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Abstract

Solving real-world combinatorial problems is involved in many industry fields to minimise

operational cost or to maximise profit, or both. Along with continuous growth in computing

power, many asset management decision-making processes that were originally solved by

hand now tend to be based on big data analysis. Larger scale problem can be solved and

more detailed operation instructions can be delivered.

In this thesis, we investigate models and algorithms to solve large scale Geographically

Distributed asset Maintenance Problems (GDMP). Our study of the problem was motivated

by our business partner, Gaist solutions Ltd., to optimise scheduling of maintenance actions

for a drainage system in an urban area. The models and solution methods proposed in the

thesis can be applied to many similar issues arising in other industry fields.

The thesis contains three parts. We firstly built a risk driven model considering ve-

hicle routing problems and the asset degradation information. A hyperheuristic method

embedded with customised low-level heuristics is employed to solve our real-world drainage

maintenance problem in Blackpool. Computational results show that our hyperheuristic

approach can, within reasonable CPU time, produce much higher quality solutions than

the scheduling strategy currently implemented by Blackpool council.

We then attempt to develop more efficient solution approaches to tackle our GDMP.

We study various hyperheuristics and propose efficient local search strategies in part II.

We present computational results on standard periodic vehicle routing problem instances

and our GDMP instances. Based on manifold experimental evidences, we summarise the

principles of designing heuristic based solution approaches to solve combinatorial problems.

Last bu not least, we investigate a related decision making problem from highway

maintenance, that is again of interest to Gaist solutions Ltd. We aim to make a strategical

decision to choose a cost effective method of delivering the road inspection at a national

scale. We build the analysis based on the Chinese Postman Problem and theoretically proof

the modelling feasibility in real-world road inspection situations. We also propose a novel

graph reduction process to allow effective computation over very large data sets.

3



4



Contents

Abstract 3

Contents 5

List of Tables 11

List of Figures 13

Acknowledgements 17

Author’s declaration 19

1 Introduction 21

1.1 Motivation and research target . . . . . . . . . . . . . . . . . . . . . . . . . 21

1.2 Achievements and thesis overview . . . . . . . . . . . . . . . . . . . . . . . . 23

2 Real-world complex routing problem 25

2.1 Vehicle routing problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.1.1 Common models and exact methods . . . . . . . . . . . . . . . . . . 26

2.1.2 Heuristic methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.2 VRP with interesting features . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.2.1 Periodic vehicle routing problems . . . . . . . . . . . . . . . . . . . . 38

2.2.2 Vehicle routing problems with profits . . . . . . . . . . . . . . . . . . 40

2.2.3 Heterogeneous vehicle routing problems . . . . . . . . . . . . . . . . 41

2.2.4 Dynamic and stochastic vehicle routing problems . . . . . . . . . . . 42

2.3 Real-world vehicle routing problems . . . . . . . . . . . . . . . . . . . . . . 44

2.3.1 Common techniques for solving real-world problems . . . . . . . . . 46

2.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5



Contents

3 Techniques applied in heuristic search 49

3.1 Local Search (neighbourhood search) . . . . . . . . . . . . . . . . . . . . . . 49

3.1.1 Search within a neighbourhood . . . . . . . . . . . . . . . . . . . . . 51

3.2 From heuristics to hyperheuristics . . . . . . . . . . . . . . . . . . . . . . . 53

3.2.1 Low-level heuristics design . . . . . . . . . . . . . . . . . . . . . . . . 54

3.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

I Geographically Distributed Asset Maintenance Scheduling 57

4 A gully-pot system maintenance scheduling problem 59

4.1 Background information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.1.1 Preventative and corrective maintenance approaches . . . . . . . . . 60

4.1.2 Case studies of geographical distributed maintenance problem . . . . 61

4.2 A risk driven model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.2.1 Problem analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.2.2 General model of the risk driven asset maintenance scheduling . . . 65

4.3 An application to gully-pot system maintenance . . . . . . . . . . . . . . . 67

4.3.1 Estimating the risk impact per gully-pot . . . . . . . . . . . . . . . . 67

4.3.2 Estimating the process of a gully-pot blocking . . . . . . . . . . . . 68

4.3.3 Other parameter settings for gully-pot system maintenance . . . . . 71

4.4 Conclusion and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5 Risk driven analysis of a manual strategy 73

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.2 Evaluation of maintenance schedule strategy quality . . . . . . . . . . . . . 74

5.3 Simulation of current manual scheduling strategy . . . . . . . . . . . . . . . 74

5.3.1 Reduce the problem size . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.3.2 Generate preventative route set . . . . . . . . . . . . . . . . . . . . . 76

5.3.3 Generate reactive routes set . . . . . . . . . . . . . . . . . . . . . . . 77

5.3.4 Produce schedule manually . . . . . . . . . . . . . . . . . . . . . . . 77

5.4 Simulation assumptions and environment settings . . . . . . . . . . . . . . . 78

5.5 The impact of parked vehicles . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.6 What if we could do condition-based maintenance (CBM)? . . . . . . . . . 81

5.6.1 Reliability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.6.2 Can we reduce maintenance frequency when providing CBM? . . . . 86

6



Contents

5.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

6 Optimisation of a gully-pot system maintenance scheduling 91

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

6.2 Solution approach – predictive scheduling strategy (PSS) . . . . . . . . . . 92

6.2.1 Solution representation . . . . . . . . . . . . . . . . . . . . . . . . . 92

6.2.2 Candidate route set management . . . . . . . . . . . . . . . . . . . . 93

6.2.3 Producing a schedule . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

6.3 Risk driven analysis of PSS . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

6.3.1 Data & parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

6.3.2 Impact of planning horizon |W | on risk management in different en-

vironments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

6.3.3 Effect of maintenance policies on risk in continuous time . . . . . . . 104

6.3.4 What-if questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

6.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

II Heuristic Search Methods with Respect to PVRP and GDMP 117

7 Hyperheuristics and local search operators for PVRP 119

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

7.2 Choosing the right hyperheuristic structure . . . . . . . . . . . . . . . . . . 120

7.3 Hyperheuristic methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

7.3.1 LLH selection in HyperPerturbation . . . . . . . . . . . . . . . . . . 122

7.3.2 Search in HyperImprovement . . . . . . . . . . . . . . . . . . . . . . 122

7.4 Solve PVRP using hyperheuristics . . . . . . . . . . . . . . . . . . . . . . . 126

7.4.1 Solution representation . . . . . . . . . . . . . . . . . . . . . . . . . 126

7.4.2 Initialisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

7.4.3 Low-level heuristics designed for PVRP . . . . . . . . . . . . . . . . 127

7.4.4 Partially destructive/constructive moves for re-initialisation . . . . . 130

7.4.5 Summary of LLH repository for PVRP . . . . . . . . . . . . . . . . 131

7.4.6 Algorithm frameworks . . . . . . . . . . . . . . . . . . . . . . . . . . 132

7.5 Experiments and analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

7.5.1 Problem instance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

7.5.2 Random vs learning based selection strategies . . . . . . . . . . . . . 134

7.5.3 Impact of algorithm framework . . . . . . . . . . . . . . . . . . . . . 135

7



Contents

7.5.4 Scalability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

7.5.5 LLH usage analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

7.5.6 Comparison between hyperheuristics and other meta-heuristics . . . 141

7.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

8 A dynamic multi-arm bandit neighbourhood search 145

8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

8.2 Background knowledge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

8.3 Dynamic multi-arm bandit neighbourhood search . . . . . . . . . . . . . . . 148

8.3.1 D-MABNS overview and framework . . . . . . . . . . . . . . . . . . 148

8.3.2 Decision making . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

8.3.3 Dynamic neighbourhood management . . . . . . . . . . . . . . . . . 151

8.4 An application to maintenance scheduling . . . . . . . . . . . . . . . . . . . 156

8.4.1 Problem description . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

8.4.2 GDMP solution approach . . . . . . . . . . . . . . . . . . . . . . . . 156

8.4.3 Local search moves . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

8.4.4 Computational results for GDMP . . . . . . . . . . . . . . . . . . . . 158

8.4.5 Other search strategies between neighbourhoods . . . . . . . . . . . 167

8.4.6 Comparison to traditional hyperheuristic . . . . . . . . . . . . . . . 168

8.5 An application to PVRP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

8.5.1 Using D-MABNS as an improvement heuristic in a hyperheuristic . 170

8.5.2 Computational results for PVRP . . . . . . . . . . . . . . . . . . . . 171

8.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

III Large-scale Road Inspection Problem 177

9 Efficient road inspection 179

9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

9.1.1 Road networks and representations . . . . . . . . . . . . . . . . . . . 180

9.1.2 Analysis of bi-directional and one-pass approaches . . . . . . . . . . 181

9.1.3 Solution of the Chinese Postman Problem . . . . . . . . . . . . . . . 183

9.2 Finding optimal inspection routes . . . . . . . . . . . . . . . . . . . . . . . . 185

9.2.1 Graph reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

9.3 Experimental set-up and results of real-world data set . . . . . . . . . . . . 188

9.3.1 Results comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190

8



Contents

9.4 Experiments of simulated data set . . . . . . . . . . . . . . . . . . . . . . . 194

9.4.1 CPU time results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

9.4.2 Distance saving results . . . . . . . . . . . . . . . . . . . . . . . . . . 197

9.5 Estimated cost savings of one-pass road monitoring . . . . . . . . . . . . . . 197

9.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198

10 Thesis conclusions and future work 201

Appendix A 209

List of Abbreviations 213

Bibliography 215

9





List of Tables

2.1 Features of real-world vehicle routing problems . . . . . . . . . . . . . . . . 44

4.1 Average daily risk impact estimation of each gully-pot . . . . . . . . . . . . 68

4.2 Risk driven model, PVRP and TOP . . . . . . . . . . . . . . . . . . . . . . 72

5.1 Simulation settings for the risk driven analysis (1) . . . . . . . . . . . . . . 82

6.1 Simulation settings for the risk driven analysis (2) . . . . . . . . . . . . . . 102

6.2 The effect of planning horizon on corrective maintenance performance . . . 104

6.3 Agility analysis of different maintenance policies . . . . . . . . . . . . . . . 107

6.4 Average number of gully-pots serviced per day by policy 2 and 4 . . . . . . 108

6.5 Operation costs of gully-pot maintenance . . . . . . . . . . . . . . . . . . . 108

6.6 Simulation setting for the risk driven analysis in recovery scenarios . . . . . 110

7.1 LLH Repository used in our PVRP hyperheuristics . . . . . . . . . . . . . . 131

7.2 Summary of HyperILS implemented. . . . . . . . . . . . . . . . . . . . . . . 132

7.3 Information on PVRP instances . . . . . . . . . . . . . . . . . . . . . . . . . 134

7.4 Perfomance comparion – simple hyperheuristics VS. learning based hyper-

heuristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

7.5 Performance comparsion between different hyperheuristc frameworks . . . . 136

7.6 Variations of VND L. (The HyperILS labels are described in Table 7.2) . . 136

7.7 Performance of hyperheuristics compared with meta-heuristics . . . . . . . 143

8.1 Data set information and CPU time allowed for D-MABNS experiments . . 159

8.2 D-MABNS parameter settings . . . . . . . . . . . . . . . . . . . . . . . . . . 159

8.3 Summary of local search moves for PVRP . . . . . . . . . . . . . . . . . . . 171

8.4 Performance of MAB based algorithms compared with meta-heuristics . . . 175

9.1 Distribution of vertex degrees in seven road networks . . . . . . . . . . . . . 182

11



List of Tables

9.2 Summary of the experiments designed for CPT calculation . . . . . . . . . 189

9.3 Computational time of CPT deriving of seven road networks . . . . . . . . 192

9.4 Distance and distance saving of the CPT one-pass route . . . . . . . . . . . 193

9.5 Vertex degree distributions for generated graphs . . . . . . . . . . . . . . . 194

9.6 CPU time for CPT tour extraction on generated random graphs . . . . . . 196

9.7 Example of degree distribution changing after each graph reduction stage . 196

A.1 Best found solution of PVRP instance (p04) . . . . . . . . . . . . . . . . . . 209

A.2 Information of PVRP street-style and benchmark instances . . . . . . . . . 210

A.3 Performance of D-MABNS compared with meta-heuristics . . . . . . . . . . 212

12



List of Figures

1.1 Geographically distributed gully-pots (a small area in Stockport, UK) . . . 22

2.1 An example of CVRP and its solution . . . . . . . . . . . . . . . . . . . . . 26

2.2 Clarke-Wright algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.3 Two possible 3-opt moves . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.4 An example of 2-relocate move . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.5 An example of 3-cross-exchange move. . . . . . . . . . . . . . . . . . . . . . 34

2.6 An example of 2-opt* move. . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.7 Dynamic planning for future tasks of a single vehicle. . . . . . . . . . . . . . 43

2.8 From laboratory VRPs to real-world VRP applications . . . . . . . . . . . . 45

4.1 Classification of maintenance strategies . . . . . . . . . . . . . . . . . . . . . 60

4.2 Gully pots’ risk impact distribution in Blackpool . . . . . . . . . . . . . . . 69

4.3 Probability of a gully-pot being blocked since last maintenance action . . . 70

5.1 Reduce the size of a gully-pot system maintenance problem . . . . . . . . . 76

5.2 Seasonal calls and blockages as a percentage of the total number of gully-pots in

Blackpool. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.3 The average daily risk using the manual maintenance schedule . . . . . . . 80

5.4 Performance of the manual scheudling strategy in normal scenario . . . . . 82

5.5 Performance of the manual scheudling strategy in recovery state . . . . . . 83

5.6 Average daily surface water flooding risk in the normal scenario . . . . . . . 85

5.7 Performance of the manual scheduling strategy with different working fre-

quency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.8 Daily risk over a simulation of five years using the manual scheduling strategy

(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.9 Daily risk over a simulation of five years using the manual scheduling strategy

(2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

13



List of Figures

5.10 Peak risk value using different working frequency for a gully-pot system with

full sensoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

6.1 Solution representation and data structure for storing candidate routes . . . 93

6.2 Overview of system operation . . . . . . . . . . . . . . . . . . . . . . . . . . 95

6.3 Effects of limiting computation time for different planning horizons . . . . . 101

6.4 Impact of planing horizon on maintenance performance in different scenarios 103

6.5 Policy performance in the normal scenario . . . . . . . . . . . . . . . . . . . 105

6.6 Daily risk change over 4 years in the normal scenario using different policies 106

6.7 How do different policies use their time to do maintenance? . . . . . . . . . 108

6.8 Geographic distribution of service frequency over a 4-year simulation . . . . 109

6.9 Annual operation cost and surface water flooding risk caused by clogged

gully-pots for the different policies . . . . . . . . . . . . . . . . . . . . . . . 110

6.10 Recovery speed using different maintnenance policies . . . . . . . . . . . . . 111

6.11 How do different policies use their time to recover from very bad initial

conditions? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

6.12 The comparsion between the predictive and manumal scheduling strategies 113

7.1 Overview of LLH management of learning based hyperheuristics . . . . . . 123

7.2 An example of service pattern modification . . . . . . . . . . . . . . . . . . 128

7.3 Overview of PVRP solvers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

7.4 Framework variations of HyperILS . . . . . . . . . . . . . . . . . . . . . . . 133

7.5 Examples of four types of spatial distributions in the PVRP instance set. . 135

7.6 Hyperheuristics performance for different types of PVRP . . . . . . . . . . 137

7.7 Performance of hyperheuristics tested on PVRP with various sizes . . . . . 138

7.8 First improvement LLHs usage for different types of problems . . . . . . . . 139

7.9 Performance of RLFW2(30%) and VNSr(R) using different subset of LLHs 140

7.10 Proportion of fitness value improved by each first improvement LLH . . . . 141

7.11 Impact of removing Pa 2SW on four hyperheuristics over all PVRP instances 142

8.1 Search strategies on an optimisation problem with two variables, x1, x2 ∈ Z 146

8.2 The search strategies of VND and of D-MABNS . . . . . . . . . . . . . . . 149

8.3 Examples of different reward functions . . . . . . . . . . . . . . . . . . . . . 152

8.4 Neighbourhood Updating . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

8.5 Effect of reward function with different neighbourhood pruning parameter

settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

14



List of Figures

8.6 A snapshot of two neighbourhood structures using or not using FSS . . . . 162

8.7 Impact of sorted features with different pruning parameter . . . . . . . . . . 163

8.8 The effect of parameter λ on environment change detection . . . . . . . . . 164

8.9 The effect of parameter λ on algorithm performance (1) . . . . . . . . . . . 165

8.10 The effect of parameter λ on algorithm performance (2) . . . . . . . . . . . 166

8.11 Performance comparison of different decision making strategies . . . . . . . 168

8.12 Performance of D-MABNS (labelled as UCB1), VNSr(R) and BEBO . . . . 169

8.13 Comparing single runs of D-MABNS, VNSr(R) and BEBO. . . . . . . . . . 170

8.14 Algorithm framework for solving the PVRP . . . . . . . . . . . . . . . . . . 171

8.15 Impact of neighbourhood pruning on a PVRP benchmark instance . . . . . 172

8.16 PVRP sorting effects: examples of current-solution neighbourhoods . . . . . 173

9.1 Common road types in urban areas and the corresponding graph representation180

9.2 4-lane single carriageway, 2-lane dual carriageway . . . . . . . . . . . . . . . 180

9.3 Crescents and the corresponding graph representation . . . . . . . . . . . . 180

9.4 Cul-de-sac and the corresponding graph representation . . . . . . . . . . . . 181

9.5 Proof of Lemma 9.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

9.6 Systematic reduction of an undirected graph . . . . . . . . . . . . . . . . . . 185

9.7 Computational time of CPT deriving tested on the six road networks . . . . 191

9.8 Original maps and reduced graphs for Southend and Warrington road networks193

9.9 Distance saving using the one-pass route instead of bi-directional strategy

on the randomly generated graphs . . . . . . . . . . . . . . . . . . . . . . . 197

A.1 Effect of feature sorting strategy . . . . . . . . . . . . . . . . . . . . . . . . 211

A.2 The effect of environment change detection parameter λ on the algorithm

performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211

15





Acknowledgements

I firstly would like to thank my main supervisor, Dr Fiona Polack for her guidance, support

on the research and help with writing the thesis. Very importantly, her encouragement helps

me to go through the journey of EngD tasks. I would also like to thank my co-supervisor

Professor Peter Cowling for his supervision and help during my entire EngD.

I am also very grateful to my industrial partners, Gaist Solutions Ltd., for providing

real-life data and information for this research. Especially, I would like to thank Dr Stephen

Remde and Steve Birdsall from Gaist, for their supervision, domain knowledge support and

the invitations to many research meetings with local councils in the UK. Without their help,

many research tasks could not go forward.

I would also like to thank the Engineering and physical sciences research council (EP-

SRC) for the funding of this research project.

I would also like to thank my colleagues and friends in Artificial Intelligence group, for

their discussions and inspirations from various research domains. These discussions give

me a general view about many related techniques that can be applied in solving different

interesting problems. Especially, I would like to thank my friend, Philip Mourdjis, for his

countless discussions and supports during my research.

Finally, I would like to thank my parents for their supports and love throughout my

life.

17





Author’s declaration

I declare that this thesis is a presentation of original work and I am the sole author. All

information in this thesis has been presented in accordance with academic rules. The

research in this thesis includes work that has been previously published or submitted for

publication.

The following papers are about the modelling and solving of our drainage system main-

tenance scheduling problem using existing meta-heuristic and hyperheuristic approaches.

1. Chen, Y., Cowling, P. and Remde, S. (2014). Dynamic Period Routing for a Complex

Real-World System : A Case Study in Storm Drain Maintenance. In Evolutionary

Computation in Combinatorial Optimisation. 8600: 109–120.

This paper introduces a very early version of the model for our drainage system

maintenance problem. In this work, some artificial resource data is used to deliver

analysis, due to the lack of specific domain knowledge at the time. To start the

research, I solved the maintenance scheduling problem for our drainage system with

half the number of asset points, using variable neighbourhood search (Hansen et al.

(2010)). In Part I of this thesis, a slightly modified model with deeper analysis of re-

source data is presented. Furthermore, techniques such as problem size reduction and

an enhanced problem solver allow us to deal with the full sized problem. Therefore,

this thesis only covers the new model and the analysis based on the new model.

2. Chen, Y., Polack, F., Cowling, P., Mourdjis, P. and Remde, S. (2016f). Risk Driven

Analysis of Maintenance for a Large-scale Drainage System. In Proceedings of 5th the

International Conference on Operations Research and Enterprise Systems: 296–303

(Won the best application paper award and included in Chapter 5.)

3. Chen, Y., Polack, F., Cowling, P., Mourdjis, P. and Remde, S. (2016e). Exploring

Techniques to Improve Large-Scale Drainage System Maintenance Scheduling Using

a Risk Driven Model. In Communications in Computer and Information Science

19



Author’s declaration

(submitted) (Included in Chapter 5.)

4. Chen, Y., Cowling, P., Polack, F., Remde, S. and Mourdjis, P. (2016b). Dynamic

optimization of preventative and corrective maintenance schedules for a large scale

urban drainage system. European journal of operational research 257(2): 494–510

(Chapter 6.)

In the following papers, we focus on the study of local search, meta-heuristic and hy-

perheuristic. To understand the behaviour of these algorithms, we test them on benchmark

problem instances that are closely related to our drainage system maintenance problem,

and on the problem itself.

1. Chen, Y., Mourdjis, P., Polack, F., Cowling, P. and Remde, S. (2016d). Evaluat-

ing Hyperheuristics and Local Search Operators for Periodic Routing Problems. In

Evolutionary Computation in Combinatorial Optimisation: 104–120 (Chapter 7.)

2. Chen, Y., Cowling, P., Polack, F. and Mourdjis, P. (2016a). A multi-arm bandit

neighbourhood search for routing and scheduling problems. Journal of Heuristics

(submitted) (Chapter 8.)

The content in Chapter 9 has also been described in following publications.

1. Chen, Y., Cowling, P., Remde, S. and Polack, F. (2016c). Efficient Large-scale Road

Inspection Routing. In Proceedings of 5th the International Conference on Operations

Research and Enterprise Systems: 304–312

2. Chen, Y., Polack, F., Cowling, P. and Remde, S. (2016g). A comparison of one-pass

and bi-directional approaches applied to large-scale road inspection. In Communica-

tions in Computer and Information Science (submitted)

20



Chapter 1

Introduction

1.1 Motivation and research target

Public asset management has asserted its importance in many sectors, including water

supply, energy distribution, waste disposal, transportation system management and many

others. In an advanced society, it is important to keep the city’s fundamental infrastructures

performing their designed functions.

In transportation system management, the performance of the highway network has a

serious impact on the social, local economic development and environmental well being of

the community (Department for Transport (2013)). Due to the nature of ageing behaviour

of highway infrastructure and severe weather effects such as flooding, maintenance planning

is vital to keep the highway system in good condition. Poor road conditions may cause

significant losses to business (Asphalt Industry Alliance (2010)) and increase the chances

of accidents and disruption.

The highway system includes assets such as carriageways, foot-ways, trees, lighting sys-

tem, street furniture and drainage system. In recent years, local authorities have increased

their awareness of the importance of asset maintenance, which aims to deliver more efficient

and effective approaches to manage the highway infrastructures through continuous plan-

ning. Many projects have been deployed in the UK to produce more “intelligent” services

that achieve the same outcome with lower cost or better outcomes. Example projects can

be found in highway asset management plans carried out in London (Transport For London

(2007)) and Hampshire Hamphshire (2016).

In cooperation with our business partner, Gaist Solutions Ltd., this research investigates

a maintenance scheduling task for a drainage system, and uses it as a case study to come

up with a general model for many Geographically Distributed asset Maintenance Problems
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(GDMP). The aim is to provide a data supported decision making system that delivers

robust asset maintenance operation strategies in various scenarios.

In many cases in the UK, the drainage system maintenance is also tightly coupled to

environmental concerns such as water safety issues (e.g. biochemistry) and flooding risk

control. Our research with Gaist seeks a solution that includes a high level estimation

and quantification of the condition of a local authority’s drainage system, and a detailed

despatching system that prioritises maintenance actions with consideration of the suitability

of the drainage system to deal with present and future flood risk (Department for Transport

(2012)).

In a typical city in the UK, a drainage system contains about 10,000 to over 100,000

gully-pots located across the city road network, as shown in Figure 1.1. A maintenance team

is responsible for ensuring that the gully-pot system performs its designed function – to help

the surface water to drain away from the roads quickly. To deliver an efficient and effective

service to such a system, there is an attempt to reduce the operation cost of visiting these

assets, focusing limited resources towards the greatest need. Many approaches could be

taken from operational research (OR) techniques; modelling of the vehicle routing problem

(VRP) is a good place to start. The VRP models are considered whenever multiple locations

need to be visited within one period or over multiple periods, given limited vehicle/human

resource. During the past decades, a considerable amount of research on vehicle routing

and scheduling problems has been carried out. In order to cope with real-world complexity,

additional features and constraints could be added to the standard VRP models to fit our

real-world needs.

Figure 1.1: Geographically distributed gully-pots (a small area in Stockport, UK)
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Solving a real-wrold OR problem consists both of problem modelling and solving the

modelled problem. The outcome of a problem solver is a series of actions that could be taken

in the real-world scenarios. Problem modelling and solving are equally important to deliver

a complete successful solution. Developing well-performing algorithms for optimisation in

OR has been much studied. However, research still faces challenges in tackling many of the

issues that arise from real-world applications, such as large scale, uncertain information,

limited computation power and so on. More effort should be devoted to developing more

efficient, robust, and easily applicable algorithms. The second aim of this thesis therefore

is to investigate the development of good solution methods for large scale optimisation

problems.

Meanwhile, we also address a related highway management issue, the road inspection

problem. It provides the latest key information on road and surrounding asset condition,

which helps decision making on the following maintenance planning. This is another specific

interest of our business partner, Gaist Solutions Ltd.. The interest of this study is not only

in the problem itself, but also in its large scale. We aim to make a strategic decision to

choose a cost-effective approach to inspect the road networks in the UK at a national scale.

1.2 Achievements and thesis overview

This thesis starts with an introduction to problem modelling and solving techniques for

general vehicle routing and scheduling problems in Chapter 2. Then Chapter 3 discusses

a number of advanced techniques that are studied in heuristic approaches, which inspires

the design of our algorithms later in the thesis. The rest of the thesis can be divided into

three parts, summarised as follows.

Part I We start with a comprehensive analysis of the drainage system maintenance prob-

lem in Chapter 4, and propose a risk-driven model that captures the critical features of

the problem. We believe this model could also be directly used or slightly modified to

solve similar asset maintenance problems mentioned in Section 1.1. We deliver a series of

simulation based analysis to discover the weakness of the current maintenance scheduling

strategy in Chapter 5. In further research, Chapter 6 introduces a predictive scheduling

strategy that automatically adjust the maintenance actions according to environment and

system status information changes. To deal with large scale problems, we propose a sys-

tematic way of grouping asset points, resulting in substantial reduction of problem size

and little effects to the solution quality. A detailed comparison of the long term impact
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between using different maintenance policies is also presented.

Part II Having proposed a successful heuristic based solution method to produce the

optimised schedule in Chapter 6, there remains ample room for improvement in method

development. In the later stages of my EngD journey, I moved towards designing heuristic

based search algorithms with machine learning. Hyperheuristics and statistical learning

based local search techniques are presented in Chapter 7 and Chapter 8, respectively. In

Chapter 7, we aim to discover the essential components of developing a successful hyper-

heuristic algorithm and to analyse the behaviours of hyperheuristics solving problems with

different characteristics. Detailed performance analysis of a range of hyperheuristics is pre-

sented. In Chapter 8, we propose a novel dynamic multi-arm bandit neighbourhood search

algorithm, which utilises some interesting properties of our drainage system maintenance

problem to deliver an efficient search process. This algorithm introduces various search

techniques and successfully out-performs many existing algorithms studied in the earlier

chapters.

Part III In the last part of this thesis, we focus on the road inspection problem. The

target is not to build a detailed vehicle dispatching schedule for daily inspection. Rather, we

consider a high level decision making in OR, to determine a cost effective way of delivering

the entire road inspection project (Chapter 9). More specifically, we compare the total

distance vehicles should travel using two potential road inspection approaches, one-pass

and bi-directional. In order to deal with very large-scale road networks, we develop a

graph reduction method that allows the accurate analysis of a problem that was previously

computationally infeasible. Our graph reduction approach does not lose any necessary

information to derive the exact solution. With assists from Gaist of domain knowledge,

we estimate an annual saving across all UK local authorities of £4.32 million, if the more

efficient one-pass road inspection strategy is applied. Gaist is now using our approach in

planning its national scale road inspection programme.
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Real-world complex routing

problem

Many real-world on-site service and maintenance problems are modelled as vehicle routing

problems with various objectives and complex constraints. The objective of this chapter is

to have an overview of how to model practical routing problems and discusses the solvers

that are commonly used. In order to do so, we firstly introduce the basic version of vehicle

routing problem (VRP). Then, four well-studied variations of VRP are introduced, as they

share some common features with our geographically distributed asset maintenance problem

(GDMP, Chapter 4). Finally, we summarise the aspects that need to be considered when

modelling real-world problems.

2.1 Vehicle routing problems

The VRP is often described as a problem of designing a set of optimal delivery routes from a

central depot or several depots to a number of geographically distributed customers subject

to constraints (Toth and Vigo (2002)). The most basic version of VRP, capacitated VRP

(CVRP), only considers the vehicle capacity constraints and one central depot. Figure 2.1

presents an example of CVRP and one of its feasible solutions.

Formally, let G = (V,A) be a complete graph, where V = {0, ...n} is the node set and

A is the arc set. There are i ∈ V/{0} customers to be served by a central depot 0, using

K independent vehicles of an identical capacity Q. Each arc (i, j) is associated with a cost

ci,j . If ∀ (i, j) ∈ A, ci,j = cj,i, this problem is a symmetric CVRP, and it is asymmetric

otherwise. Each customer i has a non-negative demand qi. To ensure feasibility, we assume

that ∀ i ∈ V, qi ≤ Q. The objective is to construct a set of least-cost routes that satisfies
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(a) Geographically distributed customers
and their demand information di

(b) Example of a feasible solution of the
CVRP in (a)

Figure 2.1: An example of CVRP and its solution. In this problem, we have three vehicles
to serve ten customers. Each vehicle has a capacity of 20. The demand of each customer
and their locations are illustrated in sub-figure (a). A feasible solution is presented in
sub-figure (b) and its total travel distance is 40. Distances are labelled next to each edge.

the following constraints:

1. Each route starts and ends at the depot, represented as a sequence r = (0, ., i, .., j, ., 0);

2. Each customer i is visited exactly once by exactly one vehicle;

3. The sum of demands of all customers visited by each vehicle does not exceed the

vehicle capacity.
∑

i∈r qi ≤ Q;

CVRP is one of the simplest, but still NP-hard (Toth and Vigo (2002)), variations of the

VRP. It was firstly defined by Dantzing and Ramser (1959). In the last half century, a large

quantity of solution methods have been proposed, including exact and heuristic methods.

Exact methods can obtain optimal solutions. However, this type of approaches is normally

used to solve small-sized instances. To solve large-scale problems, heuristic approaches

are often used. In the following subsections, we firstly introduce a few commonly used

mathematical models and exact methods to solve VRPs. Then we focus on the heuristic

approaches.

2.1.1 Common models and exact methods

In literature, a large quantity of mathematical models are proposed to solve the VRPs

since 1960s. Generally speaking, most of the models can be divided into three groups

(Laporte and Nobert (1987)): 1) vehicle flow formulations; 2) commodity flow formulations

and 3) set partitioning formulations. The first group of models, such as the two-index

26



Chapter 2. Real-world complex routing problem

and three-index vehicle-flow models for CVRP, are the most widely used by far. The

second group of formulations were firstly proposed by Garvin et al. (1957) in an oil delivery

problem. Compared to the vehicle flow formulations, the commodity flow formulations add

an associate flow variable with each arc (i, j), to emphasis how much of the demand destined

for a customer i travelled on arc (i, j). The commodity flow model can easily be transformed

to deal with the situation of heterogeneous fleet (Magnanti (1981)) and separable goods

delivery. The set partitioning formulations are often used to tackle larger VRPs. In the

following, we select a two-index vehicle flow model by Laporte et al. (1985) and a set

partitioning model by Balinski and Quandt (1964) to present in detail, due to their large

number of successful applications. For more examples of VRP models, we suggest a survey

paper by Laporte (1992).

2.1.1.1 Two-index vehicle-flow model of CVRP

Laporte et al. (1985) proposed the following two-index formulation for the symmetric

CVRP. Let the integer variable xi,j(i < j) represent the number of times that arc (i, j) ∈ A

is traversed in the solution.

minimise
∑

i<j;i,j∈V
ci,jxi,j (2.1)

∑
j∈V/{0}

x0,j = 2K (2.2)

∑
i<l

xi,l +
∑
j>l

xl,j = 2, ∀l ∈ V/{0} (2.3)

∑
i,j∈S

xi,j ≤ |S| − v(S), S ⊆ V/{0}, 2 ≤ |S| ≤ |V | − 2 (2.4)

xi,j ∈ {0, 1}, ∀i, j ∈ V/{0} (2.5)

x0,j ∈ {0, 1, 2}, ∀j ∈ V/{0} (2.6)

The objective function (2.1) is straightforward that aims to minimise the total cost

of arcs included in the solution. The constraint (2.2) ensures K number of vehicles are

used and the degree constraint (2.3) ensures each customer is visited exactly once in the
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solution. The constraint (2.4) is the route elimination formulation, where v(S) denotes the

minimum number of vehicles required to visit the node set S. The value of v(S) can be

obtained by solving a bin packing problem with the item set S and bins of capacity Q.

In the same paper, Laporte et al. (1985) described a constraint relaxation algorithm that

solved the problem with up to 60 nodes.

By adopting similar models, a large number of exact methods based on branch and

bound (B&B) have been developed. The key idea of B&B is to divide the search space

into sub-areas (branching). Then the evaluations of lower/upper bounds of these sub-

areas are calculated (bounding). If the evaluation value indicates that a sub-area does not

contain the optimal solution, the sub-area is pruned. A general approach to estimate a

bound is to solve a relaxed problem (such as removing or relaxing a constraint of an integer

linear programming model). Depending on the mechanism used to calculate the bounds,

algorithms in this family, such as branch-and-cut (e.g. Blasum and Hochstättler (2002);

Lysgaard et al. (2004)) and branch-and-price (e.g. Dell’Amico et al. (2006)), have been

successfully applied to vehicle routing problems.

2.1.1.2 Set partitioning model of CVRP

Another well known formulation of the CVRP is the set partitioning formulation, in which

all the feasible routes are enumerated (Balinski and Quandt (1964)). This model uses a

very different concept and its objective is to find an optimal set of routes that form a

feasible solution with minimum travelling cost. Let R denote the set of all feasible routes,

where each route r ∈ R does not exceed the vehicle capacity constraint. The cost of each

route is measured in distance cr. Note that cr is the cost of the shortest route that visits

all the customers included in r. A variable ari describes whether a customer i is visited by

route r. A decision variable xr equals 1 if route r is included in the solution and equals 0

otherwise. The model is presented as follows:

minimise
∑
r∈R

crxr (2.7)

∑
r∈R

arixr = 1,∀i ∈ V/{0} (2.8)

∑
r∈R

xr ≤ K (2.9)
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xr ∈ {0, 1}, ∀r ∈ R (2.10)

The objective function (2.7) selects a set of routes that minimise the total travelling

cost. Constraint (2.8) ensures each customer is served by one selected route. Constraint

(2.9) presents the maximum number of routes can be selected into the solution.

Using the set partitioning formulations to solve VRPs usually involves a very large set

of feasible routes, which makes the enumeration impossible. A natural way around the

difficulties is to use a column generation algorithm. An example solution procedure can be

found in Desrosiers et al. (1984). As one can expect that this model will work better on

more tightly constrained problems, as the number of feasible routes (columns) is smaller

(Laporte (1992)).

2.1.1.3 Further discussion

The progress made in the last ten years on the exact CVRP algorithms is considerable.

Various techniques are combined together to enhance exact solvers’ efficiency. Fukasawa

et al. (2006) combine branch-and-cut and column generation to generate more effective

bounds than each of those methods taken alone. This method is named as branch-cut-

and-price (Fukasawa et al. (2006)), and solves a number of previously unsolvable CVRP

benchmark instances. Subsequently, a number of improved implementations of branch-cut-

and-price algorithm have been developed in recent years (e.g. Ropke (2012); Pecin et al.

(2016)).

More details of these methods and recent surveys on exact methods for the CVRP and

its variations can be found in (Baldacci et al. (2007); Cordeau et al. (2007); Baldacci et al.

(2012); Poggi and Uchoa (2014)). To our knowledge, the state-of-the-art exact methods can

solve CVRP instances with 200 customers in a consistent way (Uchoa et al. (2016)). Some

larger instances (Golden et al. (1998)), ranging from 240 to 360 customers, are also solved

using branch-cut-and-price by Pecin et al. (2016). However, when we face larger scale real-

world routing problems (with over thousands of customers and more complex constraints),

even the best exact algorithm will face huge challenges. In addition, the computational

time needed for exact methods is significantly longer than heuristic based algorithms (next

section). In the experiment set by Uchoa et al. (2016)1, the average CPU time used to

solve CVRP instances with size from 150 to 300 customers is about 1,000 seconds, whereas

1These tests have been conducted on a Xeon CPU with 3.07 GHz and 16 GB of RAM, running under
Oracle Linux Server 6.4.
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heuristic based approaches (e.g. iterative local search) used on average about 5 seconds

to produce solutions that are less than 1% above optimal for the same instances. In this

thesis, we study a very large-scale GDMP, with about 30,000 nodes, and therefore we focus

on heuristic based approaches.

2.1.2 Heuristic methods

Heuristics play an important role in solving large-scale combinational optimisation prob-

lems. These methods can be considered as a search process that iteratively constructs or

modifies a single or several candidate solutions. Different heuristics apply different rules

to walk within the solution space. Comparing to exact approaches using systematic search

structure, heuristics usually use local information from recently checked solutions. To intel-

ligently and efficiently move towards good solutions is the key to the success of a heuristic.

Along with the evolution of heuristic solvers for VRPs, we have witnessed the develop-

ing trend from simple heuristics to hybridisation of several techniques initially developed

independently. This section aims to give a general view of using heuristic to solve VRPs.

In the following, we will introduce algorithms from constructive heuristics, improvement

heuristics and meta-heuristics. We will also briefly discuss the developing trend of heuristic

approaches. In the next chapter, we give a deeper discussion of more advanced techniques

designed to improve heuristic search efficiency.

2.1.2.1 Constructive heuristics

Constructive heuristics iteratively build a complete (usually feasible) solution from scratch.

The earliest research can be traced back to 1964, a distance saving heuristic proposed by

Clarke and Wright (1964). Later on, more constructive heuristics for VRP, such as inser-

tion heuristic (e.g. Christofides (1976a)) and two-phase heuristic (e.g. Gillett and Miller

(1974)) gradually appeared from 1970s to 1990s. In the recent years, constructive heuristics

are usually employed to generate an initial solution for improvement heuristics and meta-

heuristics. However, to improve search diversity, many modern meta-heuristics multi-start

the search from randomly generated solutions. Here, we present two representative algo-

rithms that are still widely applied in modern solvers.

The Clarke and Wright algorithm The Clarke-Wright algorithm (Clarke and Wright

(1964)) is designed to solve CVRP that starts from constructing n routes r = (0, i, 0)

for a problem with n customers (i = 1, ..., n). There is no limitation on the number of
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vehicles used in the solved problem. The heuristic process repeatedly merges two selected

routes r1 = (0, ..., i, 0) and r2 = (0, j, ..., 0) into a single route r′ = (0, ..., i, j, ..., 0), if the

new generated route is still feasible (i.e. load constraint satisfied). When two routes are

merged, a distance saving si,j = ci,0 + c0,j − ci,j is generated, as shown in Figure 2.2. At

each iteration, the feasible merger with the largest savings is performed. The algorithm

stops when there are no more routes that can be feasibly merged.

(a) Construct back and forth route for each
customer from deport

(b) Identify “saving” for each pair of cus-
tomers si,j = ci,0 + c0,j − ci,j ; take shortcuts
and merge them into a single route, as long
as the resulting route satisfy constraints

Figure 2.2: Clarke-Wright algorithm

The Clarke-Wright heuristic is a greedy algorithm that builds good routes at the

beginning and consequently gives less consideration to the routes generated later. To

overcome this problem, Gaskell (1967) and Yellow (1970) modify the saving function to

si,j = ci,0 + c0,j − λci,j . The larger the λ, the less the impact from the relative location of

the depot. Further enhancement of this saving function has also been made by Paessens

(1988) and by Altnel and Öncan (2005), adding terms such as the difference in distances

from customers to the depot (i.e. |c0,i − cj,0|) and customer demand information to the

function. Although the algorithm of Altnel and Öncan (2005) performs the best on bench-

mark problems among these algorithms according their experiments, when employed as an

initial solution generator for meta-heuristics, there is no obvious advantage. In Chapter

6, a slightly modified Clarke-Wright algorithm is applied to generate parts of the initial

solution for our GDMP.

Insertion heuristics Insertion heuristics (IHs) are also widely used today, especially for

solving VRP with tight constraints such as time window constraints for each customer (e.g.
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Campbell and Savelsbergh (2004); Brysy and Gendreau (2005); Joubert and Claasen (2006);

Meidan et al. (2010); Hosny (2011)). Except when employed as an initial routes generator,

IHs are also often used as solution repair or reconstruct operators in meta-heuristics (e.g.

Adaptive Large Neighbourhood Search Ropke and Pisinger (2005)).

IHs build a feasible solution by repeatedly and greedily inserting an un-routed customer

into a partially constructed solution. Different IHs use different criteria to make the two

key decisions at each insertion-iteration: 1) which un-routed customer to insert? 2) where

to insert the customer in the partial solution?

