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Abstract

There are serious concerns worldwide about the decline of exploited fish stocks. The

number of fish larvae surviving to be recruited into the adult population each year

is fundamental to the long-term stability of a fish stock. Monitoring and predict-

ing recruitment is a crucial component of managing economically important fisheries

worldwide. Fish recruitment can vary by an order of magnitude, or more, between

years, and the larval stage is a key determining factor. Fish larvae are born into an

extremely variable environment, with high mortality rates, and so it is not surprising

that the number surviving to join the adult population is highly variable.

This thesis presents simple stochastic, mechanistic larval growth models, devel-

oped and utilised to investigate recruitment probabilities and variability. The models

are mechanistic in that they are based on consideration of the key ecological processes

at work, and not on statistical regression analyses or similar techniques. At the heart

of the thesis lies a stochastic drift-diÿusion model for the growth of an individual

larva. Further mathematical and ecological complexity is built up through consider-

ation of both the temporal and spatial heterogeneity of larval food sources, primarily

zooplankton. Results illustrate the impact of stochasticity in the timing of peak food

abundance, and the patchiness of the prey, on recruitment variability.

The idea of non-constant variance in recruitment is also investigated, with the aim

of testing its practical relevance to fisheries management. It is demonstrated that the

currently available stock-recruitment time series are at least one order of magnitude

too short to reliably fit such models. Management implications are illustrated using

simple models and published recruitment data for two exploited stocks.

The work developed within this thesis highlights the importance of stochasticity

in fish larval growth and recruitment, and the power of simple mechanistic models in

examining these ideas.
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Chapter 1

Introduction

The fish in our oceans are not an infinite resource. Unlike in other areas of food

production, such as farming, we can do little in the short term to replace or rejuvenate

stocks that have been depleted by fishing (Needle, 2002). Exploited species have

been declining steadily since the start of fishing (Beaugrand and Kirby, 2010), with

up to 90% of the large predatory fish being lost since the beginning of industrial

fishing (Myers and Worm, 2003). North Atlantic cod stocks halved from 1.6 million

tonnes in 1980 to 0.8 million tonnes in 2000 (Brander, 2003). Due to the dramatic

decline in commercially important species such as cod, the potential causes and factors

influencing the decline in fish stocks are now subject to urgent scrutiny (Platt et al.,

2003). Recovery of depleted marine, demersal, commercial fish stocks has seen only

small success worldwide (Horwood et al., 2006), despite strict fishing measures being

in place in several cases.

In addition to the long term decline in numbers, fish populations also exhibit pro-

nounced fluctuations in abundance which make planning suitable long term strategies

for fisheries management very dicult (Beaugrand and Kirby, 2010).

In this Introduction, we will define and discuss recruitment in fish populations, the

recruitment models used in fisheries management, and the factors aÿecting variability

in recruitment. The importance of plankton in the marine ecosystem, and for fish
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recruitment in particular, will be addressed and discussed. Some of the modelling

techniques implemented in the thesis will also be introduced.

1.1 Recruitment in fish populations

Whether fish populations can replace the stock removed by fishing is dependent on

recruitment. Recruitment in fish populations is defined as the number of individuals

which survive from the egg stage to a certain later stage in their life history. Not all

fish ecologists agree on the exact choice of age or stage that defines recruitment; coral

reef fish ecologists usually refer to recruitment as the settlement of pelagic larvae from

the plankton, while salmon biologists most often define recruitment as the return of

juveniles to the adult spawning ground (Myers, 2002). Marine fisheries biologists

usually refer to recruitment as the first age when fishing (or sometimes spawning)

occurs (Fogarty et al., 1991; Myers, 2002). In this thesis we define recruitment as

growth to some mathematically defined threshold size e.g. size at metamorphosis.

Monitoring and predicting recruitment is a crucial component of managing eco-

nomically important fisheries around the world. The importance of recruitment in

fish population dynamics has been recognised since the turn of the previous century

(Hjort, 1914).

1.1.1 The stock recruitment relationship

“The most important and generally most dicult problem in biological assessment

of fisheries is the relationship between stock and recruitment” (Hilborn and Walters

(1992) p.241)

The stock recruitment relationship is fundamental to the scientific approach to

fisheries management (ICES, 2006), and is the basis for estimating key parameters

used in the modelling and management of fish populations, such as carrying capacity,

maximum reproductive rate, and maximum sustainable yield (Myers, 2002). Here,

“stock” is defined as spawning stock biomass, which is often deemed to be the most
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useful measure of a stock (Shepherd and Cushing, 1990) as it is usually the only

life history stage that can be controlled through management (Hilborn and Walters,

1992). Understanding the stock recruitment relationship for a population is key to

avoiding recruitment overfishing (Myers and Barrowman, 1996).

Below I describe the two most common proposed stock recruitment relationships

regularly fitted to fisheries data.

The Beverton-Holt stock recruitment model

The Beverton-Holt stock recruitment model (Beverton and Holt, 1992) is based

on separating pre-recruitment mortality into its density-independent and density-

dependent parts (Koslow, 1992). That is,

dN

dt
= −M0N −M1N

2, (1.1)

where N(t) is the number of larval/juvenile fish in a single cohort, M0 is the density-

independent mortality rate, and M1 is the density-dependent mortality rate (Walters

and Martell, 2004). If we then consider NT = R to be the number of recruits aged T ,

equation (1.1) can be solved to give

NT = R =
N0 exp(−M0T )

1 + (M1/M0)(1 − exp(−M0T ))N0
,

where N0 is the initial number of eggs or larvae (Walters and Martell, 2004). By

grouping parameters, this model can be written in the more familiar form

R =
αS

1 + βS
,

where α is the maximum average survival rate independent of density eÿects, and β

represents the eÿects of density-dependence. Note this relationship is now in terms

of the spawning stock size, S, which is often used as a proxy for the initial number of

eggs.
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The Ricker stock recruitment model

The Ricker stock recruitment model (Ricker, 1954) assumes that the density-dependent

mortality rate is proportional to the initial stock abundance (Walters and Martell,

2004). The model takes the form

R = S exp


a


1− S

b


, (1.2)

where ea is the slope of the curve at the origin, and b is the value of S at which

R = S (Hilborn and Walters, 1992). Unlike the Beverton-Holt stock recruitment

model, equation (1.2) exhibits declining recruitment at high stock sizes, i.e. it is

dome shaped (Hilborn and Walters, 1992).

Figure 1.1 shows the Beverton-Holt and Ricker stock recruitment models fitted to

data for Irish Sea cod and North Sea herring. Data are from the ICES Fish Stock

Assessment Summary Database, available at www.ices.dk. Recruitment data were

scaled by the maximum observed recruitment, and spawning stock biomass data by

the maximum observed spawning stock biomass. In Figure 1.1a) the diÿerence in

shape between the two models is clearly observable (with the Ricker curve exhibiting

declining recruitment as stock size increases), but Figure 1.1b) also demonstrates that

the models can look very similar to each other, depending on the parameter values. It

has been suggested that a Beverton-Holt curve may apply when a stock experiences

high food availability, and that a Ricker curve may apply in stocks with low food

availability (Johansen, 2007; Olsen et al., 2011).

1.1.2 Recruitment variability

Large variability in recruitment is usually the most notable feature of stock-recruits

data (Cushing, 1968; Koslow, 1992; Needle, 2002; Myers, 2002; Shepherd and Cushing,

1990). Recruitment can vary by one or two orders of magnitude, and the reasons for

this are not well understood (Shepherd and Cushing, 1990). Because recruitment

data are so typically variable, it is very dicult, if not impossible, to determine even
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Figure 1.1: The Beverton-Holt and Ricker stock recruitment models fitted to data

for a) Irish Sea cod and b) North Sea herring. Recruitment data were scaled by the

maximum observed recruitment, and spawning stock biomass data by the maximum

observed spawning stock biomass. Data are from the ICES Fish Stock Assessment

Summary Database, available at www.ices.dk.

the shape of the underlying stock recruitment relationship (Koslow, 1992). In Figure

1.1 we can see the large fluctuations of the stock-recruitment data around the fitted

model curves. Figure 1.2 shows recruitment numbers for Irish Sea cod and North Sea

herring over nearly 50 years. We can see that recruitment numbers vary by over two

orders of magnitude over the period. Data are from the ICES Fish Stock Assessment

Summary Database, available at www.ices.dk.

Essentially, the interplay of life history characteristics (such as growth rates) and

environmental variability determines fluctuations in recruitment (Fogarty et al., 2001).

It is generally accepted that recruitment is mainly determined in the larval stage

(Cushing, 1975), and that the main source of recruitment variability is the large

interannual variability in the density-independent mortality experienced during the

pelagic egg and larval life history stages (Myers, 2002). However there are several

diÿerent theories concerning the cause of this variability in larval mortality.

The first theory pertaining to recruitment variability was Hjort’s “Critical Pe-

riod” hypothesis (Hjort, 1914). This proposed that recruitment is determined in the
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early larval stage. After absorption of the yolk sac, larvae must find suitable feed-

ing conditions, otherwise they suÿer massive mortality and order-of-magnitude losses

in numbers in a short amount of time (Houde, 2008). Although recruitment is now

viewed as the result of a mix of complex processes, the Critical Period hypothesis still

highlights an important factor determining recruitment variability, and several other

linked theories have developed from it.

Figure 1.2: Recruitment numbers for a) Irish Sea cod, and b) North Sea herring.

Data are from the ICES Fish Stock Assessment Summary Database, available at

www.ices.dk.

The match/mismatch hypothesis

Fish larvae are reliant on zooplankton (primarily copepods) for their main source of

food. The match/mismatch hypothesis was first proposed by Cushing (1975) and

suggests that larval growth, survival and consequently recruitment are dependent on

the temporal matching of spawning periods with periods of high food availability. If

the abundance peaks of larvae and their zooplankton prey are temporally close then

recruitment will be higher, due to either the susceptibility of first-feeding larvae to

starvation, or because larvae with low food availability will grow more slowly and thus

will be more vulnerable to predation (Mertz and Myers, 1994). In fact it is thought

by some that fast growth is a precondition for high survival in fish larvae (Kristiansen

et al., 2011).
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In turn, zooplankton are dependent on phytoplankton for their source of food.

The phytoplankton production system can be thought of as predictable on average

(for example spring and autumn blooms, (Henson et al., 2009)), but is variable from

year to year (Buckley et al., 2010). The variability in the timing of phytoplankton

blooms is governed by climatic factors such as wind strength and radiation (Cushing,

1975), and on upwelling and mixing (Henson et al., 2009). These factors are notably

variable.

An illustration of the match/mismatch hypothesis can be found in Figure 1.3.

Under “match” conditions, the hatching of larvae occurs temporally close enough to

the peak in prey abundance. Under “mismatch” conditions, the larvae hatch too early

to take advantage of increased prey availability. A mismatch may also occur if larvae

hatch too late and miss the peak in prey abundance.

Evidence supporting the match/mismatch hypothesis has been found in both em-

pirical (Horwood et al., 2000) and modelling studies (Mertz and Myers, 1994). For

example, Beaugrand et al. (2003) constructed a Plankton Index of larval cod survival,

which found that 48% of the fluctuations in plankton quantity and quality could ex-

plain the variability seen in cod recruitment in the period 1958-1999 (Beaugrand et al.,

2003). Similarly, Beaugrand and Kirby (2010) found that their Plankton Index could

explain 46.24% of the variability in their cod recruitment data.

The growth/mortality hypothesis

A theory closely linked to the match/mismatch hypothesis and Hjort’s Critical Pe-

riod hypothesis is the growth/mortality hypothesis (Cushing and Horwood, 1994;

Rice et al., 1993). According to this hypothesis, larvae which grow quickly through

a “mortality window” have a survival advantage over those that do not (Campana,

1996). As much as 99.99% of larvae die before reaching metamorphosis (Campana,

1996), and rapid growth through the larval stage is thought to increase survival prob-

abilities due to an increased ability to forage for prey and avoid predators (Cushing

and Horwood, 1994). Growth rates determine the duration of the period during which
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Figure 1.3: An illustration of the match/mismatch hypothesis. Under “match” con-

ditions, the hatching of larvae occurs temporally close enough to the peak in prey

abundance. Under “mismatch” conditions, the larvae hatch too early to take advan-

tage of increased prey availability. A mismatch may also occur if larvae hatch too late

and miss the peak in prey abundance. Based on Figure 2 of Mertz and Myers (1994).

larvae are vulnerable to gape-limited predators (Fogarty et al., 1991).

Other theories attempting to explain recruitment variability include the member-

vagrant hypothesis (Iles and Sinclair, 1982), the Stable Ocean hypothesis (Lasker,

1981), and the “Optimum Environmental Window” model (Cury and Roy, 1989).

The work in this thesis concentrates on a combination of the growth/mortality and

match/mismatch hypotheses.

1.2 Stochastic models of larval fish growth and recruit-

ment

Larvae are small relative to the spatial scales of prey heterogeneity and to the tur-

bulent fluid flow at these spatial scales (Pitchford and Brindley, 2001). They also
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have only local knowledge of their immediate environment, limited by a visual per-

ceptive distance of around one body length (Pitchford et al., 2003), and they are

subject to massive mortality, with a newly hatched individual’s probability of sur-

vival to metamorphosis being O(1%) or less (Chambers and Trippel, 1997) driven by

typical mortality rates of 10% per day in the larval stage (Cushing and Horwood,

1994). These factors are likely to strongly influence the observed variability in the

stock-recruitment relationships which underpin fisheries management.

Deterministic models of recruitment can provide important insights into fish pop-

ulation dynamics in the face of exploitation (Fogarty, 1993). However, because the

key natural phenomena are inherently stochastic, deterministic models can be argued

to be inappropriate for quantifying recruitment. Rather, stochastic models should be

constructed to arrive at recruitment probabilities (Pitchford and Brindley, 2001) and

investigate recruitment variability (Fogarty et al., 1991; Fogarty, 1993). Not including

the “unpredictable” environmental noise in fisheries models can lead (and has led) to

erroneous predictions of the behaviour of exploited stocks, and may have contributed

to the deterioration of these stocks (Keyl and Wolÿ, 2008).

Recent models have treated the recruitment process as a hitting-time (the mini-

mum time taken to reach a certain threshold value) problem for stochastic diÿerential

equations (Lv and Pitchford, 2007; Pitchford et al., 2005), showing that environmen-

tal stochasticity induced by turbulence and spatial heterogeneity can be beneficial to

recruitment. The diÿerences between the predictions from deterministic and stochas-

tic models are particularly great when growth rates are small and mortality rates are

large, which is precisely the environment inhabited by fish larvae (Pitchford et al.,

2005).

1.2.1 A stochastic diÿerential equation for fish larval growth

To model larval growth we adopt the stochastic model of Pitchford et al. (2005). The

model takes the form of a stochastic diÿerential equation (Oksendal, 2000), that is,
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dM(t) = r(t)dt+ σdB(t), M(0) = 0,

where M(t) is the mass of an individual fish larva at time t, r(t) is the instanteous

deterministic growth rate of the larva at time t, and B(t) is a Brownian noise process

with variance σ2. This growth model is used, in various forms, throughout this thesis.

We use an individual-level growth model since the mechanisms governing survival and

recruitment in larval fish operate at the level of the individual (Rice et al., 1993).

We define a fixed recruitment massMrec at which the individual larva is considered

to be recruited to its next life history stage. To calculate recruitment probabilities

we first determine the distribution ftrec(t) of hitting times trec where

trec = inf {t > 0 :M(t) =Mrec} .

In Chapters 2 and 3, as in Burrow et al. (2008) and Pitchford et al. (2005),

mortality is represented as a size-independent Poisson process with rate µ, so that

an individual fish larva has a probability exp(−µtrec) of surviving to Mrec. Thus, the

probability of an individual being recruited by time t is

Prec(t) =

 trec

0
ftrec(t) exp(−µt)dt.

1.3 The importance of plankton

We have already hinted at the importance of plankton in the marine ecosystem in

Section 1.1.2. Plankton are small pelagic organisms which float and drift in the

various water layers of the ocean (Raymont, 1963). The plankton can be roughly

split into two groups - the phytoplankton, which are photosynthesising species, and

the zooplankton, small animals who feed on other plankton.

Phytoplankton are crucially important to the ocean ecosystems and the global

carbon cycle as a whole. They represent the first link in the ocean food chain from
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inorganic to organic substances and are the primary producers of the ocean (Ray-

mont, 1963). Phytoplankton populations in temperate waters display large temporal

fluctuations, most notably in the form of spring blooms. These rapid population ex-

plosions are caused by increases in temperature, light availability and nutrient mixing

(Sverdrup, 1953; Truscott and Brindley, 1994). Winter storms mix up the nutrient

rich bottom layer of the ocean into the upper layers. As spring arrives, the ocean

stratifies, and the increasing light levels and day lengths (and therefore increased

ability to photosynthesize) allow the phytoplankton to exploit the now nutrient rich

upper layers they reside in. These temporary blooms last for around a month and

present a large boost to the food supply of their predators, the zooplankton. This in-

crease in food availability in turn leads to an increase in the abundance of zooplankton

populations.

Large fluctuations in the timing and intensity of phytoplankton blooms have been

noted in both the Atlantic and Pacific oceans (Platt et al., 2007). Henson et al.

(2009) observed that the timing of the onset of phytoplankton blooms can vary by 15

to 50 days in the North Atlantic, with the largest variability seen in the transition

zone between the subpolar and subtropical regions. The timing of onset of the spring

phytoplankton bloom in the North Sea can vary interannually by up to six weeks

(Cushing and Horwood, 1994). This variability in phytoplankton dynamics will cause

variability in zooplankton dynamics, and thus stochasticity in the food available for

fish larvae to prey upon. Thus, fluctuations in the plankton have a large eÿect on

the survival and recruitment of fish larvae, but how variability at one trophic level

relates to fluctuations in higher levels is not well understood (Runge, 1988; Runge

et al., 2010).

1.3.1 Plankton patchiness and Lévy processes

Zooplankton populations are not only temporally heterogeneous, they also exhibit

spatial heterogeneity. Plankton patches exist on a range of scales (Pitchford and

Brindley, 2001). Concentrations of these larval prey organisms are thought to be low
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on average, with dense patches exceeding the average densities by several orders of

magnitude (van der Meeren and Naess, 1993).

The general approach of Lv and Pitchford (2007) and Pitchford et al. (2005), which

assumes that individual-based variability can be captured at the population level by a

diÿusion equation, may not be universally appropriate. In particular, diÿusion-based

models may not be able to capture sudden jumps in growth caused by rare chance

encounters with particularly favourable patches of prey. It has been demonstrated

that larval prey are not randomly distributed in space, the distribution is in fact closer

to a patchy negative-binomial distribution (Young et al., 2009). Larval fish may be

dependent on finding dense patches of prey in order to survive to recruitment (Young

et al., 2009).

Important clues as to how the diÿusion-based approach of Lv and Pitchford (2007)

and Pitchford et al. (2005) could better account for planktonic heterogeneity have

been provided by recent research on Lévy walks, with attempts to develop a single

framework in which to study plankton patchiness (Lough and Broughton, 2007) and

non-Brownian motion of predators in heterogeneous stochastic environments (Sims

et al., 2008). A Lévy walk is a random walk with step lengths taken from an ap-

propriate heavy tailed distribution (Edwards et al., 2007), allowing very large steps

(“jumps”) to occur. Brownian motion is recovered as a special case (Bartumeus, 2007;

Plank and James, 2008; Viswanathan et al., 2000).

