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Abstract 
  

 We have successfully built and tested an intensity-modulated spectroscopy (IMS) instrument 

that is centered around a commercial lock-in amplifier, which can be used to perform intensity-

modulated spectroscopy (IMS) up to a frequency of 250 kHz. We have tested our instrument on a 

commercial CdS-based light dependent resistor (LDR), a device with well-known physical properties. 

We found that the dynamic characterizations results of the CdS-based LDR agree with an already 

well-established knowledge on its physical properties. We have also performed IMS on a state-of-

the-art bulk heterojunction (BHJ) organic photovoltaics (OPV) and introduced a new mode of IMS 

operation where photovoltaic cells operate under a finite load, including at its maximum power point. 

From our IMS results on BHJ OPV, we have established IMS at maximum power point as the 

optimum operating condition for IMS on photovoltaics, a much better alternative to the traditional 

IMS operation, i.e. intensity-modulated photocurrent spectroscopy (IMPS) and intensity-modulated 

photovoltage spectroscopy (IMVS). By using IMS under finite load, we have managed to identify a 

high-frequency feature that was previously invisible under both IMPS and IMVS. We also found that 

this feature is ageing-related and is more pronounced after long-term storage. We have also managed 

to find the origin of this aging feature in the diffusion of indium ions that are etched by a PEDOT 

layer. In addition, with IMS, we are able to determine the BHJ capacitance of a BHJ OPV without 

absolute calibration of light intensity. We have also performed IMS on a similar BHJ device but with 

V2O5 as the hole extraction layer. We found that by using V2O5 as a hole extraction layer in OPV, we 

have avoided the problem of indium ions diffusion into the BHJ. We have also managed to perform 

IMS on an OLED and able to identify the causes of low-frequency “hook” feature in an OLED IMS 

results. This feature is attributable to the presence of parallel resistive- and capacitive-like 

components in the OLED’s emissive layer, which is also caused by the diffusion of indium ions into 

the OLED’s emissive layer. In addition, by using IMS, we have managed to determine carrier 

mobility in an OLED, though only an average mobility in the device. Finally, in the aging study of 

OLED device with IMS, we found that carrier transit time decreases as the device ages.  

 

Keywords: Intensity-Modulated Spectroscopy, IMS under finite load, Bulk heterojunction 

organic photovoltaics, Organic light emitting diode.   
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Chapter 1 
Introduction 

1.1 Introduction and Overview 

 This thesis describes the author’s contribution to the field of optically-driven, dynamic 

characterizations of organic semiconductor devices. The main scope of this research is the 

development of an intensity-modulated spectroscopy (IMS) instrument and a new mode of IMS 

operation for dynamic characterizations of organic semiconductor devices, which is organic 

photovoltaic (OPV) and organic light-emitting diode (OLED) devices in our work. Organic 

semiconductor devices are devices that use organic materials as the semiconducting component, with 

the organic materials being conjugated polymers or small organic molecules. Examples of organic 

devices are; organic photovoltaics (OPV), organic light-emitting diode (OLED), organic thin film 

transistor (OTFT) and organic bistable memory devices [1]. In recent years, interest in organic 

semiconductor devices has risen to an unprecedented level of growth that is not seen in its inorganic 

counterparts [1]. Organic photovoltaic (OPV) devices, for example, have emerged as an alternative 

to the more established inorganic crystalline (silicon) photovoltaics technology in recent years [2]. 

While research on organic light emitting diode (OLED) is also growing due to their future potential 

as flat panel displays and lighting applications. In fact, up to 2014, OLED-based active matrix 

displays have gained a rapidly growing share of the display market [3, 4]. 

 There are of course several reasons for recent growing interest in organic semiconductor 

devices. These are most importantly, the semiconductor’s ability to be made in a fast and simple 

manner, and especially through low-temperature solution processing with low energy cost, good 

scalability for large-area applications, good versatility and design flexibility since the 

semiconductor’s structure can be tailored and modified easily, and finally its ability to be made from 

an abundant supply of source materials. However, organic semiconductor devices also have their own 

drawbacks. Organic photovoltaics (OPVs) for instance have disadvantages in terms of device 

efficiency and stability, especially compared to inorganic PVs. As of 2014, the best-recorded power 

conversion efficiency (PCE) for an OPV is 10% [5], much lower when compared to that of a 

crystalline silicon PV with PCE > 25% [6]. Here, PCE is a measure of how efficient a solar cell 

converts sunlight into electricity. In addition, poor device efficiency and stability is also caused by 

the susceptibility of OPVs to chemical and physical degradation from contact with the ambient 

environment [7, 8]. Another drawback of OPVs is their low carrier mobilities compared to that of 

inorganic PVs [9, 10]. As for organic light-emitting diodes (OLEDs), among their drawbacks are that 
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the OLED’s electrodes are susceptible to oxidation in air which can then lead to device degradation, 

and that OLED has a much lower carrier mobility compared to inorganic ones, since typical electron 

or hole mobility in an OLED is 10-8-10-2 cm2/V s [11], compared to  electron mobility of 5000 cm2/V 

s for a doped n-type Gallium Arsenide (GaAs) LED and hole mobility of 300 cm2/V s for a doped p-

type Gallium Arsenide (GaAs) LED at room temperature [12]. To add, in a bilayer OLED, 

interdiffusion between the OLED’s organic layers can degrade the device through the formation of 

dark spots or nonemissive areas seen in the OLED [13-15]. 

 To characterize an OPV and OLED performance, a DC current density-voltage 

characterizations (J/V) on OPV and both J/V and luminance-voltage (L/V) characterizations on OLED 

aFre usually performed on the device under test [14, 15]. However, the disadvantage of DC 

characterizations is that it cannot accurately determine the exact cause or nature of degradation, 

especially in devices with complex structure [16, 17]. Dynamic OPV and OLED characterizations, 

e.g. impedance spectroscopy (IS) and intensity modulated spectroscopy (IMS), offers a more accurate 

way of characterizing a PV’s performance and degradation compared with the DC method [16, 18, 

19]. In IS, we characterize the measured system impedance Z(ω) as a function of frequency ω by 

applying to the system, a stimulus voltage (Vs) in the form of Vs = V + ΔV sin (ωt), which is a 

combination of small, AC voltage v(t) = ΔV sin (ωt) that is superimposed on a larger DC voltage V. 

We then measured from the system, a current response (Ires) of Ires = I + ΔV sin (ωt + θ) with I being 

the DC current response, i(t) = ΔI sin (ωt + θ) is the AC current response, and θ the phase difference 

between the AC voltage stimulus v(t) and AC current response i(t). Alternatively, we can also apply 

to the system, a current stimulus (Is) and obtained a voltage response (Vres) in return [20, 21]. Another 

dynamic characterization method that is similar to IS but uses different characterization stimulus is 

intensity-modulated spectroscopy (IMS). In IMS, we apply to the system a stimulus illumination L(t) 

in the form of L(t) = L + ΔL sin (ωt), where L is the steady-state light intensity and ΔL being the 

modulation amplitude, hence, in other words, IMS is limited to photosensitive materials, e.g. OPV. 

We then measure the system’s current density response Jph(t), in the form of Jph(t) = J + ΔJ sin (ωt + 

φ). Where J is the steady-state photocurrent density response, ΔJ  and φ being the modulated 

photocurrent density amplitude and phase. Alternatively, we can also apply stimulus illumination L(t) 

and measured a voltage response Vph(t) instead [16, 22]. The advantage of IMS is that, like impedance 

spectroscopy, it is able to distinguish or accurately assign a measured system’s parameter to a specific 

internal dynamics that occurs within the system itself. Another advantage is that IMS, as well as IS, 

can also be done automatically, thus improving the method’s accuracy while also reducing any 

potential for errors [16, 21, 22]. The distinctive advantage of IMS, especially over IS, is that since 

light is the sole source of stimulus, in the case of photovoltaics characterizations, we can perform 
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IMS at one of the solar cell operating conditions in its J/V characteristics, i.e. either at the cell’s short-

circuit condition, which is called intensity-modulated photocurrent spectroscopy (IMPS) or at the 

cell’s open-circuit condition, which is intensity-modulated photovoltage spectroscopy (IMVS) [23]. 

 In this work, we have developed a portable, optically-driven/intensity modulated spectroscopy 

(IMS) instrument that is capable of performing IMS measurement at any point in a solar cell’s J/V 

characteristics, while at the same time being more affordable compared to commercial IMS 

instruments and impedance analyzers. We also proposed a new mode of doing IMS, i.e. IMS under 

finite load, in which we can realistically characterize the solar cell at its normal working condition 

and under which we can obtain the largest current/voltage response signal from the cell, which was 

not possible previously under traditional modes of IMS measurement, i.e. IMPS and IMVS. We first 

tested our instrument setup by conducting IMS on a commercial light-dependent resistor (LDR), and 

we then perform IMS under finite load on a bulk heterojunction (BHJ) OPV. We continue by adapting 

our instrument to perform IMS on an organic light emitting diode (OLED), and then adapting it 

(instrument) to conduct load modulation on an alkaline battery.  

 

1.2 Thesis Structure  

 This thesis is divided into 7 chapters. The chapters are sequenced from an overview of our 

research scope, introduction and basic concepts of impedance spectroscopy (IS) and intensity-

modulated spectroscopy (IMS), followed by the basic concepts, materials, properties and operation 

of organic semiconductor devices (OLED and OPV). To add, we also describe the materials and 

properties of a light-dependent resistor and alkaline battery that we characterize in our work. We 

proceed by describing the development of our intensity-modulated spectroscopy (IMS) instrument 

and then present our new mode of IMS operation for photovoltaic characterizations. We tested our 

IMS instrument setup by performing IMS on a commercial light-dependent resistor (LDR), and we 

then proceed by performing IMS under finite load on a bulk heterojunction (BHJ) OPV. We finally 

adapt and use our instrument to perform IMS on an organic light emitting diode (OLED), and then 

set the instrument to conduct load modulation IMS on an alkaline battery. Descriptions of each 

chapter are as follows:  

1. Chapter I gives an overview of our research work, early history and basic introduction to 

impedance spectroscopy (IS) as a dynamic characterization method which has also been used 

ubiquitously for electrochemical device characterization, including for OPVs. We then discuss 

the basic concepts behind IS, along with its advantages and disadvantages compared to other 

methods. We then introduce intensity modulated spectroscopy (IMS) as a dynamic 

characterization method similar to IS but using modulated light to dynamically characterize a 
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device, and with an advantage over IS, especially in solar cell characterizations. Here, IMS, as 

well as IS, is introduced to address the weaknesses of steady-state/DC characterization. We then 

discuss the basic concepts behind IMS and its advantages and disadvantages with respect to other 

methods.  

2. Chapter II gives the basic theory and concepts behind organic semiconductors and organic 

semiconductor devices with its advantages and drawbacks as an application, especially compared 

to its inorganic counterpart. We also discuss an organic semiconductor structure/chemistry, 

conjugated molecules, light emission in conjugated molecules, carrier transport and mobility in 

the organic semiconductor. We then describe device operations and carrier transport in a BHJ 

OPV and OLED as organic semiconductor devices that we characterize in this work. To add, we 

also discuss DC characterizations, i.e. J/V and L/V characteristics (for OLED) on organic 

semiconductor devices as an integral part of device operation. We then give a basic introduction 

on a light-dependent resistor (LDR) and an alkaline battery that we also characterize with IMS 

in our work. To add, we also discuss the basic structure, operation, and materials of LDR and 

alkaline battery, together with their advantages and drawbacks as an application. 

3. Chapter III describes the preparation of organic semiconductor devices, i.e. the OPV and OLED 

in this work, which was done by someone else prior to our (IMS) characterizations. This chapter 

also gives the DC characterization results of the OPV and OLED sample in this work.  

4. Chapter IV is split into two main parts, the first part describes the history of IMS instrument 

development, and IMS mode of operations prior to our work. In the second part, we first describe 

the development, setup and characterization source of our IMS instrument, which we use to 

perform IMS on an OPV. We then propose, also in the second part, a new mode of IMS operation 

that we use for OPV characterizations, i.e. IMS under finite load, which is different and more 

advantageous compared to the traditional IMS mode of operation (IMPS and IMVS). Following 

this, we also present and discuss the bespoke IMS software that we have developed to operate 

the IMS instrument in OPV characterizations. We then give the calibration results of our IMS 

light source and instrument setup in OPV characterizations. After the IMS on OPV calibration 

results, we then proceed to describe the adaptation/setup of our IMS instrument to characterize 

an OLED, along with the modification of our bespoke IMS software for OLED characterizations. 

We then go on to describe the adaptation/setup of our IMS instrument to characterize a 

commercial LDR. Finally, we also give the calibration results of an IMS light source and 

instrument setup for LDR characterization.  
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5. Chapter V gives and discusses the results of IMS characterizations on a commercial LDR as a 

test characterization of a device with widely known characteristics, by using our IMS instrument 

setup. 

6. Chapter VI gives and elaborates the results of IMS characterizations on OPV with PEDOT and 

vanadium pentoxide (V2O5-x) hole extraction layer (HEL) along with the aging of both OPV 

types, and also the bulk heterojunction (BHJ) capacitance determination in OPV with PEDOT 

HEL. Along with the results, we also interpret and discuss all the IMS results in the context of 

OPV physical and equivalent-circuit model. 

7. Chapter VII gives and discusses the results of IMS characterizations on an OLED for the purpose 

of carrier transit time, type and mobility determination, followed by IMS results from different 

light dynamics comparison in an OLED and also on the OLED aging itself. In addition, we also 

interpret and discuss all of the IMS results in the context of the OLED physical and equivalent-

circuit model. 

8. Chapter VIII gives the summary/conclusions from the development of our IMS instrument for 

both OPV and OLED characterizations, the introduction of a new mode of IMS operation that 

we use for OPV characterizations, and finally, the result of IMS characterizations on organic 

semiconductor devices in this work (i.e. OPV and OLED); and also describes the 

adaptation/setup of our IMS instrument for the purpose of conducting a load modulation 

experiment with a commercially available alkaline battery, as a potential future work. 

 

1.3 Impedance Spectroscopy (IS) 

 Impedance spectroscopy (IS), or also known as electrochemical impedance spectroscopy (EIS), 

is a powerful and widely used dynamical characterization method that investigates material’s 

electrical properties, their interface interactions with electronically conducting electrodes, dynamics 

of bound/mobile carriers in bulk or interfacial regions of any type of solids and liquid materials; e.g. 

ionic, semiconducting, mixed electronic-ionic, and insulators/dielectrics. To add, IS can also be used 

to characterize any type of solid electrolyte materials, either amorphous, polycrystalline or single 

crystals. Most importantly, IS has also been used to characterize the operational mechanism of 

different type of solar cells, from dye-sensitized solar cells (DSSC), organic photovoltaics (OPV) and 

inorganic or silicon solar cells [21, 24].  

 Impedance spectroscopy (IS) as an electrical characterization method has a rather long history. 

Although it has been used as an electrochemical analysis tool since at least the early 20th century, the 

concept of electrical impedance itself has already been well established ever since Oliver Heaviside 

first introduce the concept in the late 19th century, and followed after by A.E. Kennelly and C.P. 
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Steinmetz further developing its mathematical formalism (vector diagrams and complex 

representation) in the same period [25, 26]. By 1925, IS has already been used to characterize 

polarization across biological cell membranes [24]. In 1941, an important milestone was reached 

when Cole and Cole managed to plot ε’ and ε” from dielectric systems into a complex plane plot, 

which is known now as the Cole-Cole plot [27]. This plot is basically a further adaption to dielectric 

systems applications of an electrical engineering circle diagram developed in 1925. By the end of 

world war II, with the development of solid state batteries as rechargeable high-power-density energy 

storage devices, revolution in high-temperature electrochemical sensors in environmental and 

industrial efficiency control along with the introduction of fuel cells, there was a rapidly growing 

trend to abandoned electrolyte-based electrochemical systems/energy source away from using 

corrosive aqueous solutions and moving towards the development of solid state technology. As such 

characterization of systems with solid-solid, solid-liquid interfaces then became a major research 

concern for scientists and electrochemists [21]. Consequently, because of this development, a 

growing interest in impedance spectroscopy characterization then ensued. From at least 1947, 

Randles, Jaffé and Chang have used Z as a concept of electrical impedance in theoretical calculations 

of semiconductor and ionic systems properties and behavior [28-30]. While in the experimental field, 

Randles and Somerton uses IS in 1952 to characterize fast reactions in supported electrolytes, which 

was followed by Macdonald using the concept of impedance to analyze experimental results on 

photoconductive alkali halide single crystals [31, 32]. By 1957, Schrama introduced the concept of 

modulus function M = ε-1 which were then used extensively by McCrum et al. and Macedo et al. in 

the 1970s [21, 33]. In the 1960s, Sluyters managed to plot for the first time an impedance plot in an 

impedance plane in his efforts to characterize aqueous electrolytes [34]. This was followed by 

Sluyters and Oomen using IS to characterize the same material [35]. After this period (the 1960s), IS 

has been used theoretically and experimentally to approach many research problems, and by 1980s 

the method and technology have already been well-established [20, 24]. Today, as mentioned before, 

IS has been used for many applications and purposes, and also for various materials/systems [21]. 

In impedance spectroscopy, as in 1.1, we measure the impedance Z(ω) as a function of 

frequency ω by applying to the characterized system, a stimulus voltage Vs in the form of Vs = V + 

ΔV sin (ωt), which is a combination of small, AC voltage v(t) = ΔV sin (ωt) that is superimposed on 

a larger DC voltage V. We then measured from the system, a modulated current response Ires = I + 

ΔV sin (ωt + θ) with I being the DC current response, i(t) = ΔI sin (ωt + θ) is the AC current response, 

and θ the phase difference between the AC voltage stimulus v(t) and AC current response i(t) [20, 

24]. Here, θ = 0 for resistive behavior, V and I are in V and A respectively, ΔV and ΔI are respectively 

the AC voltage and current amplitude (in Vpeak and Ipeak), with ω = 2πf. The units for ω is rad/s and f 
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is in Hz. We then varied the voltage stimulus with respect to frequency ω, as such, the modulated 

component of current response or ΔI will also be a function of frequency ω. To add, since phase 

response θ depended on the current stimulus, θ will also be a function of ω. Hence, we then measure 

the system’s resulting impedance Z(ω) from its AC current response with respect to the AC voltage 

stimulus, with ΔV, ΔI and θ a function of frequency ω. Since Z(ω) is a frequency-domain function 

and the AC current and voltage is first a time-domain function, we can convert the sinusoidal voltage 

stimulus and current response by using Fourier transform so that Z(ω) is then defined by equation (1) 

[21, 24, 36]. 

 

ܼ(߱) =  
ሽ(ݐ)ݒሼܨ

ሽ(ݐ)ሼ݅ܨ
 

 

 
            (1)    

 

with Z(ω) in Ω, and F [37]operator is the Fourier transform. We can also state Z(ω) in the complex 

form as Z(ω) = Z’ + jZ”, where Z’ and Z” are respectively the real and imaginary part of Z(ω) [21, 

24]. Both Z’ and Z” can be stated in Cartesian terms via equation (2).  

 

   cos'Re ZZZ    and    sin"Im ZZZ    (2) 

     

with phase angle θ defined by equation (3) below: 

 

'

"
tan 1

Z

Z  (3) 

 

we can then plot equation (2) in an Argand diagram or complex plane as depicted in Fig. 1-1, taken 

from Macdonald et al [21]. 

 
Fig.  1-1. An Argand diagram of equation (2) taken from  Macdonald et al [21]. 
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From Fig. 1-1, the modulus of Z(ω) is then defined by equation (4). 

     

     2/122 "' ZZZ   (4) 

    

In polar form Z(ω) can also be written as Z(ω) = │Z│exp (jθ). Here we make use of the Euler formula 

ejθ = cos θ + j sin θ. Alternatively in IS, we can also measure the impedance Z(ω) by applying instead 

a stimulus current Is to the characterized system, in which Is = I + ΔI sin (ωt), thus Is is a combination 

of a small, AC current i(t) = ΔI sin (ωt) that is superimposed on a larger DC current I. In turn, we can 

then measure from the system, a modulated voltage response Vres = V + ΔV sin (ωt + θ) with V being 

the DC voltage response, v(t) = ΔV sin (ωt + θ) is the AC voltage response, and θ the phase difference 

between the AC current stimulus v(t) and AC voltage response i(t). We then proceed to vary the 

current stimulus with respect to frequency ω, so that the modulated component of the voltage response 

or ΔV will be a function of ω. To add, the voltage phase response θ from the current stimulus will 

also be a function of ω. Hence, we again measure the system’s resulting impedance Z(ω) from its AC 

voltage response with respect to the AC current stimulus, with ΔV, ΔI and θ a function of frequency 

ω [20, 21]. 

 As a prerequisite in every IS measurements, it is necessary to have the AC modulation voltage 

or current smaller than that of the DC bias voltage/current. This is because nonlinear systems, i.e. 

most real systems, will only respond linearly/in proportion to the stimulus voltage/current if it is 

stimulated with such (very small) AC voltage/current magnitude, in which the AC component itself 

needs to be smaller than the system’s thermal voltage VT = kT/e, where k is the Boltzmann constant 

= 1.38 x 10-23 J/K, and T is the absolute temperature (in K) and e is the elementary charge = 1.6 x 10-

19 C. In an IS experiment, the typical frequency range that we use is from 1 mHz to 1 MHz [20, 21]. 

In Fig. 1-2 we then present the flow diagram of general characterization procedure in IS taken from 

Macdonald et al [21]. 

 
Fig.  1-2. A flow diagram of general characterization procedure in IS taken from  Macdonald et al [21]. 
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So from Fig. 1-2, we first characterize the material-electrode system with the stimulus voltage from 

our IS instrument and then measure the resulting current from the system as discussed previously. 

After the previous step, we can then analyze the resulting experimental data via two different ways; 

one is by analyzing the results based on a physical theory that predicts an exact theoretical impedance 

ZT(ω), or the other way is by analyzing the results with a relatively empirical equivalent circuit model 

whose impedance predictions is designated as ZEC(ω). From both ways/methods we can estimate the 

experimental impedance parameters, and thus we can then compare the resulting Z(ω) data with 

simulated ZT(ω) and ZEC(ω) from both methods. We can then fit either of the simulated impedance 

from both methods with CNLS or complex nonlinear least square fitting to accurately match the 

resulting Z(ω) data. As an example, for the analysis of charge transport processes in a characterized 

systems, an equivalent circuit with ideal resistors and capacitors will likely be needed, even with 

inductors in some instances. From the equivalent circuit, we can then calculate the resulting 

impedance in terms of the circuit parameters. To add, from the circuit’s behavior and its impedance 

response as we change the experimental condition, we can then characterize the system’s impedance 

behavior which in turn leads to an estimation of other microscopic parameters, such as mobility, 

carrier concentrations, etc. Note also that the parameters that we derive from an IS measurement can 

be divided into two, one is a parameter that is related to the system under test, such as conductivity, 

dielectric constant and mobility, and the other one is a parameter that is related to an electrode material 

interface, such as adsorption reaction rate constants and capacitance of the interface region [21, 24]. 

The procedure described in Fig. 1-2 can also be applied to intensity-modulated spectroscopy (IMS) 

characterizations, and we later use the second procedural approach for our IMS results analysis. 

 Once we obtain the resulting Z(ω) data, as an example, we can then model the result with the 

second method according to Fig. 1-2 procedure. To do this we start with the most simple equivalent 

circuit which has a resistor R and capacitor C equivalent component and can be used to model 

equivalent circuit behavior of many electrode-material systems. Since impedance Z(ω) can be 

represented as a complex function (from equation (2)), we can then plot the Z(ω) result from an IS 

measurement in the form of a Nyquist plot. This plot has two axis, the first one is the real axis or Re 

axis, which is parametric with the scanning frequency and the second one is the imaginary axis or Im 

axis. We then depict two examples of the equivalent circuit with their respective Z(ω) estimation in 

the form of simulated Nyquist plots in Fig. 1-3(a), (b), (c) and (d), taken from Macdonald et al [21]. 
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Fig.  1-3. (a) and (b) Examples of two RC circuit with R and C components in parallel and in different configurations, 
with their respective (c) and (d) Nyquist plot results of Z(ω). The direction of increasing frequency is from right to 
left/anti-clockwise, taken from Macdonald et al [21]. 

 

From Fig. 1-3(c) and (d) Nyquist plots, we can see that the plots form a perfect semicircle with a 

single peak for each R and C component in (a) and (b) circuits. So two RC element in a circuit will 

then result in two semicircle peaks in the Nyquist plot. This RC factor is the time constant τ of Fig. 

1-3(a) and (b) equivalent circuit. The time constant τ can be derived from the AC equation τ = RC. 

The time constant is the maximum peak in the Nyquist semicircle and it can be derived from the 

frequency where the resulting phase or θ from the phase measurement = 450. This frequency is then 

called the corner frequency fc, and τ can be derived from fc via the equation fc = 1/2πτ. In a physical 

context for this example, τ represents the dielectric relaxation time of the measured system. It is 

typically the smallest time constant in an IS experiment. In addition to the above plots, impedance 

results can also be depicted with the Bode amplitude and phase plots, which are respectively the plots 

of impedance amplitude and phase with respect to measurement frequency and is depicted in Fig. 1-

4, taken from Macdonald et al [21].  

 
Fig.  1-4. Example of a Bode amplitude (arrow pointing left and in Ω) and phase (arrow pointing right and in 0) plot of an 
impedance measurement with respect to frequency f (in Hz), taken from Macdonald et al [21]. 

 

So from Fig. 1-4, we see that the Bode amplitude and phase plot are just another way of presenting 

impedance measurement results. In fact, we can derive the corner frequency fc in the Bode amplitude 

plot as the frequency where the impedance phase θ = 450, or where the impedance has dropped 
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equivalent to -3 dB of its previous value [21]. We then proceed to depict a typical impedance 

measurement setup in Fig. 1-5, taken from Park et al [38].  

 
Fig.  1-5. An example of a typical impedance spectroscopy setup. Here, η(t) is the total voltage applied to the cell, 
including the modulated component Δη. While i(t) is the total current response from the cell, including the modulated 
component Δi, taken from Park et al [38]. 

 

From Fig. 1-5 example, a voltage stimulus η(t) with a modulating component Δη is applied to an 

electrochemical cell. Here the ηbias or voltage bias comes from the DC bias voltage generator and the 

modulating voltage component Δη originate from the variable frequency sinusoidal generator. The 

Δη is superimposed on the ηbias with the feedback voltage controller. After we apply the voltage 

stimulus η(t), we then obtain a current response i(t) with the modulating component Δi and an added 

phase φ. The response current i(t) is then converted into a frequency-based parameter by the correlator 

and then into an impedance Z(ω) with respect to the stimulus voltage η(t). In the response current 

conversion, the current is also turned into a real impedance Z’(ω) and imaginary impedance 

measurement Z”(ω) in the complex plane. The resulting real and imaginary impedance is then plotted 

and recorded in a computer with the entire impedance parametric with frequency f [38]. Further, an 

impedance analyzer can also be used as the DC and AC voltage generator, and also as the current or 

voltage response converter similar to the correlator in Fig. 1-5. To add, in terms of dynamic 

characterization, aside from measuring impedance, we can also measure other AC functions, such as 

admittance Y, which is the inverse of impedance or Y = 1/Z, with Y itself also a complex quantity. 

Several advantages of IS compared to other analytical tools in the characterization of a 

material’s electrochemical properties are as follows; first is that the measurement process is relatively 

simple, non-destructive in nature and that any parametrical results obtained from IS can be ascribed 

to specific dynamic processes occurring in the system. In addition, from the impedance interpretation, 
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we can also predict the fundamental processes/phenomenon occurring in the system. Thus IS is a 

multifunctional technique that can be used for various electrical/electrochemical studies, e.g. it can 

be used to study charge carrier dynamics in interfacial regions of all types of materials, membrane 

behavior in living cells, conductivity determination, and many others, and finally, the measurements 

itself can be fully automated. While the disadvantage of using IS lies in the ambiguity of results 

interpretation, since sometimes a measured parameter/dynamics can be ascribed to one or more 

processes in the system. Finally, modeling IS results via an electrical equivalent circuit also has its 

limitation in that a circuit with a certain amount of R and C components may not be able to adequately 

explain the measured impedance results [21, 24]. 

 

1.4 Intensity-Modulated Spectroscopy (IMS) 

Intensity-Modulated Spectroscopy or IMS is also a dynamic characterization method similar to 

IS, but instead of applying a modulated voltage or current to the characterized system, we apply a 

slightly perturbed but larger steady-state illumination intensity to the system under test, and then 

measure the resulting perturbed voltage/current response from the system [16, 23, 39, 40]. In this 

method, we illuminate the system from an optically transparent contact, and then we measure the 

system’s response from another contact, which is called the collecting contact. So from the 

transparent contact, carriers are generated and then travel towards the collection contact, thus 

generating photocurrents from the system [16, 40]. In IMS, depending on the characterization 

systems, a number of light sources can be used as the stimulus signal, for example, LED, laser, and 

Xenon short arc lamps [16, 39, 41]. The use of LED stimulus, in particular, is relatively advantageous 

compared to another light source because of the relative ease in modulating a LED with a drive 

current, in addition also to its (LED) ability in which it can be modulated at a very high frequency ( f  

> 1 MHz), thus extending the measurement bandwidth to higher frequencies [41]. Also, in an IMS, it 

is necessary that the light intensity modulation amplitude is set to be much smaller than the steady-

state light. This is because, in order to obtain a linear response from a nonlinear system, we have to 

stimulate the system with a small (and harmonic) perturbative stimulus, which is represented by the 

small and perturbative light intensity in an IMS experiment [22, 23, 39]. Then, the frequency range 

in a typical IMS experiment is the same as that in IS, i.e. from 1 mHz to 1 MHz [16]. As a technique, 

IMS has been used to measure rate constants for interfacial charge transfer and surface 

recombinations in photoelectrodes and then to study the dynamics of electron and holes in 

semiconductors, and also the dynamics of inorganic, organic and dye-sensitized solar cells. However, 

this technique is not as widely used as IS, as this technique is also limited to photosensitive devices, 

since without light input, there would not be any charge generation in the characterized 
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device/systems. Intensity-modulated spectroscopy as a technique is almost as old as IS, with the 

method first developed in 1925, when Foote and Mohler describe it in their paper entitled “Photo-

Electric Ionization of Caesium Vapor” [42]. In 1976, the method was introduced for the first time by 

Green at. al. as an  “optogalvanic spectroscopy” [43]. By 1980, the method (IMS) itself has seen a 

widespread use in spectroscopic studies of materials and electrodes [44]. In 1981, Oheda et al. was 

among the first to report the use of IMS in studying semiconductor properties [45]. Several years 

later, IMS has been used to study reaction kinetics in photoelectrochemical systems, electron-hole 

recombination, anodic thin films and electron transport in disordered semiconductors. By 1990, this 

method has already been well-established [16]. As of today, the method has been used for various 

purposes, and especially for the purpose of characterizing various photosensitive materials/systems 

[21]. 

 There are basically two different modes of IMS operation, one is intensity-modulated 

photocurrent spectroscopy or IMPS, where we apply a slightly modulated light intensity to the 

characterized system, and then measure the perturbed photocurrent response due to modulated light. 

While the other one is the intensity-modulated photovoltage spectroscopy or IMVS, where we instead 

measure perturbed photovoltage response from the modulated light intensity. In both methods, from 

the resulting photocurrents or photovoltage, we can then measure a function that compares the 

electrical response with respect to the modulated illumination. This function is not impedance but it 

has the same role as impedance does in IS. This function is called the transfer function H(ω) and it is 

dependent on frequency ω, with ω  =  2πf. Here, the units for ω is rad/s and f  is in Hz. So first in 

IMPS, we apply to the system a stimulus illumination L(t) in the form of L(t) = L + ΔL sin (ωt), where 

L is the steady-state light intensity (usually in photons cm-2 s-1) and ΔL being the (light) modulation 

amplitude. After this step, we then measure the system’s current density response Jph(t), in the form 

of Jph(t) = J + ΔJ sin (ωt + φ). Where J is the steady-state photocurrent density response, ΔJ  and φ 

being the AC photocurrent density amplitude and phase respectively. The current response here is 

usually measured with respect to an illuminated area, so I is stated in terms of current density J or 

current per unit area. We then vary the light stimulus modulating frequency ω which makes the 

current density ΔJ and phase φ a function of ω. In other words, because the modulated light 

component is a function of ω, modulated carrier generation in the system will also be a function of 

ω. As such, when generated carriers travel to the electrodes as photocurrents, the modulated part of 

the photocurrent will also be a function of frequency ω or ΔJ(ω). To add, since the resulting currents 

are phase-shifted with respect to L(t), the resulting phase shift will then be a function of ω or φ(ω). 

Hence, we can then obtain the transfer function H(ω) from the system’s ΔJ with respect to ΔL, which 

is defined by equation (5). 
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with H(ω) being dimensionless and j = (-1)1/2. In IMPS, carriers are extracted out from the system 

and in photovoltaic applications, the cell has to be under a short-circuit condition since we are 

measuring photocurrents from light [16, 21, 39]. Alternatively, we can also present IMPS 

characterization results in the form of ΔJ only instead of H(ω), since from Eqn. 5, H(ω) is proportional 

to ΔJ, with ΔJ a function of frequency ω [21]. 

 In intensity-modulated photovoltage spectroscopy or IMVS, we measure a transfer function 

H(ω) from the system by applying to it, L(t) = L + ΔL sin (ωt) and measuring the modulated 

photovoltage response due to light. Following this, we then measure the total voltage response Vph(t), 

in which Vph(t) = V + ΔV sin (ωt + φ). Where V is the steady-state photovoltage response, ΔV and φ 

being the AC photovoltage amplitude and phase [23, 40, 46]. Because here modulated light intensity 

is varied with respect to frequency ω, the modulated rate of generated carriers will be a function of 

ω. As such, when generated carriers travel to the collecting contact, the modulated photovoltage 

across the contacts will also be a function of frequency ω or ΔV(ω). To add, since the resulting voltage 

phase is shifted with respect to L(t), the voltage phase shift will be a function of the modulating light 

frequency ω or φ(ω). We can then obtain the transfer function H(ω) from ΔV with respect to ΔL, 

which is defined by equation (6) [40, 46]. 
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with H(ω) dimensionless and j = (-1)1/2. In IMVS, especially for photovoltaic applications, carriers 

are not extracted from the system, and the cell has to be under an open-circuit condition since we are 

measuring photovoltage from light [23, 40, 47]. To add, we can also present IMS characterization 

results in the form of ΔV instead of H(ω), since from Eqn. 6, H(ω) is proportional to ΔV, with ΔV a 

function of frequency ω [5]. Note also that since we are measuring voltage responses, no references 

to the area of illumination are needed. We then depict an example of IMPS and IMVS instruments 

setup in Fig. 1-6 taken from Metrohm Autolab application note on IMPS and IMVS [48]. In Fig. 1-

6, both the IMPS and IMVS setup uses a LED as the characterization light source.  
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Fig.  1-6. Example of an (a) IMPS (top) and (b) IMVS (bottom) setup. For (a) and (b), transfer function H(ω), ΔV, Δi and 
ΔiLED is a function of frequency ω. Also the LED DC current is in proportion to the DC light intensity, taken from Metrohm 
Autolab application note [48].  

 

From Fig. 1-6(a) example, in an IMPS setup, we drive and modulate an LED with a total driving 

current iLED, through an LED driver that combines the iLED’s current bias iDC (not shown) from a bias 

provider (DAC164) and its (iLED) modulating component ΔiLED from a frequency analyzer device 

(FRA). The LED will then emit a total light intensity (φLED) of φLED = φo
LED + ΔφLED exp(jωt), with 

φo
LED being the steady state illumination, the ΔφLED is the modulated intensity component, and ΔφLED 

a function of frequency ω. Since the LED’s iDC ~ φo
LED, then its ΔiLED ~ ΔφLED. We then apply the 

resulting illumination φLED to the system under test. The system is set under a working electrode (WE) 

and common electrode (CE) contact. Here, the WE contact acts as the anode while the CE act as the 

cathode. We then proceed to measure the resulting photocurrent i from the illumination through the 

WE/CE module, in which the photocurrent response i = io + Δi exp(jωt-θ) is taken and fed to a different 

frequency response analyzer (FRA) device. Here, io is the photocurrent DC component, Δi is the AC 

photocurrent component and θ is the phase response from the system. We then compare the resulting 

photocurrent’s Δi as a function of frequency ω with the LED’s ΔiLED that is also channeled to the 

same FRA device in which we fed the photocurrent. This is done to obtain a transfer function H(ω), 

where H(ω) = Δi(ω)/ΔiLED (ω).  

 Whereas in an IMVS setup, as shown in Fig. 1-6(b), we again drive the LED with a total driving 

current iLED, through a LED driver that combine the iLED’s current bias iDC from a bias provider 



 
Page | 16  

(DAC164) and its ΔiLED from a frequency analyzer device (FRA). The LED will then emit again a 

total light intensity φLED as before (in IMPS), with φo
LED being the steady state illumination, ΔφLED is 

the modulated intensity component, and ΔφLED a function of frequency ω. Because the LED’s iDC ~ 

φo
LED, then its ΔiLED ~ ΔφLED. The total illumination φLED is then applied to the characterized system. 

The system is set under a source electrode (S) and reference electrode (RE) contact. In this setup, we 

measure a voltage response in the source electrode (S) with respect to the reference electrode (RE). 

We then measure the resulting photovoltage V from the illumination through the S/RE module, in 

which the photocurrent response V = Vo + ΔV exp(jωt-θ) is taken and channeled to another frequency 

response analyzer device. Here, Vo is the photovoltage DC component, ΔV is the AC photovoltage’s 

component and θ is the phase response from the system. We then compare the resulting 

photovoltage’s ΔV as a function of frequency ω with the LED’s modulating component (ΔiLED), which 

is also fed to the same FRA device. This is done to obtain a transfer function H(ω), where H(ω) = 

ΔV(ω)/ΔiLED (ω) [48]. 

 The transfer function H(ω), similar to IS in 1.3., can also be represented in the form of Bode 

amplitude and phase plot, in which H(ω) amplitude and phase θ are plotted with respect to frequency 

ω. An example of these plots is shown in Fig. 1-7(a) and (b), which are respectively taken from the 

Bode amplitude  and phase plot of a BHJ OPV’s transfer function in Luther et al [49].  

 
Fig.  1-7. Example of a transfer function Bode amplitude (a) and phase (b) plot with respect to frequency f (in Hz). The 
transfer function in (a) is represented by Z and the amplitude of Z in units of A m2/W. The phase (represented by ψ) plot 
in (b) presents the transfer function phase difference as a negative value, thus the plot location in the 4th quadrant. Both 
plots are taken from Luther et al [49]. 

 

In Fig. 1-7(a) amplitude plot, the transfer function is represented by Z, with the amplitude of Z in 

units of A m2/W. While in Fig. 1-7(b) phase plot, the transfer function phase is represented by ψ, in 

units of (o), with the plot’s phase difference taken as a negative value. In the case of impedance 

spectroscopy Bode plots, we can determine the corner frequency fc from Fig. 1-7(a) Bode amplitude 

plot, as the frequency where the transfer function amplitude dropped to an equivalent of -3 dB from 
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its previous value. This fc is also defined as a frequency where the transfer function phase ψ = 450 in 

Fig. 1-7(b) [21, 49]. From the fc, we can determine a time constant τ, through the equation fc = 1/2πτ 

[16, 23]. This time constant τ represents the time constant of a specific internal dynamic that occurs 

in the characterized system [23]. To add, we can also present IMS results in the form of Bode 

amplitude and phase of ΔJ or ΔV with respect to frequency ω [40, 50]. 

 We can also plot the transfer function H(ω) as a complex quantity in a Nyquist plot, i.e. H(ω) 

= H’ + jH”,  with H’ and H”  being the real and imaginary part of H(ω) respectively. An example of 

the H(ω) Nyquist plot for IMPS mode of operation is depicted in Fig. 1-8, taken from Metrohm 

application note of a dye-sensitized solar cell (DSSC) IMPS result [48]. 

 
Fig.  1-8. An example of several H(ω) Nyquist plot result from a dye-sensitized cell under an IMPS mode of operation. 
The plot is taken at different DC light intensity φo

LED, with -H’ parametric with frequency ω. The H(ω) plot here is 
presented as an inverted plot, with the plot’s real (H’) and an imaginary axis (H”) under a (-) sign. Thus, the plot actually 
lies in the 4th quadrant with the extended part running into the 3rd quadrant, instead of lying in the 1st quadrant with the 
extended feature running into the 2nd quadrant. Note also that H’ and H” are in Ω. Here, the direction of increasing 
frequency is anti-clockwise, with the units of both H’ and H” in Ω [48]. 

 

From Fig. 1-8, we can see that the H(ω) plots resemble a semicircle with a single peak, with frequency 

increasing in the anti-clockwise direction. In literature, phase value in a Nyquist plot’s is taken as 

negative value as a convention [16, 50, 51], so the H” values in Fig. 1-8 H” axis would be in the 

negative H” axis, hence the plot typically lies in the 4th quadrant instead of the 1st. However in Fig. 

1-8, the H” axis is presented as - H”, hence the H” values will be in the positive axis and the entire 

plot would lie in the 1st quadrant. Note also that H’ and H” in Fig. 1-8 example is stated in Ω, but in 
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reality, they are dimensionless according to (5) and (6). We also notice that the plots in Fig. 1-8 extend 

to the 2nd quadrant (3rd quadrant for an inverted plot) or in other words to negative values at the high-

frequency region. This feature has also been observed in other IMPS characterizations in the literature 

[47, 50], in the case of bulk heterojunction OPV, it is attributed to the finite transit time of carriers 

between exciton splitting at the heterojunction and extraction at the contacts [47]. In addition, from 

Fig. 1-8 semicircle peak, we can also determine the time constant τ that is similar with the Bode plot’s 

τ in Fig. 1-7. This time constant can be derived from the frequency f at the semicircle’s maximum 

peak in Fig. 1-8. This frequency f is actually the corner frequency fc that we correspondingly 

determine from the Bode amplitude and phase plot in Fig. 1-7. The fc in Fig. 1-8 is also the frequency 

where the transfer function phase θ = 450. So again, from the fc we can derive τ via fc = 1/2πτ [22, 39]. 

With the time constant τ again representing the characterized system specific internal dynamic [22, 

39]. 

 As for the example of a transfer function H(ω) Nyquist plot for IMVS mode of operation, this 

is depicted in Fig. 1-9, taken from Metrohm application note of a dye-sensitized solar cell (DSSC) 

IMVS result [48]. 

 
Fig.  1-9. Example of several H(ω) Nyquist plot result from a dye-sensitized cell under an IMVS mode of operation. The 
plot is taken at different DC light intensity φo

LED, with -H’ parametric with frequency ω. The H(ω) plot here is also 
presented as an inverted plot, with the plot’s real (H’) and imaginary axis (H”) under a (-) sign. Note also that H’ and H” 
are in Ω. Here, the direction of increasing frequency is anti-clockwise, with the units of both H’ and H” in Ω.  [48].  

 

From Fig. 1-9, we can see that the plots form perfect semicircles, each with a single peak, with 

frequency increasing in the anticlockwise direction. The H(ω) plots in Fig. 1-9 are also presented as 
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inverted plots, with the plot’s real (H’) and imaginary axis (H”) under a (-) sign. As in Fig. 1-8, we 

can also determine the time constant τ from the frequency f at the semicircle’s maximum peak in Fig. 

1-8. This is done through fc = 1/2πτ [23, 40]. With the time constant τ again representing the 

characterized system specific internal dynamic [23, 40]. In addition, we can also present the Nyquist 

plot results in both IMPS and IMVS as the plot of real vs imaginary part of ΔJ and ΔV respectively 

[39, 40]. Later in this work, we introduce a new mode of operation that is neither IMPS or IMVS for 

organic photovoltaic (OPV) applications. This mode is called IMS under finite load and in the case 

of OPV characterizations, this operational mode is neither IMPS nor IMVS but instead lies between 

both modes of operation. 

 Finally, as in 1.1., several advantages of IMS compared to other methods are that any 

parameters obtained from IMS can also be assigned to specific dynamics inside the system. To add, 

IMS, as well as IS, can also be done automatically, thus improving the method’s accuracy while also 

reducing any potential for errors [16, 21, 22]. The distinctive advantage of IMS, especially over IS, 

is that since light is the sole source of stimulus, in the case of solar cell IMS, we can perform IMS at 

one of the solar cell operating conditions in its J/V characteristics, i.e. either at the cell’s short-circuit 

condition, which is called intensity-modulated photocurrent spectroscopy (IMPS) or at the cell’s 

open-circuit condition, which is intensity-modulated photovoltage spectroscopy (IMVS) [40]. 

Another advantage of IMS over IS is that because light is the sole source of stimulus in an IMS, the 

resulting electrical response in an IMS experiment would solely be determined by the illumination 

intensity of the light source, and not due to any external electrical contacts. This meant that instead 

of applying voltage or current through an electrode or any electrical contacts as is the case in IS, IMS 

light stimulus can be directly applied to the characterized system, hence minimizing any series 

resistance effect from external electrical contacts. To add, IMS is also very suitable for BHJ OPVs 

and DSSCs dynamic characterizations as carrier transport is much slower in these type of devices, 

hence it is more susceptible to IMS frequency range with the advantage of light as its main 

characterizing signal [23, 40, 50]. However, the drawback of this method is it’s limited to 

photosensitive devices characterizations [16, 23, 39, 40]. 
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Chapter 2 
Theory and Fundamental Concepts 

2.1 Structure of Organic Semiconductors 

  Organic semiconductors are semiconductors that are made of molecules where the backbone of 

the molecular structure is formed by pi-conjugated orbitals [1, 9, 52]. This structure will then result 

in the energy difference of < 4 eV between the molecule’s highest occupied molecular orbital 

(HOMO) and its lowest unoccupied molecular orbital (LUMO), hence the material semiconducting 

nature [1, 9, 52]. This formation will then define the semiconductor’s optical and electrical properties. 

Examples of organic semiconductors are, thiophenes (P3HT, PCPDTBT, PDTPBT, PTB7), PPV 

polymer (MEH-PPV,MDMO-PPV) and TPD polymer (PBDTTPD). A depiction of these 

semiconductor structures, along with their energy gap are shown in Fig. 2-1, taken from Saunders et 

al [53].  

 
Fig.  2-1. Several examples of organic semiconductors along with their structures and energy gap [53]. 

 

Meanwhile, organic semiconductor devices are devices that use organic materials as the 

semiconducting component, with the organic materials being conjugated polymers or small organic 

molecules. Examples of organic devices are organic photovoltaics (OPV), organic light-emitting 

diode (OLED), organic thin film transistor (OTFT) and organic bistable memory devices [1, 54]. 
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 Interests in organic semiconducting material research started in the 1960s with investigations 

on the optical and electronic properties of acenes as model organic molecules [41]. By late 1970s and 

into the 1980s, organic semiconductor research gained a significant momentum when highly pure 

small organic molecules with tailored structure and properties were made and processed at room 

temperature and later deposited into thin films by using a physical vapor deposition technique [9]. At 

the same time, conjugated polymers research also gained significant interest after the popularization 

of conductive polymers by Heeger, MacDiarmid and Shirakawa [55]. Another significant milestone 

was achieved when Tang reported the development of a bilayer organic photovoltaic (OPV) with a 

power conversion efficiency of ~ 1%, thus heralding the rise of OPV as an alternative PV technology 

to silicon PV [14]. By the 1990s, with the availability of highly pure conjugated polymers, OPV 

fabrications can be achieved through low-temperature solution processing, which is a highly desirable 

property in organic semiconductors and puts them in an advantage over their inorganic counterparts 

[56]. There are several reasons for recent growing interest in organic semiconductor devices. These 

are most importantly, the semiconductor’s ability to be made in a fast and simple manner, especially 

through low-temperature solution processing with low energy cost and good scalability for large-area 

applications [1, 8]. In addition, organic semiconductors can also be used with flexible plastic 

substrates for low-cost and flexible form application, e.g. plastic solar cells [9]. Finally, in the case 

of OPV, the device can be made from an abundant supply of source materials [8]. However, organic 

semiconductor devices also have their drawbacks, especially compared to inorganic ones. These are, 

poor device efficiency and stability, as the device is susceptible to chemical and physical degradation 

from exposure to the ambient environment, and low carrier mobility. The semiconductor’s low 

mobility will also limit the device thickness, thus reducing its active area size and its performance [1, 

8, 57]. 

 The main characteristics of organic semiconductors are that the optical absorption and charge 

transport within the semiconductor molecular structure is dominated by delocalized pi- and 

conjugated pi orbitals, and then, any excitations that occur in an organic semiconductor will  be 

localized within the semiconductor’s molecule, because the strength of intermolecular electronic 

couplings between adjacent molecules is weaker than the overlap of  pi-orbitals within the molecule 

itself [1, 9, 52]. As a consequence of the localized nature of any excitations in an organic 

semiconductor, transport will occur via thermally assisted tunnelling or “hopping” of polarons from 

one molecule to another at room temperature. With a polaron being an excitation state in an organic 

semiconductor where a charge carrier is either removed from/added to the semiconductor molecular 

backbone, which is also accompanied with lattice deformation or relaxation within the backbone [1, 

9]. In addition, this weak intermolecular coupling between molecules and the localized nature of the 
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excitation will then result in the semiconductor’s lower mobilities (10-7 to 10 cm2/V s) when 

compared to inorganic semiconductor mobility (103 to 104 cm2/V s) [1, 9, 52]. Another main 

characteristic of organic semiconductors is the presence of diagonal disorder phenomenon that is also 

caused by the localized nature of any excitation [1, 9]. To add, most organic semiconductors can only 

transport either hole polaron or electron polaron due to the presence of traps for the other carrier type, 

hence the presence of another localized carrier will then cause it to fall into a trap that is also localized 

[1]. Finally, the absorption length of organic semiconductors is quite small, i.e. in the order of 100 

nm, this is in addition to their narrow absorption width (i.e.~200-300 nm) with respect to the 

absorption edge [2]. In the following subchapters, we elaborate more on organic semiconductor’s pi-

conjugated orbital structure and charge transport, including the role of polarons and excitons, types 

of carrier transport and carrier mobilities. We then describe luminescence/light emission in organic 

semiconductors, i.e. fluorescence and phosphorescence. Following this, we perform IMS on bulk 

heterojunction (BHJ) OPV and OLED and will elaborate more on both BHJ OPV and OLED structure 

and operations. 

  

2.1.1 Hybrid Orbitals and Conjugated Molecules 

 To better understand organic semiconductor’s structure, we first examine the structure of 

carbon and how chemical bonding develops between carbon atoms. A carbon atom has 6 protons and 

6 neutrons in its nucleus and 6 electrons located on its orbitals. In the ground state, the 6 carbon 

electrons are arranged as shown in Table I. 

 

TABLE I. ELECTRON ARRANGEMENTS WITHIN THE ORBITALS OF A CARBON ATOM AT GROUND STATE 

Orbital 1s 2s 2px 2py 2pz 

No. of Electrons 2 2 1 1 0 

 

From Table I, the electronic configuration of a carbon atom is written as 1s2 2s2 2p2. Here, with 

regards to 1s, 1 is the principle quantum number of an electron shell and s is the electron subshell 

within that shell. Also for 1s, the orbital quantum number, designated by l, is 0, and that its magnetic 

quantum number, represented by m, is also 0. While for 2p, the orbital quantum number l = 1 and the 

magnetic quantum number m = 1. The s subshell itself can accommodate a maximum of 2 electrons, 

with the p subshell able to accommodate as much as 6 electrons, hence the 1s2 2s 2p2 configuration 

in Table I. As in most elements, (chemical) bonding in the form of a covalent bond will take place 

between the carbon atom outer shell orbital with another atom’s outer/valence electrons. In carbon, 
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however, bonding occurs via first a “promotion” process, which is then followed by “hybridization” 

process. The first process, i.e. “promotion” occurs when carbon “promotes” one electron from 

subshell 2s to the empty pz orbital, which then results in the electronic configuration 1s2 2s1 2p3. After 

“promotion”, a “hybridization” process then follows, in which carbon will combine/”hybridizes” the 

remaining 2s electron with the 2p electrons such that three possible (orbital) combinations may occur. 

These combinations are called “hybrid orbitals”, and these are designated as “sp3”, “sp2” and “sp” 

hybrid orbitals [58, 59]. 

 The first type of hybrid orbitals, i.e. “sp3”, occur when the 2s electron fills and then 

“hybridizes”/combine with three 2p orbitals and one 2s orbitals to form “sp3” hybrid orbitals In the 

case of  “sp3” hybrid, the 4 “sp3” will form a tetrahedron structure, with the 4 orbital “arms” pointing 

outwards into space symmetrically and forming tetrahedron corners with neighbouring atoms outer 

orbitals. The angle between the “arms”/bonds that form the (tetrahedron) structure is 109.50. Now 

when bonding happens between two atoms having “sp3” hybrid structure, one of the “sp3” orbitals 

can form a strong σ (sigma) bonds of the same length and strength with adjacent atoms or with 

neighboring atom’s “sp3” orbitals. This σ bond between a “sp3” orbital and another atom is called a 

single bond (C-C). Note also that a carbon structure that consists of/forms 4 σ bonds with its “sp3” 

orbitals is said to be “saturated”. An example of a carbon backbone in other substances which has a 

“sp3” hybrid structure is ethane (C2H6) [58, 59].  

 The next type of hybrid orbitals, i.e. “sp2”, occur when the 2s electron fills the remaining 2p 

orbitals but only “hybridizes” with two of the 2p orbitals, while leaving one 2p orbital “unhybridized” 

so that a total of 3 “sp2” hybrid orbitals are formed. In “sp2” hybrid, the 3 “sp2” orbital will form a 

trigonal-planar structure, with the 3 orbital “arms” having the same (bond) length and located within 

one plane while the “unhybridized” 2p orbital is perpendicular with respect to the (trigonal) plane. 

The angle between the “arms”/bonds that form the trigonal structure is 1200. To add, a “sp2” hybrid 

molecule can also be formed by atoms having the same hybrid structure. So first, the two “sp2” 

orbitals forms “sp2” bonds (each having the same bond length) with adjacent atoms non-“sp2” orbitals, 

with the one “sp2” orbital forming a σ bond with another atom’s “sp2” orbital. The “unhybridized” 2p 

orbital will then form a much weaker π or pi-bond (compared to σ bond) with another “unhybridized” 

2p orbital in the neighboring atoms. So in total, 1 σ and 1 π bond will then exists within the “sp2” 

hybrid structure, and this bond combination is then called a double bond (C=C). Note that in this case 

(bonding between atoms with the same hybrid), since the π bond is much weaker in nature, the 

resulting orbital structure will be “delocalized” between two atoms due to the much further position 

the “unhybridized” 2p occupies from the central carbon atom. An example of a substance which has 

“sp2” hybrid structure is ethane (C2H4) [58, 59]. 
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 Finally, the third type of hybrid orbitals, i.e. “sp” hybrid, occur when one of the 2s electron 

goes to the remaining 2p orbital and the remaining 2s hybridizes with one of the 2p orbitals, leaving 

two 2p orbital “unhybridized” so that a total of 2 “sp” hybrid orbitals are formed. The “sp” hybrid 

orbital will then form a linear structure, with the 2 orbital “arms” having the same length and are 

located in-line with each other, while the two “unhybridized” 2p orbitals are perpendicular with 

respect to the linear structure. Again, we can also form a “sp” hybrid molecule between atoms with 

“sp” hybrid structure. In this case, an atom “sp” orbital will form a σ bond with the other atom’s “sp” 

orbital and one of the “unhybridized” 2p orbital in an atom will form a π bond with another atom’s 

“unhybridized” 2p orbital. While another “unhybridized” 2p orbital that is located at 90o with the first 

“unhybridized” 2p will also form a π bond with another atom’s “unhybridized” 2p. So in total, 1 σ 

and 2 π bond will exist within the “sp” hybrid structure, and this is then called a triple bond (C≡C). 

An example of a substance with this structure is acetylene (C2H2) [58, 59]. A depiction of “sp3”, “sp2” 

and “sp” hybrid orbitals structure is shown in Fig. 2-2. 