One of the most used IHs is the sequential insertion heuristic (Mole and Jameson

(1976)). The sequential insertion heuristic expands one route at a time. At each insertion-

iteration, the algorithm selects the customer with the least cost that is measured by the

increased distance from the insertion of the customer to the route, and the distance between

the customer and the depot.

It is rather flexible to modify the customer selection and insertion criteria according to

problems. Therefore, IHs can easily be tailored to handle VRP with complex constraints.

Some example applications can be found in the fleet size and mix vehicle routing problem

(Liu and Shen (1999)) and VRP with back hauling (Salhi and Nagy (1999)).

2.1.2.2 Improvement heuristics

Classical improvement heuristics adopt a local search (neighbourhood search) concept that

perturbs a complete solution to improve its quality slightly at each iteration. A large

number of moves to modify the structure of the solution have been proposed since 1960s.

Until now, almost all successful VRP related problem solvers still use some of these basic

moves, as they are efficient ways to manipulate routes structures. In this section, we review

a few basic but commonly used moves for VRPs.

Classical improvement heuristics for VRPs perform moves on either a single route or

multiple routes at a time, classified as intra-route and inter-route moves, respectively. In

the first case, the λ-opt is one of the famous moves, proposed by Lin (1965). In each step,

λ edges are replaced by other λ edges to achieve a shorter route. Figure 2.3 illustrates two

possible changes after applying a λ-opt (λ = 3) move. The λ-opt is based on the concept of

λ-optimality, larger values of λ are more likely to lead to an optimal final route (Helsgaun

(2000)). Due to the fact that a larger value of λ results in a higher computational cost, the

values λ = 2 and λ = 3 are mostly used in literature.

Motivated by finding a good λ with consideration of both computational time and
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result quality, Lin and Kernighan (1973) modify the value of λ dynamically throughout the

search.

Or (1976) introduces an Or-opt move that attempts to improve a route by replacing a

chain of consecutive nodes in a different position in the route.

(a) Before (b) After(a) (c) After(b)

Figure 2.3: Two possible 3-opt moves

For VRPs with multiple constructed routes, the inclusion of inter-route moves is nec-

essary to build more solutions structures. A wide range of moves has been developed (e.g.

Dror and Levy (1986); Fahrion and Wrede (1990); Savelsbergh (1991)). Examples include

moving a chain of customers from their current route to another one (Relocate, shown in Fig-

ure 2.4), exchanging positions of two chains of customers from two routes (Cross-exchange,

shown in Figure 2.5), and removing two edges from different routes and reconnecting the

parts differently into two new routes (2-opt*, shown in Figure 2.6). To specify the length

of chains modified in Relocate and Cross-exchange moves, we parametrise them by defin-

ing the longest chain changed in the move, denoted as i-relocate and i-cross-exchange. A

comprehensive survey about moves for VRPs is provided by Groër et al. (2010).

A complete search of neighbour solutions that are generated by operating one specific

move on the current solution is computational expensive, especially for large-scale routing

problems. In recent years, applications of VRPs tend to capture more complex features

of real-world problems, so customised moves are usually designed to satisfy some specific

constraints. To tackle these problems, a set of moves is designed as a toolbox. Comparing

to classical improvement heuristics, recent literature places more effort on designing sophis-

ticated management methods to apply the set of moves in an intelligent way. In Chapter

3, a further discussion is given for several advanced neighbourhood search techniques and

strategies of adopting appropriate moves at different search stages.
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(a) Before (b) After

Figure 2.4: An example of 2-relocate move. A chain contains customer (5,6) is relocated
from route r2 to r1

(a) Before (b) After

Figure 2.5: An example of 3-cross-exchange move.

2.1.2.3 Meta-heuristics

Meta-heuristic is a core research domain in solvers for combinatorial optimisation problem.

A large number of meta-heuristic algorithms have been proposed for VRPs in the last

twenty years. With respect to the classical improvement heuristics, meta-heuristics aim

to search the solution space more widely and thoroughly. Several representative meta-

heuristics will be introduced here. Each of them proposes a distinctive way of escaping

from valleys of the search landscape and many of these methods have been successfully

applied to a large variety of optimisation problems. Surveys of meta-heuristics for VRPs

can be found in Cordeau et al. (2005) and in Vidal et al. (2013). Existing meta-heuristics

can be generally classified as local search based methods and population based methods.
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(a) Before (b) After

Figure 2.6: An example of 2-opt* move.

Local search based methods Local search based meta-heuristics have similarity to

some classical improvement heuristics, as a way of iteratively exploring the neighbourhoods

of a single incumbent solution to improve its quality. However, meta-heuristics introduce

various mechanism to avoid the search becoming stuck in local optima.

A simple, but widely used, strategy is to apply a large random modification to the

incumbent solution. Iterated local search (ILS) (Lourenço et al. (2010)) is a good example

of using this technique. ILS applies successively an improvement phase, which ends up in a

local optimum, and a perturbation phase to escape from the local optimum. Even though

using the word “perturbation”, the strength of the perturbation move should not be so

weak that it always leads the search back to the same local optimum in the improvement

phase. A similar strategy is to restart the search from a new randomly constructed solution.

Another idea is to temporarily accept worse solutions. Typical examples include simu-

lated annealing (SA)(Kirkpatrick (1984)) and tabu search (TS) (Glover (1990a)).

At any time during SA, a worse solution is accepted with a probability governed by a

statistical process. Intuitively, SA favours a more random exploration of the solution space

by frequently accepting solution degradation at the beginning of a search process. Then,

SA gradually decreases the probability of accepting worse solutions to focus on moving

towards good solutions. Some early applications using SA to solve CVRP can be found

in Robuste et al. (1990); Alfa et al. (1991); Osman (1993). In recent literature, the SA

strategy and its variations is usually employed by more sophisticated meta-heuristics and

hyperheuristics as a solution acceptance criteria (e.g. Hemmelmayr et al. (2009)).

Tabu search (TS) (e.g. Glover (1990b); Toth and Vigo (2003); Cordeau and Mais-

chberger (2012)) introduces memory techniques to maintain information about the search
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trajectory. At each search step, TS replaces the incumbent solution with the best neigh-

bour solution which has not been tabued, even if the neighbour solution is worse than

the incumbent solution. To avoid cycling search, TS uses a short-term memory to reject

solutions that contain recently examined tabu elements (tabued solutions). TS also allows

exceptions to accept a tabued solution if it satisfies some aspiration criteria, such as “the

best found solution”. To enhance the robustness of TS, a number of long-term memory

strategies are proposed, either to diversify the search by moving to a less explored area of

the search space, or to intensify the search in a promising region. In the applications of TS

for VRPs (e.g. Taillard (1993); Xu and Kelly (1996); Cordeau et al. (1997); Brandão and

Mercer (1997); Alonso et al. (2007)), designing of tabu elements is critical for the success of

TS. Therefore, problem domain knowledge and expert experience is very important here.

Evolving with the increasing complexity of combinatorial optimisation problems, a

novel, simple but powerful search schema is proposed by Hansen and Mladenović (2001),

called Variable neighbourhood search (VNS). VNS works with a set of neighbourhoods

(N1, N2, ..., Nk), which is often (but not necessarily) defined based on the use of move

types (e.g. N2opt, NRelocate). Starting from an incumbent solution x, standard VNS applies

a perturbation (or shaking) (x′ ← RandomPick(Ni(x))) and then an improvement local

search (x′′ ← LS (Nj(x
′))), at each search iteration. Shaking is essential for VNS schema as

this mechanism leads to the successive local searches starting at a slightly different point

in the solution space. VNS iteratively examines solutions from these neighbourhoods in a

systematic fashion. VNS is a parameter free algorithm, which makes it relatively easy to

implement for various problems. Many successful VNS applications for VRPs can be found

in (Fleszar et al. (2009); Hemmelmayr et al. (2009); Pirkwieser and Raidl (2010)).

Population based methods Whereas local search based methods generate a single

search trace, population based methods manage a set of solutions all the time by generating

several new solutions out of combinations of existing ones.

One of the most famous members of this class is the genetic algorithm (GA), which can

be traced back to work from 1950s and was popularised by Holland (1962). GAs mimic

the process of natural selection and improve solution quality by applying elitist selection,

recombination (or crossover) and mutation techniques. Though GA has been successfully

applied to many other problem domains, traditional GA shows slow convergence when

applied to VRPs (Vidal et al. (2013)). To make GA work for VRPs, researches have added

various enhancement mechanisms, such as a local search phase (so called “education”) (e.g.

36



Chapter 2. Real-world complex routing problem

Moscato (1989)). By hybridising with other search techniques, enhanced GA can achieved

impressive success in solving VRPs (e.g. Bell and McMullen (2004); Nagata et al. (2010);

Vidal et al. (2012))

Ant Colony Optimization (ACO) is another nature inspired population-based method

that has been successfully applied to many optimisation problems. When ants search for

food, each one marks the travelled paths with an amount of “pheromone” depending on

the quality of the food source. Applied to VRPs, each ant applies constructive heuristics

with information collected from the search history (i.e. “pheromone”). Comparing to GAs,

ACO labels good elements (e.g. edges of a good route) for constructing solutions, whereas

GAs look for elite complete solutions. Some successful VRP applications can be found in

Matos and Oliveira (2004); Yu and Yang (2011). As with many applications using GAs,

ACO is often combined with local search methods to enhance the solution quality.

2.1.2.4 Further discussion

In recent years, there is a growing interest in combining various search techniques to deliver

high quality solutions. In the section above, we have noted many examples of combining

population based methods with local search. The recombination of large parts of good

solutions (used in population based method) quickly finds high-quality starting points for

a later local search procedure. And local search intensively guides the search into local

optima. This complementary combination may explain the success of recent hypird-GAs

(e.g. Nagata et al. (2010); Vidal et al. (2012)).

Another trend in hybridisation combines meta-heuristics with exact solvers (e.g. Mixed

integer programming, constraint programming). Usually, exact solvers are used to solve

a sub-problem during the search, such as reconstructing promising elements of solutions

into complete solutions (e.g. Alvarenga et al. (2007)), or searching within a very large

neighbourhood (e.g. Salari et al. (2010)). For solvers designed for more complex VRPs,

exact methods are often used to solve a sub-problem of the original problem, such as the

customer assignment problem for periodic VRP (e.g. Gulczynski et al. (2011); Crainic et al.

(2012)).

Meta-heuristics have experienced a big growth and achieved many successes in a variety

of VRP related problems. A large number of algorithms have been proposed. Each of

them presents its own specifications, resulting in different behaviours of walking within

the solution search space. Comprehensive discussion and detailed description of these

algorithms can be found in Talbi (2009).
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2.2 VRP with interesting features

In this section, we look at four well-studied variation of VRPs, each with additional inter-

esting features. Among these variations, the periodic vehicle routing problem has strong

similarities to our GDMP (Chapter 4). The other three VRPs also capture some important

properties of our problem.

2.2.1 Periodic vehicle routing problems

The Periodic Vehicle Routing Problem (PVRP) (Christofides and Beasley (1984); Chao

et al. (1995); Cordeau et al. (1997); Gulczynski et al. (2011)) is widely used as a mathe-

matical model for real-world problems, such as inventory servicing, periodic maintenance,

and on-site service planning. Case studies can be found in milk collection (Claassen and

Hendriks (2007)), periodical grocery supply (Gaur and Fisher (2004)), waste collection

(e.g. Teixeira et al. (2004); Shih and Chang (2001)), elevator maintenance (Blakeley et al.

(2003)), remote healthcare services (An et al. (2012)) and many others. For more informa-

tion, see the survey by Campbell and Wilson (2014).

A PVRP comprises K vehicles which can be used to service the demands of a set of

customers over a period of days. Each customer i has a set of available visit patterns,

denoted as Λi. For example, a customer might require two service visits per week, on

either Monday and Thursday or Tuesday and Friday, giving two available patterns. Each

PVRP has constraints that must be met: all vehicles start and end their journey at a single

depot; no more than K routes are built on each day; capacity restrictions of vehicles and

travelling duration are respected; a customer’s request should be serviced in one time slot

by one vehicle; only one service pattern λ ∈ Λi is chosen for each customer i. The PVRP

objective is to design a set of daily routes, comprising feasible patterns for each customer,

that minimises the total travelling cost and satisfies the PVRP constraints.

To solve PVRP-related problems, two main types of approach are commonly considered.

The first type of approaches (e.g. Alegre et al. (2007)) assigns customers to days according

to their service pattern and then solves a vehicle routing problem (VRP) for each day. Use

of this solving process transforms a PVRP to a multiple depot VRP (MDVRP) (Pisinger

and Ropke (2007)). The second type of approaches (e.g. Tang et al. (2007)) is to simplify

a PVRP to periodic travelling salesman problem (PTSP) by assigning customers to each

vehicle/salesman. Routes are then built up and scheduled to days. This second approach

is usually used when the service fleet is heterogeneous, or when strong ties exist between
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specific service personnel and customers.

Baldacci et al. (2011) propose a successful exact algorithm for solving the PVRP. The

fundamental idea uses bounding methods to generate a reduced problem from the original

problem, which ensures the the optimal solution of the reduced problem is also optimal for

the original problem. Then the reduced problem is solved by means of an integer linear

programming solver. To our knowledge, this paper presents the largest PVRP solved by

an exact algorithm, of 153 customers, and using about 14,500 CPU seconds 2.

Meta-heuristics, which are capable of solving large-scale real-world problems, are the

most common PVRP solvers in literature. Different meta-heuristics apply different search

strategies, resulting in variance in solution quality. Tested on benchmark instances with

customer numbers from 50 to about 400, meta-heuristic solvers are generally able to ob-

tain solutions within 2% of the best known solutions, using hundreds of seconds. Chao

et al. (1995) present a two-stage record-to-record algorithm that constructs solutions using

several local moves applied one after another. Cordeau et al. (1997) were the first to use

a tabu search heuristic for PVRP. During the search, infeasible solutions are allowed and

controlled using an adaptive penalty function. Alegre et al. (2007) apply a scatter search

framework (Laguna and Marti (2012)) to solve PVRP. The algorithm solves a problem

of assigning calendars to customers in a periodic vehicle loading problem (Delgado et al.

(2005)). Hemmelmayr et al. (2009) apply a VNS embedded with customer reassignment

and inter-route moves as “shaking” operators and intra-route moves for local search pro-

cess. Pirkwieser and Raidl (2010) add a coarsening and refinement process to VNS, called

multilevel VNS for PVRP.

More recently, hybrid meta-heuristics present very competitive results in terms of both

solution quality and computational time. Gulczynski et al. (2011) describe an integer

programming-based heuristic (IPH): in this approach, the reassignment and daily routing

processes are repeatedly applied until little or no improvement is found in the current

iteration, when a restart initial solution is generated. Gulczynski et al. (2011) report that

IPH out-performs the algorithms proposed by Chao et al. (1995); Cordeau et al. (1997);

Alegre et al. (2007); Hemmelmayr et al. (2009). Vidal et al. (2012) propose a hybrid genetic

algorithm that combines local search and sophisticated population management strategies

to guide the search, an approach shown to perform better than all the above algorithms.

Cordeau and Maischberger (2012) combine tabu search and iterated local search to give

a competitive, broad exploration of the search space. Crainic et al. (2012) propose a

2The experiments were performed on a Fujitsu TX200S3 server equipped with an Intel Xeon E5310
processor at 1.6 GHz and 8 Gb of RAM
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modular heuristic algorithm (MHA) that introduces a reference set to guide exploration

and exploitation during the search for solutions minimising the number of vehicles used. In

addition, the authors also present a self-learning mechanism that leads the search to assign

better customer visit patterns as the solution evolves.

2.2.2 Vehicle routing problems with profits

Another interesting additional feature to VRP is profit, which is the most significant con-

cern in many real-world applications. Some application examples include design of tourist

trips (Vansteenwegen and Oudheusden (2007)), collection of oil (Goncalves et al. (2005)),

and operations of a steel rolling mill (Balas (2007)). Recent reviews of VRP with profit

can be found in Vansteenwegen et al. (2011); Archetti et al. (2014).

Based on the number of vehicles used, the standard model of VRP with profits can

be classified as an orienteering problem (OP) (Golden and Wasil (1987)) and a team OP

(TOP) (Chao et al. (1996b)). In the OP, there is a set of N locations and each with an

associated profit pi. The travelling time between any two locations i, j ∈ N is denoted

as ti,j . There is one vehicle available, with a maximum route duration Tmax. The vehicle

should start and end its journey at pre-defined locations. The goal is to find a route that

visits some of the locations, in order to maximise the total collected profit while satisfying

the maximum duration constraint. The OP has several other names in literature such as

the selective travelling salesman problem (Laporte and Martello (1990)), and the maximum

collection problem (Kataoka and Morito (1988)). TOP extends OP by allowing at most K

vehicles to collect profit.

Compared to other VRP variations, there are two decisions made simultaneously in

VRP with profits: which locations to visit and in what order to visit them. The locations

each have an associated profit value, making it more or less attractive.

In early 1990s, several researchers proposed exact methods such as branch-and-bound

and branch-and-cut to solve the OP (e.g. Laporte and Martello (1990); Gendreau et al.

(1998a)). Along with the developing trend of heuristic and meta-heuristics, methods in-

cluding constructive heuristics, multiple stage improvement heuristics (e.g. Chao et al.

(1996a)), tabu search (e.g. Gendreau et al. (1998b)) and ant colony optimisation approach

(ACO) (e.g. Liang et al. (2002)) are gradually being applied to the OP.

In recent years, the literature has shown more interest in solving TOP and its variants

such as additional time window constraints of visiting each location (e.g. Vansteenwegen

et al. (2009b)). Meta-heuristics are the dominant solvers. A few example can be found
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in tabu search (e.g. Archetti et al. (2007)), VNS (e.g. Archetti et al. (2007)), and guided

local search (e.g. Vansteenwegen et al. (2009a)).

2.2.3 Heterogeneous vehicle routing problems

The standard orienteering problem above only considers vehicle duration constraints. In

many applications, the vehicle load constraint is equally important. Depending on the

various types of vehicles available in a fleet (not limited by the duration and load infor-

mation), a problem can be classified as a heterogeneous or a homogeneous VRP. Whereas

many standard VRPs study homogeneous problems, real-world problems often consider a

heterogeneous VRP.

In the literature of heterogeneous VRP, two major classes of models are defined: hetero-

geneous fleet VRP (HFVRP) and fleet size and mix VRP (FSMVRP). HFVRP considers

a problem when the fleet composition is given (e.g. Tarantilis et al. (2004)), whilst FS-

MVRP assumes infinite vehicles of each type (e.g. Choi and Tcha (2007)). HFVRP aims

to optimise the operational cost given existing vehicle resources. In comparison, FSMVRP

emphasises a strategic investment decision on an optimal fleet composition to deliver effi-

cient service.

Generally, heterogeneous VRP manages a heterogeneous fleet composed by M types of

vehicles. For each type m ∈ M , there is km number of vehicles available (in FSMVRP,

km = +∞, ∀m ∈M), each having a capacity Qm. A set of N customers are given and each

has a demand of qi from the depot. In addition, the travelling cost may depend on the

type of vehicle, denoted as cmi,j . In some variations of the heterogeneous VRP, an additional

fixed cost Fm is associated with each type of vehicles, which models rental or maintenance

costs. The goal is to find a set of routes that services all customers with the minimum

operational cost, subject to the capacity constraint and vehicle number constraint.

A more closely related variation to our GDMP (Chapter 4) is the site dependent VRP

(SDVRP) (Chao and Liou (2005)). In SDVRP, a limited heterogeneous fleet is given and

there is no fixed cost considered Fm = 0,∀m ∈ M . SDVRP uses a vehicle-independent

travelling cost, where cm1
i,j = cm2

i,j ,∀m1,m2 ∈ M . However, each customer is restricted to

the vehicle types. For example, a customer can be visited by m1 and m2 types of vehicle

(represented as Ai = {m1,m2}) and another customer can be visited by m1 and m3, etc..

Here, we can see a strong similarity between the SDVRP and the PVRP, in which an

assignment problem and a routing problem are involved. Cordeau and Laporte (2001)

show that the SDVRP can be converted into a special case of PVRP and they use the same
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solver designed for PVRP in a previous paper (Cordeau et al. (1997)) to tackle SDVRP.

Baldacci et al. (2008) provide a comprehensive survey of solutions to heterogeneous

VRP. Many of the proposed successful algorithms are adapted from solvers developed for

other VRP variants, such as record-to-record heuristic (Li et al. (2007)), tabu search (e.g.

Brandão (2011)) and hybrid ILS with VND (e.g. Penna et al. (2013)). Li et al. (2007)

adapt a record-to-record heuristic (RTR) for the VRP to handle the HFVRP. RTR can be

considered as a deterministic variant of simulated annealing. Two clearly defined search

stages, uphill and downhill (improvement) stages, are introduced by RTR. In the uphill

stage, a neighbour solution is accepted as long as it is not worse than the current (or best)

solution by x%. Brandão (2011) introduce a tabu search framework embedded with a

number of customised design for HFVRP, including design of moves, strategy of managing

the moves, attributes in tabu list and aspiration criteria, etc.. Penna et al. (2013) propose

an iterated local search (ILS) meta-heuristic which uses a variable neighbourhood descent

(VND) procedure, with a random neighbourhood ordering, in the local search stage.

2.2.4 Dynamic and stochastic vehicle routing problems

Along with the fast development of information technology, there is an increasing interest

in dynamic scheduling and routing problems. The most common scenarios of dynamism

emerge from taxi business (e.g. Caramia et al. (2002)), city logistics (e.g. Barceló et al.

(2007)) and vehicle routing in supply chain management (e.g. Giaglis et al. (2004)). In

recent years, applications in maintenance scheduling (e.g. Tagmouti et al. (2011)), have

also started to be aware of the dynamic features of real-world situations. Depending on the

problem scenario, the concept of dynamism has been introduced from various perspectives,

such as unknown time of demand arrivals, fluctuating travel time due to traffic, uncertain

service time at each site and changing service priority. A recent survey can be found in

Pillac et al. (2013).

By means of dynamic planning, we can change or update the plan during the execution

of the plan. Figure 2.7 illustrates a simple example of a dynamic vehicle routing problem

with only one vehicle to schedule.

To solve dynamic VRPs, an intuitive approach is to periodically solve a static problem

according to the current state information. The replanning time can be whenever the

available information changes (e.g. a task complete, new customer appeared), or at fixed

time intervals.

Another concept often involved in real-world dynamic VRPs is stochastic input infor-
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Figure 2.7: Dynamic planning for future tasks of a single vehicle.

mation, categorised as stochastic VRP (Gendreau et al. (1996)). In addition to the current

known information, stochastic VRP introduces additional uncertain information to the

problem. In real-world applications, the uncertain information could be obtained from es-

timation using historical domain knowledge. The motivation is to enhance the robustness

of a solution in an uncertain changing environment. A large body of literature has reviewed

dynamic and stochastic VRP. Here, we suggest a review paper (Larsen et al. (2008)) and

a book (Zeimpekis et al. (2007)) for detailed discussion of problems in this area.

Looking at the dynamic idea applied in situations closer to our GDMP (Chapter 4),

Angelelli et al. (2007) introduce a dynamic multi-period routing problem (DMPRP) where

a two time-slots scenario is analysed. At the beginning of the first time-slot, a set of orders

arrives that have to be serviced either immediately or in the next time-slot. Thus, the

decision should be made as to whether the requests should be postponed. The objective

of the problem is still to minimize the total distance travelled during the entire planning

horizon. The authors propose a SMART (p) algorithm that decides whether to postpone

the customers depending on a ratio of incremental distance after adding the customers.

A theoretical proof is given that p = 2 is an optimal algorithm for Euclidean distance

instances. As an extension of the previous work, Angelelli et al. (2009) further classifies

orders into on-line and off-line requests and replanning during the journey (diversion) is

allowed. Here, instead of simple rule based decision making, a heuristic based method,

VNS, is used to produce good solutions. Wen et al. (2010) solve a real-world variation

of DMPRP; whether to serve an order immediately is a vital decision in this case study.

Their tested instances have 10-day to 15-day planning horizons and 80 emerging orders

on average every day. A PVRP variation is solved every day in the horizon by applying

a three-phase rolling horizon heuristic, which includes a customer selection stage, a route
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optimisation stage with respect to the overall objective function and a post-optimization

stage for daily route distance minimisation.

2.3 Real-world vehicle routing problems

VRPs have attracted a lot of attention in the field of transport related operational research.

These problems are usually concerned with real-world applications where multiple locations

need to be visited. For example, a supermarket needs to plan the routes for delivering goods

to each customer; garbage collocation service predicts the quantity of garbage from each

site and plans the routes for collecting the garbage. Comparing to the CVRP, additional

features are captured in real-world applications using various constraints and sophisticated

objective functions, commonly known as rich VRP (Caceres-cruz et al. (2014)). In Table

2.1, we summarise six aspects that are usually considered when modelling a real-world

vehicle routing problem.

Table 2.1: Feature considerations when model a real-world routing problem

Concern aspect Description

Customer
Many features can be extracted from real-life, such as service type
(e.g. pick up, deliver), service time, vehicle type requirement and
cost/profit of visiting.

Vehicle/Technician

Homogeneous or heterogeneous fleet defined by features like ca-
pacity, service duration, type. In this context, a type of vehi-
cle/technician can only provide a certain type of service, such as
fixing an air conditioner.

Depot

Depot defines the starting and ending location of planned routes.
Multiple depots, and related features such as depot capacity can
be introduced. In open VRP, vehicles are not required to return
to the depot.

Planning horizon The objective is to optimise the operation over multiple periods.

Dynamic

During the planning process, not all information related to the
problem is revealed at the beginning. For example, the customers’
requirements appear over time when the vehicles have already been
sent to carry out tasks.

Objective

In a real-world scenario, the objective function can be very tricky
to design. There may be multiple objectives to optimise. In dif-
ferent situations, these objectives may or may not have direct im-
pact to each other. Common solutions include combining multiple
objectives into a single function, or solving each objective in a
different stage of an optimisation process.

In addition, multiple stakeholders are usually involved in real-world problem scenarios.

To understand the relation between all of their concerned problems is important. An

example scenario can be as follows. Department D1 has assigned budget B1 to survey road
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surface condition every year and department D2 has an assigned budget B2 to maintain

the drainage system in the urban area every year. Is it possible and beneficial to combine

these two problems? This topic is out of the scope of this thesis and more close to project

management. However, this is the type of problem that researchers need to be aware of

when considering solvers for real-world situations.

A number of survey papers attempt to classify the variants of VRPs (e.g Vidal et al.

(2013); Lahyani et al. (2015)). Here, we are more interested in the developing trend of

rich VRP and its applications in real-world scenario. We refer to the diagram proposed by

Caceres-cruz et al. (2014) (Figure 2.8). At the bottom of the diagram, many classical VRP

models and benchmark instances have been proposed. These models capture most of the

essential features of VRPs, but the benchmark instances have small size. These classical

models have clear mathematical definitions that allow theoretical analysis and comparison

between various algorithms proposed by different authors.

Figure 2.8: From laboratory VRPs to real-world applications (modified from Caceres-cruz
et al. (2014)).

To cope with more sophisticated scenarios emerging from real-world requirements (e.g.

Li et al. (2010)), we sometimes need to consider multiple related problems for the model,

such as container packing, inventory management, and the like. Moving to the third level

of VRPs (Figure 2.8), in order to understand the solution quality (or more correctly the

solution impact to real-world situations), problem solvers and simulation based analysis

are usually provided in literature (e.g. Faccio et al. (2011)). The solvers that are needed
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to deploy a VRP support system in real-world scenarios (top level, Figure 2.8), requires

sophisticated software engineering as well as advanced search techniques. These solvers

consider distributed computing, robustness of the system (e.g. more complex environment

than simulation, large-scale demands), safety concerns (e.g. route-planning in self-driving

vehicles), and so on.

In this thesis, we focus our research on the third level, using modelling and simulation

based approach to evaluate the impact of our heuristic solvers and to compare with the

manual scheduling strategies that are currently widely used in the corresponding field.

2.3.1 Common techniques for solving real-world problems

After analysing and modelling the given problems, we need to propose some realistic so-

lutions that can deal with challenges such as large-scale, uncertainty, real-time, etc.. Ac-

cording to our experience of solving drainage system maintenance scheduling and a road

inspection problem in this thesis, we summarise a few useful techniques for handling real-

world problems:

1. Problem size reduction. Existing methods (including both exact approach and heuris-

tics) are usually able to handle VRPs with less than 1,000 nodes in CPU minutes.

However, most of the real-world problems contain thousands of geographically dis-

tributed nodes. Depending on the CPU budget, efficient solvers are normally pre-

ferred. Pre-processing to decrease the problem size is usually more effective than

optimising algorithm. This is mainly because we are solving NP-hard problems (Toth

and Vigo (2002)). Common problem size reduction techniques include node clustering

(e.g. two-phase heuristics), node aggregating (e.g. Wen et al. (2011)), small rolling

horizon (e.g. Chen et al. (2014)), and so on.

2. Incrementally solving a problem with updated information. In a dynamic environ-

ment, at any instant time t, we can solve a small problem that starts the search from

historically built good solutions or good elements of solutions.

3. Good design of solution representation and neighbourhood structure. Heuristic based

approaches for VRPs normally require the design of local moves. It is important that

a sequence of moves can reach any feasible solution in the solution space. Also,

techniques like neighbourhood pruning (e.g. Toth and Vigo (2003)), statistically

examining promising neighbours (Chapter 8) usually significantly helps to enhance

the search efficiency for large problems.
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4. Estimation. In many real-world scenario, not all information (e.g. customer demands)

is known when solving the problem. To better solve dynamic and uncertain real-world

problems, solvers often integrate estimation techniques with heuristics for scheduling

and routing (e.g. Nuortio et al. (2006)).

2.4 Summary

This chapter has reviewed problems that can be commonly modelled as a vehicle rout-

ing problem and its variations. We start with the very basic capacitated VRP to get

an overview of the elements (e.g. nodes, arc, load information) included in these prob-

lems. Then we reviewed various interesting elements added to CVRP (e.g. multi-period,

heterogeneous fleet), that capture different scenarios from real-world experiences. Exact

approaches like branch-and-cut algorithm, heuristic based approaches like local search and

genetic algorithm have been proposed to solve VRP-like problems.

With the evolving of solution approaches, researches attempt to model more and more

sophisticated problem that arise from a diversified real-world situation. To cope with

new challenges, hybrid algorithms that integrate assorted techniques originally developed

independently, now become to be the trend of solution approach design.

Our research in this thesis faces a significantly larger problem (Chapter 4) compared

to similar problems studied in literature. Traditional ways of solving such a problem may

be very computational expensive, and/or do not converge within reasonable CPU time.

However, reviewing individual techniques employed in various solvers, such as elite solution

(or element) management, rolling planning horizon and many others, helps us to build

efficient solvers for our needs.
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Chapter 3

Techniques applied in heuristic

search

In Chapter 2, we have presented methods to model and solve VRP-like problems. Various

heuristic approaches have been mentioned. In this chapter, we focus on the algorithms and

further discuss the advanced search techniques that are applied in modern heuristic solvers

in more detail. We review the fundamental concept of local search methods and introduces

the concept of hyperheuristics. Meanwhile, we clarify a few terminologies, which are widely

used but many of them are ambiguous in the literature. This chapter builds the basis of

the algorithms developed in this thesis.

3.1 Local Search (neighbourhood search)

Local search (LS) and the concept of neighbourhoods are the basis of most heuristic search

techniques. LS walks in a candidate solution space, starting from its current position and

moving to a neighbour that is acceptable according to a cost function and the pre-defined

acceptance rules. An LS move takes the current solution as an input and modifies it by

slightly changing part structure of the current solution. At all times, the LS heuristic has

a current solution, and it iteratively applies moves until it reaches a predefined stopping

criteria.

LS-based methods use local information to guide the move directions in the solution

space. The guiding rules are often based on experience or intuition and can be either

predefined or adapted in course of the search. Because of limited information, any LS-

based method is not able to predict the exact landscape of the distant search scape.

In this chapter, we introduce local search formally. The presentation is a modification
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of Funke et al. (2005).

In a given combinatorial optimisation problem instance, we use X to represent the

solution space that includes all feasible solutions of the problem instance. A mapping

f : X −→ Q is a cost function that measures the quality of a candidate solution x ∈ X.

For example, X is the set of tours for a travelling salesman problem (TSP) and f(x) is the

travelling distance of a tour x. X is finite, but could also be a very large set.

We assume that the given problem instance is a minimisation problem, and then the

aim is to find a solution x∗ satisfying f(x∗) ≤ f(x), ∀x ∈ X (Funke et al. (2005)).

We define a move as an operation on a solution x, which can transform it into a different

solution x′. A move is the elementary concept of all local search-based methods. Normally,

an LS uses a set of moves M , which modify different part(s) of a solution or the same

part of a solution differently. A solution x′ is defined as a neighbour of x, if x′ can be

transformed from x by operating one move m ∈M on x. The set of all solutions that can

be reached from the current solution x using one move from the given set of moves define

the neighbourhood of the current solution, which is denoted as N(x). If, for all x′ ∈ N(x),

f(x′) ≥ f(x), then we call the solution x a local optimum (Funke et al. (2005)).

A general LS method is described in Algorithm 3.1.1. This method looks for at least

one improving neighbour solution x′ ∈ N(x) at each iteration.

Algorithm 3.1.1 Generic Local Search based on Funke et al. (2005)

1: Initialisation: construct a feasible solution x ∈ X
2: Repeat
3: Search for an improving neighbour x′ ∈ N(x), where f(x′) < f(x)
4: if the search found an improving neighbour x′ ∈ N(x) then
5: x = x′

6: end if
7: Until no more improvements are found

We note that line 3 of Algorithm 3.1.1 does not determine the search strategy within a

neighbourhood N(x). A detailed discussion of this is presented in the next section. To ac-

cept an improvement (lines 4-5), the two most common strategies are either to perform first

improvement (FI) or best improvement (BI) where the entire neighbourhood is explored to

identify the best solution. Of course, you can also apply the n−best search that chooses

the best move once you have found n improving neighbours. Intuitively, we can think

that when not using BI, the order of examining potential moves becomes very important,

especially when a solution has large neighbourhoods.

Algorithm 3.1.1 could also be called an improvement heuristic (Laporte et al. (2000)),
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a local search process that only applies moves that lead to an improved solution. This

process introduces a simple but efficient search strategy.

3.1.1 Search within a neighbourhood

A given set of moves defines the neighbourhood structure of the current solution. Finding

an improving neighbour quickly becomes the next step. We summarise the neighbourhood

search strategies in the four following classes: Solution Structure Oriented Search (SSOS),

Feature Sequential Search (FSS), Sequential Search (SS), and Neighbourhood Partition

Search (NPS).

SSOS The natural approach for developing a search algorithm is to, in turn, exam-

ine parts of the solution. For example, vehicle routing problems (VRPs) normally code

candidate solutions as sequences of nodes (referring to the customers). SSOS identifies

k-changing elements (e.g. 2 edges of a route) of a move (e.g. 2-opt) using k-nested loops

following the current solution structure. When more than one move is designed, a heuris-

tic is employed to search through the neighbourhood by examining every move for each

node/edge (or identified k elements), either in a pre-defined order or a random order.

Applications can be found in Gulczynski et al. (2011) and Vidal et al. (2012).

FSS Instead of guiding the search by examining the moves following the current solution

structure, FSS identifies k-changing elements of a move according to the cost of the ele-

ments. FSS usually considers a candidate list sorted by features (e.g. length of the edges

in a 2-opt move). One example is an edge-modification move, which examines the longest

edges. FSS aims to give priority to the areas of a neighbourhood, which are perceived as

promising. However, the trade-off to potentially decrease the number of examined neigh-

bours is the extra effort involved in feature sorting. Early applications of FSS include the

travelling salesman problem (TSP) solving (Bentley (1992)). In recent literature, FSS is

rarely seen, especially when many different moves need to be designed for a rich VRP. In

Chapter 8, this search strategy is embedded in a meta-heuristic framework to solve PVRP

and GDMP.

SS Sequential Search is based on a pre-condition that a move of a neighbourhood can be

decomposed into so-called partial moves, which are cost-independent. A decomposition is

cost-independent if the change in the objective function for the complete move is the sum

of the gains of all the partial moves. Then, a complete move can be sequentially formed by
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determining good partial moves first. By doing so, it becomes possible to avoid checking

many potential moves. This method was first used by Lin and Kernighan (1973) for solving

the TSP. Later Funke et al. (2005) introduce SS for common CVRP neighbourhoods where

experiments show a significant speeding in the search compared to SSOS.

NPS The idea of dividing a neighbourhood gradually emerges when more and more rich

VRPs are built as models of real-world problems. Variable neighbourhood descent (VND)

(Hansen et al. (2010)), specifically utilises this concept. In many implementations of VND,

a set of neighbourhoods N1, N2, ..., Nk is defined based on the moves operating on the

current solution. For example, we can note N2opt as a neighbourhood that is composed

of all solutions modified from the current solution x using a 2-opt move. To solve a

VRP, we then define a set {N2opt, NRelocate, ...}, and in turn, VND searches through each

neighbourhood at each iteration. It must be noted that the terminology neighbourhoods

in VND and adaptive large neighbourhood search (ALNS) (Ropke and Pisinger (2005))

can be considered as sub-neighbourhoods as defined in LS (Section 3.1), as it divides the

neighbourhood of solutions based on moves. By dividing a neighbourhood, VND indeed

introduces a search strategy to determine which neighbour(s) to examine first within LS.

Thus, a big challenge while designing a good VND algorithm is to decide in what

order the neighbourhoods should be searched. One way, which is guided by intuition,

is to order them based on the level of complexity of searching a neighbourhood, such

that one starts with the least complex neighbourhoods, and then gradually includes the

more expensive moves. A typical example is as follows: given a set of parametrised k-

relocated neighbourhoods, k = {1, 2, .., n}, a reasonable search order would follow the

order of k = 1, 2, ..., n. When it is difficult to determine the complexity of searching in

different neighbourhoods or when an algorithm introduces more diversity, a random order

has never been seen to be a bad idea. In fact, ALNS specifically applies a roulette wheel

selection of neighbourhoods to introduce randomness to the search.

A more intensive way of dividing neighbourhoods into sub-neighbourhoods is proposed

by the guided fast local search (Voudouris et al. (2010)). The authors present exam-

ples from various problem domains using different measures to create and evaluate sub-

neighbourhoods and effective solutions depend on the derivation of suitably small sub-

neighbourhoods. For example, an N2opt neighbourhood can be further divided based on

the nodes that a move involves. Then a tabu mechanism is used to decide whether to

search a sub-neighbourhood or not.
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Reduce search space In addition to the various strategies for defining search order

through a neighbourhood, other techniques such as neighbourhood restriction could also

affect the efficiency of LS. Neighbourhood restriction approaches reduce the CPU time

spent on each iteration of LS. Toth and Vigo (2003) derive granular neighbourhoods from

a neighbourhood by discarding moves that have none of the promising elements, which

would be likely to belong to high-quality solutions. The elements, in this case, are the arcs

of a routing problem. An element is labelled as promising based on characteristics such as

arc length, incidence of the arc to the depot, and whether the arc has been used in one of

the best solutions encountered so far. The granular neighbourhoods approach is embedded

in a tabu search (Section 2.1.2.3), and the algorithm is tested on VRP instances with up

to around 500 customers. The experimental results show that the method is efficient in

computational time.

In fact, the SS (above) also decreases the total number of candidate moves to be exam-

ined at each LS iteration, constructing a complete move by sequentially determining good

partial moves. Fast guided local search (above) uses a neighbourhood restriction in which

moves are only evaluated if they belong to an activated sub-neighbourhood.

3.2 From heuristics to hyperheuristics

So far, we have reviewed a large number of (meta-)heuristics proposed in literature and

applied to vehicle routing problems. In recent years, a large amount of research has shown

that some meta-heuristics perform better for some type of problems. In addition, for the

same problem, different heuristics or meta-heuristics perform better for different instances.

Furthermore, different (meta-)heuristics perform better at different stages of a search for

the same instance. Consequently, many hybrid meta-heuristics are appearing, aiming to

take advantage of the abilities of different (meta-)heuristics.

A similar concept has been introduced as hyperheuristics, and is now a big branch of

heuristic research. In the last 15 years, hyperheuristics have experienced rapid growth.

Successful applications can be found across a large variety of problem domains, such as

timetabling (Bilgin et al. (2007); Burke et al. (2007b); Bai et al. (2012)), vehicle routing

(Pisinger and Ropke (2007); Garrido and Riff (2010); Misir et al. (2011); Walker et al.

(2012)), and space allocation (e.g. Bai and Kendall (2005)). Summaries of state of the art

hyperheuristic techniques can be found in survey papers by Özcan et al. (2008); Chakhle-

vitch and Cowling (2008); Burke et al. (2010, 2013). In Chapter 6, we successfully applied

a tabu-based hyperheuristic to solve our large-scale drainage system maintenance problem.
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A hyperheuristic is often described as a heuristic that chooses heuristics (Cowling et al.

(2001); Ross et al. (2003)). In other words, hyperheuristics define a series of rules to

choose between several sub-ordinate heuristics or the so-called Low Level Heuristic (LLH).

It schedules the order of LLH to solve a problem instance at hand. Also, it can be used to

analyse what LLH fits best with which instance.

Some hybrid meta-heuristics can be considered as human designed hyperheuristics.

There is certainly an overlap between these two terminologies. However, most of the imple-

mentations of hybrid meta-heuristics describe rather complicated integrations of different

search strategies, which often specifically benefit a certain problem type. The difference

with hyperheuristics is that the decision making for an LLH selection is totally based on

problem-independent measures such as the change in the quality of a solution. Once im-

plemented, hyperheuristics can be directly used in another problem domain with different

problem specific LLHs.

Another noticeable feature of some hyperheuristics is the introduction of machine learn-

ing to an LLH selection,which truly frees design from the requirement for domain experts.

