The main aim of this study is to investigate whether it is possible to differentiate 

nutritional strategies using the isotopic values of total and/or intra-crystalline SBOM. 

In addition, the possibility of shell carbonate δ13C as a nutritional proxy is further 

investigated. To be able to extrapolate conclusions based on our dataset to all 

modern and ancient ecosystems, the reasons for isotopic variability within and 

between nutritional strategies must be fully understood. Such intra-strategy 

variation could be related to e.g. differences in (isotopic values of) environmental 

sources, or the animal’s physiology and behaviour.    

In addition, a better understanding of the isotopic relationship between soft tissues 

and SBOM is critical to evaluate whether SBOM can differentiate nutritional 

strategies to the same degree as soft tissue values. It can also provide insights into 

the reconstruction of isotopic source values based on SBOM, since isotopic 

fractionation between sources and soft tissues is relatively well understood. 

In summary, this study aims to identify isotopic differences between nutritional 

strategies in i) total SBOM, ii) intra-crystalline SBOM, and to a lesser degree in iii) 

shell carbonate. These observations need to be placed in context to be fully 

understood, and therefore the isotopic dataset obtained in this study will be used to 

answer several inter-connected research questions: 
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 Total SBOM 

o What causes isotopic variability of total SBOM within the same 

nutritional strategy? 

o What is the isotopic relationship between total SBOM and soft 

tissues? 

o Can different nutritional strategies be identified across environments 

by distinct isotopic values of total SBOM? 

 Intra-crystalline SBOM 

o What is the isotopic and compositional relationship between intra-

crystalline SBOM and total SBOM? 

o Can different nutritional strategies be identified across environments 

by distinct isotopic values of intra-crystalline SBOM? 

 Shell carbonate  

o What causes isotopic variability of shell carbonate within the same 

nutritional strategy? 

o Can different nutritional strategies be identified across environments 

by the distinct isotopic values of shell carbonate? 
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3.2  Materials & methods 

3.2.1  Material  

An overview of all the specimens analysed is shown in Table 3.2. In Table 3.1 a 

summary is given of the number of species analysed per nutritional strategy for 

each environmental setting. Whilst cold seep ecosystems have been reported to 

frequently include heterotrophic species (MacAvoy et al., 2008), they appear to not 

be frequently collected and unfortunately very few deep sea heterotrophs were 

available for analysis (Table 3.1).  

 

Table 3.1  Summary of samples by nutritional strategy and environmental setting 

Number of analysed species is given with the number of specimens between 
brackets, total numbers for the nutritional strategies and environmental 
settings are shown in italics. Collated specimens were counted as 1 
specimen. 

 
 
 

 Nutritional strategy (n= )  

Environmental 

setting (n= ) 

M
e

th
a

n
o
tr

o
p
h

ic
 

s
y
m

b
io

n
ts

 

D
u

a
l 
s
y
m

b
io

s
is

 

T
h
io

tr
o

p
h

ic
 

s
y
m

b
io

n
ts

 

H
e

te
ro

tr
o

p
h

y
 

 

Cold seeps 1 (10) 3 (19) 13 (62) 2 (2) 19 (93) 

Hydrothermal 

vents 

  10 (29) 1 (1) 11 (30) 

Shallow reducing   9 (14) 2 (2) 11 (16) 

Shallow                

non-reducing 

   4 (28) 4 (28) 

 1 (10) 3 (19) 32 (105) 9 (33)  

 

 

 



- 56 - 

Figure 3.1 shows a map the different localities, and published isotopic values of 

environmental sources for these localities are reported in Table 3.3, Table 3.4. and 

Table 3.5 for carbon, nitrogen and sulphur, respectively. Table 3.2 includes the 

nutritional strategies of chemosymbiotic species. It should be noted that whilst B. 

heckerae is reported as dual symbiotic, the range of symbiotic bacteria appears to 

be more diverse, and specimens have been reported to contain two types of 

thiotrophic bacteria, one methanotrophic type of bacteria, and a methylotrophic 

phylotype. The metabolism of these symbionts has however not yet been 

investigated (Duperron et al., 2007; Duperron et al., 2013). The analysed material 

includes specimens from several chemosymbiotic bivalve families, that are all 

characterized by different behavioural and physiological strategies. Bathymodiolin 

mussels are epibenthic, and live attached to hard substrates (Duperron, 2010). 

Vesicomyid clams usually live shallowly burrowed in the sediment, whereas 

solemyid, lucinid and thyasirid bivalves are sediment dwellers that can produce long 

burrows to span the oxic-anoxic interface in the seafloor sediment (Stewart and 

Cavanaugh, 2006; Taylor and Glover, 2010). Further information on the ecology of 

the families, and information on shell mineralogy, can be found in Chapter 4. 

 

Table 3.2  Overview of samples 

(p. 56-59) The total number of specimens analysed is shown under “n”, when 
this number is between brackets multiple specimens were collated to obtain 
sufficient shell material for SBOM isolation. For species that are underlined 
soft tissues were also analysed. 

species n nutritional 

strategy 

locality storage 

Cold seeps 

Bathymodiolus 

childressi 

10 methanotrophic 

symbionts 

Gulf of Mexico, 

Green Canyon,  

GC234, GC233,  

GC185  

air-dried 

Calyptogena 

ponderosa 

3 thiotrophic 

symbionts 

Gulf of Mexico, 

Green Canyon, 

GC272  

air-dried 

Vesicomya 

cordata 

3 thiotrophic 

symbionts 

Gulf of Mexico, 

Green Canyon, 

GC272  

air-dried                                       
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Bathymodiolus 

heckerae (adult) 

6 dual symbiosis Gulf of Mexico: 

Florida 

Escarpment  

air-dried 

Bathymodiolus 

heckerae 

(juvenile) 

5 dual symbiosis Gulf of Mexico: 

Florida 

Escarpment 

ethanol 

Vesicomya cf. 

kaikoi 

(4) thiotrophic 

symbionts 

Gulf of Mexico: 

Florida 

Escarpment 

ethanol 

Paralepetopsis 

floridensis 

(12) heterotrophy Gulf of Mexico:  

Florida 

Escarpment 

ethanol 

Bathymodiolus 

heckerae 

6 dual symbiosis Blake Ridge Diapir air-dried 

Vesicomya cf. 

venusta 

5 thiotrophic 

symbionts 

Blake Ridge Diapir ethanol 

Bathymodiolus 

sp. 

3 unknown /      

dual symbiosis 

Barbados 

accretionary prism 

air-dried 

“Calyptogena 

valvidae” 

3 thiotrophic 

symbionts 

Barbados 

accretionary prism 

air-dried 

Calyptogena 

kilmeri 

5 thiotrophic 

symbionts 

Extrovert Cliffs, 

Monterey Bay 

ethanol and/or 

formalin 

Calyptogena 

starobogatovi 

5 thiotrophic 

symbionts 

Oregon 

Subduction zone 

ethanol and/or 

formalin 

Calyptogena 

packardana 

5 thiotrophic 

symbionts 

Monterey Canyon, 

Monterey Bay 

ethanol and/or 

formalin 

Calyptogena 

pacifica 

5 thiotrophic 

symbionts 

Guaymas Basin, 

Mexico 

ethanol and/or 

formalin 

Calyptogena 

stearnsii 

5 thiotrophic 

symbionts 

Monterey Canyon, 

Monterey Bay 

ethanol and/or 

formalin 

Ectenogena 

elongata 

(PSC44) 

5 thiotrophic 

symbionts 

Fossil Hill, 

Southern 

California 

ethanol and/or 

formalin 

Ectenogena 

elongata                      

(other push 

cores) 

9 thiotrophic 

symbionts 

Fossil Hill, 

Southern 

California 

air-dried 

Ectenogena 

elongata (large) 

3 thiotrophic 

symbionts 

Fossil Hill, 

Southern 

California 

air-dried 

(broken) 

Ectenogena 

elongata 

3 thiotrophic 

symbionts 

San Diego 

Through, Southern 

California 

air-dried 
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Solemyidae sp. 1 thiotrophic 

symbionts 

San Diego Trough,  

Southern 

California 

air-dried 

Lucinidae sp. 1 thiotrophic 

symbionts 

San Diego Trough,  

Southern 

California 

air-dried 

Delectopecten 

sp.  

1 thiotrophic 

symbionts 

San Diego Trough,  

Southern 

California 

ethanol and/or 

formalin 

Hydrothermal vent localities 

Bathyaustriella 

thionipta 

5 thiotrophic 

symbionts 

Macauley Cone, 

Kermadec Ridge, 

NZ 

air-dried 

Alvinoconcho 

hessleri 

3 thiotrophic 

symbionts 

South Su,       

Manus Basin 

ethanol and/or 

formalin 

Ifremeria nautilei 3 chemoautotrophi

c symbionts 

South Su,     

Manus Basin 

ethanol and/or 

formalin 

Bathymodiolus 

manusensis 

3 thiotrophic 

symbionts 

South Su,      

Manus Basin 

ethanol and/or 

formalin 

Lepetodrilus 

elevatus 

(7) grazing / 

suspension 

feeding 

East Wall,         

East Pacific Rise 

ethanol and/or 

formalin 

Bathymodiolus 

thermophilus 

2 thiotrophic 

symbionts 

East Wall,           

East Pacific Rise 

 

Bathymodiolus 

thermophilus 

2 thiotrophic 

symbionts 

Buckfield,          

East Pacific Rise 

 

Peltospiroidea 

sp. 

 

(3) unknown / 

thiotrophic 

symbionts 

East Scotia Ridge frozen 

Vesicomyidae 

sp.  

3 thiotrophic 

symbionts 

East Scotia Ridge air-dried 

Bathymodiolus 

brevior 

3 thiotrophic 

symbionts 

Kilo Moana,       

Lau Basin 

ethanol and/or 

formalin 

Bathymodiolus 

brevior 

3 thiotrophic 

symbionts 

Tow Cam,         

Lau Basin 

ethanol and/or 

formalin 

Shallow reducing environments 

Codakia 

oricularis 

2 thiotrophic 

symbionts 

Little Duck Keys, 

Florida Keys 

(seagrass) 

ethanol and/or 

formalin 
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Pegophysema 

philippiana 

2 thiotrophic 

symbionts 

Magellan Bay, 

Mactan Island 

(unknown) 

ethanol and/or 

formalin 

Ctena orbiculata 

 

2 thiotrophic 

symbionts 

Ramrod Key, 

Florida Keys 

(seagrass) 

ethanol and/or 

formalin 

Loripes lucinalis 1 thiotrophic 

symbionts 

Houmt Souk, 

Djerba, Tunisia 

(seagrass/sand) 

ethanol and/or 

formalin 

Ctena 

imbricatula 

2 thiotrophic 

symbionts 

Bocas del Toro, 

Panama 

(mangrove) 

 

Lucina adansoni 2 thiotrophic 

symbionts 

Sal Rei Village, 

Boavista Island, 

Cape Verde 

Islands (sand) 

ethanol and/or 

formalin 

Myrtea spinifera (2) thiotrophic 

symbionts 

Skogsvågen, 

Norway (fjord 

ecosystem) 

air-dried 

Myrtea spinifera (9) thiotrophic 

symbionts 

Gåsevik, Sweden 

(fjord ecosystem) 

ethanol and/or 

formalin 

Thyasira sarsi (7) thiotrophic 

symbionts 

Gåsevik, Sweden 

(fjord ecosystem) 

ethanol and/or 

formalin 

Abra alba  (16) deposit feeder Gåsevik, Sweden 

(fjord ecosystem) 

ethanol and/or 

formalin 

Ennucula tenuis  
(6) deposit feeder Gåsevik, Sweden 

(fjord ecosystem) 

ethanol and/or 

formalin 

Shallow non-reducing environments 

Terebratella 

sanguinea 

5 filter-feeding Big Hope Bay, 

New Zealand 

air-dried 

Terebratella 

sanguinea 

7 filter-feeding Tricky Cove, New 

Zealand                         

(fjord ecosystem) 

air-dried 

Notosaria 

nigricans  

5 filter-feeding Tricky Cove, New 

Zealand 

(fjord ecosystem) 

air-dried 

Liothyrella 

neozelanica 

7 filter-feeding Tricky Cove, New 

Zealand 

(fjord ecosystem) 

air-dried 

Liothyrella uva 4 filter-feeding Tricky Cove, New 

Zealand  

(fjord ecosystem) 

air-dried 



- 60 - 

Figure 3.1  Locality map of samples analysed in this study, including the location of 
mid-ocean ridges 

Cold seeps (black): (A) Gulf of Mexico, (B) Blake Ridge, (C) Barbados 

accretory prism, (D) Monterey Bay, (E) Oregon Subduction Zone, (F) 

Guaymas Basin, (G) Southern California localities, Hydrothermal vents (dark 

grey): (H) Kermadec Ridge, (I) Manus Basin, (J) East Pacific Rise localities, 

(K) East Scotia Ridge, (L), Lau Basin localities 

Shallow reducing environments (medium grey): (M) Florida Keys, US, (N) 

Mactan Island, Philippines, (O) Houmt Souk, Tunesia, (P) Bocas del Toro, 

Panama, (Q) Boavista Island, Cape Verde Islands, (R)  Skogsvågen, Norway, 

(S) Gåsevik, Sweden 

Shallow non-reducing environments (light grey): (T) New Zealand localities.  

Figure modified from http://pubs.usgs.gov/gip/dynamic/baseball.html, 

accessed September 1 2016. 

 

 

 

 

 

 

 

 

 

      

 

 

 

A B 

C 

D 
E 

F G 

H 

I 

J 

K 

L 

M 

N 

O 

P 
Q 

R 
S 

T 

http://pubs.usgs.gov/gip/dynamic/baseball.html


- 61 - 

Table 3.3  Published carbon stable isotope values (δ13C in ‰) of environmental 
sources at sample localities 

Abbreviations: DIC (dissolved inorganic carbon), POM (particulate organic 
matter), SOM (sedimentary organic matter), SPOM (suspended particulate 
organic matter). References: 1 Rau et al. (1982), 2 Hoefs (2015), 3 Anderson & 
Arthur (1983), 4 Whiticar (1999), 5 Aharon et al. (1991), 6 Goni et al. (1998), 7 
Wells & Rooker (2009), 8 Milkov (2005), 9 Feng et al. (2009), 10 Joye et al. 
(2004), 11 Sassen et al. (1999), 12 Sassen et al. (2004), 13 Hu et al. (2010), 14 
Pohlman et al. (2005), 15 Sassen et al. (2009), 16 Paull et al. (1992), 17 Martens 
et al. (1991), 18 Paull et al. (1992), and Paull et al. (2000), 19 Martin et al. 
(2004), 20 Reid et al. (2013), 21 De Ronde et al. (2007), 22 Baker et al. (2015), 
23 and Freeman and Thacker (2011), 24 Cornelisen et al. (2007), 25 McLeod & 
Wing (2007), 26 Demopoulos et al. (2010). 

Locality Seawater DIC Pore water DIC POM Methane 

Surface     
seawater 

+1 to +2 1  -22 to -18.5 
2 

 

Deep sea +0 3    

Cold seeps 

General +0 3 -45 to +18 24  -110 to -20 4 

Gulf of Mexico +1 5  -20 6 

-21.5 7 

-74.7 to – 42.2 8 

Green Canyon, 
GOM 

+0.6 9  -19.8 ±0.7 
(-23.3 to        
-15.9) 26 

 

GC185, GOM   -25 10 -46.0, -44.1 11 

-45.4 12 

GC233, GOM -0.3 12 -24.8 to -47.1 12                    
(up to 17cm) 

-25 10 -65.5, -64.3 11 

GC234, GOM  -49.3 13  -49.4 14 

-48.7 15 

Florida 
Escarpment, GOM 

-0.4 to +0.4                  
(mean -0.1) 16 

-17.3 to -48.2 16 -67.9 to -
25.3 (SOM) 
16 

-94 to -61 17 

Blake Ridge  

 
-31.4 to -8.9 18  -72.1 to -62.5 

(mean -68.4) 18 

Extrovert Cliffs -3 19                              
(2 cm depth) 

up to -9 19   

Hydrothermal vents 

East Scotia Ridge +0.1 ±0.1 20    

Macauley Cone, 
Kermadec Ridge 

+1.0 21    

Shallow reducing environments 

Bocas del Toro +0 22  -23 23  



- 62 - 

Table 3.4  Published nitrogen and sulphur stable isotope values (δ15N and δ34S in 
‰) of environmental sources at sample localities 

References: 1 Cline and Kaplan (1975), 2 Fry, personal comments in 
Riekenberg, 2012 3 Rooker et al. (2006) ; Wells & Rooker (2009); 4 Peterson 
and Fry (1987), 5 Michener et. (2007), 6 Demopoulos et al., (2010) 

 

Locality Nitrate – 
bottom 
water 

Nitrate - 
pore 
water 

Ammonium Particulate 
organic 
matter 

General   -20 to +10 4  

Seawater +5 to +191   -2 to +11 4 

Deep sea +4 to +6 4   > +6 5 

Cold seeps 

Gulf of Mexico  +5 to +7 2   +2 to +8 3 

Green Canyon    +0.3 to +9.6 
(mean 3.5 
±0.7) 6 

 

References: 1 Canfield (2001), 2 Rees et al. (1978), 3 Aharon & Fu (2003), 4 
Formolo and Lyons (2013), 6 Petersen & Fry, 7 Shanks (2001). 

  

Locality Sulphate – 
Bottom 
water 

Sulphate 
pore 
water 

Sulphide - 
bottom 
water 

Sulphide – 
pore water 

POM 

Seawater +20.3 2 

  

 depletion  of -30 to -70 
w.r.t. sulphate1  

+17 to 
+21 5 

Cold seeps  

Gulf of Mexico +20.3 3     

GC233, GOM 4 +23.4 +25.5 to 
+26.3 

-20.3 -20.8 to -
20.0 

 

GC234, GOM 4 +20.1 to 
+36.8 

+19.9 to 
+54.1 

-0.4 to +8.0 +2.1 to 
+19.7 

 

Blake Ridge 6 +20.2 up to 
+21.3 

 -18.8 to 1.6 
(mean -1.3 
±1.4) 

 

Hydrothermal vents 

General   -5 to +8 7  
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3.2.2 Methods 

Methods used in this study are described in Chapter 2, and include: preparation of 

the shell material/soft tissues, stable isotope analysis and elemental concentration, 

and SBOM isolation using cation exchange resin, 10%HCl, or EDTA. Figure 3.4 

shows which SBOM isolation method was used on which samples, although the 

large majority of the samples SBOM was isolated using cation exchange resin. The 

methodology for carbon stable isotope analysis of shell carbonate is given in 

Chapter 4. To reconstruct the sulphate δ34S composition of local sources, the 

analysis of carbonate-associated sulphate using cation exchange resin was 

attempted but unsuccessful due to the presence of residual resin (see: Chapter 2). 

 

3.2.2.1  Pyrolysis GC/MS  

Pyrolysis GC/MS analysis was performed on total SBOM and intra-crystalline 

SBOM from Calyptogena ponderosa (Gulf of Mexico) obtained using cation 

exchange resin. In addition shell powder from this species was analysed. The 

analyses were performed by CDS Analytical (Oxford, PA), and no further 

methodological details are available at the moment. 

 

3.2.2.2  Isotopic effects of SBOM isolation 

The shell removal technique using ion exchange resin was assumed to be superior 

to other shell removal techniques. A later method comparison test however showed 

that the resin could potentially influence the original stable isotope signature of 

SBOM (Chapter 2). For species with sufficient remaining shell material, SBOM was 

therefore also isolated using 10%HCl. In addition, SBOM isolated using EDTA is 

available for two cold seep species. This section discusses if, and how, the different 

methods could influence the stable isotope values of SBOM, and whether 

observations made for SBOM from heterotrophic filter-feeders (total SBOM δ13C: -

21‰ to -16‰, δ15N: +4‰ to +14‰, δ34S: +8‰ to +16‰) also apply to the more 

depleted SBOM values of chemosymbiotic animals.  

To be able to directly compare different methods, individual specimens were used 

of which SBOM was isolated using multiple methods (samples analysed by multiple 

methods can be found in Fig. 3.4). The isotopic off-set of 10%HCl and EDTA 

obtained SBOM compared to cation exchange resin SBOM is shown in Fig. 3.2.  
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Figure 3.2  Method comparison of the stable isotope composition (δ13C, δ15N) of 
SBOM from individual specimens 

The isotopic differences between the methods are shown as an offset (Δ) of 
10%HCl/EDTA values versus cation exchange results (zero line). If multiple 
specimens from the same species were analysed, the offset is shown as a 
mean with standard deviation (vertical bar) 

 

  

 

Isotopic effects on δ13C and δ15N 

The effect of cation exchange resin on the δ13C composition of chemosymbiotic 

species is in agreement with the conclusions from Chapter 2, that show a slight 

depletion of 1-2‰ compared to the other methods, presumably caused by the 

incorporation of residual resin components with a value of δ13C -29.2‰. In samples 

from this study (Fig. 3.2) the difference between 10%HCl and ion exchange resin 

values is non-existent for total SBOM values between δ13C -35‰ to -30‰, 

presumably because these values are more similar to the resin value than those of 

heterotrophic filter feeders (δ13C -21‰ to -16‰). For SBOM δ13C -51.9‰ the 

enrichment (> 4‰) compared to 10%HCL/EDTA obtained samples is suggested to 

be caused by the residual resin. Particularly because the 10%HCl and EDTA 

samples are very similar (δ13C +0.3‰ ±0.4, n=2). The isotopic effect of cation 

exchange resin on SBOM is unlikely to affect this study, because of the large 

isotopic differences in δ13C between the nutritional strategies. Particularly because 

very depleted carbon values are presumably most strongly affected by resin, and 

that range of values will still be distinctly different from other nutritional strategies.  
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The depletion of EDTA values compared to resin/10%HCl for the δ13C -32.7‰ 

sample could point to residual EDTA (δ13C -39.0‰), although this effect was not 

found Chapter 2.  

In Chapter 2 no statistical differences in δ15N values were found between cation 

exchange resin obtained total SBOM samples and other shell removal techniques, 

and δ15N variation was ∼1‰. The same observations are made for this study (Fig. 

3.2). The isotopic off-set between cation exchange resin samples and 

10%HCL/EDTA is either < ±2‰ or highly variable. The use of cation exchange 

resin is therefore not expected to cause a consistent bias.  

Very limited data is available for methodological differences in intra-crystalline 

SBOM for both δ13C and δ15N, but the possible isotopic effects of cation exchange 

resin appear to be variable, which was also observed in Chapter 2. In this study 

cation exchange resin as well as 10%HCl have often been used to isolate SBOM 

for different specimens of the same species, and combining both methods per 

species will limit potential isotopic effects of either method.  

                       

Isotopic effects on δ34S  

In Chapter 2 it was shown that SBOM isolated using cation exchange resin is 

influenced by a sulphur component from cation exchange resin, causing SBOM 

values to become more similar to the resin value (δ34S -1.5‰) with increasing 

elemental concentrations of sulphur (%S). However, because the source of 

contamination is known it should still be possible to identify large isotopic difference 

between samples, until the original SBOM δ34S signature is completely replaced 

with the resin value. Hypothetically, bivalves relying on seawater sulphate (δ34S 

+20.3‰) should have signatures more positive than δ34S -1.5‰, and bivalve using 

sulphide (δ34S depleted up to -50‰) should have values more negative than δ34S -

1.5‰. To determine the thresholds at which δ34S values and %S concentrations 

from these different sulphur sources can still be distinguished (and investigate the 

isotopic variation of cation exchange resin), total SBOM samples with known δ34S 

values for soft tissues were divided into three distinct categories: 1) 10‰ to 20‰, 2) 

-10‰ to 0‰, and 3) -25‰ to -15‰, shown in Fig. 3.3. The data displayed in Figure 

3.3 confirms the linear relationship between δ34S and %S of total SBOM for the 

category 10-20‰ (R-squared: 0.46), but this is not evident for the other two 

categories (R-squared: 0.05 and 0.02). Based on Figure 3.3 it is not possible to 

distinguish intermediate values (-10‰ to 0‰) from the enriched (10‰ to 20‰) and 

depleted (-15‰ to -25‰) categories, because of overlap between the three 
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categories. Nutritional strategies with positive δ34S values (relying on seawater 

sulphate) can only be identified with certainty for values above +3‰ (as 

intermediate negative values also display positive SBOM results) and represent soft 

tissues values up to 20‰. Nutritional strategies with negative sulphur values for soft 

tissues, can be identified below -3‰ (no more overlap with positive categories), 

more depleted values δ34S based on hydrogen sulphide can be identified using 

resin total SBOM values below -5‰, and represent soft tissue values depleted up to 

-25‰. It is advised not to use SBOM samples with > 5% sulphur, as these show 

extremely depleted values for the 10-20 category. (These depleted values show 

that the value of resin can be lower than -1.5‰, although generally high 

concentration samples are around the -1.5‰ value). It was noted that smaller 

specimens often have higher %S, possibly because < 2 grams of shell material was 

used which increase the ratio of SBOM:resin. In general, Fig. 3.3 shows a large 

enrichment of the -25 to -15 and -10 to 0 categories, as well as a large depletion of 

the +10 to +20 categories for all total SBOM samples, seemingly unrelated to %S. 

This suggests that δ34S of isolated SBOM does not closely reflect δ34S of soft tissue 

values, which was also concluded in Chapter 2 and is further discussed in section 

3.4.2.2.  

In Figure 3.3 the δ34S categories based on soft tissue values are compared for 

intra-crystalline SBOM, according to %S This graph show that it is not possible to 

distinguish any of the three categories for the majority of the samples. Only a very 

broad distinction can hypothetically be made between negative (< -2‰) and 

positive (> 2‰) δ34S values of SBOM to indicate soft tissues values, for samples 

with %S lower than 5%. Likely the impact of resin is stronger on intra-crystalline 

SBOM because of the small amounts of SBOM, explaining why most samples fall 

around the resin values of -1.5‰ and many have high %S values.  
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Figure 3.3  Sulphur stable isotope comparison between soft tissues versus total 
SBOM and intra-crystalline SBOM for individual specimens 

SBOM δ34S values (isolated using cation exchange resin) are separated into 
three categories according to the δ34S composition of associated soft tissue 
(ST) values. The δ34S soft tissue range of the each category is shown as a 
box. The SBOM values are displayed according to their elemental 
concentration of sulphur (%S) The value of resin (δ34S -1.5‰) is displayed as 
a dashed line. The plot shows that above 5%S in total SBOM the δ34S value 
is dominated by the isotopic signal of cation exchange resin, below that 
concentration widely different sulphur sources can be identified.  
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A comparison between the δ34S total SBOM obtained using 10%HCl and EDTA 

from the same specimens of Bathymodiolus childressi and Calyptogena ponderosa 

is shown in Table 3.6. It should be noted that several very enriched EDTA δ34S 

values (shown in Fig. 3.4) were excluded from further data analysis. These 

subsamples were noted to have a lighter colour than the majority of the total SBOM, 

and likely to represent intra-crystalline SBOM. For positive δ34S total SBOM (B. 

childressi) shell removal using 10%HCl is accompanied by a large isotopic 

depletion: total SBOM obtained using EDTA is significantly enriched (+7.4‰ and 

+11.7‰) and more similar to published soft tissue values. This suggests that 

10%HCl is removing a sulphur compound with enriched δ34S values, which was 

also observed for several SBOM samples in Chapter 2. The higher elemental 

sulphur concentration in the 10%HCl samples in this study suggests that a sulphur 

poor compound (relative to the bulk %S) is removed, increasing the %S of the 

sample. The EDTA and 10%HCl methods report similar δ34S values for the 

depleted total SBOM samples of C. ponderosa, and the difference in elemental 

concentration is smaller than for B. childressi.  

 

Table 3.5  Method comparison of the sulphur stable isotope composition (δ34S) total 
SBOM from individual specimens, isolated using cation exchange resin, 
10%HCl and EDTA  

*Soft tissue values from previous studies, not directly measured from the 
specific samples analysed are obtained from Kennicutt II et al. (1992), 
Riekenberg et al., 2016, and Dattagupta et al. (2004). 

 

Species   Soft tissues             RESIN HCl EDTA ΔHCl-EDTA 

B. childressi 

(GC233) 

12.3*                 

(mean, n=9) 

 -1.1 to 13.9* 

(10.3± 2.9, 

n=128)   

+1.0‰ 

(3.9%) 

-3.2‰ 

(1.7%) 

+8.4‰ 

(0.7%) 

-11.7‰               

(-59%) 

+2.0‰        

(2.7%) 

+6.5‰            

(2.0%) 

+13.9‰          

(0.5%) 

-7.4‰                 

(-75%) 

C. ponderosa 

(GC272) 

-10 to +10* 

(n=7) 

-4.2‰   

(4.4%) 

-6.0‰      

(2.4%) 

-5.6‰       

(1.6%) 

-0.4‰          

(-33%) 

-1.0‰       

(4.7%) 

-6.0‰           

(1.6%) 

-4.6‰           

(1.4%) 

-1.4‰             

(-12.5%) 
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Possible effects of liquid preservation and freeze drying 

Several of the analysed specimens were preserved in liquid (ethanol, formalin), 

which theoretically could have an isotopic effect due to incorporation of lighter 

carbon of the preservatives or through extraction of organic compounds from 

tissues (Hobson et al., 1997). Reports about isotopic shifts in the tissues of bivalves 

and gastropods due to liquid preservation range from no observed systematic effect 

(Sarakinos et al, 2002) or small and predictable (DeLong and Thorp, 2009), to 

around or > 1 per mille difference for both carbon and nitrogen (e.g. Lui et al., 

2013), particularly when formalin is used (e.g. Sarakinos et al., 2002; Carabel et al., 

2009; Lui et al., 2013) The duration of liquid preservation generally does not seem 

to be of influence, as alterations happen in the early phase (Lui et al., 2013), 

possibly because an equilibrium is reached (Kaehler and Pakhomov, 2001). The 

extent of the shift appears to be species-specific (Lui et al., 2013; Kaehler & 

Pakhomov, 2001), and is unfortunately not known for our seep- and vent 

specimens. However, due to the large differences in carbon and nitrogen sources in 

deep-sea ecosystems, the relatively small influence of liquid preservation is unlikely 

to confound interpretations. Similarly, the effect of freezing (as part of the freeze-

drying process, or long-term preservation) of soft tissues was reported by Lui et al. 

(2013) to be less than 1 per mille enrichment for both carbon and nitrogen.  

Only one study compares SBOM obtained from dry-stored shells, compared to 

those preserved in ethanol for over 70 years. Versteegh et al. (2011) found a 

nitrogen depletion of -5.9 (+/- 2.2) per mille in the SBOM of ethanol-preserved 

shells, the effects of short-term storage are however not known.  
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3.3  Results 

SBOM was successfully obtained from all species. SBOM obtained from 

Bathymodiolus species had a dark brown colour, whereas the SBOM from other 

specimens was generally light brown. Notable red and dark grey coloured SBOM 

was observed for the brachiopod genera Terebratella and Notosaria, respectively. 

The colours are similar to the shell colour of these brachiopods. The results from 

stable isotope analysis of SBOM, soft tissues and shell carbonate are shown in Fig. 

3.4, and the isotopic relationships between SBOM and soft tissues are given in 

Table 3.6. 

The stable isotope results are presented in the following order: isotopic system 

(δ13C, δ15N, δ32S), subdivided by environmental setting (cold seeps, hydrothermal 

vents, shallow reducing environments, shallow non-reducing environments), of 

which the isotopic data is discussed per nutritional strategy (methanotrophy, dual 

symbiosis, thiotrophy and/or heterotrophy), and furthermore by the different isotopic 

pools that were analysed (total SBOM, intra-crystalline SBOM, soft tissues, and/or 

shell carbonate). By presenting the data this way the analysed isotopic pools can 

be compared between nutritional strategies of the same locality, whereas the 

discussion of the results will mainly focus on broad differences between 

environmental settings.  

For statistical comparisons the mean value of multiple isotopic measurements of 

SBOM/soft tissues were used. The mean soft tissue value was calculated using the 

mean values of the various soft tissues of individual specimens. If SBOM was 

obtained for individual specimens using multiple different methods, the reported 

isotopic data is a mean value of the results. Where δ34S values of SBOM obtained 

using resin are used, this will be specifically mentioned.  
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Figure 3.4  δ13C, δ15N and δ34S values of SBOM, soft tissues and shell carbonate 
from analysed specimens  

Results are presented per environmental setting: 

A. Cold seep localities, samples include Bathymodiolus species 

B. Cold seep localities, samples exclude Bathymodiolus species 

C. Hydrothermal vent localities 

D. Shallow reducing environments 

E. Shallow non-reducing environments (brachiopod species) 

Overview of the species and localities is given in Table 3.1 and Fig. 3.1, locality 

names are indicated in the plots were possible or given as abbreviations next to the 

species name. Symbol key is presented below, and each column represents an 

individual specimen (collated specimens are indicated in Table 3.1). δ34S values 

obtained from SBOM samples isolated using cation exchange resin are not shown 

in the plots, but are reported in the text. 

Local methane values are given in Table 3.2., references for soft tissue data for the 

Gulf of Mexico specimens: Dattagupta et al., 2004; Macavoy et al., 2008; Becker et 

al., 2010; Riekenberg et al., 2016.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

total SBOM (RESIN) total SBOM (10%HCl)

total SBOM (EDTA) collated SBOM

intra-crystalline SBOM (RESIN) intra-crystalline SBOM (10%HCl)

soft tissue shell carbonate

. .

chemosymbiotic Mytilidae thiotrophic gastropod

heterotrophic mollusc heterotrophic brachiopod

thiotrophic Vesicomyidae/Lucinidae/Solemyidae/Thyasiridae
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Figure 3.4A  Cold seep localities, samples include Bathymodiolus species 
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Figure 3.4B  Cold seep localities, samples exclude Bathymodiolus species 
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Figure 3.4C  Hydrothermal vent localities 
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Figure 3.4D  Shallow reducing environments 
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Figure 3.4E  Shallow non-reducing environments 
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Table 3.6  Isotopic relationship between SBOM and various soft tissues 

Individual SBOM values (δ13C, δ15N and δ34S) are compared to related soft 
tissues, a positive value indicates that the SBOM is more enriched than the soft 
tissue. In addition, the gills and rest are compared to the other soft tissues 
(mantle, foot, and/or muscle), and the order of depletion amongst the soft 
tissues is given (from the most enriched to the more depleted value: g=gills, 
ma=mantle, f=foot, mu=muscle, r=rest). The mean soft tissue value of each 
specimen (mean value of all available soft tissue measurements) is also given, 
as well as the mean difference between SBOM and the mean soft tissue value 
between multiple specimens of the same species. 
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order of 

depletion 

COLD SEEPS 

B. heckerae, juvenile (Florida Escarpment) 

13C 
-35.6 -65.3 +30.1 +29.6 +28.9 +30.3  -0.5  f-ma-g-mu 

-42.9 -66.0 +22.3 +23.7 +22.5 +24.0  +1.1  g-f-ma-mu 

-30.2 -66.9 +33.5 +38.8 +36.9 +37.9  +4.5  g-f-mu-ma 

-30.2 -67.5 +38.2 +36.9 +36.9 +37.3  -1.1  f-g/ma-mu 

-37.7 -65.9 +23.3 +30.5 +30.2 +28.5  +6.5  g-mu-f-ma 

Δ+31.5 ±6.0 ◄  mean SBOM-soft tissue difference 

15N 
 

-8.5 

     

-1.4 

 

ma-g 

-7.5 mu-f 

-10.4 f-ma 

34S 

 

 

6.8 

     

-0.6 

 

ma-g 

6.8 f-mu 

7.3 f-ma 

V. venusta (Blake Ridge) 

13C 
-37.0 -37.2 +0.2 +0.2 +0.4 -0.1 +1.0 -0.0 -0.9 mu-ma/g-f-r 

-31.1 -37.2 +7.2 +7.2 +6.9 +5.6 +5.8 -1.4 -0.1 ma-mu-r-f-g 

-33.0 -36.2 +4.4 +4.4 +4.2 +1.1 +4.8 -1.5 -1.9 mu-ma-f-g-r 

-32.1 -36.2 +4.2 +4.2 +4.3 +3.6 +5.5 -0.2 -1.4 mu-ma/g-f-r 

-30.2 -37.6 +8.0 +6.0 +8.0 +8.0 +7.5 -0.8 1.3 r-ma-mu-f/g 

Δ +4.2 ±2.8  

15N 
 0.5      -1.6 +0.6 r-f-ma-g 

 4.8       +0.1 f-r-ma 

 3.2      -0,6 -0,7 f-r-g 

 2.0      -2,4 +1,4 r-f-ma-g 

 2.0       +0,2 r/f, ma 
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order of 

depletion 

34S 

 

 -6.0      -4,2 -2,6 ma-r-g 

 -8.2       -1,7 ma-f-r 

 -9.7      -0,4 -2,1 f-g-r 

 -7.3       -4,9 ma-r 

 -8.4       -0,5 f-ma-r 

C. pacifica (Guaymas Basin) 

13C 
 -35,4      +0.5 +0.8 r-g-ma-f/mu 

-32.8 -35,1 +2.2 +2.3 +2.6 +2.4 +1.9 +0.3 +0.6 r-g-ma-mu-f 

-29.1 -35,6 +6.5 +6.4 +6.7 +7.0 +5.9 +0.2 +0.7 r-ma-g-f-mu 

-32.6 -35,4 +2.1 +2.8 +3.2 +3.4 +2.4 +1.0 +0.8 g-r-ma-f-mu 

-33.8 -35,4 +1.9 +1.4 +1.8 +1.4 +1.2 -0.4 +0.4 r-ma/mu-f-g 

Δ +2.3 ±0.6  

15N 
 1,6      -5.3  mu-g 

2.3 1,5 +3.5   -1.9  -5.4  mu-g 

34S -3.3 -1.4 -4.2   +0.2  +4.2  g-mu 

C. packardana  

13C 

 

-34.4 -35.4 +1.0   +0.8  -0.1  mu-g 

-35.1 -35.2 +0.1         

-32.1 -34.6    +2.4     

Δ +1.1 ±1.2  

15N 9.0 8.0 -2.4   -0.4  -2.9  mu-g 

C. starobogatovi 

13C 
-33.8 -36.8 +2.9   +3.1  +0.2  g-mu 

 -37.1      +0.4  g-mu 

15N 
2.2 -0.3 +3.2   +0.7  -3.6  mu-g 

 1.2      -0.3  mu-g 

34S 
 -24.3 

-23.9 

     +0.6 

+1.3 

 g-mu 

g-mu 

C. kilmeri  

13C 
-34.7 

-31.7 

-35.7 

-36.1 

+0.3 

+3.7 

  +1.8  +1.4  g-mu 

  +5.1  +1.4  g-mu 

Δ +2.7 ±2.5  

15N 
-4.2 -7.8 

-5.6 

+5.1   +2.1  -3.0  mu-g 

     -3.4  mu-g 
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C. stearnsii 

13C 
-31.5 -35.5 +4.4   -3.7  -0.6  mu-g 

  -36.1      -0.3  mu-g 

15N 
6.9 4.8 +3.2   +1.1  -2.1  mu-g 

7.4 4.9 +3.6   +1.5  -2.2  mu-g 

Δ +2.3 ±0.3  

34S 
 4.6      -1.1   

 3.1      -0.2   

E. elongata (PSC44, Fossil Hill) 

13C 
-28.2 -35.9 +7.9 +7.5    -0.4  mu-g 

-31.4 -32.7 +4.9 -2.3    -7.2  mu-g 

Δ +2.3 ±0.3  

15N 
 0.1      -1.2  mu-g 

 -0.3      -1.6  mu-g 

HYDROTHERMAL VENTS 

B. thionipta 

13C 

 

-26.1 -28.2 +2.9 +1.8 +1.7 +2.1 +1.7 -1.0 +0.1 f/ma-r/mu-g 

-26.7 -27.0 +1.1 +0.0 +0.0 +0.1 +0.1 -1.1 -0.1 f-ma/r-mu-g 

Δ +1.1 ±1.3  

15N 
6.1 7.4 -1.2 -0.3 -1.4 -0.5 -0.2 -0.8 -0.9 mu-ma-f-g-r 

6.5 6.8 -0.3 -0.9 -1.1 -1.4 -0.7 -0.8 -0.4 mu-f-ma-r-g 

Δ -0.8 ±0.1  

34S 
 -12.6      +2.0 +8.7 r-ma-g-f-mu 

 -6.2      +11.9 +5.9 g-ma-r-f-mu 

A. hessleri (South Su) 

13C 

 

-13.2 -8.4 -4.8 -4.8 -5.4  -4.1 -0.3 -1.1 f-g/m-r 

-10.0 -8.7 -1.6 -1.2 -1.5  -0.8 +0.2 -0.5 f/g-m-r 

 -8.1      -0.7 -0.5 m-f-r-g 

Δ -3.0 ±2.5  

I. hessleri (South Su) 

13C 

 

-26.5 -27.9 +2.3 +1.2 +0.5  +1.7 -1.4 -0.8 f-ma-r-g 

-26.0 -27.7 +2.3 +1.0 +1.7  +1.9 -0.9 -0.6 ma-f-r-g 

-26.1 -28.2 +2.4 +2.4 +0.9  +2.5 -0.8 -0.9 f-ma/g-r 

Δ +1.7 ±0.4  
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order of 

depletion 

15N 5.2 4.8 +0.4        

34S -5.4 -7.1 +1.7        

B. manusensis 

13C 

 

-28.9 -30.2 2.6 0.1 1.3 1.1 1.4 -1.8 -0.5 ma-mu-f/r-g 

-28.7 -30.8 2.7 2.0 1.3 2.1 2.2 -0.8 -0.4 f-ma-mu/r-g 

-40.8 -39.4 1.0 0.1 -1.8 -1.3 -4.8 -2.0 +3.8 r-f-mu-ma-g 

Δ +1.7 ±1.8  

15N 
2.8 1.4 +3.3   +0.9  -2.4  mu-g 

       -0.6  mu-g 

34S 
-8.1 -8.3 -0.8   +1.0  +1.8  g-mu 

 2.0      +1.8  g-mu 

B. brevior (Kilo Moana) 

13C -30.2 -34.2  whole tissue    

B. brevior (Tow Cam) 

13C 
-29.2 -35.6 whole tissue    

-30.4 -35.6 whole tissue    

SHALLOW REDUCING ENVIRONMENTS 

C. orbicularis 

13C 

 

-24.1 -24.6 +0.9 +0.8 +0.3 +1.0 -0.6 -0.2 +1.3 r-f-g-ma-mu 

-23.5 -23.5 -2.2 -2.0 -1.6 -1.5 0.5 +0.6 -2.2 g-ma-f-mu-r 

Δ -0.7 ±0.4  

15N 
3.6 1.9 +1.6 +1.2 +1.6 +1.0 +3.5 -0.3 -2.3 mu-ma-f/g-r 

2.9 2.8 +0.6 -0.3 -0.3 +0.3 +0.4 -0.5 +0.4 mu/r-g-ma-f 

Δ +1.2 ±0.8  

34S 
        -0.2 f-ma-r-mu 

-9.9 -16.2 +3.7 +2.5 +7.5 +11.5  +3.4  ma-g-f-mu 

P. philippiana 

13C 

 

-26.2 -28.9 3.5 2.5 2.6 2.5 2.6 -1.0 -0.1 ma/mu-f/r-g 

-26.2 -27.8 2.5 1.2 1.6 1.4 1.7 -1.1 -0.3 ma-mu-f-r-g 

Δ +2.2 ±0.8  

15N 
4.3 5.3 -0.9   -1.2  -0.3  mu-g 

4.2 5.4 -1.3   -1.0  +0.3  g-mu 
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Δ +1.1 ±0.0  

34S 
 -20.4      -1.5  mu-g 

 -19.6      +0.0  mu/g 

C. orbiculata 

15N 1.2 -1.1    +2.3     

L. lucinalis 

15N 1.8 -0.1    +1.9     

C. imbricatula 

15N -0.6 -4.5    +3.9     

L. adansoni 

13C 

 

-22.4 -22.1 0.0 -0.5 -0.6 -0.5 0.1 -0.6 -0.6 f-ma-mu-g-r 

-22.3 -22.0 0.6 -0.6 -1.1 -0.5 -0.1 -1.3 -0.6 f-ma-mu-r-g 

Δ -0.3 ±0.0         

15N -3.8 -2.3 -0.2 -1.6 -1.9 -2.9 -0.9 -1.9 -1.2 mu-f-ma-r-g 

-2.6 -0.6 -1.5  -2.5 -2.5 -1.5 -1.1 -1.0 mu/f-r/g 

Δ -1.8 ±0.4  

34S -20.3 -15.6 -5.8 -7.3 -1.7 -0.9 -7.9 +2.5 +4.6 r-ma-g-f-mu 

 -13.7       +7.0 r-ma-g-mu 

M. spinifera (Gåsevik) 

13C  -27.1      -1.1  ma-g 

15N  0.1      -3.1  ma-g 

34S  -23.6      -3.6  ma-g 

SHALLOW NON-REDUCING ENVIRONMENTS 

T. sanguinea (Big Hope Bay) 

13C -23.9 -18,1 -4.6   -6.9  -2.3  mu-l 

-20.4 -19,0 -2.2   -0.7  1.5  l-mu 

-21.2 -17,4 -3.0   -4.8  -1.8  mu-l 

-20.4 -21,4 2.5 2.1  -1.9  -2.4  mu-ma-l 

Δ -2.9 ±2.9  
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order of 

depletion 

15N  9.5        ma-mu 

 9.6      +1,2  l-mu 

9.8 9.9 -0.7   +0.6  +0.7  l-mu 

8.2 9.7 -2.2   -0.9  +1.3  l-mu 

Δ -0.8 ±1.1  

34S  16.6        mu-ma 

 17.0      +1.0  l-mu 

 16.2      -1.2  mu-l 

 16.0      +4.0  l-mu 

T. sanguinea (Tricky Cove) 

13C -21.5 -18.4 -2.7 -3.3 -4.3 -3.6 -1.6 -1.0 -2.1 p-mu-ma-l-r 

-17.5 -17.5 1.1   -1.1  -2.1  mu-l 

-23.9 -18.1 -5.3   -6.2  -0.9  mu-l 

-20.8 -18.5 -3.1   -1.5  1.6  l-mu 

-20.8 -17.6 -2.6   -3.7  -1.0  mu-l 

Δ -2.9 ±2.1  

15N  8.2      +0.9  l-mu 

8.1 8.0    +0.1     

10.0 8.2 +1.2   +3.3  +1.1  l-mu 

7.4 8.8    -1.4     

Δ +0.1 ±1.6  

34S  13.7      +0.4  l-mu 

 16.6      +1.2  l-mu 

N. nigricans 

13C -20.8 -19,4    -1.4     

-19.2 -19,0 0.3 0.4 -1.2 -1.2 0.9 -0.9 -1.5 p/mu-l-ma-r 

-25.0 -19,1 -5.6 -5.7 -7.1 -6.5 -4.7 -0.9 -1.7 p-mu-ma-l-r 

Δ -2.5 ±3.0  

15N 7.4 8.6    -1.2     

9.9 9.3  +0.6       

8.4 9.1  -1.0 -0.4 -0.8    ma-mu-p 

Δ -0.5 ±0.9  

34S  15.6        p-ma 
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order of 

depletion 

L. neozelanica (Tricky Cove) 

13C -21.7 -16.9    -4.7     

-21.4 -16.7 -5.9   -3.6    ma-mu 

-22.0 -14.4 -3.7 -13.7  -5.4  -5.8  ma-mu-l 

Δ -5.7 ±1.7  

15N 8.0 9.1    -1.1     

7.8 9.5  -1.6  -1.8    mu-ma 

9.5 9.5  -0.3  +0.3    ma-mu 

8.0 9.6 -2.4 -1.1  -1.4  +1.0  l-mu-ma 

 8.5      +1.4  l-mu-p 

Δ -1.1 ±0.8  

34S  16.1        ma-mu 

 12.0        ma-mu 

       -1.0  mu-ma-l 

L. uva (Tricky Cove) 

13C -21.9 -17.7 -3.5  -4.3 -5.0    mu-p-l 

15N  8.5      +1.4  l-mu-p 

34S  18.1      -2.6  p-l/mu 

 

3.3.1  δ13C of SBOM, soft tissues and shell carbonate 

3.3.1.1  Cold seep: Green Canyon, Gulf of Mexico (Fig. 3.4A) 

Bivalves harbouring methanotrophic symbionts 

SBOM was obtained from Bathymodiolus childressi from three Green Canyon (GC) 

localities. δ13C total SBOM values ranged from: -48.4‰ (GC185, n=1), -53.1‰ to -

57.9‰ (GC233, n=6), and -52.6‰ to -37.0‰ (GC234, n=2). No statistical difference 

between GC233 (n=6) versus GC234 (n=2) exists, but when data from GC234 and 

GC185 (n=1) are combined the difference with GC233 is significant (p=0.0489). 