Results from analytical and simulation models (Bartumeus et al., 2002, 2005;

Viswanathan et al., 1999), supported by empirical data (Sims et al., 2008) suggest that

a naive predator (one with only limited knowledge of its local environment) following

a stochastic foraging strategy in a patchy prey environment can optimise its mean rate

of prey encounters by following a Lévy walk. Furthermore, simulation results (Sims

et al., 2008) suggest that a fitness benefit is conferred by following a Lévy foraging

strategy the exponent of which matches that of the underlying prey distribution.

These results are not supported by Benhamou (2007), who compares Lévy walks with

composite random walks generated by a forager taking smaller steps when it perceives
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itself to be within a prey patch. Benhamou (2007) shows firstly that a composite

random walk can outperform a Lévy walk in a patchy environment, and secondly

that data sampled from composite random walks may resemble those from a Lévy

walk, leading to possible problems in interpretation. Plank and Codling (2009) and

Petrovskii et al. (2011) provide further evidence that non-Lévy movement paths can

be mis-identified as being a Lévy walk, and vice versa. Variation in diÿusive movement

between individuals may lead to the appearance of superdiÿusive movement at the

population level (Petrovskii et al., 2011).

Important questions also arise concerning pattern versus process in our under-

standing of animal movements: if a forager exploits a patchy prey environment by

changing its movement strategy in response to its perceived prey field, then its move-

ments will appear to be a stochastic Lévy walk foraging strategy when in fact they

simply reflect the underlying prey distribution (Benhamou, 2007; Plank and James,

2008). The analyses of Humphries et al. (2010) suggest that in fact individuals may

switch between Lévy and Brownian walks depending on the prey field they experience.

Lévy movements are found to be associated with low prey availability, and Brownian

movements with abundant prey (Humphries et al., 2010).

Whether Lévy or Brownian movements are most eÿective in increasing mean en-

counter rates with prey may not be the important question in some circumstances.

When viewed in an evolutionary context, the mean prey encounter rate may be equal

between the two strategies, but a Lévy-like foraging strategy may be advantageous

to the forager due to its eÿect on the variance of encounter rates (James et al., 2010;

Preston et al., 2010).

1.4 Thesis overview

In this thesis I develop simple stochastic growth models for fish larvae, with the

aim of exploring the roles of several diÿerent factors in recruitment probabilities and

recruitment variability.

In Chapter 2, the model of Pitchford et al. (2005) is extended to include non-
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Gaussian jumps in growth, representing rare chance encounters with particularly

favourable patches of prey. We present two theoretical results. Firstly, if jumps

are of a fixed size and occur as a Poisson process (embedded within a drift-diÿusion),

recruitment is eÿectively described by a drift-diÿusion process alone. Secondly, in the

absence of diÿusion, and for “patchy” jumps (of negative binomial size with Pareto

inter-arrivals), the encounter process becomes superdiÿusive. To synthesise these re-

sults we conduct a strategic simulation study where “patchy” jumps are embedded in

a drift-diÿusion process. We conclude that Lévy-like predator foraging strategies can

have a significantly positive eÿect on recruitment at the population level.

In Chapter 3, the role of prey availability and the match/mismatch hypothesis is

explored. Two strategic models of zooplankton dynamics are introduced, a two-stage

step-function model, and a Gaussian-shape model. Since the strong seasonal forcing

in temperate waters means the environment (in this case the abundance of prey) is to

some extent predictable on average but is variable from year to year (Buckley et al.,

2010), the role of stochasticity in the timing and length of increases in zooplankton

abundance is explored, and the consequences for recruitment are discussed. Finally,

a simple genetic algorithm is employed to explore the fitness landscape of the Gaus-

sian model in relation to larval hatching day, to determine whether fish can evolve

an optimal spawning strategy in a very random environment. We draw four main

conclusions.

1. Stochasticity in individual growth is more beneficial to recruitment when larvae

experience high food availability early on in their growth.

2. When the timing of peak prey abundance is stochastic, recruitment probabilities

are greatest for hatching days just before the expected timing of peak prey abundance.

3. When the timing of periods of high prey density is held fixed, the evolved opti-

mum hatching day becomes earlier as the length of the high density period increases.

4. When both the timing and length of the periods of high density are allowed to

(co-)vary, we find no evidence of strong selection pressure for specific hatching days,

only for a hatching “window” around the expected prey peak.
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In Chapter 4, we explore the idea of non-constant variance in recruitment. We ex-

amine the work of Minto et al. (2008), to investigate the proposition that recruitment

variance is increased at low stock sizes, with the aim of establishing its practical use

in fisheries management. We demonstrate that the current stock-recruitment time

series available are not long enough to accurately fit a heteroscedastic (non-constant

variance) model, and in particular that they are not long enough to establish in which

direction recruitment variance changes with stock size. We go on to show that in some

cases, there is very little, if any, practical diÿerence between maximum sustainable

yield values calculated from the heteroscedastic model and from a standard Beverton-

Holt model. We also demonstrate that, due to the nature of the heteroscedastic model,

it is not always possible to calculate a value for maximum sustainable yield.

In Chapter 5 we extend the work carried out in Chapter 3 to include an extra

trophic level - phytoplankon. This allows us to synthesize the ideas of Chapters

2, 3 and 4. We aim to examine how variability in the timing of phytoplankton

blooms travels up the food chain to influence fish larval recruitment. The second

aim of the chapter is to explore the role of zooplankton patchiness in fish larval

recruitment. Two contact rate based models of fish larval growth are developed.

The first assumes that a larva encounters patches of prey, and subsequently items

of prey within that patch, as a Poisson process. The second assumes a negative-

binomial distribution of zooplankton. The growth models are coupled to a dynamical

phytoplankton-zooplankton model, via predation on the zooplankton by the larvae.

We demonstrate that for certain parameter values the two growth models are roughly

equivalent, and produce similar recruitment distributions.

We find that recruitment probabilities are reduced as the patch length scale in-

creases. Our results for a stochastically forced phytoplankton bloom suggest that not

only does a patchy environment seem to decrease the maximum achievable recruit-

ment, but it also means larval hatching must be more precisely timed to achieve this

maximum. For high larval densities, we are able to observe the predation of the larvae

on the zooplankton, and the subsequent eÿects on the phytoplankton dynamics. In
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these cases the feedback between the trophic layers may play an important role in

determining recruitment.

The thesis concludes with a synthesis and discussion of the results presented in

the chapters described above, and a look forward to future directions of this research.
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Lévy processes, saltatory

foraging, and superdiÿusion

It is well established that resource variability generated by spatial patchiness and

turbulence is an important influence on the growth and recruitment of planktonic

fish larvae. Empirical data show fractal-like prey distributions, and simulations in-

dicate that scale-invariant foraging strategies may be optimal. Here we show how

larval growth and recruitment in a turbulent environment can be formulated as a

hitting time problem for a jump-diÿusion process. We present two theoretical results.

Firstly, if jumps are of a fixed size and occur as a Poisson process (embedded within a

drift-diÿusion), recruitment is eÿectively described by a diÿusion process alone. Sec-

ondly, in the absence of diÿusion, and for “patchy” jumps (of negative binomial size

with Pareto inter-arrivals), the encounter process becomes superdiÿusive. To synthe-

sise these results we conduct a strategic simulation study where “patchy” jumps are

embedded in a drift-diÿusion process. We conclude that Lévy-like predator foraging

strategies can have a significantly positive eÿect on recruitment at the population

level.
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2.1 Introduction

Planktonic fish larvae may be broadly described as being small, stupid, and dead.

These assertions can be made more concrete: larvae are small relative to the spatial

scales of prey heterogeneity and to the turbulent fluid flow at these spatial scales

(Pitchford and Brindley, 2001); they have only local knowledge of their immediate

environment, limited by a visual perceptive distance of around one body length (Pitch-

ford et al., 2003); and they are subject to massive mortality, with a newly hatched

individual’s probability of survival to metamorphosis being O(1%) or less (Chambers

and Trippel, 1997) driven by typical mortality rates of 10% per day in the larval

stage (Cushing and Horwood, 1994). These factors are likely to strongly influence the

extreme observed variability in the stock-recruitment relationships which underpin

fisheries management.

Because the key natural phenomena are inherently stochastic, deterministic mod-

els can be argued to be inappropriate for quantifying recruitment (defined here as

growth to some threshold size e.g. size at metamorphosis). Rather, stochastic models

must be constructed to arrive at recruitment probabilities (Pitchford and Brindley,

2001). Recent recruitment models have treated this process as a hitting-time problem

for stochastic diÿerential equations (Lv and Pitchford, 2007; Pitchford et al., 2005),

showing that environmental stochasticity induced by turbulence and spatial hetero-

geneity can be beneficial to recruitment. The diÿerences between the predictions

from deterministic and stochastic models are particularly great when growth rates

are small and mortality rates are large, which is precisely the environment inhabited

by fish larvae (Pitchford et al., 2005).

The general approach of Lv and Pitchford (2007) and Pitchford et al. (2005), which

assumes that individual-based variability can be captured at the population level by a

diÿusion equation, may not be universally appropriate. In particular, diÿusion-based

models cannot necessarily capture sudden jumps caused by rare chance encounters

with particularly favourable patches of prey (there are parallels to the phenomenon

of unpredictable shocks aÿecting the value of economic markets (Applebaum, 2004)).
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The Lévy-Khintchine formula provides a generic mathematical description for an

infinitely divisible continuous time stochastic process as a combination of diÿusion-

with-drift interspersed with probabilistic jumps (Applebaum, 2004).

Important clues as to how the diÿusion-based approach of Lv and Pitchford (2007)

and Pitchford et al. (2005) could better account for recruitment variability have been

provided by recent research on Lévy walks (LWs), with attempts to develop a single

framework in which to study plankton patchiness (Lough and Broughton, 2007) and

non-Brownian motion of predators in heterogeneous stochastic environments (Sims

et al., 2008). A LW is a random walk with step lengths taken from an appropriate

heavy tailed distribution (Edwards et al., 2007), allowing very large steps (“jumps”)

to occur. The probability density function (pdf) for a LW typically takes the form of

a power law; for example, P (lj) ∼ l−µj , with 1 < µ ≤ 3 where lj is the step length and

µ is the Lévy exponent (Sims et al., 2008). Brownian motion is recovered as a special

case for µ > 3 (Bartumeus, 2007; Plank and James, 2008; Viswanathan et al., 2000).

Alternative parameterisations may be more amenable to mathematical progress (see

Section 3).

Results from analytical and simulation models (Bartumeus et al., 2002, 2005;

Viswanathan et al., 1999), supported by empirical data (Sims et al., 2008) suggest

that a naive predator following a stochastic foraging strategy in a patchy prey environ-

ment can optimise its mean rate of prey encounters by following a LW. Furthermore,

simulation results (Sims et al., 2008) suggest that a fitness benefit is conferred by fol-

lowing a Lévy foraging strategy the exponent of which matches that of the underlying

spatial prey distribution. These results are not supported by Benhamou (2007), who

compares LWs with composite random walks (CWs) generated by a forager taking

smaller steps when it perceives itself to be within a prey patch. Benhamou (2007)

shows firstly that a CW can outperform a LW in a patchy environment, and secondly

that data sampled from CWs may resemble those from a LW, leading to possible

problems in interpretation. Important questions also arise concerning pattern ver-

sus process in our understanding of animal movements: if a forager exploits a patchy
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prey environment by changing its movement strategy in response to its perceived prey

field, then its movements will appear to be a stochastic LW foraging strategy when

in fact they simply reflect the underlying prey distribution (Benhamou, 2007; Plank

and James, 2008).

This study seeks to provide a mathematical basis for the treatment of non-diÿusive

phenomena in descriptions of planktonic foraging. In Section 2.2 we address the

question of whether a reformulation of the recruitment problem can account for locally

rare but beneficial conditions using a jump-diÿusion process. In Section 2.3 we are

motivated by the saltatory (pause-travel) foraging behaviour of planktonic fish larvae

(e.g., cod (Ruzicka and Gallager, 2006)). We use a deliberately simple analytical

model to ask whether a saltatory strategy in a patchy environment is optimal, and

whether there is a mathematical basis for the notion that predator and prey exponents

should match. Our approach utilises analytically tractable Pareto distributions for

step lengths and inter-arrival times (James et al., 2005). Furthermore, the simplicity

of the model means that pattern and process are transparently independent. The

resulting individual-based model exhibits superdiÿusivity; the variance of the process

does not scale linearly with time.

The results in Section 2.3 support Benhamou (2007) and Pitchford and Brindley

(2001) in showing that Lévy foraging is not a generically optimal strategy. However,

when synthesised within the Lévy process jump-diÿusion framework of Section 2.2,

the results of simple simulations lead us to argue in Section 2.4 that saltatory LW

foraging may be a beneficial strategy when scaled up to the population level. We show

that superdiÿusivity can in principle increase recruitment probability due to the risk

sensitivity associated with foraging in a high mortality environment. However, the

ecological details peculiar to each foraging scenario (and therefore their simulation)

are likely to be factors of major importance.
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2.2 Hitting times for jump diÿusion processes and appli-

cations to recruitment

Pitchford et al. (2005) and Lv and Pitchford (2007) show that including Gaussian

white noise (representing individual and environmental variability) in the growth

rate of planktonic fish larvae always increases the probability of maturation (defined

here as growth to the recruitment threshold size). Pitchford et al. (2005) describe the

gain in mass M(t) of an individual larva at time t as

M(t) = rt+ σB(t), M(0) = 0, (2.1)

so that each larva grows as a drift-diÿusion process with mean rate r and with variance

σ2 (that is, B(t) is a Brownian noise process with variance σ2).

Because it forms a basis for our subsequent analysis, the model of (2.1) deserves

careful consideration, especially regarding linearity in time t and the possibility of

negative growth. Modifying the drift term r to account for concave (Von Bertalanÿy

growth) or convex (geometric) growth, and allowing diÿerent scaling of the noise

term σ, does not qualitatively aÿect the results for recruitment probabilities (Lv and

Pitchford, 2007). Equation (2.1) admits the possibility of M(t) becoming negative.

However, if M(t) is interpreted as a measure of gain in mass from an initial non-

zero state M0, then M(t) < 0 does not necessarily imply that the overall mass is

negative. The probability ofM(t) < −M0 (implying negative mass) for some t <∞ is

exp

−2rM0

σ2


(assuming no absorbing barrier at Mmat). The possibility that M(t) < 0

is addressed fully in Appendix A.

In light of the Lévy-Khintchine formula (Applebaum, 2004) and the patchy nature

of plankton distributions (Lough and Broughton, 2007), we quantify the eÿects of

adding non-Gaussian (Lévy) noise which could represent prey patchiness, turbulence,

or any other processes causing temporal and spatial heterogeneity. Consider the

simplest case, where the Lévy measure v (essentially the measure of non-Gaussian

part of the stochastic process) takes the form v = λδh, with λ > 0 and δh a Dirac

delta function centered at h ∈ R\{0} (Applebaum, 2004). This gives a new growth
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equation,

M(t) = rt+ σB(t) +N(t), M(0) = 0, (2.2)

where r = r − 
(0,1] xv(dx) is the eÿective growth rate, σ2 is the variance of the

Brownian motion B(t), and N(t) is a Poisson random variable of intensity λ taking

values in {nh, n ∈ N}, with

P (N(t) = nh) = e−λt
(λt)n

n!
.

Equation (2.2) describes a fish larva growing with drift r and variance σ2, between

jump discontinuities of size h, caused by encountering rare but favourable patches of

prey which occur at random times (Tn, n ∈ N), Tn ∼ Exp(λ).

As in Pitchford et al. (2005) we are interested in the probability of a fish larva

reaching maturation. We first determine the distribution of the time to maturation,

tmat, where

tmat = inf{t > 0 :M(t) =Mmat}.

Mmat is defined to be the fixed recruitment mass and tmat is defined as a hitting time

(Condamin et al., 2007). Using Theorem 1.1 of Pakes (1996), the hitting time density

for equation (2.2) can be shown to be

ftmat
(t) =

Mmat

t

∞
n=0

e−λt√
2πσ2t

(λt)n

n!
exp

−(Mmat − n|h| − rt)2

2σ2t


.

Although alternative possibilities exist ((Cushing and Horwood, 1994; Pepin et al.,

2003)), a size-independent mortality process is appropriate and parsimonious (see

Pitchford et al. (2005)) i.e. mortality occurs as a Poisson process with rate µ, so that

an individual fish larva has a probability exp(−µtmat) of surviving to Mmat. Hence

the probability of an individual reaching maturity is

Pmat(r, σ, λ, h) =


∞

0
ftmat

(t) exp(−µt)dt (2.3)

=
Mmat√
2πσ2


∞

0

e−(µ+λ)t√
t3

∞
n=0

(λt)n

n!
exp

−(Mmat − n|h| − rt)2

2σ2t


dt.
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To investigate the eÿects of the additional Lévy noise in the linear growth model,

the recruitment probability is plotted against mortality rate µ for a pure drift-diÿusion

growth process, a mixed drift-diÿusion-jump growth process, and a pure Poisson

jump growth process (Figure 2.1). The equation for the recruitment probability for

the mixed drift-diÿusion-jump growth process is given by equation (2.3), and the

equation for the pure drift-diÿusion process is given by Equation (8) in Pitchford

et al. (2005). The probability of maturation for a pure Poisson jump growth process,

with intensity λ and jump size h, is

Pmat(λ, h) =


λ

λ+ µ

Mmat

h

.

The analytical results in Figure 2.1 were confirmed using explicit individual-based

simulations of 100,000 individuals generated using an Euler-Maruyama scheme be-

tween exponentially-distributed fixed-size jumps.

The results in Figure 2.1 indicate that, at the scale of larval fish growth, the

addition of Lévy noise (in the form of constant size jumps) is unlikely to aÿect the

probability of maturation when the mean and variance of the overall growth pro-

cess are held fixed. In other words, at the ecologically relevant scale, the input from

the jump process becomes essentially diÿusive and standard stochastic diÿerential

equation (SDE) techniques can be applied. The following section shows that this is

a consequence of the choice of jump process, and that more realistic foraging mod-

els can result in non-diÿusive processes at the population level, with concomitant

consequences for recruitment.
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Figure 2.1: a) Example growth trajectories for individuals growing with a drift-

diÿusion process between exponentially-distributed fixed-size jumps. Parameters used

here were r = 2.5, σ2 = 12.5, h = 5, λ = 0.5. b) The probability of reaching

maturity against mortality rate µ, for a pure drift-diÿusion growth process, a mixed

drift-diÿusion-jump growth process, and a pure Poisson jump growth process. The

mean at time t for all processes was fixed to be Rt, and the variance S2t. For the

drift-diÿusion process the parameters used were (R=5) r=5, σ=5; and (R=2.5) r=2.5

and σ=5. For the mixed drift-diÿusion-jump process the parameters used were, (R=5)

r=2.5, σ=
√
12.5, h=5, λ=0.5; and (R=2.5) r=1.25, σ=

√
12.5, h=10, λ=0.125. For

the pure jump process the parameters used were (R=5) h=5, λ=1; and (R=2.5) h=10,

λ=0.25.