Since the terminology hyperheuristic was first described in the context of solving combina-

torial problems (Cowling et al. (2001)), many interpretations, implementations, and classi-

fications have emerged in the available literature on this subject matter. As a conclusion,

we would define hyperheuristic as any approach, which attempts to automate the design

of heuristic algorithms for solving difficult computational problems, given some necessary

tools (LLHs).

3.2.1 Low-level heuristics design

Typically, for complex combinatorial optimisation problems, solvers with multiple neigh-

bourhood structures are designed. With the large quantity of hyperheuristic applications

in various problem domains, the design of an LLH set is varied as well. LLHs directly af-

fect the search strategy through neighbourhoods. We summarise three common designs of

LLH, which brings the first insight to development of our hyperheuristics and local search

algorithms in the following chapters.

The first group of algorithms use FI, BI, or even LS heuristics as LLHs. The LLHs

need to further define the search sequence within a selected neighbourhood (e.g., random,

lexicographic, etc.).

The second group of algorithms typically use a random move from a selected neigh-

bourhood structure. The best-studied example typically uses adaptive operator selection
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(AOS) (Fialho et al. (2010b)) as part of an evolutionary algorithm. In recent years, AOS

has also been applied in hyperheuristic approaches (Soria-Alcaraz et al. (2014); Sabar et al.

(2014)). Comparing these algorithms with the first group, the uncontrolled use of LLHs

(random moves rather than improvement heuristics) may result in unproductive revisiting

of the same move and eventually lead to an inefficient search. In these situations, the

intelligent LLH-management mechanism in hyperheuristics is rather critical to the success

of the entire algorithm.

The third approach is employed in the well-known adaptive large neighbourhood search

(Ropke and Pisinger (2005)). Here, the LLHs are not specified in advance and are instead

created programmatically from a known set of destroy and construct methods. The system

learns which combinations work effectively and focuses the search on these.

3.3 Summary

In this chapter, we have reviewed the fundamental concepts of local search and the common

terminologies in literature. Interesting questions arise from both search strategy within a

neighbourhood (low-level) and management strategy (high-level) over a set of LLH. Part II

of this thesis will specifically investigates these two aspects of heuristic-based approaches.

Chapter 7 analyses the search performance and behaviours of a number of representative

hyperheuristics. Chapter 8 introduces a learning mechanism into the local search process.
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Part I

Large Scale Geographically

Distributed Asset Maintenance

Scheduling Problem
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This research looks at large scale Geographically Distributed asset Maintenance Prob-

lems (GDMP). In collaboration with our industrial partner Gaist Solutions Ltd., we focus

on a gully-pot system maintenance problem and use it as a case study to build a gen-

eral GDMP model. This model is able to capture two main sub-issues that exist in this

type of problem, namely the routing problem and the despatching problem with consider-

ation of asset condition deterioration. Power grid maintenance is another good example of

real-world applications in this area.
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Chapter 4

A gully-pot system maintenance

scheduling problem

In this chapter, we focus on the modelling of a real-world gully-pot system maintenance

problem. While the content is included in our papers (Chen et al. (2016b,f,e)), a more

complete presentation of the general geographically distributed asset maintenance model

is given here, and further discussion is delivered.

4.1 Background information

Gully-pots compose an important part of the storm drain system that prevents solids

and sediment from flushing into sewers, where they cause blockages in the underground

surface water collection infrastructure (Butler et al. (1995)). Regular cleaning is required

for gully-pots to function effectively (Karlsson and Viklander (2008); Scott (2012)): typical

strategies are to clean all gully-pots once or twice a year. If gully-pots are not cleaned

regularly, partial or complete blockages and accelerated deterioration of the gully-pots

increases the likelihood of surface water flooding. In extreme situations such as intensive

rainfall, a clogged drainage system may cause serious property loss (i.e. BBC (2011, 2012);

Shieldsgazette (2012); Leylandguardian (2015); Yorkpress (2016)).

In the UK, gully-pot maintenance is undertaken by local councils, each using its own

strategy. Our research focuses on gully-pot system maintenance problem from Blackpool,

UK, as a case study, with data from the local council and from consultants, Gaist Solutions

Ltd. Blackpool’s gully-pot maintenance system records 28,149 gullies in an area of about

36.1 km2. Analysis of real-world gully-pot maintenance records shows that human and

environmental factors play a critical role: leaf-fall causes many gully-pot blockages; strong

59



Chapter 4. A gully-pot system maintenance scheduling problem

winds can blow sand or dirt into gully-pots causing partial blockages; reporting of gully-pot

issues by local residents varies across the seasons; and parked vehicles affect the cleaning

plan.

Blackpool local council has two gully cleaning vehicles but only one cleaning team. On

any day, the team either takes out the normal cleaning machine, which uses hydrodynamic

pressure and a vacuum to loosen and remove solids and liquids from a gully-pot (Karlsson

and Viklander (2008)), or uses a specialist machine, equipped for fixing broken gully-pots.

Currently, each day there is a schedule of gully-pots to visit, starting and ending at the

depot. Either maintenance vehicle departs the depot at 09:00 and returns no later than

17:00. During servicing, some gully-pots are inaccessible, usually due to parked vehicles.

If the team encounters a broken gully-pot during normal cleaning, it is recorded and sub-

sequently added to the schedule of the specialised vehicle. Scheduling also needs to take

account of residents’ reports of problematic gully-pots: depending on the local risk, these

emerging events should be scheduled 5 to 20 days from when they are recorded.

Currently, the maintenance schedule is produced manually by experienced managers.

The control level is down to wards of the city and each day’s maintenance route is planned

by experienced drivers. Our research aims to improve this situation and produce self-

adaptive scheduling and routing supported by data analysis.

4.1.1 Preventative and corrective maintenance approaches

Maintenance is a series of actions that aims to retain an object in, or restore it to, the state

where it performs its required function (Besnard et al. (2010)). As shown in Figure 4.1,

maintenance is generally categorised into corrective and preventative maintenance (Duffuaa

et al. (2001); Besnard et al. (2010); Ahmad and Kamaruddin (2012)).

Figure 4.1: Classification of maintenance strategies (Besnard et al. (2010))

Corrective maintenance (CM) usually happens after failures occur. It includes actions

such as repair and replacement. Tsang (1995) notes that the consequence of doing only

corrective maintenance is a high risk of machine downtime and property loss. In our gully-
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pot system maintenance case study, we define failure as broken or blocked gullies and

residents calling events. These failures cause a dynamic scheduling and routing situation,

where unscheduled maintenance actions should be carried out. This also leads to high

maintenance costs.

Preventative maintenance (PM) is an alternative strategy that aims to reduce these

risks. In industry, preventative maintenance typically takes place at regular time intervals,

based on experience. Operational research on PM introduces decision making, based on

data analysis, with techniques such as time-based (TBM) (e.g. Scarf and Cavalcante (2010);

Wu et al. (2010)) and condition-based maintenance (CBM) (e.g. Carnero Moya (2004);

Campos (2009)). TBM can be applied when the failure rate is predictable, whilst CBM

is employed where conditions are continuously monitored by sensors or any appropriate

indicators. There is little research combining PM and CM strategies: Kenne and Nkeungoue

(2008) introduce a PM/CM rate control strategy, obtaining a near-optimal maintenance

policy for a manufacturing system.

In comparison to other maintenance literature, the gully-pot system maintenance prob-

lem involves geographically distributed points and a strictly-limited service resource. In-

stead of finding an optimal maintenance policy for each individual object, the focus of this

research is to produce an optimal maintenance schedule covering all objects within time

and resource constraints.

4.1.2 Case studies of geographical distributed maintenance problem

In this section, we review various models used in real-world maintenance and on-site service

problem scenarios. The focus here is the applications of the models; the definition of these

models and their common solution methods are discussed in Section 2.2.

4.1.2.1 Periodic vehicle routing problem (PVRP)

Many geographically distributed maintenance and on-site service problems are modelled

as rich vehicle routing problems. The most widely used model is the PVRP in which a

planning period of several days is considered and each customer (or asset) in the problem

must be visited at specified days.

Blakeley et al. (2003) use a multiple-objective PVRP to model a real-world elevator and

escalator maintenance problem, which includes periodically checking customers’ equipment

and reacting to call-outs. Travelling time, workload balancing, visiting time window vio-

lation and overworking time are considered in a weighted linear objective function. Jang
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et al. (2006) solve a problem of routing lottery sales representatives to visit lottery re-

tail locations using a similar model. Again, a weighted objective function composed of

travelling distance and routes balance is applied. The route duration and visiting time

window limitations are considered as soft constraints. During the optimisation process,

while minimising the objective function, the algorithm also simultaneously decreases the

constraints violations. Alegre et al. (2007) analyse a real-world periodic pick-up of raw

materials problem and model it as PVRP. The notable characteristic of this research is the

very long planning horizon (90 days) compared to other literature. Related work has also

been analysed in remote healthcare services. An et al. (2012) consider the home health-

care problem, which needs to provide periodical services to various patients. Maya et al.

(2012) help an education institution to provide periodical services for disabled children.

This problem is considered as a multiple depot PVRP as each teaching assistant starts and

ends their journey from home. Garćıa et al. (2013) consider a perishable products supply

problem for a bakery company. Weekly delivery routes from the depot to distributors are

generated. This problem introduces a certain flexibility in the delivery date. The authors

introduce a bi-objective model that minimises the total travelled distance and the total

stock over the planning horizon simultaneously.

4.1.2.2 Profit based objectives

Another element introduced to many maintenance or on-site service scheduling models is

profit. In these models, the visiting frequency of each customer/site is not pre-specified.

Instead, each customer/site is associated with a profit value and the number of visits within

the planning period becomes a decision variable. These models have similarity to PVRP,

in that a schedule is produced for a given period. A well studied standard model with

the profit maximising objective is the team orienteering problem (TOP) (Section 2.2.2),

which requires the determination of a set of routes maximising the total reward of nodes

visited with a time duration limit. In many real-world problem modelling, the elements

of TOP and PVRP are combined. Baptista et al. (2002) model a paper recycling problem

as a PVRP with profit, which maximise the total profit from selling the collected paper

given limited operational resource (e.g. vehicle, working hours). Their objective function is

composed of a linear cost function including income and outcome aspects of the operation

for a given period. Goncalves et al. (2005) consider a similar model for an oil collection

problem and they try to maximise the amount of oil collected by all vehicles while some

specific constraints for the problem are satisfied (i.e. a well site can only be revisited after
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its recovery day interval). Tang et al. (2007) model a geographically distributed equipment

maintenance scheduling problem as a Multiple Tour Maximum Collection Problem with

Time Dependent rewards (MTMCPTD). The rewards are decided based on manufacturer

maintenance interval suggestions. The objective is not to minimise the travelling cost but

to maximise the reward from completing tasks (i.e fixing or checking a machine). In this

case, not all equipments are visited within the planning horizon. A similar model has also

been applied for a inspector scheduling issue for one of the largest retailers in the world

(Zhang et al. (2013)).

4.1.2.3 Heterogeneous fleet

Some on-site service scheduling problems also involve human resource and vehicle re-

source management. Cappanera et al. (2011) propose a skill VRP that originates from

the despatching of technicians to customers in after-sales service management. The service

team has a set of technicians and each with a skill level represented by an integer value. The

requirement from a customer i should be serviced by any technician having a skill level at

least si. The skill VRP can be considered as a special case of site-dependent VRP (Section

2.2.3). The difference exists in the ordering relation among the technicians, whereas there

is no hierarchy among the vehicles in site-dependent VRP. Amorim et al. (2014) study a

rich VRP arising from a Portuguese food distribution company. A fleet is composed of

refrigerated and normal trucks of various sizes. For each customer, there is a set of vehicles

that is able to serve this customer. To capture all the features that exist in this real-world

problem, a heterogeneous fleet VRP with site-dependent and time window constraints is

introduced.

4.1.2.4 Dynamic problems

In most of the case studies considered above, all of the customers or assets that need to

be serviced are known in advance. In contrast, the service requests in dynamic scenarios

emerge continuously over time. Wen et al. (2010) consider a large distributor operating in

Sweden and model it as a dynamic multi-period routing problem. Customer orders and

their feasible service periods are dynamically revealed over time. The objective function

is a linear combination of total travel costs, customer waiting, and the balance of daily

workload over the planning horizon. The dynamic aspect is also studied in a winter road

gritting problem by Tagmouti et al. (2011). The problem is dynamic as the best service

time for each segment is affected by a moving storm and a decision should be remade as
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the environment changes. Every time that the update of weather forecasting information

is received, an updated solution is generated by solving a static problem with the newest

state information.

4.2 A risk driven model

Having reviewed many related case studies of real-world maintenance and on-site service

problems, this section proposes a risk driven model that is based on the problem charac-

teristic and requirement analysis.

4.2.1 Problem analysis

For our gully-pot system maintenance problem and many other asset maintenance prob-

lems, the high level aim is usually to ensure our system performs its required function.

This form of service differs from many on-site service delivery problems (Section 4.1.2.1)

in terms of its unclear or very variable visiting pattern. How to decide when to visit which

asset becomes a key question, unlike PVRP where this is known in advance. Why is it nec-

essary to visit some of the assets first? What is the measurement of maintenance schedule

quality? It seems that a high level dispatching decision should be made. The traditional

vehicle routing models with a fixed value of each vertex (e.g. TOP) or without any vertex

evaluation (e.g. VRP) are not able to give a satisfactory answer. Meanwhile, routing is a

crucial aspect when we face a large set of geographical distributed asset points. Routing

aims to optimise resource utilisation.

In terms of heterogeneous fleet management, the gully maintenance problem considered

in Blackpool has a fixed bound between a gully-pot state and the required service, so there

is no decision to be made on which vehicle to use.

Another interesting property of our problem is that it is dynamic in the sense that

unexpected failures are revealed incrementally over time. In this scenario, rescheduling

may be required. At any decision point, planning must determine which assets should be

visited soon and in which sequence the vehicles should visit them.

In this section, we propose a risk driven model that combines the risk driven asset

management concept with dynamic periodic routing model.
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4.2.2 General model of the risk driven asset maintenance scheduling

Our risk driven model captures the common features of many GDMPs. A geographically

distributed system is considered as a directed complete graph G = (V,A), where V is the

set containing an assets set N = {1, 2, ..., n} and one depot (denoted as {0}). A is the set

of arcs (i, j), where i, j ∈ V . These assets need maintenance in a continuous time or over

a very long period of days D (e.g. D = {1, 2, ..., h}, where h = 1825 days). Each asset i is

associated with a risk impact ri, which measures the value of this asset to its stakeholders.

There is a failure probability of each asset that changes over time, and can be obtained by

a function Pi(d), which measures the probability that asset i is in a failure state on day

d ∈ D. We have a maintenance team with a heterogeneous fleet. We use K to denote the

set of vehicles. Each vehicle k ∈ K is able to deliver a subset (denoted as Lk) of all types of

maintenance actions in the set L. Accordingly, we classify vehicles into groups and vehicles

in each group can deliver the same types of services. We use Km to represent the set of

vehicles from the same group.
⋃
m∈M Km = K, where M is the set of all vehicle types.

Other input parameters include the following:

• Tmax: the maximum travelling time allowed for each route;

• cij : distance, in terms of travelling time, from asset i to j;

• Km
max: the total number of type m vehicles.

• Hmax: the total number routes allowed each day (usually due to human resource

limitation).

• tl: service time of completing type l maintenance actions.

• ail: a variable equals 1 if the asset i requires type l maintenance action, and the value

equals 0 otherwise.

• bkl: a variable equals 1 if l ∈ Lk, and the value equals 0 otherwise.

Here, we present the formulation for the planning problem of the upcoming period of W

from the current day (W = {1, ..., g}, |W | � |D|). A judicious subset of assets is scheduled

in the next short maintenance period W (e.g. a week or 2 weeks). A binary variable that

describes the scheduling decision is shown below:

xdik =

 1, if asset i is visited by vehicle k on day d

0, otherwise
.
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The objective is to minimise the total risk caused by asset failure in the period of W :

∑
d∈W

∑
i∈N

riPi(d) (4.1)

To calculate the objective function (4.1), we define our Pi(d) as follows. Fi(d, di) repre-

sents an approach to estimate the lifetime of asset i given its last service date information

di ∈ D. For example, Section 4.3.2 describes a Weibull distribution used for gully-pot

lifetime estimation in this study. Alternatives are also discussed.

Pi(d) =

 0, if xdik = 1, ail = 1, bkl = 1

Fi(d, di), otherwise
.

Our secondary objective is to minimise the total distance travelled during the planning

period: ∑
d∈W

∑
(i,j)∈A

∑
k∈K

cijy
d
ijk (4.2)

ydijk =

 1, if the scheduled route visits arc (i, j) by vehicle k on day d

0, otherwise
.

Subject to:

∑
i∈N

∑
l∈L

xdikailbkltl +
∑

(i,j)∈A

cijy
d
ijk ≤ Tmax; ∀d ∈W, ∀k ∈ K (4.3)

xdjk =
∑
i∈V

ydijk; ∀d ∈W, ∀k ∈ K,∀j ∈ N (4.4)

∑
i∈V

ydijk ≤ 1; ∀d ∈W, ∀k ∈ K,∀j ∈ N (4.5)

∑
i∈V

ydijk =
∑
u∈V

ydjuk; ∀d ∈W, ∀k ∈ K,∀j ∈ V (4.6)

∑
k∈K

∑
j∈N

yd0jk ≤ Hmax; ∀d ∈W (4.7)

∑
k∈Km

∑
j∈N

yd0jk ≤ Km
max; ∀d ∈W, ∀l (4.8)

Constraint (4.3) guarantees that the time spent on each daily route is less than the limit

Tmax. Constraints (4.4) and (4.5) explain the relation between two decision variables and
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ensure that an asset point is only visited once in one route. Constraint (4.6) guarantees

flow conservation for each route. Constraint (4.7) makes sure that the number of vehicles

used on each day does not exceed Hmax. Constraint (4.8) limits the usage of vehicles for

each type. Please note that we do not include vehicle capacity constraint in this model.

For most of the maintenance situations, the vehicle capacity is sufficient for a normal daily

work. In our gully system maintenance case, the waste disposal process after daily work is

beyond our scheduling programme and a fully prepared vehicle is despatched every day.

4.3 An application to gully-pot system maintenance

To apply the risk model to our gully-pot system maintenance problem, this section intro-

duces the detailed analysis and calculation for the two components of the objective Function

4.1, risk impact of each asset ri and the estimated failure probability on future days Pi(d).

4.3.1 Estimating the risk impact per gully-pot

A potential hazard (i.e. surface water flooding) could be exacerbated by both geographic

factors (i.e. elevation, soil type) and social-related factors, which are usually influenced by

economic, demographic and building types (Cutter et al. (2003)). A higher risk impact here

implies that, if a particular gully-pot is blocked and flood happen, it results in relatively

larger economic and social losses. In other words, we prefer to clean the gully-pots with

larger impact more frequently to keep them working properly. Co-operating with Gaist

Solutions Ltd. and Blackpool local council, we firstly decided a list of social concerns with

awareness of their economic and population influence, as shown in Table 4.1. Then, each

gully-pot is evaluated by its location and the related social concerns.

Based on the existing data from Blackpool council, social concerns are classified in to

three groups: 1) residential property; 2) commercial and industrial areas including local

and district centres, business zones, and employment sites; 3) public services including

schools, hospitals, doctors and public transport routes. In Table 4.1, the estimated value of

each item in group 1 is the average residential house price in Blackpool UK GOV (2015).

Group 2 takes account of footfall and critical building prices for each item. The estimated

value of items in group 3 is based on average daily operation costs.

Flooding impact analysis involves large uncertainties. Research has shown historic

flooding from different perspectives (Changnon (1999); Thieken et al. (2008); Brouwer and

Ek (2004); Merz et al. (2004)). We do not expect a precise assessment of impact. Instead,
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Table 4.1: Average daily risk impact estimation of each gully-pot

Group Social Concerns
Estimated

value
Value loss

from flooding
Risk

impact

1 Residential £113,000 3% £34

2 Local center £1,130,000 5% £580
District center £1,695,000 5% £870
Business area £565,000 5% £290

Employment sites £226,000 5% £116

3 School £5,168 4% £71
Large hospital £917,808 4% £377

Doctors £9,178 4% £73
Bus route £220 100% £37

we aim to find values that are able to guide gully-pot maintenance actions in decision

making. Here, we mainly focus on direct economic losses using a damage function which

relates to property type and water level. Thieken et al. (2008) propose the impact from a

range of flood water levels on different building types. After consulting Blackpool Council

and Gaist Solutions Ltd., we decide to focus on the impact of floodwater levels of less

than 21 cm. This gives value-loss figures (Table 4.1, third column) of 5%, 3% and 4% for

commercial, residential and public service areas, respectively. For public transport we focus

on bus routes, estimating the cost of closing a road section due to surface water flooding.

By analysing Blackpool historic flooding frequency (Blackpool (2009)), the probability

of flooding events is used to map the flooding value loss to the daily risk impact per gully-

pot according to its location (last column of Table 4.1). We assume that gullies in the same

section of a street evenly share the responsibility for the risk impact evaluated in that area.

Figure 4.2 illustrates the geographic distribution of gully-pot risk impact in Blackpool.

4.3.2 Estimating the process of a gully-pot blocking

Ahmad and Kamaruddin (2012) suggest that time-based maintenance is the normal strat-

egy in situations where equipment has a fixed lifespan or predictable failure behaviour.

After analysis of historic gully-pot records, we model the gully-pot blocking process using

the Weibull distribution model (Weibull (1950); O’Connor (1997)), from reliability theory.

We define:

Fi(d, di) = 1− e−((d−di)/λ)α

The parameters of this form of Weibull distribution are the shape parameter α, and

the scale parameter λ. In our study, we define α = 6, based on historical data analysis;
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Figure 4.2: Gully pots’ risk impact distribution in Blackpool

this captures a realistically increasing blocking rate over time. The scale parameter λ,

capturing lifetime behaviour, is affected by location and seasonal factors, according to a

simple linear function:

λ =


10 ... if gully-pot recorded as broken

Ecalling ... a calling event

max(90, E −
∑

f∈F nf ∗ sf ) ... normal state

Ecalling represents the expected number of days from a report on a gully-pot to its

servicing. E is the expected number of days that it would take a normal gully-pot to

become blocked since its last service. Here, E = 10.3 years, again based on historical

data analysis. F is a set of factors that may affect gully-pot lifetime, such as street type,

number of trees nearby, and blown sand effect: nf represents the effect level from a specific

factor f ∈ F to a gully-pot; sf adjusts the effect from factor f according to seasonal

information. For example, if a gully-pot is on a street with five deciduous trees nearby,

then historical analysis gives nf = 5 with sf = 93, 1, 389, 433 in spring, summer, autumn

and winter respectively. If a gully-pot location is not affected by factor f , we simply assign

nf = 0. All values are based on our statistical analysis of the Blackpool data. Figure 4.3

illustrates two examples of gully-pot lifetime estimation taking account of the surrounding

environment.
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(a) Example of a gully-pot lifetime with 1 tree nearby at different seasons

(b) Example of a gully-pot lifetime with 5 tree nearby at different seasons

Figure 4.3: Probability of a gully-pot being blocked since last maintenance action

Alternatives to Weibull distribution For our gully system, we use a Weibull dis-

tribution with two parameters to estimate each gully-pot’s life time, based on historical

gully-pot failure behaviour analysis and consulting from our business partner, Gaist So-

lutions Ltd.. Alternatively, there is a large amount of research focusing on the asset life

cycle management, that predicts the asset breakage and degradation process of different

types of assets. Literature shows some related research in bridge, pavement and water

pipe maintenance systems (Madanat and Ibrahim (1995); Morcous et al. (2002); Baik et al.

(2006)). We could plug in any realistic life time estimation method in to the risk driven

model, in order to apply our optimisation algorithm (Chapter 6) to create a maintenance

schedule targeting the appropriate assets.

Here, we summarise two groups of approaches that can be applied for other asset

maintenance problems in the future. First, functional based models such as exponential

(Shamir and Howard (1979)) and time-powered models (Kleiner and Rajani (2001)) have
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been used to determine the optimal timing of water pipe inspection and replacement. Time-

dependent Poisson (Constantine et al. (1996)) and the accelerated Weibull hazard models

(Le Gat and Eisenbeis (2000)) are also commonly used functions in industry. The second

group of methods use Markov chain-based deterioration models. A number of real-world

applications can be found in Madanat and Ibrahim (1995); Morcous et al. (2002); Baik

et al. (2006). Different to the functional based models, Markov chain-based models focus

on the transition probabilities between different grades, which also implies the asset life

time are evaluated discretely.

4.3.3 Other parameter settings for gully-pot system maintenance

Having introduced the objective function’s two components (i.e. risk impact and prob-

ability of failure state) for the gully system, we have the working duration constraint

Tmax = 8 hours each day; at any time, a gully-pot can be in one of the state L =

{normal,calling,broken}; Hmax = 1 allows one vehicle work each day; Km
max = 1 for

m ∈ {broken, normal}, where the type m = broken vehicle can repair any gully-pot in

its broken state, and the type m = normal vehicle delivers servicing for gully-pots in a

normal state and those registered as calling reports. Note that a gully-pot registered as

a calling report can be either in a calling state or a broken state. However, the accurate

information could only be revealed after a first visit. Normally, a m = normal vehicle

is able to fix the problem of a calling report; in the special case that the m = normal

vehicle finds the reported gull is in a broken state, a visit from m = broken vehicle and a

rescheduling is required.

4.4 Conclusion and discussion

In this chapter, we propose a risk driven model to capture the major characteristics of

a general GDMP. Many other models have been discussed in Section 4.1.2. We would

like to summarise the differences between our risk driven model and two closely related

standard models, PVRP and TOP. The aim is to clarify the suitable real world situations

for each approach and to summarise the required inputs for each model. As shown in Table

4.2, the main difference between our risk driven model and PVRP is whether visiting a

customer/asset is a decision variable or a constraint. The TOP model also decides whether

to visit a certain customer. Comparing the risk driven model with the TOP, our risk driven

model introduces a dynamic value (risk, measured by riPi(d)) of each asset, based on time
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Table 4.2: Summary of difference between models

Risk driven model PVRP TOP

Expected
output

A solution that min-
imises the risk caused
by estimated failures
in the system for fu-
ture periods.

A solution that min-
imises the operation
cost within planning
periods (e.g. travelling
distance) while satisfy-
ing all visiting require-
ments.

A solution that max-
imises total collected
profits from visited
sites.

Required
inputs

1. Available vehicles;
2. Risk value esti-
mation as a function
of time for each asset
(riPi(d)).

1. Available vehi-
cles; 2. Clear visit
pattern/frequency for
each customer within
the planning period.

1. Available vehicles;
2. Value/profit of each
customer.

Maintenance
Application
Scenarios

1. When visiting or
not is a decision vari-
able rather than a con-
straint; 2. When the
failure rate of each site
is dynamic.

1. When each cus-
tomer has clear visit-
ing requirements.

1. When visiting or
not is a decision vari-
able rather than a con-
straint; 2. When the
value/profit of each
customer is fixed.

information d, instead of a fixed value or profit from each site.

In comparison to the multi-period profit maximisation models for real-world problems

(Section 4.1.2.2), apart from being a risk minimisation problem, rather than a profit max-

imisation problem, our risk driven model runs in a continuously dynamic scenario, where

failure events may happen at any time. Over a short period (|W | days), our risk driven

model has strong similarities to multi-period profit maximisation models. Both of the two

models introduce a dynamic value prediction or measurement of each asset over time. For

example, our risk driven model uses an estimated risk of each asset on any day and Baptista

et al. (2002) use an estimated number of papers at each collection site on any day. These

values are critical to make despatching decisions and designing these value measurements

requires domain specific knowledge. On the other hand, the risk driven model is typically

applied over a much longer period. This is broken down into shorter sections of |W | days for

computability. To deliver an optimal scheduling strategy in the long term, the parameter

|W | should be chosen wisely.

In the following chapters, we firstly use a simulation based approach to investigate

the weakness of a manual maintenance scheduling strategy that is widely used across lo-

cal councils in the UK (Chapter 5). Chapter 6 focuses on automating the maintenance

scheduling supported by intelligent data analysis and estimation.
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Chapter 5

Risk driven analysis of a manual

strategy for gully-pot system

maintenance scheduling

In Chapter 4, we introduce the gully-pot system maintenance problem and propose a risk

driven model that captures the risk impact of gully-pot failure and failure behaviour. In

this chapter, we use a simulation based approach to understand the weaknesses in the

manual strategy. We propose to evaluate the quality of maintenance scheduling strategy

using the average daily risk caused by gully-pot failures in the system and conduct what-if

analysis on the manual strategy. The data required for simulation is provided by Blackpool

council, a client of Gaist Solutions Ltd.. The content in this chapter has been approved by

the city’s consultant from Gaist, and has also been published in Chen et al. (2016f,e)

5.1 Introduction

This chapter focuses on two factors that may affect the scheduling of maintenance actions:

the issue of parked cars and up-to-date gully-pot status information. In the current gully-

pot system maintenance situation, during the preventative maintenance, some gully-pots

are inaccessible due to parked vehicles. Historical maintenance records show that this is

a striking issue: about 8.3% of gully-pots are not serviced each year because of parked

cars. Apart from the parking issue, we also notice another weakness of current mainte-

nance scheduling strategy, namely untimely system status information. Currently, all the

broken or blocked gully-pots are either reported by local residents or found through preven-

tative maintenance. This passive situation potentially leads to uncontrolled surface water
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flooding.

In order to discover techniques or policies that could improve current gully-pot main-

tenance, this chapter considers the gully-pot maintenance as a risk-driven problem, as

described in Chapter 4. The current widely used manual maintenance strategy, which in-

cludes both preventative and corrective actions, is evaluated by the risk caused by failures

in the system, across various scenarios.

The remainder of this chapter is organized as follows. Section 5.2 states the daily

risk evaluation function for the gully-pot system. Section 5.3 introduces our simulation

process of the current manual scheduling strategy. Section 5.4 presents additional simula-

tion assumptions and environment settings. Section 5.5 analyse the impact of parked cars

and Section 5.6 illustrates the benefits of conditional based maintenance. A summary of

investment suggestions based on our simulations are provided in Section 5.7.

5.2 Evaluation of maintenance schedule strategy quality

We use the risk measurement function to evaluate the quality of maintenance schedules

over the simulated period. Each day, we calculate the risk of surface water flooding due to

blocked/broken gully-pots. This is evaluated by Function 5.1:

∑
i∈N

riPi(d) (5.1)

Note that the Function 5.1 is the daily gully-pot system risk element of Function 4.1

(Chapter 4). The methods of deriving each part of the risk measurement for each gully-pot

are introduced in Section 4.3

5.3 Simulation of current manual scheduling strategy

In order to discover techniques or policies that could improve the current gully-pot main-

tenance, we would like to simulate the actual scheduling strategy that is widely applied

across local authorities. In the real world, maintenance schedules are generated at varying

levels of granularity, from long term (yearly) to short term (weekly). To mimic the manual

schedule impact, we directly consider the short term planning that continuously creates

the daily based despatching schedule. We first generate a set of fixed preventative routes

for all gully-pots in the system and adjust our schedule plan weekly with consideration

of emerging failure events. The simulation process captures the key points of the current
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manual strategy in Blackpool and is approved by Gaist Solutions Ltd.. We summarise the

procedure as follows.

• Step1: Construct efficient preventative maintenance routes Sfixed for all gully-pots

in the system (Section 5.3.2).

• Step2: Collect recent information on emerging broken/blocked gully-pots from either

local residents’ reports or daily preventative maintenance. Generate reactive routes

for these problematic gully-pots (Section 5.3.3).

• Step3: Generate a maintenance schedule for the near future (Section 5.3.4).

This overview of the simulation process of the manual scheduling strategy, presents a

number of technical issues that need to be solved. In the following subsections, we present

the detailed techniques used to generate a large set of distance optimised routes.

5.3.1 Reduce the problem size

Gully-pot system maintenance is a large-scale problem. Simulating the scheduling process

for such a system is a computational challenge. To be able to deliver the analysis within

reasonable CPU time whilst retaining enough information to build feasible cleaning routes

and track gully-pot condition, we group gully-pots located on the same section of street.

As shown in Figure 5.1(a), we assume that these gully-pots share the same environmental

factors (Section 4.3.2). Gully pots in the same group are always scheduled together for

preventative maintenance. The service time of a group includes both cleaning time for

the gully-pots and travelling time inside this section of a road. This representation also

maintains traffic distance: for instance, the distance between group point 1 to group point

6, in Figure 5.1(b), is the road distance measured from the red node of road 1 to the green

node of road 6, in Figure 5.1(a). Furthermore, individual gully-pot states (i.e. normal,

calling, broken) are still recorded, because unexpected damage or blockage events may

happen to any of them: this allows corrective actions to be accurately tracked. A gully-

pot-cluster is labelled as in normal state only if all the gully-pots included are in normal

state. The risk of a gully-pot-cluster is the sum of all included gully-pots’ risk at any given

time.

By applying this grouping strategy, we reduce the preventative maintenance problem

size from 28,149 to 9,277 points. For corrective actions, routes are built on problematic

gully-pots, which only comprise a small vehicle routing problem.
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(a) Example of gully-pot on street (b) Example of grouped information

Figure 5.1: Reduce the size of a gully-pot system maintenance problem

5.3.2 Generate preventative route set

To build up the fixed preventative route set, we consider solving a vehicle routing prob-

lem (VRP) (Section 2.1). The objective is to minimise the total travelling distance, with

constraints including: 1) all gully-pots in the system should be visited at least once; 2) all

routes should start and end at the depot; 3) no route travelling time should exceed the

working hours constraint.

VRP solver The VRP solver starts from an initial vehicle routing solution, constructed

using the Clarke-Wright (CW) Savings heuristic (Section 2.1.2.1). After an initial solution is

constructed, the improvement phase uses variable neighbourhood search (Section 2.1.2.3)

embedded with i-relocate and i-cross-exchange shaking operators (Section 2.1.2.2) and

a local search phase. A similar process is used by Hemmelmayr et al. (2009) in their

daily VRP solving stage. In total, 12 neighbourhoods are implemented. The order of

neighbourhoods is i-relocate (i = 1; 2; 3; 4; 5; 6) and then i-cross-exchange (i = 1; 2; 3; 4;

5; 6).

In order to enhance the solution quality, a local search strategy is used after a solution is

obtained through “shaking”. The single route operator, 3-opt (Section 2.1.2.2) is adopted

in an iterative first improvement procedure. Only the two modified routes have to be

re-optimized.

Maximise usage of working time After finding the optimised VRP solution, we still

cannot guarantee that every route maximises the use of the daily time limitation. Therefore,

for each route in the preventative route set Sfixed, we try to insert the closest points which
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are not already included using least cost insertion (Section 2.1.2.1), until no more points

can be inserted without breaking the working time limitation.

Discussion In our simulation, all the preventative gully maintenance routes minimise

the travelling distance and maximise the usage of daily working time. This assumption

produces routes that are better than the routes used in reality. Delivering on-site service

normally has considerable variance in terms of service time and total working time. We

use the average service and travel time, assuming that the impact of variance will cancel

out over the long period of analysis.

5.3.3 Generate reactive routes set

Before producing the schedule for the following week, we create the reactive routes set,

based on emerging events information. During the last week, a normal callings and b

broken reports are received. Calling reports that have not been addressed and the a new

calling reports make up the set Vcalls. In the same way, we also get a set Vbroken. When a

call is received, we register the cluster ID (Figure 5.1) so that the schedule can inspect gully-

pots around the reportedly problematic ones; however, when broken pots are discovered

through preventative maintenance or inspection, we register them individually.

The VRP solver described above (Section 5.3.2) is used for both Vcalls and Vbroken to

create candidate route sets Scalls and Sbroken, respectively.

At this point, we have a candidate routes set, Sall, (including preventative routes,

reactive routes that contain reported gullies and reactive routes that contain broken gullies)

optimised in distance:

Sall = Sfixed ∪ Scalls ∪ Sbroken

5.3.4 Produce schedule manually

At the end of every simulated week, we select seven routes from the candidate route set and

assign them into the following working days in the next week. Only one route is executed

for each day in the planning horizon. Priority is given to the routes that contain broken

and blocked gullies (corrective maintenance). When all the reported problematic gully-pots

have been serviced, the crew comes back to the preventative maintenance in the following

day if there are still some days left in this week. The preventative routes s ∈ Sfixed are

serviced in turn and are arranged in descending order of risk
∑

i∈s riPi(d) measured at the

beginning of a year.
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5.4 Simulation assumptions and environment settings

After introducing the process to mimic the manual scheduling strategy, we make a few

additional assumptions in our simulation, as follows.

1. In the real world, the number of working days every week varies depending on local

council requirements: in the following experiments, we assume seven working days

per week; holidays are not considered.

2. Parking issues: inaccessibility during maintenance due to parking predominantly af-

fects preventative maintenance. For reactive actions, including servicing for both

resident reports and broken gully-pots, our simulation assumes that the team always

has access.

Environment simulation settings In the simulated environment, we consider each

gully-pot’s blocking behaviour according to seasonal and location information. Also, we

add some random broken events to add some unpredictable elements to the environment.

Detailed descriptions are as follows.

1. Total number of gully-pots in the system: 28,149.

2. Broken events: Blackpool council estimates about 1.1% to 1.8% of gully-pots are

broken every year. This is represented by each gully-pot becoming broken randomly

with probability from pb = 0.00003 to pb = 0.00005 per day in our simulation.

3. Blocking probability: a gully-pot lifetime is estimated by a Weibull distribution (Sec-

tion 4.3.2). Every day, each gully-pot has a probability of becoming blocked according

to its failure rate function hi(d) = Ri(d−1)−Ri(d)
Ri(d−1) , where Ri(d) = 1− Fi(d) is the reli-

ability function.

4. Seasonal factors F : the Blackpool data only allows us to include trees and leaf-fall in

our simulation. Seasonal factors related to the number of trees nearby highly affect

the lifetime of gully-pots, and on average, each gully-pot is affected by 0.4 trees in

Blackpool.

5. Resident calling behaviour: about 1700 calls are received every year by the Blackpool

gully maintenance team, and most of the calls concern blocked or damaged gully-pots.

Over 50% of all calls occur during the autumn, as shown in Figure 5.2. Our statistical

78



Chapter 5. Risk driven analysis of a manual strategy

analysis determined that, to match the resident calling behaviour in our simulation,

on any given day, the probability of receiving a call if a gully-pot is already broken or

blocked is pcalls(i) = {0.0033, 0.005, 0.0056, 0.002} for spring through winter, respec-

tively. If a gully-pot is not broken, there is still a small chance that a call is received,

related to its current condition. The simulation probability is pcalls(i) = Pi(d) ∗ γ,

where γ = 10.62 is the value to adjust the calling probability to match the real data

and has been measured experimentally.

Figure 5.2: Seasonal calls and blockages as a percentage of the total number of gully-pots in

Blackpool.

These parameters and assumption have been discussed with Gaist Solutions Ltd. and

agreed to be a realistic representation of gully-pot behaviour in Blackpool. All simulations

were implemented in C# and executed on a cluster composed of 8 Windows computers, each

with 8 core Intel Xeon E3-1230 CPU and 16GB RAM. We evaluate the maintenance quality

using average daily surface flooding risk caused by the gully-pot system over simulated four

years.

5.5 The impact of parked vehicles

According to the maintenance records, parked vehicles have been identified as a major

problem that decreases the maintenance working efficiency, especially in the old town, where

no extra space was designed for parked cars. Our simulation helps us to understand the

impact of parking on gully-pot maintenance performance. Therefore, potential strategies

can be proposed such as “banning parking” when a maintenance visit for a certain street

is scheduled.

In simulation, we can test the effect of inaccessible gully-pots using a parameter, x, to

represent the percentage of gully-pots that cannot be accessed during preventative mainte-

nance each year. The values of x that we test are 0, 5, 8.3 (the actual value for Blackpool),
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10 and 15 percent. Each parameter setting is run over 4 simulated years, with correspond-

ing seasonal factors and residential report behaviours. We test two environments with the

random broken events probability setting equal to either pb = 0.00003 or pb = 0.00005.

We refer to these environments as stable and dynamic, respectively. The aim is to test the

effect of parked vehicles in different degrees of uncertainty.

(a) Stable environment, pb = 0.00003 (b) Dynamic environment, pb = 0.00005

Figure 5.3: The average daily risk using the manual maintenance schedule, with different in acces-

sibility settings during preventative maintenance. The bar with the setting of 8.3% is the current

real-world situation. Error bars show 95% confidence intervals.

The results of simulation are shown in Figure 5.3. First, we can see that there is

an increase in flooding risk as the percentage of inaccessible gully-pots increases in both

scenarios. The simulation result suggests that a policy of banning parking on streets to

be serviced might improve maintenance efficiency by about 14% and 8% in the stable

and dynamic environments, respectively. In reality, a “banning parking” policy may only

partially decrease the number of parked cars, if the percentage of inaccessible gullies is 5%,

very different behaviours are shown in different environments. A nearly 12% risk reduction

can be obtained in the stable environment, but little difference in risk can be observed in

the dynamic environment. As the rate of car ownership continuous to increase, the impact

of parked cars could become more of a problem, when the percentage of inaccessible gullies

increases up to 15%, the surface flooding risk increases significantly by about 10% and 12%

respectively.

This result tells us that parked cars pose a significant risk in both environments. Com-

paring the stable and dynamic environments, we can see the different stages of risk increase

with different percentages of inaccessible gullies. The results suggest that different degrees
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of “banning parking” for different environments should be considered. For the situation in

Blackpool, further investigation and more accurate estimation of the environment is needed

to deliver the optimal policy while using the least effort.

5.6 What if we could do condition-based maintenance (CBM)?

Aside from parking issues, seasonal changes and untimely system status information are

identified as other factors that affect the efficiency of drainage system maintenance. Sea-

sonal change is an uncontrollable factor. On the other hand, improving low-cost sensor

techniques makes it potentially feasible to continuously monitor gully-pot condition. This

would allow our scheduling strategies to be combined with CBM, discussed in Section 4.1.1.