 
Fig. 2-2. The three different carbon hybrid orbitals (a) The “sp” hybrid orbitals with 2 “sp” forming a linear structure, (b) 
The “sp2” hybrid orbitals with 3 “sp2” forming a trigonal-planar structure and (c) The “sp3” hybrid orbitals with 4 “sp3” 
forming a tetrahedron structure The respective hybrid orbital’s angle is also given in the figure. 

  

 An important structure commonly found in a conjugated molecule is the benzene ring structure. 

A benzene ring comprises 6 “sp2” hybrid orbitals that form a planar hexagonal structure, with a 1200 

angle between the “sp2” hybrid bonds such that each hexagon vertices will be occupied by a carbon 

nucleus. In the benzene structure, each carbon atoms uses two “sp2” hybrids to form a σ bond with 

other carbon’s “sp2”, while the remaining “sp2” hybrid is then used to bond with the outer orbitals of 

hydrogen (H) atoms. So here, the hexagonal sides are formed by “sp2” hybrid bonds between the 

carbon atoms. The remaining 2p orbital will then overlap with other atom’s 2p orbital to form a π 

bond, so a carbon atom’s 2p orbital in the hexagon vertices will have one π bond though it is not clear 
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with which neighboring carbon’s 2p orbitals [60]. As a result of this structure, the planar hexagonal 

structure will then consists of alternating double and single bonds as depicted in Fig. 2-3. 

 
Fig.  2-3. Three different depictions of the benzene ring structure. These are (a) The benzene ring structure with the 
complete atomic labels. (b) The alternate single and double bonds depiction of the ring structure and (c) another depiction 
of the benzene ring structure that shows the influence of 2p orbital’s delocalization within the structure.  

 

As we can see from Fig. 2-3(a) and (b), it is not clear where the location of the π bond should be 

within the structure. In reality, one depicts the π electrons (from the π bonds) in Benzene as 

delocalized throughout the ring structure, where the π electrons spread throughout the π bonds in the 

(ring) structure. Note that the length of the hexagonal sides in Fig. 2-3(c) structure = 1.39 Å [60].  

 The delocalization of the π electrons between the carbon atoms π bonds in the same molecule 

is the defining feature of a conjugated molecule. Any organic molecules that have this feature are 

called a conjugated molecule. The energy difference between the molecule’s highest occupied 

molecular orbital (HOMO) and its lowest unoccupied molecular orbital (LUMO) is determined by 

the degree of the π electron’s delocalization in that molecule. The more π electrons are delocalized in 

an organic molecule, the more conjugated the molecule will be, and as the molecule conjugation 

increases, the energy gap between the molecule’s HOMO and LUMO will also decrease to a few eV, 

thus classifying conjugated molecules as organic semiconductors [60-62]. 

  

2.1.2 Polarons and Excitons in Conjugated Molecules 

 For a semiconductor to be useful for applications, it must be excited from its ground state. Here, 

we will discuss two fundamental excitations in conjugated molecules, i.e. excitons and polarons. 

When an organic semiconductor molecule is in its ground state or lowest energy state, the molecule’s 

HOMO will be fully occupied with electrons while its LUMO is left vacant. If an electron is removed 

completely from the HOMO and the entire molecule itself or is added into the LUMO with the HOMO 

fully occupied, the resulting molecule then becomes a polaron or also called a radical ion. The term 

“radical” here refers to the molecule’s net spin due to the presence of an unpaired electron when an 

electron is either removed from the molecule’s HOMO or added into its LUMO. If an electron is 

removed from the HOMO, the radical ion is then called a radical cation or hole polaron, since the 
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removal of the electron (from HOMO) will cause the molecule to have a net positive charge. On the 

other hand, if an electron is added into the LUMO but with the HOMO fully occupied, the radical ion 

will become a radical anion or electron polaron, as the molecule will have a net negative charge.  

 Here, the removal or addition of a carrier is also accompanied by the molecule’s structural 

deformation, where the structure’s orbitals are affected and as a result, bond distances and angles also 

changes. The underlying cause behind this deformation is the localized character of excitations or 

strong electron-vibration coupling in an organic semiconductor, which is very different compared to 

carrier behavior in a conduction band (CB) or valence band (VB) of a crystalline semiconductor. 

After a carrier is either removed or added into an organic molecule structure, the entire structure will 

be relaxed into a position of minimum energy [9, 62, 63]. An illustration of hole and electron polaron 

formation in an organic semiconductor structure, along with both polarons formation in terms of spin, 

is shown in Fig. 2-4(a) and (b) respectively. In Fig. 2-4(a) we use PPV (polyphenylene vinylene) as 

the organic semiconductor example. 

 
Fig.  2-4 (a). Illustration of polaron formation in a PPV structure. Shown here is a hole polaron formation, i.e. when an 
electron is removed from the molecule’s HOMO. This then results in the molecule’s structure experiencing a deformation 
due to the strong electron-vibration coupling in an organic semiconductor. After electron removal, the semiconductor’s 
structure relaxes to the minimum energy position but with different bond lengths and angles due to bond redistributions. 
(b). In terms of spin, the molecule’s HOMO will be fully occupied with no net spin at the ground state. If an electron is 
removed, a net spin will be present from an unpaired electron with the electron transitioned to a lower energy level due 
to strong electron-vibration coupling. On the other hand, if an electron is added, a net spin will be present and the added 
electron will gain more energy than the LUMO, with the electron transitioning to a lower energy level.  

 

From Fig. 2-4(a), we can see that polaron formation is accompanied by structural deformation that 

causes changes in bond lengths due to strong electron-vibration coupling in the semiconductor (PPV 

in Fig. 2-4 example). The polaron showed in Fig. 2-4(a) is a hole polaron which is formed when an 

electron is removed from a semiconductor molecule’s HOMO. In Fig. 2-4(b), in terms of spin, if an 

electron is removed from the HOMO, a hole polaron will be formed with the presence of an unpaired 

electron with a net spin. This unpaired electron, in turn, will transition to an energy level higher than 

the HOMO. On the other hand, if an electron is added into the LUMO, with the HOMO fully 

occupied, an electron polaron will be formed with the presence of an unpaired electron and a net spin. 
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The added electron will transition to an energy level lower than the LUMO. In addition, because of 

the strong electron-vibration coupling in an organic semiconductor, removing an electron in the 

structure will cost less in energy than the HOMO level, while electron added into the LUMO will 

gain more energy than the LUMO level, as illustrated in Fig. 2-5 [63]. 

 
Fig.  2-5. Because of the strong electron-vibration coupling in an organic semiconductor, removing an electron from the 
molecule will cost less in energy than the HOMO level, with the energy needed by the molecule to remove an electron 
from the HOMO being the ionization potential or Ip (in eV). On the other hand, an electron added into the molecule will 
gain more energy than the LUMO level, with the energy gained by the molecule called the electron affinity or Ea (in eV).    

 

From Fig. 2-5, the energy needed by the molecule to remove an electron from the HOMO is called 

the ionization potential or Ip (in eV). While the energy gained by the molecule when an electron is 

added into the LUMO is called the electron affinity or Ea (in eV) [63]. 

 The other type of excitation which can be found in many organic semiconductor applications is 

called an exciton. In an organic semiconductor molecule, if an electron is removed from the 

molecule’s HOMO and is excited into its LUMO, an exciton state will then be formed. This state is 

electrically neutral as there is a presence of an unpaired electron in the LUMO and a hole in the 

HOMO. Exciton formation usually occurs when a photon is absorbed by an organic semiconductor. 

In addition to an exciton being electrically neutral, it is also accompanied by structural deformation 

due to strong electron-vibrational coupling as was the case of a polaron. The affected orbitals in the 

deformed structure then become π* orbitals and are called antibonding orbitals, because the affected 

orbitals overlap in a destructive manner such that it would result in the molecular orbital having a 

higher energy compared to individual atomic orbital [59, 62]. The molecular structure itself will still 

be intact during π* orbital formation due to the presence of strong σ-bonds in the molecule. An 

illustration of exciton formation in an organic semiconductor structure, along with its depiction in 

terms of spin is shown in Fig. 2-6(a) and (b) respectively. To add, in Fig. 2-6(a) we again use PPV as 

an example. 
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Fig.  2-6 (a). Exciton formation in a PPV structure. Here, an electron is excited from the molecule’s HOMO into its 
LUMO which results in the molecule’s structure experiencing a deformation due to strong electron-vibration coupling. 
Exciton formation usually occurs when a photon is absorbed. After formation, the excited structure will have different 
bond lengths due to the strong vibration coupling (b). In terms of spin, the molecule’s HOMO will be fully occupied with 
no net spin in the ground state, which is called the S0 state. Now if an electron is excited from the HOMO into the LUMO 
by photon absorption, the S0 state will be excited into a singlet exciton state or S1. At S1 state, the excited electron 
transitions to an energy level lower than LUMO while the unpaired ones in the HOMO transition to a higher energy level 
than the HOMO.  

 

From Fig. 2-6(a), we can see that exciton formation is also accompanied by structural deformation 

that leads to different bond lengths due to strong electron-vibration coupling in an organic 

semiconductor (PPV in Fig. 2-6(a)). In addition, because of this strong electron-vibration/phonon 

coupling, an exciton is by nature a strongly bound electron-hole pair, in which the bond is a coulomb-

type bond. As a result, the exciton binding energy (Eb) is high, ranging from 0.5-1 eV. Because of 

this strong bond, the size of an exciton in the organic semiconductor is about 10 nm. This means that 

the exciton in organic semiconductors is classified as a Frenkel or localized exciton because it 

occurs/localized in a single conjugated molecule which is reflected in its size. This is contrary to a 

Wannier exciton or delocalized exciton, which occurs in a band and are usually found in inorganic 

semiconductors, with the exciton binding energy being much lower than that of Frenkel exciton. 

Finally, in the case of an exciton, the semiconductor molecule’s energy gap (Eg) can be defined from 

Fig. 2-6(b), as either the difference between the ionization potential and the electron affinity or Eg = 

Ip - Ea, or as the difference between the exciton binding energy Eb and ionization potential - electron 

affinity difference, or Eg = (Ip - Ea) - Eb. Examples of organic semiconductor devices that uses excitons 

in their operations are organic photovoltaics (OPV) and organic light-emitting diodes (OLED) [2, 9, 

62, 63]. 

 In quantum mechanics, an exciton by its nature is represented by a wavefunction which has 

both a spin and a spatial component. In the ground state, the molecule’s HOMO will be fully occupied 

with no net spin, which is usually called the S0 spin state as we can see in Fig. 2-6(b). Once an exciton 

is formed due to photon absorption, the molecule’s S0 state will then be excited into an S1 singlet 

exciton state as seen also in Fig. 2-6(b). An S1 singlet exciton, is formed when there is a presence of 
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antiparallel spins from an unpaired electron with spin up and an unpaired holes with spin down that 

lies in an energy level higher than the HOMO, and another unpaired electron with spin down with an 

unpaired holes with spin up that lies at an energy level lower than the LUMO, which together results 

in a total spin = 0. In terms of the wavefunction, the spin part of a singlet exciton wavefunction is 

antisymmetric, i.e. its wavefunction changes sign under an exchange of particles. In general, there 

are three combinations of electron and hole spin that will result in an overall symmetric spin part in 

the wavefunction, in which the wavefunction does not change sign under an exchange of particles. 

There is one combination that will result in antisymmetric spin part in the wavefunction, i.e. 

wavefunction changes sign in an exchange of particles. These symmetric and antisymmetric electron 

and hole spin combinations can be represented by a ket notation as shown in Table II [2, 63]. 

 

TABLE II. POSSIBLE ELECTRON AND HOLE SPIN COMBINATIONS IN A WAVEFUNCTION IN TERMS OF A 
KET NOTATION   

 

 

 

 

 

 

From Table II, we can see that the three symmetric spin combinations will result in a total spin = 1, 

where the wavefunction does not changes sign under an exchange of particle. This three symmetric 

combination is called the triplet exciton state (T1). The spin combinations that result in a singlet 

exciton state has its wavefunction changes sign (-) under an exchange of particles as seen also in 

Table II. Hence, we can see that when a photon is absorbed, an organic semiconductor will be excited 

from its S0 spin state into an S1 singlet exciton state as seen in the antisymmetric spin combinations 

in Table II. However, in order to form a triplet exciton state T1, we need to combine an electron and 

hole polaron together to form a symmetric spin combinations as seen also in Table II [63]. 

 

2.1.3 Light Emission from Conjugated Molecules 

 From 2.1.2., when a photon is absorbed by an organic semiconductor molecule, the molecule 

is then excited from its ground S0 state to form a singlet S1 exciton state. Alternatively, the reverse 

can also happen, so a molecule that is excited into a singlet S1 state can also decay into the ground 

state S0, and in doing so accompanied by light emission from the molecule itself. This decay process 

is then called fluorescence. In other words, fluorescence will only be produced from the decay of a 

singlet S1 exciton state into the ground state S0 [62-64]. An illustration of this process, and later 

Spin state Ket Total Spin S Symmetric (+) / 
Antisymmetric (-) 

 1 + (Triplet) 

 1 + (Triplet) 

 1 + (Triplet) 

 0 - (Singlet) 
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phosphorescence light emission in terms of spin states is shown in Fig. 2-7, taken from Clegg et al 

[64].  

 
Fig.  2-7. An illustration of fluorescence and phosphorescence processes in an organic semiconductor molecule. First, a 
photon is absorbed by the molecule which then excites the molecule (electron) from the ground state S0 with no net spin 
into (1) the first singlet exciton state S1, where there is a net spin, or (2) into a much higher singlet exciton state S2 which 
has a net spin at a higher energy state. Once the molecule has been excited into S2, it will always decay to S1 (3) due to 
interaction with the outside environment and internal vibrations. When it arrives at S1, the molecule can further decay into 
the ground state S0, accompanied by light emission from the semiconductor (4). This process is called fluorescence and 
the resulting light spectra are broad since the decay from S1 to S0 can occur from a lower S1 energy level to different 
vibrational levels of S0. In addition, if a molecule is excited into an S1 or S2 state, it can decay from these states to another 
energy states which are lower, i.e. the triplet T1 and a higher T2 state via intersystem crossing (ISC) mechanism in (5) and 
(7). However this ISC decay process is very rare and triplet excitons are most commonly found in electrically driven 
devices. If the molecule transitions to higher T2 state, the molecule can decay into the lower T1 state due to internal 
vibrations (6). Also, photon absorption can occur when the molecule is already in the T1 state, which can then excite the 
molecule into the T2 state (8). When a molecule has already decayed into the T1 state, two decays pathways are possible, 
one is that the molecule decays directly into the ground state S0, which is called the phosphorescence process (9), in which 
there must be an interaction/coupling between the singlet and triplet states. While the other decay pathway for T1 state 
molecule is through intersystem crossing mechanism to higher S0 state (10) at which it can then decay into the S0 state 
(11) [64]. 

 

From Fig. 2-7, the process occurs as follows, first, as in 2.1.2., the molecule’s HOMO will be fully 

occupied with no net spin at the ground state S0. Then, when a photon is absorbed by the molecule, 

the molecule (electron) will be excited from the S0 to the different vibrational levels of S1 (1) and 

even higher to the S2 state (2). The absorption spectrum in (1) and (2) will be broad because of the 

strong electron-vibration coupling in the molecule itself. Once the molecule has been excited into S2, 

it can decay/relax back to S1 (3) due to interaction with outside environment and internal vibrations 

in the S2 level. When the molecule has decayed back to the S1 state, it can further drop/decay from 

the lower level of the S1 state into the higher level of the ground state S0 (and the ground state level 

itself) and is also accompanied by light emission from the semiconductor (4). This decay process is 

then called fluorescence and the resulting light spectra are typically broad since the decay from S1 to 
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S0 occurs from the lower S1 energy level to different higher levels of S0, including S0 itself. The 

underlying reason behind the broad emission spectra is also the strong electron-vibration coupling in 

the molecule itself. So from the process (1) to (4), step (4) will result in light emission/fluorescence 

and step (3) will result in a nonradiative decay [64]. A typical fluorescence process happens on a time 

scale of 10-10 to 10-8 s [4, 64]. 

 Also in Fig. 2-7, when a molecule is excited into an S1 or S2 state, it can also experience a 

transition into the lower triplet states T1 and T2 via an intersystem crossing (ISC) mechanism in (5) 

and (7). An ISC mechanism is caused/driven by a coupling interaction between the S1, S2, and T1, T2 

states which are called the spin (S)-orbit (L) or LS coupling interaction. Earlier in this chapter, and 

from the discussion of the process (1) to (4), when a photon is absorbed, this process will only 

generate a singlet exciton S1, with the generated singlet excitons capable of decaying as fluorescence. 

So the transition for the absorption process is called the S0  S1 transition. In the absorption process, 

each photon carries with it an orbital angular momentum L, with the S0 and S1 orbital quantum number 

differing by one. Thus, the photon will then provide an angular momentum for the  S0  S1, while in 

fluorescence, when the transition becomes S1  S0, this transition will provide an angular momentum 

for light emission. Thus, the fluorescence transition (S0  S1) is dipole allowed as it fulfils the 

selection rule of Δl = 1. However, the transition from the first triplet state T1 to S0 or T1  S0 is dipole 

forbidden since both T1 and S0 have the same angular momentum quantum number = 1. Thus, Δl = 0 

for the T1  S0 transition, as the transition cannot provide an angular momentum for photon emission, 

and therefore cannot emit a fluorescence light. This also applies for the S1  T1 and S2  T2 

transitions (T2 the higher triplet exciton state) which are also dipole forbidden [64, 65]. However, a 

triplet exciton also has an angular momentum component, although it is in the form of spin instead 

of orbital angular momentum. Several molecules can convert this spin into an orbital angular 

momentum. This (spin  orbital angular momentum) is achieved by facilitating the weak link 

between the spin and orbital angular momentum component in the triplet through the interaction of 

magnetic fields that are generated by both the spin and orbital angular momentum. This interaction 

between the magnetic fields will then be proportional to the product of the triplet’s spin and orbital 

angular momentum, and thus known as the spin (S)-orbit (L) or LS coupling interaction. To produce 

a strong LS coupling, we can add atoms into our molecule atoms that will fill the molecule’s atomic 

shells with an orbital quantum number = 1. Typically, this is done by adding atoms with high atomic 

numbers Z, i.e. higher than that of carbon, into the molecule. An example of such atom is phosphorus 

[64, 65]. Thus, it is very rare for an ISC decay to occurs without this coupling interaction.   

 So again in Fig. 2-7, a molecule excited into an S1 or S2 state is able to transition into the lower 

triplet states T1 and T2 via an ISC mechanism in (5) and (7), due to the LS coupling interaction between 
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S1, S2, and T1, T2 states. If a molecule in the T1 state is excited to a higher T2 state, the molecule can 

decay into the lower T1 state due to internal vibrations (6). In addition, if photon absorption occurs 

when a molecule is in the T1 state, the molecule can be excited into the T2 state, as in (8). If a molecule 

already decays into the T1 state, two main decay pathways are possible, one is by the molecule 

decaying directly into the ground state S0 while also emitting light, which we then called 

phosphorescence (9). Thus, phosphorescence is the emission of light from the decay of T1 to S0 that 

is facilitated by the LS coupling between the T1 and S0 states in the form of ISC. While the other 

pathway is taken with the molecule transitioning via ISC from the T1 state to higher S0 state (10) at 

which point it can then drop/decay into the S0 state without emitting any light, i.e. it is nonradiative 

by nature (11). So from the process (5) to (11), step (9) will result in light emission, i.e. 

phosphorescence, while step (6) and (11) will result in nonradiative decay [64]. In addition, a typical 

phosphorescence process is slower than fluorescence, because of the weak nature of LS coupling, 

with phosphorescence timescales of the order of μs to s [4, 64].  

 Also, the exciton that is produced from the combination of an electron and a hole polaron, as is 

the case in organic light-emitting diode (OLED), is different compared to the exciton that is produced 

when a photon is absorbed by an organic molecule. Whereas photon absorption will only generate 

singlet or S1 excitons, electron and hole polaron injection in an OLED will produce a triplet or T1 

excitons as seen in Table II in 2.1.2. The light emitted from these (electrically generated) triplet 

excitons is then called electroluminescence (EL).When excitons are electrically generated, 1 out of 4 

excitons will be in a singlet state, while the other 3 will be in a triplet state. This is because there are 

three ways to combine an electron and hole spin together, with only 1 way to combine the electron 

and hole polaron into a singlet state S1 in a molecule, as seen in Table II in 2.1.2. Thus, in organic 

electroluminescence, the majority of produced excitons are triplet in nature and does not emit light at 

all [64, 65].  

 To further illustrate the coupling between the transition states and molecular vibration in an 

organic semiconductor structure, we use a potential energy diagram in Fig. 2-8 which show transition 

states that are involved in an absorption, fluorescence and phosphorescence process, taken from Clegg 

et al [64]. 
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Fig.  2-8. A potential energy diagram that shows transitions and excitations between electronic states in an absorption, 
fluorescence and phosphorescence process with respect to inter-atomic distance in an organic semiconductor molecule 
[64]. 

  

 From Fig. 2-8, we can see that in an organic semiconductor, both the ground and excited states 

are split into different energy levels due to the presence of discrete molecular vibrations components 

within each (ground and excited) states. Then, between the states in Fig. 2-8, several transitions will 

be allowed and these (transitions) are differentiated by the generated amount of molecular vibrations 

from absorption or emission processes. Transitions from the lowest vibrational level in the ground 

singlet state to the lowest vibrational level in the excited (singlet) state are called the 0-0 transition 

(not shown). An example of this transition is if the molecule is excited/transitioned from the lowest 

level of S0 (ground singlet state) to the lowest level of S1 (excited singlet state). While further 

transitions, such as 0-1 and 0-2, or sometimes 0-3 clearly results in molecular vibrations in either 

absorption or emission processes, and are called the vibronic satellites as we will see later in Fig. 2-

9. Examples of these transitions are transitions from the molecule’s lowest S0 state to the first higher 

S1 state, and again from the lowest S0 state to the second higher S1 state, with respect to the lowest S1 

state energy level. These transition states are separated in terms of their energy level by about 0.1 eV 

difference, with the (energy) spacing differences between transition states being the vibronic spacing. 

These vibronic spacing differences will then lead to a broad emission and absorption spectrum from 

a semiconductor molecule. The relative intensity of the transition states that results in molecular 

vibration are measured by a quantity called the Franck-Condon (FC) factor. This parameter is used 

as a measure of a transition state intensity in a spectrum plot. Hence, the same FC factor that occurs 

in both absorption and fluorescence spectrum, will then result in a mirror image property between 
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both spectra [64, 65]. As an example, a perylenediimide (PDI) molecule absorption-emission 

spectrum is shown in Fig. 2-9, taken from Fron et al [66]. 

 
Fig.  2-9. A mirror plot of Anthracene absorption and emission (fluorescence) intensity spectra for an unspecified number 
of transition states with respect to the states wavelength (in nm) [66].  

 

From Fig. 2-9, we can see the well expressed ‘mirror image’ symmetry between absorption and 

fluorescence, albeit this is often blurred in more flexible molecules, e.g. conjugated polymers. The 

spectra in Fig. 2-9 are symmetric around their intersection at ~ 600 nm. We also observe that the 

central or the 0-0 transition in the spectra has the highest intensity as it has the largest vibronic 

spacing. In addition, the 0-0 transition absorption peak is not always located at the same position with 

the 0-0 emission peak. In most cases and as seen in Fig. 2-9, the 0-0 emission peak is shifted by 

several nm (~5-10 nm) with respect to the 0-0 absorption peak. This shift is known as a Stokes shift, 

and it is caused by the interaction between the organic molecule and the surrounding environment. 

Hence, we can now determine the definition of an excited organic semiconductor band gap with much 

certainty from Fig. 2-9 plot example. The band gap, or the optical gap in Fig. 2-9 is defined as the 

beginning/”foot” of the molecule’s 0-0 absorption spectrum, or it can also be defined as the 

intersection between the molecule’s absorption and emission spectrum [64, 65]. Finally, an example 

of an organic semiconductor application that utilizes both fluorescence and phosphorescence 

emission is an organic light-emitting diode (OLED) [4, 64].  

 

2.2 Carrier Transport in Organic Semiconductors 

 As elaborated in 2.1, carrier transport in organic semiconductors will be determined by the 

semiconductor molecular structure which is dominated by delocalized pi- and conjugated pi orbitals, 

and also the overlap of pi-orbitals within the molecule itself. In addition, the semiconductor’s large 

electronic transition-molecular vibration couplings and diagonal disorder will also influence carrier 
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transport within the semiconductor. Carrier transport in the semiconductor itself happens via 

thermally assisted tunneling or a “hopping” process at room temperature. Transport occurs through 

polarons that hop from molecule to molecule or between one localized states to another in an organic 

semiconductor [1, 9, 52]. In discussing carrier transport, we first elaborate on carrier injection in 

organic semiconductors. A typical organic semiconductor device structure usually consists of one or 

more layers of active organic semiconductor that are sandwiched between two metal electrodes. Thus, 

efficient carrier transfer or injection at the interface between the metal-organic semiconductor is one 

of the most important factors in the performance of an organic semiconductor device, for example in 

an OLED and organic field-effect transistors (OFET). Carrier injection in an organic semiconductor, 

or in an organic semiconductor device, is the promotion of a carrier (electron or hole) from the device 

metal electrode(s) into an organic semiconductor molecule’s HOMO or LUMO. Therefore, charge 

injection will be strongly dependent on the metal-organic interface and the energy barrier that needs 

to be overcome by carriers at that interface. Specifically, the injection will be dependent on the energy 

difference/relationship between the metal electrode(s) Fermi level and the organic semiconductor 

LUMO and HOMO level, where the Fermi level is the energy level that separates the filled and empty 

electron states in a metal [67, 68]. While the energy needed to remove an electron from a metal is 

called the work function (Φ) [67]. To illustrate this relationship and to depict both electron and hole 

injection between metal-organic interfaces, we use the example of carrier injection on an organic 

semiconductor device, in which the semiconductor is sandwiched between two metal electrodes (e.g. 

OLED), with one electrode being the cathode, which injects electrons into the semiconductor, and 

the other being the anode, that injects holes into the semiconductor [67, 68]. This illustration is shown 

in Fig. 2-10, with PPV or polyphenylene vinylene as the organic semiconductor example, indium tin 

oxide (ITO) as the anode due to its high work function and a calcium-aluminium (Ca/Al) layer as the 

cathode due to the layer low work function. 

 
Fig.  2-10. An energy level illustration of an organic semiconductor device, in which the semiconductor is sandwiched 
between two electrodes, where one is an anode due to its high work function and the other being a cathode due to its low 
work function. In the above example, PPV is the organic semiconductor, ITO is the anode and the Ca/Al layer is the 
cathode. In the above illustration, Eg is the energy gap between the semiconductor’s HOMO and LUMO, Ip and Ea are 
respectively the ionization potential and electron affinity of the semiconductor, while ΦA and ΦC are respectively the 
anode and cathode work function. The respective energy levels of the anode, cathode, and the semiconductor’s LUMO 
and HOMO are also given. Finally, the vacuum level in the above is taken at 0 eV.  
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In Fig. 2-10, Eg is the energy gap between the semiconductor’s HOMO and LUMO, Ip and Ea are 

respectively the ionization potential and electron affinity of the semiconductor, while ΦA and ΦC are 

respectively the anode and cathode work function. We have also assumed in Fig. 2-10 and in our 

discussion hereafter that the organic semiconductor is not doped, there is no interface potential at the 

metal-organic interface, there are also no carriers in the semiconductor at the beginning, and that there 

are no chemical reactions between the semiconductor and the metal electrode [67, 68]. As for carrier 

injection into the organic semiconductor itself, it is categorized into two different categories based on 

whether or not carrier injection from the electrodes to the semiconductor is easier than transport 

within the semiconductor structure. These categories are injection/contact-limited and bulk-limited 

transport [67-69]. 

  

2.2.1 Injection/Contact-Limited Transport 

 In injection/contact-limited transport, injection from the metal contact/electrodes into the 

semiconductor becomes the limiting factor in carrier transport or in the flow of current within an 

organic semiconductor device. Thus, carrier injection into the semiconductor will be controlled by 

the metal electrode work function Φ with respect to the semiconductor’s electron affinity (Ea) in the 

case of electron injection, and with respect to the ionization potential (Ip) for hole injection [67, 68, 

70]. From Fig. 2-10, if we inject/transfer carriers into the metal-organic semiconductor interface by 

applying a voltage bias on the semiconductor, an electric field will then be generated within the 

semiconductor and as a result, the energy level structure in Fig. 2-10 will be tilted as shown in Fig. 

2-11. 

 
Fig.  2-11. An energy level illustration of the sandwiched organic semiconductor device under an applied voltage bias 
(the bias is not shown here). Here, as in Fig. 2-10, PPV is the organic semiconductor, ITO is the anode and the Ca/Al 
layer is the cathode. Because of the applied bias, an electric field will be generated in the semiconductor and the energy 
levels will be tilted. The tilt is uniform since the generated field will be uniform across the semiconductor due to our 
earlier assumption that there are no carriers beforehand in the semiconductor. Under an applied bias, electrons will be 
injected from the Ca/Al layer cathode into the LUMO and will encounter an electron injection barrier ΔEe, while from the 
opposite side, holes will be injected into the HOMO and will encounter a hole injection barrier ΔEh. As in Fig. 2-10, Eg 
is the energy gap between the HOMO and LUMO, Ip is the ionization potential, Ea is the electron affinity of the 
semiconductor, while ΦA and ΦC are respectively the anode and cathode work function. The vacuum level is taken at 0 
eV.  
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From Fig. 2-11, the tilt in the energy level is constant since the generated field will be uniform across 

the semiconductor due to our earlier assumption that there are no carriers beforehand in the 

semiconductor. So under an applied voltage bias, electrons will be injected from the Ca/Al layer 

cathode into the LUMO and will roll downwards to the LUMO. However, the injected electrons will 

encounter an electron injection barrier ΔEe, as much as 1.7 eV from the Al layer into the PPV LUMO 

(Fig. 2-10). In addition, holes will be injected from the ITO anode into the HOMO and will roll 

upwards to the HOMO. But the injected holes will also encounter a hole injection barrier ΔEe, where 

holes need to overcome as much as 0.5 eV energy barrier from the ITO into the PPV HOMO (Fig. 2-

10). If however, we tried to inject electrons from the ITO side, electrons will encounter an injection 

barrier of 2.2 eV that comes from the combination of injection barriers in the ITO and Ca/Al side. 

This means that the use of electrodes from different metals in the device will define the device forward 

and reverse bias condition under an applied voltage bias, due to the cathode and anode different work 

functions. So to define a forward bias condition in our device, we choose a low work function metal 

as the cathode, and a high work function metal as the anode, thus minimizing barriers for both electron 

and holes injection. On the other hand, we define a reverse bias by choosing a high work function 

metal as the cathode and a low work function metal as the anode, hence maximizing barriers for both 

electron and holes injection [67, 68, 70].  

 In Fig. 2-11, both holes, and electrons still need to overcome the injection barriers under a 

forward bias condition. To do this, carriers undergo a tunneling mechanism in the injection process. 

There are two classical carrier tunneling models that describe carrier tunneling in the form of current 

density J with respect to an applied voltage bias V, where J = I/A, with I being the tunneling current 

and A the area size. These are Fowler-Nordheim tunneling and the other is Richardson-Schottky 

thermally activated injection [71, 72]. In the Fowler-Nordheim model, tunneling is achieved through 

an external electric field, with the tunneling current density called Fowler-Nordheim current density 

JFN and is defined in equation (7) [71].  
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where ΔV is the size of the injection barrier (in eV), B is a constant that is defined as B = 

8π√(2m*)/(2.96 eh), where m* is the carrier effective mass, e is the elementary electron unit charge 

= 1.6 x 10-19 C, h is the Planck constant = 6.6 x 10-34 J/s, k  is the Boltzmann constant = 1.38 x 10-23 
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J/K, Vbias is the applied voltage (in V) and d is the injection distance from the metal to semiconductor 

or in other words the metal/semiconductor interface thickness. While in the Richardson-Schottky 

thermally activated injection, i.e. a thermally-assisted tunneling, the tunneling current density is 

called the Richardson-Schottky current density JRS and it is defined by equation (8) [72]. 

 

   kTEVVaTJ mRS )(exp2     (8) 

 

where T is the absolute temperature (in K) and a is a constant that is defined as A = 4πemk2/h3, where 

m is the electron rest mass = 8.2 x 10-14 J/C2 and Vm(E) is a field-dependent parameter that describes 

the lowering of the injection barrier due to injection carrier attraction with its opposite charge carrier. 

Here, Vm(E) = (eE/4πεεo)1/2, where E is the electric field in the metal-organic semiconductor interface 

due to applied voltage (in V/m2), ε is the semiconductor’s permittivity and εo being the vacuum 

permittivity = 8.8× 10−12 F/m. However, both the Fowler-Nordheim and Richardson-Schottky model 

and equations were originally developed for carrier injection at a metal/vacuum interface, and not 

carrier injections through metal/organic semiconductor interface. Thus to address this weakness, in 

1999, Scott and Maliaras introduced a modified version of the Richardson-Schottky equation (8) 

which results in the Scott and Maliaras tunneling current density JSM defined by equation (9) [72, 73]. 

    

  2/1
0

2 expexp4 fkTVEeNJ CSM      (9) 

       

where N0 is the density of chargeable sites in the semiconductor, μ is the electron mobility (in cm2/V 

s) and E is the electric field at the metal-semiconductor interface. Also, f is the reduced electric field 

and f = eErckT, where T is the absolute temperature (in K) and rc is the Coulomb radius. The Coulomb 

radius is defined as rc = e2/4πεε0kT. Finally, 4ψ2 is an injection barrier factor and is a function of the 

electric field E [73]. From all the models represented in equations (7)-(9), the tunneling current 

density is affected or decreases exponentially with injection barrier height and the current density will 

also depend on the applied voltage bias V and the semiconductor thickness d, from E = V/d. So in 

injection limited transport, the dependence of current density J on E or on injection barriers is a 

hindrance, since applied bias will be used primarily to inject carriers first into the semiconductor. 

Therefore, several steps are usually taken to overcome this issue, for example, using a semiconductor 

with lower ionization potential or higher electron affinity, selecting electrodes with suitable work 

functions as we see in Fig. 2-10 or doping a semiconductor, so that the metal-semiconductor energy 

level will experience band bending and form a Schottky contact at the metal-semiconductor interface 

[69]. If an injection barrier is eliminated or overcome, then equation (7) injection barrier (ΔV) = 0 and 
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the tunneling current will be infinite. However this is physically impossible, what happens is that the 

injected carriers/transport will instead be limited by the bulk semiconductor film properties. 

 

2.2.2 Bulk-Limited Transport 

 In general, under an applied bias, carriers in a semiconductor will move in the direction of the 

generated field arising from the bias. As a result, there are two possible ways carrier can move within 

the semiconductor, one is through coherent/band-like movement which is described by a wave vector 

k and the other is through incoherent/thermally-assisted tunnelling (”hopping”) mechanism. In an 

organic semiconductor at room temperature, carrier transport always happens via the “hopping” 

mechanism, where carriers or hole and electron polarons tunnel from one molecule to another. Thus, 

it is very rare for carriers in an organic semiconductor to move in a band-like manner. In general, 

under an applied voltage bias, carriers will move with an average velocity ν that is defined in equation 

(10) [69, 74]. 

 

E   (10) 

 

where E is the generated electric field from the applied bias, and is defined as E = V/d, with E in V/cm 

and d being the semiconductor film thickness (in cm), while μ is the carrier mobility (in cm2/ V s) 

and average velocity ν is in cm/s. In an organic semiconductor, carrier mobility μ is an important 

characteristic. As described in 2.1., typical organic semiconductors mobility ranges widely from 10-7 

to 10 cm2 /V s, all under hopping-type transport. This range of mobility is much lower compared to 

those in inorganic semiconductor and metal, which can range from 103 to 104 cm2 /V s [1, 9, 52]. If 

we look back at equation (10), average carrier velocity ν is not strictly proportional to the electric 

field E. This is because carrier mobility in (10) depends on temperature T and carrier concentration p 

aside from the electric field E. In the case of hopping transport in an organic semiconductor, in 1993 

Bässler proposed a model of carrier mobility within the hopping transport regime that takes into 

account the mobility dependence on both applied field and temperature. In the model, he assumed 

that the HOMO levels within the semiconductor are not equal in energy but instead display a Gaussian 

distribution around an average HOMO level. This Gaussian distribution of energy is called the 

diagonal disorder and is characterized by a variance σ2, or through a dimensionless quantity σ^ = σ/kT, 

where σ is the standard deviation of a carrier energy level from the average HOMO level. In addition, 

in the model, the mobility, or the hopping transport is also dependent on the positional or off-diagonal 

disorder factor that is represented by another variance quantity Σ2. The off-diagonal disorder is the 
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distribution of carrier position within the organic molecule. The model is represented by equation 

(11) [75]. 
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where the carrier mobility μ is a function of both field E and absolute temperature T with μ0 being the 

carrier mobility before we account for the field and temperature dependence [75]. More recently, 

Pasveer et al. have modified Bässler’s equation to account for the dependence of carrier mobility μ 

on the carrier density p. Their equation cannot be deduced into an analytical form, but their model 

can be approximately modeled by equation (12) [76]. 
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where p is the carrier density, and f(T, E) is a dimensionless function that is independent of p. For 

small or near-zero p, Pasveer equation will approach that of Bässler in equation (11), however, in the 

case of high p, Pasveer equation predicts that the mobility value can increase by several orders of 

magnitude as predicted by the experimental results [77]. Again, μ in hopping transport is always lower 

than that of band-like transport. 

 We then proceed to use equation (10) to determine the current density in bulk-limited transport, 

which is defined in equation (12) [74, 78]. 

      

EEqnqnJ      (13) 

 

where JΩ is the bulk-limited transport carrier density (in A/cm2), q being the charge per carrier and it 

can be positive/negative, n is the carrier density (in number of carriers/cm3), ν is the carrier velocity 

(in cm/s), and σ = qnμ is the semiconductor’s conductivity (in Ω cm) [69, 74, 78]. However equation 

(13) does not give us the carrier density n and it also assumes that the electric field E on each carrier 

at any position within the semiconductor is equal/has the same strength with externally applied 

electric field. So equation (13) still assumes the flat band condition we see in Fig. 2-11. However, as 

there are now injected carriers in the semiconductor, the conditions seen in Fig. 2-11 no longer hold. 

So in the case of an undoped semiconductor where the only current flowing is due to injected carriers, 

carriers that are already injected into the semiconductor will screen the strength of the externally 
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applied electric field. These carriers are then called space charge carriers. As a result, the electric field 

E in the semiconductor will vary depending on location/position. Thus, bulk-limited carrier transport 

will be a competition between the externally applied electric field that moves the carrier and the 

screening of that external field by the same carriers that it (ext. field) moves. The resulting current in 

this type of transport is known as space charge limited current (SCLC), and for the case of one type 

of injected carriers from one electrode, the SCLC current density JSCLC is given by equation (16). 
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where E(x) and n(x) are the position-dependent field E and carrier density n respectively, x is a 

position coordinate, and the electrodes are located at positions x = 0 and x  = d respectively,  JSCLC is 

in A/cm2, d is the semiconductor film thickness (in cm), μ is the carrier mobility (in cm2/V s) and V 

is the externally applied voltage (in V). Equation (16) is also known as Child’s law [79]. Note also 

that JSCLC ~ E(x) and n(x). But JSCLC itself is not dependent on the position x as JSCLC is the resulting 

current from the competition between external field and injected carriers within the semiconductor 

that screen the field. In addition, the space charges will screen the external field so there will not be 

an electric field at the injecting electrode, or in other words we have to assume an ohmic injection 

condition. To add, JSCLC itself does not depend entirely on the external electric field [74, 78]. In reality, 

however, real semiconductors are always doped to an extent, hence we cannot always assume that 

the semiconductor is undoped, which is the case in SCLC. Doping-induced carriers in a 

semiconductor will be balanced by counter ions from injected carriers, but unlike injected carriers, 

the doping will not introduce space charge into the device. As such, there will be an ohmic 

contribution from a current density Jo ~ V which will dominate transport for highly doped 

semiconductor at the low external field, but at the high external field or in a very pure semiconductor, 

JSCLC will instead dominate [74, 78]. Usually for organic semiconductor devices with a sandwiched 

structure as seen in Fig. 2-11 with semiconductor thickness ~ 50 nm, SCLC current will dominate 

transport more than the ohmic current contribution. However in a planar device architecture, where 

there are more electrodes that layer the semiconductor film (high d), transport will be dominated by 
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the ohmic contribution [69, 74]. In the following subchapter, we will elaborate more on the organic 

semiconductor device, i.e. OPV and OLED that we characterize in this work. 

 

2.3 Bulk Heterojunction (BHJ) Organic Photovoltaic (OPV) Devices 

 A bulk heterojunction (BHJ) organic photovoltaic (OPV) is a PV device that is made of a 

mixture of two phase-separated organic semiconductors, in which one is an electron-donating 

polymer that absorbs light strongly and acts as the cell’s carrier source, and another one being an 

electron-acceptor fullerene derivative which is added to improve carrier separation in the 

semiconductor. Examples of donor polymers are, poly(3-hexyl thiophene) or P3HT and poly(2-

methoxy-5-(2-ethyl-hexyloxy)-1,4-phenylene vinylene) or MEH-PPV. While a soluble fullerene 

derivative, [6]-phenyl-C61 butyric acid methyl ester or PCBM is usually used as an acceptor polymer 

[2]. As mentioned in 2.1, the first bilayer/heterojunction OPV with a power conversion efficiency 

(PCE) of ~ 1% was reported by Tang in 1986 [14]. In 1992, Hiramoto et al. reported the first bulk 

heterojunction (BHJ) OPV that is made from a mixture of perylene (PTC) and phthalocyanine (Pc) 

pigments, which has a PCE = 0.44% [80]. Ever since then, interest on BHJ OPV has been growing 

rapidly as mentioned in 1.2., and at the same time device efficiency (PCE) has increased dramatically 

as well, from 0.44-1% in its early years to PCE > 10% in 2014 with a BHJ mixture of PffBT4T-2OD 

donor polymer and traditional PCBM acceptor [5]. Current use of OPV includes, but not limited to 

printed/roll-to-roll solar cells, portable solar cells for charging small devices and power installations 

in buildings due to its suitability for large-area applications [2, 57]. The reason for growing interest 

in BHJ OPV includes its characteristics, has been outlined in 2.1. Compared to other types of OPV, 

the rising interest in a BHJ OPV structure is due to several reasons. These are, as in 2.1., its ability to 

be fabricated via low-temperature solution processing with low energy cost, it is also able to be 

manufactured on flexible plastic substrates, and compared to a bilayer PV structure, it has a larger 

photoactive area due to the BHJ interface between the donor and acceptor polymer in the cell. Higher 

interface area means that carrier generation will occur more often in a BHJ structure, and as such 

overall device efficiency will also be higher. However, the BHJ OPV also has its own drawbacks. 

These are, as in 2.1., its vulnerability to ambient environment, its low (carrier) mobility, the cell’s 

relatively narrow optical absorption bandwidth compared to the solar spectrum which limits its 

photocurrent, device thickness limitations due to low carrier mobility, and that carrier transport is 

highly dependent on temperature due to the disordered structure and “hopping”-type transport [1, 3]. 

 A depiction of a BHJ OPV device structure and operation, including examples of donor-

acceptor material that are typically used in an OPV, are shown in Fig. 2-12(a), (b) and (c) respectively, 

with the illustrations taken from Brabec et al., Nelson and Huang et al [1, 2, 52]. 
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Fig.  2-12 (a). A typical BHJ OPV structure with a microscopic diagram that describes charge generation/operational 
process inside the BHJ (b). Energy level diagram of photon absorption, exciton generation and dissociation into free 
charge carriers inside the OPV’s BHJ layer. (c). Chemical structure of a typical donor polymer (P3HT and MEH-PPV), 
acceptor (PCBM) and hole extraction materials (PEDOT:PSS) used in BHJ OPV [1, 2, 52].  

 

A typical BHJ OPV structure is depicted in Fig. 2-12(a), along with a microscopic diagram that 

describes BHJ operation from photon absorption until carrier generation from the OPV. In a BHJ 

OPV device, the BHJ layer will be sandwiched between a cathode and an anode layer which have 

different work functions, with the cathode work function lower than that of the anode. This difference 

in work function is necessary to improve charge extraction once free carriers are generated from the 

BHJ, as we will see later. The OPV’s anode is usually made of a transparent conductive oxide (TCO) 

with high work function (e.g. indium tin oxide (ITO)) as the anode function is also to pass light 

through to the BHJ since it serves as the OPV front/”window” part. Whereas the OPV’s cathode is 

usually made from low work function metals or combination of metals with low work function, e.g. 

aluminium (Al), lithium fluoride (LiF)/Al, calcium (Ca)/Al and barium (Ba)/Al. Both the anode and 

cathode layer are also covered with additional layers which are respectively, a hole extraction layer 

(HEL) and an electron extraction layer (EEL). The EEL is usually made from an n-type metal oxide 

(e.g. zinc oxide (ZnO), titanium dioxide (TiO2)) that helps with electron extraction from BHJ but also 

protecting the BHJ from unwanted reaction with the cathode material and ambient atmosphere. While 

the HEL is usually made from a conductive polymer such as poly(3,4-ethylenedioxythiophene) 

polymer doped with poly(styrenesulfonate) (PEDOT:PSS), as seen in Fig. 2-12(c). However, one of 

the disadvantages of using PEDOT as an HEL is that it is susceptible to degradation from the ambient 

environment, especially from water due to its hygroscopic nature [57]. In addition, the acid in PSS 

can also trigger the etching of the ITO electrodes in an OPV, which then liberates indium ions from 
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the ITO and cause it to diffuse across the HEL into the BHJ layer, thus degrading the OPV structure 

and its performance [57, 81, 82].  

 Another example of a material that can be used as an HEL and has been shown to have the same 

or better performance as HEL compared to PEDOT is vanadium pentoxide or V2O5 [83-85]. In 2006, 

Shrotriya et al. found that by utilizing V2O5 as a HEL in an organic solar cell structure, they managed 

to prevent the chemical reaction that usually occur between the cell’s ITO electrode and the organic 

semiconductor layer, where cells with the V2O5 as its HEL has similar and even better performance 

in terms of PCE compared to cells with PEDOT as their HEL [83-85]. In addition, as with PEDOT, 

another advantage of using V2O5 as an HEL in an OPV is that it can be deposited on the cell via 

solution processing, thus enabling a low-temperature OPV fabrication that will not damage the OPV’s 

semiconductor layer [85]. In the context of low-temperature processing of V2O5 as an OPV’s HEL, 

recently Alsulami et al. have utilized a solution-processed V2O5-x as the HEL of a BHJ OPV and 

investigate the effect of thermal annealing on the V2O5-x layer [86]. In their research, they compare 

the performance of a BHJ OPV in which the V2O5-x layer was annealed before the BHJ deposition 

with an OPV where its V2O5-x layer was unannealed [86]. They found that the thermal annealing of 

V2O5-x HEL in the OPV does not improve performance significantly in terms of PCE when compared 

to the unannealed devices. Further, they also found that there are no significant PCE differences 

between devices with annealed and unannealed HEL and that as the V2O5-x HEL is annealed at a 

higher temperature, the performance of devices with the annealed V2O5-x HEL decreases as evident 

from the decrease in their PCE [86]. As for the OPV organic semiconducting layer or its BHJ layer, 

it is usually made from a mixture of P3HT: PCBM, or MEH-PPV:PCBM as seen in Fig. 2-12(c). The 

P3HT polymer is chosen as the donor polymer due to its high hole mobility that comes from its high 

degree of molecular ordering (regioregularity/head-to-tail molecular arrangement). While PPV and 

its derivatives (MEH-PPV) is also chosen as a donor polymer in other literature as it can be made 

conductive via doping and that it is abundantly available. Finally, PCBM is chosen as the electron 

acceptor due to its high electron mobility and good miscibility with the OPV’s conjugated polymer 

[52, 57].  

 As depicted in Fig. 2-12(a) and (b), the BHJ OPV operate as follows; incoming photons will 

first pass through the cell’s “window” (the TCO) and transparent anode before arriving in the BHJ 

layer. Once in the layer, photons will be absorbed by the donor polymer and an electron in the donor’s 

HOMO will be excited into its LUMO as in 2.1.2., thus forming an exciton or an excitation state 

within the donor. By themselves, these excitons will not dissociate due to strong coulomb bonding 

between the excited electron-hole pair. The exciton will then diffuse along the polymer chain but will 

not separate into free carriers at the same time. Because of the exciton’s low mobility and short 
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lifetime, its diffusion length will be limited to ~10 nm. Since the donor forms an interface with the 

electron acceptor in a BHJ, and if the distance from the exciton generation site to the interface is less 

than 10 nm, then the probability of the exciton traveling to/arriving at the donor-acceptor interface 

will increase. Once the exciton arrives at the donor-acceptor interface, the exciton will dissociate by 

the electron affinity (Ea) differences between the donor and acceptor layer. With the right selection 

of donor and acceptor material (in terms of their bandgap), the donor-acceptor electron affinity 

difference will be bigger than the exciton binding energy. As such, the cell differences will be 

sufficient to drive carrier separation or transfer the electron and hole from the interface to the 

acceptor’s LUMO and the donor’s HOMO respectively, thus transforming the carrier into an 

(electron) and hole polaron as seen in Fig. 2-12(a) and (b) [1, 2]. In terms of spin, the generation of 

the exciton and its final separation at the interface, followed by the respective hole and electron 

transfer into the donor and acceptor is depicted in Fig. 2-13, taken from Kippelen et al [9]. 

 
Fig.  2-13. An electronic state diagram depicting the BHJ spin states, starting from the ground state (S0) to the first state 
after excitation or the exciton state (S1). This state is then followed by charge-transfer (CT) states, which is where the 
electron and hole are separated at the donor-acceptor interface. Here, there are multiple CT states that can be formed 
during charge transfer from donor to acceptor. These possible states are represented by the lowest (CT1) to the highest 
(CTn). These CT states are also an intermediate transition state before the carrier is separated in the final charge-separated 
state (CS). The different rate constants ki represents different competing transfer rates in the whole process  [9]. 

 

From the spin picture in Fig. 2-13, when the BHJ’s donor electron is in its ground state, it is in a 

singlet state (total spin 0) represented by So. Now when a photon or a single photon is absorbed in the 

donor, the electron will be excited into its first and lowest singlet excited state, represented here by 

S1. Then, after the exciton diffused into the donor-acceptor interface, (hole and electron) carriers will 

separate due to the donor-acceptor electron affinity differences. At this point, carriers will be 

transferred from S1 to the lowest intermediate state, which is called charge transfer CT1, with the 

accompanying transfer rate kCT1. Actually, at CT1, the electron and hole are still under the influence 

of coulomb attraction though the electron and hole are already in the acceptor’s LUMO and the 

donor’s HOMO respectively, thus CT1 having lower energy. At this state, there are 2 possibilities that 

could happen. One is that the electron/hole can experience a geminate recombination and then decay 

back to So with recombination transfer rate kCR, or the other possibility is that, the carriers will proceed 
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to dissociate further to the final free carrier state, which is designated as the charge-separated state 

CS with the separation transfer rate kCS1. Here, kCS1 is bigger than kCR due to possible disorder at the 

interface. In addition, there is also another possibility that can happen once carriers move into the 

charge transfer state. This possibility is that the carrier could be transferred to a higher CT state, which 

is called the CTn states with accompanying transfer rate kCTn. This can happen when electrons/holes 

diffuse further away from the interface, thus resulting in higher energy CT. Then from this higher CT 

state, carriers thus proceed to totally separate and transfer to the final CS state with a higher separation 

transfer rate kCSn compared to kCS1 [9].  

 So once electron and hole polaron have been formed in the acceptor’s LUMO and the donor’s 

HOMO, both carriers must now be transported into the cell’s respective electrodes in order to generate 

photocurrent. This is achieved through the presence of a built-in potential Vbi due to the difference 

between the anode (ΦA) and cathode work function (ΦC) [87, 88]. From 2.2.1, work function 

differences will be present in an organic device where the organic semiconductor is sandwiched 

between two different metal electrodes. If carriers are already present in the semiconductor, carriers 

will redistribute to achieve an energy level alignment with the respective electrodes Fermi level. As 

a result, the semiconductor will experience a band bending at the metal-organic interface which then 

will lead to a build-up of built-in potential Vbi within the semiconductor [67, 88]. The Vbi itself can 

be determined from equation (17) [67, 68]. 

     

e
V CA

bi


  (17) 

     

Where ΦA and ΦC are respectively the anode and cathode work function. Thus, the Vbi will effectively 

separate carriers, and carriers will then travel via thermally assisted tunneling/”hopping” mechanism 

into the respective electrodes [87, 88]. So the electron will move from the fullerene acceptor and on 

to the EEL until finally arriving in the cathode. The hole meanwhile, will move from the donor 

polymer, towards the HEL and on to the anode. Thus photocurrents are generated from the electrodes 

[9]. In order to characterize any solar cell performance, we usually obtain the cell’s DC current 

density-voltage or J/V characteristics [89] as depicted in Fig. 2-14, taken from Grossiord et al [57]. 

We first do this by illuminating the cell with an air mass (AM) 1.5 light at an active area A. An AM 

1.5 illumination is a (white) light standard that matches the sun spectral intensity distribution as it is 

received on the earth’s surface at an angle of 48.2o to the normal direction. We then measure the cell’s 

current density J (A/m2) by sweeping the cell’s voltage V from highest to lowest V under AM 1.5 

light which then leads to the DC current-density or J/V characterization sweep as seen in Fig. 2-14. 
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The current density J here is the cell’s measured current with respect to the cell’s AM 1.5 illuminated 

active area A [57, 89]. 

 
Fig.  2-14. A solar cell’s DC current density-voltage or J/V characteristics under AM 1.5 light that depict several of the 
cell’s DC parameters, i.e. Voc, JSC, VMPP, JMPP and fill factor or FF [57]. 

 

In addition to the J/V characteristics, we can also obtain the cell’s power density-voltage (PD/V) 

characteristics by multiplying the measured current density J under AM 1.5. light with the cell’s 

sweeping voltage V to construct a power density PD (in W/m2 or mW/cm2) profile [90]. An example 

of this profile is depicted in Fig. 2-15, taken from Zhan et al [91]. The PD here is the power density 

with respect to illuminated area A. 

 
Fig.  2-15. A solar cell’s several DC power density-voltage or PD/V characteristics under AM 1.5 light, where each PD/V 
curve depicts a maximum peak, which is called the maximum power point (MPP), and the voltage and current density at 
that point being VMPP and JMPP respectively [91]. 