Intracrystalline SBOM δ13C values have a range of -41.4‰ to -36.0‰ (GC233, n=4) 

and -34.8‰ (GC234, n=1). The total and intra-crystalline SBOM could be compared 

for several individuals, showing that the intra-crystalline pool mean value is +16.7‰ 

±5.8 (n=4) enriched compared to total SBOM.  
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The δ13C of shell carbonate ranged from -7.6‰ to -5.7‰ (GC233, n=4), and -0.5 to 

-7.3 (GC234, n=2), thus overlapping in isotopic ranges between localities. It should 

be noted that the most enriched total SBOM sample (-37.0‰) also has the most 

enriched shell carbonate value (-0.5‰). 

Bivalves harbouring thiotrophic symbionts 

Two thiotrophic vesicomyid clam species from GC272 were analysed. Total SBOM 

of Calyptogena ponderosa had δ13C values ranging from -33.3‰ to -31.6‰ (n=3), 

and for Vesicomya cordata from -34.7‰ to -34.4‰ (n=3). The isotopic difference in 

total SBOM δ13C between these two species is statistically significant (P=0.0250). A 

single intra-crystalline value (-29.2‰) of C. ponderosa could be compared to total 

SBOM (-33.1‰) of the same specimen, showing a +3.9‰ enrichment. 

The δ13C of shell carbonate for both species overlap in ranges, for Calyptogena 

values range 1.1‰ to 1.2‰ (n=2), and for Vesicomya from 1.0‰ to 1.4‰ (n=3).   

Comparison between nutritional strategies at this locality 

δ13C total SBOM of methanotrophic B. childressi (-51.9 ±5.8‰, n=9, all 

sublocalities) is significantly depleted compared to thiotrophic C. ponderosa and V. 

cordata (-33.6‰ ±1.2, n=6), which is expected because B. childressi uses depleted 

methane as a carbon source. Similarly, δ13C shell carbonate for the Bathymodiolus 

specimens (-5.7‰ ±2.4, n=7) is much more depleted than the two thiotrophic 

species (1.2‰ ±0.2, n=5). The singular intra-crystalline value of C. ponderosa (-

29.2‰) is more enriched than the intra-crystalline SBOM values of B. childressi (-

37.7‰ ±2.9, n=4), but cannot be statistically compared. 

 

3.3.1.2  Cold seep: Florida Escarpment, Gulf of Mexico (Fig. 3.4A) 

Bivalves harbouring dual symbionts 

Bathymodiolus heckerae harbours both methanotrophic and thiotrophic symbionts, 

and both adult (max. length of 10.5 to 20.5cm) and juvenile specimens (circa 1.5 

cm) of the species were investigated. δ13C SBOM of both developmental stages is 

significantly different, the δ13C total SBOM of adult B. heckerae ranges from -62.2‰ 

to -54.6‰ (n=4), whilst the juvenile specimens are circa +20‰ more enriched, 

showing values from -42.9‰ to -30.2‰ (n=5). Soft tissue δ13C values from the two 

groups are however similar: -67.5‰ ±2.4 (adult, n=2) and -66.3‰ ±0.8 (juvenile, 

n=5). Shell carbonate δ13C values also do not show a statistical difference between 

the two age groups: -2.5‰ ±0.7 (adult, n =2) and -1.9‰ ±0.7 (juvenile, n=5).  
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The soft tissues analysed for adult Bathymodiolus could not be related to individual 

specimens, but for the overall group total SBOM (-58.7‰ ±3.3, n=4) is on average 

+8.8‰ more enriched than soft tissues (-67.5‰ ±2.4, n=2). It was possible to make 

individual comparisons for the juvenile specimens, this showed that their total 

SBOM is +31.0‰ ±6.0 (n=5) enriched compared to the soft tissues of the 

specimens. Because of this extreme offset the isotopic relationship between 

different soft tissues of individuals and individual SBOM values will not be further 

discussed. A comparison between the different soft tissues of individual specimens 

did not reveal clear trends, although it should be noted that in the majority of 

specimens the gills are the most enriched tissue of the animals (3 out of 5). 

Bivalves harbouring thiotrophic symbionts 

For the analysis of the very small Vesicomya cf. kaikoi specimens from Florida 

Escarpment it was necessary to collate multiple specimens. The δ13C total SBOM 

value of the species was -30.2‰, whilst the soft tissues had a much more depleted 

value of -46.5‰. The δ13C shell carbonate  value of the species was -2.8‰. 

Heterotrophic limpet 

Specimens from the small limpet species Paralepetopsis floridensis had to be 

collated to obtain sufficient total SBOM, this analysis gave a total SBOM δ13C value 

of -36.8‰. The collated soft tissues of the specimens were ~30‰ more depleted in 

δ13C than the total SBOM (-66.1‰ ±3.7, n=3), and the species had a shell 

carbonate value of δ13C -8.3‰. 

Comparison between nutritional strategies at this locality 

The δ13C total SBOM values of dual symbiotic Bathymodiolus (adult, -58.7‰ ±3.3, 

n=4) are distinct from thiotrophic Vesicomya (-30.2‰) and heterotrophic 

Paralepetopsis (-37.7‰), because B. heckerae harbours both thiotrophic and 

methanotrophic bacteria, of which the latter use depleted methane as a carbon 

source. Vesicomya and Paralepetopsis do however have overlap in value with the 

δ13C total SBOM range of juvenile Bathymodiolus specimens (-35.3‰ ±5.4, n=5). 

When comparing soft tissue values, there is no statistical difference between adult 

Bathymodiolus (-67.5‰ ±2.4), juvenile Bathymodiolus (-66.3‰ ±0.9) and 

Paralepetopsis (-66.1‰ ±3.7), but thiotrophic Vesicomya (-46.5‰) is more 

enriched. The δ13C shell carbonate value of juvenile and adult Bathymodiolus (-

2.1‰ ±0.7, n=7) is similar to Vesicomya (-2.8‰), whilst the shell carbonate of 

Paralepetopsis is much more depleted than the other chemosymbiotic species at -

8.3‰. Due to the limited amount of SBOM/shell carbonate measurments of 
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Vesicomya and Paralepetopsis it was not possible to make any statistical 

comparisons between different nutritional strategies for those isotopic pools. 

 

3.3.1.3  Cold seep: Blake Ridge (Fig. 3.4A) 

Bivalves harbouring dual symbionts 

δ13C total SBOM of dual symbiotic B. heckerae ranged from -42.4‰ to -36.4‰ 

(n=2), and intra-crystalline SBOM from -33.3‰ to -29.0‰ (n=2). The isotopic 

difference between these two SBOM pools is not statistically significant (P=0.1549), 

but comparison between total and intra-crystalline SBOM for one individual 

specimen showed an enrichment of +7.4‰ in the latter.  

Whole tissues of B. heckerae specimens had a mean δ13C value of -56.8 ±1.4 

(n=3). These could not be compared to individual SBOM values, but mean total 

SBOM (-39.4‰ ±4.3, n=2) is +17.4‰ heavier than the soft tissues.  

The δ13C value of shell carbonate varied between -1.4‰ and 1.2‰ (n=3).  

Bivalves harbouring thiotrophic symbionts 

Total SBOM, soft tissues and shell carbonate were analysed for five thiotrophic V. 

venusta specimens (size of circa 1.5 cm). The total SBOM δ13C values for this 

species ranged from –37.0‰ to -30.2‰ (n=5). Individual comparison between total 

SBOM and mean soft tissue values (combined mean: δ13C -36.9‰ ±0.6, n=5) of the 

specimens showed that SBOM is always more enriched, but very variable (range: 

+0.2 to +7.4, mean is +4.2 ±2.8, n=5). Because of this variation the isotopic 

relationship between SBOM and specific soft tissues will not be further discussed.  

Comparison of δ13C from different soft tissues of the individual specimens revealed 

that the gills (5 out of 5, -0.8‰ ±0.7, n=5) and rest (4 out of 5, -0.6‰ ±1.3, n=5) are 

more depleted than the other tissues (mean value of mantle and/or foot and/or 

muscle). Muscle is the most 13C enriched tissue in the majority of the specimens (3 

out of 5), the mantle tissue is either most or second most enriched tissue in these 

specimens.   

Shell carbonate δ13C values of V. venusta ranged from 0.3‰ to 1.1‰ (n=5). 

Comparison between nutritional strategies at this locality 

Total SBOM δ13C from dual symbiotic Bathymodiolus (-39.4‰ ±4.3, n=2) is 

significantly more depleted than thiotrophic V. venusta (-32.7‰ ±2.6, n=5, 

p=0.0452) by -6.7‰, because Bathymodiolus partly relies on depleted methane. 

The difference between the soft tissue values of the two species (-56.8‰ ±1.4, n=3 
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and -36.9 ±0.6, n=5, resp.) is however much larger (19.9‰) and significant 

(p=<0.0001). The δ13C shell carbonate of V. venusta (-0.8 ±0.3, n=5) is not 

statistically different from B. heckerae (-0.1 ±1.3, n=3), but carbonate values are 

much more variable in the dual symbiotic species. 

 

3.3.1.4  Cold seep: Barbados (Fig. 3.4A) 

Bivalves with unknown nutritional strategy 

Currently the nutritional strategy of Bathymodiolus sp. (circa 10cm. length) from 

Barbados is unknown. The δ13C total SBOM of this species ranged from -64.4‰ to -

55.4‰ (n=3), a single intra-crystalline SBOM sample had a value of -55.1‰. 

Comparison at the individual specimen level showed that the intra-crystalline value 

was +7.1‰ more enriched than the total SBOM. The δ13C shell carbonate of one 

specimen was measured: -3.4‰. 

Bivalves harbouring thiotrophic symbionts 

Thiotrophic Calyptogena valvidae has a δ13C total SBOM range of -32.4 to -31.4. 

No intra-crystalline measurments are available for this species. A single shell 

carbonate δ13C value was reported at 1.3‰. 

Comparison between nutritional strategies at this locality 

Total SBOM of Bathymodiolus of unknown nutritional strategy (δ13C -60.7 ±4.7, 

n=2) is on average -28.8‰ more depleted than thiotrophic C. valvidae (-31.9 ±0.5, 

n=3), and therefore partly or completely relies on a more depleted carbon source, 

probably methane. The shell carbonate δ13C measurement of Bathymodiolus is -

4.7‰ more depleted than the measurement of Calyptogena, but due to the limited 

amount of data they cannot be statistically compared.  

 

3.3.1.5  Cold seep: Guaymas Basin (Fig. 3.4B) 

Bivalves harbouring thiotrophic symbionts 

Specimens of thiotrophic Calyptogena pacifica (4.0-4.5 cm) were analysed for 

individual total SBOM, intra-crystalline SBOM, shell carbonate and soft tissue δ13C 

values. δ13C total SBOM values ranged from -33.8‰ to -29.1‰ (n=4), with a mean 

total SBOM value of -33.1‰ ±0.5 (n=4).  

δ13C for intra-crystalline SBOM ranged from -32.6‰ to -29.8‰, and the two SBOM 

pools are statistically different (p=0.0162). Comparison between total and intra-
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crystalline SBOM for individual specimens showed that the latter pool is -2.6‰ ±0.7 

(n=4) enriched. Soft tissues values of the individual specimens have a very limited 

δ13C range from -35.6‰ to -35.1‰, that is significantly depleted by -2.5‰ (p= 

<0.0001) compared to mean total SBOM. For the individual SBOM-soft tissue 

relationships of specimens a similar depletion of -2.3‰ ±0.6 (n=4) was found.  

Investigation into the isotopic relationship between individual total SBOM and 

individual soft tissues (n=4) (Table 3.6) revealed that gill tissue to be the least 

variable (SBOM-tissue difference: +2.2 ±0.3) and muscle tissue to be most variable 

(+2.6 ±0.9), with the other tissues showing intermediate values, for both SBOM-soft 

tissue difference and variation. Comparison between the different tissues shows 

that gills are generally enriched compared to the other tissues (4 out 5, +0.3‰ ±0.5) 

and rest is always more enriched (5 out of 5, +0.6‰ ±0.2), the muscle tissue is 

generally most depleted (3 out of 5).  

Shell carbonate δ13C values of C. pacifica fall within a narrow range from -0.9‰ to -

0.7‰ (n=3). 

 

3.3.1.6  Cold seep: Oregon Subduction Zone (Fig. 3.4B) 

Bivalves harbouring thiotrophic symbionts 

δ13C total SBOM of thiotrophic Calyptogena starobogatovi ranged from -34.2‰ to -

32.0‰ (n=3), with one more enriched value of -25.1‰. Mean soft tissue values 

were -37.1‰ and -36.8‰ (n=2), with soft tissues being on average -5.7‰ depleted. 

For one specimen the total SBOM and mean soft tissue value could be individually 

compared, revealing a more limited depletion of -3.0‰.   

A comparison between the δ13C values of gills and muscle tissue for two specimens 

showed that the gills are most enriched (+0.2 and +0.4) out of these two tissues. 

 

3.3.1.7  Cold seep: Monterey Bay (Fig. 3.4B) 

Bivalves harbouring thiotrophic symbionts 

Three thiotrophic vesicomyid species from Monterey Bay were analysed. Total 

SBOM δ13C values for Calyptogena packardana range from -35.1‰ to -30.1‰ 

(n=5), for Calyptogena kilmeri from -34.7‰ to -30.4‰ (n=4), and for Calyptogena 

stearnsii from -31.5‰ to -29.8‰ (n=3). δ13C values for intra-crystalline SBOM of the 

three species range from -30.6‰ to -29.5‰ (n=4) for C. packardana, and from -

34.9‰ to -27.8‰ (n=4) C. kilmeri. δ13C values of soft tissues for C. packardana 
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range from -35.3‰ to -34.6‰ (n=3), from -36.1‰ to 35.7‰ (n=2) for C. kilmeri, and 

from -36.1‰ to -35.5‰ (n=2) for C. stearnsii. There is not statistical difference 

between the three species in δ13C of total SBOM, intra-crystalline SBOM, or soft 

tissue values.  

For C. kilmeri δ13C total (-32.9‰ ±2.2, n=4) and intra-crystalline (-30.7‰ ±3.2, n=4) 

SBOM are not statistically different. This is also reflected in the total-intra SBOM 

relationship of the individual specimens, showing that the intra-crystalline SBOM 

can be both more depleted (-6.1‰ and -3.5‰), as well as more enriched (+3.2‰) 

than the total SBOM values. Total SBOM of C. kilmeri was more enriched than the 

related soft tissue mean (+1.0 and +4.4). Isotopic comparison between the gill and 

muscle tissue showed that the latter is always more depleted (+1.4 and +1.4).  

Intra-crystalline SBOM δ13C of C. packardana (-29.7‰ ±0.8, n=4) is statistically 

more enriched than the total SBOM (-33.3‰ ±2.1, n=5) of the species. For 

individual specimens the isotopic difference between the two pools is +4.4‰ ±0.8 

(n=4). There is no statistical difference between mean total SBOM and soft tissues 

δ13C values, but by comparing this for individual specimens it is shown that total 

SBOM is always more depleted (-2.4‰ to -0.1‰, n=3). Due to the limited amount of 

soft tissue data no further conclusions can be drawn about the different soft tissues.  

C. stearnsii soft tissue δ13C values (-35.8 ±0.4, n=2) are significantly depleted 

compared to total SBOM values (-30.7 ±0.8, n=3), with p=0.0040. This depletion 

could be determined for on individual specimen at -4.1‰.Further comparison 

between the different soft tissue showed that gills are more enriched than muscle 

tissue (+0.3‰ and +0.6‰).  

 

3.3.1.8  Cold seep: Fossil Hill (Fig. 3.4B) 

Bivalves harbouring thiotrophic symbionts 

Ectenogena elongata specimens from several different push cores (PSC) at Fossil 

Hill were analysed (4-5cm), as well as larger broken (older?) pieces of the species, 

to investigate whether small-scale isotopic differences in SBOM exist at a single 

locality. δ13C total SBOM of E. elongata ranged from -32.1‰ to -28.2‰ (PSC44, 

n=5), -32.1‰ to -28.0‰ (PSC48, n=3), -30.6‰ to -29.0‰ (PSC66), and -30.5‰ to -

28.7‰ (broken, n=2). No statistical difference exists in δ13C  values of total SBOM 

between the four different sub-localitites of Fossil Hill, and the data can be 

combined for comparisons between localities (-30.3‰ ±1.5, n=13). 
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Gills and muscle tissue of two E. elongata specimens from PSC44 were analysed, 

this gave mean soft tissue values of δ13C -35.9‰ and -32.7‰. Individual SBOM-

soft tissue comparison shows that the total SBOM is always more enriched than 

soft tissues by +4.5‰ ±4.5 (n=2). The large variation in this isotopic relationship is 

caused by one very enriched muscle tissue measurment (-29.1‰). When excluding 

this outlier, the mean difference between all total SBOM (-30.9‰ ±1.5, n=5) and all 

soft tissues (-36.1‰ ±0.2, n=2) is +5.2‰.  

δ13C shell carbonate of E. elongata from PSC66 ranged from -1.2‰  to -0.2‰ 

(n=3). 

Intra-crystalline δ13C values of SBOM from larger E. elongata specimens had a 

narrow range, from -30.7‰ to -30.6‰ (n=3). The difference between all total SBOM 

(-29.6 ±1.3, n=2) and all intra-crystalline SBOM (-30.7 ±0.1, n=3) is a +1.1‰ 

enrichment in total SBOM. For individual specimens this enrichment is also +1.1‰ 

(±1.3, n=2). 

 

3.3.1.9  Cold seep: San Diego Trough (Fig. 3.4B) 

Thiotrophic bivalves from the cold seep localitites described thus far all belong to 

the family Vesicomyidae. At San Diego Trough it was possibly to also analyse 

single specimens from the thiotrophic families Solemyidae (solemyid) and Lucinidae 

(lucinid).  

Bivalves harbouring thiotrophic symbionts 

From each thiotrophic species only a single specimen could be analysed, these 

show δ13C total SBOM values of -22.1‰ (E. elongata), -26.7‰ (solemyid) and -

29.1‰ (lucinid), the large variation between the species is evident from a standard 

deviation of ±3.6‰ on these values. 

The δ13C shell carbonate values of E. elongata ranged from -3.7 to -0.1. The other 

two thiotrophic species had values of 2.2‰ (solemyid) and -0.5‰. (lucinid). The 

variation on mean values of the three species is ±2.0‰. 

Total SBOM was obtained from lucinid using resin as well as HCl, the variation 

between obtained δ13C values with a variation of ±0.3‰.  

 

Heterotrophic bivalves 

Total SBOM of Deltopecten had an ‰ value of -19.3‰ (n=1), the δ13C shell 

carbonate value of the specimen was 1.1‰. 
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Comparison between nutritional strategies at this locality 

Despite the large isotopic differences between the thiotrophic species (-26.0 ±3.6, 

n=3), the mean difference with heterotrophic Deltopecten (-19.3‰) shows a +6.7‰ 

enrichment in total SBOM ‰ for the latter species. This difference is expected 

because Deltopecten relies on enriched photosynthetically derived material, which 

is generally much more enriched in 13C and 15N than chemosynthetically derived 

material at colds seeps (McAvoy, 2008).  

The δ13C shell carbonate value from Deltopecten (1.1‰) falls within the variation of 

the mean thiotrophic shell carbonate value (-0.7 ±2.2, n=5).  

 

3.3.1.10  Hydrothermal vent: South Su (Fig. 3.4C) 

Gastropods harbouring thiotrophic symbionts 

Two chemosymbiotic gastropod species are present at South Su: Alviniconcha 

hessleri and Ifremeria nautilei. The total SBOM δ13C values for A. hessleri vary 

between -13.2‰ to -10.0‰ (n=2) and soft tissues between -8.7‰ and -8.1‰ (n=3). 

Statistically δ13C of total SBOM and soft tissues are not different, but individually the 

SBOM is always more depleted (-4.8‰ and -1.3‰). Shell carbonate values range 

from 2.6‰ to 3.3‰ (n=3).  

I. nautilei has a total SBOM range from -26.5‰ to -26.0‰ (n=3), intra-crystalline 

SBOM from -26.8‰ to -26.7‰ (n=2), and soft tissues from -28.2 to -27.7. These 

organic pools are all statistically different from each other. For individual specimens, 

total SBOM is in comparison between +0.3‰ and +0.7‰ (n=3) more enriched than 

intra-crystalline SBOM, and between +1.4‰ and +2.0‰ (n=3) more enriched than 

mean soft tissue values. Comparison between the different soft tissues shows that 

the gills (-1.0‰ ±0.4, n=3) and rest (-0.7‰ ±0.4, n=3) are always more depleted 

than the other tissues. Shell carbonate values of Ifremeria range from 9.0‰ to 

9.3‰ (n=3). 

Statistical comparison between shows that Ifremeria is significantly more enriched 

than Alviniconcha in δ13C total SBOM (mean: +14.6‰, p=0.0013) and soft tissues 

(mean: +19.5‰, p=0.0037), and more depleted for δ13C shell carbonate (mean: -

6.2‰, p=<0.0001). 

Bivalves harbouring thiotrophic symbionts 

Thiotriophic B. manusensis from South Su shows large variation in total SBOM δ13C 

values: -40.8‰, -28.9‰, and -28.7‰, the same variation in also found in related 
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soft tissue δ13C values of the specimens: -39.4‰, -30.2‰, and -30.8‰, (individual 

ΔSBOM-soft tissue: 0.7‰ ±1.8, n=3), as well as the shell carbonate δ13C: 0.0‰, 5.2‰ 

and 6.4‰, respectively. 

The value of a single intra-crystalline SBOM value sample was -27.9‰, showing an 

+0.8‰ enrichment compared to the total SBOM of that specimen. 

Comparison between the different soft tissues shows that the gill tissue has the 

least variation in ΔSBOM-soft tissue (+2.1‰ ±1.0, n=3), and is always more depleted 

compared to the other tissues (-1.5‰ ±0.6, n=3).  

Comparison between nutritional strategies at this locality 

The large isotopic differences between Alviniconcha and Ifremeria were discussed 

above. Similar enrichment in Ifremeria compared to Bathymodiolus was found in the 

δ13C values of total SBOM (+21.2‰, p=0.0072) and soft tissues (+25.1‰, 

p=<0.0011). But where the shell carbonate values of Ifremeria was statistically 

depleted (-6.2‰), the values of Bathymodiolus (3.9‰, ±3.4, n=3) and Alviniconcha 

(3.0‰, ±0.4) are similar (p=0.6275), unless the depleted outlier is removed 

(depletion of -2.8‰ in Ifremeria, p=0.0123).  

Mussel Bathymodiolus and gastropod Ifremeria are similar in δ13C total SBOM 

(p=0.1731, n=3), but when the depleted outlier (-40.8‰) of Bathymodiolus is 

removed they are statistically different (-28.8‰ ±0.1, n=2 versus -26.2‰ ±0.2, n=3, 

resp., p=0.0005). The same applies for the shell carbonate values (included 

p=0.0544, and excluded p=0.0047). Soft tissues of Bathymodiolus (-33.5‰ ±5.2, 

n=3) are more depleted than those of Ifremeria (-27.9‰ ±0.2, n=3), with and 

without including the depleted mussel specimen. Combined values of 

Bathymodiolus and Ifremeria are statistically different from Alviniconcha for total 

SBOM (p=0.0013) and soft tissues (p=<0.0001), but not for shell carbonate 

(p=0.1390).  

 

3.3.1.11  Hydrothermal vent: East Wall (Fig. 3.4C) 

Bivalves harbouring thiotrophic symbionts 

Thiotrophic B. thermophilus from East Wall has δ13C total SBOM values ranging 

from –31.7‰ to -30.9‰ (n=2). A single analysed gill tissue has a value of -33.0‰, 

which is -1.3‰ more depleted than the individual total SBOM of that specimen. 
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Heterotrophic gastropod 

Multiple Lepetodrilus elevatus specimens were combined for a single analysed of 

δ13C total SBOM: –20.6‰. Related whole tissues show a value of -15.4‰, and are 

thus +5.2‰ more enriched than total SBOM. 

Comparison between nutritional strategies at this locality 

Statistical analysis between thiotrophic Bathymodiolus and heterotrophic 

Lepetodrilus is not possible. But a comparison between the means shows that 

Lepetodrilus is +10.7‰ more enriched in δ13C total SBOM, and +17.6‰ in δ13C soft 

tissue values. This enrichment is likely due to Lepetodrilus feeding on enriched 

photosynthetically derived material  

 

3.3.1.12  Hydrothermal vent: Buckfield (Fig. 3.4C) 

δ13C total SBOM of thiotrophic B. thermophilus from Buckfield ranges from -31.8‰ 

to -30.5‰ (n=2). Shell carbonate from this species ranges from 3.0‰ to 3.1‰ δ13C 

total SBOM (n=3).  

 

3.3.1.13  Hydrothermal vent: East Scotia Ridge (Fig. 3.4C) 

Chemosymbiotic gastropod 

The peltospiroid gastropod species (collated?) from East Pacific Rise has a δ13C 

total SBOM value of -27.8‰, and δ13C shell carbonate value of 4.9‰. 

Bivalve harbouring thiotrophic symbionts (suspected) 

The vesicomyid clam species has δ13C total SBOM that ranges from -33.5‰ to -

30.4‰ (n=3), a total SBOM sample of these three samples combined obtained 

using HCl has a slightly more depleted value of -35‰. A single intra-crystalline 

SBOM sample had a value of -30.4‰, which was +2.7‰ more enriched than the 

individual total SBOM of that specimen. Shell carbonate values vary between 1.7‰ 

and 1.9‰.  

Comparison between nutritional strategies at this locality 

The peltospiroid gastropod is more enriched in δ13C total SBOM (mean difference: 

+4.9‰) and shell carbonate (+3.1‰) than the vesicomyid clams. 
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3.3.1.14  Hydrothermal vent: Kilo Moana, Lau Basin (Fig. 3.4C) 

Bivalve harbouring thiotrophic symbionts  

The δ13C values of thiotrophic B. brevior from this locality range from -30.2‰ and -

28.7‰ (n=2) for total SBOM, and from -34.4‰ and -34.2‰ for whole tissue values 

(n=2). Individual ΔSBOM-soft tissue could be determined for one specimen, and showed a 

-4.0‰ enrichment in total SBOM. δ13C shell carbonate values range from 1.9‰ to 

2.4‰ (n=3). 

 

3.3.1.15  Hydrothermal vent: Tow Cam, Lau Basin (Fig. 3.4C) 

Bivalve harbouring thiotrophic symbionts 

Thiotrophic B. brevior from Tow Cam shows total SBOM δ13C values that range 

from -30.4‰ to -29.2‰ (n=2), and has an intra-crystalline value of -27.5‰. The 

intra-crystalline SBOM is +1.8‰ enriched compared to the total SBOM of the 

specimen.  

δ13C values for whole soft tissues range from -35.6‰ to -35.6‰ (n=2). The mean 

soft tissue value is -5.8‰ more depleted than the mean total SBOM value, 

compared for individual specimens the depletion is 5.8‰ ±0.8 (n=2). 

 

3.3.1.16  Hydrothermal vent: Kermadec Ridge (Fig. 3.4D) 

Bathyaustriella thionipta is the only known vent lucinid and has a thiotrophic 

lifestyle. δ13C total SBOM of the species ranges from -27.8‰ to -26.1‰ (n=5), and 

intra-crystalline SBOM from -27.7‰ to -26.8‰ (n=3). The two SBOM pools are 

statistically the same (p=1.000), and their relationship for individual specimens is 

variably enriched or depleted (-0.2 ±0.6 difference, n=3).  

Soft tissue δ13C values of B. thionipta are -28.2‰ and -27.0‰. These values are 

not statistically different from total or intra-crystalline SBOM data. When individual 

total SBOM values are compared to individual mean soft tissues values, the latter 

are always more depleted (-0.2‰ and -2.0‰). The differences in this isotopic 

relationship are similar when specified for the various soft tissues (range from 0.0‰ 

to -0.1‰, and -2.1‰ to -1.7‰, n=4), with the exception of the more depleted gill 

tissues (-2.9‰ and -1.1‰). Also in comparison to the other soft tissues (minus 

rest), the gills are depleted by -1.0  (n=2). 

δ13C shell carbonate values range from 4.1‰ to 6.8‰ (n=5).  
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3.3.1.17  Shallow reducing environments: Little Ducks Keys (Fig. 3.4D) 

Bivalves harbouring thiotrophic symbionts 

The lucinid Codakia orbicularis has δ13C total SBOM of -24.9‰ and -24.1‰, intra-

crystalline of -27.3‰, and -25.5‰, and soft tissue values of -24.6‰ and -23.5‰. 

For individual specimens total SBOM is +1.9‰ ±1.9 (n=2) more enriched than intra-

crystalline SBOM. The relationship between individual SBOM and soft tissues is 

variable (-0.4‰ ±1.3, n=2) and will therefore not be discussed in more detail. Also 

the relationship between the different soft tissues (gills/rest versus other tissues) is 

variable between the two specimens. δ13C shell carbonate values are 0.8‰ and 

2.1‰. 

 

3.3.1.18  Shallow reducing environment: Magellan Bay (Fig. 3.4D) 

Bivalves harbouring thiotrophic symbionts 

Pegophysema philippiana has δ13C total SBOM of -26.2‰ and -26.2‰, an a 

collated intra-crystalline value (-26.8‰) was obtained that is -0.6‰ depleted 

compared to both specimens. Soft tissue values are -28.9 and -27.8, that are 

individually -2.2‰ ±0.8 (n=2) depleted compared to total SBOM. Variation of the 

different soft tissues for SBOM-soft tissue difference are similar (variation of ±0.9‰ 

to ±0.7‰), and gill tissues are always more depleted than other tissues by -1.1‰ 

(±0.0, n=2). Shell carbonate values are 1.0‰ and 1.9‰.  

 

3.3.1.19  Shallow reducing environment: Ramrod Key (Fig. 3.4D) 

Bivalves harbouring thiotrophic symbionts 

Total SBOM of Ctena orbiculata has δ13C values of -25.4 and -23.9. Shell 

carbonate δ13C values are 0.0‰ and 0.3‰.  

 

3.3.1.20  Shallow reducing environment: Houmt Souk (Fig. 3.4D) 

Bivalves harbouring thiotrophic symbionts 

Lucinid species Loripes lucinalis has a total SBOM value of δ13C -26.2‰. 

 

3.3.1.21  Shallow reducing environment: Bocas del Toro (Fig. 3.4D) 

Bivalves harbouring thiotrophic symbionts 
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Ctena imbricatula has δ13C values of -27.5‰ and -25.4‰ for total SBOM, and -

1.5‰ and -1.3‰ for shell carbonate. 

 

3.3.1.22  Shallow reducing environment: Sal Rei Village (Fig. 3.4D) 

Bivalves harbouring thiotrophic symbionts 

Thiotrophic Lucina adansoni was analysed for total SBOM, intra-crystalline SBOM, 

soft tissues and shell carbonate. The total SBOM of L. adansoni has δ13C values for 

total SBOM of -22.4‰ and -22.3‰, for intra-crystalline SBOM of -26.0‰ and -

24.9‰, and for soft tissues of -22.1‰ and -22.0‰. Compared to the total SBOM of 

individual specimens, the intra-crystalline SBOM is -3.0‰ (±0.8, n=2) more 

depleted, and the soft tissues are +0.3‰ (±0.0, n=2) more enriched. The variation 

between the two specimens in SBOM-soft tissue for the different soft tissues is 

small, and ranges from ±0.1‰ to ±0.4‰, with the ‘rest’ tissue being most similar to 

the total SBOM (+0.0‰ ±0.2, n=2). There is a similar order of depletion in the 

tissues of the two specimens, and ‘gills’ and ‘rest’ are always more depleted than 

the other tissues (-0.9‰ ±0.5, and -0.6‰ ±0.0, respectively, n=2). Shell carbonate 

values of Lucina are 2.2‰ and 2.4‰.  

 

3.3.1.23  Shallow reducing environment: Skogsvågen (Fig. 3.4D) 

Bivalves harbouring thiotrophic symbionts 

Multiple specimens of the lucinid Myrtea spinifera were collated to obtain a  δ13C 

total SBOM value of -22.0‰ (using HCl).  

 

3.3.1.24  Shallow reducing environment: Gåsevik (Fig. 3.4D) 

All specimens from this locality were collated because of their small size. All other 

species analysed of shallowing reducing environment discussed thus far belong to 

the Lucinidae family. In addition to the lucinid M. spinifera from this locality, we also 

analysed collated specimens of the thyasirid Thyasira sarsi (Thyasiridae) and the 

deposit feeders Abra alba and Ennucula tenuis.  

Bivalves harbouring thiotrophic symbionts 

M. spinifera from Gåsevik has a δ13C total SBOM value of -21.6‰, and a soft tissue 

value of -27.1‰, with soft tissue being depleted by -5.5‰. Shell carbonate for this 

species has a δ13C value of 0.3‰.  
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Thiotrophic thyasirid clam T. sarsi shows a total SBOM value of δ13C -28.6‰, and a 

soft tissue value of -29.8‰ (-1.2‰ more depleted than total SBOM). The δ13C value 

of shell carbonate was -4.2‰.  

Heterotrophic bivalves 

Despite feeder A. alba has a δ13C value of -24.6‰ for total SBOM, and of -18.8‰ 

for soft tissue, soft tissue is thus +5.8 more enriched than total SBOM. The shell 

carbonate of this species is -0.4‰. 

The other deposit feeder at this locality is E. tenuis, this species shows a δ13C total 

SBOM value of -21.5‰. Shell carbonate has a value of 0.9‰. 

Comparison between nutritional strategies at this locality 

Whilst the total SBOM values for thiotrophic T. sarsi and heterotrophic E. tenuis are 

as expected, the -24.6‰ value of A. alba (particularly compared to M. spinifera) 

does not show the enrichment known from heterotrophic species feeding on POM, 

that are generally no more depleted than -22‰. The expected values are observed 

in the soft tissue values from the specimens. 

 

3.3.1.25  Shallow non-reducing environment: Big Hope Bay (Fig. 3.4E) 

Heterotrophic brachiopods 

Terebratella sanguinea δ13C total SBOM values range from -23.9‰ to -20.4‰ 

(n=5), and intra-crystalline SBOM from -26.0‰ to -23.7‰, and the two SBOM pools 

are statistically different (p=0.0019). Comparison for individual specimens shows a 

depletion of -3.7‰ ±1.9 in the intra-crystalline fraction. Soft tissues δ13C values of 

Terebratella range from -21.4‰ to -17.4‰, and are not statistically different from 

total SBOM (p=0.0590), individually soft tissues are more enriched for 3 out 4 

specimens (mean: +2.6 ±2.9, n=4) – specifically muscle tissue is always more 

enriched than SBOM (+3.6‰, ±2.8, n=4);and lophophore is generally more 

depleted than the other soft tissues (-1.2‰, ±1.8, n=4, 3 out of 4). Shell carbonate 

δ13C range from 0.4‰ to 1.8‰.   

 

3.3.1.26  Shallow non-reducing environment: Tricky Cove (Fig. 3.4E) 

Heterotrophic brachiopods 

Several brachiopod species from Tricky Cove were analysed for δ13C total SBOM, 

intra-crystalline SBOM, soft tissues and shell carbonate. T. sanguinea is found at 
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both Big Hope Bay and Tricky Cove. At Tricky Cove the species has δ13C total 

SBOM values that range from -23.9 to -17.5, an intra-crystalline value of -25.5‰ (-

5.1‰ depleted compared to total SBOM), and soft tissues from -18.5‰ to -17.5‰ 

(n=5). Soft tissue and total SBOM are not statistically different (p=0.0805), but for 

individual specimens soft tissues are always similar or more enriched (+2.9‰ ±2.1, 

n=5). SBOM-soft tissues: muscle is also individually always more depleted (+3.2‰ 

±2.1, n=2). Comparison between different tissues, lophophore is generally more 

depleted (4 out of 5): -0.7‰ (+1.4, n=5).  

Notosaria nigricans has total SBOM values that vary from -26.3‰ to -19.2‰, an 

intra-crystalline value of -25.9‰ (-5.7‰ depleted compared to total SBOM), and 

soft tissues from -19.4‰ to -18.3‰ (n=4). The total SBOM and soft tissue are not 

statistically different, but for individual specimens there is a SBOM-soft tissue 

enrichment of +2.4‰ ±2.5 (n=4). Due to the large variability individual tissue 

SBOM-soft tissue differences will not be discussed. It can be shown that the gills (-

0.9 ±0.0) and rest (-1.6 ±0.1, n=2) are always more depleted compared to the other 

tissues.  

δ13C total SBOM for Liothyrella neozelanica range from -22.8‰to -20.2‰ (n=7), 

intracrystalline SBOM from -26.6‰ to -25.5‰ (n=4), and soft tissues from -16.9‰ 

to -14.4‰ (n=3). The intra-crystalline pool is statistically depleted from total SBOM 

(p=<0.0001), and individual differences are -4.7‰ ±0.9 (n=4). Soft tissues are 

statistically enriched compared total SBOM (p=<0.0001), by -5.7‰ ±1.7 (n=3) (not 

enough data is available for further conclusions about (SBOM-) soft tissues).  

The total SBOM range of the species Liothyrella uva ranges from -23.7 to -21.9, 

and a soft tissue value of -17.7. For the individual specimen there is an SBOM-soft 

tissue difference of 4.3‰.  

Comparison between the different filter-feeding brachiopods species of Tricky Cove 

shows that there are is only a statistical difference in δ13C total SBOM between the 

Liothyrella species (p=0.0396).  

The intra-crystalline values of T. sanguinea (-25.5‰) and N. nigricans (-25.9) are 

within the range of intra-crystalline values of L. neozelanica (-26.0 ±0.6, n=4).  

Soft tissues values differ between T. sanguinea versus N. nigricans (p=0.0123) and 

L. neozelanica (p=0.0200) (but overlap with L. uva). There is also a statistical 

difference between N. nigricans and L. neozelanica (p=0.0097). A mean soft tissue 

value for these species (-17.8‰ ±1.4) is very similar to the soft tissue value of L. 

uva (-17.7).  
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The brachiopod species from Tricky Cove have the following ranges for δ13C shell 

carbonate: 1.2‰ to 1.7‰ (T. sanguinea, n=6), 1.2‰ to 1.6‰ (N. nigricans, n=5), 

1.2‰ to 2.9‰ (L. neozelanica, n=7), and 1.4‰ to 2.4‰ (L. uva, n=3). There are 

statistical differences between T. sanguinea and both Liothyrella species 

(p=0.0050, and 0.0314), as well as between N. nigricans and L. neozelanica 

(p=0.177) (Liothyrella species are statistically similar, p=0.4725).  

 

 

3.3.2  δ15N of SBOM and soft tissues 

3.3.2.1  Cold seep: Green Canyon, Gulf of Mexico (Fig. 3.4A) 

Bivalves harbouring methanotrophic symbionts 

B. childressi δ15N total SBOM values range from -15.6‰ to -10.4‰ (n=10), and 

intra-crystalline SBOM from -2.0‰ to -12.8‰ (n=5). There is no statistical 

difference between the total SBOM values of the localities GC233 (-12.7‰ ±2.1, 

n=8) and GC234 (-11.8‰ ±1.2, n=2).The intra-crystalline SBOM values are very 

variable (-12.8‰ to -2.0‰, n=4), and statistically different from the total SBOM pool 

(p=0.0258). For individual specimens the intra-crystalline SBOM is +6.4‰ ±4.0 

(n=3) more enriched than the total SBOM values. 

Bivalves harbouring thiotrophic symbionts 

For C. ponderosa the total SBOM δ15N values range from -0.4‰ to 4.3‰ (n=3). 

Intra-crystalline SBOM has a value of 2.6‰, which is +3.8‰ enriched compared to 

the total SBOM value of that specimen.  

V. cordata has a range of δ15N total SBOM from -3.4‰ to 0.6‰.  

The total SBOM values between C. ponderosa (1.6‰ ±2.4, n=3) and V. cordata 

(2.5‰ ±1.2, n=3) are not statistically different (p=0.0572).  

Comparison between different nutritional strategies at this locality 

Bathymodiolus total SBOM (-12.5‰ ±1.9, n=10) is statistically different from the 

more enriched values of thiotrophic Calyptogena and Vesicomya (0.1‰ ±2.6, n=6). 

The intra-crystalline value from Calyptogena (2.6‰) is also more enriched than the 

values from Bathymodiolus (-7.8‰ ±5.1). These results suggest that 

methanotrophic B. childressi is using a more depleted nitrogen source than the 

thiotrophic species.  
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3.3.2.2  Cold seep: Florida Escarpment, Gulf of Mexico (Fig. 3.4A) 

Bivalves harbouring dual symbiotic bacteria 

Adult B. heckerae total SBOM δ15N values range from -8.0‰ to -7.5‰ (n=3). Soft 

tissues from a single specimen from that locality have a large variation in δ15N (-

10.1‰ ±1.9, n =6 measurments), that partially overlaps with total SBOM values.  

Total SBOM from all juvenile B. heckerae specimens were combined for a single 

δ15N measurment of 1.1‰, and soft tissue values ranged from -12.8‰ to -7.5‰ 

(n=4). Therefore, whilst soft tissue values of the two age groups are statistically 

similar, the juvenile total SBOM value is much more enriched compared to the adult 

specimens.  

Bivalves harbouring thiotrophic symbionts 

The single measurment of total SBOM for Vesicomya from Florida Escarpment had 

a δ15N total SBOM value of 2.8‰. 

Heterotrophic limpet 

The limpet P. floridensis was shown to have a total SBOM δ15N value of 3.3‰, soft 

tissues had a value of -10.1‰.  

Comparison between nutritional strategies at this locality 

No statistical comparisons could be made between δ15N total SBOM of the different 

nutritional strategies. However, juvenile B. heckerae (1.1‰), Vesicomya (2.8‰) and 

P. floridensis (3.3‰) all have similar values, compared to the very depleted adult B. 

heckerae total SBOM data (-7.7‰ ±0.3, n=3). Mean soft tissue values from both 

juvenile B. heckerae (-9.8‰ ±2.3) and P. floridensis (-10.1‰) are similar to adult B. 

heckerae (-10.1‰) 

 

3.3.2.3  Cold seep: Blake Ridge 

Bivalves harbouring dual symbionts 

B. heckerae δ15N total SBOM ranges from 2.0‰ to 3.6‰ (n=3), intra-crystalline 

SBOM from 3.8‰ to 6.0‰ (n=2), and the two SBOM pools are not statistically 

different from each other. However, for individual specimens the intra-crystalline 

pool is always more enriched. Soft tissue range from 1.6‰ to 2.3‰ (n=3), and 

values are statistically similar to total SBOM.  

Bivalves harbouring thiotrophic symbionts 
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A combined total SBOM δ15N value for all V. cf. venusta specimens (n=5) is 3.1‰. 

Mean soft tissue values for the individual specimens vary between 0.5‰ and 4.8‰ 

(n=5)  

Comparison between nutritional strategies at this locality 

B. heckerae has a mean total SBOM δ15N value of 2.6‰ ±0.9 (n=3), an intra-

crystalline SBOM value of 4.9‰ ±1.6 (n=2), and soft tissue value of 2.0‰ ±0.3 

(n=3). Total SBOM of V. venusta (3.1‰) falls within the range of B. heckerae 

values, and soft tissue values of V. venusta (2.5‰ ±1.6, n=3) are statistically similar 

to soft tissue values of Bathymodiolus.  

 

3.3.2.4  Cold seep: Barbados (Fig. 3.4A) 

Bivalves with unknown nutritional strategy 

Bathymodiolus from Barbados has δ15N total SBOM values ranging from 0.2‰ to 

0.8‰ (n=3), and an intra-crystalline SBOM value of 1.7‰ (n=1). The intra-

crystalline SBOM is +1.5‰ enriched compared to total SBOM of that specimen. 

Bivalves harbouring thiotrophic symbionts 

δ15N total SBOM values of C. valvidae range from 0.3‰ to 3.2‰ (n=3). Intra-

crystalline SBOM had a value of 3.2‰, that was 1.8‰ depleted compared to the 

total SBOM of that specimen.   

Comparison between nutritional strategies at this locality 

δ15N total SBOM of Bathymodiolus (0.4‰ ±0.4, n=3) and Calyptogena (1.6‰ ±1.5, 

n=3) is statistically similar between the two species (p=0.2516). 

 

3.3.2.5  Cold seep: Guaymas Basin (Fig. 3.4B) 

Bivalves harbouring thiotrophic symbionts 

Total SBOM δ15N values from C. pacifica fall between -1.8‰ and 2.3‰ (n=4), intra-

crystalline SBOM has a value of 2.2‰ (+0.5‰ enriched compared to total SBOM of 

that specimen). Soft tissue means ranged from 1.5‰ to 1.6‰ (n=2), but variability 

within the species was large, with gills being -5.4‰ (±0.1, n=2) more depleted.  

 

3.3.2.6  Cold seep: Oregon Subduction Zone (Fig. 3.4B) 

Bivalves with thiotrophic bivalves 
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The total SBOM δ15N values of C. starobogatovi ranged from 0.6‰ to 2.2‰ (n=3), 

and include one specimen with a very depleted mean value of -7.6‰. Soft tissues 

had mean values of -0.3‰ and 1.2‰.  

 

3.3.2.7  Cold seep: Monterey Bay (Fig. 3.4B) 

Bivalves harbouring thiotrophic symbionts 

C. packardana has δ15N total SBOM values ranging from 6.0‰ to 9.7‰ (n=5), and 

intra-crystalline SBOM values from 5.3‰ to 7.5‰ (n=4). The intra-crystalline values 

are -2.6 ±4.0 (n=4) depleted/enriched compared to total SBOM for individual 

specimens. Soft tissue values fall between 3.2‰ to 8.0‰ (n=3). These δ15N values 

are similar to C. stearnsii: total SBOM results range from 5.8‰ to 7.4‰ (n=3), soft 

tissues values are 4.8‰ and 4.9‰. 

Total SBOM values of C. kilmeri are much more depleted, and range from δ15N -

4.9‰ to 0.0‰ (n=3), and intra-crystalline SBOM has a value of -3.7‰. Mean soft 

tissue values are -7.8‰ and -5.6‰ (n=2). 

 

3.3.2.8  Cold seep: Fossil Hill (Fig. 3.4B) 

Bivalves harbouring thiotrophic symbionts 

E. elongata from PSC48 has δ15N total SBOM values of 0.5‰ and 0.6‰, PSC52 of 

1.3‰, and PSC66 of -6.9‰. Compared to the push core specimens, large E. 

elongata has statistically more enriched total SBOM values of 6.6‰ and 8.1‰, and 

an intra-crystalline value of 2.3‰.    

 

3.3.2.9  Cold seep: San Diego Trough (Fig. 3.4B) 

Bivalves harbouring thiotrophic symbionts 

δ15N total SBOM from the thiotrophic vesicomyid E. elongata is 10.0‰. A solemyid 

specimen shows a total SBOM value of 13.9‰. These two specimens are enriched 

compared to a lucinid specimen of the same locality, that has a total SBOM value of 

3.0‰.  

Heterotrophic bivalves 

Delectopecten sp. has a total SBOM δ15N value of 16.1‰.  
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3.3.2.10  Hydrothermal vent: South Su (Fig. 3.4C) 

Gastropods harbouring thiotrophic symbionts 

A. hessleri mean soft tissue δ15N values are 6.2‰ and 6.0‰.  

I. nautilei total SBOM has a δ15N value of 5.2‰, and a soft tissue value of 4.8‰. 

Bivalves harbouring thiotrophic symbionts 

δ15N values for B. manusensis are 2.8‰ for total SBOM, and 0.7‰ for mean soft 

tissue value.  

 

3.3.2.11  Hydrothermal vent: East Wall (Fig. 3.4C) 

Bivalves harbouring thiotrophic symbionts 

B. thermophilus δ15N values for soft tissues are -4.5‰ and -3.7‰.  

 

3.3.2.12  Hydrothermal vent: Buckfield (Fig. 3.4C) 

Bivalves harbouring thiotrophic symbionts 

δ15N total SBOM for B. thermophilus is 6.3‰.  

 

3.3.2.13  Hydrothermal vent: East Scotia Ridge (Fig. 3.4C) 

Bivalves harbouring thiotrophic symbionts 

Vesicomyidae sp. has a δ15N total SBOM value of 7.4‰. 

 

3.3.2.14  Hydrothermal vent: Kilo Moana, Lau Basin (Fig. 3.4C) 

Bivalve harbouring thiotrophic symbionts  

Whole tissues of B. brevior have δ15N values of -0.3‰ and -0.8‰. 