Currently, we only find out that a gully-pot is blocked or broken either during preventa-

tive maintenance or if it is reported; because of this incomplete system information (i.e.

the actual gully-pot status information at any time), it is difficult to produce any optimal

schedules.

In simulation, we can test the importance of real time failure monitoring by varying

the proportion of gully-pot failures that are known immediately, as if the gully-pot had

a real-time sensor. In these experiments we consider more scenarios than the stable and

dynamic environments introduced in Section 5.5. For each of the environments, we consider

three starting conditions: a normal, well maintained system; a well maintained system

after a natural disaster (recover-1); and a badly maintained system after a natural disaster

(recover-2). Parameter settings for each of scenario are presented in Table 5.1.

As the simulation scenarios shown in Table 5.1, the normal state assumes that the

entire system is well maintained and the number of days since the last maintenance action

for each gully is uniformly distributed across 1.1 years and 1.5 years in the environment

with two different uncertainty degrees respectively. In addition, we also test scenarios that

assume the system is recovering from a natural disaster such that a large number of gullies

are broken or blocked initially regardless of prior maintenance. Both a well maintained

gully-pot system and a system that has had bad maintenance are tested (see Figure 5.5).

Figure 5.4 presents the average daily risk of systems with various coverage of sensors over

a set of four-year simulations. As shown in Figure 5.4(a), in comparison to the simulation

of current passive corrective maintenance (No sensor), the instant information simulation

(All sensor) shows a reduction in risk of about 92%. A similar impact of instant information

can also be observed in the dynamic environment, which brings a risk reduction of 94%

(Figure 5.4(b)). In the current situation simulation (No sensor in Figure 5.4), residents’
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Table 5.1: “since last maintenance” and “initial broken gullies” set the system’s initial state: for

all gully-pots, the days since their last service are evenly distributed in θ years. We randomly assign

a percentage of gully-pots to be in the broken state.

Stable (pb = 0.00003) Dynamic (pb = 0.00005)

Since last
maintenance

θ

Initial broken
gullies

Since last
maintenance

θ

Initial broken
gullies

normal 1.1 0.4% 1.5 0.7%

recovery-1 1.1 2% 1.5 2%

recovery-2 3 2% 3 2%

(a) Stable environment, pb = 0.00003 (b) Dynamic environment, pb = 0.00005

Figure 5.4: Performance of the manual scheudling strategy in normal scenario in Table 5.1, with

sensors of different sensor installation capacity. Error bars show 95% confidence intervals.

reporting behaviour in different seasons strongly affects the response time for attending

failed gullies. If a gully-pot breaks or blocks in winter, this may be only found through

preventative maintenance in the next year. Such late responses to problematic gully-pots

gradually accumulates risk over time. This may explain the skewed risk distribution across

different seasons. The result reveals that depending entirely on reporting by local residents

effectively hides the dangers to the system. For the case where all gully-pots have instant

(sensor) information (All sensor), the results clearly show the impact of seasonal factors:

falling leaves and wet weather in autumn increase risk by about two times compared to

other seasons.

To provide further insight into how the availability of information on gully-pots af-

fects flooding risk, we adapt the simulation to provide instant information from only some

locations, simulating the localised installation of sensors. Setting 10% of gullies to have

sensors allows us to compare an even distribution of sensors (Random 10% ) to the results

when sensors are focused on critical areas of the city (HighRiskImpact 10% ). We find that
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focusing on high risk areas reduces the daily risk, on average, by about 28% in the stable

environment (Figure 5.4(a)) and about 50% in the dynamic environment (Figure 5.4(b)).

When monitoring is increased to cover 30% of the gullies, the comparable risk reductions

are 75% and 72%, in the stable and dynamic environments respectively. This result shows

that it is much more useful to track the status information from gullies located in critical

areas.

(a) Daily risk tracking of scenario recovery-1,
pb = 0.00003

(b) Daily risk tracking of scenario recovery-2,
pb = 0.00003

(c) Daily risk tracking of scenario recovery-1,
pb = 0.00005

(d) Daily risk tracking of scenario recovery-2,
pb = 0.00005

Figure 5.5: Performance of the manual scheudling strategy in recovery state with sensors of different

install capacity.

Figure 5.5 illustrates the daily risk change over two years in the recovery states. In

scenario recovery-1 (Figure 5.5(a) 5.5(c)), the system with full sensoring performs the best

in terms of recovery speed, followed by the HighRiskImpact 30%. The faster recovery also

implies lower total surface water flooding risk through the recovery period. In scenario

recovery-2 (Figure 5.5(b) 5.5(d)), due to the previously poor system maintenance, the

recovery period is significantly longer in all cases compared to recovery-1. Also, the peak

point uncovers the vulnerability of a badly maintained system during the high-risk season

(autumn). However, the sensoring still helps the maintenance team to produce a more

informed schedule, which results in less total risk during the recovery period.
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Comparing the recovery behaviour under stable and dynamic environments (Table 5.1),

the system recovers slightly slower in the dynamic environment. Even though the absolute

value of normal state risk and risk peak points are affected by the environment uncertainty,

we can see very similar overall patterns in both environments settings. In the following

experiments, we focus our analysis on the dynamic environment (pb = 0.00005), which

should give us a robust understanding of the impact of maintenance on the flooding risk of

the gully-pot system.

5.6.1 Reliability

The above simulations show the contribution of timely information to improving the gully-

pot system maintenance quality. However, installing and maintaining a sensor system also

increases the management complexity, where extra cost and manpower are needed to en-

sure that the system is always working correctly. Furthermore, we assume in our simulation

that instant gully-pot condition information can be received with no errors, which is hypo-

thetical. In practice, current sensor techniques can achieve up to 85% reliability (See et al.

(2012)). To justify the benefit from potential sensor technique in more realistic scenarios,

we test various situations in which false negative and false positive error information is sent

by sensors.

In the previous simulations, a blocked gully-pot is reported immediately if a sensor is

installed. In the following experiments, we assume that a sensor may fail to report the

gully-pot failures with a probability from 0% to 30%, labelled as false negative error in

Figure 5.6. If a sensor fails, the gully-pot failure information relies on traditional reporting

from local residents. Meanwhile, for any gully-pot in its normal state, an installed sensor

may send a false alarm (also called false positive error) with probability from 0% to 30%.

We run the maintenance simulation as if there is a full sensoring system, over four years,

in the normal scenario (see Table 5.1).

The results of average daily surface water flooding risk are illustrated in Figure 5.6.

By comparing Figure 5.4 and Figure 5.6, we can see that the overall maintenance quality

in a full sensoring system, in terms of surface water flooding risk management, is still

well controlled across all seasons, even with the probability of both false positive and

false negative errors up to 30%. In the relatively stable seasons (spring and summer),

the false reports show no strong effects on maintenance quality. In the autumn period,

many reactive actions emerge due to the increasing failure rate of each gully-pot and the

number of local residents’ complaints. A large number of false alarms disrupts necessary
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(b) Spring (c) Summer

(d) Autumn (e) Winter

Figure 5.6: Average daily surface water flooding risk over a four years simulation in the normal

scenario. A full sensoring system with false alarm and false negative errors is considered.

maintenance in this period, resulting in a risk increase of about 28%. Interestingly, when the

false negative error slightly increases in this very dynamic season, the maintenance quality

slightly improves. A further investigation suggests that delayed reporting of problematic

gullies in the dynamic season helps to construct more efficient maintenance routes to some

extent. This result actually reveals that always giving priority to fixing problematic gullies

is not an optimal strategy. More experiments related to optimising the scheduling strategy

are discussed in Chapter 6. In the winter period, when the failure rate of each gully-pot is

high but residents’ reports are rare, large risk increases can be observed when the sensors’

false negative rate increases up to 30%. This result reveals the importance of a reliable

sensoring system, particularly if it is the dominant information resource.
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Further discussion Whilst the use of sensors might be of benefit in maintenance schedul-

ing and risk reduction, the realism of this approach needs further consideration. Accurate

sensor information depends not just on the sensor detecting problems, but also on commu-

nication performance, which decreases in weather condition such as rain or snow (See et al.

(2012)). The gully-pot system maintenance should combine a risk estimation approach (i.e.

Section 5.2) with sensors to deliver optimised scheduling.

Our simulation shows large advantages when sensors are installed in high-risk areas.

However, since sensors must be close enough to communicate wirelessly with each other,

optimisation of the sensor network topology must be considered (See et al. (2012); Yick

et al. (2008)).

5.6.2 Can we reduce maintenance frequency when providing CBM?

Historic gully-pot maintenance records from several local councils of the UK, show that the

working frequency and pattern vary according to local policies. Our simulation experiments

so far have assumed that the maintenance schedule is updated every week and the crew

works 7 days a week. In order to further explore whether the installation of sensors is

worthwhile, we compare the impact of reducing maintenance frequency on a no-sensoring

system and full-sensoring system. To set up the simulations, the same scheduling policy is

used (see Section 5.3.4), except that the maintenance crew only works for the first x days

every week.

Figure 5.7: Performance of the manual scheduling strategy with different working frequency in the

normal scenario: from four days per week to seven days per week. Error bars show 95% confidence

intervals. Legend: sensorInfo workingDays
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Figure 5.7 shows the average daily risk over a four-year simulation with different working

frequency settings. Firstly, we can see that the risk increases as the working frequency

decreases in both no-sensoring and sensoring system. In the relatively low-risk seasons of

spring and summer, the advantage from using a sensoring system is still apparent when we

reduce the working frequency down to four days per week. However, the lack of maintenance

leads to a series of problems in high-risk seasons (autumn and winter). Our results suggest

that local authorities might make savings by using different working frequencies according

to seasonal information. Comparing the result of five working days with sensoring to seven

working days without sensoring, we can potentially improve the maintenance quality by

about 76%, whilst reducing working time by 30%.

Figure 5.8 illustrates detailed daily risk changes over five-year simulations under various

working frequencies. All simulations start from the same initial state as the normal scenario

shown in Table 5.1, which assumes that the previous working frequency is seven days per

week. Firstly, we can see that, when applying sensoring, the gully-pot system can be

restored within about a month. In the first year, the daily surface water flooding risk

caused by failures in the gully-pot system fluctuates at about £1,200 and £16,000, for the

system with and without sensoring respectively. A dramatic risk increase can be observed

in the second year, in the autumn period when we decrease the working frequency down

to four days per week in both no-sensoring and sensoring system. This risk fluctuation

pattern repeats in subsequent autumns. Once again, the result shows that insufficient

maintenance will lead the system to a vulnerable situation, especially during high-risk

seasons. Furthermore, this effect persists, even when perfect system status information is

given by the sensors.
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Figure 5.8: Daily risk tracked over a simulation of five years using the manual scheduling strategy

with different working frequency in the normal scenario. Legend: sensorInfo workingDays. (Lower

risk is better)

Figure 5.9: Daily risk tracked over a simulation of five years using the manual scheduling strategy

with different working frequency in the normal scenario.

The results above illustrate the minimum number of days (i.e. five days a week) required

to maintain the advantage due to timely system status information. To further explore

the damage of insufficient maintenance frequency, we decrease the number of working days

down to three days per week. The results, from Figure 5.9, show that there is no significant
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effect from this reduction of working frequency in the first year. However, the reduced

maintenance results in gradually accumulated hazards, and these are suddenly exposed

later, in what appears to be a critical threshold effect.

Focusing on the peak values, Figure 5.10 plots the worst risk value found in the simu-

lation runs for the different working frequencies. The results show a clear, exponential risk

increase in the worst situation when we decrease the working frequency every week. This

result again highlights the negative consequences of insufficient system maintenance.

Figure 5.10: Peak risk value using different working frequency for a gully-pot system with full

sensoring.

5.7 Conclusion

This chapter considers two factors that decrease the maintenance performance of the current

manual schedule policy. We use simulation to explore the effect of “parking issues” and

“untimely system status information” on maintenance scheduling, both of which are known

weaknesses of the current manual maintenance approach.

Our simulation results suggest that a “banning parking” policy might reduce the surface

water fooling risk to some extent. However, this policy may increase management com-

plexity and residents’ complaints. In different scenarios, “banning parking” policy with

different strength may achieve optimal effects while using least effort.

When we analyse the scenarios in which timely gully-pot status information can guide

our maintenance schedule, the results show that the “untimely information” is a significant

factor in lowering the efficiency of maintenance. Exploring the hypothetical use of sensors

to provide timely information, our simulation results show that significant risk reduction

can be obtained by sensor informed maintenance. Low-cost wireless sensor techniques could

be a good investment to help produce an informed maintenance schedule and lower risk.
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Even in practice, where the sensor technique cannot achieve up to 100% reliability, our

preliminary simulations show that a full-sensoring system can cope with up to 30% false

positive and false negative error information. Furthermore, the benefit of sensoring can

still hold when we reduce the working week by two days.

Further work is needed to form a cost/benefit analysis to discover the optimal quantity

of sensors to deploy, their locations and network topology. New scheduling approaches

may be required to make best use of the potentially large amount of data generated by the

sensors.

In the next chapter, we will look at how to improve the current manual maintenance

scheduling using the available gully-pot information (estimated and known). We propose a

predictive scheduling strategy that automatically adjusts despatching of preventative and

corrective actions according to environment changes.
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Chapter 6

Optimisation of a gully-pot system

maintenance scheduling

In this chapter, we continue the research on the gully-pot system maintenance problem,

moving from investigating policies that can improve efficiency with existing manual schedul-

ing approaches (Chapter 5) to improving the scheduling process itself. We aim to automate

the scheduling process, using a risk driven model to guide despatching of maintenance ac-

tions and optimise the service route simultaneously. This work has been published in Chen

et al. (2016b).

6.1 Introduction

To solve our gully-pot system maintenance scheduling problem, we consider the risk driven

model presented in Chapter 4. For completeness, we recall the high level objective (Equa-

tion 4.1) that is to select a judicious subset of gullies from N and assign them to days of

the following short period, in order to minimise the risk in this period:

∑
d∈W

∑
i∈N

riPi(d)

In the above equation, each gully-pot i in the system is associated with a risk impact

value ri. In a general sense, a higher risk impact here implies that if a particular gully-pot is

blocked and floods happen, it results in relatively larger economic and social losses. Details

of the estimation of ri for each gully-pot in Blackpool is introduced in Section 4.3.1. Pi(d)

describes the probability that a gully-pot i is in its failure state on day d. We introduce

a Weibull distribution that considers seasonal and local factors to adjust each gully’s life
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time estimation (Section 4.3.2).

An interesting feature of our problem is that the objective function is designed for a

short-term scheduling problem, but the overall aim is to analyse the scheduling impact for

long-term risk management. Due to the changing environment and unexpected emerging

situations, we cannot assume any repeated schedules between periods. To solve the long-

term scheduling problem, a rolling horizon approach is devised, in which the short-term

problem is solved repeatedly, given updates to environment and gully-pot status.

We propose an approach that maintains a set of distance optimised routes evolving

with the environmental changes over time. We apply a tabu-based hyperheuristic – binary

exponential back off (BEBO) (Remde et al. (2009)) which manages a set of route-adapting

and scheduling low level heuristics to improve the solution iteratively.

There is good evidence that hyperheuristics can be successfully applied to various com-

binatorial problems, such as timetabling (Burke et al. (2007b); Bai et al. (2012)) and vehicle

routing (Garrido and Riff (2010); Misir et al. (2011); Walker et al. (2012)).

The remainder of the chapter is organised as follows. Section 6.2 describes a predictive

scheduling strategy to solve the gully-pot system maintenance problem. A comprehensive

discussion and analysis of a set of gully-pot system maintenance policies is given in Section

6.3. Finally, we present the conclusion and directions for future research in Section 6.4.

6.2 Solution approach – predictive scheduling strategy (PSS)

In the simulation of the current manual scheduling strategy (Section 5.3), we described

how to generate the candidate route set for preventative and corrective actions. Our PSS

maintains a similar candidate route set. However, in order to schedule the routes in a

smarter way, we add a new data structure to efficiently re-evaluate the risk of each route

at any decision point. Furthermore, adaptations are described to dynamically modify the

route structure according to changes in the environment.

6.2.1 Solution representation

Figure 6.1 shows the data structure used to store the solution. A |W |-days schedule contains

selected |W | number of candidate routes’ IDs. Each route in the candidate set is optimised

on distance. A route is composed of an ID, route information and the actual tour. Route

information includes up to date gully-pot condition which helps to produce schedules, shown

as follows:
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1. route length;

2. number of gully-pots;

3. current route risk, which is the sum of the risk impact for each gully-pot multiplied

by that pot’s current failure rate;

4. tabu tenure l in days, which is used to stop the revisiting of the same preventative

route in the near future.

Figure 6.1: Solution representation and data structure for storing candidate routes, where
the notations n,m, g represent the number of routes stored in the “initial fixed”, “re-
optimised” and “reactive” routes set respectively1. In the example above, we have a 5-days
schedule and a route from the candidate routes set is selected to each day of the 5-days
planning period.

6.2.2 Candidate route set management

The candidate route set (Figure 6.1) consists of an initial fixed route set (Section 6.2.2.1),

a re-optimised route set (Section 6.2.2.2) and a reactive route set (Section 6.2.2.3). A

solution to our problem selects |W |-routes from this set and specifies the order in which

they are serviced.

1These notations have no relations with those used to describe our GDMP model in Chapter 4.
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6.2.2.1 The initial fixed route set

Routes optimisation is very CPU intensive, especially for such large problems. Constructing

routes repeatedly in a rolling planning schema is not efficient. Once the initial fixed routes

set is built, these tours are not changed during execution; the fixed routes set stores the

initial solutions for preventative maintenance.

Here, we start by finding a group of optimised candidate routes that can be scheduled

directly or adjusted based on updated information before the use of the route in future

days. At this stage, we treat the problem as a static VRP without considering any risk

impact or lifetime information. To build the fixed preventative route set, we use the same

process as in the manual approach (Section 5.3.2).

At the end of the initial route set construction, we have a route set Sfixed that visits

every gully-pot at least once and each route is minimised in distance and maximised in the

usage of time limitation Tmax.

6.2.2.2 The re-optimised route set

Routes in the re-optimised routes set, denoted as Sreopt, are repeatedly updated during

optimisation, as a result of environmental changes that cause gully-pot status changes.

Section 6.2.3 describes the process of generating and maintaining routes in this set in

detail. The size of the re-optimised route set is fixed. We can consider the Sreopt as a

short memory buffer to store recently constructed high risk routes and these m number of

routes are optimised in distance. When the set is full and new routes are generated, the

oldest route is replaced. m is a user defined parameter. An impact analysis of m is given

in Section 6.3.1.2.

6.2.2.3 The reactive routes set

Reactive routes are built using the same process introduced in manual scheduling (Section

5.3.3); before scheduling routes into days, we create candidate routes in the reactive routes

set based on emerging events information. All these routes are discarded when a schedule

solution is executed.

Again, the same method is applied to create candidate route sets Scalls and Sbroken

(Section 5.3.3). In addition to the Scalls result produced in manual scheduling simulation,

each route in Scalls is treated as an opportunity to clean more normal-state gully-pots on

the journey, as the same vehicle is used for the task. So, for each route in Scalls, we try to

insert the closest gully-pot-cluster (see Section 5.3.1) that are in a normal state, and whose
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time since last service is longer than 30 days. We use least cost insertion, until no more

points can be inserted without breaking the schedule duration constraint based on Tmax.

We denote the further optimised route set as S∗calls

At this point, we have a candidate routes set (including initial fixed routes, routes that

mostly contain reported gullies and routes that only contain broken gullies) optimised in

distance:

Sall = Sfixed ∪ S∗calls ∪ Sbroken

Figure 6.2: Overview of system operation

6.2.3 Producing a schedule

The PSS runs in continuous time. Figure 6.2 illustrates an overview of the system informa-

tion flow, and Algorithm 6.2.1 describes our rolling horizon optimiser that automatically

selects appropriate maintenance actions (either preventative or corrective) for the upcoming

period.

6.2.3.1 Initialization

The initial schedule simply chooses the |W | number of routes with tabu tenure ls equal to

zero, from all candidate routes, Sall, with the highest risk,
∑

i∈s riPi(today).
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Algorithm 6.2.1 Rolling horizon optimiser – algorithm sketch

Define:
De: Sfixed is the initial fixed route set containing distance optimised routes.
De: Sreopt is a set of distance optimised routes that are updated during the search
according to the recent gully-pots risk information; initially Sreopt = ∅
De: ls is the tabu tenure of route s in days, to stop revisiting of this route in near future
(Section 6.2.1).
De: us is a flag parameter to prevent cyclic testing of route s when using the scheduling-
related LLHs (i.e. LLH3,LLH4 in Section 6.2.3.2)
Rolling horizon repeat every |W | days:
De: 1. Generate Scalls and Sbroken based on emerging events. ∀s ∈ S∗calls∪Sbroken, ls = 0

De: 2. Get the candidate routes set Sall = Sfixed∪Sreopt∪S∗calls∪Sbroken. ∀s ∈ Sall, us =
false
De: 3. Generate |W | days schedule solution x that minimises the objective function 4.1
(Section 6.2.3.1 – 6.2.3.3).
De: 4. Update risk information for routes s ∈ Sfixed ∪ Sreopt, based on the changing
condition of gullies;
De: 5. If any route s ∈ Sfixed ∪ Sreopt is scheduled in x, ls = 30(days), otherwise
ls = ls − |W |

6.2.3.2 Improve the schedule using BEBO heuristic

The improvement stage is developed from a tabu search based hyperheuristic method –

binary exponential back off (BEBO), proposed by Remde et al. (2009). BEBO has the

fundamental structure of a hyperheuristic search strategy – a trial set of low level heuristics

(LLHs) and systematic rules that control the usage of each LLH. BEBO uses dynamically

adapted tabu tenures (Glover and Laguna (2013)) during the search process, which is

especially useful when a large number of neighbourhoods are involved. If a LLH performs

poorly recently, it is disabled for a number of iterations. If the LLH performs poorly

continuously, the number of forbidden iterations increases, governed by a “backoff ” value.

The detailed searching framework is shown in Algorithm 6.2.2 (Remde et al. (2012)).

Apart from the hyperheuristic framework, a well-designed set of LLHs is crucial to suc-

cessfully applying a hyperheuristic. In our implementation, the LLHs are designed from

two aspects: 1) route-related moves that modify routes by changing segments or points in

or between routes; 2) schedule-related moves that assign an optimised route to a day. The

value of a solution is measured by the objective function in Equation 4.1.

H Route related moves:

The following route related moves are only applied to preventative routes (s ∈ Sfixed) and

routes that contain mostly reported calls (s ∈ S∗calls). Fixing broken gully-pots is carried
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out by a different vehicle. These reactive routes s ∈ Sbroken are constructed as described

in Section 6.2.2.3 and no more route structure optimisation is processed.

LLH1 i-cross-exchange. For any two scheduled routes r1 and r2, apply i-cross-exchange

(Section 2.1.2.2). If any resulting route visits one point more than once, the points adjacent

to longer edges are removed. Moves are examined for each pair of routes in a nested loop,

the first yielding an improvement being implemented. (1 ≤ i ≤ 5).

LLH2 i-worst point insertion (5 ≤ i ≤ 20). This LLH improves the next |W | days’

scheduled routes by finding the i highest risk points not appearing in the current schedule

solution x. These i points are then inserted into the |W | days schedule using a cheapest

insertion heuristic (Section 2.1.2.1) with a relaxed time limit. If any target route scheduled

in W now exceeds the Tmax limitation, we repeatedly remove the best-condition point from

that route until it becomes feasible.

The two LLHs above keep a copy of the original routes and generate new routes through

operations. New routes are stored in the re-optimised routes set Sreopt. Though these mod-

ified routes may not generate improvements for the current iteration or the current short

planning horizon, they normally contain relatively high risk gully-pot-clusters in recent

time. Hence, they are still likely to be picked up using schedule related moves later or

contribute to the near-future plan.

H Schedule related moves:

LLH3 n-replace schedule (1 ≤ n ≤ |W |) (see Algorithm 6.2.3). Replace the last n days’

schedule with n other routes from the candidate set Sall, that are not included in the

current solution, and whose tabu tenures ls equals zero and has not been tested during the

search (us = false). We sort the candidate set Sall to check the higher risk routes first as

these moves are more likely to produce improvements.

LLH4 n-replace schedule random (1 ≤ n ≤ |W | − 1). Same as LLH3, except that we

choose the n day’s schedule to replace randomly, instead of the last n day’s schedule.

LLH5 switch two days’ schedule (see Algorithm 6.2.4). First improvement scheme is

applied.

97



Chapter 6. Optimisation of a gully-pot system maintenance scheduling

Algorithm 6.2.2 BEBO hyperheuristic

Define:
1: x is the current solution;
1: LLHi is a low level heuristic;
1: 4(x, LLHi) returns the fitness value of a neighbour solution from applying LLHi to
current solution x, calculated based on the objective function 4.1;
1: tabui is the tabu tenure of LLHi

1: backoffmin = 5 is the minimum backoff value
1: backoffi is the backoff value of LLHi, where backoffi ≥ backoffmin
for all i do

set backoffi = backoffmin
tabui = 0 //we allow all LLHs to try at least once at the beginning

end for
while ∃i that tabui = 0 do
bestvalue = x.value
for all LLHi do

if tabui = 0 then
if 4(x, LLHi) < x.value then
backoffi = backoffmin
if 4(x, LLHi) < bestvalue then
bestvalue = 4(x, LLHi)
besti = i

end if
else
backoffi = backoffi ∗ 2
choose tabui randomly from {0, 1, ..., backoffi}

end if
else
tabui = tabui − 1

end if
end for
if bestvalue < x.value then
x⇐ apply(x, LLHbesti)

end if
end while

Algorithm 6.2.3 n-replace heuristic

Sall is a list of candidates routes sorted by risk in descending order
for each day i in the last n days’ schedule do

for each route s in Sall where us = false && ls = 0 && s /∈ x do
x′ = replace the route scheduled in day i with s;
if x′.value < x.value then
x = x′

us = true
break

end if
end for

end for
return x
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Algorithm 6.2.4 switch heuristic

for i = 0; i < x.length; i = i+ 1 do
for j = i+ 1; j < x.length; j = j + 1 do
x′ = switch the ith and jth days’ schedule;
if x′.value < x.value then

return x′

end if
end for

end for
return x

Algorithm 6.2.5 pop up (entry, stop)

Define: entry: the route to pop up
Define stop: the target day;
for i = entry; i > stop; i = i− 1 do

for j = i− 1; j ≥ stop; j = j − 1 do
x′ = pop up ith day’s schedule to jth day;
if x′.value < x.value then

return x′

end if
end for

end for
return x

LLH6 pop up (Algorithm 6.2.5). Pop up ith day’s schedule to a target position j. For

example, one neighbour of solution 1,2,3,4 can be 1,4,2,3 by popping up 4 to the second

position. In Algorithm 6.2.5, entry=|W | and stop=1 are used in following experiments.

In summary, if we need to produce a |W | = 7 days schedule, in total 36 LLH will be

called. The LLHs set contains both route structure adaptation and schedule modification

according to risk estimation.

Our preliminary experiments show that all the LLHs contribute to the final solution

quality. Among them, LLH2 makes the most improvements. Also, LLH2 helps the solver

continuously add new elements to the candidate routes set. Our LLHs do not allow any

individual route to visit one point more than once. However there is no rule to eliminate

a solution that contains a gully-pot-cluster more than once during the period W : our

experiments suggest that such a sub-optimal solution is easy for the algorithm to improve

using LLH2, LLH3, LLH4, which is thus rarely seen in practice. If a resulting solution

suggests to visit a point more than once within W , the heuristic is opportunistically visiting

a recently cleaned gully that lies close to the current route.
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6.2.3.3 Improve current solution by partial rebuilding

At the end of the BEBO improvement stage, a local optimum solution x is returned and a

reinitialisation process is applied to escape the local optimum, by partially destroying and

rebuilding x. Then the BEBO improvement and reinitialization repeats for a given CPU

time. The global best solution is remembered.

Destroy: For a |W |-days schedule solution, we randomly remove y days of the schedule,

where y ≤ |W |/2;

Rebuild: Here, we build y new routes that can replace the y removed schedules. First,

from the optimised routes information stored in the fixed memory, we know the average

number of points n̄ included in a route. We then select nworst number of points with the

highest risk under the current environment and nrandom random points that have not been

visited in the |W |−y unchanged scheduled routes, where nrandom = nworst = n̄∗y/2. Next,

the entire process in Section 6.2.2.1 is applied to the selected points, resulting in z distance-

optimised routes, which are stored in the the re-optimised routes set Sreopt. Finally, y out

of the z routes are randomly assigned to replace the removed schedules.

6.3 Risk driven analysis of PSS

In this section, we first introduce our simulation settings. Then, we determine the rolling

planning horizon by experimenting with its effect on risk management under different en-

vironmental conditions. Finally, we test the PSS and compare it with the current manual

approach and a few other common scheduling policies. We aim to understand how different

maintenance policies affect the surface water flooding risk due to blocked gully-pots in the

long term. All simulations were implemented in C# and executed on a cluster composed

of 8 Windows computers with 8 core, Intel Xeon E3-1230 CPU, and 16GB RAM.

6.3.1 Data & parameters

6.3.1.1 Simulation settings

Gully pot information comprises location, surrounding properties, nearby trees and his-

torical maintenance actions from Blackpool local council, a client of Gaist Solutions Ltd.

Details of simulation assumptions and environment settings are the same as introduced in

Section 5.3. We use the inaccessibility figure of 8.3% to simulate the current parking issues,

100



Chapter 6. Optimisation of a gully-pot system maintenance scheduling

which implies not all gullies can be cleaned during preventative maintenance. We set the

random broken event rate at pb = 0.00005 that simulates the dynamic environment from

Chapter 5.

6.3.1.2 Search parameter settings

The BEBO heuristic described in Section 6.2.3.2 is parameter-free, since all LLHs are given

and it always chooses the best LLH at each decision point.

The termination criterion of the entire search process, composed of BEBO and reini-

tialisation, is controlled by a pre-set CPU time. Many heuristic search strategies find good

solutions in the very early stages, but to find more improvements becomes harder and

harder. To avoid either too early termination or unnecessary CPU consumption, we test

the effects of limited computation time for various sizes of planning horizon, |W |. Accord-

ing to our experiments, about 0.002, 15, 68, 319 and 1189 minutes are required respectively

for planning horizons |W | = 1, 5, 7, 10, 14 to achieve results that are within 2% of the best

found solutions in preliminary experiments run over 48 hours of CPU times (see Figure

6.3). These CPU time limitations are used in the subsequent experiments.

Figure 6.3: Effects of limiting computation time for different planning horizons

Considering the size m of the re-optimised routes set Sreopt, large values of m result

in a more diverse set of routes, which may lead to a better solution. However, if m is too

large, the increased CPU time (for schedule-related LLHs (Section 6.2.3.2) to find their

local optima) does not yield better solutions in the time available. The route diversity due

to larger m contains too many old updates during the search, which increases the searching

complexity. If m is too small, route-related moves repeatedly generate the same or very

similar routes. For our case, m = 25% ∗ |Sfixed| is found to give the best balance between
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these two effects in preliminary experiments.

6.3.2 Impact of planning horizon |W | on risk management in different

environments

As we have seen in Chapter 5, gully-pot lifetimes are affected by seasonal factors, and

peoples’ reporting behaviour is different at different times of year. A short planning hori-

zon may result in many reactive actions, and require more frequent information updates,

whereas a longer planning horizon is better at balancing preventative and corrective mainte-

nance. However, when |W | is too large, it leads to a plan based on insufficiently up-to-date

information.

This section explores the impact of the planning horizon size |W | on the maintenance

performance in four seasons with the gully-pot system in either a normal or recovery sce-

nario (Section 5.6). The parameter settings of the two scenarios are shown in Table 6.1.

(|W | = 1, 5, 7, 10 are tested).

Table 6.1: “since last maintenance” and “initial broken gullies” set the system’s initial state: for

all gully-pots, the days since their last service are evenly distributed in θ years. We randomly assign

a percentage of gully-pots to be in the broken state. In the simulation, pb = 0.00005

State Definition
Since last

maintenance θ
Initial broken

gullies

normal

Based on the real-world situation,
running simulation of maintenance
actions for a long period until the overall
system risk becomes stable; used as the
initial state for all normal scenarios

1.5 0.7%

recovery
Start with very poor gully-pot conditions,
and entire system in a high risk state

3 2%

Figure 6.4 shows the average daily surface water flooding risk caused by clogged gullies

in Blackpool by using different planning horizons under different scenarios. We can be

relatively sure that there is a genuine difference in risk, when both the mean values and the

95% confidence intervals differ. In the normal scenarios (Figure 6.4(a)), |W | = 5 and |W | =

7 perform better than other settings during spring and summer. Over autumn and winter,

when the number of blocked gully-pots and calls significantly increases, |W | = 1 produces

the best schedules, as it updates system and environment information most frequently.

|W | = 10 performs badly in all seasons, due to lack of up-to-date information.

In the recovery scenarios (Figure 6.4(b)), the overall risk is about 2 to 3 times greater

than when the system is in the corresponding normal state. In particular, if there is a
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lack of maintenance in autumn, this may lead to serious consequences. Again, |W | =

1 always produces the best schedules in the recovery state. This is because there is a

significant number of emerging situations every day. Updating the system and environment

information every day brings considerable advantages. In the recovery scenario, it is difficult

to identify a single best value among |W | = 5, 7, 10; it is hard to balance the preventative

and reactive actions by adjusting planning horizons, when recovering from a disaster.

(a) Normal

(b) Recovery

Figure 6.4: Impact of planing horizon on maintenance performance in different scenarios.
Error bars show 95% confidence interval on each mean.

Table 6.2 presents scheduling performance in terms of corrective actions. As we de-

scribed in Section 6.2, our solution does not impose hard constraints on the time taken to

respond to residents’ calls. Instead, the hyperheuristics automatically choose maintenance

actions that minimise the entire system’s risk. On average, all tested planning horizons

react to emerging events in less than 7 days in a normal scenario. In the recovery sce-

nario, |W | = 1 gives the fastest reaction to these emerging problem gully-pots. However,

even with |W | = 1 there are big challenges in the autumn period, when the average delay

between identification and correction of a problematic gully-pot rises to 34 days.
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Table 6.2: The effect of planning horizon on corrective maintenance performance. Emerg-
ings per day: the average number of identified problematic gully-pots.

Spring Summer Autumn Winter
Average
response

Emergings
per day

Average
response

Emergings
per day

Average
response

Emergings
per day

Average
response

Emergings
per day

Normal
1 1.56 0.53 1.68 0.64 2.55 5.18 3.00 2.54
5 3.82 0.67 3.97 0.33 3.88 4.85 4.24 2.37
7 4.58 0.57 4.28 0.51 4.36 4.87 4.97 2.51
10 5.98 0.63 6.23 0.43 4.58 4.80 3.71 2.32

Recover
1 14.74 25.02 14.22 24.27 34.41 65.22 16.59 28.29
5 18.26 24.73 18.82 23.22 36.80 64.52 25.04 29.33
7 20.07 23.41 22.46 23.01 36.40 65.06 22.15 28.38
10 17.63 23.26 19.86 23.07 36.12 63.44 19.32 27.69

6.3.3 Effect of maintenance policies on risk in continuous time

Our essential aim is to reduce the surface water flooding risk for the entire city in continuous

time. In the previous section, we seek the best-performing rolling planning horizon length.

|W | = 1 requires the shortest computation time and produces the best schedule when the

system is under pressure, but collecting the system and environment information every day

is not feasible in real-world team management. When the gully-pot system is in its normal

scenario, |W | = 7 shows the best ability to cope with seasonal changes. After consultation

with Gaist Solutions Ltd., |W | = 7 is applied in the long period maintenance policy testing,

since this balances team management requirements and scheduling performance.

In order to test the impact of how we manage preventative and corrective maintenance,

we designed six policies that combine preventative and corrective actions with different

rules. In these experiments, all scheduled routes are optimised on distance.

• Policy0: Pure reactive policy. Every week, we produce a |W | = 7 days schedule for

reported problematic gully-pots only, according to up-to-date information. Priority

is given to the emerging events with the highest risk. After finishing these planned

tasks, we take a rest until the plan for the next week is produced.

• Policy01: Alternative pure reactive policy. Every day, we produce a |W | = 7 days

schedule for reported problematic gully-pots only, according to up-to-date informa-

tion. Only the first day schedule is executed, then we re-plan for the following week.

• Policy1: Pure reactive policy0 in autumn, PSS (see Section 6.2) with planning horizon

|W | = 7 in other seasons.

• Policy2: PSS, introduced in Section 6.2, for all seasons.
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• Policy3: Fixed manual schedule. All preventative routes are generated at the begin-

ning of a year, giving the routes stored in fixed memory, see Figure 6.1. These routes

are arranged in descending order of risk measured at the initial time. Every week,

we use the first two days to deal with emerging events and use the remaining 5 days

to deploy preventative actions, in order. During corrective time, we give priority to

routes with the highest risk,
∑

i∈s riPi(today).

• Policy4: Dynamic manual schedule. Similar to policy 3, but priority is given to

corrective maintenance. This is the manual approach we tested in Chapter 5.

We evaluate the performance of each policy from three aspects: overall risk manage-

ment, agility to emerging events, and running cost. These six policies are firstly tested in

a normal scenario and then we test their recovery speeds in a variety of bad initial situa-

tions. The daily risk is evaluated from the actual blocked and broken gully-pots with their

associated risk impact.

6.3.3.1 Performance in the normal scenario

We simulate each policy on the Blackpool gully-pot system over four years, with correspond-

ing seasonal settings and residents’ reporting behaviour. Five random runs are carried out

for each policy. We evaluate the average daily risk based on these experiments.

Figure 6.5: Policy performance in the normal scenario. Error bars show one standard
deviation of daily risks for each season.

Risk management Figure 6.5 shows the average daily risk when applying the different

maintenance policies in a normal scenario. Pure reactive policy 0 produces the highest risk

all the time, and is about three times worse than any preventative and corrective combined
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(a) PolicyID=4 (b) Policy 1 VS. Policy 4

(c) Policy 2 VS. Policy 4 (d) Policy 3 VS. Policy 4

Figure 6.6: Daily risk change over 4 years in the normal scenario using 4 types of preven-
tative plus corrective maintenance policy.

policy. Even if we reschedule every day (policy 01), pure reactive maintenance still preforms

significantly worse than other policies. The performance of pure reactive policies in autumn

is not significantly worse than their performance in other seasons. However, their data

shows very big deviations in autumn, which suggests large fluctuations happen. In the

daily performance tracking, we find serious risk increases at the beginning of autumn, due

to the lack of maintenance in other seasons and environmental factors. Also, in autumn,

residents’ reporting behaviour helps to prompt a large number of reactive actions.

Among all preventative policies 1 to 4, the PSS (policy 2) achieves the best overall

performance. It is significantly better than manual scheduling in summer, autumn and

winter. In spring, there is not much difference in applying any of the preventative plus

corrective policies. To track the daily risk change over time, we apply these four policies in

exactly the same environment simulation for four years. As illustrated in Figure 6.6, policy

4 is used as a base line and the other three policies are compared against it. When applying

policy 4 in a normal scenario, the estimated surface flooding risk is £18,082 on average per

day. By just rearranging the preventative and corrective tasks, policy 3 achieves an average
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risk decrease of about 12% per day, which suggests that always giving priority to emerging

events may lead to poor working efficiency. The best result is for policy 2, which produces

schedules that out perform the base line (policy 4) in 91% of days over 4 years; on average,

policy 2 decreases risk by about 17% per day.

Agility Table 6.3 presents the average number of days to respond to calls. All policies

except policy 3 are able to react to emerging calls in less than 5 days on average. Policy 3

uses a very straightforward scheduling rule, which may be good for team management, but

shows serious latency for emerging requests. When only applying reactive actions (policy

0 and 01), on average about 3 times more residents’ calls are received per day. This also

exposes one reason for the poor performance of these policies in risk management (Figure

6.5): lack of preventative maintenance leads to more corrective maintenance.

Table 6.3: Agility analysis of different maintenance policies

Average
response

Emergings
per day

Policy 0 4.88 11.14
Policy 01 2.24 10.88
Policy 1 3.93 4.31
Policy 2 4.34 3.30
Policy 3 20.82 2.83
Policy 4 4.67 3.19

Working efficiency analysis To discover how the PSS (policy 2) out performs other

policies, we focus on time usage and work efficiency. Figure 6.7 illustrates the percentage

of time spent in different types of activity. First, we can see that the reactive policy 0

shows high dependence on resident reports, resulting in working time of only about 45%

percent during spring, summer and winter. Policy 3 follows a very straightforward rule, to

do maintenance throughout the year. The fixed rule lacks the ability to adapt to seasonal

changes. As Figure 6.5 shows, policy 3 has the largest fluctuations in all seasons compared

to other preventative and corrective combined policies.

The time usage distributions of policy 2 and the manual schedule policy 4 show very

similar patterns in Figure 6.7. Table 6.4 compares the daily working efficiency of policies

2 and 4. On average, policy 2 manages to service 10 more gully-pots every day within the

same working time constraints. One reason is because policy 2 treats the resident calls

and normal preventative maintenance together, so more efficient routes can be found and

emerging blockages can be solved at the same time. Compared to the fixed preventative
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Figure 6.7: How do different policies use their time to do maintenance?

routes managed by policy 4, policy 2 always attempts to insert more high risk gully-pots

into the current scheduled routes (Section 6.2.3.2, LLH2), which results in automatically

rescheduling of any missed gullies from previous preventative maintenance. Figure 6.8

illustrates further evidence that policy 2 produces better schedules. Comparing Figure 4.2

(the gully-pot risk impact map of Blackpool) and Figure 6.8 (the service frequency map

under policies 2 & 4), we find policy 2 successfully targets the geographical areas which

have been evaluated as highest risk. In contrast, policy 4 schedules the service times more

evenly, which results in too many visits to low criticality areas.