2.3 An individual-based model for the encounter process

of a saltatory forager

The analytical and numerical results in Section 2.2 indicate that simply describ-

ing individual-based growth and recruitment as a hitting time problem for a jump-

diÿusion process does not necessarily scale up to have an impact at the ecological or

management levels. However, the assumption that jumps occur with a fixed magni-

tude is unrealistic and may be unnecessarily restrictive, because the resulting model

resembles a diÿusive process over ecologically relevant time scales. The individual-
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based model formulated below provides theoretical evidence that diÿusive models may

be inappropriate; for a saltatory forager following a LW in a patchy environment, it

is demonstrated that the growth process is superdiÿusive.

Consider a naive predator (e.g., planktonic fish larva) foraging in a patchy environ-

ment where food items (e.g., copepods) are distributed patchily in space according

to a Pareto distribution with parameter r2 (Johnson et al., 1994). The predator

performs a saltatory foraging strategy, moving between search locations at a fixed

constant speed. These movements have lengths governed by a Pareto distribution

with parameter r1, i.e., the step lengths are such that the predator follows a LW for

r1 ≤ 2. We assume that the predator consumes all items of food it finds within each

search location before moving on to its next foraging location, and that this consump-

tion is instantaneous (i.e. there is a negligible handling time). These assumptions are

useful for analytical tractability, and could be relaxed in numerical simulations.

Although we assume a three dimensional isotropic prey distribution, the foraging

process can be regarded as taking place in one spatial dimension (c.f. (Plank and

James, 2008)). This is not a restrictive assumption because the movement process is

one dimensional from the forager’s point of view and Lévy exponents are conserved

when dimensionality is reduced via projection (Sims et al., 2008) (Suppl. Mat.). In

order to understand how the spatial distribution of predator foraging locations and

prey items may be interrelated, we parameterise the probability distributions such

that the expected number of foraging locations and the mean–field prey density remain

fixed, and only the degree of heterogeneity (of forager movements, prey distribution,

or both) varies. This focuses attention on the foraging strategy employed, rather

than any mean-field properties. Note that this does not imply a fixed prey field.

Conditional on a fixed mean-field density, the number of prey items at each location

is independent of all other locations.

We seek to understand the distribution of X(t), the total number of prey items en-

countered by a stochastic forager in fixed time t. Let N(t) be the number of foraging

locations visited in time t, and let δ describe the size of each foraging location (typ-
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ically the perceptive radius of the forager (Pitchford and Brindley, 2001)). Because

the forager travels with constant speed, the time τ between foraging intervals follows

a Pareto distribution with parameters r1 and α1. Hence the probability density of τ

is given by

f(τ) =
r1α

r1
1

(α1 + τ)r1+1
, (τ > 0).

It follows that (James et al., 2005)

N(t) ∼ negative binomial


r = r1, p =

α1
α1 + t


,

with probability mass function

f(n) =


r + n− 1

n


pr(1− p)n, (n = 0, 1, . . .).

For foraging location i, let the number of encounters with prey be Yi, i.e, Yi is the

number of prey items contained within a sphere of radius δ. Because the prey are

distributed according to a Pareto distribution with parameters r2 and α2, the distance

η between prey items has density function

f(η) =
r2α

r2
2

(α2 + η)r2+1
, (η > 0)

and it follows that

Yi ∼ negative binomial


r = r2, p =

α2
α2 + δ


.

Hence the probability mass function of Yi is

f(y) =


r + y − 1

y


pr(1− p)y, (y = 0, 1, . . .).

We make the natural assumption that the Yi are independent and identically dis-

tributed. There is an implicit, but practically reasonable assumption here that for-

aging locations do not overlap (MacKenzie and Kiorboe, 1995). The fact that the

perceptive field of a larva is better described as a narrow “wedge” further strengthens

this assumption (Galbraith et al., 2004). The probability generating functions of N

and Yi can then be derived as

GN (s) =


α1

α1 + [1− s]t

r1

,
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GY (s) =


α2

α2 + [1− s]δ

r2

.

It follows that E(N) = r1t/α1 and E(Yi) = r2δ/α2.

Because the total number of prey encountered in time t is simply

X = Y1 + Y2 + · · · + YN ,

it follows that the generating function of X is

GX(s) = GN{GY (s)} = αr11


t− t


α2

α2 − [1− s]δ

r2

+ α1


−r1

.

Let λ1 = r1/α1 and λ2 = r2/α2. By parameterising in terms of r1, r2, λ1, λ2, we are

able to vary the parameters r1 and r2 whilst E(N) = λ1t and E(Yi) = λ2δ (mean–field

properties) remain fixed. It can then readily be shown that

E(X) = λ1λ2δt,

Var(X) = λ1λ
2
2δ

2t2

1

r1
+

1

r2t
+
1

t
+

1

λ2δt


.

The implications of these results are discussed in more detail in Section 4, but

the most basic message here is that the expected encounter rate depends only on the

mean–field properties of the predator movement and prey distribution, not on the

details of their distribution (i.e., E(X) is independent of r1 and r2). This precisely

mirrors the results of Pitchford and Brindley (2001) and Pitchford et al. (2003) for

cruise predators: for both cruise and saltatory foragers, heterogeneity in the predator’s

movement strategy, or in the prey distribution, or both, do not aÿect mean prey

encounter rates. Hence a constant speed predator receives no average benefit by

altering its foraging trajectory (although changes in speed can of course influence

encounter rates and movement costs (Pitchford et al., 2003)).

The variance in the encounter rate is superdiÿusive (Var(X) ∝ tρ, 1 < ρ <

2). Because the model in this section relates to encounter rate rather than time to

maturity, it is not straightforward to incorporate mortality and formulate a model

for recruitment probability as in Section 2.2. In Section 2.4.1, we incorporate the

features of the “patchy” jump process that leads to superdiÿusion into an idealised
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CHAPTER 2. LÉVY PROCESSES, SALTATORY FORAGING, AND . . .

simulation of a jump-diÿusion process. The consequences for recruitment are then

discussed.

2.4 Discussion

The analytical results in Sections 2.2 and 2.3 raise important issues regarding both the

inclusion of stochasticity in mathematical models, and the ecological and evolutionary

processes underpinning our ideas of planktonic foraging.

2.4.1 Superdiÿusive models of recruitment

Motivated by Sections 2.2 and 2.3, Figure 2.2 shows the results of simulating a jump-

diÿusion process with Pareto interarrival times between jumps (simulating a saltatory

predator) and with negative-binomially distributed jump sizes (simulating a patchy

prey distribution). Parameter values are again chosen based on those of Pitchford

et al. (2005) so far as possible, and mortality rate µ is fixed at 0.1. The mean growth

rate of the overall stochastic process is R = r + λ1λ2. Consistent with Section 2.2,

R = 5, r = 2.5 and Mmat = 200. Results are shown for a range of r1 and r2, to

capture the dependence of recruitment probabilities on both the foraging strategy

of the predator and the patchiness of the prey distribution. A minimum exponent

value ri = 2 is imposed because smaller values correspond to infinite variance and

are therefore dicult to justify with empirical data. The results are calculated from

simulations of 10,000 individuals using an Euler-Maruyama scheme between Pareto-

distributed negative-binomial-sized jumps.

Figure 2.2a) depicts five example individual growth trajectories for r1 = 2, r2 = 2,

illustrating the non-diÿusive nature of the underlying process. The consequences at

the population level are shown in Figure 2.2b); recruitment probability is seen to

increase with decreasing exponent r1. The role of the prey distribution, captured by

prey exponent r2, appears to be less important (given that the mean-field prey con-

centration is constant across all simulations). However, whilst illustrating the general
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principle, the simulations in Figure 2.2 ought to be regarded as strategic. The Pareto

formulation in Section 2.3 allows many small jumps rather than enforcing a minimum

jump size. This may be inappropriate for some predators (although the factors of

turbulence and wedge-shaped perceptive fields may ameliorate this criticism; the as-

sumption that foraging locations are disjoint is likely to be reasonable (MacKenzie

and Kiorboe, 1995)). Practical applications of this modelling framework would require

context-specific consideration of underlying processes such as turbulence, swimming

speeds and handling times and are beyond the scope of this study.
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Figure 2.2: a) Example superdiÿusive growth trajectories for individuals growing with

a drift-diÿusion process between negative binomially distributed jumps at Pareto dis-

tributed inter-arrival times. Parameters used here were r = 2.5, σ2 = 12.5, r1 = 2,

α1 = 2, r2 = 2, p = 2/7. b) The probability of reaching maturity against predator

Pareto exponent, r1, for a range of values of prey patchiness, r2. Mass at maturation

was fixed at 200, and mortality rate at 0.1. The mean at time t for all processes was

fixed to be Rt = (r+λ1λ2)t = 5t (see Sections 2.2 and 2.3 for definitions of variables).

2.4.2 Foraging behaviour

Important messages arise from the encounter process modelled in Section 2.3. By

employing increasingly non-diÿusive Lévy-type movements (i.e., decreasing r1), the
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predator can increase the variability in its encounter rate. Decreasing r2 increases

the variability in encounter rates at the individual level. In other words, although

individual mean encounter rates are not aÿected, prey patchiness and Lévy foraging

increase the variability in the gain an individual forager experiences. This echoes the

results of Pitchford and Brindley (2001), and it is possible to combine the results

presented here with those of Benhamou (2007) and Pitchford and Brindley (2001)

to make some definite statements regarding stochastic foraging. Where simulations

show a fitness benefit (an increase in mean encounter rate) in Lévy foraging over RW

foraging, then the benefit does not arise solely as a consequence of predator movement

and prey patchiness. Rather, where any benefit exists, it must arise in conjunction

with other processes within the simulations. Details such as predators’ behavioural

responses to prey, how prey regeneration is handled, and how prey patchiness is

statistically maintained after a predation event, are likely candidates. Such processes

warrant greater attention to biological and ecological detail in order to build a more

comprehensive picture of “optimal” foraging.

Predator movement and prey heterogeneity alone are not sucient to favour Lévy

foraging. Benhamou (2007) suggests that, where LW are observed in data (and pro-

vided these have not been misidentified (Edwards et al., 2007; Sims et al., 2007, 2008)),

this is likely to be a confusion of pattern and process or a superposition of diÿerent

movement strategies operating at diÿerent spatial scales. There is, however, another

possibility which may be of particular importance for marine plankton (zooplankton

or larval and juvenile fish) subject to high levels of mortality and turbulence. Pitch-

ford et al. (2005) show that stochasticity, manifested by a large variance in individual

prey encounter rate, is beneficial to the growth and recruitment of organisms which

grow slowly and whose survival to the next life history stage is unlikely (see (Lv and

Pitchford, 2007) for nonlinear generalisations of this simple model). Such foragers,

whose knowledge of their turbulent environment is necessarily local in both space and

time, have a strong evolutionary pressure to increase their encounter variance (i.e., to

follow a classic “risk sensitive” foraging strategy). It is not the object of this paper
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to quantify the evolutionary consequences of risk sensitivity, but we note that the

model of evolutionarily stable strategies under uncertain trade-oÿs in Currey et al.

(2007) provides an appropriate framework. The deterministic energy costs of faster

swimming must be balanced against the stochastic benefits of increased mean and

variance in encounter rate, which can be quantified using the mathematics in Section

2.3 (saltatory predators) or Pitchford and Brindley (2001) (cruise predators).

The individual-based foraging model presented here is highly idealised, but this is

necessary to disentangle the “pattern versus process” arguments described in (Ben-

hamou, 2007). In particular, the model implies that the forager will not interact with

any prey it meets whilst moving between foraging locations. Adapting the model to

account for such possibilities inevitably leads one to consider more cruise-like forag-

ing strategies where the theories of Benhamou (2007), Pitchford and Brindley (2001),

and Viswanathan et al. (2000) are more appropriate. We note that, compared to a

saltatory forager, cruise predation is unlikely to be an eÿective way to leave regions

of low prey density, i.e., to escape low quality habitats. The ability to leave regions of

low yield in favour of a small chance of finding a higher yield location is likely to be

of particular importance to risk sensitive foragers. Therefore, although some of the

complex behaviours observed in saltatory foraging are missing (Ruzicka and Gallager,

2006), our model can be claimed to capture and quantify the fundamental processes.

2.4.3 Summary

This study attempts to synthesise observational evidence of the non-diÿusive distribu-

tion of planktonic predators and their prey in the natural environment with existing

stochastic models, thereby characterising important ecological processes at the pop-

ulation level. We show that, when generalising from SDE to jump-diÿusion process,

the individual-level processes which generate the jump distribution can give rise to

superdiÿusivity.

The model of saltatory foraging in Section 2.3 agrees with previous models of

cruise predators in questioning whether there is a generic advantage, in terms of
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mean encounter rate, for a naive predator to move according to a LW. Furthermore,

we find no theoretical support for matching between exponents governing predator

and prey distributions in maximising mean prey encounter rates. However, when

interpreted in the context of a risk sensitive foraging strategy in a patchy environment,

Figure 2.2 shows that saltatory foragers may be at a significant advantage. Accurately

quantifying this advantage requires more careful consideration of the ecological details

(minimum jump size, prey regeneration, predator perceptive field and behaviour,

handling time etc.). These form the subject of ongoing work.
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Chapter 3

The importance of variable

timing and abundance of prey

for fish larval recruitment

Fish recruitment can vary by an order of magnitude between years, and the lar-

val stage is a key determining factor. Zooplankton, the main source of larval food,

are temporally and spatially heterogeneous, and this could contribute to recruit-

ment variability and ultimately stock sustainability. Here we use simple stochastic

models of larval growth and zooplankton dynamics, together with an evolutionary

algorithm, to investigate the role of transient peaks in zooplankton abundance and

the match/mismatch hypothesis in recruitment success and variability. We draw four

main conclusions. 1. Stochasticity in individual growth is more beneficial to recruit-

ment when larvae experience high food availability early on in their growth. 2. When

the timing of peak prey abundance is stochastic, recruitment probabilities are greatest

for hatching days just before the expected timing of peak prey abundance. 3. When

the timing of periods of high prey density is held fixed, the evolved optimum hatching

day becomes earlier as the length of the high density period increases. 4. When both

the timing and length of the periods of high density are allowed to (co-)vary, we find
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no evidence of strong selection pressure for specific hatching days, only for a hatching

“window” around the expected prey peak.

3.1 Introduction

The number of fish larvae recruited into the adult population each year is fundamen-

tal to the long-term stability of a fish stock (Chambers and Trippel, 1997). Large

variability in recruitment is ubiquitous (Cushing, 1968; Koslow, 1992; Needle, 2002;

Shepherd and Cushing, 1990). It is believed that recruitment success and variability is

largely determined during the larval stage (Brander et al., 2001; Horwood et al., 2000).

Fish larvae are born into an extremely variable environment with high mortality rates

(Chambers and Trippel, 1997; Cushing and Horwood, 1994) and so it is not surpris-

ing that the number of larvae surviving long enough to be recruited into the adult

population is stochastic. Much emphasis is placed on predicting annual recruitment,

and consequently understanding the processes governing recruitment variability.

The currently available stock and recruitment data are limited (see, for example,

Koslow (1992)) primarily in the length of the time series for individual stocks; there-

fore emphasis should be placed on understanding and studying the biological and

dynamical processes underlying recruitment variability. It may in fact be far more

important to understand the causes of recruitment variability, rather than attempting

to predict with any degree of accuracy the number of recruits arising from a given

stock in a given year (Needle, 2002). Mechanistic process-based models are thus a

useful tool in exploring and understanding recruitment variability.

Fish larvae are reliant on zooplankton (primarily copepods) for their main source

of food. The match/mismatch hypothesis was first proposed by Cushing (1975) and

suggests that larval growth, survival and consequently recruitment are dependent on

the temporal matching of spawning periods with periods of high food availability.

This suggests that investigating the links between larval and plankton population dy-

namics is fundamental in furthering our understanding of larval recruitment success.

Zooplankton are heterogeneous in both time (influenced by seasonal phytoplankton

51



CHAPTER 3. THE IMPORTANCE OF VARIABLE TIMING AND . . .

blooms) and space (patchily distributed) and this could contribute to recruitment

variability.

The match/mismatch hypothesis has been explored previously using simple math-

ematical models (for example see (Biktashev et al., 2003; James et al., 2003; Mertz

and Myers, 1994)). However, most studies use deterministic models of larval growth

and plankton abundances. We argue that deterministic models may be inappropriate

for modelling the recruitment process, since the key underlying factors are inherently

stochastic (Burrow et al., 2008; Pitchford et al., 2005). Here we develop the simple

stochastic larval growth model of Pitchford et al. (2005) to allow for the inclusion of

the eÿects of variable prey concentrations on recruitment success and variability. Two

strategic models of zooplankton dynamics are introduced, a two-stage step-function

model, and a Gaussian-shape model. Since the strong seasonal forcing in temperate

waters means the environment (in this case the abundance of prey) is to some extent

predictable on average but is variable from year to year (Buckley et al., 2010), the

role of stochasticity in the timing and length of increases in zooplankton abundance

is explored, and the consequences for recruitment are discussed.

Finally, a simple genetic algorithm is employed to explore the fitness landscape of

the Gaussian model in relation to larval hatching day, to determine whether fish can

evolve an optimal spawning strategy in a very random environment.

3.2 Methods

3.2.1 A simple stochastic model for fish larval growth

To model larval growth we adopt the stochastic growth model of Pitchford et al.

(2005). The model takes the form

dM(t) = r(t)dt+ σdB(t), M(0) = 0, (3.1)

where M(t) is the mass of an individual fish larva at time t, r(t) is the instanteous

deterministic growth rate of the larva at time t, and B(t) is a Brownian noise process
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with variance σ2. We define a fixed recruitment mass Mrec at which the individual

larva is considered to be recruited to its next life history stage. To calculate recruit-

ment probabilities we first determine the distribution ftrec(t) of hitting times trec

where

trec = inf {t > 0 :M(t) =Mrec} .

As in Burrow et al. (2008) and Pitchford et al. (2005) mortality is represented as

a size-independent Poisson process with rate µ, so that an individual fish larva has a

probability exp(−µtrec) of surviving toMrec (a value of µ = 0.1 is used for all results).

Thus, the probability of an individual being recruited by time t is

Prec(t) =

 trec

0
ftrec(t) exp(−µt)dt.

3.2.2 A step-function model for zooplankton dynamics

We wish to introduce the simplest possible model for the underlying prey (i.e. zoo-

plankton) population dynamics. It is acceptable to assume that an increase in prey

population density would lead to an increase in the growth rate of a fish larva. We

introduce a strategic step-function zooplankton dynamics (Z-dynamics) model in the

form of a “jump” in the deterministic larval growth rate r(t). In our strategic Z-

dynamics model there are two states, “low density” and “high density”. We define

r1 to be the lower value of r, and r2 the higher. We also define t1 to be the time at

which r switches from r1, to r2, i.e. the time the period of high density starts, and t2

to be the time the period of high density ends (Figure 3.1(a)).

To quantify the eÿect of a match/mismatch between spawning and peak prey

abundance, a period of high prey density is fixed to start on Day 40 and to persist

for 40 days, with a batch of larvae hatching on a set day, from Day 0 to Day 100.