 

From Fig. 2-15, we then obtain the cell’s power density-voltage characteristics from the lowest to the 

highest voltage under AM 1.5 light. Here the PD/V curve has a maximum point which is called the 

maximum power point (MPP), in which the current density and voltage is at its maximum point, i.e. 

at JMPP and VMPP respectively. The MPP point also corresponds to the point in Fig. 2-14 J/V 

characteristics where JMPP and VMPP intersect [90]. Therefore from Fig. 2-14 and 2-15, we obtain 

several DC parameters that can be used to assess the cell’s DC performance. These are; its open-
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circuit voltage or Voc (V), short-circuit current density or JSC (A/m2, more often mA/cm2), VMPP (V), 

JMPP (A/m2 or mA/cm2), fill factor or FF, power conversion efficiency or PCE (in %), external 

quantum efficiency ηEQE, absolute series resistance Rs (Ω) and shunt resistance Rsh (Ω), and also 

specific series and shunt resistance, i.e. Rs-spec (Ωcm2) and Rsh-spec (Ωcm2) respectively. The VOC is the 

cell’s voltage under an open-circuit condition or when current density J = 0 at Fig. 2-14. In an OPV, 

Voc is determined by the difference between the donor’s HOMO and the acceptor’s LUMO and is also 

a function of temperature. While JSC is the cell’s current density under a short-circuit or when V = 0 

at Fig. 2-14. Finally, FF is the ratio of the maximum cell’s power to maximum theoretical power 

output, which is defined by equation (18) below: 

    

SCOC

MPPMPP

JV

JV
FF   (18) 

    

where VOC (V), JSC (A/m2), VMPP (V) and JMPP (A/m2) have been elaborated before. The FF is 

represented by the shaded blue area in Fig. 2-14. and it represents the quality of carrier extraction 

from the cell. In other words, FF is dependent on the cell’s intrinsic properties with respect to carrier 

extraction. The OPV’s overall power conversion efficiency (PCE) is defined by equation (19) below: 

 

in

SCOC

P

FFJV
PCE   

(19) 

 

where Pin is the incident light power (in W) and PCE is in %. Then, the OPV’s external quantum 

efficiency ηEQE is defined by equation (19) below: 

    

CCEDAEQE    (20) 

     

The OPV’s external quantum efficiency ηEQE is actually the sum of the OPV’s entire micro processes 

efficiencies, e.g. photon absorptions, exciton dissociation at the donor-acceptor interface and carrier 

transport to the cell’s electrode. In other words, it represents the number of photons that are really 

converted into electrical current. While ηA is the light absorption efficiency and represents the 

probability of photon absorption, ηED being the exciton diffusion efficiency, representing the excitons 

that are able to arrive in the donor-acceptor interface and ηCC being the carrier collection efficiency, 

which is the probability of a liberated carrier reaching the cell’s electrode. To add, Rsh-spec or specific 

shunt resistance (in Ωcm2) can be determined from the inverse of the J/V characteristics slope near 
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VOC in Fig. 2-14. Meanwhile, Rs-spec or series resistance (in Ωcm2) can be found from the inverse of 

the J/V characteristics slope near JSC in Fig. 2-14. Also, Rsh or absolute shunt resistance (in Ω) is the 

cell’s shunt resistance without reference to the cell’s illuminated active area A, with Rsh = Rsh-spec/A. 

While, Rs or absolute series resistance (in Ω) is the cell’s series resistance that is also without reference 

to the cell’s A, with Rs = Rsh-spec/A. Hence the shunt resistance Rsh represents carrier losses or current 

leakage within the cell that can occur due to the presence of short circuit connection or carrier 

recombination. Whereas Rs represents the cell’s layers and contact resistance. In addition, the Rsh-spec 

and Rs-spec represent the cell’s Rs and Rsh with respect to its illuminated active area. Therefore, both 

Rsh and Rs will influence the OPV’s FF. As we will see later, Rsh and Rs can be modeled as electrical 

resistances in an OPV-equivalent circuit. Thus in the circuit, it is desirable to have Rsh >> R so as to 

prevent carriers from recombining/leaking within the cell and reducing the overall OPV’s 

photocurrents.  

 So the drawback from the cell’s DC J/V characteristics and its measured parameters is that the 

change in one parameter can be ascribed to different causes and phenomenon, similar to what we 

observe with Rsh and Rs [16, 92]. Hence, the dynamic characterization in the form of intensity 

modulated spectroscopy (IMS) offers the potential to accurately assign the changes occurring in a 

measured parameter to a specific phenomenon/dynamics in the cell [16, 50, 92].  

 

2.4 Organic Light-Emitting Diode (OLED) 

 Another organic semiconductor devices that will be discussed in this work are organic light-

emitting diodes (OLED). An OLED is a light-emitting diode/electroluminescent device in which the 

emissive semiconductor/component is made of small organic molecules and conjugated polymers. 

Examples of emissive materials from small molecules are, tris(8-hydroxyquinoline) aluminium(III) 

or Alq3 as a green emitter, tetraphenyl dibenzoperiflanthene or DBP as a red emitter and 9,10-

bis(3’5’-diaryl)phenyl anthracene or DPA as a blue emitter. While examples of emissive materials 

from conjugated polymers are, poly(9,9-dihexylfluorenyl-2,7-diyl) as a blue emitter, poly(p-

phenylene vinylene) or PPV as a green emitter and poly(2,5-di(hexyloxy)cyanoterephthalylidene) or 

CN-PPV as a red emitter. Hence from the examples, an OLED’s colour depends entirely on its organic 

material band gap [93-95]. The first electroluminescent device made from anthracene crystals was 

reported in 1963 by Pope et al [96]. By 1969, Dresner et al. had developed the first practical 

electroluminescent device with anthracene as the organic material [97]. In another milestone, in 1987 

Tang and VanSlyke fabricated the first modern (thin film) multi-layer OLED as we know it today by 

using Alq3 as the emissive material [98]. This OLED was reported to have a ηEQE ~1% and a power 

efficiency ~0.46 m/W. In 1990 Bradley et al. developed the first OLED device that used conjugated 
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polymer, i.e. PPV as the emissive material [99]. This OLED’s ηEQE was reported to be ~ 8%. As 

recently as 2015, Song et al. reported an OLED that is made from an anthracene derivative organic 

material with a ηEQE ~ 14.8% [100].  

 As mentioned before in 1.1, research on OLED is growing rapidly due to their future potential 

as flat panel displays and lighting applications [4]. The reason for this interest in OLED and its 

characteristics, especially with regards to its potential in display and lighting applications are as 

follows, first, its ability to be fabricated via low-temperature solution processing with low energy cost 

and that it can be made on top of a flexible substrate [4, 95]. In addition, as a display, the OLED has 

the advantage of being flat and lighter in weight, having a higher (display) resolution, good 

brightness, good contrast and colour variation and also its ability to operate at a very low voltage [95]. 

However, the OLED also has its own drawbacks. These are, as in 1.1., its vulnerability to the ambient 

environment, its low carrier mobility, low emission efficiency and its broad emission spectrum due 

to the organic nature of the OLED’s emissive layer [95]. A depiction of an OLED device structure 

and operation, including examples of the emissive layer (small organic molecules and conjugated 

polymers) that are typically used in an OLED, are shown in Fig. 2-16(a),(b) and Fig. 2-17(a),(b) 

respectively, with the illustrations taken from Brütting et al., Kalyani et al., Shinar et al., So et al. and 

Kan et al [95, 101-103]. 

 
Fig.  2-16 (a). A typical multi-layer OLED structure with (b). an energy level diagram that describes charge 
generation/operational process inside the OLED’s organic materials [103]. 

  

 From Fig. 2-16(a), the emissive layer will be sandwiched between a cathode and an anode layer 

which have different work functions, with the cathode work function (ΦC) lower than that of the 

anode (ΦA). From 2.2.1., this difference in work function is necessary to increase charge injection 

into the emissive layer, because it will define the OLED forward bias condition by minimizing the 

injection barrier in both electrodes [68]. The OLED’s anode is usually made of a transparent 

conductive oxide (TCO) with high work function (e.g. ITO), where its (the anode) function is to inject 

holes into the emissive layer. In addition, the anode will later serve to channel light out from the 
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emissive layer, since it (anode) is basically the OLED ”window” part. Whereas the OLED’s cathode 

is usually made from low work function metals or a combination of metals with low work function, 

e.g. aluminium (Al), lithium fluoride (LiF), silver (Ag), LiF/Al and calcium (Ca)/Al. Here, the 

cathode function is to inject electrons into the emissive layer. Both the anode and cathode layer are 

also covered with additional layers which are respectively, a hole injection layer (HIL) and an electron 

injection layer (EIL). The EIL is usually made from small organic molecules, e.g. 2,2’,2’’- (benzene-

1,3,5-triyl)-tris(1-phenyl-1H-benzimidazole) or TPBi, that helps with electron injection to the 

emissive layer and blocks hole flowing into the cathode. An EIL material must have a good electron 

injection and hole blocking efficiency, and also high glass transition temperature Tg which results in 

a material with high thermal stability. The HIL is also made from small organic molecules such as 

copper phthalocyanine or CuPc and PEDOT:PSS, that helps with hole transport and blocks electrons 

flowing into the anode. An HIL material needs to have a good hole transport and electron blocking 

properties, and also high Tg so that the material will have a high thermal stability. Note that the HIL 

must also be transparent like the anode and also transparent in the red, blue and green wavelength 

range to channel the light emission out of the emissive layer [54, 95, 103]. Also, the EIL and HIL 

chemical structure can be found in Fig. 2-17(b). An OLED uses either small organic molecules or 

conjugated polymers as the emissive layer. In terms of colour, an OLED typically emits either a white 

colour from the combination of slower colours or a single colour from the emissive material. There 

are two ways an OLED can combine different colours to emit white light. First, the OLED can 

combine red, green and blue emitters in a lateral manner or two, the OLED can combine a blue emitter 

and a yellow phosphorescence material in a stacked manner within the emissive layer as illustrated 

in Fig. 2-18(a). and (b) respectively from So et al [93]. 

 
Fig.  2-17. Chemical structure of a typical (a) polymer and small organic molecules fluorescence emitter, and (b) hole 
injection layer (CuPc) and electron injection layer (TPBI) materials that are used in an OLED. Note that the colour emitted 
from the polymer and small molecules examples follows the colour spectrum identifier above them, e.g. DPA and DBP 
are respectively, a blue and red emitter [95, 101-103].  
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Fig.  2-18. An OLED can emit white light from (a). the lateral configuration of red, green and blue emitters or (b). stacked 
configuration of the blue emitter and yellow phosphor in the emissive layer [93]. 

  

 In Fig. 2-18 scheme, a single colour emitter can act as a host organic material while the other 

colour/other two colours act as a dopant material. Continuing, the OLED emissive layer can be made 

from a mixture of host 4-(10-(3’,5’-diphenylbiphenyl-4-yl)anthracen-9-yl)-N,N-diphenylaniline or 

TATa molecules doped with a carbazole derivative, TCBzC as a green dopant and 4-

(dicyanomethylene)-2-t-butyl-6(1,1,7,7-tetramethyljulolidyl-9-enyl)-4H-pyran or DCJTB as a red 

dopant, which will results in a white emission from the OLED. Thus, the TATa, DCJTB, and TCBzC 

were chosen due to them being a blue, red and green emitter respectively. Also, the OLED emissive 

layer can be made from either poly(9,9-dihexylfluorenyl-2,7-diyl) as a blue emitting polymer, or from 

poly(p-phenylene vinylene) (PPV) as a green emitting polymer, or from poly(2,5-

di(hexyloxy)cyanoterephthalylidene) (CN-PPV) as a red emitting polymer [93, 94]. The chemical 

structure of all the small organic molecules and polymers emitters in this paragraph can be found in 

Fig. 2-17(a). 

  From Fig. 2-16(b), an OLED operate as follows; first, an external voltage of a few volts is 

applied across the OLED so that both electron and holes will be injected from opposite electrodes, 

with electrons injected from the cathode and hole from the anode (represented by step  no. 1 in Fig, 

2-16(b)). Here, the injection is similar to that describe in 2.2.1. The two free carriers will then travel 

first towards the the EIL (for electrons) and HIL (for holes), before finally meeting each other in the 

emissive layer. As they (carriers) travel, a built in voltage Vbi will appear in a similar process as 

described in 2.3 due to the work function differences between the OLED electrodes, the Vbi can also 

be determined from equation (17) [67]. Therefore, the applied external voltage V must be set to 

overcome this built-in voltage so that both carriers can flow into the OLED. Further, if we apply more 

V bias, we will obtain more current and consequently, brighter OLED. Both electrons and holes will 

travel by way of thermally assisted tunneling/”hop” from one localized state to another in the OLED. 

In other words, both carriers transform into electron and hole polarons that are traveling towards the 
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emissive layer from opposite sides (represented by step no. 2 in Fig. 2-16(b)). Once both carriers meet 

each other in the emissive layer, exciton formation will then occur and both carriers become an 

electron-hole (bound) pair (represented by step no. 3 in Fig. 2-16(b)). Finally, the newly formed 

exciton can then decay/recombine with each other and emit light (represented by step no. 4 in Fig. 2-

16(b)). Note that for the small molecules based emissive layer, the carrier recombination area is 

narrower than that of polymer-based ones [103]. We can also depict the OLED’s light excitation 

process in terms of spin as illustrated in Fig. 2-19 [104].  

 
Fig.  2-19. An electronic state diagram depicting OLED operation in terms of carriers spin. To begin with, both carriers 
started from the excitation/exciton state (1S1). Then from 1S1 carriers can decay into the ground state (1S0) through several 
pathways, one is through fluorescence (in blue), the other is via phosphorescence (in red) with triplet exciton (3T1) and 
intersystem crossing and then finally third, through fluorescence quenching (not shown) [104]. 

 

From the spin picture in Fig. 2-19, both carriers will first be in their singlet excited state, as 

represented by 1S1. Carriers can then decay to the ground state/singlet state 1S0 through several ways, 

one is through fluorescence (in blue), the second is via phosphorescence (in red) and then third, 

through fluorescence quenching (not shown). As in 2.1.3. when carriers decay via fluorescence, it is 

from the singlet excited state 1S1 to the singlet (ground) state 1S0. The time scale τ for this process is 

~ ns. Again as in 2.1.3., if carriers choose to decay via the phosphorescence route, they will first decay 

via the intersystem crossing mechanism (ISC) into a triplet state 3T1 which is then followed by the 

decay of 3T1 to 1S0. The ISC of course very rarely happens by itself, and it usually occurs through LS 

interaction by adding atoms with high atomic numbers Z [64, 65]. The time scale τ for 

phosphorescence is, of course, longer, hence τ ~ μs. Finally, carriers can also decay in a non-radiative 

manner from 1S1 to their ground state (1S0) without emitting any light. Also as in 2.1.3, the majority 

of excitons that are produced in OLED or devices where both electrons and holes are injected, will 

be triplet (3T1) excitons, with the remaining being a singlet exciton (1S1). This is because excitons in 

these devices will be a combination of both electron and hole polaron, and from Table II in 2.1.3 there 

are three ways to obtain a triplet exciton but there is only one way to obtain a singlet exciton. Thus 

in OLEDs, roughly 3 (75%) out 4 excitons will be triplet, while the rest (25%) will be singlet [64, 

65]. 
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 To characterize any LED performance, we first obtain the cell’s DC current density-voltage or 

J/V characteristics by applying a voltage V to the OLED, from the lowest to the highest, and then 

measure its current density J at active area A within the applied voltage range [105] as in Fig. 2-20 

example, taken from Chung et al [106].  

 
Fig.  2-20. Example of an OLED’s DC current density-voltage or J/V characteristics [106]. 

 

From Fig. 2-20, we can then obtain several DC parameters from the cell’s J/V characteristics that can 

be used to assess its DC performance. These are its turn-on voltage or Von (V), turn-on current density 

or Jon (A/m2, more often mA/cm2), and differential resistance Rdiff (Ω). The Von is the voltage where 

the OLED’s current started to rise exponentially in Fig. 2-20. So in the above picture, we can see that 

Von ~ 5.7 V for all three plots. Also, Jon is the current density at Von. The differential/dynamic 

resistance (Rdiff) is a measure of how much the OLED’s current density will change if we vary the 

voltage by a very small amount. In other words, Rdiff is an intrinsic property of the OLEDs, i.e. its 

intrinsic resistance. Rdiff can be found from the slope of the J/V curve near the Von point [105-107]. 

 In addition, we also characterize an OLED light intensity or luminance L with respect to its 

applied voltage V. In order to do this, we measure the cell’s DC luminance-voltage or L/V 

characteristics by applying a voltage V to the OLED, from the lowest to the highest, and then measure 

its luminance L at that voltage range by using a luminance/light meter Then, we can plot the L/V 

characteristics as seen in Fig. 2-21 example, taken from Abedi et al [37].  

 
Fig.  2-21. An example of an OLED’s DC luminance-voltage or L/V characteristics [37]. 
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From Fig. 2-21, we can then obtain the OLED’s turn-on luminance or Lon (cd/m2). The Lon is, of 

course, the OLED’s luminance at Von or the point where the luminance starts to change in slope. At 

Fig. 2-21 plot, for example, Lon ~ 500 cd/m2 at Von ~ 11 V. Also, to determine an OLED’s turn-on 

voltage (Von) and luminance (Lon), we can alternatively plot both the OLED’s J/V and L/V 

characteristics in a semi-log manner. For example, we can plot both J and L measurements from an 

OLED logarithmically with respect to the applied voltage V. This is shown in an OLED J/V and L/V 

plot example in Fig. 2-22, taken from Bange et al [108]. 

 
Fig.  2-22. An example of an OLED’s DC J/V and L/V characteristics plot in a semi-log manner. The left-pointing arrow 
refers to J/V plot, while the right-pointing ones refer to the L/V plot [108]. 

 

From Fig. 2-22, we can see that both J and L are presented in a semi-log manner with respect to the 

applied voltage V. We can then define the OLED’s turn-on voltage (Von) and luminance (Lon) from 

Fig. 2-22 as the voltage where respectively the J/V and L/V plots intercepted the x/voltage axis. Hence, 

from Fig. 2-22, the Von  ~ 0.5 V and Lon ~ 0.01 cd/m2. 

  Finally, we can also determine the OLED’s external electroluminescence quantum efficiency 

ηEQE, which is defined by equation (20). 

    

OUTeffTSEQE q  /  (21) 

  

where γ is the carrier balance factor, which describes whether or not there are an equal number of 

electron and holes injected into the OLED, and also how many of those carriers then bounded together 

to become excitons. While ηS/T is the fraction of excitons that manages to decay radiatively according 

to theoretical calculations. In addition, qeff is the actual fraction of excitons that do manage to decay 

radiatively. Also, ηOUT is the actual fraction of generated photons produced by the OLED [103]. The 

drawback from an OLED’s DC J/V and L/V characteristics is that similar to DC characteristics on 

OPV, changes in one parameter can be ascribed to changes in different OLED parameters. Further, 
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the DC parameters that we can get from a J/V and L/V plot is much less compared to that of an OPV’s 

I/V characteristics [109]. Thus, intensity modulated spectroscopy (IMS) offers the potential to 

characterize an OLED and accurately assign a measured parameter to a specific OLED dynamics. 

 

2.5 Light-Dependent Resistor (LDR) 

 In this work, we will also characterize a commercial light-dependent resistor (LDR), i.e. a 

cadmium sulfide (CdS)-based LDR to test our IMS instrument setup. A light dependent resistor 

(LDR)/photoresistor is a resistor that can reduce its resistance when illuminated by light. An LDR is 

made from a light-sensitive semiconductor, in which the resistance is high under dark and decreases 

under illumination. Examples of semiconductors used in LDR are cadmium sulfide, lead sulfide, 

germanium, silicon, and gallium arsenide. Here, we will discuss CdS-based LDR as these constitute 

the majority of commercial LDR that are widely available in the market today. Photoresistance or 

photoconductivity was first discovered by W. Smith in 1873 when he observed that the electrical 

resistance of selenium (Se) varied considerably with the amount of light on it. Ever since then, 

different varieties of photoresistor device have been made. By 1920, T.W. Case has already conducted 

intensive investigations to search for a new material candidate for a photoresistor device [110]. Thus 

by this time, the device technology has been very well-established. Today, LDRs have been used for 

many applications, to name a few, LDR or CdS-based LDR have been used for smoke detectors, card 

readers, photographic light meter and lighting controls for street lamps. This ubiquitousness is due to 

its attractive properties such as they are cheap and widely available, having a simple structure and 

also rugged characteristics [111]. However LDR properties also vary greatly depending on the 

constituent materials properties, and that it is also an inaccurate measurement component. A depiction 

of an LDR device structure, top view and the CdS structure used as LDR is depicted in Fig. 2-23(a), 

(b), and (c) respectively [110].   

 
Fig.  2-23. A depiction of (a) LDR device structure, (b) top view and (c) the CdS crystal structure in LDR [110]. 
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 The semiconductor (represented by (“n-“) in Fig. 2-23(a)) is slightly doped to improve 

conduction, and it is placed between two metal contacts. In Fig. 2-23(b) top view, the semiconductor 

is placed on top of an insulating substrate. Also, the semiconductor area between the contacts is in 

the form of an interdigital pattern to maximize the exposed area and keep the contact distance small 

to minimize carrier resistance. Meanwhile CdS in Fig. 2-23(c) has a hexagonal (wurtzite) structure 

for LDR application, with CdS a direct band gap semiconductor with a band gap = 2.42 eV. Further, 

this structure also depends on the CdS manufacturing method and temperature [110]. Normally CdS 

LDRs are made from sintering, with the electrodes added later after CdS fabrication [110]. Also, an 

LDR itself always operates under a DC voltage bias (Vbias). Under dark condition, the LDR resistance 

will be very high, hence, currents from the applied Vbias that flows in the LDR will be very small 

[111]. But when light falls upon the semiconductor, the LDR resistance will decrease rapidly, thus 

allowing much larger current from the Vbias to flow through the LDR. So here we can see an 

opportunity to characterize the LDR with light modulation-based characterization due to its light-

sensitive properties. In addition, intensity modulated spectroscopy (IMS) offers the potential to 

characterize an LDR parameter and accurately assign a specific internal dynamics occurring within 

the LDR. 

 

2.6 Alkaline Battery 

 Aside from conducting IMS on organic devices and CdS-based LDR in this work, we also 

perform IMS characterization on a 1.5 V alkaline battery. A battery or an electrochemical cell is 

basically a device that operates by converting chemical energy into electrical energy through 

electrochemical discharge reactions. Batteries usually consist of one or more cells, with each cell 

having an anode, cathode, separator and electrolyte. Further, there are two types of cells, one is 

primary and the other is secondary. Primary cells are non-rechargeable batteries and must be replaced 

once reactants are depleted inside the battery. Secondary cells are rechargeable and need a DC current 

source to restore reactants to their fully charged state. Examples of primary cells are, carbon-zinc, 

alkaline-manganese and lithium cells. While those of secondary are, lead-lead dioxide, nickel-

cadmium, and lithium-ion. Batteries are assessed in terms of their nominal voltage and ampere-hour 

capacity. The voltage rating is based on the number of cells connected in series in a battery and the 

nominal voltage of the individual cell (e.g. 1.2 V for nickel-cadmium). Ampere-hour (Ah) capacity 

is a fully charged battery parameter that depends strongly on the battery temperature, discharge rate 

and age [112]. In this work, we will only discuss the alkaline-manganese type/alkaline battery. 

 In 1800, Alessandro Volta discovered the first true battery known as the voltaic pile. It consists 

of pairs of copper and zinc discs piled on top of each other and separated by a layer of cloth soaked 
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by saltwater. By 1836, John Frederic Daniell had invented the first practical battery that consisted of 

a copper pot filled with a copper sulfate solution, where an earthenware pot is filled with sulfuric acid 

and a zinc electrode. The earthenware barrier was designed to be porous so ions can pass but kept the 

copper sulfate and sulfuric acid from mixing with each other. Then in 1886, Carl Gassner invented 

the first dry cell battery without liquid electrolyte. This was called the zinc-carbon battery. Finally, 

in 1955, Lewis Urry invented the first alkaline battery that consists of a manganese dioxide cathode, 

a powdered zinc anode and an alkaline electrolyte [113]. A cutaway of an alkaline battery structure 

is depicted in Fig. 2-24 [114]. 

 
Fig.  2-24. A cutaway of an alkaline battery [114]. 

  

 Whereas the negative cover/cathode is the nail-shaped object that extends up to the battery 

center. This object function is to “collect” currents from the electrolyte and connect it to the cathode 

bottom part. The electrolyte is a mixture of potassium hydroxide, water, and other chemicals. The 

electrolyte envelops the brass nail while a mixture of carbon and manganese dioxide surrounds the 

electrolyte. This outer layer (carbon-manganese) is separated from the electrolyte by a thin polyester 

fabric layer. The outer case being just a simple metal case without any significance [114]. A battery 

is designed to keep the cathode and anode separated to prevent a reaction from occurring. The battery 

will only operate if we complete the connection between the cathode and anode with an external 

circuit [114]. In this event, the manganese dioxide cathode is then reduced and the zinc anode 

becomes oxidized, according to the following reaction [114]: 

  

Zn + 2MnO2 + H2O → ZnO +2MnOOH 

 



 
Page | 59  

During this reaction, water is consumed and a hydroxyl ion (OH-) is produced by MnO2 cathode under 

the following reaction [114]: 

 

        2 MnO2 + 2 H2O+ 2 e → 2MnOOH + 2OH-  

 

At the same time, the anode consumes the hydroxyl ions and produced water as well: 

 

Zn + 2 OH- →ZnO +H2O + 2 e. 

 

The electrons (e) generated in the last reaction are then used to power devices. The reaction rate is 

dependent on the quality of the raw materials and availability of water and hydroxyl ions during the 

reaction. The stronger attraction for electrons by the manganese dioxide will pull electrons from the 

zinc anode electrode through the wire in the circuit to the cathode electrode. This flow of electrons 

will then be the electricity produced by the battery. Here, we see an opportunity to characterize 

chemical reaction dynamics in the battery with IMS and then assign the measured parameter in IMS 

to a specific chemical reaction [115]. 
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Chapter 3 
Preparation of Organic Semiconductor Devices 

3.1 Preparation and Characterization of Organic Photovoltaic (OPV) Devices 

  As elaborated in 1.1, we perform IMS characterization on two different organic 

semiconductor devices, one is a bulk heterojunction (BHJ) OPV device and the other is an organic 

light-emitting diode (OLED). Two types of BHJ OPV devices were characterized, one is a BHJ with 

poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) hole extraction layer (HEL) 

and the other is a BHJ with vanadium pentoxide (V2O5-x) HEL, with both types having the same BHJ 

mixture. In view of the disadvantages of using PEDOT as the HEL in an OPV as described in 2.3, 

here, we also characterize BHJ OPV devices with V2O5-x as an alternative HEL to PEDOT in an OPV 

device. In addition, we also characterize such OPV (OPV with V2O5-x HEL) to investigate its 

dynamics and the effect of thermal annealing on the V2O5-x HEL before the BHJ deposition. Hence, 

we varied the devices with V2O5-x HEL were varied by HEL annealing/non-annealing before 

preparation. We perform IMS on OPV with non-annealed, 100, 200, 300 and 400 oC annealed HEL 

before preparation. All OPV BHJ with PEDOT:PSS and V2O5-x HEL were prepared and provided by 

Mr. Abdullah Alsulami, University of Sheffield, Sheffield UK. All OLEDs were prepared and 

provided by Mr. Thomas Routledge, also from The University of Sheffield, Sheffield, UK. In total 

for our IMS characterizations, 2 OPV devices with PEDOT:PSS, 4 OPV devices with V2O5 HEL and 

3 OLEDs were prepared. In addition, DC characterizations on all the prepared OPV were conducted 

and provided by Mr. Abdullah Alsulami, University of Sheffield, UK. While DC characterized on all 

the OLED were conducted and provided by Mr. Thomas Routledge, University of Sheffield, UK. In 

this chapter, we will briefly describe OPV preparation and DC characterization results, while OLED 

preparation and DC characterization results will be given in the next chapter. 

 

3.1.1 Preparation of BHJ OPV with PEDOT:PSS HEL  

 First, a BHJ OPV with PEDOT:PSS HEL was prepared. For the OPV’s BHJ layer a blend of 

the low bandgap, hole transporting, PFDT2BT-8 donor polymer, and an electron accepting C70 

derivative, PC70BM, was prepared. The BHJ donor-acceptor materials and illustration of the OPV 

structure are depicted in Fig. 3-1 taken from Waters et al., Huang et al. and Griffin et al [52, 116, 

117]. 
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Fig.  3-1 (a). A cutaway and top view of the prepared BHJ OPV device, with (b) the BHJ’s donor-acceptor and the cell’s 
hole extraction layer material and (c) The energy level diagram of the device constituent layers. Here, PFDT2BT-8 is 
poly[9,9-dioctylfluorene-4,7-alt-(5,6-bis(octyloxy)-4,7-di(2,2′-bithiophen-5-yl)benzo[c][1,2,5]thiadiazole)-5,5-diyl], 
PC70BM is [6,6]-Phenyl-C71-butyric acid methyl ester and PEDOT:PSS is poly(3,4-ethylenedioxythiophene) polymer 
doped with poly(styrenesulfonate) [52, 116, 117]. 

 

From Fig. 3-1(a) and (b), each device consists of 6 individual OPV cells which are called pixels. 

Here, a total of 1 device (or 6 pixels/cells) was prepared for IMS characterizations. We later perform 

IMS on 1 cell from the prepared device. The OPV structure, as depicted in Fig. 3-1(a) and (b), consists 

of a BHJ layer that is sandwiched between two electrodes, one is an Al/Ca top contact and the other 

is an indium tin oxide (ITO) coated substrate, with both electrodes having different work functions. 

This difference in work function is necessary to improve charge extraction once free carriers are 

generated from the BHJ, as mentioned in 2.4. From Fig. 3-1(c) energy level diagram, the OPV’s 

anode, i.e. ITO has a higher Fermi energy level compared to that of the OPV’s cathode, i.e. calcium 

(Ca)/Al layer. As a consequence, there will be a difference in work function between both electrodes, 

with the PEDOT:PSS work function being higher than that of the Aluminium’s. Hence, electrons will 

flow towards the direction of the Aluminium electrode and holes towards the ITO electrode. Further, 

between the electrodes and the BHJ layer, charge extraction layers were inserted to improve carrier 

transport and protect the BHJ from reaction with the electrodes. Hence, an electron extraction layer 

(EEL) is deposited between the cathode and BHJ, and a hole extraction layer (HEL) is deposited 

between BHJ and the anode. Here, as seen in Fig. 3-1(c), PEDOT:PSS is used as the HEL since it has 
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a higher HOMO level compared to that of the PFDT2BT-8:PC70BM (BHJ) layer. While the Ca layer 

is used as the EEL as its high Fermi energy prevent holes from flowing towards it, but at the same 

time allowing electrons to flow to it from the BHJ layer. Also, the OPV’s front part is the ITO coated 

substrate, which means that the device follows standard BHJ OPV structure as described in Fig. 2-

12(a).  

 For OPV preparation, PEDOT:PSS was purchased from Ossila Ltd, while PFDT2BT-8 was 

synthesized in the Department of Chemistry at the University of Sheffield via a previously reported 

method, and had a molecular weight of 91.6 kDa and a polydispersity index (PDI) of 1.47 [116]. 

Also, PC70BM was purchased from Ossila Ltd with a purity of 95% (5% PC60BM). The BHJ layer 

solution was prepared by mixing PFDT2BT-8 and PC70BM at a weight ratio of 1:4 in chloroform 

with an overall concentration of 20 mg/mL. Subsequently, the solutions were placed onto a hot plate 

at 55 °C for a few hours before they were filtered through a 0.45-μm PTFE filter. All devices were 

fabricated onto 15 x 20 mm2 of pixellated cathode design glass substrates that were supplied by 

Ossila. These substrates are sold pre-patterned with a 100 nm layer of Indium Tin Oxide (ITO). Prior 

to use, the substrates were sonicated in a warm cleaning solution of either NaOH (10 wt% in water) 

or Hellmanex (2 wt%) from Hellma Analytics GmbH & Co. KG, Germany, for 10 minutes and then 

deionised in water for 5 minutes followed by warm IPA for 5 minutes. Finally, they were dried with 

nitrogen gas PEDOT:PSS film with (30 nm ± 3 nm) thickness was spin cast in ambient conditions 

and then was annealed at 130 °C for 30 minutes in glove box environment. The PEDOT:PSS 

annealing temperature was set to 130 °C since it is known from literature that PEDOT will 

degrade/becomes unstable if heated at temperatures above 150 °C [118]. The active semiconductor 

layer was prepared by spin casting the solution onto a substrate at a spin speed of 3000 rpm in order 

to obtain an active film with a thickness of 70 nm ± 3 nm. The bi-layer cathodes of Ca (5 nm) and Al 

(100 nm) were evaporated at a rate of 3 Å/s and 10 Å/s. Here, Al/Ca layer is chosen as the cathode 

due to its low work function while ITO is chosen as the anode because of its high work function. The 

entire active device area AD = 2.86 mm2 is defined by the overlapping of the individual metallic top 

contact and the single ITO square. Finally, the central area of each substrate was encapsulated by 

using a glass slide and light-curable epoxy. The light-curable epoxy used here is the E131 

Encapsulation Epoxy from Ossila Ltd., UK. The encapsulation was done to prolong the cells lifetime 

for characterizations and storage. 

 

3.1.2 Preparation of BHJ OPV with V2O5-x HEL 

 For our characterization, five varieties of BHJ OPV with V2O5-x HEL were prepared. The OPVs 

were varied by having the V2O5-x HEL annealed/unannealed before preparation. These variations are: 
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OPVs with non-annealed, 100, 200, 300 and 400 0C annealed V2O5-x before preparation. We use the 

V2O5-x as the HEL in this research besides PEDOT:PSS to find an alternative HEL that would not 

degrade the OPV and its organic semiconductor layer, adaptable to the different type of solar cells 

and has similar or even better performances compared to PEDOT HEL in an OPV [57, 83]. In 

addition, we vary the devices V2O5-x HEL annealing temperature before the BHJ deposition, in order 

to investigate the effect of thermal annealing on the respective OPVs dynamics and compare these 

(dynamics) to that found in OPV with unannealed V2O5-x HEL. Also, the devices use the same BHJ 

mixture, i.e. PFDT2BT-8:PC70BM, and the same OPV structure and electrodes as those in 3.1.1. 

Hence, a total of 5 devices (or 30 pixels/cells) were prepared for IMS characterizations. We later 

perform IMS on 1 pixel/cell (5 pixels in total) from each prepared device. From 2.3, the V2O5-x was 

used as an alternative HEL to PEDOT since it has been shown that cells with the V2O5 as its HEL 

have similar and even better performance in terms of PCE compared to cells with PEDOT as their 

HEL [83-85]. In addition, the advantage of using V2O5 as an HEL is that it can be deposited on the 

cell via solution processing, thus enabling a low-temperature OPV fabrication that will not damage 

the OPV’s semiconductor layer [85].  

 For the organic photovoltaics preparation, vanadium (V) oxytriisopropoxide or 

(OV(OCH(CH3)2)3 was purchased from Sigma-Aldrich (Dorset, UK) and was blended with 

isopropanol/IPA (99.5%) at a 1:250 volume ratio to obtain a solution with 4 mg/mL-1 concentration. 

PEDOT:PSS was purchased from Ossila Ltd., Sheffield, UK, while aluminium (99.99%) and calcium 

(99%) were purchased from Sigma-Aldrich (Dorset, UK). Also, PFDT2BT-8 as a donor polymer was 

prepared at the University of Sheffield via a previously reported method and had a molecular weight 

of 91.6 kDa and a polydispersity index (PDI) of 1.47 [116]. In addition, PC70BM was also purchased 

from Ossila Ltd with a purity of 95% (5% PC60BM). The BHJ layer solution was prepared by mixing 

PFDT2BT-8 and PC70BM at a weight ratio of 1:4 in chloroform, with a total solution concentration 

of 20 mg/mL. All OPV devices were then fabricated into pre-patterned ITO coated glass substrates 

purchased from Ossila Ltd (Sheffield, UK). Before use, the substrates were sonicated in a warm 

cleaning solution of either NaOH (10 wt% in water) or Hellmanex (2 wt%) from Hellma Analytics 

GmbH & Co. KG, Germany, for 10 minutes at 70 oC. After sonication, the substrates were then 

washed with de-ionized (DI) water. After washing, they were then placed in isopropanol and 

sonicated again for 10 min at 70 oC. The substrates were then dried with nitrogen gas. After drying, 

thin films (~5 nm) of V2O5-x were deposited via spin coating on to cleaned ITO substrates in ambient 

atmosphere. After deposition, the V2O5-x films were annealed in ambient condition before spin 

coating the active layer at previously mentioned temperature variations. All of the substrates were 

then transferred into a dry glove box environment for BHJ layer deposition. The BHJ films were 
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prepared by spin casting the BHJ solution on to a substrate with a spin speed of 3000 rpm to obtain a 

BHJ layer with a thickness of 70 nm + 4 nm. The substrates were then transferred to the glove box to 

a high-vacuum system (10-7 mbar) to thermally evaporate the cathodes. In this process, bi-layer 

cathodes of calcium (5 nm) and aluminium (100 nm) were evaporated at a rate of 3 Å/s and 10 Å/s, 

respectively. Here, the BHJ OPV area size = 2.86 mm2 as defined by the overlapping of the individual 

metallic top contact and the single ITO square. Finally, the central area of each substrate was 

encapsulated by using a glass slide and light-curable epoxy, which was also done to extend the OPV’s 

lifetime for characterization and storage purposes [116]. The light-curable epoxy used here is the 

E131 Encapsulation Epoxy from Ossila Ltd., UK. 

 

3.1.3 Current Density-Voltage (J/V) and Power Density-Voltage (PD/V) 
Characterizations of OPV with PEDOT:PSS and V2O5-x HEL 

 After fabrications of all BHJ OPV with PEDOT:PSS and V2O5-x HEL, DC characterization in 

the form of current density-voltage (J/V) and power density-voltage (PD/V) characteristics were then 

performed on all OPVs. For the J/V characterizations, OPV devices were measured under ambient 

atmosphere by using a Keithley 2400 source meter (Tektronix Ltd., Bracknell, UK) and a Newport 

92251A-1000 AM 1.5 solar simulator (Newport Co., Didcot, UK). In addition, the J/V characteristics 

were done by illuminating the characterized cells while sweeping their voltage V from 1 to -1 V with 

a decrement of 0.2 V, and then measure the resulting current density J (mA/cm2). The entire (J/V) 

process was controlled by a bespoke software based on MATLAB© that was also developed by Mr. 

Abdullah Alsulami. In addition, a National Renewable Energy Laboratory (NREL)-calibrated silicon 

diode was used to calibrate the power output at 100 mW/cm2. The OPV’s measured J from AM 1.5 

light were defined with respect to an illumination area A = 2.6 mm2. This was done by placing a 

shadow mask with the same area size (A = 2.6 mm2) on top of the characterized device. Note that A 

here is the OPV’s active area that is limited by the shadow mask and illuminated by AM 1.5. AD in 

3.1.1. is the OPV’s entire active area in an individual cell. After J/V characteristics, a power density-

voltage (PD/V) characteristic was constructed from the J/V plot. This was done by multiplying the 

measured J under AM 1.5. with the voltage V from the J/V plot, which then leads to the measured 

OPVs PD/V characteristics plot. First, we depict the J/V and PD/V characterization results from OPVs 

with PEDOT HEL and then followed by those with V2O5-x HEL. We then derived both type of OPV 

DC J/V and PD/V parameters which consists of short-circuit current density JSC, open-circuit voltage 

VOC, maximum power point voltage VMPP and current density JMPP, maximum power density PD-MPP, 

absolute series and shunt resistance (Rs and Rsh respectively), specific series and shunt resistance (Rs-

spec and Rsh-spec respectively), fill factor FF and power conversion efficiency/PCE (in %). These 
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parameters were then used to assess both cell’s DC performances. The J/V and PD/V plots for OPV 

with PEDOT HEL are depicted together in Fig. 3-2, with J in mA/cm2, PD in mW/cm2 and V in V.   

 
Fig.  3-2. The J/V (in blue) and PD/V (in red) characteristics of BHJ OPV with PEDOT:PSS HEL. Here the BHJ mixture 
is PFDT2BT-8:PC70BM. 

 

From J/V and PD/V plots in Fig. 3-2, we obtained JSC = -10.7 mA/cm2, VOC = 902 mV, VMPP = 680 

mV, JMPP = -9.13 mA/cm2, maximum power density PD-MPP = 6.2 mW/cm2, FF = 64 and PCE = 

6.2%. Also, from the J/V plot, we derived a specific serial resistance Rs-spec = 12.6 Ωcm2 and specific 

shunt resistance Rsh-spec = 1820 Ωcm2 for an active device area A = 2.6 mm2. This translates to absolute 

shunt and series resistance of RSh = 70 kΩ, and RS = 485 Ω respectively. In addition, a J/V and PD/V 

characterization for OPV with PEDOT HEL after 30 days of storage under dark and ambient 

conditions, were also conducted with the same setup as mentioned before. These J/V and PD/V 

characterization results were later used in OPV with the PEDOT HEL aging study with IMS. The J/V 

and PD/V plots for OPV with PEDOT HEL are depicted together in Fig. 3-3, with J in mA/cm2, PD in 

mW/cm2 and V in V.   

 
Fig.  3-3. The J/V (in blue) and PD/V (in red) characteristics of BHJ OPV with PEDOT:PSS HEL after 30 days of storage 
under dark and at ambient conditions.  
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From J/V and PD/V plots in Fig. 3-3, we obtained  JSC = -3.2 mA/cm2, VOC = 879 mV, VMPP = 620 

mV, JMPP = -2.6 mA/cm2, maximum power density PD-MPP = 1.6 mW/cm2, FF = 57 and PCE = 1.6%. 

Also, from the J/V plot, we derived a specific serial resistance Rs-spec =  3.1 Ωcm2 and specific shunt 

resistance Rsh-spec = 62 Ωcm2 for an active device area A = 2.6 mm2. This translates to absolute shunt 

and series resistance of RSh = 2.4 kΩ, and RS = 120 Ω respectively. Thus, there is, of course, a 

decreasing trend in all J/V and PD/V parameters in Fig. 3-3 after 30 days of storage. In addition, we 

also conducted J/V and PD/V characteristics for OPVs with unannealed, 100, 200, 300 and 400 0C 

annealed V2O5-x HEL before BHJ deposition. We first present together with the J/V plots of all 5 

varieties of OPVs with V2O5-x HEL in Fig. 3-4, which is then followed by the PD/V plots of those 5 

cells in Fig. 3-5 together. 

  
Fig.  3-4. The J/V characteristics of 5 varied OPV with V2O5-x HEL. Here, the OPVs were varied by preparing OPV with 
unannealed, 100, 200, 300 and 400 oC annealed V2O5-x HEL before BHJ deposition (shown in colour inset). 

 

 
Fig.  3-5. The PD/V characteristics of 5 varied OPV with V2O5-x HEL. Here, the OPVs were varied by preparing OPV 
with unannealed, 100, 200, 300 and 400 oC annealed V2O5-x HEL (shown in colour inset). 
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From J/V and PD/V plots in Fig. 3-4 and 3-5 respectively, we can then obtain several DC parameters 

from both plots for all OPV varieties, these are; JSC, VOC, VMPP, JMPP, PD-MPP, Rs-spec, Rsh-spec, RSh, RS, 

FF, and PCE. We then list all of the parameters together with the OPV varieties in Table III. 

 
TABLE III OPV Varieties, JSC, VOC, JMPP, VMPP, PD-MPP, Rs-spec, Rsh-spec, RSh and RS  
FROM FIG. 34. AND FIG 35. 

OPV Varieties JSC VOC JMPP VMPP PD-MPP Rs-spec Rsh-spec Rs Rsh FF PCE 

[Non/Annealed] [mA/cm2] [V] [mA/cm2] [V] [mW/cm2] [Ωcm2] [kΩcm2] [Ω] [kΩ]  [%] 

Non-Annealed -9.67 0.91 -7.93 0.72 5.71 15 833 577 32 65 5.7 

Annealed-100 oC -9.58 0.91 -8.11 0.72 5.84 15 926 577 36 67 5.8 

Annealed-200 oC -9.68 0.90 -8.10 0.70 5.65 15 910 577 35 65 5.6 

Annealed-300 oC -9.40 0.81 -7.81 0.62 4.84 15 910 577 35 63 4.8 

Annealed-400 oC -9.50 0.80 -7.54 0.56 4.22 21 513 810 20 56 4.2 

 

From Table III, we clearly observe that by annealing the OPV’s V2O5-x at 300 and 400 0C before BHJ 

deposition, its (DC) performance decreased further compared to those that were unannealed, 100 and 

200 0C annealed, as seen from the significant decrease of JMPP, PD-MPP, FF and PCE values. We can 

also see that the DC performances of OPVs with unannealed V2O5-x, and also 100 and 200 0C annealed 

V2O5-x are almost the same as evident from their JMPP, PD-MPP, FF and PCE values. To add, we see 

that annealing the V2O5-x HEL at 400 0C practically degrade the device further than at any other 

temperatures, as seen by the sharp decrease in Rsh-spec and RSh, and the high increase in Rs-spec and RS. 

Despite best attempts to achieve identical processing conditions for both BHJ OPVs with PEDOT 

and V2O5-x HEL, not all cells performed with the same standard, e.g. with PCE ~ 6% for OPV with 

PEDOT HEL. In order to illustrate the performance statistics for sample devices that consist of 9 

devices with PEDOT HEL, or 54 pixels in total (with 6 pixels in each device), in terms of their power 

conversion efficiency (PCE), we then plot the PCE data in the form of a box plot.  

 A box plot is a plot that depicts and grouped the plot’s data based on their quartiles, i.e. the 

data’s minimum, lower quartile (25th percentile), median (50th percentile), upper quartile (75th 

percentile) and maximum value [119, 120]. The box plot is a way of displaying a set of data without 

any assumptions on the data’s underlying statistical distribution [119, 120]. Among the advantages 

of using box plots are that it is easy to compute, easily explained by the plot’s user and that it provides 

detailed information on the data’s minimum and maximum value in that we can observe the maximum 

or minimum data’s spread with respect to the data set’s median or its quartile values [120]. Here, the 

box plots are constructed as follows; we use Microsoft Excel © to first obtained pixels with the lowest 

(minimum) and the highest (maximum) PCE value from among the individual pixel’s PCE of 

OPV/device number 1. We do this by using Excel’s MIN and MAX function which will sort out the 
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maximum and minimum PCE value out of the 6 pixels PCE in device No. 1. We then use the Excel’s 

PERCENTILE function to obtain the 25th, 50th (median) and 75th percentile PCE value out of those 6 

pixels. To do this, Excel will first determine the percentile rank (represented by R) of the 25th, 50th 

and 75th percentiles by using equation (22), which is generally used in percentile statistics [121, 122]. 

 

  ܴ =
௉೙

ଵ଴଴
(ܰ + 1)   (22) 

 

where N = the total number of sample and Pn = the percentiles taken. Thus, Pn  = 25, 50 and 75 for 

the 25th (P25), 50th (P50) and 75th (P75) percentiles respectively. Here, N = 6, as there are 6 pixels in a 

device. If R is not an integer, R will then be rounded up to the nearest integer by Excel. As an example, 

equation (22) will give us an R = 1.75 as the 25th percentile rank, as such, Excel will round up R = 2 

for the 25th percentile rank. Hence, for the 50th and 75th percentile, their rank would be R = 3 and R = 

5 respectively. Once the rank of a particular percentile is taken, Excel will then calculate the value of 

that percentile (represented by xPn) from the data set with equation (23), which is typically used to 

determine xPn in percentile statistics [121, 122]. Here, xPn = x25, x50 and x75 for the 25th, 50th and 75th 

percentiles value respectively. 

 

௉೙ݔ     
= ௜ାଵݔ)(݂) − (௜ݔ +  (23)                     (௜ݔ)

 

where f = Pn/100 and is the fractional part of the percentile, xi is the data point in which the percentile 

rank is located and xi+1 is the data point immediately after xi. Thus, f = 0.25, 0.5 and 0.75 for the 25th, 

50th and 75th percentiles value respectively. As an example of percentile value determination, if we 

have a data set that consists of (after ordering) 2, 2, 3, 5, 5, 6 and we want to determine the data’s 25th 

percentile value, we would first find the data’s 25th percentile rank, which is R = 2. This R then 

correspond to 2 in the data set with the data point after it being 3, hence the 25th percentile value is 

x25 = (0.25) (3-2) + (2) = 2.25. An exception, however, applies for the 75th percentile value calculation. 

If the xi+1 is equal to the data set maximum value, or the maximum PCE value, in this case, Excel 

will assign the xi+1 point to the data point immediately before the maximum value, with the xi also 

shifted following the xi+1 point. In other words, Excel will not include the maximum data point in the 

75th percentile value determination with equation (23) [123].  

 After we found all the percentiles, maximum and minimum value out of the 6 pixels PCE in 

device No. 1, we then repeat the same procedure (percentiles determination) to the 6 pixels PCE data 

from other devices (No. 2-9). When we have completed the pixel’s PCE percentiles calculation on 

all of the sample devices, we proceed to construct the box plot data spread from the resulting 
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percentile data. We first do this by subtracting the median data/PCE value with the 25th percentile 

value to obtain the plot’s lower data spread/difference for device No.1. We then subtract the 75th 

percentile PCE value with that of the median value to obtain the plot’s upper data spread/difference 

for that same device. We then use Excel to add error estimations on the upper and lower data spread 

in device No. 1 in the form of an upper and lower vertical error bars. After we add the error bars, we 

then repeat the same procedure to obtain the percentile data spread and error estimations to the other 

8 devices. Once we have obtained the percentile data spread and error estimations for all 9 devices, 

we then plot them as a box plot with the 6 pixels PCE of each numbered devices as the y-axis and the 

OPV device number on the x-axis. In addition, we also plot the individual pixel’s PCE in a sample 

OPV/device with respect to that device designated number. This plot is called the grouped point plots 

and we use it to compare the individual pixels PCE data grouping/spread with that of the box plot 

spread. The grouped point plots are simply constructed by plotting the PCE (in %) data from 9 OPV 

devices, and then plot the individual pixel’s PCE from each device as the y-axis with respect to the 

devices designated number as the x-axis. Finally, we superimpose the grouped point plots on top of 

the resulting box plots with the resulting plots depicted in Fig. 3-6. 

 
Fig.  3-6. Box plots for OPVs with PEDOT HEL. Here, the PCE statistics are for 9 devices (or 54 pixels in total), in 
which the average maximum PCE ~ 6%. The PCE is represented by the blue points in the plots. 

 

In Fig, 3-6, the grouped point plots are depicted by the blue-coloured points that are superimposed 

on the box plots, with respect to the device number in the y-axis. While the box plots are depicted by 

the red and black box in each numbered devices, with an upper and lower vertical error bars 

(sometimes called whiskers [119, 120]) that extend outside of the boxes. The red boxes in each device 

are the lower PCE data spread, while the black ones are the upper data spread. To add, the upper error 

bars is located above the box plot’s upper spread, while the lower bars is located below the plot’s 

lower spread. 
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 From Fig. 3-6, we can clearly see that there is a large difference among pixel qualities in device 

No. 3, 4 and 8, as evident from the large lower spread and large PCE grouping distance in those 

devices. On the other hand, the majority of the devices seems to have the same qualities in that they 

relatively have the same PCE value as seen from how both the box plot and group plot has the same 

spread/grouping distance in device No. 1, 2, 5, 6, 7 and 9. From Fig. 3-6, we see that most of the 

OPVs (with PEDOT HEL) have a PCE ~ 6%. Further, this value is also the average maximum PCE 

of all devices in the same plot. Hence, cells with that PCE (~ 6%) can be said as “good” cells in terms 

of PCE performance as a parameter window, while those with lesser PCEs can be said as “bad” 

cells/pixels. Therefore, for OPV with PEDOT HEL, since we have chosen a device with PCE = 6.2% 

for our IMS characterizations, we have therefore selected a “good” representative of this OPV type.  

In addition to the box plots of OPV with PEDOT HEL, we have also constructed a PCE boxplot 

and grouped points plot for OPV with unannealed, 100, 200, 300 and 400 oC annealed V2O5-x HEL 

before BHJ deposition. The box and grouped points plots for these OPVs are also constructed and 

plotted with the same procedure as described for OPVs with PEDOT HEL. The difference is that 

there are now 5 different OPV types that we plot (i.e. OPV with unannealed, 100, 200, 300 and 400 
oC annealed V2O5-x HEL before BHJ deposition), with each type represented by 2 sample devices (so 

in total 12 pixels for each OPV types and 60 pixels for all of the types). We depicted the resulting 

box and grouped point plots in Fig. 3-7(a), (b), (c), (d) and (e). 

 

Fig.  3-7. Box plots for OPVs with their V2O5-x HEL (a). unannealed, (b). 100 oC annealed, (c). 200 oC annealed, (d) 
300 oC annealed and (e). 400 oC annealed before BHJ deposition.  Here, the PCE statistics are for 2 devices (or 12 pixels 
in total), in which ~ 5.8%. The PCE is represented by the blue points in the plots. 

 

From Fig. 3-7(a), (b), (c), (d) and (e), we can first observe that there are quality differences in terms 

of PCE value among the pixels in almost all of the OPV types. These are evident from the differences 

between the minimum value and the lower box plot spread as shown by the lower error bars in almost 
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all of the device types. The only exception is the PCE value spread of OPV with the 400 oC annealed 

V2O5-x HEL before BHJ deposition, as can be seen from the OPV’s box plot spread and its PCE value 

locations in the grouped points plot. On the other hand, we can see that the average maximum PCE 

~ 5.8% for OPVs with their V2O5-x HEL unannealed, and also for OPVs with 100, 200 oC annealed 

V2O5-x, as evident from the respective OPVs same maximum pixel’s PCE value. While for OPVs 

with 300 and 400 oC annealed V2O5-x HEL, the average maximum PCE are respectively ~ 5.2 and 

5%. Therefore, for our IMS experiment, we have chosen a representative of “good” cells for OPVs 

with unannealed, 100 and 200 oC annealed V2O5-x HEL, since these cells PCE ~ 5.6-5.8%. The same 

thing (i.e. the “good” cells were chosen) can also be said for OPVs with 300 and 400 oC annealed 

V2O5-x HEL, as these cells PCE ~ 4.2-4.8%. Finally, all PCE data for OPVs with PEDOT and V2O5-

x HEL were also provided by Mr. Abdullah Alsulami, University of Sheffield, Sheffield, UK. 

 

3.2 Preparation and Characterization of Organic Light-Emitting Diode (OLED) 

Devices 

 Organic light-emitting diode (OLED) devices were also prepared for our IMS characterizations. 

The prepared OLEDs emit white light by using a copolymer, i.e. W1100 made by Sumitomo 

Chemicals Co., Ltd, as the device emissive material. The W1100 is a block copolymer that emits 

white light from the (combination) ratio of red and blue emitter/chromophores within the polymer 

structure. By combining different emitters in such a way, the different (emitters) ratio within the 

structure will be kept fixed during polymer synthesis [124]. The W1100 electroluminescence 

spectrum is depicted in Fig. 3-8, taken from Pounds et al [124]. 

 
Fig.  3-8. Electroluminescence spectrum of a W1100 polymer. The total (white) spectrum is a combination of red and 
blue emitter/chromophores. Here we can observe two peaks, the highest peak, i.e at the spectrum’s blue part, has a full 
width at half maximum (FWHM) = 50 nm. While the smaller one, i.e. at the red part, has an FWHM = 120 nm [124]. 

 



 
Page | 72  

From Fig. 3-8, two emission peaks are observed within the spectrum, the higher peak, with a full 

width at half maximum (FWHM) = 50 nm, lies between 450-500 nm and represents the emitted blue 

spectrum from the polymer. While the smaller peak, which lies between 560-680 nm with FWHM = 

120 nm, represents the polymer’s emitted red spectrum. An illustration of the OLED structure, along 

with its hole (HIL) and electron injection layer (EIL) material is depicted in Fig. 3-9, with the EIL 

and HIL structure depiction taken respectively from Huang et al [52]. 

 
Fig.  3-9 (a). The prepared OLED structure and (b). PEDOT:PSS, calcium (Ca) and lithium fluoride (LiF) as the OLED’s 
hole (HIL) and electron injection layer (EIL) respectively [52]. 

 

From Fig. 3-9(a), we see that the OLED structure is similar to those of OPV in 3.1.1. Here, each 

OLED device consists of 6 individual OLEDs which are also called pixels. So a total of 3 devices (or 

6 pixels/OLEDs) were prepared for IMS characterizations. Later, we perform IMS on 1 pixel/OLED 

(3 pixels in total) from each prepared device. The OLED structure consists of an emissive layer that 

is made from a copolymer and is sandwiched between two electrodes, one is an aluminium top contact 

and the other is an indium tin oxide (ITO)-coated substrate. Further, between the electrodes and the 

emissive layer, charge injection layers were inserted to improve carrier transport towards the emissive 

layer while also protecting it from reaction with the electrodes. Hence, an electron injection layer 

(EIL) is deposited between the cathode and emissive layer, and a hole injection layer (HIL) is 

deposited between the emissive layer and the anode. The overlapping of individual metallic top 

contacts and the single ITO square define the pixel/OLED emissive area size. Also here, the OLED’s 

front/window part is the ITO-coated substrate, where light is emitted from the emissive layer. In 

addition, aluminium is chosen as the cathode due to its low work function while ITO is chosen as the 

anode due to its high work function. Finally, an additional glass encapsulation is deposited on top of 

the metallic contacts to protect the cathode and the entire device from the ambient atmosphere. 