 

3.3.2.15  Hydrothermal vent: Tow Cam, Lau Basin (Fig. 3.4C) 

Bivalves harbouring thiotrophic symbionts 

B. brevior δ15N soft tissues values are -2.2‰ and -2.1‰.  

 

3.3.2.16  Hydrothermal vent: Kermadec Ridge (Fig. 3.4D) 
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Bivalve harbouring thiotrophic symbionts 

B. thionipta has δ15N total SBOM values of 6.1‰ and 6.5‰, and an intra-crystalline 

SBOM value of -2.9 (individually -9.5‰ more depleted). Mean soft tissue values are 

6.8‰ and 7.4‰, and individually they are +0.8‰ ±0.1 (n=2) more enriched than the 

individual total SBOM values.  

 

3.3.2.17  Shallow reducing environments: Little Ducks Keys (Fig. 3.4D) 

Bivalves harbouring thiotrophic symbionts 

C. orbicularis has δ15N total SBOM values of 3.4‰ and 3.6‰. Mean  soft tissues 

values are 1.9‰ and 2.8‰, that are individually -1.2‰ ±0.8 (n=2) more depleted 

than total SBOM.  

 

3.3.2.18  Shallow reducing environment: Magellan Bay (Fig. 3.4D) 

Bivalves harbouring thiotrophic symbionts 

Total SBOM for P. philippinana has δ15N values of 4.2‰ and 4.3‰, soft tissues 

values are 5.3‰ and 5.4‰. For individual specimens, the soft tissues are +1.1‰ 

±0.0 (n=2) enriched compared to total SBOM values. 

 

3.3.2.19  Shallow reducing environment: Ramrod Key (Fig. 3.4D) 

Bivalves harbouring thiotrophic symbionts 

Total SBOM of C. orbiculata δ15N values are 0.9‰ and 1.2‰. Mean soft tissue 

value of an individual specimen is -1.1‰, which is -2.3‰ depleted compared to 

individual total SBOM.  

 

3.3.2.20  Shallow reducing environment: Houmt Souk (Fig. 3.4D) 

Bivalves harbouring thiotrophic symbionts 

L. lucinalis δ15N total SBOM is 1.8‰, muscle tissue of this specimen has a value of 

-1.1‰ (-2.3‰ more depleted).  

 

3.3.2.21  Shallow reducing environment: Sal Rei Village (Fig. 3.4D) 

Bivalves harbouring thiotrophic symbionts 



- 105 - 

Total SBOM obtained from L. adansoni specimens had δ15N values of -3.8‰ and -

2.6, intra-crystalline SBOM values were -0.7‰ and 0.5‰  (-3.1‰ ±0.1, n=2 more 

enriched than individual total SBOM). Soft tissue values of the two specimens are -

2.3‰ and -0.6‰, showing a mean depletion of -1.8‰ ±0.4 (n=2) compared to total 

SBOM.  

 

3.3.2.22  Shallow reducing environment: Gåsevik (Fig. 3.4D) 

Bivalves harbouring thiotrophic symbionts 

The lucinid M. spinifera has a total SBOM δ15N value of 7.2‰, the soft tissue of this 

specimen had a more depleted value of 0.1‰.  

Total SBOM δ15N of T. sarsi (1.0‰) is very similar to the soft tissue value of that 

specimen (0.9‰).  

Heterotrophic bivalves 

A. alba δ15N values are 4.7‰ for total SBOM, and 11.5‰ for soft tissues.  

Total SBOM from E. tenuis has a value of 7.4‰.  

Comparison between different nutritional strategies at this locality 

Soft tissue δ15N values of the two thiotrophic species (0.1‰ and 0.1‰) are very 

depleted compared to heterotrophic A. alba (11.5‰). Total SBOM from M. spinifera 

(7.2‰) does not show this depletion compared to the two heterotrophic species 

(4.7‰ and 7.4‰).  

 

3.3.2.23  Shallow non-reducing environment: Big Hope Bay (Fig. 3.4E) 

Heterotrophic brachiopods 

δ15N total SBOM from T. sanguinea ranges from 8.2‰ to 9.9‰ (n=3), and intra-

crystalline SBOM has values of 7.1‰ and 1.1‰. Mean soft tissues have a limited 

range between 9.5‰ and 9.9‰ (n=4).  

 

3.3.2.24  Shallow non-reducing environment: Tricky Cove (Fig. 3.4E) 

Heterotrophic brachiopods 

T. sanguinea SBOM δ15N values are between 7.4‰ and 10.0‰ (n=5) for total 

SBOM, and 4.5‰ for intra-crystalline SBOM. Mean soft tissues values fall between 

8.0‰ and 8.8‰ (n=5).  
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For N. nigricans total SBOM ranges from 7.4‰ to 9.9‰ (n=4), intra-crystalline 

SBOM has a value of 2.6‰. Mean soft tissues values are between 7.7‰ and 9.3‰ 

(n=5). 

 

3.3.3  δ34S of SBOM and soft tissues 

3.3.3.1  Cold seep: Green Canyon, Gulf of Mexico (Fig. 3.4A) 

Bivalves harbouring methanotrophic symbionts 

As discussed in the methods section (3.2.2.2), all methods confirm a positive 

sulphur value for B. childressi, with mean values ranging from 8.4‰ to 15.6‰ 

(n=6), in addition resin total SBOM δ34S value (3.6‰ to 0.7‰, n=10 measurements) 

decrease with increasing %S (R-squared: 0.5823). The most positive intra-

crystalline values with a mean of 3.1‰ (maximum value 4.3‰, n=8 measurements) 

also supports this.  

Bivalves harbouring thiotrophic symbionts 

Total SBOM δ34S results for C. ponderosa were discussed in paragraph 3.2.2. 

Sulphur, and show negative sulphur values for EDTA, HCl and resin. Mean values 

(excluding resin samples) are: -5.8‰ and -5.1‰. Total resin SBOM measurments 

(n=5) have a mean value of -2.7‰, and a minimum value of -4.2‰. Total SBOM 

values obtained using the three different methods suggest that soft tissues from C. 

ponderosa have δ34S values less depleted than -10‰. The intra-crystalline SBOM 

value of -2.1‰ also support negative sulphur values.  

For V. cordata total SBOM was only obtained using EDTA, and total SBOM range 

from -6.2‰ to -2.1‰. This suggests V. cordata was using the same sulfur sources 

as C. ponderosa, that includes depleted hydrogen sulphide utilized by the 

thiotrophic bacteria they are harbouring.  

Comparison between different nutritional strategies at this locality 

Negative δ34S total SBOM values of C. ponderosa and V. cordata (-4.0‰ ±1.9, n=5) 

compared to positive values for B. childressi (12.1‰ ±2.8, n=10) are expected 

because the thiotrophic bacteria harboured in the vesicomyid clams are utilizing 

depleted hydrogen sulphide, whereas the methanotrophic Bathymodiolus (also) 

uses seawater sulphate as a sulphur source.  

 

3.3.3.2  Cold seep: Florida Escarpment, Gulf of Mexico (Fig. 3.4A) 
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Bivalves harbouring dual symbiotic bacteria 

Soft tissue δ34S data for adult B. heckerae consists of a single specimen (whole 

tissue) with large variation: 11.3‰ ±5.0 (n=6 measurments). For resin the value 

over 3‰ for one specimen (3.9‰ ±0.7, n=2) confirm the positive sulphur values.  

Juvenile B. heckerae specimens had soft tissue values similar to the adult 

specimens, ranging from 6.8‰ to 7.3‰ (n=4).  

Heterotrophic limpet 

Soft tissue δ34S for P. floridensis has a value of 4.6‰. 

Comparison between nutritional strategies at this locality.  

All the species that were analysed show positive sulphur values. This is in 

agreement with absence of thiotrophic bacteria, and suggests that they are all 

relying on the same sulphur source. 

 

3.3.3.3  Cold seep: Blake Ridge (Fig. 3.4A) 

Bivalves harbouring dual symbionts 

Soft tissue δ34S values of B. heckerae range from 7.6‰ to 8.9‰ (n=3).  

Despite low %S (generally below 3%) total SBOM obtained using resin is very 

similar to the resin value (-1.0 ±0.4, n=8 measurments), and cannot be used to 

confirm positive or negative sulphur values of SBOM.  

Bivalves harbouring thiotrophic symbionts 

Mean soft tissue values ranges from -6.0‰ to -9.7‰ (n=5) for V. venusta.  

Comparison between nutritional strategies at this locality 

V. venusta soft tissue δ34S values (-7.9‰ ±1.4, n=5) are considerably depleted 

compared to B. heckerae (+8.4 ±0.7, n=3) (p=< 0.0001). This expected because the 

V. venusta lives in symbiosis with thiotrophic bacteria that use depleted hydrogen 

sulphide as a sulphur source.  

 

3.3.3.4  Cold seep: Barbados (Fig. 3.4A) 

Bivalves with unknown nutritional strategy 

None of the measurments of total SBOM obtained using resin from  Bathymodiolus 

sp. are conclusively positive or negative.  
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Bivalves harbouring thiotrophic symbionts 

Total SBOM δ34S values of C. valvidae obtained using HCl had values of 1.0‰ and 

5.8‰. A resin value of 3.2‰ confirms the positive values of SBOM and soft tissues, 

other values are inconclusive.  

 

3.3.3.5  Cold seep: Guaymas Basin (Fig. 3.4B) 

Bivalves harbouring thiotrophic symbionts 

Total SBOM δ34S values of C. pacifica are -4.3‰ and -3.3‰, and intra-crystalline 

SBOM has a value of -2.4‰. Mean soft tissues values range from -4.3‰ to -1.3‰ 

(n=2). As expected for this range of values, they cannot be confirmed using resin 

total SBOM. Intra-crystalline SBOM obtained using resin (-2.5‰) is in agreement 

with negative sulphur values.  

 

3.3.3.6  Cold seep: Oregon Subduction Zone (Fig. 3.4B) 

Bivalves harbouring thiotrophic symbionts 

Soft tissue of C. starobogatovi have very depleted δ34S values, with values of -

24.6‰ and -24.0‰. Resin total SBOM (n=3 measurments) confirms very negative 

sulphur values, ranging from -14.9 (2.5% S) to -5.3 (5.0%) (n=4).  

 

3.3.3.7  Cold seep: Monterey Bay (Fig. 3.4B) 

Bivalves harbouring thiotrophic symbionts 

C. packardana total SBOM δ34S value is 0.3‰, which is in agreement with mean 

soft tissues values that range from -2.7‰ to 0.3‰ (n=3). As expected for this range 

close to the value of resin, they cannot be confirmed using resin total SBOM. Resin 

intra-crystalline SBOM however points towards negative sulphur values (-4.8‰, %S 

1.8%) for at least some of the specimens.  

C. kilmeri has very positive sulphur values for total SBOM (17.7‰), which is in 

agreement with soft tissue values from this species (19.2‰ and 19.3‰).  Intra-

crystalline SBOM has (variable) positive values of 2.5‰ and 9.2‰. Resin total 

SBOM are conclusively positive for several measurments, and range from 7.0‰ to 

8.7‰ (n=5).  

C. stearnsii from Monterey Bay has soft tissue δ34S values of 3.1‰ and 4.6‰, total 

SBOM resin value %S is too high to be reliable.  
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3.3.3.8  Cold seep: Fossil Hill (Fig. 3.4B) 

Bivalves harbouring thiotrophic symbionts 

Soft tissue δ34S values from Fossil Hill E. elongata are only known from PSC44: -

5.0‰ and -5.1‰. These measurments are in agreement with several negative resin 

values for all the push cores: -6.1‰ ±2.1 (n=3).   

Large E. elongata has a total SBOM value of -0.6‰.Resin values are inconclusive 

or have a high %S.  

 

3.3.3.9  Cold seep: San Diego Trough (Fig. 3.4B) 

Bivalves harbouring thiotrophic symbionts 

Total SBOM of the lucinid specimens has a δ34S value of -25.2‰. This very 

negative value is confirmed by the total SBOM obtained using resin: -10.6‰.  

For the solemyid specimens SBOM/soft tissues could also be depleted up to 25‰ 

because total resin values are negative: -6.7‰ (2.5%) and -4.3‰ (3.7%).  

E. elongata SBOM obtained using resin has values up to 4.3‰ (n=2), which is 

indicative of soft tissue values up to 20‰.  

 

3.3.3.10  Hydrothermal vent: South Su (Fig. 3.4C) 

Gastropods harbouring thiotrophic symbionts 

δ34S values of I. nautilei are -5.4‰ for total SBOM, and -7.1‰ for mean soft tissues. 

Bivalves harbouring thiotrophic symbionts 

B. manusensis total SBOM has a δ34S value of -8.1‰, and mean soft tissues show 

values of -8.3‰ and -2.0‰. These values are similar to the negative sulphur values 

of the gastropod I. nautilei.  

 

3.3.3.11  Hydrothermal vent: East Wall (Fig. 3.4C) 

Bivalves harbouring thiotrophic symbionts 

Soft tissues of B. thermophilus have δ34S values of 0.3‰ and 3.6‰.  

 

3.3.3.12  Hydrothermal vent: Buckfield (Fig. 3.4C) 
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Bivalves harbouring thiotrophic symbionts 

Total SBOM of B. thermophilus has a δ34S value of 0.2‰.  

 

3.3.3.13  Hydrothermal vent: East Scotia Ridge (Fig. 3.4C) 

Bivalves harbouring thiotrophic symbionts 

Vesicomyidae sp. total SBOM value is δ34S -2.9‰ 

 

3.3.3.14  Hydrothermal vent: Kilo Moana, Lau Basin (Fig. 3.4C) 

Bivalve harbouring thiotrophic symbionts  

Whole tissues of B. brevior have δ34S values of 2.0‰ and 2.7‰.  

 

3.3.3.15  Hydrothermal vent: Tow Cam, Lau Basin (Fig. 3.4C) 

Bivalve harbouring thiotrophic symbionts 

B. brevior δ34S soft tissues are 2.8‰ and 2.9‰.  

 

3.3.3.16  Hydrothermal vent: Kermadec Ridge (Fig. 3.4D) 

Bivalve harbouring thiotrophic symbionts 

B. thionipta mean soft tissue δ34S values are -14.2‰ (±4.9) and -6.2‰(±7.7) and 

show large variation between soft tissues. Resin total SBOM values confirm the 

very negative values, with measurments ranging from -12.3‰ to -9.3‰ (n=3).  

 

3.3.3.17  Shallow reducing environments: Little Ducks Keys (Fig. 3.4D) 

Bivalves harbouring thiotrophic symbionts 

The lucinid Codakia orbicularis δ34S total SBOM value is -9.9‰, mean soft tissues 

are more depleted with values of however -16.2‰ (±4.0) and -20.3‰ (±1.6). Total 

SBOM resin value is in agreement with the depleted values: -6.4‰.  

 

3.3.3.18  Shallow reducing environment: Magellan Bay (Fig. 3.4D) 

Bivalves harbouring thiotrophic symbionts 
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Mean δ34S values of soft tissues from P. philippiana are -20.4‰ and -19.6‰.  

 

3.3.3.19  Shallow reducing environment: Ramrod Key (Fig. 3.4D) 

Bivalves harbouring thiotrophic symbionts 

For C. orbiculata a single soft tissue has a δ34S value of -17.9‰. Total SBOM 

obtained using resin confirms the negative sulphur value, ranging from -6.8‰ to -

3.1‰ (n=3).  

 

3.3.3.20  Shallow reducing environment: Houmt Souk (Fig. 3.4D) 

The muscle tissue of L. lucinalis has a δ34S value of -24.6‰.  

 

3.3.3.21  Shallow reducing environment: Bocas del Toro (Fig. 3.4D) 

Bivalves harbouring thiotrophic symbionts 

C. imbricatula muscle tissue has a value of δ34S -24.6‰. Total SBOM obtained 

using resin is in agreement with negative sulphur values, with a most depleted 

value of -4.0‰ (n=3 measurments).  

 

3.3.3.22  Shallow reducing environment: Sal Rei Village (Fig. 3.4D) 

Bivalves harbouring thiotrophic symbionts 

Lucina adansoni has a total SBOM δ34S value of -20.3‰, and mean soft tissues 

values are -15.6‰ (±3.2) and -13.7‰ (±4.5).  

Total SBOM (-10.1‰) and intra-crystalline SBOM (-2.5‰ and -3.5‰) are in 

agreement with these very negative sulphur values.  

 

3.3.3.23  Shallow reducing environment: Gåsevik (Fig. 3.4D) 

Bivalves harbouring thiotrophic symbionts 

M. spinifera soft tissue value: δ34S -23.6‰. Total SBOM obtained using resin 

confirms the very low sulphur values, with a minimum value of -5.3‰.  

Soft tissues from T. sarsi are similarly depleted as M. spinifera (-19.1‰). This is 

also reflected in total SBOM obtained using resin: -10.5‰. 
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Heterotrophic bivalves 

A. alba soft tissue has a δ34S value of -4.7‰.  

Comparison between different nutritional strategies at this locality 

The two thiotrophic bivalves species are more depleted than A. alba, likely because 

they are more reliant on depleted hydrogen sulphide as a sulphur source.  

 

3.3.3.24  Shallow non-reducing environment: Big Hope Bay (Fig. 3.4E) 

Heterotrophic brachiopods 

Soft tissue δ34S values from T. sanguinea range from 16.0‰ to 17.0‰ (n=4). Five 

measurments of resin total SBOM > 3‰ confirm the positive values, with a 

maximum of 5.0‰. Intra-crystalline values of 6.4‰ and 6.6‰ are in agreement with 

this.  

 

3.3.3.25  Shallow non-reducing environment: Tricky Cove (Fig. 3.4E) 

Heterotrophic brachiopods 

Total SBOM of T. sanguinea has a δ34S value of 13.3‰, and the positive values are 

confirmed by resin total SBOM (maximum value of 5.3‰ (1.9%), R-squared of 0.94, 

n=16 measurments). Mean soft tissue values fall between 13.7‰ and 16.7‰ (n=5).  

Notosaria nigricans soft tissues range from 15.4‰ to 17.2‰ (n=4). All measured 

resin total SBOM values are > 3‰, with a maximum of 9.1‰ (n=5).  

Soft tissues of L. neozelanica range from δ34S 12.0‰ to 18.1‰ (n=1). Total SBOM 

values obtained using resin of 4.2‰ and 3.9‰ are in agreement with positive 

SBOM/soft tissue sulphur values. 

L. uva mean soft tissue has a value of 18.1‰.  
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3.3.4  Pyrolysis GC/MS comparison of total SBOM, intra-

crystalline SBOM and shell powder 

The molecular composition of total SBOM (isolated using cation exchange resin), 

intra-crystalline SBOM (isolated using cation exchange resin), and untreated shell 

powder from Calyptogena ponderosa (Gulf of Mexico) were analysed using Py-

GC/MS. The results are presented as labelled total ion chromatograms in Fig. 3.5. 

As expected, the signal from the shell powder was much smaller than for the 

isolated SBOM (10x less than total SBOM), because the shell consists of mostly 

inorganic material.  

The untreated shell powder contains many of the same components as the SBOM 

samples, confirming that isolated SBOM is chemically similar to original SBOM. The 

presence of Phenol, 2,4-bis(1,1-dimethylethyl) (19) in the shell powder sample is 

unexpected, and potentially a contaminant because it is used as an antioxidant in 

rubber.  

Of particular interest to this study is the difference in peak distribution between total 

SBOM and intra-crystalline SBOM, in particular the higher abundance of protein 

break-down products (15-20 minutes) in total SBOM, and higher relative lipid 

abundance in intra-crystalline SBOM. Because no TMAH was used in these 

samples the lipids in the shell are cleaved differently from larger molecules, but they 

are the fatty acids/FAMES that have previously been observed in pyrograms of 

SBOM (Chapter 2). The presence of phthalate plasticizer (14) in both SBOM 

samples is likely a contaminant from the isolation procedure.  

 

 

 

 

 

 

 

Figure 3.5  Total ion chromatograms from pyrolysis GC/MS for total SBOM, intra-
crystalline SBOM, and shell powder of C. ponderosa  

(p. 114) SBOM samples were isolated using cation exchange resin.  
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1 Toluene 11 5,10-Diethoxy-2,3,7,8-tetrahydro-1H,6H-
dipyrrolo[1,2-a;1',2'-d]pyrazine 

2 Ethyl Benzene 12 Squalene 

3 Styrene 13 2-Propenoic acid, 2-methyl-, methyl ester 
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3.4  Discussion 

The aim of this study is to identify the different types of nutritional strategies using 

the stable isotope values (δ13C, δ15N, δ34S) of total SBOM and intra-crystalline 

SBOM, as well as shell carbonate. Of these three potential proxies only total SBOM 

has been shown to closely relate to soft tissues values/nutritional sources (Chapter 

2). The presented total SBOM data in this study shows that it is generally possible 

to differentiate nutritional strategies from the same locality using total SBOM values. 

They however also reveal large isotopic variability of each nutritional strategy 

across localities and environmental settings. It is critical to understand the possible 

ranges of isotopic values for each nutritional strategy (methanotrophy, thiotrophy, 

dual symbiosis, and heterotrophy), before it can be determined whether it is 

possible to differentiate nutritional strategies from each other. Therefore total SBOM 

variability is firstly discussed per nutritional strategy, and subsequently different 

strategies are compared.   

The second part of the discussion focusses on the relationship between total SBOM 

and intra-crystalline SBOM, and the potential of the latter pool to differentiate 

nutritional strategies.  

In the last section the incorporation of nutritional sources into the δ13C signal of 

shell carbonate is discussed, and possible application of shell carbonate to identify 

nutritional strategies.  

 

3.4.1.  Total SBOM variability within nutritional strategies 

To be able to use the isotopic value of SBOM to differentiate various nutritional 

strategies, it is crucial to understand the isotopic SBOM variation within each 

nutritional strategy. Much of this variation is expected to be caused by different 

environmental sources, and isotopic variation of these sources. In particular large 

differences are possible between taxa from the various environmental settings: cold 

seeps, hydrothermal vent, and shallow (non-)reducing environments, that are 

characterized by very different biochemical conditions. Cold seeps are stable 

environments with high concentrations of methane and AOM-produced sulphide, 

whereas hydrothermal vents are short-lived and vigorous places, with heated fluids 

enriched in sulphide and metals. Animals living in shallow reducing environments 

do not have to deal with the food shortage of the deep sea, and their ecosystems 

are photosynthesis-based, instead of dominated by chemosynthesis. In addition, 
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the physiology and behavioural strategies of animals can be different between 

these environmental settings.  

In this section, where possible, the isotopic relationship between potential 

environmental sources and total SBOM was calculated to investigate how the 

environmental sources are incorporated into SBOM, and whether fractionation 

occurs during uptake and incorporation. This relationship is discussed per 

nutritional strategy, and the variation that can be found (i) between localities of the 

same environmental setting, and (ii) between different environmental settings. In 

general this section focusses on total SBOM data and discussion of soft tissue data 

is secondary. 

 

3.4.1.1. Methanotrophy  

In this section the carbon, nitrogen and sulphur measurements of B. childressi from 

the Gulf of Mexico seeps are discussed. Our suite of samples only contained 

methanotrophic/dual symbiotic Bathymodiolus taxa from cold seep localities, but 

both nutritional strategies have also been found in Bathymodiolus species from 

hydrothermal vents.  

Cold seeps 

Carbon. Bivalves harbouring methanotrophic symbionts use methane from venting 

fluids, as both an energy source and as a carbon source (Fisher et al., 1990; 

Petersen & Dubilier, 2009). The production of methane is associated with large 

kinetic fractionation that discriminates against 13C, which can lead to δ13C values of 

methane as negative as -110 (Whiticar, 1999). This methane is used by 

methanotrophic bivalves following the simplified chemical reaction: oxygen + 

methane  carbon dioxide + organic matter (nutrition) (Childress & Girguis, 2011). 

All the symbiotic bacteria are related to Type I methanotrophic 

Gammaproteobacteria (Duperron, 2010), but the isotopic fraction of methane when 

incorporated into CO2 and bacterial biomass is unclear: isotopic discrimination has 

been reported to be +0‰ at cold seeps (cf. Fisher et al., 1990; as used by Feng et 

al., 2015), as well as between -35‰ to -5‰ in laboratory conditions, because the 

microbes involved preferentially use lighter isotopes (Templeton et al., 2006). In 

general, maximum fractionation will be achieved when there is an excess of 

methane over oxygen, resulting in only partial methane oxidation. As a hypothesis 

we predicated the δ13C of SBOM/soft tissue from bivalves harbouring 
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methanotrophic symbionts to reflect the isotopic value of the methane source 

without any fractionation (Table 3.7). 

B. childressi from the Gulf of Mexico seeps is the only methanotrophic bivalve 

species analysed in this study, and the extremely depleted δ13C total SBOM values 

(-51.9‰ ±5.8, n=9) confirm the use of methane as a carbon source by this species. 

The specimens were obtained from three separate seep localities in the Green 

Canyon area of the Gulf of Mexico: the brine pool GC233, and the gas hydrate 

seeps GC185 and GC234. The isotopic δ13C value of methane differs between 

these three localities (shown in Figure 3.4), and the largest variation is caused by 

the difference between a relatively depleted biogenic origin of the methane at 

GC233 (δ13C -64.3‰ to -65.5‰) and a less depleted thermogenic origin for the 

other two localities (GC185, δ13C -44.1‰ to -46.0‰, and GC234, δ13C -49.4‰ to -

48.7‰) (Sassen et al., 2003; Pohlman et al., 2005). This difference exists because 

biogenic methane is produced from organic matter as a metabolic by-product of 

methanogenic microbes, whereas thermogenic methane results from the effects of 

increased pressure and high temperature on organic matter during deep burial 

(overview in Demirbas, 2010; Whiticar, 1999). The difference in the type of methane 

is reflected in the total SBOM δ13C values of methanotrophic B. childressi from 

these localitites, as GC233 (-54.8‰ ±1.7, n=6) is statistically depleted compared to 

GC234 and GC233 (-46.0‰ ±8.1, n=3) (p=0.0489).  

To further investigate the potential fractionation of methane when utilized by the 

symbiosis, the difference between calculated (0‰ fractionation of the source 

methane δ13C value) and measured δ13C SBOM values is shown in Table 3.7. This 

overview shows that the isotopic fraction between the methane source and total 

SBOM is not consistent, and δ13C of total SBOM is ~ +10‰ enriched compared to 

local methane values at GC233, depleted by ~ -3‰ at GC185, and both depleted 

and enriched at GC234 by similar differences. Bacterial fractionation can explain 

the slight depletion compared to the methane source but the enrichment of total 

SBOM is unexpected. There are several explanations for this relationship: i) δ13C of 

methane utilized by our specimens differs from published values, possibly because 

the carbon composition/concentration may have varied through time, ii) positive 

fractionation when δ13C is incorporated from the soft tissues into SBOM, iii) shell 

removal techniques cause a positive fractionation of SBOM values  δ13C < -60‰, 

iv) specimens with enriched δ13C total SBOM supplemented their chemosymbiotic 

diet by filter-feeding on particulate organic matter with more positive δ13C values (-

25.0‰ to -19.0‰, Table 3.2), since B. childressi still retains the ability to filter-feed, 

although less effectively than heterotrophic bivalves (Page et al., 1990). To 
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distinguish between these possibilities, the SBOM data from GC233 (δ13C -57.9‰ 

to -53.1‰, n=6) can be compared to published soft tissue δ13C data from the same 

locality, ranging from -77.0‰ to -50.3‰ (1991/1992 and 2006 samples, n=128, 

Riekenberg et al., 2016). The complete overlap between data from this study and 

published values shows that no additional isotopic effect related to SBOM synthesis 

or isolation is required to explain our dataset, and that δ13C variability could be 

attributed to changing methane δ13C values or filter-feeding. However, because our 

data falls at the top of the range of published δ13C values (mean: -62.3‰ ±5.3, 

n=128), an SBOM-related δ13C effect can certainly not be excluded. 

One specimen from GC234 shows very enriched δ13C values for both total SBOM (-

37.0‰) and shell carbonate (-0.5‰) compared to the other analysed specimens 

(SBOM: δ13C -53.7‰ ±2.7, n=7; shell carbonate: -6.5‰ ±0.8, n=7). As explained 

above in the “Carbon” section, filter feeding on POM could lead to the enrichment of 

soft tissues/SBOM values compared to the local methane value. Unfortunately no 

sulphur or nitrogen data are available for this specimen to further support this 

hypothesis. It has however been suggested that particulate resources are an 

important part of the nutrition of B. childressi from gas hydrate seep GC185 

(Riekenberg et al., 2016), and a similar scenario could apply to GC234. (Shell 

carbonate is further discussed in section 3.4.6) 

 

Table 3.7  Methanotrophic species: calculated and measured δ13C values for total 
SBOM and shell carbonate values 

Methane source values are given in Table 3.3. δ13C shell was calculated 
using [90% DIC + 10% SBOM + 2‰ fractionation], as explained in section 
3.4.6.1), the same formula was used to calculate [% metabolic contribution] 
based on measured δ13C values. Remarks are made on the difference 
between calculated SBOM/shell carbonate and measured values. 

 

Specimen Methane 

δ13C              

δ13C 

total 

SBOM 

Remarks 

ΔSBOM-

source 

Calculat

ed     

δ13C 

shell 

δ13C shell 

(% 

metabolic 

carbon) 

Remarks 

Δcalculated-

measured 

δ13C shell  

B. childressi 

(GC233) 

 

-64.3 to -

65.5 

-55.4 enriched 

~+10‰ 

-3.8 -5.8 

(13.5%) 

depleted DIC 

or higher % 

metabolic C 

 

-64.3 to -

65.5 

-54.8 enriched 

~+10‰ 

-3.8 -7.6 

(17.5%) 

-64.3 to -

65.5 

-53.1 Enriched 

~+10‰ 

-3.6 -5.7 (14%) 
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Specimen Methane 

δ13C              

δ13C 

total 

SBOM 

Remarks 

ΔSBOM-

source 

Calculat

ed     

δ13C 

shell 

δ13C shell 

(% 

metabolic 

carbon) 

Remarks 

Δcalculated-

measured 

δ13C shell  

-64.3 to -

65.5 

-54.2  enriched 

~+10‰ 

-3.7 -6.5 (15%) 

-64.3 to -

65.5 

-53.4 enriched 

~+10‰ 

-3.6 -6.3 (15%) 

-64.3 to -

65.5 

-57.9 enriched 

~+10‰ 

  

B. childressi 

(GC234) 

 

-49.4 to -

48.7 

-37.0 enriched 

~+10‰ 

-1.2 -0.5 (8%) enriched DIC 

or lower % 

metabolic C 

-49.4 to -

48.7 

-52.6 depleted 

~-3‰ 

-2.7 -7.3 

(18.5%) 

depleted DIC 

or higher % 

metabolic C 

B. childressi 

(GC185) 

-46.0 to -

44.1 

-48.4 depleted    

~-3‰ 

   

 

Nitrogen. Chemosymbiotic bivalves are well-known to exhibit depleted (δ15N < 

6‰), and sometimes negative, nitrogen isotope values of their soft tissues (Conway 

et al., 1994). Low δ15N values are thought to indicate nitrogen that is locally 

assimilated, but for most chemosymbiotic species this is not well understood and 

direct δ15N measurements of local inorganic sources are very scarce (e.g. Kennicutt 

et al. 1992; Becker et al., 2010). Inorganic nitrogen is present at vanishingly small 

concentrations in surface waters (Ryther and Dunstan, 1971) but very abundant at 

vents and seeps, in the form of nitrate (δ15N 4‰ to 6‰, ∼ 40 μm concentrations) 

and ammonium (δ15N -20‰ to +10‰, present up to millimolar concentrations) (see 

Table 3.3, and references within Lee & Childress, 1994). Both inorganic nitrogen 

sources can be assimilated by either the bivalve hosts and/or their symbionts. In 

particular ammonium δ15N can be very low due to dissimilatory nitrate reductase, 

causing a -20‰ to -30‰ fractionation compared to source nitrate (Granger et al., 

2008). No evidence has been found for the fixation of nitrogen (N2), which is an 

energetically costly process and unlikely in an environment with abundant nitrate 

and ammonium (Lee et al., 1992 and 1999; Lee and Childress, 1994).  

The δ15N of bivalve soft tissues and SBOM depends on the δ15N values and 

proportions of environmental nitrate/ammonium. In addition, laboratory studies have 

shown that both nitrate and ammonium can undergo fractionations > -20‰, that are 
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largely dependent on concentration, as well as the types of enzymes used for 

assimilation (Lee & Childressi 1994; Lee et al., 1999, and references within).  

It has also been suggested that photosynthetically derived nitrogen (POM: δ15N -

2‰ to +11‰) obtained via filter-feeding may be an important nutritional component 

for chemosymbiotic bivalves (shown for B. childressi by Pile and Young, 1999). If 

nitrogen is obtained from POM or the symbiont producers, it is possible that the 

δ15N of the bivalve host reflects the higher trophic level as a consumer. Such a 

trophic step is generally accompanied by a δ15N +3.4‰ increase, whereas little or 

no change is expected for carbon and sulphur (DeNiro and Epstein, 1978; Michener 

et al., 2007). Hypothetically, such a trophic step is only expected when symbionts 

are digested, instead of through translocation of organic matter from the symbionts. 

For B. childressi specifically both types of nutrient acquisition have been suggested 

(Fisher and Childress, 1992; Cavanaugh et al., 1992; Barry et al, 2002; Streams et 

al., 1997).  

In summary, because information about environmental nitrogen sources and cycling 

is largely absent, and the kinetic isotopic effects of cycling and assimilation can be 

pronounced, it is will be very challenging to identify the nitrogen sources of 

specimens in detail. Comparison of δ15N SBOM between nutritional strategies, 

localities and environmental settings should be handled with caution.  

Methanotrophic B. childressi has the most depleted total SBOM δ15N (-12.5‰ ±1.9, 

n=10) of any species in our data set. And similarly negative δ15N soft tissue values 

of this species and locality (-14.8‰ ±4.0, n=128, Riekenberg et al., 2016) have 

been linked to the use of ammonium (e.g. MacAvoy et al., 2008; Becker et al., 

2010), particularly because millimolar concentrations of ammonium have been 

measured at the Gulf of Mexico (Joye et al., 2005). Although local δ15N values are 

not known for any of the localitites in our database, the very negative δ15N values of 

SBOM make the use of ammonium as a nitrogen source very likely.  

Sulphur. Methanotrophic bacteria reflect the δ34S signature of ambient seawater 

sulphate that they use as a sulphur source, and this is also reflected in the bivalve 

host (Vetter and Fry, 1998). To deal with sulphide toxicity, methanotrophic 

symbioses are capable of oxidizing hydrogen sulphide to the less toxic thiosulphate 

(Childress and Girguis, 2011).  

The δ34S values of B. childressi SBOM (δ34S 8.4‰ to 15.6‰) are very similar to 

published soft tissue values (δ34S 10.3‰ ±2.9, n=128, Riekenberg et al., 2016), and 

relatively close to the value of seawater sulphate in the Gulf of Mexico (δ34S 

20.3‰). The data is also similar to the soft tissue δ34S composition of resident 



- 121 - 

heterotrophs present at GC233, e.g. the grazing snail Bathynertia naticoidea (δ34S 

9.3‰ ±2.0, n=6) and the polychaete Methanoaricia dendrobranchiata (16.5‰ ±2.7, 

n=9) (McAvoy et al., 2008) that are expected to reflect marine phytoplankton that 

assimilate sweater sulphate (generally δ34S +15‰ to +20‰). Similarly, total SBOM 

δ34S values are comparable to total SBOM obtained from filter-feeding bivalves 

living in shallow non-reducing environments, ranging from δ34S ∼+7‰ to +11‰ 

(Chapter 2, soft tissues: ∼+11‰ to +16‰).  

At cold seeps there is also the possibility of incorporating a 34S depleted sulphate 

pool, when depleted sulphide is re-oxidized by thiotrophic bacteria with negligible 

fraction of δ34S. Different degrees of temporal/spatial mixing between seawater 

sulphate and re-oxidized AOM sulphate could also explain the ~ 5‰ variation 

observed between specimens at GC233 (Feng et al., 2015).  

 

3.4.1.2  Thiotrophy 

Our suite of samples contains thiotrophic bivalves from three environmental 

settings: cold seeps, hydrothermal vents and shallow reducing environments. In this 

section the general environmental sources and physiological processes associated 

with thiotrophy are described first, followed by a comparison of the data across the 

different environments. Collated specimens from Gåsevik and other localities are 

generally excluded from the discussion because of an anomalously large difference 

between SBOM and soft tissue values, which is shown in section in 3.4.2.3. 

Current understanding of thiotrophy 

Carbon. Thiotrophic bacteria use dissolved inorganic carbon (DIC, usually in the 

form of CO2) as a carbon source. The majority of thiotrophic bacteria involved in 

symbioses belong to the class of Gammaproteobacteria, that fix carbon via the 

Calvin-Benson-Bassham cycle (CBB) (Nelson & Fisher, 1995; Dubilier et al., 2008). 

The isotopic fractionation of DIC during this process depends on the specifics of the 

CO2-fixing enzyme ribulose bisphosphate carboxylase/oxygenase (RubisCO) 

(Nakagawa & Takai, 2008). RubisCO can be present in different forms (I, II, III) that 

all catalyse the same reactions, but have different structures and physiological 

purposes (overview in Tabita et al., 2008). In addition, Form I RubisCO can be 

further classified into four types (A, B, C, D) based on the large subunits of 

RubisCO. Most thiotrophic bivalves harbour bacteria that use Form IA RubisCO 

(Stewart et al., 2005). The fractionation associated with this type of RubisCO was 

shown to be around δ13C -25‰ in laboratory studies (Ruby et al., 1987; Scott et al., 
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2004), but has been hypothesized to be as large as -35‰ to -40‰ in nature 

(Robinson and Cavanaugh, 1995; Robinson et al., 2003). In addition to Form I, 

Proteobacteria can also use RubisCO Form II, that causes a much smaller carbon 

isotope fractionation of δ13C -9-15‰ (Robinson, 2003). This difference in 

fractionation between the two types of RubisCO is caused by lower discrimination 

against 13C in Form II. 

The reductive tricarboxylic acid cycle (rTCA) is an alternative CO2 fixation pathway 

used by Epsilonproteobacteria. Organic carbon produced via the rTCA cycle in the 

deep sea generally has values more enriched than δ13C -16‰ (Hügler et al., 2011).  

In addition to differences related to CO2 fixation pathways, DIC δ13C variability could 

also be of influence on the δ13C value of SBOM. In general, the DIC at deep sea 

environments is more depleted due to conversion of CO2 into organic matter, which 

removes 12C and results in 13C enrichment of the residual DIC (Hoefs, 2015).  

Nitrogen. A general discussion on the nitrogen sources of chemosymbiotic animals 

is given in 3.4.1.1, in the nitrogen section. The capability of thiotrophic symbioses to 

utilize nitrate or ammonium can be confirmed by the presence of key enzymes for 

their assimilation. Thus far enzymes for the use of ammonium have been detected 

in species from the families Vesicomyidae, Lucinidae, Solemyidea and Mytilidae 

and evidence for nitrate assimilation in Mytilidae and Solemyidae, though not all 

species appear to be capable of using nitrate (Lee and Childress, 1994; Lee et al., 

1999). At both vents and cold seeps ammonium concentrations are generally high, 

up to millimolar concentrations, whereas nitrate is usually present at ∼40μm 

(references within Lee and Childress, 1994).  

Sulphur. Thiotrophic bacteria use sulphide as an energy source and as a sulphur 

source, and the sulphide is utilized with negligible fractionation (Stewart et al., 

2005). At cold seeps environmental sulphide is produced when diffusing methane is 

oxidized anaerobically in the subsurface by sulphate-driven AOM: CH4  + SO4
2-    

HCO3
- + HS- + H2O, a process that is mediated by methanotrophic archaea and 

sulphate reducing bacteria (Knittel & Boetius, 2009). The bacterial sulphate 

reduction results in a kinetic isotope fractionation of sulphide by δ34S -30‰ to -70‰, 

dependent on the rate of reduction and openness of the system (Habitcht and 

Canfield, 2001). The preferential use of the lighter 32S isotope by this process 

therefore leads to negative δ34S values for sulphide, that is greatly depleted 

compared to the δ34S seawater sulphate (Peterson and Fry, 1987). However due to 

e.g. mixing and sulphide oxidation, this difference in δ34S between sulphide and 
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sulphate may however be limited, e.g. a difference of 15-30‰ between the two 

pools was observed in clam beds of Blake Ridge (Heyl et al., 2007). 

Similar to cold seep ecosystems, in shallow reducing habitats (seagrass beds, 

mangroves and fjords) 34S depleted sulphide is also produced as a metabolic end 

product: bacteria anoxically decompose organic matter, whilst using sulphate as an 

electron acceptor (Jorgensen et al., 1982). The expressed fractionation during this 

process depends on environmental and physiological factors (Bradley et al., 2016). 

The organic matter utilized by the bacteria naturally accumulates in the subsurface 

of  seagrass beds and mangrove fringes, but also in fjords from decaying 

vegetation and sewage (Van der Heide, 2012; Dando and Southward, 1986). In 

addition, chemosymbiotic taxa can also be found in reducing unvegetated mud and 

sand (Meyer et al., 2008). Although sulphide concentrations can be very low in 

these habitats, the constant flux can support a high diversity of chemosymbiotic 

species, particularly Lucinidae, Thyasiridae and Solemyidae (Dubilier et al., 2008; 

Taylor and Glover, 2010).  

In contrast to both cold seeps and hydrothermal vents, the large majority of 

sulphide present at hydrothermal vents is geologically derived, and results from 

chemical interactions between hot rocks and seawater sulphate below the seafloor 

(Van Dover, 2000). The sulphide within hydrothermal vent fluids generally has a 

δ34S composition of -5 to +8‰, and geographical differences are much more limited 

(Shanks, 2001). Some of the suphide present at hydrothermal vents can be 

produced by AOM, although this process is much less common (as discussed 

above). In addition to sulphide, it has been shown that thiotrophic (vent) 

invertebrates can also oxidize thiosulphate. This is an intermediate sulphur 

oxidation product, produced from hydrogen sulphide (Beinart et al., 2015).  

Unfortunately very few environmental sulphide sources are known for our localities 

(Table 3.4), and it will be challenging to directly relate δ34S differences between 

species to either variation in local sources, or nutritional differences. Particularly 

because sulphide δ34S values can be very variable locally (e.g. Rodrigues et al., 

2013). But whilst positive δ34S values cannot be taken as an absence of thiotrophy, 

negative δ34S values of total SBOM are likely to indicate the presence of thiotrophic 

bacteria. Therefore thiotrophy is usually inferred from soft tissue values δ34S < 5‰ 

(Vetter and Fry, 1998). 
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Comparison between environmental settings 

Carbon. In general δ13C total SBOM of seep thiotrophs (-31.6‰ ±2.7, n=51) and 

vent thiotrophs (-29.7‰ ±3.3, n=22) are both consistent with DIC utilized by 

thiotrophic bacteria using RubisCO Form IA (δ13C -25‰ to -40‰). The exception is 

the vent gastropod Alviniconcha (δ13C -11.6‰ ±2.3, n=3), that is discussed 

separately below.  

Interestingly, δ13C total SBOM from both vent and seep thiotrophs is statistically 

depleted compared to thiotrophs from shallow reducing environments (24.8‰ ±2.7, 

n=14) by approximately 5‰ (p= <0.001, which was also found for soft tissue 

comparison between the environmental settings). Table 3.8 shows that this 

difference is not due to DIC δ13C differences between the environments, because 

calculated total SBOM fractionation between deep sea (-31.0‰ ±2.9, n=75, vents 

and seeps) versus shallow (-26.1‰ ±2.0, n=14) also shows this distinction (p= < 

0.0001). Only for bivalves from the family Lucinidae, total SBOM δ13C comparisons 

can be made across the environments: these show that lucinids from cold seeps (-

29.1‰, n=1) and hydrothermal vents (-27.1‰ ±0.7, n=5, locality =1) are more 

depleted than shallow living taxa (-24.9‰ ±1.9, n=11), although the difference is 

less extreme. 

The enriched δ13C total SBOM values at shallow reducing environments could be 

caused by different fractionation of DIC due to different environmental conditions, 

whereby it is possible to fractionate to a greater degree in the deep sea. One 

explanation is that at vents and seeps there is an increased amount of inorganic 

carbon as well as a lower pH, that leads to increased environmental CO2 partial 

pressure, facilitating CO2 transport and diffusion to the symbionts (Childress and 

Girguis, 2011), allowing for greater fractionation. Another possibility is that 

thiotrophs living at shallow localities are more likely to supplement their diet by filter-

feeding 12C enriched POM, which is much more abundant at shallow depth (Dubilier 

et al., 2008). It however seems unlikely that all analysed species would be 

supplementing their diet with very similar amounts of filter feeding. In addition, the 

measured δ13C total SBOM values would require the majority of nutrition to be 

derived from POM, which is not reflect in the δ15N and δ34S values of these species 

(as discussed in the nitrogen and sulphur sections below).  

Carbon – comparison between families. As noted in the sections above, the 

differences between Lucinidae from the various environmental settings are less 

extreme than when the whole dataset is considered. This suggests that family 

specific δ13C differences in total SBOM could exist. In particular it was noted that 
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Vesicomyidae total SBOM δ13C values from cold seeps (-31.9‰ ±2.2, n=48) and 

hydrothermal vents (-32.7‰ ±1.0, n=3) are generally depleted compared to the 

abovementioned Lucinidae from the same environment type, although data is 

limited. To further investigate this potential difference, soft tissue δ13C values from 

seep Vesicomyidae from our dataset (-36.3‰ ±2.5, n=22, range: -46.5‰ to -

32.7‰) can be compared to published soft tissue data from cold seep lucinids, 

because B. thionipta is the only known vent lucinid. Three seep species/localities 

could be found in the literature, and soft tissue δ13C values range from 30.5‰ to -

27.7‰ (Duperron et al., 2007; Olu-Le Roy et al., 2004; Rodrigues et al., 2013). This 

shows that 13C depletion could be inherent to Vesicomyidae. The physiological 

functioning of Vesicomyidae is most different from all bivalve families, including 

vascular haemoglobin to transport oxygen, and a sulphide-binding protein 

(Childress and Girguis, 2011). This might make Vesicomyidae better adapted to a 

chemosymbiotic lifestyle than Lucinidae, and able to live without additional filter 

feeding or ability to fractionate DIC to a greater degree. Alternatively, it should be 

noted that lucinids from shallow environments are often considered mixotrophic 

(e.g. Van der Geest, 2014), and this could potentially also apply to deep sea 

species.  

Table 3.8  Thiotrophic species: calculated fractionation of DIC for total and intra-
crystalline δ13C SBOM, calculated and measured δ13C shell carbonate values  

Published DIC data are given in Table 3.2, shell carbonate and metabolic 
carbon calculations can be found at Table 3.7. If the δ13C value of DIC was 
unknown, δ13C 0% for deep sea localities and 1.5% for shallow environments 
was used. Calculations using soft tissue values are in between brackets. 
Remarks are made on the difference between calculated shell carbonate and 
measured values.  