A length of 40 days is used as an example broadly representative of natural systems;

the results hold qualitatively for any length of period. Recruitment probabilities

are calculated for each hatching day both analytically and numerically. To calculate
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recruitment probabilities numerically we use a fixed step Euler-Maruyama scheme

(Higham, 2001) to simulate 10,000 fish larvae growing according to equation (3.1)

and record hitting times for the fixed recruitment mass Mrec, which is fixed to be

200 for all results presented in this chapter (the parameters and variables used in the

models presented here are non-dimensional, however for applications they could be

considered dimensional, using mg for mass, for example). The average hitting time

for that hatching day is then calculated as

Prec =
1

n

n
i=1

exp(−µtrec,i),

where n = 10,000 is the number of simulated larvae, and trec,i is the hitting time of

larva i. The results for stochastic larval growth, with σ = 5, are compared to those

for deterministic larval growth (i.e. σ = 0 in equation (3.1)).

Figure 3.1: a) Step-function representation of zooplankton dynamics in the stochastic

larval growth model. r is the deterministic growth rate of a fish larva. b) Example

Gaussian representations of zooplankton population dynamics in the stochastic larval

growth model. r(t) is the deterministic growth rate of a fish larva. µb= 60 and h=0

for all three examples.
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3.2.3 A Gaussian model for zooplankton dynamics

We consider the step-function model to be a good first approximation model for

zooplankton population dynamics; however, it is unrealistic to assume that there are

only two levels of zooplankton densities in the ocean, and that there is such a sharp

transition between the two. We wish to consider a more realistic, smooth model for

the Z-dynamics, and one which can naturally be extended to include stochasticity in

zooplankton abundances and correlations between the timing and length of periods

of high density. We now let r(t) take a Gaussian form, i.e.

r(t) = r1 +
A

σb
√
2π

exp


−(t+ h− µb)

2

2σ2b


, (3.2)

where r1 is the larval growth rate at the lowest zooplankton density (i.e. the lowest

value of r(t)), µb is the time at which the peak zooplankton density occurs, σb is the

standard deviation of the Z-dynamic (this gives a measure of the length of the period

of increased prey abundance), A is the area under the curve of the Z-dynamic, and

h is the hatching day of the larvae. Figure 3.1b) shows three example Z-dynamics,

for three diÿerent values of σb. The area under the curve of the Z-dynamic is held

constant at 200 (ecologically this represents the total amount of zooplankton being

constant across diÿerent Z-dynamics shapes, to allow comparison), and h = 0, in all

cases.

We compare the recruitment probabilities for larvae growing deterministically (σb

= 0) against larvae growing stochastically (σb = 5), for fixed values of µb and σb. This

allows comparison with the results of our step-function Z-dynamic model. Larvae

are hatched on a certain day over a 100 day period, and growth is simulated and

recruitment probabilities calculated as described in the previous subsection.

Next we consider the eÿects of µb and σb being stochastic. In real ocean systems,

the spring or autumn phytoplankton bloom will not occur on exactly the same day

every year (Mertz and Myers, 1994; Brander et al., 2001), and consequently the timing

of peak zooplankton density will also vary. We wish to investigate when a batch of

larvae should hatch in order to maximise their recruitment success when the timing
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of peak prey abundance is stochastic. To do this, µb and σb are now considered to be

random variables with µb ∼ N(µµb , σµb) and σb ∼ N(µσb , σσb).

For each hatching day, 1000 random samples of µb and σb are generated. For each

pair of samples of µb and σb, the growth trajectories of 1000 larvae were simulated

using an Euler-Maruyama scheme, and the recruitment probabilities calculated as

described in the previous subsection. This is eÿectively generating recruitment data

over a 1000 year period with the annual plankton bloom occurring on a random

day each year, within a certain spawning window. The duration of a phytoplankton

bloom (and the associated period of high zooplankton population density) may be

correlated to its timing (Keller et al., 2001), and so we wish to investigate the eÿect

of a correlation between µb and σb on our recruitment results. To simulate correlated

µb and σb variables, we first generate two standard normal variables X1 and X2. We

then define

µb = σµbX1 + µµb , (3.3)

σb = σσb(ρX1 +

1− ρ2X2) + µσb .

It is easy to show that E(µb) = µµb , E(σb) = µσb , Var(µb) = σµb , and Var(σb) =

σσb . Since any linear transformation of a normal random variable is also normal (Rice,

1995), we then have µb ∼ N(µµb , σµb) and σb ∼ N(µσb , σσb). Thus, µb and σb are

normally distributed random variables with correlation ρ. To investigate the eÿects of

both early periods of high prey density being shorter and being longer we simulated

positive and negative correlations respectively between µb and σb.

3.2.4 A genetic algorithm for optimal hatching day

To explore the possibility of optimal hatching days in this stochastic environment

we implement a simple genetic algorithm; 200 parent individuals each produce 50

oÿspring, which inherit their parent’s spawning day h (the day the oÿspring of that

adult are hatched) plus or minus some noise (up to 1% of h). The fittest 200 oÿspring
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are then selected to become the next generation of adults based on the fastest hitting

times. The genetic algorithm was run for 200 generations, or until the population ap-

peared to have converged if this occurred sooner. We deemed the algorithm to have

converged if the mean and variance of the evolved hatching days of the population

had changed by less than 1% in successive generations. Note that this genetic algo-

rithm does not purport to be an accurate and detailed reconstruction of the evolution

of hatching strategies. Rather, it is a systematic attempt to explore the evolution-

ary stability of hatching strategies in a stochastic environment, and to infer what

behaviours (if any) may be favourably selected.

3.3 Results

3.3.1 A step-function model for zooplankton dynamics

We calculate recruitment probabilities analytically for the deterministic (σ = 0)

growth case first. We have the simple growth equation dM/dt = r(t), where r(t)

is a step function as shown in Figure 3.1. This gives us

M(t) =M0 +

 t

0
r(s)ds =




M0 + r1t, if t < t1

M0 + r1t+ (r2 − r1)(t− t1), if t1 ≤ t < t2

M0 + r1t+ (r2 − r1)(t2 − t1), if t > t2.

The logic behind the derivation of these results is shown schematically in Figure 3.2.

From above, Mrec = M0 +
 trec
0 r(s)ds. It is trivial to rearrange to find expressions

for trec. The recruitment probability is then Prec = exp(−µtrec). It is worth noting

that the hitting times and recruitment probabilities above are for a larva hatching on

Day 0, relative to t1. The results are simple to adjust for larvae hatching at other

times.

Using methods exactly analogous to the deterministic growth case, we can derive

the following hitting time distribution for the stochastic growth case,
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Figure 3.2: Schematic representations of the growth of a fish larva of size M(t),

growing deterministically according to dM(t)/dt = r(t), where r(t) is a step function

as described in the text (and shown in Figure 3.1(a)). a) The larva reaches recruitment

mass Mrec during the r2 stage of the step function, b) the larva reaches recruitment

mass Mrec during the second r1 stage of the step function.

ftrec(t) =




f1trec(t) = f(0, r1, t), for t < t1,

f2trec(t) =

 Mrec

−∞

f(x, r2, t− t1)g(x, r1, t1) dx,

for t1 ≤ t < t2,

f3trec(t) =

 Mrec

−∞

 Mrec

−∞

f(y, r1, t− t2)g(x, r1,Mrec, t1)

×g(y − x, r2,Mrec − x, t2) dx dy,

for t ≥ t2,

where

f(x, r, t) =
Mrec − x√
2πσ2t3

exp


−(Mrec − x− rt)2

2σ2t


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is the hitting time distribution for individuals with initial size x and instantaneous

growth rate r, and

g(t, r, x) =
1√
2πσ2t


exp


−(rt− x)2

2σ2t


− exp


2rMrec

σ2


exp


−(2Mrec − x+ rt)2

2σ2t


.

is the size distribution at time t of individuals with instantaneous growth rate r who

have not reached size M yet. We can then define the recruitment probability to be

Prec =

 t1

0
f1trec(t)dt+

 t2

t1

f2trec(t)dt+


∞

t2

f3trec(t)dt. (3.4)

As in the deterministic growth case, equation (3.4) is the recruitment probability

for a larva hatched on Day 0 (in relation to time t1). It is again trivial to adjust the

equation for a larva hatching at a later time. Equation (3.4) cannot be integrated

analytically. However is it simple to integrate numerically using mathematical soft-

ware - for example, Matlab. To verify our analytical results, recruitment probabilities

were also calculated numerically, as described in the Methods section. The results

for recruitment are shown in Figure 3.3. In both the stochastic and the deterministic

(σ = 0) growth cases, hatching around the start of the period of high prey availabil-

ity greatly increases the recruitment probability. For all hatching days, recruitment

probabilities are greater for the stochastic growth case than for the deterministic

growth case (see (Lv and Pitchford, 2007) and (Pitchford et al., 2005) for examples

and discussion of the general role of stochasticity leading to increased recruitment

probabilities).

What is interesting, however, is that stochasticity does not provide an equal benefit

for all hatching days. To illustrate this point, compare the larvae born on Days 35

and 55. In the deterministic growth case, both batches experience the same length

of high prey density between hatching and recruitment, and thus have the same

recruitment probability (the parameter values used here mean that a deterministically

growing larva will reach recruitment in 30 days; the larvae hatched on Day 35 are

thus recruited during the period of high prey density and so do not experience its
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Figure 3.3: Recruitment results for the strategic bloom model, for a fixed bloom of

length 40 days, beginning on Day 40. Circles represent larvae growing deterministi-

cally, crosses stochastically. b) The benefit of stochasticity on recruitment, calculated

as the stochastic recruitment probability minus the deterministic recruitment proba-

bility.

entire length). In the stochastic case, the larvae hatched on Day 55 have a greater

recruitment probability than those born on Day 35, despite the fact that those hatched

on Day 35 could theoretically experience the full 40 days of high prey density, whereas

those hatched on Day 55 can only experience a maximum of 25 days of increased prey

availability and thus increased growth rate. The addition of the stochastic term means

that an individual hatched on Day 55 has the possibility of reaching recruitment mass

before the period of lower prey concentration begins, that is it will only experience

the higher prey concentration. An individual hatched on Day 35 cannot avoid the

period of lower prey concentrations because this occurs at the beginning of its larval

growth phase.

Examining the hitting time distributions for the hatching days in question (Figure

3.4) provides further insight. Despite having equal mean hitting times, the hitting

time distribution for larvae hatched on Day 55 is more positively skewed than that

of the larvae hatched on Day 35, that is more individuals hatched on Day 55 have

a short hitting time than those hatched on Day 35. The nonlinearity of the Poisson
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Figure 3.4: Hitting time distributions for larvae hatching on a) Day 35 and b) Day

55, for the step-function Z-dynamic model, from equation (3). Numerical results were

calculated from simulations of 10,000 individuals.

mortality process means more weight is put on lower hitting times, thus increased

positive skewness of the hitting time distribution leads to a higher mean recruitment

probability. This stochastic eÿect is even more pronounced in the comparison of

larvae hatched on Days 20 and 60 (Figure 3.3).

3.3.2 A Gaussian model for zooplankton dynamics

As previously, our simple growth equation is dM(t) = r(t)dt+ σdW (t), where in this

case r(t) takes the form (3.2). We can calculate recruitment probabilities analytically

in the deterministic, σ = 0, case. Integrating the growth equation gives

Mrec = r1trec +
A

σb
√
2π

 trec

0
exp


−(t+ h− µb)

2

2σ2b


dt.

A simple change of variables allows integration, giving

Mrec = r1trec +
A

2


erf


t+ h− µb

σb
√
2


− erf


h− µb

σb
√
2


,

from which trec can readily be evaluated using (for example) the ‘fzero’ function in

Matlab. Results for stochastic larval growth are calculated numerically, as described
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previously.

Figure 3.5 shows the recruitment probabilities for larvae growing deterministically

and larvae growing stochastically, for µb=60 and σb=15. We can see that the results

are very similar to the results for the step-function model; stochasticity always has a

positive eÿect on recruitment, and the addition of stochasticity has a greater eÿect

on recruitment success after the peak prey density, in comparison to before it.

Figure 3.5: Recruitment probabilities for larvae growing deterministically (circles)

and stochastically (crosses), with r(t) taking the form (2). σb=15, µb = 60. For the

stochastic results each point is the average of 10,000 individual recruitment probabil-

ities.

Figure 3.6 shows the recruitment probabilities for stochastic timing and length of

the peak zooplankton density, with µb ∼ N(50, 10) and σb ∼ N(20, 5). Each box plot

represents 1000 instances of µb and σb, with recruitment probabilities averaged over

1000 stochastically growing larvae for each instance. The black dots mark the mean

recruitment probability for each hatching day. The mean and median recruitment

probabilities are maximised on hatching days shortly before the expected timing of

the peak in zooplankton abundance. Recruitment variability is greatest for those

hatching days when the mean recruitment probability is greatest (the hatching days
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Figure 3.6: Recruitment probabilities for stochastic peak zooplankton density time

(µb) and length (σb) for µb ∼ N(50, 10) and σb ∼ N(20, 5). Each box plot represents

1000 random draws of µb and σb, with recruitment probabilities averaged over 1000

stochastically growing larvae for each draw of µb and σb. The black dots mark the

mean recruitment probability for each hatching day.

around the expected peak zooplankton abundance).

Figure 3.7 shows the recruitment probabilities for correlated peak bloom time (µb)

and bloom length (σb). As in Figure 3.6, each box plot represents 1000 instances of

µb, with recruitment probabilities averaged over 1000 stochastically growing larvae

for each instance of µb. The black dots mark the mean recruitment probability for

each hatching day. For the mean and median recruitment probabilities, the results

in Figure 3.7 are qualitatively equivalent to those in Figure 3.6; the optimum time

for a larva to hatch is slightly before the expected timing of the peak in zooplankton

abundance. However the results do diÿer for recruitment variability. When the timing

of the peak in zooplankton abundance and the length of time for which zooplankton

abundance is high are positively correlated (earlier blooms are shorter), recruitment

variability is higher for early spawning, whereas the opposite is true when the timing

and length of peak zooplankton abundance are negatively correlated.
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Figure 3.7: Recruitment probabilities for stochastic correlated peak bloom time (µb)

and bloom length (σb) for: a) positive correlation (ρ = 0.7), and b) negative correlation

(ρ =-0.7). µb ∼ N(50, 10) and σb ∼ N(20, 5). Each box plot represents 1000 random

draws of µb and σb, with recruitment probabilities averaged over 1000 stochastically

growing larvae for each draw of µb and σb. The black dots mark the mean recruitment

probability for each hatching day.

3.3.3 A genetic algorithm for optimal hatching day

The results of our genetic algorithm indicate that if the timing and length of the peak

prey density are deterministic, there is a clear negative relationship between length

of the period of peak prey abundance and optimal hatching day, i.e. the longer the

period of high prey density, the earlier the optimal hatching day (Figure 3.8). For

comparison, optimal hatching days were also calculated from the original Gaussian

Z-dynamics model. For each value of σb, recruitment probabilities were calculated for

fish larvae hatching on each day, and the day with the greatest recruitment probability

was taken to be the optimal hatching day. A fixed value of µb =50 was used in both

the genetic algorithm and the Gaussian Z-dynamics model, for this comparison. We

can see that the results from the original Gaussian Z-dynamics model qualitatively

match those from the genetic algorithm (Figure 3.8).

When the timing and length of the period of high prey density are stochastic, there
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is no clear convergence of the genetic algorithm. These model results indicate that

there may be relatively weak selection pressure for specific hatching days in highly

stochastic environments, so long as the larvae hatch within a window around the time

of the increase in prey abundance.

Figure 3.8: Optimal hatching days evolved from the simple genetic algorithm described

in the text (box plots), and the hatching days with the greatest recruitment probabil-

ities, for fish larvae growing under the Gaussian Z-dynamics model (black dots), for

diÿerent values of σb. The environment is fixed with µb = 50 in both.

3.4 Discussion

We have demonstrated that simple strategic mechanistic models, coupling fish lar-

val growth to zooplankton population dynamics, can give insight into the processes

eÿecting larval recruitment success and variability. Our results have interesting im-

plications for the match/mismatch hypothesis. As discussed in (Burrow et al., 2008)
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and (Pitchford et al., 2005), fish larvae live in an extremely volatile and variable en-

vironment, and so it is very likely that stochastic models are more able to capture

the important factors at work in the growth of fish larvae than their deterministic

counterparts.

The results from the step-function Z-dynamics model indicate that the amount

by which an individual larva’s recruitment probability is increased due to environ-

mental stochasticity is dependent on when the larva hatches relative to the peak

prey abundance. In a stochastic environment, to maximise chances of survival to

recruitment, a fish larva ideally wants to be born into a period of high prey availabil-

ity and potentially suÿer low prey abundances later, rather than vice versa. When

stochasticity in the timing of high zooplankton densities is introduced in a possi-

bly more realistic Gaussian Z-dynamics model, our results suggest that recruitment

probabilities are “optimised” when larvae hatch slightly before the expected time of

peak zooplankton density. This result is supported by empirical studies; Buckley and

Durbin (2006) found that the peak hatching period of both cod and haddock on the

Georges Bank was ahead of the peak abundance of their copepod prey. Platt et al.

(2003) hypothesize that most haddock larvae oÿ the eastern continental shelf of Nova

Scotia hatch before the spring plankton bloom, and that early blooms thus result in

higher recruitment due to a greater temporal overlap between the larvae and their

prey. Their empirical findings support this theory, reporting that early blooms were

correlated with high recruitment. Wright and Bailey (1996) also found that hatching

of the sandeel Ammodytes marinus in the Shetland waters preceded the peak in prey

availability.

It may appear at first glance that the results from the step-function Z-dynamics

model and the Gaussian Z-dynamics model are contradictory; the step-function model

suggests that, if an adult fish cannot time its spawning with enough accuracy so that

its larvae hatch on the day with greatest recruitment probability, then it should spawn

later rather than earlier, whereas the Gaussian model suggests the opposite. However,

these are not contradictory results. In fact, examination of Gaussian model with fixed
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parameters (Figure 3.5) leads to the same conclusion drawn from the step-function

model. It is the inclusion of stochasticity in the timing of the peak zooplankton

abundance that alters the optimum spawning strategy from “better late than early”

to a “better early than late”. If we make the parameter t1 a random variable in the

step-function model, we see results qualitatively similar to those from the stochastic

Gaussian model. This is a further demonstration of the importance of including

stochastic eÿects in models of fish larval growth.

So what of recruitment variability? In the results of our stochastic Gaussian

Z-dynamics model, we see large recruitment variability, with around an order of mag-

nitude diÿerence between the lowest and highest recruitment probabilities. This is

in agreement with observations from nature (for example North Sea cod (Horwood

et al., 2000)).

A pattern in recruitment variability is observed in our model results when the

duration of a period of high zooplankton density is linked to its timing. When pa-

rameters are correlated so that early periods of high density are shorter, variability is

greater for hatching days before the expected peak density day. When early blooms

periods of high density are longer, variability is greater for hatching days after the

expected peak density day. This has interesting consequences for spawning strate-

gies: if an adult fish wishes to maximise both the mean and variance of its oÿspring’s

recruitment (a risk spreading strategy (Real, 1980; Reddingius and den Boer, 1970))

then this is more achievable in an environment where early periods of high prey den-

sity are shorter. In real systems, the correlation between bloom timing and length

may be dependent on season, temperature, and/or many other factors.