 For OLED preparation, W1100 copolymer was obtained from Sumitomo Chemicals Co., Ltd 

as the emissive layer material. A solvent, p-Xylene (with purity > 99%) was purchased from Sigma-

Aldrich as a dissolving agent for the W1100 polymer. A microbalance was then used to weigh the 
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W1100 polymer, after which it (the polymer) was put into vials that had been cleared before from 

particles with compressed air. The p-Xylene was then used to dissolve W1100 so that it will result in 

a W1100 solution with a total concentration of 13 mg/ml. Pre-patterned 6-pixel glass-ITO substrates 

were purchased from Ossila Limited. The substrates were then cleaned by sonication with Helmanex 

solution, then de-ionized (DI) water and finally isopropyl alcohol (IPA). After cleaning, the substrates 

were then dried with compressed air and placed on a hotplate at a temperature of 120 0C for 10 

minutes before use. Also, PEDOT:PSS was obtained from HC Stark Clevios (batch number P VP 

AI4083, filtered through a 0.45 μm polyvinylidene fluoride (PVDF) filter). After filtration, 

PEDOT:PSS was spin cast, at 5000 rpm, on top of the cleaned substrates to form a hole injection 

layer with a thickness of 45 nm, which was then annealed in air at 120 0C for 10 minutes before usage. 

The reasoning behind the selection of PEDOT annealing temperature and time is the same as that in 

the selection of PEDOT HEL annealing temperature and time in 3.1.1. Thus, in general, the PEDOT 

annealing temperature must be set below 150 °C and for a shorter time at 150 °C, since above it (150 

°C) and at a longer time, PEDOT will start to degrade/becomes unstable [118]. The PEDOT film-

substrate was coated with the W1100/emissive polymer through spin coating. The spin coating was 

done at 2400 rpm in order to cast an emissive layer with a thickness of 85 nm. The remaining films 

in the electrodes were then wiped off by using appropriate solvents before the deposition of electron 

injection layer (EIL). After the spin coating process, Lithium fluoride (LiF) and calcium (Ca) as the 

EIL, and also aluminium (Al) as the OLED’s cathode were thermally evaporated on top of the 

emissive layer in a vacuum chamber at a pressure between 10-6 and 10-7 mbar. Here, the thickness of 

the (evaporated) LiF, Ca layers and Al electrodes are respectively 3, 10 and 100 nm. Finally, prepared 

devices were encapsulated using a UV-treated epoxy (supplied by Ossila Ltd) and glass slides before 

any characterizations. 

 

3.2.1 Current Density-Voltage (J/V) and Luminance-Voltage (L/V) 
Characterizations of OLED Devices 

 After fabrications of all OLED devices, DC characterization in the form of current density-

voltage (J/V) and luminance-voltage (L/V) characteristics were performed. Both the OLEDs J/V and 

L/V characterizations were performed under dark, in a black box equivalent container and under 

ambient conditions. The OLEDs were placed in an OLED testing module/board that was obtained 

from Ossila Ltd [125]. Here, the electronic testing board function is to allow for separate/individual 

characterizations of pixels in an OLED. The J/V and L/V characterizations were first conducted by 

applying a voltage sweep V from 0 to 10 V with 0.2 V increments to the characterized pixels with a 

Keithley 2602 source meter. For J/V characteristics, the resulting current is then measured by this 
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source meter and the OLED’s current density J is then defined with respect to an emissive area A = 4 

mm2. While for L/V characteristics, the resulting luminance L from the OLEDs were measured using 

a Konica Minolta LS-110 luminance meter connected to the 2602 source meter. Both J/V and L/V 

characterizations results are recorded by using a bespoke LabView software made by Mr. Thomas 

Routledge. We first present all 3 OLEDs J/V characterization results in Fig. 3-10, followed by the 

L/V results in Fig. 3-11, with J in mA/cm2, L in mcd/cm2, and V in V. From the J/V and L/V plots, we 

can then derive the OLED’s DC parameters such as, its turn-on voltage or Von, turn-on current density 

or Jon, differential resistance Rdiff  and turn-on luminance or Lon. Also, since Rdiff is in Ω, area-

dependent Rdiff from the J/V plots were converted to Ω by dividing it by A = 4 mm2. Finally, the 

derived parameters were, in turn, used to assess the OLED’s DC performance.  

  
Fig.  3-10. The J/V characteristics of all 3 OLEDs. Here, OLED No. 1 to 3 is of the same structure and emissive materials. 

 

  

Fig.  3-11. The L/V characteristics of all 3 OLEDs. 
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The OLED numbering in both J/V and L/V plots are taken according to the order their IMS results are 

presented later in this work. So OLED No. 1 is the OLED from which the IMS results will be 

presented as the last in this work. While OLED No. 2 is the OLED which we presented just before 

OLED No.1 and so on. From Fig. 3-10 and 3-11 respectively, we then obtain several DC parameters 

from both plots for all OLEDs, these are; Jon, Von, Rdiff, and Lon. We then list all of the parameters 

together in Table IV. 

 

TABLE IV OLED No., Jon, Von, Vbi, Rdiff and Lon FROM FIG. 40. AND FIG 41. 

OLED No. Jon Von Lon Rdiff 

 [mA/cm2] [V] [Cd/m2] [Ω] 

1 3.4 x 10-5 2.4 0.01 1227 

2 4.1 x 10-4 2.6 0.01 578 

3 28 2.8 0.08 588 

 

From Table IV, we see that OLED no 1 and 2 have similar DC performances, while OLED No. 3 has 

a very high Jon compared with the other two, this is despite similar processing steps and emissive 

material used in all 3 OLEDs. A possible cause can be seen from OLED No. 3 J/V plot in that the 

current density reading is already large at low OLED Vbias, or in other words, OLED No. 3 produces 

larger currents under the same voltage bias sweep. This can also be the likely reason why the OLED 

No. 3 J/V plot fluctuates at low OLED Vbias. 
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Chapter 4 
Intensity-Modulated Spectroscopy (IMS) Instrument 

4.1 History of Intensity-Modulated Spectroscopy (IMS) Instrument 

An intensity-modulated spectroscopy (IMS) instrument is a dynamic characterization 

instrument that uses a modulated light intensity with the steady-state intensity being larger than the 

modulating component as the stimulus signal. It is applied to the characterized system, which is then 

followed by measuring the system’s electrical response as a function of angular frequency ω. The 

instrument will then measure the transfer function H(ω) as the ratio of (system’s) current/voltage-to-

modulated light stimulus as in 1.4 [16, 40]. The IMS instrument itself can be operated at either two 

modes of operation, one is under intensity-modulated photocurrent spectroscopy (IMPS) and the other 

is under intensity-modulated photovoltage spectroscopy (IMVS) [16, 40]. In IMPS mode, the 

instrument applies a light stimulus with an intensity LT (t) = L + ΔL sin ωt with L > ΔL to the 

characterized system, and it will then measure the system’s current density response Jph(t) in the form 

of Jph(t) = Jph-DC + ΔJ sin (ωt + φ). The instrument then varies the modulating light ω, thus scanning 

the ΔJ and φ response with respect to frequency ω. Finally, the instrument measure the system’s 

response in the form of H(ω) = ΔJ(ω)/ΔL(ω), i.e. a ratio of ΔJ(ω) to ΔL(ω) [16, 39]. Alternatively, 

the instrument can also operate under intensity-modulated photovoltage spectroscopy (IMVS), where 

the instrument applies the same light stimulus as IMPS and then measure a voltage response Vph(t) = 

Vph-DC + ΔV sin (ωt + φ). As in IMPS, the instrument will then measure the system’s response in the 

form of H(ω) = ΔV(ω)/ΔL(ω), i.e. as a ratio of ΔV(ω) to ΔL(ω) [40, 46]. In addition, an IMS 

instrument can also measure ΔJ(ω) or ΔV(ω) with respect to frequency ω in place of transfer function 

H(ω) [41, 50].  

 Intensity-modulated spectroscopy was first developed as a technique by Foote and Mohler in 

1925, for the purpose of measuring the photoelectric effect from an irradiated tungsten (W) filament 

in a cesium (Cs) vapour-filled container. From their work, it was found that thermionic currents from 

the heated filament inside the Cs vapour-filled container increased rapidly when irradiated with 

external light radiation from various sources. Further, when the irradiation rate is changed slightly or 

modulated slightly, photoelectric/photoemission detection from changes in thermionic currents 

improved dramatically, thus increasing the measurement sensitivity [42]. Hence, we can see how 

slightly modulated illumination in an IMS can be used to characterize a specific dynamic that 

originates from a system. In 1928, FM Penning also observed changes in electrical resistance that 

resulted from irradiation of a discharge neon lamp by another neon lamp, where resistance changes 
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can be used to measure the neon lamp irradiation effect in a similar manner as in previous literature 

(Foote 1925) [126]. By 1967, Carswell and Wood have applied this technique to measure gas 

discharge from a CO2 laser. In their work, they used a chopper wheel to slightly modulate a higher 

laser intensity that interacts with the CO2 gas discharge. In addition, they also measured the electrical 

response from the laser-gas discharge interactions as an impedance due to a modulated laser, which 

is similar to today’s IMS setup measured parameters [127]. By 1976, the technique was introduced 

for the first time as “optogalvanic spectroscopy” by Green et al. At the time, Green et al. applied this 

technique to measure the electrical response from a gas discharge that was irradiated with a slightly 

modulated laser. A depiction of the setup that they used is shown in Fig. 4-1, taken from Green et al 

[43]. 

 
Fig.  4-1. A depiction of the “optogalvanic spectroscopy” setup that was used by Green et al. to measure the electrical 
response from a laser-irradiated gas discharge inside the tube [43].  

 

In Fig. 4-1, a tunable dye laser as the source of stimulus is slightly modulated with a mechanical 

chopper at a certain frequency ω. The modulated laser is then used to irradiate a neon gas discharge 

inside the discharge tube. Here, applied voltage from the power supply is used to discharge/ionized 

the inert gas within the tube. As a result of modulated irradiation, the voltage across the discharge 

tube will be modulated by the modulated laser interaction with the inert gas inside the tube. This 

photovoltage is then channeled into a phase sensitive detector/lock-in amplifier, where the detector 

will compare the AC voltage component with respect to the modulated laser stimulus and then 

determine an equivalent transfer function from this ratio [43]. Note that in the Fig. 4-1 setup, the 

modulated laser component was kept separated from the measured voltage connection/setup. This 

configuration is also another characteristic of an IMS setup, which is that the modulated component 

is independent of the power supply voltage, thus changes in the supply voltage will not influence the 

modulated light and vice versa. By 1980, Stanciulescu et al. acknowledged and categorized the 

technique as similar to impedance spectroscopy but with a distinctive experimental procedure that 

measure modulated electrical response from a system due to modulated illumination [44]. By this 
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time, IMS had been used to investigate light absorption processes in material microstructures and 

atomic states. A year later, Oheda proposed a generalized theory that linked phase shift in modulated 

photocurrent response of an amorphous semiconductor to trap states within the semiconductor [45]. 

By 1990, Peter et al. have described this method as IMPS with a similar setup as we know it today, 

and use it to investigate semiconductor electrode properties/behavior. Their setup at the time is 

depicted in Fig. 4-2 taken from Peter et al [16]. 

 
Fig.  4-2. The IMPS setup that was used by Peter et al. to measure photocurrent response of a semiconductor electrode 
that was illuminated by a modulated laser. Here re, we and se refers to reference, working and standard/counter electrode 
respectively in a potentiostat three-electrode setup [16]. 

 

In Fig. 4-2, a laser is used as the IMPS source of stimulus. Here, the laser is slightly modulated by a 

Solartron impedance analyzer through the modulator device. The modulated laser is then channeled 

through a slit and a series of filter in order to transmit only laser stimulus with the desired wavelength. 

The electrode sample is then illuminated by the modulated laser, and followed by measuring the 

sample’s photocurrent response with a potentiostat in a three-electrode setup. Here, a potentiostat is 

used since in this setup a photocurrents response was measured from an electrode. This is because 

the function of a potentiostat in an electrochemical measurement is to apply a potential difference 

between the working electrode (WE), where the sample is, and the standard electrode (SE), an 

electrode that closes the circuit, such that current will flow between WE and SE, thus enabling WE 

characterization by measuring changes in current flowing out of WE. In addition, the function of the 

reference electrode or RE (placed near to WE) is to control the potential difference between WE and 

SE from the potential difference measurement between RE and WE. So if there are changes in 

potential between WE and SE, this can be adjusted by looking at the potential difference between RE 

and WE, i.e. whether RE-WE has been changed from the standard RE value. Hence, from the Fig. 4-

2 setup, AC photocurrent will be measured from SE, as current flows from the measuring electrode 

in WE to the SE. This photocurrent response will be measured as a (transfer function) ratio to the 

modulated laser intensity which itself is obtained through a photodiode. The transfer function is then 
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displayed in a Nyquist plot plane. In 1997, Peter et al. also developed a theoretical framework of 

IMPS application on photoelectrode processes that involves surface-bound molecules [16, 92]. As 

recently as 2013, IMS has been used to characterize specific dynamics on different kinds of organic 

and inorganic solar cells, and also other photosensitive materials/systems [49, 128]. Also from 1.4, 

depending on the characterized systems, a number of light sources can be used as the stimulus signal, 

for example, LEDs, lasers and Xenon short arc lamps [16, 39, 41]. The use of LEDs in particular, has 

been relatively advantageous compared to other light sources because of the ease in modulating one 

with a drive current, in addition to its (LED) ability where it can be modulated up to a very high 

frequency ( f  > 1 MHz), thus extending the measurement frequency bandwidth [23, 41]. 

 In addition to the two different modes of IMS operation, an IMS instrument/setup generally 

consists of 5 main components with different functions. These are, a light source which functions as 

a stimulus, a modulator device that modulates the light source intensity at a certain frequency, a 

voltage/bias adder that adds/decrease the light stimulus steady-state intensity, a sample measurement 

module that channels or converts the electrical (current/voltage) response from the sample to the IMS 

instrument and finally, a phase-sensitive detector (PSD)/lock-in device connected to the modulator 

device that “pick out” the sample’s AC current/voltage component due to the modulated illumination 

[39, 41]. On the other hand, a setup can also consist of only 3 main components, with the phase-

sensitive detector function taken over by an impedance analyzer device, for example, which serve as 

the modulator device, a bias adder and a phase sensitive detector all together at the same time. Hence, 

the majority of IMS instrument/setups can be divided into two: IMS instruments/setups that use 

impedance analyzers in their operation [16, 47], and IMS instruments that do not employ one/a 

custom-made IMS instrument. The later setups instead use a phase sensitive detector/lock-in amplifier 

to both modulate the light stimulus and processed the sample’s electrical response from modulated 

light [52]. 

 The first type of setup basically uses an impedance analyzer to modulate the light stimulus and 

to serve as a phase-sensitive detector or lock-in device that ”picks out” the modulating electrical 

(current/voltage) component response from the sample due to the modulated light. This setup is one 

of the most commonly found IMS setup in the literature [16, 47, 50]. One example of this setup is 

already depicted in Fig. 4-2 from Peter et al [16]. A recent example, in this case, an IMS under IMPS, 

taken from Kasavoglu et al. is depicted in Fig. 4-3 [129].  
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Fig.  4-3. The IMS setup under IMPS used by Kasavoglu et al. to measure photocurrent response from CIGS (Cu(Inx,Ga1-

x)Se2) and porous Si solar cells. Here, the impedance analyzer controls the current modulation on the LED driver, with 
the DC current bias provided by the LED driver itself. The LED driver, in turn, modulates the LED group illumination 
intensity, which is then used to characterize the solar cell sample [129].  

 

In Fig. 4-3, a LED group is used as a source of illumination in the characterization of a CIGS and 

porous Si solar cell sample. For this purpose, an impedance analyzer is used to apply a modulating 

voltage to a custom-made LED driver, which then results in the driver producing modulated currents 

to modulate the LED. A voltage driver is needed in order to combine modulating current from the 

analyzer and the bias current from the driver, so changes in bias current will not affect changes in the 

current modulation, which can be the case if an analyzer is used to supply both the bias and 

modulating voltage to the driver. So from Fig. 4-3, the LED driver will combine a DC voltage bias 

from itself and a modulating voltage from the analyzer to drive the LED group and produce a 

modulated illumination in the form of Φ = Φ0 + Φm exp (iωt). Where Φ0 is the steady-state light 

intensity and Φm is the modulated intensity amplitude. This modulated LED intensity is then used to 

illuminate the sample. In Fig. 4-3, the sample will produce a photocurrent response in the form of i = 

i0 + im exp (iωt - φ), where i is the DC current, im is the current AC response and φ being the current 

phase with respect to illumination. The process is then repeated again by varying the analyzer’s 

modulating voltage frequency ω, thus scanning the photocurrent with respect to ω. This photocurrent 

is then converted into a voltage signal with an IV converter device and fed back into the analyzer. 

The IV converter here is used as to amplify the photocurrent into a voltage. The analyzer then “picks 

out” the voltage and phase of the IV converter and compares it with the analyzer’s voltage stimulus 

frequency ω. Although the signal fed into the analyzer is a voltage from the IV converter, the converter 

input itself is the sample’s photocurrent (with phase) response. Finally, a transfer function response 

as a ratio of voltage response-to-the analyzer’s voltage stimulus is obtained from the sample. The 
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analyzer’s voltage stimulus being the voltage that earlier modulates the LED group [129]. A 

photodiode is also illuminated with the same modulated illumination from the analyzer. This is only 

done to measure the group LEDs modulated light intensity by converting photodiode currents into a 

voltage with an IV converter and then measure the voltage in an oscilloscope. This measurement has 

no connection with signal processing from sample response [129]. 

 Several advantages of this setup are that first it provides the user with more automation over 

the instrument’s operation, which includes simplified control over the setup light stimulus, and also 

automated (sample) response acquisition and processing. The other advantage is that the instrument’s 

automated operation will also allow for a more accurate, precise, simple and faster response 

acquisition and processing, while also reducing the amount of error in the measurement process. 

However, the drawbacks of this setup are, first is that since the current market price of a high-quality, 

commercial impedance analyzer is around £11.000-16.000, this would make the analyzer a very 

expensive choice of instrument in an IMS measurement [130]. The other drawback is that since most 

commercial analyzers are heavy and bulky in size, analyzers-based setup will be limited to lab-based 

measurements/applications [47, 50, 129].  

 Another type of IMS instrument setup is a custom-made, phase-sensitive detector (PSD)-based 

setup, where a PSD or a lock-in amplifier is used to modulate the light stimulus and process the 

electrical response from the sample due to the modulated light. In other words, the setup is centered 

on a lock-in/PSD device that has its own sinusoidal/modulating voltage signal. This type of setup is 

also quite common, but not as common as analyzer-based setups [52, 131]. A simple depiction of this 

setup, in this case, an IMVS setup, is shown in Fig. 4-4, taken from Huang et al [52]. 

 
Fig.  4-4. The IMS setup used by Huang et al. to measure photovoltage response from dye-sensitized nanocrystalline TiO2 
solar cells (DSSC). Here, the setup is under IMVS mode and the lock-in modulates the illumination and measures the 
photovoltage response from the DSSC. Note that the digital data processing module above does not refer to the analyzer 
but it refers to further digital data processing from the lock-in [52]. 

 

In Fig. 4-4, a laser diode is used as a source of illumination in the characterization of a DSSC sample. 

For this purpose, a lock-in amplifier, which emits its own sinusoidal voltage signal, is used to 
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modulate a laser diode through a commercial laser diode driver, which then results in the driver 

producing modulated currents from the modulated voltage. Here, as in Fig. 4-3, the LED driver is 

also used to provide a DC bias current to drive the laser diode and to combine the modulating current 

component from the lock-in and bias current from itself, so that changes in bias current will not affect 

the modulating current component. So from Fig. 4-4, the LED driver will combine a DC voltage bias 

from itself and a modulating voltage from the lock-in to drive the laser diode and produce a modulated 

illumination of L(t) = L + ΔL sin (ωt). Where L is the steady-state light intensity and ΔL is the 

modulated intensity amplitude. This modulated LED intensity is then used to illuminate the sample. 

Because of Fig. 4-4 is under IMVS, a photovoltage response from the sample will instead be measured 

in the form of V(t) = V + ΔV sin (ωt + φ), where V is the DC voltage, ΔV is the modulated voltage and 

φ being the voltage phase with respect to illumination. This process is then repeated again by varying 

the analyzer’s modulated voltage frequency ω, thus scanning ΔV with respect to ω. The photovoltage 

is then fed into a lock-in amplifier. The lock-in then “picks out” the ΔV and φ from the sample and 

compares it with the light stimulus or the lock-in’s modulating voltage frequency ω. Finally, a transfer 

function response as a ratio of voltage response-to-the lock-in’s voltage stimulus can be obtained for 

the sample with the lock-in’s voltage stimulus being the voltage that modulates the laser diode [52]. 

In addition to this instrument setup, there is also another variation of lock-in based setup which is 

done by using a separate light source, so one source functioning as the steady-state illumination while 

another as the modulating light component [132]. 

 Several advantages of a lock-in based setup, especially compared to the analyzer-based ones 

are that, it provides a much cheaper alternative to control light modulation and sample response 

processing, in addition to cheaper operational automation. Cheaper automation is achieved simply by 

using a software-controlled lock-in to regulate, automate and control the process at a fraction of an 

analyzer cost. Also, this setup offers the possibility of portable and easily modified applications due 

to the simple and custom-made nature of the setup. Finally, the setup gives us the same instrument 

capability in conducting IMS but with a much cheaper cost compared to an analyzer. The drawbacks 

of this setup, however, are that they are less precise and accurate compared to an analyzer-based setup 

since the setup’s operational automation is custom-made compared to that of an analyzer. However, 

this can be rectified by deploying an error correcting mechanism/steps in the setup, to offset possible 

measurement errors [39, 41, 52]. Later in this work, we use the lock-in based IMS setup to develop 

our very own IMS instrument by using LED as a light stimulus. 
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4.2  Development of A Bespoke Intensity-Modulated Spectroscopy (IMS) 

Instrument 

 In this work, we have developed a portable, bespoke intensity-modulated spectroscopy (IMS) 

instrument that is based on a generic digital lock-in, which offers a far more affordable alternative to 

analyzers-based setup, with the instrument capable of performing IMS at any point of a solar cell’s 

J/V characteristics. In addition, we have also introduced a new mode of IMS operation which is 

different from both the established IMVS and IMPS mode. We call this method IMS under finite load 

and we perform this mode by applying intensity-modulated light on a solar cell (OPV in our work) 

which are externally loaded with a finite load resistance RL, including at the cell’s maximum power 

point resistance RMPP. In the next chapter, we will elaborate this new mode of operation further. Our 

bespoke instrument consists of a fast red LED (RC LED, peak wavelength λp = 650 nm, rise time τ = 

3 ns) as the source of light [133], a digital Anfatec USB 250 Lock-In amplifier that sourced its own 

sinusoidal voltage to modulate the LED intensity with this AC voltage [134], a bespoke voltage adder 

based on fast 2N2369 NPN transistors (rise time τ = 6 ns) which adds and combines a DC bias voltage 

to the lock-in AC voltage to drive and modulate the LED, and finally, a PC with LabView software 

that is used to operate the (IMS) frequency scan on the sample. The instrument’s bespoke voltage 

adder was designed and built by Prof. Richard Tozer, from the Department of Electronic and 

Electrical Engineering at The University of Sheffield, UK. A depiction of the IMS instrument setup 

and the voltage adder are given in Fig. 4-5(a) and (b) respectively.   

 

 
(a) (b) 

Fig.  4-5 (a). A block diagram of our IMS measurement setup, showing the PC running LabView software which controls 
the USB lock-in, a circuit driving a fast red LED by adding a DC offset voltage to the AC modulation voltage taken from 
the lock-in’s reference output, the solar cell with its terminals connected via a variable load RL, and the voltage across the 
load fed into the lock-in’s measurement input. (b) A circuit schematic of the DC + AC adder circuit, that adds a DC bias 
to the AC lock-in reference output to drive the LED. The lock-in reference output is represented by a voltage source, top 
left. DC voltage supply is from 2 x 9 V batteries stabilized by capacitors (right). The level of DC bias is set by a 5 kΩ 
potentiometer (highlighted). The LED (D1) is also highlighted. As a performance test of the DC + AC adder, we fed the 
DC + AC signal directly into the lock-in measurement input, and found no measurable drop in AC amplitude, and less 
than 1o of added phase, up to 250 kHz. 
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In Fig. 4-5(a), we use an AC modulation voltage VAC from the lock-in’s reference output voltage and 

by using a bespoke voltage adder, superimpose the AC voltage on a larger DC bias voltage V from 

the voltage adder’s power supply (9 V batteries). We set the VAC amplitude by using a bespoke 

LabView software that we have developed to operate our IMS measurements. We also input the lock-

in settings for the IMS scan by using our LabView software. These settings are; VAC amplitude (in 

Vrms), input coupling, roll-off, frequency, input gain, phase offset and reference. For IMS on OPV in 

this work, we set the lock-in’s input coupling to DC, roll-off to 24 dB/oct, dynamic to high, phase 

offset to 0 and the reference harmonic to 1. The time constants are set to 5 s at scanning frequency f 

= 1-10 Hz, 1 s at f = 10-100 Hz, 0.5 s at f = 10-1000 Hz, 0.1 s at f = 1 kHz-10 kHz and 0.05 s at f > 

10 kHz. The software and the lock-in settings will be explained further in the next chapter. We then 

use the voltage adder to apply the previous (DC+AC) voltage to the fast D1 LED as VLED with 

protective RLED = R4 = 120 Ω, where for all OPV characterizations VLED = (2.2 ± 0.5) V so that the 

adder will drive/modulate the LED with a LED current ILED = (18 ± 4) mA. Here, the LED DC current 

IDC = 18 mA and its AC current IAC = 4 mA. The modulated LED will then produce a modulated light 

intensity of LT = L + ΔL sin ωt. The light intensity here is not known in absolute terms, but it is 

significantly smaller than AM 1.5. However, since LT ~ ILED, then ΔL/L = ΔI/I. We then use the 

modulated LED to illuminate an OPV that is connected to a potentiometer as a variable load resistance 

RL, and use our IMS software to perform an automatic frequency scan by varying the lock-in’s voltage 

modulation frequency ω between 1 Hz and 250 kHz at 12 steps per decade.  

 Here, a total of 68 frequency points, or data points were taken between 1 Hz and 250 kHz, with 

ω = 2πf. From the illumination, the photocurrent response from the cell is then measured as a voltage 

drop V + ΔV(ω) sin(ωt+φ(ω)) across RL. RL will later be varied in the OPV measurements depending 

on the experiment. Also, the ΔV(ω) and φ(ω) response is a function of ω since we varied the 

modulation frequency ω. The cell’s voltage response is then fed into the lock-in voltage measurement 

input, without a current-to-voltage converter. Note that here, the lock-in can only receive voltage 

inputs but not current. The lock-in will then measure and “pick out” the cell’s ΔV(ω) by comparing 

it with the lock-in’s ref out voltage frequency ω. As a result, we obtained the amplitude ΔV(ω) and 

phase φ(ω) from the voltage response and record these parameters as a function of f = ω/2π. Later the 

amplitude ΔV(ω) and phase φ(ω) can be plotted as a Bode and Nyquist plot as seen in 1.4. So with 

this setup, we have the advantage of performing IMS at a fraction of the cost of an impedance 

analyzer, i.e. ~ £3000 (with the lock-in device) vs ~ £16000 (with an impedance analyzer) [134]. 

 From Fig. 4-5(b), the bespoke adder circuit consists of two main parts, one is an AC part, which 

modulates the LED with the AC current from the lock-in and represented by the AC voltage source 
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and the Q2 transistor. While the other is the DC part, that provides a DC bias current to the LED and 

represented by Q1, Q3, Q4, Q7, Q5, Q6 and the circuit’s 9 V power source. In an IMS measurement, 

we first apply an AC voltage to the circuit as represented by the AC voltage source in Fig. 4-5(b). 

Here, R6 = 50 Ω is the characteristic impedance of a coaxial cable that we use to connect the ref out 

voltage with the adder circuit. While R5 is a resistance that we placed in parallel to the circuit’s input 

to match the coaxial cable characteristic impedance, thus minimizing any voltage signal reflection at 

the adder’s input. The ref out voltage will then be a base voltage or VBE to Q2 with respect to the 

emitter. As such, VBE will apply this modulation to the intersection node between R4 and R11, thus 

modulating D1 LED through R4. So the measured AC modulation current IAC can be determined from 

IAC = VAC/R4, with VAC = VBE (in Vp) and IAC in mA. Note that R10 and R11 were placed as a parallel 

branch with R4 and D1 LED so that we can monitor the VAC amplitude and waveform from the node 

between R10 and R11, since monitoring VAC between R4 and R11 directly may disturb the LED 

modulation and cause an additional phase to appear at point B. 

 As for the circuit’s DC part, we use the -9 V connection from the battery to add the DC bias 

current to the LED, thus the voltage across R4 and Rpoti = -9 V. Also note, the 2 pairs of 10 μF 

electrolytic and 0.1 μF ceramic capacitors in-parallel with the + 9 V power sources were used to guard 

against voltage drop when we perform IMS at high frequency. This is due to charging and discharging 

effect in batteries at high frequencies. We use Rpoti = 5 kΩ (highlighted in Fig. 4-5(b)) to set Q5 VBE 

and drive it with a base current IBE through R13 = 1 kΩ. The Rpoti here will act as a voltage divider to 

the -9 V from the battery. The Rpoti is actually used to tune the DC bias level of D1 LED, since by 

tuning Rpoti manually, we can set Q5 VBE and consequently Q3, Q1, and Q7 VBE. So once we set the 

VBE on Q5, the Darlington pair connection between Q5 and Q3 will result in a current gain IBE that 

will drive Q1 and Q7 BC557B transistors. Because Q1 and Q7 will then drive the LED bias current, 

the emitter current IE flowing out from Q1 and Q7 needs to be stable enough under high-frequency 

conditions. Note that the Darlington connection is used since the current gain of a 2N2369A model 

is not that large, hence the need for Q5 and Q3 pair to drive the bases of Q1 and Q7. In addition, we 

also use the -9 V battery connection to set a -9 V voltage across R8 and R9 and then use the voltage 

divider setup between R8 and R9 to apply a base voltage VBE on Q4 and Q6. The Q4 and Q6 transistors 

are needed to define both Q3 and Q5 collector currents and their emitter resistances. So now, the Q1 

and Q7 BC557B PNP transistors will drive the LED with a bias current in combination with the 

modulated current that runs through R4. Also, the DC input voltage applied to the LED can be 

measured by measuring the voltage VE (in V) at Q1 emitter with respect to ground. While the LED 

bias current can be determined from I = VR4/R4, with VR4 = VA - VB (in V) and I in mA. Here, VA and 

VB are respectively the voltage at point A and B of Fig. 4-5(b) circuit. Note also that the Q1 and Q7 
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transistors are needed to reduce the effect of (static) series resistances in both transistors base-emitter 

connections. 

 

4.3 Development of A New Mode of IMS Operation 

 From 1.4, traditionally, two modes of IMS operation exist, one is IMPS where we measured the 

system’s current response with respect to modulated light and the other is IMVS where we measured 

the voltage response with respect to modulated light [16, 46]. For IMS under IMPS, the characterized 

system must be set at a short-circuit condition since we are measuring photocurrents [16]. While to 

operate IMS under IMVS, the system must be set at an open-circuit condition since we measure 

photovoltage instead [46]. In this work, we introduce a new mode of operation where we perform 

IMS neither at IMPS or IMVS, but instead between the two modes which also includes IMS at 

maximum power point (MPP) for solar cells characterizations. We called this method IMS under 

finite load, and we achieve this by externally connecting the characterized system, i.e. a solar cell, to 

a finite load resistance RL. To further elaborate this method, we use IMS on a solar cell as an example. 

Practically, solar cells operate neither under open-circuit (‘infinite’ load resistor RL) nor short-circuit 

(zero RL) conditions, but under an electric load at maximum power point RMPP that tunes the cell to 

its MPP voltage/VMPP, with RMPP amplitude: 0 < RMPP < infinity. In this context, we can then perform 

IMS under finite load by connecting the illuminated cell to a finite load resistance RL. An illustration 

of this new IMS mode, along with the mode representation in terms of a solar cell J/V characteristics, 

are shown in Fig. 4-6(a) and (b) respectively [135].  

 
Fig.  4-6 (a). The schematic setup for IMS under finite load. RL represents an external load resistance. (b) DC Current 
Density-Voltage (J/V) characteristic of a PV cell under modulation, which results in three different light intensities (L 
(blue); L - ΔL (green); and L + ΔL (red)). The ΔL is the intensity modulation in IMS. Here JSC and VOC are respectively, 
the cell’s short-circuit current density and open-circuit voltage point. The load line (in black) represents the external load 
resistance RL, which intersects the three lines at the characteristic midpoint. This midpoint is the cell’s maximum power 
point. Also, ΔJ and ΔV are respectively the current density and voltage modulation due to the modulated light [135]. 

 

From Fig. 4-6(a), in the IMS under finite load setup, RL can be varied so that we can perform IMS 

when the cell is in-between the short- (zero RL) and open-circuit condition (infinite RL), including at 

MPP (finite RL). In our instrument, this setup is achieved by connecting the cell to a potentiometer 
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that functions as a variable resistor as depicted in Fig. 4-6(a). This then means that we can perform 

IMS on a solar cell at its realistic working condition, which is at its maximum power point, rather 

than at the short- or open-circuit point which is far from practical cell operation.  

 To understand finite load IMS, we also look at the cell’s DC J/V characteristics under AM 1.5 

as illustrated by the blue J/V curve in Fig. 4-6(b). Under modulated illumination/different light 

intensities, the J/V curve will rise and decrease as represented by the red and green curve respectively. 

For the cell’s JSC, if the light intensity increases/decreases, JSC will also increase/decrease in 

proportion to intensity, while VOC is near constant at different intensities [135]. In Fig. 4-6(b), we use 

a load line representation in the J/V curve to illustrate external RL on a solar cell operation [36]. In 

the J/V characteristics, the load resistor RL is represented by the black load line that intersects the 

three different intensities. The intersection of load line with the J/V curve and other intensities gives 

the resulting DC voltage V of a solar cell that is under illumination and loaded with RL at the same 

time. We then call this V the ‘voltage point’ for a load RL. As this point is the voltage measured across 

RL due to illumination. Under light intensity modulation ± ΔL, the voltage point V will be modulated 

by ± ΔV. In the limit of the low modulation frequency, ΔV is the intersections of the same load line 

with the J/V characteristics for L ± ΔL or different light intensities, as shown in Fig. 4-6(b). While at 

higher frequencies, the amplitude of ΔV will drop, and display a phase (φ) with respect to ΔL, leading 

to an IMS spectrum/modulated voltage response at finite load RL.  

 In addition, Fig 4-6(b) also reveals the advantage of finite load IMS compared to both IMVS 

(RL near infinity: load line parallel to voltage axis) and IMPS mode (RL near 0: load line parallel to J 

axis). Since in both cases, the measured voltage modulation tends to be zero even at low frequency, 

leading to difficulties in practical measurement. For IMPS, this can be solved by measuring current 

instead of voltage, by using a current-to-voltage (IV) converter. On the other hand, since we use a 

finite load resistance RL in finite load IMS, or choose an RL similar to RMPP, we will find a measurable, 

finite modulated voltage ΔV without the need of using an IV converter. This ability to measure finite 

ΔV is obviously a clear advantage in doing finite load IMS in addition to achieving this at the cell’s 

normal (optimum) working condition. Later in our work on IMS on organic photovoltaic (OPV), we 

also run IMS measurements with a variety of added external load capacitors CL at the order of 1 nF 

that are placed parallel to RL. We do this in order to determine a bulk heterojunction (BHJ) OPV 

capacitance (CBHJ). 
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4.4 Development of The IMS Instrument Bespoke Software   

 From 4.2., we have also developed a bespoke, LabView-based IMS software which we use to 

operate and control our IMS instrument and measurements. This software takes advantage of our 

lock-in’s own interface software, which is also based on LabView. We use the interface software to 

set all of the lock-in settings or in other words the frequency scan settings. For our bespoke software, 

we integrate this interface software into a routine to run and automate the frequency scan. The 

LabView-based bespoke software was made and designed by Krisna Adhitya, Department of Physics 

and Astronomy, The University of Sheffield, UK. Here, we first describe general lock-in operation 

as our instrument/setup is a lock-in based setup. We then proceed to describe the lock-in interface 

software, its (lock-in) settings and the selection of settings used in our measurements. We then 

elaborate on how the interface software is integrated into our overall software routine.  

 A lock-in amplifier works by first amplifying and digitalizing the total ΔV response (which has 

a φ component) from the characterized sample. This is then followed by splitting the response into 

two components, one is the amplified ΔV and the other is the voltage phase response φ. The lock-in 

will then multiply both components with both the original ref out voltage and the 90o-phase shifted 

ref out voltage. This stage is where the lock-in “picks out” the modulated voltage and phase response 

with respect to ref out voltage or VAC frequency ω. After multiplication, the resulting voltage and 

phase is then low-pass filtered to eliminate any random noise/ finally yield a ΔV result, which is the 

amplitude of an AC voltage signal that has the same frequency as the LED modulation frequency, in 

addition to producing a phase response φ with respect to ref out voltage [36]. A snapshot of the 

interface software that we use to set the lock-in settings is depicted in Fig. 4-7, taken from Anfatec 

Instruments AG [134]. 

 
Fig.  4-7. A snapshot view of the lock-in’s interface software menu page that shows the lock-in settings. These settings 
are; ref out voltage amplitude (in Vrms), input coupling, roll-off (in dB/oct), frequency f (in Hz), input gain, phase offset 
(in degrees) and reference harmonic [134]. 
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In Fig. 4-7, we see that in the menu, there are 8 lock-in settings that have to be set to conduct a 

frequency scan [134]. These are the time constant (in ms), roll-off (in dB/oct), dynamic, coupling, 

frequency (in Hz), amplitude (in Vrms), phase (in degrees) and reference harmonic. The time constant 

setting is actually the lock-in’s internal low-pass filter time constant. Note that the behavior of a low-

pass filter can be represented by the Bode amplitude plot shown in Fig. 1-4 [36]. As such, its time 

constant can also be derived from such plot. Here, the time constant setting is the time taken to 

stabilize the ΔV output derived from the Vsignal(in) in Fig. 4-5(a) [36, 134]. This setting also corresponds 

to the filter’s corner frequency fc, i.e. fc = 1/τ, with τ being the filter’s time constant. The time constant 

is set as high as possible at low scanning frequencies to allow as much time as possible for the ΔV 

output to stabilize at that frequency. This is because the ΔV output obtained at a low frequency is 

equivalent to the ΔV output obtained at a large time period in a time-based picture since f = 1/T with 

f being the scanning frequency and T is the time period of that frequency [36, 134]. Therefore, at 

higher scanning frequencies, the time constant is set to lower values since the ΔV output will be 

obtained at a much smaller time period. While in a frequency-based picture, the filter’s fc is set to as 

small as possible value (i.e. large time constant τ) at low scanning frequencies to eliminate 

noises/fluctuations at higher frequencies, thus stabilizing the ΔV output at that frequency range. 

Whereas at higher frequencies, the filter’s fc is set to a large value (i.e. small τ) to stabilize the ΔV 

output. For our IMS on OPV experiments, we set the time constant to 5 s (the longest time available) 

at scanning frequency f = 1-10 Hz, 1 s at f = 10-100 Hz, 0.5 s at f = 10-1000 Hz, 0.1 s at  f = 1 kHz-

10 kHz and 0.05 s (the smallest time) at f  > 10 kHz. 

 The next setting, the roll-off, is the lock-in’s low-pass filter roll-off. Hence, the roll-off can also 

be derived from the Bode plot shown in Fig. 1-4. The roll-off settings allow us to control the low-

pass filter attenuation slope immediately after the filter’s corner frequency fc [36, 134]. So the steeper 

the slope is, the better it will filter out noises after the fc point. We typically set the roll-off to 24 

dB/oct in our work to eliminate as much noise/fluctuations as possible. The next one, the dynamic 

setting, is used to set the response voltage input amplification once it is fed into the lock-in. So in this 

setting, a high dynamic setting means not amplifying the input or input x 1, while at a normal 

dynamic, the input is amplified by 10 times or input x 10, and finally, at a low dynamic, the input is 

amplified by 100 times, or input x 100. As this is related to coupling setting, and to understand the 

context of its use, we must discuss the coupling setting beforehand. 

 The coupling setting is the setting that allows us to processed the response as a DC-coupled or 

an AC-coupled input. This means that a DC-coupled input will result in the processing of the entire 

response signal, including any DC parts, while the AC-coupled input will result in only the AC part 

being processed. Thus, if we use a DC coupling, we cannot amplify the voltage response because by 
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doing so we would exceed the instrument input limits. On the other hand, since in AC coupling, only 

the AC part is processed, we can obtain higher voltage response as we can pre-amplify the AC part 

of the signal. But with AC coupling we cannot perform a frequency scan at low frequencies since this 

coupling will discard the DC part/low-frequency parts. So ideally we set the coupling to AC and 

dynamic to low, in order to obtain the maximum signal response. However, for our IMS on OPV, we 

set the coupling to DC and dynamic to high (input x 1) since a DC input coupling will enable us to 

perform frequency scan in low frequencies which cannot be done in AC coupling. The next setting is 

the frequency or f setting, this is where we set the starting frequency for our IMS scan, and later in 

our routine, shows the frequency where the scan currently operates. We typically set our frequency 

scan to f values between 1 Hz and 250 kHz. After the f setting, the amplitude setting is where we set 

the ref out voltage/VAC amplitude that we use to modulate the LED. For all IMS on OPV, we set VAC 

= 0.5 Vp. Following amplitude setting, the phase setting denotes any phase correction/offsets that 

need to be done after the phase response is produced. For our IMS on OPV, we set this to 0, as we do 

not need to correct the voltage phase response to any phase offsets/corrections. Finally, the harmonic 

settings designate the selection of ref out voltage harmonic that we use to evaluate the response 

voltage. For our IMS on OPV, we set this to 1, as we usually evaluate the response voltage at the 1st 

harmonic [134].  

 We then proceed to integrate and expanded the lock-in interface software in Fig. 4-7 into a 

longer routine so that we can automatically set and operate an IMS frequency scan at f between 1 Hz 

to 250 kHz. This routine is basically our bespoke software and it is called a virtual instrument (VI) in 

LabView. It consists of various LabView routine/functions, called a sub-VI, that needs to be used to 

operate the VI. In developing the software, we use a conventional sequential-stacking approach. Here, 

we first divide f between 1 Hz to 250 kHz into several frequency groups, with the groups varied from 

lowest to highest frequencies. The groups are also numbered with the lowest being the lowest 

frequency group, and so on to higher frequency groups. For all IMS characterizations in our work, 

the groups are, f1 = 1-10 Hz, f2 = 10-100 Hz, f3 = 10-1000 Hz, f4 = 1-10 kHz and f5 =11-250 kHz. The 

frequency groups are prepared in a Microsoft Excel tab-separated (spreadsheet) format which can be 

interfaced to the lock-in’s software. For each group, we developed an individual VI to accommodate 

a different lock-in setting, i.e. different time constant setting for that particular group. The group 

frequency VI do this by using the interface software with selected lock-in settings to run a frequency 

scan and then process the response for that frequency group. A snapshot of our software menu page 

and the group frequency VI structure is depicted in Fig. 4-8(a) and (b) respectively. 
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(a) 

(b) 

Fig.  4-8 (a). A snapshot of our frequency scan menu page. Depicted are the file path columns where we insert the 
frequency group’s spreadsheet, the response columns where we display the resulting voltage and phase response, and 
finally, the Bode plots visualization for the voltage response. (b) depicts the individual group frequency VI enclosed 
within a FOR loop structure which we use to build our software. Here, we can see the lock-in interface software which is 
used as a sub-VI in the routine, in addition to a spreadsheet frequency input sub-VI, voltage and phase response sub-VI 
and wait function sub-VI. 

  

In Fig. 4-8(a), we can see in the software menu page, several file path columns in which we insert the 

frequency groups spreadsheets, the response columns where we display the voltage and phase 

response, and finally the Bode plots visualization for the voltage response. While in Fig. 4-8(b), we 

can see the group frequency VI that is enclosed within a FOR loop VI structure. The group VI 

structure in Fig. 4-8(b) operates as follows, first, the group VI will conduct the scan at a frequency f 

which is taken from the frequency input sub-VI. The lock-in sub-VI will then “pick-out” voltage and 

phase response with respect to modulating ref out voltage frequency ω and produce a voltage 

(amplitude) and phase response with the voltage and phase sub-VI. The scanning is then repeated for 

the next frequency in that group by a FOR loop structure. Hence, the number of group frequencies 

will be the FOR loop iteration number N. For example, if a group consists of 10 frequencies, then N 
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= 10, and so on. In addition, between each frequency scan, we also add a wait time sub-VI to add 

more time between each scan. This is to guard against random noise at each frequency in that group. 

After a group VI scan is finished our software will then move on to the next frequency group that we 

listed before. A flowchart diagram of how an individual group VI operates is depicted in Fig. 4-9. 

 
Fig.  4-9. A flowchart diagram that describes the frequency scan process in each frequency group VI. 

 

In Fig. 4-9 diagram, we can see that the group VI will repeat the scan until the scan has been conducted 

at all frequencies in that group. After scan completion, the scan will then move on to the next group 

of frequencies and repeat the process in Fig. 4-9 for the new group. We then use a group frequency 

VI and integrate it with the other group frequencies VIs to form a sequential and accumulative 

processing VI, where the first group of frequencies will be scanned and after this is done, the scan 

will automatically move to the next frequency group while sending the previous group’s voltage and 

phase response to another sub-VI that will store and accumulate the results. This sub-VI will then 

plot a voltage and phase response in the form of Bode amplitude and phase plots only after all group 

frequencies have been scanned. Hence, through this expanded routine, we can obtain a Bode 

amplitude and phase plot for f between 1 Hz and 250 kHz. An overall depiction of our bespoke 

software/routine, including the scanning steps taken in the software, is depicted in Fig. 4-10.   
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Fig.  4-10. An expanded view of our IMS software virtual instrument (VI), which depicts the software process flow, group 
frequency VIs, FOR loops and interface software together with the sequential structure that is used to build the software. 
The scanning process starts at (1), where we perform an IMS scan at the first frequency group by using that group VI. 
After the first group scan is finished, the results will be sent to a plot sub-VI which will then accumulate the results until 
all frequency groups have been completed. At (2), the sequential structure will continue the scan to the next group VI for 
the next frequency group. At (3), the scan will continue to the next group and so on, until all frequency groups have been 
scanned. Finally, at (4), the resulting voltage and phase is accumulated at the plot sub-VI and then at (5), the results are 
plotted and displayed in the menu page Bode amplitude and phase plots visualization. 

 

From Fig. 4-10, in (1), after we set all the lock-in settings parameters, we perform the frequency scan 

at the first frequency group from our spreadsheet frequency data, which is followed by the acquisition 

of voltage and phase response from the first group. In (2), after the first group has been scanned, the 

sequential structure will automatically transition the scan to the next group to repeat the process. This 

is done while the structure sends the response from the previous scan to a plot sub-VI, which is to be 

accumulated with other frequency group data. After the second group scan is finished, the routine 

will continue on to the next frequency group (3) and conduct the same scan until all frequency groups 

have been exhausted. Note that at each group VI, a wait time sub-VI is used to make sure the voltage 

response does not fluctuate much at that frequency group. In addition, the wait time here is set much 

longer than each group’s time constant setting. This is done so that there will be enough time available 

for the ΔV output to stabilize at each frequency/data point in each group. After all, groups have been 

scanned, the voltage and phase response at all frequencies were then accumulated (4) by a plot sub-

VI and plotted into the Bode amplitude and phase plots displayed in the software menu page. Thus, 
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another advantage of using a lock-in-based IMS setup is that it offers us almost unlimited possibility 

in customizing our setup for any type of IMS measurements.  

 

4.5 Intensity-Modulated Spectroscopy (IMS) Instrument Calibration 

 We have calibrated our IMS instrument setup that is depicted in Fig. 4-5(a). We do this by first 

replacing the solar cell in Fig. 4-5(a) setup with a fast and reverse-biased silicon photodiode 

(Centronic OSD5-5T, rise time τ = 9 ns), with the photodiode reverse-bias voltage VREV = -13.2 V 

[136]. We use the same setup, including the bespoke voltage adder and red LED in 4.2 to illuminate 

the photodiode, thus calibrating our setup with the photodiode. A depiction of our calibration setup 

is shown in Fig. 4-11. 

 
Fig.  4-11. A block diagram of the IMS calibration setup on the solar cell connections. The diagram along with other 
instrument setup is similar to 4.2, while also showing the -13.2 V reverse-biased silicon photodiode with voltage 
measurement at point A in-parallel with measurement resistance R1 = 68 Ω. 

 

In Fig. 4-11, we use a similar procedure as in 4.2. We use VAC from the reference output voltage, and 

by using the same voltage adder, combine the VAC with a larger bias voltage V from the adder’s power 

supply. We use the modulated LED to illuminate the photodiode that is under a reverse bias voltage 

or VREV = -13.2 V, and connected in-parallel with a load resistance R1, where R1 = 68 Ω. We reverse-

biased the photodiode as it will operate faster under a reverse-bias voltage in terms of its rise time τ 

[36]. For this photodiode, the maximum VREV that we can apply is VREV  = 15 V. We proceed to use 

our IMS software to perform an automatic frequency scan by varying the lock-in’s voltage 

modulation frequency ω to values between 1 Hz and 250 kHz in 12 steps per decade.  

 From the illumination, photocurrents response from the cell is then measured as a voltage drop 

V + ΔV(ω) sin(ωt+φ(ω)) at points A in parallel with R1 = 68 Ω. The load resistance R1 function is to 

convert a photocurrent signal into a voltage at point A since the lock-in can only receive voltage input. 

The magnitude of resistance R1 is chosen to be 68 Ω, so that the resistance will not be too high which 
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can then greatly reduce the photocurrents and the measured voltage signal at A but also not too small, 

so that the resulting photocurrents and the voltage signal at A can still be detected by the lock-in 

device. The ΔV(ω) and φ(ω) response is a function of ω as we varied the modulation frequency ω. 

The cell’s voltage response is then fed into the lock-in voltage measurement input, without IV 

converter. We then plot the amplitude ΔV(ω) and phase φ(ω) response from the photodiode in a Bode 

amplitude and phase plot which are shown in Fig. 4-12(a) and (b) respectively.  

 

 
Fig.  4-12. Bode (a) amplitude, and (b) phase plots from an OSD5-5T photodiode under a red LED and reversed-bias at 
a reverse-bias voltage VREV = -13.2 V. Here, the total LED drive current ILED = (18 + 10) mA. 

 

From both Fig. 4-12(a) and (b), we observe that the setup, including the LED, does not add a 

significant phase to the fast photodiode. This is also evident from the amplitude plot since we cannot 

find any corner frequency fc in the plot. With fc being the frequency where ΔV amplitude from the 

photodiode starts to drop to its -3dB equivalent magnitude at phase φ = 45o. While from Fig. 4-12(b), 

we observe that at the highest frequency, i.e. at 250 kHz, the ΔV phase is ~ 4 o, while from 2 to 100 

Hz they are practically 0. There is indeed an incremental rise in phase starting from 100 Hz to 10 

kHz, but these are very small, i.e ~ 1o rise. Thus, because the photodiode is already very fast in terms 

of its rise time, any additional phase from the setup or the LED will add phase to the Bode plots in 

Fig. 4-12(a) and (b), which can then results in a noticeable drop in the photodiode ΔV amplitude at a 

certain frequency f or even fc, and also higher phases in the Bode phase plot. In other words, the 

photodiode voltage and phase response serve as a baseline measurement for our IMS 

characterizations. Hence we can conclude that our IMS setup will not add a significant phase to our 

IMS measurements, with only 4o of the additional phase detected at the highest frequency (250 kHz) 

from calibration. To add, we can also conclude that the use of the ODS5-5T model is indeed suitable 

as a calibrating photodiode in our IMS work since its response will only add 4o phase at the highest 

frequency. 

 In addition, for photodiode-based measurements with the same setup, where we use the 

photodiode to characterized system response, we can easily use the calibrated photodiode ΔV 



 
Page | 96  

amplitude and phase to correct the measured system’s ΔV amplitude and phase response. We can do 

this by dividing the real result with the photodiode’s ΔV amplitude. While for phase, we can subtract 

the system’s phase with the photodiode’s output phase. Note that the corrections themselves can only 

be performed when both the system’s response and the photodiodes measurement were taken under 

the same modulating light amplitude.  

 

4.6 Development of A Bespoke IMS Instrument for IMS on Organic Light-

Emitting Diode (OLED) 

     In addition to the bespoke IMS instrument in 4.2, we have also adapted and modified our IMS 

instrument for the purpose of IMS on an OLED. The modified IMS instrument that we have 

developed for IMS on OLEDs is basically the same as in Fig. 4-5(b), but here, the roles of IMS light 

source, and its light detector, are exchanged. Here, we use the OLED under test, rather than a fast 

inorganic LED, as the driven light source. On the other hand, we detect the modulated light emitted 

by the OLED with the same fast, reverse-biased Si photodiode (rise time τ = 9 ns) in 4.5 rather than 

projecting it onto an experimental solar (i.e. organic photovoltaic) cell in 4.2. We then record the 

OLED’s IMS spectrum as detected by the fast photodiode circuit. On a conceptual level, both the 

IMS instruments in Fig. 4-5(b) and the IMS setup for OLED can be seen as derivatives of the 

completely inorganic circuit that we used for the IMS instruments calibrations in 4.5. For the first 

IMS instrument in Fig. 4-5(b), we replace the fast, reverse biased Si-photodiode with an experimental 

OPV cell, while retaining the fast LED as light source. For the OLED IMS instrument, we retain the 

fast reverse biased Si photodiode but replace the fast red LED with an experimental OLED light 

source. However, the entirely inorganic ‘parent’ circuit serves no scientific purpose other than testing 

and correcting for unwanted artifacts. The instrument becomes a meaningful IMS spectrometer when 

either light source, or light detector, are replaced with an experimental sample rather than a fast 

inorganic stock component.  

 The modified instrument setup itself consists of an OLED sample as the light stimulus, a fast, 

reverse-biased OSD5-5T photodiode as the OLED light detector, a digital Anfatec USB 250 Lock-In 

amplifier that modulates the OLED intensity, a bespoke voltage adder based on fast 2N2369 and 

BC547C NPN transistors (rise time τ = 6 and 3.3 ns respectively) that drive/modulate the OLED, an 

IV converter based on LM6171 op-amp with feedback resistor (Rf) and capacitor (Cf) of 4.7 kΩ and 

4.7 pF respectively, and finally a PC with a modified version of the software in 4.4 to operate the 

frequency scan. The bespoke voltage adder is a modified version of the circuit in Fig 4-5(b). The 

modified voltage adder was also designed and built by Prof. Richard Tozer, from the Department of 
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Electronic and Electrical Engineering at The University of Sheffield, UK. The IMS instrument setup 

and the bespoke voltage adder are depicted in Fig. 4-13(a) and (b) respectively.   

 

 

 
Fig.  4-13 (a). A block diagram of our IMS measurement setup, showing the PC running LabView software which controls 
the USB lock-in, a circuit driving the OLED by adding a DC offset voltage to the AC modulation voltage from the ref 
out, the OSD5-5T photodiode connected to an LM6171 op-amp with feedback resistor (Rf) = 4.7 kΩ and capacitor (Cf) = 
4.7 pF, and the photodiode’s current converted into voltage at the op-amp’s output. This voltage is then fed into the lock-
in’s measurement input. (b) A circuit schematic of a modified DC + AC adder circuit in 4.2. which adds a DC bias to the 
AC ref out to drive the OLED. The lock-in ref out is represented by a voltage source, top left. DC voltage supply is a 9 V 
and 15 V DC power supply stabilized by capacitors (right). The level of DC bias is set by a 10 kΩ potentiometer 
(highlighted). The OLED (D1) is also highlighted. As a performance test of the DC + AC adder, we fed the DC + AC 
signal directly into the lock-in measurement input, and found no measurable drop in AC amplitude, and less than 1o of 
added phase, up to 250 kHz. 