Table 6.4: Average number of gully-pots serviced per day by policy 2 and 4

Spring Summer Autumn Winter

Policy2 81.90 82.09 83.41 81.42
Policy4 71.03 71.45 74.60 72.28

Cost using Blackpool’s current operational costs (Table 6.5), we can estimate the annual

cost of each maintenance policy. This allows us to explore the cost of extra effort required

for preventative maintenance.

Table 6.5: Operation costs of gully-pot maintenance

Cost Unit

Travelling £0.28 per km
Vehicle maintenance £20,000 per year
Human resource £56,000 per year
Preventative £3.25 per gully
Calls response £19.00 per gully
Broken £225.00 per gully

The cost estimates for the different policies are shown in Figure 6.9. All of the preventa-
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(a) Policy 2 (b) Policy 4

Figure 6.8: Geographic distribution of service frequency over a 4-year simulation

tive and corrective combined policies show expenditure of £280,000 to £300,000 annually.

This means that, compared to the pure reactive policy 0, an extra 10% of expenditure

could reduce potential risk by as much as a factor of 3, over time (Figure 6.5).

Comparing the predictive policy 2 to the current manual policy 4, about £8,000 more

would need to be spent each year, due to the additional preventative work. However, these

extra preventative actions would result in about £3,000 of risk reduction every day, or over

£1 million per year.

Due to data limitations, our current simulation of gully-pot breakage behaviour uses

a fixed probability, giving roughly 500 broken gully-pots a year, generated at random

times. This simplistic breakage regime, which is the same under each policy, results in

all policies presenting similar effort to tackle broken gully-pots. In practice, policies with

regular preventative maintenance would slow deterioration, and might decrease the chance

of breakage. We would expect a more realistic model of breakage probability to reduce the

apparent cost of policies 1 to 4 to less than the cost of policies 0 and 01.

In conclusion, preventative maintenance could significantly ameliorate the surface water

flooding risk caused by blocked gully-pots at a reasonable additional cost; these costs are

more than justified by service quality improvement.
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Figure 6.9: Annual operation cost and surface water flooding risk caused by clogged gully-
pots for the different policies

6.3.3.2 Performance in recovery scenario

Here, we test the robustness of each policy by starting from a very bad initial condition.

We explore how long it takes for each maintenance policy to take the system from a poor

initial state to a normal scenario. The average risk of applying each policy in a normal

scenario (Section 6.3.3.1) is used as the policy’s base line. As presented in Table 6.6, four

recovery scenarios are tested. For each scenario, we report the average of 10 runs of a

two-year simulation.

Table 6.6: “since last maintenance” and “initial broken gullies” set the system’s initial state: for

all gully-pots, the days since their last service are evenly distributed in θ years. We randomly assign

a percentage of gully-pots to be in the broken state. In the simulation, pb = 0.00005. (Scenarios 2

and 3 have the same experiment settings as recover-1 and 2 shown in Table 5.1)

.
Scenario 1 Scenario 2 Scenario 3 Scenario 4

Since last maintenance θ 3 years 1.5 years 3 years 4 years
Initial broken gully-pots 0.7% 2% 2% 3%

Recovery speed From Figure 6.10, we can see that the initial situation in scenario 2 is

very close to the normal state of reactive policy 0. Comparing scenario 1 to scenario 2, the

overall shortage of preventative maintenance (scenario 1) is more difficult to recover from

than a small amount of very broken gully-pots in the system (scenario 2). On average,

policies 1 to 4 need about 7 months to restore the system to its normal state in scenario 2

(see Figure 6.10(b)), whilst they need about 19 months to recover from initial situation in
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(a) Scenario 1

(b) Scenario 2

(c) Scenario 3

(d) Scenario 4

Figure 6.10: Recovery speed using different policies. The percentage of risk is calculated
as (r − r̃)/r̃ ∗ 100%, where r represents the daily surface flooding risk and r̃ is the average
daily risk of applying the corresponding policy in its normal scenario (see Section 6.3.3.1).
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Figure 6.11: How do different policies use their time to recover from very bad initial
conditions?

scenario 1 (see Figure 6.10(a)). Comparing policies 1 to 4 in scenario 1 and 3, we can see

that policies 1 and 2 perform better than both of the manual policies 3 and 4 in terms of

percentage risk increase. The robustness of both manual policies is considerably worse than

that of policies 1 and 2, especially during the autumn period in the first year. Comparing

the performance of policies 3 and 4, the fixed schedule strategy (policy 3) is a lot worse

than the more flexible strategy (policy 4).

Activity changes during recovery stage To recover from different situations, policies

1 to 4 utilise their time in different ways. Figure 6.11 presents the time usage of each

policy during the first year of the recovery stage. Policy 3 has fixed amount of preventative

time, about 71%, through all scenarios. However, it still adjusts the remaining 29% of

corrective action time to face different types of emerging events (including calls and broken

gully-pots). Comparing policies 3 and 4 in scenario 1, 3 and 4, the relatively more flexible

policy 4 almost stops its preventative actions except in winter. This flexibility helps policy

4 to recover the system faster in the early stage and results in less total damage during

the recovery stage. Interestingly, both policies 3 and 4 take similar amounts of total time

to recover the entire system in all scenarios: the rate of recovery for policy 4 slows over

time. The predictive policy 2 balances its preventative and corrective time, and is between

policies 3 and 4. The balanced strategy results in a steady recovery process; even though

when we only do corrective work during autumn period (like policy 1) and has some resting

days, the overall performance is not affected.
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6.3.4 What-if questions

All the experiments introduced in the previous sections are based on the real-world scenar-

ios. In this section, we test three hypotheses, which uncover potential weaknesses of our PSS

(policy 2), and suggest future investment directions to improve maintenance performance.

6.3.4.1 What if we do not have information on risk impact?

Section 4.3.1 describes the method to collect and estimate each gully-pot’s risk impact,

which estimates the consequences of surface water flooding due to clogged gully-pots. How-

ever, not every local council records the information. Figure 6.12 illustrates the performance

of policy 2 operating with and without risk impact information (labelled policy 2∗). Policy

2∗ results in a much higher risk than policy 2 (Figure 6.8(a)); in fact, the lack of risk im-

pact data means that policy 2 becomes similar to the policy 4: all gully-pots are serviced

relatively evenly.

Figure 6.12: The average risk of applying policies 2 and 4 in stable state with 4 assumptions.
Error bars show 95% confidence intervals on each mean. Policy 2 is running in the real-world
scenario; policy2∗ assumes we do not have risk impact information; policy2∗∗ assumes there
are no parking issues during preventative maintenance; policy2∗∗∗ and policy4∗∗∗ assume
we can know any problematic gully-pot immediately.

6.3.4.2 What if all gullies are accessible – the impact of parking issues?

In Chapter 5, we investigated the effect of parked vehicles on the manual scheduling strategy

(policy 4). Here, we explore the impact of inaccessible gully-pots on policy 2 by running

simulations with zero inaccessible gully-pots (labelled as policy2∗∗). From Figure 6.12,

there is no significant difference between policy 2 and policy 2∗∗. By using the PSS, policy

2 is able to cope with the current parking issues. This is because it flexibly re-schedules

preventative maintenance of inaccessible gully-pots.
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6.3.4.3 What if we could do condition-based maintenance (CBM)?

Improving low-cost sensor techniques make it potentially feasible to continuously monitor

gully-pot condition. This would allow our schedule strategies to be combined with CBM.

Chapter 5 discusses the advantages of sensoring technique tested on the current manual

scheduling strategy (policy 4). Here, we would like to know whether combining a PSS

with the sensoring technique will bring further improvement. In the simulation, we test a

scenario in which all problematic gully-pots in the system are known immediately (labelled

as policy 2∗∗∗). From the results in Figure 6.12, comparing policy 2∗∗∗ and policy 4∗∗∗, we

can see a 50% further risk reduction.

6.4 Conclusion

This chapter has solved the gully-pot maintenance in the city of Blackpool, using a PSS.

The general aim is to reduce the overall surface water flooding risk caused by clogged gully-

pots in continuous time. The PSS runs on a short period rolling planning horizon that is

able to automate schedule adaptation to any environment changes.

Due to the dynamic and large-scale features of our problem, we introduce a data struc-

ture (see Figure 6.1) to deal with different types of actions. In addition, our objective

function is highly sensitive to the gully-pots’ changing failure rates. We present a hyper-

heuristic framework embedded with a group of route and schedule-related LLHs. This

structure allows dynamic balancing between route and schedule optimisation.

By adjusting different types of actions in different scenarios, our PSS comfortably out-

performs the current real-world gully-pot maintenance approach, which is widely used in

the UK, in terms of overall risk management, agility to react to emerging events, and

robustness to poor initial states.

This predictive strategy relies significantly on the understanding of asset failure be-

haviour. Our estimations are based on working with experts in the field to provide the

best (limited) data available. We are also working with Gaist solutions Ltd. on a new

surveying methodology which will further improve data in the future, but such data will

not be available for some time to come.

In Part I, we have fully investigated the large scale gully-pot system maintenance prob-

lem from perspectives including modelling (Chapter 4), simulation based issue detection

in manual scheduling (Chapter 5), and the maintenance scheduling policy improvement

(Chapter 6). In further work we will investigate other investment possibilities. It is worth
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noting that the work that Gaist Solutions Ltd. has done on road maintenance decision

support has resulted in investment worth hundreds of millions of pounds across several UK

local councils.
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Part II

Heuristic Search Methods with

Respect to PVRP and GDMP
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Whilst part I of the thesis directly addresses issues of interest to Gaist Solutions Ltd.

and its client local authorities, in this part, we focus more on the solution approaches

that aim to effectively solve large scale combinatoric optimisation problems. Firstly, we

review the fundamental concept of local search methods that are the main components of

our search algorithms’ design (Chapter 3). We investigate the search from two aspects,

including comparison of various high level management strategies over a set of local search

operators (Chapter 7), and statistically guiding the local search process (Chapter 8). These

heuristic based approaches are tested on both benchmark periodic vehicle routing problems

and the real-world geographical distributed maintenance problems.
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Chapter 7

Hyperheuristics and local search

operators for PVRP

Meta-heuristics and hybrid heuristic approaches have been successfully applied to the peri-

odic vehicle routing problem (PVRP). However, to be competitive, these methods require

careful design of PVRP-specific search strategies. In contrast, hyperheuristics use the per-

formance of low-level heuristics (LLHs) to automatically select and tailor search strategies.

In Chapter 3, we briefly introduced the concept and background knowledge of hyperheuris-

tics. In this chapter, we provide a comprehensive analysis of several hyperheuristics and

test them on a number of PVRP instances from the benchmarks and the real world, each

with its own different characteristics. The aim is to understand the impact of different

mechanisms that each hyperheuristic applies in its search process. We would also like to

justify the hyperheuristic approaches that automatically manage LLHs, compared to the

problem-specific heuristics designed for the PVRP. Finally, we use hyperheuristics as a tool

to study the strengths and the weaknesses of LLHs designed for PVRPs. The content in

this chapter has also been published in Chen et al. (2016d).

7.1 Introduction

The PVRP is the closest classical VRP model to our geographically distributed asset main-

tenance problem (Chapter 4). From simple heuristic approaches developed from the 1970s

to the early 1990s (Beltrami and Bodin (1974); Russell and Igo (1979); Christofides and

Beasley (1984); Tan and Beasley (1984); Russell and Gribbin (1991)), to the hybird meta-

heuristic approaches appearing recently (e.g. Hemmelmayr et al. (2009); Vidal et al. (2012);

Cordeau and Maischberger (2012)), heuristic-based approaches for the standard PVRP have
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experienced significant improvements. Section 2.2.1 provides a more extensive review of

solution approaches for PVRP.

In comparison to meta-heuristics, a hyperheuristic aims to build more general problem-

independent search algorithms, which are capable of producing sufficiently good and cheap

solutions for different optimisation problems. Theoretically, a hyperheuristic should be able

to not only successfully adapt to any hard computational search problem, but also serve

as a good tool for studying the strengths and the weaknesses of LLHs for a specific type

of problems.

In this study, we present a comprehensive analysis of hyperheuristic approaches to

solving PVRPs. The performance of hyperheuristics can be compared to the published

performance of state-of-the-art meta-heuristics.

The remainder of this chapter is organised as follows: Section 7.2 summarises the general

structure and techniques that are often utilised in hyperheuristics; Section 7.3 introduces

a number of hyperheuristic approaches to solve the PVRP; and Sections 7.5 presents the

experimental design and the analyses of the results.

7.2 Choosing the right hyperheuristic structure

Hyperheuristics introduce various techniques to solve hard computational search problems.

However, they all share the common goal of automating the design and adaptation of

heuristics. The essential idea is to introduce artificial intelligence to an algorithm design

for solving difficult problems.

Burke et al. (2010) classify hyperheuristics from multiple dimensions. Here, we refer

to one of their classifications that considers hyperheuristics as either heuristic generation

or heuristic selection methods. The first group of methods, which come under heuristic

generation, normally apply genetic programming as a hyperheuristic to build new heuristic

methods for the problem (e.g. Keller and Poli (2007); Burke et al. (2007a)). Most im-

plementations generate a new heuristic using a training set of problem instances, which

is thereafter used on unseen instances of the same problem. In comparison, the second

group of methods, which come under heuristic selection, are the type of techniques that

most other researchers refer to as hyperheuristics. In this context, hyperheuristics manage

a set of LLHs. At each decision point, hyperheuristics should be able to decide which

LLH is appropriate for usage. In the remainder of this thesis, we only discuss heuristic

selection methods. This is mostly because it is more appropriate to integrate with ex-

isting well-performing local search techniques, which are specifically designed for routing
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problems.

The general structure of selection hyperheuristics includes a selection and an acceptance

mechanism. Selection determines which LLH to test at each search stage. The decision

making for LLH selection could be purely random or arbitrary. More intelligently, hyper-

heuristics can apply online learning concepts to adapt to decision-making processes with

bias towards better performing LLHs in earlier iterations. An acceptance mechanism de-

cides whether the current solution is replaced by the new solution. A number of acceptance

mechanisms have been examined within hyperheuristics framework, such as only improv-

ing (e.g. Cowling et al. (2001)), “exponential Monte Carlo with counter” (e.g. Ayob and

Kendall (2003)) and “great deluge” (e.g. Kendall and Mohamad (2004)).

If a hyperheuristic works properly, normally it effectively combines selection-acceptance

with the given LLH set. Section 3.2.1 introduces a few design concepts of an LLH set.

Generally speaking, an LLH can be designed as a random move from a neighbourhood

(e.g. Misir et al. (2011); Sabar et al. (2014)), as a first improvement (FI) (e.g. Burke et al.

(2003)), and as an embedded FI within a local search (e.g. Meignan et al. (2010)), or even

as meta-heuristics. If an LLH set is only composed of simple moves, then the selection-

acceptance mechanism plays a vital role to guide the search (e.g. Cowling et al. (2001)).

Tested on some simple combinatorial problems, Özcan et al. (2008) concluded that

“the acceptance mechanism significantly affects the performance as compared to

heuristic selection.”

If an LLH set is composed of many independent search strategies (e.g. FI or LS), the

algorithm design normally focuses only on the selection strategy (e.g. Burke et al. (2003)).

Based on the study of many modern solvers for VRPs, it seems necessary to apply

improvement heuristics to achieve good quality solutions. Therefore, the following study

pays more attention to the management of a set of FI LLHs in the improvement stage of

the search.

7.3 Hyperheuristic methods

Algorithm 7.3.1 presents an overview of our implementations of hyperheuristics. This

algorithm combines a mechanism for iterated local search (Lourenço et al. (2010)) and

selection hyperheuristics. Many hyperheuristic implementations can be summarised by

the Algorithm 7.3.1 (e.g. Özcan et al. (2008); Burke et al. (2010, 2011)), which has been

recently named as HyperILS by Ochoa and Burke (2014).
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In lines 4 and 5 of the Algorithm 7.3.1, HyperPerturbation and HyperImprovement

normally manage two different sets of LLHs for exploration and exploitation purposes

during the search. Learning- or non-learning-based LLH -selection strategies can be applied

in either or both of the perturbation and improvement stages. After an LLH is selected in

the perturbation stage, we accept the output result from the chosen LLH as long as it is a

feasible solution. The process of selection-acceptance is repeated until a feasible solution is

found. In terms of the acceptance rule in the improvement stage, we apply only improving

(OI) in our algorithm design.

In the following sections, we introduce the techniques, which have been investigated in

the HyperPerturbation and HyperImprovement stages respectively.

Algorithm 7.3.1 HyperILS (from Ochoa and Burke (2014))

1: Define: x0 is the initial solution
2: x∗ = HyperImprovement(x0)
3: while t < tmax do
4: x′ = HyperPerturbation(x∗)
5: x∗

′
= HyperImprovement(x′)

6: if f(x∗
′
) < f(x∗) then

7: x∗ = x∗
′

8: end if
9: end while

7.3.1 LLH selection in HyperPerturbation

This study investigates two LLH -selection strategies in this stage of the search, including

Simple Random (SR) selection and Random Permutation (RP) (Cowling et al. (2001)). SR

chooses an LLH randomly based on a uniform probability distribution. RP generates a

random initial permutation of the LLHs and at each step applies the next low-level heuristic

in the provided order.

7.3.2 Search in HyperImprovement

In this section, we introduce the three following groups of hyperheuristics that guide the

search in the HyperImprovement stage: simple hyperheuristics, learning-based hyperheuris-

tics, and variable neighbourhood decent with learning (VND L). The first two groups are

named after the LLH -selection mechanism. The VND L algorithms combine conventional

VND (Hansen et al. (2010)) with learning-based selection to choose a subset of LLHs at

each iteration.

122



Chapter 7. Hyperheuristics and local search operators for PVRP

7.3.2.1 Simple hyperheuristics

Simple hyperheuristics apply SR as the LLH -selection strategy. After an LLH is selected,

we either apply it once or apply it repeatedly until no improvement is found, named Simple

Random (SR) and Random Descent (RD) respectively (Cowling et al. (2001)).

7.3.2.2 Learning based hyperheuristics

Learning-based selection strategies consist of credit assignment and selection stages. Credit

assignment decides how to reward the LLHs, which have just been tested in the current

iteration, and updates the evaluation of any or all candidate LLHs. Many credit assignment

strategies have been discussed, such as extreme value (Soria-Alcaraz et al. (2014), “choice

function” (Cowling et al. (2001)), “tabu mechanism” (Burke et al. (2003)), and so on.

According to the evaluation of each candidate LLH, learning-based hyperheuristics select

the favourable LLH(s) to investigate in the next iteration. Cowling et al. (2001) describe

three selection strategies named straight choice, ranked choice, and roulette choice. In later

literature, these selection strategies are still the most common methods applied. Straight

choice selects the LLH, which is evaluated as the best in the candidate set. Ranked choice

adapts an LLH trial set at each iteration and it can select a fixed proportion of the highest

ranking LLHs or LLHs that are not tabued if a corresponding credit assignment strategy is

applied. Each tested LLH outputs a modified solution and a favourable output replaces the

current one. Roulette choice selects an LLH in each iteration with a probability, which is

proportional to the evaluation value of each LLH. Figure 7.1 illustrates a high level concept

of using online learning to adapt the selection of LLHs.

Figure 7.1: Overview of LLH management of learning based hyperheuristics. oi represents
the output (a neighbour solution) after apply LLHi on the current solution.
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In this study, the three following well-known learning-based hyperheuristics are tested:

binary exponential back off (Remde et al. (2012)), reinforcement learning (Nareyek (2004))

and choice function (Cowling et al. (2001)). Our implementation applies the ranked choice

selection and the LLH from the trial set that produces the most improved solution is

applied. The algorithms here are not novel and we only summarise the difference in terms of

the evaluation-adaptation mechanism between these methods. A more detailed description

can be found in the papers cited below.

Binary exponential back off (BEBO)

BEBO (Remde et al. (2012)) is a tabu-search-based learning mechanism. A detailed pseudo-

code can be found in Algorithm 6.2.2 (Chapter 6). It dynamically adapts tabu tenures,

such as tabui, to control the usage of each LLH. If an LLH performs poorly in a recent

search, it is disabled for a number of iterations. If this LLH continues to perform poorly

when revisited, the number of forbidden iterations increases. This is controlled by a backoff

parameter. Here, we summarise the tabui adaptation rule as following:

. At each iteration, all LLHi with tabui = 0 are selected to form the trial set.

. If LLHi makes an improvement, backoff i = minimum value;

. Else backoff i = backoff i ∗ 2; assign tabui with randomly-picked value in [0, backoff i]

. For all LLHi with tabu tenure tabui > 0, tabui = tabui − 1

Reinforcement learning (RL)

RL (Nareyek (2004)) rewards (positive reinforcement) good LLH choices and punishes

(negative reinforcement) bad LLH choices. Each LLH is given a utility value, which is

repeatedly updated based on the LLH s performance. Nareyek (2004) tests various positive

and negative hyperheuristic reinforcement methods and we apply the one, which is identified

as the best, described as follows:

. Choose the w% of LLHs, which have the highest utility to be the trial set.

. For each LLHi in the trial set, utilityi =
√
utilityi

. If the best performed LLHi makes an improvement, utilityi = utility2
i + 1
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Choice function (CF)

We consider the CF to be a different utility adaptation scheme (Cowling et al. (2001)). In

each iteration, the utility of each LLHi is updated based on a linear function that considers

three factors: 1) the LLH ’s performance is evaluated by the changes of solution quality

and execution time; 2) the ability of the LLH in collaboration is evaluated by successively

applied pairs of LLHs; 3) the CPU time elapsed since the LLH was last called. The w%

of LLHs that have the highest utility are selected to form the trial set.

So far, we have introduced three ways of managing the candidate LLH set. In summary,

BEBO emphasises that poorly-performing LLHs should not be tested in incremental iter-

ations. It is specifically designed for use when a large set of LLHs is available. This tabu

strategy quickly removes most of the unhelpful LLHs. In comparison, the reinforcement

rules applied in RL emphasise more on the best-performing LLH and all other sub-optimal

LLHs, in turn, have chances to be selected. Lastly, CF uses a weighted function to balance

the usage of the best-performed LLHs and the waiting time of sub-optimal LLHs. For

different problems, the tuning of weight parameters of CF is needed.

7.3.2.3 Variable neighbourhood descent with learning (VND L)

VND (Mladenović and Hansen (1997); Hansen and Mladenović (2001); Hansen et al. (2010))

differs from the learning-based hyperheuristics in the use of intensive local search, meaning

that the selected LLH is applied repeatedly until no more improvement is found, rather

than applying it once only. VND is a parameter-free approach. LLH selection for standard

VND uses a pre-ordered LLH set, with some researchers addressing VND sensitivity to the

order of LLHs (e.g. Hemmelmayr et al. (2009)). In order to adapt the application order

of LLHs, we propose a number of variations to the VND (Hansen et al. (2010)) combined

with reinforcement learning techniques.

Algorithm 7.3.2 VND L(x, LLHs)

1: Choose a subset LLHs ′ ⊆ LLHs and order them in a list
2: Define: kmax = |LLHs ′|, the number of heuristics to be tested.
3: Initialise k = 1
4: while k <= kmax do
5: x′ = ILS(x, LLHk), where ILS (iterated local search) applies the selected heuristic,

LLHk, repeatedly until no further improvement occurs; Within each iteration of ILS,
utilityk =

√
utilityk; if LLHk makes an improvement, utilityk = utility2

k + 1
6: If x′ is better than x then x = x′ and k = 1, otherwise k = k + 1
7: end while

In the first step of our VND L, line 1 in Algorithm 7.3.2, we select the top w% LLHs
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according to the utility value measured for each LLH in the candidate set. Then we

order the selected LLHs using a predefined rule (i.e. random, ascending, or descending, as

measured by utility).

In this section, we have introduced various designs of hyperheuristics. Each uses its

own mechanism to adapt to the usage of LLHs in different search stages. In the following

section, we describe the LLHs that are specifically designed for PVRP and the algorithm

framework of hyperheuristic solvers for PVRP.

7.4 Solve PVRP using hyperheuristics

7.4.1 Solution representation

To solve a standard PVRP, two decisions should be made to construct a complete solution,

including customers’ assignment and constructed routes. We use a straightforward solution

representation that consists of the two corresponding structures as follows:

1. C = (c1
λ, .., c

i
λ, ., c

n
λ) represents the assignment solution of each customer i to one

of this customer’s feasible service pattern λ ∈ Λi (see PVRP description in Section

2.2.1).

2. R = {rϑ1 , .., rϑj , ...} represents a set of feasible routes that service all customers’ re-

quired visits with corresponding to the assignment solution, where rϑj denotes the

j’th route in the solution set will be dispatched at ϑ’th day of the planning horizon.

7.4.2 Initialisation

Most researchers use a two-phase approach to derive a solution to a PVRP (Section 2.2.1),

either through the process of assigning customers into days and solving the daily VRP,

or by assigning customers to each vehicle and solving a PTSP. We use the first type of

method as there is no strong relation between vehicles and customers in the standard PVRP

problems. In the assignment stage, Cordeau et al. (1997); Cordeau and Maischberger

(2012), Hemmelmayr et al. (2009) and Vidal et al. (2012) randomly choose a feasible

customer-day pattern for each customer, whereas Chao et al. (1995) and Gulczynski et al.

(2011) try to minimise the maximum amount of demand delivered in each day. Additionally,

Christofides and Beasley (1984) attempt to minimise the total distance from the depot on

each day. To construct routes for each day, the Clarke and Wright algorithm (CW) (Section

2.1.2.1) and GENI insertion heuristic (Gendreau et al. (1992)) are most common.
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Our solution uses the same approach as Hemmelmayr et al. (2009): random assignment

followed by a CW-routeconstruction process for each day. At the end of initialisation

process, we have a complete feasible solution contains both of the assignment C and the

route set R.

7.4.3 Low-level heuristics designed for PVRP

After constructing a complete PVRP solution, HyperILS (Section 7.3) is used to manage

a given set of LLHs to improve the initial solution. LLHs are direct operators that work

on the solution space. A good set of LLHs should be able to reach any solution in a

solution space when used in different orders and combinations. Therefore, it is critical to

build a good LLH repository. In this subsection, we first design three types of moves to

modify a solution from either or both the daily routes changes and by reassigning customers

visit patterns perspective. Then we introduce the LLH repository and the corresponding

HyperILS structures applied in the experiment section.

Route structure modification Here, we summarise moves used to modify single (i.e.

intra-route) and multiple routes (i.e. inter-route) in the PVRP literature (cited at the end

of each move description). These moves are widely used in all variations of VRPs. Several

books and tutorials describe these moves in detail (e.g. Toth and Vigo (2002); Groër et al.

(2010)). Many are also described in Section 2.1.2.2. Therefore, we are not going to present

the steps of the modification process of each move here.

λ-Opt: remove λ 1 edges from a route and replace them with λ new edges (e.g. Lin (1965);

Chao et al. (1995); Hemmelmayr et al. (2009); Gulczynski et al. (2011); Vidal et al.

(2012)).

Or-opt: remove a string with two to four nodes and insert it into a new position, either

in the same route (e.g. Alegre et al. (2007)) or in a different route (e.g. Vidal et al.

(2012)).

One point move (1PM): relocate a node to a new position, either in the same route or

in a different route (e.g. Chao et al. (1995); Gulczynski et al. (2011)).

Two points swap (2PS): swap two points, either in the same route or between different

routes (e.g. Gulczynski et al. (2011)).

1λ-Opt has no relationship to customer service pattern λ above. The overloading is unfortunate, but it
is retained as both the uses of λ are conventional here.
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k-Relocate: relocate a string of k points to a new position, either in the same route or a

different route (e.g. Hemmelmayr et al. (2009); Vidal et al. (2012)). When there is

only one node in the string, this move is identical to “1PM”.

k-Cross: swap two chains of points between two routes. Each chain contains maximum k

points (Alegre et al. (2007); Hemmelmayr et al. (2009)).

Our route-based moves only modify the partial solution R, after customer visit patterns

are assigned. In addition, only if ϑi = ϑj for routes i, j, an inter-route move will be applied.

Service pattern modification Each customer i in a PVRP has a set of valid service

patterns Λi. We assume a customer i is currently assigned to a pattern λ. Then, a pattern

modification chooses a different service pattern λ′ ∈ Λi at a time and reassigns the new

pattern to i. Consequently, all visits to customer i in the routes of the current solution

are removed, and new visits are inserted with corresponding to the new pattern λ′. For

example in Figure 7.2, suppose a customer requires two visits in a four-day period and

there are two allowable patterns, pattern-1 (day 1 and day 2) or pattern-2 (day 3 and day

4). The current solution visits the customer in one route from day 1 and one route from

day 2. When a pattern move operates on this customer, we remove both visits to this

customer from day 1 and day 2 and re-insert the customer into the routes from day 3 and

day 4.

(a) Current solution (b) After a service pattern move

Figure 7.2: An example of service pattern modification

As described above, our pattern-related moves operate on both of the assignment so-

lution part C and the route structure solution part R. After a pattern-related move is
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applied, we always get a complete PVRP solution. We insert each of the new visit at the

cheapest feasible position of all routes available in same day.

A random or random permutation reassignment strategy is often used to select a dif-

ferent pattern from the available set (e.g. Hemmelmayr et al. (2009); Vidal et al. (2012)).

Another branch of solvers use constraint reassignment to partially examine the available

service pattern set. A few integer programming models (e.g. Gulczynski et al. (2011);

Crainic et al. (2012)) are proposed to guide the reassignment moves.

Here, we design four moves to modify customer service patterns.

Random pattern reassign (Pa RR): Randomly assign new feasible visit patterns to x

random customers. x is a user defined parameter. A tabu structure is used to prevent

repeated reassignment of the same customer. For example, if the service pattern of

customer i is modified, we set an integer tabu value tabui, which prevents selection

of this customer for the Pa RR move for tabui iterations.

Score-based reassign (Pa SR): This is similar to Pa RR except that the pattern with

the highest score Q(λ) is chosen for each customer i in x random selected customers.

A pattern score Q(λ) is associated with each pattern λ of each customer i. It is

negatively reinforced every time a customer’s pattern is tested and no improvement

is found (Q(λ) =
√
Q(λ)); and gets rewarded if an improvement is found (Q(λ) =

Q(λ)2 + 1).

Pattern reassign first improvement (Pa FIR): If a customer has an available visit

pattern λ, which produces a better solution after remove the customer’s current visits

and insert each visit in λ using the cheapest insertion, we move this customer.

Two points pattern swap (Pa 2SW): Swaps the visit patterns of two customers i and

j, if they have the same visit pattern set and they are not assigned to the same

pattern in the current solution (Λi = Λj and ciλ 6= cjλ).

In comparison to the route-based moves, the pattern-related moves make larger modi-

fications of the solution structure. Consequently, these moves usually take longer compu-

tational time and we expect that larger fitness changes will be observed at each utilisation.

Mixed modification In many PVRP instances, there is a large number of “single re-

quirement” customers that have a visit frequency of 1 during the period. This type of

customers can be easily moved between days as there is no other affected day within one
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service pattern. It is helpful to build moves that allow route structures to change between

days and to modify the customer service pattern at the same time. Different from service

pattern modification, mixed modifications operate on a large and continuous section of

routes rather than on individual customers. In our moves set, we design two new mixed

operators. These operators only consider a chain that includes customers with the same

available visit patterns and a visit frequency of 1.

Relocate with Pattern (MRPa): Relocate a string of points from one route to another

route in a different day.

Cross with Pattern (MCPa): Swap two chains of points between two routes from dif-

ferent days.

7.4.4 Partially destructive/constructive moves for re-initialisation

The idea of creating a move, by partially destroying and reconstructing a current solution,

is widely seen in the re-initialisation process of heuristic search. We name this type of move

as destroy-construct move (DCM). In PVRP literature (e.g. Chao et al. (1995); Cordeau

et al. (1997); Gulczynski et al. (2011); Chen et al. (2016d)), a DCM randomly removes up

to n customers and then reinserts them into the solution whilst respecting their available

valid service patterns.

In PVRP moves classification, DCM are akin to service-pattern-modification moves,

in theory. However, the key difference compared to a local search move is the degree of

similarity between the solutions before and after a move is applied. In the wider literature

of heuristic solvers for VRPs, DCM has been successfully integrated into a local search

framework, known as Large Neighbourhood Search (LNS) (Shaw (1998)). More recently,

Ropke and Pisinger (2005) extend the remove/reinsert idea by managing a set of cus-

tomer removal/reinsertion algorithms instead of only having one removal and one insertion

method. The different combinations of removal/reinsertion algorithms enlarge the variety

of neighbours of the current solution. In other words, it increases the neighbourhood size

of the current solution.

For the PVRP, we design the DCM described in Algorithm 7.4.1, where xbest is the

best-found solution so far and prandom represents the probability of randomly generating a

new initial solution. If the current solution has not been improved using HyperILS for a

certain number of iterations, we assume that the search is stuck in a local optimum from

which it cannot escape by a small perturbation. Then a re-initialisation mechanism is
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applied. The new solution is made feasible by repeatedly removing the customer with the

greatest load requirement from any route in the candidate solution, which violates duration

or load constraints, and re-inserting it in a route where the constraints are met.

Algorithm 7.4.1 Re-initialisation(xbest, prandom)

if random(seed) < prandom then
random assignment and CW daily routes construction (Section 7.4.2).

else
Destroy w% of the longest routes in xbest.
For each customer in destroyed routes, randomly reassign feasible visit pattern.
Insert each customer greedily to cheapest position in each day of assigned pattern.

end if
Return the new (re)constructed solution x.

7.4.5 Summary of LLH repository for PVRP

To form our LLH repository for PVRP, the hyperheuristic applies the above moves as

either mutation or first improvement search. As presented in Table 7.1, in the mutation

group, we randomly apply a defined move to the current solution, whilst in the FI search,

we go through each node (or edge) to test the defined move until an improvement is found.

All of our LLHs maintain a feasible solution. If the low-level heuristic cannot make a legal

move then the solution is not modified. Route-related moves are parametrised by route

ID, day, length of chain, and number of nodes changed in one move. This makes it possible

for an intelligent hyperheuristic to select an LLH specifically related to each sub-problem

(e.g. daily VRP or single route optimisation). Pattern-related moves reassign the patterns

of x customers. We consider x = 1, 2, ..., 6 in our experiments. Because of the structure of

the LLH parameter design, our LLH repository contains 70-110 LLHs, depending on the

problem instance.

Table 7.1: LLH Repository used in our PVRP hyperheuristics

Type Moves Set ID
Route related: mutation 2 points swap (2PS), Relocate, Cross Mur

Route related: FI 2Opt, 3Opt, 2PS, Relocate,Cross FIr

Pattern related: mutation
Random Pattern Reassign (Pa RR),

Score based reassign (Pa SR),
Two points pattern swap (Pa 2SW)

Mup

Pattern related: FI
Pattern reassign first improvement (Pa FIR),

Two points pattern swap (Pa 2SW)
FIp

Mixed: FI
Relocate with Pattern (MRPa),

Cross with Pattern (MCPa)
FIm

131



Chapter 7. Hyperheuristics and local search operators for PVRP

7.4.6 Algorithm frameworks

Figure 7.3 illustrates the structure of solvers for PVRP. For the HyperILS process, ten

algorithms are investigated with different LLH set usage and LLH selection strategies used

at each stage during the search. The differences are summarised in Table 7.2. According

to the different LLH set management strategies in HyperILS, we further categorise these

algorithms into three frameworks. In Figure 7.4, framework 1 (FW1) organises all types of

LLH together, whereas framework 2 (FW2) clearly distinguish the types of LLH used in

HyperPerturbation and improvement stages. In framework 3 (FW3), we embed an iterative

local search process within the hyper improvement state.

Figure 7.3: Overview of PVRP solvers

Table 7.2: Summary of HyperILS implemented. Each HyperILS is embedded with differ-
ent components at HyperPerturbation and HyperImprovement stages. Keys for the table:
Simple Random (SR); Random Permutation (RP); Reinforcement Learning (RL); Choice
Function (CF); Binary Exponential Back Off (BEBO); VND with learning (VND L). The
ID for LLH set is shown in Table 7.1 and the framework is shown in Figure 7.4

HyperILS HyperPerturbation HyperImprovement Framework
LLH set Hyperheuristic LLH set Hyperheuristic

SROI - - ALL SR FW1
RDOI - - ALL SR FW1

RLFW1 - - ALL RL FW1
RLFW2 Mur;Mup SR FIr;FIp;FIm RL FW2
CFFW1 - - ALL CF FW1
CFFW2 Mur;Mup SR FIr;FIp;FIm CF FW2

BeboFW1 - - ALL BEBO FW1
BeboFW2 Mur;Mup SR FIr;FIp;FIm BEBO FW2
VNS RL Mur;Mup RP FIr;FIp;FIm VND L FW3
VNSr RL Mur;Mup SR FIr;FIp;FIm VND L FW3
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(a) Framework 1

(b) Framework 2 (c) Framework 3

Figure 7.4: Framework variations of HyperILS (modified from Özcan et al. (2008))

7.5 Experiments and analysis

We design experiments that allow us to analyse the performance of hyperheuristics from

different angles. We use data (benchmark and real) with different spatial characteristics

and also compare the performance of hyperheuristics with that of meta-heuristics applied

to the benchmark problems.

The experiments are designed to replicate benchmark conditions from Vidal et al.

(2012). In particular, the search is always terminated after the fixed amount of CPU

time as stated in Vidal et al. (2012). To check the suitability of this time limit for scalabil-

ity experiments (Section 7.5.4), we run preliminary experiments using twice the CPU time.

We find no significant change in the quality of solutions, suggesting that a performance
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plateau is attained, and the chosen CPU time is appropriate.

All experiments are implemented in C] and are executed on a cluster composed of eight

Windows computers, each with Intel Xeon E3-1230 CPU.

7.5.1 Problem instance

Our data comprises 42 benchmark instances and six instances from a real-world periodic

maintenance problem 2. The detailed information of the data sets can be found in Table

A.2 (Appendix A). The 42 benchmark instances are normally organised as a “old data”

and a “new data” set by many research works. The “old data” set contains 32 instances

collected from early works on PVRP (including works by Christofides and Beasley (1984);

Russell and Igo (1979); Russell and Gribbin (1991); Chao et al. (1995)). Cordeau et al.

(1997) presented 10 additional PVRP benchmark instances, known as the “new data” set.

Here, we classify the problem instances according to their spatial characteristics (Figure

7.5). Table 7.3 summarises each class. The six real-world instances are all street type. The

big random benchmark problems have both a larger number of customers and a greater

clustering of data points than the small random class. Our results are compared against

the best-found solutions in literature, shown in bold in Table A.3 (Appendix A).

Table 7.3: Information on PVRP instances. n is the number of customers; m is the number
of vehicles available; t is the length of planning period in days. Benchmark labelling is
taken from Hemmelmayr et al. (2009).

Class n m t
Average visit

frequency (days)
Number of problem in-
stances

Street style 240-324 3-5 6 1.6-2.1 6

Small random 50-100 1-6 2-10 1-2.1 10 (benchmark p01-p10)

Big random 48-417 2-12 4-7 1.1-3
13 (benchmark p11-p13, pr01-
pr10)

Symmetrical 20-184 2-9 4-6 1.8-2 19 (benchmark p14-p32)

7.5.2 Random vs learning based selection strategies

A hyperheuristic needs an efficient LLH selection strategy because it is impractical to test

all LLHs exhaustively. The first experiment compares the SR selection strategy to the

learning-based strategies, which are RL, CF and BEBO. The experiment uses framework

1 (Figure 7.4(a)), where all LLHs are managed in one candidate set. For RL1 and CF1,

we test using both the best 30% and the best 80% of LLHs in each iteration (See Section

7.3.2.2).

2The real-world data and associated best-performance results can be found at http://yc1005.wixsite.
com/yujiechen
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(a) street style example (b) Small random (from bench-
mark p02) Christofides and Beasley
(1984))

(c) Big random (from benchmark
pr05 Cordeau et al. (1997))

(d) Symmetrical problem (From
benchmark p32 Chao et al. (1995))

Figure 7.5: Examples of four types of spatial distributions in the PVRP instance set.

Each algorithm runs 20 times on each instance of each of the four classes of problems to

give the percentage differences to the best-found benchmark route length of each instance.

We then average the results for each class of problems.

The results in Table 7.4 show that, whilst acceptable, none of our solutions match

the best-found benchmark solution. Learning-based selection strategies consistently out-

perform SR LLH selection, with BEBO offering the best performance. For both RL and

CF, the limited CPU time makes it difficult for the hyperheuristics to produce competitive

results for testing 80% of LLHs in each iteration. In subsequent experiments we only use

the best 30% of LLHs.

7.5.3 Impact of algorithm framework

Having shown that learning based selection strategies can manage a large number of LLHs

in a simple hyperheuristic framework, we now consider the different hyperheuristic frame-

works.
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Table 7.4: The average percentage difference to the best-found solution over all instances in
each group, for simple random (SR) and learning based hyperheuristics, using framework
1 and OI acceptance. Bold numbers represent the best result of each type of the problems.

SROI RLFW1(30%) CFFW1(30%) RLFW1(80%) CFFW1(80%) BeboFW1
Street style +8.90 +5.36 +6.08 +6.47 +6.64 +4.90
Small Random +4.67 +2.12 +2.28 +2.15 +2.33 +2.06
Big Random +4.32 +4.14 +4.32 +4.28 +4.35 +4.13
Symmetrical +2.74 +1.46 +1.56 +1.55 +1.53 +1.50

In framework 1 (FW1), the only improvement (OI) acceptance rule means that mutation

LLHs are unlikely to be favoured. In framework 2 (FW2), a mutation operator is randomly

selected and applied as long as it generates valid solutions. Thereafter, FI LLHs are selected

using a learning-based strategy, as shown above. FW2 is similar to FW1 when we use the

all-move-accept rule. However, whereas FW1 evaluates the mutation and FI operators

together, FW2 allows a separate consideration.