 

Specimen δ13C 
total 
SBOM 
[soft 
tissues] 

ΔDIC-
total   
SBOM  
[soft 
tissues]       

ΔDIC- 
intra 
SBOM 

Calculated     
δ13C shell 
based on 
SBOM 
[based on 
soft tissues] 

δ13C shell 
(% 
metabolic 
carbon) 

Remarks 

Cold seeps  

C. ponderosa  
(GC272) 

 

-33.3 -32.7  -0.8 1.2                       
(4%) enriched DIC 

or lower % 
metabolic C 

 

-33.1 -32.5 -28.6 -0.8 1.1                       
(4.5%) 

-31.6 -31.0  -0.6 1.4                      
(4%) 
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V. cordata 
(GC272) 

 

-34.6 -34.0  -1.0 1.0                     
(5.5%) enriched DIC 

or lower % 
metabolic C 

 

-34.4 -33.8  -0.9 1.4        
(4.5%) 

-34.7 -34.1  -0.8 1.2                    
(4%) 

V. cf. kaikoi 
(FE)                  

-30.2           
[-46.5] 

-30.1       
[-46.4] 

 -1.4 to -0.7     
[-3.0 / -2.2 ] 

-2.8 as expected 
for ST 

V. cf. venusta  
(Blake Ridge) 

 

-37.0               
[-37.2] 

-37.0               
[-37.2] 

 -1.7                 
[-1.7] 

1.1                        
(2.5%) 

enriched DIC 
or lower % 
metabolic C 

 

-31.1                
[-37.2] 

-31.1                
[-37.2] 

 -1.1                 
[-1.7] 

0.3                       
(5%) 

-33.0               
[-36.2] 

-33.0               
[-36.2] 

 -1.3                 
[-1.6] 

1.0                     
(3%) 

-32.1                
[-36.2] 

-32.1                
[-36.2] 

 -1.2                  
[-1.6] 

0.9                     
(3%) 

-30.2               
[-37.6] 

-30.2               
[-37.6] 

 -1.0                 
[-1.8] 

0.9                    
(3.5%) 

C. valvidae 
(Barbados) 

 

-31.4 

 

-31.4 

 

 -1.1 1.3                          
(2%) 

enriched DIC 
or higher % 
metabolic C 

 
-31.9 -31.9    

-32.4 -32.4    

C. pacifica 
(Guaymas B) 

 

 [-35.4] -32.6 [-3.5] -0.7  

-32.8 -32.8                
[-35.1] 

 -1.3                
[-1.5] 

-0.9 (9%) as expected. 
or slightly  
enriched DIC 
or higher % 
metabolic C 

 

-29.1 -29.1                
[-35.6] 

-29.8   

-32.6 -32.6                    
[-35.4] 

-30.2   

-33.8 -33.8                   
[-35.4] 

-31.9 -1.4                 
[-1.5] 

-0.7 (8%) 

C. packardana 
(Monterey 
Bay) 

 

-34.4 -34.4         
[-35.3] 

-29.5    

-34.7 -34.7 -30.6    

-35.1 -35.1              
[-35.2] 

-30.1    

-30.1 -30.1     

-32.1 -32.1       
[-34.6] 

-28.7    

C. 
starobogatovi 
(Oregon) 

 

-25.1 -25.1     

-34.2 -34.2     

-33.8 -33.8                 
[-36.8] 

    

-32.0 -32.0     
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-37.1 -37.1     

C. kilmeri 
(Extrovert 
Cliffs) 

-34.7 -31.7 

[-32.7] 

-24.7    

-34.7 -31.7 

[-33.1] 

-28.2    

-31.7 -28.7 -31.9    

-30.4 -27.4     

C. stearnsii 
(Monterey 
Bay) 

-30.7 -30.7     

-31.5 -31.5     

-29.8 -29.8            
[-35.5] 

    

-36.1 -36.1     

E.elongata 
(FH. PSC44) 

-31.4 -31.4     

-31.2 -31.2     

-28.2 -28.2               
[-35.9] 

    

-31.4 -31.4      
[-32.7] 

    

-32.1 -32.1     

E.elongata 
(FH. PSC48) 

-32.1 -32.1     

-31.2 -31.2     

-28.0 -28.0     

E.elongata 
(FH. PSC66) 

-29.0 -29.0  -0.9 -0.2 (8%) as expected. 
or slightly  
enriched DIC 
or higher % 
metabolic C 

 

-29.7 -29.7  -1.0 -0.8 (9.5%) 

-30.6 -30.6     

E.elongata 
(FH. large) 

  -30.6    

-30.5 -30.5 -30.7    

-28.7 -28.7 -30.7    

E. elongata 
(San Diego 
Trough) 

-22.1 -22.1  -0.2 -1.5 (16%) depleted DIC 
or higher % 
metabolic C 

solemyid           
(San Diego 
Trough) 

-26.7 

 

-26.7 

 

 -0.7 2.2                 
(0%) 

 

enriched DIC: 
3.2 

lucinid       
(San Diego 
Trough) 

-29.1 

 

-29.1 

 

 -0.9 -0.5 (9%) 

 

slightly  
enriched DIC 
or higher % 
metabolic C 
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Hydrothermal vents   

A. hessleri 
(South Su) 

-13.2 -13.2                
[-8.4] 

 0.7                      
[1.2] 

3.3            
(0%) 

enriched DIC: 
2.9  

-10.0 -10.0     
[-8.7] 

 1.0                         
[1.1] 

3.0              
(0%) 

enriched DIC: 
2.2 

 [-8.1]  [1.2]                    2.6 enriched DIC: 
1.8 

I. nautilei 
(South Su) 

-26.5 -26.5       
[-27.9]  

-26.7 -0.7                
[-0.8] 

9.0             
(0%) 

enriched DIC: 
10.7 

-26.0 -26.0      
[-27.7] 

 -0.6                
[-0.8] 

9.3          
(0%) 

enriched DIC: 
11.0 

-26.1 -26.1      
[-28.2] 

-26.8 -0.6                
[-0.8] 

9.3              
(0%) 

enriched DIC: 
11.0 

B. manusensis 
(South Su) 

-28.9 -28.9       
[-30.2] 

 -0.9                           
[-1.0] 

5.2            
(0%) 

enriched DIC: 
6.8 

-28.7 -28.7      
[-30.8] 

-27.9 -0.9                           
[-1.1] 

6.4          
(0%) 

enriched DIC: 
8.1 

-40.8 -40.8       
[-39.4] 

 -2.1                 
[-1.9] 

0.0         
(5%) 

enriched DIC 
or higher % 
metabolic C 

B. 
thermophilus. 
(East Wall) 

-31.7 -31.7     
[-33.0] 

    

-30.9 -30.9     

B. 
thermophilus 
(Buckfield) 

-30.5 -30.5  -1.1 4.4                
(0%) 

enriched DIC: 
6.0 

-31.8 -31.8  -1.2 4.7                
(0%) 

enriched DIC: 
6.5 

peltospiroid 
(East Scotia 
Ridge) 

-27.8 -27.9  -0.9 4.9              
(0%) 

enriched DIC: 
6.3 

vesicomyid 
(East Scotia 
Ridge) 

-31.5 -31.6  -1.2 1.8               
(0%) 

enriched DIC: 
3.3 

-33.1 -33.2  -1.2 1.7                   
(0%) 

enriched DIC: 
3.3 

-33.5 -33.6  -1.3 1.9             
(0%) 

enriched DIC: 
3.6 

B. brevior     
(Kilo Moana) 

-28.7 -28.7      -0.9 2.0        
(0%) 

enriched DIC: 
3.2 

-30.2 -30.2     
[-34.3] 

 -1.0                      
[-1.4] 

1.9            
(0%) 

enriched DIC: 
3.2 

 [-34.5]  [-1.5] 2.4          
(0%) 

enriched DIC: 
4.3 

B. brevior 
(Tow Cam) 

-29.2 -29.2               
[-35.6] 

 -0.9                
[-1.6] 

2.7           
(0%) 

enriched DIC: 
4.0 
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-30.4 -30.4     
[-35.6] 

 -1.0                       
[-1.6] 

3.0            
(0%) 

enriched DIC: 
4.5 

B. thionipta 
(Macauley 
Caldera. 
Kermadec 
Ridge) 

-26.1 -27.1                 
[-29.2] 

 0.3                            
[0.1] 

6.8               
(0%) 

enriched DIC: 
8.2 

-26.7 -27.7                     
[-28.0] 

-27.8 0.2                  
[0.2] 

4.5          
(0%) 

enriched DIC: 
5.7 

-27.8 -28.8 -28.0 0.1 4.0              
(0%) 

enriched DIC: 
5.3 

-27.6 -28.6 -28.7 0.1 4.1             
(0%) 

enriched DIC: 
5.4 

-27.6 -28.6  0.1 5.1           
(0%) 

enriched DIC: 
6.5 

Shallow reducing environments  

C. orbicularis 
(Little Duck 
Keys) 

-24.1 -25.6 -28.8 0.9 0.8 (10%) as expected 

-24.9 -26.1 -27.0 0.9 2.1 (5.5%) enriched DIC 
or higher % 
metabolic C 

P. philippiana 
(Magellan 
Bay) 

-26.2 -27.7                   
[-30.4] 

 0.7                    
[-0.5] 

1.9                
(6%) 

enriched DIC 
or higher % 
metabolic C 

-26.2 -27.7     
[-29.3] 

 0.7                   
[-1.4] 

0.6 (9%) 

C. orbiculata 
(Ramrod Key) 

-23.9 -25.4 -28.8 1.0 0.3 (13%) depleted DIC 
or higher % 
metabolic C 

-25.4 -26.9 -27.0 0.8 0.0 (13%) 

L. lucinalis 
(Houmt Souk) 

-26.2 -27.7     

C. imbricatula 
(Bocas del 
Toro)  

-25.4 -25.4  -0.5 -1.3 (13%) depleted DIC 
or higher % 
metabolic C 

-27.5 -27.5  -0.8 -1.5 (13%) 

L. adansoni 
(Sal Rei 
Village) 

-22.4 -23.9                 
[-23.6] 

-27.5 1.1              
[1.1] 

2.4 (4.5%) enriched DIC 
or higher % 
metabolic C -22.3 -23.8              

[-23.5] 
-26.4 1.1               

[1.1] 
2.2 (5.5%) 

M. spinifera 
(Skovsvagen) 

-22.0 -23.5     

M. spinifera 
(Gåsevik) 

-21.6 -23.1         
[-28.6] 

 1.0             
[0.5] 

0.3 (13%) depleted DIC 
or higher % 
metabolic C 

T. sarsi 
(Gåsevik) 

-28.6 -30.1         
[-31.3] 

 0.3              
[0.2] 

-4.2 (26%) depleted DIC: 
-3.7 or 
extremely 
high % 
metabolic 
carbon 
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Carbon – Alviniconcha hessleri. The δ13C values of Alviniconcha hessleri (total 

SBOM: δ13C -11.6‰ ±2.3, n=3; soft tissues: -8.4‰ ±0.4, n=3) are extremely 

enriched in 12C for both total SBOM (δ13C -29.7‰ ±3.3, n=22, localities=7) and soft 

tissues (δ13C -31.7‰ ±4.0, n=13, localities=5) compared to all other vent thiotrophic 

specimens (δ13C total SBOM: -30.0‰ ±3.7, n=87). These heavy values have 

previously been observed by other workers (e.g. Van Dover et al., 2001, -11.0‰ 

±0.1 for soft tissues from A. hessleri of the hydrothermal vent Karei Field), and are 

in agreement with the presence of symbiotic Epsilonproteobacteria that use the 

rTCA cycle for carbon fixation. Interestingly, for A. hessleri from Marina Trough 

overwhelming evidence has been presented for carbon fixation via the CBB cycle 

using RubisCO Form IA, including depleted δ13C values and identification of 

Gammaproteobacteria (Stein et al., 1990; Suzuki et al., 2005). The presence of two 

separate lineages of bacteria with different metabolic pathways within the same 

species is unexpected, but is in agreement with recent genetic work that has 

identified A. hessleri as a species complex. Johnson et al. (2015) confirmed that A. 

hessleri is a cryptic species, and the different taxa can only be differentiated using 

DNA from mitochondrial genes. Moreover, the specimens from South Su and Karei 

Field for which the presence of Epsilonproteobacteria is proposed, do not belong to 

the species A. hessleri sensu stricto from Marina Trough, in which 

Gammaprotebacteria have been identified. The two different carbon fixation 

pathways therefore seem to be present in different taxa, instead of both being 

present in the same species. 

Carbon – variability across environments. In general, the δ13C total SBOM 

variability could be environmental (e.g. difference in DIC δ13C, or the size of the 

carbon pool affecting fractionation) or biological, through the incorporation of POM 

(-22‰ to -18.5‰, Table 3.3) via filter-feeding. The latter possibility is suggested to 

explain the statistical enrichment of several species compared to multiple other 

taxa: at cold seeps, E. elongata (Fossil Hill, δ13C -30.3‰ ±1.5, n=13) and C. 

stearnsii (Monterey Bay, δ13C -30.7‰ ±0.8, n=3), as well as for the shallow living L. 

adansoni (Sal Rei Village, δ13C -22.4 ±0.1, n=2). This conclusion is further 

supported by the small size (< 4 cm in length) of the two seep vesicomyids, since 

smaller chemosymbiotic specimens are more dependent on filter-feeding than 

larger ones (as observed for Bathymodiolus, Martin et al., 2008). Although the soft 

tissue values of these two species are similar to other taxa (around δ13C -35‰), the 

two organic pools reflect different time periods, and extensive filter-feeding could 

have occurred earlier in life. The additional filter feeding of L. adansoni could be 

related to its presence at intertidal sands, instead of seagrass environments. 
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Nitrogen. The total SBOM δ15N from thiotrophs largely overlap between the three 

environmental settings: cold seeps (2.3‰ ±4.6, n=36; range -4.9‰ to +13.9‰), 

hydrothermal vents (2.4‰ ±4.4, n=14; -4.5‰ to +7.4‰, includes soft tissue values 

because of limited data), and shallow reducing environments (1.7‰ ±2.3, n=9; 

range: -3.8‰ to +4.3‰). The large majority of the values is δ15N < 6‰ in all 

settings, which indicates that most of the nitrogen by the animals is derived from  

inorganic nitrogen sources. It is likely that for species with values δ15N > 6‰ some 

nitrogen is obtained via filter-feeding photosynthetically-derived nitrogen, or by the 

assimilation of 15N enriched nitrate. Similar to conclusions in the carbon section, 

filter feeding could be related to size: both seep taxa with very positive δ15N values 

are small (< 4cm): C. packardana (7.7‰ ±1.6, n=5), C. stearnsii (6.7‰ ±0.8. n=3), 

and therefore possibly more likely to rely on POM. 

Sulphur. Because of limited total SBOM δ34S data, the δ34S values of soft tissues 

and total SBOM are combined.  δ34S value below +5‰ generally indicate thiotrophy 

(Vetter and Fry, 1998) and all but one species in our dataset are in agreement with 

this: cold seeps (-25.2‰ to 4.6‰), hydrothermal vents (-14.2‰ to 2.9‰), shallow 

reducing environments (-22.7‰ to -9.9‰). It likely that the variability at each 

environmental setting is caused by δ34S variation of environmental sulphide 

between localities, since sulphide δ34S can become very heavy when a large 

proportion of the available sulphate pool is consumed during sulphate reduction. 

Unfortunately local sulphur source values generally are unknown. It can only be 

shown that the relatively enriched sulphide values of Blake Ridge (δ34S -1.3 ±1.4) 

are indeed reflected in total SBOM δ34S values of C. valvidae from that locality 

(2.4‰ ±4.8, n=2). Sulphide at hydrothermal vents was reported to have δ34S values 

between -5‰ and 8‰, but our dataset shows that more depleted δ34S values are 

also possible (Fig. 3.9). 

C. kilmeri from the Monterey Bay seeps has a total SBOM δ34S value of +17.7‰, 

which is very close to that of seawater sulphate (δ34S +20.3‰). This suggests that 

instead of sulphide, this animal incorporates sulphate via symbiotic bacteria or by 

filter-feeding POM (generally δ34S 17‰ to 21‰). Interestingly, this species was also 

shown to have the most negative δ15N total SBOM values of all thiotrophs (-3.3‰ 

±2.2, n=4, see Fig. 3.9), and δ13C total SBOM values are as expected for thiotrophic 

chemosymbiosis (δ13C -32.9‰ ±2.2, n=4). The precise nutritional strategy of this 

species therefore remains unclear. 
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Sulphur – comparison between families. Vesicomyidae have a wide range of 

δ34S values (-24.3‰ to +4.6‰, and +17.7‰), whereas all lucinid specimens have 

δ34S values of -10‰ or lower at the three localities (-18.1, ±6.4, n=12). Similar 34S 

depleted values were found for a cold seep thyasirid (-19.1‰), and potentially cold 

seep solemyids (-6.7‰, resin obtained). Bathymodiolus δ34S values are not 

depleted beyond -10‰ in our dataset. Although it is difficult to draw conclusions 

without known δ34S values of local sulphide. The obvious difference between 

Vesicomyidae/Mytilidae and Lucinidae/Thyasiridae/Solemyidae is the infaunal 

lifestyle of the latter families, versus a (semi)epifaunal lifestyle of the other two 

families. Within the sediment the sulphide concentrations are higher, due to the 

sulphate-methane transition zone. At deep-sea cold seeps the sulphate-methane 

transition zone has a thickness of only a few centimetres (e.g. Fisher et al., 2012; 

Felden et al., 2014), and potentially there is less mixing between the various 

sulphur sources within this zone, which could lead to more depleted δ34S values of 

sulphide in the sediment.  

San Diego Trough. Compared to the rest of the dataset, the thiotrophic 

specimens/species from San Diego Trough are very different to other taxa, and are 

also different from each other (indicated as black circles in Fig. 3.9). Whilst the 

isotopic total SBOM values of a single E. elongata specimen (δ13C -22.1‰, δ15N 

+10.0‰, δ34S 4.3‰ resin obtained) clearly suggest a heterotrophic lifestyle, the 

values for a solemyid specimen (δ13C -26.7‰, δ15N +13.9‰, δ34S -6.7‰ resin 

obtained) are conflicting. The lucinid from this locality (δ13C -29.1‰, δ34S -25.3‰) 

appears to mainly rely on chemosynthesis-based nutrition. It is unclear what 

nutritional or environmental factors could produce these apparently conflicting 

isotopic values. Potentially the locality is limited in dissolved inorganic nitrogen, and 

the required filter-feeding to obtain sufficient nitrogen is also reflected in total SBOM 

carbon values. Due to the small number of specimens, it is unclear how much of the 

variation can be attributed to family specific differences.  

 

3.4.1.3  Dual symbiosis 

Dual symbiotic mussels harbour thiotrophic and methanotrophic bacteria, which 

means that they can use both CO2 and methane as carbon sources, as well as 

retain the ability to filter feed POM. This can be beneficial when animals need to 

adapt to changes environmental conditions, and provides the possibility of 

partitioning and co-operation of resources between the different symbionts 

(Duperron et al., 2007). To be able to compare variation in SBOM to variation in 
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environmental sources, SBOM/soft tissues were predicted using local methane 

values and total SBOM values of thiotrophic bivalves from the same locality. 

Nitrogen and sulphur sources for chemosymbiotic bivalves are discussed in section 

3.4.1.1. 

 

Table 3.9  Dual symbiotic species: calculated and measured δ13C values for total 
SBOM and shell carbonate values 

Calculated δ13C SBOM is based on 50% contribution of local methane 
sources (Table 3.3), and 50% fractionation of DIC, for which the average δ13C 
value of thiotrophic specimens from the same locality (Table 3.8) was used. 
Calculations for shell carbonate are given at Table 3.7. Calculations using soft 
tissue values are between brackets in the table. 

 

Specimen Calculated 

δ13C SBOM              

δ13C 

SBOM 

Remarks 

SBOM/    

soft 

tissues 

Calcul

ated     

δ13C 

shell 

δ13C shell 

(% 

metabolic 

carbon) 

Remarks 

Cold seeps 

B. heckerae, 

adult           

(Florida 

Escarpment) 

-62 to -46 -60.2 low end or 

mean of 

calculated 

range 

   

-62 to -46 -62.2 -4.3 -2.9 

(7.5%) 

enriched 

DIC or 

lower % 

metabolic 

C 

-62 to -46 -54.6 -3.6 -2.0 (7%) 

-62 to -46 -58.0    

-70 to -54 [-69.2]    

-70 to -54 [-65.8]    

B. heckerae, 

juvenile 

(Florida 

Escarpment) 

-62 to -46               

[-70 to -54] 

-35.6         

[-65.3] 

SBOM 

more 

enriched 

than 

calculated, 

soft tissues 

-1.7               

[-4.6] 

-1.0 (8%) enriched 

DIC or 

lower % 

metabolic 

carbon 

-62 to -46             

[-70 to -54] 

-42.9          

[-66.0] 

-2.4               

[-4.7] 

-1.5 (8%) 

-62 to -46                

[-70 to -54] 

-30.2     

[-66.9] 

-1.1              

[-4.8] 

-2.5 (15%) depleted 

DIC or 
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-62 to -46               

[-70 to -54] 

-30.2   

[-67.3] 

at low end 

of the range 

-1.1                

[-4.8] 

-2.6 (15%) higher % 

metabolic 

carbon 

-62 to -46              

[-70 to -54] 

-37.7      

[-65.9] 

-1.9               

[-4.7] 

-2.0 (10%) as 

expected 

B. heckerae 

(Blake Ridge) 

-54.6 to                      

-46.4 

-42.4 SBOM 

more 

enriched 

than 

calculated, 

soft tissues 

more 

depleted 

-2.2 0.0 (4.5%) enriched 

DIC or 

lower % 

metabolic 

carbon 

-54.6 to                      

-46.4 

-36.4 -1.6 1.2                     

(2%) 

[-54.7 to                  

-49.4] 

[-55.6]    

[-54.7 to                  

-49.4] 

[-58.3]    

[-54.7 to                  

-49.4] 

[-56.6]    

Bathymodio  

lus sp. 

(Barbados) 

insufficient 

data 

available 

-64.4 n/a -4.4 -3.4 

(8.5%) 

slightly  

depleted 

DIC or 

lower % 

metabolic 

C 

 

Data for dual symbiotic Bathymodiolus could only be compared between Florida 

Escarpment and Blake Ridge, and statistical isotopic differences exist between 

them. Total SBOM of Florida Escarpment specimens is more depleted in carbon 

(δ13C: -58.7‰ ±3.3, n=4) than Blake Ridge (-39.4‰ ±4.3, n=2), as well as in 

nitrogen (δ15N: -7.7‰ ±0.3, n=3 vs. 2.6‰ ±0.9, n=3). Sulphur values are only 

known from soft tissues, and are slightly more positive for Florida Escarpment (δ34S 

10.7, n=1), than Blake Ridge (8.4 ±0.7, n=3). δ34S values show that B. heckerae at 

neither locality are completely dominated by thiotrophic bacteria (> +5‰ threshold).  

The significant depletion in carbon values for Florida Escarpment could be related 

to the more depleted methane values at this location  (Table 3.3). For dual 

symbiotic species however, the relationship with environmental sources is 
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complicated because SBOM isotopic values can also be affected by the relative 

abundance of the two bacterial types. And their ratio has been suggested to vary 

according to availability of methane and/or sulphide (Trask and Van Dover, 1999; 

Salerno et al., 2005). In addition, there are complicated fractionation effects related 

to microbial-host interactions and translocation of nutrients. Relatively enriched 

δ13C SBOM values could therefore also be explained to a higher abundance of 

thiotrophic bacteria. In addition, thiotrophic bacteria could incorporate CO2 

produced by the co-occurring methanotrophs, which will be isotopically lighter than 

seawater CO2 (Fisher, 1996).  

The relatively depleted δ13C value (-64.4‰) of Bathymodiolus sp. with unknown 

strategy, suggests a very depleted methane source and/or a high 

abundance/reliance on methanotrophic bacteria. Nitrogen values (δ15N 0.2‰ to 

0.8‰, n=3) do not provide additional nutritional information. This species could 

therefore be either methanotrophic or dual symbiotic, and will only be further 

discussed when both nutritional groups are combined for statistical comparisons.  

 

Ontogenetic effects. Specimens from a juvenile and an adult age group could be 

compared for B. heckerae from Florida Escarpment. The total SBOM δ13C values of 

juvenile B. heckerae (-35.3‰ ±5.4, n=5) is very enriched compared to adult B. 

heckerae (-58.7‰ ±3.3, n=4), whilst soft tissues encompass similar isotopic ranges 

(-67.5‰ ±2.4, adult, n=2 and -66.3‰ ±0.8, juvenile, n=5). For nitrogen the same 

enrichment can be seen in total SBOM between adult (δ15N -7.7‰ ±0.3, n=3) and 

juvenile (1.1‰, n=1), and not between soft tissues of the two age groups(adult: -

10.1‰, n=1 / juvenile: -9.8‰ ±2.4, n=4). Soft tissue δ34S data is also similar 

between the juvenile and adult specimens, unfortunately SBOM data cannot be 

compared. 

In summary, the total SBOM isotopic values (δ13C,  of juvenile specimens are 

significantly enriched compared to adult specimens, but  

Is the difference between the age groups caused by a physiological difference in 

ΔSBOM-ST, or does the SBOM from the juvenile specimens reflect a previous 

nutritional strategy of filter feeding? The soft tissue values represent a shorter time 

period and have already undergone (partial) turn-over, which is known to occur 

within weeks or months (e.g. Hill et al., 2009), whilst metabolic inactive shells 

integrate the sources used throughout their entire lifespan when homogenized for 

SBOM extraction (Versteegh et al, 2011). However, study of post-larval and juvenile 
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species of Bathymodiolus azoricus and Bathymodiolus heckeri showed well-

developed symbionts populations and no evidence of residual POC based tissues 

(Salerno et al., 2005). In addition, there are indications that for (very) small shells, 

soft tissues and SBOM are isotopically very different (section 3.4.2.3). In particular,  

collated P. floridensis limpets from this locality have the same isotopic values, as 

well as differences between soft tissues and SBOM, as the juvenile B. heckerae 

specimens. 

 

3.4.1.4  Heterotrophy 

Heterotrophic bivalves rely on suspended or particular organic matter (POM), 

derived from phytoplankton that fix seawater DIC photosynthetically. Because the 

RubisCO involved in this process has different characteristics than the RubisCO 

used by thiotrophic bacteria, there is less fractionation in carbon (see Ruby et al., 

1987; Blumenberg, 2010) and the δ13C of POM generally varies between -18.5‰ 

and - 22‰ (Hoefs et al., 2015). For heterotrophic species present at cold seeps and 

hydrothermal vents potential nutritional sources includes photosynthetically fixed 

POM that rains down to the deep sea from the surface waters (Hoefs et al., 2015). 

In addition, they can feed on organic carbon/matter synthesized from DIC by 

chemoautotrophic bacteria, or the bacteria themselves, which will be 13C depleted.  

With increasing depth the reliance on chemosynthetically derived material is likely 

to become greater, and chemosynthetic production may be a significant source of 

nutrition to heterotrophs found there in an otherwise nutrient-poor deep ocean 

(Carney 1994). For δ13C the threshold for local chemosynthethically produced 

carbon is usually placed at low δ13C values (< −25‰). In contrast, fauna that 

depend on photosynthetically fixed carbon would have tissue δ13C values that are 

enriched relative to these other sources (e.g., −25‰ to −15‰, (Fry and Sherr, 

1984).  

For nitrogen and sulphur a similar distinction between reducing and non-reducing 

environments is suggested. Heterotrophic species from non-reducing environments 

are expected to reflect POM (δ15N 0‰ to 15‰, δ34S +15‰ to +20‰), whereas 

heterotrophs at reducing environments (shallow reducing environments, cold seeps, 

hydrothermal vents) can also feed on locally produced organic matter or 

chemoautotrophic bacteria, and reflect the isotopically depleted values of those 

sources.  

 

http://0-www.sciencedirect.com.wam.leeds.ac.uk/science/article/pii/S096706451000175X#bib12
http://0-www.sciencedirect.com.wam.leeds.ac.uk/science/article/pii/S096706451000175X#bib12
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Table 3.10  Heterotrophic species: calculated and measured δ13C values for total 
SBOM and shell carbonate values 

(p. 137-139) Calculated δ13C total SBOM values are based on the formula: 
[POM source value + 1% trophic enrichment] (these can be found in Table 
3.3). Calculations for shell carbonate values are given at Table 3.7. 
Calculations using soft tissue values are between brackets in the table, 
underlined specimens are multiple specimens that have been collated. 

 

Specimen Calculated 
δ13C SBOM              

δ13C 
SBOM 

Remarks 
SBOM/    
soft 
tissues 

Calcul
ated     
δ13C 
shell 

δ13C shell 
(% 
metabolic 
carbon) 

Remarks 

Cold seeps 

P. floridensis -66.9 to -24.3 -36.8              
[-66.1] 

SBOM as 
expected, 
ST low 
end of the 
range 

-1.8        
[-4.7] 

-8.3 (more 
similar to 
tissues) 
(28% / 
15%) 

depleted 
DIC or 
higher % 
metabolic 
C 

Delectopecten 
(San Diego 
Trough) 

-21.0 to -17.5 -19.3 as 
expected 

0.1 1.1         
(4.5%) 

enriched 
DIC or 
lower % 
metabolic 
C 

Hydrothermal vents 

L. elevatus 
(East Wall) 

-21.0 to -17.5 -20.6              
[-15.4] 

SBOM as 
expected, 
ST 
enriched 

   

Shallow reducing environments 

A. alba 
(Gåsevik) 

-21.0 to -17.5 -24.6    
[-18.8] 

ST as 
expected, 
SBOM 
depleted 

0.9 
[1.5] 

-0.4 (15%) depleted 
DIC or 
higher % 
metabolic 
C 

E. tenuis 
(Gåsevik) 

-21.0 to -17.5 -21.5 slightly 
depleted 

1.2 0.9 
(11.5%) 

Shallow non-reducing environments 

T. sanguinea 
(Big Hope Bay) 

-21.0 to -17.5 -23.9             
[-18.1] 

SBOM 
and ST 
are largely 
within the 
expected 
range 

1.0                 
[1.5] 

0.9 (10%) as 
expected 

-21.0 to -17.5 -21.2    
[-17.4] 

1.3             
[1.6] 

1.4 (9.5%) 

-21.0 to -17.5 -20.4            
[-19.0] 

1.3             
[1.4] 

0.4 (14%) depleted 
DIC or 
higher % 
metabolic 
C 

-21.0 to -17.5 -20.4          
[-21.4] 

1.3               
[1.2] 

0.6 (14%) 
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-21.0 to -17.5 -20.7 1.3 1.8                   
(8.5%) 

slighty 
enriched 
DIC or 
lower % 
metabolic 
C 

T. sanguinea 
(Tricky Cove) 

-22.5 -21.5     
[-18.4] 

SOM and 
ST 
generally 
more 
enriched 
than 
expected  

1.2     
[1.5] 

1.3          
(9.5%) 

as 
expected 

 -22.5 -23.9   
[-18.1] 

1.0        
[1.5] 

1.2         
(10.5%) 

-22.5 

-17.5    
[-17.5] 

1.6       
[1.6] 

1.2          
(12%) 

depleted 
DIC or 
higher % 
metabolic 
C 

-22.5 -19.8        

-22.5 -20.8   
[-18.5] 

1.3     
[1.5] 

1.6             
(8.5%) 

ST as 
expected 

 -22.5 -20.8    
[-19.4] 

1.3       
[1.4] 

1.6          
(8.5%) 

-22.5 -20.4    
[-18.5] 

1.3        
[1.5]     

1.7          
(8%) 

N. nigricans 
(Tricky Cove) 

-22.5 -26.3   SBOM 
around 
expected 
value, ST 
more 
enriched 

0.7         1.5             
(7%) 

slighty 
enriched 
DIC or 
lower % 
metabolic 
C 

-22.5 -20.8   
[-19.4] 

1.3        
[1.4]     

1.2            
(10%) 

as 
expected 

 -22.5 -19.2    
[-19.0] 

1.4        
[1.5]     

1.4          
(10%) 

-22.5 -25.0     
[-19.1] 

0.9      
[1.4] 

1.6            
(7%) 

ST as 
expected  

-22.5 -20.2    
[-18.3] 

1.2        
[1.5]     

1.6          
(8.5%) 

L. neozalanica 
(Tricky Cove) 

-22.5 
-21.0 

SBOM 
around 
expected 
value, ST 
more 
enriched 

1.3 2.7            
(3.5%) 

enriched 
DIC or 
lower % 
metabolic 
C 

-22.5 -21.7   
[-16.9] 

1.2          
[1.7] 

2.9          
(2.5%) 

-22.5 

-21.4    
[-16.7] 

1.2        
[1.7] 2.8          

(4%) 

-22.5 
-22.8 

1.1 2.4          
(4.5%) 
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-22.5 -22.0    
[-14.4]    

1.2        
[1.9] 

2.4           
(5%) 

-22.5 -20.2    

-22.5 -21.6    

L. uva                 
(Tricky Cove) 

-22.5 
-23.7 

 1.0 2.4             
(4%) 

enriched 
DIC or 
lower % 
metabolic 
C 

-22.5 
-22.9 

 1.1 1.4             
(8.5%) 

-22.5 -21.9                 
[-17.7] 

 1.2     
[1.6] 

2.2            
(5.5%) 

C. edule 
(Dorset, UK) 

-21.0 to -17.5 -19.6 low end of 
the range 

1.4 -0.5 (19%) 

depleted 
DIC or 
higher % 
metabolic 
C 

 

-21.0 to -17.5 -22.2 1.1 -1.1 

(19.5%) 

R. decussatus 

(Wales) 

-21.0 to -17.5 -20.8 low end of 

the range 

1.4 0.0 

(16.5%) 

-21.0 to -17.5 -21.2 1.2 -1.4       

(22%)     

M. edulis 

(Southern 

France) 

-21.0 to -17.5 -16.0 high end 

of the 

range 

1.8 0.6 

(16.5%) 

-21.0 to -17.5 -17.5 1.6 0.4 

(16.5%) 

 

The large δ13C difference between the cold seep limpet Paralepetopsis (-36.8‰ / 

soft tissues -66.1) and scallop Delectopecten (-19.3‰) from San Diego Trough is 

likely caused by the former species feeding on organic matter that was locally 

synthesized and based on depleted biogenic methane, which is in agreement with 

values from sedimentary organic matter (up to -67.9‰ depleted) from Florida 

Escarpment (Paull et al., 1992). Another source could be free-living bacteria 

themselves, known to be eaten by deep sea gastropods (references in Reid et al., 

2013). Delectopecten has a value expected for animals feeding on POM, this can 

also be concluded for Lepetodrilus elevatus, a δ13C total SBOM: –20.6‰, and soft 

tissues values of -15.4‰. Total SBOM δ15N also confirms a reliance on locally 

produced nitrogen (< −6‰ δ15N) for P. floridensis (3.3‰), and soft tissue values are 

even more depleted (-10.1‰). Whereas Delectopecten sp. has a total SBOM δ15N 

value of 16.1‰. Soft tissue δ34S for P. floridensis has a value of δ34S 4.6‰, is also 

in agreement with indirect incorporation of hydrogen sulphide via chemoautotrophic 

bacteria. 
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Unlike cold seeps and hydrothermal vents, shallow environments are not driven by 

chemosynthethic production. δ13C values obtained from A. alba (total SBOM: -24.6, 

soft tissue: -18.8‰) and E. tenuis (total SBOM: -21.5‰) reflect values of 

photosynthetically derived POM, as do the positive nitrogen values. The negative 

δ34S soft tissues value of A. alba (-4.7‰) is unexpected, and could be caused by a 

depleted sulphate source, e.g. when sulphide produced during AOM is oxidized 

back to sulphate (Aharon & Fu, 2003). This is plausible because the animal lives 

infaunally, where mixing of seawater sulphate is limited (Yamanaka et al., 2000).   

As expected, the brachiopod taxa occupy very different ranges compared to the 

taxa from reducing environments (overview Figure): total SBOM carbon values are 

similar to shallow reducing environments (δ13C -21.5‰ ±1.8, n=27), but sulphur 

(total SBOM: +13.3‰, n=1, and soft tissues 15.8‰ ±2.5, n=14) and nitrogen (8.6‰ 

±1.0, n=18) are distinctly more positive, and not influenced by chemosynthesis. 

 

3.4.2.  What is the isotopic relationship between total SBOM and 

soft tissues? 

3.4.2.1  Isotopic variation between soft tissues 

The success of SBOM as a nutritional proxy is generally determined by its similarity 

to related soft tissues values. However, the variation between soft tissue values of 

individual specimens (intra-individual variation) is rarely taken into account, and this 

must be discussed before SBOM is compared to soft tissues as a single mean 

value. Box-and-whisker plots of the isotopic variation in SBOM and soft tissues of 

species are given in Figure. 3.6. These plots show that intra-specific and intra-

individual soft tissue variation is generally less than 1‰ for δ13C and δ15N, but that 

intra-individual variation is generally greater by ∼ +0.5‰ than between intra-specific 

variation. For species for which both statistics were obtained, the intra-individual 

variation was greater for δ13C in 10 out of 16 species for, and for δ15N in 11 out of 

13 species. It should also be noted that the highest intra-specific SBOM/soft tissue 

variation is shown for B. manusensis, and in this species an obvious outlier was 

observed (section 3.3.1.10). For sulphur both statistics show very large variation 

compared to carbon and nitrogen: half of the data has variability of 1‰ to 3‰ or 

higher, and the intra-individual variation can be as large as 6‰ in our dataset. Intra-

individual variation was greater than intra-specific variation for sulphur in 6 out of 9 

species. The maximum variation between soft tissues of an individual specimen can 

even be up to 6‰ for δ13C, up to 4‰ for δ15N, and up to 8‰ for δ34S. These 
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observations show that when comparing individual SBOM to individual mean soft 

tissues values, the latter underestimates the actual isotopic variation of soft tissues. 

  

Figure 3.6  Box-and-whisker plots showing the intra-specific and intra-individual 
isotopic variation in SBOM and soft tissues 

Isotopic variation is shown for the stable isotope composition of SBOM in the 
same species (S.D., “Intra-specific SBOM”), the mean soft tissue values of the 
same species (S.D., “Intra-specific ST”), the variation between different soft 
tissues in individuals of the same species (mean of individual S.D’s, “Intra-
individual ST”), and the maximum intra-individual variation per species: 
calculated as the Intra-individual ST + Intra-individual ST S.D. (“Max. Intra-
indiv. ST”). In the plots, the horizontal line represents the median, and the 
limits of the box and whiskers contain 50% and 100% of the data, 
respectively, unless in the case of outliers. These are shown separately as 
asterisks, and fall outside the 1.5*inter-quartile range (which is then indicated 
by the length of the whiskers). SBOM data was only used from species with 
associated soft tissue data. 
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Table 3.6 shows the isotopic relationship between soft tissue of individual 

specimens. For the large majority of the species investigated there is an obvious  

order between gills vs. other tissues (mantle, foot, and/or muscle) for all specimens: 

either consistently enriched or consistently depleted for 13C, δ15N, and δ34S. Of the 

chemosymbiotic taxa sufficient data (multiple tissues for a minimum of two 

specimens) was only available for thiotrophic species (excl. juveniles). For the large 

majority of these species gills have depleted values for δ13C (8 out of 11) and δ15N 

(9 out of 9), and are enriched in δ34S (4 out of 6). ‘Rest’ has the same isotopic 

relationship compared to other soft tissues as ‘gills’, with the exception of enriched 

δ15N values in V. venusta. Compared to the gills, muscle tissue is often on the 

opposite end of the range of values for all isotope systems. For all brachiopods 

species, the gills generally have depleted values for δ13C (3 out of 3), and show an 

enrichment in δ15N (3 out of 3). In general, these isotopic difference between soft 

tissues should be taken into account when comparing soft tissues to SBOM values, 

because the use of a single type of soft tissue can confound interpretations of the 

SBOM-soft tissue relationship. Our study shows that the most similar soft tissue 

depends on the order of depletion within individual specimens, as well as the 

relationship between SBOM and mean soft tissue (discussed in section 3.4.2.2) 

The enriched δ15N and δ13C values of ‘other tissues’ in chemosymbiotic taxa are 

consistent with a trophic level enrichment (δ15N +3.4‰, δ13C +1‰, DeNiro & 

Epstein, 1878) of organic material derived from gill symbionts, and the ‘rest’ 

(visceral mass) mainly contains stomach contents (Fisher, 1990; Van Dover et al., 

2003; Geist et al., 2005). It could be hypothesized that the species in which no 

trophic enrichment was found, the host relies on metabolic by-products instead of 

consuming the symbionts as true primary consumers. Trophic level differences are 

not associated with isotopic changes in sulphur (Michener et al., 2007) and do not 

explain the δ34S enrichment of the gills/rest. The δ13C in the gills could also be 

linked to the presence of the symbionts, as bacteria pellets were shown to have 

more depleted values than the gills that house them (Van der Geest et al., 2014). 

There are however several other explanations for isotopic variability between 

tissues in addition to trophic level differences. These possibilities are outlined in 

detail in Chapter 2, but cannot be investigated further within the scope of this study 

because detailed information about tissue composition and organism physiology is 

lacking.  
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3.4.2.2  The isotopic relationship between total SBOM and soft tissues  

For carbon and nitrogen, the isotopic variation in SBOM is generally greater than for 

mean soft tissue values (Fig. 3.5), which is in part caused by averaging multiple soft 

tissues (as evident from the higher intra-individual variation). The different time 

periods represented by SBOM and soft tissues could also be of influence. If the 

nutritional sources used by bivalves change isotopically, this will be reflected in the 

soft tissues within months, whilst the shells integrate the sources used throughout 

their entire lifespan, which can be up to 15-30 years for the seep clam C. kilmeri 

(Barry et al., 2007) and at least several decades for B. childressi (Nix et al., 1995). 

Therefore, direct calculations between shell and soft tissue isotopic values are 

difficult (Versteegh et al., 2011). 

The isotopic offset between SBOM and soft tissues (ΔSBOM–ST) is shown in Fig. 

3.7. The plots for δ13C and δ15N appear to show an evolving relationship between 

total SBOM and ΔSBOM–ST, from total SBOM being more enriched than soft 

tissues for δ13C < -25‰ / δ15N < 5‰, and generally more depleted for values below 

that threshold. 

 

Figure 3.7  Isotopic relationship between total SBOM and soft tissues for individual 
specimens 

Isotopic differences between total SBOM and mean soft tissue values 

(ΔSBOM–ST) of individual specimens (per species) are plotted as the average 

difference (+ S.E.M.) for δ13C and δ15N. For δ34S, individual specimens 

(10%HCl) are used: mean difference, and min. and max. difference between 

SBOM and various soft tissues. Key shown in Fig. 3.9, outlined symbols: Mae 

et al (2008, vent) and Dreier et al (2012, shallow) (both using EDTA), in 

addition heterotrophic bivalves from Chapter 2 are shown. 
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The plots have R-squared values of 0.61 for δ13C (without M. edulis: 0.70), and 0.23 

for δ15N (excluding L. adansoni: 0.56), respectively. It is unlikely that this trend is 

caused by the isotopic effects of residual cation exchange resin, because the resin 

has a δ13C value of -29.0‰ and it would be expected to find ΔSBOM–ST = 0 around 

that value. In the case of nitrogen, the range of ΔSBOM–ST encompasses a trophic 

level difference of δ15N 3.4‰, and could potentially confound ecological 

interpretations. Published data is generally in agreement with our observations. In 

Chapter 2 a difference in δ13C and δ15N ΔSBOM–ST was found between M. edulis 

(SBOM enriched compared to soft tissue values) vs. R. decussatus and C. edule 

(SBOM depleted compared to soft tissue values), and potentially related to the 

combined mineralogy of M. edulis shell (calcite and aragonite) compared to the 

aragonitic shells of the other two species. Bathymodiolus species from this study 

also belong to the Mytilidae family and share the shell mineralogy of M. edulis, but 

no obvious ΔSBOM–ST enrichment is observed compared to the aragonitic shells of 

other chemosymbiotic taxa (Bathymodiolus does have the largest ΔSBOM–ST of 

+5.8 ±0.6, n=2). Contrarily, for the completely calcitic shells of filter-feeding 

brachiopods SBOM can be more depleted for δ13C and δ15N than R. decussatus 

and C. edule.  
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Furthermore, it is interesting that a similar evolving relationship is observed for total 

SBOM versus intra-crystalline SBOM δ13C and δ15N data (Fig. 3.10). Potentially the 

presence of this small intra-crystalline pool could influence ΔSBOM–ST towards the 

observed offsets, and hypothetically the inter-crystalline pool would be more similar 

to soft tissue values. 

For δ34S ΔSBOM–ST no obvious trend can be observed in relation to δ34S of total 

SBOM, but very large (mostly negative) off-sets > 5 per mille are present.  

Moreover, this relationship can vary between different soft tissues by > 5 per mille, 

this is in agreement with the large intra-specific and intra-individual sulphur stable 

isotope variation (Fig. 3.6). Because of the unpredictable nature of ΔSBOM–ST, a 

likely scenario is that shell removal techniques influence the sulphur isotope 

composition of SBOM, as was also discussed in Chapter 2.   

 

3.4.2.3  Isotopic relationship between total SBOM and soft tissues for 

collated specimens  

For the very small species in our suite of samples it was necessary to collated 

multiple specimens (> 2) to obtain sufficient shell material (Table 3.1). SBOM and 

soft tissue data for these species was obtained for δ13C and δ15N (no δ34S data 

available), and large isotopic differences were noted between the different organic 

pools, plotted in Fig. 3.8. This figure also includes the large ΔSBOM–ST noted for 

juvenile B. heckerae individual specimens from Florida Escarpment. 

One explanation for the extreme off-sets is that the SBOM of the species 

represents a different nutritional strategy than the soft tissues. Whilst SBOM (shell 

powder) of multiple specimens can be easily homogenized, it is much more difficult 

to homogenize soft tissues. This could be an explanation for e.g. M. spinifera and 

V. cf. kaikoi enrichment, where be the soft tissue reflect a chemosymbiotic (δ13C/ 

δ15N depleted) lifestyle, and SBOM reflects a mixture of chemosymbiotic and filter 

feeding (δ13C/ δ15N enriched). This would be in agreement with the limited offset for 

T. sarsi, because thyasirids are more reliant on symbionts and it is less likely that 

SBOM reflects filter-feeding values. 
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Figure 3.8  Isotopic relationship between collated total SBOM and soft tissues 

Isotopic differences between total SBOM and mean soft tissue values 

(ΔSBOM–ST) are plotted as the average difference for δ13C and δ15N. Key 

shown in Fig. 3.9.. Juvenile B. heckerea is also included, as well as values 

from Fig. 3.7 (in grey).  

 

 

 

 

For juvenile B. heckerae the two different nutritional strategies appear to be 

reflected in the soft tissues (chemosymbiosis) and SBOM (filter-feeding) of the 

individual specimens (section 3.4.1.3). However, the same differences are 

observed for P. floridensis, and would mean a change from filter-feeding to active 

grazing/digesting bacteria. There is also no known lifestyle change for heterotrophic 

taxa (A. alba and L. elevatus), and the negative ΔSBOM–ST is most likely 

physiological. Therefore,  SBOM of collated or juvenile specimens should be 

cautiously used.   
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3.4.3  Can different nutritional strategies be identified using total 

SBOM stable isotope values? 

This study is based on the hypothesis that nutritional strategies will be reflected in 

the isotopic signature of SBOM, and moreover, that these signatures are distinct. 

An overview of all data from this study is shown in Figure 3.9.  

3.4.3.1 Cold seeps  

Mollusc species that live at cold seeps can use one of several nutritional strategies: 

methanotrophy, thiotrophy, dual symbiosis or heterotrophy. Our data shows that a 

thiotrophic lifestyle (δ13C -31.6‰ ±2.7, n=51, localities=8), can be differentiate from 

dual symbiosis/methanotrophy (δ13C -53.5‰ ±7.9, n=18, localities=4) at cold seeps 

(p=< 0.0001), because of the different carbon sources used by the different 

nutritional strategies. Due to the large variation in methane values between different 

cold seeps and the strong influence of methane on the total SBOM δ13C values of 

dual symbiotic bivalves, methanotrophic bivalves (-51.9‰ ±5.8, n=9, localities=1) 

cannot be statistically differentiated from dual symbiotic bivalves (-59.6‰ ±3.7, n=7, 

localities=2).  

It is unclear whether the statistically depleted nitrogen values of either dual 

symbiotic (-2.6 ±5.7, n=6) or methanotrophic (-12.5‰ ±1.9, n=10) can be used to 

differentiate these taxa from thiotrophic species, because the ranges between dual 

symbiosis (-8.8‰ to 3.6‰) and thiotrophy (-4.9‰ to 13.9‰) strongly overlap, and 

also B. childressi from a previous study can have positive δ15N values (Riekenberg 

et al., 2016). Because only one thiotrophic species has a negative δ15N value (C. 

kilmeri, -3.3‰ ±2.2, n=4), the presence of methanotrophic species could be linked 

to utilizing a more 15N depleted nitrogen source, which would very likely be 

ammonium. The absence of depleted δ15N depleted values does however not 

necessarily indicate thiotrophy. 

The δ34S values of thiotrophic cold seep specimens are for the large majority 

characteristically depleted (< 5‰) (2.3‰ ±4.6, n=36) compared to dual 

symbiotic/methanotrophic species (11.2‰ ±2.8, n=14) due to the incorporation of 

34S depleted hydrogen sulphide. 
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Figure 3.9  δ13C, δ15N, and δ34S SBOM or soft tissue data from species analysed in 
this study 

Values are given as mean + S.D., for several species δ15N and δ34S soft 
tissue data is used when SBOM data is not available. Arrow indicates SBOM 
δ34S value obtained using cation exchange resin. Outlined specimens are 
from San Diego Through (discussed in 3.4.1.2). The different letters indicate 
the dominant nutritional strategies: A) Heterotrophy, B) Thiotrophy, C) Dual 
symbiosis/methanotrophy. C. kilmeri values are indicated with an asterisk.  

  

        

-70

-65

-60

-55

-50

-45

-40

-35

-30

-25

-20

-15

-10

-5
δ13C

A. B. C. 

-30

-25

-20

-15

-10

-5

0

5

10

15

20

25

-15 -10 -5 0 5 10 15 20

no δ34S value 

δ15N

δ34S

A.

B. 

C.