 

In Fig. 4-13(a), we use VAC from the reference out voltage, and with the modified bespoke voltage 

adder, we combine the lock-in’s VAC with a larger DC bias voltage V from the modified adder’s 9 V 

and 15 V power supply. We then set VAC amplitude by using a modified version of the software in 

4.4 and also set the lock-in’s input coupling to DC, roll-off to 24 dB/oct, dynamic to high, phase 
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offset to 0 and the reference harmonic to 1. The time constants are set to 5 s at scanning frequency f 

= 1-10 Hz, 1 s at f = 10-100 Hz, 0.5 s at f = 10-1000 Hz, 0.1 s at f = 1 kHz-10 kHz and 0.05 s at  f > 

10 kHz. As in 4.4, the time constant is set as high as possible at low frequencies and gradually reduced 

at higher frequencies to allow more time for the ΔV output to stabilize and to eliminate any possible 

noise/fluctuations. The roll-off is also set to 24 dB/oct with the same reasoning mentioned in 4.4, i.e. 

to eliminate as much noise/fluctuations as possible. The coupling is set to DC and dynamic to high 

(input x 1) since a DC input coupling will enable us to perform frequency scans at low frequencies 

that cannot be done in AC coupling. The frequency setting is where we set the start frequency for our 

scan, and later shows the frequency where the scan currently operates. The amplitude setting is where 

we set the ref out voltage/VAC amplitude that we use to modulate the OLED. The phase setting is set 

to 0, as we don’t need to correct the voltage phase response to any phase offsets. Finally, the harmonic 

setting is set to 1, as we usually evaluate the response voltage 1st harmonic. We then use the adder to 

apply VOLED = (VDC ± VAC) V on the OLED with ROLED = R4 = 2.7 kΩ so that the adder will modulate 

the OLED with IOLED = (IDC ± IAC) mA. The VOLED and IOLED will be given in the results chapter since 

we apply different VOLED and IOLED in IMS on OLED measurements. In addition, we also varied the 

input coupling and dynamic in one of the IMS on OLED measurement in this work.  

 The OLED will then produce a light intensity LT = L + ΔL sin ωt. We use the modulated OLED 

to illuminate a photodiode (same as 4.5) under a reverse bias voltage = -13.2 V. We then use the 

modified IMS software to perform an automatic frequency scan by varying the lock-in’s voltage 

modulation frequency ω to values between 1 Hz and 250 kHz in 18 steps per decade. Here, a total of 

90 frequency points, or data points were taken between 1 Hz and 250 kHz, with ω = 2πf. From OLED 

illumination, the photodiode will then produce a current in the form of IPD = IPD-DC + ΔIPD(ω) 

sin(ωt+φ(ω)). This photocurrent is then fed into an IV converter based on an LM6171 op-amp with 

Rf = 4.7 kΩ and Cf = 4.7 pF. The IV converter here is used to convert photocurrents to voltage in our 

OLED measurements. This is because the lock-in can only receive a voltage input. In addition, by 

using an IV converter, we eliminate the need to choose a specific load resistance similar to the setups 

in Fig. 4-5(a) and 4-11. Note that changing Rf and Cf in an op-amp will only change the op-amp’s 

gain factor, but the change itself will not add phase or decrease the input signal. The IV circuit then 

converts the photodiode current (IPD) into a voltage (Vout) and amplify the resulting voltage through 

IPD = Vout/Rf. This voltage (Vout) is related to the OLED illumination via the photodiode. The Vout is 

given by Vout = V + ΔV(ω) sin(ωt-φ(ω)), which consists of ΔV(ω) and phase φ(ω) as a function of ω. 

Note that the phase response here is negative as we earlier fed the current to the op-amp inverting 

input. The Vout is then fed into the lock-in voltage input. The lock-in will then measure and “pick out” 

the ΔV(ω) by comparing it with the lock-in’s ref out voltage frequency ω. As a result, we obtain the 
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amplitude ΔV(ω) and phase φ(ω) of Vout and record these parameters as a function of f = ω/2π. Later 

the amplitude ΔV(ω) and phase φ(ω) can be plotted as a Bode and Nyquist plot as seen in 1.4.  

 In Fig. 4-13(b), the new bespoke adder circuit consists of two main parts, one is an AC part, 

which modulates the OLED with the lock-in’s ref out voltage, and represented by the AC voltage 

source and Q2 transistor. While the other is the DC part, that provides a DC bias current to the OLED 

represented by Q1, Q3, Q4, Q5, Q6, Q7 and one 15 V battery from the circuit’s power supplies. So 

we first apply an AC voltage to the circuit as represented by the AC voltage source in Fig. 4-13(b). 

In the adder’s input, R6 = 50 Ω is placed in-parallel with R5 = 4.7 kΩ so that we can load the AC 

voltage branch with RT = 50 Ω. The purpose of RT is to produce an AC current IBE (in mA) that will 

drive/modulate the Q2 transistor base with respect to the emitter. The IBE was obtained from IBE = 

VAC/RT, and VAC = VBE (in Vp), with VBE the applied voltage on Q2 base with respect to its emitter. 

Since we applied an AC voltage or VBE on Q2 base, we will also apply this modulation to the node at 

point B, thus modulating the OLED through R4. Hence, the AC modulation current IAC (in mAp) can 

be determined from IAC = VBE/R4, with VAC = VBE. In OLED devices, we also have to account for the 

OLED’s differential resistance Rdiff in determining IAC, so IAC will then become IAC = VAC/(R4+Rdiff). 

 For the circuit’s DC part, we use the -15 V connection from the supply to add the OLED’s DC 

bias, Thus, the voltage across R16, R2 potentiometer and R1 = -15 V. Note also, that the 1 and 10 μF 

electrolytic and ceramic capacitor pair are connected in-parallel with the power supply to stabilize it 

at high frequency. Transistors Q1, Q3, Q4, Q5, Q6, Q7 will operate in the same way as the DC 

transistors in Fig. 4-5(b). However, here we use R2 potentiometer = 10  kΩ (highlighted in Fig. 4-

13(b)) to set Q5 VBE and drive it with a base current IBE through R13 = 1 kΩ. The R2 is used to tune 

the OLED’s DC bias level just like Rpoti in Fig. 4-5(b). So once we set the VBE on Q5, the Darlington 

pair connection between Q5 and Q3 will also result in a current gain IBE that will drive the Q1 and Q7 

BC557B PNP transistors. The Darlington is used since Q1 and Q7 will drive the OLED bias current, 

hence the need for emitter current IE from Q1 and Q7 to be stable at high frequencies. Also, here we 

use -15 V supply to set a -15 V voltage across R1, R16, and R2. To add, we use a voltage divider 

setup between R16 and R1 to apply a base voltage VBE on Q4 and Q6. The Q4 and Q6 transistors are 

also needed to define both Q3 and Q5 collector currents and their emitter resistances. So now, the Q1 

and Q7 will drive the OLED with a bias current in combination with the modulated current that runs 

through R4. The input voltage applied on the OLED can be measured by measuring the voltage VE at 

Q1 emitter with respect to ground. While the OLED DC bias voltage VDC can be measured from VDC 

= (VE at Q1) – (VA), with VA the voltage measured at point A in Fig. 4-13(b) circuit with respect to 

ground. Finally, the OLED bias current I can be determined from I = VR4/ R4, with VR4 = VD – VA. 

Here, VD and VA are respectively the voltage at points D and A of Fig. 4-13(b) circuit with respect to 
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ground. To add, we also placed J1 2N3819 JFET parallel to R4, with the JFET under a Darlington 

connection with a Q8 BC557C PNP transistor. We placed J1 and Q8 in the circuit to aid us in 

monitoring the ref out the voltage and OLED modulation in B from point C. Since doing so directly 

at B may interfere with OLED modulation. To add, a small capacitance C7 = 1 pF is added in-parallel 

to R10 to reduce any parasitic capacitances that can occur at monitoring point C with respect to 

ground. Also, because we fed the photodiode current into the IV converter inverting input, we will 

then produce an 180 o inverted AC voltage component phase φ(ω) from the converter. To account for 

this in our final voltage and phase results, we modify our IMS software in 4.4 by adding a phase 

correction algorithm in each of our group frequency VI. This is done by using a formula sub-VI as 

depicted in Fig. 4-14. The algorithm basically subtracts the resulting phase φ with 180 0 if φ ~ 180 o 

or lower, and adds 180 o to the phase if φ ~ -180 o or higher. The software modification was done by 

Krisna Adhitya, Department of Physics and Astronomy, The University of Sheffield, UK. 

 
Fig.  4-14. A view of our IMS software modification which employs a formula sub-VI in each group VI, to account for 
the phase inversion from the IV converter. The formula sub-VI is integrated into the FOR loop structure with its operation 
limited by the loop iteration number. Note here that the formula sub-VI input and output connection is not connected to 
the group VI, in practice, the formula input (x) is connected to the phase response sub-VI and its output (y) is connected 
to the outside of the group VI towards the plotting VI.  

 

In Fig. 4-14, the formula sub-VI is integrated into each group frequency VI, with the remaining group 

VI unmodified. Here, the formula sub-VI is not connected to anything for illustration purposes. In 

practice, the formula sub-VI input (x) is connected to the phase response result so we can offset the 

inverting effect from the converter. While the formula output (y), produced a corrected phase output 

and is connected to outside towards the final plotting VI. Overall, the bespoke software VI structure 

remains the same, including its operation and with the lock-in settings that have been described 

before.  
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 In addition, we have also calibrated Fig. 4-13(a) setup by illuminating the photodiode with the 

fast red LED and bespoke voltage adder from 4.2. For the calibration, the photodiode is set with a 

similar setup as in Fig. 4-13(a). Thus, the photodiode is calibrated under a VREV = -13.2 V and 

connected to the LM6171 op-amp with Rf = 4.7 kΩ and Cf = 4.7 pF. We found that the resulting 

voltage phase φ from the setup = 5.60 at 250 kHz with respect to the reference output voltage. Hence, 

the setup in Fig. 4-13 does not add significant phase to the measured signal. To add, we can also use 

this calibration result as a baseline measurement. So real system results from this setup can be 

corrected with the setup calibration results. Also, the LM6171 op-amp with the previous Rf and Cf 

will theoretically give us an RC time constant or τRC = RfCf = 22 ns, which corresponds to a corner 

frequency fc = 45 MHz from τRC = 2π/ω = 1/fc. This means that the op-amp maximum frequency 

bandwidth (at 45 MHz) is much higher than the maximum scanning frequency at 250 kHz, thus 

making our IMS frequency range well within the op-amp (frequency) bandwidth [137].  

 

4.7 Intensity-Modulated Spectroscopy (IMS) Instrument Setup for Light-

Dependent Resistor (LDR) Characterization 

 In addition to IMS on organic semiconductor devices, we can also adapt our instrument to 

characterize a light-dependent resistor (LDR), i.e. a commercial cadmium sulfide (CdS)-based LDR. 

For IMS on LDR, we use the same setup as in Fig. 4-13(a) but by using a green LED as the IMS 

source and the bespoke voltage adder in Fig. 4-5(b). The green LED is used since a commercial LDR 

is typically made from cadmium sulfide (CdS) which has a band gap (Eg) of 2.42, thus corresponding 

to the region of green wavelength (512 nm) [138]. Here, we use a green LED (peak wavelength λp = 

516 nm) model HLMP-CM3A-Z10DD, from Avago Technologies [138]. The green LED rise time is 

not known but it is slower than the fast red LED in 4.2. The evidence for this is from the green LED 

calibration results, which we perform by using the LED to illuminate the fast photodiode in 4.5 with 

the LDR setup. We found that the photodiode’s resulting voltage phase under green LED with respect 

to the lock-in ref out voltage, i.e. φ = 8o at a frequency (f) = 250 kHz, which is the highest scanning 

frequency. This phase is 4o higher than the red LED phase calibration results in 4.5 at the same 

frequency. The reason for this is due to the different design parameters of the LED, which is optimized 

for green emission instead of red [139]. The IV converter here is used to convert the modulated current 

into a voltage signal since the lock-in can only receive voltage input. Also, the IV converter uses Rf  

= 1 kΩ and Cf = 4.7 pF. The commercial, CdS-based LDR that is characterized here is an NSL-19M51 

Silonex from Farnell UK, Ltd. The LDR is sensitive to a peak spectral wavelength = 550 nm and has 

a rise time τr = 45 ms. We also apply a DC Voltage (Vbias) to the LDR so that we can measure 

modulated currents flowing through the LDR due to the change in the LDR’s resistance from 
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modulated light. Note that current flowing in the LDR is not a photocurrent, but it comes from the 

applied Vbias on the LDR. We apply and change the Vbias from Vbias = 1, 1.5, 2, 2.5 and 3 V. An 

illustration of the IMS on LDR setup and the modified bespoke voltage adder circuit in 4.2 is depicted 

in Fig. 4-15(a) and (b).  

(a) 

(b) 

Fig.  4-15 (a). A block diagram of the IMS measurement setup for the CdS-based LDR, shown here are all the same IMS 
components we see in Fig. 4.6, with the difference that we now use a green LED to do the IMS, and that the LDR is in 
place of the photodiode in Fig. 4.6.  In addition, we also apply a different voltage bias or Vbias = 1, 1.5, 2, 2.5 and 3 V on 
the LDR to measure current flow due to Vbias. To add, the Rf used in the IV circuit is also different with Rf  = 1 kΩ. (b). 
Circuit scheme of modified DC + AC adder circuit used for IMS on LDR. The circuit is the same as those in 4.2, but here 
we replace the fast red LED with a green LED and the LED resistor RLED = R4 = 102 Ω.  

 

In Fig. 4-15(a), we use VAC from the lock-in’s reference output voltage and with the voltage adder 

from 4.2, combine the VAC with a larger DC bias voltage V from the adder’s + 9 V supply. We then 

set VAC amplitude by using a modified version of the bespoke software in 4.4. We use the modified 

version because we will later need to correct the phase results since we fed the resulting signal to an 
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IV converter inverting input. We then set the lock-in’s input coupling to DC, roll-off to 24 dB/oct, 

dynamic to high, phase offset to 0 and the reference harmonic to 1. The time constants are also set to 

5 s at scanning frequency f = 1-10 Hz, 1 s at f = 10-100 Hz, 0.5 s at f = 10-1000 Hz, 0.1 s at f = 1 kHz-

10 kHz and 0.05 s at f  > 10 kHz. As in 4.4, the time constant is set as high as possible at low 

frequencies and as low as possible at higher frequencies to allow more time for the ΔV output to 

stabilize and also to eliminate any possible noise. The roll-off is also set to 24 dB/oct with the same 

reasoning mentioned as in the roll-off setting in 4.4, i.e. to eliminate as much noise/fluctuations as 

possible. The coupling is set to DC and dynamic to high (input x 1) since a DC coupling will enable 

us to perform frequency scan in low frequencies that cannot be done under AC coupling. The 

frequency setting is where we set the starting frequency for our scan, and later shows the frequency 

where the scan currently operates. The amplitude setting is where we set the ref out voltage amplitude 

to modulate the green LED. The phase setting is set to 0, as we don’t need to correct the voltage phase 

response to any phase offsets. Finally, the harmonic setting is set to 1, as we usually evaluate the 

response voltage 1st harmonic.  

 We then use the voltage adder to apply VLED = (2.9 ± 0.9) V to the green LED with RLED = R4 

= 102 Ω so that the adder will modulate the LED with ILED = (19 ± 9) mA. The LED will then produce 

a light intensity of LT = L + ΔL sin ωt. Here, LT ~ ILED, and ΔL/L = ΔI/I. We then use the modulated 

green LED to illuminate the LDR under applied Vbias. The LED will then modulate the LDR 

resistance, and as a result, modulate the current flowing through the LDR. We then use the modified 

IMS software to perform a frequency scan by varying the lock-in’s voltage modulation frequency ω 

to values between 1 Hz and 250 kHz in 18 steps per decade. Here, a total of 90 frequency points were 

taken between 1 Hz and 250 kHz, with ω = 2πf. The resulting current will be I = I + ΔI sin ωt and we 

then feed this current into an IV converter with Rf  = 1 kΩ and Cf = 4.7 pF. This current (I) will then 

be converted and amplified by the IV converter into a voltage (Vout) through I = Vout/Rf. Here, I is the 

resulting current and Vout is the converted voltage from the IV converter. This voltage (Vout) is related 

to the green LED illumination via the LDR resistance modulation. The Vout is given by Vout = V + 

ΔV(ω) sin(ωt-φ(ω)), which consists of ΔV(ω) and phase φ(ω) as a function of ω. Here, the phase is 

negative since we feed the current from the LDR to the op-amp inverting input. This Vout is then fed 

into the lock-in voltage input. The lock-in will measure and “pick out” the modulated voltage 

component by comparing it with the lock-in’s ref out voltage frequency ω. As a result, we obtained 

the amplitude ΔV(ω) and phase φ(ω) of Vout and record these parameters as a function of f = ω/2π. 

We then repeat the process for Vbias = 1, 1.5, 2, 2.5 and 3 V. The amplitude ΔV(ω) and phase φ(ω) 

can then be plotted as a Bode and Nyquist plot as seen in 1.4. In Fig. 4-15(b), we can also see that the 
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R4 resistor has now changed to 102 Ω and the D1 LED is now a green LED, otherwise, the remaining 

parts of the circuit are similar to Fig. 4-5(b).  

 In addition, we have also calibrated the Fig. 4-15(a) setup by using it to illuminate the fast 

photodiode from 4.5. For the calibration, the photodiode is under a reverse bias voltage VREV = -13.2 

V which replace the LDR-Vbias connection in Fig. 4-15(a). We apply the same VLED on the green LED 

and also drive it with the same ILED as before. The photocurrents response (IPD) from the photodiode, 

where IPD = IPD-DC + ΔIPD sin ωt is then fed into the same IV converter with Rf  = 1 kΩ and Cf = 4.7 

pF. The IV converts the photocurrent into a voltage and amplifies the resulting voltage through IPD = 

Vout/Rf. The total voltage becomes Vout = V + ΔV(ω) sin(ωt+φ(ω)), and this is channeled into the lock-

in input. From the lock-in, we then obtain the amplitude ΔV(ω) and phase φ(ω) from Vout and record 

these as a function of f = ω/2π. The amplitude ΔV(ω) and phase φ(ω) from Vout were then plotted in 

a Bode amplitude and phase plot with respect to frequency ω and are shown in Fig. 4-16(a) and (b) 

respectively. 

 

Fig.  4-16 (a). Bode amplitude, and (b) phase plots from OSD5-5T photodiode under green LED and at a reverse-bias 
voltage VREV = -13.2 V. Here, the green LED drive current or ILED = (19 + 9) mA. 

 

In Fig. 4-16(a), we see that there is no corner frequency fc detected between 1 Hz and 250 kHz. 

However, we also notice a slight ΔV amplitude “fall” at frequency f ~ 1 kHz in Fig. 4-16(a). In 

addition, from the phase plot in Fig. 4-16(b), as mentioned earlier, the phase is ~ 8o at f = 250 kHz, 

which is a rise of 4o compared to φ at f  = 250 kHz under red LED in 4.5. Also in Fig. 4-16(b), there 

is an incremental rise in phase, with the rise ~ 1o, starting from 100 Hz to 10 kHz similar to the 

incremental rise in voltage φ under red LED in Fig. 4-12(b). Hence, we conclude that since the 

calibration of the fast photodiode in 4.5 and the IV converter-based setup in 4.6 will only add 

respectively as much as 4o and 5.6o in voltage phase, the rise in phase must be caused by a slower 

LED modulation, or in other words, the green LED is not as fast as the red ones. However, the total 

voltage phase from the calibration is still small ~ 8o, and we can correct this phase addition with the 

method described in 4.5. 
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4.8 Intensity-Modulated Spectroscopy (IMS) Instrument Setup for Alkaline 

Battery Characterization 

 In addition to IMS on OPV and OLED, another potential use of our instrument/setup are that 

we can adapt our instrument to conduct IMS on a commercial 1.5 V alkaline battery. We conducted 

this through load modulation of the 1.5 V battery. So in a load modulation IMS, we take the advantage 

of using the same fast photodiode (OSD5-5T) in 4.5. and use it as a fast photosensitive device that 

modulates the battery voltage and load resistance with the setup depicted in Fig. 4-17. In the setup, 

besides the photodiode, we simply use the IMS instrument from 4.2., a 1.5 V AA-size, Panasonic 

alkaline battery model LR6APB and a load resistance RL = 53 Ω.  

 
Fig.  4-17. A block diagram of the IMS measurement setup for an alkaline battery load modulation, shown here are all 
the same IMS components we see in 4.2., but the difference being is that we now have a load modulation circuit, where 
illumination of the photodiode will modulate the measured voltage in the load branch. This load modulation is measured 
from point A (highlighted in red) and it lies in the parallel connection between the photodiode, battery and load resistance. 

 

In Fig. 4-17, we have integrated the IMS instrument/setup in 4.2. into a load modulation setup. We 

have used the fast red LED and the voltage adder in 4.2., with the battery itself, connected in parallel 

with the OSD5-5T photodiode in 4.5 and a load resistance (RL) of 53 Ω. In the Fig. 4-17 setup, we 

use the bespoke voltage adder in 4.2. to add a DC voltage (VDC) on top of a small AC voltage (VAC) 

from the lock-in’s ref out voltage, and apply the resultant (DC + AC) voltage to the fast red LED 

(VLED) in 4.2. with VLED = (2.2 + 1.2) V. The VLED is applied to the red LED with a protective serial 

resistance (RLED) of 120 Ω, thus driving the LED with a current ILED = (18 + 10) mA. The ILED will 

produce a modulated light intensity (LT) of LT = L ± ΔL. The intensity is not known in absolute terms 

but LT ~ ILED, so ΔL/L = ΔI/I.  

 We then use the red LED with modulated intensity LT to illuminate the D1 photodiode in Fig. 

4-17, thus causing the photocurrent from the fast photodiode to modulate the voltage measured at the 

highlighted point A in Fig. 4-17. In addition, because the illuminated photodiode is also under a 
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forward bias of the battery voltage (Vbattery) = 1.5 V, currents from the battery at point A will 

offset/balance currents flowing out of the photodiode. If the photodiode’s current is at the modulation 

maximum, battery currents will offset the photodiode’s current, but if the photodiode current is at its 

minimum, battery currents will not flow into the photodiode but instead through the load resistance 

RL. In other words, at point A we will measure/obtain a load modulation signal in the form of V + 

ΔV(ω) sin(ωt+φ(ω)). This is what we basically measure in a load modulation IMS, i.e. ΔV at point A 

because the battery discharges and this discharge is modulated by photocurrents from the photodiode. 

 We use the IMS bespoke software in 4.4. to automatically operate a frequency scan by varying 

the lock-in’s reference out voltage or the LED VAC frequency f to values between 1 Hz and 250 kHz 

in 12 steps per decade of measurement. The software settings used were the same as those in 4.4, i.e. 

the lock-in’s input coupling is set to DC, the roll-off is set to 24 dB/oct, the dynamic is set to high, 

phase offset to 0 and the reference harmonic to 1. The reasons behind the selected settings are also 

the same as in 4.4. We then channel the modulated voltage that we obtain at A into the lock-in input. 

The lock-in will measure the modulated voltage and phase from point A with respect to the ref out 

voltage. We finally obtain the ΔV(ω) and phase φ(ω) from voltage response and recorded these as a 

function of f = ω/2π. We then repeat the entire measurement procedures 1 hour after the first 

characterization, and then another hour after the second one to observe any change in the load 

modulation voltage, and thus the battery internal dynamics. The selection of a 1-hour interval in the 

measurement procedure is because 1 hour is the approximate time a battery discharges.  
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Chapter 5 
IMS Characterizations of  

Commercial CdS-Based Light-Dependent Resistor (LDR)  

5.1 Results from IMS Characterizations on Commercial CdS-Based Light-

Dependent Resistor (LDR)  

 As elaborated in 4.7, for IMS on a light-dependent resistor (LDR), we illuminate a commercial, 

CdS-based LDR with a modulated green LED (HLMP-CM3A-Z10DD) by using the setup in Fig. 4-

15(a). We first apply VLED = (2.9 ± 0.9) V on the green LED with RLED = 102 Ω. The LED will then 

be driven by ILED = (19 ± 9) mA. The modulated LED is then used to illuminate the LDR which is 

under an applied voltage bias (Vbias). We then insert the following lock-in settings into the IMS 

software in 4.6; first, the input coupling is set to DC, roll-off to 24 dB/oct, dynamic to high, phase 

offset to 0 and reference harmonic to 1. The time constants are set to 5 s at f = 1-10 Hz, 1 s at f = 10-

100 Hz, 0.5 s at f = 10-1000 Hz, 0.1 s at f = 1 kHz-10 kHz and 0.05 s at f  > 10 kHz. The reasoning 

for these setting has been given in 4.7. We then operate the IMS software to perform a frequency scan 

at f  between 1 Hz and 250 kHz in 18 steps per decade. The resulting currents that flow in the LDR 

under light modulation are fed into an IV converter with Rf  = 1 kΩ and Cf = 4.7 pF. This current is 

then converted into a voltage (Vout). This voltage is then fed into the lock-in voltage input, and as a 

result, we obtained ΔV(ω) and φ(ω) of Vout and record these as a function of f = ω/2π. We then repeat 

the process for Vbias = 1, 1.5, 2, 2.5 and 3 V. We present our IMS results in the form of Bode amplitude, 

phase and Nyquist plots of ΔV as shown in Fig. 5-1(a), (b) and (c). 
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 (a) 

 (b) 

 (c) 

Fig.  5-1 (a). Bode amplitude plot of ΔV, (b) Bode phase plot of φ vs frequency f with the plots taken at each Vbias depicted 
separately on the side of the main plot for clarity purposes, and (c) Nyquist plots of ΔV that plots the imaginary (Im ΔV = 
|ΔV| sin φ) vs. its real part (Re ΔV = |ΔV| cos φ), the spectra being parametric with frequency ω. Here, (a), (b) and (c) are 
taken at frequencies between 1 Hz and 250 kHz and under LDR bias voltage Vbias = 1, 1.5, 2, 2.5 and 3 V (shown colour 
coded in inset). Note that the Re/Im axis at (c) uses different scales and are not normalized, with the direction of increasing 
frequency ω given by the blue arrow. For all LDR bias voltages, we use a green LED driven with LED drive current of 
ILED = (19 + 9) mA. This current will then be varied as we varied Vbias.  

 

Here, Fig. 5-1(a) and (b) shows the Bode plots of ΔV and phase φ with respect to frequency f, at f  

between 1 Hz and 250 kHz, and also under different LDR Vbias with Vbias  = 1, 1.5, 2, 2.5 and 3 V. 
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While Fig. 5-1(c) shows a set of Nyquist plots measured at all 5 LDR Vbias variation. From Fig. 5-

1(a), ΔV (f → 0) increases as we increase the LDR Vbias. This is because as we increase the LDR Vbias, 

we drive more current through the LDR, thus the increase in ΔV. We also see that the ΔV amplitude 

plot at LDR Vbias = 1.5 V is rather noisy, but the general trend of increasing ΔV (f → 0) as we increase 

LDR Vbias is still observed here. All plots in Fig. 5-1(a) also shows corner frequency (fc) at f ~ 2 kHz. 

In addition, another characteristic of Bode amplitude plots, as shown in Fig. 1-4 and Fig. 5-1(a), is 

the plot’s roll-off. The plot’s roll-off is the same as the lock-in filter’s roll-off discussed in 4.4. The 

plot’s roll-off is the measure of how steep the plot’s attenuation slope immediately after the corner 

frequency fc [36]. From Fig. 5-1(a), we found that the Bode plots roll off = -1.1 + 0.1. A roll-off ~ -1 

indicates the behavior of a first-order system [36]. This means that there would be a single, first-order 

internal dynamic that occurs in the LDR under the light. This single dynamic is associated with a 

single time constant τ, and that a single dynamic or time constant will result in an ideal semicircle in 

the Nyquist plot, as can be seen in Fig. 5-1(c). 

 From Fig. 5-1(b), ΔV phase φ at all LDR Vbias are exactly the same, with the phase φ reaching 

45o at f ~ 2 kHz at all Vbias. Where f at φ = 45o being the corner frequency fc. The corner frequency fc 

is linked to a time constant τ through fc = 1/2πτ, where τ represents the LDR’s internal dynamic time 

constant under illumination. Since fc and τ are the same at all LDR Vbias, the same internal dynamic 

occurs in the LDR at all Vbias. The time constant here is most likely the carrier lifetime, this is because 

τ does not change as we increase the LDR’s Vbias. Otherwise, τ will not be a carrier lifetime but instead 

a carrier transit time due to dependency with Vbias. There are basically two types of carrier lifetime in 

an inorganic semiconductor [140, 141]. One is recombination lifetime τr, which is the lifetime of extra 

carriers that is generated in the semiconductor from light absorption. While the other is generation 

lifetime τg, which is the lifetime of small excess carriers that is generated in a reverse-biased 

semiconductor. The LDR internal dynamic that we measure (corner frequency in Fig. 5-1(a)) 

originates from current flows in the LDR which was modulated by changing the resistance due to 

light. Hence, the carrier lifetime here will be the recombination lifetime τr. The recombination lifetime 

is the total of surface and bulk recombination lifetime, and it is defined by the effective recombination 

lifetime or τeff in equation 22. 

 

 (22) 

 

where τb is the bulk recombination lifetime and τs is the surface recombination lifetime. Here, the τb 

itself is given by equation 23. 
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 (23) 

 

where R is the recombination rate and Δn is the extra carrier density that is present due to light or 

forward-biasing of a semiconductor. While τs is defined in equation 24. 

 

 (24) 

 

where Dn is the electron diffusion constant and β is a solution of equation 25. 

    

 (25) 

   

where t is the semiconductor’s thickness and sr is the carrier’s surface recombination velocity [141]. 

Note that in eq. (22) to (25), there is no dependence on any external bias voltage for all type of carrier 

lifetime. If we look at a time-of-flight (TOF) experiment, i.e. where we measure the mobility μ of a 

carrier traveling in a material under an applied Vbias, carrier mobility μ is related to the carrier transit 

time τr through equation (26) [142]. 
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where μ is in (cm2/V s), d is the material thickness (in cm), V is the applied bias (V) and τr is the 

transit time (s). We can see that a carrier transit time is always dependent on the voltage bias, unlike 

carrier lifetime which does not, as can be seen in equation (22)-(25). In addition, carrier lifetime 

dynamic is also the reason why a commercial LDR has an interdigitated track as elaborated in 2.5. 

Since there is only one carrier dynamic in the LDR, i.e. carrier lifetime, the current path in the 

interdigitated track has to be designed such that the distance a carrier takes when traveling in the LDR 

is smaller than its carrier lifetime. Otherwise, a carrier may decay or not flow at all under illumination. 

 From Fig. 5-1(c), the shape of the Nyquist spectrum at all LDR Vbias resembles a semicircle in 

the 4th quadrant, with the spectrum at Vbias = 1.5 V being rather noisy, as we can see also in Fig. 5-

1(a) and (b). This is because the power supply used for the LDR setup is unstable when we set the 

power supply voltage setting to Vbias = 1.5 V. The semicircle increases in size as we increase the 
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LDR’s Vbias since the plot’s Re ΔV (f → 0) increases in-line with the increase in Vbias. This is similar 

to ΔV (f → 0) in Fig. 5-1(a). Note as well that the Re/Im axis in Fig. 5-1(c) uses different scales. This 

is also because we drive more current (carriers) through the LDR as we increase the Vbias, thus 

increasing ΔV. To add, the frequency at the semicircle’s minimum (or maximum) Im ΔV value is the 

corner frequency (fc) that corresponds to φ = 45o in Fig. 5-1(b). The fc, as said before, is linked to an 

internal dynamic time constant τ through fc = 1/2πτ. As there is only one semicircle in all Fig. 5-1(c) 

plots, there will only be one internal relaxation time/time constant τ, that occurs at all Vbias conditions. 

This internal relaxation time is the LDR’s carrier lifetime as it (τ) is the same time constant that we 

get from the corner frequency and phase at the frequency in Fig. 5-1(a) and (b) respectively.  

 Also from Fig. 5-1(a), (b) and (c), we can extract three characteristic parameters, these are ΔV 

(f → 0), Re ΔV at (f → 0) and corner frequency fc. In addition, we also derive the time constant τ from 

all plots with fc = 1/2πτ. All of the characteristics parameters, along with τ and the LDR’s Vbias, are 

shown together in Table V. 

 

TABLE V THE LDR Vbias  fc, ΔV ( f → 0), Re ΔV( f → 0) AND τ FOR THE SPECTRA SHOWN IN FIG. 5-1(a), (b) 
AND (c) 

LDR Vbias fC ΔV (f→0) Re ΔV (f→0) τ 
[V] [Hz] [V] [mV] [ms] 
1 1800 + 1 0.132 + 0.001 132 + 10 0.0890 + 0.0001  

1.5 1800 + 1 0.185 + 0.002 185 + 20 0.0890 + 0.0001 
2 1800 + 1 0.240 + 0.002 240 + 10 0.0890 + 0.0001 

2.5 1800 + 1 0.291 + 0.003       291 + 10 0.0890 + 0.0001 
3 1800 + 1 0.360 + 0.004       360 + 20 0.0890 + 0.0001 

 

From Table V, higher LDR Vbias will result in more current (carriers) being injected into the LDR, 

which then result in the increase of (ΔV) flowing in the LDR. We also conclude that the time constant 

τ is the carrier lifetime since τ here does not change as we change the Vbias, or in other words, τ is 

independent of the LDR Vbias. Fermin et al. found from their work on intensity-modulated 

photocurrent spectroscopy (IMPS) on n-type CdS or n-CdS electrode, that the resulting Nyquist plot 

also consists of only a single semicircle. Thus, indicating the presence of a single internal dynamic in 

the LDR under the light.  Further, when they perform IMPS on the electrode at different voltage bias, 

the resulting Nyquist plots still consists of a single semicircle with the plot’s peak frequency/corner 

frequency fc remaining unchanged similar to fc results in Table V. Hence, they conclude that this 

internal dynamic is associated with a certain recombination rate that is independent of bias voltage, 

or in other words it is a carrier lifetime of the n-CdS under light [92]. Although we cannot compare 

our results directly to theirs, since the n-CdS in their work is not an LDR and we do not perform 

IMPS, the comparison is still possible as our LDR is also made of n-CdS. Hence, we conclude that 

our result, especially the time constant in Table V is consistent with reported CdS behavior under 
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light at different voltage bias. Finally, we conclude that our instrument/setup works well in terms of 

consistency of (our) results with previously reported findings on the same material. As such, with this 

characteristic (results consistency) we can then apply our instrument/setup to perform IMS 

characterization on research-type materials/devices, where the properties are largely unknown. 

 

5.2 Summary of Results from IMS on Commercial CdS-Based LDR 

From IMS characterization on commercial CdS-based LDR, we first conclude that by 

increasing the LDR’s applied Vbias, we then increase the current flowing through the LDR and 

consequently increase the corresponding ΔV (f → 0) from the converter output. We then found that a 

single, first-order dynamics dominates the LDR’s internal dynamic as indicated by the roll-off 

magnitude of Bode amplitude plot in Fig. 5-1(a), which is = -1.1 + 0.1, and also from the single 

semicircle shape of the Nyquist plots in Fig. 5-1(c) which were obtained from the converter’s ΔV 

output at all applied Vbias. We then conclude that the corner frequency fc and τ that are derived from 

all the plots in Fig. 5-1(c) is the carrier lifetime of electrons from currents that flows within the LDR, 

this is because τ (and fc) does not change at different Vbias. If τ changes under different Vbias, the τ will 

then be the carrier transit time based on equation (26), since τ will now be dependent on the applied 

Vbias.  

 In addition, we also found that the observed single, first-order dynamic found in the CdS-based 

commercial LDR, i.e. the carrier lifetime, is consistent with the typical dynamic found in an electrode 

made of an n-type CdS semiconductor, with the electrode under IMPS measurement and an applied 

voltage bias Vbias [92]. From literature, the electrode dynamic was also found to be a carrier lifetime 

of electrons flowing in the n-CdS under light [92]. Finally, since the observed dynamic in the 

commercial CdS-based LDR in our research is consistent with those found from an n-type CdS 

electrode in literature, we can conclude that our instrument/setup works well in determining the 

dynamics occurring in a widely-known system, and that we can then apply our 

instrument/measurements to characterize other systems/materials in which the properties/dynamics 

is not widely-known. 
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Chapter 6 
IMS Characterizations of  

Organic Photovoltaic (OPV) Devices 

 As elaborated in 1.1 and 3.1, we perform IMS characterization on two types of bulk 

heterojunction (BHJ) OPV, One is a BHJ with PEDOT as its hole extraction layer (HEL), while the 

other is a BHJ with V2O5-x as the HEL. Both types of BHJ are made of the same donor and acceptor 

mixture of PFDT2BT-8 and PC70BM respectively as shown in Fig. 3-1(b). In addition, devices with 

V2O5-x HEL were varied by HEL annealing/non-annealing before BHJ layer deposition. Here, we 

perform IMS on OPV with non-annealed, 100, 200, 300 and 400 oC annealed HEL before BHJ 

deposition. We first present and discuss IMS characterization results on OPV with PEDOT HEL, 

where the OPV are externally loaded with different values of finite load resistance RL, including RL 

near the cell’s maximum power point (RMPP). We then give and discuss the results of IMS under finite 

load which was used in the aging study of OPV with PEDOT HEL. Following this, we present and 

discuss the results of BHJ capacitance determination of OPV with PEDOT HEL by using IMS under 

finite load. The capacitance determination was done without absolute calibration of the LED intensity. 

After presenting the results of IMS on OPV with PEDOT HEL, we then give and discuss the result 

of IMS on OPV with V2O5-x hole extraction layer (HEL) at a finite load RL equal to its maximum 

power point (RMPP). Finally, we present and discuss the result of IMS near RMPP which was used in 

the aging study of OPV with V2O5-x HEL.  

 For IMS characterizations on both types of OPV, we illuminate the OPV with a fast red LED 

(λp = 650 nm, τ = 3 ns) by using the setup in Fig. 4-5(a). We apply VLED = (2.2 ± 0.5) V on the red 

LED with RLED = 120 Ω, hence driving the LED with ILED = (18 ± 4) mA. We then insert the following 

lock-in settings into the IMS software in 4.4, first, the input coupling is set to DC, roll-off to 24 

dB/oct, dynamic to high, phase offset to 0 and reference harmonic to 1. The time constants are set to 

5 s at f = 1-10 Hz, 1 s at f = 10-100 Hz, 0.5 s at f = 10-1000 Hz, 0.1 s at f = 1 kHz-10 kHz and 0.05 s 

at f  > 10 kHz. The time constants are set to 5 s at f = 1-10 Hz, 1 s at f = 10-100 Hz, 0.5 s at f = 10-

1000 Hz, 0.1 s at f = 1 kHz-10 kHz and 0.05 s at f  > 10 kHz. The reasoning behind these lock-in 

settings has been given in 4.4. We then operate the IMS software to perform a frequency scan at f  

between 1 Hz and 250 kHz in 12 steps per decade. The OPV is connected to a potentiometer as a 

variable load resistance RL, which we later vary to conduct IMS under finite RL. The OPV 

photocurrents from illumination are then measured as a voltage drop V + ΔV(ω) sin(ωt+φ(ω)) across 

RL. The RL will later be varied in the OPV measurements depending on the experiment. This voltage 
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drop is then fed into the lock-in voltage input, without a current-to-voltage converter. As a result, we 

obtain the amplitude ΔV(ω) and phase φ(ω) from the voltage response and record these parameters 

as a function of f = ω/2π. We then present our IMS results in the form of Bode amplitude, phase and 

Nyquist plots of ΔV as seen in 1.4. 

 

6.1 Results from IMS on OPV with PEDOT Hole Extraction Layer under Finite 

Load Resistance RL 

 We present the IMS results of the OPV with PEDOT HEL under a variation of finite load RL in 

Nyquist plot of ΔV, shown in Fig. 6-1. 

 (a) 

  (b) 

Fig.  6-1 (a). Nyquist plots of ΔV that plots the imaginary part (Im ΔV = |ΔV| sinφ) vs. its real part (Re ΔV = |ΔV| cos φ) 
which is parametric in frequency for IMS spectra taken at different RL, ranging from near-open circuit (high RL, or near 
‘IMVS’) to near-short circuit (low RL, or near ‘IMPS’). Spectra are colour coded by their voltage points, V, shown in the 
right panel, rather than RL. The LED was driven by ILED = (18 ± 4) mA. Note Re / Im axis here uses different scales. (b) 
Normalized Nyquist plots of Fig. 6-1(a) taken at near-open circuit voltage point (0.8 V, RL = 476 kΩ), near maximum 
power point (0.505 V, RL = 36.6 kΩ) and near-short circuit voltage point (0.1 V, RL = 6.8 kΩ). The direction of increasing 
frequency is given by the blue arrow. In all plots, Re ΔV is normalized to its value in the limit of f → 0 Hz, whilst Im ΔV 
is normalized to its minimum magnitude. 
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 Fig. 6-1(a) shows the family of measured IMS spectra as Nyquist plots when RL is set to a range 

of different values, giving load lines with a different slope, hence different voltage points. The term 

voltage point here, as defined in subchapter 4.3, refers to the intersection of a load line with the J/V 

characteristic in Fig. 4-6(b) that gives the resulting DC voltage V of a solar cell illuminated by a 

particular light intensity, and loaded with RL. The resulting DC voltage V here is then called the 

‘voltage point’ for RL, with the load line a representative of load resistor RL. Here in Fig. 6-1(a), 

voltage variation starts at voltage point V close to 0 (short circuit, RL near zero), to V close to the 

open-circuit voltage/VOC (RL → infinity). The amplitude and phase of ΔV here, as described in earlier 

paragraphs, is measured by “locking-in” the ΔV component from the resultant DC + AC voltage 

across RL, where ΔV is a function of f = ω/2π. In addition, Fig. 6-1(b) shows 3 plots from 6-1(a) (i.e. 

at near open circuit, near short circuit and near MPP) on a normalized scale to compare their shape. 

We observe that for all settings of RL, the general shape of our IMS Nyquist plots is dominated by a 

semicircle (or semi-ellipse-, note that the scales on the Re / Im axis in Fig. 6-1(a) differ) in the 4th 

quadrant of the complex plane. However, the characteristic parameters of the semicircles change with 

RL, and there is a noticeable ‘shoulder’ feature at high frequencies that deviates from perfect 

semicircular shape for most choices of load resistance RL. Further, Fig. 6-1(b) shows that this 

‘shoulder’ feature is largely absent in extreme cases, i.e. at high RL (near open-circuit or at IMVS 

mode) and low RL (near short circuit, at IMPS mode). The near- IMPS and IMVS spectra in Fig. 6-

1(b) are somewhat flattened compared to a perfect semicircle but without the distinct ‘shoulder’ 

feature seen at MPP load, which would, therefore, be missed in the traditional IMVS and IMPS 

modes.  

 We first investigate and rationalize the dependency of the dominant semicircles’ characteristics 

with RL, by using a generic equivalent circuit model that describes the dominant semicircle’s 

parameters. This was done by simulating the generic circuit with LT SPICE, which is an electronic 

simulation software from Linear Technology [143]. From Fig. 6-1(a) and (b), we can then extract two 

characteristic parameters of our Nyquist semicircles, these are their magnitude, characterised by the 

limit of Re ΔV (f → 0), and the corner frequency fc, which is given by the frequency where Im ΔV has 

its minimum (i.e. maximum magnitude). We then summarize the electrical conditions (i.e. loads RL, 

DC voltage points and corresponding DC current densities J under LED) and characteristic 

parameters fc and Re ΔV (f → 0) of the IMS spectra in, Fig. 6-1(a) in Table VI, and plot the parameters 

in Fig. 6-2. 
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TABLE VI LOAD RL, DC VOLTAGE POINTS, AND CURRENT DENSITIES J, CORNER FREQUENCIES fc, AND 
Re ΔV FOR f → 0, FOR THE SPECTRA SHOWN IN FIG. 6-1(a) 

RL Voltage point J fC Re ΔV (f→0) 
[kΩ] [mV] [mA/cm2] [Hz] [mV] 
6.8 100 0.51 3200 + 1 17 + 10  

13.4 200 0.52 1700 + 1 33 + 10 
19.9 300 0.53 1400 + 1 46 + 10 
26.5 383 0.51 1000 + 1 57 + 10 
27.7 400 0.5 1000 + 1 60 + 10 
34.4 480 0.49 840 + 1 68 + 10 
36.6 505 0.48 750 + 1 70 + 10 
47.6 603 0.44 840 + 1 70 + 10 
54.8 650 0.41 930 + 1 62 + 10 
61.8 683 0.39 1100 + 1 53 + 10  
66.7 700 0.37 1100 +1 46 + 10 
95.4 750 0.27 2100 +1 25 + 10 
158 780 0.17 3200 +1 15 + 10  
476 800 0.06 14000 + 1 10 + 10   

  

The current density (J) column in Table VI was calculated from the chosen RL and the DC voltage 

point, V, from J = V / (RL*A), with A = device area, = 2.86 mm2. The fc and Re ΔV (f → 0) columns 

were then used to construct Fig. 6-2, while column J is used to construct Fig. 6-3, which is the OPV 

J/V characteristic under red LED illumination. 

 

 
Fig.  6-2. The plot of the dominant Nyquist semicircle characteristic parameters vs DC voltage point, which is set by RL. 
Here, the blue plot is Re ΔV at low-frequency (f → 0) vs. voltage points. While the red one is corner frequencies, fc, vs. 
voltage points. 
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Fig.  6-3. The OPV’s J/V characteristics and power profile under red LED illumination, that are constructed from Table 
VI. 

 

The characteristics of a solar cell, and indeed any extracted (solar cell-) equivalent circuit parameters, 

depends very much on illumination intensity. Since, we have illuminated the OPV with a red LED 

with much less intensity than AM 1.5, we have therefore constructed Fig. 6-3 from the J/V data on 

Table VI due to red LED light, as an alternative DC J/V characteristic of Fig. 3-2 J/V plot under AM 

1.5. The result is shown in Fig. 6-3. From Fig. 6-3, we find that Jsc = -0.51 mA/cm2, VOC = 800 mV, 

VMPP = 650 mV, JMPP = 0.42 mA/cm2, PD-MPP = 270 µW/cm2 and FF (%) = 67. Also, from the LED 

J/V plot, we derived specific shunt resistance Rsh-spec = 10000 Ωcm2 and specific serial resistance Rs-

spec = 182 Ωcm2, using the same derivation method [144] as in Fig. 3-2. This equates to absolute Rsh 

= 350 kΩ and absolute Rs = 6.4 kΩ. However, due to the lower quality of the J/V characteristics under 

red LED, the latter parameters, in particular, are difficult to extract accurately. If we compare the J/V 

characteristics in Fig. 6-3 and Fig. 3-2 in 3.1.3, both plots shared a similarity in shape, with the DC 

current density J being minimum near short-circuit, maximum near VOC and lies in-between maximum 

and the minimum value at maximum power point (MPP). While the power profile of both Fig. 6-3 

and 3-2 also follows the same shape and pattern, i.e. power density will be at a minimum at both 

short- and open-circuit and (PD) at a maximum at MPP. The differences of both Fig. 6-3 and 3-2 J/V 

plot and power profile is the current- and power density magnitude that is much lesser in Fig. 6-3 

compared to that in Fig. 3-2, which is due to the much lower LED intensity that was used for Fig. 6-

3. In addition, we depict the J/V plot from the red LED illumination (Fig. 6-3) in this subchapter 

instead of depicting it in 3.1.3 in comparison with the J/V plot under AM 1.5. This is because of the 

J/V plot in Fig. 6-3 was constructed from a limited set of the OPV’s voltage points and current 
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densities (i.e. from Table VI) as opposed to the J/V plot under AM 1.5 in 3.1.3 which was constructed 

with a much higher data points (i.e. the OPV’s voltage points). 

 If we return to look at Fig. 6-2, the Re ΔV (f → 0), represented by blue data points, also follows 

the same shape as the DC J/V characteristics with RL in Fig. 4-6(b) in 4.3, although Re ΔV (f → 0) 

here has a different magnitude compared to the DC ΔV in Fig. 4-6(b) due to the much lower LED 

intensity. By following the same shape, we meant here that the small amplitudes of Re ΔV (f → 0) for 

both small, and large values of RL (i.e. voltage point near 0 and VOC, respectively) are easily 

understandable as low/high RL that corresponds to a near-vertical, or near-horizontal, load line in Fig. 

4-6(b), which then leads to small ΔV at both near 0 and near-VOC voltage point. The Re ΔV (f → 0) 

profile for intermediate loads, is similar in shape to the power profile in Fig. 3-2 in subchapter 3.1.3. 

and the profile in Fig. 6-3. In Fig. 6-2, the Re ΔV (f → 0) peaks at voltage point, VMAX = 550 mV, 

somewhat below VMPP = 650 mV from the power profile under LED illumination (Fig. 6-3). Also, 

corner frequencies in Fig. 6-2 are high for both voltage points near short circuit, and voltage points 

near VOC, with a broad minimum around MPP. Intuitively, fc can be interpreted as a carrier transit 

time that is influenced by the screening of the built-in voltage from space charges formation within 

the bulk BHJ layer [47]. At near open-circuit, built-in voltage screening is weak because very few 

charge carriers are extracted, with most of the carriers accumulating in the BHJ’s donor-acceptor 

interface. Hence, the significant built-in voltage within the bulk BHJ will result in fast transit time or 

very high fc as seen in Fig. 6-2. Whereas in near short-circuit, charge carriers are extracted from the 

donor-acceptor interface and travel through the bulk BHJ [47], hence the presence of built-in voltage 

screening. This screening, however, may not be very strong as charge carriers prefer to travel in the 

bulk layer rather than forming space charges due to the short-circuit condition, thus fc in short-circuit 

is also high (or transit time is fast) but not as high as in under open-circuit (Fig. 6-2). However, in-

between short- and open-circuit condition, i.e. near or at MPP, space charges will significantly screen 

the built-in voltage such that when carriers are extracted, the transit time will be much longer due to 

the influence of the net electric field from screening, hence the observed lower fc values in Fig. 6-2. 

In order to rationalize our results we later compared them to LT SPICE simulations on a generic OPV 

equivalent circuit (e.g. from Narayan et al.) that was loaded externally by RL [132]. 

 To model BHJ OPV operation and interpret the OPV equivalent circuit in a physical context, 

we use a theoretical model from Luther et al. that takes into account carrier generation, recombination 

(i.e. geminate, biomolecular and trap-assisted recombination), and then free carrier trapping in an 

OPV. This model (Fig. 6-4) is depicted in the form of a simplified diagram of microscopic processes 

in an OPV [49]. 
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Fig.  6-4. A diagram of microscopic processes that described OPV operation from Luther et.al., The kd, krg, krb, kdt, kt, and 
krt here is the dissociation, geminate recombination, biomolecular recombination, de-trapping, trapping and trap-assisted 
recombination rate constant respectively. Finally, G(t) is the CT1 quasiparticle generation rate  [49].  

 

In Fig. 6-4, photons are first absorbed in the OPV’s donor component almost instantaneously, which 

then leads to exciton formation from the donor ground state which is called the charge-transfer state 

0 or CT0. Excitons will then dissociate at the donor-acceptor/D-A interface and becomes a bound 

electron-hole pair at the interface which is called the charge-transfer state 1 or CT1 quasiparticles. 

Here, CT1 formation is also instantaneous, similar to that of excitons. Now the formation of CT1 

quasiparticles in an IMS must then account for modulated light and the background light bias 

component, hence the CT1 quasiparticles generation rate is then given by equation (27). 

 

 tGGtG cos)( 0   (27) 

 

where G0 is the steady state CT1 quasiparticles generation rate representing the light bias, ΔG being 

the magnitude of CT1 quasiparticles generation rate perturbation which represents the modulated 

light, ω is the perturbation angular frequency. Once the CT1 quasiparticles have been formed, two 

possibilities can happen, one is that CT1 can dissociate into free carriers/unbound electrons and holes, 

which is represented by the dissociation rate constant/kd (in s-1), while the other is that CT1 can decay 

into the ground state (CT0) or recombine, which is called geminate recombination and represented by 

the geminate recombination rate constant/krg (in s-1). As for free carriers, they can experience three 

different paths after dissociation, one is that they can decay back into the ground state or recombine, 

which is called biomolecular recombination, represented by the biomolecular recombination rate 

constant/krb (in s-1), the other path is that carriers can also be trapped or de-trapped due to the presence 

of electron/hole traps, represented by trapping and de-trapping rate constant/kt and kdt (in s-1) 

respectively. Finally, carriers can also be attracted/pulled by traps such that they will recombine or 

decay back into the ground state, represented by trap-assisted recombination rate constant/krt (in s-1). 
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Note that de-trapping here means overfilling the traps with electrons, thus pushing back trapped 

electrons to their unbound/free state [49]. 

 We depict the OPV-equivalent circuit in Fig. 6-5(a). The current source IL is a frequency-

dependent parameter and is used to model free carrier formation from CT1 quasiparticles in Fig. 6-4 

(represented by kd). So IL is influenced by both the light bias and modulated light. While the circuit’s 

diode, D is actually a voltage-dependent differential resistance (RD) that represents geminate 

recombination from CT1 to its ground state. Hence D depends on the illumination’s DC component. 

Also in an ideal cell, bigger IL is better as more carriers will be produced, but for the diode as RD, its 

(RD) magnitude should be smaller to minimize carrier loses due to geminate recombination. Both the 

shunt resistance (RSh) and series resistance (RS) represent resistances faced by free carriers once 

unbound from CT1. The RSh magnitude depends entirely on the OPV’s intrinsic properties, while 

those of RS depend both on the cell’s intrinsic properties and external circuit resistance. In Fig. 62, 

RSh and RS respectively represent the biomolecular recombination (krb) and electron trap presence (kt). 

So ideally, RSh >> RS for the cell to produce more carriers instead of losing them due to recombination. 

Finally, the BHJ capacitance or CBHJ is a frequency-dependent diffusion capacitance, which is the 

accumulation of carriers in the BHJ’s donor-acceptor interface, once they (carriers) are dissociated 

from CT1. Thus, CBHJ magnitude depends entirely on the OPV’s intrinsic properties and that it is 

desirable to have a bigger CBHJ as it increases the active layer area where carriers are generated [49]. 

 As circuit components representing our OPV cells, we selected RSh = 100 kΩ, RS = 2 kΩ << 

RSh, (Similar to the parameters extracted from Fig. 6-3); CBHJ = 4 nF (selection of CBHJ magnitude 

will be discussed in the next subchapter), and a modified 1N914 diode designated as 1N914_KA. 

Diode modification consisted of selecting a lower reverse bias saturation current (IS). In the model, IS 

influences the equivalent circuit’s VOC and IS = 3 pA was chosen so that the equivalent circuit 

replicates the observed VOC of our OPV cell. The magnitude of the current source was set to 25 μA 

DC with an AC modulation of 5 μA. We then show a simulated ‘Nyquist rainbow’ in Fig. 6-5(b) 

under different RL at the order of kΩ (RS < RL < RSh), which corresponds to experimental results in 

Fig. 6-1(a). 
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(a) (b) 

Fig.  6-5 (a). Generic equivalent circuit model for BHJ OPV [132]. IL here represents the light-driven current source. In 
IMS, all components apart from RL are internal to the OPV cell. (b) Simulated ‘Nyquist rainbow’ for the equivalent circuit 
model, We selected RSh = 100 kΩ, RS = 2 kΩ, CBHJ = 4 nF, and a customized 1N914 diode (1N914_KA) with the saturation 
current reduced to 3 pA. The amplitude of the current source modulation was set to 5 μA and the DC current bias was set 
to 25 µA. Here, RL was varied in the range (6.8-476) kΩ, leading to the voltage points shown in the panel on the right. 
The largest semicircle (light blue symbols) corresponds to RL = 26.5 kΩ. 