The results in Table 7.5 show that FW2 improves the performance of both RL and

CF hyperheuristics for all types of problem instances. However, BEBO does not show any

consistent difference between frameworks 1 and 2.

Table 7.5: The average percentage differences to the best found solutions over all instances
in each group, for learning based hyperheuristics using frameworks 1 and 2 (FW1, FW2)

Instances RL(30%) CF(30%) BEBO
FW1 FW2 FW1 FW2 FW1 FW2

Street style +5.36 +5.26 +6.08 +5.54 +4.90 +5.31
Small random +2.19 +1.88 +2.28 +1.90 +2.06 +1.65
Big random +4.14 +3.93 +4.32 +3.88 +4.13 +3.93
Symmetrical +1.46 +1.45 +1.56 +1.54 +1.50 +1.56

Framework 3 (FW3) describes the algorithms using VND L hyperheuristic in the Hy-

perImprovement stage. The main difference to FW2 lies in the use of ILS once a FI LLH

is selected. Five variations are investigated and the details are described in Table 7.6. The

name “VNS RL” is given because of the similarity between VNS RL and the standard VNS

(Hansen et al. (2010)).

Table 7.6: Variations of VND L. (The HyperILS labels are described in Table 7.2)

Name HyperILS Description of the first step of VND L

VNS(R) VNS RL Select all LLH in the FI-LLH -set; Randomly order them

VNS(30%) VNS RL
Select top 30% LLH in the FI-LLH -set ranked by their utility
value;Randomly order them

VNSr(R) VNSr RL Select all LLH in the FI-LLH -set; Randomly order them

VNSr(A) VNSr RL
Select all LLH in the FI-LLH -set; Ascending ordering determined
using utility

VNSr(D) VNSr RL
Select all LLH in the FI-LLH -set; Decending ordering determined
using utility

We compare performance with the hyperheuristics introduced in Table 7.2. We then

136



Chapter 7. Hyperheuristics and local search operators for PVRP

rank the performance, awarding 16 points to the best performing hyperheuristic, and then

14, 12, 10, 8, 7, . . . 1, 0 points successively to the worse performing hyperheuristics.

Figure 7.6 shows a small difference in performance between FW1 and FW2. Compared

to the FW3 results, they are both generally low-ranking for all cases except the symmetri-

cal benchmark problems. This shows the positive impact of using ILS. Among FW3, the

five VND L variations show similar ranking. Random selection of the mutational LLHs

combined with random-ordered FI LLHs (VNSr(R)) is the most robust over all classes

of problems, whilst other algorithms in this group perform badly for the symmetrical in-

stances.

(a) Street style (b) Small random

(c) big random (d) Symmetrical

Figure 7.6: Hyperheuristics performance for different types of PVRP. Higher score is better.
All tested algorithms stop at the same predefined CPU time.

7.5.4 Scalability

The PVRP is NP-hard (Vidal et al. (2012)). One of its biggest challenges is the rate

of growth in complexity with problem size. In preliminary experiments, we determined

that the performance of algorithms on symmetrical and non-symmetrical problems is very

different. To test the scalability of our hyperheuristics, we first group the problem instances

into symmetrical and non-symmetrical problems and then order them by the number of

customers. Each method runs 20 times.
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Figure 7.7: Performance of hyperheuristics tested on PVRP with various sizes

Figure 7.7 shows that SROI (Table 7.2) has the worst scalability in both symmetrical

and non-symmetrical problems. For the other algorithms, there is little difference in per-

formance for problems with less than 60 customers. Algorithms from FW3 are the most

robust across non-symmetrical instances with 150-420 customers. However, performance

decreases dramatically for these algorithms when applied to bigger problem instances in

the symmetrical data set.

7.5.5 LLH usage analysis

Whilst hyperheuristics need little specialised design, the LLH repository needs to be built

based on problem domain knowledge (e.g. solution structure). In this experiment, we

explore the usage of LLHs by different hyperheuristics. We use frameworks 2 and 3, which

manage the mutation and FI LLHs separately. The results focus on the 9 FI LLHs since

there is no learning in mutational LLHs selection.

Figure 7.8 summarises average usage of FI LLHs for all learning-based algorithms us-

ing FW2 (BeboFW2, RLFW2(30%), CFFW2(30%)) and all VNS-related algorithms us-

ing framework 3 (VNS(R), VNS(30%), VNSr(R), VNSr(A), VNDr(D)). First, we can see

that“Relocate with pattern” (MRPa) and “two points pattern swap” (Pa 2SW) are the
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(a) Street style (b) Small random

(c) Big random (d) Symmetrical

Figure 7.8: FI LLHs usage for different types of problems. Results show the mean value
of the percentages of each LLH are applied during the search, where 0.1 stands for 10%.
Error bars show 95% confidence interval.

most applied LLHs by all hyperheuristics. Since we are using an OI strategy, this implies

that they consistently produce improved solutions. Second, algorithms using framework

3 have a stronger usage bias between favoured and unfavoured LLHs than framework 2.

We think this is because, once a favoured LLH is selected in FW3, ILS enlarges the usage

difference compared to FW2.

To further explore the contribution of specific LLHs in improving PVRP solutions, we

test the two best-performing hyperheuristics for frameworks 2 and 3 (RLFW2(30%) and

VNSr(R)) with different subsets of the original LLHs. Each method is run over all problem

instances and the results are the average of 20 runs.

Figure 7.9 shows a change in performance after removal of the most-used FI LLH

(Pa 2SW) and all mutation operators except Pa RR (Subset 1): the performance of RLFW2(30%)

and VNSr(R) decreases dramatically for the “small random” and “symmetrical” problems.

However, there is little difference for the big random instances, and we even find a small

improvement for VNSr(R) on street style problems. One interpretation of this result is that

the strongly-performing FI LLHs, which are most effective in small and symmetric prob-
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(a) RLFW2(30%)

(b) VNSr(R)

Figure 7.9: Performance of RLFW2(30%) and VNSr(R) using different subset of LLHs.
Error bars show 95% confident interval. The subset1 removes the most used LLH (Pa 2SW)
and all mutational operators except Pa RR

lems, tend to become stuck in a local optima in the street style and big random problems.

From Figure 7.8, the Relocate LLH is preferred in symmetrical problems but not in

others. The importance of this LLH is emphasised by the big reduction in performance

of solving symmetrical instances when the Relocate LLH is removed from the LLH -set of

RLFW2(30%)(Figure 7.9(a)). No significant differences are seen in the other there types

of problem instances.

Interestingly, when we remove the “Relocate” LLH from LLH -set of VNSr(R), the

impact on street style and big random problems is unexpectedly strong and the perfor-

mance decrease is significantly large (Figure 7.9(b)). Looking at the proportion of fitness

value improved by each LLH for each type of problem (Figure 7.10), we find that the

“Relocate” LLH contributes over 10% of the fitness improvement for both street style and

big random problems, even with usage at about 5% during the search in both cases. In

comparison to symmetrical problem, the “Relocate” seems to make small contributions to

fitness improvement through a lot of utilisation. This result suggests that some LLHs are

rarely applied but produce big improvements, whilst some LLHs produce smaller improve-
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ments frequently. The RL selection strategy applied in our hyperheuristics only considers

whether an LLH produces an improvement and misses the information of fitness change.

This decision-making strategy may misjudge the “strong” and “weak” LLHs. However,

there is no evidence showing that the hyperheuristics, which use fitness changes (e.g. CF),

perform better. The challenge here is to use this highly problem-related information at a

hyper level, which works universally well.

(a) Street style (b) Small random

(c) Big random (d) Symmetrical

Figure 7.10: Proportion of fitness value improved by each FI LLH for different types of
problems, using VNSr(R). Results show the mean value over problem instances in each
problem group, where 0.1 stands for 10%.

To explore the robustness of different hyperheuristics when we remove the strongest

LLH (Pa 2SW), we extend the LLH subset experiments to SROI and RDOI. VNSr(R)

shows the best robustness (Figure 7.11). Comparing the RLFW2(30%) with VNSr(R)

and the SROI with RDOI, the algorithms with ILS mechanisms are more robust than the

algorithms without ILS.

7.5.6 Comparison between hyperheuristics and other meta-heuristics

This section compares the two best-performing hyperheuristics from framework 2 and

3 (RLFW2(30%) and VNSr(R)), with the published meta-heuristics, which have been
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Figure 7.11: Impact of removing Pa 2SW on four hyperheuristics over all problem instances.
Error bars show 95% confidence intervals.

designed or tailored for PVRP, including (parallel) tabu search (Cordeau et al. (1997);

Cordeau and Maischberger (2012)), scatter search (Alegre et al. (2007)), VNS (Hemmel-

mayr et al. (2009)), record-to-record ILP (Gulczynski et al. (2011)) and hybrid Genetic

Algorithm (GA) (Vidal et al. (2012)).

42 benchmark instances are tested in this experiment. We group our results based on

the “old data” and “new data” set classification (Section 7.5.1). Because some research

works have not tested both groups. No comparative data exists for our street style data

set. Table 7.7 reports the percentage difference in average performance from the best-found

solutions (summarised in Vidal et al. (2012)) over these two data sets.

Our hyperheuristics achieve competitive results compared to the tabu search (Cordeau

et al. (1997)), scatter search (Alegre et al. (2007)) and VNS (Hemmelmayr et al. (2009))

for the “old data” set. For the larger “new data” set, we achieve close to the best-found

solutions in most cases. The hyperheuristic approaches are about 1% worse than these

problem-specific algorithms, in terms of total route distance.

Compared to the hybrid-GA (Vidal et al. (2012)), which outperforms all the other

algorithms from literature, our hyperheuristics produce routes that are about 2% longer on

an average. However, hyperheuristics do not require any direct knowledge of the solution

space and require minimal design effort, whereas the meta-heuristics need to be designed

for and tailored to each problem.

7.6 Conclusion

The overall goal of this chapter was to investigate hyperheuristics which operate at a higher

level of generality than most of the current approaches studied in PVRP. Hyperheuristics

aims to build cheap and general algorithms to solve various optimisation problems. The
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Table 7.7: Performance on PVRP benchmarks compared with meta-heuristics; tabu search
(CGL) (Cordeau et al. (1997)), scatter search (ALP) (Alegre et al. (2007)), VNS (HDH)
(Hemmelmayr et al. (2009)), record-to-record ILP (GGW) (Gulczynski et al. (2011)),
hybrid-GA (VCGLR) (Vidal et al. (2012)), parallel tabu search (CM) (Cordeau and Mais-
chberger (2012))

RLFW2(30%) VNSr(R) CGL ALP HDH GGW VCGLR CM

avg.
20run

avg.
(best)

avg.
20run

avg.
(best)

1 run -
avg.
10run

-
avg.
10run

avg.
10run

old data (%) 1.86 1.08 1.77 0.93 1.8 1.57 1.6 1.11 0.032 0.044
new data (%) 3.88 2.40 3.44 2.12 2.82 - 1.86 - 0.071 0.091

PVRP solvers should consider two aspects of optimisation tasks: customer pattern assign-

ment and route optimisation. We would like to test whether a hyperheuristic method is

able to choose an appropriate LLH at the right time and to solve the PVRP.

According to our experiments, a few tested hyperheuristics find solutions, which are

almost as good as those published for meta-heuristics. Since all experiments require limited

CPU time, it is possible that this is due to the hyperheuristics’ additional overhead in

applying search at the LLH -selection level. The hyperheuristics are more adaptable to

new problems. The competitive results give an evidence that hyperheuristics can efficiently

manage a large LLH set and automatically select appropriate LLHs.

Different hyperheuristics perform differently. Our analysis of hyperheuristics for PVRP

shows that both learning-based selection strategy and ILS have positive impacts on an

algorithm’s performance and enhance its scalability. ILS also improves the robustness of

hyperheuristics when a poor LLH set is given because ILS concentrates on a neighbourhood

structure until it reaches a local optimum, whereas approaches without ILS have a wider

but shallower exploration within the search space.

The tested hyperheuristics show similar performance on real-world street style problem

instances and random instances. However, the symmetrical benchmarks tend to favour

different strategies and LLHs. This suggests that symmetrical instances are not a good

indicator of algorithm performance for real-world PVRP.

Our LLH repository of PVRP consists of six well known route-structure operators, a

random-pattern-reassign operator, three new pattern-reassign operators and two new mixed

operators. Among them, two of the new operators, “Relocate with pattern” and “two points

pattern swap” are the most applied LLHs across all tested hyperheuristics: these LLHs

make the most number of times of improvements during the search. In other words, these

LLH are considered as “strong” choices by a hyperheuristic. However, experiments on

LLH subsets show that a “strong” LLH may lead to premature local optima. Also, the
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LLH that is mostly used in our hyperheuristics may not be the LLH that makes the most

contribution of solution quality improvement. Further work is needed on the effect of ways

to measure “strong” LLHs.

In the next chapter, we adopt the concept of learning mechanism to a local search pro-

cedure. A very different design of credit assignment and selection of neighbourhood (firstly

introduced in Section 7.3.2.2) is proposed. We compare the best-performed hyperheuristic

(VNSr(R) tested on PVRP) with the new algorithm developed in the next chapter and

deliver the analysis based upon the test on both PVRP and GDMP.
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Chapter 8

A dynamic multi-arm bandit

neighbourhood search

In Chapter 7, we discussed the effect of learning mechanism and algorithm frameworks

on hyperheuristic design. In this chapter, we treat the selection of a neighbourhood as a

dynamic multi-armed bandit (D-MAB) problem where the learning techniques for solving a

D-MAB can be used to guide the local search process. We present a D-MAB neighbourhood

search (D-MABNS), which can be embedded within any meta-heuristic framework. Given

a set of neighbourhoods, the aim of D-MABNS is to adapt the search sequence, testing

promising solutions first. The key difference between the D-MABNS and hyperheuristics

is the usage of domain knowledge for neighbourhood management. We demonstrate the

effectiveness of D-MABNS on both of GDMP instances (Chapter 4) and the benchmark

instances of periodic vehicle routing problem (PVRP) (Section 2.2.1). The content in this

chapter is also presented in Chen et al. (2016a) and has been submitted to the Journal of

Heuristics.

8.1 Introduction

Local search based meta-heuristics have been a very popular research area in the last 20

years and very impressive results have been obtained in many problem domains including

routing and scheduling problems. Meta-heuristics employ different algorithmic schemes for

the exploration of the search space. Variable neighbourhood search (VNS) (Hansen et al.

(2010)), tabu search (Cordeau and Maischberger (2012)), and hybrid genetic algorithm

(Vidal et al. (2012)) they all have different exploration behaviours. Section 2.1.2.3 describes

some of the popular methods in more detail.
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However, there is little work available, which targets the exploitation technique of the

search. Most approaches apply simple local search (LS ) methods: starting from a feasible

solution and iteratively moving to a better solution by selecting it from a neighbourhood

of the current solution (see Section 3.1).

Figure 8.1: Search strategies on an optimisation problem with two variables, x1, x2 ∈ Z

In this chapter, we introduce a machine learning-based LS, referred to as the dynamic

multi-arm bandit neighbourhood search (D-MABNS). D-MABNS is inspired by well-known

decision-making models for the multi-armed-bandit (MAB) problem. The major difference

with opting for a traditional LS procedure is that instead of pre-specifying the examining

order of neighbour solutions (e.g. lexicographic search, Funke et al. (2005)) at each iteration

of LS, D-MABNS dynamically adapts the search sequence to test promising solutions first.

D-MABNS can be embedded in any meta-heuristic or hyperheuristic framework.

Figure 8.1 uses an example to illustrate the inspiration behind the D-MABNS. There

are three approaches for searching through the neighbourhood of the current solution, in

the search space of a simple discrete optimisation problem that has two variables (x1, x2).

The purple ball shows the current solution, and we define four types of move that generate

eight neighbours of the current solution. The aim is to find an improved solution (light

green ball) as efficiently as possible. In Figure 8.1, we see that checking potential moves

in a random order finds the improvement after 8 checks. Checking that is performed in a

pre-specified order, such as variable neighbourhood decent (VND) (Hansen et al. (2010)),

finds the improvement after 7 checks, whereas following a statistically-based sequence, such

146



Chapter 8. A dynamic multi-arm bandit neighbourhood search

as in the case of MAB, the improved solution is found after 6 checks.

The remainder of this chapter is organised as follows. Section 8.2 briefly discusses

learning techniques to guide heuristic search and MAB problems; D-MABNS is introduced

in Section 8.3; In Section 8.4, we demonstrate its use on instances of geographically dis-

tributed maintenance problem (GDMP) obtained from our drainage maintenance problem

(Chapter 4); Section 8.5 analyses the performance of D-MABNS on periodic vehicle-routing

problems (PVRPs) using benchmark instances; and finally the findings are summarised in

Section 8.6.

8.2 Background knowledge

Using self-adaptive approaches to guide neighbourhood search combine machine learning

and classical heuristic search techniques. Many approaches use the historical performance of

operators to adjust future operator utilisation. An issue might be seen here is an exploration

vs. exploitation dilemma. The exploitation strategy suggests that an operator that has

performed well in the recent tests should certainly be applied again, while exploration

suggests to also give a chance to other candidate operators that did not perform so well. In

the AOS literature, the key components to handle this dilemma are credit assignment and

decision-making (Costa et al. (2008)). The same concept is also applied for LLH selection

in hyperheuristics (Section 7.3.2.2).

Credit assignment describes a way to evaluate the quality of an operator. Normally, the

credit assigned to an operator is based on how often that operator makes a contribution

or an improvement (e.g. reinforcement learning hyperheuristic, Section 7.3.2.2), or on the

magnitude of the total contribution the operator has made so far (Soria-Alcaraz et al.

(2014)). The latter measurement is more sensitive to the fitness landscape of the problem

instance, and it is usually combined with a reward rescaling method. To evaluate each

option, most approaches consider either the instantaneous reward value after an operator

has been applied or the average reward over a sliding-time window. An alternative is to

consider an extreme value (Fialho et al. (2009)), on the basis that the generation of rare

but highly beneficial improvements matter more than frequent small improvements.

Decision making determines the selection of the next operator based on past credits.

Probability matching and adaptive pursuit methods are probably the most widely applied

mechanisms (Thierens (2005)). Both methods update the option selection probability ac-

cording to its evaluation value and these probabilities are then used for selection in a

weighted roulette wheel like process. An alternative mechanism adds an exploration term
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to the quality evaluation function and the decision-making process is determined on the

evaluation values (e.g. using the UCB1 algorithm, Auer et al. (2002)).

Multi-arm bandit problems (MAB) Auer et al. (2002) define a typical static MAB

problem in which the K arms each have an independent reward probability pi, where

pi ∈ [0, 1]. At each time step t, the player should select an arm j. With probability pj

the arm receives a reward rt = 1, otherwise rt = 0. The decision-making process to guide

neighbourhood search has a lot similarity to the MAB problem, in which the goal is to

maximise the total rewards collected over time.

To solve a similar problem in a changing environment, Costa et al. (2008) describe a D-

MAB in which each arm has a uniform reward distribution, from the interval [pi,t−1, pi,t+1]

at time step t. For every T time steps, the mean value of reward distribution of each arm

pi,t varies. Further, the reward distribution of all arms change simultaneously.

In the next section, we use the fundamental concepts of D-MAB to address the dilemma

of exploration and exploitation during a neighbourhood search process. We introduce tech-

niques such as mapping solution fitness to rewards and dynamic neighbourhood manage-

ment, to fit the characteristics of the neighbourhood search.

8.3 Dynamic multi-arm bandit neighbourhood search

Our D-MABNS is inspired by many of the techniques reviewed in Chapter 3 and experimen-

tal experience in Chapter 7. D-MABNS maintains a search trace within a neighbourhood,

as is the case in improvement heuristics, but also introduces selection strategies between the

neighbourhoods, like the methods that statistically select LLH in hyperheuristics. Further-

more, D-MABNS uses some of the techniques from simple combinatorial search to discard

unpromising moves during the search.

8.3.1 D-MABNS overview and framework

The goal of search is to efficiently find an improvement direction in each iteration of the

LS process so as to reach a local optimum quickly. First, consider a typical VND approach

to solving a CVRP (Section 2.1). Neighbourhoods defined by moves, such as 2-opt and

Cross-exchange, are searched sequentially until an improved solution is found, as shown in

Figure 8.2(a). The search can be made more efficient, for instance, by ordering elements

or by discarding unpromising moves (Section 3.1.1). However the search is essentially over

a sequence of neighbourhoods.
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The D-MABNS design is based on the observation that it can be inefficient to check

the entirety of one move’s neighbourhood before considering the neighbourhood of the

next move. D-MABNS uses a search pointer within each neighbourhood and dynamically

decides when to examine the next neighbour and from which neighbourhood structure. At

each decision point, D-MABNS looks at the neighbourhood, which has the best current

expectation (Figure 8.2(b)).

(a) VND
(b) D-MABNS

Figure 8.2: The search strategies of VND and of D-MABNS

A neighbourhood Nk(x) represents the set of neighbours that can be obtained by one

defined move from the current solution x. For a given problem, there is a finite set of

neighbourhood structures Nk, (k = 1, . . . , kmax). In D-MABNS (Figure 8.2(b)) each neigh-

bourhood structure Nk is associated with a value vk, which is used to evaluate the quality of

Nk, based on the neighbours seen so far in the neighbourhood. After a selected neighbour

x′ ∈ Nk(x) has been tested, a reward (or punishment) rk is given to Nk(x) and the value

vk is updated. Then, vk, (k = 1, ..., kmax) is used to decide which neighbourhood to look at

next.

In the following sections, we look in more detail at the D-MABNS decision-making

process, based on the MAB model. We also propose dynamic neighbourhood updating, to

further improve the search efficiency of LS.

8.3.2 Decision making

In traditional static MAB problems, the MAB arms are rewarded either 0 or 1 according

to a Bernoulli distribution (Auer et al. (2002)). Applying the MAB model to neighbour-

hood selection, each neighbourhood is treated as an arm and is characterised by a fitness

distribution.
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The fitness distribution of each neighbourhood can be approximated by an empirical

investigation. Identifying the neighbourhood for the next check is an exploration and

exploitation dilemma in the design of D-MABNS. A greedy selection strategy would select

the neighbourhood with the current maximum estimated vk. However we can introduce

exploration into the deterministic decision process by using approaches such as the Upper

Confidence Bound algorithm (UCB1) (Auer et al. (2002)).

Formally, we denote nk as the number of neighbours examined so far from the kth

neighbourhood, and vk is the forecast value of the corresponding neighbourhood (measured

from rewards collected). The UCB1 algorithm selects the neighbourhood, which maximises

the value below (Auer et al. (2002)):

vk +

√
2log

∑kmax
i ni
nk

(8.1)

In Equation 8.1, the square root component represents exploration, thus encouraging

the search into less-explored neighbourhoods. The neighbourhood quality estimation, vk,

represents exploitation by preferring the neighbourhoods that have the best expectation

value. The UCB1 algorithm ensures that each neighbourhood can be chosen infinite number

of times but that the time that elapses between selections for a sub-optimal neighbourhood

increases exponentially.

8.3.2.1 Quality value estimation vk

D-MABNS requires a neighbourhood quality value estimation mechanism to forecast the

value of a neighbourhood, vk. Some existing approaches to credit assignment are outlined

in Section 8.2. In our approach, we employ exponential smoothing (Gardner (1985)), which

is often referred to in the operator-selection literature as additive relaxation (Costa et al.

(2008); Fialho et al. (2010a)). Unlike simple average values, exponential smoothing pro-

vides a decay mechanism, which becomes necessary later (Section 8.3.3) when D-MABNS

is applied to a D-MAB problem, in which new solutions are accepted during search. The

value vk of the selected neighbourhood is updated whenever a reward rk is received, us-

ing Equation 8.2 (Gardner (1985)), such that vk is the weighted average of the previous

smoothed value and the latest reward rk. A smoothing factor α (0 < α ≤ 1) controls the

decay rate of historical reward observations.

vk = (1− α)vk + αrk (8.2)
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8.3.2.2 Reward functions and scaling

In combinatorial search problems, we usually define a fitness function to measure the qual-

ity of solutions. Rewards are generally related to the fitness of the solutions found in a

neighbourhood. However, directly using the fitness as reward can result in imbalance be-

tween the two parts of the Equation 8.1, thus biasing the search either towards exploitation

or exploration.

To reduce the bias, a scaling factor can be added either to the exploration or the

exploitation parts of Equation 8.1. However, fitness measures and the range of fitness values

are domain-dependent, and so, the scaling factor needs to be determined experimentally on

a problem-specific basis. Here, we propose an adaptive reward function, which scales fitness

into the range of [0, 1], and does not need any prior domain knowledge to balance Equation

8.1. We design a reward function RF , which aims to reward a bigger improvement with a

score closer to 1 and a worsening solution with a score closer to 0.

Considering a minimisation problem, for a neighbourhood Nk, we select and test a

solution x′ from the set of neighbours of the current solution, x. The cost of solution x′ is

returned by the function f(x′), and δf = f(x′)− f(x) is the difference in cost between the

current solution and the tested solution, in which δf < 0 indicates an improvement from

the current solution. We record the maximum and minimum changes of cost value over the

last w tests of neighbours of x, denoted as δmaxf and δminf , respectively. We refer to w as a

time window parameter, which can be set manually to any suitable value.

In selecting the reward function, we note that during a neighbourhood search, it is com-

mon to have already tested many worse neighbours from one or multiple neighbourhoods

before finding any improvement. The cost value of these solutions gives an indication of the

quality of a neighbourhood, and so, simply assigning a zero reward to a worse solution is

not appropriate. Many reward functions could be applied here. We have tested the linear

reward, exponential reward, and sigmoid reward functions. Figure 8.3 shows examples,

from a detailed analysis, of how cost value change (x axis) maps to rewards (y axis) for the

three functions. A more detailed experimental analysis presented in Section 8.4.4.1.

8.3.3 Dynamic neighbourhood management

So far, we have only talked about a search process moving from the current solution x

towards x′, where x′ ∈ Nk(x). Solution x′ is one move from x, and thus, it typically has a

similar solution structure. If the same move were to operate on solutions x and x′, it would

also generate solutions with similar structures. Furthermore, depending on the problem
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(a) Linear reward function:
RF = (−δf + δmaxf )/|δmaxf − δminf |

(b) Exponential reward function:
RF = exp(−a(δf − δminf )/|δmaxf − δminf |), where
a = 2, 5, 10, 20

(c) Sigmoid reward function:
1) RF = 1/(1 + exp(δf )) (no scaling); 2)
RF = 1/(1 + exp(a(δf − δminf )/|δmaxf − δminf | − a/2))),
where a = 5, 10

Figure 8.3: Examples of different reward functions, calculated from example cost values
in the range of -10 to 10, using different scaling factors, a. Note that the above examples
illustrate reward functions for minimisation problems, where δf < 0 indicates an improve-
ment.

and neighbourhood structure design, Nk(x) and Nk(x
′) may share many neighbours. If we

denote the fitness distribution of Nk(x) as F (Nk) and of Nk(x
′) as F (N ′k), then F (Nk) '

F (N ′k). There is an obvious benefit, which the dynamic model offers, in that we do not

need to build the understanding of each neighbourhood structure from scratch at each LS
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iteration.

Where the fitness distribution of each neighbourhood structure gradually changes as

the search progresses, we have a D-MAB. Costa et al. (2008) apply a hybridisation of the

UCB1 algorithm (Section 8.3.2) to D-MAB, which uses a Page-Hinkley test (PH, see Section

8.3.3.1) to detect abrupt changes in the environment. In our D-MABNS, “environment”

refers to the reward signals generated from the fitness changes of the tested neighbour

solutions. Algorithm 8.3.1 presents D-MABNS, which is a proposal to adopt the concept

of D-MAB solvers for neighbourhood search problems.

Algorithm 8.3.1 D-MABNS (x)

1: Define:
2: 1: Nk as a set of neighbourhood structures (k = 1, ..., kmax).
3: 1: UCBk (Function 8.1) is the UCB value of each neighbourhood structure Nk.
4: 1: Ik is a pointer that indicates the next solution x′ ∈ Nk(x) will be checked.
5: 1: vbest is the best forecasting value among all neighbourhoods.
6: Assign initial UCB value UCBk=1 to each Nk

7: Assign Ik = 0, (k = 1, ..., kmax)
8: Assign vbest = 0
9: while ∃Ik do

10: i.e. not reached the end of Nk(x)
11: k∗ = argmaxk∈{k=1,...,kmax}UCBk

12: x′ ← the solution indicated by Ik∗ .
13: Ik∗ move to the next neighbour of Nk

14: if f(x′) is better than f(x) then
15: x← x′

16: Update neighbourhoods (Section 8.3.3.2)
17: end if
18: Calculate reward rk∗ based on changed fitness (Section 8.3.2.2)
19: if Environment change (Algorithm 8.3.2, Section 8.3.3.1) then
20: Reset all values used to calculating UCBs
21: vbest = 0
22: ∀Ik = 0, (k = 1, ..., kmax)
23: end if
24: Update all values used to calculate UCB
25: Update UCB values for all neighbourhoods
26: If vk∗better thanvbest, then vbest = vk∗

27: Pruning(Ik∗ ,vk∗ ,vbest) (Algorithm 8.3.3, Section 8.3.3.3)
28: end while
29: return x

8.3.3.1 Environment Change detection

We use the Page-Hinkley (PH) statistics (Page (1954); Hinkley (1971)), as proposed by

Costa et al. (2008), to detect significant changes in the environment. For a given set of

reward observations over time {rk,1, ..., rk,t, rk,t+1...}, PH detects a reward rk,t+1, which
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does not come from the same statistical distribution as the previous observations.

Formally, we use rk to represent the average value of rewards observed so far for neigh-

bourhood Nk; rk is updated every time a new reward is received. We define εk,t = rk−rk+θ

to represent the difference between the reward rk from the current iteration and the aver-

age reward value, where θ is a tolerance parameter that is used to enhance the robustness

of the PH test in a slowly changing environment. For simplicity, we set θ = 0. The PH

statistic calculates a variable mk,t as the sum of εk,t1 , ..., εk,tmax , and a variable Mk,t which

is the maximum value of mk,1, ...,mk,t.

Algorithm 8.3.2 is used to update information about the tested neighbourhood and to

detect environment change. The parameter λ is a user-defined value, which controls the

trade-off between false positive and false negative detection errors, just like θ, λ controls

the sensitivity of the change detection. In Section 8.4.4.4, we present experimental tests

on a set of λ values to analyse the impact of environment change detection on algorithm

performance.

Algorithm 8.3.2 Environment change (Costa et al. (2008))

1: rk ⇐ 1
nk+1(nkrk + rk+1)

2: nk ⇐ nk + 1
3: mk ⇐ mk + (r̄k − rk + θ)
4: Mk = max(Mk,mk)
5: if Mk −mk > λ then
6: return True //environment is changed
7: else
8: return False
9: end if

8.3.3.2 Feature Sequential Search and Neighbourhood Updating

Within the neighbourhood search, D-MABNS applies Feature Sequential Search (FSS) (see

Section 3.1.1). FSS identifies a set of changing elements of a move according to the cost

of changing elements. The elements represent some basic units of our solution structure,

such that each next element of a neighbourhood should get generated in a constant time.

For example, for a 2-opt move, elements might be edges.

FSS usually considers a candidate element list sorted on the basis of intuition by features

(e.g. in 2-opt moves, length of edges). However, sorting is not essential. Figure 8.4(a) shows

construction of a complete move, involving two changing elements labelled 3 and 6, which

produce a neighbour solution from N1, using a nested loop to search through the elements

list.
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(a) Neighbourhood search inN1(xt) at LS
iteration t

(b) Neighbourhood search in N1(xt+1) at
LS iteration t+ 1

Figure 8.4: Neighbourhood Updating

In Figure 8.4(b), solution xt+1 is derived from solution xt in Figure 8.4(a). The two

solutions share mostly the same structure and many joint neighbours, and so, we do not

need to check the neighbours that have already been checked in the previous LS iteration.

In practice, it is also unlikely that a move which was checked in iteration t and did not

make an improvement would produce a better solution in iteration t + 1, even when the

move leads to different solutions in iteration t+ 1.

After making a move from xt to xt+1, where xt+1 ∈ N1(xt), we continue to check other

elements that still exist in the new solution xt+1, checking the new elements last. The

previously checked elements are reconsidered only when the algorithm detects a change

(Algorithm 8.3.1, line 15). When the pointer Ik (Algorithm 8.3.1) reaches the end of a

neighbourhood Nk(xt), a large negative value is assigned to the neighbourhood to ensure

that it cannot be chosen again until PH signals a change.

8.3.3.3 Neighbourhood structure pruning

For each neighbourhood structure Nk, the forecasting value vk is used to keep track of

quality. vk can also be used as a prompter to prune a bad neighbourhood. As shown in

Algorithm 8.3.3, when the value (vk∗) of the current selected neighbourhood k∗ is set to

a large negative value (line 3), the neighbourhood structure Nk will not be selected and

updated until there is a change in fitness distribution. This strategy is especially useful in

conjunction with FSS, where a promising area of a neighbourhood is explored early in the

search. The user-defined parameter γ in Algorithm 8.3.3 adjusts the tolerance of accepting

a neighbourhood that is worse than the best evaluated one. Setting γ = 0 turns off the
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pruning function.

Algorithm 8.3.3 Pruning(Ik∗ ,vk∗ ,vbest)

1: if vk∗ < γ vbest then
2: set Ik∗ to the end of Nk

3: set vk∗ to a big negative value
4: end if

This section has introduced the general concept of D-MABNS, as well as the techniques

that it employs. The following sections apply D-MABNS on two combinatorial optimisation

problems, using a real-world and a set of benchmark problems.

8.4 An application to maintenance scheduling

8.4.1 Problem description

We firstly test our D-MABNS on instances of GDMP, which are obtained from the real-

world gully-pot system maintenance problem (Equation (4.1) – Equation (4.8), Section

4.2.2). For convenience, we briefly recall the high level objective (Equation (4.1)), which is

to select a judicious subset of gullies from N assets and assign them to days of the following

maintenance period in order to minimise the risk in the period:

∑
d∈W

∑
i∈N

riPi(d)

To test the performance of our D-MABNS algorithm, we generate five problem instances

of various sizes, by randomly selecting 10%, 25%, 50%, 75% and 100% of the gullies from

the system. Each gully pot is associated with location, risk impact ri, the number of days

since its last service, and two parameters for the failure probability estimation function

Pi(d) 1. The planning horizon in each instance is set to 7 days (|W | = 7) and only one

vehicle is available to deliver the service.

8.4.2 GDMP solution approach

In Chapter 6, we use BEBO hyperheuristic to schedule maintenance actions, and we use the

same solution framework for the D-MABNS experiments. We briefly outline the process as

following:

1A Weibull distribution is used to estimate the lifetime of a gully pot. The data set, can be found online,
at http://yc1005.wixsite.com/yujiechen
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1. Preparation: Generate a candidate route set Sall, which ignores all risk impact

and failure rate information; optimise for distance using a standard CVRP heuristic

approach.

2. Initialisation: Generate a schedule for W days by selecting the routes s ∈ Sall with

the highest risk, measured by
∑

i∈s riPi(d1), where d1 represents the first day of W

period.

3. Optimisation The optimisation steps repeat for a fixed amount of CPU time.

Improvement: Apply a heuristic approach to improve the solution, evaluated

by the objective function in Equation 4.1.

Re-initialisation: Randomly destroy a few days’ schedule from the output of

the improvement stage; rebuild the destroyed routes from scratch by considering

assets with the highest risk estimation and a few randomly selected asset points; and

assign these routes randomly to the days.

BEBO hyperheuristic is employed in the improvement stage (above) and we now replace

BEBO by D-MABNS.

8.4.3 Local search moves

We use the same six moves for D-MABNS and BEBO (Chapter 6). Our implementation of

BEBO applies a first-improvement heuristic (using lexicographic search) for each move as a

low-level heuristic (denoted as LLH1 - LLH6, Chapter 6). Differently, D-MABNS governs

the search between all available moves directly (Figure 8.2(b), Section 8.3.1). For clarity,

we list the six moves (denoted as move1 -move6 ) as follows.

move1 Delete two edges each from two routes and reconstruct to generate two feasible

new routes. This move is the same as chain cross exchange, where each chain contains

a maximum of k points, 1 ≤ k ≤ 5.

move2 Insert k points that do not appear in the schedule plan, using the cheapest insertion

heuristic with a relaxed route duration constraint. If, as a result of the planned

insertion, any target route exceeds the duration constraint, repeatedly remove the

best-condition point from the route until it becomes feasible, 5 ≤ k ≤ 20.

move3 Replace the last n days’ schedule with n other routes from the candidate set Sall,

1 ≤ n ≤ |W |.
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move4 Same as move3, except that we choose the schedule of n days to replace uniformly

at random, instead of the last n days’ schedule, 1 ≤ n ≤ |W | − 1.

move5 Switch the schedules of two days with each other

move6 Move one day’s schedule to an earlier day.

8.4.3.1 Element sorting by features

It is not essential to sort elements, however, we do so whenever we have suitable domain

information. GDMP is a risk-minimisation problem, and so, many elements can be sorted

by their current risk estimation. In our implementation, move1 uses an edge list that is

sorted by the length of the edges whereas move2 uses an asset point list that is sorted by

the current risk estimation of each point. Due to the large number of asset points we have

in an instance, a single search loop that selects the next k points is used instead of a nested

loop. move3 and move4 use a route information list, which is sorted by the sum of the

current risk of all points in each route. move5 and move6 do not sort their elements by

any features.

8.4.4 Computational results for GDMP

This section first reports a series of sensitivity analyses on the parameter settings of D-

MABNS. We then compare D-MABNS with two algorithms based on the MAB. The algo-

rithms tested apply different decision-making strategies (probability matching (Goldberg

(1990)) and random selection) allowing for a comparison to be drawn with the UCB1

algorithm (Section 8.3.2). Section 8.4.6 compares D-MABNS to BEBO hyperheuristics

(Chapter 6) and a modified VNS (denoted as VNSr(R), Chapter 7). All algorithms are

implemented in C] and executed on a cluster composed of 8 Windows computers with 8

core Intel Xeon E3-1230 CPUs, which have 16GB RAM. All tested parameter settings and

algorithms start with the same initial solution obtained by the Preparation and Initiali-

sation steps in section 8.4.2. For each of the problem instances, each algorithm is run 30

times. The stopping condition for all algorithms is the same CPU time, as shown in Table

8.1.

8.4.4.1 Sensitivity analysis

Finding the best setting of parameter values is a non-trivial and time consuming task, which

often requires considerable expertise and experience. Table 8.2 summaries the parameters
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Table 8.1: Data set information and CPU time allowed for experiments

Name of GDMP instances number of assets CPU allowed

mi01 2815 120s

mi02 7037 240s

mi03 14074 900s

mi04 21111 1800s

mi05 28149 3600s

used by the D-MABNS algorithm, including the time window parameter w and the reward

function RF (Section 8.3.2.2), the smoothing factor α (Section 8.3.2.1), the environment

change detection λ (Section 8.3.3.1) and the pruning rate γ (Section 8.3.3.3). For each

parameter in Table 8.2, we sample values from a given range and run each parameter-set

30 times for the predefined CPU times, as shown in Table 8.1. The parameter-set that has

the best average performance over all instances is used for comparison with other heuristic

methods.

Small values of w, the time window parameter, mean that only recent fitness impacts

decision making, resulting in a more dynamic reward process over time. Consequently, if

recent fitness observations are not good, even a slightly better fitness may result in a big

reward. For the smoothing factor α, larger values mean that historic rewards are forgotten

more quickly.

Our preliminary tests show a strong impact on performance from the environment

change detection parameter λ and the neighbourhood pruning parameter γ. Some in-

teresting behaviours have also been observed in reward function usage and search within

neighbourhoods. Therefore, we design further experiments and explore these parameters

in more detail.

Table 8.2: Parameter settings

Parameter Tested range Value applied

Time window w [100, 200, 400, 600, 1000, 3000, 5000] 400
Reward function RF linear, sigmoid, exponential exponential (a=5)
smoothing factor α [0.2, 0.4, 0.6, 0.8, 1.0] 0.8

Environment change λ [0.01, 0.05, 0.15, .., 0.3, 0.5, .., 1.0, 2.0, .., 4.0] 0.05
Pruning rate γ [0.01, 0.03, 0.05, 0.1, 0.3, 0.5, 0.7, 0.9] 0.7

8.4.4.2 Reward function and Neighbourhood pruning

In Section 8.3.2.2, a number of functions that map the changes in fitness to rewards are

discussed. The reward function, along with the pruning parameter (Section 8.3.3.3), are

essential parts of the D-MABNS algorithm design. We test three reward functions and
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different settings of the neighbourhood pruning parameter γ. The other parameters (Table

8.1) are fixed as {w = 400, α = 0.8, λ = 0.05}. Each setting runs 30 times.

(a) RF = exp(−a(δf − δminf )/|δmaxf − δminf |)

(b) RF = 1/(1 + exp(δf )) (no scaling); RF = 1/(1 + exp(a(δf − δminf )/|δmaxf − δminf | − a/2)));

(c) Linear function: RF = (−δf + δmaxf )/|δmaxf − δminf |, compared with the other two

Figure 8.5: Effect of reward function with different neighbourhood pruning parameter
settings γ, illustrated for mi02. We measure the algorithm performance using the objective
function of risk minimisation.

We run the experiment on all five GDMP instances, and observe similar results. In

all plots, we can see that the pruning parameter γ is important to algorithm performance.

Figure 8.5 presents the results for the mi02 instance as box plots of risk (y axis, the

objective) against pruning parameter settings (x axis).