*

methanotrophic symbiosis (Bathymodiolus, cold seep)

dual symbiosis (Bathymodiolus, cold seep)

thiotrophic symbiosis (Bathymodiolus, vent)

thiotrophic symbiosis (Vesicomyidae/Lucinidae/Solemyidae, cold seep)

thiotrophic symbiosis (Lucinidae/Vesicomyidae, vent)

tiotrophic symbiosis (Gastropoda, vent)

thiotrophic symbiosis (Lucinidae/Thyasiridae, shallow reducing)

heterotrophic lifestyle (Gastropoda, deep sea)

hetrotrophic lifestyle (Bivalvia, cold seep)

heterotrophic lifestyle (Bivalvia, shallow reducing environment)

heterotrophic lifestyle (Bivalvia, normal marine setting)

heterotrophic lifestyle (Brachiopoda, normal marine setting)



- 149 - 

Heterotrophic species from deep sea chemosynthetic environments are not 

frequently collected, and were only represented by two cold seep specimens in our 

dataset. The nutrition of the limpet P. floridensis (δ13C total SBOM: -36.8‰/soft 

tissue -66.1‰, δ15N total SBOM: 3.3‰/soft tissue -10.1‰, soft tissue: 4.6‰) is 

strongly influenced by the local chemosynthethic sources and therefore has similar 

values to chemosymbiotic cold seep species. The scallop Delectopecten (total 

SBOM: -19.3‰, δ15N 16.1‰) does rely on photosynthetically created organic 

matter, and falls therefore outside of the range of chemosymbiotic seep bivalves (-

37.3 ±10.7, n=69, nutritional lifestyles=3). It is likely that P. floridensis can 

incorporate free-living methanotrophic and/or thiotrophic bacteria because of its 

grazing lifestyle, these values are therefore not expected for bivalves. Additional 

data on non-chemosymbiotic bivalves from cold seeps localities is necessary. 

 

3.4.3.2 Hydrothermal vents 

Specimens analysed from hydrothermal vents either used thiotrophy or 

heterotrophy as a nutritional strategy. Within the thiotrophic specimens a clear 

distinction can be made between species using RubisCO Form I (Alviniconcha, -

11.6‰ ±2.3, n=3, localities=1) and Form II (-29.7 ±3.3, n=22, localities=7 - 

Bathymodiolus, Vesicomyidae, Lucinidae, Ifremeria) using δ13C total SBOM (p=< 

0.0001). The heterotrophic limpet L. elevatus (-20.6‰, East Wall) falls outside the 

range of thiotrophy using RubisCO Form I (-10.0‰ to -13.2‰) and Form II (-39.4‰ 

to -27.0‰), and can therefore be differentiated using total SBOM. No additional 

heterotrophic δ15N or δ34S data is available for further comparison. 

 

3.4.3.3 Shallow reducing environments 

Heterotrophic species (δ13C -23.1‰ ±2.2, n=2, localities=1) cannot be differentiated 

from thiotrophic specimens (δ13C -24.8‰ ±2.7, n=14, localitites=8) at shallow 

environments using δ13C total SBOM. All heterotrophic total SBOM data was 

however obtained from collated specimens, that do not accurately reflect soft tissue 

values (section 3.4.2.3). Soft tissue measurements from A. alba (δ13C -18.8‰, δ15N 

11.5‰, δ34S -4.7‰) do not overlap with the thiotrophic ranges (δ15N: -3.8 to 4.3 / 

δ34S: -22.7‰ to -9.9‰). Additional total SBOM data from larger heterotrophic 

species is therefore required.  
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3.4.3.4 Comparison of nutritional strategies across environmental 

settings 

The depleted δ13C total SBOM values of dual symbiosis/ methanotrophy (-53.5‰ 

±7.9, n=18, cold seeps) are statistically different from all thiotrophs in our dataset (-

30.0 ±3.7, n=87, p=<0.0001), as well as all heterotrophs (-20.9‰ ±2.2, n=62, 

p=<0.0001). δ15N values from thiotrophic bivalves from vents/shallow reducing 

environments however also show negative values (in addition to cold seep C. 

kilmeri) and restrict the potentially distinctive δ15N values for dual 

symbiosis/methanotrophy to below δ15N -5‰. The distinction in δ34S values of dual 

symbiosis/methanotrophy (11.2‰ ±2.8, n=14) is however upheld in comparison to 

hydrothermal vents (-2.3‰ ±5.6, n=13) and shallow reducing environments (-19.6‰ 

±2.7, 7,n=11). Whether it is possible to distinguish these chemosymbiotic species 

from heterotrophic taxa will be dependent on whether they incorporate locally 

produced, or photosynthetically produced organic matter (as discussed in the 

previous sections). In comparison to non-reducing environments, the 

chemosymbiotic species can clearly be identified and occupy completely different 

ranges  (Figure 3.9). This includes the distinction between shallow reducing 

thiotrophic specimens (δ13C -24.8‰ ±2.7, n=14, shallow reducing) and non-

reducing heterotrophs (δ13C -21.0‰ ±2.2, n=60) using total SBOM carbon values 

(p=<0.0001). 

 

3.4.4  What is the isotopic relationship between intra-crystalline 

SBOM and total SBOM? 

It has previously been noted that intra-crystalline SBOM stable isotope values are 

less closely related to the values of soft tissue/nutritional sources than total SBOM. 

Therefore the focus is placed on the relationship between intra-crystalline SBOM 

and total SBOM, instead of soft tissue values. Interestingly, Figure 3.10 shows an 

evolving relationship between the two SBOM pools for both δ13C and δ15N. 

Compared to the depleted total SBOM values for seep bivalves, the intra-crystalline 

value is generally more enriched – particularly for the most depleted values of 

methanotrophic/dual symbiotic specimens. However, around δ13C -27‰ / δ15N +5‰ 

total SBOM this relationship changes, and intra-crystalline values become more 

depleted than total SBOM.  
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Figure 3.10  Isotopic relationship (δ13C, δ15N) between total SBOM and intra-
crystalline SBOM for individual specimens 

Specimens are ordered by total SBOM value, the key for nutritional strategies 
is given in Figure 3.9. Methane source values for methanotrophic bivalves are 
indicated with grey bars.  
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very depleted total SBOM δ13C values, suggest a restricted range of δ13C and δ15N 

for intra-crystalline SBOM, instead of consistent depletion compared to total SBOM. 

Compared to total SBOM, the intra-crystalline SBOM composition is potentially 

more strongly controlled, and e.g. more important for the biomineralisation process, 

and similar between all bivalve taxa. Whereas the inter-crystalline SBOM pool 

would be less strongly controlled and more strongly influenced by nutritional 

sources.  

Compound-specific δ13C values of lipids in the gills of Bathymodiolus species have 

been shown to closely track nutritional carbon values (Duperron et al., 2007), but 

this study suggests that despite the high relative abundance of lipids in the intra-

crystalline SBOM fraction, their contribution to the bulk δ13C signal is limited.   

Insufficient data could be obtained for intra-crystalline δ34S values to investigate its 

relationship to total SBOM.  

 

3.4.5  Can different nutritional strategies be identified using intra-

crystalline SBOM stable isotope values? 

The limited isotopic range of δ13C/ δ15N of intra-crystalline SBOM compared to total 

SBOM means that isotopic differences between nutritional strategies will be much 

more difficult to detect, and the link between intra-crystalline SBOM and 

environmental sources is complex. In this section it is investigated whether it is 

possible to identify different nutritional strategies in a similar way as was shown for 

total SBOM in the previous sections. Direct comparisons will be made to the main 

conclusions about use of total SBOM as a proxy for nutritional strategies. 

Unfortunately no heterotrophic intra-crystalline values are available from deep-sea 

or shallow reducing environments. 

 

1. Total SBOM δ13C values at cold seeps and across environmental settings 

can differentiate between thiotrophy vs. dual symbiosis/methanotrophy 

At cold seeps this distinction can also be made using intra-crystalline SBOM of 

thiotrophs (-30.5‰ ±1.7, n=16) and dual symbiotic/methanotrophic bivalves (-38.3 

±8.4, n=7) (p=0.0015). Similarly, this is possible compared to thiotrophs from 

shallow reducing environments (-26.0‰ ±1.2, n=5) and hydrothermal vents (-27.6 

±1.2, n=8).  
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2. Extremely depleted total SBOM δ15N values are potentially restricted to 

methanotrophic/dual symbiotic species (total SBOM below δ15N -5‰) 

Intra-crystalline SBOM δ15N from methanotrophic B. childressi (-8.3‰ ±4.5, n=5) 

are statistically depleted compared to dual symbiotic species (+4.9‰ ±1.6, n=2, 

p=0.0119) and thiotrophic species (+3.8‰ ±3.9, n=7, p=0.006) at cold seeps, and 

potentially compared to thiotrophic species from hydrothermal vents (-2.9, n=1) and 

shallow reducing environments (-0.7‰ and +0.5‰). Therefore it does appear that 

the most depleted δ15N intra-crystalline SBOM values are also restricted to 

methanotrophic (and possibly dual symbiotic) taxa.  

 

3. Total SBOM δ34S values (below δ34S +5‰) are distinctly depleted for 

thiotrophic taxa compared to methanotrophic/dual symbiotic species  

Unfortunately no intra-crystalline SBOM δ34S data is available for 

methanotrophic/dual symbiotic species, but for thiotrophic taxa the intra-crystalline 

SBOM reflects the general trends of total SBOM: total SBOM δ34S values of C. 

pacifica are -4.3‰ and -3.3‰, and intra-crystalline SBOM also has a negative value 

of -2.4‰, similarly C. kilmeri (total SBOM: 17.7‰) has positive intra-crystalline 

values of δ34S 2.5‰ and 9.2‰. Therefore it could be possible to distinguish 

thiotrophy from other nutritional strategies using intra-crystalline SBOM δ34S values. 

 

4. Total SBOM δ13C values can differentiate between chemosymbiotic 

nutritional strategies vs. heterotrophy from non-reducing environments   

Intra-crystalline δ13C values of thiotrophs from shallow reducing environments (-

26.0‰ ±1.2, n=5) are very similar (p=0.4358) to the heterotrophs (-25.5 ±1.3, n=24) 

from shallow non-reducing environments. Therefore it will also not be possible to 

differentiate thiotrophy from heterotrophy at shallowing reducing environments. It is 

however possible to differentiate heterotrophy from seep thiotrophs (-30.5‰ ±1.7, 

n=16, p=0.0001) and vent thiotrophs (p=0.0004), as well as from dual 

symbiotic/methanotrophic taxa (-38.3‰ ±8.4, n=7, p=0.0001).  
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3.4.6  Can different nutritional strategies be identified using shell 

carbonate δ13C values? 

 

3.4.6.1  Current understanding of shell carbonate δ13C composition 

Shell material could be a potential proxy for nutritional strategies, because δ13C of 

shell carbonate indirectly incorporates nutritional sources via metabolic carbon (e.g. 

Lietard & Pierre, 2009). Whilst the large majority of the shell carbonate is derived 

from seawater DIC, a small proportion of the shell is made up of metabolic CO2 

(McConnaughey et al., 2008). The amount of nutritional carbon that is incorporated 

into the shell is still debated, and has been hypothesized at 10% or less for marine 

molluscs (McConnaughey, 1997; Gillikin et al., 2006; Beirne et al., 2012), although 

other studies suggest a higher contribution (e.g. Gillikin et al, 2007). In this study 

the δ13C value of shell carbonate was determined on homogenized shell powder, 

thus representing a life-time average. To investigate how nutrition is reflected into 

the shell carbonate signal, the data will be compared to SBOM and soft tissue δ13C 

values. In this context SBOM could potentially be a better proxy for metabolic 

carbon than soft tissue, because both shell carbonate and SBOM represent a life-

time average. 

It has been proposed that the amount of utilized metabolic carbon increases 

throughout ontogeny, as more metabolic carbon becomes available for calcification 

(Lorrain et al., 2004; Gillikin et al., 2007), but other researchers have observed no 

effect, or an age-related enrichment of 13C in shell carbonate (Beirne et al., 2012 

and references within). In addition to variation in the δ13C value and contribution of 

metabolic carbon, much of the variability in the δ13C signal of shell carbonate is 

expected to relate to DIC δ13C differences between localities and environments. In 

general, the DIC at deep sea environments is more depleted because conversion 

into organic matter results in 13C enrichment of the residual DIC (Hoefs, 2015). Of 

the deep sea ecosystems, bottom water DIC at cold seeps is known to have very 

variable and depleted δ13C values (Joye et al., 2004; Joye et al., 2010). The 13C 

depleted DIC is caused by methane oxidized into depleted CO2 by the symbiotic 

bacteria present within the bivalve specimens, as well as by free-living 

methanotrophic bacteria at the seep sites (CH4 + 2O2  CO2 +2H2O), or 

anaerobically in the subsurface during AOM (CH4 + SO4
2- 
 HCO3

- + HS- + H2O 

(Brooks et al., 1984; Lartaud, 2010). At hydrothermal vents AOM also occurs 

(Holler et al., 2011) but methane values have less depleted δ13C values because it 

primarly produced abiotically in water-rock interactions (review in McCollom and 
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Seewald, 2007). In addition, methane concentrations are much lower (μM to low 

mM) at vents than at cold seeps (higher mM) (Petersen & Dubilier, 2009) and 

therefore AOM is also likely to be less influential. Particularly because DIC δ13C is 

likely to stay close to seawater values because of a large dilution rate of 

hydrothermal fluids (Le Bris and Duperron, 2010; Nedoncelle, 2014). 

In addition to these environmental sources, vital or kinetic effects are well-known to 

effect δ13C shell values of molluscs, because of their complicated biomineralisation 

pathway. Shells are secreted via the mantle and periostracum from extrapallial 

fluids, these fluids are isolated from the external environment and contain a 

complex mixture of organic and inorganic components (Immenhauser et al., 2016). 

During this biomineralisation process δ13C depletion can occur because of 

preferential incorporation of 12C during diffusion through cell membranes, and 

Rayleigh fractionation during secretion (Immenhauser et al., 2016). The kinetic 

isotope effects of membrane diffusion are minimal in marine molluscs because it is 

facilitated by activity of the enzyme carbonic anhydrase (Beirne et al., 2012 and 

references within). Rayleigh fractionation is expected because the biominerals are 

secreted in a (semi-)closed system, which causes the calcifying solution to become 

continuously depleted because of preferable incorporation into the minerals 

(Immenhauser et al., 2016). The major causes of 13C enrichment are non-

equilibrium precipitation of the shell compared to the parent fluid, and the existence 

of fluid pathways between the extrapallial fluids and ambient waters, decreasing the 

respired fraction of shell carbon (McConnaughey and Gillikin, 2008). Altogether 

these processes lead to a 13C enrichment of around +2‰ in the biomineral 

(Immenhauser et al., 2016; Beirne et al., 2012). For the calculation of predicted 

mollusk shell carbonate δ13C values in this chapter the formula [10% δ13C SBOM + 

90% δ13C DIC + 2‰] will therefore be used. By comparing calculated shell 

carbonate δ13C values to measured δ13C shell carbonate data, it will be possible to 

identify broad scale differences in sources or synthesis between nutritional 

strategies and environmental settings. Brachiopods have a similar biomineralisation 

pathway to bivalves, but the precise sources and fractionation processes are poorly 

understood (Immenhauser et al., 2016). Therefore the predicted δ13C of brachiopod 

shell carbonate is calculated similarly to mollusks.  

Comparison between calculated and measured δ13C shell carbonate values were 

presented in the total SBOM sections, in the Tables 3.7 (methanotrophic species), 

Table 3.8 (thiotrophic species), Table 3.9 (dual symbiotic species), and Table 3.10 

(heterotrophic species).  



- 156 - 

3.4.6.2  Methanotrophy 

Measured shell carbonate δ13C values of methanotrophic B. childressi (-5.7‰ ±2.4, 

n=7, localities=1) were compared to calculated values (Table 3.7), to gain insights 

into the way nutritional carbon is incorporated into the shell carbonate δ13C 

composition. Based on a 10% metabolic contribution and local DIC values, this 

comparison showed that measured δ13C values are generally depleted by -2-4‰ 

compared to those predicted. This depletion could either be the result of higher 

amounts of metabolic carbon (calculated in Table 3.7 to be 13.5% to 18.5%, n=6), 

as well as 13C depleted DIC values. It is challenging to distinguish between these 

scenarios, and they will have to be compared to other cold seep taxa. However, 

considering the consistent depletion across specimens, it seems unlikely that this 

can be attributed to the much more variable depleted 13C DIC values at seeps. The 

incorporation of increased amounts of metabolic carbon, or internal DIC depletion 

are therefore considered more likely.  

One of the specimens in this dataset was identified as potentially supplementing its 

diet with POM through filter-feeding, because of enriched total SBOM δ13C (-

37.0‰) compared to the other specimens (δ13C -53.7‰ ±2.7, n=7). It is 

encouraging that this specimen also has an anomalously enriched shell carbonate 

value (δ13C -0.5‰) compared to the other samples (δ13C -6.5‰ ±0.8, n=7). The 

shell carbonate value appears to be disproportionally enriched compared to the 

specimens, requiring only 8% of metabolic carbon or enriched DIC of 2.4‰. It is 

unclear whether this additional enrichment is related to the hypothesized absence 

of methanotrophic bacteria. A less likely explanation would be the presence of 13C 

enriched CO2, which is known to very variably occur at other types of seeps (Etiope 

et al., 2009).  

 

3.4.6.3  Thiotrophy 

Shell carbonate δ13C values for thiotrophic bivalves can be compared across 

various environments. Despite the possible differences in local DIC δ13C values 

between cold seep localities and shallow reducing environments, the shell 

carbonate δ13C values are very similar between thiotrophs from the two types of 

environmental settings. At cold seeps the δ13C data spans a limited range from -

2.8‰ to 2.2‰ (-0.2‰ ±1.3, n=22, localities=6), that is statistically similar to shell 

carbonate δ13C values from shallow reducing settings (0.3‰ ±1.9, n=11, 

localities=7).  
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Both locality settings are however strikingly different from the shell carbonate δ13C 

values from hydrothermal vents, that are statistically enriched and have a mean δ13C 

value of 4.2‰ ±2.6 (n=22, localities=6). The potential environmental parameters that 

could contribute to the enriched δ13C at hydrothermal vents are further discussed in 

section 3.4.6.6 below. Within the hydrothermal vent thiotrophy dataset, of particular 

interest are the extremely enriched δ13C values of the South Su gastropod Ifremeria 

(9.2‰ ±0.2, n=3), even when compared to Alviniconcha (3.0‰ ±0.4, n=3) and B. 

manusensis (3.8‰ ±3.4, n=3, up to 6.4‰) from the same locality. Even though these 

three species inhabit different microhabitats at seeps, the δ13C of DIC is unlikely to 

be consistently different by 6‰. Especially because hydrothermal vent DIC δ13C 

values have been suggested to stay close to seawater values, as discussed above. 

Difference in (metabolic) activity could explain the difference, since Ifremeria is 

relatively inactive compared to Alviniconcha that is very active and in the venting 

water (Desbruyeres et al., 1994; Podowski et al., 2009). Slow metabolic rates and 

sluggish live modes can lead to more positive δ13C shell carbonate values 

(Immenhauser et al., 2016; and references within). For those species with depleted 

δ13C SBOM/soft tissue values, the small increase in metabolic carbon into the shell 

will have a much stronger effect, such as for Gulf of Mexico GC233 methanotrophs. 

Another possible influence on the δ13C of shell carbonate is shell mineralogy. 

Various studies have shown that biogenic aragonite is δ13C enriched compared to 

calcite, this is however generally less than 1‰ per mille (Lecuyer et al., 2012) 

compared to calcite in the same specimen, although the difference has been 

suggested to be larger (δ13C 1.7±0.4‰) based on synthetically precipitated 

minerals (Romanek et al, 1992). This difference is however minor, considering the 

overall variation in values for all three environmental settings, and between species 

of the same mineralogy.  

 

3.4.6.4  Dual symbiosis 

Bathymodiolus species with dual symbiotic nutrition have δ13C shell carbonate 

values that are generally more enriched than calculated.  

 

3.4.6.5  Heterotrophy 

The depleted value of Paraleptopsis (δ13C -8.3‰) is in agreement with the depleted 

SBOM/soft tissue values, although the depletion is larger than calculated. Shell 

carbonate values from brachiopods (δ13C 1.6‰ ±0.7, n=26) are statistically 
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enriched compared to heterotrophic bivalves from non-reducing environments (δ13C 

0.3‰ ±0.8, n=6) (p=0.0004). This difference is interesting, because the it does not 

reflect the predicted enrichment of aragonitic bivalve shells compared to calcitic 

brachiopod shells, as discussed above. Instead, the difference between these 

animals is likely environmental or physiological. 

 

3.4.6.6  Comparison between nutritional strategies and environments 

At cold seeps shell carbonate δ13C values of methanotrophic bivalves (-5.7‰ ±2.4, 

n=7, localities=1) are statistically depleted compared to dual symbiosis (-1.1‰ ±1.6, 

n=5, p=0.0040) and thiotrophy (-0.2‰ ±1.3, n=22, p=<0.0001), and strongly 

depleted compared to heterotrophic Delectopecten (1.1‰). There are no statistical 

differences between the latter three nutritional lifestyles. Similarly, no statistical 

difference (p=0.8542) exists between shell carbonate δ13C values from thiotrophic 

bivalves (0.5 ±1.8, n=12) and the deposit feeders A. alba (-0.4‰) and E. tenuis 

(0.9‰) at shallow reducing environments. At the other environments no 

comparisons between strategies can be made. 

All methanotrophic samples in our dataset belong to B. childressi from the Gulf of 

Mexico, primarily the brine seep GC233. In order to use δ13C < -5‰ values of shell 

carbonate as a proxy for methanotrophy, this threshold should be upheld for other 

methanotrophic species and at different localities as well. In addition, it was noted 

that the δ13C values of B. childressi were more depleted than calculated (Table 3.7), 

which contributes to the distinct values of the species. To investigate whether very 

depleted δ13C values and/or the negative offset compared to calculated values are 

also present in methanotrophic species from other localities and environmental 

settings, the offset between measured and calculated values was calculated for 

published data on methanotrophic Bathymodiolus species (Fig. 3.11). By plotting 

this isotopic offset, the influence of differences in methane δ13C values (reflected in 

SBOM) and DIC δ13C values between specimens can be investigated.   

Firstly, published data shows that B. childressi from a different Gulf of Mexico cold 

seep (GC185) does not generally have shell carbonate δ13C values lighter than -5‰ 

(mean: -2.5‰ ±1.2, n=82; Riekenberg et al., 2016). Moreover, the range of δ13C 

shell carbonate data falls around the expected value (off-set: -0.2‰ ±1.2, Fig. 3.11) 

calculated using soft tissue values. In addition to this study, published data for B. 

childressi from GC233 also confirms the depleted shell carbonate values (-9.0‰ 

±2.5, n=90), and the large offset between calculated and measured values (-4.4‰ 

±2.4, n=90) (Riekenberg et al., 2016; Lietard & Pierre, 2009).  
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Heterotrophy
(Brachiopoda)
Shallow non-reducing
environments

Figure 3.11  Isotopic offset between calculated and measured shell carbonate δ13C 
values for all samples 

Data shown and calculated in Table 3.7-3.10. The dashed line separates the 
specimens that have an enrichment that cannot be explained by lower 
amounts of nutritional carbon (nutritional carbon 0%). Published data (*) 
references: Mae et al, 2008, Paull et al., 1989, Lietard & Pierre, 2009, Colaco 
et al, 1998; Riekenberg et al., 2016, were used to calculate off-sets. Different 
colours of B. childressi were collected in different years. Deviating values that 
were identified in the text to have anomalous total SBOM values are outlined. 
Open symbol for P. floridensis represents soft tissue off-set. 
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Riekenberg et al. (2016) explain the difference between the Gulf of Mexico 

localities, and the intra-locality variation, by increasing amounts of metabolic carbon 

being incorporated into shells with more negative δ13C values, due to higher food 

availability at GC233. 

The picture becomes more complicated when B. childressi results are compared to 

other nutritional strategies and localities: as increasingly positive offsets are shown 

in Figure 3.11 for (1) dual symbiotic Bathymodiolus at seeps, (2) methanotrophic 

Bathymodiolus at vents, (3) dual symbiotic Bathymodiolus at vents, and (4) 

thiotrophic Bathymodiolus at vents. Thiotrophic seep specimens in general are also 

more enriched than the methanotrophic seep specimens, and an even larger 

positive offset is observed for thiotrophic vent specimens. Therefore this data 

shows two notable observations: i) thiotrophic bacteria (in dual symbiotic and 

thiotrophic taxa) appear to cause enriched δ13C shell carbonate values, ii) at vent 

localities δ13C shell carbonate values are more enriched than at cold seeps and 

shallow reducing environments. Presence at vents is more influential than 

harbouring thiotrophic symbionts, since the enrichment of methanotrophic/dual 

symbiotic vent Bathymodiolus is similar to or higher than thiotrophic/dual symbiotic 

seep specimens. Moreover, for the majority of vent specimens their δ13C shell 

carbonate values cannot be explained without environmental or internal 13C 

enrichment. This has previously been explained through internal 13C enrichment of 

the DIC, possibly due to thiotrophic bacteria using the dissolved inorganic carbon 

and preferentially incorporating 12CO2  and concentrating 13C in the extrapallial fluid 

(Rio et al., 1992; Lietard & Pierre 2009; Nedoncelle et al., 2014). Alternatively or 

additionally, the presence of methanotrophic bacteria could cause a depletion, by 

direct exposure to 13C depleted CO2 resulting from internal methane oxidation.   

These suggestions could account for the differences between nutritional strategies, 

it does not explain the difference between ecosystems, that is likely underlain by 

difference in environmental parameters. The difference between hydrothermal 

vents and cold seeps could also be explained by known very depleted local DIC of 

seeps. This does however not explain the offset compared to shallow reducing 

environments. Alternatively, compared to cold seep settings the chemical fluids 

present at hydrothermal vents are lower in pH, which ensures DIC is primarily 

present as CO2 (Tunnicliffe et al., 2003; Sibuet and Olu, 1998). There are multiple 

forms of DIC in the water, and it has previously been noted that using molecular 

CO2 can cause negative value for the incorporation of metabolic carbon 

(McConnaughey et al., 2008). In ambient seawater DIC will largely reflect HCO3, as 

suggested experimentally by Beirne et al (2012).   
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In summary, the δ13C values of shell carbonate are a complicated proxy, that is 

suggested to be strongly influenced by environmental settings and metabolic 

activity. Negative δ13C values at cold seeps (below -2‰) are however restricted to 

some dual symbiotic specimens (-1.1‰ ±1.6, n=5), as well as methanotrophic 

specimens (-5.7‰ ±2.4, n=7), and could therefore be indicative of the presence of 

methanotrophic bacteria. Shell carbonate values below δ13C -5‰ could be unique 

to methanotrophic species, but more enriched δ13C values are also possible for 

methanotrophic specimens.   

3.5 Conclusions 

Both the δ13C and δ34S values of total SBOM allow for the differentiation between 

thiotrophy and dual symbiosis/methanotrophy, and a combination of both values is 

particularly conclusive. In addition, δ15N SBOM values can potentially also be used 

to distinguish between bivalves harbouring methanotrophic bacteria (dual symbiosis 

and methanotrophy) and does that do not (thiotrophy and heterotrophy), if further 

study shows that extremely depleted nitrogen values are restricted to the presence 

of methanotrophic bacteria. Thus the isotopic signatures of the different nutritional 

strategies override environmental and biological heterogeneity. The possibility of 

differentiating chemosymbiotic species from local heterotrophs will depend on 

whether these specimens are utilizing chemosynthetically or photosynthetically 

derived organic matter. If the latter values are similar to heterotrophs from non-

reducing environments, the differences are very large for all isotope systems. 

Many of the identifications that can be made using total SBOM stable isotope 

values, can also be identified using intra-crystalline SBOM. This is particularly 

important for potential future work on ancient specimens, because the intra-

crystalline SBOM is thought to preserve better because it is protected by the 

mineral (Sykes et al., 1995). This study confirmed the compositional difference 

between total SBOM and intra-crystalline SBOM, that is likely to underlay the 

isotopic differences. It could be concluded that the range of isotopic values of intra-

crystalline SBOM is much more restricted than for total SBOM, and this strong 

control is potentially related to the function of intra-crystalline SBOM within the 

biomineralisation process.  

Contrary to SBOM, the δ13C shell carbonate values are strongly influenced by 

environment and biology. It is potentially only possible to identify the presence of 

methanotrophic bacteria in relation to 13C depleted values. 
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Relevant research questions 

The aim of the research presented in this thesis is to reconstruct the occurrence of 

chemosymbiosis through geological time using stable isotope analysis of shell-

bound organic matter (SBOM), and to investigate the influence of chemosymbiosis 

on the evolution of deep sea fauna and ecosystems. In Chapter 2 and Chapter 3 

we confirmed that carbon (δ13C), nitrogen (δ15N), and sulphur (δ34S) stable isotope 

analysis can be used to differentiate nutritional lifestyles, in particular 

chemosymbiosis. In this chapter we investigate the preservation of SBOM in the 

fossil record: Research question 4: Are SBOM and its original stable isotopic 

composition preserved over geological time? 
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4.1  Introduction 

Stable isotope analysis of shell-bound organic matter (SBOM) is a powerful 

technique to identify the nutritional strategies and nutritional sources of animals in 

modern ecosystems (O’Donnell et al., 2003; Mae et al., 2008; Dreier et al., 2012 

and 2014). Moreover, it has the potential to elucidate the palaeobiology of dead and 

(sub)fossil specimens that cannot be investigated using traditional stable isotope 

analysis of soft tissues. In Chapter 2 it was shown that chemosymbiosis can be 

identified using the carbon (δ13C), nitrogen (δ15N), and sulphur (δ34S) SBOM 

composition of bivalves and gastropods in deep sea ecosystems. These distinct 

values are the result of symbiotic bacteria that use either methane (methanotrophic) 

or hydrogen sulphide (thiotrophic) to generate energy for carbon fixation and 

provide host nutrition (Duperron et al., 2009). Because of these extreme and 

distinct values, the stable isotope analysis of SBOM from ancient suspected 

chemosymbiotic bivalves is an ideal test case to investigate fossil SBOM as a proxy 

for nutritional strategies. If chemosymbiotic biosignatures are preserved on 

geological timescales, the occurrence of chemosymbiosis in certain taxa and time 

periods can be identified, which will allow for a reconstruction of the evolution of 

chemosymbiosis. The presence of chemosymbiosis likely had a major influence on 

the evolution of cold seep fauna during the Phanerozoic, and SBOM stable isotope 

analysis provides a unique opportunity to obtain direct evidence for the timing of 

these evolutionary changes. In addition to analysing the complete SBOM fraction in 

the shell of a specimen (total SBOM), particular focus was placed on the isotopic 

signature of the intra-crystalline SBOM pool. Intra-crystalline SBOM is encased in 

the minerals, and therefore has greater potential for preservation over longer 

timescales (Sykes et al., 1995; Penkman et al., 2008). Data presented in Chapter 2 

and Chapter 2 has shown that  intra-crystalline SBOM also has a different isotopic 

signal compared to total SBOM, which is likely underlain by compositional 

differences between the intra-crystalline en inter-crystalline pools. 

Chemosymbiotic lifestyles are primarily known from the deep sea, where the 

symbioses support high invertebrate biomass in extremely unfavourable living 

conditions (Van Dover, 2001). The reduced compounds required for bacterial 

carbon fixation are present at two types of deep sea ecosystems: the long-lived 

cold seeps where fluids are emitted slowly, and at hot hydrothermal vents with 

vigorous and highly unstable conditions. Both hydrothermal vents and cold seeps 

have been recognized in the fossil record (Kiel et al., 2010), but vent fossils are 

always preserved as moulds of pyrite and lack original shell material (Little et al., 
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2002). Therefore only SBOM from ancient cold seep specimens can be analysed. 

Within this study effort was put into obtaining both suspected chemosymbiotic 

specimens as well as suspected heterotrophic specimens from the same locality, or 

from surrounding non-seep areas. In addition to bivalves, brachiopods from pre-

Cretaceous cold seep localities were analysed. The very high abundance of the 

brachiopods has led some to suggest a chemosymbiotic lifestyle, even though 

modern brachiopods are suspension-feeders and generally absent from cold seeps 

(Sandy, 2010).    

Modern SBOM stable isotope thresholds. The stable isotope SBOM composition 

of the fossil specimens was compared to modern thresholds for nutritional 

strategies determined in Chapter 3. At modern cold seeps, bivalves harbouring 

thiotrophic symbionts have total SBOM δ13C values of -31.6‰ ±2.7 (n=51, 

species=13). These values are depleted compared to heterotrophic bivalves from 

cold seeps (-19.3‰, n=1), as well as bivalves (-20.4‰ ±2.4, n=31, species=3) and 

brachiopods (-21.5‰ ±1.8, n=27, species=4) from shallow non-reducing 

environments, because the symbionts fractionate dissolved inorganic carbon (DIC) 

to a greater degree than the photosynthetic organisms on which heterotrophic 

invertebrates generally feed. The δ13C total SBOM value of bivalves living in 

symbiosis with methanotrophic bacteria, or both methanotrophic and thiotrophic 

bacteria (dual symbiosis), is even more depleted due to the incorporation of 13C 

depleted methane. The variation in total SBOM δ13C (-53.5‰ ±7.9, n=18, 

species=4).  is large for these two lifestyles, because of the presence of thiotrophic 

bacteria (utilizing 13C enriched DIC), and the δ13C variation between local methane 

sources. The intra-crystalline SBOM δ13C value of methanotrophic/dual symbiotic 

bivalves (-38.3 ±8.4, n=7, species=3) is also more depleted than in thiotrophic 

bivalves (-30.5‰ ±1.7, species=4). No intra-crystalline SBOM δ13C values for 

heterotrophic cold seep bivalves are available, but the intra-crystalline SBOM of 

non-seep bivalves (-25.4‰ ±1.6, n=14, species=3) and brachiopods (-25.6‰ ±0.6, 

n=10, species=4), are more enriched than the chemosymbiotic taxa. Nutritional 

carbon reflected in SBOM is also incorporated into the shell carbonate of 

invertebrates. The amount of nutritional carbon has been suggested to lie around 

10%, therefore the majority of the δ13C signal of the shell carbonate reflects DIC. In 

Chapter 2 it was shown that shell carbonate δ13C of heterotrophy (1.1‰, n=1), 

thiotrophy (-0.2‰ ±1.3, n=22, species=9), dual symbiosis (-1.1‰ ±1.6, n=5, 

species=3) overlap in values, but dual symbionts can generally be differentiated 

from the other two lifestyles by δ13C more depleted than -1‰. Methanotrophic 

Bathymodiolus childressi (Gulf of Mexico, GC233) δ13C shell carbonate values are 
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additional depleted (-5.7‰ ±2.4, n=7, generally lighter than δ13C -5‰) and 

statistically different from the other nutritional strategies. However, it should be 

noted that B. childressi from other Gulf of Mexico localities has more enriched δ13C 

values (-2.5 ±1.2, n=82, Riekenberg, 2015). Therefore shell carbonate δ13C of -2‰ 

or lighter generally indicates the presence of methanotrophic (in addition to 

thiotrophic) bacteria, but all shell carbonate data should be interpreted with caution. 

In Chapter 2 it was shown that δ13C ratios can be strongly influenced by the amount 

of incorporated metabolic carbon, local DIC δ13C variation, local POM (particulate 

organic matter) δ13C variation, and potentially by internal DIC 13C enrichment by 

thiotrophic bacteria.  

In addition to carbon, δ34S values can be useful to identify the presence of 

thiotrophic bacteria because of the incorporation of 34S depleted hydrogen sulphide 

(data given excludes SBOM obtained using cation exchange resin). Total SBOM 

data are generally negative (δ34S -4.4‰ ±7.4, n=12, species=8) and ranges from 

δ34S -25‰ to +5‰. Comparative total SBOM data from other nutritional strategies is 

limited (methanotrophic B. childressi +12.1‰ ±2.8, n=10) but, in combination with 

soft tissue data, suggests that other nutritional strategies at cold seeps are 

generally characterized by values ranging from δ34S +5‰ to +15‰. The latter range 

is also observed for total SBOM of non-seep bivalves. Brachiopod soft tissue δ34S 

values are however even more enriched, and range from +10‰ to +20‰. 

Unfortunately very limited intra-crystalline SBOM δ34S data is available, but δ34S 

values are generally also slightly negative.  

Chemosymbiotic bivalves can assimilate various inorganic nitrogen sources that are 

not directly linked to the type of symbionts, and have a mean δ15N total SBOM 

value of -0.5‰ ±6.8 (n=66, species=20), and mean intra-crystalline SBOM of -0.2‰ 

±6.9 (n=15, species=7). The only seep heterotroph has a total SBOM δ15N enriched 

value of 16.1‰, and shows higher reliance on photosynthetically derived nitrogen 

from POM. There are however indications that heterotrophs living at cold seeps 

could incorporate depleted δ15N organic sources, produced by free-living 

chemoautotrophic bacteria. At non-reducing environments, bivalves and 

brachiopods have more enriched δ15N ratios for total SBOM (10.0‰ ±2.3, n=48, 

species=7) and intra-crystalline SBOM (8.5‰ ±2.9, n=41, species=6). To apply 

modern thresholds on fossil SBOM, changing baseline values for DIC, methane, 

hydrogen sulphide and nitrogen sources should also be considered. 

Methods to assess SBOM preservation. This study relies on the assumption that 

the isolated SBOM is indigenous, and therefore retains its original isotopic signal. 
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Loss or contamination of original SBOM could alter the isotopic signal, and 

potentially confound interpretations about the nutritional strategy and environmental 

sources used by the animal. Although previous studies assumed isotopic alteration 

of SBOM to be limited over time (O’Donnell et al., 2003; Mae et al., 2007), more 

recent work recognized gradual degradation and transformation, particularly of total 

SBOM (Dreier et al., 2012; Penkman et al., 2008). To evaluate the preservation and 

alteration of SBOM through time, several geochemical and visual analyses were 

performed in addition to stable isotope analysis.  

 Radiocarbon analysis of SBOM and shell carbonate 

Subfossil shells from our suite of samples were dated using radiocarbon analysis of 

shell carbonate. The age of the samples was unknown or poorly constrained, and 

specimens within this age range (102-104 years) are critical for understanding the 

effects of age on the fidelity of the isotopic SBOM signal. In addition radiocarbon 

dating of SBOM was attempted. Although the incorporation of 14C into SBOM has 

not previously been investigated, theoretically the 14C analysis of related total 

SBOM from dated shell samples should show whether the SBOM is original (similar 

14C age as the shell) or has become contaminated by the recent external 

environment (younger 14C age than the shell). Although it might not be possible to 

detect diagenetic alteration that occurred shortly after the death of the animal.  

In addition, radiocarbon analysis can potentially be used to identify the presence of 

methanotrophic symbionts. Because the methanotrophs incorporate geologically 

old, 14C dead methane into the SBOM, the 14C age of SBOM from methanotrophic 

or dual symbiotic bivalves will be older than the 14C age of the shell. In combination 

with δ13C total SBOM data, this can further constrain the dominant carbon sources 

contributing to SBOM. 

 Amino acid racemization (AAR)

The originality of proteins within intra-crystalline SBOM was investigated using 

amino-acid racemization (AAR), a relative dating method using amino acids, the 

basic building blocks of proteins. The AAR technique uses the predictable post-

mortem conversion of levo-rotaty (L-) amino acids into dextro-rotary (D-) amino 

acids over time (in combination with the age of the fossils), to establish whether the 

SBOM has remained unaffected by external factors (Penkman et al., 2008). 

Because proteins make up the majority of SBOM, and proteins are considered to be 

relatively susceptible to degradation (Marin et al., 2012), AAR results are assumed 

to be a good indicator of preservation for the complete intra-crystalline SBOM pool.  
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 Pyrolysis gas chromatography mass spectrometry (Py-GC/MS) 

Changes to the bulk chemical composition of original SBOM can also be 

recognized using Py-GC/MS, an identification method for macromolecular 

constituents of insoluble organic matter. Thermal degradation of the organics 

produces low molecular weight products that are separated according to fragment 

mass by GC, and identified using MS (Schweitzer et al., 2008). In addition to break-

down products of proteins, Py-GC/MS can identify other macromolecular 

components present in SBOM, such as polysaccharides and lipids. Py-GC/MS 

analysis has not previously been used on modern or fossil SBOM, and the main 

objectives within this study are (i) to chemically characterize SBOM in modern 

specimens (with various nutritional strategies), (ii) determine to what extent these 

chemical constituents can survive diagenesis and be detected in fossils of varying 

geological ages, and (iii) recognize diagenetic contaminants in fossil specimens. 

Potentially, diagnostic molecular components of nutritional strategies identified in 

modern samples can also contribute to the identification of these lifestyles in fossil 

specimens. 

 Scanning electron microscopy (SEM) and cathodoluminescence (CL) 

imaging

In addition to direct biochemical analyses of SBOM, its preservation can indirectly 

be assessed by the diagenetic condition of the shell. Chemical or physical 

alterations can be identified using cathodoluminescence (CL) imaging and scanning 

electron microscopy (SEM), respectively. One of the main problems concerning 

shell preservation is recrystallization, this process is known to modify the primary 

isotopic composition of shell carbonate and is also assumed to indicate chemical 

alteration of the original SBOM signal (England et al., 2006). Recrystallisation is 

most common in aragonitic shells, that often transform to the more stable 

mineralogical calcite phase (Clarkson, 2009). SEM analysis can identify 

recrystallisation (erasing the microstructure of the shell) and other morphological 

changes by examining the shell ultrastructure using a very narrow electron beam.  

Chemical preservation of the shell material can be evaluated using CL imaging, 

whereby visible radiation can be emitted under the impact of electrons. If 

luminescence of the shell is observed, this is considered indicative of diagenesis. 

Generally, luminescence is linked to elevated manganese concentrations due to 

manganese substitution in the calcium carbonate lattice. Luminescence can also be 

caused by structural defects (England et al., 2005; Barbin et al., 2013). 
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4.2  Material and Methods 

4.2.1  Material 

The suite of samples is shown in Table 4.1 and contains fossil shell material from 

both suspected chemosymbiotic and suspected heterotrophic species from a wide 

range of bivalve families, as well as other animal groups. Because fossil cold seep 

fossils are relatively rare, it is often not possible to analyse many specimens of the 

same species. By analysing a limited number of specimens from many specimens 

we still aim to establish a statistically reliable dataset to compare nutritional 

strategies. This particularly applies to heterotrophic animals in the absence of 

available bivalve specimens. In addition, the variety of samples makes it possible to 

also compare differences in shell mineralogy/structure (calcite vs. aragonite), as 

well as behavioural ecologies (infaunal vs. epifaunal), in addition to nutrition. 

Because this sample set include various shelled cephalopods, a modern Nautilus 

specimen was analysed for reference isotopic values (Nautilus pompilius, 

Phillippines). 

Suspected nutritional strategies was assigned to all analysed specimens by 

analogy to modern taxa, and family specific information on suspected nutritional 

and behavioural strategies is given below. The variation in shell mineralogy is 

limited to either solely aragonite or calcite crystals, or a combination of the two 

forms. Within the chemosymbiotic bivalve families, aragonitic shells have been 

identified for Lucinidae (e.g. Lietard & Pierre, 2009), Thyasridiae (Conchocele 

bisecta, Nishida et al., 2011), Solemyidae (e.g. Sato et al., 2013) and Vesicomyidae 

(Kennish et al., 1998). The shells of deep sea mytilids, including Bathymodiolus and 

Gigantidas were reported by Genio et al (2012)  to consist of both calcite and 

aragonite, similar to the general mytilid condition.  

Within the heterotrophic bivalves several families have completely calcitic shells, 

these include the Ostreidae (Ostrea) and Gryphaeidae. Specimens of Pectinidae 

can have both mineral types, although modern Mizuhopecten has been identified as 

completely calcitic (Bouillon, 1958; Sarashina and Endo, 1998; Esteban-Delgado et 

al., 2008). These specimens all include at least a calcitic component, commonly an 

external calcitic shell layer. The combination of aragonite and calcite is furthermore 

known from Inoceramidae (Wright, 1987).  

The shells of all other bivalves are aragonitic, and include species within the orders 

Arcoida, Veneroida and Nuculida (Esteban-Delgado et al., 2008; Taylor et al., 1969, 

for Glycymeris – Oliver & Holmes, 2006; for Cucullaea and Lahillia – Petersen et 
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al., 2016). Two fossil ostreid shells were excluded from this study because SBOM 

could not be isolated, using XRD it was confirmed that much of the original shell 

was replaced by silica.   

The shells of most gastropods consist of aragonite layers, though many also have a 

calcitic outer layer (Clarkson, 2009; Taylor & Reid, 1990 and references within). For 

modern Neptunea both crystal forms have indeed been identified (e.g. Xiao-Fei et 

al., 2014). Turritulidae however precipitate aragonitic shells (Allmon, 1988).  

Of the other taxa analysed, ammonoids (Cephalopoda) and Nautilus are 

characterized by an aragonitic shell (Clarkson et al., 2009), as is the shell from 

species of Dentalium within the Scaphopoda (Smith & Spender, 2015). All 

brachiopod species in our sample set belong to the rhynchonelliformeans, that are 

characterized by calcitic valves (Clarkson et al., 2009). Within the fossil Rotularia 

(Annelida) a calcite layer was identified, as well as possibly an aragonitic layer 

(Savazzi, 1995). 

 

Table 4.1  Overview of samples from ancient cold seep localities 

(p. 170-173) Species that are underlined were collated (> 2 specimens) to 
obtain sufficient shell material for SBOM isolation and analysis  

 

Locality Age Species (Family) 
Suspected 

strategy 

Cold seep localities 

Congo Fan 1283 B.P. Laubiericoncha chuni     

(Vesicomyidae) 

Thiotrophic 

chemosymbiosis 

Hikurangi Margin 

(NZ) 

1227 B.P. Calyptogena tuerkayi 

(Vesicomyidae) 

Thiotrophic 

chemosymbiosis 

Krishna-Godavari 

Basin (India) 

42.5-40.0 ka Vesicomyidae sp.  

(Vesicomyidae) 

Thiotrophic 

chemosymbiosis 

Bathymodiolus sp. 

(Mytilidae) 

Chemosymbiosis 

Kakinokidai seep 

(Japan)  

Locality I  

Middle 

Pleistocene 

Acharax sp. 

(Solemyidae) 

Thiotrophic 

chemosymbiosis 

Lucinoma aokii 

(Lucinidae) 

Thiotrophic 

chemosymbiosis 
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Locality II  

Middle 

Pleistocene 

(younger) 

Lucinoma aokii 

(Lucinidae) 

Thiotrophic 

chemosymbiosis 

Koshiba Formation 

(Japan) 

Early 

Pleistocene 

Lucinoma spectabilis 

(Lucinidae) 

Thiotrophic 

chemosymbiosis 

Conchocele bisecta 

(Thyasiridae) 

Thiotrophic 

chemosymbiosis 

Solemya japonica 

(Solemyidae) 

Thiotrophic 

chemosymbiosis 

Kounandai seep, 

Locality I and II 

(Japan) 

Early 

Pleistocene 

Lucinoma sp. 

(Lucinidae) 

Thiotrophic 

chemosymbiosis 

Takanabe 

Formation (Japan) 

Plio-Pleistocene Lucinoma sp. (Lucinidae) Thiotrophic 

chemosymbiosis 

Shiramaza 

Formation (Japan) 

Upper Pliocene Calyptogena sp. 

(Vesicomyidae) 

Thiotrophic 

chemosymbiosis 

Rocky Knob  (NZ) Miocene Lucinoma aff. taylori 

(Lucinidae) 

Thiotrophic 

chemosymbiosis 

Bathymodiolus 

heretaunga 

(Mytilidae) 

Chemosymbiosis 

Moonlight North 

(NZ) 

Miocene Gigantidas coseli  

(Mytilidae) 

Thiotrophic 

chemosymbiosis 

Lucinoma sp. 

(Lucinidae) 

Thiotrophic 

chemosymbiosis 

Liothyrella sp. 

(Brachiopoda) 

Heterotrophy 

Hokkaido   (Japan) Miocene Calyptogena pacifica 

(Vesicomyidae) 

Thiotrophic 

chemosymbiosis 

Izura seep,       Lower Miocene Lucinoma 

acutentilineatum 

(Lucinidae) (I) 

Thiotrophic 

chemosymbiosis 
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Locality I and II           

(Japan 

Mizuhopecten kobiyami               

(Pectinidae) (I) 

Heterotrophy 

Calyptogena sp. 

(Vesicomyidae) (II) 

Thiotrophic 

chemosymbiosis 

Lincoln Creek 

Formation (US)  

Oligocene Conchocele bisecta 

(Thyasiridae) 

Thiotrophic 

chemosymbiosis 

Lucinoma sp. (Lucinidae) Thiotrophic 

chemosymbiosis 

Solemyidae sp.  Thiotrophic 

chemosymbiosis 

Vesicomyidae sp. Thiotrophic 

chemosymbiosis 

Mytilidae sp.  Unknown / 

heterotrophy 

Ennucula sp.  