 

In Fig. 6-5(b), we can see that the simulated Nyquist plots of generic OPV equivalent circuit give 

exact semicircles/ellipses at all voltage points without the presence of a high frequency ’shoulder’ 

that is seen in Fig. 6-1(a), even when the simulated cells are loaded to near MPP. Further, the 

semicircles in Fig. 6-5(b) shows the different magnitude of Re ΔV (f → 0), and corner frequency fc 

for different voltage points. For (simulation) comparison to experimental results, we then plot 

characteristic features of the simulated equivalent circuit in Fig. 6-6, which corresponds to the real 

results in Fig. 6-2. 

 
Fig.  6-6. The characteristic parameters of simulated Nyquist semicircle plotted against voltage point V, which is set by 
RL. (a) The blue plots indicate Re ΔV at low-frequency (f → 0) vs. voltage points. While at (b) the red plot indicate corner 
frequencies, fc, vs. voltage points. Here, Re ΔV reaches its maximum for RL = 26.5 kΩ.  
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For both experimental and simulated spectra, the magnitude of Re ΔV (f → 0) depends very much on 

the magnitude of RL, i.e. voltage point, V. The experimental (Fig. 6-2) and simulation (Fig. 6-6) Re 

ΔV (f → 0) vs. voltage point plots are very similar, with both resembling a power profile, with Re ΔV 

(f → 0) peaking near MPP. The broad and flat minimum of fc shown in Fig. 6-2 is also replicated by 

the simulation in Fig. 6-6. In quantitative term, fc is roughly 3 times higher in the simulation compared 

to the experimental results. Quantitative differences for fc probably arise mainly from the difficulties 

of simulating the nonlinear properties of an organic BHJ diode in the equivalent circuit model with 

conventional software. Note Gundlach et al. [128] have avoided the use of a diode component in their 

simulations altogether, linearizing it by an incremental resistor. This is acceptable when a single, 

fixed voltage point is studied (indeed we also do this ourselves in the next subchapter), but not when 

we study voltage point dependency of fc, as the diode incremental resistance changes (non-linearly) 

with the changes in voltage point. Further, the SPICE software that we use to simulate the circuit 

offers a selection of stock inorganic diodes, with options for customization. To account for the 

differences between stock diodes and organic BHJ diodes, we apply two modifications in Fig. 6-5(a) 

circuit. We do this by setting a significantly smaller saturation current (order pA vs. nA) in Fig. 6-

5(a) diode due to lower carrier mobility, and add a 4 nF CBHJ // diode to the (order pF) capacitance of 

a stock diode, although CBHJ is not voltage- dependent, while diode capacitance is [144]. In addition, 

a mathematical model that described the diode ideality factor (n) in a one diode model solar cell-

equivalent circuit similar to Fig. 6-5(a), has also been reported by Cotfas et al [144]. However, in our 

simulation, we do not know precisely the ideality factor of our BHJ OPV diode. The observed 

behavior of Re ΔV (f → 0) (a DC property) under different RL can, therefore, be understood near-

quantitatively by the generic equivalent circuit model in Fig. 6-5(a), but the fc behavior (AC property) 

can only be understood qualitatively.  

 Practically, the increased ΔV, and reduced corner frequency, under load resistances near RMPP 

are advantageous. This is because increased amplitude improves signal-to-noise ratio, and the 

reduction in corner frequency effectively extends the instrumental bandwidth to higher frequencies. 

The latter can be seen in Fig. 6-1(b), where the MPP spectrum approaches the origin more closely 

than either IMPS or IMVS spectra, although all terminate at the same frequency, i.e. 250 kHz. 

Therefore, we can conclude that conducting IMS in MPP mode, rather than at the established open 

circuit (IMVS)- and short circuit (IMPS) modes, are both the most realistic and practically most 

convenient mode of doing IMS. If we now look back at Fig 6-1(a), we observe that at high 

frequencies, there remains a difference between experiment and generic circuit simulation results, i.e. 

a high frequency ‘shoulder’ in the experimental spectra taken under finite loads, in particular when 

RL ~ RMPP. This feature is invisible near open circuit (IMVS mode) and near short circuit (IMPS 
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mode), as seen in Fig. 6-1(b). Qualitatively, in IMPS, most current generated by the cell’s current 

source will flow through the external short circuit. Under open-circuit conditions, the cell’s internal 

diode will be strongly forward biased, resulting in a low resistance internal current path. However, 

under finite load, both the external current path and internal diode, will display significant resistance, 

thus forcing more current through the BHJ capacitance path, in particular at high frequencies, when 

capacitative impedance drops. Hence, IMS under finite load may also reveal the presence of spectral 

features originating at the BHJ that remain hidden under IMPS and IMVS modes.  

 As a comparison, Semenekhin et al. previously reported IMPS and IMVS on a similar OPV cell 

but using a different light absorbing/hole conducting polymer in the BHJ mixture [47]. They observed 

a marked difference between IMPS and IMVS spectra, which we find to be quite similar as seen in 

Fig. 6-1(b). However, unlike the results in Fig. 6-1(a), neither their IMPS nor IMVS spectra display 

a high frequency ‘shoulder’. Instead Semenekhin et al. reported a strong ‘3rd quadrant’ (negative Re 

ΔV) high-frequency feature in IMPS, which is absent in their IMVS spectra [47]. Semenikhin et al. 

associated negative Re ΔV with the finite transit time of carriers between exciton splitting at the 

heterojunction and extraction at the contacts [47]. However, our spectra under all loads, including at 

near-IMPS, remain in the 4th quadrant, which suggests faster carrier extraction occur in our device. 

 

6.2 Results from Ageing Study on OPV Device with PEDOT Hole Extraction 

Layer 

  Besides conducting IMS on the sample under different values of finite load RL, We also 

performed an aging study on the same sample with the same IMS mode after 30 days of storage under 

dark conditions and ambient atmosphere. The study was conducted when the sample was under a load 

resistance (RL) = 61 kΩ. The before- and after IMS Nyquist spectra results on RL = 61 kΩ were then 

compared and discussed. In addition, from the AM 1.5 characterisation of the stored cell in 3.1.3, we 

found that JSC has dropped to 3.2 mA/cm2, VOC and VMPP dropped to 879 and 620 mV, respectively, 

and the maximum power to 1.6 mW/cm2, with corresponding increase of RMPP compared to when the 

sample was still fresh. Also, RSh and RS under AM 1.5 had increased to 2.4 kΩ and 120 Ω, respectively. 

We then compared the Nyquist plots of the IMS spectra at the same RL (61 kΩ) before and after 

storage in Fig. 6-7. 

 



 
Page | 124  

 
Fig.  6-7. Comparison between the IMS spectra of a freshly prepared sample, and a sample stored for 30 days under air 
in the dark. RL = 61 kΩ for both. The corner frequencies (fc) of the fresh and stored sample are 1140 Hz and 356 Hz 
respectively. 

 

In Fig. 6-7, we find that the high frequency ‘shoulder’ seen under finite load is exacerbated by the 

OPV cell aging. In, addition, we can see in the same figure (Fig. 6-7) that the overall larger size of 

the Nyquist plot indicates that RL = 61 kΩ leads to a voltage point near to the peak of the Re ΔV (f → 

0) vs. voltage point profile for the degraded cell, but not for the fresh cell, where the corresponding 

voltage point of 683 mV is in the steeply declining flank of the profile as seen in Fig. 6-2. However, 

the high-frequency feature for the aged cell is now more clearly separated from the dominant 

semicircle, morphing from ‘shoulder’ to ‘foot’. From previous qualitative reasoning, we suggest that 

the high-frequency feature seen for loaded cells may originate at the BHJ component. We, therefore, 

extended the generic equivalent circuit in the SPICE simulation by a resistor parallel to a capacitor 

(R // C) in series with the BHJ capacitance. Fig. 6-8 shows the extended equivalent circuit, and the 

simulated spectra from the extended circuit, for different magnitudes of the added Rext // Cext. 
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Fig.  6-8. Simulations on an extended equivalent circuit model, shown in the inset. Here, RL was set to 61 kΩ, while RSh, 
RS, CBHJ were chosen to match the measured values for the stored cell under AM 1.5. (Selection of CBHJ will be discussed 
in the next subchapter). For simplicity, the diode was represented by a suitable, i.e. 5.5 kΩ differential resistor. Here, the 
selection of differential resistance magnitude was done similarly with Gundlach et al. and also discussed in the next 
subchapter. The plot with red symbols was obtained with Cext = 13 nF // Rext = 200 Ω, while the plot with blue symbols 
was obtained with Cext = 1 nF // Rext = 200 Ω. 

 

In Fig. 6-8, when suitable parameters for Rext // Cext are chosen, simulated spectra now include the 

high frequency ‘shoulder’ or ‘foot’ features, similar to the experimental spectra in Fig. 6-7. The 

weaker high-frequency feature for a ‘fresh’ sample captures aging at an early stage, note here that a 

larger value of Cext results in a smaller modification of CBHJ. Modeling thus confirms the origin of the 

ageing-related high-frequency feature, which is located at the BHJ itself. The aging of the OPV was 

the subject of detailed recent studies, where a number of different degradation mechanisms were 

reported as described also in 2.3 [57, 145]. Also from 2.3, an important mechanism that will occur 

even in dark storage is the etching of the ITO electrodes by the acidic dopant of the PEDOT:PSS hole 

extraction layer, i.e. polystyrene sulfonic acid (PSS), which liberates indium ions. A Rutherford 

Backscattering Spectrometry (RBS) study by Janssen et al. [81] and TOF-SIMS studied by Jonkheijm 

et al. [82], on model devices with PEDOT:PSS hole-extracting layer (HEL) showed that indium will 

subsequently diffuse across the hole-extracting layer into the BHJ region. The presence of indium 

will then create instability within the BHJ layer and reduce the OPV’s performance over time [57]. 

This decrease in performance can be caused by a reduction in the BHJ area size, hence reducing the 

number of extracted carrier from the BHJ, which is then represented with a Rext in the BHJ branch 

[57]. At the same time, trap sites can also form in the BHJ due to layer discontinuity caused by Indium 

penetration, thus creating a capacitance Cext and in turn the Rext // Cext in the CBHJ  branch (Fig. 6-8 

inset). Hence, from the Fig. 6-8 model, it is likely that Rext // Cext represents the trap-assisted 

recombination which causes carrier losses in the CBHJ. We can, therefore, as a likely cause, assign the 
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ageing-related high-frequency feature to the diffusion of indium ions that originate from the etching 

of ITO by PSS to the BHJ. On the other hand, based only on the simulation results, we cannot 

conclusively assign the ageing-related high-frequency feature to the diffusion of indium ions and that 

other causes may have contributed to the appearance of such feature. In order to determine the exact 

cause of this feature or whether it originated from the diffusion of indium ions into the BHJ, we can 

perform similar RBS and TOF-SIMS experiments mentioned earlier in this paragraph [81, 82]. 

 

6.3 Determination of Bulk Heterojunction (BHJ) Capacitance on OPV Device 

with PEDOT Hole Extraction Layer 

 Finally, we also used IMS on another stored OPV sample with the same PEDOT HEL to 

determine the sample’s BHJ capacitance, in the sense of CBHJ within the equivalent circuit model, as 

seen in Fig. 6-8 inset, at a voltage point near MPP. The CBHJ component itself cannot be derived from 

DC J/V measurements. Thus here, we added different external capacitive loads, CL, and connect it in 

parallel to an already fixed external RL = 32.7 kΩ (CL // RL) in Fig. 4-5(a), and identified fc with IMS 

by using the setup and procedure described in 4.2. From the resulting Nyquist spectra, we found that 

the corner frequency dropped with increasing parallel CL, as shown in Table VII. 

 

TABLE VII Corner Frequency vs. External Load Capacitance, CL, RL was fixed at 32.7 kΩ 

CL fc 
 [nF]  [Hz] 

0 2400 + 1 
0.39 2200 + 1 
0.47 2100 + 1 

1 1900 + 1 
2.2 1600 + 1 
4.7 1100 + 1 

 

In order to evaluate the behaviour of IMS spectra under CL // RL, we hypothetically replace the diode 

in the generic equivalent circuit (Fig. 6-5(a)) by its incremental resistor RD, which is justified for a 

given voltage point and small modulation amplitudes (i.e. ΔL << L; note also that we have dropped 

ΔI to 1 mA to find fc under CL). Also here, RD replaced the diode in Fig. 6-5(a), hence, the circuit’s 

corner frequency will be given by equation (28). 
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Where the ’//’ symbol stands for the total resistance resulting from parallel resistors. If an external 

load capacitor CL is added in parallel to load resistance RL, the extended circuit corner frequency will 

then be given by equation (29), with the corner frequency indicated by a prime notation. 
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Equations (28), (29) rely on two assumptions, one is that RS << RL and thus RS can be neglected in 

the expression for the total effective resistance, i.e. (RD // RSH // (RL+RS)), seen by the photocurrent 

source, IL. While the other assumption is that RSCL << (CL + CBHJ) (RSh // RD). We verified the latter 

assumption by checking that the two criteria for fc (i.e. -45o phase shift, -3 dB amplitude drop = drop 

to 71% w.r.t. low-frequency modulation amplitude) are met simultaneously. This observation also 

implies that the pole resulting from CBHJ is well separated from any higher frequency pole due to Cext 

(as defined in the inset to Fig. 6-8). This concurs with the previous observation that high frequency 

‘shoulder’ features in Nyquist plots are clearly separated from the dominant, lower frequency corner 

due to the CBHJ component. Hence, high-frequency features related to Cext does not interfere with our 

determination of CBHJ, on the other hand, we can not determine the magnitude of Cext in the way 

described in equation (29). If we divide equation (28) with equation (29), it will then lead to equation 

(30a) and (30b), which are mathematically equivalent. 

 












)'(

'

CC

C
LBHJ ff

f
CC

 
(30a) 

1
'


BHJ

L

C

C

C

C

f

f  (30b) 

 

We can see that equation (30a) relates the unknown BHJ capacitance to known CL, and also measured 

corner frequencies, without knowledge of ΔL in absolute terms, nor of resistors RD, RS, RSh. Further, 

equation (30b) suggests a plot of fc / fc’ vs CL will give a straight line that intercepts the CL axis at -

CBHJ, thus allowing the determination of CBHJ by extrapolation. We show a plot of the data from Table 

VII in Fig. 6-9, in the form suggested by (30b). 
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Fig.  6-9. Ratio of corner frequencies for OPV cells not capacitively loaded/loaded with CL // RL = 32.7 kΩ vs. magnitude 
of the capacitive load, CL. Data from Table VII. The straight line fit intercepts the CL axis at - 3.9 + 0.1 nF.  

  

 From Fig. 6-9, we find a good straight line fit which indicates that our underlying assumptions 

(determination of CBHJ from CL and fc without knowing ΔL, RD, RS, and RSh ) are met. We, therefore, 

extrapolate a BHJ capacitance of 3.9 nF, which corresponds to a specific capacitance of 

approximately 140 nF/cm2. For comparison, we then estimate a hypothetical ‘geometric’ specific 

capacitance (CGEO), by ‘modeling’ a BHJ OPV as a parallel plate capacitor of thickness d = 100 nm, 

that is separated by a dielectric medium of dielectric constant k = 1.5. This gives a CGEO = 13.3 

nF/cm2, which is an order of magnitude smaller than the actual BHJ capacitance. This significant 

discrepancy clearly illustrates the inadequacy of approximating a BHJ by a parallel plate capacitor, 

as this ignores the OPV BHJ’s large internal interface area. Hence, since maximizing internal 

interface area is the objective of BHJs, we then propose BHJ specific capacitance (CBHJ) as an 

indicator of BHJ quality. 

 

6.4 Summary of Results from IMS on OPV with PEDOT:PSS HEL under  Finite 

RL 

 From the IMS on OPV with PEDOT HEL under finite RL, we first found that conducting IMS 

on the solar cell at finite load resistance RL values is more advantageous compared to the more 

established IMPS and IMVS mode as it will reveal more spectral features which would be missed in 

both the IMPS and IMVS mode. Also, from the Nyquist plot in Fig. 6-1(a) we can derive the Re ΔV 

(f → 0) and the corner frequency fc, and construct a plot of Re ΔV (f → 0) vs the voltage point V. We 

then found that the Re ΔV (f → 0) is similar in shape and pattern to the DC J/V and power profile 

plots of the OPV under AM 1.5 and under red LED. From the OPV equivalent circuit simulations, 
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we found that the simulated Nyquist plot and the plot’s simulated characteristic feature are very 

similar to that of the experimental results. The only difference is that the simulated fc amplitude at 

voltage point near 0 V and Voc is much higher than that in the experimental results. This is due to the 

difficulty of simulating an organic diode element with an inorganic ones in the simulation. Also, we 

found that by conducting IMS at finite RL, in the context of circuit model, the circuit’s Rs, RL and 

internal diode, will display significant resistance, thus forcing more current through the BHJ 

capacitance path, in particular at high frequencies, when capacitative impedance drops. Hence, we 

conclude that by performing IMS under finite load, we may reveal the presence of spectral features 

that originated in the cell’s BHJ layer, which will not be visible under IMPS and IMVS. In addition, 

by performing IMS under finite load, we would obtain a much higher ΔV amplitude near the OPV’s 

MPP compared to the ΔV obtained near 0 V and VOC, based on the Re ΔV (f → 0) vs V results. We 

also conclude that the behaviour of fc vs voltage point V plot can only be described qualitatively by 

assuming that fc corresponds to a time constant that represents the OPV’s carrier transit time across 

the bulk BHJ layer and is influenced by the screening of the built-in voltage from space charges 

formation within the BHJ layer [47].  

 We then conducted an aging study on the OPV, by performing IMS on the cell at RL = 61 kΩ 

after 30 days of storage under dark and in an ambient atmosphere. We found that the OPV’s resulting 

Nyquist plot semicircle has become larger post-storage and that the high frequency ‘shoulder’ feature 

becomes more pronounced and separated from the dominant semicircle post-storage when compared 

to the ‘shoulder’ in the fresh cell’s Nyquist plot. Therefore, the ‘shoulder’ feature is aging-related. 

We also found that if we modify the OPV equivalent circuit [132], by connecting a resistor in-parallel 

to a capacitor (R // C) in series with the BHJ capacitance, with both the resistor and capacitor having 

a certain magnitude, we can correctly simulate the ‘shoulder’ feature that appears in Fig. 6-7 Nyquist 

plot. Hence, we conclude that based solely on the modified circuit simulation, the origin of the high-

frequency ‘shoulder’ feature in the fresh or stored cell Nyquist plot is located in the OPV’s BHJ layer. 

A likely cause of this feature, though not conclusive, is the diffusion of indium ions from the ITO 

into the BHJ due to the ITO etching by the PSS in PEDOT HEL [81, 82].  

 We can also determine the OPV’s BHJ capacitance (CBHJ) by conducting IMS near MPP on a 

modified form of Fig. 4-5(a) setup, where we connect external capacitive loads (CL) of different 

values in-parallel with the OPV and RL connection, in which the RL is set at 32.7 kΩ. From the 

resulting Nyquist plot of this IMS, we found that the OPV’s fc dropped with increasing CL magnitude. 

In addition, from the fc results before (fc) and after (fc
’) the addition of CL, and also equations (28)-

(30b), we found that we can construct a plot of fc / fc’ vs CL which gives us a straight line that intercepts 

the CL axis at -CBHJ, thus allowing the determination of CBHJ by extrapolation. From the fc / fc’ vs CL 
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plot’s fit, we found a figure of merit for CBHJ = 3.9 nF, which corresponds to a specific capacitance 

of approximately 140 nF/cm2. 

 

6.5 Results from IMS on OPV with V2O5-x Hole Extraction Layer at Maximum 

Power Point Voltage (VMPP) 

 From IMS on OPV with PEDOT results in 6.1 and 6.2, it is clear that an alternative to 

PEDOT:PSS as a hole extraction layer (HEL) must be used to avoid BHJ degradation due to indium 

ions diffusion [57]. As described in 2.3, another example of a material that can be used as an HEL 

material and has been shown to have the same or better performance as HEL compared to PEDOT is 

vanadium pentoxide or V2O5 [83-85]. In addition, V2O5 can be deposited on the cell via solution 

processing, thus enabling a low-temperature OPV fabrication that will not damage the OPV’s 

semiconductor layer [85]. Also from 2.3, Alsulami et al. have recently performed an investigation on 

the effect of thermal annealing on a solution-processed V2O5-x as the HEL of a BHJ OPV, in which 

the structure has been described in 3.1.2 [86]. Among the purpose of their research are also similar to 

the beginning of this paragraph, i.e. to find an alternative HEL that would not degrade the OPV and 

its organic semiconductor layer, adaptable to the different type of solar cells and has similar or even 

better performances compared to PEDOT HEL in an OPV. In their research, they compare the 

performances (in terms of J/V data) of BHJ OPVs with their V2O5-x HEL annealed at 100, 200, 300 

and 400 oC before the BHJ layer deposition with an OPV in which the V2O5-x HEL is unannealed. In 

addition, they also utilize a number of different techniques, i.e. absorption spectroscopy, X-ray 

photoelectron spectroscopy (XPS) and ultraviolet photoelectron spectroscopy (UPS), to analyze and 

explain the resulting OPVs J/V characteristics [86]. Most importantly, they found that the thermal 

annealing of V2O5-x HEL in the OPV does not improve performance significantly in terms of PCE 

when compared to the unannealed devices. Further, based on the OPVs J/V characteristics, they found 

that there are no significant PCE differences between the unannealed OPV and those with their V2O5-

x HEL annealed at 100 and 200 oC before the BHJ layer deposition. While for OPV with their V2O5-x 

HEL annealed at 300 and 400 oC before BHJ deposition, their PCE decreases based on the J/V 

characteristics. Also, based on their absorption spectroscopy results, they have established that there 

are no relationship at all between the OPVs performance and the band gap variations between the 

OPV with unannealed and annealed V2O5-x HEL. While from XPS results, they found that heating 

the V2O5-x at 300 and 400 oC will generate oxygen vacancies in the V2O5-x thus resulting in the 

reduction of the V2O5-x layer from V2O4.93 to V6O14. The presence of additional oxygen vacancies due 

to heating in the V2O5-x will then result in the decrease of the respective OPVs Voc, and consequently 

the reduction of their PCE. Finally, from the UPS results, they conclude that annealing the V2O5-x 
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HEL at 300 and 400 oC would shift the V2O5-x Fermi level much nearer to its conduction band, which 

as a result, would fill the states within the V2O5-x band gap and thus decreasing its work function 

which then results in the decrease of the respective devices (300 and 400 oC annealed V2O5-x HEL) 

PCE [86]. 

Based on previous research on finding alternative HEL to replace PEDOT and this recent 

research from Alsulami et al. [86], we then use our IMS instrument and method to investigate the 

dynamics of the BHJ OPV described in 3.1.2, which has the same OPV structure and types as the 

ones fabricated and characterized by Alsulami et al. Thus, the characterized cell consists of an OPV 

with non-annealed V2O5-x HEL, and cells with their HELs annealed at 100, 200, 300 and 400 0C 

before the deposition of the BHJ layer. In addition, we also investigate the effect of thermal annealing 

on the previously mentioned OPV with V2O5-x as the HEL. We then compare the dynamics of OPV 

with 100, 200, 300 and 400 oC annealed and unannealed V2O5-x HEL and then investigate how the 

respective OPVs dynamic changes after 13 days of storage under dark condition. As mentioned earlier 

in this chapter, we perform IMS with the same setup, instrument settings, and procedure as described 

in 4.2. However here, we conduct IMS at the respective OPV maximum power point (MPP), or 

specifically, at its MPP voltage (VMPP). We determine the cells VMPP based on their J/V plots in Fig. 

3-4 and as listed in Table III. We then set the OPV’s RL value to obtain the VMPP mentioned before, 

with RL being the resistance at MPP (RMPP). From Table III in 3.1.3, the VMPP for the unannealed cell 

with V2O5-x HEL, and cells with the V2O5-x HEL annealed at 100, 200, 300 and 400 0C are 

respectively 720, 720, 700, 620 and 560 mV. In Fig. 6-10(a), (b) and (c) we present the IMS results 

of cells with unannealed and annealed cell with V2O5-x HEL, in the form of Bode amplitude, phase 

and Nyquist plot of their ΔV at MPP at f  between 1 Hz and 250 kHz.  
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  (a) 

  (b) 

 (c) 

Fig.  6-10 (a). Bode amplitude and (b) phase of ΔV with respect to frequency f, of OPV with non-annealed V2O5-x HEL 
(blue plots), followed by cells with their V2O5-x HEL annealed at 100, 200, 300 and 400 0C pre-BHJ deposition (shown 
respectively as the red, orange, purple and black colour in the inset). (c). Nyquist plots results of an OPV with non-
annealed V2O5-x HEL (blue plots), followed by cells with their V2O5-x HEL annealed at 100, 200, 300 and 400 0C pre-
BHJ deposition (shown respectively as the red, orange, purple and black colour in the inset). Note the extended semicircles 
which crossed from the 4th to 3rd quadrant at high f. Here, all spectra were taken at the respective cells VMPP by setting the 
external RMPP accordingly and at f between 1 Hz and 250 kHz. The LED was driven by ILED = (18 ± 4) mA. Also, the 
Re/Im axis at (c) uses different scales and are not normalized, with the direction of increasing frequency given by the blue 
arrow.  
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 From Fig. 6-10(a), the cell with unannealed V2O5-x HEL has the highest ΔV at (f → 0), while 

ΔV at (f → 0) is lower for cells with higher HEL annealing temperature. So as the respective cells 

VMPP decreases, as seen in Fig. 3-4 J/V plots, their (the cells) ΔV (f → 0) decreases as well. In addition, 

we also observed that all Fig. 6-10(a) plots have their corner frequencies (fc) at around 2 kHz. The fc, 

as in 5.1, is related to a time constant τ through fc = 1/2πτ. The time constant τ represent a system’s 

internal dynamic time constant. From Fig. 6-10(a), we also observe that as ΔV (f → 0) decreases from 

the highest in a cell with unannealed HEL to the lowest in a cell with 400 0C annealed HEL, the 

respective cells fc also increases. As fc is related to an internal dynamic time constant τ, higher fc 

means a shorter dynamic time constant τ in the system. Since ΔV (f → 0) is a near DC quantity, it, 

cannot directly explain the increase in fc for cells with higher HEL annealing temperature. A likely 

explanation is that the time constant τ (from fc) is actually a carrier transit time. Hence, similar to 

Alsulami et al. findings, heating the HEL further may generate oxygen vacancies in the V2O5-x which 

in turn results in the decrease of the respective OPVs ΔV (f → 0) in OPV with higher HEL annealing 

temperature. While at the same time, heating the OPVs HEL further will also remove any possible 

contaminants or vapours inside the HEL, thus carrier transport will happen much faster/at a shorter 

time in OPVs with higher HEL annealing temperature [86, 146]. Also, all (Fig. 6-10(a)) plots roll off 

= -1.0 + 0.1. As elaborated in 5.1, a roll-off ~ -1 in a system indicates that it behaves as a first order 

system [36]. However, organic photovoltaics hardly behave as a first order system [1, 9], instead of 

in the context of IMS, roll-off ~ -1 means that there will be a single dynamic that dominates the 

system under light. This single dynamic, as in 5.1, is represented by a single time constant τ, and that 

it will appear as a single semicircle in a Nyquist plot [24].  

 From Fig. 6-10(b), we see that ΔV phase (φ) decreases for cells with higher HEL annealing 

temperature. This is observed from the increase in frequency where φ = 45o, in other words, from the 

increase in corner frequency fc. From 5.1 and 6.3, the corner frequency fc is defined as the frequency 

where φ = 45o. Thus, the ΔV phase (φ) results in Fig. 6-10(b) are consistent with ΔV results in Fig. 6-

10(a), i.e. for cell’s with higher HEL annealing temperature, their respective fc also increases. Also, 

in all Fig. 6-10(b) plots, the frequencies where φ = 45o are at f ~ 2 kHz, which are also consistent with 

the fc obtained from Fig. 6-10(a), i.e. fc ~ 2 kHz. Further, we also observe a peak in the high-frequency 

region (f  > 100 kHz) in all Fig. 6-10(b) plots. Here, the phase peaks at high frequencies can manifest 

itself in the form of a “3rd quadrant” feature in a Nyquist plot, which is similar to the “3rd quadrant” 

(negative Re ΔV) feature reported by Semenekhin et al. in the IMPS result of an OPV with different 

BHJ mixture [47]. In addition, the same author (Semenikhin et al.), also offered an extensive 

explanation for the “3rd quadrant” feature in the context of IMPS in their 2008 paper [50]. In that 

paper, the “3rd quadrant” feature in their IMPS result is associated with the slow transport of 
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photocurrent, so as the photocurrent increases with time, in a frequency-based measurements, the 

phase of slow photocurrent will lag behind that of the light intensity, thus producing a negative phase 

result as seen in Fig. 6-10(b) [50]. Note that the spectra are neither under IMPS or IMVS, but instead 

under an MPP load or at MPP. In addition, we also found that the phase peaks at high frequencies 

tend to increase as we annealed the HEL further. A likely explanation for the increase in the phase 

peak at high frequencies is that in a cell with unannealed V2O5-x HEL, there will be a higher presence 

of contaminants and water vapor in the V2O5-x layer compared to cells with annealed V2O5-x HEL. So 

as the V2O5-x HEL is annealed further, heat may generate oxygen vacancies in the HEL, while also 

removing possible contaminants within the HEL and improving carrier transport in the process, thus 

reducing the phase peak or the lag in phase experienced by the photocurrents [86, 146]. This is 

consistent with Fig. 6-10(b) plots, in that the negative phase is larger in the cell with unannealed 

V2O5-x HEL, and that as the V2O5-x HEL is annealed further, the phase slowly becomes more positive. 

 From Fig. 6-10(c), we observe that, consistent with Fig. 6-10(a) and (b) results, the general 

shape of all Nyquist spectra resembles a single semicircle in the complex plane 4th quadrant, with the 

exception of one result from a cell with unannealed V2O5-x HEL, where we see the presence of a 

“foot” feature in the low-frequency region. As this feature occurs in the low-frequency region, it can 

be associated with traps or parasitic resistances in the cell contacts [21]. Note also that the Re / Im 

axis in Fig. 6-10(c) uses different scales and are not normalized. The presence of a single semicircle 

in all plots means that the respective cells internal dynamic will be dominated by a single internal 

dynamic with a time constant τ. Also, we observe that at high frequency, all semicircles in Fig. 6-

10(c) crossed to the 3rd quadrant from the 4th at a certain frequency point. We call this feature a ‘3rd 

quadrant’ feature and it is characterized by the frequency point where the semicircle crossed to the 

3rd quadrant, which is called the 3rd quadrant frequency or f-3rd. Here, f-3rd represents another internal 

dynamic besides that of fc. A magnification of this feature between Fig. 6-10(c) plots 3rd and the 4th 

quadrant is depicted in Fig. 6-11. 
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Fig.  6-11. Magnification of the same plots in Fig. 6-10(c) in-between the 3rd and 4th quadrant. Note that here,  f-3rd does 
not change much for cells with higher HEL annealing temperature. Also, the Re/Im axis here also uses different scales 
and are not normalized, with the direction of increasing frequency given by the blue arrow.  

 

From Fig. 6-11, we can see that f-3rd does not change much in cells with higher HEL annealing 

temperature. This meant that f-3rd cannot be correlated directly to the change in negative phase as the 

HEL annealing temperature is increased. In other words, f-3rd is related to the presence of negative 

phase in Fig. 6-10(b), but the change in that negative phase as the annealing temperature is increased 

cannot be related directly to f-3rd. A possible explanation for this is that since f-3rd designates the 

frequency where the phase started to become negative, it is possible that it represents a lagging 

mechanism or some sort of trap that causes carrier transport to be slower, thus resulting in a negative 

phase and Re ΔV [50]. So as the photocurrent increases over time, there will be a trap mechanism that 

becomes apparent at f-3rd and for the cells in this discussion, it occurs roughly at the same f-3rd.  

 Overall, the presence of a “3rd quadrant” feature itself is consistent with the presence of negative 

phases in Fig. 6-10(b) phase plots. The overall cells dynamic, though, are still dominated by fc, as 

evident from the general semicircle shape of all plots in Fig. 6-10(c). We also see from Fig. 6-10(c) 

that the cell with unannealed HEL has the highest Re ΔV at (f → 0) and also the largest semicircle. 

While for cells with higher HEL annealing temperature, their Re ΔV (f → 0) are lower along with 

reductions in semicircle sizes. This is again due to our selection of VMPP that is also related to Re ΔV 

(f → 0) since Re ΔV (f → 0) and ΔV at (f → 0) are basically similar. So as the respective cells VMPP 

decreases, their (the cells) Re ΔV (f → 0), along with their semicircle size, will also decreases. Finally, 

we also observe that at all plots in Fig. 6-10(c), there is no visible high frequency “shoulder” similar 

to what we see in Fig. 6-1(a) for OPV with PEDOT HEL. Instead, it is replaced by a “3rd quadrant” 

feature in the high-frequency region. This shows a possibility that by replacing the OPV HEL with 
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V2O5-x, the current cells are able to avoid degradation due to indium diffusion into the BHJ layer that 

originates from the etching of ITO by PSS.   

 We can extract four characteristic parameters from Fig’s 6-10(a),(b),(c) and 6-11. These 

parameters are, Re ΔV (f → 0), fc and  f-3rd. The fc is the frequency where φ = 45o and f-3rd is the 

frequency where the semicircles crosses from the 4th to 3rd quadrant. Also, ΔV (f → 0) in Fig. 6-10(a) 

is not included, as this parameter is similar to Re ΔV (f → 0) in Fig. 6-10(c). We then list all of the 

characteristic parameters and OPV types, including the electrical conditions in which we obtain the 

plots, i.e. VMPP and RMPP, in Table VIII.  

 

TABLE VIII OPV TYPES, VMPP, RMPP, ΔV (f → 0), Re ΔV (f → 0) , fc AND f-3rd FOR THE SPECTRA SHOWN IN FIG. 
6-10(a), (b),(c) AND 6-11. 

OPV VMPP RMPP Re ΔV (f→0) fc f-3rd 

Types [mV] [kΩ] [mV] [Hz] [Hz] 
Non Annealed HEL 720 445 59 + 10 1500 + 1 25000 + 1  

100 0C Annealed HEL 720 64 51 + 10 2400 + 1 39000 + 1 
200 0C Annealed HEL 700 71 50 + 10 2300 + 1 31000 + 1 
300 0C Annealed HEL 625 139 47 + 10 2500 + 1 25000 + 1 
400 0C Annealed HEL 565 48 36 + 10 5000 + 1  39000 + 1 

 

From Table VIII, we can confirm that the selection of VMPP does determine the ΔV (f → 0) and Re ΔV 

(f → 0) results as seen in Fig. 6-10(a) and (c). Thus, as the respective cell’s VMPP decreases, from the 

highest in the cell with unannealed V2O5-x HEL to the lowest in the cell with 400 oC annealed HEL, 

their ΔV (f → 0), and also the Re ΔV (f → 0) decreases as well. As a proof, the resistance at MPP or 

RMPP of the respective cells is rather random, since the behavior of both ΔV (f → 0) and Re ΔV (f → 

0) are determined only by the selection of VMPP. In addition, we also confirmed that as ΔV (f → 0) 

decreases from the highest in the cell with unannealed HEL to the lowest in the cell with 400 0C 

annealed HEL, the respective cells fc also increases. Hence, as fc is related to an internal dynamic time 

constant τ, the dynamic inside cells with higher HEL annealing temperatures occurs much faster (or 

at a much shorter time) compared to a cell with unannealed HEL or at lower HEL annealing 

temperature. As such, it is likely that τ is a carrier transit time, and for cells with higher HEL annealing 

temperature, carrier transport will happen much faster since extra heating may remove any 

contaminants in the V2O5-x HEL aside from generating oxygen vacancies in the layer itself. Finally, 

we can also confirm that f-3rd does not change much for cells with higher HEL annealing temperatures. 

Hence, as mentioned before, f-3rd represents a lagging mechanism or a trap that causes carrier transport 

to be slower, thus resulting in a negative phase and Re ΔV [50]. Therefore, as the photocurrent 

increases over time, there will be a trap mechanism that becomes apparent at f-3rd and for the cells 

here, it occurs roughly at the same f-3rd. We investigated the dependency of the characteristics 

parameters in Table VIII with respect to changes in VMPP, from the highest VMPP in a cell with 
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unannealed HEL to the lowest VMPP in a cell with 400 oC annealed HEL, by using an equivalent circuit 

model similar to Fig. 6-5(a) in 6.1. We will also investigate the underlying cause behind the “foot” 

feature that is visible in the low-frequency region of the cell with unannealed HEL. 

 From Fig. 6-5(a) circuit in 6.1, we found that the simulated Nyquist plots of the generic OPV 

equivalent circuit give exact semicircles/ellipses at all voltage points without the presence of any 

high-frequency feature, even when the simulated cells are loaded to near MPP. If we perform IMS 

under finite load, or at a cell MPP, where RL = RMPP, the current generated by the cell’s current source 

IL in Fig. 6-5(a) will flow through the BHJ capacitance path, especially at high frequencies, when 

capacitative impedance drops. This is because, under finite load, both the external current path and 

the internal diode in the Fig. 6-5(a) equivalent circuit will display a significant resistance. Here, we 

found the presence of a “3rd quadrant feature” in the high-frequency area at all the plots in Fig. 6-

10(c). As such, Fig. 6-5(a) circuit has to be modified to account for the mode in which we perform 

IMS and the “3rd quadrant” feature in our plots. From earlier, we found that f-3rd designates the 

frequency where the phase started to become negative and that it is possible that f-3rd represents a 

lagging mechanism or a trap that causes slower carrier transport, which results in a negative phase 

and Re ΔV. We, therefore, reason that there is a possibility that carriers take a slower path of transport, 

not through the BHJ capacitance, but through the external current path, such that they will lag behind 

the light intensity, thus producing the negative phase and Re ΔV. We then extend Fig. 6-5(a) generic 

equivalent circuit by adding a fixed value capacitor in parallel between Rs and RL to represent the 

slower path carriers take to represent the “3rd quadrant” feature. This is because at f-3rd, the 

photocurrent changes its phase and that the trap mechanism represented by f-3rd will be the same for 

all cells. We then depict respectively the extended equivalent circuit and simulated spectra from the 

extended circuit in Fig. 6-12(a), (b) and (c). 
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(a) (b) 

 

 
(C) 

Fig.  6-12 (a). The modified OPV generic equivalent circuit which shows the extended capacitor component (Cext) in-
parallel between series (Rs) and load resistance (RL). The Cext component represents the slower carrier path through the 
cell’s external circuit which results in the “3rd quadrant” feature. (b) Simulated Nyquist plot for a cell with unannealed 
V2O5-x HEL and cells with its V2O5-x HEL annealed at 100, 200, 300 and 400 oC (sample types are shown in the colour 
coded inset). For the simulation, we set the DC current bias (IDC) = 25 μA with current modulation (IAC) = 5 μAp for all 
cells. Here, we again use the modified 1N914_KA diode and CBHJ = 4 nF in the circuit. We then set Cext = 2 nF. We also 
set the shunt resistance (Rsh) = 32, 36, 35, 35 and 42 kΩ for cells with unannealed, 100, 200, 300 and 400 0C annealed 
V2O5-x HEL respectively. All of the cells series resistances (Rs) are set to Rs = 577 Ω. Also, the RL magnitudes are set to = 
155, 130, 150, 160 and 140 kΩ for cells with unannealed, 100, 200, 300 and 400 0C annealed V2O5-x HEL respectively. 
(c) Magnification of the same plots in (a) in-between the 3rd and 4th quadrant. Also here, f-3rd does not change much for 
cells with higher HEL annealing temperature. Finally, the simulation in (b) is set between 1 Hz and 250 kHz, while the 
Re/Im axis in (b) and (c) uses different scales and are not normalized, with the direction of increasing frequency given by 
the blue arrow.  

 

For simulation purposes, the DC current bias (IDC) amplitude was set to = 25 μA with current 

modulation (IAC) = 5 μAp for all cells. This is because we are simulating the behaviour of the same 

current source IL in Fig. 6-5(a), since here, the cells here are also illuminated by the same red LED 

which has the same LED driving current (ILED) condition, i.e. ILED = (18 + 4) mA. We also select CBHJ 

= 4 nF and the circuit’s diode component as the 1N914_KA model, this is because the cell has the 

same BHJ mixture as in 6.1 and that we assume the BHJ capacitance will also be the same as 

determined in 6.3. While the 1N914_KA was selected as the diode model with the same reasoning as 
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in 6.1, i.e. to account for the presence of an organic diode component in the OPV from the 

modification of stock diodes available in SPICE simulation. We then set the circuit’s shunt resistance 

(Rsh) = 32, 36, 35, 35 and 42 kΩ for cells with unannealed, 100, 200, 300 and 400 0C annealed V2O5-

x HEL respectively. Also, all of the cell’s series resistances (Rs) are set to Rs = 577 Ω. While the RL 

magnitudes are set to = 155, 130, 150, 160 and 140 kΩ for cells with unannealed, 100, 200, 300 and 

400 0C annealed V2O5-x HEL respectively. The Rsh and Rs here were based on the cell’s J/V 

characteristics in Table III (in 3.1.3). The values of RL were an approximation of the real RL values 

listed in Table VIII. All three resistance values (Rsh, Rs, and RL) were mainly selected to closely 

replicate Fig. 6-10(c) Re ΔV values. Finally, we set the magnitude of the extended capacitor, 

component (Cext) as Cext = 2 nF. This is to obtain an identical “3rd quadrant” feature at high frequency. 

Also, Fig. 6-12(b) simulated plots are taken at f between 1 Hz and 250 kHz.  

 From Fig. 6-12(b), we see that the simulated plots give the exact single semicircles of Fig. 6-

10(c) plots for all types of cells. This means that there is indeed a single internal dynamic that 

dominates all of the cells under light. In addition, the simulated plots are also able to replicate the Re 

ΔV magnitude seen in Fig. 6-10(c) and Table VIII for all cells, together with the decrease in semicircle 

sizes from the largest for the cell with unannealed V2O5-x HEL to the lowest for the cell with 400 0C 

annealed V2O5-x HEL. In addition, from Fig. 6-12(b) and (c), we can see that the simulated plots also 

manage to replicate the “3rd quadrant” feature that crosses from the 4th to 3rd quadrant as seen in Fig. 

6-11. We also see that, as in Fig. 6-11, the “3rd quadrant feature does not appear to change much for 

cells with higher HEL annealing temperatures, thereby confirming our choice of using a fixed value 

capacitor Cext to simulate the same lagging/trap mechanism that is encountered by carriers for all cells 

at high frequencies, as represented by the quantity f-3rd. However, as seen in Fig. 6-12(b), we are 

unable to simulate the “foot” feature in the low-frequency region (Fig. 6-10(c)) based on Fig. 6-12(a) 

model. This is because the modification that we do to the original equivalent circuit from Narayan et 

al. [132] only accounts for the high-frequency behaviour of the OPVs at near MPP, i.e. by adding a 

Cext component in-parallel with Rs and RL. To account for both the high- and low-frequency behaviour 

of OPV with unannealed HEL at near MPP (i.e. the ‘shoulder’ and ‘foot’ feature respectively), we 

need to add another component in the circuit besides the Cext. Finally, from simulated results in Fig. 

6-12(b) and (c), we derived the same four characteristics parameters as in Table VIII, these are Re ΔV 

(f → 0), fc and f-3rd. We then list all of the characteristic parameters and OPV types, including the 

electrical conditions in which we obtain the plots, i.e. VMPP and RMPP, in Table IX. Note that in Fig. 

6-12(b) simulations, RL = RMPP and the DC voltage measured in SPICE in the node between Rs and 

RL determines the VMPP. 
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TABLE IX OPV TYPES, VMPP, RMPP, ΔV (f → 0), Re ΔV (f → 0) , fc AND f-3rd FOR THE SPECTRA SHOWN IN FIG. 
6-12 (b) AND (c). 

OPV VMPP RMPP 
Re ΔV 
(f→0) 

fc f-3rd 

Types [mV] [kΩ] [mV] [Hz] [Hz] 
Non Annealed HEL 607 155 59 2200 22000 

100 0C Annealed HEL 621 130 50 2600 22000 
200 0C Annealed HEL 623 150 49 2600 22000 
300 0C Annealed HEL 625 160 48 2700 22000 
400 0C Annealed HEL 646 140 36 3500 26000 

 

From Table IX, we see that by selecting RL = RMPP, Rsh and Rs such that the simulated Re ΔV (f → 0) 

replicates the Re ΔV (f → 0) in Table VIII, we confirm that the selection of VMPP in the experiment 

does determine ΔV (f → 0) and Re ΔV (f → 0) results as seen in Fig. 6-10(a) and (c). In the SPICE 

simulation, since we cannot set the measured voltage point (in this case VMPP) directly, we replicate 

the Re ΔV (f → 0) by setting the three resistances (RL = RMPP, Rsh, and Rs) accordingly in Fig. 6-12(a) 

circuit, as such, the VMPP obtained from the simulation will also be set based on those three resistances. 

This is, of course, analogous to setting VMPP first and obtaining RL at that VMPP point (RMPP), which in 

turn are the electrical conditions where we obtained ΔV (f → 0) and Re ΔV (f → 0) as seen in Table 

VIII. Thus, the decrease in ΔV (f → 0) and Re ΔV (f → 0), as seen in Fig. 6-10(a), from the highest in 

the cell with unannealed V2O5-x HEL to the lowest in a cell with 400 oC annealed HEL, are attributable 

to our selection of VMPP, and consequently RMPP in this experiment.  

 In addition, we can confirm that cells with higher HEL annealing temperatures have indeed a 

higher corner frequency fc. Thus, as fc is related to an internal dynamic time constant τ, the dynamic 

inside cells with higher HEL annealing temperatures occurs much faster compared to a cell with 

unannealed HEL or at lower HEL annealing temperatures. To add, we also see that the fc magnitude 

replicates well in Table IX when compared to Table VIII for real results. While f-3rd is lower in Table 

IX but not too different compared to f-3rd in real results. From our earlier reasoning, we found that 

under finite load, carriers normally went through the CBHJ branch in Fig. 6-12(a) as it offers the least 

amount of resistance. So the Nyquist plots in Fig. 6-12(b) will be dominated by the dynamics of CBHJ 

in the cell. As such, to determine the internal dynamic that occurs in the cells, we also tried to vary 

Fig. 6-12(a) circuit CBHJ in the simulations (not shown here), and we found that if we change CBHJ to 

higher or lower values, the corner frequency (fc) will also change, but if we only change Cext for 

example, fc remains the same. Thus, the internal dynamic, or dynamic time constant that occurs here 

is the carrier transit time τ, and this transit time dominates the cells dynamic response as seen in Fig. 

6-10(c), with the transit time itself much shorter for cells with higher HEL annealing temperature. As 

for the f-3rd feature, we can physically assign f-3rd to a carrier trap that equally resides at all cells near 

the cell's series (Rs) and load resistance (RL) and is not influenced very much by HEL heating, thus f-
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3rd does not change much for cells with higher HEL annealing temperature. Finally, from our IMS 

results, we conclude that in terms of the cells selected VMPP and resulting ΔV (f → 0) and Re ΔV (f → 

0) results, cells with unannealed V2O5-x HEL, and 100, 200 and 300 0C annealed V2O5-x HEL are not 

that much different in their performance as seen in the respective cell’s small difference in ΔV (f → 

0) and Re ΔV (f → 0) in both simulation and experiment. While the cell with 400 0C annealed V2O5-

x HEL fared worse in terms of performance. In addition, in terms of carrier dynamics/transit times, 

transit time between cells with unannealed V2O5-x HEL, and 100, 200 and 300 0C annealed V2O5-x 

HEL are relatively similar, while the cell with 400 0C annealed V2O5-x HEL has the fastest transit 

time of all the cells characterized. However, due to the low performance of this cell (i.e. lowest VMPP 

and Re ΔV), the other cells still offer the best results in terms of both DC properties and carrier 

dynamics.  

 The near DC results (i.e. ΔV (f → 0) and Re ΔV (f → 0)) from the characterized cells are 

consistent with those from Alsulami et al. in which the thermal annealing of V2O5-x HEL in the OPV 

before BHJ deposition does not improve their DC performance significantly compared to the 

unannealed OPVs/devices [86]. In addition, as with their (Alsulami et al.) other findings, cells with 

unannealed V2O5-x HEL, and 100, 200 0C annealed V2O5-x HEL have similar DC performances, while 

the OPV with 300 and 400 0C annealed V2O5-x HEL has lower DC performances (in terms of Re ΔV 

(f → 0)) compared to the other OPVs as seen in Table VIII. Hence, similar to Alsulami et al. findings 

[86], further heating of the V2O5-x HEL before BHJ deposition will likely generate oxygen vacancies 

within the V2O5-x HEL, which then changes the HEL band gap and its work function as a 

consequence, thus resulting in the decrease of DC performance in OPV with 300 and 400 oC annealed 

V2O5-x HEL when compared to other OPV devices. 

 In addition to the previous conclusion from the IMS results on OPV with V2O5-x HEL, we also 

model the “foot” frequency visible in 6-10(c) for the OPV with an unannealed HEL. From earlier 

reasoning, we found that one of the possible causes of the “foot” feature is a trap occurring in the 

low-frequency region. As we perform our IMS under finite load, at low frequencies, carriers will 

instead travel in the direction of the external current path as seen in Fig. 6-12(a) circuit instead of the 

CBHJ branch as is the case at high frequencies. As such, we then modify the circuit in Fig. 6-12(a) 

further, to include a capacitance in series with both RL and Rs. We call this series capacitance Cext’. 

The circuit in Fig. 6-12(a) is used since we observe both f-3rd and the foot frequency occurring at the 

same time for the cell with the unannealed HEL. We then depict in Fig. 6-13, the new circuit 

simulation result, together with the circuit itself.  
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Fig.  6-13. Simulations results from the modified circuit in Fig. 6-12(a) (shown as inset) for the cell with the unannealed 
HEL. In the circuit inset, IL (IDC + IAC), the 1N914_KA diode, Rsh, Rs, Cext, and RL are chosen to be the same as in Fig. 6-
12(a). Here, the trap component at low frequency is represented by a series capacitance Cext’. For this simulation, we set 
Cext’ = 8 nF. Finally, the simulation is set between 1 Hz and 250 kHz, where the Re/Im axis uses different scales and are 
not normalized, with the direction of increasing frequency given by the blue arrow.  

 

As we can see in Fig. 6-13, by selecting a suitable Cext’ magnitude, the simulated spectrum for the 

cell with the unannealed HEL shows both the “3rd quadrant” feature in the high-frequency region and 

a “foot” feature at low frequency, similar to the plot in Fig. 6-10(c). Physically, we can interpret Cext’ 

as a carrier trap that exists in the cell’s external circuit path, in series with Rs and RL. As an 

explanation, it is likely that there are more contaminants and water vapours inside the OPV with 

unannealed HEL compared to the other type of OPVs. Hence, in cells with higher HEL annealing 

temperature, further heating may remove some of these contaminants from the HEL while leaving 

behind a small number of contaminants within the layer, thus the absence of ‘foot’ but the presence 

of the ‘3rd quadrant’ feature that we see on the OPVs real Nyquist plots. 

 

6.6 Summary of Results from IMS on OPV with V2O5-x HEL at Maximum Power 

Point Voltage (VMPP) 

From the IMS on OPV with V2O5-x HEL at the respective OPVs VMPP, we first found that the 

respective OPVs Re ΔV at (f → 0) decreases as we increase the OPVs HEL annealing temperature. 

This is likely due to our selection of VMPP since we determine it based on the J/V data under AM 1.5 

in Fig. 3-4. From Fig. 6-10(a) Bode plots, we found that the cells corner frequency fc increases as we 

increase the OPV’s HEL annealing temperature. The internal dynamic that fc and τ represent is likely 

the carrier transit time. We reason that by annealing the HEL further, we may remove any possible 

contaminants or vapours inside the HEL, thus making carrier transport occurs much faster (τ is 

shorter) in OPVs with higher HEL annealing temperature [86, 146]. 
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 We also observed that there are peaks forming in the high-frequency region in Fig. 6-10(b). 

Bode phase plot. In addition, we found that the very high-frequency part of the semicircles in Fig. 6-

10(c) Nyquist plots have crossed from the 4th quadrant to the 3rd quadrant, forming a ‘3rd quadrant’ 

feature. It is likely that the high frequency peaks and the ‘3rd quadrant’ feature are related. This feature 

however, unlike the peaks, does not change much as we increase the HEL annealing temperature. 

Also, for OPV with unannealed HEL, there is a visible ‘foot’ feature in the low-frequency region 

besides the ‘3rd quadrant’ feature at high f. The ‘3rd quadrant’ feature and the phase plots high 

frequency peaks can be simulated by modifying the equivalent circuit in chapter 6 [132]. This is done 

by connecting an extended capacitor (Cext) with a magnitude of 2 nF in-parallel and between the Rs 

and RL in the original model. The Cext represents a lagging mechanism, a capacitive-type trap that start 

at the same frequency (i.e. f-3rd) and is caused by carriers deviating from the CBHJ due to the presence 

of another path that has less resistance compared to the CBHJ at f > 10 kHz and is located around Rs 

and RL. Also, since the lag start at the same frequency, the f-3rd does not change much as we increase 

the HEL annealing temperature. While both the ‘3rd quadrant’ and ‘foot’ feature in the unannealed 

OPV can be simulated by adding another capacitance (i.e. Cext’) in series with both RL and Rs, but in-

parallel with the previous Cext in the modified model. The Cext’ also represents a capacitive-type trap 

where carriers will travel to in IMS near MPP at low frequency, i.e. towards the circuit’s Rs and RL, 

rather than going through the CBHJ or the Cext branch.  

 We then conclude the OPV with 400 oC annealed HEL has the fastest carrier transit time out of 

the other OPVs. However, if we compare all the OPVs Re ΔV (f → 0), the OPVs with unannealed 

V2O5-x HEL offers the best near DC performance out of the 5 OPV types, while the OPV with 400 oC 

annealed V2O5-x HEL has the worst DC performance out of all OPVs. The OPVs near DC (i.e. Re ΔV 

(f → 0)) results are consistent with the results from Alsulami et al. in that there are no significant 

differences between the DC performance of the unannealed OPV and those with their V2O5-x HEL 

annealed at 100 and 200 oC before the BHJ layer deposition, in addition to a decrease in the DC 

performance of OPV with their V2O5-x HEL annealed at 300 and 400 oC compared to the other 3 

OPVs [86]. Hence, in terms of the OPVs AC (fc and τ) and near DC (Re ΔV (f → 0)) performances, 

the OPV with 200 oC annealed HEL offers the best performance out of all the OPV types. 