Figure 8.5(a) presents the results for the exponential reward function. The function

uses a positive constant a to map the raw risk value change δf to the range [−1, a − 1],
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such that when δf > 0, lim
a→∞

rk = 0. Bigger values of a emphasise the importance of the

greatest improvements. From Figure 8.5, we can see that when γ = 0, there is no significant

difference across all setting of a. However, when γ is increased to values in the range 0.01-

0.05, bigger a values achieve better results. This is because a bigger a value emphasises

the difference between results of improving and worsening moves. Combining the effect of

the pruning mechanism and the scaling factor a for the exponential reward function, bigger

a values result in an earlier or more harsh neighbourhood pruning policy, which seems to

especially benefit our problem instances. However, this advantage fades as γ increases. The

best-performing combination here measured by the mean fitness value is {γ = 0.5, a = 5}.

The results for the sigmoid reward functions (Figure 8.5(b)) follow similar patterns to

those of the exponential reward functions. Comparing the best setting of sigmoid reward

function {γ = 0.7, a = 10} with the best setting of exponential reward function and linear

function (Figure 8.5(c)), no significant difference can be seen in terms of solution quality.

These results are common to all our GDMP instances. However, because of the dif-

ferent fitness landscapes and neighbourhood structure design, a suitable reward function

must be chosen for each new problem domain. The interaction of reward function and

other design elements, such as pruning, may also be domain specific. For the linear reward

function, which simply squashes the δf in to the range of [0,1] with respect to the minimum

and maximum value seen within time window w, too small w leads to a random reward

system. In comparison, the exponential and sigmoid function are less sensitive to w. The

exponential function especially amplifies small differences in δf and needs an extra param-

eter a to adjust the shape of reward function. This may affect the overall performance of

algorithms. Increasing a leads to a smaller reward range of worsening fitness, which dilutes

information from most tested neighbours. We suggest assigning a to a value smaller than

10 to map the worst found fitness to values about 10−5. The sigmoid function has a natural

advantage of producing values in the range [0,1] (Figure 8.3(c)). The calculation does not

need assistance from the maximum and minimum records within the sliding time window

w. A smaller number of parameters is good, but the function shape may not generate an

efficient mechanism.

8.4.4.3 Neighbourhood sorting and pruning

Our proposed D-MABNS uses FSS (Section 8.3.3.2) to determine the order in which neigh-

bours are checked within one neighbourhood. To verify the importance of the FSS strategy,

we capture a few neighbourhood structures for a current solution x, and plot the risk value
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changes δf .

Figure 8.6(a) shows one example structure of the neighbourhood Nmove2(x). Because

the search using move2 applies a single search loop that picks every next k elements (Section

8.4.3), only a sub-area of Nmove2(x) is checked. In this case, the sorted features seem

especially helpful in forming improved solutions early in the search stage and pruning the

neighbourhood after about the 50th examination would most likely produce savings in CPU

time without missing good moves.

(a) Neighbourhood structure using move2

(b) Neighbourhood structure using move1

Figure 8.6: A snapshot of two neighbourhood structures using or not using FSS, illustrated
for the mi02 instance. Note that this is a risk minimisation problem, in which δf < 0
implies an improvement.

Comparing the search with unsorted and sorted elements for move1, the feature sorting

strategy shows no significant contribution to the search in Nmove1(x) (Figure 8.6(b)). In this

case, the pruning strategy may not be beneficial as improvements could be found throughout

the neighbourhood. Recall that the elements in move1 are sorted by the length of edges,
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whereas our objective function is risk minimisation. This result reveals the importance of

problem domain knowledge in FSS design. If the fitness distribution of a neighbourhood

shows strong orderliness on one or a few features, FSS significantly improves the search

efficiency. In other situations, the sorting process may not be worth the effort.

Figure 8.7: Impact of sorted features with different pruning parameter γ, on the mi02
instance. Parameter settings: {w = 400, RF = exp(a = 5), α = 0.8, λ = 0.05}

An example of another, more direct, way to illustrate the impact of FSS and pruning

is shown in Figure 8.7. We repeat each parameter setting 30 times with the pre-defined

CPU time and record the solution quality. The same experiment has been tested for our

five instances (see Appendix, Figure A.1) and similar effects have been observed across

all of them. Overall, the results clearly show the positive impact of FSS on algorithm

performance. Feature sorting guides the search to promising moves in the early stages.

Combined with the pruning strategy, FSS significantly improves the search efficiency. On

the other hand, when not using feature sorting, pruning reduces the chance of finding good

neighbours too early into the search. As we can see from Figure 8.6, when a neighbourhood

is unsorted and its fitness landscape is chaotic, the pruning decision (see Algorithm 8.3.3)

becomes less meaningful.

8.4.4.4 Environment change detection

D-MABNS resets the evaluation of all of the neighbourhood arms when the PH statistic

signals an environment change (Section 8.3.3.1). The PH statistic is widely used in D-

MAB, but no analysis is presented (Fialho et al. (2009); Sabar et al. (2014)). In order to

understand the contribution of the PH statistic and the impact of the parameter λ, we test

different λ values with other given parameters {w = 400, RF = exp(a = 5), α = 0.8, γ =

0.05}. A small γ value is used for this experiment as preliminary tests showed that a large
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Figure 8.8: The effect of parameter λ on environment change detection. The green points
indicate a change leading to a resetting of arms and the red points represent the normal
situation. Other parameter settings are presented in Table 8.2
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γ diminishes the impact of λ.

(a) mi02: Performance with different lambda setting (b) mi02: Cluster validation index

(c) mi04: Performance with different lambda setting (d) mi04: Cluster validation index

Figure 8.9: The effect of parameter λ on algorithm performance. The Dunn index is
calculated as follows: Dunn = 1

K

∑i=K
i=1 Dunni, where K is the number of neighbourhoods;

Dunni =
δ(Ctrue,Cfalse)

max ∆C
, where δ(Ctrue, Cfalse) measures the Euclidean distance between the

centres of two clusters (denoted as external distance), and ∆C = 1
|C|

∑
d(s, v(C)) measures

the average distance between all samples s ∈ C and the cluster’s centre v(C) (denoted as
internal distance). For more information about cluster validation index (see Rendón et al.
(2011)).

We evaluate the PH statistic via algorithm performance in terms of final solution quality.

As before, each parameter setting is repeated 30 times with the pre-defined CPU time

(Table 8.1). Figure 8.8 illustrates an example of rewards collected by move2(k = 10) in

the different λ settings given. As λ gets bigger, the PH statistic becomes more tolerant of

reward variations. Figure 8.9(a) shows that D-MABNS achieves worse results when λ is

too small, because there is too much noise in the PH alarm signals.

To further analyse the relation between solution quality and environment change de-

tection, we measure the distance between PH signals for environment change and PH for

the normal situation. We repeat each parameter setting 5 times for 180 CPU seconds, and

each run records the rewards collected over time by each neighbourhood arm. Each data

point is labelled True or False depending on whether it is a changing point or not. We then
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use a Dunn index (Rendón et al. (2011)) to evaluate the decision quality of PH by measur-

ing the distance within and between environment changing and non-changing points. The

intuition is that lower the noise in the detection, the better is the solution quality that an

algorithm can achieve. Figure 8.9(b) includes the average value of the Dunn index of each

neighbourhood detection result. We can see that as the Dunn index gradually gets bigger,

the solution quality in Figure 8.9(a) also gets better. Note that the Dunn index could thus

be used to efficiently tune the environment threshold parameter.

8.4.4.5 Environment change detection and Neighbourhood pruning

In the previous experiments, we observe the strong positive impact of the pruning parameter

γ on the algorithm performance of our GDMP instances. As γ increases, the algorithm

performance also improves. When γ is bigger than 0.3, sensitivity to other parameters is

reduced.

Figure 8.10: The effect of parameter λ on the algorithm performance with two different
pruning parameter setting γ. The other parameter settings are {w = 400, RF = exp(a =
5), α = 0.8}. Tested on mi05.

Our experiments on the combined impact of environment detection λ and pruning

parameter γ give a rather different view. For example, Figure 8.10 shows that, when

the environment detection parameter λ is bigger than 0.25, the bigger pruning parameter γ

starts to show its negative impact. To compare the search strategies, three box plots, A, B,

and C, are picked out in Figure 8.10. Parameter settings at A (λ = 0.01, γ = 0.5) emphasise

wide exploration, whilst those at C (λ = 4.0, γ = 0.05) concentrate on exploitation. During

exploitation, historical reward information becomes useful to guide the search. Smaller λ

values give poorer results because the MAB arms are reset too frequently, resulting in loss of

historical information. Parameter setting B is the best performing one in this experiment,
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as it achieves a balance between exploration and exploitation. Results for the other GDMP

instances are presented in the Appendix Figure (A.2).

8.4.5 Other search strategies between neighbourhoods

Apart from the UCB1 algorithm, many other decision making strategies are proposed

in the existing literature (Section 8.2). These methods introduce strategies from different

perspectives to tackle the exploration and exploitation dilemma of MABPs. In this section,

we compare the UCB1 method to probability matching (PM) (Goldberg (1990); Thierens

(2005)) and a simple random (Ran) selection strategy.

8.4.5.1 Probability matching (PM)

PM is widely used for operator selection (Fialho et al. (2010a)). Similar to many genetic

algorithms (Dianati et al. (2002)), it applies a roulette wheel selection. At each decision

point, the probability p of examining a neighbourhood is proportional to its forecast quality.

The detail of PM has been described in many papers (Goldberg (1990); Thierens (2005)).

Compared to UCB1, PM implements exploration by adding randomness to the selection

process instead of using a statistical equation. At each decision point, the probability p of

examining a neighbourhood is proportional to its forecast quality. The benefit is obvious:

there is no need to rescale fitness to tune the statistic.

Our implementation of PM follows the pseudo code provided by Thierens (2005). We

use an exponential reward function, as shown in Function 8.3, for which no scaling factor

a is needed. Other parameters for PM are: {pmin = 0.01, α = 0.8, γ = 0.94}, where pmin

is the minimal probability value to ensure that none of the arms are ignored. α and γ are

the same parameters as for the UCB1 algorithm, with values selected through preliminary

experiments.

RF = exp(−δf/f(x)) (8.3)

8.4.5.2 Random selection

Random selection (Ran) randomly selects a neighbourhood Nk from the available candidate

set following a uniform distribution. Compared to UCB1 and PM, Ran does not need any

statistical technique to evaluate arms. To apply a neighbourhood pruning strategy, we

simply cut off a neighbourhood if no improvement is found through the last m tries of that
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neighbourhood. We use m = 50, as the value that produces the best average results across

our five GDMP instances.

8.4.5.3 Comparing the UCB1, PM and Ran strategies

We compare UCB1 (parameter settings in Table 8.2), PM and Ran with each other. Each

algorithm is repeated 30 times and the results are shown in Figure 8.11. For small problem

instances (instance mi01, mi02), there is no obvious difference between the three tested

methods. However, for larger problem instances, the performance of Ran is much worse

than the other two methods. This suggests that there is some useful information in the

fitness distribution and landscape and that we can statistically capture this information

via the reward function, to guide the search in the correct direction.

(a) mi01 (b) mi02 (c) mi03 (d) mi04 (e) mi05

Figure 8.11: Performance comparison of different decision making strategies: UCB1, PM
and Ran

8.4.6 Comparison to traditional hyperheuristic

In this section, we compare D-MABNS with two hyperheuristic algorithms, which are

BEBO (Chapter 6) and the VNSr(R) (Chapter 7). As Figure 8.12 shows, D-MABNS

improves the solution quality for all tested instances.

Comparing the architecture of the three algorithms, D-MABNS (Figure 8.2) is more

like a breadth first search, whereas BEBO and VNSr(R) use first improvement (FI) low-

level heuristics to repeatedly examine one type of moves until an improvement is found,

D-MABNS propels the neighbourhood search in a promising direction, which tends to

improve the algorithm efficiency. At a higher level, in comparison to VNSr(R), D-MABNS
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(a) mi01 (b) mi02 (c) mi03 (d) mi04 (e) mi05

Figure 8.12: Performance of D-MABNS (labelled as UCB1), VNSr(R) and BEBO

builds a descent search path with a more flexible combination of moves. Furthermore,

D-MABNS introduces many tricks, such as dynamic neighbourhood updating to avoid

repeatedly checking the same elements as well as pruning to discard unpromising areas of

the neighbourhood.

Figure 8.13 plots an example of the risk value (minimisation objective) changing over

time using BEBO, VNSr(R), D-MABNS without pruning (γ = 0) and D-MABNS with

pruning (γ = 0.3). Pruning reduces unnecessary search space, thus allowing the algorithm

to converge earlier. Even without pruning, the D-MABNS algorithm has the advantage

over the two hyperheuristics, especially for larger problem instances. We attribute this

achievement to the D-MABNS algorithm’s breadth first style of search and dynamic neigh-

bourhood updating.

8.5 An application to PVRP

So far, we have tested the D-MABNS on five instances of GDMP and shown that it signifi-

cantly outperforms other hyperheuristic approaches. In Chapter 4, we have made the point

that our risk driven GDMP has a number of features, which make the model different from

the standard PVRP studied in the available literature. We think it would be interesting to

also test our algorithms on the PVRP instances to compare with a wide range of heuristic

approaches. Compared to GDMP, PVRP has tighter constraints on service pattern require-

ments. Consequently, the search space of feasible solutions for visiting pattern assignment
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(a) mi01

(b) mi05

Figure 8.13: Comparing single runs of D-MABNS, VNSr(R) and BEBO.

is smaller.

8.5.1 Using D-MABNS as an improvement heuristic in a hyperheuristic

To evaluate D-MABNS performance on PVRP benchmark problems, we embed the D-

MABNS algorithm in the improvement stage of the HyperILS framework (Ochoa and Burke

(2014); ?), as shown in Figure 8.14. The work presented here extends from Chapter 7, and

it uses the same (re)initialisation and mutation moves in the HyperPerturbation stage.

To build the neighbourhoods for D-MABNS, we consider the same three following types

of moves as introduced in Chapter 7: route modification, customer service pattern modifi-

cation and mixed operators. Unlike the FI low-level heuristics employed by hyperheuristics

developed in Chapter 7, all local moves are directly managed by D-MABNS. FSS is used,
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(a) PVRP solution (b) HyperILS

Figure 8.14: Algorithm framework for solving the PVRP

as described in Table 8.3.

Table 8.3: Summary of local search moves for PVRP

Type Moves
Element sorting
(FSS)

Route related 2Opt, 3Opt, 2PS, Relocate, Cross Edges sorted by length

Pattern related
Customer pattern reassign,
Two customer pattern swap

Customers sorted by
adjacent edge lengths

Mixed
Relocate with pattern,

Cross with pattern
Edges sorted by length

8.5.2 Computational results for PVRP

In this section, we discuss the behaviour of D-MABNS on PVRP, and compare results to

D-MABNS on GDMP. In addition, we compare D-MABNS with the state-of-the-art meta-

heuristics for PVRP. The same 42 PVRP benchmark instances tested in Chapter 7 are

used to conduct the following experiments and analysis. A detailed description about the

benchmark instances is given in Section 7.5.1. Also, we give a download link of the instance

source files in the Appendix (Table A.2).

8.5.2.1 Sensitivity analysis

We conduct parameter sensitivity experiments, similar to those in Section 8.4.4.1. The best

performing parameter settings for D-MABNS are used for performance comparison with

other methods.

Compared to solving GDMP, neighbourhood pruning and sorting exhibit some different
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(a)

(b) D-MABNS with different γ

Figure 8.15: Impact of neighbourhood pruning on PVRP benchmark p13. Graph (a)
records the changed fitness δ(f), and the number of solution examined before accepting
the next solution, for D-MABNS (γ = 0).

behaviours. Figure 8.15(a) shows an example tested on PVRP instance p13, the largest

benchmark containing 417 customers, of recording the number of solutions that D-MABNS

(γ = 0) examines before it moves to the next solution. Every interval between two worsening

solutions (shown as positive δ(f)) is an LS process. We can see that, at a late stage of

each LS, the cost to find an improvement increases significantly. When is the optimal time

to prune the search within a neighbourhood? Tested on p13 (Figure 8.15(b)), we can see

the algorithm performance decreases significantly when the pruning parameter γ is bigger

than 0.01. Because of early pruning, the algorithm cannot reach local optima and the final

solution is of poor quality.

Similarly, sorting strategies do not give any obvious advantage in the PVRP solver. In
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(a) Relocated neighbourhood

(b) 3Opt neighbourhood

Figure 8.16: PVRP sorting effects: examples of current-solution neighbourhoods

contrast to GDMP, the PVRP fitness landscape does not show obvious orderliness on the

features we tried. Figure 8.16 illustrates two examples, from Relocate and 3-Opt neigh-

bourhoods.

Our experiments raise an important question: when is the appropriate moment to stop

the LS and restart the journey somewhere else in the solution space? From our experience,

we summarise the guideline rules for the same as follows.

1. For small problem instances, such as the PVRP benchmarks (between about 50 and

200 customers), the total time needed for each LS procedure is short. In this situation,

no pruning strategy is needed.

2. In any problem where a sorting strategy does not help to guide the LS within neigh-

bourhood structures, a pruning strategy is also unhelpful.

3. When the solution space is very big but a sorting strategy fails, memory techniques

plus adaptive pruning rate can be applied to control exploration and exploitation in

the early and the later stages of the search process. The memory technique needs to
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record potentially promising areas of the solution space, which have been cut off in

the early search.

4. When the solution space is big and the fitness distribution of many neighbourhood

structures shows strong orderliness on some features, neighbourhood sorting and

pruning bring big benefits to the search process.

8.5.2.2 Comparing to other meta-heuristics

We compare our results with the state-of-the-art meta-heuristics and the best results were

achieved using VNSr(R) from Chapter 72. We test MAB based algorithms including the

Ran and D-MABNS with parameter settings {w = 400, RF = exp(a = 5), α = 0.8, λ =

0.7, γ = 0.001}. The experiments are designed to replicate benchmark conditions from

Vidal et al. (2012). In particular, the search is always terminated after a fixed amount of

CPU time (shown in Table A.3, Appendix). We record the average results of 10 repeats

of each instance and compare them against the best-found solutions in literature. The

results are presented into two groups as some research works have only tested the instances

from the “old data set”. The average gap between our solution quality to the best-found

solutions are summarised in Table 8.4 and are presented in more detail in the Appendix

(Table A.3).

From Table 8.4, hybrid-GA (Vidal et al. (2012)), which combines the population based

recombination operators and LS techniques, achieves the best performance among all al-

gorithms. In addition, the specific design of infeasible solution management, population

diversity and elite individual management have all made great contributions to locating the

promising start points of successive LS procedures. Another successful development using

hybridisation concept is the hybrid record-to-record method (Gulczynski et al. (2011)).

The authors iteratively solve a customer reassignment problem using integer program-

ming and improve the route length using record-to-record heuristic. However, compared

to other recent approaches, the hybrid record-to-record takes almost double computational

time. Parallel tabu (Cordeau and Maischberger (2012)) takes the advantage of parallel

computing and enhance its performance significantly compared to its original development

(Cordeau et al. (1997)).

In comparison, our two MAB-based algorithms achieve competitive results. On average,

D-MABNS produces routes that are 1.7% longer than the best-known solutions. D-MABNS

2Compared to the version of VNSr(R) tested in Chapter 7, we improve its code implementation and
rerun the experiments with 10 repeats.
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has found 10 best solutions out of 42 tested instances and a new best solution for instance

p04. The routes are shown in the Appendix (Table A.1).

Table 8.4: Summary of algorithm performance compared to the state-of-the-art meta-
heuristics. Since not every algorithm is tested on all instances, results are grouped into old
and new data set (see more detail in Section 7.5.6)

Method Author
Average
CPU

gap (all
instances)

gap (old
data set)

gap (new
data set)

Record-to-
record

Chao et al. (1995) 20.33min - 2.72% -

Tabu search
Cordeau et al.
(1997)

4.28min 1.71% 1.59% 2.08%

Scatter
search

Alegre et al. (2007) 39.93min - 1.38%

VNS
Hemmelmayr et al.
(2009)

3.34min 1.34% 1.40% 1.14%

Hybrid-
record-to-
record

Gulczynski et al.
(2011)

10.36min - 0.91% -

Hybrid-GA Vidal et al. (2012) 5.56min 0.09% 0.12% 0.0%

Parallel tabu
search

Cordeau and Mais-
chberger (2012)

3.55min 0.23% 0.24% 0.20%

VNSr(R) Chapter 7 5.56min 1.72% 1.53% 2.40%

Ran Section 8.4.5.2 5.56min 1.56% 1.26% 2.63%
D-MABNS Section 8.3 5.56min 1.70% 1.37% 2.90%

Comparing the average results of D-MABNS with Ran, in 29 out of 41 tested instances,

Ran outperforms D-MABNS. Further analysis suggests that Ran reaches different local

optima more than D-MABNS within given CPU times. Consequently, it increases the

chances of finding better solutions. For GDMP, we found that the advantage of the pure

random strategy was lost for larger solution spaces (Section 8.4.5), and we might predict a

similar result for larger PVRP.

8.6 Conclusion

In this chapter, we introduce a new D-MABNS algorithm for our drainage system mainte-

nance problem. To test D-MABNS, we introduce 5 GDMP instances that were obtained

from the data of the real-world drainage system in Blackpool (Chapter 4). In order to

solve this problem more effectively, the D-MABNS utilises the orderliness property of the

neighbourhood structures and applies techniques, which focus the search in the promising

areas of the solution space, such as dynamic neighbourhood updating, feature sequential

search and neighbourhood pruning. We perform a comprehensive sensitivity analysis and

gain insights into the relationship between FSS and neighbourhood pruning, showing that

pruning is reliant on good sorting to gain big advantages. Compared to the two hyper-
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heuristic approaches, BEBO (Chapter 6) and VNSr(R) (Chapter 7), D-MABNS achieves

significantly better results in all the tested instances.

We then test our algorithm on 42 PVRP benchmark instances to compare its perfor-

mance with other heuristic approaches found in recent literature. Unlike GDMP, the PVRP

neighbourhood structures show no orderliness on the features that have been tested, which

reduces the impact of D-MABNS’s techniques during the search. However, D-MABNS

still achieves very competitive results. On average, D-MABNS achieves solutions within

1.7% of the best-known solutions. After reviewing the techniques applied in the better

performing algorithms, we would like to improve our implementation of D-MABNS from

the following perspectives in future works: 1) allowing search to accept infeasible solutions;

2) enhance reinitialisation using recombination operators with the concept of elite solution

management; 3) optimise code implementation.

In part II, a variety of techniques have been investigated to enhance the heuristic

search algorithms for solving our large-scale combinatorial optimisation problem. We re-

view existing efficient search strategies (Chapter 3); deliver experimental analysis of various

hyperheuristic approaches (Chapter 7); propose a learning-based LS method (Chapter 8).

According to the experiments from both Chapters 7 and 8, we observe the preference of

algorithms depending on the problems and attempt to explain some of the behaviours.

The major contribution is building the understanding of relationship between correspond-

ing problem characteristics and search methods. Other researchers could use much of our

advice presented in this part, when they design heuristic methods for their problems. In-

deed, to comprehensively understand the relation, further systematic experiments should

be designed using a lager variety of problems with more distinctive characteristics.
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Large-scale Road Inspection
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Having considered modelling of the geographically distributed asset maintenance prob-

lem (GDMP) and having investigated various GDMP solvers, this part of the thesis focuses

on a different problem, which is of another specific interest to Gaist Solutions Ltd. – the

problem of road inspection.

Road inspection plays an important role in road management programmes. It pro-

vides the up-to-date key information of road conditions, which helps decision making on

maintenance actions. Usually, road inspection is cyclically scheduled and done at a suffi-

cient frequency. In order to improve work efficiency, two branches of research have proved

fruitful. The first one is to optimise inspection frequency and policies based on the asset

deterioration process (e.g. Madanat and Ben-Akiva (1994); Smilowitz and Madanat (2000);

Kallen and Van Noortwijk (2006); Maji and Jha (2007)), and the second one is to optimise

daily inspection routes with time constraints (e.g. Jha et al. (2008, 2010)).

In this study, we consider a third avenue for optimisation by comparing two road in-

spection strategic plans. Our business partner Gaist Solutions Ltd. plans to carry out

a national-scale road inspection. Vehicles capable of high-quality video recording will be

used for road inspection work. Two potential road inspection methods may be applied.

First, using vehicles that can only get video data from one side of a road so that every

road needs to be visited bi-directionally. Second, vehicles with more advanced equipment,

which travel on one side of the road but monitor both sides at the same time in one-pass.

Our task is to solve both routing problems in order to determine how much distance can be

saved using one-pass inspection strategy in comparison to a bi-directional approach, and

in turn determine whether the additional cost of one-pass equipment is justified.

It is worth noting here that there is little academic link to the work in parts I and

II. According to the problem analysis and theoretical proof, we model the road inspection

problem as an arc-routing problem the Chinese postman problem (CPP). The main con-

tribution here is to answer the above question based on thoughtful theoretical analysis and

calculation. A well-known exact solver (Edmonds and Johnson (1973)) for CPP is applied,

which means an accurate analysis can be provided at the stage. To solve the large-scale

CPP, we propose a pre-processing method (graph reduction strategy), which significantly

reduces the computation time and allows analysis on previously-unsolved large graphs.
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Chapter 9

A comparison of one-pass and

bi-directional approaches applied

to large-scale road inspection

9.1 Introduction

In the UK, local government agencies have a duty to maintain roads for public utility and

safety. Road inspection is cyclically scheduled and done at a defined frequency, to support

decision making on road repair scheduling. Modern inspection uses vehicles equipped with

high quality video recording devices. The quality of recording is affected by obstructions

such as parked cars, and complex post-processing is required to extract suitable data on

road condition. With 240,000 kilometres of road in the UK, efficiency of the inspection

process has a high priority.

We attempt to improve operational efficiency via the road inspection strategies. We

investigate two strategies: a one-pass inspection, in which an inspection vehicle can monitor

both sides of a road in one traversal, and the more traditional bi-directional inspection,

in which the vehicle monitors only its near-side carriageway. Finding a suitable route is

computationally expensive for real-world road networks: Gaist’s network data for the UK

cities of Blackpool, Southend, Manchester, Stockport, Halton, Warrington, and for the

rural county of Norfolk, gives total road lengths of 515, 508, 1315, 945, 619, 879 and 26243

kilometres, respectively.
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9.1.1 Road networks and representations

In the UK, local authorities are responsible for local road networks (excluding major trunk

roads and motorways). The local authority road networks are mostly designated as 1-lane,

2-lane, 3-lane and 4-lane single carriageways or 2-lane dual carriageways (with a central

reservation).

We represent the road network as an undirected graph G(V,E). The vertices V rep-

resent junctions, dead ends, bends and any data collection point identified in the original

data. The edges E represent roads that link the vertices. As Figures 9.1 and 9.2 show,

1-lane, 2-lane and 3-lane single carriageways can be represented by a single undirected edge.

In the 4-lane single carriageway and dual carriageway situations, we transform the road

into two parallel undirected edges. A crescent road is transformed into a loop (see Figure

9.3) and a cul-de-sac is represented as an one-degree vertex (see Figure 9.4).

(a) 1-lane single carriage-
way

(b) 2-lane single carriage-
way

(c) 3-lane single carriage-
way

(d) Graph representation

Figure 9.1: Common road types in urban areas and the corresponding graph representation

(a) 4-lane single carriage-
way

(b) 2-lane dual carriageway (c) Graph representation

Figure 9.2: 4-lane single carriageway, 2-lane dual carriageway and the corresponding graph
representation

Our data comprises basic road information from seven UK local councils that are Gaist’s

(a) Crescents (b) Graph represen-
tation

Figure 9.3: Crescents and the corresponding graph representation
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(a) Bulb (b) Dead-end (c) Representa-
tion

Figure 9.4: Cul-de-sac and the corresponding graph representation

clients. Because the data was not collected for network analysis, there are some accidental

omissions and other issues to be addressed. To clean the data, all intersections have to be

explicitly labelled as vertices.

The pre-processing required for any inspection route analysis is as follows. From con-

sideration of the original data, we define ε = 3 metres.

• The first change made to the data is to remove 2-degree vertices, since these rep-

resent a bend in a road, rather than an intersection, and thus have no impact on

the construction or distance of inspection tours. For all two-degree vertices, vk,

e(vi, vk) and e(vk, vj) are replaced by a single edge, e(vi, vj), with length l((vi, vj)) =

l((vi, vk)) + l((vk, vj)).

• We assume that an intersection has been omitted if the data indicates that two roads

terminate close together. Thus, where the distance between two one-degree vertices

is smaller than some ε, the vertices are merged.

• Similarly, we assume that a road that terminates very close to another road is an

omitted intersection. Thus, where the distance from a one-degree vertex vk to an

edge e(vi, vj) is less than ε, the edge e(vi, vj) is replaced by two new edges e(vi, vk)

and e(vk, vj).

Table 9.1 summarises the vertex degree-distribution of the seven datasets available,

after data cleaning. As we can see, the majority of vertices in road maps have a degree of

two, so their removal significantly reduces the size of the graph for each network.

9.1.2 Analysis of bi-directional and one-pass approaches

The inspection route for a one-sided inspection vehicle – which must pass along every road

twice to monitor both sides – comprises a graph in which every edge is replaced by two arcs,

so that all the vertices in the resulting digraph have equal in-degree and out-degree. The

optimum route for inspection is an Euler tour of the resulting digraph and the optimum
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Table 9.1: Distribution of vertex degrees, and total number of vertices before and after re-
moval of 2-degree vertices for seven local authority road networks in the UK. Road network
from left to right– B: Blackpool; SO: Southend; M: Manchester; ST:Stockport; H:Halton;
W:Warrington; N: Norfolk

B SO M ST H W N

Vertex
total 26302 22864 45408 44470 29610 24518 549345

Degree
1 3.40% 5.60% 8.32% 6.12% 6.08% 10.68% 2.62%
2 80.60% 80.00% 70.63% 80.51% 83.80% 69.53% 91.82%
3 13.10% 12.97% 19.75% 12.31% 9.72% 19.61% 5.33%
4 2.80% 1.42% 1.26% 1.03% 0.36% 0.18% 0.22%
5 0.03% 0.02% 0.04% 0.03% 0.017% - -
6 0.01% - - - - - -

less
degree-2s

5103 4571 13337 8665 4796 7471 44912

distance is given by equation 9.1 (Even (2011)), in which l(e) is the travelled length of the

road segment represented by edge e.

l(bi-directional) = 2
∑
e∈E

l(e) (9.1)

In the one-pass road inspection case, each edge in the graph has to be visited at least

once. This problem can be modelled as the Chinese postman problem (CPP) and the total

travel distance is the length of Chinese Postman Tour (CPT) (Guan (1962); Thimbleby

(2003)).

l(one-pass) = lCPT (9.2)

Lemma 9.1. If a graph G(V,E) is Eulerian and edge {v, w} appears twice in E, then there

is an Euler tour of G where {v, w} is travelled in both directions {v, w} and {w, v}.

Since we generate an Eulerian graph from a given road network, Lemma 9.1 says that

we can always find a CPT that passes complementary directions of parallel edges, and

which is thus valid for 4-lane single and dual carriageways (e.g. Figure 9.2).

One-way streets make up a very small proportion of the total road distance in our

networks, so we make the assumption that inspection vehicles can traverse roads in either

direction, and that the effect of data-cleaning or data errors is similar in both the one-pass

and bi-directional approaches, and thus has minimal effect on our analysis.
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(a) Suppose that there is an Euler
tour A=v−w−x1−x2− ...−xn−
v−w−y1−y2− ...−yn−v, where
edge (v, w) is travelled in the same
direction both times.

(b) Then tour B=v− yn− yn−1−
... − y1 − w − x1 − x2 − ...xn − v
is an Euler tour in the remaining
Eulerian graph after remove the
parallel edges {v, w} and {w, v}.

(c) By adding a travelling path v − w − v to the beginning of tour B,
we have get another Euler tour v − w − v − yn − yn−1 − ...− y1 − w −
x1 − x2 − ...xn − v, where edge (v, w) is travelled in both directions in
the original graph.

Figure 9.5: Proof of Lemma 9.1

9.1.3 Solution of the Chinese Postman Problem and the challenge of

large-scale problems

The optimal solution to the one-pass inspection problem is a CPT, in which a vehicle must

visit every edge at least once whilst travelling the least overall distance (Guan (1962);

Thimbleby (2003)).

For a general undirected graph, a CPT is derivable by adding the smallest possible

number of edges to construct an Eulerian graph and finding an Eulerian tour based on it.

Edmonds and Johnson (1973) provide a widely-used exact CPP solution that is poly-

nomial on the number of vertices and edges, as follows:

1. From an undirected graph G(V,E), find the shortest path between all pairs of odd-

degree vertices.

2. Find the minimum-cost perfect matching, M , of odd-degree vertices using the blossom

algorithm (Edmonds (1965); Edmonds and Johnson (1973)).

3. Add extra edges that connect all the matched pairs of vertices through the shortest

path in G.

4. Find an Eulerian tour in the resulting Eulerian graph.
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Then, the length, lCPT , of the identified CPT is:

lCPT =
∑
e∈E

l(e) + l(M) (9.3)

The approach of Edmonds and Johnson (1973) does not scale well to large graphs, such

as our road network representations. The first step of the approach requires calculation of

the shortest path in G between every pair of odd-degree vertices. Floyd (1962) and others

developed an algorithm of complexity O(n3), where n is the number of vertices, now known

as the Floyd-Warshall algorithm (FW), whereas the most efficient implementations of Di-

jkstra’s algorithm (Dijkstra (1959)), a single-source shortest-path algorithm, can achieve

O(m + n log n), where m is the number of edges (Fredman and Tarjan (1987)). There is

ongoing debate over the most efficient way to find the all-pairs shortest path in large-scale

sparse graphs (Solomonik et al. (2013)); tests on our graphs show that FW systematically

outperforms the other algorithms.

The second step of the approach by Edmonds and Johnson (1973), minimum-cost per-

fect matching, is also computationally expensive. The best-known implementation of the

blossom algorithm achieves O(n(m+n log n)) by Gabow (1990). More recently, Kolmogorov

(2009) published an executable implementation which achieves time complexity of O(n2m)

– again, the complexity of the algorithm is dependent on the number of edges and vertices

in the graph. This matching strategy is also used by Christofides (1976b) for the travelling

salesman problem giving a worst-case ratio of 3/2 of the optimum tour length.

There are several efficient approaches for identification of an Euler tour, required for

both one-pass and two-pass inspection routing. Fleury (1883) proposes the best-known

algorithm, of order O(m2). However, we use another algorithm of order O(m), proposed

by Hierholzer and Wiener (1873).

Apart from Edmonds’ CPP solution, Laporte (1997) introduces methods of transform-

ing an arc routing problem into an equivalent TSP. This idea is also shown by Irnich (2008)

to solve a large-scale real-world postman problem with complex constraints. Heuristics for

the TSP can then be used to solve the transformed CPP problems. As a result, no optimal

result is guaranteed to be found.

To analyse our large-scale real-world road inspection networks, we firstly propose a

novel graph reduction process before finding the CPT (Section 9.2). Section 9.3 justifies

the contribution of our graph reduction pre-processing and compares one-pass and bi-

directional inspection strategies for the seven local authority road networks. Section 9.4
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further tests our approach on three groups of simulated scenarios. The estimation of using

these two inspection strategies on the entire UK road networks is presented in Section 9.5.

Section 9.6 summarises the contributions of this chapter.

9.2 Finding optimal inspection routes

In this section, we describe how we apply the 4-step approach outlined above to our road

network graphs. However, our first step is to reduce the graph, to make it more amenable

to the computation of the CPT.

9.2.1 Graph reduction

Figure 9.6: Systematic reduction of an undirected graph. (a) the graph after the removal
of degree-2 vertices, with the matching Modd shown in dashed lines. (b) the graph after
removal of degree-1 vertices, with their originally connected edges recorded in E∗. (c)-(g)
the results of repeating these steps – here, the result is a null graph. White nodes have
degree 1; striped nodes have even degree and black nodes have odd degree.

Our graph reduction applies graph contraction techniques as used in graph minor theory

(Chartrand and Oellermann (1993); Lovász (2006)). Edge contraction is a fundamental

operation in graph minors which deletes an edge from a graph G and merges the two end

points. Here, we propose a novel graph reduction method to decrease the calculations

time whilst maintaining the necessary characteristics of the original graph to reconstruct

a CPT. After the data preparation described in the previous section, each road network is

represented as a finite undirected graph which contains parallel edges and self-loops. All

degree-2 vertices have been removed.

Let Veven and Vodd describe the even-degree vertex set and odd-degree vertex set, re-

spectively, of our graph G(V,E). l(vi, vj) represents the length of the shortest edge between
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vertices vi and vj . If there is no direct connection between vi and vj , l(vi, vj) =∞. For all

vertices vi, l(vi, vi) = 0. The shortest path between vi and vj in the graph G is represented

as p(vi, vj).

Our approach deletes vertices systematically, but records the length and location of

removed edges in a structure, E∗. Figure 9.6 shows how this works on a stylised represen-

tation of a road network graph.

We make the following observations.

1. Deleting a self-loop from a graph does not change the parity of a vertex’s degree.

2. The shortest path p(vi, vj) between vertex vi and vertex vj does not include any

self-loops.

3. The paths P of the minimum cost matching M(Vodd) include all the edges connected

to degree one vertices. In other words, if you reach a dead end, then you have to get

out the same way.

4. If a shortest path between vertex vi and vj is p(vi, vj) = (vi, vi+1, vi+2, ..., vj), then

the shortest path between vi+1 and vj is p(vi+1, vj) = (vi+1, vi+2, ..., vj).

5. Deleting a degree-1 vertex and its adjacent edge, the total number of odd degree

vertices is either unchanged or reduced by 2.

From these observations, the following two deductions can be made.

Deduction 1: Deleting a self-loop (vi, vi) from a graph G will not change the paths

in the minimum perfect matching M(Vodd) of an undirected graph.

Deduction 2: There is a path set P of the matching M(Vodd) of the original graph

G (as shown by dashed lines in panel (a) of Figure 9.6) that equals the deleted edges

E∗ connected to one-degree vertices (as shown by the E∗ in Figure 9.6(b)), plus a

path set P ′ in the new matching M ′(Vodd) of the simplified graph G′(shown in Figure

9.6(b) as dashed lines), such that, P = E∗ ∪ P ′.

Having reduced our road network graphs, we then apply the 4-step process, as follows.

Step 1: Finding the shortest distance between all odd-degree vertices

Our graph reduction process results in a simplified graph G′, and a record of all the deleted

edges which were connected to one-degree vertices in the reduction process, E∗.
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To find the shortest distance between all pairs of odd-degree vertices of graph G′, we

use Floyd-Warshall (FW) algorithm (Floyd (1962)). The FW algorithm’s complexity is

worst-case O(|V |3), so reducing the number of vertices in the graph is advantageous. We

find that, after applying the graph reduction process above, there are still many even-degree

vertices in G′, and the matching process does not need these vertices. Therefore, before

calculating the shortest path, we can consider deleting these even-degree vertices.

There are many approaches to even-degree vertex deletion. Our preferred approach is

Algorithm 9.2.1, which detects and deletes all even-degree vertices in G′ without affecting

the shortest connection and distance between other vertices. Deleting vertices with degree

bigger than three may increase calculation complexity and the total number of edges in

the graph. However, even where the number of edges increases, the total number of ver-

tices is reduced. The time complexity of deleting each even-degree vertex vi ∈ Veven is

((m(vi)(m(vi) − 1)) / 2), where m(vi) is the number of edges connected to vertex vi.

Having performed the additional reductions using Algorithm 9.2.1, we use the FW to

calculate the shortest path between all vertices remaining in the graph.

Algorithm 9.2.1 Even-degree vertex selection and deletion. V and E are the sets of all
vertices and all edges in a given graph G.

for each vertex vi ∈ Veven do
for each pair of edges ep(vk, vi) ∈ E and eq(vm, vi) ∈ E do

if l(ep) + l(eq) < l(vk, vm) then
generate a new edge e′(vk, vm) with cost l(e′) = l(ep) + l(eq)
if e(vk, vm) ∈ E then

replace the edge between vk and vm with the new edge e′(vk, vm)
else

add the edge e′(vk, vm) between vk and vm
end if

end if
delete edges ep(vk, vi) and eq(vm, vi)

end for
delete vertex vi

end for

Step 2: Minimum-cost perfect matching

The standard blossom algorithm (Edmonds and Johnson (1973)) finds the minimum-cost

perfect matching, M(V ′odd) of graph G′.

The length of the minimum perfect matchings is represented as lM(V ′odd). According to
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Deduction 2 and Equation 9.3, the length lCPT of the CPT of the original graph G is:

lCPT =
∑
e∈E

l(e) +
∑
e∈E∗

l(e) + lM(V ′odd) (9.4)

Step 3: Construct the Eulerian graph

Using Deduction 2 to construct an Eulerian graph from the original graph G, we only need

to add edges recorded in E∗ and M(V ′odd) to the original graph G.

Step 4: Finding the CPT in original graph G

From the graph produced in step 3, the Euler tour can be found by applying the algorithm

proposed by Hierholzer and Wiener (1873).

To generate a CPT in a real world situation, when Hierholzer’s algorithm meets a vertex

connected to 4-lane single carriageway or dual carriageway edges, priority is given to the

edge whose underlying direction is away from this vertex.

9.3 Experimental set-up and results of real-world data set

In order to justify the impact of our graph reduction process, we firstly introduce three

heuristic methods to solve the CPP. We then run all three approaches plus the 4-step

approach of Edmonds and Johnson (1973) on the road network graphs, firstly without our

graph reduction, then on the graphs after our graph reduction method (Section 9.2.1),

and finally on the further reduced graph with all even-degree vertices removed before the

shortest distance calculation.

Our heuristic approaches focus on the matching process (Step2 ) and retain all the other

CPP solving steps of Edmonds’ method. Blossom and the first two heuristics labelled greedy

and GLS (greedy method with local search) require the FW calculation of shortest paths

between odd-degree vertex pairs. The final heuristic is a breadth-first-search (labelled BFS)

for matching, and does not need FW to run first. The combinations of CPP solvers and

graphs are labelled m1 . . .m12, as shown in table 9.2.