It has been proposed that the duration of the spawning/hatching period can also

have a substantial eÿect on recruitment variability (Mertz and Myers, 1994). Pro-

tracted spawning can be viewed as a risk-spreading strategy, attempting to reduce the

variance in oÿspring survival (Biktashev et al., 2003; Wright and Trippel, 2009). It

may be that there is a stronger selection pressure for hatching period than for hatch-

ing day, but we did not see evidence for this in our model. This is most likely due to
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the fact we have no competition between individual larvae, and no top-down eÿects of

the larvae on the zooplankton population. Future modelling work will include com-

petition for food and top-down eÿects of the larval growth dynamics on the plankton

dynamics, which may be very important (James et al., 2003). The bottom-up eÿect

of phytoplankton population dynamics on zooplankton abundances could also play

an important role in the recruitment process. Spatial heterogeneity in prey could also

have an eÿect on recruitment variability.

Whilst it may be argued that the models presented in this study are very simple,

we have demonstrated that strategic mechanistic models can improve our under-

standing of the processes governing recruitment success, and recruitment variability

in particular. Notably, we have demonstrated that although there may exist an op-

timal window for hatching, in the very random environment that fish larvae survive

in, selective pressures may not be strong enough to evolve an optimal hatching day.

Studying models such as these alongside more data-analytic approaches will give a

more thorough understanding of the fundamental processes aÿecting recruitment and

its variability.
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Chapter 4

Variable variability:

consequences for fisheries

management?

Recent analyses propose that the key processes in regulating the size of fish stocks

are stochastic rather than deterministic, characterised by increased recruitment vari-

ance at low stock sizes (heteroscedasticity). Here we investigate the consequences of

this idea, with the aim of testing its practical relevance to fisheries management. We

argue that stock-recruitment time series are at least one order of magnitude too short

to reliably fit heteroscedastic models; indeed they are typically insucient even to

establish in which direction recruitment variance changes with stock size. Manage-

ment implications are illustrated using simple models and published recruitment data

for two exploited stocks. For North Sea herring heteroscedasticity appears negligi-

ble, with no practical diÿerence between maximum sustainable yield (MSY) values

calculated using a heteroscedastic model versus a standard Beverton-Holt model. In

contrast, for North Sea cod heteroscedastic models result in highly volatile (and some-

times nonexistent) MSY estimates which are likely to seriously overestimate levels of

sustainable harvest. Statistical models of this type are useful to elucidate broad-scale
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regulatory processes, but a better mechanistic understanding is necessary before they

can be used in a management setting.

4.1 Introduction

Traditionally, studies of population regulation in fisheries have sought underlying

deterministic processes. More recently it has been recognised that the ecosystem

complexity and environmental uncertainty may render such simple explanations in-

adequate; stochastic (random) factors may be at least as important. For example,

Shepherd and Cushing (1990) acknowledge that deterministic mechanisms such as

density dependent growth or fecundity can explain the weak regulation needed to

prevent stocks exploding at low mortality rates. However, they have more diculty

finding a deterministic mechanism explaining the strong regulation necessary to pre-

vent stocks collapsing at high mortality rates (Shepherd and Cushing, 1990). They

hypothesise a stochastic regulatory process characterized by increased variance in re-

cruitment at low stock sizes. Shepherd and Cushing (1990) were unable to statistically

prove their hypothesis using stock-recruit time series, as these datasets were, at the

time, too short (characteristically around 30 years). Garrod (1983) also attempted to

find increased variance at low stock sizes, but failed.

As time series data for fish stocks have increased in length and statistical tech-

niques have developed, Minto et al. (2008) reinvestigated the idea by extending the

Deriso-Schnute stock recruitment model (Deriso, 1980; Schnute, 1985) to include het-

eroscedastic (non-constant) variance in recruitment. They employed a meta-analysis

of 147 fish stocks to demonstrate an inverse relationship between survival variability

(a proxy for recruitment variability) and stock size. This conclusion could have im-

portant consequences for fisheries management, particularly that of over-fished stocks

which already have increased survival variability (Hsieh et al., 2006; Anderson et al.,

2008) (these two processes may in fact be linked).

The study presented here asks whether the heteroscedastic relationship is of prac-

tical importance in the context of parameterising stock-recruitment relationships and
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improving management. We first show that, when using data to parameterise stochas-

tic models, the variability predicted by the best-fitting parameters is large enough to

make their estimation highly uncertain. Put simply, even if the parameters of a

stochastic model are “known” with great precision, the randomness they predict may

make it impossible to recover these known values from data in any meaningful time

frame. We go on to examine the possible management consequences of this fact using

simple maximum sustainable yield models.

4.2 Heteroscedastic model

Minto et al. (2008) define a new stock-recruitment relationship in which the variance

is a function of population abundance. The model takes the form

ln


R

S


∼ N(µ, σ2), with µ = lnα+

1

γ
ln(1− γβS), σ2 = exp(η0 + η1S), (4.1)

where R is defined to be the number of juvenile fish recruited to the adult population

each year and S the spawning stock biomass. The parameter γ allows the underlying

stock-recruitment relationship to switch between several standard models: γ =-1,000

gives a model with essentially no density dependence, γ =-2 a Cushing-like model,γ

=-1 a Beverton-Holt model, γ =0 a Ricker model, and γ =1 a Schaefer model (Minto

et al., 2008). The parameter η1 is defined as the coecient of heteroscedasticity,

indicating to what extent, and in which direction, the variance changes with stock

density in a population.

A binomial test on the individual species fits supports the negative trend in η1

values seen by Minto et al. (2008), finding a statistically significant number of nega-

tive η1 estimates (see Appendix B). However, we wish to establish whether the idea

of heterosceadasticity in recruitment can be of practical use in fisheries management.

To determine this, we first examine the sensitivity of parameter estimates in the het-

eroscedastic relationship to the size of the data set used to generate these estimates.

We then use simple population models to calculate maximum sustainable yields to
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determine whether the use of a heteroscedastic model in place of a more conventional

model (the well known Beverton-Holt model is used here) has any eÿect on manage-

ment limits. We use data from two example stocks, North Sea cod (Gadus morhua)

and North Sea herring (Clupea harengus). These stocks were chosen because the time

series available display a large range of spawning stock size values, and both have

been overfished to very low levels.

4.3 Model fitting

To establish whether the heteroscedastic model (4.1) could be useful in single stock

management, we first determine whether parameters can be accurately estimated for

realistic sizes of data sets.

We first fit the heteroscedastic model to stock and recruitment data for North

Sea cod and North Sea herring, to find what we will henceforth refer to as the “true”

parameter values for our two example stocks. These “true” parameter values are

given at the top of Table C.1 (Appendix C). The original data are from the ICES

Working Group 2007. We use maximum likelihood methods for the model fitting.

The log-likelihood function for the heteroscedastic model is

M (α, β, η0, η1) = −n
2
ln(2π) − 1

2

n
i=1

(η0 + η1S)−
n
i=1

ln

Ri

Si


− f


Ri

Si


exp(η0 + η1S)

,

where Ri are the recruitment data points, Si are the spawning stock biomass (SSB)

data points, and

f


Ri

Si


= ln(α)− ln(1 + βSi).

We have chosen γ =-1 for our analyses here (representing an underlying Beverton-

Holt stock recruitment relationship); however, the results hold qualitatively for other

values of γ. Parameters were estimated using the optim function in R (R Development

Core Team, 2007). Both spawning stock biomass (SSB) and recruitment are scaled
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by their maximum values, as in Minto et al. (2008). The maximum values for the

ICES Working Group 2007 data were 252747 tonnes (SSB) and 2.567 × 109 recruits

for North Sea cod, and 2183501 tonnes (SSB) and 1.09 × 108 recruits for North Sea

herring.

Next, we use the spawning stock data from the ICES Working Group 2007, the

heteroscedastic model (4.1), and the true parameter values, to simulate new recruit-

ment data for each species. We then re-fit the heteroscedastic model to the new

simulated data, to obtain parameter estimates α̂, β̂, η̂0, and η̂1 (which are estimates

of our true parameter values, since we used these to generate the data). The size

of the data set is increased by replicating the spawning stock data then generating

recruitment data from the new, larger stock data set (this does not result in repli-

cates of recruits data because the heteroscedastic model used to simulate the data is

stochastic). The minimal data set size used is that of the data themselves (43 and

47 data points for cod and herring, respectively); these are compared to estimates

from data sets with sizes increased by one, two and three orders of magnitude. The

process of generating recruitment data and fitting the heteroscedastic model to obtain

parameter estimates is repeated 10 times for each size of data set.

Figure 4.1 shows the η1 parameter estimates for North Sea cod and herring, for four

diÿerent size data sets. Parameter estimates for all dataset sizes are given in Appendix

C. It is clear from Figure 4.1 that for data sets smaller than c.4000 observations in

magnitude, it is not possible to accurately recover the “true” η1 parameter value used

to generate the data. What is particularly important is that for the currently available

number of data (usually around 40 to 50 years of data, with each year corresponding

to one data point) it may not be possible to recover the sign of the heteroscedastic

coecient η1. This possibility is demonstrated in Figure 4.1a); the “true” η1 values

is positive, however not all the estimates for it are positive. The parameter estimates

for the remaining parameters, α̂, β̂, and η̂0 also display large variability for small data

sets (see additional figures and tables in Appendix C).
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Figure 4.1: η1 parameter estimates (dots) for a) North Sea cod, and b) North Sea

herring. Parameters were estimated using the optim function in R (R Development

Core Team, 2007). The “true” values of η1 are shown by the dashed lines.

4.4 Consequences for management

When asking whether the heteroscedastic model is useful in fisheries management, the

consequences of the parameter estimate variability shown in Figure 4.1 must be taken

into account. Figure 4.2 shows the expected stock recruitment curves for the North

Sea cod and herring stocks, using the “true” parameter values found in the previous

section (a Beverton-Holt model was also fitted to the North Sea cod and herring

data to give “true” parameter values for this model). The dashed lines represent the

expected recruitment from a fitted Beverton-Holt stock recruitment model1, and the

solid lines are the expected recruitment from the heteroscedastic model (4.1). The

derivation of the expected recruitment for both models is given in Appendix B.

In the case of North Sea cod, the inclusion of heteroscedasticity in the stock-

recruitment model leads to a depensatory expected stock-recruitment curve, in com-

parison to the compensatory Beverton-Holt model. In the case of North Sea herring,

the inclusion of heteroscedasticity leads to a slightly over-compensatory expected

stock-recruitment curve (this is dicult to see in the figure; however, the maximum

1Note the expected recruitment is not simply the Beverton-Holt model, as we assume log-normally

distributed noise. See Appendix B for the derivation of the expected recruitment plotted here.
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Figure 4.2: Stock recruitment curves for a) North Sea cod, and b) North Sea herring.

The dashed lines are the expected recruitment for a Beverton-Holt stock-recruitment

model (assuming log-normal noise), the solid lines the expected recruitment from the

heteroscedastic model (4.1). See Appendix B for the derivation of the expected recruit-

ments plotted here. Crosses are the data from the ICES Working Group 2007.

recruitment does occur at around S = 1.25). For North Sea cod, the heteroscedastic

model predicts higher expected recruitment than the Beverton-Holt model at high

stock levels. For North Sea herring, the Beverton-Holt model predicts higher ex-

pected recruitment than the heteroscedastic model at high stock levels. For both

stocks, both models predict similar recruitment at low stock levels.

To allow comparison with the heteroscedastic model, we also fit a standard Beverton-

Holt model to the simulated data (the Beverton-Holt model is fitted to the same

simulated data as the heteroscedastic model, that is, the underlying data is het-

eroscedastic, however the fitted Beverton-Holt model assumes constant variance).

The purpose of this is to establish whether there is any practical diÿerence between

fitting a heteroscedastic model or a constant-variance model, when the underlying

data are heteroscedastic. The parameter estimates for the Beverton-Holt model are

tabulated in Appendix C.

Using the parameter estimates in Tables C.1 and C.2 (see Appendix C) and simple

population management models, we can calculate the maximum sustainable yield

(MSY) (Begon et al., 1996) for each model. The simple population model for a
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Beverton-Holt model takes the form

St+1 = St +
αSt

1 + βSt
exp


σ2

2


− µSt −H, (4.2)

where St is the spawning stock size in year t, µ is the natural mortality rate (assumed

to be 0.3 for all results), and H is the fixed MSY harvested from the stock each year.

This management model assumes that the expected recruitment each year is simply

that derived from an underlying Beverton-Holt recruitment function, and does not

account for heteroscedasticity. This model gives a MSY of

HMSY =
α̃+ µ− 2

√
α̃µ

β
,

where α̃ = α exp

σ2

2


. The calculated MSY values for each parameter set are given

in Table C.6 (Appendix C).

We now compare the above MSY values with those for a heteroscedastic manage-

ment population model of the form

St+1 = St +
αSt

1 + βSt
exp


exp(η0 + η1St)

2


− µSt −H. (4.3)

We cannot find an analytical closed form expression for the MSY from this model.

In fact, due to the nature of this model, a MSY does not always exist. If we assume

equilibrium (St+1 = St = S), then

H(S) =
αS

1 + βS
exp


exp(η0 + η1S)

2


− µS. (4.4)

For η1 < 0 a MSY can be found in the standard way. However, for η1 > 0, H(S)

(4.4) will tend to infinity for large values of S. Under the usual method for finding

a MSY (finding the maximum value of H for which S > 0), this would suggest the

MSY is infinitely large, which is clearly wrong.

For certain sets of parameter values we can find a local maximum HMSY before

the function tends to infinity (Figure 4.3a). However, for other sets of parameter

values, this local maximum does not exist and we cannot calculate a MSY (Figure
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4.3b). This indicates that the management model (4.3) is only valid for cases where

η̂1 < 0.

For the case of North Sea herring, we can see (Table C.6, Appendix C) that

the calculated MSY values do not diÿer greatly between the Beverton-Holt and het-

eroscedastic models. This indicates that there may be no management benefit to

using the hetereoscedastic model over a more conventional stock recruitment model.

For North Sea cod, we are only able to calculate MSY values for three out of the

ten parameter sets (plus the “true” parameter set) for the heteroscedastic model. In

all these cases, the MSY value for the heteroscedastic model is greater than that for

the Beverton-Holt model. This may be cause for concern if the correct MSY value for

the stock is lower (in fact the “true” MSY value is the lowest of the values we were

able to calculate).

Figure 4.3: Schematic representations of the two diÿerent forms the function H(S)

(equation 4.4) can take for the heteroscedastic population management model, when

η1 > 0. In case a) a local maximum can be found and defined as the MSY. In case

b), no local maximum can be found, and consequently no MSY can be defined.

4.5 Discussion

In the continuing search for regulatory processes in fish populations, Shepherd and

Cushing (1990) and Minto et al. (2008) advocate a stochastic regulatory mechanism;
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that fish recruitment is heteroscedastic, with recruitment variability increasing with

decreasing stock size. By investigating whether a heteroscedastic stock-recruitment

model could be used in single stock management, we argue that the available stock-

recruit time series for individual populations are not long enough to accurately esti-

mate parameter values for the heteroscedastic model (4.1).

Minto et al. (2008) find a consistent trend in negative η1 values (the coecient

of heteroscedasticity), which supports an inverse relationship between recruitment

variability and stock size, and an inverse relationship between survival variability and

the strength of density dependence. A binomial test on Minto et al.’s single species

fits supports this relationship as a general principle. However, if it is not possible to

recover the true value or sign of η1 for a single stock, as we have demonstrated, it

may be inappropriate or even dangerous to use the heteroscedastic model of Minto

et al. (2008) in a management setting.

Minto et al. (2008) attempt to overcome the problem of short time series by com-

bining data (by species) from diÿerent populations using a meta analysis to increase

the power of their statistical analysis. However, this implicitly assumes that all stocks

of a particular species will have the same heteroscedastic coecient. It may not be

reasonable to assume that two stocks from very diÿerent parts of the world will ex-

perience the same environmental conditions and regulatory processes. Consequently,

using a meta-analytic approach to fitting this, or any other, stock recruitment model

may not be appropriate for use in single stock management and quota setting.

Our MSY results are intended as strategic illustrations of the fact that that these

details can be important; they are not specific recommendations for the harvesting

of particular stocks. We demonstrate that the heteroscedastic model with η1 > 0

can produce indefinitely (and therefore unrealistically) high MSYs (Figure 4.3). We

have found no evidence of biological models to suggest how this might occur, and

the extreme properties are exhibited well outside the range of current observations.

We would suggest that model fits with an estimated η1 > 0 are discounted in a

management context at least until such mechanisms are better supported. Even in
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the cases where an MSY can be defined for the heteroscedastic management model,

the estimated MSY values were higher than those for the simple management model,

which is also cause for concern. The stock recruitment plots in Figure 4.2 show the

two models converging at the origin, which implies that heteroscedasticity does not

mean stocks can be fished at a higher rate (the slope at the origin is closely related

to the maximum harvest rate before extinction). In contrast, for the case where

η1 < 0 (the example of North Sea herring is presented here) there is little, if any,

diÿerence between the MSYs calculated using a fitted heteroscedastic model and a

fitted Beverton-Holt model. This indicates, that even if the underlying recruitment

process is heteroscedastic, there may be little benefit in fitting the more complicated

model.

The work of Minto et al. (2008) is statistically sound, interesting, and potentially

important ecologically. It is especially valuable in elucidating the importance of fac-

tors which, by their very nature, are random: any rational management strategy must

take such factors into account if it is to be sustainable. However, such models may not

yet be of practical use to fisheries managers. We propose that developing and studying

mechanistic models of the recruitment process can build a broader understanding of

the factors causing and controlling recruitment variability. Such models, which may

include elements of the widely advocated ecosystem approach (Jennings and Rice,

2011), may provide us with evidence of the mechanisms causing high variability at

low stock sizes, thereby leading to more reliable ways of incorporating stochasticity

into fisheries management.
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Chapter 5

Phytoplankton blooms,

zooplankton patchiness, and fish

recruitment

Plankton populations display heterogeneity in both space and time. Fish larvae are

dependent primarily on zooplankton for their source of food, and the availability of

food has a considerable eÿect on larval growth and survival. Consequently variability

in the plankton is widely believed to contribute to the large fluctuations observed in

fish larval recruitment.

Here, the roles of temporal heterogeneity, caused by temporal variation in their

phytoplankton food, and spatial heterogeneity, in the form of patchiness, in zoo-

plankton abundances in determining recruitment variability are explored. A simple

stochastic larval growth model is coupled to an excitable media model of phytoplank-

ton and zooplankton densities. Phytoplankton blooms are forced, causing a peak in

zooplankton abundances to follow. Within the model, larval growth rates are depen-

dent on the mean and variance of encounter rates with zooplankton prey, which in

turn are dependent on the spatial structure of the prey field. Two models of zoo-

plankton patchiness are introduced. In the first, patches of prey, and prey within
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those patches, are encountered as a Poisson process. In the second, individual prey

items are assumed to be distributed according to a negative-binomial distribution.