 

6.7 Results from Ageing Study on OPV with V2O5-x Hole Extraction Layer  

 After we performed IMS on OPV with non-annealed V2O5-x HEL, and with their HELs 

annealed at 100, 200, 300 and 400 0C before the deposition of BHJ layer, we then proceed to perform 

ageing study on the same cells at their respective maximum power point voltage (VMPP) after 13 days 

of storage under dark and ambient atmosphere conditions. Here, we also perform IMS with the same 
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setup, instrument settings, and procedure as described in 4.2, but again the difference is that we 

conduct IMS at the respective cells VMPP. Also here, unlike in 6.4, we do not determine VMPP post-

storage from the J/V characteristics, but we do it by first setting the LED modulation to very low 

frequency/near DC and then manually tuning the load resistance RL connected in-parallel with the 

cell, until we found the highest ΔV readings under that LED illumination (modulated at low 

frequency). This ΔV reading will then be similar to ΔV (f → 0) and it is the equivalent of the voltage 

point explained in Fig. 4-6(b) (in 4.3). As the ΔV reading is the highest reading, then that ΔV (f → 0) 

will be the voltage point at MPP (VMPP) and the resistance at that voltage point is RMPP. This method 

of finding RMPP is chosen since the determination of VMPP and consequently, RMPP through the J/V 

characteristics is not very accurate due to the difference between the red LED intensity (used here) 

and those of an AM 1.5 intensity in J/V characteristics. As a consequence, the aging study results in 

this subchapter cannot be compared directly to the results in 6.4, as both subchapters use two different 

methods for determining VMPP. In Fig. 6-14(a), (b) and (c) we present the IMS results of cells with 

unannealed and annealed cell with V2O5-x HEL, in the form of Bode amplitude, phase and Nyquist 

plot of their ΔV at MPP after 13 days of storage under dark and ambient atmosphere conditions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
Page | 145  

 (a) 

 (b) 

 (c) 

Fig.  6-14 (a). Bode amplitude and (b). phase of ΔV with respect to frequency f, of OPV with non-annealed V2O5-x HEL 
(blue plots), followed by cells with their V2O5-x HEL annealed at 100, 200, 300 and 400 0C pre-BHJ deposition (shown 
respectively as the red, orange, purple and black colour in the inset), after 13 days of storage under dark and ambient 
conditions. (c). Nyquist plots results of an OPV with non-annealed V2O5-x HEL (blue plots), followed by cells with their 
V2O5-x HEL annealed at 100, 200, 300 and 400 0C pre-BHJ deposition (shown respectively as the red, orange, purple and 
black colour in the inset) also after 13 days of storage under dark and ambient conditions. Note again the “3rd quadrant” 
feature. Here, all spectra were taken at the respective cells VMPP by setting the external RMPP through manual tuning for 
the highest ΔV and for f between 1 Hz and 250 kHz. The LED was driven by ILED = (18 ± 4) mA. Also, the Re/Im axis at 
(c) uses different scales and are not normalized, with the direction of increasing frequency given by the blue arrow.   

  

 From Fig. 6-14(a), the cell with the 100 0C annealed V2O5-x HEL has the highest ΔV at (f → 0), 

while ΔV at (f → 0) is the lowest for the cell with the 400 0C annealed HEL. Since we do not base our 

selection of VMPP based on J/V data, but instead based on the cells highest ΔV under red LED 

modulation at the near-DC condition, we can assume that the VMPP that we obtain from this method 

is very close/near to the cells MPP. Therefore, we can see that, on average, as the cell’s HEL annealing 
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temperature is increased, the respective cell’s VMPP decreases along with their ΔV (f → 0). Here, the 

exception is that the cell with unannealed HEL has its VMPP and consequently, its ΔV (f → 0) lower 

than that of the cell with the 100 0C annealed V2O5-x HEL. A possible cause of this decrease in ΔV (f 

→ 0) parameter is the annealing of the cell’s HEL. This is because annealing will remove any 

contaminants and vapor that may reside in the HEL layer, thus creating vacant sites where carriers 

can flow through thereby improving overall carriers transport [146]. In other words, creating a current 

path which will then lower the ΔV (f → 0) value. As a result, cells with higher HEL annealing 

temperature have much lower values of ΔV (f → 0). For the cell with unannealed HEL, it is possible 

that after 16 days of storage more contaminants reside within the HEL such that the overall device 

ΔV (f → 0) is lower compared to the cell with the 100 0C annealed HEL, though still higher compared 

to the other cells. On the other hand, excessive annealing, i.e. at a temperature > 600 0C, can also 

cause structural damage and defects in the V2O5-x HEL [146]. To add, we also observed that all Fig. 

6-10(a) plots have their corner frequencies (fc) at around 1 kHz. From Fig. 6-14(a), we also observe 

that as ΔV (f → 0) decreases from the highest in the cell with the 100 0C annealed V2O5-x HEL to the 

lowest in the cell with the 400 0C annealed HEL, the respective cell’s fc also increases. As in 6.4, 

higher fc means a shorter dynamic time constant τ in the system. Also, it is possible that the time 

constant τ (from fc) is actually a carrier transit time. A likely explanation is that the time constant τ 

(from fc) is actually a carrier transit time. Hence, as in 6.4, heating the HEL further may generate 

oxygen vacancies in the V2O5-x which then results in the decrease of the respective OPVs ΔV (f → 0) 

in OPV with higher HEL annealing temperature. While at the same time, heating the OPVs HEL 

further will also remove any possible contaminants or vapours inside the HEL, thus carrier transport 

will happen much faster in OPVs with higher HEL annealing temperature [86, 146]. Also, all (Fig. 

6-14(a)) plots roll off = -1.0 + 0.1. As in 6.4, a roll-off ~ -1 indicates that the system behaves as a first 

order system. This means that there will be a single dynamic that dominates the system under light. 

This single dynamic will appear as a single semicircle in a Nyquist plot. 

 From Fig. 6-14(b), we see that ΔV phase (φ) decreases for cells with higher HEL annealing 

temperature. Again, with the exception of the cell with the unannealed HEL. This can also be ascribed 

to the same reason that the cell with the unannealed HEL has a lower ΔV (f → 0) compared to the cell 

with the 100 0C annealed HEL, i.e. the presence of more contaminants in the unannealed HEL. 

Therefore, the ΔV phase (φ) results in Fig. 6-14(b) are consistent with the ΔV results in Fig. 6-14(a). 

Also, in all Fig. 6-14(b) plots, fc ~ 1 kHz, which matches the fc obtained in Fig. 6-14(a). Further, we 

also observe a peak at the high-frequency region (f  > 100 kHz) in all Fig. 6-14(b) plots. Here, 

decreasing/negative φ (after the peak) at high frequencies can again be ascribed to a corresponding 

“3rd quadrant” feature in a Nyquist plot. Again, this can be ascribed to a lagging or trap mechanism, 
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since in this feature, cell photocurrents lag behind in phase with respect to LED intensity. As a result, 

cells with a higher V2O5-x HEL annealing temperature will have a more positive phase, since any trap 

mechanism will have been removed by the heating process. The exception here is the phase of the 

cell with the unannealed HEL which is more positive than the cell with the 100 0C annealed HEL. It 

is possible that this cell has accumulate more contaminants within the HEL such that there are “active” 

sites where transport can occur more easily, thus reducing the photocurrent phase more compared to 

the cell with the 100 0C annealed HEL.  

 From Fig. 6-14(c), we observe that, consistent with Fig. 6-14(a) and (b) results, the general 

shape of all plots Nyquist spectra resembles a single semicircle in the complex plane 4th quadrant. 

Note also that the Re / Im axis in Fig. 6-14(c) uses different scales and are not normalized. In addition, 

we also observed the ‘3rd quadrant’ feature in-between the 4th and 3rd quadrant. As mentioned before, 

this feature is characterized by the 3rd quadrant frequency or f-3rd. A magnification of this feature 

between the Fig. 6-14(c) plots 3rd and 4th quadrant are depicted in Fig. 6-15. 

 
Fig.  6-15. Magnification of the same plots in Fig. 6-14(c) in-between the 3rd and 4th quadrant. Note that f-3rd does not 
change much for cells with higher HEL annealing temperature. Also, the Re/Im axis here uses different scales and are not 
normalized, with the direction of increasing frequency given by the blue arrow.  

 

From Fig. 6-15, we can see that f-3rd does not change much for all cells. This again means that f-3rd 

cannot be correlated directly to the change in negative phase as the HEL annealing temperature is 

increased. So as photocurrent increases over time, there will be a trap mechanism that becomes 

apparent at f-3rd and for the cells in this discussion, it occurs roughly at the same f-3rd. Overall, the 

presence of a “3rd quadrant” feature itself is consistent with the presence of negative phases in Fig. 6-

14(b) phase plots. The overall cells dynamic, though, are still dominated by fc, as evident from the 

general semicircle shape of all plots in Fig. 6-14(c). We also see from Fig. 6-14(c) that the cell with 

the 100 0C annealed HEL has the highest Re ΔV at (f → 0) and also the largest semicircle. Again, this 
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follows the same pattern and is caused by the same reasoning as the decrease in the cell’s ΔV (f → 0) 

discussed before. We can now extract four characteristic parameters from Fig’s 6-14(a),(b),(c) and 6-

15 plots. These parameters are, Re ΔV (f → 0), fc and  f-3rd. We list all of the characteristic parameters 

and OPV types, including the electric conditions in which we obtain the plots, i.e. VMPP and RMPP, in 

Table X. 

 

TABLE X OPV TYPES, VMPP, RMPP, ΔV (f → 0), Re ΔV (f → 0) , fc AND f-3rd FOR THE SPECTRA SHOWN IN FIG. 6-
14(a), (b),(c) AND 6-15. 

OPV VMPP RMPP 
Re ΔV 
(f→0) 

fc f-3rd 

Types [mV] [kΩ] [mV] [Hz] [Hz] 
Non Annealed HEL 532 45 77 + 10 1700 + 1 31000 + 1 

100 0C Annealed HEL 585 82 96 + 10 1200 + 1 25000 + 1 
200 0C Annealed HEL 605 45 69 + 10 1900 + 1 31000 + 1 
300 0C Annealed HEL 505 56 67 + 10 2100 + 1 25000 + 1 
400 0C Annealed HEL 425 66 48 + 10 2800 + 1 31000 + 1 

 

From Table X, we can confirm that overall, as the cell’s HEL annealing temperature is increased, the 

respective cells VMPP decreases along with their ΔV (f → 0). Also, it is likely that this decreasing trend 

is caused by the annealing of the cell’s HEL, which can remove any contaminants and vapor that may 

reside in the HEL layer, thus creating vacant sites where carriers can flow through and improving 

overall transport. Here, the exception is for the cell with the unannealed HEL. Based on Table X, this 

is likely because more contaminants or vapor reside within the HEL such that the overall device ΔV 

(f → 0) is lower compared to the cell with the 100 0C annealed HEL but still higher compared to the 

other cells. In addition, we also confirm that as ΔV (f → 0) decreases from the highest in the cell with 

the 100 0C annealed HEL to the lowest in the cell with the 400 0C annealed HEL, the respective cell’s 

fc also increases in general. Hence, the dynamic inside cells with higher HEL annealing temperatures 

occurs much faster. So in general, heating the HEL further is likely to generate oxygen vacancies in 

the V2O5-x which then decrease of the respective OPVs ΔV (f → 0). At the same time, heating the 

OPVs HEL further will also remove contaminants inside the HEL, thus carrier transport will happen 

much faster in OPVs with higher HEL annealing temperature [86, 146]. The one exception is the cell 

with the unannealed HEL, where the dynamic is instead faster, not longer. This again can be caused 

by the presence of “active sites” where carrier transport can occur much faster although it is not 

annealed.  

 Finally, we can also confirm that f-3rd does not change much for cells with higher HEL annealing 

temperatures. Hence, as mentioned before, f-3rd represents a lagging mechanism or a trap that causes 

carrier transport to be slower, thus resulting in a negative phase and Re ΔV. We then investigate the 

dependency of characteristics parameters in Table X with respect to changes in VMPP, from the cell 
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with the highest VMPP to the lowest, by using an equivalent circuit model similar to Fig. 6-5(a) in 6.1. 

So from Fig. 6-5(a) circuit in 6.1, we perform IMS under finite load, or at a cell MPP, where RL = 

RMPP, the current generated by the cell’s current source IL in Fig. 6-5(a) will flow through the BHJ 

capacitance path, especially at high frequencies, when capacitative impedance drops. This is because, 

under finite load, both the external current path and internal diode in Fig. 6-5(a) equivalent circuit 

will display a significant resistance. Here, we also find the presence of a “3rd quadrant feature” in the 

high-frequency area at all the plots in Fig. 6-14(c). As such, we then use the same extended circuit in 

Fig. 6-16(a) and change the circuit’s parameter accordingly.  

 

(a) 
 

 (b) 
Fig.  6-16 (a). Simulated Nyquist plot for stored cell with unannealed V2O5-x HEL and cells with its V2O5-x HEL annealed 
at 100, 200, 300 and 400 oC after 13 days of storage (sample types are shown in the colour coded inset). Also shown in 
the circuit inset is the modified OPV generic equivalent circuit which shows the extended capacitor component (Cext) in-
parallel between series (Rs) and load resistance (RL). For the simulation, we set the DC current bias (IDC) = 25 μA with 
current modulation (IAC) = 5 μAp for all cells. Here, we again use the modified 1N914_KA diode and CBHJ = 4 nF in the 
circuit. We also set Cext = 2 nF. We also set the shunt resistance (Rsh) = 24, 33, 20, 16 and 15 kΩ for stored cells with 
unannealed, 100, 200, 300 and 400 0C annealed V2O5-x HEL respectively. All of the cells series resistances (Rs) are set to 
Rs = 577 Ω. The RL magnitudes are set to = 45, 50, 45, 56 and 30 kΩ for stored cells with unannealed, 100, 200, 300 and 
400 0C annealed V2O5-x HEL respectively. (b) Magnification of the same plots in (a) in-between the 3rd and 4th quadrant. 
Here, f-3rd does not change much for cells with higher HEL annealing temperature. Finally, the simulation in (b) is set 
between 1 Hz and 250 kHz, where the Re/Im axis in (b) and (c) uses different scales and are not normalized, with the 
direction of increasing frequency given by the blue arrow.  
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For simulation purposes, the DC current bias (IDC) amplitude was set to = 25 μA with current 

modulation (IAC) = 5 μAp for all cells. This is because we are simulating the behaviour of the same 

current source IL in Fig. 6-5(a) and in Fig. 6-16(b). We also select CBHJ = 4 nF and the circuit’s diode 

component as the 1N914_KA model, this is because the cell has the same BHJ mixture as in 6.1. 

While the 1N914_KA was selected as the diode model with the same reasoning as in 6.1 and 6.4. We 

then set the circuit’s shunt resistance (Rsh) = 24, 33, 20, 16 and 15 kΩ for stored cells with unannealed, 

100, 200, 300 and 400 0C annealed V2O5-x HEL respectively. Also, all of the cell’s series resistances 

(Rs) are set to Rs = 577 Ω. While the RL magnitudes are set to = 45, 50, 45, 56 and 30 kΩ for stored 

cells with unannealed, 100, 200, 300 and 400 0C annealed V2O5-x HEL respectively. All three 

resistance values (Rsh, Rs, and RL) were adjusted and selected to closely replicate Fig. 6-14(c) Re ΔV 

values. Finally, we set the magnitude of the extended capacitor component (Cext) as Cext = 2 nF. Again, 

this is to obtain an identical “3rd quadrant” feature at high frequency. In Fig. 6-16(b) simulated plots 

are taken at f  between 1 Hz and 250 kHz.  

 From Fig. 6-16(b), we see that the simulated plots gave the exact single semicircles of Fig. 6-

14(c) plots for all types of cells. This means that there is indeed a single internal dynamic that 

dominates all of the cells under light. In addition, the simulated plots are also able to replicate the Re 

ΔV magnitude seen in Fig. 6-14(c) and Table X for all cells, together with the decrease in semicircle 

sizes from the largest for the cell with the 100 0C unannealed HEL to the lowest for the cell with the 

400 0C annealed HEL. In addition, from Fig. 6-16(b) and (c), we can see that the simulated plots also 

manage to replicate the “3rd quadrant” feature as seen in Fig. 6-15. We also see that, as in Fig. 6-15, 

the “3rd quadrant feature does not appear to change much for cells with higher HEL annealing 

temperatures, thereby confirming our choice of using a fixed value capacitor Cext to simulate the trap 

mechanism that is encountered by carriers for all cells at high frequencies and represented by f-3rd. 

Finally, from simulated results in Fig. 6-16(b) and (c), we derive the same four characteristics 

parameters as in Table X, these are Re ΔV (f → 0), fc and f-3rd. We list all of the characteristic 

parameters and OPV types, including the electric conditions in which we obtain the plots, i.e. VMPP 

and RMPP, in Table XI.  

 

TABLE XI OPV TYPES, VMPP, RMPP, ΔV (f → 0), Re ΔV (f → 0) , fc AND f-3rd FOR THE SPECTRA SHOWN IN FIG. 
6-16 (b) AND (c). 

OPV VMPP RMPP 
Re ΔV 
(f→0) 

fc f-3rd 

Types [mV] [kΩ] [mV] [Hz] [Hz] 
Non Annealed HEL 387 45 77 1700  22000 

100 0C Annealed HEL 490 50 92 1400  18000 
200 0C Annealed HEL 343 45 68 1900  22000 
300 0C Annealed HEL 309 56 61 2200  22000 
400 0C Annealed HEL 250 30 49 2600 26 
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From Table XI, we confirm again that as the cell’s HEL annealing temperature is increased, the 

respective cells VMPP decreases along with their Re ΔV (f → 0). Here, the exception is for the cell with 

the unannealed HEL. Based on Table XI, this exception is again likely due to the presence of more 

contaminants that reside within the HEL such that the overall device Re ΔV (f → 0) is lower compared 

to the cell with the 100 0C annealed HEL but still higher compared to the other cells. In addition, we 

can confirm that cells with a higher HEL annealing temperature have indeed a higher corner 

frequency fc, also with the exception of the cell with the unannealed HEL. Thus, as fc is related to an 

internal dynamic time constant τ, the dynamic inside cells with a higher HEL annealing temperature 

occurs much faster compared to a cell with a lower HEL annealing temperature, while the dynamic 

of cells with an unannealed HEL occur much faster compared to cells with 100 0C annealed HEL but 

slower with regards to cells with a higher HEL annealing temperature.  

 In addition, we also see that the fc magnitude replicates well in Table XI when compared to 

Table X for real results. While f-3rd is lower in Table XI but not too small compared to f-3rd in real 

results. We also tried to vary Fig. 6-16(a) circuit CBHJ in the simulations (not shown here), and we 

found that if CBHJ is changed, the corner frequency (fc) will also change. Thus, the dynamic time 

constant here is a carrier transit time τ, and this transit time dominates the cell’s dynamic response as 

seen in Fig. 6-16(c), with the transit time much shorter for cells with higher HEL annealing 

temperature. As for the f-3rd feature, we can relate f-3rd to a carrier trap that equally resides in all cells 

near the cells Rs and RL and is not influenced very much by HEL heating, thus f-3rd does not change 

much for cells with higher HEL annealing temperature. Finally, from our IMS results, we conclude 

that in terms of the cell’s VMPP and resulting ΔV (f → 0) and Re ΔV (f → 0), cells with unannealed 

V2O5-x HEL, and 100, 200 and 300 0C annealed V2O5-x HEL are not very different in their 

performance. While the cell with the 400 0C annealed V2O5-x HEL fared worse in terms of 

performance. Also, the cell with the unannealed HEL has a lower performance compared to the cell 

with the 100 0C annealed V2O5-x HEL, but instead is higher for the other cells. In terms of carrier 

transit times, transit time between cells with unannealed V2O5-x HEL, and 100, 200 and 300 0C 

annealed V2O5-x HEL are relatively similar, while the cell with the 400 0C annealed V2O5-x HEL has 

the fastest transit time out of all cells characterized. However, due to the low performance of the cell 

(400 0C annealed HEL), the other still offer the best results in terms of both DC properties and carrier 

dynamics.  
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6.8 Summary of Ageing Study Results on OPV with V2O5-x Hole Extraction 

Layer  

From the IMS on the stored OPVs at their VMPP, we first found that based on the OPVs Re ΔV 

at (f → 0) in Fig. 6-14, as we increase the HEL annealing temperature, the OPVs Re ΔV at (f → 0) 

will experience a decrease from the OPV with 100 to 400 oC annealed HEL. Also, we found that the 

Re ΔV at (f → 0) of OPV with 100 oC annealed HEL is higher than that of OPV with unannealed 

HEL. This decrease in the OPVs Re ΔV at (f → 0) can be caused by the increased presence of 

contaminants or water vapor in the OPVs as we increase the HEL annealing temperature, since 

heating the HEL further may increase vacant sites within the HEL that can be filled with 

contaminants/water vapour, thus degrading the OPVs and reducing their Re ΔV at (f → 0). Also, it is 

possible that more contaminants reside in the OPV with unannealed HEL compared to that with 100 
oC annealed HEL, hence the lower Re ΔV at (f → 0) at OPV with unannealed HEL. From Fig. 6-14(a) 

Bode plots, we also found that in general, the cells corner frequency fc increases as we increase the 

HEL annealing temperature, with the exception of OPV with 100 oC annealed HEL, whose fc is lower 

compared to that of OPV with unannealed HEL. The internal dynamic that fc and τ represent is also 

likely the carrier transit time. We reason that by annealing the HEL further, we may remove any 

possible contaminants or vapours inside the HEL, thus making carrier transport occurs much faster (τ 

is shorter) in OPVs with higher HEL annealing temperature [86, 146]. As for the smaller fc found in 

the OPV with unannealed HEL compared to that with 100 oC annealed HEL, it is possibly caused by 

further device degradation in the former as opposed to the later. 

 We also observed that there are both high-frequency peaks and ‘3rd quadrant’ feature in the 

stored OPVs Bode and Nyquist plots. In addition, on all of the OPVs Nyquist plots, there is no 

presence of ‘foot’ feature in the low-frequency region as in the fresh OPV with unannealed HEL. 

Also, the high-frequency peaks in OPV with unannealed HEL is lower than the OPV with 100 oC 

annealed HEL, as opposed to the increase in phase peaks from OPV with 100 to 400 oC annealed 

HEL. The ‘3rd quadrant’ feature and the phase plots high frequency peaks can be simulated correctly 

by connecting an extended capacitor (Cext) with a magnitude of 2 nF in-parallel and between the Rs 

and RL in the equivalent circuit of chapter 6 [132]. The Cext also represents a lagging mechanism that 

start at f-3rd, and is caused by carriers deviating from the CBHJ due to the presence of other path that 

has less resistance at f > 10 kHz and is located around Rs and RL. Meanwhile, the lower high-frequency 

peaks in OPV with unannealed HEL compared to OPV with 100 oC annealed HEL, can be caused by 

the presence of more contaminants in the former as opposed to the later. We then conclude that the 

OPV with 400 oC annealed HEL has the fastest carrier transit time out of all OPVs after storage. 

However, if we compare all the stored OPVs Re ΔV (f → 0), the OPVs with 100 oC annealed HEL 



 
Page | 153  

offers the best near DC performance out of the 5 OPVs, while the OPV with 400 oC annealed V2O5-x 

HEL has the worst DC performance out of all OPVs. Hence, we then conclude that in terms of the 

OPVs AC (fc and τ) and near DC (Re ΔV (f → 0)) performances, the OPV with 200 oC annealed HEL 

offers the best performance out of all the OPV types. 
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Chapter 7 
IMS Characterization of  

Organic Light-Emitting Diodes (OLED) Devices and  
Alkaline Battery 

 As elaborated in 1.1 and 3.2, we also perform IMS characterizations on Organic light-emitting 

diode (OLED) devices. The prepared OLEDs emits white light by using a copolymer, W1100 made 

by Sumitomo Chemicals Co., Ltd, as the device emissive material. W1100 is a block copolymer that 

emits white light from the (combination) ratio of red and blue emitter/chromophores within the 

polymer structure. This was shown in the OLED’s electroluminescence spectrum in Fig. 3-8 in 3.2, 

in that two emission peaks, are observed within the spectrum. The higher peak, with a full width at 

half maximum (FWHM) = 50 nm, lies between 450-500 nm and represents the emitted blue spectrum 

from the polymer. The weaker peak, which lies between 560-680 nm with FWHM = 120 nm, 

represents the polymer’s emitted red spectrum. The OLED devices themselves uses PEDOT as the 

hole injection layer (HIL) and Lithium fluoride (LiF) with calcium (Ca) as the electron injection layer 

(EIL). For the OLED’s cathode, aluminium (Al) was used with the anode being indium tin oxide 

(ITO). Finally, all OLED devices were prepared and DC-characterized by Mr. Thomas Routledge, 

University of Sheffield, Sheffield, UK. The OLED’s DC characterization results (J/V and L/V plots) 

are given in 3.2.1. 

 We first present and discuss the results of intensity-modulated spectroscopy (IMS) 

characterization of the OLED which was done to determine charge carrier mobility (μ) in the OLED 

and charge carrier type that is represented by the resulting μ value. We then give and discuss the 

results of IMS characterization that was conducted to compare different OLED dynamics from 

different chromophores/colours within the OLED device emissive layer. Finally, we present and 

discuss the results of IMS characterization which was performed to study the aging of an OLED 

device. For all IMS on OLED, we perform the characterizations by illuminating a fast photodiode 

(Centronic OSD5-5T, rise time = 9 ns) with the OLED device by using the setup described in Fig. 4-

13(a). We also apply different VOLED and IOLED in each OLED experiments, but in all IMS on OLED, 

we always apply VOLED on ROLED = R4 = 2.7 kΩ in the modified voltage adder circuit in Fig. 4-13(b). 

We then insert the following lock-in settings into the modified IMS software in 4.6, the input coupling 

is set to DC, roll-off to 24 dB/oct, dynamic to high, phase offset to 0 and reference harmonic to 1. 

The time constants are set to 5 s at f = 1-10 Hz, 1 s at f = 10-100 Hz, 0.5 s at f = 10-1000 Hz, 0.1 s at 

f = 1 kHz-10 kHz and 0.05 s at f  > 10 kHz. The reasoning behind these lock-in settings has been 
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given in 4.4. In addition, we varied the input coupling and dynamic in one of the IMS on OLED 

experiments. We operate the IMS software to perform a frequency scan at f  between 1 Hz and 250 

kHz in 18 steps per decade. From the applied VOLED and the resulting IOLED driving current, the OLED 

will then produce a light intensity LT = L + ΔL sin ωt. We use the modulated OLED intensity to 

illuminate the fast photodiode which is under a reverse bias voltage (VREV) = -13.2 V. From the OLED 

illumination, the photodiode will produce a current in the form of IPD = IPD-DC + ΔIPD(ω) 

sin(ωt+φ(ω)). This photocurrent is fed into an IV converter with Rf  = 4.7 kΩ and Cf = 4.7 pF. Also, 

in another IMS on OLED experiment, we varied the Rf in the IV converter. The IV circuit converts 

the photodiode current (IPD) into a voltage (Vout) and amplifies the resulting voltage through IPD = 

Vout/Rf. Vout is related to the OLED illumination via the photodiode. Vout is given by Vout = V + ΔV(ω) 

sin(ωt-φ(ω)). Vout is fed into the lock-in voltage input. The lock-in will measure and “pick-out” ΔV(ω) 

by comparing it with the lock-in’s ref out voltage frequency ω. As a result, we obtained the amplitude 

ΔV(ω) and phase φ(ω) of Vout and recorded these parameters as a function of f = ω/2π. Later the 

amplitude ΔV(ω) and phase φ(ω) can be plotted as a Bode and Nyquist plot as seen in 1.4.  

 

7.1 Results from IMS Measurements on OLED Devices with Different DC 

Voltage Bias  

 For the IMS characterization of the OLED, which was performed to determine charge carrier 

mobility (μ) and type, we use different OLED voltage biases VDC, and a fresh OLED sample and 

using the OLED setup in 4.6. This sample is OLED No. 3 in the OLED J/V characteristics in Fig. 3-

10. The VDC condition was varied from 7.8 down to 5.4 V with 0.6 V voltage intervals. From the 

resulting IMS spectrum at each Vbias point, we extract corner frequencies fc that represent the time 

constant τ of an internal dynamic in the OLED. We then plot τ with respect to VDC, and from this plot, 

derived a figure of merit for μ. Note that in an OLED, both carrier’s mobility must be accounted for 

in the mobility determination [147, 148]. For the IMS, we apply a combination of a large voltage bias 

and a small sinusoidal AC voltage of VOLED = (7.8 + 0.3) V on a fresh OLED. Since the OLED is 

protected by a serial resistor ROLED = 2.7 kΩ in the adder, it will then result in a corresponding IOLED 

= (1.9 ± 0.09) mA. The bias component in VOLED, i.e. VDC = 7.8 V was obtained by measuring the 

voltage drop across the OLED as mentioned in 4.6. While the DC drive current in IOLED, i.e. IDC = 1.9 

mA, was obtained from the equation IDC = VR4/ROLED, with VR4 being the voltage drop across the ROLED 

as elaborated in 4.6. The modulating current in the IOLED, i.e. IAC = 0.09 mAp was obtained through 

the equation IAC = VAC/(ROLED + Rdiff), with VAC = 0.3 Vp from the lock-in ref out and differential 

resistance or Rdiff  = 588 Ω as determined from the OLED No. 3 J/V characteristics in Fig. 3-10. The 

IMS software settings used for this experiment were the same as that mentioned earlier. Here, the IV 
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converter used to convert photodiode current into voltage has a feedback resistor Rf = 4.7 kΩ and 

feedback capacitor Cf = 4.7 pF.  

 In Fig. 7-1, we present the IMS results of OLED No. 3 in the form of a Bode amplitude, phase 

and Nyquist plot of ΔV. 

 (a) 

  (b) 

 (c) 
Fig.  7-1 (a). Bode amplitude plot of the OLED’s ΔV, (b) Bode phase plot of ΔV phase φ with respect to frequency f and 
(c) Nyquist plots of  ΔV that plots the imaginary part (Im ΔV = |ΔV| sin φ) vs. real part (Re ΔV = |ΔV| cos φ) which is 
parametric in frequency for the IMS spectra. Here, (a), (b) and (c) are taken at frequencies between 1 Hz and 250 kHz 
and at different OLED Vbias (shown in the respective plots inset), from 7.8 V down to 5.4 V with 0.6 V intervals, VAC and 
IAC are kept constant. Note that the Re/Im axis at (c) uses different scales and are not normalized, with the direction of 
increasing frequency given by the blue arrow.  

  

 Fig. 7-1(a) and (b) shows the Bode plots of the OLED’s ΔV amplitude and phase φ with respect 

to f  between 1 Hz and 250 kHz and taken at different OLED VDC, from VDC = 7.8 V down to 5.4 V 
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with a 0.6 V interval. While Fig. 7-1(c) shows a set of Nyquist spectra that are also taken at different 

OLED VDC, i.e. at VDC = 7.8 V to 5.4 V. From Fig. 7-1(a), ΔV (f → 0) decreases as we decrease VDC, 

which means that as VDC is reduced, the OLED brightness will also be reduced. While from Fig. 7-

1(b), the ΔV phase φ also increases as VDC decreases. Of course, as we change VDC, we also change 

the OLED’s internal dynamic. Also from the same plot (Fig. 7-1(b)), we see that φ does not reach 45o 

at the highest frequency f for VDC = 7.8 and 7.2 V in Fig. 7-1(b). In other words, at those OLED 

voltage biases, we cannot determine any corner frequency fc. In Fig. 7-1(c), the general shape of the 

OLED’s Nyquist spectra resembles an incomplete semi-ellipse in the 4th quadrant of the complex 

plane that gets smaller in size with lower VDC, though note that the Re/Im axis in Fig. 7-1(c) uses 

different scales. In addition, we also observed a “hook” feature at f  ~ 5 kHz in Fig. 7-1(c) for VDC = 

7.2, 6.6, 6 and 5.4 V, while at VDC = 7.8 V the “hook” occurs at f  ~ 9 kHz. Finally, the “hook” feature 

itself seems to increase in size as VDC is reduced.  

 From Fig. 7-1(a), (b) and (c), we can extract two characteristic parameters, these are Re ΔV at 

(f → 0) and corner frequency fc. From 5.1, fc is the frequency where the ΔV phase φ = 45o, and is 

connected to a time constant τ of the system’s internal dynamic through fc = 1/2πτ. Also, for Fig. 7-

1(b) and (c) plots at VDC = 7.8 and 7.2 V we determined/approximate fc with the first order phase shift 

equation, in which fc = fo/tan φo, where φo is the output voltage phase at frequency fo [36]. Here, we 

use fo = f at (ΔV phase) φo = 30o to approximate fc or corner frequency at φ = 45o. The OLED’s 

electrical condition (VDC), Re ΔV (f → 0) and fc obtained from Fig. 7-1(a), (b) and (c) are shown in 

Table XII. 

 
TABLE XII OLED VDC, Re ΔV( f → 0) AND fc FOR THE SPECTRA SHOWN IN FIG. 7-1(a), (b) and (c) 

OLED VDC Re ΔV (f→0) fC 
[V] [mV] [Hz] 
7.8 32 + 10 310000 + 1 
7.2 29 + 10 230000 + 1 
6.6 25 + 10 200000 + 1 
6.2 20 + 10 160000 + 1 
5.4 19 + 10 130000 + 1 

 

From Table XII, it is confirmed that as VDC is reduced, the OLED becomes less bright (reduced ΔV (f 

→ 0) and Re ΔV (f → 0)). While the decrease of fc (fc = 1/2πτ) as VDC is reduced in Fig. 7-1(a) and (c) 

spectra, indicates that τ is the carrier(s) transit time dynamic within the OLED. In an OLED, as 

elaborated in 2.4, two opposite carriers (electrons and holes) are needed for electroluminescence. 

These carriers will first be injected from the OLED’s cathode and anode, by the applied OLED VDC. 

Carriers will then travel across the OLED into the emissive layer, where they will form excitons, 

decay and emit light as the carriers recombine [103]. As such, we first look at a mathematical model 

of two carrier transport in an OLED and construct a physical model. 
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 Blom and de Jong proposed a theoretical model, the double-carrier model, that takes into 

account the effects of holes and electrons transport in an OLED polymer. In addition, the model also 

accounts for the presence of traps within the polymer and the field-dependent nature of both carrier 

mobilities. Two important phenomena are also included in the model, one is biomolecular 

recombination and the other is charge neutralization. Biomolecular recombination is the 

recombination of both carriers within the OLED polymer that can either lead to light generation or 

nonradiative recombination, whilst charge neutralization is simply the total charge of both charge 

carrier within the polymer. So in this model, the total current density from both carriers J (in A/m2) 

is given by equation (31) [147].  

 

      )()()()()( xExnxEexExpxEeJJJ npnp    (31) 

   

with JP and Jn being the current density of holes and electron respectively (in A/m2), and are also 

described by equation (32). 
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also, E(x) in equation (31) is the electric field as a function of position x (in V/m), and can be defined 

by equation 33 below: 
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where μp and μn are respectively the hole and electron mobility (in m2/Vs), p(x) and n(x) are the hole 

and electron density as a function of position x (C/m) respectively, nt(x) is the density of trapped 

electrons (in cm-3) and B is the recombination constant (in cm3/s) [147]. We construct a simplified 

diagram of microscopic processes that describe OLED operation according to the double-carrier 

model as described by equation (31)-(33). This physical model is depicted in Fig. 7-2. 

 
Fig.  7-2. A diagram of the microscopic processes occurring within an OLED according to the double-carrier model by 
Blom and de Jong. The B, Kdt, and  Kt here are the recombination, trapping and detrapping constant respectively [147].  
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In Fig. 7-2, both electron, and holes are injected into the OLED polymer layer through respectively 

the cathode and anode. Both carriers will be driven towards the OLED’s center by the electric field 

from the applied VDC, from here, three things can happen. One is that electrons can be trapped or 

detrapped within the bulk polymer, as represented by the constants Kt and Kdt respectively. Here, 

detrapping occurs when traps are overfilled with electrons thus making them inactive. The other is 

that carriers can recombine without emitting any light (non-radiative recombination) or that carriers 

will recombine and then emit light, all represented by the constant B [147]. Hence, the time needed 

for both carriers to recombine within the emissive layer that leads to light emission/luminescence can 

be represented by a (recombination) transit time. To determine the recombination transit time τ in a 

double-carrier model, we use an AC impedance approach for a bipolar device where both carriers 

recombine somewhere within the device. As stated earlier, τ is linked to the corner frequency fc. In a 

double-carrier device, τ must also take into account the total mobility from both carriers, which is 

called the effective mobility μeff (in cm2/Vs) and is given by equation (34) [149, 150]. 

 

pneff    (34) 

 

with μn and μp being the mobility of electrons and holes respectively (in cm2/Vs). μeff here can be 

considered the mobility average of both carriers in the OLED. Also, a transit time equation must 

include the potential difference between the work function of an OLED’s cathode and anode, i.e. the 

built-in voltage (Vbi). Since we apply VDC to the OLED, a net difference between VDC and Vbi will 

then occur and thus influence both carrier’s mobility. Therefore, the (recombination) transit time for 

both carriers becomes the effective transit time constant τeff and is given in the AC model by equation 

(35). 
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where d is the emissive layer thickness (in nm), μeff is the effective mobility (in cm2/Vs), VDC is the 

OLED voltage bias (in V), and Vbi is the built-in voltage within the OLED (in V) due to the difference 

in the OLED electrodes work function [149]. The Vbi in equation (35) can be determined by using 

equation (17) in 2.3, in which the respective metal/electrodes work functions can be determined from 

literature values as a first approximation. Note that since both carriers will meet and recombine in the 

emissive layer, carriers will not traverse the emissive layer full length (d). This fact has been 
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accounted for in equation (35), so d here is still the entire layer thickness [149]. Further, from equation 

(35), it is clear that τeff will be dominated by the slower mobility between the two carriers. If we return 

to the Table XII results, it is clear that the decrease of fc as VDC is reduced means that the time constant 

τ is indeed a carrier(s) transit time. Therefore, the time constant τ represents both carrier’s effective 

transit time τeff that leads to OLED light emission, or in another word the time constant τ~τeff. We 

investigate the dependence of the characteristic parameters listed in Table XII on the OLED VDC, 

based on the physical model in Fig. 7-2 along with an OLED-equivalent circuit to explain the 

experimental results. 

 So to rationalize Fig. 7-1(a), (b) and (c) results, we performed LT SPICE simulations on a 

generic OLED equivalent circuit. Here we used a simplified OLED circuit as proposed by Lin et al. 

in Fig. 7-3(a) [151]. This equivalent circuit was built by using a modified form of the Schottky general 

diode equation, where the modification was done by using a Taylor-series approximation [151]. 

 

    
                              (a)                                    (b) 

Fig.  7-3 (a). A generic OLED equivalent circuit model [151]. IL represents the light-driven current source. In IMS, all 
components are internal to the OLED. (b) Simulated ‘Nyquist rainbow’ for the equivalent circuit model in (a) for f between 
1 Hz and 250 kHz and at OLED VDC = 7.8 V down to 5.4 V with 0.6 V Fig. interval (inset). Here for (b), we select COLED 
= 13 nF, and a customized 1N914 diode (1N914_KA) with the saturation current reduced to 3 pA. The DC current bias 
amplitudes are set at IDC = 1.9, 1.06, 0.75, 0.33 and 0.22 mA, these (IDC) corresponds to DCs = 7.8, 7.2, 6.6, 6 and 5.4 V 
respectively. The current source modulation is set to IAC = 1.35, 0.69, 0.4, 0.14 and 0.07 mA for VDC = 7.8 and down to 
5.4 V respectively. The plots Re/Im axis at (b) uses different scales and are not normalized, with the direction of increasing 
frequency given by the blue arrow.  

 

For our simulation purposes, the DC current bias amplitude was set at IDC = 1.9, 1.06, 0.75, 0.33 and 

0.22 mA, which corresponds to Vbias = 7.8, 7.2, 6.6, 6 and 5.4 V respectively with ROLED = 2.7 kΩ. 

We also varied/decreased the IAC amplitude along with IDC in the simulation, with IAC set to = 1.35, 

0.69, 0.4, 0.14 and 0.07 mA for VDC = 7.8 and down to 5.4 V respectively. IAC was varied to replicate 

how the Table XII parameters, especially fc, changes with respect to VDC. The IAC amplitudes are 

chosen to replicate the observed Re ΔV(f → 0) in Fig. 7-1(c), since the software will give Re ΔV (f → 
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0) that are in proportion to IAC values (e.g. IAC ~ mA will give Re ΔV (f → 0) ~ mV) [143]. Also, the 

Nyquist plot size in Fig. 7-3(b) is smaller at higher IDC as oppose to the real results. This is because, 

as we decrease the IDC, the relative difference between IDC and IAC becomes smaller, hence the IAC 

component becomes more significant at low IDC and the Fig. 7-3(b) plot becomes larger at lower IDC. 

Here, f is set between 1 Hz and 250 kHz. As the circuit components representing our OLED in Fig. 

7-3(a), we select COLED = 13 nF and the modified 1N914_KA model from 6.1 as the circuit’s diode. 

The 1N914_KA model was chosen to represent an organic diode due to its smaller saturation current 

IS, with IS = 3 pA as oppose to IS ~ nA in the LT Spice stock diode. This choice is also to account for 

lower carrier mobility in the organic diode. Whilst COLED in Fig. 7-3(a) represents the accumulation 

of carriers at the interface of the injection and emissive layers, which can be modeled as a capacitor 

[151]. The COLED magnitude is chosen to further add the organic diode (order pF) capacitance. Note 

that as in 6.1, the organic diode capacitance is not voltage-dependent. In addition, we do not know 

precisely our organic diode’s ideality factor (n).  

 From Fig, 7-3(b), simulated Nyquist plots of the generic OLED equivalent circuit in Fig. 7-3(a) 

give almost exact semi-ellipses at all VDC without the observed low-frequency ’foot’, even at VDC = 

7.8 V. Here, though, the semi-ellipses shows slightly different magnitudes of corner frequency fc for 

different VDC. For comparison with experimental results, we deduce the simulated plot’s characteristic 

parameters, i.e. Re ΔV ( f → 0) and fc, and list them in Table XIII. 

 
TABLE XIII OLED VDC, Re ΔV ( f → 0)  AND fc FOR THE SIMULATED SPECTRA SHOWN IN FIG. 7-3(b) 

OLED VDC Re ΔV (f→0) fC 
[V] [mV] [Hz] 
7.8 33 472000 
7.2 30 273000 
6.6 24 195000 
6.2 19 90000  
5.4 14 59000 

 

From Table XIII, we see again that as VDC is reduced, the OLED becomes less bright (due to reduced 

Re ΔV (f → 0), consistent with Table XII results. Also, compared to Table XII, fc are higher for VDC 

= 7.2 V and 7.8 V and lower for VDC = 5.4 and 6.2 V. This differences in fc, as in 6.1, can again be 

caused by the difficulties of simulating the nonlinear properties of an organic diode in the Fig. 7-3(a) 

circuit with conventional software. To add, from Re ΔV (f → 0) results in Table XIII, at high VDC 

more current will be injected into the OLED due to a much stronger electric field and vice versa at 

lower VDC. So at both high VDC and high f, the field will force more carriers and therefore current to 

flow into the COLED due to its lower impedance than through the (organic) diode, while at very low f, 

currents will flow more into the diode instead of COLED. At lower VDC and at high frequency, carriers 

will still flow into the COLED, but here they can be trapped or forced to recombine before the COLED 
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branch due to the weaker electric field. Thus, the smaller fc results at low VDC. From 5.1, as each 

simulated plots only forms a single semi-ellipse, each with a minimum peak at a frequency equal to 

the corner frequency fc, there will be a single, but dominant internal dynamic that occurs in the 

simulated cell. This internal dynamic is represented by a time constant τ that can be derived from 

each plot’s fc. Based on our earlier discussion on carrier transit time, we conclude that the (simulated) 

time constant τsim here is the transit time of both carriers that leads to light emission, and is represented 

by the recombination constant B in Fig. 7-2. This is because τsim here depends strongly on COLED while 

there is no other component in the Fig. 7-3(a) circuit that represent trap dynamics.  

 However, Fig. 7-3(b) plots remain unable to replicate the “foot” feature that is seen in the low-

frequency area of Fig. 7-1(c). From prior discussion, when the Fig. 7-3(a) circuit is at a higher f in 

the kHz range, carriers may start flowing into the COLED branch but then become trapped/recombine 

somewhere in the COLED branch. We then extend this reasoning to the “hook” feature in Fig. 7-1(c), 

in that the “hook” is caused by trapped/recombined carriers at f  in the kHz range. We model this by 

placing an extended resistor parallel to an extended capacitor (Rext//Cext.) in series with the COLED 

branch. The simulated spectra from the extended OLED equivalent circuit are shown in Fig. 7-4. 

 
Fig.  7-4. Simulations on the extended equivalent circuit model, shown as an inset. The simulation is performed at f 
between 1 Hz and 250 kHz and with OLED VDC = 7.8 V down to 5.4 V (colour inset). Here, the chosen diode (1N914_KA), 
the magnitude of COLED, IDC and IAC  are kept to be the same as in Fig. 7-3(a) circuit. Magnitude of Cext = 6 nF // Rext = 600 
Ω. Also, Re/Im axis uses different scales and are not normalized, with the direction of increasing frequency given by the 
blue, arrow. 

 

In Fig. 7-4, when suitable parameters for Rext // Cext are chosen (Cext = 6 nF // Rext = 600 Ω), the 

simulated spectra now include the ‘hook’ feature, similar with the Fig. 7-1(c) experimental spectra. 

The “hook” here is observed at f  ~ 28 kHz for Vbias = 7.8 V,  f  ~ 26 kHz for VDC = 7.2 V, and at  f  ~ 

21 kHz for VDC = 6.6, 6 and 5.4 V, so the decrease in simulated “hook” frequency as we decrease Vbias 

is consistent with the experimental results in Fig. 7-1(c). Also, as we decrease VDC in the Fig. 7-4 

simulation, the resulting fc decreases as well. Modeling thus confirms the origin of the kHz range 
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“hook” feature in the COLED branch. We note from OLED preparation in 3.2 that the OLED uses 

PEDOT as its hole injection layer (HIL). As such, the OLED’s ITO anodes can be etched by the 

PEDOT’s acidic dopant, i.e. polystyrene sulfonic acid (PSS), which can then liberate indium ions into 

the injection and emissive layers [57]. Therefore, as in 6.2, the presence of Indium in the injection 

and emissive layers will create instability in both layers and reduce the OLED’s performance over 

time. This can be caused by a reduction in the injection layer area size, hence reducing the number of 

injected carriers, represented by Rext in the COLED branch. At the same time, trap sites can also form 

in the injection layer due to a discontinuity caused by Indium penetration. These trap sites thus create 

a capacitance Cext, and together with Rext forms the Rext//Cext in Fig. 7-4. Hence, we can assign the 

“hook” feature in Fig. 7-1(c) to the diffusion of indium ions into the COLED due to ITO etching by 

PSS. Since we can correctly model our OLED with the Fig. 7-4 extended circuit, the fc from Fig. 7-

1(c) will also depend heavily on COLED, this is beside the fact that fc (and τeff) scales with VDC in Table 

XII. The COLED is again the accumulation of carriers at the interface of the injection and emissive 

layers. Therefore, Table XII fc corresponds to the effective time constant τeff, which is the transit time 

of both carriers before they recombine in the emissive layer which then leads to light emission, as 

elaborated in the Fig. 7-2 model.    

 We then convert the fc in Table XII with fc = 1/2πτeff and plot the resulting effective transit time 

τeff with respect to 1/(VDC – Vbi) as given by equation (35). For this purpose, the emissive layer 

thickness is d = 85 nm and Vbi = 0.5 V from equation (17) with the metal/electrode work function 

values obtained from the literature. Finally, equation (35) predicts a straight line (fit) on τ vs.1/(VDC 

– Vbi), from which slope we can derive a figure of merit for the effective mobility μeff. The resulting 

plot is depicted in Fig. 7-5. 

 
Fig.  7-5 A plot of (transit) time constant τ (μs) vs 1/(VDC-Vbi) (V-1). Time constant (τ) data were derived from fc in Table 
XII. 
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In Fig. 7-5, we find a straight line fit which indicates that the relationship between τ (μs) vs. 1/(VDC-

Vbi) is indeed linear. From the slope, we find that μeff = (9.37 + 0.02) x 10-6 cm2/V s. On its own, this 

figure is much larger compared to the hole mobility (μh) of poly (p-phenylene vinylene) or PPV-based 

OLED at room temperature [148]. Note, however, that this value is the average mobility of both 

carriers. Also, from equation (35), as τeff is influenced more by the slower mobility, μeff will instead 

be dominated by the faster ones. From the literature, e.g. for PPV-based devices, the mobility of holes 

is much higher than those of electrons [148, 152]. Therefore, we estimate that μeff here is likely to be 

the OLED’s electron mobility or μeff ~ μe.  

 

7.2 Results from IMS Measurements with Different Optical Filters on OLED 

Devices 

 We then proceed to perform IMS characterization in order to compare different OLED 

dynamics from different chromophores/colours within the OLED device emissive layer. We do this 

by slightly modifying the IMS setup in Fig. 4-13(a) (in 4.6), i.e. by inserting an optical filter between 

the OLED and the fast photodiode in the setup. Thus, we can then obtain different light emission from 

the two-colour OLED that we characterize. To accommodate the filter, we separate the photodiode at 

a distance away from the OLED. We then use the OLED to illuminate the photodiode. For this 

characterization, we use OLED No. 2 in the OLED J/V characteristics in Fig. 3-10, filter the OLED’s 

light output with two different filters, where each will result in either red or blue emission being 

detected. In doing this, we kept the applied VDC and VAC on the OLED to be the same for all (light) 

filtering conditions. We then compare the resulting IMS spectrum from the red and blue light in the 

OLED with those from the total (white) emission. We do this by extracting the respective corner 

frequencies (fc) from the red, blue and white IMS spectrum. The resulting τ represents the internal 

dynamics from each of the chromophores as compared to the total white light.  

 For the IMS, we apply a combination of a large voltage bias and a small sinusoidal AC voltage 

of VOLED = (7 + 0.6) V on a fresh OLED. Since the OLED is protected by a serial resistor ROLED = 2.7 

kΩ in the adder, it will then result in a corresponding IOLED = (1.6 ± 0.2) mA. The bias component in 

VOLED, i.e. VDC = 7 V was obtained by measuring the voltage drop across the OLED as mentioned in 

4.6. While the DC drive current in IOLED, i.e. IDC = 1.6 mA, was obtained from the equation IDC = 

VR4/ROLED, with VR4 being the voltage drop across the ROLED as elaborated in 4.6. The modulating 

current in IOLED, i.e. IAC = 0.2 mAp was obtained through the equation IAC = VAC/(ROLED + Rdiff), with 

VAC = 0.6 Vp from the lock-in ref out and Rdiff  = 578 Ω as determined from the OLED No. 2 J/V 

characteristics in Fig. 3-10. The IMS software settings used for this experiment are slightly different 

from the settings mentioned earlier. We set the input coupling to AC and dynamic to low while all 
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other settings are kept the same. This is because we kept a distance between the OLED and photodiode 

to accommodate the optical filter. So to anticipate weak photocurrents due to this extra distance, we 

set the coupling to AC and input amplification to (x 100). As a consequence, we operate the IMS 

software to perform a frequency scan at f between 33 Hz and 250 kHz in 18 steps per decade, since 

we cannot perform a low-frequency scan under AC coupling. First, perform the IMS without inserting 

any filter between the OLED and a reverse-biased (VREV = -13.2 V) OSD5-5T silicon photodiode. 

Later, we repeat the IMS experiment by inserting an optical longpass filter between the OLED and 

the photodiode. This filter will only pass light with a wavelength (λ) > 550 nm, so only the red part 

(560-680 nm) of the (OLED’s) emissive layer spectrum in Fig. 3-8 (in 3.2) will be passed. After this 

experiment, we repeat the IMS again by inserting a bandpass filter which will let through light with 

320 < λ > 500 nm, so only the blue part (450-500 nm) of Fig. 3-8 spectrum will be passed. For direct 

IMS comparison of unfiltered white light with the filtered ones, we maintain a distance s = 0.6 cm 

between the OLED and the photodiode circuit for all cases. Here, the IV converter used to convert 

photodiode current into voltage has a feedback resistor Rf = 4.7 kΩ and feedback capacitor Cf = 4.7 

pF. In Fig. 7-6, we present the IMS results from the OLED’s white, red and blue emission in the form 

of Bode amplitude, phase and Nyquist plot of ΔV. 
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(a) (b) 

  (c) 

Fig.  7-6 (a). Bode amplitude plot of ΔV, (b) Bode phase plot of ΔV phase φ vs frequency f and (c) Nyquist plots of ΔV 
that plots the imaginary (Im ΔV = |ΔV| sin φ) vs. its real part (Re ΔV = |ΔV| cos φ), the spectra being parametric with 
frequency. Here, (a), (b) and (c) are taken at frequencies between 30 Hz and 250 kHz and at unfiltered-, longpass and 
bandpass filtered light (shown as colour coded and in the inset). Note the Re/Im axis at (c) uses different scales and are 
not normalized, with the direction of increasing frequency given by the blue arrow. For both filtered- and unfiltered light, 
we applied a voltage VOLED = (7 + 0.6) V on the OLED and drive it with a current drive IOLED = (1.6 + 0.2) mA.  

  

Fig. 7-6(c) shows a set of Nyquist plot spectra measured for the three light conditions. From Fig. 7-

6(a), ΔV (f → 0) is highest for unfiltered light with the smallest being for blue light. Thus, it is clear 

that white light is the brightest out of the three, followed by red and then blue. From Fig. 7-6(b), ΔV 

phase φ is similar for all three cases, with φ never reaching 45o at the highest frequency for both 

unfiltered- and filtered light. Thus, it is likely that all three lights had a similar internal dynamic. In 

Fig. 7-6(c), the general shape of the Nyquist spectra for all light emission resembles an incomplete 

semi-ellipse in the 4th quadrant of the complex plane, with the white light semi-ellipse being the 

largest in size and the blue the smallest, though note that Re/Im axis in Fig. 7-6(c) uses different 

scales. We also observe a “bent” feature at f ~ 6.5 kHz in Fig. 7-6(c) plot for white light and at f ~ 3 

kHz for red light. For blue, this “bent” feature is absent, though note that the blue light plots in Fig. 

7-6(c) are noisy, especially at f > 10 kHz. Finally, the “bent” feature seems to be larger for unfiltered 

light than for red light in Fig.7-6(c). 

 From Fig. 7-6(a), (b) and (c), we can extract two characteristic parameters, Re ΔV at (f → 0) 

and fc. Note that here, ΔV (f → 0) and Re ΔV at (f → 0) are taken at f ~ 30 Hz due to the AC coupling 

used. In addition, we also approximate fc for all spectra in Fig. 7-6(c) with fc = fo / tan φo, where φo is 
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the output voltage phase at frequency fo [36]. Here, we use fo = f at φo = 30o to approximate fc at φ = 

45o. Also, as fc is linked to a time constant τ through fc = 1/2πτ, we can derive a time constant τ to 

compare the dynamics for all three lights. The OLED’s electrical condition (VDC), Re ΔV (f → 0) and 

fc obtained from Fig. 7-6(a), (b) and (c) are shown in Table XIV. 

 
TABLE XIV THE OLED LIGHT EMISSION, Re ΔV( f → 0) AND fc FOR THE SPECTRA SHOWN IN FIG. 7-6(a), 
(b) AND (c) 

OLED Re ΔV (f→0) fC 
Light 

Emission 
[mV] [Hz] 

White 18 + 10 160000 + 1 
Red 10 + 10 151000 + 1 
Blue   4 + 10 230000 + 1 

 
From Table XIV, we can confirm that the white light is brighter than both red and blue, and is 

consistent with the emissive layer spectrum in Fig. 3-8 as white is a total of both red and blue 

emission. However, we observe that the red light is much brighter than the blue, while from Fig. 3-8 

the opposite is true. This can be caused, among others, by the blue emission’s narrow 

spectrum/FWHM compared to that of the red in Fig. 3-8. However, it is more likely caused by the 

photodiode’s lower responsivity (in A/W) with respect to the resulting blue light wavelength (λ) range 

(i.e. 450-500 nm) from a bandpass filter when compared to the red ones from the lowpass filter and 

the total OLED illumination (λ range = 560-680 nm and 450-680 nm respectively). We can observe 

this from the OSD5-5T photodiode’s responsivity plot with respect to an illumination source with a 

wavelength range ~ 350-1100 nm, in which the photodiode’s responsivity is also compared at both 

under a 12 V reverse bias (bold spectrum) and without a reverse bias voltage (dotted spectrum) as 

displayed in Fig. 7-7 from Centronic Ltd. [136]. 