(Nuculidae) 

Heterotrophy 

Tepee Buttes Campanian Nymphalucina 

occidentalis (Lucinidae) 

Thiotrophic 

chemosymbiosis 

Inoceramus sp. 

(Inocermidae) 

Unknown/ 

heterotrophy 

Baculites sp.  

(Ammonoidea) 

Heterotrophy 

Seymour Island Maastrichtian ‘Thyasira’ townsendi  

(Thyasiridae) 

Thiotrophic 

chemosymbiosis 

Solemya rossiana 

(Solemyidae) 

Thiotrophic 

chemosymbiosis 

Maorites seymourianus  

(Ammonoidea) 

Heterotrophy 

Brachiopoda – cold seep localities 

Oregon/Colorado 

(US) 

Jurassic Anarhynchia gabbi Unknown 
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(suggested cold 

seep adaption) 

Graylock (US) Triassic Halorella sp.  Unknown 

Harz Mountains 

(Germany) 

Carboniferous Ibergirhynchia contraria Unknown 

Sidi Amar 

(Morroco) 

Devonian Dzieduszyckia 

crassicostata 

Unknown 

Dzieduszyckia 

tenuicostata 

Unknown 

Middle Atlas 

(Morroco) 

(suggested cold 

seep adaptation) 

Silurian Septatrypa Unknown 

 

Table 4.2  Overview of samples from ancient non-seep localities 

(p. 173-175) Species that are underlined were collated (> 2 specimens) to 
obtain sufficient shell material for SBOM isolation and analysis  

 

Locality Age Species (Family) Suspected strategy 

Non-seep localities 

in proximity to 

Kakinokidai 

seep                 

(Japan) 

Middle 

Pleistocene 

Gastropoda 

Neptunea kuroshio 

(Buccinidae) 

Heterotrophy 

Fulgoraria prevostiana    

(Volutidae) 

Heterotrophy 

Scaphopoda 

Dentalium sp. 

(Dentaliidae) 

Heterotrophy 

Koshiba 

Formation      

(Japan) 

Early 

Pleistocene 

Bivalvia 

Ostrea musashiana 

(Ostreidae) 

Heterotrophy 

Glycymeris sp.   

(Glycymerididae) 

Heterotrophy 
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Gastropoda 

Fusitrition oregonensis   

(Ranellidae) 

Heterotrophy 

Ranella galea (Ranellidae) Heterotrophy 

Fulgoraria kamakuraensis   

(Volutidae) 

Heterotrophy 

Scaphopoda 

Dentalium sp. 

(Dentaliidae) 

Heterotrophy 

Brachiopoda 

Terebratulidae 

(Brachiopoda) 

Heterotrophy 

Seymour Island                           

(in proximity    

or associated 

with seep 

locality) 

Maastrichtian Bivalvia 

Lahillia larseni               

(Cardiidae) 

Heterotrophy 

Cucullaea sp. 

(Cucullaeidae) 

Heterotrophy 

Leionucula suboblonga  

(Nuculidae)  

Heterotrophy 

Seymour Island                          

(no noted 

proximity to 

seep locality) 

Maastrichtian Pycnodonte (Phygraea) 

vesicularis vesicularis 

Heterotrophy 

Gastropoda 

Neogastropod n. gen.  Heterotrophy  

Vanikoropsis arktowskiana 

(Vanikoridae) 

Heterotrophy 

Amberleya spinigera 

(Amberleyidae) 

Heterotrophy 

Cephalopoda (Ammonoidea) 

Maorites seymourianus  Heterotrophy 

Kitchinites sp.  Heterotrophy 
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Pachydiscus 

(Pachydiscus) riccardii 

Heterotrophy 

Diplomoceras 

cylindraceum 

 

Heterotrophy 

Eutrephoceras 

dorbignyanum 

(Nautiloidea) 

Heterotrophy 

Annelida 

Rotularia ssp.  Heterotrophy 

Owl Creek 

Formation 

Maastrichtian Bivalvia 

Cucullaea capex  

(Cucullaeidae) 

Heterotrophy 

Nucula percrassa 

(Nuculidae) 

Heterotrophy 

Gastropoda 

Turritella   Heterotrophy 

Drilluta  Heterotrophy  

Cephalopoda (Ammonoidea) 

Baculites Heterotrophy 

Eubaculites Heterotrophy 

Discoscaphites Heterotrophy 

 

4.2.1.1  Bivalvia  

Vesicomyidae 

Vesicomyid clams are dominant species at modern cold seeps and hydrothermal 

vents, where they can grow to extremely large sizes and live shallowly buried in the 

sediment (Sibuet and Olu, 1998; Krylova and Sahling, 2010). All vesicomyids rely 

on thioautotrophic symbionts for nutrition, and they only have a rudimentary gut 

(Taylor and Glover, 2010). The oldest occurrence of Vesicomyidae is Eocene (Kiel 

and Goedert, 2006). The oldest samples in our samples in our data set are 
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Oligocene (Vesicomyidae), followed by specimens from two Miocene cold seep 

localities (Calyptogena sp. and Calyptogena pacifica). Preliminary study of the 

vesicomyid material from the Krishna-Godavari Basin (geological age of older than 

50ka) revealed multiple species and results can therefore only be discussed at a 

family level. The two subfossil species, Laubiericoncha chuni and Calyptogena 

tuerkayi, are extant and the presence of thiotrophic bacteria has been confirmed for 

modern L. chuni (Decker et al., 2013).  

 

Mytilidae 

All mussels species found at modern cold seeps and hydrothermal vents belong to 

the class Bathymodiolinae within the family Mytilidae, that has its oldest fossil 

occurrence in the Eocene (Kiel and Amano, 2013). The mussels have an epifaunal 

lifestyle, and are generally attached to hard substrates via a byssus (Duperron, 

2010). All modern investigated species have been shown to obtain nutrition via 

chemosymbiosis, and the mussels can house thiotrophic and/or methanotrophic 

bacteria in their gills. The ability to harbour methanotrophic bacteria is a very rare 

feature among bivalves (Taylor & Glover, 2010). In addition, for a few species up to 

six bacterial types have been identified in the gills (multiple symbiosis), although 

their effects on nutrition are not yet known (overview in Duperron et al., 2008 and 

2013). For all mussel species it should be noted that filter feeding can still play a 

nutritional role, despite the presence of a reduced gut (Page et al., 1991; Von 

Cosel, 2002). Because different types of chemosymbiosis exist for bathymodiolid 

mussels, the various fossil species analysed in this study are discussed separately. 

Bathymodiolus sp. (Krishna-Godavari Basin). Broken mussel shells were 

obtained during a drilling and coring expedition of gas hydrate occurrences 

(Mazumdar et al., 2009), and examined for this study. The shell pieces have a 

modioliform shell shape and size, but could not be identified to species level. These 

specimens is therefore expected to harbour either thiotrophic, methanotrophic or 

dual symbiotic symbionts.  

Bathymodiolus heretaunga (Rocky Knob). Morphological features place this 

species in the B. childressi clade/group (Saether et al., 2010). The B. childressi 

clade consists of several Bathymodiolus species based on morphological and 

molecular phylogenetic analyses, and all modern species within that group have 

methanotrophic endosymbionts (Miyazaki et al., 2010). Methanotrophic 

chemosymbiosis could therefore perhaps also be expected for B. heretaunga.     



- 177 - 

Gigantidas coseli. Modern Gigantidas species are closely related to the B. 

childressi group (e.g. Miyzaki et al., 2010; Jones et al., 2006), and include the 

Gigantidas gladius (Cosel and Marshell, 2003) and Gigantidas horikoshii 

(Hashimoto and Yamane, 2005) that both live at hydrothermal vents. Despite 

phylogenetic similarity to the B. childressi group, both Gigantidas species harbour 

thiotrophic specimens (Miyzaki et al., 2010; Duperron et al., 2010). It should be 

noted that both B. heretaunga and G. coseli are small compared to modern species 

(Saether et al., 2010). 

Mytilidae sp. A mussel specimen from the Lincoln Creek Formation was identified 

as modiolid. The specimen does not exhibit the bathymodiolin shell shape, and is 

therefore suspected to be heterotrophic.  

 

Solemyidae (Protobranchia) 

Solemyid clams are known from modern cold seeps and hydrothermal vents (Taylor 

and Glover, 2010), and date back to the Ordovician (Cope, 1996). In general the 

fossils have a similar morphology to living species (Taylor & Glover, 2010). All 

investigated Solemyidae harbour thiotrophic bacteria on which they are very 

dependent for their nutrition; in some species the digestive system is completely 

absent. They have an infaunal lifestyle and drill deep burrows in the sediment. 

(Duperron, 2013 and references within). Fossil specimens in our data have been 

assigned to (species within) the genera Acharax and Solemya, or have been 

identified only at a family level.  

 

Lucinidae 

The modern Lucinidae family contains the most chemosymbiotic bivalve species, 

and seep lucinids first emerged during the Jurassic period (Kiel et al., 2010). In our 

data set lucinids are represented by fossil specimens from 11 cold seep localities, 

ranging in age from the Pleistocene to the Cretaceous. All modern lucinids harbour 

thiotrophic symbionts within their gills (Taylor and Glover, 2000) and fossil 

specimens are therefore also suspected of having been chemosymbiotic. In 

addition to relying on symbionts for nutrition, lucinids retain the ability to filter feed 

(Duplessis et al., 2004). The large majority of our specimens belong to the genus 

Lucinoma, of which modern species are most widely reported from deep water 

habitats, including cold seeps. It has been observed that lucinid clams appear to be 
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more abundant at fossil cold seeps than at recent localities, which might be due to a 

sampling bias because of their burrowing lifestyle (Taylor & Glover, 2010). 

 

Thyasiridae 

Thyasiridae is represented in our suite of samples by specimens from the species 

Conchocele bisecta, from fossil cold seeps from the Early Pleistocene (Koshiba 

Formation) and the Oligocene (Lincoln Creek Formation), and ‘Thyasira’ townsendi 

from cold seeps of Maastrichtian age from Seymour Island. C. bisecta is the largest 

living thyasirid and known from modern hydrocarbon seeps, where it obtains 

nutrition via thiotrophic chemosymbiosis (Kamenev et al., 2001). The majority of 

Thyasiridae are not chemosymbiotic, but because the larger thyasirid species, like 

C. bisecta, do harbour thiotrophic bacteria and it is therefore assumed that T. 

townsendi was also chemosymbiotic (Little et al., 2015). The chemosymbiotic 

species burrow deep into the sediment using their super-extensile foot, particularly 

at cold seeps, hydrothermal vents and oxygen minimum zones (Dufour and 

Felbeck, 2003). It has been suggested that symbioses have evolved several times 

during the evolution of this family, that first appeared in the Early Cretaceous (e.g. 

Duperron et al., 2013). The earliest association of thyasirids with seep deposits is 

Ryazanian (Hryniewicz et al., 2014). 

Within the Thyasiridae dependence on symbiont-based nutrition can vary widely 

within chemosymbiotic thyasirids, and large species such as C. bisecta and can 

derive parts of their nutrition from filter feeding (Dando & Spiro, 1993; Dufour & 

Felbeck, 2006). In addition, there is evidence for bacterial sequences other than 

thiotrophs in the gills of thyasirids, but these have not yet been shown to be 

important symbionts (Rodrigues and Duperron, 2011).  

 

Non-chemosymbiotic bivalve families 

Ostreida. The Ostreidae (true oysters), Pectinidae (scallops) and Gryphaeidae 

(honeycomb oysters) families belong to the order Ostreida. The genus Ostrea 

within Ostreidae (represented by Ostrea mushiana in our suite of samples) contains 

sedentary filter feeders, that live epifaunally (Clarkson, 2009). Modern pectinid 

scallops from the Mizuhopecten genus (related to the fossil specimen 

Mizuphopecten kobiyami) also have an epifaunal and heterotrophic lifestyle, 

feeding on phytoplankton and detritus (e.g. Aya and Kudo, 2010). Lastly, 

Pycnodonte (Phygraea) vesicularis vesicularis from the Gryphaeidae was analysed, 
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this species is also expected to have obtained nutrition via filter-feeding on the 

sediment surface.  

Praecardioida. Inoceramids (Inoceramidae) are an extinct group of large 

pteriomorph bivalves that became extinct at the end of the Mesozoic. Their 

common presence in low-oxygen environments and cold seeps has led some to 

suggest a chemosymbiotic lifestyle (MacLeod and Hoppe, 1992; Kauffmann, 1996). 

Alternatively, they could have been filter feeding on suspended food particles. Their 

unusually large gills would have been capable of processing large volumes of water 

quickly, which would have been beneficial in low oxygen ecosystems (Kiel et al., 

2010; Knight et al., 2014). Inoceramids in our suite of samples were obtained from 

the Cretaceous Tepee Buttes seeps, and have been identified as Inoceramus sp. 

Arcoida. The order Arcoida is represented in our material firstly by the filter-feeding 

family Glycymerididae (Glycymeris sp), that are expected to have been shallow 

burrowers similar to modern glycymerids (Tunnell et al., 2010). In addition, the 

order Arcoida is represented by the family Cucullaeidae, with fossil specimens from 

Cucullaea sp. and Cucullaea capex. Presently only one modern cucullaeid genus 

(including four Cucullaea species) still exists, and the animals are shallow 

burrowers that obtain nutrition via suspension feeding (Morton, 1981).   

Veneroida. The species Lahillia larensi from Seymour Island belongs to the family 

Cardiidae. The species has an infaunal morphology, and is therefore suspected to 

have been a suspension feeder. 

Nuculida (Protobanchia). The order Nuculida belongs to the Protobranchia, 

whereas all other orders in this section (with the exception of Solemyidae) belong to 

the autolamellibranchs with large leaf-like gills generally modified for food gathering 

and respiration. In general, protobranchs have simple protobranch gills, and are 

adapted to deposit feeding in soft muds (Stanley, 1986). Our suite of material 

contains three fossil taxa from the family Nuculidae within this order: Ennucula sp., 

Nucula percrassa and Leionucula suboblonga. Modern nuculids are infaunal and 

use extensible palp proboscides to collect sediment deposits (Yonge, 1939).  

 

4.2.1.2  Gastropoda  

All fossil gastropod specimens in our data set are suspected heterotrophs, that rely 

on photosynthetically produced carbon for their nutrition.  

Caenogastropoda (excl. Neogastropoda). Ceanogastropoda are the largest and 

most diverse group of living snails, and taxa occupy a range of habitats and feeding 

https://www.google.nl/search?espv=2&biw=1366&bih=643&q=Praecardioida&stick=H4sIAAAAAAAAAONgVuLRT9c3rEw3SUkuKs8BAGS6-PgQAAAA
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strategies (Colgan et al., 2007). Fossil material belonging to the clade 

Caenogastropoda contains a fossil representative of the modern predatory snail 

Fusitrition oregonensis that belongs to the family Ranellidae. Ranella galea also 

belongs to the ranellids, and modern species of this genus have been observed to 

‘graze’ on sessile prey (Booth, 2014). In addition Vanikoropsis arktowskiana from 

the family Vanikoridae was analysed, which is suspected to be predatory and have 

obtained nutrition through boring other bivalves and gastropods (pers. comm. J. 

Witts). The final family of the ceanogastropods that was analysed are the 

Turritellidae (Turritella sp.). Living turritellids are mainly sessile, semi-faunal 

suspension feeders (Allmon, 2011).  

Neogastropoda. Several of specimens belong to the clade Neogastropoda 

within the Caenogastropoda, modern species within this clade are generally 

carnivorous with varying degrees of predatory activity (applies to Neogastropod 

n.gen. from this study). This clade includes the family Buccinidae (with the fossil 

species Neptunea kuroshio of the carnivorous genus Neptunea from this study) that 

includes many generalist species that feed on a variety of dead and living 

organisms. The Volutidae family (includes the fossil species Fulgoraria prevostiana 

and Fulgorira kamakuraensis) also belongs to the neogastropods, and modern 

volutids are known to feed on other gastropods and bivalves, among other 

invertebrates (Smith et al., 2011 – Neptunea; Modica & Halford, 2010 and 

references within). A similar feeding strategy has been suggested for the family 

Fasciolariidae, to which the genus Drilluta belongs (Modica & Halford, 2010). 

 

Vetigastropoda. Amberleya spinigera from Seymour Island belongs to the extinct 

family Amberleyidae, and it’s palaeoecology is currently unknown, but a heterotroph 

lifestyle is suggested. 

 

4.2.1.4  Cephalopoda 

In our suite of samples cephalopods are primarily represented by the ammonoids, 

an extinct group characterized by an external aragonitic shell with complex sutures. 

Most fossil ammonoids show no morphological resemblance to recent cephalopods, 

which has hampered investigation into the palaeoecology of this group. It is 

however evident that ammonoids evolved a buoyancy mechanism and were 

capable of swimming, and their habitat is suggested to be epipelagic, mesopelagic 

or epibenthic. But in addition to nektic carnivores, they have also been suggested to 
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be demersal herbivores or scavangers, and various modes of life (in relation to the 

water column – nektonic / planktonic / bentic) have been suggested (Ritterbush et 

al., 2014 and references therein). In addition to ammonoids from non-seep 

environments, our data set includes fossil ammonoid specimens that were obtained 

from ancient colds seep settings: the heteromorph Baculites sp. (Tepee Buttes) and 

the coiled Maorites seymourianus (Seymour Island). It has been suggested that 

seep ammonoids were feeding on the phytoplankton and zooplankton attracted to 

the methanotrophic and thiotrophic bacteria (Landman et al., 2012). Non-seep 

ammonoids include a variety of species from Owl Creek Formation and Seymour 

Island. The latter locality also provided the species Eutrephoceras dorbignyanum, 

that belongs to the subclass Nautiloidea (characterized by simple sutures of the 

shell) and their palaeobiology is similarly obscure. However, this subclass contains 

the living genus Nautilus. The extant species Nautilus pompilius (Phillippines) was 

therefore also analysed. 

 

4.2.1.3  Scaphopoda 

Our suite of samples contains Dentalium sp. from two Japanese fossil seep 

localities. The genus belongs to the family Dentallidae within the tusk shells. 

Modern tusk shells are infaunal predators (Shimek, 1990).  

 

4.2.1.5  Phylum: Brachiopoda 

In addition to molluscan groups, fossil specimens from the phylum Brachiopoda 

were analysed. Modern brachiopods are heterotrophic, and filter feed food particles 

out of the water using the lophophore organ whilst attached to the seafloor 

(Clarkson, book). A heterotrophic lifestyle is therefore also postulated for specimens 

of the family Terebratulidae (Koshiba Formation, non-seep locality) and Liothyrella 

sp. (Moonlight North), that also belongs to the terebratulid family. At the latter 

Miocene seep locality brachiopods are considered as background fauna, because 

they are not found in seep environments at the present day. However, at many 

Palaeozoic and Mesozoic seeps brachiopods were common components, in 

particular species belonging to the superfamily Dimerelloidea, within the order 

Rhynchonellida. Their mass abundance has led some to propose a chemosymbiotic 

lifestyle for ancient seep brachiopods, in particular the larger species (Sandy et al., 

2010 and references within). Our suite of samples includes the seep-dwelling 

dimerelloid genera: Halorella, Ibergirhynchia and Dzieduszyckia. An adaptation to 
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seeps has also been suggested for dimerelloid Anarhynchia, and for Septatrypa 

belonging to the order Atrypida (Sandy et al., 1995; Sandy et al., 2010).  

 

4.2.1.5  Phylum: Annelida 

The annelids are represented in our sample set by the extinct genus Rotularia, that 

belongs to the family Serpulidae. Rotularia are tubeworms with spirally coiled 

calcareous shells. Unlike most serpulids, Rotularia lived unattached, instead of 

(partially) cemented to the substrate (Vinn and Furrer, 2008). Suggestions about 

their palaeoecology vary, and they have been described as both epifaunal and as 

burrowers, as grazers as well as sessile filter/suspension feeders (Savazzi, 1995).  

 

4.2.2  Methods 

4.2.2.1  SBOM isolation, stable isotope analyses and elemental 

concentration 

SBOM was isolated using cation exchange resin, as well as 10%HCl. For SBOM 

isolation using resin, SBOM is isolated from shell powder placed in a dialysis bag 

that is surrounded by deionised water with cation exchange resin, the resin binds 

calcium ions whilst releasing carbon dioxide. For SBOM isolation using acidification, 

10%HCl was added to shell powder in a glass vial, expelling inorganic carbon as 

CO2. Intra-crystalline SBOM was be analysed by treating the shell powder with 12% 

NaOCl (bleach) prior to SBOM isolation, which removes the inter-crystalline SBOM 

fraction. Carbonate-associated sulphate (CAS) was precipitated from the deionised 

water containing the cation exchange resin, as well as from 10%HCl solutions. 

Detailed descriptions of the methodologies concerning SBOM/CAS isolation and 

isotopic and elemental analyses are given in Chapter 2. The analysis of most fossil 

specimens required additional preparation, whereby shell material had to be 

removed from the sediment using a hammer and chisel, as well as a scalpel. 

 

Effect of SBOM isolation on the isotopic signal of SBOM and CAS   

Cation exchange resin was initially used on all samples because of known 

limitations of alternative shell removal techniques. However, method comparison in 

a related study (Chapter 2) showed that residual resin compounds influence the 

sulphur signatures of SBOM samples, with δ34S moving closer to the resin value 

(δ34S -1.5‰) with increasing elemental sulphur concentrations. Therefore SBOM 
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was also isolated using 10%HCl for samples with sufficient remaining shell powder 

after extraction using cation exchange resin. In addition, it was shown in Chapter 2 

that resin-obtained total SBOM samples still allow differentiation between sulphur 

sources with positive δ34S (SBOM > +3‰, representing soft tissue values up to 

+20‰), and sources with negative δ34S values (SBOM < -3‰, values below < -5‰ 

represent soft tissue values up to -25‰). For intra-crystalline SBOM the thresholds 

are δ34S +2‰ and -2‰, respectively. SBOM obtained using cation exchange resin 

with δ34S values within the described thresholds are also included in Figure 4.19. 

δ34S values of CAS obtained using cation exchange resin are similarly affected by 

residual resin, and do not reflect modern seawater sulphate values (δ34S +20.3‰) 

(as discussed in Chapter 2). However, for several fossil samples very negative δ34S 

values were obtained, that cannot explained by the presence of residual resin and 

are therefore reported in this study. 

Because for multiple specimens in this study SBOM was obtained from 

homogenized shell powder using both cation exchange resin and 10%HCl, the 

effects of both methods on δ13C SBOM values could be compared. Differences in 

carbon composition are generally less than 1‰ between the two methods (δ13C 

0.0‰ ±2.6, n=27, total SBOM and intra-crystalline SBOM), and no obvious trend 

can be observed in relation to total SBOM δ13C values. Insufficient data (n=2) was 

available for δ15N comparison. 

 

4.2.2.2  Shell carbonate δ13C analysis 

Aliquots of the homogenized shell powder used for SBOM isolation were analysed 

for δ13C values of the mineral phase, which was performed at the Scottish 

Universities Environmental Research Centre (East Kilbride). CO2 was quantitatively 

released by standard in vacuo digestion with 100% phosphoric acid at 25°C. The 

produced gases were analysed on a VG SIRA 10 mass spectrometer, minotoring 

mass to charge ratios of 44, 45 and 46. Analytical raw data were corrected using 

standard procedures (Craig, 1957). The error of reproducibility, based on complete 

analysis of internal standards (including acid digestion) was ±0.1‰.  

 

4.2.2.3  Radiocarbon dating of subfossil shell and SBOM samples 

Shell fragments and SBOM were converted into graphite at the NERC Radiocarbon 

Facility-East Kilbride, and subsequent 14C analysis was performed at the SUERC 

AMS Laboratory. The dating of the subfossil samples was unknown or poorly 
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constrained: Congo Fan (45.5-3.0ka BP, Feng et al., 2010), Hikurangi Margin 

(unknown), and Krishna-Godavari Basin (nearby core site, similar depth: 42.5-40 ka 

BP, Mazumdar et al., 2009). Shell fragments from these localities were prepared by 

removing the outer 20% by weight of the sample by controlled hydrolysis with dilute 

HCl. The samples were subsequently rinsed in deionised water, dried and 

homogenised. A known weight of the pre-treated sample was hydrolysed to CO2 

using 85% orthophosphoric acid at room temperature. The CO2 was converted to 

graphite by Fe/Zn reduction.  

From the same suite of shell fragments, SBOM was obtained for 14C analysis using 

cation exchange resin. Because SBOM had not previously been used for 14C 

analysis, test materials with known 14C enrichment were prepared following the cation 

exchange resin method to constrain the effect of SBOM extraction. These test 

materials include SBOM from Mytilus edulis (modern) and Cretaceous Nymphalucina 

occidentalis (radiocarbon dead), as well as the standard materials TIRI barleymash 

(modern) and anthracite (radiocarbon dead) that were both isolated in milligram 

quantities from a mixture with Iceland spar calcite (< 0.5 grams) to simulate SBOM 

isolation from the shell minerals. All the test materials were quantitatively transferred 

into pre-cleaned quartz inserts. The total carbon in this weight was recovered as CO2 

by heating with CuO in a sealed quartz tube. The gas was converted to graphite by 

Fe/Zn reduction. In addition the δ13C values and carbon content (% by wt.) of the test 

material were measured on a dual inlet stable isotope mass spectrometer (Thermo 

Fisher Delta V). Any effect on the test materials will be incorporated into the final 

radiocarbon results by using the test materials to calculate an SBOM specific process 

background correction. 

 

4.2.2.4  Amino acid racemization analysis 

Amino acid racemization analyses were performed on fifteen samples from varying 

geological ages, ranging from subfossil to the Devonian (Table 4.3). Chiral amino 

acid analyses of subsamples from the homogenized shell powders were undertaken 

to assess the originality of protein, and were performed at the University of York. All 

samples were prepared using the procedures of Penkman et al. (2008) to isolate the 

intra-crystalline protein by bleaching. Two subsamples were then taken from each 

shell; one fraction was directly demineralised using 2M HCl and the free amino acids 

analysed (referred to as the 'free' amino acids, FAA, F), and the second was treated 

to release the peptide-bound amino acids by demineralisation using 7M HCl and 

heating in a 110° oven for 24h, thus yielding the 'total' amino acid concentration, 
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referred to as the ‘total hydrolysable amino acid fraction (THAA, H*).  Samples were 

then dried by centrifugal evaporator and rehydrated for RP-HPLC analysis with 

0.01 mM L-homo-arginine as an internal standard.  The amino acid compositions of 

the samples were analysed in duplicate by RP-HPLC using fluorescence detection 

following a modified method of Kaufman and Manley (1998). During preparative 

hydrolysis both asparagine and glutamine undergo rapid irreversible deamidation to 

aspartic acid and glutamic acid respectively (Hill, 1965). It is therefore not possible to 

distinguish between the acidic amino acids and their derivatives and they are 

reported together as Asx and Glx respectively. 

 

4.2.2.5  Scanning Electron Microscopy and Cathodoluminescence 

imaging 

Shell pieces from a subset of the samples (Table 4.3) were embedded in epoxy and 

sectioned using a speed saw. The cut surfaces were ground and polished, and 

before SEM analysis the polished blocks were coated with iridium to prevent 

charging. For the subsequent CL analysis of the sectioned blocks were re-polished 

to completely remove the iridium coating.  

SEM analysis was performed at the University of Leeds using a FEI Quanta 650 

FEMSEM with 5 micron resolution. CL analysis was conducted at the University of 

Edinburgh using  a cold cathode, CITL 8200 Mk 3A mounted on a Nikon Optiphot 

petrological microscope and a Lumenera Infinity 3 digital camera. For the 

analysis 30Kv and 1000uA electron gun current were used. 

 

Analytical approach 

The various analyses of SBOM and shell fragments are summarised in Table 4.3, 

and the species and localities on which these were performed (excl. stable isotope 

analysis) are listed. 
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Table 4.3  Overview of analyses 

 

Species (Family) Age / Locality Radio 

carbon 

AAR Py-

GC/MS 

SEM and 

CL 

L. chuni     

(Vesicomyidae) 

1283 B.P.         

Congo Fan 
X X   

C. tuerkayi 

(Vesicomyidae) 

1227 B.P.  

Hikurangi Margin  
X 

 
 X 

Vesicomyidae  42.5-40 ka 

Krishna-Godavari 

Basin 

X X X X 

Bathymodiolus sp. 

(Mytilidae) 
X  X  

Acharax sp.                

(Solemyidae) 

Middle Pleistocene 

Kakinokidai seep  
   X 

L. aokii                 

(Lucinidae) 
 X X X 

L. spectabilis 

(Lucinidae)  

Early Pleistocene 

Koshiba Formation  
 X   

C. bisecta 

(Thyasiridae) 
   X 

Terebratulidae  X   

Lucinoma sp. 

(Lucinidae) 

Early Pleistocene 

Kounandai seep 
   X 

Lucinoma sp. 

(Lucinidae) 

Plio-Pleistocene 

Takanabe 

Formation  

   X 

Calyptogena sp. 

(Vesicomyidae) 

Upper Pliocene 

Shiramaza 

Formation  

 X  X 

G. coseli  

(Mytilidae) 

Miocene 

Moonlight North   
   X 

Lucinoma sp.  

(Lucinidae) 
 X   

Liothyrella sp. 

(Brachiopoda) 
 X  X 

C. pacifica 

(Vesicomyidae) 

Miocene 

Hokkaido    
 X  X 

L. acutentilineatum 

(Lucinidae) 

Lower Miocene 

Izura seep 
   X 

Lucinoma sp. 

(Lucinidae) 

Oligocene 

Lincoln Creek 

Formation 

 X  X 

N. occidentalis 

(Lucinidae) 

Cretaceous Tepee 

Buttes 
X X X X 

Inoceramus sp. 

(Inocermidae) 
   X 
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Anarhynchia 

(Brachiopoda) 

Jurassic 

Oregon, US 
 X  X 

Halorella 

(Brachiopoda) 

Triassic 

Oregon, US 
 X X X 

I. contraria 

(Brachiopoda) 

Carboniferous  

Harz Mountains 
   X 

D. crassicostata 

(Brachiopoda) 

Devonian 

Sidi Amar 
 X  X 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.3  Results 

In this section the results from methods assessing the preservation of SBOM are 

presented first, followed by stable isotope results of SBOM and shell carbonate.   

4.3.1  Radiocarbon analysis 

Radiocarbon ages (± 1σ) were obtained from shell fragments of L. chuni from 

Congo Fan (1299 ±37, 1298 ±35, 1250 ±35, and 1283 ±36 years BP), and C. 
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tuerkayi from Hikurangi Margin (1227 ±35 years BP). For the samples of 

Vesicomyidae sp. and Bathymodiolus sp. from the Krishna-Godavari Basin the 

results were indistinguishable from the background, meaning that net sample 

activity is < 1σ of the process background of 51,227 ±2,835 years BP.  

14C analysis of subfossil SBOM from the same sample set was not performed 

because it was not possible to obtain reliable 14C values for test materials. Both 

radiocarbon dead test samples are enriched in 14C, with radiocarbon ages of 9,966 

(±42) years BP for N. occidentalis SBOM, and 24,876 (±181) years BP for the 

anthracite sample. A modern age was measured for SBOM for M. edulis, but the 

calculated age of the TIRI barleymash sample (419 ±37 years BP) suggests 

incorporation of anthropologically derived 14C. Because of the variable and 

significant sources of contamination of the 14C values from the test materials, it was 

not attempted to analyse the SBOM from subfossil samples. Quantification of this 

contamination would require further, extensive testing of each stage of the cation 

exchange resin method, which is outside the scope of this project. 

 

4.3.1  Amino acid racemisation analysis 

AAR is used to determine whether intra-crystalline protein components of SBOM 

have remained unaffected by external diagenetic influences. The criteria to 

determine whether organic degradation products are original include: (i) correlation 

between free (FAA) amino acids and total hydrolysable amino acids (THAA), that 

indicates a closed system because free amino acids are the most easily leached 

amino compounds, (ii) D/L ratios consistent with age, based on expected 

racemisation speed over time of the different amino acids, (iii) amino acid 

concentrations consistent with a decrease over time, and (iv) consistency in 

composition amongst the samples (THAA composition shown in Fig. 4.1) (pers. 

comm. K. Penkman; Mitterner, 1993). By reviewing the data using these criteria it 

was concluded that amino acids isolated from Vesicomyidae sp. (Krishna-Godvari 

basin), Laubiericoncha chuni (Congo Fan), Lucinoma aokii (Kakinokidai seep), 

Lucinoma spectabilis and Terebratulidae sp. (Koshiba Formation), Calyptogena sp. 

(Shiramaza Formation), Calyptogena pacifica (Hokkaido), and Nymphalucina 

occidentalis (Tepee Buttes) are consistent with the presence of original protein.  
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Figure 4.1  THAA composition of intra-crystalline SBOM for selected samples 

Samples shown: original amino acids were found in species from the Krishna-
Godavari Basin (KGB, subfossil), Shiramaza Formation (SF, Upper Pliocene), 
Hokkaido (H, Miocene), and Tepee Buttes (TB, Cretaceous). Samples from 
Moonlight North (MLN, Miocene) and Lincoln Creek (LC, Oligocene) show 
evidence for modern contamination, in particular for the D/L ratio of serine 
(indicated by the arrow).  

 

 

 

Three samples were low in concentration and inconsistent in composition: 

Liothyrella sp. and Lucinoma sp. (Moonlight North), and Lucinoma sp. (Lincoln 

Creek). In particular should be noted the high L-serine (Ser, Fig. 4.1) value, which is 

a major by-product of metabolic processes (Hamilton, 1965; Hare, 19655), and 

indicates modern contamination instead of original amino acids (e.g. Preece & 

Penkman, 2005). The serine ratio is therefore also relatively high in the subfossil 

Vesicomyidae sp. sample (Krishna-Godavari Basin). In the intra-crystalline SBOM 

from the Palaeozoic seep brachiopod samples Anarhyncha, Halorella and 

Dzieduszyckia crassicostata no amino acids were detectable (limit of detection: 

~picomoles/mg).  

These results suggest that original intra-crystalline protein (cf. intra-crystalline 

SBOM) has to be potential to be preserved unaltered in Cretaceous specimens (N. 

occidentalis) and possibly older fossils, but can also become contaminated in 

geological younger specimens (Miocene, Oligocene). This suggests that the 

presence of original protein/SBOM is strongly linked to local preservation 
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conditions. All analysed Palaeozoic brachiopod samples have yielded (total) SBOM, 

and the absence of amino acids in these samples indicates that the original protein 

has converted into a non-hydrolysable kerogen-like substance as a result of 

condensation reactions. This condensed substance can also contain contaminants 

from the surrounding environment, in addition other compounds (e.g. small free 

amino acids) could have leached out of the shell. Kerogen is more stable than the 

original labile biochemicals, and can be expected in ancient remains (Mittinger, 

1993).  

 

4.3.2  Pyrolysis gas chromatography mass spectrometry (Py-

GC/MS) 

The selected results from Py-GC/MS analysis are shown in Fig. 4.2, in which a 

comparison is made between modern Calyptogena ponderosa (Vesicomyidae) from 

the Gulf of Mexico seeps, and two extremes of our fossil dataset: subfossil 

Vesicomyidae sp. (Krishna-Godavari Basin), and Cretaceous N. occidentalis 

(Tepee Buttes). Identification and distribution of the major peaks can be compared 

between the samples. The most striking difference between the modern and fossil 

samples, is the absence/low intensity of the akyl lipids in Vesicomyidae sp. and N. 

occidentalis. The pyrogram Vesicomyidae sp. is much more similar to the modern 

sample than N. occidentalis, though both species do not show the variety of protein-

compounds (compounds 7-11). Moreover, additional major peaks are present in N. 

occidentalis that have not been identified in the modern and subfossil sample. The 

observation of a sugar (compound 16) is very interesting.  
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Figure 4.2  Total ion chromatograms from pyrolysis GC/MS for total SBOM from 
suspected thiotrophic cold seep fossils 

Vesicomyidae sp. and N. occidentalis total SBOM samples were isolated 
using cation exchange resin. The results are compared to total SBOM from 
thiotrophic Calyptogena ponderosa (presented in Chapter 3).   
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4.3.3  Scanning Electron Microscopy (SEM) and 

Cathodoluminescence Imaging (CL) 

The focus of SEM and CL analyses in this study is placed on identifying possible 

preservational issues and diagenetic indicators in the shell material. Many bivalves 

and brachiopods possess multi-layered shells with a variety of microstructures, and 

to be able to effectively identify potential changes to the shell material over time, the 

shell structures are compared to modern (pristine) shells. These comparisons are 

made per family/species, because the ultrastructure of shells is often linked to 

phylogenetic classification. The two screening techniques are discussed together 

per specimens. For the large majority of samples younger than the Cretaceous, no 

luminescence was observed and these specimens are assumed to have retained 

their primary minerology. For these specimens CL results are not explicitly 

mentioned and no CL images are included.  

4.3.3.1  Vesicomyidae 

Modern Calyptogena shells have a two-layered structure: an outer 

homogenous/granular layer, and an inner nacreous layer (Gale et al., 2004; Sato-

Okoshi et al., 2005). In other vesicomyid species, irregular fibrous prisms, and 

diffuse (complex) crossed lamellar (appearing homogenous at higher 

magnification), and spherulitic structures have also been identified (Signorelli et al., 

2015; Kennish et al., 1996 and 1998).    

Calyptogena tuerkayi (Hikurangi Margin, subfossil). In C. tuerkayi the inner layer 

appears the be absent, and the complete shell structure is homogenous (Fig. 4.3A). 

The primary mineralogy of the shell is confirmed by the presence of several 

myostracal layers (Fig. 4.3C), these have been laid down underneath muscle 

attachment areas (Taylor et al., 1969) and would have been obliterated during 

recrystallization. Only the presence of several thin cracks points to possible 

preservational issues of the main areas of the shell material. However, the inner 

and outer margin of the section are amorphous in appearance (Fig. 4.3B,D,E), 

which could be caused by marine microorganisms. Potentially these areas are 

obscuring additional shell layers of C. tuerkayi.  

Vesicomyidae sp. (Krishna-Godavari Basin, subfossil). The vesicomyid specimens 

from the Krishna-Godavari Basin have a similar single-layer structure to the 

previous specimens (Fig. 4.3F), but in this specimen faint chevron patterning was 

observed, indicating the presence of a type of cross-lamellar microstructure (Cuif et 

al, 2011 and refs within; no nice picture to show). Further evidence for the originality 
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of the shell structure is presence of myostracal layers (Fig. 4.3F). At the bottom of 

the section there is some dissolution and merging of shell crystals (Fig. 4.3G).  

For both subfossil specimens it is very likely that the diagenetically altered outer 

layers of the shell were removed during cleaning. Because of the geologically 

recent age of the specimens a potential nacreous inner layer is assumed to be 

obscured by these diagenetic effects, or to not have been present.   

Calyptogena sp. (Shiramaza Formation, Upper Pliocene). Four specimens from 

this species were analysed and preservation differs between them. The large 

majority of each shell section consists of small homogenous crystals, and in some a 

complex crossed lamellar structure can clearly be identified (Fig. 4.4B). In the most 

pristine specimen several different microstructures known from modern 

vesicomyids can be seen throughout the section, in particular towards the top and 

edges of the section. These include a spherulitic structure underlain by a fibrous 

prismatic area (Fig. 4.4A), and horizontally orientated plywood-structure (Fig. 

4.4D),. None of the specimens showed luminescence, but diagenetic alterations of 

the specimens includes: a poorly preserved, recrystallized area along the top of the 

section (~500µm thickness) and the presence of sulphide crystals near this front 

(Fig 4.4C), merging of crystals and upper and lower margin, as well as (small) 

patches within the better preserved areas (Fig. 4.4D, in addition to the dark patches 

of recrystallization), and dissolution of shell material on the edges and in the centre 

(~500µm width) 

Calyptogena pacifica (Hokkaido, Miocene). The Hokkaido specimens all display a 

homogenous structure with myostraca and the absence of a nacreous layer, with 

hints of a crossed lamellar structure in one specimen. In the same sample a quarter 

of the shell is strongly diagenetically altered and shows microborings (Fig 4.4E), in 

general similar dark patches of recrystallization as in Calyptogena sp. are present, 

as well as the marginal amorphous diagenesis seen in C. tuerkayi (Fig. 4.4F). One 

of the specimens is very poorly preserved and, contrary to the other specimens, 

primary shell structure is largely absent and the original crystal shape is lost (Fig. 

4.4G).   
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Figure 4.3  SEM images of cross-sections from subfossil C. tuerkayi and 
Vesicomyidae sp. shell fragments 

C. tuerkayi: (a) area overview, (b) upper area, (c) middle area, (d) lower area, 
(e) detail of the lower area, with an amorphous appearance. Vesicomyidae 
sp.: (f) single layer structure with myostracal layers, (g) dissolution and 
merging of crystals. Scale bars: white=100μm, black=10μm 
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Figure 4.4  SEM images of cross-sections from Calyptogena sp. and C. pacifica  
shell fragments 

Calyptogena sp.: (a) top of the section with spherulitic and prismatic structures,  
(b) complex crossed lamellar structure, (c) recrystallisation and sulphide 
crystals, (d) bottom of the section with plywood structure, with recrystallisation 
patch. C. pacifica: (e) microborings, (f) recrystallisation, (g) poor preservation 
with absence of shell structure. Scale bars: white=100μm, black=10μm 
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4.3.2.2  Lucinidae 

In the modern lucinid shell usually three shell layers can be recognized: and outer 

irregular spherulitic layer, and middle layer of crossed-lamellar structure, and an 

inner complex crossed lamellar layer together with thin prismatic sheets (Taylor, 

Kennedy & Hall, 1973).  

Lucinoma aokii (Kakinokidai seep, Middle Pleistocene). Two pristine specimens 

were examined and clearly show three distinct layers (Fig. 4.5A), with an upper 

spherulitic layer similar to modern specimens (Fig. 4.5C), but the middle and inner 

layer differ. Instead of a crossed lamellar structure the middle layers consists of 

very small tabular crystals, intertwined with vertical lines of organic matter (Fig. 

4.5B), it is unclear if the latter is a diagenetic artefact, considering the otherwise 

pristine preservation of the specimens. The inner layer consists of broad, irregular 

prismatic fibres instead of sheets (Fig. 4.5A). 

 

Figure 4.5  SEM images of cross-sections from L. aokii shell fragments 

(a) three layered structure, (b) middle tabular layer with vertical “organic” lines 
(c) upper spherulitic layer. Scale bars: white=100μm, black=10μm 

  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

(b) (a) 

(c) 

(a) 



- 197 - 

Lucinoma sp. (Kounandai seep, Early Pleistocene). The specimens show the 

same three-layered structure as the L. aokii specimens described above (Fig. 

4.6A), including the vertical rows of merged ‘organics’ in the middle layer. However, 

in one of the specimens the crossed-lamellar structure is visible in the middle layer 

(Fig. 4.6C). In this layer diagenetic alteration is visible and becomes more severe 

towards the upper margin, ranging from the merging of crystals to 

heterogeneous/unorientated crystals showing a relic chevron structure. Additionally, 

in this specimen a strongly diagenetically altered ‘front’ is present (<100µm 

thickness), that is present continuously above a (?recrystallized) inner layer with 

uncoordinated crystal structure (Fig. 4.6D). 

Figure 4.6  SEM images of cross-sections from Lucinoma sp. shell fragments 

(a) middle and inner layer, (b) myostracal layer, (c) crossed-lamellar structure 
in middle layer, (d) diagenetic front. Scale bars: white=100μm, black=10μm 
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Lucinoma sp. (Takanabe Formation, Plio-Pleistocene). The specimen (Fig. 4.7A) 

shows the same three-layer structure as L. aokii, and the majority of lucinid 

specimens from the Kounandai seep, and is in pristine conditions. In the middle 

layers the vertical organic pillars are however much less distinct, and it is unclear if 

this is due to better preservation, or a different angle at which the shell was cut. In 

addition, crystals with an oblique orientation are present in areas of the middle 

layer, commonly associated with growth lines (Fig. 4.7B).  

Lucinoma acutentilineatum (Izura seep, Miocene). Within the specimen a thin 

vertical crack is visible on the SEM image, that was very faintly luminescent during 

CL analysis. This specimen is similar to the majority of the lucinid specimens, 

although the organic vertical pillars of the middle layer are completely absent. The 

preservation of the shell becomes less pristine towards the inner margin of the 

section, but still clearly retains original mineralogy as evident from the clear 

distinction between different layers and myostracal bands. However, compared to 

the previous species, the crystals are less clearly defined. 

 

Figure 4.7  SEM images of cross-sections from Lucinoma sp. shell fragments  

 (a) three layered structure, (b) middle layer. Scale bars: (a) 1mm, (b) 100μm 

 

  

 

 

 

 

 

 

 

 

 

 

Lucinoma sp. (Lincoln Creek, Oligocene). SEM images show that the broken shell 

fragments are embedded within matrix, and the shell fragments show high intensity 

luminescence (Fig. 4.8). It was however noted that luminescence is concentrated in 
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the middle layer, and luminescence of the inner layer is only very faint. In addition, 

there is a potential presence of an upper layer. The inner layer shows irregular 

prisms fibres reminiscent of the lowest layer in the younger fossil specimens (Fig. 

4.8A). The highly luminescent middle consists has a very uncoordinated structure, 

that confirms it is highly diagenetically altered (Fig. 4.8B).  

The other specimens from the same locality were in visually better condition, and it 

is unclear if the poor preservation of this specimen is representative of all 

specimens from the Lincoln Creek locality.  

Figure 4.8  SEM and CL images of cross-sections from Lucinoma sp. 

 (a) inner layer, (b) middle layer. Scale bars: white=1mm, (a/b) 100μm.  
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Nymphalucina occidentalis (Tepee Buttes, Cretaceous). In all four analysed 

specimens faint blue/purple luminescence is visible, and in one specimens high 

intensity red luminescence is visible (Fig. 4.9A, related to a darker area of the 

shell), in another specimen additional green banding is present (Fig. 4.9B), that 

appears to be related to less well preserved bands of the shell material. Green to 

yellow luminescence is usually related to the presence of aragonite in modern 

luminescent specimens. The only relic structure recognizable in the specimens 

appears cross-lamellar (Fig. 4.9C). Preservation within specimens ranges from 

lamellae that can still be individually recognized with only small recrystallized 

patches on top, to an amorphous blend without any recognizable crystals (e.g. Fig. 

4.9D). In the Fig. 4.9D potentially a different relic structure is present.   

 

Figure 4.9  SEM and CL images of cross-sections from N. occidentalis shell 
fragments 

(a) CL image with high intensity red, (b) CL image with green banding, (c) 
cross-lamellar relic structure, (d) amorphous diagenesis. Scale bars: (a/b) 
500μm, (c) 10μm, (d) 20μm. 
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4.3.2.3  Solemyidae 

Of our suite of solemyid samples only Acharax sp. (Kakinokidai seep) was analysed 

using CL and SEM, and no luminescence was observed. The structure of the 

sample is similar to that of Acharax johnsoni (Sato et al, 2013). This specific 

grouping of outer and inner micro structures was not observed in other solemyids, 

and potentially identifies this fossil specimen as the same species. Throughout the 

shell two shell layers are visible (Fig. 4.10A): (i) outer shell layer with a reticulate 

structure, that consists of blocky nested unit, pattern is structured by SBOM (ii) the 

inner layer identified as a “cone complex crossed lamellar structure” (c-CCL, Fig. 

4.10B); stacks of chevrons indicative of the CCL are clearly visible.  

 

Figure 4.10  SEM images of cross-sections from Acharax sp. shell fragment 

(a) CL image with high intensity red, (b) CL image with green banding, (c) 
cross-lamellar relic structure, (d) amorphous diagenesis. Scale bars: 100μm 
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Compared to the modern specimen, evidence of diagenetic alteration includes: the 

individual granules of reticulate units can no longer be identified, and the outlines of 

the units are blurred. Towards the section edge, the reticulate pattern can almost no 

longer be recognized. The outer margin (approx.. 50um) is strongly affected and no 

longer shows any structure, this amorphous area also ‘seeps’ into the shell where 

cracks are present. At the bottom the structureless area has a thickness of around 

20μm. 

 

4.3.2.4  Thyasiridae 

The fossil Conchocele bisecta specimen (Koshiba Formation, Pleistocene) can 

directly be compared to modern specimens of that species (Nishida et al., 2011). Of 

the three shell layers in modern specimens, the most inner layer appears to be 

missing and our section ends with a myostracal layer (Fig. 4.11C). The middle layer 

has crossed lamellar structures similar to the modern specimen, and shows very 

good preservation (Fig. 4.11A and B). The upper layer shows no defined 

microstructures (as known from the modern specimen) but instead contains areas 

that are not very structured (Fig. 4.11C), as well as amorphous sections. 