We demonstrate that increased patchiness decreases recruitment probabilities, and

that patchiness has a greater eÿect on recruitment after the peak in zooplankton

abundance. We also find evidence that increased spawning stock size can decrease

recruitment variability for some hatching days, but increase it for others. For higher

larval densities predation by the larvae had a considerable eÿect on the zooplankton

dynamics, and subsequently on the phytoplankton dynamics. This verifies that the

feedback between the trophic layers can play an important role in determining re-

cruitment. We conclude that spatial heterogeneity in the prey field is as important

as temporal heterogeneity in determining recruitment variability.

5.1 Introduction

Variability in food availability is widely believed to have a considerable eÿect on both

the growth and survival of larval fish (van der Meeren and Naess, 1993). Variation

in these vital rates is implicated in large fluctuations in recruitment and year-class

strength (Houde, 1997). Fish larvae rely primarily on zooplankton, such as cope-

pods and copepod nauplii, for their source of food. Both the abundance and spatial

structure of plankton populations are aÿected by environmental and atmospheric

conditions, such as stratification and turbulence, which creates an unpredictable prey

field for fish larvae (van der Meeren and Naess, 1993).

Zooplankton are dependent on phytoplankton for their source of food. Large

fluctuations in the timing and intensity of phytoplankton blooms have been noted

in both the Atlantic and Pacific oceans (Platt et al., 2007). Henson et al. (2009)

observed that the timing of the onset of phytoplankton blooms can vary by 15 to 50

days in the North Atlantic, with the largest variability seen in the transition zone

between the subpolar and subtropical regions. The timing of onset of the spring

phytoplankton bloom in the North Sea can vary interannually by up to six weeks

(Cushing and Horwood, 1994). This variability in phytoplankton dynamics will cause
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variability in zooplankton dynamics, but how variability at one trophic level relates

to fluctuations in higher levels is not well understood (Runge, 1988; Runge et al.,

2010). Prey availability may be a necessary condition for determining larval growth

and survival, but recruitment is the result of a combination of complex processes

which may enhance or counteract the links between primary production and larval

survival (Runge et al., 2010).

As well as displaying temporal heterogeneity, zooplankton populations are also

unevenly distributed in space (Letcher and Rice, 1997). They are known to exhibit

patchiness over a range of spatial scales, from less than 10m up to tens of km (Currie

et al., 1998; Pitchford and Brindley, 2001; Tokarev et al., 1998). This patchiness

will aÿect the encounter rates been fish larvae and their prey, which in turn will

have an eÿect on their individual growth rates (Letcher and Rice, 1997), and thus on

their survival and recruitment. Zooplankton patchiness is the result of many physical

processes interacting with many biological processes (Pinel-Alloul, 1995), thus making

it challenging to understand and predict.

The spatial distribution of zooplankton is often modelled using a Poisson distribu-

tion (Lough and Broughton, 2007; Young et al., 2009), as other patchier distributions

are often more dicult to specify and work with mathematically (Rothschild, 1991).

However recent studies have shown the distribution of zooplankton is more aggregated

than predicted by a Poisson distribution, and a more overdispersed negative-binomial

distribution is more appropriate for modelling (Lough and Broughton, 2007; Young

et al., 2009).

In this chapter we explore the role of temporal variability in phytoplankton den-

sities, and spatial heterogeneity of zooplankton populations, on the recruitment of

fish larvae. We employ two simple stochastic models for fish larval growth, which

are coupled to an excitable media model of phytoplankton-zooplankton dynamics.

The role of patchiness in zooplankton densities is first explored using the Poisson

patch encounter model of Pitchford and Brindley (2001), and secondly by developing

a larval growth model when the prey field is overdispersed, using a negative-binomial
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distribution for encounters between fish larvae and their prey. We examine the eÿect

of variability in the timing of phytoplankton blooms by making the time of initiation

of the bloom a random variable.

Alongside this, we look for evidence of heterscedasticity (non-constant variance,

see Chapter 4) in fish larval recruitment by varying the initial density of larvae in the

system (this is used as a proxy for spawning stock size).

5.2 Methods

5.2.1 Two models for fish larval growth in a patchy environment

Model 1

The first model we use for fish larval growth is the simple stochastic diÿerential

equation of Pitchford et al. (2005), adapted to allow the inclusion of contact rates

with prey in diÿerent (homogeneous or patchy) environments. For an individual larva

of mass M(t) at time t,

dM(t) = min(r(Z,M)dt + σ(Z,M)dB(t), rLM(t)dt) M(0) =M0 (5.1)

where the deterministic instantaneous growth rate, r(Z,M), and the variance of the

white noise process, σ2(Z,M) are calculated from the contact rate model of Pitch-

ford and Brindley (2001). The model represents a larva foraging in a patchy prey

environment, where patches, and prey within patches, are encountered according to

a Poisson process. The maximal growth rate of an individual larva is represented by

rL.

Let us define V to be the fraction of the whole volume taken up by prey patches.

We assume that prey only occur in patches, so that (1 − V ) is the proportion of the

volume devoid of prey (Pitchford and Brindley, 2001). An individual fish larva will

encounter a prey patch as a Poisson process with rate α. Once inside a patch, the

larva will encounter individual prey items as a Poisson process with rate γ. If we
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denote X to be the number of prey consumed by a larva in one day, it can be shown

(Pitchford and Brindley, 2001) that

E(X) = TD
γV

1 + γV τ
,

V ar(X) ≈ γTDV


1 +

2γ(1 − V )

(α+ β)


,

where TD is the proportion of a day a larva spends foraging, τ is the handling time

of a predation event (this is set to zero to derive an approximation for the variance

of the encounter rate (Pitchford and Brindley, 2001)), and β is the rate parameter of

the Poisson process governing a larva within a patch leaving that patch. It is worth

noting that the expected number of prey consumed in one day is independent of the

parameters α and β; patchiness only plays a role through the parameter V . We can

then define

r(Z,M) = β(M)E(X) −AMB ,

σ(Z,M) = β(M)(V ar(X))1/2,

where β(M) = βmax − (βmax − βmin)e
−jM is a function representing how eciently

prey is converted to larval biomass (Pitchford and Brindley, 2001), and the term

AMB represents the metabolic costs of foraging.

We use the turbulent contact rate model of Rothschild and Osborn (1988) to

determine the values of parameters α and γ. Fish larvae are small relative to the

spatial scales of turbulence aÿecting plankton patchiness, and contact rates between

larvae and their prey are thus in part determined by turbulence. From (Rothschild

and Osborn, 1988) and (Pitchford and Brindley, 2001), we can define
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γ = ZπR2u
2 + 3v2 + 4w2

R

3(v2 + w2
R)

1/2
,

where u and v are the swimming speeds of a prey organism and a fish larva respec-

tively, and Z is the number of prey organisms per unit volume. wR is the root-mean-

square turbulent velocity on the R length scale, where R is the fish larva’s perceptive

distance. We assume that an encounter occurs when the distance between a larva

and a prey organism falls below R (Pitchford and Brindley, 2001). As in Pitchford

and Brindley (2001), we will assume that the zooplankton prey are non-motile, that

is u = 0.

Similarly, if we regard prey patches as spheres of radius L (henceforth referred to

as the patch length scale), we can also define

α = dπL2
3v2 + 4w2

L

3(v2 +w2
L)

1/2
,

where d is the number of patches per unit volume, and we assume that patches are

non-motile. The turbulent velocities follow the simple expression

wa = 1.9(a)1/3

for the relevant length scales a = R and a = L (Pitchford and Brindley, 2001), and

where  is the turbulent kinetic energy dissipation rate (Rothschild and Osborn, 1988).

We note that the value given for  in Table 5.1 is not the value used by Rothschild

and Osborn (1988) and Pitchford and Brindley (2001). These studies used the value

given in the abstract of MacKenzie and Kiorboe (1995) ( = 7.4×10−8 m2s−3), which

is incorrect and does not match the values given for depth and wind velocity in their

methods, and the formula given by MacKenzie and Leggett (1993). The corrected

value1 for , calculated from the formula of MacKenzie and Leggett (1993) and using

values of 20m for depth and 6 ms−1 for wind speed, is 6.29× 10−5 m2s−3.

As in previous chapters, we define a fixed recruitment mass Mrec at which the

individual larva is considered to be recruited to its next life history stage. Mortality

1Thank you to Dr Mark Preston for pointing out the incorrect parameter value.
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is modelled as a time (age) dependent process, with the number N(t) of larvae alive

at time t being given by (James et al., 2003)

N(t) = N0(1 + bt)−µL/b. (5.2)

Figure 5.1 displays the dependence of recruitment on the average density of prey in

the environment, and on the degree of patchiness. Recruitment is shown as a function

of food supply for the deterministic growth case (σ = 0), and for stochastic growth in

a homogeneous prey field, and in patchy prey fields with prey distributed according

to a Poisson process, in patches of length scales 10m, 20m, and 30m. Parameter

values used are given in Table 5.1. Each recruitment probability was calculated from

simulations of 10,000 individuals, growing according to an Euler-Maruyama scheme

of equation (5.1), with a time step of 0.05 days. Food supply (zooplankton density)

was held constant for each simulation.

Model 2

As discussed in Section 5.1, it has been found that the spatial distribution of zoo-

plankton is better represented by a negative-binomial distribution than a Poisson

distribution (Lough and Broughton, 2007; Young et al., 2009). Our first model of

larval growth assumed the patches of zooplankton followed a Poisson distribution,

and that individual plankton within patches were distributed according to a Poisson

process. We now wish to develop a model assuming a negative-binomial distribu-

tion of individual zooplankton, to assess what consequences this might have for the

recruitment of fish larvae.

If we assume that individual zooplankton are distributed according to a negative-

binomial distribution, then the number of prey encountered by a fish larva in a unit

of time (X(t)), will be a negative-binomial random variable. The probability mass

function for a negative-binomial distribution with parameters r and p is often written

in the form (Johnson et al., 1992),
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Figure 5.1: Recruitment against food supply, for the deterministic growth case, and

for stochastic growth in a homogeneous prey field, and in patchy prey fields with

patches distributed according to a Poisson process, and prey distributed within patches

according to a Poisson process, in patches of length scales 10m, 20m, and 30m. Each

recruitment probability was calculated from simulations of 10,000 individuals, growing

according to an Euler-Maruyama scheme of equation (5.1). Food supply (mean field

zooplankton density) was held constant for each simulation.

P (X = x) =


r + x− 1

r − 1


p

1 + p

x 1

1 + p

r

.

However, for this application we adopt a more suitable parameterisation, that is

(Bolker, 2007),

P (X = x|θ, k) = Γ(k + x)

Γ(k)x!


k

k + θ

k  θ

k + θ

x

,

where θ = E(X) and k is defined as the “overdispersion” parameter. A smaller k

implies a patchier distribution. It is worth noting that here V ar(X) = θ+ θ2/k, that
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is the variance is always greater than the mean of the distribution. This is in contrast

to the Poisson distribution, which has equal mean and variance.

The fish larval growth model now takes the form,

M(t+ dt) =M(t) + min(β(M(t))ξ(t) −AMB , rLM(t)dt) M(0) =M0, (5.3)

where, as in Model 1, β(M(t)) is a function representing how eciently prey is con-

verted to larval biomass (Pitchford and Brindley, 2001), the term AMB represents

the metabolic costs of foraging, and ξ(t) is a negative-binomial random variable with

mean θ = TD
γ

1+γτ (with γ and TD as in Model 1), and variance θ + θ2/k. Mortality

again follows equation (5.2), and recruitment is defined as growth to a fixed sizeMrec.

Figure 5.2 displays the dependence of recruitment on the average density of prey

in the environment, and on the degree of overdispersion. Recruitment is shown as

a function of food supply for growth in a near-Poisson prey field (k=100), and in

prey fields with increasing degrees of overdispersion (k=10 and k=5). Parameter

values used are given in Table 5.1. Each recruitment probability was calculated from

simulations of 10,000 individuals, growing according to a fixed time step scheme of

equation (5.3), with a time step of 0.05 days. Food supply (mean field zooplankton

density) was held constant for each simulation.

5.2.2 Model equivalence

Models 1 and 2 are close to equivalent for certain choices of parameter values. We

have already defined the expected encounter rate within each model to be equal, and

thus we would see very similar growth trajectories if the variance of the encounter

rates were also close to equal.

The variance of the encounter rate of Model 2 (negative binomial prey field) is

θ+θ2/k, where θ is the expected encounter rate and k is the overdispersion parameter.

Let us denote the encounter rate variance of Model 1 by Ψ. For equal variance we

therefore require Ψ = θ + θ2/k.
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Figure 5.2: Recruitment against food supply, for growth in a prey field of negative-

binomially distributed zooplankton, for a near-Poisson prey field (k=100), and in

prey fields with increasing degrees of overdispersion (k=10 and k=5). Parameter

values used are given in Table 5.1. Each recruitment probability was calculated from

simulations of 10,000 individuals, growing according to a fixed time step scheme of

equation (5.3). Food supply (mean field zooplankton density) was held constant for

each simulation.

For a homogeneous prey field in Model 1, V = 1, and consequently the mean and

the variance of the encounter rate are equal. This implies that θ = θ+ θ2/k, which is

true as k →∞. Therefore, for large values of k, k = 100 for example, the recruitment

results for Model 2 will be very similar to those for Model 1 with V = 1. In fact, for

k > 10 it is dicult to tell the negative-binomial distribution apart from a Poisson

distribution (Bolker, 2007).

For V < 1 in Model 1, the variance of the encounter rate has a more compli-

cated formulation; however, we can still expect the results to look similar for the two
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Models for certain values of k. In fact, for V < 1, the prey field in Model 1 is also

overdispersed, since patchiness increases the variance of the encounter rate so that it

is greater than the mean.

5.2.3 A coupled phytoplankton-zooplankton model

To model primary and secondary production we adopt the excitable media model of

Truscott and Brindley (1994). The model takes the form

dP

dt
= rpP


1− P

Pmax


− rzZ

P 2

P ∗2 + P 2
, (5.4)

dZ

dt
= δzrzZ

P 2

P ∗2 + P 2
− µzZ −Rtotal,

where P and Z represent the densities of phytoplankton and zooplankton respectively.

rp is the maximum growth rate and Pmax the carrying capacity of the phytoplankton

population, rz is the maximum specific predation rate of zooplankton on phytoplank-

ton, P ∗ governs how quickly this maximum is attained as the prey (phytoplankton)

density increases, and δz is the ratio of biomass consumed to biomass of new zoo-

plankton produced (Truscott and Brindley, 1994). The removal of zooplankton by

predation by fish larvae is represented by Rtotal. Units and parameter values used in

the simulations presented in this chapter are given in Table 5.1.

The Truscott and Brindley model (5.4) was designed to investigate the triggering

of red tides and spring blooms in plankton systems. An excitable media model was

used as Truscott and Brindley (1994) deemed that the irreducible characteristics of

red tide events (the existence of two stable population levels of phytoplankton, rapid

outbreaks followed by slow relaxation, the existence of a trigger mechanism, and a

cyclic nature) matched the main properties of excitable media (Murray, 1993). The

trigger mechanism explored by Truscott and Brindley (1994) came from the interac-

tion of the growth rate of phytoplankton and the grazing rate of the zooplankton.

A Holling Type-III predation function was chosen since it allows the triggering of

blooms, and is justifiable since zooplankton (in particular copepods) are known to
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exhibit the foraging behaviour associated with the Holling Type-III grazing function.

A Holling Type-II function was discarded as the lower stable equilibrium value for

the phytoplankton population is at P = 0 (Truscott and Brindley, 1994). In fact,

any bloom triggered in a Holling Type-II model would result in the extinction of the

phytoplankton population at the end of the bloom. Figure 5.3 shows example tra-

jectories for the phytoplankton-zooplankton system. The parameter values used are

given in Table 5.1. A phytoplankton bloom is forced by increasing the growth rate rp

from a starting value of 0.3 d−1 to a value of 0.5 d−1, at a rate of 0.005 d−1d−1, on

Day 20.

Note that equation (5.4) is a model for the mean field density of phytoplankton

and zooplankton. The spatial structure of the zooplankton population is accounted

for only within the larval growth models.

The larval growth and plankton models are linked via predation on the zooplank-

ton population by the fish larvae. As described in the previous subsection, the mean

and variance of the encounter rates of fish larvae with their zooplankton prey are

dependent on Z(t), the density of zooplankton at time t. For Model 1, the number

of zooplankton removed by predation (Rtotal) in a unit time is given by

Rtotal =
N
i=1

E(X(t))i + (V ar(X(t))i)
1/2ξi(t),

where E(X)i and V ar(X)i are the mean and variance of the encounter rate, defined

in Section 5.2.1, for larva i (out of N) and the ξis are the values picked from the

standard random normal distribution at that point in the simulation.

For Model 2,

Rtotal =

N
i=1

ηi(t),

where the ηi are the values picked from a negative binomial distribution with param-

eters θ and k, defined in Section 5.2.1.

We wish to evaluate the eÿect of variable phytoplankton abundances travelling

91



CHAPTER 5. PHYTOPLANKTON BLOOMS, ZOOPLANKTON . . .

up through the trophic levels to determine fish larval recruitment, and how this eÿect

varies depending on when the larvae hatch in reference to the phytoplankton bloom

(the match/mismatch hypothesis (Cushing, 1975); see Chapter 4 and (Burrow et al.,

2011)). We force a phytoplankton bloom by increasing the growth rate rp from a

starting value of 0.3 d−1 to a value of 0.5 d−1, at a rate of 0.005 d−1d−1, on Day 20 of

a 250 day period. A batch of larvae then hatches on one specific hatch day from Day

0 to Day 250, and their recruitment success is calculated by counting what fraction

of the initial number of larvae reach recruitment mass Mrec before dying.

As discussed in the introduction to this chapter, the onset of a phytoplankton

bloom can vary interannually by as much as six weeks. To investigate what eÿect this

variability in bloom timing can have on the variability of fish larval recruitment, and
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Figure 5.3: An example of a phytoplankton bloom in the P-Z model, in the absence

of fish larvae. A bloom was triggered by increasing the phytoplankton growth rate rp

from a starting value of 0.3 d−1 to a value of 0.5 d−1, at a rate of 0.005 d−1, on Day

20.
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how this depends on when the larvae hatch, the forcing of the phytoplankton bloom

is made stochastic. We introduce a second independent variable, a “force day”, which

is picked from a normal distribution with mean 40 and variance 10, and the phyto-

plankton growth rate rp is increased as described in the previous paragraph. This

gives a realistic range of around 60-70 days on which the onset of the phytoplankton

bloom will occur. The value of the force day is constrained to be greater than zero

(if a force day < 0 is picked, that force day is set to be Day 0).

For each hatching day (every tenth day over a 250 day period), 1000 random

samples of the force day are generated. For each force day, the growth trajectories

of 1000 larvae were simulated using an Euler-Maruyama scheme, or a fixed time step

scheme (for growth Models 1 and 2 respectively), and the recruitment probabilities

calculated as described above. This is eÿectively generating recruitment data over

a 1000 year period (assuming statistically stationary conditions) with the annual

plankton bloom occurring on a random day each year, within a constrained spawning

window.