The base-case minimum-cost matching is calculated using Kolmogorov (2009)’s im-

plementation of the blossom algorithm. We now introduce the three heuristics that are

proposed in place of the blossom matching algorithm.
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Table 9.2: Summary of the three graphs and four methods applied. Cells (m1 - m12) provide
the key to labelling of the later results and graphs. FW = Floyd-Warshall algorithm to find
shortest distance between vertex pairs, step 1. blossom, greedy, GLS and BFS are tested
in the matching process, step 2. GR = Graph reconstruction, step 3. HA = Hierholzer
Algorithm to find the CPT, step 4.

pre-processing Steps 1-4

Graph FW, blossom,
GR, HA

FW, Greedy,
GR, HA

FW, GLS,
GR, HA

BFS,
GR, HA

Road Network with 2-
degree vertices removed

m1 m2 m3 m4

.. and reduction applied
(Section 9.2.1)

m5 m6 m7 m8

.. and all even degree ver-
tices removed

m9 m10 m11 m12

Greedy method (greedy): The greedy method is a heuristic that systematically con-

structs a matching where shortest distances between pairs of vertices are known, as de-

scribed in algorithm 9.3.1. The algorithm is based on those by Kurtzberg (1962) and

Reingold and Tarjan (1981).

Greedy method + local search (GLS): GLS attempts to improve the result of the

greedy method by following algorithm 9.3.1 with a greedy first improvement heuristic,

shown in algorithm 9.3.2.

Algorithm 9.3.1 Greedy construction for matching

V L is a list contains all the vertices, vi in a given graph
while V L contains at least two vertices do

Choose the pair of vertices with shortest distance (vi, vj) ∈ V L
Add (vi, vj) to the matching M
delete vi, vj from V L

end while
Return M

Breadth first search (BFS): BFS is a basic search: each unmatched odd-degree vertex

vi in graph G is the root point of a BFS to find the next unmatched odd-degree vertex vj .

Then two vertices vj and vi are a matching pair and the path from vi to vj in the BFS

tree is the matching path. The BFS terminates when there are no unmatched odd-degree

vertices left.
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Algorithm 9.3.2 Greedy improvement algorithm, used to improve the matching result of
the construction approach algorithm 9.3.1. l(mi) is the distance between the two vertices
in the matching mi.

improved=true;
while improved do

improve=false;
for Every pair of matchings mi, mj ∈ M do

Generate new matchings mk,ml by exchanging vertices between mi and mj

if l(mk) + l(ml) < l(mi) + l(mj) then
Replace mi and mj by mk and ml;
improved = true;
break;

end if
end for

end while
Return M

9.3.1 Results comparison

Our experiments allow us to address two questions:

• is there a computationally-efficient (in terms of CPU time) solution to the CPP on

large scale general graphs?

• how much distance can be saved using one-pass inspection strategy in comparison to

a bi-directional approach?

The second question is of particular importance to the local authorities concerns.

To compare the computation time required to identify a CPT (inspection route) for

each of the different graphs and variant approaches, the experiments were each run on

a standard desktop PC: Intel i7-3770 CPU at 3.40 GHz with 24GB memory under the

Windows 7 operation system.

The exact methods using blossom algorithm in the matching process achieve the optimal

CPP tour, whereas heuristic based methods can only find near-optimal solutions. There-

fore, we analyse question two using the results generated by the exact methods. Equation

9.5 is applied to normalise the difference and express it as a percentage distance saving:

saving =
l(bi-directional)− l(one-pass)

l(bi-directional)
∗ 100% (9.5)

The 12 experimental set-ups were run for each of the local authority road network

graphs except Norfolk. The graph representation of the Norfolk road network is too large

to process without our novel graph reduction step.
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Figure 9.7: Results of the 12 methods for the six road networks. For each experiment, the
bar shows the CPU time taken, with shading showing the CPU usage of each algorithm
(graph reduction and graph reconstruction take negligible time and are not visible in the
plots). m1 to m4 are tested on the original graphs; m5-m8 are tested on the reduced graphs;
m9-m12 are tested on further reduced graphs that without any even degree vertices.

9.3.1.1 CPU time comparisons

Figure 9.7 plots the CPU time taken. For each road network graph, the graph reduction

and graph reconstruction times are negligible, and do not show up on this scale.

In all road networks, the methods applying graph reduction (m5 to m12) shows much

lower overall CPU time, which demonstrates the importance of our graph reduction ap-

proach on graphs of this scale. After graph reduction, the exact methods can produce the

CPT faster than any tested methods directly running on the original graph in all cases.

Table 9.3 gives numerical results for the blossom algorithm experiments on the three

forms of graphs for all seven local authority road networks (except for the un-reduced

Norfolk graph). The numerical results again emphasise the reductions in CPU time due to

graph reduction.

Some explanation is needed of an apparent anomaly in the Blackpool data. In the
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top left panel of Table 9.3, the number of edges (column m) is significantly higher for the

fully-reduced graph (third row) than for the unreduced or partially reduced graphs. This

arises from the removal of all even vertices in this network graph. In the Blackpool network,

almost 3% of vertices have degree 4 or above, whereas no other network has more than 1.5%

(Table 9.1). Whilst removal of degree-one and degree-two vertices always decreases graph

complexity in terms of both the number of vertices and edges, removal of higher-degree

vertices reintroduces significantly more edges. Fortunately, the CPU-hungry algorithms

depend more strongly on the number of vertices.

Table 9.3: CPU time taken to calculate the CPT of each road network using the blossom
algorithm for matching. The lower right panel gives the total CPU time for each road
network for each experiment. The columns are as follows: n is the number of vertices (also
shown in Table 9.1), and m the number of edges in the graphs after data cleaning, etc.
RT is the CPU time for graph reduction: no reduction, reduction as described in section
2.1, and the additional reduction in Algorithm 9.2.1, respectively. FW is CPU time for the
Floyd-Warshall algorithm. MT is the CPU time for the blossom matching algorithm. CT
is the CPU time to construct the final graph. CPT is the CPU time to extract the final
inspection route using the Hierholzer algorithm.

Blackpool (B) Southend (SO)
n m CPU (s) n m CPU (s)

RT FW MT CT CPT RT FW MT CT CPT
m1 5103 7124 0 143.32 28.97 0.016 0.187 4571 5738 0 189.84 31.14 0.001 0.202
m5 3398 5419 0.14 45.54 11.11 0.016 0.234 2016 3162 0.14 16.05 4.26 0.001 0.203
m9 2772 10803 0.51 28.84 10.34 0.016 0.016 1746 5922 0.28 10.51 4.25 0.001 0.202

Halton (H) Stockport (ST)
n m CPU (s) n m CPU (s)

RT FW MT CT CPT RT FW MT CT CPT
m1 4796 5430 0 134.38 39.44 0.002 0.187 8665 10482 0 910.62 114.21 0.000 0.671
m5 1211 1852 0.15 2.96 1.97 0.001 0.218 3277 5063 0.45 55.91 12.46 0.006 0.826
m9 1148 1970 0.16 2.53 1.96 0.002 0.218 3004 5662 0.53 40.86 11.79 0.003 0.858

Warrington (W) Manchester (M)
n m CPU (s) CPU (s)

RT FW MT CT CPT n m RT FW MT CT CPT
m1 7471 8556 0 343.18 95.32 0.001 0.499 13337 16500 0 4438.04 355.83 0.013 1.58
m5 2136 3218 0.29 10.31 5.84 0.000 0.561 5842 8949 1.02 369.71 47.75 0.015 1.79
m9 2108 3265 0.31 9.78 5.83 0.001 0.561 5486 9622 1.12 306.29 46.71 0.015 1.67

Norfolk (N) Summary
n m CPU (s) Total CPU(s)

RT FW MT CT CPT B SO H ST W M N
m1 44912 53482 0 - - - - 172 221 174 1025 439 4795 -
m5 15647 23904 18.27 4977.19 5499.49 0.171 34.523 57 21 5 70 17 420 10530
m9 14796 26487 19.66 4227.01 4759.01 0.182 34.881 49 15 5 54 16 356 9041

9.3.1.2 Distance comparisons

To compare totally distance vehicles should travel using one-pass versus bi-directional road

inspection approach, table 9.4 presents details of distance savings in these experiments.

The distance saving for the one-pass inspection is between 26% and 35%.
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Table 9.4: Distance and distance saving of the CPT one-pass route, compared to the bi-
directional route monitoring approach. Results are generated using the exact solver (the
4-step approach of Edmonds and Johnson (1973)).

Bi-directional One-pass Saving distance & percentage Average
(Euler Tour) (CPT) (equation 9.5) degree

Blackpool 1031km 671km 360km 34.86% 2.79
Southend 1016km 676km 340km 33.46% 2.51

Manchester 2631km 1839km 792km 30.10% 2.47
Stockport 1891km 1369km 522km 27.57% 2.42
Norfolk 26234km 18268km 7966km 30.36% 2.39
Halton 1239km 917km 322km 26.03% 2.26

Warrington 1758km 1300km 458km 26.00% 2.29

(a) Southend (b) Southend, reduced

(c) Warrington (d) Warrington, reduced

Figure 9.8: Original maps and reduced graphs for Southend and Warrington road networks,
illustrating grid-like and tree-like road networks.

Investigation of the differences in distance saved shows that, in addition to the added

complexity of networks with high-degree vertices (noted above, and shown in the final

column of Table 9.4), these reflect different road network topologies. Blackpool, Southend,

Manchester and Norfolk, can be characterised as having predominantly grid-structured

networks, which are conducive to efficient one-pass monitoring. In contrast, Warrington

and Halton have predominantly tree-structured road networks which inevitably leads to

visiting more streets twice, even in the one-pass case. To illustrate this, Figure 9.8 gives

the original and reduced-graph networks for Southend and Warrington.
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9.4 Experiments of simulated data set

Our analyses of graphs representing real road network data lead to striking conclusions

about the distance saving of one-pass, as compared to bi-directional, road inspection strate-

gies. Although savings vary by about 10 percentage points across different road networks,

the distance savings were consistently above 26%.

To explore the interaction between graph layout and distance savings, we conducted a

set of experiments on randomly generated graphs using the blossom-based approach that

was shown to be optimal above.

Table 9.5: Vertex degree distributions for generated graphs. All generated graphs have
1000 vertices and edges of length 1 only.

parameters
vertex degree average degree

Graph structures 1 2 3 4 5 initial no d-2

degree distribution
match:
g1 15% 70% 12% 3% - 2.03 2.1
g2 10% 70% 15% 5% - 2.15 2.5
g3 5% 80% 10% 5% - 2.15 2.75

degree distribution with
no degree-2 vertices:
g4 35% - 60% 5% - 2.35 2.35
g5 35% - 50% 15% - 2.45 2.45
g6 35% - 40% 25% - 2.55 2.55
g7 35% - 40% 10% 15% 2.7 2.7
g8 35% - 40% 5% 20% 2.75 2.75

dominated by high-
degree :
g9 20% - 15% 60% 5% 3.3 3.3
g10 20% - 15% 5% 60% 3.85 3.85

Random graphs were created using an algorithm proposed by Blitzstein and Diaconis

(2011). Graphs are created with a fixed number of vertices (we choose 1000) to specified

vertex-degree distributions. Our vertex-degree distribution parameters are shown in Table

9.5, which also summarises the average vertex degree of the generated graphs, before and

after the initial removal of degree-two vertices. Three parameter settings of random graphs

(g1 – g3) are generated with similar vertex-degree distribution to the graphs representing

our real-world road networks. A further five parameter settings of random graphs (g4

– g8) have similar vertex-degree distribution to the graphs of real-world road networks

after cleaning to remove degree-two vertices. There are also two parameter settings of
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random graphs that are dominated by degree-four (g9) and degree-five (g10) vertices. In

the random generation, all edge lengths are set to one, and no attempt is made to generate

graphs with particular structural characteristic (grid-like, tree-like). Our experiments focus

on the generalisation of the influence of vertex degree, only.

For each group of graphs, we run these three sets of experiments with progressively

greater reductions, dictated by our data cleaning and graph reduction approach to the

road network graphs: 1) data cleaning to remove degree-two vertices, 2) graph reduction

to remove all degree-one and degree-two vertices, and 3) further reduction to remove all

even-degree vertices. For each experiment, we report the average of 30 runs, a number

selected to give acceptable total run time but a suitably-low statistical error. Here, the

approach that applies blossom algorithm in the matching process is used.

9.4.1 CPU time results

Table 9.6 presents details of the CPU time taken (using the computational platform de-

scribed in Section 9.3.1) for the overall CPT identification process (vertex-pair distances

using FW, blossom matching, graph reconstruction and CPT identification), and then for

the three levels of data cleaning and graph reduction, on each of the 10 types of graph.

Each graph reduction makes a big contribution to CPU time reduction. The results for

the first group of graphs, those generated to match the vertex degree distribution of the

complete road network graphs, shows the importance of removing degree-two vertices in

this respect. A further large time saving occurs when removing degree-one vertices – from

Table 9.6 we can see that these make up 50% of the vertices in the example g1 graph after

removal of the degree-two vertices. Comparing the improvement in CPU times between the

full graph reduction (last column of Table 9.6) and the data-cleaning reduction of removing

only degree two-vertices (middle column total), the results for this first group of graphs

show CPU time savings of 95.5%, 90.3% and 78.5%, respectively.

The graphs in group g4 – g8 (and, indeed, g9 and g10) are generated without degree-

two vertices. For these graphs, the graph reduction steps also show a very large CPU time

reduction over the un-reduced time.

For the graphs dominated by higher-degree vertices, g9 and g10, the results again show

that graph reduction leads to time reductions, but, for g9 which is dominated by degree-four

vertices (60% of all vertices), CPT extraction with removal of all even vertices is almost

three times the CPU time for just removing degree-one vertices, and somewhat greater

than the CPU time for cleaned graphs with neither subsequent reduction step. In this
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Table 9.6: CPU time for CPT tour extraction on generated random graphs g1 – g10,
showing the effect of graph reductions. The notation “reduction” represents the CPU time
used to reduce a graph and “total” denotes for the overall CPU time taken to produce the
CPT of an original graph. Lowest overall CPU times for each graph type are in emboldened.

CPU(ms)
Graph FW, blossom removing and removing and removing
structure GR, HA degree 2 degree 1 all even degree

total reduction total reduction total reduction total
g1 19691.82 10.66 577.56 11.61 29.49 12.07 25.91
g2 19616.67 10.21 568.72 11.36 86.71 12.93 54.86
g3 19522.89 11.30 183.39 11.75 60.01 15.18 39.37
g4 20464.62 - - 6.34 1831.37 7.76 1436.3
g5 20312.60 - - 6.22 2086.82 14.64 1062.11
g6 20582.34 - - 5.55 2528.90 863.95 1666.97
g7 20433.91 - - 4.88 2780.43 13.07 1414.97
g8 20359.70 - - 4.87 2810.04 10.99 1622.76
g9 20339.90 - - 3.88 8468.91 248918.2 249369.4
g10 20407.10 - - 3.68 9209.61 17.08 4992.87

case, the last column of Table 9.6 shows that there is a very large CPU time overhead for

deleting the significant number of degree-four vertices and any other higher even-degree

vertices. In contrast, the graphs dominated by degree-five vertices, g10, show a pattern

that is consistent with the graphs that are similar to the real road network graphs.

Further analysis of specific graph results shows how these CPU time savings arise, since

the FW and the blossom matching process are the most CPU-intensive parts of the CPT

extraction.

Table 9.7: Degree distribution after each graph reduction for a typical g1 graph

Vertex degree Total vertices

1 2 3 4
Original graph 15% 70% 12% 3% 1000

Delete
degree 2

50% - 40% 10% 300

Delete
degree 1,2

- - 78% 22% 84

Delete
degree 1,even

- - - - 66

The complexity of FW is dependent on the number of vertices in the graph. Table 9.7

shows that degree-two removal (data cleaning) removes 70% of vertices, and subsequent

graph reduction reduces 300 vertices successively to 84 then 66 vertices on which to run FW.

It is the odd-degree vertices that influence the CPU time of blossom algorithm matching

(step 2) – there are 270 odd-degree vertices in this example of a g1 graph, but we have
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the much smaller number, 66, of odd-degree vertices after removal of degree-one and all

even-degree vertices. Thus we can conclude that the graph reduction contributes both to

the reduced running time of the FW, shortest-path-between-pairs calculation, and to the

reduced running time of matching process.

9.4.2 Distance saving results

Figure 9.9 shows the average distance savings (calculated using equation 9.5) and variances

about the mean from our 30-run sets. As in the road network graphs, the greatest distance

savings are associated with higher average degree graphs. The pattern also shows within

groups of graphs with similar degree distribution (identified by shading in Figure 9.9).
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Figure 9.9: Distance saving (equation 9.5) for the one-pass route compared to bi-directional
routing on the randomly generated graphs g1 – g12. For graph characteristics, see Table
9.5. Numbers in brackets are the average vertex degree for that graph. Error bars show
one standard deviation of distance saving results.

These results on randomly generated graphs support our general observation of signifi-

cant distance savings for a one-pass CPT over a bi-directional inspection tour, even though

our generated graphs ignore the impact of different graph topologies and edge lengths. The

only distance saving that is worse than the 26%-plus savings on the road network graphs is

for g1, those graphs that have an average degree of close to two before and after removal of

degree-two nodes. Comparing to other graphs, g1 graphs also have the highest proportions

of degree-one vertices after data cleaning (removing degree-two vertices) – dead-ends that

have to be traversed twice in order to continue a tour.

9.5 Estimated cost savings of one-pass road monitoring

In co-operation with our business partner, Gaist Solutions Ltd., we can estimate the na-

tional savings of the one-pass strategy. Across all the results for the seven UK local au-
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thority road networks, we find a distance-saving of roughly 30%. If we assume that the

seven case studies are typical of the UK, then we can use this to estimate the total annual

saving for UK local authority spending on road inspection using a one-pass strategy. We

use published data, rounded to avoid a false appearance of precision in the estimates.

The whole UK road network under local authority control (i.e. without trunk roads

and motorways) is roughly 240,000 kilometres (Murphy (2014)), broken down to 30,000 km

of major roads and 210,000 km of minor roads. The UK highway management authority

states that road inspection should cover all major and about one-third of minor roads each

year (Department for Transport (2005)).

Extrapolating from our seven examples, we can estimate that a bi-directional strategy

requires annual inspection route distances totalling roughly 60,000 km of major roads (twice

the total distance) and 140,000 km minor roads (twice the total distance of one-third of

the routes each year).

If a one-pass strategy results in a 30% distance saving, then the inspection route distance

reduction would be roughly 18,000 km for major roads and 42,000 km for minor roads.

According to the cost information provided by our industry partner, Gaist, we can estimate

a cost saving using a linear function that includes labour, petrol, equipment and vehicle

maintenance costs. This gives an approximate cost of £30 per km of major road and £90

per km of minor road. The cost is higher for minor roads because running speed is lower,

and there are more likely to be obstructions and blockages. We can therefore tentatively

suggest an annual saving across all UK local authorities of 30 ∗ 18000 + 90 ∗ 42000 = £4.32

million.

9.6 Conclusion

This chapter explores the potential benefits for road inspection of using inspection vehicles

that can collect both side of road-lane information of a single carriageway in one traversal,

as opposed to more traditional single-sided monitoring that has to use a bi-directional

strategy to monitor every road.

By making various assumptions, we can systematically clean the map-based route data

to replace omitted intersections. We create road network graphs from the seven UK local

authority road network data sets, cleaning this data to remove degree-two vertices that

simply record bends in the road. A novel contribution of our work is to introduce a graph

reduction technique. It is notably helpful on sparse graph like real-world road networks;

even the graph of a UK county road network is amenable to CPT route calculation on
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a standard PC within reasonable CPU time. For road networks in residential areas, the

reduction helps to manage the many branch roads, close road and culde-sacs which lead to

complex graph structures.

Similar to the drainage system maintenance study (Part I), once again, the real-world

problem study shows the necessity of data pre-processing for the use of real data, to fit

specific analysis purpose. Furthermore, to deal with large scale problems, experiences from

solving the drainage system maintenance and the road inspection demonstrate that it is

worth while to design data simplification and problem size reduction before solving the

problem.

Comparing to heuristic based solvers studied in previous chapters and applied to the

large scale drainage system maintenance problem (Chapter 6), it is worth noting that an

exact CPP solver is applied in this chapter to deliver various analysis. The standard CPP

is solvable in polynomial time and there is an efficient exact solver (Edmonds’ solution) for

problems at the scale that we are dealing with. Our experimental results also support the

effectiveness of Edmonds’ solution compared to other simple heuristics.

We have also presented initial results on randomly generated graphs that allow us to

identify what sorts of road network graphs generate most savings – CPU time use is related

to the number of vertices in graphs, but the cost of graph reduction exceeds that saved

on computation in the pathological case where most vertices are of degree-four. In this

situation, we can apply only the process of degree-1 and degree-2 removing (Section 9.2.1).

In general, road network results show that the greater average degree a graph has,

the greater the route distance savings that can be generated. The results also show some

influence from graph structure, with better improvements in grid-like structures than tree-

like structures.

We present conclusive evidence that the one-pass approach offers significant savings

over the bi-directional approach to road inspection. This assumes that the effects of data

cleaning (which may wrongly insert new intersections, and may not be able to identify some

missing road sections) are similar on both the one-pass and bi-directional tour calculations.

In terms of the answer to the question from Gaist, at this stage, we have an overview

of how much cost saving could be made by using a one-pass inspection strategy instead of

a bi-directional strategy. Gaist is now using our approach, including graph reduction in

planning its national scale road inspection programme. However, there are more practical

issues to address in future works, such as the number of one-pass inspection vehicles required

to inspect the network, and identification of optimal starting points for each vehicle tour.
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Chapter 10

Thesis conclusions and future work

This thesis discusses real-world asset maintenance scheduling problems arising from high-

way management. Three parts are included. In Part I, in co-operation with Gaist Solutions

Ltd., we specifically consider a drainage system maintenance problem and deliver an au-

tomated scheduling process to replace the current manual approach. Due to the high

computational complexity in solving the large-scale optimisation problem, we focus on the

solution approach improvement in Part II. Part III talks about local authority road in-

spection, which is another problem that is specifically relevant to the interests of Gaist

Solutions Ltd.. This chapter summarises each of the parts mentioned above.

Part I: Geographically distributed asset maintenance

The research in part I is motivated by a real-world large-scale drainage system maintenance

scheduling problem. Based on problem analysis and assistance from our business partner,

Gaist Solutions Ltd., we built our understanding of geographically distributed maintenance

problems (GDMP) step-by-step, and we realised that many public asset maintenance prob-

lems show similar characteristics. At a high level, a GDMP has a set of geographically

distributed assets that require maintenance service for a long period or over a continuous

period of time to perform their designed functions. Each asset gradually degrades over

time and the objective is to make decisions regarding how to deliver maintenance service

optimally to such a system while using limited resource.

Further analysis leads the study to focus on subjects within vehicle routing problems,

periodic vehicle routing problem (PVRP) in particular. PVRP is the closest standard

model that captures some of the properties of our GDMP, including the geographically

distributed points and the specified service pattern for each point within the planning
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horizon. However, we do not always have clear service date information in all cases due to

reasons, such as:

1. Large-scale system and different degradation processes of each of the assets in the

system (e.g. affected by local environments). It is too hard to specify the service

pattern for each individual asset in the system.

2. Dynamic degradation process in which factors such as season and weather changes

may affect the assets’ degradation process.

In these situations, the question is to find the optimal date to service each asset and

the optimal daily service routes. More complex situations, such as dealing with multiple

service types (i.e. preventative, corrective maintenance) and sudden disasters are involved

in real-world scenarios. To solve this problem, we propose the following:

1. We propose a predictive scheduling strategy operating on a rolling planning horizon,

and transform the research question to find the optimal date to deliver service and

to identify the assets that need maintenance services the most in the short planning

horizon in the near future.

2. We apply a function-based asset lifetime estimation method, Weibull distribution

(Weibull (1950)), to estimate the condition of each gully pot in the drainage system

at any day. Local environment and seasonal information is considered in the lifetime

estimation. A further discussion is given regarding other asset lifetime estimation

approaches, which can be utilised in other asset maintenance scenarios.

3. We employ a risk driven model in the predictive scheduling strategy to guide the

service despatching towards assets, which need services soon.

4. Within the predictive scheduling solver, the service routes are also optimised with

respect to the total travel and service time.

According to our simulation-based analysis, we suggest a large reduction in the daily

surface water flooding risk, by about 17% in Blackpool’s drainage system, if we replace the

current manual scheduling strategy with the predictive scheduling strategy.

The simulation-based analysis has also helped to investigate the potential effect of

two investments to improve the manual maintenance quality, which are“banning parking”

policy and improving the timeliness of information, as might arise from the use of a low-

cost wireless sensor technique. Using simulation-based analysis, we see that a “banning
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parking” policy might improve maintenance quality to some extent, and that “untimely

information” is a significant factor in lowering the efficiency of maintenance. There are

still many challenges for the sort of sensor technique (See et al. (2012)), which is needed to

provide timely information in practice. Our simulation results suggest that a full-sensoring

drainage system can bring about a large risk reduction by about 92% and cope with up to

30% false positive and false negative error information.

To set up the simulations, we closely worked with Gaist Ltd. and local councils in

the UK to provide the best data. However, even then limited data was available. Even

though our analysis uses simulations, which may not be accurate for realistic situations,

the proposed maintenance strategy and the risk analysis provide insights into potential

ways to improve the current practices on drainage system maintenance in the UK. The

contribution of this thesis is to increase our ability to model and analyse GDMPs.

Discussion and future work In this research, we aim to link drainage maintenance

with city flooding risk management. Surface water flooding (SWF) normally occurs when

intense rainfall is unable to enter a drainage system. This may be because of drainage

blockages, breaks or if the draining capacity has been exceeded. In the first two cases,

good drainage maintenance should make a big contribution to the SWF risk management.

Reviewing the risk driven model applied to the drainage maintenance problem, in order

to evaluate the daily SWF risk caused by drainage failure, we analyse the historical flooding

frequency in the Blackpool area to derive the average daily risk impact information ri

for each gully pot i in the system. Then the risk estimation (riPi(d)) is used to produce

optimised maintenance scheduling. (Pi(d) represents the probability of gully i being blocked

on day d). This approach uses historical information, which may lead to the risk estimation

for future days to become less accurate. In addition, for high risk flooding areas with natural

water resources (i.e. river, coast), it is important to integrate additional information (e.g.

water level) to adjust emerging maintenance actions if necessary.

To improve the adoption of the risk driven model on the drainage maintenance problem,

instead of using historical information, we could utilise weather forecast information to

assist in forming more accurate risk estimation. In more detail, the flooding risk caused by

each gully pot i is the product of its direct risk impact qi and the probability of flooding

happens there due to gully failures, denoted as Fi. Here, direct risk impact measures

the estimation of total value loss if floods happens. Further work is required to come

up with a function Fi(Pi(d), lrain, brisk), which defines the flooding probability based on
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the information of the probability of a gully pot blocked Pi(d), the level of rainfall lrain

estimated in future days, and the flooding risk base level, which grades the gullies based

on its historical likelihood of general flooding (e.g. distance to a natural water source).

As time passes and knowledge gain increases, we can improve the quality of our risk

estimates and thus our predictive scheduling quality.

We give two further suggestions when adopting the predictive scheduling strategy and

similar analysis, when it comes to general real-world applications. They are:

• For any data-supported decision-making process, it is worth noting that we cannot

spend too much effort to complete an accurate survey and collect more data resource.

Accurate and sufficient data is critical for effective and efficient maintenance schedul-

ing.

• When dealing with large-scale problems like the drainage system maintenance case

study from Gaist, problem simplification techniques, such as grouping gullies and

pre-preparing candidate routes are always worth considering.

Part II: Heuristic search methods

To be able to solve large-scale combinatorial optimisation problems, (meta-)heuristic meth-

ods are preferred. Due to the high computational complexity involved in solving these

problems, developing efficient algorithms is equally important to deliver useful solutions to

real-world problems.

In part II, our focus is on the designing of efficient heuristic based methods. The aim

is not only building efficient solvers for the GDMP, but also more generally understanding

the behaviour of each algorithm while solving problems with different characteristics. With

the successful experience of applying a BEBO hyperheuristic to solve our drainage system

maintenance problem in Chapter 6, we continue our investigation on various hyperheuristic

frameworks, and test them on the benchmark PVRP instances, which allows us to compare

the algorithm performance with the state-of-art meta-heuristics developed by other authors.

The spirit of hyperheuristic is to introduce artificial intelligence to algorithm self-design

and self-adaptation for solving different difficult problems. The algorithms that apply

simple random decision making process (e.g. low-level-heuristic selection) still count as

hyperheuristic, even though they may not looks smart. According to our experiments

tested on small benchmark PVRP instances (Chapter 7) and experience from other authors
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(e.g. Gulczynski et al. (2011); Vidal et al. (2012)), there are many advantages to involving

random decision making within the algorithm design:

1. Memory efficient. Complex decision making always needs additional information

stored (e.g. historical search trajectory).

2. Computationally efficient. A random strategy requires minimal calculation to make

a search decision. An additional benefit of this method is to complete more iterations

when search through the solution space, which may explain why this method out

performs other sophisticated algorithms on some problems.

However, when applying the random decision-making approach to bigger problems, we

can see that the random strategy gradually becomes less competitive than learning-based

decision-making approaches. Learning-based hyperheuristics introduce mechanisms that

statistically evaluate the performance of low-level-heuristics and make a choice based on

the evaluations. The evaluation method usually defines the name of learning-based hyper-

heuristics. According to our experience, it is difficult to conclude that one hyperheuristics

always outperforms others for different types of problems. Further work could investigate

ways to evaluate “strong” low-level heuristics and the reasons of preference of problem type

to hyperheuristics.

To successfully apply a hyperheuristic method to problems, as well as the hyperheuristic

design itself, it is important to have a good set of low-level-heuristics. The set of low-level-

heuristics can be considered as a tool box, whilst a hyperheuristic acts as an intelligent

agent to choose the right tool at the right time. Therefore, a good set of low-level-heuristics

should be able to reach any solution in a solution space, when used in different orders and

combinations.

In Chapter 8, we address designing of an efficient local search (LS) process. A novel

dynamic multi-arm-bandit neighbourhood search (D-MABNS) is proposed, which aims to

quickly find a descent direction during each iteration of LS and reach the local optimum

effectively. The D-MABNS design is based on the observation that it can be inefficient

to check the entirety of one move’s neighbourhood before considering others (Figure 8.2,

Chapter 8). We perform a comprehensive analysis and gain insights into the relationship

between neighbourhood structure and search strategies. To effectively solve our large scale

GDMP, D-MABNS utilises the orderliness property of its neighbourhood structures and

applies techniques that focus the search in promising areas of the solution space. Compared

to the BEBO hyperheuristic developed in the earlier work, D-MABNS achieves significant

205



Chapter 10. Thesis conclusions and future work

better results within the same calculation time.

The D-MABNS does not show much advantages when tested on the benchmark PVRP

instances. The PVRP neighbourhood structures show little or no orderliness in features

that have already been used. Also, the tested PVRP instances are of much smaller size

compared to the drainage maintenance problem. Therefore, it is relatively fast to search

through an entire neighbourhood in these cases. These may be the reasons that reduce the

impact of D-MABNS’s tricks during the search.

Discussion and future work In the developing of our heuristic search methods, we

mostly focus on LS -based approaches (see review in Section 2.1.2.3). In recent years,

many hybrid-heuristics that combine the techniques from population-based meta-heuristic

and LS have achieved significant success in solving difficult combinatorial problems (e.g.

Nagata et al. (2010); Vidal et al. (2012)). Compared to the multi-restart technique mostly

used in this thesis, when a search gets stuck in a local optimum, we think it is worth

investigating some recombination operators, which are normally introduced in population

search methods. By introducing recombination between good solutions, we may have a

bigger chance of starting the following LS process within promising areas.

Another thought when adopting our algorithms in real-world scenarios is parallelisation.

For the learning based hyperheuristic (Chapter 7), the process of calling each selected low-

level-heuristic can certainly be parallelised. Similarly, D-MABNS (Chapter 8) could also

examine several neighbours each from a different neighbourhood simultaneously.

In Chapter 8, experiments show that the D-MABNS outperforms the BEBO hyper-

heuristic in solving Gaist Solutions Ltd.’s drainage system maintenance scheduling problem

in a short period. In the future work, we would like to apply D-MABNS on the rolling hori-

zon scheduling framework (Chapter 6) and deliver the long period risk analysis of adopting

D-MABNS as the schedule solver. We are hopeful that a larger risk reduction can also be

achieved in the long period as its success has been shown in the short-period experiments.

Part III: Large-scale road inspection

Part III focuses on a separate highway maintenance issue, which again is of interest to

our partner, Gaist Solutions Ltd. As it deals with the road inspection problem. The aim

here is to make a strategic decision in OR to choose a cost-effective method of delivering

the road inspection on a national scale. Specifically, we explore the potential benefits of

using inspection vehicles, which can collect road-lane information for both sides of a single
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carriageway in one traversal, as opposed to more common single-sided monitoring, which

has to use a bi-directional strategy to monitor every road.

The interest of this study is not only in the question itself, but also in its large scale.

Three achievements of this work are addressed. First, according to our data analysis and

theoretical proof, we model the real-world road inspection problem as a CPP, which al-

lows us to accurately estimate the total travelling distance needed in a national-scale road

inspection. Second, to solve large-scale problems, we propose a graph-reduction strategy,

which significantly speeds up the Chinese Postman Tour (CPT) (Guan (1962)) calculation

time. Third, based on the study of seven UK road networks, including the ones in both ur-

ban and rural areas, the total savings from road-inspection expenditure for UK government

is estimated to be up to £4.32 million, when the more efficient one-pass road inspection

strategy is applied.

Discussion and future work The experiments in this study show that significant per-

formance improvements follow if data simplification is performed before actually solving the

problem. This idea is also employed in solving the drainage system maintenance problem

(Part I). The problem reduction techniques introduced in Chapter 6, including the point

grouping and routes preparing, essentially transform the original routing and scheduling

problem into a much smaller combinatorial problem. These techniques earn the advantages

of both computational and memory efficiency.

In this study, the proposed that graph reduction approach can only be applied to

undirected graphs. In practice, there are many one-way systems in our road networks. It

would be more useful and accurate if a similar approach would be applied in a mixed or

directed graph. In the design of one-way road system, we could always find a set of minimum

distance tours, which include the one-way edges at least once. From this perspective, many

of the one-way road system could be (partially) pre-digested as giant nodes in a directed

graph. We think that further effort is worthy of being spent on the extension of the current

graph-reduction approach to deal with mixed and directed graphs.

To complete the road inspection task in practice, as well as the analysis from a strate-

gic decision, further work should be considered at the operational decision making level.

Example questions to answer include optimally dividing the country into sub-areas, finding

the optimal starting points for each vehicle tour and designing optimal survey routes for

each vehicle with consideration of constraints (e.g. traffic in urban area, one way road).

207



Chapter 10. Thesis conclusions and future work

Last words

In conclusion, this research has increased our knowledge of using the risk management con-

cept (from a high-level strategical planning) to automatically deliver detailed operational

actions (i.e. scheduling and routing) for large-scale GDMPs. The work in this thesis makes

contributions toward this goal from several aspects, including problem analysis, modelling,

and solution approach development. We hope that the scope for further research discussed

in each part will enhance the generality and robustness of solutions, which can be applied

to wider problem domains and more complex scenarios.
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Appendix A

Table A.1: Best found solution of PVRP instance (p04)

p04 (total length of routes: 835.3)
day1:
Route0: 0,67,46,34,4,75,0,
Route1: 0,6,33,63,23,56,24,49,16,0,
Route2: 0,27,37,20,70,60,71,69,36,47,48,0,
Route3: 0,62,22,64,42,41,43,1,73,51,0,
Route4: 0,30,74,21,61,28,2,68,0,
day2:
Route5: 0,17,40,9,39,12,26,0,
Route6: 0,38,65,66,59,14,7,0,
Route7: 0,52,19,54,13,57,15,5,29,45,0,
Route8: 0,8,35,53,11,10,58,0,
Route9: 0,3,44,32,50,18,55,25,31,72,0,
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Table A.2: Information of PVRP street-style and benchmark instances. (Our real-world
PVRP instances are named from map1 to map6. There are two data sets available in
literature, where instances p01–p32 compose the old data set and instances pr01–pr10
compose the new data set. n is the number of customer; m is the number of vehicle
available; t is the number of days in the planning horizon. The problem instances can be
download from http://yc1005.wixsite.com/yujiechen)

n m t Average service frequency Proposed by
Street style instance

map1 315 3 6 2.057142857
map2 324 3 6 1.586419753
map3 240 3 6 1.820833333 Chen et al. (2016d)
map4 315 5 6 2.057142857
map5 324 5 6 1.586419753
map6 240 5 6 1.820833333

Benchmark instance
p01 51 3 2 1

Christofides and Beasley (1984)

p02 50 3 5 2.08
p03 50 1 5 1
p04 75 5 2 1
p05 75 6 5 2.04
p06 75 1 10 1
p07 100 4 2 1
p08 100 5 5 2.02
p09 100 1 8 1
p10 100 4 5 1.74
p11 139 4 5 1.381294964 Russell and Igo (1979)
p12 163 3 5 1.134969325

Russell and Gribbin (1991)
p13 417 9 7 1.095923261
p14 20 2 4 2

Chao et al. (1995)

p15 38 2 4 1.894736842
p16 56 2 4 1.857142857
p17 40 4 4 2
p18 76 4 4 1.894736842
p19 112 4 4 1.857142857
p20 184 4 4 1.826086957
p21 60 6 4 2
p22 114 6 4 1.894736842
p23 168 6 4 1.857142857
p24 51 3 6 1.764705882
p25 51 3 6 1.764705882
p26 51 3 6 1.764705882
p27 102 6 6 1.764705882
p28 102 6 6 1.764705882
p29 102 6 6 1.764705882
p30 153 9 6 1.764705882
p31 153 9 6 1.764705882
p32 153 9 6 1.764705882
pr01 48 2 4 2

Cordeau et al. (1997)

pr02 96 4 4 2
pr03 144 6 4 2
pr04 192 8 4 2
pr05 240 10 4 2
pr06 288 12 4 2
pr07 72 3 6 3
pr08 144 6 6 3
pr09 216 9 6 3
pr10 288 12 6 3
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Appendix A.

(a) mi01: 2815 vertices (b) mi03: 14074 vertices

(c) mi04: 21111 vertices (d) mi05: 28149 vertices

Figure A.1: Effect of feature sorting strategy with different neighbourhoods prune rate γ
to different sizes of GDMP instances

(a) mi01: 2815 vertices (b) mi02: 7037 vertices

(c) mi03: 14074 vertices (d) mi04: 21111 vertices

Figure A.2: The effect of parameter λ on the algorithm performance with two different
pruning parameter setting. The other parameter settings are {w = 400, RF = exp(a =
5), α = 0.8}. Tested on different sizes of GDMP instances
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List of Abbreviations

BEBO Binary Exponential Back Off (for LLH selection) Chapter 7
BI Best Improvement Chapter 3

CBM Condition Based Maintenance Chapter 4
CF Choice Function (for LLH selection) Chapter 7

CPP Chinese Postman Problem Chapter 9
CPT Chinese Postman Tour Chapter 9
CW Clark-Wright algorithm Chapter 2

D-MAB Dynamic Multi Arm Bandit Chapter 8
D-MABNS DMAB Neighbourhood Search Chapter 8

FI First Improvement Chapter 3
FSS Feature Sequential Search Chapter 3
FW Floyd-Warshall algorithm Chapter 9

GDMP Geographically Disturbed asst Maintenance Problem Chapter 1
HA Hierholzer Algorithm Chapter 9
ILS Iterated Local Search Chapter 7

LLH Low Level Heuristics Chapter 3
LS Local Search Chapter 3

MAB Multi Arm Bandit Chapter 8
PSS Predictive Scheduling Strategy Chapter 6

PVRP Periodic Vehicle Routing Problem Chapter 2
RF Reward Function Chapter 8
RL Reinforcement Learning (for LLH selection) Chapter 7
SR Simple Random (for LLH selection) Chapter 7

TBM Time Based Maintenance Chapter 4
TOP Team Orienteering Problem Chapter 2
VND Variable Neighbourhood Descent (search) Chapter 7
VNS Variable Neighbourhood Search Chapter 2
VRP Vehicle Routing Problem Chapter 2
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Fialho, Á., Da Costa, L., Schoenauer, M. and Sebag, M. (2009). Dynamic multi-armed

bandits and extreme value-based rewards for adaptive operator selection in evolutionary

algorithms. Lecture Notes in Computer Science (including subseries Lecture Notes in

Artificial Intelligence and Lecture Notes in Bioinformatics) 5851 LNCS: 176–190.
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Meignan, D., Koukam, A. and Créput, J. C. (2010). Coalition-based metaheuristic: A self-

adaptive metaheuristic using reinforcement learning and mimetism. Journal of Heuristics

16(6): 859–879.

Merz, B., Kreibich, H., Thieken, a. and Schmidtke, R. (2004). Estimation uncertainty of

direct monetary flood damage to buildings. Natural Hazards and Earth System Science

4(1): 153–163.

Misir, M., Vancroonenburg, W., Verbeeck, K. and Vanden-berghe, G. (2011). A selection

hyper-heuristic for scheduling deliveries of ready-mixed concrete. In Proceedings of the

9th Metaheuristic International Conference: 289–298.
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Nagata, Y., Bräysy, O. and Dullaert, W. (2010). A penalty-based edge assembly memetic

algorithm for the vehicle routing problem with time windows. Computers and Operations

Research 37(4): 724–737.

Nareyek, A. (2004). Choosing search heuristics by non-stationary reinforcement learning.

In M. G. C. Resende, J. P. de Sousa and A. Viana, eds., Metaheuristics. Norwell, MA,

USA: Kluwer Academic Publishers, 86: 523—-544.
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