 

 
Fig.  7-7. The OSD5-5T responsivity (in A/W) plot under an illumination source with a wavelength range ~ 350-1100 
nm, where the photodiode’s responsivity is also compared at both under a 12 V reverse bias (bold spectrum) and at 0 V 
reverse bias voltage (dotted spectrum), which is taken from Centronic Ltd. [136]. 
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 In Fig. 7-7, we can see that at both 12 V and 0 V reverse bias, the photodiode’s minimum 

responsivity in the λ range = 450-500 nm (i.e. responsivity at 450 nm) is roughly 0.15 A/W, which 

although quite high in terms of responsivity to blue light [136], it is still twice lower compared to its 

minimum responsivety in the λ range = 560-680 nm, which is ~ 0.35 A/W. As a result, the blue light 

from the filtered OLED illumination is much less bright compared to the OLED’s red light 

component, as evident from the lower Re ΔV at (f → 0) in Fig. 7-6(a) that is obtained under blue 

illumination when compared to that under red light. Hence, for future work we would recommend 

the use of a photodiode in which the difference between its blue and red minimum responsivity is not 

too large as is the case in OSD5-5T. Examples of a photodiode with relatively small difference 

between their red and blue minimum responsivity are photodiode model S1087 and S1226 from 

Hamamatsu Photonics K.K. [153, 154]. Returning back to Table XIV, we then conclude that all three 

lights give similar OLED internal dynamics, as evident from their fc in Table XIV. Note that though 

the blue emission’s fc is higher (or its τ is shorter compared to white and red), the φ result for blue is 

still similar to that of the other colours in Fig. 7-6(b). Further, the time constant τ derived from fc in 

Table XIV can also be considered as a carrier transit time, i.e. the time needed by both carriers in the 

OLED to travel and then recombine to emit light in the emissive layer, as elaborated in equation (35). 

We then investigated how the Table XIV parameters change for all three lights by using an OLED-

equivalent circuit model and then elaborate how the changes relate to the OLED’s physical processes 

model in Fig. 7-2.  

 From 7.1, at a very low f, carriers will prefer to flow through the diode instead of the COLED in 

Fig. 7-3(a) OLED equivalent circuit. However, in the kHz range, carriers may start flowing into the 

COLED branch but then become trapped/recombine somewhere in the COLED, thus causing the “bend” 

to appear. Therefore, we can use the extended equivalent circuit in Fig. 7-4 to both model the “bend” 

and the dependence of fc on COLED at high f. We also modified the circuit parameters accordingly to 

replicate the experimental results. The resulting spectra and circuit are shown in Fig. 7-8. 
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Fig.  7-8. Simulated Nyquist plot of unfiltered- and filtered light (shown as colour-coded) with Fig. 7-4 extended OLED-
equivalent circuit model (circuit inset) at f between 30 Hz and 250 kHz. The IL here represents the light-driven current 
source in IMS, all components are internal to the OLED. Here, we again select COLED = 13 nF, with the same 1N914_KA 
diode as in Fig. 7-4. Magnitude of Cext = 9 nF // Rext = 900 Ω. The DC current bias amplitude (IDC) is set to 1.2 mA for all 
light, which corresponds to VDC = 7 V. Next, the current source modulation is set to IAC = 0.48, 0.27 and 0.11 mA for 
white, red and blue light respectively. The plots Re/Im axis uses different scales and is not normalized, with the direction 
of increasing frequency given by the blue arrow. 

 

For our simulation, the DC current bias amplitude (IDC) is set at 1.2 mA for all light, which 

corresponds to VDC = 7 V. The current source modulation is set to IAC = 0.48, 0.27 and 0.11 mA for 

white, red and blue light respectively. While the IDC amplitude was constant for all light, the IAC 

amplitude was varied in the simulation and chosen to replicate the Re ΔV(f → 0) values in Table XIV. 

Also, for the simulated plots in Fig. 7-8 f is set between 30 Hz and 250 kHz. For the circuit 

components representing our OLED in Fig. 7-8, we select the same COLED amplitude of 13 nF and the 

1N914_KA diode from 7.1 with the same reasoning. Here, COLED in Fig. 7-8 represents the 

accumulation of carriers at the interface of the injection and emissive layers, which is modeled as a 

capacitor [151]. In addition, the magnitude of the extended resistor (Rext) // extended capacitor (Cext) 

in Fig. 7-8 is set to 900 Ω and 9 nF respectively. This (Rext // Cext) is set higher than the values in 7.1 

to accurately model the “bent” feature shape in Fig. 7-6(c).  

 We see that the Fig. 7-8 simulated plot roughly resembles the semi-ellipse curve of Fig. 7-

6(c) for all three lights. Also, the simulated plot is able to replicate well the low-frequency “bent” 

feature in Fig. 7-6(c) for all three emissions. Note also that the simulated “bent” feature for blue is 

barely visible, similar to Fig. 7-6(c). The simulated “bent” feature in Fig. 7-8 occurs at f ~15, 9 and 4 

kHz for white, red and blue light respectively. Now, though this (“bent”) f value is higher than that 

in Fig. 7-6(c), the trend in f where the “bent” feature occurs (white having the highest f and blue the 

lowest) is consistent with the experimental results. Further, the simulated “bent” feature size is largest 

in white and smallest in blue, also similar to Fig. 7-6(c). In addition, the simulated semi-ellipses also 
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show different fc magnitudes for all lights compared to the Table XIV values. For comparison with 

experimental results, we derived characteristic parameters from Fig. 7-8, and list them in Table XV. 

 

TABLE XV THE OLED LIGHT EMISSION, Re ΔV( f → 0) AND fc FOR THE SPECTRA SHOWN IN FIG. 7-8 

OLED Re ΔV (f→0) fC 
Light Emission [mV] [Hz] 

White 18 687000 
Red 10 687000 
Blue 4 687000 

 

From Table XV, the simulated Re ΔV (f → 0) magnitude again depends on IAC as in 7.1 due to the 

same reasoning, i.e. the Re ΔV (f → 0) magnitude scales linearly with the given IAC in LT Spice. Also, 

compared to Table XIV, fc values in Table XV are 5x higher for all three lights. This difference in fc 

amplitudes, similar to 7.1, can again be caused by the difficulties in simulating an organic diode in 

Fig. 7-8 circuit with conventional software. Also, a similar fc and in turn, similar time constant τ in 

Table XIV, implies the same internal dynamics occurring within the OLED for all three lights. To 

further explain the simulated results, at high f, the field from the OLED VDC will force more carriers 

and therefore current to flow into the COLED due to its lower impedance than through the organic diode 

in the Fig. 7-8 inset. Thus the high value of fc in Table XV is due to its dependency on COLED. COLED 

is the accumulation of carriers at the interface of the injection and emissive layer. However, since we 

kept the OLED VDC to be the same for all three lights, the resulting fc will also be the same for all 

lights as is evident in Table XIV and the experimental plot in Fig. 7-6(b). So the only difference 

between the three will be their respective intensity, i.e. their Re ΔV (f → 0) magnitude, which is 

reduced due to light filtering for non-white colour. As for the “bent” feature, this can be explained 

from the prior assumptions of Fig. 7-8, in that in the kHz range, carriers will start flowing into the 

COLED branch but then become trapped or recombine somewhere. Furthermore, since the OLED also 

uses PEDOT:PSS as the hole injection layer, the “bent” feature can physically originate from the 

diffusion of indium ions to the COLED due to ITO etching by PSS [57, 82]. The diffused indium will 

create instability in both the injection and emissive layers and reduce the OLED’s performance over 

time. This will be manifested in the presence of a Rext // Cext component similar to that in 7.1. To 

conclude, since the Fig. 7-6(c) results can be modelled with the extended circuit, fc will strongly 

depend on the COLED, hence τ from fc can then be considered as a carrier transit time, i.e. the time 

needed by both carriers in the OLED to travel and then recombine to emit light in the emissive layer, 

as in equation (35). Finally, because these IMS results on all type of OLED emission results in the 

same fc, we can conclude that all three lights have the same carrier transit time. Also, all three lights 

showed a fluorescence-type emission. 
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7.3 Results from OLED Device Ageing Study with IMS   

 Finally, we performed IMS characterization of an OLED for the purpose of conducting an 

OLED aging study with the same setup as in 4.6. This was done by continually applying a VOLED on 

a fresh OLED or driving it with an IOLED, i.e. OLED No. 1 in OLED J/V characterization from Fig. 

3-10, until the OLED itself, failed, while conducting an (IMS) frequency scan for as much as four 

times daily, with each scan conducted at 3 hours interval. During the process, we kept VOLED the same 

for each day of the scan. From the daily IMS spectra, we extract (corner frequencies) fc that represents 

the time constant τ of an OLED internal dynamics. We then plot fc with respect to (IMS) scan hours, 

in order to observe the changes in the internal dynamics (fc) with respect to OLED aging.  

 For the IMS, we apply a combination of a large voltage bias and a small sinusoidal AC voltage 

of VOLED = (7.1 + 1.7) V on a fresh OLED. Since the OLED is protected by a serial resistor ROLED = 

2.7 kΩ in the adder, it will then result in a corresponding IOLED = (1.6 ± 0.4) mA. The bias component 

in VOLED, i.e. VDC = 7.1 V was obtained by measuring the voltage drop across the OLED as mentioned 

in 4.6. While the DC drive current in IOLED, i.e. IDC = 1.6 mA, was obtained from the equation IDC = 

VR4/ROLED, with VR4 being the voltage drop across ROLED as elaborated in 4.6. The modulating current 

in IOLED, i.e. IAC = 0.4 mAp was obtained through the equation IAC = VAC/(ROLED + Rdiff), with VAC = 1.7 

Vp from the lock-in ref out and Rdiff  = 1227 Ω as determined from the OLED No. 3 J/V characteristics 

in Fig. 3-10. The IMS software settings used for this experiment are the same as in 7.1. Here, we 

operate the IMS software to perform a frequency scan at f between1 Hz and 250 kHz in 18 steps per 

decade. The IV converter used to convert photodiode current into voltage has a different feedback 

resistor i.e. Rf = 1 kΩ and feedback capacitor Cf = 4.7 pF. We also maintain the same VOLED (VDC + 

VAC) and IAC magnitude throughout the experimental duration. However, the OLED IDC amplitude 

will be reduced later to less than 1.6 mA due to OLED aging. IAC = 1.6, 1.3, 1, 0.9, 0.7, 0.63, 0.6, 0.5, 

0.44, 0.4, 0.4, 0.3 and 0.3 mA at 0, 24, 48, 72, 96, 120, 144, 168, 192, 216, 240, 264 and 288 hours 

respectively. In Fig. 7-9, we present the IMS results from the OLED aging study (with respect to 

aging time) in the form of a Bode amplitude, phase and Nyquist plot of the OLED’s ΔV. 
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  (a) 

 (b) 

 (c) 
Fig.  7-9 (a). Bode amplitude plot of the OLED’s ΔV, (b) Bode phase plot of ΔV phase φ vs frequency f and (c) Nyquist 
plots of ΔV that plots the imaginary (Im ΔV = |ΔV| sin φ) vs. the real part (Re ΔV = |ΔV| cos φ), the spectra being parametric 
with frequency. Here, (a), (b) and (c) are taken from 0 to 288 hours of aging (colour coded in inset), by which time the 
OLED failed. We summarize the aging results in all plots to a 24-hour measurement interval. In addition, all plots were 
taken at frequencies between 1 Hz and 250 kHz. Note the Re/Im axis at (c) uses different scales and are not normalized, 
with increasing frequency direction given by the blue arrow. For this experiment, we applied a voltage VOLED = (7.1 + 
1.7) V to the OLED.  

 

 Fig. 7-9(a) and (b) show the Bode plots of ΔV and ΔV phase φ with respect to frequency (f) at f 

between 1 Hz and 250 kHz and taken from 0 to 288 hours of aging, by which time the OLED failed. 

Fig. 7-9(c) shows a set of Nyquist plots of the measured Re and Im ΔV at the same experimental 
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duration and frequency range. Here, we present the Bode and Nyquist plots results in 24 hours interval 

to summarize the OLED’s aging process. From Fig. 7-9(a), it is clear that as we continually operate 

the OLED, its performance is reduced as evident from the decrease in ΔV (f → 0). Thus, continued 

operation leads to OLED degradation which decreases its brightness. From the increase of φ with 

time in Fig. 7-9(b), we infer that the OLED’s internal dynamics, most likely the transit time τ, is 

influenced by OLED degradation. Further, we also see that a peak starts to appear at f  > 100 kHz 

from 216 to 288 hours of aging, with φ having never reach 45o at the highest frequency f throughout 

aging. This peak is not visible in Fig. 7-9(a) and (c). A possible explanation is that at high f and at 

later stages of aging, transit time (τ) dynamics occur where τ rises and then decreases due to 

degradation. The general shape of the Nyquist spectra in Fig. 7-9(c) again resembles an incomplete 

semi-ellipse in the complex plane’s 4th quadrant, though here the Re/Im axis use different scales. We 

also observe a “hook” feature similar to 7.1 for all aging times. The “hook” occurs at f ~ 3 kHz for 0-

72 and 264 hours of aging, and at f ~ 2 kHz for 96-240 and 288 hours of aging. It is clear that the 

“hook” dynamics are influenced by OLED degradation, as the frequency where the “hook” feature 

occurs changes as the OLED is continually kept on.  

 From Fig. 7-9, we can extract two characteristic parameters, these are Re ΔV (f → 0) and fc 

respectively. We approximate fc for all spectra in Fig. 7-9(c) with fc = fo / tan φo, where φo is the output 

voltage phase at frequency fo [36]. Here, we again use fo = f at φo = 30o to approximate fc at φ = 45o. 

This is because of the majority of the plots in Fig. 7-9(b) never reach 45 o at the highest frequency. 

In addition, we also list changes in OLED IDC with respect to aging time. The OLED’s electrical 

condition (VDC), Re ΔV (f → 0) and fc obtained from Fig. 7-9(a), (b) and (c) are then shown in Table 

XVI. 

 

TABLE XVI OLED AGEING TIME, IDC, Re ΔV( f → 0) AND fc, FOR THE SPECTRA SHOWN IN FIG. 7-9(a), (b) and 
(c) 

OLED Ageing 
Time 

IDC Re ΔV (f→0) fC 

[Hours] [mA] [mV] [Hz] 
0 1.60 47 + 10 441000 + 1  

24 1.30 36 + 10 441000 + 1 
48 1.00 29 + 10 390000 + 1 
72 0.90 27 + 10 340000 + 1 
96 0.70 23 + 10 261000 + 1 

120 0.63 21 + 10 230000 + 1 
144 0.60 20 + 10 201000 + 1 
168 0.50 18 + 10 177000 + 1 
192 0.44 17 + 10 163000 + 1 
216 0.40 15 + 10 155000 + 1 
240 0.40 15 + 10 176000 + 1 
264 0.30 14 + 10 160000 + 1 
288 0.30 13 + 10 141000 + 1 
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 From Table XVI, we confirm that the OLED degrades as it ages, as is evident from the decrease 

in IDC, and Re ΔV (f → 0) which indicates reduced OLED brightness. From 7.1, we find that fc is 

related to a carrier transit time that scales with VDC, IDC. As such, τ here is likely to be a carrier transit 

time, which gets slower as the device ages. This is consistent with the literature, where a corner 

frequency (fc)-equivalent parameter in an impedance measurement also decreases as the OLED ages 

[155]. We also confirm that the presence of a peak at f > 100 kHz in Fig. 7-9(b) corresponds to the 

slight rise and decrease of fc (and τ) at 240 to 288 hours of aging. A possible way to explain this peak 

dynamics is by using the equivalent circuit in Fig. 7-3(a). When the OLED is new, carriers will travel 

through COLED due to its lower impedance at high f, thus the absence of a peak in the ΔV phase. At 

later stages of aging, though carriers will still flow into the OLED, carriers may not travel very far in 

the COLED due to OLED degradation. Thus, the presence of a peak in Fig. 7-9(b) plots at later stages 

of the aging process. We then investigate how the Table XVI parameters change with respect to aging 

by using an OLED-equivalent circuit model and then elaborate how the changes relate to the OLED’s 

physical model in Fig. 7-2 to explain the experimental results.  

 Based on the overall results of Fig. 7-9(a), (b) and (c), the “hook” in Fig. 7-9(c), and the trend 

of the Table XVI parameters, we use the extended equivalent circuit in Fig. 7-4 and modify its 

parameters accordingly to model the OLED dynamics with respect to aging. The resulting spectra 

and circuit are shown in Fig. 7-10. 

 

 
Fig.  7-10. Simulated Nyquist plot for the OLED with respect to OLED ageing hours (colour inset) using the Fig. 7-4. 
extended circuit (circuit inset) at f between 1 Hz and 250 kHz. For the simulations, we set the DC current bias (Ibias) = 1.6, 
1.3, 1, 0.9, 0.7, 0.63, 0.6, 0.5, 0.44, 0.4, 0.4, 0.3 and 0.3 mA with current modulation (IAC) = 1.58, 1, 0.64, 0.54, 0.36, 0.29, 
0.27, 0.2, 0.19, 0.14, 0.14, 0.095 and 0.09 mAp for 0-288 ageing hours with 24 hours interval respectively. Here, we again 
use the modified 1N914_KA diode and set COLED = 13 nF in the circuit. We also set Cext = 6 nF // Rext = 600 Ω. Finally, 
the plots Re/Im axis uses different scales and are not normalized, with the direction of increasing frequency given by the 
blue arrow. 
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For our simulations, the DC current bias (IDC) amplitudes were set to = 1.6, 1.3, 1, 0.9, 0.7, 0.63, 0.6, 

0.5, 0.44, 0.4, 0.4, 0.3 and 0.3 mA with current modulation (IAC) = 1.58, 1, 0.64, 0.54, 0.36, 0.29, 

0.27, 0.2, 0.19, 0.14, 0.14, 0.095 and 0.09 mAp for 0-288 ageing hours with 24 hours interval 

respectively. For simulation purposes, we chose the IAC amplitude and then varied/decreased the IAC 

to replicate how the Table XVI parameters change with respect to aging time. We again select COLED 

= 13 nF and the modified 1N914_KA as the circuit’s diode with the same reasoning as in 7.1. The 

COLED here represents the accumulation of carriers at the interface of the injection and emissive layers. 

We then set the magnitude of the extended resistor (Rext) // extended capacitor (Cext) in Fig. 7-10 

circuit to 600 Ω and 6 nF respectively. Finally, Fig. 7-10 simulated plots are set at f  between 30 Hz 

and 250 kHz. 

 From Fig. 7-10, we see that the simulated plots roughly resemble the semi-ellipse curve of Fig. 

7-9(c) at 0-288 aging hours. Also, the simulated spectra are able to replicate the “hook” feature in 

Fig. 7-9(c) at all aging time. For comparison with experimental results, we then derived the 

characteristic parameters of Fig. 7-10, and list them in Table XVII. 

 

TABLE XVII OLED AGEING TIME, IDC, Re ΔV( f → 0) AND fc FOR FIG. 7-10 SIMULATED SPECTRA. 

OLED Ageing 
Time 

IDC 
Re ΔV 
(f→0) 

fC 

[Hours] [mA] [mV] [Hz] 
0 1.60 46 1200000 
24 1.30 35 1100000 
48 1.00 29 780000 
72 0.90 28 710000 
96 0.70 23 570000 

120 0.63 21 511000 
144 0.60 20 483000 
168 0.50 18 420000 
192 0.44 17 375000 
216 0.40 16 341000 
240 0.40 16 341000 
264 0.30 14 250000 
288 0.30 13 250000 

 
 From Table XVII, we see that the extended circuit is able to simulate the decrease in the 

OLED’s brightness with time due to its degradation, as is evident from the decrease in ΔV (f → 0) 

and Re ΔV (f → 0) as IDC is reduced, which is consistent with the experimental results in Table XVI. 

We observe that the fc values in Table XVII are much higher for all aging times compared to the real 

results in Table XVI. This difference, as in 7.1, can again be caused by the difficulties in simulating 

the organic diode’s nonlinear properties in the Fig. 7-10 circuit inset with conventional simulation 

software. From Fig. 7-10, we find that the “hook” occurs at f = 19, 15, 13 and 11 kHz for 0, 24-192, 

216-264 and 288 aging hours respectively. Thus, the decrease in this “hook” frequency as the OLED 

ages follows a similar trend in Fig. 7-9(c). Note that here, the simulated “hook” frequency is much 
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higher compared to those in Fig. 7-9(c), but this can be ascribed as well to the difficulty in simulating 

an organic diode as mentioned earlier. Since we were able to closely replicate the Fig. 7-9(c) 

experimental plots, we then conclude that we have correctly modeled the experimental results with 

the Fig. 7-10 extended circuit. Therefore, the real fc, and consequently, the τ derived from it, will then 

depend on the accumulation of carriers at the interface of the injection and emissive layers, as 

modeled by the COLED in the extended circuit. This is because, at high f and 0 aging hours, carriers 

will flow into COLED due to its lower impedance rather than through the organic diode, as evident 

from the high fc value in the experimental results. Therefore, we conclude that the τ derived from fc, 

as in 7.1, represents the carrier transit time which is the time needed for both carriers to recombine in 

the emissive layer and then emits light as depicted in Fig. 7-2. Hence, as the OLED ages, degradation 

will occur which creates instability in the OLED, and results in reduced carrier flow and the τ that is 

seen in Table IX at longer aging hours.  

 In addition, although the high f peak seen in Fig. 7-9(b) at 216-288 hours is not visible on the 

result’s Nyquist plot, we see that the experiment’s fc in Table XVI is the same at 216 and 240 hours, 

but then starts to decrease at 264 and up to 288 hours of ageing, mimicking at how the peak in phase 

plot is similar at 216 and 240 hours, followed with a drop at later times. As a result, we can correctly 

model this peak trend in the phase plot with the extended circuit in the Fig. 7-10 inset. This means 

that the phase plot peak is also influenced by carrier accumulation between the injection and the 

emissive layers/COLED in the circuit. So at high f and early aging, carriers will flow into the COLED as 

before and thus no peak is present at this time. As the OLED ages and degrades, carriers will still 

flow into COLED but physically they will not travel far into the emissive layer compared to when the 

OLED is fresh, hence causing a drop in φ and consequently the peak drop in Fig. 7-9(b) at even higher 

frequencies. Finally, since we can model the “hook” with Rext // Cext in the Fig. 7-10 circuit inset and 

since the OLED uses PEDOT as its HIL, we can interpret the underlying cause of the “hook” similarly 

to 7.1. So the “hook” is again a reduction in the injection layer area size that reduces carrier flow (the 

Rext), accompanied by the formation of trap sites in the same layer (the Cext) due to the diffusion of 

indium ions into both the injection and emissive layers after ITO etching by PSS [57, 82]. Thus, in 

terms of the extended circuit, at kHz frequencies, carriers will start flowing into the COLED branch but 

then they will recombine or be trapped somewhere in the COLED branch due to Rext // Cext, thus causing 

the “hook” to appear at that f range. As the OLED ages, carriers can then recombine/trapped much 

earlier and further away from COLED due to degradation, thus shifting the “hook” frequency to lower 

values as we observe in the experimental results in Fig. 7-9(a), (b) and (c). 
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7.4 Summary of IMS Results on OLED Devices  

 From the results of IMS on OLED under different applied voltage bias VDC, we found that as 

the VDC is reduced, the OLED brightness will also be reduced based on the decrease in the IV 

converter’s Re ΔV (f → 0). Also, we observed a “hook” feature in the low-frequency region at all 

OLED VDC. In addition, the “hook” feature itself increases in size as VDC is reduced. We also found 

that as the OLED’s VDC is reduced, the fc from the converter’s ΔV Nyquist spectra is also reduced. 

Here, fc corresponds to a time constant τ which is a carrier transit time in the OLED as it changes 

when we changed the OLED’s VDC, based on equation (26) in chapter 5 [142]. Also, τ is the effective 

transit time constant τeff as it has to account for the total mobility of both carriers in the OLED, which 

is called the effective mobility μeff. We found that we can correctly simulate the ‘hook’ feature, the 

changes in fc and the feature itself by modifying the OLED equivalent circuit [151]. This is done by 

placing an extended resistor in-parallel to an extended capacitor (Rext//Cext), with Cext = 6 nF // Rext = 

600 Ω, in series with the circuit’s COLED branch at COLED = 13 nF. We reasoned that at both high VDC 

and high f, the VDC will force more carriers to flow into the COLED in the circuit model due to its lower 

impedance than through the diode, while at very low f, currents will flow more into the diode instead 

of COLED. The COLED is the accumulation of carriers at the interface of the injection and emissive 

layers, which is modeled as a capacitor [151]. At lower VDC and at high frequency, carriers will still 

flow into the COLED, but here they can be trapped or forced to recombine before the COLED branch due 

to the weaker electric field. Thus, the smaller fc results at low VDC. While the ‘hook’ represent a trap 

mechanism that caused carriers to recombine somewhere within the COLED branch in the kHz range. 

Physically, the ‘hook’ can be caused by the diffusion of indium ions into the COLED to ITO etching 

by PSS [57, 82]. This is since the OLED uses PEDOT as its HIL, hence the OLED’s ITO anodes can 

be etched by the PSS from the HIL. We then found that the plot of τ or τeff (from fc) with respect to 

1/(VDC – Vbi) indicates a linear the relationship between τ (μs) vs. 1/(VDC-Vbi). Also, from the plot’s 

slope, we found that the resulting μeff = 9.37 + 0.02 x 10-6 cm2/V s, which is the average mobility of 

both carriers. Since τeff is influenced more by the slower mobility, μeff will be dominated by the faster 

ones. Thus μeff here is likely to be the OLED’s electron mobility or μeff ~ μe.  

 From IMS on OLED under different optical filter, we found that the OLED’s white light has 

the highest light intensity compared to the other two filtered lights, based on the Re ΔV (f → 0) results. 

Also, we found that the fc (and τ) under all 3 lights are relatively similar, which indicates similar 

internal dynamics occurs under all 3 lights. This internal dynamic is the carrier recombination transit 

time within the emissive layer. Also, we observed a ‘bent’ feature in the low-frequency region under 

all lights. This feature is larger under white light and is smallest under blue light. We found that we 

can correctly simulate the ‘bent’ feature and fc similarities by modifying the OLED equivalent circuit 
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[151], this is done by placing an extended resistor in-parallel to an extended capacitor (Rext//Cext), with 

Cext = 9 nF // Rext = 900 Ω, in series with the COLED = 13 nF. We reasoned that as fc is dependent on 

the COLED, and since the OLED VDC and VAC are the same for all three lights, the resulting fc will also 

be the same for all 3 lights as seen in the real results. As for the ‘bent’ feature, the reasoning behind 

it is the same as that to the origin of ‘hook’ feature in OLED under different voltage bias. 

 From OLED aging study results through IMS, we found that continued OLED operation leads 

to its degradation which then decreases its brightness, based on the Re ΔV (f → 0) results. Also, we 

found that in general, the measured corner frequency fc decreases as we operate the OLED further. 

The fc, corresponds to τ, which is the time constant of an OLED internal dynamic. This dynamic is 

the carrier transit time within the OLED. This is because as the OLED ages, the flow of currents into 

the OLED will also decrease, therefore since τ is a transit time and will be dependent on the VDC, the 

flow of carriers in the OLED may take longer thus making τ longer (and fc lower) in aged cells as 

opposed to that in fresh cell. Also, we found a ‘hook’ feature in the ΔV Nyquist plot at all stages of 

aging. In addition, the “hook” feature itself increases in size as the OLED ages. We found that we 

can again correctly simulate the ‘bent’ feature and changes in fc by modifying the OLED equivalent 

circuit [151], this is done by placing an extended resistor in-parallel to an extended capacitor 

(Rext//Cext), with Cext = 6 nF // Rext = 600 Ω, in series with the COLED = 13 nF. As for the ‘hook’ feature 

here, the reasoning behind it is the same as that found in IMS on OLED under different voltage bias. 

 

7.5 Results from IMS Characterizations on an Alkaline Battery  

Besides performing IMS on OPV and OLED, we also perform IMS characterization on a 

commercial 1.5 V alkaline battery. As elaborated in 4.8, this was done through load modulation of 

the 1.5 V battery. So we use the same fast photodiode (OSD5-5T) in 4.5. and use it as a fast 

photosensitive device that modulates the battery voltage and load resistance with the setup depicted 

in Fig. 4-17. In the setup, we also use the IMS instrument from 4.2., a 1.5 V AA-size, alkaline battery, 

and a load resistance RL = 53 Ω. In addition, we also use the bespoke voltage adder in 4.2. to add a 

DC voltage (VDC) on top of a small AC voltage (VAC) from the lock-in’s ref out voltage, and apply the 

resultant (DC + AC) voltage to the fast red LED (VLED) in 4.2. with VLED = (2.2 + 1.2) V. The VLED is 

applied to the red LED with a protective serial resistance (RLED) of 120 Ω, thus driving the LED with 

a current ILED = (18 + 10) mA. The ILED will produce a modulated light intensity (LT) of LT = L ± ΔL. 

The intensity is not known in absolute terms but LT ~ ILED, so ΔL/L = ΔI/I.  

 We then use the red LED with modulated intensity LT to illuminate the D1 photodiode in Fig. 

4-17, thus causing the photocurrent from the fast photodiode to modulate the voltage measured at the 

highlighted point A in Fig. 4-17. In addition, because the illuminated photodiode is also under a 
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forward bias of the battery voltage (Vbattery) = 1.5 V, currents from the battery at point A will 

offset/balance currents flowing out of the photodiode. If the photodiode’s current is at the modulation 

maximum, battery currents will offset the photodiode’s current, but if the photodiode current is at its 

minimum, battery currents will not flow into the photodiode but instead through the load resistance 

RL. In other words, at point A we will measure/obtain a load modulation signal in the form of V + 

ΔV(ω) sin(ωt+φ(ω)). This is what we basically measure in a load modulation IMS, i.e. ΔV at point A 

because the battery discharges and this discharge is modulated by photocurrents from the photodiode. 

 We use the IMS bespoke software in 4.4. to automatically operate a frequency scan by varying 

the lock-in’s reference out voltage frequency f to values between 1 Hz and 250 kHz in 12 steps per 

decade of measurement. The software settings were the same with those in 4.4, i.e. the lock-in’s input 

coupling is set to DC, the roll-off is set to 24 dB/oct, the dynamic is set to high, phase offset to 0 and 

the reference harmonic to 1. The reasoning behind the settings selections is also the same as in 4.4. 

We then channel the modulated voltage that we obtain at point A in Fig. 4-17 into the lock-in input. 

The lock-in will measure the modulated voltage and phase from point A with respect to the ref out 

voltage. We then obtain the ΔV(ω) and phase φ(ω) from voltage response and recorded these as a 

function of f = ω/2π. We then repeat the entire measurement procedures 1 hour after the first 

characterization, and then another hour after the second one to observe any change in the load 

modulation voltage, and thus the battery internal dynamics. The selection of a 1-hour interval in the 

measurement procedure is because 1 hour is the approximate time a battery discharges. We then 

present our IMS results in the form of Bode amplitude and phase of the load modulated voltage ΔV 

as shown in Fig. 7-11(a) and (b). 

 

 
Fig.  7-11 (a). Bode amplitude plot of ΔV and (b) Bode phase plot of ΔV phase φ vs frequency f. Here, (a) and (b) are 
taken at frequencies between 1 Hz and 250 kHz with each IMS scan taken at a 1-hour interval (shown as colour coded 
and the in inset) starting from when the battery was new. For all IMS scans, we use a red LED driven with a LED drive 
current (ILED) of ILED = (18 + 10) mA. 
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Fig. 7-11(a) and (b) shows the Bode plots of ΔV and ΔV phase φ with respect to frequency (f) at f 

between 1 Hz and 250 kHz and taken at a 1-hour interval, starting from when the battery was new. 

From both Fig. 7-11(a) and (b) we can see that when the battery was still fresh, the measured load 

modulation voltage in point A is noisy/unstable, but after 1 hour, and then 2 hours later, the voltage 

response has become much more stable and relatively constant. In Fig. 7-11(a), at both IMS results 

after 1 and 2 hours interval, we see that there is a sharp drop in the ΔV amplitude at f  between 1 and 

10 Hz. This drop is then followed by a stable response up to 10 kHz before a dip for f > 10 kHz and 

then rises again at f ~ 100 kHz. We also observe that ΔV (f → 0) in Fig. 7-12(a) decreases 1 hour later, 

which is most likely caused by the decrease in battery current as the battery discharges. The sharp 

drop in ΔV amplitude at f between 1 and 10 Hz is most likely caused by the presence of a Warburg 

element. Our IMS characterizations of organic devices and even inorganic ones, roll-off usually 

occurs at high frequency but in Fig. 7-11(a) it starts at low frequency, thus there is a possibility that 

this sharp drop is caused by the Warburg impedance. The Warburg element represents the diffusion 

process that occurs in the battery, in that it describes the distance traveled by the battery chemical 

constituents as they diffuse and reacted with each other in operation [156]. The Warburg element 

usually appears as a 45o slope in a Nyquist/complex plane result, and in the Bode amplitude it usually 

appears as a sharp low-frequency roll-off similar to the sharp drop that we see in Fig. 7-11(a) [156]. 

However, a Warburg element rarely appears on its own, and typically it is accompanied or appears 

together with interface and contact resistances. While the high-frequency dip at f  > 10 kHz is difficult 

to explain a possible explanation is that at high frequencies, an electrical resonance occurs in which 

the ΔV capacitive component is reduced to near zero. We also observed from Fig. 7-11(a) that both 

the low (Warburg) and high (resonance) frequency dynamics still occur 2 hours after we first perform 

the load modulation. We observe also that Fig. 7-11(a) corresponds well with 7-11(b), in that the ΔV 

amplitude is noisy when the battery is still fresh and then stabilizes 1 and 2 hours later. To add, we 

also observe the same ΔV phase (φ) response 1 and 2 hours after we started the load modulation, 

which indicates that the same internal dynamics occur for load modulation that is done at 1 and 2 

hours after the first IMS. The internal dynamics here refer to the possible Warburg and resonance 

feature seen in the low and high-frequency region in Fig. 7-11(a) respectively. Overall, we have 

managed to modify, adapt and extend the use of our IMS instrument in 4.2. to perform load 

modulation IMS on an alkaline battery as seen in Fig. 7-11, and that this setup can be improved further 

for future measurements. 
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7.6 Summary of IMS Characterizations on Alkaline Battery 

 From IMS on a commercial 1.5 V alkaline battery through load modulation, we found that when 

the battery was still fresh, the measured ΔV is unstable, but it then becomes stable 2 hours after the 

measurement starts. We also found that there is a sharp drop in the ΔV at f between 1 and 10 Hz, 

which is then followed by a stable ΔV up to 10 kHz before the ΔV forms a minimum peak at  f  between 

10 and 100 kHz, and then followed by an increase in the ΔV at f ~ 100 kHz before then dropping 

again at f >100 kHz. The drop in measured ΔV at f between 1 and 10 Hz after 1 and 2 hours of IMS 

is likely caused by the presence of a Warburg element. The Warburg element represents the diffusion 

process that occurs in the battery, in that it describes the distance traveled by the battery chemical 

constituents as they diffuse and reacted with each other when the battery is operated [156]. However, 

since a Warburg element rarely appears on its own, we cannot conclusively assign it as the primary 

cause of the low-frequency dip in the plot. In addition, the minimum peak formed by the ΔV in the 

high frequency region in the Bode amplitude plot may be caused by the presence of an electrical 

resonance that reduces the capacitive component in the ΔV to near zero. 

 We also found that both the Warburg element and the high-frequeny minimum peak still occurs 

after 2 hours of IMS. Further, from the ΔV Bode phase plot, the ΔV phase (φ) profile from the load 

modulation is the same after 1 and 2 hours, which indicates that the same internal dynamics occurs 

in the battery after 1 and 2 hours of IMS. This internal dynamics may correspond to the Warburg 

element and minimum peak feature seen in the ΔV Bode amplitude plot. Finally, we need to perform 

further experiments on the battery to determine the exact cause behind the presence of both features 

(ΔV dip in low and high frequency) in the ΔV Bode amplitude plot. As such, we propose further 

improvement of the load modulation setup and other experiments in future besides load modulation 

to determine the battery internal dynamics. Overall, we have managed to modify, adapt and extend 

the use of our IMS instrument to perform load modulation on a 1.5 V alkaline battery.
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Chapter 8 
Overall Conclusions and Future Work 

8.1 Overall Conclusions 

 We have successfully built and tested an intensity-modulated spectroscopy (IMS) instrument 

that is centered around a commercial lock-in amplifier, which can be used to perform intensity-

modulated spectroscopy (IMS) up to a frequency of 250 kHz. We have tested our instrument on a 

commercial CdS-based light dependent resistor (LDR), a device with well-known physical properties. 

We found that the dynamic characterization results of the CdS-based LDR agrees and are consistent 

with an already well-established knowledge on its physical properties. We have also performed IMS 

on a state-of-the-art bulk heterojunction (BHJ) organic photovoltaic (OPV) and introduced a new 

mode of IMS operation where a photovoltaic cell operates under a finite load, including at its 

maximum power point. From our IMS results on BHJ OPV, we have established IMS at maximum 

power point as the optimum operating condition for IMS on photovoltaics, which is a much better 

alternative to the traditional way of doing IMS, i.e. under intensity-modulated photocurrent 

spectroscopy (IMPS) and under intensity-modulated photovoltage spectroscopy (IMVS). By using 

IMS under finite load, we have managed to identify a high-frequency feature that was previously 

invisible under both IMPS and IMVS. We also found that this feature is ageing-related and is more 

pronounced after long-term storage. Further, based only on the simulation results of the OPV 

equivalent circuit, we can, as a likely cause, assign the ageing-related high-frequency feature to the 

diffusion of indium ions that originate from the etching of ITO by PSS to the BHJ. On the other hand, 

based only on the simulations, we cannot conclusively assign the ageing-related high-frequency 

feature to the diffusion of indium ions and that other causes may have contributed to the appearance 

of such feature. In addition, with IMS, we are also able to determine the BHJ capacitance of a BHJ 

OPV without absolute calibration of the light intensity.  

 By using IMS, we have also shown that using V2O5 metal oxides as a BHJ OPV hole extraction 

layer, we can eliminate the problem of indium ions diffusion into the BHJ as was the case in an OPV 

with PEDOT hole extraction layer. Also by using IMS, we have managed to identify a cell with a 400 
0C annealed HEL as having the fastest carrier transit time as compared to a cell with an unannealed 

HEL, or annealing at 100 0C, 200 and 300 oC, We also managed to show that the origin of the “3rd 

quadrant” frequency lies in the presence of a lagging/trap mechanism in the OPV external current 

path, i.e. near the cell’s series and load resistance. We can also show by using IMS that a “foot” 

feature in the low-frequency region also comes from the presence of traps in series with the series 
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and load resistance. Also, we have managed to perform IMS on an OLED and have identified the 

causes of the low-frequency “hook” feature. This feature is attributable to the presence of parallel 

resistive- and capacitive-like components in the OLED’s emissive layer. The presence of these 

components is also due to the diffusion of indium ions that originate from the etching of ITO by PSS 

to the OLED’s emissive layer since PEDOT is used as the HIL in the OLED sample. In addition, by 

using IMS, we have also managed to determine carrier mobility in an OLED, though only an average 

mobility is obtained. We found that, from IMS, that the effective mobility of the device will be 

influenced more by the electron mobility as it is the slowest mobility. We also found that in an OLED, 

there is an Indium diffusion similar to what we found in the OPV and that it can also degrade the 

device. Finally, in the aging study of the OLED device, the carrier transit time decreases as the device 

ages. In addition, we have also managed to adapt our instrument to perform load modulation on an 

alkaline battery and from preliminary results we found that we have the potential to identify diffusion 

process that happens in the low-frequency region in the context of an IMS frequency scan. 

 

8.2 Proposed Future Work 

In addition to the IMS experiments on OPVs and OLEDs, we also propose further 

improvements on the IMS characterization on a 1.5 V alkaline battery through load modulation as a 

possible future work. As elaborated in 4.8 and 7.4, we perform the IMS on 1.5 V alkaline battery by 

using the setup depicted in Fig. 4-17. In this setup (Fig. 4-17), we use a fast photodiode (the OSD5-

5T model) [136] to modulate the voltage at point A in the setup parallel to the battery and load 

resistance RL. Hence in Fig. 4-17, we use the bespoke voltage adder in Fig. 4-5(b) to add a DC voltage 

(VDC) on top of a small AC voltage (VAC) from the lock-in’s ref out voltage, and apply the resultant 

(DC + AC) voltage to the fast red LED (VLED) in 4.2. with VLED = (2.2 + 1.2) V. The VLED is in turn 

applied to the red LED with a protective serial resistance (RLED) of 120 Ω, thus driving the LED with 

a current ILED = (18 + 10) mA. The ILED will produce a modulated light intensity (LT) of LT = L ± ΔL. 

The intensity is not known in absolute terms but LT ~ ILED, so ΔL/L = ΔI/I. We then propose to 

substitute the red LED with a blue LED that has a higher intensity than the red, but also fast enough 

that its rise time τ corresponds to a frequency response that is higher than that of our lock-in device 

maximum scanning frequency, i.e. f = 250 kHz. Examples of these types of blue LEDs available in 

the market today is the HLMP-DB25 and HLMP-KB45 model from Broadcom Ltd., USA [157]. Both 

models (The HLMP-DB25 and HLMP-KB45) have a higher intensity compared to that of the red 

LED in terms of their radiant intensity, i.e. 0.7 and 0.5 mW/sr respectively, as opposed to the red 

LED’s radiant intensity of 0.30 mW/sr. In addition, both models rise time τ also correspond to a 

frequency value of f = 2 MHz via f = 1/τ, which is much higher than the lock-in maximum scanning 
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frequency of f = 250 kHz [133, 157]. Further, we can also use the same applied VLED or resultant (DC 

+ AC) voltage stimulus as in the case of red LED, i.e. VLED = (2.2 + 1.2) V. In addition, we also use 

the same protective serial resistance (RLED) that we use in Fig. 4-17, i.e. RLED = 120 Ω, thus driving 

the LED with a current ILED = (18 + 10) mA. 

We then use the blue LED with modulated intensity LT to illuminate the D1 photodiode in Fig. 

4-17, thus causing the photocurrent from the fast photodiode to modulate the voltage measured at the 

highlighted point A in Fig. 4-17. Here, we propose to change the currently use photodiode (The 

OSD5-5T model [136], to another photodiode that is similarly fast in terms of its rise time τ while 

also sensitive to blue-wavelength illumination, i.e. at λ range = 450-495 nm [158]. This is because if 

we change the LED colour from red to blue, then we have to ensure that the photodiode used in the 

circuit is sensitive to blue illumination. Examples of blue-sensitive photodiode currently available in 

the market can be found in subchapter 7.2, i.e. the photodiode model S1087 and S1226 from 

Hamamatsu Photonics K.K. [153, 154]. Both photodiode model (the S1087 and S1226) have a higher 

responsivity (both model responsivity ~ 0.2-0.29 A/W at λ range = 450-495 nm) compared to that of 

the current photodiode, with responsivity ~ 0.15-0.29 A/W at the same wavelength range [153, 154]. 

In addition, both photodiodes has a rise time of 0.5 μs that corresponds to a frequency f = 2 MHz 

under a 0 V applied bias. This frequency value itself is still higher than the lock-in maximum scanning 

frequency of f = 250 kHz, thus the good suitability of both photodiodes as a replacement for the 

current model. Hence, if we return to the load modulation operation in Fig. 4-17, since the illuminated 

photodiode is also under a forward bias of the battery voltage (Vbattery) = 1.5 V, currents from the 

battery at point A will offset/balance currents flowing out of the photodiode. If the photodiode’s 

current is at the modulation maximum, battery currents will offset the photodiode’s current, but if the 

photodiode current is at its minimum, battery currents will not flow into the photodiode but instead 

through the load resistance RL. We will then measure/obtain a load modulation signal in the form of 

V + ΔV(ω) sin(ωt+φ(ω)) in point A. This is what we basically measure in a load modulation IMS, i.e. 

ΔV at point A because the battery discharges and this discharge is modulated by photocurrents from 

the photodiode. 
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integrated into the FOR loop structure with its operation limited by the loop iteration 
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different with Rf  = 1 kΩ. (b). Circuit scheme of modified DC + AC adder circuit used for 
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Fig.  5-1 (a). Bode amplitude plot of ΔV, (b) Bode phase plot of φ vs frequency f with the plots 
taken at each Vbias depicted separately on the side of the main plot for clarity purposes, and 
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biomolecular recombination, de-trapping, trapping and trap-assisted recombination rate 
constant respectively. Finally, G(t) is the CT1 quasiparticle generation rate  [49]. ........... 119 

Fig.  6-5 (a). Generic equivalent circuit model for BHJ OPV [134]. IL here represents the light-
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476) kΩ, leading to the voltage points shown in the panel on the right. The largest 
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Fig.  6-6. The characteristic parameters of simulated Nyquist semicircle plotted against voltage 
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Fig.  6-8. Simulations on an extended equivalent circuit model, shown in the inset. Here, RL was 
set to 61 kΩ, while RSh, RS, CBHJ were chosen to match the measured values for the stored 
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and also discussed in the next subchapter. The plot with red symbols was obtained with Cext 
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= 32.7 kΩ vs. magnitude of the capacitive load, CL. Data from Table VII. The straight line 
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Fig.  6-10 (a). Bode amplitude and (b) phase of ΔV with respect to frequency f, of OPV with 
non-annealed V2O5-x HEL (blue plots), followed by cells with their V2O5-x HEL annealed at 
100, 200, 300 and 400 0C pre-BHJ deposition (shown respectively as the red, orange, 
purple and black colour in the inset). (c). Nyquist plots results of an OPV with non-
annealed V2O5-x HEL (blue plots), followed by cells with their V2O5-x HEL annealed at 
100, 200, 300 and 400 0C pre-BHJ deposition (shown respectively as the red, orange, 
purple and black colour in the inset). Note the extended semicircles which crossed from the 
4th to 3rd quadrant at high f. Here, all spectra were taken at the respective cells VMPP by 
setting the external RMPP accordingly and at f between 1 Hz and 250 kHz. The LED was 
driven by ILED = (18 ± 4) mA. Also, the Re/Im axis at (c) uses different scales and are not 
normalized, with the direction of increasing frequency given by the blue arrow. ............. 132 

Fig.  6-11. Magnification of the same plots in Fig. 6-10(c) in-between the 3rd and 4th quadrant. 
Note that here,  f-3rd does not change much for cells with higher HEL annealing 
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temperature. Also, the Re/Im axis here also uses different scales and are not normalized, 
with the direction of increasing frequency given by the blue arrow. ................................. 135 

Fig.  6-12 (a). The modified OPV generic equivalent circuit which shows the extended capacitor 
component (Cext) in-parallel between series (Rs) and load resistance (RL). The Cext 
component represents the slower carrier path through the cell’s external circuit which 
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V2O5-x HEL and cells with its V2O5-x HEL annealed at 100, 200, 300 and 400 oC (sample 
types are shown in the colour coded inset). For the simulation, we set the DC current bias 
(IDC) = 25 μA with current modulation (IAC) = 5 μAp for all cells. Here, we again use the 
modified 1N914_KA diode and CBHJ = 4 nF in the circuit. We then set Cext = 2 nF. We also 
set the shunt resistance (Rsh) = 32, 36, 35, 35 and 42 kΩ for cells with unannealed, 100, 
200, 300 and 400 0C annealed V2O5-x HEL respectively. All of the cells series resistances 
(Rs) are set to Rs = 577 Ω. Also, the RL magnitudes are set to = 155, 130, 150, 160 and 140 
kΩ for cells with unannealed, 100, 200, 300 and 400 0C annealed V2O5-x HEL respectively. 
(c) Magnification of the same plots in (a) in-between the 3rd and 4th quadrant. Also here, f-

3rd does not change much for cells with higher HEL annealing temperature. Finally, the 
simulation in (b) is set between 1 Hz and 250 kHz, while the Re/Im axis in (b) and (c) uses 
different scales and are not normalized, with the direction of increasing frequency given by 
the blue arrow. ................................................................................................................... 138 

Fig.  6-13. Simulations results from the modified circuit in Fig. 6-12(a) (shown as inset) for the 
cell with the unannealed HEL. In the circuit inset, IL (IDC + IAC), the 1N914_KA diode, Rsh, 
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low frequency is represented by a series capacitance Cext’. For this simulation, we set Cext’ 
= 8 nF. Finally, the simulation is set between 1 Hz and 250 kHz, where the Re/Im axis uses 
different scales and are not normalized, with the direction of increasing frequency given by 
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Fig.  6-14 (a). Bode amplitude and (b). phase of ΔV with respect to frequency f, of OPV with 
non-annealed V2O5-x HEL (blue plots), followed by cells with their V2O5-x HEL annealed at 
100, 200, 300 and 400 0C pre-BHJ deposition (shown respectively as the red, orange, 
purple and black colour in the inset), after 13 days of storage under dark and ambient 
conditions. (c). Nyquist plots results of an OPV with non-annealed V2O5-x HEL (blue 
plots), followed by cells with their V2O5-x HEL annealed at 100, 200, 300 and 400 0C pre-
BHJ deposition (shown respectively as the red, orange, purple and black colour in the inset) 
also after 13 days of storage under dark and ambient conditions. Note again the “3rd 
quadrant” feature. Here, all spectra were taken at the respective cells VMPP by setting the 
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kHz. The LED was driven by ILED = (18 ± 4) mA. Also, the Re/Im axis at (c) uses different 
scales and are not normalized, with the direction of increasing frequency given by the blue 
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Fig.  6-16 (a). Simulated Nyquist plot for stored cell with unannealed V2O5-x HEL and cells with 
its V2O5-x HEL annealed at 100, 200, 300 and 400 oC after 13 days of storage (sample types 
are shown in the colour coded inset). Also shown in the circuit inset is the modified OPV 
generic equivalent circuit which shows the extended capacitor component (Cext) in-parallel 
between series (Rs) and load resistance (RL). For the simulation, we set the DC current bias 
(IDC) = 25 μA with current modulation (IAC) = 5 μAp for all cells. Here, we again use the 
modified 1N914_KA diode and CBHJ = 4 nF in the circuit. We also set Cext = 2 nF. We also 
set the shunt resistance (Rsh) = 24, 33, 20, 16 and 15 kΩ for stored cells with unannealed, 
100, 200, 300 and 400 0C annealed V2O5-x HEL respectively. All of the cells series 
resistances (Rs) are set to Rs = 577 Ω. The RL magnitudes are set to = 45, 50, 45, 56 and 30 
kΩ for stored cells with unannealed, 100, 200, 300 and 400 0C annealed V2O5-x HEL 
respectively. (b) Magnification of the same plots in (a) in-between the 3rd and 4th quadrant. 
Here, f-3rd does not change much for cells with higher HEL annealing temperature. Finally, 
the simulation in (b) is set between 1 Hz and 250 kHz, where the Re/Im axis in (b) and (c) 
uses different scales and are not normalized, with the direction of increasing frequency 
given by the blue arrow...................................................................................................... 149 

Fig.  7-1 (a). Bode amplitude plot of the OLED’s ΔV, (b) Bode phase plot of ΔV phase φ with 
respect to frequency f and (c) Nyquist plots of  ΔV that plots the imaginary part (Im ΔV = 
|ΔV| sin φ) vs. real part (Re ΔV = |ΔV| cos φ) which is parametric in frequency for the IMS 
spectra. Here, (a), (b) and (c) are taken at frequencies between 1 Hz and 250 kHz and at 
different OLED Vbias (shown in the respective plots inset), from 7.8 V down to 5.4 V with 
0.6 V intervals, VAC and IAC are kept constant. Note that the Re/Im axis at (c) uses different 
scales and are not normalized, with the direction of increasing frequency given by the blue 
arrow. ................................................................................................................................. 156 

Fig.  7-2. A diagram of the microscopic processes occurring within an OLED according to the 
double-carrier model by Blom and de Jong. The B, Kdt, and  Kt here are the recombination, 
trapping and detrapping constant respectively [149]. ........................................................ 158 

Fig.  7-3 (a). A generic OLED equivalent circuit model [153]. IL represents the light-driven 
current source. In IMS, all components are internal to the OLED. (b) Simulated ‘Nyquist 
rainbow’ for the equivalent circuit model in (a) for f between 1 Hz and 250 kHz and at 
OLED VDC = 7.8 V down to 5.4 V with 0.6 V Fig. interval (inset). Here for (b), we select 
COLED = 13 nF, and a customized 1N914 diode (1N914_KA) with the saturation current 
reduced to 3 pA. The DC current bias amplitudes are set at IDC = 1.9, 1.06, 0.75, 0.33 and 
0.22 mA, these (IDC) corresponds to DCs = 7.8, 7.2, 6.6, 6 and 5.4 V respectively. The 
current source modulation is set to IAC = 1.35, 0.69, 0.4, 0.14 and 0.07 mA for VDC = 7.8 
and down to 5.4 V respectively. The plots Re/Im axis at (b) uses different scales and are 
not normalized, with the direction of increasing frequency given by the blue arrow. ...... 160 

Fig.  7-4. Simulations on the extended equivalent circuit model, shown as an inset. The 
simulation is performed at f between 1 Hz and 250 kHz and with OLED VDC = 7.8 V down 
to 5.4 V (colour inset). Here, the chosen diode (1N914_KA), the magnitude of COLED, IDC 

and IAC  are kept to be the same as in Fig. 7-3(a) circuit. Magnitude of Cext = 6 nF // Rext = 
600 Ω. Also, Re/Im axis uses different scales and are not normalized, with the direction of 
increasing frequency given by the blue, arrow. ................................................................. 162 
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Fig.  7-5 A plot of (transit) time constant τ (μs) vs 1/(VDC-Vbi) (V-1). Time constant (τ) data 
were derived from fc in Table XII. ..................................................................................... 163 

Fig.  7-6 (a). Bode amplitude plot of ΔV, (b) Bode phase plot of ΔV phase φ vs frequency f and 
(c) Nyquist plots of ΔV that plots the imaginary (Im ΔV = |ΔV| sin φ) vs. its real part (Re 
ΔV = |ΔV| cos φ), the spectra being parametric with frequency. Here, (a), (b) and (c) are 
taken at frequencies between 30 Hz and 250 kHz and at unfiltered-, longpass and bandpass 
filtered light (shown as colour coded and in the inset). Note the Re/Im axis at (c) uses 
different scales and are not normalized, with the direction of increasing frequency given by 
the blue arrow. For both filtered- and unfiltered light, we applied a voltage VOLED = (7 + 
0.6) V on the OLED and drive it with a current drive IOLED = (1.6 + 0.2) mA. ................ 166 
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List of Abbreviations 

AC Alternative Current 
AM Air Mass 
BHJ Bulk Heterojunction          
CB Conduction Band 
CE Common Electrode 
CNLS Complex Nonlinear Least Square 
CS Charge-Separated 
CT Charge-Transfer 
DC Direct Current 
DI De-Ionized 
DSSC Dye-Sensitized Solar Cells 
EEL Electron Extraction Layer 
EIL Electron Injection Layer 
EIS Electrochemical Impedance Spectroscopy 
EL Electroluminescence 
FC Franck-Condon 
FF Fill Factor 
FRA Frequency Response Analyzer 
FWHM Full Width At Half Maximum 
HEL Hole Extraction Layer 
HIL Hole Injection Layer 
HOMO Highest Occupied Molecular Orbital 

IMPS 
Intensity-Modulated Photocurrent 
Spectroscopy 

IMPV 
Intensity-Modulated Photovoltage 
Spectroscopy 

IMS Intensity-Modulated Spectroscopy         
IS Impedance Spectroscopy 
ISC Intersystem Crossing 
ITO Indium Tin Oxide 
IV Current-to-voltage                       
LDR Light Dependent Resistor 
LED Light-Emitting Diode 
LUMO Lowest Unoccupied Molecular Orbital 
MPP Maximum Power Point 
OLED Organic Light-Emitting Diode      
OPV Organic Photovoltaic       
OTFT Organic Thin Film Transistor   
PCE Power Conversion Efficiency       
PDI Polydispersity Index 
PSD Phase-Sensitive Detector 
PV Photovoltaic 
RBS Rutherford Backscattering Spectrometry 
RE Reference Electrode 
SCLC Space Charge Limited Current 
SE Source Electrode 
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SE Standard Electrode 
TCO Transparent Conductive Oxide 
TOF Time-of-Flight 
TOF-
SIMS 

Time-of-Flight Secondary Ion Mass 
Spectrometry 

UPS Ultraviolet Photoelectron Spectroscopy 
UV Ultraviolet 
VB Valence Band 
VI Virtual Instruments                
WE Working Electrode 
XPS X-Ray Photoelectron Spectroscopy 
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