5.3 Results

5.3.1 The role of timing of hatching

Figure 5.4 shows results for fish larvae growing according to Model 1, in a homoge-

neous prey field (V=1), and patchy prey fields with patch length scale of 10m and

20m, for diÿerent initial larval densities. Figure 5.6 shows the results for fish larvae

growing according to Model 2, for three diÿerent values of the overdispersion param-

eter k. A phytoplankton bloom was forced on Day 20 in all cases. Results were

calculated by simulating 1000 individual larvae growing and predating on a zooplank-

ton population, which in turn feed on a phytoplankton population. Examples of the

phytoplankton-zooplankton dynamics underlying Figures 5.4 and 5.6 are shown in

Figures 5.5 and 5.7, for a homogeneous prey field, with larvae hatching on Days 50,

100 and 150, with initial larval densities of 1 larva m−1, 10 larvae m−1, and 50 larvae
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m−1.

Figures 5.4 and 5.6 indicate that there is an optimum hatching window during

which recruitment is greater than zero. As anticipated from examination of Figure 5.1,

recruitment numbers in patchy environments are always lower than in a homogeneous

environment. Patchiness in the prey field has a more negative eÿect for larval hatching

after the peak in prey availability.

The results also demonstrate that the initial larval density can have an eÿect on

recruitment. For both models we see a decline in the length of the optimal hatching

window as initial larval density increases. This is consistent with the results shown

in Fig. 6 of James et al. (2003).

5.3.2 Variability in bloom timing

Figures 5.8 and 5.9 shows the recruitment probabilities for stochastic onset of plank-

ton blooms, with the day of initiation of bloom forcing being drawn from a normal

distribution with mean 40 and variance 10. Each box plot represents 1000 instances

of the stochastic force day, with recruitment probabilities averaged over 1000 larvae

growing according to Model 1 (5.1) for each instance. The black dots mark the mean

recruitment probability for each hatching day. Figures 5.8a) and 5.9a) are for larvae

growing in a homogeneous prey environment, with initial larval densities of N0 = 1

and N0 = 50 respectively. Figures 5.8b) and 5.9b) are for larvae growing in a patchy

prey environment with a patch length scale of 20m, with initial larval densities of

N0 = 1 and N0 = 50 respectively.

For larvae growing in a homogeneous environment, with an initial density of 1

larva m−3, the highest mean recruitment is achieved by those hatching on Days 130-

150. For larvae growing in a patchy environment with patch length scale 20m, the

highest mean recruitment is achieved by those hatching in Day 130, with the mean

recruitment being lower for the hatch days on either side. If a phytoplankton bloom is

forced on the expected force day (i.e. Day 40), the corresponding peak in zooplankton

density occurs around Day 130. A patchy environment seems to not only decrease the
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Figure 5.4: Recruitment values for larvae growing in a homogeneous environment

(crosses), larvae growing in a patchy environment with a patch length scale of 10m

(circles, and larvae growing in a patchy environment with a patch length scale of

20m (triangles). Initial larval density N0 was a) 1 larva m−3, b) 5 larva m−3,, c)

10 larvae m−3, d) 50 larvae m−3. A phytoplankton bloom was forced by increasing

the phytoplankton growth rate on Day 20 (see Figure 5.5 for the plankton dynamics).

Results were calculated by simulating 1000 individual larvae growing and predating on

a zooplankton population, which in turn feed on a phytoplankton population.
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Figure 5.5: Phytoplankton (P) and zooplankton (Z) trajectories for a selection of the

results shown in Figure 5.4. A phytoplankton bloom was forced by increasing the

phytoplankton growth rate on Day 20. a)-c) show the P-Z trajectories for an initial

density of 1 larva m−3, d)-f) for an initial density of 10 larvae m−3, and g)-i) for an

initial density of 50 larvae m−3. The batches of larvae were introduced on either Day

50 (a),d),g)), Day 100 (b),e),h)) or Day 150 (c),f),i)).
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Figure 5.6: Recruitment values for larvae growing in an overdispersed, negative-

binomially distributed prey field, for diÿerent values of the overdispersion paramater

k. A smaller value of k indicates a greater degree of patchiness. Initial larval density

N0 was a) 1 larva m3, b) 5 larvae m−3, c) 10 larvae m−3, d) 50 larvae m−3. A

phytoplankton bloom was forced by increasing the phytoplankton growth rate on Day

20 (see Figure 5.7 for the plankton dynamics). Results were calculated by simulating

1000 individual larvae growing and predating on a zooplankton population, which in

turn feed on a phytoplankton population.
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Figure 5.7: Phytoplankton (P) and zooplankton (Z) trajectories for a selection of the

results shown in Figure 5.6. A phytoplankton bloom was forced by increasing the

phytoplankton growth rate on Day 20. a)-c) show the P-Z trajectories for an initial

density of 1 larva m−3, d)-f) for an initial density of 10 larvae m−3, and g)-i) for an

initial density of 50 larvae m−3. The batches of larvae were introduced on either Day

50 (a),d),g)), Day 100 (b),e),h)) or Day 150 (c),f),i)).
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Figure 5.8: Recruitment results for initial larval density of 1 m−3, for a) a homoge-

neous prey field (V = 1), b) a patchy prey field with V = 0.5, L = 20. A phytoplank-

ton bloom was forced, with the day of initiation of bloom forcing being drawn from

a normal distribution with mean 40 and variance 10. Each box plot represents 1000

instances of the stochastic force day, with recruitment probabilities averaged over 1000

larvae growing according to Model 1 (5.1) for each instance. The black dots mark the

mean recruitment probability for each hatching day.
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Figure 5.9: Recruitment results for initial larval density of 50 m−3, for a) a homoge-

neous prey field (V = 1), b) a patchy prey field with V = 0.5, L = 20. A phytoplank-

ton bloom was forced, with the day of initiation of bloom forcing being drawn from

a normal distribution with mean 40 and variance 10. Each box plot represents 1000

instances of the stochastic force day, with recruitment probabilities averaged over 1000

larvae growing according to Model 1 (5.1) for each instance. The black dots mark the

mean recruitment probability for each hatching day.
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maximum achievable recruitment, it also means larval hatching must be more precisely

timed to achieve this maximum. Recruitment variability is also higher around the

peak hatch days in the patchy environment. This result holds for both initial larval

densities simulated.

For an initial larval density of 50 larvae m−3, the highest mean recruitment has

shifted and is achieved by those hatching on Day 120. The highest mean recruitment

is also lower than that for an initial larval density of 1 larva m−3, and the period

over which high recruitment is achieved is shorter. Recruitment variability around

the optimal hatching day is much higher than in the case of low larval density, but

is reduced for hatching days later than the optimum. Patchiness in the prey field

decreases recruitment similarly to the results in Figure 5.8b).

The corresponding results for Model 2 with an initial larval density of 1 larva

m−3 are shown in Figure 5.10. As in the previous results, a phytoplankton bloom

was forced, with the day of initiation of bloom forcing being drawn from a normal

distribution with mean 40 and variance 10. Each box plot represents 1000 instances

of the stochastic force day, with recruitment probabilities averaged over 1000 larvae

growing according to Model 2 (5.3) for each instance. The black dots mark the

mean recruitment probability for each hatching day. Recruitment probabilities were

calculated for a near-homogeneous environment with k = 100 (Figure 5.10a) and for

an overdispersed, patchy environment with k = 10 (Figure 5.10b).

5.4 Discussion

By coupling a stochastic larval growth model to a dynamic phytoplankton-zooplankton

model we have examined the roles of variability in phytoplankton bloom timing and

heterogeneity in the spatial distribution of zooplankton in the recruitment of fish

larvae.

When zooplankton patchiness is modelled as a Poisson encounter process, with

larvae encountering patches of prey, and prey within those patches, as a Poisson
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Figure 5.10: Recruitment results for initial larval density of 1 larva m−3, for larvae

growing in an overdispersed, negative-binomially distributed prey field, for diÿerent

values of the overdispersion paramater k. In a) k = 100, in b) k = 10. A phytoplank-

ton bloom was forced, with the day of initiation of bloom forcing being drawn from

a normal distribution with mean 40 and variance 10. Each box plot represents 1000

instances of the stochastic force day, with recruitment probabilities averaged over 1000

larvae growing according to Model 2 (5.3) for each instance. The black dots mark the

mean recruitment probability for each hatching day.
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process, we find that recruitment probabilities are reduced as the patch length scale

increases. Our results for a stochastically forced phytoplankton bloom suggest not

only that a patchy environment seems to decrease the maximum achievable recruit-

ment, but it also means larval hatching must be more precisely timed to achieve this

maximum.

These results for recruitment in a patchy environment are perhaps more in line

with what we would expect from observational data. In the case of a homogeneous

prey field, there is a clear hatching period for optimal recruitment, and recruitment

variability is much lower for this period, in comparison to other hatch days. If this

were the case in real ocean systems, we might expect that fish populations would have

evolved their spawning strategy so as to allow their larvae to hatch within this 20 day

window, and as a consequence we would not see the order of magnitude variability in

recruitment that we do observe. For the patchy environment, the optimal hatching

window is smaller, and recruitment variability within this window is of the magnitude

observed in real data. These results indicate that spatial heterogeneity in the prey

field is as important in determining fish larval recruitment as temporal heterogeneity.

An important aim of the research carried out in this chapter was to look for

possible evidence of heteroscedasticity (non-constant variance, see Chapter 4) in fish

recruitment. We hoped to find evidence of increased recruitment variability at low

stock sizes, as was proposed by Shepherd and Cushing (1990) and Minto et al. (2008).

Taking initial larval density as a proxy for spawning stock biomass, we found clear

evidence that spawning stock size does eÿect recruitment probabilities and variability,

however, the story from our results is not clear cut. We found that mean recruitment

probabilities in a variable environment were reduced for high initial larval densities

(50 larvae m−3). Recruitment variability was in fact increased around the optimal

hatching day, and was only less than that for the low initial larval density (1 larva

m−3) for hatching days some time after the optimum, where recruitment probabilities

were very low overall. We have confirmed that spawning stock biomass may aÿect

recruitment variability, but we may have to use more than one proxy to delve deeper
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into the story. Length of spawning period may be linked to the size of the spawning

stock, and it has been proposed that the duration of the spawning/hatching period

can have a substantial eÿect on recruitment variability (Mertz and Myers, 1994).

As larval density increased, the hatching of and predation by the fish larvae had

a greater eÿect on the plankton dynamics. For low initial larval densities (N0=1,5),

the larvae had little, if any, eÿect on the zooplankton, and therefore phytoplankton,

dynamics (Figure 5.5). For these cases, the feedback eÿects between the trophic

layers were negligable, and thus the results for recruitment will be similar to those in

Chapter 4 (and Burrow et al. (2011)), with the exception of the eÿect of patchiness.

For higher larval densities (N0=10,50), predation by the larvae had a considerable

eÿect on the zooplankton dynamics (Figure 5.5), and subsequently on the phyto-

plankton dynamics. In these cases the feedback between the trophic layers may have

played an important role in determining recruitment, and may explain the marked

diÿerence in recruitment probabilities between the cases for N0=1 and N0=50.

Results for growth in an overdispersed, negative-binomially distributed prey field

(Model 2) were very similar to those for growth in a Poisson patchy environment. This

could indicate that at the scale of larval growth and recruitment, it is the presence of

patchiness, rather than the specific distribution of these patches, that is important. It

should be noted, however, that the values we used for the over-dispersion parameter

k are not indicative of very overdispersed distributions. In fact, for k > 10 it is

dicult to tell the negative-binomial distribution apart from a Poisson distribution

(Bolker, 2007), and by its nature (the variance of the encounter rate being greater than

the mean when the volume taken up by patches is less than 1), the Poisson patch

encounter model is also overdispersive. The equivalence of the two larval growth

models was discussed in Section 5.2.2.

In contrast, the eÿect of larval hatching on the plankton dynamics was more pro-

nounced for Model 2 than Model 1. Even at low intial larval densities, the hatching

of larvae triggered a second plankton bloom (Figure 5.7). For higher initial densities,

the zooplankton population was completely depleted, leading to an explosion in the
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phytoplankton abundances. The diÿerence in the eÿects of larval hatching on the

plankton in the two models may be due to the explicit use of a negative-binomial

distribution in Model 2 (thus giving an integer number of zooplankton encountered

and consumed in a unit time). The extreme eÿect of larval predation on the plank-

ton dynamics using Model 2 indicates we should be cautious in our use of Model 2

in investigating the eÿects of zooplankton spatial distributions on fish recruitment.

Second phytoplankton blooms occuring shortly after the first are extremely rare, if

not unheard of, so the behaviour of the coupled model is not realistic. More work and

thought may be needed to model zooplankton populations using a negative-binomial

distribution.

It may be interesting to explore the consequences for recruitment for a value of

k ≤ 1 (k is often less than one in ecological applications (Bolker, 2007)), but, as

demonstrated in Figure 5.2, recruitment numbers were zero for k = 1, and would also

be zero for k < 1. However, when fitting negative-binomial distributions to data in

their study of plankton micropatchiness, Lough and Broughton (2007) found values

of k ranging from -26 up to 46, but no values for which |k| ≤ 1. We can therefore

consider the values of k used in this chapter to be within a realistic range.

The results in this chapter demonstrate the important roles of both temporal and

spatial heterogeneity in the determination of larval fish recruitment. This approach

to modelling variability in recruitment is complementary to the Ecosystem Approach

to Fisheries (Cury et al., 2005; Jennings and Rice, 2011). We have demonstrated that

plankton dynamics and trophic interactions are key determinants of recruitment vari-

ability; that is, we have demonstrated the importance of considering other ecosystem

elements when evaluating recruitment variability.
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Parameter Value Units Parameter Value Units

(larval growth) (Plankton)

βmin 0.135 - rP 0.3 - 0.5 d−1

βmax 0.480 - rZ 0.7 d−1

j 0.002 - P ∗ 5700 µgNm−3

M0 33.0 µg Pmax 108000 µgNm−3

Mrec 3165.0 µg δZ 0.05 -

A 2.60 µg1−B P0 4117.2 µgNm−3

B 0.67 - Z0 4950.3 µgNm−3

rL 0.12 d−1 µZ 0.012 d−1

 6.29 × 10−5 m2s−3 P0 4117.2 µgNm−3

v 1.5 l m Z0 4950.3 µgNm−3

R 0.75l m

l (2.01 × 10−3)M0.2234 m

µL 0.089 d−1

b 0.005 d−1

Table 5.1: Parameters used in the models and numerical simulations
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Chapter 6

Concluding Remarks

6.1 Summary of results

Using simple mechanistic models, this thesis has examined the role of various factors

in the determination of recruitment probabilities and recruitment variability.

In Chapter 2 we attempted to synthesise observational evidence of the non-

diÿusive distribution of planktonic predators and their prey in the natural environ-

ment with existing stochastic models, thereby characterising important ecological

processes at the population level. We demonstrated that, when generalising from a

stochastic diÿerential equation to a jump-diÿusion process, the individual-level pro-

cesses which generated the jump distribution could give rise to superdiÿusivity.

The model of saltatory foraging in Section 2.3 agrees with previous models of

cruise predators in questioning whether there is a generic advantage, in terms of mean

encounter rate, for a naive predator to move according to a Lévy walk. Furthermore,

we found no theoretical support for matching between exponents governing predator

and prey distributions in maximising mean prey encounter rates. However, when

interpreted in the context of a risk sensitive foraging strategy in a patchy environment,

our results showed that saltatory foragers may be at a significant advantage.

The results of coupling a fish larval growth model to a variable zooplankton model

inChapter 3 had interesting implications for the match/mismatch hypothesis (Cush-
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ing, 1975). The results from the step-function Z-dynamics model indicated that the

amount by which an individual larva’s recruitment probability is increased due to

environmental stochasticity is dependent on when the larva hatches relative to the

peak prey abundance.

When stochasticity in the timing of high zooplankton densities was introduced

in a possibly more realistic Gaussian Z-dynamics model, our results suggested that

recruitment probabilities are “optimised” when larvae hatch slightly before the ex-

pected time of peak zooplankton density. This result is supported by several empirical

studies (Buckley and Durbin, 2006; Platt et al., 2003; Wright and Bailey, 1996).

A pattern in recruitment variability was observed in our model results when the

duration of a period of high zooplankton density was linked to its timing. When

parameters were correlated so that early periods of high density were shorter, vari-

ability was greater for hatching days before the expected peak density day. When

early blooms periods of high density were longer, variability was greater for hatch-

ing days after the expected peak density day. This has interesting consequences for

spawning strategies: if an adult fish wishes to maximise both the mean and variance

of its oÿsprings’ recruitment (a risk spreading strategy (Real, 1980; Reddingius and

den Boer, 1970)) then this is more achievable in an environment where early periods

of high prey density are shorter.

In Chapter 4 we turned to examine the hypothesis of increased recruitment

variability at low stock sizes (a type of heteroscedasticity, or non-constant variance).

By investigating whether a heteroscedastic stock-recruitment model could be used

in single stock management, we demonstrated that the available stock-recruit time

series for individual populations are not long enough to accurately estimate parameter

values for such a model.

We also demonstrated that we should be cautious in applying the heteroscedastic

model in a fisheries management setting. In the case where η1 < 0 (see Chapter 4

for model details) there was little, if any, diÿerence between the MSYs calculated

using a fitted heteroscedastic model and a fitted Beverton-Holt model. In this case,
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this indicates that even if the underlying recruitment process is heteroscedastic, there

is no benefit in fitting the more complicated model for use in simple management

strategies.

We established that it may not be possible even to calculate a value for MSY when

η1 > 0, due to the properties of the heteroscedastic model. This again highlights

important limitations in a management setting. In the cases where an MSY could be

defined for the heteroscedastic management model, the estimated MSY values were

higher than those for the simple management model, which is also cause for concern.

The research conducted in Chapter 5 built on that of Chapter 3. A third trophic

level - phytoplankton - was introduced, utilising the excitable media model of Truscott

and Brindley (1994). We examined the roles of variability in phytoplankton bloom

timing and heterogeneity in the spatial distribution of zooplankton in the recruitment

of fish larvae.

When zooplankton patchiness was modelled as a Poisson encounter process, with

larvae encountering patches of prey, and prey within those patches, as a Poisson

process, we found that recruitment probabilities were reduced as the patch length

scale increased. Our results for a stochastically forced phytoplankton bloom suggested

that not only does a patchy environment seem to decrease the maximum achievable

recruitment, but it also means larval hatching must be more precisely timed to achieve

this maximum. Our results indicated that spatial heterogeneity in the prey field is as

important in determining fish larval recruitment as temporal heterogeneity.

For higher larval densities, we were able to observe the predation of the larvae

on the zooplankton, and the subsequent eÿects on the phytoplankton dynamics. In

these cases the feedback between the trophic layers may have played an important

role in determining recruitment, and may explain the marked diÿerence in recruitment

probabilities between the cases for low and high larval densities.

Results for growth in an overdispersed, negative-binomially distributed prey field

were very similar to those for growth in a Poisson patchy environment. This could

indicate that at the scale of larval growth and recruitment, it is the presence of
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patchiness, rather than the specific distribution of these patches, that is important. It

should be noted, however, that the values we used for the over-dispersion parameter

k are not indicative of very overdispersed distributions. In fact, for k > 10 it is

dicult to tell the negative-binomial distribution apart from a Poisson distribution

(Bolker, 2007), and by its nature (the variance of the encounter rate being greater

than the mean when the volume taken up by patches is less than 1), the Poisson patch

encounter model is also overdispersive.

6.2 Relevance to fisheries management

The models presented in this thesis are theoretical and may seem quite removed from

practical fisheries management. However, we believe the findings of this thesis, and in

particular the methods and models used, are relevant to the management of fisheries.