Figure 4.11  SEM images of a cross-section from C. bisecta shell fragment 

(a/b) crossed lamellar structures, (c) unstructured upper layer, (d) two layered 
structure. Scale bars: white=100μm, black=10μm 
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4.3.2.5  Mytilidae 

G. coseli (Moonlight North, Miocene) was the only mytilid specimen of which 

sufficient shell material was available for SEM and CL analysis. Luminescence is 

observed from several cracks, that are clearly visible with SEM (Fig. 4.12D). The 

large majority of the shell has an granular, unstructured appearance that is unlikely 

to be original (Fig. 4.12B). Patches of original shell mineralogy are potentially 

visible, including parts of an outer prismatic layer (Fig. 4.12A) and brick-like nacre 

layers (Fig. 4.12B and C), both known from modern mytilids (Taylor et al., 1969) 

and Gigantidas gladius in particular (Genio et al., 2012).  

 

Figure 4.12  SEM and CL images of a cross-section from G. coseli shell fragment 

(a) amorphous with potential prismatic structure, (b) nacre structure, (c) nacre 
structure, (d) overview image. Scale bars: white=200μm, black=20μm 
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4.3.2.5  Inoceramidae 

Inceramid shells are usually composed of two layers: an inner aragonitic layer of 

nacre, and a thick outer prismatic layer of calcite (e.g. Wright, 1987). In our 

specimen of Inoceramus sp. (Tepee Buttes, Cretaceous) only the nacreous layer is 

present. The shell layer is nicely preserved with only small patches is accumulated 

crystals on top of pristine nacre (Fig. 4.13).  

Figure 4.13  SEM images of a cross-section from Inoceramus sp. shell fragment 

Well-preserved nacreous structure is visible. Scale bar: white=10μm 

 

 

4.3.2.5  Brachiopoda 

Liothyrella sp. (Moonlight North, Miocene). CL imaging shows no luminescence of 

the shell material, with the exception of faint blue in a visible crack, likely the result 

of sediment compaction. A comparison can be made with modern Liothyrella 

species, and both Liothyrella uva and Liothyrella neozelanica have a three-layered 

structure with prismatic, fibrous and homogenous structures (Parkinson et al., 2005; 

Goetz et al., 2009). In the fossil specimen two layers are visible (Fig. 4.14A), an 

upper layer of thin fibrous layers, and broad pillar-shaped columnar crystals. Either 

the inner or outer layer could be missing. Punctae are visible within the section (Fig. 

4.14C), that also point to the presence of primary mineralogy, because 

recrystallisation is expected to obliterate these. Some amalgamating diagenesis of 

the fibres is visible, and possibly the pristine structure of the columnar lower layer is 

only visible in several patches within the layer (Fig. 4.14B).   
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Figure 4.14  SEM images of a cross-section from Liothyrella sp. shell fragment 

(a) two layered structure, (b) potential pristine columnar shells structure, (c) 
punctae. Scale bars are 10μm. 

 

 

 

 

 

 

 

 

 

 

 

 

Rhynchonellid brachiopods 

In modern rhynchonellid brachiopods the tertiary layer is absent, and the secondary 

layer consist of fibrous calcite (Voigt, 2000). Voigt (2000) noted that the primary 

layer is mostly not preserved in fossil specimens, which appears to also be the case 

for our specimens of Anarhynchia, Dzieduszyckia and Halorella.  

Anarhynchia (Jurassic). The specimen is luminescent with variable intensity 

throughout the shell (Fig. 4.15B). The fibrous layer of the shell is not well preserved 

(Fig. 4.15C), and can be completely smoothed out in certain areas (Fig. 4.15D).  

Dzieduszyckia crassicostata (Devonian). In this specimen luminescence is also 

present throughout the shell, and particularly intense in vertical cracks (Fig. 4.16A). 

The fibrous layers appear better preserved than for Anarhynchia specimen, with 

more clearly defined individual fibres (Fig. 4.16B).  

 

 

Figure 4.15  SEM and CL images of a cross-section Anarhynchia shell fragment 

(p. 205) (a) SEM overview, (b) CL overview, (c) fibrous layer, (d) poorly 
preserved fibrous layer. Scale bars: white=1mm, black=10μm. 
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Figure 4.16  SEM and CL images of a cross-section from D. crassicostata shell 
fragment 

(a) SEM overview, (b) CL overview, (c) fibrous layer. Scale bars: (a/b)=1mm, 
(c)=50μm. 
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Halorella (Triassic). The specimens show similar CL intensity to Anarhynchia (Fig. 

4.17), as well as similar preservation of the fibres in SEM images (not shown).  

Ibergirhynchia (Carboniferous). Visually the preservation of Ibergirhynchia 

appears to be poor compared to Dzieduszyckia, although this cannot be inferred 

from the CL images, in which luminescence is absent (Fig. 4.18). 

 

Figure 4.17  CL images of Halorella shell fragments.  

Scale bar = 1mm. 

 

 

 

 

 

 

 

 

Ibergirhynchia contraria 
 

 

Figure 4.18  SEM and CL image of Ibergirhynchia 

Shell material is present in a small section of the specimen. Scale bar = 1mm. 
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4.3.4  Stable isotope analysis of SBOM, shell carbonate and CAS 

For SBOM from fossil specimens the stable isotope results are discussed per 

locality, to investigate potential differences between nutritional strategies that are 

location-specific. The values given for each specimen are mean values of multiple 

measurements, for sulphur only values obtained using 10%HCl are given, unless 

explicitly stated.    

 

4.3.4.1  Modern Nautilus pompilius 

Because our suit of samples contains multiple specimens of shelled cephalopods, 

the extraction of SBOM and its relationship to soft tissues was investigated for 

modern Nautilus pompilius. Total SBOM was obtained from five positions 

throughout the shell (1 gram minimum weight), and shows mean values of δ13C -

14.3‰ ±0.7 (n=5), and δ15N 11.6‰ ±0.3 (n=5). It was only possible to obtain 

isotope measurments from the organic siphuncle of the specimen, which was on 

average -2.1‰ depleted for carbon (δ13C -17.4‰), and more depleted for nitrogen 

(7.2‰ and 10.1‰). This data suggests the SBOM of shelled cephalopods reflects 

soft tissue values within several per mille. The siphuncle has stable isotope sulphur 

values of δ34S 13.2‰ and 15.5‰. Shell carbonate values range from -0.2‰ to 

1.0‰, and a combination with SBOM carbon values shows a clear relation between 

the two carbon pools (Fig. 4.19). In Chapter 3 it was shown that the δ13C value of 

metabolic carbon in part determines shell carbonate δ13C values.  

 

Figure 4.19  Modern Nautilus SBOM and shell carbonate δ13C values  

Specimen was sampled throughout the shell, SBOM is shown as a solid line 
(left axis) and shell carbonate as a dashed line (right axis).  
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Figure 4.20  δ13C, δ15N and δ34S values of SBOM from analysed specimens  

Overview of the species and localities is given in Table 4.1 and Table 4.2. 
Symbol key is presented below, and each column represents an individual 
specimen (collated specimens are indicated in Table 3.1). δ34S values 
obtained from SBOM samples isolated using cation exchange resin are only 
shown when these are can be used to differentiate between positive and 
negative sulphur sources (as discussed in section 4.2.2.1).  
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4.3.4.2  Subfossil localities 

Congo Fan 

Total SBOM of the vesicomyid Laubiericoncha chuni has δ13C values ranging from -

33.0‰ to -31.7‰ (n=4), δ15N between 1.9‰ and 3.4‰ (n=3, 2.8 +/- 0.8, n=3; intra-

crystalline SBOM = 3.6‰), and δ34S is -4.0‰. Resin isolated using cation exchange 

resin shows even more depleted δ34S values, up to -7.2‰ (n=3).  

L. chuni shell carbonate values are between 0.4‰ and 1.1‰ (n=4; 1.0 +/- 0.5) 

 

Hikurangi margin 

Calyptogena tuerkayi total SBOM δ13C values fall between -33.5‰ and - 30.2‰ 

(n=5), intra-crystalline SBOM δ13C is on average +0.8‰ enriched (±1.8, n=3) for 

individual specimens, and has a mean δ13C value of -30.7 +/-1.1 (n=4) which is 

statistically different (P=0.0001) from the total SBOM pool. Shell carbonate values 

(δ13C -2.4‰ to -0.1‰, n=3) include a depleted outlier of -11.8‰, that does not have 

deviating total SBOM value. 

δ15N total SBOM ranges from -0.7‰ to 2.7‰ (n=5), intra-crystalline SBOM from -

1.8 to 1.4 (n=3). A single δ34S total SBOM value is: -1.3‰, as expected for 

intermediate values the resin data is inconclusive.  

 

Krishna-Godavari Basin 

Bathymodiolus sp. Total SBOM from Bathymodiolus sp. has δ13C values ranging 

from -33.9‰ to -27.0‰ (n=5), δ15N value is 5.9‰, and δ34S is -8.7‰ (resin value of 

-12.9‰ is also very depleted). Shell carbonate is a mean δ13C value of -5.6‰ ±3.7 

(n=3).  

Vesicomyidae. The vesicomyids from this locality have a narrow range of δ13C 

total SBOM: -29.7‰ to -27.0‰ (n=7), intra-crystalline δ13C from -31.1‰ to -28.5‰ 

(n=4), for individual specimens the intra-crystalline pool is both more enriched 

(+0.5‰) and depleted (-1.5‰). The same isotopic pattern between the two SBOM 

pools is found for δ15N, with the total SBOM showing mean values of 4.9‰ ±1.8 

(n=8), and the inter-crystalline values of 4.2‰ ±0.5 (n=3). Sulphur values of the 

total SBOM are variable: δ34S -3.4‰ and 3.5‰, intra-crystalline SBOM always have 

positive δ34S values, ranging from 1.9‰ to 3.5‰ (n=4). For one individual 

specimen, the intra-crystalline SBOM was δ34S +5.9‰ more enriched compared to 

total SBOM. Shell carbonate values range from -2.2‰ to 1.5‰ (n=5). 
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Comparison between species and suspected nutritional strategies. The δ13C 

total SBOM values from the two families are not statistically different (p=0.0938), 

but δ13C shell carbonate of Bathymodiolus are significantly depleted by (p=0.0211, 

difference between means: -5.4‰) compared to those of Vesicomyidae. Nitrogen 

values of both families are similar (δ15N 5.9‰ vs. 4.9‰ ±1.8, n=8), but sulphur 

values appear to be more depleted for Bathymodiolus, and are below δ34S -5‰.  

 

4.3.4.3  Pleistocene and Pliocene localities  

Kakinokidai seeps and associated non-seep locality 

Acharax sp. (Locality I) Total SBOM has a mean δ13C value of -26.6‰, δ15N of -

2.4‰, and δ34S of -3.9‰ (resin samples inconclusive). Intra-crystalline SBOM 

shows a value of δ13C -27.7‰, and shell carbonate of δ13C -2.9‰.  

Lucinoma aokii. At Locality I δ13C values of total SBOM range from -31.3‰ to -

26.7‰ (n=7), and of intra-crystalline SBOM from -29.8‰ to -28.7‰ (n=4). Locality II 

specimens have similar total SBOM values of δ13C -28.1‰ and -28.8‰, and intra-

crystalline of -30.1‰ and -29.3‰. For both localities the two different SBOM pools 

are not statistically different for carbon. δ15N values of total SBOM are very variable, 

and range from -4.2‰ to 7.1‰ (n=6) for Locality I (intra-crystalline value: 0.3‰), 

and 4.8‰ for Locality II. Sulphur values are negative for both localities: total SBOM 

δ34S (I) -7.0‰ and -4.1‰, (II) -3.6‰, and for intra-crystalline SBOM: (I) -2.7‰, and 

(II) -5.0‰ (resin values are inconclusive). Shell carbonate values are for Locality I 

δ13C –0.7 ±0.3 (n=3) and for Locality II δ13C -1.2‰ ±2.0 (n=2). There are no 

statistical differences between the two cold seep localities for any of the measured 

isotopes.  

At a non-seep locality located between the two cold seeps, several gastropod 

specimens were collected for comparison.  

Neptunea kuroshio. Total SBOM values are δ13C -25.5‰ and -25.9‰ (n=2, -25.7 

±0.3), δ15N: 4.4‰, and δ34S: -10.0‰ (in agreement with resin value of -4.0‰). Intra-

crystalline SBOM shows a carbon value of δ13C -19.6, and is +5.9‰ enriched 

compared to the total SBOM value of the same specimen. Shell carbonate has a 

value of δ13C -0.5‰.  

Fulgoraria prevostiana. δ13C total SBOM is -27.1‰, δ15N: 4.7‰, and δ34S: -7.1‰. 

Shell carbonate δ13C is 0.6‰.  

Dentalium sp. For Dentalium only carbon values are available, for total SBOM: -

27.5‰, and shell carbonate: δ13C 2.1‰.  
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Comparison between species and suspected nutritional strategies. Due to the 

limited amount of specimens, it is not possible to statistically compare the results 

between species of the same suspected nutritional strategy for the suspected 

thiotrophic bivalves (Acharax sp., L. aokii) and the suspected heterotrophic 

gastropods and scaphopod (N. kuroshio, F. prevostiana, Dentalium sp.).  

The δ13C total SBOM of thiotrophs (-28.2‰ ±1.4, n=10, species=3) is are 

statistically depleted (p=0.0489) by 1-2‰ compared to the heterotrophs (-26.5‰ 

±1.0, n=4, species=3), and the difference between δ13C intra-crystalline SBOM 

between suspected thiotrophs (-29.2‰ ±0.8, n=7, species=3) and a heterotrophic 

value (-19.6‰) is even greater.  

Based on modern SBOM thresholds the δ13C total SBOM is expected to be more 

depleted compared to thiotrophy. Modern intra-crystalline SBOM is however more 

depleted for heterotrophs/enriched values above roughly 25 per mille total SBOM. 

The range of fossil thiotrophic values (-31.3‰ to -26.6‰) does only not overlap with 

the heterotrophic values of N. kuroshio (25.5‰ and -25.9‰), for the other species 

no threshold for heterotrophy is evident. Thiotrophy can potentially be assigned for 

values below -27.5‰.  

A comparison between nitrogen values of total SBOM shows no statistical 

difference between suspected thiotrophs (2.3‰ ±4.1, n=8, species=3) and 

suspected heterotrophs (4.6‰ ±0.2, n=2, species=2), and the relatively depleted 

values for the heterotrophs in non-reducing environments are unexpected. Similarly 

unexpected are the depleted sulphur values for the heterotrophs (-8.6‰ ±2.1, n=2, 

species=2) (even compared to the suspected thiotrophs: -4.7‰ ±1.6, n=4, 

species=3) which is usually associated with using hydrogen sulphide as a sulphur 

source, instead of heterotrophic feeding. No further intra-crystalline values are 

available for heterotrophs except carbon.  

A comparison of shell carbonate δ13C values between the two species shows that 

the thiotrophs (0.3‰ ±2.0, n=9, species=3) and heterotrophs (0.7‰ ±2.0, n=3, 

species=3) are not statistically different.  

 

Koshiba Formation: cold seep and non-seep specimens 

Lucinoma spectabilis. The total SBOM obtained from L. spectabilis has δ13C 

values ranging from -28.9 to -26.6 (-27.7‰ ±1.1, n=3), and a δ15N value of 1.7‰. 

Intra-crystalline SBOM is slightly more depleted for δ13C (-31.0‰), as well as δ15N 

(1.3‰), and has a sulphur value of δ34S -0.9‰. Shell carbonate values fall between 

-5.3‰ and 0.5‰ (n=3, -1.8 ±3.1) 
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Conchocele bisecta. Specimens of C. bisecta yielded total SBOM with values of 

δ13C: -28.3‰ and -27.4‰ (n=2, -27.8 ±0.6) Intra-crystalline SBOM has a mean 

value of δ13C -31.3‰, δ15N -0.5‰, and δ34S 2.5‰. Carbon values of shell 

carbonate are very variable, ranging from -13.9‰ to 1.3‰ (n=3).  

Solemya japonica. Total SBOM was obtained from one specimen, with a carbon 

value of δ13C -27.0‰, and a sulphur value of δ34S 8.0‰. For shell carbonate, δ13C 

values very variable: -0.3‰ and -8.1‰ (n=2). 

Ostrea musashiana. Total SBOM obtained from the oyster O. musashiana shows 

carbon values of -26.5‰ and -27.1‰ (n=2, -26.8 ±0.5), a nitrogen value of 6.5‰, 

and a sulphur value of 0.2‰. Shell carbonate has values of 0.4‰ and 1.2‰. 

Glycymeris sp. δ13C of total SBOM ranges from -28.6‰ to -25.7‰  (n=3, -27.0 

±1.5), For both nitrogen and sulphur, the intra-crystalline SBOM values (δ15N: 

6.5‰, and δ34S: 7.6‰) are more enriched than the total SBOM values (δ15N: 2.1‰, 

and δ34S: -1.2‰). The shell carbonate of Glycymeris (1.3‰ and 1.4‰) shows little 

variation between the two specimens. 

Fusitrition oregonensis. Total SBOM obtained from specimens of the gastropod 

F. oregonensis has δ13C values -27.2‰ and -26.8‰ (-27.0‰  ±0.3, n=2). In 

addition a value for sulphur (δ34S: -2.5‰) was obtained, a sulphur value obtained 

using resin of -7.1‰ is even more depleted. δ13C of shell carbonate is 1.0‰.  

Ranella galea. A single specimen of Ranella was analysed, with a total SBOM δ13C 

value of -26.2‰. For this resin obtained sample the sulphur value is conclusively 

depleted (δ34S -7.3‰) 

Fulgoraria kamakuraensis. Total SBOM carbon values range from -27.3‰ to -

25.6 (n=3), a sulphur value of δ34S 1.1‰ was obtained. Shell carbonate values 

(δ13C -0.3‰ and 1.0‰, n=2) have little variation. 

Dentalium sp. A single specimen shows a total SBOM value of δ13C -28.1‰, and a 

shell carbonate value of δ13C 0.2‰.  

Terebratulidae. Terebratulid brachiopods total SBOM ranges from δ13C -26.1‰ to -

23.8‰ (n=4). A nitrogen value of δ15N 2.5‰ was also obtained, as well as a sulphur 

value of δ34S -15.3‰ (total SBOM obtained using resin showed an even more 

depleted value of -28.1‰). Shell carbonate values ranged from -0.3‰ to 1.5‰ 

(n=3).  

Comparison between species and suspected nutritional strategies. Between 

the suspected thiotrophic bivalves (L. spectabilis, C. bisecta, S. japonica) there are 

no statistical differences in δ13C of total SBOM, and the three species have a 
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combined value of δ13C -27.6 ±0.8 (n=10). Amongst the different heterotrophic 

animals (all other species), only the terebratulid brachiopod is statistically enriched 

(-25.0 ±0.9, n=4) compared to several of the other species. The heterotrophic 

species have a combined value of total SBOM δ13C: -26.3‰ ±1.1 (n=16, 

species=7), which is statistically enriched compared to the thiotrophic species (also 

when removing the brachiopod data). However, the range of chemosymbiotic 

values (-28.9‰ to -26.6‰) does only not overlap with the brachiopods (26.1‰ to -

23.8‰), and no heterotrophy threshold can be estimated for the other species.; 

thiotrophy can be assigned below -28.6‰ at this locality.  

The intra-crystalline SBOM δ13C values of thiotrophs (-31.2‰ ±0.2, n=2, species=2) 

could unfortunately not be compared to heterotrophic intra-crystalline SBOM. But 

for thiotrophs intra-crystalline SBOM is statistically depleted compared to total 

SBOM, and depleted beyond the threshold of total SBOM thiotrophy.  

Very limited nitrogen data is available, and obtained values for thiotrophs (δ15N 

1.7‰) and heterotrophs (δ15N 3.7‰ ±2.4, n=3, species=3) do not overlap in range. 

Intra-crystalline SBOM differences are even more pronounced: δ15N 0.4‰ ±1.3 

(n=2, species=2) versus 6.5‰, respectively. 

Surprisingly, sulphur values of total SBOM show an enriched value for suspected 

thiotrophs (δ34S 8.0‰) compared to the heterotrophic values (-3.8‰ ±7.6, ranging 

down to -15.3‰). Intra-crystalline values however show the opposite relationship 

between the two nutritional strategies, whereby the depleted thiotrophic values 

(0.8‰ ±2.4, n=2, species=2) compared to the heterotrophic specimen (7.6‰, n=1) 

can be explained through the use of depleted hydrogen sulphide by thiotrophic 

bacteria.  

Shell carbonate values are very variable for all three suspected thiotrophic species, 

due to several very depleted values (below δ13C -5‰), and have a combined value 

of: δ13C -4.6‰ ±5.6 (n=7, species=3). Heterotrophic species shell carbonate values 

have a combined value of δ13C 0.8‰ ±0.7 (n=11, species=6), which is statistically 

enriched (p=0.0054) compared to the suspected thiotrophs. However, when the 

extremely depleted values are removed (δ13C 0.3‰ ±0.8 (n=4, species=3), there is 

no statistical difference.  

 

Kounandai seep 

Lucinoma sp. At Kounandai seep Lucinoma (Lucinidae) specimens from two 

adjacent cold seep localities were analysed. The data for these localities are 
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combined because no further environmental data is available to investigate 

potential isotopic differences. For total SBOM values range from δ13C -29.0‰ to -

26.3‰ (n=8), intra-crystalline SBOM δ13C values are -29.8‰ and -28.2‰. The 

nitrogen values are very variable, ranging from δ15N -11.1‰ to 8.4‰ (n=3). A single 

sulphur measurment shows a very depleted value for total SBOM: δ34S -8.2‰.  

Shell carbonate δ13C values are all negative, ranging from -8.9‰ to -4.0‰ (n=3). 

 

Takanabe Formation 

Lucinoma sp. Lucinoma total SBOM values are δ13C -26.9‰ and -26.9‰, and 

δ15N 5.6‰ and 7.1‰. Two out of three shell carbonate δ13C values are extremely 

depleted (-20.2‰ and -27.8‰), compared to the other sample of 0.5‰.  

 

Shiramaza Formation 

Calyptogena sp. From a Shiramaza Formation cold seep the suspected thiotroph 

Calyptogena sp. was analysed. Total SBOM carbon values are variable, and mean 

values range from δ13C -30.3‰ to -22.6‰ (-27.1‰ ±2.3, n=9), intra-crystalline 

SBOM δ13C values are equally variable (-30.9‰ to -27.0‰, n=3), and slightly more 

depleted. δ13C values of shell carbonate range from -1.1‰ to 1.0‰ (n=4) 

Nitrogen values of total SBOM range from δ15N -1.6‰ to 4.9‰ (n=10, 1.5‰ ±2.3), a 

single intra-crystalline value is more depleted than this range (-2.5‰). The total 

SBOM sulphur values are extremely variable, ranging from δ34S -5.4‰ to 9.0‰ 

(n=4) a single resin value is also positive, other measurements are inconclusive.  

 

4.3.4.4  Miocene and Oligocene localities  

Rocky Knob 

Lucinoma aff. taylori. Total SBOM ranges from δ13C -27.6‰ to -26.2‰ (n=3, -

27.0‰ ±0.7), and has a nitrogen value of δ15N 2.5‰. Two δ13C shell carbonate 

values are extremely depleted (δ13C -27.4‰ and -24.6‰) compared to a much less 

extreme sample (δ13C 0.2‰). 

Bathymodiolus heretaunga. Carbon values for total SBOM fall between -31.1‰ 

and -29.5‰ (n=4, -30.0‰ ±0.9). A nitrogen value of -9.6‰ is reported. Shell 

carbonate values are -3.3‰ and -3.5‰, as well as a more depleted outlier of -

21.3‰.  
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Comparison between species and nutritional strategies. Statistical comparison 

confirms that B. heretaunga total SBOM carbon values are  significantly depleted 

(on average by δ13C -3.0‰) compared to Lucinoma. The nitrogen value of B. 

heretaunga is also more depleted. Shell carbonate values are difficult to compare 

because both include extremely depleted values. 

 

Moonlight North  

Gigantidas coseli. Total SBOM obtained from a single G. coseli specimen has a 

δ13C value of -26.2‰, and δ15N of 3.7‰. Resin obtained total SBOM points towards 

negative sulphur values (δ34S -3.5‰). For this specimen the shell carbonate value 

is -13.8‰.  

Lucinoma sp. A single specimen was analysed and has a total SBOM δ13C value 

of -27.0‰, and a shell carbonate δ13C value of -13.6‰.  

Liothyrella sp. Carbon values of total SBOM have a narrow range, from δ13C -

27.3‰ to -26.9‰ (n=3). Total SBOM obtained using resin has a value of δ34S -

8.9‰.  

Comparison between species and nutritional strategies. The total SBOM δ13C 

range of suspected heterotroph Liothyrella (-27.3‰ to -26.9‰) overlaps or is more 

depleted than the suspected thiotrophic species G. coseli (-26.2‰) and Lucinoma (-

27.0‰), were the latter two species are expected to be more depleted. Similarly, 

the depleted sulphur value for the brachiopod species is unexpected, as 

comparable results are associated with the presence of thiotrophic symbionts. 

 

Hokkaido 

Calyptogena pacifica. Carbon values for total SBOM range from δ13C -26.7‰ to -

25.6‰ (n=4), an intra-crystalline SBOM carbon value is more depleted: δ13C -

28.5‰. Similarly, the intra-crystalline nitrogen value (δ15N -3.0‰) is more depleted 

than total SBOM (δ15N 4.3‰ and 5.3‰). Sulphur values of total SBOM obtained 

using resin indicate very negative sulphur values (-13.0‰ to -4.8‰ to n=3). Shell 

carbonate of C. pacifica has a narrow range of δ13C values, from -1.6‰ to -0.7‰ 

(n=4).  

  

Izura seep 

Lucinoma acutentilineatum. Total SBOM was obtained from eight specimens, 

and δ13C values range from -27.5‰ to -26.0‰ (n=8, -27.0‰ ±0.7). Nitrogen values 

range from δ15N 3.0‰ to 5.2‰ (n=5), and sulphur of total SBOM shows a value of 

δ34S -0.2‰. Intra-crystalline SBOM shows more depleted value for both carbon 
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(δ13C -29.2‰ and -28.4‰; n=2 -28.8±0.6; statistically different, p=0.0107) and 

sulphur (δ34S: -5.0‰). Total SBOM obtained using resin contains a conclusively 

positive value (δ34S: 6.1‰). Shell carbonate values have a narrow range, from 

0.7‰ to 1.4‰ (n=4).  

Mizuhopecten kobiyami. Two specimens of the oyster M. kobiyami were available 

for analysis. Total SBOM values are δ13C -25.1‰ and -25.2‰, and δ15N 2.9‰ and 

5.7‰. Sulphur values are not available. Shell carbonate values are: 1.3‰ and -

2.2‰ (n=2, -0.5‰ ±2.5) 

Calyptogena sp. Total SBOM was obtained from collated Calyptogena specimens, 

showing a carbon value of δ13C -27.9‰. The specimens have a shell carbonate 

value of δ13C -5.4‰.  

Comparison between species and nutritional strategies. The total SBOM 

carbon values of suspected thiotroph L. acutentilineatum (n=8, -27.0‰ ±0.7). are 

statistically depleted compared to the suspected heterotroph M. kobiyami (-25.1‰ 

±0.1, n=2; p=0.0064), the value of Calyptogena (-27.9‰) is also depleted compared 

to M. kobiyami. Total SBOM nitrogen values of the first two species are statistically 

similar, sulphur results could not be compared. A comparison between shell 

carbonate δ13C values shows that Calyptogena (-5.4‰) is depleted compared to 

the other two species, that are not statistically different from each other.  

 

Lincoln Creek Formation  

For several specimens of Lucinoma, as well as for the vesicomyid specimen, it was 

not possible to obtain reliable carbon data, probably due to the very low elemental 

concentration of carbon. In addition, one Lucinoma specimen could not be 

dissolved potentially due to silicification. 

Conchocele bisecta. Total SBOM obtained from C. bisecta has carbon values of 

δ13C -27.4‰ and -26.3‰, and shell carbonate shows carbon value of δ13C -2.8‰ 

and -1.0‰. A sulphur value of resin obtained SBOM is conclusively negative: -

5.2‰.  

Lucinoma sp. Carbon values of Lucinoma are δ13C -29.2‰ and -25.9‰ for total 

SBOM, and fall between δ13C -2.5‰ and 0.0‰ for shell carbonate. Resin obtained 

SBOM has depleted sulphur values of -4.8‰ and -4.3‰.  

Solemyidae sp. Total SBOM δ13C values are -27.7‰ and -26.3‰, shell carbonate 

is δ13C 0.8‰ and 1.6‰.  

Vesicomyidae sp. Shell carbonate value of δ13C 0.6‰.  

Mytilidae sp. (modiolid). Carbon value of total SBOM was shown to be -28.6‰, 

and the carbon value of shell carbonate is -0.2‰.  
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Ennucula sp. Shell carbonate value of δ13C 2.2‰.  

 

Comparison between species and nutritional strategies. The total SBOM 

carbon values of all suspected thiotrophic species overlap (C. bisecta, Lucinoma, 

solemyid) and range from 13C -29.2‰ to -25.9‰. Modiolid total SBOM (13C -28.6‰) 

is amongst the most depleted values. The heterotrophic specimen Ennucula (13C 

2.2‰) has a more enriched shell carbonate value compared to the suspected 

chemosymbiotic species (13C -2.5‰ to 1.6‰).  

 

4.3.4.5  Cretaceous localities  

Tepee Buttes 

Nymphalucina occidentalis. Total SBOM carbon values range from δ13C -27.2‰ 

to -26.2‰ (n=8, -26.5‰ ±0.4), intra-crystalline SBOM has a carbon value of -

26.2‰. In addition, nitrogen (δ15N 3.7‰) and sulphur (-3.4‰ and 1.2‰) values of 

total SBOM were also obtained. Shell carbonate values from δ13C -2.2 to -0.5 (n=3), 

as well as a more depleted value of δ13C -12.6‰.  

Inoceramus sp. Carbon values for SBOM are δ13C -26.8 and -26.3 (-26.6±0.3, 

n=3) for total SBOM, and δ13C -26.2‰ and -25.8‰ for intra-crystalline SBOM (-26.0 

±0.2, n=2). These two pools are not statistically different. Nitrogen values for total 

SBOM are δ15N -1.4‰ and 3.9‰ (n=2, 1.2 ±3.7). Carbon values of shell carbonate 

range from 0.0‰ to 2.6‰ (n=3; 1.6‰ ±1.4, n=3). 

Baculites sp. Total SBOM shows carbon values of δ13C -26.5‰ and -26.3‰ (n=2, 

-26.4‰ ±0.1, n=2), and an intra-crystalline carbon value of -26.1‰. In addition, for 

total SBOM a nitrogen value (δ15N 5.5‰) was obtained, as well as a depleted 

sulphur value for total SBOM obtained using cation exchange resin (δ34S -7.1‰). 

Shell carbonate values range from -4.8‰ to -1.3‰ (n=3; -3.2 ±1.8).  

 

Comparison between species and nutritional strategies. Total SBOM carbon 

values have a very narrow range for all three species, and are statistically similar 

(total range: -27.2‰ to -26.3‰). Similarly, the values for intra-crystalline are very 

similar, and range from -26.2‰ to -25.8‰. Inoceramis shell carbonate is statistically 

enriched, compared to the other two species.  

 

Seymour Island.  

Thyasira townsendi. Total SBOM shows isotopic values of: δ13C -26.3‰, δ15N 

5.4‰, and a depleted δ34S value (-4.9‰). Intra-crystalline SBOM values are slightly 
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more depleted for carbon (δ13C -27.3‰) and more enriched for sulphur (δ34S -

1.5‰). The specimen has a shell carbonate of - δ13C -3.5‰. 

Solemya rossiana. Carbon values for S. rossiana specimens are: δ13C -26.3‰ and 

-26.0‰ (-26.2‰ ±0.2, n=2) for total SBOM, δ13C -27.3‰ for intra-crystalline SBOM, 

and δ13C -9.9‰ and -2.9‰ for shell carbonate (n=2, -6.4‰ ±4.9). In addition 

nitrogen values of δ15N -0.8‰  and 6.3‰ were obtained (2.8‰ ±4.9, n=2) for total 

SBOM.  

Maorities seymourianus. Total SBOM has a δ13C value of -25.9‰, and a δ15N 

value of 8.8‰. Shell carbonate of this specimen shows a carbon value of -13.0‰ 

(because of presence at seep after death).  

Lahillia larseni. Carbon values for total SBOM range from δ13C -26.7‰ to -26.0‰ 

(=-26.3‰ ±0.3, n=4), for intra-crystalline SBOM from δ13C -28.2‰ to -25.8‰ (n=3; -

26.8‰ ±1.2). Nitrogen values for total SBOM are δ15N -0.9‰ and 5.4‰ (2.3‰ ±4.6, 

n=2) , for intra-crystalline SBOM nitrogen has a value is δ15N 5.9‰. A sulphur value 

for total SBOM is δ34S -32.6‰ (resin values are also negative, up to -19.1‰), for 

intra-crystalline SBOM values are: δ34S -26.4‰ and -6.2‰ (=2, -16.4‰ ±14.3).  

Cucullaea sp. Isotopic values of δ13C -27.0‰ and δ15N 5.0‰ were obtained for 

total SBOM.  

Leionucula suboblonga. Both total and intra-crystalline SBOM were analysed for 

a single specimen. The carbon value of total SBOM is δ13C  -25.3‰, intra-

crystalline SBOM values are δ13C -26.7‰ and δ15N 2.2‰. The carbon value for 

shell carbonate is 1.9‰.  

Pycnodonte (Phygraea) vesicularis vesicularis. Total SBOM carbon values are 

δ13C -24.8‰ (±0.2, n=3), intra-crystalline values are δ13C -25.6‰ (±0.3, n=2). For 

total SBOM a single depleted sulphur value was obtained: δ34S -23.4‰, as well as 

an enriched nitrogen value of δ15N 14.1‰. Shell carbonate values are δ13C 0.8‰ 

and 1.8‰ (1.3‰ ±0.7, n=2) .  

Neogastropod n. gen. Total SBOM obtained from a single specimen has values of 

δ13C -26.4‰, and δ15N 7.1‰, intra-crystalline SBOM of -26.1‰. Shell carbonate 

has a value of 1.6‰.  

Vanikoropsis arktowskiana. Carbon values are δ13C -26.1‰ for total SBOM, and 

δ13C 2.7‰ for shell carbonate. In addition a nitrogen value of δ15N 7.3‰ was 

obtained.  

Amberleya spinigera. Total SBOM values are δ13C -26.0‰ and δ15N 7.3‰, shell 

carbonate has a value of δ13C 3.8‰.  

Maorites seymourianus. The carbon value for total SBOM is δ13C -26.4‰, 

nitrogen is δ15N 5.0‰ for total SBOM and 4.2‰ for intra-crystalline SBOM. Sulphur 
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results were also obtained for intra-crystalline SBOM: δ34S -21.2‰, for total SBOM 

obtained using resin sulphur values are also strongly depleted (δ34S -9.4‰). The M. 

seymourianus specimen has a shell carbonate value of 3.5‰.  

Kitchinites sp. Stable isotope values are δ13C -26.2‰, and δ15N 7.2‰ for total 

SBOM, and δ13C -26.0‰ and δ34S -6.3‰ for intra-crystalline SBOM. In addition a 

shell carbonate value of δ13C -1.0‰ was obtained. 

Pachydiscus (Pachydiscus) riccardii. Total SBOM values are δ13C -26.4‰ and 

δ15N 8.3‰. The carbon value of shell carbonate is -0.8‰. 

Diplomoceras cylindraceum. Total SBOM values are δ13C -27.4‰ and δ15N 

6.3‰. The shell carbonate value of this species is very depleted (δ13C -21.1‰).  

Eutrephoceras dorbignyanum. Stable isotope results for total SBOM were 

obtained for carbon (δ13C -27.0‰) and sulphur (-3.7‰, obtained using cation 

exchange resin). The carbon value of shell carbonate is δ13C -3.6‰.  

Rotularia ssp. Carbon values range from δ13C -25.8‰ to -24.6‰ (-25.4‰ ±0.2, 

n=3) for total SBOM, and are δ13C -26.8‰ and -25.8‰ for intra-crystalline SBOM (-

25.7‰ ±1.5, n=2). Nitrogen values range from δ15N 7.5‰ to 10.8‰ (n=3, 9.3‰ 

±1.7) for total SBOM, and are δ15N 9.3‰ for intra-crystalline SBOM. Intra-crystalline 

SBOM sulphur values are δ34S -9.9‰ and -8.4‰ (n=2, -9.9‰ ±1.1), the total SBOM 

sample shows a value of δ34S -18.0‰ (this is in agreement with very depleted resin 

values of -12.0 and -7.9). Shell carbonate values of Rotularia specimens are δ13C 

2.7‰ and 4.2‰ (mean: 3.5‰ ±1.1, n=2).  

 

Comparison between species and nutritional strategies. 

A total SBOM comparison between bivalves that are suspected to obtain nutrition 

via symbionts (δ13C: -26.3‰ ±0.2, n=3, species=2) does not differ from suspected 

heterotrophic bivalves (δ13C: -25.7‰ ±0.8, n=8, species=4) for carbon. Similarly, 

intra-crystalline values (δ13C: -27.3‰ ±0.0, n=2, species=2; versus; -26.4‰ ±1.0, 

n=6, species=3) are similar. The range of nitrogen values for suspected 

chemosymbionts (δ15N total: -0.8‰ to 6.3‰ (n=3, species=2) completely overlaps 

with the range of heterotrophs (-0.9‰ to 14.4‰) (intra-crystalline SBOM could not 

be compared). Similarly for sulphur, both suspected nutritional strategies are 

strongly depleted, for thiotrophs (total: -4.9‰, intra: -1.5‰) and heterotrophs (total: 

-28.0‰ ±6.5, n=2, species=2; intra: -16.4‰ ±14.3, n=2, species=1). Difference in 

shell carbonate values between the chemosymbiotic bivalves (-5.4‰ ±3.8, n=3, 

species=2) and the heterotrophic bivalves (1.5‰ ±0.6, n=3, species=2). 
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Owl Creek Formation  

Cucullaea capex. Carbon total SBOM values range from -27.7‰ to -25.7‰ (n=3; -

27.1 ±1.2), for intra-crystalline a value of -26.2‰ was obtained. In addition, a 

nitrogen value of δ15N 1.3‰ for total SBOM, and a sulphur value of δ34S -35.2‰ for 

intra-crystalline SBOM are shown.  

Nucula percrassa. Total SBOM values fall between δ13C -28.8‰ and -26.1‰ for 

carbon (n=3; -27.3‰ ±1.3), and has a nitrogen value of δ15N 6.8‰.  

Turritella. The carbon value of total SBOM is δ13C -26.7‰, the nitrogen value is 

4.4‰.  

Drilluta. Combined specimens belonging to the genus Drilluta have a total SBOM 

value of δ13C -26.1‰. 

Baculites. Total SBOM carbon values range from -27.6‰ to -25.8‰ (n=3; -26.9‰ 

±1.00; nitrogen for total SBOM has values of 5.9‰ and 6.8‰ (n=2; 6.4‰ ±0.6), no 

sulphur values are available. 

Eubaculites. Carbon values range from δ13C -30.7‰ to -25.6‰ (n=4; -27.9‰ ±2.7) 

for total SBOM. In addition a nitrogen value (δ15N 4.0‰) and sulphur value (δ34S -

11.0, via cation exchange resin) were obtained.  

Discoscaphites. Total SBOM values have a carbon range of -27.9‰ to -26.1‰ 

(n=3; -26.8‰ ±1.0), and a nitrogen value of δ15N 4.6‰. 

 

4.3.4.6  Palaeozoic and Mesozoic seep brachiopods  

Anarhyncha. Total SBOM has a carbon value of δ13C -27.9‰, and shell carbonate 

of δ13C -2.9‰.  

 

Halorella. Carbon isotope values are δ13C -26.3‰ for total SBOM, δ13C -26.3‰ for 

intra-crystalline SBOM, and δ13C -1.4‰ for shell carbonate. In addition a sulphur 

value of δ34S -4.2‰ was obtained. 

 

Iberinghychia contraria. Total SBOM values of δ13C -23.9‰ and δ15N -12.0‰.  

 

Dzieduszyckia. Two species of this genus were analysed for total SBOM, showing 

values of δ13C -24.6‰, δ15N 3.8‰ and δ34S 3.8‰ (resin) for D. crassicostata, and 

δ13C -26.9‰ and δ15N 10.7‰ for D. tenuicostata. In addition an intra-crystalline 

SBOM value of δ13C -26.3‰ was obtained. Shell carbonate values of the two 

species are -0.6 (D. crassicostata) and 0.3 (D. tenuicostata).  

 

Septatrypa. Insufficient shell material was available, shell carbonate δ13C -0.8‰. 
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Figure 4.21  SBOM stable isotope results summarized per time period 

Range of δ13C, δ15N and δ34S values for total SBOM and intra-crystalline 

SBOM are shown per nutritional strategy, for multiple localities per 

geological time period 
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Figure 4.22  δ13C shell carbonate values per time period 

Results are shown per nutritional strategy, heterotrophs outlined in black 

were obtained from seep localities 
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resin (+1.5‰). These include CAS obtained from the Seymour Island non-seep 

taxa Rotularia (δ34S -4.4‰ and -4.8‰) and the seep specimen Maorites 

seymourianus (δ34S -8.2‰), as well as Inoceramus (-4.7‰) and Baculites (-4.7‰) 

from the Tepee Buttes. CAS obtained from bleached shell powder from these 

specimens are even more depleted: -12.9‰ for Baculites, and -11.3‰ for the 

lucinid Nymphalucina occidentalis. δ34S CAS obtained using HCl on unbleached 

shell powder from the latter specimen has a value of 7.5‰. 

 

4.3.4.8  SBOM wt.% and elemental concentrations 

SBOM preservation based on weight percent. Contaminant material can replace 

or be added through diagenesis, e.g. bacterial contamination. Calculating the 

weight percent (wt.%) SBOM of the shell potentially makes it possible to determine 

added contaminants, when comparing wt% to known modern ranges. Modern wt.% 

SBOM ranges were previously determined to be < 1% for total SBOM, and < 0.2% 

for the intracrystalline pool (Chapter 3). Based on this data, fossil specimens for 

which the wt.% SBOM was determined were classified in three categories for both 

SBOM pools, with increased weight % classified between 1.0-2.0% for total SBOM, 

and 0.2-0.5% for intra-crystalline SBOM. Specimens excluded from this analysis 

are Mytilidae, that were previously shown to contain relatively large amounts of 

SBOM relative to shell weight. Similarly the shelled cephalopods were excluded, 

based on analysis of Nautilus in this study, with a weight% of 2.6%. Fig. 4.23 shows 

an increase with time in specimens falling into the questionable/poor wt.% SBOM 

categories. 

Elemental concentrations. Generally the C/N ratio is used as an indicator of 

preservation for organic matter (e.g. O’Donnell et al., 2003), but with the chosen 

methodology it is not possible to determine the elemental concentration of carbon. 

Therefore the concentrations of nitrogen (resin and HCl) and sulphur (HCl) of the 

SBOM from fossil specimens are shown, grouped per time period. Of these two 

elements sulphur concentration is least informative about possible contamination, 

because sulphur can be added as well as lost, e.g. external sulphide can bind to the 

organics. 
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Figure 4.23  SBOM wt% of the shell, and elemental concentrations of SBOM per 
time period 

Number of analysed specimens are shown for each time bin. 
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4.4  Discussion 

The results for the different analytical techniques will be discussed per geological 

period, with the various localities divided into: subfossil <5ka (Congo Fan, Hikurangi 

Margin), subfossil <50ka (Krishna-Godavari Basin), Pleistocene/Pliocene 

(Kakinokidai seep, Koshiba Formation, Kounandai seep, Takanabe Formation, 

Shiramaza Formation), Miocene/Oligocene (Rocky Knob, Moonlight North, 

Hokkaido, Izura seep, Lincoln Creek Formation), Cretaceous (Tepee Buttes, 

Seymour Island, Owl Creek Formation), and Palaeozoic brachiopods (Halorella, 

Ibergirhynchia, Dzieduszyckia, Septatrypa). By summarizing the results in these 

geological periods, it will be possible to gain a broader perspective on isotopic 

changes of SBOM through geological time. 

 

4.4.1  Subfossil localities 

Carbon. The isotopic δ13C values obtained from subfossil SBOM can be compared 

to modern ranges reported in Chapter 3. In modern specimens δ13C SBOM values 

have been shown to be very indicative of the different chemosymbiotic nutritional 

strategies. Thiotrophic bacteria use dissolved inorganic carbon (DIC) as a carbon 

source, which is strongly fractionationed when utilized by the symbiotic bacteria via 

the Calvin-Benson-Bassham cycle (Dubilier et al., 2008). For modern thiotrophic 

vesicomyids this process results in total SBOM values with a relatively narrow δ13C 

range (-31.9‰ ±2.2, n=48), with the very large majority of specimens showing 

values between -35‰ and -30‰. The suspected thiotrophic vesicomyids from the 

Congo Fan (L. chuni, -32.3‰ ±0.6, n=4) and Hikurangi Margin (C. tuerkayi, 31.8‰ 

±1.2, n=5) fall within this range, but the vesicomyids from Krishna-Godavari Basin 

have δ13C values more enriched than -30‰ (δ13C -28.7‰ ±0.9, n=7).  

The intra-crystalline SBOM δ13C values of modern thiotrophic species are generally 

more enriched than the total SBOM δ13C values (30.5‰ ±1.7, n=16 for 

vesicomyids). The same relationship and δ13C values were found for the younger 

subfossil samples. However, for the Krishna-Godavari Basin specimens intra-

crystalline SBOM (δ13C -29.4 ±1.2, n=4) are similar to the modern values, but have 

a similar range to total SBOM δ13C values of the same specimens.   

If the total SBOM 12C enrichment of the Krishna-Godavari vesicomyids would be the 

result of very enriched δ13C DIC, it is considered unlikely that this would not affect 

the intra-crystalline fraction. Moreover, the Krishna-Godavari shell carbonate δ13C 

values (δ13C -0.2‰ ±1.3, n=5) are similar to modern species and do not support 
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extremely enriched local DIC δ13C values. This suggests a diagenetic 13C 

enrichment of total SBOM, that is not present in the intra-crystalline fraction. This is 

in agreement with the expected superior preservation of intra-crystalline SBOM, 

that is present in a closed system and therefore not subjected to the wide range of 

diagenetic pathways that can affect inter-crystalline SBOM (Penkman et al., 2008). 

AAR confirmed the presence of original organics in the intra-crystalline SBOM of 

both L. chuni (Congo Fan) and Vesicomyidae sp. (Krishna-Godavari Basin), and 

therefore the presence of an original isotopic signal. 

The suggested 13C enrichment of total SBOM could be the result of contamination 

from the surrounding sediment or nearby organisms (with enriched δ13C values), or 

the non-random loss of 13C depleted compounds during post-mortem processes. 

The decrease in elemental nitrogen concentration (Fig. 4.23) confirms the 

interaction of total SBOM with the external environment.  

 

In addition to Vesicomyidae sp. from the Krishna-Godavari Basin, Bathymodiolus 

sp. specimens from the same locality were analysed. These specimens are 

suspected of having relied on one of multiple types of symbiosis: thiotrophy, dual 

symbiosis or methanotrophy. The samples have a mean total SBOM value of δ13C -

30.7‰ ±2.7 (n=5), which is in agreement with a thiotrophic lifestyle, and contains 

several δ13C values that are considerably depleted compared to the Vesicomyidae 

specimens (up to -34‰). Shell carbonate values of Bathymodiolus are considerably 

depleted (δ13C -5.6‰ ±3.7, n=3) compared to modern thiotrophic bivalves (δ13C -

0.2‰ ±1.3, n=22) and this range of light values is very similar to that of modern 

methanotrophic B. childressi (δ13C 5.7‰ ±2.4, n=7, Chapter 2). In Chapter 2 it was 

shown that all shell carbonate δ13C values below -2‰ are associated with the 

incorporation of depleted methane via nutrition, and are not related to δ13C depleted 

DIC derived from methane oxidation (Chapter 2), which is also confirmed by the 

shell carbonate data from the Vesicomyidae of this locality (δ13C -0.2‰ ±1.3,n=5).   