It is our belief that mechanistic models of this type are key to understanding the

factors underpinning fish stock stability and variability.

Standard stock recruitment models, such as the Beverton-Holt and Ricker mod-

els, have been central to fisheries modelling and management for decades. However,

these models were intended to portray factors controlling the long-term dynamics of

populations, not to provide short-term recruitment predictions (Fogarty et al., 1991).

In particular, considering the variability among individuals may reveal insights re-

garding the processes shaping year class strength that are not available from analyses

of population parameters and the dynamics of the averages (Rice et al., 1993).

Our approach to modelling variability in recruitment is complementary to the

Ecosystem Approach to Fisheries (Cury et al., 2005; Jennings and Rice, 2011). We

have demonstrated that plankton dynamics and trophic interactions are key deter-

minants of recruitment variability; that is, we have demonstrated the importance of

considering other ecosystem elements when evaluating recruitment variability.

Strong evidence exists for systematic changes in plankton abundances and com-

munity structure worldwide over recent decades (Hays et al., 2005), changes which

may increase and amplify with climate change. Improved technology allows us to
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collect high resolution data on the changes in phytoplankton abundances and dis-

tributions (Platt et al., 2007). Mechanistic models, such as those presented in this

thesis, can allow researchers to investigate how changes in the plankton will aÿect

fish populations.

A collective approach combining studies of mechanistic models, observational ev-

idence and statistics, and data-driven models could be a great advantage in the

build up to the review of the European Common Fisheries Policy in 2012 (Euro-

pean Commission, 2011).

6.3 Further research

There are two directions in which the research presented in this thesis could be de-

veloped in the future. The first is the introduction of a spawning period into the

models coupling larval growth to plankton dynamics. It has been proposed that the

duration of the spawning/hatching period can have a substantial eÿect on recruitment

variability (Mertz and Myers, 1994). There is growing evidence that phenotypic char-

acteristics, such as size and age, influence the timing and duration of spawning, and

the quality of the eggs produced (Wright and Trippel, 2009). Older, repeat spawners

are thought to spawn earlier and over a longer period than younger first time spawners

(Wright and Trippel, 2009). Protracted spawning can be viewed as a risk-spreading

strategy, attempting to reduce the variance in oÿspring survival (Biktashev et al.,

2003; Wright and Trippel, 2009).

Fishing reduces spawning stock biomass and skews the age distribution of a stock

towards earlier maturation at younger and smaller sizes (Anderson et al., 2008; Beau-

grand and Kirby, 2010). It is not unrealistic to propose that reducing a fish stock by

removing older, larger adults will reduce the length of the spawning season of that

stock, and perhaps delay the start of the season. This could have a large eÿect of

recruitment variability, and may be a cause of the increased recruitment variability

at low stock sizes observed by Minto et al. (2008). Therefore, one obvious further

development of the models presented in this thesis (the models used in Chapter 5, for
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example) would be to include a “spawning period” in constrast to the “point spawn-

ing” currently implemented in the models. This may provide more evidence for, and

go some way towards explaining, increased recruitment variability at low stock sizes.

The second extension would be to investigate the eÿects of temperature on larval

growth and plankton dynamics. It is vitally important to study the eÿects of temper-

ature on fish recruitment, as Global Circulation Models predict significant warming

across the globe under increasing levels of greenhouse gases (IPCC, 2007).

Changes in climate and temperature may eÿect fish recruitment both directly

through physiological processes, and indirectly by changing the composition of zoo-

plankton communities, which are the main food source for fish larvae (Olsen et al.,

2011). Through these two mechanisms, increasing global temperatures could have a

doubly negative eÿect on gadoid fish survival (Beaugrand et al., 2003). Firstly, tem-

perature is positively correlated to metabolic and energetic costs (Beaugrand et al.,

2003), so an increase in temperature would result in increased foraging and feeding

costs for fish larvae. Plankton fluctuations have also been shown to be highly cor-

related to sea surface temperature changes, with the availability of plankton prey

decreasing with increasing temperatures (Beaugrand et al., 2003). In fact, the anal-

yses of Beaugrand and Kirby (2010) suggest that the indirect eÿect of temperature

through plankton is likely a stronger determinant of recruitment than the direct ef-

fects on fish physiology. The models in this thesis have proved to be very ecient for

testing the eÿects of plankton changes on fish recruitment, thus making them suitable

for addressing questions relating temperature to recruitment.

Temperature and climate change may also link back to the first suggested ex-

tension of the models presented in this thesis. It is thought that temperature could

aÿect both the age and maturity and spawning times in fish stocks (Drinkwater,

2005). There are therefore several ways temperature could be included in our models

of larval growth and recruitment, thus allowing us to investigate the potential eÿects

of climate change on fish larval recruitment.
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A double barrier hitting time

problem

To address the possibility of negative mass in the model of Pitchford et al. (2005), we

can redefine the recruitment problem as a double barrier hitting time problem. The

gain in mass equation

M(t) = rt+ σB(t), M(0) = 0,

still holds, however in addition to the absorbing barrier atMmat, we now place another

absorbing barrier at −M0, where M0 is defined to be the initial mass of a single

planktonic fish larva. We wish to find the hitting time distribution for Mmat given

that the growth trajectory M(t) does not hit the barrier at −M0 earlier. Using the

methods of (Lin, 1998), we can derive this distribution:

ft̂mat
(t) = exp


Mmatr

σ2
− 1

2

 r
σ

2
t

 ∞
n=−∞

g(t; bn),

where

g(t;x) =
x√
2πt3

e−
x
2

2t , bn =
1

σ
(2n[Mmat +M0] +Mmat) ,

and

t̂mat = inf(t > 0 :M(t) =Mmat|M(s) > −M0, 0 ≤ s ≤ t)
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is the redefined hitting time. Taking the same simple mortality model as Pitchford

et al. (2005), we can arrive at the probability of maturation,

Pmat(r, σ) =


∞

0
ft̂mat

(t) exp(−µt)dt

=


∞

0
exp


Mmatr

σ2
− 1

2

 r
σ

2
t− µt

 ∞
n=−∞

g(t; bn) dt.

We can now repeat the results of Pitchford et al. (2005), to assess whether the

inclusion of an absorbing barrier at “zero” alters the conclusions. Figure A.1 shows

the results for the double barrier hitting time problem, for an initial mass of M0 = 2

(a) and b) and M0 = 10 (c) and d) in comparison to the single barrier problem.

For an initial larval mass of M0 = 2 the addition of the second absorbing bar-

rier can change the results of Pitchford et al. (2005), especially in the r = 2.5 case:

stochasticity is not necessarily beneficial to recruitment because it increases the prob-

ability of absorption at the lower barrier. For M0 = 10, the additional barrier does

not significantly aÿect the results for r = 5, and has only a small eÿect on the results

for r = 2.5.

The eÿect of the lower absorbing barrier is highly dependent on the value of M0,

even within a small range (as shown in Figure A.2). The parameters used in this

paper are chosen to be broadly representative of a fish larva reaching recruitment

mass after an average of 40 days (Pitchford et al., 2005). Values for M0 (relative to a

fixed Mmat = 200) in the literature can range over at least two orders of magnitude

e.g. M0 = 0.12 for bay anchovy Anchoa mitchilli larvae reaching metamorphosis

in 32 days, M0 = 22.3 for European plaice Pleuronectes platessa larvae reaching

metamorphosis in 100 days (Froese and Pauly, 2000) (www.fishbase.org). For species

and ecological scenarios where the starvation of larvae is known to be an ecologically

relevant process, the possibility of absorption at the lower barrier can be included

using the above methods. However, our overall conclusions regarding the role of
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Figure A.1: Examples of the eÿect of an additional absorbing barrier on the probability

of recruitment, for the drift-diÿusion model of Pitchford et al. (2005). In all graphs

σ=5 and a) M0=2, r=5, b) M0=2, r=2.5, c) M0=10, r=5, d) M0=10, r=2.5.
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superdiÿusive growth in the recruitment process are qualitatively unaÿected.
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Figure A.2: The dependence of the probability of recruitment on initial larval mass

M0 for the double barrier hitting time problem. In both graphs µ=0.1, σ=5 and a)

r=5, b) r=2.5.
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Binomial test and derivation of

expected recruitment

B.1 Binomial test

We carry out a binomial test (Siegel and Jr., 1988) to assess whether Minto et al.

(2008) found a statistically significant number of negative η1 values in their single

species analysis. η1 is the coecient of heteroscedasticity (non-constant variance),

and indictates which direction recruitment variance changes with stock size.

A total number of 148 η1 values were fitted to single species data sets. For an

underlying Beverton-Holt model (γ = −1 in equation (1)), 87 negative η1 values were
found. For an underlying Ricker model (γ = 0 in equation (1)), 101 negative η1 values

were found. For an underlying Schaefer model (γ = 1 in equation (1)), 104 negative

η1 values were found.

A one-sided binomial test is performed in R (R Development Core Team, 2007),

giving p-values of 0.01976, 5.3 × 10−6, and 4.4 × 10−7, for the underlying Beverton-

Holt, Ricker and Schaefer models respectively. This demonstrates that the number of

negative η1 values found is significant at the 5% level for the underlying Beverton-Holt

model, and significant at the 1% level for the underlying Ricker and Schaefer models.
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B.2 Derivation of expected recruitment

Following Minto et al. (2008) we suppose that the survival index ln(R/S) is normally

distributed with mean µ = ln (α)− ln (1 + βS) and variance σ2 (= exp (η0 + η1S) for

the heteroscedastic model). This implies

ln


R

S


∼ logN(µ, σ2).

Then, by the properties of the log-normal distribution,

E


R

S


= exp


µ+

σ2

2


.

Thus for a fixed stock size S the expected recruitment, E (R), is

E (R) = S exp


ln (α) − ln (1 + βS) +

σ2

2



=
αS

1 + βS
exp


σ2

2



for a Beverton-Holt recruitment model with constant variance, and

E (R) = S exp


ln (α)− ln (1 + βS) +

exp (η0 + η1S)

2



=
αS

1 + βS
exp


exp (η0 + η1S)

2



for the heteroscedastic recruitment model.
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Parameter estimates and

additional figures

C.1 Parameter estimates
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Cod Herring

α̂ β̂ η̂0 η̂1 α̂ β̂ η̂0 η̂1

“true” 0.55 0.86 -0.96 0.29 3.21 6.77 -0.53 -0.98

1 0.677 0.0186 -2.419 -0.206 2.584 4.511 -0.940 -0.720

2 0.703 0.193 -3.427 1.676 3.271 7.264 -0.945 -1.038

3 0.8 0.343 -3.527 1.621 6.228 12.173 -0.737 -0.532

4 0.535 0.394 -0.667 -0.491 4.632 11.743 -0.791 -0.684

5 0.651 0.994 -1.119 0.533 2.130 3.368 -0.879 -0.536

6 0.496 0.552 -1.312 0.461 3.077 6.445 -0.351 -0.329

7 0.743 1.683 -1.473 1.107 2.651 5.399 -0.760 -0.463

8 0.695 0.952 -0.925 0.270 4.192 7.869 0.225 -3.650

9 0.451 0.522 -1.139 0.493 2.242 3.878 -0.562 -1.663

10 0.439 0.574 -0.943 0.390 3.220 7.168 0.204 -2.644

Table C.1: “True” parameter values and parameter estimates for the heteroscedastic

stock-recruitment model (equation (4.1) in main text), for North Sea cod and herring.

Each cod data set had 43 data points (years), corresponding to the size of the original

North Sea cod data set. Each herring data set had 47 data points (years), correspond-

ing to the size of the original North Sea herring data set. Parameters were estimated

using the optim function in R (R Development Core Team, 2007).
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Cod Herring

α̂ β̂ σ̂ α̂ β̂ σ̂

“true” 0.55 0.29 - 3.21 6.77 -

1 0.681 0.029 0.283 2.561 4.425 0.551

2 0.693 0.157 0.293 3.509 8.219 0.524

3 0.808 0.370 0.278 6.446 12.870 0.629

4 0.556 0.488 0.632 4.701 12.031 0.598

5 0.667 1.080 0.662 2.177 3.546 0.585

6 0.492 0.531 0.588 3.135 6.687 0.791

7 0.867 2.441 0.654 2.646 5.379 0.629

8 0.679 0.875 0.678 3.045 4.467 0.645

9 0.434 0.421 0.647 2.114 3.440 0.577

10 0.430 0.518 0.694 4.897 13.660 0.733

Table C.2: Parameter estimates for the Beverton-Holt stock-recruitment model (with

dummy variance parameter σ2) for North Sea cod and herring. The Beverton-Holt

model was fitted to the ten generated heteroscedastic datasets, hence there is not a

“true” value for the variance parameter σ. Each cod data set had 43 data points

(years), corresponding to the size of the original North Sea cod data set. Each herring

data set had 47 data points (years), corresponding to the size of the original North

Sea herring data set. Parameters were estimated using the optim function in R (R

Development Core Team, 2007).
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Cod Herring

α̂ β̂ η̂0 η̂1 α̂ β̂ η̂0 η̂1

“true” 0.55 0.86 -0.96 0.29 3.21 6.77 -0.53 -0.98

1 0.569 1.082 -0.841 -0.106 3.261 6.633 -0.610 -0.790

2 0.562 0.730 -0.829 0.180 2.912 6.287 -0.469 -1.172

3 0.494 0.586 -1.044 0.372 3.295 7.428 -0.576 -0.895

4 0.614 1.097 -1.047 0.403 3.223 6.557 -0.545 -0.905

5 0.542 0.828 -0.911 0.181 2.707 5.425 -0.526 -0.989

6 0.555 0.792 -1.002 0.408 2.725 5.351 -0.380 -1.045

7 0.575 0.908 -1.123 0.510 3.447 7.163 -0.645 -0.902

8 0.592 0.972 -0.977 0.272 3.536 7.866 -0.474 -1.150

9 0.540 0.881 -0.907 0.176 3.262 6.668 -0.641 -0.793

10 0.601 0.987 -1.049 0.318 2.791 5.578 -0.773 -0.811

Table C.3: “True” parameter values and parameter estimates for the Minto stock-

recruitment model (equation (4.1) in main text), for North Sea cod and herring. Each

cod data set had 430 data points (years), and each herring data set had 470 data points

(years). Parameters were estimated using the optim function in R (R Development

Core Team, 2007).
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Cod Herring

α̂ β̂ η̂0 η̂1 α̂ β̂ η̂0 η̂1

“true” 0.55 0.86 -0.96 0.29 3.21 6.77 -0.53 -0.98

1 0.535 0.828 -0.955 0.259 3.090 6.420 -0.566 -0.948

2 0.544 0.829 -1.006 0.272 3.306 7.085 -0.509 -1.093

3 0.546 0.818 -0.992 0.328 3.304 6.990 -0.488 -1.031

4 0.560 0.915 -0.940 0.297 3.258 6.936 -0.538 -0.983

5 0.550 0.910 -0.990 0.323 3.305 7.137 -0.512 -0.932

6 0.562 0.900 -0.920 0.182 3.295 7.278 -0.517 -0.963

7 0.567 0.951 -1.020 0.292 3.098 6.429 -0.509 -1.043

8 0.579 1.014 -0.946 0.247 3.172 6.568 -0.586 -0.888

9 0.533 0.793 -0.958 0.319 3.263 6.952 -0.586 -0.871

10 0.557 0.886 -0.864 0.176 3.156 6.620 -0.508 -0.948

Table C.4: “True” parameter values and parameter estimates for the Minto stock-

recruitment model (equation (4.1) in main text), for North Sea cod and herring. Each

cod data set had 4300 data points (years), and each herring data set had 4700 data

points (years). Parameters were estimated using the optim function in R (R Devel-

opment Core Team, 2007).
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Cod Herring

α̂ β̂ η̂0 η̂1 α̂ β̂ η̂0 η̂1

“true” 0.55 0.86 -0.96 0.29 3.21 6.77 -0.53 -0.98

1 0.548 0.854 -0.962 0.279 3.220 6.830 -0.531 -0.970

2 0.553 0.873 -0.935 0.271 3.170 6.631 -0.512 -1.010

3 0.556 0.892 -0.947 0.255 3.129 6.770 -0.514 -0.990

4 0.560 0.915 -0.937 0.260 3.220 6.790 -0.554 -0.947

5 0.553 0.866 -0.963 0.300 3.240 6.680 -0.523 -0.980

6 0.554 0.883 -0.970 0.282 3.196 6.741 -0.533 -0.989

7 0.547 0.854 -0.949 0.271 3.223 6.770 -0.529 -0.975

8 0.555 0.873 -0.931 0.258 3.147 6.600 -0.520 -0.997

9 0.556 0.893 -0.959 0.273 3.259 6.930 -0.518 -0.974

10 0.556 0.899 -0.940 0.260 3.169 6.670 -0.547 -0.929

Table C.5: “True” parameter values and parameter estimates for the Minto stock-

recruitment model (equation (4.1) in main text), for North Sea cod and herring. Each

cod data set had 43000 data points (years), and each herring data set had 47000

data points (years). Parameters were estimated using the optim function in R (R

Development Core Team, 2007).
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Cod Herring

Beverton-Holt Heteroscedastic Beverton-Holt Heteroscedastic

“true” - 0.328 - 0.306

1 2.985 4.320 0.314 0.307

2 0.584 NA 0.259 0.266

3 0.367 NA 0.395 0.403

4 0.170 0.382 0.276 0.281

5 0.122 NA 0.317 0.315

6 0.089 NA 0.347 0.349

7 0.098 NA 0.290 0.288

8 0.162 0.493 0.432 0.381

9 0.080 NA 0.310 0.287

10 0.071 NA 0.214 0.321

Table C.6: Maximum sustainable yields for North Sea cod and North Sea herring, for

the Beverton-Holt and heteroscedastic parameter estimates and management models.
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C.2 Additional figures
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Figure C.1: α parameter estimates (dots) for a) North Sea cod and b) North Sea

herring. Parameters were estimated using the optim function in R (R Development

Core Team, 2007). The real values of α are shown by the dashed line.
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Figure C.2: β parameter estimates (dots) for a) North Sea cod and b) North Sea

herring. Parameters were estimated using the optim function in R (R Development

Core Team, 2007). The real values of β are shown by the dashed line.
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Figure C.3: η0 parameter estimates (dots) for a) North Sea cod and b) North Sea

herring. Parameters were estimated using the optim function in R (R Development

Core Team, 2007). The real values of η0 are shown by the dashed line.
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strategies. Physical Review Letters 88 (9), 097901.

Bartumeus, F., M. G. E. da Luz, G. M. Viswanathan, and J. Catalan (2005). Animal

search strategies: a quantitative random walk analysis. Ecology 86, 3078–3087.

Beaugrand, G., K. M. Brander, J. A. Lindley, S. Souissi, and P. C. Reid (2003).

Plankton eÿect on cod recruitment in the North Sea. Nature 426, 661–664.

Beaugrand, G. and R. R. Kirby (2010). Climate, plankton and cod. Global Change

Biology 16, 1268–1280.

Begon, M., J. L. Harper, and C. R. Townsend (1996). Ecology. Individuals, populations

and communities. Oxford: Blackwell Science Ltd.

Benhamou, S. (2007). How many animals really do the Lévy walk? Ecology 88 (8),
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