If the shell carbonate δ13C values are taken as evidence of a methanotrophic/dual 

symbiotic lifestyle, total SBOM is expected to originally have been more 13C 

depleted, as has been observed for modern species (total SBOM: δ13C -53.5‰ 

±7.9, n=18). This diagenetic alteration is in agreement with the suggested 

diagenetic 12C enrichment of Vesicomyidae sp. from the same locality, as well as 

several ‘residual’ more depleted δ13C SBOM values outside the range of 

Vesicomyidae values.  
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Alternatively, instead of incorporation of depleted carbon via nutrition, 13C depleted 

values can result from incorporation of environmental methane into the shell (after 

death). This explanation is supported by a very depleted outlier value of δ13C -

11.8‰ amongst the specimens from the Hikurangi margin, with the other 

specimens reporting a value of δ13C 1.0‰ ±1.2 (n=3). In addition to our own 

modern dataset, no negative values are present in the overview of Rio et al., 

(1992), and in an extensive shell carbonate study of seep specimens by Lietard & 

Pierre (2009) only one very negative value is reported for a lucinid specimen (δ13C -

10.2‰), whilst all other specimens are not more negative than ~ δ13C -3‰, and 

vesicomyids in general below approximately δ13C -1‰. Therefore, the common 

occurrence of very negative shell carbonate δ13C in (sub)fossil shells suggests a 

diagenetic effect. This possibility was previously investigated by Paull et al. (2008), 

and could be caused by the deposition of authigenic calcite derived from methane 

deposited on shell surfaces. This leads to the conclusion that the use of shell 

carbonate for the identification of methanotrophy can become compromised even 

for geologically young fossil specimens.     

Sulphur. Very indicative of thiotrophy are depleted sulphur values, usually inferred 

from soft tissues below δ34S 5‰, and this was also confirmed for total SBOM 

(Chapter 3). All subfossil species analysed in this study have values depleted 

beyond this threshold, and are generally negative. This includes total SBOM δ34S 

values of Bathymodiolus sp. (δ34S -8.7‰ / -12.7 for resin), that appear to confirm 

thiotrophy. However, Dreier et al. (2012) showed that SBOM of empty and subfossil 

shells in shallow reducing environments can become very strongly depleted in δ34S, 

even for heterotrophic specimens (up to δ34S -30.8‰, Dreier et al., 2012; Dreier et 

al., 2014). Whilst nitrogen and carbon can have multiple macromolecular sources, 

sulphur is only present in two out of the 20 common amino acids: cysteine and 

methionine. The 32S decrease in subfossil SBOM samples was attributed to 

instability of the sulphur-containing amino acids (Dreier et al., 2012). Additional 

sulphur from the surrounding environment could also cause a possible shift towards 

the sulphur isotope ratio of the burial environment, and no longer represent the 

original isotope signal (Nehlich and Richards, 2009).  

Nitrogen. Chemosymbiotic bivalves primarily utilize inorganic nitrogen sources, but 

the exact sources, their δ15N values, and the extent of fractionation during 

incorporation by the host/symbionts are poorly understood (Chapter 3). The δ15N 

values of modern thiotrophic species generally fall between -5‰ to 10‰ for total 

SBOM, and the obtained δ15N values from subfossil specimens in this study fall 

within that range (Figure 4.21), and are thus in agreement with thiotrophic 
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chemosymbiosis as a nutritional strategy. However, the elemental nitrogen 

concentration of these subfossil samples shows a ∼50% decrease between 

modern/young subfossil localities and the samples from the Krishna-Godavari 

Basin. This decrease over time indicates interaction of total SBOM with the external 

environment, and the apparent loss of organic material. Nitrogen within SBOM is 

primarily present within protein, and the elemental concentration of nitrogen can 

therefore act as a proxy for protein yield. Proteins are thought to degrade 

preferentially and are therefore commonly used as an indicator of diagenesis. δ15N 

values of SBOM could be strongly influenced by the effects of hydrolysis which, 

together with racemisation, are the main chemical reactions occurring during early 

diagenesis. During hydrolysis the peptide bonds of proteins are broken, and 

therefore ultimately converted into a mixture of only free amino acids. These 

smaller molecules are more readily leachable from the shell (Mitterer, 1993). 

It is possible that leaching (without contamination) would not strongly affect the 

isotopic nitrogen value of SBOM, because nitrogen in animal protein is supplied 

almost entirely by dietary proteins and most proteins have similar δ15N values (Koch 

et al., 2007). The %N for intra-crystalline SBOM from Krishna-Godavari Basin 

overlaps with the range of modern values, and suggests limited leaching of amino 

acids.  

Discussion summary. The discussed data from the three subfossil localities 

suggests that total SBOM of ancient shells of a certain geological age (between 2ka 

and 40ka years BP) comes into contact with the external environment, causing 

leaching of amino acids and likely incorporation of extraneous compounds. Dreier 

et al (2012) have suggested that gradual degradation and transformation could be 

caused by heterotrophic microbial composers, which would be in agreement with 

the observed 13C enrichment. The diagenetic alteration of total SBOM could not be 

inferred from SEM/CL analyses, that showed that the large majority of the shell 

material is original and unaltered. The pyrolysis GC/MS analysis of Vesicomyidae 

sp. from the Krishna-Godavari Basin also generally reflects the chemical 

composition of the modern vesicomyid, although the much lower concentration of 

alkyl lipids could be indicative of the diagenetic changes.  

The nutritional strategy of Bathymodiolus sp. from Krishna-Godavari remains 

unresolved, but there are strong indications for the presence of methanotrophic 

symbionts, which could be confirmed using stable isotope analysis of intra-

crystalline SBOM.   



- 236 - 

Comparison to published data. The stable isotope data from subfossil localities 

obtained in this study can be directly compared to total SBOM stable isotope values 

obtained from Vesicomyidae samples (Phreagena s.l. and Isorropodon sp.) from 

Vestanesa Ridge and Western Svalbard, dated to 17,500 years B.P (Ambrose et 

al., 2015). Firstly it was noted that several depleted shell carbonate values are 

reported, the most depleted value being δ13C -13.2‰ (Isorropodon). Carbon values 

of total SBOM range from: Phreagena -28.6‰ to -21.3‰; and Isorropodon from -

29.3‰ to -25.6‰. The lowest δ13C SBOM values are in agreement with our 

observations about carbon enrichment of total SBOM for the Krishna-Godavari 

Basin, but the most enriched values of these ranges are unexpected – and suggest 

either very poor preservation of these specimens, or higher contribution of filter-

feeding on δ13C enriched particulate organic matter. 

Additional total SBOM values of subfossil suspected thiotrophic species were 

obtained for species from shallow environments by Dreier et al. (2012), no exact 

age is given. The strongly depleted δ34S values of total SBOM for a heterotrophic 

specimen were discussed above, the δ15N value of this specimen (+5.5‰) shows 

that depleted nitrogen values are not necessarily indicative of chemosymbiosis. The 

subfossil carbon data obtained by Dreier et al. (2012, thiotrophic Loripes lacteus: -

27.8‰ / heterotrophic Venerupis sp.: -24.1‰) cannot be directly compared to our 

data, because in modern thiotrophs from shallow-reducing environments are > +5‰ 

enriched compared to those from cold seep settings. Interestingly, Dreier et al 

(2012) observed a depletion in δ13C values after death for both nutritional 

strategies: around -3‰ for Loripes lacteus, and -5‰ for Venerupis, and δ13C total 

SBOM values for these specimens are therefore moving towards the carbon values 

observed in our specimens. This suggests the non-random leaching of compounds 

obtained from dietary compounds (with δ13C values characteristic of the nutritional 

strategies), or the incorporation of a similar contaminant source.  

 

4.4.2  Pleistocene and Pliocene localities 

In shell samples of Pleistocene age and older, the isolated SBOM morphologically 

changes from voluminous/openly structured and a variety of colours (related to shell 

colour), to dark brown compressed material. A similar transition was noted by 

Dreier et al (2014).  

Carbon. The observations made about total SBOM 13C enrichment of subfossil 

thiotrophic specimens, are also seen in geologically older specimens: as the upper 

δ13C boundary for suspected thiotrophy is extended to δ13C -24.9‰ and, moreover, 
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the range of heterotrophic specimens spans from -23.8‰ to -28.5‰. In modern 

heterotrophic (non-seep) δ13C total SBOM values are -20.4‰ ±2.4 (n=31, 

species=3, Chapter 2). The 13C depletion of heterotrophic specimens is argued to 

be caused by a similar contaminant source. The overlap in δ13C total SBOM values 

between heterotrophic and thiotrophic samples means that thiotrophy can only be 

confirmed for specimens with total SBOM δ13C values more depleted than -29‰ (as 

indicated in the graph). This diagenetic effect on total SBOM δ13C is in agreement 

with a continued decrease in elemental nitrogen concentration of total SBOM (Fig. 

4.23). This figure also shows that for this time period, intra-crystalline SBOM %N 

can be higher than the %N of total SBOM (in modern specimens this is very clearly 

not the case), and is similar to the Krishna-Godavari Basin specimens.  

The suggested superior preservation of intra-crystalline SBOM is confirmed by the 

δ13C values of that SBOM pool, showing a very clear distinction between thiotrophy 

(-31.0‰ to -27.0‰, n=13) and heterotrophy (-19.6‰, n=1) in the limited data 

available. This shows that nutritional strategies can potentially still be differentiated 

using intra-crystalline stable isotope values. 

For specimens of this time period it was noted that data from the oldest locality, the 

upper Pliocene Shiramaza Formation, extended the upper range from δ13C -26.3‰ 

for total SBOM from to -24.9‰, and from δ13C -27.7‰ for intra-crystalline SBOM to 

δ13C -27.0‰. The vesicomyid specimens from that locality showed strong variation 

in their preservational state using SEM/CL, which is in accordance with the variety 

of δ13C total SBOM values obtained (δ13C -30.3‰ to -24.9‰, n=9) (although no 

obvious correlation between the SEM results and isotopic values exists).  

The heterotrophic total SBOM range was extended upwards from δ13C -25.5‰ to -

23.8‰, when including brachiopods, because the range of brachiopod total SBOM 

values (δ13C -26.1‰ to -23.8‰) being generally enriched compared to other 

heterotrophic species. This difference could be caused by the increased 

preservation potential of calcitic shells.  

The shell carbonate values for suspected thiotrophic specimens can be extremely 

depleted (δ13C -27.8‰ to 1.3‰, n=20) compared to suspected heterotrophs (δ13C -

0.5‰ to 2.1‰, n=11) and we attribute this depletion due to the presence of the 

shells at methane seep localities, instead of reflecting δ13C depleted metabolic 

carbon indicative of a chemosymbiotic lifestyle. Fig. 4.22 shows that the ranges of  

shell carbonate values of the two nutritional strategies largely overlap, which was 

also observed for the modern data in Chapter 2.  
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Sulphur. As discussed above, diagenesis can cause significant 32S depletion of total 

SBOM, and is suggested to cause the total SBOM δ34S range of suspected 

heterotrophs (δ34S -10.0‰ to 1.1‰, n=6) to overlap, or even to become more the 

depleted, than for suspected thiotrophs (δ34S -8.2‰ to 3.6‰, n=5). This difference 

cannot be explained by changing baseline δ34S values of nutritional sulphate, that is 

incorporated indirectly from photosynthetically derived organic matter, since δ34S 

values have not been below +10‰ in any time during Earth history (Gill et al., 2007).  

Sulphur values for intra-crystalline values are limited, but show a significantly more 

positive value for a heterotrophic specimen (δ34S 7.6‰) than thiotrophic specimens 

(δ34S -5.0‰ to 2.5‰, n=4). This is in agreement with the presence of original 

compounds in the intra-crystalline SBOM pool. 

 

Nitrogen. The total SBOM nitrogen range of heterotrophic values (δ15N 2.1‰ to 

6.5‰, n=4) completely overlaps with the values obtained for suspected thiotrophs 

(δ15N -11.1‰ to 8.4‰). It should be noted that in our modern dataset, negative 

nitrogen values are relatively rare for thiotrophic specimens, and the observed δ15N 

values could indicate contamination of a terrestrial source, that are commonly 

depleted in 15N (cf. O’Donnell, 2003). Similar to carbon and sulphur values, the 

intra-crystalline SBOM does show a clear distinction between positive heterotrophic 

values (δ15N 6.5‰) and thiotrophic specimens (δ15N -0.5‰ to 1.7‰, n=3). Although 

the data for nitrogen and sulphur are limited, these results are in agreement with 

the AAR results for L. aokii (Middle Pleistocene), L. spectabilis and Terebratulidae 

(Early Pleistocene), and Calyptogena sp. (Upper Pliocene) showing that original 

proteins are present in the intra-crystalline SBOM. This confirms that the isotopic 

diagenesis of total SBOM is caused by external contamination or leaching of the 

original SBOM, instead of chemical transformation of the SBOM itself.  

 
Comparison to published data. Interestingly, Dreier et al. (2014) could not obtain 

sufficient SBOM from a Pleistocene Tridacna maxima specimen for isotope 

analysis. Whilst the amount of shell powder from which SBOM was isolated (8-12 

grams) was around 5x times more than the amount used in our methodology, which 

made it possible to at least obtain carbon values for all samples.  

Stable isotopic SBOM values where obtained by Mae et al. (2007) for a Pliocene 

vesicomyid specimen, the values of δ13C -28.5‰ and δ15N -1.4‰ are in agreement 

with our data and interpretations for 13C enrichment and 15N depletion due to 

contamination. O’Donnell et al. (2003) analysed total SBOM from heterotrophic 

Mercenaria mercenaria from the Holocene to the Mid-Pleistocene at multiple 
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localities: δ13C -27.5‰ to -13.1‰, and δ15N +2.4‰  to +9.8‰. Although this wide 

range of values was attributed to changes in diet sources by authors, the very 

depleted values for both isotopic elements are likely the result of a strong 

diagenetic influences. Particularly because modern SBOM from adult M. 

mercenaria had stable isotope values of δ13C -18.4‰ to -14.8‰, and δ15N of 

+10.3‰ to +12.4‰ (and one outlier of 0.5‰). The more enriched stable isotope 

values could therefore retain a mostly original isotopic signal of total SBOM.   

 

4.4.3  Miocene to Oligocene 

For this time period the diagenetic influence on the isotopic signal of SBOM 

becomes strong enough to also affect intra-crystalline SBOM, in at least some of 

the specimens. AAR shows that the intra-crystalline SBOM is not original for 

Miocene Liothyrella sp. and Lucinoma sp. (Moonlight North) and Lucinoma sp. from 

the Oligocene (Lincoln Creek). The poor preservation of the Lincoln Creek lucinid 

was confirmed with SEM/CL, and other preservational issues for this locality were 

noted in the results section. However, Liothyrella sp. was interpreted to be 

reasonably well preserved and showing original shell structure. It should also be 

noted that other Miocene specimens showed very well preserved microstructures, 

such as specimens from the Izura seep. For Calyptogena specimens from 

Hokkaido no relationship between the preservation of the shell material and δ13C 

total SBOM values was found.  

The lowest δ13C values for suspected thiotrophic specimens continue to become 

enriched, particularly for intra-crystalline values (δ13C -29.2‰ to -28.4‰), which is 

agreement with the discussed AAR data. Because the mytilid specimens can 

potentially have chemosymbiotic strategies other than thiotrophy, they are shown 

separately in Fig. 4.21. Whilst the values from G. coseli (δ13C -26.2‰) and the 

modiolid (δ13C -28.6‰) from Lincoln Creek, fall within the range of fossil thiotrophic 

total SBOM values (δ13C -29.2‰ to -25.6‰, n=26), the B. heretaunga specimens 

fall outside of this range (δ13C -31.1‰ and -29.5‰). An interpretation of these 

values is hampered by the fact that it is unknown how the more depleted carbon 

total SBOM signatures of dual symbiosis and methanotrophy would be preserved. 

The potentially original shell carbonate values of δ13C -3.5‰ and -3.3‰ in 

agreement with a methanotrophic or dual symbiotic lifestyle (Chapter 2). The very 

depleted nitrogen value (-9.6‰) would also be indicative of a methanotrophic/dual 

symbiotic lifestyle, if original. Due to limited data, no further isotopic differences in 

(intra-crystalline) SBOM can be identified between different nutritional strategies.  
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Similar to the other time periods, the shells presented at cold seeps have a very 

depleted shell carbonate δ13C range (δ13C -27.4‰ to 1.4‰), compared to 

heterotrophic specimens (δ13C -2.2‰ to 2.2‰).  

Comparison to published data. Total SBOM obtained from a Miocene mytilid 

specimen suspected of chemosymbiosis (Mae et al., 2007), has a nitrogen value of 

δ15N 4.2‰ that is comparable to our dataset, however the total SBOM carbon value 

of δ13C -23.1‰ is more enriched than any of our specimens, particularly the 

mytilids. The enriched values reported for the Mid-Miocene heterotrophic gastropod 

genus Ecphora (δ13C -16.7‰ ±1.3 / δ15N 7.3‰ ±2.2, n=17) are surprisingly positive 

(Nance et al., 2015), and are thought to indicate very good preservation of these 

specimens, or may be caused by a contaminant source with more positive δ13C and 

δ15N values than those present at the localities investigated in this study. 

 

4.4.4  Cretaceous 

AAR analysis of a N. occidentalis sample confirmed the preservation of original 

intra-crystalline SBOM proteins. However, the range of total SBOM carbon values 

for suspected thiotrophic specimens has become even more limited, only ranging 

from δ13C -27.2‰ to -26.0‰ (n=11) and is, moreover, similar to the range of intra-

crystalline values δ13C -27.3‰ to -26.2‰ (n=3). The heterotrophic specimens report 

both more depleted, and more enriched values for total SBOM (n=22) and intra-

crystalline SBOM (n=9). Also the pyrolysis GC/MS data for N. occidentalis shows 

large difference in comparison to the modern and subfossil sample, confirming 

diagenetic alteration of total SBOM. 

In addition, very depleted sulphur values are also present in the intra-crystalline 

SBOM fraction of suspected heterotrophic specimens (δ34S -35.4‰ to -6.2‰, n=5). 

These very depleted δ34S values could be related to negative δ34S CAS values from 

this time period.  

Calcite vs. aragonite. Within the heterotrophic isotope ranges, both the enriched 

carbon values (δ13C -24.9‰ to -25.5‰, n=3) and the enriched nitrogen value (δ15N 

14.1‰) were obtained from P. vesicularis (Seymour Island), that has a calcitic shell. 

It is unclear if the enriched δ13C total SBOM value of this species, as well as 

younger Liothyrella sp. discussed above, is inherent to calcite itself, or superior 

preservation of a heterotrophic nutritional signal. Potentially the presence of calcite 

in Bathymodiolus shells could then also contribute to better preservation.  



- 241 - 

Shell carbonate. Fig. 4.22 shows that both suspected thiotrophs and suspected 

heterotrophs can have δ13C shell carbonate values lower than -2‰. The majority of 

negative δ13C values are reported for heterotrophs living at cold seep localities, and 

suggest 13C depletion due to the deposition of methane-derived authigenic calcite. 

The most depleted value of suspected heterotrophs (δ13C -21.1‰) was obtained 

from a heteromorphy ammonite, this mobile animal could potentially have been 

present at cold seeps earlier in life. The difference in shell carbonate δ13C values in 

relation to environmental settings is also confirmed by the difference in shell 

carbonate values of seep (-13.7 to ∼0‰) and non-seep ammonites (-1.8 to 3.4‰) 

observed by Landman et al (2012), although they attribute this to the incorporation 

of methane into the shell during life, instead of post-mortem.  

Inoceramus. The very limited range of SBOM δ13C values between species with 

different suspected nutritional strategies (thiotrophic N. occidentalis and 

heterotrophic Baculites sp.) at Tepee Buttes suggests that the original isotopic 

signal has been completely replaced by contaminant sources, and unfortunately do 

not allow for the identification of a nutritional strategies in Inoceramus sp. The 13C 

enriched shell carbonate values of Tepee Buttes Inoceramus (1.6‰ ±1.4, n=3) 

compared to negative values of Baculites sp. (n=3; -3.2 ±1.8) and N. occidentalis (-

1.4‰ ±0.8, n=3) have previously been attributed to a chemosymbiotic lifestyle 

(MacLeod and Hoppe, 1992), because of the potential 13C enrichment of modern 

shell carbonate related to the activity of thiotrophic bacteria (Rio et al., 1992). In 

Chapter 3 it was also shown that the majority of thiotrophic and dual symbiotic 

bivalves are ∼+2‰ enriched compared to calculated shell carbonate δ13C values, 

which could be attributed to the preferential uptake of 12C by the thiotrophic 

bacteria. However, the δ13C values of the other two taxa are not in agreement with 

a heterotrophic lifestyle, but instead suggest 13C depleted original soft tissue/SBOM 

values. This difference could not be attributed to mineralogical differences, because 

the presence of calcite in combination with aragonite in Inoceramus should cause a 

depletion compared to the completely aragonitic shells of the other two taxa 

(Immenhauser et al., 2016 and refs within). The most likely explanation therefore is 

that post-mortem methane incorporation has a greater effect on the δ13C values of 

N. occidentalis and even more on very thin-shelled Baculites sp., compared to the 

very thick and layered shell structure of Inoceramus.  

Comparison to other data. Ullmann et al., (2014) bases conclusions about 

changing seawater chemistry on total SBOM δ13C  values of Early Toarcian 

belemnites. Based on the age of these samples, and the range of the carbon values 

(-30‰ to -25‰), this data is unlikely to represent an original isotopic signal, and 
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more likely reflects changing δ13C values of sedimentary organics or other 

contaminant. In addition, compared to modern ranges the δ13C values are not in 

agreement with heterotrophic nutrition.   

 

4.4.6  Palaeozoic and Mesozoic seep brachiopods 

In the AAR results section (4.3.1) it was discussed that the absence of amino acids 

in the Palaeozoic brachiopods (Anarhyncha, Halorella and Dzieduszyckia 

crassicostata) is the result of SBOM becoming a kerogen-like substance. This 

observation, the very high weight percent SBOM of these shells, as well as a very 

low elemental nitrogen/sulphur concentrations, suggest that contaminants are 

incorporated into this kerogen-like substance, and the majority of original protein 

has been removed from the shell. The variation between the different 

species/localities in total SBOM δ13C (-27.9‰ to -23.9‰, n=5), δ15N (-12.0‰ to 

10.7‰), and δ34S (-4.2‰ to 3.8‰) is most likely the result of differences isotopic 

values of the contaminants at the various seep localities. The composition and type 

of kerogen depends on the nature of the biological input, the environment of 

deposition and the diagenetic pathway (De Leeuw and Largeau, 1993). The general 

absence of luminescence for the Palaeozoic brachiopod specimens can be 

explained by problems with CL imaging of calcite brachiopod shells, and published 

studies have shown that the chemical and isotopic composition of shell carbonate 

can be modified without the shell becoming luminescent (England et al., 2006 and 

references within). 

4.4  Conclusions 

Total SBOM stable isotope values are affected by contamination or leaching within 

several thousand years after death, and this diagenesis cannot be identified using 

SEM or CL imaging. However, a very encouraging outcome from this study is the 

retention of original isotopic signals from intra-crystalline SBOM for much longer 

periods of time. AAR analysis of the intra-crystalline fraction shows that this could 

be pristine at least up to the Cretaceous for well-preserved specimens.  

The preservation of distinct isotopic signals within the intra-crystalline pool confirms 

that the isotopic changes to total SBOM are the result of diagenetic alteration, 

instead of changing baseline conditions related to environmental sources used by 

the different nutritional strategies.  
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Concerning shell carbonate δ13C  values, it is challenging to differentiate the 

environmental versus the nutritional signal from fossil seep specimens because of 

the apparent unpredictable post-mortem incorporation of methane.  
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Chapter 5 

Summary and future work 

In this thesis the isotopic value (δ13C, δ15N, δ34S) of shell-bound organic matter 

(SBOM) as a proxy for nutritional strategies was investigated, with the aim of 

reconstructing the evolution of chemosymbiosis through geological time. In 

particular, a distinction was made between the total SBOM of the shell, and the 

intra-crystalline SBOM pool that is protected within the mineral. Based on the 

information presented in the three manuscripts, the original research questions can 

be mostly answered. 

 Research question 1: Is the stable isotopic composition of SBOM 

influenced by chemical extraction from shell carbonate? (Chapter 2) 

 Research question 2: Does the stable isotopic composition of SBOM relate 

in a predictable way to that of soft tissues? (Chapter 2 and 3) 

 Research question 3: Can different nutritional strategies be identified in 

SBOM (and soft tissues) by their distinct isotopic compositions? (Chapter 3) 

 Research question 4: Are SBOM and its original stable isotopic 

composition preserved over geological time? (Chapter 4) 

Research Question 1 and 2. Compared to soft tissues, the incorporation of 

nutritional sources into the isotopic signal of total SBOM is more complex. For total 

SBOM δ13C and δ15N this is evident from species-specific isotopic off-sets between 

SBOM and soft tissues, and an evolving relationship between soft tissues and total 

SBOM in general. Total SBOM δ34S values are more unpredictable and appear to 

be strongly influenced by shell removal techniques, whereas the effects of SBOM 

isolation are generally small for δ13C and δ15N. For intra-crystalline SBOM the link 

with nutritional sources is further complicated by a limited range of isotopic values 

(δ13C, δ15N) that is potentially related to compositional differences between the total 

and intra-crystalline SBOM pools, and their roles in the biomineralisation process.  

Research Question 3. Despite these complications, distinct isotopic total SBOM 

and intra-crystalline SBOM ranges exist for different nutritional strategies 

(methanotrophy, dual symbiosis, thiotrophy, and heterotrophy), that can 

hypothetically be used as thresholds to identify nutrition in ancient shells.  

Research Question 4. Subsequent SBOM analysis of ancient shells, including 

suspected thiotrophs and suspected heterotrophs, showed that the original isotopic 

signal of SBOM disappears or becomes altered within several thousand years after 
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death. It is however conclusively shown that intra-crystalline SBOM retains its 

original signal much longer, and can likely be used to differentiate nutritional 

strategies up to the Cretaceous and possible in older well-preserved specimens. 

 

Future work 

Because the main focus of this project was the analysis of total SBOM, the number 

of analyses of intra-crystalline SBOM from fossil specimens was relatively limited. 

Future stable isotope analysis of this protected SBOM pool has the potential to 

trace the occurrence of chemosymbiosis deep into geological time. In particular the 

study of intra-crystalline SBOM of ancient Bathymodiolus taxa can provide valuable 

insights into the evolution of the different chemosymbiotic strategies, as modern 

species can harbour multiple types of bacteria. Because lipids are present within 

intra-crystalline SBOM, it is potentially also possible to do compound-specific δ13C 

analysis of lipids that more closely track the δ13C of nutritional sources/soft tissues, 

that appear to only have a limited contribution to the bulk δ13C signal.   

In addition, further development of radiocarbon analysis would be an interesting 

avenue to pursue. Although it was not possible to obtain positive results for total 

SBOM test materials (isolated using cation exchange resin) in this study, the 

methodology can be improved by using intra-crystalline SBOM, and a shorter 

SBOM isolation time using acidification to limit modern 14C contamination. As 

suggested, radiocarbon analysis can potentially be used to identify the presence of 

methanotrophic symbionts due to the incorporation of 14C dead methane into the 

(intra-crystalline) SBOM. This would however be limited to samples younger than 

50ka. Similarly, study of ancient DNA in the intra-crystalline SBOM would be 

possible on samples of this age.  

The long-term preservation of intra-crystalline SBOM also provides opportunities to 

look for biomarkers of chemosymbiosis. In the gills of modern chemosymbiotic 

bivalves unique compounds have been identified that can unambiguously be 

assigned to  methanotrophic symbionts (Jahnke et al., 1995), and potentially these 

also exist for thiotrophic symbionts. However, whilst the presence of these 

biomarkers in the gills is expected, it is unknown whether they are incorporated into 

SBOM, and particularly intra-crystalline SBOM. It would therefore first have to be 

investigated whether biomarkers are present in the SBOM of modern specimens.   
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Appendix A 

Does carbonate associated sulphate (CAS) record nutrition 

in lucinid and thyasirid bivalve shells from modern 

hydrocarbon seeps? 
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Newton). 

 

Abstract 

Here we test whether chemosymbiotic bivalves with sulphide-oxidizing bacteria 

record their nutritional strategy in the sulphur isotope composition of the carbonate 

associated sulphate (CAS) in their shells as a possible indicator of thiotrophic 

chemosymbiosis in the fossil record. The hypothesis rests on the possible 

incorporation of 34S-depleted sulphate resulting from sulphide oxidation in sufficient 

quantity to affect the intra-shell sulphate-sulphur isotope mass balance and hence 

the isotopic composition of sulphate which is incorporated into carbonate with little 

or no fractionation. We analysed shell material of lucinid (Lucinoma asapheus) and 

thyasirid (Thyasira vulcolutre) bivalves from active mud volcanoes in the Gulf of 

Cadiz. Our results show that the CAS-34S values of the bivalve shells do not reflect 

the variety of sulphur sources present at hydrocarbon seeps, but instead only 

record seawater sulphate values. Depleted 34S values were, however, measured 

in the animals’ soft tissues and shell organic matter (SOM), both displaying a strong 

influence of the depleted sulphide used as nutrition by the chemosynthethic 

bacteria. Given its potential for long term preservation, SOM may therefore 

represent a more promising record of chemosymbiosis in the fossil record, whilst 

CAS from seep bivalves can be used to reconstruct local seawater sulphate.  
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Highlights 

Carbonate associated sulphate (CAS) from bivalve shells with sulphide-oxidizing 

symbionts is investigated to determine if it represents a possible indicator of this 

nutritional strategy. 

The S-isotope composition of CAS only reflects seawater sulphate values in 

bivalves with sulphide-oxidizing symbionts. 

Shell organic matter from bivalves with sulphide-oxidizing symbionts has depleted 

34S values and therefore records the influence of their nutrition. 

 

1. Introduction 

Carbonate associated sulphate (CAS) is the trace sulphate incorporated into the 

lattice of carbonate minerals, and has been shown to record the sulphur isotopic 

composition (δ34S) of the solution from which the carbonate is formed (Kampschulte 

and Strauss, 2004). In most cases CAS from marine carbonates therefore reflects 

the isotope value of ambient seawater sulphate, currently +20‰ Vienna Cañon 

Diablo troilite (VCDT) (Bottrell and Raiswell, 2000). At modern hydrocarbon seeps 

elevated concentrations of hydrocarbons, most commonly methane, are emitted at 

an ambient seawater temperature (Van Dover et al., 2002). Anaerobic oxidation of 

methane (AOM) in the sediment is coupled to high rates of microbial sulphate 

reduction, producing abundant sulphide. This reaction causes the sulphide to 

become severely depleted in 34S relative to seawater sulphate (e.g. Jørgensen et 

al., 2004), although direct measurements of the sulphur isotope effects of AOM in 

culture are lacking (Deusner et al., 2014). The depleted sulphide is then utilized by 
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sulphide-oxidizing (thiotrophic) bacteria that live in symbiosis with seep 

invertebrates, particularly bivalves, which house the bacteria in their gills. The 

bacteria oxidize sulphide to release energy for fixation of inorganic carbon from 

seawater and the production of organic molecules to provide nutrition for the 

bacteria and their bivalve host (Fisher, 1995, Vetter, 1991). Sulphide uptake by the 

bacteria is generally associated with limited fractionation and the tissues of the 

chemosymbiotic bivalves record the 34S-depleted sulphide, with δ34S values down 

to -30‰ (Vetter and Fry, 1998). Chemosymbiotic bivalves must bridge the oxic-

anoxic interface to access both the reduced compounds and oxygen (as an electron 

acceptor). To avoid spontaneous oxidation they use specialized behavioural, 

anatomical or physiological mechanisms to bridge sulphidic and oxic zones, or 

sequester them simultaneously (Cavanaugh et al., 2006, Rodrigues et al., 2013). 

Sulphide is obtained from interstitial water, and transferred to the chemosynthethic 

bacteria that oxidize it via a number of pathways (Dreier et al., 2012, Bruser et al., 

2000, Taylor and Glover, 2000),  producing 34S-depleted sulphate very similar to the 

sulphide source, since the oxidation step involves  zero or very limited fractionation 

(in experiments: (Fry et al., 1988). If this 34S-depleted sulphate is incorporated into 

the carbonate shells of molluscs via the extrapallial fluid, CAS from chemosymbiotic 

bivalves will be depleted in 34S relative to seawater sulphate values. The presence 

of 34S-depleted sulphate in CAS could therefore be construed as evidence of 

bacterial sulphide oxidation occurring within the shell, and thus a likely indicator of 

chemosymbiosis. To determine this, we analysed the CAS of the shells of two 

species of deep burrowing thiotrophic bivalves belonging to the families Lucinidae 

(Lucinoma asapheus) and Thyasiridae (Thyasira vulcolutre) (Rodrigues et al., 

2013). 
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2. Materials and methods 

Table 1. Sample collection of shells from the Gulf of Cadiz used for this study, with 

associated 34S soft tissue values. MV = mud volcano. 

Specimen 

code 

Species Locality Material Weight 

(g) 

Soft tissue 

value (34S) 

VCDT 

(Rodrigues 

et al., 2013) 

AT569-BIG Lucinoma 

asapheus 

Mercator MV 

Gulf of Cadiz 

(358m depth) 

Live collected 

specimen; both 

complete valves 

analysed 

7.2343 -15.96  

(+/- 2.55) 

 

AT569-MED Lucinoma 

asapheus 

Mercator MV, 

Gulf of Cadiz 

(358m depth) 

Live collected 

specimen; single 

complete valve 

analysed 

2.8974 

AT569-1.19 Lucinoma 

asapheus 

Mercator MV, 

Gulf of Cadiz 

(358m depth) 

Dead shell; single 

complete valve 

analysed 

1.0491 

AT615 Thyasira 

vulcolutre 

Carlos Ribeiro 

MV, Gulf of 

Cadiz 

(2200m depth) 

Live collected 

specimen; one 

complete and one 

incomplete valve 

analysed 

0.7008 1.03 

(+/- 0.45) 

 

 

STN169 Thyasira 

vulcolutre 

Carlos Ribeiro 

MV, Gulf of 

Cadiz  

(2199m depth) 

Live collected 

specimen; both 

complete valves 

analysed 

0.9579 -21.92  

(+/- n/a) 

AT615-0.97 Thyasira 

vulcolutre 

Carlos Ribeiro 

MV, Gulf of 

Cadiz 

(2200m depth) 

Dead shell; single 

complete valve 

analysed 

0.8616 n/a 

 

The taxa analysed were collected from active mud volcanoes in the Gulf of Cadiz 

(Table 1), that display relatively mild fluxes of methane and sulphide, with a 

methane-sulphate transition zone of 80cm at the Mercator mud volcano (MV) and 

20-55cm at the Carlos Ribeiro MV (Van Rensbergen et al., 2005, Niemann et al., 

2006). In the Gulf of Cadiz a large number of chemosymbiotic species have been 
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identified, including 11 bivalve species from four families with chemosymbiotic 

members (Solemyidae, Lucinidae, Thyasiridae and Mytilidae) (Rodrigues et al., 

2010, Oliver et al., 2011, Rodrigues et al., 2013). The collected specimens of 

Lucinoma asapheus and Thyasira vulcolutre show no evidence of any sulphide 

staining in either live or dead specimens. This is an important observation since it 

makes the contamination of CAS by sulphide oxidation during extraction less likely. 

Previously published soft tissue values for our specimens are as follows: 34S 

lucinids =  -15.96‰; thyasirids = -21.92 to + 1.03‰ (Rodrigues et al., 2013).  

CAS and shell organic matter (SOM) extraction methods. 

All soft tissue was removed from the live collected specimens, and the shell 

material from these and dead shells was cleaned in de-ionised water in an 

ultrasonic bath for 10 minutes to remove surface contamination before drying 

overnight at 70 C. The shell material was then powdered in an agate pestle and 

mortar and sieved to ensure all material was <150 µm. To extract sulphur bound to 

organic compounds powdered material was weighed and treated with a 5% (vol/vol) 

NaOCl solution overnight before vacuum filtering onto weighed glass fibre filter 

papers (Whatman GFA). The powder was dried and the weight loss from the NaOCl 

extraction was determined. The sample was then dissolved in 50% (6 M) HCl to 

liberate the carbonate associated sulphate. BaSO4 for isotopic analysis was 

precipitated from both the NaOCl and HCl solutions by adjusting the pH to between 

2.5 and 3 with either HCl or ammonium hydroxide before heating to ~70C and 

adding 10% of the volume of the sample solution of 100g/L BaCl solution. Whereas 

the HCl precipitate contains the CAS, the NaOCl precipitate represents the SOM. 

The proteinaceous SOM is present as an organic framework around and within the 

carbonate crystals to guide nucleation and provide strengthening of the shell (Marin 

et al., 2012, Berman et al., 1990, Kamat et al., 2000). Because SOM is secreted by 

the mantle, it has been shown to reflect soft tissue values (O'Donnell et al., 2003, 

Dreier et al., 2012). The amount of sulphur from each extraction was determined by 

gravimetry. Because BaSO4 precipitates are sometimes impure, the concentration 

of sulphur contained in the BaSO4 precipitate was determined during the isotope 

analyses and used to correct the weight of sulphur recovered.  

Isotope analyses were performed using a Eurovector 3028HT elemental analyser 

coupled to an Isoprime mass spectrometer at the University of Leeds. Between 250 

and 400 g of BaSO4 were weighed into tin cups and combusted at 1020C in a 

pulse of pure oxygen (BOC, research grade N5.5) in a stream of helium (BOC, CP 

grade) at a flow rate of 80ml/min. The stream of gas was passed through tungstic 
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oxide, copper wire, and magnesium perchlorate to ensure quantitative conversion 

to SO2, remove excess oxygen and water, before passing through a 1 meter 

chromatographic column designed for sulphur analyses (Elemental Microanalysis, 

part no E3002) held at 85C. The isotopic ratio of the sample gas was determined 

relative to a pulse of pure SO2 reference gas (BOC, 99.9%) and calibrated to the 

international VCDT scale using a BaSO4 internal lab standard SWS-3A derived 

from seawater sulphate with a 34S value of +20.3‰ and an international 

chalcopyrite standard CP-1 with a 34S value of -4.56‰. Standards were run every 

8-10 samples. The analytical precision is <0.3‰ (1 standard deviation). Sulphur 

isotopes are given as δ values in per mil (‰) relative to the Vienna Cañon Diablo 

troilite (VCDT) standard. 

 

3. Results 

Table 2. Sulphur and sulphate amounts present in the Lucinoma asapheus and 

Thyasira vulcolutre shells from the Gulf of Cadiz mud volcanoes, and their 

carbonate associated sulphate (CAS) and shell organic matter (SOM) sulphur 

isotopic values. 

 

The mean CAS-34S is +18.9 1.0‰ for the lucinids and +19.4 1.8‰ for the 

thyasirids (Table 2, Figure 1), showing no significant difference between the two 

taxa (ANOVA: p=0.737). A distinct difference was found in the CAS concentrations 

Specimen 

code 

% 

sample 

lost on 

bleachi

ng 

NaOCl-S 

(ppm in 

whole 

shell) 

NaOCl-S 

(ppm in 

material 

removed) 

34S-

SOM 

CAS-

S 

(ppm 

in 

whole 

shell) 

CAS-

SO4 

(ppm 

in 

whole 

shell) 

34S-

CAS 

AT569-BIG 1.43 107 7461 -1.6 287 861 19.8 

AT569-

MED 

1.73 93 5388 2.1 225 674 19.2 

AT569-1.19 n/a 135 n/a 0.3 106 318 17.8 

AT615 1.38 17 1260 8.4 478 1433 19.2 

STN169 1.33 151 11418 1.6 413 1239 17.6 

AT615-0.97 n/a 73 n/a 8.8 327 982 21.3 
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(expressed as S in the whole shell powder) between the thyasirid shells (406 75 

ppm, all precision figures are one standard deviation) and the lucinid shells (206 

92 ppm) (ANOVA: p=0.043, cut-off p=0.050). The lowest concentrations of CAS 

were produced by the dead collected shells of both Thyasira vulcolutre and 

Lucinoma asapheus, but there is no correlation between CAS concentration and 

CAS-34S values. Both the amount of organic material removed from the shell by 

bleaching (T. vulcolutre = -1.5% mean weight loss, L. asapheus = -1.35%, ANOVA: 

p=0.277), and the concentration of organic-S in the shell (ppm in untreated 

material: 11121ppm S for lucinids and 8167ppm S for thyasirids, ANOVA: 

p=0.159) were broadly similar. The 34S of the SOM bound sulphur released by the 

NaOCl leach for thyasirids ranged from +1.6 to +8.8‰ and for lucinids from -+1.6 to 

+2.1‰ (no significant difference between the groups, p=0.080), and is distinctly 

different from CAS-34S for both T. vulcolutre (ANOVA: p=0.007) and L. asapheus 

(ANOVA: p= < 0.001). Soft tissue 34S values obtained from Rodrigues et al. (2013) 

(Table1) are also distinct from the CAS-34S values (thyasirids ANOVA: p=0.043, 

lucinids ANOVA: p=0.001) (Figure 2). 

Figure 1. The sulphur isotopic composition of shell organic matter (SOM) and 

carbonate associated sulphate (CAS) vs. the concentrations of CAS in the shells of 

Thyasira vulcolutre and Lucinoma asapheus from the Gulf of Cadiz mud volcanoes. 

Seawater value from Bottrell & Raiswell (2000).  
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Figure 2. Range of values of CAS, SOM (both this study) and soft tissue values 

(Rodrigues et al., 2013) for Thyasira vulcolutre and Lucinoma asapheus from the 

Gulf of Cadiz mud volcanoes.  

 

4. Discussion 

The  34S-CAS values (range = +17.6 to +21.3, average = +19.15 1.4) from the 

chemosymbiotic bivalves are all very close to values of known seawater sulphate, 

(+20‰; Bottrell and Raiswell, 2000). The range of mean CAS values are within 2‰ 

of seawater, and this variability is comparable to modern non-seep shell material 

(+21.2 +/- 0.8‰; Kampschulte and Strauss, 2004). Thus, we conclusively show that 

the 34S-CAS in the carbonate shell of chemosymbiotic bivalves at active mud 

volcanoes is mostly derived from seawater sulphate, and does not incorporate 

depleted sulphate from sulphide oxidation. Therefore 34S-CAS from these bivalves 

does not record nutrition, and cannot be used as an indicator of chemosymbiosis. 

This observation is further supported by comparison of 34S-CAS values from both 

taxa (+17.6 to +21.3) to statistically different 34S-SOM (-1.6 to +8.8) and 34S-soft 

tissue data (-21.92 to +1.03), that imply a different sulphur source for the latter two. 
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For both thyasirids and lucinids, soft tissue and SOM 34S values reflect the 

contribution of the depleted sulphide used by the thiotrophic chemosynthethic 

bacteria (e.g. Fisher, 1995). The wide range of soft tissue 34S values for Thyasira 

vulcolutre has been attributed to local and regional variability of the sulphide pool 

(Rodrigues et al., 2013).  Lack of incorporation of depleted sulphate in the shell 

carbonate could be explained by its insignificance in the mass balance of sulphur 

within the animal, which is dependent on behavioural strategies of the bivalves to 

obtain chemosymbiotic nutrition. Both lucinids and thyasirids are sediment dwellers 

that produce long ramified burrows spanning oxic–anoxic interfaces in the seafloor. 

They obtain sulphide from the sediments below and access oxygenated seawater 

circulating through the burrow and from above, via an anterior inhalant connection 

to the surface (Taylor and Glover, 2010, Taylor and Glover, 2000). Sulphide uptake 

from pore water in the burrows is not well understood, and could be transported to 

the symbionts via the foot tissue (Dufour, 2005), by diffusion up the burrow to the 

animal (Taylor and Glover, 2010), or possibly by entering the mantle cavity through 

the anterior gape (Addadi et al., 2006). The sulphur mass balance within the shell is 

determined by the relative supply of sulphate from seawater (related to shell 

pumping rate), and sulphate derived from symbiont controlled oxidation of sulphide, 

which is in turn linked to sulphide supply and symbiont oxidation rates. (Dando et 

al., 2004) found that the rates of sulphide oxidation were close to the rate of 

sulphide formation in a controlled experiment with Thyasira sarsi. Oxidation of the 

sulphide has a high oxygen requirement and rapid and continuous uptake of 

oxygenated water  has been suggested (Childress and Girguis, 2011). This 

oxygenated water would contain abundant sulfate at seawater concentration and 

isotopic composition.It is also unknown whether the transport mechanisms for the 

sulphide brings additional pore water sulphate into the shell cavity, which can be 

present at equal or higher concentration to sulphide in the anoxic methane-sulphate 

transition zone (Niemann et al., 2006). It is likely that the amount of 34S-depleted 

sulphate generated by the chemosymbiotic bacteria is too small to be detected 

isotopically in the CAS relative to the high concentrations of seawater sulphate. 

Even if isotopically depleted sulphate derived from the chemosymbiont bacteria is 

present in high enough abundance, it might not be transported through the mantle 

epithelia to the extrapallial fluid, and therefore would not be available to become 

incorporated within the shell (Wilbur 1964; Neff 1972). Whilst metabolic ions are 

known to be incorporated (e.g. metabolic carbon can make up to 10% of the total 

shell carbon (Duperron et al., 2008), the biosynthetic pathways for this process are 

not well known. Instead of being conducted to the calcification site, the depleted 
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sulphate could be treated as waste products and expelled via the posterior exhalant 

siphon (Lucinidae) or discharged into the sediment (Thyasiridae) (Raulfs et al., 

2004, Jolly et al., 2004). A alternative explanation for the absence of depleted 

sulphate is a scenario whereby the sulphide is not completely oxidized to sulphate 

by the bacteria, but is stored in the bacterial cells as elemental sulphur (Lechaire et 

al., 2008, Vetter, 1985) or excreted as an intermittent oxidation state product. The 

34S-CAS values we obtained in this study are mostly < 20‰, a little below the 

lower end of the range for modern bivalves reported in Kampschulte et al (2001) 

(+20.1; Kampschulte et al., 2001). It is possible that this indicates the effect of 

depleted sulphide, albeit a small contribution. Another possible explanation for this 

bias to lower 34S-CAS values is the incorporation of sulphur from intra-crystalline 

SOM. This is likely to also have the depleted isotopic values found in soft tissues 

and is not removed during the bleach step as it represents the small percentage of 

SOM bound within the lattice of the micro-crystals. This is in contrast to the inter-

crystalline SOM extracted by the bleach procedure which forms a framework 

between the carbonate crystals. The incorporation of intracrystalline SOM sulphur 

into the CAS precipitate has been little investigated, but the depleted intercrystalline 

SOM values show the potential of this source for contamination of CAS. SOM can 

make up as much as 5% weight percent of the shell (Marin et al., 2012) and, in 

CAS studies excluding a bleach step, has the potential to affect sulphur stable 

isotope analysis if the 34S-CAS and 34S-SOM differ. In the case of heterotrophic 

bivalves both fractions generally reflect seawater sulphate and the isotopic effect of 

the incorporation of SOM-sulphur would be undetectable. It’s possible that 

incorporation of sulphur from SOM is partially responsible for the wide range and 

variability of apparent CAS-sulphur concentrations in CAS studies that did not 

include a bleach step. For instance Kampschulte et al  (2001) reported a range of 

100 to 6700 ppm in biogenic carbonate, and 1238 +/- 795 ppm for heterotrophic 

bivalves (n=15). For future analyses it is important to understand the relationship 

between the CAS and SOM isotopic compositions, the concentrations of sulphur 

sources, and develop methods of analysis that effectively separate the organic and 

inorganic sulphur fractions in the shell.  

This study presents the first 34S-SOM values from bivalves living at active mud 

volcanoes, and the Thyasiridae in general. Previously published results from 

thiotrophic bivalves (Lucinidae and Vesicomyidae) from hydrothermal vent sites and 

shallow reducing environments show 34S-SOM values ranging from -26.70 to -2.50 

‰ (n=8, (Mae et al., 2007, Dreier et al., 2012, Dreier et al., 2014). The isotopic 

difference between 34S -SOM and associated 34S-soft tissue from these studies 
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can be as high as 11.5‰, but with the SOM being generally more isotopically 

depleted than soft tissue values. Compared to previous studies, the enriched SOM-

34S values obtained in this study (34S -1.6 to +8.8‰), and their enrichment 

compared to soft tissue data (34S -21.92 to +1.32‰) could be explained through 

species-specific biological effects or differences in SOM extraction methods. With 

the available data it is not possible to distinguish between these two possibilities.  

The 13C and 18O analysis of molluscs shell carbonate is well known to provide 

information about the isotopic composition of seawater dissolved inorganic carbon 

and temperature, whilst the isotopic analysis of soft tissue and SOM provides 

information on nutrition. Our work shows that the utility of CAS-sulphur isotopes 

follows this pattern as we show it is only of use in reconstructing the isotopic 

composition of local seawater sulphate, even when analysing chemosymbiotic 

bivalves. We also show that information about chemosymbiotic thiotrophic 

nutritional strategies can be derived from SOM of bivalves in a similar way to that of 

soft tissue. Given its potential for long term preservation, SOM therefore represents 

the more promising record of chemosymbiosis in the fossil record. 
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